dlilgliltlall




OpenVMS DCL Dictionary: A-M
(6.2)

Order Number: AA-PV5KD-TK

December 1995

This manual provides detailed reference information and examples for
OpenVMS DCL commands and lexical functions.

Revision/Update Information:  This manual supersedes the OpenVMS
DCL Dictionary, OpenVMS Version 6.1.

Software Version: OpenVMS Alpha Version 6.2
OpenVMS VAX Version 6.2

Digital Equipment Corporation
Maynard, Massachusetts



December 1995

Digital Equipment Corporation makes no representations that the use of its products in the
manner described in this publication will not infringe on existing or future patent rights, nor do
the descriptions contained in this publication imply the granting of licenses to make, use, or sell
equipment or software in accordance with the description.

Possession, use, or copying of the software described in this publication is authorized only pursuant
to a valid written license from Digital or an authorized sublicensor.

Digital conducts its business in a manner that conserves the environment and protects the safety
and health of its employees, customers, and the community.

© Digital Equipment Corporation 1995. All rights reserved.

The following are trademarks of Digital Equipment Corporation: AXP, Bookreader, CDA, CI, DEC,
DECterm, DECdtm, DECevent, DECnet, DECprint, DECram, DECspell, DECUS, DECwindows,
DECwrite, DECwriter Correspondent, DEQNA, DTIF, EDT, GIGI, HSC, LA, LiveLink, LNO03,
MASSBUS, MicroVAX, MSCP, OpenVMS, PrintServer 40, Q-bus, ReGIS, RX02, RX33, RZ, TMSCP,
ULTRIX, UNIBUS, VAX, VAXcluster, VAX COBOL, VAX FORTRAN, VAXft, VAXserver, VAXstation,
VMS, VMScluster, VT, VT100, VT300, WPS, XUI, and the DIGITAL logo.

The following are third-party trademarks:

Adobe, Display PosTScrIPT, and POSTSCRIPT are registered trademarks of Adobe Systems
Incorporated.

Open Software Foundation, OSF, OSF/Motif, and Motif are trademarks of the Open Software
Foundation, Inc. ‘

UNIX is a registered trademark licensed exclusively by X/Open Company, Ltd.

All other trademarks and registered trademarks are the property of their respective holders.
ZK6199

This document is available on CD-ROM.



Contents

Preface . ... vii

= (Assignment Statement) ............ ... ... .. i i, DCLI-1
1= (String Assignment) . . . ... e e e DCLI-5
@ (Execute Procedure) . ........o ittt DCLI-9
ACCOUNTING ..ttt ettt e ettt ettt s et e e e DCLI-14
ALLOCATE . ..t e e e e e DCLI-15
ANALYZE/AUDIT . ... e et ettt e e e e DCLI-18
ANALYZE/CRASH DUMP . . ... .. ittt i e e i DCLI-19
ANALYZE/DISK_ STRUCTURE . . ...... ... ittt DCLI-20
ANALYZE/ERROR_LOG . ...ttt ittt i et iiieaas DCLI-21
ANALYZE/MMAGE . . ..t e e ettt e e DCLI-22
ANALYZE/MEDIA . ... it it e et e e DCLI-25
ANALYZE/OBJECT . ... it e e e e ettt e e e DCLI-26
ANALYZE/PROCESS DUMP. . ... .t e i DCLI-30
ANALYZE/RMS_FILE . . ... ittt e DCLI-34
ANALYZE/SYSTEM . . ..ttt et et e e e e DCLI-35
APPEND . ... e e e DCLI-36
ASSIGN . . e e e . DCLI-41
ASSIGN/MERGE . ... .ottt ittt it e i e i DCLI-47
ASSIGN/QUEUE . ...ttt et e et e e e e e e DCLI-48
AT ACH . ..t e e e e e DCLI-50
BACKU P ... e e e DCLI-52
CALL .. e e DCLI-53
L0720\ (0] DCLI-57
07 70 1 1 DCLI-59
CONNECT . .. e e e et e e e e DCLI-61
CONTINUE . ... ..ottt ee e en e DCLI-64
CONVERT . .. e e e e ettt e DCLI-65
CONVERT/DOCUMENT . ... . it ittt e et e e e DCLI-66
CONVERT/RECLAIM . ... .ttt ittt ettty DCLI-78
COPY ... e DCLI-79
COPY P . .o i e e e e e e DCLI-89
COPY/RCP . . o e e e e e e e DCLI-91
CREATE ... e e e e DCLI-93
CREATE/DIRECTORY . . ... ..o ettt e e e DCLI-96
CREATE/FDL ..................... P DCLI-99
CREATE/NAME TABLE . ..... .ttt e e e DCLI-100
CREATE/TERMINAL. . ..o it it e e it e e DCLI-104



DEALLOCATE . . . ..o e e DCLI-110

DEASSIGN - . o vt ettt e e e e e DCLI~111
DEASSIGN/QUEUE . . ..ttt e e e e, DCLI-115
15)01:1 0 ¢ JUEU DCLI-116
15)010) SN DCLI-117
15)01 205 0 DCLI~120
DEFINE/CHARACTERISTIC . . . .t vttt e e e et DCLI-126
DEFINE/FORM . . . e et e e e e e e e e e e e DCLI-128
DEFINE/KEY . . .+ e ove et e e e e e e e DCLI-132
15) 0304y o DCLI-136
DELETE/CHARACTERISTIC .. ..ottt et DCLI~140
DELETE/ENTRY . .« o et et e e DCLI-141
DELETE/FORM . . .« e et e e e e e e e e, DCLI-144
DELETE/INTRUSION_RECORD . . . . e eeeee et e DCLI-145
DELETE/KEY .. oottt e e e e e e e e e e e DCLI-146
DELETE/QUEUE .. ..ottt e e e DCLI-148
DELETE/QUEUE/MANAGER . . . . .ottt e e DCLI-150
DELETE/SYMBOL ............. e DCLI-151
1510 210)S) i AN DCLI~153
DIAGNOSE (AIpha OnLY) . . .« o v e ettt e e e DCLI-157
DIFFERENCES . . . o ottt e e e e e e e, DCLI-158
DIRECTORY . ..ottt ettt e e e e e e, DCLI-168
DISABLE AUTOSTART . . . .ot e e e e e e e DCLI-180
DISCONNECT . .« e ettt e e e e e e e e DCLI-182
DISMOUNT . . o v e e et e e e e e e e e e e DCLI-184
150112 DCLI-188
190) 41 /X0 P DCLI-196
EDIT/EDT . .o oveee et e e e e e e e e e e DCLI~197
120 4V 3 ) PR DCLI-201
EDIT/SUM . . o o e e e e e e e e e e e e e e e DCLI-202
EDIT/TECO . . o eove e e e DCLI-203
EDIT/TPU ..o oottt e e e e e e e e DCLI-206
ENABLE AUTOSTART . ...t ovet et e e e e DCLI-207
ENDSUBROUTINE . . . .+ et ettt e e e e DCLI-210
1070) 0 R DCLI-211
1070 A DCLI-213
EXAMINE . .o ovot et e e e e e e DCLI-214
EXCHANGE . ..o ot e e DCLI-217
EXCHANGE/NETWORK . . . . e\ e ee et et e e DCLI-218
105.4 4 RN DCLI-227
100) 5 AT DCLI-231
GOSUB ..... e DCLI-232
GOTO . et e e e e e DCLI-234
12101 11 DCLI-236
HELP/MESSAGE . . . .ottt e e e e e e DCLI-244
5 DCLI-250
INITIALIZE . . o .o e ettt e e e e e e e e e e DCLI-253



INITIALIZE/QUEUE . . . ... e DCLI-263

INQUIRE . . .ottt ettt e e e e e e e e DCLI-278
BN VN ) 7 DCLI-281
JOB it e e DCLI-282
Lexical FUnctions .. ........ ... . i DCLI-288
FCONTEXT . .ottt ettt et et e e e e e e DCLI-291
FCSID .ottt et e DCLI-297

P OV ST . e e DCLI-299
FSCVTIME ... ittt e e e DCLI-301
FCVUIL . oottt e e e e e e DCLI-303
FODEVICE . . ..ottt e e DCLI-304
FSDIRECTORY . ..ottt tt ittt ettt et DCLI-306
) 010 ) 4 DCLI-307
FSELEMENT . . ..ottt et e e e e e et DCLI-309
FSENVIRONMENT . ..ttt et et DCLI-311
FOEXTRACT .\ttt ettt e et et e DCLI-314
FOFAO . .ottt DCLI-316
F$FILE_ATTRIBUTES ...ttt ittt et e DCLI-323

e O 0 )2 P . DCLI-326
FOGETIPL . . oottt e e e e e DCLI-342
FSGETQUI. . .ottt et e et e e e e DCLI-348
FOGE T SYI . oottt e e e e e e DCLI-371
FSIDENTIFIER . .. ..ottt ittt ettt e DCLI-377
FSINTEGER . ...ttt ittt ettt e DCLI-379
FOLENGTH . ..ottt e e e e DCLI-380
FSLOCATE ...ttt et e e e DCLI-381
FSMESSAGE . ..ottt ittt e ....DCLI-383
FSMODE .. .ottt ettt e e e e e e DCLI-385
FPARSE . . oottt DCLI-387
) 2 18 3 T DCLI-390
FSPRIVILEGE . . ..ottt et e et e et DCLI-392
FOPROCESS .. i\ttt ettt et e e e DCLI-393
FOSEARCH ...ttt e e e DCLI-394
o) 4 N 2d 3/ DCLI-397
FOSTRING . ..ottt ittt et ettt et ettt e e DCLI-401
FOTIME . ..ottt et e e e e DCLI-402
FTRNLNDM ...ttt ettt e ettt et DCLI—403

3 104 5 DCLI-407
FOUSE R . ..ttt ittt et e DCLI-409
FOVERIFY . .ottt ettt et e et e DCLI-410

L BRARY ... it e e e DCLI-412
LICENSE . o ittt ettt et et et e DCLI-413
LINK .......... e e DCLI-414
LOGIN Procedure . ...ovviiiitt ittt ittt ettt DCLI-415
70670 6 P DCLI-419
MACRO .. e e e e e e DCLI-420



MACRO/MIGRATION (Alphaonly) ......... ..o i, DCLI-427

MAIL ... i e e e DCLI-428
MERGE ........ ittt e DCLI-429
MESSAGE ... e e e e e e e DCLI-430
MONITOR ...ttt ettt e ettt et DCLI-431
MOUNT . . et ettt e et e et e e e e DCLI-432
Index
Tables

DCL!I-1 CPU Time Limit Specifications and Actions..................... DCLI-269
DCLI-2 Working Set Default, Extent, and Quota Decision . ............... DCLI-276
DCLI-3 Summary of Lexical Functions. . ............... ..ot DCLI-288
DCLI-4 Summary of FAO Directives. . . ... ..ottt iiinnn. DCLI-318
DCLI-5 F$FILE_ATTRIBUTES Items .........cciuuieinnneneennennnn. DCLI-323
DCLI-6  FOGETDVIItems . .. oottt it e ettt e eneeaannn DCLI-327
DCLI-7  Values Returned by the DEVCLASSItem ...................... DCLI-334
DCLI-8  Values Returned by the DEVIYPE Item ....................... DCLI-335
DCLI-9 FSGETJIPIItemS . ..ot iti ettt eee e ieeereeanenns DCLI-343
DCLI-10 F$GETQUI Keywords . .....vvvvrnenennneenenneennnnnnnnnn DCLI-350
DCLI-11  FSGETQUIItemS. . . o oot e ettt e eeee i eneennns DCLI-352
DCLI-12 F$GETSYI Items for the Local Node Only . ..................... DCLI-372

DCLI-13 F$GETSYI Items for the Local Node or for Other Nodes in the
VA CIUSE T . . . vttt e e et e DCLI-375
DCLI-14 F$MESSAGE Keywords . . . ... ...virtineiiieiinneenennnn. DCLI-383
DCLI-15 Context Symbol Types ... ... ..ttt i DCLI-407

vi



Preface

Intended Audience

This manual is intended for all users of the OpenVMS operating system. It
includes descriptions of all DIGITAL Command Language (DCL) commands and
lexical functions. If a command has any restrictions or requires special privileges,
they are noted in reference information for that command.

Readers of this manual should be familiar with the material covered in the
OpenVMS User’s Manual.

Document Structure

This manual contains detailed descriptions of each command and lexical function.
The commands are listed in alphabetical order, with the command name
appearing at the top of every page. The lexical functions are grouped under the
heading Lexical Functions (after the JOB command description) and are listed
alphabetically within that grouping; the lexical function name appears at the top
of each page. ‘

The hard copy of the OpenVMS DCL Dictionary is a two-part manual. The first
contains commands beginning with the letters A to M (including the lexical
functions); The second part contains commands beginning with the letters N to
Z. The Table of Contents and Index are comprehensive: they include both parts.
The Bookreader copy of the OpenVMS DCL Dictionary is one manual.

Appendix A lists the obsolete DCL commands and the current services that
replace them.

The commands that invoke language compilers and other OpenVMS optional
software products are not included in this manual; they are included in the
documentation provided with those products.

Related Documents

For an introduction to the OpenVMS operating system and for information
on using DCL, see the OpenVMS User’s Manual. This manual is especially
recommended for novice users or users lacking experience with interactive
computer systems.

The OpenVMS User’s Manual provides an overview of DCL command language
concepts and defines and illustrates good practices in constructing command
procedures with DCL commands and lexical functions.

See the various utilities reference manuals for detailed information on utilities.
These manuals describe the DCL commands that invoke the various utilities,
describe any commands that you can enter while running a utility, and provide
reference information. The OpenVMS DCL Dictionary only provides a brief
description and format information of each utility.

vii



For message descriptions, use the online Help Message utility or refer to the
OpenVMS system messages documentation.

Reader’s Comments
Digital welcomes your comments on this manual.
Print or edit the online form SYS$HELP:OPENVMSDOC_COMMENTS.TXT and

send us your comments by:

Internet openvmsdoc@zko.mts.dec.com
Fax 603 881-0120, Attention: OpenVMS Documentation, ZK03-4/U08
Mail OpenVMS Documentation Group, ZK03-4/U08

110 Spit Brook Rd.
Nashua, NH 03062-2698

How To Order Additional Documentation

Use the following table to order additional documentation or information.
If you need help deciding which documentation best meets your needs, call
800-DIGITAL (800-344-4825),

Telephone and Direct Mail Orders

Location Call Fax Write

US.A. DECdirect Fax: 800-234-2298 Digital Equipment Corporation
800-DIGITAL P.O. Box CS2008
800-344-4825 Nashua, NH 03061

Puerto Rico 809-781-0505 Fax: 809-749-8300 Digital Equipment Caribbean, Inc.

3 Digital Plaza, 1st Street, Suite 200
P.O.Box 11038

Metro Office Park

San Juan, Puerto Rico 00910-2138

Canada 800-267-6215 Fax: 613-592-1946 Digital Equipment of Canada, Ltd.
Box 13000
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6
Attn: DECdirect Sales

International - - Local Digital subsidiary or
approved distributor
Internal Orders DTN: 2644446 Fax: 603-884-3960 U.S. Software Supply Business
603-884-4446 Digital Equipment Corporation
10 Cotton Road

Nashua, NH 03063-1260

ZK-7654A-GE

Conventions

The name of the OpenVMS AXP operating system has been chénged to OpenVMS
Alpha. Any references to OpenVMS AXP or AXP are synonymous with OpenVMS
Alpha or Alpha.

The following conventions are used to identify information specific to OpenVMS
Alpha or to OpenVMS VAX:

viii



i
¢

The Alpha icon denotes the beginning of information
specific to OpenVMS Alpha.

The VAX icon denotes the beginning of information
specific to OpenVMS VAX,

The diamond symbol denotes the end of a section of
information specific to OpenVMS Alpha or to OpenVMS
VAX. '

In this manual, every use of DECwindows and DECwindows Motif refers to
DECwindows Motif for OpenVMS software.

The following conventions are also used in this manual:

Ctrl/x

PF1 (GOLD) x

O)

(]

{}

boldface text

A sequence such as Ctrl/x indicates that you must hold down
the key labeled Ctrl while you press another key or a pointing
device button.

A sequence such as PF1 x indicates that you must first press
and release the key labeled PF1 (defined as the GOLD key),
then press and release another key or a pointing device button.

The GOLD key definition is often mapped to the PF1 key on
the keypad. GOLD key sequences can also have a slash (/),
dash (-), or underscore (_) as a delimiter in EVE commands.

In examples, a key name enclosed in a box indicates that
you press a key on the keyboard. (In text, a key name is not
enclosed in a box.)

Horizontal ellipsis points in examples indicate one of the
following possibilities:

¢ Additional optional arguments in a statement have been
omitted.

* The preceding item or items can be repeated one or more
times.

*  Additional parameters, values, or other information can be
entered.

Vertical ellipsis points indicate the omission of items from
a code example or command format; the items are omitted
because they are not important to the topic being discussed.

In command format descriptions, parentheses indicate that, if
you choose more than one option, you must enclose the choices
in parentheses.

In command format descriptions, brackets indicate optional
elements. You can choose one, none, or all of the options.
(Brackets are not optional, however, in the syntax of a directory
name in an OpenVMS file specification or in the syntax of a
substring specification in an assignment statement.)

In command format descriptions, braces indicate a required
choice of options; you must choose one of the options listed.

Boldface text represents the introduction of a new term or the
name of an argument, an attribute, or a reason.

Boldface text is also used to show user input in Bookreader
versions of the manual.



italic text

UPPERCASE TEXT

numbers

Italic text indicates important information, complete titles of
manuals, or variables. Italic text also represents information
that can vary in system messages (for example, Internal error
number), command lines (for example, /PRODUCER=name),
and command parameters in text.

Uppercase text indicates a command, the name of a routine,
the name of a file, or the abbreviation for a system privilege.

A hyphen in code examples indicates that additional
arguments to the request are provided on the line that follows.

All numbers in text are assumed to be decimal unless
otherwise noted. Nondecimal radixes—binary, octal, or
hexadecimal—are explicitly indicated.

The contents of the display examples for certain commands described in this
manual may differ slightly from the actual output provided by these commands
on your system. However, when the behavior of a command differs significantly
between Alpha and VAX, that behavior is described in text and rendered, as
appropriate, in separate examples.



= (Assignment Statement) |

= (Assignment Statement)
Defines a symbolic name for a character string or integer value.

Format
symbol-name =[=] expression

symbol-namef[bit-position,size] =[=] replacement-expression

Note

Digital advises against assigning a symbolic name that is already a DCL
command name. Digital especially discourages the assignment of symbols
such as IF, THEN, ELSE, and GOTO, which can affect the interpretation

of command procedures.

Parameters

symbol-name

Specifies a string of 1 to 255 characters for the symbol name. The name can
contain any alphanumeric characters from the DEC Multinational character set,
the underscore (_), and the dollar sign ($). However, the name must begin only
with an alphabetic character (uppercase and lowercase characters are equivalent),
an underscore, or a dollar sign. Using one equal sign (=) places the symbol name
in the local symbol table for the current command level. Using two equal signs
(==) places the symbol name in the global symbol table.

expression

Names the value on the right-hand side of an assignment statement. This
parameter can consist of a character string, an integer, a symbol name, a lexical
function, or a combination of these entities. The components of the expression are
evaluated, and the result is assigned to the symbol. All literal character strings
must be enclosed in quotation marks (“”). If the expression contains a symbol,
the expression is evaluated using the symbol’s value.

The result of expression evaluation is either a character string or a signed integer
value. If the expression is evaluated as a string, the symbol is assigned a string
value. If the expression is evaluated as an integer, the symbol is assigned an
integer value. If the integer value exceeds the capacity of the 4-byte buffer that
holds it, no error message is issued.

For a summary of operators used in expressions, details on how to specify
expressions, and details on how expressions are evaluated, see the OpenVMS
User’s Manual.

DCL uses a buffer that is 1024 bytes long to hold an assignment statement and
to evaluate the expression. The length of the symbol name, the expression, and
the expression’s calculations cannot exceed 1024 bytes.

[bit-position,size]

States that a binary overlay is to be inserted in the current 32-bit value of a
symbol name. The current value of the symbol name is evaluated. Then, the
specified number of bits is replaced by the result of the replacement expression.
The bit position is the location relative to bit 0 at which the overlay is to occur.

DCLI-1



= (Assignment Statement)

If the symbol you are overlaying is an integer, then the bit position must be less
than 32. The sum of the bit position and the size must be less than or equal to
32.

If the symbol you are overlaying is a string, then the bit position must be less
than 6152. Because each character is represented using 8 bits, you can begin
an overlay at any character through the 768th character. (The 768th character
starts in bit position 6144.) The sum of the bit position and the size must be less
than or equal to 6152.

The size is the number of bits to be overlaid. If you specify a size that is greater
than 32, DCL reduces the size to 32.

The brackets are required notation; no spaces are allowed between the symbol
name and the left bracket. Specify values for the bit position and size as integers.

replacement-expression
Specifies the value that is used to overlay the symbol you are modifying. Specify
the replacement expression as an integer.

If the symbol you are modifying is an integer, the replacement expression defines
a bit pattern that is overlaid on the value assigned to the symbol. If the symbol
you are modifying is a character string, the result of the replacement expression
defines a bit pattern that is overlaid on the specified bits of the character string.
If the symbol you are modifying is undefined, the result of the replacement
expression is overlaid on a null string.

Description

Symbols defined using assignment statements allow you to extend the command
language. At the interactive command level, you can use symbols to define
synonyms for commands or command lines. In command procedure files, you can
use symbols to provide for conditional execution and substitution of variables.

The maximum number of symbols that can be defined at any time depends on the
following:

¢ The amount of space available to the command interpreter to contain symbol
tables and labels for the current process. The amount of space is determined
for each process by the system parameter CLISYMTBL.

* The size of the symbol names and their values. The command interpreter
allocates space for a symbol name and its value. In addition, a few bytes of
overhead are allocated for each symbol.

Examples

1. § LIST == "DIRECTORY"

The assignment statement in this example assigns the user-defined synonym
LIST as a global symbol definition for the DCL command DIRECTORY.

DCLI-2



2.

= (Assignment Statement)

$ COUNT = 0

$ LOOP:

$ COUNT = COUNT + 1

$ IF P'COUNT' .EQS. "" THEN EXIT
$ APPEND/NEW &P’'COUNT’ SAVE.ALL
$ DELETE &P'COUNT';*

$ IF COUNT .LT. 8 THEN GOTO LOOP

$ EXIT

This command procedure, COPYDEL.COM, appends files (specified as
parameters) to a file called SAVE.ALL. After a file has been appended, the
command procedure deletes the file. Up to eight file names can be passed to
the command procedure. The file names are assigned to the symbols P1, P2,
and so on.

The command procedure uses a counter to refer to parameters that are passed
to it. Each time through the loop, the procedure uses an IF command to check
whether the value of the current parameter is a null string. When the IF
command is scanned, the current value of the symbol COUNT is concatenated
with the letter P. The first time through the loop, the IF command tests P1;
the second time through the loop it tests P2, and so on. After the expression
P‘COUNT is evaluated, the substitution of the file names that correspond to
P1, P2, and so on is automatic within the context of the IF command.

The APPEND and DELETE commands do not perform any substitution
automatically, because they expect and require file specifications as input
parameters. The ampersand (&) precedes the P°'COUNT’ expression for
these commands to force the appropriate symbol substitution. When these
commands are initially scanned each time through the loop, COUNT is
substituted with its current value. Then, when the commands execute,
the ampersand causes another substitution: the first file specification is
substituted for P1, the second file specification is substituted for P2, and so
on.

To invoke this procedure, use the following command:
$ QCOPYDEL ALAMO.TXT BEST.DOC

The files ALAMO.TXT and BEST.DOC are each appended to the file
SAVE.ALL and are then deleted.

$A=25
$ CODE = 4 + F$INTEGER("6") - A
$ SHOW SYMBOL CODE
CODE = -15 HEX = FFFFFFFl Octal = 1777761

This example contains two assignment statements. The first assignment
statement assigns the value 25 to the symbol A. The second assignment
statement evaluates an expression containing an integer (4), a lexical function
(F$INTEGER(“6™), and the symbol A. The result of the expression, —15, is
assigned to the symbol CODE.

$ FILENAME = "JOBSEARCH" - "JOB"
$ FILETYPE = ".OBJ"
$ FILESPEC = FILENAME + FILETYPE

$ TYPE 'FILESPEC’

The first command in this example assigns the symbol FILENAME the value
“SEARCH”. Notice that the string “SEARCH” is the result of the string
reduction operation performed by the expression. The second command
assigns the symbol FILETYPE the character string “.OBJ”. The symbols

DCLI-3



= (Assignment Statement)

DCLI-4

FILENAME and FILETYPE are then added together in an expression
assigned to the symbol FILESPEC. Because the values of the symbols
FILENAME and FILETYPE are concatenated, the resultant value assigned
to FILESPEC is the character string “SEARCH.OBJ”. The symbol FILESPEC
is then used as a parameter for the TYPE command. The single quotation
marks (‘’) request the command interpreter to replace the symbol FILESPEC
with its value SEARCH.OBJ. Thus, the TYPE command types the file named
SEARCH.OBJ.

$ BELL[0,32] = $X07
§ SHOW SYMBOL BELL
BELL = ""

In this example, the symbol BELL is created with an arithmetic overlay
assignment statement. Because the symbol BELL is previously undefined,
the hexadecimal value 7 is inserted over a null character string and is
interpreted as the ASCII code for the bell character on a terminal. When you
issue the command SHOW SYMBOL BELL, the terminal beeps.

If the symbol BELL had been previously defined with an integer value, the
result of displaying BELL would have been to show its new integer value.

$ $=34

$DCL-W-NOCOMD, no command on line - reenter with alphabetic first
character

$ $§=34

$ SHOW SYMBOL $$

$DCL-W-UNDSYM, undefined symbol - check validity and spelling

$ SHOW SYMBOL $

$ = 34 Hex = 00000022 Octal = 00000000042

If you begin a symbol name with the dollar sign ($), use two dollar signs ($$)
because DCL discards the first instance of the dollar sign.



:= (String Assignment)

:= (String Assignment)
Defines a symbolic name for a character string Vélue.

Format
symbol-name :=[=] string

symbol-nameloffset,size] :=[=] replacement-string

Note

Digital advises against assigning a symbolic name that is already a DCL

command name. Digital especially discourages the assignment of symbols
such as IF, THEN, ELSE, and GOTO, which can affect the interpretation
of command procedures.

Parameters

symbol-name

Specifies a string of 1 to 255 characters for the symbol name. The name can
contain any alphanumeric characters from the DEC Multinational character

set, the underscore (_), and the dollar sign ($). However, the name must begin
only with an alphabetic character, an underscore, or a dollar sign. Using one
equal sign (:=) places the symbol name in the local symbol table for the current
command level. Using two equal signs (:==) places the symbol name in the global
symbol table.

string

Names the character string value to be equated to the symbol. The string can
contain any alphanumeric or special characters. DCL uses a buffer that is 1024
bytes long to hold a string assignment statement. Therefore, the length of the
symbol name, the string, and any symbol substitution within the string cannot
exceed 1024 characters.

With the string assignment statement (:=), you do not need to enclose a string
literal in quotation marks (¢ ”). String values are converted to uppercase
automatically. Also, any leading and trailing spaces and tabs are removed, and
multiple spaces and tabs between characters are compressed to a single space.

It is easier to use the assignment statement (=) to create symbols with string
values because the assignment statement does not automatically convert letters
to uppercase and remove extra spaces. Also, the assignment statement allows
you to perform string operations in expressions.

To prohibit uppercase conversion and to retain required space and tab characters
in a string, place quotation marks around the string. To use quotation marks in
a string, enclose the entire string within quotation marks and use a double set of
quotation marks within the string. For example:

§ TEST := "this is a ""test"" string"
$ SHOW SYMBOL TEST
TEST = "this is a "test" string"

In this example, the spaces, lowercase letters, and quotation marks are preserved
in the symbol definition.

DCLI-5



:= (String Assignment)

DCLI-6

To continue a symbol assignment on more than one line, use the hyphen (-) as a
continuation character. For example:

$ LONG_STRING := THIS_SYMBOL_ASSIGNMENT IS A VERY_LONG-
_§ _SYMBOL_STRING

To assign a null string to a symbol by using the string assignment statement, do
not specify a string. For example:

$ NULL :=

Specify the string as a string literal, or as a symbol or lexical function that
evaluates to a string literal. If you use symbols or lexical functions, place single
quotation marks (¢’) around them to request symbol substitution. See the
OpenVMS User’s Manual for more information on symbol substitution.

You can also use the string assignment statement to define a foreign command.
See the OpenVMS User’s Manual for more information about foreign commands.

[offset,size]

Specifies that a portion of a symbol value is to be overlaid with a replacement
string. This form of the string assignment statement evaluates the value assigned
to a symbol and then replaces the portion of the value (defined by the offset and
size) with the replacement string. The brackets are required notation, and no
spaces are allowed between the symbol name and the left bracket.

The offset specifies the character position relative to the beginning of the symbol
name’s string value at which replacement is to begin. Offset values start at 0.

If the offset is greater than the offset of the last character in the string you are
modifying, spaces are inserted between the end of the string and the offset where
the replacement string is added. The maximum offset value you can specify is
768.

The size specifies the number of characters to replace. Size values start at 1.

Specify the offset and size as integer expressions. See the OpenVMS User’s
Manual for more information on integer expressions. The value of the size plus
the offset must not exceed 769.

replacement-string

Specifies the string that is used to overwrite the string you are modifying. If the
replacement string is shorter than the size argument, the replacement string

is filled with blanks on the right until it equals the specified size. Then the
replacement string overwrites the string assigned to the symbol name. If the
replacement string is longer than the size argument, then the replacement string
is truncated on the right to the specified size.

You can specify the replacement string as a string literal, or as a symbol or lexical
function that evaluates to a string literal. If you use symbols or lexical functions,
place single quotation marks (¢’) around them to request symbol substitution.
For more information on symbol substitution, see the OpenVMS User’s Manual.



Examples

:= (String Assignment)

$ TIME := SHOW TIME
$ TIME
14-DEC-1995 11:55:44

In this example, the symbol TIME is equated to the command string SHOW
TIME. Because the symbol name appears as the first word in a command
string, the command interpreter automatically substitutes it with its string
value and executes the command SHOW TIME.

$ STAT := $DBAL:[CRAMER]STAT
$ STAT

This example shows how to define STAT as a foreign command. The symbol
STAT is equated to a string that begins with a dollar sign followed by a file
specification. The command interpreter assumes that the file specification

is that of an executable image, that is, a file with a file type of .EXE. The
symbol STAT in this example becomes a synonym for the following command:

$ RUN DBAl:[CRAMER]STAT.EXE

When you subsequently enter STAT, the command interpreter executes the
image.

A = "this is a big space."
SHOW SYMBOL A

A = "this is a big space."
B := 'A’

SHOW SYMBOL B

B = "THIS IS A BIG SPACE."

This example compares the assignment and the string assignment
statements. The symbol A is defined using the assignment statement, so
lowercase letters and multiple spaces are retained. The symbol B is defined
using the string assignment statement. Note that the single quotation marks
(¢’) are required; otherwise, the symbol name B would have been equated to
the literal string A. However, when symbol A’s value is assigned to symbol B,
the letters are converted to uppercase and multiple spaces are compressed.

$ FILE NAME := MYFILE

$ FILE NAME[0,2]:= OL

$ SHOW SYMBOL FILE NAME
FILE NAME = "OLFILE"

In this example, the substring expression in the assignment statement
overlays the first 2 characters of the string assigned to the symbol FILE_
NAME with the letters OL. The offset of 0 requests that the overlay begin
with the first character in the string, and the size specification of 2 indicates
the number of characters to overlay.

$ FILE NAME := MYFILE
$ FILE_TYPE := ,TST
$ FILE NAME[F$LENGTH(FILE_NAME),4] := 'FILE_TYPE'
$ SHOW SYMBOL FILE_NAME
FILE_NAME = "MYFILE.TST"

nn

In this example, the symbol name FILE_NAME is equated to the string
MYFILE and the symbol name FILE_TYPE is equated to the string .TST. The
third assignment statement uses the lexical function FSLENGTH to define

DCLI-7



. :=(String Assignment)

DCLI-8

the offset value where the overlay is to begin. The symbol name FILE_TYPE
is used to refer to the replacement string (.TST). Note that you must use
single quotation marks (‘’) to request symbol substitution.

" The FSLENGTH lexical function returns the length of the string equated to

the symbol FILE_NAME; this length is used as the offset. The expression
requests that 4 characters of the string currently equated to the symbol
FILE_TYPE be placed at the end of the string currently equated to FILE_
NAME. The resultant value of the symbol FILE_NAME is MYFILE.TST.



@ (Execute Procedure)

@ (Execute Procedure)

Format

Parameters

Executes a command procedure or requests the command interpreter to read
subsequent command input from a specific file or device.

@ filespec [parameter],...]]

filespec

Specifies either the input device or the file for the preceding command, or the
command procedure to be executed. The default file type is COM. The asterisk
(*) and the percent sign (%) wildeard characters are not allowed in the file

specification.

parameter],...]

