

Programming
with RT-1f
VOLUME 2
Callable System Facilities

Programming
with RT-11
VOLUME 2

Callable
System Facilities

Stephen Peters
Kevin Small

Anne Summerfield
Julie Wright

~DmDDmD
DECbooks

Copyright © 1984 by Digital Equipment Corporation.
All Rights Reserved. Reproduction of this book, in
part or in whole is prohibited. For information
write Digital Press, Digital Equipment Corporation,
30 North Avenue, Burlington, Massachusetts 01803

Designed by Virginia J. Mason
Printed in the United States of America

10 9 8 7 6 5 4 3 2

Documentation number EY -00023-DP
ISBN 0-932376-33-9

The following are trademarks of Digital Equipment
Corporation:

DEC
DECtape
DIBOL
MICROIPDP

PDP
PDT
Professional
RSTS

RSX
RT-11
UNIBUS
VT

Library of Congress Cataloging in Publication Data

Clinch, Simon, 1959-
Programming with RT -11.

(RT -11 technical user's series)
Includes indexes.
Contents: v. 1. Program development facilities-

v. 2. Callable system facilities.
1. RT-11 (Computer operating system) 2. MACRO-11

(Computer program language) 3. FORTRAN (Computer
program language) 4. Basic (Computer program
language) I. Peters, Stephen, 1951- . II. Title.
QA76.6.C55 1984 001.64/2 84-5031
ISBN 0-932376-32-0 (v. 1)
ISBN 0-932376-33-9 (v. 2)

Contents

Introduction vii

8 Using System Services 3

9 Gaining Access to System Information 19

10 Controlling Program Execution 37

11 Using Input/Output Systems 55

12 Using Terminal Input/Output 69

13 Using Multiterminal Input/Output 93

14 Using Queued Input/Output 105

15 Using Nonsynchronous Queued
Input/Output 131

16 Scheduling and Blocking 175

17 Transferring Data Between Jobs 189

18 Using Memory 209

19 Using the Command String Interpreter 227

20 Writing Time-dependent Programs 249

Solutions to Practices 271

Index' 331

Acknowledgment

We would like to thank all those who contributed to this
publication. In particular, we are grateful to Martin Gentry,
who reviewed and updated the material in this book, arid
Bernard Volz, who reviewed the text and revised practice
exercises. The staff at Digital Press deserve special com­
mendation for their invaluable assistance.

Introduction

Programming with RT -11 examines the RT -11 facilities that
enable you to develop executable programs in MACRO-ll,
FORTRAN IV, or BASIC-l1. Programming with RT-11
comprises two volumes. Volume 1 covers the program de­
velopment process, RT -11 debugging aids, libraries, over­
lays, and the FORTRAN IV and BASIC-ll subroutine con­
ventions for MACRO-ll interfacing. Volume 2 discusses the
use of programmed requests to perform file and terminal
input/output, foregroundlbackground communication, and
synchronous and nonsynchronous input/output opera­
tions.

Volume 2 contains chapters 8 through 20. Chapter 8,
"Using System Services," examines the system services:
when to use them, how they work, and how to call them.
Chapter 9, "Gaining Access to System Information," de­
scribes the structure of the RMON fixed offset area and the
function of each of its parts. Chapter 10, "Controlling Pro­
gram Execution," discusses chaining and passing com­
mand lines to KMON on exit. Chapter 11, "Using In­
put/Output Systems," gives an overview of device I/O and

. describes the system components involved in an I/O trans­
fer. Chapter 12, "Using Terminal Input/Output," describes
single-character I/O and commands to input or output text
a line at a time. Chapter 13, "Using Multiterminal In­
put/Output," discusses the input and output of characters

vii

viii

Equipment

Resources

Introduction

for multiterminal support. Chapter 14, "Using Queued In­
put/Output," examines synchronous queued I/O requests for
writing to or reading from file-structured and non-file­
structured devices. Chapter 15, "Using Nonsynchronous
Queued Input/Output," discusses asynchronous queued I/O
and event-driven I/O. Chapter 16, "Scheduling and Block­
ing," examines event-driven blocking and fore­
groundlbackground scheduling. Chapter 17, "Transferring
Data Between Jobs," describes the sharing of buffers and the
transfer of data between foreground and background jobs.
Chapter 18, "Using Memory," looks at the dynamic allo­
cation of buffers and ways to manipulate the User Service
Routine (USR). Chapter 19, "Using the Command String
Interpreter," examines the interface between the Command
String Interpreter (CSI) and the user and programmer and
describes related data structures and programmed requests.
Chapter 20, "Writing Time-dependent Programs," dis­
cusses programs that make use of timed services, in partic­
ular, mark-time requests, scheduling, and setting the sys­
tem date and time.

In order to do the practice exercises, you will need access
to a working RT -11 system with at least 500 blocks of disk
space for your files. By a working system, we mean that:

• The RT -11 monitor program has been transferred
from its storage disk to main memory (in other
words, the system has been bootstrapped)

• The FORTRAN IV compiler or BASIC-l1 interpreter
has been installed and is available for use

Although every effort has been made to make Program­
ming with RT -11 self-contained volumes, you may need to

Introduction ix

refer to the following manuals from the RT -11 documen­
tation set for additional information:

• RT -11 Installation Guide

• RT -11 Programmer's Reference Manual

• RT -11 Software Support Manual

• RT -11 System Generation Guide

• RT -11 System Message Manual

• RT -11 System User's Guide

• RT -11 System Utilities Guide

The documentation to which we refer throughout the text
is written for RT -11 version 5.0. We also used a computer
system equipped with RT -11 version 5.0 to generate the
programs in our examples and practices. If you own a newer
version of RT -11, you may also need a copy of the latest
System Release Notes to determine the difference between
your system and the one described here.

Programming with RT -11 is written under the as­
sumption that you know how to program in MACRO-11,
FORTRAN IV, or BASIC-11. The authors assume that you
can manipulate files and get directory listings on an RT -11
system and are familiar with RT -11 conventions for device
and file specifications, the operation of the Foreground/
Background monitor, and monitor components and their
functions. If you need additional information on RT -11
conventions and programming procedures you may refer to
the publications listed below:

• Working with RT -11 (Digital Press, 1983)

• Tailoring RT-11: System Management and Program-
ming Facilities (Digital Press, 1984)

• RT -ll/RSTS/E FORTRAN IV User's Guide

• BASIC-11 Language Reference Manual

• BASIC-11/RT -11 Installation Guide

• BASIC-11/RT-11 User's Guide

x

Notalions

Introduction

For a directory of documentation products, write:
Digital Equipment Corporation
Circulation Department, MK01!W83
Continental Eoulevard
Merrimack, NH 03054

The following symbols are used in this volume to repre­
sent specific elements:

(KEY) indicates keyboard and keypad keys, their func-
tions, or key combinations

COMMANDS (uppercase) indicates input

Prompts (upper and lowercase) indicates computer output

[] indicates parts of a ·command that are optional
(the brackets are not part of the command string)

An example box acts as a window that shows either the in­
teraction between the user and the computer or a portion
of the codes in a program. If the code in an example does
not include a label, blank spaces have not been included
to account for the label field.

8

Programmed Requests
Executing Programmed Requests
Load Image Code
The EMT Instruction

Types of Services
MACRO-11 Specific Implementation

Form of the Macro Call
Passing of Arguments
Macro Expansion
Error Return
Serious Error Conditions
Return of Auxiliary Information

FORTRAN IV Specific Implementation
Form of the FORTRAN Call
Error Return

Other Error Conditions
Control of Serious Error Conditions
Trap Handlers
Floating Point Exception Handlers

References

8
Using
System Services

In addition to the utility programs, RT -11 provides a large
number of programmed requests and system subroutines
(referred to as system services) which gain access to capa­
bilities such as file creation, file maintenance, and event
timing.

If you are programming in FORTRAN IV, you reach
the RT -11 system services through calls to the system sub­
routine library SYSLIB.OB]. This library has a package
which handles character strings and supports routines for
two-word integers. It also provides access to many system
services obtained by MACRO-11 programmed requests.
Using these services, you can write most applications pro­
grams entirely in FORTRAN IV.

In this chapter you will learn to call system service
routines in FORTRAN IV, using SYSLIB functions or sub­
routines and call programmed requests in MACRO-11 (us-·
ing the system macro library) and dynamically change the
arguments for requests hy using an argument block. You
will also learn to write code to detect the success or the
,specific cause of failure of a given programmed request and
trap error conditions that would otherwise cause the pro­
gram to abort.

3

4 Programming with RT -11

Programmed Requests

You gain access to the RT -11 system services by using ma­
cro calls or FORTRAN IV function or subroutine calls in
your program. When your program is assembled or com­
piled, and linked, these programmed requests provide ac­
cess to the RT -11 monitor routines which perform func­
tions such as I/O operations, system interrogation (for
example, memory contents), and communication between
multiple tasks.

Figures 19 and 20 show the use of the PRINT pro­
grammed request in a MACRO-11 and a FORTRAN IV
program. The PRINT request prints characters from a spec­
ified string at the console terminal. The two programs call
on the same monitor routine to perform the print opera­
tion. This routine performs the I/O operation more effi­
ciently than the FORTRAN formatted I/O system. The ser­
vices provided as programmed requests are listed and
discussed in the RT -11 Programmer's Reference Manual.

Executing Programmed Requests

When your program is executing, calls to system services
cause a transfer of control to the appropriate monitor code.
This' code then processes the given arguments and per­
forms the function requested.

Figure 19.
MACRO-11 Program Using the .PRINT Request

.TITLE PRINEX
;THIS MACRO PROGRAM PRINTS A STRING USING
;THE PRINT REQUEST
.MCALL .PRINT, .EXIT

STRING: .ASCIZ ITHIS IS A STRING OF CHARACTERSI
.EVEN

ST: .PRINT #STRING
.EXIT
.END ST

Load Image Code

Chapter 8 Using System Services

Figure 20.
FORTRAN IV Program Using the .PRINT Request

PROGRAM PRItlEX
C THIS FORTRAN PROGRAM PRINTS A STRING
C USING THE PRINT REQUEST

CALL PRINT ('THIS IS A STRING OF CHARACTERS')
CALL EXIT
END

5

Most programmed requests generate code to move the re­
quest arguments to some location in memory. In figures 1 9
and 20 only one argument, the address of the string, must
be copied into a general purpose register. When it has been
copied, the request generates an emulator trap (EMT) in­
struction whose execution causes control to be passed to
an address listed in a monitor address (or dispatch) table.

The expansion of a programmed request may have as
few as one or two machine instructions. The number of in~
structions depends on the operations performed by that
programmed request or the number of arguments specified
in a macro call.

The EMT Instruction

When the EMT instruction is executed, control is passed to
the EMT processor routine in the monitor. The EMT in­
struction execution uses a sequence of events very similar
to an interrupt which transfers control to an interrupt ser­
vice routine. This event sequence follows:

1. The current PC (program counter) and PSW (proces­
sor status word) registers are saved on the stack.

2. The PC and PSW registers are loaded with the con­
tents of the EMT vector, locations 30 and 32. Loca-

6 Programming with RT -11

tion 30 contains the address of the EMT processor
routine in the RT -11 monitor; location 32 contains
the processor status the monitor uses to execute the
request.

3. The monitor processes the EMT. The type of request
is determined and argument checking is done. In­
valid or incorrect arguments cause control to be re­
turned immediately to the requesting program.

4. The request is processed; for example, a string of
characters is printed on the console.

5. The monitor executes an RTI (return from interrupt)
instruction, which restores the PC and PSW register
values saved on the stack, and control returns to the
requesting program.

The low-order byte of the EMT instruction contains an
EMT code, which is interpreted by the monitor according
to its value. Table 1-1 in the RT -11 Programmer's Refer­
ence Manual lists these codes and their meanings. The im­
portant EMT codes are 375, 374, and 340 to 357. The forms
of programmed requests that generate each of these EMT
codes are discussed later in this chapter. Figure 21 shows

Figure 21.
Executing an EMT Instruction

MAIN
PROGRAM

·
·
·

t-
EMT.X

· f-

·
·

EMTVECTOR
30/32

- EMT PROCESSOR

START ADDRESS

STATUS

r------

MONITOR
CODE

• VALIDATE ARGUMENTS

• PROCESS EMT INSTRUCTION

• CHECK FOR ERROR
CONDITIONS

• CHECK FOR FATAL ERRORS
(FATAL ERRORS ABORT
YOUR PROGRAM)

• RETURN TO USER
PROGRAM WITH
ERROR INDICATOR

Chapter 8 Using System Services 7

the flow of control during the execution of an EMT instruc­
tion generated by a programmed request.

Types of Services

Several types of system services can be accessed by pro­
grammed requests and FORTRAN IV subroutines in SYS­
LIB. The types of services are described in table 7.

MACRO-11 Specific Implementation

MACRO-ii programmed requests are implemented as sys­
tem macros. The macros are collected in the system macro
library SYSMAC.SML and are automatically called when
needed during program assembly.

All programmed requests start with a period (.) to dis­
tinguish them from 'programmer-defined symbols and
macros. Most programmed requests need arguments, which
must be valid assembler expressions .. All programmed re­
quests must be explicitly declared using the .MCALL di­
rective to make the macro definition available from the sys­
tem macro library.

This section focuses on services which have macro
calls. Additional capabilities are available using routines
found in the FORTRAN IV system subroutine library SYS­
LIB.OBJ discussed later in this chapter. MACRO-ii pro­
grams can gain access to some of these subroutines using
the standard MACRO-ii calling conventions.

Form of the Macro Call

You specify MACRO-ii programmed requests in two ways.
With requests such as .PRINT or .GTLIN, you simply sup­
ply the name of the request followed by the arguments. The
format is:

Table 7.
System Services

Type

Program initialization
and control

System or job resource
and status interrogation

Command translation

File operations

File I/O operations

Console terminal I/O

Multiterminal I/O

Foreground/background
communications

Timer support

System job communication

Interrupt service routines

Extended memory functions

FORTRAN IV character
string functions

RADIX-50 conversion

Miscellaneous FORTRAN IV
routines

Functions

Allocates memory

Allocates input/output resources

Turns devices on and off

Processes errors

Supplies date and job information

Includes the Command String
Interpreter (CSI)

Open, close, create, rename, delete,
and change protection status or
creation date of files

Perform synchronous and
nonsynchronous I/O

Controls I/O operations and sends
and receives data on the console
terminal

Allows your program to control and
perform I/O on 1 to 16 terminals

Enable two-way transfer of data in
memory buffers

Starts or ends jobs on the basis of
elapsed system-clock time

Allows jobs to communicate

Allow interrupt service routines to
communicate with the monitor by
means of macros available in the
SYSMAC library

Include four types of requests for
creating and using extended memory
(extended memory requests are not
available for FORTRAN programs)

Performs arithmetic operations on
this data type (for FORTRAN
programs)

Compare, copy, find character strings
and concatenate ASCII strings

Converts FORTRAN IV to RADIX-50
format and RADIX-50 to FORTRAN IV

Allow you to exami,ne and modify
absolute memory locations and
specify a FORTRAN IV subroutine as an
interrupt service that run at a specific
priority

Chapter 8 Using System Services 9

.PRGREQ argl,arg2, ... ,argn

Here ".PRGREQ" is the name of a programmed request and
"arg1,arg2, ... ,argn" is the list of arguments you give.

EXAMPLE

.PRINT #STRING

With requests such as .PEEK or .POKE, you supply the
name of the request, the symbolic address of a memory area
where the arguments will be stored, and the arguments. The

. format is:

.PRGREQ area, argl ,arg2, ... ,argn

Here ".PRGREQ" is the name of a programmed request;
"area" is the symbolic label pointing to the EMT argument
block, which is a set of words used to pass the arguments
to the monitor; and "arg1,arg2, ... ,argn" is the list of argu­
ments you give.

EXAMPLE

.GTIM . #AREA,#TIMBUF

AREA: .BLKW 2 jArgument Block for GTIM
TIMBUF: .BLKW 2' ;Buffer to receive System Time

Passing of Arguments

Macros of the simple format (type 1) generate either an EMT
374 or one of the EMTs in the range 340 to 357. Requests
that generate an EMT 374 have only one argument. RO con­
tains a function code in the high-order byte, to indicate

10

Macro Expansion

Error Return

Programming with RT -11

which request is used. Requests that generate EMTs 340 to
357 are each unique to one programmed request. The cor­
responding programmed requests have their arguments either
in RO, or on the stack, or both.

The macros in which you specify a memory area (type
2) always generate an EMT 375. RO contains the address of
"area" within your program. The first word of the "area"
block is set by the programmed request to identify the call.
The remaining words in the block may contain pointers to
each of the arguments "arg1" to "argn."

The macro expansion moves the specified arguments
into the argument block. If your program has previously
moved values into the argument block, you can omit those
arguments in the macro call. In this way you can change
the macro arguments dynamically.

RO is often used to return important information to your
program after the request has completed, and so it is never
preserved across a call.

You seldom need to examine the actual code generated on
expansion of a programmed request; however, you may find
it useful, or even necessary, to trace through the expansion
in order to detect programming errors. An example of a
MACRO-11 programmed request expansion (shown in fig­
ure 22) is the assembly listing of the code in figure 19. The
.LIST MEB directive is used to direct the assembler to list
the expansion. Note that the expansion of .PRINT passes
the address of the string to the EMT processor via 0/00, which
is the register RO.

In addition to processing programmed requests used in your
program, the monitor can return error information based on
the results of executing these requests. If an error occurs
during execution of the request, the monitor returns to your
program with the C-bit set.

Chapter 8 Using System Services 11

Figure 22.
Expanding the .PRINT Programmed Request

2
3
4
5
6
7 000000 101 040

000003 124 122
000006 116 107

8
9 000012

000012 012700 000000'
000016 104351

10 000020
000020 104350

11 000012'

123 STRING:
111
000

ST:

.TITLE PRINEX

.LIST MEB
;THIS PROGRAM PRINTS
;A STRING USING THE
;PRINT REQUEST
.MCALL .PRINT, .EXIT
.ASCIZ IA STRINGI

.EVEN

.PRINT 'STRING
MOV 'STRING,XO
EMT "0351
.EXIT
EMT "0350
.END ST

Some programmed requests may return one of many
possible error conditions. Each condition is identified by a
code returned by the monitor in byte 52. Your program
should refer to byte 52 with absolute addressing, gaining
access to it as a byte. Never refer to location 52 as a word
because byte 53 has a separate function. Chapter 9, "Gain­
ing Access to System Information," gives more details about
this byte and other system data. The code in figure 23 tests
the result of a programmed request execution.

Figure 23.
Error Checking Code

AREA: .BLKW M
ERRBYT-52

.READ
BCS

ERROR: TSTB

"AREA,
ERROR

"ERRBYT

Argument block
Error byte (absolute address)

Check if programmed request
was executed without error

Now check type of error

12 Programming with RT -11

The codes that may be returned for any programmed
request are individually listed and defined in chapter 2 of
the RT -11 Programmer's Reference Manual. You will find
that many requests return no error information.

Serious Error Conditions

Serious errors cause a message to be generated by the mon­
itor and printed on the console terminal. Fatal errors cause
termination of your program, instead of an error return. The
monitor prints a message indicating the type of error after
the code:

?MON-F-

Some fatal errors can be trapped and have their values
returned in byte 52. These are discussed below. You should
always supply appropriate error checking after a program
request.

Return of Auxiliary Information

In general, the content of RO is not saved across a pro­
grammed request. It may be used to return important infor­
mation to your program. All other registers are preserved.
For example, the programmed request .LOOKUP opens a file
on a device. On completion, RO contains the number of
blocks in the file that has been opened.

Chapter 2 of the RT -11 Programmer's Reference Man­
ual describes each of the MACRO-ll programmed re­
quests. Each description indicates what the request does,
how it is called, what information is returned in RO, and
what possible error conditions may be returned.

FORTRAN IV Specific Implementation

The FORTRAN IV implementation of programmed re­
quests is in the form of system subroutines, which are stored

Chapter 8 Using System Services 13

in the system library SYSLIB.OBJ. These subroutines im­
plement a number of the programmed requests, as well as
other functions listed in table 7.

Form of the FORTRAN Call

SYSLIB subroutines are called in the same way as user­
written subroutines. SYSLIB contains both function and
subroutine subprograms. Function subprograms receive
control by means of a function reference, in the form:

Variable = function-name (arguments)

Subroutine subprograms are called using the CALL state­
ment:

CALL subroutine-J:.lame (arguments)

All routines in SYSLIB can be called as function sub­
programs to return the value of the routine, or as subrou­
tine subprograms if no return value is needed. If you use a
function call for a SYSLIB subprogram that does not return
results, the value returned has no rneaning.

Figure 24 uses the AJFL T function subprogram, which
converts an INTEGER*4 value to a REAL*4 value, return­
ing it as the function value. The code in figure 24 converts
the INTEGER*4 value in JVAL to REAL*4, multiplies it by
3.5, and stores the result in VALUE.

Figure 24.
A SYSLIB Call

C DECLARE VARIABLES
REAL*4 VALUE
HITEGER*4 JVAL

C PROGRAM·CODE

VALUE=AJFLTCJVAL)*3.5

14

Error Return

Programming with RT -11

Some SYSLIB routines that return a condition code value
allow you to determine if the operation of the routine was
successful. Your program must check this value to see if an
error occurred. For example, the function JADD computes
the sum of two INTEGER*4 values. The result assigned to
the variable on the left side of the assignment operator (=)
is set to one of the four values, depending on Hie result of
the computation. So, the code:

K = JADD(I,L,M)

computes the sum of I and L, stores the result in M, and
returns a condition code in K. The possible codes for the
JADD function are:

- 2 For an overflow

o For a normal return of zero

1 For a normal return with a positive result

-1 For a normal return with a negative result

The use of JADD to check for an error on return from
a SYSLIB call is shown below.

'ERROR: JAOD

You should always check for an error return after any SYS­
LIB call.

Other Error Conditions

Other system services that allow your program to control
the monitor's action when serious error conditions occur

Chapter 8 Using System Services 15

are mentioned here primarily to let you know that they ex­
ist. The RT -11 Programmer's Reference Manual provides
details and examples of use.

Control of Serious Error Conditions

Trap Handlers

Normally, when a serious error occurs in a programmed re­
quest, the system aborts the job and displays an error mes­
sage. In some applications you may want a program to re­
cover, or continue, after a serious error. If the .SERR request
is used, then any serious errors are reported to the pro­
gram. The carry bit is set, and byte 52 contains a negative
code to indicate that the error is serious. Table 2-2 of the
RT-11 Programmer's Reference Manual lists the error codes
returned by .SERR.

The .HERR request (the system default) allows the sys­
tem to abort your program on serious errors and generate a
system error message. This request overrides the .SERR
request.

Some programs execute instructions or reference memory
that may not be present. These programs may check whether
particular instructions (for example, floating point instruc­
tions) are supported by the CPU, whether particular hard­
ware devices (such as the RT-ll memory management unit,
I/O peripherals) are present, or the amount of memory
available. If a tested address does not exist, a trap to 4 oc-·
curs. If an instruction that is checked for is not supported,
a trap to 10 occurs. RT-ll normally aborts the program
when a trap to 4 or 10 occurs. Before aborting the program,
the monitor displays a message:

?MON-F-TRAP to 4
or
?MON-F-TRAP to 10

16 Programming with RT -11

To prevent the monitor from aborting the program, you can
use the .TRPSET programmed request.

You write a trap handler to recover from the error. The
.TRPSET request declares the address of the trap handler.
The trap handler routine must also issue another .TRPSET
request before it exits because RT-ll cancels .TRPSET each
time a trap occurs. See chapter 2 of the Programmer's Ref­
erence Manual for details.

Floating Point Exception Handlers

References

If you have the floating point hardware option, the .SFPA
request allows you to set up a routine to handle floating
point exceptions. If you do not set up a trap address, then
your job is aborted by the monitor when a floating point
exception condition occurs .. SFP A is also used under the
FB and XM monitors to allow the floating point registers to
be used by more than one job.

RT -11 Programmer's Reference Manual. Chapter 1 provides
MACRO-11 programmers with detailed information on EMT in­
struction codes, programmed request format, programmed re­
quest errors, and other error conditions. It also introduces the
FORTRAN IV system subroutine library.

Working With RT -11. Chapter 6 discusses utility programs.

PDP-11 Processor Handbook. Refer to the handbook written for
the PDP-11 processor on your system for additional information
on EMTs, traps, interrupts.

9

System Information
System Communication Area

The Job Status Word (JSW)
Application Examples

Gaining Access to SYSCOM and Other Absolute Locations
Reaching Absolute Locations from MACRO-11 Programs
Reaching Absolute Locations from FORTRAN IV Programs

RMON Fixed Offset Area
Contents of the RMON Fixed Offset Area
Application Example

Retrieving Data from the RMON Fixed Offset Area
Impure Area

Retrieving Data from the Impure Area
Gaining Access to the Processor Status Word

References

9
Gaining
Access to
System
Information

The RT -11 monitor maintains in memory a large amount
of information about its current state and the state of .jobs
currently running. Some of this information is useful to
applications programs and can be obtained from MACRO-
11 and FORTRAN IV programs using system services pro­
vided for that purpose. In this chapter you will learn how
to read and modify this data using the programmed re­
quests: .PEEK, .POKE, .GVAL, and .GTJB (MACRO-II) and
IPEEKlB, IPOKEIB, ISPY, and GTJB (FORTRAN IV).

You will also learn to use two MACRO-II pro­
grammed requests, .MFPS and .MTPS, to gain access to the
processor status word (PSW) independent of the processor
type.

When you have completed this chapter, you will be
able to obtain data from any location in the system com­
munication area; get the data from any location in the
RMON fixed offset area or in the job's impure area; get job
information from RMON using the GTJB request; and iden­
tify the restrictions on the use of the RMON fixed offset area
and the impure area.

19

20 Programming with RT -11

System Information

The Resident Monitor (RMON) maintains a large amount of
information about its own status and that of jobs currently
running. This is held in three main areas of memory:

• The system communication area (SYSCOM)

• The RMON fixed offset area

• The impure area (for each job)

Figure 25 shows the location of these areas in the
memory of a typical FB monitor system.

The· system communication area (SYSCOM) occupies
absolute locations 40 to 57 in memory. This area contains
information about the job currently running. Some of this
information is provided by the linker and copied into
memory when the program is loaded. The remaining loca­
tions are used at run time to enable RMON and the job to
communicate.

The structure of RMON differs from monitor to moni­
tor, depending on the SYSGEN options selected. Some data,
however, are always located at a fixed position relative to
the start of RMON. This area, called the RMON fixed offset
area, contains information about the monitor itself and about
the curr~nt hardware and software configuration.

Each job also has its own impure area, which contains
information specific to the job, including the terminal in­
put/output buffers. This area is maintained and used by
RMON, but user programs can also retrieve data from it
(except in SJ systems).

System Communication Area

The system communication area (SYSCOM) occupies lo­
cations 40 (octal) to 57 (octal) in memory, and contains in­
formation about the job currently executing. The contents
of each of these locations are described below.

157,776

1000
776

500
476

BYTES 60
(OCTAL) 57

40
37
o

Chapter 9 Gaining Access to System Information 21

Figure 25.
Information i\reas in a Foreground/Background System

I/O PAGE

MEMORY

SYSTEM DEVICE HANDLER

BACKGROUND JMPURE AREA

RMON FIXED· OFFSET AREA

FOREGROUND JOB SPACE

FOREGROUND STACK

FOREGROUND IMPURE AREA

USR

KMON

BACKGROUND JOB SPACE

DEFAUL T BACK.GROUND STACK

INTERRUPT VECTORS
,

SYSTEM···COMMUNICATIONAREA

TRAP VECTORS

RESIDENT MONITOR
(RMON)

22 Programming with RT -11

Information set by the linker and copied into memory
from the load image:

1. Word 40 (locations 40 to 41) contains the normal
start address of the first executable instruction in the
program. This is used by the R, RUN, and START
commands.

2. Word 42 (locations 42 to 43) contains the initial
value of the stack pointer for the job currently exe­
cuting. By default, the top of the stack is immediately
below the lowest program address (at location 776 for
a background job). The default can be changed using
the .ASECT directive or, for a background job, the
linker 1ST ACK option.

3. Word 50 (locations 50 to 51) contains the program
high limit-the highest address your program can
use. In XM systems, it is the address of the top of the
root section plus the low memory overlay regions.
Programs must never change this word directly. If
you want to change it, use the .SETTOP directive.

Information given by RMON to the job:

1. Byte 52 is the monitor error byte. If RMON detects
errors in a programmed request, it places the error
code in this byte and sets the carry bit.

2. Word 54 (locations 54 to 55) is the address of the
start of RMON. This can be used as a pointer to the
RMON fixed offset area, as discussed later. Your pro­
grams must never modify the contents of this word.

Information given by the job to RMON:

1. Word 44 (locations 44 to 45) contains the job status
word (JSW) used to control the operation of some of
the programmed requests and to enable certain pro­
grammed request· features. This word is discussed
later.

Chapter 9 Gaining Access to System Information 23

2. Word 46 (locations 46 to 47) contains the alternate
User Service Routine (USR) load address. Its value is
normally zero, which indicates that the USR swaps
into its default location below RMON, the foreground
and system jobs, and the device handlers. If you set
this word to a value other than zero, either in the
load image file or at run time, this value is used as
the address at which the USR swaps. The swapping
position should be selected with car~. For more in­
formation, see chapter 18, "Using Memory."

3. Byte 53 is the user error byte. The user job sets a
value in this byte to indicate whether any errors have
occurred during program execution. For example,
code 0 means that the job has terminated success­
fully. In indirect file processing, KMON examines
this byte upon program termination. If a significant
error has been reported, KMON can abort any indi­
rect files in use when commands that follow depend
on successful completion of this program.

4. Byte 56 (the fill character) and byte 57 (the fill count)
are used to specify the type and number of fill char­
acters needed by some types of low-speed terminals.
Because of the transmission rate, these terminals
must have fill characters (nulls) inserted after certain
characters. More information is given in chapter 2 of
the RT -11 Installation Guide.

The contents of locations in the system communica­
tion area are shown in figure 26. Detailed information is
given in chapter 2 of the RT -11 Software Support Manua1.

The Job Status Word (JSW)

The settings of the individual bits of the JSW (word 44 in
the system communication area) are used to control the op­
eration of certain programmed, requests and indicate whether
certain special features are enabled. Some of the bits may
be modified by user programs either at load time or during

24 Programming with RT -11

Figure 26.
System Communication Area (SYSCOM)

57

BYTES 40
(OCTAL) 37

o

I I BYTE CONTENTS

MEMORY 57 FILL COUNT

56 FILL CHARACTER

55
- - RMON BASE ADDRESS

54

53 USER ERROR CODE

52 MONITOR ERROR CODE

51
t- - HIGH MEMORY LIMIT

50

47
USR LOAD ADDRESS

t- - (NORMALLY 0)
46

45
JOB STATUS WORD

I- - (JSW)
44

43
INITIAL VALUE OF t- -

42
STACK POINTER

SYSCOM 41
I- - PROGRAM

START ADDRESS
40

program execution. The word may also be set from the ter­
minal or from an indirect file using the D (deposit) com­
mand.

Application Examples

Later you will need to access locations in the system com­
munication area for specific applications, for instance:

Chapter 9 Gaining Access to System Information 25

1. You may want to write programs that do not echo in­
put received from the terminal, for example, pass­
words. You can do this by setting bit 12 of the JSW
(the special mode terminal bit).

2. When you use programmed requests to perform
queued 110, you may have to load a device handler
from your program into memory. It is convenient to
place the handler immediately above your program.
To do this, you need to know your program's high
memory limit, which is held in word 50 of SYSCOM.

Gaining Access to SYSCOM and Other
Absolute Locations

RT -11 provides certain programmed requests that enable
you to call absolute locations from MACRO-11 and FOR­
TRAN IV programs. These requests are .PEEK and .POKE
for MACRO-ii, and IPEEKIB and IPOKE/B for FORTRAN
IV.

Reaching Absolute Locations
from MACRO-11 Programs

The .PEEK programmed request returns in RO the contents
of a memory location .. POKE changes the contents of a lo­
cation. The macro calls are:

.PEEK area,addr

.POKE area,addr,value

In these macro calls:

area is the address of a two- or three-word EMT
argument block

addr is the address of the location to examine

value is the new contents to place in the location

26 Programming with RT -11

The following example shows how to load RO with the base
address of RMON from word 54 of SYSCOM.

EXAMPLE

.PEEK #EMTBLK,#54 ;RMOH ~ddre55 to RO

When you use .POKE, be sure that your addressing
modes are correct. In the following example, the two state­
ments are equivalent because R2 contains the address of the
location you want to change (such as 44), and Rl points to
the data you want to move.

MOV (R1),(R2)

byR1
Ito address iri R2
;M6ve d~ta pointed to by R1
ito locatton pointed
Ito by.R2

Unless you intend to use the XM monitor, you can also
access absolute addresses directly. In the following exam­
ple the instruction sets bit 6 of word 44 (the JSW).

;Set ~SWbit6

Always use the .PEEK and .POKE programmed re­
quests to access absolute memory locations that are in low
memory, so that your programs can be run under any mon­
itor.

Notice that .PEEK and .POKE only access word loca­
tions. If you want to access a byte, use .PEEK to retrieve

Chapter 9 Gaining Access to System Information 27

the complete word and change only the bits in the high- or
low-order byte, as appropriate. You can also use this method
to set or clear specific bits in a word or byte, by combining
.PEEK; a BIS or BISB instruction to set bits, or a BIC or BICB
instruction to clear bits; and .POKE.

When you use .PEEK followed by .POKE, you must
move the value returned in RO to another location before
you perform any operation on that value. Since these two
requests use an EMT argument block, RO is corrupted when
you issue .POKE. The following example shows the correct
use of .PEEK and .POKE to clear bits 5 and 6 of the JSW.

EXAMPLE

• PEEK #EMTBLK ,#44

MOV RO,Rl

BIC #140,R1

• POKE #EMTBLK ,#44, R1

;Get JSW in RO

;Move value to Rl
;Clear bits 5 and 6, then
;Write JSW back from R1

You should use .PEEK and .POKE with all RT -11
monitors for compatibility.

Reaching Absolute Locations
from FORTRAN IV Programs

The FORTRAN IV language standard does not provide
statements t~at allow your program to access memory lo­
cations by their absolute address. You must use the IPEEK
and IPOKE functions to examine and modify these
locations.

The IPEEK function returns the contents of the ad­
dress specified as an argument. By default, the address is
interpreted as a decimal value, so if you want to reference
an address in octal, you must precede the first digit with a
quotation mark ("). For instance, in the following example,
the statement loads the variable IRMON with the contents
of word 54 (octal) of SYSCOM-the base address of RMON.

28 Programming with RT -11

Notice that the address given must be an even number
because it is a word address. The corresponding function
to retrieve the contents of a byte address is IPEEKB. The
following example shows a statement that stores the user
error code from byte 53 (octal) in the variable IUSERR.

rUSERR= IPEEKBC"S3)

The subroutines IPOKE and IPOKEB load a specified
value into a specified word (IPOKE) or byte (IPOKEB) ad­
dress.The statement in the following example loads the
contents of variable IUSR into word 46 (octal)-the alter­
nate USR swap address.

EXAMPLE

For words such as the JSW, you will usually want to
set or clear specific bits in the word instead of modifying
the complete word. You can do this by combining IPEEK,
a logical operation (such as a logical OR), and IPOKE. The
logical operation uses a bit pattern called a mask. You can
use this combination to set all the bits of a mask in the word,
or clear all the bits of a mask from the word.

In the following example, a mask of 5 (binary 101 where

Chapter 9 Gaining Access to System Information 29

bit a and bit 2 are set) is used to set and then' clear bits a
a.nd 2 in a word that has value 3 (binary all).

EXAMPLE

To set bits 0 and 2:

word 011

mask 101

result of .OR. 111

To clear bits 0 and\2:

word 011

.NOT. mask 010

result of .AND. 010

Figures 27 and 28 show FORTRAN IV subroutines that
set and clear specific bits of a word.

The following code offers a shorter and more efficient
way to perform the same operation. To set a bit you can
use the statement:

CALL IPOKE(IADDR,IPEEK(IADDR).OR.IMASK)

Figure 27.
FORTRAN IV Bit-setting Routine

CALL BITSETC"44,"1400) !SET BITS 8 AND 9 OF THE JSW

SUBROUTINE BITSETCIADDR,IMASK)
C... SETS ALL BITS IN "IADDR" WHICH ARE SET IN
C... "IMASK". THE OTHER BITS ARE NOT CHANGED.

IOLD-IPEEKCIADDR)
INEW-IOLD.OR.IMASK
CALL IPOKECIADDR,INEW)
RETURN
END

30 Programming with RT -11

Figure 28.
FORTRAN IV Bit-clearing Routine

CALL BITCLRC II 44. 11 1400) !CLEAR BITS 8 MID 9 OF THE JSW

SUBROUTINE BITCLRCIADDR.IMASK)
C... CLEARS ALL THE BITS IN IIIADDR" WHICH ARE SET
C. . . I N II I MASKII. THE OTHER BITS ARE NOT CHANGED.

IOLD-IPEEKCIADDR)
INEW-IOLD.AND .. NOT.IMASK
CALL IPOKECIADDR.INEW)
RETURN
END

To clear a bit:

CALL IPOKE(IADDR,IPEEK(IADDR).AND .. NOT.lMASK)

EXAMPLE

CALL IPOKE("44,IPEEK(1I44).OR. 1I 100)

sets bit 6 of the JSW.

RMON Fixed Offset Area

The location of routines and data within the resident mon­
itor depends on the SYSGEN options selected, so it differs
from monitor to monitor. Some data, however, is always
located at the same position relative to the start of RMON.
This area is called the RMON fixed offset area. It contains
information about the monitor itself, the current hardware
configuration, and certain software conditions.

Contents of the RMON Fixed Offset Area

The full list of the contents of the RMON fixed offset area
is given in table 3-8, chapter 3 of the RT -11 Software Sup-

Chapter 9 Gaining Access to System Information 31

port Manual. Some of the more commonly called offsets in
this area are:

• Word 266 contains the default USR base address.
This is the address where the USR resides when it is
called into memory by the background job, and loca­
tion 46 of SYSCOM is zero.

• Byte 276 is the monitor version number.

• Byte 277 is the monitor release number.

• Word 300 is the configuration word. The bit settings
within this word give information about the hard­
ware configuration and software conditions on your
system.

• Word 370 is the extension configuration word. (See
word 300.)

• Word 372 is the system generation features word.

Application Example

This location holds information indicating which ma­
jor SYSGEN options are present.

Bit 5 of the configuration word indicates whether your sys­
tem has a 60- or 50-cycle clock. You might want to write a
program that correctly processes the time and date infor­
mation available through programmed requests (.GTIM and
.DATE) under a 50-Hz or 60-Hz system. Such a program
needs to refer to the RMON fixed offset area to find out at
which frequency the system is running. Time-dependent
programming is covered in chapter 20 of this book.

Retrieving Data from the RMON
Fixed Offset Area

RT -11 has programmed requests specifically designed to
retrieve data from the RMON fixed offset area. In MACRO-

32

Impure Area

Programming with RT -11

11 programs, the .GV AL programmed request performs this
function. The statement in the following example returns
the contents of offset 266 (the normal USR swapping ad­
dress) in Rq. EMTBLK must be a two-word EMT argument
block.

EXAMPLE

.GVAL WEMTBLK,#266

When writing user programs, beware of modifying the
contents of the RMON fixed offset area. This causes changes
within the monitor. If you want to change the contents of
the monitor, you use .PV AL (MACRO-11) or IPUT (FOR­
TRAN IV). The RT-ll Programmer's Reference Manual
covers this topic in detail.

In FORTRAN IV programs, you use the ISPY system
service function to retrieve data from the RMON fixed off­
set area. ISPY calls the .GVAL programmed request to re­
turn the integer value of the word at a specified offset from
the base address of RMON. The following example returns
the configuration word (offset 300) in the variable ICONF.

EXAMPLE

ICONF=ISPY(U300)

Each job under the FB and XM monitors has its own im­
pure area which is maintained by the resident monitor. This
area contains job-dependent data used primarily for:

• Input/Output

• S~heduling and blocking

• Memory access control (XM only)

Chapter 9 Gaining Access to System Information 33

. The impure area for the background job is located
within RMON, above the fixed offset area. The foreground
job impure area is located below the foreground job and its
stack (refer to figure 25).

The contents of the impure areas are listed in table 3-
13 in chapter 3 of the RT -11 Software Support Manual.
Notice that some locations cannot be addressed as fixed
offsets, since locations change from one release of RT -11
to the next. SYSGEN options also affect these locations.

Retrieving Data from the Impure Area

To gain access to locations from the start of the impure area
at fixed offsets, you need to know:

• The address of the start of the impure area

• The fixed offset

You can use the GTJB (get job information) pro­
grammed request to get information about the job, includ­
ing a pointer to the impure area. The syntax of the request
for MACRO-11 is:

.GTJB area, addr

In this request, "area" is the address of a three-word EMT
argument block, and "addr" is the address of an eight- or
twelve-word block in which system information related to
the job is returned.

The syntax of the GTJB request for FORTRAN IV is:

CALL GTJB(array)

In this request, "array" is an eight- or twelve-word integer
array in which the data is returned.

Under FB or XM monitors that have the system jobs
feature, twelve words of storage must be allocated in your
program for the job information to be returned. Otherwise,
eight words are sufficient. On return from the request, word
5 of this area contains the address of the job's impure area.
This word has no meaning under the SJ monitor.

34 Programming with RT -11

Figure 29.
MACRO-11 Code to Retrieve Data from Offset 32

AREA: .BLKW 3 ;EMT ARGUMENT BLOCK
BLOCK: .BLKW 8. ;JOB INFORMATION AREA

.GTJB "AREA,"BLOCK ;GET JOB INFORMATION
MOV BLOCK+10,R1 ;ADDRESS OF IMPURE AREA

;FROM WORD 5 (BYTE 10 OCTAL>
ADD "32,R1 ;ADD OFFSET (32)
.PEEK "AREA,R1 ;RETRIEVE OUTSTANDING 110

;COUNT FROM IMPURE AREA

Figure 30.
FORTRAN IV Codes to Retrieve Data from Offset 32

INTEGER*2 IBLOCKCB)
C... JOB INFORMATION AREA

CALL GTJBCIBLOCK)
IWORD=IPEEKC"32+IBLOCKCS»

INTO

C... ADD OFFSET TO START ADDRESS OF IMPURE AREA
C... AND RETRIEVE THE OUTSTANDING lID COUNT.

RO

When you know the address of the start of the impure
area, add the offset of the location you want to access. Then
access the contents of the location in the area using the
.PEEK (for MACRO-ii) or IPEEK (for FORTRAN IV) pro­
grammed requests. For instance, suppose you want to know
how many I/O requests are outstanding for your job. This
is held in offset 32 (octal) of the impure area. Figures 29
and 30 show MACRO-ii and FORTRAN IV code that re­
trieve data from this location.

Gaining Access to the Processor Status
Word

Two programmed requests, which can only be used in
MACRO-ii programs, allow processor-independent ac­
cess to the processor status word (PSW). The two requests

References

Chapter 9 Gaining Access to System Information 35

are .MFPS and .MTPS. The contents of RO are not de­
stroyed by either call. The .MFPS request is used to exam­
ine the priority bits only. Condition codes are destroyed
during the call. The .MTPS request is used to load the
priority bits.

These requests are useful since they make programs
transportable. Some PDP-ll models support direct access
to the PSW via address 177776, while others only support
the MTPS and MFPS instructions. Some models support
both methods.

RT -11 Programmer's Reference Manual. Chapter 1 describes
EMT codes,. programmed request format, and programmed re­
quest errors. Chapter 2 discusses .GTJB, .MFPS, .MTPS, .PEEK,
and .POKE programmed requests in MACRO-ll programs and
using .PV AL in modifying the contents of the RMON fixed offset
area. Chapter 3 explains the IPEEK, IPEEKB, IPOKE, and IPOKEB
routines and the ISPY and GTJB requests in FORTRAN IV pro­
grams. Chapter 3" also explains how to use IPUT in modifying the
contents of the RMON fixed offset area.

RT -11 Software Support Manual. Chapter 2 discusses the user
error byte and various error conditions. Table 2-4 shows the
meaning of each bit in JSW. Chapter 3 explains bit settings for
the configuration word (offset 300), the extension configuration
word (offset 370), and the system generation features word (offset
372).

RT -11 Installation Guide.

10

Starting Execution
Starting Foreground Jobs

Starting Background Jobs
Exiting

Exiting from MACRO-11 Programs
Exiting from FORTRAN IV Programs

Passing Commands to KMON
Passing Commands from MACRO-11 Programs
Passing Commands from FORTRAN IV Programs

Chaining

Chaining in MACRO-11 Programs
Chaining in FORTRAN IV Programs

Using RADSO File Descriptors
RADSO in MACRO-11 Programs
RADSO in FORTRAN IV Programs
SYSLIB Routines for RADSO Conversion

References

10
Controlling
Program
Execution

This chapter discusses the different ways you can start and
stop program execution. Normally, you use the RUN com­
mand to load a background program into memory and start
execution at the first instruction. Sometimes, such as when
you are debugging, you may want to separate the tasks of
loading the job and starting execution, or start execution
at a different address. This chapter describes the monitor
commands used to do this. It also describes how to write
MACRO-11 programs that have more than one entry point.

When a program completes, it returns control to KMON
or to any indirect file that was active when the command
was issued to run the program. Programs may complete
successfully, or they may stop because of an error condi­
tion. On completion, your program can pass one or more
command lines to KMON, which executes these com­
mands before prompting for commands from the keyboard.
You can also write background jobs that pass control and
information to another job on completion.

This chapter describes the monitor commands: GET,
FRUN, RUN, R, START, and REENTER. The programmed
requests and SYSLIB subroutines discussed are: . EXIT,
.CHAIN, EXIT, SETCMD, CHAIN, RCHAIN, RAD50, IRAD50,
and R50ASC.

37

38 Programming with RT -11

In this chapter you will learn to restart or reenter a job.
You will be able to write a program that passes one or more
command lines to KMON on exiting, and you will learn to
write two programs; the first of which executes the second
and passes information to it.

If you are programming in FORTRAN IV, you will write
a program which, upon termination, exits to the monitor
without printing any termination messages. If you are pro­
gramming in MACRO-ll, you will write a program that can
be reentered.

Starting Execution

When you execute a program using the RUN or R com­
mand, execution starts at the transfer address. In MACRO-
11, this is the address specified as the argument to the .END
directive in your main module. In FORTRAN IV, it is the
address of the first instruction in the main program.

When the program is linked, the transfer address is
stored in word 40 of the load module file. When the pro­
gram is loaded into memory, this address is in word 40 of
the system communication area (SYSCOM). You can change
the transfer address of a program written in either MACRO-
11 or FORTRAN IV by specifying the ITRANSFER option
when the program is linked.

Starting Foreground Jobs

RT-ll supports only one way of starting a foreground job­
the FRUN command. This loads the program into memory
and starts execution at its transfer address. Options to FRUN
include IBUFFER:n (reserves extra space in memory),
INAME:name (assigns a logical name to the foreground job),
and IPAUSE (allows you to debug a program).

Chapter 10 Controlling Program Execution 39

Starting Background Jobs

The RUN command is normally used to load background
jobs into· memory and start execution at their transfer ad­
dress. You can separate the tasks of loading and executing
by issuing a GET command followed by a START. These
commands can be useful if you are debugging the program
or if you want to run the same job several times. When a
job completes successfully, it remains in memory until you
load another program with RUN or GET. You can execute
the job again using the REENTER or START command.
These commands have the following features:

• RUN loads a background program into memory, from
the specified device (default UK:), and starts execu­
tion at the transfer address.

• R is similar to RUN, except that it can only load the
program from the system device because it is not ca­
pable of loading any other device handlers.

• GET loads a program into memory but does not start
execution.

• REENTER starts execution at the reentry address,
which is the transfer address minus two (bytes). You
can REENTER a program only if it sets bit 13 of the
JSW and then exits normally (exiting is discussed
later) . You can use this command to place a second
entry point in MACRO-11 pr~ms. This command
is less useful if you are programming in FORTRAN
IV because you cannot control where instructions are
placed when the program is linked.

• START starts execution at the specified address. If no
address is given, it starts at the transfer address.

You use START instead of RUN when:

• You want to execute a program several times. (Saves
the tilne needed to fetch the progra-m from disk for
each execution.)

40

Exiting

Programming with RT -11

• You want to use data created during the first execution.

• You want to debug your program using the methods
discussed in chapter 4, "Debugging Programs," of
Programming With RT -11, Volume 1.

In the following example, the normal transfer address
is at the label START, and the reentry address is the branch
instruction.

EXAMPLE

BR ENTRY2
START:

Initialization code

ENTRY2:

Common code

.END START

;Reentry pOint
jlnitial entry point

If you want to have more than two entry points, you
must use START and specify the address for each entry point
(from the load map). Certain restrictions apply when you
use these commands with overlaid programs or programs
that use extended memory features. For details about these
commands, refer to chapter 4 of the RT-11 System User's
Guide.

Exiting is the process of terminating a program and return­
ing control to the monitor. All user programs should exit
correctly when they have completed processing. They
c::hould not be allowed to loop infinitely or halt the system.

Chapter 10 Controlling Program Execution 41

After your program has properly exited, you can proceed
with other work.

Exiting from MACRO-11 Programs

To terminate a MACRO-ll program, you use the .EXIT
programmed request. Your program can perform either a
normal exit or a RESET operation (if you are using the SJ
monitor), depending on the contents of RO when you issue
the .EXIT request.

• If RO is set to a value other than zero, a normal exit
is performed. Mark time requests are cancelled and
liD operations are allowed to complete.

• If RO is set to zero, a RESET operation is performed.
Marked time requests are cancelled and I/O opera­
tions are aborted. Under SJ, this operation is per­
formed by the PDP-l1 RESET instruction.

If your program recognizes that a significant error has
occurred ~uring execution, it should clear RO on exit so that
the program cannot be restarted.

Exiting from FORTRAN IV Programs

You can exit from a FORTRAN IV program in two ways:
first, by issuing a STOP command, which prints a message
like:

STOP 'text'

at the terminal when the program exits.
The second way is to call the EXIT subroutine. This

subroutine is in the FORTRAN IV subroutine library, which
is usually combined with SYSLIB. EXIT does not display
any termination messages. The format is:

CALL EXIT

42 Programming with RT -11

The type of exit performed by a FORTRAN IV pro­
gram is determined by the FORTRAN IV OTS. A normal
exit is performed unless the OTS recognizes that a fatal er­
ror has occurred, in which case the program stops with an
error message.

Passirjg Commands to KMON

When a background program exits, control returns to KMON,
which is then ready to accept more monitor commands,
either from the keyboard or from any active indirect file.
Your program can optionally pass one or more monitor
commands to KMON when it exits. These commands are
executed before any more commands are read from the
keyboard or indirect file.

Passing Commands from MACRO-11 Programs

To pass command lines to KMON when your program ex­
its, p,erform the following steps:

1. Move the command lines into locations 512 to 777
(octal). Each command must be terminated by a null
byte (that is, an ASCIZ string).

2. Place a count of the number of bytes in the command
lines into the word (not byte) at location 510 (octal).

3. Set bit 11 of the JSW (the "pass line to KMON bit")
immediately before the .EXIT request.

4. Issue the .EXIT with RO = o.

Passing Commands from FORTRAN IV Programs

The SETCMD programmed request is used to pass a com­
mand line to KMON from a FORTRAN IV program on exit.
Note the following points:

Chaining

Chapter 10 Controlling Program Execution 43

1. Only one command line can be passed to KMON
from FORTRAN IV programs. If you want to pass
more than one command, make an indirect command
file and pass a command to KMON to execute this
file.

2. If you pass any command lines to KMON, any indi­
rect files that were active at the time your program
was invoked are aborted.

3. The argument to SETCMD can be either a quoted
string, or a variable or array name. The command
line must be terminated by a zero byte (ASCII null).
(This is the equivalent of a MACRO-11 ASCIZ
string.) If you use the normal FORTRAN IV OTS in­
put statements (READ, ACCEPT) to read in the com­
mand line, then you must put this byte in the string
yourself. There are also programmed requests for ter­
minal input which automatically place a zero byte at
the end of the string. These are discussed in chapter
13, "Using Multiterminal Input/Output."

When you design applications programs, you may find it
necessary or desirable to split a programming task into two
or more programs. You may want to do this if one program
performing the complete task is too large to fit into mem­
ory, or if some parts of a program are not needed every time
the program is run.

If you create two or more related background jobs to
do a single programming task, you will find it useful to make
one job capable of starting the other without operator ac­
tion. It is also useful for the first job to be able to pass in­
formation to the second without having to write the infor­
mation to disk.

RT -11 allows you to transfer control from one pro­
gram to another by a process called chaining. The area that
contains the information you pass from one job to another
is called the chain information area, and it occupies loca­
tions 500 to 777 (octal). You should not rely on any other

44 Programming with RT -11

locations being preserved from one job to the next. In vir­
tual programs run under the XM monitor, locations 500 to
777 are not saved, so jobs cannot be chained. Privileged
programs under XM can, however, chain.

Notice that location 1000 (octal), which is the top of
the chain area, is also the default initial value of the stack
pointer in background jobs. If your program needs a lot of
stack space and, in addition, you want to place informa­
tion into the chain area at compile time, this might result
in the stack and the chain information overlapping. To avoid
this, assign more space to the stack, using the methods de­
scribed in chapter 1, "Developing Programs in MACRO-ll
and FORTRAN IV," of Programming with RT -11, Volume 1.

Chaining in MACRO-11 Programs

To enable an outgoing job to chain to an incoming job and
pass information to it, you should perform the following
steps. Place the file specification (in RAD50 format) for the
incoming job into bytes 500 to 507 (octal) of the outgoing
job. (Read the section, "Using RAD50 File Descriptors," later
in this chapter to learn how to do this.) Then, move the in­
formation that you want to pass to the incoming job into
locations 510 to 777 (octal). You should use the .PEEK and
.POKE programmed requests to access locations in the chain
area. In the following example, the code moves the data from
BUFF into the chain area. The format of the file specifica­
tion is explained later.

·EXAMPLE

MOV #BUFF,R1 ;Buffer ~ddre55to R1
MOV #500,R2 . ; Start of chain area

10$: .POKE #AREA,R2,(R1 > ;Put word of data from
TST (R2>+ ;Buff into chain area
TST (R1 >+ jlncrement pointer
BHE 10$;Back if not done yet

Chapter 10 Controllinl) Program Execution 45

BUFF: .RADSO 10K FRED SAVI ;RADSO file spec for
;DK:FRED.SAV

.WORD /1,2,3,4, ... ,01 ;Data for next Job

Finally, issue the .CHAIN request, as follows:

.CHAIN jChain to next program

In the incoming job, test bit 8 of the JSW (the chain
bit). It will have been set only if the program has been suc­
cessfully chained. In this case, retrieve the information
passed by the outgoing job from locations 510 to 777 (oc­
tal). Use .PEEK to access this information.

The incoming job does not have to accept information
passed by the outgoing job. If you want to set up the chain
area with constant data in your program, you must set bit
8 in word 44 of block 0 in the program's save image file. If
you do not set this bit and the chaining occurs, bytes 500
to 777 are saved from the job that issued the .CHAIN in­
stead of being loaded from the save image file. To set bits
or change other locations in your save image file, use a
.ASECT directive in your source program.

EXAMPLE

.ASECT ;Word 44 (JSW)

. =44
JSW: .WORD 400 ;Set bit 8 to protect

. =500
CAREA:

.PSECT

;chain area (all other
;bits are cleared)
;Start of chain area

This code sets bit 8 of word 44 (octal) and places informa­
tion in the chain area to assure that these locations are
loaded from the save image file. You can use the same

46 Programming with RT -11

method to set other bits, or a combination of bits, in the
load image.

Chaining in FORTRAN IV Programs

To enable the outgoing job to chain to an incoming job and
pass information to it, you should place the file specifica­
tion (in RAD50 format) for the incoming job into a four-word
area of the outgoing job. (Read the section, "Using RAD50
File Descriptors," later in this chapter to learn how to do
this.) Then place the information (up to 60 words) that you
want to pass to the incoming job, into an array or sequence
of variables in a COMMON block. The first variable must
start on a word boundary. Finally, call the CHAIN subrou­
tine. The format is:

CALL CHAIN (dblk,var,wcnt)

In this statement:

dblk is the address of the area containing the device
and file specification of the incoming job

var is the address of the first variable containing the
information to be passed

wcnt is the number of words of information (beginning
at var) to be passed, which must not exceed 60

In the incoming job, call the RCHAIN subroutine to see
if this job has been chained to the outgoing job. The format
is:

CALL RCHAIN (flag,var,wcnt)

If it has been chained, the integer variable "flag" is set to
-1 (true). If not, "flag" is 0 (false).

If the program has been chained, RCHAIN also re­
trieves any information passed by the outgoing job. "var"
is- the address of the first of a sequence of variables where
you want the information to be stored. You should set
"wcnt" to the number of words to be moved.

Chapter 10 Controlling Program Execution 47

Using RADSO FE-le Descriptors

A MACRO-11 or FORTRAN IV program which chains to
another job must specify the incoming job's file specifica­
tion in a four-word area called the file descriptor block. This
block contains the following information:

• The device type (3 characters)

• The file name (6 characters)

• The file type (3 characters)

This information must be stored in Radix 50 (RAD50)
format. RAD50 code allows three characters to be stored in
each word insteaCl of the usual two. You can use any up­
percase alphabetic characters, numbers, and spaces (SPACE)

characters) in the file descriptor block. Figure 31 shows an
example of how the file specification DK:HELLO.SA V would
be stored. Notice that each field must be extended to its full
length, with trailing spaces if necessary. This file specifi­
cation would be stored as:

DK(SPACE)

HELLO(SPACE)

SAY

Figure 31.

3 characters for the device name

6 characters for the file name

3 characters for the file type

RAD50 File Descriptor Block for DK:HELLO.SAV

DEVICE FILE
NAME FILE NAME TYPE
~ (;----------~ ~

I 0 I K
1

WORD

H E

2

L L 0 S A V

3 4

48 Programming with RT -11

If, at the time you write your program, you know the
file specification for the job to which you want to chain,
you can set up the file description as constant data. In MA­
CRO-ll programs you can do this with the .RAD50 assem­
bler directive. In FORTRAN IV programs you can use the
R specifier in a DATA statement.

If, for example, you get the file specification at run time
by reading it from the terminal, you will have to convert it
from ASCII to RAD50 code and store it in the file descrip­
tor block. Conversion routines are provided in the system
subroutine library.

RAD50 in MACRO-11 Programs

The .RAD50 assembler directive encodes text in RAD50
format and reserves one word of storage for every three
characters in the text string. If the text is not a multiple of
three characters, the directive automatically appends trail­
ing spaces. The format of the directive is:

FDB: .RAD50 /text/

Here /(slash) may be any delimiter that does not appear in
the text.

You can specify the complete file descriptor block in
a single .RAD50 directive, or you can use a separate direc­
tive for each field.

EXAMPLE

You can create a file descriptor block for
DK:HELLO.SA V in two ways:

FDB1 : .RADSO IDK HELLO SAVI ; F de
;block

descriptor

FDB2: .RADSO IDKI ;Device name
.RADSO IHELLOI ; F de name
.RADSO ISAVI ;File type

Chapter 10 Controlling Program Execution 49

In the first method, you have to remember to include
spaces in the text string to keep the correct word positions
for the field. In the second method, the directive appends
trailing spaces to the fields as necessary. If the file name is
three characters or fewer, you must add enough spaces to
make sure that two words of storage (not just one) are re­
served.

RAD50 in FORTRAN IV Programs

You can store the file descriptor block i.n any set of four
sequential words. You can use the single four-word vari­
able (REAL * 8, COMPLEX, or DOUBLE PRECISION) that is
easiest to initialize. If you want to be able to refer to each
word separately, use a four-element INTEGER*2 array.

To store the file descriptor information in RAD50 code,
use the R format specifier in a DATA statement.

EXAMPLE

REAL*8 FDB
DATA FDB/12RDK HELLO SAVI

If you want, you can define each field separately.

EXAMPLE

INTEGER*2 IFDBLK(4)
,3RHEL,2RLO,3RSAVI

In the first example, you must include spaces as nec­
essary so that each field occupies its full length. In the sec­
ond example, you must define each element of the array
separately. In either case, if the text string is not a multiple
of three characters, the compiler appends enough trailing
spaces to make it so.

50

Practice
10-1

Programming with RT -11

1. If you are programming in MACRO-ii, create the fol­
lowing programs:

Program 1 (PR1001.MAC)

.TITLE PR1001

PR1001 Prompt the user to enter a command,
read it, and exit-preventing the
program from being REENTERed .

