

UNIX for VMS Users

VAX Users Series

Digital Press VAX Users Series

Philip E. Bourne
UNIX for VMS Users

Paul C. Anagnostopoulos
VAX/VMS: Writing Real Programs in DCL

James F. Peters 11/ and Patrick Holmay
The VMS User's Guide

Ronald M. Sowey and Troy T. Stokes
A Beginner's Guide to VAX/VMS Utilities and Applications

UNIX for VMS Users

Philip E. Bourne

Digital Press

To Roma for her love and understanding
To Scott for the inspiration that only a 3 year old can give

To my parents for continuing to convince me that anything is possible

Copyright © 1990 by Digital Equipment Corporation

All rights reserved. No part of this publication may be reproduced. stored in a retrieval
system. or transmitted. in any form or by any means. electronic. mechanical. photo­
copying. recording. or otherwise. without prior written permission of the publisher.

9 8 7 6 5 432

Order number EY-CI77E-DP

Printed in the United States of America

Trademarks and trademarked products mentioned in this book include: Alliant Com­
puter Systems Inc .. Concentrix: Apple Computer Inc .. AUX: AT&T. UNIX: Digital
Equipment Corporation. DCl. DECnet. DECate. DECspe11. DECUS. the Digital logo.
DIGITAL. MicroVAX II. Rainbow. TPU. UlTRIX. VAX. VAXcluster. VAXstation.
VMS. VT100; International Business Machines. IBM. AIX: Microsoft Corp.. MS­
DOS. Xenix; Microsystems Engineering Corp.. MASS-II: Silicon Graphics Computer
Systems. IRIS: Sun Microsystems Inc .. NFS. SUN-OS: The Massachusetts Institute
of Technology. X Window System.

Design: Sandra Calef
Production coordination: N.lncy Benjamin
Composition: Compset. Inc.

Library of Congress Catalo~ing-in-PublicationData

Bourne. Philip E.
UNIX for VMS users I Philip E. Bourne.

p. cm.
Includes bibliographical references.
ISBN 1-55558-034-3
I. UNIX (Computer operating system) I. Title.

QA76.76.063B67 1989
005.4'429-dc20

89-36398
CIP

7

2

3

Contents

Preface ix

Introduction 7
1. 1 Evolution 3
1.2 The Future 8

Fundamentals 70
2. 1 System Internals 11
2.2 Command Structure and File Naming 20
2.3 Device, Directory, and File Structures 24
2. 4 Special Characters 34
2.5 Using Wildcards 36
2.6 Summary 36

Getting Started 38
3. 1 Terminal Characteristics 39
3.2 User Environment 45
3.3 Logging Out 53
3.4 Control Key Functions 54
3.5 Editing and Recall of Command Lines 54
3.6 On-Line Help 57
3.7 Printed Documentation 60
3.8 Summary 60

Contents v

4

5

6

7

8

9

VI Contents

Introductory File Management 63
4. 1 Displaying Directory Contents: Is 65
4.2 File Characteristics 74
4.3 Determine the Current Directory: pwd 77
4.4 Change Directory: cd 78
4.5 Create a Directory: mkdir 78
4.6 Delete a Directory: rmdir and rm -r 79
4.7 Finding Files: find 79
4.8 Display a File: cat and more 80
4.9 Copy a File: cp 81
4.10 Rename a File: mv 82
4.11 Delete a File: rm 83
4. 12 Summary 83

Editing 86
5.1 Line Mode Editing: ex 88
5.2 UNIX Screen Editor: vi 94
5.3 The Stream Editor: sed 101
5.4 Pattern Matching and Processing: awk 104
5.5 Summary 117

Communicating with Other Users 119
6. 1 Batch Communications: mail 120
6.2 Interactive Communications: talk and write 131
6.3 Summary 132

Monitoring and Utilizing System Resources 136
7. 1 Monitoring Users and Their Processes 138
7.2 Monitoring the System 147
7.3 Modifying Processes 151
7.4 Summary 155

Devices, Queues, and Background Processing 157
8. 1 Using Print Queues 159
8.2 Using Tape Drives 164
8.3 Background Processing 176
8.4 Batch Processing 180
8.5 Summary 181

Advanced File Management 184
9. 1 Advanced Directory Display Commands 186
9.2 Advanced File Display Commands 187
9.3 Advanced Directory Management Commands 189

247

259
263

10

11

9.4 Advanced File Management Commands 192
9.5 Summary 205

Programming 207
10. 1 Compiling and Linking 210
10.2 Simplifying Compilation: make 213
10.3 Debugging Programs: error and dbx 218
10.4 Profiling: prof and gprof 223
10.5 Maintaining Libraries: ar and ranlib 226
10.6 Summary 229

Shell Programming 233
11. 1 Executing Shell Scripts 236
11.2 Variables 237
11.3 Filename Modifiers 243
1104 Variable Expansion 244
11.5 Comparison Operators 245
11.6 File Operators 246
11.7 Mathematical Operators
11.8 Flow Control 251
11.9 Built-in C Shell Commands
". 10 Debugging Shell Scripts
11. 11 Summary 263

12 Text Processing 27J
12.1 What Are the Tools? 274
12.2 troff and DSR Compared 275
12.3 troH/nroH Arguments and Options
1204 Summary 284

283

13 Processor-to-Processor Communications 288
13. 1 Communication Overview 292
13.2 Network Communications 294
13.3 Modem Communications 311
1304 Usenet: Electronic Bulletin Board 318
13.5 Communications Between VMS and UNIX 319
13.6 Summary 320

Epilogue 323

Appendix A Command Summaries 325

Contents vii

viii Contents

Appendix B Editor Summaries

Appendix C Important UNIX Files

Appendix D Additional Reading

Glossary 351

Index 357

336

340

343

Preface

~en choosing between two evils, I always like to try the one I've never tried
before.

Mae West

An operating system is like an old friend. You may be in daily contact
with him or only see him occasionally. Over the years, a firm bond of
friendship develops. You come to realize that he is not perfect, and still
you feel comfortable with his idiosyncrasies. In short, you accept him
for what he is.

VMS, the operating system currently used by more than 80 percent of
Digital Equipment Corporation VAX processors, is an old friend to
many of us. Rapid changes in both the hardware and software market­
place, however, could threaten this friendship. Innovative hardware
architectures using RIse (Reduced Instruction Set Computers) technol­
ogy, vectorization, pipelining, and multiprocessors are invading the turf
traditionally held by VAx/VMS machines, from single-user worksta­
tions right up to the large VAXclusters. If you are faced with adopting
one or more of these high- or low-end processors, you will likely need
to learn a version of the UNIX operating system, for UNIX is the oper­
ating system of choice for most pt:"ocessors that use innovative hardware
architectures. You may be attracted by the stability that UNIX provides

Preface IX

x Preface

as a development medium in a rapidly changing hardware market. After
all, UNIX is the closest we have come to a generic operating system,
suited to controlling a variety of hardware from many vendors. What­
ever your reason for learning UNIX, if you are already familiar with
VMS this may well be the book for you.

The book is intended to help you mold the interactive computing skills
that you learned using VMS into the skills necessary for computing in
the UNIX framework. It is not meant to be a UNIX user's manual, nor
is it designed to teach UNIX from first principles. The book draws upon
the experience of observing professionals with varying degrees of VMS
expertise grapple with the concrete and philosophical issues of UNIX.
This book emphasizes Berkeley UNIX (or BSD, Berkeley Software Dis­
tribution) and the C shell, although many of the features discussed are
pertinent to any version of UNIX. Thus, this text should also be useful
to those "migrating" from VMS to ULTRIX, AT&T System V, System
III, Xenix, Version 7, or any other version of UNIX.

Chapter I begins with a brief history of UNIX and VMS. The ideas
underlying the conception of each operating system differ markedly. To
a casual user, these differences result in a UNIX user interface that
appears to be quite different from DCL's. Chapter I does not discuss
any of these differences in detail: the remainder of the book does that.
Rather, Chapter 1explains how these differences came about, and gives
some of the reasons for them. At first glance, such a discussion may
appear superfluous to the central task of learning a subset of useful
UNIX commands. However, an understanding of how UNIX and VMS
have evolved lets one begin to see the more subtle differences between
the two operating systems, differences exemplified throughout this
book. For example, VMS is designed as a series of powerful, self-con­
tained commands which the user issues sequentially. UNIX, on the
other hand, is designed to be modular, so that users piece together two
or more simple modules to form a single complex command string.
Thus, effective use of UNIX requires more than learning a new com­
mand syntax: it requires a new mode of thinking. The best way to intro­
duce this new mode of thought is to try to capture what the original
UNIX developers were thinking when they laid the foundations of
UNIX.

Chapter 1 ends with a brief consideration of the future directions of
UNIX and VMS, based on emerging standards. They may ultimately
evolve into products that look and "feel" very similar.

Before your hands touch the keyboard, you must grasp a number of
ideas that will help prevent later frustration. These ideas are the subject
of Chapter 2. First and foremost are the particulars of how the UNIX C
shell actually interprets a command, in contrast to the VMS Command
Language Interpreter. This discussion introduces the concepts of pipes,
filters, and input and output redirection, features that give great power
to UNIX and which you need to build the complex command strings
mentioned above. Second is the concept of a UNIX disk partition and
file system, in contrast to a VMS physical device and directory. These
UNIX concepts are particularly important for anyone interested in
UNIX system management. UNIX and VMS operating system internals
(data structures, input/output subsystems, and system services) are
compared in only a cursory fashion.

With the formalities out of the way, you are ready to move to the ter­
minal and begin getting acquainted with your new friend. Chapter 3
introduces the basic commands and files governing every terminal ses­
sion, and indicates how they differ from those of VMS. You will learn
how to tailor the environment to get the most from each UNIX terminal
session. Chapter 3 concludes with two topics that VMS users making
the transition to UNIX find the most irksome: the recall and seemingly
cumbersome editing of command lines, and the use of on-line help and
the UNIX document set.

At this point, you should be yearning for some serious interactive com­
puting. Chapter 4 introduces a subset of file management commands that
you are likely to need in the first few terminal sessions. So as not to
bewilder the beginner, we leave the more complex file management
commands for Chapter 9. In Chapter 4, you should begin to comprehend
the power of the UNIX environment. Chapter 5 follows with a compar­
ison of the most commonly used UNIX and VMS line and screen edi­
tors, in preparation for some meaningful application development.
Chapter 5 also introduces two utilities, not available to VMS users, that
offer powerful features for pattern-matching and subsequent file modi­
fication.

At this stage in the learning cycle, you should be ready to communicate
with fellow users and systems staff. Chapter 6 covers the basic features
of interactive communications and batch communications via electronic
mail. For the reader who must communicate with users on remote com­
puters, Chapter 13 revisits electronic mail as part of a discussion of pro­
cessor-to-processor communications.

Preface XI

XII Preface

Effective use of any computer system requires an examination of how
system resources are being consumed. Chapter 7 describes how to per­
form such an examination of the UNIX environment.

Chapter 8 introduces the UNIX equivalents of queuing batch and print
requests and making tape drive requests. There are no surprises for the
VMS user when it comes to printing files in UNIX, but the same cannot
be said of magnetic tape and batch processing. The use of magnetic
tapes in UNIX is in some ways arcane, but the real surprise is the inabil­
ity of UNIX to handle batch processing. Chapter 8 explains that this is
not a shortcoming but a difference in philosophy. UNIX has no need for
batch queues, since you can easily manage multiple tasks interactively.

By the time you get to Chapter 9, you will need more complex file man­
agement commands. Chapter 9 builds upon the introductory discussion
of file management in Chapter 4 by introducing new commands and
options.

Chapter 10 discusses programming using a high-level language in the
UNIX environment and provides insight into the programming tools for
which UNIX is renowned, some of which are available as layered prod­
ucts under VMS. Chapter 10 discusses tools for debugging, profiling,
and maintaining large programs, with examples from the C and FOR­
TRAN languages.

In UNIX, programming is not restricted to a high-level language, inas­
much as you can program the user interface, or shell. Chapter)) dis­
cusses features of shell programming and how it compares to writing
VMS command procedures.

Chapter 12 briefly compares the text processing utilities distributed as
part of the standard UNIX and VMS operating systems. UNIX has an
extensive set of text processing tools that are both powerful and difficult
to use. The word processing software available for personal computers
and desktop publishing software available for workstations are prefer­
able in most cases. Situations in which UNIX text processing tools
might be advantageous are discussed.

Finally, Chapter 13 discusses the use of UNIX in a distributed environ­
ment of UNIX or UNIX and VMS processors. It considers connections
both by fast dedicated networks and by slower asynchronous modems.
The chapter groups network communications on the basis of trusted
host access: the UNIX equivalent to a proxy login. Chapter 13 con-

eludes with a brief discussion of the Network File System (NFS), the
UNIX equivalent of a Local Area VAXcluster (LAVC).

Appendixes A and B summarize all we have learned by means of cross­
reference tables that compare VMS and UNIX commands and editor
functions. The tables also provide the section number where you may
find a detailed discussion of each command. Appendix C summarizes
the various UNIX files introduced throughout the text. Finally, Appen­
dix D provides a chapter-by-chapter list of additional reading for those
who need to know more about a specific topic.

The text emphasizes the practical aspects of UNIX throughout. It is
loaded with everyday examples of performing tasks, each of which is
compared to its closest VMS counterpart. Where no counterpart exists,
that fact is noted. If you have some familiarity with the VMS example
presented, and compare it to the UNIX example and read the explana­
tion, you should become a competent UNIX user in a short time.

Both operating systems are so rich in their versatility and functionality
that producing a concise text meant making some harsh decisions about
what should be included and what should be left out. Undoubtedly, some
readers will feel that certain topics have been covered in excessive detail
and that others have received inadequate treatment. Nevertheless, every
effort has been made to draw attention to and describe the similarities
and differences between UNIX and VMS that are most important to
application users and developers. Any learning process is facilitated by
drawing upon previous experience, and learning UNIX should be no
exception.

Conventions

Throughout this book these conventions are followed:

Convention

form:

example:

$

%

Meaning

The general form of a command.

Particular example of a command defined by form.

A command to the VMS Command Language Inter­
preter. Commands are shown in uppercase.

A command to the UNIX C-shell program. Commands
are shown in lowercase, unless the shell program spe­
cifically requires uppercase.

Preface XIII

Convention

Italics

bold

#

[argument]

(CR)

(CR)

(CTRL)

(ESC)

Meaning

Emphasizes important terminology or features.

A UNIX or VMS command or file.

What follows to the end of the line is a comment (UNIX
only).

What follows to the end of the line is a comment (VMS
only).

Optional argument.

A carriage return in UNIX. Assumed for all commands
and shown in this book only when a special meaning is
implied.

A carriage return in VMS, also assumed for all com­
mands and shown only when a special meaning is
implied.

The control key on the terminal.

The escape key (Ftt on many terminals).

Unlike VMS, UNIX interprets uppercase and lowercase characters dif­
ferently.

VMS
example: $ ShOw UsErS

VAXlVMS Interactive Users
22·0CT·1987 11 :25:34.53

Total number of interactive users = 1
Username Process Name PID
SYSTEM SYSTEM 000000lAE

Terminal
TXAO:

UNIX
%WHO
WHO: Command not found

%who
syste~ tty01 Oct 22 10:39

The who command, found as /bin/who, provides information on each
interactive user, including the login name, the terminal in use, and the
time they logged in to the system.

Philip E. Bourne
Howard Hughes Medical Institute
Columbia University
New York. September /989

XIV Preface

Acknowledgments

This book began as a weekend project which, because of my obsessive
nature, quickly overtook my daily research work. I am indebted to
Wayne Hendrickson for permitting this transgression to occur and for
considering it an important enough contribution to authorize support
from the Howard Hughes Medical Institute (HHMI).

Thanks also to the folks at Convex Computer Corporation who first
introduced me to the world of UNIX, and to Daniel Schainholz who
helped write the HHMI UNIX User's Guide, the forerunner of this
book.

A number of colleagues made significant contributions to the book's
content: thanks go to Peter Mossel, Mark Reboul, Peter Shenkin, and
Janie Weiss, who reviewed the whole manuscript; and to Sorhab Ismail­
Beigi, Reidar Bornholdt, Holt Farley, Tim Lee, and Peter Raith, who
reviewed particular chapters.

Thanks to Dorothy Geiger, a new friend in the UNIX world, who
reviewed the complete manuscript and made significant contributions.

Thanks to Michael Meyer, who edited the whole manuscript and was
kind enough to say that he had made one or two minor changes while
covering each page with a mass of red ink, which not only improved the
readability but also helped keep the content at a consistent level. Thanks
also to Debra Hairston, who made sense enough of the red ink to pro­
duce the final copy.

The chapter plates were drawn by Maria Ruotolo. Thanks to her for
becoming interested enough in the theme of each chapter to spend time
researching the most appropriate artwork to vandalize.

A final word of thanks to my colleagues in the Biochemistry and Molec­
ular Biophysics Department at Columbia University. The problems they
encountered in making the transition from VMS to UNIX not only con­
vinced me that this book was necessary but also helped me decide on
the content.

This book was composed at the terminal using the MASS-II word pro­
cessing software from Microsystems Engineering Corporation (MEC)
on both a VAX 11/750 running VMS and a Rainbow 100+ running DOS.
All the examples were taken from terminal sessions running on a variety

Preface xv

XVI Preface

of hardware platforms under various versions of UNIX: a MicroVAX II
from Digital Equipment Corporation running ULTRIX, a Convex C 1­
XP from Convex Computer Corporation running Convex UNIX (both
BSD derivatives); an IRIS 3020 from Silicon Graphics Computer Sys­
tems running UNIX System V; and a Sun 3/160 from Sun Microsystems
running Sunos (a UNIX BSD derivative). Each of these systems was
connected to the same Ethernet, and the terminal sessions were
reviewed concurrently on a VAXstation 2000 running VMS and VWS
screen management software. Using the MicroVAX II running ULTRIX
as a DECnet-Internet Gateway and the UNIX script command, exam­
ples could be pasted directly into the MASS-II document on the VAXI
VMS system from script files copied from the various UNIX hosts.

Chapter Plates

Adapted from "The Thinker" by Auguste Rodin (1840-1917).

2 Adapted from "The Creation of Man" by Michelangelo Buonarroti (7475­
1519).

3 Adapted from "The Lovers" by Picasso (1881-1973).

4 Adapted from ")eune Femme Devant Ie Lit" by Amedeo Modigliani
{l884-1920}.

5 Adapted from "Three Women at the Spring" by Picasso (1881-1973).

6 Adapted from an Egyptian Tomb Painting-18th Dynasty
Egyptian Mural.

7 Adapted from "Peasant Woman Digging" by Vincent van Gogh
(1853-1890).

8 Adapted from "The Suitor's Visit" by Gerard ter Borch (1617-1681).

9 Adapted from "Portrait of Dr. Gachet" by Vincent van Gogh
(l853-1890).

10 Adapted from "A Portrait of Sultan Selin /I" by Ralis Haydar
(1570-1638).

11 Adapted from "Gare Saint-Lazare" by Edouard MQnet (7832-1883).

12 Adapted from "The Rape of the Lock" by Aubrey Beardsley {l872-1898}.

13 Adapted from "The Last Supper" by Leonardo do Vinci (7475-1564).

Chapter 7

Introduction

History is philosophy teaching by examples.
Dionysius of Halicarnassus

This book provides an introduction to the UNIX operating system. Most
introductory UNIX texts assume no prior knowledge of interactive com­
puting. Here, you must have a working knowledge of the Virtual Mem­
ory System (VMS), a Digital Equipment Corporation operating system,
for this text is designed to help the reader make a smooth transition from
VMS to UNIX. It started as a user's guide within our own organization,
which saw an increasing need for VAX/VMS users to compute on pro­
cessors running the UNIX operating system. Recognizing that mixed
operating system environments like ours are becoming more common, I
decided to expand the user's guide into the more comprehensive text
presented here.

This book is a response to current market conditions, which indicate an
increase in UNIX usage. This book does not, however, attempt to con­
vince the VMS user that UNIX is a preferable operating system. I do
not regard UNIX as a better operating system than VMS, nor VMS as
superior to UNIX. Each has strengths and weaknesses, which I note
when relevant to the comparative learning process that the text employs
throughout.

The text is intended to do more than describe how to perform a given
VMS command or function in UNIX. Certainly such descriptions are
useful and may represent all that the occasional UNIX user requires.
However, for those who intend 0 develo com lication have

<Lili9w some of the features that make UNIX a powerful devel­
opment~

..........._--
Unlike VMS, UNIX is not a single product but rather the evolution of
an original idea and design philosophy into a number of different prod­
ucts, each of which has unique features. This book concentrates on only
one of these evolutionary pathways, the version of UNIX that comes
from the University of California at Berkeley, known as Berkeley Soft­
ware Distribution (BSD). A discussion of BSD begins in Chapter 2.
First, let us look at how each version of UNIX originated, and what the
original design philosophies behind them mean to today's VMS user
making the transition to UNIX.

2 Introduction

J. J Evolution

Much has been written on the subject of UNIX evolution and the current
trends toward standardization (see Appendix D). This section gives only
a synopsis and compares UNIX evolution to the corresponding devel­
opment of VMS.

Ken Thompson first conceived UNIX in 1969 at the American Tele­
phone and Telegraph Company's Research Division at Bell Laboratories
in Murray Hill, New Jersey, to run a program on a PDP-7 computer. The
program, "Space Travel," originally ran on a General Electric GE645
computer, which used an operating system called Multics. Multics was
developed at the Massachusetts Institute of Technology, and was one of
the first time-sharing operating systems. The first version of UNIX,
which was written in assembly language, incorporated many features of
Multics.

The decision to rewrite UNIX in a higher-level language and thus to
make it portable between computer systems came in 1972, when Thomp­
son rewrote the UNIX software in a language called B. Dennis Richie,
also of Bell Laboratories, extensively modified B in 1973, renaming it
C. Whether fortuitous or not, the decision to make UNIX portable is
the main reason for the popularity of UNIX today. UNIX provides a
stable development medium for a rapidly changing hardware market.
Applications can be ported directly to hardware of different types with­
out costly redevelopment.

In 1974, the decision to license the UNIX source code to universities
established a second major evolutionary pathway, the Berkeley Soft­
ware Distribution (BSD). BSD Version 3.0, released in 1979, included
many enhancements to the original Bell Laboratories version of UNIX,
some of which I discuss in subsequent chapters. Notable were several
portable language compilers which expanded the transparent operating
system fuctionality on different types of hardware to include transparent
program development tools. The development of BSD illustrates one
aspect of the original design philosophy of UNIX: the system is modu­
lar, that is, it can accommodate additional functionality with relative
ease.

At about the time BSD was released, the first version of UNIX appeared
on VAX computers. Known as 32V, it represented a 32-bit implemen-

1. 1 Evolution 3

4 Introduction

tation of the 16-bit Version 7 from Bell Laboratories, which was already
running on a number of PDP- 11 series computers.

With the relaxation of antitrust laws and its release of a line of micro­
computer and minicomputer systems, AT&T found itself in a better
position than previously to market UNIX aggressively. In 1983, AT&T
released UNIX System V, which contained many BSD features. AT&T
is now advancing System V Interface Definition (SVID) as the industry
standard for UNIX. Other companies, Digital Equipment Corporation
i.neluded, are contributing to a nonproprietary standard defined by the
Institute of Electrical and Electronic Engineers (IEEE), known as
POSIX.

In 1984, Digital Equipment Corporation released ULTRIX, a version of
UNIX derived from BSD and System V. ULTRIX gradually became
available for the complete line of VAX processors. For the personal
computer market, Microsoft Corporation developed Xenix, a 16-bit
microcomputer version of UNIX System V. Meanwhile, International
Business Machines (IBM) had been quietly supporting several disparate
versions of UNIX on different hardware platforms in response to market
pressures, but without any apparent overall corporate strategy. The IBM
position changed with its introduction of Advanced Interactive Execu­
tive (AIX) for the IBM RT in 1986. AIX is the standard for UNIX within
IBM and can currently run on a variety of IBM processors ineluding the
PS/2 Model 80 personal computer.

The proliferation of UNIX versions does not end here. As mentioned,
the decision to write UNIX in a high-level language rather than assembly
offers computer manufacturers the opportunity to use a relatively inex­
pensive operating system for new hardware. Development costs are low
because manufacturers do not have to develop an operating system from
scratch, but instead can purchase a license for the UNIX source code
and write a C compiler (a good idea anyway, given the popularity of this
language) and a small amount of assembly code to handle input and out­
put and other hardware-specific functions. Table 1.1 lists some compa­
nies that have adopted UNIX as an operating system to support their
hardware. Some of these companies have added their own tools and
utilities, which have themselves become de facto standards. Notable are
the Network File System (NFS) and X-windows. NFS, developed by
Sun Microsystems Inc., provides transparent file access among a variety
of hosts running the UNIX operating system. X-windows, developed by
Project Athena, a joint venture involving IBM, Digital Equipment Cor-

Table 1.1 Popular Versions of UNIX

Name

Accent
Aegis
AIX
AUX

BBN-UNIX

Coherent

Concentrix
Convex UNIX
Cromix
For: Pro
Gould UNIX

HP-UX

Hub
IDRIS

Minix

MORE/bsd
PRIMIX
Regulus
RTU

ULTRIX

UN/System V

UNISIS

UNIX
UNIX

UNIX
UNIX

UNIX

SUN-OS
UNIX 111/4.2
UNIX Sys3
UNIX System V
UNIX System V
Venix/86
V7M-11
Xenix
Xenix System V

Hardware Supported

Perq

Apollo Workstations
IBM RT, PS/2 Model 80
Mac II

BBN C/60, cno
Commodore

Alliant FX series
Convex C I and C2 series
Cromemco
Fortune XP
Gould

HP workstations
VAX, PDP-II
IBM PC, DEC Pro, Rainbow, etc.
IBM PC
VAX

Prime Computers
Motorola MC68000
Concurrent

VAX

Motorola MC68000

Codata 3300

Celerity
Titan

Elxsi Series
Data General Eclipse

Silicon Graphics Workstations

Sun Workstations
Motorola 68010
Plexus
VAX, PDP-II, IS 3B
Motorola 68000
IBM PC, DEC Pro, Rainbow, etc.
PDP-II
PDP-II IBM PC
IBM PC

Company

Perq Systems Corporation
Apollo Computer Inc.
International Business Machines
Apple Computer Inc.

BBN Communications

Commodore Business Machines
Alliant Computer Systems Inc.
Convex Computer Corporation

Cromemco Inc.
Fortune Systems Corporation
Gould Inc.

Hewlett-Packard
Compion Corporation

Whitesmiths Ltd.
Prentice-Hall

Mt Xinu Inc.

Prime Computer Inc.
Alcyon Corporation

Concurrent Computer
Corporation

Digital Equipment Corporation

Charles River Data Systems

Contel Codata Systems
Corporation

Celerity Computing

Ardent Computer
Elxsi Computer Corporation

Information Processing
Techniques Corporation

Silicon Graphics Computer
Systems

Sun Microsystems Inc.
Integrated Solutions Inc.
Plexus Computers Inc.
AT&T Information Systems
Lisp Machine Inc.
Unisource Software Corporation
Digital Equipment Corporation
Microsoft Corporation
Santa Cruz Operation

poration, and MIT, provides a standard windowing interface for UNIX
hosts.

With so many implementations of UNIX available, one might expect the
user interface to differ significantly from one implementation to another.
Fortunately, this is not the case, even without a formal interface defi­
nition. Only three interfaces, called command language interpreters in
VMS and shells in UNIX, have become popular. They are:

the Bourne shell (sh)

the C shell (csh)

the Korn shell (ksh)

First available shell, included in all
versions of UNIX

Standard for BSD

Standard for System V

6 Introduction

This book primarily discusses the C shell, the shell developed for BSD.

Table 1.2 shows the comparable milestones in UNIX and VMS evolu­
tion. Unlike UNIX, VMS has followed a single evolutionary pathway as
a result of its proprietary nature. The VMS pathway is closely related to
the development of VAX hardware, the only hardware on which VMS
functions. VMS has undergone a major upgrade approximately every
two years and minor updates about three times a year. The minor
releases generally fix bugs and provide software necessary to support
new hardware. Major releases extend the range of VAX processors that
VMS supports. For example, full support of VAX clustering became
available with VMS Version 4.0.

The evolution of UNIX and VMS has not been completely independent.
New versions of VMS contain enhancements first appearing in the var­
ious releases of UNIX, and vice versa. This situation will likely con­
tinue, and both products will continue to converge towards a common
standard.

Operating system emulators are available for those who require com­
puter environments possessing the functionality of both operating sys­
tems yet who do not wish to invest in two separate processors. Native
VMS can host what appears to be a UNIX environment and vice versa.
In some instances, it is possible to emulate specific tools and utilities
rather than the complete operating system. Some software products with
such capabilities are mentioned in subsequent chapters.

The nonproprietary and modular nature of UNIX suggests that the ver­
sions available today incorporate ideas from many different program-

Table 1.2 VMS and UNIX Genealogy

Date' VMS UNIX2

1%9 First development for PDP-7
1970 Named UNIX
1971 First version operational at Bell Labs on

PDP-lt120, written in B
1973 Rewritten in C
1974 University licenses issued
1975 UNIX V6 Bell Labs
1978 1.0, 1.1, 1.2 UNIX V7 Bell Labs, first portable

version
1979 1.3, 1.4, 1.5, 1.6 BSD 3.0; 32V Homdel, first VAX version
1980 2.0,2.1 BS04.0
1981 2.2, 2.3, 2.4, 2.5 8S04.1
1982 3.0, 3.1, 3.2 AT&T System III
1983 3.3, 3.4, 3.5 BSD 4.2; AT&T System V; Bell Labs. V8
1984 3.6, 3.7, 4.0 AT&T System V Release 2; Microsoft

Xenix; ULTRIX 1.0
1985 4.1, 4.2, 4.3
1986 4.4,4.5 BSO 4.3; AT&T System V Release 3; Bell

Labs V9
1987 4.6,4.7
1988 5.0,5.1

1. UNIX dates are approximate.
2. Only the major milestones in UNIX evolution are
listed.

mers added over a long period of time. Although this situation has
resulted in an extensive set of tools and utilities for application devel­
opment, it has not produced a completely coherent design strategy.
Some VMS users, familiar with more stringent product management,
may therefore find certain UNIX characteristics irksome. Here are a
few examples:

• UNIX documentation is not as comprehensive nor as well orga­
nized as VMS documentation.

• Command names sometimes bear no resemblance to function. Con­
tributors to UNIX often devised names for their own convenience
rather than for a large community of users. Other commands owe
their names to historical significance rather than function.

• Contributors who added commands that have now become part of
the standard UNIX distributions often used syntax that suited their

1. 1 Evolution 7

1.2

own needs but did not always follow a logical pattern relative to
other commands.

• Some commands and utilities are complex to use, having been writ­
ten for programmers by programmers.

• System security is insufficient.

• Redundant code has not been retired. For example, UNIX still sup­
ports some hardware that is no longer in use.

The Future

UNIX developers are working toward solutions to the shortcomings
described above as the operating system gains popularity in commerce,
industry, and the traditional government marketplace. As UNIX moves
toward a standard interface definition, the search for solutions will cer­
tainly accelerate. What the standard interface definition will be, if
indeed there is to be one, remains to be seen. Such a definition will
certainly come through common use rather than by fiat. That is, soft­
ware manufacturers will likely adopt a definition because it meets all the
needs of the marketplace, not because some organization has declared
it a standard.

If current trends continue, UNIX will appropriate an ever larger share
of the VAX processor market, particularly at the low end, and will rival
VMS as the operating system of choice. As Figure 1. f shows, at the end
of 1987 UNIX in its various forms was the operating system for 10% of
the VAX Il/7xx series of computers, 5% of the VAX 8xxx series, and
12% of the MicroVAX series. It is estimated that within five years, 50%
of all VAX processors purchased, with the majority at the low end, will
be running the UNIX operating system.

Indeed, several events have taken place in the last year that will surely
speed up the evolution of a UNIX product that will appeal to a wider
user community. The three most significant of these events appear to be
the collaboration between Sun Microsystems Inc. and AT&T to provide
RISC (Reduced Instruction Set Computer) based hardware running a
version of UNIX based on SVID; IBM's commitment to UNIX with
AIX; and the collaboration known as the Open Software Foundation
(OSF) to provide a version of UNIX based on AIX and POSIX and that
will support applications identically on many hardware platforms. Much
has already been written about these events, and I refer the reader to
the journals listed in Appendix D for the ongoing discussion.

8 Introduction

Figure 1.1 a UNIX on the VAX 11/7xx
Series

VMS
90.0%

Figure 1.lc UNIX on the VAX 8xxx
Series

Figure 1.1 b UNIX on the MicroVAX

VMS
87.0%

Figure 1.1 d Planned UNIX Usage on All
VAX Computers

VMS
95.0%

VMS
51.0%

Other UNIX
5.0%

AT&T
System V

4.0%

This is not to say that the future of VMS is in doubt. Too much useful
software has been written specifically to take advantage of the VMS
operating system for the operating system to become redundant. New
generations of improved VAX computers will certainly run some version
of VMS.

Computer users can continue to expect faster, smaller processors that
run a variety of operating systems and communicate transparently at
high speeds. Users no longer have to choose between VMS or UNIX,
but have both, with the application dictating the choice of operating sys­
tem.

1.2 The Future 9

Chapter 2

lFulI1Jdlamell1JtaUs

2.1

he golden rule is that there are no golden rules.
George Bernard Shaw

It is recommended that the reader study this chapter before beginning a
UNIX terminal session. For it is here that the fundamental features of
the UNIX operating system are introduced and compared to those of
VMS. Since this book is for the new UNIX user rather than the UNIX
system administrator or system programmer, differences in the internal
structure of the two operating systems are mentioned only briefly. Sec­
tion 2.1 provides the new UNIX user with an understanding of the basic
functions of the UNIX kernel, the various UNIX utilities and tools, and
the user interface, and how these compare with the structure of VMS.

Section 2.1.1 introduces the subject of process creation, which requires
more detailed consideration. Users may run UNIX commands simulta­
neously as separate processes created by the shell. Understanding the
interrelationships among these processes is prerequisite to understand­
ing how to use commands effectively. You may synchronize processes
so that the output of one is used as input to the next, a procedure known
as piping (Section 2.1.2). You may also easily redirect input and output
between files and processes (Section 2.1.3).

Section 2.2 introduces the format of commands. Since many commands
involve the manipulation of files, this section also discusses file and
directory naming. Section 2.2.1 discusses what happens if you use an
incorrect command syntax.

Section 2.3 introduces the concept of a UNIX file system and compares
it to a VMS physical device. This section also introduces the different
types of UNIX files.

Section 2.4 introduces the concept of metacharacters, which perform a
special function in command interpretation by the C shell. Section 2.5
discusses the use of wildcards in naming files and directories, indicating
the strong similarity to the VMS wildcard syntax.

System Internals

The internal architecture of most multiuser, multitasking, virtual mem­
ory, interactive operating systems are similar; VMS and UNIX are no
exceptions. Schematically, an operating system looks like a hierarchical

2.7 System Internals 11

Utilities and Tools

System Services -fiiiiiE'3---,~

Kemel

Figure 2.1 Operating System Topology

arrangement of layers or skins not unlike an onion (Figure 2.1). The
system grows outward from a central core, or kernel. The functions of
any given layer presuppose the functions of layers closer to the core. In
both VMS and UNIX, the kernel directly controls the hardware. For
example, the kernel handles memory management, scheduling the use
of the CPU, and input and output to various devices. The innermost
layers surrounding the kernel comprise a set of system service routines
which interact directly with the kernel. Assembly code makes direct
calls to system service routines: high-level languages can also make calls
to these routines to achieve the greatest possible efficiency. Usually, the
software resident in the tools and utilities layer, the next outer layer of
the hierarchy that includes high-level language compilers, makes the
complexity of calling system service routines transparent to the user.

The major difference between VMS and UNIX in the tools and utilities
layer' has to do with what is included as part of the standard operating
system. Both UNIX and VMX provide many tools and utilities. but
UNIX provides more of them as part of the standard operating system.
VMS requires a separate software license to run some tools and utilities
that are standard features of UNIX. Table 2.1 lists some of the major

1. Throughout this book, tools and utilities are distinguished from commands on the
basis of their complexity. For example, electronic mail, invoked with the UNIX com­
mand mail, is regarded as a utility, as a number of subcommands may be issued in
response to the mail prampt. Tools ease the task of application development. The
UNIX debugger dbx is an example of a tool.

12 Fundamentals

Table 2.1 Standard UNIX Tools and Utilities and Their
VMS Equivalents

VMS

Editors
EDT
TECO
TPU

Comnllmications
MAIL
REPLY
PHONE
DECnet*

Compilers
FORTRAN*
C*

Text Processill~

RUNOFF

SORT
MERGE

Pro~,.am Development Tools
LINK
DEBUG
LIBRARIAN
DEC MMS*

DEC CMS*

Miscellalleous
DECalc*
DECspell*

·Available as optional products from Digital Equipment
Corporation.

UNIX

ed
ex
vi

mail
write
talk
ftp
telnet
r commands

f77
ee

troH
nroff
awk
lex
sed
sort
merge

link
adb/dbx
ar/ranlib
make
yaee
ses

be/de
spell

tools and utilities available in both VMS and UNIX, emphasizing those
included as part of a standard distribution. The most commonly used
UNIX tools and utilities will be introduced in following chapters.

Both operating systems offer several editors capable of line- or screen­
oriented editing. Both systems offer interactive communications and

2. 1 System Internals 73

2. r. r

electronic mail as well as extensive networking capabilities for file trans­
fer, remote command execution, and remote login: These utilities are
standard features of UNIX but require a DECnet license to function in
VMS. Many versions of UNIX include compilers, notably C and FOR­
TRAN-77, as part of the standard distribution. Compilers all require sep­
arate licenses to run on a VMS system. Code written for UNIX com­
pilers that make calls to UNIX-specific routines will, of course, compile
and run on any type of hardware that supports UNIX. Code written with
calls to VMS-specific routines such as the run-time library, is restricted
to VAX hardware.

Various text-formatting tools are standard features of both systems.
UNIX possesses tools for text (string) manipulation not found on VMS.
including a lexical analyzer useful for developing a command interpreter
or compiler. Program productivity tools are also standard for many ver­
sions of UNIX:

At the outermost layer (the surface of the onion) is the user interface:
the command language interpreter, or shell in UNIX parlance, which ~

surrounds all components of the operating system. The UNIX shell, like
the Digital Command Language (DCL) interpreter, is simply a program
that parses commands and passes control to other programs that make
up the operating system. The UNIX shells introduced in Section 1.1
differ in the functions they perform and the command syntax they
accept, but all pass control to the same UNIX programs for processing
except for commands processed by the shell itself.

Many of the features introduced in this book are independent of the shell
in use. Features specific to the C shell will be noted.

Processes

When you begin either a UNIX or VMS terminal session, the operating
system establishes a unique process. This process, which has dynamic
access to memory and CPU resources, receives a unique identifier, or
process identifier, from the operating system. Whether hardware
resources are available to a particular process at any time is determined
by its priority. The kernel adjusts the priority dynamically every few
seconds to control the sharing of resources. The part of the kernel
responsible for scheduling determines the priority by means of a com­
plex algorithm. The algorithm uses predefined variables assigned by the
system, or in some cases by the system administrator, to determine the

74 Fundamentals

priority. Chapter 7 discusses the UNIX commands available for exam­
ining and changing the characteristics of a user's processes.

The mechanism the two operating systems use to handle multitasking,
that is, concurrent processes initiated by a single user, differ signifi­
cantly and therefore require further explanation. When a user begins a
terminal session. the operating s¥stem starts a single parent process. It
is possible, however, to start multiple processes. If a new process is
started by the existing process, this is termed spawning in VMS and
forking in UNIX. The new process, which has its own unique process
identifier, is called a subprocess in VMS and a c~ild process in UNIX.
Forking occurs often in UNIX. Note that submitting a batch job or
commencing another terminal session does not involve spawning or
forking, as these are not child but parent processes.

When UNIX creates a child process and VMS creates a subprocess, the
events that take place are quite different. When VMS creates a subpro­
cess, the parent remains dormant (hibernates) until the user logs off from
the subprocess, whereupon control returns to the parent. Alternatively,
the VMS AnACH command gives control back to the parent process, at
which time the subprocess becomes dormant. The point is that only one
process is active at any given time. The exception is the VMS RUN/
PROCESS = image_name command, which runs a user-defined executa­
ble image as a subprocess while commands are being issued to the par­
ent. In UNIX, however, you may run many parent and child processes
simultaneously. A child process that forks another process becomes the
parent of the new child, so a process can be both a parent and a child.
Child processes are not restricted to user-defined executable images but
can involve any valid UNIX operation. UNIX processes either running
or stopped but not receiving input directly from the terminal are said to
be in background.

When you begin a UNIX terminal session, the kernel provides a copy
of the shell (the command language interpreter program) in which to
work. When you issue a command to the shell, the shell forks a child
process, which takes on many of the characteristics of the parent, for
the command to run in unless the shell itself processes the command.
Compare VMS, where all commands are executed by the parent pro­
cess. Once it creates the child process, the parent process remains dor­
mant until the child process completes its tasks. The child process then
dies, and control returns to the parent. At any time, the parent or the
child can fork other processes, which in turn can fork other processes

2. 1. 1 Processes 15

and so on. Hence, a number of parent and child processes may be run­
ning simultaneously.

We will discuss the implications of multiprocesses for multitasking in
Section 8.3. The following example, although it does not illustrate
UNIX multitasking, shows the UNIX analogy to the VMS SPAWN com­
mand (unique to the C shell) and introduces the UNIX commands cat,
fg, and 177.2

VMS
example: $ FORTRAN MYFILE.FOR

{CTRL)-Y'

$ SPAWN
%DCL.S-SPAWNED, process PROCESS_l spawned
%DCL.S-ATTACHED, terminal now aUached

to process PROCESS_l,
$ TYPE MYFILE.FOR

$ ATTACH PROCESS
DCL·S·RETURNED, control returned to process PROCESS
$ CONTINUE

UNIX
% f77 myfile.f
{CTRL)-Z
stopped

% cat myfile.f

% fg
177 myfile.f

In this example, partway through a FORTRAN compilation and link
(177), which is itself a child process of the parent C shelI process, the
user suddenly is not sure that the correct source file is being compiled.
If the user issues an interrupt «CTRL)-C) arid then discovers that the cor­
rect file was being compiled, the compilation time already used would
be wasted. Instead, the child process responsible for the compilation is
stopped by typing (CTRl)-Z and control passes back to the parent C shelI
process. The C shell then creates another child process for the cat
(catenate and print) command to run in. The cat command lists the con­
tents of the source file at the terminal, the child process responsible for
cat dies when the listing is completed (or terminated with (CTRL)-C), and
control passes back to the parent. When the user determines that the
file is the correct one, the command fg (foreground) input to the parent
process returns control to the child process responsible for the compi­
lation. The command responsible for the compilation is displayed and
the compilation continues.

2. Throughout this book, indicates that text has been omitted for brevity.

16 Fundamentals

2.J.2

The above illustrates the use of (CTRL)-C to terminate a child process but
not the parent. In the above example, terminating the parent would ter­
minate the terminal session.

All the parent and child processes in the above example use the default
input and output device, namely the terminal. Input and output streams
in UNIX are called standard input (stdin) and standard output (stdout).
Standard error (stderr), not illustrated in the above example, also uses
the terminal as its default output device. Redirecting input, output, and
error streams away from the terminal in VMS requires the assignment
of the logical names SYS$INPUT, SYS$OUTPUT, and SYS$ERROR to a
file or alternative device, respectively. The UNIX C shell has an elegant
mechanism for redirecting input, output, and error streams when run­
ning a number of tasks simultaneously (see Section 2.1.3). In the next
section, we discuss a special case of redirection where the output of one
command becomes input to the next.

Pipes

The creation of a pipe is a particular type of multiprocess activity syn­
chronized by the kernel, in which the output of one command becomes
input to the next command without creating any intermediate file. UNIX
may synchronize two or more processes in what is termed a pipeline.

VMS
form:

example: $ SHOW USERS/OUTPUT=A.TMP
$ SORT/KEY=POSITION:40,SIZE:6)·

A.TMP SYS$PRINT

UNIX
% commandl I command2 I \

command3
% who I sort Ilpr

A vertical bar separates the UNIX commands forming the pipeline. In
the above example, the kernel starts three child processes simultane­
ously. However, sort (Section 9.4.6; compare the VMS command SORT)
must wait for input from the processing of the who command (Section
7.1.2; compare the VMS command SHOW USERS). Likewise, Ipr (Sec­
tion 8.1.1; compare the VMS command PRINT) must await output from
the sort command. When all output from the who command passes to
sort, the child process responsible for running the who command dies.
By default, sort uses the first field (delimited by a blank) as the sort key.
The first field output by the who command is the username, hence, sort
sorts records alphabetically by username. The Ipr command then

2.1.2 Pipes 17

2.1.3

accepts as input the output from the sort command and the child process
responsible for sort dies. After printing the output of sort on the default
printer, the child process responsible for Ipr dies and control passes back
to the parent shell process. The result of the pipeline is a printed listing
of all users on the system in alphabetical order.

A comparable sequence of events in VMS requires the creation of an
intermediate file. The VMS example above creates a printed listing
sorted by terminal device name. The output of the SHOW USERS com­
mand is saved in a file A.TMP. The contents of the file are then sorted
on the device key which is six characters long and begins in column 40,
and the output passes to the default line printer.

Piping otTers the opportunity to perform complex functions by creating
a pipeline from a number of simple commands. Examples of piping com­
mands appear throughout this book to emphasize the versatility they
give to UNIX. The effective use of piping does not always come easily
to VMS users, who are accustomed to the sequential processing of single
commands and the occasional redirection of the output of one command
to a file for subsequent processing by another command. Always con­
sider how you can capture a sequence ofcommands in a single pipeline.

Input, Output, and Error Redirection

Just as the VMS logical names SYS$INPUT, SYS$OUTPUT, and
SYS$ERROR point to the terminal by default, so do the UNIX equiva­
lents stdin, stdout, and stderr. However, UNIX uses a simplified method
of redirecting input, output, and error messages from or to a file. UNIX
does not require the equivalent of an ASSIGN statement preceding the
command to perform redirection; rather, UNIX includes a redirection
metacharacter as part of the command line. In this simple example,
myprog < input.dat > a.lis causes the executable program myprog to
read input «) from the file input.dat and send output (» to a.lis.

VMS UNIX
example: $ ASSIGN/USER SYS$OUTPUT A.LlS

$. ASSIGN/USER INPUT.DAT FOR005
$ RUN MYPROG % myprog < input.dat > a.lis

18 Fundamentals

Table 2.2 Special Characters Used in Input, Output, and
Error Redirection

Character

>
>!
»
»!

>&
>&!

»&
»&!

<
«xxx

I
I tee
1&

Meaning

Redirect standard output

Redirect standard output, disregarding noclobber*
Redirect and append standard output
Redirect and append standard output, suppressing error and

opening a new file if output file does not exist*

Redirect standard output and standard error*

Redirect standard output and standard error, disregarding
noclobber*

Redirect and append standard output and standard error*

Redirect and append standard output and standard error,
suppressing error and opening a new file if output file
does not exist*

Redirect standard input
Read input up to a line identical with xxx*

Redirect standard output to another command
Direct standard output to another command and a file*

Redirect standard output and standard error to another
command*

·Unique to the C shell.

Note the following:

UNIX redirection affects only the command line in which the com­
mand appears (compare the VMS command ASSIGN/USER.­
MODE).

Error messages are not redirected and appear at the terminal.

If the file a.lis already exists, VMS creates a new version of the file
with a higher version number. By default, UNIX overwrites any
existing file a.lis. Overwriting a file through redirection is aptly
named clobbering. C shell users may prevent clobbering with the
shell command set noclobber, which warns the user that the pro­
posed output file already exists and prevents the command from
executing.

• See Section 3.2.2 and Chapter II for more on shell commands.

Table 2.2 summarizes the characters you can use for issuing redirection
commands. Let us look at some further examples of their use.

2. 1.3 Input, Output, and Error Redirection 19

VMS
example: $ ASSIGN/USER A.OUT SYS$OUTPUT

$ ASSIGN/USER A.ERR SYS$ERROR
example:
example: $TYPE RUNJROG.COM

$ RUN MYPROG.EXE
11 1 1 10

UNIX
%m myprog.f >& output

%ri7 myprog1.f »& output
% cat rUlLprog
myprog < < end
1 1 1 1 10
end

2.2

The command f77 myprog.f >& output redirects both standard output
and standard error to the file output. If noclobber is not set, the com­
mand overwrites any previous version of the file output. The command
f77 myprogl.f »& output has the same effect. except that it appends
standard output and standard error to the file output. If the file output
does not already exist, the command creates it.

The command cat run-prog displays a shell script, used here to associ­
ate data with the compiled program myprog. Chapter 11 discusses shell
scripts and how they compare to VMS DCL command procedures. Here
we focus on the use of the redirection to associate data with standard
input to the program myprog. A VMS DeL command procedure reads
any records following the RUN command and not preceded by a dollar
sign as standard input. In a UNIX shell script, standard input is the
terminal unless redirected. Here «end tells UNIX to read all records
from the script file and not standard input until it finds a record that
begins with ··end."

Command Structure and File Naming

VMS is not case-sensitive in its interpretation of a command; that is, it
does not distinguish between commands given in uppercase and com­
mands given in lowercase. In UNIX, on the other hand, commands must
be given in lowercase; the shell will not understand commands in upper­
case. Make sure that the caps lock key is not depressed when beginning
a UNIX terminal session.

Filenames are also case-sensitive. That is, UNIX interprets myfile.dat
differently from MYFILE.DAT. Although the case sensitivity of UNIX
always causes problems to a VMS user during the first few UNIX ter­
minal sessions, it is only a temporary setback. One advantage of case
sensitivity in file naming is that you can use a larger variety of files with
short names. Good news for unimaginative users who are poor typists!

20 Fundamentals

Another advantage of case sensitivity is that it allows the use of upper­
case filenames to represent a particular class of files. This advantage
offers an alternative to the file type convention used by VMS. For exam­
ple, directory pointer files to subdirectories exist in UNIX, as they do
in VMS. When a subdirectory is created in VMS, the pointer file, which
exists in the next highest level of the directory hierarchy, is automati­
cally given a file extension of .DIR. UNIX filenames, on the other hand.
do not distinguish between directory pointer files and ordinary files.
When UNIX displays a default file listing, there is no way of determining
which entries are files and which entries are pointers to subdirectories.
One way around this situation, which appeals to some VMS users but is
not standard UNIX practice, is to name all subdirectories with capital
letters or beginning with a capital letter. The following example illus­
trates this practice with two common UNIX commands: mkdir for mak­
ing subdirectories and Is for listing directory contents.

VMS
example: $ CREATE/DIRECTORY [.TEST)

$ DIRECTORY
DIRECTORY DUAl :[HOME]

FILE1.DAT;1 FILE2.DAT;1
FILE3.DAT;1 TEST.DIR;l

UNIX
% mkdirTest
%Is

Test file1.dat file2.dat\
file3.dat

In a UN IX file listing containing lowercase file entries and an uppercase
directory entry, it is immediately obvious which file is the directory file
in UNIX even though it has no file extension. Note that uppercase file­
names precede lowercase filenames in a UNIX alphabetical listing. It is
not advisable to create a subdirectory TEST.DIR using the mkdir com­
mand for reasons that will become apparent in the following section.

Excluding directory pointer files, there is no reason why you cannot
adhere to VMS file-naming conventions in UNIX. Since you can legally
use a period in UNIX filenames, you can use VMS file extensions to
indicate the particular class to which a file belongs. Most VMS users
feel comfortable adhering to the VMS file-naming scheme in UNIX. Dif­
ficulties arise when the default file extensions used by VMS disagree
with UNIX file-naming conventions. For example, object files use the
extension .OBJ in VMS but .0 in UNIX. Likewise, FORTRAN source
code uses the extension .FOR in VMS and .f in UNIX. Note that .0 and
.f are UNIX conventions to facilitate file recognition and that UNIX
commands do not assume file extensions, as do VMS commands. Table
2.3 summarizes commonly used UNIX file extensions.

2.2 Command Structure and File Naming 21

Table 2.3 UNIX File Extensions

VMS UNIX Section Definition

.OLB .a 10.5 Library

.BAS .bas BASIC source code

.C .c 10.1 C source code

.FOR .f 10.1 FORTRAN source code
.h 10.1 C header files
.I lex program

.OBJ .0 10.1 Object code

.PAS .p Pascal source code
.s 10.1 Symbolic assembly code
.y yacc program

.EXE a.out 10.1 Executable image

.ADA ADA source code

.B32 BLISS-32 source code

.CLD Command description file

.COB Cobal source code

.COM 11.1 Commands for the language
interpreter

.DAT Data file

.DIS Distribution list file for MAIL

.DIR 2.2 Directory file

.EDT Startup command file for the
EDT editor

.DOC Documentation

.HLP 3.6 Input source file for HELP
libraries

.JOU 5.1.5 & 5.2.8 Journal file created by the EDT
editor

.LlS Listing of text

.LOG Batch job output file

.MAI MAIL message file

.MAR VAX macro source code

.MEM 12.1 Output file from DSR

.PLI PL/I source code

.RNO 12.1 Input file for DSR

.SIXEL Sixel graphic file

.SYS System image

.TJL Journal file created by the TPU
and ACL editors

22 Fundamentals

Table 2.3 UNIX File Extensions (continued)

VMS

.TMP

.TPU

.TXT

UNIX Section Definition

Temporary file
Command file for the TPU editor
Text file

VMS UNIX
example: $ FOR MYFILE.FOR % f77 myfile.f
example: $ FOR MYFILE % f77 myfile

$ Id:myfile: cannot open

In UNIX, command names may not be abbreviated. In VMS, the por­
tion of the command name that renders it unique is sufficient. UNIX,
on the other hand, requires a full specification of the command name.
Fortunately, UNIX command names are usually short. 3 Unfortunately,
command names are not consistent, nor in some instances do the names
have any obvious connection to the functions the commands perform.

Let us now consider the general format of UNIX commands.

Command continued on next line
#
List file.c and file.o (C shell only)

Check for the existence of two files (no size given)
List the size of two files
List the size of all files
List the size of all files
Two sequential file listings

VMS
form: $ COMMAND[/QUALIFIER(S)] [FILENAME(S)]

example: $ DIRECTORYISIZE MYFILE.DAT
Directory DUAl :[HOME]
MYFILE.DAT;13

UNIX
example: % Is file1 file2
example: % Is -5 file1 file2
example: % Is -5 -a
example: % Is -sa
example: % Is file1 ; Is -s\

file2
example: % Is file1 \

file2
example: % Is file.fero}

UNIX
% command [option(s)] \

"[argument(s))
% Is -5 myfile.dat
2 myfile.dat

3. Further abbreviation or command renaming is possible with the alias command
(Section 3.2.2).

2.2 Command Structure and File Naming 23

2.2.J

These examples illustrate the major features of the UNIX command for­
mat:

• Options, like VMS qualifiers, modify command functions. UNIX
options are usually single letters preceded by a dash. You may com­
bine options and precede them with one dash or give them sepa­
rately and precede each with a dash. Some options appear as
uppercase characters.

• You must use spaces to delimit files in UNIX. A comma is not a
valid delimiter when specifying more than one file in a UNIX com­
mand line, except when using curly brackets, which are unique to
the C shell.

• You can place multiple commands on a single line for sequential
processing, provided they are separated by a semicolon. This
arrangement is distinct from piping, as the output from one com­
mand is not used as input to the next. UNIX interprets the semi­
colon as a carriage return.

• VMS uses a dash to signify that a command continues on the next
line; UNIX uses a backslash. The backslash must be the last char­
acter of the line, otherwise the C shell interprets it differently.

Error Reporting

Users familiar with the comprehensive and easily interpreted error
reporting features of VMS DCL will likely be disappointed by the fea­
tures offered by the UNIX shell. This situation is expected to improve
(witness the Korn shell) as UNIX gains a wider audience among non­
programmers. Until then, users face cryptic error messages, and some­
times no evidence that a command string has failed. UNIX tools and
utilities are generally no better at error reporting.

One exception is the simple act of changing the current directory. VMS
permits the user to make any directory the current directory, whether it
exists or not. Thus, VMS does not report an error until a user issues a
command that accesses the non-existent current directory. UNIX, on
the other hand, requires that a directory exists before the user can make
it the current directory.

2.3 Device, Directory, and File Structures

VMS uniquely defines a file in the following way: NODE::DEVICE:
[DIRECTORY]FILENAME.FILE-EXTENSION:VERSION_NUMBER, where

24 Fundamentals

NODE

DEVICE
DIRECTORY

FILENAME
FILE-EXTENSION

VERSION_NUMBER

= the name of the host computer on which the
file resides

= the physical device on which the file resides

= the name of a group of related files to which
the file belongs

= the name of the file

= a descriptor usually assigned to a class of
files

= the version number of a file

UNIX uses the following simple scheme to define a file: host:/directory/
file, where:

host = the name of the host computer on which the file
resides

directory = the name of a group of related files to which the file
belongs

file = the name of the file

Both VMS and UNIX have similar rules for naming the components of
a complete file specification. For example, UNIX usually abbreviates
host names to four to six characters (see Section 13.1.1.1) and file and
directory names can have more than 30 characters, avoiding characters
that have special meaning.

The differences between UNIX and VMS file specifications are:

UNIX makes no automatic provision for multiple versions of a file.
Therefore. UNIX does not include version numbers as part of the
filename. UNIX Sllves only the most recent version of II file after
any file manipulation.

• There are no formal file extensions in UNIX. However, as we have
already seen, the period can be incorporated into a filename to
denote a class of files even though no UNIX commands assume
that class of files. In this way, you can use VMS file specifications
in a UNIX environment.

In UNIX, no device specification is ever made.

To understand the implications of this last point, which may sound
strange to a VMS user, we must explore the UNIX file structure in some
detail.

Like VMS files, UNIX files reside on a physical device. For the pur­
poses of this discussion, we assume that the device is a disk rather than

2.3 Device, Directory, and File Structures 25

a tape drive (tape drives are considered in Section 8.2). When a user
accesses a file, the UNIX operating system determines which physical
device the file resides on. The user never explicitly specifies this infor­
mation. UNIX does this by referencing a file called /ete/fstab (file sys­
tem table), which maps file systems onto physical devices. This may
seem confusing. Let us begin with the physical device.

Each disk is divided into partitions. Partitions arose due to the inability
of 16-bit pointers to address all the space on a large disk. This is not a
problem for 32-bit versions of UNIX, and so a large disk can be confi­
gured as a single partition. Nevertheless, let us assume the disk has two
or more partitions. How the partition is formatted is irrelevant to most
users, provided they have a mix of small and large files. A discussion of
the partition format, however, may benefit those users who have a pre­
dominance of small or large files.

Early versions of UNIX performed all file transfers on 512-byte blocks
of data. As the cost of disk storage decreased, the amount of data stor­
age increased, as did file size. For large files, 512-byte addressable
blocks do not provide efficient transfer of data between memory and
disk. The BSD version of UNIX introduced partitions that allow larger
block sizes, facilitating faster block mode transfers. The BSD version
allows partitions with different block sizes to exist on the same physical
disk. This scheme causes problems when a partition contains predomi­
nantly small files. Small files occupy large blocks on disk, so that a large
portion of each block is wasted space. BSD solved this problem with
the concept of a fragment, which is a fraction of a block. Different files
can occupy fragments of the same block, reducing disk space wastage.
VMS handles the analogous situation by controlling cluster size, which
defaults to 3. That is, a VMS file will occupy a minimum of three blocks.
Writing to a VMS file with the cluster set to 3 causes the file to expand
in three-block increments.

In UNIX, the characteristics of partitions for each type of physical disk
drive reside in the file /ete/disktab (disk tabulation), which only the sys­
tem administrator can write to or read. Table 2.4 outlines a sample entry
for a Digital RD53 disk drive found on an ULTRIX-based system. The
RD53 can be formatted either as a single partition e or as three partitions
a, b, and g. In all cases the block size is fixed at 4096 bytes, whereas
the fragment size for the e and 9 partitions is 1024 bytes and 512 bytes
for the a and b partitions. Users whose files do not consist of a mix of
large and small should discuss which partitions to use with their system
administrator.

26 Fundamentals

1.12 (ULTRIX) 11 125/85

type of disk

#sectors/track

#trackslcyl inder
#cylinders/disk
partition sizes in sectors

partition block sizes in bytes
partition fragment sizes in bytes

Table 2.4 Sample letc/disktab Entry

#

@(#)disktab
#

disktab from 4.5 4.2 BSD 83/07/30
Disk geometry and partition layout tables.
Key;

ty

ns
nt

nc

pIa-hI

bla-hl

flo-hI
#
All partition sizes contain space for bod sector tables unless

the device drivers foil to support this.

rd53 I RD53 I DEC RD53 Winchester:\
:ty = winchester: ns#18:nt#8:nc#~63:\
:pa#15884:ba#4096:fa#512:\
:pb#33440:bb#4096:fb#512:\
:pc#138672:bc#4096:fc#1024:\
:pg#89348:bg#4096:fg#1024:

A file system, a hierarchical arrangement of files and directories, is
mounted onto each partition. The file letc/fstab keeps track of which
file system to mount in each partition and carries out the mounting oper­
ation each time the system is booted. File systems are mounted and
dismounted as required (usually by the system administrator), in a man­
ner analogous to mounting and dismounting a VMS physical device. A
user can list the mounted file systems and determine the amount of free
space with the command df (disk free).4

UNIX
example: %df

Filesystem total kbytes kbytes percent
node kbytes used free used Mounted on
Idev/raOa 7447 4479 2223 67% 1
Idev/raOg 42003 23541 14261 62% lusr

4. See Section 7.2.3 for a dicussion of df.

2.3 Device, Diredory, and File Strudures 27

Table 2.5 Examples of UNIX Physical
Device-Naming Conventions

VMS UNIX Description

DUAO: /dey/raO Disk drive (block)
/dey/rraO Disk drive (character)

LPAO: /dey/console System console
TTA1: /dey/ttyOl Asynchronous terminal
RTA1: /dey/ttypl Remote DECnet terminal
LTA01: /dey/ttySl Terminal server terminal
LeAO: /dey/printer Default system printer
MTAO: /dey/mtO Tape drive (block)

/dey/rmtO Tape drive (character)
NL: /dey/null Wastepaper basket

This example shows two file systems, I and lusr, mounted in the a and
9 partitions of the same RD53 disk specified by letc/fstab in Table 2.4.
raOa and ra09 indicate the a and 9 partitions of the physical device raO.
The approximate sizes of the a and 9 partitions are 7.5 and 42 megabytes
respectively. Note that I, known as the root file system, is usually
mounted in the a partition of the aD disk. The root file system contains
a directory entry for all file systems.

Physical device names vary slightly in different versions of UNIX. Table
2.5 compares ULTRIX physical device names to their VMS counter­
parts. Note that the physical device names are also the names of files
(see Sections 8.1 and 8.2 for the implications of this fact in relation to
tape drives). UNIX supports devices as either block or character (raw),
except for disk and tape drives which can be both (see Section 8.1). In
simple terms, a character device deals with input and output character
by character, whereas a block device buffers characters and deals with
them one block at a time. A useful mechanism for discarding output is
the null device: anything written to it is thrown away. Reading from /
deY/null will cause an immediate end of file. For example, cp Idey/null
myfile.dat (compare the VMS command COPY NL: MYFILE.DAn creates
an empty file with the name myfile.dat. We will see some further uses
for Idey/null in later chapters.

Each file contained on a VMS physical disk and each UNIX file con­
tained in a file system has a unique identifier, known as a file identifier

28 Fundamentals

in VMS and an inode in UNIX. Section 2.3.2 describes the UNIX file
types and explains briefly how one of these file types uses inodes.

UNIX and VMS directory structures are both hierarchical. Figure 2.2
illustrates the directory structure for a three-disk system, in which one
disk contains the operating system and the other two disks contain the
user's files. Note the similarity between the directory structures of VMS
and UNIX. Both operating systems use particular directories to contain
certain types of system files. UNIX directories and related file types are
as follows:

Ibin

Idev

letc

Ilib

Itmp

lusr/adm

lusr/bin

lusr/dict

lusr/man

lusrlspool

/usr/tmp

Frequently used system executable files

Files that address devices (special files)

Miscellaneous files

Library files

Scratch (temporary) files

System administrative files

Less frequently used system executable files

Dictionary files

Manual page files

Files spooled to queues

Swap and page files

The top level of the VMS directory structure for a physical disk is [0,0].
This directory contains all the pointers for the next level of directories.
Using the example in Figure 2.2, the directory DUAO:[SYSO] has a direc­
tory pointer DUAO:[O,O]SYSO.DIR;1. To locate the directory [SYSO] (or
any other directory), the user must know on which device it resides or
else search for it. VMS circumvents this problem for system files by
defining a common root, as shown in the following example.

VMS
example: $ DEFINE/SYSTEMlEXECITRANSLATION =(CONCEALED, ...

TERMINAL) DUAO:[SYSO.) SYS$SYSROOT .
$ CREATE/DIRECTORY DUAO:[SYSO.USERJ
$ SET DEFAULT DUAO:[SYSO.USER) .
$ SHOW DEFAULT
SYS$SYSROOT:[USER]

In the above example, the system directories [SYSO••.] are made equiv­
alent system-wide to the logical name SYS$SYSROOT with the DEFINE

2.3 Device, Directory, and File Structures 29

/usr/ contains files less critical to system operation.

VMS

SYS$SYSTEM

SYS$LlBRARY

SYS$UPDATE
SYS$MANAGER
SYS$MESSAGE
SYS$ERRORLOG

SYS$HELP

(DUAO:[SYSO.SYSEXE])

(DUAO:[SYSO.SYSLlB])

(DUAO:[SYSO.SYSUPD])
(DUAO:[SYSO.SYSMGR])
(DUAO:[SYSO.SYSMSG])
(DUAO:[SYSO.SYSERR])

(DUAO: [SYSO.SYSHLP])

DUAO:[SYSO]

DUAl :[USER1]
DUA2:[USERx]

UNIX Function

dey spool System executables
bin bin Device drivers
tmp tmp Swap and page files

lib lib System libraries
diet

/ etc
adm System utilities

usr*

man On-line help

userl userl to userx
userx directories

Figure 2.2 VMS and UNIX File Organization

command. If you moved the system to a different physical disk, you
would change only the definition of the logical name SYSSSYSROOT:
to redefine the location of all the files it contains, provided all the
file references use the logical name rather than the physical device
name. In the above example, if a program references a file in
SYS$SYSROOT:[USER], you need to make no changes to the program if
SYS$SYSROOT: is redefined so that it points to a different physical disk.
However, if the program references a file using DUAO:[SYSO.USER], then
the program must be modified if a change in physical device takes place.

UNIX uses a common root not only for system files but for all files. The
UNIX file hierarchy begins with I (root directory) for all files on the
system irrespective of the physical device. Each file system, and each
subdirectory of the root directory, has a directory pointer in the root
directory.

UNIX
example: % Is -aF I

.I

..I
binI
boot·

devl
etcl
flpl
libl

lost+foundl tpl
mntl usrl

. sy51 vmunix.
tmpl

Is -oF I lists all files in the root directory (refer to Section 2.3.3 for a
discussion of hidden files). The F (note the use of uppercase) option
provides a descriptor at the end of each entry to identify the file type.
The slash indicates a directory file. Although lusr is a file system (as
determined in a preceding example with the df command) and the other
entries are subdirectories of the root file system, the files contained
therein are accessed in the same way. The asterisk indicates that the file
is executable: for example, vmunix is the executable operating system
kernel. The subdirectory lost+found resides in the top-level directory
of all file systems (the directory lusr has one also) and stores files for
which the user reference information used by UNIX to associate that
file with a particular user has been lost. The system administrator can
reassign these files to the owner, if they can be identified. Note also the
directory pointers. (dot) and .. (dot dot). These point to the current
directory and the preceding level in the directory hierarchy respec­
tively. 5 How these pointers are used is shown in the following section.

5. ·In the root directory only, .. (dot dot) is the same as • (dot), as no higher-level
directory exists.

2.3 Device, Directory, and File Structures 31

2.3.J Defining Files to the System

The explicit definition of files in a UNIX system by means of a path
from the root irrespective of the physical device is known as absolute
file definition. Levels down the directory pathway are delimited by a
slash (compare to VMS where a period is the delimiter). Any file defi­
nition which begins with a slash indicating the root is absolute. Con­
versely, relative file definition defines files not from the root but from
the present working directory. Any file definition that does not begin
with a slash (/) is a relative definition.

VMS
example: $ DIR DUAO:[SYSO.SYSEXE[TYPE.EXE
example: $ SET DEFAULT DUAO:[SYSO.SYSEXE)
example: $ DIR [-)
example: $ DIR (-.SYSLlB]
example:

UNIX
% Is /bin/cat
% cd /bin
% Is ..
% Is •.tUb
% Is-userl

In the first example, Is /bin/cat performs a directory lookup using an
absolute pathname. Unlike VMS, which may require a device specifi­
cation, the UNIX file is defined absolutely from the root. The second
example, cd /bin, introduces the UNIX command cd (change directory),
which uses an absolute pathname to change to the directory /bin. The
third and fourth examples illustrate relative pathnames. The command
Is .. lists the files in the directory above the current directory. The file ..
(dot dot) provides the pointer to the directory above.

The last example, Is -userl, illustrates a feature which is not found in
VMS and which, unlike the other examples, is unique to the C shell. A
- (tilde) followed by the login name of a user points to that user's parent
directory. The - is an example of filename substitution and is called glob­
bing. Wildcards, discussed in Section 2.5, also represent examples of
globbing. Using the directory constructs from Figure 2.2, Is -userl lists
the contents of the directory /usr/userl. The tilde without a login name
points to the parent directory of the current user, and in this instance is
equivalent to the VMS logical name SYS$LOGIN.

It should now be evident that using VMS conventions to name directo­
ries in UNIX is not useful. For example, if userl creates a subdirectory
temp.dir and then creates a file in that directory called test, the absolute
pathname to the file test is /usr/userl/temp.dir/test. The VMS user is
more likely to remember the pathname as /usr/userl/temp/test.

32 Fundamentals

2.3.2

2.3.3

File Types

There are three types of files in UNIX: special files, ordinary files, and
directory files. UNIX treats all physical devices as if they were special
files. Each device on the system has a special file associated with it.
These special files reside in the directory /dev. As shown in Table 2.5,
UNIX treats disks, tape drives, printers, terminals, and pseudo-termi­
nals (used for network connections) as files. Writing to a special file is
a matter of course for programs called by the C shell when executing a
command; it can also be done explicitly by the user, as later chapters
will demonstrate.

Ordinary files contain ASCII characters or binary data. Copying an ordi­
nary file to a special file will output the contents of the ordinary file on
the physical device pointed to by the special file. Copying an ordinary
file to another existing ordinary file overwrites the target file with the
contents of the source file. VMS users accustomed to working with mul­
tiple versions of the same file are likely to inadvertently overwrite files
in UNIX. Sections 4.9 and 4.10 explain how to avoid losing file contents
when copying or renaming files.

An ordinary file consists of a string of bytes arranged in blocks accord­
ing to the block size defined for the partition. By default, a file is not
formatted except for (cTRL}-D, an EOF (end-of-file) character. Format­
ting may be imposed by the user, for example, by writing fixed-length
records as output to a FORTRAN program. UNIX still interprets the
file as a string of bytes, but the output device correctly interprets car­
riage returns and line feeds. Formatting is left to a user's program or the
UNIX command that is interpreting the file. Thus, all UNIX files have
a very simple structure. There is no equivalent to the VMS Record Man­
agement Service (RMS), which defines a variety of attributes for files.

We have already discussed directory files. The directory entry contains
the file name and inode number for each file in the directory. The inode
number has an associated entry in an inode table, which contains infor­
mation on the characteristics of a file: for example, the owner, the type
of file protection, and the date last modified.

Hidden Files

A subclass of the ordinary file is the hidden file. The names of hidden
files always begin with a period, and each file has a special function. We
will encounter a number of these files in chapters to come. Table 2.6

2.3.3 Hidden Files 33

2.4

Table 2.6 Hidden Files

Filename Section Function

.eshre 3.2.2 Define environment to the C shell

.exre Define editing environment for ex editor

.forward 6.1.4 Define a forwarding address for electronic
mail

.history 3.2.1 Save history list

.hushlogin 3.1 Disable some login messages

.login 3.2.1 Define environment at login time, regardless of
shell

.logout 3.3 Define environment at logout time

.mailre 6.1.8 Define environment for the mail program

.netre 13.3.2 Define parameters to ftp (file transfer
program)

.profile 3.2.2 Define environment to the Bourne shell

.rhosts 13.1.3 Define private remote hosts

summarizes the common hidden files and their functions. Hidden files
are so named because using the Is command without options will not list
them. You must use the command Is -a (list all files) to see them. The
justification for having hidden files is that if you do not see them you
are less likely to damage them!

Special Characters

Characters that the C shell interprets in a special way are known as
metacharacters. Users should avoid using these characters in filenames,
as the results may be unpredictable. Metacharacters will be discussed in
subsequent chapters in the context of specific functions. The - (tilde), I
(vertical bar), and> (greater than) characters are examples of meta­
characters that we have already encountered. Table 2.7 summarizes
metacharacters and their functions in the context of the C shell. Table
2.4 lists metacharacters associated with input and output redirection;
these do not appear in Table 2.7. The function of a metacharacter may
vary depending on whether it is being interpreted by the C shell or by a
UNIX utility. Some of the metacharacters listed in Table 2.7 can serve
as wildcards for file specifications, discussed in the following section.

34 Fundamentals

Table 2.7 UNIX Special Characters and Their VMS Equivalents

UNIX Character

&
&&
=

!=

=
<=
>=

\

\In

#

%

•
?
$
$#
$$

$?
$<
@

[]

{ }

·Unique to the C shell.

UNIX Function

Perform command in background
Boolean and*

Assignment operator
Equal to (string)*
Not equal to (string)*
Similar to (string)*

Less than or equal to*

Greater than or equal to*

Boolean or*
Command separator

Continuation of command line
Literal translation of metacharacter m

Turn off special meaning
Process immediately
Group characters into a single argument

Comment follows
History substitution*
Signifies a background job*

Indicates input or output to a pipe is that of
previous command

Wildcard filename substitution for anything
Wildcard filename substitution for single character

Argument substitution follows
Argument count

Process id
Exit status
Read one line from standard input

Perform numerical calculation*

Home directory substitution*
Selective filename substitution
Current directory
Filename expansion delimiters*

VMS Equivalent

.AND.

=
.EQS.
.NES.

.LE.

.GE.

.OR.

"m

I

RECALL

•

F$GETJPI("PID")
$STATUS
INQUIRE

•

2.4 Special Characters 35

2.5 Using Wildcards

UNIX wildcards extend those features found with VMS wildcards.

UNIX
example: *
example: •
example: *.*

example: *.com
example: ?.com

example: name[xyz]
example: name[a-z]

. example: name[a-z4]

example: name.{o,f}

All files in the current directory and one level below
Files in the current directory
All files in the current directory that contain a period in the

filename
All files in the current directory that end in .com
All files in the current directory that end in .com and have

one character preceding the period
All files in the current directory, namex, namey or namez
All files in the current directory, namea through namez
All files in the current directory, namea through namez and

name4 '
All files name.o and name.f in the current directory (C shell

only)

There are no absolute rules for the use of wildcards. The output pro­
duced when using wildcards is command-dependent. For example, the
command Is * produces a listing of files for both the current directory
and the directory one level down the directory hierarchy. On the other
hand, wc * (word count) produces output only for the files in the current
directory. As you can see, Is and wc interpret the wildcard differently.
The command Is . refers to all files pointed to by the. (dot) file, that is,
all files in the current directory. The command wc ., on the other hand,
interprets the. (dot) file literally, providing a word count of the pointer
file itself.

VMS users can use wildcards in UNIX in a familiar way. For example,
UNIX interprets *.com to mean any filename in the current directory
ending in .com, even though .com has no meaning as a file extension.
Unlike VMS, which uses the % (percentage sign), UNIX uses the ?
(question mark) as a wildcard for single character replacement.

2.6 Summary

The software architectures of VMS and UNIX are similar. Nevertheless.
the novice UNIX user must grasp several fundamental differences.

First, the novice UNIX user must learn to manage multiple processes,
sometimes functioning in a cooperative fashion. In contrast, the VMS

36 Fundamentals

user predominantly manages a single process which processes com­
mands sequentially. Chapter 7 introduces the UNIX features for man­
aging multiple processes, although we will encounter many examples
before then.

Second, UNIX uses different command syntax. UNIX command
names, although short, cannot be abbreviated and do not always bring
to mind the command's function. For example, the VMS command TYPE
is a more logical choice than cat for displaying a file at the terminal.
Single-letter options modify the functions of UNIX commands in a man­
ner similar to the VMS command qualifiers.

Third, the novice UNIX user must learn new file and directory struc­
tures. Although bewildering at first, the elegance of the hierarchical
arrangement of files and directories within the UNIX system becomes
evident with use. You may address any file or directory irrespective of
the physical device, with an absolute pathname from the root or with a
relative pathname from the current working directory. Numerous exam­
ples of these concepts appear in Chapter 4.

Finally, the novice UNIX user must understand the concept of meta­
characters, which have special functions when interpreted by the C
shell. We met several metacharacters in this chapter. Chapter 3 intro­
duces the use of metacharacters for the recall and editing of commands
lines, known as history substitution.

