
General
Technical Information

Mass Storage

J

LIMITED WARRANTY

Corvus warrants its hardware products against defects in materials and
workmanship for a period of 180 days from the date of purchase from
any authorized Corvus Systems dealer. If Corvus receives notice of
such defects during the warranty period, Corvus will, at its option,
either repair or replace the hardware products which prove to be
defective. Repairs will be performed and defective parts replaced
with either new or reconditioned parts.

Corvus software and firmware products which are designed by Corvus for
use with a hardware product, when properly installed on that hardware
product, are warranted not to fail to execute their programming
instructions due to defects in materials and workmanship for a period
of 180 days. If Corvus receives notice of such defects during the
warranty period, Corvus does not warrant that the operation of the
software, firmware or hardware shall be uninterrupted or error free.

Limited Warranty service may be obtained by delivering the product
during the 180 day warranty period to Corvus Systems with proof of
purchase date. YOU MUST CONTACT CORVUS CUSTOMER SERVICE TO OBTAIN A
"RETURN AUTHORIZATION CODE" PRIOR TO RETURNING THE PRODUCT. THE RAe
(RETURN AUTHORIZATION CODE) NUMBER ISSUED BY CORVUS CUSTOMER SERVICE
MUST APPEAR ON THE EXTERIOR OF THE SHIPPING CONTAINER. ONLY ORIGINAL
OR EQUIVALENT SHIPPING MATERIALS MUST BE USED. If this product is
delivered by mail, you agree to insure the product or assume the risk
of loss or damage in transit, to prepay shipping charges to the
warranty service location and to use the original shipping container.
Contact Corvus Systems or write to Corvus Customer Service, 2100
Corvus Drive, San Jose, CA, 95124 prior to shipping equipment.

ALL EXPRESS AND IMPLIED WARRANTIES FOR THIS PRODUCT, INCLUDING THE
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE,
ARE LIMITED IN DURATION TO A PERIOD OF 180 DAYS FROM DATE OF PURCHASE,
AND NO WARRANTIES, WHETHER EXPRESS OR IMPLIED, WILL APPLY AFTER THIS
PERIOD. SOME STATES DO NOT ALLOW LIMITATIONS ON HOW LONG AN IMPLIED
WARRANTY LASTS, SO THE ABOVE LIMITATIONS MAY NOT APPLY TO YOU.

IF THIS PRODUCT IS NOT IN GOOD WORKING ORDER AS WARRANTED ABOVE, YOUR
SOLE REMEDY SHALL BE REPAIR OR REPLACEMENT AS PROVIDED ABOVE. IN NO
EVENT WILL CORVUS SYSTEMS BE LIABLE TO YOU FOR ANY DAMAGES, INCLUDING
ANY LOST PROFITS, LOST SAVINGS OR OTHER INCIDENTAL OR CONSEQUENTIAL
DAMAGES ARISING OUT OF THE USE OF OR INABILITY TO USE SUCH PRODUCT,
EVEN IF CORVUS SYSTEMS OR AN AUTHORIZED CORVUS SYSTEMS DEALER HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, OR FOR ANY CLAIM BY ANY
OTHER PARTY.

SOME STATES DO NOT ALLOW THE EXCLUSION OR LIMITATION OF INCIDENTAL OR
CONSEQUENTIAL DAMAGES FOR CONSUMER PRODUCTS, SO THE ABOVE LIMITATIONS
OR EXCLUSIONS MAY NOT APPLY TO YOU.

THIS WARRANTY GIVES YOU SPECIFIC LEGAL RIGHTS, AND YOU MAY ALSO HAVE
OTHER RIGHTS WHICH MAY VARY FROM STATE TO STATE.

Part Number: 7100-05945-01
Release Date: October 1984
Revision: A

CORVUS MASS STORAGE SYSTEMS
GENERAL TECHNICAL INFORMATION

Mass storage Systems GTI Table of Contents

TABLE OF
CONTENTS

List Of Figures ... x

Scope ••••..•••.•.••..••.•••.••.••••..•.•••.•.•••.•.••••.•...•• x

Conventions ..

Chapter 1: Controller Functions .
Read-Write Commands .
Logical Sector Address Decoding .
Write Verify Option
Fast Tracks (Bank) .
Semaphores • • • • • • • • • • • • • • • • • • ea. •

Implementation Details For Semaphores
Performance Considerations When Using Semaphores

Pipes ...
Implementation Details For Pipes .
Individual Pipe Disk Space Allocation
Performance Considerations When Using Pipes

Active user table .
Implementation Details For The
Active User Table ...••.•......

Booting ..
Implementation Details For Boot Commands

Drive Parameters ..

vi

1

5

11

12

12

14

18

19

20

29

32

33

34

41

42

44

45

Corvus Systems iii

Mass storage systems GTI Table of contents

Parking The Heads .
Changing Bank Tapes Or Powering Off The Bank
Checking Drive Interface · .
Prep Mode

Format Drive

•••••••••••••••••••••••••••••••••••••• e· •••••••

.
Format Tape (Bank)

Media Verify (CRC)

.

.
Track Sparing .
Physical Versus Logical Addressing

Interleave .
Read-Write Firmware Area · .
virtual Drive Table (Rev B/H Drives) ••••••••••••• e· ••••••••

Constellation Parameters · .
Chapter 2: omninet Protocols

Constellation Disk Server Protocols

Sending A Short Command

Sending A Long Command

Old Disk Server Protocols

New Disk Server Protocols

.
.

Constellation Name Lookup Protocols

Active user table .
Chapter 3: Outline Of A Disk Driver .

Omninet .
Old Disk Server Protocols .

Corvus Systems

48

49

49

50

52

54

56

60

61

64

65

68

69

73

76

77

80

87

93

102

111

113

114

118

iv

Mass storage Systems GTI Table of Contents

New Disk Server Protocols .
Flat cable .

Chapter 4: Sending other Disk Commands .
Chapter 5: Semaphores .

Volume Sharing

Volume Locking

· .
· .

File Or Record Locking .
Chapter 6: Using Pipes

A Simple Spooler .
Using Pipes to Send Messages .
The Corvus Spool Program .

Appendix A: Device Specific Information .
Rev B/H Drives · .

Rev B Hardware Description .
Rev B Firmware And Prom Code .
Rev B Firmware Layout .
Rev B Parameters . ·
Rev B Front Panel LED's And Switches ·

. Rev B DIP switches

Rev H Parameters .
Rev H Front Panel LED's And switches ·
Rev H DIP switches .
Disk Flat Cable Interface .

129

145

149

167

168

169

172

181

185

186

187

193

194

194

194

195

197

197

199

200

200

201

202

Cable timing ... 203

Cable Connector Description . 205

Corvus Systems v

Mas.s storage Syste..ms GTI Table of contents

OmniDrive .
OmniDrive Hardware Description

OmniDrive Firmware And Prom Code

.

.
OmniDrive Firmware Layout .
OmniDrive Parameters .
OmniDrive Front Panel LED's .
OmniDrive DIP switches .

The Bank .
The Bank Hardware Description .
The Bank Firmware And Prom Code .
The Bank Firmware Layout .
The Bank Parameters .
The Bank Front Panel LED's· .

Appendix B: Tables .
Constellation Device Types .
Constellation Boot Number Assignments .
Summary Of Disk Commands In Numerical Order

Return Codes For Rev B/H Drives

Return Codes for OmniDrive/Bank

Active User Table errors

Boot Command errors .

205

205

206

207

209

210

211

212

212

213

214

218

218

221

221

223

224

225

227

227

227

Pipe states .. 228

Pipe errors .. 228

Semaphore states ... 228

Semaphore errors ... 228

Corvus Systems vi

Mass storage Systems GTI Table of contents

Transporter Result codes

Transporter Command Summary

·
· .

Appendix c: OmniDrive and Rev B/H Drives
Appendix D: Transporter Cards · .

The Apple II Transporter

Software Notes '"
The Concept Transporter

The IBM PC Transporter

Rom Services • • • • • • • • 8 •

I/O Services

The NC-Transporter

The VT-180 Transporter • ••••••••• II! •••••••••••••••••••••••

The Sony Transporter .
. The Universal Buffered Transporter

The Z-80 Engineering Tranporter $ •

The

The

IBM PCjr Transporter

Z-100 Transpor.ter

The Rainbow Transporter
Interrupts • • • • • • • • • • 8 •

LSI-11 Transporter

Jumpers And switches

· .
· ~ .

Bootstrap • • • • • • • • • ~ G •

Device Address

Programming Guide

• • • • • • • • • • • • • • $ •

9 e _ •

CSR - Control And Status Register .

Corvus systems

229

229

231

235

235

236

236

237

238

238

241

242

243

243

244

245

245

246

247

248

248

248

248

249

249

vii

Ma~s storage Systems GTI Table of Contents

CAR - Command Address Register
Software Notes

Interrupts

..
..

Byte Order .
Appendix E: Corvus Flat Cable Interface Cards

Sample Interface Routine For 6502

Sample Interface Routine For SOBO/ZBO
Sample Interface Routine For BOB6/BOBB
Entry Points For Apple II ROM
Entry Points For IBM PC/TI ROM

Software Developer's Information

MSDOS

CP/M BO Constellation II

CP/M B6 Constellation II

.................................

CP/M BO (Flat Cable Only)

Apple Pascal Constellation I

.

.............................
Apple DOS Constellation I .

Index

Corvus Systems

250

250

250

250

253

255

25B

275

2B1

2B1

2B3

2B3

2B5

2B5

2B6

2B7

2B7

2B9

viii

Mass storage Systems GTI List Of Figures

LIST OF
FIGURES

1.1 Functional list of controller commands ...•.••.•••••••.• 3-4

2.1 Message exchange for disk server protocol ••••••••••••••• 77

2.2a Find all disk servers using directed commands ••.••..••• 103

2.2b Find all disk servers using broadcast commands 104

3.1 Message exchange--for disk server protocol,
showinq timeouts (t • • • • • •• 115

3.2 Flowchart of a short command,
old disk server protocol •.•••••..•.••..•.••••••.••••••• 121

3.3 Flowchart of a long command,
old disk server protocol •. 0 •• 124

3.4 Flowchart of wait for disk server response,
old disk server protocol ••••••••••••••••••••••••••••••• 127

3.5 Flowchart of flush, old disk server protocol ..•...••••• 128

3.6 Flowchart of a short command,
new disk server protocol .•.•.••....•.•••.•.•••••..••••. 134

3.7 Flowchart of a long command,
new disk server protocol ••••••..•.••.••.•••••••• 0 0 0 0 0 o. 137

3oa- Flowchart of wait for disk server response,
new disk server protocol .• 0 •••••• 0 •••••• 0 • • • • • • • • • • • • •• 141

3.9 Flowchart of cancel, restart check,
new disk server protocol • 0 •• 142

3.10 Flowchart of flush, new disk server protocol ••••.•••••• 143

3.11 Flat cable command sequence •••••••.•••••••••••••••••••• 146

3.12 Flat cable turn around routine .•••••..••••.•••••••••••• 146

0.1 LSI-11 Transporter board jumper locations .••••••••••••• 251

Corvus Systems ix

Mass storage Systems GTI

SCOPE

This manual describes the command protocols used by Corvus mass
storage systems. It covers the disk commands and the Omninet
protocols used to send those commands. It also describes how to
use the various features provided by the commands. It is meant
to be used in conjunction with the following manuals:

omninet Local Area Network General Technical Information,
Corvus PIN 7100-02040

Constellation Software General Technical Information,
Corvus PIN 7100-05944-01

omninet Protocol Book

CONVENTIONS

Hexadecimal values are suffixed with an h. For example, FFh,
02h.

When not otherwise qualified, a sector is 512 bytes. A block is
always 512 bytes.

All program examples are given in psuedo-Pascal and are not
necessarily syntactically correct. The examples are meant to
serve as guidelines to you in implementing your own programs.

In command and table descriptions, 1sb means least significant
byte or least significant bit, depending on context. Similarly,
msb means most significant byte or most significant bit.

Corvus systems x

Mass storage SystemsGTI

The TYPE column used in describing commands, protocols, and
tables has the following meanings:

Type Meaning _ ... _----
BYTE An unsigned 8 bit value.

WORD An unsigned 16 bit value: msb, lsb format.

FWRD An unsigned 16 bit value: lsb, msb format:
a byte-flipped WORD.

ADR3 An unsigned 24 bit value; msb •• lsb format.

FAD3 An unsigned 24 bit value; lsb •• msb format;
a byte-flipped ADR3.

Scope

DADR A 3-byte field, called Disk address;
interpretation is shown in Chapter 1, section
titled Logical sector address decoding.

BSTR A string of 1 or more characters, padded on the
right with blanks (20h) •

NSTR A string of 1 or more characters, padded on the
right with NULs (OOh).

FLAG A byte with bits numbered 7 •• 0; msb •• lsb format.

ARRY An array of 1 or more BYTEs.

Corvus systems xi

Mass storage Systems GTI Controller Functions

CONTROLLER
FUNCTIONS 1

Corvus currently supports three mass storage devices: the
Revision B/H Series drives, the OmniDrive (TM) mass storage
system, and The Bank (TM) mass storage system. Each of these
devices may be attached to a Corvus network. The Rev B/H drives
may be attached to a Corvus multiplexer, or through a disk server
to an Omninet (TM) local area network. The OmniDrive and The Bank
have built-in omninet interfaces.

Although these devices,have very different hardware
characteristics, the software interface to each is very similar.
For example, one software disk driver can interface to all these
devices.

This chapter describes
storage devices. Each
the relevant commands.
follows.

the functions supported by Corvus mass
section describes the function and lists

Where needed, additional explanatory text

The commands are described as a string of bytes to be sent to the
device, and a string of bytes that is the expected reply. The
format used to describe commands is shown in the following
example:

Corvus Systems 1

Mass storage Systems GTI Controller Functions

Command Name: Read a sector (256 byte sector)

Command Length: 4 bytes
257 bytes Result Length:

Command

Offset/Len I Type I Description

o / 1 I BYTE I command code - 2h

1/3 I DADR I sector number

Result

Offset/Len I Type I Description

o / 1 I BYTE I disk result

1 / 256 I ARRY I contents of sector

In this example, the command described is the Read a sector
command. As you can see, the command length is 4 bytes, and the
expected result length is 257 bytes. This means that you send 4
bytes to the drive, and expect to receive 257 bytes in reply.
Each field of the command and result is described by its starting
offset in the string of bytes (indexed starting at 0), the length
of the field, and its type. Then a verbal description of the
contents of the field is given.

The first byte of any command is always the command code; the
value of the command code is given in the description column. In
this case, the command code for Read a sector is 2h. Whenever a
field has a fixed value, its value is given in the description
column.

In the case of an error, normally only one byte, the disk result
code, is received. Disk result codes are summarized in Appendix
B.

Chapter 2 describes the Omninet protocols used to send the
commands. Chapter 3 gives examples of sending commands over
Omninet and over flat cable.

Corvus Systems 2

Mass storage Systems GTI Controller Functions

Command name Code:Modifier Length Length

Read/Write Commands:

Read Sector (256 bytes) 02h
write sector (256 bytes) 03h
Read Sector (128 bytes) 12h
Read Sector (256 bytes) 22h
Read Sector (512 bytes) 32h
Read Sector (1024 bytes-Bank) 42h
write Sector (128 bytes) 13h
write Sector (256 bytes) 23h
write Sector (512 bytes) 33h
write Sector (1024 bytes-Bank) 43h
Record write (Bank) 16h

Semaphore Commands:

Semaphore Lock
Semaphore Unlock
Semaphore Initialize
Semaphore Status

Pipe Commands:

Pipe Read
Pipe Write
Pipe Close
Pipe status 1
Pipe Status 2
Pipe Status 0
Pipe Open write
Pipe Area Initialize
Pipe Open Read

Active User Table Commands:

AddActive
DeleteActiveUsr (Rev B/H)
DeleteActiveNumber(OmniDrive)
DeleteActiveUsr (OmniDrive)
FindActive
ReadTempBlock
WriteTempBlock

OBh:01h
OBh:11h
1Ah:10h
1Ah:41h

1Ah:20h
1Ah:21h
1Ah:40h
1Ah:41h
1Ah:41h
1Ah:41h
1Bh:80h
1Bh:AOh
1Bh:COh

34h:03h
34h:00h
34h:00h
34h: 01h
34h:05h
C4h
B4h

4
260

4
4
4
4

132
260
516

1028
2

10
10

5
5

5
517

5
5
5
5

10
10
10

18
18
18
18
18

2
514

pigure 1.1: summary of Disk Commands by Punction
(continued on next page •••)

257
1

129
257
513

1025
1
1
1
1
1

12
12

1
257

516
12
12

513
513

1025
12
12
12

2
2
2
2

17
513

1

Corvus Systems 3

Mass storage Systems G~I

Command name

Miscellaneous Commands:

Boot
Read Boot Block
Get Drive Parameters
Park heads (Rev H)
Park heads (OmniDrive)
Echo (OmniDrive,Bank)

Put Drive in Prep Mode:

Prep Mode Select

Prep Mode Commands:

Reset 'Drive
Format Drive (Rev B/H)
Format Drive (OmniDrive)
Fill Drive (OmniDrive)
Format Tape (Bank)
Reformat Track (Bank)
Verify (Rev B/H,OmniDrive)
Non-destructive Verify (Bank)
Destructive Verify (Bank)
Read Corvus Firmware
write Corvus Firmware

Controller Functions

Code: Modifier

14h
44h
10h
llh
80h
F4h

llh

OOh
01h
01h
81h
01h:Olh
01h:02h
07h
07h:02h
07h:Olh
32h
33h

Command
Length

2
3
2

514
1

513

514

1
513

1
3
8
8
1
6
6
2

514

Result
Length

513
513
129

1
1

513

1

1
1
1
1
1
2

variable
10
10

513
1

Figure 1.1: Summary of Disk Commands by Function (cont.)

Corvus Systems 4

Mass storage systems GTI Read-Write Commands

READ-WRITE COMMANDS

Five sets of read-write commands are supported, each set
specifying a different sector size. Data can be read or written
in sectors of 128 bytes, 256 bytes, 512 bytes, or 1024 bytes.
There are two sets of commands that support 256 byte sectors;
they are identical.

The Rev B/H controller and the OmniDrive controller use a
physical sector size of 512 bytes. When a host sends a write of
a sector size other than 512 bytes to the drive, the controller
first reads the entire physical sector, overlays the written data
onto the appropriate chunk of the physical sector, and then
writes the physical sector. It is therefore recommended that
hosts, where possible, use a write command of 512 bytes to
minimize overhead when writing to the drive.

The Bank physical sector size is 1024 bytes. When a host sends a
write of a sector size other than 1024 bytes to The Bank, the
data is buffered until the whole sector is,·received; then the
data is written to the media. If any other commands are received
before this buffer is full, or if another sector is to be written
to, the controller performs as described above; that is, it reads
the whole physical sector, overlays the written data onto the
appropriate chunks of the physical sector, and then writes the
physical sector. It is therefore recommended that hosts, where
possible, use a write command of 1024 bytes to minimize overhead
when writing to The Bank.

The fact that The Bank buffers write commands has one other
ramification: the controller always returns 0 as the disk result
code, indicating a successful write. When it comes time for the
Bank to actually write the sector and an error is encountered, no
error status is reported to the host.

The read function always reads the whole physical sector and
returns the appropriate chunk of data. Unlike the write mode, no
performance penalty is paid when using any particular sector
size.

All of the read-write commands decribed below use a three byte
sector number as the disk address. The interpretation of sector
number (DADR) is described in the next section.

Corvus Systems 5

Mass storage Systems GTI Read-Write Commands

Command Name: Read a sector (256 byte sector)

Command Length:
Result Length:

Command

4 bytes
257 bytes

--~-----------Offset/Len I Type Description

o / 1 BYTE command code - 2h

1 / 3 DADR sector number

Result

Offset/Len I Type Description

o / 1 BYTE disk result

1 / 256 ARRY contents of sector

Command Name: write a sector (256 byte sector)

Command Length:
Result Length:

Command

Offset/Len I Type

o / 1 BYTE

1/3 DADR

4 / 256 ARRY

260 bytes
1 byte

Description

command code - 3h

sector number

data to be written
--
Result

Offset/Len I Type Description
--~---

o / 1 BYTE disk result
---~----------------

Corvus Systems 6

Mass storage Systems GTI Read-Write Commands

Command Name: Read a sector (128 byte sector)

Command Length:
Result Length:

Command

4
129

bytes
bytes

~---Offset/Len I Type Description
-~----~--o / 1 BYTE command code 12h

1 / 3 DADR sector number

Result

Offset/Len I Type Description

o / 1 BYTE disk result
----------------~---

1 / 128 ARRY contents of sector

Command Name: write a sector (128 byte sector)

Command Length:
Result Length:

Command

Offset/Len I Type

o / 1 BYTE

1 / 3 DADR

4 / 128 ARRY

Result

Offset/Len I Type

132
1

bytes
byte

Description

command code

sector number

13h

data to be written

Description
--

o / 1 BYTE disk result
--

Corvus Systems 7

Mass storage Systems GTI Read-Write Commands

Command Name: Read a sector (256 byte sector)

Command Length:
Result Length:

Command

Offset/Len I Type

4 bytes
257 bytes

Description
--------------------~-------------------------------------o / 1 BYTE command code - 22h

1 / 3 DADR sector number

Result

Offset/Len I Type Description

o / 1 BYTE I disk result
--

1 / 256 ARRY I contents of sector

Command Name: write a sector (256 byte sector)

Command Length:
Result Length:

Command

260 bytes
1 byte

Offset/Len I Type I Description
--

o / 1 BYTE I command code - 23h

1 / 3 DADR sector number

4 / 256 ARRY data to be written

Result
-----~--
Offset/Len I Type Description

o / 1 BYTE disk result

Corvus systems 8

Mass storage Systems GTI Read-Write Commands

Command Name: Read a sector (512 byte sector)

Command Length: 4 bytes
513 bytes Result Length:

Command

Offset/Len I Type I Description

a / 1 I BYTE I command code - 32h

1 / 3 I DADR I sector number

Result

Offset/Len I Type I Description

o / 1 I BYTE I disk result

1 / 512 I ARRY I contents of sector

Command Name: Write a sector (512 byte sector)

Command Length: 516 bytes
1 byte Result Length:

Command

Offset/Len I Type I Description

a / 1 I BYTE I command code - 33h

1 / 3 I DADR I sector number

4 ! 512 I ARRY I data to be written

Result

Offset/Len I Type I Description

o / 1 I BYTE I disk result

Corvus Systems 9

Mass storage systems GTI Read-Write Commands

Command Name: Read a sector (1024 byte sector) (Bank only)

Command Length: 4 bytes
1025 bytes Result Length:

Command
------------- .. -----------.---------------------------------
Offset/Len 1 Type 1 Description
--o / 1 1 BYTE 1 command code - 42h

1 / 3 1 DADR 1 sector number

Result

Offset/Len 1 Type 1 Description

o / 1 1 BYTE 1 disk result
~-~-------------------------------~--~--------------------

1 / 10241 ARRY 1 contents of sector

Command Name: write a sector (1024 byte sector) (Bank only)

Command Length: 1028 bytes
Result Length: 1 byte

Command

Offset/Len 1 Type 1 Description

o / 1 1 BYTE 1 command code - 43h

1 / 3 1 DADR 1 sector number

4 / 10241 ARRY 1 data to be written

Result

Offset/Len 1 Type 1 Description

o / 1 1 BYTE 1 disk result
--

Corvus Systems 10

Mass storage systems GTI Read-Write Commands

LOGICAL SECTOR ADDRESS DECODING

On the Rev BjH drives, the three byte sector number specified in
a read or write command is decoded into a 4-bit drive number and
a 20-bit address. The decoding is described below:

byte 1
d

byte 2
lsb

byte 3
msb

Byte 1, upper nibble, is the most significant nibble
of the address.

Byte 1, lower nibble, is the drive number (1 through 15).
Byte 2 is the least significant byte of the address.
Byte 3 is the middle byte of the address.

Thus to write to drive 1, address 02D348h, the host should send
to the controller these bytes:

21h, 48h, D3h

A 20-bit address allows the controller to address approximately 1
million sectors per drive, or 512MB using 512 byte sectors.
virtual drives can be used to extend the addressing capabilities
of the Rev BjH controller; see the section titled "virtual Drive
Table" later in this chapter.

For OmniDrive and The Bank, the three byte sector number is
treated as a 24-bit address; all three bytes are used to indicate
the address. The OmniDrive and Bank controllers can thus address
16 times more data than the Rev BjH controller, or approximately
8 gigabytes using 512 byte sectors. The three byte address is
decoded as follows:

byte 1
d

byte 2
Isb

byte 3
msb

Byte I, upper nibble, is bits 17-20 of the address.
Byte 1, lower nibble, is decremented by 1, and becomes

bits 21-24 of the address.
Byte 2 is the least significant byte of the address.
Byte 3 is the middle byte of the address.

Thus to write to an address, say 32D348h, the host should send to
the controller these bytes:

24h, 48h, D3h

The controller flips the nibbles in byte d, subtracts 10h from
the result and uses this value as the most significant byte of
the address. Byte 2 is used as the least significant byte and
byte 3 the middle byte.

Corvus Systems 11

Mass ~torage Systems GTI Controller Functions

Note that for addresses of 20 bits or less, the two addressing
schemes are equivalent. For example, to write to drive 1,
address 2D348h, the host sends these bytes:

21h, 48h, D3h

The address specified in the Read-Write commands is a sector
address, where the size of the sector is specified by the
command. For example, to read block 8 of the device, ·any of the
following commands can be used:

Command string Meaning
-------------- -------
02h, Olh, 10h, OOh sector 16 (256-byte sector)
12h, Olh, 20h, OOh sector 32 (128-byte sector)
22h, Olh, 10h, OOh sector 16 (256-byte sector)
32h, Olh, 08h, OOh sector 8 (512-byte sector)
42h, Olh, 04h, OOh sector 4 (1024-byte sector; Bank only)

WRITE VERIFY OPTION

The OmniDrive provides the option of specifying write-verify or
non-write-verify. If the write-verify option is chosen, the
controller, after each write to the media, performs a read
operation of that sector to verify that the sector can be read
with a correct CRC. If the non-write-verify option is specified,
there is no read after write.

The tradeoff is between performance and reliability. The
write-verify costs at least an extra revolution of the disk but
it verifies that the data is recorded properly on the media. The
other provides higher performance without the assurance of data
integrity.

The option is represented by one byte in the firmware area. The
standard firmware release has this byte set to non-write-verify.
The option can be changed using the Corvus diagnostic program.

Rev BjH drives always use write-verify. The Bank always uses
non-write-verify.

FAST TRACKS (BANK ONLY)

A Bank Tape (TM) cartridge can be configured to use fast-track or
non-fast-track mode. In fast-track mode, a read completes much
faster than in non-fast-track mode. However, a write takes much
longer in fast-track mode than in non-fast-track mode. Fast-track
mode is therefore recommended for applications which require
heavy look-up of data, but little or no modification of the data

Corvus Systems 12

Mass storage Systems GTI controller Functions

the data.

In fast-track mode, the first 16 tracks of the user data area
(4MB) are redundantly recorded. For a 200MB tape, the controller
records each sector of data 8 times, once on each of 8 tracks;
each succeeding track has the data skewed 1/8 around the tape
loop. For a 100MB tape, the controller records each sector of
data 4 times on 4 tracks; each succeeding track has the data
skewed 1/4 around the tape loop.

When a sector is read, the controller determines where
track its head is, and reads from the closest sector.
average read access time is 1/8 (or 1/4) that of the
non-fast-track mode.

on the
Thus, the

There are two types of write to the fast tracks area: normal
write and record write. For normal write, the controller updates
all the redundant sectors in one pass. Thus, it takes an entire
revolution to complete one write. For record write, the host can
speoify the redundant sector to be written. The sector specified
is used for all succeeding write commands, until the next Record
write command is received. This feature allows the host to write
to a whole track, then repeat the process for the redundant
tracks.

To turn record write on or off, use the Record Write command.

Command Name: Turn on Record write (Bank only)

Command Length: 2 bytes
1 byte Result Length:

Command
--------~------------~------------------------------------Offset/Len I Type I Description

o / 1 I BYTE I command code - 16h

1 / 1 I BYTE I sector number*

Result

Offset/Len I Type I Description

o / 1 I BYTE I disk result
--

* For a 200MB tape, valid sector numbers are 80h-87h, specifying
sector 0 through 7; for a 100MB tape, valid sector numbers are
80h-83h, specifying sector 0 through 3.

Corvus Systems 13

Mass storage systems GTI Read-Write Commands

Command Name: Turn off Record write (Bank only)

Command Length: 2 bytes
1 byte Result Length:

Command

Offset/Len I Type I Description

0/1 I BYTE I command code - 16h

1/1 I BYTE I OOh

Result

Offset/Len I Type I Description

0/1 I BYTE I disk result

When using normal write, updating 100 sectors requires 100 tape
revolutions, one for each sector write. When updating many
consecutive sectors, it may be faster to use record write. Let's
assume you want to update sectors 100 to 199 on a 200MB tape.
You first issue a Record Write command for redundant sector 0
(80h), and then 100 sector write commands, one for each sector
100 to 199. Depending on the interleaving, this should take only
1 tape revolution. Next you issue a Record Write command for
redundant sector 1 (81h), and then the same 100 sector write
commands. Repeat this sequence for redundant sectors 2 through
7, and you should complete the update in only 8 tape revolutions,
as opposed to the 100 revolutions used in normal write.

SEMAPHORES

Semaphores provide an indivisible test and set operation for use
by application programs. See chapter 5 for examples of how to
use semaphores.

The semaphore commands are listed below:

Semaphore Lock
Semaphore Unlock
Initialize Semaphore Table
Semaphore Status

Any host can, at any time, request to lock a semaphore. If the
specified semaphore is not already locked, the controller locks
the semaphore. If a semaphore is already locked, the application

Corvus systems 14

semaphores

program using the semaphores can continue to poll the semaphore
table by resending the Lock command until the desired semaphore
is no longer locked.

The Semaphore Unlock command always unlocks the semaphore.

The status of the semaphore prior to each operation is also
returned to provide for a full test-set or test-clear operation.

A semaphore can be any 8-byte name, except for 8 bytes of 20h
(ASCII space character). There is no limit on the number of
semaphores that may exist in a given application or network;
however, only 32 semaphores may be locked at anyone time (on
each server).

Two semaphores are equivalent only if each character in the name
is exactly the same. For example, semaphore 'CORVUSll' is
different than semaphore 'corvusll', which is different than
'Corvusll'. The characters do not have to be printing
characters; eight byt-es .of lOh (ASCII LF character) is a legal
semaphore name.

OmniDrive and The Bank support a wild card character in semaphore
names. The character OOh (ASCII NUL character) matches any other
character in semaphore lock and unlock operations.

The Initialize Semaphore Table command clears the semaphore
table, which is equivalent to unlocking all the semaphores. The
semaphore table can be initialized by any processor, but this
should only be performed on system-wide initialization or for
recovery from error conditions.

The Semaphore Status command returns the semaphore table, which
can then be examined to see which semaphores are locked.

Corvus Systems 15

Command Name:

Command Length:
Result Length:

Command

Semaphore lock

10
12

bytes
bytes

Semaphores

--
Offset/Len I Type Description

o / 1 BYTE command code OBh

1 / 1 BYTE 01h

2/8 ARRY semaphore name

Result

Offset/Len I Type Description

o / 1 BYTE disk result

1 / 1 BYTE semaphore result

2 / 10 ARRY unused (no meaning)

Corvus Systems 16

semaphores

Command Name: Semaphore unlock

Command Length:
Result Length:

Command

10
12

bytes
bytes

----------~---Offset/Len I Type Description

o / 1 BYTE command code OBh

1 / 2 BYTE 11h

2/8 ARRY semaphore name

Result

Offset/Len I Type Description
--o / 1 BYTE disk result

1 / 1 BYTE semaphore result

2 / 10 ARRY unused (no meaning)

Command Name: Initialize semaphore table

Command Length:
Result Length:

COIlur.and

5 bytes
1 byte

--
Offset/Len I Type Description

o / 1 BYTE command code lAh
---------.-- ------------------ - ----------------------------

1 / 1 BYTE 10h

2/3 ARRY don't care use OOh

Result

Offset/Len I Type Description

o / 1 BYTE disk result
--

Corvus Systems 17

Semaphores

Command Name: Semaphore status

Command Length: 5 bytes
257 bytes Result Length:

Command

offset/Len I Type I Description

o / 1 I BYTE I command code - lAh

1 / 1 I BYTE I 4lh

2/1 I BYTE I 03h

3/2 I ARRY I don't care - use OOh

Result
--
Offset/Len I Type I Description

o / 1 I BYTE I disk result

1 / 256 I BYTE I semaphore table

Semaphore results

Value

o Oh
128 80h

253 FDh
254 FEh
255 FFh

Meaning

Semaphore Not set/no error
Semaphore Set

Semaphore table full
Error on semaphore table read/write
Semaphore not found

Implementation Details For semaphores

The semaphores are implemented using a lookup table containing an
8-byte entry for each of the 32 possible semaphores. A used
entry in the table indicates that the semaphore is locked.
Unused table entries are represented by 8 bytes of 20h (ASCII
space character).

When a Lock command is received, the controller searches the
table for a matching entry. If one is found, a Semaphore Set
status (80h) is returned. otherwise, the semaphore is written

Corvus Systems 18

Semaphores

over the first empty entry, and a status of Semaphore Not Set (0)
is returned.

When an Unlock command is received, the controller searches the
table for a matching entry. If one is found, it is overwritten
with blanks, and a status of Semaphore Set (80h) is returned.
otherwise, a status of Semaphore Not Set (0) is returned.

The format of the semaphore table is shown below. See Appendix A
for the location of the semaphore table.

Table layout Entry layout
+-------------+ byte 0 +--< +--------------+
Isemaphore #1 I I 1 1st byte 1
+-------------+ 1 +- -+
Isemaphore #2 1<-----------+ 1 2nd byte 1
+-------------+ 1 +- -+
1 1 1 1 1
= = 1 = =
1 1 1 I 1
+-------------+ 1 +- -+
Isemaphore #311 1 1 7th byte 1
+-------------+ 1 +- -+
Isemaphore #321 1 I 8th byte 1 +-------------+ byte 255 +--< +--------------+

For Rev B/H drives, the semaphore table is initialized to blanks
only when the firmware is rewritten or when an Initialize
Semaphore Table command is received. For OmniDrives and Banks,
the semaphore table is initialized at power up or when an
Initialize Semaphore Table command is received.

Performance Considerations When Using Semaphores

For Rev B/H drives, a semaphore operation causes 2 disk reads,
and 0 or 1 disk writes. First the semaphore block must be read
from the firmware area. If the Lock or Unlock is successful,
then the semaphore table must be written back to the disk.
Finally, the dispatcher code must be reloaded from the firmware
area.

For OmniDrives and Banks, a semaphore operation causes no disk
I/O, as the semaphore table is maintained in the controller RAM.
The table is not saved when the device is powered off.

Corvus Systems 19

Mass storage Systems GTI Pipes

PIPES

Pipes provide synchronized access to a reserved area of the disk.
Any computer can use the pipes commands to read or write data to
the pipes area at any time, and not worry about conflicting with
another computer's read or write to the pipes area. See chapter
6 for examples of how to use pipes.

The pipe commands are listed below:

Pipe Open for Write
pipe Open for Read
Pipe Write
pipe Read
Pipe Close
pipe Purge
pipe status
Pipe Area Initialize

The pipes' area must be-- initialized before any other pipe commands
are used.

The Pipe Area Initialize command specifies the pipe area starting
block number and the length in number of blocks. Note that the
block size is 512 bytes for the Bank as well as the OmniDrive and
Rev B/H drives. The pipes area must be entirely within the first
32k blocks of the tape or disk; the starting block number plus
the number of blocks must be less than 32k. The pipe Area
Initialize command does not actually write anything to the pipes
area, other than the pipes tables.

The normal sequence of events in using the pipes area is as
follows:

One host opens the pipe for write. It then uses Pipe write
commands to write blocks to the pipe. When it has written all
the data, it uses the Pipe Close command to close the pipe.

Later on, either the same host or some other host issues a Pipe
Open for Read command. It uses Pipe Read commands to read data
from the pipe. When done reading, it issues a Pipe Close
command. If the pipe is empty (i.e., all of the data has been
read), it is deleted. If data is still remaining, the host can
open the pipe again later to finish reading the data.

Each time a pipe is opened for write, a new pipe is created.
When a Pipe Open for Read command is received, the lowest
numbered closed pipe with the specified name is opened.

The Pipe Purge command can be used to purge any unwanted pipes.

The Pipe status command is used to view the state of the
internally managed pipe tables.

Corvus Systems 20

Mass storage Systems GTI

Command Name: Pipe Open for write

Command Length:
Result Length:

Command

Offset/Len I Type

o / 1 BYTE

1 / 1 BYTE

2 / S BSTR

Result

10
12

bytes
bytes

Description

command code

SOh

pipe name

Pipes

IBh

--
Offset/Len I Type Description

o / 1 BYTE disk result

1 / 1 BYTE pipe result

2 / 1 BYTE pipe number (1-62)

3 / 1 FLAG pipe state see below

4 / S ARRY unused (no meaning)

Corvus Systems 21

Mass storage Systems GTI Pipes

Command Name: Pipe Open for Read

Command Length: 10 bytes
Result Length: 12 bytes

Command
-~---------------'------------""-'------ ... --------------------
Offset/Len I Type Description
----~-.---o / 1 BYTE command code 1Bh

1 / 1 BYTE COh
--

2/8 BSTR pipe name
--
Result

Offset/Len I Type Description

o / 1 BYTE disk result

1 / 1 BYTE pipe result
-----------~--

2 / 1 BYTE pipe number (1-62)

3 / 1 FLAG pipe state see below

4/8 ARRY unused (no meaning)

Corvus Systems 22

Mass storage Systems GTI

Command Name: Pipe Read

Command Length:
Result Length:

Command

Offset/Len I Type

o / 1 BYTE

1 / 1 BYTE

2 / 1 BYTE

3 / 2 FWRD

Result

Offset/Len I Type

o / 1 BYTE

5
516

bytes
bytes

Description

command code

20h

pipe number

data length

Description

disk result

Pipes

1Ah

OOh, 02h (512 bytes)

-------.~-----------------------------~--------------------
1 / 1 BYTE pipe result

2 I 2 FWRD number of bytes read - OOh, 02h (512 bytes)

4. / 512 ARRY data

Corvus'rystems 23

Mass storage Systems GTI

Command Name: Pipe write

Command Length: 517 bytes
12 bytes Result Length:

Command

Offset/Len I Type I Description

o / 1 I BYTE I command code - 1Ah

1 / 1 I BYTE I 21h

2/1 I BYTE I pipe number

3/2 I FWRD I data length - OOh, 02h (512 bytes)

5 / 512 I ARRY I data to be written

Result

Offset/Len I Type I Description

o / 1 I BYTE I disk result

1 / 1 I BYTE I pipe result

Pipes

2/2 I FWRD I number of bytes written - OOh, 02h (512 bytes)

4/8 I ARRY I unused (no meaning)

Corvus Systems 24

Mass storage Systems GTI

Command Name:

Command Length:
Result Length:

Command

Pipe Close, Pipe Purge

5 bytes
2 bytes

Offset/Len I Type I Description

o / 1 I BYTE I command code - lAh

Pipes

-~--
1 / 1

2 / 1

3 / 1

4 / 1

Result

I BYTE I 40h

I BYTE I pipe number

BYTE I FEh - close write
I FDh - close read
I OOh - purge

I BYTE I don't care - use OOh

Offset/Len I Type I Description

o / 1 I BYTE I disk result

1 / 1 I BYTE I pipe result

Corvus Systems 25

Mass Storage Systems GTI Pipes

Command Name: Pipe status

Command Length: 5 bytes
513 bytes Result Length:

Command

Offset/Len' Type , Description
---------------~--------------------------------~------~--o / 1 , BYTE , command code - 1Ah
---------~--

1 / 1 , BYTE , 4lh

2 / 1 , BYTE , Olh - pipe Name table
, , 02h - Pipe Pointer table

3/2 , ARRY , don't care - use OOh

Result

Offset/Len' Type , Description

o / 1 , BYTE , disk result
--

1 / 512 , ARRY I contents of specified table

Corvus systems 26

Mass storage Systems GTI Pipes

Command Name: Pipe status

Command Length: 5 bytes
1025 bytes Result Length:

Command

Offset/Len, Type , Description

o / 1 , BYTE , command code - 1Ah

1 / 1 , BYTE , 41h

2 / 1 , BYTE , OOh

3/2 , ARRY , don't care - use OOh

Result

Offset/Len, Type , Description

o / 1 I BYTE I disk result
-~--1 / 512 , ARRY , contents of Pipe Name table
--~-
513 / 512 I ARRY I contents of pipe Pointer table

This is the only command which returns more than 530 bytes. If
you are using a general purpose command buffer for sending device
commands, you may wish to use the version of the Pipe status
command which returns either the Pipe Name table or the Pipe
Pointer table, so that you do not have to declare a 1025-byte
buffer.

Corvus Systems 27

Mass storage systems GTI Pipes

Command Name: Pipe Area Initialize

Command Length: 10 bytes
2 bytes Result Length:

Command
--
Offset/Len I Type I Description
--

o / 1 I BYTE I command code - 1Bh
--

1 / 1 I BYTE I AOh
--

2/2 I FWRD I starting block number

4/2 I FWRD I length in blocks

6 / 4 I ARRY I don't care - use OOh

Result

Offset/Len I Type I Description

o / 1 I BYTE I disk result

1 / 1 I BYTE I pipe result

starting block number + Length in blocks must be less than 32k.

Pipe state flag (returned on Pipe Open)

Bit #

bit 7
bit 1
bit 0

Pipe results

Value

o OOh
8 08h
9 09h

10 OAh
11 OBh
12 OCh
13 ODh
14 OEh
15 OFh

Corvus Systems

Meaning

1=contains data / o=empty
1=open for read
1=open for write

Meaning

No error.
Tried to read an empty pipe.
Pipe not open for read or write.
Tried to write to a full pipe.
Tried to open an open pipe.
Pipe does not exist.
Pipe buffer full.
Illegal pipe command.
Pipes area not initialized.

28

Mass storage systems GTI Pipes

Implementation Details For pipes

Internally, the pipes area is managed by two tables: a Pipe Name
Table and a Pipe Pointer Table. These tables are stored in
different areas on the various disk devices; see Appendix A. The
host can retrieve these tables by sending a Pipe status command.

The Pipe Name Table contains 64 entries of 8 bytes each. The
first and last names in the table are reserved for system use.
The first name is WOOFWOOF and the last name is FOOWFOOW. An
entry of all blanks (20h) indicates an unused entry.

The format of the Pipe Name Table is shown below:

+------------+ byte 0
pipe number 0 WOOFWOOF 1

+------------+ byte 8
pipe number 1 1

= =
pipe number 621

+------------+ byte 504
pipe number 631 FOOWFOOW

+------------+

The Pipe Pointer Table also contains space for 64 entries of 8
bytes each, each entry being formatted as shown below:

Rev B/H OmniDrive/Bank
+------------------+ +------------------+

pipe number byte 0 1 pipe number 1 +------------------+ +------------------+
1 starting (msb) 1 byte 1 1 starting (0) 1
+- -+ +- -+
1 byte 1 1 block (msb) 1
+- -+ +- -+
1 address (lsb) 1 1 address (lsb) 1
+------------------+ +------------------+
1 ending (msb) 1 byte 4 1 ending (0) 1
+- -+ +- -+
1 byte 1 I block (msb) I
+- -+ +- -+
1 address (lsb) 1 I address (lsb) 1
+------------------+ +------------------+
1 pipe state byte 7 1 pipe state
+------------------+ +------------------+

While the format of the pipe Pointer table on the disk is
different for the Rev B/H drives than it is for OmniDrive and
Bank, the table returned by the Pipe status command always has

Corvus Systems 29

Mass storage Systems GTI Pipes

the Rev B/H format. That is, the OmniDrive and Bank convert the
disk format to the Rev B/H format for the Pipe status command.

Pipe number (byte 0) is an index into the Pipe Name Table. A
pipe number of 0 indicates the first entry in the Pipe Name
Table, and a pipe number of 63 indicates the last entry in the
Pipe Name table.

Entries in the Pipe Pointer Table are ordered by starting
address. Unlike the Pipe Name table, where unused entries are
interspersed with used entries, all of the unused entries in the
Pipe Pointer table occur at the end of the table. The entry with
pipe number 63 marks the end of the used entries.

For the Rev B/H drives, the starting and ending byte addresses
are absolute disk byte addresses. Each should be divided by 512
to get an absolute block address.

The Pipe state is a flag which is interpreted as shown below:

bit # Meaning

bit 7
bit 1
bit 0

l=contains data / O=empty
l=open for read
1=open for write

The first entry in the Pipe Pointer Table always looks like the
following, which corresponds to the WOOFWOOF entry in the Pipe
Name Table:

Rev B/H
+~-~---~-----------+

pipe number = 0 I byte 0
+-----------~------+ I starting byte byte 1
+- -+
I address of pipes I
+- -+
I area I
+------------------+
I starting byte byte 4
+- +
I address of pipes I
+- -+
I area + 1024
+--------~---------+ I pipe state = SOh I byte 7
+-----------------~+

Corvu.s Systems

OmniDrive/Bank
+------------------+

pipe number = 0 I
+------------------+
I starting block
+- -+
I address of pipes I
+- -+
I area I
+------------------+
I same as bytes I
+- +
I 1 through 3 I
+- -+

+------------------+
I pipe state = SOh I
+------------------+

30

Mass storage Systems GTI Pipes

The last entry in the Pipe Pointer Table always looks like the
following, which corresponds to the FOOWFOOW entry in the Pipe
Name Table):

Rev B/H
+------------------+ I pipe number = 63 I
+------------------+ I ending byte
+- -+
I address of pipes I
+- -+
I area I
+------------------+ I same as bytes I
+- +
I 1 through 3 I
+- -+
I I
+------------------+ I pipe state = SOh I
+------------------+

byte 0

byte 1

byte 4

byte 7

OmniDrive/Bank
+------------------+ I pipe number = 63 I
+------------------+ I ending block I
+- -+
I address of pipes I
+- -+
I area I
+------------------+ I same as bytes I
+- +
I 1 through 3 I
+- -+

I
+------------------+ I pipe state = SOh I
+------------------+

Whenever a Pipe Area Initialize command is received, the pipes
tables are initialized with the entries for pipes 0 and 63 shown
above, and all other entries unused. The pipes area can be
deleted by rewriting the firmware.

Corvus Systems 31

Mass storage systenls GTI Pipes

The following example shows a typical state of the pipe tables.
It shows 3 existing pipes, two called PRINTER and one called
FASTLP.

Pipe Pointer table offset Pipe Name table
+---------------------+ +-----------------+
I entry for pipe 0 o I WOOFWOOF I
+--~------------------+ +-----------------+ I entry for pipe 1 1 I PRINTER I
+---------------------+ +-----------------+ I entry for pipe 6 2 I FASTLP I
+---------------------+ +-----------------+ I entry for pipe 2 I
+-------------~-------+

3 I blanks I
+-----------------+ I entry for pipe 63 I 4 I blanks I

+---------------------+ +-----------------+
I O's 5 I blanks I
+---------------------+ +-----------------+
I O's I 6 I PRINTER I
+---------------------+ +-----------------+

I I
= = = =
I I I I
+---------------------+ +-----------------+
I O's I 63 I FOOWFOOW I
+---------------------+ +-----------------+

Individual pipe Disk Space Allocation

The pipes area consists of used space and holes (unused space).
There are two kinds of holes:

Active hole -- a contiguous area of unused pipe space
bounded on the low address end by an open for writing pipe.

= =

+-----------------+
open for
writing
pipe

+-----------------+
active I

I hole I
+-----------------+
I pipe I
= =

Corvus Systems

the open pipe in front of the hole
can grow into this region.

32

Mass storage Systems GTI Pipes

Inactive hole -- a contiguous area of unused pipe space
bounded on the low address end by the end of a closed
pipe or the end of an open for reading pipe.

