CDC® STORAGE MODULE DRIVE BK4XX BK5XX

INSTALLATION AND CHECKOUT MAINTENANCE PARTS DATA

Volume 1 of 2

REVISION	DESCRIPTION
01	Preliminary manual released.
$(9-29-76)$	\%+...
$\because 02$	Added electronic, package repaiwsand replacement information, additional parts
(10-26-76)	data information, and corrections.
- 03	Added corrections, test and adjustment information, and checkout information.
(12-1-76)	$\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots$
A	Manual released including ECOS 48092, 48113C, 48151, 48155, 48196A, 48200,
(12-15-76)	$48210,48211,48240 \mathrm{~B}, 48242,48256,48351$.
B	Manual updated to include technical and editorial changes.
$(1-18-77)$	\cdots
C	Manual updated to include Engineering Change Orders 48322, 48365A, 48436.
(3-22-77)	Technical and editorial changes.
$\stackrel{5}{5}$	
\because	4
\%	\cdots
$*$	\cdots \%
*	\%
* -	\%
\because	- i i _
\square	$\bigcirc \mathrm{C}$
;	\cdots
-	
:	, min
	\cdots
:	2
	\cdots
\because	
-	4
	\%
! :	N
,	
!	\cdots
?	, \quad \%
-	\cdots
?	\%
$\%$	\% ${ }^{3}$ \%
i	\because
	$\because \square$

REVISION LETTERS IrOrQ AND X ARE NOT USED
Address comments concerning this manuąl to:
Control Data Corporation Technical Publications Dept.
7801 Computer Avenue
Minneapolis, Mn. 55435
by Control Data Corporation
Printed in the United States of America
or use Comment Sheet in the back of this manual.

MANUAL TO EQUIPMENT LEVEL CORRELATION

This manual reflects the equipment configurations listed below.

EXPLANATION: Locate the equipment type and series number, as shown on the equipment FCO log, in the list below. Immediately to the right of the series number is an FCO number. If that number and all of the numbers underneath it match all of the numbers on the equipment FCO log, then this manual accurately reflects the equipment.

This correlation sheet also applies to the following related manuals:

Sheet_1 of 1
New features, as well as changes, deletions, and additions to information in this manual are indicated by bars in the margins or by a dot near the page number if the entire page is affected. A bar by the page number indicates pagination rather than content has changed.

PAGE	REV
Cover	-
Blank	-
Title P	-
ii	C
iii	C
iv	C
v	C
Blank	-
vii	C
viii	A
ix	A
x	C
xi	C
xii	B
xiii	C
Blank	
xV	C
Blank	-
xvii	B
Blank	-
S-1 Div	-
Blank	-
1-1	A
1-2	A
1-3	A
1-4	B
1-5	C
1-6	A
1-7	A
1-8	A
1-9	A
1-10	A
1-11	B
1-12	B
1-13	B
1-14	B
1-15	C
1-16	B
1-17	B
1-18	A
S-2 Div	-
Blank	-
2-1	A
Blank	-
S-2A Div	-
$\begin{aligned} & \text { Blank } \\ & 2-3 \end{aligned}$	-

PAGE	REV
2-4	B
2-5	B
2-6.	A
2-7	A
2-8	B
2-9	B
2-10	A
2-11	B
2-12	A
2-13	A
2-14	A
2-15	A
2-16	A
2-17	B
2-18	A
2-19	B
2-20	B
2-21	B
2-22	A
2-23	B
2-24	A
S-2B Div	-
Blank	-
2-25	B
2-26	A
2-27	A
2-28	A
S-2C Div	-
Blank	-
2-29	A
2-30	A
2-31	B
2-32	A
2-33	A
2-34	B
2-35	B
2-36	A
2-37	A
2-38	B
2-39	A
2-40	A
S-2D Div	-
Blank	-
2-41	A
2-42	B
2-43	B
2-44	B

PAGE	REV
2-45	B
2-46	A
2-47	B
2-48	A
2-49	A
2-50	B
2-51	B
2-52	B
2-53	A
2-54	A
2-55	A
2-56	A
2-57	B
2-58	A
2-59	B
2-60	A
2-61	C
2-62	A
2-63	A
2-64	A
2-65	A
2-66	A
2-67	A
2-68	A
S-3 Div	-
Blank	-
3-1	B
Blank	-
3-3	C
3-4	C
3-5	C
3-6	A
3-7	C
3-8	A
3-9	B
3-10	A
3-11	C
3-12	C
3-12.1	C
3-12.2	C
3-13	C
3-14	A
3-15	A
3-16	A
3-17	C
3-18	A
3-19	C

PAGE	REV
3-20	A
3-20.1	C
3-20.2	C
3-21	C
3-22	A
3-23	A
3-24	A
3-25	A
3-26	A
3-27	A
3-28	A
3-29	A
3-30	A
3-31	A
3-32	C
3-33	C
3-34	C
3-35	C
3-36	A
3-37	A
3-38	A
3-39	C
3-40	A
3-41	C
3-42	A
3-43	C
3-44	A
3-45	A
3-46	A
3-47	A
3-48	C
3-49	C
3-50	A
3-51	C
3-52	A
3-53	C
3-54	C
3-55	C
3-56	C
3-57	C
Blank	-
3-59	C
3-60	C
3-61	C
3-62	C
3-63	C
3-64	C

PAGE	REV
3-65	C
3-66	C
3-67	C
3-68	A
3-69	A
3-70	C
3-71	C
3-72	A
3-73	A
3-74	C
3-75	C
3-76	A
3-77	C
3-78	A
3-79	B
3-80	C
3-81	C
3-82	C
3-83	C
3-84	C
3-85	C
3-86	C
3-87	C
3-88	A
3-89	B
3-90	A
3-91	B
3-92	A
3-93	B
Blank	-
Cmt Sh	-
Rtn Env	-
Cover	-

PREFACE

This manual contains maintenance information applicable to all the Storage Module Drives (SMDs) listed in the configuration charts (found following the table of contents). The configuration charts define each of the equipments covered by this manual in terms of cabinet mounting styles, cabinet colors, and the various electronic features provided. Since this manual covers all of the various configurations available on the SMD; it is necessary to understand exactly which configuration you have, in order to know which procedures in this manual are applicable to your drive.

This manual provides information relating to the field level maintenance of the SMDs; that is, maintenance which can be performed on the SMD at the installation site. The manual assumes that the reader is already trained in the use of normal mechanical and electronic repair equipment; and it familiar with the basic maintenance procedures, such as soldering, wirewrapping, etc. Also, the procedures contained in this manual are written assuming that the reader knows where all the various parts of the drive are 10cated, what they are called, and how to open the drive to get at them. Anyone not familiar with this type of information is referred to the General Maintenance Information in Section 2.

Information in this manual is divided into three sections:

- Section 1 - Installation and Checkout
- Section 2 - Maintenance
- Section 3 - Parts Data

Other manuals, also applicable to the SMDs covered in this manual, are as follows:

Publication No.	Title
83322250	Hardware Maintenance Manual Volume 2, Diagrams and Wire Lists. Applicable to BK4XX
83322240	Hardware Maintenance Manual Volume 2, Diagrams and Wire Lists. Applicable to BK5XX
83322200	Hardware Reference Manual, General Description, Opera- tion, Theory of Operation, Discrete Component Circuits
83322440	Normandale Circuits Manual General Theory, Logic Sym- bology, Data Sheets

CONTENTS

Configuration Chart	
Abbreviations	
1. INSTALLATION AND CHECKOUT	
Introduction	1-1
Site Preparation	1-1
General	1-1
Space and Clearance	1-1
Environment	1-4
Power Requirements	1-5
Grounding	1-6
Safety Ground	1-6
System Ground	1-6
Interconnect Cables and Terminators	1-6
Packaging	1-8
Installation	1-11
General.	1-11
Installation Inspection	1-11
Cabinet Leveling	1-12
Cabinet Modification	1-12
Slide Installation	1-13
Latch Installation	1-13
Cable and Terminator Installation	1-13
Setting Sector Switches	1-16
Checkout	1-17
2. MAINTENANCE	
Introduction	2-1
2A. GENERAL MAINTENANCE INFORMATION	
General	2-3
Safety Precaustions	2-4
Maintenance Tools and Materials	2-5

General	2-5
Disk Packs	2-5
Disk Pack Installation - Removal	2-5
Disk Pack Handling (CE and Data Packs)	2-5
Disk Pack Inspection and Cleaning	2-5
Field Test Unit	2-7
Head Alignment Kit	2-8
System Software	2-9
Maintenance Controls and Test Points	2-10
General	2-10
Maintenance Controls	2-10
Test Points	2-13
Standard Test Conditions	2-17
General	2-17
Power On/Off	2-17
Online/Offline	2-17
Single Channel	2-17
Dual Channel	2-17
Disconnecting I/O Cables	2-17
Manual Carriage Positioning	2-18
Accessing Drive For Maintenance	2-19
General	2-19
Pack Access Cover Opening and Closing	2-19
Case Assembly Opening and Closing	2-19
Acoustic Top Case Opening	2-19
Acoustic Top Case Closing	2-19
Normal Case Opening	2-19
Normal Case Closing	2-23
Raising and Lowering Deck	2-23
Raising and Lowering Logic Chassis	2-23

General	2-25
Preventive Maintenance Procedures	2-26
General	2-26
General Cleaning	2-26
Clean Primary Filter	2-26
Replace Absolute Filter	2-26
Clean Shroud and Spindle	2-27
Clean and Lubricate Lockshaft	2-27
Inspect and Clean Rails and Bearings	2-27
Check Power Supply Output	2-28
Check Head Alignment	2-28
2C. TESTS AND ADJUSTMENTS	
General	2-29
Plus and Minus 5 Volt Adjustment	2-30
Head Arm Alignment	2-31
Velocity Gain Adjustment (40 MB)	2-36
Velocity Gain Adjustment (80 MB)	2-40
2D. REPAIR AND REPLACEMENT	
General	2-41
Cabinet Repair	2-42
General	2-42
Case Assemblies	2-42
Adjustment	2-42
Removal-Replacement	2-42
Repair	2-42
Pack Access Cover Assemblies	2-43
Adjustment	2-43
Removal-Replacement	2-43
Repair	2-43
Door Assemblies	2-43
Adjustment	2-43
Removal-Replacement	2-43
Repair	2-43

Side Panel Assemblies	2-44
Adjustment	2-44
Removal-Replacement	2-45
Repair	2-45
Slide Assemblies	2-45
Adjustment	2-45
Removal-Replacement	2-45
Repair	2-47
Electronic Package Repair	2-48
General	2-48
42 Volt Supply/Emergency Retract Assembly (AlAl)	2-48
Adjustment	2-48
Removal-Replacement	2-48
Repair	2-48
12 and 20 Volt Supply (AlA2)	2-48
Adjustment	2-48
Removal-Replacement	2-48
Repair	2-48
5 Volt Supply (AlA3)	2-49
Adjustment	2-49
Removal-Replacement	2-49
Repair	2-49
Blower Motor (AlBM1)	2-49
Adjustment	2-49
Removal-Replacement	2-49
Repair	2-49
Start Triac (AlKI)	2-49
Adjustment	2-49
Removal-Replacement	2-49
Repair	2-49
Logic Chassis (A2)	2-50
Adjustment	2-50
Removal-Replacement	2-50

Repair	2-50
Control Panel Assembly (A3A01)	2-51
Adjustment	2-51
Removal-Replacement	2-51
Repair	2-51
Power Amplifier Assembly (A3A04)	2-51
Adjustment	2-51
Removal-Replacement	2-51
Repair	2-51
Track Servo Preamplifier (A3A05)	2-52
Adjustment	2-52
Removal-Replacement	2-52
Repair	2-52
Drive Belt	2-52
Adjustment	2-52
Removal-Replacement	2-53
Repair	2-53
Drive Motor and Brake Assemblies (A3DM1, A3HB1)	2-53
Adjustment	2-53
Removal-Replacement	2-53
Repair	2-55
Spindle Assembly	2-55
Adjustment	2-55
Removal-Replacement	2-55
Repair	2-56
Static Ground Spring	2-56
Adjustment	2-57
Removal-Replacement	2-57
Repair	2-57
Speed transducer (A3LI)	2-57
Adjustment	2-57
Removal-Replacement	2-58
Repair	2-58
Velocity Transducer (A3L2)	2-58

Adjustment	2-58
Removal-Replacement	2-58
Repair	2-59
Pack Cover Solenoid (A3L3)	2-59
Adjustment	2-59
Removal-Replacement	2-59
Repair	2-61
Rail Bracket Assembly	2-61
Adjustment	2-61
Removal-Replacement	2-61
Repair	2-61
Carriage and Coil Assembly	2-61
Heads Loaded Switch (A3S2)	2-61
Adjustment	2-61
Removal-Replacement	2-62
Repair	2-62
Flex Lead Assembly	2-62
Adjustment	2-62
Removal-Replacement	2-62
Repair	2-62
Magnet Assembly	2-62
Adjustment	2-62
Removal-Replacement	2-62
Repair	2-63
Head Arm Assemblies	2-63
Adjustment	2-63
Removal-Replacement	2-63
Repair	2-66
Cable Assemblies (Wl through W4, W11, W12)	2-68
Adjustment	2-68
Removal-Replacement	2-68
Repair	2-68
PARTS DATA	
troduction	3-1

Color Code Chart	$3-3$	Rear Door Assembly - Acoustic Drawer	$3-43$
Final Assembly Locator	$3-5$	Side Panel - Nonacoustic	$3-45$
Final Assembly - Pedestal	$3-7$	Side Panel Assembly - Acoustic	$3-47$
Final Assembly - Acoustic Cabinet	$3-11$	Drive Electronics Locator	$3-49$
Final Assembly - Acoustic Drawer	$3-15$	Control Panel Assembly	$3-53$
Final Assembly - 30 Inch Rack Mount	$3-19$	Logic Chassis Assembly	$3-55$
Final Assembly - 36 Inch Rack Mount	$3-20.1$	Deck Assembly	$3-57$
Final Assembly - Nude	$3-21$	Spindle Assembly	$3-69$
Case Assembly - Pedestal	$3-23$	Rail Bracket Assembly	$3-71$
Case Assembly - Acoustic Cabinet	$3-25$	Carriage and Coil Assembly	$3-73$
Case Assembly - Acoustic Drawer	$3-27$	Magnet Assembly	$3-75$
Case Assembly - 30 Inch Rack Mount	$3-29$	Drive Motor and Brake Assemblies	$3-77$
Case Assembly - 36 Inch Rack Mount	$3-31$	Power Amplifier	$3-79$
Pack Access Cover Assembly -	$3-33$	Base Assembly	$3-81$
Nonacoustic	Power Supply Assembly	$3-87$	
Pack Access Cover Assembly -	Component Assembly, Type _SJV	$3-89$	
Acoustic	$3-35$	$3-37$	Component Assembly, Type _SkV

FIGURES

$1-1$	Clearances - Pedestal Cabinet	$1-2$	$1-15$	Sector Switch Calculation	$1-18$
$1-2$	Clearances - Acoustic Cabinet	$1-2$	$2-1$	Head Alignment Kit	$2-8$
$1-3$	Clearances - Acoustic Drawer	$1-3$	$2-2$	Maintenance Switches and Indicators	$2-11$
$1-4$	Clearances - 30-Inch Rack	$1-3$	$2-3$	Physical Location Codes	$2-20$
$1-5$	Clearances - 36-Inch Rack Mount	$1-4$	$2-4$	$2-24$	
$1-6$	60 Hz AC Power Connector	$1-5$	$2-4$	Deck Maintenance Position	$2-30$
$1-7$	Start-up Current	$1-5$	$2-5$	Power Supply Adjustment Locations	$2-30$
$1-8$	I/O Cable Configurations	$1-7$	$2-6$	Head Arm Alignment	$2-33$
$1-9$	A Cable Requirements	$1-9$	$2-7$	Balanced Dibit Pattern	$2-34$
$1-10$	B Cable Requirements	$1-11$	$2-8$	40 MB Velocity Transducer Gain	$2-36$
$1-11$	Leveling Pad Installation	$1-13$	$2-9$	40 MB Velocity Gain Adjustment	$2-37$
$1-12$	Cable Installation - Parts	$1-15$	$2-10$	40 MB Coarse Velocity Waveform	$2-37$
	Location View	$1-16$	$2-11$	40 MB Fine Velocity Waveforms	$2-39$
$1-13$	AC Power Wiring	$1-17$	$2-12$	80 MB Velocity Gain Waveform	$2-40$

2-13	80 MB Velocity Gain Adjustment Location	2-40	3-10	Case Assembly - 30 Inch Rack Mount	3-28
2-14	Side Panel Adjustment	2-44	3-11	Case Assembly - 36 Inch Rack Mount	3-30
2-15	Slide Assembly Parts Location	2-46	3-12	Pack Access Cover Assembly	
2-16	Wirewrap Pin Replacement	2-51		Nonacoustic	3-32
2-17	Drive Belt Adjustment	2-53	3-13	Pack Access Cover Assembly Acoustic	3-34
2-18	Drive Motor Pulley Adjustment	2-54	3-14	Front and Rear Door - Nonacoustic	3-36
2-19	Spindle/Carriage Alignment	2-55	3-15	Front Door Assembly - Acoustic	3-38
2-20	Speed Transducer Adjustment	2-57	3-16	Rear Door Assembly - Acoustic	
2-21	Velocity Transducer Replacement	2-58		Cabinet	3-40
2-22	Pack Cover Solenoid Adjustment	2-60	3-17	Rear Door Assembly - Acoustic Drawer	3-42
2-23	Heads Loaded Switch Replacement	2-62	3-18	Side Panel - Nonacoustic	3-4 4
2-24	Head Replacement - Left Side View	2-63	3-19	Side Panel Assembly - Acoustic	3-46
2-25	Head Replacement - Right Side View	2-64	3-20	Drive Electronics Locator	3-48
2-26			3-21	Control	3-5
		2-66	3-22	Logic Chassis Assembly	3-54
2-27	Head Cleaning Motion	2-67	3-23	Deck Assembly	3-56
3-1	Final Assembly Locator	3-4	3-24	Spindle Assembly	3-68
3-2	Final Assembly - Pedestal	3-6	3-25	Rail Bracket Assembly	3-70
3-3	Final Assembly - Acoustic Cabinet	3-10	3-26	Carriage and Coil Assembly	3-72
3-4	Final Assembly - Acousti.c Drawer	3-14	3-27	Magnet Assembly	3-7
3-5	Final Assembly - 30 Inch Rack Mount	3-18	3-28	Drive Motor and Brake Assemblies	3-76
3-6	Final Assembly - 36 Inch Rack Mount	3-20	$3-29$ $3-30$	Power Amplifier Base Assembly	$3-78$ $3-80$
3-6.1	Final Assembly - Nude	3-20.2	3-31	Power Supply Assembly	3-86
3-7	Case Assembly - Pedestal	3-22	3-32	Component Assembly, Type _SJV	3-88
3-8	Case Assembly - Acoustic Cabinet	3-24	3-33	Component Assembly, Type _SKV	3-90
3-9	Case Assembly - Acoustic Drawer	3-26	3-34	Component Assembly, Type _SHV	3-92

TABLES

1-1	Environmental Specifications	$1-4$	$1-4$	I/O Cable Lengths vs Part Numbers	$1-8$
1-2	Source Power Requirements	$1-5$	$1-5$	Installation Procedures	$1-12$
$1-3$	Maximum Current Source	$1-6$	$1-6$	Grounding Accessories	$1-14$

1-7	Sector Switch Valves	$1-17$	$2-4$	Physical Location Codes	2-21
2-1	Maintenance Tools and Materials	$2-6$	$2-5$	Preventive Maintenance Index	2-25
2-2	Maintenance Switches and Indicators	$2-12$	$2-6$	40 MB Velocity Voltage vs Null Time	2-36
$2-3$	Test Points	$2-14$	$3-1$	Color Code Chart	3-3

$\begin{aligned} & \text { EQUIP } \\ & \text { NO. } \end{aligned}$	TLA	POWER		DATA CAPACITY (MB)	CHAN ACCESS	$\begin{aligned} & \text { A CABLE } \\ & \text { CONFIG } \end{aligned}$	PACK INTLK SOL	COLOR CODE *	CABINET MOUNTING STYLE
		VOLTS	Hz						
BK4AlA	47173102	120	60	40	Single	60-pin	NO	A	30-inch rack
BK4A1B	47173103	220/240	50	40	Single	60-pin	No	A	30-inch rack
BK4A2A	47173104	120	60	40	Dual	60-pin	No	A	30-inch rack
BK4A2B	47173105	220/240	50	40	Dual	60-pin	No	A	30-inch rack
BK4A3A	47173106	120	60	40	Single	60-pin	No	B	36-inch rack
BK4A3B	47173107	220/240	50	40	Single	60-pin	No	B	36-inch rack
BK4A4A	47173108	120	60	40	Dual	60-pin	No	B	36-inch rack
BK4A4B	47173109	220/240	50	40	Dual	60-pin	No	B	36-inch rack
BK4A5A	47173116	120	60	40	Single	60-pin	No	C	pedestal cabinet
BK4A5B	47173117	220/240	50	40	Single	60-pin	No	C	pedestal cabinet
BK4A6A	47173118	120	60	40	Dual	60-pin	No	C	pedestal cabinet
BK4A6B	47173119	220/240	50	40	Dual	60-pin	No	C	pedestal cabinet
BK4A7A	47173120	120	60	40	Single	60-pin	No	D	acoustic drawer
BK4A7B	47173121	220/240	50	40	Single	60-pin	No	E	acoustic drawer
BK4A8A	47173122	120	60	40	Dual	60-pin	No	D	acoustic drawer
BK4A8B	47173123	220/240	50	40	Dual	60-pin	No	E	acoustic drawer
BK4A9A	47173124	120	60	40	Single	60-pin	No	F	acoustic cabinet
BK4A9B	47173125	220/240	50	40	Single	60-pin	No	G	acoustic cabinet
BK4B1A	47173126	120	60	40	Dual	60-pin	No	F	acoustic cabeint
BK4B1B	47173127	220/240	50	40	Dual	60-pin	No	G	acoustic cabinet
BK4B5A	47173134	120	60	40	Dual	50-pin	No	C	pedestal cabinet
BK4B5B	47173135	220/240	50	40	Dual	50-pin	No	C	pedestal cabinet
BK4B5C	47173136	120	60	40	Single	50-pin	No	C	pedestal cabinet
BK4B5D	47173137	220/240	50	40	Single	50-pin	No	C	pedestal cabinet
BK4B6C	47173140	120	60	40	Single	60-pin	No	K	pedestal cabinet
BK4B6D	47173141	220/240	50	40	Single	60-pin	No	K	pedestal cabinet
BK4B9A	47173110	120	60	40	Single	60-pin	No	\underline{L}	pedestal cabinet
BK4B9B	47173111	220/240	50	40	Single	60-pin	No	L	pedestal cabinet
BK4B9C	47173112	120	60	40	Single	60-pin	NO	M	acoustic cabinet
BK4B9D	47173113	220/240	50	40	Single	60-pin	No	M	acoustic cabinet
BK4B9E	47173114	120	60	40	Single	60-pin	No	\mathbf{N}	acoustic drawer
BK4B9F	47173115	220/240	50	40	Single	60-pin	NO	R	acoustic drawer

* SEE TABLE 3-1 COLOR CODE CHART

CONFIGURATION CHART

ABBREVIATIONS

ABR	Absolute Reserve	MULT	Multiple
ABV	Above	NC	No Connection
ADDR	Address	NEG	Negative
ADRS	Address	NO	Number
AGC	Automatic Gain Control	NOM	Nominal
AM	Address Mark	NORM	Normal
AMPL	Amplifier	NRM	Normal
BLK	Black	NRZ	Nonreturn To Zero
BLW	Below	PC PT	Piece Part
CAR	Cylinder Address Register	PLO	Phase Lock Oscillator
CH	Channel	PN.	Part Number
CHAN	Channel	POS	Positive
CNTTLGL	Centrifugal	PWR	Power
CNTR	Counter	RCVRS	Receivers
COMP	Compensation	RD	Read
COMPTR	Comparitor	RDY	Ready
CONFIG	Configuration	REC	Receiver
CONT	Continued	REF	Reference
CR REF	Cross Reference	REG	Register
CYL	Cylinder	REV	Reverse
D/A	Digital To Analog	RGTR	Register
DCDR	Decoder	RTM	Reserve Timer
DIFF	Difference	RTZ	Return To Zero
DLY	Delay	S\&IOBC	Sector and Index On B Cable
DRVR	Driver	S/C	Series Code
DSBL	Disable	SEC	Second
ECL	Emitter Coupled Logic	SEL	Select
ECO	Engineering Change Order	SEQ	Sequence
EMER	Emergency	SER	Servo
EN	Enable	SH	Sheet
EOT	End Of Travel	SOL	Solenoid
EQUIP	Equipment	SR	Servo
EQUIV	Equivalent	SW	Switch
FCO	Field Change Order	T	Track
FF	Flip Flop	TBS	To Be Supplied
FIG	Figure	TLA	Top Level Assembly
FLT	Fault	TP	Test Point
FREQ	Frequency	TRK	Track
FTU	Field Test Unit	TTL	Transistor Transistor Logic
FWD	Forward	UNREG	Unregulated
GND	Ground	VCO	Voltage Controlled Oscillator
HD	Head	W+R	Write Or Read
1/0	Input-Output	W. R	Write and Read
INTLLK	Interlock	W/	With
LAP	Logical Address Plug	W/O	Without
LD	Load	WRT	Write
MAINT	Maintenance	WT	White
MAX	Maximum	XDUCER	Transducer
MB	Megabyte	XMTR	Transmitter
MFM	Modified Frequency Modulation		
MK	Mark		

SECTION 1

INSTALLATION AND CHECKOUT

INTRODUCTION

This section provides information pertaining to the installation and checkout of the storage module drive. Prior to performing any of the procedures contained in this section, become thoroughly familiar with the information contained in Section 2A, General Maintenance Information.

