cOMRUTERUISIOn

cooos 4 BอडाC operotors course

PITTSBURGH
TECHNICAL INSTITUTE
Computer Technologies Center - 635 Smithfield Street
Pittsburgh, PA 15222 • (412) 471-1011

Instructor: Dean Shaw

DAILY SCHEDULE
COMPUTERVISION
CADDS 4 BASIC OPERATORS COURSE
DAY ONE Work Station 1-23
Hardware Description Login 1-6
Logout 1-7
Operations Level 1-10
CADDS 2-1A
Part Names 1-12
Resume Systems 2-4
Resume CADDS 2-3
Activate Part 3-3
Activate Drawing 3-2
File Part 3-12
Exit Part 3-11
Exit CADDS 2-2
Command Format 1-2
Command Control Punctuation 1-5
Login/Logout Summary 1-7A
Repaint 5-6
Zoom Drawing 5-13
Scroll Drawing 5-9
Save Image 7-3
Restore Image 5-8
CONSTRUCTION
Insert Line 4-42
Insert Circle 4-23
Insert Arc 4-13
Insert Point 4-45
Getdata Options (Coordinate Location) 1-17
Delete Entity 4-7
Plot Hard Copy 9-4
DAY THREE
On-Line Documentation 1-15
Command Punctuation 1-4
Crash Recovery 1-8
Construct Offset 4-5
Blank Entity 5-2
Unblank Entity 5-12
Restore Key 7-2

DAY FOUR	ADVANCED GEOMETRY	
	Insert Ellipse	4-30
	Insert Fillet	4-32
	Insert Chamfer	4-21
	Insert B-Spline	4-18
	Select Grid	7-4
	Echo Grid	5-4
	Getdata Options (Modifier Mode)	1-17
	Construct Part	3-4
	Construct Group	4-4
DAY FIVE	MANIPULATION	
	Translate Entity	4-59
	Rotate Entity	4-55
	Mirror Entity	4-53
	Trim Entity	4-60
	Divide Entity	4-8
	Getdata Options (Entity Selection)	1-19
	Stretch Entity	4-57
DAY SIX	ANALYSIS	
	Verify Entity	8-10
	Measure Length	8-9
	Measure Angle	8-5
	Measure Distance	8-8
	Measure Area	8-6
	Select Layer	7-4
	Change Layer	4-1A
	Echo Layer	5-5
	Count Entity	8-12
	Insert Crosshatching	4-51
day seven	TEXT	
	Insert Text	4-49
	Insert Label	4-36
	Insert Flag	4-34
	Change Text	4-2
	Edit Text	6-2

DAY EIGHT	DIMENS IONING	
	Insert Linear Dimension	4-39
	Insert Angular Dimension	4-10
	Insert Radial Dimension	4-47
	Insert Diameter Dimension	4-28
	Insert Center Line	4-26
	Arrowheads	7-5A
	Select Dimension	7-6
DAY NINE	3-D CONSTRUCTION	
	Construction Planes	3-5
	Views	3-8
	Status Listings	
	List Drawing	8-2
	List Layer	8-3
	List Part	8-4
	Tag Entity	4-62
	Echo Frame	5-3
	Reset View	5-7
	Plot Dot	9-2
DAY TEN	Student Applications	
	Questions	

The following paragraphs present practical information to the operator on the use of CADDS 4. These paragraphs explain:

* Command Format
* Command Punctuation
* Control Punctuation
* Login
* Logout
* Crash Recovery
* Operations Levels
* Model Mode and Drawing Mode
* Parts, Models and Drawings
* Part Names
* Coordinate Systems
* On Line Documantation
* Data Input Prompts
* Getdata

The CADDS graphics system is designed for easy use by the operator. It is broken down into several parts that allow for a number of different combinations of command types. The basic format is:

VERB-Every command will have a verb. Some commands will consist of only a verb.

NOUN-A command may or may not have a noun. No command will have more than one noun.

MODIFIERS-A command may or may not have modifiers. A command may have more than one modifier.

COLON-Once the colon is entered, the data input software takes control.

Generally speaking, the verb, noun, and modifiers in front of the colon tell the system what function is to be performed, and the data after the colon tells the system on which entities, or where, the function is to be performed.

GETDATA-Processed by the data input software. Consists of coordinate or entity information.

The command format in this manual is presented in two forms. Upper and lower case letters and numerals are entered by the operator. COMPUTER TYPE indicates system prompts or responses.

For example:
INS LIN HOR LNG3:MODEL LOC
Entered by operaotr System prompt

To distinguish between system and user responses in the dialogue examples contained within this manual, different type syles are used.

This Type - Indicates user input
THIS TYPE - Indicates system response or output.

Other conventions are indicated below.
(CR) - Indicates a carriage return.
() - Indicates the information within the brackets is optional.

CADDS 4 command punctuation is standardized; punctuation marks retain the same meaning throughout all commands. The following table lists and describes the various command punctuations.

CADDS 4 COMMAND PUNCTUATION

Punctuation	Use
Blank	Used optionally between keywords.
, (comma)	Used between explicit coordinates, items in a list, and groups of numbers.
; (semicolon)	Used between clauses, as in switching modes from identi- fication to digitizing.
(colon)	Used to enter the coordinate input entity input model, or to reenter the same command without reissuing the verb/ noun combination. When used to reissue the command, the colon terminates the input, executes the command and then reenters the same command for new coordinate input, thus preserving all modifier selec- tions from the previous command specification.
(period)	Used to terminate the current command input, execute the command, and then reenter the same command without reissuing the verb/noun combination. When a period is entered, the command reenters the modifier process and awaits further user direction.
(carmiage	Used to terminate the current input and execute the command.
(carn)	

CADDS 4 control punctuation is standardized; punctuation marks retain the same meaning througjout all commands. The following table lists and describes tha various command punctuations.

CADDS 4 CONTROL PUNCTUATION

Punctuation	Use
CTRL E	Aborts the command. Control returns to the operator at the CADDS system level. The display and part database are both returned to the previous state.
CTRL B	Stops processing and the operator enters one the following replies: Q - Halt program execution and return to CADDS level prompt. 1 - Process the command through one process loop until this breakpoint is reached again or command terminates. Any other character causes the command to resume execution. The display and part data base remain in the state they were in prior to the halting of the command.
CTRL Q	Aborts processing and returns control to CADDS level prompt.

| LOGIN |
| :---: | :--- |
| INITIAL |
| LOGIN | \left\lvert\, | An operator must log in to the computer in |
| :--- |
| order to use the system. Logging in is the |
| users way of informing the computer that |
| they are ready to begin work. |\quad| The first operator to log onto the system |
| :--- |
| must type in the date and time. The computer |
| will automatically request this information |
| from the operator. The system automatically |
| performs an FMCLEAR also. |\right.

The operator must logout whenever a work session is completed to let the computer know that work has ceased and that a particular account should no longer be charged for computer time.

1. A logout may only be performed when the task is at systems level.
(O) n>LOGOUT (CR)

MINS ELAPSED: 48 COST: †b. ᄅヨ ** TASK n TERMINATED **
(O) CTRL-R N N is the task number.

TYPE NAME, NUMBER
(O) GUEST (CR)

PASSUORD
(O) (CR)

SYSTEMS LOGIN MESSAGE
(0) X TRG (CR)
SYSTEMS MESSAGE
(O) CADDS (CR)

SYSTEMS MESSAGE
(O) \#N\# ACT PAR TRG.XXX.EX.I

ENTERING NEU OR OLD PART
(O) \#N\# ACT DRA Dl

When work has been completed:
(O) \#N\# EXIT PAR Q OS -OR-
\#N\# EXIT PAR F (FILENAME (OPTIONAL)) OS
(O) LOGOUT

CRASH RECOVERY PROCEEDURES

The process outlined below describes how to recover a part when a system crash occurs．
－－CRASH－－At this point the system will no longer respond to operator input．The menu will be inactivated， the keyboard will not respond and the terminal will be logged out．No logout message will appear on the screen．

To begin work again the system must be booted up again．After this all tasks must be logged in again．All operator inputs are identified in the following example by the symbol（0）．Explanatory notes are identified by an asterisk（＊）．
（O）CTRL－R N＊
TYPE NAME，NUMBER
（O）GUEST（CR）
TYPE PASSWORD
（O）（CR）
＊＊TASK N INITIATED＊＊
SYSNEUS，BCD，LCLNEUS
コー コータ1 ロ：01：08
 ＊＊＊CADDS 4 REV．ᄅ－ロl－A＊＊＊ ＊＊＊
（O）N＞X TRG
N＞ENABDIR TRG＝C，SYSCATLG＝L
DIRECTORY ENABLED
N＞OK
？？
（0）N C CADDS
CADDS 4 REV．\＃2－ロコーA 2－ロ1－82 16：15：48
TYPE OK TO CRASH RECOVER
（O）OK＊
INPUT DEVICE IS SD
＊Be certain to use the same task number you were logged in under prior to the crash

TYPE OK TO REGENERATE GRAPHICS
(O) OK*
*Typing OK here places the information about the part in a temporary file and does NOT display the recovered part on the screen.

PART WAS SUCCESSFULLY RECOVERED AND ACTIVATED UNDER A TEMPORARY NAME. FIGURE FILES UERE NOT RECOVERED. BE SURE TO FILE UNDER NEU NAME.
(O) \#N\#FILE PART (filename)*
(O) \#N\#EXIT PAR Q*
(O) \#N\#ACT PAR (filename)

ENTERING OLD PART
(O) \#N\# ACT DRA Dl*
*The part, although unseen, must be filed under a name that can be identified.
*Even though the temporary file name is not known it must be exited in order to continue.
*This completes the process and allows work to continue at the point just before the crash. There is always the possibility that a part will not be recovered and, thus, reinforces the importance of filing often to avoid losing a great deal of time and work on a part.

Drawings are the means by which the model is presented and detailed. A drawing contains one or more independent pictures (views) of the model. Each view contained within a drawing may be tailored to express some particular quality of the model. Each drawing may be worked on independently allowing the user to create as many drawings as are desired.

Since the purpose of a drawing is to present and detail the model for a specific purpose, certain changes to the appearence of the model may be desired. To accomplish this, CADDS 4 allows the user to edit the model within a drawing without changing the database description of the model. Drawings use a copy of the database description of the model, eliminating the need to recreate the model for each drawing. Drawings are dependent upon the database description of the model in that all revisions and changes made to the model (in model mode) are reflected, where appropriate, in all drawings.

PART NAMES

RESTRICTIONS

Every drawing, layout, sketch, etc. that you want to create on the CRT must be given a name before you can start.

The part name can be made up of several parts separated by periods.
XXX.DDD.LLL

1. 20 characters maximum between periods.
2. Total number of characters: including periods cannot exceed 60 characters.
3. Cannot have embedded blanks in the part name.

Naming convention for training parts:

OPERATIONS
LEVELS

MODEL MODE
AND
DRAWING MODE

PARTS, MODELS, AND DRAUINGS

There are two levels at which the system is operated:

1. The systems level
2. The CADDS level

You can tell which level you are in by the prompt

1. $n>$ for systems level
2. \#n\# for CADDS level

The CADDS level is where the drawings and the layouts are created.

The systems level is for reading and writing mag tapes, fmclear, login, logout, and other non graphic type operations.

Two operational modes exist within CADDS 4 which distinguish between operations of drafting and designing natures. These modes are referred to as model mode and drawing mode. Operations performed on the model within drawing mode affect the presentation of the -odel within that drawing only (i.e., the batabase description of the model is not affected). Commands which may be used only within a specific mode are said to be "mode-dependent".

A CADDS 4 part consists of a database description of the model and any number of drawings necessary to describe the model. The model and all drawings pertaining to that model are stored under a part name. The user accesses the model and drawing by using the part name and specifying the desired drawing.

A model is the database description of the abstract object (or product) which is being designed or produced. All geometry and data required to define the model is stored automatically by the system. Models may be twoor three-dimensional. Certain graphical entities (generally 3-D) may be used only by the model.

COORDINATE SYSTEMS

MODEL SPACE

DRAUING SPACE

VIEWS AND
CONSTRUCTION PLANES

Coordinate systems, views, and construction planes are used to provide a means by which the model may be viewed and input entered where desired. Two distinct special coordinate systems are used by CADDS 4. These are:

1. Model Space
2. Drawing Space

Model space is the coordinate system in which the model resides. Model space is an infinite, universal space which is also referred to as "real world space". The model always resides in model space; representations (views) of the model are created in local coordinate spaces (construction space). The model may always be thought of as aligned with the specific coordinate axis associated with model space. Conventionally, the modal space coordinate axis is represented as follows (relative to the display); positive X , to the right; positive Y, up; and positive Z, out from the screen.

Drawing space is a two-dimensional coordinate system which defines the frame of reference for a drawing.

Views and construction planes are used to define a local coordinate space in which the model may be viewed in different ways (from different angles, position, etc.). A construction plane is a pre-defined or user-defined plane on which digitizes are projected (if the construction plane is activated). Construction planes also define the view orientation as different from model space, allowing the model to be displayed from different angles, and the digitizes to be projected to the activated construction plane. Construction planes may be activated in a pre-defined view to allow the user to project digitizes upon a plane other than the currently activated construction plane.

Views are the means by which the model, or part of the model, is scaled and positioned within the user-defined view clipping boundaries. This model is placed within the view relative to the user-defined view origin and the view
orientation (defined by the associated view construction plane). Views establish a view coordinate system which is used for all explicit coordinate input when the associated view construction plane is activated.

Seven pre-defined construction planes exist which may be used by the operator. If a construction plane is not activated by the user, the system defaults to the pre-defined top construction plane (regardless of whether or not the user has used this construction plane to define a view). The top construction plane exists in model space, and may be thought of as the system's representation of model space.

Every model, or drawing of a model, can be considered to exist in a space of specific dimension. Every dimension may be expressed in terms of a unit of measure and a magnitude (how many units). CADDS 4 allows the user to explicitly select the dimensional unit in which the drawing or model will exist from a list of system supported units. These dimensional units are referred to as database units. CADDS 4 supports the following database units: inch, foot, mile, millimeter, centimeter, meter, and kilometer. Any of these units may be modified by the use of a multiplication factor such as 3 x foot, 0.001 x inch, etc. After specification of a multiplication factor, all drawing or model size information (magnitudes) are interpreted by the system as some multiple of the selected unit (i.e., dimensional unit X multiplication factor).

Two types of database units are supported by CADDS 4: model units and drawing units. Model units express the dimensions of the model in its dimensional space, likewise, drawing units express the dimensions of the drawing. One model unit may be selected per CADDS 4 part, and one drawing unit per drawing.

LISTING OF VERBS AND NOUNS

COMMAND dOCUMENTATION

You can obtain an on-line description of any valid CADDS 4 command. They are activated by the use of the special characters:
? (question mark)
! (exclamation point)
The ? is used to list verbs, associated nouns and/or associated modifiers.
verb? - Lists all nouns used with a verb.
verb noun? - Lists all modifiers available for this command.
characters? - If a few characters are entered, but not enough to identify a verb, a ? will list all verbs begining with those characters.

The ! is used to produce a description of a particular command.
! verb noun - Lists a description of that verb/noun combination.