. MCALL

.ENABL
MSGBFR: .BLKB
PROMPT: .ASCII

.EVEN
START: · GTLI N

CLR
· EX IT
.END

.GTLIN .EXIT
LC
83. ;Input text buffer
"Enter command: "<200>

#MSGBFR,#PROMPT ;Prompt for and get
;input string

RO

START

;Clear RO for hard
;exit and exit

Program 2 (PR1002.MAC)

.TITLE PR1002

PR1002 Announce that program 2 has
started and then exit .

.MCALL . PRINT .EXIT

.ENABL LC
HELLO: . ASCIZ "HI THERE! THIS IS PROGRAM

.EVEN
START: .PRINT #HELLO ;Display message

· EX IT ;and exit
.END START

2 . "

Tailor the programs to use the extended memory fea­
tures under the XM monitor. Use the .PEEK and .POKE
programmed requests when you need to gain access to
absolute locations in memory.

Chapter 10 Controlling Program Execution

2. Assemble, link, and execute program 1 at your termi­
nal. The system prompts you to type a monitor com­
mand; you can respond by typing a command like:

DATE 01-JUN-84

Try to reenter the program. KMON should give you an
error message because the program, as written, cannot
be reentered.

3. Copy program 1 into a file called PR1003.MAC. Modify
the program in PR1003 so that it can be reentered and,
on termination, displays a message reminding you to
reenter the program. When you reenter, move the mon­
itor command that you typed into the chain area and
chain to program 2 (PR1002). Assemble and link
program 2.

Execute program 1 (PR1003) and type in a monit.or
command. The program should then stop. Reenter it,
and check that you get a message announcing that pro­
gram 2 has started.

4. Copy program 2 into a file called PR1004.MAC. Modify
it so that it checks whether it has been chained. If it
has not, it should issue an error message and stop. If it
has, it should pick up the monitor command from the
chain area, move it into the parameter area for KMON,
and pass the command to KMON on exit.

5. Modify program 1 to chain to PR1004. Execute pro­
gram 2 and check to see that it gives the error message.
Now execute program 1 and reenter it. Check to see
that the monitor command you typed in is passed to
KMON by program 2 and executed correctly.

SYSLIB Routines for RAD50 Conversion

51

If you do not know the file specification until run time, you
will have to convert it from ASCII to RAD50 code using the
conversion routines available in SYSLIB. These conversion

52

Practice
10-2

Programming with RT -11

routines are available to both MACRO-'ll and FORTRAN
IV programmers:

• IRAD50 converts a specified number of ASCII charac­
ters to RAD50

• RAD50 converts six ASCII characters to RAD50

1. If you are programming in FORTRAN IV, create the
following programs:

Program 1 (PR1001.FOR)

PROGRAM PR1001
C

C Prompt the user to.enter a monitor command
C and then exit.
C

BYTE MSGBFR(SO)
TYPE 100 ! Ask for a command

100 FORMAT (1H$,'Enter command: ')

1 01
ACCEPT 101 ,MSGBFR Read command 1 i ne
FORMAT (SOA1)
STOP 'END OF PROGRAM'
END

Exit with mesaage

Program 2 (PR1002.FOR)

PROGRAM PR1002
C

C Announce that program 2 has started and then
C exit without a message.
C

TYPE 100
100 FORMAT (1H ,'HI THERE! THIS IS PROGRAM 2.')

CALL EX IT
END

2. Compile, link, and execute program 1 at your terminal.
It prompts you to type a monitor command; you can
respond by typing a command like:

DATE 01-JUN-84

References

Chapter 10 Controlling Program Execution

Notice the message displayed when the program termi­
nates. Now modify the program so that it does not dis­
play any termination messages.

3. Copy program 1 to PR1003.FOR and modify it so that
after it reads the monitor command, it chains to pro­
gram 2 (PR1002.FOR) passing the monitor command in
the chain area. Compile and link program 2.

Execute program 1 and type in a monitor command.
Check to see that you get a message announcing that
program 2 has started.

4. Copy program 2 to PR1004.FOR and modify it so that
it checks to see if it has been chained. If it has not, is­
sue an error message and stop. If it has, pick up the
monitor command from the chain area, pass the com­
mand to KMON, and then stop the program.

Execute program 2 and check to see that it gives the
error message. Now modify program 1 to chain to
PR1004. Execute program 1 and check to see that the
monitor command you type in is passed to KMON by
program 2 and executed correctly.

53

RT-ll Programmer's Reference Manual. Chapter 2 discusses the
.EXIT and .CHAIN programmed requests. Chapter 3 covers the
SETCMD requests, CHAIN and RCHAIN subroutines, and RAD50
and IRAD50 conversion routines.

RT-ll Software Support Manual. Chapter 2 describes bit 8 of
JSW.

RT-ll System User's Guide. Chapter 4 describes monitor com­
mands.

11

1/0 Operations
1/0 Modes

Synchronous mode
Asynchronous mode
Event-driven mode

Selecting an 1/0 Mode
Terminal 1/0

Queued 1-0
File 1/0

Special Function 1/0

FORTRAN IV OTS 1/0

Reference

Using
'nput/Output
Svstems

Almost all programs interact in some way with one or more
peripheral devices. This interaction is normally for the
purpose of inputting or outputting data. Support for in­
put/output (I/O] operations in RT-ll is provided by means
of programmed requests which allow you to perform I/O
operations in one of three modes-synchronous, asyn~
chronous, or event driven.

Synchronous I/O is processed in sequence with the
program; that is, the program must wait for the I/O opera­
tion to be completed before it can continue. Asynchronous
I/O, one form of nonsynchronous I/O, is processed inde­
pendent of the program; that is, the program can continue
without waiting for I/O completion. Wherrthe program needs
the results of the I/O request, it must wait. Event-driven I/O,
the other form of nonsynchronous I/O, enables you to spec­
ify a routine to be executed when the I/O is completed.

This chapter discusses these modes of performing I/O
as well as the support for terminal, file, and queued I/O. It
also describes the FORTRAN IV object time system (OTS]
I/O support. The discussion is designed to help you select
which form of I/O to use in your programs.

55

56

1/0 Operations

Programming with RT -11

The MACRO-11 programmed requests introduced in
this chapter are: .TTYIN, .TTINR, .TTYOUT, .TTOUTR,
.PRINT, .GTLIN, .READ, .READW, .READC, . WRITE,
.WRITW, .WRITC, .FETCH, .ENTER, .LOOKUP, .CLOSE,
.PURGE, .RELEAS, .CSIGEN, .CSISPC, and .SPFUN. The
FORTRAN IV requests introduced are: ITTINR, ITTOUR,
PRINT, GTLIN, IREAD, IREADW, IREADC, IREADF, IWRITE,
lWRlTW, lWRlTC, lWRlTF, lFETCH, lGETC, lENTER,
LOOKUP, CLOSEC, PURGE, IFREEC, lCSI, lSPFN, ISPFNW,
lSPFNC, and lSPFNF.

Almost every program has to perform some input or output
operation; I/O operations are among the services most fre­
quently used. The I/O method you choose affects both the
ease of program writing and the execution speed.

I/O operations are divided into two classes, synchron­
ous and nonsynchronous. Synchronous I/O is executed se­
rially in a program; that is, when the program issues an I/O
request, it must wait until the I/O operation has been com­
pleted before it can continue processing. Nonsynchronous
I/O operations execute in parallel with the program, which
is more efficient because the CPU can continue processing
while a device is performing an I/O transfer. Thus, I/O and
CPU processing can overlap, decreasing the total process­
ing time.

Figure 32 shows a program using synchronous 1/0. The
numbers indicate the following events:

1 The program issues a read request and stops process­
ing. The system processes the read request.

2 When data is available the read operation is com­
pleted and control returns to the user program.

3 The program issues a write request and stops process­
ing. The system processes the write request.

4 The write operation is completed and control returns
to the user program.

Chapter 11 Using Input/Output Systems 57

Figure 32.
Synchronous Processing

READ
OPERATION

PROGRAM

WRITE
OPERATION

1

2

3

4

....
~

TIME

Figure 33 shows a program using nonsynchronous lIO.
The numbers indicate the following events:

1 The program issues a read request and continues pro­
cessing. The system processes the read request in
parallel.

2 The program issues a write request and continues
processing. The system processes the write request in
parallel to the program and the read request.

3 The program cannot continue until the read is com­
pleted, so it waits for 110 completion of the read
request.

4 The read is- completed and the system informs the
program, which continues.

The processing continues, with the program issuing
nonsynchronous lIO requests and being informed of lIO
completions as they occur.

58

1/0 Modes

Programming with RT -11

Figure 33.
Nonsynchronous Processing

READ
OPERATION

PROGRAM

WRITE
OPERATION

1

4

2 3

,

r

...
TIME

p

RT-11 programmed requests support both synchronous and
nonsynchronous I/O operations. Nonsynchronous opera­
tions can be further divided into asynchronous and event­
driven modes. Thus, the two classes of RT -11 I/O opera­
tions include three different modes. These modes are re­
lated as shown in figure 34. Using these processing modes
you can maximize performance under many different con­
ditions.

Synchronous mode

When a synchronous I/O operation is requested, program
execution is suspended until the I/O transfer is completed.
This is the easiest mode to program, but it is the most in­
efficient method because there is no overlap of CPU and I/O
processing.

Chapter 11 Using Input/Outp·ut Systems 59

Figure 34.
RT -11 Input/Output Modes

1/0 MODES

I
I I

SYNCH RONOUS NON-SYNCH RONOUS

'.-
I

I I
ASYNCHRONOUS EVENT-DRIVEN

Asynchronous mode

When an asynchronous I/O operation is requested, pro­
gram execution is suspended only until the monitor has
queued the request. The program then continues execu­
tion, poss.~bly before the I/O has been completed. It contin­
ues procEfssing until it needs to synchronize with the I/O
operation, for example, to use the data received. At this time
the program must test for I/O completion with the .WAIT
request.

Event-driven mode

When a program requests an event-driven I/O operation, the
monitor suspends program execution until the request has
been queued. The program then continues executing, pos­
sibly before the I/O has been completed. When the I/O is
completed, the monitor interrupts the main program and
executes a completion routine, specified in the original I/O

60 Programming with RT -11

request. This routine can be used to perform any process­
ing that had to wait for I/O completion.

The event-driven mode is the most efficient method of
overlapping I/O and CPU processing because the program
does not have to test for I/O completion before executing
code that must be synchronized with the I/O transfer. It is,
however, the most difficult to implement.

Selecting an 1/0 Mode

The careful selection of I/O modes will help you achieve
high performance from a program that includes large
amounts of both I/O operations and CPU processing. Non­
synchronous I/O is most effective when the program is di­
vided into a number of processes. For example, reading a
buffer, analyzing the data, and writing a buffer can each be
a separate process. These processes can run concurrently,
but they need to be synchronized. The program must not
try to analyze the data before it has been read into the buffer.
Throughput is most efficient when there is a maximum
overlap of process activity.

The following suggestions should help you select the
best I/O mode to use for your applications programs:

1. If performance is not important, use synchronous
mode because it is the simplest to program.

2. If one process needs much more time than the others,
use synchronous mode because the potential overlap
is small.

3. If system performance is important and the task can
be divided into a number of processes whose timing
is random, use event-driven mode. This gives the
most efficient overlap of I/O and processing.

4. If the time required for a process is comparatively
long, use event-driven I/O. For example, consider an
application with a number of input devices. The ap­
plication software is designed to accept input from
any of them, process the data, and output the results

Terminal I/O

Chapter 11 Using Input/Output Systems 61

to a data base. At any given time, a device may have
no operator or may not be working. The system must
not hang waiting for input from any of the devices,
so event-driven I/O is the only practical choice.

5. If none of the above apply, consider using asynchron­
ous mode to overlap the longest processes. The I/O
and . WAIT requests should be arranged to keep these
processes as active as possible.

The console terminal is the most frequently used periph­
eral device because almost all programs send and receive
data through it. RT -11 has a set of programmed requests
developed expressly for console terminal I/O. These re­
quests are listed in table 8. The system code for all these
requests (except .GTLIN or GTLIN) resides within RMON.
(The .GTLIN or GTLIN requests require the USR.) This
means that terminal I/O does not need any disk access to
load additional system software.

The terminal I/O system structure is shown in figure
35. When a terminal I/O request is issued, the EMT dis­
patch routine passes the request to the terminal service

Table 8.
Terminal 1/0 Requests

MACRO-11 FORTRAN IV
Operation Requests Requests

Input character .TTYIN ITTINR
from terminal .TTINR

Output character .TTYOUT ITTOUR
to terminal .TTOUTR

Input line from .GTLlN GTLlN
terminal

Output line to .PRINT PRINT
terminal

62 Programming with RT -11

Figure 35.
Processing Terminal Input/Output Requests

EMT
DISPATCH
ROUTINE

SOFTWARE

RMON

TERMINAL
SERVICE
ROUTINES

TERMINAL
1/0 REQUEST

USER
PROGRAM

HARDWARE

routines. These routines gain access to the terminal device
registers directly.

When your program needs to communicate with the
terminal, first consider using the terminal I/O requests since
they are fast and flexible. Also, they do not greatly increase
the size of your program because the code needed to exe­
cute them is always in memory, as part of RMON. The dis­
advantages of using the terminal I/O requests are:

• The requests are device specific. If you later decide
to send your output to a line printer, you must re­
write part of your program. If you want to be able to

. change the I/O device easily, use one of the other I/O
systems.

• Terminal I/O transmits data in character format only.
Your program must perform any conversions, for ex­
ample, binary to ASCII. If a FORTRAN IV program is
to send out numeric data, you should consider using
I/O statements in FORTRAN IV fornlat.

Queued I/O

Chapter 11 Using Input/Output Systems 63

Table 8 lists a complete set of programmed requests that
permit multiterminal I/O. These requests are discussed in
chapter 13, "Using Multiterminal Input/Output."

RT -11 provides a standard programming interface for ac­
cessing the supported devices (such as storage disks and
printers) and for special programs (called device handlers)
which control each device. The interface takes I/O requests
from user programs and puts them on a queue to be pro­
cessed by the appropriate device handler. This process is
called queued I/O. The requests used to perform input and
output through queued I/O are listed in table 9.

The system device handler and system code reside in
memory under all three monitors. The handler for the con­
sole terminal is resident in memory under the FB and XM
monitors. Under the SJ monitor, it resides on the system
disk and is loaded by the USR when needed. To decrease
memory requirements, all other device handlers reside on
the system disk and are loaded into memory when needed.

The common code needed to transfer information be­
tween a peripheral and a running program is in the Resi-

Table 9.
Queued I/O Requests

MACRO-11 FORTRAN IV
Operation Requests Requests

Input from .READW IREADW
peripheral .READ IREAD
device

.READe IREADe

IREADF

Output to .WRITW IWRITW
peripheral .WRITE IWRITE
device

.WRITe IWRITe

IWRITF

64

File 1/0

Figure 36.

Programming with RT -11

dent Monitor RMON. When a queued I/O request is issued,
RMON passes this request on to the appropriate device
handler, using a data structure called an I/O queue ele­
ment. Figure 36 shows the flow for queued I/O requests.

The flexible options of the queued I/O system make it
the logical choice for I/O to most devices. As a program­
mer, you do not need to know very much about the device
being used. The programs written using queued I/O can be
device independent, and you can determine the actual de­
vice to be called at execution time.

Certain set-up operations are required before you perform
queued I/O to a file, and some clean-up operations are also
required once I/O is completed. Table 10 shows the se­
quence of operations for MACRO-11 and FORTRAN IV files.

These requests need the file and device specifications
in a device block in RAD50 format (see chapter 10). Pro-

Processing Queued Input/Output Requests

SOFTWARE HARDWARE

RMON
QUEUED 1/0

1'1..

ROUTINES - I/O QUEUE ~ DEVICE
I y -

ELEMENT HANDLER
EMT
DISPATCH

II ROUTINE I" (/'~
I UNIBUS
I v

QUEUED ~ I/O REQUEST

DEVICE

USER
PROGRAM

Chapter 11 Using Input/Output Systems 65

Table 10.
Sequence of Operations and Requests for File 1/0

MACRO-11 FORTRAN IV
Operation Request Request

1. Load the device .FETCH IFETCH
handler

2. Allocate a channel IGETC
to a device

3. Open the channel .ENTER IENTER

.LOOKUP LOOKUP

4. Perform 1/0 .READ IREAD

.WRITE IWRITE

5. Close or purge the .CLOSE CLOSEC
channel .PURGE PURGE

6. Free the channel IFREEC

7. Release the handler .RELEAS

grams that need to read ASCII file specifications from the
console terminal or indirect command files can use the
Command String Interpreter (CSI). Table 11 lists the re­
quests used to process an ASCII string in CSI format. These
set-up and clean-up requests are executed by the USR
monitor component. The USR may be either memory or disk
resident. Swapping the USR is covered in chapter 18, "Us­
ing Memory."

Table 11.
Requests for Processing ASCII Strings in CSI Format

Operation

Load handlers and open
channels

Return RAD50 device
blocks

MACRO-11
Request

.CSIGEN

.CSISPC

FORTRAN IV
Request

ICSI

66 Programming with RT -11

Special Function 1/0

RT -11 provides a special function I/O request that permits
a program to perform device-dependent operations in all
three I/O modes, on magnetic tapes and on some disks.

If you are programming in MACRO-11, you should use
the request .SPFUN and specify the I/O mode in an argu­
ment to the macro call. If you are programming in FOR­
TRAN IV, you can use one of four functions, ISPFN,
ISPFNW, ISPFNC, or ISPFNF, for each of the different I/O
modes.

FORTRAN IV OTS I/O

The FORTRAN IV language provides support for I/O through
the statements, READ, WRITE, TYPE, ACCEPT, and PRINT.
Because they are a defined part of the language, with no
special subprogram calls needed, the following features al­
low for easy handling of data input and output:

• The division of I/O information into records

• Automatic translation between character and internal
representation using formatted I/O

• Direct or random access I/O

Most common I/O operations to the terminal and other
devices can be performed using these statements. How­
ever, these statements do not provide all of the capabilities
of the RT -11 programmed requests. Because of the way in
which the FORTRAN IV OTS performs I/O, the use of pro­
grammed requests can increase the execution speed and
decrease the size of your program. The OTS I/O mecha­
nism is shown in figure 37.

When a FORTRAN IV program executes an I/O state­
ment, it calls some OTS routines. The OTS responds by ex­
ecuting RT-11 programmed requests. These may be termi­
nal I/O or queued I/O requests, depending on the device

Reference

Chapter 11 Using Input/Output Systems

Figure 37.
Performing Input/Output through FORTRAN IV OTS

F
S

RMON

/).

PROGRAMM
REQUESTS

I OTS I
A

ORTRAN I/O
TATEMENTS

USER
FORTRAN
PROGRAM

ED

67

. assigned. The OTS does not perform direct I/O itself but
passes all requests to RT -11.

If your program uses programmed requests, you are able
to bypass the I/O routines, communicating directly with RT-
11. This reduces the time required to process OTS I/O rou­
tines, so your program should execute faster. If you remove
all uses of one or more classes of FORTRAN IV I/O (for ex­
ample, all formatted or direct I/O statements), the corre­
sponding OTS routines will not be linked with your pro­
gram, making it smaller.

RT -11 Programmer's Reference Manual. Chapter 1 discusses
input/output operations~ terminal input, output, and multiter­
minal requests.

12

Terminal 1/0 Buffers .

Special Characters
Single-Character 1/0

MACRO-11 Requests: _ TTINR, • TTOUTR, • TTYIN,
and .TTYOUT
FORTRAN IV Requests: ITTINR and ITTOUR
Error Handling under the SJ Monitor
Error Handling under the FB Monitor

Overriding Job Blocking under the FB Monitor
Setting Up and Using 1/0 Buffers
Terminal Special Mode
Line-oriented Output

Using .PRINT in MACRO-11
_PRINT from a Foreground Job
Using PRINT in FORTRAN IV

Line-oriented Input
Input from Indirect Command Files
Handling (ClRUC)

Handling (ClRUD)

Reference

12
Using
Terminal
Input/Output

In most applications, you interact with a program through
the console termina1. The program sends messages, ques­
tions, warnings, and prompts to the terminal and receives
responses to questions, choices of options, and commands
from the terminal.

Information is transferred in both directions as a se­
ries of characters. Digital's systems use the seven-bit ver­
sion of the American Standard Code for Information Inter­
change (ASCII]. Most ASCII characters are standard printing
characters such as numbers, letters, and punctuation marks.
Some special nonprinting characters are used for control­
ling the terminal and sending special signals to the pro­
cessor.

The basic operations of terminal I/O are single-char­
acter input and output. There are also line-oriented 110
functions in which a whole line is transferred by one pro­
grammed request. Other features offered by RT -11 for ter­
minal I/O include the ability to enable or suppress echo
printing and handle the special characters (ClRUe) and
(ClRUD).

This chapter describes how to use the programmed re­
quests: .TTINR, .TTYIN, .TTOUTR, .TTYOUT, .PRINT,
.GTLIN, .SCCA, and .RCTRLO for MACRO-11 and ITTINR,
ITTOUR, PRINT, GTLIN, SCCA, and RCTRLO for FOR­
TRAN IV.

69

70 Programming with RT -11

When you have completed this chapter, you will be
able to write code to transfer a line of text from the termi­
nal to a buffer in memory, using the single-character input
requests .TTYIN for MACRO-II and ITTINR for FOR­
TRAN IV. You will also learn to perform the following
functions: input text from the terminal; print text from a
buffer in memory on a terminal, using the output requests
.TTYOUT and .PRINT for MACRO-II or ITTOUR and
PRINT for FORTRAN IV; prevent (CTRUC) from aborting a
program; and reset (CTRUO) under program control.

Terminal 1/0 Buffers

Terminal I/O in RT -11 is performed through a set of buffers
known as the terminal 1/0 buffers. Each job has two buffers,
one for input and one for output, both located in the job's
impure area. By using the terminal I/O requests, you can
transfer characters between a program and its terminal I/O
buffers.

Interrupt service routines in RMON handle the actual
character transfer between the I/O buffers and the terminal.
By handling the transfer on an interrupt basis, RMON al­
lows terminal I/O to run in parallel with the user program.
On input, parallel processing means that you can type in
characters before the program asks for them. This is known
as type-ahead. On output, parallel processing means that the
program can issue a number of output requests and can
continue running while the characters are being printed.
Thus, the program can run more quickly since it does not
need to wait for all the characters to be printed before it
proceeds.

Normally RMON does not make input characters
available to your program until you type a line-terminating
character, such as (RETURN), (LiNEFEED), (CTRUZ), or in some cases
(CTRUC). This means that the characters are held in a buffer,
and you can correct typing errors, using the line-editing
characters (DELETE) and (C~RUU).

The internal structure of the terminal I/O system is
shown in figure. 38. The arrows indicate the transfer of a
character between the terminal and the program. Notice that
the path for input is independent of the path for output.