The information in this section is divided into the following major areas:

- Site Preparation - providing information necessary to layout an installation site.
- Packaging - providing information regarding shipment of the drive.
- Installation - providing instructions on the installation and interconnection of the drives.
- Checkout - providing instructions to ensure that the drive is functional.

SITE PREPARATION

GENERAL

Site preparation information is provided to enable a user to layout an installation site. Consideration is given to:

- Space and Clearances
- Environment
- Power (ac)
- Grounding
- Interconnect Cables and Terminators

The Installation Instructions, provided later in this section, are based on the assumption that the requirements specified in this paragraph have been met.

SPACE AND CLEARANCE

In the process of laying out the site, consideration must be given to the clearances required around each drive for maintenance purposes. All normal maintenance can be performed without removing the drive from its installed position. If there is enough room to fully open the top cover, there is enough room to perform all normal maintenance operations. Figures 1-1 through l-5 illustrate the required clearances for each of the various mounting configurations of the drive.

Figure 1-1. Clearances - Pedestal Cabinet

Figure 1-2. Clearances - Acoustic Cabinet

Figure 1-3. Clearances - Acoustic Drawer

Figure 1-4. Clearances - 30-Inch Rack

Figure 1-5. Clearances - 36-Inch Rack Mount

ENVIRONMENT

In laying out the site, consideration must be given to providing the proper environmental conditions. Environmental specifications for the drive are as specified in table l-1.

TABLE 1-1. ENVIRONMENTAL SPECIFICATIONS

Characteristic	Condition	Specification
Temperature	Operating Transit*	59° to $90^{\circ} \mathrm{F}\left(15^{\circ}\right.$ to $\left.32.2^{\circ} \mathrm{C}\right)$ with a maximum gradient of $12^{\circ} \mathrm{F}(6.70 \mathrm{C})$ per hour $-40^{\circ} \text { to }+158^{\circ} \mathrm{F}\left(-40.4^{\circ} \text { to }+70^{\circ} \mathrm{C}\right)$
Relative Humidity (No condensation)	Operating	20\% to 80\%
	Transit*	5\% to 95\%
Altitude	Operating	$\begin{aligned} & -1000 \text { to }+6500 \text { Feet } \\ & \text { (1305 to }+2000 \text { Meters) } \end{aligned}$
	Transit*	$\begin{aligned} & -1000 \text { to }+15,000 \text { Feet } \\ & \text { (}-305 \text { to }+4572 \text { Meters }) \end{aligned}$
* Unit packed for shipment.		

POWER REQUIREMENTS

Consideration must be given to providing source ac power connections for each drive, when laying out the site. Provide an ac power source connection for each drive. The 60 Hz drives are supplied with 6-foot (1828 mm) long power cords which have connectors as shown in figure 1-6. The 50 Hz drives are supplied with 6-foot (1828 mm) long power cords which do not come with connectors. For 50 Hz drives, connect the green wire in the power cord to ground, and the other two wires phase to phase or phase to neutral. The acceptable voltage and frequency ranges are specified in table 1-2. Current source requirements for each of the indicated voltage/frequency combinations are specified in table 1-3. . Start-up current is as specified in figure 1-7.

TABLE 1-2. SOURCE POWER REQUIREMENTS

Voltage AC		Frequency Hz	
Nominal	Range	Nominal	Range
100	90 to 110	60	59.9 to 60.1
120	102 to 128	60	59.0 to 60.6
220	195 to 235	50	49.0 to 50.5
240	213 to 257	50	49.0 to 50.5

Figure 1-6. 60 Hz AC Power Connector

TABLE 1-3. MAXIMUM CURRENT SOURCE REQUIREMENTS

Power Source	Requirements VAC/HZ					Line Current In Amps	
	Operating	Standby	Operating	Standby	Operating	Consumption In KW (BTU/HR)	
$100 / 60$	8.2	1.5	0.77	0.90	$0.631(2150)$	$0.135(460)$	
$120 / 60$	8.2	1.5	0.77	0.90	$0.757(2580)$	$0.162(553)$	
$220 / 50$	4.2	1.4	0.85	0.90	$0.758(2680)$	$0.277(945)$	
$240 / 50$	5.0	1.5	0.75	0.90	$0.900(3070)$	$0.324(1100)$	

Operating - Carriage and disks in motion.
Standby - Disks not turning.

GROUNDING

Consideration must be given to providing an adequate grounding system when laying out the site. Failure to provide proper grounding may cause a safety hazard or may cause excessive data errors. To be properly grounded, the drive must have two ground connections; a safety ground, and a system ground. Grounding materials and procedures are provided in the Installation section of this manual.

Safety Ground

A safety ground must be provided by the site ac power system. The green (or green and yellow striped) wire in the drives cord provides the safety ground connection between the drive and the power system. In turn, the site ac power system must tie this connection (safety ground) to earth ground. All site ac power connection points must be maintained at the same safety ground potential.

System Ground

In addition to the safety ground, a system ground connection is also required. There are three alternative system ground connection schemes.

- Grounded Floor Grid - This scheme ties each equipment to a grid located beneath a false floor. The grid consists of horizontal and vertical members which are mechanically secure and have ground straps (or their equivalent) joining the individual members. The ground straps ensure a constant ground potential at all points on the grid. The
grid is then tied directly to earth ground. This is the preferred scheme.
- Ungrounded Floor Grid - This scheme also ties each equipment to a grid beneath a false floor. This grid is mechanically secure and tied together with ground straps as described in the grounded floor grid discussion. However, in this case the floor grid is tied to earth ground through a controller or some other piece of equipment.

NOTE

The daisy chain scheme of grounding is not recommended for strings of more than ten equipments.

- Daisy Chain - This scheme connects each drive to the next in a string. The string is not to exceed ten drives. The string is terminated by connecting one of the drives to the controller which then connects to earth ground.

INTERCONNECT CABLES AND TERMINATORS

In laying out the site, consideration must be given to providing interconnect cables and terminators for the drives. There are I/O cables designated as A cable and B cable. Figure 1-8 illustrates two I/O cable configurations. The Star system requires A and B cables directly from the drive to each controller. It also requires an A cable terminator assembly at each drive. The Daisy chain system requires one B cable from each drive to the controller. However, only one A cable runs from the controller, and it runs to the first drive in the string. The remainder of the drives have A cables strung from the first drive to the second, from the

NOTES:
I. MAXIMUM INDIVIDUAL A CABLE LENGTHS = 100 FEET
2. MAXIMUM INDIVIDUAL B CABLE LENGTHS = 50 FEET

DAISY ChAINED SYSTEM

9 HIB

Figure 1-8. I/O Cable Configurations
second to the third, and so forth. In the Daisy chain system only the last drive in a string has an A cable terminator assembly.

Provide I/O cables and terminator assemblies for each drive consistent with the cabling configuration used. In figuring the length of the I/O cables, allow approximately 6 feet of cable as a service loop for each drawer mount or rack mount drive. This is to allow the drive to be extended on the rails for maintenance purposes. In addition a'lso consider the length of cable required to run from the drive I/O panel to the floor. This length will depend on the type of mounting used. The part numbers for the various lengths of A and B cables are provided in table 1-4. Figures 1-9 and 1-10 define the A and B cable requirements.

PACKAGING

Packaging of the drive consist of an outer container (made up of corrugated cardboard
and wood) and internal blocking and holddown bolts. Carefully remove the outer container. Set aside the packing material for use during reshipment of the drive. Refer to the unpackaging instruction slip, which is inside the pack shroud area, for instructions on removal of the internal blocking and holddown bolts.

If it is necessary to reship the drive, obtain packaging instructions from:

Packaging Engineer,

Material Services Dept.
Normandale Division, MPI
7801 Computer Ave.
Minneapolis, Mn. 55435
Telephone Number 612/830-5462
When ordering packaging instructions, specify the exact equipment number and series code of the drive as shown on the equipment identification label.

TABLE 1-4. I/O CABLE LENGTHS VS PART NUMBERS

Cable FT (M)	Cable Type and Part Numbers	
	A Cable	B Cable
06 (1.52)	77564200	77564300
08	$72.44)$	77564201
10	(3.05)	77564203
15	(4.57)	77564204
20	77564205	77564302
25	(7.62)	77564206
30	77564207	77564304
40	(12.20)	77564208
50	77564209	77564306

Figure 1-9. A Cable Requirements - Sheet 1 of 2

Figure 1-9. A Cable Requirements - Sheet 2

Figure 1-10. B Cable Requirements

INSTALLATION

GENERAL

Installation instructions are provided to enable the user to perform all necessary steps in the installation process. Within this section, reference is made to the opening and closing of various parts of the drive. Specific instructions as to how to do these procedures are given in Section 2A, General Maintenance. Likewise, removal and replacement information is not provided in this section. Instead, the reader is referred to the specific procedures providing this information in Section 2E, Repair and Replacement.

Since the specific order of the installation steps is largely dependent on the mounting configuration of the drives and how the site is layed out, it is not possible to exactly specify which order to follow. However, all necessary procedures for each configuration are specified in table 1-5. Generally, the procedures are listed in the order in which they should be performed.

INSTALLATION INSPECTION

Perform the following inspection prior to installing the drive.

1. Inspect drive for possible shipping damage. Any claim for this type of damage should be filed promptly with the transporter involved. If a claim is filed, save the original shipping materials.
2. Verify that all logic cards are firmly seated in logic chassis and power supply.
3. Verify that the control panel is firmly seated in shroud.
4. Verify that all connectors are firmly seated.
5. Raise deck and verify that all cabling is intact and that there are no broken or damaged wires.

TABLE 1-5. INSTALLATION PROCEDURES

Procedure	Mounting Configuration				
	Ped Cab	$\begin{aligned} & \text { Acoustic } \\ & \text { Cab } \end{aligned}$	Acoustic Drawer	$\begin{array}{r} 30^{\prime \prime} \\ \text { Rack } \end{array}$	$\begin{array}{r} 36 " \\ \text { Rack } \end{array}$
Installation Inspection	x	x	x	x	x
Cabinet Leveling	x	x			
Cabinet Modification			x		
Slide Installation				x	x
Latch Installation				x	x
Cable \& Terminator Installation	x	x	X	x	X
Setting Sector Switch	x	X	x	X	X

6. Check entire drive for presence of foreign material which could cause an electrical short.
7. Check actuator and pack area for presence of material which could obstruct movement of carriage and heads.
8. Ensure that carriage locking pin and ring assembly is moved from SHIPPING LOCK hole to PIN STORAGE hole.

CABINET LEVELING

Cabinet leveling should not be performed until drive is in final location and there is no further necessity to move it. It may be advantageous to install leveling pads prior to installation of other equipment in the cabinet or the connection of cabling.

Cabinet leveling consists of installing leveling pads (leveling pads are shipped in a'plastic bag taped to inside of cabinet), placing drive in final location, screwing down leveling pads until drive in aligned with other equipments, and ensuring weight is off casters.

1. Install jam nut on each leveling pad and install a leveling pad at each corner of cabinet frame (see figure 1-11) by raising corner of cabinet and threading leveler into weld nut on frame.
2. Locate drive in final position.
3. Turn leveling pads down until they support drives' weight.
4. Adjust leveling pads until drive is aligned with adjacent equipment.
5. Place spirit level on drive case assembly and adjust leveling pads until drive is level within three angular degrees both front to back and side to side.
6. When drive is level in both directions, tighten jam nut against bottom of frame.

CABINET MODIFICATION

Cabinet modification is applicable only to an acoustic cabinet. This procedure provides the information necessary to install an acoustic drawer in an existing acoustic cabinet. It is assumed that all power, ground and signal cables have been removed from the top mounted drive; and that the drive has been moved to a work area where it can be approached from all sides.

1. Remove left and right side panels and set aside for future installation.
2. Disconnect fan connector P400.
3. Remove and discard rear door assembly.
4. Remove and discard front door assembly, upper and lower hinges, and keeper latch.

NOTE

A convenient support for ballast installation is made by laying two $2 \times 4 \mathrm{~s}$ flat on floor and covering them with a piece of 1/2 inch plywood.
5. Position ballast beneath frame (see figure 3-4). Using four screws, lock washers, and flat washers, secure ballast to frame.

Figure 1-11. Leveling Pad Installation
6. Install upper and lower front panels using attaching hardware as shown in figure 3-4. Ensure that ground cable is attached to lower front panel.
7. Loosely install keeper latch using attaching hardware as shown in figure 3-4.
8. Perform Slide Installation Procedure (see Section 2D, Repair and Replacement) with the following exceptions: Before installing side panels, install case assembly and then slide drive to its closed position. Tighten hardware securing keeper latches. This ensures that latches are properly aligned to case. When keeper latches are tightened, install side panels.
9. Roll drive back to permanent location and perform Cabinet Leveling Procedure (this section).
10. Perform Cable and Terminator Installation Procedure and Setting Sector Switches Procedure (both this section).

SLIDE INSTALLATION

When installing drives in an equipment rack, it is first necessary to install the slide assemblies in the rack. Refer to the Slide Installation Procedure in Section 2E, Repair and Replacement, for all necessary instruc-tions.

LATCH INSTALLATION

A set of keeper latches are required with each slide mounted drive. Install the keeper latches to the rack as illustrated in figure 3-5 or 3-6. Latch orientation, as well as attaching hardware, are shown in the illustration. No latch adjustment is required.

CABLE AND TERMINATOR INSTALLATION

Cable installation consists of connecting the system ground cable, connecting the drive to the site ac power system, and connecting the I/o cables and terminators. It is assumed that the site has been prepared in accordance with the site preparation information
provided earlier in this section. Refer to table l-6 for grounding accessory part numbers and to figure 1-12 for parts location view. With the main site ac power turned off and with the drives AC POWER and POWER SUPPLY circuit breakers set to OFF, proceed as follows:

1. Open case assembly to gain access to power panel and I/O connectors.
2. Cut a piece of flat braided shielding to required length. Shielding must be long enough to run from drives ground lug to floor grid or next drive depending on system grounding scheme.
3. Crimp and solder terminal lug to each end of braided shielding to make ground cable.
4. Connect one end of completed ground cable to ground lug on rear on drive.
5. Connect opposite end of ground cable to floor grid (or next drive).
6. Referring to figure 2-3 for parts location, ensure that input power wiring to TBl conforms to site ac power as shown in figure 1-13.
7. Connect drives power cord to site ac power source.

NOTE

> Some systems may require that specific connectors on the controller relate to specific physical drives. Consult controller manual for information relating to I/O connections.
8. Connect B cable between controller and drive connector IJ2. For dual channel drives connect a second B cable between channel II controller and drive connector IIJ2.

NOTE

> Steps 9 and 10 apply only to systems using star I/O cabling configuration.
9. Connect A cable from controller to drive connector IJ3. For dual channel drives connect a second A cable from channel II controller to drive connector IIJ3.

TABLE 1-6. GROUNDING ACCESSORIES

Description	CDC Part No.	Use
Flat Braided Shielding $(50 \mathrm{ft})$	93267009	Construct ground cable
Terminal Lug	40125601	Terminates ground cable to drive and floor grid.
Lockwasher, external tooth, No. 10	10126402	Attaching ground cable to floor grid. Reces, Pan head, Cross $10-32 \times 1 / 2$

Figure 1-12. Cable Installation - Parts Location View

Figure 1-13. AC Power Wiring
10. Install terminator card in location Cl . For dual channel drives install a second terminator card in location C2.

NOTE
Steps 11 through 13 apply only to systems using daisy chain I/O cabling configuration.
11. Connect A cable from controller or connector IJ4 on upstream drive (drive which is closer to controller on daisy chain) to drive connector IJ3. For dual channel drives connect a second A cable from channel II controller or upstream drive to drive connector IIJ3.

NOTE
If drive is not last in daisy chain string, perform step 12. If drive is last in daisy chain string, perform step 13.
12. Connect another A cable from drive connector IJ4 to down stream drives connector IJ3. For dual channel drives connect another A cable from drive connector IIJ4 to down stream drives connector IIJ3.
13. Install terminator card in location $\mathbf{C l}$. For dual channel drives install a second terminator card in location $\mathbf{C 2}$.

SETTING SECTOR SWITCHES $\imath^{?} \cdot i^{3}$?
The drive provides the capability of setting the number of sectors per disk revolution. Since the required number of sectors is a system function, refer to the system manual for the number of sectors used. Once the required number of sectors have been determined, it is necessary to determine:

- the length of each sector in dibits
- the preset value, which is the decimal number representing the switch settings
- which switches to set to the open position

Table 1-7 provides the values for each sector switch, figure 1-14 shows how to set the switches to the open position. Figure 1-15 provides a sample calculation. To set the sector switches proceed as follows:

1. Determine the length of each sector from the formula:

SL = 13440/RS
Where: $S L^{\prime}=$ sector length in dibits
$13440=$ total dibits per revolution
RS = required number of sectors
2. Determine preset value from formula:
$\mathrm{PV}=4096$ - SL
Where: PV = preset value
$4096=\begin{gathered}\text { count by which sector counter } \\ \text { divides }\end{gathered}$
SL = sector length in dibits (determined in step 2)
3. Using table 1-7 determine which switches to set to open position.
4. Using a sharp pointed object set switches (located on edge of card in logic chassis position B08) as determined in step 3.

Figure 1-14. Sector Switch Positioning

TABLE 1-7. SECTOR SWITCH VALUES

Switch No.	Binary Value*	Decimal Value*
0	2^{0}	1
1	2^{1}	2
2	2^{2}	4
3	2^{3}	8
4	2^{4}	16
5	2^{5}	32
6	2^{6}	64
7	2^{7}	128
8	2^{8}	256
9	2^{9}	512
10	2^{10}	1024
11	2^{11}	2048
value open when switch is set in position.		

CHECKOUT

When installation of drive is complete, perform the General Cleaning and the Clean Shroud and Spindle procedures found in the preventive maintenance section. Following the cleaning procedures, perform all the procedures in the tests and adjustments section.

Refer to system manuals for any system diagnostics which may be required.


```
STEP 1. DETERMINE SECTOR LENGTH FOR
    SYSTEM USING }63\mathrm{ SECTORS.
    SL = 13440/63
    SL = 213 PLUS REMAINDER 21 A
STEP 2. DETERMINE PRESET VALUE FOR
    SWITCHES.
    PV = 4096 - 213 (REMAINDER IS
        IGNORED)
    PV = 3883
STEP 3. DETERMINE WHICH SWITCHES TO SET
    TO OPEN POSITION.
    PV = 3883
        - 2048 Switch ll value
        1835
        - 1024 Switch 10 value
        811
        - 512 Switch 9 value
                299
            - 256 Switch 8 value
                4 3
            - 32
                Switch 5 value
                11
            - 8
                Switch 3 value
            Switch l value
                1
        - __ Switch 0 value
            0
```

STEP 4. SET SWITCH 0, 1, 3, 5, 8, 9, 10, and 11 TO OPEN.

NOTE
If a remainder exists, an additional sector (immediately preceeding index) is created. The remainder is equal to number of dibits in additional sector.

Figure 1-15. Sector Switch Calculation

SECTION 2

MAINTENANCE

INTRODUCTION

This section provides all the information necessary to maintain all models and all configurations of the drive. The maintenance discussed in this section is limited to that which can be performed in the field. Unless otherwise specified the information presented here applies to all equipments listed in the front of this manual.

The maintenance procedures defined in this section are to be performed only by qualified maintenance personnel. Maintenance is performed in accordance with the time schedules provided at the beginning of each subsection, or as needed in the case of corrective maintenance.

Information in this section is divided into the following major areas:

- General Maintenance Information Provides information on safety precau-
tions, maintenance tools and materials, controls and test points, standard test conditions, and accessing the drive for maintenance, be thoroughly familiar with the information in this section.
- Preventive Maintenance - Provides procedures for performing a regularly scheduled maintenance routine.
- Tests and Adjustments - Provides procedures for all the major drive level tests and adjustments which can be performed in the field.
- Repair and Replacement - Provides procedures and information on the replacement and adjustment of drive assemblies. This section assumes that the assembly was previously identified as malfunctioning.

SECTION 2A

GENERAL MAINTENANCE INFORMATION

GENERAL

This section contains general information relating to maintenance of the drive. A person performing maintenance on the drive should be familiar with this information in addition to the operating principles and procedures described in the hardware reference manual.

The information in this section is divided into the following areas:

- Safety Precautions - Lists safety precautions that must be observed when working on the drive.
- Maintenance Tools and Materials Lists the tools and materials required to perform maintenance on the drive. This includes discussions on the type and handling of disk packs, the field test unit, the head alignment kit, and the use of system software, all of
which are used for performing drive tests and adjustments.
- Maintenance Controls and Test Points Identifies and describes the various controls and indicators and the test points which are provided for maintenance purposes.
- Standard Test Conditions - Describes and defines the basic conditions from which all the test procedures start. This includes defining the power on/off condition, online/offline condition, disconnecting the I/O, and manually positioning the carriage.
- Accessing Drive for Maintenance Identifies the various parts of the drive electronics assembly and provides the procedures which describe opening and closing the various parts of the machine in order to gain access for maintenance purposes.

SAFETY PRECAUTIONS

Observe the following safety precautions at all times. Failure to do so may cause damage and/or personal injury.

- Use care while working with power supply. Line voltages are present inside the base (Al) in the area of the ac power supply.
- Keep hands away from actuator during seek operations and when reconnecting leads to voice coil. Under certain conditions, emergency retract voltage may be present, causing sudden reverse motion and head unloading.
- Use caution while working near heads. If heads are touched, fingerprints can damage them. Clean heads immediately if they are touched.
- Keep pack access cover closed unless it must be open for maintenance. This prevents entrance of dust into pack area. Do not open pack access cover while disk is spinning or attempt to slow disks by hand.
- Keep all watches, disk packs, meters, and other test equipment at least two feet away from voice coil magnet.
- Do not remove or install circuit cards while power is on. Circuit cards are easily damaged by transient voltage spikes which may be generated by removing or installing cards when power is on.
- Ensure that logic chassis is in normal operating position before raising deck. On rail mounted configurations, the
logic chassis will be damaged by collision with the cabinet or frame. Also, since logic chassis cannot be secured in maintenance position, it may fall and be damaged as deck is raised.
- Do not open acoustic top case when drawer mounted drive has logic chassis in maintenance position. The top case and drawer unit's logic chassis will collide and damage will occur.
- Do not use customer disk pack for testing purposes, (see paragraph on disk packs).
- Do not use CE alignment disk pack unless specifically directed to do so. These packs contain prerecorded alignment data that can be destroyed if test procedure requires drive to write. This alignment data cannot be generated in the field.
- If drive fails to power down when START switch is pressed (to turn off indicator) disconnect voice coil leadwire (see paragraph on manual carriage positioning) and manually retract heads before troubleshooting malfunction.
- Make certain that heads are retracted before turning off power.
- If power to drive motor is lost while heads are loaded and not under servo control (during manual carriage positioning), immediately retract carriage. Otherwise heads will crash when disk speed is insufficient to enable heads to fly.
- Keep all metal tools away from flex leads while power is applied in order to prevent damage to the power amplifier.

MAINTENANCE TOOLS AND MATERIALS

GENERAL

The maintenance procedures described in this manual require the use of certain special tools, test equipment, and materials. These tools and test equipment are listed in table 2-1 along with the appropriate source part number. Note that the list only includes special tools. It is assumed that the user has at his disposal all the common hand tools such as wrenches, screw drivers, and the like.

Most of the items listed in the table require no explanation. The items listed in the table are called out in the specific procedures in which they are required. However, some of the items included in the list require further explanation.

Throughout this manual the procedures assume that the reader has a disk pack and some means of excercising the drive at his disposal. the procedures are written assuming the field test unit is available. However, if there is suitable system software available it may be used in place of the field test unit. Likewise, the head alignment kit is available either by itself or as a part of the field test unit. The following paragraphs discuss the disk packs, field test unit, head alignment kit, and system software.

DISK PACKS

The maintenance procedures refer to three types of disk packs: (1) customer (2) scratch and (3) CE. All three are physically identical, but are used for different purposes.

A customer disk pack refers to a pack used by the customer for data storage during normal online operations.

The CE pack contains special prerecorded information used during maintenance. Use care to ensure that this data is not destroyed or altered.

A scratch pack is simply a disk pack that does not contain customer or other information that must not be destroyed. Therefore, a scratch pack can be used in maintenance procedures where a danger exists that the pack could be damaged or its information altered.

Disk Pack Installation-Removal

Refer to the operation section of the hardware reference manual for inforfation on disk pack installation and removal.

Disk Pack Handling

The positive pressure filtration system of the drive eliminates the need for periodic inspection and cleaning of the disk pack (media). However, should improper operating conditions of the pack be indicated by any of the following symptoms, immediately remove the pack from the drive.

1. A sudden increase in error rates related to one or more heads is observed.
2. An unusual noise such as pinging or scratching is heard.
3. A burning odor is smelled.
4. Contamination of the pack from dust, smoke, oil or the like is suspected.

If any doubt about the pack's functional condition exists, return it to the vendor, enclosing a description of the known or suspected malfunction.

CAUTION

Do not attempt to operate the media on another drive until full assurance is made that no damage or contamination has occurred to the media.

Do not attempt to operate the drive with another media until full assurance is made that no damage or contamination has occurred to the drive heads or to the shroud area.

Disk Pack Inspection and Cleaning

In some cases, the user may attempt to inspect and clean the disk pack rather than return it to the vendor. This task must be performed by properly trained personnel only, using the following procedure.