2.6 Summary 37

Chapter 3

Getting Starled

3.1

I was thinking that all these tables (pointing to some logarithms) might be
calculated by machinery.

Charles Babbage

You are now ready to begin a terminal session. This chapter explains
how to tailor the interactive computing environment to suit your needs
and introduces features helpful to the first-time user.

First, we discuss how to set the terminal characteristics to match a host
computer environment. This process corresponds to the SET TERMINAL
command in VMS. Second, we provide instructions on how to custom­
ize the UNIX environment. This process corresponds to customizing the
user's LOGIN.COM file in VMS. Next, we discuss the important fea­
tures of command line editing and recall, which help you correct incor­
rect commands. Last, we discuss the UNIX on-line help system and
printed documentation.

At first glance, defining a useful environment for interactive computing
using UNIX appears complex. Fortunately, the novice user usually has
to do very little (or nothing) to establish a usable environment. The sys­
tem is distributed with default .login, .cshrc, and other hidden files
located in the directory /usr/skel. The system administrator may have
modified these files to reflect site-specific features. In any case, these
files should have been copied to your parent directory when your
account was established. If these files are present, then you should
already have a usable interactive environment.

Customizing the environment to suit individual needs, on the other
hand, requires an understanding of the concepts introduced in Sections
3.1 and 3.2. Many readers may wish to work in the default environment
until relatively adept in using UNIX, and then read Sections 3.1 and 3.2
again in preparation for making changes to the interactive environment
to better serve their needs.

At the conclusion of this chapter, you should be able to initiate a ter­
minal session, issue commands, and log off: suitable preparation for the
manipulation and editing of files, which we discuss in Chapters 4 and 5.

Terminal Characteristics

UNIX supports a wide range of hardware types. You may connect a
terminal to each of these hardware types in a variety of ways; for exam­
ple, by direct cable, modem, terminal server, or port selector. If your

3.1 Terminal Characteristics 39

terminal is connected but not displaying a banner message (usually iden­
tifying a particular computer) and the log-in prompt from the UNIX
host, first check the terminal set-up features. The most common settings
for a UNIX system are 9600 baud, 7 data bits, I stop bit, even parity
(compare 8 data bits, 1 stop bit, no parity for VMS). If your terminal is
set up correctly but is still not communicating with the UNIX host, see
your system administrator or refer to the additional reading list in
Appendix D.

If the wiring of your terminal to the host computer puts Data Terminal
Ready (DTR) into operation, turn on the power to initiate a terminal
session. If DTR is not in operation, initiate a terminal session by press­
ing (CR).

Once the log-in prompt appears, UNIX performs a number of operations
that determine which characteristics to assign the terminal requesting
initialization. These operations illustrate a number of UNIX programs
and lookup tables working cooperatively.

When you begin a terminal session, a program named /etc/init l reads a
lookup table residing in a file named /etc/ttys. This file contains an argu­
ment string for each physical terminal device /dev/tty and pseudo-ter­
minal device /dev/ptty (used for network connections) available on the
system. VMS and UNIX use different descriptors to define terminal
devices. For terminals hard-wired to the computer, VMS uses a four­
character descriptor followed by a colon: T for terminal, T or X depend­
ing on the controller type, a letter of the alphabet to designate the con­
troller, and 0-7 (octal) to designate the device number. Examples of
VMS descriptors are TTAO: and TXB7:. UNIX, on the other hand, uses
a five-character descriptor: tty for a terminal device, o-f (hexadecimal)
for the controller ordinal, and o-f for the line ordinal. Examples of
UNIX descriptors are ttyOl and ttyff. You can use the UNIX command
tty, like the VMS command SHOW DEVICE/ALLOCATED, to determine
to which device or computer port a terminal is wired.

VMS
example: $ SHOW DEVICEIALLOCATED

Device Device Error
Name Status Count

UNIX
% tty
Idev/ttyOf

1. This book uses absolute filenames for programs throughout.

40 Getting Staried

TIA4: Online spooled 1
alloc

The /etc/init program passes the argument string to another program,
/etc/getty, which looks for the argument string in the lookup table
/etc/gettytab. If /etc/getty does not find the argument, it uses default
terminal settings. The settings derived from /etc/gettytab include
baud rate, parity, and the system banner message (equivalent to
SYS$ANNOUNCE in VMS). The table /etc/gettytab also assigns a func­
tion to the (BREAK) key. Usually, pressing (BREAK) changes the baud rate
of the host computer port. VMS achieves the same effect more ele­
gantly: the system administrator simply sets the terminal to AUTO­
BAUD, which automatically matches the speed of the computer port to
the speed of the terminal.

When you enter your username at the log-in prompt, /etc/getty reads it
and passes control to the /bin/login program, which prompts you for
your password. The /bin/login program then checks for your username
in the /etc/passwd file. If your username is there, it checks for the asso­
ciated password. If the encrypted password entry in /etc/passwd agrees
with the password you entered, the program grants you access to the
system.

The log-in program updates accounting information and searches the file
/etc/group to determine to which groups a user belongs. Group names
function similar to the VMS User Identification Code (VIC) for the pro­
tection of files. All files have group-level protection, which applies to
users with the same group name. The difference is that a VMS user
always has a single UIC, whereas a UNIX user may belong to multiple
groups. Group-level protection is distinct from world-based protection,
which applies to all users. Refer to Section 4.2 for more information on
file protection. You can determine to which groups you belong with the
groups command.

UNIX
example: % groups

system

The /bin/login program invokes /etc/environ, a program for setting envi­
ronment variables. Environment variables are similar to system-wide
logical name assignments in VMS (see Section 3.2). At this point a copy

3. 7 Terminal Characteristics 41

of the default shell, defined in /etc/passwd, is made available to the
user. The shell presents a prompt: a dollar sign ($) for the Bourne shell,
and a percent sign (%) for the C shell. The shell is now ready to receive
commands.

In VMS, the system administrator can assign an entire range of privi­
leges to each individual user: for example, the ability to change the char­
acteristics of the user's own or other users' processes, or the ability to
change the characteristics of physical devices attached to the system. In
UNIX, on the other hand, each user has the same limited set of privi­
leges with the exception of the superuser (login name root). The super­
user possesses all privileges, including access to all files on the system
irrespective of their assigned protection.

The on-screen messages that appear when a user logs in successfully
depend on the host computer, but will likely include features familiar to
VMS users, such as the current time and the time when the user last
logged in. If the .hushlogin file is present in the user's home directory
these messages will not appear. Note that .hushlogin is an example of a
hidden file (see Section 2.3.3). The mere existence of this file suppresses
the introductory messages; its contents are irrelevant.

In the following example, the user issues the touch command (compare
the VMS CREATE command, discussed in Section 9.4.7) to create an
empty file named .hushlogin in the home directory. When the user logs
out and logs in again, the system's introductory messages no longer
appear.

VMS
example: CUMBG:: VAX nn50

Usemame SYSTEM
Password:

Last interactive login on Thursday, 15-DEC-1988 10:14
Last non-interactive login on Tuesday, 13-DEC-1988 19:30
Welcome to VAXlVMS 4.7

$

UNIX
Ultrix V2.0-1 (cuhhmd)
login: root
password:
Last login: Thu DEC 15 10:14:00 from tty01
Ultrix V2.0-1 System #3 Wed Oct 26 13:28:16 EDT 1988
% touch .hushlogin
% logout

42 Getting Started

Ultrix V2.0-1 (cuhhmd)
login: root
password
%

If your terminal is wired directly to the computer and is unlikely to be
changed for long periods of time, the system administrator may unam­
biguously assign it a terminal type. This terminal descriptor resides in
the file /etc/ttys, or on some systems /etc/ttytype. This descriptor, for
example vt100, matches an entry in the file /etc/termcap, which defines
a set of characteristics for the terminal (compare the VMS command
SET TERMINAUDEVICE-TYPE=VT1 00). The file /etc/termcap contains
information on a large number of terminals from different manufactur­
ers. VMS, in contrast, only carries definitions for Digital Equipment
Corporation terminals, although you can define others. The terminal
definitions in /etc/termcap are usually sufficient. If necessary, you can
change a terminal type assignment at any point during a terminal ses­
sion.

In situations in which different terminals use the same computer port,
for example, in the case of modem lines, port selectors, or network con­
nections, you cannot unambiguously define the terminal type. In these
situations, UNIX matches a generic terminal definition in /etc/ttys or
/etc/ttytypes (for example, dialup or network) to a generic definition in
/etc/termcap. The user may then set the terminal characters, using the
commands tset and stty.

VMS users, presumably already using Digital Equipment Corporation
VT-compatible terminals, need do very little to make their terminals
respond in a satisfactory manner (see the discussion of the setenv TERM
vt100 command in the following section). For reference, we illustrate
some uses of the tset and stty commands below, even though regrettably,
they are two of the more complex commands. To quote the BSD docu­
mentation on the tset command, "Here is a fancy example to hopelessly
confuse anyone who has made it this far." Nevertheless, the documen­
tation for tset does contain examples which are helpful in making ter­
minal assignments.

UNIX
example: % stty dec
example: % stty crt erase -? kill -U

3.1 Terminal Characteristics 43

example: % tset -I -Q
example: % tset - -Q -m network:vtl00

The tset command sets the I/O characteristics for a terminal session.
and stty sets the keyboard characteristics. In the first example. stty sets
all modes suitable for Digital Equipment Corporation terminal users. In
the second example. stty explicitly sets characteristics for a terminal
(crt) rather than for a hardcopy device. The delete key backspaces over
the previous character to delete it instead of echoing it and its replace­
ment within string delimiters. Erase character «CTRL)-H) functions like
the delete key; and delete line is set to (CTRL)-U. Note that the user is
typing stty crt erase (DELETE) kill (CTRL)-U, the terminal echoes "? and "U
for the (DELETE) key and (CTRL)-U. respectively. In these two examples.
the stty command corresponds to the DEFINE/KEY command in VMS.

In the third example, tset -I -Q suppresses terminal initialization mes­
sages (I) and the display of keycap definitions (Q). In the last example,
tset - -Q -m network:vtl 00 sets the terminal characteristics to a VT] 00
when accessing the host UNIX system via a network connection. The
minus sign displays the terminal characteristics, once defined, on the
terminal screen. The m (map) option maps the argument that follows to
an entry in /etc/ttys, in this case a network device.

Use stty everything or tset (with no options or arguments) to review the
current terminal environment. as illustrated in the following examples:

example:
UNIX
% stty everything
new tty, speed 9600 baud
even odd -raw -nl echo -lease -tandem -tabs -cbreak
crt: (crtbs crte,rase crtkill dlecho) -tostop
-tilde -flusho -mdmbuf -litout -nohang
-pendin -decctlq -noflsh
erase kill werase rprnt flush Inext susp intr
"1 "U "W "R "0 "V "zry "C

quit stop eof
'\ "SrQ "D

VMS
example: $ SHOW KEY/ALL

DEFAULT keypad definitions:

44 Getting Started

UNIX
%tset
Erase is delete
Kill is drl-U

tset possesses the functions of both the VMS commands SET and
SHOW. Used without options or arguments, tset displays the current
terminal characteristics. With options or arguments, tset changes the
terminal characteristics. This dual functionality is a typical feature of
UNIX commands that set variables. Commands that do not set variables
and yet require options or arguments behave differently. If you give such
commands without options or arguments, UNIX will likely respond with
the correct syntax, as shown in the example below. The two commands
illustrated here, cp (copy) and mv (move or rename), are discussed in
detail in Sections 4.9 and 4.10 respectively.

UNIX
example: % cp

usage: cp [-ip] f1 f2;
or: cp [-irp] f1 ••• fn d2
or: cp -r [-ip] dl d2

example: % my
usage: my [-if] f1 f2 or my [-if] f1 .•• fn dl ('fn' is a file or directory)

To a novice UNIX user, the login sequence may seem complex and dis­
concerting. However, keep in mind that much of the sequence is trans­
parent to the novice user, and is included to illustrate that UNIX has a
modular structure enabling a number of programs and lookup tables to
function cooperatively.

3.2 User Environment

C shell users have two methods for defining the user environment. The
first method uses the hidden file .login (corresponding to the VMS file
LOGIN.COM), located in the parent directory. As noted above.
fete/environ establishes a set of global characteristics, called environ­
ment variables. Users can change the default values of these variables,
or add to them, during login by including the appropriate definitions in
the .login file. Users can also redefine environment variables or add new
ones at any time during a terminal session. Environment variables are
independent of the shell; that is, they are in effect regardless of what
shell is being used.

The second method for defining the user environment applies only to
those commands interpreted by the C shell. The hidden file .cshrc,
located in the parent directory, governs the C shell environment. Entries
in the .cshrc file define shell variables. When the C shell parses a com-

3.2 User Environment 45

mand line, it either interprets the command (referred to as a built-in
command) or forks a new process, which executes a separate program.
By default, the new process receives the characteristics found in both
.login and .cshrc. When the Bourne shell parses the command line it
gives new processes the characteristics found in the files .login and .pro­
file. That is, .profile is to the Bourne shell what .cshrc is to the C shell.
Before discussing how to customize the .login and .cshrc files, let us deal
with the major environment variables and their functions.

The printenv command determines which environment variables have
been assigned to a terminal session, either by the user or by the system.
The following example shows a typical environment for the ULTRIX
version of the UNIX operating system. By convention, environment
variables appear in upper case.

UNIX
example: % printenv

HOME = lusr/users/system
SHELL = Ibin/csh
TERM = network
USER = system
PATH = lusr/ucb:/bin:/usr/userslsystem­
Ibin:/usr/bin:/usr/local:/usr/new:/etc:.
EDITOR = lusr/ucb/vi
MAIL = lusrlspool/mail/system
EXINIT=set ai aw ic sw=4 redraw-

wm=4lmap g Glmap v __ u

Parent directory
C shell as default
Terminal type
Login name
Directories to search
for commands
Default editor
Place to store mail messages
Predefine editing features

HOME serves the same function as SYS$LOGIN in VMS, defining the
user's home, or parent, directory. SHELL indicates the shell that is being
used to process commands, corresponding to the VMS command lan­
guage interpreter. TERM returns the terminal type, corresponding to the
VMS lexical function F$GETDVI{device_name,DEVTYPE). USER returns
the user login name, corresponding to the VMS lexical function
F$GETJPI{pid,USERNAME). PATH identifies the directories the system
must search to resolve command requests.

When you issue a command, the shell program parses the command line
and either processes it directly or passes control to a program in any of
the directories specified by PATH. Directory paths are separated by a
colon. In the example above, note the dot, which specifies the current
working directory in the PATH list. You should order the PATH list so

46 Getting Started

3.2.J

that the directories referenced most frequently appear first in the list.2

You may add your own directories to the PATH list to search for your
own specific commands. UNIX users commonly design a directory
structure similar to the one used by the operating system: -user/bin to
store executable files, -user/lib to store libraries, and so on.

EDITOR specifies the default editor, in this case vi (see Section 5.2).
MAIL indicates the location of electronic mail messages, and corre­
sponds to the VMS SET MAILDIRECTORY command (see Section
6.1.8). EXINIT defines the characteristics of the editing environment for
the vi editor, and corresponds to the definitions contained in the
SYS$LOGIN:EDTINI.EDT file used to customize the VMS EDT editor
(see Section 5.2).

Customizing the .Iogin File

The UNIX command setenv defines environment variables in the .login
file, as shown in the following examples.

UNIX
form: % setenv NAME value
example: % setenv SHELL Ibin/sh
example: % setenv TERM vt100

make Bourne shell the default
give terminal the characteristics of a VT100

In the first example, setenv SHELL /bin/sh sets the SHELL environment
variable to /bin/sh, the Bourne shell program (/bin/csh refers to the C
shell program). In the second example, setenv TERM VT100 sets the ter­
minal type to a VT100, recommended for VMS users who have Digital
Equipment Corporation VT100, VT200, or VT300 series terminals or
compatibles.

Some shell variables have the same names as environment variables,
but in lower case. Shell and environment variables with the same names
also have the same functions. For example, HOME and home both
define the parent directory. The distinction is only important when the
user invokes more than one shell. If HOME is defined in the .login file
as one directory, and the user then invokes the C shell with home
defined in the file .cshrc as a different directory, the latter wiH be in

2. Always place the current working directory last in the PATH list to avoid a serious
security risk.

3.2.1 Customizing the .Iogin File 47

Table 3.1 Sample .Iogin File

stty dec new erO

tset -I -Q
umask 027

setenv EDITOR'/usrlueb/vi'

setenv MAIL /usr/spool/mail/$USER

setenv SHELL /bin/esh
setenv EXINIT 'set ai ow ie sw=4 redraw wm =41 map 9 G I map v _u_,

set savehist = 50
set mail =$MAIL

set prompt = "! - $USER>"

biff y

effect. The set command defines shell variables. Shell variable defini­
tions can reside in the .login file, which is meaningful if you invoke the
C shell during login, or in the shell definition file .cshrc, discussed in the
following section. Table 3.1 illustrates a simple .login file for an
ULTRIX terminal session, including examples of the setenv and set
commands.

In this example, the tset and stty commands set the terminal environ­
ment (see Section 3.1). The umask command sets the default file protec­
tion, and corresponds to the VMS command SET PROTECTIONI
DEFAULT. The three octal digits refer to owner, group, and world access
respectively. Unlike VMS, UNIX offers no system-level protection; as
noted above, the superuser has access to all files at all times. In this
example, a value of 0 indicates read, write, and execute access, 2 indi­
cates read access, and 7 indicates no access. Thus, 027 indicates read­
write-execute access for the owner, read access to the group, and no
world access. It will be shown that the umask notation is the reverse of
that used for setting individual file protections. Section 4.2 discusses file
protections and umask in more detail.

savehist is a C shell variable indicating the number of command lines
that you may save for your next terminal session. At the conclusion of
each terminal session, the last n commands-in this case 50-are saved
to the hidden file .history located in your parent directory. At the begin­
ning of the next terminal session, the C shell reads the file .history into
the history list. The history list is the name given to those commands
that can be recalled with the C shell history command (compare the VMS

48 Getting Staried

3.2.2

command RECALUALL). The history command is discussed in Section
3.5. VMS does not have a corresponding feature. VMS maintains a his­
tory list of the last 20 commands, available only during the current ter­
minal session by issuing the RECALL command.

The shell variable mail and the environment variable MAIL define direc­
tories to store incoming and unread mail messages (compare the folder
called MAIL used by the VMS MAIL utility). mail =$MAIL introduces our
first example of variable substitution. The dollar sign ($) functions as a
metacharacter, which when placed before a variable name causes sub­
stitution for the value of that variable, in this instance a directory name.

The prompt variable defines an alternative prompt to % for the C shell
(compare the VMS command SET PROMPT). The exclamation mark (!)

is a metacharacter interpreted by the C shell as the beginning of a history
substitution (see Section 3.4). It indicates the current command number.
In this example, the current command number, which precedes the user­
name (based on the substitution of the environment variable USER).
echoes to the screen. For example. when user root issues the first com­
mand of a terminal session, the prompt 1 - root> would appear on the
screen. The quotes surrounding the prompt string in the .login file
delimit the value assigned to the variable prompt; without quotes a blank
is used as a delimiter. We will meet other examples of the use of the !
(exclamation) as a metacharacter to invoke a history substitution later
in the text.

The last line of the sample .login file contains the biff command (BSD
only), named after the dog of a graduate student at the University ·of
Berkeley. The biff command turns notification of incoming mail on and
off. Having mail notification turned on (biff y) is analogous to having the
dog bark whenever mail arrives. The default, biff n, corresponds to the
VMS command SET BROADCAST= NOMAIL; biH y corresponds to SET
BROADCAST=MAIL.

Customizing the .cshrc File

The C shell environment definition file .cshrc usuaHy consists of two
types of commands, set and alias. As discussed above. the set command
defines C shell variables. Table 3.2 lists variables -that you might use
with set in the .cshrc file. We will discuss the meaning of many of these
variables in later chapters. Note. however, the variable noclobber. All

3.2.2 Customizing the .cshrc File 49

Table 3.2 Variables Used with the set Command

Variable

argv

autologout = n

cdpath = string
echo
histchars = string

history = n
home = string
ignoreeof

mail = string
noclobber

noglob

nonomatch

notify

path = string
prompt = string

savehist = n

shell = string

status

time = n

verbose

-Not found in ULTRIX

VMS Equivalent

Pl, P2 etc.

WRITE SYS$OUTPUT

n = 20
SYS$LOGIN

SET MAIL _DIRECTORY

SET PROMPT

$STATUS

SET VERIFY

Meaning

Arguments to the shell
Specifies number of minutes of idle time

before an interactive shell terminates*
Alternative directory tree search
Echoes command lines and arguments
Replaces default of ! for history

substitution
Remembers last n commands for recall
Sets home directory for C shell command
Prevents (CTRL)-D logouts: require use of

logout command
Where shell checks for mail

Prevents unintentional overwriting during
redirection

Prevents expansion of filenames

Prevents error status if no file match to
command is found

Time of notification of job completion
Sets search path to resolve command calls
Sets an alternative prompt to the default

C shell prompt of %
Remembers last n commands for recall at

beginning of next terminal session
Path to the shell program

Status as command completion: 1 =
error; 0 = no error

Any command taking longer than n
seconds will report CPU and elapsed
time

Causes the words of each command to be
echoed after history substitution

novice UNIX users should set the variable noclobber. Since UNIX
maintains only the current version of a file. you must take care to pre­
vent the inadvertent overwriting, or clobbering, of files when redirecting
them (see Section 2.1.3). With noclobber set, you cannot redirect output
to an existing file. If you inadvertently redirect output to an existing file.
you will receive an error message.

50 Getting Started

The command alias (compare the VMS construct: = =) redefines com­
mand names to make them easier to remember, to abbreviate them, or
both. You may abbreviate a command, or a commonly used sequence of
commands performing a specific function, to a single user-defined com­
mand.

UNIX

emacs
set back=$old; set old=$cwd; cd $back; unset\

back; dirs
cd set old = $cwd; chdir I-
cp cp -i I-
del rm-i
dir Is -I !- Imore
mv mv -i I-
no Isystem1/system/scripts/numberoscr
q lusr/public/queues.scr .
t1500 Ipr-Plaser
% unalias DIRexample:

form: % alias name wordlist
example: % alias DIR 'Is -I I more'
example: % alias DIR 'Is -I \!- Imore'
form: % unalias name
example: % alias

E
back

In the first example, alias DIR '15 -II more', the name DIR is made equal
to the Is -I command piped to the more command. The command Is, with
the I option, produces an extended listing of the file specification. This
command corresponds to the VMS command DIRECTORY/DATEI
OWNER/SIZE (see Section 4.1). The more command functions like the
VMS command TYPE/PAGE, listing the contents of a file one screen at
a time (see Sections 4.8 and 9.2). The single quote delimits the string
you wish to redefine. You can also use double quotes.

Would the command DIR *of list all FORTRAN source files, one screen
at a time? The answer is no. The shell would parse the command line as
Is -I followed by more *of, that is, list all files in the directory followed
by the display of the contents of all files with names that terminate in of.
To associate the argument with the first command in the pipe, you must
use a history substitution. In the second example, alias DIR '15 -I \!* I
more', the backslash (\, another metacharacter) prevents the immediate
parsing of the history substitution when the alias is defined. Instead, the
substitution takes place when the alias is invoked. As shown previously,

3.2.2 Customizing the .cshrc File 57

Table 3.3 Sample .cshrc File

set autologout =30
set prompt = "cuhhmd> "
set cdpath = ($HOME/sys /usr/sys /usr/spool)
set path = (/usrlucb /bin $HOME/bin /usrlbin /usr/local /usr/new /etc .)
set notify

set history = 100
set inc = /usrlinclude
olios pwd 'echo $cwd'

olios h history

olios pd pushd
olios pop popd

olios cd 'set old = $cwd: chdir \!*'
olios bock 'set back=$old; set old=$cwd; cd Sback; unset bock; dirs'

the exclamation mark invokes a command from the history list and the
asterisk (another metacharacter) indicates the last argument to that com­
mand. Using the revised definition of DIR from the second example, DIR
*.f now functions correctly: the argument *.f is passed to Is -I, and the
long directory listing of all files ending in .f is piped to more for display.

In the last example, alias without options or arguments illustrates the
UNIX convention regarding commands that set variables: Ifissued with­
out arguments, commands that set variables return the values estab­
lished with previous use of the command.

The unalias command, as the name suggests, undoes the alias command.

Table 3.3 illustrates a typical .cshrc file composed of alias and set com­
mands.

If you make changes to the .cshrc file, you must issue the com­
mand source before th~change$. take effect for the current shell.
The command sourcQ,l.S· !jQuilt into the C shell (see Section 11.9.4).
The command sou-'ce" .~;hr.GJ :.eorresp()nds to the VMS command
@SYS$LQGIN:LOGlJ't.I.C0NJ:;, ;Y/,lqch,.. t~e· ·us~r--,jssues lifter ,,~aking

~ .' :~._:~ .. ,';m'."'&:·~.1"''i.·:b;,: ...::~v.~~\',·. 'I ~"'. ," . :', . ", ," " . ~ :~:.', ':" . "': '.,:,". . _.

~R~~3.~8,Jt0Jithe:·:I!OCilNcrQ~hfil~f lt0Imner'%Jie;'el)aoge$ itat.e':~ffeet imme-
·diatelY. . . .

52 Getting Started

VMS
example: $ @SYS$LOGIN:LOGIN.COM

UNIX
% source .cshrc

3.2.3

Note that any child process created will include the characteristics
defined in the new .cshrc file, for the system executes this file by default
each time it forks a new process.

Setting the Password

You may change your password at any time using the passwd command
(compare the VMS command SET PASSWORD). Neither the old or the
new password echoes to the terminal screen.

VMS
form: $ SET PASSWORD

Old password:
New password:
Verification:

UNIX
% passwd
Old password:
New password:
Retype new password:

3.3

For security reasons, your password should be at least six characters
long. Avoid using metacharacters in naming passwords, as they may pro­
voke an unpredictable response from the UNIX operating system. You
may use uppercase and lowercase characters, but remember that the
/bin/login program is case-sensitive.

Logging Out

You may end a terminal session in one of two ways, depending on
whether the C shell variable ignoreeof has been set. If ignoreeof is set,
you must use the logout command to log out of the system. If ignoreeof
is not set, you may use (cTRL)-D.

The (cTRL)-D command is the EOF (end-of-file) marker, and entering it
terminates input from the terminal. Think of the C shell as another pro­
gram, a program that reads input from the terminal rather than a file.
Just as input from a file is terminated with an end of file marker, so is
input from the terminal. In either case, the shell program looks in the
hidden file .logout (compare the VMS file LOGOUT.COM) in your par­
ent directory for any user-specific functions to perform before ending
the terminal session. It is common practice to place the clear command

3.3 Logging Out 53

3.4

in this file to clear the terminal screen at the end of the session: useful
if you don't want anyone to see all the mistakes you've been making!
After performing any user-specific functions, the shell searches for the
system-wide logout file lete/logout for any further commands to pro­
cess. Finally, the shell passes control back to lete/init, which initiated
the terminal session and now gracefully ends it.

You will not be able to log out if there are any stopped jobs in back­
ground. Novice UNIX users often generate stopped jobs in background
inadvertently. Novice users who get Ustuck" while issuing commands
often try (CTRL)-Z to get back to the prompt, a common strategy in VMS.
In UNIX, (CTRL)-Z will return the prompt, returning control to the parent
process, while leaving the child process in a stopped background state.
The UNIX command iobs lists stopped processes in the background. If
these are unwanted processes you may enter logout or (CTRL)-D again,
depending on whether ignoreeof is set, to remove the stopped processes
and end the terminal session.

You do not need to understand the features of background processing at
this point. Stopped jobs and background processing, great strengths of
the UNIX operating system, are discussed in Section 8.3.

Control Key Functions

As in VMS, (CTRL) plays a special role in a UNIX terminal session. You
may use the stty command to modify the functions associated with the
control key.

Although (CTRL)-Q and (CTRL)-S stop and start terminal output on most
systems, most users prefer the hold screen key found on many termi­
nals. As noted above (CTRL)-Z will suspend a child process and return
control to the parent process (compare the VMS command (CTRL)-Y,
followed by CONTINUE). The (CTRL)-D command will end a terminal
session if ignoreeof is not set. The (cTRL)-L command will refresh the
terminal screen (compare the VMS command (CTRL)-W). Like the VMS
command (CTRL)-C, (CTRL)-C kills the current child process and returns
control to the parent shell process.

3.5 Editing and Recall of Command Lines

We have already touched briefly on the history command and the use of
history substitution, which are unique to the C shell. We will now dis­
cuss them in more detail in reference to the recall of command lines.

54 Getting Storted

VMS Version 4.0 introduced the recall of command lines. Some of the
comparable commands in VMS and UNIX are:

VMS
form: $ RECALL/ALL
form: $ (up arrow)

, form: $ RECALL N
form: $ RECALL string

form:
form:

UNIX
% history
% !!
% !n
% !string

% !?string?
% !-n

Provide history list
Execute last command
Execute command number n on the history list
Execute the last command beginning with
string
Execute the last command containing string
Execute the nth command ago

There are two important differences between the recall of command
lines in VMS and UNIX. First, the command sequence numbers for the
VMS RECALL command and the UNIX history command are different.
Command I in VMS specifies the last command, whereas command I
in UNIX specifies the first. Similarly, command N in VMS specifies the
nth command issued before the current one, whereas in UNIX the n
command specifies the nth command issued since the beginning of the
terminal session. Second, when you recall a command in VMS you must
press (CR) to execute it, whereas UNIX executes the command imme­
diately, by default.

UNIX can recall only parts of a command line. To explain how this
works, we must introduce the concept of word identifiers. A word iden­
tifier is a piece of a command line delimited by blanks and recognized
as a unique entity by the shell. You can break each command line down
into a series of word identifiers, which you can then select as part of the
current command line. The following examples show the recall of word
identifiers from a previous command.

UNIX
form: % command argumentl argument2 argument3

o 1 2 3 # word identifier
example: % history

1 Ipr file1 file2 file3

example: % cat!1:1
catfilel

example: % cat!1:.
cat file1 file2 file3

example: % cat!1:$
cat file3

example: % cat!1 :2-3
cat file2 file3

3.5 Editing and Recall of Command Lines 55

example: % cat !1 :2-3 file10
cat file2 file3 file10

Here, the first command on the history list, Ipr (off-line print; compare
the VMS command PRINT), has a word identifier of 0, file1 has a word
identifier of 1, file 2 of 2, and so on. You can introduce metacharacters
into the history substitution to manipulate the word identifiers. Each of
the above examples associates one or more of the word identifiers with
a different command. The first example of word substitution, cat !l:1,
takes word identifier I (:1) from the first command in the history list (!l)
and uses it as an argument to the cat command. The second example,
cat !l :*, uses the asterisk to recall word identifiers 1 through n, but not
O. The third example, cat !1 :$, uses the dollar sign to recall the last word
identifier. The fourth example, cat !l :2-3, recalls word identifiers 2 and
3. The last example, cat !l :2-3 file10, expands the command line with
new arguments.

The recall of command lines, or parts of command lines, in UNIX is
versatile, but not as convenient as in VMS, where pressing the up arrow
key repeatedly will scroll back through your previous commands. Edit­
ing command lines in UNIX is also inconvenient. In VMS, you can posi­
tion the cursor on the command line using the arrow keys and add or
delete text in a manner similar to a full-screen editor. Editing command
lines in UNIX is more like using a line editor and performing string sub­
stitutions, as shown below.

form:
example:

form:
example:

UNIX
% AstringlAstring2 4

% cat filel
% AcatAIprA
Ipr filel
% !n:s/stringl/string2/
% history

7 cat filel

Substitute string1 for string2 in previous command

Substitute string1 for string2 in command line n

% !7:s/cat/lpr/
Ipr filel

form: % !n:p:s/string1/string2
%!!

example: % !7:p:s/cat/lpr
Ipr filel
% !!
Ipr filel

56 Getting Started

Display command substitution but do not execute
Execute previously displayed command

I

3.6

In the first example, AcatAlprAsubstitutes stringl for string2 in the pre­
vious command using the caret as a delimiter, and executes the new
command. In the second example, !7:s/cat/lpr/ also performs a substi­
tution (:s), but for a specific command; number 7 in the history list. Note
that the slash serves as a string delimiter; other characters not found in
stringl or string2 may also serve as delimiters. In the last example,
!7:p:s/cat/lprl previews (p:) a command substitution (:s) and then exe­
cutes it with a double exclamation point (!!). Previewing YOllr commands
prior to executing them is advisable for all novice UNIX IIsers. You may
use!! at any time to immediately execute the previously displayed com­
mand again (compare the VMS command up arrow followed by (CR».
The novice should not disregard the recall and editing of command lines.
You should be comfortable with this feature before moving on to Chap­
ter 4. Spend time at the terminal until fluent in command line recall and
editing: time spent now will be time saved later.

On-Line Help

The major form of UNIX on-line help are the man pages, which, as the
name suggests, are merely on-line versions of sections of the UNIX doc­
umentation set. In reviewing either the machine-readable or written
form, VMS users will likely find the UNIX documentation terse, poorly
structured, and lacking in examples. Nevertheless, the man command,
which displays the on-line documentation, will likely appear frequently
in a novice user's history list, and it therefore requires detailed discus­
sion.

In VMS, the HELP command uses the VMS Librarian Utility to review
library entries for each command. Each command in the library is
arranged in hierarchical order. At the top is a brief description of the
command, followed by a list of qualifiers, parameters, and examples
which you may review in any order by using features of the Librarian
Utility_ The UNIX man page, on the other hand, is a text file which you
must read from top to bottom. The general form of the man page is
shown below. Not all entries contain each category.

NAME

SYNOPSIS
DESCRIPTION
FILES
SEE ALSO

Lists the name and purpose of a command or
subroutine.

Summarizes usage.

Describes usage in more detail.

Lists the files related to command usage.

Points to related information.

3.6 On-Line Help 57

Table 3.4 Man Page Locations

lusr/man/manN
N

1
2

3
4
5
6

7

8

Contents

Shell commands
System calls (kernel access points)
Subroutine libraries
Input/output device driv6r descriptions
Include files and formats
Computer games
Special files
System procedures

Sections I and 3 are further subdivided as follows:

1
1c

19
1m

3
3f
3r

3m
3s
3x

DIAGNOSTICS
EXAMPLES
BUGS

RESTRICTIONS
AUTHORS

General purpose commands
Communication related commands
Graphics related commands
System maintenance commands

Standard subroutine library
FORTRAN 77 support routines
Internet network library
Mathematical subroutines
Input/output subroutines
Various specialized subroutines

Diagnostic messages.

Examples on using the command or program.

Describes known bugs, or deficiencies, and
fixes if available.

Known limitations.

Who to blame.

To grasp a particular concept, for example the use of a command option,
you may have to read the whole man page several times. Compare the
VMS HELP system, where you can choose the specific topic of interest
and display and redisplay the information easily.

The man pages reside in the directories /usr/man/man1 through lusrl
man/man8, according to the classification outlined in Table 3.4. The

58 Getting Started

directory /usr/man/manl contains local man page entries, similar to a
VMS local help library (for example, HLP$LlBRARY_l). UNIX stores the
various man pages as unformatted nroff files (see Section 12.3), and the
man command formats and displays them as required. Each man page
has an associated section number. For example, the man page for the
cat command resides in /usr/man/man1/cat.1, with a section number of
1. The man command searches all sections for the man page unless you
request a specific section. Some man page entries appear in more than
one section. In such instances, only one occurrence will be displayed,
with preference given to commands over subroutines.

form:
example:

UNIX
%man command
%man cat

- terminal dependent initialization
- get terminal name
- general terminal interface
- find name of a terminal port
- find name of a terminal
- terminal initialization data
- data base of terminal types by

port
- virtually "hangup" the current

control terminal
vhangup (see vhangup(2))

- terminal multiplexor
- clear terminal screen
- set terminal mode
- terminal configuration data base
- reserve a terminal
- pseudo terminal driver
- make typescript of terminal

session
- set terminal options
- set and get terminal state

(defunct)
tabs (see tabs(l)) - set terminal tabs
term (see term(7)) - conventional names for terminals
termcap (see termcap(5)) - terminal capability data base
tgetent, tgetnum, tgetflag, tgetstr, tgoto, tputs (see termcap(3x)) - terminal independent

operation routines
tset (see tset(l))
tty (see tty(l))
tty (see tty(4))
ttynam, isatty (see ttynam(3f))
ttyname, isatty, ttyslot (see ttyname(3))
ttys (see ttys(5))
ttytype (see ttytype(5))

stty (see stty(l))
stty, gtty (see stty(3c))

form: %man -k keyword
example: %man -k terminal
ca (see ca(4))
clear (see clear(l))
getty (see getty(8))
gettytab (see gettytab(5))
lock (see lock(l))
pty (see pty(4))
script (see script(l))

form: %man section command
example: %man 3c stty

3.6 On-Line Help 59

form:
example:

% man -f command
% man -f more
more, page (see more (1)) - file perusal filter for CRT viewing

3.7

3.8

In the first example above, man cat searches the man pages for the spe­
cific command cat. The man command will search all the man directo­
ries for a file referring to this command. The man page entry is auto­
matically piped through the more command and displayed on the output
device. In the second example, man -k terminal illustrates a situation
where the user knows something about the function of the command,
but not the name of the command (compare the VMS command HELP
HINTS). The user knows that the command relates to the use of a ter­
minal, and therefore displays all terminal-related commands. The user
can then select the correct command and display the specific man page.
Note that the section number for each command appears in parentheses.
In BSD, man -k can also be executed as the command apropos.

In the third example, man 3c stty, a specific section identifier, is used to
review the stty subroutine; man lstty would display the stty command.
In the last example, the situation is the reverse of that described above
for man -k: that is, the user knows the command name but not the func­
tion. The f option displays the header line, providing a brief synopsis
of the command's function. The command whatis can substitute for
man -f.

Printed Documentation

The printed documentation available to a UNIX user depends on the
UNIX version and the distributor. Table 3.5 describes the various com­
ponents of the ULTRIX documentation set, most of which are common
to any derivative of the BSD. For a new user, the commands section
and Supplementary Volume I provide the most useful reference mate­
rial.

Summary

Conducting your first terminal session with a new operating system can
be a traumatic event. UNIX is no exception. This chapter is intended to
minimize that trauma.

Once you have logged in, if the terminal does not respond as expected.
issue the command setenv TERM terminaLtype (Section 3. I). where ter-

60 Getting Started

Table 3.5 ULTRIX Documentation Set

Section

Commands
System Calls

Subroutines

Special Files

File Formats

Macro Package and Conventions

Maintenance

Supplementary I

Supplementary II

Supplementary III

Contents

Commands available to all users
Routines for making calls to the

kernel
Subroutines found in various

system libraries
Files relating to device driver and

network support
Describes the format of system

files, many of which are
discussed in this book

Miscellaneous information about
mail, text formatting, and so on

System operation and
maintenance

Supplementary information for
the user, including system
overview, editing, utilities,
word processing

Supplementary information for
the programmer, including
languages, debuggers,
programming support tools

System management support tools

On-Line Location

lusr/man/man1
lusr/man/man2

lusr/man/man3

lusr/man/man4

Iusrlmanlman5

lusr/man/man7

lusr/man/man8

minal type is one of the terminals described in the file letc/termcap (use
the command more letc/termcap to display this file). Users of Digital
Equipment Corporation VT series terminals and compatibles should
find the appropriate entries, for example VT 100, VT200, or VT300. If
the terminal still does not respond as expected, consult your system
administrator.

Next, use the cat or more commands to examine any files beginning with
a period. Recall that these are hidden files, and that they are important
to your terminal session. Particularly important at this point are the files
.login (Section 3.2.1) for all users (compare the VMS file LOGIN.COM),
.profile for Bourne shell users, and .cshrc (Section 3.2.2) for C shell
users. If you do not know which shell is your default shell, look at the
prompt: % is the default C shell prompt, and $ is the default Bourne
shell prompt. Reconcile the commands found in these files with those
discussed here.

3.8 Summary 67

When the inevitable typing mistakes occur and the arrow keys do not
function as they do with VMS, persevere with the UNIX recall and edit­
ing of command lines (Section 3.5). Although not as elegant as VMS,
they are still useful.

Finally, spend time with the UNIX man pages (Section 3.6); you are sure
to use them while experimenting with the material discussed in the fol­
lowing chapters.

62 Getting Staried

Chapter 4

Introductory File Management

Doublethink means the power of holding two contradidory beliefs in one's
mind simultaneously, and accepting both of them.

George Orwell

UNIX possesses numerous commands and utilities for the creation,
modification, and display of files and directories. Table 4.1, a summary
of file management commands, was created from the headers of the man
page entries for all sections of the BSD documentation (see Section 3.6).
Table 4.1 divides the commands into those that display files and those
that manipulate them. Since display commands do not change the con­
tents of files, the novice user may use them in complete safety. Manip­
ulation commands do change the contents of files, and novice users
should use them with care.

Like a spoken language, UNIX allows successful communication using
only a limited vocabulary. This chapter concentrates on commands and
a few options that the novice user will likely need in the first few ter­
minal sessions. Chapter 9 introduces additional commands and options
that, although used less frequently, add richness and functionality to the
language. In both chapters the focus is commands rather than callable
C language routines or utilities. The following chapters deal with impor­
tant utilities i'n the context of application development; callable routines
are beyond the scope of this book. Table 4.2 summarizes the directory
and file commands discussed and indicates where to find them in this
book.·

After reading this chapter, you should be able to perform the most com­
mon tasks involving the management of UNIX files. You should be able
to:

• list the files in a directory (Section 4.1)

determine the current directory (Section 4.3)

change the current directory (Section 4.4)

• create a directory (Section 4.5) ,

• delete a di,rectory (Section 4.6)

locate a file (Section 4.7)

1. The commands in Table 4.2 are a subset of the commands found in Appendix A.

64 Introductory File Management

4.1

• display the contents of a file (Section 4.8)

• copy a file (Section 4.9)

• rename a file (Section 4.10)

• delete a file (Section 4.11)

As you begin displaying and managing files, you will need to learn more
about their characteristics. We will begin by learning how to list the
characteristics of files in Section 4.1. We will then explain each of these
characteristics in Section 4.2. An understanding of file characteristics
will be especially useful in Chapter 9, when we discuss commands that
change file characteristics. In Sections 4.3 through 4.11, we return to
our introduction of interactive file and directory management.

As before, when we give examples of UNIX commands and compare
them to their VMS counterparts, we use relative and absolute path­
names to emphasize the various ways of defining files in UNIX. The
examples come from everyday use, and illustrate piping and input and
output redirection. We suggest that you study the examples given here
and then experiment with variations of your own.

Displaying Directory Contents: Is

The Is command for listing the contents of a directory was introduced in
Section 2.2, and it has since been used with different options. The fol­
lowing examples summarize some Is options.

form:
example:

example:

example:

VMS
$ DIRECTORY[/QUALIFIER(S)) [FILE-SPEC...]
$DIR
DUA2:[USER1)
.LOGIN;l MYFILE.TXT;l PROGRAM.FOR;l
TMP.DIR;l
$DIR
DUA2:[USER1]
.LOGIN;l MYFILE.TXT;l PROGRAM.FOR;l
TMP.DIR;l·
$ DIR [...J
DUA2:[USER1]
.LOGIN;l MYFILE.TXT;l PROGRAM.FOR;l
TMP.DIR;l
DUA2:[USER1.TMP]
TEST.;1

UNIX
% Is -[option(s)) [argument(s)]
%15
myfile.txt program.f tmp

% Is-a
.login myfile.txt program.f tmp

% Is-R
myfile.txt program.f tmp

tmp:
test

4. 1 Displaying Directory Contents: Is 65

Table 4.1 Summary of File Management Commands
"

UNIX Command

Display Commands: Directories
Is (see Is(l))

Display Commands: Files
cat (see cat(l))

col (see col(1))
colcrt (see colcrt(l))
fmt (see fmt(l))
fold (see fold(l))

fpr (see fpr(lf))
head (see head(l))
more, page (see more(1))
od (see od(l))
pr (see pr(l))
print (see print(l))
sod (see sod(l))
tail (see tail(l))

Manipulation Commands: Directories
cd (see cd(l))

chdir (see chdir(2))

chdir (see chdir(3f))

cpall (see cpall(l))

dir (see dir(5))

getdirentries (see getdirentries(2))

VMS Equivalent

DIRECTORY

TYPE

RUNOFF
SET TERMINALIWIDTH = n!WRAP

PRINT
EDIT/READ
TYPE/PAGE
DUMP
PRINT/HEAD
PRINT
ANALYZE/OBJECT
EDIT/READ

SET DEFAULT
SET DEFAULT

SET DEFAULT

COpy

Purpose

Lists contents of directory

Catenates and prints to a terminal
Filters reverse line feeds

Filters nroR output for CRT previewing
Simple text formatter
Folds long lines for finite-width output

device
Prints FORTRAN files
Displays first few lines
File perusal filter for CRT viewing
Octal, decimal, hex, ASCII dump
Prints file to stdout
Prints to the line printer
Standard object file-dump utility
Displays the last part of a file

Changes working directory

Changes current working directory-C
callable routine

Changes default directory-FORTRAN
callable routine

Copies directory

Format of directories

Gets directory entries in a file system
independent format

getwd (see getwd (3)) F$DIRECTORY("DEFAULT") Gets current working directory path
name

mkdir (see mkdir(l)) CREATE/DIRECTORY Makes a directory
pwd (see pwd(1)) SHOW DEFAULT Working directory name
rmdir (see rmdir(2)) DELETE Removes a directory file
scandir, alphasort (see scandir(3)) Scans a directory
unlink (see unlink(2)) Removes directory entry-C callable

routine
unlink (see unlink(3f)) Removes a directory entry-

FORTRAN callable routine

Manipulation Commands: Files
ar (see ar(l)) LIBRARY Archive and library maintainer
awk (see awk(l)) EDITITPU Patterns scanning and processing

language
basename (see basename(l)) F$PARSE Strips filename affixes
bcopy, bcmp, bzero, Hs (see bstring(3)) F$FAO Bit and byte string operations
checknr (see checknr(l)) Checks nroff/troff files
chgrp (see chgrp(l)) SET FILE/OWNER Changes group
chmod (see chmod(l)) SET PROTECTION Changes mode-command
chmod (see chmod(2)) SET PROTECTION Changes mode-C callable routine
chmod (see chmod(3f)) SET PROTECTION Changes mode-FORTRAN callable

routine
cmp (see cmp(l)) DIFFERENCE Compares two files
comm (see comm(l)) SORT/MERGE Selects or rejects lines common to two

sorted files

compact, uncompact, ccat (see COMPRESS Compresses and uncompresses files
compact(l)) and catenates them

cp (see cp(l)) COpy Copy
cpr (see cpr(l)) PRINT Prints C source files

0.. creat (see creat(2)) CREATE Creates a new file
"

Table 4.1 Summary of File Management Commands (continued)

UNIX Command

crypt (see crypt(l))
crypt, setkey, encrypt (see crypt(3))

dags (see dags(l))
dd (see dd(l))
diff (see diff(l))

diff3 (see diff3(1))
expand, unexpand (see expand(l))
file (see file(l))
filehdr (see filehdr(5))

find (see find(1))
flock (see flock(2))

fsplit (see fsplit(lf))

ftp (see ftp(l c))
grep, egrep, fgrep (see grep(l))

ident (see ident(l))
link (see link(2))

link (see link(3f))

In (see In(l))

lockf (see lockf(3))

look (see look(l))

VMS Equivalent

ENCRYPT
ENCRYPT

EXCHANGE
DIFFERENCE

F$PARSE

DIRECTORY
UNLOCK

COPY
SEARCH
DIRECTORY
ASSIGN

ASSIGN

ASSIGN

SEARCH

Purpose

Encode/decode command

Encryption operations-C callable
routine

Creates a tags file
Converts and copies a file
Differential file and directory

comparator

Three-way differential file comparison
Expands tabs to spaces and vice versa
Determines file type
File header for standard format object

files
Finds files
Applies or removes an advisory lock

on an open file
Splits a multiroutine FORTRAN file

into individual files
File transfer program
Searches a file for a pattern
Identifies files

Makes a hard link to a file-C callable
routine

Makes a link to an existing file-
FORTRAN callable routine

Makes links
Advisory record locking on files

Finds lines in a sorted list

lorder (see lorder(l)) LIBRARY Finds ordering relation for an object
library

merge (see merge(1)) MERGE Three-way file merge
mknod (see mknod(2)) EDIT/FDL Makes a special file (character, block,

or fifo)

mknod (see mknod(8)) EDIT/FDL Builds special file
mktemp (see mktemp(3)) Makes a unique file name
mv (see mv(l)) RENAME Moves or renames files
ncheck (see ncheck(8)) Generates names from i-numbers
nroff (see nroff(l)) RUNOFF Text formatting
open (see open(2)) OPEN Opens a file for reading or writing. or

creates a new file
qsort (see qsort(3)) SORT Quick sort-C callable routine
qsort (see qsort(3f}) SORT Quick sort-FORTRAN callable

routine
ranlib (see ranlib{l)) LIBRARY Converts archives to random libraries
rcp (see rcp(l c)) COpy Remote file copy
read, ready (see read(2)) READ Reads input
readlink (see readlink(2)) SHOW LOGICAL Reads value of a symbolic link
rename (see rename(2)) RENAME Renames a file-C callable routine
rename (see rename(3f)) RENAME Renames a file-FORTRAN callable

routine
rev (see rev(l)) Reverses lines of a file
rm, rmdir (see rm(l)) DELETE Removes (unlinks) files or directories
size (see size(l)) DIRECTORY/SIZE Size of an object file
sort (see sort(l)) SORT Sorts or merges files
split (see split(l)) Splits a file into pieces
stat, Istat, fstat (see stat(2)) SHOW DEVICE/FILE Gets file status-C callable routine
stat, Istat, fstat (see stat(3f)) Gets file status-FORTRAN callable

0.- routine
'0

Table 4.1 Summary of File Management Commands (continued)

UNIX Command

strncpy, strlen, index, rindex (see
string(3))

strings (see strings(l))

strip (see strip(l))
sum (see sum(1))
swab (see swab(3))
symlink (see symlink(2))
symorder (see symorder(l))
tar (see tar(l))
tar (see tar(5))
touch (see touch(l))
tr (see tr(l))
troff (see troff(l))
truncate, ftruncate (see truncate(2))
tsort (see tsort(l))
umask (see umask(2))
uniq (see uniq(l))
utime (see utime(3c))
utimes (see utimes(2))
vers (see vers(l))
wc (see wc(l))
what (see what(l))

which (see which(l))

VMS Equivalent

F$STRING

ANALYZE/OBJECT

DIRECTORY

ASSIGN

BACKUP
BACKUP
CREATE
F$STRING
RUNOFF

SORT
SET PROTECT

LINK/MAP

Purpose

Strings operations

Finds the printable strings in an object
or other binary file

Removes symbols and relocation bits
Sums and counts blocks in a file
Swaps bytes
Makes symbolic link to a file
Rearranges name list
Tape archiver
Tape archive, file format
Updates date last modified of a file
Translates characters
Text formatting and typesetting
Truncates a file to a specified length
Topological sort
Sets file creation mode mask
Reports repeated lines in a file
Sets file times
Sets file times
Sets/displays version numbers
Word count
Shows what versions of object modules

were used to construct a file
Locates a program file including aliases

and paths (C shell only)

Table 4.2 Commonly Used File Management Commands

UNIX Command VMS Equivalent Location Purpose

or LIBRARY Section 10.5 Archives files
awk EDITITPU Section 5.4 Patterns matching utility
cat TYPE Section 4.8 Catenates and prints to a terminal
cd SET DEFAULT Section 4.4 Changes working directory
chgrp SET FILE Section 9.4.2 Changes the group ownership
chmod SET PROTECTION Section 9.4.1 Changes protection
cmp DIFFERENCE Section 4.5 Compares two files and reports the first difference

found
cp COpy Section 4.9, 9.3.1 Creates a new copy
diH DIFFERENCE Section 9.4.3 Reports all differences between two files
find DIRECTORY Section 4.7, 9.4.4 Locates within a directory structure
fsplit Section 10.2 Splits into functional parts
ftp COpy Section 13.3.2 Transfers to/from remote node
grep SEARCH Section 9.4.5 Finds a string
head EDIT/READ Section 9.2.3 Gives first few lines
larder LIBRARY Section 10.5 Finds ordering relationship
In ASSIGN Section 9.4.10 Creates a symbolic link
Is DIRECTORY Section 4.1, 9.1.1 Lists contents of a directory
merge MERGE Section 9.4.6 Merges files
mkdir CREATE/DIR Section 4.5 Makes a directory
more TYPE/PAGE Section 4.8, 9.2.1 File perusal filter for CRT
mv RENAME Section 4.10 Moves (or renames)
nroff RUNOFF Section 12. I Text processing
ad DUMP Section 9.2.2 Octal, decimal, hex. ASCII dump
pr PRINT/HEAD Section 9.2.3 Prints file

~ pwd SHOW DEFAULT Section 4.3 Working directory name

Table 4.2 Commonly Used File Management Commands (continued)

UNIX Command VMS Equivalent Location

ranlib* LIBRARY Section 10.5
rcp COPY Section 13.3.1
rm DELETE Section 4.11
rmdir DELETE Section 4.6
sort SORT Section 9.4.6
tail EDIT/READ Section 9.2.3
tar BACKUP Section 8.2.1
touch CREATE Section 9.4.7
tr EDIT Section 9.4.8
troB RUNOFF Section 12.2
uucp Section 13.3.3
uusend Section 13.3.3
wc Section 9.4.9

*BSD only.

Purpose

Converts archives to random libraries
Remote file copy
Removes or deletes
Removes a directory file
Sorts by key
Outputs the last part of a file
Tape archive
Updates file characteristics or creates a null file
Translates characters
Text formatting and typesetting
Remote file copy to neighboring host
Remote file copy
Counts words

myfile.txt
program.f
tmp

1024 24 Aug 13:40
512 10 Ju121:10

30 12 Sep 04:10

1 user1
1 user1
2 userl

VMS
example: $ DIR/PROTECTION/DATE/SIZE/OWNER

DUA2:[USER1]
.LOGIN;l 1 10-JAN-1987 08:17 [USER1] (RWED,RWED,RE,RE)
MYFILE.TXT;1 2 24-AUG-1988 13:40 [USER1] (RWED,RWED,RE,RE)
PROGRAM.FOR;11 10-JUL-1988 21:10 [USER1] (RWED,RWED,RWED,E)
TMP.DIR;l 1 12-SEP-1988 04:10 [USER1] (RWE,RWE,RE,RE)

UNIX
%Is-I
total 1
-rwxr-xr-x
-rwxrwx--x
drwxr-xr-x

Each of the four examples above pertain to a directory that contains four
files: three ordinary files, myfile.txt (text), program.f (FORTRAN pro­
gram), and .login (hidden); and a directory file, tmp. The subdirectory
tmp contains one file, test (text). The first and simplest example, Is, lists
the file names in the current directory excluding the hidden file (compare
the VMS DIRECTORY command). Note that here and in subsequent
examples, Is does not display the name of the current directory. The
second example, Is -0 (list all), includes the hidden file name in the list­
ing.

The third example, Is -R, lists not only the contents of the current direc­
tory but also all files in all subdirectories lower in the hierarchical direc­
tory tree, which in this example includes the subdirectory tmp. This
command corresponds to the VMS command DIRECTORY [.••J. The
Is * command (not shown) lists files in the current directory and all files
one level down in the directory hierarchy. Similarly, Is */* lists all files
in the current directory and all files both one and two levels down in the
directory hierarchy. The last example, Is -I (long listing), gives additional
information on the characteristics of the file including file type, protec­
tion, owner, size, and date last modified. See Section 4.2 for a discus­
sion of each of these file characteristics. The options illustrated here
may be combined: for example, Is -01 displays a long listing including
the hidden files.

Unless modified by an option, Is displays files alphabetically. The fol­
lowing conditions define the sort order for an alphabetical listing:

1. file names beginning with a period

2. numbers

4.1 Displaying Directory Contents: Is 73

3. uppercase letters

4. lowercase letters

The following example illustrates the order in which Is displays files.

UNIX
example: %.15

.123 •Test .test 123 Foo foo

4.2 File Charaderistics

Let us take a closer look at the Is -I command, which produces a long
listing of the characteristics of a file. You can add information about the
groups to which a file belongs by using the command Is -Ig, as shown
below.

VMS
example: $ DIRECTORY/FULL [-lTESTFILE.

Directory DUA3:[BOORNE.MASS11]
TESTFILE.:1 File ID: (11044,9,0) !

Size: 1/3 Owner: [STAFF,DANNY]
Created: 20-FEB-1988 13:15 Revised: 20-FEB-1988 13:15 (1)
Expires: <None specified> Backup: <No backup recorded>
File organization: Sequential
File attributes: Allocation: 3, Extend: 0, Global buffer count:-

. 0, No version limit
Record format: Variable length, maximum 4 bytes
Record attributes: Carriage return carriage control
Journaling enabled: None
File protection: System:RWED, Owner:RWED, Group:R,-

World:R
Access Cntrl List: (IDENTIFIER=%X8001 0003.ACCESS =READ -

+WRITE +EXECUTE + DELETE +CONTROL)
(IDENTIFIER=$X8001 OOOO.ACCESS =READ ­

+WRITE +EXECUTE)
Total of 1 file, 1/3 blocks.

UNIX
% Is -Ig ••/testfile
-rwxr--r-- 1 danny staH 1000 10 Aug 12:20 testfile

In this example, Is -Ig • .Itestlile uses a relative pathname to display the
characteristics of testlile, which resides one directory level above the
current directory. Note that the full listing given by UNIX is more con­
cise than the equivalent listing given by the VMS DIRECTORYIFULL

74 Introductory File Management

command, in part reflecting the simpler file structure of UNIX. First,
UNIX does not display record and file attributes; as we saw in Section
2.3, files consist of a string of bytes which, for a given partition, always
have the same file characteristics. Second, UNIX does not support an
Access Control List (ACL). Third, UNIX does not display the last
backup and file creation dates, but only the date the file was last modi­
fied.

The first character in a UNIX file description indicates the type of file.
File types described by this character include:

d directory file

b block-type special file

c character-type special file

symbolic link

s socket

plain file

A plain file contains any ASCII or binary information. A directory file
is a pointer to a subdirectory of the current directory. (Compare the
VMS file with the extension .DIR.) Users usuany only manipulate direc­
tory files by deleting them to remove a subdirectory. The next nine char­
acters rwxr--r-- define the file protection (see Section 3.2.1). Each file
has three levels of protection: owner, group, and world (aJJ local and
remote users), defined by the first, second, and third three-character
groups respectively. Unlike VMS, UNIX has no fourth level of protec­
tion defining access to the system administrator, who always has fuJJ
access to UNIX files. Each level of protection permits three types of
access: read (r), write (w), and execute (x). Unlike VMS, UNIX does
not distinguish between write and delete. A UNIX file which can be
written to can also be deleted. In the above example, the owner of test­
file can read, write, and execute it, and group members and an other
users can read it. As in VMS, the protection assigned to a directory file
determines the first level of protection for an files in that directory, and
takes precedence over the file protection assigned to the individual files.
For example, if the directory file has a file protection that precludes
writing by the owner, the owner cannot edit any files in that directory
even if the individual file protections indicate otherwise.

The second entry in our example, 1, indicates the number of links the
file possesses (see Section 9.4.10 for a discussion of links). As the name
suggests, a link is a connection between files and directories, or between
directories. A file always has at least one link, to the directory file in

4.2 File Characteristics 75

which it resides. For example, the file specification /tmp/testl indicates
that the file testl has a single link to the directory file tmp. Similarly, a
directory file always has at least two links, one to all the files in the
directory and one to its parent directory file. For example, the directory
tmp has two links, one to / (the root directory) and one to all the files it
contains. Creating a further subdirectory to tmp would increase the link
count of tmp by one. Section 9.4.10 discusses making additional links.

The next two entries in our example, danny and staH, indicate the owner
of the file and the group to which the file belongs. You can use groups
in a manner similar to the VMS Access Control Entry (ACE) in an
Access Control List (ACL). A user may belong to several groups, for
example, according to a department or job function. You can assign a
file's group permission to give access only to members of the appropri­
ate group. A VMS ACL may comprise multiple ACEs, but only one
group can be assigned to a VMS or UNIX file.

If a user belongs to multiple groups and a file can belong to only one
group, to which group does a file created by that user belong? The
answer can be found in the files /etc/passwd and /etc/group, introduced
in Section 2.3.2. The file /etc/group contains a numeric group identifier
associated with each group name. The /etc/passwd file contains a single
group identifier and a unique user identifier for each user regardless of
the number of groups to which the user belongs. Therefore, UNIX
assigns the group name associated with the user's unique group identi­
fier to a file when the file is created. The file owner can easily change
the group ownership of a file with the chgrp command (see Section
9.4.2).

The following example shows a record from the /etc/passwd file for user
danny; the fields within the record are separated by colons.

UNIX
example: % more /etc/passwd

danny:9GeD4S9Hktztl:102:49:Daniel Schainholz,523BB,71846,9284897:/ \
system1/danny:/bin/csh

example: % more /etc/group

staH:*:49:danny,fred,george

76 Introductory File Management

The field definitions are as follows:

danny

9GeD4S9Hktztl

102

49

Daniel Sch...

/ system1/danny

/bin/csh

login name

encrypted password

unique user code

group identifier

name and demographic information

parent directory

default shell

4.3

User danny has the group identifier 49, which defines the default group
ownership of his files. Referring to the file /etc/group, the identifier 49
belongs to the group staff. Hence, all files created by user danny will by
default belong to the group staff.

Do not confuse a UNIX group assignment with a VMS User Identifi­
cation Code (UIC). A UNIX user may belong to many groups, whereas
a VMS user belongs only to a single group defined by the UIC. VMS
achieves a UNIX-like group file access by assigning an Access Control
Entry to a file. An ACE defines an identifier and a level of protection
for that identifier. Users possessing that identifier have access to the file
in accordance with the identifier's protection. Users who do not possess
the identifier have access to the file in accordance with standard VMS
file protections. The VMS system administrator assigns identifiers to a
user; the owner of the file assigns identifiers to the file.

Returning to the Is -Ig command, the next entry, 1000, indicates the size
of the file. UNIX file sizes appear in bytes, whereas VMS file sizes
appear in blocks containing 512 bytes each. Thus, a VMS file of 3 blocks
appears as a file size of 1536 in UNIX.

The next entry, 10 Aug 12:20, indicates the date and time the file was
last modified. The last entry, testfile, gives the name of the file.

Determine the Current Directory: pwd

The command pwd, print working directory, determines the current
directory (compare the VMS command SHOW DEFAULT). The C shell
also offers the dirs command, which displays a hierarchical list of direc­
tories called a directory stack, with the present working directory at the
top. Section 9.3.2 explains how to build a directory stack and how it
facilitates movement between commonly used directories.

4.3 Determine the Current Directory: pwd 77

VMS
form: $ SHOW DEFAULT
example: $ SHOW DEFAULT

DUB2:[TEST]

UNIX
% pwd
% pwd
/test

4.4 Change Directory: cd

The UNIX command cd, change directory, changes the present working
directory (compare the VMS command SET DEFAULT).

form:
example:
example:
example:

VMS
$ SET DEFAULT device-name[directory]
$ SET DEFAULT DUA2:[USER]
$ SET DEFAULT [-.USER]
$ SET DEFAULT SYS$LOGIN:

UNIX
% cd [directory]
% cd /user
% cd • .fuser
% cd

4.5

The first two examples above are easy to understand when compared to
their VMS counterparts. In the third example, cd without a directory
argument changes the present working directory to the user's home
directory, and therefore provides a simple means of returning to a famil­
iar point in the directory hierarchy.

The C shell extends the use of cd through the shell variable cdpath. The
variable cdpath lets you move from the present working directory to a
directory defined by cdpath without regard to the relative or absolute
pathname to that directory. See Section 9.3.2 for a discussion of cdpath.

Create a Directory: mkdir

The UNIX command mkdir, as the name suggests, creates directories
(compare the VMS command CREATE/DIRECTORY).

VMS
form: $ CREATE/DIRECTORY[/QUALIFIER(S)]-

directory-specL .••]
example: $ CREATE/DIRECTORY [.TEST]
example: $ CREATE/DIRECTORY [USER.TMP.TEST]

UNIX
% mkdir directory_name

% mkdir test
% mkdir /user/tmp/test

In the first example, mkdir test illustrates the creation of a subdirectory,
test, to the present working directory. In the second example, mkdir /

78 Introductory File Management

4.6

user/tmp/test uses an absolute pathname to create a subdirectory test.
Note that if the tmp directory did not already exist, the subdirectory test
could not be created. Contrast VMS, where CREATE/DIRECTORY cre­
ates both the TMP subdirectory and the TEST subdirectory. In both VMS
and UNIX, the creation of a subdirectory requires write access to the
parent directory.

!Delete a Directory: rmdir and rm -r

UNIX offers two commands for removing a directory, rmdir and rm -r
(compare the VMS command DELETE). The latter is one form of the rm
(remove) command which is used to remove files (see Section 4.9). Like
the VMS command DELETE, rmdir removes a directory only if it contains
no files. The directory must be at the lowest level of the directory hier­
archy before you can delete it, since only then will it contain no direc­
tory files. The command rm -r, on the other hand, deletes everything in
the directory as well as all files and directories lower in the directory
hierarchy, which can be either efficient or devastating. For a novice
UNIX user it is more likely to be devastating, so be careful!

form:
example:
form:
example:

VMS
$j DELETE[/QUALIFIER(S)] directory
$; DELETE [USER]TMP.DIR;1
$. DELETE/QUALIFIER(S) directory
$ DELETE [USER.TMP •••]•••;.
(repeated until all files removed)
$ DELETETMP.DIR;1

UNIX
% rmdir directory
0/0 rmdir /vsr/user/lmp
% rm .r[option(s)) directory
% rm -r Ivsr/user/lmp

4.7

In the first example above, rmdir /usr/user/tmp removes the tmp direc­
tory (that is, the subdirectory of /usr/user named tmp), provided it con­
tains no files. In the second example, rm -r /usr/user/tmp removes the
tmp directory, all subdirectories of tmp, and all files in those directories.

Finding Files: lind

The command find offers functions in addition to those offered by Is -R
(see Section 4.1) for locating files in a directory hierarchy. As in VMS,
you can use various search criteria to locate files. In UNIX, you can
also perform file manipulations on files located with the find command.
This added functionality requires a complex syntax. The following sim­
ple example locates a file; the more complex command syntax for mod­
ifying files once they have been found is discussed in Section 9.4.4.

4.7 Finding Files: find 79

VMS UNIX
form: $ DIRECTORY[/QUALIFIER(S)) file_spec % find pathname-Iist criterion action
example: $ DIR [*...]MYFILE. % find I-name ourfile -print

/userl/bin/ourfile
/user3/progs/ourfile

The command find / -name ourfile -print searches all files on the system
from the root downward for files with the name ourfile. The command
then prints the path of any file found on the terminal. This example
illustrates the elegance of the UNIX file system: you do not need to
know the physical device on which a file resides in order to find it. In
VMS, you might have to search each disk on the system (issue the com­
mand for each device) to find a file.

4.8 Display a File: cat and more

The most frequently used UNIX commands for displaying the contents
of a file are cat (catenate and print) and more, also called page (display
a file a page at a time). Together these commands provide greater func­
tionality than the VMS TYPE command. The less frequently used file
display commands appear in Chapter 9: first, od (octal dump, Section
9.2.2) dumps files in a variety of formats (compare the VMS DUMP com­
mand). The head command (Section 9.2.3) displays the beginning of a
file. The tail command (Section 9.2.3) displays the end of a file. Finally,
the command pr (Section 9.2.3) performs simple formatting for files you
wish to print.

example:
% more -f widefile
% more +10 my_file

% more -15 • .I~ .Ifile1

UNIX
% cat [option(s)] file(s)
% cat myfile.dat
% cat -n -userl/myfile.dat
% cat -s /tmp/myfile.dat
% mor~ [option(s)] file(s)
% more myfile.dat
% more -e file1 file2

VMS
$ TYPE[/QUALIFIER(S)] file-spee[, •..]
$ TYPE MYFILE.DAT

$ TYPE[/QUALIFIER(S)] file-specL •••]
$ TYPE/PAGE MYFILE.DAT

$ SET TERMINAL/PAGE = 15
$ TYPE/PAGE [--]FILE1. '

example: $ SET TERMINAUNOWRAP
$ TYPE/PAGE WIDEFILE.

form:
example:
example:
example:
form:
example:
example:
~xample:

80 Introductory File Management

4.9

The major difference between more and cat is that cat automatically
scrolls through a file from beginning to end, whereas more pauses
between each screen (24 lines by default). The more command indicates
the percentage of the file already displayed and waits for a response from
the user. Striking the (CR) key will scroll the file one line; striking the
space bar will scroll the file one screen. If you use the c option with
more, the screen refreshes one line at a time instead of scrolling, facili­
tating reading while the screen updates. As we shall see in Section 9.2.1,
during pauses in file display brought about with the more command. you
can make alternative responses that provide additional functionality in
the display of files.

The cat command has useful options, which are shown in the sec­
ond and third examples above. In the second example. cat -n -user1/
myfile.dat uses an absolute file definition to display the file myfile.dat in
the parent directory of userl. The n option displays the file with line
numbers. VMS uses an editor to interrogate the file to achieve the same
result. The command cat -s /tmp/myfile, shown in the third example,
removes multiple blank lines from myfile.

The more -15 . .I• .lfile1 command displays file1, located two directories
above the current directory in the directory hierarchy, with a screen win­
dow of J5 lines rather than the default of 24. The more -f widefile com­
mand truncates long lines rather than wrapping them, which is the
default. Finally, more +10 my_file begins listing my_file at line JO.

Copy a File: cp

The UNIX command cp copies one file to another. If the destination file
already exists, cp overwrites it with the contents of the file being copied.
VMS, in contrast, creates a higher version number of the existing file.
UNIX provides two ways to prevent unwanted erasure and replacement
of existing files. First, when creating a valuable file, you can set the file
protection at no write for all users, including yourself (see chmod, Sec­
tion 9.4. J). Second, you can use the form cp -i for all copy operations
to request confirmation on the copy when the destination file already
exists (compare the VMS COPY/CONFIRM command). Novice UNIX
users familiar with the multiple version numbers in VMS should use this
form for all UNIX copy operations by including an alias in .cshrc, as
shown below. Note that the use of the shell variable noclobber has no
effect here: noclobber prevents overwriting when redirecting output
rather than copying files (for example, cat file1 > file2).

4.9 Copy a File: cp 87

VMS
form: $ COPY[/QUALIFIER(S)] input-file output-file

example:
$COPY/CONFIRM FILE1. FILE2.
Copy DUA1:[USER]FILE1. to DUA1:[USER]­

FILE2.? [N]

UNIX
%cp [option(s)] input-file \

output-file
%alias cp ,cp -i'
%cp file1 file2
Overwrite file2?

4.JO Rename a File: mv

The UNIX command mv (move or rename) has the same function as the
VMS RENAME command.

VMS
form: $ RENAME[/QUALIFIER(S)] input-file output-file

example: $ RENAME FILE 1. FILE 2.
example: $ RENAME/CONFIRM FILE1. FILE2.

example:
example:

UNIX
% mv [option(s)] input-file \

output-file
% mv file1 file2
% mv -i file1 file2
remove file2? y
% mv -f file1 file2
%mv - -vn foo

In the same way that cp -i invoked interactive mode, my -i prompts the
user for permission to proceed with the move operation if a file with the
new name already exists. Once again, novice C shell UNIX users should
include alias my 'my -i' in their .cshrc file to prevent the inadvertent over­
writing of wanted files. You can negate the effect of the i option with the
command my -f (force), as shown in the third example above. Assuming
file2 already exists and my is made my -i with an alias my -f file1 file2
overwrites file2 without comment.

The last example, my - -yn faa, is particularly valuable to novice users.
You can inadvertently create a file that begins with a dash when you
intended the dash to precede an option. If this occurs, efforts to address
this file with a variety of commands will fail because UNIX interprets
the filename as an option. The my - command indicates that the next
argument is a filename beginning with a dash. In this example, the com­
mand renames the file -yn to faa, the favorite scratch filename of UNIX
diehards.

82 Introductory File Management

4. J J Delete a File: rm

Section 4.6 discussed using rm -r to remove directories and their con­
tents. You can also use rm to remove files. As with cp (copy file) and
mv (rename file), using the i option with rm invokes an interactive
form of the command which prompts the user before taking action.
As previously suggested, the novice UNIX user should alias the com­
mand to reduce the likelihood of destroying wanted files. Even with
the alias set, you can override confirmation of file deletion with the
f option.

form:
example:
example:

example:

VMS
$ DELETE[/QUALIFIER(S)] file-spee[, ...]
$ DELETE FILE1.;1
$ DELETE/CONFIRM [-]FILE1.;1,FILE2.;1
Delete DUA1:[USER]FILEl.;1? [N]
Delete DUA1:[USER.TMP]FILE2.;1? [N]

UNIX
% rm [option(s)] file(s)
% rm filel
% rm -i • .Ifile1 file2
Delete /usr/file1?
Delete /usr/tmp/file2?
% ehmod 000 file1
% rm filel
rm: Override protection 0 for \

filel?

4.12

The first two examples of the rm command are straightforward. The last
example illustrates the relationship of file and directory protections to
the rm command. The chmod 000 file1 command removes all access to
file1 (see Section 904.1), and yet it can still be deleted by the owner and
root. Note, however, that the system asks the user whether to override
the file protection, which indicates that the file has a protection which
renders it undeletable. If the directory containing file1 is protected
against delete access by the owner then the message "permission
denied" appears. The protection of the directory containing filel must
then be changed by the owner with the chmod command before deletion
is accomplished.

Summary

A useful way of summarizing the basic commands introduced in this
chapter is to present a scenario of a new UNIX user's first experience
with file management. For the sake of brevity, we omit all but one inten­
tional typographical error and all command abuses!

4. 12 Summary 83

UNIX
example: % pwd

/group/george
%15
%
%Is-a
• .• .cshrc .Iogin .mailrc
% more .cshrc

% find ·sue -name magic.c -print
/ group/sue/progs/magic.c
/group/sue/new/magic.c
% Is -Ig ·sue/progs/magic.c ·sue/new/magic.c
.rwxr----- 1 sue adm 2344 10 Apr 12:20 \

/group/sue/progs/magic.c
-rwxr----- 1 sue adm 2734 12 Aug 13:11 \

/group/sue/new/magic.c
% groups
adm payroll
% mkdir tusk1
% rmdir tusk1
% mkdir task1
%CP ·sue/new/magic.• ·george/taskll.
%15 task1
magic.c magic.o
%rm task1/magic.o
% mv task1/magic.c ta5kllmagie.-wand.c

The user George, having logged on for the first time, issues the com­
mand pwd, which establishes his present working directory and home
directory as /group/george. The command Is turns up a blank for this
directory; it finds no files. George is sure that the system administrator
said his account would contain some template files that would establish
his user environment. He remembers that these are important files and
therefore likely to be hidden. The Is -a command indeed reveals three
hidden files. George then displays one of these files with the command
more .cshrc, and recognizes many of the features discussed in Chapter
3 for establishing a user environment.

George plans to modify and run a C program, magic.c, originally written
by Sue. Since he has no idea where Sue keeps the file, George uses find
·sue -name magic.c -print to search Sue's directories for the file and to
print the path to any file magic.c that the system finds. Two versions of
the file are found. George uses the long form of the Is command, Is .Ig,
to display the dates that the files were last modified. Since /group/sue/

84 Introductory File Management

new/magic.c was modified most recently and this version of the file is
larger, George assumes that this is the file he needs to begin his project.
George also notes that only other members of the group adm can read
the file. By issuing the groups command, George discovers that he is a
member of the group adm, which is also the group assigned to the file.
Therefore, he can read the file. Before copying the file, George decides
the application should reside in a separate subdirectory. Using mkdir,
George inadvertently creates subdirectory tuskl; he meant to call the
directory taskl. George uses the rmdir command to remove the subdi­
rectory and uses mkdir again to create taskl. Note that George could
have renamed the directory file with the mv command.

George copies the file to the newly created subdirectory using a wild­
card; cp -sue/new/magic.*-george/taskl/.. A directory lookup, Is taskl,
indicates that two files have been copied. The magic.o file contains
object code, indicated in UNIX filenames by .0. Contrast VMS, where
DIRECTORY TASK1.DIR does not give the contents of the subdirectory
but details of the directory pointer file. The UNIX command Is taskl
corresponds to the VMS command DIRECTORY [.TASK1]. Since George
is planning to make changes to the source code immediately.
the object file has no value, and George deletes it with the command
rmtaskl/magic.o.Finally.todistinguishhisapplicationfromSue's,George
issues the command mv taskl/magicoc taskl/magic_wand.c to rename
the original C source file.

4. 12 Summary 85

ChapterS

One half of the world cannot understand the pleasures of the other.
Jane Austen

Now that you are familiar with enough file management commands to
perform simple tasks, we turn to the next major hurdle in mastering a
new operating system: the editor. What alternatives does UNIX offer to
the VMS user familiar with EDT, TPU, or EVE? As you may expect,
the alternatives are many and varied. The editors edit, ed, ex, and vi
provide interactive editing; sed provides non-interactive editing; and
awk, a more sophisticated and hence more complex non-interactive edi­
tor, provides pattern matching and subsequent file modification useful
for extensive file reformatting.