Chapter 12 Using Terminal Input/Output 71

Figure 38.
Internal Structure of the Terminal Input/Output System

RMON TERMINAL OUTPUT
INTERRUPT
SERVICE
ROUTINE
TERMINAL INPUT

L."~~~I INTERRUPT
SERVICE
ROUTINE

~ ~TERMINAL INPUT
~~~~ REQUEST 

ROUTINE 

TERMINAL OUTPUT 

JOB'S IMPURE AREA 

REQUEST ~----------------~ 

TERMINAL 
INPUT 
REQUEST 

USER 
JOB 

ROUTINE 

INPUT DATA 
PATH 

OUTPUT DATA /'---t 
PATH ~ 

Si:~cial Characters 

Certain characters are not passed through the terminal in­
put buffer by the terminal service routines. These charac­
ters include: 



72 Programming with RT -11 

• Line-edi ting characters (DELETE) and (CTRUU) 

• Terminal control characters (CTRUD), (CTRUS), and (CTRUQ) 

• Characters to direct terminal input under the FB and' 
XM monitors (CTRUF) and (CTRUB) 

• Characters for use when system job support is en­
abled (CTRUX) 

• Interrupt character (CTRUC) 

By default, all of these are handled by RMON. Techniques 
for inhibiting (CTRUC) and resetting (CTRUD) are discussed later 
in this chapter. 

Another input character that is handled specially is the 
carriage return. When you press (RETURN), the input terminal 
service routine always inserts both a carriage return and a 
line feed into the terminal input buffer. 

Single-Character 1/0 

Some of the programmed requests supported by RT-ll for 
terminal 110 will only operate on a single character. These 
requests can be used to retrieve one character from the ter­
minal input buffer or add one character to the terminal 
output buffer. 

MACRO-11 Requests: . TTINR, . TTOUTR, 
. TTYIN, and. TTYOUT 

. TTINR moves a single ASCII character from the terminal 
input buffer to the low-order byte of register RO .. TTOUTR 
moves a single character from the low-order byte of RO into 
the terminal output buffer .. TTINR and .TTOUTR do not take 
any arguments. . 

These requests each have a single possible error re-



Chapter 12 Using Terminal Input/Output 73 

turn .. TTINR returns an error if no character is available in 
the terminal input buffer .. TTOUTR returns an error if there 
is no room in the terminal output buffer for the character. 
The purpose of these two requests is to attempt the I/O op­
eration, and return an error immediately if the operation is 
not possible at the time of the request. 

The more common form of terminal I/O is the use of 
.TTYIN and .TTYOUT. These requests are similar to .TTINR 
and .TTOUTR, except that they loop, repeating the request 
until a terminator has been typed and the operation can be 
completed. These requests take an optional argument; for 
. TTYIN, the address of where to put the character, and for 
.TTYOUT, the address of the character to be output. 

FORTRAN IV Requests: ITTINR and ITTOUR 

ITTINR gets a character from the terminal input buffer and 
returns the ASCII code for the character as its function code. 
A negative value indicates that no character is available in 
the terminal input buffer. The function is called using the 
format: 

ICHAR = ITTINRO 

There are no arguments to ITTINR, but the parentheses are 
required so the compiler can. tell that ITTINR is a function 
reference, not a variable reference. 

The result of ITTINR must first be placed in an INTE­
GER variable to check for an error return. If there is no er­
ror, you can transfer it to a BYTE (or LOGICAL*l) variable. 
This sequence is necessary because for negative numbers 
the PDP -11 sets the highest bit (bit 15) to 1. To test whether 
the result of ITTINR is negative, the processor tests bit 15 
of the returned variable. If you place the result in a BYTE 
variable, only the low-order eight bits are stored. The high­
order bits, including bit 15, are lost. If you then try to test 
for errors by seeing whether the BYTE variable is negative, 
you will receive incorrect results. 



74 Programming with RT -11 

The following example shows the correct use of IT­
TINR and the test of its returned value: 

EXAMPLE 

;BYTE CHRTRS(80) 
INTEGER RETVAL 

'DO 10,· 1.=1,80 
100 RETVAL=ITTINR() 

IF (RETVAL.LT.O) GO TO 100 
CHRTRS(I)=RETVAL. 

10 CONT I NUE 

ITTOUR is the programmed request to output single 
characters. It takes a single-byte variable as an argument and 
transfers the character in that byte to the terminal output 
buffer. A return value of one from ITTOUR indicates an er­
ror, namely, that there is no room in the terminal output 
buffer for the character. 

Error Handling under the SJ Monitor 

The SJ and FB monitors handle terminal I/O error condi­
tions differently. The SJ monitor always returns an error code 
to the user program if an error condition exists. On. input 
the only error is "n.o character available in the buffer," and 
on output the only error is "no room in the buffer." Your 
program must check the error indicator and take appro· 
priate action. Usually the appropriate action is to retry the 
request by looping again until the transfer is successful. In 



Chapter 12 Using Terminal Input/Output 75 

MACRO-ll programs you can do this by using the . TTINR 
or .TTOUR request. 

EXAMPLE 

.MCALL . TTINR 

1 $ : . TTl NR 
BCS '1 $ 

;Try to read a character 
;Repeat if no~e ready 

;Continue ~hen success 

The programmed requests . TTYIN and . TTYOUT per­
form the looping for you. Neither proceeds until the 110 re­
quest has executed error-free. Also, with these requests you 
can give an argument that specifies the location of the data 
to be transferred. You should use .TTYIN and .TTYOUT 
unless you want to do some other processing before retry­
ing the request. 

In FORTRAN IV programs you can test for errors and 
retry the request by examining the return value from the 
ITTINR and ITTOUR functions, and by looping if an error 
exists. 

EXAMPLE 

5 ICHAR=ITTINR() 
IF (ICHAR.LT.O) GO TO 5 

or 

10 IF (ITTOUR(CHAR).NE.O) GO TO 10 

Always use a loop like one of these if you do not want your 
program to proceed until the I/O request has executed suc­
cessfully. 



76 Programming with RT -11 

Error Handling under the FB Monitor 

Normally, when you issue a terminal I/O request, you do 
not want the program to continue before the transfer is 
complete. Under the SJ monitor you can ensure comple­
tion of transfer by looping to repeat the request until it re­
turns a success indication. Looping works well for a sys­
tem like SJ where only one job can run at a time. Under the 
FB monitor, however, you can run two jobs at a time. When 
one job is waiting for I/O completion, the other can be al­
lowed to run. If the I/O request loops, as under SJ, then the 
monitor cannot tell that it could be running the other job. 
Therefore, the FB monitor uses a different technique for 
handling I/O requests. 

A job waiting for some specific I/O condition to occur 
is said to be blocked. When a job is blocked the FB monitor 
switches control to a job that can run. Jobs are assigned rel­
ative priorities, and FB always selects the highest priority 
job that is not blocked. 

The terminal I/O service routines under FB automati­
cally block a job that issues a terminal :I/O request if the 
request cannot be completed immediately. The job remains 
blocked until the condition is cleared and the FB monitor 
can schedule it to run. 

One effect of this blocking technique is that the . TTINR 
or ITTINR and. TTOUTR or ITT OUR requests do not return 
an error code. The job is blocked until the transfer is com­
plete. This means that under the FB monitor .TTINR be­
haves the same as .TTYIN, and .TTOUTR behaves the same 
as .TTYOUT. If you use .TTINR or ITTINR or .TTOUTR or 
ITTOUR, you should check for the error code to ensure that 
the program will run correctly, even under the SJ monitor. 

Overriding Job Blocking under the FB Monitor 

You may not want your job to be blocked by the monitor 
when you issue a . TTINRIITTINR or . TTOURIITTOUR pro­
grammed request. If you want to get an error code and pro­
gram your own response, as under the SJ monitor, set bit 6 



Chapter 12 Using Terminal Input/Output 77 

of the job status word (word 44 in the system communica­
tion area) before issuing the I/O request. 

EXAMPLE 

In FORTRAN IV use the command: 

CALL IPOKE ("44,IPEEK(1I44LOR. 1I 100) 

In MACRO-ll use the statement: 

BIS #100,@#44 ;Set bit 6 of JSW 

Leave bit 6 of the JSW set only as long as you need to; then 
clear it. 

EXAMPLE 

In FORTRAN IV use the command: 

CALL IPOKE ("44,IPEEK("44).AND •• NOT. 1I 100) 

In MACRO-ll use the statement: 

B I C # 1 0 0 ,@#4 4 ; C 1 ear bit 6 0 f J S W 

Do not use this technique if you intend to loop (or in MA­
CRO-ll use .TTYIN or .TTYOUT), because it prevents any 
background job from running. 

You should reset (CTRUO) after setting or clearing any bits 
in the JSW, and before issuing the first terminal I/O re­
quest. This forces the monitor to update all the terminal data 
structures with the new status. The programmed request to 
reset (CTRUO) is discussed later in this chapter. 

Table 12 shows the RT -11 processing schemes for ter­
minal I/O when transfer of a character cannot take place. 
Error handling under the SJ monitor is not affected by the 
value of bit 6 of the JSW. Table 13 shows how to program 
terminal I/O, either to wait for completion .of error process-



78 Programming with RT -11 

Table 12. 
Terminal I/O Error Processing Schemes 

.TTYIN .TTINR ITTINR 
Monitor .TTYOUT .TTOUTR ITTOUR 

SJ,FB,XM with C-bit is set C-bit is set 
bit 6 of JSW Program loops Program continues processing 
set 

Program must check for error 

FB,XM with Job blocked Job blocked 
bit 6 of JSW Control passes to Control passes to 
clear lower priority job lower priority job 

ing, or to allow the program to continue if error occurs. If 
you leave bit 6 of the JSW clear, the job will be blocked 
until I/O completion. You should still test for errors and loop 
to retry the request, so that the program can run correctly 
under the SJ monitor. You leave bit 6 set only when you 

Table 13. 
Techniques for Handling Terminal I/O Errors 

Program Waits until 
Error Condition Program Continues 

Monitor Language Is Cleared if an Error Occurs 

SJ MACRO-11 Use .TTYIN and Use .TTINR and 
.TTYOUT .TTOUTR 

FORTRAN IV Use ITTINR and Use ITTINR and 
ITTOUR; loop ITTOUR 
until error 
condition clears 

FB,XM MACRO-11 Clear bit 6 of JSW; Set bit 6 of JSW; 
Use .TTYIN and use .TTINR and 
.TTYOUT .TTOUTR 

FORTRAN IV Clear bit 6 of JSW. Set bit 6 of JSW; 
use ITTINR and use ITTINR and 
ITTOUR ITTOUR 



Chapter 12 Using Terminal Input/Output 79 

need to continue processing, even if .TTINR and .TTOUTR 
or ITTINR and ITTOUR returns an error. You should then 
clear bit 6. Do not use a tight loop to handle errors with bit 
6 set because that prevents other jobs from running. The 
techniques listed are for MACRO-11 and FORTRAN IV 
under the S] and FB monitors. 

Setting Up and Using 1/0 Buffers 

When you transfer character strings, you normally store the 
text in buffers in your program. Input buffers do not need 
to be initialized. In MACRO-11 programs, use .BLKB to re­
serve space for an input buffer. In FORTRAN IV programs, 
you must use an array of data type BYTE or LOGICAL * 1. 
The buffer must have enough space for the largest message 
the program expects to receive. If you overflow the buffer, 
you will corrupt your program code or data areas at run time. 

Output buffers must be initialized before you output 
any data. You can either build a message at run time by 
moving text into the buffer, or define the text of a fixed 
message at compile time. The MACRO-11 requests .ASCII 
or .ASCIZ define text messages .. ASCIZ terminates the string 
with a byte containing binary zero (null byte). Some string 
manipulation routines in SYSLIB expect strings in the 
.ASCIZ format. 

The FORTRAN IV DATA statement defines the con­
tents of a LOGICAL*l array. This statement is suitable only 
for short character strings. The string manipulation rou­
tines in SYSLIB make it easier to define strings, but the text 
has to be moved into the buffers at run time. 

To illustrate the ways to use the terminal 1/0 requests 
discussed so far, we have chosen some common applica­
tions for you to study. The programs (PR1201.MAC and 
PR1201.FOR) which follow store multiple lines of input from 
the terminal. They use a null byte to terminate each line of 
text within the buffer, which means the carriage return and 
line feed characters are not stored. This saves one byte per 
line, and also means that the messages can be used in the 
SYSLIB string manipulation routines .. 



80 

PR1201.MAC 

Programming with RT -11 

AREA: 

.TITLE PR1201 -- TERMI~AL 110 EXAMPLE 

.MCALL 

.MCALL 
.TTYI~ .TTYOUT .TTI~R 

. RCTRLO . EX IT 
.PEEK .POKE 

Data Defintions 
.BLKW jEMT argument block 

PROMPT: .ASCIZ "Enter messages: " 
MSGBFR: .BLKB 100. jlnput buffer 

START: 
10$ : 

GET: 

LI~E: 

OFLO: 

10$ : 

.EVE~ 

Program Code 
MOV #PROMPT,R1 
. TTYOUT (RD+ 
TSTB (RD 
B~E 

MOV 
MOV 
.TTYI~ 

DEC 
BEQ 
CMPB 
B~E 

10$ 
#MSGBFR,R1 
#100. ,R2 
(RD+ 
R2 
OFLO 
#15,RO 
GET 

CLRB -HRD 
.TTYI~ 

TSTB 
B~E 

BR 

-2(RD 
GET 
PRI~T 

;Point to prompt buffer 
;Print (w/wait) 1 char 
;End of message? 
; Loop if not 
;Point to input buffer 
;Load maximum char count 
;Read (w/wait) 1 char 
;Decrement char count 
;Branch if buffer full 
;Was char a <CR>? 
;Branch if not 
;Yes, store null byte 
;Get <LF> char 
;Was last line blank? 
;Branch if not for more 
jOtherwise, print buffer 

Buffer full. 
CLRB -(RD 

Flush terminal input buffer 
jAppend null bytes 

CLRB 
.PEEK 

-(RD 
#AREA,#44 

MOV RO,R1 
BIS #100,R1 
.POKE #AREA,#44,R1 
.RCTRLO 
.TTI~R 

BCC 10$ 
.PEEK #AREA,#44 
MOV RO,R1 
BIC #100,R1 
.POKE #AREA,#44,R1 
.RCTRLO 

j to mark end of text 
jGet JSW 
jMove to R1 
jlnhibit TT wait 
;Update JSW 
;Reset Control/O 
;Read (wo/wait) 1 char 
;Branch if char read 
;Get JSW 
jMove to R1 
jEnable TT wait 
;Update JSR 
jReset Control/O 

PRI~T: MOV #MSGBFR,R1 ;Load buffer address 
jPrint (w/wait) 1 char 
;Is next byte null? 
jBranch if not 
;Otherwise print <CR> 
; and <LF> 

10$ : .TTYOUT (RD+ 
TSTB (R1) 
B~E 10$ 
.TTYOUT #15 
.TTYOUT #12 
I~C R1 
TSTB (R D 
B~E 10$ 
. EXIT 
.E~D START 

;Skip over null byte 
;Is next byte null? 
jBranch if not 
;Otherwise, exit 



PR1201.FOR 

Chapter 12 Using Terminal Input/Output 

C 

C 
C 

PROGRAM PR1201 
BYTE MSGBFR(100),PROMPTC80) ! MESSAGE BUFFERS 
CALL SCOPYC'ENTER MESSAGES: ',PROMPT) 

Output prompt. 

DO 10, 1-1 ,80 
IF CPROMPTCI) .EG. 0) GO TO 20 

5 IF CITTOURCPROMPTCI» .NE. 0) GO TO 5 
10 CONTINUE 
C 
C Now input lines of text terminated by two <CR>s. 
C 
20 
25 

DO 40 1-1,100 
IERR-ITTINRO ACCEPT CHAR 
IF CIERR .LT. 0) GO TO 25 ! LOOP UNTIL READ 
MSGBFRCI)-IERR STORE CHAR IN BUFFER 
IF CMSGBFRCI) .NE. "15) GO TO 40 
MSG8FRCI)-0 ! CHANGE <CR> TO NULL 

30 IF CITTINRC) .LT. 0) GO TO 30 
IF CI .NE. .AND. MSGBFRCI-1) .EG. 0) GO TO 100 

40 CONTI NUE 
C 
C Buffer overflowed Cmore than 100 chars typed) 
C Read & lose remaining chars in input buffer. 
C 

60 CALL IPOKEC"44,IPEEKC"44).OR."100) 
CALL RCTRLO ! INHIBIT TT WAIT 

65 IF CITTINRC) .GE. 0) GO TO 65 

C 

CALL IPOKEC"44,IPEEKC"44) .AND .• NOT. "100) 
CALL RCTRLO ENABLE TT WAIT 
MSG8FR(99)-0 
MSGBFR(100)-0 

ADD 2 NULLS TO BUFFER 

C Now output messages entered. 
C 

100 DO 130 1-1,100 
IF CMSGBFRCI) .NE. 0) GO TO 110 

102 IF CITTOURC"15) .NE. 0) GO TO 102 OUTPUT <CR> 
103 IF CITTOURC"12) .NE. 0) GO TO 103 AND <LF> 

81 

IF CMSGBFRCI+1) .EG. 0) GO TO 150 STOP IF 2 NULLS 
GO TO 130 

110 IERR-ITTOURCMSGBFRCI»! OUTPUT A CHAR 
IF CIERR .NE. 0) GO TO 110 ! LOOP UNTIL OUTPUT 

130 CONTI NUE 
150 CALL EX IT 

END 
! EXIT 



82 

Practice 
12-1 

Programming with RT -11 

As you study the MACRO-ll or FORTRAN IV pro­
gram, look for: 

• The input process 

• Multiple-line buffering 

• The response if too many characters are entered 

• The procedure for printing multiple lines 

The programs do not store carriage return or line feed. 
Carriage return is stored as a null byte, and line feed is dis­
carded. The programs contain code to clear the system's 
terminal input buffer if the operator types in more than 100 
characters. They set bit 6 of the JSW, so that an error indi­
cation is returned when there are no more characters in the 
buffer (all type-ahead has been cleared). They then loop, 
reading the buffer until they receive the error code. This 
indicates that the buffer is empty, and the programs clear 
bit 6 again. If they did not empty the buffer, the type-ahead 
characters would still exist, and would be read later by the 
system. KMON would then try to interpret the data as a 
monitor command. 

In this exercise you will write programs to perform terminal 
110. You can write the programs either in MACRO-ll or 
FORTRAN IV, using the programmed requests discussed in 
this chapter. Write the programs so that they can be run un­
der the FB or SJ monitor. 

1. ~ Write a program that prompts "PLEASE TYPE IN 
YOUR NAME." After the user types a name, your pro­
gram should respond: 

WELCOME TO RT-11, User I s name 

2. Write a program that does the following: 

a. Prompts the user to input a message. The user 
should type a single line of text, terminated with a 
carriage return. 



Chapter 12 Using Terminal Input/Output 

b. Loops, printing the user's text repeatedly on the 
same line. When the output reaches column 80, 
the program should output a carriage return and 
line feed and continue the output on the next line. 
The program repeats this until the user presses 
(RETURN), (LiNEFEED), or (CTRUZ). Other characters are 
ignored. 

c. Repeats steps a. and b. until, during step a., the 
user types a blank line (responds to the prompt 
with (RETURN»). Then the program exits. 

Terminal Special Mode 

83 

When using . TTY IN , . TTINR, or ITTINR, 110 data is nor­
mally buffered until the line is terminated by (RETURN), (LiNEFEED), 

(CTRUZ), or (CTRUC). You can edit a line using (DELETE) or (CTRUU), and 
each character is echoed as typed with no special action 
performed by the user program. When the line terminator 
is received, all the characters in the buffer are passed to the 
program one at a time. 

Under terminal special mode, characters are made 
available to a program as soon as they are typed in. There 
is no delay caused by waiting for a line terminator. In this 
mode the normal (DELETE) and (CTRUU) actions are disabled. These 
characters are passed to the program, to be handled as you 
want. Terminal echo is also disabled under terminal spe­
cial mode, except for (CTRUC) and (CTRUO). If you want the input 
echoed, you must code the output commands yourself. 

Terminal special mode, which is enabled by setting bit 
12 of JSW, is used for: 

• Password entry, with echo suppressed. 

• Single-character responses to program prompts. For 
example, Yes or No type questions can be answered 
with Y or N. 



84 Programming with RT -11 

• Single-character unechoed input. For example, pro­
vide function keys to control the video display in the 
video editor KED. 

Line·oriented Output 

In addition to programmed requests that perform single­
character terminal I/O, RT -11 supports I/O operations that 
transfer a whole line or message using a single request. For 
example, you can use the PRINT request to issue a prompt 
to the user, indicating what information is needed next. The 
PRINT request causes the contents of the specified buffer 
to be printed on the terminal. The last byte in the buffer 
must contain either 0 (NULL) or 200 (octal). 

• If NULL, the monitor adds a carriage return and line 
feed to the end of the message. 

• If 200 (octal), the monitor leaves the print head (or 
cursor on a display terminal) at the next character 
position after the last character printed. 

If you include a carriage return and line feed in your mes­
sage, they are printed, making the message multiline. 

Using .PRINT in MACRO-11 

The MACRO-ll programmed request has the format: 

.PRINT addr 

In this format, "addr" is the address of the message buffer. 



Chapter 12 Using Terminal Input/Output 85 

MESS: .ASCII ITHlS IS THE FIRST LINE OF THE MESSAGE I 
.BYTE 15,12 
.ASCIZ ITHIS IS THE SECOND LINE OF THE MESSAGE I 

.PRINT from a Foreground Job 

If two jobs share a terminal and the foreground job issues 
a .PRINT request, the message is printed immediately. If the 
foreground job uses .TTYOUT or ITTOUR requests, the 
message is delayed until the background job finishes typ­
ing its current line. For this reason, you should use .PRINT 
rather than .TTYOUT or ITTOUR for critical messages from 
a foreground job. 

When a foreground job and a background job are run­
ning, the job producing output is indicated by a B> or F> 
preceding the output. These markers are printed only when 
the job producing the output changes. When a system job 
prints a message, the logical job name is used as the 
identifier. 

Using PRINT in FORTRAN IV 

The FORTRAN IV request has the format: 

CALL PRINT (message) 

In this format, "message" can be a quoted string, passed as 
a single line, or an array containing characters, terminated 
with a null byte or 200 (octal). To place the value 200 (oc­
tal) in a string, you can use the SYSLIB subroutine 
CONCAT. 

EXAMPLE 

BYTE MESSAGCBO) !MESSAGE ARRAY 
CALL CONCAT ('TYPE IN A NUMBER: ',200,MESSAG) 
CALL PRINT (MESSAG) 



86 ProgrB-.ing with RT -11 

Line-oriented Input 

The GTLIN request inputs a complete line of text and stores 
it in the specified buffer in ASCIZ format. The maximum 
number of characters allowed for the input line is 80. You 
should, however, allocate 81 bytes to the buffer to make 
room for the trailing null byte. The GTLIN request uses the 
USR to input the line but does not check the syntax of the 
input text. The form of the MACRO-11 request is: 

.GTLIN addr 

In this format, "addr" is the address of the input buffer. The 
FORTRAN IV call is: 

CALL GTLIN(buffer) 

Here, "buffer" is an array or variable. 

EXAMPLE 

LOGICAL*1 IOBUF(81) !HOLDS UP TO 80 CHARACTERS 
CALL GTLIH(IOBUF) 

GTLIN has another form, which allows you to print a 
prompt on the terminal before reading the input line. The 
MACRO-11 request for this is: 

.GTLIN baddr,paddr 

In this request, "baddr" is the address of the input buffer, 
and "paddr" is the address of the prompt buffer. The FOR­
TRAN IV call is: 

CALL GTLIN(BUFFER,PROMPT) 

Each argument is an array or variable. 
The GTLIN prompt string has the same format as the 

PRINT output string. A null byte at the end of the string 
causes a carriage return and line feed to be printed after the 
prompt. The value 200 (octal) at the end of the string ·leaves 



Chapter 12 Using Terminal Input/Output 87 

the print head (or cursor) on the same line. Prompts usu­
ally end with 200 (octal), so that the input is on the same 
line as the prompt. 

GTLIN converts lowercase letters to uppercase, unless 
bit 14 of the JSW is set. This bit controls lowercase to up­
percase conversion for terminal input requests. 

Input from Indirect Command Files 

The GTLIN request accepts data from an indirect command 
file if one is active. Otherwise, input is from the terminal. 
The .TTYIN requests can accept input from the terminal 
only. Thus, you should use the .TTYIN requests if you want 
to make sure that data arrives from the terminal. 

If you use .GTLIN for input, and the program is run 
from an indirect command file, the input data must be taken 
into consideration as the command file is created. Lines of 
data can be included in the command file, to be read by the 
.GTLIN requests in the program. Sometimes you may want 
to switch the input data stream from the command file to 
the terminal. For example, to read a quantity of known data, 
which can be entered in a command file, and then ask the 
user to type in responses on-line, you must indicate in the 
program data that you want to switch the input to the ter­
minal. 

1. Set bit 3 of the job status word. This enables the in­
put stream to be switched when requested. It does 
not switch the stream automatically. 

2. Insert the characters AC (a circumflex followed by a 
C) in the command file at the point where you want 
to enable data input from the terminal. 

Normally, a job using .GTLIN to read data treats AC in 
an indirect command file as if it were the (CTRUC) character, 
and the job is aborted. But if bit 3 of the JSW is set, all fur­
ther input for the job comes from the terminal. You cannot 
switch the input data stream back to the command file un­
til the job terminates. If you clear bit 3 from the program, 



88 

Handling (CTRUC) 

Handling (CTRUO) 

Programming with RT -11 

the next .GTLIN request aborts the job, as if (CTRUC) had been 
typed. 

If the monitor command SET TT NO QUIET is in ef­
fect, data read by .GTLIN from a command file is echoed 
on the terminal. If SET TT QUIET is specified, no echoing 
is performed. 

(CTRUC) is the normal way for you to return control to the RT-
11 monitor from a program. Pressing (CTRUC) once aborts the 
program the next time it requests terminal input, and 
pressing (CTRUC) twice aborts the program immediately. 

You can disable (CTRUC) to prevent the user from abort­
ing your program, but you should do so only for thor­
oughly debugged code. If you disable (CTRUC) and the pro­
gram goes into an infinite loop, the only way to stop it is 
to reboot the system. When (CTRUC) is disabled, any single 
(CTRUC) passes as an ASCII character (octal value 3). You dis­
able (CTRUC) using the .SCCA request as follows: 

.SCCA area, flagaddr 

CALL SCCA (FLAG) 

(MACRO-ll) 

(FORTRAN IV) 

In MACRO-ll, "area" is the address of a two-word param­
eter block, and "flagaddr" is the address of a terminal sta­
tus word (flag word). In FORTRAN IV "FLAG" is an inte­
ger variable to be used as the flag word. 

If (CTRUC) is pressed twice, RMON sets bit 15 of the flag 
word. If you want to detect another double (CTRUC), your pro­
gram must clear this bit. To reset to normal (CTRUC) action, 
use: 

.SCCA area,#O 

CALL SCCA 

(MACRO-ll) 

(FORTRAN IV) 

(CTRUD) inhibits output to the console terminal until another 
(CTRUD) is received, or until the program resets the (CTRUD) switch. 



Practice 
12-2 

Chapter 12 Using Terminal Input/Output 89 

The program continues to be executed, but RMON does not 
perform terminal output requests while (CTRUO) is in effect. 
All the output requests terminate successfully immedi­
ately, and the program executes much faster than if it had 
to wait for I/O completion. 

(CTRUO) is most useful when you want to examine a small 
part of a long text file. You can suppress the output of sec­
tions that you do not need to see. In this way you can scan 
the file very rapidly. 

When writing a program, you may want to be sure that 
data is printed on the console terminal. You can use the 
RCTRLO request to reset (CTRUO) if it is in effect. 

EXAMPLE 

The MACRO-11 form of this request is: 

.RCTRLO ; Res e t (CTRUO) 

The FORTRAN IV form is: 

CALL RCTRLO 

When this request is called, printing on the console termi­
nal is enabled regardless of the status of (CTRUO). It is recom­
mended that you issue a .RCTRLO or RCTRLO request after 
setting or clearing any bits in the JSW. 

Modify the second program you wrote for practice 12-1 so 
that it uses the .GTLIN or GTLIN request to accept the ini­
tial input. 

Use .PRINT or PRINT to output the text. Print each output 
message on a separate line. 'Continue until the user presses 
(RETURN), (liNEFEED), or (CTRUZ), then reset (CTRUO) and repeat the in­
put prompt. 



90 

References 

Programming with RT -11 

RT -11 Programmer's Reference Manual. Chapter 1 reviews the 
SYSLIB string manipulation routines for MACRO-ll and FOR­
TRAN IV programs. Chapter 2 discusses the .GTLIN, .SCCA, 
.RCTRLO, .TTYIN, .TTINR, .TTYOUT, and .TTYOUTR requests 
in MACRO-ll programs. Chapter 3 describes the GTLIN, SCCA, 
RCTRLO, ITTINR, and ITTOUR requests in FORTRAN IV 
programs. 

RT-11 Software Support Manual. Chapter 3 examines RT-ll's 
terminal input/output system. 





13 

Multiterminal Support 
Hardware Configuration 

The System Console 
Multiterminal Programming 

Terminal Control Blocks 
Programming Multiterminal 1/0 

Debugging a Multiterminal Application 

Asynchronous Terminal Status 
Reference 



13 
Using 
Multiferminal 
'nput/Output 

RT -11 provides support for 1 to 16 additional terminals. 
You can select multiterminal support at system generation 
time. It is available for the Sf, FB, and XM monitors. 

RT -11 provides special programmed requests for 
multiterminal I/O. The input and output requests are sim­
ilar to the terminal I/O requests discussed in chapter 12, 
"Using Terminal Input/Output." There are additional mul­
titerminal requests to attach, detach, obtain, and set status 
information about' specific terminals. 

This chapter describes the features provided by the 
multiterminal support option and the possible hardware 
configurations. You will learn the significance of the sys­
tem console in a multiterminal system, as well as how to 
change the system console, how to run foreground and sys­
tem jobs with specific terminals as their consoles, and how 
to write programs for multite~minal applications. 

93 



94 Programming with RT -11 

Multiterminal Support 

RT -11 provides support for up to 16 additional terminals 
through a feature which can be selected during system gen­
eration. The multiterminal option is available for all three 
monitors. Multiple-terminal support does not provide a 
multiuser system, because RT -11 supports only one ter­
minal at a time as the system console. You can transfer the 
system console from the initial terminal to any of the local 
terminals. The extra terminals are only 110 devices con­
trolled by applications programs. 

Hardware Configuration 

The multiple-terminal feature supports terminals con­
nected through DL11 and DZ11 serial line interfaces (DLV11 
and DZV11 for an LSI-11). The terminals connected to these 
interfaces can be either local or remote. A local terminal is 
connected directly to the DL or DZ interface. A .remote ter­
minal is connected to the DL or DZ interface by a modem 
and a communication link. Figure 39 shows a local termi­
nal and a remote terminal connected to a DL11 or H DZ11. 
During system generation, you must specify which termi­
nals are local and which are remote. 

The System Console 

The system or background console is the terminal used to 
enter monitor commands and communicate with the back­
ground job. KMON prompts you on this terminal, and the 
terminal 110 programmed requests (discussed in chapter 12, 
"Using Terminal Input/Output") communicate with this 
terminal from background jobs. By default, the terminal 110 
requests from foreground and system jobs also use this ter­
minal. 

When running a foreground or system job, you can use 
the /TERMINAL option with the FRUN or SRUN command 
to assign a terminal for the exclusive use of the job (see 



Chapter 13 Using Multiterminal Input/Output 

Figure 39. 
Local and Remote Terminal Connections 

LOCAL 
TERMINAL 

MODEM 

REMOTE 
TERMINAL 

MODEM 

DL 11 
OR 
DZ11 

COMMUNICATIONS 
LINK 

95 

chapter 2, "Executing Programs"). Such a terminal cannot 
be shared by another job. When you assign a terminal to a 
job, you must use that terminal to enter data to the job and 
to abort the job with (CTRUC) (CTRUC). You cannot communicate 
with the job by using (CTRUF) or (CTRUX) on the system console. 
You can terminate a foreground or system job that has an 
assigned terminal, by issuing the ABORT command at the 
system console. 

You can move the system console to any local termi-



96 Programming with RT -11 

nal connected to your system (except a terminal assigned 
to a foreground or system job) by using the command: 

SET TERM CONSOL=n 

Here ',"h" is the logical unit number of the new console ter­
miqii. After you press (RETURN) to terminate this command, 
RT~ 11 prints its next prompt on the new system console. 

RT -11 does not allow you to set a remote terminal as 
the system console. A patch to enable you to use a remote 
terminal as the system console is given in appendix D of 
the RT -11 System Generation Guide. 

Multiterminal Programming 

An application program can communicate with up to 16 
terminals, in addition to the system console, by using the 
multiterminal programmed requests listed in table 14. 
If you assign a terminal using FRUN/TERMINAL or 
SRUN/TERMINAL, you do not need multiterminal requests 
to communicate with that terminal. 

Table 14. 
Multiterminal Programmed Requests 

MACRO-11 FORTRAN IV 
Request Request Function 

.MTATCH MTATCH Attach a terminal 

.MTIN MTIN Input character(s) 

.MTOUT MTOUT Output character(s) 

.MTPRNT MTPRNT Output a character string 

.MTRCTO MTRCTO Reset (CTRUO) 

.MTSTAT MTSTAT Get multiterminal system status 

.MTGET MTGET Get terminal status 

.MTSET MTSET Set terminal status 

.MTDTCH MTDTCH Detach a terminal 



Chapter 13 Using Multiterminal Input/Output 97 

The input and output requests are similar to the con­
sole terminal I/O requests .TTYIN, .TTYOUT, and .PRINT. 
Before you can communicate with a terminal using these 
requests, you must reserve that terminal, using the 
.MT A TCH or MT A TCH request. When you have finished 
using a terminal, you must release it, using the .MTDTCH 
or MTDTCH request. 

Terminal Control Blocks 

When you request multiple-terminal support during sys­
tem generation, the SYSGEN procedure creates a terminal 
control block (TCB) for each terminal you specify. The TCBs 
are assigned to the terminals, starting with the hardware 
console, and continuing in the following order: 

1. Local DLs 

2. Remote DLs 

3. Local DZs 

4. Remote DZs 

The number of the TeB assigned to a terminal be­
comes the logical unit number (LUN) of that terminal, with 
the hardware console having LUN '0. The TCBs are linked 
into RMON and form a contiguous table. The .MTST AT or 
MTST A T request returns information that enables you to 
access the TCBs directly, using the .GVAL request. The 
programmed requests .MTGET and MTGET retrieve infor­
mation from the TCB. The requests .MTSET and MTSET 
allow you to change this information. 

The first word in the TCB is the terminal configuration 
word, shown in figure 40. Bits 6, 12, and 14 of this word 
have a similar effect to the corresponding bits in the JSW, 
that is: 

• Bit 6 is the inhibit wait bit. If this bit is sot, the pro­
gram does not wait for I/O to complete. 



98 Programming with RT -11 

Figure 40. 
TCe Configuration Word 

I 
1514 13 12 11 

I I , , 
T.CNFG 

08 07 06 05 04 03 02 01 00 

I , , NOT , 
USED 

, , I , LL TA 
CRL 

'- HARDWARE 
IN EFFECT 

B IN EFFECT 

F IN EFFECT 

FORM FEED 

'--- CTRL/F/BI X IN EFFECT 

T ON INPUT INHIBITWAI 

BAUD RATE 

SPECIAL 

XON/XOFF 

MASK (DZ11) 

MODE INPUT 

E TERMINAL 

SE ENABLED 

E IN EFFECT 

REMOT 

LOWERCA 

SETn SCOP 

• Bit 12 is the special mode bit. If this bit is set, input 
is in special mode, characters are not echoed, and so 
on. 

• Bit 14 is the lowercase bit. If this bit is clear, all 
characters are converted to uppercase. If this bit is 
set, lowercase characters are passed. 

In multiterminal applications, you can set these bits for the 
system console either in the JSW or in the TeB. Setting the 
bits in either place, results in both words having those bits 
set. 

Programming Multiterminal 1/0 

The sequence of events and requests which you should use 
when programming multiterminal applications is given 
below: 

1. Examine the system status. To determine if the sys­
tem under which the job is running has multiter-



Chapter 13 Using Multiterminal Input/Output 

minal support, check the SYSGEN features word 
(RMON fixed offset 372). 

99 

2. Attach a terminal. A job must attach a terminal be­
fore it can communicate with that terminal by means 
of the multiterminal I/O requests. Use the request 
.MT A TCH or MT ATCH, and specify the logical unit 
number of the terminal to be attached. 

Once a job has attached a terminal, no other job can 
attach or communicate with it until the job issues a 
.MTDTCH request or terminates. 

As an optional argument, you can specify the address 
of an asynchronous terminal status word. If you spec­
ify this argument, the system automatically notifies 
your job of certain changes in the terminal's status. 
This word is described later. 

3. Initialize the terminal characteristics. Use the 
.MTGET or MTGET request to obtain complete status 
information about the terminal you have attached. 
The status block returned by this request contains the 
first six bytes of the TCB, including the terminal con­
figuration word (figure 40). Byte 7 is the terminal 
state byte, shown in figure 41. Byte 8 is the carriage 
width, indicating the maximum number of characters 
on a line. 

Figure 41. 
Terminal State Byte 

15 14 13 12 11 

TERMINAL IS SHARED CONSOLE 

TERMINAL IS HUNG UP 

~--- DZ11 INTERFACE 

L--______ DOUBLE CTRL/C ENTERED 

'---------- TERMINAL IS A CONSOLE 
(LOCAL DL 11 ONLY) 

00 



100 Programming with RT -11 

To change any of the characteristics, you must 
modify the data in the status block received by 
.MTGET or MTGET, and return the new values using 
the .MTSET or MTSET request. 

You can get status information about terminals that 
are not attached to your job; however, you can set 
characteristics for attached terminals only. 

4. Communicate with the terminal. A job can get 
characters from an attached terminal using the 
.MTIN or MTIN request. This is equivalent to the 
. TTYIN or ITTINR request, except that you can spec­
ify the number of characters to be received. 

A job outputs characters using the .MTOUT or 
MTOUT request, and character strings, using the 
.MTPRNT request. These are equivalent to the 
. TTYOUT or ITTOUT and .PRINT or PRINT requests. 

If you want to enable asynchronous I/O, special mode 
I/O, or lowercase I/O, first set the appropriate bits in 
the terminal configuration word using .MTSET or 
MTSET. 

Use the .MTRCTO or MTRCTO request to reset the 
effect of a (CTRUD). This is equivalent to the .RCTRLO or 
RCTRLO request. 

You should issue a .MTRCTO or MTRCTO request 
after setting or clearing any bits in the job's JSW or 
any TCB, and before issuing the first terminal I/O re­
quest. This forces the monitor to update all the termi­
nal data structures with the new status. 

5. Release the terminal. When the job has finished, it 
should detach the terminal to make it available for 
use by other jobs. Use the .MTDTCH or MTDTCH 
request. 

Debugging a Multiterminal Application 

Use VDT, the virtual debugging technique, to debug a mul­
titerminal application program. 



Chapter 13 Using Multiterminal Input/Output 101 

Figure 42. 
Asynchronous Terminal Status Word 

15 14 13 12 08 07 06 05 00 

RESERVED RESERVED 

AS.HNG TERMINAL HAS HUNG 
UP 

AS.CAR CARRIER PRESENT 

L--___________ AS.OUT OUTPUT RING BUFFER 
IS EMPlY 

L...-_____________ AS.INP INPUT IS AVAILABLE 

L--______________ AS.CTC DOUBLE CTRUC WAS 
lYPED 

Asynchronous Terminal Status 

Practice 
13-1 

If you select the asynchronous terminal status feature dur­
ing system generation, the multiterminal interrupt service 
code automatically notifies a job of certain changes in ter­
minal status after it has been attached. An opt~onal argu­
ment to the .MT A TCH or MT A TCH request specifies the 
location to be used as the asynchronous terminal status 
word. Without this feature, a job must issue a .MTGET or 
MTGET request to detect any changes in status. Figure 42 
shows the format of the asynchronous terminal status word. 

You may write the following multiterminal program in 
either MACRO-ll or FORTRAN IV, to run under the moni­
tor you prefer. The program should: 

1. Check whether or not the system has multiterminal 
support. If not, it should print an error message on the 
console and exit. 

2. Attach one of the available terminals, other than the 
system console. 

3. Enable lowercase 110 at that terminal. 



102 

References 

Programming with RT -11 

4. Display (on that terminal) a prompt asking for the 
user's name, for example: 

Who are you? 

5. Read the user's name and then display a response like: 

Welcome to Multiterminal RT-11, Ann 

6. Release the terminal and exit. 

RT -11 Programmer's Reference Manual. Chapter 2 discusses 
multiterminal input/output requests in MACRO-ll programs. 
Chapter 3 describes multiterminal input/output requests in 
FORTRAN IV programs. 

RT -11 Software Support Manual. Chapter 5 contains descrip­
tions of the terminal configuration word and the asynchronous 
terminal status word. 

RT -11 System Generation Guide. 





14 

Concepts of Queued 1/0 

Using 1/0 Channels 
Standard Sequence of Requests 

Performing Queued 1/0 

Fetching Device Handlers 
Selecting a Channel 
Opening a Channel 
Synchronous 1/0 Requests 
Transfers to Block Replaceable Devices 
Transfers to Sequential Devices 
Closing a Channel 

Releasing a Device Handler 
Data Structures 

User-created File Specifications 
System-maintained Channels 

System-maintained 1/0 Queue Elements 
Device Handlers 
Reference 



14 
Using 
Queued 
'nput/Output 

Chapter 11, "Using Input/Output Systems," discussed briefly 
the basic types of I/O available: terminal I/O, queued I/O, 
and OTS I/O. 

The mode of I/O operation presented in this chapter 
is called synchronous because program execution is sus­
pended until the requested I/O is completed. Asynchro­
nous I/O and event-driven I/O, on the other hand, return 
control to the program before the transfer is completed. 
These two I/O modes are discussed in chapter 15, "Using 
Nonsynchronous Queued Input/Output." 

The MACRO-11 programmed requests described in this 
chapter include: .READW, .WRITW, .FETCH, .ENTER/ 

_ .LOOKUP, .CLOSE/.PURGE, .RELEAS, .CDFN, .QSET, and 
.DSTATUS. The FORTRAN IV requests covered include: 
IREADW, IWRITW, IFETCH/IGETC, IENTER/LOOKUP, 
CLOSEC/PURGE, IFREEC, ICDFN, IQSET, and IDSTAT. 

When you have completed this chapter, you will be 
able to use synchronous queued I/O requests to read data 
stored in a file, create a new file and use synchronous 
queued I/O requests to write data to it, and use synchro­
nous queued I/O requests to read data from or write data 
to a non-file-structured device. 

105 



106 Programming with RT -11 

Concepts of Queued 1/0 

The RT -11 queued I/O system is used for most I/O to su p­
ported 1/0 devices, including 1/0 to file-structured and non­
file-structured devices. Queued I/O allows device-indepen­
dent programming and is implemented using the following 
software components: 

• RMON, which receives the programmed requests gov­
erning queued I/O operations and passes them on to 
other components. RMON also keeps track of I/O 
activity. 

• USR, which connects jobs to peripheral devices and 
handles all access to file directories on volumes. 

• Device handlers, which are software routines con­
taining code to handle the details of device specific 
I/O operations. 

Queued I/O is the method used by RT-11 to keep track 
of pending I/O operations. The choice of the next I/O op­
eration to be performed by the operating system is made by 
looking at a list, or queue, of requests. Each I/O request re­
sults in RMON passing a data structure called a "queue 
element" to the device handler. The queue element con­
tains all the information needed by the device handler to 
perform the requested operation. 

. Using 1/0 Channels 

Although there may be almost any number of devices and 
files in a given RT -11 system, a specific program uses only 
a limited number at any given time. Access to devices and 
files is controlled through a set of 1/0 "channels." Once a 
channel is open to a device or a file, the program may call 
for 1/0 to be performed to the device or file to which the 
channel is connected. 



Chapter 14 Using Queued Input/Output 107 

Standard Sequence of Requests 

The following programs (PR1401.MAC and PR01402.FOR) 
show how queued I/O requests are performed. The pro­
gram must perform a basic sequence of activities if suc­
cessful queued I/O is to occur. These activities are: 

1. Make sure that the device handler is in memory. 

2. Open a channel to the file or device. 

3. Read from and/or write to the channel. 

4. Close the channel after all I/O has been completed. 

5. Release the device handler from memory. 

Performing Queued I/O 

Before any queued. I/O operations can be performed on a 
device, the device handler must be resident in memory. The 
device handler can be loaded either by the console LOAD 
command or by the program through a programmed 
request. 

Fetching Device Handlers 

The MACRO-ll programmed request to load a device han­
dler is .FETCH. The FORTRAN IV system subroutine is 
IFETCH. These requests bring the specified handler into 
memory. The form of the MACRO-i1 .FETCH pro­
grammed request is: 

.FETCH addr,devnam 

In this request, "addr" is the address at which the handler 
is to be loaded, and "devnam" is the address of a RAD50 
word containing the device name. 



108 

PR1401.MAC 

Programming with RT -11 

. TITLE COPY 1 1/0 EXAMPLE PROGRAM 

Program copies one file to another and exits • 

.MCALL .EXIT . FETCH .LOOKUP .ENTER .PRINT 

.MCALL .READW .WRITW .CLOSE .SRESET 
EMTARG: .BLKW 6 ;EMT argument block 

;Copy from DK:TRAN1.XYZ 
; to DK:TRAN2.XYZ 
;Generate program limits 
;File 1/0 Buffer 

INFILE: .RADSO IDK TRAN1 XYZI 
OUTFIL: .RADSO IDK TRAN2 XYZI 
LI M ITS : . LI M IT 
BUFFER: .BLKW 2S6. 
ERROR: 
ANNCE: 

.BYTE 

.ASCIZ 
FCH1MS: .ASCIZ 
FCH2MS: .ASCIZ 
LKPMES: .ASCIZ 
ENTMES: .ASCIZ 
RERRMS: .ASCIZ 
WERRMS: .ASCIZ 
PRTCT: .ASCIZ 

;Error status byte 
"Program copies TRAN1.XYZ to TRAN2.XYZ" 
"Error on FETCH of output handler" 
"Error on FETCH of input handler" 
"Error on LOOKUP of input file" 
"Error on creation of output file" 
"Read error, copy aborted" 
"Write error, copy aborted" 
"Protected output file already exists" 

SETUP: 

LKPERR: 

FCH2ER: 

FCH1ER: 
ERDONE: 

.EVEN 

.SBTTL SETUP Setup Files For Copy 

This routine sets up files for 1/0. 
File specifications are fixed in this version. 
Routine returns with C-Bit SET on error. 

MOV 
.PRINT 

R1,-CSP) 
'ANNCE 

Fetch device handlers 

;Save register 
;Announce program 

MOV LIMITS+2,R1 ;Load free memory address 
.FETCH R1,'OUTFIL ;Get output device handler 
BCS FCH1ER ;Branch on FETCH error 
MOV RO,R1 ;Copy free address 
.FETCH R1,'INFILE ;Get input device handler 
BCS FCH2ER ;Branch on FETCH error 
Open input and output files 
.LOOKUP 'EMTARG,'3,'INFILE ;Open input file 
BCS LKPERR ;Branch if failed 
MOV RO,R1 ;Save input file length 
.ENTER 'EMTARG,'O,'OUTFIL ;Create output file 
BCC DONE ;Return if no error 
Error Routines 
.PRINT 'ENTMES ;Issue error creating output 
BR ERDONE ; file message and return 
.PRINT 'LKPMES ;Issue failed to open input 
BR ERDONE ; file message and return 
.PRINT 'FCH2MS ;Issue FETCH error message 
BR ERDONE ; and return 
.PRINT 'FCH1MS ;Issue FETCH error message 
SEC ;Indicate error occurred 



PR1401.MAC 
(continued) 

Chapter 14 Using Queued Input/Output 109 

DONE: MOV (SP)+,R1 
RETURN 
.SBTTL CPYRTN 

;Re5tore R1 (save C-bit) 
;Return to caller 

Synchronou5 Copy (Single Buffer) 

Routine a55umes that the input file i5 opened 
on channel 3 and the output on channel O. 
Returns with C-BIT SET on error. 

Note: All register5 except RO are preserved. 

CPYRTN: MOV 
CLR 
CLRB 

1$: • READW 
BCC 
TSTB 
BEQ 

2$: 
BR 
.WRITW 
BCS 
INC 
BR 

R1,-(SP) ;Save register 
R1 ;Clear block number 
ERROR ;Init error flag 
IEMTARG,13,IBUFFER,1256.,R1 
2$ ;Branch if read succeeded 
@152 ;End-Of-File reached? 
EXIT ;Branch if 50 
RDERR ;Otherwise, process error 
'EMTARG,10.'BUFFER,1256 .• R1 
WERR ;Branch on write failure 
R1 ;Update block number 
1$ ;And read next block 

RDERR: • PR I NT IRERRMS ;Issue read error mes5age 
;And finish up BR EREXIT 

WERR: .PRINT 
ERE X IT: DECB 
EX IT: MOV 

TSTB 
BEQ 
SEC 

1$: RETURN 
.SBTTL 

CLSCHN: . CLOSE 
.CLOSE 
BCC 
.PRINT 

PRGCHN: 
RESET: . SRESET 

RETURN 

IWERRMS 
ERROR 
(SP)+,R1 
ERROR 
1$ 

CLSCHN 
13 
10 
RESET 
IPRTCT 

;15sue write error message 
; Set error flag 
;Restore saved register 
;Error? (and clear C-BIT) 
;Branch if not 
;Otherwise, set C-BIT 
;Return to caller 

Cleanup For Copy Program 
;Close input file 
;Close output file 
;Branch if succeeded 
iOutput file is protected 
;Purge files (.SRESET) 
;Reset system 
iReturn to caller 

.SBTTL MAIN PROGRAM 
START: CALL SETUP 

1$ 

CPYRTN 
1$ 
CLSCHN 

1$: 

2$: 

BCS 
CALL 
BCS 
CALL 
BR 2$ 
CALL 
.EXIT 

PRGCHN 

.END START 

;Get file names 
iBranch if failed 
iCOPY the input to output 
;Branch if failed 
iClose the channels 

;Purge the channels 
;Exit 



110 

PR1402.FOR 

Programming with RT -11 

PROGRAM COPY1 
C 
C Program performs a file to file copy and then 
C exits. 
C 

C 

20 

LOGICAL*1 SETUP.CPYRTN 
LOGICAL*1 ERROR 

ERROR • SETUPO 
IF (ERROR) GO TO 20 
ERROR • CPYRTN() 
IF (ERROR) GO TO 20 
CALL CLSCHN 
GO TO 30 
CALL PRGCHN 

Declare functions 

Open files 
Stop on error 
Copy file 
Stop on error 
Close files and exit 

Purge channels 
30 CALL EXIT 

END 
FUNCTI ON SETUP 

C 
C This routine sets up the files for 1/0. 
C File specifications are fixed in this version. 
C 
C Function returns .TRUE. if an error occurred. 
C 

C 

LOGICAL*1 SETUP 
INTEGER*2 INCHN.OUTCHN 
COMMON ICHNNLSI INCHN.OUTCHN 

C Channel numbers are common because they are 
C used by CPYRTN. CLSCHN. and PRGCHN. 
C 
C Input (DK:TRAN1.XYZ) and output (DK:TRAN2.XYZ) 
C file specifications: 
C 

C 

INTEGER*2 INFILE(4).OUTFIL(4) 
DATA INFILE/2RDK.3RTRA.2RN1.3RXYZI 
DATA OUTFIL/2RDK.3RTRA.2RN2.3RXYZI 

C Output introductory message and allocate channels. 
C 

C 

CALL PRINT('Program copies TRAN1.XYZ to TRAN2.XYZ') 
I NCHN • I GETC 0 
OUTCHN • IGETC() 

C Fetch needed device handlers. 
C 

C 

IF (IFETCH(OUTFIL(1» .NE. 0) GO TO 101 
IF (IFETCH(INFILE(1» .NE. 0) GO TO 102 

C Open input file. 
C 



PR1402.FOR 
(continued) 

Chapter 14 Using Queued .Input/Output 

C 

LENGTH • LOOKUP(INCHN,INFILE) 
IF CLENGTH .LT. 0) GO TO 103 

C Create output file. 
C 

111 

IF CIENTERCOUTCHN.,OUTFIL,LENGTH) .LT. 0) GO TO 104 
SETUp· .FALSE. ! No error 
RETURN 

C 
C ERROR ROUTINES 
C 
101 CALL PRINTC'Error on FETCH of output handler') 

GO TO 200 
102 CALL PRINTC'Error on FETCH of input handler') 

GO TO 200 
103 CALL PRINTC'Error on LOOKUP of inpul file') 

GO TO 200 
104 CALL PRINTC'Error on ~reation of output file') 
200 SETUp· .TRUE. ! Error 

RETURN 
.END 
FUNCTION CPYRTN 

C 
.C Single buffered, 9ynchronous copy routine. 
C 
C Function returns .TRUE. on error. 
C 

C 

LOGICAL-1 CPYRTN 
INTEGER-2 INCHN,OUTCHN 
COMMON /CHNNLS/ I~CHN,OUTCHN 

INTEGER-2 BUFFER(256),BLOCK 
BLOCK· 0 ! Init block number 

C Read/write loop. 
C 
20 IERR • IREADWC256,BUFFER,BLOCK,INCHN) 

C 

IF CIERR .GE. 0) GO TO 30 ! Read 9uccessful 
IF CIERR .EG. C-1» GO TO 150 ! End of File? 
GO TO 100 Error 

C Write out buffer Just read. 
C 

30 IF CIWRITWC256,BUFFER,BLOCK,OUTCHN) .LT. 0) 

C 

GO TO 101 
BLOCK· BLOCK+1 
GO TO 20 

C ERROR ROUTINES 
C 

Update to block 
Read next block 

100 CALL PRINTC'Read error, copy aborted') 
GO TO 140 



112 

PR1402.FOR 
(continued) 

Programming with RT -11 

101 
140 

C 

CALL PRINT('Write error, copy aborted') 
CPYRTN •. TRUE. 
RETURN 

C Successful return. 
C 
150 CPYRTN •. FALSE. 

C 

RETURN 
END 
SUBROUTINE CLSCHN 

C Close files. 
C 

C 

INTEGER*2 INCHN,OUTCHN 
COMMON /CHNNLS/ INCHN,OUTCHN 
CALL CLOSEC(INCHN) 
IF (ICLOSE(OUTCHN) .EQ. 4) CALL PRINT 

('Protected output file already exists') 
RETURN 
END 
SUBROUTINE PRGCHN 

C Purge channels. 
C 

INTEGER*2 INCHN,OUTCHN 
COMMON /CHNNLS/ INCHN,OUTCHN 
CALL PURGE(INCHN) 
CALL PURGE(OUTCHN) 
RETURN 
END 



Chapter 14 Using Queued Input/Output 113 

The best place to put a device handler is immediately 
above the memory your program is using-the job's high 
limit. You can keep track of the program's high limit by us­
ing the macro directive .LIMIT. 

EXAMPLE 

.FETCH LIMIT+2,#LPNAM 
BCS ERROR 
MOV RO,LIMIT+2 

LPNAM: .RADSO ILPI 
LIMIT: .LIMIT 

When fetching multiple device handlers, fetch the next 
one into the area directly above the preceding one. This is 
easy because after each .FETCH, RO points.to the word above 
the device handler that was last fetched. By copying RO into 
another location, you can refer to that value in implement­
ing the next fetch. Do not do your next fetch using RO as 
the addr argument to the .FETCH macro because the con­
tents of RO are changed in the macro expansion before it is 
referenced. 

In FORTRAN IV programs you would use the IFETCH 
routine, which has the form: 

IERR = IFETCH( devnam) 

In this routine, "devnam" is a variable that contains the 
RAD50 code for the device handler to be fetched. The de­
vice handler is positioned within the FORTRAN IV OTS 
workspace. 

EXAMPLE 

INTEGER HVAR 
DATA HVAR/3RDK / 
IERR=IFETCHCHVAR) 



114 Programming with RT -11 

Selecting a Channel 

After you have fetched the device handler into memory, you 
can open I/O channels to the device. Channels are referred 
to by number. By default, channel numbers 0 to 15 (deci­
mal), or 0 to 17 (octal), are available. If your program is not 

. overlaid, you can use any of these numbers . .If it is over­
laid, do not use channel 15 (octal 17), as this is the channel 
used by the overlay process. If necessary, you can write code 
to check bit 9 of the JSW to see if the program is overlaid. 

If a FORTRAN IV program does not use the FORTRAN 
IV OTS I/O routines, the rules above apply without change. 
If the program does use these facilities, it is up to you to 
make sure that the channel numbers you select are not being 
used for OTS I/O. OTS routines use RT-11 programmed re­
quests to perform FORTRAN IV I/O, so some channels may 
be occupied when you try to gain access to them. To get a 
channel for your own purpose, use the IGETC request. 

This call asks the OTS to supply you with an available 
channel and mark the channel "in use" so that the OTS does 
not try to use the channel itself.. IGETC returns the number 
of the channel. When your program stops using a channel, 
you must return the channel to the OTS by calling the 
IFREEC routine. 

Remember, you have not disconnected a channel until you 
have closed it by using the CLOSEC routine (discussed later). 



Chapter 14 Using Queued Input/Output 115 

Opening a Channel 

Having selected a channel, you can connect it to a device 
or to a file on a file-structured device. To connect the chan­
nel, issue either a LOOKUP or an ENTER request. Both take 
a channel number and the address of a four-word block 
containing the device name, file name, and file type of the 
file in RAD50 format. LOOKUP connects the channel to an 
old file. ENTER connects the channel to a new file. 

If the device to which you are connecting the channel 
is not file structured, the file name and file type are ignored 
by the request and can be left zero. For a file-structured de­
vice, the LOOKUP request searches the directory for the 
specified file; the ENTER request creates a new file with the 
name given. If the device is file structured and you perform 
a LOOKUP without specifying a file name, RT -11 opens the 
device as one large file. This is called a non-file-structured 
LOOKUP. An ENTER request to a file-structured device re­
quires a specific file name. 

When you create a new file using ENTER, it is referred 
to as tentative. The characteristics of the tentative status are 
as follows: 

• The status of the directory entry for the file is flagged 
as tentative. (When the file is closed correctly, its sta­
tus is flagged as permanent.) 

• A tentative length is recorded in the directory. It may 
be that not all the allocated space is used by the op­
erations performed during the program run, but the 
allocated space is reserved for possible use by the file 
until the channel is closed. 

When the file is closed correctly, the following events take 
place: 

• The tentative status changes to permanent. 

• The length of the file is updated to record only the 
actual space used. The USR uses the fourth word of 
the channel table to store this information. 



116 Programming with RT -11 

• Any other file on the same volume with the same 
name and file type is deleted. 

In general, when you use ENTER to create a file which 
has the same specification as an old file, the old file is de­
leted when the new one is closed. This does not occur, 
however, if the old file is protected. You can prevent an 
unprotected file from being deleted by accident. Before is­
suing an ENTER request, perform a LOOKUP operation to 
see if there is a file with that name. If the LOOKUP opera­
tion fails because the file is not found, it is safe to perform 
an ENTER. A protected file is never deleted because of an 
ENTER. If you issue an ENTER request using a name as­
signed to a protected file, the ENTER request returns an 
error. 

It may happen that when you try to close a tentative 
file, the USR finds a protected file that was not there when 
the ENTER request was issued. If this situation occurs, the 
CLOSE request returns an error but the file is closed cor­
rectly. Then there are two files with 'the same name on the 
device. 

The ENTER request has one argument that the LOOKUP 
request does not have-the length you want to allocate to 
the file. The length is one of the following values: 

• A positive number giving the length of the file in 
blocks. The USR finds the first empty area on the de­
vice that is large enough and allocates the specified 
number of blocks to the tentative file. 

• The value -1. The USR allocates the largest empty 
area available on the volume. 

• The value O. The USR allocates the larger of either: 
half of the largest empty space or all of the second 
largest space. 

The form of the MACRO-ll request .ENTER is: 

.ENTER area,chan,file,length 



Chapter 14 Using Queued Input/Output 117 

EXAMPLE 

.ENTER #AREA,#O,#FNAM,#O 

.BLKW 4 

.RAOSO 10K FILE TYPI 

The form of the FORTRAN IV request IENTER is: 

length = IENTER (chan,file,length) 

EXAMPLE 

LEN=IENTER(ICHAN,FNAME,LENGTH) 

The LOOKUP request is used to access a permanent 
file on the device. The MACRO-ii request for lookup has 
the form: 

.LOOKUP area,chan,filename 

FORTRAN IV programmers use the LOOKUP system sub­
routine which has the form: 

length = LOOKUP(chan,filename) 

The LOOKUP and ENTER requests, in either 
MACRO-ii or FORTRAN IV, both return the actual num­
ber of blocks allocated to the file. The value is returned in 
RO for MACRO-ii. 

Synchronous 1/0 Requests 

While synchronous I/O is being performed, control does not 
return to the job that issued the request until the I/O oper-



118 Programming with RT -11 

ation is complete. Other jobs can be executed while the job 
is waiting for a return of control. 

To perform synchronous 110 you use the READW and 
WRITW requests. The arguments to these requests are: 

channel number Any channel referred to in the re­
quests must have previously been 
opened using ENTER or LOOKUP. 

buffer The memory buffer is the source of 
data for a write operation, or the desti­
nation of data for a read operation. 

word count The number of words to be transferred 
(use null bytes if necessary to fill 
words). 

block number In file 1/0, the relative block number 
within the file at which the data trans­
fer is to start.. The first block in the file 
is always block zero. 

In non-file-structured 1/0 to a file­
structured device, the block number 
refers to the physical block on the de­
vice, starting with-block O. 

The READW and WRITW requests cause data to be read 
from and written to the device. The W means "wait for 
completion." For MACRO-l1 programmers, the form of 
these requests is: 

.READW I. WRITW area,channel, buffer, wordcnt, block 

For FORTRAN IV programmers, the system subrou­
tines are called with the form: 

IERR= IREADW/IWRITW(wcnt,buff,block,chan) 

