(5 CONTROL DATA

CDC ${ }^{\circledR}$ END USER SUBSYSTEMS
33332/33302
38302/38304
33801/3350X
38800/33800

GENERAL INFORMATION
STORAGE CONTROL INSTALLATION CONTROLLER/DRIVE INSTALLATION

" REVISION RECORD

REVISION

REVISİON LETTERS I, O, Q AND X ARE NOT USED.
© 1977.1978.1979.1980.1981. 1982.1983.1984.1988

By Control Data Corporation Printed in the United States of America

Address comments concerning this manual to:

Control Data Corporation Technical Publications Dept. 5950 Clearwater Drive Minnetonka, MN 55343
or use Comment Sheet in the back of this manual.

REVISION RECORD (Contd)

REVISION RECORD (Contd)

This manual is at revision V. Each page in your manual should be at the revision level listed below. The "Div" is a colored divider page.

PAGE/REV	
Cover	-
Blank	-
Title P	-
f-2	V
f-3	V
$f-4$	V
f-5	V
f-6	v
f-7	V
Blank	-
f-9	V
f-10	V
$f-11$	V
$f-12$	V
$f-13$	V
f-14	V
$f-15$	V
$f-16$	V
f-17	V
f-18	v
f-19	V
$f-20$	v
f-21	V
f-22	V
f-23	V
f-24	v
f-25	V
f-26	V
f-27	v
f-28	v
f-29	V
f-30	V
f-31	v
f-32	V
f-33	V
f-34	V
f-35	V
f-36	V
$f-37$	V
f-38	V
f-39	V
f-40	v

PAGE/REV	
f-41	V
$f-42$	V
$f-43$	V
f-44	V
f-45	V
Blank	-
S-1 Div	-
Blank	-
1-1	L
1-2	L
1-3	L
1-4	L.
1-5	M
1-6	U
1-7	V
1-8	V
1-9	R
1-10	R
1-11	T
1-12	T
S-2 Div	-
Blank	-
2-1	L
2-2	S
2-3	S
2-4	R
2-5	R
2-6	R
S-2A Div	-
Blank	-
2A-1	N
2A-2	L
2A-3	L
2A-4	L
2A-5	L
2A-6	L
2A-7	L
2A-8	L
2A-9	L
2A-10	N
2A-11	L
2A-12	L

PAGE/REV	
2A-13	L
2A-14	L
2A-15	L
2A-16	L
2A-17	L
2A-18	L
2A-19	L
2A-20	L
2A-21	L
2A-22	L
2A-23	L
2A-24	L
$2 A-25$	L
2A-26	L
2A-27	L
2A-28	L
2A-29	L
2A-30	L
2A-31	L
2A-32	N
2A-33	L
2A-34	L
2A-35	L
2A-36	L
S-2B Div	-
Blank	-
2B-1	N
2B-2	L
2B-3	L
2B-4	L
2B-5	L
2B-6	L
2B-7	L
2B-8	L
2B-9	L
2B-10	L
2B-11	L
2B-12	L
2B-13	M
2B-14	L
2B-15	L
2B-16	L

PAGE/REV	
2B-17	N
2B-18	N
2B-19	L
2B-20	L
2B-21	L
2B-22	L
2B-23	L
2B-24	M
2B-25	L
2B-26	L
2B-27	L
2B-28	L
2B-29	L
2B-30	M
2B-31	N
2B-32	L
2B-33	L
2B-34	L
2B-35	N
2B-36	L
2B-37	L
2B-38	M
2B-39	L
Blank	-
S-2C Div	-
Blank	-
2C-1	N
2C-2	L
2C-3	L
2C-4	L
2C-5	L
2C-6	L
2C-7	L
2C-8	L
2C-9	L
2C-10	L
$2 \mathrm{C}-11$	M
2C-12	\mathbf{U}
2C-13	P
2C-14	N
2C-15	\mathbf{U}
2C-16	L

PAGE/REV	
2C-17	L
2C-18	L
2C-19	L
2C-20	M
2C-21	L
2C-22	N
2C-23	L
2C-24	L
2C-25	L
2C-26	M
2C-27	P
2C-28	L
2C-29	L
2C-30	L
2C-31	N
2C-32	L
2C-33	L
2C-34	N
2C-35	L
Blank	-
S-20 Div	-
Blank	-
20-1	S
20-2	S
20-3	S
20-4	5
20-5	5
20-6	S
20-7	V
20-8	T.
20-9	5
20-10	S
20-11	S
20-12	U
20-13	P
20-14	S
2D-15	V
20-16	S
20-17	S
20-18	S
20-19	T
20-20	T

LIST OF EFFECTIVE PAGES (Contd)

PAGE/REV		PAGE/REV		PAGE/REV		PAGE/REV		PAGE/REV	
4C-1	L	4C-43	N	4D-23	N	4E-15	v	5-1	A
4C-2	L	4C-44	N	4D-24	L	4E-16	T	5-2	A
4C-3	L	4C-45	L	4D-25	L	4E-17	T	5-3	A
4C-4	L	4C-46	L	4D-26	T	4E-18	T	5-4	A
4C-5	L	4C-47	L	4D-27	L	4E-19	T	S-6 Div	-
4C-6	L	4C-48	L	40-28	N	4E-20	U	Blank	-
4C-7	L	4C-49	L	4D-29	L	4E-21	v	6-1	A
4C-8	L	4C-50	L	40-30	L	4E-22	v	6-2	'A
4C-9	L	4C-51	L	4D-31	N	4E-23	v	6-3	A
4C-10	L	4C-52	L	4D-32	N	4E-24	v	Blank	-
4C-11	L	4C-53	L	4D-33	L	4E-25	v	App A Di	-
4C-12	L	4C-54	L	4D-34	L	4E-26	v	Blank	-
4C-13	L	4C-55	L	4D-35	L	4E-27	v	A-1	A
4C-14	L	4C-56	S	4D-36	L	4E-28	v	A-2	A
4C-15	L	4C-57	S	4D-37	L	4E-29	v	A-3	A
4C-16	L	4C-58	S	4D-38	L	4E-30	v	A-4	A
4C-17	L	4C-59	S	4D-39	L	4E-31	v	A-5	5
4C-18	N	4C-60	S	4D-40	L	4E-32	v	A-6	A
4C-19	L	S-4D Div	-	40-41	L	4E-33	v	A-7	A
4C-20	L	Blank	-	4D-42	L	4E-34	v	A-8	S
4C-21	L	4D-1	L	4D-43	S	4E-35	v	A-9	A
4C-22	L	4D-2	L	4D-44	S	4E-36	v	A-10	A
4C-23	L	40-3	L	40-45	S	4E-37	v	A-11	A
4C-24	L	40-4	L	40-46	S	4E-38	v	A-12	S
4C-25	N	4D-5	L	4D-47	S	4E-39	v	A-13	A
4C-26	L	4D-6	L	40-48	5	4E-40	v	A-14	A
4C-27	L	4D-7	L	S-4E Div	-	4E-41	v	A-15	A
4C-28	L	4D-8	L	Blank	-	4E-42	v	A-16	A
4C-29	L	4D-9	L	4E-1	T	4E-43	v	A-17	A
4C-30	N	4D-10	L	4E-2	T	4E-44	v	A-18	A
4C-31	N	4D-11	L	4E-3	T	4E-45	v	A-19	A
4C-32	L	4D-12	L	4E-4	T	4E-46	V	A-20	A
4C-33	L	4D-13	L	4E-5	T	4E-47	V	A-21	A
4C-34	L	4D-14	L	4E-6	v	4E-48	v	A-22	A
4C-35	L	4D-15	L	4E-7	T	4E-49	v	Cmt Sht	-
4C-36	L	4D-16	L	4E-8	U	4E-50	V	Rtn Env	-
4C-37	L	4D-17	L	4E-9	v	4E-51	v	Blank	-
4C-38	L	40-18	N	4E-10	v	4E-52	v	Cover	-
4C-39	L	4D-19	L	4E-11	v	4E-53	v		
4C-40	N	$4 \mathrm{D}-20$	L	4E-12	v	4E-54	v		
4C-41	L	4D-21	L	4E-13	v	S-5 Div	-		
4C-42	L	4D-22	L	4E-14	V	Blank	-		