NOTE

Inspection and cleaning of disk packs in the field can cause additional problems for the following reasons:

- Exposure of the pack to noncleanroom conditions during

TABLE 2-1. MAINTENANCE TOOLS AND MATERIALS

table 2-1. MAINTENANCE TOOLS AND MATERIALS

83322150 A
inspection and cleaning may
additionally contaminate
the pack.
Disk surfaces may be
scratched by using
contaminated or improper
cleaning equipment.
The pack may be damaged
while the covers are
removed.
Deposits of cleaning solu-
tion residue may be left on
disk surface if improperly
cleaned or if commercial
grade solutions are used.
may additionally contaminate the pack.

- Disk surfaces may be scratched by using contaminated or improper cleaning equipment.

The pack may be damaged while the covers are removed.

Deposits of cleaning solution residue may be left on cleaned or if commercial grade solutions are used.

CAUTION

Disk pack cleaning should never be attempted with the pack mounted on the drive, since this setup can introduce contamination into the drive itself.

1. Mount the pack on a commercially available pack inspection fixture.
2. Dampen, but do not soak, a lint-free swab-paddle with media cleaning solution (refer to the list of Maintenance Tools and Materials), or with a solution of 91% reagent grade isopropyl alcohol and 9% deionized water by volume.
3. Using a sweeping motion, insert the damp swab-paddle between the disks and manually rotate the pack while applying the swab-paddle lightly to the disk surface to be cleaned.
4. After the swab-paddle has been applied for one full cleaning rotation, withdraw it with a sweeping motion while maintaining contact with the disk surface (do not lift the swab-paddle from the surface).
5. If oxide or contaminants are observed on the swab-paddle, repeat steps 2, 3, and 4, using a clean swab-paddle for each pass, until no oxide or contaminants are observed on the swab-paddle.
6. Repeat steps 3 and 4 using a dry swabpaddle to remove all cleaning solution residue.
7. Repeat steps 2 through 6 for each surface.

FIELD TEST UNIT

The Field Test Unit (FTU) is basically an offline tester. This means that the drive cannot be selected or used by the controller while the FTU is in use. The one exception to this is that the FTU can be used to mon. itor head off-set while a test software routine is performing the head alignment check.

The FTU is connected to the drive in one of two ways: (1) through the standard I/O connectors on the I/O card(s) (On dual channei units the FTU may be connected to either channel I or channel II, depending on which I/O is to be checked.) or (2) through the I/O bypass connection.

The standard I/O connection requires that the system I/O cables be disconnected and that the FTU I/O cables be connected in their place. This also requires that the FTU flat cable adapter cables be used. When the FTU is connected to a drive through the standard I/O connections, the drive (on channel) to which the FTU is connected, must have an I/O terminator card installed. When the FTU is connected through the I/O the drive must be: set to Online operation. However, the Local/Remote switch AlOSl may be set to either position depending on whether or not the drive is to be powered on from the F'TU.

The I/O bypass connection leaves the system I/O cables in place and connects the I/O bypass cable between the FTU and connector A2J2 on the logic chassis backpanel. When the FTU is connected through the I/O bypass connection, the drive must be set to Offset operation.

Specific instructions for interconnecting the drive and the FTU are contained in the preliminary set-up instructions in the FTU manual. Likewise, the procedures for causing the drive to perform various operations (access, read, write, head selection) required for testing are contained in the FTU manual. When performing the preliminary set-up procedure the drive oriented switches located on the FTU panel shall be set as follows:

- RPM to 3600 (HI)
- TPI to 200 (LO) for BK4XX and to 400 (HI) for BK5XX
- heads to 5 (LO)
- BPI to 6000

The FTU also contains the head alignment card. The head alignment card, used in conjunction with the meter on the FTU, performs the same function as the head alignment kit. Refer to the following paragraph for details on the head alignment kit.

HEAD ALIGNMENT KIT

The head alignment kit contains the head alignment card, the head alignment cable, and the associated null meter (refer to figure 2-1). The head alignment card develops an output voltage which is derived from the output of the servo and read/write preamplifiers. When a CE disk pack is installed in the drive, this output voltage will be proportional to the distance a selected head is offset from the track centerline. The head alignment card plugs into card location A02 in the logic chassis.

The following toggle switches, located on the card edge, control the cards operation:

Sl - Changes the polarity of the alignment signal and is used in aligning both servo and read/write heads. Refer to paragraph on calculating offset in Head Alignment procedure. (See Tests and Adjustments Section.)

S2 - When switch is in S position, the card selects the servo head as an input to the card. When switch is in R/W position it selects a data head input to the card.

S3 - Changes sensitivity of card. When in X. 1 position, the cards sensitivity is reduced by a factor of 10 . When in Xl position, the cards sensitivity is not reduced. This switch must be in Xl position when making measurements for use in calculating head alignment error.

Figure 2-1. Head Alignment Kit

Four indicators are provided as monitors to ensure the card is operating properly and is receiving the proper data. These indicators are as follows:

Power - When lighted it indicates power is applied to card.

Input - When lighted, it indicates the input signals are too low for the alignment card circuits to operate.

- Bad Track - When lighted, it indicates a short duration loss of input. A one shot maintains the lighted condition for at least four seconds. Note that this indicator lights when the position of switch Sl is changed.

Mode - When lighted it indicates that either 52 is in the S (servo) position or 53 is in the $x .1$ position. When either of these conditions exists, read/ write head alignment error cannot be measured.

The card receives its inputs through the connector in logic chassis card position A02. The Servo Dibits signal is wirewraped to this connector. The ground and Head Alignment Output signals are provided through the head alignment cable which is part of the head alignment kit. This cable connects between card slot A2 (pins 08 through 11) on the wirewrap side of the logic chassis, and connector Jl04 located on the head select/ read amplifier card A3A02.

The output voltage of the card is measured by a null meter which connects through test leads to test points X and Z on the card. This meter is either part of the head alignment kit or is located on the FTU panel.

The switch on the meter's front panel changes the sensitivity of the meter. When in the 50 position, the meter reads 50 mV full scale. When the switch is in the 500 position, the meter reads 500 mV full scale. The switch must be in the 50 position when making measurements for use in calculating head alignment error.

SYSTEM SOFTWARE

The drive may also be tested by use of microdiagnostic test routines (system software). This requires use of the controller and the appropriate software. In this type of testing the drive communicates with the controller as during normal online operations and no special I/O connections are necessary.

When system software is used to test the drive; it must be set to online operation, have power applied, have the correct disk pack installed, and have the appropriate logical address plug installed.

Refer to manuals or other documentation applicable to the specific system or subsystem for information concerning the system software routines.

MAINTENANCE CONTROLS AND TEST POINTS

GENERAL
Throughout this manual references are made to switches, indicators, and test points. The material contained in the following two paragraphs identify and define these controls. Since much of the information is based on the physical location code of the control or test point, refer to the General paragraph under Accessing Drive For Maintenance for a discussion of the codes.

MAINTENANCE CONTROLS

In addition to the operator panel and power panel switches and indicators described in the Operation section of the Hardware Reference Manual, the drive has a number of controls used primarily for maintenance. All these controls are located on the edges of cards in the logic chassis. Figure 2-2 illustrates these controls and indicates the switch positions. Table 2-2 describes the function of each control. For single channel drives disregard all references to logic card B05.

NOTE: DUAL CHANNEL CARD COMPLEMENT SHOWN.
9H13A

Figure 2-2. Maintenance Switches and Indicators

TABLE 2-2. MAINTENANCE SWITCHES AND INDICATORS

Physical Location Code	Name	Description
A04CR1	Voltage	Lights to indicate a below normal voltage existed.
A04CR2	Write	Lights to indicate a write fault existed.
A04CR3	HD SEL	Lights to indicate a multiple head select occurred.
A04CR4	$\mathbf{R} \cdot \mathbf{W}$	Lights to indicate that both write and read were selected simultaneously.
A04CR5	$\overline{O C} \cdot(W+R)$	Lights to indicate that a write or read was selected during a seek operation (not on cylinder).
A04S1	Maint Fault Clear	CLEAR position clears out Fault Latch and five Fault Status Latches. When switch is actuated fault indicators on edge of Fault card go out and remain out unless condition causing fault still exists.
		NORM is normal operating position for switch and position to which it returns when released (spring loaded).
A04S2	Maint Unit Disable	Although switch exists on both single and dual channel drives, it is only used on single channel units. Dual channel units use switches B05S1 and S2 for same purpose. DISABLE position prevents Unit Selected from being sent to controller and disables transmitters and receivers.
		NORM is normal operating position and position switch must always be in for all dual channel drives.
Al0S1	Local/Remote	LOCAL position prevents control of power sequencing by controller. Drive is powered on and off by START switch assuming circuit breakers are set to On.
		REMOTE position allows controller to command power sequencing. Drive cannot be started until a ground is applied via subsystem Power Sequence Pick and Hold lines.
B05CR1	CH I Select	Lights to indicate channel I has selected drive.
B05CR2	CH I Res	Lights to indicate Channel I has drive reserved.
B05CR3	CH II Select	Lights to indicate channel II has selected drive.
B05CR4	CH II Res	Lights to indicate channel II has drive reserved.
Table continued on next page		

TABLE 2-2. MAINTENANCE SWITCHES AND INDICATORS (Contd)

1

TEST POINTS

Throughout the drive there are a number of test points which are used in the various stages of maintenance. Table 2-3 lists these test points. The table is arranged in alphanumeric order by physical location codes of the cards. Refer to the General paragraph under Accessing Drive For Maintenance for a description of the physical location codes.

Table 2-3 also lists the card type (s) that may be in any given physical location. If the test point information is true for a number of card types, then all the types are listed. If the information changes between different card types in a given physical location, then there are individual listings for each card type.

Test points "A" and "Z" on all cards are always ground and are therefore not listed in the table. The test points are listed alphabetically for each card type. The alphabetical identification for the test point also appears next to the test point on the card. The table identifies those test points which are on the card edge and can be reached while the card is in the logic chassis. The remainder of the test points can only be accessed with the card on a card extender.

The last column in the table provides the cross reference number for the logic page in the logic diagrams that show that test point.

Physical Location Code	Name	Description
B05S1/S2	Channel I/II Maint Unit Disable	Switches apply only to dual channel units. They perform same function as switch A04S2. In DI position switch Sl disables Unit Selected signal, transmitters, and to channel I controller. Switch S2 disables Unit Selected signal, transmitters, and receivers to channel II controller when set to DII position. NORM is normal operating position for switches. When performing maintenance on drive both switches should be set to their disable position.
B05S3	Release Timer Select	Switch applies only to dual channel drives. Used to select between an absolute reserve and a reserve timer condition to control selection of drive by controller. In ABR (absolute reserve) position, controller selecting drive has control until it issues a release command. During this time opposite channel controller is unable to select drive except by using disable command (see reference manual). In RTM (Reserve timer) position, first controller to select drive, holds it reserved for nominally 500 ms following time Unit Select Tag is dropped. During this time, opposite channel controller cannot select drive except by using disable command (see reference manual).

TEST POINTS

Throughout the drive there are a number of test points which are used in the various stages of maintenance. Table 2-3 lists these test points. The table is arranged in alpha-numeric order by physical location codes of the cards. Refer to the General paragraph under Accessing Drive For Maintenance for a description of the physical location codes.

Table 2-3 also lists the card type (s) that may be in any given physical location. If the test point information is true for a number of card types, then all the types are listed. If the information changes between different card types in a given physical location, then there are individual listings for each card type.

Test points "A" and "Z" on all cards are always ground and are therefore not listed in the table. The test points are listed alphabetically for each card type. The alphabetical identification for the test point also appears next to the test point on the card. The table identifies those test points which are on the card edge and can be reached while the card is in the logic chassis. The remainder of the test points can only be accessed with the card on a card extender.

The last column in the table provides the cross reference number for the logic page in the logic diagrams that show that test point.

TABLE 2-3. TEST POINTS

KøR-0652

TABLE 2-3. TEST POINTS (Contd)

TABLE 2-3. TEST POINTS (Contd)

TABLE 2-3. TEST POINTS (Contd)

Physical Location Code/Card Type	Test Point	Title	Cross Ref	Comments
$\begin{array}{r} \text { A2B09/MLVV } \\ \text { NLVV } \end{array}$	$\begin{array}{ll} \text { B } & \text { * } \\ \text { C } & \text { A } \\ \text { D } \end{array}$	- Seek Pulse - Start Seek - Power Up Delay	$\begin{aligned} & 193 \\ & 193 \\ & 194 \end{aligned}$	
A2B10/6SMV		- Disable CH II	$\begin{aligned} & 202 \\ & 202 \\ & 202 \\ & 202 \\ & 202 \end{aligned}$	
A3A02/NZJN	A *	Read Preamplifier	263	
PZJN	B * E *	+ Read Preamplifier	263 263	
	F *	AGC Output	263	
	G *	AGC Output	263	
	H	- 6 Volts	261	
	H0	Head Select 0	262	
	H1	Head Select 1	262	
	H2	Head Select 2	262	
	H3	Head Select 3	262	
	H4	Head Select 4	262	
	J	+ Read Enable	262	
	K	+ 6 Volts	261	
	L	Rectifier Output	263	
	M	+ Missing Address	263	
	N	+ Read Address Mark Enable	263	
	P	+ Address Mark Detect	263	
	Q *	+ Multiple Head Select Fault	262	
	R	- Analog Data	263	
	S	+ Analog Data	263	
A3A03/CZKN	A *	- MFM Data Pulses	272	
EZKN	$\begin{aligned} & \mathrm{B} \\ & \mathrm{C} \end{aligned}$	Write Voltage Sense Reference Write Data Voltage Translator	273	
	D	Output Write Data Voltage Translator	272	
		Output	272	
	E *	- Write Data	272	
	F *	- AC Write Fault	273	
	G *	+ Write Protect Clamp	272	
	$\underset{\text { H. }}{ }$	Write Current Write Current Fault Reference	$\begin{aligned} & 272 \\ & 272 \end{aligned}$	
		- Writer Turn Off Fault	273	
	L *	- Write Current Fault	272	
	M *	- Turn On Fault Inhibit Delay	273	
	N *	- Turn Off Fault Inhibit Delay	273	
	P	+ Write Gate	272	
	Q	Write Current D/A Output	272	
	R *	Write Voltage Regulator Output	271	
AlA03/ASHV	$\begin{aligned} & -5 V \\ & +5 V \end{aligned}$	- 5 Volt (Unregulated) + 5 Volt (Unregulated)	$\begin{array}{r} 332 \\ 333 \end{array}$	

K巾R-0652

STANDARD TEST CONDITIONS

GENERAL

Unless otherwise specified all drive tests start with power removed from the drive and the drive set to offline operation. Some tests require that the FTU be installed which may require that the I/O cables be disconnected. Also some special tests require that the carriage be manually po- . sitioned. The following paragraphs define these standard test conditions. All procedures throughout this manual assume the reader is familiar with these conditions.

POWER ON/POWER OFF

The drive may be either online or offline when it is powered on or off. In order to apply power the following interlocks must be closed:

- Deck Interlock Switch - Deck in normal operating position
- Pack Cover Switch - Pack access cover closed

In addition to the interlocks, the LOCAL/ REMOTE switch AlOS1 and the Power Sequence Pick and Hold lines must also be considered in the power on sequence. During normal maintenance the LOCAL/REMOTE switch is set to LOCAL, and therefore when all other conditions are satisfied the drive starts. Following is the definition of the power on condition, power off is the reverse of these conditions:

- AC POWER circuit breaker set to ON
- POWER SUPPLY circuit breaker set to ON
- START switch pressed such that it is lighted

It should be noted that for operations such as changing packs, it is not necessary to turn off the circuit breakers. It is only necessary to stop the drive motor by pressing the START switch (indicator not lighted).

When it is necessary to turn off power for one particular drive in a daisy chain string, it is recommended that the entire string be powered off (at least by pressing the START switch). This is necessary in order to prevent error conditions.

ONLINE/OFFLINE

The drive may be set offline (with respect to the system) as necessary to accomplish maintenance procedures. If it is required that the interface cables be disconnected for any reason refer to the paragraph on Disconnecting I/O Cables. While it is not necessary to remove power from the drive in order to set it offline, it is necessary to remove power in order to connect an FTU or similar test equipment (refer to paragraph on Power on/Power off). Whenever the drive is taken offline for any reason, inform the system operator beforehand. The following two procedures (single and dual channel) describe setting the drive offline. Setting the drive online is simply the opposite condition.

Single Channel

1. Set Local/Remote switch AlOSl to LOCAL.
2. Set Maintenance Unit Disable switch A04S2 to DISABLE.

Dual Channel

1. Set Local/Remote switch AlOSl to LOCAL.
2. Set Channel I Maintenance Unit Disable switch B05S1 to DI.
3. Set Channel II Maintenance Unit Disable switch B05S2 to DII.

DISCONNECTING I/O CABLES

There are two I/O cable configurations: (1) star, (2) daisy chain. Refer to the Interconnect Cables and Terminators paragraph in Section 1 for further information. If the system uses a star cable configuration it may or may not need to have power removed prior to disconnecting the $1 / 0$ cables. Refer to system manual for details. If the system uses the daisy chain cable configuration it must have power removed before the I/O cables are disconnected. The following procedure defines disconnecting I/O cables. Reconnecting the I/O is performed in the reverse order.

NOTE
Inform system operator that drive(s) are being taken offline.

1. Remove power from drive (from all drives if in a daisy chain string).
2. Referring to figure 3-20, remove $1 / 0$ clamp securing I/O cables.
'3. Remove A cables from connectors J3 and J4. Remove B cable from connector J2.
3. If system operation is required during time drive is removed from daisy chain, patch I/O cables around drive under test.
4. Perform required maintenance on drive.

manual carriage positioning

Certain tests require manual positioning of the carriage and coil assembly. This procedure should only be performed as required by specific tests later in this manual, or as a trouble shooting procedure when the drive does not respond under normal logic control. It should be noted that improper carriage positioning causes servo fault conditions. Typical examples of improper carriage positioning are such things as: loading heads too slowly, hitting forward stop with carriage, or positioning carriage in loading zone. If a servo fault does occur, unload heads, clear the fault, and repeat the operation being performed.

1. Press START switch to stop drive motor and unload heads. Set POWER SUPPLY circuit breaker to OFF.
2. Disconnect yellow voice coil leadwire from faston on edge of power amplifier assembly.
3. Set POWER SUPPLY circuit breaker to ON and press START switch to start drive motor.
4. Remove magnet cover by snapping it out of place.

CAUTION

Wait 30 seconds for drive motor to come up to speed then load heads. Avoid having heads in partially loaded condition.
5. Carefully grasp voice coil and load heads. Use care not to apply a downward force. Move carriage at approximately same speed it moves under logic control.
6. Position carriage as required to accomplish test being performed.
7. When tests are completed, manually unload heads to fully retracted position.
8. Press START switch to stop drive motor and set POWER SUPPLY circuit breaker to OFF.

WARNING
Be certain fingers are clear of positioner before connecting voice coil leadwire.
9. Reconnect yellow leadwire to faston on power amplifier assembly.

ACCESSING DRIVE FOR MAINTENANCE

GENERAL

The material in this section deals with gaining access to the drive electronics assembly to perform routine maintenance procedures. Figure 2-3 shows all of the functional electronics in the drive and indicates the physical location codes assigned to each. Alongside some of the location codes there is another identifier in parenthesis. This indicates the mating connectors identifier.

Table 2-4 is in alpha-numeric listing of all the physical location codes. The table also provides the title for each entry, and cross references to the parts data illustration and the sheet in the logic diagram set.

The number listed in the parts column of the table is the figure number which shows the listed item. In some cases there is a third part to the number (3-30-3), this third part (-3) indicates the sheet number of a multisheet illustration.

The number in the diagrams column of the table is the cross reference number of the diagram sheet which shows the listed item. In some cases an " X " appears as the third digit of the cross reference number. This indicates that the listed item is scattered over a number of sheets within the specified cross reference set (see introduction to logic diagrams for explanation of cross reference numbering system).

The procedures which follow in this section deal with opening and closing the various parts of the drive and cabinet. Many operations, such as opening and closing doors, are obvious and require no explanation. Other operations, such as sliding out the rail-mounted drive, only require the location of parts. Determine these things by looking at the appropriate illustration in the Parts Data section. Should it be necessary to remove any of the components of the drive, refer to Section 2D, Repair and Replacement for the appropriate procedure.

The following procedures are included to explain details which are not obvious in themselves or by looking at the associated illustrations. Procedures contained throughout this manual assume that the reader is familiar with the information presented here.

PACK ACCESS COVER OPENING AND CLOSING

The pack access cover should only be opened to change packs or perform a maintenance procedure. Do not allow the cover to stand open more than necessary. The open cover allows dust to enter the pack area, and the
dust is potentially damaging to the disk pack and heads. Never open the pack access cover while the disks are turning.

Some drives have a pack cover interlock feature installed. On these machines the pack access cover can only be opened when the ac and dc circuit breakers are set to ON and the disks are not turning. If power is applied to the machine and the READY light on the control panel is lighted or blinking, the pack access cover cannot be opened.

CASE ASSEMBLY OPENING AND CLOSING

Although there are several types of case assemblies, for the purpose of opening and closing procedures there are only two types:
(1) acoustic top case
(2) normal case.

Acoustic Top Case Opening

1. Open rear door assembly and release two l/4-turn fasteners securing case assembly to frame.
2. Lift case assembly up from rear until support rod reaches end of travel.
3. Allow case assembly to drop back a few inches so that support rod drops down against stop. Leave case assembly resting on support rod.

Acoustic Top Case Closing

1. Push case assembly forward slightly, removing weight from support rod.
2. Lift up on support rod until it clears stop, then carefully lower case to closed position.
3. Reach in from rear of drive and secure 1/4-turn fasteners.

Normal Case Opening

1. Press in on top cover release catches located on bottom outside corners of hinged panel at rear of drive. While holding in release catches, lift up on cover.
2. When cover has been raised a short distance, swing hinged panel back away from drive in order to clear rear of actuator assembly.
3. Pivot top cover up until it rests against case support arms.

Figure 2-3. Physical Location Codes

TABLE 2-4. PHYSICAL LOCATION CODES

Physical Location Code	Title	Parts	Diagrams
Al	Base Assembly (AC Power System)	3-30	302
AlAl	Plus and Minus 42V Supply and Emergency Retract	3-31	31x
A1A2	Plus and Minus 20V, Plus and Minus 12V Supplies	3-31	32x
AlA3	Plus and Minus 5V Supply	3-31	33x
AlbMl	Blower Motor	3-30-2	302
AlCl	Servo Capacitor (+)	3-30-2	312
Alc2	Servo Capacitor (-)	3-30-2	312
Alc5	Blower Motor Start Capacitor	3-30-2	302
AlC8	Transformer Tuning Capacitor	3-30-2	302
AlCB1	AC Power Circuit Breaker	3-30-3	302
AlCB2	Power Supply Circuit Breaker	3-30-3	302
Alfil	Line Filter	3-30-3	302
Alkl	Run Triac	3-30-1	302
Alk2	Emergency Retract Relay	3-31	312
Alml	Elapsed Time Meter	3-30-3	302
Als 4	Deck Interlock Switch	3-30-1	302
Altl	AC Power Transformer	3-30-1	302
Altbl	Terminal Eoard	3-30-1	302
AlJla	Power Supply Connector	3-31	31 x
AlJlb	Power Supply Connector	3-31	32x
AlJl00	Power Supply Connector	3-31	33x
AlJ400	Fan Connector (Acoustic Top Mount Only)	$\begin{aligned} & 3-16 \\ & 3-17 \end{aligned}$	302
AlP1	AC Power Connector	3-30-3	302
A2 XXX	Logic Chassis - Logic chassis and assoc figure 3-20, sheet 1. Part number infor presented on Card Interchangability Cha section in Maintenance Manual Volume 2. card are also presented in that manual.	ards ar for eac ear of diagran	
A3	Deck Assembly	3-23	--

TABLE 2-4. PHYSICAL LOCATION CODES (Contd)

Physical Location Code	Title	Parts	Diagrams
A3A01	Control Panel	3-20-1	25x
A3A02	Head Select and Read Amplifier	3-23-4	26X
A3A03	Writer	3-23-4	27x
A3A04	Power Amplifier	3-23-1	28X
A3A05	Track Servo Preamplifier	3-23-1	29X
A3C6	Drive Motor Capacitor	3-23-5	302
A3DM1	Drive Motor	3-23-5	302
A3HB1	Hysteresis Brake	3-23-5	302
A3K5	Start Triac	3-23-5	302
A3L1	Speed Transducer	3-23-3	103
A3L2	Velocity Transducer	3-27	072
A3L3	Pack Cover Solenoid (optional)	3-23-3	102
A3S2	Heads Loaded Switch	3-25	302
A3S3	Pack Cover Switch	3-23-1	252
A3VC1	Voice Coil	3-26	312

Normal Case Closing

1. Pivot case assembly down toward drive while lifting hinged panel out in order to clear rear of actuator assembly.
2. With case assembly still raised slightly, push hinged panel into place against back of drive.

CAUTION

Do not drop case assembly all the way down and then push in on hinged panel. This causes damage to top cover release catches.
3. While holding in on hinged panel, push down on case assembly from top. Release catches should snap into place.

RAISING AND LOWERING DECK

There are two positions the deck can be in: (1) normal operating (2) maintenance. In the normal operating position the deck is secured to the shock mounts on the base by two holddown screws inside the shroud and next to the spindle. While in this position, the rear deck holddown screw (center of three screws at rear of deck casting) and associated spacer are stored in the keeper hole at the rear of the deck casting. The following procedure assumes that power is removed from the drive and that the disk pack is removed from the spindle. This procedure describes raising the deck to the maintenance position. Returning the deck to the normal operating position is performed in the reverse order.