When a job issues a synchronous I/O request, a spe­
cific sequence of events is initiated. Refer to figure 43 while 
reading the following description of this sequence. 



Chapter 14 Using Queued Input/Output 

Figure 43. 
Flow of Control in Synchronous Input/Output 

INITIATE 
I/O 

USER 
JOB 

RMON 

~ -----

JOB IS BLOCKED 

r-_l_-
I 

I LOWER I 
I PRIORITY I 
L~ASK': _J 

I/O IN 0 D PROGRESS 

I/O USER 
COM PLETE JOB - ..... ---. 

RMON 

1----
I 
I 

BLOCKING 
CONDITION IS 
REMOVED 

r;-1--, 
CONTINUE 

: ANY HIGHER II 
I PRIORITY 
LTASKS _ J 

HANDLER 

--j START 
1 

CODE __ J 

HANDLER 

r-
ISR I 

L __ 

HANDLER 

ISR 

DONE 
CODE 

119 

~~ 

~ 
INTERRUPT 

INTERRUPT 



120 Programming with RT -11 

1. Using the arguments provided by the request, RMON 
builds an 110 queue element and passes it to the ap­
propriate device handler. 

2. The device handler starts the 110 operation and re­
turns control to RMON. 

3. RMON blocks the job that issued the request, and 
starts a scheduling search that results in control 
being passed to any lower priority jobs waiting to 
run. 

4. The 110 is controlled either by direct memory access 
(DMA) or interrupt processing, while other jobs, if 
any, execute~ DMA is a mode of memory access by 
which a device can access memory locations directly 
wi th no help from the CPU. 

5. When the device handler recognizes that the 110 op­
eration is complete, it informs RMON and passes 
back the queue element. 

6. The job that issued the 110 request is set runnable by 
RMON. Another scheduling pass is done and the job 
continues execution when control is returned to it. 

Transfers to Block Replaceable Devices 

When using block replaceable devices such as disks, re­
member that all liD transfers start at the beginning of a block. 
So if you read ten words from block 0 and then issue a re­
quest for another ten words from block 0, you read the same 
ten words again. Also, remember that if a write operation 
leaves a part of a block empty, the remainder of the last blo~k 
is filled with zeros. 

Because of these block replaceable device features, you 
should always transfer data in units of a block (256 words). 
If you must update data in the center of a block, you should 
read the block, update the data in memory, and write the 
modified block. 

When you issue a read or write request on a channel, 
RMON checks the request to make sure that the block 



Chapter 14 Using Queued Input/Output 121 

number is within the file. If the block number is outside 
the file, RMON returns an end-of-file error and no data is 
transferred. 

If the first block of the transfer is inside the file, RMON 
checks to make sure that the last block of the transfer is also 
in the file. If the file is too short for the transfer, RMON ad­
justs the word count to make the transfer fit the file. So, on 
block replaceable devices, an end-of-file error is returned 
only if the block number given in the request is past the 
end of the file. 

Transfers to Sequential Devices 

The end-of-file processing for sequential devices is com­
patible with that for block replaceable devices. If the data 
to be read is not at the end of the file, as much data as pos­
sible is transferred and no 110 error is generated. An end­
of-file error is generated only if the device is at the end of 
the file when you make the request. 

Closing a Channel 

You must always close an open channel when you want to 
use that channel for another file or when the channel was 
opened using ENTER and you want to keep the data writ­
ten to it. 

You may exit without closing a channel if the channel 
was opened with LOOKUP, or if the channel was opened 
by ENTER but was used as a scratch file for data to be dis­
carded. If you exit without closing the file, the file will be 
erased. 

The CLOSE request closes a file correctly. If it was 
opened with an ENTER request, the file has its name en­
tered in the directory. The channel is disconnected from the 
file and cannot be used until it is opened again. 

The PURGE request for MACRO-11 and FORTRAN IV 
programmers is provided for use when you have used 
ENTER to open a file that is not t~ become permanent. The 



122 Programming with RT -11 

PURGE request disconnects the channel from the file, and 
the file is lost. The MACRO-ll requests have the form: 

.CLOSE/.PURGE chan 

The FORTRAN IV calls have the form: 

CALL CLOSEC/PURGE(chan) 

Releasing a Device Handler 

Data Structures 

Releasing a device handler makes its memory space avail­
able for program use. This function is available only to 
MACRO-ll programs; there is no similar call in FOR­
TRAN IV. 

To reuse space efficiently, release device handlers in 
reverse order to their fetching. If you are releasing only some 
of the device handlers, find the address of the lowest one 
by using the .DST ATUS request (discussed later) before re­
leasing it. Remember to subtract the size from the pointer 
returned by the .DST ATUS request. To release all of the 
device handlers in one operation, use the .SRESET com­
mand. To release a specific device handler from memory, 
the MACRO-ll programmer uses the .RELEAS request in 
the form: 

.RELEAS dnam 

In this request, "dnam" is the address of the RAD50 device 
name. 

The programmed requests that allow you to use the RT -11 
queued I/O system require a number of different data items. 
You must provide some of these in your program; others 
are generated by the operating system. 



Chapter 14 Using Queued Input/Output 123 

User-created File Specifications 

You must specify device names to be used in the fetching 
operation, and file specifications to open channels. Device 
and file names are specified in one- and three-word data 
blocks, encoded in the RAD50 format discussed in chapter 
10, "Controlling Program Execution." You may combine 
these items into one four-word block. 

System-maintained Channels 

The system maintains a five-word data block for each 
channel, with 16 channels available to each job by default. 
Figure 44 is a schematic diagram of this five-word data block. 
The data block for a specified channel is filled in when the 
channel is opened. The data block is accessed by the sys­
tem when: 

• A read or write request is issued. The data is checked 
for trying to read or write past the end of the file and 

Figure 44. 
Input/Output Channel Data Block 

NAME OFFSET CONTENTS 

0 CHANNEL STATUS WORD 

C.SBLK 2 
STARTING BLOCK NUMBER OF THIS FILE 
(0 IS NONFILE-STRUCTURED) 

C.LENG 4 
LENGTH OF FILE (IF OPENED BY .LOOKUP) 
SIZE OF EMPTY AREA (IF OPENED BY.ENTER) 

C.USED 6 HIGHEST BLOCK WRITTEN 

C.DEVQ 10 
DEVICE NUMBER OF REQUESTS 
UNIT NUMBER PENDING ON THIS CHANNEL 



124 Programming with RT -11 

then used to build the I/O queue element for the re-
quest ( discussed later). . 

• A new file is closed. The data block is used to update 
the directory. 

C. USED is undefined if the channel is opened by a 
LOOKUP request. If opened by an ENTER, the value of 
C.USED is the number of the highest block written. 

If your program needs more than 16 channels, you can 
use the programmed request .CDFN to request the tot~l 
number of channels you want. Each .CDFN request 
supersedes any previous .CDFN request. The MACRO-11 
form of the .CDFN request is: 

.CDFN area,addr ,num 

In this request: 

area is the address of a three-word EMT argument 
block. 

addr is the address of an area -you have reserved in 
your program for use as channel tables. The 
size of the area must be 5*num words. 

num is the total number of channels you want 
(maximum of 255). 

EXAMPLE. 

•. CDFN #EMTBLK,~AREA1#26 

You use the FORTRAN IV system subroutine ICDFN 
in the form: 

IERR = ICDFN(num) 

Here "num" is the total number of channels you want. The 
memory for the ·channel tables is taken from the FORTRAN 
IV OTS workspace. 



Chapter 14 Using Queued Input/Output 125 

System-maintained 1/0 Queue Elements 

The system maintains a seven-word queue element under 
the S] and FB monitors, and a ten-word element under the 
XM monitor. One queue element is created for each job. The 
contents of an I/O queue element are shown in figure 45. 
The queue element is used in the following ways: 

• It is filled in by RMON in response to a read or write 
request. 

• RMON passes the queue element to the device han­
dler, which uses it while servicing a read or write 
request. 

• When the device handler has completed the execu­
tion of the I/O request, it passes the queue element 
back to RMON. 

When not in use, a job's queue elements are kept in a 
list of available elements. When a job issues a request that 
needs a queue element, one is removed from the list. I/O 
requests, inter-job communication requests, and timer re­
quests all require queue elements. When an operation us­
ing a queue element completes, the queue element is re­
turned to the list. 

As previously discussed, one queue element is avail­
able to each job. If your program needs more than one queue 
element, you can use the .QSET request. This condition will 
be discussed in chapter 15, "Using Nonsynchronous Queued 
Input/Output. " 

In the .QSET request, you specify the number of queue 
elements you want added to the list, rather than the total 
number of elements. The MACRO-11 request form is: 

.QSET addr, num 

In this request, "addr" is a block of memory you have re­
served to be used for queue elements. The size· of this area 
must be 7*num under the S] or FB monitor and 10*num 
under the XM monitor. Here "num" is the number of ad­
ditional queue elements you want to reserve. 



126 Programming with RT -11 

Figure.45. 
Structure of an Input/Output Queue Element 

NAME OFFSET CONTENTS 

Q.LlNK 0 LINK TO NEXT QUEUE ELEMENT; 0 IF NONE 

Q.CSW 2 POINTER TO CHANNEL STATUS WORD IN I/O 
CHANNEL (SEE FIGURE 3-29) 

Q.BLKN 4 PHYSICAL BLOCK NUMBER 

Q.FUNC 6 RESERVED JOB DEVICE SPECIAL 
Q.UNIT 7 NUMBER UNIT FUNCT(ON 
Q.JNUM 7 (1 BIT) (4 BITS) (3 BITS) CODE 

0= BG (8 BITS) 

Q.BUFF 10 USER BUFFER ADDRESS (MAPPED THROUGH PAR1 
WITH Q.PAR VALUE, IF XM) 

Q.WCNT 12 { IF<O, OPERATION IS WRITE 
WORD COUNT IF =0, OPERATION IS SEEK 

IF>O, OPERATION IS READ 
THE TRUE WORD COUNT IS THE ABSOLUTE 
VALUE OF THIS WORD . 

Q.COMP 14 COMPLETION . ~ IF 0, THIS IS WAIT MODE I/O 
ROUTINE IF 1, JUST QUEUE THE REQUEST 
CODE AND RETURN 

IF EVEN, COMPLETION ROUTINE 
ADDRESS 

Q.PAR 16 PAR1 VALUE (XM ONLY) 

RESERVED (XM ONLY) 

RESERVED (XM ONLY) 

The name of the FORTRAN IV request is IQSET which 
has the form: 

IERR=IQSET(num) 



Chapter 14 Using Queued Input/Output 127 

Here "num" is the number of additional queue elements to 
be allocated. The memory for these additional elements is 
taken from the FORTRAN IV OTS workspace. 

Device Handlers 

A device handler is a software routine that performs the 
operations necessary to allow a device to respond to I/O re­
quests as planned. Device handlers may be either perma­
nently resident in memory, or installed and removed as 
needed by your program. Before your program can request 
I/O to any device, the device handler for that device must 
have been placed in memory. You can do this in three dif­
ferent ways: 

1. Permanently resident. The handler for the system de­
vice (SY:) is always resident; the TT: handler is resi­
dent in FB and XM systems. 

2. Loaded from KMON, using the LOAD command. 

3. Fetched by the program during execution, using a 
programmed request. 

Device handlers to be used by foreground programs 
must be loaded. Background programs can either load or 
fetch handlers from within the program. Loaded handlers 
stay in memory until unloaded from KMON or removed as 
a result of a system reboot. 

Loading a device handler means that your program does 
not have to include instructions to fetch the handler; on the 
other hand, loading from KMON requires the help of an 
operator. Even if you expect that the device handler will be 
loaded before your program is run, you can assure success 
by performing either of the following: 

1. Do a fetch (background jobs only); a fetch for resi­
dent handler returns immediately, indicating success. 

2. Use the DST ATUS (device status) request in your 
program to check if the handler is resident. Provide 
code to print an error message and exit if it is not. 



128 Programming with RT -11 

.DST ATUS returns four words of information about the 
specified device. You supply the logical or permanent de­
vice name. The MACRO-ll form of .DST ATUS is: 

.DST A TUS infblk,device 

In this request, "infblk" is the address of a four-word block 
to which the information is returned and "device" is the 
address of a RAD50 word containing the device name. 

The FORTRAN IV,system subroutine name for the de­
vice status request is IDST AT. Its form is: 

IERR = IDSTAT( device,infblk) 

Here "device" contains a RAD50 word for the device, while 
"infblk" is a four-word area to store the returned informa­
tion. 

You use the DST ATUS or IDS'!.' AT request to: 

• Check for the correct physical device, if it is impor­
tant that your program access a specific physical 
device. 

• Check device characteristics. For example, you may 
want to make sure that your program will not try to 
write to a read-only device. 

• Check the size of the handler before a fetch. 

• Check if a handler is resident. 

Figure 46 shows the information returned by 
DST A TUS or IDST AT. The following list elaborates the 
DST A TUS function: 

1. DEVICE CHARACTERISTICS. Refer to the previous 
list on uses of DST A TUS or IDST AT. 

2. DEVICE CODE. A unique number for every physical 
device. A list of these assignments is available in 
chapter 2 of the RT -11 Programmer's Reference 
Manual. 

3. HANDLER SIZE. This number represents the num­
ber of bytes. 



Practice 
14-1 

Reference 

Chapter 14 Using Queued Input/Output 129 

4. POINTER TO HANDLER. If the handler is resident, 
this number is the load point plus 6. If the handler is 
not resident, the value is O. 

5. DEVICE SIZE. In 256-word blocks. If the device is 
sequential, the value is O. 

Figure 46. 
DSTATUS Information Block 

DEVICE 
CHARACTERISTICS 

DEVICE CODE 

HANDLER SI.ZE 

POINTER TO HANDLER 

DEVICE SIZE 

1. Type the program PR1401.MAC or PR1402.FOR into a 
file. 

2. Run the program. When it runs successfully, copy it to 
a file called PR1801.MAC or PR1802.FOR for use in 
practice 18-1. 

3. Change the program so that it copies from a different 
file. 

4. Change the program so that it reads and writes 512 
words per access instead of 256. 

RT -11 Programmer's Reference Manual. Chapter 2 discusses the 
READW and WRITW requests in detail. 



15 

Nonsynchronous 1/0 

1/0 Modes 
Using 1/0 Queue Elements 

Asynchronous Requests 
Using Asynchronous 1/0 to Implement Multiple Buffering 
Benefits of Multiple Buffering 
Using Multiple Buffering with Computation 

Event-driven 1/0 Requests 
Completion Routines 
Priority Levels and Scheduling 
Scheduling Completion Routines under the SJ Monitor 
Scheduling Completion Routines under the FB Monitor 
Conventions for Writing Completion Routines 
Restrictions on Completion Routines 
Applications for Event-driven 1/0 

References 



15 
Using 
Nonsvnchronous 
Queued 
Input/Output 

The architecture of the PDP-11 allows a large number of 
I/O operations to occur in parallel with computation. Thus, 
the PDP-11 enables real-time applications to operate with 
high-speed I/O devices. A slow application program can 
miss high-speed data input or lose control of a high-speed 
output device. 

In chapter 14, "Using Queued Input/Output," you 
learned how to use a class of I/O requests called synchro­
nous I/O requests. When you use these requests your pro­
gram does not proceed with its execution until the re­
quested I/O completes and, therefore, you do not take full 
advantage of the PDP-11 's capability. In this chapter we 
will discuss another class of I/O requests-nonsynchro­
no us I/O. Nonsynchronous I/O allows you to make use of 
the I/O architecture by requesting I/O transfers that run 
concurrently with other transfers and with computation. 
Careful use of these requests can greatly increase the exe­
cution speed of your program. 

The MACRO-11 requests discussed in this chapter are: 
.READ, . WRITE, . WAIT, .READC, and .WRITC. The 
FORTRAN IV requests discussed are: IREAD, IWRITE, 
IWAIT, IREADC, IWRITC, IREADF, and IWRITF. 

131 



132 Programming with RT -11 

When you have completed this chapter, you will be 
able to select the best mode(s) of I/O to use, given in­
put/output specifications for a program. The specifications 
may include the average data rate of each I/O channel, the 
amount by which the data rates change, the tradeoff con­
siderations of throughput against ease of programming, and 
the expected ratio of computing time to I/O duration. 

You will also be able to determine whether through­
put can be improved by overlapping input, computation, 
or output, given specifications for a program. You will then 
learn to design and implement an algorithm that includes 
such overlapping. Given specifications of a program with 
multiple, independent input channels, you will also learn 
to design and implement the program, using event-driven 
I/O. 

Nonsynchronous I/O 

Any I/O transfer includes three important events: 

1. Starting the transfer. Your program issues a READ or 
WRITE programmed request. Control leaves the job 
and enters the monitor. The "request count" byte in 
the channel table is incremented. 

2. Returning control to your program. 

3. Assuring completion of the I/O transfer. This means 
that requested input information is available for pro­
cessing, or that information in an output buffer has 
been transferred and the buffer can be used again. 

When using nonsynchronous I/O, you must take spe­
cial steps within your program to check for or wait for 
completion of the I/O transfer. This makes programming with 
nonsynchronous I/O more difficult than with synchronous 
I/O. 



1/0 Modes 

Chapter 15 Using Nonsynchronous Queued Input/Output 133 

RT -11 supports I/O requests in three modes. Each mode has 
its own set of programmed requests, is executed in a dif­
ferent way, and is more useful in certain types of applica­
tions. Matching your programming needs to the best I/O 
mode makes the most efficient use of your RT -11 system 
and your programming time. 

You have learned about synchronous I/O. The two 
nonsynchronous modes are asynchronous and event-driven. 
Event-driven I/O is also called I/O with completion rou­
tines. Both nonsynchronous modes return control to your 
program immediately and therefore, allow you to perform 
other operations while I/O is in progress. They differ, how­
ever, in the actions that RT -11 takes when the I/O transfer 
completes, and they also differ in the way that you write 
your program in order to use them. 

Use asynchronous I/O in operations where you may 
want to perform other activities after starting the I/O. This 
can be other processing or another transfer request. When 
your program reaches the point where it must wait for I/O 
completion, your job issues a WAIT request. When a WAIT 
request is issued, control leaves the job and RMON does 
not continue execution of that job until all I/O has com­
pleted on the channel you specified in the WAIT request. 
RMON implements the WAIT using the request count of the 
channel table. When that request count returns to zero, 
RMON once again allows the job to run. 

Asynchronous I/O is somewhat similar to synchro­
nous I/O. In synchronous I/O the job issues a request and 
immediately asks to be blocked until that request com­
pletes. In asynchronous I/O, issuing the I/O request is sep­
arated from the blocking operation, allowing the job to per­
form other activities before being blocked. Asynchronous 
I/O is most often used: 

• To allow I/O on two or more devices to proceed con­
currently. When control returns from one I/O request, 
the job issues another. 



134 Programming with RT -11 

• To allow I/O to proceed concurrently with computa­
tion. The job issues I/O requests aild then proceeds 
with computations on data held in memory. 

Event-driven I/O allows you to specify the operations 
that you want performed when I/O completes, while allow­
ing your program to do other useful work. When your pro­
gram issues an event-driven I/O request, you specify a rou­
tine that you have written and ask for the routine to be 
identified as the completion routine for this request. When 
I/O completes, the job is interrupted, the completion rou­
tine is run, and control returns to the job at the point of 
interruption. 

Asynchronous I/O is the better choice when your pro­
gram has only a limited number of operations to perform 
before it must wait and when it is only waiting for the 
completion of I/O on a specific channel. Event-driven I/O 
is more appropriate if: 

• Your job can or must continue processing while wait­
ing for I/O to complete. For example, if your job is 
controlling a real-time process using parameters that 
change b~cause of input information, the job must 
continue to use the old parameters until new ones 
come in. It cannot stop and wait for the new input. 

• Your job must wait for a specific I/O request (if mul­
tiple requests have been issued on the same channel). 

• Your job must wait for some combination of requests 
to complete. For example, you may want the job to 
wait until one of a group of selected I/O requests 
completes. 

Using 1/0 Queue Elements 

The use of I/O queue elements is transparent for synchro­
nous I/O. For nonsynchronous I/O, however, if you do not 
make sure you have enough I/O queue elements, your job 
can become blocked, making your program slower. 



Chapter 15 Using Nonsynchronous Queued Input/Output 135 

A request for an I/O transfer is an outstanding request 
from the time it is issued until the time it completes. While 
a request is outstanding, the device handler servicing it has 
exclusive use of the queue element for that request. For 
event-driven I/O, this queue element is also kept in use while 
the completion routine is running. 

If you use only synchronous I/O, the one queue ele­
ment (automatically provided) is enough, 'because at any 
given time only one I/O request is outstanding. If you use 
nonsynchronous I/O, the number of outstanding I/O re­
quests is unlimited. To get the best performance from your 
program, estimate the maximum number of I/O requests that 
will be outstanding at any given time, then use .QSET or 
IQSET to make sure you have enough I/O queue elements. 
If you issue an I/O request and no queue element is avail­
able, your job is blocked until one becomes available. 

Asynchronous Requests 

The MACRO-ii format for the asynchronous I/O requests 
is: 

.READ area,chan,buff,wcnt,block 

.WRITE area,chan,buff,wcnt,block 

The FORTRAN IV format is: 

IERR= IREAD (wcnt,buff,blk,chan) 

IERR= IWRITE (wcnt,buff,blk,chan) 

The arguments are identical to those of the synchronous 
requests. 

You may also use the . WAIT or .IW AIT request in the 
following formats: 

MACRO-ll: .WAIT chan 

FORTRAN IV: IERR = IW AIT (chan) 



136 Programming with RT -11 

When you use .WAIT or IWAIT, you have to wait for all 
I/O on a selected channel to complete. If you want to wait 
for a specific request to complete, do one of the following: 

• Use a synchronous request. 

• Use an asynchronous request and do not issue any 
other request on that channel before issuing the 
.WAIT or IWAIT. 

• Use event-driven I/O and have a completion routine 
run when that specific I/O request completes. 

Using Asynchronous 1/0 to Implement 
Multiple Buffering 

Sometimes a program can be handled as three operations: 

• Input: the transfer of data from a peripheral device to 
memory 

• Computation: the production of new data in memory 
using data in memory 

• Output: the transfer of data from memory to a periph­
eral device 

The advantage of using a synchronous I/O is that these 
operations can take place concurrently, although they are 
logically sequential. Data must be input before computa­
tions can be performed, and computations must be com­
plete before results can be written out. Thus, there are two 
opposing needs: to have the operations take place concur­
rently to increase speed, and sequentially, for the logic of 
the program. 

This problem can be solved by multiple buffering. In­
put data is read into a buffer. When that buffer is full, data 
is read into a second buffer while computation starts on the 
first. Each buffer goes through the necessary operations in 
sequence, but simultaneously, one buffer can be in use for 
input, one for output, and one or more for computation. 



Chapter 15 Using Nonsynchronous Queued Input/Output 137 

Benefits of Multiple Buffering 

To see how multiple buffering helps, let's look at a simple 
copy operation which omits the computation step from the 
read/compute/write cycle. Figure 47 shows a synchronous, 
single-buffered copy operation. The box represents the 
buffer. An arrow pointing into the buffer represents a read 

Figure 47. 
Synchronous Single-buffered Copy Sequence 

STEPS 
OPERATIONS 

CODE 
WRITE READ 

~ 0 READW 

BUFFER 

W WRITW 

Q 
~ 0 READW 

~ WRITW 

Q 
W 0 

READW 



138 Programming with RT -11 

Figure 48. 
Double-buffered Copy Sequence 

OPERATIONS CODE 
STEPS (REQUESTS NOTES 

WRITE READ AND BUFFER) 

~d READWA 1 

G 
w Q8 WRITE A 

} 2 READ B 
3 

WAlTA 
} 2 WAITB 3 Wd WRITE B 

G 
READ A 

U WAITB 
WAlTA 

~ Qb 
WRITE A 
READ B 

WAlTA 
WAITB Wcf WRITE B AP READ A 

WAITB 
WAlTA 

operation, and another arrow pointing out of the buffer 
represents a write. The figure indicates how time is di­
vided among the read and write operations over three cy­
cles of the program. 

Figure 48 shows a double-buffered copy. By using two 
buffers, the READ and the WRITE can execute concur-



Chapter 15 Using Nonsynchronous Queued Input/Output 139 

rently. This figure shows the overlap of these operations. 
As you study the figure, please read the following notes: 

1 Instead of using a READW, you could use a READ 
followed by a WAIT. This may make the program eas-
ier to write. . 

2 The order in which you issue the READ, WRITE, and 
WAIT requests generally makes no significant differ­
ence if the input and output devices are of approxi­
mately the same speed. For example, if you know that 
the output device is slower than the input device, is­
sue the WRITE on that channel first and the WAIT on 
that channel last. 

3 If you switch either the order of the READ and 
WRITE, or the order of the WAITs from that shown in 
figure 48, you can change the second 110 request to 
synchronous mode and remove the first WAIT. There 
will be a small increase in speed because you are per­
forming only one programmed request instead of two. 
The gains are probably not significant, however. 

Figure 49 compares single buffering with double 
buffering. The longer the program$ run, the more time is 
saved. In the long run, execution time can be decreased by 
up to 50 percent using this method. 

Figure 50 shows a flowchart of a double-buffered copy 
program. End-of-file and error conditions have been omit­
ted to keep the flowchart simple. Following this figure, are 
MACRO-ll and FORTRAN IV programs that carry out this 
double-buffered copying method. 

Two conditions have been assumed in figures 47 
through 50 and the two programs (PR1501.MAC and 
PR1502.FOR): 

1. The input and output devices are not the same. If 
they were, a program using two buffers would run no 
faster than a single-buffered program, because the de­
vice handler is able to service only one request at a 
time. 
If a device handler is to control a number of devices 



140 Programming with RT -11 

that can, in fact, operate independently, you will 
need to write a device handler that queues liD re­
quests internally and thereby avoids the normal seri­
alization of the queued I/O system. Only if you are 
working with this sort of device handler, can you 
overlap operations that are being performed by it. 

2. The time graphs show approximately equal input and 
output times. This is the condition in which a dou­
ble-buffered copy program is more efficient. The 
greater the difference between the speed of the input 
device and that of the output device, the smaller the 
benefit of a double-buffered copy over a single­
buffered copy. 

Figure 49. 
Comparison of Single- and Double-buffered Copy 

SINGLE-BUFFERED 

READ 1----

WRITE 

DOUBLE-BUFFERED 

READ 1------ ----

WRITE 

I 
I 
I 
I TIME SAVED 
I+-- BY DOUBLE ~ 
I BUFFERING I 



Chapter 15 Using Nom~1nchronous Queued Input/Output 141 

Figure 50. 
Flowchart for a Double-buffered Copy Program 

FLAG BUFFER 'A' 
AS INPUT BUFFER 

FLAG BUFFER 'B' 
AS OUTPUT BUFFER 

t 
READ INTO 
INPUT BUFFER 

+ 
WAIT ON BOTH 
CHANNELS 

+ 
SWITCH INPUT 
AND OUTPUT 
BUFFERS 

t 
WRITE FROM 
OUTPUT BUFFER 

I 

Using Multiple Buffering with Computation 

Input and output operations on the same device cannot be 
overlapped with each other, but both I/O operations can be 
overlapped with computation. Buffering arrangements dif­
fer depending on which operations overlap. 

Some types of computation need the input data to be 
kept until the computation is complete. For this type of 
computation, you need another buffer to hold results. Other 
computations can store results by writing over the input 
data, so you do not need to allocate a separate output buffer. 
Whether you use separate input and output buffers, of 
course, will affect the multiple buffering algorithm that you 
use. 



142 

PR1501.MAC 

Programming with RT -11 

.TITLE FILE COPY PROGRAM 

This program copies one file and then exits . 

. MCALL .EXIT 

.MCALL .READ 

.MCALL .QSET 

.FETCH .LOOKUP .ENTER .PRINT 

.WRITE .CLOSE .SRESET .WAIT 

EMTARG: .BLKW 
INFILE: .RAD50 
OUTF I L: . RAD50 
LIMITS: .LIMIT 

6 
IDK TRAN1 XYZI 
IDK TRAN2 XYZI 

;EMT argument block 
;Copy from DK:TRAN1.XYZ 

to DK:TRAN2.XYZ 
;High/low limits 
;File 110 Buffer 
;File 110 Buffer 2 

BUFF 1: . BLKW 
BUFF2: . BLKW 
QELMT: .BLKW 
ERROR: • BYTE 

256. 
256. 
10. ;Queue element 

;Error status byte 
IIProgram copies TRAN1.XYZ to TRAN2.XYZII 

IIError on FETCH of output handler ll 

IIError on FETCH of input handler ll 

IIError on LOOKUP of input file ll 

ANNCE: .ASCIZ 
FCH1MS: .ASCIZ 
FCH2MS: .ASCIZ 
LKPMES: . ASC I Z 
ENTMES: .ASCIZ 
RERRMS: . ASC I Z 
WERRMS: .ASCIZ 
PRTCT: .ASCIZ 

IIError on creation of output file ll 

IIRead error, copy aborted ll 

IIWrite error, copy aborted ll 

IIProtected output file already exists ll 

SETUP: 

.EVEN 

.SBTTL SETUP Setup Files For Copy 

This routine sets up files for 110. 
The file specifications are fixed. 
Returns with C-Bit SET on error. 

MOV R1,-(SP) ;Save register 
.PRINT IANNCE ;Announce prog~am 
Fetch device handlers 
MOV LI M I TS + 2, R 1 ;Load high limit 
.FETCH R1,IOUTFIL ;Get output handler 
BCS FCH1ER ;Branch on FETCH error 
MOV RO,R1 ;Load high limit 
.FETCH R1,IINFILE ;Get input handler 
BCS FCH2ER ;Branch on FETCH error 
Open files 
.LOOKUP IEMTARG,13,IINFILE 
BCS LKPERR ;Branch on OPEN failure 
MOV RO,R1 ;Load input file length 
.ENTER IEMTARG,IO,IOUTFIL 
BCC DONE ;Branch on success 
Error Routines 
.PRINT IENTMES 
BR ERDONE 

;Issue create failure msg 
;And finish up 

LKPERR: .PRINT ILKPMES ;Issue open failure msg 
;And finish up BR ERDONE 



PR1501.MAC 
(continued) 

Chapter 15 Using Nonsynchronous Queued Input/Output 

FCH2ER: .PRINT IFCH2MS jIssue FETCH error msg 
jAnd finish up BR ERDONE 

FCH1ER: .PRINT 
ERDONE: SEC 
DONE: MOV 

RETURN 
.SBTTL 

IFCH1MS 

(SP)+,R1 

CPYRTN 

jIssue FETCH error m5g 
jIndicate error occurred 
jRestore R1 (save C-bit) 
jReturn to caller 

Double-Buffered Copy 

Routine copies data from the opened input file 
on channel 3 to the output file opened on 
channel o. 
Returns with C-BIT set on error. 

Note: All registers except RO are preserved. 

CPYRTN: MOV R1,-(SP) jSave registers 
MOV R2,-(SP) 

1 $: 

2$: 

MOV 
MOV 
.QSET 
CLR 
MOV 
MOV 
CLRB 
.READ 
BCC 
TSTB 
BEQ 
BR 
.WAIT 
BCS 
.WAIT 
BCS 
MOV 
MOV 

R3,-(SP) 
R4,-(SP) 
IQELMT,I1 jAllocate a queue element 
R1 jInitialize block number 
IBUFF1,R2 jR2 --) input buffer 
IBUFF2,R3 jR3 --) output buffer 
ERROR ;Clear error flag 
IEMTARG,13,R2,1256.,R1 
2$ ;Branch if read succeeded 
8'52 ;End-Of-File (EOF)? 
EXIT jBranch if so 
RDERR 
10 
WERR 
13 
RDERR 
R2,R4 
R3,R2 

jOtherwise, process error 
jWait for write to finish 
;Branch on error 
jWait for read to finish 
jBranch on error 
jSwitch input & output 

buffers 
MOV R4,R3 

3$: 

.WRITE 
BCS 
INC 
BR 

RDERR: .PRINT 

WERR: 
BR 
.PRINT 

EREX IT: DECB 
EXIT: MOV 

MOV 

IEMTARG,IO,R3,1256.,R1 
WERR jBranch on write error 
R1 jUpda~e block number 
1$ jAnd read next block 
IRERRMS 
EREX IT 
IWERRMS 
ERROR 
(SP)+,R4 
(SP)+,R3 

jIssue read error msg 
jAnd finish up 
jIssue write error msg 
;Set error flag 
jRestore saved registers 

MOV (SP)+,R2 
MOV 
.WAIT 
BCC 

(SP)+,R1 
10 
1$ 

jWait for last output 
jBranch if successful 

143 



144 Programming with RT -11 

PR1501.MAC .PRINT "WERRMS jIssue write error msg 
(continued) BR 2$ 

1$: TSTB ERROR jError? (Clear C-BIT) 
BEQ 3$ jBranch if not 

2$: SEC jOtherwise. set C-BIT 
3$: RETURN jReturn to caller 

.SBTTL CLSCHN Cleanup For Copy Program 
CLSCHN: .CLOSE "3 jClose input file 

.CLOSE "0 jClose output fi Ie 
BCC RESET j8ranch if succeeded 
.PRINT "PRTCT jIssue protected file msg 

PRGCHN: jPurge files 
RESET: .SRESET jReset system & purge 

RETURN jReturn to caller 
.S8TTL MAIN PROGRAM 

START: CALL SETUP jOpen input & output files 
8CS 1$ jBranch if failed 
CALL CPYRTN jCoPY the input to output 
BCS 1$ jBranch if failed 
CALL CLSCHN jClose the files 
BR 2$ jExit 

1 $ : CALL PRGCHN jPurge the fi les 
2$: .EXIT jExit 

.END START 



PR1502.FOR 

Chapter 15 Using Nonsynchronous Queued Input/Output 

C 
C 
C 
C 

C 

PROGRAM COPY1 

Program perform9 a file to file copy and then 
exit9. 

LOGICAL·1 SETUP,CPYRTH 
LOGICAL·1 ERROR 

ERROR • SETUP() Open Ule9 
Stop on getup error 

145 

IF (ERROR) GO TO 20 
ERROR • CPYRTH() 
IF (ERROR) GO TO 20 
CALL CLSCHH 

Copy input to output file 
Stop on error 

20 
30 

C 

Success, cloge channel9 
GO TO 30 
CALL PRGCHH Error, purge channel9 
CALL EX IT 
EHD 
FUHCTIOH SETUP 

C Thi9 routine set9 up the files for 1/0. 
C The file 9pecifications are fixed in this version. 
C 
C Function returns .TRUE. if an error occurred. 
C 

C 

LOGICAL·1 SETUP 
IHTEGER·2 IHCHH,OUTCHH 
COMMOH ICHHHLSI IHCHH,OUTCHH 

C Channel numbers are common because they are used 
C by CPYRTH, CLSCHH, and PRGCHH. 
C 

C 

IHTEGER·2 IHFILE(4),OUTFIL(4) 
DATA IHFILE/2RDK,3RTRA,2RH1,3RXYZI 
DATA OUTFIL/2RDK,3RTRA,2RH2,3RXYZI 

Input & output 
file specs 

C Output introductory message and allocate channels. 
C 

C 

CALL PRIHT('Program copies TRAH1.XYZ to TRAH2.XYZ') 
IHCHH • IGETCO 
OUTCHH • IGETC() 

C Fetch device handler9. 
C 

C 

IF (IFETCH(OUTFIL(1» .HE. 0) GO TO 101 
IF (IFETCH(IHFILE(1» .HE. 0) GO TO 102 

C Open input file. 
C 

LEHGTH • LOOKUP(IHCHH,IHFILE) 
IF (LEHGTH .LT. 0) GO TO 103 



146 

PR1502.FOR 
(continued) 

Programming with RT -11 

C 
C 
C 

C 

Create output file. 

IF (IENTER(OUTCHN,OUTFIL,LENGTH) ,.LT. 0) GO TO 104 
SETUp· .FALSE. ! Return success 
RETURN 

C ERROR ROUTINES 
C 
101 CALL PRINT('Error on FETCH of output handler') 

GO TO 200 
102 CALL PRINT('Error on FETCH of input handler') 

GO TO 200 
103 CALL PRINT('Error on LOOKUP of input file') 

GO TO 200 
104 CALL PRINT('Error on creation of output file') 
200 SETUp· .TRUE. ! Return with error 

RETURN 
END 
FUNCTI ON CPYRTN 

C 
C Double buffered copy routine. 
C 
C Function returns .TRUE. on error. 
C NOTE: Some severe errors will abort the program. 
C 

10 

C 

LOGICAL*1 CPYRTN 
INTEGER*2 INCHN,OUTCHN 
COMMON /CHNNLS/ INCHN,OUTCHN 
INTEGER*2 BUFFER(256,2),BLOCK,INPTR,OUTPTR 
LOGICAL*1 FRSTTM ! "First time through" flag 
DATA FRSTTM/.TRUE./ 
IF (.NOT. FRSTTM) GO TO 10 ! Do GSET only once 
IF (IGSET(1) .NE. 0) STOP 'No room for queue element' 
FRSTTM •. FALSE. 
BLOCK • 0 
INPTR • 1 
OUTPTR • 2 

Initialize block number 
Initialize input buffer I 

Initialize output buffer I 

C Read/write loop. Begin by reading into first buffer. 
C 
20 IERR • IREAD(256,BUFFER(1,INPTR),BLOCK,INCHN) 

IF (IERR .GE. 0) GO TO 30 ! Successful read 
IF (IERR .EG. (-1» GO TO 150 ! End of File 
GO TO 100 Otherwise, ~rror 

C 
C Wait for read and previous write to finish. 
C 

30 IF (IWAIT(INCHN) .NE. 0) GO TO 100 ! Error on read 
IF (IWAIT(OUTCHN) .NE. 0) GO TO 100 ! Error on write 



PR1502.FOR 
(continued) 

Chapter 15 Using Nonsynchronous Queued Input/Output 

C 
C 
C 

C 

Switch read and write buffers. 

ITMP • II'IPTR 
II'IPTR • OUTPTR 
OUTPTR • I TMP 

C Write out buffer just read. 
C 

147 

IF (IWRITE(256,BUFFER(1,OUTPTR),BLOCK,OUTCHI'I) .LT. 0) 
GO TO 101 

C 

BLOCK· BLOCK+1 
GO TO 20 

Update block number 
Read next block 

C ERROR ROUTII'IES 
C 
100 CALL PRII'IT('Read error, copy aborted') 

GO TO 140 
101 CALL PRII'IT('Write error, copy aborted') 
140 CPYRTI'I •• TRUE. 

RETURI'I 
C 
C Wait for output to complete and return success. 
C 
150 IF (IWAIT(OUTCHI'I) .I'IE. 0) GO TO 101 

CPYRTI'I •• FALSE. 
RETURI'I 
EI'ID 
SUBROUTII'IE CLSCHI'I 

C 
C Close files. 
C 

C 

II'ITEGER*2 II'ICHI'I,OUTCHI'I 
COMMOI'I ICHI'II'ILSI II'ICHI'I,OUTCHI'I 
CALL CLOSEC(II'ICHI'I) 
IF (ICLOSE(OUTCHI'I) .EG. 4) CALL PRII'IT 

('Protected output file already exists') 
RETURI'I 
EI'ID 
SUBROUTII'IE PRGCHI'I 

C Purge channe~s. 
C 

II'ITEGER*2 II'ICHI'I,OUTCHI'I 
COMMOI'I ICHI'II'ILSI II'ICHI'I,OUTCHI'I 
CALL PURGE(II'ICHI'I) 
CALL PURGE(OUTCHI'I) 
RETURI'I 
EI'ID 



148 Programming with RT -11 

While examining the following programs (PR1503.MAC 
and PR1504.FOR) and designing multiple buffering algo­
rithms of your own, remember these rules: 

1. For maximum speed, start I/O as early as possible to 
achieve the most overlap. 

2. Do not start I/O on a buffer until all other activity on 
that buffer has completed: 

• Do not start writing from a buffer until the computa­
tions that produce the data in the buffer have finished. 

• Do not read into a buffer until the computations that 
need the old data in the buffer have finished. 

• If an input buffer is also being used as an output buffer, 
do not read into that buffer until the previous write op­
eration on that buffer has completed. 

3. Do not start computation on input data until you are 
sure that the READ request into that buffer has com­
pleted. 

4. The WAIT request waits until all I/O on a channel is 
done. If you are using asynchronous I/O and you 
want to wait for a specific I/O transfer to complete, 
do not start a new transfe'r on that channel until you 
first execute a WAIT. 

Figure 51 shows the sequence of operations in a 
read/compute/write program. In this example the input and 
output devices are the same, so the program does not try to 
overlap input and output. In addition, the computation can 
store its results in the input buffer. The circular arrow rep­
resents the computation operation. 

In addition to showing the steps in the operation, fig­
ure 51 shows when the program is active-not waiting for 
I/O to complete. The actual timing depends on the relative 
speeds of the I/O device and the computation. In the figure, 
the timing and spacing is exaggerated to emphasize the 
connections among the different events and to show poten­
tial overlaps. Overlap is greatest when the total I/O time is 
about the same as the computation time. Then you can save 



Chapter 15 Using Nonsynchronous Queued Input/Output 149 

Figure 51. 
Double-buffered Read/ComputelWrite Sequence 

OPERATIONS 

STEPS WRITE ACTIVE 
COMPUTE (NOT 

READ BLOCKED) CODE NOTES 

WJ ctJ 
I READWA 1 

0 
W b READ B 2 

CEJ B 

COMPUTE A 

~ 

c0 0 I WRITE A 2 3 
I 
I 

I 
WAITB 2 

I 

l±J READ A 4 

~ cEJ 
COMPUTE B 

W GfcG WRITE B 3 

WAlTA 

W READ B 4 

c0 ~ 
COMPUTE A 

LzJ '( 

cEJ GJ WRITE A 3 

WAITB 

RETURN TO STEP 0 

as much as 50 percent of the time. The program is blocked 
only when it must wait for the latest read operation to 
complete. The numbered notes in figure 51 are described 
below. 

1 Instead of a READW, you can use a READ followed 
by a WAIT. This makes the program easier to write. 



150 Programming with RT -11 

2 Assuming the READ operation takes approximately 
half the time of the computation, the READ B opera­
tion in frame 2 completes while the COMPUTE A is 
in progress. Therefore, the following WRITE A starts 
executing immediately and the WAIT B is not neces­
sary-it would return successfully right away. The 
dotted lines indicate this. WAIT B is included, and 
the solid lines are positioned to show the sequence of 
requests and the pattern of the operations that are set 
up soon after the startup. 

3 Each of these WRITEs starts to execute as soon as the 
previous READ completes. 

4 Each of these READs starts to execute as soon as the 
previous WRITE completes. 

Figure 52 ,is a flowchart for the double-buffering me­
thod shown in figure 51. The two programs (PR1503.MAC 
and PR1504.FOR) which follow are examples of this dou­
ble-buffering method. The programs read a specified file from 
'DK:, sort the bytes of each block, and write the results to 
another file on DK:. Figure 53 is a flowchart for a program 
whose computation needs a separate output buffer. To 
overlap operations here, you need four buffers. At any given 
time, one pair is being used for I/O (read into the input buffer 
and write from the output buffer) and one pair is being used 
in computation. This flowchart also allows for different in­
put and output devices. 

The use of the WAIT request is probably the most dif­
ficult part of writing a program which uses multiple buffers. 
In this type of program, the WAIT on the input channel must 
precede the start of computation on that buffer. 

If the input and output devices are not the same, a wait 
on output channel is needed before the read into input 
buffer, to make sure that the old buffer contents are written 
out before the new contents are read in. If the devices are 
the same (as assumed in these examples), the device han­
dler does not start the READ until it has completed the 
WRITE. 



Chapter 15 Using Nonsynchronous Queued Input/Output 151 

Figure 52. 
Flowchart for Double-buffered Read/ComputelWrite Program 

READ INTO BUFFER 'A' 

+ 
FLAG BUFFER 'A' AS 
COM PUTE/OUTPUT 
BUFFER 
FLAG BUFFER 'B' AS 
INPUT BUFFER 

t 
WAIT ON INPUT 
CHANNEL (I.E. 

~ WAIT FOR COMPUTE/ 
OUTPUT BUFFER 
TO BE FULL) 

t 
READ INTO INPUT 
BUFFER 

t 
DO COMPUTATIONS 
ON COMPUTE/ 
OUTPUT BUFFER 

t 
WRITE COMPUTE/ 
OUTPUT BUFFER 

+ 
SWITCH BUFFER 
FLAGS 

I 



152 

PR1503.MAC 

Programming with RT -11 

.TITLE COMPUTATIOH & I/O EXAMPLE PROGRAM 

This program demonstrates asynchronous double 
buffered computation. The program reads data 
from an input file, performs computation on 
the data read, and writes the tran5formed 
data to the output file • 

. MCALL .EXIT 

.MCALL .READ 
.FETCH .LOOKUP .EHTER .PRIHT 
.WRITE .CLOSE .SRESET .WAIT 

.MCALL 
EMTARG: .BLKW 
IHFILE: .RAD50 
OUTF I L: . RAD50 
LIMITS: .L1MIT 

.QSET 
6 ;EMT argument block 
/DK TRAH1 XYZ/ ;Copy from DK:TRAH1.XYZ 
/DK TRAH2 XYZ/ to DK:TRAH2.XYZ 

;High/low program limits 
BUFF 1 : 
BUFF2: 
QELMT: 
ERROR: 
EOF: 

.BLKW 

.BLKW 

.BLKW 

.BYTE 

.BYTE 

256. ;File I/O Buffer 1 
256. ;File I/O Buffer 2 
10. ;Queue element 

;Error status byte 

AHHCE: .ASCIZ 
FCH1MS: .ASCIZ 
FCH2MS: .ASCIZ 
LKPMES: .ASCIZ 
EHTMES: .ASCIZ 
RERRMS: .ASCIZ 
WERRMS: .ASCIZ 
PRTCT: .ASCIZ 

;End of File flag 
IIProgram copies TRAH1.XYZ to TRAH2.XYZII 
IIError on FETCH of output handler ll 

IIError on FETCH of input handler ll 

IIError on LOOKUP of input file ll 

IIError on creation of output file ll 

IIRead error, copy aborted ll 

IIWrite error, copy aborted ll 

IIProtected output file already exists ll 

SETUP: 

.EVEH 

.SBTTL SETUP Setup File5 For Copy 

This routine sets up files for I/O. 
The file specifications are fixed. 

Returns with C-Bit SET on error. 

MOV R1,-(SP) ;Save register 
.PRIHT IAHHCE ;Announce program 
Fetch device handlers 
MOV L1MITS+2, R1 ;Load high limit 
.FETCH R1,IOUTFIL ;Get output handler 
BCS FCH1ER ;Branch on FETCH error 
MOV RO,R1 ;Load high limit 
.FETCH RO,IIHFILE ;Get input handler 
BCS FCH2ER ;Branch on FETCH error 
Open files 
.LOOKUP IEMTARG,I3,IIHFILE 
BCS LKPERR ;Branch if open failed 
MOV RO,R1 ;Load input file length 



PR1503.MAC 
(continued) 

Chapter 15 Using Nonsynchronous Queued Input/Output 

.ENTER IEMTARG,IO,IOUTFIL 
BCC DONE ;Branch if 5ucce55ful 
Error Routine5 
.PRINT IENTMES ;I55ue create failure m5g 

;And fini5h up BR 
LKPERR: • PR I NT 

BR 
FCH2ER: .PRINT 

BR 
FCH1ER: .PRINT 
ERDONE: SEC 
DONE: MOV 

RETURN 
.SBTTL 

ERDONE 
ILKPMES 
ERDONE 
IFCH2MS 
ERDONE 
IFCH1MS 

CSP)+,R1 

CMPRTN 

;I55ue open failure m5g 
;And flni5h up 
;I55ue FETCH error 
;And flni5h up 
;I55ue FETCH error 
;Indicate error occurred 
;Re~tore R1 C~ave C-bit) 
;Return to caller 

Computation Routine 

Routine a~5ume5 the input file i~ opened on 
channel 3 and the output on channel O. 
Return~ with C-BIT SET on error. 

Note: All regi~ter~ except RO are pre~erved. 

CMPRTN: MOV R1,-CSP) ;Save regi5ter~ 
MOV R2,-CSP) 
MOV R3,-CSP) 
MOV R4,-CSP) 
MOV 
.QSET 

BEG: .READ 
BCC 
TSTB 
BEQ 
BR 

INIT: MOV 
CLR 
MOV 
MOV 
CLRB 
CLRB 

SLOOP: . WA IT 
BCS 
.READ 
BCC 
TSTB 
BNE 
INCB 

R5,-CSP) 
IQELMT,I1 ;Allocate a queue element 
IEMTARG,13,IBUFF1,1256.,IO 
INIT ;Branch if read ok 
8 1 52 ;End-of-File? 
EXIT ;Branch if ~o, all done 
RDERR ;I~5ue read error 
11,R1 ;Load read block number 
R5 ;Load write block number 
IBUFF2,R2 ;R2 --) input buffer 
IBUFF1,R3 ;R3 --) output buffer 
ERROR ;Clear error flag 
EOF ;Clear EOF flag 
13 ;Wait for input to fini~h 
RDERR ;Branch on error 
IEMTARG,13,R2,1256.,R1 
COMP ;Branch if read ~ucceeded 
@152 ;End-Of-File CEOF)? 
RDERR ;Branch if fatal error 
EOF ;Set EOF encountered flag 

Perform computation on previou~ly read block. 
Computation in thi5 program con5i~t~ of 5hifting 
each data element one place to the right Ca 
~imple 5caling operation). 

153 



154 

PR1503.MAC 
(continued) 

Programming with RT -11 

COMP: 

LOOP: 

MOV 
MOV 
ASR 
DEC 
BNE 

'256. ,RO 
R3,R4 
(R4)+ 
RO 
LOOP 

;Initialize counter 
;Copy buffer address 
;Shift right one bit (/2) 

;Decrement loop counter 
;Branch if not done 

Write out buffer on which computation has Just 
been performed . 

. WRITE 'EMTARG,'O,R3,'256.,R5 
BCS WERR ;Branch on write error 
TSTB EOF ;EOF on last read? 
BGT EXIT ;Branch if so 
MOV R2,R4 ;Otherwise, switch input 
MOV R3,R2 and output buffer 
MOV 
INC 
INC 
BR 

R4,R3 
R1 
R5 
SLOOP 

;Update input block' 
;Update output block' 
;And continue 

Error messages and cleanup. 

RDERR: .PRINT 
BR 

WERR: .PRINT 
EREXIT: DECB 
EXIT: MOV 

MOV 

'RERRMS 
ERE X IT 
'WERRMS 
ERROR 
(SP)+,R5 
(SP)+,R4 

MOV (SP)+,R3 
MOV (SP)+,R2 

1$: 

2$: 

MOV 
.WAIT 
BCC 
.PRINT 
BR 
TSTB 
BEQ 
SEC 

3$: RETURN 
.SBTTL 

CLSCHN: .CLOSE 
.CLOSE 
BCC 
.PRINT 

PRGCHN: 
RESET: . SRESET 

RETURN 

(SP)+,R1 
'0 
1$ 

'WERRMS 
2$ 
ERROR 
3$ 

CLSCHN 
'3 
'0 
RESET 
'PRTCT 

;Issue read error msg 
;And finish up 
;Issue write error mS9 
;Set error flag 
;Restore saved registers 

;Wait for last output 
;Branch if successful 
;Issue write error msg 

;Set C-Bit? (clear it) 
;Branch if not 
;Otherwise, set it 
;Return to caller 

Cleanup For Copy Program 
;Close input file 
;Close output file 
;Branch on success 
;Issue protected file msg 
;Purge files 
;Reset (purge files) 
;Return to caller 

.SBTTL MAIN PROGRAM 
START: CALL 

BCS 
SETUP 
1$ 

;Open files 
;Branch on error 



Chapter 15 Using Nonsynchronous Queued Input/Output 155 

PR1503.MAC CALL CMPRTN ;Transfer the file 
(continued) BCS 1$ ;Branch on error 

CALL CLSCHN ;Close the flIes 
BR 2$ 

1$: CALL PRGCHN ;Purge the flIes 
2$: .EXIT 

.END START 



156 

PR1504.FOR 

Programming with RT -11 

PROGRAM ACOMP 
C 
C A9ynchronous Double-Buffered 110 w/Computat10n. 
C 
C Th19 program read9 data from the 1nput f1le, 
C perform9 computat10n on the data read, and 
C wr1tes the tran9formed data to the output f1le. 
C Th1s program use9 Bsynchronou9 110 to allow the 
C computat10n to occur dur1ng 110 operat10ns. 
C 

C 

LOGICAL*1 SETUP,CMPRTH 
LOGICAL*1 ERROR 

ERROR • SETUPO 
IF CERROR) GO TO 20 
ERROR· CMPRTHC) 
IF CERROR) GO TO 20 
CALL CLSCHH 
GO TO 30 

20 CALL PRGCHH 
30 CALL EXIT 

EHD 
FUHCTI OH SETUP 

C 

Open f1le9 
Stop on getup 
Copy file 
Stop on error 
Cl0ge channel9 
Exit 
Purge channels 

C Th1s rout1ne sets up the f1le9 for 110. 

error 

C The f1le spec1f1cat10ns are f1xed 1n the ver910n. 
C 
C Funct10n returns .TRUE. 1f an error occurred. 
C 

C 

LOGICAL*1 SETUP 
IHTEGER*2 IHCHH,OUTCHH 
COMMOH ICHHHLSI IHCHH,OUTCHH 

C Channel numbers ~n common because they are used 
C by CMPRTH, CLSCHH, and PRGCHH. 
C 

C 

IHTEGER*2 IHFILE(4),OUTFILC4) 
DATA IHFILE/2RDK,3RTRA,2RH1,3RXYZI 
DATA OUTFIL/2RDK,3RTRA,2RH2,3RXYZI 

Input &r output 
f He 9pec9 

C Output 1ntroductory message and allocate channels. 
C 

C 

CALL PRIHTC'Program cop1e9 TRAH1.XYZ to TRAH2.XYZ') 
IHCHH • IGETCO 
OUTCHH • IGETCC) 

C Fetch needed dev1ce handlers. 
C 

IF CIFETCHCOUTFIL(1» .HE. 0) GO TO 101 
IF CIFETCHCIHFILE(1» .HE. 0) GO TO 102 



Chapter 15 Using Nonsynchronous Queued Input/Output 157 

PR1504.FOR C 

(continued) C 
C 

C 

Open input file. 

LENGTH • LOOKUP(INCHN,INFILE) 
IF (LENGTH .LT. 0) GO TO 103 

C Create output file. 
C 

IF (IENTER(OUTCHN,OUTFIL,LENGTH) .LT. 0) GO TO 104 
SETUP • .FALSE. ! Return 9ucce99 
RETURN 

C 
C ERROR ROUTINES 
C 

101 CALL PRINT('Error 
GO TO 200 

on FETCH of output handler') 

102 CALL PRINT('Error 
GO TO 200 

on FETCH of input handler') 

103 CALL PRINT('Error 
GO TO 200 

on LOOKUP of input file') 

104 CALL PRINT('Error on creation of output. file') 
200 SETUP • .TRUE. ! Return error 

C 

RETURN 
END 
FUNCTION CMPRTN 

C Double-buffered computation routine. 
C 
C Function return9 .TRUE. on error. 
C NOTE: Some severe errors will abort the program. 
C 

C 

LOGICAL*1 CMPRTN 
INTEGER*2 INCHN,OUTCHN 
COMMON ICHNNLSI INCHN,OUTCHN 
INTEGER*2 BUFFER(256,2),BLOCK,INPTR,OUTPTR 
LOGICAL*1 FRSTTM ! Once only flag 
DATA FRSTTM/.TRUE.I 
IF (.NOT. FRSTTM) GO TO 10 ! Do QSET only once 
IF (IQSET(1) .NE. 0) STOP 'No room for queue element' 
FRSTTM •• FALSE. 

C Begin by reading into buffer 1. 
C 
10 IERR • IRtAD(256,BUFFER(1,1),0,INCHN) 

IF (IERR .GE. 0) GO TO 20 ! Successful read 
IF (IERR .EQ. (-1» GO TO 150 ! EOF mean9 all done 
GO TO 100 Read error 

C 
C Initialize block numbers and flag9. 
C 



158 

PR1504.FOR 
(continued) 

20 

C 
C 
C 
C 
30 
C 
C 
C 

C 
C 
C 
C 
C 
C 
C 
50 

60 
C 
C 
C 
C 

C 
C 
C 

C 
C 
C 

C 

Programming with RT -11 

BLOCK - 1 
HIPTR - 2 
OUTPTR - 1 

Initialize block number & 
input buffer number & 
output buffer number 

Loop: Wait for input to complete. compute. 
output. 

IF CIWAITCIHCHH) .HE. 0) GO TO 100 Error on read 

Read next block into input buffer. 

IERR - IREADC256.BUFFERC1.IHPTR).BLOCK.IHCHH) 
IF CIERR .LT. C-1» GO TO 100 ! Error on read 

Perform computation on output buffer while read is 
in progress. Computation consists of dividing each 
element of the buffer by 2 Cscaling operation). 
Hormally. a subroutine would be called to do the 
computation. 

DO 60 1-1.256 
BUFFERCI.OUTPTR)-BUFFERCI.OUTPTR)/2 
COHTIHUE 

Write out buffer on which computations have just 
completed. 

IF CIWRITEC256.BUFFERC1.0UTPTR).BLOCK-1.0UTCHH) .LT. 0) 
GO TO 101 ! Error on write 

Check if last read resulted in EOF. 

IF CIERR .EG. C-1» GO TO 150 ! Copy completed. 

Otherwise. SWitch buffers and advance block number. 

ITMP • IHPTR 
IHPTR - OUTPTR 
OUTPTR - ITMP 
BLOCK - BLOCK+1 
GO TO 30 Repeat 

C ERROR ROUTIHES 
C 
100 CALL PRIHTC'Read error. copy aborted') 

GO TO 140 
101 CALL PRIHTC'Write error. copy aborted') 
140 CMPRTH - .TRUE. 

RETURH 



PR1504.FOR 
(continued) 

Chapter 15 Using Nonsynchronous Queued Input/Output 

C 
C 
C 

Wait for last output to complete and return. 

150 IF (IWAlT(OUTCHN) .NE. 0) GO TO 101 
CMPRTN - .FALSE. 
RETURN 
END 
SUBROUTINE CLSCHN 

C 
C Close files. 
C 

C 

INTEGER*2 INCHN.OUTCHN 
COMMON ICHNNLSI INCHN.OUTCHN 
CALL CLOSEC(INCHN) 
IF (ICLOSE(OUTCHN) .EG. 4) CALL PRINT 

('Protected output file already exists') 
RETURN 
END 
SUBROUTINE PRGCHN 

C Purge channels. 
C 

INTEGER*2 INCHN.OUTCHN 
COMMON ICHNNLSI INCHN.OUTCHN 
CALL PURGE(INCHN) 
CALL PURGE(OUTCHN) 
RETURN 
END 

Event-driven 1/0 Requests 

159 

The formats of event-driven 1/0 requests for MACRO-ii are: 

.READC area,chan,buff,wcnt,crtn,blk 

.WRITC area,chan,buff,wcnt,crtn,blk 



160 Programming with RT -11 

Figure 53. 
Flowchart for Multiple Buffering with Separate Input 
and Output Buffers 

READ INTO BUFFER "A" 

FLAG "A" AS INPUT BUFFER 
AND "S" AS OUTPUT BUFFER 
OF THE "COMPUTATION PAIR" 

FLAG "C" AS INPUT BUFFER 
AND "D" AS OUTPUT BUFFER 
OF THE "1/0 PAIR" 

WAIT ON INPUT CHANNEL 

READ INTO INPUT 
BUFFER OF "I/O PAIR" 

COMPUTE, FROM INPUT 
BUFFER OF 
"COMPUTATION PAIR" 
INTO OUTPUT BUFFER OF 
"COMPUTATION PAIR" 

WAIT ON OUTPUT CHANNEL 

WRITE OUTPUT BUFFER 
OF "COMPUTE PAIR" 

SWITCH "COM PUTE 
PAIR" AND "1/0 PAIR" 



Chapter 15 Using Nonsynchronous Queued Input/Output 161 

In these requests "crtn" is the address of the completion 
routine that is to be run when this I/O transfer completes. 
Other arguments are identical to the other queued I/O re­
quests. 

The formats of event driven I/O requests in FORTRAN 
IV are: 

IERR = lREADC (wcnt,buff,blk,chan,crtn) 

IERR = IWRITC (wcnt,buff,blk,chan,crtn) 

IERR = IREADF (wcnt,buff,blk,chan,area,crtn) 

IERR = IWRITF (wcnt,buff,blk,chan,area,crtn) 

In these requests, "crtn" is the name of the completion 
routine to be run when this I/O transfer completes, and 
"area" is the name of a four-word area you must have in 
your program if you use IREADF or IWRITF. All other ar­
guments are the same as for the other queued I/O requests. 

Use lREADC and IWRITC if you are using completion 
routines written in MACRO-l1. Use IREADF and IWRITF 
if you are using completion routines written in FORTRAN 
IV. If you use IREADF or IWRITF, remember to include the 
area argument. This may be either an array or a variable. 
Do not modify or use this argument again until the com­
pletion routine has started execution. The USR must not 
swap over the area argument. 

The routine that issues an IREADC, IWRITC, IREADF, 
or IWRITF request must also issue an EXTERNAL state­
ment for the name of the completion routine(s) being passed 
to any of these requests. 

Completion Routines 

The key to event-driven I/O is the completion routine. 
Completion routines are called as subroutines by the mon­
itor. When a job issues an event-driven I/O request and that 
request completes, the completion routine for the request 
runs, regardless of the state of the job that issued the orig­
inal request. 

A completion routine can perform almost any opera­
tion needed when an I/O transfer completes. It can: 



162 Programming with RT -11 

• Issue a new I/O request 

• Set a flag indicating completion of the I/O request, for 
use by another routine of the job 

• Check for end-of-file or hardware errors that may 
have occurred during the transfer 

• Do limited processing on the input data 

Later in this chapter, we will discuss what completion rou­
tines cannot do. 

You should try to keep completion routines as short 
as possible. A long completion routine delays execution of 
the main job and may delay execution of other completion 
routines. When possible, have the completion routine set 
some flags, or record a few items of information, but leave 
any heavy computation to the main job. 

Priority Levels and Scheduling 

User-written routines under RT -11 have relative priorities 
that RMON uses when determining which routine to run 
next. In the SJ applications previously discussed, all rou­
tines within a job have the same priority, and a routine runs 
only if it is called or jumped to by another routine running 
in that job. Under the FB monitor, the routines of the fore­
ground job have a higher priority than those of the back­
ground job. Routines in each job run independently of those 
in the other job, except that those in the foreground job can 
interrupt those of the background job. 

When a job starts a completion routine, two priority 
levels exist for that job. The main-line routine or program, 
and any routines that the main line calls or jumps to, are 
said to execute at main level. The completion routine that 
you specify in an event-driven I/O request, and any rou­
tines that the completion routine may call or jump to, ex­
ecute at completion level. Any routines executing at com­
pletion level have a higher priority than the main level of 
the job that issued the I/O request. 



Chapter 15 Using Nonsynchronous Queued Input/Output 163 

Scheduling Completion Routines 
under the SJ Monitor 

Under the SJ monitor, a completion routine is called as soon 
as the I/O transfer completes, regardless of what was inter­
rupted by the I/O completion (one completion routine can 
interrupt another). This arrangement is called a system of 
nested completion routines. One could say that completion 
routines under the SJ monitor are executed: last in-first out 
(LIFO). 

If two or more outstanding event-driven I/O requests 
are using the same completion routine, the LIFO method 
used by the SJ monitor can cause that routine to be called 
again before it has returned and errors can occur. Figure 54 
shows how this situation can occur. As you study the fig­
ure, please refer to the following notes which describe the 
sequence of events. 

1 Main-level routine issues Transfer is queued to. 
event-driven request with device handler. 
CR as completion routine. 

2 Main-level routine issues Transfer is queued to 
second event-driven re- device handler. 
quest with CR as comple-
tion routine. 

3 First I/O request com- CR is called (first call). 
pletes. 

4 Second 110 request com- CR is called (second 
pletes. call, reentrance occurs 

at this point and errors 
can occur). 

5 Second call of CR com- First call of CR contin-
pletes, returns. ues at the point at 

which it was inter-
rupted. 

6 First call of CR completes, Main-level routine 
returns. continues at the point 

at which it was inter-
rupted. 



164 Programming with RT -11 

Figure 54. 
Reentrance of a Completion Routine under the SJ Monitor 

MAIN LEVEL 

EVENTS FLOW OF 
(SEE NOTES) CONTROL 

L[: I 
I 

CR 
~ 

I I 
4 

6 1 I I 

CR 
~ 

5 

Reentrance (as shown in figure 54) can cause execu­
tion errors if the reentered routine has not been written to 
allow for reentrance. If the second call of the routine (events 
4 and 5) changes the values of any locations set by the first 
call (between event 3 and event 4), then, when control re­
turns to the first call (event 5), the routine will be operating 
on incorrect data. 

To prevent reentrance-caused errors, you can write 
MACRO-ii reentrant completion routines that return the 
same values as those on entry. To do this, save on the stack 
the old contents of any locations that are to be changed 
during the course of the routine, and restore them before 
returning from the routine. Another method is to use stack 
storage only. 

FORTRAN IV routines cannot be made reentrant. If your 
completion routine is not reentrant, you must make sure that 
only one request for any given completion routine is out­
standing at any given time. You can use a flag that is'set 
whilethe completion routine is outstanding. Check the flag 
before issuing the I/O request. If the flag is clear, set it and 
issue the request. (If it is not clear, take any appropriate ac­
tion.) The completion routine should clear the flag as its 
last action before returning. 



Chapter 15 Using Nonsynchronous Queued Input/Output 165 

Scheduling Completion Routines 
under the FB Monitor 