To the new UNIX user, this chapter may appear to cover a bewildering
amount of material. The less ambitious reader may feel more comfort­
able concentrating on a subset of commonly used ex and vi commands,
leaving sed and awk for later. You need only become familiar with one
editor, which you can do only with practice, to move on to subsequent
chapters. The user who is ready to develop an application may return to
sed and awk if the use of powerful string-handling utilities seems appro­
priate.

The editors edit, ed, and ex are line editors, whereas vi (visual editor) is
a screen editor. The line editor ex (Section 5.1) contains the features of
both edit and ed, plus some of its own. VMS users who are predomi­
nantly EDT line mode users need only learn a new syntax when learning
ex. The same cannot be said of vi (Section 5.2), which is designed to
work on a variety of terminals and does not depend on a keypad, arrow
keys, or VT compatibility. Edits that require a single keystroke in EDT
keypad mode may require one or more keystrokes in vi, often a combi­
nation of the standard keyboard keys and the (CTRL) and (ESC) keys. The
implications of using the standard keyboard keys are discussed in Sec­
tion 5.2.

Appendix B summarizes the commands available to the ex and vi user
and compares them to EDT's line and keypad commands. It is not nec­
essary to document each of these features here. Rather, we will intro­
duce the general principles of ex and vi and tabulate the common com­
mands in Tables 5.1 through 5.5. The editing required to port a VMS
application or write a UNIX application from scratch provides the

Editing 87

5.1

88 Editing

reader with more than enough opportunity to learn the command syntax
outlined in Appendix B.

As in VMS EDT, ed and vi place the contents of the file you are editing
in a buffer. When terminating an EDT editing session, the editor writes
the contents of the buffer to a file with the same name but with a version
number increased by one. By default, ex and vi write the contents of the
buffer back to the same file, overwriting the old version of the file. To
prevent overwriting, the novice ex or vi user should always direct the
buffer contents to a file with a new name or copy the original file before
editing to preserve the old and the new versions. Both the VMS and the
UNIX editors periodically save the contents of the buffer, so that in case
of system failure you can recover the majority of your edits from the
temporary file.

VMS users reluctant to learn the UNIX editors should ask their system
administrator whether EMACS is available. A generic programmable
editor found in many UNIX systems, EMACS is to editors what UNIX
is to operating systems. It is not too difficult to program EMACS to have
the look and feel of EDT.

In the non-interactive editor sed (Section 5.3), you do not open a file,
move around within it. make changes, see the effects of the changes.
and save the changes. Rather. changes to the file are specified exter­
nally. You do not see the changes to the file as they are made. only the
end result. The changes to be made are specified as part of the sed com­
mand line or contained in a separate file. The sed editor uses the same
syntax as ex to specify changes to a file. You should use sed on large
files and when making the same changes to a number of different files.

The awk editor (Section 5.4) extends the features of sed but maintains
the same principles: awk scans each line in a file to detect a pattern and
performs an action when it finds the pattern. The editors awk and sed
perform different types of actions: awk supports complex actions, and
users often think of its C-like syntax as more of a programming language
than a UNIX utility.

Line Mode Editing: ex

Like VMS EDT, ex functions in line mode. It addresses a line by its line
number or a range of lines by a range of line numbers, and then performs
some function.

Table 5.1 Summary of ex Commands

ex Meaning

Appends lines after the current line

Changes specified lines

Deletes specified lines

Sets edit buffer to contain a
specified file and overwrites
original contents

Displays a specified file

Applies command to whole file

Inserts lines before the current line

Joins two lines to make one

Moves lines to a new place (cut
and paste)

Includes line numbers

Displays specified lines

Leaves editor without saving
changes

Reads a file into the editing buffer

Substitutes new character string
for old

Copies lines to a new location

Writes contents of edit buffer to
file

Appends buffer contents to
alternative existing file

Shows current numeric value of .
or $

ex Command EDT Equivalent

a (append)

c (change) CHANGE
d (delete) DELETE
e (edit)

f (filename)

9 (global) ALL
i (insert) INSERT

i Uoin)
m (move) MOVE

n (number) (default)

p (pointer) TYPE
q (quit) QUIT

r (read) INCLUDE
s (substitute) SUBSTITUTE

t (transfer) COpy

w (write) EXIT

W (write)

=

You can abbreviate the ex commands that specify functions to single
letters, as shown in Table 5.1, which compares the ex commands to their
EDT counterparts and finds them quite similar. Nevertheless. note the
following features of the ex editor:

The ex editor uses the current line as the default (as does EDT).

The ex editor uses one or two characters to specify commands.

The ex editor by default does not display line numbers (compare
EDT, which displays line numbers): ex uses the command n to dis­
play line numbers for a specific command, and set number and set

nonumber to toggle line numbering on and off.

5.1 Line Mode Editing: ex 89

5.1.1

• The w (write) command writes the whole file back to disk. If w is
not followed by a filename, it overwrites the original version of the
file. Once w writes the file, you may quit (q) the editor. During a
long editing session, you should write the file periodically even
though ex periodically saves the buffer in case of system failure
(see Section 5.1.6). The command sequence wq writes the file and
then quits the editor, an example of command grouping.

• If you attempt to quit (q) without writing the file, ex gives you a
warning. The command q! overrides this warning, quitting the edi­
tor and leaving the original file unchanged.

• The period (.) signifies the current line (compare the use of the
period in EDT).

• The dollar sign ($) signifies the last line of the file (compare the
EDT command END). This use of a metacharacter to help define a
string is called a regular expression. Regular expressions are used
in each of the utilities described in this chapter.

• Unlike EDT, ex automatically resequences the line numbers after
each command. EDT resequences only when you save the modified
file or issue the RESEQUENCE command. For example, if you add a
line between lines 1 and 2, EDT refers to the new line as 1.1, but ex
refers to it as 2 and changes the original line 2 to line 3.

• The ex prompt is a colon (:). Compare VMS, which uses an asterisk
(*).

Displaying Lines

The following examples illustrate the display of lines using the ex editor.
Note that ex uses the command p (position pointer and display lines) for
this purpose (see Table 5.1). The p command is the default: if you enter
only the line numbers the editor assumes p.

VMS
form: • COMMAND [RANGE]
example: $ EDIT/EDT MYFILE.DAT

1 This is line 1
•

UNIX
: [range] command
% ex myfile.dat
" myfire.efat" 59 lines, 1971 characters

example: • T 5
example: • 5:10
example: • T WHOLE
example: • T .:END
example: • T 1:5;10:20

90 Editing

: 5 p
: 5,10
: 1,$
: .,$
: 1,5
: 10,20

display line 5
display lines 5 to 10
display whole file
display from current line to end
display lines 1 to 5 and 10 to 20

example: • T -1 :END-1 a : .-1,$-10 # display from one before the current
line to the tenth from the last line

5.1.2

The above examples are straightforward. Note the following ex features:

• The ex syntax requires that the command follow the target range of
lines; EDT places the command before the range of lines.

When ex displays a range of lines, the current line is the last line in
the display field (in EDT, it is the first).

The ex editor uses minus and plus to indicate lines before and after
the current line respectively, and a period to indicate the current
line exactly as in EDT. Thus, .-5 is five lines before the current line
and. +5 is five lines after the current line.

Inserting, Appending, and Deleting

The following examples illustrate inserting, appending, and deleting
lines using ex.

VMS UNIX
example: • INSERT : i # insertion occurs

This is one new line This is one new line before the current
This is two new lines This is two new lines line
{CTRL)Z

•
example: : a # append occurs

This is one new line after the current
This is two new lines line

example: • DELETE : d # delete current line
example: • D 1:3 : 1,3 d # delete lines 1 to 3
example: • R-1:.+1 : .-1,.+ 1 c # delete one line above

This line replaces 3 old This line replaces 3 old current to one line
below current and
insert

As you study these examples, note the following:

• The command a (append) inserts text after the current line, and i
(insert) inserts text before the current line.

• Insert mode is terminated by typing a period as the first character
of a new line (compare EDT (CTRL)-Z), whereupon the ex prompt is
returned.

5.7.2 Inserting, Appending, and Deleting 97

• After appending or inserting text, the current line is the last line
entered.

• The command c (change) changes existing text, that is, a deletion
immediately followed by an insertion (compare the EDT command
REPLACE).

5.1.3 Search and Replace

The following examples illustrate string searching and string substitu­
tion.

example: • T ·"STRING" : ?string?

example: • T "STRING1":"STRING2" : Istringl/,/string21

example: • S /STRING1/STRING2/1:S' : 1,5 S /stringl/string2/

example: • S ISTRING1/STRING2/1:END : 1,$ s /stringl/string2/g

display line
below
containing
string

display line
above
containing
string

display lines
between

string1 and
string2

substitute
stringl for
string2 in lines
1 to 5;

#first
occurrence
only

as above but
all
occurrences

precede with
backslash
iff to be taken
literally

use last
defined
stringl

: s//string2/

: s/V/slf;lshl

VMS UNIX
example: • T "STRING" : /string/

example:

example: • S ?/?slash?

These examples illustrate the following ex features:

• The ex editor uses a slash to delimit a string; if the string itself con­
tains a slash, precede the slash with a backslash to tell the editor to
read the slash as a character instead of a delimiter (compare EDT,
where alternative delimiters may be used).

92 Editing

5.J.4

• If a forward search fails to find the string in the latter part of the
file, ex will "wrap" the search to the beginning of the file. Compare
EDT, where the search terminates at the end of the file. Hence, the
line on which the string is found may precede the current line in the
file. Similarly, in a backward search the line containing the string
may follow the current line in the file. If ex does not find the string,
it will return a question mark. If the file does not contain the search
string, the current line does not change; otherwise the line contain­
ing the first occurrence of the search string becomes the current
line.

• The 5 command (substitution) replaces only the first occurrence of
a string in a line; the 9 (global) command substitutes all occur­
rences of the string in a line.

Cut and Paste

The command m (move) deletes text from one location in the file and
places it elsewhere. The command co (copy) duplicates text in another
location in the file.

VMS UNIX
example: • MOVE -3:. TO END : -3,. m $

4 lines moved last line moved here

example: • 'Copy 10:20 TO 31 : 10,20 co 30

example: • 'COpy - : /stringll,/string2/ \
"string1 ":"string2" - co .
TO.+1

Note the following:

move 4 lines (-3 to current
inclusive) to the end of the
file

copy lines 10 to 20 after line
30

copy lines between the first
occurrence of string1 and
string2, respectively after
the current line

5.J.5

• Remember that co is an abbreviation for the copy command,
whereas c is an abbreviation for the change command.

• The command co copies a range following the specified line num­
ber; the EDT COpy command copies a range preceding the speci­
fied line number.

External File Handling

The ex command r (read) adds all or part of an external file to the file
being edited (compare the EDT INCLUDE command). The command w
(write) writes part or all of the file being edited to a new file (compare

5. 7.5 External File Handling 93

the EDT WRITE command). The command e (edit) reads an external file
into the file being edited and discards the original contents of the file
being edited (compare the EDT commands DELETE1:END followed by
INCLUDE).

example: • INCLUDE MYFILE.DAT : r myfile.dat

example: • DELETE1:END : e myfile.dat
• INCLUDE MYFILE.DAT

VMS
example: • WRITE NEWFILE 1:10

UNIX
: 1.10 w newfile # write the first 10 lines of the file

being edited to newfile
include myfile.dat after the \

current line
include myfile.dat, deleting \

any original file

5.1.6 Recovering an Editing Session

In the event of system failure or inadvertent termination of an editing
session-for example, with (cTRL)-C-the ex editor's r option recovers
the file being edited (compare the VMS command EDIT/EDT/RECOVER).
In this example, ex -r myfile recovers the editing sesstion inadvertently
terminated with (CTRL)-C.

5.2

VMS
example: $ EDIT/EDT MYFILE.DAT

[changes made here]
(CTRL)-Y
$ EDIT/EDT/RECOVER MYFILE.DAT

UNIX Screen Editor: vi

UNIX
% ex myfile
[changes made here]
(CTRL)-C
% ex -r myfile

94 Editing

The UNIX editor vi (visual) corresponds to EDT when used in keypad
mode. Rather than addressing a file by line number, vi addresses the file
by the position of the screen cursor. Consequently, you can use vi only
on video terminals and not on hardcopy devices.

EDT functions mostly on VT-series terminals from Digital Equipment
Corporation and makes extensive use of the keypad found on all such
terminals; vi functions on virtually any video terminal. For the VMS
user faced with learning vi this situation is both good and bad. It is good

5.2.1

because its flexibility has led to vi being distributed as part of almost
every version of UNIX (it was originally part of BSD). On different ver­
sions of UNIX and on different types of terminals, vi functions identi­
cally. It is bad because special keys, which may be terminal-specific, are
not assigned to editing functions, making editing more cumbersome. For
example, the character d deletes the word at the cursor. But what if you
wish to insert the character d into the file? You must change from pas­
sive mode to insert mode by pressing i. EDT in keypad mode is always
in insert mode because it does not manage editing commands with the
standard character set.

Remembering to toggle between passive and insert modes is the major
hurdle for the VMS user learning vi. All too frequently the novice vi user
enters insert mode, adds text, and then strikes the arrow key to move
the cursor to another location. Rather than moving the cursor, vi inserts
the character mapping of the arrow key in the file because the user for­
got to press the (ESC) key to change to passive mode.

We must note two further points before getting started with vi. First, ex
is to vi what EDT in line mode is to EDT in keypad mode; that is, you
can invoke many of the ex commands from the vi editor. Second, vi is a
complex editor possessing over one hundred commands which you can
combine in many ways. We will discuss only a few commands that you
are likely to need on a regular basis. Appendix B contains a listing of
these commands. Readers requiring a more rigorous discussion of vi
should refer to the reading list in Appendix D.

Getting Started

The command vi filel [•••] starts a vi editing session. For example, vi
file1 file2 starts a vi editing session on file1. When you save file1, file2
will be opened for editing and so on. If the file you call for does not
exist, vi will create a new file. New files and short files that do not fill
the screen cause vi to display a tilde (1 in column one of every screen
line. The tilde is not part of the file and disappears as you add lines.
Compare EDT keypad mode [EOB], the end of buffer symbol found at
the end of each file. Tilde distinguishes blank lines in a file from no
lines.

When you open a file for editing, vi defaults to passive mode: you may
move the cursor and delete text, but not insert.

5.2. 7 Getting Staried 95

5.2.2

5.2.3

5.2.4

96 Editing

Cursor Movement

Table 5.2 introduces a subset of commands that move the cursor. Note
the following:

Movement commands typically require one or two keystrokes.

• Delimiters defining cursor movement in vi are similar to those used
by EDT in keypad mode: characters, words, lines, and screens all
delimit movement.

In EDT keypad mode, you can precede keystrokes with [4] I or [5]
to reverse the direction between forward and backward movement
respectively. The vi editor uses different commands to define for­
ward and backward movement.

Both vi and EDT keep internal records of line numbers. You can
move to a particular line number with the vi command #G.

• You may combine vi movement commands with vi action com­
mands (Section 5.2.4).

Action Commands

Action commands change the contents of a file in some way. Table 5.3
summarizes the commonly used vi action commands. Note the follow­
ing:

Action commands are usually denoted by a single character.

Commands that permit input must end with (ESC) (Fll on many ter­
minals) to return the editor to passive mode. It is common for the
EDT keypad mode user to forget this.

In some instances, the single-letter command name when doubled
applies to the whole line. For example, dd deletes the line at the
cursor, then moves the cursor to the beginning of the next line.

• The vi editor does not use reverse video to highlight text.

Combining Action and Movement Commands

You may combine movement and action commands to produce a vast
number of possibleetTects. Table 5.4 sumplarizes a commonly used sub­
set. Note that the movement command follows the action command.
Thus, d (delete) followed by w (move the cursor from its current location

1. Keypad characters appear in square brackets throughout this chapter.

Table 5.2 Cursor Movement with vi

vi Command EDT Equivalent I vi Meaning

arrow keys arrow keys Moves the cursor right. left, up,
or down

$ [2] Moves to the end of the line
backspace [F12] Moves to the beginning of the line

H Moves cursor to top of screen
L Moves cursor to bottom of screen
M Moves cursor to middle of screen
(CTRL)-F [4][8] Scrolls file forward one screen
(CTRL)-B [5][8] Scrolls file backward one screen

(cTRL)-D Scrolls file forward half screen

(CTRL)-U Scrolls file backward half screen

#(CTRL)-F [4][8]... Scrolls file forward # screens

#(CTRL)-B [5][8]... Scrolls file backward # screens

w [4][1] Moves forward one word

b [5][1] Moves backward one word

#w [4][1]... Moves forward # words

#b [5][1]... Moves backward # words

e Moves to last character of current
word

Ix [4][PFl][PF3]x Moves forward to next character
x

Fx [5][PF1][PF3]x Moves backward to next
character x

[PF3] Repeats fx

[PF3] Repeats Fx
) Moves forward one sentence

(Moves backward one sentence

Istring [4][PF1][PF3]string Searches forward for string

?string [5][PF1][PF3]string Searches backward for string

#G [PF1][7]T# Moves to line number #

1. [4] or [5] ore needed only if the direction of movement needs
to be reversed.

5.2.4 Combining Action and Movement Commands. 97

5.2.5

98 Editing

Table 5.3 Action Commands with vi

vi Command EDT Equivalent vi Meaning

Inserts text before the cursor
a Appends text after the cursor
I Inserts text after the current line
A Appends text before the current line
0 [PF1] [0] Opens blank line after current line
0 Opens blank line before current line
<esc> Terminates input mode
x [.] Deletes character at cursor
X backspace Deletes character before cursor
d Deletes starting at the cursor
dd [PF4] Deletes current line
c Deletes starting at the cursor

followed by insert
cc [PF4] Deletes current line and insert
r [,] Overwrites single character
R Overwrites until terminated by

<esc>
p [PF1][6] Pastes deleted or yanked text after

cursor
P Pastes deleted or yanked text

before cursor
y [.]...[6] Yanks (copies) text into alternative

buffer
yy [.][2][6] Yanks (copies) current line into

alternative buffer

to the end of the current word) deletes all characters from the current
cursor location to the end of the word.

Invoking ex from vi

The VMS EDT keypad mode user may issue a line mode command by
striking the keypad keys [PF1][7]. Similarly, when the vi user enters a
colon in passive mode, a colon prompt appears at the bottom of the
screen and the user may enter an ex command. Entering Q in passive
mode has the same effect.

The most important uses of ex commands are to write (w) the contents
of the editing buffer to a disk file and to terminate (q) the editing session.

Table 5.4 Common vi Commands Combining Movement and
Action

vi Command EDT Equivalent vi Meaning

dw [-] Deletes from cursor to beginning of
next word

d#w Deletes from cursor # words
d) Deletes from cursor to beginning of

next sentence
d(Deletes from cursor to beginning of

previous sentence

d$ [PF1][2] Deletes from cursor to end of line

#dd Deletes # lines

cw [-] Deletes word and insert

c#w Deletes # words and insert
c) Deletes from cursor to beginning of

next sentence and insert
c(Deletes from cursor to beginning of

previous sentence and insert

cc [PF4] Deletes current line and insert

c#w Deletes # words and insert

c$ [PF1][2] Deletes to end of line and insert

Other common uses of ex commands include inserting the contents of
another file into the current file and writing all or a part of the current
file to a new file. The command r filename issued at the colon prompt
inserts the contents of filename immediately before the cursor. You can
write a section of the current file to a new file. The ex command requires
line numbers to delimit the text you wish to write. The ex command set
number displays lines in vi with line numbers. You may use n,m w file­
name to write lines n through m to the file filename. The ex command
set nonumber turns off line numbering.

Table 5.5 lists these and other useful ex commands issued from vi. Note
the following:

• The command !command executes a UNIX shell command. For
example Us displays the contents of the current directory. Press a
(CR) to redisplay the current file. 2

2. Section 8.3 describes how the C shell user may suspend the editing session, issue
UNIX commands, and then return to the editor.

5.2.5 Invoking ex from vi 99

Table 5.5 Common ex Commands Issued from vi

ex Command

r file
!
n

n!

set number
set nonumber

set autoindent

set noai

set sw=n
w
q!

EDT Equivalent

[PF1][7] INCLUDE FILE

EXIT

QUIT

EXIT
QUIT

vi Meaning

Includes an external file
Enters a shell command
Writes edit buffer to disk and opens next file to

be edited
Quits editing without saving changes and opens

next file to be edited
Turns on line numbering
Turns off line numbering

Indents text following the cursor
Turns off indenting
Sets shift width to n characters (default =8)

Writes edit buffer to disk
Quits editing without saving changes

5.2.6

700 Editing

• The set shiftwidth =n command defines temporary right and left
margins. The default margin is eight columns.

Miscellaneous Commands

Perhaps the most important command in this category is the u (undo)
command (compare the [PF1] or gold key in EDT keypad mode). You
may undo only the last command (u) or a number of sequential com­
mands affecting a single line (U).

Another important command in this category is the period, which
repeats the last action command: a convenient shorthand for repeating
editing commands.

You may use> (greater than, right shift) and < (less than, left shift) to
move lines. Right and left shift move text right or left the number of
columns specified by the shiftwidth parameter (see the command set
shiftwidth = n above). Text will not be truncated if an attempt is made to
move it beyond the left margin, rather the command is ignored; simi­
larly, text wraps if moved beyond the right margin. The commands »
and < < shift single lines right and left respectively.

A powerful feature of vi not available in EDT is filtering, the ability to
pass all or part of a file to a UNIX command such as sort (see Section

5.2.7

5.2.8

5.3

9.4.6), spell (the UNIX spell checker) or nroff (see Section 12.2) for text
formatting. The following example illustrates the use of a sort filter.

UNIX
example: % vi myfile.list

jill
jack
adam

: 1,$! sort
adam
jack
jill

:wq
%

The colon gets the attention of the ex editor. which accepts a range of
lines (1,$) and passes them to the sort command with the construct !
sort. The command sort without options uses the first field as the sort
key, rearranges the text. and redisplays the screen. The command :wq,
write followed by quit, saves the modified file.

Ending an Editing Session

You may terminate vi by issuing the ex commands to save the editing
changes or quit leaving the file unchanged. The vi command II issued
from passive mode will also terminate the vi session, saving any changes
that you have made.

Recovering an Editing Session

In Section 5.1.6 we saw how to recover an ex editing session in the event
of system failure or accidental termination of an editing session with an
interrupt. You can recover vi editing sessions with the command vi -r
filename.

The Stream Editor: sed

sed, which has no VMS equivalent, is useful for editing large files or for
making the same changes to a succession of files. In its simplest form.

5.3 The Stream Editor: sed 101

sed uses line numbers in the same way as ex to delimit the text to be
edited. The real power of sed is its use of regular expressions to specify
the text to be edited. For example, it is a simple matter in sed to edit
the last word of each line in a file. awk, discussed below, builds on this
concept to permit complex string manipulation. Although awk is more
powerful than sed, it is also more complex; some users consider awk a
high-level language.

We start by introducing sed with some simple examples.

form:
example:
example:
example:
example:

UNIX
% sed [en] [[-e command]•••] [-f] file
% sed s/this/thatl file1
% sed s/this/that/p file1
% sed -n s/this/that/p file1
% sed -n s/this/thatl file1

702 Editing

Each of these examples performs an identical substitution in file1 but
displays the results differently. The command sed s/this/thatl file1 dis­
plays the entire modified file. The command sed s/this/that/p file1 dis­
plays the entire modified file as well as all the lines you have modified
(p). The command sed -n s/this/that/p file1 displays only the lines that
you have modified (n). Finally, sed ·n s/this/thatl filel (without p) dis­
plays nothing.

These examples illustrate that the syntax used by sed for string substi­
tution is identical to the syntax that ex uses. Learning sed, therefore,
should be straightforward for anyone who has mastered ex.

UNIX
example: % sed 3,4d file1
example: % sed -e s/this/thatl -e Ifor/d file1
example: % sed -e s/this/that/g -e Ifor/d file1
example: % cat writefile

1.2w filea
Ithe/w fileb
s/this/that/w filec
% sed -n -f writefile file1

The command sed 3,4d file1 deletes lines 3 and 4 from file1 and displays
the modified file. The command sed -e s/this/thatl -e Iforld file1 illus-

Table 5.6 Operator Characters Used with sed

Character Meaning Example

$

"

\

•
[]

Any single character

End of line

Delimits operator characters
to prevent interpretation

Turns off special meaning of
a single character

Matches 0 or more characters
Specifies character classes

Matches only if string is at
the beginning of the line

d. Any two-character string beginning with
d

d$ Any lowercase d which occurs at the end
of a line

"fred." fred followed by a period, not fred
followed by any character

fred\. fred followed by a period, not fred
followed by any character

fr* Matches fr, fred, frog; and so on
[A-Za-zO-9] All characters and digits
ro-9] All characters except 0 through 9
[0\-9] The three characters 0, -, and 9
""new line" Matches the string new line only

if it is at the beginning of the line

trates the use of the e option to specify multiple editing commands: sed
makes two passes through the file, first changing the first occurrence of
"this" to ""that" on every line containing "this," then deleting all lines
that contain "for." The command sed -e s/this/that/g -e Ifor/d filel per­
forms the same operations except for globally substituting ""this" for
"that. "

The last example illustrates the use of a file containing sed commands.
The command sed -n -f writefile file1 modifies file1 based on the edit
commands contained in writefile (f option); as the command eat writefile
shows edit commands are given one per line. The result of this command
is as follows: filea contains lines I and 2 of file1, fileb contains all lines
of filelthat have "'the" in them, and filee contains all lines of filel that
originally contained "this" but with '"this" changed to "that."

In the examples given so far, sed has based line selection on the line
number or a character string contained in the line. The sed editor can
also use operator characters common to a number of UNIX commands
that filter text to expand these selection criteria, thereby creating a reg­
ular expression. Table 5.6 summarizes operator characters. Some simple
examples of regular expressions using these operators appear below.

5.3 The Stream Editor: sed 703

5.4

104 Edifing

UNIX
example: % sed -n r The/p file1
example: % sed -n I" "p[a-z)/p file1
example: % sed 51". "1". "/gp filel

The command sed -nt' The/p file1 displays any line beginning with
"The." The command sed -n I" "p[a-z]/p file1 displays any line con­
taining a blank followed by a •• p" and any other lowercase character of
the roman alphabet. Finally, sed s/". "1". "/gp filel substitutes a period
followed by two blanks for any occurrence of a period followed by a
single blank, and displays those lines of filel that have changed. Note
that the double quotes insure that sed reads the string literally.

These are very simple examples of a complex yet powerful syntax. See
the reading list in Appendix D for more complex examples.

Pattern Matching and Processing: awk

awk extends the features of sed. Features of awk include:

field-oriented processing

predefined variables

variable assignment

logical operations

• arithmetic expressions

scalar variables and arrays

output redirection and piping

Like sed, awk does not have a VMS equivalent. To achieve the func­
tionality of awk, the VMS user would most likely write a high-level lan­
guage program or use the string-handling capabilities of DCL.

The C-like syntax of awk should pose little difficulty to the user t~lmiliar

with the C programming language. Others may feel more comfortable
mastering the basic features of UNIX before turning to awk. Note. how­
ever, that shell programming, the UNIX equivalent to writing DCL com­
mand procedures (see Chapter II), is also C-like. The hesitant user is
less likely to avoid shell programming than awk, for many UNIX appli­
cations use shell programming. Non-C programmers should decide
whether to attempt awk based on the difficulty they have experienced

thus far and on the extent to which they need to make complex file
modifications.

awk searches each record in a file for a pattern and performs some
action when it finds that pattern.3

UNIX
form: % awk [-Fsep) 'pattern {action} pattern {action} \

.. .' filename(s)
% awk [-Fsep)-f pattern-action file filename(s)

To awk, each record consists of a number of fields. awk uses the F
option to define a field separator. By default, the field separator is any
number of blanks between fields. However, you can set the field sepa­
rator to be any character string. As an example, recall the letc/passwd
file introduced in Section 3.1, which contains a record for each UNIX
user and uses a colon to separate fields in each record.

Single forward quotes (') delimit the complete pattern-action combina­
tion from the file(s) on which to perform the awk function. Curly braces
surround actions. You may store pattern-matching and action strings
that you use repeatedly in awk scripts, which are files invoked with the

f option.

Let us now turn our attention to the available patterns and actions.
Table 5.7 outlines the general features of the patterns and subsequent
actions available to the awk user. At first glance, these strings are some­
what intimidating, so we will start with some simple examples.

UNIX
example: % awk -F: '/smithl {print $O}' letc/passwd
example: % awk -F: '$4 - 151/ {print $O}' letc/passwd
example: % awk -F: '$1 - rh*/ {print $O}' /etc/paS5wd

The command awk -F: '/smithl {print SO}' letc/passwd displays any rec­
ords from the letc/passwd file that contain smith in any field. Note that
the field delimiter is a colon rather than the default (one or more blanks).

3. Recall that a UNIX record is an arbitrary number of bytes terminated by a newline
character.

5.4 Pattern Matching and Processing: awk 105

106 Editing

Table 5.7 awk Patterns and Actions

Pattern

BEGIN {statement}

END {statement}

!regular expression!

relational expression

pattern && pattern
pattern 1/ pattern
(pattern)
Ipattern
pattern,pattern

Action

if (expression) statement [else statement]
while (expression) statement

for (exprl :condition:expr2) statement

break

continue

next

exit

variable = expression

Meaning

Executes statement before
pattern matching

Executes statement after
pattern matching

Pattern containing a regular
expression

Pattern containing relation
operator(s)

Boolean and
Boolen or
Single pattern
Boolean not
Two patterns

Meaning

Conditional if statement
While an expression is true,

performs statement
For each occurrence

formulated from
expressions) and 2 that
obey the specified
condition, executes the
statement

Exits immediately from a for
or while loop

Forces next iteration of a for
or while loop

Skips to next input record
and begin processing from
first pattern

If found as part of BEGIN,
terminates without
execution of END. If
found in main body of
script, branches and
executes END. If found at
END, causes immediate
termination.

Equates a variable to an
expression

Table 5.7 awk Patterns and Actions (continued)

Pattern

print [expressionl] > [expression2]

print [expressionl] I [expression2]

for (variable in array) statement

Meaning

Redirects expression1 to
expression2

Pipes expressionl to
expression2

For each array element,
executes statement

5.4.1

The search pattern is smith and the action is to display (print) the whole
record. As we shall see in the following section, SO is a predefined vari­
able that denotes the complete record.

The command awk -F: '$4 - /51/ {print $O}' /etc/passwd displays the
record for any user belonging to group 51. That is, awk displays the
record if the fourth field ($4) matches (1 the string 51.

The command awk -F: '$1 - rh*/ {print SO} , /etc/passwd displays the
records of all users whose usernames begins with h. The pattern is the
expression $1 - rh*/. The command searches for the first field ($1),
which in the file /etc/pas5wd is the username. The tilde matches the
username to the regular expression "*, which is any string that starts
with h at the beginning of a record.

The three examples given above illustrate the most commonly invoked
action command: printing. In the following section, we will use this
action command to illustrate some predefined variables available to the
awk user.

Predefined Variables

Table 5.8 shows a subset of predefined awk variables. Several appear
below, again using the /etc/passwd file. For the sake of brevity, the
examples show only a sample of the output.

UNIX
example: % awk -F: '{print length}' letc/pas5wd

46
63

5.4. 7 Predefined Variables 707

5.4.2

example: % awk -F: '{print NR, NFl' /etc/passwd
1 7
27

example: % awk -F: '{print NR, $1}' /etc/passwd
1 root
2 sysop
3 daemon

The command awk -F: '{print length}' letc/passwd displays the number
of characters (length) in each record. The command awk -F: '{print NR,
NF}' letc/passwd displays the number of the record (NR) and the number
of fields (NF). Finally, awk -F: '{print NR, $1}' letc/passwd displays the
number of the record followed by the first field ($1), which in the letcl
passwd file is the username.

Variable Assignment

Accompanying the predefined variables are variables that the user may
assign. You may assign variables according to context using the form

Table 5.8 Predefined awk Variables

Variable Function Example

SO The entire input record awk '{print SO}' file
$n The nth field of the input record awk '{print $2, $l}' file
length Length of the current input awk '{print length (SO), SO}' file

record
FILENAME Name of the current input file awk '{print FILENAME}' file

NR Number of the current record; awk '{print NR, SO}' file
first input record is I

NF Number of fields in the current awk '{print NF}' file
record

RS Input record separator (default awk '{RS=":"; print NR}' file
= new line)

OFS Output field separator (default awk '{OFS=":"; print $1 OFS $2}' file
= blank)

ORS Output record separator awk '{ORS=":"; print SO}' file
(default = new line)

OFMT Output format for numbers awk '{OFMT="%.Sg"; print $2}' file
(default = %.6g)

108 Editing

5.4.3

5.4.4

variable name = integer or string value. That is. you do not have to
declare a variable as a string or integer value as in many high-level lan­
guages.

UNIX
example: x = "3" + "4"
example: x ="some" + "thing"

These two examples illustrate the use of addition (+). first to equate the
variable x to the integer 7, then to the character string "something."

Operators

Table 5.9 gives the operators available to the awk user in order of
decreasing priority.4 Operators grouped together have the same priority.
The number of operators given in Table 5.9 suggests both the power and
the complexity of awk. We will use a number of these operators in sub­
sequent sections.

Scripts

Many users can meet their needs with single-line awk commands. How­
ever, to use the extended features of awk or to save awk commands for
subsequent use. you must use an awk script. Before looking at how to
use operators and variables in awk, we consider the rules that govern
the awk script.

UNIX
example: % cat awLtest

BEGIN {nw = O}
{nw += NF
}

END {print "number of words = ",nw
}

% awk -F: -f awLtest letclpasswd
number of words = 1031

The string BEGIN {nw = O} signifies the beginning of an awk script. The
BEGIN statement precedes a statement that sets the variable nw (number

4. Priority indicates the order in which awk executes the operators if used without
parentheses.

5.4.4 Scripts 109

Table 5.9 awk Operators

Operator

++a
a++
--a
a--

*
/
%

+

>
>=
<
<=

1=

&&
[I

=
+=
-=

*=
/=
%=

Meaning

Increments a's value before using it
Increments a's value after using it

Decrements a's value before using it

Decrements a's value after using it

Multiply

Divide
Remainder (modulo)

Add

Subtract

No operator between two variables implies catenation; for
example, $1$2 catenates first two fields

Greater than
Greater than or equal to
Less than

Less than or equal to
Similar to

Not similar to

Match, for example, $1 - /AIIBIIC/ matches if a, b, or c is
in the first field

No match, for example, $1 1- /AIIBIIC/
Negate value of expression
Boolean AND
Boolean OR
Equal to

i + =2 compressed form of i = i+2

i- =2 compressed form of i =i - 2

i* =2 compressed form of i= i * 2
i/= 2 compressed form of i = i / 2

i% = 2 compressed form of i = i % 2

110 Editing

of words) to O. The string {nw + = NF} then increases (+ =) the value
of nw, adding the predefined variable NF (number of fields) as awk pro­
cesses each record of the file /etc/passwd. After awk processes all rec­
ords, control passes to the END statement, and the action command {
{print "number of words = ",nw} displays the number of fields. You must
include the BEGIN and END commands only if you require some action

Table 5.10 awk Flow Control Statements

Statement

for (exprl :condition:expr2) statement

for (i element in array) statement

if (condition) statementl [else statement2]
while (condition) statement

break
continue
exit

getline
next

Meaning

For each occurrence formulated from
expressions 1 and 2 that obey the
specified condition, executes the
statement

For each element of the array, executes the
statement

Conditional if statement
While the specified condition holds,

executes the statement
Exits immediately from a for or while loop
Forces next iteration of a for or while loop
If found as part of BEGIN, terminates

without execution of END. If found in
main body of script, branches and
executes END. If found at END causes
immediate termination.

Forces processing to move to next record
Skips to next input record and begin

processing from first pattern

5.4.5

before or after record processing, for example, to set a variable or print
the value of a variable.

Flow Control

Table 5.10 summarizes the awk flow control statements. Some of these
statements are illustrated below.

UNIX
example: {for (x =1; x< =NF; x + +) print $x }
example: {for (x in text) {print x, text[x]} }
example: {i =1

while (x < = NF) {
print $x; + + x}

}
example: for (x= 1; x< = NF; x+ +) {

if ($x == "halt") break

5.4.5 Flow Control 111

5.4.6

112 Editing

example: for (x=l; x<=NF; x++) {
if ($x = = "end") continue

}
example: for (x=l; x<=NR; x++) {

incr + = 1
if (incr > 100) exit

}
example: for (x=l; x<=NF; x++) {

if (NF < 4) getline
}

example: for (x=l; x<=NF; x++) {
if (NF = = 1) next

}

The statement {for (x = 1; x< = NF; x++)print $x } will increment x from
I to the number of fields per record and displays each field, one per line.
The statement { for (x in text) {print x, text[x]} } displays the element
number x and its value in array text (see the following section). The
statement { i=1 while (x < = NF) {print $x; ++x} } has the same effect
as the first example, printing each field of the record, one per line. The
statement if ($x = = "halt") break uses if (for while) to stop processing
records when field x is equal to the character string halt. The statement
if ($x =="end") continue stops processing the current record when field
x is equal to the character string end. The statement if (incr > 100) exit
passes control to the END statement of the awk script when the value
of the variable incr is greater than 100. The statement if (NF < 4) getline
continues processing the next record of the file, from the current point
in the awk script, if the number of fields is less than 4. The statement if
(NF ==1) next skips to the next input record if the number of fields in
the current record is I but begins processing from the beginning of the
awk script.

Using Arrays

In contrast to most high-level languages where array elements are
explicitly assigned a data type, for example, integer, real, or character,
awk assigns array elements implicitly. That is, each awk array element
assumes a data type according to the assigned value. For example,
record[NR] = $0 assigns the NRth element of an array record to the
current input record: a character string. Note that array elements are
enclosed in square brackets.

5.4.7

5.4.8

UNIX
example: ' % cat awk...script

{ recor~[NR] = $O}
END {for i=NR; i>O; i--) print record[i] }
%awk~f 'awk..script mYfile

The statement { record[NR] = SO} enters each record of the file into the
array record using the predefined variable NR (record number) as the
counter. The statement { for i= NR; i>O; i--) print record[i] } displays the
contents of array record from record[NR) to record[l); that is, it dis­
plays the records of the file myfile in reverse order.

Formatting Output

The awk printf statement, which resembles that found in the C program­
ming language, formats awk output.

UNIX
form: printf"format-statement" expression1,
example:"'{ printf "%8.21", Ii} ,
example: {printf-"%10d\n", $i}
eXcimple:.,"{ printf "%5" i Ii}
ex~mple:'-{ printf, "%.69" ~$i}

Each example displays the variable i in a different format: "%8.2f" is a
floating point number of eight digits, with two following the decimal
point; "%lOd\n" is a IO-digit decimal number followed by a new line;
"%s" is an alphanumeric string; and "%.6g" makes useful interpreta­
tions of numeric values. For example, 11I11111 returns 1.11111 e +07,
1001 returns 1001, and 10.1 returns 10.1. A text string returns a value
ofO.

String Operators

Chapter 11 discusses shell programming. the UNIX equivalent of writ­
ing VMS command procedures. It will be seen from that discussion that
the UNIX C shell does not offer the functionality of the VMS lexical
functions when used for string manipulation. That shortcoming is
addressed by awk, which offers string manipulation features similar to
VMS lexical functions (see Table 5.11).

5.4.8 String Operators 113

Table 5.11 Commonly Used awk Functions

Function

length{string)
substr{string,position,length)

index{string,substring)

split(string, array, "separator")

int{num)
cos{x)

sin{x)
log(x)
int(x)
sqrt{x)

Meaning

Length of string
Substring of string, starting at position,

and length characters long
Starting position of substring in string; if

not found, returns 0
Separates string into elements of array

according to the field separator
Truncated integer value of variable num
Cosine trigonometric function of

variable x
Sine trigonometric function of variable x
Natural logarithm of variable x
Integer function of variable x
Square root of variable x

774 Editing

The function length(string) returns the length of a string. If string is omit­
ted the function length returns the length of the current record. The
function substr(string, position, length) returns a substring of string that
starts at position and is length characters long. For example, the state­
ment { printf "%s\n" , substr($O,l,10) } below prints the first 10 characters
of each record as awk processes them. After awk processes all records,
it displays the total number of characters (nc) in the file using length to
determine the number of characters in each complete record.

UNIX
example: % cat awlLscript

BEG.IN inc =O}
{ printf "%s\n" , substr{$O,l,10) }
{ nc += length ($G) }

END { print "Number of characters =" , nc }

The function index(string, substring) returns the starting position in
string that contains substring. If substring is not found, the function
returns a value of O. The function split(string, array, "separator") sepa­
rates string into elements of array according to the field separator. If
you do not specify a field separator, awk uses the predefined variable
FS (field separator: any number of blanks).

5.4.9

UNIX
example: % date

Fri Oct 7 03:07:48 EDT 1988
% cat awlLscript
{ split($4, time, ":")
print time[l], "hours"
print time[2], "minutes"
print time[3], "seconds"
}
% date I awk -I awlLscript
03 hours
07 minutes
48 seconds

For example, the statement date I awk -f awlLscript pipes the out­
put of the date command to awk for processing by awlLscript. The
command split($4, time, ":") splits the fourth field of the date output,
03:04:48, into three elements of the array time using the colon as a
delimiter.

Mathematical Fundions

Table 5.11 includes the comment mathematical functions available to the
awk user. The following example shows values returned by some of
these functions.

UNIX
example: % cat 100

90901012.736
% cat awlLscript
{
a = sin($l); b = cos($2); c = 109($3); d = int($4); e = \

sqrt($5);
print a; print b; print c; print d; print e
}
% awk -I awlLscript 100

1
o
2.30259
12
6

5.4.9 Mathematical Functions 115

5.4.JO Redirecting Output

The following examples illustrate outputting to a file, appending to a file,
and piping the results of awk to another command.

example:
example:

example:

UNIX
%awk -F: '{print $1 > "myfile.dat"}' /etc/passwd
%awk -F: '{file = "myfile.dat"; print $1 » file}' \
letc/passwd
% awk -F: '{print $1 I "mail fred"}' /etc/passwd

5.4.1 J

The statement awk -F: '{print $1 > "myfile.dat"}' /etc/passwd writes the
first field of the file /etc/passwd to myfile.dat. The statement awk -F: '{
{file = "myfile.dat"; print $1 »file}' /etc/passwd appends the first field
of the file /etc/passwd to the variable file, defined as myfile.dat. Finally,
awk -F: '{print $1 I"mail fred"}' /etc/passwd mails the first field of each
record of the file /etc/passwd to the user fred.

Putting It All Together

The following example illustrates some of the features of awk introduced
in the previous sections. It is adapted from an example given in The
UNIX Programming Environment by Kernighan and Pike (see Appen­
dix D). This example checks one or more files for two identical adjacent
words, a common typographical error.

UNIX
example: % cat textfile

test of awk awk program
test of same words on two lines
lines
%cat awlLscript
FILENAME!= prevfile
{NR = 1

prevfile = FILENAME
}
NF>O{

if ($1 = = lastword)
printf "double %s, file %s, line %d\n", $1, FILENAME, NR
for (i = 2; i < = NF; i+ +)

if ($i = = $(i-l)
printf "double %s, file %s, line %d\n", $1, FILENAME, NR

if (NF > 0)
lastword = $NF

116 Editing

5.5

}
% awk -f awk....script textfile
double awk, file textfile, line 1
double lines, file textfile, line 2

FI LENAME != prevfile
{ NR=l
prevfile = FILENAME
} effectively resets the record counter for each new file where two or
more files are given as arguments to the script. The statement (if
($i = = $(i-l)) checks the ith field against the ith-l field for each non-blank
(NF>O) record in the file. If the two words are identical, then the word,
filename, and the line number are printed (printf "double %s, file %s,
line %d\n" ,i,FILENAME,NR). The last word of a record is retained as the
variable lastword and compared to the first word of the following record
(if ($1 == lastword». If they are identical, a message is also printed.
After all records in a file have been processed, NR is reset to I and the
process is repeated for any additional files specified.

Summary

This chapter describes the various ways a UNIX user may create or
modify the contents of a file. Typical of UNIX are the variety and com­
plexity of the editors and string handlers available. For example, the
editors edit, ed, and ex are available for line editing. ex is a superset of
edit and ed and the editor discussed. ex has similar functionality to EDT
in line mode with the following three exceptions. First, ex does not dis­
play line numbers, but these may be turned on with the ex command set
number. Second, ex resequences lines after each command, whereas
EDT only resequences line numbers with the RESEQUENCE command.
Third, whereas the EDT user places the line or range of lines after the
command, the ex user places them before. For example, the ex com­
mand 9d deletes line 9 (compare the EDT command D 9). Note that the
ex command d9 deletes 9 lines starting at the cursor, so be careful, and
be aware of the undo ex command.

vi (visual) is the closest UNIX editor to EDT in keypad mode. However,
you make changes to a file using the standard keyboard keys and not
the keypad keys. Hence, there are two vi modes: passive for moving the
cursor, and active for inserting and making changes to existing text.
Remembering to toggle between passive and active modes is the major

5.5 Summary 117

778 Editing

problem encountered by the EDT keypad mode user. Passive and active
mode commands may be combined to provide a very extensive com­
mand set.

ex and vi are interactive editors; you are in a sense part of the file, mov­
ing about within it, and making changes. The command sed and the util­
ity awk, which have no VMS counterparts, are batch editors-all
changes are made external to the file. The end result is the same as for
the interactive editors, a single updated version of the file. sed uses the
same syntax as ex, and is, therefore, straightforward. awk, although
very powerful, has an extensive C-like syntax. If you don't need a com­
plex string handler at this time, you should skip awk. If sed or awk
commands are used repeatedly, they are stored in a script file for easy
recall.

Chapter 6

Communicatill1Jg wit/h
Other Users

6.J

Can we talk?
Joan Rivers

The ability of users to communicate with each other is integral to
any interactive operating system. UNIX, like VMS, supports commu­
nications between users on the same computer (local host) or between
users on different computers (remote hosts) connected via a network.
This chapter covers two commands and one utility (that is, two relatively
simple and one relatively complex program) whereby users can com­
municate with each other either on a local computer or on a local and
remote computer. This chapter concentrates on communication between
users on the local computer only. Chapter 13 discusses communication
with remote hosts.

Communication with other users may take place in interactive or batch
mode. Interactive communication requires an immediate response from
the user receiving the message, who must be logged on to receive it.
Batch communications do not require an immediate response from the
receiver. The commands talk and write (Section 6.2) apply to interactive
communication (compare the VMS commands PHONE and REPLY),
whereas the mail utility (Section 6.1) applies to batch communications
(compare the VMS utility MAIL). Note that talk and write are commands
and mail is a utility. This distinction reflects the relative complexity, and
hence versatility, of each program. As indicated above, write and talk
are relatively straightforward: each command performs one simple task.
mail, on the other hand, has a variety of functions and a more extensive
command syntax.

After reading this chapter, you should be familiar with reading, send­
ing, replying to, forwarding, storing, and searching mail as well as com­
municating interactively with other users. Chapter 13 extends these
principles with a discussion of communication with users on remote
hosts.

Batch Communications: mail

The UNIX and VMS mail utilities possess similar capabilities. Both use
folders to organize stored messages, both permit the user to modify the
mail environment, and both permit mailing to lists of users on both local

120 Communicating with Other Users

and remote hosts. Most of the differences in the way UNIX and VMS
mail function internally are irrelevant to the average user and are there­
fore not discussed here. Appendix D can refer you to a detailed discus­
sion of the internal operation of the UNIX mailer. This section discusses
differences in command syntax important for everyday use.

A UNIX mail message can be any ASCII text. When a user receives a
mail message, the system stores it in the file lusrlspool/mail/user,
known as the system mailbox. The command mail accesses this file and
displays one line of header (address) information for each unread mes­
sage. The header includes the sender's username, remote computer (if
applicable), time the message was sent, and the subject of the message.
The from command also displays header information but does not permit
further access to the system mailbox: it serves as a simple method of
listing new mail headers without invoking the mail utility. You may wish
to place the from command in the .login hidden file (see Section 3.2.1),
where it will automatically display the headers of any new mail messages
you have received since your last terminal session.

The system mailbox functions like the VMS NEWMAIL folder. A user
may read, reply to, forward, delete, or store messages in the system
mailbox. Once the user reads a message, mail moves it to the user's own
mailbox, by default the file -user/mbox (the file mbox in the home direc­
tory of user). This file is equivalent to the VMS MAIL folder, the default
storage bin for messages that have been read. VMS users can gain
access to messages contained in the MAIL folder only with the MAIL
utility. The UNIX file -user/mbox, on the other hand, is an ordinary file
which stores mail messages after they have been read. Users can call up
this file using the mail utility; users can also use any UNIX command
that manipulates ordinary files (see Chapters 4 and 9). It is not advis­
able to edit this file, since changes may render it unreadable by the
mail utility. However, users may read, search, print, and otherwise
manipulate it like any other file. Once messages have been read, they
may also be moved to files or folders other than -user/mbox.

A feature of the UNIX mail utility not found in VMS is the dead.letter
file in the user's home directory. Pressing (CTRL)-C twice stores the
incomplete draft of a message in the file dead.letter instead of sending
it. The file dead.letter stores the aborted message until the user aborts
a second message, at which time the second message overwrites the
first.

6.1 Batch Communications: mail 121

6.J.J Sending Mail

Users send mail by including either login names or a mail alias for a
mailing list o,n the command line.

VMS
form: $ MAIL[/QUALIFIER(S)) [file-spec] [recipient]
example: $ MAIL

MAIL> SEND

To: userl, user2
Subiect: [subiect entered here]
Enter your message below••..

[message entered here]
(CTRL)-Z
MAIL>

example: MAIL> SEND
To: @USERS.LlS

UNIX
% mail [option(s)) recipient
% mail userl user2
Subiect: [subiect entered \

here]
[message entered here)

Cc: [additional recipients \
entered here)

%

% mail userslis

The first example above illustrates how to send mail messages to two
individuals, userl and user2. Note, unlike VMS, the UNIX mail com­
mand issued without arguments or options does not produce the mail
prompt unless you have unread mail messages. If you have no unread
messages in the system mailbox, mail returns the shell prompt without
comment. When invoked with user names or an alias for a distribution
list on the command line, mail responds with a prompt for the subject.
You enter the subject, then the message beginning on the following line.
Terminate the message with a period as the first character of a line, or
with a (CTRL)-D (compare the ex editor in Section 5.l). You can then
carbon copy (Cc:) the message to additional users (see the discussion of
askcc in Section 6.1.8) by entering additional user names. Press (CR) for
no users or when done specifying additional users.

The second example illustrates sending a message to a distribution list
of names contained in the file userslis. In VMS, the distribution list is a
file containing a list of mailing addresses, one per line. The UNIX dis­
tribution list is a mail alias established in the .mailrc hidden file (see
Section 6.1.8). Note the similarity between using an alias within mail
and using an alias within the C shell program. While entering a message
in UNIX, you can make changes to the characteristics of the message
not possible using the VMS MAIL utility. Table 6.1 summarizes the
UNIX message modifiers. Changes begin with a tilde as the first char­
acter of a new line. For example, -e can be used to invoke the editor at

122 Communicating with Other Users

Table 6.1 mail: Message Modifiers

UNIX Modifier

-v

-t user(s)

-r filename

VMS Modifier

/EDIT

/EDIT

*INCLUDE FILENAME

UNIX Function

Include the dead.letter file
Invoke the editor set by

EDITOR
Invoke the vi editor
Add user(s) to the list of

people receiving the
message

Change the subject of the
message

Display entire message
Optionally change all

characteristics
Include a file in the

message
Include message # in the

message sent

6.1.2

any point during message input. Correspondingly, changes may be made
to the subject of the message Cs) or the list of users who are to receive
the mail message can be enlarged Ct). The editor used is defined by the
mail environment variable EDITOR in the .mailrc or /usr/lib/Mail.rc file
(Section 6.1.8). In VMS the editor can be invoked from the MAIL>
prompt: it cannot be invoked from within the message itself.

Reading Moil

The mail system, by default, notifies you of any new mail messages
received since your last terminal session. When you have new mail, mail
displays the message "You have new mail" when you log on. If you have
unread messages received prior to your last terminal session, mail dis­
plays the message "You have old mail." If both conditions apply, mail
displays only the new mail message. Notification of incoming mail dur­
ing a terminal session depends on the command biH, discussed in Sec­
tion 3.2. I. The command biH y displays the message header, including
sender and subject and the first few lines of the message, when new mail
arrives (compare the VMS command SET BROADCAST = MAIL). This
display interrupts any output from the current process at the current
cursor location. The command biH n gives no notification (compare the

6.1.2 Reading Mail 123

VMS command SET BROADCAST=NOMAIL). You can use the com­
mand from to review the headers of unread mail messages.

VMS
example: $ MAIL

You have 1 new message

MAIL> DIR

From Dale Subiect

UNIX
% mail
Mail version 2.18 5/19/83. Type? for \

help.
"/usr/spool/mail/fred": 1 message 1 \

unread
>U 1 root Wed Apr 2711:13 9/146 \

"test"
1 SYSTEM 27-APR-1988 TEST &
MAIL>

The above example, taken from the ULTRIX mail utility, illustrates the
effect of invoking mail when user fred has messages in the system mail­
box /usr/spool/mail/fred. The message header >U 1 root Wed Apr 27
11:13 9/146 "test" indicates the following:

>
U

1

root

Wed Apr 27

11 :13

9/146

"test"

Current message pointer

Message status: U= unread,
N=new, *=unsaved,
(blank) = read but not saved

Message number

Sender's user name

Date message was sent

Time message was sent

Number of lines/characters in
message

Subject of message

The & is the mail prompt indicating that the mail utility is ready to
receive commands (compare the VMS MAIL> prompt). Table 6.2 lists
the responses you can make to the prompt. The simplest response is
(CR), which displays the active message. As discussed above, the active
message is indicated by the> symbol. The response n displays the next
message, and message list displays one or more messages identified by
message number. For example:

1 Message 1

1 7 Messages 1 and 7

1-7 Messages 1 through 7

124 Communicating with Other Users

Table 6.2 Interactive mail Responses

Response

t <message list>
n

e <message list>
f <message list>
d <message list>
s <message list> file
u <message list>
r <message list>
R<message list>
pre <message list>
m <user list>
q
x

h

ch [directory]

Function

Type messages
Go to and type next message
Edit mes-sages
Give header lines of messages
Delete messages
Append messages to file
Undelete messages
Reply to messages (to sender and recipients)
Reply to messages (to sender only)
Make messages go back to /usr/spool/mail
Mail to specific users
Quit, saving unresolved messages in mbox
Quit. do not remove system mailbox
Print out active message headers
Shell escape
Move to directory or home if none given

6.7.3

A <message list> consists of integers, ranges of some,
or user names separated by spaces. If omitted, <mail>
uses the lost message typed.
A <user list> consists of user names or distribution
names separated by spaces. Distribution names are
defined in .mailrc in your home directory.

.-$ The current message through the last
message

Messages are piped through more (see Section 4.8), and therefore appear
on your terminal one screen at a time, as in VMS MAIL message display.

Replying to Mail

There are several ways to reply to a message (see Table 6.2). Use R to
reply only to the originator of the message. Use r to reply to the origi­
nator and all users who received the original message including
the Cc:. By default, r or R reply to the last message read. If the user
wishes to reply to different mail messages, then a message list or indi­
vidual message number should be included.

6. 1.3 Replying fo Mail 125

6.r.4 Forwarding Mail

The UNIX mail utility provides no specific command corresponding to
the VMS MAIL command FORWARD/EDIT for forwarding mail to other
users. Nevertheless, the procedure for forwarding mail is relatively sim­
ple.

VMS
example: $ MAIL

You have 1 new message

MAIL> FORWARD/EDIT 1
To: USER1

(CTRL)-Z
MAIL>

UNIX
% mail
Mail version 2.18 5/19/83. Type? for help.
" /usr/spool/maillfred": 1 message 1 unread
>U 1 root Wed Apr 27 11:13 9/146 "test"
& m user1
Subiect: forward message
-m 1

&

6.r.5

The command m userl directs mail to send a message to userl, having
entered a new subject (VMS MAIL uses the subject of the message being
forwarded). -m 1 includes message I as part of the text of the current
message, which can be further modified.

You can also forward your own mail. This is useful in situations when
you have mUltiple usernames on one computer or usernames on multiple
computers, and desire one point of reference for mail. The hidden file
.forward in each parent directory of each username may contain a com­
mon address (see Section 13.1.1 for the format of network addresses) to
which all your mail is forwarded. Rather than logging on to each user­
name to check for incoming mail, you need only look under a single
username on a single computer (compare VMS MAIL SET FORWARD).

Saving and Deleting Mail

Once you read a message, mail, by default, saves it to the file -user/
mbox, which you can access via the mail utility or any command used
on ordinary files. You can also print or delete mail messages, append
them to a file, or place them in a folder. Each of these options is dis­
cussed below.

126 Communicafing with Other Users

example: . MAIL> DELETE 4

example:

example:

example:
example:
example:

example:

example:

VMS

MAIL> DIR/FOLDER
Listing of folders in DUAl :[USER] •

MAIL.MAI;l
Press CTRL/C to cancel listing
BUGS MAIL
MAIL> MOVE BUGS

$ MAIL
MAIL> SET FOLDER MAIL
$ MAIL
MAIL> SET FOLDER BUGS
MAIL> PRINT 10

UNIX
% mkdir -user/maiLfolder
% ex -user/.mailre
:a
set folder = maiLfolder

~wql

• & folders
bugs

& s +bugs
& 54·6 +bugs
% mail·f

% mail .f -user/maiL \
folder/bugs

& s 10 foo
& IIpr foo; rm foo
&d4

In the first example, the user establishes a directory, maiLfolder, in
which mail stores folders. (You do not need to make a mail folder direc­
tory in VMS, as VMS maintains folders as part of theMAIL.MAlfile.)
Then the user appends the command set folder =maiLfolder to the file
.mailre using the ex editor (see Section 5.1). The hidden file .mailre cus­
tomizes the mail environment (see Section 6.1.8), and in this instance
tells mail in which directory to store mail folders. Each folder appears
as a separate file. New messages are appended to these files and, like
-user/mbox, these folder files may be accessed by any UNIX commands
used on ordinary files.

The second example, folders (compare the VMS MAIL command DIREC·
TORY/FOLDER), displays existing folders. The third example, s + bugs
(compare the VMS MAIL command MOVE BUGS), moves the current
message to the folder bugs. The fourth example, s 4·6 +bugs, moves
the fourth, fifth, and sixth messages in the message list to the folder
bugs.

The fifth and sixth examples illustrate how to access old mail files. The
shell command mail·f (without a file name) accesses the -user/mbox file.
The command mail ·f -user/maiLfolder/bugs accesses the folder bugs.
The seventh example illustrates how to print a message list. First, mes-

6. 1.5 Saving and Deleting Mail 127

sage 10 is stored in the file foo with the command 5 10 foo. Then, foo is
sent to the default line printer and once spooled, deleted with the com­
mand sequence !lpr foo; rm foo. Note that! informs the mail utility that
the command that follows is to be interpreted by the shell rather than
by mail. I By using pipes and input/output redirection, you can initiate
complex sequences of commands from within mail.

The last example, d 4, deletes the fourth message in the message list.
Note that until quitting or exiting mail, you may recover the last deleted
message list with the undelete command.

You may also save messages as files, as the following examples illus­
trate.

example:
example:
example:

VMS, " ", >" ",

MAIL> EXTRACT MAILFIL~)fXt '
MAIL> EXTRACT 4' MAILFILE.M

iUNI~
,& $,iJ'cdl'ileiltxt :,t

&$,4' mailfile.txJ
% m~iI ..f" mailfiJ~~txt

6.1.6

In the first example,s mailfile.txt saves the message just read to the file
mailfile.txt in the current directory. In the second example,s 4 mail­
file.txt saves message 4 in the message list to the file mailfile.txt. In the
last example, the command mail -f mailfile.txt presents a further example
of the UNIX mail utility's ability to access ordinary files. Provided that
the contents of the file mailfile.txt have not been changed, for example,
by use of an editor to remove the message header, the mail utility treats
it as a regular mail message. You cannot do this in VMS MAIL, although
you can use messages previously saved to a disk file with the EXTRACT
command. The VMS MAIL utility commands REPLY/EDIT, SEND/EDIT,
and FORWARD/EDIT invoke an editor which is used to include the mes­
sage contained in the disk file, but not until a list of recipients and a
subject have been entered.

Searching Old Mail

The UNIX mail utility offers several mechanisms for searching mes­
sages to locate the sender or a keyword in the header that indicates
sender, subject, time, or Cc. Once you store messages in ordinary files,
you can use the grep command (see Section 9.4.5) for searching.

1. This use of ! to escape to the shell is common to a number of utilities.

128 Communicating with Other Users

VMS version 5.0 and later permits you to search mail message headers
with the MAIL command DIRECTORY/EDIT. UNIX mail does not
have a feature equivalent to the VMS MAIL command DIRECTORY/
SINCE, which lets you preview the header information of messages
received since a specified time.

VMS
example: $ MAIL

. MAIL> SET FOLDER MAIL
MAIL> DIRECTORY

example:
• , .excunple:

. exa~ple:· MAIL> SEARCH STRING

% mail ..'
&h
.& f user

-Be f/keyWord,. .
& ·.ISJrepstrirl9 ..user/....box

6.7.7

6.7.8

In the first example, h displays one line of header information for each
message stored in -user/mbox. Unlike the VMS MAIL DIRECTORY com­
mand, h displays only the first 18 message headers. The command +h
displays the next 18. Correspondingly, -h displays the previous 18. In
the second example, f user displays messages sent by a specified user.
In the third example, f /keyword displays headers of messages contain­
ing the keyword. In the last example, !grep string -user/mbox issues a
shell command from within mail (by temporarily escaping to the shell
and then returning to mail) to search the user mailbox for string.

Terminating Mail

Terminating mail represents the most fundamental and annoying differ­
ence between the UNIX and VMS mail utilities. In VMS MAIL, when a
message is deleted, it is moved to a temporary folder called WASTEBAS­
KET. The command EXIT deletes the WASTEBASKET folder and termi­
nates MAIL. The VMS MAIL command QUIT, on the other hand, leaves
the WASTEBASKET folder intact, so that deleted mail messages can be
recovered in subsequent mail sessions by moving them from the WASTE­
BASKET folder. In UNIX, these functions are reversed: exit leaves the mail
environment unchanged so that any deleted mail messages will reappear the
next time mail is invoked. The command quit loses forever mail messages
that were deleted.

Customizing the Mail Environment

Just as you can customize the shell to suit individual needs (see Section
3.2.2), so you can customize the mail environment. The system admin­
istrator can customize the mail environment for all users by modifying

6. 1.8 Customizing the Mail Environment 129

the file /usr/lib/Mail.re. You can further modify your own mail environ­
ment with the hidden file .mailre. Details of modifications that you can
make to the mail environment appear in the additional reading list shown
in Appendix D. The following example represents a typical system and
user environment taken from an ULTRIX v2.0 system.

VMS
example: $ COPY SYS$SYSTEM:MAILEDIT.COM -

MYMAIL.COM
$ EDIT MYMAIL.COM

*s?EDIT?EDITITPU?21
• EXIT
$ DEFINEMAIL$EDITMYMAIL.COM

UNIX

% eat lusr/lib/Mail.re
set append dot save ask askee \

SHELL= Ibinlesh
EDITOR = lusr/ueb/ex metoo hold

The variables defining the mail environment are:

append

dot

save

ask

askee

SHELL
EDITOR

metoo

Messages are appended to -user/mbox rather than
prepended

. (period) alone on a line signifies end of message, and
supplements (cTRL)-D

Saves mail messages in a file or folder

Prompts for subject field

Prompts for Cc: field

Shell to use with ! command

Editor to use while in mail (compare the VMS MAIL
command SET EDITOR)
Include sender in recipients (compare the VMS MAIL
command SEND/SELF)

hold Messages once read do not automatically pass to
-user/mbox but are kept in the system mailbox

A typical user-specific modification to this system-wide environment
might be as follows.

UNIX
example: % eat -user/.mailre

.mailre - File to tailor mail environment [PES 4/21/87]
#
set folder = maiLfolders # define directory for folders
set ert=20 # set number of message lines

130 Communicating with Other Users

set autoprint

set EDITOR=/usr/locallemacs
alias managers george fred
alias cshell iack iill george dragon
alias gripe root

automatically display next message \
after delete

define editor for mail
aliases

6.2

The command set folder = maiLfolders, as we saw previously, defines
the directory to store mail folders. set crt = 20 sets the number of lines
displayed per screen to 20. set autoprint automatically displays the next
message after a message is deleted. set EDITOR=/usr/local/emacs
defines an alternative editor while in mail. alias managers george fred
defines a mailing list called managers, which currently specifies the two
recipients george and fred.

Interactive Communications: talk and write

This section covers two commands, talk and write, with which users can
communicate with other users logged on to the same or a remote com­
puter. You can use talk (compare the VMS PHONE command) to con­
duct an ongoing conversation to the exclusion of any other interactive
computing. You can use write to exchange messages while performing
other interactive tasks. Note the analogy to the VMS REPLY command,
which is available only to system operators (users with the VMS OPER
privilege). You may use mesg if you do not wish to be interrupted by
talk or write requests (compare the VMS command SET NOBROAD­
CAST). The command mesg n prevents the receipt of a talk or write
request, mesg y (the default) reinstates the ability to receive talk and
write messages, and mesg without arguments reports the current state
ofmesg.

VMS
form: $ PHONE[/QUALIFIER(S)] USER
form: $ REPLY[/QUALIFIER(S)) "MESSAGE"

example: $ PHONE FRED
example: $ REPLY/USER = FRED "ARE YOU THERE?"

UNIX
% talk user [ttyname]
% write user [ttyname]
[message]
{CTRL}-D
% talk fred tty17
% write fred
are you there?
{CTRL}-D

Notice that both talk and write accept a ttyname argument. You can use
this argument to send messages to a specific terminal when the user is

6.2 Interactive Communications: falk and write 131

logged on at more than one location. In the first example, talk fred tty17
attempts to establish communication with user fred logged on to tty17.
Fred's terminal will display the following:

Message from TalkDaemon@sender_computer
talk: connection requested by sender-name@sender-computer
talk: respond with: talk sender-name@sender_computer

If Fred responds with talk sender-name@sender_computer, then com­
munication is established. Just as with PHONE, the screen splits into
two segments, so that what the sender types appears in one window and
what the receiver types appears in the other. You can refresh the screen
with (CTRL)-L (compare (CTRL)-W in VMS). Communications terminate
when either user types (CTRL)-C.

In the second example, write fred, user fred sees the following:

Message from sender-computerlsender_name sender-ttyname
Are you there?

At this point, Fred can respond if he wishes.

6.3 Summary

The following scenario, typical of daily mail use, summarizes the mate­
rial presented in this chapter. User Joyce returns from vacation and
checks her electronic mail.

UNIX

Thu May 21 11 :20 16/506 "dcp"
Thu May 21 12:55 21/507 "rmf,peters and dly"
Tue May 2614:2119/451 "brookhaven files"
Wed May 2700:1233/731 "rcpvms"
Wed May 2722:1529/864
Thu May 2810:2417/487 "stream <If> files"
Sat May 30 14:38 17/512 "man utility"
Thu Jun 18 18:04 11/282 "Re: test"

1 root Tue May 1212:11 28/950 "rsh tolfrom ultrix"
2 MAILER-DAEMON Wed May 131716:43 23/615 "Returned mail: Host \
unknown"

3 poisson
4 youkha
5 youkha
6 youkha
7 pahler
8 murthy
9 horton

10 cucard!root
&2
From ioyce May 13 16:43:43 1987
Received: by cuhhca.UUCP (4.12/4.8)

example: % mail
" /usr/spoollmaillioyce": 10 messages

example: & h
>

example:

132 Communicating with Other Users

207:20
207:08
209:42

May
May
May

tty06
tty07
tty10

id AA12988; Wed, 13 May 87 16:43:41 edt
Date: Wed, 13 May 87 16:43:41 edt
From: MAILER-DAEMON (Mail Delivery Subsystem)
Subiect: Returned mail: Host unknown
To: ioyce
Status: RO
----- Transcript of session follows -----
550 reidar@cucard••• Host unknown: Not a typewriter
----- Unsent message follows -----
Received by cuhhca.UUCP (4.12/4.8)
id AA12986; Wed, 13 may 8716:43:41 edt
Date: Wed, 13 May 87 16:43:41 edt
From: ioyce (Joyce Lastname)
To: reidar@cucard
Subiect: test
Hopefully when u poll me u should get this???? Joyce
& m reidar@cucard
Subiect: Resending message of May 13
-m 2
Interpolating 2
(continue)
{cTRL)-D
Cc:
&d
& 1
From root Tue May 12 12:11 :28 1987
Received: by cuhhca.UUCP (4.12/4.8)
id AA05129; Tue, 12 May 87 12:11 :26 edt
Date: Tue, 12 May 87 12:11 :26 edt
From: root (System Administrator)
To: ioyce
Subiect: rsh to/from ultrix
Status: RO
Dear Joyce:
I fixed the problem•.••
& s +vacation
" /usr1/ioyce/maiLfolders/vacation" [New file] 28/950
&9
From horton Sat May 30 14:38:57 1987
Received: by cuhhca.UUCP (4.12/4.8)
id AA27943; Sat, 30 May 8714:38:55 edt
Date: Sat, 30 May 87 14:38:55 edt
From: horton (John Horton)
To: ioyce
Subiect: man utility
Status: RO
Joyce. help.•. please contact me as soon as you return
& !who
horton
murthy
system

example:

example:

example:

example:
example:

example:

6.3 Summary 133

209:16
209:21

example:

example:

zhaoping ttypO May
royer ttyp1 May
!
&q
Held 8 messages in /usr/spool/mail/ioyce
% write horton
are you there?
(CTRL)-D
%
Message from cuhhca!horton on tty06 at 11 :36
yes•• let us "talk"
EOF
%
Message from TallLDaemon@cuhhca at 11 :37•••
talk: connection requested by horton@cuhhca
talk: respond with: talk horton@cuhhca
% talk horton
[Connection established]

(cuhhmd.hhmi.colu)
(cuhhmd.hhmi.colu)

Using the command mail, Joyce discovers that ten mail messages have
been sent to her system mailbox /usr/spool/mail/ioyce during her
absence. Using the h (header) mail utility command, she displays a one­
line summary of each message. Message 2 catches her eye; it is a
response from the mail utility (MAILER-DAEMON) indicating that it was
unable to deliver a message she sent prior to her departure. She enters
2 at the interactive mail prompt&.whichdisplaysthemessage.Itis in
fact a message she tried to send to reidar@cucard (a network address;
see Section 13. Ll). She decides to send this message again, believing
that the network connection is now functioning correctly. The command
m reidar@cucard begins sending the new message by prompting for a
subject, to which user Joyce responds with -m 2 to include message 2 in
the text of the new message. Joyce sends the message by pressing (
(CTRL)-D, then (cr) at the Cc: prompt. Joyce then deletes the original
message with the d command and reads the first message by typing 1.
Having read the message, Joyce decides to save it (s +vacation) in the
new folder vacation, which is a file in the directory /usr1/ioyce/maiL
folders. She then turns her attention to message 9. Since this message
is a call for immediate help, she decides to use interactive communica­
tions. The string !who issues a command who to the shell (!) to deter­
mine if user horton is logged on and therefore capable of receiving inter­
active communications. Seeing that he is logged on, she quits mail (q),
retaining her unread messages in the system mailbox. The command
write horton then opens a dialog with user horton. As he is logged on

134 Communicating with Other Users

only once, it is not necessary to include a terminal name in the write
command. The dialog is terminated with (CTRL)-D. User horton responds
by using the write command and requests a talk session (whereupon user
horton would have entered talk ioyce). Joyce responds with talk horton.
The screen splits into two segments and a dialog takes place.

6.3 Summary 135

Chapter 7

Monitoring and Utilizing
System Resources

-~~-

Ican't see who is ahead-it's either Oxford or Cambridge.
John Snagge

This chapter discusses UNIX commands that analyze and affect the use
of system resources such as the CPU, physical memory, virtual memory,
and disk space. Monitoring system resources is of major concern to the
system administrator in maintaining a balanced workload. Users
become interested in this subject when, for example, the system
responds sluggishly to terminal input, or when they wish to estimate the
running time of a particular application. Unfortunately, users can usu­
ally do nothing to improve the situation except to alter processes they
own, which is often self-defeating.

Applications programmers may consider this position narrow­
minded, reflecting only a system administrator's perspective. Indeed,
programmers can examine how a particular application consumes
resources and often see how to improve the performance of their code.
This chapter, however, is not a lesson in programming, and therefore
offers no insight into how such improvements might be made. It simply
describes the commands that monitor how processes utilize system
resources and that affect the system resources devoted to processes.

UNIX users familiar with the VMS commands MONITOR, SHOW,
and ANALYZE, with their easily understood output, will likely be disap­
pointed by the commands UNIX offers to analyze system re­
source utilization due to the original UNIX design constraints. These
constraints required that output be displayed as hard copy on slow Tele­
type devices. The designers of the original operating system could not,
of course, avail themselves of the fast screen updating capabilities of
today's video terminals. A few vendors of UNIX systems now offer
graphical output pleasing to the VMS MONITOR user, but such features
are not generally available.

Despite differences in convenience, the principles for analyzing resource
utilization in both VMS and UNIX are the same. Figure 7.1 illustrates
the common UNIX commands for monitoring and changing resource
utilization. These commands apply either to single processes (discussed
in Section 7.1) or to the sum of all processes (discussed in Section
7.2). Once resource utilization of your system has been analyzed, a com­
munity-conscious user (if such a creature exists) can modify his or her

Monitoring and Utilizing System Resources 137

r
-

1~
!

System Resources

I I
Monitor Change

I at (7.3.2)

I I kill (7.3.1)
nice (7.3.3)

Individual System
renice (7.3.3)
limit (7.3.4)

I I
I I I I I

I users I I process I disk memory I I network I

The casual user is advised to concentrate on the commands who, pi, kill, and elf.

who (7.1.2)
whoami (7.1.1)
rwho (7.1.2)

w (7.1.2)
users (7.1.2)

ps (7.1.3)
limit (7.1.5)

du (7.1.4) df (7.2.3) vmstat (7.2.1) netstat (7.2.2)

7.7

Figure 7.1 UNIX Commands for Monitoring and Changing
Resource Utilization

processes to reduce their system resource requirements (see Section
7.3).

We will begin by looking at the commands for monitoring system
resource utilization as they apply to a single process, a single user, or
disk space.

Monitoring Users and Their Processes

Before examining how individual processes are consuming system
resources, you should examine how many interactive users are logged
into the system as a first indication of the workload. UNIX offers several
commands-users, who, w, and rwho-for displaying a list of interactive
users. The BSD version of UNIX even has a command, whoami to
determine who you yourself are. Once you have determined the number
and names of the interactive users on your system, you can list the pro-

738 Monitoring and Utilizing System Resources

7. I. I

cesses that you and your fellow users are running with the ps command.
If you need additional information, you can issue du to determine the
amount of disk space consumed, and if you are a C shell user, the shell
command limit to get information on the resource limits imposed on user
processes.

Who Am I: whoami

The whoami command (BSD only) is not as ridiculous as it may first
appear. It is useful, for example, when you have different usernames on
several frequently used UNIX computers. You may invoke whoami to
determine your current username and hence which computer you are
using. I You might also use whoami when sharing a terminal with other
users. If that terminal has been left unattended, you can issue whoami
to list the name of the user who is currently logged in. You may then
locate that user and ask him or her to end the terminal session. In VMS,
the corresponding command SHOW PROCESS returns the current user's
username as well as other useful information; whoami returns only the
username.

form:
example:

VMS
$ SHOW PROCESS[/QUALlFER(S)) process_name
$ SHOW PROCESS
29-JUN-198811:20:12.98 RTA3: User: SYSTEM
Pid: 00000219 Proc. name:_RTA3: UIC: -

[SYSEM,POSTMASTER]
Priority: 4 Default file spec: -

SYS$SYSROOT:[SYSMGR]

UNIX
%whoami
% whoami
root

7.1.2

BSD is the only version of UNIX that supports whoami. System V uses
who am i, which returns the username, the terminal name, and the time
the user logged in.

Monitoring Interactive Users: users, who, w,
andrwho

The UNIX commands users, who, and w provide information in increas­
ing detail on interactive users using the local computer (compare the
VMS command SHOW USERS). The cOJ!lmand rwho provides informa-

1. If these computers are from different manufacturers and running different imple­
mentations of BSD UNIX, using the whoami command indicates that UNIX hides
differences in hardware behind a common user interface (Section 1.1).

7. 1.2 Monitoring Interactive Users: users, who, ~ and rwho 139

tion about interactive users using remote computers on the same net­
work (see Chapter 13).

