ACNETIC PERIPHERALS INC. Desides and a corporation

ENGINEERING SPECIFICATION

SPEC 6	4712400
CD 7	· .
REV L	
DATE	9/9/81
PAGE 1	of 82

- NORMANDALE OPERATIONS -

0010A 00155

FLAT CABLE

INTERFACE SPECIFICATION

FOR

THE SMD, MMD, FHT MMD, FMD, LMD, WMD, AND CMD FAMILIES

INTER-DIVISIONAL DOCUMENT Changes to this document require approval of all Using Divisions per CDC-STD 1.01.024.

.

RESPONSIBLE ORGANIZATION	ORIGINATOR	UNIT MANAGER	SECTION MANAGER	DE PARTMENT MANAGER
NRMOPS PRODUCT	MANAGEMENT		HIN-LOOM	
NRMOPS APPLICA	THONS ENGINEERIN	G É	- Ecuquesi	
NRMOPS DISK DR	RIVE DEVELOPMENT	Hoc Primin	1/1 / state	N. AND
NRMOPS CIRCUIT	T DESIGN	>		>
OKHMPI PRODUCT	MANAGEMENT	& Hanis	Me Spinth	2 E Schutt
OKHMPI OEM ENG	SINEERING	Ken M. Meil	M. Dioning	
OKHMPI DISK DR	RIVE DEVELOPMENT		Kuderning	
OKHMPI CIRCUIT	DESIGN	\searrow	>	> <
NRMOPS LIAISON	1 Acle Q. Lustafam 9/1	77 OKHMPI LIA	IZON	

AGNETIC PERIPHERALS INC. D a subsidiary of CONTROL DATA CORFORATION

• •

1

۲

ENGINEERING SPECIFICATION

SPEC 64712400 CD 7 REV DATE PAGE 2

-NORMANDALE OPERATIONS-

TABLE OF CONTENTS

		Page
1.0 SCOPE		4
2.0 APPLICABLE DOCUME	ENTS	4
3.0 GENERAL DESCRIPT	ION	4
4.0 ACCESSORIES		4
5.1.2Line Transm5.1.3Input Ampl5.1.4Terminator5.1.5I/O Cables	, Balanced Transmission System mitter Characteristics ifier (Receiver) Characteristics	9 9 9 12 12 14 15
5.2Signal Lines5.2.1Address and5.2.2Individual5.2.3Data and C		16 16 36 51
5.3Data Format a5.3.1Write Form5.3.2Control Ti	nd Data Control Timing at Procedure ming	53 63 64

ILLUSTRATIONS

Figures

٦	Typical Read/Write Data and Clock Transmitter	
T	and Receiver	10
		11
2	Control Line Transmitter	13
3	Control Line Transmitter	
4	Tag Bus I/O Interface	17
-	Tag Bus Decode SMD/MMD/FHT MMD	18
5A		19
5B	Tag Bus Decode - CMD	. 20
6	"B" Cable Interface	
7A	Tag and Bus Timing - SMD and MMD	21
7B	Tag and Bus Timing - CMD	22
	Fixed Head Tag/Bus Timing - MMD, FHT MMD	24
7C	Fixed head lag/bus fiming with addross Mark	30
8A	Typical Read/Write Timing with Address Mark	31
8B	Control Timing	35
9	Sample Priority Select Timing	33

MAGNETIC PERIPHERALS INC. **3D** a subsidiary of CONTROL DATA CORFORATION

ENGINEERING SPECIFICATION

SPEC 64712400 CD 7 REV DATE PAGE 3

Page

37 Index and Sector Timing 10 42 Logic Number Select and Timing Diagram 11 46 Sequence Power Lines - MMD, FHT MMD 12A 47 9760/9762 Sequence Power Lines 12B 48 9764/9766 Sequence Power Lines 12C 49 12D Sequence Power Lines - CMD 50 FMD Sequence Power Lines 12E 52 NRZ Data and Read Clock Timing 13 54 Fixed Sector Format 14A 55 Variable Sector Format 14B 56 I/O Connectors 9760/9762 SMD 15A 57 15B I/O Connectors MMD, FHT MMD 58 I/O Connector 9764/9766 SMD 15C 59 I/O Connectors CMD 15D 60 I/O Connectors FMD 15E 61 16 Unit Cabling 62 Index and Sector Pulses During Seek - CMD 17

Tables

1	Product Characteristics		5
2	Cables and Terminators		6
3	I/O Cable Length and Tabs		7
4	Disk Packs		7
5	Maintenance Equipment		8
6	Miscellaneous Hardware		8
7	Logical/Physical Addressing	SMD	25
8	Logical/Physical Addressing	MMD	26
ğ	Logical/Physical Addressing		26
10	Tag 2 Bus Decode for CMD		27
11	Logical/Physical Addressing	CMD	28
12	Logical/Physical Addressing		29

AGNETIC PERIPHERALS INC. **3D** ^a subsidiary of CONTROL DATA CORPORATION

ENGINEERING SPECIFICATION

SPEC 64712400 CD 7 REV DATE PAGE 4

-NORMANDALE OPERATIONS -

1.0 SCOPE

This document describes the interface requirements of the Magnetic Peripherals Inc. SMD, MMD, FHT MMD, CMD, LMD, WMD, and FMD type disk drives.

2.0 APPLICABLE DOCUMENTS

3.0 GENERAL DESCRIPTION

The interface for all SMD, MMD, FHT MMD, CMD, LMD, WMD, and FMD devices use compatible line drivers and receivers. All interface lines carry the same definition and timing conditions where commonality can be achieved. Some interface lines have different timing requirements because of the basic product characteristics. For specific product characteristics see Table 1; for additional product detail see SMD, MMD, FHT MMD, CMD, LMD, WMD or FMD product specifications. The following Interface signals vary in the different products:

Tag 1	On Cylinder				
Tag 2	Servo Clock				
Index	Seek End				
Sector	Servo Offset*				
Seek Error	Write Protected				
	Return to Zero				

4.0 ACCESSORIES

Accessory items required, but not furnished with the device, are shown in Tables 2 through 6, also see Figure 1.

*Illegal operation on FHT MMD.

AGNETIC PERIPHERALS INC.

• 1

ENGINEERING SPECIFICATION

SPEC 64712400 CD 7 REV DATE PAGE 5

-NORMANDALE OPERATIONS-

TABLE 1. PRODUCT CHARACTERISTICS

MODEL TYPE	PRODUCT TYPE	NO. HEADS (LOGICAL)	TRANSFER RATE	BYTES/ TRACK	BYTES/ CYLINDER	BYTES/ Spindle	CYLINDER/ DEVICE	FIXED HEAD CAPACITY	FIXED MEDIA CAPACITY	REMOVABLE MEDIA
9760/62	SMD	5 DATA 1 SERVO	9.677 MHz	20 160	100 800	41 428 800/ 82 958 400	411/823	NONE	NONE	ALL
9764/66	SMD	19 DATA 1 SERVO	9.677 MHz	20 160	383 040	157 429 440/ 315 241 920	411/823	NONE	NONE	ALL
9730-12/ 9730-24	MMD	2/4 DATA 1 SERVO	9.677 MHz	20 160	40 320/ 80 640	12 902 400/ 25 804 800	320	NONE	ALL	NONE
730-12F/ 9730-24F	MMD	2/4 DATA 48 FIXED 1 SERVO	9.677 MHz	20 160	40 320/ 80 640 + FIXED HDS	12 902 400/ 25 804 800 PLUS 48 FIXED HEADS	320 + 12 FIXED HD	967 680	ALL	NONE
9730-80	MMD	5 DATA 1 SERVO	9.677 MHz	20 160	100 800	82 958 400	823	NONE	ALL	NONE
9730-80F	MMD	5 DATA 1 SERVO 48 OR 96 FIXED	9.677 MHz	20 160	100 800 + FIXED HDS	82 958 400 PLUS 48 OR 96 FIXED HEADS	823 + 10/20 2 FIXED HEADS	967 680/ 1935 360	ALL	NONE
9730-160	MMD	10 DATA 1 SERVO	9.677 MHz	20 160	201 600	165 916 800	823	NONE	ALL	NONE
9730-160F	MMD	10 DATA 1 SERVO 48 OR 96 FIXED	9.677 MHz	20 160	201 600 + FIXED HDS	165 916 800 PLUS 48 OR 96 FIXED HEADS	823 4 5/10 5 FIXED HEADS	967 680/ 1 935 360	ALL	NONE
9733-2	MMD	128 DATA FIXED, 1 SERVO	9.677 MHz	20 160	80 640	2 580 000	32	2 580 000	ALL	NONE
9733-5	MMD	256 DATA FIXED, 1 SERVO	9.677 MHz	20 160	80 640	5 160 000	64	5 160 000	ALL	NONE
9448-32	СМД	2 DATA 2 SERVO	9.677 MHz	20 160	40 320	32 578 560	823	NONE	16 MB	16 MB
9448-64	CMD	4 DATA 2 SERVO	9.677 MHz	20 160	80 640	65 157 120	823	NONE	48 MB	16 MB
9448-96	CMD	6 DATA 2 SERVO	9.677 MHz	20 160	120 960	97 735 680	823	NONE	80 MB	16 MB
9775	FMD	40 DATA 1 SERVO 96 FIXED	9.677 MHz	20 160	806 400 + FIXED HDS	679 795 200 + 96 FIXED HDS	843 + FIXED HDS	1 935 360	ALL	NONE
9445	LAD	4 DATA Emb servo	9.677 MHz	20 672	82 688	17 DEE 728	20 6	NONE	ā ne	6 n8
	QUD	5 DATA 1 SERVO	9.677 MHz	20 736	103 640	43 130 880	416	. NONE	ALL	NONE

NOTES:

O.96 MB FHT OPTION HAS 3 HEADS IN LAST CYLINDER.
 1.92 MB FHT OPTION HAS 1 HEAD IN LAST CYLINDER.
 1.93 MB FHT OPTION HAS 16 HEADS IN LAST CYLINDER.
 O.96 MB FHT OPTION HAS 8 HEADS IN LAST CYLINDER.
 1.92 MB FHT OPTION HAS 6 HEADS IN LAST CYLINDER.
 1.92 MB FHT OPTION HAS 6 HEADS IN LAST CYLINDER.
 THE DATA CAPACITY SPECIFIED IS BASED ON THE NUMBER OF EIGHT BIT BYTES THAT ARE RECORDED ON A TRACK. THE UNSECTORED CAPACITY DOES NOT INCLUDE AN ALLOWANCE FOR TOLERANCE GAPS.

5041A

AGNETIC PERIPHERALS INC. D a subsidiary of CONTROL DATA CORPORATION

ENGINEERING SPECIFICATION

SPEC 64712400 CD 7 REV DATE PAGE 6

-NORMANDALE OPERATIONS-

TABLE 2. CABLES AND TERMINATORS

DESCRIPTION	QUANTITY REQUIRED	NOTE	PART NO.
"A" Cable (Controller to Device) Standard, Flat	Â	4,5	775642XX
"A" Cable (Device to Device) Standard, Flat		4,5	775642XX
"A" Cable (Controller to Device) Jacketed, UL Approved		4,5	823855XX
"A" Cable (Device to Device) Jacketed, UL Approved		4,5	823855XX
"A" Cable (Controller to Device) Shielded		4,5	823724XX
"A" Cable (Device to Device) Shielded		4,5	823724XX
"B" Cable (Controller to Device) Standard, Flat		4,5	775643XX
"B" Cable (Controller to Device) Jacketed, UL Approved	<u>A</u>	4,5	823857XX
"B" Cable (Controller to Device) Shielded	<u>A</u>	4,5	823659XX
Terminator, Flat		4,5,6,	75841300 75886100
TB216 Field Exerciser	\triangle		82338800

NOTES:/1

One per device in star, one per multi-spindle installation in daisy chain.

One less than total devices in the system.

3 One per device

- 4 Last two digits of the part number denote cable length. For cable length See Table 3.
- 5 On systems using Dual Channel operation, twice the number of cables and terminators are required. CMD Drives are single channel only.
- 6 Terminator 75886100 to be used on CMD.

 $\overline{7}$ Quanity as required for regional maintenance.

MAGNETIC PERIPHERALS INC. **3D** a subsidiary of control data corporation

ENGINEERING SPECIFICATION

SPEC 64712400 CD 7 REV DATE PAGE 7

-NORMANDALE OPERATIONS-

TABLE 3. I/O CABLE LENGTH AND TABS

PART NO. TAB										
Çable Length In Feet	5	6	8	10	15	20	25	30	40	50
"A" Cable, Flat 775642XX "A" Cable Shielded 823724XX	00	01	02	03	04	05	06	07	08	09
"A" Cable, Jacketed 823855XX	NA	NA	NA	03	04	05	06	07	08	09
"B" Cable, Flat 775643XX "B" Cable Jacketed 823857XX "B" Cable Shielded 823659XX	00	01	02	03	04	05	06	07	08	09
"B" Cable Shielded										

TABLE 4. DISK PACKS (SMD,CMD,LMD)

DISK PACK DESCRIPTION								
PRODUĈT Disignation	NOTE	9760	9762	9764/66	9448	9455		
Data Packs	2	9876 P/N 70439501	9877 P/N 70438001	9883-91 P/N 70430514	1204 P/N 76204000	1208 76210000		
CE Alignment Packs	1	876-51 P/N 70439001	877-51 P/N 70438700	883-51 P/N 70430003	1204-51 Required 76204400	Not		

NOTES:

1. Quantity as required for regional maintenance.

2. At least one per spindle.

AGNETIC PERIPHERALS INC. **3D** CONTROL DATA CORPORATION

ENGINEERING SPECIFICATION

SPEC 64712400 CD 7 REV DATE PAGE 8

-NORMANDALE OPERATIONS-

TABLE 5. MAINTENANCE EQUIPMENT

DESCRIPTION	NOTE	PART NO.
TB304-B Field Exerciser	1,2,3	77449301
TB304-C Field Exerciser	1,3	77449302
TB216-A Field Exerciser	1,2,4	82338800
Head Alignment Kit	1	77440500

NOTES:

- 1. Quantity as required for regional maintenance
- 2. Includes head alignment capability.
- 3. Operates SMD, MMD but not CMD.
- 4. Operates SMD, MMD, CMD, LMD, WMD and FMD.