- •

PREFACE

INTRODUCTION

This manual has been prepared for customer engineers and other technical personnel directly involved with the installation and checkout of CDCO end user Disk Memory Subsystems. You should be thoroughly familiar with the principles of operation and programming of the IBM block multiplexer and selector channels.

Abbreviations are listed on page f-45.

SUBSYSTEM COMPONENTS

The subsystem product numbers (3330X, 3350X, etc.) used throughout this manual are applicable to the end-user market. These subsystems are also available to Original Equipment Manufacturers (OEM) under other product designations. The chart on the next page lists the basic correlation between end-user and OEM products. The chart does not list all variations in product/equipment numbers.

The CDC 33800 and CDC 895 Disk Storage Subsystems are physically identical. However, the 33800 is used with IBM systems and the 895 is used with CDC CYBER systems. Therefore, any internal references in this manual pertaining to SOLEX, EREP, and OLTEP apply only to a 33800 subsystem used with an IBM mainframe.

In general, all information in this manual applies also to OEM subsystems. Be aware, however, that specific OEM sites may require special procedures. Contact your analyst or site planning personnel for any variations to these procedures.

END USER VS OEM PRODUCTS

UNIT	END USER		OEM	
	Product	Equipment	Product	Equipment
Storage Control	$\begin{aligned} & 38302 \\ & 38302 \\ & 38304 \\ & 38800-1 \\ & 38800-3 \end{aligned}$	FA721 FAl09 FAll3 FAl61 FAl63	9086 9088 9079 None 90880-3	FA7A9 FA7B2/FA7B3 FAlA2 FAlA3/FAlB2
Controller Adapter	33332	FV605	9087	FV1B2
HPD	3330 X	BRXXX	9786	BR3D9
FMD	$33801 / 3350 \mathrm{X}$	BZXXX	9776	BZXXX
HSC	33800	FV716	90380	FA7A5
DSU	33800	BZ 640	97380	BZ8G1/BZ8H1

MANUAL ORGANIZATION

The information in this manual is organized into the following major subject headings:

- Section 1: General Information -- contains a general description of End-User subsystems, equipment setup, and microprogram availability.
- Section 2: CDC Storage Control Installation -- contains a listing of storage control model numbers and an installation check list.
- Section 2A: FA72l Storage Control Installation -- describes the procedures required to install and check out the FA72l Storage Control.
- Section 2B: CDC FAl09 Storage Control Installation describes the procedures required to install and check out the FAlO9 Storage Control.
- Section 2C: CDC FAll3 Dual Storage Control Installation -- describes the procedures required to install and check out the FAll3 Dual Storage Control.
- Section 2D: CDC FAl6l/l63 Storage Control Installation -- describes the procedures required to install and check out the FAl6l/l63 Storage Control.
- Section 3: IBM Storage Control Installation -- describes the procedures required to integrate an IBM 3830-2 or Integrated storage control (ISC) into a CDC Disk Storage subsystem.
- Section 4: CDC Controller/Drive Installation -- contains a listing of controller and drive model numbers and an installation check list.
- Section 4A: CAU/HPD Installation -- describes the procedures required to install the CDC CAU (33332) controller and CDC HPD (3330-1l) drive.
- Section 4B: Non-DAF Capable FMC/FMD Installation -- describes the procedures required to install CDC Non-DAF capable Fixed Module Controller (FMCs) and Fixed Module Drives (FMDs).
- Section 4C: DAF Capable FMC/FMD Installation (without DVRR) -- describes the procedures required to install DAF capable Fixed Module Controllers (FMCs) and Fixed Module Drive (FMDs) on subsystem not equipped with the Dual Volume Receive/Release (DVRR) feature.
- Section 4D: DAF Capable FMC/FMD Installation (with DVRR) -- describes the procedures required to install DAF capable Fixed Module Controllers (FMCs) and Fixed Module Drives (FMDs) on subsystems equipped with the Dual Volume Reserve/Release DVRR feature.
- Section 4E: HSC/DSU Installation -- describes the procedures required to install the CDC HSC Head of String Controller and CDC Disk Storage Unit drive.
- Appendix A: CDC Equipment Detailed Addressing Procedure -- provides detailed information on addressing for a subsystem consisting exclusively of cDC equipment.

OTHER MANUALS

The following manuals are recommended for those seeking supplementary information on the subsystem and the units comprising the subsystem:

NOTE

Manual titles are abbreviated. Refer to sections 2 (storage control) and 4 (drives) for exact unit equipment identifiers.

Publication No.
Title

GENERAL

83322440

83324400

83324020

HPD SUBSYSTEM (3330X)

83301500

22241700
60468920
60465350
83301700

Reference Manual.

SOLEX User Guide. Vol. 1
SOLEX User Guide, Vol. 2

SOLEX User Guide, Vol. 3
Subsystem Troubleshooting Manual, Vol. 1 (Inline Diagnostics. Operation Procedures, and Error Dictionary)

FA721 STORAGE CONTROL

83301800	Hardware Reference Manual
83301900	Models A thru M Hardware Maintenance Manual, Vol. 1 (Preventive/ Corrective Maintenance and Wire Lists)
83302000	Models A thru M Hardware Maintenance Manual, Vol. 2 (Diagrams)
83321900	Models N thru u Hardware Maintenance Manual, Vol. 1 (Preventive/ Corrective Maintenance and Wire Lists)
83302000	Models N thru U Hardware Maintenance Manual. Vol. 2 (Diagrams)
83322290	Troubleshooting Manual
83306000	Hardware Maintenance Manual, Vol. 3 (Parts Data)
	09 STORAGE CONTROL
83321800	Hardware Reference Manual
83322470	```Hardware Maintenance Manual. Vol. l (Preventive/Corrective Mainte- nance, Wire Lists)```
83322480	Hardware Maintenance Manual. Vol. 2 (Logic Diagrams)
83306000	Hardware Maintenance Manual, Vol. 3 (Parts Data)
83322290	Troubleshooting Manual
	3 DUAL STORAGE CONTROL
83321800	Hardware Reference Manual
83324140	```Hardware Maintenance Manual. Vol l (Preventive/Corrective Mainte- nance, Wire Lists)```
83324150	Hardware Maintenance Manual. Vol 2 (Logic Diagrams)