Specifies from one to eight optional parameters to pass to the command
procedure. The symbols (P1, P2, ... P8) are assigned character string values

in the order of entry. The symbols are local to the specified command procedure.
Separate each parameter with one or more blanks. Use two consecutive quotation
marks (") to specify a null parameter. You can specify a parameter with a
character string value containing alphanumeric or special characters, with the
following restrictions:

* The command interpreter converts alphabetic characters to uppercase and
uses blanks to delimit each parameter. To pass a parameter that contains
embedded blanks or literal lowercase letters, place the parameter in quotation
marks.

e If the first parameter begins with a slash (/), you must enclose the parameter
in quotation marks (“”).

* To pass a parameter that contains literal quotation marks and spaces, enclose
the entire string in quotation marks and use two consecutive quotation marks
within the string. For example, the command procedure TEST.COM contains
the following line:

$ WRITE SYSSOUTPUT Pl
Enter the following at the DCL prompt ($):
$ @TEST "Never say ""quit"""

When the procedure TEST.COM executes, the parameter P1 is equated to the
following string:

Never say "quit"

If a string contains quotation marks and does not contain spaces, the
quotation marks are preserved in the string and the letters within the
quotation marks remain in lowercase. For example, enter the following at the
DCL prompt:

$ @TEST abc"def"ghi

DCLI-9



@ (Execute Procedure)

Description

DCLI-10

When the procedure TEST.COM executes, the parameter P1 is equated to the
following string:

ABC"def"GHI

To use a symbol as a parameter, enclose the symbol in single quotation marks
(¢’) to force symbol substitution. For example:

$ NAME = "JOHNSON"
$ @INFO 'NAME’

The single quotation marks cause the value “JOHNSON” to be substituted for
the symbol NAME. Therefore, the parameter “JOHNSON?” is passed as P1 to
INFO.COM.

Use the @ command to execute a command procedure that contains the following:

. * DCL command lines or data, or both

* Qualifiers or parameters, or both, for a specific command line

To execute a command procedure containing commands or data, or both, place the
@ command at the beginning of a command line and then specify the name of the
command procedure file. The command procedure can contain DCL commands
and input data for a command or program that is currently executing. All DCL
commands in a command procedure must begin with a dollar sign ($). If a
command is continued with a hyphen (-), the subsequent lines must not begin
with a dollar sign.

Any line in a command procedure that does not contain a dollar sign in the first
character position (and is not a continuation line) is treated as input data for the
command or program that is currently executing. The DECK command allows
you to specify that data contains dollar signs in record position one.

A command procedure can also contain the @ command to execute another
command procedure. The maximum command level you can achieve by
nesting command procedures is 16, including the top-level command procedure.
Command procedures can also be queued for processing as batch jobs, either
by using the SUBMIT command or by placing a deck of cards containing the
command procedure in the system card reader.

To execute a command procedure that contains qualifiers or parameters, or
both, for a specific command line, place the @ command where the qualifiers or
parameters normally would be in the command line. Then specify the name of
the command procedure file containing the qualifiers or parameters.

If the command procedure file begins with parameters for the command, the @
command must be preceded by a space. For example:

§ CREATE TEST.COM
TIME

$ SHOW @TEST
14-DEC-1994 17:20:26

If the file begins with qualifiers for the command, do not precede the @ command
with a space. For example: ’

$ CREATE TEST 2.COM
/SIZE



Qualifier

- Examples

@ (Execute Procedure)

§ DIRGTEST 2

Directory WORKS:[SCHEDULE]

JANUARY.TXT;8 14-DEC-1994 15:47:45.57
FEBRUARY.TXT; 7 14-DEC-1994 15:43:16.20

MARCH.TXT; 6 14-DEC-1994 11:11:45.74

Total of 11 files.

If the file contains parameters or qualifiers, or both, do not begin the lines in
the file with dollar signs. Any additional data on the command line following
@filespec is treated as parameters for the procedure.

/OUTPUT=filespec

Specifies the name of the file to which the command procedure output is written.
By default, the output is written to the current SYS§OUTPUT device. The
default output file type is .LIS. The asterisk (*) and the percent sign (%)
wildcard characters are not allowed in the output file specification. System
responses and error messages are written to SYSSCOMMAND as well as to

the specified file. The /OUTPUT qualifier must immediately follow the file
specification of the command procedure; otherwise, the qualifier is interpreted as
a parameter to pass to the command procedure.

You can also redefine SYS$OUTPUT to redirect the output from a command
procedure. If you place the following command as the first line in a command
procedure, output will be directed to the file you specify:

$ DEFINE SYS$OUTPUT filespec

When the procedure exits, SYS$OUTPUT will be restored to its original
equivalence string. This produces the same result as using the /OUTPUT
qualifier when you execute the command procedure.

1. §$ CREATE DOFOR.COM
$ ON WARNING THEN EXIT
$ IF P1.EQS."" THEN INQUIRE Pl FILE
$ FORTRAN/LIST 'P1l’
$ LINK 'Pl’
$ RUN 'P1’
$ PRINT 'P1’
$ @DOFOR AVERAGE
This example shows a command procedure, named DOFOR.COM, that
executes the FORTRAN, LINK, and RUN commands to compile, link, and
execute a program. The ON command requests that the procedure not
continue if any of the commands result in warnings or errors.

When you execute DOFOR.COM, you can pass the file specification of the
FORTRAN program as the parameter P1. If you do not specify a value for P1
when you execute the procedure, the INQUIRE command issues a prompting
message to the terminal and equates what you enter with the symbol P1. In
. this example, the file name AVERAGE is assigned to P1. The file type is not

DCLI-11



@ (Execute Procedure)

included because the commands FORTRAN, LINK, RUN, and PRINT provide
default file types.

2. $ EGMASTER/OUTPUT=MASTER.LOG

This command executes a procedure named MASTER.COM,; all output is
written to the file MASTER.LOG.

3. $ CREATE FILES.COM
*,FOR, *.0BJ

$ DIRECTORY @FILES

This example shows a command procedure, FILES.COM, that contains
parameters for a DCL command line. You can execute this procedure after
the DIRECTORY command to get a listing of all Fortran source and object
files in your current default directory.

4. $ CREATE QUALIFIERS.COM
/DEBUG/SYMBOL_TABLE/MAP/FULL/CROSS_REFERENCE

$ LINK SYNAPSEQQUALIFIERS

This example shows a command procedure, QUALIFIERS.COM, that contains
qualifiers for the LINK command. When you enter the LINK command,
specify the command procedure immediately after the file specification of the
file you are linking. Do not type a space between the file specification and the
@ command.

5. $ CREATE SUBPROCES.COM
$ RUN 'P1’ -
/BUFFER_LIMIT=1024 -
/FILE_LIMIT=4 -
/PAGE_FILES=256 -
/QUEVE_LIMIT=2 -
/SUBPROCESS_LIMIT=2 -
IPZI IP3I _IP4I IPSI IPGI IP']I IPBI
Ctri/Z
$ @SUBPROCES LIBRA /PROCESS_NAME=LIBRA

This example shows a command procedure named SUBPROCES.COM. This
procedure issues the RUN command to create a subprocess to execute an
image and also contains qualifiers defining quotas for subprocess creation.
The name of the image to be run is passed as the parameter P1. Parameters
P2 to P8 can be used to specify additional qualifiers.

In this example, the file name LIBRA is equated to P1; it is the name of an
image to execute in the subprocess. The qualifier /PROCESS_NAME=LIBRA
is equated to P2; it is an additional qualifier for the RUN command.

6. $ CREATE EDOC.COM
$ ASSIGN SYSSCOMMAND: SYS$INPUT

§ NEXT:

$ INQUIRE NAME "File name"
$ IF NAME.EQS."" THEN EXIT
$ EDIT/TPU ’'NAME’.DOC

$ GOTO NEXT

DCLI-12



@ (Execute Procedure)

({74
§ @EDOC

This procedure, named EDOC.COM, invokes the EVE editor. When an edit
session is terminated, the procedure loops to the label NEXT. Each time
through the loop, the procedure requests another file name for the editor and
supplies the default file type .DOC. When a null line is entered in response to
the INQUIRE command, the procedure terminates with the EXIT command.

The ASSIGN command changes the equivalence name of SYS$INPUT for the
duration of the procedure. This change allows the EVE editor to read input
data from the terminal, rather than from the command procedure file (the
default input data stream if SYS$INPUT had not been changed). When the
command procedure exits, SYS$INPUT is reassigned to its original value.

DCLI-13



ACCOUNTING

ACCOUNTING

Runs the Accounting utility, which produces reports of resource use. For
a complete description of the Accounting utility, see the OpenVMS System
Management Utilities Reference Manual.

Format
ACCOUNTING ([filespec],...]]

DCLI-14



ALLOCATE

ALLOCATE

Format

Parameters

Qualifiers

Provides your process with exclusive access to a device until you deallocate the
device or terminate your process. Optionally associates a logical name with the
device.

Requires read (R), write (W), or control access.

ALLOCATE device-namel:][,...] [logical-namel[:]]

device-name[:][,...]

Specifies the name of a physical device or a logical name that translates to the
name of a physical device. The device name can be generic: if no controller or
unit number is specified, any device that satisfies the specified part of the name
is allocated. If more than one device is specified, the first available device is
allocated. ’

logical-name|:]

Specifies a string of 1 to 255 alphanumeric characters. Enclose the string in
single quotation marks (‘’) if it contains blanks. Trailing colons (:) are not
used. The name becomes a process logical name with the device name as the
equivalence name. The logical name remains defined until it is explicitly deleted
or your process terminates. ‘

IGENERIC

/NOGENERIC (default)

Indicates that the first parameter is a device type rather than a device name.
Example device types are: RX50, RD52, TK50, RC25, RCF25, and RL02. The
first free, nonallocated device of the specified name and type is allocated.

The /INOJGENERIC qualifier is placed before the device-name parameter in the
ALLOCATE command line. For example, you can allocate an RK07 device by
entering the following command at the DCL prompt ($):

$ ALLOCATE/GENERIC RK07 DISK

The following table shows some device types that you can specify with the
/GENERIC qualifier. To see what devices are available, refer to your SPD for the
OpenVMS version they are currently using,

Devices by Classification

Disk Devices
EF51 EF58 ESE20 ESE58 EZ31
EZ58 HSZ10 HSZ40 ML11 RA60
RA70 RAS80 RA90 RAH72 RB02
RBS80 RC25 RCF25 RD26 RD54

DCLI-15



ALLOCATE

Devices by Classification

Disk Devices

RF30 RFH73 RKO7 RL02 RMS80
RPO7 RX18 RX50 RZ01 RZF01

Compact Disk Devices

RRD40 RRD40S RRD42 RRD43 RRD44
RRD50 RV20 RV60 RV80 RW504
RW510 RW514 RW516 RWZ01 RWZ21
RWZ31 RWZ51 RWZ52 RWZ53 RWZ54

Tape Devices

TA78 TA90 TA9OE TA91 TADS85
TAPE9 TD34 TD44 TE16 TF30
TF70 TK50 TK60 TK70 TKZ60
TL810 TLZ7 ‘ TM32 TS11 TSZ08
TU45 TU81 TZ30 TZ895 TZX0

/LOG (default)

/NOLOG

Displays a message indicating the name of the device allocated. If the operation
specifies a logical name that is currently assigned to another device, then the
superseded value is displayed.

Examples

1. $ ALLOCATE DMB2:
$DCL-I-ALLOC, _DMB2: allocated

The ALLOCATE command in this example requests the allocation of a specific
RKO06/RKO07 disk drive, that is, unit 2 on controller B. The system response
indicates that the device was allocated successfully.

2. § ALLOCATE MT,MF: TAPE:
¥DCL-I-ALLOC, MTB2: allocated

$ SHOW LOGICAL TAPE:

TAPE: = MTB2: (process)
$ DEALLOCATE TAPE:

$ DEASSIGN TAPE:

The ALLOCATE command in this example requests the allocation of a tape
device whose name begins with MT or MF and assigns it the logical name
TAPE. The ALLOCATE command locates an available tape device whose
name begins with MT, and responds with the name of the device allocated. (If
no tape device beginning with MT had been found, the ALLOCATE command
would have searched for a device beginning with MF.) Subsequent references
to the device TAPE in user programs or command strings are translated to
the device name MTB2.

DCLI-16



ALLOCATE

When the tape device is no longer needed, the DEALLOCATE command
deallocates it and the DEASSIGN command deletes the logical name. Note
that the logical name TAPE was specified with a colon on the ALLOCATE
command, but that the logical name table entry does not have a colon.

$ ALLOCATE/GENERIC RL02 WORK
¥DCL-I-ALLOC, DLAl: allocated
%DCL-I-SUPERSEDE, previous value of WORK has been superseded

The ALLOCATE command in this example requests the allocation of any
RLO02 disk device and assigns the logical name WORK to the device. The
completion message identifies the allocated device and indicates that the
assignment of the logical name WORK supersedes a previous assignment of
that name.

$ ALLOCATE S$TAPEl
%DCL-I-ALLOC, _MUAQ: allocated

The ALLOCATE command in this example allocates the tape device MUADO,
which is associated with the logical name $TAPE1.
$ ALLOCATE /GENERIC RX50 ACCOUNTS

The ALLOCATE command in this example allocates the first free floppy disk
drive and makes its name equivalent to the process logical name ACCOUNTS.

DCLI-17



ANALYZE/AUDIT

ANALYZE/AUDIT

Invokes the Audit Analysis utility, which selectively extracts and displays
information from security audit log files or security archive files. For a complete
description of the Audit Analysis utility, see the OpenVMS System Management
Utilities Reference Manual.

Format
ANALYZE/AUDIT [filespec]

DCLI-18



ANALYZE/CRASH_DUMP

ANALYZE/CRASH_DUMP

Invokes the System Dump Analyzer utility, which analyzes a system dump file.
The /CRASH_DUMP qualifier is required.

For a complete description of the System Dump Analyzer utility on Alpha, see
the OpenVMS Alpha System Dump Analyzer Utility Manual. For a complete
description of the System Dump Analyzer utility on VAX, see the OpenVMS VAX
System Dump Analyzer Utility Manual.

Format
ANALYZE/CRASH_DUMP filespec

DCLI-19



ANALYZE/DISK_STRUCTURE

ANALYZE/DISK_STRUCTURE

Invokes the Analyze/Disk_Structure utility, which does the following:

* Checks the readability and validity of Files—11 On-Disk Structure Level 1 and
Files—11 On-Disk Structure Level 2 disk volumes.

* Reports errors and inconsistencies.

The /DISK_STRUCTURE qualifier is required. For a complete description of the
Analyze/Disk_Structure utility, see the OpenVMS System Management Utilities

Reference Manual.

Format
ANALYZE/DISK_STRUCTURE device-namel[:]

DCLI-20



ANALYZE/ERROR_LOG

ANALYZE/ERROR_LOG

Invokes the Errorlog Report Formatter, which selectively reports the contents
of an error log file. The /ERROR_LOG qualifier is required. For a complete
description of the Error Log utility, see the OpenVMS System Management
Utilities Reference Manual.

Format

ANALYZE/ERROR_LOG [filespec],...]]

DCLI-21



ANALYZE/IMAGE

ANALYZE/IMAGE

Format

Parameter

Description

Analyzes the contents of an executable image file or a shareable image file on
Alpha, VAX, and translated VAX images, and checks for obvious errors in the
image file. The /IMAGE qualifier is required. For general information about
image files, see the description of the linker in the OpenVMS Linker Utility
Manual. (Use the ANALYZE/OBJECT command to analyze the contents of an
object file.)

Note

The OpenVMS VAX Version 6.1 and 6.2 ANALYZE/IMAGE command
cannot analyze an OpenVMS Alpha image.

ANALYZE/IMAGE filespec],...]

filespecl,...]
Specifies the name of one or more image files that you want analyzed. You must
specify at least one file name. If you specify more than one file, separate the file

specifications with either commas (,) or plus signs (+). The default file type is
.EXE.

The asterisk (*) and percent sign (%) wildcard characters are allowed in the file
specification.

The ANALYZE/IMAGE command provides a description of the components of an
executable image file or shareable image file. It also verifies that the structure
of the major parts of the image file is correct. However, the ANALYZE/IMAGE
command cannot ensure that program execution is error free.

If errors are found, the first error of the worst severity is returned. For example,
if a warning (A) and two errors (B and C) are found, the first error (B) is returned
as the image exit status. The image exit status is placed in the DCL symbol
$STATUS at image exit.

. The ANALYZE/IMAGE command distinguishes Alpha system image files from

DCLI-22

VAX system image files by examining the extended image header (EIHD).
The ANALYZE/IMAGE command provides the following information:
¢ Image type—Identifies whether the image is executable or shareable.

* Image transfer addresses—Identify the addresses to which control is passed
at image execution time.

¢ Image version—Identifies the revision level (major ID and minor ID) of the
image.

* Location and size of the image’s symbol vector (Alpha only)



Qualifiers

ANALYZE/IMAGE

* Location of the debugger symbol table (DST)—Identifies the location of the
DST in the image file. DST information is present only in executable images
that have been linked with the /DEBUG or the /TRACEBACK command
qualifier. '

* Location of the global symbol table (GST)—Identifies the location of the GST
in the image file. GST information is present only in shareable image files.

* Patch information—Indicates whether the image has been patched (changed
without having been recompiled or reassembled and relinked). If a patch is
present, the actual patch code can be displayed.

* TImage section descriptors (ISD)—Identify portions of the image binary
contents that are grouped in VMScluster systems according to their
attributes. An ISD contains information that the image activator needs
when it initializes the address space for an image. For example, an ISD tells
whether the ISD is shareable, whether it is readable or writable, whether it
is based or position independent, and how much memory should be allocated.

* Fixup vectors—Contain information that the image activator needs to ensure
the position independence of shareable image references.

* System version categories—For an image that is linked against the executive
(the system shareable image on Alpha or the system symbol table on VAX),
displays both the values of the system version categories for which the image
was linked originally and the values for the system that is currently running.
You can use these values to identify changes in the system since the image
was linked last.

The ANALYZE/IMAGE command has command qualifiers and positional
qualifiers. By default, if you do not specify any positional qualifiers (for example,
/GST or /HEADER), the entire image is analyzed. If you do specify a positional
qualifier, the analysis excludes all other positional qualifiers except the /HEADER
qualifier (which is always enabled) and any qualifier that you request explicitly.

IFIXUP_SECTION
Positional qualifier.

Specifies that the analysis should include all information in the fixup section of
the image.

If you specify the /FIXUP_SECTION qualifier after the ANALYZE/IMAGE
command, the fixup section of each image file in the parameter list is analyzed.

If you specify the /FIXUP_SECTION qualifier after a file specification, only the
information in the fixup section of that image file is analyzed.
IGST

Positional qualifier.

Specifies that the analysis should include all global symbol table records. This
qualifier is valid only for shareable images.

If you specify the /GST qualifier after the ANALYZE/IMAGE command, the global
symbol table records of each image file in the parameter list are analyzed.

If you specify the /GST qualifier after a file specification, only the global symbol
table records of that file are analyzed.

DCLI-23



ANALYZE/IMAGE

Examples

DCLI-24

/HEADER
Positional qualifier.

Specifies that the analysis should include all header items and image section
descriptions. The image header items are always analyzed.

/INTERACTIVE

I/NOINTERACTIVE (default)

Specifies whether the analysis is interactive. In interactive mode, as each item is
analyzed, the results are displayed on the screen and you are asked whether you
want to continue.

IOUTPUT=filespec

Identifies the output file for storing the results of the image analysis. The
asterisk (*) and the percent sign (%) wildcard characters are not allowed in the
file specification. If you specify a file type and omit the file name, the default file
name ANALYZE is used. The default file type is .ANL. If you omit the qualifier,
the results are output to the current SYS$OUTPUT device.

[PATCH_TEXT
Positional qualifier.

Specifies that the analysis include all patch text records. If you specify the
/PATCH_TEXT qualifier after the ANALYZE/IMAGE command, the patch text
records of each image file in the parameter list are analyzed.

If you specify the /PATCH_TEXT qualifier after a file specification, only the patch
text records of that file are analyzed.

1. $ ANALYZE/IMAGE LINEDT

The ANALYZE/IMAGE command in this example produces a description and
an error analysis of the image LINEDT.EXE. Output is sent to the current
SYS$OUTPUT device. By default, the entire image is analyzed.

2. § ANALYZE/IMAGE/OUTPUT=LIALPHEX/FIXUP_SECTION/PATCH TEXT LINEDT, ALPRIN

The ANALYZE/IMAGE command in this example produces a description
and an error analysis of the fixup sections and patch text records of
LINEDT.EXE and ALPRIN.EXE in file LIALPHEX ANL. Output is sent
to the file LIALPHEX.ANL.



ANALYZE/MEDIA

ANALYZE/MEDIA

Invokes the Bad Block Locator utility, which analyzes block-addressable devices
and records the location of blocks that cannot reliably store data. For a complete

description of the Bad Block Locator utility, see the OpenVMS Bad Block Locator
Utility Manual.

Format
ANALYZE/MEDIA device

DCLI-25



ANALYZE/OBJECT

ANALYZE/OBJECT

Format

Parameter

Description

DCLI-26

Analyzes the contents of an object file. Also, checks for any obvious errors. The
/OBJECT qualifier is required. (Use the ANALYZE/IMAGE command to analyze
the contents of an image file.)

ANALYZE/OBJECT filespec],...]

filespecl,...]

Specifies the object files or object module libraries you want analyzed (the default
file type is .OBJ). Use commas (,) or plus signs (+) to separate file specifications.
The asterisk (*) and the percent sign (%) wildcard characters are allowed in the
file specification. :

The ANALYZE/OBJECT command describes the contents of one or more object
modules contained in one or more files. It also performs a partial error analysis.
This analysis determines whether all records in an object module conform in
content, format, and sequence to the specifications of the Alpha or VAX Object
Language.

The ANALYZE/OBJECT command automatically distinguishes Alpha objects
from VAX objects by examining the format of the extended object modules header
(EOMH). '

ANALYZE/OBJECT is intended primarily for programmers of compilers,
debuggers, or other software involving the operating system’s object modules.

It checks that the object language records generated by the object modules are
acceptable to the Linker utility, and it identifies certain errors in the file. It also
provides a description of the records in the object file or object module library.
For more information on the linker and on the Alpha and VAX object languages,
refer to the OpenVMS Linker Utility Manual.

The ANALYZE/OBJECT command analyzes the object modules in order, record
by record, from the first to the last record in the object module. Fields in each
record are analyzed in order from the first to the last field in the record. After
the object module is analyzed, you should compare the content and format of each
type of record to the required content and format of that record as described by
the OpenVMS Alpha or OpenVMS VAX Object Language. This comparison is
particularly important if the analysis output contains a diagnostic message.

Linking an object module differs from analyzing an object module. Object

language commands are not executed in an analysis, but they are executed in
a linking operation. As a result, even if the analysis is error free, the linking
operation may not be. In particular, the analysis does not check the following:

* That data arguments in TIR commands are in the correct format.
¢ That “Store Data” TIR commands are storing within legal address limits.

Therefore, as a final check, you should still link an object module whose analysis
is error free.



Qualifiers

ANALYZE/OBJECT

If an error is found, however, the first error of the worst severity that is
discovered is returned. For example, if a warning (A) and two errors (B and
C) are signaled, then the first error (B) is returned as the image exit status,
which is placed in the DCL symbol $STATUS at image exit.

ANALYZE/OBJECT uses positional qualifiers; that is, qualifiers whose function
depends on their position in the command line. When a positional qualifier
precedes all of the input files in a command line, it affects all input files. For
example, the following command line requests that the analysis include the global
symbol directory records in files A, B, and C:

$ ANALYZE/OBJECT/GSD A,B,C

Conversely, when a positional qualifier is associated with only one file in the
parameter list, only that file is affected. For example, the following command line
requests that the analysis include the global symbol directory records in file B
only:

$ ANALYZE/OBJECT A,B/GSD,C

Typically, all records in an object module are analyzed. However, when the /DBG,
/EOM, /GSD, /LNK, /MHD, /TBT, or /TIR qualifier is specified, only the record
types indicated by the qualifiers are analyzed. All other record types are ignored.

By default, the analysis includes all record types unless you explicitly request a
limited analysis using appropriate qualifiers.
Note

End-of-module (EOM) records and module header (MHD) records are
always analyzed, no matter which qualifiers you specify.

/DBG
Positional qualifier.

Specifies that the analysis should include all debugger information records. If you
want the analysis to include debugger information for all files in the parameter
list, insert the /DBG qualifier immediately following the /OBJECT qualifier. If
you want the analysis to include debugger information selectively, insert the
/DBG qualifier immediately following each of the selected file specifications.

/EOM
Positional qualifier.

Specifies that the analysis should be limited to MHD records, EOM records,
and records explicitly specified by the command. If you want this to apply to all
files in the parameter list, insert the /EOM qualifier immediately following the
/OBJECT qualifier.

To make the /EOM qualifier applicable selectively, insert it immediately following
each of the selected file specifications.
Note

End-of-module records can be EOM or EOMW records. See the OpenVMS
Linker Utility Manual for more information.

DCLI-27



ANALYZE/OBJECT

DCLI-28

IGSD
Positional qualifier.

Specifies that the analysis should include all global symbol directory (GSD)
records.

If you want the analysis to include GSD records for each file in the parameter
list, specify the /GSD qualifier immediately following the /OBJECT qualifier.

If you want the analysis to include GSD records selectively, insert the /GSD
qualifier immediately following each of the selected file specifications.

/INCLUDE[=(modulel,...])]

When the specified file is an object module library, use this qualifier to list
selected object modules within the library for analysis. If you omit the list or
specify an asterisk (*), all modules are analyzed. If you specify only one module,
you can omit the parentheses.

/INTERACTIVE

/NOINTERACTIVE (default)

Controls whether the analysis occurs interactively. In interactive mode, as each
record is analyzed, the results are displayed on the screen, and you are asked
whether you want to continue.

/LNK
Positional qualifier.

Specifies that the analysis should include all link option specification (LNK)
records.

If you want the analysis to include LNK records for each file in the parameter
list, specify the /LNK qualifier immediately following the /OBJECT qualifier.

If you want the analysis to include LNK records selectively, insert the /[LNK
qualifier immediately following each of the selected file specifications.

/MHD
Positional qualifier.

Specifies that the analysis should be limited to MHD records, EOM records, and
records explicitly specified by the command. If you want this analysis to apply

to all files in the parameter list, insert the /MHD qualifier immediately following
the /OBJECT qualifier.

To make the /MHD qualifier applicable selectively, insert immediately following
each of the selected file specifications.

IOUTPUT[=filespec]

Directs the output of the object analysis (the default is SYS$OUTPUT). If you
specify a file type and omit the file name, the default file name ANALYZE is used.
The default file type is ANL.

The asterisk (*) and the percent sign (%) wildcard characters are not allowed in
the file specification.

TBT
Positional qualifier.

Specifies that the analysis should include all module traceback (TBT) records.



Examples

ANALYZE/OBJECT

If you want the analysis to include TBT records for each file in the parameter list,
specify the /TBT qualifier immediately following the /OBJECT qualifier.

If you want the analysis to include TBT records selectively, insert the /TBT
qualifier immediately following each of the selected file specifications.

ITIR
Positional qualifier.

Specifies that the analysis should include all text information and relocation
(TIR) records.

If you want the analysis to include TIR records for each file in the parameter list,
specify the /TIR qualifier immediately following the /OBJECT qualifier.

If you want the analysis to include TIR records selectively, insert the /TIR
qualifier immediately following the selected file specifications.

1. § ANALYZE/OBJECT/INTERACTIVE LINEDT

In this example, the ANALYZE/OBJECT command produces a description and
a partial error analysis of the object file LINEDT.OBJ. By default, all types of
records are analyzed. Output is to the terminal, because the /INTERACTIVE
qualifier has been used. As each item is analyzed, the utility displays the
results on the screen and asks if you want to continue.

2. $§ ANALYZE/OBJECT/OUTPUT=LIOBJ/DBG LINEDT

In this example, the ANALYZE/OBJECT command analyzes only the
debugger information records of the file LINEDT.OBJ. Output is to the
file LIOBJ.ANL.

DCLI-29



ANALYZE/PROCESS_DUMP

ANALYZE/PROCESS_DUMP

Format

Parameter

Description

DCLI-30

Invokes the OpenVMS Debugger to analyze a process dump file that was created
when an image failed during execution. (Use the /DUMP qualifier with the RUN
or the SET PROCESS command to generate a dump file.)

The ANALYZE/PROCESS_DUMP command can display a process dump file

for either an Alpha or VAX image. For a complete description of the debugger
(including information about the DEBUG command), see the OpenVMS Debugger
Manual.

Requires read (R) access to the dump file.
ANALYZE/PROCESS_DUMP dump-file

dump-file
Specifies the dump file to be analyzed with the debugger.

The ANALYZE/PROCESS_DUMP command examines the dump file of an image
that failed during execution. The OpenVMS Debugger is invoked automatically.
To cause a dump file to be created for a process, you must use the /DUMP

qualifier with the RUN command when invoking the image, or you must use the
SET PROCESS/DUMP command before invoking the image.

Analysis of a process dump on a system other than on the system where the
dump was generated is not recommended. Different configurations can cause
the process executing the ANALYZE/PROCESS_DUMP command to fail to
successfully load the dumped image. For example, if the systems have different
versions of the operating system, the analysis may work, but it is not guaranteed.

Other restrictions include the configuration of the control regions (P1 space),

the process running at the time of the dump, and the process performing the
ANALYZE/PROCESS_DUMP command. The location of the base of the user
stack for each process, which depends upon the size of P1 space, determines
whether the processes are compatible. The size of P1 space for the process
analyzing the dump must be less than the size of P1 space for the process which
created the dump. If you are analyzing the dump on a different system, but with
the same version of the operating system, you can decrease the size of P1 space
by modifying one or more of the system parameters that affect the size of P1
space. You can modify the system parameter IMGIOCNT dynamically.

On Alpha, in some cases, the OpenVMS Debugger is incapable of analyzing

the dumped image. For example, when the dumped image’s PC is set to an
invalid address or when the dumped image’s stack is corrupted by a bad process
descriptor, you must use the Delta Debugger (DELTA) to analyze the dump. To
use DELTA as the debugger, the image SYS$LIBRARY:DELTA must be installed
by invoking the Install utility. For complete information on the Install utility, see
the OpenVMS System Management Utilities Reference Manual. ¢



Qualifiers

Examples

L VAX 4

ANALYZE/PROCESS_DUMP

/FULL
Displays all known information about the failing process.

/IMAGE=image-name

/NOIMAGE

Specifies the image whose symbols are to be used in analyzing the dump. If you
use the /INOIMAGE qualifier, no symbols are taken from any image. By default,
symbols are taken from the image with the same name as the image that was
running at the time of the dump.

/INTERACTIVE

/NOINTERACTIVE (default)

Causes the display of information to pause when your terminal screen is filled.
Press the Return key to display additional information. By default, the display is
continuous.

/MISCELLANEOUS

Displays process information and registers at the time of the dump. Refer to
the $GETJPI system service for further explanation of the process information
displayed.

IOUTPUT=filespec

Writes the information to the specified file. By default, the information is written
to the current SYSSOUTPUT device. The asterisk (*) and the percent sign (%)
wildcard characters are not allowed in the file specification.

/RELOCATION

Displays the addresses to which data structures saved in the dump are mapped in
PO space. (Examples of such data structures are the stacks.) The data structures
in the dump must be mapped into PO space so that the debugger can use those
data structures in P1 space.