TO GET OUT
(ESCANE) (iNTR Q)
hIST PART QATADO
\because
dATA INPUT PROMPTS

Data input takes control after the colon is entered. Data input is a general purpose means of inputting data, whether it be explicit data or graphic data input through digitizes.

The standard Data Input prompts include the selected mode (Model/Draw) as the first part of the prompt in upper case, along with the intent of the input (entity retrieval, coordinate specification) in lower case as the second part.

These parts are separated by a blank, and a blank is appended to the total prompt.

Part l: Mode prompt

a. MODEL	All digitizes refer to model space.
b. DRAW	All digitizes refer to drawing space.
c. DRAW/MODEL -	Digitizes may pick up either model or drawing entities.

Part 2: Input intent
a. ent - Identifies entities
b. loc - Identifies a coordinate locstion

INS LIN:MODEL LOC
EDIT TEXT:DRAW ENT

COORDINATE LOCATIONS

MODIFIER MODES

There are two ways to identify input locations to the system.

1. The pen is used to point to or digitize the location.
2. Explicit input - the coordinates are typed in. Two types of coordinates can be used.
A. Cartesian Coordinates

Absolute coordinates in the form of XnYnZn. This is measured from XOYOZO.

Incremental coordinates in the form of IXnIYnIZn. This is measured form the previous coordinate. For example:

IX3 means - Starting at the last coordinate entered, move 3 inches in the positive X direction.

NOTE: A comma is used to separate coordinates $\mathrm{X} 2 \mathrm{Y} 2, \mathrm{X} 5 \mathrm{Y} 4.6$
B. Polar Coordinates

Absolute coordinates - RnẠZn
Incremental coordinates - IRnIAnIZn
A is measured counter-clockwise from the horizontal.
R is radial from $(0,0)$.
To iterate (repeat) a coordinate, that has been input using explicit coordinate input, a number of times, end the input with an ' N ' followed by an integer.

INS POI:MODEL LOC XOYO,IXIIYIN5
Data can be located by referencing other entities - lines, arcs, circles, etc. The pen and tablet are used to point to or digitize an entity. Watch for the attention marker to appear on the entity identified to be sure the right entity was identified. (The attention
marker is a small square that appears on the origin of the entity on the storage tube terminals and a small flashinf 'X' that appears on the entity near the digitize on the InstarView terminals.

Endpoint Mode - END
To refer to the endpoint of a line or other curve. The endpoint of an entity is specified by digitizing the entity near the endpoint desired.

Origin Mode - ORG
To refer to the origin of an entity, for example, the origin of a circle is the center and the origin of a line is the midpoint.

Refernce Point - REF
INS LIN JER LEN H: MOD WOC ORG REF d:, LAC IY-3 The ref data modifier can be used anywhere that coordinate information is legal in Getdata. It causes the following location specification to be used as a reference only, not as a data input to the command.

The location specification which follows REF can take any of the previously described modifiers.

Local Center - C
Moves the origin for the remainder of the current command. It requires a location input similar to REF.

Near
The naer modifier selects the nearest point on the specified entity.

Intersection Of - INTOF
The INTOF modifier is used to establish a location at the geometric intersection of two selected entities or of one entity (specified first) with several others.

ENTITY SELECTION

EXAMPLES
NOTE: You remain in the chosen mode until another modifier is used which specifies a different mode or until Getdata is exited.

The Getdata modifiers PNT, LIN, ARC, etc. may be used to restrict the choice of entities.

Also, the modifier WIN (window) or PWIN (polygon window) can be used to identify more than one entity at a time.
\#n\#INS LIN:MODEL LOCX1Y0, X3Y3, X5Y4, Y5, XlY7, X5 (CR)

P1 P2 P3 P4
\#n\#INS LIN:MODEL LOC XOY0,R2A45,R3,A60

\#n\#INS CIR RADI:MODEL LOC REF ENDdlLOCIX3

SYSTEM CONTROL COMMANDS

System Control commands are used to activate and deactivate a CADDS 4 work station, to move between the Operating System environment and the CADDS 4 environment, to set up alternative verb/noun combinations for altering the message system, and to perform certain system utility functions.

The commands include:
EXIT CADDS
RESUME CADDS
RESUME SYSTEMS

COMMAND	CADDS
DESCRIPTION	The CADDS command takes the user from the Operating Systems (OS) level to the CADDS 4 environment with a standard or user-defined set of default parameters.
CXADDS (CR)	

COMMAND	EXIT CADDS
DESCRIPTION	The Exit Cadds command is used to exit the nongraphic stage of CADDS and return to the operating system.
SYNTAX	EXIT CADDS (CR)
ERROR MESSAGES	If the Exit Cadds command is used in the graphic stage of CADDS the message
	PART ACTIVE, COMMAND IGNORED
	will be displayed.
RESTRICTIONS	The Exit Cadds command can not be used while a part is active.

COMMAND
DESCRIPTION

SYNTAX

* WARNING*

ERROR MESSAGES

RESUME CADDS

The resume CADDS command transfers control from the Operating systems level to the CADDS 4 level. This command restores a CADDS session suspended by a Resume System command. Resume CADDS is the only way to enter CADDS after CADDS activity has been suspended.

RESUME CADDS (CR)
Do not break the execution of a Resume command.
CADDS SUSPENDED
An attempt is made to enter CADDS while CADDS is suspended. Returns to the Operating System command level.

CADDS IS SUSPENDED, LOGOUT ABORTED
Logging out when CADDS is suspended. Returns to the Operating System command level.

CADDS NOT SUSPENDED
An attempt to RESUME CADDS when CADDS is not suspended. Returns to the Operating system command level.

| COMMAND |
| ---: | :--- |
| DESCRIPTION |
| SYNTAX |
| *UARNING* |$|$| RESUME SYSTEMS |
| :--- |
| The Resume Systems command temporarily suspends |
| CADDS operation and transfers control to the |
| Operating System command level. |
| RESume SYStems (CR) |

PART STRUCTURING COMMANDS

Part structuring commands are the first to be used when creating or entering a CADDS 4 part. They permit the user to establish the operational part structure through which the model is viewed and manipulated.

This includes:

* Setting up the part and its parameters.
* Activating drawings and determining their parameters.
* Defining views and construction planes.
* Filing the part.

These commands have no effect on the model itself but rather on how the model is displayed.

These commands include:
ACTIVATE DRAWING
ACTIVATE PART
CONSTRUCT PART
DEFINE CPL (CONSTRUCTION PLANE)
DEFINE VIEW
EXIT PART
FILE PART

COMMAND
DESCRIPTION

SYNTAX
MODIFIERS
oldname newname

HGTn UDTn

SIZE'...'

ACTIVATE DRAWING
The Activate Drawing command is used to file the currently active drawing and to activate a different one, which may be either old or new. If old, it is displayed zoomed to the extents of the screen. If new, its size parameters are established either explicitly by command modifiers or from default values. A new or old drawing may be activated in either Model or Drawing mode.

If drawing mode is in effect prior to activation, and a part is entered, the system automatically activates a drawing named DEFAULT, using the currently defined scale factor. However, drawing scale may be changed each time a drawing is activated.

ACTivate DRAwing name (modifiers) (CR)
(Required) Indicates a user-defined name for the drawing; limited to 15 characters.

Specifies explicitly the height and width of the drawing when plotted true size. The drawing size effectively defines a final clipping boundary through which any view pictures and/or drawing graphics which try to extend further will be clipped. 'n' may be an integer or real number. Use these modifiers to achieve a vertical or horizontal format.

Allows input of one of several standard drawing size codes.

A	8.5	x 11 in
B	11	x 17 in
C	17	x 22 in
D	22	x 34 in
E	34	$x 44$ in
AO	841	x 1189 mm
Al	594	84 mm
A2	420	594 mm
A3	- 297	420 mm
	- 210	297 m

With this modifier, drawings are always oriented eith the longer dimension horizontal.

```
COMMAND
DESCRIPTION
```

SYNTAX
MODIFIERS
oldname newname

EXAMPLE

RESTRICTIONS

ERROR MESSAGES

ACTIVATE PART
The Activate Part command provides admittance into the CADDS 4 part environment. The characteristics for the new part and view planes are determined from the default parameter file used at CADDS activation time or from modifiers selected while in the CADDS non-graphical state. The mode (mode model) is determined by the user selected name, number, and password. If drawing mode is in effect prior to activation, a systemgenerated drawing named 'DEFAULT' is automatically activated as the part is activated. The user may then immediately begin drawing. Furthermore, if a drawing scale factor is in effect prior to part activation, then the DEFAULT drawing is automatically activated at the current scale factor.

ACTivate PARt name (modifiers) (CR)

Nmae of activated part.

ACT PAR TRG.XXX.LINES.EX.I
The new part,TRG.XXX.LINES.EX.l, is activated.

1. Part name may not exceed 60 characters, inclusive of "." used for catalog levels.
2. Drawing name may not exceed 15 characters.
3. No part name can begin or end with a "." or "\&".
4. A part name currently in an active part cannot be activated.
5. The active part must be explicitly exited using the EXIT PART command.

BAD PART NAME
Output if partname or drawname exceeds their specified maximum number of characters.

ALREADY AT PART LEVEL
Output when user tries to activate a part presently in an active part.

COMMAND
DESCRIPTION

SYNTAX
MODIFIERS
MODEL

DRAW
ORG

RESTRICTIONS

EXAMPLE

CONSTRUCT PART
The Construction Part command allows all, or a subset of the entities in the currently active part to be extracted and filed as another part.

CONstruc PARt name (modifiers) (CR)

Select only model entities. Default to currently selected mode.

Select only drawing entities.
During part construction a new origin. or base point for the constructed part may be specified. The three dimensional base point ($\mathrm{X}, \mathrm{Y}, \mathrm{Z}$) so specified will become the origin point $(0,0,0)$ of the constructed part. If no base point is specified, the origin of the active part, i.e., it's $(0,0,0)$ point, will become the origin of the constructed part.

Specifies that the origin of the active part is $0,0,0$.

1. The limit of the total number of entities which may be extracted is 28,000 . Entities digitized after this limit is reached are ignored.
2. The constructed part may not be filed under the same name as the active part.

The following command will construct a part called VBLOCK consisting of only those entities that have been digitized. The new part will have a new origin located at the lower left corner of the part.
\#n\# CONS PAR VBLOCK ORG: MODEL ENT dld2 d3d4d5d6d7;MODEL LOC END d8

COMMAND

DESCRIPTION

SYNTAX
MODIFIERS
NAMEI

NORMAL

DIGITIZES

DEFINE CONSTRUCTION PLANE
The Define Construction Plane command allows the user to define planes for later use by other commands. These cplanes may have any orientation and offset relative to the model coordinate system. These planes can then be used in defining views of the model as planes on which the views are to be projected. (See Define View command). These cplanes can also be used to determine the special orientation of entities inserted into the model, regardless of the orientation of the view in which the placement digitize was entered.

When a new part is activated, the XY plane of model space serves as the default active construction plane for defining views, inserting entities, or digitizing. By use of the Select Construction Plane command, the user may select any other pre-defined cplane as the current active construction plane. In addition the system provides List, Delete, and Echo Construction Plane commands to allow listing and deleting defined cplanes, and activating display of cplane temporary graphics.

DEF CPL name (modifiers): DRAW/MODEL LOC dl(d2d3)

Namel = name of Cplane being defined, 20 characters maximum.

Defines a Cplane from a normal vector. First digitize locates the origin of the construction plane. First and second digitize defines the normal vector. Third digitize is projected on to the construction plane and defines the direction of the X-axis.

If only one digitize is given, it will be used for the origin. If no orientation modifier is given (FROM +name, DIMET + , or angle), then the $X Y$ model orientation is used. If three digitizes are given, the orientation is calculated using the first digitize as the origin, the second as a point on the positive X-axis, and the third as a point in the positive Y-plane (i.e., any point in the first or second quadrant).

The system makes available seven pre-defined permanent standard cplanes, which can be accessed and referenced by the user in the same manner as any that might be defined, except that they cannot be deleted. These can be referenced either by their number, l to 7 , or interchangeably by their alternate names as follows. (Note, however, that if a user is in a two-dimensional part, there is only one predefined cplane, $l=T O P=X Y=M O D E L$. STANDARD CPLANE ALTERNATE NAMES

1	TOP, XY, MODEL	(default)
2	FRONT, XZ	
3	RIGHT, YZ	
4	BOTTOM, X-Y	
5	LEFT, $-Y Z$	
6	REAR, $-X Z$	
7	ISO	

Note that Cplanes 1 to 6 are the six faces of a cube. Cplane 1 ($=\mathrm{TOP}=\mathrm{XY}=\mathrm{MODEL})$ is the default cplane used by the system when none other has been selected or otherwise referenced. Cplane 7 or ISO is the isometric plane which provides an equal projection of all three axes. It can be envisioned as a cube balanced on one corner.

CPLANE NAME NOT SPECIFIED

No cplane name was input
ORIENTATION SPECIFICATION INCOMPLETE3 DIGITIZES REQUIRED

Command was terminated before the three expected digitizes were input.

INVALID DATA- DIGITIZES DO NOT DEFINE A UNIQUE

The diametric ratio must be between -2 and +2 .
cplane name already in use
A cplane name was entered which is already used by a previously defined cplane.


```
COMMAND
DESCRIPTION
```

SYNTAX
viewname
cplname

MODIFIERS
SCALEn

DEFINE VIEW
The Define View command creates a new view within an active drawing. A drawing may contain any number of views, each of which will occupy a two-dimensional rectangular area of the drawing. This region is referred to as the view clipping window. Graphics are not visible outside of this window. Thus entities that cross an edge of the window will be visible only up to the point of crossing. The two basic methods of creating views are explicit referenced to a defined construction plane, and folded auxiliary view specification.

DEF VIE viewname CPL cplname (modifiers): DRAW LOC dI DRAW LOC d2 DRAU LOC d3

A required alphanumeric text string consisting of up to 20 characters. Special characters should not be used.

The name of the construction plane to be used in defining the view. The system for seven permanently defined cplanes TOP, (default), FRONT, RIGHT, BOTTOM, LEFT, REAR, and isometirc (ISO). Other construction planes may be userdefined using the Define Cplane command.

Specifies a scale value for the view being created. The permissible formats of scale specifications are as follows:

1. Single numerical value SCALE 2.5
2. A ratio of two numbers SCALE 4 TO 2
3. A unit ratio of numbers SCALE 10 IN TO 1 KM

The available unit designations are:
MM (millimeters) IN (inches)
CM (centimeters) FT (feet)
M (meters) MI (miles)
KM (kilometers)

Coordinates used to specify a vantage point that controls the perspective appearance of the view. Each numeric value n defines the coordinate position of a vantage point. Coordinates are relative to the drawing coordinate system and are given in drawing units. Vantage point cooresponds to the eye position of a viewer. To establish a perspective view the value of ZP, a positive non-zero number, must be specified. If XP and YP are omitted, the origin of its current view is used.

Simple way to establish a perspective vantage point. No coordinate values are required. It causes the X and Y coordinates of the vantage point to be set to the origin of the view, and the Z coordinate to be set to 64 cm .

Establishes the minimum and maximum extents of depth-clipping to be applied to the view (for depth clipping a positive value extends into the screen). The values are entered in model space units and are relative to the construction plane.

Tilt angle 'A' in degrees counterclockwise; rotation is in the plane of the screen (default $=\varnothing$).