83324160	Hardware Maintenance Manual. Vol 3 (Parts Data)
83324170	MFlls Troubleshooting Manual (Standalone Diagnostics for FAll3)
	FA161/162/163 STORAGE CONTROL
83324380	Hardware Reference Manual
83324390	Hardware Maintenance Manual (Maintenance, Parts Data, Diagrams)
83324410	Hardware Diagnostic Reference (descriptions and operating procedures for storage control microdiagnostics used with the MFlxx microprogram.)
83324420	Troubleshooting Guide, Volume 1 (error code listings and card replacement information.) This manual is used in conjunction with 83324410 and contains information on error codes 000 through 130.
83337580	Troubleshooting Guide, Volume 2. This manual is a continuation of Volume 1 and contains information on error codes 410 and above.
83337310	Operator Manual (in English)
83337320	Operator Manual (in German)

FV605 CONTROLLER ADAPTER UNIT

83306100
83306200

83315400

83306300

Hardware Reference Manual
Models A and B Hardware Maintenance Manual, Vol. 1 (Preventive/Corrective Maintenance, Diagrams, Wire Lists)

Models D-J Hardware Maintenance Manual, Vol. 1 (Preventive/Corrective Maintenance, Diagrams, Wire Lists)

Models A-J Hardware Maintenance Manual, Vol. 2 (Parts Data)

FV605 CONTROLLER ADAPTER UNIT (Contd)

83320900	Models K-N Hardware Maintenance Manual. Vol. 1 (Preventive/Corrective Maintenance. Diagrams. Wire Lists)
83321000	Models K-N Hardware Maintenance Manual. Vol. 2 (Parts Data)
FV716 HEAD OF STRING CONTROLLER	
83337500	Hardware Reference Manual
83337510	Hardware Maintenance Manual (Maintenance, Parts Data. Diagrams)
83337530	Hardware Diagnostic Reference Manual. This manual contains descriptions and operating procedures for HSC/DSU inline microdiagnostics used with the MFlxx microprogram.
83337540	Troubleshooting Guide. This manual contains error codes listings and card replacement information. (Used in conjunction with 83337530.)
83337560	Operator Manual (in English)
83337570	Operator Manual (in German)
HIGH PERFORMANCE DRIVES	
70629200	BR501/503 Hardware Reference Manual
70629300	BR501/503 Hardware Maintenance Manual. Vol. l (Preventive/Corrective Maintenance, Diagrams, Wire Lists)
70629400	BR501/503. Hardware Maintenance Manual. Vol. 2 (Parts Data)
83302700	BR502/504 Hardware Reference Manual
83302600	BR502/504 Hardware Maintenance Man ual. Vol. 1 (Preventive/Corrective Maintenance, Diagrams, Wire Lists)

HIGH PERFORMANCE DRIVES (Contd)

83302800	BR502/504 Hardware Maintenance Manual. Vol. 2 (Parts Data)
83319900	BR306/307/310/311 Hardware Reference Manual
83320000	BR306/307/310/311 Hardware Maintenance Manual. Vol. 1 (Preventive/ Corrective Maintenance)
83308900	BR306 Models A/B/D/E/F/G BR307 Models A/B/D/E/ Hardware Maintenance Manual, Vol. 2 (Parts Data)
83320200	BR306 Models D/E. BR3l0 Models A/B, Hardware Maintenance Manual, Vol. 3 (Diagrams)
83320100	BR306 Models A/B/F/G, Hardware Maintenance (Diagrams)
83314800	BR3lo Models A/B/C/D: BR3ll Models A / B, Hardware Maintenance Manual. Vol. 2 (Parts Data)
83320400	BR307 Models D/E, BR310 Models C/D. BR3ll Models A/B. Hardware Maintenance Manual, Vol. 3 (Diagrams)
83319700	Selector Channel Software Users Guide (STO 68602)
	NON-DAF CAPABLE FMD
83322580	Hardware (controller)
83322610	Hardware Reference Manual (device)
83322560	Hardware Maintenance Manual, Vol. 1 (Installation and Checkout, Preventive/Corrective Maintenance. Parts Data for A2 units)
83322590	Hardware Maintenance Manual, Vol. l (Installation and Checkout, Preventive/Corrective Maintenance, Parts Data for B 2 units)

NON-DAF CAPABLE FMD (Contd)