VMS
form: $ SHOW USERS[/OUTPUT] [usemame]

example: $ SHOW USERS
VAX/VMS Interactive Users

Total number of interactive users = 3
BEIGI ALPHA 0000021 C LTA40:
HENDW HENOW 00000129 RTA1:
JAYARAM JAYARAM 00000200 LTA36:

UNIX
% users
%who [file]
% w [option(s)] [user]
% users
beigi hendw iayaram

UNIX
example: % who

beigi tty06 Jun 28 12:04
hendw ttyOc Jun 27 19:15
iayaram ttypO Jun 29 09:42

example: %w
12:09pm up 14 days, 2:07, 3 users, load average: 0.78, 0.35, 0.20
User tty login@ idle JCPU PCPU what
beigi tty06 12:04pm 31 :02 9 9 rlogin cuhhmd
hendw ttyOc 7:15pm 40:53 7 2 -csh[hendw] (csh)
iayaram ttypO 9:42am 2:27 3 1 -csh[iayaram] (csh)

example: % who lusr/adm/wtmp Igrep fred I tail-4
fred tty03 Feb 24 11 :10
fred tty03 Feb 24 12:03
fred tty05 Feb 25 12:10
fred tty05 Feb 25 15:09

The users command returns only an alphabetical list of the usernames
of interactive users currently logged in. The who command, which most
closely resembles the VMS SHOW USERS command, displays the name
of the device to which the user's terminal is connected (for example,
tty06) and the login time (for example, Jun 28 12:04). The command w
also displays a header line with the time of day (12:09pm), how long the
computer has been up (14 days, 2:07), the number of users (3), the sys­
tem load, and the following information about each user:

idle

JCPU

PCPU

how long since the user last typed anything, in minutes

the accumulated CPU time of all the user's processes
since logging in, in minutes

the CPU time used by any currently active processes, in
minutes

140 Monitoring and Utilizing System Resources

what . the program being executed by the current process

For example, user iayaram logged on at 9:42 a.m., has not touched the
terminal connected to ttypO for two hours and 27 minutes, and is running
the C shell program. Blanks in the fields idle, JCPU, and PCPU indicate
a time of less than one minute.

The three values for system load indicate how busy the system was one,
five, and 15 minutes ago. A load of 0.78 indicates that the system was
operating at 78% capacity; a load of 2.30 indicates that it would take 2.3
identical systems to process the current load efficiently. Stated another
way, a single CPU-intensive application running at a system load of 2.30
will receive 1/2.3, or approximately 44%, of the CPU resources.

The last example, who /usr/adm/wtmp Igrep fred I tail -4, illustrates the
use of who to interrogate a system accounting file rather than the default
file /etc/utmp. The file /etc/utmp maintains information on users cur­
rently logged onto the system. The file /usr/adm/wtmp maintains infor­
mation on alliogins and logouts. Rather than displaying the contents of
this file (the default), the example pipes the output to the grep command
(compare the VMS command SEARCH in Section 9.4.5), which searches
for records that indicate when user fred logged into and out of the sys­
tem. The example, in turn, pipes this information to the command tail ­
4 (see Section 9.2.3), which displays the last four records: namely, the
last two times user fred logged into and out of the system. This infor­
mation is useful, for example, if you sent a mail message to user fred
and wish to know when he is likely to read it. If user fred has logged in
twice in the last couple of days, then you can assume that user fred uses
the system frequently and will read the message in the near future. On
the other hand, if user fred logged in only twice in the last two months,
it is less likely that he will read the message in the near future.

The command rwho produces a display similar to the who command,
but for users who are logged in to other computers on the network (see
Section 13.1.2).

cunixc:ttype
sylvester:ttyp2
zeno:tty17
cunixc:tty56

form:
example:

UNIX
% rwho [option(s))
%rwho
ari
brown
glenda
gr

Jun 2913:30
Jun 28 10:47 :52
Jun 2911:46
Jun 2912:50

7.1.2 Monitoring Interactive Users: users, who, w, and rwho 141

heidi
system
zagorski

cunixc:tty25
cuhhmd:ttyp3
cuhhmd:ttypO

Jun 29 09:04 :06
Jun 29 13:39 :07
Jun 28 12:04 :20

7.1.3

The command rwho displays the same information as who, as well as a
name preceding the terminal name and how long since the user last
typed anything, in minutes. A blank field here indicates that the user has
typed something within the last minute. The name preceding the termi­
nal name is the hostname of the remote computer (see Section 13.1).
VMS, in contrast, does not offer a convenient way to determine who is
logged in to a remote DECnet node. You may use the options a and h
with rwho. The option a reports on all remote users. Without the a
option only those users who have touched the terminal in the last hour
are reported. The option h sorts the output alphabetically by hostname
rather than username. On a large network, the system administrator may
prevent the computer from broadcasting messages describing who is
currently using the system in an effort to prevent the network from
becoming overloaded. In this case, rwho would not detect a complete
list of remote users.

Monitoring Processes: ps

The command ps (process status) shows the system resources being con­
sumed on a UNIX system at any given time by one or more processes.
The VMS analogy to ps is a combination of the SHOW SYSTEM and
SHOW PROCESS commands. Although ps has many options, the subset
described here will meet the needs of the average user.

form:
VMS
$ SHOW PROCESS[/QUALIFIER(S)] [process]

UNIX
% ps [option(s)]

VMS
example: $ SHOW PROCESS

29-JUN-1988 15:08:38.91 RTA3: User: SYSTEM
Pid: 00000219 Proc. name:_RTA3: UIC: [SYSTEM.POSTMASTER]
Priority: 4 Default file spec: SYS$SYSROOT:[SYSMGR.COM]

example: $ SHOW PROCESSIALL
2-JUL-1988 11 :03:46.85 RTA2: User: SYSTEM
Pid: 00000196 Proc. name:-RTA2: UIC: [SYSTEM.POSTMASTER]
Priority: 4 Default file spec: DUA3:[BOURNE.MASS11]
Devices allocated: RTA2:
Process Quotas:
CPU limit: Infinite Direct 1/0 limit: 18

142 Monitoring and Utilizing System Resources

Current Total Size (pages)
Space in Use (bytes)
Size of Smallest Block
Free Blocks LEQU 32 Bytes

BuHered 1/0 limit: 18
Open file quota: 59
Subprocess quota: 10
AST limit: 22
Shared file limit: 0
Max active iobs: 0

may insert in group logical name table
may create temporary mailbox
may aHect other processes in the world
may create network device

Peak working set size:
Peak virtual size:
Mounted volumes: o

50
3952

8
2

387
1159

o00:00:40.75

99904
20

59063
64
30
o

147
55

1285
7

o00:00:09.35 Connect time:

BuHered I/O byte count quota:
Timer queue entry quota:
Paging file quota:
Default page fault cluster:
Enqueue quota:
Max detached processes:
Accounting information:
B~Hered I/O count:
Direct 1/0 count:
Page faults:
Images activated:
Elapsed CPU time:
Process privileges:
GRPNAM
TMPMBX
WORLD
NETMBX
Process rights identifiers:
INTERACTIVE
REMOTE
Process Dynamic Memory Area
Current Size (bytes) 25600
Free Space (bytes) 21648
Size of Largest Block 21568
Number of Free Blocks 4
Processes in this tree:
_RTA2: (.)

5L RE PAGEIN SIZE RSS LIM T51Z TRS %CPU %MEM COMMAND
o 1 2 416 200 XX 84 40 1.0 0.9 ps
o 99 5 76 84 XX 184 172 0.4 0.4 csh

example:

example:

example:
PID TT

28798 pO
28568 pO

UNIX
%ps
PID TT STAT TIME COMMAND
6682 p1 S 0:01 -csh[system] (csh)
7415 p1 R 0:00 ps
%ps-I
F UID PID "ID CP PRI NI SZ RSS WCHAN STAT TT TIME COMMAND
9808209 103 18228 18227 2 1 7 47 38 14423c S pO 0:01 csh[system]
1008009 103 18402 18228 17 108 0 396 140 R pO 0:00 ps-I

% ps-v
STAT TIME
R 0:00
5 0:00

example: % ps -u
USER PID
system 24778
system 24521

"CPU %MEM SZ
47.0 2.4 220
0.7 1.1 130

RSS
166

71

TT STAT TIME COMMAND
pO R 0100 ps -u
pO 5 0:05 -csh (csh)

In the first example, ps without options (compare the VMS command
SHOW PROCESS) provides a brief summary of your own processes. In
this example, the user is running only two processes: one child running
the ps command, and the C shell parent process that forked the child

7. 1.3 Monitoring Processes: ps 143

process (see Section 2.1.1 for a discussion of parent and child pro­
cesses). The user initiated each process from the terminal ttyp1, a
pseudo-terminal used in a network connection (see Section 3.1). The csh
process has been stopped (S) for a short period of time, and ps is running
(R). The csh process has consumed one minute of CPU time.

In the second example, ps -I (compare the VMS command SHOW PRO­
CESS/FULL) provides additional information on the user's processes as
follows:

UIO

PPIO

CP
PRI
NI

SZ

RSS

WCHAN

Numerical process identifier (compare the VMS PIO)

Numerical process identifier of parent process

Short-term CPU utilization factor

Process priority (compare VMS priority)

Process scheduling increment

Virtual memory size of the process in kilobytes
(compare VMS peak virtual size)

Real memory size of the process in kilobytes
(compare VMS peak working set size)

Event address for which process is waiting

The average user will likely never need some of the information given
by ps -I. Therefore, we discuss only the commonly used fields.

PPIO displays the identification number of the parent process that forked
the process under examination. This information is useful if you need to
trace the parent process. In this example, the PPIO of 18228 for the pro­
cess running the ps command is the PIO of the parent shell process. The
priority (PRI) determines the amount of the available CPU resources that
the system will devote to the process. Unlike VMS, where base priori­
ties range from one to five, UNIX priorities use zero as the baseline,
with positive numbers indicating lower priority and negative numbers
higher. Section 7.3 describes how you may lower the priority of a run­
ning process or a process about to run a command. SZ and RSS indicate
the relationship between how much physical memory a process may the­
oretically use and how much it has access to. Processes where SZ vastly
exceeds RSS may be running inefficiently. RSS corresponds to the peak
working set size of a VMS process, the former expressed in kilobytes
and the latter in pages of 512 bytes.

If you need to know more about memory utilization, you should use
ps -Y. As shown in the example, ps -Y displays additional fields relating
to memory utilization:

744 Monitoring and Utilizing System Resources

SL

RE

PAGEIN

SIZE

LIM

TSIZ

TRS

Sleep time of the process, in seconds

Residency time of the process in main memory. in
seconds

Number of disk lias resulting from reference to pages
not in main memory for a process

Same as SZ above, that is, virtual memory size of the
process in kilobytes

Soft limit on memory available to process, in
kilobytes. The message xx means no limit; the process
could theoretically use all the available address space

Size of whole program image, in kilobytes

Size of memory-resident part of program, in kilobytes

The last example, ps -u, provides perhaps the most useful display for
the average user, for it sorts the percentage of the total CPU (%CPU)
resources and memory (%MEM) consumed by the user's processes in
descending order according to CPU utilization. The processes using the
most CPU time appear first.

The examples of ps given thus far display features of your own pro­
cesses. You may also display the characteristics of other types of pro­
cesses (compare the VMS commands SHOW SYSTEM, SHOW PRO­
CESS/IDENTIFICATION. and MONITOR PROCESS). Other UNIX
processes fall into two classes: user (both your own and others') and
processes not attached to a terminal and owned by root. The latter pro­
cesses, called daemons, usually start when the system is booted and are
part of the operating system. You may display these two classes of pro­
cess with the a and x options respectively.

,UNIX
example:, % ps ~aux ,I h"d

USER :PID %CPU
-fred' '24790 31.0,

,',:-geQrge_~4e81~.0

,fred:'· 247914~0
~t 24520 ,2.3

'fred 24521 0.5
, ,,~ri.Dt, ,,~3624 ,0.2

rciot3611 O~l
-ro'at' '3614 0.0
'f90f.' , (O.p , ,
i'~af, , , 3S80 0.0

%MEM
2.6
1.8
0.3
1.1
t1
1.8
0.2
0.3
~.6,

1.1

SZ RSS
240 178
131:' 119
36 14
85 74

130, 72
131119

5u
• 3

31 11
27,0' 251­
99 '74

'TT STAT
pO R
'p3 'R
pO 5
pO 5
pO 5

',? S'
? 5
'1 I
? I
co S,'

TIME COMMAND
0:00 ' ps -aux _,

,0:12 lusr/george/myprog
0:00 head
0:19, dlogin
0:07 '- -csh, (ah)

,324:23~' ,/etCliWhod'
65:36 i~'e/update

, 15:54" Jete/eran
~:,Q8: init~,
,0:55 ' swapin

The command ps -aux I head pipes the output of the ps command to
head (see Section 9.2.3). which displays the first 10 lines of the output.

7.1.3 Monitoring Processes: ps 145

7.J.4

in this case the to processes consuming the largest percentage of CPU
resources. UnJike ps -u, this command includes processes owned by
other users (option a) and processes not attached to a terminal or the
system console (option x). Since the processes owned by the operating
system are not associated with a terminal, the TT field displays a ques­
tion mark. Examples of such daemons include lete/rwhod, a program
which acts as both a collector and broadcaster of network information.
Current users are broadcast over the network, while information on
remote users is collected for use by the local rwho command; Ietel
update, which periodically updates the file system pointer file (see Sec­
tion 2.3) to assure file integrity in the event of a system crash; leteleron,
which executes commands at preset intervals, such as a time stamp used
for accounting purposes (compare the VMS process OPCOM); init,
which initiates a terminal session (see Section 3.2) and swapin (compare
the VMS process SWAPPER), which controls the swapping of data from
physical memory to a secondary cache.

Monitoring Disk Usage: du

The command du (disk utilization) provides information on how much
disk space the system's users are utilizing (compare the VMS command
DIRECTORY/SIZEITOTAL). You can use du to examine your own files or
any user's files that are world-readable.

form:
example:

example:

example:

VMS
$ DIRISIZE file-spec[, ...]
$ DIRISIZEITOTAL DUAl :[FRED...]•.•;.
Directory DUAl :[FRED]
Total of 10 files 1000 blocks
Directory DUAl :[FRED.SCRATCH]
Total of 1 file 500 blocks
Grand total of 2 directories, 11 files, 1500 blocks

UNIX
% du [option(s)] directory
% du -fred
512 lusr/fred
256 lusrlfred/scratch

% du -s -fred
768 lusrlfred
%du -a
[not shown]

The command du reports the total size of all files in each directory in
kilobytes, starting with the directory specified or the current directory
if no directory is specified, and moving down the directory tree. In the
first example, du -fred without options reports the disk usage of all direc­
tories belonging to user fred. In the second example, du -s -fred (sum­
mary) gives only the total size of all files owned by user fred. In the last

746 Monitoring and Utilizing System Resources

7.1.5

example, du -a lists the size of all files in the directory hierarchy, starting
at the present working directory (not shown).

Monitoring Process Resource Limits: limit

The command limit, which is a built-in feature of the C shell program
(see Section 11.9), lists the system resources available to a given user
process. As we shall see in Section 7.3.4, you may also use limit to
decrease (but not increase) the value assigned to a particular resource.

unlimited
unlimited
2097151 kbytes
512 kbytes
32768 kbytes
unlimited

VMS
form:
example: $ SHOW PROCESS/FULL

[not shown]

UNIX
% limit resource value
% limit
cputime
filesize
datasize
stacksize
coredumpsize
memoryuse

The values displayed by limit which are important to the average user
are:

cputime

filesize

coredumpsize

memoryuse

The maximum amount of CPU time assigned to
anyone process, usually unlimited

The maximum size, in kilobytes, of anyone file,
usually unlimited (that is, it could be the size of
the whole file system)

The maximum size, in kilobytes, of the core
dump file (see Section 7.3.4)

The amount of physical memory that one process
can consume, usually unlimited; that is, all the
physical memory not being used by the operating
system is theoretically available to a user's
process

7.2 Monitoring the System

Section 7.) considers how individual processes consume system re­
sources. This section discusses three commands that review how the
sum total of all user processes or all user files affects the available sys­
tem resources: vmstat reviews virtual memory usage and provides other

7.2 Monitoring the System 147

7.2.1

useful statistics, netstat analyzes network usage, and df reviews the
amount of free disk space on each file system.

Virtual Memory Utilization: vmstat

You can use vmstat (compare the VMS command SHOW MEMORY)
either statically or dynamically. In static mode, without a counter or
interval option, vmstat reports average utilization of certain system
resources since boot time. In dynamic mode, vmstat reports the current
values at intervals until it is terminated or it reaches the count option
(the number of times the vmstat program is run). An interval of five
seconds is useful.

UNIX
form: % vmltat [interval] [count]
example: %vmstat

procs memory page po fr de If faults cpu
rbw GYm fre re at pi in Iy cs va us sy id
000 8412 15584 O. 1 2 0 0 0 0 42 108 27 0 45 10 45

example: %vmltat5 to
procs memory page faults cpu
rbw GYm fre re at pi po fr de If in sy cs va us sy id
000 3048 18408 0 1 2 0 0 0 0 42 107 27 0 45 10 44
000 4844 18352 0 0 0 0 0 0 0 42 147 16 0 3 16 81
000 4432 18328 0 0 0 0 0 0 0 46 87 5 0 2 6 92
000 3088 18324 0 0 0 0 0 0 0 39 52 12 0 3 5 92
000 3088 . 18324 0 0 0 0 0 0 0 68 112 22 0 4 21 76
000 2856 .18324 0 0 0 0 0 0 0 92 191 40 0 11 18 71
000 2856 18324 0 0 0 0 0 0 0 53 86 19 0 1 3 96
000 4584 18324 0 0 0 0 0 0 0 62 177 24 0 2 19 79
000 4112. 18324 0 0 0 0 0 0 0 51 91 19 0 1 5 94
000 2828 18324 0 - 0 0 0 0 0 0 36 42 10 0 1 4 95

In the first example, vmstat without arguments reports average statistics
since boot time. The most important fields are:

procs

memory

page

faults

Process statistics: running (r), awaiting resources (b),
and swapped (w)

Memory utilization: virtual pages of 1024 bytes in use
(avm) or free (fre)

Paging activity: reclaims (re), pages in (pi), pages out
(po), and anticipated short-term memory shortfall, that
is, how much paging is likely to occur (de)

Faulting: device interrupts per second (in), system
calls per second (sy), indicating the demand being
placed on the kernel, averaged over the last five

148 Monitoring and Utilizing System Resources

seconds. The fields cs and vs show features found only
on a vector processor and represent a vendor-specific
enhancement to UNIX. These fields are not discussed
further.

cpu CPU utilization: user (us), system (sy), and idle (id) in
seconds

The second example, vmstat 5 10, reports statistics every five seconds
for 10 counts.

7.2.2 Network Utilization: netstat

The command netstat is used principally by the system administrator.
Therefore, this section discusses netstat only briefly for the benefit of
those users for whom network utilization may be an issue. If you are
unfamiliar with the nomenclature introduced here, you may wish to
return to this section after reading Chapter 13, "Processor-to-Processor
Communications. "

Like vmstat, netstat operates in both a static and a dynamic mode, as
illustrated in the following examples.

UNIX

Local Address Foreign Address (state)
cuhhca.hhmi.colu.1028 cuhhca.hhmi.colu.batch TIME-WAIT
cuhhca.hhmi.colu.4988 cuhhca.hhmi.colu.batch TIME-WAIT
cuhhca.hhmi.colu.login cuhhmd.hhmi.colu.1022 ESTABLISHED

calls
3
o
o
o

Collis Queue
3 0
o 0

Nextref Addr
o letclcronsock
o Idev/printer

output
errs
o
o
o
o

Conn Refs
o 0
o 0

(Total)
errs packets
o 84951
o 15
o 72
o 19

input
packets
103977
30
81
22

calls
o
o
o
o

output
errs
o
o
o
o

(100)
packets
73294
o
64
18

% netstat [options] [interval] [system] [core]
% netstat-i
Name Mtu Network Address Ipkts lerrs Opkts Oerrs
exO 1500 128.59 cuhhca.hhmi. 30602 0 11632 0
100 1536 loop localhost 73135 0 73135 0
% netstat -i 5

input
packets errs
73294 0
o 0
64 0
18 0
% netstat
Active Internet connections
Proto Recv-Q Send-Q
kp 0 0
tcp 0 0
tcp 0 78
Active UNIX domain sockets
Address Type Recv-Q Send-Q Vnode
9c08aOc stream 0 0 1bf32dO
9c12aOc stream 0 0 1bf4560

example:

example:

form:
example:

The command netstat -i provides information on each available inter­
face. In the example above, exO is the Ethernet interface and 100 is a

7.2.2 Network Utilization: netstat 149

7.2.3

loopback circuit used in testing. Mtu expresses the maximum size of a
packet. Network gives the Internet address, and Address gives the Inter­
net hostname. The remaining fields describe network activity since the
computer was last booted: input packets (Ipkts), output packets (Opkts),
input errors (Ierrs), output errors (Oerrs), and collisions (Collis). The
number of collisions provides a clue as to how heavily the network is
being utilized: two host computers must attempt to send data at exactly
the same time to produce a collision. This situation is known as network
contention. Given the high speed of transmission, network utilization
must be heavy before netstat registers a significant number of collisions.
The command netstat -i 5 updates this information every five seconds.
The first entry provides the statistics accumulated since the computer
was booted, and the following entries provide statistics at five-second
time intervals.

The command netstat without options provides information on the sta­
tus of each Internet connection. Recv-Q and Send-Q indicate the num­
ber of packets waiting to be received and sent, respectively, to a partic­
ular host.

File System Utilization: df

The command df (disk free) determines the amount of free disk space
on all mounted file systems, including the file system containing a user's
files (compare the VMS command SHOW DEVICE/FULL). df /dir reports
disk space utilization for the file system /dir only. If df reports that the
file system is full, you will be unable to create a new file or save the
editing session of an existing file. In VMS, if you wish to save the editing
session of an important file to a disk device that is full, you must either
ask the system administrator to make space available or move to another
terminal and delete some of your files from the disk that is full. In
UNIX, you can stop the current process, fork a new copy of the shell,
delete unwanted files, return to the editing session, and save the file.
That is, you can rectify the situation without changing terminals or con­
tacting the system administrator.

VMS
form: $ SHOW DEVICES [device-name[:]]
example: $ SHOW DEVIFULL DUA2:

Disk DUA2:, device type RA81, is on-line, mounted, file-oriented device,
shareable, available to cluster, error logging is enabled.
Errar count 0 Operations completed 321135
Owner process Owner UIC [SYSEM,POSTMASTER]

7SO Monitoring and Utilizing System Resources

Mounted on
I
lusr

percent
used
95%
89%

kbytes
free

320
4028

kbytes
used
6354

33635

total
kbytes

7415
41847

Owner process ID 00000000 Dev Prot S:RWED,O:RWED,G:RWED,W:RWED
Reference count 19 Default buHer size 512
Total blocks 891072 Sectors per track 51
Total cylinden 1248 Tracks per cylinder 14
Volume label "USR$DISK1" Relative volume number 0
Cluster size 1 Transaction count 18
Free blocks 12597 Maximum files allowed 222768
Extend quantity 5 Mount count 1
Mount status System Cache name "-I)UAO:XQPCACHE"
Extent cache size 64 Maximum blocks in extent cache 1259
File ID cache size 64 Blocks currently in extent cache 1065
Quota cache size 0 Maximum buHen in FCP cache 273
Volume status: subiect to mount verification, file high-water marking, write-through caching

enabled.
UNIX
% df [option(s)] [filesystem]
%df
Filesystem

node
Idev/raOa
Idev/roOs

form:
example:

The command df without options or arguments reports on all mounted
file systems, in this example, two. The fields provide information on two
file systems, I and lusr, mounted in the a and 9 partitions of the physical
device raO. The fields are self-explanatory. The UNIX command df
reports only file system utilization, whereas the VMS command SHOW
DEVICE/FULL also reports the physical characteristics of the device.
Section 2.3 describes how to determine the physical characteristics of a
file system.

The command df -i (not shown) reports the file system block and frag­
ment size.

7.3 Modifying Processes

UNIX provides five commonly used commands to modify user pro­
cesses: kill, to terminate a process completely; at, to start a process at
a later time; nice, to lower the priority of a process to be executed;
renice, to lower the priority of a process already running; and limit, to
reduce the resource limits of a process. Only the system administrator
can increase ~he priority of a process or kill other users' processes.

Some VMS users can modify features of their own processes other than
the priority using the SET PROCESS command. The ability to make these
modifications depends on the privileges assigned by the VMS system
administrator. UNIX does not provide the same flexibility, since the sys-

7.3 Modifying Processes 151

7.3.J

tern administrator cannot assign a subset of privileges to individual
users.

Delete a Process: kill

The command kill (compare the VMS command STOP/IDENTIFI­
CATION) deletes processes. It is a built-in feature of the C shell, but is
a separate command in the Bourne shell. To use kill, you must specify
a process identification number, which you can determine with the ps
command. The effect of kill may vary in different shells. The feature of
kill described here relates to all shells.

VMS
form: $ STOP/ID=pid
example: $ STOP/ID= AA2019

UNIX
% kill -[option(s)] processid
% kill-9 2019'

7.3.2

In this example, kill -9 2019 deletes the process with the process iden­
tification number 2019. The man page for kill indicates that the 9 option
is a "sure kill" and will therefore remove a process under all circum­
stances. Most users will not need to use more than this version of the
kill command.

Delaying Execution: at

The command at instructs the shell to begin processing command(s) at
a later time. The commands may reside in a UNIX file known as a shell
script, which corresponds to a VMS command procedure, or commands
may be entered at the terminal. In either instance, you do not need to
be logged in when the system executes the commands. You must redi­
rect output from the command(s) to a file or else you will lose it. You
may specify various formats for the time of execution, as shown in the
following examples.

VMS
form: $ SUBMIT/AFTER=time file

$ RUN PROCESS/DELAY = delta-time file
example: $ SUBMIT/AFTER = 23:00 TEST.COM

example: $ SUBMIT/AFTER= 24-JAN-1988:08:00 TEST.COM

example:

152 Monitoring and Utilizing System Resources

UNIX
% at time [day] [file]

% at 2300
test> test.out
(cTRL}-D
% at 8am ian 24
test> test.out
(cTRL}-D
% at 1530 fr

example:

7.3.3

test> test.out
(CTRL)-D
% at 1530 fr week
test> test.out
(CTRL)-D

The command at 2300 processes the commands contained in the file
test, starting at 2300 hours (II p.m.) on the day the at command was
issued. If the command was issued at 11:30 p.m., then the system will
execute the commands at II :00 p.m. the following day.

You must type the script file name, and any redirection, on the following
line(s). The system will not execute a shell script if entered on the same
line as the at command. Rather than the name of a shell script file, you
may enter any sequence of commands on the following lines. In either
instance input to the at command is terminated by entering (CTRL)-D.

The command at 8am ian 24 begins processing at 8:00 a.m. on January
24 of the current year if issued before January 24 or of the next year if
issued after. The command at 1530 fr begins processing on Friday at
3:30 p.m. The command at 1530 fr week begins processing at 3:30 p.m.
a week from the coming Friday. In all of these examples, the output is
directed to the file test.out. Error messages will be lost (but could have
been saved with a >& redirection).

The daemon cron will start the at program at intervals. The program
cron looks in the file /usr/lib/crontab to determine how often to process
at requests. A typical interval is 15 mintues, and so a job scheduled to
start at 15:31 may not actually start until 15:45.

One basic difference between VMS and UN IX that affects at is that
UNIX can "remember" the directory from which a command was
issued. For example, a VMS user submitting a command file to a batch
queue must include commands to set the default directory if commands
address files not found in the parent directory. UNIX assumes that the
default directory is the one from which the command was issued and not
the parent directory.

Lowering the Priority: nice and renice

The command nice lowers the priority ofa command, or a file containing
a group of commands (a shell script) prior to execution. The C shell
includes nice, but it is a separate program for Bourne shell users. Recall

7.3.3 Lowering the Priority: nice and renice 153

that the higher the number associated with the priority, the lower the
priority.

VMS
form: $ SET PROCESS/PRIORITY = n

example: $ SET PROCESS/PRIORITY = 1
example: $ SET PROCESS/PRIORITY=1

UNIX
% nice + [number] command \

[arguments]
% nice +10
% nice + 10 f77 myprog.f

The command nice +10 adds 10 to the priority of the current shell, that
is, it reduces its priority. Similarly, nice +10 f77 myprog.f adds 10 to the
priority of the FORTRAN compilation of the source file myprog.f.

The command renice reduces the priority of processes that are already
running. The operating system reduces priority automatically, but you
can do so manually. You can reduce a single process, all of a user's
processes, or all processes owned by members of the same group. Once
you reduce them, you cannot raise the priority of these processes. Only
the system administrator can increase the priority of any process run­
ning on the system.

VMS
form: $ SET PROCESS/PRIORITY=l/ID=nn

example: $ SET PROCESS/PRIORITY = l/ID = 834
example:
example:

UNIX
% renice priority -[p pid] \

-[g group] -[u user]
% renice 10 -p 71823
% renice 10 -g admin
% renice 10 -u fred

7.3.4

The command renice 10 -p 71823 decreases by 10 the priority of the
running process with the identification number 71823. The command
renice 10 -g admin lowers the priority of all processes owned by mem­
bers of the group admin, provided the command is issued either by a
member of the group admin or by the user root. Finally, renice 10 -u fred
lowers the priority of all processes owned by user fred., provided fred
(or root) makes the request.

Lowering System Resource Utilization:
limit Revisited

You have already used limit to display the system resources available to
a process. You may also use limit to reduce them.

154 Monitoring and Utilizing System Re$ources

form:

example:

VMS
$ SET PROCESS[/qualifier(s}] ­

process name

UNIX
% limit resource value

% limit coredumpsize 0

7.4

The command limit coredumpsize 0 prevents the creation of a core dump
file in the advent of program failure. Users who do not intend to analyze
a memory dump might do well to set this value to 0, thereby preventing
large unwanted files from occupying disk space.

Summary

The following scenario uses some of the commands introduced in this
chapter. Fred wishes to compile and then run a large C program.

UNIX
example: %w

6:24pm up 8 days, 6:07, 6 users, load average: 5.23, 5.18, 5.42
User tty login@ idle JCPU PCPU what
ioyce tty14 4:09pm 4 4 rlogin cuhhmd
iack tty15 4:09pm 16 4 rlogin cuhhmd
iill tty27 5:46pm 12 1:12 1 more tmp.F014229
root ttyp5 2:31pm 12:07 23 -csh[sharp] (csh)
mary ttyp6 3:14pm 1:11 38 15 -csh[royer] (csh)
fred ttyp7 5:05pm 1 1 w
% cc -0 myprog.exe myprog.c >& myprog.out &
[1] 16335
% ps -aux I head
USER PIO %CPU %MEM SZ RSS n STAT TIME COMMANO
fred 14516 39.8 11.0 536 244 p7 R 0:01 cc myprog.c >& myprog.out &
ioyce 4857 24.8 16.0 236 224 14 R 47:52 177 Iusr/joyce/list.f
jock 14064 19.8 10.3 104 44 15 R 0:00 lusr/publiclxplor
jill 14093 16.8 20.2 28 16 27 R 61:39 lusr/publiclfft
fred 14517 0.6 0.2 56 28 p7 S 0:00 head
root 81 0.4 0.5 160 100 ? I 45:17 letc/routed
root 14468 0.4 0.3 104 44 pO I 0:12 rloglnd 803b6202.1022
root 87 0.3 0.4 128 80 ? S 19:31 letc/rwhod
fred 14065 0.2 0.4 260 64 p7 5 0:00 -csh[system] (clh)
% df lusr
Filesystem total kbytes kbytes percent
node kbytes uled free used Mounted on
Idev/raOg 41847 35060 2603 93% lusr
% at 2300
myprog.exe > output
(CTRL).O

Fred first issues the command w to determine the number of users and
the load on the system. The system is being heavily utilized, having

7.4 Summary 155

sustained a workload of greater than 5 over the past 15 minutes (that
is, five similar computers are necessary to process the workload effi­
ciently). Fred decides to compile and link his program now and, pro­
vided no errors occur, run the application later in the evening when the
system load will likely be less. The command cc -0 myprog.exe
myoprog.c >& myprog.out & performs the compilation in the back­
ground and directs terminal output and error messages to the file
myprog.out and the executable image to myprog.exe. See Section 8.3 for
a discussion of background processing. For now it is sufficient to under­
stand that multiple processes may be running simultaneously. Hence,
while the system performs the compilation, Fred determines the per­
centage of system resources utilized by the compilation with the com­
mand ps -aux I head, which forks a new process and displays the 10
processes currently consuming the most CPU time. Seeing that he is
utilizing 39.8% of the available CPU resources, Fred waits for the com­
pilation to finish. Then Fred issues the command df /usr, which shows
2.6 megabytes of disk space available on the file system on which he
wants to run his application. The disk space is sufficient for the output
of myprog.c, assuming that the amount of free disk space is not going to
change significantly between now and the time that myprog.c writes out­
put to the file system. The command at 2300 will start the application
at II :00 p.m. this evening, regardless of whether or not Fred is logged
in. The command myprog.exe > output will run the program, directing
output to the file output; no error messages will be saved. Fred termi­
nates input to the at command with (CTRL)-D. Fred then goes home,
having performed his good deed for the day.

156 Monitoring and Utilizing System Resources

ChapterB

Devices, Queues, and
BackgroundProces~ng

\1\11,0'5 on first?
Bud Abbott and lou Costello

This chapter covers the use of printers, magnetic tape drives,' and the
UNIX equivalent to batch processing. At first glance, these topics may
appear unrelated. What they have in common, however, is that each is
an example of multitasking. the ability to perform two or more tasks
simultaneously. VMS users perform most multitasking activities through
the use of queues and device allocation. One VMS user queues a job to
a printer and performs some other interactive task without having to
wait until the job is finished printing. Another VMS user reserves a mag­
netic tape drive for later use while performing an interactive task. A
third VMS user submits a CPU-intensive task to a batch queue and while
that is processing edits a file.

This chapter discusses the extent to which UNIX accommodates multi­
tasking features similar to those implemented in VMS, and then goes on
to describe features of multitasking unique to UNIX. In UNIX, the
printing of files (see Section 8.1) corresponds to VMS: both systems
queue files and print them in the order received. The availability of print­
ers to handle UNIX print requests is, of course, site-dependent. Section
8.1 also shows you how to determine the printers available on a UNIX
system and how you can use them.

Section 8.2 describes the commands available for reading and writing
magnetic tapes. As with printers, the availability of magnetic tape drives
and their characteristics are site-dependent. This section also shows you
how to determine the magnetic tape drives available on a system and
how you can use them for reading and writing files. Section 8.2 con­
cludes with a discussion of methods for exchanging files between UNIX
and VMS.

Section 8.2 reveals the shortcomings of UNIX in handling tape drive
requests. To be sure, UNIX offers the equivalents of the VMS BACKUP
and COPY commands for reading and writing magnetic tapes. However,
it seems that the designers of the early versions of UNIX assumed that
individual users would not need to read and write their own magnetic
tapes, and that only the system administrator or system operator would

1. Throughout this chapter, magnetic tape means any sequential tape medium, for
example, 'h-inch tape reels and V4-inch tape cartridges.

158 Devices, Queues, and Background Processing

8.1

have access to tape drives. The result of this assumption is that anyone
can access any mounted magnetic tape in UNIX. VMS, in contrast,
allocates a given tape drive to a single user process.

Section 8.3 introduces the concept of UNIX background and foreground
processing, which shows multitasking at its best. Unlike VMS, which
frequently utilizes batch queues, UNIX implementations rarely support
batch processing.2 UNIX achieves multitasking through the use of con­
current foreground and background processing. UNIX users do not sub­
mit tasks to a queue, the characteristics of which (for example, process
priority or CPU limit) may differ from a user's interactive process.
Instead, UNIX users run tasks as separate, detached background pro­
cesses with the same characteristics as the foreground process. The only
difference between foreground and background processes is that only
foreground processes may receive input from the keyboard. However,
you can easily interchange foreground and background processes, so
that you can easily make any process receive input from the keyboard.
This powerful feature of UNIX is unfamiliar to VMS users, who can
handle only one interactive process in the foreground. We shall explore
this UNIX alternative to batch processing as used by the C shell in some
detail.

Using Print Queues

Most versions of UNIX support a print spooler for queuing print jobs to
one or more printers. The print spooler software may differ from one
version of UNIX to another. However, the average user who needs
access only to the commands that use the spooler need not be perturbed:
the commands that queue files for printing are identical in all versions
of UNIX. You need to examine the print spooler software only if you
must determine the available printers and their characteristics. In the
case of a BSD print spooler, you can determine the printers available by
examining the file letc/printcap, a typical example of which appears
below.

UNIX
example: % cat /etc/printcap

Printer Definition File 4.2 BSD
Ip = decwriter III

2. If, by definition, spooling is regarded as batch processing, then printing and
transmitting files via UUCP (see Section 13.1) are also.

8. 1 Using Print Queues 159

talaris t1500 laser printer#"
definitions:
#~xrt0 ul!li9'Jted fi'e ~i%e ,
pl#66 pc.ge'length (lines)
pw#80 page'width (charaCters)'
,br# baud rate

,#,. ,Ip , d.vicename for Qutput ,
'. ' ifacc9.,"t~~g:textfilter lusr/tb~n/if
,# of o~tp"tfilter lusr/tb.in/of
sd spooldirectory'
If error logging filename

.;# af ,accounting file
#fc cl,ear flqgbits
xc clear'lo~al bits mode
fs like ichut set bits '
xs like xc but set bits
Ipllocalline printer:\ '

,.:a~!==I~s../adm/lpd-~cct:if =IUSf/lib/lpf:mx#p:\
:Ip=:= (Clev/..,of:s,d = l"sr/~PQol/'pd:lf= lusrladm/lpd-errs:\
:rf= lusr/lib/flpf:br#1200:ᢰ:\ .

'I :sb=default 'Printer: ' .
"Ip11Iaserll,aserpr.inter:\

, :afbl~sr/adm/ICiset:ms#:O:pl#66:pw#80\

:lp.~lcfev/tty12:sd==/usrlspooJ/laser:lf=/usrlspoolllaser/\
error:br#4800:fc= O:xc = O:fs =06320:xs ==00460:

, VMS
example: $ SHO\Y·QUEtlE/DEVICE/FULL " . .

Terminal queue TTA4~ on TTA4~ mounted 'fo~ PORTRAIT/BASE-PRIORITY.= 4
lCHAR= (O),lDEFAULT=(FLAG= ON1;,FORI\\.=.PORTRAIT).INOENABLE..-~
G~mC "'.

'IL~BRARY=L~03LO,w~rcaseI()WNE~=[SYS~M,P.OSTMAStE,R)
IPROTECTION=(S:E,O:D,G:RiW;YI) ISEPARATE:::-(RESET=(RESET))

Note the similar formats of letc/printcap and letcltermcap (see Section
3.1). If you need information on the variables used to define the char­
acteristics of each queue, display the on-line man page entry for print­
cap, consult your system administrator, or simply attempt to print a file
on each of the available printers. To do the latter, you must know the
name(s) your system uses to address each queue. The BSD version of
UNIX provides this information in the /etc/printcap file. 3

3. Other versions of UNIX, for example, some implementations of System V, support
a version of the BSD print spooler and therefore use an /etc/printcap file.

160 Devices, Queues, and Background Processing

8.r.r

The sample /etc/printcap file above begins with a number of comment
lines, identified as usual by # occurring as the first non-blank character
of a record. Definitions of two printers follow. The backslash (\) at the
end of a line indicates that the definition continues on the following line.
Colons (:> separate the fields within each definition. The first field in
each printer definition gives the printer's names; vertical bars (I) sepa­
rate each name. In the above example, the first printer is addressed as
either Ip or "local line printer," and the second printer is either Ip1,
laser, or "Iaser printer." If the printer name is a phrase rather than a
single word, you must surround the phrase with double quotes in all
commands so that the shell can distinguish the queue name from the
names of the files being printed. If the command line does not address
a specific printer, the system defaults to Ip (the same as IpO; compare
the VMS logical name SYS$PRINT). You may modify the definition of
the default printer with the environment variable PRINTER. The two
sample printer definitions described in the /etc/printcap file will be used
in examples of the print commands described below.

Printing files in UNIX differs from VMS in two major ways. First, by
default, VMS print queues sequence jobs on the basis of size, irrespec­
tive of the order received.4 UNIX, on the other hand, queues print jobs
in the order received. Second, unlike VMS, BSD UNIX does not sup­
port a generic queue. which places jobs in a single queue supporting
more than one printer, and then prints jobs on the first available printer.
UNIX print queuing is explicit: there is a separate queue for each
printer.

Submitting Print Jobs: Ipr

The commands Ipr (offline print, available in all versions of UNIX) and
print (print to the line printer, available in BSD only) queue any files
with a protection that renders them readable by the user for printing
(compare the VMS command PRINT).s The command print is a one-line
shell script (see Chapter 11) containing the command Ipr -p, also written
as pr file Ilpr. Both print and Ipr -p invoke the pr command to format a

4. The VMS system administrator may use the command INITIALIZE/QUEUE/
SCHEDULE = NOSIZE to override the default condition, thus printing jobs in the
order received.

5. The term "line printer" is a historical quirk; today it means any kind of printer,
including character and laser printers.

8.1.1 Submitting Print Jobs: Ipr 161

file prior to printing. One function of pr, discussed in Section 9.2.3,
places a header at the top of each page (compare the VMS command
PRINT/HEADER).

The following examples illustrate the major options of the Ipr command.
The following discussion omits site-dependent features, such as address­
ing different fonts on printers that support multiple fonts.

example: $ DEFINE SYS$PRINT TTA4:
$ PRINT FILEZ.

example:
example:

form:
example:
example:
example:
example:
example:

VMS
$ PRINT[/QUALIFIER(S)] file-spec[, •••]
$ PRINT FILE1.,FILE2.
$ PRINT/COPIES=3/QUEUE=LASER FILEA.
$ PRINT/DELETE FILEB.
$ PRINT/NOFLAG/QUEUE = LASER FILEC.
$ PRINT/HEADER FILED.

UNIX
% Ipr [option(s)) file(s)
% Ipr file1 file2
% Ipr -Plaser -#3 filea
% Ipr -r fileb
% Ipr -hPlaser filec
% Ipr -p filed # or print \

filed
% setenv PRINTER laser
% Ipr filez
% Ipr -s filee
% Ipr -f filef

The command Ipr file1 file2 queues two files to the default printer, and
Ipr -Plaser -#3 filea queues three copies (#3 option) of filea to the
printer named laser (Plaser option) defined in the /etc/printcap file. The
command Ipr -r fileb prints fileb on the default printer and then deletes
it (r option). Ipr -hPlaser filec queues filec to the printer named laser and
prints it without the banner page (h option). Ipr -p filed (or print filed)
prints a header at the top of each page, and setenv PRINTER laser estab­
lishes an environment variable that redefines the default system printer
Ip. All print requests that do not use the P option are sent to the laser
printer rather than Ip.

The six examples of Ipr discussed thus far are similar to variations of
the VMS PRINT command; the following two are peculiar to UNIX. You
can use Ipr -s filee to print large files. This command does not queue
filee in the spool directory (defined as /usr/spool/lpd in the /etc/print­
cap file for the default printer), since the spool directory could reside
on a file system with insufficient free disk space to accommodate it.
Rather, Ipr -s filee prints the file directly from the user's directory. If
you use Ipr -s to print a particular version of a file, and then later
unthinkingly make changes to that file, Ipr -s prints the latest version of
the file available at the time the file begins printing. In other words, the
printed file would incorporate any changes made to the file between the

762 Devices, Queues, and Background Processing

time you added the print job to the queue and the time the file actually
prints. If the file had been spooled, that is, copied to the spool directory,
the version printed would be the version that existed when you issued
the print command.

The command Ipr ·f filef prints filef using any FORTRAN carriage con­
trol characters present in column 1. Without the f option, UNIX ignores
these control characters and prints them like any other characters.

8.1.2 Examining Print Queues: Ipq

The Ipq (line printer queue) command lists the contents of a print queue;
that is, it displays a list of jobs that are printing or waiting to print (com­
pare the VMS command SHOW QUEUE). Like Ipr, Ipq assumes the
default queue unless you specify an alternative.

VMS UNIX
form: $ SHOW QUEUE[/QUALIFIER(S)) queue-name % Ipq [option(s)] [-Pprinter] [job #] [user]
example: $ SHOW QUEUE LASER % Ipq -Plaser

Terminal queue laser, on tta4 Rank Owner Job Files Total Size
Jobname Usemame Entry Blocks Status active root 70 .login 913 bytes

2nd root 71 Itmplreset 22 bytes
LOGIN.COM SYSTEM 70 3 Printing
RESET.OAT SYSTEM 71 3 Pending

example: % Ipq fred
example: % Ipq 71

The command Ipq -Plaser displays information about the queue laser.
By default, VMS displays information only about those jobs owned by
the user making the request.6 UNIX, on the other hand, displays all jobs.
As with the VMS PRINT command, each UNIX Ipr command constitutes
a single job irrespective of the number of files specified on the command
line. The command Ipq displays jobs in the order to be printed (rank).
For each job, Ipq displays the owner, the job number, the file(s) to be
printed, and the size of the job in bytes.

The command Ipq fred displays information only on those jobs owned
by user fred in the default print queue; Ipq 71 displays information about
job 71 in the default print queue.

6. Most VMS users invoke the SHOW QUEUE/ALL command to display all queued
jobs.

8.1.2 Examining Print Queues: Ipq 163

8.J.3 Removing Queued Print Jobs: Iprm

The command Iprm (line printer remove) deletes one or more of your
jobs from the print queue; you cannot remove other users' print jobs
(compare the VMS commands DELETE/ENTRY and STOP/ABORT). The
syntax for specifying an alternative print queue is consistent with that
of the Ipr and Ipq commands. The job being deleted may be printing or
pending.

VMS
form: $ DELETE/ENTRY=entry-number queue-name

example: $ DELETE/ENTRY= 71 LASER

example:

UNIX
% Iprm [-Pprinter] [iob #] \

(user]
% Iprm -Plaser 71
dfA071 cuhhca dequeued
cfA071 cuhhca dequeued
% Iprm-
dfA072cuhhca dequeued
cfA072cuhhca dequeued

8.2

The command Iprm -Plaser 71 removes job 71 from the laser print queue.
Unlike the VMS DELETE/ENTRY command, Iprm informs you of
dequeued jobs. The command Iprm -, which has no VMS equivalent,
removes from the default printer queue all jobs owned by the user mak­
ing the request. UNIX offers no mechanism to requeue ajob; you must
first delete the job from one queue and then submit it to another.

Using Tape Drives

It is common practice to use tape drives to make personal archives of
important files or to import and export data. UNIX provides several
commands for reading and writing magnetic tapes: tar (tape archiver) is
the most frequently used for creating personal archives and for import­
ing and exporting files between UNIX systems, since all UNIX systems
support it. The command dd (convert and copy a file) reads and writes
files in non-standard formats. The command mt, although not specifi­
cally used to read or write magnetic tape data, positions a magnetic tape,
writes an EOF (end-of-file) mark on a magnetic tape, or places a mag­
netic tape off-line. Finally, the system administrator uses the dump and
restore commands (not discussed here) to archive and retrieve whole file
systems. Note that restore is valid only for magnetic tapes written with
the dump command; it will not read a magnetic tape written with tar.
Like the VMS BACKUP command, tar and dd can also perform disk-to­
disk copying.

164 Devices, Queues, and Background Processing

UNIX handles tape drive requests clumsily. In VMS, you can determine
the availability of a tape drive, allocate the drive, and mount the mag­
netic tape for reading or writing; most versions of UNIX do not support
these features. Without the ability to allocate a tape drive, UNIX has no
mechanism to prevent a user from inadvertently (or purposefully) read­
ing from or writing to another user's tape while it is on the tape drive
and on-line! Not surprisingly, some versions of UNIX have been
enhanced to permit the allocation of a tape drive to a specific user.

To determine which tape drives are available on a UNIX system, a prin­
ciple introduced in Section 2.3 is brought into play. You use a special
device file to address devices. That is, tape drives are accessed as if they
were files. The address of each tape drive resides as a file entry in the
directory /dey. A single tape drive may have multiple entries, each entry
defining a different way to use the device: for example, to read or write
at different densities (compare the VMS command BACKUP/DENSITY)
or to specify whether or not to rewind the tape after each read or write
(compare the VMS command BACKUP/REWIND). Different versions of
UNIX use different names for these device files, but most names include
the string mt.

UNIX
example: % Is -I /dev/*mt*

crw-rw-rw- 1 root 36, 12 May 2 15:26 . Idev/nrmtOh
crw-rw-rw- 1 root 36, 4 May 2 15:26 Idev/nrmtOI
crw-rw-rw- 1 root 36, 8Jun 22 17:13 IdeY/rmtOh
crw-rw-rw- 1 root 36, oMay 2 15:26 Idev/rmtOl

This example, from the ULTRIX version of UNIX, defines two devices,
mtOI and mtOh. /deY/rmtOh is a raw character device (rmt): it processes
input and output as a stream of characters. /deY/nrmtOh buffers char­
acter input and output (nrmt). Since raw character devices are com­
monly used in the reading and writing of UNIX tapes, we use them for
the examples in this book. See Section 2.2 for more information about
raw character devices and their relation to disk devices. You can also
check the on-line man pages for each system.

Your system may have several device files, but there is no guarantee
that each of these files represents a device available to users. You should
therefore check with your system administrator for information on avail­
able tape drives. the device files with which to access them, and the

8.2 Using Tape Drives 765

8.2.1

default. To illustrate how to use different tape drives or different features
of the same tape drive at the command level, we will use the two char­
acter device files Idev/rmtOh and Idev/rmtOl from the example shown
above.

Each version of UNIX defines one of the available tape device files as
the default; in ULTRIX it is Idev/rmtOh. In the C shell, you can define
your own tape drive default with the TAPE environment variable, in the
same way that you can define a specific printer as the default with the
PRINTER environment variable. For example, the command setenv TAPE
Idev/rmtOl changes the default tape drive to rmtOI.

Archiving Files: tar

The UNIX tar command (compare the VMS BACKUP command) reads
and writes personal archive tapes and imports and exports files from
one UNIX processor to another. Note the following contrasts and sim­
ilarities:

1. Unlike VMS BACKUPNERIFY, tar does not support file verifica­
tion, which checks the files on the magnetic tape against the files
on the disk.

2. tar does not support writing to multiple magnetic tapes. In VMS,
BACKUP requests additional magnetic tapes be mounted as neces­
sary; the tar user, on the other hand, can archive only those files
that fit on a single magnetic tape. 7 If the target tape lacks the capac­
ity to accommodate all the files you want to transfer, you must
complete the copy operation by listing the contents of the first tape,
mounting a second tape, and issuing a new tar command specifying
the files that remain to be copied.

3. In VMS, BACKUP writes a directory hierarchy to a BACKUP SAVE­
SET either on disk or magnetic tape, which you may then treat as a
single file using VMS file manipulation commands. The command
tar also copies directory hierarchies to magnetic tape and disk for
treatment as a single file.

4. You can append files to an existing tar magnetic tape as a separate
tar file. You can use the mt command to skip tar files. In VMS,

7. Asingle tar tape can accommodate approximately 100 megabytes of data at 6250
bits per inch (bpi) and 30 megabytes at 1600 bpi.

766 Devices, Queues, and Background Processing

8.2. J. J

BACKUP appends files as a separate save-set, with a separate
header including the save-set name and the date it was written. The
VMS user then selects the save-set using the appropriate save-set
name.

5. Both VMS BACKUP and tar are recursive when saving or extracting
files if the appropriate file specification is given. That is, if the file
specification for tar includes a directory, the contents of that direc­
tory and any subdirectories will also be included in the save or
extract operation. In the simplest form, with no file specification,
tar will save all files from the current directory and any subdirecto­
ries in a save operation or extract all files on the tape in an extract
operation.

6. Both VMS BACKUP and UNIX tar support absolute and relative
pathnames for naming files. If you write files to tape using absolute
pathnames, the files must be copied from tape back to their original
directories. If you use a relative pathname to save files, the files
will be copied from tape to directories relative to the present work­
ing directory. As in the case of any command that writes files, you
must have write access to the directory which is to contain the
restored files.

7. If you restore a file to a directory on disk that already contains a
file of the same name, tar will overwrite the original file. The
behavior of the VMS BACKUP command depends on the qualifiers
you use. By default, if the file on the magnetic tape and the existing
file on disk are identical, BACKUP will notify you that the file
already exists and will not restore the file from magnetic tape.

UNIX users and system administrators who need to save whole file sys­
tems should use the command dump for saving files to magnetic tape
and the command restore for restoring them to disk. The system admin­
istrator (user root) using the dump command can update the file
letc/dumpdates, which keeps a record of when a file system was last
saved, either completely or in part. The header of a dump magnetic tape
contains a listing of the files on the tape, including the directory hier­
archy of the file system. The restore command is used, first to select
files or directories to be restored, and then to extract the selected files
from magnetic tape.

Writing Files to Tape

The following examples illustrate writing files to the beginning of a tape
and appending files to a tar tape.

8.2.1.1 Writing Files to Tape 167

VMS
, form: $ BACKUP[/QUALIFIER(S)] file-spee[, •••J-

tape_deviee:saveset
example: $ ALLOCATE MUAO: MYTAPE

$ MOUNT/FOREIGN MYTAPE
$ BACKUP/REWIND/LOG/RECORD -

DUA1:[FRED•••J-.-;- MUAO:ARCHIVE.BCK
example: $ BACKUP/REWIND/LIST= NL: - .

MUAO:ARCHIVE.BCK
$ BACKUP/NOREWIND/RECORD/ ­

SINCE= BACKUP -
/LOG DUA1:[FRED•••)-.-;.­
MUAO:ARCHIVE1.BCK

example: $ MOUNT/FOREIGN/DENSITY=6250 MTAO:
$ BACKUP/REWIND/DENSITY= 6250 •

FILE1.,FILE2. MTAO:EXPORT.BCK

UNIX
% tar [option(s)) file(s)

% tar -ev -fred

% tar -ruv -fred

% tar -cf /dev/rmtOh file1 file2

In the first example, tar -cv -fred copies all the files of user fred to the
beginning of the tape using the c option. The v option (verbose) informs
the user as each file is copied. The files are written to tape using the
default tape device.8

The second example, tar -ruv-fred, illustrates the later incremental save
of fred's files. This command appends the new files following any exist­
ing files on tape (r option); copies only files created or modified since
the tape was originally written, that is, different from the files already
on tape (u option); and once again informs the user as it copies files (v
option). Note the analogy to the VMS command BACKUP. which creates
a new save-set after you position the tape at the end of the first save-set
by listing the contents of the first save-set to the null device. Positioning
the tape should not be necessary if the INOREWIND qualifier (the
default) is used with BACKUP. However, because of problems with early
versions of BACKUP, some users feel more comfortable positioning the
tape first. VMS then selects files for copying to magnetic tape by looking
for the backup recording date in the header record of each disk file.

The last example illustrates the use of an alternative tape device. The
command tar -ef Idev/rmtOh file1 file2 writes two files. assumed to be in
the present working directory, to the beginning of a tape (c option).
Rather than using the default tape device file specification, this com-

8. Unlike most other UNIX commands, tar does not require a minus sign preceding
options. However, for consistency it is included here.

168 Devices, Queues, and Background Processing

8.2.J.2

mand uses an alternative. defined by the f /dev/rmtOh option (that is. f
followed by a tape device filename). This command could, for example.
write to a tape drive that supports the reading and writing of tapes at a
density of 6250 bpi, rather than 1600 bpi as indicated by the default tape
device file specification.

Listing Tape Contents

The t option lists the contents of tar tapes.

VMS
example: $ BACKUP/REWIND/LIST MUAO:SAVE.BCK

example: $ MOUNT/FOREIGN/DENSITY=6250 MTAO:
$ BACKUP/LIST= SYS$PRINT MTAO:EXPORT.BCK

UNIX
% tar-t
/usr/filel
doc/book.txt
.Imyprog.f
. .Ioneup.c

% tar -tf /dev/rmtOlI Ipr

8.2. J.3

In the first example, tar -t displays the files on the magnetic tape at the
terminal. The listing shows file specifications for four different types of
files: /usr/filel is an absolute file specification, doc/book.txt is a relative
file specification, .Imyprog.f indicates a file from the present working
directory, and . .Ioneup.c is a file in a directory one above the present
working directory. The implications of these different types of file spec­
ifications will become clear in the next section, which discusses restor­
ing files from tape. In the second example, tar -tf /dev/rmtOII Ipr pipes
the output of the tar display command to the default printer. The tape is
mounted on device /dev/rmtOI.

Extracting Files from Tape

The x option of tar restores (extracts) files from tape.

VMS
example: $ BACKUP/REWIND/LOG MUAO:SAVE.BCK •

example: $ BACKUP/REWIND/SELECT=MYPROG.FOR •
MUAO:SAVE.BCK co

UNIX
% tar-xv
x /usrlfilel
x .Idoc/book.txt
x .Imyprog.f
x ../oneup.c

% tar -xm .Imyprog.f

8.2.1.3 Extracting Files from Tape 169

8.2. J.4

In the first example, tar -xv without file arguments extracts (x option)
the contents of the whole tape, reporting on each file as it is restored (v
option). The file definition lusr/filel is absolute; filel is written specifi­
cally to lusr, overwriting any existing file with the same name. Only user
root could issue this command, for usually lusr may not be written to
by all users. The response .Idoe/book.txt indicates that the file book.txt
is being restored to a subdirectory doe of the present working directory.
This present working directory can be different from the one from which
the file was originally saved. The response • .Ioneup.e indicates that the
file oneup.e is being restored to a directory one level higher than the
present working directory. When restoring files with relative filenames,
you should be in the correct working directory before you issue a tar
restore command.

This example illustrates the flexibility of tar, which can use both abso­
lute and relative pathnames. The use of absolute pathnames, however,
is not recommended, particularly if you are going to export files to
another UNIX computer. You may not have write access to the direc­
tory into which you wish to restore the files (assuming it exists), and
even if you do, you may overwrite important files already in the direc­
tory.

In the second example, tar -xm .Imyprog.f extracts the single file
myprog.f. The m option updates the file's modification date to the time
the file was extracted. The default condition, like the VMS command
BACKUP, maintains the modification date that existed at the time the file
was originally saved.

Disk-fo-Disk Copying

You can use tar for disk-to-disk copying. It is particularly useful if you
wish to maintain directory hierarchies during the copy operation.

VMS UNIX
example: $ BACKUP [FRED.•.)-.-;- FRED.BCK - % tar -cvf Itmp/tar-save lusrl \

ISAVE-SET fred

VMS
example: $ BACKUP [FRED...)-.•;- [JOHN...)•.-;.

UNIX
% cd lusr/fred ; tar -ef - • I (cd lusr/john ; -tar -xf -)

170 Devices, Queues, and Background Processing

8.2.2

form:
example:

example:

example:

The command tar -cvf Itmp/tar-save lusr/fred saves all files from lusrl
fred down the directory hierarchy to the tar file Itmp/tar-save. You can
restore files later from this tar file or list them with the command tar -tf
Itmp/tar_save. Note that here the f option indicates a tar file on disk.
In the previous examples, the f option points to a device special file,
synonymous with a magnetic tape drive with a predefined set of char­
acteristics.

The command construct cd lusr/fred ; tar -ef - • I (cd lusr/iohn ; tar
-xf -) is more complex. First it changes the directory lusr/fred. Then,
rather than writing the files read by tar to magnetic tape, it pipes them
to another command sequence (-), which first changes the directory to
lusr/iohn and then extracts the files using the input from the previous
command in the pipe. File lusr/fred/filea thus becomes lusr/iohnl
filea, lusr/fred/doc/fileb becomes lusr/iohn/doc/fileb, and so on. An
alternative method of copying directory hierarchies, the cp -r command,
is discussed in Section 9.3. 1.

Special Tape Formatting: dd

The command tar writes files to magnetic tape in a specific format, use­
ful if you wish to read the magnetic tape on another UNIX processor,
because all UNIX processors support tar. If a non-UNIX processor will
read the tape, you can use dd to write the magnetic tape in a more
generic format. Conversely, you can use dd to read magnetic tapes writ­
ten on a non-UNIX processor. Section 8.2.4, which deals with the
exchange of files on magnetic tape between UNIX and VAX/VMS com­
puters, discusses dd in detail. Three general examples are given here.
Note that the format of the dd command is different from anything you
have encountered before.

UNIX
% dd [option(s) = value(s))
% dd if=myfile.dat of=/dev/rmtOh ibs=3120 cbs=80 conv=block
40 + 5 records in
10 + 1 records out
% dd if=/dev/rmtOh of=-fred/ibm.dat ibs=800 cbs=80 conv=ascii,lcase
40 + 5 records in
27 + 1 records out
% dd if=/dev/rmtOI of=/tmp/catfile ibs=3120 cbs=80 conv=ascii,lcase \

files=3
1340 + 385 records in
4276 + 911 records out

8.2.2 Special Tape Formatting: dd 777

8.2.3

The first example illustrates writing a file to magnetic tape with dd, and
the latter two examples illustrate reading files from magnetic tape.
The command dd if=myfile.dat of=/dev/rmtOh ibs=3120 cbs=80
conv= block writes the file myfile.dat to magnetic tape; if defines the
input file, of=/dev/rmtOh defines the output file, which is the device file
for the magnetic tape drive. Unlike tar, dd does not assume a default
for input or output. ibs defines the block size, and cbs defines the record
size.

The second example, dd if=/dev/rmtOh of=-fred/ibm.dat ibs=800
cbs = 80 cony = ascii,lcase, resembles the one given in the man page for
dd. The string conv=ascii,lcase converts EBCDIC to ASCII and maps
uppercase characters to lowercase.

Normally, you use dd to read or write a single file, but you can also
append multiple input files on magnetic tape to a single output file, as
shown in the third example. The command dd if=/dev/rmtOl of=/tmp/
catfile ibs=3120 cbs=80 conv=ascii,lcase files=3 reads the first three
files from magnetic tape and combines them into a single output file,
/tmp/catfile. As we shall see in the following section, the user can skip
any number of files before reading files.

Tape Manipulation: mt

The command mt positions a magnetic tape, writes EOF (end-of-fiIe)
marks on the tape, or rewinds a tape and places the tape drive off-line.
Il is often used in conjunction with dd to position the magnetic tape
while extracting files.

form:
example:
example:
example:

UNIX
% mt I..f tapename] command [count]
% mt-f/dev/rmtOl rewind
% mtfsf4
%mt offline

In the first example, mt -f /dev/rmtOl rewind completely rewinds the
magnetic tape on the tape drive specified by the special device file /dev/
rmtOI and leaves it on-line. In the second example, mt fsf 4 moves the
magnetic tape on the default tape drive forward four files from the CUf­
rent position. These fOUf files could be four tar files, each containing

172 Devices, Queues, and Background Processing

bsr [count]

bsf [count]

eof [count]

fsr [count]

8.2.4

one or more files. You should issue the command in the final example,
mt oRline. the moment you have finished with the magnetic tape. Once
rewound and placed off-line, the tape is inaccessible to other users
unless physically loaded and placed on-line again. Other useful mt com­
mand options are:

Write count end-of file marks at the current position

Move forward count records from the current
position

Move back count records from the current position

Move back count files (as defined by EOF marks)
from the current position

Each of these commands assumes that you know the current position of
the magnetic tape relative to the files, and the records it contains.

VMS-to-UNIX Tape Exchange

To determine the most straightforward method of exchanging files writ­
ten on magnetic tape between computers using VMS and computers
using UNIX, you should consult the system administrator of each com­
puter. The version of UNIX that the computer uses and any locally writ­
ten software will likely affect the choice of a method. In any event. it is
unlikely that you can read a VMS BACKUP tape on a UNIX computer
or that you can read a UNIX tar tape on a VMS computer, as the mag­
netic tape formats used by tar and BACKUP are not easily translated.
Nevertheless, the exchange of files written on magnetic tape is possible;
this section describes two common methods.

The first method uses the command Itf (labelled tape facility), unique to
the ULTRIX version of UNIX, for reading magnetic tapes written with
the VMS COPY command and for writing magnetic tapes readable by
COpy. The second method uses the dd command. available in all ver­
sions of UNIX, to read or write files with a fixed record length and block
size. Use of dd assumes that the VAX/VMS computer can read files with
fixed block and fixed record lengths from, or write them to. a magnetic
tape with no tape label. VMS does not provide a utility to accomplish
this task. 9 However, you can write a simple high-level language program
as detailed below.

9. The layered software DECShel1 can read tar tapes on a VAX/VMS system.

8.2.4 VMS-fo-UNIX Tape Exchange 173

form:
example:

example:

UNIX to VMS
% Itf [option(s)] file(s)
% Iff -dB IdeY/rmtOh 800 filel file2 file3
$ MOUNT/OENSITY= 62S0/BLOCKSIZE =800 MTAO: ULTRIX
$ COpy MTAO:•.••.•

VMS to UNIX
$ INITIALIZE MUAO: VAXVMS
$ MOUNT/BLOCKSIZE=800 MUAO: VAXVMS
$ COpy FILE1.DAT, FILE2.DAT MUAO:•.•
% Iff -xyBL 800 VAXVMS
x filel.dat
x file2.dat

The first example illustrates ULTRIX-to-VMS file exchange. The com­
mand Iff -dB /dev/rmtOI800 filel file2 file3 writes three files to the device
specified by the special device file /dev/rmtOI. The command sets the
tape block size to 800 (B 800 option) and writes the files at the beginning
of the tape (c option). Note the similarity to the tar syntax. The user
then moves the tape to the VAX/VMS computer and mounts it as a Files­
I I device (the standard VMS device structure) with a volume label of
ULTRIX (the default written by ItI) and a block size of 800. The VMS
COPY command copies the files from the tape.

The second example, Iff -xvBL 800 VAXVMS, illustrates VMS-to­
ULTRIX file exchange. A tape is written using the VMS COpy com­
mand. The tape is initialized with the volume label VAXVMS and
mounted with the block size of 800 bytes. With the files copied to tape.
the tape is moved to the ULTRIX computer and the files extracted (x
option). The default tape device file specification is used and a non­
default tape label is specified (L VAXVMS option). The command Iff
reports on each file as it is copied (v option).

The second method uses dd to read files written on a VAX/VMS com­
puter, or to write files to be read by a VAX/VMS computer. Both appli­
cations use a fixed-block length, a fixed-record length, and no tape label.

example:

example:

UNIX
% dd if=/dev/rmtOh of=foo ibs=800 cbs=80 \

cony = unblock
40 + 5 records in
27 + 1 records out
% dd if=/deY/rmtOh of=fool ibs=800 cbs=80 \

774 Devices, Queues, and Background Processing

cony = unblock files = 3
102 + 8 records in
65 + 3 records out

example: % dd if= fool of=/dey/rmtOh ibs=800 cbs=80 \
cony=block

27 + 1 records in
40 + 5 records out

The command dd if=/dey/rrntOh of=foo ibs=800 cbs=80 cony=
unblock copies the first fIle on tape to the fIle foo. The conversion
cony = unblock converts fixed to variable length records. Without this con­
version, UNIX will set the record length to the block size, which is depen­
dent on the disk partition (Section 2.3) and may well be 512 bytes. If the
tape is not rewound, you can repeat the command for additional fIles. As
the command dd if=/dey/rrntOh of=fool ibs=800 cbs=80 cony=unblock
files=3 in the second example illustrates, you can use the files option to
concatenate input files to form a single output file. In this example, the
command concatenates three files on tape to form a single output file, fool.
Finally, dd if=fool of=/dey/rrntOh ibs=800 cbs=80 cony= block writes
the file fool to the tape drive defined by /dey/rrntOh, with fixed length rec­
ords of 80 bytes (that is, as a card image) and 10 records per block. You
could read the file fool from tape with a simple program like the one shown
below, written in VAX FORTRAN:

VMS
example: $ TYPE TAPEREAD.FOR

C Template program to read fixed block and record magnetic tapes
C Assumes: BLOCKSIZE = 800 bytes; RECORDSIZE = 80 bytes; No Label
C
C

CHARACTER LlNES(10). 80
C Open Input Tape File

OPEN(UNIT= 1, NAME = 'TAPE', RECORDSIZE = 800, BLOCKSIZE = 800)
C Open Output Disk File

OPEN(UNIT= 2, NAME = 'F001.DAT', CARRIAGECONTROL = 'UST')
C Read a block of data from tape
5 READ(l,1O,END = 1000) (UNES(JJ),JJ = 1,10)
10 FORMAT (10)A80)
C Write a block of data to disk

WRITE(2,10) (UNES(JJ),JJ = 1,10)
C Go back for next tape block

GOT05
C File completely read so exit
1000 CLOSE (UNIT= 1)

CLOSE (UNIT=2)

8.2.4 VMS-fo-UNIX Tape Exchange 175

END
. $ ~LLQ-GAlIl"'YAOJ iJ'.Af!E. ,. _ _.'
. :. J$ Mq>~fity.,~~~K$IZE ~:'I"'J~TAP~

$ RUN·TAPEREAD·

8.3 Baekground Proeessing

The C shell (csh) and the Korn shell (ksh), but not the Bourne shell (sh),
support background processing. A background process is a separate
task, called a job. that may either be running or stopped. A user
may have one foreground job and several background jobs running
simultaneously, constituting a multitasking environment. A UNIX back­
ground job has all the features of a foreground job, with one exception:
only the foreground job can receive input from the terminal. This fact is
not a restriction, as we shall see, since foreground and background jobs
are easily interchangeable.

The analogy to background processing in VMS is the spawning of a sub­
process (see Section 2.1.1), which is less powerful. VMS makes up for
its deficiencies through the use of batch queues, which are not standard
in UNIX.

Background jobs in UNIX differ from jobs submitted to VMS batch
queues in two ways. First, UNIX background jobs can make the same
demands on system resources as any of a user's interactive processes.
They are not restricted by the same limitations imposed on a VMS batch
queue, such as lower priority, or a CPU time limit, although some imple­
mentations of the C shell reduce the priority of a background process
that has been running for a predefined period of time (see the command
nice in Section 7.3.3). Second, VMS batch jobs continue processing
when you logout. What happens to UNIX background jobs when you
log out depends on whether the background job is running or stopped.
If you attempt to log out with stopped background jobs, the system
responds with the message, "There are stopped jobs." You may attend
to these background jobs or issue the logout command again
(or (CTRL)-D, depending on ignoreeof), which terminates all stopped
background jobs. Background jobs that are running when you log out
continue processing. 10 If you log back in, the background job started in

10. This is true of BSD ond the C shell, but moy differ for other versions of UNIX.

176 Devices, Queues, and Background Processing

the previous terminal session no longer functions as a child process of
the current parent shell; that is, it is not a background job of the current
terminal session and cannot be manipulated or examined like other
background jobs. However, you can treat it like any other process you
own and can examine or modify it using the commands outlined in Chap­
ter 7. Thus, you can issue the command ps -aux I grep user to display
the characteristics of the process (see Section 9.4.5 for a discussion of
grep).

8.3.J Moving Command Execution to Background

To execute a command in the background, end the command with an
ampersand (&). You can also stop a command which is running in fore­
ground by pressing (CTRL)-Z. In both cases, you receive a new copy of
the shell with a unique process number for foreground processing. Note
that jobs stopped with (CTRL)-Z remain inactive until you either restart
them in the foreground or start them in the background (see Section
8.3.3).

The following examples, used again in subsequent sections, illustrate
the use of background processing to perform interactive tasks in paral­
lel. Compare VMS, which performs tasks sequentially, or in parallel
using one or more batch jobs to complement a single interactive process.

TIME COMMAND-csh[user] (csh)
0:04 find /-name myfilp -print> find.out
0:02 grep "hello againh lusrlfile1 > grep.out
0:01 ps
0:00

STAT
S
R
T
R

TT
p2
p2
p2
p2

UNIX
% command & .
% find / -name myfile -prhlt > find.out &
[1] 15781
% command
(CTRL)-Z ,
% grep "hello again" /usr/file1 > grep.out
(CTRL)-Z
Stopped
%ps

PID
15229
15781
15792
15804

form:

form:
example:

. exar:nple:

The first example, find / -name myfile -print> find.out & starts a back­
ground job. The system returns a job. number, identified by square
brackets, and a process number. In the second example, grep "hello

8.3. 1 Moving Command Execution to Background 177

8.3.2

again" lusr/file1 > grep.out was already running when stopped with (
(CTRL}-Z. In this case, the system does not report the process number
and the job number.

The ps command (see Section 7.1.3) issued at this point displays four
processes: the parent process csh, and three child processes, two for the
background jobs and one for the ps command itself. The state field
(STAT) indicates that the ps and find processes are running (R), the shell
process (csh) has been inactive for a few seconds (S), and the grep pro­
cess is stopped (n.

Note the use of the> metacharacter to redirect the output of the back­
ground process to a file. Without this redirection, the system outputs the
results of the background jobs to stdout, the terminal (compare the VMS
logical name SYS$OUTPUT). The simultaneous display of output from
foreground and background jobs can be confusing. By redirecting the
output to a file, you can easily review it at a later time. Another method
for preventing the simultaneous display of output from multiple jobs is
to issue the shell command stty tostop. With this command set, back­
ground jobs about to display output will stop processing until brought to
the foreground. Of course, this method is less efficient than the first.
inasmuch as it interrupts the processing of background jobs. The default
stty -tostop negates the effect of stty tostop.

If background processes are likely to generate error messages, you
should also redirect them from stderr, the terminal (compare the VMS
logical name SYS$ERROR), to the same file capturing stdout; >& directs
both standard output and error messages to the same file.

The system notifies you when a background job is completed. By
default, the system notifies you just before the shell prompt reappears,
that is, at the completion of a foreground command. C shell users
can receive immediate notification by setting notify. notify without argu­
ments toggles notification on and off. You can set notify in the .cshrc file
to have it be in effect for every process generated.

Examining Background Jobs

You can use the iobs shell command to examine the status of any back­
ground jobs started by the current parent shell.

718 Devices, Queues, and Background Processing

UNIX
example: % iobs

[1] - Running
[2] + Stopped

find 1 -name myfile -print> find.out
grep: "hello again" lusr/file1 > grep.out

The fields displayed by the iobs shell command are:

[1]

+1­
Running/Stopped

find / -name•.•.

Job number

Job status: current/next-to-current

State of each job

Command being executed

find 1 -name myfile -print> find.out
grep "hello again" lusrlfile1 > grep.out
cc lusr/progs/cale.c >& errlog
vi users.lis
more test.f

8.3.3

form: .
example:

form:
example:

form:

Note that "current" does not imply processing order but relates to the
order in which jobs are affected by the foreground process. The current
background job is the last one affected by the foreground process, and
the next-to-current background job is the one prior to the current back­
ground job that was affected by the foreground process.

The following section explains how to manipulate background jobs using
either the job number or the job status.

Manipulating Background Jobs

In the following example, we have added to the two background jobs
described in the previous example, a C language compilation (ee), a file
edit (vi), and the display of a file (more). We will use this so-called job
stack to illustrate the manipulation of background and foreground jobs.

UNIX
%iobs
[1] - Running
[2] + Stopped
[3] Running
[4] Stopped
[5] Stopped (tty output)
% %iob_number &
%%2&
[2] grep "hello again" lusr/file1 > grep.out
% % iob-llumber or fg iob_number
%%5
more test.f
% stop %iob_number

8.3.3 Manipulating Background Jobs 779

form:
exa~ple:

ex~mple: % stop.%3 . .'.
. [3]+ Stopped cc/usr/progs/calc.c >& errlog
.%killioJ).JIumber
%kill· $4:
[4]' Terminated' 'YiusersJis

The iobs command displays the current job stack. Note the additional
information displayed for job 5 ([5]): tty output indicates that the more
command was sending output to the terminal at the time it was stopped.

In the first example, %2 & changes the status of a background job ([2])
from stopped to running. The command bg 2 (background 2) has the
same effect. In the second example, %5 brings job 5 to the foreground;
fg 5 (foreground 5) has the same effect. The commands bg and fg issued
without arguments place the current job (+) in background or bring it
to foreground, respectively. In the third example, stop %3 changes the
status of the third background job from running to stopped.

Note that when you change the status of a background job as in each of
the above examples, that background job becomes the current job (+).

Note also that if you change directory after submitting a background job,
when you bring that job to foreground, the shell returns to the directory
from which you issued the command to submit the background job.
Once that job is completed, the directory to which you moved will once
again become the current directory. II

In the fourth example, kill %4 removes the fourth background job com­
pletely. Note the analogy to kill (see Section 7.3.1) for removing a pro­
cess according to its process identification number.

8.4 Batch Processing

The fact that you can simultaneously execute a number of interactive
tasks in UNIX but cannot do so easily in VMS reflects a basic difference
in the typical use of each operating system. The VMS user is usually
content with one interactive process and a number of batch jobs running
in queues configured to prevent the degradation of interactive response
time. The majority of UNIX versions, ULTRIX included, do not have
batch processing capability. Rather, the user can simultaneously run a

11. See the discussion of the at command in Section 7.3.2.

180 Devices, Queues, and Background Processing

8.5

foreground process and a number of background processes. A large
number of background processes should not adversely affect inter­
active response time, because in most versions of UNIX the shell auto­
matically lowers the priority of processes running in background for a
system defined period of time. The UNIX method disadvantages the
system administrator, who cannot easily exert the same level of control
over the jobs running on the system as is possible in VMS when defining
the many characteristics of a batch queue.

Summary

The following scenario illustrates the practical use of some of the com­
mands introduced in this chapter.

User Jack receives a tape written at 1600 bpi in ASCII format with no
tape label, a record size of 80 characters, and a block size of 3120 char­
acters. The magnetic tape contains two files that are versions of the
same program, one written in C and one in FORTRAN.