1. Remove (and set aside for future use) deck holddown screws from inside shroud (refer to figure 2-4).
2. Remove rear deck holddown screw and spacer from keeper hole on back of deck casting.
3. Insert spacer between deck and base hinge (refer to inset on figure 2-4). Insert rear deck holddown screw through deck and spacer and secure to base hinge.
4. Lift up deck from front of drive and install deck support bracket. Bracket is inserted into shock mounts on base and into holddown screw holds in bottom of deck casting.

RAISING AND LOWERING LOGIC CHASSIS

There are two positions for the logic chassis; (1) normal operating (2) maintenance. In the normal operating position the logic chassis sits alongside the actuator and the $1 / 4$-turn fastener at the rear is secured to the deck casting. The following procedure describes raising the logic chassis to the maintenance position. It also describes removal of the logic chassis protective panel. Returning the logic chassis to the normal operating position is performed in the reverse order. This procedure assumes that power is removed from the drive.

1. Release $1 / 4$-turn fastener securing logic chassis to rear of deck casting. Ensure that ring on 1/4-turn fastener does not interfere with logic chassis bracket when chassis is raised.
2. Slide logic chassis toward rear of drive to disengage chassis ears from logic chassis support rod.
3. Lift up on chassis until flat spring pops into place.
4. Pivot chassis 90 degrees and slide it over top of magnet assembly.
5. Remove attaching hardware securing logic chassis protective panel.

CAUTION

Use care not to damage cables or connectors when removing logic chassis cover.
6. Carefully slide logic chassis protective panel toward front of drive enough to disengage rear of panel from slot. Carefully slide panel along cables far enough to access back panel.

Figure 2-4. Deck Maintenance Position

SECTION 2B

PREVENTIVE MAINTENANCE

GENERAL.

This section provides all information necessary to perform the required preventive maintenance on a drive in the field. Proper performance of the drive is dependent on adequate and timely execution of preventive maintenance routines. Many potential drive problems can be caught and corrected by strict adherence to the preventive maintenance schedule.

Procedures in this section assume the reader is familiar with the information provided in Section 2A General Maintenance Information. Refer to section 2A for information on safety precautions, maintenance tools and materials, test point locations, and accessing information (the opening and closing procedures for the various components of the drive).

Table 2-5 provides the preventive maintenance index. The index consists of six levels of maintenance based on a calendar period or hours of operation, whichever comes first.

The index assumes that the drives are installed in a computer room environment, and as such has scheduled maintenance consistent with that assumption. If the installation site is something other than a computer room environment, the maintenance schedule needs to be adjusted accordingly. The main factor in setting maintenance intervals is the cleanliness of the installation site. Under no circumstances should the maintenance intervals exceed those specified in table 2-5.

Following are the definitions of the six preventive maintenance levels:

Level 1 - Weekly or 150 hours
Level 2 - Monthly or 500 hours
Level 3 - Quarterly or 1500 hours
Level 4 - Semiannually or 3000 hours
Level 5 - Annually or 6000 hours
Level 6 - Biennially or 9000 hours

TABLE 2-5. PREVENTIVE MAINTENANCE INDEX

Level	Est Time (Minutes)	Procedure
4	10	General Cleaning
4	5	Clean Primary Filter
6	20	Replace Absolute Filter
4	1	Clean Shroud and Spindle
4	2	Clean and Lubricate Lockshaft
4	5	Inspect and Clean Rails and Bearings
4	2	Check Power Supply Output
5	120	Check Head Alignment

PREVENTIVE MAINTENANCE PROCEDURES

GENERAL

Perform preventive maintenance in accordance with the time or calendar schedule as specified in table 2-5. The following procedures are contained in this section in the order specified.

- General Cleaning
- Clean Primary Filter
- Replace Absolute Filter
- Clean Shroud and Spindle
- Clean and Lubricate Lockshaft
- Inspect and Clean Rails and Bearings
- Check Power Supply Output
- Check Head Alignment

GENERAL CLEANING

Since the drive is a precision machine and built to close tolerances, good housekeeping is essential to proper operation. A thorough cleaning on a regular basis prevents many problems. This procedure assumes that power is removed from the drive.

1. Carefully vacuum interior of cabinet and case, paying particular attention to flat surfaces where dust accumulates.
2. With deck in normal operating position, vacuum exterior surfaces of electronic assembly. Use a soft cloth dampened in a mild detergent solution to remove any greasy residue.
3. Raise deck to maintenance position and vacuum underside of deck and base assembly. Again, use a dampened cloth to remove any residue.
4. Inspect cables and connections for any sign of damage and correct as necessary.
5. Inspect drive belt for signs of fraying or cracking. Replace belt as necessary.
6. Return deck to normal operating position and close case and door assemblies.
7. Using a soft cloth dampened in a mild detergent solution, carefully wipe all cabinet surfaces. Use care not to allow moisture to run into drive.

CLEAN PRIMARY FILTER

The primary filter must be kept clean in order to allow sufficient passage of air to keep the drive cool. If the filter cannot be cleaned by the following procedure, it must be replaced. This procedure assumes that power has been removed from the drive.

1. Remove primary filter from drive:

- For non-acoustic drives see figure 3-7, 3-10, or figure 3-11, depending on drives mounting configuration.
- For acoustic drives see figure 3-3, sheet 2.

2. Clean filter by agitating in mild detergent solution.
3. Rinse thoroughly in clean running water. Shake vigorously to remove excess water and allow to dry.
4. Spray filter thoroughly with filter coat or suitable substitute.
5. Replace filter in drive.

REPLACE ABSOLUTE FILTER

An adequate supply of clean air to the pack area is essential to proper operation of the drive. Replacement of the absolute filter is required once every two years if the drive is operated in a computer room environment. If the drive is operated in something other than a computer room environment, absolute filter replacement is required more often. In a non-computer room environment it is suggested that the absolute filter be replaced every year or whenever there is doubt regarding the ability of the filter to pass air into the shroud area. The following procedure assumes that power is removed from the drive.

1. Raise deck to maintenance position.
2. Remove screw and lockwasher securing filter retaining bracket (see figure 3-30, sheet 1).
3. Remove bracket by pivoting it toward front of drive and disengaging flange on bracket from slot in base pan.
4. Remove absolute filter by pulling it toward front of drive. It may be necessary to jiggle filter to disengage it from blower motor outlet.
5. Wipe base pan clean in area under absolute filter and around blower motor outlet.
6. Install new filter by sliding it in from front of drive and engaging it in blower motor outlet.
7. Install filter retaining bracket and secure with screw and lockwasher.
8. Return deck to normal operating position.

CLEAN SHROUD AND SPINDLE

In order to prevent head-to-disk contact, it is imperative that the pack area be kept clean. The following procedure assumes that power is removed from the drive and that the disk pack is removed from the spindle.

1. Carefully vacuum entire pack area.
2. Using a wad of adhesive type tape, remove any particles not removed during vacuuming.
3. Using a piece of lint free gauze dampened in media cleaning solution, wipe all surfaces of the shroud. Remove all smudges and dirt. Carefully clean all surfaces of spindle.
4. Close pack access cover immediately after cleaning to ensure that dust does not enter pack area.

CLEAN AND LUBRICATE LOCKSHAFT

In order to prevent damage to the lockshaft and the disk pack it is necessary to keep the threads in the top of the lockshaft clean. This procedure assumes that power is removed from the drive and that the disk pack is removed from the spindle.

1. Using a stiff brush or a sharp pointed instrument, remove old lubricant paste from threads in lockshaft.
2. Using a piece of lint free gauze dampened in media cleaning solution, wipe all surfaces of spindle to remove traces of lubricant paste.
3. Apply a thin coat of new lubricant paste to threads of lockshaft.

INSPECT AND CLEAN RAILS AND BEARINGS

In order to ensure that the carriage is able to move freely along the rails, it is essential that the rail and bearing surfaces be
kept clean. Any obstruction to free movement of the carriage may cause cylinder address errors. This procedure assumes that power is removed from the drive and that the disk pack is removed from the spindle.

1. Remove magnet cover (see figure 3-27) by grasping edge of cover and snapping it out of place.
2. Grasp coil through opening in top of magnet assembly. Carefully and slowly push coil forward to extend heads.
3. Once head arms have cleared cams, gently slide carriage and coil assembly back and forth along full length of rails. While moving coil, be aware of any posible irregularity (bumps or jerks) in movement. A sudden irregularity indicates dirt on rails or bearings. Do not confuse pressure of flex leads and head leads with a sudden irregularity in motion. Pressure from leads is a smooth change.
4. If a sudden irregularity in motion was noted in previous step proceed to next step. If no sudden irregularity in motion was noted, cleaning is not required. Terminate procedure by returning carriage to heads unloaded position (fully retracted) and replace magnet cover.
5. Using a cotton swab dampened (not soaked) in media cleaning solution, clean rail and bearing surfaces. Access front portion of lower rail from interior of pack area. Access rear position of lower rail and all of top rail from sides of actuator. Raise logic chassis as required to gain access from left side of actuator. Move carriage back and forth while cleaning in order to ensure all surfaces are reached.
6. When rail and bearing cleaning is completed, repeat step 3 to ensure that carriage moves freely without sudden irregularities in its motion. If carriage now moves smoothly throughout its travel, proceed to step 7. If sudden irregularities persist, visually inspect rails and bearings using a strong light. Look for deterioration of rail or bear-ing surfaces. Surface deterioration requires replacement of defective parts. Since neither carriage nor rails are field replaceable, contact factory maintenance representative.
7. Return carriage to heads unloaded posi-tion (fully retracted) and replace magnet cover.

CHECK POWER SUPPLY OUTPUT

Perform the Plus and Minus 5 Volt Adjustment procedure contained in Section 2C Tests and Adjustments.

CHECK HEAD ALIGNMENT

Perform the Head Alignment procedure contained in Section 2C, Tests and Adjustments.

SECTION 2C

TESTS AND ADJUSTMENTS

GENERAL

This section provides information on all the electrical test and adjustments which can be performed in the field. The adjustments contained here are limited to those which can be performed at the drive level. These tests should only be performed as required elsewhere in this manual, or when there is suspicion that the drive is not functioning properly. A drive that passes all the requirements in this section may be considered operationally acceptable. If any of the adjustments, contained in this section, cannot be completed satisfactorily, terminate the procedure and perform trouble analysis.

Mechanical adjustments are contained in the Repair and Replacement section. A person performing these tests and adjustments should already be familiar with the information contained in the General Maintenance Information section. Refer to that section for information on safety precautions, main-
tenance tools and materials, test point locations, and information on opening and closing of the various components of the drive.

These procedures assume that an FTU is connected to the drive (or that suitable software is available), that a scratch pack is installed (or CE pack where noted), and that: the drive is powered on. All the following tests are written, providing first a check procedure, and then the adjustment. If the drive meets the criteria of the check, there is no need of the adjustment.

The following procedures are contained in this section, in the order specified:

- Plus and Minus 5 Volt Adjustment
- Head Arm Alignment
- Velocity Gain Adjustment (40 MB)
- Velocity Gain Adjustment (80 MB)

PLUS AND MINUS 5 VOLT ADJUSTMENT

This procedure checks the output of the plus and minus 5-volt power supplies while the drive is doing repeat seeks. Power supply outputs are checked at the logic chassis backpanel. Therefore, the supplies are being checked in a manner to account for both line loss and loading.

This procedure assumes that the FTU is connected to the drive, a scratch pack is installed, and power is applied.

CAUTION

Drive should not be operated for extended period with logic chassis in maintenance position. Loss of cooling air (when logic chassis is raised) could cause drive to overheat.

1. Raise logic chassis to maintenance position.
2. Connect digital volt/ohmmeter between GND and +5 V fastons on logic chassis backpanel.
3. Command drive to do repeat seeks between cylinders 0 and 32.
4. Plus 5 -volt output should be $+5.10 \pm 0.05$ volts. If not, adjust +5 V potentiometer on card AlA3 (see figure 2-5) until output is within specification.
5. Move volt/ohmmeter leads to -5 V faston.

Figure 2-5. Power Supply Adjustment Iocations
6. Minus 5-volt output should be -5.10 ± 0.05 volts. If not, adjust -5 V potentiometer on card AlA3 (see figure 2-5) until output is within specification.
7. If any adjustment was necessary in preceeding steps, recheck both outputs.
8. When both power supply outputs are within specification, restore drive to normal operation.

HEAD ARM ALIGNMENT

Before performing the head arm alignment procedure, read and understand the concepts which follow. These are important for accurate head alignment; and they are only referenced in the procedure.

Thermal Stabilization - In order to ensure accuracy during head alignment, it is important that the drive, CE pack, and FTU be at their normal operating temperature. This requires that all three be connected and allowed to operate (pack turning and heads loaded to cylinder zero) for a minimum of 60 minutes. If head alignment is being performed on more than one drive, and provided pack was taken immediately from a previous drive, and provided drive under test has been operating with heads loaded for a minimun of 60 minutes preceding test; then CE pack only requires a 15 -minute stabilization.

Alignment Tool - Use only the head alignment tool specified in the maintenance tools and materials table. Use of a different tool may cause damage to head-arm or carriage. Always inspect the adjustment end of tool prior to use. Tool must be free of nicks and scratches, and must have a polished surface. If any aluminum deposits are present, polish tool surface with crocus cloth. Any other polishing medium will damage the tool. Do not use a defective tool; repair or replace tool if damage exists. When using tool, position alignment tool so that pin in end of tool engages adjustment slot in head arm. Ensure that alignment tool is kept perpendicular to hole in carriage at all times. Tool should turn freely in hole. If it doesn't, recheck end of tool for damage or aluminum build up.

Calculating Offset - The formula for calculating head offset is (P) - (N) = Offset, where P is equal to the meter reading with the head alignment card P / N switch in the P position, and N is equal to the reading with the switch in the N position. All meter readings to the left of zero are negative. Following are examples of offset calculation:

1. $\mathbf{P}=+20 \mathrm{mV}, \mathrm{N}=+15 \mathrm{mV}$:
(P) - $(\mathrm{N})=(+20)-(+15)=+5 \mathrm{mV}$
2. $P=+20 \mathrm{mV}, \mathrm{N}=-15 \mathrm{mV}$:
$(\mathrm{P})-(\mathrm{N})=(+20)-(-15)=+35 \mathrm{mV}$
3. $\mathrm{P}=-20 \mathrm{mV}, \mathrm{N}=+15 \mathrm{mV}$:
$(\mathrm{P})-(\mathrm{N})=(-20)-(+15)=-35 \mathrm{mV}$

Seek Error Prevention - When the alignment tool is used to position the heads, a small amount of sideways pressure on the tool can cause the carriage to move. This relatively minor amount of movement generates an error voltage which is sensed by the logic as a seek error. The end result is that the logic clears the Slope flip-flop and causes the drive to seek to the next even cylinder. In order to prevent this nuisance error, the head alignment procedure recommends that the Not On Cylinder signal be grounded at backpanel pin A2B09 03B.

CAUTION

Do not install ground until instructed to do so by procedure.

The ground is installed after the heads are at the alignment cylinder, and it must be removed before another seek can be performed.

Excessive Misalignment - Occasionally, during the alignment check, a badly misaligned head(s) (in excess of 200 mv offset for 40 mb drives or 300 mv for 80 mb drives) may be discovered. If this is so, the head (s) should not be realigned until all packs written by that drive have been dumped (data transfered from pack to other storage). Failure to dump the packs before realignment of the heads will mean that the data is not recoverable.

Carriage Locking - During the alignment procedure (when the heads are over the alignment track) the carriage locking pin and ring assembly is installed in the ALIGN TRACK LOCK hole in the rail bracket assembly. This locks the carriage in place. Failure to install the pin and ring assembly would allow the carriage to retract if any emergency retract signal were generated. Since your hands are in the actuator during the head alignment procedure, the retract could be dangerous. It should also be noted that should a retract condition be generated, the carriage locking pin and ring assembly must be immediately removed to allow the heads to retract before a head crash occurs. Carefully observe the instructions regarding the installation and removal of the carriage locking pin and ring assembly.

CE Pack - The CE pack has odd-even dibits written on tracks 000 through 330 only, on the servo surface. Do not attempt to access beyond track 330.

The following procedure first checks the alignment of the servo head and then checks the alignment of the read-write heads (which are aligned in relation to the servo head).

Alignment instructions are provided if any head exceeds the allowable offset. Throughout the procedure, the first value specified is for 40 megabyte drives, the value specified in parenthesis applys to the 80 megabyte drives, numbers specified in brackets are hexadecimal values for the cylinder address.

1. With heads fully retracted, raise logic chassis to maintenance position and note position of servo head adjustment slot in relation to hole in carriage. The adjustment slot should be approximately centered in carriage alignment hole (see figure 2-6).

NOTE
If drive has been used to write data packs, servo head should not be realigned until all readwrite heads have been checked and it is known that excessive misalignment does not exist on any of them. Reference introductory paragraph.
2. If servo head is misaligned, loosen mounting screw and (using alignment tool) position adjustment slot as shown in figure 2-6. When servo head is properly positioned, tighten head mounting screw to a torque of $12 \pm 1 / 2$ pound-force-inch. Lower logic chassis to normal operating position.

NOTE
If servo head is adjusted, all read write heads must be adjusted.
3. With CE pack installed and oscilloscope connected to head alignment card test points Y and Z, load heads to cylinder 000 [00] and perform thermal stabilization.

CAUTION

Do not attempt to access beyond cylinder 330 [14A].
4. When thermal stabilization is completed, command continuous seeks between cylinders 240 [F0] and 245 [F5] for 30 seconds minimum. This allows head gimbal springs to settle to a normal operating position, and also settles any binding between head arm and head mounting screw.
5. Stop continuous seeks and command a direct seek to cylinder 245 [F5].

NOTE

When using head alignment kit, set sensitivity switch on meter to 50 position and use $\mathrm{X} .1 / \mathrm{xl}$ switch on head alignment card to control sensitivity.
6. On head alignment card, set S / RW (servo/ read write) switch to S position, set X.1/X1 switch to X .1 position.
7. Balanced dibit pattern, similar to figure 2-7, should be observable on oscilloscope. If pattern is not balanced, terminate head arm alignment and refer to servo checks in trouble analysis section.

NOTE

When calculating head offset, if both P and N readings are less than 100 mv , set $\mathrm{X} .1 / \mathrm{Xl}$ switch on head alignment card to Xl position. Return switch to $X .1$ position before proceing to next head.
8. If balanced dibit pattern was observed in previous step, calculate head offset for servo head. Servo head offset must be $0 \pm 30 \mathrm{mv}$. If offset is greater than 30 mv terminate procedure and trouble shoot servo system.
9. On head alignment card, set S / RW switch to RW position. Select head 0 .
10. Calculate and record offset for head 0 .
11. Repeat previous step for all remaining heads.

CAUTION

If any read-write head exceeded 200 mv (300 mv) offset, excessive misalignment exists. Refer to introductory paragraph.
12. If calculated offset for any read-write head exceeded 100 mv (150 mv) proceed to next step. If all heads were within the offset requirements, restore drive to normal operation.
13. Command a return-to-zero seek. Press START switch to stop drive motor and unload heads.
14. Raise logic chassis to maintenance position and loosen head mounting screw for any head which exceeded the offset specification. Then retighten each loosened

Figure 2-6. Head Arm Alignment

OSCILLOSCOPE SETTINGS

LOGIC GND TO SCOPE GND

```
VOLTS /DIV
    CHI-2V
    CH 2- NOT USED
TMME / DIV
    A-2\muSEC
    B - NOT USED
```


TRIGGERTAG

```
A- INTERNAL POSTIVE
B- NOT USED
```


CH

CH 2

PROBE CONNECTIONS (USE XIOPROBE)
CH I TO FTU DIBITS JACK
CH 2- NOT USED
8JI40

Figure 2-7. Balanced Dibit Pattern
screw to a torque of $4 \pm 1 / 2$ pounds-force-inch. Remove connector support bracket from head arm connectors. This prevents possible electrical contact between alignment tool and bracket. Contact could cause a short circuit which would damage power amplifier.
15. Press START switch to start drive motor and load heads. Command continuous seeks between cylinders 240 [F0] and 245 [F5] for 30 seconds minimum.
16. Stop continuous seeks and command a direct seek to cylinder 245 [F5].

WARNING

Use care not to cause any short circuits when moving logic chassis to install locking pin. Failure to install locking pin could cause personal injury.
17. Swing down logic chassis and install carriage locking pin and ring assembly in ALIGN TRACK LOCK hole. Return logic chassis to maintenance position.
18. Ground backpanel pin A2B09 03B (Not on Cylinder) to prevent nuisance errors. Ensure that head alignment card X.1/X1 switch is set to $X .1$ position and select head to be aligned.
19. Using recommended head alignment tool, perform coarse adjustment as follows:
a. Adjust head until balanced dibit pattern is visible on oscilloscope.
b. Continue to adjust head for minimum deflection of null meter with respect to zero.
c. While changing position of P / N switch, continue to adjust head until calculated offset is less than 100 mv .

NOTE
If head cannot be aligned to less than 100 mv , it is possible readwrite head is at its end of travel. Recheck servo head alignment.
20. Repeat previous step for all heads to be aligned.
21. On head alignment card, set $\mathrm{X} .1 / \mathrm{Xl}$ switch to Xl position.
22. Perform fine adjustment same as coarse adjustment except adjust until calculated offset is less than 50 mv (75 mv). Perform fine head adjustment for all heads to be aligned.

NOTE

Failure to remove ground wire will prevent any seek from being accomplished.
23. Remove ground from backpanel pin A2B09 03B.
24. Move carriage locking pin and ring assembly to PIN STORAGE hole.
.25. Perform a return-to-zero seek.
26. For each head adjusted, tighten head mounting screw to a torque of $12 \pm 1 / 2$ pounds-force-inch.
27. Command continuous seeks between cylinders 240 [F0] and 245 [F5] for 30 seconds minimum.
28. Stop continuous seeks and command a direct seek to cylinder 245 [F5].

Use care not to cause any short circuits when moving logic chassis to install locking pin. Failure to install locking pin could cause personal injury.
29. Swing down logic chassis and install carriage locking pin and ring assembly in ALIGN TRACK LOCK hole. Return logic chassis to maintenance position.
30. Ground backpanel pin A2B09 03B to prevent nuisance errors.
31. Ensure that head alignment card $\mathrm{X} .1 / \mathrm{X1}$ switch is in Xl position.
32. Check alignment of each head that was adjusted to assure that tightening screws did not change alignment.

CAUTION

Use care when using alignment tool on heads which have been tightened to torque of $12 \pm 1 / 2$ pounds-force-inch. Misuse of tool will damage head arm or carriage.
33. If calculated offset for any head exceeds 75 mv (110 mv) repeat fine adjustment procedure until offset is less than 50 mv (75 mv).

NOTE
Failure to remove ground wire will prevent any seek from being accomplished.
34. Remove ground from backpanel pin A2B09 03B.
35. Move carriage locking pin and ring assembly to PIN STORAGE hole.
36. Restore drive to normal operation.

VELOCITY GAIN ADJUSTMENT (40 MB)

This procedure provides information on the checking and, if necessary, adjusting of the 40 megabyte servo system velocity signals. Because of the interaction between the three adjustments (velocity transducer gain, coarse velocity, and fine velocity), it is necessary to perform the adjustments as specified in the procedure. If any of the adjustments cannot be completed satisfactorily, the procedure must be terminated. If this happens, perform trouble analysis. The following procedure assumes that the FTU is connected, and that a scratch pack is installed on the drive.

1. With the drive case closed, command random seeks for 10 minutes minimum in order to thermally stabilize drive.
2. Stop random seeks and set up oscilloscope per figure 2-8. Oscilloscope ground references must be as shown.
3. Command 410 (hex 19A) cylinder continuous seeks and adjust oscilloscope trigger level to obtain waveform shown in figure 2-8.
4. Measure amplitude of Velocity signal (displayed on channel 2) and null-tonull time of Fine Position Analog
signal (displayed on channel 1). Amplitude of Velocity signal and null-tonull time of Fine Position Analog signal must correspond as shown in table 2-6.

TABLE 2-6. 40 MB VELOCITY VOLTAGE VS NULL TIME

NOTE
Voltage readings in column A are $\pm .1$ volt. Null-to-null readings in column B are $\pm 4 \mu \mathrm{sec}$.

A (volts)	B ($\mu \mathrm{sec}$)	A(volts)	B ($\mu \mathrm{sec}$)
5.2	100	6.7	77
5.3	98	6.8	76
5.4	96	6.9	75
5.5	94	7.0	74
5.6	93	7.1	73
5.7	91	7.2	72
5.8	89	7.3	71
5.9	88	7.4	70
6.0	86	7.5	69
6.1	85	7.6	68
6.2	84	7.7	67
6.3	82	7.8	67
6.4	81	7.9	66
6.5	80	8.0	65
6.6	79		

Figure 2-8. 40 MB Velocity Transducer Gain Waveforms

NOTE

Velocity amplitude changes as null-to-null time of Fine Position Analog signal is adjusted. Be sure to check both measurements while performing adjustment.
5. If time versus voltage relationship, measured in previous step, was not as specified in table, perform velocity transducer gain adjustment. On card A2A07, adjust potentiometer E2R6 (see figure 2-9) until relationship between time and voltage is as specified in table 2-6.
6. When velocity transducer gain adjustment is correct, change oscilloscope setup to that shown in figure 2-10.

Figure 2-9. 40 MB Velocity Gain Adjustment Locations

OSCILLOSCOPE SETUP

Figure 2-10. 40 MB Coarse Velocity Waveform
8. If full length seek time is not as specified, perform coarse velocity adjustment. On card A2A07, adjust coarse velocity potentiometer B3R2 (see figure 2-9) until time between On Cylinder Sense pulses is 50 to 52 milliseconds.