L. $ ANALYZE/PROCESS/FULL ZIPLIST

RO = 00018292 RI1 = 8013DE20 R2 = 7FFE6A40 R3 = TFFE6A98
R4 = 8013DE20 R5 = 00000000 R6 = 7FFE7TB9A R7 = 0000F000
R8 = 00000000 R9 = 00000000 R10 = 00000000 RI11 = 00000000
SP = 7FFAEF44 AP = TFFAEF48 FP = 7FFAEF84

0

FREE PO VA 00001600  FREE P1 VA 7FFAC600
Active ASTs 00 Enabled ASTs OF
Current Privileges FFFFFF80 1010C100
Event Flags 00000000 E0000000

Buffered I/0 count/limit 6/6

Direct I/0 count/limit 6/6

File count/limit 27/30

Process count/limit 0/0

Timer queue count/limit 10/10

AST count/limit 6/6

Enqueue count/limit 30/30

Buffered I/0 total 7 Direct I/0 total 18

DCLI-31



ANALYZE/PROCESS_DUMP

Link Date 27-DEC-1994 15:02:00.48 Patch Date 17-NOV-1994 00:01:53.71
ECO Level 0030008C 00540040 00000000 34303230

Kernel stack 00000000 pages at 00000000 moved to 00000000

Exec stack 00000000 pages at 00000000 moved to 00000000

Vector page 00000001 page at 7FFEFE00 moved to 00001600

PIO (RMS) area 00000005 pages at 7FFE1200 moved to 00001800

Image activator context 00000001 page at 7FFE3400 moved to 00002200
User writable context 00000002 pages at 7FFE1C00 moved to 00002400
Creating a subprocess

VAX DEBUG Version 5.4
DBG>

This example shows the output of the ANALYZE/PROCESS command when
used with the /FULL qualifier on a VAX system. The file specified, ZIPLIST,
contains the dump of a process that encountered a fatal error. The DBG>
prompt indicates that the debugger is ready to accept commands. ¢

m 2. ¢ ANALYZE/PROCESS/FULL ARITH.DMP

RO = 000000000000000F R1 = 0000000000000001 R2 = 0000000000010000
R3 = 000000007FF41E14 R4 = 000000007FFBF80C R5 = 000000007FFBF91C
R6 = 000000007FFAOD34 R7 = 000000007FFAOD34 R8 = 000000007FFAOSF8
R9 = 000000007FFA0800 R10 = 000000007FFA1380 R11 = 000000007FFBE3E(
R12 = 0000000000000004 R13 = FFFFFFFFB4EF3730 R14 = 0000000000000000
R15 = 0000000000000000 R16 = 00000000002D4EC8 R17 = 0000000100000000
R18 = 00000000002D4EAE R19 = 0000000000000000 R20 = 0000000000000000
R21 = 0000000000000000 R22 = 002D559100000000 R23 = 00000000002D5591
R24 = 002D559100000000 R25 = 0000000000000003 R26 = 0000000000020040
R27 = 0000000000032AA0 R28 = 0000000000052DA0 AP = 000000007FE6F6FC
FP = 000000007FE6FA20 SP = 000000007FE6FA20 PC = 0000000000020048

FREE PO_VA 002F6000 FREE P1 VA 7FE68000
Active ASTs 00 Enabled ASTs OF

Current Privileges 00000000 00108000
Event Flags 00000000 E0000000

Buffered I/0 count/limit 100/100

Direct I/0 count/limit 100/100

File count/limit 98/100
Process count/limit 0/0
Timer queue count/limit 10/10
AST count/limit 98/100
Enqueue count/limit 600/600

Buffered I/0 total 118 Direct I/0 total 37
Link Date 14-DEC-1994 13:06:06.72

Kernel stack 00000000 pagelets at 00000000 moved to 00000000

Exec stack 00000000 pagelets at 00000000 moved to 00000000

Vector page 00000002 pagelet at 7FFF0000 moved to 002F6000

PIO (RMS) area 00000000 pagelets at 00000000 moved to 00000000

Image activator context 00000001 pagelet at 7FFDOE00 moved to 002F8000
User writeable context 00000008 pagelets at 7FFC0000 moved to 002FA000

Condition signalled to take dump:

$SYSTEM-F-HPARITH, high performance arithmetic trap, Imask=00000000,
-Fmask=00000001, summary=04, PC=00020048, PS=0000001B
-SYSTEM-F-FLTDIV, arithmetic trap, floating/decimal divide by zero
-at PC=00020048, PS=0000001B

OpenVMS Alpha DEBUG Version T1.0-FT4
$DEBUG-I-NOLOCALS, image does not contain local symbols
$DEBUG-I-NOGLOBALS, some or all global symbols not accessible
$DEBUG-I-NOUNIVERSALS, shareable image contains no universal symbols
$DEBUG-I-INITIAL, language is UNKNOWN, module set to SHARE$ARITH
DBG>

DCLI-32



ANALYZE/PROCESS_DUMP

This example shows the output of the ANALYZE/PROCESS command when
used with the /FULL qualifier on an Alpha system. ¢

$ INSTALL

INSTALL> ADD SYS$LIBRARY:DELTA
INSTALL> EXIT

$ DEFINE LIBSDEBUG DELTA

$ ANALYZE/PROCESS/FULL PCFS_SERVER.DMP

RO = 004558452E524556 R1 = 00000000004F1080 R2 = 000000000000048C
R3 = 0000000000000000 R4 = 0000000000000000 R5 = 0000000000000001
R6 = 0000000000F380C0 R7 = 00000000000000E9 R8 = 00000000002D3F70
R9 = 0000000000342FB8 R10 = 00000000002CE330 R11 = 0000000000000047
R12 = 00000000005107C0 R13 = 0000000000F38140 R14 = 0000000000D5D5C8
R15 = 00000000000000F0 R16 = 000000000003793C R17 = 00000000004F108C
R18 = 0000000000000000 R19 = 00000000004F1C00 R20 = 00000000004F1C00
R21 = FFFFFFFF8052C4B6 R22 = 0000000000000001 R23 = FFFFFFFF80042E90
R24 = 0000000000000001 R25 = 0000000000000000 R26 = 0000000000002000
R27 = 00000000000184A0 R28 = 0000000000000001 AP = 0000000000F37E10
FP = 0000000000DEOED8 SP = 0000000000F38110 PC = 0000000000002000
FREE P0_VA 00F50000 FREE_Pl_VA TFE6A000

Active ASTs 00 Enabled ASTs OF

Current Privileges FFFFFFFF FFF7FFFF

Event Flags 80000000 E0000000

Buffered I/0 count/limit 32758/32767

Direct I/0 count/limit 32767/32767

File count/limit 32720/32767

Process count/limit 0/0

Timer gueue count/limit 32763/32767

AST count/limit 32754/32767

Enqueue count/limit 32760/32767

Buffered I/0 total 17353137 Direct I/0 total 333631

Link Date 8-SEP-1992 16:42:37.94

Kernel stack 00000020 pagelets at 7FF92000 moved to 00F50000

Exec stack 00000020 pagelets at 7FF96000 moved to 00F54000

Vector page 00000002 pagelet at 7FFF0000 moved to 00F58000

PIO (RMS) area 00000007 pagelets at 7FFD0000 moved to 00F5A000

Image activator context 00000001 pagelet at 7FFDOE00 moved to 00F5C000
User writeable context 00000008 pagelets at 7FFC0000 moved to 00FS5E000

Condition signalled to take dump:
$SYSTEM-F-ACCVIO, access violation, reason mask=00, virtual
address=00002000, PC=00002000, PS=0000001B

AlphaVMS DELTA Version 1.5

Exception - Signal reason = 0000000C

00002000!

In this example, the SYS$LIBRARY:DELTA image is installed on an Alpha
system by invoking the Install utility. Next, the logical LIBSDEBUG

is defined as DELTA in order to use the Delta Debugger (DELTA). The
ANALYZE/PROCESS_DUMP command displays exception information and

then a prompt. You can analyze the stack or other information provided to
you in the dump. ¢

DCLI-33



ANALYZE/RMS_FILE

ANALYZE/RMS_FILE

Invokes the Analyze/RMS_File utility, which is used to inspect and analyze
the internal structure of an OpenVMS RMS file. The /RMS_FILE qualifier is
required. For a complete description of the Analyze/RMS_File utility, see the
OpenVMS Record Management Utilities Reference Manual.

Format
ANALYZE/RMS_FILE filespec],...]

DCLI-34



ANALYZE/SYSTEM

ANALYZE/SYSTEM

Format

Invokes the System Dump Analyzer utility, which analyzes a running system.
The /SYSTEM qualifier is required. For a complete description of the System
Dump Analyzer utility on Alpha, see the OpenVMS Alpha System Dump Analyzer
Utility Manual. For a complete description of the System Dump Analyzer utility
on VAX, see the OpenVMS VAX System Dump Analyzer Utility Manual.

ANALYZE/SYSTEM

DCLI-35



APPEND

APPEND

Format

Parameters

Description

Qualifiers

DCLI-36

Adds the contents of one or more specified input files to the end of the specified
output file.

APPEND input-filespec],...] output-filespec

input-filespec|,...]

Specifies the names of one or more input files to be appended. Multiple input files
are appended to the output file in the order specified. If you specify more than
one input file, separate each file specification with either a comma (,) or a plus
sign (+).

The asterisk (*) and the percent sign (%) wildcard characters are allowed in the
input file specifications.

output-filespec
Specifies the name of the file to which the input files will be appended.

You must specify at least one field in the output file specification. If you do not
specify a device or directory, the APPEND command uses the current default
device and directory. Other unspecified fields default to the corresponding fields
of the first input file specification.

If you use the asterisk (*) wildcard character in any fields of the output file
specification, the APPEND command uses the corresponding field of the input
file specification. If you are appending more than one input file, the APPEND
command uses the corresponding fields from the first input file.

The APPEND command is similar in syntax and function to the COPY command.
Normally, the APPEND command adds the contents of one or more files to the
end of an existing file without incrementing the version number. The /NEW_
VERSION qualifier causes the APPEND command to create a new output file if
no file with that name exists.

Note that there are special considerations for using the APPEND command with
DECwindows compound documents. For more information, see the Guide to
OpenVMS File Applications.

/ALLOCATION=number-of-blocks

Forces the initial allocation of the output file to the specified number of 512-byte
blocks. If you do not specify the /ALLOCATION qualifier, or if you specify it
without the number-of-blocks parameter, the initial allocation of the output file is
determined by the size of the input file.

The allocation size is applied only if a new file is actually created by using the
/NEW_VERSION qualifier.



APPEND

/BACKUP

Modifies the time value specified with the /BEFORE or the /SINCE qualifier.
The /BACKUP qualifier selects files according to the dates of their most recent
backups. This qualifier is incompatible with the /CREATED, /EXPIRED, and
/MODIFIED qualifiers, which also allow you to select files according to time
attributes. If you specify none of these four time qualifiers, the default is the
/CREATED qualifier.

/BEFORE[=time]

Selects only those files dated prior to the specified time. You can specify time
as absolute time, as a combination of absolute and delta times, or as one of

the following keywords: BOOT, LOGIN, TODAY (default), TOMORROW, or
YESTERDAY. Specify one of the following qualifiers with the /BEFORE qualifier
to indicate the time attribute to be used as the basis for selection: /BACKUP,
/CREATED (default), /EXPIRED, or /MODIFIED.

For complete information on specifying time values, see the OpenVMS User’s
Manual.

/BY_OWNER[=uic]
Selects only those files whose owner user identification code (UIC) matches the
specified owner UIC. The default UIC is that of the current process.

Specify the UIC by using standard UIC format as described in the OpenVMS
User’s Manual.

/CONFIRM

I/NOCONFIRM (default)

Controls whether a request is issued before each append operation to confirm that
the operation should be performed on that file. The following responses are valid:

YES NO QUIT
TRUE FALSE
1 0 ALL

You can use any combination of uppercase and lowercase letters for word
responses. Word responses can be abbreviated to one or more letters (for example,
T, TR, or TRU for TRUE), but these abbreviations must be unique. Affirmative
answers are YES, TRUE, and 1. Negative answers include: NO, FALSE, 0,

and pressing the Return key. Entering QUIT or pressing Ctrl/Z indicates that
you want to stop processing the command at that point. When you respond by
entering ALL, the command continues to process, but no further prompts are
given. If you type a response other than one of those in the list, DCL issues an
error message and redisplays the prompt.

/CONTIGUOUS

INOCONTIGUOUS

Specifies that the output file must occupy physically contiguous disk blocks. By
default, the APPEND command creates an output file in the same format as the
corresponding input file and does not report an error if not enough space exists for
a contiguous allocation. This qualifier is relevant only with the /NEW_VERSION
qualifier.

DCLI-37



APPEND

DCLI-38

If an input file is contiguous, the APPEND command attempts to create a
contiguous output file, but does not report an error if there is not enough space.
If you append multiple input files of different formats, the output file may or may
not be contiguous. Use the /CONTIGUOUS qualifier to ensure that the output
file is contiguous.

ICREATED (default)

Modifies the time value specified with the /BEFORE or the /SINCE qualifier. The
/CREATED qualifier selects files based on their dates of creation. This qualifier is
incompatible with the /BACKUP, /EXPIRED, and /MODIFIED qualifiers, which
also allow you to select files according to time attributes. If you specify none of
these four time qualifiers, the default is the /CREATED qualifier.

[EXCLUDE-=(filespecl,...])

Excludes the specified files from the append operation. You can include a
directory but not a device in the file specification. Wildcard characters (¥ and
%) are allowed in the file specification. However, you cannot use relative version
numbers to exclude a specific version. If you specify only one file, you can omit
the parentheses.

[EXPIRED

Modifies the time value specified with the /BEFORE or the /SINCE qualifier.
The /EXPIRED qualifier selects files according to their expiration dates.- (The
expiration date is set with the SET FILE/EXPIRATION_DATE command.)
The /EXPIRED qualifier is incompatible with the /BACKUP, /CREATED, and
/MODIFIED qualifiers, which also allow you to select files according to time
attributes. If you specify none of these four time qualifiers, the default is the
/CREATED qualifier.

/EXTENSION=number-of-blocks

Specifies the number of blocks to be added to the output file each time the file

is extended. When you specify the /EXTENSION qualifier, the /INEW_VERSION
qualifier is assumed and need not be typed on the command line. This qualifier is
relevant only with the /NEW_VERSION qualifier.

The extension value is applied only if a new file is actually created.

/ILOG

/NOLOG (default)

Controls whether the APPEND command displays the file specifications of each
file appended. If the /LOG qualifier is specified, the command displays the file
specifications of the input and output files as well as the number of blocks or
records appended after each append operation.

/MODIFIED

Modifies the time value specified with the /BEFORE or the /SINCE qualifier.
The /MODIFIED qualifier selects files according to the dates on which they were
last modified. This qualifier is incompatible with the /BACKUP, /CREATED,
and /EXPIRED qualifiers, which also allow you to select files according to time
attributes. If you specify none of these four time modifiers, the default is the
/CREATED qualifier.

/NEW_VERSION

/NONEW_VERSION (default)

Controls whether the APPEND command creates a new output file if the specified
output file does not exist. (By default, the specified output file already exists.) If



Examples

APPEND

the specified output file does not already exist, use the /NEW_VERSION qualifier
to create a new output file. If the output file does exist, the /NEW_VERSION
qualifier is ignored and the input file is appended to the output file.

/PROTECTION=(ownership[:access][,...])
Specifies protection for the output file.

e Specify the ownership parameter as system (S), owner (O), group (G), or
world (W).

* Specify the access parameter as read (R), write (W), execute (E), or delete
(D).

The default protection, including any protection attributes not specified, is that
of the existing output file. If no output file exists, the current default protection
applies. This qualifier is relevant only with the /NEW_VERSION qualifier.

For more information on specifying protection codes, see the OpenVMS Guide to
System Security.

/READ_CHECK
/NOREAD_CHECK (default)
Reads each record in the input files twice to verify that it has been read correctly.

/SINCE[=time]

Selects only those files dated after the specified time. You can specify time

as absolute time, as a combination of absolute and delta times, or as one of
the following keywords: BOOT, LOGIN, TODAY (default)), TOMORROW, or
YESTERDAY. Specify one of the following qualifiers with the /SINCE qualifier
to indicate the time attribute to be used as the basis for selection: /BACKUP,
/CREATED (default), /EXPIRED, or /MODIFIED.

For complete information on specifying time values, see the OpenVMS User’s
Manual.

/WRITE_CHECK

/NOWRITE_CHECK (default)

Reads each record in the output file after the record is written to verify that it
was appended successfully and that the output file can subsequently be read
without error.

1. $ APPEND TEST3.DAT TESTALL.DAT

The APPEND command appends the contents of the file TEST3.DAT from the
default disk and directory to the file TESTALL.DAT, also located on the default
disk and directory.

2. § APPEND/NEW_VERSION/LOG * ,TXT MEM.SUM
$APPEND-I-CREATED, USES$:[MAL]MEM.SUM;1 created
$APPEND-S-COPIED, USE$:[MAL]A.TXT;2 copied to USE$:[MAL]MEM.SUM;1 (1 block)
$APPEND-S-APPENDED, USES$:[MAL]B.TXT;3 appended to USE$:[MAL]MEM.SUM;1 (3 records)
$APPEND~-S-APPENDED, USES$:[MAL]G.TXT;7 appended to USES$:[MAL]MEM.SUM;1 (51 records)

The APPEND command appends all files with file types of .TXT to a file named
MEM.SUM. The /LOG qualifier requests a display of the specifications of each
input file appended. If the file MEM.SUM does not exist, the APPEND command

DCLI-39



APPEND

creates it, as the output shows. The number of blocks or records shown in the
output refers to the source file and not to the target file total.

3. $ APPEND/LOG A.DAT, B.MEM C.*
$APPEND-S-APPENDED, USE$:[MAL]A.DAT;4 appended to USE$:[MAL]C.DAT;4 (2 records)
$APPEND-S-APPENDED, USE$:[MAL]B.MEM;5 appended to USE$:[MAL]C.DAT;4 (29 records)

The APPEND command appends the files A.DAT and B.MEM to the file C.DAT,
which must already exist.

4. $ DPPEND/LOG A.* B.*
$APPEND-S-APPENDED, USE$:[MAL)A.DAT;5 appended to USE$:[MAL]B.DAT;1 (5 records)
$APPEND-S-APPENDED, USE$:[MAL]A.DOC;2 appended to USE$:[MAL]B.DAT;1 (1 record)

Both the input and output file specifications contain wildcard characters in the
file type field. The APPEND command appends each file with a file name of A to
an existing file with B as its file name. The file type of the first input file located
determines the output file type.

5. $ APPEND BOSTON"JOHN SMITH YANKEE"::DEMOO1.DAT, DEMOZ2.DAT
$ To:  DALLAS::DISKI:[MODEL.TEST]TEST.DAT

This APPEND command adds the contents of the files DEMO1.DAT and
DEMO2.DAT at remote node BOSTON to the end of the file TEST.DAT at
remote node DALLAS.

DCLI-40 -



ASSIGN

ASSIGN

Format

Parameters

Creates a logical name and assigns an equivalence string, or a list of strings,
to the specified logical name. If you specify an existing logical name, the new
equivalence name replaces the existing equivalence name.

ASSIGN equivalence-namel,...] logical-name[:]

equivalence-name][s,...]

Specifies a character string of 1 to 255 characters. Defines the equivalence name,
usually a file specification, device name, or other logical name, to be associated
with the logical name in the specified logical name table. If the string contains
other than uppercase alphanumeric, dollar sign ($), or underscore (_) characters,
enclose it in quotation marks (“”). Use two sets of quotation marks (““ ) to
denote an actual quotation mark within the string. Specifying more than one
equivalence name for a logical name creates a search list.

When you specify an equivalence name that will be used as a file specification,
you must include the punctuation marks (colons (:), brackets ([]), and periods
(.)) that would be required if the equivalence name were used directly as a file
specification. Therefore, if you specify a device name as an equivalence name,
terminate the device name with a colon.

The ASSIGN command allows you to assign the same logical name to more than
one equivalence name. When you specify more than one equivalence name for a
logical name, you create a search list. For more information on search lists, see
the OpenVMS User’s Manual.

logical-name[:]

Specifies the logical name string, which is a character string containing up to 255
characters. You choose a logical name to represent the equlvalence name in the
specified logical name table.

If the string contains other than uppercase alphanumeric, dollar sign, or
underscore characters, enclose it in quotation marks. Use two sets of quotation
marks to denote an actual quotation mark. If you terminate the logical-

name parameter with a colon, the system removes the colon before placing

the name in a logical name table. (This differs from the DEFINE command,
which saves the colon.) If the logical name is to be entered into the process
directory (LNM$PROCESS_DIRECTORY) or system directory (LNM$SYSTEM_
DIRECTORY) logical name tables, then the name may only have from 1 to 31
alphanumeric characters (including the dollar sign and underscore). By default,
the logical name is placed in the process logical name table.

If the logical name contains any characters other than alphanumeric characters,
the dollar sign, or the underscore, enclose the name in quotation marks. If the
logical name contains quotation marks, enclose the name in quotation marks and
use two sets of quotation marks in the places where you want one set of quotation
marks to occur. Note that if you enclose a name in quotation marks, the case of
alphabetic characters is preserved.

DCLI-41



ASSIGN

Description

Qualifiers

DCLI-42

The ASSIGN command creates an entry in a logical name table by defining a
logical name to stand for one or more equivalence names. An equivalence name
can be a device name, another logical name, a file specification, or any other
string.

To specify the logical name table where you want to enter a logical name, use the
/PROCESS, /JOB, /GROUP, /SYSTEM, or /TABLE qualifier. If you enter more
than one of these qualifiers, only the last one entered is accepted. If you do not
specify a table, the default is /TABLE=LNM$PROCESS (or /PROCESS).

To specify the access mode of the logical name you are creating, use the /USER_
MODE, the /SUPERVISOR_MODE, or the /EXECUTIVE_MODE qualifier. If you
enter more than one of these qualifiers, only the last one entered is accepted. If
you do not specify an access mode, then a supervisor-mode name is created. You
can create a logical name in the same mode as the table in which you are placing
the name or in an outer mode. (User mode is the outermost mode; executive
mode is the innermost mode.)

You can enter more than one logical name with the same name in the same logical
name table, as long as each name has a different access mode. (However, if an
existing logical name within a table has the NO_ALIAS attribute, you cannot use
the same name to create a logical name in an outer mode in this table.)

If you create a logical name with the same name, in the same table, and in the
same mode as an existing name, the new logical name assignment replaces the
existing assignment.

You can also use the DEFINE command to create logical names. To delete a
logical name from a table, use the DEASSIGN command.

Note

Avoid assigning a logical name that matches the file name of an
executable image in SYS$SYSTEM:. Such an assignment will prohibit
you from invoking that image.

For additional information on how to create and use logical names, see the
OpenVMS User’s Manual.

/EXECUTIVE_MODE
Requires SYSNAM (system logical name) privilege.

Creates an executive-mode logical name. If you specify executive mode, but do
not have SYSNAM privilege, a supervisor-mode logical name is created. The
mode of the logical name must be the same as or external to (less privileged than)
the mode of the table in which you are placing the name.

/GROUP
Requires SYSPRYV (system privilege) or GRPNAM (group logical name)
privilege.



ASSIGN

Places the logical name in the group logical name table. Other users who
have the same group number in their user identification codes (UICs) can
access the logical name. The /GROUP qualifier is synonymous with the
/TABLE=LNM$GROUP qualifier. "

/JOB

Places the logical name in the jobwide logical name table. All processes within
the same job tree as the process creating the logical name can access the logical
name. The /JOB qualifier is synonymous with the /TABLE=LNM$JOB qualifier.

/LOG (default)
/INOLOG
Displays a message when a new logical name supersedes an existing name.

/INAME_ATTRIBUTES[=(keyword]|,...])]
Specifies the attributes for a logical name. By default, no attributes are set. You
can specify the following keywords for attributes:

CONFINE Does not copy the logical name into a spawned subprocess; this
keyword is relevant only for logical names in a private table.
NO_ALIAS Prohibits creation of logical names with the same name in an

outer (less privileged) access mode within the specified table. If
another logical name with the same name and an outer access
mode already exists in this table, the name is deleted.

If you specify only one keyword, you can omit the parentheses. Only the
attributes you specify are set.

/PROCESS (default)
Places the logical name in the process logical name table. The /PROCESS
qualifier is synonymous with the /TABLE=LNM$PROCESS qualifier.

/SUPERVISOR_MODE (default) v
Creates a supervisor-mode logical name in the specified table.

ISYSTEM
Requires SYSNAM (system logical name) or SYSPRV (system privilege)
privilege.

Places the logical name in the system logical name table. All system users
can access the logical name. The /SYSTEM qualifier is synonymous with the
/TABLE=LNM$SYSTEM qualifier.

/TABLE=name
Requires write (W) access to the table if the table is shareable.

Specifies the logical name table in which the logical name is to be entered. You
can use the /TABLE qualifier to specify a user-defined logical name table (created
with the CREATE/NAME_TABLE command); to specify the process, job, group,
or system logical name tables; or to specify the process or system logical name
directory tables.

If you specify the table name using a logical name that has more than one
translation, the logical name is placed in the first table found. For example, if
you specify ASSIGN/TABLE=LNMS$FILE_DEV and LNM$FILE_DEYV is equated
to LNM$PROCESS, LNM$JOB, LNM$GROUP, and LNM$SYSTEM, then the
logical name is placed in LNM$PROCESS.

DCLI-43



ASSIGN

Examples

DCLI-44

If you do not explicitly specify the /TABLE qualifier, the default is the
/TABLE=LNM$PROCESS qualifier.

[TRANSLATION_ATTRIBUTES[=(keyword],...])]
Equivalence-name qualifier.

Specifies attributes of the equivalence-name parameter. Possible keywords are as
follows: ‘

CONCEALED Indicates that the equivalence string is the name of a concealed
device.

When a concealed device name is defined, the system displays
the logical name, rather than the equivalence string, in
messages that refer to the device. If you specified the
CONCEALED attribute, then the equivalence string must

be a physical device name.

TERMINAL Indicates that the equivalence string should not be translated
iteratively; logical name translation should terminate with the
current equivalence string.

If you specify only one keyword, you can omit the parentheses. Only the
attributes you specify are set.

Note that different equivalence strings of the same logical name can have
different translation attributes specified.

/USER_MODE
Creates a user-mode logical name in the specified table.

If you specify a user-mode logical name in the process logical name table, that
logical name is used for the execution of a single image only; user-mode entries
are deleted from the logical name table when any image executing in the process
exits; that is, after any DCL command that executes an image or user program
completes execution. Also, user-mode logical names are automatically deleted
when invoking and exiting a command procedure.

1. § ASSIGN $DISK1:[ACCOUNTS.MEMOS] MEMOSD

The ASSIGN command in this example equates the partial file specification
$DISK1:[ACCOUNTS.MEMOS] to the logical name MEMOSD.

2. § ASSIGN/USER_MODE $DISK1:[ACCOUNTS.MEMOS]|WATER.TXT TM1

The ASSIGN command in this example equates the logical name TM1 to a
file specification. After the next image runs, the logical name is deassigned
automatically.

3. $ ASSIGN XXX1:[CHARLES] CHARLIE
$ PRINT CHARLIE:TEST.DAT
Job 274 entered on queue SYS$PRINT

The ASSIGN command in this example associates the logical name CHARLIE
with the directory name [CHARLES] on the disk XXX1. Subsequent
references to the logical name CHARLIE result in the correspondence
between the logical name CHARLIE and the disk and directory specified. The
PRINT command queues a copy of the file XXX1:[CHARLES]TEST.DAT to the
system printer.



4

ASSIGN

$ ASSIGN YYY2: TEMP:
$ SHOW LOGICAL TEMP

"TEMP" = "YYY2:" (LNM$SPROCESS TABLE)
$ DEASSIGN TEMP -

The ASSIGN command in this example equates the logical name TEMP

to the device YYY2. TEMP is created in supervisor mode and placed in

the process logical nameé table. The SHOW LOGICAL command verifies
that the logical name assignment was made. Note that the logical name
TEMP was terminated with a colon in the ASSIGN command, but that the
command interpreter deleted the colon before placing the name in the logical
name table. Thus, you can specify TEMP without a colon in the subsequent
DEASSIGN command. You should omit the colon in the SHOW LOGICAL
command (for example, SHOW LOGICAL TEMP).

$ MOUNT TTT1: MASTER TAPE
$ ASSIGN TAPE:NAMES.DAT PAYROLL
$ RUN PAYROLL

The MOUNT command in this example establishes the logical name TAPE
for the device TTT1, which has the volume labeled MASTER mounted on

it. The ASSIGN command equates the logical name PAYROLL with the file
named NAMES.DAT on the logical device TAPE. Thus, an OPEN request in a
program referring to the logical name PAYROLL results in the correspondence
between the logical name PAYROLL and the file NAMES.DAT on the tape
whose volume label is MASTER.

$ CREATE/NAME TABLE TABLEl

$ ASSIGN/TABLE=LNM$PROCESS DIRECTORY TABLEI,-

$ LNM$PROCESS,LNM$JOB,LNMSGROUP, LNMSSYSTEM LNMSFILE DEV
S ASSIGN/TABLE=TABLEL - -
_$ /TRANSLATION ATTRIBUTES=CONCEALED DBAl: WORK DISK

The CREATE/NAME_TABLE command in this example creates the process
private logical name table TABLE1.

The first ASSIGN command ensures that TABLE] is searched first in any
logical name translation of a file specification or device name (because
TABLEL1 is the first item in the equivalence string for the logical name
LNMS$FILE_DEV, which determines the default search sequence of logical
name tables whenever a device or file specification is translated).

The second ASSIGN command assigns the logical name WORK_DISK to the
physical device DBA1, and places the name in TABLE1. The logical name
has the concealed attribute. Therefore, the logical name WORK_DISK will be
displayed in system messages.

$ ASSIGN/TABLE=LNM$PROCESS/TABLE=LNMS$GROUP DBAO: SYSFILES
§ SHOW LOGICAL SYSFILES
"SYSFILES" = "DBAQ:" (LNM$GROUP 000240)

The ASSIGN command in this example contains conflicting qualifiers. When
you specify conflicting qualifiers, the ASSIGN command uses the last qualifier
specified. The response from the SHOW LOGICAL command indicates that
the name was placed in the group logical name table.

DCLI-45



ASSIGN

DCLI-46

8

10.

$ ASSIGN/TABLE=LNMSGROUP ‘F$TRNLNM("SYSSCOMMAND")’ TERMINAL
$DCL-I-SUPERSEDE, previous value of TERMINAL has been superseded

The ASSIGN command in this example uses the lexical function F$TRNLNM
to translate the logical name SYS$COMMAND and use the result as the
equivalence name for the logical name TERMINAL. The message from the
ASSIGN command indicates that an entry for the logical name TERMINAL
already existed in the group logical name table, and that the new entry has
replaced the previous one.

If this command is used in a LOGIN.COM file, the entry for TERMINAL will
be redefined at the beginning of each terminal session. The current process
and any subprocesses it creates can execute images that use the logical name
TERMINAL to write messages to the current terminal device.

$ ASSIGN DALLAS::DMAl: DATA

The ASSIGN command in this example associates the logical name DATA
with the device specification DMA1 on remote node DALLAS. Subsequent
references to the logical name DATA result in references to the disk on the
remote node.

$ CREATE AVERAGE.COM

$ ASSIGN/USER_MODE SYSSCOMMAND: SYSSINPUT
$ EDIT/EDT AVERAGE.FOR
$ FORTRAN AVERAGE

$ LINK AVERAGE

$ RUN AVERAGE

87

80

90

9999

$ EXIT

$ @AVERAGE.COM

The CREATE command in this example creates the command procedure
AVERAGE.COM. Then the command procedure is executed.

The command procedure uses the ASSIGN command with the /USER_MODE
qualifier to change temporarily the value of SYS$INPUT. When the EDT
editor is invoked, it accepts input from the terminal. This allows you to
create or modify the program AVERAGE.FOR interactively.

When you exit from EDT, SYS$INPUT is reassigned to its original value
(the input stream provided by the command procedure). Thus, when the
program AVERAGE.FOR is ready to accept input, it looks for that input in
the command procedure.



ASSIGN/MERGE

ASSIGN/MERGE

Format

Parameters

Description

Example

Removes all jobs from one queue and merges them into another existing queue.
This command does not affect jobs that are executing.

Requires manage (M) access to both queues.

ASSIGN/MERGE target-queue[:] source-queue[:]

target-queuef:]
Specifies the name of the queue into which the jobs are being merged.

source-queuel:]
Specifies the name of the queue from which the jobs are being removed.

The ASSIGN/MERGE command removes the pending jobs in one queue and
places them in another queue. This command does not affect any executing
jobs in either the target queue or the source queue. Jobs currently running in
the source queue complete in that queue. This command is generally used with
printer queues, although it can be used with batch queues.

The ASSIGN/MERGE command is particularly useful when a line printer
malfunctions. By entering the ASSIGN/MERGE command, you can reroute
existing jobs to a different printing device. To perform the merge operation
without losing or disrupting any jobs, stop the source queue with the STOP
/QUEUE/NEXT command. Then enter the STOP/QUEUE/REQUEUE command
to ensure that the current job on the source queue is requeued for processing on
the target queue. (If the STOP/QUEUE/REQUEUE command fails to requeue
the job, use the STOP/QUEUE/RESET command to regain control of the queue.)
Once you enter the STOP commands, enter the ASSIGN/MERGE command.

$ STOP/QUEUE/NEXT LPB0
$ STOP/QUEUE/REQUEUE=LPAQ LPB0
$ ASSIGN/MERGE LPAQ LPB0

In this example, the STOP/QUEUE/NEXT command prevents another job from
executing on queue LPB0. The STOP/QUEUE/REQUEUE command requeues the
current job running on LPBO to the target queue LPAO. The ASSIGN/MERGE

command removes the remaining jobs from the LPBO printer queue and places
them in the LPAOQ printer queue.

DCLI-47



ASSIGN/QUEUE

ASSIGN/QUEUE

Format

Parameters

Description

Examples

DCLI-48

Assigns, or redirects, a logical queue to a single execution queue. The ASSIGN
/QUEUE command can be used only with printer or terminal queues.

Requires manage (M) access to both queues.

ASSIGN/QUEUE queue-name[:] logical-queue-namel:]

queue-namel:] ‘
Specifies the name of the execution queue. The queue cannot be a logical queue,
a generic queue, or a batch queue.

logical-queue-name]:]
Specifies the name of the logical queue.

The ASSIGN/QUEUE command sets up a one-to-one correspondence between a
logical queue and an execution queue. Jobs submitted to the logical queue are
always queued to the specified execution queue for eventual printing.