After all modifiers have been entered, the user enters a colon to begin digitizing. The system responds with the prompt DRAW loc and awaits the first digitize. This digitize specifies the point an the drawing where the views origin will be positioned. The system then proceeds to create the view and generate its display. (Note: For the first insertion of a view in a drawing, a lapse of time will occur before the image appears.) The view's image at this point is unclipped. The system will accept two additional digitizes which specifies opposite corners of the desired clipping window.

COMMAND

DESCRIPTION

SYNTAX

MODIFIERS
F
newname
EXAMPLE

ERROR MESSAGES

EXIT PART
Exit Part command is used to exit from an active part and return to CADDS environment thereby accomplishing one of four functions:

1. Alloying the part to be filed before returning to the operating system.
2. Returning to operating system without filing.
3. Renaming and filing current part name.
4. Returning to CADDS environment without filing.
EXIT PAR $\underset{Q}{\mathrm{~F}}$ newname $\mathrm{OS}(\mathrm{CR})$

One of these modifiers must be used or the command will be ignored. F is used to file active part before EXITING; Q is used to quit the part without filing.

Returns the user to the operating system. OS must be accompanied with an F or Q.

Renames the active part and files it.
The following example would file the currently active part under the name BRACKET and return to the operating system level
\#n\#EXIT PAR F BRACKET OS
BAD PARTNAME
This message is output if the name exceeds 60 characters or contains illegal characters.

F OR Q REQUIRED
This message is output if the F or Q modifiers are not given.

PART EXISTS, TYPE OK TO OVERURITE
This message is output if a part already exists with this name. OK allows the file to be updated with any changes made since the last filing.
COMMAND

FILE PARTDESCRIPTION
SYNTAX FILE PARt modifiers (CR)

FILE PARt modifiers (CR)
MODIFIERS

MODIFIERS

newname

newnameNOTEERROR MESSAGES

The File Part command files the current version of an active part under a new name, the current name (default), or files the TVFs. A part may be filed any time it is active. Upon completion of the filing, the user may continue modifying the active part until EXITing or returning to the operating system.

ERROR MESSAGES

New name of filed part. Must be less than or equal to 60 characters.

Only an active part can be filed.
BAD PARTNAME
Displayed when name contains more than 60 characters or an illegal character.

XXX EXISTS, TYPE OK TO OVERURITE
Displayed if a part already exists with the new name. OK allows the file to be updated with current information.
database COMMANDS

Database Construction commands are used to create and to edit the graphical entities that become the model in the part database. These graphical entities include points, lines, arcs, text, etc. Graphical entities may also be created and stored in the drawings of a part. These commands include:

CHANGE TEXT
CONSTRUCT GROUP
CONSTRUCT OFFSET
DELETE ENTITY
DIVIDE ENTITY
INSERT ANGULAR DIMENSION
INSERT ARC
INSERT B-SPLINE
INSERT CHAMFER
INSERT CIRCLE
INSERT CENTER LINE
INSERT DIAMETER DIMENSION
INSERT ELLIPSE
INSERT FILLET
INSERT FLAG
INSERT LABEL
INSERT LINEAR DIMENSION
INSERT LINE
INSERT POINT
INSERT TEXT
INSERT CROSSHATCH
MIRROR ENTITY
ROTATE ENTITY
STRETCH ENTITY
TRANSLATE ENTITY
TRIM ENTITY

COMMAND	CHANGE LAYER
DESCRIPTION	The Change Layer command changes the layer associated with selected entities. All selected entities will be moved from their original layer to the specified layer
SYNTAX	CHA LAYn:MODEL ENTdld2...dn
MODIFIER	
n	n is an integer between 0 and 254, which specifies the layer onto which the selected entities will be moved.
RESTRICTION	The layer on which an entity is located must be active or echoed (i.e., the entity must be visible) before that entity can be changed to another layer.
EXAMPLE	Assume two entities are on the screen: a line on layer 5 and a circle on layer 10. \#n\#CHA LAY 20:MODEL ENTdld2
	Both the line and the circle will be moved to layer 20.

COMMAND	CHANGE TEXT
DESCRIPTION	The Change Text command is used to change the text parameters of existing entities of the following types:
	Text
	Nodal Text
	Linear Dimensions
	Angular Dimensions
	Radial Dimensions
	Diameter Dimensions
	Feature Control Symbols
	Labels
SYNTAX	CHA TEX (modifiers) : DRAW/MODEL ENT dld2...dn
MODIFIERS	
HGTn	Changes the text height to the value n .
PENn	Changes PEN code to this value.
FONTn	Changes FONT code to this value.
LJT, CJT,RJT	Specifies left-, center- or right-justification.
MN	Specifies no mirroring.
MX, MY, MB	Specifies mirroring about the XZ plane, YZ plane or both planes.
THKn	Changes text aperture thickness to the value n. This modifier specifies what happens when the text is sent to a photoplotter or any other plotter which has the capability to plot thickness. No change is visible on the screen display.
UDTn	Changes text character width to the value n .
SLTn	Changes text character angle slant to the value n .
ANGn	Changes text base rotation to the value n.
RATIOn	Changes the text height and width uniformly by the given ratio. It must, therefore, be used exclusively of height and width.

STRNG'x'	Replaces the existing string with the string specified. The new string must be closed by single quotes (').
Note	For text with In-Stream modifiers, use the Edit Text command.
EXAMPLES	\#n\#CHA TEXT STRNG'NEW':MODEL ENT dl
	OLD
	$X \mathrm{dl}$
	BEFORE
	NEW
	AFTER

COMMAND
DESCRIPTION

SYNTAX
RESTRICTIONS

ERROR MESSAGES

EXAMPLES

CONSTRUCT GROUP
The Construct Group command is used to create groups compiled of any number of entities. Its purpose is to provide a means by which entities can be quickly identified in GETDATA. All members in a group can be manipulated as a single entity by using the GETDATA modifier group. Entities contained within a gruop can become members of another group using the Group modifier.

It is not possible to add members to an existing group. If desired it must be accomplished by dissociating the group and restructuring it with new entities. Entities belonging to a group may not be deleted until the group is dissociated.

CON GRO: DRAW/MODEL ENT dld2....dn
A group may consist of either drawing or model entities but may not consist of both.

GROUPED ENTITY, CONNOT DELETE
Displayed when the user tries to delete an entity belonging to a group.
\#n\#CONS GRO:MODEL ENT dld2d3d4d5d6d7d8d9

COMMAND
DESCRIPTION

SYNTAX
MODIFIERS

ENDPT

CONSTRUCT OFFSET

The Construct Offset command allows the user to construct an offset of a planar entity. The entity may be a point, line, arc, conic, B-Spline, string, or nodal line. In general, the offset of a point, line, arc, string, or nodal line will be the same respective entity. The offset of a conic or $B-S p l i n e$ is a $B-S p l i n e$ which approximates the true offset within the specified tolerance. A tapering capability exists which can be utilized to taper the offset along the specified curve. When this option is used, an arc, conic, or $B-S p l i n e$ will generate a B-Spline as the tapered offset. This command is legal in both model and drawing modes.

In addition, the Construct Offset command also accepts all surfaces for offsetting.

CONS OFF (modifiers: : MODEL ENT dl; MODEL LOC d2d3 (CR)

The modifier D followed by a number specifies that the offset is to be that number of units displaced from the original contour. The default is .l. This modifier applies to surfaces also.

The modifier DEND followed by a number speciifes a tapered offset starting at a spacing D from the contour and gradually tapering to DEND at the end of the contour. The tapering of the offset is directly proportional to the length along the contour. Does not apply to surfaces.

The Starting Point modifier indicates that the user will digitize a point which will be projected onto the first curve of the contour. This projected point will serve as the starting point for offset curve. Does not apply to surfaces.

The same as STPT, except that it determines ending point for the offset.

PROMPTS
ent
loc

EXAMPLES

The prompt requests the user to select the entity to be offset.

The prompt loc requests the user to choose the side of the curve for which the offset will be constructed. This prompt is also used when the start and/or end point modifiers are given to prompt the user to identify the start and/or end of the offset.
\#n\#CONS OFF D. 25:MODEL ENT dl MODEL LOC d2

\#n\#CONS OFF D. 25 DEND.5:MODEL ENT dl MODEL LOC d2

\#n\#CONS OFF D. 25 DEND. 5 STPT ENDPT:MODEL ENT dl MODEL LOC d2d3d4

x
d2

SYNTAX
EXAMPLES

DELETE ENTITY

The Delete Entity command is used to delete graphical entities from the database. It applies for both model and drawing entities. Deleted model entities have their appearances removed from all views in all drawings in the part.

Delete differs from Erase in that deletion means total entity removal from the part whereas erasure specifies the removal of an entity from a particular view of a particular drawing in the part.

DEL ENT: MODEL ENT dld2...dn (CR)
\#n\#DEL ENT:MODEL ENT dld2d3

AFTER

COMMAND

DESCRIPTION

SYNTAX
MODIFIERS
NDIVn
ent

loc

RESTRICTIONS

ERROR MESSAGES

DIVIDE ENTITY
The Divide Entity command divides a given entity into separate smaller entities of the same type. The command can be used with lines, arcs, cpoles, conics or B-Splines. The divisions of the entity are designated either by explicit input of the number of divisions or by digitizing the division boundary points. At the termination of the command the original entity is deleted and is replaced by the newly formed entities.

DIV ENT (modifiers): MODEL ENT dl; MODEL LOC d2....dn

Number of divisions into which the entity has to be divided.

User should digitize the entity to be divided.
This prompt will appear if no modifier is input (or NDIV=0). The user has to digitize the division boundary points. (However, the start of the entity is assumed to be the start of the lst entity division and the end of the entity to be the end of the last division and, hence, need not be digitized). Also, if the digitizers are not in order along the entity, they will be sorted before being considered for division boundary points.

1. Only one entity can be selected at a time.
2. Digitizes lying beyond the ends of the entity are rejected.
3. A maximum of 50 digitizes can be entered.

MAXIMUM DIGITIZES REACHED
If more than 50 digitizes are selected this message will be printed. The first 50 digitizes will be retained and the command will be completed.

INSERT ANGULAR DIMENSION
Angular dimensions measure the angle between two lines. The angle is specified by treating the two lines as vectors and identifying the terminal end of each vector. The angular dimension measures the angle between the terminal ends of the vectors. A third digitize specifies the palcement of text. The command automatically inserts extension lines (if needed), curved dimension lines, arrowheads, and dimension text.

Angular dimensions are associative by default. That is, the dimension is related to the lines being dimensioned and will automatically be re-created ("regenerated") when the lines are modified.

INS ADI (modifiers): DRAU/MODEL ENT-END dld2 DRAW LOC d3

Three modes of operation are available: standard mode, align, and rangle. Extension lines will be automatically drawn from the terminal ends of the lines defining the angle (whenever appropriate).

STANDARD MODE:
INS ADI (modifiers): DRAW/MODEL ENT-END dld2 DRAW LOC d3
Where
dl and d2 select the line segments describing the angle and 23 locates the text origin.

ALIGN MODE:
INS ADI TEXT LOCATION ALIGN (modifiers): DRAW/MODEL ENT-END dld2 DRAU ENT d3 DRAU LOC d4
where
dl and d2 select the line segments describing the angle to be dimensioned, d3 selects the existing angular dimension to be used for alignment, and d4 locates the text origin.

RANGLE X:
INS ADI RANGLE X (modifiers): DRAW/MODEL ENT-END dl DRAW/MODEL ENT-END d2 DRAW LOC d3
Where
dl selects the first line segment

MODIFIERS
LEADER

HEAD
END
CENTER
RANGLE

SUPPRESS

FIRST

SECOND BOTH NEITHER

Specifies leader parameters according to the
following second-level modifiers:
The leader is drawn to the head of the text. The leader is drawn to the end of the text. The leader is drawn toward the center of the text.

Specifies that hte second line in the angle to be dimensioned is a reference line at the given angle. The first digitize identifies the terminal end of a line (as usual). The second digitize fixes the reference line by specifying a point that it goes through. The third digitize specifies a test location (as usual).

Suppresses extension lines (first level) according to the second-level modifiers which follow:

The first extension line is suppressed. Extension lines are suppressed in the order of the digitizations.
The second extension line is suppressed. Both extension lines are suppressed. Neither extension line is suppressed. This is the default.

ERROR MESSAGES
describing the angle and $d 2$ selects the point which, along with the angle of X degrees determines the second line (extension line) describing the angle, and d3 locates the text origin.

The following error messages are self explanatory and may be displayed for informative purposes only:

EXAMPLES

 \#n\#INS ADI:MODEL ENT-END dld2 MODEL LOC d3

BEFORE

AFTER
\#n\#INS ADI RANGLEO:DRAW/MODEL ENT-END dl DRAW/ MODEL ENT-END d2 DRAW LOC d3

$x \quad$ d3

BEFORE

AFTER

COMMAND
DESCRIPTION

SYNTAX
MODIFIERS
AGO/AGOn

AEND/AENDn

RAD/RADn

DIAM/DIAMn

NOTE

INSERT ARC
The versatile command Insert Arc can be used to insert an arc by:
l. Digitizing its begining, mid and end points.
2. Projecting an angle for its begining and end points.
3. Explicitly inputting a desired angle for its begining and end points.

In all an arc can be inserted 31 different ways using various modifier combinations.

INS ARC (modifiers):MODEL LOC dld2...dn

Starting angle of arc; may be used with or without explicit value n (default 0).

Ending angle of arc, used with or without explicit value n (default 0).

Radius of arc, used with or without explicit value n.

Diameter of arc, used with or without explicit value n.

Arc is always inserted counterclockwise in any one of the 31 ways that follow:

1. INS ARC: LOC ddd ddd=3 pts on circum of arc
2. INS ARC AGOx: LOC ddd
3. INS ARC AENDx: LOC ddd
ddd=3 pts on circum of arc AEND explicit, dl=AGO
4. INS ARC AGOx AENDx: LOCddd ddd=3 pts on circum of arc AGO \& AEND explicit ddd=3 pts on circum of arc d4=AGO
5. INS ARC DIAM AENDx:LOC dd dl \& d2=DIAM
6. INS ARC DIAM AGOx AENDx: dl=AGO, AEND explicit LOC dd
7. INS ARC DIAM AGO: LOC ddd dl \& d2=DIAM AGO \& AEND explicit dl \& d2=DIAM $d 2=A E N D, \quad d 3=A G O$
8. INS ARC DIAM AEND: LOC ddd dl \& d2=DIAM $\mathrm{dl}=\mathrm{AGO}, \mathrm{d} 3=\mathrm{AEND}$
9. INS ARC DIAM AGO AEND:
dl \& d2=DIAM
LOC dddd d3=AGO, d4=AEND
10. INS ARC DIAM AGOx AEND: dl \& d2=DIAM LOC ddd d3=AEND, AGO
11. INS ARC DIAM AGO AENDx: dl \& d2=DIAM LOC ddd d3=AGO, AEND explicit

NOTE ' x ' after a modifier above indicates that the user types in a value for AGO, AEND, RAD, or DIAM after it.