= =

+-----------------+
open for
reading or
closed pipe

+-----------------+
I inactive
I hole
+-----------------+
I pipe
= =

the pipe in front of the hole
cannot grow.

New pipe allocations are made by exam1n1ng all the holes in the
pipe area. The allocator looks for the larger of: (1) the
larqest inactive hole. or ·(2) half the size of the largest active
hole. A new pipe starts at the beginning of an inactive hole or
at the midpoint of an active hole. All pipes grow in the same
direction, by increasing address.

When an open for writing pipe hits the end of a hole (that is, it
bumps into an existing pipe), the error code, tried to write to a
full pipe (OAh), is returned. This can happen even if there is
space remaining in other holes.

Performance Considerations When using pipes

On a Rev B/H drive, a Pipe Write results in 2 disk reads, and 2
disk writes. First, the pipes code is overlayed into the
controller RAM; then the data is written and the Pipe Pointer
Table rewritten; finally, the dispatcher code is reloaded. A
pipe Read is similar, only there are 3 disk reads and 1 disk
write. Since the controller code is located in the firmware
area, and the pipes area is in the user area of the drive, a pipe
operation can cause considerable head movement.

For OmniDrives and Banks, the pipes controller code is loaded at
power-on time, and does not have to be swapped in and out. Also,
the Pipe Name Table and the Pipe Pointer Table are located in the
firmware area. For the OmniDrive, the tables are written back to
the drive only when a pipe is closed, so a Pipe Read is 1 disk
read operation, and a Pipe write is 1 disk write operation. For
the Bank, the pipe tables are only written to the media when the
Bank is ready to turn off the motor (see section titled "Changing
Bank Tapes" later in this chapter).

Corvus Systems 33

Mass storage Systems GTI Active User Table

ACTIVE USER TABLE

The Active User Table is used by Corvus applications software to
keep track of the active devices on the network. At any given
time, it should contain a list of those users who are connected
to the network. See the section titled "Active User Table" in
Chapter 2 for more explanation.

The Bank does not support the Active User Table.

There are six commands supported:

AddActive
DeleteActiveUsr
DeleteActiveNumber (OmniDrive only)
FindActive
ReadTempBlock
WriteTempBlock

The AddActive command adds a user to the table. The host
specifies the user name, the Omninet address, and the device
type. See Appendix B for a list of device types.

The DeleteActiveUsr command deletes a user from the table. Note
that the command code for DeleteActiveUsr is different for the
Rev B/H drives than it is for the OmniDrive.

The DeleteActiveNumber command deletes all users with the
specified Omninet address from the table (OmniDrive only).

The FindActive command returns the Omninet address and the device
type of the user with the specified name.

The ReadTempBlock comroand can be used to read the entire Active
User Table, and the WriteTempBlock can be used to initialize the
Active User Table.

Corvus systems 34

Mass storage Systems GTI

Command Name: Add Active

Command Length:
Result Length:

Command

Offset/Len I Type

o / 1 BYTE

1 / 1 BYTE

2 / 10 BSTR

12 / 1 BYTE

13 I 1 BYTE

14 / 4 I ARRY

Result

Offset/Len I Type

o / 1 BYTE

1 / 1 BYTE

Corvus Systems

18
2

bytes
bytes

Description

command code

03h

name

34h

host Omninet address

host device type

unused use O's

Description

disk result

table result

Active User Table

35

1-1:ass storage Sys·cems GTI Active User Table

Command Name: Delete Active User (Rev B/H drives only)

Command Length:
Result Length:

Command

18
2

bytes
bytes

Offset/Len I Type Description

o / 1 BYTE command code 34h

1 / 1 BYTE OOh

2 / 10 BSTR name

12 / 6 ARRY unused use a's

Result

Offset/Len I Type Description

o / 1 BYTE disk result

1 / 1 BYTE table result

Corvus Systems 36

Mas$ storage Systems GTI Active User Table

Command Name: Delete Active User (OmniDrive only)

Command Length:
Result Length:

Command

Offset/Len I Type

o / 1 BYTE

18
2

bytes
bytes

Description

command code 34h
---~----------------

1 / 1 BYTE 01h

2 / 10 BSTR name

12 / 6 ARRY unused use O's

Result
--
Offset/Len I Type Description

o / 1 BYTE disk result

1 / 1 BYTE table result

Corvus systems 37

Mass storage systems GTI Active User Table

Command Name: Delete Active Number (OmniDrive only)

Command Length: 18 bytes
2 bytes Result Length:

Command
--~---Offset/Len I Type I Description
--

o / 1 I BYTE I command code - 34h
--

1 / 1 I BYTE I OOh

2 / 10 I ARRY I unused - use O's

12 / 1 I BYTE I host Omninet address
--

13 / 5 I ARRY I unused - use O's

Result

Offset/Len I Type I Description

o / 1 I BYTE I disk result

1 / 1 I BYTE I table result

Corvus Systems 38

Mass storage Systems GTI Active User Table

Command Name: Find Active

Command Length: 18 bytes
17 bytes Result Length:

Command
---~------------
Offset/Len, Type , Description
---~----------------~-------------------------------------

o / 1 , BYTE , command code - 34h

1 / 1 , BYTE , OSh

2 / 10 ,BSTR, name

12 / 6 , ARRY , unused - use O's

Result

Offset/Len, Type , Description

o / 1 , BYTE , disk result

1 / 1 , BYTE , first byte of name, or table result

2/9 , BSTR , remaining bytes of name

11 / 1 , BYTE , host Omninet address

12 / 1 I BYTE I host device type

13 / 4 I ARRY I unused

Corvus Systems 39

Mass storage Systems GTI Active User Table

Command Name: Read Temp Block

Command Length: 2 bytes
513 bytes Result Length:

Command
---------~--------~---------------------------------------
Offset/Len' Type , Description
--

o / 1 , BYTE , command code - C4h

1 / 1 , BYTE , block number - 0 to 6 for Rev B/H,
, , 0 to 3 for OmniDrive

Result

Offset/Len, Type , Description

o / 1 I BYTE , disk result

1 / 512 , ARRY , contents of block

Command Name: write Temp Block

Command Length: 514 bytes
Result Length: 1 bytes

Command

Offset/Len I Type , Description

o / 1 I BYTE , command code - B4h

1 / 1 I BYTE I block number - 0 to 6 for Rev B/H,
I I 0 to 3 for OmniDrive

2 / 512 , ARRY I data to be written

Result

Offset/Len I Type I Description

o / 1 I BYTE I disk result

Corvus Systems 40

Mass storage Systems GTI Active User Table

Table results

Value

o
1
2
3

Meaning

Ok.
No room to add.
Duplicate name.
User not found.

Implementation Details For The Active User Table

The Active User Table implementation is similar to semaphores, in
that an unused entry is indicated by blanks. When an AddActive
command is received, the controller searches the table for an
entry with a matching name. If one is found, the entry is
overwritten with the new data, and a table result of duplicate
name (2) is returned. If no matching entry is found, the first
entry with blanks is overwritten with the specified data, and a
status of Ok (0) is returned.

For DelectActiveUsr, the first entry with a matching name is
overwritten with blanks. For DeleteActiveNumber, all entries
with matching Omninet addresses are overwritten with blanks.

The table consists of four blocks, located in the firmware area.
The blocks are numbered 0 to 3. Each table entry is 16 bytes
long, as shown below:

Corvus Systems 41

Mass storage Systems GTI Boot Commands

Entry layout
+--< +---------------+ , , name , byte 0 , +- -+ , , ,

block 1 , = = , ,
, +- -+ , , , byte 9

= = <----------+ +---------------+
= = , ,Omninet address' byte 10 , , +---------------+ +----------------+ block 3 , , device type , byte 11
, entry #97 , I +---------------+ +----------------+ , , unused , byte 12 , , , = (O's) = , I I byte 15 - -- -
I , +--< +---------------+ +----------------+
, entry #128 I
+----------------+

omninet address is 0 to 63. Device types are listed in Appendix
B.

The normal initialization of the Active User table is described
in the section titled "Active User Table" in Chapter 2. The table
can also be initialized by rewriting the firmware, or by issuing
write Temp Block commands.

BOOTING

There are two commands which provide a boot function. The
purpose of these commands is to provide a machine independent
means of booting a host computer.

The first boot command, called the Boot command (14h), was
Corvus' first attempt to provide a boot function. The Boot
command was not flexible enough, so a second boot command, the
Read Boot Block command (44h), was added.

The first Boot command is used by Corvus to support Apple II (TM)
computers and Corvus Concept (TM) workstations. The Read Boot Block
command is used to support all other computers. Each computer is
assigned a computer number by Corvus. See Appendix B for a list
of the currently assigned computer numbers.

Corvus Systems 42

Mass storage Systems GTI Boot Commands

Both boot
computer.
computer,
requires.

commands return a block of 512 bytes to the host
This block normally contains boot code for the

but can be used for whatever the particular computer

In order to use the boot commands, an application program must be
written which sets up the data structures used by the boot
commands. Corvus provides such an application program, called
BOOTMGR, with its Constellation II software. Refer to the manual
titled Constellation Software General Technical Information for
more information on how Corvus software uses the boot commands.

Command Name: Boot

Command Length: 2 bytes
513 bytes Result Length:

Command

Offset/Len I Type I Description

o / 1 I BYTE I command code - 14h

1 / 1 I BYTE I boot block number (0-7)

Result

Offset/Len I Type I Description

o / 1 I BYTE I disk result

1 / 512 I ARRY I contents of block

Corvus Systems 43

Mass storage Systems GTI Boot Commands

Command Name: Read Boot Block

Command Length: 3 bytes
513 bytes Result Length:

Command

Offset/Len I Type I Description

0/1 I BYTE I command code - 44h

1 / I I BYTE I computer number (See Appendix B)

2/1 I BYTE I block number

Result

Offset/Len I Type I Description
--

o / I I BYTE I disk result*

1 / 512 I BYTE I contents of block
----------------------------------~-----------------------

* If the disk result = FFh, the block could not be found.

Implementation Details For Boot Commands

For the Boot command, the boot blocks are located in the firmware
area (see Appendix A for exact locations). Blocks 0 through 3
contain 6502 code for the Apple II, and blocks 4 through 7
contain 68000 code for the Corvus Concept. These blocks are
included in the firmware files distributed by Corvus.

For the Read Boot Block command, the following data structures
are used:

Block 8, bytes 36 - 39 contain the absolute block address of the
Corvus volume. The Boot Table is located 6 blocks past this
location. The format of the Boot Table is described below:

Corvus Systems 44

Mass storage Systems GTI

Table format
+-----------------+
I entry #0 I
+-----------------+
I I
= =
I I
+-----------------+ I entry #127 I
+-----------------+
I entry #128 I
+-----------------+
I I
=
I I
+-----------------+
I entry #255 I
+-----------------+

block 0

+-<
I <-----------+
I +-<

block 1

Boot Commands

Entry format
+-----------------+
I address (msb) I
+- -+
I address (lsb) I
+-----------------+

byte 0

byte 1

The address is a relative block address which is added to the
Boot Table address. The result is the block number of the oth
block of boot code. The block number specified in the Read Boot
Block command is added to thi.s result to get the absolute block
address of the data to be returned. Thus, the block address of
the data returned is computed as follows:

Boot Table address
(contents of block 8,
bytes 36-39, + 6)

DRIVE PARAMETERS

+ boot code address + boot block #
(from Boot Table) (from Read Boot

Block command)

The Get Drive Parameters command can be used by application
programs to find out the user-accessible size of the drive
(device capacity) and other device specific information. The
format given differs slightly from that used for other commands:
the first page shows the information that is returned from all
devices and the second page shows the device specific
information.

Corvus Systems

Mass storage Systems GTI Drive Parameters

Command Name: Get drive parameters

Command Length: 2 bytes
Result Length: 129 bytes

Command
-----~--Offset/Len, Type , Description

0/1 , BYTE , command code - 10h

1/1 , BYTE , drive number (starts at 1)

Result

Offset/Len' Type , Description

0/1 , BYTE , disk result

1 / 32 ,BSTR, firmware message

33 / 1 , BYTE , ROM version

34 / 4 , ARRY , track information (see below)

38 / 3 , FAD3 , capacity in 512 byte blocks

41 / 16 ,ARRY, unused (no meaning)

57 / 1 , BYTE , interleave factor

A~Y Table information (see below)
58 / 12 MUX parameters
70 / 6 pipes information
76 / 14 virtual drive table
90 / 16 LSI-11 information

106 / 1 , BYTE , physical drive number

107 / 3 , FAD3 , capacity of physical drive

110 / 1 , BYTE , drive type (see below)

111 / 6 , ARRY , tape information (see below)

117 / 2 , WORD I media id (see below)

119 / 1 I BYTE I maximum number of bad tracks (see below)

120 / 8 I A~Y I unused (no meaning)
--

Corvus Systems 46

Mass storage Systems GTI Drive Parameters

The table below shows the meanings of the status bytes that are
different for the various device types.

Offset/Len I Type I Rev B/H Drives I OmniDrive I Bank
-----------------------~-------------------------~-------------------

35 / 1 I BYTE I sectors/track I ·sectors/track I sectors/track
--I (lsb,msb)

36 / 1 I BYTE I tracks/cylinder I tracks/cylinder I

37 / 2 I FWRD I cylinders/drive I cylinders/drivel tracks/tape
---------------------------~---

58 / 12 I ARRY I MUX parameters I unused I unused

70 / 2 I FWRD I pipe name tb1 ptr I pipe area ptr I pipe area ptr

72 / 2 I FWRD I pipe pointer tb1 I pipe area size ,pipe area size
I I ptr I ,

74 / 2 , FWRD I pipe area size , unused , unused

76 / 14 I ARRY , virtual drive tb1 I unused , unused

90 / 8 I ARRY , LSI-11 VDO table ,unused , unused

98 / 8 I ARRY , LSI-11 spared tb1 I unused I unused
--.-------------------

110 / 1 I BYTE I unused I drive type I drive type

I I , I (82H)

111 / 3 ,FAD3, unused unused I*tape life

114 / 2

116 / 1

117 / 2

I , ,(# of minutes)
I FWRD I unused unused I start/stop
I I , count
, FLAG , unused unused I fast track
I , I flag (=1 fast
I , I tracks on)

, WORD I unused I media id I media id

119 / :2 I BYTE I unused

I I
, max # of bad
I tracks

, reserved
I

"fr The tape life is specified at 500 hours and 2000 start/stops

Corvus systems 47

Mass storage systems GTI Park Command

PARKING THE HEADS

Rev B drives do not require parking of heads.

The Rev H andOmniDrives provide a firmware command that allows a
host to instruct a drive to park its heads in a landing zone or
cyLinder. This command is used in preparing the drive for
shipping.

The landing (or parking) cylinder is a reserved cylinder for Rev
H drives; for OmniDrives, the landing cylinder is specified in
the disk parameter block of each drive. Some drives
automatically park the heads .during power off; the landing
cylinder in this case is specified as OFFFFh. No actual movement
of the heads is performed when a park command is sent to one of
these drives.

over the landing
When the drive is

The park command only positions the heads
cylinder; it does not turn off the motor.
parked, it is offline to the network, and
with it. The drive stays parked until it

no host can communicate
is reset.

Command Name: Park the heads

Command Length:
Result Length:

Command

514 bytes
1 bytes

(Rev H Drive ONLY)

--
Offset/Len I Type I Description
--

0/1 I BYTE I command code - 11h
--

I / 1 I BYTE I drive number (starts at 1)
--

2 / 11 I ARRY I all O's

13 / 2 I WORD I C3h, C3h
--~-----

15 / 499 I ARRY I all O's
--
Result

Offset/Len I Type I Description

o / I I BYTE I disk result
--

This is really a special Prep block.

Corvus Systems 48

Mass storage Systems GTI Park Command

Command Name: Park the heads

Command Length:
Result Length:

Command

1 byte
1 byte

(OmniDrive ONLY)

-------------------~--------------------------------------Offset/Len I Type I Description

o / 1 I BYTE I command code - SOh

Result

Offset/Len I Type I Description

o / 1 I BYTE I disk result

CHANGING BANK TAPES OR POWERING OFF The Bank

The Bank Tape is continuously loaping. While the motor is on,
the tape cannot be removed. If the tape is not accessed for
about 1 minute 15 seconds, The Bank goes into a "shut down" mode.
The controller flushes tape information back to the firmware
area, seeks to track 0, then turns off the motor. At this point,
the tape can be removed.

There is a reset switch on The Bank which can be used to force
the "shut down" sequence. However, this switch should only be
used when absolutely necessary.

CHECKING DRIVE INTERFACE

The Echo command can be used to check the interface to the drive.
The host sends 512 bytes to the drive, and expects to get the
same 512 bytes back.

Corvus Systems 49

Mass storage Systems GTI Miscellaneous Commands

Command Name: Echo

Command Length:
Result Length:

Command

513 bytes
513 bytes

Offset/Len I Type I Description

(OmniDrive/Bank ONLY)

o / 1 I BYTE I command code - F4h
---~------------

1 / 512 I ARRY I data to be echoed

Result

Offset/Len I Type I Description

o / 1 I BYTE I disk result
--

1 / 512 I ARRY I data from command vector

PREP MODE

The host can put the drive into prep mode by sending a prep
command with 512 bytes of executable controller code. The
controller loads this code over the RAM-resident dispatcher whose
function is to interpret the command bytes sent to the
controller. Thus in effect, the prep block can be considered as
a specialized dispatcher. Some applications requiring direct
control of the hardware can utilize this feature (e.g., burn-in
program). The standard prep block shipped by Corvus supports the
following functions:

format the drive or tape
verify the drive (Rev B/H, OmniDrives only)
read from the firmware area
write to the firmware area

fill the drive with a pattern (OmniDrive only)

reformat a track (Bank only)
destructive verify a track (Bank only)
non-destructive verify a track (Bank only)

All prep blocks should support a reset function in order to take
the drive out of prep mode and back to the normal mode. This is
done through a reset command (command code = OOh) in prep mode.
Also, when the controller is put in prep mode, the front panel
LED's are set as a visual indication of this mode. For Rev B/H

Corvus Systems 50

Mass storage Systems GTI Prep Mode Commands

drives, the FLT and RDY lights are turned off and the BSY light
is turned on. For OmniDrives and Banks, the opposite is true;
i.e., the FLT and RDY lights are turned on and the BSY light is
turned off.

Rev B/H drives can use only one prep block at a time (maximum 512
bytes of code). OmniDrives and Banks, however, use a maximum of
4 prep blocks (2K of code). The first prep command puts the
drive into prep mode. Any additional prep command blocks are
loaded after the previous block. After the fourth block has been
received, any additional block overlays the fourth block.

Prep blocks are hardware dependent. Prep blocks for Rev B/H
drives contain Z80 code, whereas prep blocks for OmniDrives and
Banks contain 6801 code.

Command Name: Put drive in prep mode

Command Length: 514 bytes
1 byte Result Length:

Command

Offset/Len I Type I Description

o / 1 I BYTE I command code - l1h

1 / 1 I BYTE I drive number (starts at 1)

2 / 512 I ARRY I prep block

Result
--
Offset/Len I Type .. 1 Description

o / 1 I BYTE I disk result

Corvus Systems 51

Mass storage Systems GTI Prep Mode Commands

Command Name:

Command.Length:
Result Length:

Command

Reset drive (take drive out of prep mode)

1 bytes
1 byte

--
Offset/Len I Type I Description

o / 1 I BYTE I command code - OOh
--------------~------~------------------------------------

Result

Offset/Len I Type I Description

o / 1 I BYTE I disk result

FORMAT DRIVE

In prep mode using the Corvus prep block, the host can send a
format command to the controller. The controller lays down on
the media the sector format, and the data fields are filled with
whatever is specified by the Format command. OmniDrives use the
pattern FFFFh.

A Format command destroys ALL information on the drive, including
the firmware itself. The spared track table, the virtual drive
table, and the pipes tables, as well as the polling parameters,
interleave factor, read after write flag, etc., are all destroyed
by Format. You would not normally format a drive until this
information is written down, so that it may be manually restored
after formatting.

For Rev B/H drives, the controller refuses the Format command if
the Format switch (beneath the front panel LED's, second from
right) is set to the left. You must set this switch to the right
in order to format the drive.

Drives shipped from Corvus have been formatted, burned-in, bad
tracks logged in the spare table, and the firmware written. If
you must format the drive, you should always verify the drive
after formatting, and spare any bad tracks found. See the
section titled "Verify," later in this chapter, for more
information.

Corvus Systems 52

Mass storage systems GTI Format Command

Command Name:

Command Length:
Result Length:

Command

Format drive (Rev B/H drives ONLY)
(drive in prep mode)

n bytes
1 byte

Offset/Len I Type I Description

o / 1 I BYTE I command code - Olh

2 / n-l I ARRY I format pattern

Result

Offset/Len! Type ! Description

o / 1 I BYTE ! disk result

The Corvus diagnostic programs send 513 bytes and use pattern
76h or E5h.

Command Name:

Command Length:
Result Length:

Command

Format drive (OmniDrives ONLY)
(drive in prep mode)

1 byte
1 byte

Offset/Len! Type ! Description

o / 1 I BYTE I command code - Olh

Result

Offset/Len! Type I Description

o / 1 I BYTE I disk result

Corvus Systems 53

Mass storage Systems GTI Format Command

Command Name:

Command Length:
Result Length:

Command

Fill the drive (OmniDrives ONLY)
(drive in prep mode)

3 bytes
1 byte

Offset/Len' Type , Description

0/1 , BYTE , command code - 81h

1/2 , WORD , fill pattern

Result

Offset/Len' Type , Description

0/1 , BYTE , disk result

Note: The recommended fill pattern is B6D9h.

FORMAT TAPE (BANK)

In prep mode using the Corvus prep blocks, the host can send a
tape format command to The Bank. With this command, the host
specifies whether fast tracks are to be used, the tape type
(100MB or 200MB), and the interleave factor to be used.

The interleave factor must be an odd number between 1 and 31.
The controller automatically increases by 1 any specified even
interleave. Any interleave greater than 31 is set to 31.

After receiving the format command (full tape format only), the
controller sends back a success status immediately to acknowledge
that the format command has been received. It then turns <off
interrupts, thus taking The Bank offline. During this time, no
devices can communiate with The Bank. After formatting the
media, the controller fills the tape with a pattern (B6D9h). It
then attempts to verify the tape by reading all sectors. Any bad
sectors are spared automatically. The results of the format are
written to firmware block 2.

Any tracks reported as bad have more than 4 bad sectors, and
should not be used. If any bad tracks are reported, the tape
should either be discarded, or dummy volumes allocated over the
bad tracks. See the section titled "Physical Versus Logical
Addressing" later in this chapter for more information on mapping
track numbers to block addresses.

Corvus Systems 54

Mass storage Systems GTI Format Commands

The prep block also allows the host to send a command to reformat
one track. The tape is assumed to have been formatted, so the
controller uses the current interleave and tape parameters. This
feature is provided incase one track has read-write problems and
needs to be reformatted.

The command to reformat one track returns the number of bad
sectors on the track. If the number of bad sectors is greater
than 4, the track is bad. You should use the Get Drive
Parameters command to check the tape life. Tapes are rated for
500 hours and 2000 start-stops. If either of these numbers is
exceeded, the tape should be discarded. otherwise, you should
allocate a dummy volume over the bad track. See the section
titled "Physical Versus Logical Addressing" later in this chapter
for information on mapping track numbers to block addresses.

Command Name: Format tape (Bank ONLY)
(Bank in prep mode)

Command Length: 8 bytes
1 byte Result Length:

Command

Offset/Len, Type I Description

o / J, I BYTE I command code - 01h

1 / 1 I BYTE I 01h

2 I 3 I ARRY I unused - use a's

5 i 1 I FLAG I fast track flag (Olh = fast tracks on)

6 / 1 I BYTE I tape size (Olh = 200MB; OOh = 100MB)

7 " 1 I BYTE I interleave factor (odd number 1 to 31)

Result

Offset/Len I Type I Description

o /). I BYTE I result
--~-----------

An even interleave factor is automatically increased by 1.
Interleave greater than 31 is set to 31.

The results are recorded in firmware block 2 in the following
format:

Corvus Systems 55

Mass storage Systems GTI Format Commands

Offset/Len' Type , Description

o / 1 , BYTE , result

1 / 1 , BYTE , bad track count (=n)
--

2 / 2*n , ARRY , bad track list (each entry is Isb,msb)

Command Name: Reformat one track (Bank ONLY)
(Bank in prep mode)

Command Length: 8 bytes
2 bytes Result Length:

Command

Offset/Len' Type , Description

o / 1 , BYTE , command code - 01h

1 / 1 , BYTE , 02h

2/2 , FWRD , track number to format

4/3 , ARRY , unused - use O's

Result

Offset/Len' Type , Description

o / 1 , BYTE I result

1 / 1 , BYTE , number of bad sectors

Track number range is 0-100. The firmware track (track 1)
contains sparing information for the whole tape; if this track
is reformatted, the sparing information for the rest of the tape
will be lost.

MEDIA VERIFY (CRC)

The verify command is a prep mode command. For Rev B/H drives,
the verify is performed as follows: The controller reads each
sector on the disk. If it is unable to read a particular sector,
it tries again to read the sector. If it can read the sector
within 10 retries, it reports a soft error. If it cannot read

Corvus Systems 56

Mass storage Systems GTI Verify Command

the sector, it rewrites the sector with the data it read, which
is probably bad, and reports a bad sector.

For OmniDrives, each sector is read only once, and a hard error
is reported if the sector is bad. The sector is not rewritten.

Marginal sectors may be reported on one execution of the Verify
command, yet not show up on the next. Any sector which is ever
reported as bad should be spared. Each media has a maximum
number of tracks that may be spared. If the Verify command
reports more than this number, the media is bad, and should not
be used.

A list of spared tracks should be maintained on paper near the
drive. Then if it is ever necessary to reformat the drive or
rewrite the entire firmware area, the appropriate tracks can be
respared.

A list of bad sectors is returned to the host. The sector
numbers are physical sector numbers, and are converted to track
numbers with the following algorithm:

track # = [(cylinder #) * (number of heads)] + (head #)

Note that those sectors which are already spared may be reported
as bad.

For The Bank, the prep block provides two verify features: a
non-destructive verify and a destructive verify. These commands
work on one track at a time. The non-destructive track verify
reads all the sectors on the specified track and reports the
number of bad sectors found and the sector numbers of the first
four bad sectors. The destructive verify fills the track with
the input pattern (2 bytes) first and then verifies the track as
described for non-destructive verify.

See the section titled "Physical Versus Logical Addressing" later
in this chapter for information on mapping track numbers to block
addresses.

Corvus systems 57

Mass storage Systems GTI Verify Command

Command Name: Verify drive (OmniDrive, Rev B/H ONLY)
(Drive in prep mode)

Command Length: 1 byte
Result Length: 2+4*n bytes

Command
--
Offset/Len I Type I Description

o / 1 I BYTE I command code - 07h
-------------------------_._------------------------------
Result

Offset/Len I Type I Description

o / 1 I BYTE I result

1 / 1 I BYTE I number of bad sectors

2/4 I ARRY I head, cylinder, sector of 1st bad sector

6 / 4 I ARRY I head, cylinder, sector of 2nd bad sector

--
n*4-2 / 4 I ARRY I head, cylinder, sector of nth bad sector

The 4 bytes per sector are interpreted as follows:

Offset/Len I Type I Description

o / 1 I BYTE I head number

1 / 2 I FWRD I cylinder number

3 / 1 I BYTE I sector number

Corvus Systems 58

Mass storage Systems GTI Verify Command

Command Name: Non-destructive track verify (Bank ONLY)
(Bank in prep mode)

Command Length: 6 bytes
10 bytes Result Length:

Command

Offset/Len I Type I Description

o / 1 I BYTE I command code - 07h

1 / 1 I BYTE I 02h

2/2 I FWRD I track number

4/2 I ARRY I unused - use O's

Result

Offset/Len I Type I Description

o / 1 I BYTE I result

1 / 1 I BYTE I number of bad sectors

2/2 I WORD I sector number of 1st bad sector

8/2 I WORD I sector number of 4th bad sector

The sector number is interpreted as msb = head number and lsb
= sector number. Since there are 256 sectors per section, this
value is also an absolute sector number.

Corvus Systems 59

Mass storage systems GTI Verify Command

Command Name: Destructive track verify (Bank ONLY)
(Bank in prep mode)

Command Length: 6 bytes
10 bytes Result Length:

Command

Offset/Len' Type , Description
--

0/1 , BYTE , command code - 07h

1/1 , BYTE , 01h

2/2 , FWRD , track number

4/2 , WORD , fill pattern

Result

Offset/Len' Type , Description

0/1 , BYTE , result

1/1 , BYTE , number of bad sectors

2/2 , WORD , sector number of 1st bad sector

--------~---
8/2 , WORD I sector number of 4th bad sector

The recommended fill pattern is B6D9h.

TRACK SPARING

When the drive is formatted, it is filled with a pattern. A
burn-in can then be performed to find the marginal tracks. These
can be recorded in the firmware track sparing block to make them
invisible.

Each type of mechanism has a different number of spared tracks
allowed. This number is returned by the Get Drive Parameters
command to let the host know the maximum number of tracks it can
spare out. Rev B drives allow 7 spared tracks; Rev H drives
allow 31 spared tracks; OmniDrives allow from 7 to 64 spared
tracks, depending on the drive type (see Appendix A) .

Internally, the spared tracks are recorded in the firmware area;
see Appendix A for a complete description of the spared track

Corvus Systems 60

Mass storage Systems Track Sparing

table. You should also maintain a list of the spared tracks on a
piece of paper near the drive, so that if the firmware is ever
overwritten you can respare the proper tracks.

Tracks are spared by updating the firmware blocks containing the
spared track table. The Corvus Diagnostic program provides this
capability.

For Banks, when a tape is formatted, it is also verified and all
the- bad sectors are logged in the firmware area. Each track has
four sectors reserved for use as spared tracks.

Since only four sectors are reserved, any track with five or more
bad sectors should not be used. The firmware has no capability
to skip these tracks. Therefore it is recommended that the tape
be discarded or dummy volumes be located over this track. A
dummy Constellation volume can be allocated to this track to skip
it. See the next section for information on converting sector
numbers to block numbers.

PHYSICAL VERSUS LOGICAL ADDRESSING

The physical layout of each media is shown below.

Rev B/H OmniDrives Bank
-------- ----------

Firmware tracks 0 - (m-1) tracks 0 - 3 track 1
User area tracks m - n tracks 4 - n tracks 2
Unused tracks n+1 - z tracks n+1 - z

where m = (# of heads/drive) * 2 (see Appendix A)

z = total number of tracks - 1

x = maximum number of spared tracks allowed

n = z - x + number of tracks currently spared

The unused area is used up as tracks are spared.
Track 0 on The Bank is reserved for a landing area.

- z

For Rev B/H drives and OmniDrives, the drive is viewed as a
series of consecutive physical tracks, where a track is
identified by a head number and a cylinder number (head number
varies fastest). Logical tracks are mapped onto the physical
tracks one-to-one, skipping over spared tracks and the firmware
area. A typical layout of a hypothetical drive is shown below.
This example assumes a 4 track firmware area, 120 tracks total,
with 16 maximum spared tracks allowed. The drive has 4 heads and
20 sectors per track. Two tracks, tracks 34 and 67, are spared:

Corvus Systems 61

Mass storage systems GT! Physical Versus Logical Addressing

A

firmware
v

A

user
area

v

A

area

reserved
for spared
tracks

v

Physical Head,cyl

+---------------+
track 0 I 0,0

= =
I track 3 I 3,0
+---------------+
I track 4 I 0,1
+---------------+

track 5 I 1,1
= =

track 33 1,8
+---------------+
I track 34 2,8
+------~--------+ I track 35 3,8
+---------------+
= =
+----~----------+

track 67 3,16
+---------------+
= =

track 103 3,25
+---------------+

track 104 0,26
+---------------+
I track 105 1,26
= =
I track 119 3,29
+---------------+

Logical

+---------------+ I firmware area I
= =

+---------------+
track 0 I

+---------------+
track 1 I

= =
track 29

+---------------+
I spared track I
+---------------+
I track 30 I
+---------------+
I I
= =
+---------------+

spared track I
+---------------+
= =

track 97
+---------------+

track 98
+---------------+

track 99

+---------------+ = unused =
+---------------+

When a track is spared, the user data following the spared track
is still there, but is no longer accessible, since the data is
now located at a diffarent logical address.

The algorithm for converting block numbers to physical sector
numbers would be as shown below, if it were not for the firmware
area and spared tracks. The real algorithm is explained
immediately following the simplified form.

sector # =
track # =
head # =
cylinder #

(block #) modulo (sectors per track)
(block #) div (sectors per track)

(track #) modulo (number of heads)
= (track #) div (number of heads)

Note that the track number is a temporary result and is not a
directly addressable entity in the drive: a given block is
addressed physically by sector number, head number and cylinder
number.

The real algorithm for converting block numbers to physical
sector numbers is shown below:

Corvus Systems 62

Mass storage Systems GTI Physical Versus Logical Addressing

sector # = (block #) modulo (sectors per track)
logical track # = (block #) div (sectors per track)
physical' track # = (logical track #) plus (firmware

area offset)
physical track # = (physical' track #) plus (one for

every spared track preceding).
head # = (physical track #) modulo (number of heads)
cylinder # = (physical track #) div (number of heads)

Continuing with the example given above, let's convert block
number 1308 to a physical sector address.

sector # = 1308 mod 20 = 8
logical track # = 1308 div 20 = 65
physical' track # =65 + 4 = 69

Tracks 34 and 67 are spared, so add 2
physical track # = 69 + 2 = 71
head f = 71 mod 4 = 1
cylinder # = 71 div 4 ::: 17

Alternatively, suppose you have run the Verify Drive command, and
it reported a bad track at head 2, cylinder 12, sector 10. You
want to compute the range of blocks that the bad sector lies
within. You must apply the above algorithm in reverse:

physical track # = 2 + (12*4) = 50
Track 34 is already spared, so subtract 1

physical track #'= 50 - 1 = 49
logical track # = 49 - 4 = 45
starting sector # = 45 * 20 = 900
ending sector # = 900 + 20 - 1 = 919

ThUS, the bad sector lies somewhere between sector 900 and sector
919. You must apply.the interleave factor (see next section) to
determine exactly which sector is bad.

For Banks, the tape is viewed as a series of tracks numbered 0 to
100. Each track consists of a number of sections; a 200MB tape
has 8 sections per track, while a 100MB tape has 4 sections per
track. Each section contains 256 sectors, and a sector contains
1024 bytes. On a Bank tape, each track has four sectors reserved
for sparing, so a given block number always falls within the same
track. The track number of the track in which a given block is
located is computed as follows:

sector # = (block #) div 2
logical track # ::: (sector #) div (sectors per track)
physical track # = logical track # + 2

To compute which blocks lie within a given track, use the
following algorithm:

Corvus systems 63

Mass storage Systems GTI Physical Versus Logical Addressing

(sectors per track - 4) * 2 blocks per track =
starting block # =
ending block # =

(track # - 2) * (blocks per track)
(starting block #) + (blocks per track) - 1

Thus, if track 17 is reported as bad (more that 4 bad sectors)
by the Track Verify command, you compute the bad blocks as
follows (assuming a 200MB tape) :

blocks per track = (2048 - 4) * 2
starting block # = (17-2) * 4090
ending block # = 81350 + 4090 - 1

= 4090
= 81350
= 85439

In order to "spare" the track, you should allocate an unused
volume starting at block 81350 that is 4090 blocks in length.

INTERLEAVE

Interleaving provides--'a way of improving disk performance on
reading sequential sectors. The interleave factor specifies the
distance between logical sectors within a given track. For
example, if we assume 20 sectors per track, an interleave factor
of 1 specifies that the sectors are numbered logically 1 to 20.
An interleave factor of 2 specifies that the sectors are numbered
1, 11, 2, 12, ••. , 10, 20. An interleave factor of 5 specifies
that the sectors are numbered 1, 5, 9, 13, 17, 2, 6, 10, 14, 18,
3 •••

As you can see, the interleave factor specifies how far apart
sequential sectors are located. If the interleave factor is
optimal, a sequential read operation is able to read more than
one sector per disk revolution. Note that different interleave
factors are optimal for different applications. You will have to
decide if changing the., interleave factor will significantly
enhance the speed of one application without penalizing other
users of the drive.

The interleave is specified in the drive information block of the
firmware area. When the firmware is first-updated, it uses the
standard interleave specified in the firmware file. Legal values
are given below:

min max default
Rev BjH 1 19 9
OmniDrive 1 17 9
Bank 1 31 11

Interleave for The Bank must be odd.

If the media has information recorded, a change of interleave
effectively scrambles the information. Changing the interleave
back to the old value restores all information. When the

Corvus Systems 64

Mass storage Systems GTI Interleave

interleave is changed, the sparing information is preserved since
it is physical track information. Also, the firmware blocks are
not interleaved.

The interleave is changed by updating the firmware block
containing it. This capability is provided in the Corvus
Diagnostic program.

READ-WRITE FIRMWARE AREA

Each mass storage device has a designated firmware area which is
not accessible to normal read-write commands, and is not counted
in reporting the usable blocks on the drive. To access this
area, the host must put the drive in prep mode and send firmware
read-write commands. There is no interleaving performed on the
firmware area, nor may this area have any bad sectors.

For Rev B/H drives, the firmware file currently consists of 40
blocks. (Some old firmware files were 60 blocks.) The firmware
file occupies the first 2 tracks of cylinder 0; a duplicate
firmware file is located in the first 2 tracks of cylinder 1.
The remaining tracks of the first 2 cylinders are unused. The
user area starts at cylinder 2.

The read-write firmware commands require a head and sector as the
address, rather than a block number. The head-sector number is a
byte field: the head number occupies the upper 3 bits of the
byte, and the sector number occupies the lower 5 bits. Firmware
blocks 0-19 are head 0, sectors 0-19, and blocks 20-39 are head
1, sectors 0-19. For example, firwmare block 16 is addressed as
10h, and firmware block 32 is addressed as 2Ch.

For. OmniDrives, the.f.irmware file consists of 36 blocks, thus
occupying two entire tracks. A total of four tracks are reserved
on the med!.). so that a duplicate copy of the firmware can be
maintained. The user area starts at track 4.

The firmware blocks are numbered from 0 to 35. The read-write
firmware commands require a block number as the address. Note
that this is different from the Rev B/H drives where a physical
head and !Sector are specified. instead.

For The Bank, track 1 of the tape has the first 38 sectors
designated as the firmware area; only the first 512 bytes of each
physical sector are used. The first three sectors contain
identical information and are called the boot blocks (triple
redundancy for safety). The firmware blocks are numbered 0 to
35, and a block number is used as the address for the firmware
read-write commands.

Corvus Systems 65

Mass storage systems GTI Read-Write Firmware

Command Name: Read a block of Corvus firmware (Rev B/H ONLY)
(Drive in prep mode)

Command Length: 2 bytes
513 bytes Result Length:

Command

Offset/Len I Type I Description

o / 1 I BYTE I command code - 32h

1 / 1 I BYTE I head (bits 7-5), sector (bits 4-0)

Result

Offset/Len I Type I Description

o / 1 I BYTE I result

1 / 512 I ARRY I contents of specified firmware block

Command Name: Write a block of Corvus firmware (Rev B/H ONLY)
(Drive in prep mode)

Command Length: 514 bytes
1 byte Result Length:

Command

Offset/Len I Type I Description

o / 1 I BYTE I command code - 33h

1 / 1 I BYTE I head (bits 7-5), sector (bits 4-0)
--

2 / 512 I ARRY I data to be written

Result

Offset/Len I Type I Description

o / 1 I BYTE I result

Corvus Systems 66

Mass storage Systems GTI Read-Write Firmware

Command Name: Read a block of Corvus firmware (OmniDrive/Bank)
(Drive in prep mode)

Command Length: 2 bytes
513 bytes Result Length:

Command

Offset/Len I Type I Description

o / 1 I BYTE I command code - 32h

1 / 1 I BYTE I block number

Result

Offset/Len I Type I Description

o / 1 I BYTE I result

1 / 512 I ARRY I contents of specified firmware block

Command Name: Write a block of Corvus firmware (OmniDrive/Bank)
(Drive in prep mode)

Command Length: 514 bytes
1 byte Result Length:

Command

Offset/Len I Type I Description

o / 1 I BYTE I command code - 33h

1 / 1 I BYTE I block number

2 / 512 I ARRY I data to be written

Result

Offset/Len I Type I Description

o / 1 I BYTE I result

Corvus Systems 67

Mass storage Systems GTI Virtual Drive Table

VIRTUAL DRIVE TABLE (REV B/H DRIVES)

The virtual Drive Table was iDplemented to avoid rewriting
drivers which had a 16MB addressing limitation.

The controller maintains a table of virtual drives in the
firmware area. This 14 byte table provides for the definition of
up to 7 virtual (logical) drives per physical drive. The format
for the virtual drive table is shown below:

+--------------------+ I track offset (lsb) I +- of 1st virtual -+
I drive (msb) I
+--------------------+
I track offset (lsb) I
+- of 2nd virtual -+
I drive (msb) I
+--------------------+
I I
+- -+
I I +--------------------+
I track offset (lsb) I
+- of 7th virtual -+
I drive (msb) I
+--------------------+

An entry with a track offset equal to FFFFh indicates the absence
of the corresponding virtual drive.

The track offset is a logical track number, and is simply
multiplied by the number of sectors per track to obtain a block
offset. When a drive number is specified in a Read-Write
command, the controller examines its virtual drive table. If an
entry exists for that drive, the track offset is multiplied by 20
(the number of sectors per track), and the result is added to the
address.

For instance, on a 20MB Rev Bdrive, which has a user capacity of
38460 blocks, the Constellation I Apple software creates a
virtual drive table with 0 as the entry for the first drive, and
947 as the entry for the second drive. Virtual drive 1 consists
of blocks 0 to 18939, and virtual drive 2 consists of blocks
18940 (20*947) to 38459.

The controller does not check whether an address exceeds the
capacity of a virtual drive. I.e., if virtual drive 2 starts at
track 100 (address 2000 on a Rev B/H drive), then block 2010 can
be addressed as drive 1, block 2010, or as drive 2, block 10.
This allows hosts that do not need the artificial disk division
to share the same disk with those that do.

Corvus systems 68

Mass storage Systems GTI virtual Drive Table

The Virtual Drive Table is updated by editing the firmware block
containing it. The Corvus Diagnostic program provides this
capability.

The settings used by Corvus for Apple II Constellation I systems
are listed below:

Total Drive 2 Drive 1 Drive 2
Drive blocks offset blocks blocks
----- ------ ------- ------- -------
Rev B 20MB 38460

DOS only 976 19520 18940
Pascal/Basics 947 18940 19520

Rev H 20MB 35960
DOS only 911 18220 17640
Pascal/Basics 896 17920 17940

CONSTELLATION PARAMETERS

The Constellation parameters are used when a Rev B/H drive is
connected to a master MUX, and the MUX switch (second from left
under the front panel LED's) is set to the right. The parameters
specify what kind of host is connected to each slot in the MUX; a
host cannot communicate with the drive if this table is not set
up properly. Note that the table must be set up BEFORE the MUX
is installed.

The format of the table is shown below:

+----------------+
Ivalue for slot 11 byte 0

+----------------+
Ivalue for slot 21
+----------------+
1 I
=

I
+----------------+ I value for slot 81 byte 7
+----------------+
I poll param 1 1 byte 8
+---------------~+
1 poll param 2 1 byte 9
+----------------+
1 poll param 3 I byte 10
+----------------+
1 poll param 4 1 byte 11
+--------------~-+

Corvus Systems 69

Mass storage systems GTI Constellation Paramters

The slots on the MUX are numbered as shown below:

5 4
6 3
7 2
8 1

X

where the flat cable connects at X.

Valid slot values are shown below:

Values

o
1
2

128

Meaning

Nothing
MUX
LSI-11
Computer

Each slot value is sat to 1 (MUX) by default. It is possible to
have a computer connected to a slot with a value of 1; and it is
possible to have a MUX connected to a slot with a value of 128;
however, this is not recommended because performance of the
network suffers.

The meaning of each polling parameter is given below:

The

poll param 1: Time scale factor for timing out on a
host. This is the total time the MUX
will stay at one slot, regardless of the
number of transactions completed. This
prevents a user from hogging the network.

poll param 2: Time scale factor for timing out on a
potential host. This determines how
long the multiplexer waits for the first
request at a particular slot.

poll param 3: The maximum number of transactions that
will be accepted from a host before the
multiplexer switches to the next slot.

poll param 4: unused

default values for the polling parameters are:

poll param 1: 180
poll param 2: 16
poll param 3 : 32
poll param 4: 0

Corvus Systems 70

Mass storage Systems GTI Constellation Paramters

The Constellation parameters are updated by editing the firmware
block containing them. The Corvus Diagnostic program provides
this capability.

Corvus Systems 71

Mass storage Systems GTI Constellation Paramters

This page intentionally left blank.

Corvus Systems 72

Mass storage systems GTI Omninet Protocols

This chapter describes the Omninet functions of the

OMNINET
PROTOCOLS 2

OmniDrive mass storage system, The Bank mass storage system, and
the disk server for Rev B/H drives. It describes how disk
commands are sent over an Omninet local area network.

A brief review of the Omninet Local Area Network General
Technical Information Manual, chapter 3, will help you
understand the material presented here. In that manual, the
Omninet command-vectors used to send and receive messages are
described. The two commands that are relevant to this discussion
are repeated below:

Corvus Systems 73

Mass Storaye Systems GTI omninet Pr~tocols

Send Message
Command vector

offset/Len I Type I Description

0/1 I BYTE I Command code = 40h

1/3 I ADR3 I Result record address
--~-----------

4/1 I BYTE I Destination socket

S / 3 I ADR3 I Data address

8/2 I WORD I Data length

10 / 1 I BYTE I User control length

11 / 1 I BYTE I Destination host

Result record

Offset/Len I Type I Description

0/1 BYTE Return code - values are:
00-7Fh - message sent successfully
80h - message not acknowledged
81h - message too long
82h - message sent to unitialized socket
83h - control length mismatch
84h - invalid socket number
8Sh - invalid destination address

1/3 I BYTE I Unused

4 / n I ARRY I User control information

Corvus Systems 74

Mass storage Systems GTI omninet Protocols

setup Receive Message
Command vector

Offset/Len, Type , Description

o / 1 , BYTE , Command code = FOh

1 / 3 , ADR3 , Result record address
---~

4 / 1 , BYTE , Socket number

5 / 3 , ADR3 , Data address

8 / 2 , WORD , Data length

10 / 1 , BYTE , User control length

Result record

Offset/Len' Type , Description

o / 1

1 / 1

2/2

4 / n

BYTE , Return
r FFh
, FEh
, 84h
, 85h
, OOh

code - values are:
- initial value (set by user)
- socket set up succesfully
- invalid socket number
- socket already set up
- message received

, BYTE , Source host

, WORD , Data length

I ARRY , User control information

Any message exchange on omninet consists of setting up a receive
socket with a setup Receive command, sending the message with a
Send command, and waiting for the reply to be received. You
always need at least 4 buffers for this task:

1) a command vector
2) a data buffer
3) a result record for the setup Receive message,
4) a result record for the Send message.

You can use two separate command vectors: one for Setup Receive
and one for Send, but you don't have to. You can also use
separate data buffers. You MUST use separate result records.

The disk servers on omninet currently provide two functions: the
execution of disk commands, and a name service. In the future,
they and other servers, developed by Corvus or other software

Corvus Systems 75

Mass storage Systems GTI Omninet Protocols

developers, will provide many more services. In order for a
server to distinguish which service is being requested, Corvus
has defined a message format which includes a protocol identifier
(protocol ID) as the first 2 bytes of each message. This
protocol ID identifies what type of service is being requested or
provided. For more information on protocol IDs, refer to the
Omninet Protocol Book.