When you enter the ASSIGN/QUEUE command, the logical queue cannot be
running.

Once you initialize a logical queue, use the ASSIGN/QUEUE command to
associate the logical queue with an existing execution queue. You must perform
the following tasks to set up a logical queue:

1. Initialize the logical queue with the INITIALIZE/QUEUE command. (Do not
use the /START qualifier.) ‘

2. Assign the logical queue name to an existing execution queue.
3. Start the logical queue with the START/QUEUE command.

After you enter the START/QUEUE command for the logical queue, jobs can be
sent to the logical queue for processing.

1. $ INITIALIZE/QUEUE/DEFAULT=FLAG=ONE/START LPAQ
$ INITIALIZE/QUEUE TEST QUEUE
$ ASSIGN/QUEUE LPA0 TEST QUEUE
$ START/QUEUE TEST QUEUE

This example first initializes and starts the printer queue LPAO. The
LPAO queue is set to have a flag page precede each job. The second
INITIALIZE/QUEUE command creates the logical queue TEST QUEUE.
The ASSIGN/QUEUE command assigns the logical queue TEST QUEUE to
the printer queue LPAQ. The START/QUEUE command starts the logical
queue.



ASSIGN/QUEUE

2. § INITIALIZE/QUEUE/START LPB0

The ASSIGN/QUEUE command is not needed in this example because a
logical queue is not being initialized. A printer queue is being initialized;
LPBO is the name of a line printer. After you enter the INITTALIZE/QUEUE

/START command, jobs can be queued to LPBO for printing.

DCLI-49



ATTACH

ATTACH

Format

Parameter

Description

Qualifier

DCLI-50

Transfers control from your current process (which then hibernates) to the
specified process.

The ATTACH and SPAWN commands cannot be used if your terminal has
an associated mailbox.

ATTACH [process-name]

process-name

Specifies the name of a parent process or spawned subprocess to which control
passes. The process must already exist, be part of your current job, and share the
same input stream as your current process. However, the process cannot be your
current process or a subprocess created with the /NOWAIT qualifier.

Process names can contain from 1 to 15 alphanumeric characters. If a connection
to the specified process cannot be made, an error message is displayed.

The process-name parameter is incompatible with the /IDENTIFICATION
qualifier. "

The ATTACH command allows you to connect your input stream to another
process. You can use the ATTACH command to change control from one
subprocess to another subprocess or to the parent process.

When you enter the ATTACH command, the parent or “source” process is put
into hibernation, and your input stream is connected to the specified destination
process. You can use the ATTACH command to connect to a subprocess that is
part of a current job left hibernating as a result of the SPAWN/WAIT command or
another ATTACH command as long as the connection is valid. (No connection can
be made to the current process, to a process that is not part of the current job,
or to a process that does not exist. If any of these connections are attempted, an
error message is displayed.)

You can also use the ATTACH command in conjunction with the SPAWN
/WAIT command to return to a parent process without terminating the created
subprocess. See the description of the SPAWN command for more details.

/IDENTIFICATION=pid

Specifies the process identification (PID) of the process to which terminal control
will be transferred. Leading zeros can be omitted. The /IDENTIFICATION
qualifier is incompatible with the process-name parameter.

If you omit the /IDENTIFICATION qualifier, you must specify a process name.



ATTACH

Examples

1. § ATTACH JONES 2

The ATTACH command transfers the terminal’s control to the subprocess
JONES_2.

2. $ ATTACH/IDENTIFICATION=30019

The ATTACH command switches control from the current process to a process
having the PID 30019. Notice that because the /IDENTIFICATION qualifier

is specified, the process-name parameter is omitted.

DCLI-51



BACKUP

BACKUP

Invokes the Backup utility (BACKUP) to perform one of the following backup
operations:

* Make copies of disk files.

e Save disk files as data in a file created by BACKUP on disk or magnetic tape.
(Files created by BACKUP are called save sets.)

* Restore disk files from a BACKUP save set.
¢ Compare disk files or files in a BACKUP save set with other disk files.
* List information about files in a BACKUP save set to an output device or file.

You cannot invoke BACKUP to back up a system disk; a system disk must be
bootstrapped to run. For a complete description of BACKUP and information on
backing up the system disk, see the OpenVMS System Manager’s Manual and the
OpenVMS System Management Utilities Reference Manual.

Format

BACKUP input-specifier output-specifier

DCLI-52



CALL

CALL

Format

Parameters

Transfers control to a labeled subroutine within a command procedure.

CALL label [parameter [...]]

label

Specifies a label of 1 to 255 alphanumeric characters that appears as the first
item on a command line. A label cannot contain embedded blanks. When
the CALL command is executed, control passes to the command following the
specified label.

The label can precede or follow the CALL statement in the current command
procedure. A label in a command procedure must be terminated with a colon (:).
Labels for subroutines must be unique.

Labels declared in inner procedure levels are inaccessible from outer levels, as in
the following example:

$CALL B
$SUBROUTINE A

$ B: SUBROUTINE
$ ENDSUBROUTINE
$ENDSUBROUTINE

In this example, the label B in subroutine A is inaccessible from the outer
procedure level.

parameter [...]

Specifies from one to eight optional parameters to pass to the command
procedure. Use quotation marks ("") to specify a null parameter. The parameters
assign character string values to the symbols named P1, P2, and so on in the
order of entry, to a maximum of eight. The symbols are local to the specified
command procedure. Separate each parameter with one or more spaces.

You can specify a parameter with a character string value containing
alphanumeric or special characters, with the following restrictions:

* The command interpreter converts alphabetic characters to uppercase and
uses blanks to delimit each parameter. To pass a parameter that contains
embedded blanks or lowercase letters, enclose the parameter in quotation
marks (“ 7).

e If the first parameter begins with a slash (/), you must enclose the parameter
in quotation marks.

* To pass a parameter that contains quotation marks and spaces, enclose the
entire string in quotation marks and use two sets of quotation marks within
the string. For example:

$ CALL SUB1 "Never say ""quit"""

When control transfers to SUB1, the parameter P1 is equated to the following
string:

Never say "quit"

DCLI-53



CALL

Description

DCLI-54

If a string contains quotation marks and does not contain spaces, the
quotation marks are preserved in the string and the letters within the
quotation marks remain in lowercase. For example;

$ CALL SUB2 abc"def"ghi
When control transfers to SUB2, the parameter P1 is equated to the string:
ABCdefGHI

To use a symbol as a parameter, enclose the symbol in single quotation marks
(“?) to force symbol substitution. For example:

'$ NAME = "JOHNSON"

$ CALL INFO 'NAME’

The single quotation marks cause the value “JOHNSON” to be substituted for
the symbol ‘NAME’. Therefore, the parameter “JOHNSON” is passed as P1 to the
subroutine INFO.

The CALL command transfers control to a labeled subroutine within a command
procedure. The CALL command is similar to the @ (execute procedure) command
in that it creates a new procedure level. The advantage of the CALL command
is that it does not require files to be opened and closed to process the procedure.
Using the CALL command also makes managing a set of procedures easier
because they can all exist in one file rather than in several files.

When you use the CALL command to transfer control to a subroutine, a new
procedure level is created and the symbols P1 to P8 are assigned the values of
the supplied arguments. Execution then proceeds until an EXIT command is
encountered. At this point, control is transferred to the command line following
the CALL command.

Procedures can be nested to a maximum of 32 levels, which includes any
combination of command procedure and subroutine calls. Local symbols and
labels defined within a nested subroutine structure are treated the same way as
if the routines had been invoked with the @ command; that is, labels are valid
only for the subroutine level in which they are defined.

Local symbols defined in an outer subroutine level are available to any subroutine
levels at an inner nesting level; that is, the local symbols can be read, but

they cannot be written to. If you assign a value to a symbol that is local to an
outer subroutine level, a new symbol is created at the current subroutine level.
However, the symbol in the outer procedure level is not modified.

The SUBROUTINE and ENDSUBROUTINE commands define the beginning and
end of a subroutine. The label defining the entry point to the subroutine must
appear either immediately before the SUBROUTINE command or on the same
command line.

A subroutine can have only one entry point. The subroutine must begin with the
SUBROUTINE command as the first executable statement. If an EXIT command
is not specified in the procedure, the ENDSUBROUTINE command functions as
an EXIT command.



Qualifier

CALL

The SUBROUTINE command performs two different functions depending

on the context in which it is executed. If executed as the result of a CALL
command, it initiates a new procedure level, defines the parameters P1 to P8 as
specified in the CALL statement, and begins execution of the subroutine. If the
SUBROUTINE verb is encountered in the execution flow of the procedure
without having been invoked by a CALL command, all the commands
following the SUBROUTINE command are skipped until the corresponding
ENDSUBROUTINE command is encountered.

Note

The SUBROUTINE and ENDSUBROUTINE commands cannot be
abbreviated to fewer than 4 characters.

/OUTPUT=filespec

Writes all output to the file or device specified. By default, the output is written
to the current SYS$OUTPUT device and the output file type is LIS. System
responses and error messages are written to SYSSCOMMAND as well as to the
specified file. If you specify /OUTPUT, the qualifier must immediately follow the
CALL command. The asterisk (*) and the percent sign (%) wildcard characters
are not allowed in the output file specification.

You can also redefine SYS$OUTPUT to redirect the output from a command
procedure. If you place the following command as the first line in a command
procedure, output will be directed to the file you specify:

$ DEFINE SYS$OUTPUT filespec

When the procedure exits, SYS$OUTPUT is restored to its original equivalence
string. This produces the same result as using the /OUTPUT qualifier when you
execute the command procedure.

DCLI-55



CALL

Example

DCLI-56

$
$! CALL.COM

$

$! Define subroutine SUB1
$!

$ SUB1: SUBROUTINE

.

$ CALL SUB2 !Invoke SUB2 from within SUB1
$ @FILE !Invoke another procedure command file

$ EXIT

$ ENDSUBROUTINE !End of SUBl definition
$!
$1 Define subroutine SUB2
$!

$ SUB2: SUBROUTINE

.

$ EXIT

$ ENDSUBROUTINE !End of SUB2 definition

$!

$! Start of main routine. At this point, both SUB1 and SUB2
§! have been defined but none of the previous commands have

$! been executed.
$!

$ START:
$ CALL/OUTPUT=NAMES.LOG SUBl "THIS IS P1"

§ CALL SUB2 "THIS IS P1" "THIS IS P2"

.

.

$ EXIT !Exit this command procedure file

The command procedure in this example shows how to use the CALL command
to transfer control to labeled subroutines. The example also shows that you can
call a subroutine or another command file from within a subroutine. The CALL
command invokes the subroutine SUB1, directing output to the file NAMES.LOG
and allowing other users write (W) access to the file. The subroutine SUB2 is
called from within SUB1. The procedure executes SUB2 and then uses the @
(execute procedure) command to invoke the command procedure FILE.COM.
When all the commands in SUB1 have executed, the CALL command in the main
procedure calls SUB2 a second time. The procedure continues until SUB2 has
executed.



CANCEL

CANCEL

Format

Parameters

Description

Cancels wakeup requests for a specified process, including wakeup requests
scheduled with either the RUN command or the $SCHDWK system service.

Requires one of the following:
* Ownership of the process.

e GROUP privilege to cancel scheduled wakeup requests for processes
in the same group but not owned by you.

*  WORLD privilege to cancel scheduled wakeup requests for any
process in the system.

CANCEL [[node-name::]process-name]

node-name::

The name of the node on which the specified process is running. The node name
can have as many as six alphanumeric characters. The two colons (::) count for
two additional characters, for a total of eight.

You cannot specify a node name on a different VMScluster system from the
current process.

process-name
The name of the process for which wakeup requests are to be canceled. The
process name can have up to 15 alphanumeric characters.

The specified process must be in the same group as the current process.

The CANCEL command cancels scheduled wakeup requests for the specified
process.

The CANCEL command does not delete the specified process. If the process is
executing an image when the CANCEL command is issued for it, the process
hibernates instead of exiting after the image completes execution.

To delete a hibernating process for which wakeup requests have been canceled,
use the STOP command. You can determine whether a subprocess has been
deleted by entering the SHOW PROCESS command with the /SUBPROCESSES

qualifier.

A local process name can look like a remote process name. Therefore,

if you specify ATHENS::SMITH, the system checks for a process named
ATHENS::SMITH on the local node before checking node ATHENS for a process
named SMITH.

You also can use the /IDENTIFICATION=pid qualifier to specify a process name.
If you use the /IDENTIFICATION qualifier and the process-name parameter

DCLI-57



CANCEL

together, the qualifier overrides the parameter. If you do not specify either
the process-name parameter or the /[IDENTIFICATION qualifier, the CANCEL
command cancels scheduled wakeup requests for the current (that is, the issuing)

process.
Qualifier
/IDENTIFICATION=pid
Identifies the process by its process 1dent1ﬁcat10n (PID). You can omit leading
zeros when you specify the PID.
Examples

1. §$ CANCEL CALENDAR

The CANCEL command in this example cancels a wakeup request for a
process named CALENDAR (which continues to hibernate until it is deleted
with the STOP command).

2. § RUN/SCHEDULE=14:00 STATUS
$RUN-S-PROC_ID, identification of created process is 0013012A

$ CANCEL/IDENTIFICATION=13012A

The RUN command in this example creates a process to execute the image
STATUS. The process hibernates and is scheduled to be awakened at 14:00.
Before the process is awakened, the CANCEL command cancels the wakeup
request.

3. $ RUN/PROCESS NAME‘LIBRA/INTERVAL-I 00 LIBRA
$RUN-S-PROC_ID, identification of created process is 00130027

$ CANCEL LIBRA
§$ STOP LIBRA

The RUN command in this example creates a subprocess named LIBRA to
execute the image LIBRA.EXE at hourly intervals.

Subsequently, the CANCEL command cancels the wakeup request. The
process continues to exist, but in a state of hibernation, until the STOP
command deletes it.

DCLI-58



CLOSE

CLOSE

Format

Parameter

Description

Qualifiers

Examples

Closes a file opened with the OPEN command and deassigns the associated
logical name.

CLOSE logical-name(:]

logical-name[:]
Specifies the logical name assigned to the file when it was opened with the OPEN
command.

Files that are opened for reading or writing at the command level remain open
until closed with the CLOSE command, or until the process terminates. If a
command procedure that opens a file terminates without closing the open file, the
file remains open; the command interpreter does not automatically close it.

/ERROR=label

Specifies a label in the command procedure to receive control if the close operation
results in an error. Overrides any ON condition action specified. If an error
occurs and the target label is successfully given control, the global symbol
$STATUS retains the code for the error that caused the error path to be taken.

/LOG (default)

I/NOLOG

Generates a warning message when you attempt to close a file that was not
opened by DCL. If you specify the /ERROR qualifier, the /[LOG qualifier has no
effect. If the file has not been opened by DCL, the error branch is taken and no
message is displayed.

1. $ OPEN/READ INPUT FILE  TEST.DAT
$ READ LOOP:
$ READ7END_OF FILE=NO MORE INPUT FILE DATA LINE

$ GOTO READ_LOOP
$ NO_MORE:
$ CLOSE INPUT FILE

The OPEN command in this example opens the file TEST.DAT and assigns it
the logical name of INPUT_FILE. The /END_OF_FILE qualifier on the READ
command requests that, when the end-of-file (EOF) is reached, the command
interpreter should transfer control to the line at the label NO_MORE. The
CLOSE command closes the input file.

DCLI-59



CLOSE

DCLI-60

2

$ @READFILE

$ STOP
$ SHOW LOGICAL/PROCESS

"INFILE" = " _DB1"
"QUTFILE" = " DB1"
$ CLOSE INFILE
$ CLOSE OUTFILE

In this example, pressing Ctrl/Y interrupts the execution of the command
procedure READFILE.COM. Then, the STOP command stops the procedure.
The SHOW LOGICAL/PROCESS command displays the names that currently
exist in the process logical name table. Among the names listed are the
logical names INFILE and OUTFILE, assigned by OPEN commands in the
procedure READFILE.COM.

The CLOSE commands close these files and deassign the logical names.



CONNECT

CONNECT

Connects your physical terminal to a virtual terminal that is connected to another
process.

You must connect to a virtual terminal that is connected to a process
with your user identification code (UIC). No other physical terminals
may be connected to the virtual terminal.

Format
CONNECT virtual-terminal-name

Parameter

virtual-terminal-name

Specifies the name of the virtual terminal to which you are connecting. A virtual
terminal name always begins with the letters VTA. To determine the name of
the virtual terminal that is connected to a process, enter the SHOW USERS
command.

Description

The CONNECT command connects you to a separate process, as opposed to the
SPAWN and ATTACH commands, which create and attach subprocesses.

The CONNECT command is useful when you are logged in to the system using
telecommunications lines. If there is noise over the line and you lose the carrier
signal, your process does not terminate. After you log in again, you can reconnect
to the original process and log out of your second process.

To use the CONNECT command, the virtual terminal feature must be enabled
for your system with the System Manager utility (SYSMAN) on OpenVMS Alpha
systems and the System Generation utility (SYSGEN) on OpenVMS VAX systems.

If virtual terminals are allowed on your system, use the SET TERMINAL
/DISCONNECT/PERMANENT command to enable the virtual terminal
characteristic for a particular physical terminal. When you enable this
characteristic, a virtual terminal is created when a user logs in to the physical
terminal. The physical terminal is connected to the virtual terminal, which is in
turn connected to the process.

For new virtual terminals, you must first set the TT2$V_DISCONNECT bit in
the TTY_DEFCHAR2 system parameter and reboot the system. This is done by
creating the virtual device VTAO: using the ttdriver. For example:

$ RUN SYSMAN IO CONNECT/NOADAPTER -
_$ /DRIVER=SYS$LOADABLE IMAGES:SYS$TTDRIVER VTAO: ¢

DCLI-61



CONNECT

L vax 2

Qualifiers

Examples

DCLI-62

$ RUN SYSGEN CONNECT /NOADAPTER/DRIVER=TTDRIVER VTAQ: ¢

When the connection between the physical terminal and the virtual terminal
is broken, you are logged out of your current process (and any images that the
process is executing stop running) unless you have specified the /NOLOGOUT
qualifier.

If you have specified the /NOLOGOUT qualifier, the process remains connected
to the virtual terminal. If the process is executing an image, it continues until
the process needs terminal input or attempts to write to the terminal. At that
point, the process waits until the physical terminal is reconnected to the virtual
terminal.

You can connect to a virtual terminal even if you are not currently using a
virtual terminal. However, to log out of your current process you must use the
CONNECT command with the /[LOGOUT qualifier. If you connect to a virtual
terminal from another virtual terminal, you can save your current process by
using the /NOLOGOUT qualifier.

/CONTINUE

/NOCONTINUE (default)

Controls whether the CONTINUE command is executed in the current process
just before connecting to another process. This qualifier allows an interrupted
image to continue processing after you connect to another process.

The /CONTINUE qualifier is incompatible with the /LOGOUT qualifier.

/LOGOUT (default)

/NOLOGOUT

Logs out your current process when you connect to another process using a
virtual terminal.

When you enter the CONNECT command from a process that is not connected
to a virtual terminal, you must specify the /[LOGOUT qualifier. Otherwise, DCL
displays an error message.

The /[LOGOUT qualifier is incompatible with the /CONTINUE qualifier.

1. $ RUN AVERAGE
Ctrl’Y
$ CONNECT/CONTINUE VTA72

In this example, you use the RUN command to execute the image
AVERAGE.EXE. You enter this command from a terminal that is connected to
a virtual terminal. Next, you press Ctrl/Y to interrupt the image. After you
interrupt the image, enter the CONNECT command with the /CONTINUE
qualifier. This operation issues the CONTINUE command, so the image
continues to run and connects you to another virtual terminal. You can
reconnect to the process later.



2

CONNECT

$ SHOW USERS/FULL )
VAX/VMS User Processes at 22-DEC-1994 14:11:56.91
Total number of users = 51, number of processes = 158

Username Node Process Name PID Terminal

KIDDER BUKETT KIDDER 29A0015E FTA3:

KIDDER BUKETT _FTA4: 29A0015F FTA4d:

KIDDER RACEY1 KIDDER 05800062 FTAS:

KIDDER RACEYl1 DECWSMWM 0580005D MBA44: Disconnected

KIDDER RACEY1 DECWS$SESSION 05800059

KIDDER RACEYl VUESKIDDER 2 0580005E (subprocess of 05800059)
KIDDER RACEY1l VUESKIDDER 3 0580005F MBAS1: Disconnected
KIDDER RACEY1 VUE$KIDDER_4 05800060 MBAS53: Disconnected

SMITH BUKETT SMITH 29A002C1 FTAT:

SMITH BUKETT SMITH 1 29A006C2 (subprocess of 29A002C1)
SMITH BUKETT SMITH 2 29A00244 (subprocess of 29A002C1)
SMITH HAMLET SMITH 24800126 FTA6:

SMITH HAMLET DECWS$BANNER 24800155 (subprocess of 24800126}
SMITH HAMLET DECWS$MWM 2480011F MBA170: Disconnected

SMITH HAMLET DECW$SESSION 2480011D FTAS5:

.

$ CONNECT VTA273
SMITH logged out at 22-DEC-1994 14:12:04.53
$

This example shows how to reconnect to your original process after you have
lost the carrier signal. First, you must log in again and create a new process.
After you log in, enter the SHOW USERS/FULL command to determine the
virtual terminal name for your initial process. Then enter the CONNECT
command to connect to the virtual terminal associated with your original
process. The process from which you enter the CONNECT command is logged
out because you have not specified any qualifiers.

When you reconnect to the original process, you continue running the image
that you were running when you lost the carrier signal. In this example, the
user SMITH was at interactive level when the connection was broken.

DCLI-63



CONTINUE

CONTINUE

Format

Parameters

" Description

Examples

DCLI-64

Resumes execution of a DCL command, a program, or a command procedure that
was interrupted by pressing Ctrl/Y or Ctrl/C. You cannot resume execution of the
image if you have entered a command that executes another image or if you have
invoked a command procedure.

CONTINUE
None.

The CONTINUE command enables you to resume processing an image or a
command procedure that was interrupted by pressing Ctrl/Y or Ctrl/C. You
cannot resume execution of the image if you have entered a command that
executes another image or if you have invoked a command procedure. However,
you can use CONTINUE after commands that do not execute separate images; for
a list of these commands, see the OpenVMS User’s Manual.

You can abbreviate the CONTINUE command' to a single letter, C.

The CONTINUE command serves as the target command of an IF or ON
command in a command procedure. The CONTINUE command is also a target
command when it follows a label that is the target of a GOTO command. In
addition, you can use the CONTINUE command to resume processing of a
program that has executed either a VAX FORTRAN PAUSE statement or a
VAX COBOL-74 STOP literal statement.

1. § RUN MYPROGRAM A

[CirY]

$ SHOW TIME
14-DEC-1994 13:40:12

$ CONTINUE

In this example, the RUN command executes the program MYPROGRAM_A.
While the program is running, pressing Ctrl/Y interrupts the image. The
SHOW TIME command requests a display of the current date and time. The
CONTINUE command resumes the image.

2. § ON SEVERE_ERROR THEN CONTINUE

In this example, the command procedure statement requests the command
interpreter to continue executing the procedure if any warning, error, or
severe error status value is returned from the execution of a command or
program. This ON statement overrides the default action, which is to exit
from a procedure following errors or severe errors.



CONVERT

CONVERT

Invokes the Convert utility, which copies records from one file to another and
changes the organization and format of the input file to those of the output
file. For a complete description of the Convert utility, see the OpenVMS Record

Management Utilities Reference Manual.

Format
CONVERT input-filespec],...] output-filespec

DCLI-65



CONVERT/DOCUMENT

CONVERT/DOCUMENT

Converts a CDA supported revisable input file to another revisable or final form
output file.

Note

You can use this command only if DECwindows Motif for OpenVMS is
installed on your system.

Format
CONVERT/DOCUMENT input-filespec output-filespec

Parameters

input-filespec
Specifies the name of the input file to be converted. The default file type is .DDIF.

output-filespec
Specifies the name of the output file. The default file type is .DDIF.

Description

The CONVERT/DOCUMENT command lets you convert documents from one
format to another. You specify the name and format of the input file (a file whose
format is incompatible with the application that needs to read the file) and the
output file (the file to be created in a new format).

You can convert a file from one format to another if an input converter exists
for the input file format and an output converter exists for the output file
format. The default input and output file format is DDIF (DIGITAL Document
Interchange Format). DDIF is a standard format for the storage and interchange
of compound documents, which can include text, graphics, and images.

DDIF input and output converters, in addition to several other converters, are
installed with the CDA Base Services for DECwindows Motif for OpenVMS. Some
of the converters support processing options, which ensure minimal changes when
your input file is converted to a different output file format. Create an options
file with the processing options you need before specifying the ev CONVERT

' /DOCUMENT command with the /OPTIONS qualifier.

Every converter supports a message log option, which is a file name you specify
and to which informational and error messages are logged during the conversion.

Qualifiers

/FORMAT=format-name )
Specifies the encoding format of the input or output file. The default input and
output format is DDIF.

Input converters bundled with the CDA Base Services for DECwindows Motif
for OpenVMS and the default file type for the file formats they support are as
follows:

DCLI-66



CONVERT/DOCUMENT

Input Format File Type
DDIF .DDIF
DTIF DTIF
TEXT TXT

Output converters bundled with the CDA Base Services for DECwindows Motif
for OpenVMS and the default file types for the file formats they support are as
follows:

Output Format File Type

DDIF .DDIF

DTIF .DTIF

TEXT JTIXT

PS PS 4
ANALYSIS .CDA$ANALYSIS

Digital’s CDA Converter Library is a layered product that offers several other
document, graphics, image, and data table input and output converters.
Independent software vendors also write CDA conforming applications and
converters for the operating system. Contact your system manager for a complete
list of converters available on your system.

Analysis Output Converter

The Analysis output converter produces an analysis of the intermediate
representation of the input file. The analysis output file shows the named objects
and values stored in the input file. Application programmers use an analysis
output file for debugging purposes.

Application end users use an analysis output file to determine whether an input
file contains references or links to multiple subfiles. Each subfile must be copied
separately across a network because subfiles are not automatically included when
an input file is transferred across the network. :

You can search the analysis output file for all occurrences of the string “ERF_".
The following example shows that the image file “griffin.img” is linked to the
DDIF compound document that is the input file:

ERF_LABEL ISO LATINl "griffin.img" ! Char. string.
ERF_LABEL TYPE RMS LABEL TYPE "§$RMS:
ERF_CONTROL COPY_REFERENCE ! Integer =1

Note that an analysis output file is intended as a programmer’s tool. The coded
information in the file is not intended for modification but rather to examine the
content of a file. The previous example shows how you can search analysis output
for references to linked files.

DDIF Input Converter

The DDIF input converter converts a DDIF input file to an intermediate
representation that is subsequently converted to the specified output file format.
The following list summarizes the data mapping, conversion restrictions, external
file references, and document syntax errors relevant to the DDIF input converter.

DCLI-67



CONVERT/DOCUMENT

DCLI-68

Data mapping

The information in the DDIF input file maps directly to an intermediate
representation.

Conversion restrictions

The DDIF input file does not lose any information when converted to the
intermediate representation.

However, if the DDIF input file is a newer version of the DDIF grammar than
that understood by the DDIF input converter, data represented by the new
grammar elements is lost.

External file references

Any external file references within the DDIF input file are converted to the
intermediate representation.

The DDIF input converter makes no attempt to resolve external references,
although the converter kernel can if requested by the output converter.

Document syntax errors

A document syntax error in the DDIF input file causes a fatal input
processing error. If the DDIF input converter encounters a document syntax
error, the conversion stops and no further input processing occurs.

DDIF Output Converter

The DDIF output converter creates a DDIF output file from the intermediate
representation of the input file. The following list summarizes the data mapping
and conversion restrictions relevant to the DDIF output converter.

Data mapping

The information in the intermediate representation of the input file maps
directly to the DDIF output file.

Conversion restrictions

The intermediate representation of the input file does not lose any
information when converted to the DDIF output file.

DTIF Input Converter

The DTIF input converter converts a DTIF input file to an intermediate
representation that is subsequently converted to the specified output file format.
The following list summarizes the data mapping, conversion restrictions, external
file references, and document syntax errors relevant to the DTIF input converter.

Data mapping

The information in the DTIF input file maps directly to an intermediate
representation.

Conversion restrictions

The DTIF input file does not lose any information when converted to the
intermediate representation.

However, if the DTIF input file is a newer version of the DTIF grammar than
that understood by the DTIF front end, data represented by the new grammar
elements is lost.

External file references

Any external file references within the DTIF input file are converted to the
intermediate representation.



CONVERT/DOCUMENT

The DTIF input converter makes no attempt to resolve external references. -

* Document syntax errors

A document syntax error in the DTIF input file causes a fatal input processing
error. If the DTIF input converter encounters a document syntax error, the
conversion stops and no further input processing occurs.

DTIF Output Converter

The DTIF output converter converts the intermediate representation of the input
file to a DTIF output file. The following list summarizes the data mapping,
conversion restrictions, and external file references relevant to the DTIF output
converter.

¢ Data mapping

The information in the intermediate representation of the input file maps
directly to the DTIF output file.

¢ Conversion restrictions

The intermediate representation of the input file does not lose any
information when converted to the DTIF output file.

e External file references

The DTIF output converter converts external file references stored in the
intermediate representation of the input file but makes no attempt to resolve
external references.

Text Input Converter

The Text input converter converts a Text (ISO Latinl) input file to an
intermediate representation that is subsequently converted to the specified
output file format. The following list summarizes the data mapping, conversion
restrictions, external file references, and document syntax errors relevant to the
Text input converter:

¢ Data mapping

The information in the text input file maps directly to an intermediate
representation. Line breaks and form feeds are mapped to DDIF directives.
One or more contiguous blank lines are interpreted as end-of-paragraph
markers.

If the text input file was entered as a DEC Multinational character set file
on a character-cell terminal or terminal emulator, the following conversions

occur:
Original Character Converted Character
Concurrency sign Diaeresis

Capital OE ligature " Multiplication sign

Capital Y with diaeresis Capital Y with acute accent
Small oe ligature Division sign

Small y with diaeresis Y with acute accent

¢ Conversion restrictions

The text input file does not lose any information when converted to the
intermediate representation because no structure information is contained in
a text file.

DCLI-69



CONVERT/DOCUMENT

DCLI-70

All nonprinting characters are converted to space characters. For example,
characters introducing ANSI escape characters are converted to space
characters. There is no attempt to interpret ANSI escape sequences.

¢ RExternal file references
Text files do not contain external file references.

* Document syntax errors

Text files do not contain syntax, so syntax errors are not reported by the Text
input converter.

Text Output Converter

The Text output converter converts the intermediate representation of the input
file to a Text output file. The following list summarizes the data mapping and
conversion restrictions relevant to the Text output converter.

¢ Data mapping

All Latinl text in the intermediate representation of the input file is
converted to the text output file.

When converting an input file to a text output file, you should be aware

that text output files can contain only textual content and minimal formatting
such as line feeds, page breaks, and tabs. The Text output converter preserves
formatting information to the extent possible. Page coordinates convert to the
nearest character cell (line,column) position.

¢ Conversion restrictions

All graphics, images, and text attributes in the intermediate representation of
the input file are lost when converted to the text output file.

Because a monospace font is used, it is possible some text may be lost due
to overwriting to preserve the layout. It is also possible that lines can be
truncated if the specified page width is smaller than the page width specified

in the darnimant’s farmat infarmation  Naithar of thasa anans oo

CQICC SCCUr WAl Jvu

use the OVERRIDE_FORMAT processing option because, in that case, the
document’s format information is 1gnored

PostScript Output Converter

The PostScript output converter converts the intermediate representation of the
input file to a PostScript output file. The following list summarizes the data
mapping and conversion restrictions relevant to the PostScript output converter.

* Data mapping

The information in the intermediate representation of the input file maps
directly to the PostScript output file.

¢ Conversion restrictions

The intermediate representation of the input file does not lose any
information when converted to the PostScript output file.

IMESSAGE_FILE=filespec

/INOMESSAGE_FILE (default)

Turns on message logging for document conversion. Messages output by the
input and output converters are directed to the file specified with filespec. If
filespec is not specified, messages are output to SYSSERROR. The default is
/NOMESSAGE_FILE.



CONVERT/DOCUMENT

IOPTIONS=options-filename
Specifies a text file that contains processing options applied to the input file and

the output file during the conversion. The default file type for an options file is
.CDA$OPTIONS.

Creating the Options File

You can create an options file prior to specifying the CONVERT/DOCUMENT
command with the /OPTIONS qualifier. An options file is a text file with a
default file type of .CDA$OPTIONS on the operating system.

The options file contains all the processing options for your input file format and
your output file format. Processing options help ensure minimal changes when
your input file is converted to a different output file format.

An options file is not required. Default processing options are applied
automatically when you convert a file. However, you may require an options
file if you need to use other than the default settings.

Use the following guidelines to create an options file:

* Begin each line of the options file with the keyword for the input or output
format, followed by one or more spaces or tabs, or by a slash (/).