EXAMPLES
The following are examples using some of the various ways to input an arc.
\#n\#INS ARC:MODEL LOC dld2d3

\#n\#INS ARC AGO45:MODEL LOC dld2d3

\#N\#INS ARC AEIJD:MODEL LOC dld2d3d4

\#n\#INS ARC AGO AEND225: MODEL LOC dld2d3d4

\#n\#INS ARC RAD2:MODEL LOC dld2d3

\#n\#INS ARC DIAM3 AGO270 AEND45:MOSEL LOC dI

\#n\#INS ARC RAD: MODEL LOC dld2d3

\#n\#INS ARC RAD AGO90:MODEL LOC dId2

\#n\#INS ARCRAD AGO AEND:MODEL LOC dld2d3d4

\#n\#INS ARC DIAM:MODEL LOC dld2

\#n\#INS ARC DIAM AGO90:MODEL LOC dId2

\#n\#INS ARC DIAM AEND:MODEL LOC dld2d3

\#n\#INS ARC DIAM AGO AEND45:MODEL LOC dld2d3

COMMAND

DESCRIPTION

SYNTAX MODIFIERS

DEG2
(Quadratic)
DEG3 (Cubic)

INSERT B-SPLINE

The Insert B-Spline command is used to insert B-Splines by the digitizing of two or more points. (A B-Spline between two points is a straight line.)

CADDS allows the insertion of second through seventh degree (Quadratic) or third degree (Cubic) B-Splines. The Insert Bspline command however, uses the default of a non-rational B-Spline definition, i.e., for each function in the inserted sequence $H(t)=1$.

The ORIGIN of a B-Spline is the closest segment and point to the digitize. Valid in Model and Drawing modes.

INSERT BSPLINE modifiers:

Takes an integer value (2-7) which allows the specification of frame one to seven degrees of the inserted B-Spline.

A quadratic B-Spline ensures up to the first degree of derivative continuity, i.e., continuous tangent vectors slope.

A cubic B-Spline ensures up to the second degree of derivative continuity, i.e., continuous tangent vectors slope and continuous rate of change in slope.

Default is DEG 3 (CUBIC).
In general all other B-Splines have the Degree minus 1 continuous derivatives.

A B-Spline is a 3-dimensional spline curve specified by the input of a sequence of 3 dimensional points. The Z component of these input points can be automatically overridden by a user-defined constant depth. This option will produce a planar B-Spline.

The modifier ZT takes a real value (i.e., ZT 3.62) which specifies a constant depth in the active construction plane for all input points. That is, the \mathbf{Z} component of all points issued after the command colon (:) will be set to the value of $Z T$.

Default is 3 dimensional.
The modifiers INTR (interpolation) and Poly (polygor:) set the mode of the user interface for definition of a B-Spline curve.

Default is INTR.

POLY \mid Specifies that the digitized points are interpreted as defining POLYGON points.

INTR Specifies that the digitized points are interpreted as curve points to which the B-Spline will interpolate. There are three forms of command syntax with the modifier INTR depending upon the input of two other modifiers TANA and TANB.

NOTE INTR is the default mode if modifier POLY is not input.
Under the interpolation mode, more information than a sequence of interpolant points is needed to uniquely define the interpolating B-Spline. This added information can be specified by user determined boundary conditions at the ends of the spline. Boundary conditions consist of the input of start and/or end first derivative vectors (tangents).

TANA Input start tangent vector.
TANB Input end tangent vector.
CAUTION Vector magnitude (i.e., length of tangent vectors) together with direction influences the interpolation.

A quadratic B-Spline (DEG2) needs one boundary condition for its unique specification.

All other higher degree B-Splines can take two boundary conditions.

These modifiers are special cases of TANA and TANB respectively. Unlike TANA and TANB, they do not take user input. CIRA generates a start tangent which gives the B-Spline the initial slope and curvature of a circular arc fitted to the first three interpolant points. Likewise, CIRB approximates circular interpolation at the end of the 8 -Spline.

As with TANA and TANB, CIRA and CIRB are used only in interpolant mode. TANA and CIRA are mutually exclusive; likewise, TANB and CIRB.

APPEARANCE

 MODIFIERSFONT Automatic fonting will be specified in the following modifiers.
NAME $n \quad$ Specifies the selected font name.

Specifies the active font is reselected.
DIAM n
The pipe font is selected. \boldsymbol{n} is the diameter.

NONE \mid No font is selected.
FLST Lists all font names.
WDT $n \quad$ Specifies the width of the PC width font.
DLEN n Specifies the length of the PC width font's dashes.
SLEN n Specifies the length of the PC width font's spaces.

LJT
RJT
CJT
CRVA
cRVB

ADJUST

TAG=’’NAME"

STG

EXAMPLES

CRVA gives the B-Spline the initial slope of a selected entity. Likewise CRVB gives the B-Spline the ending slope of some user-designated entity. CRVA is a substitute for TANA and CIRA and the three are mutually exclusive, as are CRVB, TANB, and CIRB in like fashion. The slope is that of the entity and nearer the selection digitize.

Used when the interpolant points are badly distributed; i.e., the spacing between points differs substantially. When the ADJUST modifier is used, interpolant points are added to insure that the B-Spline is smooth.

Gives a 'user=defined' tag name to the B-Spline specified. ' $=$ ' is a system prompt, after which the user types in the name of the tag. The name may contain up to six alphanumerics. Each tag name may be used only once.

Allows the user to substitute the vertices of a string or nodal line for explicit input of points. When using the POLY modifier these vertices define the B-Spline polygon. When using the INTR modifier (or default), the B-Spline passes through the vertices. In either case, the vertices are ordered in the definition of the string or nodal line.

Input of B-Spline POLYGON directly in an approximation mode.

\#n\#INSERT BSPLINE POLY: loc d 1 d 2 d 3 d 4 d 5 d 6$)$

This example shows the difference between a quadratic (Degree 2) Bspline and a 5th degree Bspline.

TOP VIEW

DEGREE 2

Degree 2 appears in solid lines.
Degree 5 appears as a dashed line.

INSERT BSPLINE DEGREE 2: loc d1d2d3d4d5d6d7

INSERT BSPLINE DEGREE 5 FONT DASH: loc d1d2d3d4d5d6d7

\#n\#INSERT BSPLINE: loc NT d1 d2 d3 d4 d5 d6

COMMAND
DESCRIPTION

SYNTAX
MODIFIERS ANG LNGA

LNGB

TRIM
-TRIM
NOTE

EXAMPLES

INSERT CHAMFER
The Insert Chamfer command inserts a chamfer between two intersecting lines.

INS CHA (modifiers): MODEL ENT dld2 MODEL LOC d3

Angle between line A and chamfer (default is 45.0).

Distance from the intersection point of line A (first line chosen) to the end of the chamfer (default is 0.5).

Distance from the intersection point of line B (second line chosen) to the end of the chamfer (default is 0.5).

Trims lines to the end of the chamfer (default).
Suppresses trim
If only the angle is entered, the user is prompted for a digitize along line A for the chamfer start point. If more than two out of LNGA, LNGB and ANG are entered, then the first two modifiers determine the chamfer.

NO CHAMFER POSSIBLE
If the resulting chamfer would have zero length, or be parallel to either line. No chamfer will be inserted.
\#n\#INS CHA:MODEL ENT dld2

BEFORE

AFTER

\#n\#INS CHA -TRIM:MODEL ENT dld2

BEFORE
AFTER

SYNTAX
MODIFIERS
RAD
DIAM
ARC
TANTO

INSERT CIRCLE
The Insert Circle command provides several options for inserting a circle. The four basic methods of inserting a circle include digitizing:

1. The points on the circumference of the circle.
2. The center and a point on the circumference for the radius.
3. The center and input radius/diameter value explicitly.
4. Two points for a diameter from which the center and the radius will be computed. A circle endpoint is at zero degrees while its origin is its center.

INS CIR (modifiers):MODEL LOC dl...dn (CR)

Radius of the circle (default is 0.0).
Diameter of the circle (default is 0.0).
Creation of a circle from an existing Arc.
Insertion of a circle, tangent to a line or a circle.

A circle may be inserted in one of the following ways:

1. INS CIR: LOC ddd 3 pts on the
2. INS CIR RADx: LOC d d=center, RAD explicit
3. INS CIR DIAMx: LOC d d=center, DIAM explicit dl= center, dl-d2= radius
dl-d2= diameter of circle
dl= point on the arc
4. INS CIR TANTO: LOC dl ENT d2 dl=center d2= point on entity NOTE: 'RAD', or 'DIAM' have no function when used with 'TANTO' since the radius is described by $d l$ and $d 2$. If they are specified with 'TANTO', the modifier which appears last in the command line will be used.
\#n\#INS CIR:MODEL LOC dld2d3

\#n\#INS CIR RADl:MODEL LOC dl

\#n\#INS CIR DIAM 1.5:MODEL LOC dl

```
#n#INS CIR RAD: MODEL LOC dld2
```


\#n\#INS CIR DIAM:MODEL LOC dld2

\#n\#INS CIR ARC:MODEL ENT dI

BEFORE

AFTER

COMMAND	INSERT CENTER LINE
DESCRIPTION	The Insert Centerline command generates a centerline between selected points or in selected circles. The cemterline consists of alternating long and short line segments, begining and ending with long segments. If the centerline is less than 0.3 inches, only the solid section of a centerline will be displayed.
	Centerlines can be either line or circle entities. They are drawing entities by default unless the model modifier is used.
SYNTAX	INS CLIN (modifiers): DRAW/MODEL ENT dld2 DRAW/MODEL LOC d3...dn
MODIFIERS	
PNT	Point to point centerline (default).
CIR	Specifies two perpendicular centerlines through the center of the circle.
ANGn	Construct a linear centerline through a point at the specified angle n (in degrees).
CCIR	Construct a circular centerline defined by three points.
RADn	Construct a circular centerline defined by its center and radius n.
DIAMn	Construct a circular centerline defined by its center and diameter n.
MODEL	The centerline will be a MODEL entity. This can only be specified in the model mode.
EXAMPLES	\#n\#INS CLIN PNT: DRAU ORG dld2 DEAW LOC(CR)
	$ـ_{-}^{\mathrm{d} 2}$

\#n\#INS CLIN PNT:DRAW ORG dld2 DRAU LOC d3d4...dn (CR)

If more than two digitizes are given, the first two indicate the ends, the remaining digitizes locate the short segments.
\#n\#INS CLIN CIR:MODEL ENT dI

\#n\#INS CLIN RAD2.5:MODEL LOC dl

COMMAND
DESCRIPTION

SYNTAX

RESTRICTIONS

ERROR MESSAGES

EXAMPLES

INSERT DIAMETER DIMENSION
The Insert Diameter Dimansion command is used to dimension the diameter of a circle and automatically inserts leaders, arrowheads, and dimension text.

Diameter dimensions can be optionally associated with entities so that the dimension/ entity relationship is maintained as the entity undergoes transformation. This is done through a process called regeneration which requires the extraction of data from each related entity and the generation of an acceptable text origin. After this is done, the dimension is constructed in the same manner as when it was inserted.

JIS, ISO, ANSI Standards are available via the select Dimension command.

INS DDI (modifiers): DRAU/MODEL ENT dl DRAW/ MODEL LOC d2
l. Modifiers must be used in their hierarchical order or they will be ignored.
2. Either JIS, ISO, or ANSI standards can be used. They can not be used together.

ARROUS FLIPPED TO ENSURE VALID DIMENSION ENTITY MUST BE PARALLEL TO A REAL VIEW TEXT MOVED TO ENSURE A VALID DIMENSION EXCESSIVE LEADER LENGTH DISALLOUS VALID DIM. HEAD/END CHANGED TO MIDDLE TO ENSURE VALID DIMENSION
TEXT FLIPPED OUT TO ENSURE VALID DIMENSION \#n\#INS DDI:MODEL ENT dl DRAU LOC d2

\#n\#INS DDI PRECISION PRIMARY 6: MODEL ENT dl DRAW LOC d2

\#n\#INS DDI TEXT HGT .3:MODEL ENT dIDRAU LOC d2

\#n\#INS DDI TEXT MAIN'3.56 MAX':MODEL ENT dl DRAW LOC d2

COMMAND	INSERT ELLIPSE
DESCRIPTION	An ellipse is a second degree curve, oval in shape. It is inserted onto the active construction plane by one digitize for its center. The end point of a complete ellipse is zero degrees.
SYNTAX	INS ELL (modifiers) : DRAW/MODEL LOC dl
MODIFIERS	
HMAJn	Half the length of the major axis. The major axis is the horizontal axis of an unrotated ellipse (default is 1.0 inch).
HMINn	Half the length of the minor axis. The minor axis is the vertical axis of an unrotated ellipse (default is 0.5 inches).
ANGAn	The true visual starting angle of the ellipse at the ellipse center (origin) with respect to the major axis (default is 0.0 degrees).
PANGAn	The parameterized starting angle of the ellipse at the ellipse center with respect to the major axis (default is 0.0 degrees).
ANGBn	The true visual ending angle of the ellipse at the ellipse center with respect to the major axis (default is 360 degrees).
PANGBn	The parameterized ending angle of the ellipse at the ellipse center with respect to the major axis (default is 360 degrees).
ROTn	The angle of rotation of the major axis from the horizontal (default is 0.0 degrees).
RESTRICTIONS	l. HMAJ and HMIN must be non-zero values with HMAJ greater than or equal to HMIN.
	2. If modifiers referencing the same parameter are input, the last modifier typed is used.
NOTE	ANGA and PANGA refer to the same parameter. ANGB and PANGB also refer to the same parameter.

3. A zero curve length will default to a full ellipse.

\#n\#INS ELL ANGA 23 ANGB -90 HMAJ 3 HMIN 2.2 ROT 45:MODEL LOC XOYI

COMMAND	INSERT FILLET
DESCRIPTION	A fillet is an arc with a specified radius inserted tangentially to two or three entities in the same plane. These entities can be any combination of point, line, arc, conic, B-spline, and string. The fillet is always inserted in the same plane as the entities.
SYNTAX	INS FIL (modifiers) : DRAW/MODEL ENT dld2(d3)
MODIFIERS	
RADn	Radius of the fillet (default is 0.5).
DIAMn	Diameter of the fillet (default is 1.0).
TRIM	Trim the two entities after the fillet is created (default mode).
-TRIM	Suppress trimming
TRIMA	Trim the first digitized entity only.
TRIMB	For two entity fillet trim the second digitized entity, for three entity fillet trim the third digitized entity.
DTRIM	Delay trimming. After the fillet is created and displayed the user is asked to digitize the end point of the entities that are to be trimmed.
CIR	Insert a circle instead of an arc.
LNGARC	Indicates the longer segment of the arc is wanted.
THRENT	Indicates three entity fillet. Three entities must be digitized.
ERROR MESSAGES	
	FILLET UNDEFINED
	Displayed if the fillet is not found between entities.

THE SECOND ENTITY MUST BE IN THE MIDDLE
Displayed if the second entity digitized, using the modifier THRENT, is not located in the middle of the three possible locations.

No TRIMMING FOR FILLET ON SINGLE ENTITY
This message indicates that a fillet is being fitted within the same entity (this is possible for conic, B-spline and string). After the fillet is created, the single entity will not be trimmed.
\#n\#INS FIL:MODEL ENT dld2
dl
\#n\#INS FIL TRIMA:MODEL ENT dld2

\#n\#INS FIL RAD. 22 LNGARC:MODEL ENT dld2

COMMAND
DESCRIPTION

SYNTAX
MODIFIERS
"text"

HEIGHTn

MAIN't'

APPENDED't'

PREFIXED't'

ANGLEn

NOTE

INSERT FLAG
The Insert Flag command provides the ability to create a stand-alone flag note complete with text.