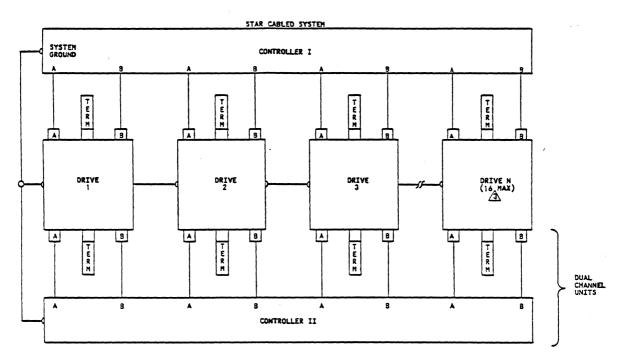
TABLE 6. MISCELLANEOUS HARDWARE

DESCRIPTION	QUANTITY REQUIRED	NOTE	PART NO.
Logic Plug	One per drive	l	943724XX
Single to Dual Channel (9764/66) Conversion Kit (9760/62)	One per drive		47205400 47205000
Single to Dual Channel (MMD) Conversion Kit (FMD)	One per drive		82348600 77842500

NOTE:

 Last two digits denote lens tab, one set (0 through 15) is provided with each SMD and CMD. MMD and FMD logic number selection is done by switch in logic chassis. LMD and WMD Logic Number Selection is done by switch in power Input/Output (PIO) Module. 1AGNETIC PERIPHERALS INC. 30 A SUBSICIARY OF CONTROL DATA CORPORATION

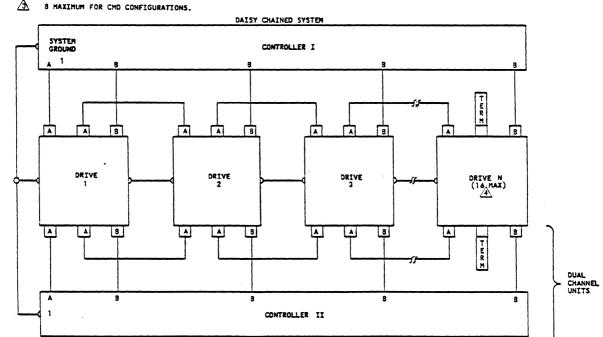
· ·


.

ENGINEERING SPECIFICATION

SPEC 64712400 CD 7 REV DATE PAGE 9

SULZA


NORMANDALE OPERATIONS

NOTES

- 1. MAXIMUM INDIVIDUAL & CABLE LENGTHS = 100 FEET
- MAXIMUM INDIVIDUAL & CABLE LENGTHS = 50 FEET 2.

- NOTES
 - TERMINATION OF "A" CABLE LINES ARE REQUIRED AT CONTROLLER AND THE LAST UNIT OF THE DAISY CHAIN OR EACH UNIT IN A STAR. SEE 6.1.4.1. ۱.

STCHES 1 HNTT CARLENG

- 2. TERMINATION OF "" CABLE RECEIVER LINES ARE REQUIRED AT THE CONTROLLER AND ARE ON THE UNIT'S RECEIVER CARDS. SEE 6.1.4.2.
- з.

- . 100 FEET .

- MAXIMUM CUMULATIVE A CABLE LENGTH PER CONTROLLER MAXIMUM INDIVIDUAL B CABLE LENGTH = 50 FEET.
- 4. & MAXIMUM FOR CMB CONFIGURATION, 4 MAXIMUM FOR LMB AND WHD CONFIGURATIONS.

1AGNETIC PERIPHERALS INC. D a subsidiary of Control Data Conforation

ENGINEERING SPECIFICATION

SPEC 64712400 CD 7 REV DATE PAGE 10

5.0 INTERFACE

5.1 Interface Definition

The standard "A" cable I/O is 60 pin configuration, the standard "B" cable is 26 pin configuration.

All input and output signals are digital, utilizing industry standard transmitters and receivers to provide a terminated, balanced, transmission system for long distances and/or noisy electrical environment.

The "A" cable is a twisted-pair, flat cable. The "B" cable is a ribbon flat-cable with ground plane and drain wire. Twisted pair and/or ground plane shielding is utilized to minimize crosstalk and reduce inductive coupling due to discharges, as well as control impedance variations regardless of cable lay.

5.1.1 Terminated, Balanced Transmission System

Transmitters and receivers of the industry standard types 75110A and 75108 or equivalent are used to provide a terminated, balanced transmission system (see Figure 2).

5.1.2 Line Transmitter Characteristics

The device controller line transmitters (see Figure 3) are compatible with the MPI line receiver described in 5.1.3.

1. Output Signals Levels

Control Signals - See Figure 3 Data Signals - See Figure 2

2. Output Line Polarity

Control Signals - The MPI transmitter (see Figure 3) are connected to the I/O line such that the output, labeled Z, correspond with the low order pin number of the pin assignments and in turn connect to receiver pin labeled B, except for the Unit Selected line which is connected in the opposite manner.

When transmitter and receiver are connected in this manner, a logical 1 into the transmitter produces a logical 1 out of the receiver, except for the Unit Selected line where a logical 1 into the transmitter produces a logical 0 out of the receiver.

AGNETIC PERIPHERALS INC.

ENGINEERING SPECIFICATION

SPEC 64712400 CD 7 REV DATE PAGE 11

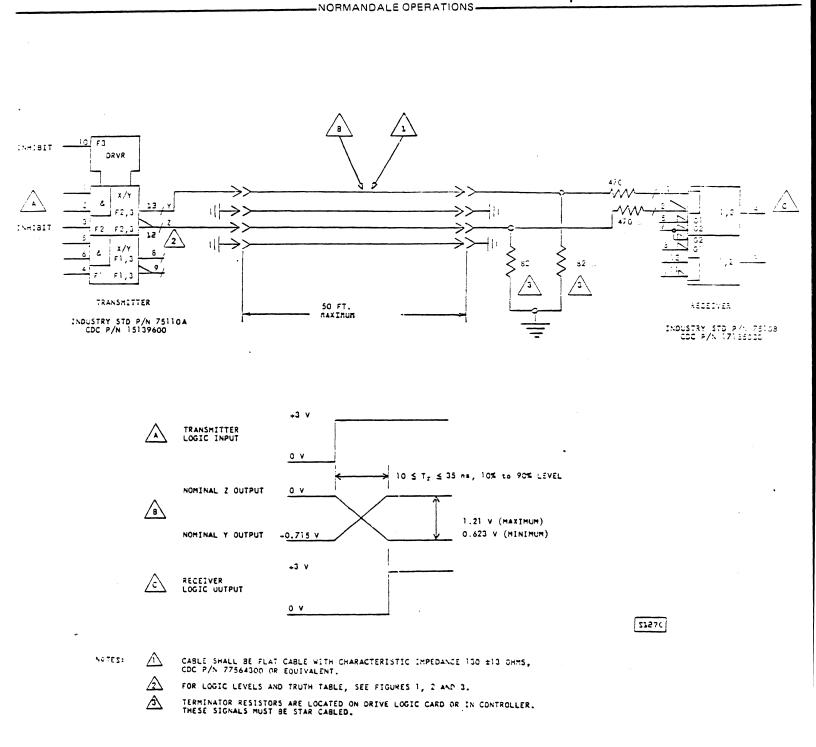
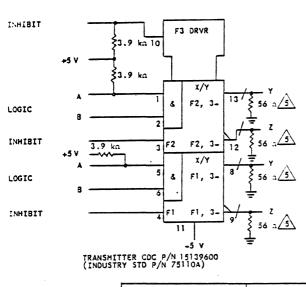
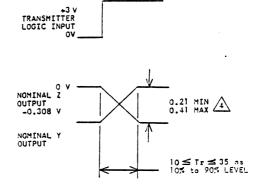
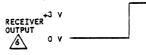


FIGURE 2. TYPICAL READ/WRITE DATA AND CLOCK TRANSMITTER AND RECEIVER

AGNETIC PERIPHERALS INC.




.


ENGINEERING SPECIFICATION

SPEC 64712400 CD 7 REV DATE PAGE 12

-NORMANDALE OPERATIONS-

	LOGIC Inputs			INHIBIT INPUTS		
	A	A 8		F1	Y	z
ſ	L or H	L or H	L	LorH	н	
	L or H	LorH	LorH	L	н	$ \Delta $
	L	L or H	н	н	L	н
	L os H	L	н	н	L	н
	н	н	н	н	н	L
	•					
L		l	1			

TRUTH TABLE .

\$133A

NOTES:

- 1. OUTPUT LEVELS L = MOST NEGATIVE LEVEL H = LEAST NEGATIVE LEVEL
- 2. INPUT LEVELS H = MOST POSITIVE LEVEL L = LEAST POSITIVE LEVEL

THIS IS AN INDETERMINATE INSTRUCTION WHEN SENSED BY AN ACTIVE (SELECTED) RECEIVER.

- VOLTAGE RANGE INCLUDES TRANSMITTER OUTPUT SWING IN LOW STATE OF 11 ±3 mA, AND A 5% TERMINATING RESISTOR OF 56 OHMS.
- TERMINATING RESISTORS ARE REQUIRED ON ALL "A" CABLE TRANSMITTERS. TRANSMITTERS IN THE DRIVE ARE TERMINATED BY THE TERMINATOR ASSEMBLY. REFER TO SINCLE AND DUAL CHANNEL INTERFACE ILLUSTRATION, AND THE TERMINATOR PARAGRAPH.
- A RECEIVER INPUTS A AND B ARE CONNECTED TO TRANSMITTER OUTPUTS Y AND 2 RESPECTIVELY.

FIGURE 3. CONTROL LINE TRANSMITTER

AGNETIC PERIPHERALS INC. D a subsidiary of CONTROL DATA CORPORATION

ENGINEERING SPECIFICATION

SPEC 64712400 CD 7 REV DATE PAGE 13

------NORMANDALE OPERATIONS --

5.1.3 Input Amplifier (Receiver) Characteristics

The device controller input amplifier (see Figure 4) is compatible with the MPI transmitter described in 5.1.2.

1. Receiver Propagation Delay

The receiver propagation delay is typically 17 ns in the direction of the logical 1, and 17 ns in the direction of the logical 0.

2. Receiver Input Polarity

Control Signals - The input (labeled "B") of the receiver (see Figure 4) is connected to the lowest numbered pin of the pair in the cable and in turn connected to the transmitter pin labeled Z.

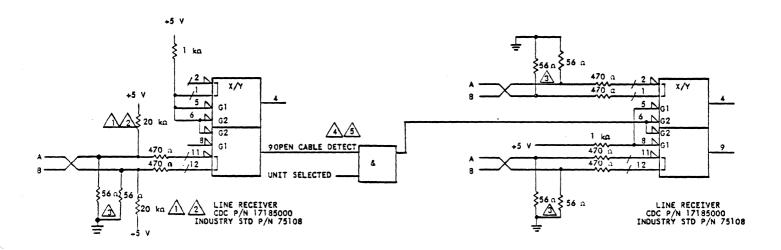
Data Signals - See Figure 2.

- 5.1.4 Terminator
 - 1. "A" Cable

A terminator resistance as shown in Figures 3 and 4 is required at the transmitter and receiver end of each transmission line of the "A" cable. This resistance is provided on the unit by the terminator assembly which must be ordered separately.

A termination resistance is required at the controller end of each line of the "A" cable except for the Open Cable Detect line (see 5.2.2(7)). No termination resistance is used on the Power Sequence lines in the "A" cable.

2. "B" Cable


A termination resistance as shown in Figure 2 is required at the receiver end of each transmission line of the "B" cable. This resistance is provided at the unit's receiver logic card. AGNETIC PERIPHERALS INC. B a subsidiary of CONTROL DATA CORPORATION

1 I

ENGINEERING SPECIFICATION

-NORMANDALE OPERATIONS-

SPEC 64712400 CD 7 REV DATE PAGE 14

5144A

DIFFERENTIAL	INHIB	OUTPUT	
INPUTS	G1	G2	
V _A -V ₈ ≥ 25 av	LorH	L or H	н
V _A -V _B < 25 mV	L or H L . H	L L or H H	H H Ind.
v ₈ -v _A ≥ 25 sv	L or H L H	L L or H H	H H L

LINE RECEIVER TRUTH TABLE

NOTES:

 \wedge 20 KA RESISTORS ARE TYPICAL VALUES.

- ◬ A BIAS NETWORK SHOULD BE USED TO PREVENT FALSE STATUS OR INTERRUPT CONDITIONS WHEN DRIVE POWER IS OFF AT CONTROLLER END OF UNIT SELECTED AND SEEK END SIGNALS.
- TERMINATING RESISTORS ARE LOCATED:
 A. ON LOGIC CARD FOR "B" CABLE LINES.
 B. IN SEPARATE TERMINATOR ASSEMBLY FOR "A" CABLE.
- A SEE 5.2.2.7 FOR DESCRIPTION OF OPEN CABLE DETECT SIGNAL. 15

IF AN OPEN CABLE CONDITION IS DETECTED.

ALS INC.

header

header

60 pin, vertical

Cable (Nonshielded)

Connector (26 pos)

Connector Pull Tab

Flat Cable (26 pos) with ground plane and

drain wire.

DESCRIPTION

ENGINEERING SPECIFICATION

 SPEC
 64712400

 CD
 7

 REV
 0

 DATE
 15

12400

ole Parts De	escription			
	-	857XX availab	le only as a UL	<u>/N</u>
Cable (Nons)	nielded)			
PTION	MPI P/N	BERG P/N	SPECTRA-STRIP P/N	
(60 pos)	94361115	65043-007		
insert	94245603	75691-007		
e pair), 28 AWG	95043902		455-313-060	
Cable (Shie)	lded)			
TION	MPI P/N	BERG P/N	BRAND-REX P/N	
(60 pos)	94361115	65043-007		
nsert	94245603	75691-007		
iature pair	95050600		T-8649	
Cable Mating	g Receptacle	on Unit or Co	ntroller	x
DESCRI	PTION	MPI P/N	AMP P/N	
60 pin, rigl	ht angle	94369804	3-86479-4	

94385129

MPI P/N

65853402

92004801

95028509

3-87227-0

<u>3M P/N</u>

3399-3000

3490-2

3476-26

AGNETIC PERIPHERALS INC. 3D a subsidiary of CONTROL DATA CORPORATION

ENGINEERING SPECIFICATION

 SPEC
 64712400

 CD
 7

 REV
 0

 DATE
 0

 PAGE
 17

5.1.6.3 "B" Cable (With Ground Plane)

Type: 26 conductor, flat cable with ground plane and drain wire Impedance: 65 ohms (3M P/N 3476-26) Wire size: No. 28 AWG, 7 strands Propagation time: 1.5 to 1.8 ns/ft Maximum cable length: 50 ft Voltage rating: 300 V rms

5.1.6.4 "B" Cable (Non Shielded)

Type: Twinax Impedance: 160 ±16 ohms Wire size: 30 AWG, 7 strands Diameter over outer insulator: 0.620 maximum Propagation time: 1.5 to 1.8 ns/ft Maximum cable length: 50 ft Voltage rating: 300 V rms

5.2 Signal Lines

5.2.1 Address and Control Tag Functions (Received by the Unit)

Address and Control functions are transferred on 10 lines. The significance of the information on these lines is indicated by one of three tag lines (see Figures 5, 6A, B, and C; and 7).