83322570	Hardware Maintenance Manual, Vol. 2 (Logic Diagrams. Wire Lists for A2 units)
83322600	BZ701/702/706 Hardware Maintenance
	Manual. Vol. 2 (Logic Diagrams,
	Wire Lists for B 2 units)
	DAF CAPABLE FMD
83323050	Controller Hardware Reference Manual
83323060	Device Hardware Reference Manual
83323070	Hardware Maintenance Manual, Vol. 1 (Preventive/Corrective Maintenance,
	Parts Data) (Series Code 26 and below)
83324520	Hardware Maintenance Manual. Vol. 1 (Preventive/Corrective Maintenance,
	```l}\begin{array}{l}{\mathrm{ Parts Data) (Series Code 27 and}}\\{\mathrm{ above) }}```
83323080	Hardware Maintenance Manual. Vol. 2
	(Controller Logic Diagrams For
	Units Without DVRR)
83337210	Hardware Maintenance Manual, Vol. 2
	(Controller Logic Diagrams For
	Units With DVRR)
83323090	Hardware Maintenance Manual. Vol. 3 (Device Logic Diagrams)
	BZ640 DISK STORAGE UNIT
83337440	Hardware Reference Manual
83337450	Hardware Maintenance (Maintenance,
	Parts Data, Diagrams)
83337530	Hardware Diagnostic Reference Manual. This manual contains descrip-
	tions and operating procedures for
	HSC/DSU inline microdiagnostics
	used with the MFlxx microprogram.

Troubleshooting Guide. This manual contains error codes listings and card replacement information. (Used in conjunction with 83337530. )

## MICROPROGRAM MANUALS

Section $l$ contains a table listing available disks. The manuals listed below contain printouts of the various microcodes. This list is in disk part number order. Printouts of the inline microdiagnostics are not available: refer to volume 2 of the applicable subsystem troubleshooting manual for flowcharts of inline microdiagnostic execution.

DISK NO.	PUB. NO.	TITLE
$473861 \times \mathrm{X}$	83323690	MFllo Functional
728800xX	83324210	MFll9 Functional
728822xX	83324180	MF120 Functional
728832 XX	83324280	MF122 Functional
728864XX	83337220	MF127 Functional
728865XX	83337230	MF128 Functional
731597xX	83324270	MF118/MF123 Standalones
736867 XX	83312100	FA721/FAl09 Standalones
736984XX	83302100	8-Volume Functional
751267xx	83323010	MFl05 Functional
77465410	83314400	MFlll Functional
778296XX	83319800	System 360/65 Functional
823226xx	83322330	MFl09 Non-DAF Functional
823816XX	83323460	MFl09 DAF Functional
832731XX	83322800	MF104 Functional

## WARNING

On computer sites complying with VDE requirements, installation and maintenance must be performed only by qualified service personnel using designated CDC/MPI parts. All replacement power cords must be VDE certified or harmonized.

If there is an emergency, all units connected to the computer can be turned off by puling the round red EMERGENCY PULL switch on the IBM console. Remove power only from the subsystem by pressing the POWER OFF switch on the storage control.

## WARNUNG

In Rechenzentren, die VDE Vorschriften unterliegen, duerfen Installation und Wartung nur von qualifiziertem Wartungspersonal ausgefuehrt werden. Dabei muessen original CDC/MPI Teile verwendet werden. Alle Ersatz-Stromkabel muessen das VDE Guetezeichen tragen oder dieser Qualitaet entsprechen.

In Notfaellen koennen alle Geraete, die mit der Zentraleinheit verbunden sind, durch ziehen des runden, roten EMERGENCY PULL (Not Aus) Schalters an der IBM-Konsole ausgeschaltet werden. Eine nur fuer das Plattenspeichersystem bestimmte Unterbrechung des Stromnetzes wird durch druecken des LOGIC 0 Schalters an der Speichersteuerungseinheit ermoeglicht.

## CONTENTS

Abbreviations ..... f-45

1. GENERAL INFORMATION
Introduction ..... 1-1
Subsytem Description ..... 1-1
General ..... 1-1
Storage Control ..... 1-2
Controller ..... 1-2
Drive ..... 1-2
Subsystem Equipment Mix ..... 1-3
Storage Control ..... 1-3
Controller/Drive ..... 1-5
General Grounding Requirements ..... 1-5
Microprograms ..... 1-6
Safety Precautions ..... 1-11
2. CDC STORAGE CONTROLS INSTALLATION
Introduction ..... 2-1
Storage Controls ..... 2-1
Installation Check List ..... 2-1
2A. CDC FA72l STORAGE CONTROL INSTALLATION
Introduction ..... 2A-1
Space Requirements ..... 2A-1
Inspection ..... 2A-1
Uncrating ..... 2A-3
Inventory ..... 2A-3
Leveling Pad Installation ..... 2A-4
I/O Cables ..... 2A-4
I/O Signal Cables ..... 2A-4
Power Sequence Control Cables ..... 2A-8
Ground Straps ..... 2A-8
Storage Control Power Cable ..... 2A-9
Source Voltage Selection ..... 2A-9
Power Control Unit (PCU) ..... 2A-10
DC Power Supplies ..... 2A-10
Address Selection ..... 2A-10Address Range Selection2A-20
Channel Address Decode ..... 2A-20
Option Selection ..... 2A-23
Select Priority Jumper ..... 2A-23
Mode Select Jumper ..... 2A-24
Machine Configuration Options ..... 2A-24
16 Volume Addressing Option ..... 2A-24
DAF/SS Enhancement Option ..... 2A-26
Concurrent l6-Volume/DAF/SS Option ..... 2A-28
Initial Startup and Checkout ..... 2A-29
Mechanical Checks ..... 2A-29
Voltage Checks ..... 2A-29
Diagnostic Checks ..... 2A-32
Special Tools and Test Equipment ..... 2A-32
Microprogram Flexible Disks ..... 2A-34
2B. CDC FAlO9 STORAGE CONTROL INSTALLATION Introduction ..... 2B-1
Space Requirements ..... 2B-1
Inspection ..... 2B-1
Uncrating ..... 2B-3
Inventory ..... 2B-3
Leveling Pad Installation ..... 2B-4
I/O Cables ..... 2B-4
I/O Signal Cables ..... 2B-4
Power Sequence Control Cables ..... 2B-8
Ground Straps ..... 2B-9
Storage Control Power Cable ..... 2B-9
Source Voltage Selection ..... 2B-9
Power Control Unit (PCU) ..... 2B-10
DC Power Supply ..... 2B-10
Address Selection ..... 2B-17
Non-Sequential Addressing ..... 2B-20
Address Range Selection ..... 2B-20
Channel Address Decode ..... 2B-22
Sequential Addressing ..... 2B-24
Address Range Selection ..... 2B-24
Channel Address Decode ..... 2B-25
Option Selection ..... 2B-26
Jumper Selections on Card at Location AlAL ..... 2B-27
Select Priority Jumper ..... 2B-27
Mode Select Jumper ..... 2B-27
Machine Configuration Jumpers ..... 2B-27
Alternate Phase System Reset Jumper (Bit 0) ..... 2B-27
Dual Volume Jumper (Bit l) ..... 2B-29
FMD Hardware Jumper (Bit 2) ..... 2B-29
Offset Jumper (Bit 3) ..... 2B-29
M Reg Jumper (Bit 4) ..... 2B-30
Control Unit Busy Jumper (Bit 5) ..... 2B-30
Primed Interrupt Jumper (Bit 6) ..... 2B-30
16 Volume/Bit 2 Decode Jumper (Bit 7) ..... 2B-31
Jumper Selections on Card at AlBF ..... 2B-31
Unused Bits ..... 2B-31
Sequential Address (Bit 4) ..... 2B-31
Initial startup and Checkout ..... 2B-3I
Mechanical Checks ..... 2B-31
Voltage Checks ..... 2B-32
Diagnostic Checks ..... 2B-33
Special Tools and Test Equipment ..... 2B-35
Microprogram Flexible Disks ..... 2B-37
2C. CDC FAll3 STORAGE CONTROL INSTALLATION Introduction ..... 2C-1
Space Requirements ..... 2C-1
Inspection ..... 2C-1
Uncrating ..... 2C-3
Inventory ..... 2C-3
Leveling Pad Installation ..... 2C-4
I/O Cables ..... 2C-4
I/O Signal Cables ..... 2C-4
Power Sequence Control Cables ..... 2C-8
Ground Straps ..... 2C-9
Storage Control Power Cable ..... 2C-9
Source Voltage Selection ..... 2C-10
Power Control Unit (PCU) ..... 2C-10
DC Power Supply ..... 2C-10
Address Selection ..... 2C-13
Non-Sequential Addressing ..... 2C-16
Address Range Selection ..... 2C-16
Channel Address Decode ..... 2C-18
Sequential Addressing ..... 2C-20