UNIX
example: % pwd

lusr/iack
% mkdir newprog ; cd newprog
% dd if=/dev/rmtOh of=prog.c ibs=3120 cbs=80 conv=unblock
40 + 5 records in '
27 + 1 records out
%mt rewind
%mt fsf 1
%dd if = Idev/rmtOh of=prog.f ibs=3120 cbs=80 conv=unblock
40 + 5 records in
27 + 1 records out
%ls
prog.c prog.f
%mtoHline
% Ipr prog.c prog.f
%Ipq
Rank Owner Job Files Total Size
1st root 70 .Iogin 913 bytes
2nd george 71 ItmplT1500_reset 22 bytes
3rd ioyce 72 lusr/ioyce/bigiob 4598376 bytes
4th iack 73 lusr/iacklmyprog 94738 bytes
%Iprm •
dfA73 cuhhca dequeued
cfA73 cuhhca dequeued
% Ipr .p fastprint prog.c prog.f
% Ipq .:p fastprint

8.5 Summary 787

cc -0 progc.exe prog.c >& c.err
f77 -0 progf.exe prog.f >& f.err

Rank Owner Job Files
Printing iack 831 lusr/iack/myprog
% cc -0 progc.exe prog.c > & c.err &
[1] 73682
% f77 -0 progf.exe prog.f > & f.err &
[2] 73688
% iobs
[1] - Running
[2] + Running

Total Size
94738 bytes

First, Jack makes a subdirectory to contain the programs. Then he
makes the subdirectory the present working directory with the command
sequence mkdir newprog ; cd newprog. Jack places the magnetic tape
on the drive and on-line, and reads the first file from the tape into the
file prog.c with the command dd if=/dey/rmtOh of=prog.c ibs=3120
cbs = 80 cony = unblock, which includes the block and record size spec­
ification of 3120 and 80 bytes respectively. Since Jack is not sure
whether the tape device file causes the magnetic tape to rewind after
each command, he uses the mt rewind command to reposition the tape
at the beginning, moves forward one file with the mt fsf 1 command, and
reads the second file from magnetic tape into the output file prog.f
with the command dd if=/dey/rmtOh of=prog.f ibs=3120 cbs=80
cony= unblock. Jack uses the Is command to verify that the two files
have been copied. He then rewinds the tape and places the drive otT-line
with the mt oRline command.

Jack decides to make a printed listing of the two programs. He uses Ipr
prog.c prog.f to send the two files to the default printer. Using the Ipq
command to display the contents of the default printer queue, Jack dis­
covers that a large job, /usr/ioyce/bigiob, is queued in front of his job.
While wishing that print queue ordering were based on job size rather
than time of submission, Jack decides to delete his own job and send it
to another print queue to achieve a faster turnaround. He removes the
print job from the default queue with Iprm -. Since Jack knows that this
is the only job he has queued, he uses this shorthand form of print job
deletion, which removes all of his print jobs from the queue. Jack queues
the job to a queue called fastprint with the command Ipr -P fastprint
prog.c prog.f. The command Ipq -P fastprint verifies that the job is now
printing in that queue.

While his file is printing, Jack compiles each program in background
with the commands cc -0 progc.exe prog.c >& c.err & for a C compila-

182 Devices, Queues, and Background Processing

tion and f77 -0 progf.exe prog.f >& f.err & for a FORTRAN compilation
(see Section 10.1). For both background jobs, Jack redirects standard
output and standard error to appropriate files. Finally, Jack verifies that
the two program compilations are running in background with the iobs
command.

8.5 Summary 183

Chapter 9

Ard/vDlll'ilCedJ fiUe MClJtnJagemell11ff

One never notices what has been done; one can only see what remains fo be
done.

Marie Curie

Chapter 4 introduced UNIX commands and options for file management
which a novice user might need in the first few terminal sessions. Now
we turn our attention to more complex and diverse commands and
options. Although used less frequently, they are important for the effi­
cient management of files and directories. Once you understand the
commands and options presented here, you will be ready to consult the
man pages to obtain further information. Table 4.1 and Table 4.2 sum­
marize most of the UNIX commands used in file management and the
subset discussed in this book, respectively. This chapter follows the
organization of Table 4.2: it divides commands into those that relate to
directories and those that relate to individual files, and further divides
them into commands that display directory and file contents, and those
that modify directories and files. Two of the features presented here are
unique to the C shell: the C shell variable cdpath and the creation of a
directory stack. both of which simplify movement between commonly
used directories.

Once you have read this chapter and experimented with the commands
discussed herein, you should be ready to perform any file management
task required by the average UNIX user. The UNIX features discussed
herein include:

Displaying files in new ways (Section 9.2)

Copying whole directory structures (Section 9.3.1)

• Simplifying access to files in different directories (Section 9.3.2)

Changing a file's protection (Section 9.4.1)

Changing the group ownership of files (Section 9.4.2)

• Comparing files (Section 9.4.3)
Finding and managing files in new ways (Section 9.4.4)

Searching the contents of files (Section 9.4.5)

Sorting file contents (Section 9.4.6)

• Updating a file's modification date (Section 9.4.7)

• Translating characters in a file (Section 9.4.8)
Counting file contents (Section 9.4.9)

• Linking files together (Section 9.4.10)

Advanced File Managemenf 185

9.1

9. r. r

Advanced Directory Display Commands

Chapter 4 covered most of the frequently used options of the Is com­
mand for displaying directory contents. Here we discuss some extended
features of Is.

Is Revisited

The command Is -F displays the name of the file followed by a flag
describing the file type. Is -F offers a condensed listing rather than the
long listing generated by Is ·1, when you only need information about file
type.

UNIX
example: % Is -F

myfile.txt program.f. tmp/
:doo@

An * indicates that the file is executable. This does not mean that the
file is an executable image (an .EXE file in VMS terminology), but rather
that the file has a file protection rendering it executable. For example,
a file that contains a list of shell commands may be readable, but the
shell program will not interpret the contents unless the file is also exe­
cutable. The default protection on a file created with UNIX does not
usually include execute access. You must explicitly make the file exe­
cutable with umask (see Section 3.2.1) or chmod (see Section 9.4.1). In
VMS, the default file protection usually renders the file executable by
the owner and other members of the group. / following the file name
indicates that the file is a pointer to a subdirectory. @ signifies a sym­
bolic link (see Section 9.4.10), and = signifies a socket (see Section
13.1).

The final four Is options that we will discuss refer not to the features of
a file to be displayed but rather to the display format, which the follow­
ing options modify.

VMS
example: $ OIR/COLUMN =1
example: $ DIR/PRINTER
example:
example:

UNIX
% Is-1
% Is -C Ilpr
% Is-t
% Is-r

186 Advanced File Management

is

t

if

q orQ

i/expr

:f
• (dot)

h

9.2

9.2.1

In the first example, Is -1 lists files at the terminal one per line rather
than in multiple columns. The default gives multiple columns for termi­
nal display and one file per line for output sent to any non-terminal
device, including the printer. In the second example, Is -c Ilpr illustrates
how to override the printer default. The C option forces multiple column
output, which is piped to the default printer. In the third example, Is -t
sorts the file listing by date last modified rather than alphabetically, dis­
playing the most recently modified file first. In the last example, Is -r
displays files in reverse alphabetical order.

Advanced File Display Commands

In Section 4.8, we introduced the commands cat (catenate and print) and
more, also called page (display a file a page at a time), for the display
of file contents. We will now discuss the extended features of the more
command and introduce the additional file display commands ad, head,
tail, and pro The command ad displays file contents in various formats
and is useful in searching for non-printable characters such as control
characters and tabs. The VMS command DUMP offers the same func­
tions. The commands head and tail, as their names suggest, display the
beginning and end of a file, respectively. The command pr does some
simple page formatting useful for files you wish to send to a printer.

more Revisited

In Section 4.8, we compared the UNIX more command to the VMS
command TYPE/PAGE, which displays the contents of a file one screen
(default 24 lines) at a time. Using more, you can advance the file one
screen by pressing (SPACEBAR), or one line by pressing (CR). Additional
responses include:

Scroll i lines

Return to top of file

Skip i screens and print a screen

Skip i lines and print a screen full of lines

Terminate file display

Search for the ith occurrence of the expression

Display the current file name and line number

Repeat the previous command

Display the above information on more options

9.2. 1 more Revisited 187

As you can see, more offers some of the functions of a line editor when
you use it in read only mode.

9.2.2 Dump a File: od

The UNIX command od (octal, decimal, hexadecimal, ASCII dump)
corresponds to the VMS DUMP command. You can use od to examine
the contents of files in various formats and to locate control and other
non-printable characters. The VMS DUMP command is most useful for
determining the format of magnetic tapes, whereas od is usually used
on disk files that may have been read from tape with the dd command
(see Section 8.2.2).

VMS
form: $ DUMP[QUALIFIER(S)) -

file-specL •.•]

example: $ DUMP FILE.

example: $ DUMP/OCTAL fiLE.

example: $ DUMP/HEXADECIMAL -
FILE.

UNIX
% od [option(s)] file
% cat filel

line 1
% od -a filel
0000000 ht lin e sp 1 nl nl
% od -0 filel
0000000 066011 067151 020145 005061 000012
% od -h filel
0000000 6c09 6e69 2065 Oa31 OOOa

These examples, od -a, od -0, and od -h, display the contents of filel,
in this case a single line consisting of a tab followed by the words '4line
I," in character, octal, and hexadecimal, respectively. Note that od -a
denotes spaces with sp, new lines with nl, and tabs with ht.

9.2.3 head, tail, and pr

The command head displays the beginning of a file, and tail displays the
end. Neither head nor tail has a VMS equivalent. The command pr for­
mats one or more files which, without redirection or piping, appear at
the terminal with page headers and page breaks. VMS achieves some
features of the pr command with the PRINT/HEADER command.

VMS
form: $ PRINT[/QUALIFIER(S)) file-spec[, ..•]

example:
example:

188 Advanced File Management

UNIX
% head [-count] file(s)
% tail [option(s)) file(s)
% pr [option(s)] file(s)
% head -30 /usr/test
% head •.txt» index

example:
example:
example: $ PRINT/HEADER FILE.DAT
example:
example:

%tail.30 IU5r/test
% tail ·r IU5r/test Ilpr
%.pr.file.dat
% pr -m ·filel file2
% pr.2 filel

9.3

9.3.1

In the first example, head ·30 lusr/test lists the first thirty lines of the
file. In the second example, head *.txt » index lists the first 10 lines
(default) of all the files ending in .txt and redirects the output to the file
index. Note the use of» redirection (compare », which appends the
result of each head operation to the file index rather than overwriting it.
The entry for each .txt file in index is delimited by a flag of the form
= = >filename< = =. In the third example, tail ·30 /usr/test displays the
last 30 lines of the file. tail -r /usr/test Ilpr reverses the order of the last
10 lines (default); that is. it displays the last line first, the second to last
line second, and so on. The command pipes the result to the default
printer.

The first example of printer formatting is the command pr file.dat with­
out options, which formats file.dat for printing using the default file for­
matting characteristics. The default sets each page to a length of 66
lines, and prints the file name, date, and page number on each page with
a five-line header and a five-line trailer. The command pr -m filel file2
prints filel and file2 side by side, which is useful for comparing file con­
tents. As with all forms of pr, this command truncates long lines rather
than wraps them, so files are more likely to remain synchronized when
displayed together. Finally, pr ·2 filel prints filel in two columns, useful
for saving paper when printing narrow files.

Advanced Diredory Management Commands

Sections 4.4. 4.5, and 4.6 introduced commands for creating, deleting,
and moving between directories. We now take the last step in directory
management: copying the contents of a whole directory structure. We
will also introduce two extensions of the C shell with which you can
simplify access to files located in a variety of different directories.

Copying Whole Directories: cp -r

Used with the r option, the cp (copy) command accepts directories as
arguments. You can use cp -r to graft one directory structure onto
another. This use of cp -r corresponds to using the VMS BACKUP com-

9.3.1 Copying Whole Directories: cp -r 189

mand to copy directory structures from disk to disk, rather than from
disk to a backup save-set on magnetic tape.

form:

example:

VMS
$ BACKUP[/QUALIFIER(S)] input- ­

specifier output-specifier
$ BACKUP [USER1 •••J­

[USER2.USER1 •••J

UNIX
% cp -r [option(s)] directoryl directory2

% cp -r luserl/user2

The result of the command in this example is illustrated below. Both
directory structures remain intact, and the command grafts the directory
userl and associated subdirectories onto /user2 so that userl becomes
an additional subdirectory of the directory user2.