CONSTELLATION DISK SERVER PROTOCOLS

The Disk Server Protocol is used to exchange commands and data
between Corvus disk devices on Omninet and the host computers
which they support. The disk commands were defined in Chapter 1.
The Disk Server Protocol defines the format of Omninet messages
which contain disk commands, data, and control information. It
also describes the mechanism for exchanging those messages. In
general, the Disk Server Protocol is a two way conversation
between 'el cli-entand a server. The server is usually a Corvus
disk device and the client is usually a personal computer. It is
possible for a personal computer to run a program which enables
it to act as a Corvus disk device. Corvus OmniShare for the
IBM-PC, and Corvus DisketteShare for the Apple II, are two
examples of such a program.

The Disk Server Protocol is a transaction based protocol; in
other words, for each message sent, a reply is expected. There
are two basic types of transactions: short commands and long
commands. Short commands (4 bytes or less) involve the exchange
of two messages, while long commands require four messages to
complete a transaction. A disk read is a short command and a
disk write is a long command.

The general message exchange for data transfer is shown in Figure
2.1. For a short command, the Disk Request message contains the
first four or fewer bytes of the command, and the Results message
contains the results of the command. For a long command, the
Disk Request message contains the first four bytes of the
command. After sending the Disk Request message, the host waits
for a Go message from the server. After receiving the Go
message, the host sends the remaining bytes of the command with a
Last message. The server finally sends the results of the
command with the Results message.

Corvus Systems 76

Mass storage Systems GTI omninet Protocols

Short command Long command

Client Server Client Server

Disk Request Disk Request
0---------------------------> 0--------------------------->

Results Go
<---------------------------0 <---------------------------0

Last
0--------------------------->

Results
<---------------------------0

Figure 2.1: Message exchange for Disk Server Protocol

There are two versions of Disk Server Protocol: old and new.
These are described in detail in the sections "Old Disk Server
Protocol," and "New Disk Server Protocol." The new protocol
follows the protocol guidelines established in the Omninet
Protocol Book, supports more operations than the old, and uses
different sockets. The operations supported are listed below:

old new originator
Disk request (send disk command) x x client
Last (remainder of disk command) x x client
Abort request x client
Go x x server
Results (of disk command) x x server
Cancel request x server
Restart request x server

An example is probably in order. Let's look at the process of
sending both a short and long command. This example uses the Old
Disk Server protocol. You may wish to refer ahead to the section
"Old Constellation Disk Server Protocol" for further explanation
of the message contents.

Sending A Short Command

This section contains an example of sending a short command.
We will use the Read a Sector (5l2-byte sector) command to read
sector 0 from drive 1 on server 1. Recall that this command is 4
bytes long: command code is 32h, and the sector address is Olh,
OOh, OOh.

Corvus Systems 77

Mass storage systems GTI Omnine~ Protocols

First, we must issue a setup Receive command to the transporter.
The fields marked with - will contain the indicated data upon
receipt of the Results message.

Command vector Receive Result Record
+---------~-~----------+ +------>+--------------------+
Icommand code - FOh 1 1 1 return code - FFh 1
+----------------------+ I +-~------------------+ 1 result 1---+ 1 - (source address) 1
+- -+ +~-------------------+
1 record 1 1 - (user data 1
+- -+ +- -+
1 address 1 1 - length) 1
+----------------------+ --+--------------------+--
Isocket number = BOh 1 1 - (user control 1

+----------------------+ +- -+
user 1---+ 1 - information) 1

+- -+ 1 +- -+
1 data 1 1 1 1
+- -+ 1 +--------------------+
1 address 1 1
+----------------------+ I
1 user data 02h 1 1 User data buffer
+- -+ +------>+--------------------+
1 length = 512 OOh 1 1 - (512 bytes of 1
+----------------------+ +- -+
Icontrol len = 03h 1 1 - data) 1
+----------------------+ = =

1 - 1 +--------------------+

Corvus Systems 78

Mass storage Systems GTI Omninet Protocols

When the return code field in the Receive Result Record changes
to FEh, the socket has been successfully set up. We can now
proceed to send the Disk Request message.

Command vector Send Result Record
+----------------------+ +------>+--------------------+
Icommand code = 40h 1 I I return code = FFh I
+----------------------+ I +--------------------+
I result I ---+ I unused I +- -+ +- -+
I record 1 I I +- -+ +- -+
I address I I I
+----------------------+ --+--------------------+--
Isocket number = BOh I I send length OOh I

+----------------------+ +- -+
I user 1---+ I length = 4 04h I
+- -+ I +--------------------+
I data I I I receive 02h I

+- -+ I +- -+
I address I I I length = 512 OOh I

+----------------------+ I +--------------------+
I user data OOh I
+- -+
I length = 4 04h 1 User data buffer
+----------------------+ +------>+--------------------+
Icontrol len = 04h I I read 32h I
+----------------------+ +- -+
Idestination = Olh I I command Olh I
+----------------------+ +- -+

I OOh I
+- -+
I OOh I
+--------------------+

Corvus Systems 79

Mass storage Systems GTI omninet Protocols

When the return code field'of the Send Result Record changes to
less than SOh, the message has been successfully sent. Now you
must wait for the return code' field of the Receive Result Record
to change to OOh, indicating that a message has been received.
If there are no errors, the Receive Result Record and the User
Data Buffer will look like this:

Sending A Long Command

Receive Result Record
+--------------------+
I return code ~ OOh I
+--------------------+
I source addr ~ Olh I
+---------~----------+ I user data
+-
I length ~ 512

02h I
-+

OOh I
--+--------------------+--

I length of
+-
I response~513

02h I
-+

01h I
+--------------------+
I disk rslt OOh I
+--------------------+
User data buffer

+--------------------+
I contents of disk I
+- -+
I sector 0, 512 I
= =
I bytes
+--------------------+

This section contains an example of a long command. We will use
the write a Sector (512-byte sector) to write sector 0 to drive 1
on server 1. Recall that this command is 516 bytes long: command
code is 33h, and the sector address is 01h, OOh, OOh, followed by
512 bytes of data.

Corvus Systems SO

Mass Storaqe Systems GTI omninet Protocols

First, we must set up a socket to recevie the Go messaqe. The
fields marked with - will contain the indicated data upon receipt
of the Go messaqe.

Command vector Receive Result Record
+-----------~----------+ +------>+--------------------+
Icommand code = FOh 1 1 1 return code = FFh 1

+----------------------+ 1 +--------------------+ 1 result 1---+ 1 - (source address) 1
+- -+ +--------------------+
1 record 1 1 - (user data 1
+- -+ +- -+
1 address 1 1 - lenqth) I

+----------------------+ +--------------------+
Isocket number = BOh 1

+----------------------+
1 user 1---+
+- -+ I User data buffer
I data 1 +------>+--------------------+
+- -+ 1 - (2 bytes of data) 1
I address 1 +- -+
+----------------------+ I - I
1 user data
+-
1 lenqth = 2

OOh I
-+

02h 1
+----------------------+
Icontrol len = OOh 1
+----------------------+

Corvus Systems

= =

+--------------------+

81

Mass storage Systems GTI omninet Protocols

When the return code field in the Receive Result Record changes
to FEh, the socket has been successfully set up. We can now
proceed to send the Disk Request message.

Command vector Send Result Record

+----------------------+ +------>+--------------------+
Icommand code = 40h 1 1 return code = FFh 1

+----------------------+ 1 +--------------------+
1 resul t 1 ---+ I unused I
+- -+ +- -+
1 record 1 1 1
+- -+ +- -+
1 address 1 1 I

+----------------------+ --+--------------------+--
1 socket number = BOh 1 1 send 02h 1

+----------------------+ +- -+
1 user 1---+ I length = 516 02h I
+- -+ I +--------------------+
1 data 1 I 1 receive OOh 1

+- -+ I +- -+
I address 1 I I length = 0 OOh I
+----------------------+ 1 +--------------------+
I user data OOh I I
+- -+ I
I length = 4 04h 1 1 User data buffer
+----------------------+ +------>+--------------------+
Icontrol len = 04h 1 1 1st four 33h 1
+----------------------+ +- -+
Idestination = Olh 1 1 bytes of Olh I

+----------------------+ +- -+ I write OOh I
+- -+
1 command OOh 1

+--------------------+

Corvus Systems 82

Mass storage Systems GTI omninet Protocols

When the return code field of the Send Result Record changes to
less than 80h, the message has been successfully sent. Now you
must wait for the return code field of the Receive Result Record
to change to OOh, indicating that a message has been received.
If there are no errors, the Receive Result Record and the User
Data Buffer will look like this:

Corvus Systems

~eceive Result Record
+--------------------+ I return code = OOh I
+--------------------+ I source addr = Olh I
+--------------------+
I user data OOh I
+- -+
I length = 2 02h I
+--------------------+

User data buffer
+--------------------+
I 'G'
+-
I '0'

47h I
-+

4Fh I
=

I I
+ .. , .. _-_ •..... ,-~ ... "'-,--------+

83

Mass storage Systems GTI Omninet Protocols

After the Go message has been recevied, we are ready to send the
Last message, but first we must set up to receive the Results
message. There will be no user data received, since the Write
command returns only a disk return code, but we will specify a
data buffer anyway.

Command vector Receive Result Record
+----------------------+. +------>+--------------------+
Icommand code = FOh 1 1 1 return code = FFh 1

+----------------------+ I +--------------------+
1 result 1---+ 1 - (source address) 1
+- -+ +--------------------+
1 record 1 1 - (user data 1
+- -+ +- -+
1 address 1 1 - length) 1

+----------------------+ --+--------------------+--
Isocket number = BOh 1 1 - (user control 1 +----------------------+ +- -+
1 user 1---+ 1 - information) 1
+- -+ 1 +- -+
I data 1 1 I 1
+- -+ 1 +--------------------+
1 address 1 1
+----------------------+ 1
1 user data 02h 1 1 User data buffer
+- -+ +------>+--------------------+
1 length = 512 OOh 1 1
+----------------------+ +- -+
Icontrol len = 03h 1 1
+----------------------+ = =

+--------------------+

Corvus Systems 84

Mass storage Systems GTI Omninet Protocols

When the return code field in the Receive Result Record changes
to FEh, the socket has been successfully set up. We can now
proceed to send the Last message. Note that the socket number is
AOh.

Command vector Send Result Record

+----------------------+ +------>+--------------------+
Icommand code = 40h 1 1 return code = FFh 1

+----------------------+ I +--------------------+ 1 result 1---+ 1 unused 1

+- -+ +- -+
I record I 1 1 +- -+ +- -+
I address I I 1

+----------------------+ +--------------------+
Isocket number = AOh I
+----------------------+
I user 1 --,-+
+- -+ I User data buffer
I data I +------>+--------------------+
+- -+ I 512 bytes of data I
I address I +- -+
+----------------------+ 1 to be written 1
I user data 02h I =
+- -+ 1

I length = 512 OOh I +--------------------+
+----------------------+
Icontrol len = OOh !
+----------------------+
Idestination = 01h I
+----------------------+

Corvus Systems 85

Mass storage Systems GTI omninet Protocols

When the return code field of the Send Result Record changes to
less than 80h, the message has been successfully sent. Now you
must wait for the return code field of the Receive Result Record
to change to OOh, indicating that a message has been received.
If there are no errors, the Receive Result Record and the User
Data Buffer will look like this:

Receive Result Record
+--------------------+
I return code = OOh I
+--------------------+ I source addr = Olh I
+--------------------+ I user data OOh I
+- -+
I length = 0 OOh I

--+--------------------+--I length of OOh I
+- -+
I response=l Olh I
+--------------------+
I disk rslt OOh I
+--------------------+

User data buffer
+--------------------+
I nothing I
+- -+
I I
= =
I I
+--------------------+

For the example above, the sequence of message exchange using the
new protocol would be exactly the same: only the contents of the
User Control and the User Data buffers and the socket usage would
differ.

As you can see from the above example, the disk server protocol
uses the transporter's message splitting feature. The disk
server protocol always knows what packet is expected next, so it
can specify the user's buffer when it sets up a receive. The
control information always goes to a separate data area managed
by the driver. This feature cuts down on the amount of data
movement that must take place, by putting the command results
directly into the user's buffer.

The concept of short and long commands is used because of limited
buffer space in the disk server. The disk server is capable of
queuing one request for each network device. When it is ready
for the Last portion of the disk command, it sends the Go

Corvus Systems 86

Mass storage Systems GTI Omninet Protocols

message. The disk server emulates the Constellation multiplexer
in that once the server services a particular host, it accepts up
to 32 commands before going on to the next host. See Chapter 3
for more information on disk server service times.

The OmniDrive and Bank controllers support both the old and the
new protocols, while the disk server for Rev B/H drives supports
only the old protocol. All the hosts on the network are treated
separately, i.e. the OmniDrive and Bank can support one protocol
for one host and a different protocol for another host. The
protocol to be used is derived from the type of Omninet message
format received by the controller. It will be used for only that
command.

OLD DISK SERVER PROTOCOL

(The Old Disk Server Protocol was written before the idea of
protocol IDs was finalized; therefore it does not abide by the
current protocol guidelines.)

Corvus Systems 87

Mass storage Systems GTI Old Disk Server Protocols

Name: Disk request Protocol ID: -

User Control Length: 4 Message Type: -

User Data Length: 4 or less Socket Usage: BOh

User Control Format:

Field Name I Offset/Len I Type I Description

M I 0 / 2 WORD I Number of bytes in command.
I I If M>4, then this is a long
I I command.

N I 2 / 2 WORD I Maximum number of return

I I bytes excluding the disk
I I return code.

User Data Format:

Field Name I Offset/Len I Type I Description

DATA o / n I First 4 or fewer bytes of
I disk command.

This message is used to send the first four bytes of a disk
command to the server.

If M > 4, then a Go .message is expected next, otherwise a Results
message is expected.

Corvus Systems 88

Mass storage Systems GTI Old Disk Server Protocols

Name: Last Protocol ID: -

User Control Length: 0 Message type: -

User Data Length: depends on command Socket Usage: AOh

User Data Format:

Field Name I Offset/Len I Type I Description

DATA o / n I WORD I M minus 4 bytes of
I I disk command

The Last message is used to send the last M-4 bytes of a long
command to the server. This message is sent in response to a Go
messa-qe from the serve-r. M is the M from the Disk Request
message.

If there al':'e no errors, the next message from the server should
be the Results message.

This command is always sent to socket AOh.

Corvus Systems 89

Mass storage Systems G'l'I Old Disk Server Protocols

Name: Go

User Control Length: 0

User Data Length: 2

User Data Format:

Protocol ID: -

Message type: -

Socket Usage: BOh

Field Name I Offset/Len I Type I Description

GO o / 2 I WORD I 'GO' - 474Fh

The Go message is sent by the server in response to a Disk
Request message. It tells the client that the server is ready to
receive the Last message.

If the most significant bit of the first byte of the GO Field
(i.e., the 'G' byte) is on, the disk has been reset and the
operation should be restarted.

Corvus Systems 90

Mass storage Systems GTI Old Disk Server Protocols

Name: Results Protocol ID: -

User Control Length: 3 Message type: -

User Data Length: depends on command Socket Usage: BOh

User Control Format:

---------------------------~-------------------------------
Field Name I Offset/Len I Type I Description

NACTUAL 0/2

RETCODE 2/1

User Data Format:

WORD I Number of bytes actually
I returned including the disk
I return code.

I BYTE I Disk return code

Field Name I Offset/Len I Type I Description

DATA o / n I ARRY I Results of disk command
I i (NACTUAL-l bytes).

This message contains the results of a disk command.

If the most significant bit of the first byte of the NACTUAL
field is on, the disk has been reset and the operation should be
restarted.

Corvus Systems 91

Mass storage Systems GTI Old Disk Server Protocols

Name: Find a server Protocol ID: OlFEh

User Control Length: 0

User Data Length: S bytes

Message type: Olh

Socket Usage: SOh

User Data Format:

Field Name I Offset/Len I Type I Description
---~------------------------------~------------------------

PID 0/2 I WORD I Protocol ID t - OlFEh

MSGTYP 2 / 1 I BYTE I Message type - Olh

M 3/2 I WORD I Length of command - OOOlh

N I 5 / 2 I WORD I Expected length of
I I I result - OOOOh

COMMAND I 7 / 1 I BYTE I Illegal command code

This message is used to broadcast an illegal disk command. The
disk server and the OmniDrive respond to this message with a
Results message; The Bank does not respond to this message.

Some host systems using this protocol broadcast an illegal disk
command during power on to find servers on the network. They try
to boot from the first server that replies. To prevent host
systems from booting from The Bank, The Bank controller ignores
the illegal command opcode FFh and does not return any status.
Other illegal commands are acknowledged.

Corvus Systems 92

Mass storage Systems GTI New Disk Server Protocols

NEW SERVER PROTOCOL

Disk servers with PROM versions DSSA.A or DSD1SA do not support
the new disk server protocol.

Disk servers with PROM version DSD9BID and later, OmniDrives, and
Banks support. the old disk server protocol as well as the new
disk server protocol.

The new disk server protocol is similar to the old in basic
message exchange; that is, for a short command the client .sends a
Disk Request message and expects a Results message; for a long
command, the client sends a Disk Request message, the server
replies with a Go message, the client sends a Last message, and
the server replies with a Results message. However, the new
protocol uses different sockets than the old, and includes more
information with each message. The new protocol also includes
three new messages: Abort, Cancel and Restart.

with the new diskse~r protocol, the client always sends the
Disk Request message to socket SOh of the server, and the server
always sends the Go message to socket SOh of the client. For the
Last and Results messages, the server and the client respectively
specify to which eocket (AOh or BOh) to send the message. All
asynchronous messages (Cancel, Restart, and Abort) are sent to
socket 80h.

The new disk server protocol requires that a media ID be sent
along with each Disk Request. This is to prevent the case when
the media is swapped and the host unknowingly attempts to write
to the wrong tape. During power up, the controller generates a
random number to be used as the media ID of the tape. This
number is based on the value of the free running counter of the
6801 clocks; it is random and has a value between O-OFFFFh.

The host can obtain the current media ID by issuing a Get Drive
Parameters command with a media ID of zero. A media ID of zero
is honored by the controller regardless of the current ID. The
current media ID is one of the parameters returned by the Get
Drive Parameters command.

The controller broadcasts a Cancel message during power up to
inform all hosts on the network about a media change. If a host
does not receive or act upon the Cancel message, it will receive
a Wrong Media ID error message when it tries to access the tape.
The host can recover by reissuing a Get Drive Parameters command
with an ID of zero in order to obtain the new media ID number.

The new disk server protocol also requires that a request ID be
sent along with each disk command. This is done so that either
the disk server or the host can cancel, abort, or restart a
particular command. The request ID is selected by the host, and
can simply be an integer which is incremented for each request.

Corvus Systems 93

Mass storage system3 GTI New Disk Server Protocols

Any Cancel, Restart, or Abort message includes a field which
indicates the reason for the abnormal condition. The possible
reason codes are summarized below:

Value Meaning

Olh Timed out - either the disk server timed out
waiting for a Last message, or the host timed out
waiting for a Go or Results message. See chapter
3 for more information on timeouts.

02h Offline - the disk device is currently offline for
backup or reformatting.

03h out of synch - the server has received a Last
message when it was not expecting one.

04h Wrong media - the MEDIAID in the Disk Request
message does not match the current media ID.

05h Rebooted - the server has just come online.

Corvus Systems 94

Mass storage Systems GTI New Disk Server Protocols

Name: Disk request Protocol ID: 01FFh

User Control Length: 0 Message Type: OOOlh

Socket Usage: 80h User Data Length: 18

User Data Format:

Field Name I Offset/Len I Type I Description

PID I 0 / 2 I WORD i Protocol ID # - 01FFh

MSGTYP I 2 / 2 I WORD I Message type - 0001h

RQSTID 4 / 2 I WORD I Request ID

MEDIAID 6 / 2 I WORD I Media ID

RESHOST I 8 / 1 I BYTE I Result host

RESSOCK I 9 / 1 I BYTE I Result socket - AOh or BOh

M I 10 / 2 WORD I Number of bytes in command.
I I If M>4, then this is a long
I I command.

N I 12 / 2 WORD I Maximum number of return

I I bytes excluding the disk
I I return code.

DCMD I 14 / 4

I
I ARRY I First 4 or fewer bytes of
I I disk command.

This message is used to send the first four bytes of a disk
command to the server. It tells the server to which host
(ResHost) and to which socket (ResSock) to send the reply.

The host selects the request ID. The media ID was established
during the first message exchange between the host and this
server. If the media ID does not match the server's current
media ID (because someone has switched Bank tapes, for example),
then the server will not respond to the Disk Request message,
but will send a Cancel message instead. The Cancel message
includes the current media ID.

If M > 4, then a Go message is expected next, otherwise a
Results message is expected.

Corvus Systems 95

Masu storage Systems GTI N~w Disk Server Protocols

Name: Last Protocol ID: OlFFh

User Control Length: 12 Message Type: 0002h

User Data Length: depends on command Socket Usage: AOh or BOh

User Control Format:

Field Name ,Offset/Len, Type , Description

PID o / 2 ,WORD, Protocol ID # - 01FFh

MSGTYP 2 / 2 ,WORD, Message type - 0002h

RQSTID 4 / 2 I WORD I Request ID

reserved , 6 / 2 ,WORD I Reserved - use O's

reserved I 8 / 2 ,WORD, Reserved - use O's

reserved I 10 / 2 ,WORD, Reserved - use O's

User Data Format:

Field Name ,Offset/Len, Type I Description

DATA o i n i ARRY i M minus 4 bytes of disk
, I command

The Last message is used to send the last (M-4) bytes of a long
command to the server, where M is the M from the Disk Request
message. This message is sent in response to a Go message from
the server. Last messages are sent to socket AOh or BOh,
whichever was specified in the Go message.

If there are no errors, the next message from the server should
be the Results message.

Corvus Systems 96

Mass storage Systems GTI New Disk Server Protocols

Name: Abort Protocol ID: OlFFh

User Control Length: 0 Message Type: 0003h

User Data Length: 8 Socket Usage: 80h

User Data Format:

Field Name I Offset/Len I Type I Description

PID

MSGTYP

RQSTID

REASON

o / 2 I WORD I Protocol ID # - OlFFh

2 / 2 I WORD I Message type - 0003h

4 / 2 I WORD I Request ID

6 / 2 WORD Reason for abort:
Olh .= timed out waiting for

disk server response

This message tells the server to abort request RQSTID. If the
RQSTID is 0 then abort any requests from this host.

Corvus ::~ystems 97

Mass storage Systems GTI New Disk Server Protocols

Name: Go Protocol ID: OIFFh

User Control Length: 0 Message Type: OlOOh

Socket Usage: 80h User Data Length: 8

User Data Format:

Field Name ,Offset/Len, Type, Description

PID

MSGTYP

RQSTID

reserved,

LASTSOCK

o i 2 ,WORD, Protocol ID # - OlFFh

2 / 2 ,WORD, Message type - OlOOh

4 / 2 ,WORD I Request ID

6 / 1 ,BYTE, Reserved - use 0

7 / 1 BYTE , Socket number to which Last
I message should be sent
, (AOh or BOh)

The Go message is sent by the server in response to a Disk
Request message. It tells the client that the server is ready to
receive the Last message for request RQSTID.

Corvus Systems 98

Mass storage Systems GTI New Disk Server Protocols

Name: Results Protocol ID: 01FFh

User Control Length: 12 Message Type: 0200h

User Data Length: depends on command Socket Usage: AOh or BOh

User Control Format:

Field Name I Offset/Len I Type I Description

PID o / 2 I WORD I Protocol ID # - 01FFh

MSGTYP I 2 / 2 I WORD I Message type - 0200h

RQSTID I 4 / 2 I WORD I Request ID

NACTUAL I 6 / 2 I WORD I Number of bytes acutally
I I I returned, including the disk
I I I return code.

reserved I 8 / 1 I BYTE I Reserved - use 0

RETCODE 9 / 1 I BYTE I Disk return code

reserved I 10 / 2 I WORD I Reserved ~ use O's

User Data Format:

Field Name ; Offset/Len I Type I Description
---D.ATA o / n I ARRY I Results of disk command

I I (NACTUAL-l bytes)

This message contains the results of a disk command. It is sent
to socket AOh or BOh, whichever was specified in the Disk Request
message.

Corvus Sys'tems 99

Mass storage Systems GTI

Name: Cancel

User Control Length: 0

User Data Length: 10

User Data Format:

New Disk Server Protocols

Protocol ID: OlFFh

Message Type: 0300h

Socket Usage: SOh

Field Name I Offset/Len I Type I Description

PID o / 2 I WORD I Protocol ID # - 01FFh
-------~---~-MSGTYP 2 / 2 I WORD I Message type - 0300h

RQSTID 4 / 2 I WORD I Request ID

REASON

MEDIAID

6/2 WORD Reason for cancel:
02h - disk device has gone

offline
04h - the MEDIAID in the

Disk request message
does not match the
current MEDIAID

S / 2 I WORD I Current Media ID

This is the server's mechanism for cancelling a request. RQSTID
identifies the request which was cancelled.

Corvus systems 100

Mass storage Systems GTI New Disk Server Protocols

Name: Restart

User Control Length: 0

User Data Length: 10

User Data Format:

Protocol ID: 01FFh

Message Type: FFOOh

Socket Usage: SOh

Field Name I Offset/Len I Type I Description

PID o / 2 I WORD I Protocol ID # - 01FFh

MSGTYP I 2 / 2 I WORD I Message type - FFOOh

RQSTID I 4 / 2 I WORD I Request ID

REASON

MEDIAID

6 / 2 WORD Reason for restart:
05h - server has been

rebooted
03h - out of synch: a Last

message was received
when one was not
expected.

01h - timed out: Last
message not received
after Go was sent

S / 2 I WORD ! Current Media ID

This is thf-" server's mechanism for telling the host to restart a
request. 'I;his. te11s .. the client to send request RQSTID again. If
RQSTID is ~,ero then the c1 ient should restart any requests
pending to :':hat server.

MEDIAID is the current media ID. If it does NOT match the
MEDIAID of the pending request, then the the media was changed
(e.g' i ch;;:\nging a Bank tape) whil~ the server was offline.

Corvus S\)stems 101

Muss storage Systems GTI Name Lookup Protocols

CONSTELLATION NAME LOOKUP PROTOCOL

The Constellation name lookup protocol is used to identify
devices on the network by name. It is currently supported by
disk servers DSD1SA, DSD9B1D, and later, all OmniDrives, and all
Banks. It is NOT supported by disk server DSSA.A.

The messages are summarized below:

Hello
Goodbye
Who Are You
Where Are You
My ID Is

The Hello and Goodbye messages are broadcast during power up and
power down respectively, to announce the presence or absence of a
device. The Who Are You and Where Are You messages can either be
broadcast or directed; a My ID Is message is expected in
response.

Each device on the network can be identified by its name, its
omninet address, or its device type. Using the name lookup
protocol, you can find the answers to such questions as, What are
the addresses of all the disk servers on the network? and What is
the address of the disk server named RDSERVER?

Each device is assigned one or more device types which are used
to identify the types of services it supports. There are two
kinds of device types: generic and specific. Generic device
types define a class of Omninet hosts, while specific device
types define a specific service. The currently assigned device
types are listed in Appendix B.

As always, there area few exceptions to the rules; the device
types for disk devices are listed below. As you can see, the
disk server and the Bank each respond to only one device type.

Rev BjH disk server
OmniDrive
Bank

Corvus Systems

Generic
1
1

Specific
1
6
5

102

Mass storage Systems GTI Name Lookup Protocols

For example, the following algorithm finds all (booting) disk
servers on the network:

N

y

N

~Alalw ..
SIcb1I1011. s.nd

Who 1ft YIIU
DMciI Type· I,

DesIInIIJcIi,. DlsIlnlUon

IInIInII*I c- DIIUnIIIan +1

N

Figure 2.2a: Find all disk servers using directed messages

Corvus Systems 103

Mass storage Systems GTI Name Lookup Protocols

You could also use the following algorithm, but it is not quite
as reliable since it uses a broadcast command and timeouts:

EndRecelw ~
SocielSOh

v

Se~Recelve
~Sodel SOh

Sene! Who Are You
DevIce Type • 1

To DesUnaUon fFh

CoIIIlA
Disk SerYIr

N

N

Se~RecIM

~Sockel8Oh
Again

Figure 2.2b: Find all disk servers using broadcast messages

Corvus Systems 104

Mass storage Systems GTI Name Lookup Protocols

The following algorithm is used to reply to Who Are You and Where
Are You messages:

1. Respond to all device types that apply.

2. If the device type is FFh, the device responds with its
most specific device type.

3. If the device type is generic, and it is one of the
generic types assigned to this device, then the device
responds with the same generic device type. For example,
if the OmniDrive receives a Who Are You, device type =
Olh, it replies with a My ID Is, device type = Olh.

4. If the device type is specific, then the device
responds with the same device type.

Corvus Systems 105

Mass storage Sys-tems GTI Name Lookup Protocols

Name: Hello Protocol ID: 01FEh

User Control Length: 0

User Data Length: 18

Message Type: OOOOh

Socket Usage: 80h

User Data Format:

---------~------~--
Field Name I Offset/Len, Type , Description
-------~~-----~--PID o / 2 ,WORD, Protoco1ID # - 01FEh

MSGTYP 2. / 2 ,WORD, Message type - OOOOh

SOURCE 4 / 2 ,WORD, Omninet address of device

DEVTYPEI 6 / 2 ,WORD, Device type
----------~-----------~------------------------------------NAME 8 / 10 I BSTR I Device name

This message should be broadcast whenever a host "logs onto" the
network.

Whenever a disk server receives one of these messages, it adds
the device to its Active User Table. If DEVTYPE is 1,
indicating that the Hello message came from some other disk
server, then the receiving disk server sends back a My ID Is
message to the originator of the Hello message. See the
discussion of the Active User Table in the next section.

Corvus Systems 106

Mass storage Systems GTI Name Lookup Protocols

Name: Goodbye Protocol ID: 01FEh

User Control Length: 0

User Data Length: 18

Message Type: FFFFh

Socket Usage: 80h

User Data Format:

Field Name I Offset/Len I Type I Description

PID I 0 / 2 I WORD I Protocol ID # - 01FEh

MSGTYP I 2 / 2 I WORD I Message type - FFFFh

SOURCE 4 / 2 I WORD I Omninet address of device
---~---DEVTYPE 6 / 2 I WORD I Device type

NAME 8 / 10 I BSTR I Device name

This message should be broadcast whenever a host '1 logs off" the
network.

Corvus Systems 107

Mass storuge Systems GTI Name Lookup Protocols

Name: Who Are You Protocol ID: OlFEh

User control Length: 0

User Data Length: 8

Message Type: 0200h

Socket Usage: 80h

User Data Format:

Field Name I Offset/Len I Type I Description

PID o / 2 I WORD I Protocol ID # - OlFEh

MSGTYP 2 / 2 I WORD I Message type - 0200h

SOURCE 4 / 2 I WORD I Omninet address of deivce

DEVTYPE 6 / 2 I WORD I Device type

This message can be directed or broadcast. Only devices which
are assigned the specified DEVTYPE will respond. If DEVTYPE =
FFh, all devices will respond.

The expected response is a My ID Is message.

Corvus Systems 108

Mass storage Systems GTI Name Lookup Protocols

Name: Where Are You

User Control Length: 0

User Data Length: 18

User Data Format:

Protocol ID: 01FEh

Message Type: 0300h

Socket Usage: 80h

Field Name \ Offset/Len \ Type I Description

PID o / 2 I WORD I Protocol ID # - 01FEh

MSGTYP 2 / 2 \ WORD I Message type - 0300h

SOURCE I 4 / 2 I WORD I Omninet address of device

DEVTYPE \ 6 / 2 I WORD I Device type

N~E 8 / 10 I BSTR I Device name

This message is broadcast. Only devices with the specified name
and device type will respond.

The expected response is a My ID Is message.

Corvus Systems 109

Mass storage Systems GTI Nama Lookup Protocols

Name: My ID Is

User Control Length: 0

User Data Length: 18

User Data Format:

Protocol ID: OlFEh

Message Type: 1000h

Socket Usage: 80h

Field Name I Offset/Len I Type I Description
----~--~-------------PID o / 2 I WORD I Protocol ID # - OlFEh

MSGTYP I 2 / 2 I WORD I Message type - 1000h

SOURCE I 4 / 2 I WORD I Omninet address of device

DEVTYPE I 6 / 2 I WORD I Device type

NAME I 8 / 10 I BSTR I Device name

This message is sent in reponse to a Who Are You or a Where Are
You message.

Corvus Systems 110

Mass storage systems GTI Active User Table

ACTIVE USER TABLE

It is not practical to implement the Constellation name protocol
on all hosts, because the name lookup protocol requires that a
host respond to an asynchronous message. Not all processors or
operating systems support asynchronous events. ~herefore, Corvus
provides a rudimentary name service with the Active User Table.
The contents of this table were described in Chapter 1. The
Active User Table commands are repeated below:

AddActive
Oe1eteActiveUsr
Oe1eteActiveNumber
FindActive
ReadTempB10ck
WriteTempB10ck

An Active User Table is maintained on each disk device on the
network. Whenever a disk device receives a Hello message, it
adds the user to its Active User Ta~le with an AddActive command.
Similarly, whenever a disk device receives a Goodbye message, it
deletes the user with a Oe1eteActiveUsr command.

If all the hosts on the network broadcast a Hello message on boot
up, and broadcast a Goodbye message as part of the shut-down
procedure, then the Active User Table will usually contain a list
of which hosts are currently active ,on the network.

However, since the Hello and Goodbye messages are normally
broadcast, it is possible that a disk device may miss a Hello or
Goodbye message, and that an Active User Table may not reflect
the actual state of the network. It is also possible, in a
multiple disk server network, that the Active User Table on one
disk device may not be the same as that on another disk device.

Each disk device is responsible for initializing its Active User
Table. Here is the sequence of events that occurs when a disk
server is powered on:

1. The disk server broadcasts a Hello message with a
device 10 of 1.

2. If another server is present on the network, it will
add the new server to its Active User table, and send a My
10 Is message back to the new server.

3. If the new server receives a My 10 Is message, it
reads the Active User table from the server that sent the
message, and uses it to initialize its own table.

4. If the new server does not receive a My 10 Is message,
then there are no other disk servers on the network, so it
initializes its Active User table to blanks.

Corvus Systems 111

Mass storage Systems GTI Active User Table

The OmniDrive goes through a process similar to the one detailed
above, with one difference. The OmniDrive broadcasts a Hello
message with a device ID of 1, so that the old disk server PROM
will recognize it as a disk device. The OmniDrive then
broadcasts another Hello message with a device ID of 6, so that
the Active User Table will contain device ID 6 instead of 1.

Also for the sake of compatability, the OmniDrive replies to a
Hello message with a My ID Is message of device type 1. For the
Who Are You and Where Are You messages, the OmniDrive replies
with device type 6.

The Bank has an omninet device type of 5. This number is used
for the Hello message during power on and for response to the Who
Are You message. The Bank does not implement the Active User
Table.

Corvus systems 112

Mass storage Systems GTI Disk Drivers

OUTLINE OF
A DISK DRIVER 3

This chapter outlines a simple disk driver that interfaces to any
Corvus mass storage device. If written properly, the same omninet
driver can support a disk server, an Omnidrive mass storage
system, or The Bank mass storage system. A flat cable driver
can support a Rev B/R drive directly, or one connected via a MUX.

When writing a disk driver, you should remember that the Corvus
disk merely supports absolute disk sector reads-writes. It knows
nothing about which computers are connected to it, nor whether it
is connected over flat cable or Omninet. It knows nothing about
volumes or users or file systems. In a network environment, the
drive merely knows which command came from which computer, so
that it can send the reply to the proper computer. Thus, a disk
driver for a Corvus device resides at the BIOS level of the
operating system. This is different from other network
implementations, where references to the disk may be intercepted
at the file level.

A typical BIOS level interface for a disk driver has at least
three entry points: Driver Initialization, Device Read, and
Device write. These are the only functions discussed here.

The Device Read and write entry points generally have the
following parameters:

Device number: this number is used as an index into a
table of device characteristics, such as device type,
device location, device size, etc.

Sector number: this is the sector number to be read or
written. Disk devices consist of n sectors, numbered 0
to n-l.

Number of sectors: this is the number of sectors to be
read or written.

Buffer: this is the address of a buffer where the data is
to be read into or written from.

Result code: this value is returned. It either indicates
a successful operation, or indicates the nature of the
failure.

Corvus Systems 113

Mass storage systems GTI Disk Drivers

The Device Read portion of the driver sends a Corvus disk Read
sector command, and returns the data in the user's buffer. The
Device write portion sends a write sector command along with the
data in the user's buffer. The sector command used (128, 256,
512, or 1024 bytes) depends upon the sector size used by the
operating system. The examples below assume a 512 byte sector
size. Any information that depends on sector size is marked.

For the purposes of this chapter, it is assumed that the disk
driver treats the entire disk as one device. See the
Constellation Software General Technical Information Manual for
information on how a Constellation disk driver treats a disk as
more than one device.

There are several types of errors that the driver can encounter:
timeout errors (device does not respond), disk errors (controller
errors), hardware errors (Omninet transporter errors). Your
driver must map these errors into the codes that your operating
system defines.

OMNINET

You may want to refer to the following manuals while reading this
section:

omninet Local Area Network General Technical Information,
Chapter 3, pages 31-38, which describes the Omninet commands
Setup Receive, Send, etc.

Chapter 2 of this manual, which describes the disk server
protocols.

Chapter 1 of this manual, which describes the sector read
and write commands.

The disk driver described here is simplified in two ways. First,
this description assumes that the disk driver is the only user of
the tranporter (TM) interface card; that is, the disk driver
expects to be able to use the transporter at will and it throws
away messages it does not recognize. In reality, the transporter
functions should be handled by a transporter driver, and the disk
driver should call on the transporter driver to do transporter
functions. Corvus is currently developing a specification of a
transporter driver and software which uses such a driver.

Secondly, the description of the disk driver given here ignores
whether the transporter is buffered or unbuffered. A driver
which handles a buffered transporter will naturally be more
complicated since it must manage the buffer space and move data
to and from user memory. Of course, if a transporter driver

Corvus Systems 114

Mass storage Systems GTI omninet

existed which the disk driver could use, then the transporter
driver would handle the buffering, and the disk driver would not
have to worry about whether the transporter were buffered or not.
This is another reason for having a transporter driver.

However, as mentioned above, the driver described here does not
assume the existence of a transporter driver.

The driver is described by the data structures, flowcharts and
notes on the next few pages. The flowcharts cover how to send
short and long commands and describe timeout recovery procedures.
Many systems have no recourse when a timeout error occurs. A
driver written for one of these systems should implement the
timeout recovery described here, but instead of reporting a
timeout error, restart the operation from the appropriate point.

Figure 3.1 reviews the flow of data for a read (short) command,
and for a write (long) command, and shows the areas where
timeouts can occur.

Short Commrmd

Personal
Computer

T
T3

1

Disk
Server

Personal
COmputer

T
T3

I -
T
T4

1

Long ())mmend

Disk
Server

T
TDS

1

Figure 3.1 Timeouts for short and long command exchanges

Corvus Systems 115

Mass storage Systems GTI omninet

There are two types of events which would cause a driver to time
out: waiting for a response from the local transporter, and
waiting'for a disk server response. These can be broken down
further as follows:

Transporter timeouts

TO: The time between a command strobe and the next ready.
Recommended timeout value: 10ms.

Tl: The time between strobing a receive command and. the
receive result changing from FFh to FEh. This is very
fast, ususa1ly within 200 microseconds. However, an
incoming receive could happen during the processing of
the Setup Receive, so the elapsed time could be
several milliseconds. Recommended timeout value:
10ms.

T2: The time between strobing a Send command and its
result changing. The result for a Send command does
not change until an acknowledgement is received or the
transporter gave up after sending 10 retransmissions.
This can produce a very long delay (in computer time),
since 11 transmissions are possible and the
transporter will accept messages for any receives
which are set up. Recommended timeout value: lOOms.

Disk Server timeouts (refer to figure 3.1)

T3: The time between the completion of the Send of the
Disk Request message and the receipt of the Results
or Go message. This interval could be as long as 3
minutes for a disk, and 11 hours for a Bank.
Recommended timeout value: see below.

T4 The time between the completion of the Send of the
Last message and the receipt of the Results message.
Recommended timeout value: 150ms for a disk, 20
seconds for a Bank.

The disk server itself will timeout between sending a Go message
and receiving the Last message. This timeout value is 768ms.
This time is indicated in figure 3.1 by TDS.

Most systems do not use the transporter timeouts (TO, Tl, and T2)
since there is nothing they can do if the transporter is not
working reliably.

All systems must support the disk server timeouts (T3 and T4) in
order to work reliably in a multiple server environment. The
timeout value for T3 must be variable, since a 3 minute or 11
hour timeout is not practical.

Corvus Systems 116

Mass storage systems GTI Omninet

The recommended approach to implementing the T3 timeout is to use
an adaptable timeout. Since different devices have different
timing characteristics, the timeout value must depend upon the
device type. Also, as more servers are added to a network, the
response times will lengthen. Therefore, the timeout value must
also adapt to the network environment.

The flow chart in figure 3.4 shows a very simple method for
adapting the timeout values. The timeout value should start out
relatively short (3 seconds for a disk, 20 seconds for a Bank),
and increase only when a long delay is encountered.

The Old Disk Server Protocol is described first, and then the New
Disk Server Protocol is described.

Corvus systems 117

Mass storage Systems GTI Old Disk Server Protocols

OLD DISK SERVER PROTOCOL

This section describes the old disk server protocol.

; Sample data structures for a disk server driver using Old Disk
; Server Protocol . ,
; First the data structure is declared, then a list of offsets
; into the structure are declared.

; Transporter command vector (see Omninet GTI, pgs. 32,33) . ,

;

TCmd

It is not necessary to have more than one command vector,
although it is sometimes more convenient to use separate
records which are preinitialized as Send and Setup receive
commands.

• BYTE 0 OpCode - command code
. BYTE 0 ResAdr - high order byte of result address
• WORD 0 - low order word of result address
. BYTE 0 . Sock - socket number ,
• BYTE 0 DatAdr - high order byte of data address
• WORD 0 - low order word of data address
. WORD 0 DataLen - data length
. BYTE 0 CrtlLen - user control length
. BYTE OFFh Dest - destination host number

offsets
OpCode .EQU 0 offset to OpCode
ResAdr .EQU 1 ; offset to ResAdr
Sock .EQU 4 offset to socket number
DatAdr .EQU 5 offset to DatAdr
DataLen.EQU 8 offset to data length
CrtlLen.EQU 10 ; offset to user control length
Dest .EQU 11 offset to destination host number (Send only)

Corvus Systems 118

Mass Storage systems GTI Old Disk Server Protocols

; sample data structures for a disk server driver using Old Disk
Server Protocol (cont.)

; Result record definitions (see section 2.2)

· ,
Every driver must have 2 separate result records, one for
sends, and one for receives.

; Send result record
SndRes ; transporter return code

; unused
; unused

SndUC

.BYTE 0

.BYTE 0

.WORD 0

.WORD 0

.WORD 0
; M - the number of data bytes to send to drive
; N - the maximum number of data bytes

RCode
M
N

RcvRes

RcvUC

Src
Len
OLen
DCode
• ,
• ,
; Data
• ,
GoData

Dcmd

.EQU 0

.EQU 0

.EQU 2

• BYTE
• BYTE
• WORD
• WORD
• BYTE

.EQU 1

.EQU 2

.EQU 0

.EQU 2

0
0
0
0
0

area buffers

.BYTE OFFh

.BYTE OFFh

• WORD 0
• WORD 0

Corvus Systems

; expected on receive
; offsets
; offset to
; offset to

transporter return code
M

offset to N

· Receive result record ,
• transporter return code ,
· Src - source host number ,
• Len - actual length of data received ,
· OLen - number of bytes actually returned ,
· DCode - disk return code ,
· offsets ,
· offset to Src ,
· offset to Len I

• offset to OLen ,
; offset to DCode

; this is where we receive the 'GO' packet

; space for the disk command

119

from driv

Mass storage Systems GTI Old Disk Server Protocols

; Sample data structures for a disk server driver using Old Disk
; Server Protocol (cont.)
• ,
; DrvRet is a global variable in the driver which each routine

sets. It is the value that will be returned to the operating
system upon completion of the driver call.

· , • ,
;
DrvRet .BYTE 0 ; Driver return code

; DrvRet values:
· ,
• ,
· , · ,

The codes which are marked with an asterisk (*) are those
which may be returned to the caller of the driver. All
others are used internally. The codes which are marked with
a T are transporter return codes.

• ,
OkCode .EQU 0
GiveUp .EQU
TooLong.EQU
NoSock .EQU
BadHdr .EQU
SndErr .EQU
TOErrDS.EQU
TOErrTR.EQU

· ,

128
129
130
131
140
252
253

· ,

• ,
· , · ,
· ,
· ,

*T
T - gave up after n retries
T - message too long
T - socket not initialized
T - header length mismatch - should never happen
* - unable to send messages to disk server

- timed out waiting for disk server response
* - timed out waiting for transporter

(hardware error)

; The following global variables are set on each read or
write, to the values specified for the device. • ,

Timeout.WORD 0
DSNum • BYTE 0

Corvus Systems

; used to control disk server wait loop
; disk server number

120

Mass storage Systems GTI Old Disk Server Protocols

y

Se~Rece"'"
ForResulls
MeSSl9'

Send Disk 2
CcmnInd

WIll For
D1skServw

Response

:5

H

Se~ReceiYe

ForResulls
MeSSlge

Figure 3.2: Flowchart of a short (read) command
Old Disk Server Protocol

The numbers in the flowchart boxes refer to text descriptions on
the following pages.

Corvus Systems 121

Mass storage systems GTI Old Disk Server Protocols

1. Setup receive for results.

2.

TCmd+OpCode <- FOh (Setup Receive command)
TCmd+ResAdr <- address of RcvRes
TCmd+Sock <- BOh
TCmd+DatAdr <- address of user's buffer
TCmd+DataLen <- 512 (use appropriate sector size)
TCmd+CrtlLen <- 3

RcvRes+Rcode <- FFh (must initialize result code)

If transporter result code (RcvRes+Rcode) does not change
within 10 ms, report a hardware error (TOErrTR) and exit.

Send disk command.

TCmd+OpCode
TCmd+ResAdr
TCmd+Sock
TCmd+DatAdr
TCmd+DataLen
TCmd+CrtlLen
TCmd+Dest

SndRes+Rcode
SndUC +M
SndUC +N

DCmd+O
DCmd+1
DCmd+2
DCmd+3

<- 40h (Send command)
<- address of SndRes
<- BOh
<- address of DCmd buffer
<- 4 (4 byte read command)
<- 4
<- DSNum

<- FFh (initialize result code)
<- 4
<- 512 (use appropriate sector size)

<- 32h (use appropriate read command)
<- sector address byte d
<- sector address lsb
<- sector address msb

If transporter result code (SndRes+Rcode) does not change
within 100 ms, report a hardware error (TOErrTR) and exit.

1. Wait for disk server response.

This is a loop which is checking the transporter return code
in the receive buffer (RcvRes+Rcode). When this value goes
to zero, the disk read has completed. See figure 3.4 and
accompanying notes.

~. If a timeout error occurred, try to recover. See figure 3.5
for a description of the recovery procedure.

:j. Check the responding disk server (RcvRes+Src). If it does
not match the destination disk server (DSNum) the message
received is irrelevant. Setup the receive again, and wait
for another response.

:Corvus Systems 122

Mass storage Systems GTI Old Disk Server Protocols

6. Check the first byte of the User Control Data (RcvUC +DLen).
If the most significant bit is on, the disk has been reset.
Start the entire sequence over.

Check the disk result (RcvUC+Dcode). If the most
significant bit is on, report an error.

Corvus Systems 123

Mass storage Systems GTI Old Disk Server Protocols

,

N

N

,

Fiqure 3.3: Flowchart of a long (write) command
Old Disk Server Protocol

The numbers in the flowchart boxes refer to text descriptions on
the following pages.

Corvus Systems 124

Mass storage Systems GTI Old Disk Se~~er Protocols

1. setup receive for the 'GO' command.