5.2.1.1 Cylinder Address (Tag 1)

1. SMD, MMD, FMD Moving Head, and WMD

Ten bus lines (Tag 1) are used to carry the Cylinder Address to the device. Since the device is a direct addressing device, the controller need only place the new address on the lines and strobe the lines with Tag 1 (see Figure 8A). The unit must be On Cylinder before Tag 1 is sent. The bus lines should be stable throughout the tag time.

2. CMD, LMD

With the CMD, Tag 2 must precede Tag 1 when a volume change is made, that is, switching from fixed media to removable or removable to fixed. The correct servo head will be enabled at the trailing edge of Tag 1 (see Figure 8B).

With the LMD, if the Seek-On-Head-change option is not selected, Tag 2 must precede Tag 1 when a head change is made (see Figure 8C).

AAGNETIC PERIPHERALS INC.

.

3D a subsidiary of CONTROL DATA CORPORATION

.

ENGINEERING SPECIFICATION

SPEC 64712400 CD 7 REV DATE PAGE 18

CONTROLLER			ERATION			00.000
CONTROLLER		CABLE		LO.	HI	DRIVE
	UNIT SELECT TAG				52	
	CHIT SELECT 20				53	
	UNIT SELECT 2				54	►
	LNIT SELECT 2 ²				56	
	UNIT SELECT 23				57	
	TAG 1	Δ			31	8
	TAG 2	A			32	
	TAG 3	<u></u>			33	
i I	O TIE	Δ			34	
	BIT 1	\triangle			35	
	BIT 2	Â			36	₽
	5 T 1	Â			37	
	917 4	Ćs -			38	>
	UIT 5	Â			39	
8	3IT 6	À			40	-
• •	. 3IT 7	<u>د</u> ک		11,		
	. BIT 3	<i>L</i> A			42	
. 1	9 TIE	Ĺ2.		13,	43	
5 1 1	OPEN CABLE DETECTOR			14,		
3		<u>i</u>		18,		▶
I	SECTOR	لات		25,		
	FAULT	Â		15,		-
	SEEK ERROR	À		16,		
,	ON CYLINDER	Ŵ		17,		
	UNIT READY	ZÀ.		19,		
	ADDRESS MARK FOUND		3	20,		
	WRITE PROTECTED	A		28,		
	POWER SEQUENCE PICK		4		29	
-	POWER SEQUENCE HOLD				59	ONE TWISTED PAIR
	3057	2	$\widehat{\Lambda}$	21,		
	NOT USED (SPARE)			30,		

ILZSE

NOTES: 60 POSITION 23 ANG, 30 TWISTED PAIR - STRAIGHT FLAT CABLE MAXIMUM LENGTH - 100 FT

- A DUAL CHANNEL UNITS ONLY.
- A GATED BY UNIT SELECTED.
- A ALMAYS A LOGIC ZERO DUTPUT IF LMD IS SELECTED.
- A DAISH CHAINED BUT NOT INTERPRETED BY LED.

FIGURE 5. TAG BUS I/O INTERFACE

AGNETIC PERIPHERALS INC

• •

ENGINEERING SPECIFICATION

--- NORMANDALE OPERATIONS ---

.

SPEC 64712400 CD 7 REV DATE PAGE 19

	TAG 1 IN	TAG 2 IN	TAG 3 IN	UNIT SELECT
BUS	CYLINDER ADDRESS	HEAD SELECT	CONTROL . SELECT	
Bit O	20	20	Write Gate	
1	21	21	Read Gate	
2	22	22	Servo Offset Plus 🖉	
3	23	23	Servo Offset Minus ⁄ 2	
4	24	2 ⁴	Fault Clear	
5	25		AM Enable	
6	26		RTZ	
7	27		Data Strobe Early	
8	28		Data Strobe Late	
9	2 ⁹		Release 1	Priority Select

NOTES :

1 Dual Channel Only

2 Not used in FHT MMD

FIGURE 6A. TAG BUS DECODE SMD/MMD/FHT MMD

AGNETIC PERIPHERALS INC. **3D** a subsidiary of CONTROL DATA CORPORATION

· · · · ·

ENGINEERING SPECIFICATION

SPEC 64712400 CD 7 REV DATE PAGE 20

-NORMANDALE OPERATIONS-

	TAG 1	TAG 2	TAG 3
BUS	CYLINDER ADDRESS	HEAD/VOLUME SELECT	CONTROL SELECT
BIT 0	20	20	Write Gate
1	21	21	Read Gate
2	22	22	Servo Offset Plus
3	23		Servo Offset Minus
4	24	24 1	Fault Clear
5	25		AM Enable
6	26		RTZ
7	27		Data Strobe Early
8	28		Data Strobe Late
9	29		

NOTE :

1 This bit is Volume Address which is stored in a bistable within the 9448 drive. The stored Volume Address and Tag 1 result in a Volume Select if the Cylinder Address is valid. (See flow chart for timing.) A zero denotes the removable cartridge and a one denotes the fixed disks. MAGNETIC PERIPHERALS INC. **3D** ^a subsidiary of control data corporation

•

ENGINEERING SPECIFICATION

-NORMANDALE OPERATIONS-

SPEC 64712400 CD 7 REV DATE PAGE 21

	TAG 1	TAG 2	TAG 3
BUS	CYLINDER ADDRESS	HEAD/VOLUME SELECT	CONTROL SELECT
BIT O	20	2 ⁰ 1	Write Gate
l	21	2 ¹ 1	Read Gate
2	22	2 ² 3	Servo Offset Plus
3	23	Δ	Servo Offset Minus
4	24	\sum	Fault Clear
5	25	Δ	
б	26 26	2	RTZ
7	27	\triangle	Data Strobe Early
8	28	Δ	Data Strobe Late
· 9	29	Δ	\triangle

NOTES :

ON LMD ONLY, HEAD CHANGES ARE NOT INITIATED UNTIL A VALID SEEK IS RECEIVED FOLLOWING A HEAD CHANGE COMMAND IF THE SEEK-ON-HEAD-CHANGE OPTION IS NOT SELECTED. IF THE SEEK-ON-HEAD-CHANGE OPTION IS SELECTED, THE HEAD CHANGES AND A ZERO-DISTANCE-SEEK WILL BE INITIATED AS A RESULT OF THE HEAD CHANGE.

NOT INTERPRETED BY THE LMD OR WMD.

NOT INTERPRETED BY THE LMD.

FIGURE 6C. TAG BUS DECODE-LMD AND WMD

AGNETIC PERIPHERALS INC. **3D** a subsidiary of CONTROL DATA CORPORATION

.

<u>a14</u>

ENGINEERING SPECIFICATION

-NORMANDALE OPERATIONS -

SPEC 64712400 CD 7 REV DATE PAGE 22

146A

CONTROLLER	"B" CABLE	$\widehat{\Lambda}$	DRIVE
		LO, HI	
	WRITE DATA	8, 20	
	GROUND	7	
	WRITE CLOCK	6, 19	
	GROUND	18	
	SERVO CLOCK	2, 14	
	GROUND	1	
	READ DATA	3, 16	
	GROUND	15	
	READ CLOCK	5, 17	
	GROUND	4	
	SEEK END	10, 23	
	UNIT SELECTED	22, 9	
	GROUND	21	
	RESERVED FOR INDEX	12, 24	
	GROUND	11	
· · ·	RESERVED FOR SECTOR	13, 26	
	GROUND	25	

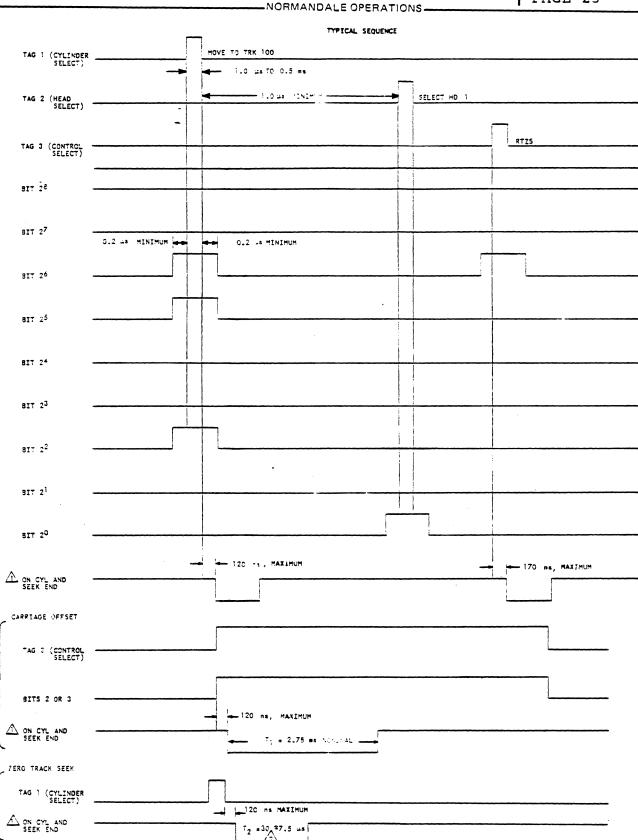
NOTES: 1 26 CONDUCTOR FLAT CABLE. MAXIMUM LENGTH - 50 FT.

- 2. NO SIGNALS GATED BY UNIT SELECTED.
- 3 THESE SIGNALS WILL BE PRESENT ON CMD AND LMD.

.

FIGURE 7. "B" CABLE INTERFACE

MAGNETIC PERIPHERALS INC.


3D a subsidiary of CONTROL DATA CORPORATION

.

ENGINEERING SPECIFICATION

SPEC 64712400 CD 7 REV DATE PAGE 23

SMD, MMD AND FMD (MOVABLE HEADS) 1 TIMING AND BUS TAG 8A. FIGURE

NO TES:

DSDHW

SEEK ERROR INITIATES & CONSTANT SEEK END.

AAGNETIC PERIPHERALS INC. SD a subsidiary of CONTROL DATA CORPORATION

• t

، ,

L

75 5 :

ENGINEERING SPECIFICATION

SPEC 64712400 CD 7 REV DATE PAGE 24

		NORMANDALE OPERATIONS	PAGE 24
TAG 1 (CYLINDER		HOVE TO TRK 100 & CHANGE VOLUMES	
SELECT)		- ·.Ο με το .5 ms	
TAG Z (HEAD ZA			
TAG 3 (CONTROL SELECT)			
SIT 2 ⁹	+++		
9IT 2 ⁸			
81T 2 ⁷	1.2 us +15 14.4 4+		
эіт 2 6			
BIT 2 ⁵			
BIT 24 🛕 -			
9IT 2 ³ -			
BIT 2 ² -			
81T 2 ¹ -			
BIT 2 ⁰			
A ON CYL AND - SEEK END -		120 na HAXIMUH	
CARRIAGE OFFSET			·
TAG 3 (CONTROL - SELECT)			
BITS 2 OR 3 -			
ON CYL AND - SEEN END			
ZERO TRACH SEEM			L
TAG 1 (CHLINDER Select)			
A ON CYL AND -			
inc and bus iim	END SIGNALS ARE IDENTI AT THE INPUT TO THE TR TING RELLIGEMENTS FOR A TIMING WITH VOLUME CHA	CAL UNLESS SEEN ERROR OCCURS. SEEN ERROR INITIATES & CONSTANT S ANSMITTER, ALSO SEE 6.2.2.11. VCLUME CHANGE. NGE.	

AGNETIC PERIPHERALS INC. **3D** a subsidiary of **3D** Control Data conformation

4 B

ENGINEERING SPECIFICATION

NORMANDALE OPERATIONS-

SPEC 64712400 CD 7 REV DATE PAGE 25

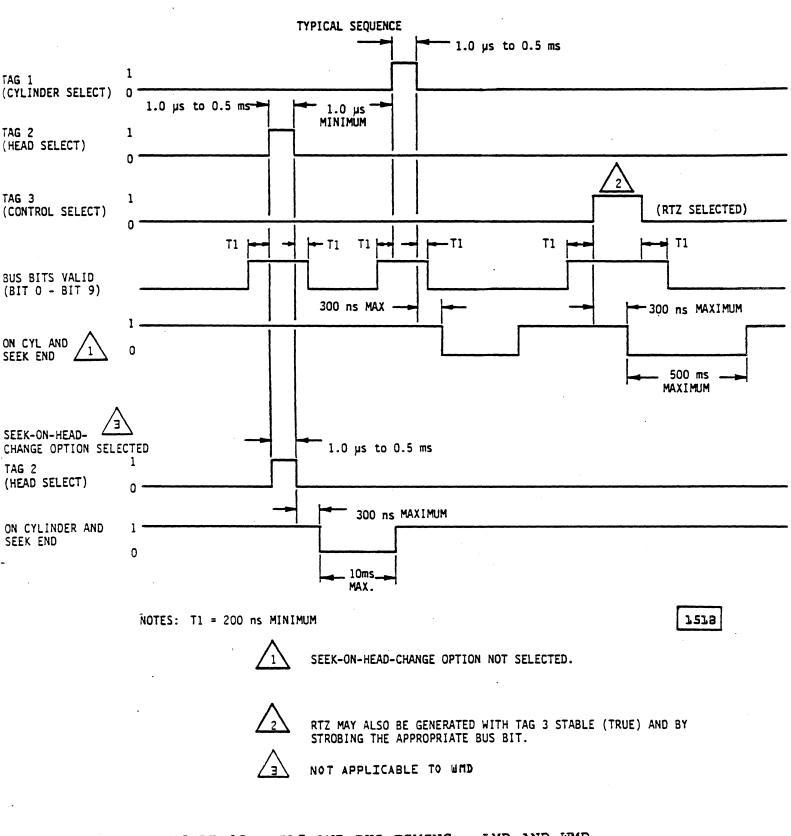


FIGURE 8C. TAG AND BUS TIMING - LMD AND WMD

AGNETIC PERIPHERALS INC.