NOTE

Position of oscilloscope probe connections does not change between coarse and fine velocity adjustments.
9. When coarse velocity adjustment is correct, change oscilloscope setup to that shown in figure 2-11.
10. Command random seeks.
11. Fine Position Analog signal (displayed on channel 1) should show a slight ripple just as it is nulling out. Also, there could be a slight overshoot of the forward and reverse signals. On

Cylinder Sense signal should be relatively stable. Referring to figure 2-11, note difference between Velocity Too Fast, Velocity Too Slow, and Correct Velocity.
12. If overshoot of Fine Position Analog signal and jitter of On Cylinder Sense signal are not approximately as shown in figure 2-11, (correct velocity) perform fine velocity adjustment. On card A2A07, adjust fine velocity potentiometer B3R6 (see figure 2-9) until velocity is as fast as possible without excessive overshoot or breakup of on Cylinder Sense waveform.
13. If fine velocity adjustment was required in previous step, repeat coarse velocity adjustment. Continue to perform adjustments until both coarse and fine velocity adjustments meet specifications.
14. Return drive to normal operation.

ADDITIONAL SETTINGS: NONE

Figure 2-11. 40 MB Fine Velocity Waveforms

VELOCITY GAIN ADJUSTMENT (80 MB)

This procedure provides information on the checking and, if necessary, adjusting of the 80 megabyte servo system velocity signal. If the adjustment cannot be completed satisfactorily, the procedure must be terminated. If this happens, perform trouble analysis. The following procedure assumes that the FTU is connected, and that a scratch pack is installed on the drive.
-1. With the drive case closed, command random seeks for 10 minutes minimum in order to thermally stabilize drive.
2. Stop random seeks and set up oscilloscope per figure 2-12. Oscilloscope ground references must be as shown.
3. Command 822 (hex 336) cylinder continuous seeks and adjust oscilloscope trigger level to obtain waveform shown in figure 2-12.
4. Measure full length seek time. Time between On Cylinder pulses should be 52 to 54 milliseconds.
5. If full length seek time is not as specified, perform velocity gain adjustment. On card A2A07, adjust velocity gain potentiometer E2R6 (see
figure 2-13) until time between leading edges of On Cylinder pulses is 52 to 54 milliseconds.
6. Return drive to normal operation.

Figure 2-13. 80 MB Velocity Gain Adjustment Location

Figure 2-12. 80 MB Velocity Gain Waveform

SECTION 2D

REPAIR AND REPLACEMENT

GENERAL

This section assumes that the particular assembly has previously been identified as malfunctioning. It then provides all necessary procedures pertaining to the adjustment, replacement, and repair of field replaceable parts of the drive. In addition, it identifies what to do when a particular part of the drive cannot be replaced in the field.

Information contained in this section assumes that the reader is thoroughly familiar with the information presented in the General Maintenance Information section of this manual. Also, this section relies heavily on the illustrations contained in the Parts Data section of this manual. These illustrations show the assembly and disassembly relationship of all the parts in the various assemblies. Individual procedures make specific references to the parts data illustrations.

Throughout the section, procedures for the various components or assemblies provide information on adjustment, removal-replacement, and repair in that order. If an adjustment procedure is included, and if there is some doubt as to the need for replacement, the adjustment procedure should be attempted before the final decision to replace the part is made.

Unless otherwise specified, all procedures in this section assume that the drive is powered down and that the customer disk pack is removed. Also, unless otherwise specified, all procedures can be performed with the drive installed in its normal operating position (in line with other drives, or in an equipment rack). Procedures for opening and closing the various cabinet components, and for raising and lowering the deck and logic chassis are included in the General Mainten-ance section under Access Drive For Mainten-ance.

CABINET REPAIR

GENERAL

Cabinet repair is limited to the removal and replacement of the various assemblies and their subcomponents, and to the adjustment of those assemblies for proper seating. Information is presented for all of the various mounting configurations of the drive. For this reason, ensure that the procedure is applicable to your drive (acoustic, nonacoustic, cabinet mounted, slide rail mounted, etc.).

Information is presented in the following order:

- Case Assemblies
- Pack Access Cover Assemblies
- Door Assemblies
- Side Panel Assemblies
- Slide Assemblies

CASE ASSEMBLIES

The case assemblies applicable to the various mounting configurations of the drive are illustrated in figures 3-7 through 3-11.

Adjustment

There are two adjustments applicable to the case assemblies: (1) Alignment to pack access cover (applicable to all mounted configurations), (2) Alignment to 1/4-turn fasteners (applicable only to acoustic top mount drives).

Alignment To Pack Access Cover - The case assembly must be parallel to, and centered around, the pack access cover. Before making this adjustment, ensure that the pack access cover is properly adjusted. Adjust the case assembly by carefully bending the pivot pin tabs on the base assembly (Al). The case assembly is properly adjusted when the gap between the case and pack access cover (with cover installed and closed) is approximately equal on all sides and the edges are approximately parallel.

Alignment To 1/4-Turn Fasteners - When the case assembly is closed, the case must align with the $1 / 4$-turn fasteners such that the fasteners can engage and secure the case to the frame. Before making this adjustment, ensure that the pack access cover is properly adjusted and that the case is properly aligned to the pack access cover. Adjust the case by loosening all four sets of at-
taching hardware (see figure 3-3, Sheet 1) which secure the drive electronics assembly to the frame. Move the drive electronics assembly in relation to the frame, until the case can be secured by the $1 / 4$-turn fasteners. When adjustment is complete and case can be secured, tighten the attaching hardware securing the drive electronics assembly to the frame.

Removal-Replacement

Although the various case assemblies are distinctive, the following procedure (with differences noted) applies to all case assemblies. Replacement is simply performed in the reverse order of removal.

1. Open case assembly from rear and pivot it forward on case pivot pin until it rests on case support arm (or support rod).
2. Remove ground cable by pulling it from quick disconnect terminal.
3. Disengage two halves of case support arm (or disengage support rod from slot in frame) while supporting case.
4. While still supporting case, slide case pivot pins (both sides) towards center of drive to disengage pivot pins from brackets.
5. Lift off case assembly.

Repair

Case assembly repair consists of removing and replacing broken or damaged parts. Section 3 lists all parts of the case assemblies which are field replaceable. There are no special tools required for case repair. The following items require the use of special materials:

- When replacing the support arm on all except the acoustic top case, put a light coat of Loctite grade C on threads of attaching screw.

CAUTION

Spray adhesive may get into drive if sprayed into air in computer room .

- When replacing acoustical foam panels on acoustic case assemblies, use a light coat of sprayable adhesive. First remove paper backing from foam. Then spray the adhesive around all edges of panel approximately one inch from edge. Also apply adhesive in an "x" pattern across center of panel. Place panel in position on case and press firmly into position.

PACK ACCESS COVER ASSEMBLIES

The non-acoustic and acoustic pack access cover assemblies are illustrated in figures 3-12 and 3-13 respectively.

Adjustment

Pack access cover adjustment is required if the gasket on the bottom of the cover does not seal on the shroud. Check the sealing by placing a piece of paper on the shroud and closing the cover. If the paper can be easily pulled out, the cover needs adjustment. Check the sealing at a minimum of four points around the shroud.

There are three points of adjustment on the pack access cover: (1) left hinge bracket (2) right hinge bracket (3) cover catch. The hinge brackets provide enough play to allow an up and down adjustment which controls the sealing of the gasket at the rear of the pack access cover. The cover catch also provides up and down adjustment. The cover catch controls the sealing of the gasket at the front of the cover.

In addition to pack access cover sealing adjustment, the cover must also be aligned parallel to and centered between the edges of the case assembly. Center cover on shroua by using pack cover spacers (as required) between bracket and bearing as shown on final assembly figure (3-2 through 3-6). Spacers may go on either side of cover as necessary to center cover. It may be necessary to readjust cover centering in order to complete case assembly centering adjustment.

Removal-Replacement

The following procedure applies to both the non-acoustic and acoustic pack access cover. Cover replacement is simply the reverse order of removal

1. Open pack access cover and remove ground strap by pulling loose quick disconnect on left side under shroud.
2. Remove retaining ring from pin securing gas spring to pack access cover.
3. While supporting pack access cover, pull out pin securing gas spring to cover.
4. Carefully loosen screws securing right-side hinge bracket. When screws have been loosened sufficiently, disengage hinge bracket and remove pack access cover.

Repair

Pack access cover repair consists of replacing broken and damaged parts. Section 3 lists all field replaceable parts of the covers. There are no special tools or materials required for pack access cover repair.

DOOR ASSEMBLIES

The door assemblies for the various mounting configurations of the drive are illustrated in figures 3-14 through 3-17.

Adjustment

The only adjustment required for the door assemblies is that they be aligned to the rest of the cabinet, and that they not rub on other cabinet members through the arc of their swing. All adjustment is accomplished by positioning the hinge members. Once the door is properly aligned, some adjustment of the keeper latch may be required to ensure proper latching.

Removal-Replacement

Removal and replacement procedures for the door assemblies depend on the style of the cabinet: non-acoustic or acoustic. The following procedures describe door removal; replacement is accomplished in the reverse order or removal.

Non-Acoustic Door - Door removal is accomplished by first opening the door and pulling the ground strap from the quick-disconnect terminal. The door is then removed by removing the lower hinge bracket and disengaging the door from the top hinge.

Acoustic Door - Door removal is accomplished by first opening the door and removing the attaching hardware securing the ground strap (and unplugging connector P400 on rear doors). The door is then removed by pulling out the hinge pin in the lower hinge and lifting the door from the upper hinge.

Repair

Door repair is limited to replacing broken or damaged parts. Section 3 lists all field replaceable parts of the doors. There are no special tools required for door repair.

The only special material required is sprayable adhesive. This is used in attaching the acoustical foam panels to acoustic door assemblies. Procedure for using the adhesive is the same as that listed under case assembly repair

SIDE PANEL ASSEMBLIES

The non-acoustic and acoustic side panels are illustrated in figures 3-18 and 3-19 respectively. All work on the side panels requires that the drive be accessible on all sides.

Adjustment

Side panel adjustment is required only on acoustic cabinets. Adjustment is required in three directions (see figure 2-14). The
four brackets on the side panel (A in figure 2-14) control the up-down adjustment for the side panel. The four brackets on the frame (B in figure 2-14) control the front-back and in-out adjustment of the side panel.

Perform the up-down adjustment to cause the top of the side panel to be parallel and flush with the top of the cabinet frame. Perform the front-back adjustment to cause the front edge of the side panel to be paralel to, and approximately 1-1/2 inches (38.1 mm) in front of the front cabinet frame member (see figure 2-14). For this adjustment also ensure that front edge of side panel is flush with the front door when it is instaled. Perform the in-out adjustment to cause the acoustic seals on the side panel to be in in contact with the cabinet frame. This adjustment should be snug enough to cause a slight squashing of the seals when the side panel is secured in place.

Figure 2-14. Side Panel Adjustment

A complete side panel adjustment is performed in the following order:

1. Adjust lower two brackets on side panel until panel meets up-down adjustment requirements.
2. Adjust lower two brackets on frame until panel meets front-back and in-out adjustment requirements. Lower rear bracket on frame governs exact frontback placement, while lower front bracket needs only an approximate placement.
3. Adjust top two brackets on frame so that 1/4-turn fasteners line up with side panel in front-back direction and that side panel meets in-out requirements.
4. Adjust top two brackets on side panel so that they line up with $1 / 4$-turn fasteners.

Removal-Replacement

Removal and replacement procedures for the side panel assemblies depend on the style of the cabinet: non-acoustic or acoustic. The following procedures describe side panel removal. Replacement is accomplished in the reverse order of removal.

Non-Acoustic Side Panel - Remove side panel as follows:

1. Open front door and remove ground cable(s) from side Panel(s) by pulling cable from quick-disconnect.
2. Remove front attaching hardware from side panel(s).
3. Open rear door and remove rear attaching hardware while supporting side panel(s).
4. Lift side panel up to clear side panel brackets.

Acoustic Side Panel - Remove side panel as follows:

1. Open rear door and remove ground cable from side panel(s) by removing screw and lock washer.
2. Release rear l/4-turn fastener (s).
3. Open front door (or fully extend lower drive on its slides) and release front l/4-turn fastener(s) while supporting side panel.
4. Lift side panel up to clear side panel brackets.

Repair

Side panel repair is limited to replacing broken or damaged parts. Section 3 lists all field replaceable parts of the side panels. There are no special tools required for side panel repair.

The only special material required is sprayable adhesive. This is used in attaching the acoustical foam panels to acoustic side panels. Procedure for using the adhesive is the same as that listed under case assembly repair.

SLIDE ASSEMBLIES

The slide assembly relationship to the drive and frame is illustrated in figures 3-4 through 3-6. Identification of the various slide parts is shown in figure 2-15.

Adjustment

Adjustment of the slide assemblies is covered in the replacement procedure.

Removal-Replacement

The following procedures (with differences noted) apply to all drive configurations which use slide assemblies.

Removal - Remove slide assembly as follows:

1. Pull drive out to its fully extended position by pressing full extension releases.
2. Disconnect I/O cables, power cable, and system ground.
3. Loosen nuts securing quick-disconnect catches and slide catches toward front of drive.

CAUTION

Two people are required to lift drive off slide assemblies.
4. Carefully lift drive (with quick disconnects attached to drives base assembly) from slide assemblies and set on a solid support.
5. Remove quick disconnects from drives base assembly by removing attaching screws and washers.
6. Push slide assemblies to fully closed position by pressing in full extension releases and pushing in slide assemblies.

NOTES:
(1) ALLOW REAR RECESS BRACKET ADJUSTMENT.
(2) LOCKS IN EXTENDED POSITION WHEN OUTER SLIDE IS FULLY EXTENDED.
(3) EXTENDED BY PRESSING FULL EXTENSION RELEASE. FULL EXTENSION LOCK SNAPS OUT WHEN THIS SLIDE IS FULLY EXTENDED.
(4) LOOSENING NUTS ALLOWS CATCH TO MOVE IN DIRECTION OF ARROW THUS ALLOWING QUICK DISCONNECT TO BE REMOVED.
5 ASSEMBLY SHOWN IS FOR RIGHT SIDE OF DRIVE.
9 H 7
Figure 2-15. Slide Assembly Parts Location
7. Loosen mounting hardware securing slide assemblies to frame or rack.
8. Disengage slide assemblies from frame or rack by pulling slotted ends of slides out from between nut plate and frame.

Replacement - Install slide assemblies as follows:

1. Loosen adjusting screws and adjusting nuts on slide assemblies such that rear recess bracket can slide back and forth.
2. Push slide assemblies into fully closed position.
3. Loosely attach screws, lock washers, and nut plates to frame or rack. Leave hardware loose enough so that slotted ends of slide assembly can be inserted between nut plate and frame or rack.
4. Adjust position of rear recess bracket such that slide assemblies can be positioned in frame or rack. Position slide assemblies in frame with quick disconnect flanges at bottom and facing one another.
5. Tighten mounting hardware securing slide assemblies to frame. Tighten adjusting screws and adjusting nuts securing rear recess bracket to main bracket.
6. Ensure that slide assemblies are aligned both horizontally and vertically and that they are parallel.
7. Pull both slide assemblies to their fully extended position by pressing full extension releases.
8. Separate quick disconnects from slide assemblies by loosening nuts securing quick disconnect catch and sliding catch forward.
9. Remove rubber mounting pads from bottom of drive (some units may not have mounting pads).

NOTE

For ease of assembly and to prevent damage to case assembly, remove case before installing drive on slide assemblies.
10. Using four countersunk flat-head screws and countersunk washers on each side, attach quick disconnects to drives base assembly.

CAUTION

Before mounting drive ensure that all slide assembly mounting hardware is secure. Use two people to lift drive on to slides. When installing drawer mounted drive, use care not to exert undue downward pressure or frame may tip forward.
11. Carefully lift drive over fully extended slide assemblies. Engage mounting tooth on quick disconnects with mounting slot on outer slide. Ensure that mounting block is properly seated in mounting notch.
12. Slide quick disconnect catch into position under outer slide and tighten nuts.
13. Press in to release full extension locks and then slide drive in and out several times to ensure that it slides freely and that binding does not occur. If binding occurs, slide assemblies are not properly aligned.
14. Connect I/O cables, power cable, and system ground.
15. When slide installation is complete, install side panels (drawer mounted drives only) and then install case assembly.

Repair

No repair of the slide assemblies is possible at the field level. If a slide assembly is damaged, the entire assembly must be replaced.

ELECTRONIC PACKAGE REPAIR

GENERAL

Electronic package repair is limited to the removal and replacement of the various assemblies and parts of the drive, and to the adjustment of those components. The illustrations in section 3 show all the field replaceable parts of the drive and their interrelationship to one another. Most parts of the drive can be replaced simply by studying the parts list illustrations. However, there are some procedures which are not obvious or which require the use of special tools or materials. These procedures are arranged in alpha-numeric order according to their physical location codes. The mechanical assemblies, which do not have physical location codes (drive belt), are located next to a part with which they logically associate (drive motor). The following procedures are included in the order stated:

- 42 Volt Supply/Emergency Retract Assembly (AlAl)
- 12 And 20 Volt Supply (AlA2)
- 5 Volt Supply (AlA3)
- Blower Motor (AlBM1)
- Start Triac (AlKl)
- Logic Chassis (A2)
- Control Panel Assembly (A3A01)
- Power Amplifier Assembly (A3A04)
- Track Servo Preamplifier (A3A05)
- Drive Belt
- Drive Motor and Brake Assemblies (A3DM1, A3HBl)
- Spindle Assembly
- Static Ground Spring
- Speed Transducer (A3L1)
- Velocity Tranducer (A3L2)
- Pack Cover Solenoid (A3L3)
- Rail Bracket Assembly
- Carriage and Coil Assembly
- Heads Loaded Switch (A3S2)
- Flex Lead Assembly
- Magnet Assembly
- Head Arm Assemblies
- Cable Assemblies (Wl through W4, W11, wl2)

42 VOLT SUPPLY/EMERGENCY RETRACT ASSEMBLY (AIAI)

The plus and minus 42 volt power supply, emergency retract assembly is illustrated in figure 3-32.

Adjustment

There are no adjustments applicable to the 42 volt power supply. If the output does not meet specification, repair or replace the card.

Removal-Replacement

There are no special procedures for removing the card. Simply remove the power supply cover and lift the card straight out of the power supply chassis.

Repair

Repair of the 42 volt power supply card consists of removing and replacing the electrical components in accordance with the parts data information. In replacing resistors R 1 and R2, use RTV adhesive sealant, or a suitable substitute, to cement the resistor body to the board blank.

12 AND 20 VOLT SUPPLY (AIA2)

The plus and minus 12 volt and plus and minus 20 volt power supply is illustrated in figure 3-33.

Adjustment

There are no adjustments applicable to the 12 and 20 volt power supply. If the output does not meet specification, repair or replace the card.

Removal-Replacement

There are no special procedures for removing the card. Simply remove the power supply cover and lift the card straight out of the power supply chassis.

Repair

Repair of the 12 and 20 volt power supply consists of removing and replacing the electrical components in accordance with the parts data information. In replacing voltage regulator diodes VR1 and VR2, apply a thin coat of dielectric grease between the base of the diode and the heatsink.

5 VOLT SUPPLY (A1A3)

The plus and minus 5 volt power supply is illustrated in figure 3-34.

Adjustment

Adjustment of the 5 volt power supply is covered in Section 2C, Test and Adjustment.

Removal-Replacement

There are no special procedures for removing the card. Simply remove the power supply cover and lift the card straight out of the power supply chassis.

Repair

Repair of the 5 volt power supply consists of removing and replacing the electrical components in accordance with the parts data information. In replacing resistor R20, use RTV adhesive sealant (or a suitable substitute) to cement the resistor body to the board blank. In replacing transistors Q4, Q9, and Q10, apply a thin coat of dielectric grease between the base of the transistor and the heatsink.

BLOWER MOTOR ASSEMBLY (AIBMI)

The blower motor is illustrated in figure $3-30$, sheet 2 .

Adjustment

There is no adjustment applicable to the blower motor.

Removal-Replacement

Removal and replacement of the blower motor assembly is accomplished in accordance with the information in the parts data section. Before removing the blower motor, first remove the absolute filter and the logic chassis air plenum. If the square shoulder grommets between the base and the blower motor are removed or need to be replaced,
ensure that the wide shoulder on the grommet is installed toward the blower. The foam tape gasket between the blower and the logic chassis air plenum is not part of the blower motor assembly. Refer to Repair for the replacement of the gasket.

Repair

Repair of the blower motor assembly is limited to the replacement of connectors, pins. quick connect terminals, insulating pods, and the foam gasket next to the logic chassis air plenum. Refer to the paragraph on cable assembly removal-replacement and repair for information concerning the electrical terminals.

Gasket replacement requires approximately 12 to 13 inches (305 to 330 mm) of foam tape. Proceed as follows:

1. Cut two lengths of foam tape, each 5-1/2 inches (139.7 mm) long.
2. Place logic chassis air plenum on base next to blower motor and align holddown holes. Mark position of each end of plenum on blower motor with a pencil.
3. Remove backing from one 5-1/2 inch (139.7 mm) length of tape to expose adhesive. Position edge of tape against base (to seal space under blower) and center around two marks made on blower motor. Press tape firmly into position against blower and base.
4. Remove backing from second length of foam tape to expose adhesive. Position tape above upper edge of cutout in blower, edge of tape must be even with edge of cutout. Align ends of tape with first piece of tape and press into place on blower.
5. Cut two lengths of foam tape to length required to fill space between two lengths of tape already installed. Remove backing from tape and position with outer edges of tape even with ends of installed tape. Press into position.

NOTE

Use care not to damage gasket when installing logic chassis air plenum.

START TRIAC (AIKI)

The start triac is illustrated in figure 3-30, sheet 1 .

Adjustment

There is no adjustment applicable to the start triac.

Removal-Replacement

Removal and replacement of the start triac is performed in accordance with the information in the parts data section. When replacing the start triac, apply a light coat of dielectric grease to the base of the triac.

Repair

No repair of the start triac is possible.
If the triac fails it must be replaced.

LOGIC CHASSIS ASSEMBLY (A2)

The logic chassis assembly is illustrated in figure 3-22.

Adjustment

There is no adjustment applicable to the logic chassis assembly.

Removal-Replacement

The following procedure covers removal of the the entire logic chassis from the drive and removal of the wirewrap assembly from the logic chassis. However, the most common repair of the logic chassis is the changing of wires or the straightening or replacement of pins on the wirewrap panel. For these procedures it is not necessary to remove the entire logic chassis assembly. Replacement of the logic chassis is performed in reverse order of removal.

1. Disconnect $1 / 0$ cables in accordance with procedure listed under Standard Test Conditions.
2. Remove I/O card(s) from locations D1 (and D2).
3. If terminators are installed, remove them from locations Cl (and C2).
4. Remove all cards from logic chassis.
5. Raise logic chassis to maintenance position and remove all connectors, power and ground leads, and logic chassis cover from back of wirewrap panel (refer to figure 3-20, sheet 2).
6. With logic chassis in maintenance position, press in on flat spring and slide logic chassis off hinge.
7. Remove parts of logic chassis as necessary, in accordance with illustration in parts data section.
8. If it is necessary to remove wirewrap assembly from logic chassis, use a pliers to open crimp on end of each guide rail. When all crimps have been opened and each guide rail member is sufficiently straight, guide rails can be pulled out of wirewrap assembly.

Repair

Logic chassis repair is limited to the removal and replacement of broken or damaged parts in accordance with the parts data section, and to the repair of wires and replacement of wirewrap panels pins. The following procedures provide information on wirewrap replacement and pin straightening/replacement.

Wirewrap Replacement - This procedure describes removal and replacement of backpanel wirewrap connections.

1. Using end of wirewrap tool with notch opposing direction of wires wrap, slide tool over pin and carefully turn tool to unwrap wire.

CAUTION

> Do not attempt to rewrap a previously wrapped wire. Cut off old wrap and restrip wire, or replace with new wire.
2. If wire is being replaced, cut new wire to proper length and strip approximately $1-1 / 8$ inch (28.5 mm) of insulation from each end of wire.
3. Insert one end of wire into wirewrap tool until insulation rests against stop.
4. Slide tool over backpanel pin, leaving a small gap between bottom of post or lower wrap level and new wire.
5. Hold wire securely (allow small amount of slack to assure one turn of insulation) and twist tool to wrap wire around pin. As tool is twisted, wire wrapping around pin forces tool up and off wire.
6. When wire is completely wrapped, remove tool and inspect connection. Each connection must have one turn of insulation and six to seven turns of bare wire around pin.

Pin Straightening/Replacement - Wirewrap panel in straightening is accomplsihed using the pin straightener listed in maintenance tools and materials. This procedure describes removing a damaged pin from the wirewrap panel and replacing it with a new one.

1. Remove card from logic chassis position associated with pin removal.

NOTE

Remove wires from pin, noting levels from which removed. When reinstalling wires, follow procedures in wirewrap replacement paragraph.
2. Remove all wires from subject pin.
3. Slide $1 / 0$ pin removal tool over pin from wirewrap side of panel and apply pressure toward panel until bond breaks and pin starts to slide out.
4. Grasp shank of pin (with long nose pliers or similar tool) from card side of panel and pull it out. If collar (see figure 2-16) comes out with pin, proceed to step 5. If collar remains secure in panel, proceed to step 6.

Figure 2-16. Wirewrap Pin Replacement
5. Coat collar of replacement pin (not hole) with fast cure epoxy and insert pin and collar into panel from wirewrap side. Proceed to step 7.
6. Insert replacement pin (with collar removed) into panel from wirewrap side until it is same length as adjacent pins.