INS FLA "text" (modifiers): DRAW/MODEL LOC dl

The text immediately following the noun FLAG is regarded as the main text, starting with currently selected font and case (See Select Text command), until altered by control characters. The entire text is assumed to be enclosed by a flag note indicator. The control characters to do this are automatically added.

Sets the character height as n data base units. The default character height is determined by the Select Text command.

The entire main text (following the noun FLAG) is replaced by the text 't' following the MAIN modifier. The control characters to enclose the text in a flag note are automatically added. If other modifiers are to follow, this string must be delimited by quotes.

The text following the modifier APPENDED is appended to the main text string or its substitute. The text here may have its own control characters. The control characters required for creating a flag note are not automatically added.

Specifies the text following the modifier PREFIXED is prefixed to the main text. The text here may have its own control characters. The control characters required for creating a flag note are not automatically added.

Sets the angle of the flag note to n degrees. Default is zero degrees.

The point digitized will be the origin of the flag note indicator, i.e., the lower-left corner of the flag.

EXAMPLES

```
#n#INS FLAG "AZO9":DRAU LOC dl
                dl`A
    #n#INS FLAG "DEG" ANGLE 45:DRAW LOC dl
```



```
    #n#INS FLAG "BIG" HEIGHT l.5:DRAW LOC dl
                BIG
    dl
```


COMMAND
DESCRIPTION

SYNTAX

MODIFIERS
LEADER

RADIAL

HEAD

END

INSERT LABEL
The Insert Label command will insert text with leaders (lines) pointing to the labeled entity. The text must be proceeded and followed by a delimiter; usually quotes ("") though any special character may be used.

INS LAB "text" (modifiers): DRAW/MODEL ENT dl DRAW/MODEL LOC d2...dn

Specifies LEADER parameters according to its second-level modifiers.

Sets the angle of the first segment of a leader with respect to the positive X axis. The command attempts to draw the first segment according to the following rules:

1. Use LEADER ANGLE to determine the orientation of the first leader segment. If the specified angle causes the leader to miss the entity, try Step 2.
2. Determine the closest point on the entity from the first digitization, and draw the leader to this point.

If the LEADER ANGLE modifier is not ised, the first segment of the leader will be drawn using step 2.

Causes the first leader segment to point toward the center if the selected entity is an arc or a circle.

If, for the first leader to be specified, only two digitizations are entered, the leader will be drawn to the head of the text. This is the default condition.

If, for the first leader to be specified, only two digitizations are entered, the leader will be drawn to the end of the text.

ANGLEn

HEIGHT't'

MAIN't'

APPENDED't'

PREFIXED't'

EXAMPLES

Text angle, where n is the angle in degrees.
Label text height where n is the height. Default is global text height.

Specifies that the main text is to be replaced by the given text 't'.

Specifies that the given text 't' will be appended to the main text. The maximum number of characters is 512.

Specifies that the main text will be prefixed by the given text 't'. The maximum number of characters is 512 .
\#n\#INS LAB "TEXT": MODEL ENT dl MODEL LOC d2d3

\#n\#INS LAB "TEXT":MODEL ENT dI MODEL LOC d2


```
#n#INS LAB "TEXT" LEADER END:MODEL ENT dI DRAW
    LOC d2
```


\#n\#INS LAB "(B5) FLAG(X)" LEADER END RADIAL: MODEL ENT dI MODEL LOC d2

NOTE: l. The (B5)...(X) control characters indicate a flag note.
2. Because only two digitizations were used to define the label, the LEADER END modifier is necessary to force the leader to be attached to the end of the label.
3. The leader is drawn radial to the circle because the LEADER RADIAL modifier was used.
4. The last leader segment has a default length of 0.3 .

COMMAND
DESCRIPTION

SYNTAX

MODIFIERS
CHAIN

INSERT LINEAR DIMENSION
Linear dimensioning may be inserted between entities or points or intersections of entities. Two digitizations are required for the entities delimiting the distance being dimensioned and a digitization for the placement of the dimensioning text. JIS and ISO Dimensioning Standards are available via the Select Dimension command, in addition to ANSI Standards. The delimiting entities can be digitized in any order. The command automatically inserts extension lines, dimension lines and arrowheads, and dimensioning text. The three basic types of dimensioning are illustrated below:

Specifies that a chain of linear dimensions are created. It permits the user to select a number of points to be dimensioned and the location of the dimension lines. The dimension lines are co-linear and the text is automatically centered and aligned between the extension lines. The points to be dimensioned must be identified in the proper order.

ENTITIES BEING DIMENSIONED MUST BE COLINEAR
MODE OVERRIDE NOT ALLOWED. REENTER DATA XYZ PROPERTY DOES NOT EXIST REENTER DATA ALIGNMENT DIMENSION IS NOT COMPATIBLE ENTITIES TO BE DIMENSIONED MUST BE IN THE SAME VIEU
COINCIDENT POINTS NOT ALLOUED AMBIGUOUS DIMENSION DEFINITION SPACE
\#n\#INS LDI:DRAW/MODEL ENT-END dld2 DRAU LOC d3

\#n\#INS LDI VER:DRAW/MODEL ENT-END dld2 DRAW LOC d3

\#n\#INS LDI PPOI:DRAW/MODEL ENT-END dld2 DRAU LOC d3

COMMAND
DESCRIPTION

SYNTAX MOIFIFIERS

ANGn

HOR
LNGn

PARAn

PERP

TANTO
VER
ERROR MESSAGES

EXAMPLES

INSERT LINE

The Insert Line command inserts a line between two specified points, each of which may be any X,Y,Z coordinate. The origin of the line is its midpoint.

INS LIN (modifiers): DRAW/MODEL LOC dld2...dn

Inserts a line at angle n with respect to a desired entity.

Inserts a horizontal line.
Allows user to explicitly enter a desired line length (n).

Constructs a line parallel to a given entity at a distance of n.

Constructs a line perpendicular to a specified entity.

Inserts a line tangent to a specified entity.
Inserts a vertical line.
UNDEFINED
The message is most likely to occur when inserting a line tangent to a curve, using the modifier TANTO, and one of the following conditions has occured:

1. The curves have been specified at positions too far from the anticipated endpoints.
2. The line endpoints are inside the circle.
3. An attempt was made to insert a tangent line to a zero radius circle.
\#n\#INS LIN:MODEL LOC dld2;MODEL LOC d3d4d5d6

```
#n#INS LIN ANG45:MODEL ENT dl MODEL LOC d2d3
    xd3
    * d2
    dl
```


\#n\#INS LIN HOR:MODEL LOC dld2

\#n\#INS LIN HOR LNG 5:MODEL LOC dld2

\#n\#INS LIN PAR 3:MODEL ENT dl MODEL LOC d2d3d4

\#n\#INS LIN PERP LNG 5:MODEL ENT dl MODEL LOC d2d3

\#n\#INS LIN VER:MODEL LOC dld2

\#n\#INS LIN TANTO:MODEL ENT dld2;MODEL ENT d3d4

COMMAND
DESCRIPTION

SYNTAX
MODIFIERS

PROJ

INSERT POINT
Insert Point is used to create points, either by specifying their coordinates or by specifying their position on an entity.

INS POI (modifiers): DRAW/MODEL LOC dld2...dn

Inserts a point on a selected entity (line, circle, arc, fillet, conic, spline, B-spline or tabulated cylinder by dropping a perpendicular in three spaces from a reference point to the entity. The point will be placed on the entity or on a proper extension of it. In drawing mode either a model or drawing entity may be selected for use with the ON modifier. If an entity from the model is selected, it is treated as if projected onto the drawing plane. The perpendicular is dropped in the drawing plane and a drawing space point is created.

Planar Entities

When inserting a point on a planar curve if the reference point is in the definition plane of the entity, then the inserted point is determined by dropping a perpendicular in the plane from the reference point to the entity. In other words if the line from the reference point to the inserted point were constructed, it would be perpendicular to a line tangent to the curve at the inserted point.

Three Space Entities
When inserting a point on a curve, if the reference point is not in the plane of definition of the entity, then the inserted point is determined by dropping a perpendicular in three space from the reference point to the entity. In other words, if the line from the reference point to the inserted point were constructed, it would be perpendicular to a line tangent to the entity at the inserted point.

Insert a point on a surface by dropping a digitized point onto the surface along a specified vector.

PROMPTS
ent
loc
end

Select entity for dropping perpendicular or for projection onto surface.

Specify a coordinate location.
Specify the endpoint of an entity (used with PROJ modifier to specify projection vector).
\#n\#INS POI:MODEL LOC dld2d3
d2 +
dl +
d3 +
\#n\#INS POI ON:MODEL ENT dl MODEL LOC d2d3d4d5

d5

EXAMPLES

INSERT RADIAL DIMENSION
Radial dimensions may be inserted to dimension the radii of circles or arcs. The command requires one entity identification and an additional digitization for the placement of the dimension text. The command automatically inserts leaders, arrowheads, and dimension text.

Dual dimensioning may be selected by the select Dimension command. Dual dimensioning permits dimensions in two different unit systems (i.e., English and Metric) to be presented together as a single dimension.

Radial dimensions are associative by default. This means that the dimension will be automatically regenerated (re-created) if the related arc is modified.

The user may select either JIS, ISO, or ANSI dimensioning standards.

INS RDI (modifiers):DRAU/MODEL ENT dl DRAW/ MODEL LOC d2
\#n\#INS RDI:MODEL ENT dI DRAU LOC d2


```
#n#INS RDI TEXT MAIN'2.765R':MODEL ENT dI DRAW
    LOC d2
```


\#n\#INS RDIPRECISION PRIMARY 6:MODEL ENT dl DRAU LOC d2

\#n\#INS RDI TEXT HGT . $285:$ MODEL ENT dl DRAU LOC d2

\#n\#INS RDI LEADER END:MODEL ENT dl DRAU LOC d2

COMMAND
DESCRIPTION

NOTE

SYNTAX
NOTE

INSERT TEXT
Text strings must be specified immediately following the verb-noun combination (INS TEX). Generally, each string is delimited on both sides by any character except $A-Z$, 0-9, colon, CNTRL-E or Rubout. All other characters (including space and carriage return) are permissible delimiters. If more than one string is specified, a double delimiter is used at the start and end of the series.

If only one simple string is being specified, delimiters need not be given. Simple strings are those which begin with $A-Z$ or $0-9$ and contain no imbedded blanks, colons or quotes. (Any of these three will terminate the string.

The order of text strings in the command corresponds to the order of insertion.

There are several special cases for command syntax to be used with the Insert Text command to cover all the following contingencies:

* Insertion of a standard character string
* Insertion of a character string onto a series of text nodes
* Auto insertion of a character string onto a series of text nodes (by specifying sequence number)
* Auto insertion of a character string onto a series of text nodes contained in a subfigure (by specifying origin of subfigure)
* Text character string insertion on nodal lines

INS TEX text (modifiers):MODEL LOC dld2...dn
Insertion of a standard text string.
The digitizations d(d...dn) specify the placements of the corresponding text strings in the series Text 1 (Text 2...Text n). If only one string is specified, it is replicated at each digitzed position.
INSERT TEX"PTI IS GREAT: NIOD LOC. UT \quad H-49

MODIFIERS
LAYn

HGTn
UDTn
THKn
ANGn
SLTn
FONTn
CJT
RJT
LJT

DANGn
HGTn
WDTn

When it is desired to associate a text string to an auxiliary position (one or more), the digitization sequence
,ddl (d2 . . .dn) ,
can be used in place of the $i^{\text {th }}$ digitization in the basic format. The text position is specified by d and the auxiliary position(s) are specified by dl(d2...dn). The sequence must begin and end with a comma.

Up to four auxiliary positions may be given.

Selects layer for new entity where n is a number between 0 and 254. Default is current construction layer.

Specifies text height.
Specifies text character width.
Specifies text aperture thickness.
Specifies text base rotation angle.
Specifies text character slant angle.
Specifies font code.
Specifies center-justified text (default).
Specifies right-justified text.
Specifies left-justified text.
Specifies no mirroring (default).
Specifies mirroring in X-axis.
Specifies mirroring in Y-axis.
Specifies mirroring in both X -axis and Y -axis.
Specifies interline spacing expressed as a percent of the text height value. Default ratio is l.5.

Specifies angle of text parallel with a designated line segment.

PRL

> PRP

OFFn.n

Specifies text parallel to a selected entity. Specifies txt perpendicular to a selected entity.

Specifies a perpendicular offset distance to an entity.

Specifies insertion of text at a digitized location.

Specifies a forward-reading text.
Specifies a backward-reading text.
Specifies fitting text within two digitized locations.

Specifies curved text.
Specifies the same type of name to several symbols.

These modifiers are used within a text string to control subscripting, superscripting, font, slant, (italics), angle and case. These modifiers override basic modifiers specified by the Select Text command. While basic modifiers are in effect for the entire command, in-stream modifiers are in effect only for the remainder of the string in which they are specified.

In-stream modifiers must be enclosed in delimiters. These delimiters must be different from those used to delimit the text string. The in-stream modifier delimiters are selectable via the Select Text command. The user may select different characters as the left and right delimiter or the same character may be used for both.

A superscript follows. Only one level of superscripting is permitted, e.g. A B C is not valid.

A subscript follows. If a subscript immediately follows a superscript, or vice versa, the superscript is positioned above the subscript.

End of subscript or superscript.

Font, where n is the font number.

Fonts available are:

1. CV Standard
2. Leroy
3. Undefined
4. Microfont
5. Lightline Gothic
6. News Gothic
7. Century Schoolbook
8. Clearface
9. Feature Control Symbols
10. Calcomp Symbols
ll. Calcomp Text
11. Experimental Symbols
12. Reserved for customer font.
13. Greek
14. Helvetica
15. ISO (Standard European)
16. DIN17 (Standard European)
17. MIL-STD
18. Futura
19. S**3
20. Symbol Text

Slant (italics) begins
Slant ends.
Angle of text, where n is the angle desired.
Upper case begins.
Lower case begins.
\#n\#INS TEX ""TEXT"NOTE"R.25"":MODEL LOCdId2d3d4
$\mathrm{dl}_{\mathrm{x}}^{\mathrm{TEXT}}$
d 2 x NOTE

$$
d 3 x^{R \cdot 25}
$$

$24 x^{\text {TEXT }}$

\#n\#INS XHA:MODEL ENT CHN dl;MODEL ENT d2d3d4d5

BEFORE

AFTER
\#n\#INS XHA ANG135 SPACING . $3:$ MODEL ENT CHN di; MODEL ENT d2d3d4d5d6

BEFORE

AFTER

$$
\begin{aligned}
& \text { SEL MOD D DRA: } \\
& \text { MOD }
\end{aligned}
$$

COMMAND
DESCRIPTION

SYNTAX

MODIFIERS

SAMLAY

MODEL,VIEW
$A X, A Y, A Z$

ROTATE ENTITY
The Rotate Entity command can be used to rotate or rotate/copy in three-space up to 15,000 entities or group entities.

The Rotate Entity command with the COPY modifier can be used to insert a rotated copy of the entities rather than the original entities.