ENGINEERING SPECIFICATION

SPEC 64712400 CD 7 REV DATE PAGE 26

-NORMANDALE OPERATIONS -

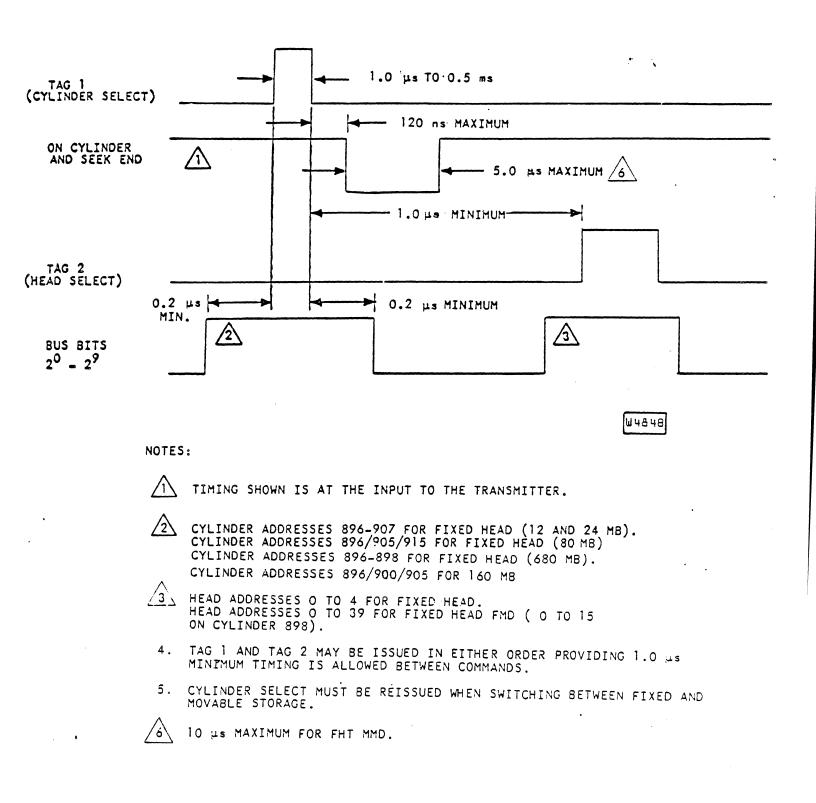


FIGURE 8D. TAG/BUS TIMING - FIXED HEAD MMD, FHT MMD

AGNETIC PERIPHERALS INC. D control data corporation

ENGINEERING SPECIFICATION

SPEC 64712400 CD 7 REV DATE PAGE 27

3. MMD and FMD Fixed Head Tag and Bus

Transfer of cylinder and head address information is controlled by the same timing requirements as the moving head sequence which is defined in Figure 8A. Because no positioner move is involved and it would be expected that a Head Select would immediately follow a Cylinder Select, the minimum Tag/Bus timing is as shown in Figure 8D.

The fixed heads may be used to either read or write data while the movable head positioner is in motion. The normal sequence of events would occur in the following order:

- a. The controller issues a Cylinder Select with the desired movable head cylinder location on the bus. On Cylinder and Seek End will drop.
- b. The controller accesses the desired fixed head location with the appropriate Cylinder Select and Head Select signals.
- c. Conforming to the specified times for head select to read or write, the controller can read or write on the fixed head memory. The absence of On Cylinder and Seek End will not cause a fault in the unit when reading or writing on the fixed head shoe.
- d. At the completion of the seek by the movable head positioner, On Cylinder and Seek End will become true.
- e. When the Read or Write operation is complete on the fixed head, the controller may readdress the movable heads by sending the appropriate Cylinder Select (zero track seek) and Head Select signals. The Cylinder Select command is required in order to clear the Fixed Head mode.
- 4. FHT MMD Head and Tag Bus

Transfer of cylinder and head address information is controlled by the same timing requirements as the moving head sequence which is defined in Figure 8A. Because no positioner move is involved and it would be expected that a Head Select would immediately follow a Cylinder Select, the minimum Tag/Bus timing is as shown in Figure 8D. The normal sequence of events would occur in the following order:

 a. The controller issues Cylinder Select Tag 1 (Cylinder Address Tag), and bus bits 0 through 31 for 2.5 MB (9733-2) or 0 through 63 for 5.0 MB (9733-5) units. On Cylinder and Seek End will drop. AGNETIC PERIPHERALS INC. **3D** a subsidiary of CONTROL DATA CORPORATION

ENGINEERING SPECIFICATION

SPEC 64712400 CD 7 REV DATE PAGE 28

- b. The controller accesses the desired fixed Head Select with the appropriate head select signals. (See Head Select Tag 2 HPT MMD).
- c. Conforming to the specified times for head select to read or write, the controller can read or write on the fixed head memory.
- 5.2.1.2 Head Select (Tag 2)
 - 1. SMD

This signal is the Head Address that will be selected by bits present on the bus lines when Tag 2 is true. The Logical/ Physical Addressing relationship for the SMD is in Table 7.

TABLE 7. LOGICAL/PHYSICAL ADDRESSING SMD

MEDIA DATA	SMD 40/80/MB	SMD 150/300 MB
Data surfaces/device	5	19
Movable heads/surface	l	1
Fixed heads/device	0	0
Movable cylinders/device	411/823	411/823
Fixed cylinders/device	0	0
Movable heads/logical cylinder	5	19
Fixed heads/logical cylinder	0	0
Movable-cylinder addresses	0-410/0-822	0-410/0-822
Fixed cylinder addresses		

2. MMD

This signal is the Head Address that will be selected by bits present as the bus lines when Tag 2 is true.

With the fixed head option incorporated in the MMD, the 48/96 physical fixed heads are addressed by the controller as logical cylinders. This addressing scheme allows maximum interface commonality with the moving head storage of the MMD and also with the SMD family. The logical/physical addressing relationship for these devices is summarized in Table 8.

AGNETIC PERIPHERALS INC. D a subsidiary of CONTROL DATA CORPORATION

ENGINEERING SPECIFICATION

SPEC 64712400 CD 7 REV DATE PAGE 29

M607C

-NORMANDALE OPERATIONS-

TABLE 8. LOGICAL/PHYSICAL ADDRESSING MMD

MEDIA DATA	MMD	MMD	MMD	MMD
	12 MB	24 MB	80 MB	160 MB
DATA SURFACES/DEVICE MOVEABLE HEADS/SURFACE FIXED HEADS/DEVICE MOVEABLE CYLINDERS/DEVICE FIXED CYLINDERS/DEVICE MOVEABLE HEADS/LOGICAL CYLINDER FIXED HEADS/LOGICAL CYLINDER MOVEABLE CYLINDER ADDRESSES FIXED CYLINDER ADDRESSES	1 2 48 320 12 2 4 0-319 896/907	2 48 320 12 4 0-319 896/907	$ \begin{array}{c} 5 \\ 2 \\ 48/96 \\ 823 \\ 10/20 \\ 5 \\ 6 \\ -822 \\ 896/905/915 \end{array} $	5 2 48/96 823 5/10 10 10 3 0-822 896/900/905

NO TE S:

0.96 MB FIXED HEAD OPTION HAS 3 ADDRESSABLE HEADS IN CYLINDER 905.

2 1.92 MB FIXED HEAD OPTION HAS 1 ADDRESSABLE HEADS IN CYLINDER 915.

3. 0.96 MB FIXED HEAD OPTION HAS & ADDRESSABLE HEADS IN CYLINDER 900.

4 1.92 MB FIXED HEAD OPTION HAS 6 ADDRESSABLE HEADS IN CYLINDER 905.

3. FHT MMD

This signal is the Head Address that will be selected by bits present on the bus lines when Tag 2 is true. The heads are addressed by the controller as logical heads and cylinders. This addressing scheme allows maximum interface commonality with the moving storage of the MMD and also with the SMD family. The logical/physical addressing relationship for these devices is summarized in Table 9.

TABLE 9	•	LOGICAL/PHYSICAL	ADDRESS ING	FHT	MMD
---------	---	------------------	-------------	-----	-----

MEDIA DATA	FHT MMD 2.5 MB	FHT MMD 5.0 MB
Data surfaces/device	1	2
Fixed heads/device	128	256
Fixed cylinders/device	32	64
Fixed heads/logical cylinder	4	4
Fixed cylinder addresses	0 to 31	0 to 63

AGNETIC PERIPHERALS INC.

. .

ENGINEERING SPECIFICATION

SPEC 64712400 CD 7 REV DATE PAGE 30

4. CMD

In the CMD this tag transmits Head and Volume Address bits on the bus lines to the device (see Figure 6B). This command must be followed by a valid seek command, (Tag 1) if the selected volume is different than the previously selected volume, since a volume change is not executed until the next valid cylinder address code (see Table 10). The Logical/Physical Addressing relationship for the CMD is summarized in Table 11.

BUS BITS			HEAD	
24*	22	21	20	SURFACE ID
0	0	0	0	HD NO. 0 REM
1	0	0	1	HD NO. 2 FXD
1	0	1	0	HD NO. 3 FXD
1	0	0	0	HD NO. 1 FXD
1	0	1	1	HD NO. 4 FXD
1	1	0	0	HD NO. 5 FXD

TABLE 10. TAG 2. BUS DECODE FOR CMD

*This bit is Volume Address which is stored in a bistable within the 9448 drive. The stored Volume Address and Tag 1 result in a Volume Select if the cylinder address is valid. AGNETIC PERIPHERALS INC. D a subsidiary of CONTROL DATA CORPORATION

ENGINEERING SPECIFICATION

-NORMANDALE OPERATIONS -

SPEC 64712400 CD 7 REV DATE PAGE 31

MEDIA DATA CMD CMD CMD 32 MB 64 MB 96 MB 6 Data surfaces/device 2 4 Movable heads/surface 1 1 1 Fixed heads/device 0 0 0 Movable cylinders/device 823 823 823 0 0 0 Fixed cylinders/device Movable heads/logical cylinder 2 4 6 0 0 0 Fixed heads/logical cylinder 0 - 822Movable cylinder addresses 0-822 0-822 Fixed cylinder addresses

TABLE 11. LOGICAL/PHYSICAL ADDRESSING CMD

5. LMD

In the LMD, this tag signifies that head and volume address bits are on the Bus lines to the device (See Figure 6C). This command must be followed by a valid seek command since a head change is not executed until the next valid cylinder address code is received via a Tag 1 function. Read or write commands will result in a Fault status until after the seek has been executed (see Table 12).

NOTE: Tag 2 must always be followed by Tag 1 (whether the head is different or the same).

On Cylinder will not become False as a result of a head change command alone.

Via a switch selectable Seek-On-Head-Change option within the LMD, a head select command will automatically initiate a head change and zero distance seek. "ON Cylinder" will go false for a maximum of 10 milliseconds. (See Figure 8C). AGNETIC PERIPHERALS INC. **3D** a subsidiary of CONTROL DATA CONTORATION

ENGINEERING SPECIFICATION

 SPEC
 64712400

 CD
 7

 REV
 0

 DATE
 9

 PAGE
 32

-NORMANDALE OPERATIONS-

TABLE 12. TAG 2 BUS DECODE FOR LMD

BUS BITS		HEAD SURFACE IDENTIFICATION	
21	20	Bus Bits	
0 0 1 1	0 0 0 1	Top - Cartridge Disk Bottom - Cartridge Disk Top - Fixed Disk Bottom - Fixed Disk	

6. FMD

This signal is the head address that will be selected by bits present on the bus lines when Tag 2 is true.

With the fixed head option incorporated in the FMD, the 96 physical fixed heads are addressed by the controller as logical cylinders. This addressing scheme allows maximum interface commonality with the moving head storage of the FMD and also with the SMD and MMD family. The logical/physical addressing relationship for the FMD is summarized in Table 13.

TABLE 13. LOGICAL/PHYSICAL ADDRESSING FMD

MEDIA DATA	FMD 675 MB
Data surfaces/device	20
Movable heads/surface	2
Fixed heads/device	96
Moavable cylinders/device	843
Fixed cylinders/device	3
Movable heads/logical cylinder	40
Fixed heads/logical cylinder	40 l
Movable cylinder address	0-843
Fixed cylinder addresses	896-898

NOTE: 1

1.93 MB Fixed Head Option has 16 addressable heads in cylinder 898.

AGNETIC PERIPHERALS INC. **3D** a subsidiary of control data corporation

ENGINEERING SPECIFICATION

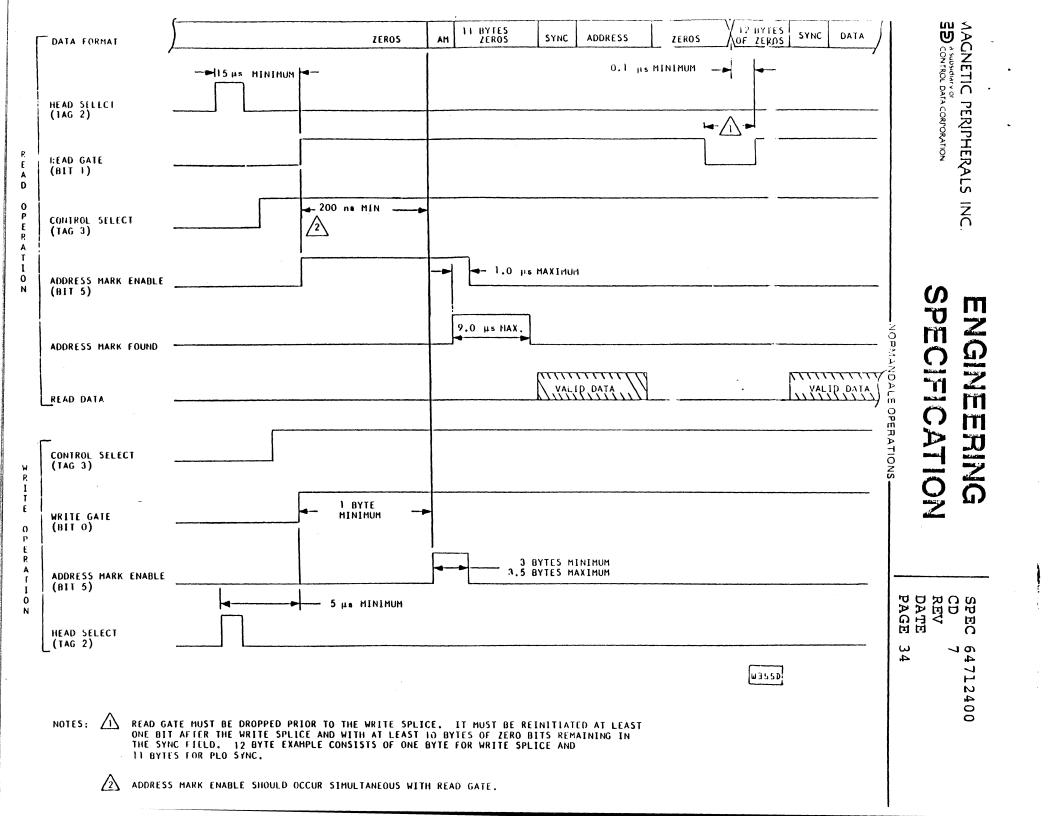
SPEC 64712400 CD 7 REV DATE PAGE 33

-NORMANDALE OPERATIONS -

7. WMD

In the WMD this tag indicates that Head Address bits are on the BUS lines.