Address Range Selection ..... 2C-20
Channel Address Decode ..... 2C-21
Option Selection ..... 2C-22
Jumper Selections on Card at Locations AllAL/AlAL ..... 2C-23
Select Priority Jumper ..... 2C-23
Mode Select Jumper ..... 2C-23
Machine Configuration Jumpers ..... 2C-23
Alternate Phase System Reset Jumper (Bit 0) ..... 2C-23
Dual Volume Jumper (Bit l) ..... 2C-25
FMD Hardware Jumper (Bit 2) ..... 2C-25
Offset Jumper (Bit 3) ..... 2C-25
M Reg Jumper (Bit 4) ..... 2C-26
Control Unit Busy Jumper (Bit 5) ..... 2C-26
Primed Interrupt Jumper (Bit 6) ..... 2C-26
16 Volume/Bit 2 Decode Jumper (Bit 7) ..... 2C-27
Jumper Selections on Card at AlBE ..... 2C-27
Unused Bits ..... 2C-28
Sequential Address (Bit 4) ..... 2C-28
Initial Startup and Checkout ..... 2C-28
Mechanical Checks ..... 2C-28
Voltage Checks ..... 2C-28
Diagnostic Checks ..... 2C-30
Special Tools and Test Equipment ..... 2C-31
Microprogram Flexible Disks ..... 2C-33
2D. CDC FAl6x STORAGE CONTROL INSTALLATION
Introduction ..... 2D-1
Terminology ..... 2D-1
Electrostatically Sensitive Precautions ..... 2D-2
Space Requirements ..... 2D-4
Inspection ..... 2D-5
Uncrating ..... 2D-5Inventory
Leveling and Placement ..... 2D-52D-5
I/O Cables
(1) ..... 2D-7
I/O Signal Cables ..... 2D-13
Power Sequence Control Cables ..... 2D-14
Power Connections ..... 2D-15
Source Voltage Jumper Installation ..... 2D-15
Power Cable Installation ..... 2D-16
Switch Settings ..... 2D-18
Channel Transmitter/Receiver Board ..... 2D-18
_CSN Board ..... 2D-18
_GWN Board -- 8 Channel Option ..... 2D-18
Channel Sequence Control Board ..... 2D-19
Director-to-Device Controller Board ..... 2D-21
Storage Director Identification Number Switch Setting 2D-21
SD Configuration Switch Setting ..... 2D-22
Channel Interface Board ..... 2D-23
Channel Addressing Switches ..... 2D-24
Address Decode ..... 2D-24
Address Switch Settings Procedure ..... 2D-30
Channel Priority Switch ..... 2D-30
Microprogram Flexible Disk ..... 2D-44
Initial Startup and Testing ..... 2D-46
Special Tools and Test Equipment ..... 2D-47
3. IBM STORAGE CONTROL INSTALLATION
Introduction ..... 3-1
Procedures ..... 3-1
Address/Option Selections ..... 3-1
Address Range Selection ..... 3-6
Address Compare/Generate ..... 3-6
Priority Selection Control ..... 3-7
Machine Configuration Jumpers ..... 3-8
Channel Transfer Control ..... 3-8
Channel Selector Control ..... 3-10
Transfer Buffer Control ..... 3-11
Microprogram Flexible Disks ..... 3-11
ISC/3830-2 Operation ..... 3-14
Switches and Indicators ..... 3-14
Register/Storage Display Indicators ..... 3-14
Enter/Display Select or Data Entry Switch ..... 3-18
Execute Switch ..... 3-18
Register Select Switch ..... 3-18
Inner/Outer Switch ..... 3-18
Operation Mode and Check Reset/Lamp Test Switches ..... 3-18
Address/Data Entry Switches ..... 3-18
MPL File

3-18
Seek In/Out Head Load Switch 3-18
Power On/ISC 1 or 2 Indicator 3-19
IMPL (ISC) or MPL (38302-2) Switch 3-20
Address Compare $\quad 3-20$
SW Indicator 3-20
ACR Indicator 3-20
Sync/Stop Switch/Indicator 3-20
Recycle/Stop Switch/Indicator 3-20
Address/Check/Program Display Indicators 3-23
Check 1/2 Indicators 3-23
Start Switch 3-23
Reset Switch 3-23
Stop/SI Switch 3-23
DC Ready Indicator 3-23
Power Switch (3830-2 Only) 3-24
Channel Interface(s) Disabled Indicator 3-24
Clock Stopped Indicator 3-24
Operating Procedures 3-24
Functional Microprogram Loading on Single Path ISC 3-24
Normal Mode Operation 3-24
CE Mode Operation 3-25
Functional Microprogram Loading on Dual Path ISC 3-26
$\begin{array}{lr}\text { Normal Mode Operation } & \text { 3-26 }\end{array}$
CE Mode Operation 3-27
Functional Microprogram Loading on 3830-2 3-28
Normal Mode Operation 3-28
$\begin{array}{ll}\text { CE Mode Operation } & \text { 3-28 }\end{array}$
Error Handing During MPL 3-29

Device Interface

4A-86
I/O Cables \& Terminators ..... 4A-86
Ground Straps ..... 4A-86
Initial startup and Checkout ..... 4A-86
Controller Adapter Unit ..... 4A-86
Mechanical Checks ..... 4A-86
Voltage Checks ..... 4A-87
Inline Microdiagnostic Checks ..... 4A-8B
Drive ..... 4A-88
Mechanical Checks ..... 4A-88
Voltage Checks ..... 4A-88
Inline Microdiagnostic Checks ..... 4A-89
Bolt Together Drive Hardware ..... 4A-89
Special Tools and Test Equipment ..... 4A-914B. NON-DAF CAPABLE FMC/FMD INSTALLATIONIntroduction4B-1
Site Requirements ..... 4B-1
Environmental Specifications ..... 4B-1
Physical Specifications ..... 4B-1
Electrical Specifications ..... 4B-3
Equipment Setup ..... 4B-4
Uncrating ..... 4B-8
Inventory ..... 4B-8
Preinstallation Inspection ..... 4B-9
Final Unpacking ..... 4B-9
Primary Air Filters ..... 4B-9
Deck Hold-Down Bolts ..... 4B-9
Placement and Leveling ..... 4B-12
System Grounding ..... 4B-15
Controller Interface Cabling ..... 4B-16
Device Interface Cabling ..... 4B-20
Address and Jumper Selections ..... 4B-23
Device Physical Address Selection ..... 4B-23
Fixed Head/Mode/Emulation Jumpers ..... 4B-25
Controller Physical Address Header Selections ..... 4B-26
Terminations ..... 4B-26
Terminator Cards ..... 4B-29
Backpanel ..... 4B-29
Unit Power Sequence Board ..... 4B-29
Voltage Selections ..... 4B-31Power Distribution Unit
DC Power Supply4B-32AC Power Cable4B-32
HDA Temperature Stabilization ..... 4B-36
New Unit Delivery ..... 4B-36
Replacement HDA ..... 4B-37
Initial Startup and Checkout ..... 4B-37
Final Visual Checks ..... 4B-37
Initial Startup ..... 4B-38
HDA Purge ..... 4B-39
Carriage Locking Rod Removal ..... 4B-39
Initial Checkout ..... 4B-39
Final Checkout ..... 4B-41
Repackaging ..... 4B-41
4C. DAF CAPABLE FMC/FMD INSTALLATION (WITHOUT DVRR)
Introduction ..... 4C-1
Site Requirements ..... $4 \mathrm{C}-1$
Environmental Specifications ..... 4C-1
Physical Specifications ..... $4 \mathrm{C}-1$
Electrical Specifications ..... $4 \mathrm{C}-3$
Equipment Setup ..... 4C-4
Uncrating ..... 4C-8
Inventory ..... 4C-9
Preinstallation Inspection ..... 4C-9
Final Unpacking ..... 4C-10
Primary Air Filters ..... 4C-10
Deck Hold-Down Bolts ..... $4 \mathrm{C}-10$
Placement and Leveling ..... 4C-13
System Grounding ..... 4C-16
Controller Interface Cabling ..... 4C-17
Inter-unit Cabling ..... $4 \mathrm{C}-20$
DAF String ..... $4 \mathrm{C}-20$
Intermixing DAF Capable and Non-DAF Capable Units ..... 4C-25
Alternate Controller (A2/C2) Intermix ..... 4C-26
Interstring (DAF) Cable ..... 4C-26
General ..... 4C-27
Routing DAF Cable ..... 4C-27
Connecting for l6-Device Operation ..... 4C-29
Connecting for 8 -Device Operation ..... 4C-30
Cabling Summary ..... 4C-33
Address and Jumper Selections ..... 4C-34
Device Physical Address Selection ..... 4C-34
Non-String Switch Jumper Blocks ..... 4C-34
Fixed Head/Mode/Emulation Jumpers ..... 4C-40
Controller Physical Address/String Configuration Selections ..... 4C-43
8-Device DAF Jumper ..... 4C-45
Terminations ..... 4C-45
Terminator Cards ..... 4C-45
Backpanel ..... 4C-46
Unit Power Sequence Board ..... 4C-46
Voltage Selections ..... 4C-48
Power Distribution Unit ..... 4C-49
DC Power Supply ..... 4C-49
AC Power Cable ..... 4C-49
HDA Temperature Stabilization ..... 4C-53
New Unit Delivery ..... 4C-53
Replacement HDA ..... 4C-54