For some file formats, such as DDIF and DTIF, there is an input converter

and an output converter. You can restrict a processing option to only the

input format or the output format by following the format keyword with
_INPUT or _OUTPUT.

¢  Specify only one processing option on each line when there are several options
for the same input or output format.

* Use uppercase and lowercase alphabetic characters, digits (0-9), dollar signs
($), and underscores (_) to specify the processing options.

¢ TUse one or more spaces or tabs to precede values specified for a processing
option.

The following example is a typical entry in an options file:
PS PAPER HEIGHT 10

In this example, the extension _OUTPUT is not required for the format keyword,
since PostScript is available only as an output format. The value specified for
PAPER_HEIGHT is in inches by default.

If the options file includes options that do not apply to the converters for a
particular conversion, those options are ignored.

If you specify an invalid option for an input or output format or an invalid value
for an option, you receive an error message. The processing options described in
the following sections document any restrictions.

Processing Options for Analysis Output

The Analysis output converter supports the following options:

* COMMENT DEFAULT _VALUES

Inserts a comment character (!) at the beginning of lines generated by default
values. (The comment prefix is also included on associated aggregate brackets
and array parentheses where they may apply.)

DCLI-71



CONVERT/DOCUMENT

DCLI-72

COMMENT INHERITED_VALUES

Inserts a comment character (!) at the beginning of lines generated by
inherited values. (The comment prefix is also included on associated
aggregate brackets and array parentheses where they may apply.)

TRANSLATE_BYTE_STRINGS

Overrides the default. For data of type BYTE STRING, the analysis output
no longer displays the hexadecimal translation if all the characters in the
byte string are printable characters (hex values 20 through 7E). This feature
may be overridden by supplying the TRANSLATE_BYTE_STRINGS option.

IMAGE_DATA

Overrides the default. For the special case of byte string data for item
DDIF$_IDU_PLANE_DATA (a bitmapped image), the analysis output
previously included both a hexadecimal and an ASCII translation display,
neither of which were of particular value to most users. With the new version,
both displays will be replaced with the following comment:

! **x Bit-mapped data not displayed here *#*

To retain the hexadecimal display, supply the IMAGE_DATA option. Even
with this option turned on, there will be no translation into ASCII.

INHERITANCE

Specifies that the analysis is shown with attribute inheritance enabled.
Inherited attributes are marked as “[Inherited value.]” in the output. This
option also causes external references to be imported into the main document.

Processing Options for Text Output
The Text output converter supports the following options:

ASCII_FALLBACK [ON,OFF]

Causes the Text output converter to output text in 7-bit ASCII. The fallback
representation of the characters is described in the ASCII standard. If this
option is not specified, the default is OFF; if this option is specified without a
value, the default is ON.

CONTENT_MESSAGES [ON,OFF]

Causes the Text output converter to put a message in the output file each
time a nontext element is encountered in the intermediate representation of
the input file. If this option is not specified, the default is OFF; if this option
is specified without a value, the default is ON.

HEIGHT value

Specifies the maximum number of lines per page in your text output file. If
you specify zero, the number of lines per page will correspond to the height
specified in your document. If you also specify OVERRIDE_FORMAT, or if
the document has no inherent page size, the document is formatted to the
height value specified by this option. The default height is 66 lines.

OVERRIDE_FORMAT [ON,OFF]

Causes the Text output converter to ignore the document formatting
information included in your document, so that the text is formatted in

a single large galley per page that corresponds to the size of the page as
specified by the HEIGHT and WIDTH processing options. If this option is not
specified, the default is OFF; if this option is specified without a value, the
default is ON.



CONVERT/DOCUMENT

SOFT_DIRECTIVES [ON,OFF]

Causes the Text output converter to obey the soft directives contained in the
document when creating your text output file. If this option is not specified,
the default is OFF; if this option is specified without a value, the default is

ON.

WIDTH value

Specifies the maximum number of columns of characters per page in your
text output file. If you specify zero, the number of columns per page will
correspond to the width specified in your document. If you also specify
OVERRIDE_FORMAT, or if the document has no inherent page size, the
document is formatted to the value specified by this processing option. If any
lines of text exceed this width value, the additional columns are truncated.
The default width is 80 characters.

PostScript Output Converter
The PostScript output converter supports the following options:

PAPER _SIZE size

Specifies the size of the paper to be used when formatting the resulting
PostScript output file. Valid values for the size argument are as follows:

Keyword Size

A0 841 x 1189 millimeters (33.13 x 46.85 inches)
Al 594 x 841 millimeters (23.40 x 33.13 inches)
A2 420 x 594 millimeters (16.55 x 23.40 inches)
A3 - 297 x 420 millimeters (11.70 x 16.55 inches)
A4 210 x 297 millimeters (8.27 x 11.70 inches)
A 8.5 x 11 inches

B 11 x 17 inches

C 17 x 22 inches

D 22 x 34 inches

E 34 x 44 inches

LEDGER 11 x 17 inches

LEGAL 8.5 x 14 inches

LETTER 8.5 x 11 inches

LP 13.7 x 11 inches

VT 8 x 5 inches

The A paper size (8.5 x 11 inches) is the default.

PAPER_HEIGHT height

Specifies a paper size other than one of the predefined values provided. The
default paper height is 11 inches.

PAPER_WIDTH width

Specifies a paper size other than one of the predefined sizes provided. The
default paper width is 8.5 inches.

DCLI-73



CONVERT/DOCUMENT

DCLI-74

PAPER_TOP_MARGIN top-margin

Specifies the width of the margin provided at the top of the page. The default
value is 0.25 inch.

PAPER_BOTTOM_MARGIN bottom-margin

Specifies the width of the margin provided at the bottom of the page. The
default value is 0.25 inch.

PAPER_LEFT MARGIN left-margin

Specifies the width of the margin provided on the left-hand side of the page.
The default value is 0.25 inch.

PAPER_RIGHT MARGIN right-margin

Specifies the width of the margin provided on the right-hand side of the page.
The default value is 0.25 inch.

PAPER_ORIENTATION orientation

Specifies the paper orientation to be used in the output PostScript file. The
valid values for the orientation argument are as follows:

Keyword Meaning

PORTRAIT The page is oriented so that the larger dimension
is parallel to the vertical axis.
LANDSCAPE The page is oriented so that the larger dimension

is parallel to the horizontal axis.

The default is PORTRAIT.

EIGHT_BIT_OUTPUT [ON,OFF]

Specifies whether the PostScript output converter should use 8-bit output.
The default value is ON.

LAYOUT [ON,OFF]

Specifies whether the PostScript output converter processes the layout
specified in the DDIF document. The default value is ON.

OUTPUT _BUFFER_SIZE output-buffer-size

Specifies the size of the output buffer. The value you specify must be within
the range 64 to 256. The default value is 132,

PAGE _WRAP [ON,OFF]

Specifies whether the PostScript output converter performs page wrapping of
any text that would exceed the bottom margin. The default value is ON.

SOFT_DIRECTIVES [ON,OFF]

Specifies whether the PostScript output converter processes soft directives
in the DDIF file in order to format output. (Soft directives specify such
formatting commands as new line, new page, and tab.) If the PostScript
output converter processes soft directives, the output file will look more like
you intended. The default value is ON.



CONVERT/DOCUMENT

* WORD_WRAP [ON,OFF]

Specifies ‘whether the PostScript output converter performs word wrapping of
any text that would exceed the right margin. The default value is ON. If you
specify OFF, the PostScript output converter allows text to exceed the right
margin.

Domain Converter

You might create an options file containing processing options that apply to any
CDA supported tabular file format for which there is an input converter. Data
tables and spreadsheets are examples of tabular file formats.

To convert tabular input files to document output files, use the DTIF_TO_DDIF

format name, followed by the processing options described in this section. Specify
the DTIF_TO_DDIF processing options in addition to the processing options for a
particular tabular input file format and a particular document output file format.

You might want to convert tabular input files to document output files so that
you can include textual representations of tables in reports and other documents.
You should be aware, however, that you lose cell borders, headers, grid lines,

all formulas, and font types when converting a tabular input file to a document
output file.

The domain converter supports the following options:
e COLUMN_TITLE

Displays the column titles as contained in the column attributes centered at
the top of the column.

* CURRENT_DATE

Displays the current date and time in the bottom left corner of the page. The
value is formatted according to the document’s specification for a default date
and time.

* DOCUMENT_DATE

Displays the document date and time as contained in the document header
in the top left corner of the page. The value is formatted according to the
document’s specification for a default date and time.

e DOCUMENT_TITLE

Displays the document title or titles as contained in the document header
centered at the top of the page, one string per line.

* PAGE _NUMBER
Displays the current page number in the top right corner of the page.

e PAPER _SIZE size

Specifies the size of the paper to be used when formatting the resulting
PostScript output file. Valid values for the size argument are as follows:

Keyword Size

AQO 841 x 1189 millimeters (33.13 x 46.85 inches)
Al 594 x 841 millimeters (23.40 x 33.13 inches)
A2 420 x 594 millimeters (16.55 x 23.40 inches)

DCLI-75



CONVERT/DOCUMENT

DCLI-76

Keyword Size

A3 297 x 420 millimeters (11.70 x 16.55 inches)
A4 210 x 297 millimeters (8.27 x 11.70 inches)
A5 148 x 210 millimeters (5.83 x 8.27 inches)
A 8.5 x 11 inches (216 x 279 millimeters)

B 11 x 17 inches (279 x 432 millimeters)

B4 250 x 353 millimeters (9.84 x 13.90 inches)
B5 176 x 250 millimeters (6.93 x 9.84 inches)
C 17 x 22 inches (432 x 559 millimeters).

C4 229 x 324 millimeters (9.01 x 12.76 inches)
C5 162 x 229 millimeters (6.38 x 9.02 inches)
D 22 x 34 inches (559 x 864 millimeters)

DL 110 x 220 millimeters (4.33 x 8.66 inches)
E 34 x 44 inches (864 x 1118 millimeters)
10x13_ 13 x 254 millimeters (15600 x 10 inches)
ENVELOPE

9x12_ 12 x 229 millimeters (14400 x 9 inches)
ENVELOPE

BUSINESS_ 9.5 x 105 millimeters (11400 x 4.13 inches)
ENVELOPE

EXECUTIVE 10 x 191 millimeters (12000 x 7.5 inches)
LEDGER 11 x 17 inches (279 x 432 millimeters)
LEGAL 8.5 x 14 inches (216 x 356 millimeters)
LETTER 8.5 x 11 inches (216 x 279 millimeters)

LP ‘ 13.7 x 11 inches (348 x 279 millimeters)
VT 8 x 5 inches (203 x 127 millimeters)

The A paper size (8.5 x 11 inches) is the default.

PAPER_HEIGHT height

Specifies a paper size other than one of the predefined values provided. The
default paper height is 11 inches.

PAPER_WIDTH width

Specifies a paper size other than one of the predefined sizes provided. The
default paper width is 8.5 inches.

PAPER_TOP_MARGIN top-margin

Specifies the width of the margin provided at the top of the page. The default
value is 0.25 inch.

PAPER_BOTTOM_MARGIN bottom-margin

Specifies the width of the margin provided at the bottom of the page. The
default value is 0.25 inch.

PAPER_LEFT _MARGIN left-margin

Specifies the width of the margin provided on the left side of the page. The
default value is 0.25 inch.



Example

CONVERT/DOCUMENT

e PAPER_RIGHT MARGIN right-margin

Specifies the width of the margin provided on the right side of the page. The
default value is 0.25 inch.

o PAPER_ORIENTATION orientation

Specifies the paper orientation to be used in the output file. The valid values
for the orientation argument are as follows:

Keyword Meaning

PORTRAIT The page is oriented so that the larger dimension
is parallel to the vertical axis.

LANDSCAPE The page is oriented so that the larger dimension

is parallel to the horizontal axis.

The default is PORTRAIT.

$ CONVERT/DOCUMENT/OPTIONS=MY OPTIONS.CDA$OPTIONS -

_$MY_INPUT.DTIF/FORMAT=DTIF MY OUTPUT.DDIF/FORMAT=DDIF

This command converts an input file named MY_INPUT.DTIF, which has the
DTIF format, to an output file named MY_OQUTPUT.DDIF, which has the DDIF
format. The specified options file is named MY_OPTIONS.CDASOPTIONS.

DCLI-77



CONVERT/RECLAIM

CONVERT/RECLAIM

Invokes the Convert/Reclaim utility, which makes empty buckets in Prolog
3 indexed files available so that new records can be written in them. The
/RECLAIM qualifier is required. For a complete description of the Convert
/Reclaim utility, see the OpenVMS Record Management Utilities Reference

Manual.

Format
CONVERT/RECLAIM filespec

DCLI-78



COPY

COPY

Format

Parameters

Description

Creates a new file from one or more existing files. The COPY command can do
the following:

¢ Copy an input file to an output file.
* Concatenate two or more input files into a single output file.

e Copy a group of input files to a group of output files.
COPY input-filespec],...] output-filespec

input-filespecl,...]

Specifies the name of an existing file to be copied. The asterisk (*) and the
percent sign (%) wildcard characters are allowed. If you do not specify the device
or directory, the COPY command uses your current default device and directory.
If you specify more than one file, separate the file specifications with either
commas (,) or plus signs (+).

output-filespec
Specifies the name of the output file into which the input is copied.

You must specify at least one field in the output file specification. If you do not
specify the device or directory, the COPY command uses your current default
device and directory. The COPY command replaces any other missing fields
(file name, file type, version number) with the corresponding field of the input
file specification. If you specify more than one input file, the COPY command
generally uses the fields from the first input file to determine any missing fields
in the output file.

You can use the asterisk (*) wildeard character in place of any two of the
following: the file name, the file type, or the version number. The COPY
command uses the corresponding field in the related input file to name the
output file.

The COPY command creates a new file from one or more existing files. If you do
not specify the device or directory, the COPY command uses your current default
device and directory. The COPY command can do the following:

* Copy an input file to an output file.
* Concatenate two or more input files into a single output file.
¢ Copy a group of input files to a group of output files.

The COPY command, by default, creates a single output file. When you specify
more than one input file, the first input file is copied to the output file, and each
subsequent input file is appended to the end of the output file. If a field of the
output file specification is missing or contains an asterisk (*) wildcard character,
the COPY command uses the corresponding field from the first, or only, input file

to name the output file.
(

DCLI-79



COPY

DCLI-80

If you specify multiple input files with maximum record lengths, the COPY
command gives the output file the maximum record length of the first input file.
If the COPY command encounters a record in a subsequent input file that is
longer than the maximum record length of the output file, it issues a message
noting the incompatible file attributes and begins copying the next file.

To create multiple output files, specify multiple input files and use at least one of
the following:

* An asterisk (*) wildcard character in the output directory specification, file
name, file type, or version number field

* Only a node name, a device name, or a directory specification as the output
file specification

e The /NOCONCATENATE qualifier

When the COPY command creates multiple output files, it uses the corresponding
field from each input file in the output file name. You also can use the asterisk
(*) wildcard character in the output file specification to have COPY create more
than one output file. For example:

$ COPY A.A;1, B.B;l *.C

This COPY command creates the files A.C;1 and B.C;1 in the current default
directory. When you specify multiple input and output files you can use the /LOG
qualifier to verify that the files were copied as you intended.

Note that there are special considerations for using the COPY command with
DECwindows compound documents. For more information, see the Guide to
OpenVMS File Applications.

Version Numbers

If you do not specify version numbers for input and output files, the COPY
command (by default) assigns a version number to the output files that is either
of the following:

e The version number of the input file

* A version number one greater than the highest version number of an existing
file with the same file name and file type

When you specify the output file version number by an asterisk (*) wildcard
character, the COPY command uses the version numbers of the associated input
files as the version numbers of the output files.

If you specify the output file version number by an explicit version number,
the COPY command uses that number for the output file specification. If a
higher version of the output file exists, the COPY command issues a warning
message and copies the file. If an equal version of the output file exists, the
COPY command issues a message and does not copy the input file.

File Protection and Creation/Revision Dates

The COPY command considers an output file to be new when you specify any
portion of the output file name explicitly. The COPY command sets the creation
date for a new file to the current time and date.

If you specify the output file by one or more asterisk (*) and percent sign (%)
wildcard characters, the COPY command uses the creation date of the input file.



Qualifiers

COPY

The COPY command always sets the revision date of the output file to the current
time and date; it sets the backup date to zero. The file system assigns the output
file a new expiration date. (The file system sets expiration dates if retention is
enabled; otherwise, it sets expiration dates to zero.)

The protection and access control list (ACL) of the output file is determined by
the following parameters, in the following order:

¢ Protection of previously existing versions of the output file
¢ Default Protection and ACL of the output directory
¢ Process default file protection

(Note that the BACKUP command takes the creation and revision dates as well
as the file protection from the input file.)

Use the /PROTECTION qualifier to change the output file protection.

Normally, the owner of the output file will be the same as the creator of the
output file. However, if a user with extended privileges creates the output file,
the owner will be the owner of the parent directory or of a previous version of the
output file if one exists.

Extended privileges include any of the following:
* SYSPRYV (system privilege) or BYPASS
* System user identification code (UIC)

'« GRPPRV (group privilege) if the owner of the parent directory (or previous

version of the output file) is in the same group as the creator of the new
output file

* An identifier (with the resource attribute) representing the owner of the
parent directory (or the previous version of the output file)

Copying Directory Files

If you copy a file that is a directory, the COPY command creates a new empty
directory of the named directory. The COPY command does not copy any files
from the named directory to the new directory. See the examples section for
examples of copying directory files.

/ALLOCATION=number-of-blocks

Forces the initial allocation of the output file to the specified number of 512-byte
blocks. If you do not specify the /ALLOCATION qualifier, or if you specify it
without the number-of-blocks parameter, the initial allocation of the output file is
determined by the size of the input file being copied.

/BACKUP

Modifies the time value specified with the /BEFORE or the /SINCE qualifier.
The /BACKUP qualifier selects files according to the dates of their most recent
backups. This qualifier is incompatible with the /CREATED, /EXPIRED, and

DCLI-81



COPY

DCLI-82

/MODIFIED qualifiers, which also ‘allow you to select files according to time
attributes. If you specify none of these four time qualifiers, the default is the
/CREATED qualifier.

/BEFORE[=time]

Selects only those files dated prior to the specified time. You can specify time
as absolute time, as a combination of absolute and delta times, or as one of

the following keywords: BOOT, LOGIN, TODAY (default), TOMORROW, or
YESTERDAY. Specify one of the following qualifiers with the /BEFORE qualifier
to indicate the time attribute to be used as the basis for selection: /BACKUP,
/CREATED (default), /EXPIRED, or /MODIFIED.

For complete information on specifying time values, see the OpenVMS User’s
Manual.

/BY_OWNER[=uic]
Selects only those files whose owner user identification code (UIC) matches the
specified owner UIC. The default UIC is that of the current process.

Specify the UIC by using standard UIC format as described in the OpenVMS
Guide to System Security.

/CONCATENATE (default)

/NOCONCATENATE

Creates one output file from multiple input files when you do not use the asterisk
(*) or percent sign (%) wildcard characters in the output file specification.

The /INOCONCATENATE qualifier generates multiple output files. A wildcard
character in an input file specification results in a single output file consisting of
the concatenation of all input files matching the file specification.

Files from Files—11 On-Disk Structure Level 2 disks are concatenated in
alphanumeric order; if you specify an asterisk (*) or percent sign (%) wildcard
character in the file version field, files are copied in descending order by version
number. Files from Files—11 On-Disk Structure Level 1 disks are concatenated in
random order.

/CONFIRM

/NOCONFIRM (default)

Controls whether a request is issued before each copy operation to confirm that
the operation should be performed on that file. The following responses are valid:

YES NO QUIT
TRUE FALSE CtrVZ
1 0 ALL

You can use any combination of uppercase and lowercase letters for word
responses. You can abbreviate word responses to one or more letters (for example,
T, TR, or TRU for TRUE), but these abbreviations must be unique. Affirmative
answers are YES, TRUE, and 1. Negative answers include: NO, FALSE, 0,

and pressing the Return key. Entering QUIT or pressing Ctrl/Z indicates that
you want to stop processing the command at that point. When you respond by
entering ALL, the command continues to process but no further prompts are
given. If you type a response other than one of those in the list, DCL issues an
error message and redisplays the prompt.



COPY

/CONTIGUOUS

/NOCONTIGUOUS

.Specifies that the output file must occupy contiguous physical disk blocks.

By default, the COPY command creates an output file in the same format as
the corresponding input file. Also, by default, if not enough space exists for

a contiguous allocation, the COPY command does not report an error. If you
copy multiple input files of different formats, the output file may or may not be
contiguous. You can use the /CONTIGUOUS qualifier to ensure that files are
copied contiguously.

The /CONTIGUOUS qualifier has no effect when you copy files to or from tapes
because the size of the file on tape cannot be determined until after it is copied to
the disk. If you copy a file from a tape and want the file to be contiguous, use the
COPY command twice: once to copy the file from the tape, and a second time to
create a contiguous file.

/CREATED (default)

Modifies the time value specified with the /BEFORE or the /SINCE qualifier. The
/CREATED qualifier selects files based on their dates of creation. This qualifier is
incompatible with the /BACKUP, /EXPIRED, and /MODIFIED qualifiers, which
also allow you to select files according to time attributes. If you specify none of
these four time qualifiers, the default is the /CREATED qualifier.

[EXCLUDE-=(filespec],...])

Excludes the specified files from the copy operation. You can include a directory
but not a device in the file specification. The asterisk (*) and the percent sign
(%) wildcard characters are allowed in the file specification. However, you cannot
use relative version numbers to exclude a specific version. If you specify only one
file, you can omit the parentheses.

/EXPIRED

Modifies the time value specified with the /BEFORE or the /SINCE qualifier.
The /EXPIRED qualifier selects files according to their expiration dates. (The
expiration date is set with the SET FILE/EXPIRATION_DATE command.)
The /EXPIRED qualifier is incompatible with the /BACKUP, /CREATED, and
/MODIFIED qualifiers, which also allow you to select files according to time
attributes. If you specify none of these four time qualifiers, the default is the
/CREATED qualifier.

[EXTENSION=n

Specifies the number of blocks to be added to the output file each time the file is
extended. If you do not specify the /EXTENSION qualifier, the extension attribute
of the corresponding input file determines the default extension attribute of the
output file.

ILOG

I/NOLOG (default)

Controls whether the COPY command displays the file specifications of each file
copied.

When you use the /LOG qualifier, the COPY command displays the following for
each copy operation:

* The file specifications of the input and output files

¢ The number of blocks or the number of records copied (depending on whether
the file is copied on a block-by-block or record-by-record basis)

DCLI-83



COPY

DCLI-84

* The total number of new files created

/MODIFIED

Modifies the time value specified with the /BEFORE or the /SINCE qualifier.
The /MODIFIED qualifier selects files according to the dates on which they were
last modified. This qualifier is incompatible with the /BACKUP, /CREATED,
and /EXPIRED qualifiers, which also allow you to select files according to time

attributes. If you specify none of these four time modifiers, the default is the
/CREATED qualifier.

IOVERLAY

/NOOVERLAY (default)

Requests that data in the input file be copied into the existing specified file,
overlaying the existing data, rather than allocating new space for the file. The
physical location of the file on disk does not change. However, for RMS indexed
and relative files, if the output file has fewer blocks allocated than the input file,
the copy fails giving an RMS-E-EOF error.

The /OVERLAY qualifier is ignored if the output file is written to a non-file-
structured device.

/PROTECTION=(ownership[:access][,...])
Specifies protection for the output file.

* Specify the ownership parameter as system (S), owner (O), group (G), or
world (W).

* Specify the access parameter as read (R), write (W), execute (E), or delete
(D).

The default protection, including any protection attributes not specified, is that
of the existing output file. If no output file exists, the current default protection
applies.

For more information on specifying protection codes, see the OpenVMS Guide to
System Security.

/READ_CHECK
/NOREAD_CHECK (default)
Reads each record in the input files twice to verify that it has been read correctly.

/REPLACE

/NOREPLACE (default)

Requests that, if a file exists with the same file specification as that entered for
the output file, the existing file is to be deleted. The COPY command allocates
new space for the output file. In general, when you use the /REPLACE qualifier,
include version numbers with the file specifications. By default, the COPY
command creates a new version of a file if a file with that specification exists,
incrementing the version number. The /NOREPLACE qualifier signals an error
when a conflict in version numbers occurs.

ISINCE[=time] :

Selects only those files dated after the specified time. You can specify time

as absolute time, as combination of absolute and delta times, or as one of
the following keywords: BOOT, LOGIN, TODAY (default), TOMORROW, or
YESTERDAY. Specify one of the following qualifiers with the /SINCE qualifier
to indicate the time attribute to be used as the basis for selection: /BACKUP,
/CREATED (default), /EXPIRED, or /MODIFIED.



COPY

For complete information on specifying time values, see the OpenVMS User’s
Manual.

ITRUNCATE (default)

/INOTRUNCATE

Controls whether the COPY command truncates an output file at the end-of-file
(EOF) when copying it. This operation can only be used with sequential files.

By default, the actual size of the input file determines the size of the output file.
If you select /NOTRUNCATE, the allocation of the input file determines the size
of the output file.

/VOLUME=n

Places the output file on the specified relative volume number of a multivolume
set. By default, the COPY command places the output file arbitrarily in a
multivolume set.

/WRITE_CHECK

INOWRITE_CHECK (default)

Reads each record in the output file after it was written to verify that the record
was copied successfully and that the file can be read subsequently without error.

Note

Some hardware devices, such as TK50 tape drives, verify data integrity
as part of their hardware function. For devices such as these, you do
not need to use /WRITE_CHECK. For information about which devices
provide automatic write checking, consult your hardware documentation.

Examples

1.

2.

§ COPY TEST.DAT NEWTEST.DAT

In this example, the COPY command copies the contents of the file TEST.DAT
from the default disk and directory to a file named NEWTEST.DAT on the same
disk and directory. If a file named NEWTEST.DAT exists, the COPY command
creates a new version of the file.

§ COPY ALPHA.TXT TMP
$ COPY ALPHA.TXT .TMP

In this example, the first COPY command copies the file ALPHA.TXT into a

file named TMP.TXT. The COPY command uses the file type of the input file to
complete the file specification for the output file. The second COPY command
creates a file named ALPHA.TMP. The COPY command uses the file name of the
input file to name the output file.

$ COPY/LOG TEST.DAT NEW.DAT;1/REPLACE
$COPY-I-REPLACED, DBAO:[MAL]NEW.DAT;1 being replaced
$COPY-S-COPIED, DBAO:[MAL]TEST.DAT;1 copied to DBAO:[MAL]NEW.DAT;1 (1 block)

In this example, the /REPLACE qualifier requests that the COPY command
replace an existing version of the output file with the new file. The first message
from the COPY command indicates that it is replacing an existing file. The

version number in the output file must be explicit; otherwise, the COPY command
creates a new version of the file NEW.DAT.

DCLI-85



COPY

4.

8

9

$ COPY *,COM [MALCOLM.TESTFILES]

In this example, the COPY command copies the highest versions of files in
the current default directory with the file type .COM to the subdirectory
MALCOLM.TESTFILES.

$ COPY/LOG *.TXT *.OLD

$COPY-S-COPIED, DBAO:[MAL]A.TXT;2 copied to DBAO:[MAL]A.OLD;2 (1 block)
$COPY-S-COPIED, DBAO:[MAL]B.TXT;2 copied to DBA0:[MAL]B.OLD;2 (1 block)
$COPY-S-COPIED, DBAO:[MAL]G.TXT;2 copied to DBAO:[MAL]G.OLD;2 (4 blocks)

$COPY-S-NEWFILES, 3 files created

In this example, the COPY command copies the highest versions of files with file
types .TXT into new files. Each new file has the same file name as an existing
file, but a file type .OLD. The last message from the COPY command indicates
the number of new files that have been created.

$ COPY/LOG A.DAT,B.MEM C.*

$COPY-S-COPIED, DBAO:[MAL]A.DAT;5 copied to DBAO:[MAL]C.DAT;11 (1 block)
$COPY-S-COPIED, DBAO:[MAL]B.MEM;2 copied to DBAO:[MAL]C.MEM;24 (58 records)
$COPY-S-NEWFILES, 2 files created

In this example, the two input file specifications are separated with a comma.
The asterisk (*) wildcard character in the output file specification indicates that
two output files are to be created. For each copy operation, the COPY command
uses the file type of the input file to name the output file.

$ COPY/LOG *,TXT TXT.SAV

$COPY-S-COPIED, DBAO:[MAL]A.TXT;2 copied to DBAQ:[MAL]TXT.SAV;1 (1 block)
$COPY-S-APPENDED, DBAO:[MAL]B.TXT;2 appended to DBAQ:[MAL]TXT.SAV;1 (3 records)
$COPY-S-APPENDED, DBAO:[MAL]G.TXT;2 appended to DBAQ:[MAL]TXT.SAV;1 (51 records)
$COPY-S-NEWFILES, 1 file created

In this example, the COPY command copies the highest versions of all files with
the file type TXT to a single output file named TXT.SAV. After the first input file
is copied, the messages from the COPY command indicate that subsequent files
are being appended to the output file.

Note that, if you use the INOCONCATENATE qualifier in this example, the
COPY command creates one TXT.SAV file for each input file. Each TXT.SAV file
has a different version number.

§ COPY MASTER.DOC DBAl:[BACKUP]

In this example, the COPY command copies the highest version of the file
MASTER.DOC to the device DBAL. If no file named MASTER.DOC exists in
the directory [BACKUP], the COPY command assigns the version number of
the input file to the output file. You must have write (W) access to the directory -
[BACKUP] on device DBA1 for the command to work.

$ COPY SAMPLE.EXE DALLAS::DISK2:[000,000]SAMPLE.EXE/CONTIGUOUS

In this example, the COPY command copies the file SAMPLE.EXE on the local
node to a file with the same name at remote node DALLAS. The /CONTIGUOUS
qualifier indicates that the output file is to occupy consecutive physical disk
blocks. You must have write (W) access to the device DISK2 on remote node
DALLAS for the command to work.

DCLI-86



COPY

10. $ COPY *,.* PRTLND::*,*

In this example, the COPY command copies all files within the user directory at
the local node to the remote node PRTLND. The new files have the same names
as the input file. You must have write (W) access to the default directory on
remote node PRTLND for the command to work.

11. $ COPY BOSTON::DISK2:TEST.DAT;5
_To: DALLAS"SAM SECReturn”::DISK0:[MODEL.TEST]TEST.DAT/ALLOCATION=50

In this example, the COPY command copies the file TEST.DAT;5 on the device
DISK2 at node BOSTON to a new file named TEST.DAT at remote node
DALLAS. The /ALLOCATION qualifier initially allocates 50 blocks for the

new file TEST.DAT at node DALLAS. The access control string SAM SECReturn
is used to access the remote directory.

12. § MOUNT TAPEDl: VOL025 TAPE:
$ COPY TAPE:*.* *

In this example, the MOUNT command requests that the volume labeled VOL025
be mounted on the magnetic tape device TAPED1 and assigns the logical name
TAPE to the device.

- The COPY command uses the logical name TAPE as the input file specification,
requesting that all files on the magnetic tape be copied to the current default disk
and directory. All the files copied retain their file names and file types.

13. § ALLOCATE CR:
_CR1: ALLOCATED
$ COPY CR1: CARDS.DAT
$ DEALLOCATE CR1:

In this example, the ALLOCATE command allocates a card reader for exclusive
use by the process. The response from the ALLOCATE command indicates the
device name of the card reader, CR1.

After the card reader is allocated, you can place a deck of cards in the reader and
enter the COPY command, specifying the card reader as the input file. The COPY
command reads the cards into the file CARDS.DAT. The end-of-file (EOF) in the
card deck must be indicated with an EOF card (12-11-0-1-6-7-8-9 overpunch).

The DEALLOCATE command relinquishes use of the card reader.

14. $ COPY [SMITH]CATS.DIR [JONES]
$ COPY [SMITH.CATS]*.* [JONES.CATS]*.*

In this example, the COPY command creates the new empty directory
[JONES.CATS] that is registered in the [JONES]CATS.DIR directory file. After
the COPY command creates the new [JONES]CATS.DIR directory file, you can
copy or create files in the [JONES.CATS)] directory.

The second COPY command in this example copies files from the [SMITH.CATS]
directory to the [JONES.CATS] directory.

DCLI-87



COPY

15. § COPY [SMITH]CATS.DIR [SMITH]DOGS.DIR

In this example, the COPY command creates the new empty directory file, called
[SMITHIDOGS.DIR. Use this copy command to create a directory file that has
the same attributes as the [SMITH]CATS.DIR file. This command example has
the same effect as entering the command:

$ CREATE/DIRECTORY [SMITH.DOGS]

16. $ COPY [SMITH]CATS.DIR [SMITH.ANIMALS]
$ COPY [SMITH.CATS]*.* [SMITH.ANIMALS.CATS]*.*
$ DELETE [SMITH.CATS]*.*;*
$ SET PROTECTION=W=D CATS.DIR
$ DELETE CATS.DIR;

In this example, the COPY command creates the new empty directory file called
[SMITH.ANIMALS]JCATS.DIR. The subsequent commands in this example then
copy the files from the [SMITH.CATS] directory to the [SMITH.ANIMALS.CATS]
directory, then delete the original CATS.DIR directory file. Because the
CATS.DIR is a directory file, you must specify a protection code of delete (D)
before you can delete the directory file.