5.2.1.3 Control Select (Tag 3)


This signal acts as an enable and must be true for the entire control operation.

1. Write Gate (Bit 0)

The Write Gate line enables the write driver (see Figure 6A, B, and C). See Figures 9A and B for typical Write Gate Timing requirements.

2. Read Gate (Bit 1)

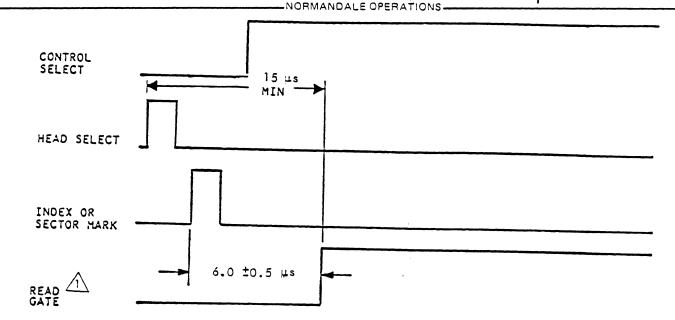
Enabling of the Read Gate (see Figures 6A, B and C) enables digital read data on the transmission lines. The leading edge of Read Gate triggers the read chain to synchronize on an all zeros pattern. (See Figures 9A and B for typical Read Gate timing.)

AGNETIC PERIPHERALS INC. D a subsidiary of CONTROL DATA CORPORATION

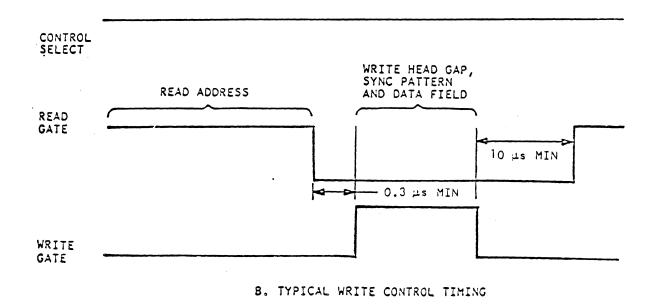
a 🖌 🖌

.

ENGINEERING SPECIFICATION


 SPEC
 64712400

 CD
 7


 REV
 0

 DATE
 9

 PAGE
 35

A. TYPICAL READ CONTROL TIMING

WBS9D

NO TE :

▲ IF A READ OPERATION IS TO BE PERFORMED AFTER INDEX OR SECTOR, READ GATE MUST NOT OCCUR LATER THAN 6.0 ±0.5 #s AFTER THE LEADING EDGE OF INDEX OR SECTOR. AGNETIC PERIPHERALS INC. D a subsidiary of CONTROL DATA CORPORATION

ENGINEERING SPECIFICATION

SPEC 64712400 CD 7 REV DATE PAGE 36

--- NORMANDALE OPERATIONS ---

3. Servo Offset Plus (Bit 2)

SMD,CMD,FMD - When this signal is true, the actuator is offset from the nominal On Cylinder position towards the spindle. (See Figures 8A and B for timing.) When dropping Offset Plus, a 4 ms* delay is required before a read or write is initiated. When servo is in an Offset mode, no Write operation should be attempted.

MMD - When this signal is true, no physical movement of the heads is performed in the drive, used only to meet timing requirements of SMD drive family. (See Figure 8A for timing.)

FHT MMD - Same as MMD.

CMD only - If Write Gate is brought up when Offset is active, the Fault line will become true and Write Fault will set. A Fault Clear command must be issued to clear the fault condition.

LMD - This function is not executed by the LMD; however, On Cylinder will be deactivatd for 2 ms maximum from a logic change (i.e., 0 to 1 or 1 to 0) in this bit for flat cable interface compatibility.

4. Servo Offset Minus (Bit 3)

SMD/CMD/FMD - When this signal is true, the actuator is offset from the nominal On Cylinder position away from the spindle. (See Figure 8A and B for timing.) When dropping Offset Minus, a 4 ms* delay is required before a read or write is initiated. When servo is in an Offset mode, no write operation should be attempted.

MMD - When this signal is true, no physical movement of the heads is performed in the drive. Used only to meet timing requirements of SMD drive family. (See Figure 8A for timing.)

FHT MMD - Same as MMD.

CMD only - If Write Gate is brought up when Offset is active, the Fault line will become true and Write Fault will set. A Fault Clear command must be issued to clear the fault condition.

LMD - This function is not executed by the LMD; however, On Cylinder will be deactivated for 2 ms maximum from a logic change (i.e., 0 to 1 or 1 to 0) in this bit for Flat Cable Interface compatibility.

5. Fault Clear (Bit 4)

A pulse, 100 ns minimum, sent to the device will clear the Fault flip-flop if the fault condition no longer exists.

AGNETIC PERIPHERALS INC. **3D** a subsidiary of CONTROL DATA CORPORATION

• •

ENGINEERING SPECIFICATION

SPEC 64712400 CD 7 REV DATE PAGE 37

LMD, WMD - A pulse, 300 ns minimum sent to the device will deactivate to logic 0 the fault condition within 2 ms measured from the leading edge of the Fault Clear pulse if the fault condition no longer exists.

6. AM Enable (Bit 5)

The AM (Address Mark) Enable line, in conjunction with Write Gate or Read Gate, allows the writing or recovering of Address Marks (see Figure 9A). When AM Enable is true while Write Gate is true, the writer stops toggling and erases the data, creating an Address Mark. Write Fault detection in the unit is inhibited during writing of an Address Mark.

When AM Enable is true while Read Gate is true, an analog voltage comparator detects the absence of Read signal. If the duration of the erased area is greater than 16 bits, an Address Mark Found signal will be issued.

NOTE: If Address Mark is not used, Bit 5 must be held to a logical 0 during control select functions.

LMD, WMD - Not interpreted

7. RTZ (Bit 6)

A pulse, 250 ns minimum, 1 ms maximum, sent to the device will cause the actuator to seek to track 0, reset the Head register, select the cartridge volume (CMD only), and clear the Seek Error flip-flop.

This seek is significantly longer than a normal seek to track 0, and should only be used for recalibration, not data acquisition.

This signal is used to select head zero, track zero, and clear Seek Error on the FHT MMD. Seek End and On Cylinder drop for 2.75 ms maximum.

LMD - A pulse, 300 ns minimum, 1 ms maximum, sent to the device will cause the actuator to seek track 0, select head zero, select the cartridge volume and deactivate to logic 0 the Seek Error status. The RTZ function will be completed in 500 ms maximum. On Cylinder will be false during the RTZ function. (Figure 8C).

8. Data Strobe Early (Bit 7)

When this line is true, the Device PLO Data Separator will strobe the data at a time earlier than nominal. Normal strobe timing will be returned when the line is false. MAGNETIC PERIPHERALS INC. **3D** a subsidiary of control data corporation

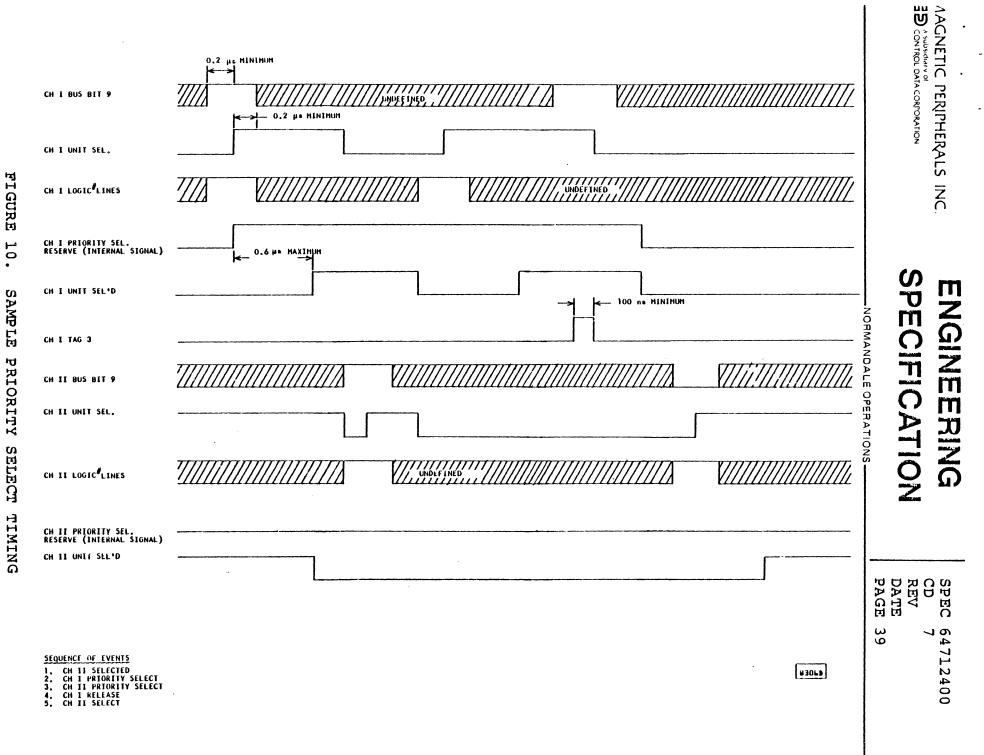
ENGINEERING SPECIFICATION

SPEC 64712400 CD 7 REV DATE PAGE 38

-NORMANDALE OPERATIONS -

9. Data Strobe Late (Bit 8)

When this line is true, the Device PLO Separator will strobe the data at a time later than nominal. Normal strobe timing will be returned when the line is false.


- NOTE: The Data Strobe signals are intended to be an aid in recovering marginal data. The data strobe position returns to nominal when the respective signals go false. The Data Strobe signals are only applicable while reading data from the disk.
- 10. Release (Bit 9) (Dual Channel Only)

Enabling this line will release Channel Reserve and Channel Priority Select Reserve in the device, making alternate channel access possible after selection by the other channel ceases. If the unit is desired to function with Reserved Timer feature, Release will occur 500 ms nominal following the deselection of the device. If a longer or shorter time is desired, the timer may be customer altered by changing a resistor and capacitor to obtain delays from 500 ns to 10 seconds. Enabling Release will always clear Reserve and allow alternate channel access independent of the Reserve Timer feature. The Reserve Timer is enabled by means of a switch in the logic chassis. Inhibiting the Reserve Timer causes the device to stay reserved until specifically released by the operating channel. A unit is reserved immediately upon selection, but may be released any time after 500 ns following selection. By means of a switch in the logic chassis, it is also possible to absolutely reserve a device to one or other channels. For LMD, this signal is not interpreted.

5.2.1.4 Unit Select

----Priority-Select (Bit 9) (Dual Channel Only)

When this line is true, the unit will be unconditionally selected and absolutely reserved by the respective channel providing both channels are enabled and a priority select condition does not exist on the opposite channel. Once the Priority Select function has been performed the respective channel has exclusive access to the drive. The opposite channel can gain access only after a Release function has been performed on the selected channel (see 5.2.1.3-10). For timing see Figure 10. Following a Priority Select on one channel all interface signals are inhibited on the opposite channel including Unit Selected and Busy. For LMD, this signal is not interpreted.

10 ٠ SAMPLE PRIORITY SELECT TIMING AGNETIC PERIPHERALS INC. D a subsidiary of D a su

· ·

ENGINEERING SPECIFICATION

SPEC 64712400 CD 7 REV DATE PAGE 40

5.2.2 Individual Lines

- 1. Sector Mark
 - a. SMD, MMD, FHT MMD, FMD

The Sector Mark is derived from the servo track. Timing integrity is maintained throughout seek operations (see Figure 11A). The number of sectors per revolution is switch selectable and is determined by counting Dibits/Sector Clocks. The switches are located on a card within the logic chassis. Each switch represents a fixed number of Dibits/Sector Clocks when closed.

Switch: 0 1 2 3 4 5 6 7 8 9 10 11 No. of dibits/ sector clock: 1 2 4 8 16 32 64 128 256 512 1024 2048

To calculate the proper switch positions for the number of sectors desired, use the following formula:

Dibits or Sector Clocks/Revolution = Dibits or Sector Clock No. Sectors = Count/Sector

Example for 8 Sectors: $\frac{13 \ 440}{8} - 1 = 1679$ (-1 for SM Counter Reset)

close switch 10 = 10249 = 512 128 7 = 3 = 8 2 = 4 1 = 2 1 0 = One Dibit or Sector Clock for SM Counter Reset = 1 1680 dibits or Sector Clock/Sector

Each dibit or Sector Clock (806 kHz Clock) is equivalent to 12 data bits.

MAGNETIC PERIPHERALS INC.

.....

3D a subsidiary of CONTROL DATA CORPORATION

• •

.

ENGINEERING SPECIFICATION

-NORMANDALE OPERATIONS -

SPEC 64712400 CD 7 REV DATE PAGE 41

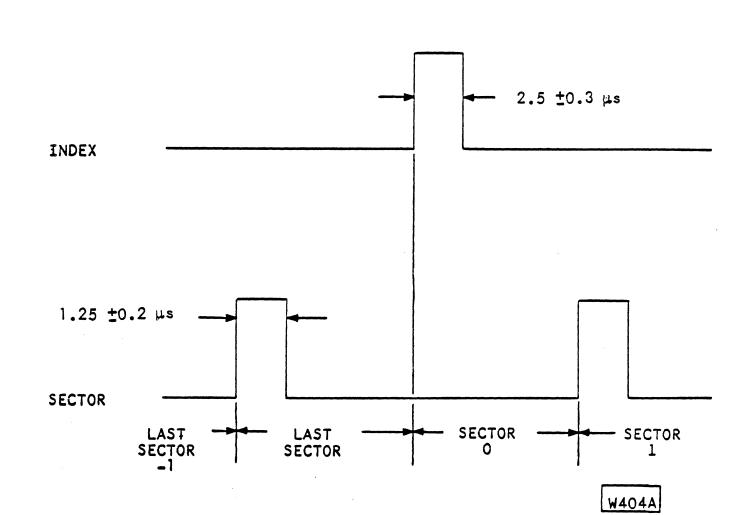


FIGURE 11A. INDEX AND SECTOR PULSES

AND STREET STREET, STRE

AGNETIC PERIPHERALS INC. **3D** a subsidiary of control data corporation

ENGINEERING SPECIFICATION

SPEC 64712400 CD 7 REV DATE PAGE 42

-NORMANDALE OPERATIONS-

b. CMD

The Sector pulse is derived from the servo track. Timing integrity is retained when Ready is active, and throughout seek operations in which no volume change is effected. There are 63 Sector pulses available per revolution (see Figure 11B). When combined with Index in the controller, this divides the tracks into 64 even length sectors. Other sector counts are available by changing the sector switches whose binary weight indicates the complement of the number of sectors desired. Sector pulses occur on both the A and B cables.