luserl luser2

~~.nr
n~

luser2

I..J I
etc ~sr user1

~~~~

9.3.2

If you want to merge the contents of /userl and /user2 while maintaining
the lower-level directory structure-for example, changing userl/bin,
/userl/source, and /userl/tmp to /user2/bin, /user2/source, and /user2/
tmp respectively-you would use the tar command (see Section 8.2.1).

C Shell Extensions

The C shell offers extensions to the shell-independent command cd for
changing the current directory. These extensions are the shell variable
cdpath and the directory stack. The variable cdpath lets you move easily
to a commonly used directory irrespective of the current directory. In
other words, you can move from the present working directory to a
directory defined by cdpath without regard to the relative or absolute
pathname required to get to that directory. The VMS ASSIGN command
achieves a similar result, with one notable difference: ASSIGN estab­
lishes a pointer to a specific directory, whereas cdpath establishes a
pointer to the parent directory of any subdirectory that is used fre­
quently.

790 Advanced File Management



VMS
form: $ ASSIGN equivalence-nome[, •••] -

logical-name[:]
example: $ ASSIGN DUA2:[USER.TEST) TEST

$ SHOW DEFAULT
DUA3:[PROGRAMS.NEW]
$ SET DEFAULT TEST
$ SHOW DEFAULT
DUA2:[USER.TEST)

example: $ ASSIGN DUA2:[USER.DOC] DOC
$ ASSIGN DUA2:[USER.COM] COM

UNIX
% set cdpath = directory-spec

% set cdpath = /user/test
%pwd
/programs/new
% cd temp
%pwd
/user/test/temp
% set cdpath = (/user/doc /user/com)

In the first example, VMS ASSIGN establishes a synonym, TEST, for the
directory specification DUA2:[USER.TES1]. The UNIX command set
cdpath = /user/test establishes a pointer to all subdirectories of /user/
test. Hence, changing the directory to temp via a relative file definition
makes /user/test/temp the present working directory irrespective of the
current directory. The exception is the existence of /programs/new/
temp in which case that directory would have been preferentially made
the present working directory. The last example, set cdpath = (/user/
doc /user/com), illustrates giving multiple directory arguments to
cdpath by enclosing them in parentheses and separating them with a
blank.

A directory stack is a list of directory specifications retained by the C
shell for the current terminal session only. Directory specifications can
be made part of the stack and recalled as required. The present working
directory is always at the top of the directory stack. The following sce­
nario illustrates the use of a directory stack.

example:

form:
example:

form:

example:

example:

form:

UNIX
%pwd
/user2/programs/new
% pushd dir # Push /user2/programs/new onto the stack
% pushd /usr # and make /usr the current directory.
/usr /user2/programs/new
% dirs # Display the directory stack.
dir
% dirs
/usr /user2/programs/new
% pushd letc # Push /usr onto the stack and move to /etc
/etc /usr /user2/programs/new
% pushd + n # Rotate the stack n times

9.3.2 C Shell Extensions 191



example: % pushd +1 ,
lusr luser2lprograms/new letc

form: % popd #Discard the present working directory and move
to the next entry on the stack

example: % popd
luser2/programs/new letc

example: % pwd
luser2lprograms/new

example: % cd limp
example: % dirs

Itmp letc

The examples begin in the directory luser2/programs/new. The com­
mand pushd lusr places (pushes) the directory lusr onto the directory
stack, and makes it the present working directory. Note that the pushd
command displays the directory stack; other commands that manipulate
the stack also display it. Note also that pushd without arguments (not
shown) switches the top two entries of the stack. The C shell command
dirs interrogates the contents of the directory stack. Further use of the
pushd command (pushd letc) deepens the stack, and letc becomes the
present working directory. The command pushd +1 makes the first
directory stack entry the last, and the last the first: that is, it rotates the
stack +1 (one) time. The popd command discards the top of the direc­
tory stack (the present working directory), and makes the second entry
in the stack the new present working directory. Note the use of cd Itmp,
which changes the top entry in the stack to Itmp but does not change
other entries in the stack.

9.4

9.4.1

Advanced File Management Commands

Section 4.2 described the various characteristics of UNIX files. This
section discusses commands that change those characteristics, and
introduces other advanced file management commands (see Table 4.2)
that you may require from time to time.

Change File Protection: chmod

The UNIX command chmod, like the VMS SET PROTECTION com­
mand, changes the protection assigned to a file or directory. The com­
mand chmod provides two methods for specifying a change in file pro­
tection, as shown in the following examples.

192 Advanced File Management



VMS
form: $ SET PROTECTION = -

(CLASSIFICATION:LEVEL) file-spec[, •..J
example: $ SET PROTECT= (O:RWED,G:RE,W:RE) A.DAT

. example:
example:

example: $ SET PROTECT= (O:RWED,G,W) A.DAT

UNIX
% chmod mode file(s)

% chmod 755 a.dat
% chmod +x a.dat
% chmod o-w,g-w \

a.dat
% chmod 0 = rwx a.dat

The first example illustrates the absolute form for specifying a file's pro­
tection. A level of protection is specified using an octal representation
for each of the three types of user, owner, group, and world (in that
order), where

owner
rwx
421

Hence,

group
rwx
421

world
rwx
421

7=4+2+
6 = 4 + 2
5=4+1
4=4
3=2+1
2 = 2
1 = 1

Read, write, and execute
Read and write
Read and execute
Read only
Write and execute
Write only
Execute only

Note that specifying the levels of file protection with chmod is inverse
to the umask command, where 7 implies no access, 1 implies read and
write access but not execute access, and so on. The command chmod
755 a.dat changes the protection of the file a.dat to give the owner read,
write, and execute access; group members read and execute access; and
the world read and execute access.

The second and third examples use the symbolicfarm of the chmod com­
mand. The command chmod +x a.dat adds execute access to all types
of users; that is, to the owner, group members, and the world. The com­
mand chmod o-w,g-w a.dat removes write access from the world and
group members. Note that the symbolic forms of chmod use + (add)
and - (minus) to add and subtract levels of protection, but do not
change the protection for classes of users or protection levels not spe­
cifically addressed. That is, the second example gives execute access to

9.4. 1 Change File Protection: chmod 193



9.4.2

form:
example:

form:
example:

form:
form:
example:

the owner, group, and world, but does not change previously established
read and write levels of protection. The equals sign (=) assigns protec­
tions absolutely. The last example, chmod 0 = rwx a.dat, illustrates abso­
lute protection assignment by giving the owner read, write, and execute
access to the file a.dat and removing all access from the group or the
world.

For all uses of the chmod command, you must own the file for which
you request a change in protection. Only the superuser may change the
protection of files owned by other users.

Change Group Ownership: chgrp

The command chgrp changes the group ownership of a file. It corre­
sponds to changing the Access Control Entry (ACE) for a VMS file,
except that a VMS file can have multiple ACEs whereas a UNIX file
can belong to only one group. To change group ownership, the UNIX
user requesting the change must be the owner of the file and must be a
member of the group being assigned to the file.

VMS
$ SHOW ACL/[OBJECT] obiect-spec
$ SHOW ACL FILE1.
Obiect type: file, Obiect name: DUA3:[SYSTEM]FILE1.:l, on 29-FEB-1988-

11:14:00.46
(IDENTIFIER = PROJECTA,ACCESS = READ + WRITE + DELETE + CONTROL)
$ SET ACL[/QUALIFIER(S)) obiect-name
$ SET ACL FILE1.1ACL=(IDENTIFIER=ADMIN.ACCESS=READ+WRITE-

+ DELETE + CONTROL)

UNIX
% groups [username]
% chgrp [-f] group file(s)
% groups ; Is- Ig filel ; chgrp admin filel ; Is -Ig filel
admin proiecta
-rw-rw-r-- 2 system proiecta 15 Feb 25 13:58 filel
-rw-rw-r-- 2 system admin 15 Feb 25 13:58 filel

In the above example, the groups command indicates that the user (in
this instance system) belongs to the groups admin and proiecta. Is -Ig
filel indicates that user system owns filel and is therefore entitled to
change the group from proiecta to admin. chgrp admin filel changes the
group ownership of the file filel from proiecta to admin. which is veri­
fied by again issuing the command Is -Ig filel.

194 Advanced File Management



9.4.3 Compare File Contents: cmp and diH

The UNIX commands cmp and diff serve the same function as the VMS
command DIFFERENCE for reporting the differences between two files.
The command cmp reports only the first difference found between two
files; it is a useful quick-check to determine whether two files are iden­
tical. cmp is also useful for reporting the first difference found in two
non-ASCII files. The command diff reports all the differences between
two files or the contents of two directories. The VMS user familiar with
the simple output of the DIFFERENCE command may find the output of
the diff command difficult to interpret: DIFFERENCE displays the differ­
ences it finds, whereas diff displays the editing commands necessary to
make the two files identical to one another.

VMS
$ TYPE FILE1.,FILE2.

form: $ DIFFERENCE[/QUALIFIER(S)] FILE1,FILE2
example: $ DIFFERENCE/MATCH = 1 FILE1.,FILE2.

••••••••••••
File SYS$SYSROOT:[SYSMGR.SCRATCH)FILE1.:1

1 Maine
2 Montana

••••••
File SYS$SYSROOT:[SYSMGR.SCRATCH]FILE2.:1

1 Texas
2 Montana

•••!l'••••••••

••••••••••••
etc.

UNIX
% pr -m filel file2
Maine Texas
Montana Montana
Nebraska Illinois
Illinois Alabama
Iowa Maine
% cmp [option(s)) filel file2
% cmp filel file2
filel file2 differ: char 1 line 1

VMS
example: $ DIFFERENCE/PARALLEUMATCH =1 FILE1.,FILE2.

File SYS$SYSROOT:[SYSMGR••
SCRATCH]FILE1.;1

•••••••••••••••••••• 1 .
Maine
•••••••••••••••••••• 3 .
Nebraska
•••••••••••••••••••• 5 .
Iowa

I File SYSSSYSROOT:[SYSMGR••
SCRATCH]FILE2.;1

•••••••••••••••••••• 1 ••••••••••••••••••••
ITexas
•••••••••••••••••••• 3 ••••••••••••••••••••

I
• 4 .
IAlabama
IMaine

9.4.3 Compare File Contents: cmp and diff 195



Number of diKerence sections found: 3
Number of dlfference records found: 4
DIFFERENt~SIIGNORE= ()/MATCH = l/PARALLEL·

SYSSSYSROOT:[SYSMGR.SCRATCHIFILE1.;1.
SYS$SYSROOT:[SYSMGR.SCRATCHIFllE2.;1

form:
form:
example:

VMS
example:
example: .$ DIFFERENCE [DIR1 •••J-.-;. [DIR2•••)-.-;-

UNIX
% diH (option(s)] filel file2
% diH (option(s)] dirl dir2
% diff file1 file2
lel
<Maine

>Texas
3d2
Nebraska
5e4.5
<Iowa

>Alabama
>Maine
UNIX
% diH -e file1file2
% diff -r directoryl \

directory2

In the first example, cmp file1 file2 finds the first difference in the two
files in the first character of the first line.

The command diff filel file2 reports each difference it finds, accompa­
nied by up to four lines of information describing the changes required
to make file1 identical to file2.

Line I

Line 2

Line 3

Line 4

Consists of three fields:
1. The line number or range of line numbers in the first

file prior to the change
2. A character to describe the type of change: a =

append, c = change, d = delete.
3. The line or range of line numbers after the change

The line(s) from the first file, if appropriate. The line(s)
are identified by <.
A delimiter (---) between the items of the first and
second file, if appropriate.

The line(s) from the second file, if appropriate. The
line(s) are identified by >.

196 Advanced File Management



The output of the second UNIX example, diH filel file2, indicates the
following: Change Maine for Texas in filel, line I remains line I. Delete
line 3 (Nebraska) from filel so that line 3 becomes line 2. Change line 5
in filel from Iowa to two lines, Alabama and Maine, so that line 5
becomes lines 4 through 5.

The e option produces a slightly different form of output. For example,
diH -e filel file2 displays (not shown) the commands that you must give
to the ed editor to make filel identical to file2.

In the last example, diH -r directoryl directory2 compares whole direc­
tories rather than individual files, and reports either the existence of a
file in only one of the two directories (as determined by its name rather
than its contents) or the differences found in files with the same name.
The r (recursive) option compares all subdirectories of directoryl and
directory2.

9.4.4 lind Revisited

Section 4.7 introduced the find command for locating files anywhere in
the system, and illustrated its power to perform file management func­
tions on any files it finds. We now continue our discussion of find by
introducing more complex examples of finding files and executing com­
mands on them. Note that the syntax of the find command is different
from most other UNIX commands in that options consist of more than
one character. Note also that options are position-sensitive.

UNIX
% find pathname.Jist criterion action .

. % find I -name myfile ..exec fileO \;
luserl/bin/myfile: executable
lusrllocal/myfile: directory
letc/myfile: empty
luser3/myfile: ascii text
luser4/data/myfile: data
luser5/scripts/myfile: command~

example: $ DIRIMODIFIED/SINCE=-45-00 - % find luserl-mtime +45 -print
[USER1 •••J

VMS
$ DIRECTORY[/QUALIFIER(S)) ­

file-spec
example: . $ DIR/FULL[••••]MYFILE.

form:

% find luserl "'name '••f' -atime -45 -printexample:
UNIX

example: % find lusr/fred -name '•.f' -0 (-mtime -3 -atime -6) -exec rm 0 \:

9.4.4 find Revisifed 197



9.4.5

In the first example, find I -name myfile -exec file {} \; not only locates
all occurrences of files named myfile, but also displays information
about the file type. The construct -exec file {} \; executes the command
file on each file myfile found. In contrast to find, file is a simple com­
mand that accepts a filename as an argument (in this example passed
from find), examines the contents of that file, and returns the file type.
The example shows some typical file types returned by the file com­
mand.

In the second example, find luserl -mtime +45 -print displays all files
down the directory hierarchy from luserl that were last modified
(mtime) more than (+) 45 days ago. In the third example, find luserl ­
name '*.f' -atime -45 -print displays all files that end in .f (FORTRAN
source files) and have been accessed (atime) in the last (-) 45 days. Note
that modified implies written 10, whereas accessed implies read from.
VMS has mechanisms to determine whether a file was modified (writ­
ten) or created, but not when it was read.

The final example, find lusr/fred -name '*.f' -0 (-mtime -3 -atime -6) ­
exec rm {} \i, introduces 0, which functions as an OR Boolean operator:
it deletes each file found from lusrlfred down the directory hierarchy
that ends in .f and that was modified in the last three days or was
accessed in the last six.

Search FIle Contents: grep

The UNIX command grep (compare the VMS command SEARCH)
searches one or more files for a string of characters. Although grep has
some useful features including the use of regular expressions (illustrated
in the following examples), it lacks two features commonly used with
the VMS SEARCH command: the /wINDOW qualifier for displaying rec­
ords before and after the search string, and Boolean operators, available
with the IMATCH qualifier.

As with every other UNIX command, the search string when using grep
is case sensitive by default. This is not true of the VMS SEARCH com­
mand unless you use the IEXACT qualifier. A further inconvenience to a
VMS user familiar with SEARCH is the syntax of the UNIX grep com­
mand, in which the search string precedes the file specification, which
is the reverse of the syntax used by VMS SEARCH.

798 Advanced File Management



VMS
form: $ SEARCH[/QUALIFIER(S)] file_-

spec string
example: $ SEARCH/EXACT FILE1. "HELLO ­

THERE"
hello there, what a nice day

example: $ SEARCH FILE•.TEXT "HELLO ­
THERE"

UNIX
% grep [option(s)] string file..spec

% grep 'hello there' file1

hello there, what a nice day
% grep -i 'hello there' file•.txt

•••••••••••••••••••••••••••••• file1.txt:Helio there, what a nice day
SYS$SYSROOT:[SYSMGR.SCRATCH]FILE1.TXTi1 file2.txt:Helio there, what a horrible day
Hello there, what a nice day
••••••••••••••••••••••••••••••

S
S

104
o00:00:00.16
000:00:00.73

% grep -v goodbye file3
% vi 'grep -I "include" -.f'
% grep mode$ file4
% grep "A the" fileS
% Is -I Igrep "Ad"

% grep -n Goodbye file3

12:Goodbye and have a nice day
% grep -c Goodbye file3
1

BuHered I/O count:
Direct I/O count:
Page faults:
Elapsed CPU time:
Elapsed time:

1
2
28
1
1

SYS$SYSROOT:[SYSMGR.SCRATCH]FILE2.TXTi1
Hello there, what a horrible day
example: $ SEARCH/NUMBERS FILE3.-

GOODBYE
12 Goodbye and have a nice day

example: $ SEARCH/STATISTICS FILE3.-
GOODBYE

Files searched:
Records searched:
Characters searched:
Records matched:
Lines printed:
example:
example:
example:
example:

In the first example, grep 'hello there' filel searches filel for all records
that contain the string hello there and lists them. The single quotes,
although not always necessary, delimit the string and ensure that meta­
characters are taken literally rather than used to signify a special func­
tion when using the C shell.

In the second example, grep -i 'hello there' file•.txt uses the i option to
make the command case insensitive. VMS users may feel more com­
fortable defining an alias such that grep -i becomes the default. This
command lists records that match the search string, preceded by the
name of the file containing the string.

In the third example, grep -n Goodbye file3 searches for all records in
file3 that contain the string Goodbye. The n option displays the line

9.4.5 Search File Contents: grep 199



numbers of records containing this string. In this example, the command
found a single occurrence of the string on line 12.

In the fourth example, grep -c Goodbye file3 once again searches for all
records in file3 that contain the string Goodbye. In this case, the c
option displays the number of times the string was found. As you can
see, this command supplies less statistical information resulting from a
search than does the VMS command SEARCH/STATISTICS.

In the fifth example, grep -v goodbye file3 displays all lines in file3
except those that contain the string goodbye (not shown). The sixth
example, vi 'grep -I "include" ".f'. uses grep to extract filenames for
further processing. The 1option returns only the filename of any file *.f
that contains the word include. The vi editor then edits any files found.
The final three examples illustrate simple regular expressions: grep
modeS file4 displays those lines of file4 that end with the string mode;
grep "Athe" fileS displays records of fileS containing the at the begin­
ning of the line and Is -Ilgrep "Ad" lists those entries in a directory that
are directory pointer files.

9.4.6 Sort and Merge Files: sort

The sort command sorts the contents of individual files or merges the
contents of two or more sorted files. There are two major differences in
the way VMS and UNIX sort files. First, VMS accepts more data types
as sort keys. Second, you can define UNIX sort keys using any prede­
fined delimiter, whereas in VMS you must define fields by fixed posi­
tions within the record.

VMS
form: $ SORT[/QUALIFIER(S)] -

INPUT_ FILE - OUTPUT_FILE
example: $ SORT FILE1. SYS$OUTPUT
example: $ MERGE FILE1. FILE2. ­

SYS$OUTPUT
example: $ SORT FILE1. FILE.OUT
example: $ SORT/COLLATING_ ­

SEQUENCE= -
MULTINATIONAL FILE1. l.TMP

$ SORT/COLLATING_ ­
SEQUENCE= ­
MULTINATIONAL FILE 2. 2.TMP

200 Advanced File Management

UNIX
% sort [option(s)) [+posl] [-pos2] file(s)

% sort filel
% sort filel file2

% sort -0 file.out -n filel



example:
example:

$MERGE 1.TMP 2.TMP­
SYS$OUTPUT % sort -f file1 file2

% sort + 2 -4 file1
% sort -t: +3" -5 +2" -4 /etc/passwd

9.4.7

The first example, sort filel, illustrates the simplest sort possible, using
default settings for all characteristics: the sort key is the whole record
for characters and the first digit for numbers, the ordering priority is the
same as for listing files with the Is command (numbers first, uppercase
before lowercase), and the sorted list is displayed at the terminal. In the
second example, sort filel file2 functions the same way but merges the
sorted lists for each file into a single display. In the third example, sort
-0 file.out -n filel uses the 0 option to direct output to the file file.out. I

The n option sorts in strict ascending numeric order, using the whole
number and not just the first digit. In the fourth example, sort -f filel
file2 sorts, then merges, the contents of filel and file2 disregarding the
case of the alphabetic characters (f option). The fifth example, sort +2
-4 filel, illustrates the use of an alternative sort key to the default. In
this instance, the sort key begins after (+) the second field (2) and ends
( - ) before the fourth field (4), that is, it uses the third field. By default,
blanks delimit sort fields, that is, each word in a sentence constitutes a
field. You can use other field separators, as in the sixth example, where
sort -t: +3n -5 +2n -4 /etc/passwd sorts records in the password file.
As we saw in Section 4.2, fields in the password file are separated by a
colon. The t option indicates that the separator is a colon rather than a
blank. The sixth example specifies two sort fields: +3n -5, the numeric
field (n) beginning after the third field and ending before the fifth, namely
the fourth or group field; and +2n -4, the numeric field (n) beginning
after the second field and ending before the fourth, namely the third
field, which represents the numeric identifier unique to each user.

Create or Update a File: touch

The command touch updates the modification date of a file by reading a
character from the file and writing it back. In other words, touch edits
the file without actually changing it. If the file you specify does not exist,
touch will create it unless you have used the c option. touch has special

1. The 0 option for defining an output file is common to a number of commands.

9.4.7 Create or Update a File: touch 201



significance when used with the make utility, as we will show in Section
10.2.

Creating empty files with touch can be very useful when experimenting
with UNIX commands like those described in this chapter. touch always
creates files with the same attributes because, as we saw in Section 2.3,
having only one type of file structure is indigenous to the operating sys­
tem. All UNIX files have the same attributes: a string of bytes with the
block size defined by a given partition. Therefore, UNIX has no use for
a File Definition Language (FDL) like that found in VMS.

VMS
form: $ CREATE[/QUALIFIER(S)] -

file- specL •.•]
example: $ CREATE TEMP.

(CTRL)-Z
example:

UNIX
% touch [option(s)) file(s)

% touch temp

% touch -c temp

9.4.8 Translate Charaders: tr

The tr command provides a simple mechanism for translating specified
characters in a file into different characters without using an editor to
perform a global edit. In the examples below, tr translates uppercase
characters into lowercase or vice versa.

UNIX
form: % tr [option(s)] string1 [string2]
example: % tr A-Z a-z < file1 > file2
example: % tr -c A-Za-z '\012' < file1 > file2

In the first example, tr A-Z a-z < file1 > file2 translates the alphabetic
characters A through Z from file1 to their lowercase counterparts and
writes output to file2. Characters already lowercase in filel are copied
unchanged to file2. In the second, more complex, example (taken from
the tr man page), tr -c A-Za-z '\012' < filel > file2 performs the same
translation, but outputs each word in filel on a separate line in file2. The
C option indicates that each string of characters in filel will be followed
with the delimited string 012, the octal notation for new line. As we have
seen, the \, acting as a metacharacter, prevents immediate interpretation

202 Advanced File Management



9.4.9

9.4. JO

by the C shell; instead, the command itself performs the interpretation.
In sum, the command takes each word (anything containing characters
from A through Z or a through z) from filel, follows each word with a
new line, and outputs each word to file2.

Word Count: we

We introduced we in Section 2.5 to illustrate how different UNIX com­
mands interpret wildcards. By default, we lists the number of lines,
words, and characters in a file.

UNIX
form: % we [option(s)] file(s)
example: % we ehapter3

1723 7281 56388 ehapter3

In this example, we ehapter3 indicates that the file ehapter3 (an early
draft of Chapter 3 in this book) consists of 1723 lines, 7281 words, and
56388 characters.

Linking Files: In

A link provides a mechanism for assigning different names to the same
file. The link does not create a separate copy of the file but a directory
entry, providing different pathways to the same information. Since the
same file can have multiple links, different users could for example read
from a single file, each using a different file name but accessing the same
information.

This use of links raises issues concerning maintenance of a file's integ­
rity, for example, when two processes from the same or different users
write to the file simultaneously. This issue relates to the broad subject
of file locking, which VMS and UNIX handle differently. In VMS, a file
by default is open to only one process at a time. This safeguard is usually
not a limitation to an authorized user, since VMS users usually do not
generate many processes at anyone time. In UNIX, on the other hand,
many different processes are likely to be running simultaneously, and
files therefore must be accessible to a variety of processes. This situa­
tion increases the likelihood that a file could be corrupted inadvertently,
and makes recovery of a corrupted file more difficult.

9.4.10 Linking Files: In 203



There are two types of links: a hard link (default) and a soft or symbolic
link. A hard link maintains a directory entry which renders the link file
indistinguishable from the original file but with a different name. If the
original file were deleted, the link file would still exist and could be
accessed in the same way as the original file. When a user makes a hard
link to a file, the link count (see Section 2.3) for that file increases by
one. A symbolic link simply provides a path to the original file. If the
original file were deleted, the link would still exist but there would be
no way of accessing the original file. A symbolic link does not increase
the link count. Links are most often used to associate data files to be
read or written by programs, as we shall see in Section 10.6. Hard links
may not span file systems nor may they refer to directories, whereas
symbolic links may do both.

A symbolic link in UNIX assumes the same role as the VMS ASSIGN
command, with two notable exceptions. First, the ASSIGN command
without qualifiers places an entry in the process name table, and
removes it when the process terminates. Symbolic links, on the other
hand, remain in effect until the link file is actually removed, that is,
longer than a single terminal session. Second, VMS ASSIGN is often
used with the qualifier /USELMODE, which maintains the assignment.
not for the duration of the terminal session but only as long as it takes
to run a single executable image. UNIX links have no equivalent fea­
ture. VMS does not have the equivalent of a hard link.

VMS
form: $AS$.lGN.. '..

[tG)UALIFIER(S)) ­
equivalence-name -
L···) -
lC'gh::dl..nan'le[~J

example:

ex~mple':" $A$$I.GN·FI~~DAT­
'-FOO

$SHOWLOGICAL ..
,Foe

204 Advanced File Management

UNIX
% In-[..s] namel(nome2]

-% Is-I
-rw..rw..,-- 1 system 15 Feb 25 13:58 fUel.dat
% In filel.dot foo
%15 -I

.total 1
-rw-rw-r- 2 system 15 Feb 2513:58 fUel.dot
-r:w-rw-,-- 2 system 15 Feb 25 13:58 foo
% In ..sfile2.dot foo

%ls ..1
to.toll
..rw..riI",,-- 1 sy:st~m 15 Feb 25 13:58 file2.dot



9.5

"FOO" = "FILE2.DAT" Irwxrwxrwx 1 system 25 Feb 25 14:27 foo-> \
(LNM$PROCESS_ - file2.dat
TABLE)

In the first example, In filel.dat faa establishes a hard link between
file l.dat and faa, so that writing to or reading from faa is identical to
writing to or reading from filel.dat. As both files reside in the same
directory, a simple long listing of the directory contents reveals two iden­
tical files. Compare the link count of two with the count of one for the
non-linked file. The first link is always to the directory in which the file
resides.

In the second example, In -s file2.dat faa establishes a symbolic link
between file2.dat and faa. Note the different format of the display pro­
vided by Is -I when the link is symbolic; the first column under faa con­
tains I to indicate a symbolic link, and displays the actual link at the end
of the record as fool -> filel.

Summary

The following series of examples summarizes the commands introduced
in this chapter.

UNIX
example: % grep '/bin/csh' letc/passwd I sort I awk -F: '{print $1}' > eusers
example: % cp -r Igeorge/applic1 lusr/publiclapplic1

% chmod 775/usr/publiclapplic1/.
% chgrp admin lusr/public/applic1/.

example: % find lusr/public -name "·.f" -exec head -1 {} \; I sort> index
% grep -i fft index

The first example comes from a UN IX user who has grasped the con­
cept of complex command constructs built from relatively simple com­
ponents. It pipes together three commands and then redirects the output
to produce a file, eusers, which lists all users who invoke the C shell by
default at login time. This file could, for example, serve as a mailing list
to relate information of importance only to C shell users. The construct
grep '/bin/csh' /etc/passwd searches the password file for all records
that define the C shell as the default. Recall that the file passwd contains
one record for each user on the system, and that /bin/csh defines the

9.5 Summary 205



default shell as the C shell. The command passes these records to sort,
which sorts on the whole record since it has no arguments. Since the
login name is the first entry of the record, sort sorts the records alpha­
betically by login name. The command then passes the sorted list to awk
-F: '{print SlY, which uses a colon as the field separator, as does the
letc/passwd file. The awk utility prints the first field of each record,
which is redirected to the file Cusers.

In the second example, user George copies a set of files residing in the
directory Igeorge/applicl to a public area where all users can access
them. George can do this since he is the owner of the directory lusrl
public. If any subdirectories of Igeorge/applicl existed, they would
become subdirectories of lusr/public/applicl. George then changes the
protection of all files so the owner and the group have full access and
all users can read and execute the files. Lastly, George changes the
group ownership of the files so that members of the group admin can
read, write, and execute the files.

In the last example, the find command locates all files in the public direc­
tories lusr/public that end in *.f, that is, FORTRAN source files. The
command pipes the first line of each file it finds through sort and redi­
rects the sorted output to the file index. If all programs use the first
record to declare the program name, then index contains a sorted list of
all the programs on the system regardless of their file names. The com­
mand grep -i Ht index searches this file index for all occurrences of the
string Ht, irrespective of the case of the string (i option).

206 Advanced File Management



m
-=-.:. _..

:.......:..
:r:~

...::-:~:I



]he wave of the future is coming and there is no stopping if.
Anne Morrow Lindbergh

This chapter introduces UNIX commands and utilities for compiling,
debugging, profiling, and managing programs written in high-level lan­
guages. All the examples presented in this chapter use either the C or
FORTRAN languages, although most features discussed here apply to
any language for which a UNIX compiler is available. Readers who do
not intend to use programming languages in the UNIX environment may
skip this chapter.

Most versions of UNIX come with compilers for high-level languages.
With VMS, you must purchase compilers as separate products. BSD is
distributed with FORTRAN, C, and PASCAL; other compilers are
available in the public domain. The advantages of both the BSD and
public domain compilers are their low price-BSD itself is inexpensive
to license-and their ability to run on any computer supporting BSD
UNIX. Unfortunately, they do not use features of the hardware specific
to each vendor. Consequently, they run compiled code slowly compared
with native compilers that support such features as floating point accel­
erators, multiple processors, and vector processing units. The VAX
FORTRAN and C compilers, available for both the VMS and ULTRIX
operating systems, are examples of compilers taking advantage of spe­
cific hardware, in this case the VAX architecture. Readers who wish to
determine what compilers are available on their systems should consult
their system administrator or refer to on-line help using the command
man -k compile.

In addition to specialized compilers, vendors may also offer proprietary
software tools to assist in program development, such as language-sen­
sitive editors, debuggers, and profilers. Irrespective of any additional
proprietary software development tools all versions of UNIX possess
programming tools, tools for which UNIX is well known. Table 10.1
summarizes these tools, a few of which we discuss in this chapter. I

First we describe the steps involved in producing executable code using
both the FORTRAN and C compilers. Next, we introduce the make util­
ity (compare the VMS layered product VAX DEC/MMS), a powerful
UNIX tool for managing large programs that you need to compile repet-

1. Some of these tools are available to the VMS user as the layered product VNXset.

208 Programming



Table 10.1 Summary of UNIX Programming Tools

UNIX Tool'

adb
ar

as
awk

be

eb

ee

ctags

dbx
de
error

f77
fpr
fsplit

geore

gprof

indent

Id
lex

lint

liszt
In
lorder

make

mkstr

nm

pc
pdx

pmerge
prof

px

pxp

pxref

VMS Equivalent

/DEBUG
LIBRARIAN
MACRO

/DEBUG
DECalc2

/L1ST

FORTRAN2

PRINT

ANALYZE/PROCESS
PCA2

LINK

ASSIGN

VAX DEC/MMS2

LINK/SYMBOL _TABLE

PASCAL2
/DEBUG

Function

General purpose debugging program
Archive and library maintainer

Assembler language compiler
Pattern matching and action program

Arbitrary precision mathematical language

C program beautifier
C language compiler

Locates functions within a C or FORTRAN
program

Source level debugger

Arbitrary precision desk calculator
Analyzes and disperses in source compiler error

messages

FORTRAN-77 language compiler
Prints files with FORTRAN carriage control

Splits a multiroutine FORTRAN program into
individual files

Gets core image

Profiles program execution
Indents and formats C programs
Loader (linker)

Generates programs used in lexical analysis of
text

C program verifier

Franz LISP compiler
Links two files for reading or writing
Finds ordering relationship for an object library

Maintains groups of programs
Creates a C error message file
Prints the name list (symbol table) of an object

file
PASCAL compiler
PASCAL debugger
PASCAL file merger
Profiles program execution
PASCAL interpreter
PASCAL execution profiler
PASCAL cross-reference program

Programming 209



Table 10.1 Summary of UNIX Programming Tools (continued)

UNIX Tool'

ranlib
sees
size
strings
strip
symorder
time

xstr
yaee

VMS Equivalent

LIBRARIAN
VAX DEC/CMS2

SHOW PROCESS ­
IACCOUNTING

Function

Randomizes libraries
Source code control system
Displays size of an object file
Displays ASCII strings in a binary file
Removes symbols and relocation bits
Rearranges name list
Determines system, user, and elapsed times

Extracts strings from C programs
Compiler writing assistant

1. These tools are taken from the ULTRIX version of UNIX. The available tools will
vary slightly for different versions.
2. Available to the VMS user as a layered product.

itively. We do not discuss sees (source code control system; compare the
VMS layered product VAX DEC/CMS), a utility that extends the capa­
bilities of make. sees maintains the revision history and other features
of a large program, typically coded by more than one programmer. To
find more information about this utility, refer to the reading list in
Appendix D.

Next, we discuss the debugging of programs. You can find errors in syn­
tax using the error command (compare the ILiST qualifier of any VMS
compiler), and errors in program logic using the interactive debugger
dbx (compare the VMS qualifier IDEBUG). We then turn to improving
program efficiency with the profiling commands prof and gprof, which
indicate where and how the code uses CPU time (compare the VMS
layered product VAX Performance and Coverage Analyzer).

Finally, we discuss the command ar (archive), the UNIX analogy to the
VMS LIBRARIAN for maintaining groups of files. Of particular interest
here is the use of or for the creation and maintenance of object libraries
to be included when linking.

JO. J Compiling and Linking

You invoke the BSD FORTRAN and C compilers with the commands
f77 and ee, respectively. Used without options (and assuming that no
errors are found), these commands perform all the steps shown in Figure

210 Programming



UNIX VMS

Source Files
-of or -oc Include Files

Source Files
-.FORor-.C Include Files

Symbolic Assembly Files
-.5

Warnings
and

Errors

Warnings
and

Errors

~r ~,.

Compiler SYS$ERROR ..
(FORTRAN or CC) ..

~,

Linker (LINK)
SYS$ERROR .....

~,

Warnings
and

Errors

Other Object
Objects File Libraries

-.0 -.0 -.a

-~--..&.----1--. stderr Warnings
and

Errors

- ......-------....stderr Warnings
Language Preprocessor and

Errors

----....---....stderr Warnings
and

Errors

Executable File
(a.out by default)

Executable Image File
-.EXE

Figure 1001 Steps in Program Compilation

10.1 to produce an executable image. Unlike VMS, you do not have to
explicitly link the object code.

The filenames used in UNIX compilations traditionally carry file exten­
sions. However, unlike VMS, UNIX uses such names only for file rec­
ognition purposes (the extensions are not assumed when used with com­
mands). For example, in VMS, you can use the command CC MYPROG
or CC MYPROG.C to compile the program contained in the file
MYPROGoC; in UNIX, you must use the command cc myprog.c, for cc
myprog will produce a "file not found" error.

10.1 Compiling and Linking 211



The first step in producing an executable image invokes a preprocessor,
which ignores all lines except those beginning with #. Refer to docu­
mentation on the compiler (for example, man f77 or man cc) for a dis­
cussion of preprocessor instructions. Preprocessor instructions include:

• #include "filename", useful for including additional user-written
code shared by a number of programs, or for including a system
routine (usually kept in subdirectories of /usr/sys)

• #define for replacing one string of characters with another

The second step in creating an executable image invokes the compiler
proper to produce a symbolic assembly file with the file extension .5.

The third step passes the symbolic assembly file to the assembler to
produce an object file with an extension of.o (compare the VMS exten­
sion .OBJ). Note that BSD symbolic assembly code is independent of
the language compiler that produced it; that is, the BSD assembler can
interpret assembly code no matter what language compiler generated it.
This feature has a number of benefits, including simplifying the writing
of a new compiler and making applications more portable. If the system
successfully produces an object file by default it deletes the symbolic
assembly file (.5). The system then passes the object code and any other
objects, either files or library entries, to the loader (linker in VMS),
which produces an executable image retaining the object code (.0).

Unless you call for an alternative file specification, the file containing
the executable image is always named a.out (compare the VMS file
extension .EXE). This last step is arcane and unimaginative. It may also
be counterproductive if the novice UNIX user inadvertently overwrites
an a.out file created during an earlier compilation of a different program.

The following examples illustrate the steps involved in producing an
executable image and introduce options that you can use to retain inter­
mediate files or produce executable files with more imaginative names.
All the options presented in these examples apply to both the FOR­
TRAN and C compilers.

form:
form:
example:

example:

VMS
$ FORTRAN[/QUALIFIER(S)] source-file(s)
$ CC[/QUALIFIER(S)] source-file(s)
$ FORTRAN MYPROG.FOR
$ LINK MYPROG.OBJ
$ RUN MYPROG.EXE
$ FORTRAN MYPROG.C
$ LINK/EXECUTABLE = NEWNAME.EXE -

UNIX
% 177 [option(s)] source-file(s)
% cc [option(s)) source-file(s)
% f77 myprog.f
% chmod 755 a.out
% a.out

% cc -0 newname.exe myproc.c

212 Programming



MYPROG.OBJ
example: $ FORTRAN MYPROG.FOR
example:
example: $ FORTRAN MYPROG.FOR,[PUBLlC]*.FOR

$ LINK MYPROG,[PUBLlC]*.OBJ
example: $ CC MYPROG.C

$ LINK MYPROG, ­
5Y5$L1BRARY:PLOTLlB.OLB/LIB

% m -c myprog.f
% cc -5 myprog.c
% f77 -l/usr/public myprog.f

% cc myprog.c -Iplotlib

70.2

In the first example, f77 myprog.f without options produces an execut­
able file a.out, to which the command chmod 755 a.out (see Section
9.4.1) gives an executable file protection. The file is executed simply by
giving the name of the file. In the second example, cc -0 newname.exe
myprog.c also produces an executable file, but with the name new­
name.exe (0 option). You should use this option and a unique filename
in all compilations to prevent inadvertently overwriting executable files
from prior program compilations.

In the third example, f77 -c myprog.f suppresses the loading stage (c
option), producing an object file myprog.o. In the fourth example, cc -5
myprog.c generates symbolic language code in the file myprog.s but
stops there (5 option). In the fifth example, f77 -I/usr/public myprog.f
uses the I option to include an additional directory in the search path
that the preprocessor uses to resolve references to #include files; usu­
ally, the preprocessor searches only /usr/sys. In the last example, cc
myprog -Iplotlib resolves references to calls to subroutines contained in
the object code library plotlib.a (see Section 10.5). Note that this is a
rare example where the file type (.a) is assumed. By default, the pre­
processor searches the directories /lib, /usr/lib, and usr/local/lib in
sequence to resolve references (compare the VMS logical name
5YS$LlBRARY).

Subsequent sections introduce additional options to the f77 and cc com­
mands.

Simplifying Compilation: make

The UNIX utility make manages a group of files in some way dependent
on each other. We will discuss the most common use of make: to main­
tain large programs. You can also, for example, use make to maintain a
large document set, where changes in one document require correspond­
ing changes in related documents.

10.2 Simplifying Compilation: make 213



In simple terms, make "remembers" which part of a program must be
recompiled after you make a change. VMS users usually maintain a sin­
gle large source file which they must recompile after making even a small
change to a single routine or function. This programming practice is
wasteful of both user time and system time. UNIX users, on the other
hand, can maintain a number of smaller files, use make to "remember"
which files they changed since the creation of the last executable image,
and recompile only those parts of the program that they changed.2

Instructions to make are stored in a makefile. make searches for make­
files with the names makefile or Makefile. Before looking at the rules
that govern a makefile, let us consider the sequence of events that take
place when porting a VMS high-level language program to the UNIX
environment. (Section 10.6 gives a specific example of porting a FOR­
TRAN program from VMS to UNIX.)

1. Split the source code into smaller interdependent parts using the
UNIX command fsplit, which splits FORTRAN source files into
subroutines and functions

2. Write a makefile to manage the programs

3. Run make to create an up-to-date executable file

4. Run the program

You would repeat the last two steps each time you make a change to the
program, recompiling only those subroutines' and functions containing
the code that you changed. If you wish to recompile all files, use the
touch command (see Section 9.4.7) to update each file's modification
date so that make includes it.

Some terms used in describing a makefile appear below. Note that we
will not use all of these terms in the examples that follow.

commands

dependencies

targets

Tell make what action to take on a target file, for
example, compilation

Relationships between files, for example, the
executable image is dependent on a number of
object files, which in turn are dependent on a
number of source code files

Files produced as a result of commands and
dependencies, for example, an executable image

2. The VMS layered product VAX DEC/MMS, part of the VNXset product, provides a
VAX/VMS system with the capabilities of make.

214 Programming



flags

macros

suffixes

prefixes

comments

Strings of command options, for example, options
to the f77 or cc commands

Shorthand means of specifying dependencies or
commands; the macro name is made equal to a
string once, and then used in subsequent
references to the string

Filename extensions that infer certain actions to
be performed

List of directories to be searched

Any information preceded by # and ending with a
new line.

These terms follow syntax rules, namely:

(TAB)

(TAB)-

=
@

a(b)

a((b))

sl.s2

\

Designates the beginning of a command line following a
dependency line

Designates the beginning of a command line following a
dependency line. If an error is found in this line make
will not stop.

Assigns a name to a macro

At the beginning of a command line, causes the command
to execute silently, that is, without displaying output on
the screen

Separates a list of targets from a list of dependent files

Indicates that filename b is stored in the archive (library)
a

Designates b as an entry point in a file stored in the
archive a

Designates a second-level dependency, that is, files
whose names end in s2 depend on files whose names end
in s1. An example is .c.o: files that have the file type 0

depend on files that have the file type c

Continues a command line or variable assignment onto
the next line

The following example illustrates a simple makefile to print a long direc­
tory listing (Is -I) of the files residing in the directory fusrffred. The list­
ing resides in the file list.out, which is recreated only if the contents of
the directory have changed since the last invocation of make.

10.2 Simplifying Compilation: make 215



UNIX
example: % cat makefile

# Macro definitions:
FILES = /usr/fred
# Target definitions:
Print: Iist.out

Ipr list.out
# Second level dependency:
Iist.out: $(FILES)

Is -I $(FILES) > list.out
% make-n
Is -I /usr/fred > list.out
Ipr list.out
% make
Is -I /usr/fred > list.out
Ipr list.out
% make
Ipr list.out

FILES = /usrlfred defines a macro for a second-level dependency.
Dependencies are nested; that is, a first-level dependency is first depen­
dent of a second-level dependency. The command line Is -I $(FILES) >
list.out substitutes the value for the macro. The parentheses are obliga­
tory. Compare this substitution to a C shell substitution (see Section
11.2), where $FILES would be valid. Since it follows a dependency, the
Is command line is indented by a tab, indicating that the listing depends
on the value associated with the macro. Similarly, the target Print
depends on list.out. The Ipr command, indented by a tab, follows the
first-level dependency, Ipr prints the directory listing on the default
printer. make -n displays the commands that will be executed without
actually executing them (n option), verifying that the makefile will func­
tion correctly. The first invocation of make creates the file list.out, a long
listing of the files that reside in the directory /usr/fred, and sends it to
the default printer. The second invocation illustrates the power of make:
make determines that the contents of the directory /usr/fred have not
changed since the listing file was made, and therefore prints the listing
without recreating the file list.out.

Let us complete our discussion of make by introducing a predefined
symbol. Predefined symbols, which begin with a period, appear in
uppercase, and end with a colon, are names which signify a special func­
tion, as the following examples illustrate:

216 Programming



.DEFAULT:

.IGNORE:

.PRECIOUS:

.PREFIXES:

.SILENT:

.SUFFIXES:

Designates that a target depends on a file for which
there are no specific commands or built-in rules to
describe the dependency
Prevents make from halting when a command
returns a non-zero status (see Section 11.8.7 for a
discussion of error handling)

Prevents the target from being deleted if make is
interrupted

List of directories to be searched to resolve a
reference to a file

Executes commands without printing them to the
screen

List of filename suffixes that have defined
prerequisites in make, for example, .c, .f, .s, .0,

and .out

The following example illustrates a makefile for compiling a group of C
programs. This example and the makefile described in Section 10.6 may
be used as templates for your own applications.

UNIX
example: % cat Makefile

# macro definitions
CSOURCE = a.c b.c c.c d.c
OBJECTS = a.o b.o c.o d.o
CFLAGS = -c -w -a
# target definitions:
prog.out: $(OBJECTS)

cc -0 $@ $(OBJECTS)
clean: $(OBJECTS)

rm -f $(OBJECTS)
touch: $(CSOURCE)

touch $(CSOURCE)
# second level dependencies
.c.o: $(CSOURCE)

cc $(CFLAGS) $1
# definitions
.SUFFIXES: .out .0 .c
.PRECIOUS: prog.out

example: % make
cc -c -w -a a.c
cc -c -w -a b.c
cc -c -w -a c.c
cc -c -w -a d.c
cc -0 prog.out a.o b.o c.o d.o

10.2 Simplifying Compilafion: make 217



JO.3

example: % ex b.c

: wq
% make
cc ·c ·w -a b.c
cc -0 prog.out a.o b.o c.o d.o

example: % make clean
nn ·f a.o b.o c.o d.o

example: % make touch
touch a.c b.c c.c d.c

The makefile maintains four files containing C source code which it com­
piles and loads into the executable image file prog.out. In the first exam­
ple, make compiles each of the four files and creates an executable
image. The second example invokes make after modifying one of the
source code files using the ex editor. make recompiles only the source
code file b.c, which has been modified, and uses the loader to create a
new executable image file. The third example, make clean, illustrates
the concept of alternative entry points: if the executable image file is
current, it removes all object (.0) files; if the executable image is not
current, it generates a current executable image and then removes all
object files.

The last example, make touch, illustrates an important use of make: to
force compilation even if a source file is up-to-date. The command touch
updates the modification date of the file, thus causing make to recompile
the source. Here, touch is invoked from the makefile using an alternative
entry point. The source files could just have easily been touched with
the UNIX command touch *.c, for example.

Debugging Programs: error and dbx

Table 10.1 lists several UNIX tools for debugging programs. Here, we
consider two source-level debugging tools, the error command and the
utility dbx. If you require an in-depth discussion of debugging tools,
refer to the reading list in Appendix D.

The command error inserts error messages generated by incorrect syn­
tax into the source code file. Compare the ILiST qualifier used by the
VMS compilers, which provide a separate file (.LlS) locating syntax
errors and displaying other useful information. The error lines appear in
the source code file as comments, and therefore do not affect subsequent

218 Programming



compilations. Since numerous messages make the source code difficult
to read, you should make a copy of the source code before invoking

error or perform a global edit and delete when the source code is com­
pletely debugged. For example, the sed command sed rC###/d
myprog.f removes all comments generated by error from the FORTRAN
source code file myprog.f (see Section 5.3).

form:

form:
example:

VMS'
$ FORTRAN/LIST source-file

$, CC/LiST source-file
$ TYPE MYPROG.FOR
READ(5,.)A
WRITE(6,.]A '
END
$ FORTRAN/LIST MYPROG.FOR
%FORT·F·MISSDEL Missing operator or delimiter

[write(6,.]) in module MYPROG$MAIN at line 3

$" TYPE MYPROG.LlS

0001 READ(5,.)A

0002 WRITE(6,.]A
%FORT-F-MISSDEL. Missing operator or ­

delimiter

UNIX
% f77 source-file 1&\

error
% cc source-file 1& error
% cat myprog.f
read(5,.)a
write(6,.]a
end
% f77 myprog.f 1& error
1 fire contains errors \

"inyprog.f" (1)
File "myprog.f" has 1 \

error.
1 of these errors can be \

inserted into the file.
You touched file(s): \

"myprog.f"
% cat myprog.f
read(5,.)a
C###2 [f77] Error on \

line 2 of myprog.f \
Syntax Error at \
"]"%%%

write(6,.]a

The command f77 myprog.f 1& error performs a FORTRAN compilation
of myprog.f, piping error messages to the error command, which inserts
them at the appropriate places in the source code. Each error begins
with C### followed by the line number, interpreted as a comment in
later compilations (compare /.###.•••/ for C programs).

dbx is a BSD source-level interactive debugger for the C, FORTRAN,
and PASCAL languages (compare the VMS utility DEBUG). Table 10.2
compares VMS and UNIX interactive debugger commands. Users of the
VMS debugger may be disappointed with dbx. Although the VMS and

10.3 Debugging Programs: error and dbx 279



Table 10.2 Subset of dbx Commands

Printing Variables and Expressions
dump [proc] SHOW SYMBOL

UNIX dbx

Execution and Tracing
run [args]
rerun [orgs]
trace [trace] [if)

stop [if. at. in]

status

delete

cont
step
next

call [proc]

print
whatis

where

Source File Access
Ipatternl

edit [file]
file [file]

func [function]

220 Programming

VMS DEBUG

GO [address-expression]
GO [address-expression]
SET TRACE/QUALIFIER(S) -

[WHEN.. DO]

SET BREAKlQUALIFIER(S) -
(WHEN•• DO]

SHOW BREAKlQUALIFIER(S)
SHOW TRACE/QUALIFIER(S)
CANCEL BREAKlQUALIFIER(S)
CANCEL TRACE/QUALIFIER(S)
GO
STEP

EXAMINE/QUALIFIER(S)
SHOW TYPE

SHOW MODULE

SEARCH/QUALIFIER(S)

EDIT [MODULE _NAME\LlNE]
SET SOURCE

SET MODULE

Function

Begins executing
Restarts execution
Traces execution of a line, a

procedure, change to a
variable, or print ,
expression when line is
reached

Stops execution at some
point

Displays active trace and
stop points

Removes active trace and
stop points

Continues execution
Executes one source line
Steps to next line, executing

calls
Executes object code

associated with procedure

Displays names and values of
variables in procedure

Displays variables
Displays declaration of

variable, for example, real
Prints active procedure and

function

Searches forward or
backward for pattern

Invokes editor
Changes current source file

(or returns name if no
argument is given)

Changes current function (or
returns current function if
no arguments are given)



Table 10.2 Subset of dbx Commands (continued)

UNIX dbx VMS DEBUG Function

list [line1,line2] TYPE line1:Iine 2 Displays lines of text (default
10)

use [dirs] Searches directory for source
files

Aliases and Variables
alias [chars string] DEFINE/QUALIFIER(S) Defines chars to be an alias

for string
set var [= expr] DEPOSIT/QUALIFIER(S) Defines value for a variable
unalias [chars] UNDEFINE/QUALIFIER Removes an alias
unset var Removes a variable

Miscellaneous
help HELP On-line help
quit EXIT Quits the debugger
sh [command] SPAWN Passes command to shell for

execution
source [file] @file-spec Reads commands from a file

UNIX debuggers offer similar functionality, albeit using a different syn­
tax, the UNIX debugger is not as sophisticated. For example, in UNIX,
without a windowing interface, you cannot use a split screen to simul­
taneously display the values of variables and the section of code that
generated them.

The following example illustrates a simple use of the debugger: the user
invokes the debugger, lists source code, sets a break point, examines a
variable, changes the variable at the break point, and runs the program.

form:
VMS
$ FORTRAN/DEBUG/NOOPT ­

[source-file]
$ LINK/DEBUG [obiect-file]
$ RUN [executable-file]

VAX I)EBUG Version V4.7-1
%DEBUG-I-INITIAL, language is ­

FORTRAN.
module set to ­

FCONVERT$MAIN

UNIX
% f77 -g [source-file]

. %dbx·
dbx version 2.0·of 4/2/87 22:10.
Type 'help' for help.

enter obiect file name (default is \
'a.out'):

10.3 Debugging Programs: error and dbx 221



DBG>
example: $ ASSIGN HKL.lN FOR005

$ R FCONVERT.EXE
DBG> TYPE 1:7
1 integer h
2 dimension fii(10)
3 nref = 0
4 read (5,2) nlf
5 write (6,2) nsf
6 10 read (5,2,end=100)h,k,l,fo,ligf,·

stol, (fii(i),i = 1,nsf)
7 write (6,2) h,k,l,fo,sigf,stol, •

(fiUi),i = 1.nsf)
DBG> SET BREAK %LlNE 4

DBG> SHOW BREAK
breakpoint at -

FCONVERT$MAIN\%LlNE 4
DBG> GO
break at FCONVERT$MAIN\%LlNE 4
4: read (5,2) nsf
DBG>· EXAMINE NREF
FCONVERT$MAIN\NREF 0
DBG> DEPOSIT NREF = 4
DBG> EXAMINE NREF
FCONVERT$MAIN\NREF 4
DBG> GO

reading symbolic information •••
(dbx)

% dbx fconvert.exe
(dbx) list 1,7
1 integer h
2 dimension fii(10)
3 nref =0
4 read (5,2) nsf
5 write (6,2) nsf
6 10 read (5,2,end = 100)h,k,l,fo,sigf,stol, \

(fii(i),i = 1,nsf)
7 write (6,2) h,k,l,fo,sigf,(fii(i),i=1.nsf)

(dbx) stop at 4
(1] stop at 4
(dbx) status
(1] stop at 4

(dbx) run < hkl.in
(1] stopped in MAIN at line 4
4 read (5,2) nsf
(dbx) print nref
o
(dbx) assign nref = 4
(dbx) print nref
4
(dbx) cont

dbx invokes the debugger (compare the VMS command RUN/DEBUG)
provided you previously compiled and loaded the source code with the
g option, which produces additional symbol table information needed
by the debugger. The debugger uses the file a.out if you specify no other
executable image. The debugger issues the (dbx) prompt (compare the
VMS prompt DBG» when ready to receive commands. list 1,7 (com­
pare the VMS DEBUG command TYPE 1:7) lists the first seven lines of
the source file. stop at 4 (compare the VMS DEBUG command SET
BREAK %LiNE 4) sets a break point at line 4. run < hkl.in (compare the
VMS DEBUG command GO) executes the program. Rather than accept
input from the keyboard (stdin), the debugger reads input from the file
hkl.in. When execution stops at the breakpoint, print nref displays the
value of the variable nref (compare the VMS DEBUG command EXAM­
INE NREF). assign nref = 4 changes this value (compare the VMS
DEBUG command DEPOSIT NREF =4), and the cont command contin­
ues program execution (compare the VMS DEBUG command GO).

222 Programming



10.4 Profiling: prof and gprof

Profiling enables a programmer to determine how a program is spending
its execution time. Profiling is useful if the programmer wishes to
improve the efficiency of program code. Different versions of UNIX
provide different utilities that work in different ways. The optional lay­
ered product VAX Performance and Coverage Analyzer (PCA) provides
profiles for VMS users.

We will discuss two utilities available to BSD users, prof and gprof. prof
provides a subset of the information available with gprof. Use the fol­
lowing steps to obtain profile data with prof or gprof:

I. Compile the program with either the p (prof) or pg (gprof) options.

2. Run the program to create the file used in profiling: by default,
mon.out (prof) or gmon.out (gprof).

3. Invoke prof or gprof.

We will use the same program with which we illustrated dbx in the pre­
vious section to illustrate the use of gprof with default options. You
should consult the man page on gprof for producing alternative profiles.
Each time you invoke gprof, the output includes a description of each
file displayed, as shown in the example.

UNIX
form: % cc [-p or -pg] myprog.c

% 'f77[-p or -pg] myprog.f
% a.out .
% prof (or gprof)

example: % f77 -pg fconvert.f
% a.out < hk1.in > /dev/null
% gprof
%time cumsecs seconds
42.7 2.71 2.71
9.6 3.32 0.61
7.3 3.78 0.46
6.9 4.22 0.44

[continued below]

calls

9172
1091
8969

name
mcount

-s-wsfe
..rei-ned
__flsbuf

The command f77 -pg fconYert.f produces an executable image file,
a.out, which contains the information necessary to produce profile data.
The command a.out < hkUn > /dey/null runs the program, reading input
from the file hkl.in and sending output to /dev/null. Recall that /dey/null

10.4 Profiling: prof and gprof 223



(compare the VMS logical name NL:) is called the bit bucket and dis­
cards unwanted output. The command gprof displays profile data by
reading the default files a.out and gmon.out. The first part of the gprof
display is the so-called flat profile, also produced by prof. This section
of the display does not describe the interrelationships between func­
tions-for example, how often function a calls function b-but reports
in descending order the percentage of total run time spent in each rou­
tine. The fields indicate the following:

name

calls

%time

cumsecs

seconds

The percentage of the total running time of the
program that this function uses

A running sum of the number of seconds used by this
function and those listed above it

The number of seconds used by this function alone:
the major sort for this listing

The number of times this function was invoked, if
profiled; otherwise blank

The name of the function: the minor sort for this
listing

The second part of the display is unique to gprof and describes the inter­
relationships among the various program functional units. There are
three types of records in this display:

1. A single record for each function (listed second)

2. One or more parent records for each function (listed first)

3. Multiple child records for each function called by the parent (listed
last)

The definition for each field in each of the three types of record is given,
reading from left to right.

224 Programming



0.00 0.01 1/1 _Linit [33]
..---_.....-----_............-----....--...-......

0.03 3.58 1/1 .JI1oin [2]
[3] 99.5 0.03 3.58 1 ...MAIN- [3]

0.20 3.03 2183/2384 _do_fio [4]
0.01 0.15 101/101 _e_wsfe [19]
0.01 0.15 100/100 _eJSfe [20]
0.01 0.01 101/9070 -5-wsfe [7]
0.00 0.00 101/9120 -5-fsfe <~ycle 1> [14]
0.00 0.00 1/1 _exit- [50]

The function entries indicate the following:

index

%time

self

descendents

called

self

name

index

The index of the function in the call graph listing as
an aid to locating it (shown in square brackets)

The percentage of the total time of the program
accounted for by this function and its descendents

The number of seconds used by this function itself

The number of seconds used by the descendents of
this function on behalf of this function

The number of times this function is called (other
than recursive calls)

The number of times this function calls itself
recursively

The name of the function, including its membership
in a cycle, if any

As index above

The parent listings indicate the following:

seW The number of seconds of this function's self-time
due to calls from this parent

descendents3 The number of seconds of this function's descendent
time due to calls from this parent

called4 The number of times this function is called by this
parent; acts as the numerator of the fraction that

3. These fields are omitted for parents (or children) in the some cycle as the function.
If the function (or child) is a member of a cycle, the propagated times and propa­
gation denominator represent the self-time and descendent time of the cycle as a
whole.

4. Static: only parents and children are indicated by a call count of O.

10.4 Profiling: prof and gprof 225



index

totaP

parents

70.5

divides the function's time among its
parents

The number of times this function was called by all
of its parents; acts as the denominator of the
propagation fraction

The name of this parent, including the parent's
membership in a cycle, if any

The index of this parent in the call graph listing as
an aid in locating it

The children listings indicate the following:

selP The number of seconds of this child's self-time due
to being called by this function

descendenf The number of seconds of this child's descendent's
time due to being called by this function

called4 The number of times this child is called by this
function; acts as the numerator of the propagation
fraction for this child

totaP The number of times this child is called by all
functions; acts as the denominator of the
propagation fraction

children The name of this child, including its membership in
a cycle, if any

index The index of this child in the call graph listing as an
aid to locating it

The cycle as a whole is listed with the same fields as a function entry.
Below it are listed the members of the cycle and their contributions to
the time and call counts of the cycle.

Maintaining Libraries: or and ronlib

UNIX offers features similar to the VMS LIBRARIAN utility for main­
taining files in an organized manner for easy access. As we shall see,
the UNIX user has to do a little more work and become familiar with
more than one command. The command ar (archive and library main­
tainer) creates libraries, adds files, replaces files, deletes files, and so
on. Once you create or modify the library, you usually randomize it with
the command ranlib. Randomization creates a table of contents to assist
in the location of files. The table of contents is available to the loader to

226 Programming



49
2

o

UNIX
% ar [option(s}] [position] \

archive file(s}
% ar cr plot.a start.o stop.o \

move.o draw.o

form:

example:

example:

speed up the loading of files. This performance gain is useful in the main
function of libraries: the storage of object files used by a variety of dif­
ferent programs at load time.

The following example illustrates the creation, manipulation, and sub­
sequent use of an object library using the commands ar and ranlib.

VMS
$ LlBRARIAN[/QUALIFIER(S}] LIBRARY ­

FllE(S}
$ LIB/CREATE PlOT.OlB START.OBJ, ­

STOP.OBJ, MOVE.OBJ, DRAW.OBJ
$ LIB/LIST PlOT.OlB
Directory of OBJECT library SYS$SYSROOT:[SYSMGR.SCRATCH]PLOT.OLB;l on 19-5EP-1988

18:49:34 '

Creation date: 19-5EP-198818:48:20 Creator: VAX-11 Librarian V04-00
Revision date: 19-5EP-1988 18:48:21 Library format: 3.0
Number of modules: 1 Max, key length: 31
Other entries: 1 Preallocated index blocks:
Recoverable deleted blocks: 0 Total index blocks used:
Max. Number history records: 20 Library history records:
DRAW
MOVE
START
STOP

example: $ LIB/INSERT PlOT.OlB SYMBOl.OBJ
example:
example: $ LIB/REPLACE PlOT.OlB SYMBOl.OBJ
example: $ LIB/EXTRACT= MOVE/OUTPUT -

=MOVE.OBJ PlOT.OlB

UNIX
% ar t plot.a
start.o
stop.o
move.o
draw.o
% ar q plot.a symbol.o
% ar mb start.o plot.a move.o
% ar r plot.a move.o
% ar x plot.a'move.o

In the first example, ar cr plot.a start.o stop.o move.o draw.o creates a
library plot.a, containing four object files (c option means create; r
option means replace). Unlike the majority of UNIX command options,
ar options are not preceded by a minus sign. Note that .a is the de~ault

file extension for libraries (compare the VMS extensions .OlB for object
libraries and .HlB for help libraries). Unlike all other UNIX file exten­
sions, compilers assume .a. For example, cc myprog.c -Iplot is valid; cc
myprog.c -Iplot.a is not.

10.5 Maintaining Libraries: ar and ronlib 227



In the second example, ar t plot.a lists the contents of the library (t
option). Unlike the VMS LIBRARIAN, ar does not store files alphabeti­
cally, but in the order received. Files added at a later date, therefore,
will appear at the bottom of the library listing.

In the third example, ar q plot.a symbol.o adds the file symbol.o to the
library (q option). ar does not perform a check to see if the file already
exists in the library; it simply appends the file. If you inadvertently add
a second file with the same name to the library, how do you delete the
unwanted version? The answer to this question lies in the use of the
positional parameter, as shown in the form of the command and illus­
trated in the next example.

ar mb start.o plot.a move.o uses a positional parameter to move (m
option) move.o before (b option) start.o. The library entry to be moved
is placed at the end of the command string; the library entry marking
the move point immediately follows the command option. The order
now becomes: move.o, start.o, stop.o, draw.o. The positional parameter
can also pinpoint the file to be deleted, for example by indicating a file
after (positional parameter a option) another file in the library.

In the fifth example, ar r plot.a move.o replaces the existing file move.o
with a new version of the same file (r option), and places the new version
at the end of the library.

In the final example, ar x plot.a move.o extracts a copy of the file move.o
(x option): that is, the file remains in the library but a copy is extracted
and placed in the current directory.

Once you are satisfied with the contents of an object library, you should
randomize it with the ranlib command to improve the loader's access
time when it loads the library with other source code files.

VMS
form:
example:
example: $ LINK MYPROG.OBJ,PLOT.OLB/LIBRARY

UNIX
% ranlib library
% ranlib plot.a
% cc myprog.c -Iplot

The command ranlib plot.a randomizes the library created above for use
by the loader. You should perform a randomization whenever you make
a change to the library. cc myprog.c -Iplot.a compiles and links the C
program myprog.c, using object code from the library plot.o to resolve

228 Programming



10.6

any external references. The compiler searches the directory paths spec­
ified by the shell variable path for the object library file. The directories
Ilib and lusr/lib.. contain system libraries (compare the VMS directory
defined by the logical name SYS$L1BRARY). Site-dependent libraries usu­
ally reside in the directory lusr/iocai/lib/...

Summary

This summary once again uses examples from everyday use. The first
example takes a FORTRAN program prolsq.f, copied from a VAx/VMS
system and compiles and runs it.

UNIX
example: % fsplit prolsq.f

prolsq.f already exists, put in zzzOOO.f
symmin.f
recip.f

prolsq.o symmin.o recip.o sfref.9 calc.o \
trig.o expy.o disref.o plnref.o plane.o \
chiref.o det3.0 vdwref.o bref.o teref.o \
ellips.o bcnvrt.o torref.o torshn.o cross.o \
symref.o toss.o polar.o matinv.o cgsolv.o \
matmul.o scale.o freeze.o rtest.o
f77 -y

rtest.f
%15
bcnyrt.f disref.f plnref.f
bref.f ellips.f polar.f
calc.f expY.f prolsq.f
cgsoly.f freeze.f recip.f
chiref.f matinv.f rtest.f
cross.f matmuU scale.f
det3.f plane.f sfref.f
% my prolsq.f prolsq.orig
% my zzzOOO.f prolsq.f
% cat Makefile
#
OBJ=

f77 =
.f.o:

symmin.f
symref.f
teref.f
torref.f
torshn.f
toss.f
trig.f

typescript
ydwref.f
%%zOOO.f

MAIN:
$(f77) -c $••f
$(OBJ)
$(f77) -0 MAIN $(OBJ)

% make-n
. f77 -y -c prolsq.f
. f77 -v -c symmin.f

f77 -v -c rtest.f
f77 -v -0 MAIN prolsq.o symmin.o •••. rtest.o

10.6 Summary 229



The command fsplit prolsq.f breaks the large FORTRAN source code
file into routines and functions to be managed by make. Because prolsq.f
already exists, the main program cannot be called prolsq.f, so the com­
mand renames it zzzOOO.f. The user then renames prolsq.f as prolsq.orig,
and zzzOOO.f as prolsq.f. The command cat Makefile displays the make­
file written to maintain this group of routines. OBJ = ... defines a macro
OBJ for the object files; note that the backslash denotes the continuation
of the macro definition. 177 =177 -v defines a macro for the compilation
that includes the v option to display the version number of the compiler.
•f.o: defines the dependency, that is, the existence of an .0 file depends
on the existence of an .f file. The dependency is followed by the com­
mand $(177) -c $*.f, beginning after a tab; the c option suppresses the
loading phase. A further dependency, MAIN, appears, which depends
on the OBJ macro. The command $(177) -0 MAIN $(OBJ) (after a tab)
loads the object files into an executable image file MAIN. The command
make -n then displays the commands that make will execute without
actually executing them.

UNIX
example: %. make

f77 -v -c prolsq.f
Berkeley F77, version 1.0
prolsq.f
MAIN prolsq:
Error on line 45 of prolsq.f Declaration error••

% f77 prolsq.f /& error
1 non-specific errors follow

[unknown] MAIN prolsq:
[unknown] Error. No assembly.
1 file contains errors "prolsq.f" (1)
File "prolsq.f" has 1 error

1 of these can be inserted in the file
You touched file(s): "prolsq.f"
% more +45 prolsq.f
DATA DMIN /5.0,3.0,2.5,2.01
C###45 [f77] Error on line 45 of prolsq.f Declaration \

error•••

Once make is functioning correctly, the program can be debugged. make
without options invokes the makefile called Makefile and compiles each
routine. make finds only one error, in the parent program prolsq.f. This
parent program is compiled again, external to make, with the command
177 prolsq.f 1& error. The error message generated by the compilation is

230 Programming



piped to the error command, which embeds the error message at the
appropriate place in the source file. The command more +45 prolsq.f
displays the file beginning at line 45, since the compilation indicated that
the error was at line 45. Assuming the error was fixed, a further invo­
cation of make would compile just the prolsq.f file and create an exe­
cutable image file called MAIN from all the object files.

Once the program is compiled and running, the user decides to profile a
typical execution to determine where the program uses most of its CPU
time. The user plans to recode the most CPU-intensive parts of the pro­
gram, thus improving its efficiency.

UNIX
example: % ex Makefile

::I-cl
$(177) -c $-.f

:'S/-c/-c -pgl
$(177) -c -pg $-.f

::wq
0/0- touch ·.f ; make
%. cat run
#
In IDISK fort.3
In JDISK fort.4
In ••/protinlATMDST.8 fort.10
In SHIFT.IN fort.1S
In SHIFT.OUT fort.16
In ••lfconvert/prolsq.hkl fort.20
In FOFC.OUT fort.3l
In XYZBG.OUT fort.32
date
time MAIN < data
date
rm -f fort.­
% run
% gprof MAIN gmon.out

First, the user modifies the makefile with the ex editor to include the
option pg for each compilation. The command touch *.f ; make updates
the modification dates of all the FORTRAN source files (•.f) so that the
subsequent make will recompile each file with the profile options (pg).
The user runs the program with the script file named run, which assigns
data files to the various FORTRAN unit numbers and runs the program.
Notice that a hard link assigns files to FORTRAN unit numbers. In the
example, writing to FORTRAN unit number 3 would, by default, write

10.6 Summary 231



to the file fort.3, but the link causes data to be written to the file IDISK.
After the program runs, the user removes the hard links with the com­
mand rm -f fort.•. Recall that if the user had set soft links, the IDISK
file would have also been deleted. S The user then invokes gprof with
the executable file defined as MAIN in the makefile, and gmon.out, the
default profile produced at run time. The example does not show the
output of gprof, but it would look similar to the output shown in Section
lOA.

5. Different UNIX FORTRAN compilers use different methods for assigning data
files.

232 Programming



Chapter 11

Shell Programming



Cvi/izafion advances by extending the number ofimportant operations that
can be performed without thinking of them.

Alfred North Whitehead

Shell programming involves grouping together a number of shell com­
mands and constructs into a file (called a shell script) to perform a rou­
tine task. The analogy in VMS is the creation of a Digital Command
Language (DCL) command procedure. The syntax of a shell script var­
ies according to the shell in use; in this chapter, we restrict our discus­
sion to C shell syntax. Since the man page for csh is terse, this chapter
explains the features of C shell programming in greater detail. If you are
versed in DCL command procedures, you should be aware that achiev­
ing equivalent functionality in UNIX requires becoming adept at writing
shell scripts. This chapter will get you started. The following compari­
sons and contrasts will help to orient the VMS user to shell program­
ming in UNIX.

Both shell scripts and DCL command procedures use only com­
mands and constructs that the standard operating system can inter­
pret. Use of a high-level language compiler is not necessary.

• As a general rule, scripts execute faster than DCL command proce­
dures.

• The debugging of scripts and DCL command procedures relies on
the error-reporting features of the shell and command language
interpreter, respectively. Error reporting by the shell is uninforma­
tive.

DCL command procedures may utilize comprehensive string-han­
dling capabilities. The shell has poor string-handling capabilities,
but you may supplement them with the extensive string-handling
capabilities of awk and sed.

• Compared to a high-level language, both the shell and DCL are
slow in performing integer arithmetic.

• Neither the shell nor DeL is capable of non-integer arithmetic.

• UNIX has an extensive set of commands and utilities that you can
incorporate in scripts.

• Shell scripts are like C; if you can program in C, then you will find
shell programming easy.

Figure 11.1 illustrates the various components of shell programming and
indicates the organization of this chapter. The guts of a shell script are

234 Shell Programming



Execution
Section 11.1

Debugging
Section 11.10

Shell
Script

Predefined Shell Variables
Section 11.2.1

Passing Variables to Scripts Special Forms of a Variable
Section 11.2.3 Section 11.2.2

Flow Control-Section 11.8.1

Comparison
Operations
Section 11.5

File Operations
Section 11.6

Mathematical
Operations
Section 11.7

UNIX Commands Built-in Shell Commands
Section 11.9

Output

Figure 11.1 Shell Programming Overview

the UNIX commands and utilities, many of which we have discussed
already. Script programming adds flow control, argument handling,
error handling, and the like to help you use UNIX commands more
effectively. The features of script programming are built in to the shell.

Section 11.1 presents the execution of shell scripts. Beginning with exe­
cution may seem premature, but remember that a shell script does not

Shell Programming 235



11.1

have to be complex. A shell script can be no more than a shorthand
notation for a single command string, many of which we have discussed
already. We are therefore more than ready to execute our first shell
script. Section 11.2 describes how shell scripts handle variables. Section
11.3 describes how they handle filename modification, and Section 11.4
describes how they handle variable expansion. Sections 11.5 to 11.7
describe the various types of operators available. Section 11.8 discusses
flow control, and Section 11.9 discusses built-in shell commands useful
in shell programming. Finally, Section 11.10 discusses how to debug the
mess we have created.

Executing Shell Scripts

The VMS user executes a DCL command procedure by placing @

before the name of the command file; the UNIX user executes a shell
script using only the name of the script file. If no directory specification
precedes the script file name, the C shell will search the paths described
by the shell variable path to resolve the reference to the script file.
Entries such as letc and lusr/bin (see Section 2.3), which contain many
of the programs and scripts that make up the UNIX command set, are
followed by a period, signifying the current directory. UNIX users fre­
quently add paths (before the period) of the type -user/bin and -user/etc
to the file .cshrc (see below) to indicate directories that the system
should search to resolve references to their own shell scripts and other
programs. To be interpreted by the shell, the shell script must have a
file protection that renders it executable by the user.

Like all UNIX commands that are not part of the shell, the script file
executes in a child shell forked by the parent shell. Normally this child
shell takes on all the predefined variables assigned to the parent shell as
well as those defined by the user in the file .cshrc (another shell script).
However, #!/bin/csh -f appearing as the first line of the script file
invokes a fast start of the C shell and does not execute the commands
in .cshrc. This line could represent significant time savings if the .cshrc
file is long and complex. The following example illustrates a simple shell
script.

VMS
example: $ TYPE TEST.COM

UNIX
% cat tesl-script
#!lbin/csh -f

236 Shell Programming



$ITest command procedure
$ SHOW USERS
$ EXIT
$@TEST.COM

J 1.2

# test script
who
exit
% chmod +x test
% test

VAXNMS Interactive Users system ttypO Aug 6 09:00
Total number of interactive users = 1

SYSTEM _RTA1: 000004AE RTA1:

Note the following:

Commands in scripts are not preceded by the shell prompt (com­
pare $ for DCL command procedures).

• The script file is first made executable with the chmod command.
This is necessary if the script file has not been given a file protec­
tion rendering it executable by the owner, as is usually the case
(see the discussion of umask in Section 4.2).

• The procedure is terminated with the exit command (compare the
VMS command EXIT), which returns control to the parent shell.
Since the exit command is assumed by default if an EOF is reached,
it is not essential in this example.

• The example shows a fast start of the shell.

• Anything following # in a command line is interpreted as a com­
ment (compare! in VMS), with the exception of #!/bin/csh -f.

Variables

You can assign variables in shell scripts using the set command. Note
the following differences in assigning values to variables and returning
variable values between shell scripts and DCL command procedures:

• UNIX does not make the same distinction as VMS between defin­
ing variables for the duration of the command procedure and defin­
ing variables for the duration of the terminal session (that is, glob­
ally). The set command always assigns variables for the current
process. Including the variable assignment in the .cshrc file gives
the equivalent of global definitions, because this file is usually exe­
cuted each time a shell (process) is started (that is, for each com­
mand or script file executed). The exception, as noted above, is a
fast start of the C shell.

• No distinction is made in defining a shell variable as an integer or a
text string (compare the VMS = and: =, for example).

11.2 Variables 237



• UNIX always treats uppercase and lowercase strings differently.
VMS translates lowercase to uppercase unless the text string is sur­
rounded by double quotes.

• To return the value of a variable, you should precede the variable
name with the $ metacharacter (compare VMS, where the variable
name is surrounded by single quotes).

Once you have assigned a name to a variable, you can use the shell
command echo (compare the VMS command WRITE SYS$OUTPUn to
write to stdout (standard output), returning eithe~ the numeric or text
string value of a variable.

VMS
form: $VARIABLE-NAME = locaUnteger/text

$VARIABLE-NAME ==globaLinteger/­
text

$VARIABLE-NAME': = locaLtext
$VARIABLE-NAME-: = = globaLtext

example: $SAMPLE = 1
$WRITE SYS$OUTPUT "Number "SAMPLE'"
Number 1
$WRITE SYS$OUTPUT "Number sample"
Number sample

example: $STRING = = "hello there"
1. These examples follow the C shell prompt, indicating
that they were issued as commands and not executed as
part of a script.

UNIX1

%set variable-llame = \
value

%set sample = 1
%echo "Number $sample"
Numbttr]
%echo "Number sample"
Number sample
%set string ~ "hello there"

J J.2. J

In the first example, set sample = 1 assigns a value of I to the variable
sample. Note that the $ metacharacter forces the value of the variable
to be returned. In the second example, set string ="hello there" equates
the variable named string to a text string. Unlike VMS, UNIX makes
no distinction between equating a variable name to an integer or a text
string.

Predefined Shell Variables

Section 3.3.2 introduced predefined shell variables, the most common
of which appear in Table I I. I. You can display a complete list on-line
using the set command without arguments. The VMS analogy to pre­
defined shell variables are the symbol definitions found in the system
logical name table. You should avoid using predefined shell variable

238 Shell Programming



Table 11.1 Predefined C Shell Variables

Variable

UNIX

user

path

home

shell

term

status

VMS'

F$USER( )

SYS$LOGIN

F$GETDVI("DEVICE","DEVTYPE"F

$STATUS

UNIX Meaning

Username
Current path specification
Home, or parent

directory, of user
Current shell
Terminal type
Status returned by last

command: O=no error,
1= error3

1. The predefined C shell variables either have no anal­
ogy in VMS, or loosely correspond to either a system
defined logical name or a result obtainable from a lexical
function.
2. term returns an alphanumeric string: F$GETDVI returns an
integer value.
3. status and $STATUS are redetermined each time a com­
mand is executed. Compare the UNIX definition to VMS,
where 0001 implies no error and any other hexadecimal
value implies an error.

names when defining your own variables. The following examples illus­
trate typical values returned for common predefined shell variables.

VMS
example: $ WRITE SYS$OUTPUT ""F$USERO'"

[FRED]
example:

example: $SHOW LOGICAL SYS$LOGIN
"SYS$LOGIN" = ­

"SYS$SYSROOT:[SYSMGR)"
(LNM$JOB_802BOA50)

example: $SHOW TERMINAL
Terminal: TTA4: Device_type VT100 ­

Owner: FRED

example: $SHOW SYMBOL $STATUS
$STATUS = = "%XOOOOOOOl

UNIX
% echo $user # username
fred
% echo Spath # command reference

lusr/fred/bin lusr Ibin lusr/bin
% echo Shome # parent directory
lusr/fred

% echo $term # terminal type
vt100

% echo $status # error condition
o

The discussion of error handling in Section 11.8.7 will illustrate the
importance of status.

77.2. 7 Predefined Shell Variables 239



Table 11.2 Special Forms of C Shell Variable

Form

UNIX

$?name

S#name

Sname[m-n]

$name[m-]

$name[*]

Sname[$]

${O}

$?O

Sa ($argv[a])

S*
$$

S<

VMS

Pa

FSPID( )

INQUIRE

UNIX Meaning

Returns 0 if variable name is not
defined, 1 ~defined

Returns integer specifying the
number of elements of variable
name

Returns elements m through n of
variable name, where mand n are
integers

Returns elements m through the last
element of variable name, where
m is an integer

Returns all elements of variable
name

Returns last element of variable
name

Returns name of script being
executed

Returns 0 if name of script being
executed is known, 1 if not

Returns ath variable passed to script

Returns all variables passed to script

Returns process number of current
shell

Takes input from terminal keyboard

J1.2.2

1. Not directly obtainable, but achieved with an error
handler.
2. Not directly obtainable, but achieved by decomposing
a variable into elements with the F$ELEMENT lexical func­
tion.

Special Forms ofa Variable

Table 11.2 illustrates the special forms of a variable. You can break the
value of a variable into separate elements, where each element is sepa­
rated by a blank. The C shell can then conveniently address these ele­
ments. What if you wish to define elements of a variable other than
those delimited by blanks? You cannot do this easily with shell com­
mands, for the C shell does not offer the convenience of the VMS lexical
functions to manipulate strings-for example, F$EXTRACT to decompose
a variable according to the position of each character in a string, and

240 Shell Programming



F$CVS and F$FAO for integer/character string conversions. However, as
we saw in Section 5.4, this shortcoming is remedied with awk, the pat­
tern-matching and action utility, which can decompose a string in the
same way as the VMS lexical functions. Table 11.2 also lists the $<
construct (compare the VMS command INQUIRE) for entering the value
of a vari,~.ble to a shell script from stdin. The following shell script illus­
trates some of these features.

VMS UNIX
example: $ TYPE TEST.COM % cat tesLscript

$! Special forms of a variable # Special forms of a variable
$1 #
$ INQUIRE NAME "Enter Text String: " echo -n "Enter Text String: "
$1 ,set name =.. $<
$1 echo "This script is called ${O}"
$ WRITE SYS$OUTPUT "Process~d by - echo "This script is being \

"F$PID(A)'" processed by PID $$"
#

$ NUM = 0 echo "The string entered has \
. $#name elements"

$ LOOP: echo "The first word is \
$name[1]"

$ LABEL = F$ELEMENT(NUM," ",NAME) echo "The last word is $name[$]"
$ IF (LABEL .EQS. " ") THEN GOTO END exit
$ COUNT = NUM + 1
$ WRITE SYS$OUTPUT "Word "COUNT'="LABEL'"
$NUM = NUM + 1
$ GOTO LOOP
$ END: WRITE SYS$OUTPUT "The string entered has ­

"COUNT' elements"
$ EXIT
$ @TEST COM % chmod 744 test-script; test- \

script
Enter text string: t~st of string - . Enter text string; test of string \

manipulation manipulation

Processed by 00000043

Word 1 = fest
Word 2 = of
Word 3 = string
Word 4 = manipulation
The string entered has 4 elements

This script is called test::..script
This script is being processed by \

PID 27183
The string entered has 4 elements
The first word is test
The last word is manipulation

Note the variation in the use of echo. The n option prevents skipping to
the next line, and so you may enter a response after the string echoed

77.2.2 Special Forms of a Variable 247



J J.2.3

(the default condition for the VMS command INQUIRE). You can equate
the string entered to the variable name with set name = $<, and then
manipulate it using the definitions outlined in Table 11.2. That is, the
variable name consists of four elements, the words "test of string
manipulation." Recall from Section 5.4.8 that the awk construct
substr($name,1,6) could have been used to return, for example, an ele­
ment of "test 0"; a substring of name starting at character I, and 6 char­
acters long. Thus we have an element that includes blanks but is not
delimited by blanks.

Passing Variables to Scripts

Table 11.2 illustrates how variables are passed to scripts from the com­
mand line. The variable name argy is reserved for arguments entered on
the command line. Thus argy(l] is the first argument (also called $1;
compare in VMS P1), and argy[$] is the last (also called $$; compare in
VMS Pn). You must enclose any argument passed to a script that con­
tains a blank or a shell metacharacter in double quotes. VMS limits the
number of variables (parameters) that you may pass to a command pro­
cedure to eight. UNIX has no such restriction; that is to say, the number
of variables that you may pass to a script file is so large that the average
user will never reach it. If you wish to know about this and other restric­
tions, refer to the man page for csh.

VMS
example: $TYPE TEST.COM

$1 return parameters passed to procedure

$ WRITE SYS$OUTPUT ""Pl'"
$ WRITE SYS$OUTPUT ""P2'"
$ WRITE SYS$OUTPUT ""P3'"
$ EXIT
$@ TEST [DIRECTORY] TEST "HELLO ­

THERE"

[DIRECTORY]
TEST
HELLO THERE

UNIX
%cat test-script
# return variables passed to \

script
echo "argv[l]"
echo "$2"
echo "$$"
exit
%chmod 744 test-script

tesL script "[directory]" test \
"hello there"

[directory]
test
hello there

The above example illustrates the passing of variables to shell scripts.
The double quotes around [directory] prevent the normal interpretation
of the open and close square brackets as metacharacters. Similarly, the
double quotes cause "hello there" to be interpreted as a single variable.

242 Shell Programming



Table 11.3 Filename Modifiers

Modifier

UNIX

:r

:e

:h

:t

VMS

F$PARSE(file-spec•••"NAME")

F$PARSE(file-spec..."TYPE")

F$PARSE(file-spec "DEVICE") +
F$PARSE(file-spec "DIRECT")
F$PARSE(file-spec "NAME") +
F$PARSE(file-spec "TYPE")

UNIX Meaning

Returns portion of
filename preceding a
period; if filename does
not contain a period,
returns complete
filename

Returns portion of
filename following a
period; if filename does
not contain a period,
returns null

Returns head (path) of file
specification

Returns tail of file
specification, excluding
path

11.3 filename Modifiers

Filename modifiers cause the system to return portions of an absolute
or relative filename, as defined in Table 11.3. VMS users familiar with
the F$PARSE lexical function, which calls the SPARSE RMS service for
extracting portions of a file specification, can achieve similar results
using a shell script with filename modifiers. UNIX has no direct way of
modifying filenames on a remote UNIX computer. Compare the VMS
command F$PARSE(file-spec•••"NODE"). However, as we shall see in
Section 13.3.1, you can pipe a remote file lookup to a filename modifier
to return portions of the filename, but not the remote host name. The
following example illustrates the use of the filename modifiers outlined
in Table 11.3.

VMS
example: $TYPE TEST.COM

$1 Return portions of a filename

$ INQUIRE FILENAME "Enter filename: "
$1

UNIX
%cat tesf-script
# Return portions of a \

filename
echo -n "Enter filename: "
set filename =$<

11.3 Filename Modifiers 243



$ WRITE SYS$OUTPUT ""F$PARSE(FILENAME.
••• "NAME")'"

$ WRITE SYS$OUTPUT ""F$PARSE(FILENAME.
••• ''TYPE'')'"

$ WRITE SYS$OUTPUT ""F$PARSE(FILENAME.
'••• "DIRECTORY")'"

$ A := 'F$PARSE(FILENAME•••"NAME")'
$ B:= 'F$PARSE(FILENAME•••''TYPE'')'
$C = A + B
$ WRITE SYS$OUTPUT ""c'"
$ EXIT
$ @TEST.COM
Enter filename: [FRED]PROGRAM.C

PROGRAM
C
[FRED]
PROGRAM.C

echo "$filename:r"
#
echo "$filename:e"
#
echo "$filename:h"
#
echo "$filename:t"
#
#
#
exit
%tesLscript
Enter filename /usr/fred/ \

program.c
program
c
/usr/fred
program.c

J J.4

The variable filename is set using input from stdin, and then modified
by following the variable with a colon and the appropriate modifier.

Variable Expansion

The result of variable expansion depends on whether the variable is sur­
rounded by single forward quotes, double quotes, or single backward
quotes. A single forward quote prevents any kind of variable expansion
(compare VMS variable name only). The variable name. is returned lit­
erally, and alias or wildcard expansion does not take place. A double
quote groups characters or numbers into a single argument (as shown
above), allows variable expansion, and prevents wildcard expansion
(compare VMS double quotes). A single backward quote causes the
immediate execution ofa command argument (compare VMS single for­
ward quote). The following example illustrates these three kinds of vari­
able expansion.

VMS
example: $ NAME = "DIR ~.FOR"

.$ WRITE SYS$OUTPUT "NAME"
NAME
$ WRITE SYS$OUTPUT ''''NAME'''
DIR ••FOR

UNIX
% set name = "15 *.f"
% echo$name
Is program.f
% echo '$name'
name
% .echo "$name"
Is ••f

244 Shell Programming



$ 'NAME'
PROGRAM.FOR

% echo '$name'
program.f

11.5

echo $name returns the variable substitution with the metacharacter
expanded. echo '$name' prevents any variable substitution and returns
the variable name. echo "$name" returns the substitution for the vari­
able name, which includes the non-expanded metachanicter *. Finally,
echo '$name' causes immediate command execution: the result of exe­
cuting the command between backward quotes becomes part of the
command line. Is *.f indicates that one file of the file type .f, program.f,
resides in the present working directory.

Comparison Operators

Table 11.4 illustrates the comparison operators supported by the C shell.
We will encounter numerous uses of comparison operators in subse­
quent examples. We now introduce the if statement, discussed in greater
detail under flow control in Section 11.8, to show how comparison oper­
ators function. The major distinction between UNIX and VMS compar­
ison operators, as we have already seen, is that UNIX uses the same
operator for both text and integer variables, and VMS uses a different
comparison operator for each. 2

example:

example:

example:

example:

exa...ple:

example:

VMS
$! EQUAL TO
$IF (I .EQ. 10) THEN
$IF (STRING .EQS. "FALSE") THEN
$1 NOT EQUAL to . .
$ IF (I .NE: 10) THEN
$ IF (STRING .NES. "FALSE") THEN
$! GREATER THAN 1 AND LESS THAN 10
$IF (I .GT. 1 .AND.·' .LT 10) THEN

$! EQUAL TO 0 or 1
$IF (I .EQ. 0 .OR. 1.EQ. 1) THEN
$1 EQUAL TO TRUE OR FALSE
$ IF (STRING .EQS. "TRUE" .OR. STRING ­

.EQS. "FALSE") THEN
$1 NOT LESS THAN OR EQUAL TO 10
$ IF (I .GT. 10) THEN

UNIX
# equal to
if($i ==10} then
if ($string = = "false"} then
#. not equal to
if ($i 1= 10) then
if ($string 1'= "false") then
# greater than 1- and less than \

10
if (Si>1 && $i<l 0) then
# equal to 0 or 1
if f$i= =0 II$i= =1) then
# equal t~ true or false
if ($string == "true" II $string \

= = "false") then
# not less than or equal to 10 .
if (!($i< = 10)) then

2. Unlike most functions in VMS, the string comparison operators are case-sensitive
when enclosed in double quotes, for example "false" is not equal to "FALSE".

11.5 Comparison Operafors 245



Table 11.4 Comparison Operators

UNIX Operator

=

&&
II
>
<
>=
<=

VMS Operator

= = = := := =
.EQ..EQS.
.NE••NES.

.AND.

.OR.

.GT•.GTS.

.IT..lTS.

.GE.•GES.

.lE..lES.

UNIX Meaning

Assign value to variable
Equal to
Boolean not, for example, not

equal to
Boolean and
Boolean or
Greater than
Less than
Greater than or equal to
Less than or equal to

11.6

Each example compares either the variable i to some integer value or
the variable string to some text string, as described in the comment that
precedes the command. The last example, if(!($i< = 10)) then, is note­
worthy because it illustrates the nesting of comparison operators: vari­
able i is neither less than nor equal to 10, that is, it is greater than 10
(identical to if ($i>10) then).

File Operators

Table 11.5 lists a type of C shell operator that tests the characteristics
of a file. There is no analogy to these UNIX C shell file operators in
VMS, although you can use values returned by the F$FIL~TTRIBUTES

lexical function to determine the attributes of a VMS file. The features
returned by F$FILEJ\TTRIBUTES do not translate into UNIX file opera­
tors because of the different ways in which VMS. and UNIX treat files.
A VMS file is highly structured, and F$FILEJ\TTRIBUTES returns infor­
mation about that structure. A UNIX file is nothing more than a string
of bytes. Since a UNIX file has no file structure information, file oper­
ators only return features like file ownership and protection.

form:

example:

example:

VMS
$F$FllE.-ATTRIBUTES (file-spec,­

condition)

UNIX
if (file-operator file) then

# true if /usrlfred is a directory
if (-d /usr/fred) then
# true if /tmp/file1 exists
if (-e Itmp/file1) then

246 Shell Programming



example:

example:

example:

example:

example:

example:

# true if lusr/fred/text contains text
if (-f lusrlfred/text) then
%whoami
fred
# true if fred owns lusrlfredlfile
if (-0 lusr/fredlfile) then
# true if lusrlfredlfile is readable
if (-r lusrlfredlfile) thdn
# true if lusrlfredlfile is writeable
if (-w lusrlfredlfile) then
# true if lusr/fredlfile is executable
if (-x lusrlfredlfile) then
# true if lusrlfredlfile is empty
if (-z lusrlfredlfile) then

Table 11.5 File Comparison Operators

UNIX

-d
-e
-f
-0

-r

-w

-x
-z

VMS UNIX Meaning

True if file is a directory
True if file exists
True if file contains text
True if executor of file is owner
True if file is readable by executor
True if file is writable by executor
True if file is executable by executor
True if file is empty

11.7

1. Same results could be achieved with an error handler.
2. There is no VMS equivalent to return the Boolean value
described. However, the F$FILE.. ATTRIBUTES lexical func­
tion returns results that may be manipulated as a string vari­
able to produce the desired effect.

File comparison operators check whether a file is readable, writable, or
executable by looking at the protection mask, that is, the protection
assigned to the file. In the above examples, /usr/fred/file will be
reported executable if its protection level renders it such, irrespective of
whether the file is an executable image, shell script, or plain text.

Mathematical Operators

We have seen that the UNIX set command associates a value to a vari­
able, and that such values may be integers or text: for example, set a =
1 or set a = "test". VMS uses = to equate a variable to an integer value

77.7 Mathematical Operators 247



Table 11.6 Mathematical Operators

UNIX VMS UNIX Meaning

Integers
+ + Add

Subtract
• • Multiply
I I Divide

++ Increment by I
Decrement by I

% Modulo

Bits
» Right bit shift
« Left bit shift

.NOT 1's complement
Logical negation

.OR. Inclusive or
Exclusive or

& .AND. And

and ==to equate a variable to a text value. The VMS user can perform
mathematical operations on either text or integer values. The UNIX C
shell permits only mathematical operations on integer variables. The C
shell @ metacharacter equates a variable name to the result of a math­
ematical operation using integer variables. Table 11.6 lists mathematical
operators used by the C shell.

VMS
example: $ TYPE TEST.coM

$1 = 15
$J = 3
$!
$!ADDITION
$ K = (I + J)
$ WRITE SYS$OUTPUT "addition: "K'"
$!
$1 SUBTRACTION
$ K = (I- J)
$ WRITE SYS$OUTPUT "subtraction: "K"
$1 .

248 Shell Programming

UNIX
% cat tesf-script
set i = 15
seti=3
#
# addition
@ k = ($i + $i)
echo "addition: $k
#
# subtraction
@ k = ($i - $i)
echo "subtraction: $k
#



$! DIVISION
$ K = (1/ J)
$ WRITE SYS$OUTPUT "division: "K'"
$!
$! MULTIPLICATION
$ K = (I. J)
$ WRITE SYS$OUTPUT "multiplication: "K'"
$!
$!
$!
$!
$!
$!
$!
$!
$!
$1
$1
$!
$!
$! INVERT BITS
$K = .NOT.I
$ WRITE SYS$OUTPUT "Invert bits: "K'"
$!
$1
$!
$!
$!
$! BITWISE INCLUSIVE OR
$ K = (I.OR. J)
$ WRITE SYS$OUTPUT "Logical or: "K'"
$!
$!
$1
$!
$!
$! BITWISE AND
$ K = (I .AND. J)
$ WRITE SYS$OUTPUT "Bitwise and: "K'"
$ EXIT
$@TEST.COM
addition: 18
subtraction: 12
division: 5
multiply: 45

invert bits: -16

logical or: 15

# division
@ k = ($i / $i)
echo "division: $k"
#
# multiplication
@ k = ($i. $i)
echo "multiplication: $k"
#
# modulo
@ k = ($i % $n
echo "modulo: $k
#
# right bit shift
@ k = ($i» 2)
echo "right bit shift by 2: $k"
#
# left bit shift
@ k = ($i« 2)
echo "left bit shift by 2: $k"
#
# invert bits
@k = r$i)
echo "invert bits: $k"
#
# logical negation
@ k = (I $i)
echo "Iogical negation: $k"
#
# bitwise inclusive or
@ k = ($i I$i)
echo "bitwise inclusive or: $k"
#
# bitwise exclusive or
@ k = ($i A$H
echo "bitwise exclusive or: $k"
#
# bitwise and
@ k = ($i & $i)
echo "bitwise and: $k"
exit
% tesLscript
addition: 18
subtraction: 12
division: 5
multiplication: 45
modulo: 0
right bit shift by 2: 3
left bit shift by 2: 60
invert bits: -16
logical negation: 0
bitwise inclusive or: 15

11.7 Mathematical Operators 249



bitwise and: 3
bitwise exclusive or: 12
bitwise and: 3

The above examples illustrate the use of the major mathematical oper­
ators. You should take care with the syntax used in these expressions:
for example, @k is not the same as @ k, nor is "'$i the same as - $i.