CAUTION

Any epoxy on shaft of pin will prevent an electrical connedLion.

a. (obtain commercials

7. Carefully applyAfast cure epoxy/pround pin on wirewrap side of panel. Hew

8. Following epoxy cure, reconnect wires and replace logic card in card slot.

CONTROL PANEL ASSEMBLY (A3AOI)

The control panel assembly is illustrated in figures 3-20 and 3-21.

Adjustment

There is no adjustment applicable to the controd panel assembly.

Removal-Replacement

Remove the control panel from the shroud by reaching behind the shroud and carefully pressing on the back of the panel. Lift the panel out the front of the shroud and disconnect connector P201. Replacement is performed in reverse order.

Repair

Repair of the control panel is limited to the removal and replacement of broken or damaged parts in accordance with the parts data information. When replacing any of the switches or lens diffused LED, ensure that they are properly aligned to clear the bezel before they are soldered in place. It is especially important that the switches not bind on the bezel after assembly.

POWER AMPLIFIER ASSEMBLY (A3AO4)

The power amplifier is illustrated in figure 3-23, sheet 1 and in figure 3-29.

Adjustment

There is no adjustment applicable to the power amplifier assembly.

Figure 2-16. Wirewrap Pin Replacement
5. Coat collar of replacement pin (not hole) with fast cure epoxy and insert pin and collar into panel from wirewrap side. Proceed to step 7.
6. Insert replacement pin (with collar removed) into panel from wirewrap side until it is same length as adjacent pins.

CAUTION

Any epoxy on shaft of pin will prevent an electrical connection.
7. Carefully apply fast cure epoxy around pin on wirewrap side of panel. Allow epoxy to cure for \qquad .
8. Following epoxy cure, reconnect wires and replace logic card in card slot.

CONTROL PANEL ASSEMBLY (A3AO1)

The control panel assembly is illustrated in figures 3-20 and 3-21.

Adjustment

There is no adjustment applicable to the control panel assembly.

Removal-Replacement

Remove the control panel from the shroud by reaching behind the shroud and carefully pressing on the back of the panel. Lift the panel out the front of the shroud and disconnect connector P201. Replacement is performed in reverse order.

Repair

Repair of the control panel is limited to the removal and repladement of broken or damaged parts in accordance with the parts data information. When replacing any of the switches or lens difłused LEDs, ensure that they are properly aligned to clear the bezel before they are solderdd in place. It is especially important that the switches not bind on the bezel after dssembly.

POWER AMPLIFIER ASSEMBLY (A3AQ4)

The power amplifier is illustrated in figure 3-23, sheet 1 and in figure 3-29.

Adjustment

There is no adjustment applicable to the power amplifier assembly.

Removal-Replacement

The following procedure removes the power amplifier from the drive. Replacement is performed in reverse order.

1. Remove quick connect terminal (yellow leadwire) from faston on upper left hand corner of assembly.
2. Loosen attaching hardware securing upper left hand corner such that assembly can later be removed.
3. Raise deck to maintenance position.
4. Remove connector J200. It may be necessary to use a tool to pry apart two halves of connector.
5. Remove two sets of attaching hardware securing assembly to deck casting. It may be necessary to raise deck higher in order to gain adequate access to attaching hardware.
6. Carefully lift assembly from behind attaching hardware loosened in step 2.

Repair

Repair of the power amplifier assembly consists of removing and replacing broken or damaged parts in accordance with the parts data section. When replacing any of the resistors on the board, use RTV adhesive sealant, or a suitable substitute, to cement the resistor body to the board blank. When replacing transistors Q1 through Q4, apply a thin coat of dielectric grease between the base of the transistor and the heat sink. Transistor $Q 5$ uses the insulating wafer and does not need the dielectric grease.

TRACK SERVO PREAMPLIFIER (A3A05)

The track servo preamplifier assembly is illustrated in figure 3-23, sheet 1.

Adjustment

There is no adjustment applicable to the servo preamplifier assembly.

Removal-Replacement

The following procedure covers removal of the servo preamplifier assembly from the mounting plate and leaves the mounting plate secured to the deck. Replacement is performed in the reverse order of removal.

1. Raise deck to maintenance position.

2. Reach behind servo preamplifier from under deck and disconnect connector J8. It may be necessary to cut and remove cable tie strap.
3. Loosen attaching hardware on upper left hand corner of assembly. Carefully slide servo preamplifier shield from behind attaching hardware and leave it hanging on servo head cable.
4. Remove attaching hardware securing servo preamplifier housing to mounting plate. It may be necessary to remove deck support bracket and move deck up or down in order to have clear access to attaching hardware. Especially on cabinet mounted drives, it is easier to have one person manipulate deck into position and have a second person remove attaching hardware.
5. Unplug servo head connector from servo preamplifier board. Carefully remove preamplifier housing (containing board) from between deck and power supply. It may be easier to remove preamplifier housing if deck is lowered to normal operating position.
6. Remove attaching hardware securing servo amplifier board to housing.

Repair

There is no repair of the servo preamplifier possible at the field level. If the board is malfunctioning it must be replaced.

DRIVE BELT

The drive belt and associated adjusting hardware are shown in figure 3-23, sheet 5 .

Adjustment

The drive belt adjustment may be performed any time there is suspicion that the belt may be slipping or as required by other procedures in this manual. Before performing the adjustment, check the belt for any signs of damage: fraying, cracking, or checking of belt surface. If any of these signs exist, replace the belt before performing adjustment.

1. Raise deck to maintenance position.
2. Referring to figure 2-17, measure distance between spring guide and stop nut. Distance must be:

Figure 2-17. Drive Belt Adjustment

- 0.40 ± 0.05 inch ($10.16 \pm 1.27 \mathrm{~mm}$) for 50 Hz drives.
- 0.25 ± 0.05 inch $(6.35 \pm 1.27 \mathrm{~mm})$ for 60 Hz drives.

3. If dimension is not correct, turn motor adjusting rod until it meets specification.
4. Open pack access cover and rotate spindle while checking drive belt tracking. Belt must run true on both motor pulley and spindle pulley. Belt not tracking properly indicates pulley misalignment.
5. When belt is tracking properly, close pack access cover and return deck to normal operating position.

Apply power to drive and press START switch to start drive motor. Again watch drive belt and see that it is tracking properly.

Removal-Replacement

The following procedure covers both the removal and replacement of the drive belt and applies to all drives.

1. Raise deck to maintenance position.

CAUTION

Failure to relieve pressure on compression spring may cause the motor shaft to be bent.
2. Turn motor adjusting rod out until pressure on compression spring is fully relieved.
3. Remove drive belt from motor by rolling belt off motor pulley while rotating pulley. Disengage belt from spindle pulley and slip it out from around brake.
4. To install drive belt, slip belt up over brake and then engage other end of belt in groove on spindle pulley. Apply tension to belt and guide it on to motor pulley while manually rotating drive belt and drive motor pulley.
5. Manually rotate drive motor pulley several times to make certain that drive belt is tracking properly.
6. Perform Adjustment procedure.

Repair

There is no repair of the belt possible.

DRIVE MOTOR AND BRAKE ASSEMBLIES (A3DMI, A3HBI)

The drive motor and brake assemblies are illustrated in figure 3-28.

Adjustment

There are two adjustments pertaining to the drive motor and brake assemblies 1) drive belt adjustment 2) brake adjustment. The drive belt adjustment procedure is provided in the Drive Belt paragraph. The brake adjustment is performed during the replacement and is provided in the Removal-Replacement paragraph under brake replacement.

Removal-Replacement

The brake assembly may be removed and replaced separately, or the drive motor and brake assemblies may be removed and replaced as a unit. When removing the drive motor, the brake must also be removed. Removal and replacement of either the brake or drive. motor and brake is self evident when using the illustration in the parts data section. Before beginning any work on the drive motor and brake assemblies, perform the drive belt removal procedure. The following information presents details of the reassembly procedures which are not obvious. Be thoroughly familiar with this information before attempting replacement.

Brake Replacement - The following procedure is to be used when ever a brake is installed on the drive motor shaft.

CAUTION

$$
\begin{aligned}
& \text { In order to prevent damage to } \\
& \text { drive motor shaft, brake re- } \\
& \text { placement must be performed } \\
& \text { in the order specified. }
\end{aligned}
$$

1. Loosely install brake mounting bracket on motor mounting plate (see figure 3-28).
2. Install brake shaft collar (with ridge of collar facing away from drive motor) and then brake on drive motor shaft.
3. Slide brake on motor shaft so that collar slides on split shaft of brake armature and so that stud on brake strikes end of slot in brake mounting bracket. Tighten nut securing brake to brake mounting bracket.

CAUTION

In following step, be certain that brake is centered around drive motor shaft. If brake is miscentered it could cause damage to, or breaking of, drive motor shaft.
4. Support brake to maintain centering on motor shaft while tightening screw securing brake mounting bracket to motor mounting plate.
5. While holding motor pulley to prevent shaft from turning, rotate hysteresis brake armature several turns to eliminate any binding between drive motor shaft and brake armature.
6. With brake shaft collar resting on brake, tighten hex head socket screw in collar as follows:

- On newer units (use a 9/64-inch hex wrench) tighten screw to a torque of 30 ± 2 pounds-force-inch.
- On older units (use a 7/64-inch hex wrench) tighten screw to a torque of 20 ± 2 pounds-force-inch.

NOTE
Replacement brakes are supplied with extension cabling (required on older units.) If extension cable is not required, discard it.
7. Connect brake leadwires.
8. Replace cable ties, being certain that all wires are secured so they will not be rubbed by drive belt.

Drive Motor Replacement - Observe the following when reassembling the drive motor assembly:

NOTE

If it is necessary to replace drive motor assembly because of an electrical failure of the motor, also replace capacitor A3C6. It is likely that this capacitor is associated with failure.

1. With motor mounted on motor mounting plate, position pulley on drive motor shaft so that alignment dimension shown in figure $2-18$ is $13 / 16 \pm 1 / 32$ inch $(20.7 \pm 0.8 \mathrm{~mm})$.
2. Ensure that motor pulley flange protrudes slightly through shaft collar.
3. Tighten set screw in shaft collar to a torque of 65 ± 5 pounds-force-inch.

Figure 2-18. Drive Motor Pulley Adjustment

Repair

Repair of the drive motor and brake assemblies is limited to removing and replacing broken or damaged parts in accordance with information in the parts data section.

SPINDLE ASSEMBLY

The spindle assembly is illustrated in figure 3-24.

Adjustment

Spindle adjustment must be performed any time the attaching hardware securing the spindle to the deck has been loosened.

1. Remove head arm assembly number 3 (second from bottom).
2. Install carriage alignment arm in slot on carriage just vacated by head arm assembly number 3. Secure alignment arm to carriage and tighten attaching hardware until torque is $4 \pm 1 / 2$ pounds-force-inch.
3. Extend carriage until alignment arm is aligned as shown in figure 2-19.
4. Using non-metalic feeler gauge, check that distance between alignment arm and spindle is as specified in figure 2-19. If adjustment is required, go to step 5. If specification is met go to step 11.
5. Retract carriage and rotate spindle untill holes in top of spindle align with mounting hardware.
6. Remove screws and washers securing spindle to deck. Install screws (without washers) and just snug screws tight.
7. Extend carriage until alignment arm is positioned as shown in figure 2-19.
8. Using a plastic faced hammer, gently tap spindle until dimension between alignment arm and spindle is as specified in figure 2-19.
9. Tighten one screw at a time and check dimension after tightening each screw.
10. When last screw is tighten in step 9 , remove first screw tightened and install washer on it. Then reinstall screw, tighten it, and recheck dimensional requirement. Repeat this procedure for the second and third screws.

HOLE(S) FOR REMOVING
SPINDLE-TO-DECK
MOUNTING SCREWS
8J26A

Figure 2-19. Spindle/Carriage Alignment
11. Remove alignment arm and install head arm assembly in slot number 3 in carriage.
12. Perform static ground spring adjustment and head arm alignment procedures.

Removal-Replacement

The following procedure covers removing and replacing the entire spindle assembly. It is not necessary to remove the spindle to
perform lockshaft replacement. Refer to Repair for information concerning lockshaft replacement.

1. Raise deck to maintenance position.
2. Referring to figure 3-23, sheet 5 , remove attaching hardware securing ground cable to static ground spring block.
3. Remove drive belt and set it aside.
4. Lower deck to normal operating position.
5. Rotate spindle until holes in top of spindle align with mounting hardware.
6. Remove attaching hardware securing spindle assembly to deck.
7. Lift spindle assembly from deck, being careful to avoid damage to static ground spring.
8. Remove attaching hardware securing static ground spring mounting block to spindle assembly. Remove static ground spring assembly and install it on replacement spindle assembly.
9. Carefully lower replacement spindle assembly through deck opening in shroud. Orient spindle assembly so that ground spring mounting block faces drive motor.
10. Secure spindle assembly to deck using screws only. Lock washers are installed during Adjustment procedure.
11. Raise deck to maintenance position.
12. Install ground cable to static ground spring mounting block and install drive belt.
13. Perform Drive Belt Adjustment procedure and then the Spindle Assembly Adjustment procedure. Following spindle assembly adjustment, check speed sensor adjustment.

Repair

Repair of the spindle assembly is limited to removal and replacement of the lockshaft and associated hardware as indicated in the parts data section. The following procedure covers removal and replacement of the lockshaft.

1. Raise deck to maintenance position.
2. Referring to figure 3-23, sheet 5, remove attaching hardware securing ground cable to static ground spring block.
3. Remove static ground spring from mounting block.
4. Remove shaft end seal by prying down with a pair of opposing screw drivers.
5. Reaching in from bottom of spindle, remove shoulder screw and associated washers and spring. Spindle may be locked in position during shoulder screw removal, by pressing down on end of brake plate.
6. Lift lockshaft out from top of spindle.
7. Install replacement lockshaft, sliding it in from top of spindle. If smaller compression spring came out with old lockshaft, assemble it on new lockshaft before assembly.
8. Assembly two washers and compression spring on shoulder screw as shown in figure 3-24. Apply a thin coat of Loctite primer, grade T, to last four threads of shoulder screw; being careful not to get any primer on spring or washers.
9. Allow Loctite primer to air dry for approximately 5 minutes.
10. When Loctite primer is dry apply a thin coat of Loctite, grade C, to last four threads of shoulder screw. Parts must be assembled within three minutes of Loctite application.
11. Assemble shoulder screw and hardware into bottom of lockshaft. Tighten shoulder screw to a torque of 40 ± 5 pounds-force-inch.
12. Press shaft end seal into position on bottom of spindle assembly. Lower deck to normal operating position and allow Loctite to air dry for approximately three hours.
13. Following Loctite cure, raise deck to maintenance position and assemble static ground spring and associated ground cable.
14. Perform Clean and Lubricate Lockshaft procedure (see preventive maintenance).
15. Perform Static Ground Spring Adjustment procedure.

STATIC GROUND SPRING

The static ground spring (located on the bottom of the spindle assembly) is illustrated in figure 3-23, sheet 5.

Adjustment

The ground spring adjustment procedure must be performed any time the screws securing the spring or mounting block have been loosened, or as required by other procedures in this manual.

1. Raise deck to maintenance position.
2. Connect push-pull gauge to outer end of ground spring.
3. Using a force in-line with lockshaft, pull down on push-pull gauge. Force required to pull ground spring free of spindle end seal must be 90 ± 10 grams.
4. If force is within specification, go to step 7. If force is not within specification, loosen attaching hardware securing ground spring mounting block to side of spindle assembly.
5. Adjust spring tension by sliding mounting block toward deck (to increase tension) or away from deck (to decrease tension) and retightening attaching hardware.
6. Repeat force measurement and adjustment steps until specifications are met. If specifications cannot be met, replace ground spring.
7. Remove attaching hardware securing ground cable to ground spring mounting block and disconnect ground cable.
8. Connect multimeter (set to RXI) between ground cable and ground spring. Meter should indicate zero ohms. If specification is met go to step 10, if it is not met go to step 9 .
9. Clean bottom of shaft end seal (on bottom of spindle) using a piece of gauze slightly dampened with media cleaning solution. Repeat step 8. If specification is not met, replace ground spring.
10. Disconnect multimeter and connect ground cable to ground spring mounting block.
11. Lower deck to normal operating position.

Removal-Replacement

There are no special procedures for the removal and replacement of the static ground spring. Perform the removal-replacement in accordance with the information in the parts data section.

Repair

No repair of the static ground spring is possible. If any of the parts fail, they must be replaced.

SPEED TRANSDUCER (A3LI)

The speed transducer assembly is illustrated in figure 3-23, sheet 3.

Adjustment

Speed transducer adjustment is required when ever the relative position of the spindle and the speed transducer has been changed, or as required by other procedures in this manual.

1. Inside the pack area, place a straight edge across top of spindle face plate so that it extends out over top of speed transducer.
2. Check dimension from top of speed transducer to top of spindle assembly face plate (see figure 2-20). Dimension must be as specified in figure. If dimension is correct, terminate procedure. If dimension is not correct, go to next step.
3. Raise deck to maintenance position.
4. Loosen locknut on bottom of speed transducer. Disconnect connector J202 so that leads are free to turn during adjustment.

Figure 2-20. Speed Transducer Adjustment
5. Rotate speed transducer until dimension is correct. Tighten locknut until torque is 5 tl pounds-force-inch. Recheck dimension.
6. When dimension is correct and locknut is tightened, install connector J202.
7. Lower deck to normal operating position.

Removal-Replacement

There are no special procedures for the removal or replacement of the speed transducer. The speed transducer is removed and replaced from the bottom side of the deck assembly. When replacement is completed, perform the adjustment procedure.

Repair

Repair of the speed transducer is limited to the replacement of the connector and pins in accordance with the parts data section. Refer to Cable Assembly repair procedures for information on connector and pin replacement.

VELOCITY TRANSDUCER (A3L2)

The velocity transducer is illustrated in figure 2-21 and shown in parts data illustration 3-27.

Adjustment

Velocity transducer adjustment is covered in the removal and replacement procedure.

Removal-Replacement

The velocity transducer assembly consists of a transducer coil (complete with housing and connector), a transducer core, and an extension rod. When ever it is necessary to change any part of the transducer assembly, all parts of the assembly must be changed.

NOTE

When ordering the velocity transducer assembly be certain to also order the extension rod.

Figure 2-21. Velocity Transducer Replacement

The following procedure first covers replacement of the transducer coil, aligning it to the old transducer core. It then covers replacement of the core.

1. Remove attaching hardware securing transducer coil to rear of magnet assembly. Unplug connector P22.
2. Carefully remove transducer coil, sliding it straight out rear of magnet assembly.
3. Slowly and carefully slide replacement transducer coil into rear of magnet assembly.
4. Align one of the three slots on back of transducer coil with mounting hole in magnet. Manually extend heads and slide carriage back and forth. Be aware of any drag or of any rubbing sound. Rotate coil and move carriage again for each of remaining two slots on back of remaining two slots on back of transducer coil.
5. Select mounting slot which produced minimum drag and minimum rubbing. Orient this slot to mounting hole and install and tighten attaching hardware.
6. Connect connector P22. Extend heads and move carriage back and forth to verify alignment of transducer coil.
7. Reach in from logic chassis side of drive and disconnect extension rod from rear of carriage assembly using a 1/8inch open end wrench.
8. Push extension rod and transducer core through coil and out rear of magnet assembly.
9. Apply light coat or Loctite grade C to threads of new extension rod and screw rod into end of replacement transducer core. Wipe off excessive Loctite.

NOTE

Do not apply Loctite to remaining end of extension rod until completing next step.
10. Slowly and carefully slide replacement transducer core and extension rod through coil from rear.

CAUTION

Use extreme care not to allow Loctite to get on carriage rails or bearings.
11. Very carefully apply a light coat of Loctite grade C to threads on end of extension rod. Thread extension rod into rear of carriage and lightly tighten. Wipe away excessive Loctite.
12. Manually extend heads and move carriage back and forth to verify that carriage moves freely and there is no excessive drag.

Repair

Repair of the velocity transducer assembly is limited to removing and replacing the connector and pins in accordance with the parts data section. Refer to Cable Assembly repair procedures for information on connector and pin replacement.

PACK COVER SOLENOID (A3L3)

The pack cover solenoid (optional) is illustrated in figure 3-23, sheet 1.

Adjustment

The pack cover solenoid adjustment is required whenever the solenoid is changed or if the pack cover does not lock when power is removed from the drive. There are two adjustments pertaining to the solenoid: 1) clearance, 2) spring tension.

The clearance adjustment is made to obtain minimum clearance between the interlock latch (see figure 2-22) and the interlock keeper on the pack access cover. When the pack access cover is latched (solenoid deenergized, and latch in up position) the keeper must strike the latch and not allow the pack cover catch to be released. Loosen the attaching hardware securing the solenoid assembly to the shroud, and slide the assembly backwards or forwards to achieve this adjustment.

The spring tension adjustment is made to fully extend the solenoid plunger when the solenoid is deengergized. The tension should not be so great as to prevent the plunger from fully retracting when the solenoid is energized. Perform the adjustment by loosening the spring mounting hardware and sliding it up or down in the mounting slot.

Removal-Replacement

There are no special procedures for removal and replacement of the pack cover solenoid. Perform the removal and replacement in accordance with the information in the parts data section.

Figure 2-22. Pack Cover Solenoid Adjustment

Repair

No repair of the pack cover solenoid is possible. If any part fails, it must be replaced.

RAIL BRACKET ASSEMBLY

The rail bracket assembly is illustrated in figure 3-25.

Adjustment

The rail bracket assembly is not adjustable in the field. Refer to Removal-Replacement for additional information.

Removal-Replacement

Because of the precision alignment, and the special tools and training required to accomplish the alignment, it is not possible to perform adjustment or replacement of the rails or the rail bracket assembly in the field. Under no circumstances should the screws securing the rails or the rail bracket to the deck be loosened. If either the rails or the rail bracket assembly are damaged or misaligned, contact the factory maintenance representative for service.

Repair

Repair of the rail bracket assembly is limited to the replacement of those items mounted on the bracket, as specified in the parts data section. In addition to the following information, refer to the Heads Loaded Switch and the Flex Lead Assembly procedures.

When replacing the cam towers, tighten attaching screws to torque of 12 ± 1 pound-force-inch. When replacing the upper stop block, the rubber stop bumper must also be replaced. Attach the stop bumper to the stop block using a small amount of rubber silicone sealant.

CARRIAGE AND COIL ASSEmbly

The carriage and coil assembly is illustrated in figure 3-26. Because of the precision alignment of the carriage bearings, and the special tools and training required to accomplish the alignment, the carriage and coil assembly cannot be replaced in the field. If either the carriage or coil is damaged or misaligned, call the factory maintenance representative for service.

The flex lead assembly, also illustrated in figure $3-26$, can be replaced in the field.

Refer to that procedure for service information.

HEADS LOADED SWITCH (A3S2)

The heads loaded switch is illustrated in figure 3-25.

Adjustment

Perform the heads loaded switch adjustment under any of the following conditions:

- Heads do not fully retract when drive is powered down
- Unknown cause of a power amplifier or power amplifier fuse failure
- Heads loaded switch is changed or in any way moved
- Instructed to do so by another procedure

1. Disconnect leadwires from heads loaded switch, taking note of leadwire placement.
2. Connect multimeter (set to RXI scale) between ground contact and normally open contact as shown in figure 2-23. With carriage fully retracted, multimeter should indicate zero ohms.

NOTE

Measure carriage travel between rear edge of voice coil and inside back edge of magnet assembly.
3. Note measurement from rear of voice coil to inside back edge of magnet assembly with carriage retracted. Manually extend heads very slowly, while observing multimeter. Measure carriage travel at point that multimeter switches from zero ohms to infinity. Difference between fully retracted measurement and heads extended measurement should be 0.07 ± 0.04 inch.
4. If switch does not transfer within specified measurement, loosen hardware securing switch mounting bracket to rail bracket assembly and adjust switch position.
5. When adjustment is complete recheck carriage travel per step 3. Assuming adjustment is correct, reconnect leadwires to heads loaded switch.

Figure 2-23, Heads Loaded Switch Replacement

Removal-Replacement

No special procedures are required for replacement of the heads loaded switch.

Repair

No repair of the heads loaded switch is possible. If the switch fails, it must be replaced.

FLEX LEAD ASSEMBLY

The flex lead assembly is shown in relation to the carriage and coil assembly in figure 3-26.

Adjustment

Adjust the flex lead assembly any time the assembly is changed, or any time work is done in the area which could cause the flex lead assembly to become misaligned.

Adjustment of the flex lead assembly is a matter of positioning the assembly so that it is parallel with the travel of the carriage and coil. When the flex lead assembly is properly aligned, there is no buckling of the leads during extension and retraction of the carriage and coil assembly. Likewise, there is a parallel motion with the carriage, without evidence of the leads either riding up or down.

Removal-Replacement

There are no special procedures for the removal and replacement of the flex lead assembly. Perform the removal and replacement in accordance with the information in the parts data section.

Repair

No repair of the flex lead assembly is possible. If any of the parts are damaged or frail, the assembly must be replaced.

MAGNET ASSEMBLY

The magnet assembly and associated hardware is shown in figure 3-27.

Adjustment

The magnet assembly must be adjusted any time the mounting hardware securing the magnet to the deck is loosened.

The magnet assembly is properly adjusted when the coil slides through its complete travel without contacting the magnet assembly. Ensure that when the magnet assembly is secured to the deck, a 0.005 inch non-metalic feeler gauge passes between the coil and the magnet. The 0.005 inch clearance must be maintained at all points around the coil in the front opening of the magnet assembly. After securing the magnet to the deck, and before installing the velocity transducer, manually extend the heads and move the carriage and coil assembly back and forth through its full travel. There should be no rubbing or scrapping sound and there should be no drag felt during this movement.

Removal-Replacement

There are no special procedures for the removal and replacement of the magnet assembly. Perform the removal and replacement in accordance with the information in the parts data section.