NOTES: The Sector pulses will be inhibited upon receiving the Cylinder Tag associated with a volume change until the detection of the first Index of the new volume (see Figure 11B).

> Not all sector counts are even length. For example, a 50 Sector option would allow 50 even length sectors with an odd length sector at the end. The following even length sector counts are available: 4, 5, 6, 7, 8, 10, 12, 14, 15, 16, 20, 21, 24, 28, 30,32, 35, 40, 42, 48, 56, 60, 64, 70, 80, 84, 96, 105, 112, 120, and 128.

c. LMD, WMD

The Sector pulse $(1.25 \pm 0.2 \mu s)$ is derived from the embedded servo information on LMD, and the servo track on WMD (see Figure 11C). Sector pulse integrity is maintained throughout all seek operations in which no head change is effected. There are 63 sector pulses available per revolution. When combined with Index in the controller, this divides the tracks into 64 equal length sectors. An alternate sector count of 32 equal length sectors is available via a different device configuration (i.e., a different assembly number).

NOTES: All sector pulses will be generated during a seek which requires no head change.

Some sector pulses will be omitted when a head change occurs (see Figure 11D). If the controller counts Sector pulses to determine sector location, the controller should wait until the next Index pulse following the completion of a seek with head change to determine the rotational position of the disk. Sector pulse timing integrity is not guaranteed while ON Cylinder is false during a seek after a head change AGNETIC PERIPHERALS INC. **3D** ^a subsidiary of CONTROL DATA CORPORATION

.

....

,

.

ENGINEERING SPECIFICATION

-NORMANDALE OPERATIONS-

SPEC 64712400 CD 7 REV DATE PAGE 43

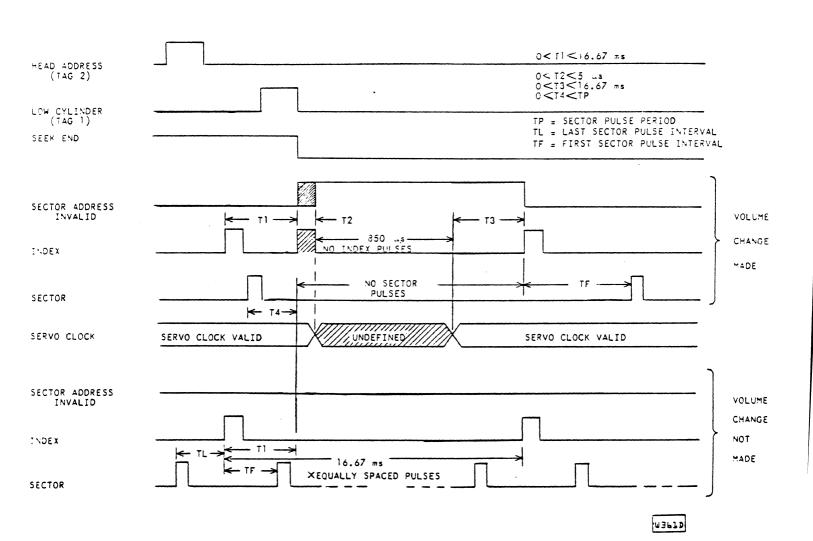
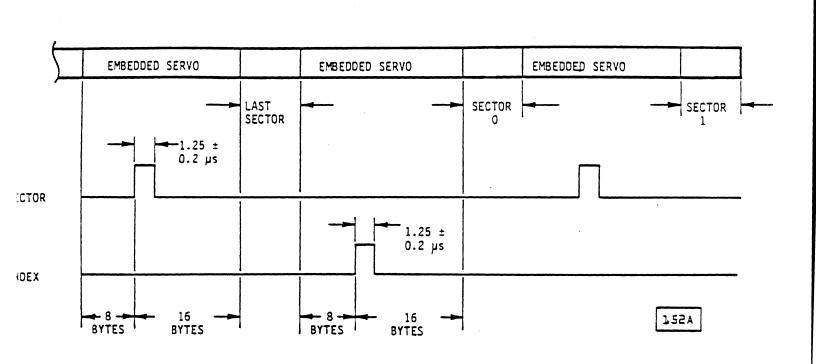


FIGURE 11B. INDEX AND SECTOR PULSES DURING SEEK - CMD

ie.

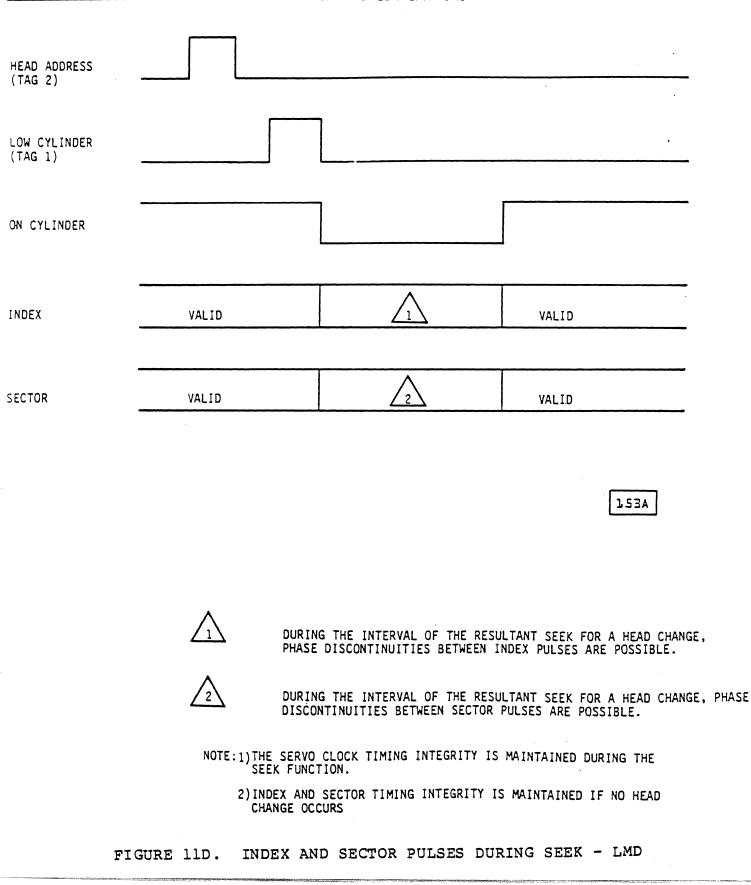
MAGNETIC PERIPHERALS INC. 3D a subsidiary of CONTROL DATA CORPORATION


•

ENGINEERING SPECIFICATION

SPEC 64712400 CD 7 REV DATE PAGE 44

- -


MAGNETIC PERIPHERALS INC. **3D** a subsidiary of CONTROL DATA CORPORATION

•

ENGINEERING SPECIFICATION

SPEC 64712400 CD 7 REV DATE PAGE 45

-NORMANDALE OPERATIONS-

MAGNETIC PERIPHERALS INC. BD a subsidiary of CONTROL DATA CORPORATION

ENGINEERING SPECIFICATION

SPEC 64712400 CD 7 REV DATE PAGE 46

2. Fault

When this line is true, a fault condition exists in the device. The following types of faults may be detected by the device: DC Voltage fault, Head Select fault, Write fault, Write or Read while Off Cylinder, and Write Gate during a Read operation. A fault condition will immediately inhibit the writer to prevent data destruction. The DC Voltage fault indicates a below normal voltage from the positive or negative power supplies. The Head Select fault indicates that more than one head is selected. The Write fault indictes low (or the absence of) write current or the absence of write data.

This line may be cleared by Control Select, or Fault Clear on the operator panel, or Master Fault Clear on the Fault card (providing the fault no longer exists). Faults are also stored in individual flip flops as a maintenance aid, and may be cleared only by powering down dc power or clearing the fault by means of the switch on the fault card. The stored maintenance aid has no effect on unit operation.

LMD - This line will be deactivated within 2000 μ s after activation of Fault Clear or by power sequencing the DC power to the unit (providing the fault no longer exists).

The fault conditions detected by the LMD may be grouped into the following four categories:

a. Interface Signal Related Faults

These types of faults indicated an attempted illegal operation by the interface controller. This type of fault may be generated by the detection of the interface Write Gate during a read operation, Write Gate or Read Gate while off cylinder, Write Gate and a write protected volume selected, Write or Read Gate after a head select and before a seek command, or Write Gate during the controller accessible section of a sector containing an unrecoverable embedded servo field.

NOTE: An LMD sector contains a drive interpreted embedded servo field followed by a controller accessible disk space for interface data storage/retrieval. The embedded servo field may not be read or written via the interface; however, a fault is not generated if the interface controller activates Read Gate or Write Gate during the embedded servo area. If the drive electronics is unable to properly recover an embedded servo area, any attempt to write in the succeeding sector area will generate a Write Fault. AGNETIC PERIPHERALS INC. **3D** CONTROL DATA CORPORATION

ENGINEERING SPECIFICATION

SPEC 64712400 CD 7 REV DATE PAGE 47

-NORMANDALE OPERATIONS-

b. Hardware Unsafe Faults Which Cause Head Retract

These types of faults indicate a detected drive hardware failure associated with the data read/write chain or the embedded servo internal protection electronics. These faults may be generated by a head failure i.e., open or shorted head, the loss of write current, the loss of Write Data during the Write Gate time, internal write enable during an embedded servo field, or absence of one of two required signals to the read/write electronics signifying the presence of an embedded servo field i.e., a redundancy check type feature.

c. Hardware Detected Faults Which Cause Head Retract

This type of fault, which indicates the loss of internal spindle motor speed control or improper servo positioning operation, will force a retract of the read/write heads. This type of fault may be created by the absence of embedded servo fields, an unsafe dc power voltage used by the head positioning electronics i.e., +5 V or ±16.5 V, or a below normal voltage on the emergency retract capacitor.

d. Microcomputer Detected Faults

A microcomputer within the LMD continuously monitors the drive performance to determine safe and reliable operation of the LMD servo and spindle motor electronics. A microcomputer detected fault may be created by the inability of the servo phase locked oscillator to maintain frequency synchronization for servo positioning control or data field write controk, out of tolerance spindle motor RPM, detection of the read/write heads positioned outside the valid data zones of the disk, or a failure of the drive to pass the power turn-on self test functions.

Certain microcomputer detected faults may lead to an emergency retract if the fault condition persists. Some faults indicate a Seek Error, and others indicate a need for maintenance though the LMD is still usable.

NOTE :	CMD -	For fault summary, see 7.2 in product SPEC 75888221.
	FMD -	For fault summary, see maintenance manuals 83323560,70
	WMD -	For fault summary see Interface Spec for LMD, Spec 75897451

AGNETIC PERIPHERALS INC. D a subsidiary of CONTROL DATA CORPORATION

ENGINEERING SPECIFICATION

 SPEC
 64712400

 CD
 7

 REV
 0

 DATE
 0

 PAGE
 48

-NORMANDALE OPERATIONS-

3. Seek Error

When this line is true, a Seek Error has occurred. The error may only be cleared by performing an RTZ. This signal indicates that the unit was unable to complete a move within 500 ms, (except MMD) or that the carriage has moved to a position outside the recording field or received an illegal track address. A Return-to-Zero Seek command will clear the Seek Error condition, return the heads to cylinder zero, and enable an On Cylinder signal to the controller.

SMD - If an address greater than 823 tracks (411 tracks for 9760/9764) is addressed, the Seek Error signal will go true within 100 ns of the Cylinder Select Tag, and the carriage movement is inhibited to one track or less.

MMD - 12 and 24 megabyte versions will not decode a Seek Error for an illegal track address until the positioner moves the heads into a guardband area. This requires approximately 65 ms under worst case conditions. There is no Seek Error status for cylinders beyond the designated fixed head cylinders.

The 80/60 megabyte version will decode a Seek Error for an illegal track address of 823 to 895 for the moving head portion. A Seek Error will also be decoded at cylinder 916 and above for fixed heads. The device will not decode a Seek Error in units without fixed heads or units with only one fixed head shoe (48 heads) if the designated fixed head cylinders are addressed. Response time for an invalid cylinder is 250 μ s maximum.

MMD FHT - This signal indicates an illegal cylinder address.

CMD - If an address greater than 823 tracks is addressed, the Seek Error signal will go true within 450 μs maximum of the Cylinder Select Tag. Carriage movement is inhibited.

FMD - A Seek Error will be generated for an illegal track address of 844 to 895 and for tracks greater than 898. A Seek Error will be generated on track 898 if a head greater than 15 is selected.

LMD, WMD - If a seek to an illegal address is attempted, the Seek Error signal will go true within 1.5 ms of the cylinder address Tag 1. Carriage movement is not attempted until a RTZ Command is received to deactivate the Seek Error signal. MAGNETIC PERIPHERALS INC. 3D a subsidiary of CONTROL DATA CORPORATION

ENGINEERING SPECIFICATION

SPEC 64712400 CD 7 REV DATE PAGE 49

-NORMANDALE OPERATIONS-

4. On Cylinder

For all units except FHT MMD, this status indicates the servo has positioned the heads over a track. The status is cleared with any seek instruction causing carriage movements, or a zero-track seek. A carriage offset will result in loss of On Cylinder for a period of 2.75 ms (nominal) for all devices.

SMD - For a zero track seek, On Cylinder drops for 30 μs nominal (see Figure 8A for timing).

MMD - For a zero track seek, On Cylinder drops for 30 μ s nominal 12/24 MB, 150 μ s maximum for 80/160 MB. For a seek to fixed head cylinders, On Cylinder drops for 5 μ s maximum (see Figures 8A and D for timing).

FHT MMD - This signal indicates that a particular cylinder has been selected and the drive is ready to read or write.

CMD - For a zero track seek on the same volume, On Cylinder drops for 450 μs maximum. For a zero track seek with a volume change, On Cylinder drops for a 4 ms maximum (see Figure 8B for timing).

FMD - For a zero track seek, On Cylinder drops for $37.5 \ \mu s$ maximum. For a seek to a fixed head cylinder on cylinder drops for $37.5 \ \mu s$ maximum. (See Figure 8A and D for timing).

LMD - For a zero distance seek without a head change command, On Cylinder is deactivated for 1.5 ms maximum. For a zero distance seek with a head change, On Cylinder is deactivated for 10 ms maximum (see Figure 7D for timing). For logic changes i.e., either 0 to 1 or 1 to 0 in the Servo offset plus and minus commands, On Cylinder is deactivated within 300 ns and activated within 2 ms maximum for Flat Cable Interface compatibility.

5. Index

This signal occurs once per revolution, and its leading edge is considered the leading edge of the Sector Zero, typially 2.5 μ s (see Figure 11A). Timing integrity is retained throughout seek operations for all devices.