TCmd+OpCode <- FOh (Setup Receive command)
TCmd+ResAdr <- address of RcvRes
TCmd+Sock <- Bah
TCmd+DatAdr <- address of GoData
TCmd+DataLen <- 2
TCmd+CrtlLen <- a

RcvRes+Rcode <- FFh (must initialize the result code)

If transporter result code (RcvRes+Rcode) does not change
within 10 ms, report a hardware error (TOErrTR) and exit.

2. Send the first 4 bytes of the write command.

<- 40h (Send command)
<- address of SndRes
<- Bah

TCmd+OpCode
TCmd+ResAdr
TCmd+Sock
TCmd+DatAdr
TCmd+DataLen
TCmd+CrtlLen <

<
<-

address of DCmd buffer
4
4

TCmd+Dest <- DSNum

SndRes+Rcode <- FFh (initialize result code)
SndUC +M <- 516 (use appropriate sector size)
SndUC +N <- 0

DCmd+O
DCmd+l
DCmd+2
DCmd+3

<- 33h (use appropriate read command)
<- sector address byte d
<- sector address lsb
<- sector address msb

If transporter result code (SndRes+Rcode) does not change
within 100 ms, report a hardware error (TOErrTR) and exit.

3. wait for disk server response.

This is a loop which is checking the transporter return code
(SndRes+Rcode). When this value goes to zero, the 'GO'
message has been received. See figure 3.4 and accompanying
notes.

4. If a timeout error occurred, try to recover. See figure 3.5
for a description of the recovery procedure.

5. Check the responding disk server (RcvRes+Src). If it does
not match the destination disk server (DSNum) the message
received is irrelevant. Setup the receive again, and wait
for another response.

Corvus Systems 125

Mass storage Systems GTI Old Disk Server Protocols

6. Check the first byte of the data buffer (GoData). If the
most significant bit is on, the disk server has been reset,
and you should restart the sequence from the beginning.

7. If the data received is anything but the 2 bytes 'GO', the
message is irrelevant. setup the receive again, and wait for
another response.

S. set up another receive to get the results of the next Send.

TCmd+OpCode <- FOh (Setup Receive command)
TCmd+ResAdr <- address of RcvRes
TCmd+Sock <- Bah
TCmd+DatAdr <- address of DCmd buffer
TCmd+DataLen <- 4
TCmd+CrtlLen <- 3

RcvRes+Rcode <- FFh (must initialize the result code)

If transporter res-ult code (RcvRes+Rcode) does not change
within 10 ms, report a hardware error (TOErrTR) and exit.

9. Send the rest of the write command. Note that the socket
number is AOh, not Bah as for the previous commands.

TCmd+OpCode <- 40h (Send command)
TCmd+ResAdr <- address of SndRes
TCmd+Sock <- AOh
TCmd+DatAdr <- address of user's buffer
TCmd+DataLen <- 512 (use appropriate sector
TCmd+CrtlLen <- a
TCmd+Dest <- DSNum

SndRes+Rcode <- FFh (initialize result code)

User's buffer contains the data to be written.

size)

If transporter result code (SndRes+Rcode) does not change
within 100 ms, report a hardware error (TOErrTR) and exit.

If the transporter result code is S2h (uninitialized socket),
then the disk server has timed out waiting for the second
half of the disk command. You should restart the operation
from the beginning.

10. Check the first byte of the User Control Data (RcvUC +DLen) .
If the most significant bit is on, the disk has been reset.
Start the entire sequence over.

Check the disk result code (RcvUC+Dcode). If the most
significant bit is on, report an error.

Corvus Systems 126

Mass storage Systems GTI Old Disk Server Protocols

y

Figure 3.4: wait for disk server response
Old Disk Server Protocol

The numbers in the flowchart boxes refer to text descriptions
below.

1. The timeout value should be set to whatever is specifed in
the device table for this device. If the timeout value is 0,
the driver loops forever, waiting for a response. A timeout
value of 0 should be used only for Mirror and Prep mode
commands.

2. The count of 3 is arbitrary. It is basically a retry count.

3. The loop terminates when the transporter return code goes to
o (message received), or when the timeout value is reached.

4. If the number of retries is exceeded, report a timeout error
and exit.

Corvus Systems 127

Mass storage Systems GTI Old Disk Server Protocols

1
End Receive

Send Flush 2
Command

Figure 3.5: Flush
Old Disk Server Protocol

The numbers in the flowchart boxes refer to text descriptions
below.

1. Do an End Receive on socket BOh.

TClnd+OpCode
TClnd+ResAdr
TClnd+Sock

<- 10h (End receive command)
<- address of SndRes
<- BOh

SndRes+Rcode <- FFh (initialize result code)

If transporter result (SndRes+Rcode) does not change within
10ms, report a hardware error (DrvRet <- TOErrTR) and exit.

If transporter result (SndRes+Rcode) is not 0, report a
hardware error (DrvRet <- TOErrTR) and exit.

Corvus Systems 128

Mass storage Systems GTI Old Disk Server Protocols

2. Send a Flush command.

TCmD+OpCode <- 40h (Send command)
TCmD+ResAdr <- address of SndRes
TCmD+Sock <- BOh
TCmD+DatAdr <- address of DCmd buffer
TCmD+DataLen <- 4
TCmD+CrtlLen <- 4
TCmD+Dest <- DSNum

SndRes+Rcode <- FFh (initialize result code)
SndUC +M <- 0
SndUC +N <-0

If transporter result (SndRes+Rcode) does not change within
100 ms, report a hardware error (TOErrTR) and exit.

NEW DISK SERVER PROTOCOL

The description of the New Disk Server Protocol is very similar
to that of the Old Disk Server Protocol, but there are two
important differences. The first is that the driver must be
prepared to generate request IDs and use media IDS. The second
is that the driver must be prepared to receive a Cancel or
Restart message at any time. The flowcharts for wait for Disk
Server Response (figure 3.9) and Flush (figure 3.10) are
therefore more complicated. The flowcharts for the Short (figure
3.6) and Long (figure 3.7) commands look similar to those for the
Old Disk Server Protocol (figures 3.2 and 3.3), but the
explanations differ.

The new disk server protocol requires that you specify to which
socket, AOh or BOh, the server should send the Results message.
The server tells you to which socket you should send the Last
message.

You will also see that some of the fields in the declarations are
described in three places: as part of the RcvUC record, as part
of the SndUc record, and as part of the Dcmd record. This is
because the protocol information is sometimes included in the
User Data portion of the message, and sometimes in the User
Control portion.

Corvus Systems 129

Mass storage Systems GTI New Disk Server Protocols

· ,
7 Sample data structures for a disk server driver using New Disk

Server Protocol
· ,
7 First the data structure is declared, then a list of offsets
; into the structure are declared.
• ,
• ,
; Transporter command vector (see omninet GTI, pgs. 32,33)

· , · ,
· ,

TCmd

It is not necessary to have more than one command record,
although it is sometimes more convenient to use separate
records which are preinitia1ized as Send and Setup receive
commands.

• BYTE 0 · OpCode - command code ,
• BYTE 0 · ResAdr - high order byte of result address ,
• WORD 0 · - low order word of result address ,
• BYTE 0 • Sock - socket number ,
• BYTE 0 · DatAdr - high order byte of data address ,
• WORD 0 · - low order word of data address I

• WORD 0 · DataLen - data length ,
• BYTE 0 • Crt1Len - user control length ,
• BYTE OFFh · Dest - destination host number ,

· offsets ,
OpCode .EQU 0 · offset to OpCode ,
ResAdr .EQU 1 ; offset to ResAdr
Sock .EQU 4 · offset to socket number ,
DatAdr .EQU 5 offset to DatAdr
DataLen.EQU 8 · offset to data length ,
Crt1Len.EQU 10 · offset to user control length ,
Dest .EQU 11 • offset to destination host number (Send only) ,

Corvus systems 130

Mass Storagu SY!ltems GTI New Disk Server Pro'toco1s

; Sample data structures for a disk server driver using New Disk
Server Protocol (cont.) · , · ,

; Result record definitions (see section 2.3)
;

· ,
Every driver should have 2 separate result records, one for
sends, and one for receives.

• ,

SndRes .BYTE 0
.BYTE 0
.WORD 0

SndUC .WORD 0
.WORD 0
.WORD 0
.WORD 0
.WORD 0

RCode .EQU 0
ProtoID.EQU 0
MsgTyp .EQU 2
RqstID .EQU 4
Reason .EQU 6
MediaI2.EQU 8

RcvRes .BYTE 0
.BYTE 0
.WORD 0

RcvUC • WORD 0
.WORD 0
.WORD 0
.WORD 0
.BYTE 0
.BYTE 0
.WORD 0

Src .EQU 1
Len .EQU 2
NActua1.EQU 6
DCode .EQU 9

Rcv80 .BYTE 0
.BYTE 0
.WORD 0

Corvus Systems

; Send result record
; transporter return code
; unused
; unused
; ProtoID - Protocol ID
; MsgTyp - message type
; RqstID - request ID
; M - the number of data bytes to send to drive

N - the maximum number of data bytes
expected on receive

; offsets
; offset to transporter return code
; offset to ProtoID
; offset to MsgTyp
; offset to RqstID
; offset to Reason (for Cancel and Restart)
; offset to MediaID (for Cancel and Restart)

; Receive result record
; transporter return code
; Src - source host number
; Len - actual length of data received
; ProtoID - Protocol ID
; MsgTyp - message type
; RqstID - request ID

NActua1 - number of bytes returned from drive
; reserved
; DCode - disk return code
; reserved
; offsets
; offset to Src
; offset to Len
; offset to NActua1
; offset to DCode
; Second receive result record for Cancel or Restart
; transporter return code
; Src - source host number
• ,

131

Mass storage Systems GTI New Disk Server Protocols

; Sample data structures for a disk server driver using New Disk
; Server Protocol (cont.) .
I

; Data area buffers
• I

DCmd • WORD 0
• WORD 0
. WORD 0
• WORD 0
• BYTE 0
• BYTE 0
• WORD 0
• WORD 0
• WORD 0
• WORD 0

MediaID.EQU 6
ResHost.EQU 8
ResSock.EQU 9
M .EQU 10
N .EQU 12
Cmd .EQU 14

S80Msg . WORD 0
• WORD 0
• WORD 0
. WORD 0
. WORD 0

LstSock.EQU 7

Corvus Systems

;
;

· I

;

· I

· I

· ,
· I

• ,

· I

· ,

;

· I

· ,
· I

· I

;

· ,

ProtoID
MsgTyp
RqstID
MediaID
ResHost
ResSock
M
N
space for the disk command (4 bytes)

offsets
offset to MediaID
offset to ResHost
offset to ResSock
offset to M
offset to N
offset to start of command

space for socket 80h messages (Go, Cancel or Resta
ProtoID
MsgTyp
RqstID
Reason, LastSock
MediaID
offsets
Last socket for Go message

132

Mass storage Syster,ts GTI New Disk Server Protocols

; Sample data structures for a disk server driver using New Disk
Server Protocol (cont.) · ,

· ,
; DrvRet is a global variable in the driver which each routine

sets. It is the value that will be returned to the operating
system upon completion of the driver call.

· ,
· ,
• ,
DrvRet .BYTE 0

; DrvRet values:

; Driver return code

· ,
· , · , · ,

The codes which are marked with an asterisk (*) are those
which may be returned to the caller of the driver. All
others are used internally. The codes which are marked with
a T are transporter return codes.

• ,
; *T
; T - gave up after n retries
; T - message too long
; T - socket not initialized

OkCode .EQU 0
GiveUp .EQU 128
TooLong.EQU 129
NoSock .EQU 130
BadHdr .EQU 131
SndErr .EQU 140
TOErrDS.EQU 252
TOErrTR.EQU 253

; T - header length mismatch should never happen
; * - unable to send messages to disk server . , - timed out waiting for disk server response
; * - timed out waiting for transporter

· ,

. , (hardware error)

; The following global variables are set on each call from the
values specified for the device. · , · ,

TimeOut.WORD 0
DSNum .BYTE OFFh
Media .WORD 0

; used to control disk server wait loop
; disk server number
; media id

; The following global variables are set on each call.
· ,
UseSock.BYTE 0
Request.WORD 0

; which socket to use (AOh or BOh)
; bumped by 1 on each call

; The following global variables are set at driver
; initialization
· ,
MyAddr .BYTE 0

Corvus Systems

; this computer's transporter address

133

Mass storage Systems GTI New Disk Server Protocols

v

Setup Receive
For Results
Message

Send Disk 2
ConvnIIId

WIlt For
Disk 5erYIr
Response

3

N

Setup Rec:e1Ye

For Results
I1esuge

Figure 3.6: Flowchart of a short (read) command
New Disk Server Protocol

The numbers in the flowchart boxes refer to text descriptions on
the following pages.

Corvus systems GTI 134

Mass storage Systems GTI New Disk Server Prot:ocols

1. Setup receive for results.

TCmd+OpCode <- FOh (Setup Receive command)
TCmd+ResAdr <- address of RcvRes
TCmd+Sock <- UseSock
TCmd+DatAdr <- address of user's buffer
TCmd+DataLen <- 512 (use appropriate sector size)
TCmd+CrtlLen <- 12

RcvRes+Rcode <- FFh (must initialize result code)

If transporter result code (RcvRes+Rcode) does not change
within 10 ms, report a hardware error (TOErrTR) and exit.

Setup receive for possible socket 80h message (Cancel or
Restart) :

TCmd+OpCode
TCmd+ResAdr
TCmd+Sock
TCmd+DatAdr
TCmd+DataLen
TCmd+CrtlLen

Rcv80+Rcode

<- FOh (Setup Receive command)
<- address of Rcv80
<- 80h
<- address of S80Msg
<- 8
<- 0

<- FFh (must initialize result code)

2. Send disk command.

<- 40h (Send command)
<- address of SndRes
<- 80h

TCmd+OpCode
TCmd+ResAdr
TCmd+Sock
TCmd+DatAdr
TCmd+DataLen <
TCmd+CrtlLen <
TCmd+Dest

<- address of DCmd buffer
18
4

<- DSNum

SndRes+Rcode <- FFh (initialize result code)
SndUc +M <- 4
SndUc +N <- 512 (use appropriate sector size)

DCmd+ProtoID
DCmd+MsgTyp
DCmd+RqstID
DCmd+MediaID
DCmd+ResHost
DCmd+ResSock
DCmd+M
DCmd+N
DCmd+Cmd
DCmd+Cmd+1
DCmd+Cmd+2
DCmd+Cmd+3

Corvus Systems

<- 01FFh
<- 0001h (Disk request)
<- Request
<- Media
<- MyAddr
<- UseSock
<- 4 (4 byte read command)
<- 512 (use appropriate sector size)
<- 32h (use appropriate read command)
<- sector address byte d
<- sector address Isb
<- sector address msb

135

Mass storage Systems GTI New Disk Server Protocols

If transporter result code (SndRes+Rcode) does not change
within 100 ms, report a hardware error (TOErrTR) and exit.

3. wait for disk server response.

This is a loop which is checking the transporter return code
in the receive buffer (RcvRes+Rcode). When this value goes
to zero, the disk read has completed. See figure 3.S and
accompanying notes.

This loop must also check whether a Cancel or Restart message
has been received. See figure 3.9 and accompanying notes.

4. If a timeout error or cancellation occurred, try to recover.
See figure 3.10 for a description of the recovery procedure.

5. Check the responding disk server (RcvRes+Src). If it does
not match the destination disk server (DSNum) the message
received is irrelevant. Setup the receive again, and wait
for another response.

6. Check the User Control Data (RCVUC). Ensure the ProtoID is
1FFh, and that MsgTyp is 0200h. If not, the message
received is irrelevant. Setup the receive again, and wait
for another response.

Check the disk result (RcvUC+Dcode). If the most
significant bit is on, report an error.

Do an End Receive on socket SOh.

TCmd+OpCode
TCmd+ResAdr
TCmd+Sock

<- 10h (End Receive command)
<- address of SndRes
<- SOh

SndRes+Rcode <- FFh (initialize result code)

Corvus Systems 136

Mass storage systems GTI New Disk Server Protocols

,

•

,

•

Figure 3.7: Flowchart of a long (write) command
New Disk Server Protocol

,

The numbers in the flowchart boxes refer to text descriptions on
the following pages.

Corvus systems GTI 137

Mass storage Systems GTI New Disk Server Protocols

1. setup receive for the Go message. The Go message is sent to
socket 80h.

TCmd+OpCode <- FOh (Setup Receive command)
TCmd+ResAdr <- address of RcvRes
TCmd+Sock <- 80h
TCmd+DatAdr <- address of S80Msg
TCmd+DataLen <- 8
TCmd+CrtlLen <- 0

Rcv80+Rcode <- FFh (must initialize result code)

If transporter result code (RcvRes+Rcode) does not change
within 10 ms, report a hardware error (TOErrTR) and exit.

2. Send the first 4 bytes of the write command.

TCmd+OpCode
TCmd+ResAdr
TCmd+Sock
TCmd+DatAdr
TCmd+DataLen
TCmd+CrtlLen
TCmd+Dest

<- 40h (Send command)
<- address of SndRes
<- 80h
<- address of DCmd buffer
<- 18
<- 4
<- DSNum

SndRes+Rcode <- FFh (initialize result code)

DCmd+O
DCmd+2
DCmd+4
DCmd+6
DCmd+8
DCmd+9
DCmd+10
DCmd+12
DCmd+14
DCmd+15
DCmd+16
DCmd+17

<- 1FFh (protocol id)
<- 001h (message type = Disk request)
<- request id
<- media id
<- FFh
<- UseSock
<- 516 (use appropriate sector size)
<- 1
<- 33h (use appropriate read command)
<- sector address byte d
<- sector address lsb
<- sector address msb

If transporter result code (SndRes+Rcode) does not change
within 100 ms, report a hardware error (TOErrTR) and exit.

3 Wai t. for disk server response.

This is a loop which is checking the transporter return code.
Since the Go message will be received on socket 80h, the
driver must check Rcv80+Rcode, not RcvRes+Rcode, as in all
the other cases. When this value goes to zero, a message has
been received. See figure 3.8 and accompanying notes.

Corvus t;ystems 138

Mass storage Systems GTI New Disk Server Protocols

This loop must also check whether a Cancel or Restart
message has been received. See figure 3.9 and accompanying
notes.

4. If a timeout or cancellation error occurred, try to recover.
See figure 3-.10 for a description of the recovery procedure.

5. Check the responding disk server (RcvSO+Src). If it does
not match the destination disk server (DSNum) the message
received is irrelevant. Setup the receive again, and wait
for another response.

6. No box.

7. If the data received is anything but the Go message
(S80Msg+ProtoID=01FFh, S80Msg+MsgTyp=0100h), the message
is irrelevant. setup the receive again, and wait for another
response.

s. set up another receive to get the results of the next Send.

TCmd+OpCode <- FOh (Setup Receive command)
TCmd+ResAdr <- address of RcvRes
TC1nd+Sock <- UseSock
TCmd+DatAdr <- address of DCmd buffer
TCmd+DataLen <- 4
TCmd+CrtlLen <- 12

RcvRes+Rcode <- FFh (must initialize result code)

If transporter result code (RcvRes+Rcode) does not change
within 10 ms, report a hardware error (TOErrTR) and exit.

Setup receive for possible socket 80h message (Cancel or
Restart) :

TCmd+OpCode <- FOh (setup Receive command)
TCmd+ResAdr <- address of RcvSO
TCmd+Sock <- 80h
TCmd+DatAdr <- address of S80Msg
TCmd+DataLen <- 8
TCmd+CrtlLen <- 0

RcvSO+Rcode <- FFh (must initialize result code)

9. Send the rest of the write command.

<- 40h (Send command)
<- address of SndRes

TCmd+OpCode
TCmd+ResAdr
TCmd+Sock
TCmd+DatAdr
TCmd+DataLen
TCmd+CrtlLen

<- specified in Go message (SSOMsg+LstSock)
<- address of user's buffer

Corvus Systems

<- 512 (use appropriate sector size)
<- 12

139

Mass storage Systems GTI New Disk Server Protocols

TCmd+Dest <- DSNum

SndRes+Rcode <- FFh (initialize result code)
SndUC +ProtoId<-lFFh
SndUC +Msgtyp<- 002h (Last message)
SndUC +RqstId<- ReqestId
SndUC +Reserl<- 0
SndUC +Reser2<- 0
SndUC +Reser3<- 0

User's buffer contains the data to be written.

If transporter result code (SndRes+Rcode) does not change
within 100 ms, report a hardware error (TOErrTR) and exit.

If the transporter result code is S2h (uninitialized socket),
then the disk server has timed out waiting for the second
half of the disk command. You should restart the operation
from the beginning.

10. Check that the Results message was received (RcvUC+ProtoID =
lFFh; RcvUC+MsgTyp = 0200h). If not, the message received
is irrelevant. Setup the receive again, and wait for another
response.

Check the disk result (RcvUC+Dcode). If the most
significant bit is on, report an error.

Do an End Receive on socket SOh.

TCmd+OpCode
TCmd+ResAdr
TCmd+Sock

<- 10h (End Receive command)
<- address of SndRes
<- SOh

SndRes+Rcode <~ FFh (initialize result code)

Corvus systems 140

Mass storage Systems GTI New Disk Server Protocols

Figure 3.8: wait for disk server response
New Disk Server Protocol

The numbers in the flowchart boxes refer to text descriptions
below.

1. The timeout value should be set to whatever is specifed in
the device table for this device. If the timeout value is 0,
the driver loops forever, waiting for a response. A timeout
value of 0 should be used only for Mirror and Prep mode
commands.

2. The count of 3 is arbitrary. It is basically a retry count.

3. The loop terminates when the transporter return code goes to
o (message received), when a Cancel or Restart message is
received, or when the timeout value is reached.

See figure 3.9 for the Cancel and Restart check.

4. If the number of retries is exceeded, report a timeout error
and exit.

Corvus systems GTI 141

Mass storage Systems GTI New Disk Server Protocols

Figure 3.9: Check for Cancel or Restart
New Disk Server Protocol

The numbers in the flowchart boxes refer to text descriptions
below.

1. Has a message been received on socket SOh (RcvSO+Rcode=O~Oh)?
If not, continue waiting for disk server response.

2. Is the message from our server (RcvSO+Src=DSNum)? If not,
ignore the message, resetup the receive on socket 80h, and
go back to waiting.

3. Is ~he message a Cancel message (S80Msg+ProtoID=01FFh,
S80Msg+MsgTyp=0300h)? If so, set Cancelled flag, and exit
the wait for response loop.

4. Is the message a Restart message (S80Msg+protoID=OlFFh,
S80Msg+MsgTyp=FFOOh)? If so, set Restart flag, and exit
the wait for response loop.

S. The message is not a Cancel or Restart, so ignore it.
Resetup the receive, and go back to waiting.

Corvus systems GTI 142

Mass storage Systems GTI New Disk Server Protocols

Figure 3.10: Flush
New Disk Server Protocol

The numbers in the flowchart boxes refer to text descriptions
below.

1. Do an End Receive on socket UseSock.

TCmd+OpCode
TCmd+ResAdr
TCmd+Sock

<- 10h (End receive command)
<- address of SndRes
<- UseSock.

SndRes+Rcode <- FFh (initialize result code)

If transporter result (SndRes+Rcode) does not change within
10ms, report a hardware error (DrvRet <- TOErrTR) and exit.

If transporter result (SndRes+Rcode) is not 0, report a
hardware error (DrvRet <- TOErrTR) and exit.

Corvus Systems GTI 143

Mass storage Systems GTI New Disk Server Protocols

2. Check the Cancelled flag. If set, report an error and exit.

3. Check the Restart flag. If set, restart from the beginning.

4. End receive on socket SOh, in preparation for restart.

TCmd+OpCode
TCmd+ResAdr
TCmd+Sock

<- lOh (End receive command)
<- address of SndRes
<- SOh

SndRes+Rcode <- FFh (initialize result code)

5. Send an Abort command.

TCmd+OpCode
TCmd+ResAdr
TCmd+Sock

<- 40h (Send command)
<- address of SndRes
<- SOh

TCmd+DatAdr <- address
TCmd+DataLen <- S
TCmd+CrtlLen <~ 0
TCmd+Dest <- DSNum

of DCmd buffer

SndRes+Rcode <- FFh (initialize result code)

lFFh Dcmd+ProtoID <
Dcmd+MsgTyp
Dcmd+RqstID
Dcmd+Reason

<- 0003h (Abort message)
<- Request
<- 01h (Timedout)

If transporter result (SndRes+Rcode) does not change within
lOOms, report an error (TOErrTR) and exit.

Corvus Systems 144

Mass storage Systems G'l'I Flat cable d~iver

FLAT CABLE

You may want to refer to the following manuals while reading
this section:

Chapter 1 of this manual, which describes the sector
read and write commands.

Appendix A of this manual, which describes the flat cable
interface bus.

Corvus Systems 145

Mass storage systems GTI

~&yt.e
0Kd (- COCIIl- I

WalLFr
line to

Tim ArocIId

'npulByta
Co\r,L (- CGunl + I

Fiqure 3.11
Flat cable command sequence

Corvus systems GTI

Flat cable driver

Figure 3.12
Flat cable turnaround routine

146

Mass storage Systems GTI Flat cable driver

Refer to the interface signal descriptions at the end of
Appendix A.

Disk read:

1. Send out read command (4 bytes). For each byte, check
that drive is ready (READY line high), then output byte.
See note below.

2. wait for bus to turn around (READY line high and DIRC
line low).

3. Receive results until drive stops sending. For each byte,
wait for READY line to go high. Then check the DIRC line.
If it is high, the drive has stopped sending; if it is low,
read the data byte and increment the count of .bytes received.
In our example, we expect to receive 512 bytes; you should
expect to receive the number of bytes specified by the read
command (128, 256, 512, or 1024).

4. Check first byte received. If the most significant bit
is on, an error occurred.

Disk write:

1. Send out write command. In our example, we send out 516
bytes. You should send out the appropriate number for the
write command that you are using (132, 260, 516, or 1028).
For each byte, check that drive is ready (READY line high),
then output byte. See note below.

2. Wait for bus to turn around (READY line high and DIRC line
low) •

3. Receive results until drive stops sending. For each byte,
wait for READY line to go high. Then check the DIRC line.
If it is high, the drive has stopped sending; if it is low,
read the data byte and increment the count of bytes received.
In our example, we expect to receive 1 byte.

4. Check first byte received. If the most significant bit is
on, an error occurred.

Note: Some care must be exercised in sending out at least the
first byte of a command if a multiplexer is being used. There is
a potential timing problem if the system software can be
interrupted during the send of this first byte. On a multiplexer
network, the individual computers must respond within
approximately 50 microseconds after the READY line goes high, or
the multiplexer will switch to the next slot. (It will first
wait for a while after dropping the READY line -- a period
controlled by the second polling parameter.) If your driver is
interrupted after it detects that the READY line is high, and

Corvus Systems 147

Mass storage Systems GTI Flat cable driver

before it sends the first byte, then by the time it is ready to
send the first byte, the multiplexer may have already switched to
the next slot.

This problem can be avoided by turning off the interrupt system
during part of the send loop to insure that if your driver finds
the drive ready, it can send out the byte without being
interrupted. See the sample 8086 driver in Appendix E for an
example of this sequence.

Corvus Systems 148

Mass Storage Systems GTI Sending Disk Commands

SBIIDIItG OTBBR
DISK COMMAltDS 4

The Corvus mass storage devices support more operations than just
read and write. Semaphores, pipes, mirror operations, etc., can
all be invoked by application programs. This chapter discusses
how these commands may be used by application programs.

This chapter merely describes how to send the command bytes and
receive the results. The functionality of the commands is
deaeribed in other chapters (Chapter 5: Semaphores, Chapter 6:
Pipes) •

The interface for sending a drive command generally consists of
specifying the number of bytes to send, the maximum number of
bytes expected to be received, and 2 buffers, one which contains
the bytes to be .ent and one which will contain the results.

PROCEDURE SendCom (SendLen: INTEGER: VAR RecvLen: INTEGER:
VAR SendBuf, RecvBuf: Dbuf);

After a call to SendCom, RecvLen contains the number of bytes
actually received, and RecvBuf contains the data.

For example, the code to send a semaphore lock command would look
aomething like this (the semaphore name is's I):

TYPE Dbuf: PACKED ARRAY [1 •• 530] OF 0 •• 255:

VAR SendBuf, RecvBuf: Dbuf:
SendLen, RecvLen: INTEGER:

BEGIN

SendLen :- 10: {.emaphore lock .ends 10 bytes }
RecvLen :- 530: {the size of RecvBuf }
SendBuf[l] :- 11: SendBuf[2] :- 1: (command code and .ubop)
SendBuf[3] :- ORD('S'): (•• maphore name)
SendBuf[4] :- ORDC' I):
• • •
SendBuf[10] :- ORDC' I):

SendComC SendLen, RecvLen, SendBuf, RecvBuf):

Corvus Systems 149

Mass storage Systeas GTI Sending Disk Commands

(now check resuls)
IF RecvBuf[l] > 127 THEN { disk error ••• } ELSE
IF RecvBuf[2] - 0 THEN { semaphore successfully locked }=ELSE
~E .ecvBuf[2] OF { couldn't lock, report error}

128: { already locked }
253: { table full }
254: { table read-write error }
END;

• • •
END.

Corvus provides a version of the SendCom procedure for each
operating system it supports. The next sections describe each
implementation in detail. Often, there are several layers of
interface, and the application developer can pick the level of
interface desired. Generally, the highest lavel interface is the
.ost flexible, but also the .ost costly in terms of execution
ti.e and nemory space required.

Of course, you as a software developer .ay choose to ignore any
software provided by Corvus, and develop your own interface which
talks directly to the transporter or flat cable card. The
flowcharts given in Chapter 3, "Disk Drivers," should be helpful in
this case. If you do choose to develop your own interface, you
must consider the impact on other software developers. As
mentioned in the section on omninet in Chapter 3, the receipt of
unknown .essages and the use of buffer space in buffered
transporters .ust be considered.

~e same example, a semaphore lock, is used in each description
below, but the procedures describedaay be used tc send any disk
coDand.

~e implementation of the SendCom procedure takes one of two
forms: 1) the SendCom procedure calls an entry point in the disk
driver to do the actual send of the command, or 2) the SendCom
procedure is a stand-alone procedure, which does not require the
disk driver to be present.

The advantages and disadvantages of form 1, where the SendCom
procedure calls the driver, are summarized below:

Advantages: the send-receive need only be coded once, and it
becomes part of the operating system. Application programs

. th~ot have to (':hange when they are ported from one
---6ar4ware environment to another.

Disadvantages: the application program cannot run unless the
driver is installed. Drivers become part of the resident
operating system, and therefore occupy aemory, l_ving less

Corvus Systems 150

Mass storage Systems GTI Sending Disk Commands

memory available to those applications which do not use
the feature.

The advantages and disadvantages of form 2, where the SendCom
procedure is a stand-alone procedure, are summarized below:

Advantaqes: the driver need not be installed, leaving more
memory available to the application.

Disadvantages: each application which uses the interface must
be relinked if the interface chanqes, either because of
bugs or hardware changes.

Most of the early Corvus implementations, including Apple (R)
Constellation I and CP/M 80 (TM), use form 2, a stand-alone procedure,
to send drive commands. The later implementations, including
MS(TM)-OOS Constellation II, use form 1.

In most of the Corvus implementations, the procedure SendCom is
usually coded as~wo'aeparate procedures: CDSENO and CORECV (the
reason for this is historical). A call to COSENO must always be
followed immediately by a call to CDRECV. Also, in most of the
Corvus implementations, the SendBuf and RecvBuf are the same
buffer: i.e., the results of a command overlay the command
itself.

Corvus Concept operating system:

Direct communication with the Corvus drive is handled by the two
procedures CDS END and CORECV. Any command described in Chapter 1
may be sent to the Corvus drive using these routines. These
procedures are contained in the unit CCORVIO, which is in the
library C2LIB. C2LIB is included in the standard release of
concept software. -_

Please refer to the Pascal Library User Guide (Corvus PIN
7100-04978). You will need to look at Chapter 14, "Corvus Disk
Interface Unit" (ccDRVIO).

COS END and CDRECV each have two parameters described by the
following type declarations, which appear in the interface
section of unit ccDrvio:

const SndRcvMax - 530:

type CDaddr - RECORD
SlotNo: byte: (slot number)
Kind: SlotTypes: (OmninetDisk or LocalDisk (defined in CCOef
NetNo: byte: (unused)
Stationno: byte: (Omninet server address)
Driveno: byte; (drive number)
BlkNo: LONGINT; (block number)

Corvus Systems 151

Hass storage Systems GTI Sending Disk Commands

type SndRcvStr- RECORD
sln: INTEGER; { length of command to be sent }
rln: INTEGER; { maximum number of bytes to be returned }
CASE INTEGER OF

2: (c: PACKED ARRAY
1: (b: ARRAY

END;

[l •• SndRcvMax] OF CHAR);
[l •• SndRcvMax] OF byte);

Calls to these procedures occur in pairs. That is, a call to
CDS END is followed immediately by a call to CDRECV. The same
variables are normally used for both calls.

The unit ccDRVIO must be initialized by calling the procedure
ccDrvIolnit BEFORE calling any other procedures in the unit.
ccDrvIoInit should only be called once, at the beginning of your
program.

The following program fragment demonstrates a normal command
aequence:

• • •
USES (CCLIB) CCDefn,

(C2LIB) ccDrvio;

VAR xcv: SndRcvStr;
NetLoc: CDAddr;
x: INTEGER;

BEGIN
{ initialize the unit } ccDrvIoInit;

Initslot(NetLoc); (sets NetLoc to boot device)

xcv.sln :- 10; xcv.rln :- 530;
xcv.b[l] :- 11; xcv.b[2] :- 1; { semaphore lock command }
xcv. c [3] : - , • S • ; .. -xcv • c [4] : - • ';
• • •
xcv.C[lO] :- • ,;

CDS END (NetLoc, xcv);
CDRECV(NetLoc, xcv);

IF xcv.b[l] < 0 THEN (report disk error) ELSE
IF xcv.b[2] - 0 THEN (semaphore successfully locked) ELSE

BEGIN
x :- xcv.b[2];
IF x < 0 THEN x :- x+256;
CASE x OF

128: (already locked)
253: (table full)
254: (error on table read-write)
END;

END;

Corvus Systems 152

Hass storage Systems GTI Sending Disk Commands

The procedures CDSEND and CDRECV are found in the unit ccDrvio in
the file C2LIB. This unit has several other procedures in it, so
the unit is rather large. If space is a problem, you can
interface directly to the SlotIO driver as described below.

Commands are sent using the UNITWRITE procedure. Results are
received with the UNITREAD procedure. The parameters are
described below:

UNITWRITE (unitno,
buffer,
length,
0,
control);

{ the SlotIO driver }
{ the command to be sent }
{ length of the command }
{ not used }
{ control contains the slot and
{ server f where the command is
{ to be sent; msb is server # and
{ Isb is slot t. server # is 0
{ for slots 1 to 4 (local disk) }

{ the SlotIO driver } UNITREAD (unitno,
buffer,
length,
0,

{ where the results will be stored }
{ maximum length to be received }
{ not used }

control); { same as on UNITWRITE }

UNITWRITE and UN I TREAD should always be used in pairs; i.e., a
UNITWRITE should be followed immediately by a UNITREAD. The
function IORESULT should be called following each call to
UNITWRITE or UNITREAD to check for an error. The following
errors may be returned:

Value

o
"

Meaning

no error
disk error (disk result > 7Fh)

The unit number to which the SlotIO driver is assigned may be
obta\ned by calling the EXTERNAL procedure OSSltDv.

For instance, the following code fragment sends a semaphore lock
command:

VAR c: PACKED ARRAY [1 •• 530] OF CHAR; { the longest command
{ is 530 bytes }

FUNCTION OSSltDv: EXTERNAL;

BEGIN

c[l] :- CHR(11);
c[2] :- CHR(l);
c[3] :- 'S';

Corvus Systems

{ semaphore command }
{ lock }
{ semaphore name }

153

Mass storage systems GTI Sending Disk Commands

c[10] :- , ':
UNITWRITE(OSSlotDv, c, 10, 0, $105); { send command to }

ior :- IORESULT;
IF ior - 0 THEN BEGIN

UNITREAD(OSSlotDv, c, 530, 0, $105): {get results}
ior :- IORESULT:
END;

IF ior-O THEN {all ok} ELSE {report error};
CASE ORD(c[2]) OF

0: {semaphore locked successfully }
128: {semaphore was already locked }
253: {semaphore table full}
254: {error reading-writing semaphore table }
END;

• • •

MS-DOS 1.z, 2.z CODstellatioD II:

For MS-DOS, direct communication with the Corvus drive is handled
by the two procedures CDS END and CDRECV. Any command described
in the Chapter 1 may be sent to the Corvus drive using these
routines.

The source .nd object files for the routines described here are
available on diskette as part of the Software Developer's Kit for
MS-DOS. See Appendix F for details. Appendix E contains a
listing of the flat cable versions of the CDS END and CDRECV
routines.

The procedures CDSEND and CDRECV are written in machine language
and are assembled using the Microsoft Assembler. Because there
is no standard or dominant language for MS-DOS applications
developers, we have abosen to give the examples here in the
language used by Corvus for MS-DOS applications, MS Pascal.
Unfortunately, each language uses a slightly different parameter
passing mechanism. On the developer's diskette mentioned above,
interfaces are provided for MS Pascal and compiled Basic. If you
are using some other language, you will have to make the
appropriate changes to the source for DRIVEC2.ASM and ~eassemble
it.

The procedures CDSEND and CDRECV are contained in the module
DRIVEC2.0BJ. The routines in this module must be initialized by
calling the function INITIO BEFORE calling any other procedures
in the module. INITIO should be called only once, at the
beginning of your program.

CDS END and CDRECV each have one parameter described by the
following type declaration:

Corvus Systems 154

Mass storage systems GTI Sending Disk Commands

type Longstring- RECORD
length: INTEGER;
CASE INTEGER OF

{ n should be equal to the length of the longest }
{ command you intend to send or receive }
1: (int: PACKED ARRAY [l •• n] OF 0 •• 255):
2: (str: PACKED ARRAY [l •• n] OF CHAR):

END:

Calls to these procedures occur in pairs. That is, a call to
CDSEND is followed immediately by a call to CDRECV. The same
variable is normally used for both calls. The following program
fraqment demonstrates a normal command sequence:

• • •
PROCEDURE CDSEND(xcv:longstring): EXTERN:
PROCEDURE CDRECV(xcv:longstring): EXTERN:
FUNCTION INITIO: INTEGER; EXTERN;

VAR xcv~ longstring:

BEGIN

IF INITIO <> 0 THEN {error ••• }: { initialize the unit }

:- 10: xcv. length
xcv.int[l]
xcv.str[3]
xcv.str[4]

:- 11: xcv.int[2] :- 1: { semaphore lock command}
:- I S I :

:- I I • ,

xcv.str[10] :_ I I:

CDSEND(XCV):
CDRECV (xcv) ;

IF xcv.int[1]>127 THEN { report disk error} ELSE
IF xcv.int[2]-0 THEN { semaphore successfully locked} ELSE

BEGIN

...

CASE xcv.int[2] OF
128: . ..{ already locked }
253: {table full }
254: {error on table read-write}
END;

END;

In a multiple server environment, the default server to be
accessed is the boot server. If you wish to send a command to a
server other than the boot server, you can so specify by calling
the procedure SETSRVR. The declaration for this procedure is:

function SETSRVR(srvr: INTEGER): INTEGER: EXTERNAL:

Corvus Systems 155

Mass storage Systems GTI Sending Disk Commands

The following function call sets the server to server 3:

• • •
IF INITIO <> 0 THEN { error ••• }
b:- SETSRVR(3);

The function SETSRVR returns the boot server address, ·and· ignores
the parameter if it is greater than 255, or negative. Thus, you
can also use this function to find out the boot server address:

• • •
IF INITIO <> 0 THEN { error ••• }
b :- SETSRVR(-l);
{ now b contains the omninet address of the boot server }

CP/M-ao and CP/M-a6 Constellation II:

For CP/M-80 and CP/M-86 (TH), direct communication with the Corvus
drive is handled cy ~be two procedures SEND and RECV. Any
command described in the Chapter 1 may be sent to the Corvus
drive using these routines.

The source and object files for the routines described here are
available on diskette as part of the Software Developer's Kit for
Constellation II, CP/M-80 or CP/M-86. See Appendix F for
details.

The procedures SEND and RECV are written in machine language and
are assembled using the Digital Research assembler. Because
there is no standard or dominant language for CP/M applications
developers, we have chosen to give the examples here in the
language used by Corvus for CP/M applications, Pascal MT+.
Unfortunately, each language uses a slightly different parameter
passing mechanism •.. -.cm-the developer's diskette mentioned above,
an interface is provided for Pascal MT+. If you are using some
other language, you will have to make the appropriate changes to
the source for CPMIO.ASM or CPMI086.AB6 and reassemble it,.

The procedures SEND and RECV are contained in the module
CPMIO.ERL for CP/M-BO and in CPHIOB6.R86 for CP/M-86. The
routines in this module must be initialized by calling the
function INITIO BEFORE calling any other procedures in the
module. INITIO returns the address of the Corvus driver if it is
successful, otherwise it returns O. INITIO should be called only
once, at the beginning of your program.

SEND and RECV each have one parameter described by the following
type declaration:

type Longstring- RECORD
length: INTEGER;
CASE INTEGER OF

Corvus Systems 156

Mass storage systems GTI Sending Disk Commands

{ n shou~d be equal to the length of the longest }
{ command you intend to send or receive }
1: (int: PACKED ARRAY [l •• n] OF 0 •• 255);
2: (str: PACKED ARRAY [l •• n] OF CHAR);

END;

Calls to these procedures occur in pairs. That is, a call to
SEND is followed immediately by a call to RECV. The same
variable is normally used for both calls. The following program
fragment demonstrates a normal command sequence:

· . .
EXTERNAL PROCEDURE SEND(xcv:longstring);
EXTERNAL PROCEDURE CDRECV(xcv:longstring);
EXTERNAL FUNCTION INITIO: INTEGER;

VAR xcv: longstring;

BEGIN

IF INITIO - 0 THEN {error ••• }; { initialize the unit }

:- 10; xcv. length
xcv.int[l]
xcv.str[3]
xcv.str[4]

:- 11; xcv.int[2] :- 1; { semaphore lock command}
:- I S I ;

:- I I • ,
• • •
xcv.str[lO] :_ I I;

SEND(xcv);
RECV(xcv) ;

IF xcv.int[1]>127 THEN { report disk error} ELSE
IF xcv.int[2]-0 THEN { semaphore successfully locked} ELSE

BEGIN

• • •

CASE xcv.int[2] OF
128: {already locked}
253: {table full}
254: {error on table read-write}
END;

END;

In a multiple server environment, the default server to be
accessed is the boot server. If you wish to send a command to a
server other than the boot server, you can so specify by calling
the procedure SETSRVR. The declaration for this procedure is:

EXTERNAL function SETSRVR(srvr: INTEGER): INTEGER;

The following function call sets the server to server 3:

Corvus Systems 157

Mass storage Systems GTI Sending Disk Commands

• • •
IF INITIO - 0 THEN { error ••• }
b:- SETSRVR(3);

The function SETSRVR returns the boot server address and ignores
the parameter, if the parameter is greater than 255, or negative.
Thus, you can also use this function to find out the boot server
address:

. . .
IF INITIO = 0 THEN { error ••• }
b :- SETSRVR(-l) ;
{ now b contains the omninet address of the boot server }

Apple DOS Constellation II:

Please read the section on Apple DOS Constellation I first.
Constellation II is not supported on multiplexer networks. If
you are using an omninet network, you should assemble and use the
code given below in place of OMNIBCI.OBJ, because the transporter
RAM code is different for Constellation II than it was for
Constellation I.

For Apple Constellation II, direct communication with the Corvus
drive is handled by calling an entry point in the Corvus driver.
The Corvus driver must have been previously loaded into the RAM
on the transporter card; it is loaded by the boot process.

The driver is called by activating the slot containing the card,
and then executing a JSR to location C80Bh. The next 8 bytes
following the JSR instruction contain the parameters to the
driver:

LEN
BUF

Bytes

o and 1
2 and 3
4 and 5
6 and 7

Meaning

Address of command buffer.
Length of command.
Address of result buffer.
Maximum length of result.

Here is a listing of OMNIBCI.OBJ for Constellation II:

• ABSOLUTE
.PROC OMNIBCI

.EQU 0300

.EQU 0302

START .ORG 8AOO

LDA LEN • move command length ,
STA CmdLen

Corvus Systems 158

Mass Storaqe Systems GTI Sending Disk Commands

LOA
STA
LOA
STA
STA
LOA
STA
STA
LOY
STY
LOY
STY

LEN+l
CmdLen+l
BUF
CmdBuf
RsltBuf
BUF+l
CmdBuf+l
RsltBuf+l
.28.
RsltLen .2
RsltLen+l

: move command address

: make result address same as command . , address

: make result length - 530

JSR GoRAM : RAM code will return to next instruction

LOA
STA
LOA
STA
RTS

GoRAM BIT
BIT
JSR

RsltLen
LEN
RsltLen+l
LEN+l

OCFFF
OC600
OC80B

CmdBuf .WORD 0
CmdLen • WORD 0
RsltBuf.WORD 0
RsltLen.WORD 0

.END

: return result length

: return to caller

; enable Omninet RAM
; assumes slot 6
: no return necessary

; address of command
; length of command
: address of result
; maximum length of result

If you use this version of OMNIBCI.OBJ, your proqrams that were
coded usinq the OMNIBCI.OBJ provided by Corvus for Constellation
I need not be modified .. for Constellation II.

version xv p-system and Apple Pascal Constellation XI:

Direct communication with the Corvus drive is handled by the two
procedures CDSEND and CDRECV. Any command described in Chapter 1
may be sent to the Corvus drive using these routines. These
procedures are contained in the file CORVUS.LIBRARY, which is
part of the Software Developer's Kit available for Version IV
p-system and Apple Pascal 1.2. See Appendix F for details.

CDS END and CDRECV are contained in unit UCDRVIO.

CDSEND and CDRECV each have two parameters described by the
following type declarations (these declarations appear in the
interface section of unit UCDrvio):

const SndRcvMax = 530;

Corvus Systems 159

Mass storage Systems GTI Sending Disk Commands

type CDaddr - RECORD
SlotNo: byte: { slot number }
Rind: SlotTypes: { OmninetDisk or LocalDisk (defined in CCDefn)
NetNo: byte: { unused }
stationno: byte; { Omninet server address }
Driveno: byte; { drive number }
BlkNo: LONGINT: {block number }

type SndRcvStr= RECORD
sIn: INTEGER: { length of command to be sent }
rln: INTEGER: { maximum number of bytes to be returned }
CASE INTEGER OF

2: (c: PACKED ARRAY
1: (b: PACKED ARRAY

END;

[l •• SndRcvMax] OF CHAR);
[l •• SndRcvMax] OF byte);

Calls to these procedures occur in pairs. That is, a call to
CDS END is followed immediately by a call to CDRECV. The same
variables are not:maU~-used for both calls.

The unit UCDRVIO must be initialized by calling the procedure
ccDrvIoInit BEFORE calling any other procedures in the unit.
ccDrvIoInit should only be called once, at the beginning of your
program.