```
Initial Startup and Checkout 4C-54
 Final Visual Checks 4C-54
 Desiccant Removal 4C-55
 Initial Startup 4C-56
 HDA Purge 4C-57
 Initial Checkout 4C-57
 Final Checkout 4C-59
Field Conversion From Single to Dual Access 4C-60
Repackaging 4C-60
4D. DAF CAPABLE FMC/FMD INSTALLATION (WITH DVRR)
Introduction 4D-1
Site Requirements 4D-1
 Environmental Specifications 4D-1
 Physical Specifications 4D-1
 Electrical Specifications 4D-3
 Equipment Setup 4D-4
 Uncrating 4D-8
 Inventory 4D-9
 Pre-Installation Inspection 4D-9
 Final Unpacking 4D-10
 Primary Air Filters 4D-10
 Deck Hold-Down Bolts 4D-10
 Placement And Leveling 4D-13
 System Grounding 4D-16
 Controller Interface Cabling 4D-17
 Inter-Unit Cabling 4D-20
 Interstring Cables 4D-23
 DAF Cable 4D-23
 General 4D-23
 Routing DAF Cable 4D-23
 Connecting DAF Cables 4D-25
 FMC Cross Communication Cables 4D-26
```

Address and Jumper Selections ..... 4D-27
Device Physical Address Selection ..... 4D-27
Fixed Head/Mode/Emulation Jumpers ..... 4D-27
Controller Physical Address/String Configuration Selections ..... 4D-31
Terminations ..... 4D-31
Terminator Cards 4D-31
Backpanel 4D-31
End Unit ..... 4D-31
Dual Volume Reserve/Release ..... 4D-34
Unit Power Sequence Board ..... 4D-34
Voltage Selections ..... 4D-34
Power Distribution Unit ..... 4D-34
DC Power Supply ..... 4D-36
AC Power Cable ..... 4D-39
HDA Temperature Stabilization ..... 4D-41
New Unit Delivery ..... 4D-41
Replacement HDA ..... 4D-41
Initial Startup and Checkout ..... 4D-42
Final Visual Checks ..... 4D-42
Desiccant Removal ..... 4D-43
Initial Startup ..... 4D-43
HDA Purge ..... 4D-44
Initial Checkout ..... 4D-44
Final Checkout ..... 4D-47
Field Conversion From Single to Dual Access ..... 4D-47
Repackaging ..... 4D-48
4E. HSC/DSU INSTALLATION
Introduction ..... 4E-1
Terminology ..... 4E-1
Site Requirements ..... 4E-1
Environmental Specifications ..... 4E-1
Physical Specifications ..... 4E-1
Electrical Specifications ..... 4E-4
Special Tools and Test Equipment ..... 4E-5
Equipment Setup ..... 4E-6
Uncrating ..... 4E-6
Inventory ..... 4E-7
Preinstallation Inspection ..... 4E-7
Final Unpacking ..... 4E-8
Leveling and Placement ..... 4E-8
Air Mover Shipping Restraints ..... 4E-11
DSU Logic Chassis Retainer Removal ..... 4E-11
HDA Unpacking ..... 4E-11
HDA Drive Belt and Belt Guard Installation ..... 4E-14
Power and Power Cabling ..... 4E-16
AC Power ..... 4E-16
Output Power Cables ..... 4E-19
HSC Power Control Unit Voltage Selection ..... $4 \mathrm{E}-20$
DSU Power Control Unit Input Voltage Selection ..... 4E-23
Master Power Control Unit ..... 4E-23
Slave Power Control Unit ..... 4E-29
Grounding ..... 4E-32
Site Power System ..... 4E-32
System Ground ..... 4E-32
Interface Cabling ..... 4E-32
HSC Backpanel Configurations ..... 4E-32
CDP Interface ..... 4E-33
DDC Interface ..... 4E-38
EPO Cabling ..... 4E-43Address and Jumper Selections
Device Selection ..... 4E-44 ..... 4E-444E-44
Controller Selection ..... 4E-44
Controller Identification ..... 4E-46
Trace Encode and DPSE Switch Settings ..... 4E-52
Final Visual Checks ..... 4E-53
Final Checkout ..... 4E-54
Initial Startup ..... 4E-54
Repackaging ..... 4E-54
5. IBM 3333 CONTROLLER/3330 DRIVE INSTALLATION

Introduction	$5-1$
Procedures	$5-1$
Controller Address Selection	$5-1$
Drive Address Selection	$5-1$

6. IBM 3350 CONTROLLER/DRIVE INSTALLATION

Introduction 6-1
Procedures 6-1
Controller Address Selection 6-1
Drive Address Selection 6-1
A. CDC EQUIPMENT DETAILED ADDRESSING PROCEDURE Introduction A-1
Addressing A-1
Step 1 - Basic Factfinding A-1
Step 2 - Storage Control Addressing A-2
Step 3 - Controller Addressing A-2
Addressing Scheme Examples A-17
Without Sequential Addressing A-17
Example 1 A-17
Example 2 A-17
Example 3 A-18
With Sequential Addressing A-18
Example $1 \quad$ A-18
Example 2 A-19
Example 3 A-20
Switch Setting Examples - Non-Sequential Addressing A-20
Example 1 A-20
Example 2 A-21
Example 3 A-21
Switch Setting Examples - Sequential Addressing A-2l
Example 1 A-21
Example 2 A-22
Example 3 A-22

## FIGURES

1-1	Storage and Control Paths	1-4
2A-1	FA721 Storage Control Space Requirements	2A-2
2A-2	FA721 Connector Panels	2A-5
2A-3	PCU Voltage Selection	2A-12
2A-4	140 Amp Power Supply Voltage Selection	2A-14
2A-5	80 Amp Power Supply Voltage Selection	2A-16
2A-6	FA721 Address Option Selections. BHUN or Earlier Card	2A-17
2A-7	FA721 Address/Option Selections. BNMN or Later Card	2A-18
2A-8	FA721 Power Supplies Adjustments	2A-31
2B-1	FAl09 Storage Control Space Requirements	2B-2
2B-2	FAl09 Connector Panels	2B-5