AGNETIC PERIPHERALS INC. **3** Subsidiary of CONTROL DATA CORPORATION

1 1

ENGINEERING SPECIFICATION

SPEC 64712400 CD 7 REV DATE PAGE 50

-NORMANDALE OPERATIONS -

CMD - Index will become invalid when a volume change is made. Index will remain invalid until the new servo head is selected and Index is properly decoded on the new volume. Index signal to the controller is gated off during a volume change. If volume switch occurs within an Index time, the pulse will not be gated off, it will be allowed its full time out. Upon changing volumes the first Index from the newly addressed volume may occur in an interval of from 650 µs to 20.5 ms after the volume change is initiated. Index occurs on both the "A" and "B" cables.

LMD - This signal occurs once per revolution and its leading edge is considered the sector pulse for sector zero; it is typically 1.25 µs (see Figure 11C). Index pulses may be missed when the seek command for a head change is performed. The index timing will become valid when On Cylinder becomes true following the seek function. (see Figure 11D). If a head switch occurs during an Index pulse, the pulse width is not affected.

6. Unit Ready

When true, and the device is selected, this line indicates that the device is up to speed. The heads are positioned over the recording tracks, and no fault condition exists within the device.

7. Open Cable Detector

The Open Cable Detect circuit (see Figure 4) disables the interface in the event that the "A" interface cable is disconnected or controller power is lost.

It is recommended that the controller circuitry have sufficient voltage margins and interlocks to prevent operation on the drive before the controller is Ready or prior to impending controller power failure. Relay logic and passive terminations sometimes aid this requirement. If 75110A transmitters are used to drive the Open Cable Detect line from the controller, two transmitters should be paralleled, and no 56 Ω termination resistance to ground should be used at the controller end.

8. Unit Select Tag

This signal gates the desired logic number into the Logic Number Compare circuit. The unit will be selected internally 600 ns maximum after leading edge of this signal. For timing see Figure 12. Note that this function must be edge triggered. AGNETIC PERIPHERALS INC. D a subsidiary of CONTROL DATA CORPORATION

• •

ENGINEERING SPECIFICATION

NORMANDALE OPERATIONS -

SPEC 64712400 CD 7 REV DATE PAGE 51

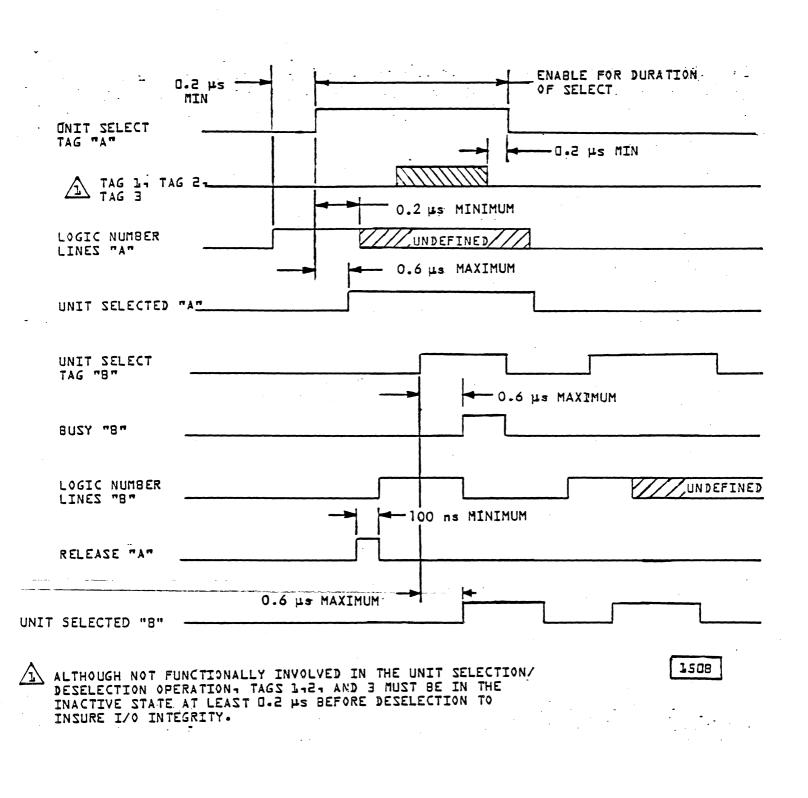


FIGURE 12. LOGIC NUMBER SELECT AND TIMING DIAGRAM

AGNETIC PERIPHERALS INC. **3D** CONTROL DATA CORPORATION

ENGINEERING SPECIFICATION

 SPEC
 64712400

 CD
 7

 REV
 0

 DATE
 0

 PAGE
 52

-NORMANDALE OPERATIONS -

In Dual-Channel units, Unit Select Tag also forces the device to be reserved to that channel, providing selection occurs. The Reserve will not be cancelled unless by Release command, Reserve Timer or dc power-down/power up. If Bus Bit 9 and the desired logic number is present with Unit Select Tag, a Priority Select will be performed, see 5.2.1.4. The unit will be selected internally 600 ns maximum after leading edge of Unit Select Tag. For timing see Figure 12. If both controllers request access simultaneously, Channel "A" will be granted priority. AGNETIC PERIPHERALS INC. **3D** a subsidiary of CONTROL DATA CORPORATION

• •

ENGINEERING SPECIFICATION

 SPEC
 64712400

 CD
 7

 REV
 0

 DATE
 0

 PAGE
 53

-NORMANDALE OPERATIONS -

9. Unit Select $(2^0, 2^1, 2^2 \text{ and } 2^3)$

These four lines are binary coded to select the logical number of 1 of 16 devices. The unit number (0 through 15) is selectable by means of switches located on a card in the logic chassis (MMD and FMD) or on a logic plug on the unit's operator panel (SMD).

NOTE: The CMD is limited to a maximum of 8 devices with logical addressing of (0 to 7) selectable by a logic plug on the operator panel.

LMD, WMD - These four lines are binary coded to select the logical number of 1 of 4 LMD devices. The unit number (0 through 15) is selectable by means of switches located on a card within the PIO. A maximum of 4 LMDs per system are allowed (see Figure 1).

10. Address Mark Found

Address Mark Found is a pulse which is sent to the controller following recognition of at least 16 missing transitions and the first zero of the zeros pattern.

The controller must drop the Address Mark Enable line (Bit 5) upon receiving Address Mark Found (AMF) and valid data will be presented on the I/O lines following the AMF pulse. Upon sensing the dropping of Address Mark Enable line, the Address Mark Found pulse will be reset within 8.0 µs maximum (see Figure 9).

NOTE: Under certain conditions it is possible that the MMD or FHT MMD could issue a false Address Mark Found signal during an address mark search operation. This would occur if a media flaw existed which simulated the electrical characteristics of an Address Mark (at least 16 missing transitions followed by a zero).

> It is recommended provisions be made in system hardware or software to allow recovery from, or avoid the possibility of detecting false AMF signals.

LMD, WMD - This signal is not activated by the LMD but is daisy chained at the connector. This signal output will always be a logic zero.

11. Unit Selected

When the four Unit Select bit lines compare with the settings of the Unit Select switches in the logic chassis, and when the leading edge of Unit Select Tag is received, the Unit Selected line becomes true and is transmitted to the controller on the "B" cable (see Figure 11). Multiple Unit Selected responses on a deicy obtain system indicate duplicate switch settings have AGNETIC PERIPHERALS INC. **3D** A Subsidiary of **Control Data Conformation**

ENGINEERING SPECIFICATION

SPEC 64712400 CD 7 REV DATE PAGE 54

-NORMANDALE OPERATIONS -

12. Write Protected

Enabling the Write Protect function inhibits the writer under all conditions, illuminates a LED located on logic cards in the MMD and FMD and on the operator panel in SMD, CMD and FMD, and sends a Write Protected signal to the controller. Attempting to write while protected will cause a fault to be issued. The Write Protect function is enabled by a switch located on a card in the logic chassis on the MMD and FMD by a switch or switches on the operator panel on the SMD, and CMD and FMD.

CMD only - When this line is true, it indicates that the 9448 is write protected. This signal will occur during maintenance when Head Alignment is being performed, or when write protection is desired on the 9448 by depressing either of the PROTECT switches. If Write Gate becomes true when the drive is write protected on the selected volume, then the Fault line will become true. The write protected condition can be cleared by depressing the appropriate PROTECT switch.

LMD only - When this line is true, it indicates that the LMD is write protected. This signal will occur when write protection is desired by setting the PROTECT switch for the fixed volume or a tab setting on the removable volume. If Write Gate becomes true when the drive is write protected on the selected volume, then the Fault Line will become true. The write protected condition can be eliminated by resetting the PROTECT switch for the fixed volume or by changing the tab setting for the removable volume.

WMD only - There is no Write Protect switch fitted on the WMD.

13. Seek End

Seek End is the combination of On Cylinder or Seek Error indicating that a Seek operation has terminated.

SMD - For a zero track seek, Seek End drops for 30 μs nominal (see Figure 8A for timing).

MMD - For a zero track seek, Seek End drops for 30 μ s nominal 12/24 MB, 150 μ s maximum for 80/160 MB. For a seek to fixed head cylinders, Seek End drops for 5 μ s maximum (see Figures 8A and 8D for timing).

FHT MMD - For a zero track seek, this signal is derived from On Cylinder or Seek Error and drops On Cylinder for 10 µs, maximum.

CMD - For a zero track seek on the same volume, Seek End drops for 450 µs nominal. For a zero track seek with a volume change, Seek End drops for 4 ms maximum (see Figure 8B for timing). If a cylinder address greater than 822 has been selected (illegal cylinder address), Seek End will go false for MAGNETIC PERIPHERALS INC. 3D a subsidiary of CONTROL DATA CORPORATION

1 .

ENGINEERING SPECIFICATION

SPEC 64712400 CD 7 REV DATE PAGE 55

-NORMANDALE OPERATIONS -

FMD - For a zero track seek, Seek End drops for 5 ms maximum. For a seek to fixed head cylinders, Seek End drops for 5 ms maximum (see Figure 8A and D for timing).

LMD - For a zero distance seek on the same head, Seek End goes to logic 0 for 2 ms maximum. For a zero distance seek with a head change, Seek End goes to logic 0 for 10 ms maximum (see Figure 7D for timing). If a cylinder address greater than 205 has been selected (illegal cylinder address), Seek End will go false for 3 ms maximum.

In Dual Channel drives the Seek End signal sent to the unselected channel will normally be a constant one. However, if while the drive is selected on a channel, and the opposite channel receives a select, this action will be noted by circuitry within the drive. Then, when the selected channels Select and Reserve Latches are cleared, the Seek End signal sent to the waiting channel will go to a zero for 30 μ s.

14. Power Sequencing (see Figures 13A thru F)

Power sequencing requires ac power on, START switch on, and REMOTE START switch (switch selectable in device) in the REMOTE position. Applying ground to the Pick and Hold lines will cause the first device in sequence to power up. Once this device is up to speed, the Pick signal is transferred to the next active device and repeated until all active devices are powered up. Individual devices may be started and stopped once power sequencing is completed.

A power failure necessitates a new power up sequence.

When in Local Start mode, each device is independently operated by its respective START switch.

In the Remote mode, a Pick or Hold is considered to be present from the controller when a ground is present on "A" cable Pin 29 for Pick and Pin 59 for Hold. AGNETIC PERIPHERALS INC.

i •

· .

ENGINEERING SPECIFICATION

.

SPEC 64712400 CD 7 REV DATE PAGE 56

t.

-NORMANDALE OPERATIONS-

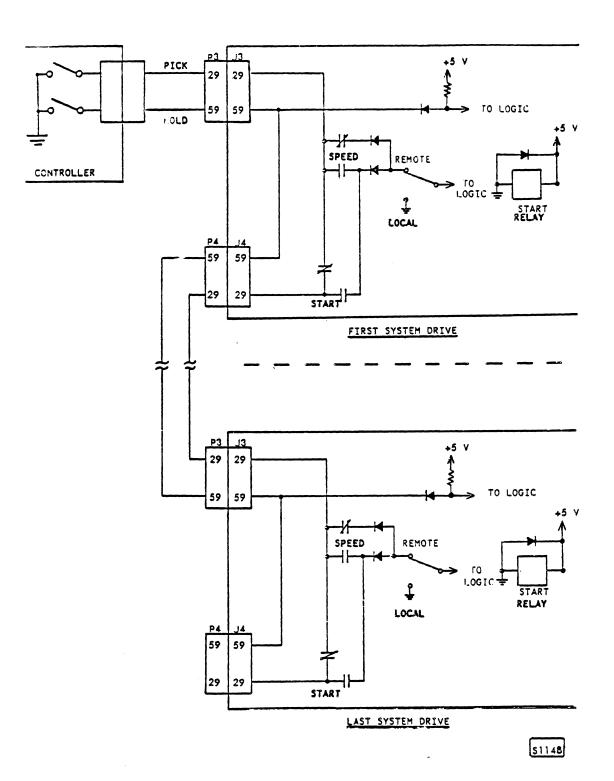
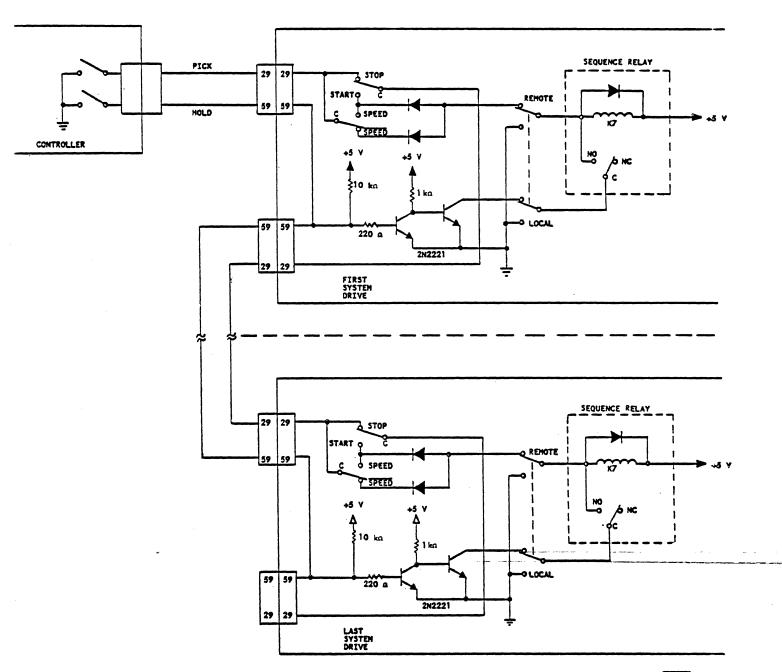


FIGURE 13A. SEQUENCE POWER LINES - MMD, FHT MMD

MAGNETIC PERIPHERALS INC. **3D** a subsidiary of control data corporation

1 A


-

.