The following program fragment demonstrates a normal command
sequence:

•••
USES {CORVUS.LIBRARY} UCDefn, UCDRVIO;

VAR xcv: SndRcvStr;
NetLoc: CDAddr;
x: • .IHTEGER;

BEGIN
ccDrvIoInit:
InitSlot(NetLoc);

xcv.sln :- 10: xcv.rln :
xcv.b[l] :- 11; xcv.b(2]
xcv •. c (3] : - • S '; xcv. c [4]
• • •
xcv. c [10] : - • ';

CDS END (NetLoc, xcv);
CDRECV(NetLoc, xcv):

{ initialize the unit }
{ sets NetLoc to boot device }

530;
:- 1; { semaphore lock command }
:- . ':

IF xcv.b[l] > 127 THEN { report disk error } ELSE
IF xcv.b(2] - 0 THEN { semaphore successfully locked } ELSE

BEGIN
x :- xcv.b[2];

Corvus Systems 160

Mass Storage Systems GTI Sending Disk Commands

• • •

CASE x OF
128: {already locked}
253: {table full}
254: {error on table read-write }
END;

END;

The procedures CDS END and CDRECV are found in the unit UCDrvio in
the file CORVUS.LIBRARY. This unit has several other procedures
in it, so the unit is rather large. If space is a problem, you
can interface directly to the machine language routines contained
in the module DRVSTF.CODE. The routines are:

PROCEDURE drvSend(VAR s:sndRcvStr); EXTERNAL
PROCEDURE drvRecv(VAR s:sndRcvStr); EXTERNAL

Uses PASCAL global variable DISK SERVER

FUNCTION OSactSlt:INTEGER; EXTERNAL
Returns 1 if we have booted up under CONSTELLATION II,
o if we have not.

FUNCTION OSSltType(slot : INTEGER) : INTEGER; EXTERNAL;
For valid slots, return the interface card type,
l-flat cable 2-0mninet; for all other slots
returns O-no disk

FUNCTION OSactSrv : INTEGER;
Return the active disk server. This procedure assumes
that the driver is attached and we have booted up under
CONSTELLATION II. No checking is done

FUNCTION XPORTER OK : BOOLEAN;
Returns true-if transporter is ok, false if transporter
with duplicate address is on the network. Returns true
if flatCable interface is present.

FUNCTION FIND ANY SERVER(VAR server: INTEGER): BOOLEAN;
Returns true If any disk server is found on the network,
and sets the variable server to the address of the disk
server. Returns false if no disk server replys.
Returns true with a server of zero if the interface card
is flat cable.

Commands are sent using the drvSend procedure. Results are
received with the drvRecv procedure.

Two global variables must also be declared: active slot and
disk_server •. These must be set prior to calling drv_send.

For instance, the following code fragment sends a semaphore lock
command:

Corvus Systems 161

Mass storage Systems GTI

VAR active slot:
disk server:
omni-error:

INTEGER;
INTEGER;
INTEGER;

xcv: SndRcvStr;

BEGIN

Sending Disk Commands

active_slot := OSactSlt; Disk_server:= OSActSrv;
• • •
xcv.sln :- 10; xcv.rln :- 530;
xcv.b[1] :- 11: xcv.b[2J :- 1: { semaphore lock command}
xcv. c [3] : - , S'; xcv. c [4 J : - , '; ...
xcv. c [10] : - , ':

drY send (xcv) i
drY - recv (xcv) ;

IF xcv.b[lJ > 127 THEN (report disk error) ELSE
IF xcv.b[2] - 0 THEN { semaphore successfully locked } ELSE

BEGIN
x :- xcv.b[2]:
CASE x OF

128: {already locked}
253: {table full}
254: {error on table read-write}
END;

END;

Apple Pascal Constellation I:

In Pascal, direct communication with the Corvus drive is handled
by the two procedur~DSEND and CDRECV. Any command described
in Chapter 1 may be sent to the Corvus drive using these
routines,

These procedures are contained in the unit Driveio of
CORVUS. LIBRARY. This unit must be initialized by calling the
procedure Driveioinit BEFORE calling any other procedures in the
unit.
Driveioinit should only be called once, at the beginning of
your program.

CDSEND and CDRECV each have one parameter described by the
following type declaration (which appears in the interface
section of Driveio):

type LONGSTR= RECORD
length: INTEGER;
CASE INTEGER OF

{ n should be equal to the length of the longest }

Corvu~, Systems 162

Mass StorAge systems GTI Sending Disk Commands

{ command you intend to send or receive
1: (int: PACKED ARRAY [l •• n] OF 0 •• 255):
2: (byt: PACKED ARRAY [l •• n] OF CHAR);

END;

)

Calls to these procedures occur in pairs. That is, a call to
CDSEND is followed immediately by a call to CDRECV. - The same
variable is normally used for both calls. The following program
fragment demonstrates a normal command sequence:

USES Driveio;

VAR xcv: LONGSTR;

BEGIN

Driveioinit; (initialize the unit)

:- 10, xcv. length
xcv.int[l]
xcv.byt[3]
xcv.byt(4]

:- 11; xcv.int[2] :- 1; { semaphore lock command}
:- 'S' ;
:- , , . , . . .

xcv.byt[lO] :- , ';

CDSEND(xcv):
CDRECV (xcv) ;

IF xcv.int[1]>127 THEN (report disk error) ELSE
IF xcv.int[2]-0 THEN (semaphore successfully locked) ELSE

BEGIN

• • •

CASE xcv.int[2] OF
128: (already locked)
253: {table full }
254: (error on table read-write)
END;

END;

The procedures CDSEND and CDRECV are found in the unit DRIVEIO in
the file CORVUS.LIBRARY. These procedures are independent of
whether you are using flat cable or Omninet. The price you pay
for this independence is that the unit DRIVEIO is fairly large.
You can interface directly to the assembly language drivers for
flat cable or omninet with the routines in the unit OMNISEND,
also in the file CORVUS.LIBRARY. The interface to these assembly
language routines is described next.

Use drv send and drv recv for flat cable interface. Active_slot
must be-a global varIable.

Corvus systems 163

Mass storage Systems GTI Sending Disk Commands

Use omni send and omni recv for Omninet interface. Prior to the
first use of these routines in a program, you should use the code
shown below to get the disk server address, unless you make the
assumption that the disk server has a fixed address. Disk_server

and active_slot must be global variables.

In either case, the Corvus interface card may be used in any
slot. The variable active slot is set to the slot number that
the card is plugged into. -But remember that the interface card
must be in slot 6 for normal operation.

CONST
longstr __ ax - 1030;
broadcast_add - 255;

TYPE
byte - 0 •• 255;
LONGSTR- RECORD

length: INTEGER;
CASE INTEGER OF .. ~--

{ n should be equal to the length of the
{ command you intend to send or receive
1: (int: PACKED ARRAY [l •• n] OF byte);
2: (byt: PACKED ARRAY [l •• n] OF CHAR);

END;

valid slot - 1 .• 7;

VAR

longest }
}

active_slot : valid_slot; (* used by assembler routines to
determine io location *)
(* used by assembler routines *) disk server : byte;

omni-error : integer; (* used by asm - returns timeout status *)

PROCEDURE drv send(VAR st : longstr); EXTERNAL;
PROCEDURE drv-recv(VAR st : longstr); EXTERNAL:
PROCEDURE omnI_send(VAR st : longstr); EXTERNAL;
PROCEDURE omni_recv(VAR st); EXTERNAL;
(* did not specify type so in it portion could send a dummy *)

The following initialization is required for omni_send and omni_recv:

disk server :- broadcast add;
omnirecv(dummy); (* looks for disk server *)
IF disk_aerver - broadcast_add THEN (* omnirecv sets disk server *)

error;

Corvus Systems 164

Mass Storage Systems GTI Sending Disk Commands

Apple DOS Constellation I:

Corvus provides two assembly language procedures (BCI.OBJ and
OMNIBCI.OBJ) for sending arbitrary disk commands. BCI.OBJ is for
multiplexer networks, and OMNIBCI.OBJ is for omninet networks.

Each routine is a binary file which must be BLOADed into memory
before being called. BCI.OBJ must be loaded at location 300h,
while OMNIBCI.OBJ must be loaded at location 8AOOh. Neither
routine is relocatable. BCI.OBJ ends at location 386h, while
OMNIBCI.OBJ ends at location 9044h. OMNIBCI.OBJ is much longer
because it includes buffer space for Omninet messages.

A drive command is poked into memory, and the address and length
of the command are passed to BCI (or OMNIBCI) by poking the
address into location 302h and 303h, and poking the length of the
command into locations 300h and 301h. BCI (or OMNIBCI) is then
CALLed. Upon return, the length of the result can be peeked from
location 300h and 301h, and the result itself has been written
into the spaoe pointeG.-to by the address parameter.

See the DIAGNOSTIC program, lines 10000-10007 for an example of
how to load BCI (or OMNIBCI). See lines 15000-15110 for an
example of how to call BCI (or OMNIBCI).

BCI does not use the ROM on the Corvus interface card. OMNIBCI
does use the RAM on the transporter card. This RAM is loaded
from a reserved area on the Corvus drive at boot time. If you
want to use OMNIBCI without booting from the Corvus drive, you
must execute the code that loads the RAM. See the BSYSGEN
program, lines 20000-20060 for an example of how to initialize
OMNIBCI.

A listing of BCI.OBJ is included in appendix E.

CP/M 80 Constellation I:

You may order the Software Developer's Kit for your particular
machine for examples of how to send commands using the flat cable
interface. Version available are listed in Appendix F.

Corvus Systems 165

Hass storage systems GTI Sending Disk Commands

This page intentionally left blank.

Corvus Systems 166

Mass storage Systems GTI Using Semaphores

SEMAPHORES 5

This chapter gives examples of how the semaphores feature of the
Corvus mass storage systems may be used.

Semaphores can be used to control access to any shared resource
on the network. Most often, semaphores are used to coordinate
access to shared files. You should understand that semaphores
merely provide the capability to access shared files; it is you
who must ensure that your programs use this capability.

Programs written for single-user access may not be used to access
shared files; they must be modified to include semaphore calls.

User libraries that implement semaphore calls are supplied with
most of the versions of Corvus utilities. A typical interface
consists of two function calls, each with one parameter
specifying the name of the semaphore to be accessed:

function LOCK (SEMA4: string): integer;

function UNLOCK (SEMA4: string): integer;

Each function returns a value which indicates the result of the
operation. The values are as follows:

o Semaphore was not previously locked. For LOCK,
this means that the semaphore has now been locked
successfully.

128 semaphore was previously locked. For LOCK,. this
means that the semaphore could not be locked by
this call. For UNLOCK, this means that the
semaphore is now unlocked.

< 0 Some error occurred, and the semaphore could not
be locked. Specifically, the values returned are

-253 Semaphore table is full.

-254 Error reading/writing semaphore table.

-255 Unknown error.

Corvus Systems 167

Mass storage systems GTI Using Semaphores

Thus, a successful LOCK call returns a value of o. A successful
UNLOCK call returns 0 or 128.

As mentioned above, semaphores can be used to control access to
any shared resource on the network. Let's look in detail at two
common uses for semaphores: shared volumes and shared files.

Volume sharing implies that several users will be modifying
different files in the same volume. To coordinate such access,
some sort of volume locking scheme must be used. File sharing
implies that several users will be modifying a particular file.
This access requires a file locking scheme.

VOLUME 811AR.ING

The problems associated with volume sharing include directory
update and dynamic file allocation. Both of these problems can
be solved by the volume-locking scheme described below. First,
let's look at what happens if you try to do volume sharing
without 80me sort of locking scheme.

Most systems keep a copy of the directory in memory. Whenever a
new file is opened, an entry is made in the memory copy of the
directory, but this copy is not necessarily written to disk right
away. Thus, if two users open two different files at
approximately the same time, the memory copies of the directory
will differ. Eventually, both copies will be written back to
disk, and one user will lose the file just opened.

Systems which use dynamic file allocation, such as MS-DOS and
CP/M, keep a memory image of the disk space allocated. Whenever
a new file is opened, or a new record is written past the current
end of.file, the file-system searches its file allocation table
for free space on the disk. Enough free space is allocated to
the file to contain up to and including the new record, and a new
end of file mark is written. The file allocation table is
written back to the disk only when absolutely necessary, in order
to minimize disk I/O.

Let's look at what happens when two users are creating files on
the same volume at the same time. Each user has a current copy
of the file allocation table in memory; the operating system
searches the memory copy of the file allocation table for free
space, and allocates the same disk blocks to two different files.
Every time one user updates the data in that disk block, the data
for the other user is destroyed. This can result in many
confusing error messages and incomprehensible data.

Many application writers, for this reason, preallocate any files
their application requires. This operation consists of opening a
file, writing to the last record, and then flushing the

Corvus systems 168

Mass st~rage Systems GTI using Semaphores

allocation map. Then the application does not have to worry
about further allocation, until the file fills up. Most data
bases are preallocated anyway, as this makes it easier for the
application to manage the data base.

VOLUME LOCKING

Unlike some other network systems, Corvus software does not
define a volume type of shared access. Instead, Corvus software
defines volume access in terms of read-write access or read-only
access. If more than one user has read-write access to the same
volume, then that volume is a shared volume, and access to it
must be protected by using semaphores.

When two users wish to access the same volume, they must
coordinate that access in some way. One way to do this is with
volume locking. In the scheme described here, it is assumed that
eaoh user haa the volume in question mounted with read-only
access.

Users must indicate when they are ready to write to the volume by
executing a LOCK program, and specifying the name of the volume
to be locked. The LOCK program will ensure that no other user
currently has write access to the volume, and then grant the user
write access.

How does the program know if any user currently has write access
to the volume in question? This example assumes that if a
certain file, called LOCKED, exists in the volume, then the
volume is currently locked by 80me user. Furthermore, the name
of the user who locked the volume is contained in the file
LOCKED.

The steps the LOCK program must take are listed below:

1) Try to open the file LOCKED. If found, report that
the volume is currently locked, and exit.

2) Change the user's access to read-write. This change
is done in memory, so that it is temporary.

3) Create a file called LOCKED in the volume, and write
the user's name into it.

Thus, if a user executes the LOCK program after the volume is
locked, the user receives an error message saying that the volume
is already locked. Let's look at what happens, however, if the
volume is not locked, and two users happen to execute the LOCK
program at the same time.

Corvus Systems 169

Mass Storaqe Systems GTI Usinq semaphores

User 1 User 2

open file LOCKED open file LOCKED

not found, so change not found, so change
access to read-write access to read-write

create file LOCKED, create file LOCKED,
write user name write user name

As you can see, both users think that the volume has been
successfully locked, and both have write access to the volume.
This is NOT supposed to happen. While the likelihood of two
users executinq the proqram at the same time is small, it still
has to be prevented. The only way to prevent it is to use
semaphores.

The reason that both users were able to lock the volume is that,
on a Corvus network, computers have no way to do a read followed
immediately by a write. The computer may send the write command
immediately after the read, but some other computer may be
serviced in between the two operations. The semaphore operation
is the only way to do an indivisible write after read operation.

In our example, a semaphore called VOLLOCK is used to synchronize
access between the two users. The steps the LOCK proqram must do
are expanded to the following:

1) Lock the semaphore VOLLOCK. If it can't be locked,
wait in a loop, and try aqain.

2) Try to open the file LOCKED. If found, report that
the volume is currently locked, unlock the semaphore,
and exit.

3) Change the user's access to read-write. This chanqe
is done in memory, so that it is temporary.

4) Create a file called LOCKED in the volume, and write
the user's name into it. Flush file buffers and

5) Unlock the semaphore VOLLOCK.

Now let's look at what happens when two users execute the LOCK
proqram at the same time.

Corvus Systems 170

Mass storage Systems GTI Using Semaphores

User 1

Lock semaphore
VOLLOCK

Semaphore successfully
locked.

Open file LOCKED

Not found, so change
access to read-write

create file LOCKED,
write user name

Unlock semaphore

User 2

Lock semaphore
VOLLOCK

Semaphore already locked,
wait in loop.

semaphore still locked •••

semaphore still locked •••

semaphore still locked •••

Semaphore successfully
locked.

Open file LOCKED.

Found, so cannot lock volume.
Print message, unlock
semaphore and exit.

As you can see, only one user is able to lock the volume at any
one time.

There are still some problems with the algorithm given above. On
file systems which do directory buffering, the program must force
the directory to be flushed to the disk after creating the file.
Some hints for this are given in the specific operating system
sections below. Also, an UNLOCK program must be provided so that
a user can release access to a volume. This program must perform
the following steps:

1) Delete the file LOCKED.

2) Change the user's access to read only.

Again, in certain file systems, the directory must be flushed
after deleting the file. In this case, no semaphore is locked,
because, in order to delete the file, the user must already have
write access to the volume.

other problems include a user forgetting to unlock a volume
before powering off. Now no one can write to the volume, since
it is locked and no one has write access to it. This problem can
be gotten round in part by making the LOCK program a little
smarter: if the user executing the LOCK program has the same name
as the user name in the file LOCKED, then grant the user
read-write access.

Corvus Systems 171

Mass storage Systems GTI Using Semaphores

Note that the same semaphore name, VOLLOCK, is used, regardless
of which volume is being locked. Thus, if two users attempt to
lock different volumes at the same time, one user finds that the
semaphore is locked. This is generally not a problem, since the
length of time that the semaphore is locked should be very short;
the second user should notice only a slight delay before the
program completes. Of course, the LOCK program could use the
name of the volume to be locked as the semaphore name.

In fact, the LOCK program could be made much simpler if the
following algorithm were used:

1) Lock a semaphore with the same name as the volume.
If the semaphore cannot be locked, report error and
exit.

2) Change user access to read-write.

The UNLOCK program has only 2 steps as well:

1) Change user access to read only.

2) Unlock the semaphore with the same name as the volume.

While this algorithm avoids the directory buffering problem
mentioned above, there are two disadvantages to it:

l) There is no way to tell who has the volume locked.

2) Since the semaphore may be locked for an extended
period of time, a network with many users could fill
up the semaphore table.

PILE OR RECORD LOCKING

File or record locking is complicated by the file buffering
schemes used by most operating systems.

Most file systems have one or more file buffers. These buffers
are used to minimize disk overhead by keeping the most recently
accessed file blocks in memory. When the operating system
receives a file read or write call, it first checks its buffers
to see if the specified file block is already in memory: if it
is, then the I/O is done to the memory image, rather than to the
disk. The buffer is flushed to the disk only when necessary,
usually when the buffer must be used for some other I/O
operation. Depending on the number and size of the buffers, it
may be quite a while before a file write is actually transferred
to the disk itself. Most operating systems provide a system call
that forces all buffers to be flushed to the disk.

Corvus Systems l72

Mass storage Systems GTI US1ng semaphores

Thus a write to a file does not actually get recorded on the disk
until some later time. In a network environment, this can mean
disaster for shared data bases, where many users are attempting
to read or write to a common file. Shared file applications must
therefore be coded very carefully; you must completely understand
the file buffering characteristics of the file system you are
using. The following description of record locking assumes that
you do understand your system's file buffering.

Basically, you must lock a semaphore on filling a file buffer,
and unlock the semaphore after the buffer has been flushed. Thus
the steps in updating a record are as follows:

1. Lock the semaphore.

2. Read the record (fill the file buffer)

3. Modify the data.

4. Flush the file buffer.

5. Unlock the semaphore.

The semaphore name associated with a given record must be
specified by your program. Your program must ensure that each
record that resides in the same disk block is assigned the same
semaphore name. For example, let's assume that your application
is called ZXY, and it deals with a file structure that has 32
records per disk block (that is, each file buffer can hold 32 of
your application's records). A good algorithm for assigning
semaphore names is shown below:

1. Compute record number DIV 32.

2. Embed ~hisASCII representation of this number in the
string ZXYOOOOO.

For record 50, your application should lock semaphore ZXY00001.
For record 600, your application should lock semaphore ZXY00018.

Using this algorithm, each record which falls within the same
file buffer is assigned the same semaphore name. Let's look at
what happens when two users execute the program at the same time:

Corvus Systems 173

Mass storage Systems GTI

User 1

Update record 50:

Lock semaphore ZXYOOOOl.

Semaphore successfully locked.

Read record 50.

Make changes.

Flush file buffer to disk.

Unlock semaphore ZXYOOOOl.

Using Semaphores

User 2

Update record 52:

Lock semaphore ZXY00001.

Semaphore .lready locked,
wait in loop •••

Semaphore still locked •••

Semaphore still locked •••

Semaphore still locked •••

Semaphore successfully locked.

Read record 52.

Make changes.

Flush file buffer to disk.

Unlock semaphore ZXY00001.

Note that using this algorithm causes your program to use many
more than the 32 semaphore names provided by Corvus semaphores.
However, only a few semaphores will be locked at anyone time, so
chances are you will never fill up the semaphore table. If you
are worried about this problem, you can set up your own
semaphore table, with semaphore names as long as you wish and
with as many semaphores as you wish. This table could reside in
a file or in a reserved disk block. Access to this user
semaphore table can be controlled with one Corvus semaphore in
the following manner:

1. Lock the Corvus semaphore SEMTAB.

2. Search the user semaphore table for the specified
semaphore name. If there, return the appropriate error.
If not there, add the semaphore and return the
appropriate return code.

3. Unlock the Corvus semaphore SEMTAB.

In the above discussion, we have tried to highlight some of the
problems involved in resource sharing, and how these problems can
be solved by proper use of semaphores. The next sections
describe the library routines provided for each operating system
supported by Corvus.

Corvus Systems 174

Mass storage Systems GTI Using Semaphores

Corvus concept Operating System:

Please refer to the Pascal Library User. Guide (Corvus PIN
7100-04978). You need to look at Chapter 14, "Corvus Disk
Interface Unit" (ccDRVIO), and Chapter 16, "Corvus Disk Semaphores
Interface Unit" (ccSEMA4).

Note that the procedure CCSEMA4INIT must be called prior to
calling any of the other procedures or functions in the ccSEMA4
unit. The parameter .etLoc specifies which server will be used
for semaphore operations. Specifically, the following fields of
.etloc must be defined before calling CCSEMA4INIT:

Netloc.slotno
Netloc.stationno
Netloc.Kind

slot number
server number (ignored for MUX)
either OmninetDisk or LocalDisk

Here is a portion of a LOCK program for Concept Pascal:

PROGRAM LOCK;
USES {CCLIB} CCDEFN,

{C2LIB} CCDRVIO, CCSEMA4;

VAR s: Semkey;
NetAddr: CDAddr; {CDAddr is declared in ccDrvio }
i, err: INTEGER;

BEGIN
ccDrviolnit; { initialize unit ccDRVIO }

Initslot(NetAddr); {this procedure, from cCDrvio,
{ initializes slotno, stationno, and kind
{ fields to boot device. Sets driveno
{ to 1, all other fields to 0 }

ccSema4Init(NetAddr); {initialize unit ccSEMA4 }

. . .
s :-= 'VOLLOCK' ;
i :- 0;
REPEAT

i :- i+l;

{ get volume name to be locked }

err :- SemLock(s);
UNTIL (err <> SemWasSet)

OR (i > 32000);
{ wait for semaphore to be not set }
{ or timeout }

IF err <> SemNotSet THEN ••• { report error and exit program}

••• { lock volume}
{ closing the file causes the directory on disk to be updated }

Corvus Systems 175

Mass storaqe Systems GTI Using Semaphores

err :- SemUnlock(s); { don't forget to unlock semaphore }

END.

VersioD IV p-ayat .. aDd Apple Pascal CODstellatioD II:

Look at the interface sections for the following units:

UCDEFN, UCDRVIO, and UCSEMA4.

These units are found in library CORVUS.LIBRARY.

Note that the procedure CCSEMA4INIT must be called prior to
calling any of the other procedures or functions in the UCSEMA4
unit. The parameter .etloc specifies which server will be used
for semaphore operations. Specific~lly, the following fields of
.etloc must be defined before calling CCSEMA4INIT:

Netloc.slotno
Netloc.stationno
Netloc.Kind

slot number
server number (ignored for MUX)
either OmninetDisk or LocalOisk

Here is a portion of a LOCK program:

PROGRAM LOCK;
USES {CORVUS.LIBRARY} UCDEFN, UCDRVIO, UCSEMA4;

VAR s: Semkey;
NetAddr: CDAddr: (CDAddr is declared in ccDrvio)
i, err: INTEGER:

BEGIN
ccDrvioInit: { initialize unit ccORVIO }

Initslot(NetAddr): {this procedure, from ccDrvio,
{ initializes slotno, stationno, and kind
{ fields to boot device. sets driveno
{ to 1, all other fields to 0 }

ccsema4Init(NetAddr): {initialize unit ccSEMA4 }

••• (qet volume name to be locked)

s :- 'VOLLOCK':
i :- 0;
REPEAT

i :- i+l:
err :- SemLock(s):

UNTIL (err <> SemWasset)
OR (i > 5000):

(wait for semaphore to be not set)
(or timeout)

IF err <> SemNotSet THEN ••• { report error and exit program}

Corvus Systems 176

Mass storage Systems GTI Using Semaphores

••• { lock volume}
{closing the file causes the directory on disk to be updated }

err :- SemUnlock(s); { don't forget.to unlock semaphore}

END.

MS-DOS l.x and 2.x Constellation II:

The MS-DOS file system uses both file buffering and dynamic file
allocation. Refer to the DOS manual for information on managing
file buffers and file allocation tables.

The machine language interface described in Chapter 4 may be used
to send semaphore commands. The Software Developer's Kit
contains examples of using semaphores with MS Pascal and compiled
Basic.

A new set of routines provides direct semaphore calls. These
routines are written in machine language and are assembled using
the Microsoft Assembler. Interfacing to these routines from a
high level language may require changing the routines slightly.
This change is required because there is no standard parameter
passing mechanism in MS-DOS.

The routine declarations are as follows:

FUNCTION SemLock(VAR Name: STRING): INTEGER; EXTERN;
FUNCTION SemUnLock(VAR Name: STRING): INTEGER; EXTERN;
FUNCTION SemStatus(VAR Name: STRING): INTEGER; EXTERN;

These routines are found in the file SEMAASM.OBJ. You must also
use the INITIO,~nd. S~RVR procedures from DRIVEC2.0BJ.

Here is a portion of a LOCK program:

PROGRAM Lock (INPUT, OUTPUT) ;

CONST SemWasSet - 128;
SemNotSet - 0;

VAR s: LSTRING(80);
err, i: INTEGER;

FUNCTION SemLock(VAR Name: STRING): INTEGER; EXTERN;
FUNCTION SemUnLock(VAR Name: STRING): INTEGER; EXTERN;
FUNCTION InitIO: INTEGER; EXTERN;

BEGIN
IF INITIO <> 0 THEN { error ••• }

Corvus Systems 177

Mass storage Systems GTI Using Semaphores

• • • { get volume name to be locked }

s :- 'VOLLOCK' ;
i :- 0;
REPEAT

i :- i+l;
err :- SemLock(s);

UNTIL (err <> SemWasset)
OR (i > 32000);

{ wait for semaphore to be not set }
{ or timeout }

IF err <> SemNotSet THEN • • • { report error and exit program }

••• { lock volume}
{ flush directory to disk }

err :- SemUnlock(s); { don't forget to unlock semaphore}

END.

CP/M-ao and cp/M-a, Constellation II:

The machine language interface described in Chapter 4 must be
used to send semaphore commands. The Software Developer's Kit
contains examples of using semaphores with Pascal MT+.

Apple Pascal Constellation I:

Loo~ at the interface sections for the -following units:

DRIVEIO and SEMA4S.

These units are found in library CORVUS.LIBRARY.

Note that the procedure SEMA4INIT must be called prior to calling
any of the other procedures or functions in the SEMA4S unit. The
parameter is a BOOLEAN which should be set to FALSE. A TRUE
value results in some debugging statements being printed.

Here is a portion of a LOCK program:

PROGRAM LOCK;
USES {CORVUS.LIBRARY} DRIVEIO, SEMA4S;

VAR s: Semkey;
i, err: INTEGER;

BEGIN
DriveioInit;

Sema4Init(FALSE);

Corvus systems

{ initialize unit Driveio }

{ initialize unit SEMA4S }

178

Mass Storag6 Systems GTI Using Semaphores

••• { get volume name to be locked}

s :- 'VOLLOCX';
i :- 0;
REPEAT

i :- i+l;
err :- SemLock(s);

UNTIL (err <> SemWasSet)
OR (i > 5000);

{ wait· for semaphore to be not set}
{ or timeout }

IF err <> SemNotSet THEN ••• { report error and exit program}

••• { lock volume}
{ closing the file causes the directory on disk to be updated }

err :- SemUnlock(s); { don't forget to unlock semaphore}

END.

If you have limited memory available, you may wish to write your
own semaphore routines. See Chapter 4 for information on
interfacing directly to unit DriveIO.

Refer to the Apple Pascal Operating System Reference manual for
information on file buffering and allocation.

Apple DOS Constellation 1/11:

Corvus provides two assembly language procedures (BCI.OBJ ~nd
OMNIBCI.OBJ) for sending arbitrary disk commands. BCI.OBJ is for
multiplexer networks, and OMNIBCI.OBJ is for omninet networks.

The program SHARE on the distribution floppy for Constellation I
shows how to send samaphore commands using these routines.

Refer to the Apple DOS manual for information on file buffering
and allocation.

Corvus Systems 179

Mass storage systems GTI Using Semaphores

This page intentionally left blank.

Corvus Systems 180

Mass storage Systems GTI Using Pipes

USING
PIPES 6

This chapter gives two examples of how the pipes features of the
Corvus mass storage systems may be used. The first example is a
spooling program; the second shows how messages can be exchanged
using pipes. The features of the Corvus-supplied Spool program
are also described.

User libraries that implement pipes calls are supplied with
several of the versions of Corvus utilities. A typical interface
conststs, of 9 ,functiOR.. These are summarized below:

Function Description

Pipestatus
PipeOpRd
PipeOpWr
PipeRead
PipeWrite
PipeC1Rd
PipeC1Wr
PipePurge
PipesInit

Get status of pipes area
Open pipe for reading
Open pipe for writing
Read data from pipe
Write data to pipe
Close pipe for reading
Close pipe for writing
Purge pipe
Initialize pipes area on disk

Sample declarations of each function are listed below.

The DrvBlk data type used in these declarations is

TYPE DrvBlk - PACKED ARRAY 0 •• 511 OF 0 •• 255;

The negative error codes referred to in the declarations are
listed here:

Value

-8
-9

-10
-11
-12
-13
-14
-15

< -127

Corvus Systems

Meaning

Tried to read an empty pipe
pipe not opened
Tried to write to a full pipe
Pipe open error
Pipe does not exist
No room to open new pipe
Invalid pipes command
Pipes area not initialized
Disk error

181

Mass storage Systems GTI Using Pipes

Pipestatus Function --

PipesStatus uses the Pipe status command to read the Pipe Name
table and the Pipe Pointer table. The definition of the
function is as follows:

FUNCTION PipeStatus(VAR Names, ptrs: DrvBlk): INTEGER;

Parameter

Names
ptrs

Data Type

DrvBlk
DrvBlk

Description

Pipe Name Table
Pipe Pointer Table

This function returns 0 if ok; a negative result indicates a
pipe error.

PipeOpRd function ~--~---
PipeOpRd uses the Pipe Open for Read command to open a pipe for
reading. The definition of this function is as follows:

FUNCTION PipeOpRd(PName: PNameStr): INTEGER;

Parameter Data Type Description

PName PNamestr Name of pipe to open

This function returns the pipe number if the specified pipe
exists, and can be opened. Otherwise, a negative error code is
returned.

PipeOpWr function --------------------------------.--------------

PipeOpWr uses the Pipe Open for Write command to open a pipe for
writing. The definition of this function is as follows:

FUNCTION PipeOpWr(PName: PNameStr): INTEGER;

Parameter Data Type Description

PName PNameStr Name of pipe to open

This function returns the pipe number if the pipe was
successfully opened. Otherwise, a negative error code is
returned.

Corvus Systems 182

Mass storage Systems GTI US.Lng Pipes

PipeRead function --

~ipeRead uses the Pipe Read command to-read a block of data from
the specified pipe. The definition of this function is as
follows:

FUNCTION PipeRead(PNum: INTEGER: VAR Info: Drvlk): INTEGER:

Parameter

Pnum
Info

Data Type

INTEGER
DrvBlk·

Description

Pipe number
Data read from pipe

This function returns the number of bytes read if the read is
successful. Otherwise, a negative error code is returned.
The number of bytes read should always be 512.

PipeWrite function ---

PipeWrite uses the Pipe Write command to write a block of data to
the specified pipe. The definition of this function is as
follows:

FUNCTION PipeWrite(PNum, Wlen: INTEGER:
VAR Info: Drvlk): INTEGER:

Parameter Data Type Description

Pipe number Pnum
Wlen
Info

INTEGER
INTEGER
DrvBlk

Number of bytes to write (-512)
Data to be written

This function returns the number of bytes written if the write
is successful. Otherwise, a negative error code is returned.
The number of bytes to write should always be 512.

PipeC1Rd function --

PipeC1Rd uses the Pipe Close command to close the pipe for
reading. The definition of this function is as follows:

FUNCTION PipeC1Rd(PNum: INTEGER): INTEGER:

Parameter Data Type Description

PNum INTEGER Pipe number

This function returns 0 if the pipe was successfully closed.
Otherwise, a negative error code is returned. If the pipe is
empty, it is deleted.

Corvus Systems 183

Mass storage Systems GTI Using Pipes

P!peC1Wr function ----------~-----------------------------------
PipeC1Wr uses the Pipe Close command to close the pipe for
writing. The definition of this function is as follows:

FUNCTION PipeC1Wr(PNum: INTEGER): INTEGER:

Parameter Data Type Description

PNum INTEGER Pipe number

This function returns 0 if the pipe was successfully closed.
Otherwise, a negative error code is returned. Once a pipe has
been closed for writing, no additional data can be written to it.

PipePurge function ---

PipePurge uses t.ha Pipe Close command to purge the pipe. The
definition of this function is as follows:

FUNCTION PipePurge(PNum: INTEGER): INTEGER:

Parameter Data Type Description

PNum INTEGER Pipe number

This function returns 0 if the pipe was successfully purged.
Otherwise, a negative error code is returned.

Pipeslnit function --

PipesInit uses the Pipe Area Initialize command to initialize the
pipes area. The definition of this function is as follows:

FUNCTION PipesInit(Baddr, Bsize:. INTEGER): INTEGER:

Parameter

Baddr
Bsize

Data Type

INTEGER
INTEGER

Description

Pipes area starting block number
Pipes area length, in blocks

This function returns 0 if the pipes area was successfully
initialized. Otherwise, a negative error code is returned. You
should use this function with caution, since calling this
function overwrites any data located within the area specified.
The pipes area must be allocated within the first 32k blocks of
drive 1.

Corvus Systems 184

Mass storage Systems GTI Using Pipes

A SIMPLB SPOOLER

A spool program can be used to control access to a shared printer
on a network. One computer is used as a despooler, and has the
printer attached to it. It is running a despool program, which
is looping, looking for pipes with the name PRINTER to open for
read.

A second utility program, called the spooler, can be run on any
other computer on the network. This program asks for the name of
a file to be spooled, opens for write a pipe called PRINTER,
copies the file to the pipe, and then closes the pipe.

Despooler

{ look for a pipe to open)
REPEAT

P :- PipeOpRd('PRINTER')
UNTIL p>O;

{Pipe 'PRINTER' opened.)

{ copy data from pipe to)
(printer)
REPUT

e :- PipeRead(p, buf);
IF e > 0 THEN PRINT(buf);

UNTIL e<O;

e :- PipeC1Rd(p) ;

{ the pipe has been purged)

Spooler

Open file f
p2 :- PipeOpWr('PRINTER');
IF p2 < 0 THEN { error);

{ copy file to pipe)
REPUT

READBLOCK(f, buf);
e := PipeWrite(p2, buf);

UNTIL EOF(f) OR (e<O);

e :- PipeC1Wr(p2);
Close file f •••

Of course, the real versions of the DESPOOL and SPOOL programs
will be much longer, as they must provide error handling and
recovery, as well as some text processing. See the description
of the Corvus spool program later in this chapter.

The pipes functions themselves handle the case where two users
execute the SPOOL program at the same time. Each user is
returned a unique pipe number from the PipeOpWr function, which
is used in the calls to the other pipe functions. In fact, the
reason pipes are implemented is to provide exactly this

Corvus Systems 185

Mass storage systems GTI Using Pipes

capability: two users can access the pipes area at the same time,
and not worry about interfering with each other.

It is not possible to control th~ order in which pipes will be
despooled. Both the PipeOpWr and the PipeOpRd functions always
open the lowest numbered available pipe.

USING PIPES TO SEND MESSAGES

One of the electronic mail packages available for the Corvus
network uses the pipes area for two functions: to send messages
between two computers on the network, and to synchronize access
to a shared volume. We will look at how the message passing is
accomplished.

The Mail Monitor package from Software Connections consists of
two programs: a Mail program which a user invokes in order to
.end or receive aail, and a PostOffice program which is always
running on a dedicated computer. Several users can be running
the Mail program at the same time.

Messages between the Mail programs and thePostOffice are sent
via the pipes area. When the user is ready to receive mail, the
Mail program opens and writes the user number into a pipe called
MSG. The PostOffice sees the pipe, opens it, and reads the user
number contained in it. The PostOffice checks if any mail is
waiting for that user, and sends a message back by writing to a
pipe called USERnn, where nn is the user number contained in the
MSG pipe. TheMail program then opens the USERnn pipe to get the
reply. This process is demonstrated by the following program
fragments:

Corvus Systems 186

Mass storage Systems GTI

Mail

{ send message }
p :- PipeOpWr('MSG'):
IF p<O THEN {error}
message :- 'USER01':
e :- Pipewrite(p, 512,
IF e<O THEN {error}
e :- PipeClWr(p):

{ wait for reply }
REPEAT

Using Pipes

PostOffice

{ wait for messages }
REPEAT

pl :- PipeOpRd('MSG');
UNTIL pl>O;

message):

P :- PipeOpRd('USER01'):
(Pipe 'MSG' opened.)

{ read message } UNTIL p>O;

(Pipe 'USER01' opened.)
{ read reply }
e :- PipeRead(p,msg);
e :- PipeClRd(p);

e :- PipeRead(pl, msg);
e :- PipeClRd(pl);
{ extract pname from }
{ message, and build reply }
pl :- PipeOpWr(pname) :
IF pl < 0 THEN {error}
e :- PipeWrite(pl, 512, msg2):
e :- PipeClWr(pl):

{ go back to initial loop to }
{ look for more messages }

Again, there is no code needed to handle the case when two users
execute the Mail program at the same time. The pipes functions
handle all sharing of the pipe area transparently.

THE CORVUS SPOOLRllOGUM

Corvus provides a spool program for most of the operating systems
supported. Corvus defines the following format for each pipe:

Corvus systems 187

Mass storage Systems GTI Using Pipes

Block 1: preamble block

Offset/Len I Type I Description

0/1 I BYTE I Unused - use o.

1/1 I BYTE I Length of file name.

2 / 80 I BSTR I File name.

82 / 1 I BYTE I Length of message.

83 / 80 I BSTR I Message.

163 / 1 I BYTE I File type (30h=data, 31h=text).

164 / 348 I ARRY I Unused - use O's.

Blocks 2-n: text or data blocks. If file type is text
(3lh). then each block contains ASCII characters.
End-of-line is indicated by the two byte sequence OOh,
OAh (carriage return/line feed). The last block is
padded with ASCII NUL characters (OOh).

If file type is data (30h), then each block contains
data, which is not looked at or changed by either the
spool program or the despooler.

The spool program opens the specified pipe for writing, and
creates and writes the preamble block. Then it reads from the
text file, converting end-of-line sequences from whatever is used
by the operating system to OOh, OAh. Most of the Corvus spool
programs also convert a specified new page sequence to the ASCII
form feed chaxacter (OCh), and also chain text files as specified
by the include sequence.

The despooling function is performed either by a computer running
the despoolprogram (or despool option of the Spool program), or
by a Corvus utility Server. In either case, the despool function
is going to read pipes and write their contents to a printer.
The despooler opens the pipe and reads the preamble block. It
writes the file name and user message on a header page. If the
preamble block indicates that the file is a data file, the
despooler merely writes the entire contents of each pipe block to
the printer (some versions will refuse to print a data file). If
the preamble block indicates that the file is a text file, then
the despooler must look at the contents of each pipe block. If
line feeds are off, it looks for all OOh, OAh byte pairs, and
either changes the OAh to a OOh or deletes the OAh byte. It also
handles paging by counting all OOh, OAh sequences. If the count
reaches the lines per page count specified, the despooler inserts
a form feed (OCh) character. The despooler is also looking for

Corvus Systems 188

Mass storage Systems GTI Using Pipes

form feed characters embedded in the text, and resets to count to
zero when one is found. Some despoolers also implement a TAB
function.

The spool program can also be used to send a file to another
user. One user can spool a file to an agreed upon pipe name, and
another user can then despool from the specified pipe name into a
file. Both text files and data files may be exchanged. This
feature is especially useful for converting files from one file
system format to another.

The pipe name used is usually the name of the receiving user.
For example, a CP/M user can spool a file developed with WORDS TAR
to a pipe called JOAN. MS-DOS user JOAN can then despool the
file, and modify it using EASYWRITER.

Corvus Concept operating System:

Please refer to the Pascal Librarv User Guide (7100-04978). You
should look at Chapter 14, "Corvus Disk Interface Unit"
(ccDRVIO), and Chapter 15, Corvus "Disk Pipes Interface Unit"
(ccPIPES).

Note that procedure CCPIPEINIT must be called prior to calling
any of the other procedures or functions in the ccPIPES unit.
The parameter Betloe specifies which server will be used for pipe
operations. Specifically, the following fields of Betloe must be
defined before calling CCPIPEINIT:

Netloc.slotno
Netloc.stationno
Netloc.Kind

slot number
server number (ignored for KUX)
either omninetDisk or LocalDisk

Here is a portion of a SPOOL program for Concept Pascal:

PROGRAM SPOOL;
USES {CCLIB} CCDEFN,

{C2LIB} CCDRVIO, CCPIPES;

VAR pname: PNameStr;
pno: INTEGER;
err: INTEGER: {error code}
NetAddr: CDAddr:
f: FILE;
n: INTEGER;
buf: DrvBlk:

BEGIN

ccDrviolnit; { initialize unit ccDRVIO }

Initslot(NetAddr); { this procedure, from ccDrvio,

Corvus Systems 189

Mass storage Systems GTI Using Pipes

{ initializes slotno, stationno, and kind
{ fields to boot device. set driveno to
{ 1, all other fields to 0 }

ccPipelnit(NetAddr); {initialize unit ccpipes }

{ get file name and open it ••• }

pname :- 'PRINTER'; { open pipe for writing}
pno :- PipeOpWr(pname);
IF pno < 0 THEN { report error and exit ••• };

WHILE NOT EOF(f) DO BEGIN
n :- BLOCKREAD(f, 1, buf);
err :- PipeWrite(pno, Sl2,buf);
IF err < 0 THEN { report error, purge pipe, and exit ••• }:
END;

err :- PipeCIWr(pno);

{ close file ••• }

END.

versiion :EV p-system and Apple Pascal Constellation :E:E:

Look at the interface aecitons for the following units:

UCDEFN, UCDRVIO, and UCPIPES

These units are found in library CORVUS.LIBRARY, which is
included in the Software Developer's Kit.

Note that the pr.ooedw:e CCPIPEINIT must be called prior to
calling any of the other procedures or functions in the ccPIPES
unit. The parameter .atloc specifies which server will be used
for pipe operations. Specifically, the following fields of
•• tloc must be defined before calling CCPIPEINIT:

Netloc.slotno
Netloc.stationno
Netloc.Kind

slot number
server number (ignored for MUX)
either OmninetDisk or LocalDisk

Here. is a portion of a SPOOL program for Concept Pascal:

PROGRAM SPOOL;
USES {CORVUS.LIBRARY} UCDEFN, UCDRVIO, UCPIPES;

VAR pname: PNameStr;
pno: INTEGER;
err: INTEGER; {error code}
NetAddr: CDAddr;

Corvus Systems 190

Mass storage systems GTI Using Pipes

f: FILE;
n: INTEGER;
buf: DrvB1k;

BEGIN

ccDrvioInit; { initialize unit ccDRVIO }

Inits1ot(NetAddr}; { this procedure, from ccDrvio,
{ initializes slotno, stationno, and kind
{ fields to boot device. set driveno to
{ 1, all other fields to 0 }

ccpipeInit(NetAddr); {initialize unit cCPipes }

{ get file name and open it ••• }

pname :- 'PRINTER'; { open pipe for writing}
pno :- PipeOpWr(pname);
IFpno <0 THEN { report error and exit ••• };

WHILE NOT EOF(f) DO BEGIN
n :- BLOCKREAD(f, 1, buf);
err :- PipeWrite(pno, 512, buf);
IF err < 0 THEN { report error, purge pipe, and exit ••• };
END;

err :- PipeC1Wr(pno);

{ close file ••• }

END.

JlS-DOS ~.x and .2.x Constellation XX:

The machine language interface described in Chapter 4 must be
used to send pipes commands. The Software Developer's Kit
contains examples of using pipes with MS Pascal.

CP/M 86 and CP/M 80 Constellation XX:

The machine language interface described in Chapter 4 must be
used to send pipes commands. The Software Developer's Kit
contains examples of using pipes with Pascal MT+.

Apple Pascal Constellation X:

Look at the interface sections for the following units:

DRIVEIO and PIPES.

Corvus Systems 191

Mass storage systems GTI Using Pipes

These units are found in library CORVUS.LIBRARY, which is
contained on the standard distribution diskettes.

Note that the procedure PIPESINIT must be called prior to calling
any of the other procedures or functions in the PIPES unit. The
parameter should be set to FALSE.

Here is a portion of a SPOOL program for Apple Pascal:

PROGRAM SPOOL;
USES {CORVUS.LIBRARY) DRIVE 10 , PIPES;

VAR pname:
pno:
err:
f:
n:
buf:

BEGIN

PNameStr;
INTEGER;
INTEGER;
FILE;
INTEGER;
BLOCK;

{error code)

Drivelolnit; { initialize unit DriveIO)

Pipeslnit(FALSE); {initialize unit Pipes)

{ get file name and open it •••)

pname :- 'PRINTER'; { open pipe for writing)
pno :- PipeOpWr(pname);
IF pno < 0 THEN { report error and exit •••);

WHILE NOT EOF(f) DO BEGIN
n :- BLOCKREAD(f, 1, buf);
err :- PipeWrite(pno, 512, buf);
IF err < 0 ~HEN { report error, purge pipe, and exit •••);
END;

err := PipeC1Wr(pno);

{ close file •••)

END.

Apple DOS Constellation 1/11:

Corvus provides two assembly language procedures (BCI.OBJ and
OMNIBCI.OBJ) for sending arbitrary disk commands. BCI.OBJ is for
MUX networks, and OMNIBCI.OBJ is for OmniNet networks. See
Chapter 4 for information on these procedures.

The program SPOOL on the distribution floppy for Constellation I
shows how to send pipes commands using these routines.

Corvus Systems 192

DEVICE SPECIFIC
INFORMATION A

This appendix discusses the unique characteristics of each mass
storage device.

The following devices are described:

Rev B/H drive
OmniDrive
The Bank

For each device, the following information is provided:

Hardware description
Firmware and PROM code interaction
Firmware layout
Device parameters
Front panel LED's
DIP switch settings

Corvus Systems 193

Mass storage systems GTI Rev B/H Drives

REV B/H DRIVES

The Rev B/H drives may be used stand-alone, in a Constellation
network attached to a Corvus multiplexer, or in an Omninet
network attached to a Corvus disk server.

Up to four drives may be daisy-chained. The controller on drive
one handles all commands except those with a drive number
specifying an add-on drive. For add-on drives to work, drive one
must know how many drives are daisy-chained to it. Drive one
gets this information as part of its power-up procedure. Thus
the add-on drives must be powered-on when drive one is reset.
The drive number is set with a DIP switch; the DIP switch
settings are described later in this section.

Rev B/H Hardware Description

This section attempts to identify major pieces of the hardware.
It does not try to explain how it works. Refer to the hardware
specification for more details.

The Rev B/H Corvus drives consist of an IMI Winchester hard disk,
two or three printed circuit boards (depending on model), and a
power supply.

The disk controller consists of a Z8o.microprocessor, 4k bytes of
EPROM, and 5k bytes of RAM. Communication with the outside world
is handled through two input/output ports: one connected to a
bidirectional data bus, and the other providing control signals.
These signals are available on the 34-pin Corvus-IMI bus at the
back of the drive. The signals on this bus are further described
at the end of this section.

aev B/H Pirmvare And Prom Code

Conceptually, firmware is the code running in the controller. As
described in the hardware requirements, Rev B/H code is resident
both in PROM and RAM. Corvus has a convention that designates
the code in PROM as PROM code and that in RAM as firmware. This
document follows that convention.