When an event-driven I/O request completes under the FB 
monitor, the completion routine for the request is inserted 
into a completion queue, which is a list of completion rou­
tines to be run by the scheduler of RMON, according to the 
scheduling algorithm. 

The completion queue is maintained by RMON using 
a linked list of structures called completion queue ele­
ments. A completion queue element is the I/O queue ele­
ment from the I/O request, modified by the RMON before 
being inserted into the completion queue. 

The completion queue for a job is maintained and used 
as a first in-first out (FIFO) queue, so the completion rou­
tines of each job run sequentially, in the order in which the 
I/O requests completed. Management of a job's completion 
queue is shared by two parts of RMON-the queue man­
ager and the scheduler. The queue manager is called by a 
device handler when I/O completes. The queue manager 
changes the I/O queue element to a completion queue ele­
ment and adds it to the completion queue. The scheduler 
is called ,,\Then the system may need to shift execution from 
one priority level to another (for example, when a level be­
comes blocked or unblocked, or when a completion rou­
tine completes). The scheduler calls the completion rou­
tine as a subroutine. 

Figure 55 shows the FIFO scheduling of completion 
routines under the FB monitor, including the functions of 
the queue manager and the scheduler. This figure shows the 
scheduling of completion routines for an event-driven I/O 
request that completes while another completion routine is 
running on the same job. Completion routines cannot in­
terrupt one another under the FB monitor, as they can un­
der the S] monitor. As you study figure 55, read the follow­
ing notes which describe the events shown in the figure. 

1 Main-level routine issues 
event-driven request with 
CRl as completion rou­
tine, 

Transfer is queued to 
device handler. 



166 Programming with RT -11 

2 Main-level routine issues Transfer is queued to 
event-driven request with device handler. 
CR2 as completion rou-
tine. 

3 First request completes. Device handler in-
forms queue manager 
(part of RMON) of I/O 
completion. 

4 Queue manager inserts 
completion queue element 
for CRl into completion 
queue. 

S Scheduler recognizes out- CRl is called. 
standing completion rou-
tine CR1. 

6 Second I/O request com- Device handler in-
pletes. forms queue manager 

of liD completion. 

Figure 55. 
FIFO Scheduling of Completion Routines under the FB Monitor 

MAIN LEVEL 

EVENTS FLOW OF 
(SEE NOTES) CONTROL 

QUEUE QUEUE 

L(: jNAGER 
CR1 MANAGER CR2 
~ 

I ~ 
I 

4 6 7 

5 
9 

I-
8 

I 10 

~ 

SCHEDULER SCHEDULER 

I 11 



Chapter 15 Using Nonsynchronous Queued Input/Output 

7 

8 

9 

10 

11 

Queue manager inserts 
queue element into com­
pletion queue; recognizes 
that a completion routine 
(CR1) is in progress. 

CRl completes. 

Scheduler recognizes an­
other outstanding comple­
tion routine, CR2. 

CR2 completes. 

Scheduler recognizes that 
there are no more comple­
tion routines outstanding. 

Control returns to 
CR1. 

Control passes to 
scheduler. 

CR2 is called. 

Control passes to 
scheduler. 

Control returns to 
main level. 

167 

In figure 55, there are two completion queues, one for 
each job. With two jobs active under the FB monitor, there 
are four possible priority levels at which a user-written 
routine may execute. These are shown in table 15. All 
background routines have lower priority than any fore­
ground routine. Background completion level is at a lower 
priority than foreground main level. 

A job can become blocked either at main level or at 
completion level. Even if the main level is blocked, its 
completion routines are allowed to run; however, the re-

Table 15. 
Priority Levels in a Foreground/Background Monitor 

Job 

Foreground 

System jobs 
(1 to 6) 

Background 

Level 

Foreground completion 

Foreground main 

System job n completion 

System job n main 

Background completion 

Background main 

Priority 

Highest 

Lowest 



168 Programming with RT -11 

verse is not true. If a job becomes blocked at completion 
level, RMON does not allow that job's main level to run. 
This assures that once a completion routine has started to 
execute, the main level does not run again until the com­
pletion routine has completed. In this way you are assured 
that the main level of a job never executes while some 
completion routine is performing operations. 

With the single exception that, if its completion level 
is blocked, the main level of a job is not allowed to run, 
RMON always runs the highest priority level that is not 
blocked. RMON may shift control from one level to an­
other when any of a number of events occur, including: 

• The current executing routine issues a programmed 
request that causes the routine to become blocked. 

• A new completion routine is queued at a priority 
level higher than the current executing routine. 

• A completion routine returns, and there are no other 
completion routines at that level. 

• A routine at a higher priority than the current execut­
ing routine becomes unblocked. 

• The current executing job exits or is aborted. 

Any of these events may start an operation of RMON 
known as a scheduling pass. In this operation, RMON ex­
amines the blocking conditions of jobs (in decreasing order 
of priority), identifies the highest priority level that can be 
run, and executes that level. Because the FB scheduler se­
rializes the execution of completion routines, there is no 
chance of a routine being reentered under the FB monitor. 

Conventions for Writing Completion Routines 

Certain RT -11 conventions govern the writing of a com­
pletion routine. In MAcRO-11 these conventions are: 

• A completion routine is always called with a JSR PC 
and is returned with an RTS PC. 



Chapter 15 Using Nonsynchronous Queued Input/Output 169 

• Before calling a completion routine, RMON puts the 
value of the channel status word (CSW) for this re­
quest in RO, and the channel number of the request 
in R1. Your completion routine should check the 
CSW for indications of hardware error (bit 0) or end­
of-file (bit 13). It can use the channel number to dis­
tinguish I/O requests if the same completion routine 
is used on more than one channel. 

• A routine can use RO and R1. Any other registers 
must be saved and restored. 

In FORTRAN IV the conventions are: 

• A completion routine is defin"ed using a SUBROU­
TINE statement. Use RETURN to end execution of 
the routine. 

• This completion routine may have up to two argu­
ments, of INTEGER data type. The SUBROUTINE 
statement can define up to two arguments. RMON 
puts the value of the channel status word (CSW) in 
the first argument, and the channel number of the re­
quest in the second. Your completion routine should 
check the CSW for indications of hard ware error or 
end-of-file. It can use the channel number to distin­
guish I/O requests if the same routine is used on 
more than one channel. 

• Remember that the FORTRAN IV routine that issues 
IREADC, IWRITC, IREADF, or IWRITF must declare 
the names of any completion routines in an EXTER­
NAL statement. 

• A completion routine for IREADC or IWRITC, written 
in MACRO-11, must obey all conventions that apply 
to assembly language completion routines. 

Restrictions on Completion Routines 

RT -11 places certain restrictions on completion routines 
because they execute independent of the main level. Exe-



170 Programming with RT -11 

cution errors may occur if you do not follow these restric­
tions. The following restrictions apply to both MACRO-ll 
and FORTRAN IV: 

• A completion routine must not reside in the area into 
which the USR swaps. If the main level issues a re­
quest that needs the USR, and I/O completes while 
the USR is in memory, control does not transfer to 
the completion routine (which is swapped out) but to 
some part of the USR. USR swapping is discussed in 
chapter 18, "Using Memory." 

• A completion routine must not execute any request 
that needs' the USR, as the USR is not reentrant. 

• Under the SJ monitor, either a completion routine 
must be reentrant, or you must make sure that only 
one request using that completion routine is active at 
any given time. 

• Any routine callable from both main level and com­
pletion level must be reentrant. 

The following restrictions apply to FORTRAN IV programs 
only: 

• When using OTS I/O (FORTRAN IV READ and 
WRITE statements), the first I/O statement to any spe­
cific logical unit number, or the OPEN statement, 
causes the OTS to execute a programmed request that 
needs the USR. Therefore, neither of these types of 
statement should appear in a completion routine. 
Also, a completion routine should not contain a 
CLOSE statement or a call to the CLOSE subroutine. 

• Do not call IGETC or IFREEC from a completion 
routine. 

• The section of the OTS that supports FORTRAN IV 
subprogram calls and returns is not reentrant. This 
means that no subroutine or function written in FOR­
TRAN IV should be callable both from main and 



Chapter 15 Using Nonsynchronous Queued Input/Output 171 

from completion level. It also means that under the 
SJ monitor, only one completion routine written in 
FORTRAN IV should be outstanding at any given 
time. 

Applications for Event-driven 1/0 

Event-driven 110 is most useful when you are working with 
devices whose data rates are in some way random. Let us 
look at some examples. 

Suppose that your program performs 1/0 on a number 
of channels and you have no way of knowing which chan­
nel will be the first to complete. Asynchronous 110 is of no 
use here because you cannot select anyone channel to wait 
on, as a different channel may complete first. Instead, you 
can use a completion routine to indicate completion on any 
channel when it occurs, and to inform the main line. 

You can use event-driven 1/0 to overlap input opera­
tions on different channels only if those channels use dif­
ferent device handlers, or if the handler queues requests 
internally. Otherwise, the 110 system serializes requests to 
the handler. 

Now, consider a program handling input from a de­
vice that has a high, but variable, data rate. To make sure 
that no data is lost because of a delay in issuing a new 110 
request after the old one completes, you must have an in­
put request outstanding on the channel at all times. You 
can implement this by using event-driven requests and 
having the completion routine issue a new input request as 
its first action. 

One problem presented by a device with high but 
variable data rate, is that the input data rate may temporar­
ily exceed that of the computation routines. If this occurs, 
you may need a carefully controlled system of multiple 
buffers to store the input data until the data rate drops and 
the computation routines at main level have a chance to 
process the data. 

A similar condition is one in which the rate of input 
andlor computation temporarily exceeds the rate of the 



172 

Practice 
15-1 

Programming with RT -11 

output device. If there is more data to be output, this too, 
would need multiple buffers and a completion routine that 
issues a new output request as soon as the old one 
completes. 

Finally, event-driven I/O is the only choice if the main 
level of your program has any operation it must perform 
continuously while waiting for I/O completion. For exam­
ple, your program may be doing real-time process control 
using some set of control parameters. These parameters may 
change as a result of some input, but your program cannot 
issue synchronous requests, or use WAIT to wait for the in­
put because it would then stop executing its control pro­
cedure. By using event-driven I/O, the main level can con­
tinue control using the old parameters, until new ones come 
in. 

The applications described above usually apply to real­
time I/O devices instead of the standard peripheral devices 
supported by RT-l1. In fact, the major application of event­
driven I/O is to support nonstandard devices. 

1. Write a program that: 

a. Reads a data file from a disk one block at a time. 

b. Finds the maximum value in the block, interpret­
ing each word as a signed integer. 

c. Writes a block to an output file that contains the 
difference between each word in the input data 
block, and the maximum of that block. 

2. Use a multiple-buffering algorithm to give maximum 
throughput. For more practice designing your own al­
gorithm, you can use a triple-buffered algorithm in or­
der for input, computation, and output to all proceed 
concurrently. 



Practice 
15-2 

References 

Chapter 15 Using Nonsynchronous Queued Input/Output 

For each programming problem described below, indicate 
which mode of I/O (synchronous, asynchronous, or event­
driven) should be used. Justify your answer. In each prob­
lem, assume that standard device handlers are available for 
each of the devices mentioned. 

1. Your program is engaged in process control. It is re­
sponsible for maintaining the temperature and pres­
sure of a system within certain preset limits. A pres­
sure sensing device PS:, and a temperature sensing 
device TS:, provide input data when the pressure or 
temperature changes. If either value goes past its pre­
sent limit, your program is to respond by sending new 
control parameters to a control device CL:. What mode 
would you use for the input requests for devices PS: 
and TS:? 

173 

2. Your RT-ll system receives data from an input device 
IN:. It must assemble this data into packets that are to 
be sent across a communications line to another pro­
cessor, which appears to your program as a device PR:. 
The data rate of IN: is expected to be very close to, but 
will not exceed that of PR:. Which liD mode would 
you use? 

3. Your program generates reports. It takes input from a 
file on a high-speed disk, formats it, and prints the for­
matted report on the terminal. Which I/O mode would 
you use? 

RT -11 Programmer's Reference Manual. Chapter 1 describes 
conventions and restrictions on completion routines. 

RT -11 Software Support Manual. Chapter 3 provides addi­
tional information on the completion queue element. 



16 

Scheduling 

Priorities 
Blocking 
Context Switching 

Using FB Scheduling Efficiently 
Waiting for Specific Events 
References 



16 
Scheduling 
and Blocking 

A job can be waiting for an I/O operation to complete for 
much of its time, even when using nonsynchronous I/O, 
because peripheral devices operate much more slowly than 
the processor. Under the Single Job monitor, the CPU is idle 
during these waiting periods. Under the Foreground/ 
Background monitor, however, you can make more effi­
cient use of your processor by running one (background) 
job when a second (foreground) job is waiting for some ex­
ternal event. With the proper understanding of RT -11 job 
control, you can write application- programs in ways that 
best utilize the foreground/background capabilities of the 
system. 

This chapter explains the basic concepts of RT -11 job 
management and describes the programmed requests that 
can increase your control over job execution under the 
Foreground/Background monitor. - The MACRO-11 re­
quests discussed include: .SPND, .RSUM, .CNTXSW, . WAIT, 
and . TWAIT. The FORTRAN IV requests discussed are 
SUSPND and RESUME. 

When you have completed this chapter, you will be 
able to write code to block a job until completion of a spe­
cific I/O request. You will also learn to design an applica­
tion system, separating tasks for foreground and back­
ground jobs in a way that maximizes system throughput. 

175 



176 

Scheduling 

Programming with RT -11 

When you issue a KMON command to run a job, that job 
becomes active. It stays active until it exits, or is aborted 
by an error or (CTRUC). The SJ monitor supports only one ac­
tive job. A standard Foreground/Background monitor sup­
ports two. 

The foreground/background scheduling concepts dis­
cussed in this chapter are the same for both Foreground/ 
Background and Extended Memory monitors, so the term 
"foregroundlbackground" is used to apply to both in this 
chapter. 

The system job option, available through system gen­
eration, enables a Foreground/Background monitor to sup­
port up to six system jobs in addition to the foreground and 
background jobs. 

Regardless of how many jobs are active under a mon­
itor, only one can use the CPU at a time because the CPU 
can execute only one instruction at a time. The resident 
monitor RMON determines which job is given the use of 
the CPU. The process of allocating the CPU among active 
jobs is called scheduling. The three basic concepts of 
scheduling under the RT-ll Foreground/Background mon­
itors are: 

1. Priority. Each job has a fixed priority, which RMON 
uses to determine which job will get the CPU. RMON 
always runs (gives use of the CPU to) the highest 
priority job that is capable of running. 

2. Blocking. When a job is not able to run because it 
needs some external event, such as completion of a 
read request, it is said to be blocked. RMON recog­
nizes when a job is blocked and allows a lower prior­
ity job to run. 

3. Context. To help keep track of active jobs, RMON 
keeps important data about each job. This data is the 
context in which the job is said to run. When RMON 
transfers use of the CPU from one job to another, it 
first performs an operation known as a context 
switch. 



Priorities 

Blocking 

Chapter 16 Scheduling and Blocking 177 

The next three sections explain these concepts in more 
detail. 

Under a Foreground/Background monitor, every job has a 
software priority that is fixed at the time that the job is in­
itiated. The background job has the lowest priority, and the 
foreground job has the highest. If the monitor has system 
job support, all system jobs have priorities between those 
of the background and foreground jobs. 

This system of software priorities is used by RMON to 
determine which job to run. These priorities are different 
from the hardware priorities used for servicing interrupts 
on PDP-11 computers. 

If a job requests completion routines, it can be run at 
two levels: main level and completion level. The comple­
tion level has a higher priority than the main level (but a 
lower priority than the main level of the next higher prior­
ity job). This priority structure is shown in table 15. 

The foreground and background job slots are for ap­
plication and utility programs. The system jobs slots are re­
served for special programs provided by Digital. The pro­
grams currently provided with RT -11 are the device queue 
package, error log programs, transparent spooler, and vir­
tual communications program. 

Levels can be in one of two states, blocked or runnable. A 
blocked level is not able to proceed until some condition 
is met. A level not blocked is runnable. Usually RMON 
blocks a job when the job issues a programmed request that 
for some reason cannot be completed immediately. Some 
requests that cannot be completed return an error to the 
program. If the error is fatal, RMON aborts the program. 
Normally RMON blocks a job if there is a delay and aborts 
the program if there is a serious error. RMON unblocks the 



178 Programming with RT -11 

job when the conditions have changed, and it can com­
plete the programmed request. Some examples of this type 
of blocking are: 

• Terminal 110 requests. The job is blocked if no char­
acters are available on input, or no space in the 
buffer is available on output. (If bit 6 of the job status 
word is set, the job is not blocked.) 

• Synchronous 110 requests. The job is blocked until 
the transfer is complete. 

• USR requests. If the USR is owned by another job, 
the requesting job is blocked until the USR is avail­
able again. This situation is discussed in chapter 18, 
"Using Memory." 

• 110 requests. If a job issues an 110 request and no 
queue element is available, the job is blocked until a 
queue element is available. 

Some programmed requests can block a job, for example: 

• The .WAIT request blocks a job until an I/O channel 
is clear. 

• The .TWAIT request blocks a job for a specified pe­
riod of time. 

• The .SPND request blocks a job until it issues a 
.RSUM to resume. 

The word I.BLOK in the job's impure area is a flag word 
used to indicate blocking conditions for the job; the bits in­
dicate what caused the job to be blocked. The only block­
ing condition not flagged in I.BLOK is blocking because no 
queue element is available; this condition is processed by 
another part of RT -11. Figure 56 shows all the conditions 
flagged by I.BLOK. The bits not used are reserved for future 
use. 

When RT -11 needs to block a job, it sets a bit in 
I.BLOK. The scheduling routine in RMON uses this word 



Chapter 16 Scheduling and Blocking 179 

Figure 56. 
Blocking Conditions Flagged by I.BLOK 

I. BLOK 

14 13 12 11 10 9 8 6 4 

I I , , I , ,- I I , I , , I , 

I 
, I 

USRWT$ 

KSPND$ 

EXIT$ 

NORUN$ 

SPND$ 

CHNWT$ 

nOEM$ 

nOWT$ 

nlWT$ 

WAITING FOR USR 

SUSPEND COMMAND 

WAITING FOR ALL 1/0 
TO COMPLETE 

NOT RUNNING (COMPLETED 
FOREGROUND OR SYSTEM JOB) 

JOB SUSPENDED 

WAITING FOR 1/0 
ON A CHANNEL 

WAITING FOR TERMINAL 
OUTPUT BUFFER EMPTY 

WAITING FOR ROOM IN THE 
TERMINAL OUTPUT BUFFER 

WAITING FOR TERMINAL 
INPUT 

to check if the job is runnable. Later when the event being 
waited for occurs, the monitor clears the appropriate bit. 

LBLOK records the blocking of the job's main level, if 
there are no completion routines queued. When comple­
tion routines are queued, the main-level blocking bits are 
saved, and LBLOK records the blocking conditions of the 
completion level. After the last completion routine in a job's 
completion queue has run, RMON restores the blocking 
conditions of the main level in the LBLOK word. This means 
that a job's completion level can run even if the main level 
is blocked. However, if a completion routine becomes 
blocked, both levels of the job are blocked; that is, the main 
level does not run. 

Routines within RMON recognize events that change 
the blocking state of a job and the level at which a job op-



180 

Figure 57. 
A Scheduling Pass 

PROCEED TO NEXT 
LOWER PRIORITY 
JOB 4 

Programming with RT -11 

erates (main or completion). When they recognize one of 
these changes, they request RMON to run a pass of the 
scheduling routine. RMON examines jobs in order of de­
creasing priority, starting with the job whose status has 
changed. Figure 57 shows how this scheduling pass runs. 

The result is that RMON runs the highest priority job 
runnable. It also runs a job's completion routines before it 
runs the main level. The numbered notes (opposite page) 
apply to figure 57. 

START WITH JOB WHOSE 
STATUS HAS CHANGED 

ENTER COMPLETION LEVEL; 
BEGIN EXECUTION OF JOB'S 
COMPLETION ROUTINES 4 



Chapter 16 Scheduling and Blocking 181 

Context Switching 

1 The I.BLOK word is tested. 

2 When RMON switches the job to completion level 
(see note 4), it records this by setting the CMPLT$ bit 
in the job state word I.STATE in the job's impure 
area. 

3 A pending completion routine is one that has been 
placed into the completion queue but has not started 
executing. This condition is also recorded in the 
I.STATE word. 

4 Once a job enters completion level, it stays there until 
there are no more completion routines pending. If a 
job is blocked while at completion level, the main 
level is not run. After the last completion routine 
runs, RMON clears the CMPL T$ bit in the I.ST ATE 
word and a new scheduling pass is started. 

Context switching occurs when the scheduler, as a result 
of a scheduling pass, starts to execute a job other than the 
one that was running before the pass. Basically, the opera­
tion saves some information from the outgoing job and re­
stores some information about the incoming job. 

Context switching can occur after any scheduling pass 
but not necessarily after every scheduling pass. Only 
scheduling passes that change jobs result in a context switch. 
Switching between a job's main level and its completion 
level does not change jobs and, therefore, does not cause a 
context switch. In general, a context switch occurs when a 
high priority job (the foreground job or a system job) be­
comes blocked, allowing a lower priority job to run, or when 
a high priority job becomes unblocked, and therefore, in­
terrupts a lower priority job. 

Certain memory areas and registers contain a job's, data 
while it is being executed. When a different job starts exe:­
cuting, these areas must contain the new job's data. When 
a context switch occurs, the old contents of these locations 
are saved on the stack and in the impure area of the out-­
going job, and the incoming job's data for these areas is 



182 Programming with RT -11 

loaded from the incoming job's stack and impure area. This 
information includes: 

• All the general purpose registers (the stack pointer it-
self is always stored in the job's impure area) 

• The vector for the TRAP instruction 

• The system communication area (words 40 to 52) 

• If floating point hardware is present, certain registers 
of the FPP 

• In a multiterminal monitor, word 56 (fill count and 
character) 

• In an extended memory monitor, the BPT and lOT 
vectors, kernel PAR1, and the memory-management 
fault trap vector 

In addition, a MACRO-ll programmer can use the 
.CNTXSW request to specify other locations to be saved 
across a context switch operation. This is normally used for 
jobs that share trap or interrupt vectors. 

Using FB Scheduling Efficiently 

The goal of foregroundlbackground operation is to make 
better use of the CPU, which under some conditions is idle 
for much of its time. Efficient FB scheduling depends on 
the coding of your application programs. If you want to use 
both foreground and background jobs in programming your 
application, the following points will help you determine 
which functions to put into the foreground and which to 
put into the background: 

• Your system performance will be best if the highest 
priority job (foreground) is blocked most of the time, 
allowing lower priority jobs to run; and if the lowest 
priority job (background) is ·using the CPU most of 
the time, thereby taking up the CPU time left over by 

. the foreground and any system jobs. It is common 
practice to do real-time 110 in the foreground, and 
data analysis in the background. 



Chapter 16 Scheduling and Blocking 183 

• In a real-time application, some operations are time 
critical. That is, the program must provide very fast 
response to changes in external conditions. Time-crit­
ical operations should be placed in the foreground so 
that no higher priority job can take the CPU from the 
program performing a time-critical operation. Opera­
tions not time-critical are best performed in the back­
ground. 

• You can run a foreground job and switch from one 
background job to another, however, you cannot 
change foreground jobs without interrupting the 
background job. This is because you run KMON in 
background when you issue the command to run a 
foreground job. The foreground is the best place for 
continuous operations such as monitoring, data col­
lecting, or process control. 

• Short or infrequent operations (such as initialization, 
queries, changes, parameters, or report generation) 
can be put into programs that run as background jobs 
when they are needed. This saves space in the fore­
ground job. 

Examples of this type of organization include the 
queuing and error-logging systems in RT-l1. Each has a 
single foreground/system job (QUEUE and ERRLOG), which 
runs continuously, and one or more background jobs 
(QUEMAN in the queuing system, and ELINIT and ERR­
OUT in error logging), which are run only when their op­
erations are needed. The background jobs run infrequently 
in comparison to foreground or system jobs. 

You should also consider whether you need to use both 
a foreground and background job. Co~ext switching takes 
time. How much time depends on the processor and mon­
itor you are using, and whether your jobs have issued 
.CNTXSW requests. It is usually a few tenths of a millisec­
ond. Normally your application runs faster if you combin~ 
all functions into one job than if you use two jobs, because 
there will not be any context switching. There are, how­
ever, other reasons-such as efficient use of the CPU and 
memory-for s~parating your application into two jobs. 



184 Programming with RT -11 

The execution of a foreground job includes periods 
wlten the job is blocked and periods when the job is run­
nable. Each change between blocked and runnable may need 
a context switch. A job with fewer larger periods uses the 
system· more efficiently than a job with many smaller pe­
riods because the former needs fewer context switches. 
Therefore, when writing a foreground job, try to organize it 
to minimize the number of cont,ext switches. 

. A common mistake in the use of completion routines 
is trying to increase the efficiency of a job by performing 
operations at completion level, and therefore, at a higher 
priority than at main level. This does not always help your 
pro~ram and can even slow it down. The FB monitor runs 
completion routines FIFO, so if one completion routine takes 
a long time to run, it delays all the routines following it. 
Keep completion routines as short as possible, doing any 
long processing at the main level. Also, make sure that very 
long processing is done in the background job. 

Waiting for Specific Events 

The synchronousllO requests, the WAIT request for an lIO 
channel, and the timed wait request (TW AIT) each block a 
job until a specific condition has been met: completion of 
lIO on a channel, or expiration of a time limit. Sometimes 
you want your job to be blocked until some more complex 
condition is met. For example, you may want to: 

• Issue a number of lIO requests on a channel, and 
then block your program until a specific request 
(other than the last one) completes. 

• Issue a number of lIO requests on different channels, 
and then block your program until anyone (or a spe­
cific combination) of those requests completes. 

• Issue an lIO request, and then block your job until 
either that request completes or a watchdog mark­
time routine runs. This is discussed in chapter 20, 
"Writing Time-dependent Programs." 



Chapter 16 Scheduling and Blocking 185 

An example of these techniques is the QUEUE pro­
gram. It suspends the main level, waiting for a message from 
QUEMAN. At the same time it has a watchdog routine to 
check for (CTRUC)(CTRUC) being entered. 

Each of these blocking situations can be implemented 
using completion routines, event-driven I/O requests, and 
mark time requests. To wait for a specified condition, your 
main-level routine can check a flag or some set of flags that 
are to be set by the completion routines, and then loop un­
til the flags have the values needed. 

This procedure is, in fact, the best way to implement 
a waiting condition under the S] monitor. It is not, how­
ever, the best way under the Foreground/Background mon­
itor, because it does not block the job. A foreground job that 
loops like this uses valuable CPU time, during which a 
background (or system) job might be able to run. 

To allow a job to be blocked until some condition de­
fined by the programmer is met, the Foreground/ 
Background monitor provides a suspend and resume re­
quest. To suspend a job, the MACRO-ll request is: 

.SPND 

To suspend a job, the FORTRAN IV request is: 

CALL SUSPND 

To resume a job, the MACRO-ll request is: 

.RSUM 

To resume a job, the FORTRAN IV request is: 

CALL RESUME 

A suspend request is usually issued from the main level 
of the job. It blocks the job at the main level, but allows 
completion routines to run. A suspend request issued from 
completion level has a different effect. The resume request 
is almost always issued from a completion routine. It un­
blocks the main level which starts to execute again as soon 
as all processing at completion level has been done. Sus­
pend and resume requests have the following effects: 



186 

References 

Programming with RT -11 

• A suspend counter is kept for each job in its impure 
area. The initial value of this counter is O. 

• Each suspend request decreases the counter. Each re­
sume request increases the counter. 

• If the counter is negative, the main level of the job is 
blocked. 

The one exception is when a suspend request issued 
from a completion routine causes the counter to become 
negative. The main level is not immediately blocked; it is 
blocked the next time a suspend request is issued from main 
level. At that time, the counter is equal to - 2 and two re­
sume requests are needed in order to unblock the main level. 

The use of a counter ensures that a program is not sus­
pended if the completion routine issues the resume request 
before the main level is able to issue its suspend request. 
The suspend request returns immediately to the main level 
because the blocking condition has been cleared in 
advance. 

Use suspend and resume requests with caution if your 
program also uses TWAIT requests. TWAIT is imple­
mented by RMON using an internal mark time request, a 
suspend request, and a resume request from within RMON's 
mark time completion routine. Because of this, if your 
completion routines issue one resume request too many, this 
can cause a TW AIT request in the main level to finish too 
soon. 

RT -11 Programmer's Reference Manual. Chapter 2 describes the 
.CNTXSW request in detail. 

RT-11 Software Support Manual. Chapter 3 covers RT-ll 
scheduling in detail. 





17 

Communication Through Send and Receive Requests 
System Message Handler 

Send and Receive Buffers 
Communication Through Shared Buffers 

Benefits of Using Shared Buffers 
Disadvantages of Using Shared Buffers 

Restrictions on the Use of Shared Buffers 
Synchronizing Buffer Access 

Communication Through Files 
Coordinated Foreground/Background Systems 

Error Logging 
Queuing System 

References 



17 
Transferring 
Data 
Between 
Jobs 

A foreground job and a background job running at the same 
time may be unrelated. For example, an application pro­
gram runs in the foreground while program development 
takes place in the background. In this case, the Fore­
ground/Background monitor is being used as a tool to al­
low the processor to do more than one thing at a time. In 
another instance, the foreground and background jobs may 
have a common application and the two jobs must be able 
to communicate with each other to coordinate their oper­
ations and swap information. 

This chapter discusses the programmed requests that 
allow your foreground and background jobs to communi­
cate, either directly through memory or through files on a 
mass storage device. The MACRO-ll programmed re­
quests discussed in this chapter are: .SDAT, .SDATW, 
.SDATC, .MWAIT, .RCVD, .RCVDW, .RCVDC, and .CHCOPY. 
The FORTRAN IV requests discussed are: ISDAT, IS­
DATW, ISDATC, ISDATF, MWAIT, IRCVD, IRCVDW, 
IRCVDC, IRCVDF, and ICHCPY. 

189 



190 Programming with RT -11 

When you have completed this chapter, you will be 
able to use the send and receive data requests to copy in­
formation from one job to another; write a pair of fore­
ground and background jobs that communicate through a 
shared buffer area; synchronize a foreground and back­
ground job using synchronous send and receive data re­
quests; and transfer files between foreground and back­
ground jobs that are running at the same time. 

Communication Through Send 
and Receive Requests 

RT -11 supports three job communication methods: send and 
receive requests, shared buffers, and shared files. Fore­
ground and background jobs can communicate directly 
through memory using send data and receive data requests, 
which are similar to write and read requests to peripheral 
devices under the queued I/O system. The similarities are 
shown in table 16. The send and receive data requests are 
shown in table 17. 

The word count argument (went) for all the requests 
shown in table 17 must be positive. All other arguments are 
identical to those for the corresponding queued I/O re­
quests. The MW AIT request blocks the job that issues it until 
all send and receive requests that the job issued are com­
pleted. It is possible for one job's MWAIT request to return 

Table 16. 
Similarities between Queued I/O and Communication Requests 

Queued Requests 

Requests to write to a 
channel 

Requests to read from a 
channel 

Three I/O modes 

WAIT request to wait for 
I/O on a channel to complete 

Communication Requests 

Requests to send data to 
other job 

Requests to receive data 
from other job 

Same three modes 

MWAIT request to wait until 
message requests complete 



Chapter 17 Transferring Data Between Jobs 191 

successfully if the other job has communication requests left. 
MW AIT waits only for completion of the communication 
requests of the job that issued the MW AlT. 

Table 17. 
Send and Receive Data Requests 

MACRO-11 Requests 

Synchronous .SDATW area,buff,went 

.RCVDWarea,buff,went 

Asynchronous .SDAT area,buff,went 

.RCVD area,buff,went 

.MWAIT 

FORTRAN IV Requests 

IERR = ISDATW (buff,went) 

IERR = IRCVDW (buff, went) 

IERR = ISDAT (buff,went) 

IERR = IRCVD (buff,went) 

CALL MWAIT 

Event-driven .SDATC area,buff,went,ertn IERR = ISDATC (buff,went,ertn) 

System Message Handler 

.RCVDC area,buff,went,ertn IERR = IRCVDC (buff,went,ertn) 

IERR = ISDATF (buff,went,area,ertn) 

IERR = IRCVDF (buff,went,area,ertn) 

Communication requests are implemented by RMON using 
a pseudo-device handler called the system message han­
dler. The system message handler is responsible for exe­
cuting send and receive data requests, which the handler 
receives as if they were queued I/O requests. On FB and XM 
monitors, you can reference the system message handler as 
the MQ: device, open channels through it, and access it us­
ing queued I/O read and write requests. Communication re­
quests are controlled in the same way as queued I/O re­
quests, so every communication request uses an I/O queue 
element from the job issuing the request. Remember this 
when issuing QSET requests at the start of your programs. 

The system message handler matches a send queue 
element from one job with a receive queue element from 
another job. Once such a match is made, information is 
transferred from the sending to the receiving job, and both 
programmed requests (the send and the receive) are re­
ported as having completed. This procedure sets up two 



192 Programming with RT -11 

Figure 58. 
Flow of Information through the System 
Message Handler 

SEN 
REO 
FRO 

D 
UESTS 
M FG 

EIVE REC 
REO 
FRO 

UESTS 
M BG 

FOREGROUND JOB 

A 

MESSAGE HANDLER 

RECEI 
REOU 

VE 
ESTS 

FG FROM 

SEND 

V 
BACKGROUND JOB 

REOU ESTS 
BG FROM 

independent paths, similar to channels in the queued I/O 
system. One path handles information sent from fore­
ground to background, and one goes from background to 
foreground. This flow of information is represented in fig­
ure 58. 

The system message handler keeps track of commu­
nication requests by keeping a queue of waiting requests. 
This queue is made up of the I/O queue elements that RMON 
passes to the system message handler. The flowchart in fig­
ure 59 shows the action of the system message handler when 
it receives a new communication request. The following 
points apply to send and receive requests: 

• Each new send request must be matched by a receive 
request from the other job (and each new receive re­
quest must be matched by a send request) before it 
can complete. 



Chapter 17 Transferring Data Between Jobs 

Figure 59. 
System Message Handler Processing a New Request 

ADVANCE TO NEXT NO 
WAITING REQUEST 
IN QUEUE 

NO 
(MISMATCH) 

NO 

POINT TO BEGINNING 
OF 'WAITING 
REQUESTS'QUEUE 

YES 
(A MATCH) 

REMOVE WAITING 
QUEUE ELEMENT 
FROM QUEUE; 
INFORM RMON OF 
COMPLETION OF BOTH 
REQUESTS 

INSERT NEW 
REQUEST,AT 
END OF 
QUEUE 

NO 
(MISMATCH) 

193 

RETURN 



194 Programming with RT -11 

• If a request is received and no matching request is in 
the current queue, the queue element for the new re­
quest is placed in the queue to wait for a request that 
matches it. 

• The queue is a first in-first out (FIFO) one. A search 
for a match for a new request always starts at the 
head of the queue. If it is necessary to add a new 
queue element, it is added at the end of the queue. 

• If one job issues both a send and a receive, these re­
quests may not be completed in the same order in 
which they were issued. The order of completion de­
pends on the order in which the other job issues its 
requests. This is different from standard queued 110 
requests. Queued 110 requests to a device handler are 
always completed in the order they were issued. 

Because of the way that send and receive requests are 
matched by the system message handler, the 110 mode of 
the send need not match that of the receive. Thus, you can 
use an event-driven send from the foreground and a syn­
chronous receive from the background. 

Send and Receive Buffers 

Each send request and each receive request specify a buffer 
within the job that issued the request. Data is copied from 
the sending job's buffer (send buffer) into the receiving job's 
buffer (receive buffer). 

Each communication request also specifies a word 
count, which is the number of words it expects to be copied. 
In the send request, the word count should equal the num­
ber of words in the send buffer. The word count of the re­
ceive request should match that of the sending job. They 
may not match if there is an error. The receiving job is ca­
pable of checking for this type of error, for the message 
handler always passes the sending job's word count to the 
receiving job, in the first word of the receive buffer. 



Chapter 17 Transferring Data Between Jobs 195 

The first word of the receive buffer is used for the copy 
of the sending job's word count, so you should always make 
your receive buffer one word larger than the receive word 
count. This is very important. Otherwise the data in the 
word immediately after the receive buffer is destroyed when 
the information is copied from the sending job. 

The following figures show how the results of a send 
request and a receive request differ according to the rela­
tive sizes of the send and receive word counts. Figure 60 
shows the result if the send and receive word counts are 
equal. Figure 61 shows the result if the send count is larger 
than the receive count. Figure 62 shows the result if the re­
ceive word count is larger. In each figure, the diagonal 
shading represents the words copied from the send buffer 
to the receive buffer. 

Remember that it is up to the receiving job to compare 
the requested receive word count with the send word count 
(found in the first word of the receive buffer) and take ap­
propriate action if they are different. The action to be taken 
depends on your application. 

Figure 60. 
Send Word Count Equal to Receive Word Count 

WORD 
COUNT 
OF SEND 
REQUEST 

RECEIVE BUFFER 

SEND BUFFER 

RESULTS: 

• THE ENTIRE SEND BUFFER IS COPIED 

THE ENTIRE RECEIVE BUFFER IS MEANINGFUL 

WORD 
COUNT 
OF RECEIVE 
REQUEST 



196 Programming with RT -11 

Figure 61. 
Send Word Count Greater Than Receive Word Count 

WORD 
COUNT 
OF 
SEND 
REQUEST 

RECEIVE BUFFER 

SEND BUFFER 

RESULTS: 

ONLY PART OF THE SEND BUFFER IS COPIED 

WORD 
COUNT 
OF 
RECEIVE 
REQUEST 

NOTHING OUTSIDE OF THE RECEIVE BUFFER IS DESTROYED 

Figure 62. 
Send Word Count Less Than Receive Word Count 

WORD 
COUNT 
OF SEND 
REQUEST 

RECEIVE BUFFER 

RESULTS: 

ALL OF THE SEND BUFFER IS COPIED. BUT 

PART OF THE RECEIVE BUFFER IS MEANINGLESS 

WORD 
COUNT 
OF 
RECEIVE 
REQUEST 



Chapter 17 Transferring Data Between Jobs 197 

Communication Through Shared Buffers 

When the amount of information to be transmitted be­
tween jobs is more than a few words, it may be better to 
share a common data buffer than to copy all the data from 
one job to the other. 

Copying the buffer with send and receive requests is 
the more direct of the two options and, for small amounts 
of information, is usually the better choice. Using a shared 
buffer requires more careful planning and complex pro­
gramming, but there can be significant benefits to using a 
shared buffer. To set up a shared buffer, you use a proce­
dure like the following: 

1. One job must reserve space for the buffer that is to be 
shared. You can reserve space at compilation or as­
sembly time by defining a buffer or array. There are 
also methods to reserve more buffer space at run time 
(discussed in chapter 18, "Using Memory"). 

2. The job that reserved the shared buffer uses a send 
request to send a message to the other job. The mes­
sage contains the address of the buffer and may also 
contain its length. 

A FORTRAN IV program that uses a variable or an 
array for the buffer can find out the address of that 
storage location by using the SYSLIB routine IADDR. 

3. The other job issues a receive request for the message 
in order to find out the address (and length) of the 
buffer that is to be shared. 

MACRO-ll programs can directly access the shared 
buffer. FORTRAN IV programs have to use routines like 
IPEEK and IPOKE in order to use the buffer because the re­
ceiving routine does not have a variable name for the buffer 
itself, only for a location that contains the address of the 
buffer. 

Another way of gaining access to the buffer is to use 
the MACRO-ll function INDIR. INDIR acts as an interme-



198 Programming with RT -11 

diary between two FORTRAN IV routines. It allows the 
calling routine to pass arguments in an indirect manner. 
Instead of giving the name of the variable to be passed, the 
routine's CALL statement may give the name of a variable 
that contains the address of the value to be passed. Many 
levels of indirection are allowed. The form of the statement 
is: 

Call Indir (Proc, Model, Argl, Mode2, Arg2, ... ) 
or 
X = Indir (Proc, Model, Argl, Mode2, Arg2, ... ) 

"PROC" must be declared as external in the routine calling 
INDIR. For each argument, "MODE" is the number of lev­
els of indirection. MODE = 0 is equivalent to a direct call. 
The program (INDIR.MAC), which follows, shows a MA­
CRO-ll function that passes arguments to FORTRAN IV 
routines. 

FORTRAN IV programs can use INDIR to interpret ad­
dresses when calling subroutines. For instance, if the ad­
dress of an array is in the INTEGER*2 variable IPTER, you 
can call a subroutine, and pass the array as an argument. 



INDIR.MAC 

Chapter 17 Transferring Data Between Jobs 

.TITLE INDIRECT FORTRAN CALLS 

NOTE: Thi9 routine may be called by the PROC routine or 
any of it9 routines. 

INDIR:: MOV 
MOV 
DEC 
ASR 
ASL 
ADD 
MOV 
MOV 

1$: 

2$: 

3$: 

MOV 
MOV 
BEQ 
MOV 
DEC 
BNE 
MOV 
CMP 
BNE 

(RS)+.RO 
RO.R1 
R1 
R1 
RO 
RS.RO 
(RS)+.R4 
SP.SAVESP 
-(RO).R2 
8-(RO).R3 
3$ 
(R2).R2 
R3 
2$ 
R2.-(SP) 
RO.RS 
1$ 

MOV R1.-(SP) 
MOV SP.RS 
MOV SAVESP.-(SP) 
CALL (R4) 
MOV (SP)+.SP 
RETURN 

;Load number of arguments 
;Copy number of argument9 
;Forget about PROC a9 arg 
;/2 to remove MODEs 
;Advance to end of 
; argument 11 s t 
;Load PROC routine addr 
;Save stack pointer 
;Load ARGN addre9s 
;Load MODEN value 
;Branch if MODE· 0 
;Chase indirection 
;Decrement mode 
;Branch if MODE (> 0 
jPu9h argument onto 9tack 
;AII argument9 procesged? 
;Branch if not 
;Push number of argument 
;Load argument block ptr 
;Save saved stack ptr 
;Call the PROC routine 
;Restore original stack 
;Return to caller 

NOTE: Value returned by INDIR is the value returned by 
the PROC routine since no registers are modified 
upon return from PROC. 

SAVESP: . BLKW 
.END 

;Saved stack pointer 

199 

Benefits of Using Shared Buffers 

When you want to transmit information between jobs, the 
benefits of using a shared buffer, instead of send and re­
ceive requests include the following: 

• One copy of the information takes up less memory 
then two copies. 



200 Programming with RT -11 

• Execution can be faster because the data does not 
have to be copied. 

• Each job has continuously updated information from 
the other job. The use of a shared buffer, which does 
not need repeated sends or receives, can increase 
program speed and accuracy. 

Disadvantages of Using Shared Buffers 

The disadvantage of using shared buffers to communicate 
between jobs is that . programs are harder to write and de­
bug. For example: 

• The two jobs must be synchronized so that they do 
not access the buffer at the same time. 

• The job that receives the buffer address might modify 
a location outside the buffer and destroy the first job. 

Restrictions on the Use of Shared Buffers 

There are two restrictions when using shared buffers: 

• The second job may not use the shared buffer for I/O, 
in a CDFN or QSET request, or other operation lim­
ited to addresses within the job's own memory space. 

• Under the XM monitor, a shared buffer must be in 
memory (below 28 Kwords) and both jobs must be 
pri vileged. 

Synchronizing Buffer Access 

In a coordinated foregroundlbackground system, one job may 
need to know when the other job has started or completed 
some operation. This calls for communication between the 
two jobs, in the form of: 



Chapter 17 Transferring Data Between Jobs 201 

• Queries, where job A says to job B: "Send me a mes­
sage when you have done operation X" 

• Status reports, where job B says to job A: "I have 
completed operation X" 

If job A needs the results of the action taken by job B, 
it should block itself by issuing a synchronous commu­
nication request (either send or receive). This blocks job A 
and also sets up the condition for removing the block. The 
effect is that job A says to job B: "Wake me up when you 
are ready." Job B then must issue the appropriate request 
(receive or send) when it has completed the specified task. 

The content of the buffers used in these send and re­
ceive requests may not be important. The execution of the 
requests may be enough to indicate: "Wake me up when 
you are ready," or "Wake up! I am ready." In this example 
the send buffer can be a single word containing a zero. 

The contents of the send buffer can be used to trans­
mit additional information, such as whether job B com­
pleted its task successfully, or where the results are located 
in the buffer. 

If the job that needs the results can do other work while 
waiting, use a nonsynchronous communication request. 
Then at a later time this job can use MW AIT to wait for the 
request to complete. It can also check flags set by a com­
pletion routine or suspend itself until resumed by a com­
pletion routine. 

If you want a foreground job to receive a message from 
the background job, you must make sure that the fore­
ground job becomes blocked, to allow the background job 
time to run. Do this either by using synchronous requests, 
or asynchronous requests and MW AIT, or by suspending a 
job until it is resumed by a completion routine. 

Communication Through Files 

Communication using a file is slower than using send and 
receive requests or shared buffers because of the device ac­
cess time. However, two benefits of file communication are: 



202 Programming with RT -11 

more information can be stored in a file than in memory 
and a file leaves a permanent record of the information for 
future use. 

If two jobs each have a channel open to the same file, 
both can do I/O to that file. Both jobs' requests are queued 
to the device handler, as follows: 

• A device handler services only one I/O request at a 
time. Once a handler starts to execute an I/O request, 
it completes that request before it starts on any new 
request. For example, if a handler is servicing an I/O 
request from the background job and a new request 
comes in from the foreground job, the handler com­
pletes the background job's request before starting to 
work on the foreground job's request. 

• All requests for a handler, except for the one cur­
rently being executed, are queued in order of job 
priority. The requests for the foreground job are first, 
then those of the system jobs, and then the requests 
for the background job. 

• Within each job's section the queue is FIFO. 

Jobs must be synchronized if both modify a shared file. 
Consider an example where the background job reads a block 
from a file, changes a few words in that block, and then re­
writes the block. After the background job reads that block 
and before it writes the block back, the foreground could 
run and make a change in the block. If the background did 
not know about the foreground's change, it would write its 
block out, writing over the changes made by the fore­
ground. You prevent this condition in shared files in the 
same way you prevent it in shared buffers-by setting up a 
system of shared flags or send and receive requests to syn­
chronize the jobs' execution. 

Sharing a file is simple if the file was created before 
both jobs are run. Each job needs only to issue a LOOKUP 
request to the file. If two jobs create a file to share, then one 
job must create the file using an ENTER request and tell the 
second job the channel number it is using. The second job 
has to issue a channel copy request. This request can also 
be used if the first job has gained access to the file with an 



Chapter 17 Transferring Data Between Jobs 203 

ENTER request. All that is needed to copy a channel to the 
second job is for the first job to have that channel open. For 
MACRO-11 the channel copy request is: 

.CHCOPY area,chan,ochan 

For FORTRAN IV the request is: 

IERR = ICHCPY (chan,ochan) 

In these requests, "chan" is the channel number to be used 
by the job copying the channel, and "ochan" is the chan­
nel number being used by the job that first opened the file. 

The effect of this request is to copy one job's channel 
table for this file into the channel table of the other job. 
When this request has been executed, both the copying job 
and the job that first opened the file can access the file. There 
are only two significant differences between the privileges 
of the two jobs: 

1. In the copying job's channel status word, the write­
to-directory bit (bit 7) is always clear. So, a CLOSE 
request from the copying job does not make this file 
permanent if it was opened with an ENTER. Only the 
job that created the file can make it permanent. 

2. If the file is opened with an ENTER request, the 
copying job can reference it only up to the highest 
block that had been written to by the entering job at 
the time that the channel copy was performed. The 
copying job cannot read from or write to any blocks 
past that limit. 

One way around this problem is for the entering job 
to write to the last block of the tentative file. This 
saves all blocks when the file is closed, and allows 
both jobs access to all blocks of the file. 

Coordinated Foreground/Background Systems 

The error-logging system and the queuing system are co­
ordinated foreground/background systems. Each uses both 



204 

Error Logging 

Queuing System 

Programming with RT -11 

communication requests and channel copying to commu­
nicate. Short descriptions of the operation of these systems 
are given here. as examples of how these requests can be 
used. 

The error-logging system has two background jobs (ELINIT 
and ERROUT), a foreground job (ERRLOG), and a data file 
(ERRLOG.DAT). ELINIT is responsible for finding (using 
LOOKUP) or creating (using ENTER) ERRLOG.DAT. ELINIT 
opens a channel to ERRLOG.DAT. If ELINIT creates a new 
file, it writes to the last block of the file, saving the com­
plete length of the tentative file. It closes the tentative file 
to make sure that it is made permanent, then reopens the 
file with LOOKUP. It sends ERRLOG some control infor­
mation about the file and the system configuration. 

One of the first things that ERRLOG does is issue a 
.RCVDW, which blocks ERRLOG until ELINIT issues its send 
request containing the control information. ERRLOG copies 
ELINIT's channel to ERRLOG.DAT, issues a .RCVDC for a 
message from ERROUT, and .SPND to suspend itself. 
ERRLOG can become unblocked either by the completion 
routine from the .RCVDC, or from a special routine called 
from device handlers to report error-logging data. When 
ERRLOG becomes unblocked, it writes data to ERRLOG.DA T 
using the channel that it copied from ELINIT, and then 
suspends itself again. ERROUT executes a send data re­
quest to ERRLOG to ask it to write out the last of its data 
to ERRLOG.DAT. Then ERROUT opens its own channel to 
the file and creates a report based on the data in the file. 

In the queuing system, a foreground job QUEUE opens a 
data file SY:QUFILE.WRK. This file is opened using 
LOOKUP or ENTER and is used to keep track of file trans­
fer requests for QUEUE. When QUEUE completes one re­
quested transfer, it deletes the entry for that transfer in the 



Practice 
17-1 

Chapter 17 Transferring Data Between Jobs 205 

list in SY:QUFILE.WRK, and starts up the next operation. 
New requests are added to the queue as a result of mes­
sages sent from the background job QUEMAN. QUEUE's 
main level has three major functions. It processes: 

• Requests from QUEMAN. 

• The completion of one transfer and the starting of an­
other. 

• Clean-up operations if QUEUE is aborted. QUEUE in­
hibits normal (CTRUC) action and sets up a mark time 
completion routine to run at regular intervals, which 
checks for double (CTRUC). 

The main level of QUEUE uses a .RCVDC request to 
check for messages from QUEMAN, .READCs and . WRITCs 
to do 110, and .MRKT to set up the completion routine to 
look for (CTRUC). Then the main level suspends itself, leaving 
the completion routines to issue the resume request. When 
the main level becomes unblocked, it checks to see which 
completion routine unblocked it, performs the necessary 
task, reissues any needed communication or 110 request, and 
blocks itself again. 

QUEMAN's main job is to take requests from the user, 
translate them into messages, and send them to QUEUE. One 
request that QUEMAN handles on its own, however, is a 
request to look at the status of current requests in the queue. 
To do this, QUEMAN copies QUEUE's channel to 
SY:QUFILE.WRK and reads from the file directly. 

This practice requires a Foreground/Background monitor. 
You can write the programs in MACRO-ll or FORTRAN 
IV. If you use FORTRAN IV, the MACRO-ll function IN­
DIR is shown in the program (INDIR.MAC) presented earlier 
in this chapter. 

1. Write a foreground job and a background job such that: 

a. The foreground accepts a string of characters from 
the terminal. 



206 

References 

Programming with RT -11 

b. The foreground sends a buffer containing that 
string of characters, to the background. 

c. The background reverses the order of the charac­
ters in the string, and then sends a buffer contain­
ing the reversed string to the foreground. 

d. The foreground then prints out the reversed string, 
and returns to step a. 

2. Write the above program using a shared buffer instead 
of copying the strings from one job to the other. 

3. Modify the programs in step 1. so that: 

a. The foreground writes the original string to block 0 
of a file that it creates using ENTER. 

b. The foreground sends to the background the chan­
nel number on which that file is open. 

c. The background copies the channel from the fore­
ground, reads the string from block 0, reverses the 
string, and writes the reversed string to block 1 of 
the file. 

d. The foreground reads block 1 of the file and types 
out the reversed string. 