DCLI-88



COPY/FTP

COPY/FTP

Transfers files between hosts with possibly dissimilar file systems over a TCP/IP
connection by invoking the FTP utility.

Format
COPY/FTP fromFile toFile
Parameters
fromFile
Specifies the name of an existing file (the source file) to be copied.
toFile
Specifies the name of the output file (the destination file) into which the input file
is copied.
Description
The COPY/FTP command copies files to and from remote nodes using the File
Transfer Protocol (FTP). The services provided by this command are a subset
of the architected features of FTP (see vendor documentation for usage of their
supplied FTP program).
For OpenVMS to OpenVMS Transfers
If both machines support OpenVMS structured transfers, the /BINARY,
/ASCII, and /FDL qualifiers will be ignored. The cooperating OpenVMS
FTP client and server will automatically transfer the file with proper
OpenVMS attributes.
COPY/FTP commonly supports the asterisk wildcard character (*) in remote file
specifications.
Qualifiers
/ANONYMOUS

Causes an anonymous access to the remote node or nodes. /ANONYMOUS is the
default remote access. The password passed to the remote node should be in the
form of "user@fullyqualifiednodename".

IASCII
Used to identify an ASCII file (text file). /ASCII is the default.

/BINARY
Required to identify binary files.

/FDL

This qualifier is optional. Causes interaction with an FDL (file definition
language) file. If the file is being copied to the local OpenVMS system, a remote
FDL file is sought and interpreted for the operation. If the file is being copied
outside the local OpenVMS system, an FDL file is generated and copied in
addition to the requested file. If the /FDL qualifier is specified and the vendor
application does not support it, a warning message may be issued.

DCLI-89



COPY/FTP

Examples

DCLI-90

/LOG
Displays a message at SYS$OUTPUT when a file is transferred.

/INOSTRUVMS
Used to explicitly disable the negotiation of STRU OpenVMS transfers.
Otherwise, some servers will immediately abort when negotiating the feature.

/VERBOSE

/NOVERBOSE

Specifies whether all messages (including banner messages) are to be displayed
on the terminal. By default, disables the display of the messages.

1. § COPY/FTP/FDL/ANON rms_indexed file.idx remotehst5::"/public/rms.idx.file"

This example transfers the OpenVMS RMS file rms_indexed_file.idx to the

“remote file public/rms.idx.file on remotehst5 over a TCP/IP connection.
Access to the remote host is anonymous and an FLD file is generated and
copied along with rms_indexed_file.idx.



COPY/RCP

COPY/RCP

Format

Parameters

Description

Qualifiers

Copies files from host to host over a TCP/IP connection by invoking the RCP
utility.

COPY/RCP fromFile toFile

fromFile
Specifies the name of an existing file (the source file) to be copied.

toFile
Specifies the name of the output file (the destination file) into which the input file
is copied.

The COPY/RCP command copies one or more files (or directory trees) to or from a
remote host using the RCP utility.

The OpenVMS DCL commands for TCP/IP support the same remote file
specification format as the DCL commands for DECnet network connections.
Some implementations of the file transaction applications support file transfers in
which both the source file and the destination file are remote file specifications.

The full format for a remote file specification is as follows:
node"username password account"::filename.ext

If a file resides on a non OpenVMS system, enclose the name of the file in
quotation marks. For example, to access a file named /usr/users/user/Orders on
a DEC OSF/1 node named U32, you would use the following format for the file
specification:

U32"user password"::"/usr/users/user/Orders"

Unlike OpenVMS, UNIX systems support case-sensitive file specifications.

/AUTHENTICATE
Specifies that Kerberos authentication should be used for acquiring access to the
remote node.

/LOG
Displays a message in SYS$OUTPUT when a file is transferred.

/PRESERVE
Preserves the file protection codes.

/RECURSIVE
Requests a subdirectory copy operation.

ITRUNCATE=USERNAME
Truncates the user name to 8 characters.

DCLI-91



COPY/RCP

Examples

DCLI-92

/USERNAME=username

Optional qualifier that specifies the remote user name. The standard operation is
to log in to a remote system using the same user name as at the local terminal.
The command supports quoted parameters in the /USERNAME value.

1. $ COPY/RCP local file.c remotehstd4"Smith smpw"::rem file.c

This example copies local_file.c to rem_file.c on the remote host remotehst4
over a TCP/IP connection.



CREATE

CREATE

Format

Parameter

Description

Creates a sequential disk file (or files).
CREATE filespec],...]

filespecls,...]

Specifies the name of one or more input files to be created. Wildcard characters
are not allowed. If you omit either the file name or the file type, the CREATE
command does not supply any defaults. The file name or file type is null. If the
specified file already exists, a new version is created.

The CREATE command creates a new sequential disk file. In interactive mode,
each separate line that you enter after you enter the command line becomes a
record in the newly created file. To terminate the file input, press Ctrl/Z.

When you enter the CREATE command from a command procedure file, the
system reads all subsequent records in the command procedure file into the
new file until it encounters a dollar sign ($) in the first position in a record.
Terminate the file input with a line with a dollar sign in column 1 (or with the
end of the command procedure).

If you use an existing file specification with the CREATE command, the newly
created file has a higher version number than any existing files with the same
specification.

If you use the CREATE command to create a file in a logical name search list,
the file will only be created in the first directory produced by the logical name
translation.

Normally, the owner of the output file will be the same as the creator of the
output file. However, if a user with extended privileges creates the output file,
the owner will be the owner of the parent directory or any previous versions of
the output file.

Extended privileges include any of the following:
¢ SYSPRV (system privilege) or BYPASS
* System user identification codes (UICs)

* GRPPRYV (group privilege) if the owner of the parent directory (or previous
version of the output file) is in the same group as the creator of the new
output file

* An identifier (with the resource attribute) representing the owner of the
parent directory (or previous version of the output file)

DCLI-93



CREATE

Qualifiers

Examples

DCLI-94

/LOG
I/NOLOG (default)
Displays the file specification of each new file created as the command executes.

/OWNER_UIC=uic
Requires SYSPRYV (system privilege) privilege to specify a user
identification code (UIC) other than your own.

Specifies the UIC to be associated with the file being created. Specify the UIC by
using standard UIC format as described in the OpenVMS User’s Manual.

/PROTECTION=(ownership[:access][,...])
Specifies protection for the file.

* Specify the ownership parameter as system (S), owner (O), group (G), or
world (W).

e Specify the access parameter as read (R), write (W), execute (E), or delete
(D).

If you do not specify a value for each access category, or if you omit the
/PROTECTION qualifier, the CREATE command applies the following protection
for each unspecified category:

File Already

Exists? Protection Applied

Yes Protection of the existing file
No Current default protection

For more information on specifying protection codes, see the OpenVMS Guide to
System Security.

/VOLUME=n
Places the file on the specified relative volume of a multivolume set. By default,
the file is placed arbitrarily in a multivolume set.

1. $ CREATE MEET.TXT
John, Residents in the apartment complex will hold their annual meeting
this evening. We hope to see you there, Regards, Elwood

The CREATE command in this example creates a text file named MEET.TXT
in your default directory. The text file MEET.TXT contains the lines that
follow until the Ctrl/Z.

2. § CREATE A,.DAT, B,DAT
Input line one for A.DAT...
Input line two for A.DAT..

Input line one for B.DAT...



CREATE

Input line two for B.DAT...

$

After you enter the CREATE command from the terminal, the system reads
input lines into the sequential file A.DAT until Ctrl/Z terminates the first
input. The next set of input data is placed in the second file, B.DAT. Again,
Ctrl/Z terminates the input.

$ FILE = F$SEARCH("MEET.TXT")

$ IF FILE .EQS. ""

$ THEN CREATE MEET.TXT )
John, Residents in the apartment complex will hold their annual meeting
this evening. We hope to see you there, Regards, Elwood

$ ELSE TYPE MEET.TXT

$ ENDIF

$ EXIT

In this example, the command procedure searches the default disk and
directory for the file MEET.TXT. If the command procedure determines-that
the file does not exist it creates a file named MEET.TXT using the CREATE
command. .

DCLI-95



CREATE/DIRECTORY

CREATE/DIRECTORY

Format

Parameter

Description

Qualifiers

DCLI-96

Creates one or more new directories or subdirectories. The /DIRECTORY qualifier
is required.

Requires write (W) access to the master file directory (MFD) to create
a first-level directory. On a system volume, generally only users with a
system user identification code (UIC) or the SYSPRV (system privilege)
or BYPASS user privileges have write (W) access to the MFD to create a
first-level directory.

Requires write (W) access to the lowest level directory that currently
exists to create a subdirectory.

CREATE/DIRECTORY directory-spec],...]

directory-specl,...]

Specifies the name of one or more directories or subdirectories to be created. The
directory specification optionally can be preceded by a device name (and colon [:]).
The default is the current default directory. Wildcard characters are not allowed.
When you create a subdirectory, separate the names of the directory levels with
periods (.).

Note that it is possible to create a series of nested subdirectories with a single
CREATE/DIRECTORY command. For example, [a.b.c] can be created, even
though neither [a.b] nor [a] exists at the time the command is entered. Each
subdirectory will be created, starting with the highest level and proceeding
downward.

The CREATE/DIRECTORY command creates new directories as well as
subdirectories. Special privileges are needed to create new first-level directories.
(See the restrictions noted above.) Generally, users have sufficient privileges to
create subdirectories in their own directories. Use the SET DEFAULT command
to move from one directory to another.

/LOG

/NOLOG (default)

Controls whether the CREATE/DIRECTORY command displays the directory
specification of each directory after creating it.

/OWNER_UIC=option
Requires SYSPRV (system privilege) privilege for a user identification
code (UIC) other than your own.

Specifies the owner UIC for the directory. The default is your UIC. You can
specify the keyword PARENT in place of a UIC to mean the UIC of the parent
(next-higher-level) directory. If a user with privileges creates a subdirectory, by

“default, the owner of the subdirectory will be the owner of the parent directory

(or the owner of the MFD, if creating a main level directory). If you do not



Examples

CREATE/DIRECTORY

specifiy the /OWNER_UIC qualifier when creating a directory, the command

assigns ownership as follows: (1) if you specify the directory name in either

alphanumeric or subdirectory format, the default is your UIC (unless you are
privileged in which case the UIC defaults to the parent directory); (2) if you
specify the directory in UIC format, the default is the specified UIC.

Specify the UIC by using standard UIC format as described in the OpenVMS
User’s Manual.

/PROTECTION=(ownership[:access][,...])
Specifies protection for the directory.

¢ Specify the ownership parameter as system (S), owner (O), group (G), or
world (W).

* Specify the access parameter as read (R), write (W), execute (E), or delete
(D).

The default protection is the protection of the parent directory (the next-higher
level directory, or the master directory for top-level directories) minus any delete
(D) access.

If you are creating a first-level directory, then the next-higher-level directory
is the MFD. (The protection of the MFD is established by the INITIALIZE
command.)

For more information on specifying protection code, see the OpenVMS Guide to
System Security.

/VERSION_LIMIT=n

Specifies the number of versions of any one file that can exist in the directory.
If you exceed the limit, the system deletes the lowest numbered version. A
specification of 0 means no limit. The maximum number of versions allowed is
32,767. The default is the limit for the parent (next-higher-level) directory.

When you change the version limit setting, the new limit applies only to files
created after the setting was changed. New versions of files created before the
change are subject to the previous version limit.

/VOLUME=n

Requests that the directory file be placed on the specified relative volume of a
multivolume set. By default, the file is placed arbitrarily within the multivolume
set.

1. $ CREATE/DIRECTORY/VERSION_LIMIT=2 $DISK1:[ACCOUNTS.MEMOS]

In this example, the CREATE/DIRECTORY command creates a subdirectory
named MEMOS in the ACCOUNTS directory on $DISK1. No more than two
versions of each file can exist in the directory.

2. $CREATE/DIRECTORY/PROTECTION=(SYSTEM:RWCD, OWNER:RWCD,GROUP,WORLD) -
_S[MALCOLM.SUB.HLP]

In this example, the CREATE/DIRECTORY command creates a subdirectory
named [MALCOLM.SUB.HLP]. The protection on the subdirectory allows
read (R), write (W), execute (E), and delete (D) access for the system and
owner categories, but prohibits all access for the group or world categories.

DCLI-97



CREATE/DIRECTORY

DCLI-98

3.

$ CREATE/DIRECTORY DISK2:[MALCOLM]

In this example, the CREATE/DIRECTORY command creates a directory
named [MALCOLM] on the device DISK2. Special privileges are required to
create a first-level directory.

$ CREATE/DIRECTORY [MALCOLM.SUB]
$ SET DEFAULT [MALCOLM.SUB]

In this example, the CREATE/DIRECTORY command creates a subdirectory
named [MALCOLM.SUBI. This directory file is placed in the directory named
[MALCOLM]. The command SET DEFAULT [MALCOLM.SUB] changes the
current default directory to this subdirectory. All files subsequently created
are cataloged in [MALCOLM.SUBI.

$ CREATE/DIRECTORY [FRED.SUB1.SUB2.SUB3]

In this example, the CREATE/DIRECTORY command creates a top-
level directory ((FRED]) and three subdirectories ((FRED.SUB1],
[FRED.SUB1.SUB2], and [FRED.SUB1.SUB2.SUB3]I).



CREATE/FDL

CREATE/FDL

Invokes the Create/FDL utility, which uses the specifications in a File Definition

Language (FDL) file to create a new, empty data file. The /FDL qualifier is
required. For a complete description of the Create/FDL utility, see the OpenVMS

Record Management Utilities Reference Manual.

Format
CREATE/FDL=fdI-filespec [filespec]

DCLI-99



CREATE/NAME_TABLE

CREATE/NAME_TABLE

Format

Parameter

Description

Qualifiers

DCLI-100

Creates a new logical name table. The /NAME_TABLE qualifier is required.
CREATE/NAME_TABLE table-name

table-name

Specifies a string of 1 to 31 characters that identifies the logical name table you
are creating. The string can include alphanumeric characters, the dollar sign
($), and the underscore (_). This name is entered as a logical name in either
the process directory logical name table (LNM$PROCESS_DIRECTORY) or the
system directory logical name table (LNM$SYSTEM_DIRECTORY).

The CREATE/NAME_TABLE command creates a new logical name table.
The name of the table is contained within the LNM$PROCESS_DIRECTORY
directory table if the table is process-private, and within the LNM$SYSTEM_
DIRECTORY directory table if the table is shareable.

Every new table has a parent table, which determines whether the new table is
process-private or shareable. To create a process-private table, use the /PARENT_
TABLE qualifier to specify the name of a process-private table (the process
directory table). To create a shareable table, specify the parent as a shareable
table.

If you do not explicitly provide a parent table, the CREATE/NAME_TABLE
command creates a process-private table whose parent is LNM$PROCESS_
DIRECTORY; that is, the name of the table is entered in the process directory.

Every table has a size quota. The quota may either constrain the potential
growth of the table or indicate that the table’s size can be virtually unlimited.
The description of the /QUOTA qualifier explains how to specify a quota.

To specify an access mode for the table you are creating, use the /USER_MODE,

the /SUPERVISOR_MODE, or the /EXECUTIVE_MODE qualifier. If you specify

more than one of these qualifiers, only the last one entered is accepted. If you do
not specify an access mode, then a supervisor-mode table is created.

To delete a logical name table, use the DEASSIGN command, specify the name of
the table you want to delete, and use the /TABLE qualifier to specify the directory
table where the name of the table was entered.

For more information about logical name tables, see the OpenVMS System
Manager’s Manual.

/ATTRIBUTES[=(keyword],...])]

Specifies attributes for the logical name table. If you specify only one keyword,
you can omit the parentheses. If you do not specify the /ATTRIBUTES qualifier,
no attributes are set.



CREATE/NAME_TABLE

You can specify the following keywords for attributes:

CONFINE Does not copy the table name or the logical names contained in
the table into a spawned subprocess; used only when creating
a private logical name table. If a table is created with the
CONFINE attribute, all names subsequently entered into the
table are also confined.

NO_ALIAS No identical names (either logical names or names of logical
name tables) may be created in an outer (less privileged) mode
in the current directory. If you do not specify the NO_ALIAS
attribute, then the table may be “aliased” by an identical name
created in an outer access mode. Deletes any previously created
identical table names in an outer access mode in the same
logical name table directory.

SUPERSEDE Creates a new table that supersedes any previous (existing)
table that contains the name, access mode, and directory
table that you specify. The new table is created regardless
of whether the previous table exists. (If you do not specify
the SUPERSEDE attribute, the new table is not created if the
previous table exists.)

If you specify or accept the default for the qualifier /LLOG, you
receive a message indicating the result.

/EXECUTIVE_MODE
Requires SYSNAM (system logical name) privilege.

Creates an executive-mode logical name table. If you specify executive mode, but
do not have SYSNAM privilege, a supervisor-mode logical name table is created.

/LOG (default)

/NOLOG

Controls whether an informational message is generated when the SUPERSEDE
attribute is specified, or when the table already exists but the SUPERSEDE
attribute is not specified. The default is the /[LOG qualifier; that is, the
informational message is displayed.

/PARENT_TABLE=table
Requires either create (C) access to the parent table and write (W) access
to the system directory or the SYSNAM privilege.

Specifies the name of the parent table. The parent table determines whether a
table is private or shareable; it also determines the size quota of the table. If you
do not specify a parent table, the default table is LNM$PROCESS_DIRECTORY.
A shareable table has LNM$SYSTEM_DIRECTORY as its parent table. The
parent table must have the same access mode or a higher level access mode than
the one you are creating.

/PROTECTION=(ownership[:access][,...])
Applies the specified protection to shareable name tables.

* Specify the ownership parameter as system (S), owner (O ), group (G), or
world (W). '

*  Specify the access parameter as read (R), write (W), create (C), or delete
(D).

DCLI-101



CREATE/NAME_TABLE

Examples

DCLI-102

For more information on specifying protection codes, see the OpenVMS Guide to
System Security. '

The /PROTECTION qualifier affects only shareable logical name tables; it does
not affect process-private logical name tables.

/QUOTA=number-of-bytes

Specifies the size limit of the logical name table. The size of each logical name
entered in the new table is deducted from this size limit. The new table’s
quota is statically subtracted from the parent table’s quota holder. The parent
table’s quota holder is the first logical name table encountered when working
upward in the table hierarchy that has an explicit quota and is therefore its own
quota holder. If the /QUOTA qualifier is not specified or the size limit is 0, the
parent table’s quota holder becomes the new table’s quota holder and space is
dynamically withdrawn from it whenever a logical name is entered in this new
table. If the table has no quota holder and you specify /QUOTA=0, the table has
unlimited quota.

/SUPERVISOR_MODE (default)
Creates a supervisor-mode logical name table. If you do not specify a mode, a
supervisor-mode logical name table is created.

/USER_MODE
Creates a user-mode logical name table. If you do not explicitly specify a mode, a
supervisor-mode logical name table is created.

Note

User-mode logical names are automatically deleted when invoking and
exiting a command procedure.

1. § CREATE/NAME TABLE TEST TAB
$ SHOW LOGICAL TEST TAB
$SHOW-S-NOTRAN, no translation for logical name TEST TAB
$ SHOW LOGICAL/TABLE=LNM$PROCESS_DIRECTORY TEST_TAB -

In this example, the CREATE/NAME_TABLE command creates a new table
called TEST _TAB. By default, the name of the table is entered in the process
directory. The first SHOW LOGICAL command does not find the name
TEST_TAB because it does not, by default, search the process directory table.
You must use the /TABLE qualifier to request that the process directory be
searched.

2, $ CREATE/NAME TABLE/ATTRIBUTES=CONFINE EXTRA
$ DEFINE/TABLE=EXTRA MYDISK DISK4:
$ DEFINE/TABLE=LNM$PROCESS DIRECTORY LNM$FILE DEV -
$ EXTRA, LNMSPROCESS, LNMSJOB, LNMSGROUP, LNM$SYSTEM
§ TYPE MYDISK:[COHEN]EXAMPLEL.LIS

This example creates a new logical name table called EXTRA that is created
with the CONFINE attribute. Therefore, the EXTRA table and the names it
contains will not be copied to subprocesses.



CREATE/NAME_TABLE

Next, the logical name MYDISK is placed into the table EXTRA. To use

the name MYDISK in file specifications, you must make sure that the table
EXTRA is searched when RMS parses file specifications. To do this, you
can define a process-private version of the logical name LNM$FILE_DEV

to include the name EXTRA as one of its equivalence strings. (The system
uses LNM$FILE_DEV to determine the tables to search during logical name
translation for device or file specifications, and will use the process-private
version of the logical name before using the default system version.) After
you define LNM$FILE_DEYV, the system searches the following tables during
logical name translation: EXTRA, your process table, your job table, your
group table, and the system table. Now, you can use the name MYDISK in a
file specification and the equivalence string DISK4 will be substituted.

DCLI-103



CREATE/TERMINAL

CREATE/TERMINAL

Format

Parameter

Description

DCLI-104

Creates a window that emulates another terminal type.

Note

At present, only DECterm windows are available with this command.

CREATE/TERMINAL [command-string]

command-string

Specifies a command string that is to be executed in the context of the created
subprocess. You cannot specify this parameter with the /DETACH or the
/NOPROCESS qualifier. The CREATE/TERMINAL command is used in much the
same way as the SPAWN command.

The CREATE/TERMINAL command creates a subprocess of your current process.
When the subprocess is created, the process-permanent open files and any image
or procedure context are not copied from the parent process. The subprocess is
set to command level 0 (DCL level with the current prompt).

If you do not specify the /PROCESS qualifier, the name of this subprocess is
composed of the same base name as the parent process and a unique number.
For example, if the parent process name is SMITH, the subprocess name can be
SMITH_1, SMITH_2, and so on.

The LOGIN.COM file of the parent process is not executed for the subprocess,
because the context is copied separately, allowing quicker initialization of the
subprocess. When the /WAIT qualifier is in effect, the parent process remains in

hibernation until the subprocess terminates and returns control to the parent by
using the ATTACH command.

You should use the LOGOUT command to terminate the subprocess and return
to the parent process. You can also use the ATTACH command to transfer control
of the terminal to another process in the subprocess tree, including the parent
process. (The SHOW PROCESS/SUBPROCESS command displays the process in
the subprocess tree and points to the current process.)



Qualifiers

CREATE/TERMINAL

Note

Because a tree of subprocesses can be established using the CREATE
/TERMINAL command, you must be careful when terminating any

- process in the tree. When a process is terminated, all the subprocesses
below that point in the tree are automatically terminated. For example,
the SPAWN/NOWAIT CREATE/TERMINAL command creates a
subprocess that exits as soon as the DECterm window is created. Once
this process exits, the DECterm window disappears. Instead, use the
SPAWN/NOWAIT CREATE/TERMINAL/WAIT command to allow the
process to continue.

Qualifiers with the CREATE/TERMINAL command must directly follow the
command verb. The command-string parameter begins after the last qualifier
and continues to the end of the command line.

/APPLICATION_KEYPAD

Sets the APPLICATION_KEYPAD terminal characteristic in the created terminal
window. If the /APPLICATION_KEYPAD or the /NUMERIC_KEYPAD qualifier
is not specified, the default is to inherit the characteristic from the parent. (See
also /NUMERIC_KEYPAD.)

/BIG_FONT

Specifies that the big font (as specified in resource files) be selected when the
created terminal window is initialized. It is an error to specify the /BIG_FONT
qualifier in combination with the /LITTLE_FONT qualifier. If you do not specify
either the /BIG_FONT or the /LITTLE_FONT qualifier, the initial font is the big
font.

/BROADCAST

/NOBROADCAST

Determines whether the terminal window is created with broadcast messages
enabled. If neither qualifier is specified, the created terminal window inherits the
broadcast characteristic of the parent.

/CARRIAGE_CONTROL

/NOCARRIAGE_CONTROL

Determines whether carriage-return and line-feed characters are prefixed to
the subprocess’s prompt string. By default, the CREATE/TERMINAL command
copies the current setting of the parent process. The CARRIAGE_CONTROL
qualifier is used only with the /NODETACH qualifier.

/CLI=cli-filespec

/NOCLI

Specifies the name of a command language interpreter (CLI) to be used by the
subprocess. The default CLI is the same as that of the parent process (defined in
SYSUAF). If you specify the /CLI qualifier, the attributes of the parent process are
copied to the subprocess. The CLI you specify must be located in SYS$SYSTEM
and have the file type EXE. This qualifier is used only with the /NODETACH
qualifier.

DCLI-105



CREATE/TERMINAL

DCLI-106

/CONTROLLER-=filespec

Specifies the name of the terminal window controller image. This name allows
the CREATE/TERMINAL command to create a window on a variant controller,
such as for a language not supported by the base product. For a DECterm
window, the default is SYS$SYSTEM:DECW$TERMINAL.EXE. The device and
directory default to SYS$SYSTEM and the file type defaults to EXE.

Note

The “name” field of the file name as returned by $PARSE is

used to form the mailbox logical name. For example, if the file

“name” is DECW$TERMINAL, the mailbox logical name will be
DECWS$TERMINAL_MAILBOX_node::0.0. For backward compatibility,
the controller also defines a logical name DECW$DECTERM_MAILBOX_
host::0.0 to point to the same mailbox.

/DEFINE_LOGICAL=({logname, TABLE=tablename} [,...])

Specifies one or more logical names that are set to the name of the created
pseudo terminal device. Each element in the list is either a logical name or
TABLE-= followed by the name of a logical name table in which all subsequent
logical names will be entered. The default is the process logical name table.

/DETACH

/NODETACH (defaulit)

Determines whether the created terminal process is detached or a subprocess of
the current process. The /DETACH qualifier cannot be used with the command-
string parameter.

/DISPLAY=display-name
Specifies the name of the display on which to create the terminal window. If this
parameter is omitted, the DECW$DISPLAY logical name is used.

[ESCAPE

INOESCAPE

Sets or clears the ESCAPE characteristic of the created terminal window. The
default is to inherit the characteristic of the parent.

/FALLBACK

/NOFALLBACK

Sets or clears the FALLBACK characteristic of the created terminal window. The
default is to inherit the characteristic of the parent.

[HOSTSYNC (default)

/INOHOSTSYNC

Sets or clears the HOSTSYNC characteristic of the created terminal window. The
default is to inherit the characteristic of the parent.

NINPUT=filespec

Specifies an alternate input file or device to use as SYS$INPUT for the new
process. The default is to use the created terminal window for input. This
qualifier can be used with or without the /DETACH qualifier.



CREATE/TERMINAL

/INSERT

Creates the terminal window with insert mode as the default for line editing.
If the /INSERT or the /OVERSTRIKE qualifier is not specified, the default is to
inherit the characteristic from the parent. (See also /OVERSTRIKE.)

/KEYPAD (default)

/INOKEYPAD

Determines whether keypad definitions and the current keypad state are copied
from the parent process. This qualifier is used only with the /NODETACH
qualifier.

/LINE_EDITING

I/NOLINE_EDITING

Determines whether the terminal window is created with line editing enabled.
If neither qualifier is specified, the created terminal window inherits the line
editing characteristic of the parent.

JLITTLE_FONT

Specifies that the little font (as specified in resource files) be selected when the
created terminal window is initialized. It is an error to specify the /LITTLE_
FONT qualifier in combination with the /BIG_FONT qualifier. If you do not
specify either the /BIG_FONT or the /LITTLE_FONT qualifier, the initial font is
the big font.

/LOGGED_IN (default)

/NOLOGGED_IN

Determines whether a prompt for a user name and password are supplied
(/NOLOGGED_IN) or the created terminal window is logged in automatically
(/LOGGED_IN). This qualifier is used only with the /DETACH qualifier.

/LOGICAL_NAMES (default)

/NOLOGICAL_NAMES

Determines whether the created terminal window inherits the parent’s logical
names. This qualifier is used only with the /NODETACH qualifier.

INOTIFY

/NONOTIFY (default)

Determines whether a notification message is broadcast to the parent when the
created terminal window exits. This qualifier is used only with the NODETACH
qualifier.

/NUMERIC_KEYPAD

Sets the NUMERIC_KEYPAD terminal characteristic in the created terminal
window. If the /NUMERIC_KEYPAD or the /APPLICATION_KEYPAD qualifier
is not specified, the default is to inherit the characteristic from the parent. (See
also /APPLICATION_KEYPAD.)

IOVERSTRIKE

Creates the terminal window with overstrike mode as the default for line editing.
If the /OVERSTRIKE or the /INSERT qualifier is not specified, the default is to
inherit the characteristic from the parent. (See also /INSERT.)

/PASTHRU

/NOPASTHRU

Sets or clears the PASTHRU characteristic in the created terminal window. The
default is to inherit the characteristic of the parent.

DCLI-107



CREATE/TERMINAL

DCLI-108

/PROCESS (default)

/PROCESS=process-name

/INOPROCESS

Specifies the name of the process or subprocess to be created. The /NOPROCESS
qualifier causes a window to be created without a process. You can log in from
this window.

If you specify the /PROCESS qualifier without a process name, a unique process
name is assigned with the same base name as the parent process and a unique
number. The default process name format is username_n. If you specify a process
name that already exists, an error message is displayed. This qualifier is used
with either the /DETACH or the /NODETACH qualifier.

/PROMPT=prompt
Specifies the prompt string of the created terminal window. This qualifier is used
only with the /NODETACH qualifier.

/READSYNC

/INOREADSYNC

Sets or clears the READSYNC terminal characteristic in the created terminal
window. The default is to inherit the characteristic from the parent.

/RESOURCE_FILE=filespec

Specifies that the created terminal window use the resource file “filespec” instead
of the default resource file, DECW$USER_DEFAULTS:DECW$TERMINAL_
DEFAULT.DAT.

/SYMBOLS (default)
/INOSYMBOLS

Determines whether the subprocess inherits the parent’'s DCL symbols. This
qualifier is used only with the /NODETACH qualifier.

[TABLE=command-table
Specifies the name of an alternate command table to be used by the subprocess.
This qualifier is used only with the /NODETACH qualifier.

ITTSYNC

INOTTSYNC

Sets or clears the TTSYNC terminal characteristic in the created terminal
window; the default is to inherit the characteristic of the parent.

[TYPE_AHEAD

INOTYPE_AHEAD

Sets or clears the TYPE_AHEAD terminal characteristic in the created terminal
window. The default is to inherit the characteristic of the parent.

IWAIT

INOWAIT (default)

Requires that you wait for the subprocess to terminate before you enter another
DCL command. The /NOWAIT qualifier allows you to enter new commands while
the subprocess is running. This qualifier is used only with the /NODETACH
qualifier.



Example

CREATE/TERMINAL

/WINDOW_ATTRIBUTES=(parameter [,...])
Specifies initial attributes for the created terminal window to override the
defaults read from the resource file. These parameters include:

Parameter Description

BACKGROUND The background color.

FOREGROUND The foreground color.

WIDTH The width, in pixels.

HEIGHT The height, in pixels.

X_POSITION The x-position, in pixels.

Y_POSITION The y-position, in pixels.

ROWS The number of rows in the window, in character cells. If
the Auto Resize Window option is enabled, the ROWS and
COLUMNS parameters override the size specified by the
WIDTH and HEIGHT parameters.

COLUMNS The number of columns in the window, in character cells. If

INITIAL_STATE
TITLE
ICON_NAME
FONT

the Auto Resize Window option is enabled, the ROWS and
COLUMNS parameters override the size specified by the
WIDTH and HEIGHT parameters. -

The initial state of the window, either ICON or WINDOW.

A character string specifying the window title.

A character string specifying the window icon name.

The name of the font to be used in the window. If you specify
the /LITTLE_FONT qualifier, or omit both the /LITTLE_
FONT and /BIG_FONT qualifiers, this overrides the name
of the little font that is set in the resource files; otherwise it
overrides the name of the big font. The font name can be a
logical name, and it can be (but does not have to be) the base
font in a complete font set.

$ CREATE/TERMINAL=DECTERM/DETACH -
$ /DISPLAY=MYNODE::0 -

$ ROWS=36, -
$ COLUMNS=80, -

$ /WINDOW ATTRIBUTES=( -

$ TITLE="REMOTE TERMINAL", -

_S ICON_NAME="REMOTE TERMINAL" )

In this example, the command creates a detached process in a DECterm window
on node MYNODE:: that is 36 rows by 80 columns and has its title and icon
name set to “Remote terminal”.

$ CREATE/TERMINAL=DECTERM -

$ /NOPROCESS -

$: /DEFINE_LOGICAL=(TABLE=LNM$GROUP,DBGS$INPUT, DBGSOUTPUT)

In this example, the command creates a DECterm with no associated process.
The command defines DBG$INPUT and DBG$OUTPUT in the group table as the
new terminal for the purposes of debugging a problem with a detached process
that is subsequently created.

DCLI-109



DEALLOCATE

DEALLOCATE

Format

Parameter

Qualifier

Examples

DCLI-110

Makes an allocated device available to other processes (but does not deassign
any logical name associated with the device). DEALLOCATE does not deallocate
devices that are in use.