2B-3	PCU Voltage Selection (S/C 33 and Below)	2B-12
2B-4	PCU Voltage Selection (S/C 34 and Above)	2B-14
2B-5	140 Amp Power Supply Voltage Selection	2B-16
2B-6	FAl09 Address/Option Selections	2B-18
2B-7	AlBF Card Supplementary Jumpers	2B-32
2B-8	FAl09 Power Supplies Adjustments	2B-34
2C-1	FAll3 Storage Control Space Requirements	2C-2
2C-2	FAll3 Connector Panels	2C-5
2C-3	PCU Voltage selection	2C-12
2C-4	FAll3 Address/Option Selections	2C-14
2C-5	AlBE Supplementary Jumpers	2C-27
2C-6	FAll3 Power Supplies Adjustment	2C-29
2D-1	Wrist Strap Plug-in Locations	2D-3
2D-2	Storage Control Space Requirements	2D-4
2D-3	Leveling	2D-6
2D-4	I/O-EPO Connector Panel	2D-8
2D-5	Routing I/O Signal Cables	2D-14
2D-6	Power Jumper Installation	2D-17
2D-7	Channel Transmitter/Receiver Board	2D-19
2D-8	Channel Sequence Control Board	2D-20


2D-9	Director to Device Controller Boards	2D-21
2D-10	Channel Interface Board	2D-23
3-1	Address Validation	3-2
3-2	ISC/3830-2 Address Selection	3-7
3-3	Priority Selection	3-8
3-4	3830-2/ISC Machine Configuration Control	3-9
3-5	3830-2/ISC Channel Transfer Control	3-10
3-6	3830-2 Channel Selector Control	3-11
3-7	ISC/3830-2 Transfer Buffer Control	3-12
3-8	S/370 Model 145 ISC (Single Path) CE Panel	3-15
3-9	S/370 Model 158 ISC (Dual Path) CE Panel	3-16
3-10	3830-2 CE Panel	3-17
3-11	Latest Failing Microword Address Decode	3-29
4A-1	Sample Configurations	4A-2
4A-2	Configuration A-1 Intercabling \& Accessories	4A-4
4A-3	Configuration A-2 Intercabling \& Accessories	4A-10
4A-4	Configuration B-1 Intercabling \& Accessories	4A-17
4A-5	Configuration C-1 Intercabling \& Accessories	4A-21
4A-6	Configuration C-2 Intercabling \& Accessories	4A-22
4A-7	Configuration C-3 Intercabling \& Accessories	4A-23
4A-8	Configuration C-4 Intercabling \& Accessories	4A-24
4A-9	Configuration C-5 Intercabling \& Accessories	4A-30
4A-10	Configuration C-6 Intercabling \& Accessories	4A-31
4A-11	Configuration C-7 Intercabling \& Accessories	4A-32
4A-12	Configuration D-1 Intercabling \& Accessories	4A-38
4A-13	Configuration E-1 Intercabling \& Accessories	4A-45
4A-14	Configuration E-2 Intercabling \& Accessories	4A-51
4A-15	Auxiliary Power Control Assembly	4A-58
4A-16	Power Box Enclosure Assembly	4A-59
4A-17	Bolt-Together Drive Power Cable Strain Relief	4A-60
4A-18	Bolt-Together Drive I/O Cable Strain Relief	4A-61
4A-19	Controller/Drive Space Requirements	4A-63
4A-20	Pack Cover Latch	4A-65
4A-21	Drive Top View	4A-66
4A-22	Drive Front View	4A-66


4A-23	Drive Right Side View	4A-67
4A-24	STO 10341 - CAU Application	4A-72
4A-25	STO 10341 - Drive Application	4A-75
4A-26	Physical Address Selection	4A-77
4A-27	Logical Address Plug Decode	4A-78
4A-28	Connector Panels (Old Style Distribution Boxes)	4A-81
4A-29	Connector Panels (New Style Distribution Boxes)	4A-82
4A-30	Grounding Scheme	4A-84
4A-31	BR501/502 Sideskin Installation, Left Side	4A-90
4A-32	BR501/502 Sideskin Installation. Right Side	4A-91
4B-1	Space Requirements	4B-2
4B-2	Primary Filter Installation	4B-10
4B-3	Front Top Cover Latch Release	4B-11
4B-4	Deck Hold-Down Bolt Removal	4B-11
4B-5	Side Panel Replacement	4B-12
4B-6	Leveler Bolt Access	4B-14
4B-7	Attaching Adjoining Frames	4B-16
4B-8	Carriage Locking	4B-17
4B-9	Grounding Scheme	4B-18
4B-10	I/O Panel	4B-19
4B-11	Device Interface Cabling	4B-21
4B-12	Subsystem Cabling	4B-22
4B-13	Section from Logic Chassis Backpanel	4B-24
4B-14	Affixing Device Address Labels	4B-25
4B-15	Fixed Head/Mode/Emulation Selection	4B-27
4B-16	Controller Address and Header Selections	4B-28
4B-17	End Unit Backpanel Terminations	4B-30
4B-18	Unit Power Sequence Board Terminations	4B-31
4B-19	Power Distribution Unit Voltage Selections	4B-33
4B-20	DC Power Supply Voltage Selections	4B-34
4B-21	Cabie Connector	4B-35
4B-22	Carriage Locking Rod Removal	4B-40
4C-1	Space Requirements	4C-2
4C-2	Primary Filter Installation	4C-11
4C-3	Front Top Cover Latch Release	4C-12


4C-4	Deck Hold-Down Bolt Removal	4C-12
4C-5	Side Panel Replacement	4C-13
4C-6	Leveler Bolt Access	4C-15
4C-7	Attaching Adjoining Frames	4C-17
4C-8	Carriage Locking	4C-18
4C-9	I/O Panel	4C-19
4C-10	Inter-Unit Cabling	4C-21
4C-11	String Power Cabling	4C-23
4C-12	Routing the A2/C2 Cable	4C-24
4C-13	Intermixing DAF/Non-DAF Units	4C-25
4C-14	Routing the DAF Cable	4C-28
4C-15	Connecting DAF Cable for l6-Device Operation	4C-30
4C-16	Connecting DAF Cable for 8-Device Operation	4C-32
4C-17	Logic Connections	4C-35
4C-18	Section from Logic Chassis Backpanel	4C-41
4C-19	Affixing Device Address Labels	4C-42
4C-20	Controller Address/String Configuration Selections	4C-44