Par~ of the controller code is in the 4k PROM. Because of the
limited controller RAM, the firmware consists of several segments
which are overlayed as needed. The main part of the firmware,
the dispatcher, is 1k bytes long and is the command dispatcher.
It intercepts the command string sent from the host, decodes it,

Corvus Systems 194.

Mass storage Systems GTI Rev Bill Drives

then activates the appropriate routines in the PROM or overlays
the appropriate firmware into the RAM.

The firmware code occupies several blocks in an area called the
firmware area. The firmware area occupies the first two
cylinders of the Rev B/H drive. The first cylinder contains the
firmware, the second one is a duplicate. Besides the firmware
code, the firmware area contains other information such as the
track sparing information, the drive parameters, etc. Refer to
the next section for the layout of this area.

At power on, the PROM code initializes itself and then examines
the front panel switches. If all switches are in the normal
position, the controller reads in the boot block (block 0 of the
firmware). The boot block performs some initialization, then
loads the dispatcher into RAM and transfers control to it. If
the firmware is bad, the drive will not come ready.

If, on power on, the PROM code finds that the Format switch is
on, it utilizes the command dispatcher in PROM. The capability
of this dispatcher is quite limited, however, as it allows the
host only the functions such as format, verify, and read-write to
the firmware area. If, on power on, the PROM code finds that the
LSI-11 switch is on, the LSI code is loaded from the firmware
area into RAM.

Rev BIB Firmware Layout

The first two cylinders on all drives are allocated as the
firmware area, the second cylinder being a backup copy of the
first. There are no spared tracks allowed in this region; all
blocks must be good. The usage for the blocks within a cylinder
is shown below.

Corvus Systems 195

Mass storaqe Systems GTI Rev BIB Drives

--~---Block ~n Description
--o 1 Boot Block

1 1 Disk parameter block (see below)
--

2 1

3 1

4 2

6 2

8 10

18 2

Diagnostic block (prep code)

Constellation parameter block (see below)

Dispatcher code

Pipes and semaphores
table is contained
1 256.

code. The semaphore
in block 7, bytes

Mirror controller code

LSI-11 controller code
--

20 2

22 3

25 8

33 4

37 3

Pipes controller code

Reserved for future use

Boot blocks 0-7. Apple II uses 0-3,
Concept uses 4-7.

Active user table

Reserved
~---

Corvus Systems 196

Mass storage systems GTI Rev B/H Drives

Block 1, the disk.parameter block, contains the following
information:

--
Byte I Len I Description
--

o I 16 I Spared track table (Rev B drives) -
I I 2 bytes per spared track (lsb,msb).
I I End of table is FFFFh.

--
16 I 1 I Interleave factor

--
17 1 I Reserved

18 I 14
I
I

I Virtual drive table --
I 2 bytes/entry (lsb,msb). Unused entries
I are FFFFh.

32 I 8 I LSI-ll virtual drive table
--

40 I 8 I LSI-11 spared track table

48 I 432 I Reserved

480 32 Spared track table (Rev H drives)
2 bytes per spared track (lsb,msb). End
of table is FFFFh. Bytes 480-493 must
match bytes 0 to 13 (see below)

There are two spared track tables for RevB/H. The first 7
entries in the second table should match the 7 entries in the
first table. Rev B drives can have a maximum of 7 spared
tracks; Rev H drives can have a maximum of 31 spared tracks.

Block 2 is the diagnostic, or prep, block. It contains the code
necessary to perform the prep mode functions. This code is put
in the firmware area for archival purposes only. The host uses
a diag file separate from the firmware area.

Corvus Systems 197

Mass storage Systems GTI Rev B/H Drives

Block 3 is the Constellation parameter block. Its format is
shown below:

--
Byte I Len I Description
---.------------o 12 I Multiplexer slot and polling parameters

12 2 I Block address of Pipe Name Table
I (lsb,.sb) (start of pipes area)

14 I 2 I Block address of Pipe Pointer Table
I I (lsb,msb)

--
16 I 2 I Number of blocks in pipes area (lsb,msb)

---~--------18 I 470 I Reserved

488 I 12 I Reserved for software protection
--
500 I 12 I Reserved for serial number
--

aev B Parameters

Model 6 Mb Model 11 Mb Kodel 20 Mb

Sectors per track 20 20 20
Surfaces (heads) 4 3 5
Cylinders 144 358 388

Total tracks
per drive 576 1074 1940

Reserved for
spares 7 7 7

Reserved for
firmware e 6 10

Usable tracks
per drive 561 1061 1923

Blocks per 11220 21220 38460
drive

aev B Pront Panel LED's And switches

The front panel of the Rev B/H drive has three (3) LED's: a FAULT
LED, a BUSY LED and a READY LED. During power on , the FAULT LED
and the READY LED should be on, and the BUSY LED flashing, until

Corvus Systems 19B

Mass Storage Systems GTI Rev B/H Drives

the end of the initialization. When the initialization is done,
the following light conditions may occur during drive operations:

FLT LED I BSY LED I ROY LED I Condition

off on I off I Firmware not installed or
I I or corrupted

off off I on I Ready

off

on

on

I flash I
I 1/4 sec I

off

off

I In prep mode

I Operation error
I

When the drive is put in prep mode to be formatted or to have
firmware updated, the FLT and ROY LED are turned off and the BSY
LED turned on. You must be careful when this condition occurs as
the disk can be reformatted and all data can be lost.

There are four toggle switches located beneath the front panel
LED's. These are, from left to right, (1) LSI-11 switch, (2) MUX
switch, (3) format switch, (4) reset switch. The normal position
for each switch is to the left.

Rev B DIP switches

There is an 8 position DIP switch accessible through the trap
door located on the bottom of the drive case. This switch is
used to set the drive number for daisy-chained drives.

Corvus Systems 199

Mass storage Systems GTI

Drive
number

switch setting

1 2 3 4 5 6 7 8
+-------------------------------+

1 X I X I 0 I - I - I - I - I -

2 X I 0 I X I - I - I - I - I -

3 X I 0 I 0 I - I - I - I - I -

4 0 I X I X I - I - I - I - I -

5 0 I X I 0 I - I - I - I - I -

6 0 I 0 I X I - I - I - I - I -

7 0 I 0 I 0 I - I - I - I - I -+-------------------------------+
X - CLOSED; 0 - OPEN

Rev B/H Drives

The DIP switch pressed in on the side marked OPEN is considered
OPEN.

Rev B Parameters

Model 6 Mb Model 11 Mb Model 20 Mb

Sectors per track 20 20 20
Surfaces (heads) 2 4 6
Cylinders 306 306 306

Total tracks 612 1224 1836
per drive

Reserved for 31 31 31
spares

Reserved for 4 8 12
firmware

Usable tracks 577 1185 1793
per drive

Blocks per 11540 23700 35860
drive

Rev B Front Panel LED's And switches

Same as Rev B.

Corvus systems 200

Mass storage Systems GTI Rev B/B Drives

Rev B DIP switches

There is an 8 position DIP switch located on the controller PC
board. This switch is used to set the drive number for
daisy-chained drives. To access this switch, you must remove the
top drive cover; the board is mounted on the inside of the drive
cover.

Drive
number

Switch setting

1 2 3 4 5 6 7 8

+---------------+-------------~-+ 1 I X I - I - I X I - I - I - I - I 1-------------------------------1
2 I X I - I - 101 - I - I - I - I 1-------------------------------1
3 101 - I - I X I - I - I - I - I 1-------------------------------1
4 101 - I - 101 - I - I - I - I +-------------------------------+

X - CLOSED; 0 - OPEN

The DIP switch pressed in on the side marked OPEN is considered
OPEN.

There is also a 4 position DIP switch located on the back panel
of the drive. This switch is used to specify whether an internal
Corvus MIRROR card- is present in the drive.

Switch setting

Meaning 1 2 3 4
------- +---------------+
No MIRROR/external MIRROR I X I X I X I X I

1---------------1
PAL/SECAM MIRROR I X I 0 I 0 I 0 I

1---------------1
NTSC MIRROR I 0 I 0 I 0 I 0 I

+----------------
X - CLOSED; 0" OPEN

The DIP switch pressed in on the side marked OPEN is considered
OPEN.

Corvus Systems 201

Mass storage Systems GTI

Disk Flat Cable Interface

All cable assignments are TTL.

Cable wire assignments:

NAME
Data Bit 0
Data Bit 1
Data Bit 2
Data Bit 3
Data Bit 4
Data Bit 5
Data Bit 6
Data Bit 7
DIRe (bus dir)
READY
-STROBE
-RESET
+5 volts
Ground
Alternate select
Reserved
Unused

Corvus Systems

ORIGINATOR
bi-directitonal
bi-directitonal
bi-directitonal
bi-directitonal
bi-directitonal
bi-directitonal
bi-directitonal
bi-directitonal
drive
drive
computer
drive
drive
drive
drive
computer

Rev B/H Drives

FLAT CABLE WIRE
25
26
23
24
21
22
19
20

9
27
29
31
3,4,34
6,8,10,17,28,30,32
11
5
1,2,7,12-16,18,33

202

Mass storage systems GTI Rev B/H Drives

Cable timing

General case:

Command initiation and computer to drive data transfer.

READY ----------------+ +-------------------+ +-
I I I I
+--------+ +--------+

500 nsec.
<>

-STROBE ----------+ +-------------------------+ +-------------
I I I I
+--+ +--+

> 50 nsec.
<=-=====>

/------------ /------------
DATA ---------< >-------------< >----

------------/ ------------/

DIRC

The drive indicates its readiness to accept a command by raising
the READY line. The computer then puts a command byte to the
data lines and pulses -STROBE (the command byte is to be latched
by the drive on the rising edge of -STROBE). Upon seeing the
-STROBE pulse, the drive drops the READY line as an
acknowledgement to the computer. When ready for the next command
byte the drive again raises the READY line.

The drive takes each command byte as it needs it. If it is
expecting another command byte, and one is not there, the drive
will timeout after approximately 4 seconds. The drive flushes
the current command, and waits for a new command to start.

At the end of the command sequence, the drive keeps the READY
line low until the desired operation has been performed. Upon
completion of the operation, the drive lowers the DIRC line and
raises the READY line, allowing the computer to read data and
status information. Note that all commands consist of a write
phase, during which command and data information is sent to the
drive, followed by a read phase, during which status and data
information is received from the drive.

Corvus Systems 203

Mass storage systems GTI

Drive to computer data transfer:

+--------+ +--------+
I I

Rev B/H Drives

+
I

READY ----+ +-----------+ +------------//------+
-STROBE ------+ +-----------------+ +--------------'--/ /------

I I I I
+--+ +--+

/------------ /------------
DATA -----< >-----< >-------//----

------------/ ------------/
DIRC ----+ +----

+--//---+

The drive starts a computer read sequence by lowering the DIRC
line. The drive then puts a byte to the data lines and raises
the ready line. The computer then pulses the -STROBE line,
capturing the data on the rising edge. The drive then lowers the
READY line until the next data byte is ready to send. After the
last byte is transferred, the drive raises the DIRC line prior to
raising the READY line.

Special conditions:

There are two special conditions which deviate from the general
cable timing information presented and must be accounted for by
the computer-disk controller or by the computer-disk handler.

Case 1 -- READY line glitch after the last byte of command.

After the last command byte is received by the drive, the READY
line goes high (for 20 uSEC. or less). Since this occurs prior
to the completion of the command operation, it must be ignored.
Since the gl.itch occurs while the DIRC line is high, it is easy
to detect either in hardware, by gating, or in software, by the
procedure shown below in pseudo-code.

REPEAT UNTIL (DIRC - LOW) AND (READY - HIGH);

Case 2 -- DIRC line glitches after last byte of Mirror command.

After the last command byte of a Mirror command is received, the
DIRC line repeatedly alternates between high and low, while the
drive talks to the Mirror. Since these changes occur while the
READY line is low, they are easy to detect either in hardware, by
gating, or in software, by the procedure shown below in
pseudo-code.

Corvus Systems 204

Hass storage Systems GTI Rev BIH Drives

REPEAT UNTIL (READY - HIGH) AND (DIRe - LOW):

Note that the two glitch cases are resolved with a single fix.

Cable Connector Description

A 17 x 2 female connector is attached to the cable. The red
stripe on cable is pin 1.

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
I 11 31 51 71 91111131151171191211231251271291311331
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
I 21 41 61 81101121141161181201221241261281301321341
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

Pin 1 is normally designated by a square pad on the circuit side
of the interface card~

OXNIDRIVB

The omniDrive is a Winchester hard disk device with a built-in
omninet disk server interface. Functionally, it resembles a Rev
BIH drive connected to a disk server. The omniDrive is designed
such that it is compatible with the old disk server and disk
drive combination to minimize software impact. However, some
changes are warranted due to hardware constraints and systems
requirements. Also, certain features are intended as upgrades to
the feature set. All the changes from Rev BIH controllers are
documented in Appendix c.
The omniDrive is a self-contained box with a controller and disk
server on the same PCB. It does not support a flat cable
interface and has no daisy chain capability. To expand the
capacity of the network, more omniDrives can be attached to the
omninet cable, effectively forming a multiple server network.

OmniDrive Bardware Description

This section attempts to identify major pieces of the hardware.
It does not try to explain how it works. Refer to the hardware
specification for more details.

The omniDrive controller consists of three main sections: a
transporter, a disk server and a disk controller. The
transporter section communicates to the omninet. It mainly
consists of three chips: a 6801 processor, an ADLC and a custom

Corvus Systems 205

Mass storage Systems GTI OmniDrive

qate array. The disk server section adds one RAM to buffer data
in and out of the network. It also has some firmware code that
understands Constellation protocols. The disk controller
utilizes a hard disk controller chip (WDI0I0) and the 6801 is
used as the processor.

The EPROM requirements are:
8k bytes - 2k disk server, 6k disk controller
(socket can also accommodate 16k bytes PROM; the extra
PROM space is used if more code is needed)

There are four RAM sockets on the controller: two designated as
share RAMs and two as scratch RAMs. The share RAMs can be
accessed by the Omninet gate array chip, thus they can be DMAed
from and to the network. The 6801 processor can also read-write
to these share RAMs. The two scratch RAMs, however, can only be
accessed by the processor (6801). Each RAM socket can take a 2k
by 8 static RAM chip.

The shared RAMs are utilized as follows:
2k bytes disk server buffer
2k bytes read-write buffer to 1010

The scratch RAMs are
lk bytes

utilized as follows:

lk bytes

lk bytes
lk bytes

omniDrive Firmware And Prom Code

disk server scratch RAM
disk controller scratch RAM

and semaphore table
pipes table
downloaded controller code

Conceptually, firmware is the code running in the controller. As
described in the hardware requirements, OmniDrive code is
resident both in PROM and RAM. Corvus has a convention that
designates the code in PROM as PROM code and that in RAM as
firmware. This document follows that convention.

Most of the controller code is in the 8k PROM. It handles the
disk server function as well as the actual disk controller
function. The firmware code, lk bytes long, is essentially a
command dispatcher. It intercepts the command string sent from
hosts, decodes it, then activates the appropriate routines in the
PROM.

The firmware code occupies two blocks in an area called the
firmware area. The firmware area occupies the first four tracks
of the omniDrive. The first two tracks contain the firmware, the
last two are duplicates. Beside the firmware code, the firmware
area contains other information such as the track sparing

Corvus Systems 206

Mass storage systems GTI omniDrive

information, the 4~ive information, the pipes table, etc. Refer
to the next section for the.layout of this area.

At power on, the two dispatcher blocks are loaded from the media
to RAM. This RAM code now functions as the command dispatcher.
If the firmware does not exist on the disk, the controller
switches to a special command dispatcher entirely resident in
PROM. The capability of this dispatcher is quite limited,
however, as it allows the host only the functions such as format,
verify, and read-write to the firmware area.

OmDiDrive Firmware Layout

In the omniDrive, the first four tracks of the drive are reserved
for the Corvus firmware. The firmware is 36 blocks long (block
number 0-35) and thus occupies 2 tracks. The firmware is
duplicated for safety in the next two tracks.

The following is the layout of the firmware area:

Block I Len I Description

o I 1 I Spared track table (see below)

1 I 1 I Disk parameter block (see below)

2 I 1 I Diagnostic block (prep block)

3 I 1 I Constellation parameters lsee below)

4 I 2 I Reserved

6 2 I Dispatcher code

8 I 1 I Pipe Name table
---------------------~-----------------------------------9 1 11 I Reserved

20 1 I Pipe Pointer table

21 I 3 I Reserved

24 I 8 I Boot blocks 0-7. Apple II uses blocks 0-3,
I Concept uses blocks 4-7

32 I 4 I Active user table

Corvus Systems 207

Mass storage Systems GTI OmniDrive

Block 0 is the spared track table. The table has the following
format:

Byte I Len I Description

o 2 I First spared track (msb,lsb)

2 2 I Second spared track (msb,lsb)

• •. I I ...

The end of the table is indicated by an entry of FFFFh. The
number of spared tracks reserved is different for various drive
models. The maximum number of spared tracks for a drive is in
ROM, and can be obtained by the Get Drive Parameters command.
The maximum number of spared tracks supported by the controller
is 64.

Block 1 is the disk parameter block. It contains the following
information:

Byte I Len I Description

o 16 I Reserved

16 I 1 I Interleave factor

17 I 31 I Reserved

48 2 I Starting block address of pipes area
I (lsb,msb)

50 2 I Number of blocks in pipes area (lsb,msb)

52 1 I Write-verify flag

53 f 195 I Reserved

248 8 I Format password

256 I 256 I Reserved

Block 2 is the diagnostic, or prep, block. It contains the code
necessary to perform the prep mode functions. This code is put
in the firmware area for archival purposes only. The host uses
a diag file separate from the firmware area.

Corvus Systems 208

Hass storage Systems GTI omniDrive

Block 3 is the Constellation block. It currently contains the
following information:

Byte I Len I Description

o I 488 I Reserved.

488 12 I Reserved for software protection.

500 12 I Reserved for serial number.

OmniDrive Parameters (1-l'eb-84)

Max
Spared

Heads Cyls Tracks Capacity Pre com Cyl Land Cyl

IMI 5006H 2 306 12 10728 256 329
IMI 5012H 4 306 20 21600 256 329
1M I, 5018H 6 306 28 32472 256 329

Rod:ime 201 2 306 12 10728 0 319
Rodime 202 4 306 20 21600 0 319
Rodime 203 6 306 28 32472 0 319
Rodime 204 8 306 36 43344 0 319

Dansei RD4064 2 306 12 10728 128 337
Dansei RD4127 4 306 20 21600 128 337
Dansei RD4191 6 306 28 32472 128 337
Dansei RD4255 8 306 36 43344 128 337

Ampex 7 2 306 12 10728 128 319
Ampex 13 4 306 20 21600 128 319
Ampex 20 6 306 28 32472 128 319
Ampex 27 8 306 36 43344 128 319

Microp 1304 6 823 40 88092 400 N/A
vertex 150 5 987 40 88038 N/A N/A
Rodime R0204E 8 618 40 88200 0 640

Maxtor XTI065 7 918 46 114768 N/A N/A
Haxtor XTII05 1 918 70 180432 N/A N/A
Maxtor XTl140 15 918 94 246096 N/A N/A

Miniscr 2006 2 306 12 10728 0 336
Miniscr 2012 4 306 20 21600 0 336
Miniscr 4020 4 459 28- 32472 0 522

Corvus Systems 209

Mass storage Systems GTI omniDrive

omniDrive Front Panel LED's

The front panel of the OmniDrive has three LED's: a FAULT LEO, a
BUSY LEO and a READY LEO. During power on , the BUSY LEO should
be on until the end of the initialization. When the
initialization is done, the following light condition might
occur:

FLT LED I BSY LED I ROY LED I Condition

on on

on on

off

on

I Firmware not installed or
I corrupted

I Same address as another
I node on network

off off I on I Ready

on I off I on I In prep mode

flash I off I off I Wrong transporter version

1/4 sec I I I

each light flash 1/4 sec I RAM error

quick
flash

off off I Operation error
I

When the drive is put in prep mode to be formatted or to have
firmware updated, the FLT and ROY LEO are turned on and the BSY
LEO turned off. You must be careful when this condition occurs
as the disk can be reformatted and all data lost.

Corvus Systems 210

Mass storage Systems GTI OmniDrive

omniDrive DIP Switches

One of the design objectives for the OmniDrive controller is to
have a standard disk interface so that it can communicate with
drive mechanisms from various manufacturers. (ST-4l2 is the
de-facto standard for 5 1/4" disk drive).

The ST-412 standard only specifies electrical interface
requirements, but drives have different disk parameters (number
of heads, number of cylinders, landing track, etc). The
OmniDrive controller has an 8 position DIP switch which is used
to select the drive mechanism type. The tables of the drive
parameters are built into the PROM. The DIP switch selection
forpes the controller at power-on time to load the appropriate
table entry into RAM, which the controller then uses as the set
of parameters.

The DIP switch settings for PROM version ODB 0.9 are listed
below.

switch setting
Drive
type 1 2 3 4 5 6 7 8

+-------------------------------+
IMI 5006H XIXIXIXIXIXIXIX

IMI 5012H °IXIXIXIXIXIXIX

IMI S018H XIOIXIXIXIXIXIX

Rodime 201 °IOIX\X\X\X\X\X

Rodime 202 X\XIO\X\X\X\X\X

Rodime 203 O\X\OIXIXIXIXIX

Rodime 204 X\OIOIXIXIXIXIX

Dansei RD4064 °IOIOIXIXIXIXIX

Dansei RD4l27 XIXIXIOIXIX\XIX

Dansei RD4191 °IXIXIOIXIX\XIX

Dansei RD425S XIOIXIOIXIXIXIX
+-------------------------------+
x - CLOSED: ° - OPEN

The DIP switch pressed in on the side marked OPEN is considered
OPEN.

Corvus Systems 211

Mass storage Systems GTI

Drive
type

Ampex 7

Ampex 13

Ampex 20

Ampex 27

switch"setting

1 2 3 4 5 6 7 8
+-------------------------------+

°IOIXIOIXIXIXIX

XIXIOIOIXIXIXIX

OIXIOIOIXIXIXIX

XIOIOIOIXIXIXIX

Micropolis 1304 ° I ° I ° I ° I X I X I X I X

vertex 150 XIXIXIXIOIXIXIX

Rodime R0204E °IXIXIXIOIXIXIX

Maxtor XTI065 X-~ ° I X I X I ° I X I X I X t
-------------------------------1

Maxtor XTII05 ° I ° I X I X I ° I X I X I X I
-------------------------------1

Maxtor XTl140 X I X I ° I X I ° I X I X I X I
-------------------------------1

Miniscribe 2006 ° I X I ° I X I 0 I X I X I X I
-------------------------------1

Miniscribe 2012 X I ° I ° I X I ° I X I X I X I
-------------------------------1

Miniscribe 4020 0 I 0 I ° I X I ° I X I X I X I
+-------------------------------+

X - CLOSED; ° - OPEN

omniDrive

The DIP switch pressed in on the side marked OPEN is considered
OPEN.

HE BANK

The Bank is a random access tape device designed to be a back up
and on-line device in an omninet network. The product consists
of a tape transport eLM 101) and • Bank controller. The device
has a built-in Omninet interface and is a server on the network.
It supports all the standard Corvus disk commands.

The tape is a continuous loop with a loop time of 20 seconds for
a 200MB tape and 10 seconds for a 100MB tape. The long tape has
103 meters of media and the short one 53 meters. The tape spins
at a speed of 5.5 meters/sec. There are 101 tracks on the tape.
Track 0 is designated as the landing track. Track 1 is used as
the firmware track. Tracks 2-100 are the user tracks.

Corvus Systems 212

Hass storage systems GTI The Bank

Each track is internally divided into sections, called heads.
Each section is analogous to a track on a Winchester. A section
contains 256 sectors, 1024 bytes each. A 200HB tape has eight
sections, while a 100HB tape has four sections. A 200MB tape
therefore has 2048 sectors per track: four sectors are reserved
for sparing bad ones, so there are 2044 user sectors per track.
For a 100MB tape, there are 1024 sectors per track, with four
used for sparing, leaving 1020 user sectors per track.

The Bank Hardware Description

This section attempts to identify major pieces of the hardware.
It does not try to explain how it works. Refer to the hardware
specification for more details.

The Bank controller consists of three main sections: a
transporter, a disk server and a tape controller. The
transporter section communicates to the Omninet. It mainly
consists of 3 chips: a 6801 processor, an ADLC and a custom gate
array. The disk server section adds one RAM to buffer data in
and out of the net. It also has some firmware code that
understands Constellation protocols. The tape controller
utilizes a hard disk controller chip (WD1010) and the 6801 is
used as the processor.

The EPROM requirements are:
8k bytes - 2k disk server, 6k disk controller

There are 5 RAM sockets on the controller: 2 designated as share
RAMs and 3 as scratch RAMs. The share RAMs can be accessed by
the omninet gate array chip, thus they can be DMAed from or to
the network. The 6801 processor can also read-write to these
share RAMs. The three scratch RAMs, however, can only be
accessed by the processor (6801). Each RAM socket can take a 2k
by 8 static RAM chip.

The shared RAMs are utilized as follows:
2k bytes disk server buffer
2k bytes read-write buffer to 1010

The scratch RAMs are
1k bytes
1k bytes

lk bytes
3k bytes

Corvus Systems

utilized as follows:
disk server scratch RAM
disk controller scratch RAM

and semaphore table
pipes table
downloaded controller code

213

Mass storage systems GTI The Bank

The Bank Piraware ADd Prom Code

Conceptually, firmware is the code running in the controller. As
described in the hardware requirements, Bank code is resident
both in PROM and RAM. Corvus has a convention that designates
the code in PROM as PROM code and that in RAM as firmware. This
document follows that convention.

Most of the controller code is in the 8k PROM. It handles the
disk server function as well as the actual tape controller
function. The firmware code, 3k bytes long, is essentially a
command dispatcher, but also contains the pipes and semaphore
code. The command dispatcher intercepts the command string sent
from a host, decodes it, then activates the appropriate routines
in the PROM. The pipes and semaphore code perform the functions
their names imply.

The firmware occupies the first 38 blocks of track 1. The first
block is the boot block which contains the parameters for that
tape. This block .. is .. duplicated in the next two blocks for
reliability. The dispatcher code occupies two blocks in the
firmware. The pipe and semaphore code occupies four blocks.
Besides this code, the firmware area contains other information
such as the track sparing information, the pipes table, etc.
Refer to the next section for the layout of this area.

At power on, the dispatcher and the pipes and semaphore code are
loaded from the media to RAM. If the firmware does not exist on
the tape, the controller switches to a special command dispatcher
entirely resident in PROM. The capability of this dispatcher is
quite limited, however, as it allows the host only the functions
such as format, verify, read-write to the firmware area.

The Bank Piraware Layout

In each Bank Tape, there is a non-user accessible area where the
Corvus firmware is located. The firmware is 36 blocks long
(block number 0-35) and occupies 38 sectors in track 1 of the
tape. Each sector is 1024 bytes long, but the firmware only
utilizes the first 512 bytes of each sector. The first firmware
block, the boot block, contains vital information about the tape
and is triplicated.

Corvus Systems 214

Mass st~rage Systems GTI The Bank

The following is the layout of the firmware area:

Block ~n Description
---o 1 Boot block, tape parameters, start of spare

sector table (see below)

1 1 contains the rest of the spare sector table

2 1 Format results (see below)

3 1 Constellation block (see below)

4 2 Reserved

6 2 Dispatcher

8 1 Pipe name table

9 3 Diag blocks 0, 1, 2

12 4 Pipes and semaphore code

16 4 Reserved

20 1 Pipe pointer table

21 3

24 8

Reserved

Boot blocks 0-7. Apple II uses 0-3,
Concept uses 4-7

32 4 Active User table

Corvus Systems 215

Mass storage Systems GTI The Bank

Block 0 contains tape information and sector sparing of the first
40 tracks in the following format:

Byte I Len I Description
---o 2 I Boot hello message (5AA5h)

2 I 12 I Bad track bit map
I I (first byte corresponds to tracks 0-7,
I I arranged MBB: TO, T1, ••• T7 :LSB)

15 I 1 I Interleave factor (1 to 31, odd)

16 1 I Number of heads on this tape (4 or 8)

17 I 1 I Number of sectors per section

I I (0 - 256 sectors)

18 I 2 I Number of sectors per track
I I (1024 or 2048 - msb,lsb)

20 2 I Number of user sectors per track
I (1020 or 2044 - asb,lsb)

22 , 3, Total user sectors
, I (101376 or 202356 - msb •• lsb)

25 , 3, Tape index counter (msb,lsb)

28 I 2, Number of motor start-stop (msb,lsb)

30 I 12' Reserved

52 , 2, Pipe area starting block number (lsb,msb)

54 2 I Pipe area size (length in blocks) (lsb,msb)
-------------------------------~-------------------------56 1 , Tape type (bit 0 set - fast tracks on:

, bits 1-7 reserved)

-----------------------------------~---------------------57 I 8, Tape name in ASCII
------_ .. _--

65 I 8, Tape password in ASCII

73 2 I Format date in ASCII

75 32 ,Tape comment in ASCII

107 85 , Reserved
--------------------------~------------------------------192 I 320 I Track 0 to track 39 bad sector table

Corvus Systems 216

Mass storage Systems GTI The Bank

Each track has eight bytes reserved in the bad sector table for
four entries (an entry is two bytes). The first byte of the
entry is the head of the bad sector: the second byte is the
sector number. The entries within a track are sorted in order
(lOW to high). The unused entries are filled with OFFFFH.

Block 1 contains the rest of the spare sector table:

Byte I Len I Description

o I 488 I Track 40 to track 100 bad sector table

488 24 I Reserved.

Block 2 contains the result of the last tape format. The
layout of this data is shown:

Byte I Len I Description

o 1 I Result code

1 1 I Bad track count

2 I 510 I Bad track list, each entry two bytes
I I (lsb,msb)

--~--------------

Block 3 is the Constellation block. It currently contains the
following information:

Byte I Len I Description

o I 488 I Reserved.

488 12 I Reserved for software protection

500 12 I Reserved for serial number

Blocks 9, 10, 11 are the diag blocks. They contains code to
format, verify, and read-write firmware area. This code is
put in the firmware area for archival only. The host uses a
diag block file that is separate from the firmware file.

Corvus systems 217

Hass storage Systems GTI The Bank

The Bank Parameters

100MB tape 200MB tape

Number of tracks per tape 101 101
Number of sections per track 4 8
Number of sectors per section 256 256
Number of sectors per track 1024 2048
Number of bytes per sector 1024 1024

Number of spare sectors per track 4 4
Number of user sectors per track 1020 2044

Landing track number 0 0
Firmware track number 1 1
Number of user data tracks 99 99

Loop time 9.4 sec 18.8 sec

Tape life 500 hours 500 hours
Number of start-stops 2000 2000

The Bank Front Panel LED'S

The front panel of The Bank has three LED's: a FAULT LED, a BUSY
LED and a READY LED. During power on , the BUSY LED should be on
until the end of the initialization. When the initialization is
done, the following light condition might occur:

FLT LED I BSY LED I ROY LED I Condition

on off off I Fatal hardware error

on i on off I Firmware not installed
I I or corrupted

on I on on I Same address as another

I I host on network

off I off I on I Ready, tape is OK

flash I off I off I Wrong transporter version

1/4 sec I I I

flash each light 1/4 sec I RAM error

--~--------------quick I
flash I

off off I Operation error
I ---

Corvus Systems 218

Mass storage Systems GTI The Bank

When The Bank is put in prep mode to be formatted or to have
firmware updated, the FLT and RDY LED are turned on and the BSY
LED turned off. You must be careful when this condition occurs
as the tape can be reformatted and all data lost. The following
lights could happen in prep mode:

FLT LED I BSY LED I RDY LED I Condition

on I off on I Bank in prep mode

on I on on I Bank is formatting

off on on I Bank is filling during
I format

off on I off I Bank is verifying during
I I format

off on I off I Bank is executing cmnds

I I in prep

Corvus Systems 219

Mass storage Systems GTI The Bank

This page intentionally left blank.

Corvus Syst.ems 220

Mass storage Systems GTI Constellation Device Types

TABLES B

CONSTELLATXON DEVXCE TYPES

Specific types are indented below their generic type.

Value Meaning

01
02

Generic disk device, booting; Corvus disk server
Generic Print Server

Corvus

03
04
05
06
07-0Fh

Reserved
Mirror Server
Bank

omnidrive (generic type - 01)
Reserved.

lOh Generic disk device, non-booting

llh-lFh Reserved for future mass storage devices.

20h-3Fh Workstations. Workstations are Constellation
Boot number plus 20.

20h Generic Workstation Device Type
2lh Apple II

25h Corvus Concept

29h IBMIPC or IBM/XT
2Ah Xerox 820
2Bh Zenith H89
2Ch NEC PC8000
2Dh Commodore PET
2Eh Atari 800
2Fh TRS-80 Model I

30h TRS-80 Model II
3lh LSI-l1

33h Apple III
34h DEC Rainbow
35h TI Professional
36h Zenith Z-lOO
37h Corvus concept Plus

Systems 221

Mass storage Systems GTI Constellation Device Types

38h Corvus Companion
39h Apple MacIntosh
3Ab Sony SMC-7086

40h-SFh Reserved for future workstations.

60h-7Fh Operating system types. Operating system types
are Constellation operating system number plus
60h.

6lh Apple Pascal
62h Apple DOS 3.3
63h UCSD Pascal version 2.x
64h MS-DOS l.x
6Sh Apple SOS
66h Apple Pascal Runtime
67h CP/M 80
68h RT-ll
69h RSX-ll
6Ab PET DOS
6Bh NEWDOS (TRS-80 Mod I/III)
6Ch NEWDOS-80 (TRS-80 Mod I/III)
6Dh Atari DOS 2.0
6Eh UNIX System 3
6Fh CP/M 86
70h CCOS (Corvus Concept)
7lh Constellation II Pascal IV.x
72h CP/M 68
73h NCI p-system
74h Softech p-system IV.l
7Sh Apple ProDOS
76h Apple MacIntosh
77h UNIX System 5
78h Apple II CP/M

80n-8Fh Gateways

80h Generic gateway
8lh SNA gateway

90h-9Fh Reserved.

AOh-A8h Z80 based utility servers

AOh Generic Utility Server II server
Alh Enhanced print service
A2h Simple pipes bridge

A9h-AFh Reserved for future servers

BOh-FEh Reserved for future use

FFh Any device.

Corvus Systems 222

Mass storage systems GTI Constellation Boot number assignments

CONSTELLATION BOOT NUMBER ASSIGNMENTS

Boot number Computer type

0, 1, 2, 3
4, 5, 6, 7

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

Corvus Systems

Apple II
Concept
IBM
Xerox 820
Zenith H89
NEC PC8000
Pet
Atari 800
TRS-80 MOD I
TRS-80 MOD III
LSI-ll
Printer server
Apple III
DEC Rainbow
TI Pro
Z-lOO
Concept2
Companion
MacIntosh
Sony SMC-7086

223

Mass storage Systems GTI Summary of Disk Commands

SUMMARY OF DISK COMMANDS IN NUMERICAL ORDER

Number of Data Bytes

Command Code: Modifier

Read Sector (256 bytes) 02h
write Sector (256 bytes) 03h
Semaphore Lock OBh:01h
Semaphore Unlock OBh:11h
Get Drive Parameters 10h
Prep Mode Select 11h
Park heads (Rev H) 11h
Read Sector (128 bytes) 12h
Write Sector (128 bytes) 13h
Boot 14h
Record write 16h
Semaphore Initialize 1Ah:10h
Pipe Read 1Ah:20h
Pipe Write 1Ah:21h
Pipe Close 1Ah:40h
Pipe Status 1 1Ah:41h
Pipe Status 2 1Ah:41h
Pipe Status 0 1Ah:41h
Semaphore Status 1Ah:41h
Pipe Open write 1Bh:80h
Pipe Area Initialize 1Bh:AOh
Pipe Open Read lBh:COh
Read Sector (256 bytes) 22h
write Sector (256 bytes) 23h
Read Sector (512 bytes) 32h
Write Sector (512 bytes) 33h
AddActive 34h:03h
DeleteActiveUsr (Rev B/H) 34h:00h
DeleteActiveUsr (omnidrive) 34h:01h
DeleteActiveNumber(omnidrive) 34h:00h
FindActive 34h:05h
Read Sector (1024 bytes) (Bank) 42h
Write Sector (1024 bytes) (Bank) 43h
Read Boot Block 44h
Park heads (omnidrive) 80h
WriteTempBlock - B4h
ReadTempBlock C4h
Echo (Omnidrive/Bank) F4h

Corvus Systems

sent

4
260

10
10

2
514
514

4
132

2
2
5
5

x+5
5
5
5
5
5

10
10
10

4
260

4
516
18
18
18
18
18

4
1028

3
1

514
2

513

Received

257
1

12
12

129
1
1

129
1

513
1
1

516
12
12

513
513

1025
257

12
12
12

257
1

513
1
2
2
2
2

17
1025

1
513

1
1

513
513

224

Mass storage Systems GTI Disk return codes

RETURN CODES POR REV BIB DRIVES

The disk return code is a byte. The bits are interpreted as
shown below:

Bit •

bits 4-0
bit 5
bit 6
bit 7

Error code

0 OOh
1 01h
2 02h
3 03h
4 04h

5 05h
6 06h
7 07h
8 08h
9 09h

10 OAh
11 OBh
12 OCh
13 ODh
14 OEh

15 OFh
16 10h
17 llh
18 12h
19 13h

20 14h
21 15h
22 16h
23 17h
24 18h

25 19h
26 1Ah
27 1Bh
28 1Ch
29 1Dh

Corvus Systems

Meaning

Error code (see below).
1-recoverable error.
l==verify error.
l-hard error.

Meaning

Header fault.
Seek timeout.
Seek fault.
Seek error.
Header CRC error.

Rezero fault.
Rezero timeout.
Drive not online.
write fault.
Unused.

Read data fault.
Data CRC error.
Sector locate error.
Write protected.
Illegal sector address.

Illegal command op code.
Drive not acknowledged.
Acknowledge stuck active.
Timeout.
Fault.

CRC.
Seek.
Verification.
Drive speed error.
Drive illegal address error.

Drive r/w fault error.
Drive servo error.
Drive guard band.
Drive PLO error.
Drive rlw unsafe.

225

Mass storage Systems GTI Disk return codes

The error codes on the previous page have significance only if
one or more of bits 5, 6, or 7 are also on. The table below
allows you to easily convert the disk result code into an error
code. Bits 5 and 6, or both, are set whenever a soft error
occurs. For a hard error, bit 7 is always set, and bits 5 and 6
may be set. For example, if the disk return code is 87h, then
there is a hard error, and the error code is 07h, Drive not
online.

Soft error Hard error
Error code bit 5 bit 6 bit 7 bit 5,7 bit 6,7

---------- ------ ------ ----- ------- -------
0 OOh 32 20h 64 40h 128 80h 160 AOh 192 COh
1 01h 33 21h 65 41h 129 81h 161 Alh 193 Clh
2 02h 34 22h 66 42h 130 82h 162 A2h 194 C2h
3 03h 35 23h 67 43h 131 13h 163 A3h 195 C3h
4 04h 36 24h 68 44h 132 I .. h 164 A4h 196 C4h

5 05h 37 25h 69 45h 133 aSh 165 A5h 197 C5h
6 06h 38 26h 70 46h 13 .. a6h 166 A6h 198 C6h
7 07h 39 27h 71 47h 135 17h 167 A7h 199 C7h
8 08h 40 28h 72 48h 136 18h 168 A8h 200 C8h
9 09h 41 29h 73 49h 137 89h 169 A9h 201 C9h

10 OAh 42 2Ah 74 4Ah 131 IAh 170 AAh 202 CAh
11 OBh 43 2Bh 75 4Bh 139 8Bh 171 ABh 203 CBh
12 OCh 44 2Ch 76 4Ch 1 .. 0 aCh 172 ACh 204 CCh
13 OOh 45 20h 77 40h 1 .. 1 8Dh 173 AOh 205 COh
14 OEh 46 2Eh 78 4Eh 1 .. 2 IEh 174 AEh 206 CEh

15 OFh 47 2Fh 79 4Fh 1 .. 3 aFh 175 AFh 207 CFh
16 10h 48 30h 80 50h 1 90h 176 BOh 208 DOh
17 Ilh 49 31h 81 51h 1 .. 5 91h 177 B1h 209 Dlh
18 12h 50 32h 82 52h 1 .. 6 92h 178 B2h 210 D2h
19 13h 51 33h 83 53h 1 .. 7 93h 179 B3h 211 D3h

20 14h 52 34h 84 54h 1 .. 8 9 .. h 180 B4h 212 04h
21 15h 53 35h 85 55h 149 95h 181 B5h 213 D5h
22 16h 54 36h 86 56h 150 96h 182 B6h 214 D6h
23 17h 55 37h 87 57h 151 97h 183 B7h 215 D7h
24 18h 56 38h 88 58h 152 91h 184 B8h 216 D8h

25 19h 57 39h 89 59h 153 99h 185 B9h 217 D9h
26 lAh 58 3Ah 90 5Ah 154 9Ah 186 BAh 218 DAh
27 IBh 59 3Bh 91 5Bh 155 9Bh 187 BBh 219 DBh
28 1Ch 60 3Ch 92 5Ch 156 geh 188 BCh 220 Deh
29 lOh 61 30h 93 50h 157 'Dh 189 BDh 221 OOh

Corvus Systems 226

Mass Storage Systems GTI

RETURN CODES FOR 9mniDrive/BANK

ACTIVE

Value

o Oh

131 83h

36 24h
132 84h

135 87h
136 88h

43 2Bh
139 8Bh

142 8Eh
143 8Fh

157 9Dh
158 9Eh
159 9Fh

USER TABLE

Value

0
1
2
3

Meaning

No error.

Seek error.

Soft sector header error.
Hard sector header error.

Drive not ready.
Write fault.

Soft eRC error (data).
Hard CRC error (data).

Illegal sector address.
Illegal opcode.

Format firmware track failure.
No tape inserted.
Cannot read boot block.

ERRORS

Meaning

No error.
No room in active user table.
Duplicate name in active user
User not found in active user

BOOT COMMAND ERRORS

Value Meaning

Disk return codes

table.
table.

4 Drive is not initialized (Const II).

Corvus Systems 227

Mass storage Systems GTI Disk return codes

PIPE STATES

PIPE

bit *
bit 7
bit 1
bit 0

BRRORS

Value

0 OOh
8 08h
9 09h

10 OAh
11 OBh
12 OCh
13 ODh
14 OEh
15 OFh

SEMAPHORE STATES

Value

o OOh
128 80h

SEMAPHORE ERRORS

Value

o OOh
253 FDh
254 FEh
255 FFh

Corvus systems

Meaning

1-contains data / O=empty
1-open for read
1-open for write

Meaning

No error.
Tried to read an empty pipe.
Pipe not open for read or write.
Tried to write to a full pipe.
Tried to open an open pipe.
Pipe does not exist.
Pipe buffer full.
Illegal pipe command.
Pipes area not initialized.

Meaning

Semaphore not set.
Semaphore set.

Meaning

No error.
Semaphore table full.
Semaphore table read-write error.
Unknown error.

228

Mass storage Systems GTI Transporter Messages

TRANSPORTER RESULT CODES

Value -----
0 OOh

<64 <40h

<128 <80h

Meaning

No error.
Node identification number resulting from an
Initialize or Who Am I command.
Transmit retry count.

128
129

80h
81h

Transmit failure (retry count exceeded).
Transmitted messages user data portion was too
long for the receiver's buffer.

130
131

132

82h
83h

84h

Message was sent to an uninitialized socket.
Transmitted message control portion length did
not equal receive socket's control buffer length.
Invalid socket number in command vector (must
be 80h, 90h, AOh, or BOh).

133 8Sh Receive socket in user.
134 86h Invalid destination node number in command vector.

(must be 00-3Fh or FFh).

192 COh Received an ACK for an Echo command.

254 FEh Socket set up successfully.

Transporter command summary

Send message

Command vector
Byte Contents

o Command code - 40h
1 Result record address
4 Destination socket
5 Data address
8 Data length

10 User control length
11 Destination host

Setup receive

Command vector
Byte Contents

o Command code - FOh
1 Result record address
4 Socket number
5 Data address
8 Data length

10 User control length

Corvus Systems

Result record
Byte Contents

o Return code
1 Unused
4 User control info

Result record
Byte Contents

o Return code
1 Source host
2 Unused
4 User control info

229

Mass storage Systems GTI

End receive

Command vector
Byte Contents

o Command code - 10h
1 Result record address
4 Socket number

Initialize

Command vector
Byte Contents

o Command code - 20h
1 Result record address

Who am I

Echo

Command vector
Byte Contents

o Command code.- Olh
1 Result record address

Command vector
Byte Contents

o Command code - 02h
1 Result record address
4 Destination node

Corvus Systems

Transporter Messages

Result record
Byte Contents

o Return code

Result record
Byte Contents

o Return code

Result record
Byte Contents

o Return code

Result record
Byte Contents

o Return code

230

Mass storage Sy&tems GTI OmniDrive And Rev B/H Drives

OKNIORlVE AND
REV B/R DRIVES C

This appendix describes the differences between the OmniOrive and
the Rev B/H drives:

Physical Characteristics:

The OmniOrive has 18 sectors per track while Rev B/H drives have
20 sectors per track.

Firmware Layout:

The OmniOrive firmware area is arranged differently from that of
Rev B/H. Refer to Appendix A for details; the differences are
summarized below:

The firmware block number ranges from 0 to 35 for omniOrive. Rev
B/H drives use physical head/sector number.

The sparing information for the OmniOrive is recorded in block 0
of the firmware. The Rev B/H drive records information in block
1. OmniDrive allows variable number of spare tracks for
different drives.

Prep Hode:

In Prep mode, the OmniOrive turns on FAULT and READY LEOs; the
Rev B/H turns on BUSY LED.

OmniDrive can accept up to four prep blocks. Rev B/H accepts
only one.

OmniDrive formats with a FFH pattern. A specific fill command
has to be sent to have a different pattern written.

Corvus Systems 231

Mass storage Systems GTI omniDrive And Rev B/H Drives

Read-write:

Read after write is an option selectable in the diagnostic
program.

Sector addressing scheme has been changed to support 24-bit
address.

Parking:

omniDrive implements parking as a firmware command (BOh). Rev
B/H requires a special prep block.

omninet Device ~e:

The omniDrive has a new omninet device type (device 6). This
device type is returned to a Who Are You command.

Constellation Support:

A new OeleteActiveNumber command is provided to delete all active
users with the same host number. This command is currently not
supported in Rev B/H drives.

omniDrive does not have Constellation parameters to support the
multiplexer,

Virtual drives are not supported. To replace the virtual table,
a new sector address scheme is implemented (24 bit address).

The OmniOrive supports the new Constellation Disk Server Protocol
as well as the existing version. Refer to Chapter 2 for details.

pipes And sempahores:

Pipes tables (pointer and name) are located in the firmware area
of OmniDrive. Rev B/H pipes tables are stored in the pipes area.

Pipe tables are resident in RAM at all time. They are written to
the disk when a pipe is closed after write or when the drive is
put in prep mode.

Pipe read-write only works with 512 bytes of data even though the
interface stays the same.

Corvus systems 232

Mass Storaqe Systems GTI omniDrive And Rev B/H Drives

wild card character (NUL) is supported in semaphore and pipe
operations.

omniDrive semaphore table is not saved. It is resident in RAM
all the time. It is destroyed when the drive is powered off.

Corvus Systems 233

Mass storage Systems GTI OmniOrive And Rev BIB Drives

Corvus Systems 234

Mass storage Systems GTI The Apple II Transporter

TRANSPORTER
CARDS D

'!'BE APPLE II TRANSPORTER

The Apple II communicates with its transporter by first
formatting a command vector and then sending the command
vector address to the transporter through the use of one
control register. This control register is referred to as
the Command Address Register (CAR). When the command is
completed, a return code is placed in the result record. The
address of the result ,.record is specified in the command
vector.