In either case, the rotated entities are placed on the same layer as the original entities. If COPY is specified, the user can control the insertion layer for the rotated entities by using layer modifiers.

If a group is selected for rotation or rotation/copy, only the first 80 entities that compose the group are rotated.

The rotated entities of a group are still grouped; however, the rotated/copied entities of a group are not themselves grouped. Copl AZ60
ROT ENT (modifiers) : DRAW/MODEL ENT dld2...dn DRAW/MODEL LOC dld2...dn C :

Used to rotate and copy the selected entities on the current active layer. Can be specified in either form of the command.

If SAMLAY is used with copy, the entity will be copied on the same layer as the existing entity.

Reset the value of the model/view switch, which determines whether $A X, A Y, A Z$ and $T X$, $T Y, T Z$ refer to the model space axes or the view space axes.

Rotate by the given angle around the given axis in the positive sense as determined by the right hand rule.

Example: Az20 means, "Rotate 20 degrees counterclockwise around the z-axis."
$P X, P Y, P Z$
$M X, M Y, M B$

EXAMPLES

Point the indicated original axis in the direction indicated by the numerical argument. ($1,2,3$ is equivalent to $X, Y, Z ;-1,-2,-3$ means in the negative X, Y, Z direction.)

Example: $\mathrm{PX}-2$ means, "Point the X -axis in the negative Y direction."

Mirror the X coordinates, the Y coordinates, or both at once. copy
\#n\#ROT ENT :MODEL ENT di; MODEL LOC d2d3d4
$x \mathrm{~d} 4$
\#n\#ROT ENT COPY AZ72:MODEL ENT dI;MODEL LOC XOYON4

BEFORE

BEFORE

\#n\#STR ENT WIN:MODEL LOC dld2 MODEL LOC X2Y2IX-1.5

BEFORE

AFTER
\#n\#STR ENT PWIN:MODEL LOC dld2d3d4d5;MODEL LOC d6d7

BEFORE

AFTER

COMMAND
DESCRIPTION

SYNTAX

NOCOPY COPY

SAMLAY

CAUTION

EXAMPLES

TRANSLATE ENTITY
The Translate Entity command moves any specified entity. The type of entity moved may be specified as a GETDATA modifier. When entities to be moved have been identified, a semicolon (;) followed by two coordinates, explicit or implied, indicate the begining and end of the translation vector.

TRA 园NT (modifiers) : DRAW/MODEL ENT dld2...dn; DRAW/MODEL LOC d3d4
(Default) specifies entities not to be copied.
Specifies that the entity will be copied to the new location rather than moved.

If SAMLAY is used with COPY, the entity will be copied on the same layer as the existing entity.

Interrupting this process may produce errors in the database.
\#n\#TRAN ENT:MODEL ENT dl; MODEL LOC d2d3

BEFORE
AFTER
\#n\#TRAN ENT COPY:MODEL ENT dl;MODEL LOC d2d3

TRIM ENTITY
The Trim Entity command stretches or deletes existing endpoints of the following entities:

STRING	ELLIPSE
LINE	HYPERBOLA
CIRCLE	PARABOLA
ARC	SPLINE
FILLET	BSPLINE
ENT (modifiers):	DRAW/MODEL ENT dI DRAU/
LOC d2(d3)	

Are reserved for the entity line and restricted to a real number. Both specify the line should be trimmed to length n. Negative value will extend the line.
Allows the trimming of an entity, in true three space, to its intersection with another entity.
\#n\#TRI ENT LNG4:MODEL ENT dI

BEFORE

AFTER

\#n\#TRI ENT:MODEL ENT CIR dIMODEL LOC d2d3

BEFORE

AFTER

```
#n#TRI ENT:MODEL ENT dIMODEL LOC d2
```


\#n\#TRI ENT INTOF:MODEL ENT dld2

BEFORE

AFTER
\#n\#TRI ENT INTOF:MODEL ENT dId2d3

AFTER

COMMAND
DESCRIPTION

SYNTAX
MODIFIERS TYPE

NOTE
APT
SPLIT
CMPCT
ALL
UNTAG
NOCHK

NOTE

ERROR MESSAGES

TAG ENTITY
The Tag Entity command attaches alphanumeric name tags, 1 to 6 characters in length limited to characters $A-Z, 0-9$, to specified entities.

TAG ENT (modifiers) (CR)

Identifies a specific entity to tag. Entity types include:

ENT	CIR	ELP	BSPL
POI	ARC	PRB	
LIN	FIL	HYP	

ENT allows the digitizing of any entity.
Apt language tags. Default.
Split language tags.
Compact-II language type.
Tags the entire database.
Tags all untagged entities.
Prevents the system from checking entities that have previously been tagged. Especially useful in execute files.

TAG ENT requires at least one modifier and at most five.

NON UNIQUE NAME RETRY
If a tag name is specified more than once the system will display this message. Control will return to the modifier processor allowing the user to reenter a new set of modifiers.

TYPE OK TO OVERURITE
When a previously tagged entity is tagged in another language and the modifier NOCHK has not been specified.

EXAMPLES

CONTRADICTORY INPUT, RETRY

If contradictory modifiers are entered (ENT and LIN) this message will appear and control will automatically return to the modifier processor.
\#n\#ECHO TAG ON (CR)
\#n\#TAG ENT ALL SPLIT (CR)

\#n\#TAG ENT ALL UNTAG (CR)

\#n\#TAG ENT CIR SMALL: MODEL ENT dI (CR)

database VISUALIZATION COMMANDS
The Database Visualization commands are used to manipulate the way the model is displayed within the drawings and views. Database Visualization commands do not have a permanent effect upon the model database, but rather, are used to temporarily alter the way in which the model is perceived.
Functions controlled by these commands include:

* Blanking
* Fonting
* Scrolling
* Zooming
* Resetting the view to the original appearance
These commands include:
BLANK ENTITY
ECHO FRAME
ECHO GRID
ECHO LAYER
REPAINT
RESET VIEW
RESTORE IMAGE
SCROLL DRAWING
SCROLL VIEW
UNBLANK ENTITY
ZOOM DRAWING

COMMAND

BLANK ENTITY
Blank Entity is a mode dependent command used to blank entities in either drawing or model mode. The entities are blanked in all views. The entities, blanked from the screen only, still remain in the part database.

BLA ENT:DRAW/MODEL ENT dld2...dn
\#n\#BLA ENT:MODEL ENT dld2d3
-0 RET. 1-irtes
ONBLA ENT.

BEFORE

AFTER

INS.LINE APP FONT DASHED:

COMMAND

DESCRIPTION

SYNTAX MODIFIERS

ECHO GRID
The Echo Grid command controls the display of the grid for the active mode.

ECH GRID (modifiers) (CR)

The grid displayed according to the current grid parameters. (Default)

The grid will no longer be displayed after the next screen repaint.

Location digitizes are to snap to the nearest grid point. (Default with ON)

Location digitizes are not to snap to the nearest grid point. (Default with OFF)

SNAP IS INVALID WITH OFF, SNAP WILL BE IGNORED

Displayed if the modifiers SNAP and OFF are entered.

NO PART ACTIVE, COMMAND IGNORED
Displayed when an attempt to ECHO GRID before a part is active.
\#n\#ECH GRI

COMMAND
 DESCRIPTION

SYNTAX

MODIFIERS
n

ALL
INCLn

EXCLn

DRAW
EXAMPLES

ECHO LAYER
The Echo Layer command displays the current active layer or layers in an active part.

ECH LAY (modifiers) (CR)
ECH LAY (modifiers) : DRAW/MODEL VIEW dld2...dn
If a colon is used only views digitized are affected by the command.

Layers to be displayed. Syntax can be in the form of a string separated by spaces (ECHO layer 0479 ll) or a from-to form (ECHO layer 1-3 47-50) or both (ECHO layer $0420-30$ 41-48 68).

Echoes all layers.
Echo layers listed after the INCL modifier plus currently visible layers.

Echo all layers except those listed after EXCL.

Limits layer echoing to drawing entities.
\#n\#ECH LAY INCL23 (CR)

ACTIVE LAYER 15

WITH LAYER 23 DIMENSIONS ECHOED

RESET VIEW
The Reset View command returns a view to its last permanent state.
RES VIE (modifier) (CR)
RES VIE: VIEU dl...dn
MODIFIERS
ALL
All resets all views of the current active part. The colon resets views specified by the user.
EXAMPLES \#n\#RESET VIE: VIEW dI

RESET VIEW

COMMAND
 DESCRIPTION

SYNTAX

MODIFIERS
RIGHT LEFT UP DOUN Rn Dn

SCROLI DRAWING
The Scroll Drawing command permits the temporary alteration of a drawing by scrolling.

SCR DRA (modifiers) (CR)
SCR DRA:

Direction modifiers used to display a drawing in their respective direction in half screen increments.
data input

EXAMPLES

The optional colon signals the system to center the scroll around the specified digitize point. If two or more digitizes are received the last digitize will track the one proceeding it.
\#n\#SCR DRA:MODEL LOC dld2

BEFORE

COMMAND
DESCRIPTION

SYNTAX
MODIFIERS

EXAMPLES

ZOOM DRAWING
The Zoom Drawing command permits the operator to temporarily alter a drawing by zooming. A digitize selects a point that remains fixed during the zoom operation. If no location is given the focal point defaults to the center of the screen.

ZOO DRA (modifiers): DRAW/MODEL LOC dld2

The drawing is redisplayed larger on the screen by a factor twice its present size.

The drawing is redisplayed smaller on the screen by a factor one half its present size.

The drawing is redisplayed on the screen by a factor of n its true size. For $n=1.0$, drawing images will appear true size on the CRT display.

The drawing is redisplayed on the screen by a factor of n from its present size.

The drawing is both zoomed and scrolled so as to exactly fit within the bounds of the CRT screen.

The drawing is both zoomed znd scrolled in order that the window defined by the two opposite corner digitizes exactly fills the viewing screen.

The Zoom Drawing command is valid in drawing and model modes. The system will reject a colon after the modifier ALL.
\#n\#ZOO DRA WIN:MODEL LOC dld2

BEFORE

AFTER
database CONSTRUCTION PROCESSES COMMANDS

Database Construction Processes commands provide more sophisticated ways of constructing or editing the model database. In general, these commands invlove processes which require some database setup before the execution of the command. Often, these commands require much more detailed data input specifications than do the database construction commands; and some of these commands are useful only for specific applications.

These commands include:
EDIT TEXT

SYNTAX

MODIFIERS
LAY $n, m-p, q$

CASE

ALL
EDITING COMMANDS

EDIT TEXT
The Edit Text command provides a means of modifying text or nodal text entities in drawings. The command applies to the editing of single or multiple instances of text (or nodal texr) entities.

All text lines from all selected entities are placed in a large buffer and numbered sequentially. The system will prompt with , which signals the user to enter an editing command. After each line of edit specification, the user types (CR), which causes the editing command to be executed and actually modifies the line or text buffer. The system prompts and awaits the next edit command. The original entities retain their original content until the file command is entered.

EDI TEXT (modifiers) (CR)
Allows editing of all text on specified layers.

EDI TEXT (modifiers) : MODEL ENT dld2...dn (CR) Allows editing of all digitized text.

Specifies the layers or ranges of layers containing text to be edited. Default is visible layers.

Specifies that the edit is to apply to both upper and lower case letters even though an upper-case-only keyboard is being used. Instream modifiers will appear in the text string to be edited.

All text may be edited.
The commands listed below may be used after the edit prompt " ".

$I(n)$	Insert after line n
$D n(-m)$	Delete lines n to m
$\mathrm{~T}(\mathrm{n}-\mathrm{m})$	Type lines n to m
$\mathrm{Rn}(-m)$	
$\mathrm{L}(\mathrm{n}-\mathrm{m}), \mathrm{XXX}$	Replace lines n to m
$\mathrm{S}(\mathrm{n}-\mathrm{m}), \mathrm{XXX}, \mathrm{YYY}$	Locate and type lines
	containing text XXX Substitute YYY for XXX in lines n to m

CHARACTER CHANGE

 KEYSEn
Q

Edit line n
Quit (and ignore all edits) File

The characters listed below serve to add or delete characters in a text string.
Cont
[- A bracket inserts a character just before the character it is under.
Λ - A carret deletes the character it is under.
\ - A backslash deletes the character it is under and shifts all remaining text to the left by one space.

EXAMPLE The following are text entities that need to be edited in order for the drawing to be correct.

ALL MATEIAL
CAST IRN
EDI TEXT:MODEL ENT dl (CR)
>E 1 (CR)
ALL MATEIAL
[R (CR)
ALL MATERIAL (CR)
>E 2 (CR)
CAST IRN
[O (CR)
CAST IRON (CR)
$>$ F (CR)
ALL MATERIAL CAST
CAST IRON
EDI TEXT:MODEL ENT dl (CR)
$>E 1$ (CR)
ALL MATERIAL CAST
ヘヘ^^ (CR)
ALL MATERIAL (CR)
$>$ F (CR)
ALL MATERIAL CAST CAST IRON
EDI TEXT:MODEL ENT dl (CR)
>E 1 (CR)
ALL MATERIAL CAST CAST IRON

 (CR)
ALL MATERIAL CAST IRON (CR)
$>$ F (CR)

INTERACTION MANAGEMENT COMMANDS

Interaction Management commands are used to control the CADDS 4 interactive environment. Functions include default parameter and operational mode selection and function key management.

These commands include:
RESTORE KEY
SAVE IMAGE SELECT GRID

COMMAND	SELECT LAYER DESCRIPTION
SYNTAX	The Select Layer command selects a construction layer for an active part. Entities subsequently digitized will reside on the selected layer.
SEL LAY n (CR)	
n must be an integer between $0-254$ preceded	
by a space. Default is 0.	
$\# n \# S E L ~ L A Y ~$	10 (CR)

COMMAND
DESCRIPTION

SYINTAX
MODIFIERS
MODEL
DRAW
ORIG

REC
RAD
RECTANGULAR MODIFIERS

DYn

DXn

DGn

ROTATION MODIFIERS

DAn

SELECT GRID
The Select Grid command is used to specify desired grid parameters. Its mode is determined by the mode of the current active part. If -o part is active the grid defaults to model mode. If new grid parameters are specified, the grid must be reechoed to reflect the new values.

SEL GRI (modifiers) (CR)

Specifies parameters for a model grid.
Specifies parameters for a drawing grid.
The operator will digitize a grid origin at the conclusion of the command.

A rectangular grid is selected.
A radial grid is selected.

Specifies spacing between grid points on the Y-axis.

Specifies spacing between grid points on the X-axis.

Specifies uniform spacing in X and Y . " n " is the spacing between grid points in database units.
" n " is the radial distance between grid points.
" n " is the number of degrees per sector. If it is not an even multiple, the last sector (counter-clockwise from the horizontal) will be short.

These modifiers define a 3-dimensional rotation for a 2D grid. Their values are in degrees and define the extent and direction of the rotation. The rotation is from the model axis or from the axis of a specified view. The rotation will be expressed as a 3 x 3 orientation matrix parameter. These modifiers are not commutative; their order affects the final orientation. (ANG is equivalent to AZ).

The rotations are from the model axis. Model is the default.