e. The program leaves the file permanent when the 
foreground program exits. 

RT -11 Programmer's Reference Manual. Chapters 2 and 3 dis­
cuss the channel copy requests for MACRO-ll and FORTRAN 
IV users. 

RT -11 Software Support Manual. Chapter 4 provides informa­
tion on the operation of programs sharing buffers under the XM 
monitor. 





18 

Standard Memory Use 

Dynamic Allocation of Memory 

The .SETTOP Request 

.SETTOP under the Extended Memory Monitor 

Restrictions on the Use of .SETTOP 
The IGETSP Routine 

USR Control 

The Swapping Algorithm 

Problems and Restrictions 
Sequential USR Operations 

USR Contention 
References 



18 
Using 
Memorv 

The memory on your system is a limited resource. The 
amount of memory needed by a job cannot exceed the 
available memory on your system, or RMON will not be able 
to run the job. As your programs become complex, the need 
to make efficient use of memory increases. 

An issue related to memory use is speed of program 
execution. Certain methods of increasing execution speed 
do so at the cost of increased program size; on the other 
hand, other methods decrease program size at the cost of 
slower execution speed. For example, overlaying a pro­
gram can decrease its size but also slows execution. Once 
you learn how to modify and control memory use on the 
RT -11 system, you can select the proper balance of size 
versus execution speed for your particular application. 

This chapter discusses two ways you can modify the 
way that RT -11 uses memory. The first, called dynamic 
allocation of memory, is to issue requests that allocate 
memory to your job while it is running. The second is to 
control the swapping of the USR during the execution of 
your program. You will see how each method affects both 
the size and execution speed of your program. 

The programmed requests discussed in this chapter are: 
.SETTOP, IGETSP, . LIMIT, .LOCK, .UNLOCK, and .TLOCK. 
When you have completed this chapter, you will be able to 
write code to request dynamic allocation of memory to a 
program; control the swapping . location of the USR; and 
increase the speed of consecutive USR operations and 
minimize blocking of either job. 

209 



210 Programming with RT -11 

Standard Memory Use 

Figure 63 shows a typical allocation of memory under the 
Foreground/Background monitor. Memory use under the S} 
monitor is similar, but there is no foreground job; there­
fore, all loaded device handlers are in a contiguous area 
between RMON and the USR. 

The background job area can be divided into the job 
itself-the code that you write-and the stack. The job starts 
at the base address at which it was linked, default 1000 
(octal). By default, the stack starts at the base address and 
extends downward 'to location 500 (octal). (The stack po­
sition can be changed by the /ST ACK option of the LINK 
command.) 

The foreground job area is made up of the foreground 

Figure 63. 
Allocation of Memory with Active Foreground and 
Background Jobs 

500 

SYSTEM DEVICE HANDLER 

RMON 

DEVICE HANDLERS LOADED 
BEFORE FRUN 

FG JOB AREA 

DEVICE HANDLERS LOADED 
AFTER FRUN 

USR 

BG JOB AREA 

RESERVED 



Chapter 18 Using Memory 211 

job, its stack, and its impure area. As with a background 
job, the foreground stack is placed immediately below the 
job's base address by default. Its size is fixed when the job 
is linked. Default size is 128 (decimal), 200 (octal), bytes. 
The impure area is always placed at the bottom of the fore­
ground area. (Remember that the background impure area 
is within RMON.) If you use the IBUFFER option of the 
FRUN command, space is reserved in the foreground area 
above the foreground job. 

The absolute location of the foreground area in mem­
ory is determined by the amount of memory on your sys­
tem,the size of the system device handler, RMON, and the 
other components (device handlers and system jobs) that 
are loaded into the area below RMON before the FRUN 
command is issued. Figure 64 shows the detail of the fore­
ground and background areas. 

Each job has a high and a low limit. These limits are 
used by RMON to make sure that certain operations re­
quested by a job do not affect any locations outside that job's 
area. For example, a program cannot perform I/O to a buffer 
outside its limits. A program can find out what its limits 
are by issuing a GTJB request. 

The low limit of a job is the base of the area shown in 
figure 64. It does not change during execution. When a job 
is started, its high limit is the last location used in the load 
image (the last word used for instructions or for data stor­
age requested within your program). For a background job, 
you can extend the high limit using the ITOP option of the 
LINK command; for a foreground job use IBUFFER of the 
FRUN command. The high limit can also be changed dur­
ing execution. By raising its high limit, a job can request 
dynamic allocation of memory. This action also affects USR 
swapping. ' 

Dynamic Allocation of Memory 

Memory to be used for data storage can be allocated to your 
program in two ways. First, you· can reserve storage within 
the load image itself; the corresponding locations are re­
served in memory when the job is loaded into memory. You 



212 Programming with RT -11 

Figure 64. 
Detail of Foreground and Background Areas 

FOREGROUND AREA 

EXTRA WORDS (IF ANY) ALLOCATED 
BY FRUN/BUFFER 

HIGH LIMIT ------+-

FG JOB 

BASE ADDRESS ------+-

FG STACK (DEFAULT 128 BYTES) 

FG IMPURE AREA 

LOW LIMIT ------+-

BACKGROUND AREA 

HIGH LlMIT-

BG JOB 

BASE ADDRESS -
~---------------------------------~ 

BG STACK 

. LOW LI M IT -L..-_________________________________ ...... 

usually reserve such storage locations using storage direc­
tives in MACRO-ll and variables in FORTRAN IV. (Some 
linker options also affect positioning of program compo­
nents within the load image, and therefore, indirectly af­
fect the way storage is reserved there.) Second, you may re­
quest that dynamic allocation of memory take place during 
your program's execution. 

The performance of some programs is directly related 
to the amount of memory available for the programs. The 
more memory available, the better they will run. The im-



Chapter 18 Using Memory 213 

provement may extend the range of external conditions that 
they can handle or result in higher execution speed. For 
example, most programs that do 110 to a mass storage de­
vice will J;un faster given a larger 110 buffer, because it is 
almost always faster to read or write multiple blocks in one 
request than to do consecutive reads or writes of one block 
each. As another example, consider a program that accepts 
data from an input device in high-speed bursts. The more 
buffer space available to the program, the more data the 
program can accept before running out of room. This al­
lows higher data rates. 

The benefit of dynamic allocation of memory over re­
serving storage is that the amount of storage requested can 
be controlled by: 

• The actual needs of the program, as determined dur­
ing execution 

• The actual amount of memory available at execution 
time 

If you want to reserve space for these buffers as you 
write the program, you will have to determine how much 
buffer space you need. If a small buffer is reserved, the pro­
gram may not perform as well as it could. If a larger buffer 
is reserved, the program may not fit into the amount of 
memory available at execution time. The problem is that, 
at the time you write a program, you do not know how much 
memory will be available when you execute it. The best so­
lution, therefore, is not to leave space for such a buffer when 
you write your program, but rather, request dynamic allo­
cation. 

A MACRO-ll program can request dynamic alloca­
tion of memory by issuing a .SETTOP request. The effect 
of this request is to change the high limit of the program 
and gain the use of additional space. 

The FORTRAN IV OTS (which is written in MACRO-
11) automatically issues a .SETTOP request when you start 
up a FORTRAN IV program. The memory returned by this 
request is used as a workspace by the OTS for purposes such 
as temporary storage, I/O buffers, and space for device 
handlers. 



214 Programming with RT -11 

The .SETTOP requested by the OTS gets as much 
memory as is available from RT -11, and all of the work­
space is reserved for OTS use. Therefore, there is no re­
quest that you can use within your FORTRAN IV program 
to get more memory from RT-ll. However, by using the 
IGETSP (get space) request, you can ask the OTS to allo­
cate part of its workspace for your use. IGETSP is a request 
by which a FORTRAN IV program can request dynamic al­
location of memory. 

The .SETTOP Request 

To determine the new high limit to request, use the .LIMIT 
directive. The following example shows a request for a buffer 
of 1000 (octal) bytes. 

To allocate to your program as much memory as pos­
sible, request a high limit that you know cannot possibly 
be given to you. 



Chapter 18 Using Memory 215 

RMON will change your request to the highest it can give 
you. Take the new high limit returned in RD. 

The follo\Ving example shows how to get as much 
memory as possible without forcing the USR to swap out 
because of .SETTOP. USR swapping is discussed in detail 
later in this chapter. 

EXAMPLE 

.GVAL 
TST 
.SETTOP 

#AREA,#266 
-(RO) 

AREA: . BLKW 2 

.SETTOP under the Extended Memory Monitor 

Using a feature known as a virtual .SETTOP, a MACRO-ll 
program executing under the XM monitor can request dy­
namic allocation of extended memory (that is, memory above 
28 Kwords). This differs from a .SETTOP under the SJ or 
FB monitors and from a nonvirtual .SETTOP under the XM 
monitor, because each of those requests returns only mem­
ory under 28 K words regardless of how much memory is 
on the system. Two characteristics of the virtual .SETTOP 
make it very useful: 

• On an XM system, you can obtain more memory by 
using a virtual .SETTOP to get memory above 28 
Kwords than you can by using a nonvirtual .SETTOP. 

• The virtual .SETTOP is an easier way to use ex­
tended memory than the extended memory pro­
grammed requests. 



216 Programming with RT -11 

To request allocation of extended memory using a vir­
tual .SETTOP, the job must be a virtual job. It is not nec­
essary for you to understand the details of virtual and priv­
ileged mapping in order to use the virtual .SETTOP feature. 
To make your job virtual, you must set bit 10 of word 44 
in the job's load image, the job status word. You can either 
patch the word or set it, using an absolute program section 
in your source code. 

EXAMPLE 

.ASECT 

.=44 

.WORD 

.~SECT 
20.00 ;(8IT 10) 

Then issue a .SETTOP. You can ask for a new high limit 
of any address between your job's next free address and 
177776. The next free address is the next 4-Kword bound­
ary above the addresses used by your program, including 
the root and any /0 or N overlays (if the program is over­
laid). The next free address is always printed on your load 
map. if you use the LINKlXM option or N overlays. Your 
program can get its next free address at execution time if 
you use a .LIMIT assembler directive. This directive gen­
erates two words of storage, the second being the next free 
address if you use LINKlXM or N overlays. 

A virtual .SETTOP returns with two allocations: 

• A new range of addresses within your program. 

• A section of physical memory, taken from the mem­
ory above 28 Kwords that RMON controls. You can 
refer to this section of physical memory by using this 
new range of addresses as you would any other ad­
dresses within your program. 

On return from .SETTOP, RO contains the highest ad­
dress that your job can now use. If RMON can give you all 



Chapter 18 Using Memory 217 

that you asked for, the new address range available to you 
is from the next free address to the new limit you re­
quested in the .SETTOP. 

If not enough memory is available above 28 Kwords, 
RMON decreases the size of your request, and the new high 
limit is less than you requested. If, on return from the 
.SETTOP, RO contains the next free address, no new mem­
ory has been given to you. 

Restrictions on the Use of .SETTOP 

Certain restrictions apply when you use the .SETTOP pro­
grammed request for virtual jobs under the XM monitor. 

1. You may not use addresses that lie between: 

a. Those available to you before the .SETTOP (the highest 
address used by the root and any 10 or IV overlay 
segments) 

b. The next free address (which is the first 4 Kword 
boundary above a.) 

An attempt to use those addresses may result in an 
execution error that will abort your program. 

2. The address you request in the .SETTOP should be 
above the next free address or else no new memory 
will be given to you. 

3. The memory you get from .SETTOP capnot be used 
for queue elements or I/O channels. 

4. A virtual job cannot access anything outside its own 
area. This includes RMON (other than by using 
.GVAL), the I/O page, and the interrupt vectors. 

The IGETSP Routine 

The IGETSP routine requests that the OTS allocate a part 
of its workspace for your program use. When the main-line 



218 Programming with RT -11 

routine of a job is written in FORTRAN IV, or when the 
OTS is initialized by a direct call to the OTS initialization 
routine, any request for dynamic allocation of memory 
should be made by a call to IGETSP. A FORTRAN IV call 
to IGETSP has the form: 

ISIZE = IGETSP (min,max,iaddr) 

In this request: 

min is the minimum acceptabJe size, should an 
area of the correct size not be available. 

max is the size (in words) of the area that you 
would like allocated to you. 

iaddr is an INTEGER variable in which IGETSP re­
turns the address of the area allocated to you. 

ISIZE is an INTEGER variable that receives the ac­
tual size of the area allocated to you (min 
< = ISIZE < = max). If IGETSP cannot allo­
cate an area of min words or larger, ISIZE re­
ceives a negative value. 

You cannot use iaddr to refer directly to the buffer be­
cause iadder is not the actual buffer but an INTEGER vari­
able that contains the buffer address. You can do one of the 
following: 

• Use the SYSLIB routines IPEEK, IPEEKB, IPOKE, 
IPOKEB in order to reference this buffer from the 
routine that issued the IGETSP. 

• Use an assembly language subroutine to reference it. 

• Use a routine like INDIR (chapter 17, "Transferring 
Data Between Jobs") to allow the routine that issued 
the IGETSP to pass the buffer indirectly to a FOR­
TRAN IV subroutine. The following example shows 
how you might request a buffer using IGETSP and 
then do I/O to that buffer using INDIR to pass the 
buffer to IREADW indirectly. 



USR Control 

Chapter 18 Using Memory 

EXAMPLE 

ISIZE=IGETSP (256,512,IADDR) 
IF (ISIZE.LT.O) STOP 'NOT ENOUGH BUFFER. SPACE' 
IERR-INDIR(IREADW,O,ISIZE,1,IADDR,O,IBLK,O,ICHAN) 

C (DIRECT REFERENCES ON ALL ARGUMENTS EXCEPT IADDR. 
C SEE THE LISTING OF INDIR IN CHAPTER 17) 

IF (IERR.LT.O) STOP 'READW ERROR' 

219 

You may call IGETSP and be given additional mem­
ory, but at a later time your program may fail because there 
is not enough workspace for the FORTRAN OTS. This is 
because the OTS cannot tell how much workspace it will 
need in the future. Therefore, it allocates memory based on 
its workspace needs at the time of the request. 

If your program has this problem, you should lower the 
"max" argument in the IGETSP call until the program runs 
successfully. This is not a dependable solution as you have 
no assurance that the problem will not occur again if a dif­
ferent execution path through your program results in more 
use of the OTS workspace. 

The USR is designed to swap in and out, as needed, during 
program execution. Controlling where and when the USR 
swaps is another method to make efficient use of memory 
and achieve fast execution speed. 

The Swapping Algorithm 

The following conditions affect USR swapping. 

• Under the XM monitor, the USR never swaps. 

• If the USR is set to NOSW AP, it does not swap. 



220 Programming with RT -11 

• If the USR is set to SWAP and the background high 
limit is above the base of the USR, the USR swaps. If 
the background high limit is below the base address 
of the USR, the USR does not swap. 

• The background high limit is affected by a .SETTOP 
request. You can use .SETTOP to set the high limit 
above or below the USR base address to control 
whether or not the USR will swap. --

The USR swaps out when a background program is run 
whose high limit is above the base address of the USR, or 
when a background program performs a .SETTOP above the 
base address of the USR. The USR swaps in during pro­
gram execution when a job issues a request that needs code 
in the USR. Some of these requests are: 

• Device handler operations: FETCH, DST ATUS 

• I/O preparation: QSET, CDFN 

• Directory operations: ENTER, LOOKUP, CLOSE, 
RENAME 

• CSI operations (including GTLIN, which is imple­
mented within the CSI) 

Complete lists of the requests that use the USR are dis­
cussed in chapter 1 of the RT -11 Programmer's Reference 
Manual. 

The address at which the USR is swapped is deter­
mined by the following conditions: 

• If the contents of word 46 are 0, the USR swaps in (at 
its default location below RMON) any foreground or 
system jobs and any loaded handlers. 

• If word 46 is not 0, the USR swaps at the address 
specified by the contents of word 46. 

• The foreground job should always set an address into 
word 46. If the foreground job issues a USR request 
when word 46 is 0, and the USR is not resident, a fa-



Chapter 18 Using Memory 

tal error may result and the foreground job will be 
corrupted. 

221 

• By default, the FORTRAN IV OTS sets the USR to 
swap at the base of the program. Except in small 
FORTRAN IV programs, this is usually a good place 
for it to swap. If you have a small FORTRAN IV pro­
gram, either set the USR to NOSW AP, or compile 
background jobs with the INOSWAP option. The INO­
SWAP option causes the OTS to do a .SETTOP to the 
base of the USR instead of up to the limit of the sys­
tem. 

When actual swapping occurs, the part of the job that 
is within the swap area of the USR is written out to 
SWAP.SYS. Then the USR is read into the swap area and 
executed. When the USR is done, the portion of the pro­
gram that was written to SWAP .SYS is read back into the 
swap area. 

Problems and Restrictions 

If you allow the USR to swap, certain problems can result. 
Random errors can occur it when swapping, the USR over­
writes certain types of code or data that.it may need while 
executing. See chapter 2 in the RT -11 Software Support 
Manual for a detailed list of the errors. In general, do not 
let the USR swap overwrite: 

• The stack 

• Any data that the USR itself needs-file definition 
blocks, for e?<ample 

• Any code that may be entered asynchronously: inter­
rupt service routines, device handlers, or completion 
routines 

USR swapping takes time because of the disk accesses 
needed to write to and read from SWAP .SYS and to read 
the USR itself. 



222 Programming with RT -11 

To solve problems caused by the USR overwriting cer­
tain code or data, you can either relink your modules so 
the USR swaps information that does not cause problems, 
or you can move the USR by setting an alternative swap­
ping location into word 46. 

Two areas which give you an opportunity to minimize 
delays caused byUSR swapping are sequential USR oper­
ations and USR contention. 

Sequential USR Operations 

If one job executes several USR operations sequentially while 
the USR is swapping, each request needs three disk ac­
cesses for the swapping operation: write to swap file, read 
USR, and read swap file. Unnecessary disk accesses are made 
if the USR completes its operation and swaps out, then 
sw.aps right back in again. 

To prevent excessive swapping, you can issue a LOCK 
request before the first USR operation and an UNLOCK re­
quest after the last to hold the USR in memory while se­
quential USR operations are performed. The USR swaps in 
if it is not resident when the LOCK is issued, and it stays 
in memory until the UNLOCK is issued. At that time nor­
mal swapping continues. 

Be sure that neither the LOCK request, the UNLOCK 
request, nor any code or data needed between issuing the 
LOCK and issuing the UNLOCK, resides in the area where 
the USR swaps. 

If your job meets the following three conditions, you 
can keep the USR resident at selected. times: 

• It is a background job. 

• It has a high limit below the base address of the USR. 

• It normally performs a .SETTOP to get as much 
buffer space as it can. 

Issue .SETTOP requests below the base. of the USR to 
allow the USR to stay resident, and above the base of the 
USR to force it to swap out. 



USR Contention 

Chapter 18 Using Memory 223 

Common practice is to issue requests such as .FETCH, 
.ENTER, .LOOKUP, and .QSET before issuing a .SETTOP 
(or, if you need some buffer space you can first issue a 
.SETTOP to the base of the USR). When these are com­
pleted, issue a .SETTUP above the base of the USR. When 
file use is completed and you want to close your channels, 
issue a .SETTOP to the base of the USR or to your original 
program high limit. This lowers the high limit and allows 
the USR to become resident once again. 

The USR is not reentrant; it can be used by only one pro­
cess at a time. Under the FB monitor, it is possible that while 
one job is using the USR, another job also needs to use the 
USR. This condition is known as USR contention. To pre­
vent USR contention from causing execution errors, the 
monitor assigns ownership of the USR. As soon as the USR 
starts to execute a request for a job, or when a job issues a 
LOCK, that job is assigned USR ownership. Ownership is 
released when the USR completes the request or, if a LOCK 
has been issued, ownership is released when that job is­
sues an UNLOCK. If, while one job owns the USR, a sec­
ond job issues a request that needs the USR, RMON blocks 
the second job until the first job releases ownership. This 
blocking of the second job is called USR lockout. 

With the exception of certain uses of communication 
requests discussed in chapter 17, "Transferring Data Be­
tween Jobs," USR lockout is the only state under the FB 
monitor in which a background job can force the fore­
ground job to become blocked. 

While USR lockout prevents execution errors caused 
by reentrance of the USR, it has the side effect of blocking 
the second job. If the first job has issued a LOCK request, 
the second job can be blocked out for a long time. This can 
be unacceptable if the second job is a real-time application 
that needs constant monitoring and control of external de­
vices. 

To prevent USR lockout from blocking a job, the job 
can issue a TLOCK request which: 



224 

Practice 
18-1 

References 

Programming' with RT -11 

• Tests if another job owns the USR 

• Performs a LOCK if no other job owns the USR 

• Returns an error if another job does own the USR 

If a job that needs the USR issues a TLOCK request and 
receives an error in return, that job can either continue 
processing and try the TLOCK again or print an error mes­
sage, close down the operation it is monitoring, and exit. 

In this exercise you will modify one of the file-copying pro­
grams you created in practice 14-1 (either PR1801.MAC or 
PR1802.FOR). Create a new version of the program accord­
ing to the instructions below: 

1. Use a buffer that is allocated dynamically. Make the 
buffer as large as you can, given the available memory. 
If you are programming in FORTRAN IV, you can use 
the INDIR routine. 

2. Keep the USR resident by doing a .SETTOP only to the 
base of the USR. 

3. Maintain ownership of the USR during the operations 
that need the USR and during the close or purge 
operations. 

The FORTRAN program will run only if you set the USR to 
NOSWAP or use the INOSWAP option when you compile 
the module. If the USR is set to SWAP, the program will 
fail at the call to lock the USR in memory during the 
SETUP routine. 

RT -11 Programmer's Reference Manual. Chapters 2 and 3 dis­
cuss the LOCK and UNLOCK request in MACRO-11 and FOR­
TRAN IV programs. Chapters 1 and 2 contain material on the 



Chapter 18 Using Memory 225 

.SETTOP request in an extended memory environment and ex­
plain how the .SETTOP issued by the OTS works. Chapters 1 and 
3 provide detailed information about IGETSP. 

The RT -11 Software Support Manual. Chapter 2 discusses the 
USR. Chapter 4 describes virtual jobs with .SETTOP in extended 
memory. 



19 

Command String Interpreter 

Format of a Command String 
Options or Switches 

Program Interface with the CSI 
CSI Modes 
Calling the CSI an General Mode (.eSIGEN) 
Calling the CSI in Special Mode (.CSISPC or ICSI) 
Reference 



19 
Using the 
Command String 
Interpreter 

Some operations related to file 1/0 are needed by many 
programs. These operations include parsing command 
strings, fetching device handlers, opening channels, and 
connecting files to channels. The Command String Inter­
preter (CSI) performs these operations and is accessible from 
both MACRO-II and FORTRAN IV programs.' 

This chapter focuses on the capabilities and use of the 
CSI. Using a programmed request to accept and parse a 
command string, fetch handlers, and open channels, you 
will write a MACRO-II program that accesses the files you 
specify. You will also learn to write a program that ac­
cesses files using a programmed request to accept and parse 
the command string without fetching handlers or opening 
channels. Given a list of legal options and correct re­
sponses, you will write code that responds to options in­
cluded in a command string. 

227 



228 Programming with RT -11 

Command String Interpreter 

The Command String Interpreter (CSI) was implemented to 
provide programmers with an efficient, standard method of 
starting file I/O activities. The CSI processes a command 
string for the program that calls it. The command string can 
come from either the terminal, an indirect command file, 
or a buffer in the program. The information in the com­
mand string may i~clude: 

• Names of files to be used for input 

• Names of files to be used for output 

• Command options defined by the programmer 

The two programmed requests that call the CSI (CSIGEN 
and CSISPC) are discussed later. The operations that the CSI 
performs for the program depend on the information in the 
command string and which CSI programmed request is used. 
The CSI can be called on to: 

• Get a command string from the operator 

• Parse a command string 

• Convert file specifications from ASCII to RAD50 
format 

• Fetch device handlers 

• Open channels to input and output files 

• Return a summary of options to the calling program 

Format of a Command String 

The CSI processes a command string in the form: 

OUTl ,OUT2 ,OUT3 = IN 1 ,IN2 ,IN3 ,IN4 ,IN5 ,IN6 

In this command: . 

• From 0 to 3 output files are allowed, with the file 
name format: . 



Chapter 19 Using the Command String Interpreter 229 

DEV:FILNAM.TYP[nJ 

Device defaults to OK: and the name, type, and num­
ber can be omitted if the device is n(Jt file structured. 
The program calling the CSI can specify a default file 
type. Here "[n]" is the requested length of the output 
file in blocks. Values are the same as those for the 
ENTER request's length argument. The default length 
is O. 

• From 0 to 6 input files are allowed, with the format: 

DEV:FILNAM.TYP 

The comments made above for output files apply to 
input files also. 

• The equal sign (=) separates the list of output files 
from the list of input files. This symbol must be pres­
ent if any output files are specified but can be omit­
ted if only input files are specified. 

If fewer than three output or six input files are specified, 
the following conventions apply: 

• If the file at the beginning of the list is omitted, 
indicate the fact by including the comma that would 
follow it, had it been present. 

• If the omitted file is at the end of the list, the comma 
following it, if any, may be omitted. 

Table 18 shows these conventions. 

Table 18. 
Examples of Command Lines 

Files 

Three input files only 

The first o:Jtput and first input files 

The second output and no input files 

Third output file and second input file 

Command 

A,B,C 

A=B 

,LP:= 

"Q=,Z 



230 Programming with RT -11 

Options or Switches 

You can follow any file specification in the command line 
with an option (also referred to as a switch). The simplest 
form of an option is: 

IX 

where "X" is any letter. An option may be followed by 
either: 

• A number: octal (default) or decimal (use a decimal 
point). For example, /X:5 and /X:12. 

• A word of up to three characters. For example, 
/X:aaa. 

Each option value must be preceded by a colon. The fol­
lowing example shows two command strings including 
options . 

. EXAMPLE 

OUTF 1 L/K :.12. =1 NF I L· 
OUTFIL,LSTFILiL:BEX.:ME=INFIl 

The program calling the CSI defines: 

• Which options are legal, and the meaning of each 

• Whether an option takes a value, which values are le­
gal, and their meaning 

• Whether an option applies only to the file that di­
rectly follows it, to multiple files, or to the full com­
mand line 



Chapter 19 Using the Command String Interpreter 231 

Program Interface with the CSI 

You call the CSI using programmed requests. The CSTRING 
argument of the programmed request for the CSI specifies 
the source of the command string. If you want the CSI to 
take a command string from a buffer within the program, 
the buffer address is used as the CSTRING argument. Usu­
ally, however, you want to take the command string from 
the operator. If you leave out the CSTRING argument, the 
CSI uses the GTLIN request to get a command line. To have 
the CSI get the command string from a buffer within your 
program rather than from the terminal or a command file, 
follow these procedures: 

• Store the command string in the buffer in ASCIZ 
format. 

• MACRO-ii: Supply the address of the buffer as the 
CSTRING argument. 

• FORTRAN IV: The CSTRING argument must be the 
name of the array containing the command line 
string. 

The DEFTYP argument to the CSI programmed re­
quest allows you to specify default file types to be used if 
the operator omits the file type in the command line. You 
specify these default file types in a four-word RAD50 ar­
gument block. The contents of this block are shown below. 

Word 1 Default File Type 
For All Input Files 

Word 2 Default File Type 
For First Output File 

. Word 3 Default File Type 
For Second Output File 

Word 4 Default File Type 
,For Third Output File 



232 Programming with RT -11 

Use the following procedures to set up and gain ac­
cess to the four-word argument block: 

• If you do not want to recognize default file types for 
one or more files specified in the default block, make 
the corresponding words in the block 0 (RAD50 for 
three spaces). 

• MACRO-ll: Create the DEFTYP argument by speci­
fying the address of the DEFTYP block. 

• FORTRAN IV: Create the DEFTYP argument by speci­
fying the name of the array or variable used as the 
DEFTYP block. 

The address of this block (MACRO-ll) or the name of 
the array being used as the block (FORTRAN IV) is pro­
vided as the argument to the CSI requests. 

Each file that a user specifies in a command string is 
assigned a file number in the range 0 to 8 (decimal) or 0 to 
10 (octal). These file numbers are assigned as follows: 

• Files in a full command string of three output and 
six input files are assigned the numbers 0 to 8, work­
ing from left to right in the command string. 

• If any of the nine files are omitted, the numbers that 
would have been assigned are not used. Figure 65 
shows this by giving the file number assignments for 
a number of sample command strings. The matrix on 
the right indicates the numbers assigned by the CSI 
to the files in the command line on the left. 

As we have said, options may be accompanied by val­
ues. The CSI passes values to your program as follows: 

• Numeric values are passed as a one-word binary 
number (INTEGER data type in FORTRAN IV). 

• Values containing alphabetic characters are passed as 
a single word of RAD50 code. 



CSI Modes 

Chapter 19 Using the Command String Interpreter 233 

• An option that has multiple values is taken as multi­
ple occurrences of the same option. For example, if 
the user types: 

FILENAM/X:5 :0 

the option and its values are interpreted as: 

FILENAME/X:5/X:O 

Figure 65. 
Assignment of File Numbers by the CSI 

COMMAND FILE NUMBERS ASSIGNED 

A,B,C = L,M,N,O,P,O 

Z=Y 

,0 = R,S 

H,I,J 

,V 

0 

A 

Z 

1 2 

B C 

0 

3 4 5 6 

L M N 0 

Y 

R S 

H I J 

V 

7 8 

P 0 

The CSI has two different modes of operation: general mode 
for MACRO-11 only, and special mode for MACRO-11 or 
FORTRAN IV. Table 19 shows the differences between 
general and special mode CSI functions. 

Calling the CSI in General Mode (.CSIGEN) 

CSI (general mode) is accessed using the .CSIGEN pro­
grammed request in the following form: 



234 Programming with RT -11 

.CSIGEN handler-address, deftyp, cstring, linbuf 

In this request: 

handler-address 

deftyp 

cstring 

linbuf 

Table 19. 

is the base address of a buffer into 
which the CSI is to fetch any 
needed handlers. 

is the address of the four-word 
RAD50 block that is used to con­
tain the default file types. 

is the address of the command 
string buffer, or 0 if the command 
must come from GTLIN. 

is optional. If present in the re­
quest, it is the address of a buffer 
into which the CSI copies the com­
mand string in ASCIZ form. (An 
example is a program to produce a 
listing file that includes the com­
mand line for documentation pur­
poses.) The MACRO-ll assembler 
carries out this request. 

General and Special Mode CSI Functions 

General Mode Special Mode Both Modes 

Fetch handlers Return RAD50 Get command string from: 
file specifications · Memory 

LOOKUP input files to program Terminal · ENTER output files · Command file 

Parse command string: 

· Identify files by file number 

· Identify options and values 

· Link option with file number 

Return option information to 
calling program 

Convert file specifications to 
RAD50 format 



Chapter 19 Using the Command String Interpreter 235 

Device handlers are fetched to the location that you 
specify. This is usually the high limit of your program. If 
multiple handlers are needed, the next handler is fetched 
into memory at locations above the previous one. On re­
turn from the .CSIGEN request, RO points to the word above 
the last handler fetched. If none are fetched, RO contains 
the handler-address argument. 

Each file specification in the command string is opened 
on the channel given by its file number. Input files are 
opened using LOOKUP; output files using ENTER. 

EXAMPLE 

_FOO.OBJ~FOO.MAC. 

In this command string, FOO.OBJ is openeci on chan­
nel 0 using ENTER and FOO.MAC isopene"d on 
channel 3 u~ing L80KUP. 

When executing a .CSIGEN request, the CSI always 
closes channels 0 to 8 before performing any ENTER or 
LOOKUP operations. Therefore, any files that you have 
opened on these channels before issuing the .CSIGEN re­
quest are closed. Any channels not used in the command 
string are left inactive on return from the .CSIGEN request. 

Options are returned on the stack. They are popped off 
the stack in the order listed below. 

1. One word containing the number of options specified 
in the command string. Remember that multiple op­
tion values are returned as repetitions of the option. 

2. A one- or two-word descriptor for each option (one 
word if no value; two words if a value was given). 

The return of option information on the stack is shown 
in figure 66. Figure 67 shows the format of an option word. 

Before calling the CSI, save the current stack pointer 
(SP) if you plan to ignore options or if your program is de-



236 Programming with RT -11 

Figure 66. 
Return of Option Information on the Stack 

BOTTOM OF STACK -

INCREASING 
ADDRESSES ON 
STACK 

NUMBER OF 
OPTION 
DESCRIPTORS 
=N 

STACK POINTER_ 
BEFORE CSI 
CALL 

Figure 67. 

N (NUMBER OF OPTIONS 
GIVEN) 

OPTION DESCRIPTOR 
MAY BE: 

OPTION DESCRIPTOR 

OPTION DESCRIPTOR 

Format of an Option Word 

BIT NO. 15 14 8 7 

FILE NUMBER 

AN OPTION DESCRIP 

--..J OPTION WORD 

OR 

OPTION WORD 

VALUE WORD 

ASCII CODE FOR 
OPTION CHARACTER 

TOR 

o 

= 1 IF OPTION HAD A VALUE (VALUE WORD FOLLOWS ON STACK) 

= 2 IF OPTION HAD NO VALUE (NEXT WORD ON STACK IS 
ANOTHER OPTION WORD) 

signed to abort an illegal option. You can use the saved SP 
value to restore the stack to the state it was in before the 
CSI call. 

Always restore the stack to the state preceding the call, 
even if no options are expected, because one word (with 
the value 0) is pushed on the stack even if no options are 
included. The general flow of control for option processing 
is as follows: 



Chapter 19 Using the C~Jmmand String Interpreter 

1. Use the contents of the first word on the stack as a 
counter for popping off option descriptors. 

237 

2. As you pop off each option word, pop off the value 
word if the option word is negative. 

3. Set flags or values for use in the program. 

4. Reset the stack. 

As an example of CSI general mode, see the segment 
of code in figure 68. This code is set up to function as part 
of a program that will accept IC as an option. 

Figure 68. 
Code Showing Option Processing under General Mode 

CLR R4 ;USE R4 AS FLAG WORD 
MOV SP.SAVSP ;SAVE STACK POINTER 
.CSIGEN _'HSPACE._'DEFEXT._'O 

;GET CSI STRING FROM KEYBOARD 
TST 
BEQ 
CMP 
BNE 
CMPB 
BNE 
INC 

CLEAN: MOV 

DEFEXT: . WORD 
SAVSP: . WORD 
HSPACE: '. BLKW 

(SP) 
CLEAN 
(SP)+._'1 
CLEAN 
(SP)+._"C 
CLEAN 
R4 
SAVSP.SP 

0.0.0.0 
o 
1024. 

Calling the CSI in Special Mode 
(.CSISPC or ICSI) 

;OPTIONS SET? 
;NO. CONTI NUE 
; ONE OPTI ON? 
;NO. CONTI NUE 
;YES. WAS IT C? 
;NO. IGNORE 
;YES. SET FLAG FOR LATER USE 
;RESTORE STACK POINTER 

;HANDLER SPACE 

Whether you are programming with MACRO-ll or 
FORTRAN IV, you can use CSI special mode. You may want 
to use it to check a command string in a MACRO-ll pro-



238 Programming with RT -11 

gram before proceeding with operations such as fetch, 
lookup, or enter. You may also use it to check for: 

• Reserved file names 

• The number of files in the command 

• The output file size 

• Old versions of output file specifications (before 
doing an enter) 

• Default file types to be determined by options (for ex­
ample, LIBR can produce either .OB] or .MAC files) 

The MACRO-ll request for calling CSI in special 
mode is: 

.CSISPC files, deftyp, string, linbuf 

Here "files" is the address of a 39-word block to be used 
for file specifications and "linbuf" is the storage address for 
the original command string in ASCII. All other arguments 
for this request ~re identical to those needed by the .CSIGEN 
request. 

The FORTRAN IV request for CSI access is: 

IERR=ICSI (files,deftyp,cstring,options, N) 

In this request: 

files 

deftyp 

cstring 

options 

is an array of 39 words to be used to hold 
file specifications. 

is a four-word area containing RAD50 for­
mat default file types. 

if present, is an array containing a com­
mand string in ASCIZ format. If this argu­
ment is omitted, CSI expects to receive the 
command string using GTLIN. 

can be omitted if N is 0; if N is not 0, this 
argument must be the name of an array of 
size 4*N. This array is used by ICSI to re­
turn option information. 



Chapter 19 Using the Command String Interpreter 239 

N 

If this array has the dimensions: 

INTEGER OPTIONS (4,N) 

then all the elements of the array have the 
meaning indicated in table 20 for all values 
of J from 1 to N. 

is the maximum number of options 
allowed. 

In setting up calls to ICSI, fill in the first row of the op­
tions array before calling ICS!. Follow these procedures: 

• Place any legal option in at least one column of the 
options array. 

• If a specific option can be used legally more than 
once in a command, it must head as many columns 

Table 20. 
Information Contained in Option Array 

Name of Description Default Filled in 
Element Contents Value By Notes 

OPTIONS(1,J) ASCII code for None User job Must be filled 
option character in before 

calling ICSI 

OPTIONS(2,J) "Option present" 0 ICSI 1 means option 
appeared without 
a value 

2 means option 
appeared with a 
value 

(if 0, then 
option did not 
appear in 
commands) 

OPTIONS(3,J) File number 0 ICSI Only important if 
OPTIONS(2,J).NE.O 

OPTIONS(4,J) Value .0 ICSI· Only important if 
OPTIONS(2,J) = 2 



240 Programming with RT -11 

Figure 69. 
ICSI Filling in the Options Array 

FIND NEXT COLUMN 
WITH MATCHING 
CHARACTER 

RETURN SUCCESS­
FULLY TO USER 

RETURN ERROR 
TO USER 

SET OPTION (2,J) =2 
SET OPTION (4,J) = 

VALUE 

RETURN SUCCESS­
FULLY TO USER 



Practice 
19-1 

Chapter 19 Using the Command String Interpreter 

as the maximum number of times it can appear in 
the command. 

241 

• Remember that an option with multiple values (for 
example, /X:05:2) is taken as the same option repeated 
with different values (/X:5/X:2). 

The flowchart in figure 69 shows the procedure used 
by ICSI to fill in the options array. Read this flowchart in 
conjunction with table 20 because it shows how the array 
described in the table is filled in when the ICSI request is 
used. 

The programs (PR1901.MAC and PR1901.FOR) which 
follow show the use of the two CSI modes. Both programs 
execute a single-buffered copy routine based on the pro­
grams introduced in chapter 15, "Using Nonsynchronous 
Queued Input/Output." In the MACRO-ll routine 
(PR1901.MAC), the command string is processed using the 
CSI in general mode. The FORTRAN IV program 
(PR1901.FOR) performs the same functions. The CSI spe­
cial mode is used in this program. 

When called in special mode; the CSI returns infor­
mation on options and file specifications to the user job. The 
information on file specifications is returned in RAD50 for­
mat, in a 39-word block. You allocate the full 39-word block, 
even if you expect only one or two files. The CSI fills any 
unused areas with zeros. The contents of such a block are 
shown in figure 70. 

1. Write a program named PR1902 (in either MACRO-ll 
9r FORTRAN IV) that performs the following 
operations: 

a. Accepts a CSI command string from the terminal. 

b. Creates a file for output with the name specified in 
the command string (ignore input file specifica­
tions). 



242 Programming with RT -11 

c. Generates 10 blocks of data containing the positive 
integers 1 to 2560 stored in sequence. Each block 
of data is to be written out to the file after it is gen­
erated, using synchronous write programmed 
requests. 

d. Closes the file. 

2. Run the program and specify an output file name. 
Check the output file contents using the DUMP utility. 

Figure 70. 
File Specifications Returned by CSI Special Mode 
in a 39-word Block 

OUTPUT 
FILES 

INPUT 
FILES 

THREE 
BLOCKS 
5 WORDS 
EACH 

SIX 
BLOCKS 
4WORDS 
EACH 

( 

. 

" 

FILE #0 

FILE #1 

FILE #2 

FILE #3 

FILE #4 

FILE #5 

FILE #6 

FILE #7 

FILE#10 

FORM OF DESCRIPTOR 
BLOCK FOR OUTPUT FILE: 

DEVICE NAME 

I- FILE NAME -

FILE TYPE 

SIZE 

F.ORM OF DESCRIPTOR 
BLOCK FOR INPUT FI LE: . 

DEVICE NAME 

I- FILE NAME -

FILE TYPE 

RAD50 

RAD50 



PR1901.MAC 

Chapter 19 Using the Command String Interpreter 

.TITLE PR1901 SAMPLE 110 PROGRAM 

Sample file copy program using the CSI to 
allow user to specify input and output files . 

. MCALL . EX IT • CSIGEN .PRINT 

.MCALL .READW .WRITW .CLOSE .SRESET 
EMTARG: .BLKW 
LIMITS: .L1MIT 
SPSAVE: .BLKW 
DEFTYP: . WORD 

6 

. 1 
0,0,0,0 
256. 

;EMT argument block 
;Program limits 
;Saved stack pointer 
;Default file exts 
;File 110 Buffer BUFFER: .BLKW 

ERROR: . BYTE ;Error status byte 
"Specify OUTFILE-INFILE II PRMPT: . ASC I Z 

CSIERR: .ASCIZ 
RERRMS: . ASC I Z 
WERRMS: .ASCIZ 
PRTCT: .ASCIZ 

"Error on CSI call" 
"Read error, copy aborted ll 

IIWrite error, copy aborted ll 

IIProtected output file already exists ll 

SETUP: 

10$ : 

.EVEN 

.SBTTL SETUP Setup Files For Copy 

This routine prompts for and opens both 
an input and an output file. The CSI is 
used to collect and process a command. 

Returns with C-Bit SET on error. 

MOV SP,SPSAVE ;Save stack pointer 
.PRINT 'PRMPT ;Prompt for fi les 
MOV L1MITS+2,R1 ;Load high limit 
.CSIGEN R1,'DEFTYP,'O ;Call CSI 
MDV SPSAVE,SP ;Reset stack pointer 
BCC 10$ ;Branch on success 
.PRINT 'CSIERR ;Output error message 
SEC ;Indicate failure 
RETURN ;Return to caller 
.SBTTL CPYRTN Synchronous Copy 

This routine copies the input file opened on 
channel 3 to the output file opened on 
channel O. 

Returns with C-BIT SET on error. 

Note: All registers except RO are preserved. 

CPYRTN: MOV 
CLR 

R1,-CSP) 
R1 

;Save register 
;Reset block number 

CLRB ERROR ;Clear error flag 
10$: .READW 'EMTARG,'3,'BUFFER,'256.,R1 

243 



244 Programming with RT -11 

PR1901.MAC BCC 20$ ;Branch if read OK 
(continued) TSTB @"52 ;End-Of-File CEOF)? 

BEQ EXIT ;Branch if so 
BR RDERR ;Issue error message 

20$: .WRITW "EMTARG,"0,"BUFFER,"256.,R1 
BCS WERR ;Branch on write error 
INC R1 ;Update block number 
BR 10$ ;And read next block 

RDERR: .PRINT "RERRMS ;I!I!lue read error 
BR ERE X IT ; message and exit 

WERR: .PRINT "WERRMS ;Issue write error 
ERE X IT: DECB ERROR ;Set error flag 
EXIT: MOV (SP)+,R1 ;Restore register 

TSTB ERROR ;Set C-Bit? 
BEQ 10$ ;Branch if not 
SEC ;Set C-Bit 

10$ : RETURN ;Return to caller 
.SBTTL CLSCHN Close Files 

CLSCHN: .CLOSE "3 ;Close input file 
.CLOSE "0 ;Close output file 
BCC RESET ;Branch on success 
.PRINT "PRTCT ;Issue protected file 

PRGCHN: ;Purged files 
RESET: .SRESET ;Reset system 

RETURN ;Return to caller 
.SBTTL MAIN PROGRAM 

START: CALL SETUP ;Open files 
BCS START ;Repeat on error 
CALL CPYRTN ;Copy file 
BCS 1$ ;Branch on error 
CALL CLSCHN ;Close the files 
BR 2$ 

1$: CALL PRGCHN ;Purge the channels 
2$: .EXIT ;Exit 

.END START 



PR1901.FOR 

Chapter 19 Using the Command String Interpreter 

PROGRAM PR1901 
C 
C Sample file copy program using the CSI to 
C allow user to specify input and output files. 
C 

C 
10 

20 

LOGICAL*1 SETUP,CPVRTN 
LOGICAL*1 ERROR 

ERROR - SETUPO 
IF (ERROR) GO TO 10 
ERROR - CPVRTN() 
IF (ERROR) GO TO 20 
CALL CLSCHN 
GO TO 30 
CALL PRGCHN 

Open files 
Repeat on error 
Copy file 
Stop on error 

! Close files 

Purge channels 
30 CALL EXIT 

END 
FUNCTION SETUP 

C 
C This routine sets up the files for 110. 

C 
C Function returns .TRUE. on error. 
C 

C 

LOGICAL*1 SETUP 
INTEGER*2 INCHN,OUTCHN 
COMMON ICHNNLSI INCHN,OUTCHN 
LOGICAL*1 FRSTTM 
DATA FRSTTM/.TRUE.I 
INTEGER*2 DEFTVP(4),FILESC39),LENGTH 
DATA DEFTVP/4*01 
IF (.NOT. FRSTTM) GO TO 10 

C Allocate channels only once. 
C 

C 

I NCHN - I GETC 0 
OUTCHN - IGETCC) 
FRSTTM - .FALSE. 

C Output prompt and get command line, 
C 
10 CALL PRINT('Specify OUTFILE-INFILE') 

IF (ICSI~FILES,DEFTVP",O) .NE. 0) GO TO 100 
C 
C Fetch device handlers 
C 

C 

IF (IFETCH(FILESC1» .NE. 0) GO TO 101 
IF (IFETCH(FILES(16» .NE. 0) GO TO 102 

C Open input and create output file. 
C 

245 



246 

PR1901.FOR 
(continued) 

Programming with RT -11 

C 
C 
C 
100 

101 

102 

103 

104 
200 

C 

LENGTH· LOOKUP(INCHN,FILES(16» 
IF (LENGTH .LT. 0) GO TO 103 
IF (IENTER(OUTCHN,FILES(1),LENGTH) .LT. 0) 

GO TO 104 
SETUP • . FALSE. 
RETURN 

ERROR ROUTI NES 

CALL PRINT('Error 
GO TO 200 
CALL PRINT('Error 
GO TO 200 
CALL PRINT('Error 
GO TO 200 
CALL PRINT('Error 
GO TO 200 
CALL PRINT('Error 
SETUP • • TRUE. 
RETURN 
END 
FUNCTION CPYRTN 

! -Success 

on CSI call') 

on FETCH of output handler') 

on FETCH of input handler') 

on LOOKUP of input file') 

on creation of output file') 
! Error 

C Single buffered, synchronous copy routine. 
C 
C Function returns .TRUE. on error. 
C 

C 

LOGICAL*1 CPYRTN 
INTEGER*2 INCHN,OUTCHN 
COMMON /CHNNLS/ INCHN,OUTCHN 
INTEGER*2 BUFFER(256),BLOCK 
BLOCK • 0 ! Reset block number 

C Read/write loop. 
C 
20 IERR • IREADW(256,BUFFER,BLOCK,INCHN) 

IF (IERR .GE. 0) GO TO 30 ! Successful read 
IF (IERR .EG. (-1» GO TO 150 ! End of File 
GO TO 100 ! Issue error message 

30 IF (IWRITW(256,BUFFER,BLOCK,OUTCHN) .LT. 0) 
GO TO 101 

BLOCK • BLOCK+1 Update block number 
GO TO 20 Read next block 

C 
C ERROR ROUTI NES 
C 
100 CALL PRINH'Read error, copy aborted') 

GO TO 140 
101 CALL PRINT('Write error, copy aborted') 
140 CPYRTN • • TRUE. 

RETURN 



PR1901.FOR 
(continued) 

Reference 

Chapter 19 Using the Command String Interpreter 

C 
C 
C 

Successful return. 

150 CPYRTN •. FALSE. 

C 

RETURN 
END 
SUBROUTINE CLSCHN 

C Close files. 
C 

C 

INTEGER*2 INCHN,OUTCHN 
COMMON ICHNNLSI INCHN,OUTCHN 
CALL CLOSEC(INCHN) 
IF (ICLOSE(OUTCHN) .EG. 4) CALL PRINT 

('Protected output file already exists') 
RETURN 
END 
SUBROUTINE PRGCHN 

C Purge channels. 
C 

INTEGER*2 INCHN,OUTCHN 
COMMON ICHNNLSI INCHN,OUTCHN 
CALL PURGE(INCHN) 
CALL PURGE(OUTCHN) 
RETURN 
END 

247 

RT -11 Programmer's Reference Manual. Chapter 2 discusses the 
preparation of a CSI call by using data structures for ICSI 
(FORTRAN IV) or .CSISPC (MACRO-ll) request. .CSIGEN re­
quests are also covered here. 



20 

System Time and Date 
Maintaining the System Time 
Accessing the System Time 

Converting the System Time to 32-bit Integers 
Maintaining the System Date 
Accessing the System Date 

Accessing the system date from MACRO-11 programs 

Accessing the system date from FORTRAN IV programs 
Writing Programs Independent of Line Frequency 
Setting the System Time and Date 

Setting the time and date from MACRO-11 programs 

Setting the time. and date from FORTRAN IV programs 
Mark-time Routines 

Scheduling Mark-time Routines 
Issuing MACRO-11 mark-time requests 
Issuing FORTRAN IV mark-time requests 

Cancelling Mark-time Requests 
Cancelling MACRO-11 mark-time requests 

Cancelling FORTRAN IV mark-time requests 
Periodic Scheduling 

Designing Watchdog Routines 
Timed Waits 

Suspending execution of a MACRO-11 program 
Suspending execution of a FORTRAN IV program 

References 



20 
Writing 
Time-dependent 
Programs 

In many programming applications, you need to sample 
data after regular or random periods of time or perform tasks 
that run regularly or at set times. RT -11 runs on systems 
without a clock, but time-dependent routines require a 
KW11-L or KW11-P system clock. This chapter describes 
how the system stores and maintains the system date and 
time. It then explains how to use programmed requests and 
subroutines to access and use this information. 

Some systems have timer service support, a feature that 
allows you to schedule programs to be run at a given time 
of day or after a given period of time has elapsed. This 
chapter explains how to write such programs. 

The MACRO-11 programmed requests and subrou­
tines discussed in this chapter include: .CMKT, .DATE, 
.GTIM, .MRKT, .SDTTM, and . TWAIT. The FORTRAN IV 
subroutines discussed include: CVTTIM, DATE, GTIM, 
ICMKT, IDATE, ISCHED, ISDTTM, ISLEEP, ITIMER, ITWAIT, 
IUNTIL, JJCVT, JTIME, MRKT, SECNDS, TIMASC, and TIME. 

If your system has a system clock, you will be able to 
write programs that convert the current system date and 
time into numeric or ASCII format. You will also be able 
to write a program that sets the system date and time. If 
your system supports timer service, you will be able to write 
programs that run at a specified time of day, run after a 
specified period of time, or suspend program execution for 
a specified length of time. 

249 



250 Programming with RT-11 

System Time and Date 

You can use the time and date features of RT -11 only if 
your system has a system clock. The system clock may be: 

• A KW11-L line frequency clock which interrupts or 
ticks, once for each cycle of the ac line (that is, 60 
ticks per second for a 60-Hz line, and 50 ticks per 
second for a 50-Hz line) 

• A KW11-P programmable real-time clock which can 
tick at line frequency (60 Hz in the United States and 
Canada; 50 Hz in Europe, Mexico, and Australia) or 
can be programmed to tick at a different rate 

For either device, the system clock interrupt service rou­
tine is entered each time the clock ticks. 

Maintaining the System Time 

RT-11 maintains the time of day in two 16-bit words which 
indicate the time in terms of ticks past midnight. Unless 
you use the TIME command to set the time, the time the 
system displays represents the time that has elapsed since 
bootstrap. . 

The time is automatically reset after midnight under 
the FB monitor, but not under the SJ monitor unless this 
has been selected as a system generation option. 

Each pair of words used to represent the system time 
is considered as a 32-bit interger value. The first word holds 
the high-order part of the number and the second word the 
low-order part. This 32-bit format is referred to as the in­
ternal format. In the following examples of MACRO-11 and 
FORTRAN IV code, the data area TIMER contains the in­
ternal format representation for 60 seconds at 60 Hz (3600 
ticks). 



Chapter 20 Writing Time.~ependent Programs 

EXAMPLE 

MACRO-l1 
TIMER: .WORD 9,3600. ;3600 ticks 

FORTRAN IV 
INTEGER*2.TIMER(2) !2 consecutive words 
DATA TIMER/O,3600j !3600 ticks 

Accessing the System Time 

251 

A number of requests are available to programs to get the 
system time, either in internal format (ticks-high order first, 
low order second) or in hours, minutes, and seconds. 

The MACRO-ll request .GTIM returns the current 
system time in internal format and indicates the number of 
ticks since midnight (or since the last bootstrap). The for­
mat of the request is: 

.GTIM area,addr 

In this request, "area" is the address of a two-word EMT 
argument block. Here "addr" is the address of a two-word 
area in which the monitor stores the system time. The .GTIM 
request is described in chapter 2 of the RT -11 Program­
mer's Reference Manual. 

The FORTRAN IV subroutine GTIM is equivalent to the 
MACRO-ll .GTIM request. The format of the call is: 

CALL GTIM(itime) 

Here "itime" is a two-word area in which the system time 
is stored in internal format. . 

You can also use the SECNDS function to get the time. 
The function displays time as the number of seconds since 
midnight or a given time of day. The format of the function 
is: 



252 Programming with RT -11 

time=SECNDS(sttim) 

In this function, "time" is a REAL*4 variable to store the 
returned value (in seconds); "sttim" is a REAL*4 expres­
sion containing the start time, in seconds since midnight. 
If "sttim" is 0, the value returned is the current time of day 
(in seconds since midnight). 

The following example shows how you can find the 
execution time, in seconds, for a sequence of FORTRAN IV 
statements. 

The TIME subroutine returns the system time in hours, 
minutes, and seconds as an ASCII character string. 

You should note that the 24-hour clock is used; for exam­
ple 1:00 p.m. is returned as 13:00:00. The format of the 
subroutine call is: 

CALL TIME(string) 

Here "string" is a variable or array eight bytes in length. In 
the following example, the FORTRAN IV code requests the 
current system time and prints it out at the terminal. 



Chapter 20 Writing Time-dependent Programs 

EXAMPLE 

REAL*B STIME !To hold system time 
CALL TIME(STIME) !Get time in ASCII 
TYPE 100,STIME 

100 FORMAT (' The time is ',AB) 

253 

Three conversion routines are available to change cur­
rent time or elapsed time from one format to another. 

• CVTTIM. Converts from internal time format to the 
integer number of hours, minutes, seconds, and ticks. 

• JTIME. Converts from the integer number of hours, 
minutes, seconds, and ticks to internal time format. 

• TIMASC. Converts from internal time format to 
ASCII character string in the format hh:mm:ss. 

Converting the System Time to 32·bit Integers 

The standard format for 32-bit integers under RT -11 is as 
follows: 

• . The low-order data is stored in the first word. 

• The high-order data is stored in the second word. 

The RT -11 internal time format is the reverse of this 
arrangement. You can use the JJCVT request to convert be­
tween the two formats (in either direction), as follows: 

CALL JJCVT(ivar) 

Here "ivar" is the INTEGER*4 variable whose high-order 
and low-order words are to be reversed. 

In order for the words to be printed in the correct or­
der, you should call JJCVT to convert internal format sys-



254 Programming with RT -11 

tern times to standard 32-bit integer format before you use 
formatted 110 routines to print them out. In the following 
example the code gets the time of day (in internal format), 
converts it to standard RT -11 32-bit integer format, then 
prints it. 

EXAMPLE 

I.NTEGER.4 TIME !Internal format trme 
CALLGTIM(TIME)!C·onvert to. IHTEG~R*4 
CALL JJCVT(TIME) 
TYPE 10,-TIME 

10 FORMAT (~ The clo6k has ticked '.19, 
1 I times; since mid.night.') 

A number of other routines for using 32-bit integers are 
available to FORTRAN IV programmers. See the PDP-ll 
FORTRAN Language Reference Manual for RT-11 for ad­
ditional information. 

Maintaining the System Date 

The RT -11 system date is stored in a single word. The 
month, day, and year are held in numeric format. To arrive 
at the number that represents the year, the system subtracts 
1972 from the current year. For example: the date May 30th, 
1983 would be stored as the following numbers: 

• Month 5 (must be in the range 1 to 12) 

• Day 30 (must be in the range 1 to the length of the 
month) 

• Year 11 (1983 minus 1972). 

The format of the RT -11 system date word is shown in 
figure 71. 

The internal system date may be set or changed by any 
of the following events: 



Chapter 20 Writing Time-dependent Programs 255 

• The user issues the DATE monitor command to set 
the current date. 

• The date changes at midnight. However, RT -11 does 
not change the date until a job requests time of day 
with a .GTIM request. 

• The month and year values roll over. This occurs 
when month and year roll over has been selected at 
system generation time. 

• The DATE monitor command is issued to print the 
date. 

• A job issues a .SDTTM or ISDTTM request to change 
the system date (described later). 

Figure 71. 
Format of the System Date Word 

15 14 13 10 9 5 4 o 

MONTH (1-12) DAY (1-31) YEAR (MINUS 1972) 

Accessing the System Date 

A number of requests can be used in MACRO-11 and 
FORTRAN IV programs to access the system date and con­
yert it to different formats. 

Accessing the system date from MACRO-11 programs 

To get the current system date in the internal format de­
scribed above, issue the .DATE request, as follows: 

.DATE 

This returns the date in RD. Notice that the system date does 
not change at midnight unless one of the events listed above 
occurs. To make sure that you get the correct date, it is rec-



256 Programming with RT -11 

ommended that you issue a .GTIM request before the .DATE 
request. 

.WORD 0 ;Savedate here 

.GTIM #AREA.#TIME ;~et tfm~ 

.DATE ;a~d ~ate 

MOV RO;DATE ;Save cu~rent date 

Accessing the system date from FORTRAN IV programs 

The DATE subroutine gets the system date in ASCII for­
mat, dd-mmm-yy. For example, 28-APR-84. The format of 
the call is: 

CALL DATE(date) 

In this call, "date" is a variable or array at least nine bytes 
in length. If no system date has been set, "date" contains 
spaces on return from the subroutine. 

You can also get the month number, the day, and the 
last two digits of the year, with the IDATE subroutine. The 
format of the call is: 

CALL IDATE(month,day,year) 



Chapter 20 Writing Time-dependent Programs 