Repair

Repair of the magnet assembly is limited to the removal and replacement of the velocity transducer assembly. Refer to that procedure for service information.

HEAD ARM ASSEMBLIES

The head arm assemblies are shown in figure 3-23, sheet 1 . In addition, the various rparts involved in the removal and replacement of the head arms are identified in figures 2-24 and 2-25. Repair of the head arm assemblies is limited to inspection and cleaning, refer to the Repair paragraph for details and limits.

Adjustment

Adjustment of the head arm assemblies is covered in Section 2C, Test and Adjustment.

Removal-Replacement

The following procedure covers removal and replacement of either the servo head or the read/write heads. Remove heads from the carriage only to perform head inspection and cleaning, or as directed by other procedures in this manual. When removing the servo head also remove read/write head number two. This allows room for the head cable and connectors to pass between the adjacent head arms with a lessened chance of doing damage.

Figure 2-24. Head Replacement - Left Side View

1. Remove connector support bracket or servo pre-amplifier shield and disconnect head arm connector for subject head (for servo head, also remove head cable from cable clip and disconnect tie point connector).
2. Remove head mounting screw and associated hardware.
3. Manually extend heads far enough to be able to grasp front of head arm from inside pack area.

CAUTION

Head pads and gimbal springs are extremely delicate and easily damaged. Grasp head arms carefully and only by edges of head arm. If head pad is touched, perform head cleaning procedure.
4. Grasp entire stack of heads such that they are all held in alignment to one another. Carefully extend heads all the way into pack area.

Figure 2-25. Head Replacement - Right Side View
5. Carefully grasp subject head arm at front and also push gently on rear of head arm as shown in figure 2-24. Guide head arm and connector(s) through adjacent head arms and into pack area.
6. Perform required maintenance procedure.
7. Install head arm assembly by fully extending heads into pack area, and guiding head arm connector between adjacent head arms. Use care not to damage adjacent heads.
8. Seat head arm in both front and rear notches on carriage.
9. Grasp entire stack of heads such that they are all held in alignment to one another. Carefully retract heads. Do not push on front of head arm assemblies while retracting heads.
10. Carefully position head arm as required in order to insert head mounting screw. Support head arm from opposite side when inserting head mounting screw or forward pressure of wrench may dislodge head arm.
11. Ensure that head arm assembly is aligned in relation to remainder of heads where they protrude into pack area.
12. Tighten screw, securing head arm assem-bly to carriage, until torque is 12 $\pm 1 / 2$ pounds-force-inch.
13. Carefully reconnect head arm connector and replace related hardware removed in step 1.
14. Perform Head Arm Adjustment procedure.

Repair

The drive has a positive pressure filtration system that eliminates the need for periodic inspection and cleaning of heads. The heads should be inspected for the following reasons only:

1. A problem is traced to a specific head or heads; for example, excessive data errors.
2. Head to disk contact is suspected. This may be indicated by an audible ping, scratching noise, or a burning odor when the heads are over the disk area.
3. Concentric scratches are observed on the disk surfaces.
4. Contamination of pack is suspected (possibley due to improper storage of the pack).
5. The pack has been physically damaged (possibly due to dropping or bumping).

CAUTION

Do not attempt to operate the media on another drive until full assurance is made that no damage or contamination has occurred to the media.

Do not attempt to operate the drive with another media until full assurance is made that no damage or contamination has occurred to the drive heads or to the shroud area.

Head Inspection

CAUTION

Do not smoke when inspecting or cleaning heads. Use extreme care not to damage the head.

Do not touch the head pad or gimbal spring with fingers or tools.

If head must be laid down, do not allow the head pad or gimbal spring to touch anything.

Remove suspected head as described in the Read/Write Servo Head/Arm Replacement procedure. Referring to figure 2-26, observe the head/arm, and perform the suggested remedy as follows:

8W4I

Figure 2-26. Typical Head/Arm Components

1. If reddish-brown oxide deposits exist on the head, replace or clean the head/ arm assembly.
2. If head appears scratched, replace or clean the head/arm assembly.
3. If head appears damaged, replace the head/arm assembly.
4. If the gimbal spring (it holds the head pad to the arm) is bent or damaged, replace the head/arm assembly.

Head Cleaning

CAUTION

Head cleaning is a delicate procedure which is not recommended. It should not be undertaken unless it is absolutely necessary and then it should be performed by properly trained personnel only.

Refer to figure 2-27 if head cleaning is required and perform the following procedure. Use care not to damage any part of the head arm assembly.

CAUTION

In the following step, hold the can of dust remover upright (vertical). If the can is not held upright, liquid propellant will be sprayed on the head.

1. Use super dry dust remover (see list of Maintenance Tools and Materials) to blow off all loose particles from the head pad (flying surface), from the edge of the head pad, and from the holes in the head pad. Hold the nozzel one-fourth to one-half inch (6 to 12 mm) from the head pad. Spray with a back and forth motion across the head pad, making certain to hold the can only in a vertical position.

Figure 2-27. Head Cleaning Motion
2. Clean a smooth, flat working surface, for example, a glass or formica table top.
3. Place a new, unpunched, clean computer card with the back side up (printing down) on the clean flat working surface as shown in figure 2-27.

CAUTION

Care should be taken to avoid excess cleaning solution. Excess solution on the head cable may remove the plasticizer and make the cable stiff. A stiff cable reduces the flexibility of the head pad and could cause broken wires.
4. Moisten a small area in the center of the card with media cleaning solution. (Refer to the list of Maintenance Tools and Materials.)

CAUTION

Inspect the media cleaning solution for contamination, rust, dirt, etc. Do not use contaminated solution.
5. Very carefully place the head pad flying surface on moistened area and move head pad from moistened area to dry area in a zig-zag motion as shown in figure 2-27. Move head in a direction away from curved end of head pad. If it is moved in the opposite direction the sharp edge of the curved end will cut into the computer card and prevent movement and proper cleaning.

NOTE

Discoloration of media cleaning solution and computer card indicate that oxide particles are being removed from head pad flying surface.
6. Repeat steps 3, 4, and 5 using a clean computer card and clean media cleaning solution each time until no discoloration on card is present.
7. After discoloration has ceased, inspect head to determine that oxide deposits were removed. If deposits remain but show signs of being removed repeat cleaning procedure until deposits are removed.
8. If oxide deposits cannot be removed, replace head/arm assembly.
9. If oxide deposits were removed and head passes inspection according to the Head/ Arm Replacement Criteria, reinstall head.
10. Follow Read/Write or Servo/Head Arm Replacement procedure to install cleaned head or a replacement head as required.

Head/Arm Replacement Criteria

A head arm assembly requires replacement if any of the following conditions exist:

1. Consistent oxide buildup on the same head, indicating repeated head to disk contact.
2. Appreciable oxide buildup which cannot be removed.
3. Scratches on the head flying surface.
4. Imbedded particles in the head pad flying surface.
5. Bent or damaged gimbal spring.
6. Any apparent physical damage to head/ arm assembly.

CABLE ASSEMBLIES (W) THROUGH W4, W11, W12)

Part numbers for all cable assemblies are listed on figure 3-20, sheet 1. Cable assemblies are not illustrated in their entirety; however, all connectors, pins, etc, are illustrated (and the part numbers given) at the point of origin or destination. This information is, therefore, spread throughout the parts data section.

Adjustment

Other than positioning the cable assemblies to provide proper strain relief, no adjustment of the cable assemblies is required.

Removal-Replacement

The cable assemblies rarely, if ever, need to be removed from the drive. However, during normal maintenance, it may be necessary to separate the cable from the item to which it is attached. The connectors on all cables in the drive may be removed directly, or simply by squeezing its locking devices. If a connector does not separate easily from its mating half, carefully insert a blunt tool between the two halves and gently pry them apart. Trying to exert excessive force, in the process of separating a connector, could cause damage to other components in the drive.

Repair

Repair of the various cable assemblies consists of replacing broken or damaged parts. All parts of the cable assemblies are called out in the parts data section. Some of the connections in the drive are crimp-type, and require the use of expensive tools. These connections can be repaired by first tinning the wires and then carefully crimping them into the pins with a pair of pliers. To ensure electrical and mechanical integrity of these connections, they should then be carefully reheated with a soldering iron to allow the solder to flow onto the pin.

SECTION 3

PARTS DATA

INTRODUCTION

The parts data section provides a systematic parts breakdown for all Storage Module Drives (SMD) listed in the preface of this manual. This section also serves as a maintenance aid, showing the interrelationship between piece parts, assemblies, and attaching hardware.

To have a complete understanding of this section, a brief explanation of abbreviation, structure, and symbology is necessary.

Some of the abbreviations used in this section are defined below. For a complete list of abbreviations, refer to the front of this manual.

Each figure number represents a major assembly. That assembly may require one or more illustrations depending upon its complexity. The parts shown on the illustrations are numbered and those numbers correspond to the index numbers on the parts list.

The parts list is divided into four columns:

Index Number Column - The numbers given in this column correspond to the numbers shown on the illustration. When more than one entry is given for a particular index number, the use of each part is defined in the Notes column. Items may be listed without index numbers, and are mentioned for reference only. These items do not appear on the illustration.

Part Number Column - This column provides the eight digit number by which a part may be ordered. There are several conditions when there will be an incomplete number or no number at all. In some cases the last two digits (referred to as tab numbers) may be shown as "xx". This situation exists when an assembly changes tab numbers rapidly in the course of normal factory build. If it is necessary to order an assembly catalogued in this manner, the actual part number can be found on the part number label attached to the assembly. If the actual part number cannot be determined, be sure to include on the order the series code of the machine and listing of all the change orders installed. If the last two digits are shown as "**", the tab number can be determined by referring to table 3-1 (Color Code Chart). NRF in the part number column indicates that an assembly is not field replaceable. If
replacement or repair of the NFR items is necessary, refer to the maintenance section of this manual for further information.

Description Column - This column gives the name and a brief description of each part and assembly. The relationship of parts and assemblies is shown within the column by means of indentation. Each indented item is part of the previously listed item at a lesser indentation.

When the attaching hardware or associated parts for an item cannot be shown on the illustration, the note (ATTACHING PARTS) or (ASSOCIATED PARTS) appears in the Description column. All attaching/associated parts for the previously listed part or assembly are listed beneath this note and are separated from the rest of the parts list by the symbol ---*---.

When necessary, items are identified as being right side or left side. Right and left are determined by facing the front (pack end) of the drive.

Note Column - This column defines multiple entries for a single index number. Multiple entries may be necessary to identify differences in machine configurations $(50 / 60 \mathrm{~Hz})$ or to track history (SC $11 \mathrm{w} / 48268$). Information that is unique to one particular equipment or application will also be noted in this column.

Color Code Chart - The color code chart (table 3-1), used in conjunction with the equipment configuration chart (see front of this manual) and the parts list, will provide the eight-digit number needed to order painted parts for all SMD units covered by this manual.

First, determine the correct color code by referring to the equipment configuration chart. Then, find that code in the color code column of table 3-1. Following the code are the tab numbers for each painted part. If an entire assembly is being replaced, use the two digits listed under ASSY TAB. If just the piece part is needed use the two digits listed under PC PT TAB. The parts list contains the first six digits of each part number plus the symbol "**" (for example 775601**). The complete number is obtained by substituting the tab numbers in place of the symbol "**".

TABLE 3-1. COLOR CODE CHART

	CASE		PACK ACCESS COVER		FRONT DOOR		$\begin{aligned} & \text { REAR } \\ & \text { OOOR } \end{aligned}$		LEFT SIDE PANEL				$\begin{aligned} & \text { TOP } \\ & \text { PANEL } \end{aligned}$		$\begin{aligned} & \text { CASE } \\ & \text { DOOR } \end{aligned}$		FILLER PANELUPPER		FILLER PANELLOWER		COMMENTS
$\begin{array}{ll} 0 & \mathrm{E} \\ \mathrm{R} & \mathrm{E} \end{array}$	$\begin{aligned} & \text { ASSY } \\ & \text { TAB } \end{aligned}$	$\begin{gathered} \text { PC PT } \\ \text { TAB } \end{gathered}$	$\begin{aligned} & \text { ASSY } \\ & \text { TAB } \end{aligned}$	$\left\|\begin{array}{c} \text { PC PT } \\ \text { TAB } \end{array}\right\|$	$\begin{array}{\|c} \text { ASSY } \\ \text { TAB } \end{array}$	$\left\|\begin{array}{c} \text { PC PT } \\ \text { TAB } \end{array}\right\|$	$\begin{aligned} & \text { ASSY } \\ & \text { TAB } \end{aligned}$	$\left\|\begin{array}{c} P C ~ P T \\ T A B \end{array}\right\|$	$\begin{aligned} & \text { ASSY } \\ & \text { TAB } \end{aligned}$	$\begin{aligned} & \text { PC PT } \\ & \text { TAB } \end{aligned}$	$\begin{gathered} \text { ASSY } \\ \text { TAB } \end{gathered}$	$\begin{array}{\|c\|} \hline P C ~ P T \\ T A B \end{array}$	ASSY TAB	$\left\|\begin{array}{c} P C ~ P T \\ T A B \end{array}\right\|$	$\begin{aligned} & \text { ASSY } \\ & \text { TAB } \end{aligned}$	$\left\|\begin{array}{c} \mathrm{PC} \mathrm{PT} \\ \mathrm{TAB} \end{array}\right\|$	$\begin{gathered} \text { ASSY } \\ \text { TAB } \end{gathered}$	$\left\|\begin{array}{c} \mathrm{PC} \\ \mathrm{TAB} \end{array}\right\|$	$\begin{aligned} & \text { ASSY } \\ & \text { TAB } \end{aligned}$	$\begin{aligned} & \text { PC PT } \\ & \text { TAB } \end{aligned}$	
A	00	03	15	09	-	-	-	-	-	-	-	-	-	-	-	03	-	-	-	-	
B	01	03	15	09	-	-	-	-	-	-	-	-	-	-	-	03	-	-	-	-	
C	01	03	15	09	-	06	-	06	-	03	-	03	-	03	-	03	-	-	-	-	
D	01	03	12	09	-	-	18	09	-	-	-	-	-	-	-	03	--	03	-	09	
E	01	03	12	09	-	-	19	09	-	-	-	-	-	-	-	03	-	03	-	09	
F	04	03	12	09	01	09	22	09	02	03	03	03	-	-	-	-	-	=	-	-	
G	04	03	12	09	01	09	23	09	02	03	03	03	-	-	-	-	-	-	-	-	
H	02	36	26	36	-	36	-	37	-	37	-	37	-	37	-	36	-	-	-	-	
J	05	72	29	71	-	71	-	71	-	72	-	72	-	72	-	72	-	-	-	-	
K	03	63	27	66	-	63	-	64	-	65	-	65	-	63	-	63	-	-	-	-	
L	04	34	28	33	-	33	-	33	-	34	-	34	-	34	-	34	-	-	-	-	
M	11	34	18	33	05	33	29	33	10	34	11	34	-	-	-	-	-	-	-	-	
N	06	34	18	33	-	-	21	33	-	-	-	-	-	-	-	-	-	-	-	-	
P	-	-	25	62	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
R	06	34	18	33	-	-	25	33	-	-	-	-	-	-	-	-	-	-	-	-	

$\begin{gathered} \text { INDEX } \\ \text { NO. } \end{gathered}$	PART NUMBER	PART DESCRIPTION	NOTES
$\begin{array}{r} 3-1 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 4 \\ 5 \end{array}$		FINAL ASSEMBLY LOCATOR FINAL ASSEMBLY, Pedestal (See Figure 3-2) FINAL ASSEMBLY, 30 Inch Rack Mount (See Figure 3-5) FINAL ASSEMBLY, 36 Inch Rack Mount (See Figure 3-6) FINAL ASSEMBLY, Acoustic Cabinet (See Figure 3-3) FINAL ASSEMBLY, Acoustic Drawer (See Figure 3-4) FINAL ASSEMBLY', Nude (See Figure 3-4.1)	

Figure 3-2. Final Assembly - Pedestal (Sheet 1 of 2)

\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{array}{|c}
\text { INDEX } \\
\text { NO. }
\end{array}
\] \& \begin{tabular}{l}
PART \\
NUMBER
\end{tabular} \& PART DESCRIPTION \& NOTES \\
\hline \(3-2\)
1
1
2
3
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 \& 752416 XX

10127131
10126403
94274140
94369530

92151017
10125807
92703015
93697013
10125303
10127121
10126402
93847001
76418400
$765160 * *$
76414900
10125606
75074800
94368701
16345307
933226004
93325001
10125607

75074900 \& | FINAL ASSEMBLY, Pedestal (Sheet 2) |
| :--- |
| bASE CABINET ASSEMBLY |
| FRONT AND REAR DOOR, Nonacoustic (See Figure 3-14) |
| SCREW, Machine, Pan Head, 10-24 x 3/8 |
| WASHER, LOck, External Tooth, 10 |
| TERMINAL, Quick Connect: |
| CABLE, Ground |
| SIDE PANEL ASSEMBLY, Nonacoustic, (See Figure 3-18) |
| SCREW, Hex Head |
| WASHER, Lock, Spring, 5/16 |
| CASTER |
| LEVELER |
| NUT, Hex, 3/8-16 |
| SCREW, Machine, Pan Head, 8-32 x 5/16 |
| WASHER, Lock, External Tooth, 8 |
| BEARING, Flanged |
| HINGE, Door, Lower |
| PANEL, TOP |
| FRAME, Base |
| WASHER, Flat, 8 |
| KEEPER, Latch |
| LABEL |
| PIVOT |
| STUD, Ball |
| CATCH, Spring |
| WASHER, Flat, 10 |
| HINGE, DOor, Upper | \&

\hline
\end{tabular}

14-400(1)A

$\left\lvert\, \begin{gathered} \text { INDEX } \\ \text { NO. } \end{gathered}\right.$	PART NUMBER	PART DESCRIPTION	NOTES
$\begin{array}{\|r} 3-4 \\ \\ 1 \\ \\ 2 \\ 3 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \end{array}$	$\begin{aligned} & 10126402 \\ & 10125106 \\ & 10125606 \\ & 92602002 \\ & 10126244 \\ & 10126105 \\ & 10125608 \\ & 10126502 \\ & 10125806 \\ & 94393001 \\ & 94393000 \\ & 77563300 \\ & 10125746 \\ & 76422600 \\ & 775627 * * \\ & 764286 * * \\ & 76428100 \\ & 10127143 \\ & 10127122 \end{aligned}$	FINAL ASSEMBLY, Acoustic Drawer, (Sheet 1 of 2) REAR DOOR ASSEMBLY, Acoustic Drawer, (See Figure 3-17) WASHER, Lock, External Tooth, 8 NUT, Hex, 8-32 WASHER, Flat, 8 CLAMP, Cable, Nylon SCREW, Socket, Hex Head, 10-32 x 3/8 WASHER, Lock, Internal Tooth, 10 WASHER, Flat, 1/4 SCREW, Hex Head, 1/4-20 x 3/4 WASHER, Lock, Spring, 1/4 SLIDE SLIDE (Not Shown) PLATE, Nut BALLAST SCREW, Flat Head, 10-32 x 3/8 WASHER, Special PANEL, Front, Lower PANEL, Front, Upper KEEPER, Latch SCREW, Machine, Pan Head, 10-32 x 1/2 SCREW, Machine, Pan Head, 8-32 x 3/8 CABLE, Ground (See Final Assembly, Acoustic Cabinet For Part Number) FRAME (See Final Assembly, Acoustic Cabinet For Part Numbers)	Right Side Left Side Supplied As Part Of Slide

$\begin{gathered} \text { INDEX } \\ \text { NO. } \end{gathered}$	PART NUMBER	PART DESCRIPTION	NOTES
$\begin{array}{\|r} 3-6.1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \end{array}$	76429600 76419100 77560300 77560200 75173307 77560400 92033221 75071700	FINAL ASSEMBLY, Nude BEARING, Flanged SPACER, Pack Cover PIVOT, Pin, Cover PIVOT, Pin, Cover (Not Shown) PLATE, Nut PLATE, Nut (Not Shown) DRIVE ELECTRONICS (See Figure 3-20) PACK ACCESS COVER, Acoustic (See Figure RING, Retaining PIN, Pivot, Cover SPRING, Gas (See Deck Assembly Sheet 5, For Part Number)	

14-800A

$\begin{aligned} & \text { INDEX } \\ & \text { NO. } \end{aligned}$	PART NUMBER	ART DESCRIPTION	NOTES
3-8	$\begin{aligned} & 775628 * * \\ & 75040478 \\ & 778173 * * \\ & 77561000 \\ & 93530021 \\ & 75065200 \\ & 10125106 \\ & 94274105 \\ & 10126402 \\ & 75040450 \\ & 92033037 \\ & 46819300 \\ & 92033087 \\ & 75040451 \\ & 75040448 \\ & 75040449 \\ & 76429320 \\ & 75040474 \\ & 94303500 \\ & 76429322 \end{aligned}$	CASE ASSEMBLY, Acoustic Cabinet PANEL, Foam, Acoustical CASE, Acoustical, Top SUPPORT, Rod PIN, Roll PIN, Pivot, Case NUT, Hex, 8-32 TERMINAL, Quick Connect WASHER, Lock, External Tooth, 8 PANEL, Foam, Acoustical RING, Retaining SPRING, Extension RING, Retaining PANEL, Foam, Acoustical PANEL, Foam, Acoustical PANEL, Foam, Acoustical (Not Shown) SEAL, Acoustical PANEL, Foam, Acoustical RECEPTACLE, Clip In SEAL, Acoustical	Left Side Right Side

Figure 3-10. Case Assembly - 30 Inch Rack Mount

$\begin{gathered} \text { INDEX } \\ \text { NO. } \end{gathered}$	PART NUMBER	PART DESCRIPTION	NOTES
$3-10$ $\begin{aligned} & 1 \\ & 2 \end{aligned}$ 3 4 5 6 7 8 9 10 11 13 14 16 17 19 20 21 22 23 24 25 26 27 28 29 29 30 31 32 33 34 34 35 36 37	775663** $471954 * *$ $775646 * *$ 10125106 10125804 10125606 75257700 94364902 92628413 10.127142 76427601 75062400 92633021 92033237 46819300 93530021 75065200 92628302 10126402 94274105 10127113 10126103 10125605 77564800 94205791 77564900 77565003 10125714 47198100 47175200 47175201 47195300 47195500 75040426 76429332 75040480 75040479 75257301 10126105 92373001	```CASE ASSEMBLY, 30 Inch Rack Mount DOOR, Case CASE, Rack Mount NUT, Hex, 8-32 WASHER, Lock, Spring, 8 WASHER, Flat, } RETAINER, Filter FILTER, Air TAPE, Foam SCREW, Machine, Pan Head, 10-32 x 3/8 ARM, Support, Case WASHER, Insulator BUMPER, Grommet RING, Retaining SPRING, Extension PIN, Roll PIN, Pivot, Case TAPE, Adhesive Backed, Black WASHER, Lock, External Tooth, 8 TERMINAL, Quick Connect SCREW, Machine, Pan Head, 6-32 x 3/8 WASHER, Lock, Internal Tooth, 6 WASHER, Flat, } PIN, Latch SPRING, Compression BASE, Latch ARM, Latch SCREW, Flat Head, 6-32 x 3/8 CLIP, Case LATCH, Case LATCH, Case (Not Shown) SPACER, Latch SPRING, Torsion PANEL, Foam, Acoustical SEAL, Acoustical PANEL, Foam, Acoustical PANEL, Foam, Acoustical (Not Shown) SCREW, Modified WASHER, Lock, Internal Tooth, 10 NYLINER, Snap In```	Left Side Right Side Left Side Right Side

$\begin{aligned} & \text { INDEX } \\ & \text { NO. } \end{aligned}$	PART NUMBER	PART DESCRIPTION	NOTES
3-11	$472020 * *$	CASE ASSEMBLY, 36 Inch Rack Mount	
1	471954**	DOOR, Case	
2	$774564 \text { ** }$	CASE, Rack Mount	
3	10125106	NUT, Hex, 8-32	
4	10125804	WASHER, Lock, Spring, 8	
5	10125606	WASHER, Flat, 8	
6	75257700	RETAINER, Filter	
7	10127142	SCREW, Machine, Pan Head, 10-32 x 3/8	
8	76427601	ARM, Support, Case	
9	75062400	WASHER, Insulator	
10	92033037	RING, Retaining	
11	46819300	SPRING, Extension	
12	75065200	PIN, Pivot, Case	
13	93530021	PIN, Roll	
14	94364902	FILTER, Air	
15	92628413	TAPE, Foam	
16	10127122	SCREW, Machine, Pan Head, 8-32 x 3/8	
17	76030400	HANDLE, Rack Mount	
18	92628302	TAPE, Adhesive Backed, Black	
19	10126402	WASHER, Lock, External Tooth, 8	
20	94274105	TERMINAL, Quick Connect	
21	10127331	SCREW, Machine, Pan Head, 6-32 x 3/16	
22	10125803	WASHER, Lock, Spring, 6	
23	93530083	PIN, Roll	
24	76417500	PIN, Latch	
25	76417600	SPRING, Compression	
26	76030600	GUIDE, Pin	
27	75040480	PANEL, Foam, Acoustical	Left Side
27	75040479	PANEL, Foam, Acoustical (Not Shown)	Right Side
28	76429332	SEAL, Acoustical	
29	75040426	PANEL, Foam, Acoustical	
30	10127113	SCREW, Machine, Pan Head, 6-32 x 3/8	
31	47198100	CLIP, Case	
32	47175200	IATCH, Case	
32	47175201	LATCH, Case (Not Shown)	Right Side
33	47195300	SPACER, Latch	
34	47195500	- SPRING, Torsion	
35	75257301	SCREW, Modified	
36	10126105	WASHER, Lock, Internal Tooth, 10	
37	92373001	NYLINER, Snap In	

\begin{tabular}{|c|c|c|c|}
\hline INDEX
NO. \& PART NUMBER \& PART DESCRIPTION \& NOTES