Specifies grid origin is to be digitized.
The rotations are from a view axis. The user is immediately prompted to digitize or name a view.
\#n\#SEL GRI AZ45
\#n\#ECH GRI

ECHO GKID OE

ARROWHEADS	The following list shows the various types of arrowheads that are available to the operator.
STANDARD	The CV standard unfilled triangular arrowhead (default). CV standard \qquad
FILLED	Specifies filled arrowheads.
	Filled \longrightarrow
OPEN	Specifies open arrowheads.
	Open \longrightarrow
DOT	Specifies dimension line ends with a dot.
	Dot \longrightarrow
NONE	Specifies no arrowheads appear.
	None
DIAMETER	Specifies the diameter of the dot. Default is $.125 \mathrm{~cm} / .05 \mathrm{in}$.
LENGTHn	Specifies the length of the arrowhead. Default is $.4 \mathrm{cn} / .15 \mathrm{in}$.
	(default is .15)
RATIOn	Specifies the ratio of the arrowhead length to the base width. Default is 3 .
	$\mathrm{n}=\mathrm{a} / \mathrm{b}$ (default is 3)
NOTE	All default values for ARROWHEAD parameters listed here are standard defaults. However, the user may define other global defaults via the Select Dimension command before inserting any dimensions.

SELECT DIMENSION

The Select Dimension command is used to define parameters that control subsequent dimension creation. In most cases, the individual dimension insertion commands have corresponding modifiers which can be used to override the parameters set by the Select Dimension command. In addition to dimensions, labels, feature control symbols, and flags are also affected. Defaults come from the default parameter file which is user definable.

If the Select Dimension command is used while not in an active part, the specified parameters will be the default parameters for any part entered during the CADDS session. If used while in an activated part, the specified parameters will be in effect for that part only. When CADDS is re-entered all parameters are intialized to the standard default state.

The customary dimensioning units used are designated as "primary". If an additional unit system is used, it is called "secondary". The Select Dimension command is used to specify the primary and secondary units for dimensioning a part. These need not be the same as the units used in creating the model. For example, model units can be millimeters, while the primary dimensions are in centimeters and the secondary dimensions are in inches.

The Select Dimension command is used to designate on which layer the primary dimensions will appear and on which layer the secondary dimensions will appear. When both primary and secondary dimensioning is activated, two dimensions (one primary and one secondary) will be created simultaneously on separate layers by any single dimension insertion command.

Dual dimensioning is another alternative. A dual dimension contains both primary and secondary dimension values together within a single dimension entity. As with primary and secondary dimensioning, dual dimensions will appear on a designated layer. In fact, it is possible to have all three modes: primary, secondary, and dual, or any combination ot the three, active simultaneously.

SEL DIM (modifiers) (CR)
The Select Dimension command includes numerous modifiers for versatility. For ease of using these modifiers, they are grouped in a hierarchical structure of associated modifiers. Four levels of modifiers are listed: first-level, second-level, third-level, and fourth-level. The corresponding level is indicated in each modifier description below. Second-level modifiers are dependent upon the associated firstlevel modifiers; third-level modifiers are dependent upon the associated second-level modifier; and fourth-level modifiers are dependent upon the associated third-levle modifiers. For example, if the first-level ARROWHEAD modifier is selected, the second-level OPEN modifier may be used. Similarly, if the first-level TEXT modifier is used, the second-level FORMAT modifier may be used, then the third-level FRACTION modifier may be used, and finally, the fourthlevel SMALL modifier may be used. A table summarizing all associated modifiers follows the descriptions below.

Controls the arrowhead parameters. First level.
The Computervision standard unfilled triangular arrowhead type is used. Default. Second level.

Specifies a filled arrowhead. Second level.
Specifies an open arrowhead. Second level.
Specifies a dot. Second level.
Specifies no arrowhead. Second level.
Specifies arrowhead length. Default is $.4 \mathrm{~cm} /$.15 in. Second level.

Specifies arrowhead length to width ratio. Default is 3. Second level.

Specifies dot diameter. Default is $.125 \mathrm{~cm} /$.05 in. Second level.

Specifies layer for dimensions. Default is current layer. First level.

PRIMARYn	Specifies primary dimensions appear on layer n. Default. Second level.
SECONDARYn	Specifies secondary dimensions appear on layer n. Second level.
DUALn	Specifies dual dimensions appear on layer n. Second level.
NOTE	For all of the above, if n is -1 , the current layer will be used.
PRECISION	Controls the number of decimal places to the right of the decimal point for decimal format or the denominator value ($1,2,4,8, \ldots, 64$) for binary fraction format for the dimension value. First level.
PRIMARYn	Specifies primary precision will be n. Second level.
SECONDARYM	Specifies secondary precision will be n. Second level.
BOTHn	Specifies both primary and secondary precision will be n. Second level.
ANGULAR	Specifies angular precision will be n. Second level.
TEXT	Controls text characteristics. First level.
FIXED	The dimansion value is automatically calculated, but thereafter is treated as though the user had keyed it in. Regeneration will not change the dimension value. Second level.
UNFIXED	The dimension value will not be fixed. Default. Second level.
FORMAT	Controls the format used for the dimension value. Second level.
DECIMAL	Decimal fractions will be used. Default. Third level.
FEET \& INCHES	Feet-inch format will be used, i.e., l'-l0". The fraction modifier should be used to indicate the desired fraction format. Third level.

| FRACTION |
| :--- | :--- |
| SMALL |
| MEDIUM |
| LARGE |
| Fractional format will be used. The size of |
| the denominator is controlled by the PRECISION |
| modifier. Third level. |
| Specifies a fraction whose total height is equal |
| to the normal character height. A horizontal |
| fraction bar is used. Fourth level. |
| Specifies a fraction whose total height is equal |
| to the normal character height. A slash separates |
| numerator and denominator. Fourth level. |
| Specifies a fraction whose numerator and denomi- |
| nator are both at normal character height. A |
| horizontal fraction bar is used. Fourth level. |
| POCATION |
| Specifies a fraction whose numerator and denomi- |
| nator are offset horizontally and are separated |
| by a slash. The numerator, denominator, and |
| slash are all at normal character height. Fourth |
| level. |
| TORIZONTAL |
| Specifies the decimal point. Third level. |

NEGATIVEn	Negative tolerance will be n. (Note: n should be a positive number.) Third level.
BOTHn	Both positive and negative tolerance values are n. Third level.
SECONDARY	Controls tolerance characteristics of the secondary dimension. Second level.
POSITIVEn	Positive tolerance will be n . Third level.
NEGATIVEn	Negative tolerance will be n. (Note: n should be a positive number.) Third level.
BOTHn	Both positive and negative tolerance values are n. Third level.
POSITIVEn	Specifies that the primary positive tolerance for a dimension is n. Second level.
NEGATIVEn	Specifies that the primary negative tolerance for a dimension is n. Second level.
BOTHn	Specifies that both primary positive and negative tolerance values for a dimension are n. Second level.
PRECISION	Controls the number of decimal places for tolerance values. Second level.
PRIMARYn	Primary dimension tolerances have a precision of n. Third level.
SECONDARYA	Secondary dimension tolerances have a precision of n. Third level.
BOTHn	Both primary and secondary dimension tolerances have a precision of n. Third level.
ANGULARn	Angular tolerances will have a precision of n. Third level.
NOMINAL	Tolerance precision will be set equal to nominal value precision. Third level.
TYPE	Controls the tolerancing method. Second level.
INCREMENTAL	Incremantal tolerancing is used. Default. Third level.

DASHED
LIMIT
ROUNDED

ANGULAR

POSITIVEn
NEGATIVEn

BOTHn

ON
OFF
UNITS

ANGULAR
DEGREES

MINUTES

SECONDS

LINEAR
PRIMARY

INCHES
FEET
MILES
MILLIMETERS CENTIMETERS

Dashed tolerancing is used. Third level.
Limit tolerancing is used. Third level.
Limit tolerancing with rounding is used. Third level.

Controls the number of decimal places for Angular Dimension tolerance values. Second level.

Positive tolerance value will be n. Third level.
Negative tolerance will be n. (Note: n should be a positive number.) Third level.

Both positive and negative tolerance values are n. Third level.

Turns tolerancing on. Second level.
Turns tolerancing off.Default. Second level.
Controls the units used for dimensioning. These may be different than both model and drawing units. First level.

Controls angular units. Second level.
Angular Dimension values will be given in degrees and fractions of degrees. Default. Third level.

Angular Dimnesion values will be given in degrees, minutes, and fractions of minutes. Third level.

Angular Dimension values will be given in degrees, minutes, seconds, and fractions of seconds. Third level.

Controls linear units. Second level.
Controls units for primary dimensions. Third level.

Measurement in inches. Default (English). Fourth level.
Measurement is in feet. Fourth level
Measurement is in miles. Fourth level. Measurement is in milimeters. Fourth level. Measurement is in centimeters. Default (metric) Fourth level.

METERS KILOMETERS

SECONDARY

NOTE

BOTH

NOTE

REGENERATION

DEFERRED

IMMEDIATE

MODEL

DRAW

ASSOCIATIVE

NONASSOCIATIVE

STANDARD
ISO

JIS

Measurement is in meters. Fourth level. Measurement is in kilometers. Fourth level.

Controls units for secondary dimensions. Third level.

Fourth level modifiers are the same as those for Primary

Controls units for both primary and secondary dimensions. Third level.

Fourth level modifiers are the same as those for Primary.

Controls the timing of dimension regeneration. First level.

Regeneration will be deferred until a Regenerate Dimension command is used. Second level.

All related dimensions will automatically be regenerated immediately after any geometry modification. Default. Second level.

Dimensions to be model entities. They appear in all views and are subject to view clipping. Only model entities can be dimensioned. First level.

Dimensions to be drawing entities. Either model or drawing entities can be dimensioned. Default. First level.

Dimensions will be associated with the entities they dimension. First level.

Dimensions are not associated with the entities they dimension. First level.

Controls drafting standard used. First level.
International Organization for Standardization standards to be used. Text appears above the dimension line. Standard arrowheads. Default (metric). Second level.

Japanese Industrial Standards to be used. Text appears above the dimension line. Open arrowheads. Second level.

RIGHT	The bracketed dimension value to be to the right of the primary. Third level.
LEFT	The bracketed dimension value to be to the left of the primary. Third level.
ON	Turns dual dimensioning on. If the POSITION or BRACKET modifiers have not been specified, POSITION ABOVE is used. Second level.
OFF	Turns dual dimensioning off. Default. Second level.
CHECK	Checks are made to insure that a valid dimension with a minimum dimension line, extension line, and leader lengths are created. Adjustments will be made to the text location automatically as necessary. Default. First level.
NOCHECK	No check is made for dimension validity. This method is normally only used for Linear Dimensions inserted in chains, where the text is moved by the Edit Dimension command under user control, if necessary. First level.
LEADINGO	A leading zero is used before the decimal place of numbers less than one. Applies to English system only; SI numbers always use leading zeroes. First level.
NOLEADING	No leading zero will be used. Default. First level.
PRIMARY	Controls primary dimensioning status. First level.
ON	Turns primary dimensioning on. Default. Second level.
OFF	Turns primary dimensioning off. Second level.
SECONDARY	Controls secondary dimensioning status. First level.
$\begin{aligned} & O N \\ & O F F \end{aligned}$	```Turns secondary dimensioning on. Second level. Turns secondary dimensioning off. Default. Second level.```
RESTRICTIONS	None

ANSI

STRUCTURAL

SOLID

NONSOLID

PROPERTY

NOPROPERTY

DUAL

POSITION

ABOVE

BELOU

RIGHT

LEFT

BRACKET

ABOVE

BELOW

American National Standards Institute standards to be used. Text appears between dimension lines. Standard arrowheads. Default (English). Second level.

American structural practice to be followed. Text appears above dimension line. Standard arrowheads. Second level.

Solid dimension lines to be used. Text is placed above the line. Default (metric). First level.

Nonsolid dimension lines to be used. Text is placed between the dimension lines. Default (English). First level.

Specifies that the dimension value to be computed from coordinate properties associated with the dimension entities. First level.

The dimension value to be based on coordinate values. Default. First level.

Controls dual dimensioning specification. First level.

The position method is to be used. Default. Second level.

The primary dimension value to be above the secondary. Default. Third level.

The primary dimension value to be below the secondary. Third level.

The primary dimension value to be to the right of the secondary. Third level.

The primary dimension value to be to the left of the secondary. Third level.

The bracket method is to be used. The secondary dimension value is always in brackets. Second level.

The bracketed dimension value to be above the primary. Third level.

The bracketed dimension value to be below the primary. Third level.

The Part Verification commands provide the user with the ability to interrogate the system about the current state of graphics and insertion paramenters or to check the definition of database entities.

Functions include:

* Listing of selected parameters and valid parameter options.
* Measuring distances and angles.
* Verifying entity coordinate location, parameters and graphics.

These commands include:
LIST DRAWING
LIST LAYER
LIST PART
MEASURE ANGLE
MEASURE AREA
MEASURE DISTANCE
MEASURE LENGTH
VERIFY ENTITY

COMMAND	LIST DRAWING
DESCRIPTION	The List Drawing command is used to display various status information about one or more drawings in the active part.
SYNTAX	LIS DRA (modifiers) (CR)
MODIFIERS	
STATUS	Output all inclusive report on each drawing.
VIEWS	List only view names associated with each drawing.
SIZE	List only drawing size units.
ZOOM	List only current absolute zoom ratio (applicable to the acive drawing only.)
SCROLL	List only current absolute scroll position (active drawing only). This returns the point in the drawing (in drawing coordinates) which is currently located in the center of the screen.
ACTIVE	(Default) Give report on the active drawing only.
drawing nameALL	Specifies name of other drawing in active part to report on.
	Give a report on all drawings in the active part.
	(Any combination of the above modifiers may be used.)
EXAMPLES	\#n\#LIS DRA STATUS
	**DRAWING : CV.KEY.SWITCH.MATRIX
	UIDTH : 11.000 HEIGHT 8.500 UN: IN
	ZOOM : 3.0000
	SCROLL : $\quad X=5.150 \quad Y=-3.207$
	VIEW : TOP
	VIEW : RIGHT SIDE
	VIEW : AUX I
	VIEW : AUX 己

COMMAND	LIST LAYER
DESCRIPTION	The List Layer command lists the layers of the current active part．
SYNTAX	LIS LAY（modifiers）（：）or（CR）
NOTE	The colon is optional for the modifier ALL． Only views digitized are affected by the command．
MODIFIERS	
ALL	Lists all visible layers
$A C T$	Lists active construction layer．
DRAW	Lists all visible active drawing layers．
MODEL	Lists all visible active model layers．
EXAMPLES	\＃n\＃LIS LAY ALL
	ACTIVE CONSTRUCTION LAYER 25
	DRAUING：\quad－ 254
	VIEU：〕 ロ，-254
	VIEU：2 ロ－1っ254

COMMAND
DESCRIPTION

SYNTAX
MODIFIERS
CATALOG name
sTATUS

ERROR MESSAGES

EXAMPLES

LIST PART
The List Part command allows the operator either to list parts currently stored on disk or to list information about an active part． This command is valid in Model mode and Drawing mode and can be invoked either within an active part or outside of an active part． Along with each listed part is its creation date and time and last access date．Parts can be listed either by specifying a catalog or by having all parts listed．

LIS PAR（modifiers）（CR）

Catalog in which parts reside．
Specifies the following information about the current part to be printed：part precision， dimension，model data base units，and the part extents．This modifier overrides the other two modifiers and can be used only within an active part．

FILE NOT FOUND
When specifying a catalog name that does not exist．

> NO PART ACTIVE

This message will print when the modifier STATUS is used outside of a CADDS part．
\＃n\＃LIS PAR CATALOG TRG．XXX

CREATION			
＊＊PART NAME＊＊	DATE	TIME	ACCESS DATE
TRG． TXX $^{\text {P }}$ EXI	11］－4－82	15：23：45	11－2さ－82
TRG．XXX．EXZ	11，－5－82	16：34： 21	11－b－82
TRG．XXX．EX	11－5－82	14：0ㄹ：55	11－28－82
TRG． XXX ．EX 4. LINE	111－ア－82	177：15：ट7	11ース2－82
TRG． XXX ．EX．POINT．I，	111－9－82	19：25：44	1コ－4－82

DATE TIME ACCESS

1リースコー82

 1』ーター82 19：25：44 」2ー 4－82

COMMAND
DESCRIPTION

SYNTAX
MODIFIERS
ADD

MEASURE AREA
The Measure Area command measures the area inside a closed polygon formed by lines, nodal lines, line strings and arcs, or an area defined by a set of points. It also calculates the perimeter enclosing an individual polygon, and calculates the averaged coordinate X and Y.