ENGINEERING SPECIFICATION

SPEC 64712400 CD 7 REV DATE PAGE 57

-NORMANDALE OPERATIONS -

5134A

AGNETIC PERIPHERALS INC. D a subsidiary of CONTROL DATA CONTORATION

i s

.

.

ENGINEERING SPECIFICATION

 SPEC
 64712400

 CD
 7

 REV
 0

 DATE
 9

 PAGE
 58

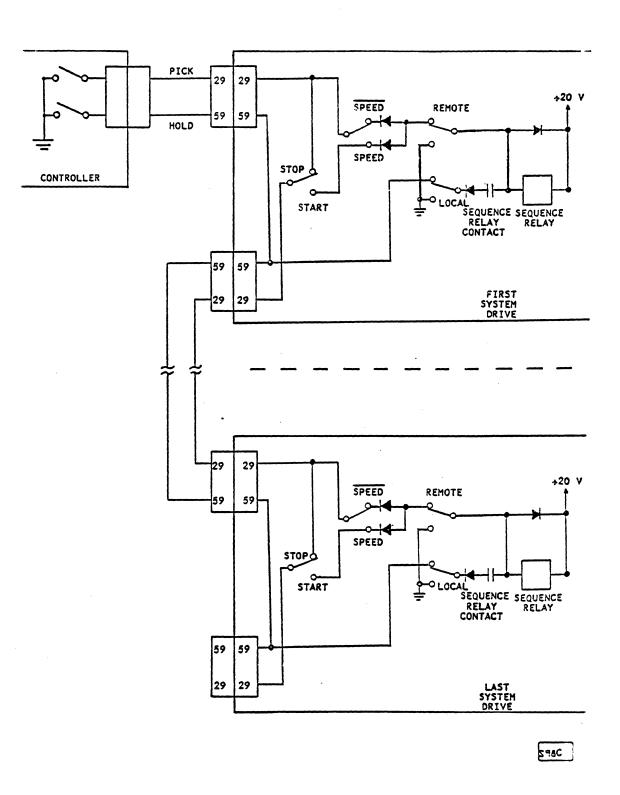


FIGURE 13C. SEQUENCE POWER LINES 9764/9766 - SMD

• • MAGNETIC PERIPHERALS INC.

3D a subsidiary or CONTROL DATA CORPORATION

¥

ENGINEERING SPECIFICATION

-NORMANDALE OPERATIONS-

SPEC 64712400 CD 7 REV DATE PAGE 59

+5 V

÷

÷

PICK 29 29 SPEED \$ \$3.1 HOLD LOCAL 59 59 O SPEED ∿∿∕> STOP 470 11 HC3437 CONTROLLER REMOTE ۵ Ş ka 59 59 29 29 FIRST ļ SYSTEM DRIVE Ĩ Â S 1 ka SPEED 29 29 ₹3 .1 50 470 a 59 59 9 SPEED LOCAL STOP MC 3437 REMOTE -5 V START **≜** Š 1 ka 59 59 \$ ____ \$ 3.1 kn 29 29 LAST SYSTEM DRIVE

\$1308

FIGURE 13D. SEQUENCE POWER LINES - CMD

MAGNETIC PERIPHERALS INC.

• •

ENGINEERING SPECIFICATION

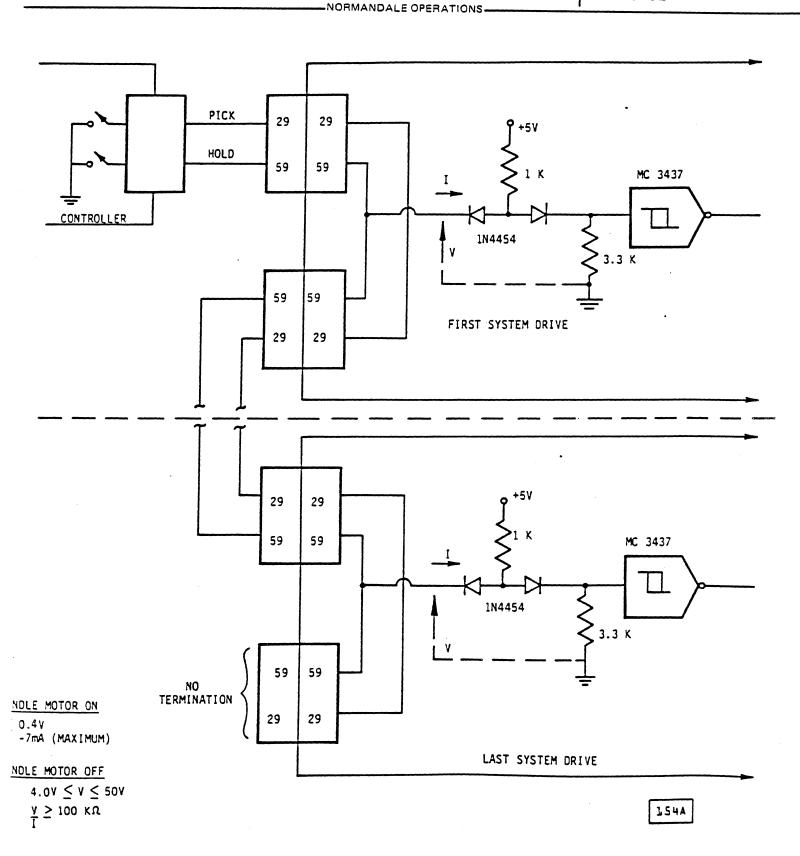
-NORMANDALE OPERATIONS-

SPEC 64712400 CD 7 REV DATE PAGE 60

+5 V STOP ٩ MICRO-PICK 29 29 PROCES-START SOR -+5 V κl SYSTEM HOLD 59 59 SPEED -{FROM LOGIC} : K1 +5 V Ž CONTROLLER LOCAL STOP REMOTE START 59 59 FIRST SYSTEM DRIVE 29 95 +5 V 4 STOP و MICRO-PROCES-29 29 START SOR SYSTEM Kl, +5 V 59 59 SPEED -(FROM LOGIC) : Kl +5 V 4 STOP LOCAL REMOTE START 59 59 LAST 29 29 SYSTEM DRIVE

27738

MAGNETIC PERIPHERALS INC. **3D** a subsidiary of CONTROL DATA CORPORATION


• •

.

.

ENGINEERING SPECIFICATION

SPEC 64712400 CD 7 REV DATE PAGE 61

AGNETIC PERIPHERALS INC. **3D** CONTROL DATA CORPORATION

ENGINEERING SPECIFICATION

SPEC 64712400 CD 7 REV DATE PAGE 62

-NORMANDALE OPERATIONS-

Spindle Motor Control (Hold and Pick)

The Hold line enables the interface to start or stop the spindle motor provided the LMD dc power is on, the LMD ac power is on, and the control panel Start/Stop switch is in the Start position. Activation of the Hold input i.e., a logic 1 or low level will initiate rotation of the spindle motor. The spindle motor will be up to speed within 120 seconds maximum after application of the hold signal. The spindle motor up to speed condition will be reflected in the interface "Ready" line. The spindle motor may be stopped by deactivation of the Hold line (see Figure 13F). The spindle motor will be stopped within 60 seconds maximum after the Hold input is deactivated. Note the "Ready" status will go false when the Hold input is deactivated.

NOTES: The LMD will provide a 10 ms minimum noise filter to the Hold line to guard against false detection of the Hold line, due to noise.

Individual devices may be started and stopped via the control panel Start/Stop switch if the interface Hold signal is activated (Low Level or logic 1).

An internal switch is available which allows the spindle motor to be started or stopped by the control panel switch regardless of the state of the Hold input.

The LMD will directly pass the Pick signal for daisy chained opertion but will not functionally interpret this signal.

WMD only: The WMD does not react to Pick and Hold, but the signals are passed along the display chain.

15. Busy (Dual Channel Only)

If the device is already reserved and/or selected, a Busy signal will be issued to the "A" cable and Unit Selected will be issued on the "B" cable to the channel attempting the select. This Busy signal will be issued from the device at its I/O connector within 600 ns following the selection attempt, and will remain at this status until Unit Select Tag is dropped or the unit is no longer Busy. Unit Selected should be used to enable Busy in the controller (see Figure 12 for timing).

NOTE: The CMD has no Dual Channel option.

The LMD has no Dual Channel option, but this signal is daisy chained, at the connector. This signal output is electrically undefined for a LMD with no electrical connections made within the LMD except a daisy chain connection at the connectors.

WMD - same as LMD

MAGNETIC PERIPHERALS INC. 3D a subsidiary of control data corporation

• •

ENGINEERING SPECIFICATION

SPEC 64712400 CD 7 REV DATE PAGE 63

-NORMANDALE OPERATIONS -

5.2.3 Data and Clock Lines

1. Write Data

This line carries data which is to be recorded on the disk pack.

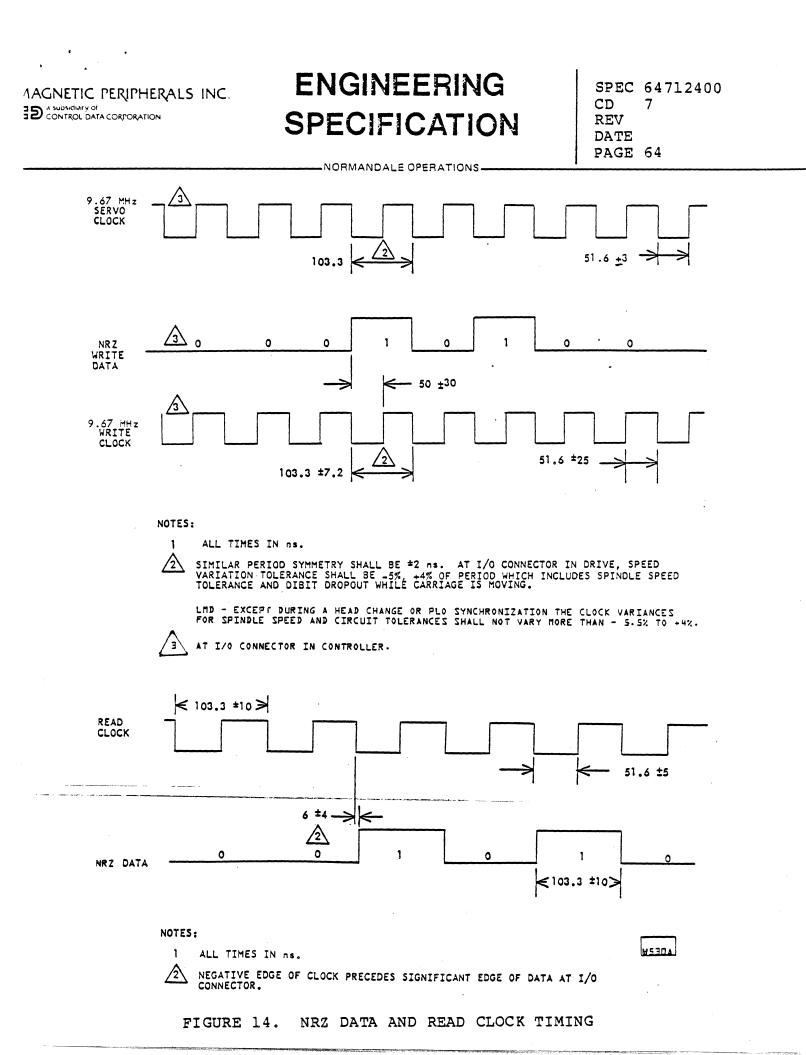
2. Servo Clock

The Servo Clock is a phase-locked 9.677 MHz clock generated from the servo track quadbits on the MMD, and dibits on the SMD and CMD. This phase-locked clock (see Figure 14) is used to generate write data. Servo Clock is available at all times (not gated with Unit Select). For CMD, Servo Clock is rephased at a volume change (see Figure 18).

LMD - This clock is frequency locked to the disk rotational speed by sampling a field within the embedded servo. Since the Servo Clock is derived via a sampled PLO system, the exact number of servo clocks between sector pulses may vary by ±4 clock cycles.

3. Read Data

This line transmits the recovered data in the NRZ form (see Figure 14).


4. Read Clock

The Read Clock defines the beginning of a data cell. It is an internally derived clock signal and is synchronous with the detected data as specified in Figure 14. This signal is transmitted continuously, and is in phase sync within 9 μ s after Read Gate.

LMD, WMD - This signal is in phase sync within 88 servo clock periods from the concurrence of Read Gate and a PLO sync field.

5. Write Clock

This line transmits the Write Clock signal which must be synchronized to the NRZ data as illustrated in Figure 14. The Write Clock is the Servo Clock retransmitted to the device during a Write operation. The Write Clock need not be transmitted continuously, but must be transmitted at least 250 ns prior to Write Enable, or Write Gate.

MAGNETIC PERIPHERALS INC. **3D** a subsidiary of control data conformation

· •

ENGINEERING SPECIFICATION

SPEC 64712400 CD 7 REV DATE PAGE 65

5.3 Data Format and Data Control Timing

The Record Format on the disk is under control of the controller (LMD, WMD only - The Record Format on the disk is under limited control of the Controller; i.e., the embedded servo field may not be modified by the Controller). The Index and Sector pulses are available for use by the controller to indicate the beginning of a track or sector. Suggested formats for fixed and variable sector data records are shown in Figures 15A, B and C.

Some hardware-oriented constraints must be recognized when designing a format. The following is a list of those format parameters:

1. Read Initialization Time

All except LMD - Between the deselection of one head and the selection of another head, there is a 5.0 μ s delay within the device due to circuit characteristics. The time from the initiation of a head change until data can be read with a selected head without error, is 24.0 μ s, maximum (5.0 μ s for head selection, and 10 μ s for read amplifier stabilization and 9.0 μ s for phase lock synchronization).

LMD - The maximum time until data can be read from a newly selected head is 10 ms.

WMD - The maximum time until data can be read from a newly selected head is 2.5 ms.

2. Write-to-Read Recovery Time

Assuming a write operation is in progress, the time lapse before Read Gate can be enabled after switching the Write Gate off is 10 µs, minimum.

3. Read-to-Write Recovery Time

Assuming a read operation is in progress, the time lapse from dropping Read Gate to enabling Write Gate shall be 0.3 μs , minimum (see Figures 9A and B).

4. Beginning-of-Record Tolerance (See Notes on Figures 15A and B)

This tolerance must be provided to allow for worst case conditions of head skew and circuit tolerances.

This gap must be written with a minimum of 16 bytes of zeros.

5. Read PLO Synchronization

The synchronization time needed to allow the Phase-Locked