The CAR is an 8-bit register. Its address is determined by
the slot in which the transporter is installed as shown in
the chart below. Apple II I/IO space is memory mapped so
the addresses below are normal memory addresses and not I/O
addresses.

CAR ADDRESS
SLOT

IftJKBER Hexadecimal Decimal Decimal

1 C090 49296 -16240
2 COAO 49312 -16224
3 COBO 49328 -16208
4 COCO 49344 -16192
5 CODO 49360 -16176
6 COEO 49376 -16160
7 COFO 49392 -16144

When set, this bit indicates that the transporter is ready
to receive the next address byte of the three byte command
vector address. To issue a command to the transporter, this
address must be given to the transporter one byte at a time.
Every time an address byte is placed into the CAR, the ROY
bit of the CAR goes low and the next byte cannot be sent
until the ROY bit returns high again.

The three byte address is sent with the most significant byte
first. For the Apple II the first byte is always zero since
the Apple II address space only requires two address bytes.

Corvus Systems 235

Mass storage Systems GTI The Apple II Transporter

80ftware Notes

While the transporter is receiving a packet from the network
it cannot process a byte moved into the CAR, so the ROY bit
of the CAR remains low until the transporter can process the
next byte. This leads to a situation where a software I/O
driver may have to wait up to several milliseconds before
the ROY goes high again.

Since the Apple II processor does not support interrupts, the
communication program should periodically check the return
code for a change in value. As it is conceivable, though
highly improbable, that the transporter could be modifying
the return code at the same moment as the processor is
viewing it, the processor should check the code a second time
after detecting a change. This will insure that the
processor sees the correct code value rather than a
mid-change garble.

Until the command has completed as indicated by the return code,
no additional data should be placed into the CAR by the sending
computer. This is because the transporter will only process one
command at a time.

The Apple II transporter is unbuffered. Data transfers with
host memory take place through DMA and do not disturb the
processor. There is no DMA overrun detection circuitry on
board the Apple II transporter card because host memory is
sufficiently fast that it is not needed.

An onboard boot ROM is provided with the Apple II transporter.

~BE CONCEPT TRANSPORTER

The Concept transporter is a normal DMA transporter which
supports interrupts. Interrupts arrive at priority three.
After an.interrupt arrives, the host must reset the interrupt
mechanism before another interrupt can happen. Interrupts
are reset when the processor performs a write operation to
any address between 030FCl and 030FDF. The contents of the
write are unimportant.

A potential problem exists when several transporter
operations are pending concurrently. If two commands
complete within a short time of each other it is possible
that the processor will not have a chance to reset the
interrupt mechanism between the two command completion
interrupt. To avoid this eventuality, the processor should
check the values of all the outstanding return codes before
returning from the interrupt subroutine. If any of these

Corvus Systems 236

Mass storage Systems GTI The Concept Transporter

return codes indicates that the associated command has also
completed, the processor can then take appropriate action.

Concept I/O space is memory mapped so all I/O addresses are
simply standard memory addresses. This includes those given
above for interrupt resets.

To issue a command to the transporter, the processor must
write the command vector address, byte to byte, to any
address between 030FAl and 030FBF. Between each byte write,
the processor must check the transporter READY bit. This is
bit 0 of address 030F7F. Bit 0 high indicates that the
transporter is ready to accept the next byte of the command
vector address into the CAR.

A boot ROM is included on board the Concept transporter.

THE IBM PC TRANSPORTER

The IBM PC transporter is a buffered transporter which does
not support interrupts. There is a boot ROM on board which
extends from host CPU address DFOOO to address EOOOO. The
ROM utilizes the first 1024 bytes of the 4K buffer RAM and
must have exclusive use of this area. The host should not
place command vectors or other command information in this
section of this buffer.

All processor read and write operations from and to the PC
transporter take place through the I/O ports. The following
is a list of the possible processor actions and the I/O ports
to which they should be directed.

Operation

Read Transporter Status Byte
Read RAM
Read RAM; then Increase the Counter by 1

write to the CAR
Write the Counter High Byte
write the Counter Low Byte
Write to RAM; then Increase the Counter by 1

I/O Port

0248
0249
024B

0249
0248
024A
024B

All read and write operations directed at the RAM occur at
the address to which the counter is currently pointing. The
counter is subsequently increased only for those commands
which specify a post-increment.

Bit 7 of the transporter status byte is the READY signal.

Corvus Systems 237

Mass storage Systems GTI The IBM PC Transporter

Bit 7 high indicates that the transporter is ready to accept
the next byte of the command vector address into the CAR.

Rom Services

There are four separately executable routines contained
within the IBM transporter onboard ROM. Each routine is
initiated by a standard 8086 intersegment long CALL to one
of the four ROM entry points. The four routines and their
entry points are as follows:

COLDSTART - DFOOO
WARMS TART - DF003
I/O - DF006
DUMMYRET - DF009

The COLDSTART routine initializes the transporter card,
locates a disk server-on the network, loads the Constel
lation II boot program from the disk and transfers control
to that program.

The WARMS TART routine initializes the transporter card.

The I/O routine performs one of a number of services
depending on the contents of the AH register at the time the
routine is entered. The I/O services are discussed in detail
below.

The DUMMYRET routine performs a dummy interrupt return.

I/O Services

There are six I/O services. The contents of the 8086 AH
register at the time of entry to the I/O routine determines
which service is performed. However, before any I/O service
is requested, the host must call the WARMS TART routine. The
I/O services will not function until the WARMSTART routine
has been executed. COLDSTART calls WARMSTART, though, so the
host need not make a separate WARMS TART call if the host used
the ROM to boot. Each I/O service is described below.

o Identify Interface: (AH) - 00

Contents of 8086 registers on entry:

(AH) = 00

Contents of 8086 registers on exit:

Corvus Systems 238

Mass storage Systems GTI The IBM PC Transporter

(AL) - 00
(AH) - OMNINET node number of the transporter (if the

node number is unique)
- FF (if a second transporter exists on the

network with the same node number)

o Transmit Data to the Drive and Accept a Response: (AH) - 01

Contents of 8086 registers on entry:

(AH)
DS: (SI)
ES: (DI)

(CX)

(DX)

(AL)
(BL)

(BH)

- 01
- address of data to send to drive
- address of buffer to receive data from

drive.
- number of data bytes to send to the drive

(maximum - 530)
- number of bytes expected back from the

drive excluding the return code (maximum -
530)

- network address of disk server
- number of timer units to wait for a reply

from the disk server. 00 - do not abort;
wait forever. (a timer is approximately .86
seconds)

- number of transmit tries. 00 - 255 tries.
FF - try until successful. Should be
greater than o.

Contents of 8086 registers on exit:

(AL) - return code from the drive. FF - aborted.
(CX) - number of bytes received from the drive

including the return code.

o Transmit Data to a Network Server: (AH) - 02

Contents of 8086 registers· on entry:

(AH)
ES: (DI)
(CX)
(AL)

(BH)

- 02
- address of data to transmit
- number of data bytes to transmit
- network address of server. FF - broadcast

to all servers.
- number of transmit tries. For broadcasts,

(BH) - number of times to transmit the
data.

contents of 8086 registers on exit:

Corvus Systems 239

Mass storage Systems GTI The IBM PC Transporter

(AL) - 00 (transmit successful)
- FF (transmit aborted)

o Transmit Data to a Network Server and Accept a Response:
(AR) - 03

contents of 8086 registers on entry:

(AR) - 03
OS: (SI) - address of data to transmit
ES: (01) - address of buffer to receive data from

server.
(CX) - number of data bytes to transmit

(maximum - 530)
(OX) c number of data bytes expected from the

server (maximum - 530)
(AL) - network address of server. FF - broadcast

to all servers.
(BL) - number of timer units to wait for a reply

from the server. 00 - do not abort; wait
forever. (a timer unit is approximately
.86 seconds)

(BH) - number of transmit tries. 00 - 255 tries.
Should be greater than o.

Contents of 8086 registers on exit:

(AL) = 00 (transmit successful)
- FF (transmit aborted)

o Find any Disk Server on the Network: (AR) - 04

Contents of 8086 registers on entry:

CAH) - 04
(BL) = number of timer units to wait for a reply from

a disk server. 00 - do not abort; wait forever.
(a timer unit is approximately .86 seconds)

(BH) - number of tries. 00 - 255 tries. Should be
greater than o.

Contents of 8086 registers on exit:

(AL) = 00 (operation successful)
= FF (operation unsuccessful)

CAR) = network address of the disk server that
responded.

o Send a write Command to the Drive: CAR) = 05

Corvus Systems 240

Mass storage Systems GTI The IBM PC Transporter

contents of 8086 registers on entry:

(AH)
OS: (SI)
ES: (OI)
(CX)

(OX)

(AL)
(BL)

(BH)

- 05
- address of command block to send to drive
- address of data to send to drive
e length of command block in bytes

(normally 4)
- number of data bytes to send to the drive

(normally 512)
= network address of disk server
- number of timer units to wait for a reply

from the disk server. 00 - do not abort;
wait forever. (a timer unit is
approximately .86 seconds)

- number of transmit tries. 00 - 255 tries.
Should be greater than o.

Contents of 8086 registers on exit:

(AL) - return code from the drive. FF - aborted.
(CX) - number of bytes received from the drive

including the return code.

THE He-TRANSPORTER

The NC-Transporter is a buffered transporter which functions
with both the 8001 and 8801 NEC microcomputers. When used
with an 8001 it should be plugged into an 8031 expansion box.

The NC-Transporter has a 2K boot ROM on board which occupies
addresses OOOOOh to 03FFFh and kills the microcomputer
internal ROM when enabled. The ROM can be software enabled
by setting bit 5 of I/O port 97 high, or, at reset time, by
selecting the auto boot option with the jumpers. For more
information see the NC-Transporter Installation Guide.

The NC-Transporter also supports interrupts. The interrupt
level can be selected using the transporter jumpers.
Information on the jumpers is available in the NC-Transporter
Installation Guide. To enable the interrupt facility, the
processor must set bit 4 of I/O port 97 high. The processor
can check interrupt status by examining bit 4 of I/O port 97.

As the NC-Transporter is buffered there is no need for DMA
overrun detection circuitry.

All processor read and write operations from and to the H-89
transporter take place through the I/O ports. The following
is a list of the possible processor actions and the I/O ports
to which they should be directed.

Corvus Systems 241

Mass storage Systems GTI The NC-Transporter

Operation

Read transporter Status Byte
Read RAM

I/O Port

97
96

Read RAM; then Increase the Counter by 1 94

write to the CAR 96
write the Counter High Nibble,
the Interrupt Enable Bit,
and the Boot ROM Enable Bit 97

Write the Counter Low Byte 95
Write to RAM; then Increase by Counter by 1 94

All read and write operations directed at the RAM occur at
the address to which the counter is currently pointing. The
counter is subsequently increased only for those commands
which specify a post-increment.
As is clear from the list above, port 97 is used for a number
of different operatons. A clearer understanding of the
structure of port 97 may be gained from the diagram below.

PORT 97

+-----+------+------+------+------+------+------+------+
I I
I READY I
I BIT I
I I

I
I ROM I INT I
I ENABLE I ENABLE I
I I I

I I I I
High Nibble of Address I

I Counter I I
I I I I +-----+------+------+------+------+------+------+------+

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

As shown above, bit 7 of the transporter status byte (port
97) is the READY signal. When port 97 is read, bit 7 high
indicates that the transporter is ready to accept the next
byte of the command vector address into the CAR. When
writing to port 97, the value to which bit 7 is set is
unimportant.

THE VT-180 ~RANSPORTER

The VT-180 transporter is a normal DMA transporter which
supports interrupts. Interrupts may be enabled by setting
bit 0 of address EE high. The CPU must also be running in
interrupt mode o. After an interrupt occurs, the RESTART 8
command should be issued to the CPU.

The command address register on the VT-180 card lies at I/O
address EF. Command vector address bytes must be written to'
this address.

Corvus Systems 242

Mass Storaqe systems GTI The VT-180 Transporter

The status port of the VT-180 card lies at I/O address EE.
Bit 7 of this byte is the transporter READY line. Bit 7 hiqh
indicates that the transporter is ready to accept the next
byte of the command vector address into the CAR.

THE SONY TRANSPORTER

The Sony transporter is a buffered transporter which has an
interrupt status bit that can be checked when line time 60 HZ
interrupt occurs (or other interrupts).

All processor read and write operations from and to the Sony
transporter take place throuqh the I/O port 4CH-4FH. The
followinq is a list of the possible processor actions and the
I/O ports to which they should be directed.

operation

Read transporter status byte
Read RAM
Read clears interrupt status bit
Read buffer RAM; then Increment the Counter

write to the command address reqister (CAR)
Write the counter hiqh byte
Write the counter low byte
write the RAM: then Increment the Counter

I/O Port REX

4F
4E
4D
4C

4E
4F
4D
4C

All read and write operations directed at the RAM occur at
the address to which the counter is currently pointinq. The
counter is subsequently incremented only tor those commands
which specify a post-increment.

Bit 7 of the transporter status byte is the READY siqnal.
Bit 7 hiqh indicates that the transporter is ready to accept
the next byte of the command vector address into CAR.

Bit 4 of the transporter status byte is the INT STATUS
(interrupt status) and is set upon completion of each
transporter command. This bit is cleared by readinq port 4D.

THE UNIVERSAL BUFFERED TRANSPORTER

The Universal Buffered Transporter (UBT) is a basic butfered
transporter upon which many buffered transporters for
specific microcomputers are built.

Corvus Systems 243

Mass storage Systems GTI The Univeral Buffered Transporter

There is no DMA overrun detection circuitry on board the UBT
and in fact no overrun detection circuitry on any buffered
transporter. Buffered transporters perform their DMA
operations on the buffer RAM which by design is sufficiently
fast that no overruns can occur.

The UBT does not support interrupts and there is no boot ROM
on board.

All processor read and write operations from and to the UBT
take place through I/O ports. The two least significant port
address bits for each operation are determined by the UBT.
The upper 6 port address bits are defined by host-dependent
circuitry.

The following is a list of the possible processor actions and
the I/O ports to which they should be directed. In the
table, "n" represents the upper six bits of the port address.

operation

Read Transporter status Byte
Read RAM
Read RAM; then Increase the Counter by 1

I/O Port

n3
n2
nO

write to the CAR n2
Write the Counter High Byte n3
Write the Counter Low Byte nl
Write to RAM; then Increase the Counter by 1 nO

All read and write operations directed at the RAM occur at
the address to which the counter is currently pointing. The
counter is subsequently increased only for those commands
which specify a post-increment.

Bit 7 of the transporter status byte is the READY signal.
Bit 7 high indicates that the transporter is ready to accept
the next byte of the command vector address into the CAR.

THE 1-80 ENGINEERING ~RANSPORTER

The z-SO transporter is a normal DMA transporter which does
not support interrupts. There is no boot ROM on board the
z-SO transporter but there is limited DMA overrun detection
circuitry.

The command address register on the Z-SO card lies at I/O
address FS. Command vector address bytes must be written
to this address.

Corvus Systems 244

Mass Storage Systems GTI The Z-80 Engineering Transporter

The status port of the Z-80 card lies at I/O address F9.
Bit 4 of this byte is the transporter READY line. Bit 4 high
indicates that the transporter is ready to accept the next
byte of the command vector address into the CAR.

THE IBK PC-JR. TRANSPORTER

The IBM PC-Jr. transporter is a buffered transporter which
does not support interrupts. There is a boot ROM on board
which extends from host CPU address DFOOO to address EOOOO.
The 'ROM utilizes the first 1024 bytes of the 4K buffer RAM
and must have exclusive use of this area. The host should
not place command vectors or other command information in
this section of this buffer.

All processor read and write operations from and to the
PC-Jr. transporter take place through the I/O ports. The
following is a list of the possible processor actions and
the I/O ports to which they should be directed.

operation I/O Port HEX

Read Transporter Status Byte 3F8
Read RAM 3F9
Read RAM; then Increase the Counter by 1 3FB

Write to the CAR 3F9
Write the Counter High Byte 3F8
Write the Counter Low Byte 3FA
Write to RAM; then Increase the Counter by 1 3FB

All read and write operations directed at the RAM occur at
the address to which the counter is currently pointing. The
counter is subsequently increased only for those commands
which specify a post-increment.

Bit 7 of the transporter status byte is the READY signal.
Bit 7 high indicates that the transporter is ready to accept
the next byte of the command vector address into the CAR.

THE 1-100 TRANSPORTER

The Z-lOO transporter is a normal DMA transporter which
supports interrupts. It is possible, using the jumpers and
exposed pins on the Z-lOO card, to select the level at which
interrupts will arrive. For details see the Z-lOO
Installation and Programming Guide.

Corvus Systems 245

Mass storage Systems GTI The Z-100 Transporter

Once an interrupt arrives it is necessary for the interrupt
handler software to reset the interrupt mechanism before
returning control to the interrupted program. The interrupt
is reset by writing to the Reset Interrupt Register at I/O
port FB. The contents of the write are unimportant. If the
interrupt is not reset, it will be impossible for the
transporter to interrupt the processor again.

The Z-100 transporter has the facility to support an.onboard
boot ROM at IC location 7, but Corvus Systems does not supply
a ROM. A user installed ROM is addressed using the phantom
scheme to overlay an area of memory. The user selects this
address space by using jumpers E2 through ES. The chart
below shows how to select the phantom address.

Memory Address Bit 15 14 13 12 11-0

Jumper E3 E4 E2 ES No Jumper

Default (OXXX) 0 0 0 0 X

jumper A-B - bit low jumper A-C - bit high

For more information on how to access an onboard ROM, aee the
Z-100 Installation and Programming Guide.

The command address register on the Z-100 card lies at I/O
address SA. Command vector address bytes must be written to
this address.

The status port of the Z-100 card also lies at I/O address
SA. The reason that this does not create confusion is that
the host only writes to the CAR and only reads from the
atatus port. The read/write line trom the CPU determines
which register is attached to the data lines.

Bit 0 of the status byte is the transporter READY line. Bit
o high indicates that the transporter is ready to accept the
next byte of the command vector address into the CAR.

The Z-100 transporter card includes DNA overrun detection
circuitry.

THE RAINBOW TRANSPORTER

The Rainbow Transporter is of unbuffered type with no
underrun/overrun support. This means that most communication
with the transporter is done via DNA. A DNA cycle is
guaranteed to start within 3.5 microseconds from a request so
over/under run will never happen. The host passes command

Corvus Systems 246

Mass Storaqe Systems GTI The Rainbow Transporter

addresses, contro~s~interrupts and RESET with the help of 2
I/O reqisters (address 22H-23H).

bit 1 bit 1 bit 0

RESET IE
22H

23H
CAR

ROY - Transporter ready to accept one byte of a command
address. (For restrictions see the omninet Technical
Reference Manual). Read only bit. write operation
does not have any effect on this bit.

IE Interrupt enable. When set (-1) the transporter will
interrupt the host as described in the Omninet
Technical Reference Manual. It is cleared by reading
in the CAR reqister. This bit is cleared on power up.

CAR - Command address reqister. For each Omninet command a
three byte address is passed in this reqister (MSB
first). Reading this register will clear interrupt
requests.

RESET - When set, the RESET line to the qeneric transporter
is held low and pending interrupts are cleared. This
bit is cleared on power up. Interrupts must not be
enabled until 50 micorseconds after reset cycle has
been completed.

Interrupts

The Transporter supports the DMA Controller Interrupt
normally used by the extended communication option. The
interrupt is of type 23H and uses interrupt vector 3CH. An
interrupt request is cleared by readinq the CAR (address·
23H).

Corvus Systems 247

Mass storaqe Systems GTI LSI-ll Transporter

LSI-ll TRANSPORTER

Jumpers And switches

The LSI-ll OMNINET interface board, called a transporter, contains
jumpers to select the LSI-ll control and status reqister (CSR)
address, the interrupt vector address, and interrupt priority.
There is also a jumper to enable/disable the bootstrap.

The transporter contains a Dip switch with eiqht microswitches.
Microswitches 1-6 are used to set the unique OMNINET device address.

Microswitch number 7 is used to set a bias offset on the OMNlNET
cable to reduce the effect of noise on the line when it is idle.
Exactly one device on the network should have this switch set on.

Microswitch number 8 is reserved for network termination. Nor
mally, switch 8 is off for all transporters because terminators are
physically installed at both ends of the network.

Bootstrap

The transporter board has a 256 word bootstrap area with a starting
address of 773000. The bootstrap sockets accept two 256 x 8 proms
compatible with MMI 6309-1J or TI 74S47l. Location U23 contains the
low order bytes and location U16 contains the high order bytes of the
bootstrap code. When shipped, the bootstrap is enabled and contains
the boot code for a DEC RLOl disk drive or the Corvus RLOl compatible
disk system. The bootstrap can be disabled by removing the jumper
between pins J8 and J13.

Device Address

The transporter hardware has support for a 20-bit address1 However, an
l8-bit address is normally used with Q-bus devices. The transporter
contains jumpers to select bit 3 to bit 12 of the device CSR address.
Pins used to set the CSR address are J1-J6 and J9-J12. Pin J7 is used
as a qround. A jumper installed from an address pin to the qround pin
results in a zero for that bit of the device address. Since there is
a single qround pin, the jumpers are installed in a daisy-chained
fashion. The CSR device address is preset to 766000 as shown in the
chart that follows:

Corvus Systems 248

Mass storage Systems GTI LSI-11 Transporter

Bit 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01

Pin 1

766000 1

1

1

1

1

1

1

1 Jl J2 J3 J4 J5 J6 J9 JI0 Jll J12 o o

1 o 1 1 o o o o o o o o o

Bit 17-13 are implied ones and bits 2-0 are implied zeroes. To create
the preset device address of 766000, pins Jl and J4-J12 must be jumped tl
the ground pin J7. This can be performed with the following jumpers:
JI-J4, J4-J5, J5-J6, J6-J7, J9-JIO, JI0-Jll, JII-J12, and Jl2-J7.

programming Guide

Chapter three of the Omninet Local Area Network General Technical
Information Guide describes the commands that can be used with
the transporter. The LSI-11 communicates with the transporter by
first formatting a command control block and then sending the
command control block address tq the transporter through the use
of two control registers. When the command is completed, a
return code is placed in the result record address as specified
in the command control block. An interrupt is generated when the
operation is completed. For a detailed description of commands,
control block formats, and return codes aee Chapter three

CSR - Control ADd status Register

The Control and status Register (CSR) is a l6-bit register with a
standard address of 766000. All bits can be read or written.

Bit 0-6 Not used

Bit 7 Interrupt Enable (IE)

This bit is set to 1 upon power up and hardware reset. If this bit is
cleared, the transporter cannot interrupt the processor.

Bit 8-14 Not used

Bit 15 Transporter Ready (ROY)

When set, this bit indicates the transporter is ready to receive the
next address byte of the three byte command control block address.
This bit is cleared when a byte is moved into the Command Address
Register (CAR).

Corvus Systems 249

Mass storage Systems GTI LSI-11 Transporter

CAR - Command Address Register

The Command Address Register (CAR) is a 16-bit write-only register
with a standard address of 7660002.

Bit 0-7 Command Address Byte

To issue a command to the transporter, the three byte address of the
command control block must be given to the transporter one byte at a
time. Every time an address byte is placed into the CAR, the ROY bit
of the CSR goes low and the next byte cannot be sent until the ROY bit
returns high again. The three byte address is sent with the most
significant byte first.

Bit 8-15 Not used

80ftware Bote.

While the transporter is receiving a packet from the network, it will
not process a byte moved into the CAR so the ROY bit of the CSR remains
low until the transporter can process the next byte. This leads to a
situation where a software I/O driver may have to wait up to several
milliseconds before the ROY goes high again. since the transporter
processes one command at a time, the computer should not place any
additonal data into the CAR after it has issued a command, until the
command has completed as indicated by the command ·return code.

%Dterrupta

An operation complete interrupt is generated after the completion of
each command issued to. the transporter. Before the interrupt is
generated, a return code is placed in the address specified as the
result record address in the command control block. Two interrupts
are generated for a valid setup receive command. The first interrupt
indicate~ the command was accepted and the socket is setup to receive
a message. The second interrupt occurs when a message is received.
The program should initialize the return code byte in the result record
to hex $FF before the command code block is sent to the transporter.
When a transporter interrupt occurs, the program must check the return
code value of each active transporter command to determine which oper
ation has just completed.

Byte Order

All OMNINET addresses and lengths must be specified with the most
significant byte first and the least significant byte last. Addi
tionally, some addresses and lengths are not on word boundaries.

Corvus Systems 250

Mass storage systems GTI

.t" .. :":. ",' '":

,-':'.

"JB 0
37. 0

. JG 0

JS 0
J4 0
~3 0
32 0
J1 0

oJ13

o J12
0.,11
o J1D
o ;ss

!'iqure D.l:

Corvus systems

LSI-ll II ~ransporter

' ... ;.'

LSI-ll Transporter Board
Jumper Locations

. .nolo:"

t:nnO<tor

.. .=:"~-

-" .. ;._ ,.

I

251

Mass storage Systems GTI LSI-ll Transporter

This page intentionally left blank.

Corvus Systems 252

Mass storage Systems GTI Flat Cable Interface

CORVUS FLAT CABLE
INTERFACE CARDS E

This ~ppendix describes the flat cable interface provided by
Corvus. It contains a table describing the flat cable interface
cards, and gives listings of sample interface routines.

The table on the next page describes the flat cable interface
cards provided by Corvus or other developers. See Appendix A
for a description of the flat cable signal assignments,
including READY and DIRC.

For each interface card, the table contains the following
information:

1. The processor type (Z80, 8080, 6502, 8088, 8086).
2. Whether the I/O is memory mapped or through I/O ports.
3. The data port or memory address.
4. The status port or memory address.
5. Which bit (bit 7 is msb) of the status port is the

READY line, and the value for READY.
6. Which bit of the status port is the DIRC line, and the

value for Host-to-Drive.
7. Additional notes are given below.

Notes:

(1) Card contains space for a 2k PROM; card must be in slot 6
(2) Must output 1 to bit 6 of port OECh first
(3) Same card as TRS-80 I, except jumpered.
(4) Contains space for a PROM;

bit "2 - auto boot switch, bit 7 - power on
(5) Complex strobe.
(6) Complex bus direction control
(7) Card contains space for a 4k PROM
(8) Interface is through game ports 3 and 4.
(9) Not a Corvus product. The Alspa card was developed by

Alspa; the LNW80 card was developed by an independent
developer; the Magnolia Z-89 was developed by Magnolia
Microsystems.

Corvus Systems 253

Mass storage Systems GTI Flat Cable Interface

II 1. I 2. 3. 4. 5. I 6. 7.
II I Data Status IReady IH-t-D I
II Pro- I Port Port I Status I Status I
Ilcessorl I/O Address Address Ibit '/Ibit./ I

Computer II Type I Type Hex/Dec Hex/Dec Ivalue Ivalue INotes -----=----=--= ____ =_==_==_= __ =-_==-__ ==_= __ = ____________________ ceca

Alspa I I Z80 I I/O I DOh/208 I D2h/210 I 0/1 I 1/1 1(5,9)
--
Altos I I Z80 I I/O I 81h/129 I 80h/128 I % I 1/0
--
Atari 400/8001 I 6502 I I (8)
--
Apple II II 6502 I Mem

II I
COEOh/ I COE1h/ I 7/0 I 6/0 1(1)
49376 I 49377 I I I

--
DEC Rainbow I I 8088 I I/O I 20h/ 32 I 21h/ 33 I % I 1/1

DEC Robin I I Z80 I I/O I DEh/222 I DFh/223 I % I 1/1

IBM PC I I 8088 I I/O I 2EEh/7501 2EFh/751I ~/O I 1/1 1(7)
--
LNW80 II Z80 I Hem F781h/ I F780h/ I % I 1/0 1(3,9)

Magnolia Z-891 I Z80 I I/O I 59h/89 I 58h/88 I % I 1/0 1(4,9)

NEC I I Z80 I I/O I 81h/129 I 80h/128 I % I 1/0
--
Osborne 0-1 I I Z80 I Mem (5) (5) I 6/0 I 7/1 I (5)
---.-----------------------_ ...
S-100, Z80

ripoff
I I 8080,1 I/O I DEh/222 I DFh/223 I % I 1/1
II Z80 I , I I I

--
Sony SMC-70 I I Z80 I I/O I 48h/ 72 I 49h/ 73 I % I 1/1
--
SuperBrain I I Z80 I I/O I 81h/129 I 80h/128 I % I 1/0 I

--
TRS-80 I I I Z80 I Mem 3781h/ I 3780h/ I % I 1/0 I

I I I 14209 I 14208 I I I

--
TRS-80 II I I Z80 I I/O I DEh/222 I DFh/223 I % I 1/1
--
TRS-80 III I I Z80 I I/O I DEh/222 I DFh/223 I % I 1/1 1(2)
--
Xerox 820 II Z80 I I/O 08h/8 09h/9 I % I 1/1 1(6)
---~------------------Zenith H-89 I I Z80 I I/O I 7Ah/122 , 7Bh/123 I % I 1/1 I
--
Zenith Z-90, I I Z80 I I/O I 7Eh/126 I 7Fh/127 ,0/0 '1/1 I
Zenith Z-100 I I 8085 I I I I I I
--

Corvus Systems 254

Mass storage Systems GTI Flat Cable Routine For 6502

SAMPLE INTERFACE ROUTINE FOR 6502

; This section describes the source for the machine language program known
; as BCI. BCI stands for Basic Corvus Interface; this program is used by
; the various Basic utilities to communicate with the Corvus drive. The
; function of this program is to send one command to the Corvus interface,
; and then wait for a reply. The parameters to BCI are used both as input
; (i.e., the length and command are passed in), and output (i.e., the lengt
; and result bytes of the reply are passed back in the input locations).
;
; Parameters to BCI are:
;
;
• ,

Length of command - this parameter is a word, and is passed
in locations 300,301 (hex; least significant byte first).
Length must always be greater than o •

;
I
• ,

Address of buffer containing command - this parameter is a word,
and is passed in locations 302,303 (hex; least significant byte
is first) •

; Entry point to BCI is 304 (hex).
; BCI is NOT relocatable; it loads at 300
; Uses the OMA buffer address location at
; A~sumes that the CORVUS card fs in slot

• ABSOLUTE

(hex).
48,49 (hex)
6 •

.TITLE "BCI Copyright 1981, All rights reserved, Corvus Systems, I

.PROC BCI

LEN .EQU 0300 I length of command
BUF .EQU 0302 I address of data buffer containing command

RENBL
STATUS
DATA
OMABUF

START

.EQU OCOE2

.EQU OCOE1

.EQU OCOEO

.EQU 48

.ORG 0304
LOA RENBL

; read strobe
I status byte
I input/output line
I OMA buffer location

; enable read strobe

; initialize byte count, OMA index

LOA BUF
STA OMABUF
LOA BUF+l
STA OMABUF+1
LOY #0

; send command to drive

LOX LEN
BNE STEST1

OUTL DEC LEN+1
STESTl BIT STATUS

BMI STESTl

Corvus systems

I count down upper byte of length
; wait for drive to be ready

255

Mass Storaqe Systems GTI

NEXT 1

LDA @DMABUF,Y
STA DATA
INY
BNE NEXTl
INC DMABUF+l
DEX
BNE STESTl
LDA LEN+l
BNE OUTL

Flat Cable Routine For 6502

: send byte to drive

: qet next byte
, check for 256 byte rollover

: done with sendinq command, now wait for line to turn around

TEST2

LOOP 1

• now ,

STEST3

BIT STATUS
BVC TEST2
8MI TEST2

LDY flO
DEY
BNE LOOPl

BIT STATUS
BVC TEST2
8MI TEST2

receive the

LDA fO
STA LEN
STA LEN+l
LDA BUF

result

STA DMABUF
LDA BUF+l
STA DMABUF+l

BIT STATUS
BVC DONE
8MI STEST3

LDA .DATA
$TA @DMABUF,Y
INY
BNE STEST3
INC DMABUF+l
BNE STEST3

: read status bit
, wait for bus to turn around
: wait tor "ready" bit

: delay loop to avoid "ready" qlitch

• check it aqain, just to be sure ,

• initialize returned byte count ,

• reset DMA address ,

• exit if "host to drive" ,

• read byte from controller ,
• save in memory buffer ,

• check for 256 byte rollover ,

• keep loopinq until exit ,

1 compute address of end of received data+l, then subtract startinq address
; to qet total number of bytes received

DONE TYA
CLC
ADC DMABUF
PHA
LDA DMABUF+l

Corvus Systems 256

Mass storage Systems GTI

AOC '0
STA OMABUF+l
PIA
SEC
SBC BUF
STA LEN
LOA OMABUF+l
SBC BUF+l
STA LEN+l
RTS
.END

Corvus systems

Flat Cable Routine For 6502

257

Mass storage Systems GTI Flat Cable Routine For 8080/Z80

SAMPLE INTERFACE ROOTINE 8080/Z80

• ,
;
I
;
;
;

UTILITY DRIVER FOR CORVUS CP/M PROGRAMS WITH PASCAL MT+ --
using the FLAT CABLE interface cards

• ,
;

(MICROSOFT M80 ASSEMBLER FORMAT)

BY KO & BRK

; THIS UNIT IMPLEMENTS 3 SUPPORT PROCEDURES AND FUNCTIONS
; FOR PASCAL MT+ :
I
; INITIO
I SEND

- init corvus drivers and return "bios" pointer
- send data to corvus drive

I RECV - receive data from corvus driver
I
I THESE ARE EXPLAINED BELOW:
;
;
• ,

function INITIO

I Calling the function does some initialization of the
I driver. This function MUST be called once and only once
I before any use of the SEND or RECV routines is attempted.

; FOR SEND AND RECV THE CALLING PROCEDURE IN PASCAL IS:
;
; SEND (VAR st : LONGSTRING)
;
; The first two bytes of the string are the length
; of the string to be sent or the length of the
I string received. Typically one first uses SEND
; to send a string to the drive then follows this with a RECV
I command to get back any returned data from the CORVUS drive.
;
I
, NOTE: These drivers are not necessarily implemented in the
, fastest or most direct way. The MT+ programs are
; so slow that speed here is not the overriding concern.
;

; ---==== I

;
;
;

public INITIO, RECV, SEND
.8080 ;8080 opcodes

; SYSTEM TYPE DESIGNATORS ---
I
H89
HRD
SB
ALTOS

EQU
EQU
EQU
EQU

Corvus Systems

1
2
3
3

I ZENITH H89 SYSTEM
; H89 R&D VERSION
; SUPERBRAIN SYSTEM
; ALTOS SYSTEM DESIGNATOR

258

Mass storage systems GTI Flat Cable Routine For 8080/Z80

S100 EQU
TRS2 EQU
APPLE EQU
XRX EQU
ALSPA EQU
MAGNOLIA EQU
OSl EQU
OSXl EQU
SNY70 EQU
ZSlO EQU
ZSl EQU
LNW80 EQU
• I

· I

4
4
5
6
7
8
9
10
11
12
13
14

; SlOO SYSTEM DESIGNATOR
; TRS-80 MODEL II DESIGNATOR
; APPLE CPM DESIGNATOR
; XEROX CPM DESIGNATOR
; ALSPA CPM DESIGNATOR
; MAGNOLIA Z-89 DESIGNATOR
; OSBORNE 0-1 DESIGNATOR
; OLD EXPERIMENTAL OSBORNE VERSION
; SONY SMC-70 DESIGNATOR
; OLD ZlOO WITH S-lOO PORTS
; ZENITH Z-lOO DESIGNATOR
; LNW80 II DESIGNATOR

; -~= SPECIFY SYSTEM TYPE HERE USING ABOVE DESIGNATORS --=
;
sys
;
;

EQU ZSl ; Designates sys

; --- SETUP EQUATES BASED UPON ABOVE DESIGNATOR CHOICE
• I

OSlT
;
ZSlT
· I

DATA
STAT
HTDRDY
DTHRDY

• I

DATA
STAT
HTDRDY
DTHRDY

• I

DATA
STAT
HTDRDY
DTHRDY

• ,

DATA
STAT
HTDRDY
DTHRDY

• ,

Corvus

EQU

EQU

if sys
EQU
EQU
EQU
EQU
endif

if sys
EQU
EQU
EQU
EQU
endif

if sys
EQU
EQU
EQU
EQU
endif

if sys
EQU
EQU
EQU
EQU
endif

Systems

sys EQ OSl OR sys EQ OSXl • true if OSBORNE I

sys EQ ZSlO OR sys EQ ZSl • true if Z-lOO I

EQ H89 · IF SYSTEM IS Ha9 THEN I

07AH • Controller data I/O port I

07BH · Controller status port I

2 · Host-To-Drive , Drive Ready status I

0 · Drive-to-Host , Drive Ready status I

EQ HRD · for Ha9 R&D INTERFACE I

ODIH • ,
ODOH • I

0 • I

2 • I

EO MAGNOLIA ; IF SYSTEM IS MAGNOLIA Z-89
059H ; DATA INPUT PORT
058H ; STATUS INPUT PORT
o ;
2 ;

EQ SB OR sys EQ ALTOS ; IF SYSTEM IS SUPERBRAIN OR ALT01
081H ; DATA INPUT PORT
080H ; STATUS INPUT PORT
o ;
2 :

259

Mass storage Systems GTI Flat Cable Routine For 8080/Z80

STAT
DATA
HTDRDY
DTHRDY

• I

DATA
STAT
HTDRDY
DTHRDY
• I

COMDD
MODI
MODO

;

DATA
PDATA
STAT
PSTAT
• I

if sys
EQU
EQU
EQU
EQU
endif

if sys
EQU
EQU
EQU
EQU

EQU
EQU
EQU
endif

if sys
EQU
EQU
EQU
EQU

EQ S100 • for S100 type syss I

ODFH • I

ODEH • I

2 · I

0 • I

EQ ALSPA; IF SYSTEM IS ALSPA THEN
ODOH ;
OD2H ;
3 ; Host-To-Drive , Drive Ready status
1 ;

OD3H ; COMMAND PORT
93H
83H

EQ XRX
08H
09H
OAH
OBH

• I

• I

• I

• I

• I

XEROX 820 equates

Control of data port
status port
Control of status port

HTDRDY EQU 02H • Host-To-Drive , Drive Ready status I

DTHRDY EQU OH • Drive-To-Host , Drive Ready status I

• I

OTMODE EQU
INMODE EQU
CTLMODE EQU
CTLMASK EQU
NOINT EQU
• I

OTDIS EQU
INDIS EQU
OTEN EQU
INEN EQU

endif
• I

if sys
DRDY EQU
DIFAC EQU

endif
• I

if sys
DATA EQU
STAT EQU
DRDY EQU
DIFAC EQU
HTDRDY EQU
DTHRDY EQU
• I

Z$PU EQU

Corvus Systems

OFH
4FH
OCFH
OFH
7H

30H
10H
20H

OH

· I

• I

• I

• I

• ,

• I

• I

• I

• I

PIO output mode
PIP input mode
PIO bit control mode
mask for PIO when in CTLMODE
disable PIO interupts

interface output mode, strobes
interface input mode, strobes
interface output mode, strobes
interface input mode, strobes

NE APPLE AND NOT OSlT
1 ; MASK FOR DRIVE READY BIT
2 ; MASK FOR DRIVE ACTIVE BIT

disabled
disabled
enabled
enabled

EQ APPLE ;Apple CP/M equates (Corvus card in slot #6)
OEOEOH ;I/O data pointer
OEOE1H ; I/O status pointer
080H ;Status -- Data ready flag
040H ;Status -- Active flag
o ;Host-To-Drive ReaDY status
040H ;Drive-To-Host ReaDY status

OF3DEh ;Pointer to SoftCard

260

Mass Storaqe Systems GTI Flat Cable Routine For 80BO/ZBO

A$VEC EQU
A$ACC EQU
CWRIT6 EQU
CREAD6 EQU

endif
• I

if sys
• I

ADATA EQU
CTLA EQU
BDATA EQU
CTLB EQU
• I

STAT EQU
DATA EQU

endif
• I

if sys
BTDRDY EQU
D'i'HRDY EQU
DRDY EQU
DIFAC EQU

endif
• I

if sys
BTDRDY EQU
DTHRDY EQU
DRDY EQU
DIFAC EQU

endif ,
if sys

STAT EQU
DATA EQU
BTDRDY EQU
DTHRDY EQU

endif
• I

if sys
STAT EQU
DATA EQU
BTDRDY EQU
DTHRDY EQU

endif
• ,

if ays
STAT EQU
DATA EQU
BTDRDY EQU
DTHRDY EQU

endif
• I

if ays

Corvus Systems

OF3DOh
OF045h
OFBAh
OFC9h

:Pointer to 6502 subroutine address
:Pointer to 6502 A reqister
:6502 write data byte subr address
:6502 read data byte subr address

EQ OSl OR sys EQ OSX1 : if OSBORNE 0-1

2900H • PORT A DATA/DIRECTION CONTROL I

2901H • PORT A REGISTER SELECT I

2902H • PORT B DATA/DIRECTION CONTROL I

2903H • PORT B REGISTER SELECT I

BDATA : STATUS I/O PORT
ADATA : DATA I/O PORT

EQ OSl • standard Corvus OSBORNE version I

80H • Host-to-drive, ready status I

0 • Drive-to-host I

40H • MASK t'bR DRIVE READY BIT I

80H • MASK FOR DRIVE ACTIVE BIT I

EQ OSX1 • old Corvus experimental Osborne version I

OOH • Host-to-drive, ready status ,
40H : Drive-to-host
80H 1 MASK FOR DRIVE READY BIT
40H • MASK FOR DRIVE ACTIVE BIT I

EQ SNY70 ; for SONY SMC-70
049H • ,
048H • I

2 • I

0 • I

EQ ZS10 • for ZENITH Z-100 with S-100 ports ,
ODFH • (this only worked on OLD Z-100's) I

ODEH • I

2 • I

0 • I

EQ ZSl • for ZENITH Z-100 (atd Corvus release) I

07FH • I

07EH • I

2 • ,
0 • I

EQ LNWBO ; for LNWBO (usinq TRS-BO model 1 interface

261

)

Mass storage Systems GTI Flat Cable Routine For 8080/Z80

STAT
DATA
HTDRDY
DTHRDY

EQU
EQU
EQU
EQU

OF780H
OF781H
o

.; MEMORY MAPPED PORT ADDRESS

;
;

endif
2

; ----------==-----=====-=-----------===---=--------------------===== ;
; DEFINE MACROS FOR BASIC CORVUS OPERATIONS ---
;
• ,
;
;

INSTAT -- Get disk controller status subroutine

INS TAT MACRO
if sys
LDA
else

CALL

IN

endif
ENDM

;
;

EQ APPLE OR
STAT

if OSlT
OSTAT
else
STAT
end!f

sys
; macro to choose how to get status

EQ LNWBO
; Get status if memory mapped I/O

; Get atatus if Osborn

; Get status if port I/O

; Return

; TSTIN -- set Z-flag if status = "Drive-To-Host", "Drive Ready"
;
TSTIN

• ,
;
;
;
TSTOT

;
• I

MACRO
if sys EQ XRX OR OSlT

; or OSBORNE
CALL SETIN
endif

INSTAT
ANI DIFAC OR DRDY
CPI DTHRDY
ENDM

TSTOT -- Set Z-flag if

MACRO
if sys EQ XRX OR OSlT

CALL SETOT
endif

INS TAT
ANI DIFAC OR DRDY
CPI HTDRDY
ENDM

Corvus Systems

• macro for testing input status I

• if system is XEROX I

• set port direction I

• get status I

• mask status bits I

• set Z-flag if status is right ,
• ,

status -= "Host-To-Drive", "Drive Ready"

• macro to test output status ,
• if XEROX or OSBORNE system ,
• set port direction ,

;get status
· mask status bits I

· set Z-flag if status is right ,
• ,

262

Mass Storage Syste~s GTI Flat Cable Routine For eoeo/zeo

• ,
· ,
• ,

INDATA -- _Get disk controller data subroutine
(get a single byte back from controller)

INDATA MACRO ; macro to chose how to get data

• ,
· ,
;
• ,
• ,

if sys EO APPLE
PUSH H ;Save (H,L)
LXI H, CREAD6

;Get 6502 read subr address
CALL X6502 ;Read data byte (6502)
POP H ;Restore (H,L)
LDA A$ACC ;Get data byte
else

if sys EO ALSPA OR OSlT
CALL INACV

else
if sys EO LNWBO

LDA DATA
else

IN DATA
endif

endif
endif

ENDM ; Return

OTDATA -- Put disk controller data subroutine
(output a single byte passes in Acc)

OTDATA MACRO ; macro to chose how to output data
if sys EO APPLE

STA A$ACC ;Put data byte
PUSH H ;Save (H,L)
LXI H,CWRIT6 ;Get 6502 write subr address
CALL X6502 ;write data byte (6502)
POP H ;Restore (H,L)
else
if sys EO ALSPA OR OSlT

CALL OUTACV
else

if sys EO LNWBO
STA DATA

else
OUT DATA

endif
endif

endif
ENDM ; Return

; _=======_===c===================================== ___ =_============
• ,
; --- DUMMY INITIALIZATION ENTRY IF NOT OSBORNE ---
;

Corvus Systems 263

Mass storaqe Systems GTI Flat Cable Routine For 8080/Z80

if NOT OSlT ; if not osborne
INITIO: RET ; DUMMY

• ,
• ,

endif

; RECEIVE BLOCK INTO BUFFER
· ,
RECV: pop H • , qet return address

XTHL
PUSH H

· , · ,
put return addr back, qet buf address
save buf address

INX H • , point past lenqth field in buf
INX H · ,
CALL TURN • , WAIT FOR BUSS TO TURN AROUND
MVI B, 15 · ,
CALL DELAY • ,
CALL TURN • , SECOND try to avoid qlitches (mainly for mirror
MVI B, 15 • ,
CALL DELAY • ,
CALL GTBLK
POP B

• ,
• ,

qet block of bytes and put count on stack
qet count

• ,

POP
MOV
INX
MOV
RET

H
M,C
H
M,B

• , qet buf address
• , put lower byte of len field
· ,
• , put upper byte of len field
• ,

; SEND block from buffer
· ,
SEND:

· ,
• ,

POP
XTHL
MOV
INX
MOV
INX
CALL
RET

H

C,M
H
B,M
H
WTBLK

• qet ret addr ,
• put ret addr back, qet buf address I

• BC is WTBLK lenqth counter ,
· load with len field of buffer ,
• ,
· HL points to bytes to send ,
· write bytes to drive ,
· ,

if ZSlT ; IF ZlOO
; SPECIAL WTBLK ENTRY FOR Z-lOO
;
WTBLK: MOV

CALL
JMP
else

· ,

A,M
WAITOX
WTBLK1

; GET BYTE FROM MEMORY
; SEND FIRST BYTE TO DRIVE
; ENTER STANDARD LOOP

; WRITE A BLOCK OF DATA TO THE DISC
• ,
WTBLK:

· ,
endif

WTBLKL: MOV
CALL

Corvus Systems

A,M
WAITO

; GET BYTE FROM MEMORY
; output byte

264

Mass storage Systems GTI Flat Cable Routine Fox 8080/Z80

WTBLK1: INX
DCX
MOV
ORA
JNZ
RET

· I

H
B
A,B
C
WTBLKL ; LOOP UNTIL DONE

; GET A BLOCK OF UNDETERMINED LENGTH BACK FROM DISC
• I

GTBLK:

GTB1:

• ,

;

1
GTB2:

TURN

• I

· I

if sys
CALL
endif

LXI
INS TAT
MOV
ANI
CPI
JNZ

MOV
ANI
CPI
JZ

INDATA
MOV
INX
INX
JMP

XCHG
XTHL
PCHL

page

EQ XRX OR OSlT
SETIN

; if XEROX OR OSBORNE system
set port direction • I

D,O ; set counter
; GET STATUS

C,A ; SAVE IT
DRDY ; TEST IF READY
HTDRDY AND DTHRDY
GTBl ; LOOP UNTIL READY

A,C
DIFAC OR DRDY
HTDRDY
GTB2

M,A
H
D
GTBl

; mask status bits
; if "Host-To-Drive" & Ready

then jump out of loop · I

: GET DATA BYTE
: SAVE IT

: GET COUNT IN (H,L)
: SAVE IT
; R

TURN: TSTIN
JNZ TURN

; Set Z-flag if "Drive-To-Host" & Ready
; loop if not

• I

RET

DELAY: DCR
JNZ
RET

• ,
WAITI: TSTIN

B
DELAY

JNZ WAITI
· I

;