The sides defining the polygon do not have to have their ends at the intersection points. This solves the problem of measuring the area inside a tic-tac-toe shape.

The difference of the sum of two areas may be calculated by the use of the delimiters A or S.

MEA ARE (modifiers): DRAU/MODEL ENT dld2...dn

Indicates that the result for the next polygon is added to the currently stored value.

Indicates that the result for the next polygon is subtracted from the currently stored value.

The currently stored value will be initialized to 0 upon entering the command. If the user wishes to use the above modifiers, he should type a period to reenter the modifier processor and specify one of the modifiers. This mode will remain in effect until modifers are respecified.

Indicates that the polygon is defined by a series of points, digitized or typed coordinates.

1. B-splines, or conic sections are not allowed as entities.
2. The total number of sides in one operation cannot be more than 92. In other words, the total intersection points cannot be greater than 92.
3. Each polygon should be closed. Each two
consecutive entities should have one intersection; otherwise, the error message: POLYGON IS NOT CLOSED will be printed and the calculations for that polygon will be ignored.
4. An area can be defined by one single entity if that entity is a circle or a string, however, a string cannot cross itself to define two or more areas. This will cause an error.
\#n\#MEA ARE:MODEL ENT dld2d3

AREA $=4.26753$
ADD: MODEL ENT d4d5
TOTAL AREA=7.93507
SUB:MODEL ENT d6d7d8d9
TOTAL AREA=3.5052b

MEASURE LENGTH
The Measure Length command allows the user to measure the length of a contour. The curves that make up the contour may be lines, arcs, conics (ellipses, hyperbolas, or parabolas), B-splines, C-poles, strings, or nodal lines. Successive pairs of curves in the sequence, except for the first and last, either match at endpoints or should intersect one another. The sequence of curves may form an open or a closed contour.

Strings and nodal lines should match neighboring curves at endpoints. The mechanism for handling intersections does not currently support strings and nodal lines.

MEA LEN (modifiers):DRAW/MODEL ENT dl DRAU/ MODEL LOC d2d3

Specifies that the user will digitize a point projected on the first curve of the contour, normal to the curve. The parameter value of this projected point will be used as the starting parameter for the first curve.

Specifies that the user will digitize a point projected on the first curve of the contour, normal to the curve. The parameter value of this projected point will be the ending parameter for the last curve of the contour.
\#n\#MEA LEN STPT ENDPT:MODEL ENT dl MODEL LOC d2d3

LENGTH=2].68591」


```
PARABOLA = ENTITY TYPE
        MODEL: COORDINATE OUTPUT
            YLO=-1.0 YHI= 1.D
            VERTEX: X=3.0 Y=4.0 Z=0.0
                CONIC PLANE FOCUS=0.35
                ROT ANGLE= -34.0
```

LAYER=0 NAME=

NOTE

WIN

ROT

DEV

CPY

STRPn

OLPn

SLEWn

DENSITY'n'
FILE'filename'
tAG

That default is the drawing origin. Drawing will be clipped using ORG as the lower left corner of the window.

Specifies window (digitized) or drawing to be plotted. Default is entire drawing.

Rotates drawing 90 degrees counter-clockwise before plotting.

Specific board to attach for plot (e.g., VSTO). Default is attached device or first board having a plotter of appropriate type.

For dot matrix plotters. Number of copies to plot. Default is 1.

For dot matrix plotters. The number of strips to break the plot into. Default is 1.

For dot matrix plotters. The overlap in inches between stripes. Default is 1 .

Specifies paper advance in inches after plot is finished. Default is 9.

Specifies shape-fill density (default is 20%).
To be used with the CV plotter only. Specifies that the plotter data will go to a file manager file named 'filename'.

Specifies that tag names, if any, are to be plotted on the $C V$ plotter only.

COMMAND
DESCRIPTION

SYNTAX
MODIFIERS
PRIMARY
SECONDARY
ALL
VERSATEC

RESTRICTIONS

ERROR MESSAGES

PLOT HARD COPY
The Plot Hard Copy command allows user to plot an image on a hard copy device exactly as it appears on an Instaview Display screen at a user-selected scale. The command is valid in all modes, but only at times when drawings are active.

PLOT HARD (modifiers) (CR)

Output only primary graphics (default). Output only secondary graphics (highlighted). Output all graphics

Specifies that output is not performed on the terminal's own hardcopy device, but, rather on a VERSATEC DOT-MATRIX PLOTTER. (Default is output on the terminal's own hardcopy device.)

Indicates that output is to be plotted at a scale of R times the scale displayed on the Instaview Display Screen, where R is a userselected real number. (The default is Scale 1.0.)

1. A drawing must be active.
2. The command can only be used at an Instaview Display Terminal station.
3. If the VERSATEC modifier is used, a VERSATEC PLOTTER must be currently attached.
4. This command cannot be interrupted.

NO DRAWING ACTIVE, COMMAND IGNORED
Indicates restriction 1 above was not met.
UNIT IS NOT AN INSTAVIEW
Indicates restriction 2 above was not met.
NO BATCH DEVICES ATTACHED TO THE TASK
Indicates restriction 3 above was not met.

GLOSSARY
ANGULAR DIMENSION

ASSOCIATIVE DIMENSIONING

ATTACH
MAGNETIC TAPE

BLANK
BOOT UP

CAD

CADDS

CAM

CARTESIAN COORDINATES
catalog

CLIPPING
CONFIGURATION

CPL

CONSTRUCTION
SPACE
CONTROL B
CONTROL L
CONTROL Q
CONTROL Rn

Used with verb "Insert" to obtain distance between angular entities. (Note: identify entities counterclockwise.)
Automatic updating of dimensions as the entities to which they are linked are changed.
Command that allows interaction between task and magnetic tape for storage and future retrievability.

Allows for selected entities to become invisible, but not erased.
Term describing restarting of system including a stop/reset, APL 1 and LOG IN.
(Computer Aided Design) Process which uses a computer to assist in the creation or modification of a design.
Computer Aided Design and Drafting System. Trademark name of Computervision's graphic software package.
(Computer Aided Manufacturing) Process employing computer technology to manage and control the operations of a manufacturing facility.
The entering of explicit coordinates along the X, Y or Z axix.
Index which may be used to locate a particular file or group of files stored on disc or tape. More generally, a group of files belonging to one family of files.
Establishing view boundaries.
Directory of computer and peripheral devices at a single installation.
(Construction Plane) A predefined or operatordefined plane on or from which entities are located.
Space which uses the coordinate system defined by the construction plane.
Allows operator to interrupt a command.
Logs in to a task.
Aborts the command being entered.
Same as CTRL L except that a specific task is assigned where "n" = task number.

DESCRIPTION

SYNTAX

MODIFIERS
SAME

NOTE

SCLn

EXT
PEN\#,lay list

ORG

PLOT CALCOMP/DOT/INTERACT/XYNETICS
The Plot command plots the active drawing on a batch output plotter.

PLOT plotter type (modifiers) (CR)
Plotter types are as follows:
DOT Dot matrix plotter
XYN Xynetics plotter
CAL Calcomp plotter
INT Interact plotter

Directs plotter to use the values specified in the previous plot command instead of default values for plot. If this modifier is received at all then the setting of default values is skipped. Any other modifiers received will set the appropriate values as usual. For example: You may enter the SAME modifier and still input SCL.

To effectively use the SAME modifier, the device must be explicitly attached using the Attach Device command. Once the plotting is complete, the device must be explicitly detatched using the Detatch Device command. Please refer to the Attach and Detatch Device on-line documentation files for syntax and modifier usage of these commands.

Scale to plot (default is the true drawing size).

Scales the plot to the extents of the plotter.
(Pen Plotters only). Pen number followed by list of layers associated with that pen. If just the pen number is received then all visible layers are plotted with that pen. (Default is penl.) This modifier may be specified more than once for different pens.

Specified position on drawing (digitized) will plot at the plotter origin if it exists or at the start pen position.

CROSSHA	Process of filling in an outline with a series of symbols to highlight a part.
CURSOR	A crosshair on the CRT that corresponds to the location of the electronic pen.
database	Comprehensive collection of information having structure and organization suitable for communication, interpretation, or processing by the system.
data input	See GETDATA.
DEFAULT	A value assumed by the system anless specifically replaced by the user.
delete	Command used to negate a particular construction. Commonly used with entities, group, part or view.
DIAMETER DIMENSION	Automatically measures circular entities.
DIGITIZE	The act of specifying a location or selecting an entity.
DRAWING	Drawing is a virtual piece of paper upon which the user may arrange text, title blocks, and views of the model. In CADDS 4 a part may consist of a model and many drawings. Each drawing may be of a different size or unit, and the appearance of the model in each view contained within a drawing may be independently tailored. The association between model and drawing is maintained, however, so that any changes to the model will be reflected in all drawings.
$\begin{aligned} & \text { DRAWING } \\ & \text { MODE } \end{aligned}$	The mode in CADDS 4 in which all entity operations affect the drawing. Drawing entities may be inserted or deleted in drawing mode. Operations performed in drawing mode do not affect the model (e.g., changes made to the model in drawing mode affect that specific drawing only- the model itself is not affected.
DYNAMIC MENU	A graphic representation of programmable commands which are defined and formated by the user and displayed on an Instaview screen. Command keywords are accessed by digitizing.
DYNAMICS	The ability to move or insert a set of graphics on the screen under control of the cursor or the ICU.
ECHO	The command that allows the user to see certain system parameters (i.e., grid, layer, clipping boundaries).
EDIT	Allows for changes, additions, or deletions in text.

END POINT
ENTITY
ENTITY MASK
ESCAPE
EXECUTE
FILE
Of an entity.
Fundamental building blocks which a designer uses
to represent a product, e.g. arc, circle, line,
text, point, B-spline, etc.
selection of specific points on various entities.
Special key allowing user to interrupt computer
operation (see control B).
A file program containing a set of system and/or
CADDS commands wich will automatically be executed
by the system.
To terminate work on a part.

INTERACTION FACTOR JUSTIFICATION

KEY MENU

LABEL

LAYER

LINEAR
DIMENSION
LOG IN
LOG OUT
MEASURE

MENU

MIRROR
MODEL
MODEL MODE

MODEL SPACE
ON LINE
OPERATING SYSTEM
ORIGIN

OUTPUT

When used with coordinates allows for the repetition of entities where "N" designates haw many times.
Specification of placement of text and line fonts. Text and line fonts may be left-, center-, or right-justified relative to a specified point.
Present list of written commands on digitizing tablet enabling user to digitize commands rahter than typing them.
Allows for inserting of text with a leader line from entity to text.
Logical concept used to discriminate (separate) group(s) of data within a given drawing. Layering enables the operator to specify derived display elements to be visible. May be thought of as a series of 255 transparencies arranged in any order yet having no depth.
Automatically measures distance and/or length of lines.
Process whereby user enters system.
Process and command whereby user exits from system.
Command to determine distance between two points, a point and an entity, or two entities. May also measure area or angle.

Input device consisting of command squares on a digitizing surface. A graphic representation of programmable keys that are stored on the disc.
Allows the creation of a mirrored image of an entity along a vector.
A collection of data and/or geometry representing an object or product being designed.
The mode within CADDS in which all operations affect the model.
Coordinate system in which a 3-D database is defined.
Equipment or devices in a system which are directly connected to and under the control of the computer.
Software program which controls the execution and implementation of sub-programs. (Systems Level)
GETDATA modifier which enables user to specify the center of an entity.
The end result of a computer operation.

PARAMETER	A constīnt whose values determine the operation of characteristics of a program.
PART	The part is the database construct which contains all pertinent information for an individual development project and is referenced by a symbolic name. The part is composed of a model and a number of drawings. Most CADDS 4 graphical operations require activation of a part before they may be used.
PLACEMENT	Assignment of an entity to a place or location.
PRECISION	When used with dimensioning allows user to indicate number of places to the right of the decimal point.
PROGRAM	Set of machine instructions or symbolic statements combined to perform a task.
PROJECT	Allows the placement of entities along the Z axis.
PROMPT	Any message or symbol from the computer system informinf or asking the user about possible actions or operations.
PROPERTIES	User-established attributes of an entity or subfigure within the model.
RADIUS DIMENSION	Allows for the measurement of an arc or circle.
REPAINT	Command used to refresh the CRT display.
RESTORE IMAGE	Returns a portion of a drawing saved before zooming, scrolling, etc. (See Save Image)
rotate	The turning of entities or groups of entities about a single axis.
RUN	Continuous execution of a program.
save IMAGE	Saves the current display status. Allows operator to zoom or scroll without fear of losing current status. (See Restore Image to reactivate)
SCALE	Ratio of the current display with respect to the database.
SCROLL	Temporary movement of graphic entities relative to a fixed border.
SELECT	Specifies the entity insertion paramenters. Commonly used with grid, layer, text, view, etc.
SOFTWARE	Set of programs, procedures, rules, and associated documentation concerned with the operation of a data processing system.

SYNTAX	Structure of expressions in a language and the rules governing the structure of a language.
tag	Allows for automatic assignment of alphanumeric names to selected entities for easier identification.
TEXT	Written information in a particular font.
TEXT FILE	File containing text. Text file may be created by the user with the EDIT command or it may be created automatically by a CADDS command such as Data Extract.
translate	To relocate an entity or group of entities to a specified point.
TRAP SIZE	An invisible area within whose boundaries the electronic pen can identify entities.
TRIM	Allows user to alter (stretch or shorten) the existing end points of an entity.
UNBLANK	Opposite of BLANK.
VERIFY	Describes the entity selected as to its length, radius, layer, and all relevant information.
VIEW	Pictorial representation of the model positioned within the confines of a drawing.
WINDOW	Bounded area which user determines for entity selection or verification.
ZOOM	To enlarge or decrease proportionally the size of display entities.

DEVICE MANAGEMENT COMMANDS

The Device Management commands allow the user to control the output of information to specific peripheral devices, such as printers and plotters. All hardcopy support is through the device management commands.

These commands include:
PLOT DOT
PLOT HARD