DEALLOCATE device-name[:]

device-name]:] :

Name of the device to be deallocated. The device name can be a physical device
name or a logical name that is not in use. On a physical device name, the
controller defaults to A and the unit to 0. This parameter is incompatible with
the /ALL qualifier.

/ALL
Deallocates all devices currently allocated by your process that are not in use.
This qualifier is incompatible with the device-name parameter.

1. $ DEALLOCATE DMBI1:

In this example, the DEALLOCATE command deallocates unit 1 of the
RK06/RK07 devices on controller B.

2.  $ ALLOCATE MT: TAPE
¥DCL-I-ALLOC, _MTBl: allocated

$ DEALLOCATE TAPE:

In this example, the ALLOCATE command requests that any magnetic tape
drive be allocated and assigns the logical name TAPE to the device. The
response to the ALLOCATE command indicates the successful allocation of
the device MTB1. The DEALLOCATE command specifies the logical name
TAPE to release the tape drive. '

3. $ DEALLOCATE/ALL

In this example, the DEALLOCATE command deallocates all devices that are
currently allocated. '



DEASSIGN

DEASSIGN

Format

Parameter

Description

Cancels a logical name assignment that was made with one of the following
commands: ALLOCATE, ASSIGN, DEFINE, or MOUNT. The DEASSIGN
command also deletes a logical name table that was created with the CREATE
/NAME_TABLE command.

DEASSIGN [logical-name[:]]

logical-namel:] X

Specifies the logical name to be deassigned. Logical names can have from

1 to 255 characters. If the logical name contains any characters other than
alphanumerics, dollar signs ($), or underscores (_), enclose it in quotation marks
(“”). The logical-name parameter is required unless you use the /ALL qualifier.

If the logical-name parameter ends with a colon (:), the command interpreter
ignores the colon. (Note that the ASSIGN and ALLOCATE commands remove
a trailing colon, if present, from a logical name before placing the name in a
logical name table.) If a colon is present in the logical name, you must type two
colons in the logical-name parameter of the DEASSIGN command (for example,
DEASSIGN FILE::).

To delete a logical name table, specify the table name as the logical-name
parameter. You must also use the /TABLE qualifier to indicate the logical name
directory table where the table name is entered. '

The DEASSIGN command cancels a logical name assignment that was made with
one of the following commands: ALLOCATE, ASSIGN, DEFINE, or MOUNT.
The DEASSIGN command also deletes a logical name table that was created
with the CREATE/NAME_TABLE command. You can use the /ALL qualifier with
DEASSIGN to cancel all logical names in a specified table. If you use the /ALL
qualifier and do not specify a table, then all names in the process table (except
names created by the command interpreter) are deassigned; that is, all names
entered at the indicated access mode or an outer access mode are deassigned.

To specify the logical name table from which you want to deassign a logical
name, use the /PROCESS, the /JOB, the /GROUP, the /SYSTEM, or the /TABLE
qualifier. If you enter more than one of these qualifiers, only the last one entered
is accepted. If entries exist for the specified logical name in more than one logical
name table, the name is deleted from only the last logical name table specified on
the command line. If you do not specify a logical name table, the default is the
/TABLE=LNM$PROCESS qualifier.

To delete a shareable logical name, you need write (W) access to the logical name
table. To delete a shareable logical name table, you need write (W) access to the
parent table and delete (D) access to the target logical name table.

DCLI-111



DEASSIGN

Qualifiers

DCLI-112

To specify the access mode of the logical name you want to deassign, use the
/USER_MODE, the /SUPERVISOR_MODE, or the /EXECUTIVE_MODE qualifier.
If you enter more than one of these qualifiers, only the last one is accepted. If
you do not specify a mode, the DEASSIGN command deletes a supervisor-mode
name. When you deassign a logical name, any identical names created with outer
access modes in the same logical name table are also deleted.

You must have SYSNAM (system logical name) privilege to deassign an executive-
mode logical name.

If you specify the /EXECUTIVE_MODE qualifier and you do not have SYSNAM
privilege, then the DEASSIGN command ignores the qualifier and attempts to
deassign a supervisor-mode logical name.

All process-private logical names and logical name tables are deleted when you
log out of the system. User-mode entries within the process logical name table
are deassigned when any image exits. The logical names in the job table, and the
job table itself, are deleted when you log off the system.

Names in all other shareable logical name tables remain there until they are
explicitly deassigned, regardless of whether they are user-, supervisor-, or
executive-mode names. You must have write (W) access to a shareable logical
name table to delete any name in that table.

If you delete a logical name table, all the logical names in the table are also
deleted. Also, any descendant tables are deleted. To delete a shareable logical
name table, you must have delete (D) access to the table.

JALL

Deletes all logical names in the same or an outer (less privileged) access
mode. If no logical name table is specified, the default is the process table,
LNM$PROCESS. If you specify the /ALL qualifier, you cannot enter a logical-
name parameter.

/EXECUTIVE_MODE
Requires SYSNAM (system logical name) privilege to deassign executive-
mode logical names.

Deletes only entries that were created in the specified mode or an outer (less
privileged) mode. If you do not have SYSPRV (system privilege) privilege for
executive mode, a supervisor-mode operation is assumed.

/IGROUP
Requires GRPNAM (group logical name) or SYSPRYV privilege to delete
entries from the group logical name table.

Indicates that the specified logical name is in the group logical name table. The -
/GROUP qualifier is synonymous with the /TABLE=LNM$GROUP qualifier.

/JOB

Indicates that the specified logical name is in the jobwide logical name table. The
/JOB qualifier is synonymous with the /TABLE=LNM$JOB qualifier. If you do .
not explicitly specify a logical name table, the default is the /PROCESS qualifier.



DEASSIGN

You should not deassign jobwide logical name entries that were made by the
system at login time, for example, SYS$LOGIN, SYS$LOGIN_DEVICE, and
SYS$SCRATCH. However, if you assign new equivalence names for these logical
names (that is, create new logical names in outer access modes), you can deassign
the names you explicitly created.

/PROCESS (default) :
Indicates that the specified logical name is in the process logical name table. The
/PROCESS qualifier is synonymous with the /TABLE=LNM$PROCESS qualifier.

You cannot deassign logical name table entries that were made by the command
interpreter, for example, SYS$INPUT, SYS$OUTPUT, and SYS$ERROR.
However, if you assign new equivalence names for these logical names (that

is, you create new logical names in outer access modes), you can deassign the
names you explicitly created. :

/SUPERVISOR_MODE (default)

Deletes entries in the specified logical name table that were created in supervisor
mode. If you specify the /SSUPERVISOR_MODE qualifier, the DEASSIGN
command also deassigns user-mode entries with the same name.

ISYSTEM
Indicates that the specified logical name is in the system logical name table. The
/SYSTEM qualifier is synonymous with the /TABLE=LNM$SYSTEM qualifier.

[TABLE=name

Specifies the table from which the logical name is to be deleted. Defaults to
LNM$PROCESS. The table can be the process, group, job, or system table, one
of the directory tables, or the name of a user-created table. (The process, job,

group, and system logical name tables should be referred to by the logical names
LNM$PROCESS, LNM$JOB, LNM$GROUP, and LNM$SYSTEM, respectively.)

The /TABLE qualifier also can be used to delete a logical name table. To delete a
process-private table, enter the following command:

$ DEASSIGN/ TABLE=LNM$PROCESS_DIRECTORY table-name
To delete a shareable table, enter the following command:
$ DEASSIGN/TABLE=LNM$SYSTEM_DIRECTORY table-name

To delete a shareable logical name table, you must have delete (D) access to the
table or write (W) access to the directory table in which the name of the shareable
table is cataloged.

If you do not explicitly specify the /TABLE qualifier, the default is the
/TABLE=LNM$PROCESS qualifier.

/USER_MODE

Deletes entries in the process logical name table that were created in user mode.
If you specify the /USER_MODE qualifier, the DEASSIGN command can deassign
only user-mode entries. Also, user-mode logical names are automatically deleted
when invoking and exiting a command procedure.

DCLI-113



DEASSIGN

Examples

DCLI-114

$ DEASSIGN MEMO

The DEASSIGN command in this example deassigns the process logical name
MEMO.

$ DEASSIGN/ALL

The DEASSIGN command in this example deassigns all process logical names
that were created in user and supervisor mode. This command does not,
however, delete the names that were placed in the process logical name table
in executive mode by the command interpreter (for example, SYS$INPUT,
SYS$OUTPUT, SYS$ERROR, SYS$DISK, and SYS$COMMAND).

$ DEASSIGN/TABLE=LNM$PROCESS_DIRECTORY TAX

The DEASSIGN command in this example deletes the logical name table
TAX, and any descendant tables. When you delete a logical name table,
you must specify either the /TABLE=LNM$PROCESS_DIRECTORY or the
/TABLE=LNM$SYSTEM_DIRECTORY qualifier, because the names of all
tables are contained in these directories.

§ ASSIGN USER DISK:  COPY
$ DEASSIGN COPY

The ASSIGN command in this example equates the logical name COPY with
the device USER_DISK and places the names in the process logical name
table. The DEASSIGN command deletes the logical name.

$ DEFINE SWITCH: TEMP
$ DEASSIGN SWITCH::

The DEFINE command in this example places the logical name SWITCH: in
the process logical name table. The trailing colon is retained as part of the
logical name. Two colons are required on the DEASSIGN command to delete
this logical name because the DEASSIGN command removes one trailing
colon, and the other colon is needed to match the characters in the logical
name.

$ ASSIGN/TABLE=LNM$GROUP DBAl: GROUP_DISK
$ DEASSIGN/PROCESS/GROUP GROUP_DISK

The ASSIGN command in this example places the logical name GROUP_
DISK in the group logical name table. The DEASSIGN command specifies
conflicting qualifiers; because the /GROUP qualifier is last, the name is
successfully deassigned.

§ ASSIGN DALLAS::USER DISK: DATA

$ DEASSIGN DATA

The ASSIGN command in this example associates the logical name DATA
with the device specification USER_DISK on remote node DALLAS.
Subsequent references to the logical name DATA result in references to
the disk on the remote node. The DEASSIGN command cancels the logical
name assignment.



DEASSIGN/QUEUE

DEASSIGN/QUEUE

Format

Parameter

Description

Example

Deassigns a logical queue from a printer or terminal queue and stops the logical
queue. Cannot be used with batch queues.

Requires manage (M) access to the queue.
DEASSIGN/QUEUE logical-queue-namef:]

logical-queue-name][:]
Specifies the name of the logical queue that you want to deassign from a specific
printer or terminal queue.

Once you enter the DEASSIGN/QUEUE command, the jobs in the logical queue
remain pending until the queue is reassigned to another printer queue or device
with the ASSIGN/QUEUE command.

$ ASSIGN/QUEUE LPA0 ASTER

$ DEASSIGN/QUEUE ASTER
$ ASSIGN/MERGE LPBO ASTER

The ASSIGN/QUEUE command in this example associates the logical queue
ASTER with the print queue LPAQ. Later, you deassign the logical queue with
the DEASSIGN/QUEUE command. The ASSIGN/MERGE command reassigns
the jobs from ASTER to the print queue LPBO.

DCLI-115



DEBUG

DEBUG

Format

Qualifiers

Examples

DCLI-116

Invokes the OpenVMS Debugger after program execution is interrupted by
Ctrl/Y, but only if the /INOTRACEBACK qualifier was not specified with the
LINK command when the program was linked. For a complete description of the
OpenVMS Debugger, see the OpenVMS Debugger Manual.

To get help on debugger commands from DCL level, type the following command:
$ HELP/LIBRARY=SYSSHELP:DBGSHELP

DEBUG

/KEEP .

Invokes the Kept Debugger. The Kept Debugger includes a Run/Rerun capability
that allows you to debug an image multiple times or debug a series of distinct
images without exiting the debugger.

Issuing the DEBUG/KEEP command is the only way to invoke the Kept
Debugger.

/RESUME (default)

Reinvokes the non-Kept Debugger after a Ctrl/Y key sequence has interrupted
the execution of a program you are debugging. (The interrupted program must
not have been linked with a /NOTRACEBACK qualifier on the LINK command.)

If you issue the DEBUG/RESUME command without a previous Ctrl/Y key
sequence, no action occurs. Use the RUN program-name command to invoke the
non-Kept Debugger.

1. $ FORTRAN/DEBUG/NOOPTIMIZE WIDGET
$ LINK/DEBUG WIDGET
$ RUN/NODEBUG WIDGET

NAME:
NAME:
NAME:
Y
$ DEBUG

[ Debugger Banner and Version ]

$DEBUG-I-INITIAL, language is FORTRAN, module set to WIDGET
DBG>

The FORTRAN and LINK commands both specify the /DEBUG qualifier to
compile the program WIDGET.FOR with debugger symbol table information
and to include the debugger in the image file. The RUN command begins
execution of the image WIDGET.EXE, which loops uncontrollably. Ctrl/'Y
interrupts the program, and the DEBUG command gives control to the
debugger.



DECK

DECK

Format

Description

Qualifier

Marks the beginning of an input stream for a command or program.
DECK

The DECK command marks the data that follows it as input for a command or
program. The DECK command can be used only after a request to execute a
command or program that requires input data.

In command procedures, this command is required when the first nonblank
character in any data record in the input stream is a dollar sign. Also in
command procedures, the DECK command must be preceded by a dollar sign; the
dollar sign must be in the first character position (column 1) of the input record.

The DECK command defines an end-of-file (EOF) indicator only for a single data
stream. Using the DECK command enables you to place data records beginning
with dollar signs in the input stream. You can place one or more sets of data in
the input stream following a DECK command, if each is terminated by an EOF
indicator. -

After an EOF indicator specified with the /DOLLARS qualifier is encountered,
the EOF indicator is reset to the default, that is, to any record beginning with
a dollar sign. The default is also reset if an actual EOF indicator occurs for the
current command level.

IDOLLARS|=string]

Sets the EOF indicator to the specified string of 1 to 15 characters. Specify a
string if the input data contains one or more records beginning with the string
$EOD. Enclose the string in quotation marks (“ ”) if it contains literal lowercase
letters, multiple blanks, or tabs. If you do not specify /DOLLARS or if you specify
/DOLLARS without specifying a string, you must use the EOD command to signal
the end-of-file (EOF).

DCLI-117



DECK

Examples

Input Stream AN
for N [$ EOJ

Program A “\_[$PRINT SUMMARY.DAT
|$EOD

E .
L]

N (]

N\,

N\,

\ I

N $99.50
$86.42
| $ DECK
$ RUN A

$ LINK A
$ FORTRAN A

£

DCLI-118

ZK-0783-GE

In this example, the FORTRAN and LINK commands compile and link
program A. When the program is run, any data the program reads from the
logical device SYS$INPUT is read from the command stream. The DECK
command indicates that the input stream can contain dollar signs in column
1 of the record. The EOD command signals end-of-file (EOF) for the data.



DECK

N |$ EQJ

N\,
A Er_r__|_-d:: )
\ *®
N [ )
N\,

N, I
“[$ @TEST
N L%
N\,

™\ [$ PRINT RUNTEST.OUT
[$ EoD

AN [ $99.50
[$ DECK
| $ RUN READFILE
N $ ASSIGN RUNTEST.OUT
AN OUTFILE
AN $ ASSIGN SYSSINPUT
N INFILE
™ |$ DECK/DOLLARS="%"
$ CREATE TEST.COM
$ JOB HIGGINS B

@ Input stream for CREATE command.
@ Input stream for program READFILE.

ZK-0784-GE

The CREATE command in this example creates the command procedure file
TEST.COM from lines entered into the input stream. The DECK/DOLLARS
command indicates that the percent sign (%) is the EOF indicator for the
CREATE command. This allows the string $EOD to be read as an input
record, signaling the end of the input for the RUN command.

DCLI-119



DEFINE

DEFINE

Format

Parameters

DCLI-120

Associates an equivalence name with a logical name.

DEFINE logical-name equivalence-name],...]

logical-name
Specifies the logical name string, which is a character string containing from 1 to
255 characters. The following rules apply:

If you specify an existing logical name, the new equivalence names replace
the existing equivalence name.

If the logical name is to be entered into the process or system directory logical
name tables (LNM$PROCESS_DIRECTORY, LNM$SYSTEM_DIRECTORY),
then the name can only have from 1 to 31 alphanumeric characters, including
the dollar sign ($) and underscore (_).

If you specify a colon (:) at the end of a logical name, the DEFINE command
saves the colon as part of the logical name. (This is in contrast to the ASSIGN
command, which removes the colon before placing the name in a logical name
table.) By default, the logical name is placed in the process logical name
table.

If the string contains any characters other than uppercase alphanumerics, the
dollar sign, or the underscore character, enclose the string in quotation marks
(“”). Use two sets of quotation marks (““ ) to denote actual quotation
marks. When you enclose a name in quotation marks, the case of alphabetic
characters is preserved.

equivalence-name],...]
Specifies a character string containing from 1 to 255 characters. The following
rules apply:

If the string contains any characters other than uppercase alphanumerics,
the dollar sign, or the underscore character, enclose the string in quotation
marks. Use two sets of quotation marks to denote an actual quotation mark.
Specifying more than one equivalence name for a logical name creates a
search list.

When you specify an equivalence name that will be used as a file specification,
you must include the punctuation marks (colons, brackets, periods) that would
be required if the equivalence name were used directly as a file specification.
Therefore, if you specify a device name as an equivalence name, you must
terminate the equivalence name with a colon.

The DEFINE command allows you to assign the same logical name to more than
one equivalence name. For example, you can use the same logical name to access
different directories on different disks or to access different files in different
directories.

When you specify more than one equivalence name for a logical name, you create
a search list. See the OpenVMS User’s Manual for more information on search
lists.



Description

Qualifiers

DEFINE

The DEFINE command creates an entry in a logical name table by defining a
logical name to stand for one or more equivalence names. An equivalence name
can be a device name, another logical name, a file specification, or any other
string. '

To specify the logical name table where you want to enter a logical name, use the
/PROCESS, the /GROUP, the /SYSTEM, the /JOB, or the /TABLE qualifier. If you
enter more than one of these qualifiers, only the last one entered is accepted. If
you do not specify a table, the default is the /TABLE=LNM$PROCESS qualifier.

To specify the access mode of the logical name you are creating, use the /USER_
MODE, the /SUPERVISOR_MODE, or the /EXECUTIVE_MODE qualifier. If you
enter more than one of these qualifiers, only the last one entered is accepted. If
you do not specify an access mode, a supervisor-mode name is created. You can
create a logical name in the same mode as the table in which you are placing the
name, or in an outer mode. (User mode is the outermost mode; executive mode is
the innermost mode.)

You can enter more than one logical name with the same name in the same table,
as long as each name has a different access mode. (However, if an existing logical
name within a table has the NO_ALIAS attribute, you cannot use the same name
to create a logical name in an outer mode in this table.)

If you create a logical name with the same name, in the same table, and in the
same mode as an existing name, the new logical name assignment replaces the
existing assignment.

You can also use the ASSIGN command to create logical names. To delete a
logical name from a table, use the DEASSIGN command.

Note

Avoid assigning a logical name that matches the file name of an
executable image in SYS$SYSTEM:. Such an assignment prohibits
you from invoking that image.

For additional information on how to create and use logical names, see the
OpenVMS User’s Manual.

/EXECUTIVE_MODE
Requires SYSNAM (system logical name) privilege to create an executive-
mode logical name.

Creates an executive-mode logical name in the specified table.

If you specify the /EXECUTIVE_MODE qualifier and you do not have SYSNAM
privilege, the DEFINE command ignores the qualifier and creates a supervisor-
mode logical name. The mode of the logical name must be the same or less
privileged than the mode of the table in which you are placing the name.

IGROUP
Requires GRPNAM (group logical name) or SYSNAM (system logical

. name) privilege to place a name in the group logical name table.

DCLI-121



DEFINE

DCLI-122

Places the logical name in the group logical name table. Other users who
have the same group number in their user identification codes (UICs) can
access the logical name. The /GROUP qualifier is synonymous with the
/TABLE=LNM$GROUP qualifier.

OB

Places the logical name in the jobwide logical name table. All processes in the
same job tree as the process that created the logical name can access the logical
name. The /JOB qualifier is synonymous with the /TABLE=LNM$JOB qualifier.

/LOG (default)
/INOLOG
Displays a message when a new logical name supersedes an existing name.

INAME_ATTRIBUTES[=(keyword][,...])]
Specifies attributes for a logical name. By default, no attributes are set. Possible
keywords are as follows:

CONFINE The logical name is not copied into a spawned subprocess. This
qualifier is relevant only for logical names in a private table.
The logical name inherits the CONFINE attribute from the
logical name table where it is entered; if the logical name table
is “confined,” then all names in the table are “confined.”

NO_ALIAS A logical name cannot be duplicated in the specified table in
a less privileged access mode; any previously created identical
names in an outer (less privileged) access mode within the
specified table are deleted.

If you specify only one keyword, you can omit the parentheses. Only the
attributes you specify are set.

/PROCESS (default)
Places the logical name in the process logical name table. The /PROCESS
qualifier is synonymous with the /TABLE=LNM$PROCESS qualifier.

/SUPERVISOR_MODE (default)

Creates a supervisor-mode logical name in the specified table. The mode of the
logical name must be the same as or less privileged than the mode of the table in
which you are placing the name.

ISYSTEM
Requires write (W) access or SYSNAM (system logical name) privilege to
place a name in the system logical name table.

Places the logical name in the system logical name table. All system users
can access the logical name. The /SYSTEM qualifier is synonymous with the
/TABLE=LNM$SYSTEM qualifier.

/TABLE=name
Requires write (W) access to the table to specify the name of a shareable
logical name table.

Specifies the name of the logical name table in which the logical name is to

be entered. You can use the /TABLE qualifier to specify a user-defined logical
name table (created with the CREATE/NAME_TABLE command); to specify the
process, job, group, or system logical name tables; or to specify the process or
system logical name directory tables.



Examples

DEFINE

If you specify the table name using a logical name that has more than one
translation, the logical name is placed in the first table found. For example, if
you specify DEFINE/TABLE=LNM$FILE_DEV and LNM$FILE_DEV is equated
to LNM$PROCESS, LNM$JOB, LNM$GROUP, and LNM$SYSTEM, then the
logical name is placed in LNM$PROCESS.

The default is the /TABLE=LNM$PROCESS qualifier.

[TRANSLATION_ATTRIBUTES[=(keyword],...])]
Equivalence-name qualifier.

Specifies one or more attributes that modify an equivalence string of the logical
name. Possible keywords are as follows:

CONCEALED Indicates that the equivalence string is the name of a concealed
device. When a concealed device name is defined, the system
displays the logical name, rather than the equivalence string, in
messages that refer to the device.

TERMINAL Logical name translation should terminate with the current
equivalence string; indicates that the equivalence string should
not be translated iteratively.

If you specify only one keyword, you can omit the parentheses. Only the
attributes you specify are set.

Note that different equivalence strings of a logical name can have different
translation attributes.

/USER_MODE
Creates a user-mode logical name in the specified table.

User-mode logical names created within the process logical name tables are used
for the execution of a single image; for example, you can create a user-mode
logical name to allow an image executing in a command procedure to redefine
SYS$INPUT. User-mode entries are deleted from the process logical name table
when any image executing in the process exits (that is, after a DCL command
or user program that executes an image completes execution). Also, user-mode
logical names are automatically deleted when invoking and exiting a command
procedure.

1. $ DEFINE/USER_MODE TM1 $DISK1:[ACCOUNTS.MEMOS]WATER.TXT

In this example, the DEFINE command defines TM1 as equivalent to
a file specification. After the next image runs, the logical name TM1 is
automatically deassigned.

2. $ DEFINE MEMO $DISK1:[ACCOUNTS.MEMO]

In this example, the DEFINE command defines the logical name MEMO as
equivalent to the partial file specification $DISK1:]ACCOUNTS.MEMO].

DCLI-123



DEFINE

DCLI-124

3.

$ DEFINE PROCESS NAME LIBRA
$ RUN WAKE

In this example, the DEFINE command places the logical name PROCESS_
NAME in the process logical name table with an equivalence name of
LIBRA. The logical name is created in supervisor mode. The program WAKE
translates the logical name PROCESS_NAME to perform some special action
on the process named LIBRA.

$ DEFINE TEMP: ' XXX1:

$ DEASSIGN TEMP::

In this example, the DEFINE command creates an equivalence name for the
logical name TEMP: and places the name in the process logical name table.
The colon is retained as part of the logical name. The DEASSIGN command
deletes the logical name. Note that two colons are required on the logical
name in the DEASSIGN command. One colon is deleted by the DEASSIGN
command. The other colon is kept as part of the logical name.

$ DEFINE PORTLAND PRTLND::YYYO0:[DECNET.DEMO.COM]

In this example, the DEFINE command places the logical name
PORTLAND in the process logical name table with an equivalence name
of PRTLND::YYYO:[DECNET.DEMO.COM]. Subsequent references to the
logical name PORTLAND result in the correspondence between the logical
name PORTLAND and the node, disk, and subdirectory specified.

§ DEFINE LOCAL "BOSTON""JOHN SMITH JKS""::"

In this example, the DEFINE command places the logical name LOCAL

in the process logical name table with a remote node equivalence name

of BOSTON"JOHN_SMITH JKS"::. To satisfy conventions for local DCL
command string processing, you must use three sets of quotation marks. The
quotation marks ensure that access control information is enclosed in one set
of quotation marks in the equivalence name.

$ DEFINE MYDISK XXX0:[MYDIR], YYYO:[TESTDIR]

In this example, the DEFINE command places the logical name MYDISK in
the process logical name table with two equivalence names: XXX0:[MYDIR]
and YYYO:[TESTDIR].

$ CREATE/NAME TABLE TABLEl

$ DEFINE/TABLE=LNM$PROCESS DIRECTORY LNM$FILE DEV -
_$ TABLE1,LNM$PROCESS,LNM$JOB, LNMSGROUP, LNM$SYSTEM

$ DEFINE/TABLE=TABLEl -

_$ /TRANSLATION ATTRIBUTES=CONCEALED WORK DISK DBAl:

In this example, the CREATE/NAME_TABLE command creates the process
private logical name table TABLE1.

The first DEFINE command ensures that TABLE1 is searched first in any
logical name translation of a device or file specification (because TABLE1 is
the first item in the equivalence string for the logical name LNM$FILE_DEYV,
which determines the default search sequence of logical name tables whenever
a device or file specification is translated).



DEFINE

The second DEFINE command assigns the logical name WORK_DISK to the
physical device DBA1 and places the name in TABLE1. The logical name
has the concealed attribute. Therefore, the logical name WORK_DISK is
displayed in system messages.

$ CREATE/NAME TABLE SPECIAL
$ DEFINE/TABLE=LNM$PROCESS DIRECTORY LNM$FILE DEV -
§ SPECIAL,LNMSPROCESS,LNM$JOB,LNMSGROUP, LNM$SYSTEM
S DEFINE/ TABLE=LNMS$PROCESS_DIRECTORY TAB SPECIAL
$ DEFINE/TABLE=TAB REPORT [CHELSEA]STORES
$ SHOW LOGICAL/TABLE=SPECIAL REPORT
"REPORT" = "[CHELSEA]STORES" (SPECIAL)

In this example, the CREATE/NAME_TABLE command is used to create a
new logical name table called SPECIAL. This table is defined in the process
directory, LNM$PROCESS_DIRECTORY.

The first DEFINE command ensures that SPECIAL is searched first in any
logical name translation of a device or file specification (because SPECIAL is
the first item in the equivalence string for the logical name LNM$FILE_DEY,
which determines the default search sequence of logical name tables whenever
a device or file specification is translated). The logical name LNM$FILE_DEV
is placed in the process directory, LNM$PROCESS_DIRECTORY.

With the next DEFINE command, a new logical name, TAB, is defined. TAB
translates to the string SPECIAL, which identifies a logical name table. You
must define TAB in the process directory because it translates iteratively to a
logical name table.

Next, the logical name REPORT is placed into the logical name table TAB.
Because TAB translates to the table SPECIAL, the name REPORT is entered
into SPECIAL table. The SHOW LOGICAL command verifies that the name
REPORT has been entered into the table SPECIAL.

Note that you can redefine TAB so it translates to a different table. Therefore,
if you run different programs that use the name TAB as a table name, you
can change the actual tables where the names are entered or referenced.

DCLI-125



DEFINE/CHARACTERISTIC

DEFINE/CHARACTERISTIC

Format

Parameters

Description

DCLI-126

Assigns a numeric value to a queue characteristic. The /CHARACTERISTIC
qualifier is required. If a value has been assigned to the characteristic, you must
delete and redefine the characteristic to alter the assignment of the existing

. characteristic.

Requires OPER (operator) privilege.

Note

You cannot define more than one characteristic name to a number.

DEFINE/CHARACTERISTIC characteristic-name characteristic-number

characteristic-name

Assigns a name to the characteristic being defined. The characteristic name can
be the name of an existing characteristic or a string of 1 to 31 characters that
defines a new characteristic. The character string can include any uppercase and
lowercase letters, digits, the dollar sign ($), and the underscore (_), and must
include at least one alphabetic character. Only one characteristic name can be
defined to each number.

characteristic-number
Assigns a number in the range 0 to 127 to the characteristic being defined.

The system manager or operator uses the DEFINE/CHARACTERISTIC command
to assign a name and number to a particular characteristic for queues in the
system. Characteristics can refer to any attribute of a print or batch job that is
meaningful for your environment. The name and number of a characteristic are
arbitrary, but they must be unique for that characteristic.

Note

Prior to OpenVMS Version 6.0, the DEFINE/CHARACTERISTIC
command allowed you to define more than one characteristic name to
a number, although this capability was unsupported.

The DEFINE/CHARACTERISTIC command no longer allows you to define
more than one characteristic name to a number. However, if your queue
configuration requires you to have more than one characteristic name for
a single number, you can define logical names to achieve the same result.
For example, you might enter the following commands:

$ DEFINE/CHARACTERISTIC SECOND_FLOOR 2
$ DEFINE/SYSTEM/EXECUTIVE MODE SALES FLOOR SECOND_ FLOOR
$ DEFINE/SYSTEM/EXECUTIVE MODE SALES DEPT SECOND_ FLOOR

In this example, the characteristic name SECOND_FLOOR is assigned
to the characteristic number 2. The logical names SALES_FLOOR



Example

DEFINE/CHARACTERISTIC

and SALES_DEPT are then defined as equivalent to the characteristic
name SECOND_FLOOR. As a result, the logical names SALES_FLOOR
and SALES_DEPT are each equivalent to the characteristic name
SECOND_FLOOR and the characteristic number 2. These logical
names can be specified as the characteristic-name value for any
/CHARACTERISTIC=characteristic-name qualifier.

In a VMScluster environment, you must define the logical names on every
node that requires them.

After characteristics have been defined, they can be associated with print or batch
jobs and execution queues. For information on specifying characteristics with
jobs, see the description of the /CHARACTERISTICS qualifier of the PRINT and
SUBMIT commands.

To find out what characteristics are currently defined for the system, use the
SHOW QUEUE/CHARACTERISTICS command. To find out which characteristics
have been specified for a particular queue, use the SHOW QUEUE/FULL
command. For information on associating characteristics with queues, see the
descriptions of the /CHARACTERISTICS qualifier of the INITIALIZE/QUEUE,
SET QUEUE, and START/QUEUE commands.

The DELETE/CHARACTERISTIC command deletes a previously defined
characteristic.

For more information on specifying queue characterlstlcs see the OpenVMS
System Manager’s Manual.

$ DEFINE/CHARACTERISTIC REDINK 3

The DEFINE/CHARACTERISTIC command in this example defines the
characteristic REDINK with the number 3. When a user enters the command
PRINT/CHARACTERISTICS=REDINK (or PRINT /CHARACTERISTICS=3), the
job is printed only if the printer queue has been established with the REDINK or
3 characteristic.

DCLI-127



DEFINE/FORM

DEFINE/FORM

Format

Parameters

Description

DCLI-128

Assigns a numeric value and attributes to a print form name. The /FORM
qualifier is required. To modify a form’s name or number, you must delete and
redefine the form. Values for any DEFINE/FORM qualifier can be modified by
re-entering the DEFINE/FORM command with different values, as long as the
form name and number remain the same.

Requires OPER (operator) privilege.
DEFINE/FORM form-name form-number

form-name

Assigns a name to the form being defined. The form name can be the name of an
existing form type or a string of 1 to 31 characters that defines a new form type.
The character string can include any uppercase and lowercase letters, digits, the
dollar sign ($), and the underscore ( _), and must include at least one alphabetic
character.

form-number

Assigns a number in the range 0 to 9999 to the form being defined. The
DEFAULT form, which is defined automatically when the system is bootstrapped,
is assigned number zero.

The system manager or operator uses the DEFINE/FORM command to assign a

name and number to a type of paper stock and printing area for use with printer
or terminal queues. When a new queue file is created, the system defines a form
named DEFAULT with a form number of zero and all the default attributes.