\hline 3-12
1
2
3
4
4
5
6
7
8
9
10
11

12
13
14

15 \& \[
$$
\begin{aligned}
& 750602 * * \\
& 75070200 \\
& 93749158 \\
& 10126401 \\
& 94369529 \\
& 10127111 \\
& 94276611 \\
& 92033107 \\
& 75070900 \\
& 75071401 \\
& 77462900 \\
& 778189 * * \\
& \\
& 75070701 \\
& 76421800 \\
& 10127102 \\
& 10126400
\end{aligned}
$$

\] \& | PACK ACCESS COVER ASSEMBLY, Nonacoustic RETAINER, Cover, Pack |
| :--- |
| SOREW, Machine, Pan Head, 6-32 x 1/4 |
| WASHER, Lock, External Tooth, 6 |
| CABLE, Ground |
| SCREW, Machine, Pan Head, 6-32 x 1/4 |
| TAPE, Foam |
| RING, Retaining |
| ROD, Pivot, Latch |
| LATCH AND SPRING ASSEMBLY |
| HANDLE, Pack Access Cover |
| COVER, Pack Access |
| (ITEMS LISTED BELOW ARE NOT PART OF THE |
| PACK ACCESS COVER ASSEMBLY) |
| BUMPER, Self Sticking |
| KEEPER; Interlock |
| SCREW, Machine, Pan Head, 4-40 x l/4 |
| WASHER, Lock, External Tooth, 4 | \&

\hline
\end{tabular}

$\begin{gathered} \text { INDEX } \\ \text { NO. } \end{gathered}$	PART NUMBER	PART DESCRIPTION	NOTES
$\begin{gathered} 3-13 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \end{gathered}$	$\begin{aligned} & 775630 * * \\ & 77560600 \\ & 10127131 \\ & 10126403 \\ & 94369526 \\ & 10125607 \\ & 93749238 \\ & 93725141 \\ & 83227400 \\ & 77561401 \\ & 92033107 \\ & 75070900 \\ & 77563100 \\ & 77462900 \\ & 93749158 \\ & 75040455 \\ & 764299 * * \\ & 75040456 \\ & 75040454 \end{aligned}$	PACK ACCESS COVER ASSEMBLY, Acoustic RETAINER, Cover, Pack SCREW, Machine, Pan Head, l0-24 x 3/8 WASHER, Lock, External Tooth, 10 CABLE, Ground WASHER, Flat, 10 SCREW, Pan Head, Washer, 10-24 x 3/8 SCREW, Machine, Truss Head COVER, Inner GASKET, Extended Sponge RING, Retaining ROD, Pivot, Latch LATCH AND SPRING ASSEMBLY HANDLE, Pack Access Cover SCREW, Pan Head, Washer, 6-32 x 1/4 PANEL', Foam, Acoustical COVER, Pack Access PANEL, Foam, Acoustical PANEL, Foam, Acoustical	

INDEX NO.	PART NUMBER	PART DESCRIPTION	NOTES
$3-14$ 1 1 2 3 4 5 6 7 8 9	$\begin{aligned} & 765158 * * \\ & 765159 * * \\ & 10127131 \\ & 10126403 \\ & 94274140 \\ & 92633201 \\ & 94221400 \\ & \\ & \\ & \\ & \end{aligned}$	FRONT AND REAR DOOR, Nonacoustic DOOR, Front DOOR, Rear SCREW, Machine, Pan Head, 10-24 x 3/8 WASHER, Lock, External Tooth, 10 TERMINAL, Quick Connect BUMPER, Grommet LATCH, Flush SPRING, Latch BRACKET, Latch SPACER, Latch	$\} \begin{aligned} & \text { Supplied With } \\ & \text { Flush Latch } \end{aligned}$

$\begin{array}{\|l} \text { INDEX } \\ \text { NO. } \end{array}$	PART NUMBER	PART DESCRIPTION	NOTES
$\begin{gathered} 3-15 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \end{gathered}$	$\begin{aligned} & 775624 * * \\ & 92373003 \\ & 76429317 \\ & 75040460 \\ & 70948500 \\ & 76429315 \\ & 76429313 \\ & 94224906 \\ & 94221400 \\ & \\ & 775615 * * \\ & 76429314 \end{aligned}$	FRONT DOOR ASSEMBLY, Acoustic Cabinet NYLINER, Snap In SEAL, Acoustical PANEL, Foam, Acoustical PIN, Hinge SEAL, Acoustical SEAL, Acoustical SPACER, Latch LATCH, Flush SPRING, Latch BRACKET, Latch DOOR, Front SEAL, Acoustical	Supplied With Flush Latch

Figure 3-16. Rear Door Assembly - Acoustic Cabinet

INDEX NO.	PART NUMBER	PART DESCRIPTION	NOTES
3-17	775601**	REAR DOOR ASSEMBLY, Acoustic Drawer	
1	94221400	LATCH, Flush	
2 3		SPRING, Latch BRACKET, Latch	$\} \begin{aligned} & \text { Supplied With } \\ & \text { Flush Latch } \end{aligned}$
4	92373003	NYLINDER, Snap In	
5	10127116	SCREW, Machine, Pan Head, 6-32 x 3/4	
6	94375401	FINGER GUARD, Fan Axial	
7	778181**	DOOR, Rear	
8	76429316	SEAL, Acoustical	
9	75040470	PANEL, Foam, Acoustical	
10	70948500	PIN, Hinge	
11	76429315	SEAL, Acoustical	
12	10126401	WASHER, Lock, External Tooth, 6	
13	10125105	NUT, Hex, 6-32	
14		Wll CABLE ASSEMBLY (See Drive Electronics Locator For Part Number)	
15	93948003	CONNECTOR, Pin Housing (P400) (ASSOCIATED PARTS)	
	93942009	CONTACT, Pin	
16	94224906	SPACER, Latch	
17	75040469	PANEL, Foam, Acoustical	
18	76429313	SEAL, Acoustical	
19	94368701	IABEL	
20	94253100	FAN, Venturi	$60 \mathrm{~Hz}, 120 \mathrm{~V}$ AC,
20	94253102	FAN, Venturi	$60 \mathrm{~Hz} \mathrm{220/240} \mathrm{~V} \mathrm{AC}$
20	94247101	FAN, Venturi	50 Hz
21	76429314	SEAL, Acoustical	
22	92602002	CLAMP, Cable, Nylon (ITEMS LISTED BELOW ARE NOT PART OF REAR	
23	93947004 93943009	CONNECTOR, Pin Housing (J400) (Part of W12) (ASSOCIATED PARTS) CONTACT, Pin	

Figure 3-18. Side Panel - Nonacoustic

$\begin{gathered} \text { INDEX } \\ \text { NO. } \end{gathered}$	PART NUMBER	PART DESCRIPTION	NOTES
$\begin{array}{\|c} 3-18 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 7 \\ 8 \\ 8 \end{array}$	760299** $760298 * *$ 10127131 10126403 94274140 93592428 77568600 76429342 76429345 76429343 76429344	SIDE PANEL, Nonacoustic PANEL, Side PANEL, Side SCREW, Machine, Pan Head, 10-24 x 3/8 WASHER, Lock, External Tooth, 10 TERMINAL, Quick Connect SCREW, Self Tapping, Hex Head, 10-32 x $3 / 8$ BRACKET, Mounting, Panel SEAL, Acoustical SEAL, Acoustical SEAL, Acoustical SEAL, Acoustical	Left Side Panel Right Side Panel Left Side Panel Right Side Panel Left Side Panel Right Side Panel

$\begin{gathered} \text { INDEX } \\ \text { NO. } \end{gathered}$	PART NUMBER	PART DESCRIPTION	NOTES
3-22	471742xx	LOGIC CHASSIS ASSEMBLY	
1	10127111	SCREW, Machine, Pan Head, 6-32 x 1/4	
2	47198400	SPRING, Flat, Logic Chassis	
3	51911752	FASTENER, 1/4 Turn	
4	94379800	ACCESSORIES, $1 / 4$ Turn Fastener	
5	94379801	ACCESSORIES, $1 / 4$ Turn Fastener	
6	94379802	ACCESSORIES, $1 / 4$ Turn Fastener	
7	93988002	RETAINER, Split Ring	
8	471741 XX	WIRE WRAP ASSEMBLY	
	94245409	POST, Wire Wrap (.732)	
	94245410	POST, Wire Wrap (1.122)	
	$\begin{aligned} & 94245411 \\ & 94245415 \end{aligned}$	POST, Wire Wrap (l.122 Soldered To Ground) POST, Wire Wrap (.695)	
9	46490200	RAIL, Guide	
10	10125105	NUT, Hex, 6-32	
11	10126103	WASHER, Lock Internal Tooth, 6	
12	83255200	SUPPORT, I/O Card	
13	93114216	STANDOFF, Tapped Post, Hex	
14	47171300	PANEL, End, Logic Chassis	
15	10127113	SCREW, Machine, Pan Head, 6-32 x 3/8	
16	10125605	WASHER, Flat	
17	10127115	SCREW, Machine, Pan Head, 6-32 x 5/8	
18	47170900	PANEL, Right Side, Logic Chassis	
19	47171000	PANEL, Left Side, Logic Chassis	
20	94208501	LABEL	
21	47205800	INSULATOR, I/O	
22	94274101 10126401	TERMINAL, Quick Connect WASHER, Lock, External Tooth, 6	
24	83274200	IABEL, Chassis Map	

Figure 3-23. Deck Assembly (Sheet 1 of 5)

14-2300(5)B

With 01

$\begin{array}{\|l} \text { INDEX } \\ \text { NO. } \end{array}$	PART NUMBER	PART DESCRIPTION	NOTES
$\begin{gathered} 3-24 \\ 3-24 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ \\ \\ 7 \\ 8 \end{gathered}$	$\begin{aligned} & 75074713 \\ & 75074714 \\ & 75074200 \\ & 76425600 \\ & 75074600 \\ & 75074000 \\ & 75072700 \\ & 92541059 \\ & 73587600 \\ & \\ & 92723396 \\ & 10125807 \end{aligned}$	SPINDLE ASSEMBLY SPINDLE ASSEMBLY LOCKSHAFT, Spindle LOCKSHAFI, Spindle SPRING, Compression, Lockshaft WASHER, Lockshaft SPRING, Compression SCREW, Shoulder, 10-24 x . 38×2.50 SHAFT, End Seal (ITEMS LISTED BELOW ARE NOT PART OF THE SPINDLE ASSEMBLY) SCREW, Button, Socket Head WASHER, Lock, Spring, 5/l6	BK4 XX BK5XX BK4XX BK5XX

INDEX NO.	PART NUMBER	PART DESCRIPTION	NOTES
$\begin{array}{\|c} 3-26 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{array}$ $\begin{aligned} & 7 \\ & 8 \\ & 9 \\ & 10 \end{aligned}$	$\begin{aligned} & \text { NFR } \\ & 76426800 \\ & 10127124 \\ & 10126104 \\ & 70738902 \\ & 93564002 \\ & 76420200 \\ & \\ & 10127112 \\ & 10125803 \\ & 10125605 \\ & 94309802 \\ & 93747025 \end{aligned}$	CARRIAGE AND COIL ASSEMBLY (A3VCl) FLEX LEAD ASSEMBLY SCREW, Machine, Pan Head, 8-32 x 5/8 WASHER, Lock, Internal Tooth, 8 SPACER WASHER, Nylon RETAINER, Flex Lead (ITEMS LISTED BELOW ARE NOT PART OF CARRIAGE AND COIL) SCREW, Machine, Pan Head, 6-32 x 5/16 WASHER, Lock, Spring, 6 WASHER, Flat, 6 POD, Terminal (VCl \& VC2) (Part of W3) (ASSOCIATED PARTS) RECEPTACLE, Slide On	

$\begin{array}{\|l\|l\|} \text { INDEX } \\ \text { NO. } \end{array}$	PART NUMBER	PART DESCRIPTION	NOTES
$\begin{gathered} 3-27 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ \\ 7 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ \\ \\ 12 \\ 13 \\ 14 \end{gathered}$	47200700 93530148 47171100 10127122 10125804 83254800 24547538 93749162 76425801 10125605 76427300 93948008 93942009 10126234 10125805 75257100	MAGNET ASSEMBLY PIN, Roll, $1.38 \times .125$ S BRACKET, Mounting, Logic Chassis 4 SCREW, Machine, Pan Head, 8-32 x 3/8 WASHER, Lock, Spring, 8 BRACKET, Slide, Logic Chassis PLATE, Warning, Magnetic Field (ITEMS LISTED BELOW ARE NOT PART OF THE MAGNET ASSEMBLY) SCREW, Pan Head, Washer, 6-32 x 3/8 ROD, Extension WASHER, Flat, 6 TRANSDUCER ASSEMBLY (A3L2) CONNECTOR, Pin Housing (4 Pin) (ASSOCIATED PARTS) CONTACT, Pin SCREW, Socket, Hex Head, 10-24 x 1/2 WASHER, LOCk, Spring, 10 COVER, Magnet	

14-2900A

$\begin{gathered} \text { INDEX } \\ \text { NO. } \end{gathered}$	PART NUMBER	PART DESCRIPTION	NOTES
$3-29$	77569100 73490300 95597957 95597900 95510026 10126103 50222102 94388100 94261001 50222002	POWER AMPLIFIER, Component Assembly (Type 5VTN) (A3A04) LABEL, Assembly Number RESISTOR, Fixed, Wire Wound, $15 \mathrm{~W}, 1 \mathrm{Ohm}$, $\pm 10 \%$ RESISTOR, Fixed, Wire Wound, $15 \mathrm{~W}, 0.5 \mathrm{Ohm}$, $\pm 1 \%$ NUT, Hex WASHER, Lock, Internal Tooth, 6 TRANSISTOR, Darlington Power, SNPN-T03, $(Q 3, Q 4, Q 5)$ INSULATOR, Transistor Wafer HEAT SINK, Transistor TRANSISTOR, Darlington Power, SPNP-T03, (Q1, Q2)	

With OI

withor

Figure 3-31. Power Supply Assembly

INDEX NO.	PART NUMBER	PART DESCRIPTION	
$3-32$			

(1)

$\begin{array}{\|l} \text { INDEX } \\ \text { NO. } \end{array}$	PART NUMBER	PART DESCRIPTION	NOTES
3-33 1 2 3 4 5 6 7 8 9 10 11	$\begin{aligned} & 94383702 \\ & 94383700 \\ & \\ & 95594112 \\ & 95647602 \\ & 50240415 \\ & 10125108 \\ & 10125805 \\ & 50240515 \\ & 47478600 \\ & 95575000 \\ & 92512825 \end{aligned}$	COMPONENT ASSEMBLY, Type SKV ($\pm 20 \mathrm{~V}, \pm 12 \mathrm{~V}$ Power Supplies) (AlA02) CAPACITOR, Electrolytic, 14,000 UF, 15 V, $\pm 1008-10 \%$ CAPACITOR, Electrolytic, 7,500 UF, 35 V , $\pm 100 \%-10 \%$ RESISTOR, Fixed, $10 \mathrm{~W}, 51 \mathrm{Ohm}, \pm 10 \%$ FUSE, Quick-Acting, 2 Amp DIODE, Silicon, $12 \mathrm{~V}, \pm 5 \%$ NUT, Hex, 10-32 WASHER, Lock, Spring, 10 DIODE, Silicon, Zener, $10 \mathrm{~W}, 12 \mathrm{~V}, \pm 5 \%$ HEAT SINK RECTIFIER, Silicon, Hi Current RESISTOR, $1 / 2 \mathrm{~W}, 1,000 \mathrm{Ohm}, \pm 5 \%$	See Card Interchangeability Diagram For Part Number

Publication Title: BK $4 x x / 5 x x$ HARDWARE MAINTENANCE MANUAL, VOLUME I

Publication Number: \qquad Manual Preliminary Revision: \qquad E

Instructions: The attached pages contain replacement information.
Insert the attached pages into the appropriate place.
Do not discard current manual sheet (back-up page
information is not supplied with this packet). All
changes contained in this preliminary packet will be
in the released revision.

Publication Title: BK $4 \times \times /$ BK $5 \times \times$ HARDUARE MAINTENANCE VOLUME I
Publication Number: 83322150
Manual Preliminary Revision: \qquad D

Instructions: The attached pages contain replacement information. Insert the attached pages into the appropriate place. Do not discard current manual sheet (back-up page information is not supplied with this packet). All changes contained in this preliminary packet will be in the released revision.

TABLE 1-7. SECTOR SELECT SWITCH SETTINGS

Number of Sectors	0	1	2	3	Switch Number					9	10	11
					4	5	6	7	8			
4	C	C	C	C	C	0	0	0	C	0	C	C
5	C	C	C	C	C	C	C	0	0	C	0	C
6	C	C	C	C	C	C	0	C	0	0	0	C
7	C	C	C	C	C	C	C	0	C	C	C	0
8	C	C	C	C	0	0	0	C	0	C	C	0
9	0	0	C	0	C	0	C	C	C	0	C	0
10	C	C	C	C	C	C	0	0	C	0	C	0
11	0	0	C	0	0	0	C	C	0	0	C	0
12	C	C	C	C	C	0	C	0	0	0	C	0
13	0	0	0	C	0	0	0	0	0	0	C	0
14	C	C	C	C	C	C	0	C	C	C	0	0
15	C	C	C	C	C	C	C	0	C	C	0	0
16	C	C	C	0	0	0	C	0	C	C	0	0
17	C	0	C	0	C	0	0	0	C	C	0	0
18	C	0	0	C	0	C	C	C	0	C	0	0
1.9	0	C	0	0	0	0	C	C	0	C	0	0
20	C	C	C	C	C	0	0	C	0	C	0	0
21	C	C	C	C	C	C	C	0	0	C	0	0
22	C	0	0	0	0	C	C	0	0	C	0	0
$\rightarrow 23$	C	C	C	0	0	0	C	0	0	C	0	0
24	C	C	C	C	0	C	0	0	0	C	0	0
25	0	0	0	C	C	0	0	0	0	C	0	0
26	C	C	0	0	0	0	0	0	0	C	0	0
27	0	0	0	0	C	C	C	C	C	0	0	0
Table Continued on Next Page												

TABLE 1-7. SECTOR SELECT SWITCH SETTINGS (Contd)

```Number of Sectors```	0	1	2	3	Switch Number					9	10	11
					4	5	6	7	8			
28	C	C	C	C	C	0	C	C	C	0	0	0
29	0	C	C	C	0	0	C	C	C	0	0	0
30	C	C	C	C	C	C	0	C	C	0	0	0
31	0	0	0	0	C	C	0	C	C	0	0	0
32	C	C	0	0	0	C	0	C	C	0	0	0
33	0	C	C	0	C	0	0	C	C	0	0	0
34	0	C	0	C	0	0	0	C	C	0	0	0
35 -	C	C	C	C	C	C	C	0	C	0	0	0
36	0	0	C	0	C	C	C	0	C	0	0	0
37	0	C	0	C	0	C	C	0	C	0	0	0
38	0	0	0	0	0	C	C	0	C	0	0	0
39	C	C	C	0	C	0	C	0	C	0	0	0
40	C	C	C	C	0	0	C	0	C	0	0	0
41	0	C	C	0	0	0	C	0	C	0	0	0
42	C	C	C	C	C	C	0	0	C	0	0	0
43	C	C	C	0	C	C	0	0	C	0	0	0
44	0	0	0	0	C	C	0	0	C	0	0	0
45	C	0	0	C	0	C	0	0	C	0	0	0
46	C	C	0	0	0	C	0	0	C	0	0	0
47	0	0	C	C	C	0	0	0	C	0	0	0
48	C	C	C	0	C	0	0	0	C	0	0	0
49	C	0	0	0	C	0	0	0	C	0	0	0
50	C	C	0	C	0	0	0	0	C	0	0	0
51	0	C	C	0	0	0	0	0	C	0	0	0
Table Continued on Next Page												

TABLE 1-7. SECTOR SELECT SWITCH SETTINGS (Contd)

Number of Sectors	0	1	2	3	Switch Number					9	10	11
					4	5	6	7	8			
52	C	0	0	0	0	0	0	0	C	0	0	0
53	0	0	C	C	C	C	C	C	0	0	0	0
54	C	C	C	0	C	C	C	C	0	0	0	0
55	C	C	0	0	C	C	C	C	0	0	0	0
56	C	C	C	C	0	C	C	C	0	0	0	0
57	0	C	0	C	0	C	C	C	0	0	0	0
58	0	C	C	0	0	C	C	C	0	0	0	0
59	0	C	0	0	0	C	C	C	0	0	0	0
60	C	C	C	C	C	0	C	C	0	0	0	0
61	C	C	0	C	C	0	C	C	0	0	0	0
62	C	C	C	0	C	0	C	C	0	0	0	0
63	0	0	C	0	C	0	C	C	0	0	0	0
264	C	0	0	0	C	0	C	C	0	0	0	0
65	C	0	C	C	0	0	C	C	0	0	0	0
66	0	C	0	C	0	0	C	C	0	0	0	0
67	C	C	C	0	0	0	C	C	0	0	0	0
68	0	0	C	0	0	0	C	C	0	0	0	0
69	C	0	0	0	0	0	C	C	0	0	0	0
70	C	C	C	C	C	C	0	C	0	0	0	0
71	0	0	C	C	C	C	0	C	0	0	0	0
72	C	0	0	C	C	C	0	C	0	0	0	0
73	C	C	C	0	C	C	0	C	. 0	0	0	0
74	0	0	C	0	C	C	0	C	0	0	0	0
75	0	C	0	0	C	C	0	C	0	0	0	0
Table Continued on Next Page												

TABLE 1-7. SECTOR SELECT SWITCH SETTINGS (Contd)

Number of Sectors	0	1	2	3	Switch Number					9	10	11
					4	5	6	7	8			
76	C	C	C	C	0	C	0	C	0	0	0	0
77	C	0	C	C	0	C	0	C	0	0	0	0
78	C	C	0	C	0	C	0	C	0	0	0	0
79	C	0	0	C	0	C	0	C	0	0	0	0
80	C	C	C	0	0	C	0	C	0	0	0	0
81	0	0	C	0	0	C	0	C	0	0	0	0
82	0	C	0	0	0	C	0	C	0	0	0	0
83	0	0	0	0	0	C	0	C	0	0	0	0
84	C	C	C	C	C	0	0	C	0	0	0	0
85	C	0	C	C	C	0	0	C	0	0	0	0
86	C	C	0	C	C	0	0	C	0	0	0	0
87	C	0	0	C	C	0	0	C	0	0	0	0
88	C	C	C	0	C	0	0	C	0	0	0	0
89	0	C	C	0	C	0	0	C	0	0	0	0
90	0	0	C	0	C	0	0	C	0	0	0	0
91	0	C	0	0	C	0	0	C	0	0	0	0
92	C	0	0	0	C	0	0	C	0	0	0	0
93	C	C	C	C	0	0	0	C	0	0	0	0
94	C	0	C	C	0	0	0	C	0	0	0	0
95	0	0	C	C	0	0	0	C	0	0	0	0
96	C	C	0	C	0	0	0	C	0	0	0	0
97	C	0	0	C	0	0	0	C	0	0	0	0
98	0	0	0	C	0	0	0	C	0	0	0	0
99	0	C	C	0	0	0	0	C	0	0	0	0
Table Continued on Next Page												

TABLE 1-7. SECTOR SELECT SWITCH SETTINGS (Contd)

Number of Sectors	0	1	2	3	Switch Number					9	10	11
					4	5	6	7	8			
100	C	0	C	0	0	0	0	C	0	0	0	0
101	0	0	C	0	0	0	0	C	0	0	0	0
102	0	C	0	0	0	0	0	C	0	0	0	0
103	C	0	0	0	0	0	0	C	0	0	0	0
104	0	0	0	0	0	0	0	C	0	0	0	0
105	C	C	C	C	C	C	C	0	0	0	0	0
106	C	0	C	C	C	C	C	0	0	0	0	0
107	0	0	C	C	C	C	C	0	0	0	0	0
108	C	C	0	C	C	C	C	0	0	0	0	0
109	0	C	0	C	C	C	C	0	0	0	0	0
110	C	0	0	C	C	C	C	0	0	0	0	0
1.11	0	0	0	C	C	C	C	0	0	0	0	0
112	C	C	C	0	C	C	C	0	0	0	0	0
113	C	0	C	0	C	C	C	0	0	0	0	0
114	0	0	C	0	C	C	C	0	0	0	0	0
115	C	C	0	0	C	C	C	0	0	0	0	0
116	0	C	0	0	C	C	C	0	0	0	0	0
117	C	0	0	0	C	C	C	0	0	0	0	0
11.8	0	0	0	0	C	C	C	0	0	0	0	0
119	C	C	C	C	0	C	C	0	0	0	0	0
120	C	C	C	C	0	C	C	0	0	0	0	0
121	0	C	C	C	0	C	C	0	0	0	0	0
122	C	0	C	C	0	C	C	0	0	0	0	0
123	0	0	C	C	0	C	C	0	0	0	0	0
Table Continued on Next Page												

TABLE 1-7. SECTOR SELECT SWITCH SETTINGS (Contd)

Number of Sectors	0	1	2	3	Switch Number					9	10	11
					4	5	6	7	8			
124	C	C	0	C	0	C	C	0	0	0	0	0
125	0	C	0	C	0	C	C	0	0	0	0	0
126	C	0	0	C	0	C	C	0	0	0	0	0
127	0	0	0	C	0	C	C	0	0	0	0	0
128	0	0	0	C	0	C	C	0	0	0	0	0