where all the arguments are INTEGER*2 variables. 

EXAMPLE 

IHTEGER*2 MOHTH,DAY;YEAR 
CALL IDATE(MOHTH,DAY,YEAR) 

257 

If today's date is April 28, 1984, then after executing these 
statements, "MONTH" contains 4, "DAY" contains 28, and 
"YEAR" contains 84. If no system date has been set, these 
variables contain 0 on return from the subroutine. 

The DATE and IDA TE subroutines can only be used 
in FORTRAN IV programs. 

Writing Programs Independent of Line 
Frequency 

Programs that use the system time and date normally de­
pend on the frequency of the ac line supplying the hard­
ware. You may want to write programs that perform com­
putations based on time, but independent of the line 
frequency, for example, programs which will run on sys­
tems in Europe as well as in the United States. 

At ruh time, your programs need to find out whether 
they are being run on a 50-Hz or 50-Hz system. This in­
formation is· held in the RMON configuration word (offset 
300 in the fixed offset area). 

Setting the System Time and Date 

You have seen that you can set the system time and date 
using the TIME and DATE monitor commands. You can also 
set them from your program using·the following methods. 



258 Programming with itT -11 

Setting the time and date fromMACRO-11 programs 

To change the system time or date, issue the .SDTTM pro­
grammed request as follows: 

.SDTTM area, addr 

In this request, "area" is the address of a two-word EMT 
argument block and "addr" is the address of a three-word 
block with the following contents: 

Word 1: 

Words 2 and 3: 

The new date (internal format), or any 
negative number if you want to leave 
the date unchanged. 

The new system time (internal format, 
with the high order in word 2, low or­
der in word 3). Place any negative 
number in word 2 if you want to leave 
the time unchanged. 

Setting the time and date from FORTRAN IV programs 

The FORTRAN IV equivalent of the MACRO-ll .SDTTM 
request is ISDTTM. Another way of setting the system time 
and date from a FORTRAN IV program is to pass the TIME 
and DATE monitor commands to KMON when the pro­
gram exits. To do this, use the SETCMD subroutine as de­
scribed in chapter 10, "Controlling Program Execution." If 
you want to set both the date and the time or pass any two 
or more monitor commands, then you should place these 
commands in an indirect file and pass the command to ex­
ecute the file to KMON. 

A second method of setting the system date and time 
from a FORTRAN IV program is by calling a MACRO-ll 
subroutine that issues the .SDTTM programmed request. 
Table 21 lists the requests and subroutines that access the 
system time and date. 

Mark-time Routines 

A mark-time routine is a subroutine that you request to be 
executed at a specific time of day, or after a specific period 



Chapter 20 Writing Time·dependent Programs 259 

Table 21. 
RT-11 Time and Date Requests 

Request Function FORTRAN IV MACRO·11 

.GTIM Get current time in 
ticks since midnight 

GTIM Get current time in 
ticks since midnight 

SECNDS Get current or elapsed 
time in seconds 

TIME Get time in ASCII format 

CVTIIM Convert internal time 
to hrs,mins,secs,ticks 

JTIME Convert hrs,mins,secs, 
ticks to internal time 

TIMASC Convert internal time 
to ASCII hh:mm:ss 

.DATE Get date in internal 
format 

DATE Get date as ASCII string 
in format dd-mmm-yy 

IDATE Get date as integer 
month,daY,year 

.SDTIM Set system date and 
time 

ISDTIM Set system date and 
time 

of time has elapsed. Your program can issue programmed 
requests to schedule a mark-time routine to be run, and if 
you need, to cancel such requests. 

These requests are available only on systems that have 
timer service support. This feature is provided in all sys­
tems under the FB or XM monitors, but it is a system gen­
eration option under the S] monitor. 

Mark-time routines run as completion routines. When 
you issue a mark-time request from a prograrn, RMON builds 
a timer queue element, which is placed in the timer queue. 
This queue is managed by the same routines that serve clock 
interrupts. The elements in the queue are sorted by the time 



260 Programming with RT -11 

at which they expire, with the element that expires first at 
the head of the queue. 

Each time a clock interrupt occurs, the clock service 
routine checks to see if there is a timer queue element whose 
time limits have expired. If there is, it is removed from the 
timer queue and placed in the completion queue for the job 
that issued the mark-time request. 

Timer queue elements are taken from a pool of I/O 
queue elements. Your 'program must allocate at least as many 
queue elements as the number of mark-time and I/O re­
quests that expect to be pending simultaneously. If you need 
to change the number, use the .QSET request (MACRO-ll) 
or the IQSET subroutine (FORTRAN IV) as described in 
chapter 15, "Using Nonsynchronous Queued Input/ 
Output." When there are insufficient queue elements in the 
pool, the mark time request returns an error. 

Scheduling Mark-time Routines 

When you issue a mark time request, an entry is placed in 
the timer queue. You have to specify the address of the 
completion routine and the time that must elapse before the 
completion routine is to be run. Note that this is not the 
time of day at which the routine should be run. The time 
must be given as a number of ticks, in internal format (high­
order word first, low-order word second). 

You also specify a nonzero identification number, or 
id number, for each mark-time request. It must not be in 
the range 177000 (octal) to 177777 (octal), as these num­
bers are reserved for system use. The id number allows you 
to cancel specific, mark time requests, as you will see later . 

. Id numbers need not be unique; you may specify the same 
id number for more than one mark-time request. 

Issuing MACRO-11 mark-time requests 

You use the .MRKT programmed request to issue a mark 
time, as follows: 

.MRKT area,time,crtn,id 



Chapter 20 Writing Time·dependent Programs 261 

area is the address of a four-word EMT argument 
block. 

time is the address of a 2-word area containing the 
time that must elapse (in ticks, internal for­
mat). 

crtn is the entry point (start address) of the com­
pletion routine (written in MACRO-ll). 

id is the identification number. On entry to the 
completion routine, the id number is in RD. 

Since the expiration time is given in terms of ticks un­
til the event, it is independent of the system time set by the 
monitor command TIME or the .SDTTM programmed re­
quest. If you change the time of day, the expiration time of 
mark-time requests does not change. 

In the following example the MACRO-ll code sched­
ules the completion routine COMPL to be run after 3600 
ticks. 

EXAMPLE 

ELAPS: .WORD 0,3600. ;EIBpsed time 
AREA: .BLKW 4 ;EMT argument block 

; ISSUE MARK TIME FOR 3600 TICKS, ID=4 
.MRKT #AREA,#ELAPS,#COMPL,#4 

COMPL: ;Completion routine 

RTS PC 

Issuing FORTRAN IV mark-time requests 

FORTRAN IV programmers have a choice of three mark-time 
requests. Each of the functions returns a zero value to in­
dicate a normal return, or nonzero if there are insufficient 
queue elements in the pool. The three functions are: 



262 Programming with RT -11 

1. The MRKT function is equivalent to the MACRO-11 
.MRKT request. The fo~mat of the call is: 

IERR = MRKT(id,crtn,time) 

The completion routine must be written in MACRO-
11 and specified in an EXTERNAL statement in the 
FORTRAN IV routine that issues the MRKT call. 
"time" is the period of time to pass until the routine 
is run. 

2. The ITIMER function is similar to MRKT, except that 
the completion routine is written in FORTRAN IV, 
and the period of time to pass is specified in hours, 
minutes, seconds, and ticks. The format of the call is: 

IERR = ITIMER(hrs,mins,secs,ticks,area,id,crtn) 

3. The ISCHED function is similar to ITIMER, except 
that the time specified is the time of day at which the 
routine is to be run, not the period of time which is 
to elapse. The time is specified in hours, minutes, 
seconds, and ticks, and the completion routine is 
written in FORTRAN IV. The format of the call is: 

IERR = ISCHED( hrs,mins,secs,ticks,area,id,crtn) 

The arguments for these requests are as follows: 

id is a nonzero identification (id) number. 

crtn is the address of the completion routine. 

area 

time 

hrs, mins, 
secs, ticks 

This routine may be written in MACRO-11 
or FORTRAN IV, depending on the request 
you use. The name of the routine must be 
specified in an EXTERNAL statement in the 
FORTRAN IV routine that issues the mark 
time request. 

is the address of a four-word block in your 
program, similar to the one used in event­
driven 110. 

is a time specified in internal RT -11 time 
format. 

are integer numbers of hours, minutes, 
seconds, and ticks. 



Chapter 20 Writing Time-dependent Programs 263 

Cancelling Mark-time Requests 

You can write your programs so that you can cancel one or 
more scheduled mark-time requests if you detect certain 
conditions. To do so, use a programmed request that re­
moves the timer queue elements from the timer queue. If a 
timer queue element has already expired and been'trans­
ferred to the completion queue, then you cannot cancel it. 

To cancel a specific mark-time request, you must 
specify the same id number you gave in the original mark­
time request. If there is more than one element in the queue 
with the same id number, the one which is to expire first 
is cancelled. 

To cancel all the mark-time requests in the timer queue, 
you should specify an id number of O. Notice that system 
mark-time requests, those with an id number in the range 
177000 (octal) to 177777 (octal), are not affected. If you 
specify a nonzero id number, you can supply another pa­
rameter to the cancel mark-time request in which the mon­
itor returns the amount of time remaining for the cancelled 
request. 

Cancelling MACRO-11 mark·time requests 

To cancel a mark time request, use the .CMKT request, as 
follows: 

.CMKT area,id[,time] 

area is the address of a three-word EMT argument 
block. 

id is the identification number specified in the 
original mark time request, or 0 to cancel all re­
maining mark time requests. 

time (optional) is the address of a two-word area in 
which the monitor returns the time remaining 
for the cancelled request (internal format: high­
order word first, low-order word second). 

This request sets the C bit if there are no elements in 
the queue with the specified id. The following example 



264 Programming with RT -11 

shows the code to cancel all mark-time requests with the 
id number 5. 

1$: .CMKT #AREA,#5,#O ;Cancel mark time 
BeC 1 $ 

Cancelling FORTRAN IV mark-time requests 

Use the ICMKT function to cancel one or more mark-time 
requests, as follows: 

IERR = ICMKT(id,time) 

id is the identification number specified in the 
original mark time request, or 0 to cancel all re­
maining mark time requests. 

time is the name of a two-word area in which the 
monitor returns the time remaining for the can­
celled request (internal format-high-order word 
first, low-order word second). 

The function returns a nonzero value if there is no element 
with the specified id in the timer queue. The following ex­
ample shows the code to cancel all mark-time requests with 
the id number 5. 

EXAMPLE 

INTEGER*4 TLEFT 
10 If (ICMKT( 5, TLEFT) • EQ. 0 )GO 

The value returned is 0, as long as there is an active re­
quest with the specified id (5 in this example). 



Chapter 20 Writing Time·dependent Programs 265 

Periodic Scheduling 

Scheduling a routine to run periodically is a common ap­
plication of the RT -11 mark-time requests. For example, you 
can schedule a routine to sample data regularly. The small­
est time period you can use for sampling data is one clock 
tick. This is 16.67 millesecond for 60-Hz systems or 20 
millesecond for 50-Hz. 

In order to do periodic scheduling, you issue the mark­
time request in the completion routine. This request places 
another entry in the timer queue each time you enter the 
routine. 

Designing Watchdog Routines 

In data acquisition applications it is often important to de­
termine whether or not an I/O event has occurred within a 
critical period of time. For example, if an instrument in a 
nuclear plant is designed to generate an interrupt every two 
minutes, the computer monitoring system may have to take 
action if the expected interrupt fails to occur (device fail­
ure). Routines that check for such events are called watch­
dog routines. 

The sequence of steps involved in the general design 
scheme for a watchdog routine is: 

1. Issue an event-driven I/O request and a mark-time re­
quest for an alarm routine. The ,alarm routine is en­
tered if the I/O request is not executed. 

2. In the completion routine for the event-driven I/O re­
quest, cancel the mark-time request, issue a new 
event-driven I/O request, then issue a new mark-time 
request. 

3. If the event-driven I/O fails to occur, the alarm rou­
tine scheduled by the mark-time request is entered. 
This routine should alert the operator, or take other 
measures such as turning off devices. 



266 

Timed Waits 

Programming with RT -11 

You may want to suspend execution of your program for a 
specified period of time if certain conditions occur. RT -11 
provides programmed requests to do this, but you can use 
them only if your system has timer service support. All of 
these requests need a timer queue element, so you have to 
count them when you determine the number of queue ele­
ments to allocate to your program with .QSET or IQSET. 
These requests suspend execution of your main program 
only. Any completion routines from previous mark-time or 
nonsynchronous queued I/O requests continue to execute. 

Suspending execution of a MACRO-11 program 

To suspend execution of your program for a specified pe­
riod of time, use the .TWAIT request as follows: 

.TWAIT area,time 

Here "area" is the address of a two-word EMT argument 
block and '·'time" is a pointer to two words containing the­
time (in ticks) in internal format (high-order word first, low­
order word second) for which the job is to be suspended. 
The following example shows program execution sus­
pended for 5000 ticks . 

. WORD 0,5000. 

.BLKW 2 
;Time to. wait 
;EMT ar9ume~t :block 

",TWAIT IAREA,#TIME ;Suspend 
;t ick,~. 

Suspending execution of a FORTRAN IV program 

FORTRAN IV programmers can use any of three different 
requests to suspend program execution. Each function re­
turns the value zero to indicate a normal return, or a non­
zero value if no more queue elements are available: 



Chapter 20 Writing Time·dependent Programs 267 

1. The ITW AIT function is equivalent to the MACRO-11 
.TWAIT request. The format of the request is: 

IERR = ITW AIT( time) 

In this request, "time" is the two-word internal for­
mat (high-order word first, low-order word second) 
time period for which the program is to be sus­
pended. For example, the following code suspends 
program execution for 3600 ticks: 

INTEGER*2 TIME 
DATA T I MEl 0,360,0 I 
IERR=ITWAIT(TIME) !Suspend program 

2. The ISLEEP function suspends job execution for a 
period of time specified in hours, minutes, seconds, 
and ticks. The format of the request is: 

IERR = ISLEEP(hrs,mins,secs,ticks) 

Here "hrs,mins,secs,ticks" are the integer numbers of 
hours, minutes, seconds, and ticks for which job exe­
cution is to be suspended. For example, the follow­
ing statement suspends program execution for three 
hours and five minutes: 

IERR=ISLEEP(3,5,0,0) 

3. The IUNTIL function suspends program execution 
until the specified time of day. The format of the re­
quest is: 

IERR = IUNTIL(hrs,mins,secs,ticks) 

Here "hrs,mins,secs,ticks" are integer numbers repre­
senting the time of day at which the job is to start ex­
ecution again. For example, the following statement 
suspends program execution, and starts execution 
again at 15:45:00: 

IERR=IUNTIL(15,45,0,0) 

Table 22 lists the requests and subroutines that issue mark 
time requests and timed waits. 



268 

Practice 
20-1 

Programming with RT -11 

You can do this exercise only if your computer has a sys­
tem clock and timer service support. 

1. Write a program, in MACRO-11 or FORTRAN IV, to 
perform the following: 

a. Get the system time and date. If the date has not 
been set, the program exits, printing a message ask-
ing the operator to set the date and time. If the 
date has been set, the program displays the current 
time and date, and continues to step b. 

b. Allocate enough queue elements for the remainder 
of the program, and set up a completion routine to 
run for 20 seconds. The completion routine should 
set a flag to indicate that it has run. If the request 
to set up the completion routine fails, print an er-
ror message and exit; otherwise go to step c. 

c. Test to see whether the completion routine has 
run. If it has, go to step e. Otherwise display the 
message: 

Type as much as you can in 2 seconds, starting 
now: 

Enable terminal special mode and error returns for 
terminal I/O (bits 12 and 6 of the JSW). Then wait 
for 2 seconds. 

d. When 2 seconds have passed, read all the charac-
ters in the 110 buffer, and print out the message: 

You managed to type: 

followed by the input text. Then go to step e. 

e. Get and display. the current time and date, then 
exit. 

2. Test your program. See how many characters you can 
type in during each cycle. Check that the program 
times out after 20 seconds. 



References 

Chapter 20 Writing Time·dependent Programs 269 

Table 22. 
RT-11 Mark-time and Time-wait Requests 

Request Function FORTRAN IV MACRO-11 

.MRKT Mark time for period 
(internal format) 

MRKT Mark time for period 
(internal format) 

ITIMER Mark time for period 
(hrs,mins,secs,ticks) 

ISCHED Mark time until time 
of day (hrs,mins, .. ) 

.CMKT Cancel one or all 
mark-time requests 

ICMKT Cancel one or all 
mark-time requests 

.TWAIT Wait for timeout period 
(internal format) 

ITWAIT Wait for timed period 
(internal format) 

ISLEEP Wait for timed period 
(hrs,mins,secs,ticks) 

IUNTIL Wait until given time 
of day (hrs,mins, .. ) 

RT -11 Programmer's Reference Manual. Chapter 2 discusses the 
.CMKT, .DATE, .GTIM, .MRKT, .QSET, .SDTTM, and ,.TWAIT 
programmed requests. Chapter 3 describes the CVTTIM, GTIM, 
ICMKT, IQSET, ISCHED, ISDTTM, ISLEEP, ITIMER, ITWAIT, 
IUNTIL, JJCVT, JTIME, MRKT, SECNDS, TIMASC, and TIME 
subroutines in detail. 

RT -llIRSTSIE FORTRAN IV User's Guide. Appendix B covers 
the DATE and IDATE subroutines. 

RT -11 Software Support Manual. Chapter 3 discusses the timer 
queue element. 

PDP-II FORTRAN Language Reference Manual. 





Solutions to Practices 

CHAPTER 10 

10-1. MACRO-11 

.EDIT/CREATE PR1001.MAC 

.EDIT/CREATE PR1002.MAC 

.MACRO PR1001 

.LINK PR1001 

.RUN PR1001 
Enter command: DATE 01-JUN-84 

.REENTER 
?KMON-F-Invalid command 

.EDIT/OUTPUT:PR1003.MAC PR1001.MAC 

.TITLE PR1003 

PR1003 Prompt the user to enter a command, read 
it, and exit allowing reentry. On REENTER 
chain to PR1004 passing the input command 
as data. 

AREA: 

.MCALL .GTLIN .PRINT .PEEK 

.MCALL .CHAIN .EXIT 

.ENABL LC 

.POKE 

.BLKW 3 ;EMT argument block 

271 



272 Programming with RT -11, Volume 2 

The data in between PRG2 and the end of MSGBFR 
will be copied into the communication region 
(locations 500 onwards). 

PRG2: .RADSO IDK I 
.RADSO IPR10041 
.RADSO ISAVI 

MSGBFR: .REPT 
.WORD 
.ENDR 

41 
o 

;File specification 
;for the CHAIN request 

;Message buffer 
(zeroed) 

PROMPT: .ASCI I "Enter command: "<200> 
REWIND: .ASCIZ "REENTER the program" 

44 
20000 

;JOB STATUS WORD 
;REENTER BIT (13) 

.EVEN 
JSW 
REENTR 
BR 
.GTLIN 

ENTRV2 ;REENTRV POINT 
START: IMSGBFR,IPROMPT ;Prompt and place 

.PRINT 

.PEEK 
MOV 
BIS 
.POKE 
MOV 
.EXIT 

IREWIND 
IAREA,IJSW 
RO,R1 
IREENTR,R1 
IAREA,IJSW,R1 
11,RO 

; input into MSGBFR 
;Remind user to REENTER 
;Get the JSW 
;Set REENTER allowed 

bit in the JSW 

;Exit with REENTER 
; enabled 

PART 2 When program exits, REENTER it. Chain 
to the next program (PR1004). 

ENTRV2: MOV ISOO,R1 
MOV IPRG2,R2 

20$: .POKE IAREA,R1,(R2) 
TST (R1)+ 
TST (R2)+ 
BNE 20$ 
.CHAIN 
.EHD START 

.MACRO PR1003 

.LINK PR1003 

.MACRO PR1002 

.LIIiK PR1002 

.RUN PR1003 
Enter command: DATE 01-JUN-83 
REENTER the program 

.REENTER 
HI THERE! THIS IS PROGRAM 2. 

;Load info area addr 
;Load data buffer addr 
;Move command string 
; into CHAIN area 
; and advance pOinters 
;Branch until done 
;CHAIN to next program 



Solutions to Practices 

.EDIT/OUTPUT:PR1004.MAC PR1002.MAC 

. TITLE P~1004 

PR1004 Announce that program 2 has started. See 
if program was chained to. If not print 
an error message and exit. Otherwise. 
pass the command from the chain buffer to 
KMOti. 

.MCALL .PRItiT .PEEK .POKE .EXIT 
LC 

AREA: 
. EtiABL 
.BLKW 3 ;EMT Argument block 

MSGLEti: .WORD 
CMDSTR: .BLKW 
HELLO: .ASCIZ 
tiOTCH: .ASCIZ 

o ;Command string length 
41. ;Command string buffer 
"HI THERE! THIS IS PROGRAM 2." 
.. ** tiOT CHAItiED TO ** .. 

. EVEti 
JSW 
CHAIti 

44 
400 

KMOti 4000 

JOB STATUS WORD 
CHAIti BIT (8) 

START: . PR I tiT "HELLO 
.PEEK "AREA."JSW 

KMOti CMMD BIT (11) 
;Display message 
;Get JSW 

; + 

; -

10$ : 

20$: 

30$: 

MOV RO.R3 
BIT "CHAIti.R3 
BEQ STOP 

;Save JSW 
;Were we chained to? 
;Branch if not (error) 

We were chained to and the command for KMOti is 
in the CHAIti AREA. but in the wrong format. 
Retrieve the command from the chain area and 
restore it inserting the string length as the 
first word. Then set JSW bit 11 and RO to 0 
to give the command line to KMOti on EXIT. 

MOV 
MOV 
.PEEK 
TST 
MOV 
BtiE 
TST 
TSTB 
BEQ 
SUB 
MOV 
MOV 
MOV 
.POKE 
TST 
TST 
BtiE 
BIS 
.POKE 

"510.R1 
"CMDSTR.R2 
"AREA.R1 
(R1)+ 
RO.(R2)+ 
10$ 
-(R2) 
-(R2) 
20$ 
"CMDSTR-2.R2 
R2.MSGLEti 
"510.R1 
"MSGLEti.R2 
"AREA.R1.(R2) 
(R1)+ 
(R2)+ 
30$ 
"KMOti.R3 
"AREA."JSW.R3 

;Load CHAIti AREA addr 
;Buffer to receive data 
;Copy data from CHAIti 

area into receive 
data buffer 

;Repeat until done 
;Step back to string 
;Was previous byte zero? 
;Branch if so 
;Calculate & save string 
; length (with null) 
;Load CHAIti AREA address 
;Load command string addr 
;Copy data into CHAIti 

area from buffer 

;Repeat until done 
;Set KMOti command bit 
; in JSW 

273 



274 Programming with RT -11, Volume 2 

CLR 
.EXIT 

RO 

STOP: .PRINT 'NOTCH 
.EXIT 
.END START 

.MACRO PR1004 

.LINK PR1004 

.RUN PR1004 
HI THERE! THIS IS PROGRAM 2 • 
•• NOT CHAINED TO •• 

. EDIT PR1003.MAC 

.MACRO PR1003 

.LINK PR1003 

.RUN PR1003 
Enter command: DATE 11-JUN-84 
REENTER the program 

.REENTER 
HI THERE! THIS IS PROGRAM 2 . 

• DATE 
11-Jun-83 

.RUN PR1003 
Enter command: DATE 10-JUH-83 
REENTER the program 

.REENTER 
HI THERE! THIS IS PROGRAM 2 . 

. DATE 
10-Jun-83 

;Clear RO for exit 
;Exit 
;Issue not chained msg 
;And exit 



Solutions to Practices 275 

10-2. FORTRAN IV 

.EDIT/CREATE 'PR1001.FOR 

.EDIT/CREATE PR1002.FOR 

.FORTRAN PR1001 

.LINK PR1001.SY:FORLIB 

.RUN PR1001 
Enter command: DATE 01-JUN-84 

STOP -- END OF PROGRAM 

.EDIT PR1001.FOR 

.FORTRAN PR1001 

.LINK PR1001.SY:FORLIB 

.RUN PR1001 
Enter command: DATE 01-JUN-84 

.EDIT/OUTPUT:PR1003.FOR PR1001.FOR 

PROGRAM PR1003 
C 
C Prompt the user to enter a monitor command. 
C Chain to program 2 and pass the command to it. 
C A zero byte is added to the command string read 
C Cnote that the 80th character may be lost). 
C 

BYTE MSGBFR(80) 
REAL*8 FIDBLK ! FILE DESCRIPTOR BLOCK 
DATA FIDBLK /12RDK PR1004SAV/ 
TYPE 100 ! PROMPT FOR A COMMAND 

100 FORMAT C1HS.'Enter command: ') 
ACCEPT 101.ICHARS.MSGBFR ! READ A COMMAND 

101 FORMAT CQ.80A11 
IF CICHARS .EQ. 80) ICHARS-79 
MSGBFRCICHARS+1)-0 ! ADD STRING TERMINATOR 
CALL CHAINCFIDBLK.MSGBFR.40) 
CALL EX!T ! EXIT AND CHAIN 
END 

.FORTRAN PR1003 

.LINK PR1003.SY:FORLIB 

.FORTRAN PR1002 

.LINK PR1002.SY:FORLIB 



276 Programming with RT-11, Volume 2 

.RUN PR1003 
Enter command: DATE 01-JUN-S4 
HI THERE! THIS IS PROGRAM 2 . 

• EDIT/OUTPUT:PR1004.FOR PR1002.FOR 

PROGRAM PR1004 
C 
C Announce that program 2 has started. Request 
C chain information. If program was chained to 
C by another program setup to have KMON execute 
C the passed command and exit to execute command. 
C Otherwise. issue an error message. 
C 

BYTE MSGBFR(SO) 
TYPE 100 ! ANNOUNCE PROGRAM 

100 FORMAT (1H .'HI THERE! THIS IS PROGRAM 2.') 
CALL RCHAIN(ICHAIN.MSGBFR.40) 
IF (ICHAIN .EQ. 0) STOP ' •• NOT CHAINED TO •• , 
CALL SETCMD(MSGBFR) PASS COMMAND TO KMON 
CALL EX IT 
END 

.FORTRAN PR1004 

.LINK PR1004.SY:FORLIB 

.RUN PR1004 
HI THERE! THIS IS PROGRAM 2. 
STOP -- •• NOT CHAINED TO •• 

. EDIT PR1003.FOR 

.FORTRAN PR1003 

.LINK PR1003.SY:FORLIB 

.RUN PR1003 
Enter command: DATE 01-JUN-S4 
HI THERE! THIS IS PROGRAM 2 . 

. DATE 
1-Jun-S4 

.RUN PR1003 
Enter command: DATE 10-JUN-S4 
HI THERE! THIS IS PROGRAM 2 . 

. DATE 
10-Jun-S4 

! EXIT 



Solutions to Practices 

CHAPTER 12 

12-1. (Step 1) MACRO-11 

.EDIT/CREATE PR1202.MAC 

· TITLE PR1202 TERMINAL I/O EXERCISE 

AREA: 

.MCALL .TTYIN .TTYOUT .TTINR .PEEK 
• MCALL . EX IT 
Data Defintions 

.POKE 

.ELKW 3 jEMT 'argument block 
PROMPT: .ASCIZ 
OUT: .ASCI I 
MSGEFR: .ELKE 

"Please type in your name: .. 
"Welcome to RT-11, .. 
80. jlnput buffer 

START: 
10$ : 

GET: 

LINE: 

OFLO: 

10$ : 

PRINT: 
10$ : 

.EVEN 
Program Code 
MOV IPROMPT,R1 
.TTYOUT (R1>+ 
TSTE (R1> 
ENE 
MOV 
MOV 
.TTYIN 
DEC 
EEQ 
CMPE 
ENE 

10$ 
IMSGEFR,R1 
180 OJ R2 
(R1>+ 
R2 
OFLO 
115,RO 
GET 

CLRE -HR1> 
.TTYIN 
ER PRINT 

jPoint to prompt buffer 
jPrint (w/wait) 1 char 
jEnd of message? 
jLoop if not 
jPoint to input buffer 
jLoad maximum char count 
iRead (w/wait) 1 char 
jDecrement char count 
jEranch if buffer full 
jWas character a <CR>? 
jEranch if not 
jYes, store null byte 
jGet <LF> char 
jOtherwise, print 

Euffer full. Flush terminal input buffer 
CLRE -(R1> 
.PEEK 
MOV 
EIS 

IAREA,144 
RO,R1 
1100,R1 

.POKE IAREA,144,R1 
· TTINR 
ECC 10$ 
.PEEK IAREA,144 
MOV 
EIC 
.POKE 

RO,R1 
1100,R1 
IAREA,144,R1 

MDV IDUT,R1 
· TTYOUT (R1>+ 
TSTE (R1> 
ENE 10$ 
.TTYOUT 115 
.TTYOUT 112 
.EXIT 

'.END START 

jAppend null byt~ 
jGet JSW 
iMove to R1 
jlnhibit TT wait 
iUpdate JSW 
jRead Cwo/wait) char 
jEranch if char read 
jGet JSW 
jMove to R1 
jEnable TT wait 
jUpdate JSW 
jLoad buffer address 
jPrint (w/wait) 1 char 
jls next byte null? 
jEranch if not 
jOtherwise print <CR> 
j and <LF> 
iExit 

277 



278 Programming with RT -11, Volume 2 

.MACRO PR1202 

.LI!'IK PR1202 

.RU!'I PR1202 
Please type in your name: USER'S !'lAME 
Welcome to RT-11, User's !'lame 

12-1. (Step 2) MACRO-11 

.EDIT/CREATE PR1203.MAC 

· TITLE PR1203 TERMINAL I/O EXERCISE 
.MCALL .TTYIN :TTYOUT .TTINR .PEEK 
.MCALL .EXIT 

.POKE 

Data Defintlon5 
AREA: .BLKW 3 lEMT argument block 
PROMPT: . ASC I Z 
MSGBFR: . BLKB 

.EVEN 

<1S)<12)"Enter me55age: " 

START: 

10$ : 

GET: 

10$ : 

OFLO: 

BO. llnput buffer 

Program Code 
.PEEK 'AREA,'44 
MOV RO,R3 
BIC 
.POKE 
MOV 

'10000,R3 
'AREA,'44,R3 
'PROMPT,R1 

• TTYOUT (RD+ 
TSTB (R1> 
BNE 10$ 
MOV 'MSGBFR,R1 
MOV 'BO.,R2 
· TTY I N ( R 1 ) + 
DEC R2 
BEQ OFLO 
CMPB 
BNE 
CLRB 
.TTYIN 
CMP 
BNE 
.EXIT 
MOV 
.PEEK 
MOV 
BIS 
.POKE 
BR 

'1S,RO 
GET 
-(RD 

'MSGBFR,R1 
10$ 

'BO.,R2 
'AREA,'44 
RO,R3 
'10000,R3 
'AREA,'44,R3 
OUTSET 

Buffer full. Flu5h 
.PEEK 'AREA,'44 
MOV 
BIS 

RO,R3 
'100,R3 

;Get JSW 
lMove to R3 
lEnter normal mode input 
lUpdate JSW 
lPoint to prompt buffer 
;Print (w/wait) 1 char 
lEnd of me55age? 
lLoop if not 
lPoint to input buffer 
;Load maximum char count 
lRead (w/wait) 1 char 
lDecrement char count 
lBranch if buffer full 
lWa5 char a <CR)? 
lBranch if not 
lYe5, 5tore null byte 
lGet <LF) char 
lEmpty line? 
;Branch if not 
lOtherwi5e, exit 
lNo, 5et line length· BO. 
lGet JSW 
lMove to R3 
lEnter 5pecial input mode 
;Update JSW 
lBranch to print cycle 

terminal input buffer 
;Get JSW 
;Move to R1 
;Inhibit TT wait 



10$ : 

Solutions to Practices 

.POKE IAREA,I44,R3 

.TTIHR 
BCC 
.PEEK 
MOV 
BIC 
.POKE 
MOV 

OUTSET: MOV 

10$ 
IAREA,I44 
RO,R3 
1100,R3 
IAREA,I44,R3 
180.,R2 
IMSGBFR,R1 
IAREA,I44 
RO,R3 
1100,R3 
IAREA,I44,R3 
R4 

LOOP: 

HIL: 

10$ : 

HOIH: 

10$ : 

.PEEK 
MOV 
BIS 
.POKE 
CLR 
.TTIHR 
BCS 
MOV 
.PEEK 
MOV 
BIC 
.POKE 
TST 
BEQ 
CMPB 
BHE 

HIL 
RO,R4 
IAREA,I44 
RO,R3 
1100,R3 
IAREA,I44,R3 
R4 
HOIH 
132,R4 
10$ 

JMP START 
CMPB 115,R4 
BEQ LOOP 
CMPB 112,R4 
BHE HOIH 
JMP START 
. TTYOUT (RD+ 
DEC R2 
BHE 10$ 
.TTYOUT 115 

. TTYOUT 112 . 

MOV 
TSTB 
BEQ 
BR 

180.,R2 
(RD 
OUTSET 
LOOP 

.EHD START 

.EXECUTE PR1203.MAC 

Enter me558ge: THIS IS A TEST. 

;Update JSW 
;Read (wo/wait) 1 char 
;Branch if char read 
;Get JSW 
;Move to R1 
; Enable TT wait 
;Update JSW 
;Set line length· 80. 
;Point to buffer 
;Get JSW 
;Move to R3 
;Inhibit TT wait 
;Update JSW 
;R4 • 0 for HO IHPUT 
;Try to read a char 
;Branch if no input 
;Save input char 
;Get the JSW 
;Move to R3 
;Enable TT wait 
;Update JSW 
;Any input? 
;Branch if not 
;Wa5 it AZ? 
;Branch if not 
;Ye5, re5tart 
;Wa5 it <CR)? 
;Branch if 50, get <LF) 
;Wa5 it <LF)? 
;Branch if no, NO INPUT 
;Ye5, re5tart 
;Print (w/wait) 1 char 
;Decrement counter 
;Branch if not at end 
;Otherwi5e print <CR) 
; and <LF) 
;Re5et counter to 80. 
;End of text buffer? 
;Branch if 50 
;No, continue 

279 

THIS IS A TEST.THIS IS A TEST.THIS IS A TEST.THIS IS A TEST.THIS IS A TEST.THIS 
IS A TEST. THIS IS A TEST. THIS IS A TEST. THIS IS A TEST. THIS IS A TEST. THIS IS A 
TEST.THIS IS A TEST.THIS IS A TEST.THIS IS A TEST.THIS IS A TEST. THIS IS A TEST. 
THIS.IS A TEST.THIS IS A TEST.THIS IS A TEST.THIS IS A TEST.THIS IS A TEST.THIS 
IS A TEST.THIS IS A TEST.THIS IS A TEST.THIS IS A TEST.THIS IS A TEST.THIS IS A 
TEST. THIS IS A TEST.THIS IS A TEST. THIS IS A TEST.THIS IS A TEST.THIS IS A TEST. 
THIS IS A TEST.THIS IS A TEST.THIS IS 
Enter me55age: SECOND LIHE. 
SECOHD LINE.SECOND LINE.SECOND LINE.SECOND LINE.SECOND LINE.SECOND·LINE.SECOND L 
INE.SECOHD LINE.SECOND LINE.SECOND LINE.SECOND LIHE.SECOHD LIHE.SECOND LINE.SECO 
ND LINE.SECOND LINE.SECOND LINE.SECOND LINE.SE 
Enter me55age: 



280 Programming with RT -11, Volume 2 

12-1. (Step 1) FORTRAN IV 

.EDIT/CREATE PR1202.FOR 

PROGRAM PR1202 
BYTE PROMPT(80) 
BYTE MSGBFR(100) 
BYTE MSGOUT(118) 

PROMPT OUTPUT BUFFER 
INPUT MESSAGE BUFFER 
OUTPUT MESSAGE BUFFER 

CALL SCOPY('Please type in your name: ',PROMPT) 
C 
C Output prompt. 
C 

DO 10,1-1,80 
IF (PROMPT(I) .EG. 0) GO TO 20 

5 IF (ITTOUR(PROMPT(I» .NE. 0) GO TO 5 
10 CONTII'IUE 
C 
C Now input user's name. 
C 
20 
25 

DO 40 1-1,100 
IERR=ITTINRO ACCEPT CHAR 
IF (IERR .LT. 0) GO TO 25 ! LOOP UNTIL READ 
MSGBFR(I)·lE~R STORE CHAR IN BUFFER 
IF (MSGBFR(1) .NE. "15) GO TO 40 
MSGBFR(I)"O ! CHANGE '<CR) TO NULL 

30 IF (ITTIHR() .LT. 0) GO TO 30 ! ACCEPT <LF) 
GO TO 100 

40 CONTI NUE 
C 
C Buffer overflowed (more than 100 chars typed) 
C Read & lose remaining chars in input buffer. 
C 
60 CALL IPOKE("44,IPEEK("44)'OR."100) 
65 IF (ITTINR() .GE. 0) GO TO 65 

CALL IPOKE<"44,IPEEK("44) .AND .. NOT. "100) 
MSGBFR(100)-0 

C 
C Concatenate message with user's name. 
C 

100 CALL CONCAT('Welcome to RT-11, ',MSGBFR~MSGOUT) 

DO 130 1-1,118 
IF (MSGOUT(I) .EG. 0) GO TO 150 

110 IERR-ITTOUR(MSGOUT(I»! OUTPUT A CHAR 
IF (IERR .NE. 0) GO TO 110 ! LOOP UHTIL OUTPUT 

130 COHTI NUE 
150 
151 

IF (ITTOUR("15) .NE. 0) GO TO 150 
IF (ITTOUR("12) .NE. 0) GO TO 151 
CALL EXIT ! EXIT 
END 

.FORTRAN PR1202 

.LINK PR1202,SY:FORLIB 

OUTPUT <CR) 
AHD <LF) 



Solutions to Practices 

.RUN PR1202 
Plea5e type 1n your name: <USER'S NAME) 
Welcome to RT-11, <User'5 Name) 

.RUN PR1202 
Plea5e type 1n your name: JOHN Q. PUBLIC 
Welcome to RT-11, JOHN Q. PUBLIC 

12-1. (Step 2) FORTRAN IV 

.EDIT/CREATE PR1203.FOR 

PROGRAM PR1203 
C 
C Ask the user to type a message terminated by <CR). 
C Output the message until the user types Control/Z 
C or <CR). Then ask for another message. stop if 
C a blank line is entered. Display SO characters 
C per line wrappin9 the rest of the message onto the 
C followin9 line as needed. 
C 

C 
C 
C 

BYTE PROMPHSO) OUTPUT BUFFER 
BYTE MSGBFRCSO) ltiPUT BUFFER 
BYTE CRLF(3) 
DATA CRLF /"15,"12,0/ 

Start of pro9ram, output the prompt. 

CALL IPOKEC"44,IPEEKC"44) .AtiD •• tiOT. "10000) 
CALL COtiCATCCRLF,'Enter message: ',MSGBFR) 
CALL SCOPYCMSGBFR,PROMPT) ! BUILD PROMPT MESSAGE 
DO 10 1-1,80 
IF CPROMPTCI) .EG. 0) GO TO 20 

5 IF CITTOURCPROMPTCI» .tiE. 0) GO TO 5 
10 COtiTItiUE 
C 

C tiow input a message terminated by a <CR). 
C 

20 
25 

DO 40 1-1,80 
IERR-ITTltiRO ACCEPT A CHAR 
IF CIERR .LT. 0) GO TO 25 ! LOOP UtiTIL READ 
MSGBFRCI)-IERR STORE CHAR lti BUFFER 
IF CMSGBFRCIJ .tiE. "15) GO TO 40! TEST FOR <CR) 
MSGBFRCI)-O CHAtiGE <CR) TO tiULL 

30 IERR-ITTltiRC) ACCEPT AtiD LOSE <LF) 
IF CIERR .LT. 0) GO TO 30 
GO TO 100 

40 COtiTItiUE 
C 

C Buffer overflow Cmore than SO characters). 
C Read & lose remainin9 chars in input buffer. 
C 

281 



282 

60 
65 

C 
C 
C 
100 

110 
115 

C 

Programming with RT -11, Volume 2 

CALL IPOKE("44,IPEEK("44) .OR. "100) 
IF (ITTINR() .GE. 0) GO TO 65 
CALL IPOKE("44, IPEEK("44) . AND .. NOT. "100) 
MSGBFR(100)-0 ! MARK END OF BUFFER 

Now re8dy to output me558ge from MSGBFR. 

IF (MSGBFR(1) .EG. 0) GO TO 150 ! EXIT IF BLANK 
CALL IPOKE("44,IPEEK("44) .OR. "10000) 
ICHAR-1 POINT TO MESSAGE START 
DO 130 1-1,80 
CALL IPOKE("44,IPEEK("44) .OR. "100) 
I ERR-ITTI NRO 
CALL IPOKE<"44,IPEEK("44) .AND .. NOT. "100) 
IF (IERR .LT. 0) GO TO 120 

C De81 with ch8r8cter JU5t re8d. 
C 

IF (IERR .EG. "32) GO TO 1 ! CNTRL/Z, RESTART 
IF (IERR .EG. "15) GO TO 115 ! <CR>, GET <LF> 
IF (IERR .EG. "12) GO TO <LF>, RESTART 

120 IERR-ITTOUR(MSGBFR(ICHAR» OUTPUT NEXT CHAR 
IF (IERR .NE. 0) GO TO 
ICHAR-ICHAR+1 
IF (MSGBFR(ICHAR) .EG. 

130 
131 
132 

C 

CONTINUE 
IF ( ITTOUR("15) 
IF (ITTOUR("12) 
GO TO 110 

C Exit. 
C 

150 CALL EXIT 
END 

. NE. 0) 

.NE. 0) 

120 

0) ICHAR-1 

GO TO 131 
GO TO 132 

.EXECUTE PR1203.FOR/LINKLIBRARY:SY:FORLIB 

Enter me558ge: THIS IS A TEST. 
THIS IS A TEST.THIS IS A TEST.THIS IS A TEST.THIS IS A TEST.THIS IS A TEST.THIS 
IS A TEST.THIS IS A TEST.THIS IS A TEST.THIS IS A TEST.THIS IS A TEST.THIS IS A 
TEST.THIS IS A TEST.THIS IS A TEST.THIS IS A TEST.THIS IS A TEST.THIS IS A TEST. 
THIS IS A ~EST.THIS IS A TEST. THIS IS A TEST.THIS IS A TEST.THIS IS A TEST.THIS 
IS A TEST.THIS IS A TEST.THIS IS A TEST.THIS IS A TEST.THIS IS A TEST.THIS IS A 
TEST.THIS IS A TEST.THIS IS A TEST.THIS IS A TEST.THI 
Enter me558ge: SECOND LINE. 
SECOND LINE.SECOND LINE.SECOND LINE.SECOND LINE.SECOND LINE.SECOND LINE.SECOND L 
INE.SECOND LINE.SECOND LINE.SECOND LINE.SECOND LINE.SECOND LINE.SECOND LIHE.SECO 
ND LINE.SECOND LINE.SECOND LINE.SECOND LINE.SECOND LINE.SECOND LINE.SECOND LINE. 
SECOND LINE.SECOND LINE.SECOND LINE.SECOND LINE.SECOND LINE.SECOND LINE.SECOND L 
INE.SECOND LINE.SECOND LINE.SECOND LINE.SECOND LINE.SECOND LINE.SECOND LINE.SECO 
ND LINE.SECOND LINE.SECOND 
Enter me558ge: 



Solutions to Practices 283 

12-2. MACRO-11 

.EDIT/CREATE PR1204.MAC 

. TITLE PR1204 -- TERMINAL I/O EXERCISE 

.MCALL .GTLIN .PRINT .TTINR .PEEK .POKE 

.MCALL .RCTRLO .EXIT 
Data Definitions 

AREA: .BLKW 3 jEMT argument block 
PROMPT: .ASCII "Enter message: "<200> 
MSGBFR: . BLKB 80 . jInput buffer 

.EVEN 
Program Code 

START: .PEEK IAREA,I44 jGet JSW 
MOV RO,R1 jSave value 
BIC 110000,R1 jEnter normal input mode 
.POKE IAREA,I44,R1 jUpdate JSW 
.RCTRLC jReset Control/O 
.GTLIN IMSGBFR,IPROMPT jPrompt & get input line 
TSTB MSGBFR jNul1 input line? 
BEQ STOP jBranch if so 
.PEEK IAREA,I44 jGet JSW 
MOV RO,R1 jSave value 
BIS 110000,R1 jEnter special input mode 
.POKE IAREA,I44,R1 jUpdate JSW 

LOOP: .PEEK IAREA,I44 jGet JSW 
MOV RO,R1 jSave value 
BIS 1100,R1 jInhibit TT wait 
.POKE IAREA,I44,R1 jUpdate JSW 
CLR R4 jAssume no char read 
. TTINR jRead a char 
BCS 10$ jBranch if none available 
MOV RO,R4 jSave char 

10$ : .PEEK IAREA,I44 jGet JSW 
MOV RO,R1 jSave value 
BIC 1100,R1 jEnable TT wait 
.POKE IAREA,I44,R1 jUpdate JSW 
TST R4 jAny input? 
BEQ NOIN jBranch if not 
CMPB 132,R4 jControl/Z? 
BEQ START jBranch if so, restart 
CMPB 11S,R4 j<CR>? 
BEQ LOOP jBranch if so, read <LF> 
CMPB 112,R4 j<LF>? 
BEQ START jBranch if so, restart 

NOIN: .PRINT IMSGBFR jPrint message 
BR LOOP jContinue 

STOP: .EXIT jExit 
.END START 



284 Programming with RT-11, Volume 2 

.EXECUTE PR1204.MAC 
Enter message: THIS IS A TEST. 
TH I SIS A TEST. 
THIS IS A TEST. 
THIS IS A TEST. 
THIS IS A TEST. 
THIS IS A TEST. 
THIS IS A TEST. 
Enter message: SECOND LINE. 
SECOND LI NE. 
SECOND LINE. 
SECOND LINE. 
SECOND LINE. 
SECOND LINE. 
SECOND LINE. 
SECOND LINE. 
SECOND LINE. 
Enter message: 

12-2. FORTRAN IV 

.EDIT/CREATE PR1204.FOR 

PROGRAM PR1204 
C 
C Ask the user to type a message terminated by <CR). 
C Output the message until the user types Control/Z 
C or <CR>. Then ask for another message. Stop if 
C a blank line is entered. Display each message on 
C a new line. 
C 

BYTE MSGBFR(SO) ! INPUT MESSAGE BUFFER 
C 
C Start of program, output the prompt. 
C 

C 

CALL IPOKE("44,IPEEK("44) ;AND .. NOT . "10000) 
CALL RCTRLO 
CALL GTLIN(MSGBFR,'Entermessage: ') 
IF (MSGBFR(1) .EG. 0) GO TO 150 ! EXIT IF BLANK 
CALL IPOKE("44,IPEEK("44).OR. "10000) 

C Output message until <CR> or Control/Z typed. 
C 
115 CALL IPOKE("44,IPEEK("44) .OR. "100) 

I ERR= ITT I NR() 

C 

CALL IPOKEC"44,IPEEK("44) .AND .• NOT. "100) 
IF (IERR .LT. 0) GO TO 120 



Solutions to Practices 

C Deal with character just read. 
C 

IF CIERR .EG. 1132) GO TO 1 ! CI"ITRL/Z, RESTART 
IF CIERR .EG. 1115) GO TO 115 ! <CR>, GET <LF> 
IF CIERR .EG. 1112) GO TO 1 ! <LF>, 

120 CALL PRINTCMSGBFR) 
GO TO 115 

C 
C Exit. 
C 
150 CALL EXIT 

END 

.EXECUTE PR1204.FOR/LINKLIBRARY:SY:FORLIB 
Enter message: 
THIS IS A TEST. 
THIS IS A TEST. 
THIS IS A TEST. 
THIS IS A TEST. 
THIS IS A TEST. 
Enter message: 
SECOND LI NE. 
SECOND LINE. 
SECOND LINE. 
SECOND LINE. 
SECOND LINE. 
SECOND LINE. 
SECOND LINE. 
Enter message: 

RESTART 

285 



286 Programming with RT -11, Volume 2 

CHAPTER 13 

13-1. MACRO-11 

.EDIT/CREATE PR1301.MAC 

.TITLE PR1301 -- MULTITERMINAL I/O EXERCISE 

.MCALL .GTLIN .MTSTAT .MTATCH .MTGET .MTSET 

.MCALL .MTRCTO .MTPRNT .MTIN 

.MCALL .EXIT 
Data Definitions 

.MTDTCH .PRINT 

.ENABL LC ;Enable lower case 
WHICH: .ASCI I IIWhich terminal do you want to use ll 

ERR1: 
ERR2: 
WHO: 
REPLY: 

.ASCII II (1-7) ? 11(200) 

.ASCIZ 

.ASCIZ 

.ASCIZ 

.ASCII 

II •• Attach Failure •• 11 
II •• No Mu'ltiterminal Support •• 11 
IIWho are you? II ;Prompt text 
IIWelcome to Multiterminal RT-11, II 

MSGBFR: .BLKB 
.EVEN 

81. ;Input buffer 

AREA: 
STAT: 
TSB: 

START: 

.BLKW 

.BLKW 
4 
8. 

.BLKW 4 
M.NLUN 
Program Code 
MOV "STAT,R3 
.MTSTAT "AREA,R3 

4 

TST M.NLUN(R3) 
BEG NOMTY 

;EMT argument block 
;MT status block 
;Terminal status block 
;Offset to , of terms 

;Status buffer 
;Get MT status 
;How many terminals? 
;Branch if none (no MT) 

10$: .GTLIN "MSGBFR,"WHICH ;Ask for terminal lun 

ATT: 

GET: 

TSTB 
BNE 
MOVB 
CMPB 
BGT 
CMPB 
BLT 
BICB 
BEG 

MSGBFR+1 
10$ 
MSGBFR,R1 
"'O,R1 
10$ 
"'7,R1 
10$ 
"'O,R1 
STOP 

.MTATCH "AREA,"O,R1 
BCC ATT 
.PRINT 
BR 
.MTGET 
BIS 

"ERR1 
10$ 
"AREA,"TSB,R1 
"40000,TSB 

.MTSET "AREA,"TSB,R1 

.MTRCTO "AREA,R1 

.MTPRNT "AREA,"WHO,R1 
MOV "MSGBFR,R2 
.MTIN "AREA,R2,R1 
CMPB 
BNE 
CLRB 

"15,(R2)+ 
GET 
-(R2) 

;More than one char? 
;Branch if 50, repeat 
;Move char into R1 
;Check for numeric char 
;Branch if out of range 
;Check for numeric char 
;Branch if out of range 
jASCII --) binary 
;Exit if lun • 0 
;Attach terminal 
;Branch if success 
;Otherwise, error 
;And try another 
;Get terminal status 
;Enable lower case I/O 
;Set terminal status 
;Reset CTRL/O to update 
;Display prompt 
;Point to input buffer 
;Get a char 
;Is it <CR)? 
;Branch if not 
;Yes, store null byte 



Solutions to Practices 287 

.MTPRtH IAREA,IREPLY,R1 jPrint response 

.MTDTCH IAREA,R1 jDetach terminal 
STOP: .EXIT jExit 
NOMTY: .PRINT IERR2 jNo MT support error 

.EXIT jExit 

.END START 

.MACRO PR1301 

.LINK PR1301 

.SHOW TERMINALS 

Unit Owner Type WIDTH TAB CRLF FORM SCOPE SPEED 

0 Local DL 80 No Yes No Yes N/A 
1 Local DL 80 No Yes No No HIA 
2 S-Console DL 80 Yes Yes 1'10 Yes HIA 

.RUH PR1301 
Which terminal do you want to use (1-7) ? 2 
Who are you? 
The user. 
Welcome to Multiterminal RT -11 , The user . 

. RUH PR1301 
Which terminal do you want to use ( 1-7) ? 3 
iIiI Attach Failure iIiI 

Which terminal do you want to use (1-7) ? 2 
Who are you? 
Ann 
Welcome to Multiterminal RT-11, Ann 

.RUH PR1301 
Which terminal do you want to use (1-7) ? 7 
iIiI Attach Failure iIiI 

Which terminal do you want to use ( 1-7) ? 0 



288 Programming with RT -11, Volume 2 

13-1. FORTRAN IV 

.EDIT/CREATE PR1301.FOR 

C 

PROGRAM PR1301 
BYTE PROMPT(120) 
BYTE MSGBFR(80) 
BYTE ASCIZ 
INTEGER*2 IMSB(8) 
INTEGER*2 ITSB(4) 
DATA ASCIZI'O'/ 

OUTPUT BUFFER 
INPUT BUFFER 

MT STATUS BLOCK 
TERMINAL STATUS BLOCK 
ASCII ZERO 

CALL IPOKEC"44,IPEEKC"44) .OR. "40000) ! ENABLE LC 
IERR-MTSTATCIMSB) GET MT STATUS 
IF CIMSB(3) .EG. 0) GO TO 110 1 EXIT IF NO MT SUPPORT 

C Ask for which terminal the userswishs to attach. 
C 

CALL CONCATC'Which terminal do you want to use C1-7) ? ' 
"200,PROMPT> 

10 CALL GTLINCMSGBFR,PROMPT) 
C 

C Validate input user must have typed one character 
C in the range 0 to 7. 
C 

C 

IF CMSGBFR(1) .EG. 0) GO TO 10 ! REPEAT IF BLANK 
IF CMSGBFR(2) .NE. 0) GO TO 10 ! REPEAT IF TOO LONG 
IF CMSGBFR(1) .LT. '0') GO TO 10 ! REPEAT IF INVALID 
IF CMSGBFR(1) .GT. '7') GO TO 10 ! REPEAT IF INVALID 
ILUN-MSGBFR(1)-ASCIZ ! CONVERT TO BINARY LUN 
IF CILUN .EG. 0) GO TO 100 ! EXIT IF LUN 0 SELECTED 

C Attach the terminal. 
C 

C 

IERR-MTATCHCILUN"IJOB) 
IF CIERR .EG. 0) GO TO 30 ! IF ATTACH SUCCEEDED 
CALL PRINTC'** Attach Failure **') 
GO TO 10 TRY AGAIN 

C Get terminal status block for attached terminal 
C and enable lower case input for terminal. 
C 

30 IERR-MTGETCILUN,ITSB) ! GET TERMINAL STATUS 
ITSB(1)-ITSBC1) .OR. "40000 ! ENABLE LOWER CASE 
IERR-MTSETCILUN,ITSB) WRITE NEW STATUS 
IERR-MTRCTOCILUN) ! FORCE UPDATE OF STATUS 

C 

C Ask user to type his name. 
C 

CALL MTPRNTCILUN,'Who are you? ') 
C 

C And read reply terminated by <CR). 
C 

DO 60 1-1,80 
IERR-MTINCILUN,MSGBFRCI» ! GET A CHARACTER 
IF CMSGBFRCI) .EG. "15) GO TO 70 ! DONE IF <CR) 

60 CONTINUE 
C 

C If buffer overflowed, clear last byte. 
C 



Solutions to Practices 

70 
C 

MSGBFR(I)-O REPLACE <CR> WITH NULL 

C Output the me~~ege. 
C 

CALL CONCAT('Welcome to Multiterminel RT-11, ' 
MSGBFR,PROMPT) 

CALL MTPRNT(ILUN,PROMPT) 
C 

C Now detech terminel end exit. 
C 

IERR-MTDTCH(ILUN) 
100 CALL EXIT 
C 

C Handle error if no MT ~upport eveileble. 
C 

110 CALL PRINT('·· No Multiterminel Support •• ') 
CALL EXIT 
END 

.SHOW TERMINALS 

Unit Owner Type WIDTH TAB CRLF FORM SCOPE SPEED 

Local DL 
Local DL 

2 S-Con~ole DL 

80 No Ve~ No 
80 No Ve~ No 
80 Ve~ Ve~ No 

.EXECUTE/LINKLIBRARV:SV:FORLIB PR1301.FOR 
Which terminel do you went to u~e (1-7) 7 
•• Attach Failure 
Which terminal do you want to u~e (1-7) 

.RUN PR1301 
Which terminal do you want to u~e (1-7) 2 
Who are you? 
Ann 
Welcome to ~ultiterminal RT-11, Ann 

NIA 
NIA 
N/A 

289 



290 Programming with RT-11, Volume 2 

CHAPTER 14 

14-1. MACRO-11 

.EDIT/CREATE PR1401.MAC 

.MACRO PR1401 

.LINK PR1401 

.COPY TT: TRAN1.XYZ 
Files copied: 

ATEST DATA FILE WHICH WILL BE COPIED TO TRAN2.XYZ 

*** EOF *** 
AZTT: 

. TYPE TR Al'1 2 • XYZ 

to DK:TRAN1.XYZ 

?PIP-F-File not found DK:TRAN2.XYZ 

.RUN PR1401 
Program copies TRAN1.XYZ to TRAN2.XYZ 

.TYPE TRAN2.XYZ 
TEST DATA FILE WHICH WILL BE COPIED TO TRAN2.XYZ 

*** EOF *** 

.DEL TRAN1.XYZ 

.RUN PR1401 
Program copies TRAN1.XYZ to TRAN2.XYZ 
Error on LOOKUP of input file 

.COPY PR1401.MAC PR1801.MAC 

.EDIT PR1401.MAC 
ANNCE: .ASCIZ "Program copies PR1401.MAC to 123456.TMP" 

INFILE: .RAD50 IDK PR1401MACI ;Copy from DK:PR1401.MAC 
OUTFIL: .RADSO IDK 123456TMPI ; to DK:123456.~MP 

.EXECUTE PR1401.MAC 
Program copies PR1401.MAC to 123456.TMP 

.DIFF PR1401.MAC 123456.TMP 
?SRCCOM-I-No differences found 

.EDIT PR1401.MAC 
BUFFER: . BLKW 512. ;File 1/0 Buffer 

1$: .READW IEMTARG.13. I BUFFER.1512 •• R1 

2$: .WRITW IEMTARG.IO.'BUFFER.1512 .• R1 



Solutions to Practices 

BCS 
ADD 
BR 

WERR 
'2.R1 
1$ 

.DELETE 123456.TMP 

.EXECUTE PR1401.MAC 

;Branch on write failure 
;Update block number 
;And read next block 

Program copies PR1401.MAC to 123456.TMP 

.DIFF PR1401.MAC 123456.TMP 
?SRCCOM-I-No differences found 

14-1. FORTRAN IV 

.EDIT/CREATE PR1402.FOR 

.COPY PR1402.FOR TRAN1.XYZ 

.DEL TRAN2.XYZ 

.EXECUTE/LINKLIBRARY:SY:FORLIB PR1402.FOR 
Program copies TRAN1.XYZ to TRAN2.XYZ 

.DIFF TRAN1.XYZ TRAN2.XYZ 
?SRCCOM-I-No differences found 

.DELETE TRAN1.XYZ 

.RUN PR1402 
Program copies TRAN1.XYZ to TRAN2.XYZ 
Error on LOOKUP of input file 

.COPY PR1402.FOR PR1802.FOR 

.EDIT PR1402.FOR 
DATA INFILE/2RDK.3RPR1.3R402.3RFOR/ 
DATA OUTFIL/2RDK.3R123.3R456.3RTMP/ 

291 

CALL PRINT('Program copie~ PR1402.FOR to 123456.TMP') 

.EXECUTE/LINKLIBRARY:SY:FORLIB PR1402.FOR 
Program copies PR1402.FOR to 123456.TMP 

.DIFF PR1402.FOR 123456.TMP 
?SRCCOM-I-No differences found 

.EDIT PR1402.FOR 
INTEGER*2 BUFFER(512).BLOCK 

20 IERR • IREADW(512.BUFFER.BLOCK.INCHN) 



292 Programming with RT-ii, Volume 2 

30 IF (IWRITW(512.BUFFER.BLOCK.OUTCHN) .LT. 0) 
GO TO 101 

BLOCK • BLOCK+2 
GO TO 20 

.DELETE 123456.TMP 

Update to block 
Read next block 

.EXECUTE/LINKLIBRARY:SY:FORLIB PR1402.FOR 
Program copies PR1402.FOR to 123456.TMP 

.DIFF PR1402.FOR 123456.TMP 
?SRCCOM-I-No differences found 

CHAPTER 15 

15-1. MACRO-11 

.EDIT/CREATE PR1505.MAC 

.TITLE PR1505 

This program uses asynchronous double buffered 
computation. The program reads data from an 
input file. performs computation on that data. 
and writes the transformed data to the output 
file. 

• MCALL . EX IT 
.MCALL .READ 
.MCALL .QSET 

.FETCH .LOOKUP .ENTER .PRINT 

.WRITE .CLOSE .SRESET .WAIT 

EMTARG: .BLKW 6 ;EMT argument block 
;Copy from DK:TRAN1.XYZ INFILE: .RAD50 /DK TRAN1 XYZ/ 

OUTFIL: .RAD50 /DK TRAN2 XYZ/ 
LIMITS: . LIMIT 

to DK:TRAN2.XYZ 
;High/low program limits 
;File I/O Buffer BUFF1: .BLKW 256. 

BUFF2: .BLKW 256. ;File I/O Buffer 2 
QELMT: • BLKW 
BIGEST: .BLKW 
ERROR: .BYTE 
EOF: • BYTE 
ANNCE: .ASCIZ 
FCH1MS: .ASCIZ 
FCH2MS: .ASCIZ 
LKPMES: .ASCIZ 
ENTMES: .ASCIZ 
RERRMS: .ASCIZ 
WERRMS: .ASCIZ 
PRTCT: .ASCIZ 

10. ;Queue element 
;Stores largest value 
;Error status byte 
;End of File flag 

IIProgram copies TRAN1.XYZ to TRAN2.XYZII 
IIError on FETCH of output handler ll 

IIError on FETCH of input handler ll 

IIError on LOOKUP of input file ll 

IIError on creation of output file ll 

IIRead error. copy aborted ll 

IIWrite error. copy aborted ll 

IIProtected output file already exists ll 



Solutions to Practices 

.EVEN 

.SBTTL SETUP -- Setup Files For Copy 

This routine sets up files for lID. 
The file specifications are fixed. 

Returns with C-Bit SET on error. 

SETUP: MOV R1,-CSP) ;Save register 
;Announce program 

LKPERR: 

FCH2ER: 

FCH1ER: 
ERDONE: 
DONE: 

CMPRTN: 

BEG: 

.PRINT IANNCE 
Fetch device handlers 
MOV LIMITS+2,R1 
.FETCH R1,IOUTFIL 
BCS FCH1ER 
MOV 
.FETCH 
BCS 

RO,R1 
RO,IINFILE 
FCH2ER 

Open files 

;Load high fimit 
;Get output handler 
;Branch on FETCH error 
;Load high limit 
;Get input handler 
;Branch on FETCH error 

.LOOKUP IEMTARG,13,IINFILE 
BCS LKPERR ;Branch if open failed 
MOV RO,R1 ;Load input file length 
.ENTER IEMTARG,IO,IOUTFIL 
BCC DONE ;Branch if successful 
Error Routines 
.PRINT IENTMES ;Issue create failure msg 
BR ERDONE ;And finish up 
.PRINT ILKPMES ;Issue open failure msg 
BR ERDONE ;And finish up 
.PRINT IFCH2MS ;Issue FETCH error 
BR ERDONE ;And finish up 
.PRINT IFCH1MS ;Issue FETCH error 
SEC ;Indicate error occurred 
MOV (SP)+,R1 ;Restore R1 Csave C-bit) 
RETURN ;Return to caller 
.SBTTL CMPRTN Computation Routine 

Routine assumes the input file is opened on 
channel 3 and the output on channel O. 
Returns with C-BIT SET on error. 

Note: All registers except RO are preserved. 

MOV R1,-(SP) ;Save registers 
MOV R2,-(SP) 
MOV R3,-CSP) 
MOV R4,-CSP) 
MOV R5,-CSP) 
.QSET IQELMT,11 ;Allocate a queue element 
.READ IEMTARG,13,IBUFF1,1256.,IO 
BCC INIT ;Branch if read ok 
TSTB @'52 ;End-of-File? 
BEQ EXIT ;Branch if so, all done 
BR RDERR ;Issue read error 

293 



294 Programming with RT-11, Volume 2 

HIIT: MOV 
CLR 
MOV 
MOV 
CLRB 
CLRB 

SLOOP: • WA IT 
BCS 
.READ 
BCC 
TSTB 
BNE 
INCB 

'1.R1 ;Load read block number 
R5 ;Load write block number 
'~UFF2.R2 ;R2 --) input buffer 
'BUFF1.R3 ;R3 --) output buffer 
ERROR ;Clear error flag 
EOF ;Clear EOF flag 
'3 ;Wait for input to finish 
RDERR ;Branch on error 
'EMTARG.'3.R2.'256 .• R1 
COMP ;Branch if read succeeded 
@'52 ;End-Of-File (EOF)? 
RDERR ;Branch if fatal error 
EOF ;Set EOF encountered flag 

Perform computation on previously read block. 
This routine finds the largest value within the 
block and subtracts each word in the block from 
that value. 

COMP: 

10$ : 

20$: 

30$: 

MOV 
MOV 
MOV 
CMP 
BLT 
MOV 
DEC 
BNE 
MOV 
MOV 
MOV 
SUB 
MOV 
DEC 
BNE 

'255 .• RO 
R3.R4 
(R4)+.BIGEST 
(R4)+.BIGEST 
20$ 
-2(R4).BIGEST 
RO 
10$ 
'256 .• RO 
R3.R4 
BIGEST.-(SP) 
(R4).(SP)" 
(SP)+.(R4)+ 
RO 
30$ 

;Initialize counter 
;Load buffer starting address 
;Assume 1st word is biggest 
;Next word bigger? 
;Branch if not 
;Otherwise. save new biggest 
;Done? 
;Branch if not 
;Initialize counter 
;Load buffer starting address 
;Put biggest value onto stack 
;Stack - biggest - current 
;Save result 
;Done? 
;Branch if not 

Write out buffer on which computation has just 
been performed. 

.WRITE 
BCS 
TSTB 
BGT 
MOV 
MOV 
MOV 
INC 
INC 
BR 

'EMTARG.'O.R3.'2S6 .• RS 
WERR ;Branch on write error 
EOF ;EOF on last read? 
EXIT ;Branch if so 
R2.R4 ;Otherwise. switch input 
R3.R2 and output buffer 
R4.R3 
R1 
R5 
SLOOP 

;Update input block # 

;Update output block , 
;And continue 

Error messages and cleanup. 

RDERR: . PR INT 'RERRMS ;Issue read error msg 
;And finish up BR EREX IT 

WERR: .PRINT 'WERRMS ;Issue write error msg 



Solutions to Practices 

EREXIT: DEC8 ;Set error flag 
EXIT: MOV 

ERROR 
(SP)+,R5 
(SP)+,R4 
(SP)+,R3 
(SP)+,R2 
(SP)+,R1 
10 

;Restore saved registers 

1$: 

2$: 

MOV 
MOV 
MOV 
MOV 
.WAIT 
8CC· 
.PRINT 
8R 
TST8 
8EG 
SEC 

3$: RETURN 
.S8TTL 

CLSCHN: . CLOSE 
.CLOSE 
8CC 
.PRINT 

PRGCHN: 
RESET: . SRESET 

RETURN 

1$ 

IWERRMS 
2$ 
ERROR 
3$ 

CLSCHN 
13 
10 
RESET 
IPRTCT 

;Wait for last output 
;8ranch if successful 
;Issue write error msg 

;Set C-8it? (clear it) 
;8ranch if not 
;Otherwise, set it 
;Return to caller 

Cleanup For Copy Program 
;Close input file 
;Close output file 
;8ranch on success 
;Issue protected file 
;Purge flIes 
;Reset (purge files) 
;Return to caller 

.S8TTL MAIN PROGRAM 
START: CALL SETUP 

1$: 

2$: 

.8AS 

8CS 1 $ 
CALL CMPRTI'I 
8CS 
CALL 
8R 
CALL 
.EXIT 
.END 

1$ 

CLSCHN 
2$ 
PRGCHN 

START 

8ASIC-11/RT-11 V02-03 

;Open files 
;8ranch on error 
;Transfer the file 
;8ranch on error 
;Close the flles 

;Purge the files 

OPTIONAL FUNCTIONS (ALL, NONE, OR INDIVIDUAL)? A 

READV 
NEW 8UILD 
100 OPEN IDK:TRAN1.XV2" FOR OUTPUT AS FILE 11% 
110 DIM 11X,AX(511X) 
120 FOR VX-OX TO 511X 
130 AUVX)-VX 
140 NEXT VX 
150 CLOSE 
160 END 
RUN 

8UILD 

READV 
8VE 

20-MAR-84 10:59:10 

msg 

295 



296 Programming with RT-11, Volume 2 

.DUMP/TERMINAL TRAN1.XYZ/NOASCII 
DK:TRAN1.XYZ 
BLOCK NUMBER 000000 
000/ 000000 000001 000002 000003 000004 000005 000006 000007 
020/ 000010 000011 000012 000013 000014 000015 000016 000017 
040/ 000020 000021 000022 000023 000024 000025 000026 000027 
060/ 000030 000031 000032 000033 000034 000035 000036 000037 
100/ 000040 000041 000042 000043 000044 000045 000046 000047 
120/ 000050 000051 000052 000053 000054 000055 000056 000057 
140/ 000060 000061 000062 000063 000064 000065 000066 000067 

620/ 000710 000711 000712 000713 000714 000715 000716 000717 
640/ 000720 000721 000722 000723 000724 000725 000726 000727 
660/ 000730 000731 000732 000733 000734 000735 000736 000737 
700/ 000740 000741 000742 000743 000744 000745 000746 000747 
720/ 000750 000751 000752 000753 000754 000755 000756 000757 
740/ 000760 000761 000762 000763 000764 000765 000766 000767 
760/ 000770 000771 000772 000773 000774 000775 000776 000777 

.EXECUTE PR1505.MAC 
Program copies TRAN1.XYZ to TRAN2.XYZ 

.DUMP/TERMINAL TRAN2.XYZ/NOASCII 
DK:TRAN2.XYZ 
BLOCK NUMBER 000000 
000/ 000377 000376 000375 000374 000373 000372 000371 000370 
020/ 000367 000366 000365 000364 000363 000362 000361 000360 
040/ 000357 000356 000355 000354 000353 000352 000351 000350 
060/ 000347 000346 000345 000344 000343 000342 000341 000340 
100/ 000337 000336 000335 000334 000333 000332 000331 000330 
120/ 000327 000326 000325 000324 000323 000322 000321 000320 
140/ 000317 000316 000315 000314 000313 000312 000311 000310 

620/ 000067 000066 000065 000064 000063 000062 000061 000060 
640/ 000057 000056 000055 000054 000053 000052 000051 000050 
660/ 000047 000046 000045 000044 000043 000042 000041 000040 
700/ 000037 000036 000035 000034 000033 000032 000031 000030 
720/ 000027 000026 000025 000024 000023 000022 000021 000020 
740/ 000017 000016 000015 000014 000013 000012 000011 000010 
760/ 000007 000006 000005 000004 000003 000002 000001 000000 



Solutions to Practices 

15-1. FORTRAN IV 

.EDIT/CREATE PR1506.FOR 

PROGRAM PR1506 
C 
C This program reads data from the input file, 
C performs computation on the data read, and 
C writes the transformed data to the output file. 
C This program uses asynchronous I/O to allow the 
C computation to occur during I/O operations. 
C 

C 

20 
30 

C 

LOGICAL*1 SETUP,CMPRTN 
LOGICAL*1 ERROR 

ERROR· SETUPC) 
IF CERROR) GO TO 20 
ERROR· CMPRTNC) 
IF CERROR) GO TO 20 
CALL CLSCHN 
GO TO 30 
CALL PRGCHN 
CALL EXIT 
END 
FUNCTI ON SETUP 

Open files 
Stop on setup 
Copy file 
Stop on error 
Close channels 
Exit 
Purge channels 

C This routine sets up the files for I/O. 

error 

C The file specifications are fixed in the version. 
C 
C Function returns .TRUE. if an error occurred. 
C 

C 

LOGICAL*1 SETUP 
INTEGER*2 INCHN,OUTCHN 
COMMON /CHNNLS/ INCHN,OUTCHN 

C Channel numbers in common because they are used 
C by CMPRTN, CLSCHN, and PRGCHN. 
C 

INTEGER*2 INFILE(4),OUTFILC4) 

297 

DATA INFILE/2RDK,3RTRA,2RN1,3RXYZ/ 
DATA OUTFIL/2RDK,3RTRA,2RN2,3RXYZ/ 

Input & output 
file specs 

C 
C Output introductory message and allocate channels. 
C 

C 

CALL PRINTC'Program copies TRAN1.XYZ to TRAN2.XYZ') 
INCHN • IGETCO 
OUTCHN • IGETCO 

C Fetch needed device handlers. 
C 

C 

IF CIFETCHCOUTFIL(1» .NE. 0) GO TO 101 
IF CIFETCHCINFILE(1» .NE. 0) GO TO 102 

C Open input file. 
C 



298 Programming ,with RT -11, Volume 2 

C 

LEHGTH • ,LOOKUP(IHCHH,IHFILE) 
IF (LEHGTH .LT. 0) GO TO 103 

C Create output file. 
C 

IF (IEHTER(OUTCHH,OUTFIL,LEHGTH) .LT. 0) GO TO 104 
'SETUP • .FALSE. ! Return success 

RETURH 
C 
C ERROR ,ROUTIHES 
C 
101 CALL PRIHT('Error on FETCH of output handler') 

GO TO 200 
102 CALL PRIHT('Error on FETCH of input handler') 

GO TO 200 
103 CALL PRIHT('Error on LOOKUP of input file') 

GO TO 200 
104 CALL PRIHT('Error on creation of output file') 
200 SETUp· ;TRUE. ! Return error 

RETURH 
EHD 
FUHCTI OH CMPRTH 

C 
C Double-buffered computation routine. 
C 
C Function,'returns .TRUE. on error. 
C HOTE: Some severe errors will abort the program. 
C 

C 

LOGICAL*1 CMPRTH 
IHTEGER*2 IHCHH,OUTCHH 
COMMOH ICHHHLSI IHCHH,OUTCHH 
IHTEGER*2 BUFFER(256,2),BLOCK,IHPTR,OUTPTR 
LOGICAL*1 FRSTTM ! Once only flag 
DATA FRSTTM/.TRUE.I 
IF (.HOT. FRSTTM) GO TO 10 ! Do GSET only once 
IF (IGSET(1) .HE. 0) STOP 'Ho room for queue,element' 
FRSTTM • .FALSE. 

CBegin by reading into buffer 1. 
C 
10 IERR • IREAD(256,BUFFER(1,1),O,IHCHH) 

IF (IERR .GE. 0) GO TO 20 ! Successful read 
IF (IERR .EG. (-1»GO TO 150 ! EOF means all done 
GO TO 100 Read error 

C 
C 'Initialize block numbers and flags. 
C 
20 

C 

BLOCK • 1 
IHPTR • 2 
OUTPTR • '1 

Initialize block number & 
input buffer number & 
output buffer number 

C Loop: Wait for input to 'complete, compute, 
C output. 
C 



Solutions to Practices. 299 

30 
C 

IF CIWAITCINCHN) .NE.O) GO TO 100 Error on read 

C Read next block into input buffer. 
C 

IERR· IREADC256,BUFFERC1,INPTR),BLOCK,INCHN) 
IF CIERR .LT. C-l» GO TO 100!·Error on read 

C 
C Perform computation on output buffer while read is 
C in progress. Computation consists of subtracting 
C each word in the block from the largest value in 
C that block. 
C 
50 IBIG - BUFFERC1,OUTPTR) 

DO 60 1-2,256 
IF CBUFFERCI,OUTPTR) .GT. IBIG) 

IBIG-BUFFERCI,OUTPTR) 
60 CONTINUE 

DO 70 I- 1 ,256 
BUFFERCI,OUTPTR) - IBIG-BUFFERCI,OUTPTR~ 

70 CONTI NUE 
C 
C Write out buffer on which computations have. just 
C completed. 
C 

IF CIWRITEC256,BUFFERC1,OUTPTR),BLOCK~1~OUTCHN) .LT. 0) 
GO TO. 101 ! Error on write 

C 
C Check'if last read resul ted' in EOF. 
C 

IF CIERR .EG. C-l» GO TO 150 ! Copy completed. 
C. 

C Otherwise, switch buffers and advance block number. 
C 

C 

ITMP - INPTR 
INPTR - OUTPTR 
OUTPTR - ITMP 
BLOCK - BLOCK+l 
GO TO 30 

C ERROR ROUTINES 
C 

Repeat 

100 CALL PRINTC'Read error, copy aborted') 
GO TO 1'lO 

101 CALL PRINTC'Write error, copy aborted') 
140 CMPRTN - .TRUE. 

RETURN 
C 
C Wait for last output to complete and return. 
C 
150 IF CIWAITCOUTCHN) .NE. 0) GO TO 101 

CMPRTN - .FALSE4 
RETURN 
END 



300 Programming with RT-11, Volume 2 

SUBROUTINE CLSCHN 
C 
C Close files. 
C 

INTEGER*2 INCHN,OUTCHN 
COMMON ICHNNLSI INCHN,OUTCHN 
CALL CLOSECCINCHN) 
IF CICLOSECOUTCHN) .EG. 4) CALL PRINT 

C'Protected output file already exists') 
RETURN 
END 
SUBROUTINE PRGCHN 

C 
C Purge channels. 
C 

.BAS 

INTEGER*2 INCHN,OUTCHN 
COMMON ICHNNLSI INCHN,OUTCHN 
CALL PURGECINCHN) 
CALL PURGECOUTCHN) 
RETURN 
END 

BASIC-11/RT-11 V02-03 
OPTIONAL FUNCTIONS CALL, NONE, OR INDIVIDUAL)? A 

READV 
NEW BUILD 
100 OPEN "DK:TRAN1.XVZ" FOR OUTPUT AS FILE '1% 
110 DIM'1X,AU511X) 
120 FOR VX-OX TO 511X 
130 AUVX)·VX 
140 NEXT V% 
150 CLOSE 
160 END 
RUN 

BUILD 20-MAR-84 11:34:15 

READV 
BVE 

.DUMP/TERMINAL TRAN1.XVZ/NOASCII 
DK:TRAN1.XVZ 
BLOCK NUMBER 000000 
000/ 000000 000001 000002 000003 
0201 000010 000011 000012 000013 
040/ 000020 000021 000022 000023 
060/ 000030 000031 000032 000033 
100/ 000040 000041 000042 000043 
1201 000050 000051 000052 000053 
1401 000060 000061 000062 000063 

000004 000005 
000014 000015 
000024 000025 
000034 000035 
000044 000045 
000054 000055 
000064 000065 

000006 
000016 
000026 
000036 
000046 
000056 
000066 

.1 

000007 
000017 
000027 
000037 
000047 
000057 
000067 



Solutions to Practices 

620/ 000710 000711 000712 000713 000714 
640/ 000720 000721 000722 000723 000724 
660/ 000730 000731 000732 000733 000734 
700/ 000740 000741 000742 000743 000744 
720/ 000750 000751 000752 000753 000754 
740/ 000760 000761 000762 000763 000764 
760/ 000770 000771 000772 000773 000774 

.EXECUTE PR1506/LINKLIBRARY:SY:FORLIB 
Program copies TRAN1.XYZ to TRAN2.XYZ 

.DUMP/TERMINAL TRAN2.XYZ/NOASCII 
DK:TRAN2.XYZ 
BLOCK NUMBER 000000 
000/ 000377 000376 
020/ 000367 000366 
040/ 000357 000356 
060/ 000347 000346 
100/ 000337 000336 
120/ 000327 000326 
140/ 000317 000316 

620/ 000067 000066 
640/ 000057 000056 
660/ 000047 000046 
700/ 000037 000036 
720/ 000027 000026 
740/ 000017 000016 
760/ 000007 000006 

15-2. 

(1) Event-driven 

(2) Asynchronous 

(3) Synchronous 

000375 
000365 
000355 
000345 
000335 
000325 
000315 

000065 
000055 
000045 
000035 
000025 
000015 
000005 

000374 
000364 
000354 
000344 
000334 
000324 
000314 

000064 
000054 
000044 
000034 
000024 
000014 
000004 

000373 
000363 
000353 
000343 
000333 
000323 
000313 

000063 
000053 
000043 
000033 
000023 
000013 
000003 

301 

000715 000716 000717 
000725 000726 000727 
000735 000736 000737 
000745 000746 000747 
000755 000756 000757 
000765 000766 000767 
000775 000776 000777 

000372 000371 000370 