Some DEFINE/FORM qualifiers specify the area for printing. The LEFT and
RIGHT options of the /MARGIN qualifier and the /WIDTH qualifier determine
the number of characters per line. Using the RIGHT option of the MARGIN
qualifier and the /WIDTH qualifier, you can affect the point at which lines of text
wrap. (You cannot use the LEFT and RIGHT options of the /MARGIN qualifier
and the /WIDTH qualifier for filling or formatting the text, however.)

You also can use the DEFINE/FORM command to specify different types of paper
stock. The /DESCRIPTION qualifier enables you to describe more fully the form
name.

After forms have been defined, they can be associated with print jobs and
output execution queues. For information on specifying forms with jobs, see the
description of the PRINT/FORM command.

To find out what forms have been defined for the system, use the SHOW QUEUE
/FORM command. To find out which form is mounted currently on a particular
queue and which form is specified as that queue’s default form, use the SHOW
QUEUE/FULL command. For information on associating forms with queues,

see the descriptions of the /DEFAULT and /FORM_MOUNTED qualifiers of the
INITIALIZE/QUEUE, SET QUEUE, and START/QUEUE commands.



Qualifiers

DEFINE/FORM

For more information on how to use forms to control print’ jobs, see the OpenVMS
System Manager’s Manual.

/DESCRIPTION=string
A string of up to 255 characters used to provide operator information about the
form. The default string is the specified form name.

The string can be used to define the form type more specifically. For example,
if you have form names such as LETTER1, LETTER2, and LETTERS, the
/DESCRIPTION qualifier could be used to let the users and operators know that
LETTERLI refers to the standard corporate letterhead paper (8.5 inches x 11
inches), LETTER2 refers to the smaller corporate letterhead paper (6 inches x 9
inches), and LETTERS refers to the president’s personalized letterhead paper.

Enclose strings containing lowercase letters, blanks, or other nonalphanumeric
characters (including spaces) in quotation marks (“ ”).

/LENGTH=n

Specifies the physical length of a form page in lines. The default page length is
66 lines, which assumes a standard page length of 11 inches with 6 lines of print
per inch. The parameter n must be a positive integer greater than zero and not
more than 255.

The print symbiont sets the page length of the device equal to the form length.
This enables the driver to compute the number of line feeds for devices lacking
mechanical form feed.

/MARGIN=(option[,...])
Specifies one or more of the four margin options: BOTTOM, LEFT, RIGHT, and
TOP.

BOTTOM=n Specifies the number of blank lines between the end of the print
image area and the end of the physical page; the value of n
must be between 0 and the value of the /LENGTH qualifier.
The default value is 6, which generally means a 1-inch bottom
margin.

LEFT=n Specifies the number of blank columns between the leftmost
printing position and the print image area; the value of n
must be between 0 and the value of the /WIDTH qualifier. The
default is 0, which means that the print image area starts as far
to the left of the paper as the printer can go.

RIGHT=n Specifies the number of blank columns between the /WIDTH
qualifier and the image area; the value of n must be between
0 and the value of the /WIDTH qualifier. When determining
the value of the RIGHT option, start at the /WIDTH value and
count to the left. The default value is 0, which means that the
print image extends as far to the right as the /WIDTH value.

TOP=n Specifies the number of blank lines between the top of the
physical page and the top of the print image; the value of n
must be between 0 and the value of the /LENGTH qualifier.
The default value is 0, which generally means that there is no
top margin.

DCLI-129



DEFINE/FORM

DCLI-130

[PAGE_SETUP=(modulel[,...])

INOPAGE_SETUP (default)

Specifies one or more modules that set up the device at the start of each page.
The modules are located in the device control library. While the form is mounted,
the system extracts the specified module and copies it to the printer before each
page is printed.

/SETUP=(modulef,...])

Specifies one or more modules that set up the device at the start of each file. The
modules are located in the device control library. While the form is mounted, the
system extracts the specified module and copies it to the printer before each file
is printed.

For more information on device control modules, see the chapter on Batch and
Print Operations in the OpenVMS System Manager’s Manual.

/SHEET_FEED

/NOSHEET_FEED (default)

Specifies that print jobs pause at the end of every physical page so that a new
sheet of paper can be inserted.

/STOCK=string

Specifies the type of paper stock to be associated with the form. The string
parameter can be a string of 1 to 31 characters, including the dollar sign,
underscore, and all alphanumeric characters. If you specify the /STOCK qualifier
you must specify the name of the stock to be associated with the form. If you do
not specify the /STOCK qualifier, the name of the stock will be the same as the

- name of the form.

You can create any string that you want. However, when you are creating forms
with the same stock, be sure that the /STOCK string is identical in all the
DEFINE/FORM commands that refer to the same type of paper.

If you are defining a number of forms to provide different formatting options,
specify the same stock type for each form. Jobs that request any of these forms
will print on the same queue. If you want to modify the stock string associated
with a form, you can do this only if the form is not referenced by any job or queue.

ITRUNCATE (default)

/NOTRUNCATE

Discards any characters that exceed the current line length (specified by the
/WIDTH and /MARGIN=RIGHT qualifiers). The /TRUNCATE qualifier is
incompatible with the /WRAP qualifier. If you specify both the /NOTRUNCATE
and /NOWRAP qualifiers, the printer prints as many characters on a line as
possible. This combination of qualifiers is useful for some types of graphics
output.

/WIDTH=n

Specifies the physical width of the paper in terms of columns or character
positions. The parameter n must be an integer from 0 to 65,535; the default
value is 132.

Any lines exceeding this value wrap if the /WRAP qualifier is in effect or are
truncated if the /TRUNCATE qualifier is in effect. (If both the /NOTRUNCATE
and /NOWRAP qualifiers are in effect, lines print as far as possible.)

The /MARGIN=RIGHT qualifier overrides the /WIDTH qualifier when
determining when to wrap lines of text.



Example

DEFINE/FORM

/WRAP

/NOWRAP (default)

Causes lines that exceed the current line length (specified by the /WIDTH and
/MARGIN=RIGHT qualifiers) to wrap onto the next line. The /WRAP qualifier is
incompatible with the /TRUNCATE qualifier. If you specify both the /NOWRAP
and /NOTRUNCATE qualifiers, the printer prints as many characters on a line
as possible. This combination of qualifiers is useful for some types of graphics
output.

$ DEFINE/FORM /MARGIN=(TOP=6,LEFT=10) CENTER 3

The DEFINE/FORM command in this example defines the form CENTER to have
a top margin of 6 and a left margin of 10. The defaults remain in effect for both
bottom margin (6) and right margin (0). The form is assigned the number 3.

DCLI-131



DEFINE/KEY

DEFINE/KEY

Format

Parameters

DCLI-132

Associates an equivalence string and a set of attributes with a key on the
terminal keyboard.

DEFINE/KEY key-name equivalence-string

key-name

Specifies the name of the key that you are defining. All definable keys on VT52
terminals are located on the numeric keypad. On VT'100-series terminals, you

can define the left and right arrow keys as well as all the keys on the numeric

keypad. On terminals with LK201 keyboards, the following three types of keys
can be defined: ’

¢ Keys on the numeric keypad
¢ Keys on the editing keypad (except the up and down arrow keys)

* Keys on the function key row across the top of the keyboard (except keys F1
to F5)

The following table lists the key names in column one. The remaining three
columns indicate the key designations on the keyboards of the three different
types of terminals that allow key definitions.

Key Name LK201 VT100-Series VT52
PF1 PF1 PF1 [blue]
PF2 PF2 PF2 [red]
PF3 PF3 PF3 [gray]
PF4 PF4 PF4 --

KPO, KP1, ..., KP9 0,1,..9 0,1,..9 0,1,..,9
Period

Comma , , n/a
Minus - - n/a
Enter Enter ENTER ENTER
Left - — —
Right — — —

Find (E1) Find — —
Insert Here (E2) Insert Here , — —_
Remove (E3) Remove — —
Select (E4) Select — —

Prev Screen (E5) Prev Screen — —



Description

DEFINE/KEY

Key Name LK201 VT100-Series VT52
Next Screen (E6) Next Screen — —_
Help Help — —
Do Do — —
Fe, F17, ..., F20 Fe, F7, ..., F20 — —

Some definable keys are enabled for definition all the time. Others, including KP0
to KP9, Period, Comma, and Minus, must be enabled for definition purposes. You
must enter either the SET TERMINAIL/APPLICATION or the SET TERMINAL
/NONUMERIC command before using these keys.

On LK201 keyboards, you cannot define the up and down arrow keys or function
keys F1 to F5. The left and right arrow keys and the F6 to F14 keys are reserved
for command line editing. You must enter the SET TERMINAL/NOLINE _
EDITING command before defining these keys. You can also press Ctrl/V to
enable keys F7 to F14. Note that Ctrl/V will not enable the F6 key.

equivalence-string
Specifies the character string to be processed when you press the key. Enclose the
string in quotation marks (“ ”) to preserve spaces and lowercase characters.

The DEFINE/KEY command enables you to assign definitions to the peripheral
keys on certain terminals. The terminals include VT52s, the VT'100 series, and
terminals with LK201 keyboards.

To define keys on the numeric keypads of these terminals, you must first enter the
SET TERMINAL/APPLICATION or SET TERMINAL/NONUMERIC command.
When your terminal has this setting, the system interprets the keystrokes from
keypad keys differently. For example, with SET TERMINAL/NONUMERIC in
effect, pressing the 1 key on the keypad does not send the character “1” to the
system.

The equivalence string definition can contain different types of information.
Definitions often consist of DCL commands. For example, you can assign SHOW -
TIME to the zero key. When you press 0, the system displays the current date
and time. Other definitions can consist of text strings to be appended to command
lines. When you define a key to insert a text string, use the /INOTERMINATE
qualifier so that you can continue typing more data after the string has been
inserted.

In most instances you will want to use the echo feature. The default setting is
/ECHO. With /ECHO set, the key definition is displayed on the screen each time
you press the key.

You can use the /STATE qualifier to increase the number of key definitions
available on your terminal. The same key can be assigned any number of
definitions, as long as each definition is associated with a different state. State
names can contain any alphanumeric characters, dollar signs, and underscores.
Be sure to create a state name that is easy to remember and type and, if possible,
one that might remind you of the types of definitions you created for that state.
For example, you can create a state called SETSHOW. The key definitions for this
state might all refer to various DCL SET and SHOW commands. If you are used
to the EDT Editor, you might define a state as GOLD. Then, using the /IF_STATE

DCLI-133



DEFINE/KEY

Qualifiers

DCLI-134

qualifier, you can assign different definitions to keys used in combination with a
key defined as GOLD.

The SET KEY command changes the keypad state. Use the SHOW KEY
command to display key definitions and states.

JECHO (default)
/NOECHO

Displays the equivalence string on your screen after the key has been pressed.
You cannot use the /INOECHO qualifier with the /NOTERMINATE qualifier.

[ERASE

I/NOERASE (default)

Determines whether the current line is erased before the key translation is
inserted.

/IF_STATE=(state-name,...)

INOIF_STATE

Specifies a list of one or more states, one of which must be in effect for the key
definition to work. The /NOIF_STATE qualifier has the same meaning as /IF_
STATE=current_state. The state name is an alphanumeric string. States are
established with the /SET_STATE qualifier or the SET KEY command. If you
specify only one state name, you can omit the parentheses. By including several
state names, you can define a key to have the same function in all the specified
states.

/LOCK_STATE

I/NOLOCK_STATE (default)

Specifies that the state set by the /SSET_STATE qualifier remain in effect until
explicitly changed. (By default, the /SET_STATE qualifier is in effect only for
the next definable key you press or the next read-terminating character that you
type.) This qualifier can be specified only with the /SET_STATE qualifier.

. /LOG (default)

/NOLOG
Displays a message indicating that the key definition has been successfully
created.

ISET_STATE=state-name

/NOSET_STATE (default)

Causes the specified state-name to be set when the key is pressed. (By default,
the current locked state is reset when the key is pressed.) If you have not
included this qualifier with a key definition, you can use the SET KEY command
to change the current state. The state name can be any alphanumeric string;
specify the state as a character string enclosed in quotation marks.

[TERMINATE

/NOTERMINATE (default)

Specifies whether the current equivalence string is to be processed immediately
when the key is pressed (equivalent to entering the string and pressing the
Return key). By default, you can press other keys before the definition is
processed. This allows you to create key definitions that insert text into command
lines, after prompts, or into other text that you are entering.



Examples

1.

DEFINE/KEY

$ DEFINE/KEY PF3 "SHOW TIME" /TERMINATE
$DCL-I-DEFKEY, DEFAULT key PF3 has been defined

$ [FF
$ SHOW TIME
14-DEC-1994 14:43:59

In this example, the DEFINE/KEY command defines the PF3 key on the
keypad to perform the SHOW TIME command. DEFAULT refers to the
default state.

$ DEFINE/KEY PF1 "SHOW " /SET STATE=GOLD/NOTERMINATE/ECHO
$DCL-I-DEFKEY, DEFAULT key PFI has been defined

$ DEFINE/KEY PF1 " DEFAULT" /TERMINATE/IF_STATE=GOLD/ECHO
$DCL-I-DEFKEY, GOLD key PF1 has been defined

§ [PA

§ PR

$ SHOW DEFAULT
DISK1:[JOHN.TEST]

In this example, the first DEFINE/KEY command defines the PF1 key to

be the string SHOW. The state is set to GOLD for the subsequent key. The
/NOTERMINATE qualifier instructs the system not to process the string
when the key is pressed. The second DEFINE/KEY command defines the use
of the PF1 key when the keypad is in the GOLD state. When the keypad is in
the GOLD state, pressing PF1 causes the current read to be terminated.

If you press the PF1 key twice, the system displays and processes the SHOW
DEFAULT command.

The word DEFAULT in the second line of the example indicates that the PF1
key has been defined in the default state. Note the space before the word

DEFAULT in the second DEFINE/KEY command. If the space is omitted, the
system fails to recognize DEFAULT as the keyword for the SHOW command.

$ SET KEY/STATE=ONE

$DCL-I-SETKEY, keypad state has been set to ONE
$ DEFINE/KEY PF1 "ONE"

$DCL-I-DEFKEY, ONE key PF1 has been defined

$ DEFINE/KEY/IF_STATE=ONE PF1 "ONE"
$DCL-I-DEFKEY, ONE key PFl has been defined

This example shows two ways to define the PF1 key to be “ONE” for state
ONE.

The second DEFINE/KEY command shows the preferred method for defining
keys. This method eliminates the possibility of error by specifying the state
in the same command as the key definition.

DCLI-135



DELETE

DELETE

Format

Parameter

Qualifiers

DCLI-136

Deletes one or more files from a mass storage disk volume.

Requires delete (D) access to the file and write (W) access to the parent
directory. If the target file is itself a directory, the directory must be
empty.

DELETE filespec],...]

filespecl,...]

Specifies the names of one or more files to be deleted from a mass storage disk
volume. The first file specification must contain an explicit or default directory
specification plus an explicit file name, file type, and version number. Subsequent
file specifications need contain only a version number; the defaults will come from
the preceding specification. The asterisk (*) and the percent sign (%) wildcard
characters can be used in any of the file specification fields.

If you omit the directory specification or device name, the current default device
and directory are assumed.

If the file specification contains a null version number (a semicolon (;) followed
by no file version number), a version number of 0, or one or more spaces in the
version number, the latest version of the file is deleted.

To delete more than one file, separate the file specifications with either commas
(,) or plus signs (+).

/BACKUP

Modifies the time value specified with the /BEFORE or the /SINCE qualifier.
The /BACKUP qualifier selects files according to the dates of their most recent
backups. This qualifier is incompatible with the /CREATED, /EXPIRED, and
/MODIFIED qualifiers, which also allow you to select files according to time
attributes. If you specify none of these four time qualifiers, the default is the
/CREATED qualifier.

/BEFORE[=time]

Selects only those files dated prior to the specified time. You can specify time
as absolute time, as a combination of absolute and delta times, or as one of

the following keywords: BOOT, LOGIN, TODAY (default), TOMORROW, or
YESTERDAY. Specify one of the following qualifiers with the /BEFORE qualifier
to indicate the time attribute to be used as the basis for selection: /BACKUP,
/CREATED (default), /EXPIRED, or /MODIFIED.

For complete information on specifying time values, see the OpenVMS User’s
Manual.

/BY_OWNER[=uic]
Selects only those files whose owner user identification code (UIC) matches the
specified owner UIC. The default UIC is that of the current process.



DELETE

Specify the UIC by using standard UIC format as described in the OpenVMS
Guide to System Security.

/CONFIRM

/NOCONFIRM (default)

Controls whether a request is issued before each delete operation to confirm that
the operation should be performed on that file. The following responses are valid:

YES NO QUIT -
TRUE FALSE Ctrl/Z
1 0 ALL

You can use any combination of uppercase and lowercase letters for word
responses. Word responses can be abbreviated to one or more letters (for example,
T, TR, or TRU for TRUE), but these abbreviations must be unique. Affirmative
answers are YES, TRUE, and 1. Negative answers include: NO, FALSE, 0,

and pressing the Return key. Entering QUIT or pressing Ctrl/Z indicates that
you want to stop processing the command at that point. When you respond by
entering ALL, the command continues to process, but no further prompts are
given. If you type a response other than one of those in the list, DCL issues an
error message and redisplays the prompt.

ICREATED (default)

Modifies the time value spec1ﬁed with the /BEFORE or the /SINCE qualifier. The
/CREATED qualifier selects files based on their dates of creation. This qualifier is
incompatible with the /BACKUP, /EXPIRED, and /MODIFIED qualifiers, which
also allow you to select files according to time attributes. If you specify none of
these four time qualifiers, the default is the /CREATED qualifier.

/[ERASE

/NOERASE (default)

When you delete a file, the area in which the file was stored is returned to the
system for future use. The data that was stored in that location still exists in the
system until new data is written over it. When you specify the /ERASE qualifier,
the storage location is overwritten with a system specified pattern so that the
data no longer exists.

/EXCLUDE=(filespecl,...])

Excludes the specified files from the delete operation. You can include a directory
but not a device in the file specification. The asterisk (*) and the percent sign
(%) wildcard characters are allowed in the file specification. However, you cannot
use relative version numbers to exclude a specific version. If you specify only one
file, you can omit the parentheses.

[EXPIRED

Modifies the time value specified with the /BEFORE or the /SINCE qualifier.
The /EXPIRED qualifier selects files according to their expiration dates. (The
expiration date is set with the SET FILE/EXPIRATION_DATE command.)
The /EXPIRED qualifier is incompatible with the /BACKUP, /CREATED, and
/MODIFIED qualifiers, which also allow you to select files according to time
attributes. If you specify none of these four time qualifiers, the default is the
/CREATED qualifier.

DCLI-137



DELETE

ILOG

/NOLOG (default)

Controls whether the DELETE command displays the file specification of each file
after its deletion.

/MODIFIED

Modifies the time value specified with the /BEFORE or the /SINCE qualifier.
The /MODIFIED qualifier selects files according to the dates on which they were
last modified. This qualifier is incompatible with the /BACKUP, /CREATED,
and /EXPIRED qualifiers, which also allow you to select files according to time
attributes. If you specify none of these four time modifiers, the default is the
/CREATED qualifier.

ISINCE[=time]

Selects only those files dated after the specified time. You can specify time

as absolute time, as a combination of absolute and delta times, or as one of
the following keywords: BOOT, LOGIN, TODAY (default), TOMORROW, or
YESTERDAY. Specify one of the following qualifiers with the /SINCE qualifier
to indicate the time attribute to be used as the basis for selection: /BACKUP,
/CREATED (default), /EXPIRED, or /MODIFIED.

For complete information on specifying time values, see the OpenVMS User’s
Manual.

Examples

1. $ DELETE COMMON.SUM;2

The DELETE command deletes the file COMMON.SUM;2 from the current
default disk and directory.

2. $ DELETE *,OLD;*

The DELETE command deletes all versions of files with file type .OLD from
the default disk directory.

3. $ DELETE ALPHA.TXT;*, BETA;*, GAMMA;*

The DELETE command deletes all versions of the files ALPHA.TXT,
BETA.TXT, and GAMMA.TXT. The command uses the file type of the first
input file as a temporary default. Note, however, that some form of version
number (here specified as the asterisk (*) wildcards) must be included in
each file specification.

4. $ DELETE /BEFORE=15-APR/LOG *,DAT;*
$DELETE-I-FILDEL, DISK2:[MALCOLM]ASSIGN.DAT;1 deleted (5 block)
$DELETE-I-FILDEL, DISK2:[MALCOLM]BATCHAVE.DAT;3 deleted (4 blocks)
$DELETE-I-FILDEL, DISK2:[MALCOLM]BATCHAVE.DAT;2 deleted (4 blocks)
$DELETE-I-FILDEL, DISK2:[MALCOLM]BATCHAVE.DAT;1 deleted (4 blocks)
$DELETE-I-FILDEL, DISK2:[MALCOLM]CANCEL.DAT;1 deleted (2 blocks)
$DELETE-I-FILDEL, DISK2:[MALCOLM]DEFINE.DAT;1 deleted (3 blocks)
$DELETE-I-FILDEL, DISK2:[MALCOLM]EXIT.DAT;1 deleted (1 block)
$DELETE-I-TOTAL, 7 files deleted (23 blocks)

The DELETE command deletes all versions of all files with file type .DAT

that were either created or updated before April 15 of this year. The /LOG
qualifier not only displays the name of each file deleted, but also the total

number of files deleted.

DCLI-138



DELETE

$ DELETE A.B;
The DELETE command deletes the file A.B with the highest version number.

$ DELETE/CONFIRM/SINCE=TODAY [MALCOLM.TESTFILES]*.0BJ;*
DISKO: [MALCOLM.TESTFILES]AVERAG.OBJ;1, delete? [N]:Y
DISKO: [MALCOLM.TESTFILES]SCANLINE.OBJ;4, delete? [N]:N
DISKO0: [MALCOLM,TESTFILES]SCANLINE.OBJ;3, delete? [N]:N
DISKO:[MALCOLM.TESTFILES]SCANLINE.OBJ;2, delete? [N]:N
DISKO: [MALCOLM.TESTFILES |WEATHER.OBJ;3, delete? [N]:Y

The DELETE command examines all versions of files with file type OBdJ

in the subdirectory [MALCOLM.TESTFILES], and locates those that were
created or modified today. Before deleting each file, it requests confirmation
that the file should be deleted. The default response—N—is given in brackets.

$ DIRECTORY {.SUBTEST]

$DIRECT-W~NOFILES, no files found

$ SET PROTECTION SUBTEST.DIR/PROTECTION=OWNER:D
$ DELETE SUBTEST.DIR;1

Before the directory file SUBTEST.DIR is deleted, the DIRECTORY command
is used to verify that there are no files cataloged in the directory. The SET
PROTECTION command redefines the protection for the directory file so that
it can be deleted; then the DELETE command deletes it.

$ DELETE DALLAS"THOMAS SECRET"::DISK0:[000,000]DECODE.LIS;1

This DELETE command deletes the file DECODE.LIS;1 from the directory
[000,000] on device DISKO at remote node DALLAS. The user name and
password follow the remote node name.

$ DELETE NODE12::"DISK1:DEAL.BIG"
$ DELETE NODE12::DISK1:DEAL.BIG;

Either of these DELETE commands can be used to delete the file DEAL.BIG
on device ZZZ1 at remote node NODE12. Note that the DELETE command
requires an explicit version number in a file specification, but the file to be
deleted is on a remote node whose file syntax does not recognize version
numbers. (NODE12 is an RT-11 node.) Therefore, the file specification must
either be enclosed in quotation marks (“”) or entered with a null version
number (that is, a trailing semicolon [;]).

DCLI-139



DELETE/CHARACTERISTIC

DELETE/CHARACTERISTIC

Format

Parameter

Description

Qualifier

Example

DCLI-140

Deletes the definition of a queue characteristic previously established with the
DEFINE/CHARACTERISTIC command. The /CHARACTERISTIC qualifier is
required.

Requires OPER (operator) privilege.
DELETE/CHARACTERISTIC characteristic-name

characteristic-name
Specifies the name of the characteristic to be deleted.

The DELETE/CHARACTERISTIC command deletes a characteristic from the
system characteristic table.

To modify a characteristic’s name or number, you must delete and redefine the
characteristic.

ILOG

/NOLOG (default)

Controls whether the DELETE/CHARACTERISTIC command displays the name
of each characteristic after its deletion.

$ DEFINE/CHARACTERISTIC BLUE 7

$ DELETE/CHARACTERISTIC BLUE
$ DEFINE/CHARACTERISTIC BLUE_INK 7

The DEFINE/CHARACTERISTIC command in this example establishes the
characteristic BLUE, with number 7, to mean blue ink ribbons for printers. To
change the name of the characteristic, enter the DELETE/CHARACTERISTIC
command. Then enter another DEFINE/CHARACTERISTIC command to rename
the characteristic to BLUE_INK, using the characteristic number 7.



DELETE/ENTRY

DELETE/ENTRY

Format

Parameters

Description

Qualifier

Deletes one or more print or batch jobs. The jobs can be in progress or waiting in
the queue. The /ENTRY qualifier is required.

Requires manage (M) access to the queue, or delete (D) access to the
specified jobs.

DELETE/ENTRY=(entry-number],...]) [queue-name[:]]

entry-number],...]

Specifies the entry number (or a list of entry numbers) of jobs to be deleted. If
you specify only one entry number, you can omit the parentheses. If you do not
specify a queue name, you can delete entries from multiple queues.

The system assigns a unique entry number to each queued print or batch job in
the system. By default, the PRINT and SUBMIT commands display the entry
number when they successfully queue a job for processing. These commands also
create or update the local symbol $ENTRY to reflect the entry number of the
most recently queued job. To find a job’s entry number, enter the SHOW ENTRY
or SHOW QUEUE command.

queue-namel:]

Specifies the name of the queue where the jobs are located. The queue name can
refer either to the queue to which the job was submitted or to the queue where
the job is executing. The queue-name parameter is optional syntax. However,
when you specify a queue name, the operating system uses it to verify an entry in
the specific queue before deleting the entry.

The DELETE/ENTRY command deletes one or more jobs from a queue. If you
specify a queue name and more than one entry number with a DELETE/ENTRY
command, all the jobs must be located in the same queue.

You can delete jobs that are currently executing, as well as jobs that are in other
states. For example, DELETE/ENTRY can delete a job that is currently in a
holding or a pending state.

LOG

I/NOLOG (default)

Controls whether the DELETE/ENTRY command displays the entry number of
each batch or print job that it deletes.

DCLI-141



DELETE/ENTRY

Examples

DCLI-142

1.

$ PRINT/HOLD  ALPHA.TXT
Job ALPHA (queue SYS$PRINT, entry 110) holding

$ DELETE/ENTRY=110 SYS$PRINT

The PRINT command in this example queues a copy of the file ALPHA.TXT
in a HOLD status, to defer its printing until a SET ENTRY/RELEASE
command is entered. The system displays the job name, the entry number,
the name of the queue in which the job was entered, and the status. Later,
the DELETE/ENTRY command requests that the entry be deleted from the
queue SYS$PRINT.

$ SUBMIT/AFTER=18:00 WEATHER

Job WEATHER (queue SYS$BATCH, entry 203) holding until 14-DEC-1994
18:00

$ SUBMIT/HOLD/PARAMETERS=SCANLINE DOFOR

Job DOFOR (queue SYS$BATCH, entry 210) holding

$ DELETE/ENTRY=(203,210)/L0G
$DELETE-W~SEARCHFAIL, error searching for 203
-JBC-E-NOSUCHENT, no such entry
$DELETE-I-DELETED, entry 210 aborting or deleted

The SUBMIT commands in this example queue the command procedures
WEATHER.COM and DOFOR.COM for processing as batch jobs.
WEATHER.COM is queued for execution after 6:00 PM. DOFOR.COM is
queued in a HOLD status and cannot execute until you enter a SET ENTRY
/RELEASE command. Later, the DELETE/ENTRY/LOG command requests
that the system delete both these entries from the queue and display a
message indicating that the entries have been deleted.

The job WEATHER (entry 203) has completed by the time the DELETE
/ENTRY/LOG command is entered. Thus, entry 203 no longer exists. Note
that a message indicates that there is no entry 203 in the queue. The job
DOFOR (entry 210) is in a HOLD status when the DELETE/ENTRY/LOG
command is entered. Thus, the system deletes entry 210 from the queue and
displays a message to that effect.

$ PRINT CHAPTERS.MEM
Job CHAPTERS (queue SYSSPRINT, entry 25) pending on queue SYS$PRINT

$ SHOW QUEUE SYSSPRINT
Printer queue SYS$PRINT, on PARROT::PARROTSLPAO, mounted form DEFAULT

Entry Jobname Username Status
24 CHAPTER7 SMITH Pending
25 - CHAPTERS SMITH Pending

$ DELETE/ENTRY=25



DELETE/ENTRY

The PRINT command in this example submits the file CHAPTER8.MEM to
the printer queue SYS$PRINT. Later, user Smith needs to edit the file again
before printing it. Using the SHOW QUEUE command, Smith verifies that
the job is still pending and that the entry number for the job is 25. Smith
then enters the DELETE/ENTRY command to delete the job from the

queue.

DCLI-143



DELETE/FORM

DELETE/FORM

Format

Parameter

Description

Qualifier

Examples

Deletes a form (for printer or terminal queues) previously established with the
DEFINE/FORM command. The /FORM qualifier is required.

Requires OPER (operator) privilege.

DELETE/FORM form-name

form-name ,
Specifies the name of the form to be deleted.

The DELETE/FORM command deletes a form definition from the system forms
table. When you delete a form, there can be no outstanding references to the form
either in queues that have been mounted with the form or by jobs requesting
that form. To locate all references to the form, use the SHOW QUEUE/FULL
command. ‘

To modify a form’s name or number, you must delete and redefine the form.
Values for any DEFINE/FORM qualifier can be modified by re-entering the
DEFINE/FORM command with different values, as long as the form name and
number remain the same.

ILOG

/NOLOG (default)

Controls whether the DELETE/FORM command displays the name of each form
after its deletion.

1. $ DELETE/FORM CENTER

The DELETE/FORM command in this example deletes the form named CENTER.

2. § DEFINE/FORM -
_$ /DESCRIPTION="letter size continuous form paper" CFLET 7

$ DELETE/FORM CFLET
$ DEFINE/FORM -
_$ /DESCRIPTION="letter size continuous form paper" LETTER CONT 7

DCLI-144

The DEFINE/FORM command in this example establishes the form CFLET with
number 7 to mean continuous-form paper 8.5 inches by 11 inches. To change the

name of the form, delete the form named CFLET and define a new one named
LETTER_CONT.



DELETE/INTRUSION_RECORD

DELETE/INTRUSION_RECORD

Format

Parameter

Description

Examples

Removes an entry from the break-in database.
Requires CMKRNL (change mode to kernel) and SECURITY privileges.

DELETE/INTRUSION_RECORD source

source

Specifies the name of the device or the remote system where the user is
attempting to log in. The source name can be presented in the syntax of another
operating system domain, for example, one that is case sensitive or conflicts
with DCL syntax rules. In such cases, you must enclose the source parameter in
quotation marks.

Use the DELETE/INTRUSION_RECORD command to remove an entry from
the break-in database. For example, if the user Hammer repeatedly attempted
to log in to terminal TTA24 with an expired password, the SHOW INTRUSION
command would display the following entry:

Intrusion Type Count Expiration Source

TERM USER  INTRUDER 9 10:29:39.16  TTA24:HAMMER

The terminal is locked out of the system because the login failure limit has
been reached. When Hammer approaches you and you identify the problem as
an expired password, you can then use the DELETE/INTRUSION command to
remove the record from the break-in database.

1. $ DELETE/INTRUSION RECORD TTC2:

In this example, the DELETE/INTRUSION_RECORD command removes all
intrusion records generated by break-in attempts on TTC2. No user name is
specified because none of the login failures occurred for valid users.

2. $ DELETE/INTRUSION RECORD "AV34C2/LC-2-10":FORGETFUL

In this example, the source of the break-in is a local terminal that is
connected to a terminal server. To delete the record from the break-in
database, you must enclose the terminal port name within quotation marks
so that the operating system interprets the slash as a foreign character and
not as a qualifier.

3. $ DELETE/INTRUSION_RECORD NODE1: : HAMMER

This command removes all intrusion entries generated from node NODE1 for
user HAMMER. ‘

DCLI-145



DELETE/KEY

DELETE/KEY

Format

Parameter

Qualifiers -

Examples

DCLI-146

Deletes key definitions that have been established by the DEFINE/KEY
command. The /KEY qualifier is required.

DELETE/KEY [key-name]

key-name
Specifies the name of the key to be deleted. This parameter is incompatible with

the /ALL qualifier.

/ALL

Deletes all key definitions in the specified state; the default is the current state.
If you use the /ALL qualifier, do not specify a key name. Use the /STATE qualifier
to specify one or more states.

/LOG (default)

/NOLOG

Controls whether messages are displayed indicating that the specified key
definitions have been deleted.

ISTATE=(state-name][,...])

INOSTATE (default)

Specifies the name of the state for which the specified key definition is to be
deleted. The default state is the current state. If you specify only one state name,
you can omit the parentheses. State names can be any alphan<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>