Blanks are not necessarily ignored.

For readers unfamiliar with the characteristics of mathematical opera­
tors, we explain the above examples further. The definitions hold for
VMS as well as UNIX. Note that subscripts indicate the counting base:
hence 310 is 3 to the Base 10, and 1111 2 is 1111 to the Base 2 (binary).

• division (i / i) returns an integer value rounded down. For example,
15/3 returns 5, and 15/4 returns 3.

• modulo (i % i) returns the remainder after division. For example, 15
0/03 returns 0, and 15 % 4 returns 3.

• bitwise right shift (i > > i) shifts i i bits to the right, discarding the
first i bits. For example, 15 >> 2) shifts 15 two bits to the right so
that 1111 2 becomes 11 2, which is 3.0•

• bitwise left shift (i << i) shifts i i bits to the left and pads with
zeros. For example, (15 « 2) shifts 15 two bits to the left and
pads with zeros, so that 11112 becomes 1111002, which is 6010•

• - or l's complement changes o's to 1's and vice-versa including the
sign bit, thus it has the effect of making the integer value n become
-(n + 1). For example -15 becomes -16.

• !, logical negation, returns 0 for any result not equal to 0 and 1 for
any result equal to o.

• I signifies a bitwise inclusive or: a bit that is 1 in either variable
returns 1.
For example, (1513) 1510 = 11112

3'0 = 0011 2

(1513) = 11112 = 15 10

• .. signifies a bitwise exclusive or: a bit that is 1 in both variables
returns 0, and a bit that is 1 in only one of the variables returns I.
For example, (15" 3) 1510 = 1111 2

310 = 0011 2

(15" 3) = 11002 = 12'0
• & signifies a bitwise and: a bit that is 1 in both variables returns I,

and other bits return O.
For example, (15 & 3) 15'0 = 1111 2

250 Shell Programming



, '.8

310 = 0011 2

(15 & 3) = 0011 2 = 310

Flow Control

The statements IF and GOTO provide flow control in VMS command
procedures. The UNIX C shell also offers if and goto and the additional
statements while, foreach, switch, and shift to control the logical flow of
a shell script. As with DCL command procedures, you can exert flow
control in response to error conditions (see Section 11.8.8).

'J.8. J if

The if statement provides a one- or two-way conditional branch. You
can nest if statements, as the more complex examples in Section 11.9
show.

form:

VMS3
$ IF (expression) THEN [$] command

UNIX
if (condition) then

else

example: $ 'TYPE TEST.COM
$! report a files execu.table status
$ INQUIRE A "Enter filename: "
$IF (F$PARSE(A. •• "TYPE") .NES. -

".EXE") THEN GOTO NO
$ WRITE SYS$OUTPUT ""A' is -

executable"
$ EXIT
$NO:
$ WRITE SYS$OUTPUT ""A' is not ­

executable"
SEXIT

example: $ TYPE TEST.COM
$! display a non-empty file
$IF (F$FILLATTRIBUTES('Pl',"EOF") -

.EQ. 0) THEN GOTO EMPTY
$ TYPE 'Pl'
$ EXIT
$ EMPTY: "WRITE SYS$OUTPUT "File is ­

empty"
$ EXIT

3. The IF•• THEN•• ELSE•• construd has been added to
VMS 5.0.

endif
% cat test-script
# report a files executable status
echo -n "Enter filename: "
set a = $<
if (-x Sa) then
echo "$a is executable"

else
echo "$a is not executable"
endif

exit
%. cat test-script
# display a non-empty file
if (-z $1) then
echo "File is empty"
endif
more $1
exit

77 .8.1 if 251



J J.8.2

In the first example, if (-x $a) then defines a two-way branch that reports
whether or not the file is executable (compare the VMS lexical function
F$PARSE, which determines whether a file extension is .EXE, that is, if
the file is likely to be executable). In the second example, if (-z $1) then
defines a one-way conditional branch. If the file is empty, the fact is
reported. Then, in both the empty and the non-empty case, the example
displays the file with the more command; there is no else condition.

while

Taken literally, the while statement means, "while a condition is in
effect, perform a specific task."

form:
VMS UNIX

while (expression)

example: $TYPE TEST.COM
$! time waster
$1 = 1
$ LOOP:
$IF (I.GE. 13) THEN EXIT
$ WRITE SYS$OUTPUT "No calendar·

available"
$1 = I + 1
$ GOTO LOOP
$ EXIT

end
%cat test-script
# display calendar by month
seti = 1
while ($i! = 13)
cal$i1988
@ i = ($i + 1)

end
echo "Calendar complete"
~xit

JJ.8.3

This example introduces the cal command, which displays a calendar
for any given year. If you give only the year argument, cal displays the
year with four months across the screen. The shell script test-script dis­
plays the months one after the other. By using the month option to cal
(variable i), the script repeats the loop, increasing i by one each time.
As long as i is less than 13, the script continues. When i reaches 13, the
script terminates.

foreach

foreach performs some function on a file in a list of files that meet the
specified criterion. foreach sequentially defines each file that meets the
specified criterion as a variable and performs some operation on it. In
VMS, you first create a list of files in a temporary file, then read back
the temporary file, performing the appropriate operation on each file in
the list.

252 Shell Programming



form:

example:

VMS

$TYPE TEST.COM
$! Type all .TXT files
$ DIRlCOL=1/0UTPUT= A.OUT *.TXT
$ OPEN/READ INFILE A.OUT . .
$ READ INFILE SCRATCH
$ READ INFILE SCRATCH
$ READ INFILE SCRATCH
$ LOOP:
$ READ INFILE ~ROG

$IF (PROG .EQS. 1111) THEN GOTO END
$ TYPE 'PROG'
$ GOTO LOOP
$ END: CLOSE INFILE
$ EXIT

UNIX
foreac~ variable (filelist)

end
%cat test~cript
# Display all .txt files
foreach i (*.txt)
cat $i
end

J J.8.4

foreach i (*.txt) sequentially displays each .txt file in the current directory
with the command cat $i. Obviously, cat *.txt has the same effect as this
script.

switch

switch directs the flow of a script to a particular case label, a point in
the script which matches the possible conditions defined by the switch
statement. You may define a default condition default: in case none of
the switch statements matches a case label. The breaksw statement
directs flow to the statement following the endsw statement. If no con­
dition is met and no default condition is defined, execution continues
after the endsw statement. Sound confusing? The following simple
example helps to clarify the use of switch.

form:
VMS UNIX

switch (string)
case string:

breaksw
case string:

breaksw
default:

endsw

11.8.4 switch 253



example: $ TYPE TEST.COM
$! Seled a printer
$ ON WARNING THEN GOTO WRONG
$ WRITE SYS$OUTPUT "Seled a printer"
$ INQUIRE PR "Enter 1 or <CR> for laser-

2 for plotter; 3 for character printer"
$IF (PR .EQS. 'III) THEN GOTO 1
$ GOTO 'Pl'
$1:
$ PRINT/QUEUE=LASER 'Pl'
$ GOTO DONE
$2:
$ PRINT/QUEUE=PLOTTER 'Pl'
$ GOTO DONE
$3:
$ PRINTIQUEUE = CHARACTER 'Pl'
$ DONE:
$ EXIT
$ WRONG:
$ WRITE SYS$OUTPUT "Invalid Entry"
$ EXIT

% cat test-script
# Select a printer
#
echo "Select a printer"
echo "Enter 1 or <CR> for

laser; \
2 for plotter; 3 for charader"

set p = $<
switch $p
case 1:

Ipr ·Plaser $1
breaksw
case 2:

Ipr -Pplotter $1
breaksw
case 3:

Ipr ..Pcharacter $1
breaksw
default:

Ipr ..Plaser $1
endsw
exit

J J.8.5

In this example, the switch statement directs the printing of a file to a
specific printer queue. The user issues a response of 1, 2, 3, or (CR) to
choose a printer. The script directs flow to the appropriate case label
corresponding to the user's response. The Ipr command queues the file
and passes control to the endsw statement label. If the user enters the
default condition (CR) or any character other than 1, 2, or 3, control
passes to the default statement label, which prints the file of the default
print queue laser. Compare this to VMS, where you must introduce an
ON WARNING condition to handle an erroneous character. Shell scripts
also have error handling capabilities, as we shall see in Section 11.8.7.

Note that nested if..then..else constructs could have exerted the same
flow control. Where case labels are constants, however, switch is more
convenient.

go'o

You can use the UNIX C shell 90to statement the same way as the VMS
GOTO statement to achieve flow control, by directing flow to a state­
ment label ending with a colon. Shell script statement labels must appear
on a line by themselves, unlike their VMS counterparts which may pre­
cede any valid DeL command line.

254 Shell Programming



VMS
form: $ GOTO LABEL

UNIX
goto label

$ LABEL: [command]
example: $ TYPE TEST.COM

$ IF (P1 .EQS. "") THEN ­
GOTO UNDEFINED

$ WRITE SYS$OUTPUT "THE VALUE ­
OF PARAMETER 1 is: "P1'"

$ EXIT
$ UNDEFINED: WRITE SYS$OUTPUT ­

"PARAMETER 1 IS UNDEFINED"
$ EXIT

label:
% cat tesf-script
if ($1 =="") then

goto undefined
endif
echo "The value of variable 1 is: $1"
exit
undefined:
echo "Variable 1 is undefined"
exit

In this example, if the value of the first variable passed to a script is
undefined (null), the goto statement directs flow to the label undefined:.

r J.8.6 shift

shift does not direct the flow to a specific line in the script, but to a
different element of the same variable. shift downgrades each element
number by one, discarding element one. For example, using shift on
variable test reassigns element n of test (test[n]) to element n-1
(test[n-1]). The element test[2] becomes test[1], and the original test[1]
is discarded. In VMS, you assign variable names to the elements of the
original variable using the F$ELEMENT lexical function to decompose
the variable into separate elements with blanks as delimiters, and then
reassign the value of element to element-1 via a conditional loop. shift
is particularly useful for performing the same operation on each of the
arguments passed to the script file by shifting orgy. In this example, shift
progressively decrements the elements of the variable % and echoes the
result.

UNIX
shift variable
% cat tesf-script
# Using shift

VMS

$ 'TYPE TEST.COM
$! VMS analogy to UNIX C-

shell shift
$ I : = " ONE TWO THREE" set %= "one two three"
$ NUM = 1 echo "Before using shift there are $#% elements"
$ LOOP1 : while ($#% > 0)
$ EL'NUM' = - echo "$%[1]"

F$ELEMENT('NUM'," ",I)

form:
example:

11.8.6 shift 255



. -.~

$IF(El.NUM••EQS. "") •
THEN GOTO NEXT

$NUM =NUM + 1
$ GOTO lOOP1
$ NEXT:
$ TOTAL = NUM - 1
$ WRITE SYS$OUTPUT •

"Start with ''TOTAL'"
$ NEW_NUM = NUM - 1
$ LOOP2:
$ IF (NEW_NUM .EQ. 0) •

THEN yOTO END .
$ EL'NUM' = EL'NEW...;.··

NUM'
$ TEST = = EL'NUM'
$ WRITE SYS$OUTPUT •

""TEST'"
$ NEW_NUM = NEW_·

NUM -1
$NUM =NUM-1
$ GOTO LOOP2
$ END:
$ WRITE SYS$OUTPUT •
. "No elements left"

$ EXIT
$@TEST.COM
Start wifh 3 elements
THREE·
TWO
ONE
No elements left

shift %

end
echo "After using shift there are $#% elements"
exit

%test-script
Before using shift there are 3 elements
one
two
three
After using shift there are 0 elements

11.8.7 Error Handling and Flow Control

VMS uses the constructs ON ERROR THEN, ON WARNING THEN, and
ON SEVERE-ERROR THEN to direct the flow of a DeL command pro­
cedure when it finds an error or warning condition. The error or warning
condition applies to all command lines following the statement until you
introduce a new condition or turn error handling off with SET NOON.
UNIX handles errors on a command-by-command basis, using the built­
in shell variable status.

You can also invoke error handling for piped commands using the com­
parison operators" and &&. The conditions that apply to these operators
are as follows:

256 Shell Programming



form:
example:
form:
example:

command I operator command2
succeeds executes

yes II no

no II yes

yes && yes

no && no

We will illustrate each form of the operator with an example.

UNIX
%eommandll1 eommand2
% ee test.e >& errl II mail fred < errl
% eommandl && eommand2
% grep esh lete/passwd > eusers && Ipr eusers

The construct cc test.c >& errl II mail fred < errl compiles a C program.
If the compilation reports no errors, command execution stops. If an
error occurs, the file containing the error messages is mailed to user
fred.

The construct grep csh /etc/passwd > cusers && Ipr cusers searches the
/etc/passwd file for csh, records that contain the names of users who
use the C shell by default. If any such records are found, they are output
to the file cusers and then printed on the default line printer. If grep fails
to find any entries, the && condition fails and the null file is not sent to
the printer.

Now we discuss the use of the predefined shell variable status.4 The
variable status is redetermined after the execution of any command or
shell script. You can display it with the command echo Sstatus. Unfor­
tunately, the value it returns is not consistent from command to com­
mand. For example, find /dir -name test -print, which finds all files
named test down the directory hierarchy from /dir, returns a status of 0
if /dir does not exist. Ipr filel, on the other hand, returns a status of 1 if
the file filel does not exist. Both commands return a non-zero status if
command syntax is incorrect. You should experiment with status values
returned by commands before using the values as conditional branches

4. The name of the UNIX variable is status; preceding it with the $ metacharacter
indicates variable substitution. In VMS, on the other hand, the logical name is
$STATUS; $ is part of the symbol name.

11.8.7 Error Handling and Flow Control 257



in script files. You may find the following rule of thumb useful: 0 indi­
cates that execution was successful, 1 indicates that there was nothing
wrong with the command but that it did not achieve what it set out to
do, and any other value indicates that there is a problem with the com­
mand syntax.

example:

example:

example:

VMS
$ SEARCH MYFILE.DAT FRED
fred
$ SHOW SYMBOL $STATUS
$STATUS = = "%X00000001"
$ SEARCH MYFILE.DAT JILL
%SEARCH _L NOMATCHES, no strings.

matched
$ SHOW SYMBOL $STATUS
$STATUS =="%X08D78053"
$ SEARCH MYFIL.DAT FRED
-RMS-E-FNF, file not found
$ SHOW SYMBOL SSTATUS
$STATUS = = "%X08D7804A"

UNIX
% grep fred myfile.dat
fred
%. echo $status
o
% grep iill myfile.dat
%

% echo $status
1
%. grep fred myfil.dat
myfil.dat: no such file or directory
% .echo Sstatus
2 .

These three examples illustrate the above statement using the grep com­
mand. If the command executes correctly and finds the search string, it
returns a value of O. If the command executes correctly but does not
find the search string, it returns a value of 1. If the file itself is not found,
the condition is more severe and a value of2 is returned. Compare VMS,
where $STATUS returns an odd value if the command execution is suc­
cessful.

We will now put this all together in a shell script. This example reports
on the type of error found when using grep, based on the value of status.

VMS
example: $" TYPE TEST.COM

$! error handling
$ SET NOON
$ SEARCH 'P2' 'p1 '
$ IF ($SEVERITY .EQ. 1) THEN GOTO 1
$IF ($SEVERITY .EQ. 2) .OR.-

$SEVERITY .EQ. 4) THEN GOTO 2
$ IF ($SEVERITY .EQ. 3) THEN GOTO 3
$ EXIT

258 Shell Programming

UNIX
% cat tesf-script
# error handling
grep $1 $2
set error = $status
if ($error = = 0) then
echo "execution \

successful"
goto end
endif
if ($error == 1) then



11.9

$ 1: WRITE SYS$OUTPUT "Execution successful"
$ EXIT
$ 2: WRITE SYS$OUTPUT "Error"
$ EXIT
$ 3: WRITE SYS$OUTPUT "Nothing found"
$ EXIT

Built-in C Shell Commands

echo "nothing found"
goto end
endif
echo "severe error found"
end:
exit

1'.9.'

C shell users do not have to worry about the distinction between built­
in C shell commands and separate programs called by the C shell. How­
ever, users who invoke the Bourne or Korn shells, either on the same
computer or on different computers, will discover that the built-in C
shell commands are not available. Some built-in shell commands that
we have already discussed are dirs, pushd, and popd for manipulating
the directory stack; fg, bg, and iobs for background processing; at, kill,
and nice for affecting processes; and history for reviewing the history
list.

We now introduce several new built-in C shell commands particularly
useful in shell programming: onintr (on interrupt; compare the VMS
command ON CONTROLY), which redirects the control of a script
when an interrupt is issued; eval, which executes a command built from
variables, that is, it forces the current process to interpret any shell
metacharacters before performing the variable substitution; time (com­
pare the VMS command SHOW STATUS), which determines the execu­
tion time and elapsed (wall clock) time of a command or shell script; and
source, which forces the execution of commands or shell scripts by the
parent shell.

onintr

The shell command onintr redirects the flow of a script following a
(CTRL}-C interrupt (compare the VMS command ON CONTROLY).
Interrupt redirection is particularly useful to the VMS user writing cap­
tive command procedures, that is, procedures which do not let the user
escape to the command language interpreter. UNIX captive shell scripts
cannot be created so easily, since the user always has the option to stop
the current process with (CTRL}-Z and fork another copy of the shell.

77.9. 7 onintr 259



form:
VMS
$ ON CONTROLY THEN GOTO LABEL

UNIX
onintr label

$ LABEL:
example: $TYPE TEST.COM

$1 Partial example of interrupt handling

$ ON CONTROLY THEN GOTO END

$ EXIT
$ END:
$ TYPE SYS$OUTPUT -

"Procedure abnormally terminated"
$ EXIT

label:
%cat test-script
# Partial example of interrupt \

handling
onintr end

exit
end:
echo "Script abnormally \

terminated"
exit

J J.9.2

The example illustrates a construct that exits a script: if you issue a
(CTRL)-C interrupt, flow control passes to the statement label end and a
message reporting abnormal termination is displayed.

eval

The built-in C shell command eval has no analogy in VMS. If the VMS
user issues a command, the same process that invoked it executes it,
assuming it is not spawned. UNIX, on the other hand, often forks a child
process to execute the command. Since this child process, forked to
execute a command string defined as a variable by the parent process,
takes each element of the variable literally and not as a command string,
eval forces execution by the parent process, which interprets the com­
mand string correctly.

VMS
example: $ TEST == "DIR! ­

OWNER"
$'TEST'
[files listed here1

UNIX
% set test = "Is -I Igrep root"

%$test
I not found
grep not found
root not found
% eva1$test
-rwxr-xr-x 2 root 2560 Jun 13 11:17 rootfile

In this example, the problem is that the child shell forked to process the
command takes variable substitutions literally; that is, it interprets
metacharacters not as such but as elements of the variable. Thus, the

260 Shell Programming



shell searches for files with the names I, grep, and root, and not for files
in the user's directory owned by root as intended. eval forces execution
by the current (parent) shell, which takes the elements of the variable
as arguments to the command. You can think of eval as taking a string,
converting it into an argument list using spaces as delimiters, and caus­
ing that string to be interpreted by the curent (parent) shell.

J J.9.3 time

The built-in C shell command time (compare the VMS command SHOW
STATUS) reports the time it takes commands and shell scripts to execute.
If no argument is given, time reports the time used by the parent process
and all the child processes it has generated since the beginning of the
terminal session.

VMS
form:
example: $ SHOW STATUS

$@TEST.COM
$SHOW STATUS

UNIX
% time [command)

% time myscript
0.2u 0.1 sO.22 33% 1+2k 1+ 1io 1pf+Ow

7688

o00:41 :56.73
o

VMS
example: $ SHOW STATUS

Status on 2-AUG-198815:30:37.97 Elapsed CPU:
BuH. 1/0: 5216 Cur. ws.: 350 Open files:
Dir. 1/0 : 423 Phys. Mem. 177 Page Faults:

UNIX
%time
2.8u 3.35 20:46 1% 38+40k 38+25io \

55pf+Ow

The example time myscript returns the time it takes to execute the script
file myscript, as follows:

0.2u

O.ls

0.22

330/0

1 +2k

1+lio

1pf+Ow

ominutes and 2 seconds of user CPU time

ominutes and 1 second of system CPU time

ominutes and 22 seconds of wall clock time

33% of the available CPU resources

1k of physical memory + 2k of the memory stack

1 page input + 1 page output to disk (a page equals 512
bytes)

I page faulted in, + 0 pages faulted out

The second example shows the output of time without arguments.

11.9.3 time 261



rr.9.4 source

You can nest scripts by including the name of a script file as a command
line in the current script file. Compare VMS, where @COMMAND_
PROCEDURE is a command line in the current procedure. The shell
running the current script file usually forks a child process with its
own set of characteristics for the nested script to execute in. At the
end of the nested script, control returns to the current script. Any defi­
nitions made by the child process are not passed back to the parent
(compare VMS global definitions, which become part of the parent
command procedure). Preceding the nested script with the built­
in C shell command source prevents the forking of a child process
and forces the current process to perform the execution, so that any
definitions that the nested script makes become active for the current
script.

The following two examples illustrate other important uses of the source
command.

VMS
form: $ @ command-procedure
example: $ @LOGIN.COM
example:

UNIX
% source [-h] scripLfile
% source .cshrc
% source -h history_list

In the first example, source .cshrc invokes definitions for the parent shell
if they have just been made through modification to the .cshrc file. If
source had not been invoked, the user would have had to log out of the
C shell and log back in again for the new definitions to take effect in the
parent process. If .cshrc was excecuted without the source command,
the child process forked to execute the command would make the defi­
nitions, which would immediately be lost when control returned to the
parent process. In the second example, source -h history_list adds a pre­
defined set of commands, contained in the file history_list, to the history
list. You could have created the file history list with the command history
-h 15 > history_list, for example. Note that you may save a specified
number of commands from the history list with the shell command set
savehist n, which retains the last n commands. The history list is saved
in the hidden file .history and automatically made part of the history list
at the beginning of the next terminal session with the command source
-h -I.history, invoked by the shell at startup time.

262 Shell Programming



J J.JO Debugging Shell Scripts

You can debug shell scripts by explicitly invoking the C shell program
with the command csh, using one or more options to execute the script.
The result is similar to using the VMS command SET VERIFY, either prior
to or as part of a command procedure.

VMS
form: $ SET VERIFY

$ @ commancLprocedure
$ 'TYPE TEST.COM
$ DIR/FULL'P1'
$ EXIT
$ SETVERIFY

example: $ @TEST-SCRIPT A
$ DIRIFULLA
[directory listing here]
$ EXIT

example:

UNIX
% csh [option(s)] scriptJile

% cat teSl-script
Is -I $1
exit

% csh -x test...script a
Is -I a
-rwxr-xr-x 1 fred 32 Aug 8 19:19 a
exit
% csh -y tesl-script a
Is -I $1
-rwxr-xr-x 1 fred 32 Aug 8 19:19 a
exit

J J. J J

The construct csh -x tesf-script a echoes the command lines after vari­
able substitution (x option), and csh -v test-script a echoes the command
lines prior to variable substitution (v option). Hence, the x option is use­
ful for locating problems in variable substitution, and the v option is
useful for locating the line on which a script file is failing. The X and V
options (not shown) extend the features of x and v to include the .cshrc
file when you have not used a fast start of the C shell.

Summary

A discussion of three annotated script files summarizes the features pre­
sented in this chapter.

The first script file, run_program, on the basis of the user's response to
a number of questions. creates a script file containing the commands
necessary to run a program called prolsq. The flow of the script depends
on whether the user includes arguments as part of the command line. If
the user specifies no arguments, the system prompts for the appropriate
input.

". 11 Summary 263



UNIX
example: % cat rUlL-program

#!lbin/csh -f '
# run_program: Use symbolic links to associate data files to the program
# PROLSQ and then execute the program.
#
# Display banner message
echo"=========================== ====="
echo" Prolsq Submission Procedure"
K~"================================"
echo" "
if ($1 = = "help") then # redirect flow if help required
goto info
endif
if ($1 .=="") then

echo "Interactive input\ # determine if 1st argument defined
mode•••" # yes: assume all arguments defined

echo" " # no: interactively prompt for arguments
else

echo "Predefined input \
mode..."

echo" "
if ($7 = = "") then # exit if all 7 arguments not defined
echo "Incorrect number of \

arguments"
exit
endif

set card1 = $1 # assign variables to input arguments
set card2 = $2
set card3 = $3
set card4 =$4
set cardS = $5
set card6 = $6
set card7 = $7
goto start-execution # move to execution phase

endif # begin interactive input phase
echo -n "CONTROL DATA FILE «cr> = prolsq.dat):"
set card1 = $< # prompt for each input variable
if ($card 1 = = "") then # and assign it olering a default

set card1 = "prolsq.dat"
endif
echo -n "INPUT RESTRAINTS FILE «cr> = atmdst.dat):"
set card2 = $< # repeat for remaining 6 arguments
if ($card2 = = "") then

set card2 ="atmdst.dat"
endif
echo -n "INPUT SHIFTS FILE «cr> = shift.in):"
set card3 = $<
if ($card3 =="") then

set card3 = "shift.in"

264 Shell Programming



default prolsq.dat"
default atmdst.dat"
default shifts.in"
default shifts.out"
default newrefs.dat"
defc:ault fofc.out"

# run program giving the
# execution time
# output is written to
# stdout

(unit 5)
(unitlO)
(unitl5)
(unit16)
(unit20)
(unit31)

"Prolsq arguments:"
"argv(l) control data file
"argv(2) input coordinates
"argv(3) input shifts
"argv(4) output shifts
"argv(5) reflection list
"argv(6) structure factor output

# helpful information
info:
echo" "
echo
echo
echo
echo
echo
echo
echo

exit

endif
echo -n "OUTPUT SHIFTS FILE «cr> = shift.out):"

set card4 = $<
if ($card4 =="") then

set card4 = "shift.out"
endif
echo -n "REFLECTION INPUT FILE (cr) = prolsq.hkl)
set card5 = $<
if ($card5 = = "") then

set card5 = "prolsq.hkl"
endif
echo -n "STRUCTURE FACTOR OUTPUT FILE (cr) = prolsq.fofc)"

set card6 =$<
if ($card6 = = "") then

set card6 = "prolsq.fofc"
endif
echo -n "COORDINATE OUTPUT FILE (cr) = prolsq.outxyz):"

set card7 = $<
if ($card7 =="") then

set card7 = "prolsq.outxyz"
endif
#
start_execution:
# write all program parameters to a script file rUILprolsq.scr
echo"#" > rUILprolsq.scr # open rUlLprolsq.scr
echo"cd $cwd" > > rulLprolsq.scr # append to rUlLprolsq.scr
echo "In -5 $card2 fort.10" > >rulLprolsq.scr
echo "In -5 $card3 fort.15" > > rUILprolsq.scr
echo "In -5 $card4 fort.16" > > rUILprolsq.scr
echo "In -5 $card5 fort.20" > run_prolsq.scr
echo "In -5 $card6 fort.31" > > rUILprolsq.scr
echo "In -s $card7 fort.32" » rUlLprolsq.scr
echo "In -s /stripe/idisk fort.3" > > rUILprolsq.scr
echo "In -s /stripe/idisk fort.4" » rUlLprolsq.scr
echo "time prolsq.exe < $cardl" > > rUlLprolsq.scr # stdin defined by
$cardl
rUlLprolsq.scr

11. 11 Summary 265



echo "argv(7) coordinate output (unit32) default xyz.out"
echo" "
echo "NB idisk (unit3) and idisk (unit4) are scratch files wrinen and"
echo" read in a stripe partition i.e. simultaneously writes to 2"
echo " file systems"
exit

First, run_program tests for input arguments. If the first argument is
"help", control passes to the statement label info, which displays infor­
mation on running the script, and then exits. If the first argument is not
defined as "help", the script assumes that all arguments have been
defined on the command line and that interactive prompting is not
required. Flow passes to a statement that checks whether all seven
required arguments have been specified. If they have, control passes to
the statement label start_execution. Ifall seven arguments have not been
defined, the script terminates with an error message. If no arguments
have been specified, the script prompts the user for the appropriate
input, offering default responses.

Once the variables cardl through card7 have been defined in a script
file, rUlLprolsq.scr is generated, containing the appropriate symbolic
links to associate data files with FORTRAN unit numbers.5 The program
prolsq.exe then executes with the time command providing timing infor­
mation; any program output is sent to stdout, the terminal.

The second example, menu-script, illustrates the use of a menu interface
to access a simple database consisting of a number of files. Each file in
the database contains a field called a recognition code at the end of each
record, which is part of the name of the file. Each menu option that
accepts a recognition code uses that code to point to one or more files.

UNIX
example: %cat menu-script

#!/bin/csh ·f
#==================================
# menu-script: simple menu ~riven data~ase lookup
#=======================:====~=====
#

. #

5. How data files are associated with FORTRAN unit numbers depends on the ver­
sion of UNIX and the version of the FORTRAN compiler (see Section 10.1).

266 Shell Programming



# return to menu

# branch to option

# user enters option here

# on interrupt return to menu

I list identity of the database"
o list a directory of the database contents"
SO search the directory listing for keywords"
SF search full database for keywords"
T list a database entry at the terminal"
C copy database entry with possible format conversion"
Q quit the database"

# account for upper and
# and lowercase user response

This database is the April 1986 release"
i:
echo"
#
goto menu
#
# directory option - display a file summarizing all database entries
#
0:
d:
echo" Type (CTRL)-C to return to menu"
echo" "
echo" Use the 4 character recognition code at the end of each entry"
echo" to address entries with subsequent menu options"
# The file directory contains header information for each file in the
# directory and was created with the command head -4 .~dat > > directory
#
cat directory
goto m"enu
#
# search directory for keywords using grep - records returned contain
# filename from where they were originally extracted with the head command
#
SO:

# retain original directory pointer and move to database directory
pushd /data1/pdb
# present banner
echo" cuhhca Brookhaven Database Utility Program 'date "
# ' (back quote) causes immediate execution of the date command
# to return the time the script was invoked
#
onintr menu
menu:
echo" " # present menu of options
echo" The following options are available:"
echo" "
echo"
echo"
echo"
echo"
echo"
echo"
echo"
echo" "
echo -n "Option> "
set command = $<
goto $command
#
# identity option - describes latest database update
#
I:

11.11 Summary 267



sd:
echo" "
echo -n "keyword(s).- "
set string = $<
grep -i "$string" directory # disregard case or string (i)
goto menu
#
# search all files for string N.B. this is much slower than
# searching the file directory and should be used only after
# the search directory option has failed to return useful
# information
#
sf:
SF:
echo -n "Keyword(s):-"
set string = $<
grep -i$string *.dat # search all data files
gotomenu
#
# list a database entry
# <

T:
t:
echo -n "Enter recognition code:-" # code obtained from a search option
set entry = $<
cat 'entry'
goto menu
#
# Copy entry - calls a program format.exe which will format a
# database entry suitable for editing. The user is
# prompted for the output file anet appropriate symbolic links
# established for the input file (database entry) and output file
# (user file) .
#
C:
c:
echo -n.'~Ei1ter recognition code:- "
settemp_filein = $<:
set;filein = 'ldatallpdb/p.db'$ternp...filein
echo -n"Filename feu output coordinates [/group/userlfile]: "
set fllequt' = $<
In ..s,$filein fort.l
In "5 $filequt fort~2
format•.exe
rm fort;. # remove symbolic links
goto menu
#
#FINITO ;".gracefuIJyexif the script from the m.enu
#
Q:

268 Shell Programming



q:
echo" Exit Brookhaven database utility program 'date'"
popd # return user to original directory
exit

The script file menu-script presents a menu of options to the user. The
user's response to the option list directs flow control. The script retains
the present working directory for later recovery using pushd and popd.
Files are searched with grep for strings specified by the user, entries are
typed with cat, or the program program.exe is executed, performing a
format conversion specified by the user.

In the last example, which locates the path to any commands given as
arguments provided the path is in the user's path list. which is useful for
finding the directory where a system program or user program resides.
This example comes directly from the BSD version of UNIX, with addi­
tional comments for clarity.

UNIX
example: % cat letc/ucb/which

#l/bin/csh -f
# fast start of the C shell
#
# @(#)which.csh 4.2 (Berkeley) 83/02/14
#
# which : locate the path to a command i.e. what directory it is in
#
set prompt # pretend this shell is interactive \

-strike
set path2 = SPATH # save PATH in case it gets changed in \

.cshrc
. # if .cshrc exists, execute it in the current shell to establish

# any aliases
if ( -e -I.cshrc ) source -I.cshrc
setenv PATH $path2 # restore PATH
# 'prevent variable name expansion
set noglob
#
# loop for each argument (i.e. command) given
#
foreach arg ( $orgv )
set alius = 'alias $arg' # determine if the argument is an alias
switch ( S#alius ) # 0 = no ; 1 = yes
case 0 : # if so use the first real command \

name

11.11 Summary 269



breaksw
case 1 :

set arg = $alius[l]
breaksw

default:
echo ${arg}: " " aliased to $alius
continue

endsw
unset found
if ( $arg:h 1= $arg:t ) then

if ( -e $arg ) then
echo $arg

else
echo $arg not found

endif
continue

# if a path is specified
# if file exists in current directory

else
foreach i ( $path) .
if ( -x $i/$org && l-d $i/$org \

) then
echo $i/$org

set found
break
endif

end
endif
if ( ! $?found ) then

echo no $arg in Spath
endif
end

# only command name given
~ # check for existence in each element \

of path

# found exists

# if found does not exist

The which BSD command script accepts multiple arguments (in this case
commands). For each argument, which determines whether that com­
mand is an alias. If so, it uses the standard command name to determine
the path. which then determines whether a path has been included as
part of the argument. If so, the script determines whether the file exists
in the directory specified (that is, it functions like the Is command) and
then exits. If a path is not specified, foreach is used to check each direc­
tory in the path list. If the command is found, is not a directory, and is
executable, the path is reported and the script exits or checks the next
argument supplied. If, on the other hand, after exhausting the path list,
the command is not found, that fact is reported and the script exits or
checks the next argument.

270 Shell Programming



Chapter 12

Text Processing

l



It is always good
When a man [or woman] has fwo irons in the fire.

Francis Beaumont and John Fletcher

This chapter discusses the standard UNIX text processing tools avail­
able to users familiar with VMS DSR (Digital Standard RunofO. ' UNIX
has a number of powerful text processing tools which require program­
ming skills to fully utilize, and which therefore may appear bewildering
to the novice (see Table 12.1). We will restrict our discussion to UNIX
features that perform simple text processing approximately equivalent
to VMS DSR. Users who are already familiar with VMS DSR and who
need to create a formatted document on a UNIX system will find this
chapter useful.

VMS DSR and UNIX text processing tools both require embedded flags
in the text to specify the formatting features. Today, many users regard
this requirement as arcane, for two reasons. 2 First, text processing on
personal computers has introduced many easy-to-use software products.
Second, these products are "interactive": changes to the format of the
document occur as you add or delete text. You do not have to make
changes to the text with an editor, modify the text processing flags, pro­
cess the document with the text processor, and then review the results.
Although true WYSIWYG (What You See Is What You Get) software­
the exact representation on the terminal screen of what you get on
paper-is rare (some say nonexistent), many hardware and software
combinations come close. The Apple Macintosh running anyone of a
number of software packages (for example, PageMaker) is of course a
good example. True WYSIWYG requires a bit-map terminal capable of
displaying a whole page using exactly the same fonts available to the
printer. These features are available on some of today's workstations.

Many third-party software vendors, along with Digital Equipment Cor­
poration, have addressed the needs of VMS users for interactive text

1. We define text processing as the manipulation of text to produce a document in
a desired format. We make no attempt to distinguish among the features that char­
acterize word processing, desktop publishing, and typesetting.

2. Text processing is another example of a religious war that rages over which is the
best piece of software: users of Tex and SCRIBE are likely to disagree with this state­
ment.

272 Text Processing



Table 12.1 UNIX Text Processing Tools

Tool

Basic Tools
nroR

troff

ditroff

Macros
ms

mm

me

Preprocessors
eqn

pic
refer

tbl

Function

Basic text formatting tool
Extension of nroR to support typesetting and laser

printers
Device-independent troff

Distributed with UNIX Version 7 and BSD
Distributed with System V
Newer version available mainly with BSD

Formats mathematical equations
Simple line drawing
Bibliography generation
Table processing

processing tools; this book was written with one of them. These tools
are usually a compromise between VMS DSR and true WYSIWYG. The
compromise is necessary to accommodate the disparity between the lim­
ited features of most terminals and the high-resolution, multiple-font
laser printers attached to many VAx/VMS computers. For example,
you can perform interactive text filling and centering, but you must still
indicate font changes with embedded flags. There are fewer interactive
text processing products available for UNIX, but this situation is chang­
ing as UNIX gains acceptance in the commercial sector.

Given the availability of easy-to-use, interactive text processing tools,
why bother with UNIX text processing tools at all? The answer is two­
fold. First, like VMS DSR, since the tools are part of the operating sys­
tem you can use them at no additional cost. Second, because UNIX can
function on a variety of hardware types, you can produce the same for­
matted document on any hardware that supports UNIX. The man pages
exemplify this fact. They are distributed as unformatted files: when you
invoke the man command, it formats the man page for display using the
standard UNIX text processing tools. Hence, you can easily write or
modify a man page and display it in the same format on any computer
that supports UNIX (see Section 12.4).

Text Processing 273



12.1 What Are the Tools?

What tools does UNIX offer for text processing? The first tool was roff
(runoff, abbreviated in the customary UNIX manner). This tool was
extended and became nroff (new runoff). One version of nroff was fur­
ther extended to support a typesetter. This new tool is known as troff
(typesetter runoff), and supports proportional spacing, multiple fonts,
and the like. Today, versions oftroff have been extended to support laser
and other printers possessing many of the features of a typesetting sys­
tem. These versions often go by different names; for example, iroff des­
ignates troff support for the Imagen laser printer series, and ditroff
(device-independent typesetter runoff), available on some systems,
consolidates the different versions of troff intended for use on differ­
ent output devices. Finally, psroff supports PostScript-compatible
printers.

The major difference between froff and VMS DSR is its use of macros
and preprocessors. A macro is called by a single flag yet imposes a num­
ber of formatting features. Calls to macros are denoted by flags in upper­
case, in contrast to the lowercase flags used for single formatting fea­
tures. You may customize the troff macros to suit your own needs or
write your own macros. Of course, there may be more than one macro
package available on a given UNIX system: ms was the first; mm
extends the features of ms and is distributed with UNIX System V; and
me comes with BSD and offers some of the capabilities of ms and mm
plus some of its own, for example a simple index generator.

Preprocessors simplify specialized tasks by generating the appropriate
troff commands for parts of a document: refer assists in producing bib­
liographies; pic produces line drawings; fbi produces tables; and eqn
simplifies the processing of mathematical equations. Preprocessors use
pipes: the preprocessor pipes output to froff for subsequent processing.

This chapter is not intended as an in-depth discussion of UNIX text
processing tools; for example, we do not discuss the preprocessors.
Refer to Appendix D for citations of several good texts. Rather, this
chapter provides a cross-reference table between VMS DSR and troff
flags to help the VMS user either porting VMS DSR documents to
UNIX or writing new documents get started. Users familiar with DSR
should read this chapter first and then turn to the UNIX text processing
documentation as they write their first troff/nroff documents. The cross­
reference table should continue to be a useful reference.

274 Text Processing



72.2 froN and DSR Compared

Table 12.2 cross-references the VMS DSR flags and embedded com­
mands with the commonly used traH/nraH commands and macro.
Important similarities and differences between them include the follow­
ing:

• Both traH and DSR use global and embedded commands. Global
commands in both utilities begin with a period appearing as the first
character of a line which contains only the command. Embedded
commands can be located anywhere in the text; embedded traH
commands begin with \.

• traH provides more built-in formatting features than DSR. That is,
without specifying global or embedded commands, traH sets default
values for many options. These values depend on which macro
package you are using, if any.

• traH uses both uppercase and lowercase commands. Lowercase
means a traH command; uppercase means a macro command. Com­
mands contained in the ms macro package do not necessarily follow
these rules.

• traH macros are a powerful feature not available with DSR,
although you can achieve some of their functionality with the DSR
.REQUIRE command. For example, you can keep a letterhead you
wish to use in a variety of correspondence in the file HEAD.RNO,
and then include it in a variety of DSR documents with .REQUIRE
HEAD.RNO. The traH user would define a macro, perhaps con­
tained in a file with many other macros, as follows:

.de HE
[letterhead here]

The command .HE would include the letterhead in a new document.

An important difference between a traH macro and the DSR
.REQUIRE command is that you can pass variables to a macro but
not to a file included with the .REQUIRE command. For example, if
the HE macro were used by all personnel in a company, their indi­
vidual names could be used as follows:

.de HE
\\$1
[letterhead here]

12.2 froff and DSR Compared 275



Table 12.2 Comparison of VMS DSR and UNIX Text Processing

VMS DSR

Page Formatting Commands
.[NO]AUTOSUBTITLE
.[NO]DATE

.DISPLAY NUMBER

.DISPLAY SUBPAGE

.[END]SUBPAGE

.FIRST TITLE

.[NO]HEADERS

.HEADERS UPPER

.HEADERS LOWER

.HEADERS MIXED

.LAYOUT

.[NO]NUMBER PAGE

.NUMBER SUBPAGE

.NUMBER RUNNING

.PAGE SIZE

.[NO]PAGING

.[NO]SUBTITLE

.TITLE

276 Text Processing

UNIX

.OH'L'C'R'

.EH'L'C'R'

.OF'L'C'R'

.EF'L'C'R

.LH .CH .RH

.LF .CF .RF

.nf

.pn

.FM

.HM

.PO

.LL

.pl

Function

Disable/enable automatic subtitling

Disable/enable date in running
headings

Format for page numbering
Format for subpage numbering

End/begin new page format

Include title on first page

Disable/enable page headings
o = odd page; E = even page

H = header; F = footer

L = left title; C = center; R =
right

The heading word page appears as
PAGE

The heading word page appears as
page

The heading word page appears as
Page

Define layout for headers and
footers

Disable/enable page numbering

New sequence of subpage numbers
New sequence of page numbers
Set the page size
FM = footer margin; HM = header

margin

PO = page offset; LL = line length

Page length
Disable/enable paging

Disable/enable subtitle for page
headings

Specify title for running headings



Table 12.2 Comparison of VMS DSR and UNIX Text Processing (continued)

VMS DSR

Text Formatting Commands
.[NO]AUTOJUSTIFY
.[NO]AUTOPARAGRAPH
.[NO]AUTOTABLE

.[BEGIN/END] BAR

.[EN/DIS]ABLE BAR

.BLANK

.[EN/DIS]ABLE BOLDING

.BREAK

.CENTER

.DISPLAY ELEMENTS

.FIGURE

.[NO]FILL

.[END] FOOTNOTE

.[EN/DIS]ABLE HYPHEN

.INDENT

.[NO]JUSTIFY

.[NO]KEEP

UNIX

.2C/.1C

.vs

.11

.sp

.bd

.br

.ce

.ne/.sp

.nf/.fi

.DS/.DE

.DS L/.DE

.DS C/.DE

.DS B/.DE

.CD/.DE

.LD/.DE

.ID/.DE

.FS/.FE

.ny/.nh
\%word
.ti
.na/.ad

Function

Tw%ne column format: CW =
column width; GW = gutter
width

Vertical spacing

Line length

Automatic right margin justification
Automatic paragraphing

Opposite effect of
AUTOPARAGRAPH

Begin/end vertical bar as first
character

Enable/disable vertical bars

Insert blank lines

Enable/disable bolding
Temporarily disable filling and

justification
Center line of text
Format of list items
Leave space for a figure

No fill/fill lines with text

No fill and .KS
As above, but start flush left
As above, but line-by-line center

As above, but centered until turned
off

No fill, each line centered, no .KS
No fill, flush left, no .KS
No fill, indented, no .KS
Start/end footnote
Enable/disable hyphenation
Disable hyphenation of word

First line following indented
Disable/enable right justification

Disable/enable keeping of blank
lines

12.2 froff and DSR Compared 277



Table 12.2 Comparison of VMS DSR and UNIX Text Processing (continued)

VMS DSR UNIX

.LEFT MARGIN .RS/.RE

.[ENO] LIST

.LlST ELEMENT

.[ENO] LITERAL \e

.NUMBER LIST

.[END] NOTE

.[EN/OIS]ABLE OVERSTRIKING .bd

.PAGE .bp

.PARAGRAPH .PP
.LP

.IP

.QP

.XP
.[NO]PERIOD

.RIGHT

.RIGHT MARGIN .11

.SET PARAGRAPH .PI/.PO

.SKIP

.SPACING

.TAB STOPS

.TEST PAGE

.[EN/OIS]ABLE UNDERLINING

278 Text Processing

.Is

.vs

.ta

.ne

.KS/.KE

.KF/.KE

.EQ/.EN

Function

Set/unset left margin

Delimit a list

Denote first item in a list

End/start literal presentation of text

Start numbering list elements

Delimit text as a note

Enable/disable overstriking of text

Force a new page

Invoke paragraph parameters

PP = normal indent; LP = no
indent;

IP = all lines indent

QP = indent left and right

XP = exdent (bibliography)

Control spaces after certain
punctuation

Position text relative to right
margin

Set right margin

Set paragraph parameters

PI = set paragraph indent.

PO = set space between
paragraphs

Skip number of lines according to
spacing

Space between lines of text

Change position of tab stops

Test to see if block of text will fit
page

Start/end keep (block of test on one
page), leave partial page blank

As above but fill to end of page,
placing block at start of new page

Enable/disable underlining

Begin/end equation



Table 12.2 Comparison of VMS DSR and UNIX Text Processing (continued)

VMS DSR

Section Formatting
.APPENDIX
.CHAPTER
.DISPLAY APPENDIX

.DISPLAY CHAPTER

.DISPLAY LEVELS

.ENTRY

.[NO]FLAGS INDEX

.[NO]FLAGS SUBINDEX

.HEADER LEVEL

.INDEX

.[EN/DIS]ABLE INDEXING

.NUMBER APPENDIX

.NUMBER CHAPTER

.NUMBER LEVEL

.SENDTOC

.SET LEVEL

.STYLE HEADERS

.[EN/DIS]ABLE TOC

.X[LOWER/UPPER]

UNIX

.NHn

.SH

.XS/.XE

.PX

.AB/AE

.AI

.AE

Function

Denotes start of an appendix
Denotes start of a chapter
Specify form of appendix

numbering
Specify form of chapter numbering
Specify form of sequential

numbering
Create index entry without page

number
Disable/enable index recognition

character
Disable/enable subindex

recognition character
Specify header level
NH = next header; SH =

subheader
Create index entry with page

number
Enable/disable indexing
Beginning letter of appendix
Beginning number of chapter
Beginning number of sequence of

headers
Send DSR commands to table of

contents
Preset section headers
Set format of headers
Enable/disable table of contents
Control case of index entries
Delimit table of contents entry
Display table of contents
Begin/end abstract
Specify author's institution
Specify author

12.2 froff and DSR Compared 279



Table 12.2 Comparison of VMS DSR and UNIX Text Processing (continued)

VMS DSR

Font Specifications

Accent Marks

Flag Recognition Commands
.[NO]FLAGS ACCEPT

.[NO]FLAGS ALL

.[NO]FLAGS BOLD

.[NO]FLAGS BREAK

.[NO]FLAGS CAPITALIZE

.[NO]FLAGS COMMENT

.[NO]FLAGS HYPHENATE

280 Text Processing

UNIX

.ft

.fp

.ps n

\sn

\fn

.SM

.LG

.NL

.R

.I

.B

\*e

\*"0

\*Cc

\*:u

\*'e

\*-n

\*.c

Function

Change font

Mount font

Set point size: n = absolute; - n =
decrease by n; +n = increase
by n

In-line point size change: n as
above; \sO = restore previous
point size

In-line font change: n = I plain;
n = 2 italics; n = 3 bold

Decrease point size by 2

Increase point size by 2

Reset point size

Roman font

Italic

Bold

Acute

Circumflex

Hacek

Umlaut

Grave

Tilde

Cedilla

Disable/enable accept flag
recognition

Disable/enable all flags

Disable/enable bold flag recognition

Disable/enable break flag
recognition

Disable/enable capitalize flag
recognition

Disable/enable comment flag
recognition

Disable/enable hyphenation flag
recognition



Table 12.2 Comparison of VMS DSR and UNIX Text Processing (continued)

VMS DSR

.[NO]FLAGS LOWERCASE

.[NO]FLAGS OVERSTRIKE

.[NO]FLAGS PERIOD

.[NO]FLAGS SPACE

.[NO]FLAGS SUBSTITUTE

.[NO]FLAGS UNDERLINE

.[NO]FLAGS UPPERCASE

M;scel/aneous
.[NO]CONTROL CHARACTERS

.IF, .IFNOT, .ELSE, .ENDIF.

.NOSPACE

.REPEAT

.REQUIRE

.SET DATE

.SETTIME

.VARIABLE

Flags

*

<

=
>
\

UNIX

\e

.B

.hw

\%

Function

Disable/enable lowercase flag
recognition

Disable/enable overstrike flag
recognition

Disable/enable period flag
recognition

Disable/enable space flag
recognition

Disable/enable substitute flag
recognition

Disable/enable underline flag
recognition

Disable/enable uppercase flag
recognition

Accept control characters as
normal characters

Conditional commands to control
processing

Prevent the end of line space

Repeat character specified number
of times

Include another DSR file in output
Permit date substitution
Permit time substitution
Used with the IF[NOT] block

Treat next character literally
Make next character bold
Break word here if at end of line
Capitalize all characters in next

word
Begin comment
Start command
Allow hyphenation of word here
Index or subindex next word
Make next character lowercase

12.2 froff and DSR Compared 281



Table 12.2 Comparison of VMS DSR and UNIX Text Processing (continuedj

VMS DSR

+

#

$

&

Macro Commands

UNIX

\0

.OA [date]

.NO

.ul

.cu

%

.de xx yy

.am xx yy

.ds xx string

.as xx string

.rm xx

.rn xx yy

.emxx

Function

Overstrike previous character with
next character

Insert extra interword space after
character

Insert unexpandable space
Insert date or time
OA = date at bottom of page;

NO = disable OA
Underline next character
Continuous underline
Make next character uppercase
Substitute page number

Define or redefine macro xx; end at
yy (default ..)

Append to a macro
Define xx containing string
Append string to xx

Remove request, macro, or string
xx

Rename request, macro, or string
xx to yy

End macro is xx

The command .HE "Phil Bourne" includes my name as the first line
of the letterhead, for my name is equated to the first argument ($1)
to the macro. Note that if the argument to be passed to the macro is
more than one word long, you must enclose it in quotes. Note also
that you could pass further arguments to the macro as \\$2, \\$3,
and so on. The \\ is required: the first backslash defines an embed­
ded command, and the second backslash insures that the argument
is interpreted when the line is interpreted by troU, and not when
you define it.

• You can modify the effects of commands by flags in DSR and by
number and string registers in troff. To modify the value of a num­
ber register, use the .nr command. For example,

282 Text Processing



72.3

.nr HM 4.5i

.nr FM 2i

.Rr PO 3.25i

.nr LL 4i

adjusts the default page size, which is approximately a I-inch bor­
der all around on an 81/2 by II-inch page, to the following: a header
margin (HM) of 4.5 inches; footer margin (FM) of 2 inches; page off­
set (PO) or left margin of 3.25 inches; and line length (LL) of 4
inches. To modify the value of a string register, use the .ds com­
mand:

.ds CH

.ds CF Page %

First, the center header (CH) string is cleared by setting it to a null
string, and then the center footer (CF) is set to the string Page fol­
lowed by the page number (%).

• Both troH and DSR allow you to follow some commands with an
optional argument. For example, in DSR, .sp2 indicates that two
lines should be left blank. The corresponding troH command is .sp
2. Note that you must leave a space between the command and the
argument.

• Some troH commands are in effect only for the current line. Refer
to the discussion of bolding (.B) in Section 12.4 for an example.

DSR supports only Digital Equipment Corporation printers,
whereas troH supports printers from various manufacturers.

• You declare the printer you are using with troH on the troH com­
mand line; nothing within the document relates it to a specific
printer. Hence, you can easily print the same document on a vari­
ety of printers. Of course, the appearance of the document may
vary depending on the characteristics of each printer. Commands
not recognized by a specific printer are ignored.

• troH permits explicit indications of character size, line spacing, and
related characteristics in a variety of units, as you would expect of
a typesetting program.

troH/nroHArguments and Options

The arguments and options used with troH or nroH may depend on the
printer you are using. In these examples, the output is sent to stdout,
the terminal screen.

12.3 troH/nroHArguments and Options 283



VMS
form: $ RUNOFF[/OPTION(S)] DSR _file

example: $ RUNOFF/PAGE="1,3,11:19" MYDOC.RNO
example:

UNIX
% nroff [-option(s)] [file(s)]
% troff [-option(s)] [file(s)]
% troff -01,3,11-19 mydoc
% nroff -man lusr/man/\

man1/cat.1 \
I ul I more -s -f

12.4

In the first example, troff -01,3,11-19 mydoc formats pages I, 3, and II
through 19 (0 option). In the second example, nroff -man /u5r/man/
manl/cat.l Iull more -5 -f has the same effect as the command man cat.
man (the m option followed by an) invokes the macro package an, writ­
ten specifically for the man pages. Like all macro packages, it resides in
the directory /u5r/lib/tmac. You can produce your own man pages, as
the example of UNIX text processing below shows. The file /u5r/man/
manl/cat.l contains the unformatted man page for the cat command, as
discussed in Section 3.5. The output from nroff is piped to the ul (under­
line) command; ul decides whether to underline the output by looking at
the environment variable TERM and matching it to the /etc/termcap
entry to see if the terminal supports underlining (see Section 3.1). The
output of ul is piped to more -5 -f (compare the VMS command TYPE/
PAGE), which displays the formatted (possibly underlined) text, pausing
after each screen. The 5 option compresses multiple blank lines. The f
option filters out escape sequences that nroH generates and that are not
part of the document, but that control specific printers.

Summary

The following simple example summarizes this overview of UNIX text­
processing tools. This example shows the unformatted man page for the
cat command, and then the output after formatting by the man com­
mand. Using this example as a template, you should be able to create
your own formatted man pages.

UNIX
example: % cat lusr/man/manllcat.l

.TH cat 1

.SH name
cat \- concatenate and print
.SH SYNTAX
.B cat
[

284 Text Processing



.B \-b
] [
.B \-e
] [
.B \-n
] [
.B \-s
] [
.B \-t
] [
.B \-u
] [
.B \-v
]
file•••
•br
.SH DESCRIPTION
The
.PN cat
command reads each
.I file
in sequence and displays it on the standard output. Thus
.PP
.ti+15n
cat file
.PP
displays the file on the standard output, and
.PP
.ti +15n
cat file1 file2 >61e3
.PP
concatenates the first two files and places the result on the third•
•PP .
If no input file is given, or if the argument '\-' is encountered.:.
•PN cat
reads from the standard input file.
Output is buHered in 1024-byte blocks unless the standard
output is a terminal, in which case it is line buHered•
•PP
The
.B \-b
option ignores blank lines and precedes all other output with
line numbers•
•PP
The
.B \-e
option displays a dollar sign ($) at the end of e~ch output
line•
•PP
The
.B \-n

12.4 Summary 285



option precedes all output lines (including blank lines) with
line numbers.
•PP
The
.B \-s
option squeezes adiacent empty lines so that the
output is displayed single spaced•
•PP
The
.B \-t
option displays all non-printing characters including tabs
in the output.
In addition to those representations used with the
.B \-v
option, all tab characters are displayed as -I•
•PP
The
.B \-u
option makes the output completely unbuHered
.PP
The
.B \-v
option displays non-printing characters (except tabs)
.CTx
(control character x) prints as-X
The delete character
(octal 0177) prints as -1.
Non-ascii characters (with the high bit set) are printed as M­
(for meta) followed by the character of the low 7 bits•
•PP
.SH RESTRICTIONS
Beware of 'cat a b >a' and 'cat a b >b', which destroy
the input files before reading them•
•SH "SEE ALSO"
cp(l), ex(l), more(l), pr(l), tail(l)

example: % man cat cat(l)
NAME

cat - concatenate and print
SYNTAX

cat [ -b ] [ -e ] [ -n ] [ -s] [ -t] [ -u ] [ -y ] file•••
DESCRIPTION

The cat command reads each file in sequence and displays it
on the standard output. Thus

cat file
displays the file on the standard output, and

cat filel file2 >file3
concatenates the first two 'files and places the result on
the third.
If no input file is given, or if the argument '-' is encoun­
tered, cat reads from the standard input file. Output is

286 Text Processing



buHered in 1024-byte blocks unless the standard output is a
terminal, in which case it is line-buHered.
The -b option ignores blank lines and precedes all other
output with line numbers.
The -e option displays a dollar sign ($) at the end of each
output line
The -n option precedes all output lines (including blank
lines) with line numbers
The -s option squeezes adiacent empty lines so that the out­
put is displayed single spaced.
The -t option displays all non-printing characters including
tabs in the output. In addition to those representations
used with the -v option, all tab characters are displayed as
-I.
The -u option makes the output completely unbuHered.
The -v option displays non-printing characters (except
tabs). (CTRLlx) (control character x) prints as -X. The
delete character (octal 0177) prints as -? Non-ascii char­
acters (with the high bit set) are printed as M- (for meta)
followed by the character of the low 7 bits.

RESTRICTIONS
Beware of 'cat a b >a' and 'cat a b >b', which destroy the
input files before reading them.

SEE ALSO
cp(l), ex(l), more(l), pr(l), tail(l)

In the first example, cat /usr/man/man1/cat.1 displays the unformatted
man page. In the second example, mat cat displays the familiar format
of the man page. Let us reconcile some of the flags and embedded com­
mands with the results they produce:

•TH
\

.8

.br

.SH

.PN

.I

.PP

.ti+15n

Title formatted according to a macro.

Treat next character literally, not as a formatting
command

Bold till end of line reached

Break
Subheading

Alternate font, ignored by most terminals

Italics, ignored by most terminals
Invoke paragraph parameters

Temporary indent, standard indent + 15 spaces

These few commands should be enough to show you how to produce
your own simple man pages.

12.4 Summary 287



Chapter 73

~
\

Processor-to-Processor
Communications .



Ti,e new electronic independence recreates the world in the image ofaglobal
village.

Marshall McLuhan

The days of a single central mainframe computer accessible only to the
anointed behind glass walls are over. The 1980s have seen a movement
towards distributed processing, brought about by the availability of less
expensive yet powerful minicomputer systems, personal computers,
and, more recently, single-user workstations. This trend is expected to
continue, resulting in the further expansion of computer networks to
connect processors of different types offered by many vendors.

In the environment shaped by this trend, the UNIX user will have occa­
sion to perform tasks on two or more processors simultaneously. This
chapter identifies those tasks and describes the command required to
perform them. Unfortunately, the procedure is not a comparatively sim­
ple matter of defining a single command for each task: the commands
vary according to the type of connection existing between the UNIX
computers and the type of access permitted by the system administrator
of each computer. For the purposes of this discussion, we consider two
types of connections:

I. Network, a fast connection using dedicated wiring that permits
interactive communication, called Internet.'

2. Modem, a slow connection using telephone lines, in which tasks are
often queued for transmission by means of the UNIX UUCP utility.

To further complicate the situation, the commands used in network com­
munications are subdivided according to whether the connection is to a
UNIX trusted or non-trusted host. The VMS analogue to a UNIX
trusted 'host is a proxy login. To perform a task on another VAx/VMS
computer, VMS users issue a given command whether they have a proxy
login or not. The VMS user provides username and password informa­
tion for the other computer only if a proxy login is not available. For
example, to copy a VMS file to another VAX/VMS computer, the user
invokes the COPY command and provides username and password
information in the instance of a non-proxy login but no username and
password information in the case of a proxy login. UNIX users issue

1. The terms network connection and Internet are used interchangeably throughout
this chopter.

Processor-to-Processor Communications 289



completely different commands depending on whether file copying
occurs between trusted or non-trusted hosts: rep between trusted hosts,
and ftp between non-trusted hosts. The syntax used by these two com­
mands is different. rep resembles the ep command for local file copying
(see Sections 4.9 and 9.3.1), whereas ftp uses a syntax different from
anything we have encountered before. Hence, copying to a trusted host
simplifies file transfer because there is no new syntax to remember. The
disadvantage of communicating with trusted hosts is that the security of
a user's files may be more easily compromised than when communicat­
ing with non-trusted hosts. As we shall see, if an intruder gains access
to a user's files on one computer, it is a simple matter to gain access to
that same user's files on any trusted host computer.

This chapter is organized into two major divisions based on the type of
connection between the host computers: Section 13.2 covers network
connections and Section 13.3 covers modem connections. Each of these
two divisions is further subdivided based on task. Table 13.1 summa­
rizes these tasks and indicates the section of the chapter where you can
find additional information.

The tasks of remote login, file transfer, and sending mail require no fur­
ther clarification. Remote command execution involves issuing a com­
mand on one computer for execution on another computer. Remote file
access involves transparently accessing files located on a remote com­
puter as if those files were located on the local computer. Experienced
DECnet users should note that task-to-task communications, whereby a
program on one node interacts directly with a program on another node,
is beyond the scope of this book. Refer to the reading list in Appendix
o for further information on task-to-task communications.

Several features of processor-to-processor communication, not neces­
sarily obvious from Table 13.1, need to be understood from the outset:

• The commands uuep, uusend, and uux are part of the UUCP (UNIX
to UNIX CoPy) utility for performing tasks between local and
remote hosts. tip and eu are separate programs that may use the
same modems as UUCP to dial remote hosts on which they can
conduct terminal sessions.

• Tasks based on network connections use r, or remote, commands­
rep, rlogin, and rsh-for trusted hosts, and telnet and ftp for non­
trusted hosts.

290 Processor-to-Processor Communicotions



Table 13.1 Commands Used for Communication Between UNIX Hosts

Network

Task Trusted Host Non-Trusted Host Modem

Remote login rlogin (13.2.4.1)1 telnet (13.2.4.2) tip/cu (13.3.3)

File transfer rep (13.2.6.1)1 ftp (13.2.6.2) uucp/uusend (13.3.5)

Sending mail mail (13.2.5) mail (13.2.5) mail (13.2.5)

Remote command rsh (13.2.7) uux (13.3.6)
execution

Remote file NFS (13.2.8)2 NFS (13.2.8)2
access

1. telnet and ftp can also be used on trusted hosts, but rlogin and rep simplify
usage.
2. NFS is not a command but a protocol that permits access to remote file
systems with standard UNIX commands.

• Sending mail to users on other computers employs the mail utility
(see Chapter 6) regardless of the type of connection between the
computers. The format of the mail address, however, ditTers from
computer to computer.

• Remote file access via Network File System (NFS) is available only
, using network connections.

The use of NFS requires further discussion.

NFS is not a standard part of the UNIX operating system, but you can
obtain it under license from Sun Microsystems, Inc. Many vendors of
computers that use UNIX also otTer NFS. NFS is not a command; you
can think of it as a set of programs with which a file system mounted on
one computer may also be mounted on a remote computer. This means
that you can access a file with the file management commands discussed
in Chapters 4 and 9, whether the file resides on a local or remote com­
puter. The VMS analogy to UNIX NFS is the Local Area VAXcluster
(LAVC).

This chapter concludes with a brief discussion of two topics which,
although not concerned with commands, can be important to the UNIX
user faced with a distributed computing environment. The first intro­
duces Usenet, a UNIX bulletin board for the dissemination of electronic
information. The second explains network communications between
UNIX and VMS computers.

Processor-fo-Processor Communicafions 291



13.1

Before examining how you may perform tasks on a number of com­
puters, you should have a basic understanding of how communication
occurs between computers: between both UNIX processors and UNIX
and non-UNIX processors. We start with a simple discussion of how
computers communicate, introducing nomenclature used throughout the
remainder of the chapter. Included in this discussion are examples of
several UNIX commands with which you can inquire into the charac­
teristics and status of UNIX computers communicating via network or
modem.

Communication Overview

Once two UNIX computers are connected by a physical link, the poten­
tial exists for communication between them. Each computer is called a
host (compare the VMS node). Hosts are characterized by a host name
(in VMS, a node name). The computer to which a user's terminal is
connected is called the local host (in VMS, local node), and all other
computers are called remote hosts (in VMS, remote nodes).

The speed with which communication takes place varies greatly, and is
a function of the physical link. Modem connections are generally slow,
typically transferring data using regular telephone lines at 300, )200, or
2400 baud (bits per second), whereas network connections are much
faster, in the range of 56,000 to JO million baud, and use dedicated wir­
ing.

Modem connections are simple. The host receiving data via a modem
treats it no differently from input from any terminal. If a UNIX host has
a modem that can both originate and answer calls, the UUCP software
(part of nearly all versions of the UNIX operating system) enables the
host to join a large conglomeration of UNIX processors for file, mail,
and news exchange. To reduce telephone costs, exchange usually occurs
via a number of intermediate hosts on a store-and-forward network.
Each intermediate host receives a complete copy of the file being trans­
ferred before it passes it along to the next host. The system administra­
tor maintains data for remote hosts (for example, telephone numbers)
and the types of connection they afford in the files /usr/lib/uucp/L.*.
Typically, at some predetermined time each day, one UNIX host
will automatically dial another and exchange files, mail, or news. The
time delay from queuing the information precludes any interactive
access.

292 Processor-to-Processor Communications



To establish a network-based connection between hosts is not as simple
as establishing a modem-based connection using an RS-232 (terminal)
interface. High-speed data transmission and the ability to perform task­
to-task communication require specialized hardware and software. If
computers from different manufacturers running different operating sys­
tems wish to communicate, they must adopt a standard interface. One
such interface, Ethernet, is used by VMS and most UNIX-based pro­
cessors. Ethernet defines not only the wiring and type of plugs that con­
nect computers but also the format of the data sent. Data is broken into
discrete entities called packets. Each packet contains a part of the data
being sent, the local host name, the remote host name, and a sequence
number. The receiving host uses the sequence number to reassemble
packets in the correct order, particularly important if packets must be
resent because an error occurred during transmission.2

VMS and UNIX format data differently in that part of the packet
devoted to user data. VMS uses a format called DECnet, and UNIX
uses Transmission Control Protocol/Internet Protocol (TCP/IP). You can
use DECnet and TCP/IP on the same Ethernet network, but only a host
that understands the format you use can interpret it; a format that the
host cannot interpret is ignored. Different versions of UNIX use the
TCP/IP definition in different ways. BSD uses a socket and System V
uses a stream. Discussion of sockets and streams is beyond the scope
of this book; they do not affect how the average user performs network­
ing tasks. In BSD, however, you may encounter a file type that indicates
a socket (see Section 2.3.2).

Modem-based communications first require that you establish a physical
connection, accomplished by one host dialing another on the telephone
exchange in the same way voice connections are established. Hosts on
a network are always connected; during transmissions over the network
each host looks at each packet to determine whether it is destined to
receive it. If so, it responds immediately, thus making interactive com­
munications possible. Computers on a network supporting the TCP/IP
protocol are said to be part of the Internet network. Appendix D
includes references to more detailed discussions of TCP/IP.

2. Modem-based dota transfers may be simply a stream of data, started and
stopped in the same way data from a terminal is started and stopped. However,
some software supporting modem-based data transfers, like Kermit, also transfer
data in packets.

13. 1 Communication Overview 293



Table 13.2 VMS and UNIX Mall Address Formats

Address Type

VMS

Format

UNIX

DECnet

Network

Modem

Form:
Example:

Form:
Example:
Form:
Example:

NODE::USER
BOSTON::FRED

user@host
fred@boston.chem.mit.edu
sitel\!site2\!user
newyork\!boston\!fred

J3. J. J

73.2

J3.2. J

Addressing Communications

Network and modem communications to a user on a remote host require
an address akin to a postal address. Each user's address is defined
uniquely using a combination of the login name and the name of the local
host. The format of the address differs for network and modem com­
munications, and both of these differs from the VMS DECnet network
address. Table 13.2 summarizes each format.

The UUCP (modem-based) host name does not have to be the same as
the network host name if the host supports both types of communica­
tion. However, to avoid confusion, the system administrator usually
makes them identical. Network and UUCP addresses are discussed fur­
ther below.

Network Communications

This section is devoted to a discussion of communications among UNIX
processors connected via a network. Readers who do not intend to
access remote hosts via a network should proceed to Section 13.3.

Network Addresses

A user may determine the name of the local host in a network environ­
ment with the command hostname (compare the VMS command SHOW
LOGICAL SYS$NODE). Usually this is unnecessary, as the host name is
displayed as part of the banner message prior to the login prompt.

294 Processor-to-Processor Communications



VMS
example: $ SHOW LOGICAL·

SYS$NODE
CUHHCA::

example:

UNIX
% hostname
cuhhca

% grep cuhhca letc/hosts
128.59.98.1 cuhhca.hhmi.columbia.edu cuhhca

babbage.columbia.edu
babbage.hhmi
babbage~hhmi.columbia.edu

babbage cuhhca.columbia.edu
cuhhca.hhmi

13.2.2

The file letc/hosts stores definitions of the local and remote hosts poten­
tially reachable on Internet. In the above example, grep cuhhca letcl
hosts searches this file for the host cuhhca. Associated with the host
name is an Internet address (128.59.98.1) and one or more other names.
The first name (cuhhca.hhmi.columbia.edu) is the official Internet host
name; any others (for example, cuhhca) are aliases. A user wishing to
access a remote host can use the Internet address, the official name, or
any of the aliases. Obviously, it is easiest to use an alias.

A user wishing to communicate with a remote host on the network can
confirm its existence by searching letc/hosts. It is just as simple, how­
ever, to attempt to communicate. If the system returns the message host
unknown, it does not necessarily mean that the host is unreachable; the
host simply may not be defined in the letc/hosts file. You should consult
the system administrator in such cases, unless you know the Internet
address, which you should then use.

Network Status

Section 7.2.2 introduced the command netstat for monitoring the utili­
zation of a network. Network utilization statistics are of little concern
to many users. What is of concern is the status of a remote host. Just
because a network host exists does not necessarily mean it is available;
it may be down for preventive maintenance or because of hardware fail­
ure. The command ruptime (compare the VMS command SHOW NET­
WORK for non-end nodes) displays which network hosts are available
in the immediate vicinity. 3

3. Information will not be given for remote hosts beyond the network gateway.

73.2.2 Network Status 295



VMS
example: $ SHOW NETWORK

VAXNMS Network status for local node 1.9 CUMBG on 23-MAY-1988-
15:36:58:24

1 0 0 (Local) -> 1.9 CUMBG
5 3 3 UNA-O -> 1.130 CURTRA
6 8 4 UNA-O -> 1.130 CURTRA

1.1 CMCFRF 0 6 3 UNA-O -> 1.130 CURTRA
1.2 CMCFRD 0 6 3 UNA-O -> 1.130 CURTRA
1.9 CUMBG 0 0 0 (Local) -> 1.9 CUMBG

UNIX
example: % ruptime

apne292b up 48+03:00 1 user. load 0.01, 0.00, 0.00
columbia down ??:??
cucca up 18+04:00 4 users. load 0.09, 0.11, 0.14
cuhhca up 6+21:15 8 users. load 6.72, 6.38, 5.93
cuhhmd up 18+05:04 5 users. load 0.77, 0.46, 0.27

The fields displayed by ruptime (taking cuhhca as an example) are as
follows:

cuhhca

up 6+21:15

8 users

load 6.72 6.38 5.93

Remote host name

System has been up for 6 days, 21 hours,
and 15 minutes

8 users are currently logged into the system

5 minutes ago the system load was 6.72, 10
minutes ago it was 6.38, and 15 minutes ago
it was 5.93

73.2.3 What Is a Trusted Host?

Before we examine specific commands used in network communication,
we must elaborate on the concept of a trusted host. As stated in Section
13.1, the commands used to communicate with a trusted host may differ
from those used to communicate with a non-trusted host. As we shall
see, trusted host commands simplify access by bypassing the password
security check otherwise required. The system administrator of each
host defines which remote hosts and which users on those hosts are
trusted. Let us follow the sequence of events when user, login name

296 Processor-Io-Processor Communications



fred, on local host a, attempts to communicate with remote host busing
a trusted host r command. To simplify the initial discussion, we assume
that Fred has identical login names on both hosts a and b, although. as
we shall see, this is not a requirement.

To communicate, fred on host a must have access to an account on host
b. When fred makes a communication request from host a to host b, for
example for a remote login or a file copy, host b first checks the file I
etc/hosts.equiv to see if host a is defined. letc/hosts.equiv contains offi­
cial Internet host names for trusted hosts. If it finds an entry for host a,
host b checks its letc/passwd file for the login name fred. If it is found,
access is given to account fred on host b without checking password
information. That is, if an entry for host a exists in host b's letc/
hosts.equiv file, any user who has the same login name on host a and b
has trusted host access.

If an entry for host a is not found in host b's letc/hosts.equiv file, then
the hidden file -user/.rhosts (1red/.rhosts in this example) is searched for
personalized trusted host access. This file, if it exists, contains a list of
Internet hosts, one per line. Each host name listed may be followed by
one or more login names separated by spaces, defining which users from
that host may make r command requests. If an entry for host a is found
in this file, assuming that no login name(s) follow the entry for host a,
then the letc/passwd file is checked for the login name fred (that is, the
login names on the local and remote hosts are assumed to be the same).
If login name fred is found, access is given to the system. Once again,
the password is not checked.

What if the user's login names are not the same on host a and b? By
default, -user/.rhosts on host b is the file .rhosts in the directory -user,
where user is the name of the user making the request from host a. The
user's communication request from host a can specify the search of an
alternative -user/.rhosts file. If this alternative file is searched, access is
given to host b only if the -user/.rhosts file specified contains an entry
for host a followed by the login name of the person on host a making
the request.

For example, let us again consider login name fred on host a, this time
making a communication request to login name george on host b. First,
the login name george must exist on host b. Second, -george/.rhosts
must contain an entry for host a followed by the login name fred. As

13.2.3 What Is a Trusted Host? 297



you can see, access of this type is useful if a user has different login
names on two hosts and wants the convenience of trusted host access.4

The following example emphasizes the concept of trusted host access.

VMS
example: $ SHOW LOGICAL SYS$NODE

CUHHCA;:

$ SHOW NETWORK
[not shown)

UNIX
% hostname ; whoami
cuhhca
fred
% cat /etclhosts.equi~
cuhhmd.hhmi.columbia.edu
cubsun.biol.columbia.edu
% cat "fred/.rhosts
cuchmc.hhmi.columbia.edu george

13.2.4

13.2.4. J

User fred on network host cuhhca displays the file /etc/hosts.equiv. It
indicates definitions of two trusted hosts. Any remote user on cuhhmd.
hhmi.columbia.edu or cubsun.biol.columbia.edu who has an identical
login name on cuhhca can access cuhhca with trusted host r commands.

Further, "fred/.rhosts indicates that user george from host cuchmc.hhmi.
columbia.edu can access account fred on cuchca. Note that this does
not imply that fred on cuhhca can access account george on cuchmc.
hhmi.columbia.edu.

With these concepts in mind, we now turn to the specific commands
that perform tasks on remote UNIX hosts both trusted and non-trusted.

Remote Login

Two UNIX commands perform remote network logins: rlogin for trusted
hosts and telnet for all other Internet hosts (compare the VMS command
SET HOST).

Trusted Host: rlogin

rlogin is an example of an r command for trusted host access.

4. Some system administrators may regard the creation of a -user/.rhosts by the user
as too great a security risk. One alternative, available on some BSD UNIX systems,
is to have the user root own the -user/.rhosts file.

298 Processor-to-Processor Communications



form:

example:

example:

example:

VMS
$ SET HOST [/QUALIFIER(S)] NODE..- -

NAME
$ SHOW LOGICAL SYS$NODE:
CUHHMC::
$ SHOW PROCESS
Pid: OOOOOA31 Proc. name: FRED ­

UIC: [FRED.GRP]
Priority: 4 Default file spec: ­

DUA1:[FRED]
$ SET HOST CUHHMD
Welcome to CUHHMD

Last interactive login on Friday, 27- ­
MAY-198815:34

Last non-interactive login on ­
Friday, 27-MAY-1988 01:10

$

UNIX
% rlogin hOlf-name -loption(s))

% hostname; whoami
cuchmc
fred

% rlogin cuhhmd
Last login: Fri May 2715:44:01 \

from 1.81
ULTRIX V2.0-1 System #2: Mon \

May 2 17:04:56 EDT 1988
%

% rlogiit cuhhca -Igeorge

% hostname
cuhhca
% -(CIRL)-Z

.. % hostname
cuhhmc
%Ig
rlogin cuhhca -Igeorge
% hostname
cuhhca

In the first example, rlogin cuhhmd logs fred on the local host cuchmc
into the account fred on remote host cuhhmd. In the second example,
rlogin cuhhca -Igeorge requests a remote login to the trusted host
cuhhca. Note that rather than requesting a login to the default account
fred, this command requests a login to the account george with the I
option. If the directory -george on the trusted host cuhhca contains an
.rhosts entry that permits access from fred on host cuchmc, then the
connection is successful. If the user's rlogin attempt is invalid, the re­
mote host requests password information rather than rejecting the
request (compare telnet below).

A useful feature of rlogin, also offered by telnet but not available from
VMS SET HOST, is the ability to toggle between the local and the remote
host, as illustrated in the third example. (CTRL)-Z stops the process on
the remote host and returns control to the shell on the local host. fg
(foreground) restarts the stopped process and reconnects the user to the

13.2.4.1 Trusted Host: rlog;n 299



J3.2.4.2

remote host. Hence, once you make a connection to a remote host, you
can use both the local and the remote host without having to reestablish
the connection with rlogin.

Non-Trusted Host: te/net

The command telnet establishes a login session on a remote host, trusted
or non-trusted. In either instance, the remote host requests login name
and password information.

VMS
form: $ SET HOST
example: $ SET HOST CUHHIA

CUHHIA:: VMS NODE

Userr'IC~me:'

Password
Welcome to VMS 4.7

UNIX
% telnet host
% telnel cuhhia
Trying•••
Connected to cuhhia.hhmi.columbia.edu.
Escape character is '(CTRL»)'

IRIS UNIX (cuhhia)
login: system
Password.
IRIS Workstation
% (CTRL)-]
telnet>z
Stopped
% hostname
cuhhca
%fg
telnet cuhhia
% hostname
cuhhia

In this example, telnet cuhhia makes a connection to the Internet remote
host cuhhia, which then prompts for a login name and password (com­
pare rlogin). Like rlogin, a useful feature of telnet is the ability to toggle
between the local and the remote host, issuing commands in either envi­
ronment. (CTRL)-] (close square bracket) escapes to the telnet> prompt;
the telnet command % generates a new copy of the shell on the local host
which can accept commands (C shell only), in this example hostname.
fg returns the telnet shell to foreground as described in Section 8.3, and
the terminal session resumes on the remote host as shown by the display
of the remote host's name in response to the hostname command. Addi­
tional commands that you may issue at the telnet prompt appear in Table
13.3.

300 Processor-to-Processor Communications



Table 13.3 telnet Commands

Command

open host

close
quit
z
escape (char)
status
options
crmod
?

Function

Open a connection to the named host
Terminate a session and return to telnet prompt
Terminate a session and return to local shell
Suspend telnet and invoke copy of local shell

Set the escape character (default (CTRL))

Report current telnet status
Toggle options indicated by status
Toggle carriage return mode
Get help on the above

J3.2.5 Sending Mail

Chapter 6 discussed the mail utility extensively. We now discuss the
elements unique to sending mail to remote network hosts. Users need
only an understanding of the format of the mail address. Recapping from
Table 13.2, VMS supports a DECnet mail address of the form
NODE::USERNAME. UNIX, on the other hand, supports two forms of
mail address; for Internet mail there is user@host, and for UUCP mail
there is host!user. Since each is discussed on-line in the man page mail­
addr, only a synopsis is given here.

The Internet host name is a hierarchical arrangement. For example, the
address cuhhca.hhmi.columbia.edu, which we have seen on several
occasions, implies that the address will be interpreted by the edu routing
tables, which sends the message to the columbia gateway, then to the
subdomain hhmi, and lastly to the host cuhhca. For the average user,
the terms routing table, gateway, and subdomain are not important. You
only need to know that edu is the name of all computers in educational
institutions, columbia is a gateway to all Internet hosts at Columbia Uni­
versity, hhmi covers all computers in the Howard Hughes Medical Insti­
tute at Columbia University, and cuhhca is the specific computer. You
do not need to remember such routing if the system administrator
defines a simple alias in the /etc/hosts file.

form:
example:

VMS UNIX
To: NODE::USER % mail user@host

% mail fred@cuhhmc.chem.columbia.edu

13.2.5 Sending Mail 301



13.2.6

J3.2.6.1

File Transfer

How you perform file transfer between a local and a remote UNIX host
depends on whether trusted host access is available. If trusted host
access is available, you can use the command rep (remote copy). rep
uses the same syntax as ep (copy, Section 4.9), along with a host name
followed by a colon. Compare rep to VMS proxy login access, which
extends the features of the COpy command to include a node name fol­
lowed by:: (double colon). COPY is similar to rep in that username and
password information are not required.

If trusted host access is not available, you can use the utility ftp. ftp first
requires that you establish a connection to the remote host, and then use
a command syntax different from both ep and rep to transfer files.

UNIX differs from VMS in both types of file transfer in that the user
must have an account on the remote machine to enable file transfer even
when the remote file is readable by all users. VMS users may copy a
world-readable file from a remote node whether they have a username
on that node or not. The inability of UNIX to let remote hosts read
world-readable files becomes a problem when you have files you wish
to make available for export. A method commonly used to circumvent
this problem is to establish a guest account (often called anonymous or
guest), which permits ftp connections to the directory where these files
reside.

Trusted Host: rep

The following examples show various uses of rep and compares them to
their VMS proxy login counterparts.

VMS'
form: $ COPYI/QUALIFIER(S)] NODE:: ~

source....file targeLfile
example:.. $ COpy CUHHMD:~DUAO:[USER11·

JUNK.DAT MYFJLE~DAT

form: -$ COpyIQUALlFER(S) source..file -
NODE::targeLfile

example: $. CO'Y'MYFILE.DAT .'
C:UHHMD::DUAO: •
(USER1]JUNK.DAT

form: .

302 Processor-to-Processor Communications

UNIX
% rcp hostname:sourceJile targeL \

file
% rep euhhmd:lusr/userl/iunk \

myfile
% rep source-file hostname:targeL \

file
%,rep myfile euhhmd:/usr/userlA

junk

% rcp -r source-directory
hostname:targeLdirectory



example:

example: $ COpy MYFILE.CUHHMD::DUA2: ­
[.PROGRAMS]JUNK.

example: $ COpy MYFILE.CUHHMD::DUA2: ­
[.PROGRAMS]

% rep -r -fred/programs euhhmd:/\
usr/fred/programs

% rep myfile euhhmd:programs/iunk

% rep myfile euhhmd:programs

In the first example, rep euhhmd:/usr/userl/iunk myfile copies the file /
usr/userl/iunk from the trusted remote host euhhmd to myfile in the pres­
ent working directory on the local host. In the second example, rep
myfile euhhmd:/usr/userl/iunk copies myfile in the present working
directory on the local host to iunk in the directory /usr/userl on the
remote trusted host euhhmd. For file transfer to occur, the same login
name must own the remote directory /usr/userl on euhhmd as well as
the files on the local host, unless modified by a euhhmdruser/.rhosts
entry. Moreover, the directory /usr/userl must already exist on euhhmd;
the command will not create it.

The third example, rep -r -fred/programs euhhmd:/usr/fred/programs,
illustrates copying a directory structure (r option for recursive copying)
across the network. You cannot do this in VMS with the COpy or
BACKUP commands, since neither copies directory structures between
local and remote nodes. The VMS user must create a BACKUP save-set
on the local node, copy it to a remote node as a single file, and then
recreate the directory structure using the BACKUP command again on
the remote node. In the UNIX example given here, the local directory
programs, any subdirectories of programs, and all files therein are recre­
ated on the remote host euhhmd in the directory /usr/fred/programs in
the same way as the ep command copies directory structures on a single
host (see Section 9.3.1).

In the fourth example, rep myfile euhhmd:programs/iunk illustrates the
use of a relative pathname to specify a file on the remote host. The com­
mand copies myfile to -user/programs/iunk on the remote host. Relative
pathnames on a local host start from the present working directory; rel­
ative pathnames on a remote host start from the parent directory of the
user. Note that if the directory -user/programs on the remote host did
not exist, it would not have been created. Rather, an error would have
occurred.

The last example extends the concept of using a relative pathname. rep
myfile euhhmd:programs does not include an output filename (programs

13.2.6. 1 Trusted Host: rep 303



J3.2.6.2

is a directory), hence the file is copied with the same name to -user/
programslmyfile.

Non-Trusted Host: ftp

Section 13.2.6.1 showed that file transfer between trusted hosts is no
more cumbersome than transfers between VMS nodes using DECnet,
and offers the additional feature of simple directory structure copying.
Copying between non-trusted hosts is not so straightforward.

ftp (file transfer program), a UNIX utility for file transfer between non­
trusted network hosts, establishes a connection to a remote host for
which a login name and password are required. Once an ftp connection
is established, you can issue a variety of commands on either the local
or the remote host, including ?, which provides help on available ftp
commands. A subset of commonly used ftp commands appears in Table
13.4. As a pleasing departure from standard UNIX practice, you may
abbreviate these commands.

You can avoid entering your login name and password each time you
make a connection with ftp by using the hidden file -user/.netrc, which
resides in the parent directory of the local host (compare -user/.rhosts,
which resides on the remote host),

UNIX
form: machine host login username .password password
example: % cat -fred/.netrc

machine cuhhliid.hhmi.columbia.edu login fred password mypassword

In this example, the user can make an ftp connection to the remote host
cuhhmd.hhmi.columbia.edu using the login name fred and the password
mypassword. The host name must be the official Internet host name,
that is, the first entry for the host in the /etc/hosts file and not an alias.
As the -user/.netrc file contains ,a user's password on a remote host, the
file should not be readable by anyone except the user (and root). In fact,
-user/.netrc will not function if the world or group has access to the file. s

The following examples show ftp connections to a remote host, both
with and without a -user/.netrc file.

5. This may not be true of all versions of UNIX. In those implementations that do
function despite world or group access to -user/.nehe, the security risk is significant.

304 Processor-fo-Processor Communications



Table 13.4 A Subset of ftp Commands

Command

ascii

binary

bye (or quit)

cd

close

delete

get (or reev)

help (or?)

led

Is
mdelete

mget

mkdir

mput

open

prompt

put (or send)

pwd

rename

rmdir

status

Function

Issue shell command on local host

Set file transfer type to ASCII (default)

Set file transfer type to binary

Terminate connection to remote host and exit ftp

Change present working directory on remote host

Terminate connection to remote host do not exit ftp

Delete a file on remote host

Copy file from remote to local host

Get help on available commands

Change directory on the local host

Directory listing on remote host

Delete multiple files on remote host

Retrieve multiple files from remote host

Create a directory on remote host

Copy multiple files from the local to remote host

Establish a connection to a remote host

Toggle interactive prompting

Copy single file from local to remote host

Display current working directory on remote host

Rename a file on the remote host

Remove a directory on remote host

Display the status of ftp .

.1

form:
example:

UNIX
% ftp [option(s)) [host]
% ftp euhhmd
Connected to cuhhmd.hhmi.columbia.edu.
220 cuhhmd FTP server (Version 4.1 Tue Mar 31 21 :45:47 EST 1987) ready.
Name (cuhhmd.hhmi.columbia.edu:): fred
Password (~uhhmd.hhmi.columbia.edu:fred):[password entered here - not \

echoed]
331 Password required for fred.
230 User fred logged in.
ftp> pwd
251 " /usr/users/fred" is current directory.
ftp> bye
221 Goodbye.
%

73.2.6.2 Non-Trusted Host: ftp 305



example: % cat .netrc
machine cuhhmd.hhmi.columbia.edu username fred password mypassword
%ftpcuhhmd
Connected to cuhhmd.hhmi.columbia.edu.
220 cuhhmd FTP server (Version 4.1 Tue Mar 31 21 :45:47 EST 1987) ready.
331 Password required for fred.
230 User fred logged in.
ftp> pwd
251 " lusr/userslfred" is current directory.
ftp> bye
221 Goodbye
%

Only the second example uses a -user/.netrc file. In both examples, the
ftp command pwd is issued on the remote host to determine the current
working directory on that host. In both examples, ftp is terminated with
the command bye, which logs the user off the remote host and returns
the local shell prompt.

We now turn to ftp commands that may be used once a connection has
been made.

example:

example:

example:
example:

example:

example:

example:

example:

UNIX
ftp> lis bob.txt
bob.txt
ftp> put
(local-file) bob.txt
(remote-file) old.txt
ftp> put bob.txt
ftp> Is bob.txt
200 PORT command okay.
150 Opening data connection for fbinils (128.59.93.1,1651) (0 bytes).
bob.txt
226 Transfer complete.
211 bytes received in 0.39 seconds (0.54 Kbytes/s)
ftp>mget
(remote-files) batch.out.·
mget batch.out.223? y
mget batch.out.234? y
mget batch.out.235? y
ftp> status
Mode: stream; Type: ascii; form: non-print; Structure: file
Verbose: on; Bell: off; Prompting: on; Globbing: on
Hash mark printing: oR; Use of PORT cmds: on
ftp::> prompt
Interactive mode oR
ftp> mput batch.out.·
ftp>

306 Processor-to-Processor Communications



13.2.7

In the first example, Us bob.txt determines that the file bob.txt exists in
the current directory of the local host. Any command that begins with !
instructs ftp to pass the command to the shell on the local host for exe­
cution; that is, ftp forks a new shell to execute the local command. In
the second example, put without arguments prompts ftp to request first
the name of the existing file to be copied from the local host, and second
the name it is to receive on the remote host. Then bob.txt on the local
host is copied (put) to old.txt on the remote host. The third example, put
bob.txt, illustrates a situation in which the local but not the remote file
name is given: the file is copied (put) to the remote host with the same
name that it had on the local host. In the fourth example, Is bob.txt
verifies that the copy was successful by checking for the existence of
bob.txt on the remote host.

In the fifth example, mget copies (gets) multiple files from the remote
host. By default, the user is prompted to copy each file (compare the
VMS command COpyICONFIRM). You may turn off interactive prompting
in one of two ways. First, the ftp command prompt will toggle the value
of interactive prompting; you can determine the current value (on or oft)
with the ftp status command. The last example, mput batch.out.•, illus­
trates multiple copying from the local to the remote host with interactive
mode off: all files are copied without comment. Second, you can invoke
ftp with the i option (not shown), which suppresses interactive prompt­
ing.

In the fourth example, ftp displays diagnostic messages indicating the
total number of bytes transferred and the rate of transfer. These diag­
nostics are displayed during all ftp transfers, but have been omitted from
all but the fourth example for the sake of brevity.

Remote Command Execution: rsh

You may not issue commands on a remote host from a local host unless
the local host is trusted by the remote host. For non-trusted hosts, the
local user must first login to the remote host and then issue commands
either through telnet or ftp.

rsh (remote shell) executes a command or a shell script on a remote
trusted host by invoking a shell on the remote host, which then executes
the command. Any command that can be interpreted by the shell on a
remote host is valid. VMS commands are always interpreted by the local
node. This fact does not present a problem when accessing files, as VMS

13.2.7 Remote Command Execution: rsh 307



file specifications may include a remote node. For example, the VMS
user wishing to display the contents of a directory on node BOSTON
might enter the command DIRECTORY BOSTON::DUA2:[FRED]. The
UNIX user accomplishes the same task with the command rsh boston
"15 -fred". Both the VMS and the UNIX commands are straightforward.
However, what if the local user wishes to review the list of interactive
users on node BOSTON?

VMS UNIX
example: $ TYPE BOSTON::DUA2:[FRED]CMD.COM % rsh boston "who"

$ DEFINE/USER SYS$OUTPUT SYS$NET
$'Pl'

example: $ TYPE BOSTON::DUA2:[FRED]­
"TASK= CMD SHOW USERS"

UNIX accomplishes the task by invoking a remote shell to execute the
who command. VMS requires invoking a command procedure created
on the remote node.

The following examples illustrate the functionality of rsh when com­
bined with piping and input/output redirection.

VMS
form: $ COMMAND[/QUALIFIER(S)] -

NODE::DEVICE:[DIRECTORY]FILE
example: $ PRINT/REMOTE-

CUHHMD::DUA1:[FRED]­
MYFILE.DAT

example: $ COpy -
CUHHMD::DUA1:[FRED]A.DAT ­
CUHHMD"FRED ­
MYPASS"::DUA1[FRED]B.DAT

example: $ COpy MYFILE.DAT ­
CUHHMD::SYS$PRINT

example: $ TYPE ­
CUHHMD::DUA2:[GEORGE]­
MYFILE.

UNIX
% rsh host [option(s)) command(s)

% rsh cuhhmd "cat /usr/fred/\
myfile" Ilpr

% rsh cuhhmd "cat lusr/fred/a > \
/usr/fred/b"

% cat myfile I rsh cuhhmd "Ipr-"

% rsh cuhhmd -Igeorge "cat myfile"

The first example, rsh cuhhmd "cat /usrlfred/myfile" I Ipr, illustrates
local printing of a file resident on the remote host cuhhmd. Rather than
displaying the remote file /usr/fred/myfile, the output is piped to the
default line printer (see Section 8.1.1). Note that the pipe is interpreted
by the local shell because it is not contained in double quotes. In the

308 Processor-fo-Processor Communications



J3.2.8

second example, rsh cuhhmd "cat /usr/fred/a > /usr/fred/b" redirects
the output of the cat command to the file /usr/fred/b; since double
quotes surround the output redirection, the remote host performs the
operation. Note that the result would be the same using the command
rsh cuhhmd "cp /usr/fred/a /usr/fred/b". In the third example, cat myfile
I rsh cuhhmd "Ipr -", rather than displaying the contents of myfile, pipes
the output to the rsh command, which prints it on the default line printer
attached to the remote host cuhhmd. The last example, rsh cuhhmd ­
Igeorge "cat myfile", illustrates further the use of the I option (compare
rlogin). The local user invokes the remote shell through the account
george on the remote host cuhhmd, assuming the file -george/.rhosts is
present to permit remote access by the local user initiating the request.
The file myfile in the parent directory of user george will be displayed.

Transparent File Access: NFS

The Network File System (NFS) software permits a UNIX user to
access files physically located on devices attached to remote hosts as if
they were attached to the local host. The NFS software must reside on
both the local and the remote host. VMS users familiar with the Local
Area VAXcluster (LAVe) should note that the features of NFS and
LAVe are similar. A LAVe user requests access to a file using the log­
ical device name SYS$COMMON; the NFS user specifies a file system.
In both cases, the physical location of the file is irrelevant. For example,
the user who lacks access to NFS and wishes to display a file on a
remote trusted host would use the rsh (remote shell) command, which
includes the remote host name. If the file system on which the file
resides is available via NFS, however, the user can issue the cat com­
mand.

NFS is licensed by Sun Microsystems, Inc., and runs on a variety of
computers that support a version of the UNIX operating system.6 There­
fore, you can directly access files on a variety of hardware types. You
can determine whether NFS is running on your system by looking for
the NFS daemon. A daemon is a process owned by the superuser (root);
it is usually started at boot time and performs some background func­
tion. In this example, ps -aux Igrep nfsd searches the list of all processes
running on the system for nfsd, the NFS daemon.

6. NFS is now available for the VMS operating system, permitting files to be shared
between UNIX and VMS computers (see Section 13.5).

13.2.8 Transparent File Access: NFS 309



VMS
example: $ SHOW CLUSTER

SYSTEMS MEMBERS
NODE SOFTWARE STATUS
CUMBG VMS 4.7

UNIX
% ps -aux I grep nfsd

system 12384 0.4 0.2 72 36 p3 S 0:00 grep nlsd
root 3989 0.0 0.1 68 0 ? I 1:19 nlsd 4
root 3990 0.0 0.1 68 0 ? I 1:13 nlsd 4
root 3988 0.0 0.1 68 0 ? I 1:16 nlsd 4
root 3987 0.0 0.1 68 0 ? I 1:06 nlsd 4

If one or more NFS daemons are running, you can list remote file sys­
tems available locally with the df command.

UNIX
example: % df

Filesystem
Idev/daOa
Idev/daOh
cuhhia:/usr1

kbytes
18067

108645