000362 000361 000360 
000352 000351 000350 
000342 000341 000340 
000332 000331 000330 
000322 000321 000320 
000312 000311 000310 

000062 000061 000060 
000052 000051 000050 
000042 000041 000040 
000032 000031 000030 
000022 000021 000020 
000012 000011 000010 
000002 000001 000000 



302 Programming with RT -11. Volume 2 

CHAPTER 17 

17-1. (Step 1) MACRO-11 

.EDIT/CREATE PR1701.MAC 

.TITLE PR1701 Solution 17-1 Background 

.MCALL .QSET .SDATW .RCVDW .PRINT .EXIT 
• NLI ST BEX 
.ENABL LC 

AREA: . BLKW 5 ;EMT argument block 
;Queue element li5t 
;Input buffer 

QLI ST: • BLKW 2*7 
INBUF: .BLKW 42. 
SNDBF: .BLKW 42. 
SNDERR: .ASCIZ 
RCVER 1: . ASC I Z 

.EVEN 
START: 

10$ : 

20$: 

.QSET 
MOV 
.RCVDW 
BCS 
MOV 
MOV 
TSTB 
BNE 
DEC 
MOVB 
CMP 
BHI 
CLRB 
MOV 
MOV 
.. SDATW 
BCS 
.EXIT 

"?PR1701 Send error, no other job" 
"?PR1701 Receive error, no other job" 

IQLIST,12 ;Allocate queue elements 
IRCVER1,R2 ;Assume no other job 
IAREA,IINBUF,141. ;Wait for message 
ERR ;Report failure 
IINBUF+2,R2 ;Point to received data 
ISNDBF,R3 ;Point to send buffer 
CR2)+ ;Search for null byte 
10 ;Loop until byte found 
R2 ;Backup over null byte 
-CR2),CR3)+ ;Move string to output 
R2,IINBUF+2 ;All done? 
20 ;Loop until. done if not 
CR3) ;In5ert null byte 
INBUF,R1 ;Load word count 
ISNDERR,R2 ;As5ume send error 
IAREA,ISNDBF,R1 ;Send me5sage and wait 
ERR ;Report failure 

;Otherwise, exit 
ERR: .PRINT R2 

.EXIT 
;Print error me55age 
;And exit 

.END START 

.EDIT/CREATE PR1702.MAC 

. TITLE PR1702 Solution 17-1 Foreground 

.MCALL .PEEK .POKE .QSET .GTLIN 

.MCALL .SDATW . RCVDW .PRINT .EXIT 

.ENABL LC 
AREA: .BLKW 5 ;EMT argument block 
QLIST: .BLKW 2*7 ;Queue element li5t 
INBUF: . BLKW 42 . jInput buffer 
PROMPT: .ASCIZ "Input your me5sage: II 

REPLY: .ASCIZ "In reverse, that become5:" 
SNDERR: .ASCIZ "?PR1702 Send error, no other . j ob" 
RCVER1 : .ASCIZ "?PR1702 Receive error, no other job" 
RCVER2: .ASCIZ "?PR1702 Receive error, length error" 



Solutions to Practices 

START: 

10$ : 

ERR: 

.EVEN 
JSW 
LOWER 
.QSET 
.PEEK 
MOV 
BIS 
.POKE 
.GTLIN 
MOV 
TSTB 
BNE 
SUB 
INC 
ASR 
MOV 
.SDATW 
BCS 
MOV 
.RCVDW 
BCS 
MOV 
CMP 
BNE 
.PRINT 
.PRINT 
.EXIT 
.PRINT 
.EXIT 
.END 

44 
40000 

"QLI ST,"2 
"AREA,"JSW 
RO,R1 
"LOWER,R1 
"AREA,"JSW,R1 
"INBUF,"PROMPT 
"INBUF,R1 
(R1)+ 
10$ 
"INBUF,R1 
R1 
R1 
"SNDERR,R2 
"AREA,"INBUF,R1 
ERR 
"RCVER1,R2 
"AREA,"INBUF,R1 
ERR 
"RCVER2,R2 
R1,INBUF 
ERR 
"REPLY 
"INBUF+2 

R2 

START 

.MACRO PR1701,PR1702 

.LINK PR1701 

.LINK/FOREGROUND PR1702 

.RUN PR1701 

;Allocate queue elements 
;Get JSW 
;Save the value 
;Enable lower case 1nput 
;Set JSW 
;Get input from console 
;Load strins buffer addr 
;Search for null byte 
;Loop until byte found 
;Calculate strins lensth 
;Round up to next word 
;Calculate word count 
;Assume no other Job 
;Send me55ase to backsrd 
;Report error 
;A55ume receive error 
;Wa1t for reply 
;Report error 
;A55ume inval1d lensth 
;Check rece1ved lensth 
;Report error 
;Print head1ns 
;Print reply 
;Exit 
;Print error messase 
;And ex1t 

?PR1701 Receive error, no other Job 

.FRUN PR1702 

F) 

Input your messase: 

B) 

.RUN PR1701 

F) 
This i5 the me55ase for the foresround Job. 
In reverse, that becomes: 
.boj dnuorserof eht rof esassem eht 5i 5ihT 

B) 

303 



304 Programming with RT -11, Volume 2 

17-1. (Step 1) FORTRAN IV 

PROGRAM PR1701 
C 
C Solution to 17-1 Background Job 
C 
C Receive string from foreground, reverse it, 
C and return it. 
C 

C 

BYTE STR1(84), STR2(84), STRING(82) 
INTEGER*2 ICoUNT 
EQUIVALENCE CICoUNT,STR1),CSTRING,STR1C3» 

C Allocate queue elements. 
C 

IF CIQSET(2) .NE. 0) 
STOP '?PR1701 Insufficient queue elements' 

C 
C Receive string from foreground job. 
C 

10 

C 

IF CIRCVDWCSTR1,41) .NE. 0) 
STOP '?PR1701 Receive error' 

L=LENCSTRING) Load string length 
DO 10 1"1, L 
STR2CI)=STRINGCL-I+1) 
STR2CL+1)"0 
IL=ICoUNT 

Reverse string 
Append null byte 
Save word count 

C Send reversed string to foreground job. 
C 

C 

IF CISDATWCSTR2,IL) .NE. 0) 
STOP '?PR1701 Send error' 

CALL EX IT 
END 

PROGRAM PR1702 

C Solution to 17-1 Foreground Job 
C 
C Read string, send it to background job, receive 
C string from background job, and print it. 
C 

C 

BYTE STR1(84), STR2(84), PRoMPT(80) 
INTEGER*2 ICoUNT 
EQUIVALENCE CICoUNT,STR2) 

C Allocate queue elements. 
C 

IF CIQSET(2) .NE. 0) 
STOP '?PR1702 Insufficient queue elements' 

C 
C Prompt for string and get it. 
C 

CALL IPoKECII44,II40000 .0R. IPEEKC II 44» 



Solutions to Practices 

CALL SCOPY('Input your message:',PROMPT) 
CALL GTLIN(STR1,PROMPT) 
L-(LEN(STR1)+2)/2 ! Length in words 

C 

C Send string to background job. 
C 

C 

IF (ISDATW(STR1,L) .NE. 0) 
STOP '?PR1702 Send error' 

C Receive reversed string and print it. 
C 

IF (IRCVDW(STR2,L) .NE. 0) 
STOP '?PR1702 Receive error' 

IF (ICOUNT .NE. L) 
STOP '?PR1702 Receive length error' 

CALL PRINT('In reverse, that becomes:') 
CALL PRINT(STR2(3» 
CALL EX IT 
END 

17-1. (Step 2) FORTRAN IV 

.EDIT/CREATE PR1703.FOR 

PROGRAM PR1703 
C 
C Solution to 17-1 (Step 2) Background Job 
C 
C Receive shared buffer from foreground, 
C reverse string, and return it. 
C 

C 

EXTERNAL REV 
BYTE STR2(84) 
INTEGERII2 MSG(3) 

C Allocate queue elements. 
C 

IF (IGSET(2) .NE. 0) . 
STOP '?PR1703 Insufficient queue elements' 

C 

C Receive string from foreground job. 
C 

C 

IF (IRCVDW(MSG,2) .NE. 0) 
STOP '?PR1703 Receive error' 

CALL INDIR(REV,1,MSG(2),O,STR2) 

C Send reversed string. 
C 

IF (ISDATW(MSG(2),1) .NE. 0) 
STOP '?PR1703 Send error' 

CALL EXIT 
END 

Reverse string 

305 



306 Programming with RT-11 , Volume 2 

SUBROUTINE REV (ISTR,OSTR) 
C 
C Subroutine to reverse string. 
C 

10 

20 

BYTE ISTR(S4),OSTR(S4) 
INTEGER*2 L 
L-LEN(ISTR) 
DO 10· 1-1, L 
OSTR(I)-ISTR(L~I+1) 

DO 20 1-1,L 
I STR( I> -OSTR( I> 
RETURN 
END 

Get length of string 

Reverse string 

Move back to buffer 

.EDIT/CREATE PR1704.FOR 

PROGRAM PR1704 
C 
C Solution to 17-1 (Step 2) Foreground Job 
C 
C Read string and share buffer with background, 
C wait for returned string, and print results. 
C 

C 

BYTE STR1(S4), PROMPT(SO) 
INTEGER*2 ICOUNT,MSG(2) 
EQUIVALENCE (ICOUNT,STR1) 

C Allocate queue elements. 
C 

IF (IQSET(2) .NE. 0) 
STOP '?PR1704 Insufficient queue elements' 

C 
C Prompt for string and get it. 
C 

C 

CALL IPOKE(144,"40000 .OR. IPEEK("44» 
CALL SCOPY('lnput your message:',PROMPT) 
CALL GTLIN(STR1,PROMPT) 
L-LEN(STRD 
MSG(1)-IADDR(STR1) 
MSG(2)-IADDR(STR1(L» 

Get string length 
Build shared 
buffer descriptor 

C Send data with shared buffer descriptor to 
C the background job. 
C 

C 

IF (ISDATW(MSG,2) .NE. 0) 
STOP '?PR1704 Send error' 

C Receive reversal completed from background. 
C 

IF (IRCVDW(MSG,1) .NE. 0) 
STOP '?PR1704 Receive error' 

IF (MSG(1) .NE. 1) 
STOP '?PR1704 Receive length error' 



Solutions to Practices 

CALL PRINTC'In reverse, that becomes:') 
CALL PRINTCSTR1) 
CALL EX IT 
END 

.EDIT/CREATE INDIR.MAC 

.FORTRAN PR1703,PR1704 

.MACRO INDIR 

.LINK PR1703,INDIR,SY:FORLIB 

.LINK/FOREGROUND PR1704,SY:FORLIB 

.FRUN PR1704 

F) 

?Err62 FORTRAN start fail 

B) 

.FRUN PR1704/BUFFER:2000 

F) 
Input your message: 

B) 

.RUN PR1703 

F) 
This is the message for PR1703. 
In reverse, that becomes: 
.3071RP rof egassem eht 5i sihT 

B) 

307 



308 Programming with RT-11, Volume 2 

17-1. (Step 2) MACRO-11 

· TITLE PR1703 Solution 17-1 (Step 2) Background 
.MCALL .GSET .SDATW .RCVDW .PRIHT .EXIT 
· HLI ST BEX 
.EHABL LC 

AREA: .BLKW 5 ;EMT argument block 
GLIST: .BLKW 2*7 ;Gueue element list 
MSG: .BLKW 3 ;Shared buffer data 
TMPBF: . BLKW 42 . ;Work area 
SHDERR: .ASCIZ "?PR1703 Send error, no other job" 
RCVER 1: .ASCIZ "?PR1703 Receive error, no other job" 
RCVER2: .ASCIZ "?PR1703 Receive error, data length" 

.EVEH 
START: .GSET 'GLI ST,'2 ;Allocate queue elements 

MOV 'RCVER1,R2 ;Assume no other job 
. RCVDW 'AREA,'MSG,'41 . ;Wait for data 
BCS ERR ;Report failure 
MOV 'RCVER2,R2 ;Assume length error 
CMP MSG,'2 ;Two words received? 
BHE ERR ;Branch if not 
MOV MSG+4,R2 ;Load shared buffer addr 
MOV 'TMPBF,R3 ;Load temp buffer addr 

20$: MOVB -(R2),(R3)+ ;Move data into temp 
CMP R2,MSG+2 ;All done? 
BHI 20$ ;Branch if not 
CLRB (R3) ;Insert null byte 
MOV 'TMPBF,R3 ;Load temp buffer addr 

30$: MOVB (R3)+,(R2)+ ;Move data into shared 
BHE 30$ ;Loop until end of text 
MOV 'SHDERR,R2 ;Assume send error 
.SDATW 'AREA,'MSG,'1 ;Send data and wait 
BCS ERR ;Report failure 
.EXIT ;Otherwise, exit 

ERR: .PRIHT R2 ;Print error message 
.EXlT ;And exit 
.EHD START 

· TITLE PR1704 Solu tion 17-1 (Step 2) Foreground 
.MCALL .PEEK .POKE .GSET .GTLIH 
.MCALL .SDATW .RCVDW .PRIHT .EXIT 
.EHABL LC 

AREA: .BLKW 5 ;EMT argument block 
GLIST: .BLKW 2*7 ;Gueue element list 
IHBUF: . BLKW 42 . ;Input buffer 
MSG: .BLKW 2 ;Send buffer 
PROMPT: .ASCIZ "Input your message: " 
REPLY: .ASCIZ "In reverse, that becomes:" 
SHDERR: .ASCIZ "?PR1704 Send error, no other job" 
RCVER1 : .ASCIZ "?PR1704 Receive error, no other job" 

.EVEH 
JSW 44 
LOWER 40000 



Solutions to Practices 

START: 

10$ : 

ERR: 

.GSET 

.PEEK 
MOV 
BIS 
.POKE 
.GTLHI 
MOV 
TSTB 
BNE 
DEC 
MOV 
MOV 
MOV 
.SDATW 
BCS 
MOV 
.RCVDW 
BCS 
.PRINT 
.PRINT 
.EXIT 
.PRINT 
.EXIT 
.END 

#GLI ST, #2 
#AREA,#JSW 
RO,R1 
#LOWER,R1 
#AREA,#JSW,R1 
#INBUF,#PROMPT 
#INBUF,R1 
(R1)+ 
10$ 
R1 
#INBUF,MSG 
R1,MSG+2 
#SNDERR,R2 
#AREA,#MSG,#2 
ERR 
#RCVER1,R2 
#AREA,#MSG,#1 
ERR 
#REPLY 
#INBUF 

R2 

START 

;Allocate queue elements 
;Get JSW 
;Save the value 
;Enable lower case input 
;Set JSW 
;Get input from console 
;Load string buffer addr 
;Search for null byte 
;Loop until byte found 
;Backup over null byte 
;Load buffer starting 

and ending address 
;Assume send error 
;Send data to background 
;Report error 
;Assume receive error 
;Wait for reply 
;Report error 
;Print heading 
;Print reply 
;Exit 
;Print error message 
;And exit 

17-1. (Step 3) MACRO-11 

.EDIT/CREATE PR1705.MAC 

. TITLE PR1705 Solution 17-1 Background 

.MCALL .GSET .SDATW .RCVDW .PRINT . EXIT 

.MCALL .CHCOPY .READW .WRITW .CLOSE 

.NLIST BEX 

.ENABL LC 
AREA: .BLKW 5 ;EMT argument block 
GLIST: .BLKW 2*7 ;Gueue element 11 s t 
MSG: .BLKW 3 ;Shared buffer data 
TMPBF: .BLKW 42. ;Work area 
INBUF: . BLKW 42 . ;Flle input area 
SNDERR: .ASCIZ "?PR1705 Send error, no other job" 
RCVER 1 : .ASCIZ i'?PR 1705 Receive error, no other job" 
RCVER2: .ASCIZ "?PR1705 Receive error, data length" 
CHERR: .ASCIZ "?PR1705 Channel copy error" 
RDERR: .ASCIZ "?PR1705 Read error" 
WRTERR: .ASCIZ "?PR 1705 I4rite error" 
CLSERR: .ASCIZ U?PR1705 Close error" 

.EVEN 
START: .GSET #GLI ST , #2 ;Allocate queue elements 

MOV #RCVER1,R2 ;Assume no other job 
.RCVDW #AREA,#MSG,#2 ;Receive data from frgrnd 

309 



310 Programming with RT-11 , Volume 2 

BCS 
MOV 
CMP 
BNE 

ERR 
IRCVER2,R2 
MSG,12 
ERR 

;Report failure 
;Assume data length error 
;Two words received? 
;Branch if not 

MOV ICHERR,R2 ;Assume chan copy error 
MOV MSG+2,R3 lLoad foregound channel 
.CHCOPV IAREA,I1,R3 number and copy it 
BCS ERR ;Report error 
MOV IRDERR,R2 lAssume read error 
.READW IAREA,11,IINBUF,MSG+4,10 ;Read data 
BCS ERR lReport error 
MOV IINBUF,R2 ;Load data buffer addr 

10$: TSTB CR2)+ ;Search for end ~f 

20$: 

ERR: 

BNE 10$ buffer 
DEC 
MOV 
MOVB 
CMP 
BHI 
CLRB 
MOV 
.WRITW 
BCS 
MOV 
.SDATW 
BCS 
MOV 
.CLOSE 
BCS 
• EXIT 

R2 ;Backup over null byte 
ITMPBF,.R3 lPoint to temp buffer 
-CR2),CR3)+ ;Move data into output 
R2,IINBUF buffer 
20$ ;Branch if not done 
CR3) lInsert null byte 
IWRTERR,R2 lAssume write error 
IAREA,11,ITMPBF,MSG+4,11 lWrite data 
ERR ;Report error 
ISNDERR,R2 lAssume send error 
IAREA,IMSG+4,11 lSend data and walt 
ERR lReport failure 
ICLSERR,R2 ;Assume close error 
11 ;Close file 
ERR ;Report error 

;Otherwise, exit 
.PRINT R2 
.EXIT 

;Print error message 
;And exit 

.END START 

.EDIT/CREATE PR1706.MAC 

. TITLE PR1706 Solution 17-1 Foreground 

.MCALL .PEEK .POKE .GSET .GTLIN 

.MCALL .SDATW .RCVDW .PRINT .EXIT 

.MCALL .ENTER .WRITW .READW .CLOSE 

.ENABL LC 
AREA: .BLKW 5 ;EMT argument block 
GLIST: .BLKW 2*7 ;Gueue element list 
INBUF: .BLKW 42. lInput buffer 
MSG: .BLKW 2 ;Send data buffer 
ZERO: .WORD 0 
FILE: .RAD50 IDK PR1706TXT/ 
PROMPT: .ASCIZ "Input your message: II 

REPLY: .ASCII "In reverse, that becomes: II (1S)(12) 
MSGBUF: . BLKB 82 • 
SNDERR: .ASCIZ II?PR1706 Send error, no other job" 
RCVER1 : .ASCIZ II?PR1706 Receive error, no other job ll 

OPNERR: .ASCIZ II?PR1706 Enter error ll 



Solutions to Practices 

WRTERR: .ASCIZ II?PR1706 Write error ll 

RDERR: .ASCIZ II?PR1706 Read error ll 

CLSERR: .ASCIZ II?PR1706 Close error ll 

START: 

10$ : 

20$: 

ERR: 

.EVEN 
JSW 
LOWER 
.QSET 
.PEEK 
MOV 
BIS 
.POKE 
.GTLIN 
MOV 
TSTB 
BNE 
SUB 
ASR 
MOV 
MOV 
.ENTER 
BCS 
MOV 
.WRITW 
BCS 
.WRITW 
CLR 
MOV 
.SDATW 
BCS 
MOV 
.RCVDW 
BCS 
MOV 
.READW 
BCS 
MOV 
.CLOSE 
BCS 
MOV 
MOV 

44 
40000 

#QLI ST,"2 
#AREA,"JSW 
RO,R1 
"LOWER,R1 
#AREA,#JSW,R1 
#INBUF,#PROMPT 
"INBUF,R1 
(R 1) + 

10$ 
#INBUF,R1 
R1 

jAllocate queue elements 
jGet JSW 
jCoPY job status word 
jEnable lower case input 
jSet JSW 
jGet input from console 
jLoad input buffer addr 
jSearch for null byte 
jLoop until byte found 
jCalculate string length 

and then word count 
R1,MSG+2 jLoad word count 
#OPNERR,R2 jAssume open error 
#AREA,"O,#FILE,#2 jCreate 2 block file 
ERR jReport error 
#WRTERR,R2 jAssume write error 
#AREA,"O,#INBUF,R1,#0 jWrite text 
ERR jReport error 
#AREA,"O,#ZERO,#1,"1 jZero block 1 
MSG jLoad channel number 
#SNDERR,R2 jAssume send error 
#AREA,#MSG,#2 jSend data 
ERR jReport error 
#RCVER1,R2 jAssume no other job 
"AREA,"MSG,#1 jWait for reply 
ERR jReport error 
#RDERR,R2 jAssume read error 
#AREA,#O,#INBUF,R1,#1 jRead data 
ERR jReport error 
#CLSERR,R2 jAssume close error 
"0 jClose the new file 
ERR jReport error 
#INBUF,R1 jPrepare to move text 
#MSGBUF,R2 to output buffer 

MOVB (R1)+,(R2)+ jMove text 
BNE 20$ 
.PRINT "REPLY 
.EXIT 
.PRINT R2 
.EXIT 
.END START 

j Loop until done 
jPrint modi fed message 

jPrint error message 
jAnd exit 

311 



312 Programming with RT -11, Volume 2 

.MACRO PR1705,PR1706 

.LINK PR1705 

.RUN PR1705 
?PR1705 Receive error, no other job 

.LINK/FOREGROUND PR1706 

.FRUN PR1706 

F> 
Input your message: 

B> 

.~N PR1705 

F> 
ABCDEFGHIJKLMNOPQRSTUVWXYZ ... 1234567890! 

B> 

F> 
In reverse, that becomes: 
!0987654321 ... ZYXWVUTSRQPONMLKJIHGFEDCBA 

B> 

.TYPE PR1706.TXT 
ABCDEFGHIJKLMNOPQRSTUVWXYZ ... 1234567890! 
!0987654321 ... ZYXWVUTSRQPONMLKJIHGFEDCBA 

17 -1. (Step 3) FORTRAN IV 

PROGRAM PR1705 
C 
C Solution to 17-1 (Step 3) Background 
C 
C Receive shared file from foreground, read block 
C 0, reverse string, and write it to block 1. 
C 

C 

BYTE STR1(84), STR2(84) 
INTEGER*2 MSG(3) 

C Allocate queue elements. 
C 



Solutions to Practices 

IF CIGSET(2) .HE. 0) 
STOP '?PR1705 In5ufficient queue elements' 

C 
C Receive string from foreground job. 
C 

IF CIRCVDWCMSG,2) .HE. 0) 
STOP '?PR1705 Receive error' 

IF CMSG(1) .HE. 2) 
STOP '?PR1705 Receive length error' 

IF CICHCPYC1,MSG(2» .HE. 0) 
STOP '?PR1705 Channel copy error' 

IERR-IREADWCMSG(3),STR1,O,1) ! Read block 0 
IF CIERR .LT. 0) STOP '?PR1705 Read error' 
L-LEHCSTR1) 
DO 10 1-1, L 

10 STR2CI)-STR1CL-I+1) ! Reverse string 
STR2CL+1)-0 ! Append null byte 
IERR-IWRITWCMSG(3),STR2,1,1) ! Write block 
IF CIERR .EG. -1) 

STOP , ?PR 1705 Wr i te error PAST EOF' 
IF CIERR .EG. -2) 

STOP '?PR1705 Write error HARDWARE 
IF CIERR .EG. -3) 

STOP '?PR1705 Write error FILE HOT 
C 
C Send reversal completed to foreground. 
C 

C 

IF CISDATWCMSG(3),1) .HE. 0) 
STOP '?PR1705 Send error' 

IF CICLOSE(1) .HE. 0) 
STOP '?PR1705 Close error' 

CALL EX IT 
EHD 

PROGRAM PR1706 

C Solution to 17-1 CStep 3) Foreground 
C 
C Read string and write it to a file, send 

ERROR' 

OPEH' 

C channel to background, wait for return, and 
C print results. 
C 

C 

BYTE STR1CS4), PROMPTCSO) 
IHTEGER*2 FILE(4),MSGC2) 
DATA FILE /3RDK ,3RPR1,3RS07,3RTXTI 

C Allocate queue elements. 
C 

IF CIGSET(2) .HE. 0) 
STOP ~?PR1706 Insufficient queue elements' 

C 
C Prompt for string and get it. 
C 

313 



314 Programming with RT-H, Volume 2 

C 

CALL IPOKE(1I44,1I40000 .OR. IPEEK(1I44» 
CALL SCOPY('Input your message:',PROMPT) 
CALL GTLI~(STR1,PROMPT) 
IERR-IE~TER(0,FILE,2) ! Create 2-Block file 
IF (I ERR . LT. 0) 

STOP '?PR1706 File create error' 
MSG(1)-0 ! Send channel number 
MSG(2)-(LE~(STR1)+2)/2 ! Send length in words 
IERR-IWRITW(MSG(2),STR1,0,O) ! Write data 
IF (IERR .LT. 0) STOP '?PR1706 Write error' 
IERR-IWRITW(1,MSG,1,O) ! Zero block 
IF (IERR .LT. 0) STOP '?PR1706 Write error' 

C Send shared file data. 
C 

IF (ISDATW(MSG,2) .~E. 0) 
STOP '?PR1706 Send error' 

C 
C Receive data from background. 
C 

IF (IRCVDW(MSG,1) .~E. 0) 
STOP '?PR1706 Receive error' 

IF (MSG(1) .~E. 1) 
STOP '?PR1706 Receive length error' 

IERR-IREADW(MSG(2),STR1,1,O) ! Read data 
IF (IERR .LT. 0) STOP '?PR1706 Read error' 
IF (ICLOSE(O) .~E. 0) 

STOP '?PR1706 Close error' 
CALL PRI~T('In reverse, that becomes:') 
CALL PR I ~T(STR 1) 

CALL EX IT 
E~D 

CHAPTER 1.8 

18-1. MACRO-11 

.EDIT/OUTPUT:PR1803.MAC PR1801.MAC 

.TITLE PR1803 SOLUTIO~ TO 18-1 

This program performs a file-to-file copy by 
using a dynamically allocated buffer. The 
program performs only one copy operation . 

.MCALL .EXIT . FETCH .LOOKUP .ENTER .PRI~T 

.MCALL .READW .WRITW .CLOSE .SRESET 

.MCALL .LOCK .U~LOCK .GVAL .SETTOP 



Solutions to Practices 

EMTARG: 
ItiFILE: 
OUTFIL: 
LIMITS: 
BUFPTR: 
ERROR: 
AtitiCE: 
FCH1MS: 
FCH2MS: 
LKPMES: 
EtiTMES: 
RERRMS: 
WERRMS: 
PRTCT: 

SETUP: 

.BLKW 

.RADSO 

.RADSO 

.LIMIT 

.BLKW 

.BYTE 

.ASCI2 

.ASCI2 

.ASCI2 

.ASCI2 

.ASCI2 

.ASCI2 

.ASCI2 

.ASCI2 

.EVEti 

.SBTTL 

6 
IDK TRAti1 XY21 
IDK TRAti2 XY21 

;EMT argument block 
;Copy from DK:TRAti1.XY2 

to DK:TRAN2.XY2 
iProgram limits 
;1/0 buffer address 
;Error status byte 

IIProgram copies TRAti1.XY2 to TRAN2.XY211 
IIError on FETCH of output handler ll 

IIError on FETCH of input handler ll 

IIError on LOOKUP of input file ll 

IIError on creation of output file ll 

IIRead error, copy aborted ll 

IIWrite error, copy aborted ll 

IIProtected output file already exists ll 

SETUP Setup Files For Copy 

This routine sets up files for lID. 
The file specifications are fixed. 

Returns with C-Bit SET on error. 

MOV 
.PRItiT 

R1,-(SP) 
"AtiNCE 

;Save register 
;Announce program 

Allocate buffer from free memory 

.GVAL "266 

.SETTOP 

.LOCK 

Fetch device handlers 

MOV LIMITS+2,R1 
.FETCH R1,"OUTFIL 
BCS FCH1ER 
MOV RO,R1 
.FETCH R1,"IHFILE 
BCS FCH2ER 
MOV RO,BUFPTR 

Open files 

;RO • base of USR 
;SETTOP to base of USR 
iLock USR in memory 

;Load high limit 
;Fetch output handler 
;Branch on error 
;Load new high limit 
iFetch input handler 
;Branch on error 
;Save buffer address 

.LOOKUP "EMTARG,"3,"IHFILE 
BCS LKPERR ;Branch on open error 
MOV RO,R1 ; Save file length 
.EtiTER "EMTARG,"O,"OUTFIL 
BCC DOtiE iBranch on success 

Error Routines: 

.PRItiT "EtiTMES 
BR ERDOtiE 

LKPERR: .PRItiT "LKPMES 

;Issue create failure 
; message and return 
;Issue open failure 

315 



316 Programming with RT-11, Volume 2 

BR ERDONE 
FCH2ER: .PRINT #FCH2MS 

j message and return 
jIssue FETCH error 

BR ERDONE j message and return 
jIssue FETCH error 
jUnlock USR 

FCH1ER: .PRINT #FCH1MS 
ERDONE: .UNLOCK 

SEC jSet error flag 
BR DONE1 

DONE: .UNLOCK 
DONE1: MOV 

RETURN 
(SP)+,R1 

jUnlock the USR 
jRestore R1 
jReturn to caller 

.SBTTL CPYRTN Synchronous Copy 

This routine copies the file opened on channel 
3 to the file opened on channel O. 
Returns with C-BIT SET on error. 

Note: All registers except RO are preserved. 

CPYRTN: MOV 
CLR 
CLRB 

1$: .READW 

2$: 

BCC 
TSTB 
BEQ 
BR 
.WRITW 
BCS 
INC 
BR 

RDERR: .PRINT 
BR 

WERR: .PRINT 
EREXIT: DECB 
EXIT: MOV 

TSTB 

R1,-(SP) jSave register 
R1 jReset block number 
ERROR jClear error flag 
#EMTARG,#3,BUFPTR,#256.,R1 
2$ jBranch if read OK 
#52 jEnd-Of-File (EOF)? 
EXIT jBranch if so 
RDERR jIssue error message 
#EMTARG,#O,BUFPTR,#256 •• R1 
WERR jBranch on write error 
R1 jUpdate block number 
1$ jAnd read next block 
#RERRMS 
EREX IT 
#WERRMS 
ERROR 
(SP)+,R1 
ERROR 

jIssue read error 

BEQ 1$ 

j message and return 
jIssue write error 
jSet error flag 
jRestore register 
jError? (clear C-BIT) 
jBranch if not 

SEC 
1$: RETURN 

.SBTTL CLSCHN 
CLSCHN: . LOCK 

PRGCHN: 
RESET: 

.CLOSE 

.CLOSE 
BCC 
.PRINT 

.UNLOCK 

.SRESET 
RETURN 

#3 
#0 

RESET 
#PRTCT 

jSet C-BIT (error) 
jReturn to caller 

Close Files 
jLock USR 
jClose input file 
jClose output file 
jBranch on success 
jLssue protected file 
jPurge files 
jUnlock USR 
jReset system 
jReturn to caller 

.SBTTL MAIN PROGRAM 
START: CALL SETUP 

BCS 
CALL 
BCS 

1$ 

CPYRTN 
1$ 

jOpen files 
jBranch on error 
jCoPY the file 
jBranch on error 



Solutions to Practices 

1$: 

2$: 

CALL 
BR 
CALL 
.EXIT 
.EI'ID 

.MACRO PR1803 

.LII'IK PR1803 

CLSCHI'I 
2$ 
PRGCHI'I 

START 

.COPY TT: TRAI'I1.XYZ 
Files copied: 

jClose the files 
j and exit 
jPurge the files 
iExit 

ATEST DATA FILE WHICH WILL BE COPIED TO TRAI'I2.XYZ 

*** EOF *** 

AZTT: 

.RUI'I PR1803 

to DK: TRAI'I1. XYZ 

Program copies TRAI'I1.XYZ to TRAI'I2.XYZ 

.TYPE TRAI'I2.XYZ 
TEST DATA FILE WHICH WILL BE COPIED TO TRAI'I2.XYZ 

*** EOF *** 

18-1. FORTRAN IV 

.EDIT/OUTPUT:PR1804.FOR PR1802.FOR 

PROGRAM PR1804 
C 

C Solution to 18-1 
C 
C 
C 
C 

C 
C 

C 
C 
C 

C 
10 

This program performs a file copy using a 
dynamically allocated buffer. Only one file 
is copied. 

******** CAUTIOI'I ******** 

Compile with II'IOSWAP option OR use SET USR 
I'IOSWAP before executing! 

LOGICAL*1 SETUP.CPYRTI'I 
LOGICAL*1 ERROR 

ERROR" SETUP() 
IF (ERROR) GO TO 20 
ERROR .. CPYRTI'IO 

Open files 
Stop on error 
Copy file 

317 



318 Programming with RT -11, Volume 2 

20 
30 

C 

IF (ERROR) GO TO 20 
CALL CLSCHN 
GO TO 30 
CALL PRGCHN 
CALL EX IT 
END 
FUNCTION SETUP 

Stop on error 
Close files 

Purge channels 

C This routine sets up the files for lID. 
C The file specifications are fixed. 
C 
C Function returns .TRUE. on error. 
C 

C 

LOGICAL*1 SETUP 
INTEGER*2 INCHN.OUTCHN 
COMMON ICHNNLSI INCHN.OUTCHN 
INTEGER*2 INFILE(4).OUTFIL(4) 
DATA INFILE/2RDK.3RTRA.2RN1.3RXYZI 
DATA OUTFIL/2RDK.3RTRA.2RN2.3RXYZI 

C Annouce the program and allocate channels. 
C 

c 

CALL PRINT('Program copies TRAN1.XYZ to TRAN2.XYZ') 
CALL LOCK Lock the USR 
INCHN • IGETCO 
OUTCHN • IGETC() 

Allocate input & 
output channels 

C Fetch device handlers. 
C 

C 

IF (IFETCH(OUTFIL(1» .NE. 0) GO TO 101 
IF (IFETCH(INFILE(1» .NE. 0) GO TO 102 

C Open input file and create output file. 
C 

C 
C 
C 
101 

102 

103 

104 
200 

LENGTH • LOOKUP(INCHN.INFILE) 
IF (LENGTH .LT. 0) GO TO 103 
IF (IENTER(OUTCHN.OUTFIL.LENGTH) .LT. 0) 

GO TO 104 
CALL UNLOCK 
SETUP • .FALSE. 
RETURN 

ERROR ROUTINES 

Unlock USR 
No error 

CALL PRINT('Error on FETCH of output handler') 
GO TO 200 
CALL PRINT('Error on FETCH of input handler') 
GO TO 200 
CALL PRINT('Error on LOOKUP of input file') 
GO TO 200 
CALL PRINT('Error on creation of output file') 
CALL UNLOCK Unlock USR 
SETUP • .TRUE. ! Error 
RETURN 
END 



Solutions to Practices 

FUNCTION CPYRTN 
C 
C Single buffered, synchronous copy routine. 
C 
C Function returns .TRUE. on error. 
C 

C 

EXTERNAL IREADW, IWRITW 
LOGICAL*1 CPYRTN 
INTEGER*2 INCHN,OUTCHN 
COMMON /CHNNLS/ INCHN,OUTCHN 
INTEGER*2 BUFPTR,BLOCK 
BLOCK - 0 ! Reset block number 

C Allocate buffer dynamically. 
C 

C 

IF (IGETSP(256,256*20,BUFPTR) .LT. 0) 
GO TO 102 

C Read/write loop. 
C 
20 IERR-INDIR(IREADW,O,256,1,BUFPTR,O,BLOCK,O,INCHN) 

IF (IERR .GE. 0) GO TO 30 ! Successful read 
IF (IERR .EG. (-1» GO TO 150 ! End of File 
GO TO 100 ! Error 

30 IF (INDIR(IWRITW,O,256,1,BUFPTR,O,BLOCK,O,OUTCHN) 

C 

.LT. 0) GO TO 101 
BLOCK - BLOCK+1 
GO TO 20 

C ERROR ROUTINES 
C 

! Update block number 

100 CALL PRINT('Read error, copy aborted') 
GO TO 140 

101 CALL PRINT('Write error, copy aborted') 
GO TO 140 

102 CALL PRINT('Cannot get buffer space') 
140 CPYRTN •. TRUE. 

RETURN 
C 
C Successful return. 
C 
150 CPYRTN • .FALSE. 

C 

RETURN 
END 
SUBROUTINE CLSCHN 

C Close files. 
C 

INTEGER*2 INCHN,OUTCHN 
COMMON /CHNNLS/ INCHN,OUTCHN 
CALL LOCK ! Lock USR 
CALL CLOSEC(INCHN) 
IF (ICLOSE(OUTCHN) .EG. 4) CALL PRINT 

('Protected output file already exists') 

319 



320 Programming with RT-11, Volume 2 

C 

CALL UHLOCK 
RETURH 
EHD 
SUBROUTIHE PRGCHH 

C Purge channels. 
C 

Unlock USR 

IHTEGER*2 IHCHH,OUTCHH 
COMMOH /CHHHLS/ IHCHH,OUTCHH 
CALL LOCK ! Lock USR 
CALL PURGE(IHCHH) 
CALL PURGE(OUTCHH) 
CALL UHLOCK 
RETURH 
EHD 

.FORTRAH PR1804.FOR/HOSWAP 

.LIHK PR1804,SY:FORLIB 

.RUH PR1804 

Unlock USR 

Program copies TRAH1.XYZ to TRAH2.XYZ 

.DIFF TRAH1.XYZ TRAH2.XYZ 
?SRCCOM-I-Ho differences found 

CHAPTER 19 

19-1. MACRO-11 

.EDIT/CREATE PR1902.MAC 

.TITLE PR1902 Solution to 19-1 

Program creates the output file specified by 
the user. 

.MCALL .EXIT .CSIGEH .PRIHT .WRITW 

.MCALL .CLOSE .SRESET 
EMTARG: .BLKW 6 ;EMT argument block 
LIMITS: .L1MIT ;Program limits 
SPSAVE: .BLKW ;Saved !Itack pointer 
DEFTYP: .WORD 0,0,0,0 ;Default file types 
BUFFER: .BLKW 256. ;File I/O buffer 

BUFFE ;End of I/O buffer 
PRMPT: .ASCIZ "Specify output filename" 



Solutions to Practices 

CSIERR: .ASCIZ 
WERRMS: . ASC I Z 
PRTCT: .ASCIZ 

IIError on CSI call il 

IIWrite error, output aborted" 
IIProtected output file already exists ll 

.EVEN 

.SBTTL SETUP Create Output File 

This routine gets a command string using the 
CSI and opens the specified output file. 

Returns with C-Bit SET on error. 

SETUP: MOV SP,SPSAVE ;Save stack pointer 

10$ : 

.PRINT IPRMPT ;Display prompt 

.CSIGEN LIMITS+2,IDEFTVP,10 
MOV SPSAVE,SP ;Restore stack 
BCC 10$ ;Branch on success 
.PRINT ICSIERR 
SEC 
RETURN 
.SBTTL WRTFIL 

;Issue error message 
;Set error flag 
;Return to caller 

Synchronous Output 

This routine writes to the output file opened 
on channel O. 

Returns with C-Bit SET on error. 

Note: All registers except RO are preserved. 

WRTFIL: MOV 
MOV 
MOV 
CLR 
CLR 

R1,-CSP) 
R2,-CSP) 
R3,-CSP) 
R3 
R1 
IBUFFER,R2 

;Save registers 

;Clear counter 
;Clear block number 
;Load buffer address 10$ : 

20$: 

WERR: 

EXIT: 

MOV 
MOV 
INC 
CMP 
BNE 
.WRITW 
BCS 
INC 
CMP 
BLT 
CLC 
BR 

R3,CR2)~ ;Store counter 
R3 ;Increment counter 
R2,IBUFFE ;At end of buffer? 
20$ jLoop if not 
IEMTARG,IO,IBUFFER,1256.,R1 
WERR ;Branch on error 
R1 ;Update block number 
R1,110. ;10~ blocks written? 
10$ ;Branch if not 

;Clear error flag 
EXIT ;Otherwise, done 

.PRINT IWERRMS 
SEC 

;Issue write error 
;Set error flag 
;Restore registers MOV CSP)+,R3 

MOV CSP)+,R2 
MOV CSP)+,R1 
RETURN 
.SBTTL 

CLSCHN: . CLOSE 
BCC 

CLSCHN 
10 
RESET 

;Return to caller 
Close File 

;Close output file 
;Branch on success 

321 



322 Programming with RT-11, Volume 2 

.PRIHT IPRTCT ;Is!lue file protected 
PRGCHH: ;Purge output file 
RESET: .SRESET ;Re!let !lY!ltem 

RETURH ;Return to caller 
.SBTTL MAIH PROGRAM 

START: CALL SETUP ;Open output file 
BCS START ;Loop on error 
CALL WRTFIL ; Wr ite file 
BCS 10$ ;Branch on error 
CALL CLSCHH ;Clo!le the output 
BR 20$ file and exit 

10$ : CALL PRGCHH ;Purge output file 
20$: .EXIT ;Ex!t 

.EHD START 

.EXECUTE PR1902.MAC 
Specify output filename 
*DK:TEST1.DAT-

.DUMP/TERMIHAL TEST1.DAT/HOASCII 
DK:TEST1.DAT 
BLOCK HUMBER 000000 
000/ 000000 000001 000002 000003 000004 000005 000006 000007 
020/ 000010 000011 000012 000013 000014 000015 000016 000017 
040/ 000020 000021 000022 000023 000024 000025 000026 000027 
060/ 000030 000031 000032 000033 000034 000035 000036 000037 
100/ 000040 000041 000042 000043 000044 000045 000046 000047 
120/ 000050 000051 000052 000053 000054 000055 000056 000057 
140/ 000060 000061 000062 000063 000064 000065 000066 000067 

760/ 000370 000371 000372 000373 000374 000375 000376 000377 

BLOCK HUMBER 000001 
000/ 000400 000401 000402 000403 000404 000405 000406 000407 
020/ 000410 000411 000412 000413 000414 000415 000416 000417 
040/ 000420 000421 000422 000423 000424 000425 000426 000427 

.DIR TEST1.DAT 
21-Mar-84 

TEST1 .DAT 10 21-Mar-84 
1 Files, 10 Blocks 
552 Free blocks 



Solutions to Practices 

19-1. FORTRAN IV 

.EDIT/CREATE PR1902.FOR 

C 
C 
C 
C 
C 

C 
10 

20 

PROGRAM PR1902 

Solution to 19-1. 

Program creates a 10 block long output file. 

LOGICAL*1 SETUP.WRTFIL 
LOGICAL*1 ERROR 

ERROR - SETUPC) 
IF CERROR) GO TO 10 
ERROR - WRTFILNC) 
IF CERROR) GO TO 20 
CALL CLSCHN 
GO TO 30 
CALL PRGCHN 

Open output file 
Try again on error 
Output the data 
Stop on error 
Close output file 

Purge output file 
30 CALL EXIT 

END 
FUNCTION SETUP 

C 
C This routine gets a command string and creates 
C the specified output file. The CSI is used. 
C 
C Returns .TRUE. on error. 
C 

C 

C 

LOGICAL*1 SETUP 
INTEGER*2 OUTCHN 
COMMON /CHNNLS/ OUTCHN 
LOGICAL*1 FRSTTM 
DATA FRSTTM/.TRUE./ 
INTEGER*2 DEFTVP(4).FILESC39).LENGTH 
DATA DEFTVP/4*0/ 

IF C.NOT. FRSTTM) GO TO 10 
OUTCHN - IGETCC) 
FRSTTM • • FALSE. .! 

Allocate output 
channel only once 

C Output prompt and parse command string. 
C 
10 CALL PRIMTC'Specify output file:') 

IF CICSICFILES.DEFTVP ••• O) .NE. 0) GO TO 100 
C 
C Fetch device handler and create output file. 
C 

C 

IF CIFETCHCFILES(1» .NE. 0) GO TO 101 
IF CIENTERCOUTCHN.FILES(1).10) .LT. 0) 

GO TO 104 
SETUP • .FALSE. ! No error 
RETURN 

323 



324 Programming with RT -11, Vdtume 2 

C ERROR ROUTIHES 
C 
100 CALL PRIHT('Error on CSI call') 

GO TO 200 
101 CALL PRIHT('Error on FETCH of output handler') 

GO TO 200 
104 CALL PRIHT('Error on creation of output file') 
200 SETUP - .TRUE. ! Error 

RETURH 
EHD 
FUHCTI OH WRTF I L 

C 
C Single buffered, synchronous output routine. 
C 
C Returns .TRUE. on error. 
C 

C 

LOGICAL*1 WRTFIL 
IHTEGER*2 OUTCHH 
COMMOH ICHHHLSI OUTCHH 
IHTEGER*2 BUFFER(256),BLOCK 

C BUild a buffer and write it to the file. 
C 

10 

ICT • 0 
DO 50 BLOCK-0,9 
DO 10 1-1,256 
BUFFER<I) • I CT 
ICT • ICT+1 
COHTI HUE 

! Reset counter 

Store counter 
Increment counter 

IF (IWRITW(256,BUFFER,BLOCK,OUTCHH) .LT. 0) 
GO TO 101 

50 COHTI HUE 
WRTFIL = .FALSE. 
RETURH 

! Indicate success 

101 CALL PRIHT('Write error, output aborted') 
140 WRTFIL •. TRUE. 

C 

RETURH 
EHD 
SUBROUTIHE CLSCHH 

C Close output file. 
C 

C 

IHTEGER*2 OUTCHH 
COMMOH ICHHHLSI OUTCHH 
IF (ICLOSE(OUTCHH) .EG. 4) CALL PRIHT 

('Protected output file already exists') 
RETURH 
EHD 
SUBROUTIHE PRGCHH 

C Purge channel. 
C 

IHTEGER*2 OUTCHH 
COMMOH ICHHHLSI OUTCHH 



Solutions to Practices 

CALL PURGE(OUTCH~) 
RETUR~ 

E~D 

.EXECUTE/LI~KLIB:SY:FORLIB PR1902.FOR 
Specify output filename 
tlDK:TEST2.DAT-

.DUMP/TERMI~AL TEST2.DAT/~OASCII 

DK:TEST2.DAT 
BLOCK ~UMBER 000000 
0001 000000 000001 000002 000003 
0201 000010 000011 000012 000013 
0401 000020 000021 000022 000023 
0601 000030 000031 000032 000033 
1001 000040 000041 000042 000043 
1201 000050 000051 000052 000053 
HOI 000060 000061 000062 000063 

.DIR TEST2.DAT 
21-Mar-84 

TEST2 .DAT 10 21-Mar-84 
1 Files, 10 Blocks 
502 Free blocks 

CHAPTER 20 

20-1. MACRO-11 

.EDIT/CREATE PR2001.MAC 

000004 000005 000006 
000014 000015 000016 
000024 000025 000026 
000034 000035 000036 
000044 000045 000046 
000054 000055 000056 
000064 000065 000066 

. TI TLE PR2001 Solution to 20-1 

.E~ABL LC 

.MCALL .DATE .PRI~T .EXIT .TWAIT .QSET 

.MCALL . TTI~R .PEEK .POKE .MRKT .RCTRL 

.GLOBL TIME DATE j SYSLI B routlnes 
JSW 44 jJob Status Word 
LOWER .. 40000 jLower Case bit 
SPEC .. 10000 jSpecial TT mode bit 
RETR~ 100 j Inhibit TT wait bit 

EMTBLK: .BLKW 4 jEMT Argument block 
TIMARG: .BYTE 1,0 jTIME argument block 

.WORD TIMBF 

325 

000007 
000017 
000027 
000037 
000047 
000057 
000067 



326 Programming with RT -11, Volume 2 

DATARG: .BYTE 
.WORD 

1 ,0 
DATBF 
0,2.*60. 
0,20.*60 . 
o 

jDATE argument block 

DELAY: 
LIMIT: 
FLAG: 
GEL: 
MSG: 
TIMBF: 
DATBF: 
NOTIM: 
NOGUE: 
INSTR: 

OUT: 

INBF: 

.WORD 

. WORD 

.WORD 

. BLKW 

.ASCII 

.ASCII 

.ASCIZ 

.ASCIZ 

.ASCIZ 
· ASC II 
.ASCIZ 
.ASCII 
· ASC I I 
• BLKB 
.EVEN 

20.*10 . 
liThe time is: " 
"HH:MM:SS, on " 
"DD-MMM-YY" 

j2 second delay (tics) 
;Time limit (20 secs) 
j20 secs delay expired 
jGueue element buffer 

"Please set the date and time" 
"Not enough queue elements" 
"Type as much as.you can in 2" 
" seconds, starting now:" 
(1S>(12>"You managed to type:" 
(1S>(12>(12> 
80 . 

START: • PEEK "EMTBLK,"JSW 
RO,R1 

jGet JSW 

G01 : 

NO: 

LOOP: 

10$ : 

20$: 

MOV 
BIS 
.POKE 
.RCTRLO 
MOV 
JSR 
.DATE 

jCoPY JSW into R1 
"LOWER,R1 ;Enable lower case 
"EMTBLK,"JSW,R1 ;Set JSW 

"TIMARG,RS 
PC,TIME 

jReset Control/O 
jLoad argument block 
jCALL TIME 
jGet date 

TST RO jDate specified? 
jBranch if so BNE G01 

.PRINT "NOTIM 

.EXIT 
jNo, ask for user 
j to set dateltime 
jLoad argument block 
jCALL DATE 

MOV 
JSR 

"DATARG,RS 
PC,DATE 

.PRINT "MSG jPrint date and time 

.GSET 

.MRKT 
BCC 

"GEL,"20. jAllocate queues 
"EMTBLK,"LIMIT,"CRTN,"1 
LOOP jBranch on success 

.PRINT "NOGUE jPrint error message 

.EXIT 
TST 
BNE 
.PRINT 
.PEEK 
MOV 
BIS 
.POKE 
.RCTRLO 

jAnd exit 
FLAG ;Timer expired? 
STOP ;Branch if so, quit 
"INSTR jDisplay instructions 
"EMTBLK,"JSW jEnable special TT 
RO,R1 j mode and inhibit 
"SPEC ! RETRN ,R 1 j TT wa it 
"EMTBLK,"JSW,R1 jSet JSW 

.TWAIT "EMTBLK,"DELAY 
jReset Control/O 
jWait for 2 seconds 
jBranch on error 
jLoad buffer address 
jRead a character 
jBranch if none 

BCS NO 
MOV "INBF,R2 
· TTINR 
BCS 
MOVB 
BR 
.PEEK 
MOV 

20$ 
RO,(R2)+ 
10$ 
"EMTBLK,"JSW 
RO,R1 

jAdd char to buffer 
jRead next char 
jDisable special TT 
j mode and enable 



Solutions to Practices 

BIC "SPEC!RETRti ; TT wait 
.POKE "EMTBLK,"JSW,R1 ;Set JSW 
.RCTRLO ;Reset ContrallO 
CLRB (R2) ;Add terminator byte 
.PRItiT "OUT ;Display text 
BR LOOP ;And repeat 

STOP: MOV "TIMARG,R5 ;Load argument block 
JSR PC,TIME ; CALL TIME 
MOV "DATARG,R5 ;Load argument block 
JSR PC,DATE ;CALL DATE 
.PRItiT "MSG ;Display date & time 
. EXIT ;And exit 

•• MARK TIME COMPLETIOti ROUTItiE •• 

CRTti: MOV 
RTS 

"1,FLAG 
PC 

.EtiD START 

.MACRO PR2001 

.LItiK PR2001,SY:FORLIB 

.RUti PR2001 

;Set time expired 
;Return 

The time is: 14:40:02, on 20-MAR-84 
Type as much as you can in 2 seconds, starting now: 

You managed to type: 

thi 
Type as much as you can in 2 seconds, starting now: 

You managed to type: 

sabcd 
Type as muech as you can in 2 seconds, starting now: 

You maanaged to type: 

efaaaaaaaaaaaaaaaaaaaaa 
Type asa much as you can in 2 seconds, starting now: 

You managed to type: 

aaaaaaaaaaaaaajjj 
Type as much as you can in 2 seconds, starting now: 

You managed to type: 

j j 
Type as much as you can in 2 seconds, starting now: 

You managed to type: 

327 



328 Programming with RT-11, Volume 2 

Type as much as you can in 2 seconds, starting now: 

You managed to type: 

121 
Type as much as you can in 2 seconds, starting now: 

You managed to type: 

21212121212121212121212 
The time is: 14:40:23, on 20-MAR-S4 

20-1. FORTRAN IV 

.EDIT/CREATE PR2001.FOR 

PROGRAM PR2001 
C 
C Solution to 20-1. 
C 
C Get and print time and date, exiting if no date. 
C Loop reading from the terminal every 2 seconds 
C for a total of 20 seconds. Print the new time 
C and date and exit. 
C 

C 

EXTERI'IAL CRTI'I 
BYTE MSGBFR(100), TIMSTR(S), TODAY(S) 
II'ITEGER*2 AREA(4), DELAY(2), FLAG 
COMMOI'I /DATA/ FLAG 

CALL IPOKE("44,IPEEK("44).OR."40000) 
CALL RCTRLO Enable lower case 
CALL TIME(TIMSTR) Get current time 
CALL DATE(TODAY) and date 
IF (TODAY(1) .EG. ' ') 

STOP 'Please set the date and time' 
TYPE 10,TIMSTR,TODAY 

10 FORMAT (' The time is: ',SA1,', on ',SA1) 
IF (IGSET<3) .I'IE. 0) 

STOP 'l'Iot enough queue elements' 
FLAG a 0, ! Clear timer flag 
IERR • ITIMER(O,O,20,O,AREA,1,CRTI'I) 
DELAY(1) • 0 Build time delay 
DELAY(2) • 2*60 (delay 2 secs) 

20 IF (FLAG .I'IE. 0) GO TO 60 ! Timer expired 
TYPE 25 



Solutions to Practices 

25 FORMAT (' Type as much as you can in 2', 
'seconds, starting now:'/) 

CALL POKE(144,IPEEK(144).OR."10100) 
CALL RCTRLO Change JSW bits 
IERR - ITWAIT(DELAY) Wait for 2 seconds 
DO 40 1-1,100 
IERR - ITTINR() Accept a character 
IF (IERR .LT. 0) GO TO 50 ! None available 
MSGBFR(I) - IERR Store character 

40 CONTI NUE 
50 MSGBFR(I) • 0 Mark end of buffer 

CALL IPOKE("44, IPEEK("44>'AND .. NOT."10100) 
CALL RCTRLO ! Reset JSW bits 
TYPE 55 

55 FORMAT (' You managed to type:',/) 
CALL PRINT(MSGBFR) Display text read 
GO TO 20 Repeat until timeout 

60 CALL TIME<TIMSTR) Get current time 
CALL DATE<TODAY) and date 
TYPE 10, TI MSTR, TODAY Output time & date 
CALL EXIT Exit 
END 
SUBROUTI NE CRTN( ID) 

C 
C ** TIMER COMPLETION ROUTINE ** 
C 
C Runs after 20 seconds and sets a flag in the 
C common data region to indicate that the MAIN 
C PROGRAM should now stop. 
C 

INTEGER*2 ID,FLAG 
COMMON IDATAI FLAG 
FLAG • 1 
RETURN 
END 

Set timer flag 

.EXECUTE/LINKLIBRARY:SY:FORLIB/FORTRAN PR2001 
The time is: 15:02:49, on 20-MAR-84 
Type as much as you can in 2 seconds, starting now: 

You managed to type: 
abc 

Type as much as you can in 2 seconds, starting now: 

You managed to type: 
dthis is a test 

Type as much as you can \n 2 seconds, starting now: 

You managed to type: 
of the emerg 

329 



330 Programming with RT-ii, Volume 2 

Type as much as you can in 2 seconds, starting now: 

You managed to type: 
ency 

Type as much as you can in 2 seconds, starting now: 

You managed to type: 
121212 

Type as much as you can in 2 seconds, starting now: 

You managed to type: 
129999999 

Type as much as you can in 2 seconds, starting now: 

You managed to type: 
9999999999999999999999999999999999999999 

Type as much as you can in 2 seconds, starting now: 

You managed to type: 
9999999999 

The time is: 15:03:11, on 20-MAR-84 



Index 

ABORT command, 95 
Absolute locations: 

reaching from FORTRAN IV pro­
grams, 27-30 

reaching from MACRO-ll pro-
grams, 25-27 

ACCEPT statement, 43, 66 
AJFL T function, 13 
AND operator, 29 
Arguments: 

for MACRO-ll programmed re­
quests, 7, 9 

passing of, 9-10 
ASCII directive, 79 
ASCIZ directive, 79 
ASECT directive, 22, 45 
Asynchronous mode, 59,61, 133-

134 
Asynchronous requests, 135-159 

formats for, 135-136 
for multiple buffering, 136-159 
send and receive, 191 

Asynchronous terminal status, 101 
Asynchronous terminal status word, 

99, 101 

Background jobs, starting, 39-40 
See also ForegroundlBackground 

monitor 
BlC instruction, 27, 77 
BlCB instruction, 27 
BlS instruction, 27, 77 
BlSB instruction, 27 
BLKB directive, 79 

Blocking, 176, 177-181 
overriding, 76-79 
programmed requests and, 178 
RMON and, 177-181 

Block replaceable devices, transfers 
to, 120-121 

BUFFER option, 38, 211 
Buffers, 60 

send and receive, 194-196 
shared, 197-201 
terminal 110, 70-72, 79-82 
See also Multiple buffering 

BYTE, 73, 79 
Byte 52, 11, 12, 22 
Byte 53, 11, 23,28 
Byte 56, 23 
Byte 57, 23 
Byte 276,31 
Byte 277, 31 
Bytes! accessing, 26-27 

CALL statement, 13, 198 
CDFN request, 124, 220 
Chain information area, 43 
Chaining, 43-46 

in FORTRAN IV programs, 46 
in MACRO-ll programs, 44-46 

CHAIN request, 45,46 
Channel: 

closing, 121-122 
opening, 115-117 
selecting, 114 
system-maintained, 123-124 

Channel copy r'3quest, 203 

331 



332 Index 

Channel numbers, 114 
Channel status word (CSW), 169 
CHCOPY request, 203 
Clock. See Time 
CLOSEC request, 65, 114, 122 
CLOSE request, 65, 116, 121-122, 

170, 203 
CLOSE statement, 170, 220 
CMKT request, 263-264, 269 
CNTXSW request, 182, 183 
Commands, passing, 42-43 
Command string: 

format of, 228-230 
information in, 228 

Command String Interpreter (CSI), 
65, 220, 227-247 

calling in general mode, 233-237 
calling in special mode, 237-247 
file number assignment by, 232, 

233 
modes, 233-247 
operations performed by, 228 
options, 230, 235-237, 239, 240 
program interface with, 231-233 

COMMON block, 46 
Communication, 190-206 

through files, 201-203 
through send and receive requests, 

190-196 
through shared buffers, 197-201 

Completion routines, 161-171 
conventions for writing, 168-169 
restrictions on, 169-171 
scheduling under FB monitor, 

165-168 
scheduling under SJ monitor, 163-

164 
COMPLEX, 49 
CONCAT subroutine, 85 
Configuration word, 31 
Console, system, 94-96 
Context switching, 176, 181-182 
Conversion routines, 48, 51-52 
CSI. See Command String Interpreter 
CSIGEN request, 65, 233-235 
CSISPC request, 65, 238 
CSTRING argument, 231 
CSW. See Channel status word 
CTRLlC, 88, 95 
CTRLlF,95 
CTRLlO, 88-89, 100 
CTRLlX, 95 
C.USED,124 
CVTTIM routine, 253, 259 

Data block, 123-124 
DATA statement, 79 
Data structures, 122-127 

system-maintained channels, 123-
124 

system-maintained I/O queue ele­
ments, 125-127 

user-created file specifications, 
123 

Data transfer, 189-206 
communication through files, 201-

203 
communication through send and 

receive requests, 190-196 
communication through shared 

buffers, 197-201 
coordinated foreground/ 

background systems, 203-205 
Date (system), 250-258 

accessing, 255-257 
maintaining, 254-255 
setting, 257-258 
writing programs independent of 

line frequency, 257 
DATE monitor command, 255, 257, 

258 
DATE request, 31, 255-256, 257, 259 
DEFTYP argument, 231, 232 
DEFTYP block, 232 
Device handlers, 63-64, 127-129, 202 

fetching, 106, 107, 113, 235 
releasing, 122 

DL11 interface, 94, 95 
Double-buffered copy. See Multiple 

buffering 
DOUBLE PRECISION, 49 
DSTATUS request, 122, 127-129, 

220 
DZll interface, 94, 95 

ELINIT, 183, 204 
EMT (emulator trap) instruction: 

execution of, 5-7 
generation of, 9-10 

ENTER request, 65, 115-117, 121, 
124, 202-203, 220, 223, 235 

ERRLOG, 183, 204 
Error checking code, 11 
Error conditions, 14-16 

control of, 15 
floating point exception handlers, 

16 
in FORTRAN IV requests, 14 



Index 

in MACRO-II requests, 10-12 
serious, 12, 15 
trap handlers, 15-16 

Error handling: 
under the FB monitor, 76, 78 
under the SJ monitor, 74-75, 78 
techniques for, 78 
under the XM monitor, 78 

Error logging, 204 
Error return: 

in FORTRAN IV programmed 
requests, 14 . 

in MACRO-II programmed 
requests, 10-12 

ERROUT, 183, 204 
Event-driven 110 requests, 159-172 

applications for, 171-172 
completion routines, 161-171 
under FB monitor, 165-168 
priority levels, 162 
scheduling, 162-168 
send and receive, 191 
under SJ monitor, 163-164 

Event-driven mode, 59-60, 134 
Exiting, 40-42 

from FORTRAN IV programs, 41-
42 

from MACRO-11 programs, 41 
EXIT request, 41, 42 
Extended Memory (XM) monitor: 

chaining with, 44 
error handling under, 78 
impure area of, 32-34 
mark-time routines under, 259 
program high limit in, 22 
queue elements under, 125 
SETTOP request under, 215-217 
system device handler under, 63 
system message handler under, 

191 
USR swapping and, 219 

Extension configuration word, 31 
EXTERNAL statement, 161, 169, 262 

FB monitor. See Foreground/ 
background monitor 

FETCH request, 65, 107, 113, 220, 
223 

FIFO. See First in-first out method, 
169 

File input/output, 64-65 
Files, communication through, 201-

203 

333 

File specification format, 44, 46 
See also RAD50 file descriptors 

File specifications, 123, 242 
Fill character, 23 
Fill count, 23 
First in-first out (FIFO) method, 

165, 166, 184, 194, 202 
Floating point exception handlers, 

16 
Foreground/Background (FB) 

monitor: 
error handling under, 76, 78 
impure area of, 32-34 
information areas in, 21 
mark-time routines under, 259 
memory allocation under, 210 
overriding job blocking under, 76-

79 
priority levels under, 125 
queue elements under, 125 
scheduling under, 165-168, 176-

186 
system device handler under, 63 
system message handler under, 

191 
time under, 250 

Foregroundlbackground systems, co­
ordinated, 203-205 

Foreground jobs: 
PRINT request from, 85 
starting, 38 

FORTRAN IV completion routines, 
164, 169, 170-171 

FORTRAN IV ors, 42, 43, 66-67, 
114, 170, 213-214, 221 

FORTRAN IV programmed requests, 
12-14 

asynchronous 1/0, 135-136 
closing a channel, 121-122 
Command String Interpreter and, 

231, 232, 238 
date, 256-257, 258, 259 
device status, 128 
disabling CTRLlC, 88 
dynamic allocation of memory, 

213-214 
error return, 14 
event-driven, 161 
fetching device handlers, 107, 113 
for file I/O, 65 
form of, 13 
GTLIN request, 86 
IGETSP request, 218 
line-oriented input, 86 



334 Index 

FORTRAN IV requests (continued) 
mark-time requests, 261-262, 264 
multiterminal, 96 
opening a channel, 117 
PRINT request, 85 
for processing ASCII strings in CSI 

format, 65 
queued I/O, 63,107,110-112,117, 

121-122, 126-127 
resetting CTRLlC, 88 
resetting CTRLlO, 89 
resuming a job, 185 
send and receive, 191 
special function 110, 66 
suspending a job, 185 
synchronous I/O requests, 118 
system-maintained channels, 124 
system-maintained queue ele-

ments, 126-127 
terminal 110, 61, 73-74 
time, 251, 252, 258, 259 
timed waits, 266-267, 269 
See also names of specific re-

quests 
FORTRAN IV programs: 

buffers, 79, 81 
chaining in, 46 
CSI special mode in, 241, 245-247 
error handling, 75, 76, 78 
exiting from, 41-42 
110 statements in, 62 
for multiple buffering, 145-147, 

156-159 
overriding job blocking in, 77 
passing commands from, 42-43 
RAD50 in, 49 
reaching absolute locations from, 

27-30 
REENTER command in, 39 
retrieving data from impure area, 

34 -
retrieving data from RMON fixed 

offset area, 32 
shared buffers in, 197-198 
suspending execution of, 266-267, 

269 
FORTRAN IV subroutines, 7, 8 

See also FORTRAN IV pro­
grammed requests; System 
services 

. FRUN command, 38, 211 
FRUNITERMINAL, 96 

General mode (CSI), 233-237 
functions, 234 

in MACRO-ll program, 241, 243-
244 

GET command, 39 
GTIM request, 31, 251, 255, 256, 259 
GTJB (get job info'rmation) request, 

33,211 
GTLIN request, 7, 61, 86-88, 220, 

231 
GVAL request, 32, 97, 217 

HERR,15 

IADDR routine, 197 
I.BLOK, 178-180 
ICDFN request, 124 
ICHCPY request, 203 
ICMKT request, 264, 269 
ICSI request, 65, 238-241 
IDATE request, 256-257, 259 
IDSTAT request, 128 
IENTER request, 65 
IFETCH request, 65, 107, 113 
IFREEC request, 65, 114, 170 
IGETC request, 65, 114, 170 
IGETSP request, 214, 217-219 
Impure area, 32-34 

contents of, 32-33 
locations of, 33 
retrieving data from, 33-34 

INDIR subroutine, 197-198,218 
Inhibit wait bit, 97 
Input/output (110) modes, 56-61, 

133-134 
asynchronous, 59, 61, 133-134, 

135-159 
event-driven, 59-60, 134, 159-172 
nonsynchronous, 57-58, 59-60 
selection of, 60-61 
synchronous, 56-57, 58, 60 

Input/output requests: 
asynchronous, 135-159 
blocking and, 178 
event-driven, 159-172 
synchronous, 117-120 

Input/output systems, 55-67 
file I/O, 64-65 
FORTRAN IV OTS 110, 66-67 
multiterminal, 93-102 
nonsynchronous queued, 131-173 
queued I/O, 63-64, 105-173 
special function 110, 66 
terminal 110, 61-63, 69-90 

INTEGER, 73, 169,218,232 
INTEGER*2,49, 198, 257, 267 
INTEGER*4,8, 13, 253 



Index 

Interfaces, 94, 95 
110. See Input/output 
IPEEKB function, 28, 218 
IPEEK function, 27-30, 197, 218 
IPOKEB function, 28, 218 
IPOKE function, 27-30, 197, 218 
IPUT function, 32 
IQSET request, 126, 135, 260, 266 
·IRAD50 function, 52 
IREADC request, 63, 161, 169 
lREADF request, 63, 161, 169 
lREAD request, 63, 65, 135 
lREADW request, 63, 118, 218 
ISCHED request, 262, 269 
ISDTTM request, 255, 258, 259 
ISLEEP request, 267, 269 
ISPFNC request, 66 
ISPFNF request, 66 
ISPFN request, 66 
ISPFNW request, 66 
ISPY request, 32 
I.STATE, 181 
ITIMER request, 262, 269 
ITTINR request, 61, 73-74, 75, 76, 78 
ITTOUR request, 61, 73-74, 75, 76, 

78, 85 
ITWAIT request, 267, 269 
IUNTIL request, 267, 269 
IWAIT request, 135-136 
IWRITC request, 63, 161, 169 
IWRITE request, 63, 65, 135 
IWRITF request, 63, 161, 169 
IWRITW request, 63, 118 

JADD function, 14 
JJCVT function, 253-254 
Job blocking. See Blocking 
Job status word (JSW) , 22, 23-24, 26, 

27,28,30,42,45,77,78,82,87, 
98,100,114 

JSW. See Job status word 
JTIME routine, 253, 259 

KMON, 23, 37, 38,42-43 

Last in-first out (LIFO) method, 163 
LIMIT directive, 113,214,216 
Limils, 22, 25, 113, 211, 214 

See also Memory 
Line-oriented input, 86-87 
Line-oriented output, 84-85 
LINK command, 210 
LINKIXM option, 216 
LIST MEB directive, 10, 11 
Load image code, 5 

LOCK request, 222, 223, 224 
LOGICAL,73 
LOGICAL*l, 79 

335 

Logical unit number (LUN), 97 
LOOKUP request, 12,65,115-117, 

121, 124, 202, 204, 220, 223, 
235 

Lowercase bit, 98 
LUN. See Logical unit number 

MACRO-11 completion routines, 
164, 168-169, 170 

MACRO-ll programmed requests, 
7-12 

asynchronous 1/0, 135-136 
closing a channel, 121-122 
Command String Interpreter and, 

231,232,238 . 
context switching, 182 
date, 255-256, 258, 259 
device status, 128 
disabling CTRLlC, 88 
dynamic allocation of memory, 

213 
error return, 10-12 
event-driven, 159-161 
expansion of, 10, 11 
fetching device handlers, 107, 113 
file 1/0, 65 
form of, 7-9 
line-oriented input, 86 
mark-time requests, 260-261, 263-

264 
multiterminal, 96 
opening a channel, 116-117 
passing of arguments, 9-10 
PRINT request, 84, 85 
for processing ASCII strings in CSI 

format, 65 
queued 110, 63, 107, 108-109, 116-

117, 121-122, 125-126 
releasing a device handler, 122 
resetting CTRUC, 88 . 
resetting CTRUO, 89 
resuming a job, 185 
return of auxiliary information, 12 
send and receive, 191 
serious error condilions, 12 
special function 1/0, 66 
suspending a job, 185 
synchronous 1/0 requests, 118 
system-maintained channels, 124 
system-maintained queue ele-

ments, 125:126 
terminal 1/0, 61, 72-73 



336 Index 

MACRO-ll requests (continued) 
time, 251, 258, 259 
timed waits, 266, 269 
See also names of specific re­

quests 
MACRO-ll programs: 

buffers, 79, 80 
chaining in, 44-46 
CSI general mode in, 241, 243-244 
error handling, 75, 76, 78 
existing from, 41 
for multiple buffering, 142-144, 

152-155 
overriding job blocking in, 77 
passing commands from, 42 
RAD50 in, 48-49 
reaching absolute locations from, 

25-27 
REENTER command in, 39 
retrieving data from impure area, 

34 
shared buffers in, 197-199 
suspending execution of, 266, 269 

Mark-time routines, 258-269 
cancelling, 263-264 
periodic scheduling, 265 
requests, 269 
scheduling, 260-263 
timed waits, 266, 269 
watchdog routines, 265 

Mask,28-29 
MCALL directive, 7 
Memory, 209-225 

dynamic allocation of, 211-214 
limits, 22, 25, 113, 211, 214 
SETTOP request and, 214-219 
standard use of, 210-211 
USR control and, 219-224 

MFPS request, 35 
Monitor error byte, 22 
Monitor release number, 31 
Monitor version number 
MRKT request, 205, 260-261, 262, 

269 
MTATCH request, 96, 97, 99, 101 
MTDTCH request, 96, 97, 99, 100 
MTGET request, 96, 97, 99, 100, 101 
MTIN request, 96, 100 
MTOUT request, 96, 100 
MTPRNT request, 96, 100 
MTPS request, 35 
MTRCTO request, 96, 100 
MTSET request, 96, 97, 100 
MTSTAT request, 96, 97 
Multiple buffering, 136-159 

benefits of, 137-141 
flowchartsfo~ 141, 151, 160 
FORTRAN IV programs for, 145-

147, 156-159 
implementing, 136 
MACRO-11 programs for, 142-

144, 152-155 
rules for, 148 
use with computation, 141-159 

Multiterminal programmed requests, 
96 

Multiterminal programming, 96-101 
asynchronous terminal status, 101 
debugging, 100 
sequence for, 98-100 
terminal control blocks, 97-98 

Multiterminal support, 94-96 
hardware configuration, 94 
system console, 94-96 

MWAIT request, 190-191,201 

NAME option, 38 
Nonsynchronous modes, 57-58, 59-

60, 133-134 
Nonsynchronous queued in-

put/output, 131-173 
asynchronous requests, 135-159 
event-driven requests, 159-172 
I/O queue elements, 134-135 

NOSWAP option, 219, 221 
Null byte, 42, 79, 85, 86 

Object time system (OTS), 42, 43, 
66-67, 114, 170, 213-214, 221 

OPEN statement, 170 
Options (CSI), 230, 235-237, 239, 

240 
OR operator, 28, 29 
OTS. See Object time system 

Passwords, 25 
PAUSE option, 38 
PC. See Program counter 
PEEK requests, 9, 25-27, 44, 45 
Periodic scheduling, 265 
POKE requests, 9, 25-27, 44 
PRINT request, 4-5, 7, 9, 61, 84-85 
PRINT statement, 66 
Priorities, 162, 167, 176, 177 
Processor status word (PSW): 

EMT instruction execution and, 
5, 6 

gaining access to, 34-35 
Program counter (PC), 5, 6 
Program execution, 37-53 



Index 

chaining, 43-46 
exiting, 40-42 
passing commands to KMON, 42-

43 
RAD50 file descriptors, 47-52 
starting, 38-40 

Programmed requests, 4-7 
EMT instruction, 5-7, 9-10 
executing, 4-5 
load image code, 5 
synchronous 110, 110, 118 

PSW. See Processor status word 
PURGE request, 65, 121-122 
PVAL request, 32 

QSET request, 125, 135, 191, 220, 
223,260,266 

QUEMAN, 185, 205 
QUEUE, 183, 185, 204-205 
Queued input/output, 63-64, 105-129 

closing a channel, 121-122 
communication requests and, 190 
concepts of, 106-107 
data structures, 122-127 
device handlers, 106, 107, 113, 

122, 127-129 
fetching device handlers, 107, 113 
opening a channel, 115-117 
performing, 107-122 
releasing a device handler, 122 
selecting a channel, 114 
standard sequence of requests, 

107,108-112 
synchronous 110 requests, 117-120 
system-maintained channels, 123-

124 
system-maintained 110 queue ele­

ments, 125-127 
transfers to block replaceable de­

vices, 120-121 
transfers to sequential devices, 

121 
user-created file specifications, 

123 
See also Nonsynchronous queued 

input/output 
Queue element, 106 

in nonsynchronous 110, 134-135 
structure of, 126 
system-maintained, 125-127 

Queue manager, 165-167 
Queuing system, 204-205 

RAD50 file descriptors, 47-52 
in FORTRAN IV programs, 49 

337 

in MACRO-ll programs, 48-49 
SYSLIB routines for conversion, 

51-52 
Radix-50 conversion, 8 
RCHAIN subroutine, 46 
R command, 38, 39 
RCTRLO request, 89 
RCVDC request, ,204, 205 
RCVDW request, 204 
READC request, 63, 159, 205 
READ request, 63, 65, 135, 138-139, 

148, 149-150 
READ statement, 43, 66 
READW request, 63, 118, 139, 149 
REAL*4, 13, 252 
REAL*8,49 
Receive buffers, 194-196 
REENTER command, 39 
RELEAS request, 65, 122 
RENAME request, 220 
RESET operation, 41 
Resident Monitor (RMON), 20-34 

blocking and, 177-181 
completion routines and, 165, 168 
fixed offset area of, 30-32 
impure area of, 32-34 
memory allocation and, 211 
memory areas of, 20, 21 
in queued 110, 106, 120-121, 125 
queue elements and, 125 
SETTOP request and, 216-217 
system code in, 63-64 
system communication area of, 20-

25 
terminal system codes in, 61 
in transfers to block replaceable 

devices, 120-121 
WAIT request and, 133 

RESUME request, 185 
R format specifier, 48, 49 
RMON. See Resident Monitor 
RMON fixed offset area, 30-32 

application example, 31 
contents of, 30-31 
retrieving data from, 31-32 

RSUM request, 178, 185 
RTI (return from interrupt) instruc­

tion, 6 
RUN command, 38, 39 
Runnable level, 177 

SCCA request, 88 
Scheduler, 165-167, 181 
Scheduling, 162-168, 175-186 

basic concepts of, 176 



338 Index 

Scheduling (continued) 
blocking and, 176, 177-181 
context switching, 176, 181-182 
efficiency in, 182-184 
under FB monitor, 165-168, 182-

184 
priorities and, 162, 176, 177 
under SJ monitor, 163-164 
waiting for specific events, 184-

186 
Scheduling pass, 168, 180, 181 
SDTTM request, 255, 258, 259 
SECNDS function, 251-252, 259 
Send and receive buffers, 194-196 
Send and receive requests, 190-196 
Sequential devices, transfers to, 121 
SERR,15 
SETCMD request, 42-43, 258 
SET TERM CONSOL, 96 
SETTOP request, 22, 213-219 

IGETSP routine, 217-219 
restrictions on use of, 217 
USR swapping and, 220, 221, 222, 

223 
under XM monitor, 215-217 

SET TT NOQUIET, 88 
SET TT QUIET, 88 
SFPA,16 
Shared buffers, 197-201 

. benefits of, 199-200 
disadvantages of, 200 
restrictions on use of, 200 
setting up, 197 
synchronizing access to, 200-201 

Single-character input/output, 72-79 
error handling, 74-76, 78 
FORTRAN IV requests, 73-74 
MACRO-i1 requests, 72-73 
overriding job blocking, 76-79 

Single Job (SJ) monitor: 
error handling under, 74-75, 78 
GTJB request, 33 
implementing a waiting, condition 

under, 185 
mark-time routines under, 259 
priority levels under, 162, 170 
queue elements under, 125 
scheduling completion routines 

under, 163-164 
system device handler under, 63 
time under, 250 

SJ monitor. See Single Job monitor 
Special function input/output re­

quests, 66 
Special mode (CSI), 237-247 

file specifications returned by, 242 
in FORTRAN IV program, 241, 

245-247 
functions, 234 

Special mode terminal bit, 25, 98 
SPFUN request, 66 
SPND request, 178, 185, 204 
SRESET request, 122 
SRUNITERMINAL, 96 
STACK option, 22, 210 
Stack pointer, 22 
START command, 39-40 
STOP command, 41 
Subroutines. See System services 
SUSPND request, 185 
Synchronous input/output requests, 

117-120,178,191 
Synchronous mode, 56-57, 58, 60 
SYSCOM. See System communica-

tion area 
SYSLIB, 3, 7, 13,41 
SYSLIB conversion routines, 51-52 
SYSMAC.SML, 7 
System communication area (SYS-

COM),20-30 
application examples, 24-25 
contents of locations in, 22-23, 24 
gaining access to, 25-30 
job status word, 22, 23-24 

System console, 94-96 
System generation features word, 31 
System information, 19-35 

gaining access to, 25-30 
impure area, 32-34 
processor status word, 34-35 
RMON fixed offset area, 30-32 
system communication area, 20-25 

System job option, 176 
System macros. See MACRO-l1 

programmed requests 
System-maintained channels, 123-

124 
System-maintained queue elements, 

125-127 
System message handler, 191-194 
System services, 3-16 

error conditions in requests, 10-
12, 14-16 

FORTRAN IV programmed re­
quests for, 12-14 

MACRO-ll programmed requests 
for, 7-12 

programmed requests for, 4-7 
trap handlers, 15-16 
types of, 7, 8 



Index 

System time and date. See Date; 
Time 

Terminal configuration word, 97, 98, 
99 

Terminal control blocks (TCBs), 97-
98 

Terminal echo, 83 
Terminal input/output, 61-63, 69-90 

buffers, 70-72, 79-82 
error handling, 74-76, 78 
error processing schemes, 78 
handling CTRLlC, 88 
handling CTRLlO, 88-89 
input from indirect command 

files, 87-88 
line-oriented input, 86-87 
line-oriented output, 84-85 
single-character 1/0, 72~79 
special characters, 71-72 

TERMINAL option, 94 
Terminals, multiple. See Multiter­

minal programming; Multiter­
minal suport 

Terminal special mode, 83-84 
Terminal state byte, 99 
TIMASC routine, 253, 259 
Time (system), 31, 250-258 

accessing, 251-253 
converting to 32-bit integers, 253-

254 
maintaining, 250-251 
setting, 257-258 
writing programs independent of 

line frequency, 257 
Time-dependent programs, 249-269 

mark-time routines, 258-269 
system time and date, 250-258 

Timed waits, 266-267, 269 
TIME monitor command, 250, 257, 

258 
TIME request, 252, 259 
TLOCK request, 223-224 
TOP option, 211 
TRANSFER option, 38 
Trap handlers, 15-16 
TRPSET programmed request, 16 
TTINR request, 61, 72-73, 75, 76, 78, 

83 
TTOUTR request, 61, 72-73, 75, 76, 

78 
TTYIN request, 61,73, 75, 76, 78, 

83, 87 

339 

TTYOUT request, 61, 73, 75, 76, 78, 
85 

TWAIT request, 178, 184, 186, 266, 
269 

TYPE statement, 66 

UNLOCK request, 222, 223 
User-created file specifications, 123 
User error byte, 23, 28 
User Service Routine (USR) load ad-

dress, 23 
USR,65, 106, 115, 116, 170 
USR base address, 31 
USR contention, 223-224 
USR operations, sequential, 222-223 
USR requests, 178 
USR swapping, 170, 215, 219-224 

algorithm, 219-221 
problems and restrictions on, 221-

222 

Virtual debugging technique (VDT), 
100 

V overlays, 216 

WAIT request, 59, 61, 133, 135-136, 
139, 148, 149-150, 178, 184 

Waits, timed, 266-267, 269 
Watchdog routines, 265 
Word, 5, of GTJB array, 33 
Word 40, 22, 38 
Word 42,22 
Word 44, 22, 23-24, 26,45 

See also Job status word 
Word 46, 23, 28, 220 
Word 50, 22, 25 
Word 54, 22, 26, 27-28 
Word 56,182 
Word 266,31 
Word 300, 31 
Word 370, 31 
Word 372, 31 
Word locations, accessing, 26 
WRITC request, 63, 159, 205 
WRITE request, 63, 65, 135, 138-139 
WRITE statement, 66, 150 
WRITW request, 63, 118 

XM monitor. See Extended Memory 
monitor 

Zero byte, 43 