IN DATA
RET

if OSlT
WAITO: PUSH PSW

Corvus Systems

• I

; Set Z-flag if DTHRDY
: LOOP UNTIL READY

; READ BYTE FROM DISC

; SPECIAL OSBORNE VERSION

265

Mass Storaqe Systems GTI Flat Cable Routine For 8080/Z80

WAITOl:

• ,

• ,

WAITO:
WAITOl:

WAITOl
• ,

• ,

WAITO:
WAITOl:

• ,

• ,
1

CALL
EI
NOP
CALL
ANI
CPI
JNZ

pop
CALL
RET
endif

if sys
PUSH
TSTOT
JNZ

pop
OTDATA
RET
endif

if sys
PUSH
EI
NOP
NOP
DI
TSTOT
JNZ

pop
OTDATA
EI
RET
endif

SETOT

OSTATX
DIFAC OR DRDY
HTDRDY
WAITOl

PSW
OUTACV

; setup for output
1 enable ints

; READ STATUS PORT
; MASK STATUS BYTE

; OUTPUT DATA

NE SNY70 AND NOT ZSlT AND NOT OSIT AND sys NE LNW80
PSW ; SAVE COMMAND

; set Z-flaq if HTDRDY

; LOOP UNTIL READY

psw
; WRITE BYTE TO DISC

EQ SNY70 OR ZSlT OR sys EQ LNW80
psw ; SAVE COMMAND

; ENABLE INTERRUPTS FOR A SHORT TIME

• DISABLE INTERRUPTS FOR TEST ,
• Set Z-flaq if HTDRDY ,

WAITOl • LOOP UNTIL READY ,

PSW
• WRITE BYTE TO DISC ,
• RE-ENABLE INTERRUPTS ,

; SPECIAL ROUTINE TO SEND FIRST BYTE FOR Z-lOO

if ZSlT
WAITOX: PUSH PSW
WAITOXl: XVI A,l

· ,

· ,

OUT OFEH

EI
NOP
NOP
DI

XRA A

; IF Z-lOO
; SAVE COMMAND

, ENABLE 8088 INTERRUPTS

1 ENABLE INTERRUPTS FOR A SHORT TIME

; DISABLE INTERRUPTS FOR TEST

Corvus Systems 266

Mass storage systems GTI Flat Cable Routine For 8080/Z80

OUT OFEH • DISABLE 8088 INTERRUPTS ,
• ,

TSTOT · Set Z-flag if HTDRDY ,
JNZ WAITOXl · LOOP UNTIL READY ,

· ,
POP PSW
OTDATA • WRITE BYTE TO DISC ,

• ,
MVI A,l
OUT OFEH · ENABLE 8088 INTERRUPTS ,

• ,
EI · RE-ENABLE INTERRUPTS ,
RET
endif

· , ,
, SPECIAL APPLE SUPPORT ROUTINES
• ,

· , ,
if sys EO APPLE

APPLE only
X6502 -- Call 6502 subroutine

• ,
X6502:

X65l:

• , ,

SHLD
LHLD
SHLD
STA
RET
endif

A$VEC
Z$PU
X65l+l
o

,Save 6502 subroutine address
,Get pointer to Z80 card
:Save for 6502 call
,Execute 6502 subroutine
,Return

, SPECIAL ZEROX 820 SUPPORT ROUTINES ---

if sys EO XRX
, XEROX only
· , · , SETOT -- Set the port direction to out
• ,
SETOT:

• ,

• ,

• ,

LDA
CPI
RZ
MVI
STA

MVI
OUT

MVI
OUT

MVI
OUT

MVI

Corvus systems

DIRCTN
HTDRDY

A, HTDRDY
DIRCTN

A,OTMODE
PDATA

A,NOINT
PDATA

A,OTDIS
STAT

A,CTLMODE

; Get the direction of previous i/o
; Was it "Host-To-Drive"
, return if it was
, qet Host-To-Drive status
, put it in i/o direction indicator

, program data channel to output mode
• ,

; no interrupts on data channel
• ,

, disable control channel
· ,

, bit control mode on Status channel

267

Mass storage Systems GTI

• I

• I

:
• I

OUT

XVI
OUT

XVI
OUT
RET

PSTAT

A/CTLKASK
PSTAT

A,OTEN
STAT

Flat Cable Routine For 8080/Z80

: hi nibble out, 10 nibble in

: enable control channel
:
:

; SETIN -- Set port direction to in
:
SETIN: LDA

CPI
RZ
XVI
STA

:

:

:

XVI
OUT

XVI
OUT

XVI
OUT

XVI
OUT
RET

DIRCTN

DTHRDY

A, DTHRDY
DIRCTN

A/O'TDIS
STAT

A,INMODE
PDATA

A, NOINT
PDATA

A,INEN
STAT

DIRCTN: DB OFFH
endif

• I

· I

: get direction of last i/

: test if it was "Drive-To-Host"
: return if it was
: get Drive-To-Host status
: put it into i/o direction indicator

• I

; disable control channel

:
: program data channel to input mode

· I

: no interrupts on data channel

: enabel control channel
: enable control channel
· I

; initialized to illegal value

• STROBE ROUTINES FOR ALSPA ,
· I

if sys EQ ALSPA
• ,
OUTACV: PUSH PSW

XVI A,MODO · EXCHANGE MODES I

OUT COMDD
pop PSW
OUT DATA · PUT DATA ON BUS ,
XVI A,09H
OUT COMDD ; TOGGLE STROBE DOWN
DCR A
OUT COMDD ; TOGGLE STROBE UP
RET

• ,
• ,
INACV: XVI A, MODI • EXCHANGE MODES ,

Corvus system.s 268

Mass storage Systems GTI Flat Cable Routine For 8080/Z80

OUT COHDD
XVI A,09H
OUT COHDD · TOGGLE STROBE DOWN ,
IN DATA • READ DATA FROM BUS ,
PUSH PSW · SAVE IT ,
XVI A,08H
OUT COMDD · TOGGLE STROBE UP ,
POP PSW
RET

• ,
endif

• ,
• ,
• SPECIAL OSBORNE 0-1 SUPPORT ROUTINES ---,
• ,

if OSlT ; IF OSBORNE 0-1
;**
:* *
:* THESE ROUTINES MUST BE ABOVE 4000H IN THE *
:* PROGRAM THEY ARE USED IN *
:* *
;** · ,
; --- INITIALIZE DRIVER I/O ROUTINES AND HARDWARE ---
;
INITIO: CALL LTEST

RNS, DO INIT OF OSBORNE

• ,
JMP OSINIT

; TEST IF CODE IS ABOVE 4000H
; IF IT RET

; --- READ STATUS BYTE FROM CORVUS ---
· ,
OSTAT: DI

OUT
LDA
OUT
EI
RET

• ,
OSTATX: DI

OUT
LDA
OUT
RET

• ,
endif

o
STAT
1

o
STAT
1

if sys EO OSl

; FLIP IN I/O PAGE
; READ MEMORY MAPPED STATUS PORT
: FLIP IN STANDARD PAGE

; FLIP IN I/O PAGE
; READ MEMORY MAPPED STATUS PORT
: FLIP IN STANDARD PAGE
; THIS VERSION LEAVES INTS. DISABLED

; SETUP OSBORNE PIO AND CORVUS BOARD
• ,
OSINIT: DI

OUT
XVI
STA

Corvus Systems

o
A,30H
CTLA

; SWITCH TO ALTERNATE PAGE

; PORT A DIRECTION PROGRAMMING

269

Mass storage Systems GTI Flat Cable Routine For 8080/Z80

XRA A
STA ADATA • SET PIO FOR INPUT ,
XVI A,34H
STA CTLA • PORT A R/W, DISABLE CORVUS DRIVERS ,
XVI A,38H
STA CTLB • PORT B DIRECTION PROGRAMMING ,
XVI A,3FH
STA BDATA • SET ALL BUT STATUS BITS FOR OUTPUT ,
XVI A,3CH
STA CTLB • PORT B R/W, CORVUS I/O TO INPUT ,
XVI A,2BH
STA BDATA • STROBES HIGH, IEEE DRIVERS TO INPUT ,
XVI A,3CH
STA CTLA · PORT A R/W, ENABLE DRIVERS ,
OUT 1 • BACK TO NORMAL PAGE ,
EI
RET

;
;
;

SETUP DRIVERS FOR DATA INPUT

SETIN: LDA
CPI
RZ
XVI
STA
DI
OUT
XVI
STA
XRA
STA
XVI
STA
XVI
STA
XVI
STA
OUT
EI
RET

;

DIRCTN
DTHRDY

; get direction of last i/o
; test if it was "Drive-To-Host"
; return if it was

A, DTHRDY
DIRCTN

; get Drive-To-Host status
; put it into i/o direction indicator

o
A,30H
CTLA
A
ADATA
A, 3CH
CTLB
A,2BH
BDATA
A,3CH
CTLA
1

; PORT A DIRECTION PROGRAMMING

, SET PIO FOR INPUT

; SET PORT B FOR R/W, CORVUS DRIVER TO INPUT

; SET IEEE DRIVERS TO INPUT, STROBE HIGH

; SET PORT A BACK TO R/W, ENABLE CORVUS DRIVER

; SETUP DRIVERS FOR DATA OUTPUT ---
;
SETOT: LDA

CPI
RZ
XVI
STA
DI
OUT
XVI
STA
XVI

Corvus Systems

DIRCTN
HTDRDY

A, HTDRDY
DIRCTN

: Get the direction of previous i/o
; Was it "Host-To-Drive"
; return if it was
; get Host-To-Drive status
; put it in i/o direction indicator

o
A,34H
CTLB
A,2AH

: CORVUS DRIVER TO OUTPUT

270

Mass storage Systems GTI Flat Cable Routine For 8080/Z80

STA BDATA · SET IEEE DRIVERS TO OUTPUT ,
MVI A,30H
STA CTLA • SELECT PORT A DIRECTION PROGRAMMING ,
MVI A,OFFH
STA ADATA • SET PIO FOR OUTPUT ,
MVI A,3CH
STA CTLA · PORT A R/W, ENABLE CORVUS DRIVERS ,
OUT 1
EI
RET

· ,
• INPUT DATA BYTE FROM CORVUS CONTROLLER ---,
· ,
INACV: PUSH B

DI
OUT ° MVI A,OBH
STA BDATA • TOGGLE STROBE LOW ,
LDA DATA · GET DATA ,
CMA • COMPENSATE FOR IEEE INVERTER ,
MOV C,A • SAVE IT ,
MVI A,2BH
STA BDATA · TOGGLE STROBE HIGH ,
MOV A,C
OUT 1
EI
POP B
RET

· ,
; OUTPUT DATA BYTE TO CORVUS CONTROLLER ---
• ,
OUTACV:

;

· ,

PUSH
DI
OUT
CMA
STA
MVI
STA
MVI
STA
OUT
EI
POP
RET
endif

PSW

° · COMPENSATE FOR IEEE INVERTER ,
DATA • PUT IN PIO REGISTER ,
A,OAH
BDATA · TOGGLE STROBE LOW ,
A,2AH
BDATA · TOGGLE STROBE HIGH ,
1

PSW

; SPECIAL OSBORNE 0-1 ROUTINES (old scramble wire interface) ---
• ,

if sys EO OSX1 ; if old experimental interface
; SETUP OSBORNE PIO AND CORVUS BOARD ---
· ,
OSINIT: DI

Corvus systems 271

Mass storage Systems GTI Flat Cable Routine For 8080/Z80

• I

OUT
XVI
STA
XVI
STA
XRA
STA
XVI
STA
XVI
STA
OUT
EI
RET

0
A,4
CTLB
A,3
BDATA
A
CTLB
A,27H
BDATA
A,4
CTLB
1

• SWITCH TO ALTERNATE PAGE I

; SET PORT B TO R/W

· SET DRIVER AND STROBE LINES I

• PORT B DIRECTION SETUP I

• SET DIRECTIONS I

• SET PORT B BACK TO R/W DATA I

• BACK TO NORMAL PAGE I

• I SETUP DRIVERS FOR DATA INPUT
;
SETIN: LDA

CPI
RZ
MVI
STA
DI
OUT
XRA
STA
STA
MVI
STA
MVI
STA
OUT
EI
RET

• ,

DIRCTN
DTHRDY

; get direction of last i/o
; test if it was "Drive-To-Host"
J return if it was

A, D'l'HRDY
DIRCTN

; get Drive-To-Host status
: put it into i/o direction indicator

o
A
CTLA
ADATA
A,4
CTLA
A,3
BDATA
1

: SELECT PORT A DIRECTION REGISTER
: SET ALL BITS TO INPUT

; SET PORT A TO R/W DATA

J SET PORT A DRIVERS FOR INPUT

· SETUP DRIVERS FOR DATA OUTPUT I

• ,
SETOT: LDA DIRCTN • Get the direction of previous i/o ,

CPI HTDRDY • Was it "Host-To-Drive" I

RZ • return if it was I

XVI A, HTDRDY ; qet Host-To-Drive status
STA DIRCTN · put it in i/o direction indicator I

DI
OUT 0
XRA A
STA CTLA • DIRECTION SETUP OF PORT A ,
MVI A,OFFH
STA ADATA • SET ALL BITS TO OUTPUT I

MVI A,4
STA CTLA • SET PORT A FOR R/W DATA ,
XVI A,2
STA BDATA • SET DRIVERS FOR OUTPUT ,
OUT 1

Corvus Systems 272

Hass storaqe systems G'III Flat Cable Routine For 8080/Z80

EI
RET

• ,
· INPUT DATA BYTE ,
• ,
INACV: PUSH B

DI
OUT 0
MVI A,23H
STA BDATA
LDA DATA
CMA
MOV C,A
MVI A, 03H
STA BDATA
MOV A,C
OUT 1
EI
POP B
RET

• ,
• OUTPUT DATA BYTE ,
• ,
OUTACV: PUSH PSW

DI
OUT 0
CMA
STA DATA
MVI A,22H
STA BDATA
MVI A, 02H
STA BDATA
OUT 1
EI
POP PSW
RET
endif

• I

if OSlT
DIRCTN: DB OFFH
• ,
: --- TEST IF CODE IS
• ,
LTEST: POP H

PUSH H
MOV A,H
CPI 40H
RNC

FROM CORVUS CONTROLLER ---

• FLIP IN I/O PAGE ,
• TOGGLE STROBE LOW ,
• GET DATA ,
• COMPENSATE FOR IEEE INVERTER ,
• SAVE IT ,

• TOGGLE STROBE HIGH ,

• FLIP IN STANDARD PAGE ,

TO CORVUS CONTROLLER ---

: FLIP IN I/O PAGE
: COMPENSATE FOR IEEE INVERTER
: PUT IN PIO REGISTER

: TOGGLE STROBE LOW

: TOGGLE STROBE HIGH
: FLIP IN STANDARD PAGE

: PORT DIRECTION FLAG (INIT TO ILLEGAL VALUE)

ABOVE 4000H AND EXIT WITH ERROR MESSAGE

• GET RETURN ADDRESS OFF STACK I

• GET HIGH ADDRESS BYTE I

• IS IS ABOVE 4000H? ,
• YES I SO RETURN ,

LXI D,EMSG • POINT TO ERROR MESSAGE ,
MVI C, 9 • CP/M LIST STRING COMMAND ,
CALL 5 • DO IT ,
JKP 0 • EXIT PROGRAM ,

• ,

Corvus Systems 273

Mass storage Systems GTI Flat Cable Routine For 8080/Z80

EMSG: DB ODH,OAH,ODH,OAH
DB 07, , ** OSBORNE DRIVERS ARE BELOW 4000H **',ODH,OAH,'$'

• ,
endif

• ,
• ,

END

Corvus Systems 274

Mass storage Systems GTI Flat Cable Routine For 8086/8088

SAMPLE INTERFACE ROUTINE FOR 8086/8088

TITLE DRIVE 10

• ,
;
;
;

· ,
• ,

CORVUS/IBM DRIVE INTERFACE UNIT FOR MICROSOFT ---
PASCAL AND BASIC

VERSION 1.2 BY BRK
(MICROSOFT ASSEMBLER VERSION)

; THIS UNIT IMPLEMENTS 5 PROCEDURES:

; INITIO
; CDRECV - DRVRECV
; CDS END - DRVSEND
;
;
; NOTE: THIS INTERFACE UNIT NOW SUPPORTS BOTH PASCAL AND BASIC
, BUT IT MUST BE RE-ASSEMBLED WITH THE APPROPRIATE SETTING
; OF THE "LTYPE" EQUATE TO DO THIS FOR EACH LANGUAGE.
;
;
;
; THE CALLING PROCEDURE IN PASCAL IS :
;
;
;

CDS END (VAR st : longstring)

; THE FIRST TWO BYTES OF THE STRING ARE THE LENGTH
, OF THE STRING TO BE SENT OR THE LENGTH OF THE
; STRING RECEIVED. ,
, function INITIO : INTEGER

; THE FUNCTION RETURNS A VALVE TO INDICATE THE STATUS OF
; THE INITIALIZATION OPERATION. A VALUE OF ZERO INDICATES
; THAT THE INITIALIZATION WAS SUCCESSFUL. A NON-ZERO VALUE
; INDICATES THE I/O WAS NOT SETUP AND THE CALLING PROGRAM
; SHOULD NOT ATTEMPT TO USE THE CORVUS DRIVERS.
• ,
• ,
;
• ,
; THE CALLING PROCEDURE BASIC IS :

• ,
;

CALL CDSEND (B$)

; THE FIRST TWO BYTES OF THE STRING ARE THE LENGTH
; OF THE STRING TO BE SENT OR THE LENGTH OF THE
; STRING RECEIVED (I.E. LEFT$(B$,2)).
;
• ,
• ,

CALL INITIO (At)

; THE FUNCTION RETURNS A VALVE TO INDICATE THE STATUS OF

Corvus Systems 275

Mass storage Systems GTI Flat Cable Routine For 8086/8088

: THE INITIALIZATION OPERATION. A VALUE OF ZERO INDICATES
: THAT THE INITIALIZATION WAS SUCCESSFUL. A NON-ZERO VALUE
: INDICATES THE I/O WAS NOT SETUP AND THE CALLING PROGRAM
: SHOULD NOT ATTEMPT TO USE THE CORVUS DRIVERS.

,-------------------------=----=----=-----------~---------=-:
• ,

REVISION HISTORY

: FIRST VERSION : 10-05-82 BY BRK
: : 11-01-82
: : 05-16-83

improved turn around delay for mirror
merged Pascal and Basic versions

,-----=-----------------==-=--=--==-----------=---------------• ,
TRUE
FALSE
• ,
PASCAL
BASIC ,
• ,
LTYPE ,

EQU
EQU

EQU
EQU

EQU

OFFFFH
o

1 : LANGUAGE TYPE DESCRIPTOR
2 : LANGUAGE TYPE DESCRIPTOR

PASCAL , SET TO LANGUAGE TYPE TO BE USED WITH

REVB EQU o : 0 IF REVA OR REVB DRIVE, 1 IF REVB DRIVE ONLY

,
: ----- CORVUS EQUATES FOR IBM PC -----
• ,
DATA EQU 2EEH , DISC I/O PORT •
STAT EQU 2EFH • DISC STATUS PORT ,
DRDY EQU 1 • MASK FOR DRIVE READY BIT ,
DIFAC EQU 2 • MASK FOR BUS DIRECTION BIT , , ,
PGSEG SEGMENT 'CODE'

ASSUME CS:PGSEG
• ,
• ,

IF LTYPE EQ PASCAL
DB 'CORVUS/IBM PC FLAT CABLE PASCAL DRIVER AS OF 05-16-83'
ENDIF

IF LTYPE EQ BASIC
DB 'CORVUS/IBM PC FLAT CABLE BASIC DRIVER AS OF 05-16-83'

:
• ,

ENDIF

: INITIALIZE CORVUS I/O DRIVERS ---
• ,
• ,
· , · ,
• ,

THIS ROUTINE MUST BE CALLED
ONCE TO SETUP THE DRIVERS BEFORE
THEY ARE USED. IF THE ROUTINE DOES
ANYTHING THAT CAN ONLY BE DONE ONCE,

Corvus Systems 276

Mass storage Systems GTI Flat Cable Routine For 8086/8088

• ,
• ,
• ,
• ,

• ,
INITIO
• ,

• ,

1

IT MUST DISABLE THIS SECTION SO THAT
AND ACCIDE~TAL SECOND CALL WILL NOT
LOCK UP THE HARDWARE.

PUBLIC INITIO

PROC FAR

IF LTYPE EQ PASCAL
MOV AX,O • RETURN A ZERO ,
RET
ENDIF

IF LTYPE EQ BASIC
PUSH BP
MOV BP,SP
MOV BX,6 [BP] · GET POINTER TO ,
MOV word ptr [BX],O • RETURN A ZERO ,
POP BP
RET 2
ENDIF

DATA "INTEGER"

INITIO ENDP
1
;
; RECEIVE A STRING OF BYTES FROM THE DRIVE
• ,

PUBLIC CDRECV, DRVRECV
;
CDRECV PROC
DRVRECV:

;

PUSH
MOV

FAR

BP
BP,SP

; SAVE FRAME POINTER
; SET NEW ONE

IF LTYPE EQ PASCAL
MOV 01,6 [BP) ; GET ADDRESS OF STRING TO SAVE DATA IN

· ,

• ,

• ,

ENDIF

IF
MOV
INC
INC
MOV
ENDIF

PUSH
PUSH
INC
INC

MOV
MOV
CLD

Corvus Systems

LTYPE EQ BASIC
BX,6 [BP] ; GET ADDRESS OF STRING DESCRIPTOR
BX
BX 1 POINT TO STRING POINTER
01, [BX] ; GET ADDRESS OF STRING TO SAVE DATA IN

ES
01
01
01

AX,DS
ES,AX

; SAVE POINTER TO 'LENGTH'
1 POINT TO START OF DATA AREA

; SET SEGMENT • FOR SAVING DATA
; SET TO AUTO-INCREMENT

277

Mass Storage Systems GTI

;

• ,
NOV DX,STAT

Flat Cable Routine For 8086/8088

; POINT TO STATUS PORT

; FANCY "MIRROR" COMPATIBLE TURN ROUTINE ---
• ,
TURN:

;

;

;

IN
TEST
JNE
TEST
JNE

CALL

IN
TEST
JNE
TEST
JNE

AL,DX
AL,DIFAC
TURN
AL,DRDY
TURN

SDELAY

AL,DX
AL,DIFAC
TURN
AL,DRDY
TURN

CALL SDELAY
;

;
RLP:

;

;

;

;

NOV

IN
TEST
JNE

IN
TEST
JNE

TEST
JNZ

DEC
IN
INC
STOSB
INC
JMP

RLPE: POP
POP
NOV
POP
RET

CDRECV ENDP
;

CX,O

AL,DX
AL,DRDY
RLP

AL,DX
AL,DIFAC
RLPE

AL,DRDY
RLP

DX
AL,DX
DX

CX
RLP

DI
ES
[DI],CX
BP
2

; GET STATUS BYTE
; LOOK AT BUSS DIRECTION
; WAIT FOR "DRIVE TO HOST"
; LOOK AT "READY STATUS"
; IF NOT READY, KEEP LOOPING

; WAIT A MOMENT

; GET STATUS AGAIN

; WAIT FOR "DRIVE TO HOST"
; LOOK AT "READY STATUS"
; WAIT FOR "READY

; INIT LENGTH COUNT

; GET STATUS BYTE

; LOOP UNTIL READY

; GET STATUS BYTE
; TEST BUS DIRECTION
; IF "HOST TO DRIVE", EXIT

; TEST FOR 'READY'
; DOUBLE CHECK THAT IT IS READY

; POINT TO DATA PORT
; GET DATA BYTE
; POINT BACK TO STATUS PORT
; STORE DATA BYTE IN DATA STRING
; INCREMENT LENGTH COUNTER
; LOOP UNTIL DONE

; GET POINTER BACK TO LENGTH

; SET LENGTH OF RETURNED STRING
; GET FRAME POINTER BACK
; CLEAR RETURN STACK

; SEND STRING OF BYTES TO DRIVE
;

POBLIC CDSEND, DRVSEND . ,
CDS END PROC FAR

Corvus ~ystems 278

Mass storage Systems GTI Flat Cable Routine For 8086/8088

DRVSEND:
PUSH BP • SAVE FRAME POINTER ,
MOV BP,SP · SET NEW ONE ,

• ,
IF LTYPE EQ PASCAL
MOV SI,6 [BP] , GET ADDRESS OF STRING TO SEND
ENDIF

• ,
IF LTYPE EQ BASIC
NOV BX,6 [BP] • GET ADDRESS OF STRING DESCRIPTOR ,
INC BX
INC BX • POINT TO STRING POINTER ,
NOV SI, [BX] • GET ADDRESS OF STRING TO SAVE DATA IN ,
ENDIF

• ,
NOV CX,[SI] • GET STRING LENGTH ,
JCXZ ENDSND • IF NULL STRING, JUST RETURN ,

• ,
INC SI • POINT TO START OF DATA TO SEND ,
INC SI
CLD • SET TO AUTO-INCREMENT ,

• ,
LODSB • GET FIRST BYTE OF DATA ,
CALL WAITO • SEND FIRST BYTE USING INTERRUPT TEST ,

• ,
INC OX • POINT TO STATUS PORT ,
JMP WLPl • ENTER COUNTING LOOP ,

• ,
WLP: IN AL,DX • READ STATUS BYTE ,

TEST AL,DRDY • IS DRIVE READY FOR NEXT ACTION? ,
.:mZ WLP • NO, SO JEEP LOOPING ,
DEC OX • POINT TO DATA PORT ,

WLPB: LODSB • YES, GET DATA BYTE FROM 'DMA' LOCATION ,
• ,

IF REVB-l • FOR REV A OR REV B DRIVES ,
OUT DX,AL • SEND DATA BYTE TO DISC ,
INC OX • POINT BACK TO STATUS PORT ,

WLP1: LOOP WLP · LOOP UNTIL TRANSFER IS COMPLETE ,
ENDIF

• ,
IF REVB • FOR REV B DRIVES ONLY ,
OUT DX,AL , SEND DATA BACK TO STATUS PORT

WLP1: LOOP WLPB • LOOP WITHOUT STATUS TEST ,
ENDIF

• ,
ENDSND: POP BP • GET FRAME POINTER BACK ,

RET 2 , CLEAR RETURN STACK
CDS END ENDP
• , ,
, --- SHORT DELAY ROUTINE
• ,
SDELAY PROC NEAR

Corvus Systems 279

Mass storage Systems GTI Flat Cable Routine For 8086/8088

; SETUP FOR SHORT DELAY
; LOOP UNTIL DONE

MOV
DELAY: DEC

JNZ
RET

SDELAY ENDP ,

CL,30
CL
DELAY , DELAY TO AVOID BUS TURN AROUND GLITCHES

; --- WAIT AND OUTPUT BYTE TO CONTROLLER --
• ,
;
;
:
WAITO

WAIT01:

INTERRUPTS ARE SWITCHED HERE
TO AVOID PROBLEMS WITH

CONSTELLATION

PROC NEAR
PUSH AX • ,
STI • ,
NOV DX,STAT • ,

SAVE DATA BYTE
ALLOW INTERRUPTS
POINT TO STATUS PORT

NOP • ADDITIONAL DELAY FOR INTERRUPT ,

WAITO
;
PGSEG
;

CLI
IN
TEST
JNZ
POP
DEC
OUT
STI
RET
ENDP

ENDS

END

Corvus Systems

AL,DX
AL,DRDY
WAITOl
AX
DX
DX,AL

• DISABLE INTERRUPTS ,
• GET STATUS BYTE ,
• IS DRIVE READY? ,
• NO, SO LOOP ,
• GET DATA BACK ,
• POINT TO DATA PORT ,
• OUTPUT BYTE ,
, ALLOW INTERRUPTS

280

Mass storage Systems GTI ROM Descriptions

ENTRY POINTS FOR APPLE II ROK

The routines in the Apple II flat cable ROM assume that the card
is in slot 6. (See Constellation Software General Technical
Information manual for more information.)

Address

C600h
C6CFh
C68Dh
C8l5h
C8l8h

Function

Boot
RWTS
Save warm boot image
Read Corvus sector (256-byte read)
write Corvus sector (256-byte write)

The following bytes identify the Corvus flat cable interface
card:

Address contents
------- ______ .a_

C600h A9h
C601h 20h
C602h A9h
C603h OOh
C604h A9h
C605h 03h
C606h A9h
C607h 3Ch

BBTRY POINTS POR IBM-PC/TI ROK

Entry points are the same as those described for the omninet
ROM.

Corvus Systems 281

Mass storage Systems GTI ROM Descriptions

This page intentionally left blank.

Corvus Systems 282

Mass storage Systems GTI Software developers Kits

KSDOS

SOFTWARE DEVELOPER'S
INFORMATION F

A Software Developer's diskette is available from Corvus
customer service. It contains the following files:

SEMA4.BAS

SEMA4.PAS
SEMA4.EXE

*PIPES.PAS
*PIPES.EXE

DRlVEC2.ASM
DRlVEC2.0BJ
BDRlVEC2.0BJ

DRlVEI02.ASM
DRlVEI02.0BJ
BDRVI02.0BJ

An example program, written in Basic, which shows
how to send disk commands. It uses the semaphore
commands for the example. This program is meant
to be compiled with the Microsoft BASIC compiler.
It will NOT work with the Basic interpreter.

An example program, written in Microsoft Pascal,
showing how to send disk commands. It uses the
semaphore commands for the example. The compiled
version was linked with DRlVEC2.0BJ.

An example program, written in Microsoft Pascal,
showing how to send disk commands. It uses the
pipes commands for the example. The compiled
version was linked with DRlVEC2.0BJ.

This is the source for the machine language module
used to send drive commands. This version works
with MSDOS 1.0, 1.1, and 2.x: it works for both
flat cable and Omninet, because it calls the
Corvus disk driver to send the command. The OBJ
files provided are conditionally assembled for
MS Pascal and MS Basic compiler respectively.

This is the source for a machine language module
used to send drive commands via the flat cable
interface card. This version will work for the
IBM-PC and TI-PC: some I/O port equates must be
changed for other interface cards. The OBJ files
provided are conditionally assembled for MS Pascal
and MS Basic compiler respectively.

ODRIVI02.ASM This is the source
ODRIVI02.0BJ used to send drive
BODRVI02.0BJ transporter. This

for a machine language module
commands via the Omninet
version will work for the
The OBJ files provided are IBM-PC and TI-PC.

Corvus Systems 283

Mass storage Systems GTI Software developers Rits

conditionally assembled for MS Pascal and MS Basic
compiler respectively.

IMPORTANT NOTE: The ODRIVI02 routine may NOT be
used on a PC which has the Corvus Constellation II
driver installed.

*SEMA4ASM.ASM This is a machine language module which supports
*SEMA4ASM.OBJ the semaphore functions SemLock, SemUnlock, and

Semstatus. This version is written to interface
to Microsoft Pascal.

*PIPESASM.ASM This is a machine language module which supports
*PIPESASM.OBJ the pipes functions PipeOpRd, PipeopWr, PipeRead,

PipeWrite, PipeC1Rd, PipeC1Wr, PipePurge, and
Pipestatus. This version is written to interface
to Microsoft Pascal.

* These files are not yet available.

versions supported are:

IBM-PC MSOOS 1.0, 1.1,
TI Professional MSOOS
DEC Rainbow MSOOS
Zenith Z-100 MSOOS

Formats available are:

2.0, 2.1
1.25, 2.0

IBM-PC 8-sector single-sided

Corvus Systems 284

Mass storage Systems GTI Software developers Kits

CP/M 80 CONSTELLATION II

The following files are contained on the standard distribution
floppies for Constellation II:

SEMA4.COM
SEMA4.PAS
SEMA4.CMD

An example program, written in Pascal MT+,
showing how to send disk commands. It uses the
semaphore commands as an example.

CPMIO.DOC
CPMIO.ERL

A document file describing the support services
provided by the driver interface unit CPMIO.ERL.

CP/M 86 CONSTELLATION II

The following files are contained on the standard distribution
floppies for Constellation II:

SEMA4.·CMD
SEMA4.PAS
SEMA4.KMD

An example proqram, written in Pascal MT86+,
showing how to send disk commands. It uses the
semaphore commands as an example.

CPMI086.DOC A document file describing the support services
CPMI086.R86 provided by the driver interface unit CPMI086.R86.

Corvus Systems 285

Mass storage Systems GTI Software developers Kits

CP/M 80 (Flat cable only; not Constellation II)

A Software Developer's diskette is available from Corvus
customer server. It contains the following files:

MIRROR.ASM Source for the Corvus Mirror program. Shows how
to send drive commands for flat cable interface.

CDIAGNOS.ASM Source for the Corvus CDIAGNOS program. Shows
how to send drive commands for flat cable
interface.

Versions supported are:

8-100
TRS 80 Model II
Zenith H-89, H-90
Xerox 820
80ny

Formats available are:

8-100 8" single-sided, single-density
Northstar 5 1/4"
Vector Graphics 5 1/4"
Zenith H-89
Zenith H-90
Xerox 820
Sony

Corvus Systems 286

Mass storage Systems GTI Software developers Kits

APPLE PASCAL CONSTELLATION I

The following files are contained on the standard Apple floppies
for Constellation I:

CORVUS.LIBRARY contains units for sending drive commands
(OMNISEND, DRIVEIO), using semaphores (SEMA4),
and using pipes (PIPES).

SPOOL. TEXT An example program showing how to use pipes.
SPOOL. CODE

SHARE.TEXT An example program showing how to use
SHARE. CODE semaphores.

APPLE DOS CONSTELLATION I

The following files are contained on the standard Apple floppies
for Constellation I:

BCI.OBJ A machine language interface for sending disk
OMNIBCI.OBJ commands.

SPOOL An Applesoft program showing how to use pipes.

SHARE An Applesoft program showing how to use
semaphores.

Corvus Systems 287

Mass storaqe Systems GTI Index

This paqe intentionally left blank.

Corvu", Systems 288

Mass storage Systems GTI

• • • • Active user table ••••••••••••
Active user table commands •••••••• • •

Index

XNDEX

• ••••••••• 41-42, 111-112
. • • • • .• 34-41

add active .
active user table errors ••••••••••••• 34, 35

• ••••• 41, 229
delete active user (omniDrive) . 34, 37
delete active user (Rev B/H drives) ••••••• . . . • • • . • • •• 34, 36

· delete active number
find active •••••
read temp block

34, 38
34, 39

••••• 34, 40
.

write temp block ••••••• . 34, 40

Bank
see The Bank

Boot commands •••••••••••••••
boot command •••••••••••••••••

· 42-44 .
read boot block . 42-43

42, 44
Boot command errors ••••••••••• • • . . • . • • • . . • •• 229
Boot number assignments
Boot table . · . 223

45

Constellation name lookup protocol ••••••••• 102-110
goodbye ...
hello · . 102,

102,
107, 111
106, 111

my ID is •••••
where are you
who are you

. . . . · . • •• 102, 110 . · • •• 102, 109
102, 108 ·

Constellation parameters · • 69-71
see al_opolling parameters

Controller functions
see Disk commands

Daisy-chained drives ••••••• · .
Despooler .
Device parameters

omniDrive ••••••••••• · · . · .

196
187

209
198 Rev B series drive ••••.

Rev H parameters •••• · .. · · • • • • . • • • • • • • • • •• 200
The Bank .

Device read and write parameters
218

for a disk driver •••••• 113-114
buffer •........... • •••• 113
device
number

number . 113
113 of sectors .

Corvus Systems 289

Mass storage Systems GTI Index

resul t code ..• 113
sector numbers ... 113

Device types ...•.• 221"222
DIP switches

ODlniDrive .•....•...............................•..•••• . Rev B series drive
Rev H series drive

211-212
199-200

201 .
The Bank ••• 65

Disk commands •• 1-67
summary of disk commands ••••••••••••••••••••••••••••• 3-4, 224

see also Active user table commands, Boot commands,
Echo command, Get drive parameters command,
Park tbe heads command, Pipe commands,
Prep Mode commands, Put Drive in prep mode,
Read-Write commands, and Semaphore commands

Disk driver ... 113-149
see also Flat cable driver, Omninet driver for new

disk server protocol, Omninet driver for old
disk server protocol, Disk server timeouts,
and Transporter timeouts

Disk flat cable interface ••••••••••••••••••••••••••••••• 202-205
cable connector description ••••••••••••••••••••••••••••••• 205
cable timinq •••••••••.••••.•.••.•.•.•••.••.••••••••.•..••• 203
cable wire assignment ••••••••••••••••••••••••••••••••••••• 202

Disk •• rY'era •• 7 I 75
alqorithm for finding all servers on network •••••••••• 103, 104
sequence of events after powering on server ••••••••••• 111-112

Disk server timeouts ••••••••••••••••••••••••••••••••••••• 1~5-116
Driver initialization ••••••••••••••••••••••••••••••••••••••• 113
Dynamic file allocation ••••••••••••••••••••••••••••••••••••• 168

Echo command

Fast tracks
Firmware

•

•

49-50

12-14

ODlniDrive •••••••••••••••••••••••••••••••••••• 65, 206-209, 231
Rev B/H series drive ••••••••••••••••••••••••• 65, 194-198, 231
The Bank •• 65,214-217
see also prep mode commands

Plat cable driver ••••••••••.•.••.••••.•••••.•..••••••••• 145-148
disk read ..•........................•..................... 147
disk write ...•.. 147

Flat cable interface cards •••••••••••••••••••••••••••••• 253-280
entry points for Apple II ROM ••••••••••••••••••••••••••••• 281
entry points for IBM-PC/TI ROM •••••••••••••••••••••••••••• 281
sample interface routine for 6502 ••••••••••••••••••••• 255-257
sample interface routine for 8080/Z80 ••••••••••••••••• 258-274
sample interface routine for 8086/8088 •••••••••••••••• 275-280
table describing all flat cable interface cards ••••••••••• 254

Get drive parameters command ••••••••••••••••••••••••••••••••• 46

Corvus Systems 290

Mass storage Systems GTI Iriaex-

Hardware description
Omniorive • 205-206,

194,
231
231
213

Rev B/H series drive •
The Bank · .

Interleave factor • 64-65
64
64

54, 64

OmniOrive ••••••••••• · .
Rev B/H series drive •
The Bank · .

LED's
OmniOrive •
Rev B series drive
Rev H series drive

•
231
231 .

210,
198-199,

200, 231
218-219

11-12
11

The Bank •
Logical sector address decoding •

OmniDrive •
Rev B/H series drive •••••••••••••••
The Bank · . • • • • • • • • • • • • • • • • •• 11

• • • • • • • • • • • • •. 11
Long commands •

sending a long command · ." 76-77
80-87

see also Omninet driver for new disk server protocol,
and Omninet driver for old disk server protocol

Mail packages
Multiplexer
Multiple servers

186-187
69-70, 196

157, 159

•
• .

New disk server protocol •
abort
cancel

93-101
97 •

•
• disk request

error messages •
go •

• •• • • • • last
restart
results

•
•

see also omninet driver for new disk server protocol

100
95
94
98
96

101
99

Old disk server protocol • 87-92
88
92
90
91
89

disk request
find a server

•
•

• go
resutls
last

•
•

see also Omninet driver for old disk server protocol
OmniDrive
see DIP SWitches, Firmware, Hardware description, Interleave

factor, LED's, Physical sector size, Prep blocks,
Prom code, Return codes , and write verify option

Omninet driver for new disk server protocol •••••••••••••
check for cancel or restart •

129-144
142

143-144
137-140

flush •
sending a long command •

Corvus Systems 291

Mass storage Systems GTI Index

sending a short command .
wait for disk aerver response •••••••••••••••••••••••••••••

see also New disk server protocol

134-136
141

Omninet driver for old disk server protocol •••••••••••••
flush •
sending a long command •
sending a short command ••••••••••••• • • • • • • • • • • • • • • • •

114-130
128-129
124-126
121-123

wait for disk server response ••••••••••••••••••••••••••••• 127
see also Old disk server protocol

omninet protocols . 73-112
see also Long commands, Old disk server protocol,

Omninet driver for new disk server protocol,
Omninet driver for old disk server protocol, and
New disk server protocol, Send message command
vector, Short command, and Setup receive message
command vector

. Park the heads command
Physical sector size

48-49
S
S

· .
omniDrive •
Rev B/R series drive •••••••••••••••••••••••
The Bank •••••••••••••••••••••••••••••••••••

• • • • • • • • • • • • • • • •• 5
• • • • • • • • • • • • • • • •• 5

• Physical versus logical addressing
physical layout of each storage device . 61-64

61
29-33

32
181, 230

Pipes • · . · . active hole
error codes
inactive hole . 33

33
29-30, 32

29-32
230

186-189
20-28

20, 28, 31
20, 2S
20, 22

21

performance considerations • . pipe name table
pipe pointer table •
pipe states •
sending messages via the pipes •

Pipe commands •
• pipe area initialize

pipe close, pipe purge
pipe open for read
pipe open for write

. · .
. pipe read

pipe results
pipe atatus
pipe write

• 20,

20,
20,
26,

23
28
27
24 •

see also SendCom procedure
•

•
•
• · . ~

Pipe functions
pipeclrd function
pipeclwr function
pipeinit function
pipeoprd function
pipeopwr function
pipepurge function
piperead function
pipestatus function
pipewrite function

181,
181, •

• · . · ~ .
Corvus Systems

181-184
181, 183
181, 184
181, 184
182, 186
182, 186
181, 184
181,· 183
181, 182
181, 183

292

Mass storage Systems GTI Index

polling parameters ••• 70
default values for polling parameters •••••••••••••••••••••• 70

Prep blocks ••••••••• '... 51
omniDriva ••• 51, 231
Rev B/H series drive •••••••••••••••••••••••••••••••••• 51, 231
The Bank ••• 51

Prep mode commands •• 50-52
destructive track verify (Bank only) ••••••••••••••••••• 57,
fill the drive •••
format drive (Rev B/H drives) •
format drive (QmniDrive) •

60
54
53
53

format tape ••• 54-56
non-destructive track verify (Bank only) ••••••••••••••• 57, 59
put drive in prep mode ••••••••••••••••••••••••••••••••••••• 51
read a block of firmware (QmniDrive/Bank) ••••••••••••••• 65, 67
read a block of firmware (Rev B/H) ••••••••••••••••••••• 65, 66
reformat tape •• 56
reset drive (take drive out of prep mode) •••••••••••••••••• 52
write a block of firmware (QmniDrive/Bank) ••••••••••••• 65, 67
write a block of firmware (Rev B/H) •••••••••••••••••••• 65, 66
verify drive (OmniDrive, Rev B/H drives) •••••••••••••••• 56-58

Prom
prom version DS8A.A ••
prom version DSD18A ••
prom version DSD981D •••••••••••••••••••••••••••••••••••••••

Prom code

93
93
93

Om.niDri ve •••
Rev B/H series drive •
The Bank

206-207
194-195

214 •

Read-Write commands •
read a sector (256 byte sector)
read a sector (128 byte sector)
read a sector (512 byte sector)

•
•
•

5-14
6, 8

7
9

10 read a sector (1024 bytes sector) ••••••••••••••••••••••••••
turn on record write •••••••••••••••••••••••••••••••••••••••
turn otf record write ••••••••••••••••••••••••••••••••.•••••

13
14

write a
write a
write a

sector
sector
sector

write a sector
Return codes

(256 byte sector)
(128 byte sector)
(512 byte sector)
(1024 byte sector)

•
•
•

6, 8
7
9

10 •

rev B/H drives •• 225-226
OIIlniDrive/Bank •• 227

Rev B/H series drive
see DIP SWitches, Disk flat cable interface, Firmware,

Hardware description, Interleave factor, LED's,
Physical sector size, Prep blocks, Prom Code,
Return codes , write verify option, and Virtual
drive table

Corvus Systems 293

Mass Storage Systems GTI Index

Semaphores • 167-171
lock program ••• 169-172
performance considerations • 19

18, 228
228

• semaphore errors
semaphore states
semaphore table

•
• 18-19

171-172
169-172
168-169

11I1l.()c:lt ~~~~IlJD ••
volume locking
volume sharing

•
•

see also Semapbore lock programs
Semaphore commands ••••••••••••••••••••.•••••••••••••••••••• 14-18

17
16
17
18
15

initialize semaphore table •
semaphore lock ••
semaphore unlock
semaphore status

•
•
•

wild card character •••••••• .
see also SendCom procedure

Semaphore lock programs ••••••••••••••••••••
Apple Dos Constellation 1/11
Apple Pascal Con.el~ation I

•
185-179

179
178-179

178
175-176
177-178

•
CP/M-80, CP/M-86 •
Corvus Concpet operating system •••••••••••••••••••••••
MSDOS Constellation II
Version IV p-system and

•

Apple Pascal Constellation II •••••••••••
Send Com procedure . 176-177

149-165
Apple Dos Constellation I
Apple Dos Constellation II
Apple Pascal Constellation I

165
158-159

162
165

. · .
•

BCI.OBJ .
CP/M-80, CP/M-86 Constellation II .
CP/M-80 Constellation I •

156-158
165
151
151

CDRECV •
C:1)!)~!fI) ••
Corvus Concept· operating system •
MSDOS Constellation II •
OMNIBCI.OBJ .

151-154
154-156

158, 165
SEND ...•........•..•.•......•. ' ..•...•...•..•.•...•.•.•.... 158

158 RECV ••
Version IV p-system and
Apple Pascal Constellation II ••••••••••••••••••••••••• 159-162

Send message command vector •••••••••••••••••••••••••••••••••• 74
Setup recieve aessage command vector ••••••••••••••••••••••••• 75
Short commands •• 76-77

sending a short command ••••••••••••••••••••••••••••••••• 77-80
see also Omninet driver for old disk server, and

omninet driver for new disk server
Software developer's information ••••••••••••••••••••••••

• MSDOS
CP/M 80
CP/M 86
CP/M 80

Constellation II
Constellation II
(Flat cable only)

279-283
279-281

281
281
282

• .

Corvus Systems 294

Mass storage Systems GTI Index

• Apple Pascal Constellation I
Apple Dos Constellation I . 283

283
Spare tracks

omniDrive •••••••••••
60-61

60
60
60

•
Rev B/H series drive · .
The Bank •

Spool program • 187-192
Apple DOS Constellation 1/11 • 194

191-192
189-190
187-189

Apple Pascal •
Corvus Concept operating system •••••••••••••••••••••••
Corvus spool program ••••••••••••••••••••••••••••••••••
CP/M 86, CP/M 80 Constellation II •

•
191
191 MSDOS Constellation II

Version IV p-system and
Apple Pascal Constellation II .

spooler
192-191

187 •

The Bank
changing bank tapes or
powering off the bank ••.•..•.••••.••..•••.•••••.•..•••••...

see also DIP Switches, Firmware, Hardware description,
Interleave factor, LED's, Physical sector size,
Prep blocks, Prom code, Return codes , and
write verify option

49

. Transporter cards
Apple II transporter
Concept transpoter

· . · .
IBM PC transporter ••••••••• .

235-247
235-236
236-237
237-241

IBM PC-JR. transporter
LSI-ll transporter
MC-transporter

· . 247
248-251

••• 243-242
246-247

243
243-244

· .
• Rainbow transporter

Sony transporter •
Univerals buffered transporter •
VT-180 transporter· -•.••••••••••••••••••••••••••••• • • • • • • • • •• 242·
Z-80 engineering transporter • 244

247-248
229-230

229
116

Z-100 transporter · .
• Transporter command summary

Transporter result codes
Transporter timeouts

•
•

Virtual drive table • 68-69

write verify option
OmniDrive

• .
Rev B/H series drive ••••••••••••••
The Bank ••••••••••••••••••••••••••

Corvus Systems

12
12
12
12

295

**
CORVUS