56144

used
13708
96273
26315

avail capacity Mounted on
2552 840/0' I
1507 98% lusr

26318 50% Icuhhiausr1

Remote file systems accessible via NFS are displayed in the form host­
name:filesystem, where hostname is the first part of the Internet host
name and filesystem is the name of the file system on the remote host.
The above example displays three file systems, two local and one
remote. The remote file system euhhia:/usrl is accessed as leuhhiausrl
on the local host.

UNIX
example: % Is Icuhhiausr1

aronson horton mms purnick weiss
% rlogin cuhhia
IRIS Workstation
% Is lusr1
aronson horton mms purnick weiss

Is leuhhiausrl provides a directory listing of the remotely mounted file
system euhhia:/usrl. This directory listing is verified by an rlogin to the
remote host euhhia, which has the identical file system known locally as
lusrl.

You can list the local file systems available for mounting on remote hosts
by displaying the file lete/exports.

310 Processor-fo-Processor Communicafions



J3.3

J3.3. J

UNIX
example: % hostname ; cat 1etclexports

cuhhca
# nfs exports file 4/5/88
#
Idatal
lusr

hostname ; cat letelexports indicates that the local host euhhea has two
file systems. Idatal and lusr, available for remote mounting.

Modem Communications

We now turn to communications via standard telephone lines using
modems attached to the local and the remote computer. Users who do
not intend to use modem connections may proceed to Section 13.4.

UUCP Addresses

The format of a UUCP address (see Table 13.2) requires further expla­
nation. First, \ prevents the interpretation of the! C shell metacharacter
as a history substitution (see Section 3.4). The address is therefore inter­
preted correctly by the local or remote host as site!user. Second, the
address may also be a path indicating that the message must pass
through an intermediate site1 to reach the final destination site2.

The UUCP user may determine the UUCP host names of the local and
reachable remote hosts using the commands uuname -I and uuname,
respectively.

form:
example:

example:

UNIX
% uuname [-I]
% uuname
clapple
cucard
% uuname-I
cuhhca

These examples show two systems, c1apple and eueard, that can be
reached directly by UUCP, and that the UUCP name of the local host is
euhhea.

13.3.1 UUCPAddresses 311



13.3.2

13.3.3

UUCPStatus

UUCP offers no mechanism to determine whether a remote host is cur­
rently reachable. If a remote host is not available when UUCP attempts
to make a connection, UUCP will continue making attempts at regular
intervals defined by the system administrator until a connection is made.

Remote Login: tip and cu

UUCP provides only batch processing (spools requests), and therefore
precludes any type of interactive communication including remote login.
However, if dial-out and dial-in modems are available, you can use the
commands tip and cu (compare the VMS command SET HOST/DTE) to
conduct a terminal session on a remote host. Both tip and cu require that
you physically initiate a session; UUCP automatically establishes a con­
nection at some predefined time. The commands tip, cu, and those of
UUCP may share the same modems.

BSD UNIX systems include tip but not cu, so tip is the command dis­
cussed here. The system administrator of the local host maintains a file
/etc/remote, which contains characteristics of the remote hosts reacha­
ble via tip. This simplifies access to remote hosts, since you do not need
to explicitly specify the characteristics required to make a connection
each time you attempt communication.

example:

form:
example:

UNIX
% cat letc/remote
# sample entry from a letc/remote file
#
cucda/1200 Baud Able Quadracall attributes:\
:dy= IdeYIcuaO:br#1200:cu = IdeYIcuaO:at = yadic:du
% tip [-Y] [-speed] system name or phone #
% tip -2400 cucefa

The first example, cat /etc/remote, illustrates the format of the file for
defining the characteristics of remote hosts. Since this file is established
by the system administrator, we will not discuss it further. The com­
mand tip -2400 cucda establishes a connection to the remote host
defined in the /etc/remote file. Rather than the default baud rate of 1200
(br#1200), 2400 is specified. Alternative phone numbers can be main­
tained in a file which defaults to /etc/phones, but may be a user's private
telephone directory, which is pointed to by the environment variable
defined by the command setenv PHONES path.

372 Processor-to-Processor Communications



Table 13.5 Subset of tip Commands

Command

- (CTRL)O-.

- C [name]
-!
->
-<
-p from [to]

-t from [to]

-I
-s

!

Function

Logout of remote machine and exit tip

Change directory on the local host to name
Exit to shell on local host (C shell only)
Copy file prompted for from local to remote host
Copy file prompted for from remote to local host
Like ->
Like -<
Pipe output from a remote command to local process
Set a variable
Help with these commands

13.3.4

Once a connection has been made, you can issue a variety of commands
to the tip program to initiate some action on the local or remote host.
Table 13.5 summarizes these commands, including commands to trans­
fer files, issue commands on the local or remote host, and set a variable.

Sending Moil

Sending UUCP mail uses the mail utility discussed in Chapter 6. The
only variation to note here is the format of the mail address. In a UUCP
mail message address, as we have previously discussed, ! is a C shell
metacharacter, and you therefore must precede it with \ to prevent
immediate interpretation. Thus. although an address might be displayed
as clapple!bobs, you would give it as c1apple\!bobs to use it as an
actual mail address.

UUCP mail messages which need explicit routing to reach a distant site
by passing through other sites take the form sitel\!site2\!site3\!user. That
is, the message passes first to site1, then to site2, and then to user at
site3. Users should consult the system administrator for information on
the explicit routing required to reach remote hosts.

VMS
form:
example: $ MAIL

MAIL> SEND
To: CUHHMD::FRED

UNIX
% mail host\!user
% mail c1apple\!bobs

13.3.4 Sending Moil 313



13.3.5 File Transfer: uucp and uusend

The commands uucp and uusend are part of the UUCP group of pro­
grams. uucp copies only to an immediate neighbor, that is, a remote host
dialed directly, whereas uusend can pass files to remote hosts through a
number of intermediate host connections. You should use these com­
mands only when no network connection is available, since they are
spooled for processing via slow modem connections rather than pro­
cessed interactively using a fast network.

Note the distinction between uucp (lowercase) and UUCP (uppercase).
UUCP refers to a collection of programs used for modem communica­
tions that includes uucp and uusend. These commands, like their UUCP
counterpart uux, use a similar syntax. You can use uucp to copy in both
directions, both from and to a remote host, whereas uusend will copy
only from a local to a remote host.

For uucp and uusend to function local, remote, and (in the case of
uusend) intermediate hosts must be running UUCP. An account uucp
handles the request spooled by the local host. Like any user account,
uucp has a parent directory -uucp (C shell syntax), usually designated /
usr/spool/uucp. Unlike a normal user account, the parent directory has
world read, write, and execute access, for it must be able to receive
UUCP files from remote hosts. Alternatively, you may have a subdirec­
tory with world read, write, and execute access to receive UUCP files
from a user on a remote host. If so, the user sending a file to this direc­
tory via UUCP must know of its existence.

We will look at some examples of using uucp before turning to uusend.

form:
example:
example:
form:
example:
example:

UNIX
% uucp [option{s)] locaLfile remote_file
% uucp myfile cuhhmd\ruucp
% uucp -m myfile1 myfile2 myfile3 cuhhmd\rfred/scratch
% uucp [option(s)) remote-file locaLfile
% uucp cuhhmd\rfred/booklchap\[O-9\] -george/book
% uucp myfile cuhhmd\ruucp/fred/yourfile

In the first example, uucp myfile cuhhmd\ruucp spools the local file
myfile for copying to the public directory uucp on the remote host
cuhhmd; by default the remote file will be given the name myfile. (Recall
the host\!user address syntax of UUCP from Section 13.3.1). The local

314 Processor-to-Processor Communications



user may inform the remote user destined to receive the file of its
impending arrival by mail. You notify the recipient with the option
nuser: for example, nfred will cause UUCP on the remote host to auto­
matically send a mail message to remote user fred informing him of the
arrival of the file.

The second example, uucp -m myfilel myfile2 myfile3 cuhhmd\rfred/
scratch, illustrates the copying of multiple files to the subdirectory,
scratch of user fred on the remote host cuhhmd. The m option directs
UUCP to send mail to the local sender when successful file transfer has
occurred. Without this option, the local user sending the file has no way
of knowing when the file transfer occurred.

The third example, uucp cuhhmd\rfred/bookichap\[O-9\] -george/book,
illustrates copying from a remote to a local host, and further use of \.
Any file from chapO through chap9 in the subdirectory book of remote
user fred is copied to local user george's subdirectory book. Note that
the remote directory -fred/book and the files chapO through chap9 must
be world readable, and that the local directory -george/book must be
world writable. The characters [ (open square bracket) and] (close
square bracket) are C shell metacharacters, and therefore must be pre­
ceded by \ to prevent immediate interpretation by the shell on the local
host.

The last example, uucp myfile cuhhmd\ruucp/fred/yourfile, illustrates
directory creation with uucp. myfile on the local host is copied to a sub­
directory, fred of -uucp. If that subdirectory did not exist on the remote
host, it would have been created.

We now turn to uusend. As noted above, uusend sends but does not
receive files through intermediate hosts to a final destination. Each host
must have uusend. UUCP does not necessarily imply uusend, as some
versions of UNIX UUCP support uucp but not uusend. One disadvan­
tage of uusend as compared to uucp is its lack of a mechanism to deter­
mine whether a file has arrived at a remote host. One advantage of
uusend over uucp is that you may set file protections when the file
reaches a remote host; with uucp the remote file is always world reada­
ble, and therefore not secure.

UNIX
form: % uusend locaLfile sitel\!site2\..•\!sitex\!remohLfile
example: % uusend myfile cuhhca\!cuchmc\!c1apple\ruucp

13.3.5 File Transfer: uucp and uusend 315



example:

example:
example:

13.3.6

% uusend - cuhhca\lcuhhmc\!c1apple\ruucp/outfile
[text entered here]
<CTRL}-D
% myprog I uusend - cuhhca\lcuhhmc\!clapple\ruucp/outfile
% uusend -m 700 myfile cuhhca\!cuchmc\lcl apple\l/usr/fred/scratch/outfile

In the first example, uusend myfile cuhhca\!cuchmc\!clapple\ruucp cop­
ies the local file myfile to the final destination -uucp/myfile on remote
host c1 apple. Note that the name of the remote file defaults to myfile.
To get to the final destination, the file passed through the intermediate
hosts cuhhca and cuchmc. In the second example, uusend - cuhhca\
!cuhhmc\!clapple\ruucp/outfile follows the same route as the first exam­
ple. However, the - (dash) metacharacter indicates that input is stdin and
not a file. All text entered at the terminal will be sent to the remote file
-uucp/outfile on c1apple until you issue a (CTRL)-D. The third example,
myprog I uusend - cuhhca\!cuhhmc\!clapple\ruucp/outfile, expands on
this concept. Rather than send the output of the program myprog to the
terminal, it is piped to the uusend command which copies it to -uucp/
outfile on the remote node c1apple.

The last example, uusend -m 700 myfile cuhhca\!cuchmc\!clapple\!/usr/
fred/scratch/outfile, illustrates the use of the m option to set the protec­
tion of the file copied to the remote host. myfile is copied to the final
destination of /usr/fred/scratch/outfile. Although the directory /usr/
fred/scratch must allow world write access in order to accept the file,
the protection of the file is set to 700, which indicates full access by the
owner and no access by other classes of user.

Remote Command Execution: uux

uux is a UUCP program for executing a small subset of commands on a
remote host. Like other UUCP modem-based requests, requests gener­
ated by uux are spooled for processing. Its response, therefore, is not
fast enough to be interactive. The system administrator of the remote
host defines the commands that you can run on that host. The com­
mands reside in the file /usr/lib/uucp/L.cmds.

UNIX
example: % cat lusr/lib/uucp/L.cmds

PATH = Ibin:/usr/bin:/usr/ucb
rmail
rnews

316 Processor-to-Processor Communications



form:
example:
example:
example:
example:
example:

Ipr
uusend
bnproc
unbatchnews
uux

In the L.cmds file shown above, PATH =Ibin:/usr/bin:/usr/ucb indicates
the directories that will be searched to locate the allowable commands.
The allowable commands follow, one per line. Some versions of UNIX
extend the functionality of this file, for example, by stating explicitly
which commands can be executed by which remote hosts. The features
described here are common to all versions.

If a remote command request is unsuccessful, the local user is notified
by mail on the local machine. The following examples illustrate various
uses of uux, using either local or remote files for both input and output.

UNIX
% uux host\!command "input-output control"
% uux cuhhmd\!who "> -fred/scratch/who.out"
% uux cuhhmd\!who "> cuhhmd\ruucp/scratch/who.out"
% uux \Upr"< cuhhmd\ruucp/scratch/who.out"
% uux \!diH cuhhmd\!/tmplfile1 cuhhca\!/tmplfile2 "> \!diH.out"
% uux -m cuhhmd\!lpr < printfile.txt

In the first example, uux cuhhmd\!who "> -fred/scratch/who.out" exe­
cutes the who command on the remote host cuhhmd. The result of the
uux command is output to the file who.out on the local host. uux output
must always be output to a local file, since stdout has no meaning to the
who command executed remotely. Note also the use of double quotes:
without them, the shell directs the output of the local uux command to
the file who.out. With them output from the remote execution of who is
placed in the local file who.out. As who.out is to be written by the UUCP
utility and not the user issuing the uux command, the directory to which
it writes the output must be world writable, and an absolute pathname
must be given unless the file is to be written to a directory owned by the
uucp account.

In the second example, uux cuhhmd\!who "> cuhhmd\fuucp/scratchl
who.out" copies the result of the remote who command to the file -uucpl
scratch/who.out on the remote host cuhhmd, rather than to the local
host. The third example, uux \!lpr "< cuhhmd\fuucp/scratch/who.out",

13.3.6 Remote Command Execution: uux 317



J3.4

illustrates the execution of a command on the local host using a file from
the remote host cuhhmd. Upr without a preceding host name indicates a
file to be printed on the default line printer on the local host. The fourth
example also illustrates local command execution, but introduces the
use of files from two remote hosts as input to the command. uux \!diH
cuhhmd\!/tmp/filel cuhhca\!/tmp/file2 "> \! diH.out" executes the diH
command locally using two remote files located on hosts cuhhmd and
cuhhca. The output is placed in the local file diH.out.

The fifth example, uux -m cuhhmd\!lpr < printfile.txt, illustrates how to
print a local file on a remote line printer connected to cuhhmd. The m
option notifies the user on the local host by mail when the command has
been executed, in this instance, when the file is spooled for printing.

Usenet: Electronic Bulletin Board

Usenet grew out of the expanding UUCP network to disseminate infor­
mation of interest to UNIX users. Usenet is like a newsstand where each
magazine on that newsstand is a newsgroup covering a particular topic.
Examples of newsgroups are:

• Public domain software

• Hardware/software technological reviews

• Employment opportunities

• Games

• Bug fixes
Field topics such as biology, medicine, and chemistry
,

Use:net differs from a newsstand in that users can reply to news (like a
leu~r to the editor, perhaps?) and can post news. The programs that
pefmit these activities and that the system administrator uses to manage
n~ws are known as Netnews. Netnews was developed at Duke Univer­
sity in the late 1970s. The programs that the UNIX user will encounter
are:

readnews

rn

vnews

postnews

Basic read and reply

Advanced read and reply

Full-screen read and reply

Post news articles

You should consult your system administrator to find out whether any
news is received at his or her site. If news is received by the local host,
you can review the file /usr/lib/news/newsgroups to determine the cur-

318 Processor-to-Processor Communications



J3.5

rent newsgroups. If a useful newsgroup is available but is not received
by the local host, ask your system administrator to receive the one you
want. For the details of how to use Usenet, see the excellent discussion
of the topic by Anderson, Costales, and Henderson in UNIX Commu­
nications (Appendix D).

Communications Between VMS and UNIX

A number of vendor-dependent solutions permit communications be­
tween VMS nodes and UNIX hosts. It is beyond the scope of this book
to discuss each of these. Rather, we give an overview based on the sim­
ple discussion of computer communications in Section 13.1.

As indicated, modem communications between UNIX and VMS pro­
cessors are accomplished simply by taking into consideration the
requirements for each computer as if the user were connecting a terminal
directly to each computer. File transfer is then easily accomplished with
either tip or a variety of third-party software packages, most notably
Kermit. The use of UUCP is not possible unless the VMS node supports
a UNIX emulator or a native version of UUCP for VMS can be found. 7

Communications between a VMS node and a UNIX host attached to a
network require software and sometimes hardware to convert DECnet
to TCP/IP packets and vice versa. Obviously, if one VMS machine must
communicate with a number of UNIX machines, the most efficient solu­
tion is to provide TCP/IP emulation for the single VMS node. Similarly,
in the case of one UNIX host that must communicate with a number of
VMS nodes, DECnet emulation for the UNIX host represents the m<?st
efficient solution.

In a truly heterogeneous environment of processors, with a number of
VMS and UNIX hosts, the best solution is to dedicate a processor for
performing conversions from TCP/IP to DECnet and vice versa. The
ULTRIX version of UNIX supports both TCP/IP and DECnet, and can
be used to fulfill this function as a DECnet-Internet gateway. The VMS
user can then access a remote UNIX host with familiar VMS commands
such as COPY and DELETE. Correspondingly, the UNIX user can access
the VMS nodes with commands like ftp and telnet.

7. The VAX Systems Special Interest Group of the Digital Equipment Corporation
Users Society (DECUS) offers a native implementation. The software is available on
the DECUS Software library magnetic tapes.

73.5 Communications Between VMS and UNIX 379



J3.6

example:

example:

example:
example:

.example:

example:

example:

example:

example:

example:
example:
example:

Summary

Once again, a scenario from daily use will summarize the networking
features described in this chapter. UNIX user Janet Smith has just relo­
cated and must develop applications on two UNIX hosts. On the host
apple, to which her terminal is connected, her login name is smithi. On
the other host, orange, her login name is ianet.

UNIX
%,whoami ; hostname
smithi
apple
%grep orange letc/hosts
126.21.36.1 orange.dept.company.edu orange
% telnet orange
Trying•••
Co,nnected to orange.dept.company.edu
Escape character is '(CTRL)]'.
UNIX. RELEASE BSD 4.3 (orange)
login: ianet

. Password
Never logged in
% set prompt= "orange>"
orange> cat letc/hosts.equiv
grape.dept,;company.edu
pear.dept.company.edu;
peach.dept.company.edu
orange> Is' -I .rhosts

'-rw-rw-r-- 1 root 30 Jun 11 09:25 .rhosts
oran'ge> cat .rhosts
apple.dept.company.edu smithi
orange>: log~ut
Connection closed
% rlogin orange -lianet
Last login: Thu Jun 16 10:58 from apple
orange> logout
Connection closed
%uuname
amsterdam
london
purdue
% uucp -m purdue\!1anet\*.\* -uucp/smithi
[some"time later]
% cp -uucp/smithi/*.* -smithi
% rsh orange -lianet "rcp apple:-smithi/*.*lanet/*.*"
% mail purdue\lroot
Subiect: Thanks
Thank you for your help over the years

Cc:

320 Processor-to-Processor Communications



Janet Smith logs in and issues the command whoami ; hostname, which
displays her login name and the name of the local host. Knowing that
the remote UNIX host she is going to use is on the same network, she
searches the fete/hosts file to see if it is defined. grep orange fete/hosts
reveals that the host she seeks is defined, with the official name
orange.dept.eompany.edu and the alias orange. She uses the command
telnet orange to login to this remote host using the login name ianet. To
avoid any confusion that may arise by not knowing what host she is
using at any given time, Janet changes the prompt of the remote host,
from the default % for the C shell to the name of the remote host, with
the command set prompt = "orange>". Note that the prompt is con­
tained in quotes to prevent the C shell from misinterpreting> as a shell
redirection metacharacter. Janet also includes this set command in the
file .login so that the prompt is set to orange> the next time she logs in
(not shown).

The command cat /ete/hosts.equiv establishes that the system adminis­
trator of the remote host orange does not consider apple a trusted host.
However, the commands Is -I .rhosts and cat .rhosts reveal that the sys­
tem administrator has established a user-specific trusted host definition
indicating that smithi from host apple.dept.eompany.edu may access this
account without supplying password information. She tests her access
by logging out of the remote host and issuing the command rlogin orange
-lianet, which indeed gives her trusted host access to the remote host.

Next, Janet checks the remote hosts available from host apple using
UUCP with the command uuname. Since she can reach purdue, the
computer she used at her previous location, Janet issues the command
uuep -m purdue\!ianet\*.\* -uuep/smithi to copy files from her home
directory at the old location to the subdirectory smithi of uuep. The m
option informs her by mail when the copy operation has taken place.
Some time later, Janet issues the command ep -uuep/smithi/*.* -smithi to
copy the files to her parent directory on the local host apple. rsh orange
-lianet "rep apple(smithi/*.*lanet/*.*" copies these files to the remote
host orange. Note that Janet must use rsh even though rep is simpler,
because rep does not support the I option which Janet needs as her local
and remote login names differ. lianet indicates that the remote login is
to the account ianet rather than the default smithi.

Finally, Janet sends UUCP mail to the address purdue\!root to thank the
system administrator of host purdue for her help over the years (system
administrators need this kind of encouragement!)

13.6 Summary 321





Epilogue

No passion in the world is equal to the passion to alter someone else's drah.
H. G. Wells

Welcome, UNIX user! If you have read Chapters 1 through 5 and other
chapters pertinent to your own needs, you have made a good start. If
you have also sat at the terminal and experimented with commands like
the ones presented in this book, then you are well on the way to joining
the growing number of competent UNIX users.

Early UNIX terminal sessions are likely to incite an entire spectrum of
emotion in any reader who regards VMS as an old friend. For example:

• Awe at the endless number of complex command constructs that
can be built from simple UNIX commands.

• Disdain for whoever chose the names for some of these commands,
like cat, biH, awk, and grep.

• Anger at the limited error-reporting features of the UNIX shell.

• Frustration at the clumsiness of UNIX command line recall and
editing.

• Anxiety while reading about the concept of a UNIX file system,
followed by relief when you realize it is elegant and simple to use.

Laughter followed by bewilderment as you explore the UNIX docu­
mentation, either on-line or in printed form.

Epilogue 323



324 Epilogue

The list goes on, but the best emotion is yet to come: satisfaction, the
satisfaction that comes from developing complex applications using this
powerful medium.

I hope that this book will continue to be a useful reference after you
have reached the top of the learning curve and the sense of satisfaction
is upon you. To this end, Appendix A provides a quick cross-reference
to help you locate a command or an option to a command, and points to
the section of this book containing a detailed discussion. Appendix B is
a quick cross-reference guide to both the ex line editor and the vi screen
editor. Appendix C indicates where information on important UNIX
files is to be found. Appendix D provides an extensive reading list. The
UNIX documentation is poor, but many good supplementary texts are
available if you know where to look.

Future UNIX users will have the opportunity to hide the operating sys­
tem behind a windowing interface common to both UNIX and VMS.
This certainly is a powerful feature for occasional UNIX users, but for
the serious user looking through the window is not enough. You need to
step through and experience the inner world first-hand. I encourage you
to do so, and wish you well in this endeavor.

P.B.



Appendix A

Command Summaries

Table A.l VMS Commands with UNIX Equivalents

VMS Command

:= =

:== --

@

ASSIGN

BACKUP
BACKUP/INIT
BACKUP/LIST
BACKUP/LOG

UNIX
Equivalent

alias
set

setenv

source

In
In -s

tar
tar -c

tar -t

tar -v

tar -x

tar -r

tar -u

tar -f

Section

3.2.2
3.2.2,

11.2

3.2

11.9.4

9.4.10

8.2.1

UNIX Function

Define alias for C shell
Set shell variable

Define an environment
variable

Have parent process invoke a
script

Assign one file to another
Assign one file to another

across file systems

Backup files into a tar file
Initialize output device

List contents
Report progress
Restore files
Write at end of existing tar

files
Write only files not already

on tape

Use alternative special
device file

Appendix A Command Summaries 325



Table A.l VMS Commands with UNIX Equivalents (continued)

UNIX
VMS Command Equivalent Section UNIX Function

tar -m Update files modification
date upon restore

CC cc 10.1 (See FORTRAN)
COpy cp 4.9,9.3.1 Copy a file
COPY/CONFIRM cp -i Confirm before copying

ftp 13.2.6.2 Copy. tQ/fwm. Ilon-trusted
remote host

rcp 13.2.6.1 Copy to/from trusted remote
host

rcp -r Recursively copy
subdirectories

CREATE touch 9.4.7 Create or update a file

touch -c Existing files only
CREATE/DIRECTORY mkdir 4.5 Create a subdirectory
DEBUG dbx 10.3 Debug a program
DELETE rm 4.11 Delete a file
DELETE/CONFIRM rm -i Confirm deletion

rm -r 4.6 Delete a directory and all
subdirectories

rmdir 4.6 Delete an empty subdirectory

DELETE/ENTRY Iprm 8.1.3 Remove queued line printer
job

Iprm - Remove all jobs owned by
user

DELETE/QUEUE Iprm -Pqueue Remove all jobs from queue
DIFFERENCE cmp 9.4.3 Display first difference in two

files

diH 9.4.3 Display all differences in files
or directories

diH -i Ignore case differences

diH -e Generate editing changes for
ed

diH -r Compare directories

DIRECTORY Is 4.1,9.1.1 List files

DIRECTORY [.••J Is -R Recursively list
subdirectories
subdirectories

326 Appendix A Command Summaries



Table A.l VMS Commands with UNIX Equivalents (continued)

UNIX
VMS Command Equivalent Section UNIX Function

DIRECTORYI Is -1 List one file per line
COLUMN=l

Is -a Include hidden files
DIRECTORYIDATE Is -c List by creation!

modification time
Is -d List directory name only
Is -F Append character to

designate file type
DIRECTORYIFULL Is -I Long listing

Is -r List in reverse order
DIRECTORYIOWNER Is -g Include group (used with I)
DIRECTORYISIZE Is -5 Include size

Is -u List according to access
time

Is -C Override one file per line
Is -t Sort by date last modified

DIRECTORYISIZEITOTAL du 7.1.4 Summarize disk usage
du -a All files
du -5 Total size only

DIRECTORY [.•.J find 4.7,9.4.4 Find a file
find -atime[ +/-)n Modified in more ( + ) or less

(-) than n days
find -exec cmd {} \; Issue command on files

found
find -group In specified group
find -name By name
find -newer file Modified more recently than

file
find -ok cmd {} \; As -exec but requests

confirmation of action
find -perm By file protection
find -print Print path to each file found
find -type By file type
find -user By ownership

DUMP od 9.2.2 Dump a file in various formats
od -a ASCII

Appendix A Command Summaries 327



Table A.l VMS Commands with UNIX Equivalents (continued)

UNIX
VMS Command Equivalent Section UNIX Function

DUMP/OCTAL od -0 Octal
DUMP/HEXADECIMAL od -h Hexadecimal
EDIT/EDT vi 5.2 Screen editor
EDIT/RECOVER vi -r Recover screen editing

session
ex 5.1 Line editor

EDIT/RECOVER ex -r Recover line editing session
ed 5.1 Line editor

EXCHANGE dd 8.2.2 Backup/restore non-standard
files

Itf 8.2.4 VMS to ULTRIX tape
exchange

EXIT exit 11.1 Terminate a script
FORTRAN f77 10.1 Compile and link FORTRAN

program
f77 -c Suppress linking
f77 -g Create symbol table for

profiling
f77 -gp Create object file for

profiling

f77 -S Save assembler code
/OUTPUT=file f77 -ofile Place executable in file

f77 -llib Include library in load step
/LiST error 10.3 Place syntax errors in code

HELP man 3.6 On-line help

HINTS man -k topic Summarize help by topic
man -f command Summarize help by

command

LIBRARY ar 10.5 Library maintainer

LIBRARY/CREATE ar -cr Create library

LIBRARY/EXTRACT ar-x Extract module(s)

LIBRARY/INSERT ar-q Insert module(s)

LIBRARY/LIST ar -t List module(s)

LIBRARY/REPLACE ar -r Replace module(s)

ar-m Move module(s)

ranlib 10.5 Randomize library

LINK 10.1 (See FORTRAN)

LOGOUT logout 3.3 Terminate a terminal session

328 Appendix A Command Summaries



Table A.l VMS Commands with UNIX Equivalents (continued)

UNIX
VMS Command Equivalent Section UNIX Function

MAIL mail 6.1 Send or receive electronic mail

MAIL DELETE maild Delete message(s)

MAIL DIR mail f [user] or h Display header lines [from
user]

MAIL DIR/FOLDER folders Display existing folders

MAIL EDIT maile Edit message(s)

MAIL EXIT mailq End, saving unread
message(s)

MAIL EXTRACT mail s file Store message(s) in file

MAIL HELP mail? Get help on mail commands

MAIL MOVE mail s +folder Move message(s) to folder

MAIL NEXT mail n Go to next message

MAIL QUIT mail exit End, leaving mail
environment unchanged

MAIL READ mail t Read message(s)

MAIL REPLY mail r Reply to all receivers

mail R Reply to sender only

MAIL SEND mailm Send a mail message

MAIUEDIT mail-e Invoke the editor defined by
EDITOR in .mailre

MAIL SET mail .mailre Define mail environment

MAIL SET FOLDER mail ·f folder Use specified folder

mail! Issue a shell command

mail eh dir Change directory to dir
(default Shome)

mail-d Include the dead.le«er file

mail" Optionally change all
characteristics

mail-m # Include message number #
in current message

mail-p Display entire message
mail-r file Include file in message
mail-t users Add users to those receiving

message

mail u Undelete messages
mail-v Invoke the vi editor

ON CONTROL_ Y onintr 11.9.1 On interrupt

Appendix A Command Summaries 329



Table A.l VMS Commands with UNIX Equivalents (continued)

UNIX
VMS Command Equivalent Section UNIX Function

PHONE talk (ttyname] 6.2 Communicate interactively
with another user

PRINT Ipr 8.1.1 Print a file on the default line
printer

PRINT/QUEUE Ipr -Pqueue On specified queue

PRINT/COPIES =n Ipr -#n n copies

Ipr -f Format using FORTRAN
carriage control

PRINT/NOHEADER Ipr -h No header page

PRINT/FLAG Ipr -Jiobn Include iobn on first page

Ipr -m Send mail upon completion

PRINT/PAGE Ipr -p Preformat with pr
PRINT/DELETE Ipr -r Remove file after printing

Ipr -s From user directory, not
spool directory

pr 9.2.3 Preformat file before printing

pr -f Use form feeds, not blank
lines

pr -h string Replace header with string
pr -I n Make page n lines

(default = 66)

pr -m Merge files and print side by
side

pr +n Begin at page n
pr-n n column output

pr -t Omit default page header
and trailer

pr-w n Set line width to n
(default = 72)

RECALUALL history 3.5 Recall command lines

RENAME my 4.10 Rename a file
RENAME/CONFIRM my-i Confirm

my-f Override conformation
RUNOFF nroff/troff 12.3 Format text

RUNOFF/PAGE -0 Selected pages only

-mmacro Use definitions in
macro

SEARCH grep 9.4.5 Search file(s) for strings

330 Appendix A Command Summaries



Table A.l VMS Commands with UNIX Equivalents {continued}

UNIX
VMS Command Equivalent Section UNIX Function

SEARCH/STAT grep -c List only count of lines that
match

grep -i Ignore case distinctions
SEARCH/NUMBERS grep -n Precede each match with

line number

grep -v List only lines that do not
match

grep -I Return only filename that
contains match

SET BROADCAST mesg y 6.2 Permit broadcast interruptions

= NOMAIL biH n 3.2.1 No incoming mail notification
SET DEFAULT cd 4.4 Change directory
SET FILE/OWNER chgrp 9.4.2 Change group ownership of a

file

SET HOST rlogin 13.2.4.1 Network login to trusted host

rlogin -Iuser With different login name
telnet 13.2.4.2 Network login to non-trusted

host
SET HOST/DTE tip 13.3.3 Dial remote host
SET PASSWORD passwd 3.2.3 Change the password

SET PROCESS
/PRIORITY nice, renice 7.3.3 Change the priority of a

process
limit 7.3.4 Limit the values of a process's

resources
SET PROTECTION chmod Change file protection

[...] chmod -R Recursively descend
directories

/DEFAULT umask 3.2.4.2 Change the default protection
SET TERMINAL tset, stty 3.1 Set the terminal characteristics

SET VERIFY csh 11.10 Verify command/script
execution

csh -x Echo after variable
substitution

csh -v Echo command line prior to
execution

csh -x As -x, but include .cshrc
csh -v As -v, but include .cshrc

Appendix A Command Summaries 337



Table A.l VMS Commands with UNIX Equivalents (continued)

UNIX
VMS Command Equivalent Section UNIX Function

SHOW DEFAULT pwd 4.3 Display current directory

SHOW DEVICE
fAllOCATED tty 3.1 Display device to which a

terminal is connected

fFUll df [filesystem] 7.2.3 Display information on a file
system

df -i Give block and fragment
size

SHOW lOGICAL printenv 3.2 Display environment
characteristics

SYS$NODE hostname 13.2.1 Display local host name
SHOW MEMORY vmstat 7.2.1 Display memory utilization

SHOW NETWORK netstat 7.2.2 Display network utilization

ruptime 13.2.2 Display uptime of remote
hosts

SHOW PROCESS whoami 7.1.1 Display login name

ps 7.1.3 Display information on
processes

fAll ps -I Long listing

limit 7.1.5 Display resource limits
SHOW QUEUE Ipq 8.1.2 Display default print queue

status
Ipq -Pqueue For queue
iobs 8.3.2 Display background job queue

SHOW STATUS time 11.9.3 Display resources used by a
process

SHOW SYSTEM ps -aux 7.1.3 Show features of all processes

SHOW TIME date 5.4.8 Display date and time

SHOWUIC groups 3.1 Display group membership

SHOW USERS who 7.1.2 Who is using the system
w Who is using the system (long)

rwho Who is using remote hosts (in
last 30 minutes)

rwho-a All users

rwho-h Order alphabetically by host

users Who is using the system
(short)

332 Appendix A Command Summaries



Table A.l VMS Commands with UNIX Equivalents (continued)

UNIX
VMS Command Equivalent Section UNIX Function

SORT sort 9.4.6 Sort and merge

SORT/KEY sort -n/+n Before/after field n

SORT/OUTPUT sort -0 file Direct output to file

sort -tn Alternative field separator n

sort -n Strict ascending numeric
order

sort -f Disregard case of
alphanumerics

STOP/ID kill -9 7.3.1 Remove a process

SUBMIT at 7.3.2 Start a process at a later time

bg 8.3.1 Move a process to background

TYPE cot 4.8 Display a file

cat-n With line numbers

cot -s Suppress multiple blank
lines

TYPE/PAGE more (page) 4.8 Pause after each page

more -c Refresh screen

more -f Truncate rather than wrap
long lines

more -n Display n lines (default =24)

more +n Begin at line n

more /string Display 2 lines before next
string

head 9.2.3 Display the beginning of a file

head -n First n lines

toil 9.2.3 Display the end of a file

tail-n Last n lines

toil -r In reverse order

WRITE echo 1l.2 Write to standard output

echo -n Leave cursor at end of line

Appendix A Command Summaries 333



Table A.2 UNIX Commands with No VMS Equivalents

Command

awk
-Fsep
-Rile

bc/dc

cal [month] year

clear
dirs
eval
fg

fsplit

gprof

kill
make

-n

mt
bsf [count]
bsr [count]
eof
fsf [count]
fsr [count]
rewind

popd
prof

pushd
+n

rsh
script [file]

sed
-n
-e

set noclobber
spell

stop
tr

-c string
uucp
uuname

-I

Section

5.4

1.2

11.8.2

3.3
9.3.2

11.9.2

8.3.3
10.2

10.4
8.3.3
10.2

8.2.3

9.3.2
10.4
9.3.2

13.2.7

Preface

5.3

2.1.3
1.2
8.3.3
9.4.8

13.3.5
13.3.1

Function

Stream (batch) editor
Define field separator as sep
Use commands contained in file

Calculator

Display calendar

Clear the terminal screen
Display the directory stack

Force evaluation by parent process
Bring job to foreground

Split FORTRAN source code file into functional
units

Extended profile of program execution

Remove a background job
Maintain dependent files

Echo but do not perform commands

Magnetic tape manipulation
Move back count files
Move back count records
Write EOF
Move forward count files
Move forward count records
Rewind tape

Make top of directory stack the current directory

Simple profile of program execution (see gprof)
Place a directory on the directory stack

Rotate the stack n times

Remote command execution

Make a transcript of a terminal session (default file
transcript)

Stream (batch) editor
Display only modified lines
Combine editing commands

Prevent redirection from overwriting existing file
Check file for spelling errors
Stop a background job

Translate characters in a file
Include string in each translation

Send/receive file(s) via UUCP
Display remote host names reachable via UUCP

Display local UUCP host name

334 Appendix A Command Summaries



Table A.2 UNIX Commands with No VMS Equivalents (continued)

Command

uusend

uux

we

-I
-w
-e

Section

13.3.5
13.3.6
9.4.9

Function

Send file(s) via UUCP

Remote command execution via UUCP
Count the number of lines, words and characters in a

file
Lines only
Words only
Characters only

Appendix A Command Summaries 335



Appendix B

Editor Summaries

Table B.l VMS EDT Line Mode versus UNIX ex

EDT

Display Commands
Tx
Tx:y
'T.:END(TRE5T)
T1 •.
TWHOLE
Tstring
T-string
Ta:b,x:y

ex

x

x,y
. ,$
1, .
1,$
/string/
?string?
a,b x,y
x,ynu

ex Function

Display line x

Display lines x through y

Display current line to end of file

Display line I to current line

Display whole line

Display first line containing string below current line

Display first line containing string above current line

Display lines a through b followed by lines x through y

Display lines x through y with line numbers

Manipulation Commands
I a
o d
Dx:y x,yd
5/51/52/ 5/51/52/
5/51/5211 :END s/sl/s2/g
R. c

Mx:yTO z x,ym z
WRITE FILE x:y x,ya [name]

y [name]

Append after current line

Delete current line

Delete lines x through y

Substitute String I for String 2

Substitute String I for String 2 throughout the file

Delete current line and insert
Move lines x through y and paste after z

Copy lines x through y to buffer name
Put lines from buffer name after current line

336 Appendix 8 Editor Summaries



Table B.l VMS EDT Line Mode versus UNIX ex (continued)

EDT

INCLUDE FILE

ex

r file

ex Function

Include file after current line

Miscellaneous Commands
HELP

undo

QUIT q!
EXIT wq

Form: EDT
ex

Get help

Reverse last command

Quit without saving changes

Exit saving changes

• command linea:lineb
: lineo,lineb command options

Table B.2 VMS EDT Screen Mode Versus UNIX vi

EDT

Entering Text
(default)

[PF1][O]I

Cursor Movement
arrow keys

[2]

backspace (F12)

[4][8]

[4][8] ....

[5][8]

[5][8]....

[4][1]

[4][1] ....

(5)[1]

[5][1]....

vi

a

o

o
R
(ESC)

arrow keys

$

H
L
M
(CTRL)-F

#(CTRL)-F

(CTRL)-B

#(CTRL)-B

(CTRL)-D

(CTRL)-U

w

#w
b
#b
e

vi Function

Append text after the cursor

Insert text after the cursor while overwriting

Open a new line below the cursor

Open a new line above the cursor

Replace characters

Terminate input mode

Move the cursor right or left. up or down

Move to the end of the line

Move to the beginning of the line

Move cursor to the top of the screen

Move cursor to the bottom of the screen

Move cursor to the middle of the screen

Scroll file forward one screen

Scroll file forward # screens

Scroll file backward one screen

Scroll file backward # screens

Scoll file forward one-half screen

Scroll file backward one-half screen

Move forward one word

Move forward # words

Move backward one word

Move backward # words

Move to last character of current word

Appendix 8 Editor Summaries 337



Table B.2 VMS EDT Screen Mode Versus UNIX vi (continued)

EDT

[4] [PF1][PF3]x
[5] [PF1][PF3]x

[4][PFl ][PF3]string
(PF3]
[5] [PF1][PF3]string
[PF1][7]T#

Changing Text2

[,]

[.J
(DEL), (CTRL)-H

[-J
[PF1][2]

[-I

[PF1][2]

Cut and Paste
[.]...[6]

(.][2][6]

[PF1][6]

[PF1][7] INCLUDE FILE
[PF1][7] WRITE FILE

vi

fx
Fx
)
(
}

{

Istring
n

?string
#G

r

R
x
(DEL), (CTRL)-H, X
dw

d$
cw

c$

dd
cc

y

yy

p
P

r file
w file

vi Function

Move forward to next character x

Move backward to next character x

Move forward one sentence
Move backward one sentence
Move forward to end of paragraph
Move backward to beginning of paragraph

Move forward to string
Move forward to next occurrence of string
Move backward to string
Move to line number #

Replace a single character
Replace until terminated by (ESC)

Delete a single character

Delete character before the cursor

Delete from cursor to beginning of next word

Delete from the cursor to the end of the line
Delete from cursor to beginning of next word

and insert
Delete from the cursor to the end of the line

and insert
Delete the whole line containing the cursor
As dd and insert at the beginning of the line

Yank (copy) text into an alternative buffer

Yank (copy) current line into alternative
buffer

Paste deleted or yanked text after the cursor
Paste deleted or yanked text before the

cursor
Include an external file
Write to an external file

Miscellaneous Commands
[PF1](7]. (CTRL)-G

[PF1]command u
U

338 Appendix B Editor Summaries

Identifies line number containing cursor
Undo last command
Undo all changes on the current line



Table B.2 VMS EDT Screen Mode Versus UNIX Vi(continued)

EDT

[PF1] [7]

Lem,ing the Editor
(CTRL)-Z EXIT

(CTRL)-l QUIT

Using Editors in vi
[PF1][7]

(CTRL)-Z

vi

:w
:q
:wq (or II)
:q!

Q

vi Function

Enter a shell command

Enter an ex command

Write and save the current file

Quit the editor without saving

Write and quit

Quit without saving changes

Prompt at bot tom of screen for an ex
command

Quit vi without saving and begin an ex
session

1. EDT keypad keys appear in square brackets.
2. Commands that move the cursor can be combined with commands that change
text to provide wide-ranging functionality. For example, d) deletes from the cursor
to the beginning of the next sentence.

Appendix 8 Editor Summaries 339



Appendix C

Important UNIX Files

File Section Purpose

/Iib to. I System libraries

/vmunix 2.2 The UNIX system kernel

1I0st+found 2.2 Directory containing a file system's lost files
-user/.eshre 3.2.2 Define environment for the C shell
-user/.exre Define environment for the ex editor
-user/.forward 6.].4 Define a forwarding mail address
-user/.history ]1.9 Maintain history list for following terminal

session
-user/.hushlogin 3. ] Silences login messages
-user/.Iogin 3.2. ] Define environment for the whole terminal

session
-user/.Iogout 3.3 Commands to be executed upon logout
-user/.mailre 6.].8 Define environment for the mail utility
-user/.netre 13.2.6.2 Define information for ftp access
-user/.profile 3.2.2 Define environment for the Bourne shell
-user/.rhosts 13.2.3 Define private remote hosts

-user/dead.letter 6. ] Contains interrupted mail message
-user/mbox 6.] User's read mail file (compare the VMS MAIL

folder)

/bin/login 3. ] Login program

/dev/null 2.2 Null device (bit bucket), used to discard output
or input an immediate EOF (end-of-fiIe)

340 Appendix C Important UNIX Files



File Section Purpose

/dev/tty... 3.1 Special file associated with a terminal
connection

/dev/ptty..• 3.1 Special file associated with a pseudo-terminal; a
network connection

/dev/Stty... 3.1 Special file associated with a terminal server
connection

/etc/cron 7.1.3 Program to perform tasks at preset intervals

/etc/disktab 2.2 Description of the characteristics of each
physical disk type, for example, partition size
and location

/etc/dumpdates 8.2.1 Maintained by dump to record last full and
incremental file system backups

/ etc/environ 3.1 Program to establish environment variables
/ etc/exports 13.2.8 File systems that may be exported, that is,

mounted by other hosts supporting NFS
/etc/fstab 3.2 File system location and characteristics
/etc/getty 3.1 Program to determine terminal characteristics
/ etc/gettytab 3.1 Terminal line description
/etc/group 3.1 Name of group and login names of the members
/etc/hosts 13.2.1 All hosts reachable via network
/etc/hosts.equiv 13.2.3 Trusted hosts reachable via network
/etc/init 3.1 Program to initiate a terminal session
/etc/motd Message-of-the-day file maintained by the

system administrator
/ etc/passwd 3.1 Information defining each user of the system
/etc/phones 13.3.3 System-wide remote phone number database of

systems commonly accessed via the tip
command

/etc/printcap 8.1 Description of available lineprinters
/etc/rc.local Site-specific startup information
/etc/remote 13.3.3 Remote systems available to the tip command
/etc/tapecap 8.2 Description of available tape drives
/etc/ttys 3.1 Terminal initialization data read by /etc/init
/ etc/ttytype 3.1 Maps the terminal type (defined in /etc/termcap)

to each computer port available on the system
/etc/update 7.1.3 Maintains file system integrity
/etc/utmp 7.1.2 Who is currently logged on the system
/usr/adm/wtmp 7.1.2 Records alliogins and logouts
/usr/lib 10.1 Directory containing infrequently used system

libraries

Appendix C Important UNIX Files 341



File Section Purpose

/usr/lib/erontab 7.3.2 Schedule of programs to be run by /ete/eron at
preset intervals

/usr/lib/Mail.re 6.1.8 System-wide mail environment

/usr/lib/news/newsgroups 13.4 News groups maintained by Usenet

/usr/lib/tmae 12.3 Location of nroff/troH macro packages
/usr/lib/uuep/L.eommands 13.3.5 uusend commands accepted from remote hosts

/usr/lib/uuep/L-deviees 13.3.1 Characteristics of dialout modems used by
UUCP

/usr/lib/uuep/L-dialeodes 13.3.1 Common dial codes used by the UUCP dialers

lusr/lib/uuep/L.sys 13.3.1 Dialing characteristics used by UUCP in
reaching remote hosts

/usr/ioeal/lib 10.1 Local system-wide libraries

/usrlskel 3.8 Default user environment files

lusrlspool/mail/user 6.1 Incoming mail postbox for user (compare the
VMS NEWMAIL folder)

/usrlspool/uuep 13.3.5 Parent directory of uuep account

lusr/spool/uuep/ERRLOG 13.3.1 Error log maintained by the UUCP utility

lusr/spool/uuep/LOGFILE 13.3.1 Log of UUCP activity

lusr/spool/uuep/SYSLOG 13.3.1 Log of UUCP file transfer activity

/usr/sys/..• 10.1 System routines used by the preprocessor

342 Appendix C Important UNIX Files



Appendix 0

Additionalllleading

The books in this list were selected using the BRS Colleague Biblio­
graphic Search Service, which contains a database of all books in print
in the United States. Not all the books have been reviewed by the
author. The articles cited as "Unix Document Set" are usually part of
the UNIX documentation distributed with the operating system soft­
ware. Consult your system administrator for details. The dates for these
articles come from Digital Equipment Corporation's ULTRIX-32m Ver­
sion 2.0 document set, and may differ from the documentation distrib­
uted with other UNIX versions.

General: Beginners

Brown, P., and P. Birns. UNIXfor People. Englewood Cliffs, NJ: Prentice­
Hall, 1984.

Christian, K. The UNIX Command Reference Guide: The Top 50 UNIX
Commands, What They Are and How to Use Them. New York: Wiley,
1987.

Lomuto, A. N., and N. Limuto. A UNIX Primer. Englewood Cliffs, NJ:
Prentice-Hall, 1983.

McGilton, H., and R. Morgan. Introducing the UNIX System. New York:
McGraw-Hili, 1983.

Pasternack, I. Exploring the UNIX Environment. New York: Bantam
Books, 1985.

Silvester, P.P. UNIX: An Introduction for Computer Users. New York:
Wiley, 1984.

Appendix D Additional Reading 343



Silvester, P.P. The UNIX System Guidebook. New York: Springer-Verlag,
1988.

Strong, B., and J. Hosler. UNIX for Beginners: A Step-By-Step Introduc­
tion. New York: Wiley, 1987.

Todino, G., and D. Dougherty. Learning the UNIX Operating System.
Newton, MA: O'Reilly and Associates, Inc., 1987.

The Waite Group. UNIX Primer Plus. Indianapolis, IN: Howard W. Sams
& Co., 1983.

Whiddett, R.J., and R.E. Berry. UNIX: A Practical Introduction for Users.
New York: Halsted Press, 1985.

General: Intermediate

AT&T Staff and M.1. Bolsky. The UNIX System User's Handbook. Engle­
wood Cliffs, NJ: Prentice-Hall, 1986.

Budgen, D. Making Use ofthe UNIX Operating System. Englewood Cliffs,
NJ: Prentice-Hall, 1986.

Christian, K. The UNIX Operating System. 2nd Edition. New York: Wiley,
1988.

Farkas, D. UNIX for Programmers. New York: Wiley, 1987.
Kernighan, B.W., and R. Pike. The UNIX Programming Environment.

Englewood Cliffs, NJ: Prentice-Hall, 1984.
Kochan, S.G., and P.H. Wood. Exploring the UNIX System. Indianapolis,

IN: Hayden Books, 1985.
Martin, D. UNIX System Bible. Indianapolis, IN: Howard W. Sams & Co.,

1987.
McNully Development, Inc. UNIX Reference Guide. Englewood Cliffs, NJ:

Prentice-Hall, 1986.
Sobell, M.G., A Practical Guide to the UNIX System. Menlo Park, CA:

Benjamin-Cummings, 1984.
Thomas, R., and J. Yates. The Programmer's Guide to the UNIX System.

Reading, MA: Addison-Wesley, 1983.
Thomas, R., and J. Yates. User Guide to the UNIX System. Berkeley, CA:

Osborne-MeGraw-Hill, 1985.
The Waite Group. UNIX Papers for Developers and Power Users. Indian­

apolis, IN: Howard W. Sams & Company, 1987.
Walker, A. The UNIX Environment. New York: Wiley, 1984.
Weinberg, P.N., and J.R. Groff. Understanding UNIX: A Conceptual

Guide. Carmel, IN: Que Corporation, 1988.

General: Advanced

AT&T Staff. UNIX Programmer's Manual, Volumes 1 Through 5. New
York: Holt, Rinehart and Winston, 1986.

Bach, M.J. The Design of the UNIX Operating System. Englewood Cliffs,
NJ: Prentice-Hall, 1986.

344 Appendix D Additional Reading



Bell Laboratories Staff. UNIX. New York: Holt, Rinehart and Winston,
1983.

Franzosa, B. (Ed.). The UNIX System Encyclopedia. Palo Alto, CA: Yates
Vent, 1985.

Mikes, S. UNIX: Power User's Guide. Berkeley, CA: Osborne-McGraw­
Hill, 1988.

Prata, S. Advanced UNIX: A Programmer's Guide. Indianapolis, IN: How­
ard W. Sams & Company, 1985.

Sage, R. Tricks of the UNIX Masters. Indianapolis, IN: Howard W. Sams
& Company, 1987.

UNIX System Administration

AT&T Staff. UNIX System Administrator's Reference Manual. Englewood
Cliffs, NJ: Prentice-Hall, 1988.

Backhurst, N., and P. Davies. System Management Under UNIX. Larch­
mont, NY: Book Clearing House, 1987.

Burke, F. UNIX System Administration. San Diego: Harcourt Brace Jovan­
ovich, 1987.

Fiedler, D., and B.H. Hunter. UNIX System Administration. Indianapolis,
IN: Hayden Books, 1986.

Foxley, E. UNIX for Super-Users. Reading, MA: Addison-Wesley, 1985.
Seyer, M.D., and W.J. Mills. DOS UNIX: Becoming a Super User. Engle­

wood Cliffs, NJ: Prentice-Hall, 1986.
Shaw, M.C., and S.S. Shaw. UNIX Internals: A Systems Operations Hand­

book. Blue Ridge Summit, PA: Tab Books, 1987.
Wood, P.H., and S.G. Kochan. UNIX System Security. Indianapolis, IN:

Hayden Books, 1987.

UNIX for Microcomputers

Chirlian, P.M. UNIX for the IBM PC. Columbus, OH: Merrill Publishing
Company, 1987.

Clukey, L.P. UNIX and XENIX Demysti/ied. Blue Ridge Summit, PA: Tab
Books, 1985.

Deikman, A. UNIX Programming on the 80286-80386. Redwood City, CA:
M&T Publishing, 1988.

Nutshell Handbooks. DOS Meets UNIX. Newton, MA: O'Reilly and Asso­
ciates, 1987.

Shaw, M.C., and S.S. Shaw. UNIX V and XENIX System V: Programmer's
Toolkit. Blue Ridge Summit, PA: Tab Books, 1986.

Specialized System Consultants. UNIX-XENIX Text Processing Reference.
Seattle, WA: Specialized Systems, 1987.

Topham, D.W., and H. Trong. UNIX and XENIX. A Step-by-Step Approach
for Micros. New York: Brady Computer Books, 1985.

Appendix D Additional Reading 345



Topham, D.W., and H. Van Truong. The System V Guide: A UNIX and
XENIX Tutorial. New York: Brady Computer Books, 1986.

Miscellaneous

Chorafas, D.N. Fourth- and Fifth-Generation Programming Languages,
Volume 2: Which UNIX? AT&T, IBM, and Other Operating System Envi­
ronments. New York: McGraw-HilI, 1986.

Christian, K. UNIX Dictionary. New York: Wiley, 1988.
Egan, J.I., and T.J. Teixeira. Writing a UNIX Device Driver. New York:

Wiley, 1988.
Manis, R., and R. Jorgenson. Relational Database Management in the

UNIX Environment. Englewood Cliffs, NJ: Prentice-Hall, 1988.
Poole, P.C., and N. Poole. Using UNIX by Example. Reading, MA: Addi­

son-Wesley, 1986.
Schreiner, A.T., and H.G. Friedman. Introduction to Compiler Construc­

tion with UNIX. Englewood Cliffs, NJ: Prentice-Hall, 1985.
Shirota, Y., and T.L. Kunit. First Book on UNIXfor Executives. New York:

Springer-Verlag, 1984.
Yates, Y.L., and R. Thomas. The Business Guide to the UNIX System.

Reading, MA: Addison-Wesley, 1984.

System "'

Specialized Systems Consultants. UNIX Command Summary System JII.
Seattle, WA: Specialized Systems, 1983.

System V

AT&T Staff. UNIX System Software Readings. Englewood Cliffs, NJ: Pren­
tice-Hall, 1988.

AT&T Staff. UNIX System V Programmer's Guide. Englewood Cliffs, NJ:
Prentice-Hall, 1987.

AT&T Staff. UNIX System V Reference Manual. Englewood Cliffs, NJ:
Prentice-Hall, 1987.

AT&T Staff. UNIX System Readings and Applications. Englewood Cliffs,
NJ: Prentice-Hall, 1987.

AT&T Staff. UNIX System V Utilities Handbook. Englewood Cliffs, NJ:
Prentice-Hall, 1985.

AT&T Staff. Computer Software Catalog: UNIX System V Software.
Englewood Cliffs, NJ: Prentice-Hall, 1987.

Balay, R.H. User's Introduction to UNIX V. Dubuque, IA: Kendall-Hunt,
1988.

Bourne, S.R. The UNIX V Environment. Reading, MA: Addison-Wesley,
1986.

Byers, R.A. Introduction to UNIX System V. New York: McGraw-Hili,
1985.

346 Appendix 0 Additional Reading



Coffin, S. UNIX: The Complete Reference, System V, Release 3. Berkeley,
CA: Osborne-McGraw-HiII, 1988.

Morgan, R., and H. McGilton. Introducing the UNIX System V. New York:
McGraw-Hili, 1987.

Nutshell Handbooks. UNIX in a Nutshell, System V Edition. Newton, MA:
O'Reilly and Associates, 1987.

Prata, S. UNIX System V Primer. Indianapolis, IN: Howard W. Sams &
Company, 1987.

Sobell, M.G. A Practical Guide to the UNIX System V. Menlo Park, CA:
Benjamin-Cummings, 1985.

Specialized System Consultants. UNIX Command Summary (System V).
Seattle, WA: Specialized Systems, 1987.

Thomas, R., and J.L. Yates. Advanced Programmer's Guide to UNIX Sys­
tem V. Berkeley, CA: Osborne-McGraw-HiII, 1985.

BSD

Nutshell Handbooks. UNIX in a Nutshell, Berkeley Edition. Newton, MA:
O'Reilly and Associates, 1987.

Olczak, A. The UNIX Reference Guidefor BSD. Hasslet, MI: Systems Pub­
lications, 1987.

Quaterman, J .S., and A.P. Stettner. The Design and Implementation of the
4.3BSD UNIX Operating System. Reading, MA: Addison-Wesley, 1988.

Specialized System Consultants. UNIX Command Summary (BSD 4.2).
Seattle: Specialized Systems, 1984.

Specialized System Consultants. UNIX Command Summary for Berkeley
4.2 & 4.3 BSD. Seattle: Specialized Systems, 1984.

Wang, P.S. An Introduction to Berkeley UNIX. Belmont, CA: Wadsworth,
1988.

Chapter J: Introduction

UNIX World. Mountain View, CA: Tech Valley Publishing. Published
monthly.

UNIX Review. San Francisco: Miller, Freeman Publications. Published
monthly.

Chapter 2: Fundamentals

Bach, M.J. The Design of the UNIX Operating System. Englewood Cliffs,
NJ: Prentice-Hall, 1986.

Ritchie, n.M., and K. Thompson. The UNIX Time-Sharing System. Comm.
ACM /7, 365 (1974).

Silvester, P.P. The UNIX System Guidebook. New York: Springer-Verlag,
1988.

Appendix D Addifional Reading 347



Chapter 3: Getting Starled

Kernighan, B.W. UNIX for Beginners. UNIX Documentation Set (1984).

Chapter 4: Introductory File Management

Nutshell Handbooks. UNIX in a Nutshell, Berkeley Edition. Newton, MA:
O'Reilly and Associates, 1987.

Nutshell Handbooks. UNIX in a Nutshell, System V Edition. Newton, MA:
O'Reilly and Associates, 1987.

Chapter 5: Editing

Aho, A.V., Kernigan, B.W., and P.J. Weinberger. Awk-A Patlern Scanning
and Processing Language, Second Edition. UNIX Documentation Set,
1978.

El, L.M. Editing in a UNIX Environment: The Vi-ex Editor. Englewood
Cliffs, NJ: Prentice-Hall, 1985.

Hansen, A. Vi: The UNIX Screen Editor. Haverford, PA: Bradly Commu­
nications, 1985.

Joy, W. Ex Reference Manual. UNIX Documentation Set, 1980.
Joy, W. An Introduction to Display Editing with Vi. UNIX Documentation

Set, 1984.
Lamb, L. Learning the vi Editor. Newton, MA: O'Reilly and Associates,

1987.
McMahon, L.E. SED: A Non-interactive Text Editor. UNIX Documentation

Set, 1978.
Sonnenscheim, D. A Guide to Vi: Visual Editing on the UNIX System.

Englewood Cliffs, NJ: Prentice-Hall, 1986.
Strong, B. UNIX Word Processing Book. Step by Step Guide for the Vi

Editor. New York: Wiley, 1987.
Strong, B., and J. Hosler. UNIX for Beginners: Basic Word Processing

Skills with Ed. New York: Wiley, 1988.

Chapter 6: Communicating with Other Users

Shoens, K. Mail Reference Manual. UNIX Documentation Set, 1984.
The Waite Group. UNIX Communications. Indianapolis, IN: Howard W.

Sams & Company, 1987.

Chapter 9: Advanced File Management

Nutshell Handbooks. UNIX in a Nutshell, Berkeley Edition. Newton, MA:
O'Reilly and Associates, 1987.

348 Appendix D Additional Reading



Nutshell Handbooks. UNIX in a Nutshell, System V Edition. Newton, MA:
O'Reilly and Associates, 1987.

Chapter JO: Programming

Digital Equipment Corporation. Guide to the Source Code Control System.
ULTRIX-32 Documentation Set, Order Number AA-ME84A-TE. May­
nard, MA: 1989.

Dunsmuir, M.R., and G.J. Davies. Programming the UNIX System. New
York: Halsted Press, 1985.

Farkas, D. UNIX for Programmers: An Introduction. New York: Wiley,
1988.

Feldman, S.1. Make-A Program for Maintaining Computer Programs.
UNIX Documentation Set, 1978.

Gehani, N. UNIX ADA. Englewood Cliffs, NJ: Prentice-Hall, 1987.
Horspool, N.R. C Programming in the Berkeley UNIX Environment. Engle­

wood Cliffs, NJ: Prentice-Hall, 1987.
Hume, J.N., and R.C. Holt. PASCAL Under UNIX. Englewood Cliffs, NJ:

Prentice-Hall, 1983.
Lapin, J.E. Portable C and UNIX Systems Programming. Englewood

Cliffs, NJ: Prentice-Hall, 1986.
Moore, R.F. Programming in C with a Bit of UNIX. Englewood Cliffs, NJ:

Prentice-Hall, 1985.
Peters, J.F. UNIX Programming: Methods and Tools. San Diego: Harcourt

Brace Jovanovich, 1988.
Rochkind, M.J. Advanced UNIX Programming. Englewood Cliffs, NJ:

Prentice-Hall, 1985.
Rochkind, M.J. Advanced C Programming for Displays: Character Dis­

plays, Windows and Keyboards for UNIX and MS-DOS. Englewood
Cliffs, NJ: Prentice-Hall, 1988.

Salama, B., and K. Haviland. UNIX System Programming: A Program­
mer's Guide to Software Development. Reading, MA: Addison-Wesley,
1987.

Schirmer, C. Programming in Cfor UNIX. New York: Halsted Press, 1987.
Schreiner, A.T., and G.H. Friedman Jr. Introduction to Compiler Construc­

tion with UNIX. Englewood Cliffs, NJ: Prentice-Hall, 1985.

Chapter JJ: Shell Programming

Anderson, G., and P. Anderson. The UNIX C Shell Field Guide. Englewood
Cliffs, NJ: Prentice-Hall, 1986.

Arthur, L.J. UNIX Shell Programming. New York: Wiley, 1986.
Bourne, S.R. An Introduction to the UNIX Shell. UNIX Documentation

Set, 1984.
Joy, W. An Introduction to the C Shell. UNIX Documentation Set, 1984.
Manis, R., and M.H. Meyer. The UNIX Shell Programming Language.

Indianapolis, IN: Howard W. Sams & Company, 1986.

Appendix D Additional Reading 349



Chapter J2: Text Processing

Barron, D.W., and M.J. Rees. Text Processing with UNIX. Reading, MA:
Addison-Wesley, 1987.

Brown, C.C., and R.D. Sperline. Preparing Documents with UNIX. Engle­
wood Cliffs, NJ: Prentice-Hall, 1986.

Emerson, S.L., and K. Paulsell. Troff Typesetting for UNIX Systems.
Englewood Cliffs, NJ: Prentice-Hall, 1986.

Kernighan, B.W. A TroffTutorial. UNIX Documentation Set, 1984.
Krieger, M. Word Processing on the UNIX System. New York: McGraw­

Hill, 1985.
Lesk, M.E. Tbl-A Program to Format Tables. UNIX Documentation Set,

1984.
O'Reilly, T., and D. Dougherty. UNIX Text Processing. Indianapolis, IN:

Howard W. Sams & Company, 1987.
Ossanna, J.P. NroffiTroff User's Manual. UNIX Documentation Set, 1984.
Roddy, K.P. UNIX nroff-troff' A User's Guide. New York: Holt, Rinehart

and Winston, 1985.

Chapter J3: Processor-to-Processor
Communications

AT&T Staff. UNIX System V Network Programmer's Guide. Englewood
Cliffs, NJ: Prentice-Hall, 1989.

AT&T Staff. UNIX System V Streams Primer. Englewood Cliffs, NJ: Pren­
tice-Hail, 1987.

AT&T Staff. UNIX System V Streams Programmer's Guide. Englewood
Cliffs, NJ: Prentice-Hall, 1989.

O'Reilly, T., and D. Dougherty. Managing UUCP and USENET. Newton,
MA: O'Reilly and Associates, 1987.

Todino, G. Usmg UUCP and USENET. Newton, MA: O'Reilly and Asso­
ciates, 1987.

The Waite Group. UNIX Communications. Indianapolis, IN: Howard W.
Sams & Company, 1987.

350 Appendix 0 Additional Reading



Glossary

. (dot) The current directory.

. . (dot-dot) The parent directory of the current directory.
Absolute pathname A pathname that starts at the root directory, that is,

with /.
Alias The C shell mechanism for abbreviating a command line (compare

the VMS construct: =).
Argument list The list of words from the command line that the C shell

passes to a command.
ASCII American Standard Code for Information Exchange: a standard

character encoding scheme.

Background job A job that is not receiving input from the terminal.
Baud Bits per second; a unit used to describe the transmission speed of

data.
Bit bucket Name for the file /dev/null. Characters written here are ··thrown

away"; characters read from here cause an immediate EOF.
Bit map Mapping of the screen such that each pixel is represented in phys­

ical memory.
Break point A point set in a source code program which stops the debugger

during execution.
BSD Berkeley Software Distribution, the version of UNIX originating at

the University of California at Berkeley.
Built-in command A command whose code is internal to the C shell; the C

shell does not fork a process to execute the command.

Card image A terminal display representation of a punched card, 80 char­
acters per record.

Glossary 3S1



352 Glossary

Child process The process created when the parent process executes the
fork system routine.

csh Shorthand for /bin/csh, the C shell program.
Current directory The directory to which commands refer by default.

Daemon A system-generated process that performs some system manage-
ment function in a manner transparent to the user.

Debugging Correcting errors in a program or procedure.
Detached job Ajob that continues processing after the user has logged out.
Device See Physical device.
Directory A UNIX file that contains names of other files or directories.
Directory hierarchy The arrangement of directories in a UNIX file system.

The root directory is at the top of the directory hierarchy and contains
pointers to all file systems, and hence to all directories on the system.

Directory stack A data structure that stores directories for later recall.
Disk partition Part of a disk onto which a file system is mounted.

Environment The set of characteristics describing a UNIX user's terminal
session. The characteristics include the open files, the user and group
identification, the process identification, and environment variables.

Environment variable A variable exported automatically to subsequent
programs. Environment variables are defined with the setenv command.

EOF End-of-file character(s) that denote the end of a file, usually
(CTRL)-D.

Ethernet Local area network standard providing the two lower levels of the
ISO/OSI (International Standards Organization/Open System Intercon­
nect) seven-layer reference model.

Event Past command stored in the history list.
Executable image An executable file located in physical memory.
Extension The part after the. (period) in a pathname. Also called file exten-

sion.

Field separator One or more characters used to separate fields in a record;
defaults to one or more blanks.

File A stream of bytes stored under a unique pathname.
File and device independence Using filenames and device names in com­

mands equivalently; for example, who> out and who> /dev/lp.
File descriptor The number UNIX assigns to an open file.
Filename A set of characters used to reference a file. Any character is

legal, but it is best to choose from the alphanumeric character set, period,
and underscore. BSD filenames may contain up to 255 characters.

Filename expansion Matching filenames in the specified directory accord­
ing to the following rules: • matches any character sequence including
null; ? matches any single character; [] delimits a set of characters; [n­
m] matches the range of characters n through m inclusive; - matches the
home directory; and {} delimits different parts in a common pathname (see
also globbing).



File system A hierarchical arrangement of files beginning at the root and
mounted in a disk partition.

Filter A program that reads from the standard input, processes it, and
writes it to the standard output. Filters are typically used in pipes.

Floating point accelerator Hardware designed specifically to enhance the
speed with which mathematical operations are performed on floating
point data types.

Foreground job A job that must be completed or interrupted before the
shell will accept more commands; ajob receiving input from the terminal.

Fork The system routine that creates a new process by duplicating the
calling (parent) process.

Globbing Filename expansion using metacharacters.
Group ID A numeric identification designating the group to which a user

belongs. The number corresponds to an entry in the /etc/group file.

Hard link Associates the same file contents with two or more file names
within the same file system.

Header The directory containing the filename.
History list List of previously issued commands.
Home directory The user's default working directory, specified in the /etc/

passwd file.
Host A computer on a network (compare the VMS node).
Host name The name given to a host (compare the VMS node name).

Inode Pointers used in locating data on a physical device.
Input Data read by a command or user program.
Interrupt A signal, typically generated at the keyboard, which causes the

currently executing process to terminate unless special action is taken by
the process to handle the signal.

Interrupt handler A set of statements executed upon receipt of an inter­
rupt.

Job A task consisting of one or more processes assigned a job number by
the C shell and executing in either foreground or background.

Job control Ability of the C shell to control multiple jobs.
Job number The number that uniquely identifies a job within a C shell

session.
Job stack Queue of jobs maintained by the C shell.
Job states The current state of ajob. (see also Suspended, Terminated. and

Detached.)

ksh Shorthand for /bin/ksh, the Korn shell program.

Link An entry in a directory (that is, a filename) that points to an existing
file. Hard links may not span file systems. Symbolic links, also called soft
links, may.

Glossary 353



354 Glossary

Link loader Software that combines all the separate modules of a program
to create an executable file.

Lock file A file whose existence prevents some function (for example,
access to a common database, printing device, or other shared facility).

Login name· The name assigned to a user (compare the VMS username).

Metacharater A character with a special meaning (for example, > denotes
redirection of output).

Modifier See Variable modifier.
Multiprocessor Two or more processors sharing common physical memory.

Network contention Two or more packets demanding simultaneous access
to the network.

NFS Network File System, a network protocol developed by Sun Micro­
systems, Inc., to permit access to files on remote computers as if they
were located on the local computer (compare the VMS Local Area VAX­
cluster).

Object files Files containing object code produced as the result of a com-
pilation.

Object library A library containing object files.
Option Modifies command execution.
Output Data produced by a command or user program.

Packet A unit of data and other information, for example, local host
address, remote host address, sent on a network.

Page The unit of interchange between physical memory and a swapping
device; 512 bytes for VAX computers.

Parent directory The directory above the current directory; the directory
one level closer to the root.

Parent process The originator of the fork call that creates a child process.
Partition Segment of a physical disk onto which a file system is mounted.
Parsing order The order in which the C shell evaluates a command line and

instigates any special mechanisms (history, alias, and so on).
Password A special code word known only by the user to permit access to

the system. A user's password is stored in encrypted form in the file lete/
passwd.

Pathname The names of all the directories that must be traversed to reach
a given destination (file or directory).

Pathname qualifier See Variable modifer
Physical device A piece of hardware attached to the computer, for example,

a disk drive, tape drive, printer, or terminal.
Physical device name The name given to a physical device. For example, /

dev/ttyOl (compare the VMS name TTAl :), /dev/daOa (compare the VMS
name DUAO:), and /dev/rmtOh (compare the VMS name MUAO:).

Pipe A connection that allows one program to get its input directly from
the output of another program.

Pipelining A hardware architecture that permits different components of an
instruction to simultaneously process different data elements.



Pixel A picture element: a point on the screen that is directly addressable
by the computer.

Predefined variable A shell variable defined and maintained by the C shell.
Prepend To append to the front.
Preprocessor Software that performs modifications to data so that the data

conforms to the input requirements of some other standard software.
Present working directory See Current directory
Priority A number assigned to a process which determines the system

resources that the process may receive.
Process A program that is being executed or is waiting to be executed.
Process identification or process id An integer that uniquely identifies a pro-

cess within the system.
Profiling Monitoring how system resources are utilized in a given program.
Protection mask The protection assigned to a file.

Recursion Defined relative to itself; calling a procedure from within a pro­
cedure.

Redirection Designating the source or destination of input or output to be
a named file or device.

Relative pathname The names of all directories either above or below the
current directory that must be traversed to reach a given destination (file
or directory).

Regular expression Incorporation of metacharacters to define the charac­
teristics of a string.

RiSe Reduced Instruction Set Computer: a hardware architecture that
concentrates on performing the most frequently used instructions at an
accelerated rate. The less often used instructions are performed by the
operating system software.

Root Another name for the superuser.
Root directory Top level of the UNIX directory hierarchy; all directories

derive from it.
RS-232 A standard interface used to connect a terminal to a host computer.

Script A shell procedure or program (compare the VMS DCL command
procedure).

Search path The ordered list of directories that the C shell searches to find
commands.

sh Shorthand for the file /bin/sh, the Bourne shell program.
Shell The UNIX command interpreter (compare the VMS DCL command

language interpreter).
Shell variable An identifier that can hold one or more strings of characters.
Socket Defines an endpoint for a network communication (BSD only).
Soft link Associating the same file contents with two or more file names

either within the same file system or across file systems; also called a
symbolic link.

Standard error (stderr) Where error messages are written; the terminal by
default (compare the VMS logical name SYS$ERROR).

Standard input (stdin) Where input is taken from; the terminal by default
(compare the VMS logical name SYS$INPUn.

Glossary 355



356 Glossary

Standard output (stdout) Where output is written to; the terminal by
default (compare the VMS logical name SYS$OUTPUT).

Status The state in which a program exists. By convention, 0 indicates a
successful exit, non-zero an error.

Store-and-forward A type of network connection in which a complete
transmission is passed to one intermediate host before transmission to the
next intermediate host begins.

Stream Same function as a socket, used by System V.
Subdirectory A directory that exists within another directory; any direc­

tory other than the root directory.
Superuser The login name that has total access to the system; also called

root.
Suspended Temporarily stopped foreground or background job.
Symbolic link See Soft link
System load The demand that all processes are placing on the computer.

Usually expressed as a number: 1.0 represents 100% utilization; 0.1 rep­
resents 10% utilization of system resources.

System routines The set of resident procedures callable by the user.

Tail The last part of a file; or a filename without a directory specification.
Task A defined activity.
TCP/IP Transmission Control ProtocoUInternet Protocol: the network pro­

tocol used by UNIX-based computers.
Terminal session The interaction that occurs between the user and the com­

puter between login and logout.
Terminated job Permanently stopped job.
Tool A command or utility designed to help get a job done, for example,

make or dbx.
Trusted host A host that permits access without the need to supply pass­

word information (compare the VMS prox~.login).

Uptime Wall clock time since the system was last booted.
User identification or user id The number associated with each login name.

This number is stored in the /etc/passwd file.
Usenet Network of UNIX-based computers for the exchange of every

imaginable type of information.
Utility A command with many options, for example, mail or awk.

Variable expansion Replacing the variable identifier with its associated
string or strings in a shell command line.

Variable modifier Symbol referring to part of a variable, usually under the
assumption that its value is a pathname.

Vectorization Hardware that permits a single instruction to act upon mul­
tiple data elements.

Word A string separated by blanks, tabs, or the C shell special characters
>, <, \, &, ;, ), and (.

Wordlist A C shell variable consisting of more than one word.



Index

& (ampersand), 124
* (asterisk), 52, 186
\ (backslash), 51,161
: (colon), 161
- (dash), 316
$ (dollar sign), 49, 90
! (exclamation mark), 49,51-52,57,99,250
> (greater than), 100, 178, 248
< (less than), 100, 248
# (number sign), 212, 237
. (period), 90, 100
/ (slash), 31, 32
- (tilde), 32, 95, 122-123
I (vertical bar), 161

a (append) ex editor command, 91
Absolute file definition, 32
Absolute file protection, 193, 194
Absolute pathnames, 167, 170
Access, 75

trusted hosts and, 290
Access Control Entry (ACE), 76, 77, 194
Access Control List (ACL), 76
Action commands, in vi editor, 96-98
Addresses

format of, 295, 301, 313
modem, 294
network, 294-295
for UUCP mail, 313

Advanced Interactive Executive (AIX), 4, 8
alias command, 51-52
Alternative entry points, 218
Ampersand (&), 124
Appending lines, in ex editor, 91-92
ar (archive) command, 210, 226-228
argv variable, 242
Arrays, in awk, 112-113
askcc, 122
ASSIGN command, 190-191,204
Asterisk (*), 52, 186
AT&T, 3,4,8
at command, 151, 152-153, 259
ATTACH command, 15
awk, 87,104-117,118,206

arrays in, 112-113
features of, 104-105
field separators, 105
flow control statements in, 111-112
formatting output in, 113
functions in, 114-115
mathematical functions in, 115
operators in, 109, IIO(tab.)
patterns and actions in, 105-107
predefined variables·in, 107-108
printf statement, 113
redirecting output in, 116
scripts, 109-110
sed and, 102

357



awk-(continued)
shell variables and, 241-242
string operators in, 113-1 15
uses of, 88
variable assignment in, 108-109

B,3
Backgroundjobs, 176, 182-183

examining, 178-179
manipulating, 179-180

Background processing, 15, 159, 176-180
defined, 176
moving command execution to, 177-178

Backslash (\), 51, 161
BACKUP command, 166-167, 168, 170, 173,303
Batch communications, 120-131
Batch processing, 158, 159, 180-181
Batch queues, background processing and, 176
Baud rate, 40, 41
Bell Laboratories, 3, 4
bg (background) command, 259
biff command, 49, 123-124
Bit bucket, 224
Bit shift operators, 250
Block devices, 28
Blocks, 77
Block size, fragments of, 26
Bourne shell (sh), 6, 42, 46, 47, 61, 152, 153,

176
breaksw statement, 253
BSD, 3, 6

compilers, 208
FORTRAN, 210
partitions in, 26
print spooler', 159
sockets, 293
symbolic assembly code, 212

Buffers, 88
Built-in commands, 46

C, 3, 208
debugger for, 219
makefile for, 217-218

cal (calendar) command, 252
Case labels, 253
Case sensitivity, 20-21
cat (catenate and print) command, 16, 20, 61,

80-81, 187,269
cc command, 210, 213
c (change) ex editor command, 92
C compiler, 210, 212

358 Index

cd (change directory) command, 78, 190
cdpath command, 78, 185, 190-191
Character devices, 28, 165-166
Character input and output, 165
Characters

special, 34, 35(tab.)
translating, 202-203

chgrp command, 76, 194
Child processes, 15-17

eval command and, 260
source command and, 262
suspending, 54

Child shell, shell script execution and, 236-237
chmod command, 81, 83,186,192-194,213,

237
clear command, 53-54
cmp command, 195-196
co (copy) ex editor command, 93
Collisions, 150
Colon (:), 161
!command ex editor command, 99
Command execution

delaying, 152-153
moving to background, 177-178
remote, 307-309, 316-318

Command language interpreters, 6
Command lines

editing, 56-57, 62
recalling, 54-57, 62

Commands, 325-335. See also specific
commands

abbreviations of, 23
built-in, 46
case-sensitivity of, 20
format of, 23-24

Communications, 120-135
batch, 120-131
between VMS and UNIX, 319
interactive, 120, 131-132
overview of, 292-293
processor-to-processor, 289-321

Comparison operators, 245-246
Compilers, 14, 208
COpy command, 173, 174
Copying

disk-to-disk, 170-171
files, 81-82, 289-290
between trusted and non-trusted hosts, 289­

290
coredumpsize, 147
cp (copy) command, 45, 81-82,189-190,290



cputime, 147
CPU utilization, 145, 149, 231
CREATE command, 42
cron program, 153
csh command, 263
C shell (csh), 6, 14, 32, 33, 42, 47, 61

awk and, 113
background processing in, 176
built-in commands, 259
cdpath variable in, 78
comparison operators, 245
defining user environment in, 45-46
dirs command, 77
environment definition, 49-53
file management and, 185
history command in, 54
limit command in, 147
mathematical operators used by, 248-250
multiprocesses and, 1.5-17
nice command, 153
path variable, 236
variables, 236, 240

C shell extensions, 190-192
.cshrc file, 39, 45-46, 61, 81

customizing, 49-53
shell scripts and, 236, 237
source command and, 262

(CTRL)-C, 16-17,54
(cTRL)-D, 53, 54
(cTRL)-I, 54
(CTRL) key, 54
(CTRL)-Q,54
(CTRL)-S, 54
(CTRL)-W,54
(CTRL)-Y, 54
(CTRL)-Z, 54
cu command, 290, 312
Current directory

C shell extensions for changing, 190-192
determining, 77
displaying file names in, 73-74

Cursor movement, in vi editor, 96-98
Cut and paste, in ex editor, 93

Daemons, ]45-]46, 153, 309
Dash (-),316
Data bits, 40
Data Terminal Ready (DTR), 40
dbx commands, 2]0, 220-221(tab.)
dbx utility, 2]8, 219, 222

DCL. See Digital Command Language (DCL)
dd (convert and copy a file) command, 164,

]7]-]72, 188
for VMS-to-UNIX tape exchange, 173, 174-

175
dead.letter file, 121
DEBUG command, 219, 221-222
Debugging, 210, 218-222, 230-231

shell scripts, 263
DECnet, 14,293,319
#define statement, 212
Deleting

files, 83
lines, in ex editor, 91-92
mail, 128

Dependencies, in make, 216
Device files, 165
Devices

block, 28
character, 28
names for, 28
null, 28
specification, 25

df (disk free) command, 27,148, 150-151
diH command, 195-197
DIFFERENCE command, 195
Digital Command Language (DCL), 14,234

command execution in, 236
shell programming and, 234

Digital Equipment Corporation, 4
Directories

advanced display commands, 186-187
advanced management commands, 189-192
changing, 78
copying, 189-190
comparing, 197
creating, 78-79
deleting, 79
displaying contents of, with Is command, 65,

73-74
links, 75-76
naming, 21

Directory files, 31, 33, 75
definition of, 25
displaying file names, 73-74
links, 75-76
protection of, 75

DIRECTORY/FULL command, 74-75
Directory pointer files, 21
Directory stack, 77,185,190,191-192
Directory structure, 29-31

Index 359



dirs command, 77, 192, 259
Disk space

determining, 150-151
partitions and, 26

Disk tabulation, 26
Disk-to-disk copying, 170-171
Disk utilization, monitoring, 146-147
Displaying files, commands for, 80
Displaying lines, in ex editor, 90-91
ditroff (device-independent typesetter runofO,

274
Division, 250
Documentation, printed, 60
Dollar sign ($), 49, 90
du (disk utilization) command, 139, 146-147
dump command, 164, 167, 187,188

e (edit) command, 94
echo command, 238, 241, 245
ed editor, 87, 117
edit editor, 87,117
Editing, 87-118

command lines, 56-57, 62
Editors, 13

line, 87-88
screen, 87

Electronic bulletin boards, 318-319
EMACS, 88
Empty files, creating, 202
endsw statement, 253-254
Environment

customizing, 39
variables, 41-42,45, 47-49

EOF (end-of-file) marker, 53
eqn preprocessor, 274
error command, 210, 218-219, 231
Error handling, in shell programming, 256-257
Error messages, 218-219, 230-231
Error redirection, special characters used in,

19(tab.)
Error reporting, 24
Ethernet, 293
eval command, 259, 260-261
Exclamation mark (I), 49,51-52,99, 250

double, 57
Executable code, steps in producing, 208, 212­

213
Execute (x) access, 75, 186
ex editor, 87-90, 117, 231

appending lines in, 91-92

360 Index

commands, 87-90, 98-100
cut and paste, 93
deleting lines in, 91-92
displaying lines in, 90-91
external file handling, 93-94
features of, 89-90
inserting lines in, 91-92
invoking from vi editor, 98-100
line editing in, 88-90
recovering editing session in, 94, 101
search and replace, 92-93

EXINIT,47
exit command, 237
External file handling, in ex editor, 93-94

177 command, 16,20,210,213,219
Faulting, 148-149
.f extension, 21
fg (foreground) command, 16,259, 299
Field separators, in awk, 105
File definition, 25

absolute, 32
relative, 32

File delimiters, 32
File extensions, 21, 22-23(tab), 25
File identifiers, 28-29
File locking, 203
File management commands, 64, 66-70(tab.)

advanced, 192-205
commonly used, 71-72(tab.)

Filenames
case-sensitivity of, 20-21
modifiers, 243-244
substitution, 32

File operators, 246-247
File protection, 41, 48, 75

absolute, 193, 194
changing, 192-194
for executable files, 186
no write, 81
rm command and, 83
shell script execution and, 237

Files
advanced display commands, 187-189
archiving, 166-171
characteristics of, 74-77
comparing contents of, 195-197
copying, 81-82
creating, 201-202
deleting, 83
displaying, 73-74, 80-81



displaying characteristics of, 74-77
empty, 202
executable, 186
external, 93-94
extracting from tape, 169-170
finding, 79-80
formatting, 33
group ownership of, 76-77, 194
hidden, 33-34, 42
links, 75-76, 203-205
merging, 200-201
renaming, 82
searching contents of, 198-200
sorting, 200-201
updating, 201-202
VMS-to-UNIX exchange, 171, 173-175
writing to tape, 167-169

File size, 77, 147
File systems, 26, 27

table, 26
utilization, 150-151

File transfer
between local and remote hosts, 302
non-trusted hosts and, 304-307
trusted hosts and, 302-304
UUCP and, 314-315

File types, 33
directory, 33
ordinary, 33
special, 33

File versions, 25
Filtering, 100-101
find command, 79-80, 197-198,206
First-level dependencies, 216
Flags, 272
Flat profile, 224
Flow control, 251-258
Flow control statements, in awk, 111-112
foreach statement, 251, 252-253, 270
Foreground jobs, 176, 178-179
Foreground processing, 159
Forking, 15, 46
Formatting files, 33
FORTRAN, 208

compiler, 212
debugger for, 219
example, 229-232
porting from VMS to UNIX, 214

.forward hidden file, 126
Forwarding mail, 126
Fragments, 26

from command, 121, 124
fsplit command, 214, 230
ftp (file transfer program), 290, 302, 304-307

g (global) ex editor command, 93
Generic queues, 161
Globbing, 32
goto statement, 251, 254-255
gprof utility, 210, 223-226, 232
Greater than (» redirection, 100, 178, 248
grep command, 128-129, 141,198-200,205,

206, 257-258, 269
Group identifier, 76-77
Group-level protection, 41
Group names, 41
Group ownership

changing, 194
of files, 76-77

groups command, 41, 85, 194

Hard links, 204-205, 231-232
Hardware, settings for, 40--41
head command, 80,187, 188-189
Help, on-line, 57-60
HELP command, 57-60
Hidden files, 33-34, 42, 61
history command, 48-49, 54-55, 259, 262
.history file, 48, 262
History substitution, 37, 49, 54
Hold screen key, 54
HOME environment variable, 46, 47
home shell variable, 47
hostname command, 294
Hostnames, 142
Hosts, 25, 292, 294-319. See also Local hosts;

Remote hosts
intermediate, 314-316
toggling between local and remote, 299-300
trusted, 296-300

.hushlogin file, 42

i (insert) ex editor command, 91
if statement, 245-246, 251-252
ignoreeof, 53-54
#include "filename" instructions, 212, 213
index, awk statement (string, substring)

function, 114
init program, 146
Inode number, 33
Inodes, 29
Inode table, 33

Index 367



Inserting
in ex editor, 91-92
in vi editor, 95

Institute of Electrical and Electronic Engineers
(IEEE),4

Interactive communications, 13, 131-132
Interactive mail responses, 124-125
Interactive text processing, 272-273
Interactive users, monitoring, 138-142
Intermediate hosts, 314-316
International Business Machines (IBM), 4
Internet

addresses, 295, 301
network, 293

Interrupts and flow control, 259-260
iroH (Imagen laser printer runofO, 274

Jobs
background, 176, 178-180, 182-183
foreground, 176, 178-179

iobs command, 54,178-179,183,259
Job status, 178-179

Kernel, 12
adjustment of priority by, 14
pipes and, 17

kill command, 151, 152,259
Kilobytes, 77
Korn shell (ksh), 6, 24, 176

LAve (Local Area VAXcluster), 309
length awk statement, 114
Less than «) redirection, 100, 248
Lexical analyzer, 14
Libraries

maintaining, 226-229
randomizing, 226-228

limit command, 139, 147, 151, 154-155
Line editors, 87-88
Line mode editing, 88-90
Line numbers, 88-89, 90
Lines, and ex editor

appending, 91-92
deleting, 91-92
displaying, 90-91
inserting, 91-92

Linker, 212
Links, 75-76, 203-205

defined, 203

362 Index

hard, 204-205, 232-232
soft, 204-205, 232

Listing files, 65, 73-74. See also Long listing;
Is command

alphabetical order of, 73-74
Loader, 212
Local hosts, 120, 292

file transfer from, to remote host, 302
NFS and, 309-310
toggling with remote host, 299-300

Logging out, 53-54
Logical negation (!), 250
Log-in, 40-45
login command, 259
.login file, 39, 45, 46, 61

customizing, 47-49
Log-in program, 41
logout command, 53-54, 176,259
.logout file, 53
Long listing, files and, 73, 74-77, 84-85
Ipq (line printer queue) command, 163, 164,

182
Ipr (line printer print) command, 17-18, 161­

163, 164, 182, 216,254
Iprm (line printer remove) command, 164, 182
Is command (display directory contents), 32,

36,51,65,73-74,84,216
advanced features of, 186-187

Itf (labelled tape facility) command, 173-174

Macros, in troff, 274, 275
Magnetic tape. See also Tape drives

archiving files, 166-167
manipulation of with mt command, 172-173
multitasking and, 158-159
special formatting of, 171-172
writing files to, 167-169

Mail
characteristics of, 120-] 23
deleting, 128
new mail message, 123
old mail message, 123
reading, 123-125
replying to, 125-126
saving, 125-128
searching old, 128-129
sending to remote hosts, 301
terminating, 129
UUCP, sending, 313

Mail alias, 122
Mail environment

customizing, 129-131



variables defining, 49, 130
MAIL folder, 121
.mailrc hidden file, 122, 123, 130
Mail responses, 124-125
mail shell variable, 49
mail utility, 120, 121, 126, 126-128, 134

processor-to-processor, 291
remote network hosts and, 30 I

Makefiles, 214
for compiling C programs, 217-218
to print long directory listing, 215-216
syntax rules for, 215
terms used in describing, 214-215

make, and the touch command, 218
make utility, 202, 208, 210, 230-231

function of, 214
maintaining large programs with, 213-218

man command, 57-60, 272, 284-287
man pages, 57-60, 62, 272, 284-287
Mathematical functions, in awk, 115
Mathematical operators, 247-250
m (move) ex editor command, 93
me macro package, 274
memoryuse, 147
Memory utilization, 144-145, 148
Merging files, 200--201
mesg command, 131
Metacharacters, 11, 34, 35(tab.), 49. See also

specific metacharacters
Microsoft Corporation, 4
mkdir (create directory) command, 21, 78-79,

85
mm macro package, 274
Modem communications, 292

addresses in, 294
between VMS and UNIX, 319
defined, 289
establishing, 293
file transfer, 314-316
remote command execution, 316-318
remote login, 312-313
sending mail, 313
UUCP, 311, 312

Modulo operator, 250
more command, 51-52, 61, 80-81, 84,187-188,

231,252
Movement commands, in vi editor, 96-98
ms macro package, 274, 275
mt command, 164, 166, 172-173
mt rewind command, 182
Multics,3
Multiprocesses, 15-17

Multitasking
defined, 158
operating system handling of, 15
UNIX features for, 158-159

mv (move or rename) command, 45, 82, 85

name variable, 242
n (number) ex editor command, 89
Netnews, 318
netstat command, 148, 149-150,295
Network addresses, 294-295
Network communications

addresses in, 294
defined, 289
establishing, 293
file transfer, 302
ftp, 304-307
non-trusted hosts, 300, 304-307
rcp, 302-304
remote command execution, 307-309
remote login, 298
sending mail, 301
store-and-forward, 292
trusted hosts, 296-298, 302-304
types of, 289

Network contention, 150
Network File System (NFS), 4,291,309-311
Network status, 295-296
Network utilization, 148, 149-150
New mail message, 123
News, sending and receiving, 318-319
Newsgroups, 318-319
NFS. See Network File System
nice command, 151, 153-154,259
noclobber, 19(tab.), 20, 81, 49-50
Nodes, 25, 292
Non-proxy logins, 289
Non-trusted hosts, 289, 290

file transfer and, 304-307
telnet command and, 300

notify, 178
nroff (new runofO command, 101, 274, 283-284
Null devices, 28
Number sign (#), 212, 237

.0 extension, 21
Object files, 212, 218
Object libraries, 210, 227-229
od (octal dump) command, 80, 187, 188
Old mail message, 123

Index 363



onintr (on interrupt) command, 259-260
On-line help, 57-60
Open Software Foundation (OSF), 8
Operating systems

emulators, 6
internal architecture of, 11-12

Operators
in awk, 109, 110(tab.)
comparison, 245-246
file, 246-247
mathematical, 247-250

Options, 24
Ordinary files, 33
Output redirection

in awk, 116
special charcters used in, 19(tab.)

Packets, 293
page command, 80, 187
Parent processes, 15-17

eval command and, 260-261
identification number of (PPID), 144
source command and, 262

Parent shell, 236-237
Parity, 40, 41
Partitions, 26, 27
PASCAL, 208, 219
Passive mode, in vi editor, 95
passwd command, 53
Passwords, 41,53
PATH environment variable, 46-47
Pathnames

absolute, 167, 170
relative, 167, 170, 303

Paths, shell script execution and, 237
path shell variable, 236
PCA. See VAX performance and coverage

analyzer
p (position pointer and display lines) ex editor

command, 90
Period (.), 90, 100
Physical devices

names, 28
settings for, 40

pic preprocessor, 274
Pipelines, 17-18
Pipes, 17-18
Piping, II
Pointer files, 21
popd command, 192,259,269
POSIX, 4,8
PPID, 144

364 Index

pr command, 80,161-162, 187, 188-189
Predefined symbols, and make, 216-217
Predefined variables

in awk, 107-108
shell, 238-240

Preprocessors, 212
instructions, 212
for text processing, 274

printcap file, 159-161
printenv command, 46
Printer codes, 161
Printer formatting, 189
Printers, multitasking and, 158
Printing, order of, 161
print (print to lineprinter) command, 161-162
Print queues, 159-164, 182, 254

contents of, 163
removing jobs from, 164

Print spoolers, 159
Priority (PRI), 14, 144

lowering, 153-154
Privileges, 42
Processes, 14-17

creation of, II
delaying, 152-153
deleting, 152
modifying, 151-155
monitoring, 142-146

Process identifier, 14
Process priority (PRI), 144
Process statistics, 148
.profile file, 46, 61
Profiling, 223-226, 231
prof utility, 210, 223-224
Programming, 208-232. See also Shell

programming
compilers, 208
debugging, 210, 218-222
defined, 234
profiling and, 223-226
tools for, 208, 209-210(tab.)

Project Athena, 4
prompt shell variable, 49
Protection, 48

group-level, 41
levels of, 75
rm command and, 83

Protection mask, 247
Proxy logins, 289
ps (process status) command, 139, 142-146,

152,178
psroH (PostScript-compatible runoff), 274



pushd command, 192, 259, 269
pwd (print working directory) command, 77­

78,84

q! ex editor command, 90
q (quit) ex editor command, 90
Queues, 159

generic, 161
print, 159-164

Randomization, of libraries, 226-228
ranlib (randomize library) command, 226-228
Raw character devices, 16-?-166
Raw characters, 165-166
r (read) ex editor command, 93
r (recover) ex editor option, 94
r (remote) commands, 290
rep (remote copy) command, 290, 302-304, 321
Reading mail, 123-125
Read (r) access, 75
Real memory size (RSS), 144
RECALL command, 49, 55
Recalling command lines, 54-57, 62
Redirection, 11, 17, 189

in awk, 116
metacharacter, 18
special characters used in, 19(tab.)

refer preprocessor, 274
Regular expressions, 90

in sed, 102, 103
Relative file definition, 32
Relative pathnames, 167, 170,303
Remote command execution, 290, 307-309

uux for, 316-318
Remote file access, 290
Remote hosts, 120,292

file transfer from local host to, 302
NFS and, 309-311
remote command execution on, 316-318
telnet command, 300
toggling with local host, 299-300
uuep command and, 314-316
uusend command and, 314-316

Remote login, 312-313
Renaming files, 82
reniee command, 151, 154
Replying, to mail, 125
.REQUIRE, RUNOFF command, 275
Resequencing line numbers, ex editor

command, 90, 117
restore command, 164, 167, 170
r filename ex editor command, 99

Richie, Dennis, 3
RISC (Reduced Instruction Set Computer), 8
rlogin command, 290, 298-300
rm (remove file) command, 83
rmdir (remove directory) command, 79, 85
rm -r command, 79, 83
roff (runoff), 274
Root directories, 31
Root file system, 28
R reply, mail command, 125
r reply, mail command, 125
rsh (remote shell) command, 290, 307-309
ruptime command, 295-296
rwho command, 138, 139, 141-142, 146

s (substitution) ex editor command, 93
savehist shell variable, 48
Saving mail, 126-128
sees (source code control system), 210
Screen editors, 87,94-101
Scripts, in awk, 109-111. See also Shell scripts
Search and replace, in ex editor, 92-93
SEARCH command, 141, 198
Searching, old mail, 128-129
Second-level dependencies, and make, 216
sed editor, 87, 88,101-104,118,219

regular expressions in, 102, 103
string manipulations in, 102-104
uses of, 88, 101-102

Sending mail, 122-123
set command, 48, 237-238, 247

assigning variables in shell scripts with, 237-
238

in .cshre file, 49-52
for displaying predefined shell variables, 238
variables used with, 50(tab)

setenv command, 47, 60
set noelobber command, 19
set nonumber command, 89, 99
set number command, 89, 99, 117
SET PROCESS command, 151
set shiftwidth command, 100
SET TERMINAL command, 39
SHELL environment variable, 46
Shell programming, 113,234-270
Shells, 6, 14

default, 61
processes and, 15

Shell scripts, 152
assigning variables in, 237-238
command execution delay and, 152-153
debugging, 263

Index 365



Shell scripts-(continued)
defined, 234
executing, 236-237

Shell variables, 47-49
assigning, 237-238
defining, 48
predefined, 238-240

shift statement, 251, 255
Shiftwidth parameter, 100
SHOW DEVICE/FULL, 150-151
SHOW PROCESS command, 139
SHOW USERS command, 18
Slash (/), 31, 32
Sockets, 293
Soft (symbolic) links, 204-205, 232
sort command, 17-18, 100-101,200-201,206
sort filter, 101
Sort key, 17, 101
source command, 52, 259, 262
SPAWN command, 16
Spawning, 15
Special characters, 34, 35(tab.)
Special files, 33
spell command, 101
split, awk statement, 114
Spooled files, printing, 163
status shell variable, 257-258
stderr (standard error), 17, 18
stdin (standard input), 17, 18,241,244
stdout (standard output), 17, 18, 238
Stop bits, 40
Stopped jobs, 176, 177
Store-and-forward network, 292
Stream editor (sed). See sed
Streams, 293
String operations, 92-93

in awk, 113-115
in ex, 92-93
in sed, 102-104·

stty command, 43, 44, 48, 54
stfy tostop command, 178
Subdirectories, 21, 31
Subprocesses, 15
substr, awk statement, 114
Sun Microsystems Inc., 4, 8
Superuser,42
SVID, 8. See System V Interface Definition
swapin program, 146
switch statement, 251,253-254
Symbolic assembly file, 208
Symbolic form, of chmod command, 193

366 Index

Symbolic links, 204-205
Symbols, predefined, 216-217
Syntax

errors in, 210
for makefiles, 215

System administrator, 42, 43
System banner message, 41
System files, 29-31
System mailbox, 121
System resources. See also CPU utilization;

Disk space; Physical devices; Virtual
memory size

defined, 137
limits of, 147
modifying processes and, 151-155
monitoring 137-151
reducing, 154-155

System V Interface Definition (SVID), 4, 8,
293

tail command, 80,141,187,188-189
talk command, 120, 131-132, 135
Tape device files, 165-166
Tape drives, 164-175. See also Magnetic tape

accessing, 165
multitasking and, 158-159
using, 164-166

TAPE environment variable, 166
tar (tape archiver) command, 164, 166-171

for archiving files, 166-171
for disk-to-disk copying, 170--171
for extracting files from tape, 169-170
for listing tape contents, 169
for writing files to tape, 167-169

tar tapes, using, 164-170
tbl preprocessor, 274
TCP/IP (Transmission Control Protocoll

Internet Protocol), 293, 319
telnet command, 290, 299, 300, 321
TERM environment variable, 46
Terminal characteristics, 39-45

settings, 39, 40-41
tset command and, 45

Terminal type, assigning, 43
Terminating mail, 129
Text processing, 272-287

tools, 14, 263(tab.), 274
Thompson, Ken, 3
Tilde (-),32,95, 122-123
time command, 259, 261
tip command, 290, 312-313



Tools and utilities, 12-13
touch command, 42, 201-202, 214, 218,231
Translating characters, 202-203
Transparent file access, 309-311
tr (translate characters) command, 202-203
troff (typesetter runofO, 274

arguments and options used with, 283-284
VMS DSR and, 275-283

Trusted hosts, 289, 290
defined, 296-298
file transfer and, 302-302

tset command, 43-45, 48
ttyname arguments, 131-132

ul (underline) command, 284
ULTRIX, 4, 28, 173,319
umask command, 48
unalias command, 52
undelete command, 128
UNIX

case-sensitivity of, 20-21
command structure, 20-24
development of, 3-8
emulators of, 6
file naming in, 20-24
file specifications, 25
future of, 8-9
important files, 340-342
internal architectAJre of, 12-14
multitasking in, 15
physical device names, 28
popular versions of, 5(tab.)
processes in, 14-17
shells in, 6, 14
shortcomings of, 7-8
vs. VMS, 36--37

umask command, 186, 193
Usenet, 291, 318-319
USER environment variable, 46
User environment, 45-53
User Identification Code (UIC), 41
User identifier, 76
User interfac'e, 14
Usernames

determining, 138, 139
Users, interactive, 138-142
users command, 138, 139-140
uucp command, 290, 314-315, 321
UUCP (UNIX to UNIX Copy) utility

address format for, 294, 311, 313
commands, 290

modem connections, 292
sending mail, 313
status, 312
uucp command and, 314-315
uusend command and, 314-315

u (undo) ex editor command, 100
uusend command, 290, 314-315
uux command, 290,316-318

Variable expansion, 244-245
Variables

assignment, in awk, 108-109
assignment, in shell scripts, 237-238
passing to shell scripts, 242-243
shell, pred~fined, 238-240
special forms of, 240-242

Variable substitution, 49
VAX Performance and Coverage Analyzer

(PCA),223
Vertical bar (I), 161
vi (visual editor), 87-88, 94-101, 117-118

features of, 94-95
invoking ex editor from, 98-100
opening files in, 95
passive and active (insert) modes of, 95,

117~--I18

recovering an editing session in, 101
terminating, 101

Virtual memory size, 144
Virtual memory usage, vmstat, 147-149
VMS

batch processing in, 180-181
exchange of files between UN IX and, 171
command language interpreters in, 6
development of, 6
error reporting in, 24
file extensions, 21, 22-23(tab.}
file management commands, 66--70(tab.)
file-naming conventions, 21-24
file specifications, 25
future of, 9
group files in, 77
internal architecture of, 12-14
multitasking in, 15
on-line help in, 57-60
physical device names, 28
processes in, 14-15
recall of command lines in, 55, 56
vs. UNIX, 36-37

VMS DSR (Digital Standard RunofO, 272
troff and, 274, 275-283

Index 367



VMS EDT
ex editor and, 88-90
line mode, 336-337
resequencing in, 117
screen mode, 337-339

vmstat command, 147-149
VMS-UNIX communications, 319
VMS-UNIX tape exchange, 173-175

w command, 138, 139, 140-141
we (word count) command, 36, 203
which command, 269-270
while statement, 251, 252
who command, 17, 138, 139, 140,141-142,317
whoami command, 138, 139

368 Index

Wildcards, 32, 34, 36, 244
Word count, 203
Word identifiers, 55-56
Word substitution, 56
wq ex editor command, 90
write command, 120, 131-132, 134-135
Write (w) access, 75
w (write) ex editor command, 90, 93-94
WYSIWYG text processing software, 272

Xenix, 4
X-Windows, 4

ZZ vi editor command, 101




	Contents
	Preface
	Chapter 1 Introduction
	Chapter 2 Fundamentals
	Chapter 3 Getting Started
	Chapter 4 Introductory File Management
	Chapter 5 Editing
	Chapter 6 Communicating with Other Users
	Chapter 7 Monitoring and Utilizing System Resources
	Chapter 8 Devices, Queues, and Background Processing
	Chapter 9 Advanced File Management
	Chapter 10 Programming
	Chapter 11 Shell Programming
	Chapter 12 Text Processing
	Chapter 13 Processor-to-Processor Communications
	Epilogue
	Appendix A Command Summaries
	Appendix B Editor Summaries
	Appendix C Important UNIX Files
	Appendix D Additional Reading
	Glossary
	Index