4C-21	End Unit Backpanel Terminations	4C-47
4C-22	Unit Power Sequence Board Terminations	4C-48
4C-23	Power Distribution Unit Voltage Selections	4C-50
4C-24	DC Power Supply Voltage Selections	4C-51
4C-25	Cable Connector ( 60 Hz )	4C-52
4C-26	Carriage Locking Rod Removal	4C-58
4D-1	Space Requirements	4D-2
4D-2	Primary Filter Installation	4D-11
4D-3	Front Top Cover Latch Release	4D-12
4D-4	Deck Hold-Down Bolt Removal	4D-12
4D-5	Side Panel Replacement	4D-13
4D-6	Leveler Bolt Access	4D-15
4D-7	Attaching Adjoining Frames	4D-17
4D-8	Carriage Locking	4D-18
4D-9	I/O Panel	4D-19
4D-10	Inter-Unit Cabling	4D-21
4D-11	String Power Cabling	4D-22


4D-12	Routing the DAF Cable	4D-24
4D-13	Connecting DAF Cables	4D-26
4D-14	Dual Volume Reserve/Release Cable	4D-27
4D-15	Section from Logic Chassis Backpanel	4D-29
4D-16	Affixing Device Address Labels	4D-30
4D-17	Controller Address/String Configuration Selections	4D-32
4D-18	End Unit Backpanel Terminations	4D-33
4D-19	Dual Volume Reserve/Release Jumpers	4D-35
4D-20	Unit Power Sequence Board Terminations	4D-36
4D-21	Power Distribution Unit Voltage Selections	4D-37
4D-22	DC Power Supply Voltage Selections	4D-38
4D-23	Cable Connector ( 60 Hz )	4D-40
4D-24	Carriage Locking Rod Removal	4D-46
4E-1	Space Requirements	4E-2
4E-2	Side Panel Removal	4E-8
4E-3	Leveling Pad Installation	4E-9
4E-4	Bolting Frames Together	4E-10
4E-5	Air Mover Shipping Restraint Removal	4E-12
4E-6	Drive Belt and Belt Guard Installation	4E-15
4E-7	Power Cord Routing	4E-17
4E-8	60 Hz Cable Connector	4E-18
4E-9	50 Hz Power Cord Connection	4E-18
4E-10	Transformer Locator for Controller Voltage Selections	4E-20
4E-11	Transformer T3 Pin Locations	4E-21
4E-12	Transformer Tl Pin Locations	4E-22
4E-13	Transformer Locator for DSU MPCU Voltage Selections	4E-24
4E-14	60 Hz MPCU Voltage Selection (T1)	4E-25
4E-15	60 Hz MPCU Voltage Selection (T2)	4E-26
4E-16	50 Hz MPCU Voltage Selection (T2)	4E-27
4E-17	_CMV Board Connections ( 50 Hz )	4E-28
4E-18	Transformer Locator for DSU SPCU Voltage Selection	4E-30
4E-19	$60 \mathrm{~Hz} \mathrm{SPCU} \mathrm{(T1)}$	4E-30


$4 \mathrm{E}-20$	50 Hz SPCU Voltage Selection (Tl)	$4 \mathrm{E}-3 \mathrm{l}$
$4 \mathrm{E}-21$	HSC/DSU Cabling	$4 \mathrm{E}-34$
$4 \mathrm{E}-22$	HSC/DSU Cable Routing	$4 \mathrm{E}-35$
$4 \mathrm{E}-23$	High Speed Cabling	$4 \mathrm{E}-37$
$4 \mathrm{E}-24$	DDC Interface Cabling	$4 \mathrm{E}-39$
$4 \mathrm{E}-25$	DDC Interface Installation	$4 \mathrm{E}-40$
$4 \mathrm{E}-26$	HSC EPO Cable Connections	$4 \mathrm{E}-43$
$4 \mathrm{E}-27$	Device Selections	$4 \mathrm{E}-45$
$4 \mathrm{E}-28$	Controller Jumper Block Installation (ADPV	$4 \mathrm{Backpanel} \mathrm{Shown)}$
$4 \mathrm{E}-29$	Typical Installation Configurations	$4 \mathrm{E}-46$
$4 \mathrm{E}-30$	Controller Physical Identification	$4 \mathrm{E}-51$
$4 \mathrm{E}-31$	HSC ID Conversion Example	$4 \mathrm{E}-52$
$4 \mathrm{E}-32$	Trace Encode and DPSE Switch Locations	$4 \mathrm{E}-53$
$5-1$	3333 Controller Addressing	$5-2$
$5-2$	3330 Device Addressing	$5-3$
$6-1$	3350 Controller Addressing	$6-2$

## TABLES

$1-1$	Available Microprogram Disks	$1-7$
$2-1$	Storage Control Product Numbers	$2-2$
$2-1$	Storage Control Product Numbers	$2-3$
$2-2$	Storage Control Installation Check List	$2-4$
$2 A-1$	Channel I/O Accessory Cables	$2 A-6$
$2 A-2$	Maximum Channel I/O Cable Lengths	$2 A-8$
$2 A-3$	FA72l PCU Voltage Selection	$2 A-11$
$2 A-4$	FA72l l40 Amp Power Supply Voltage Selection	$2 A-13$
$2 A-5$	FA72l 80 Amp Power Supply Voltage Selection	$2 A-15$
$2 A-6$	FA72l Address Compare Switch Decoding	$2 A-21$
$2 A-7$	FA72l Address Ranges	


2A-8	FA721 Machine Configuration Jumpers	2A-25
2A-9	FA721 Power Supply Checks	2A-30
2A-10	FA721 Special Tools and Test Equipment	2A-33
2A-11	FA721 Functional Microprogram Listing	2A-35
2A-12	FA721 Diagnostic Microprogram Listing	2A-36
2B-1	Channel I/O Accessory Cables	2B-6
2B-2	Maximum Channel I/O Cable Lengths	2B-8
2B-3	FAl09 S/C 33 and Below PCU Voltage Selection	2B-11
2B-4	FAl09 S/C 34 and Above PCU Voltage Selection	2B-13
2B-5	FAl09 140 Amp Power Supply Voltage Selection	2B-15
2B-6	FAl09 Address Compare Switch Decoding	2B-20
2B-7	FAl09 Non Sequential Addressing Address Ranges	2B-21
2B-8	FAl09 Sequential Addressing Address Ranges	2B-24
2B-9	FAl09 Machine Configuration Jumpers	2B-28
2B-10	FAl09 Power Supply Checks	2B-33
2B-11	FAl09 Special Tools and Test Equipment	2B-36
2B-12	FAl09 Functional Microprogram Listing	2B-38
2B-13	FAl09 Diagnostic Microprogram Listing	2B-39
2C-1	Channel I/O Accessory Cables	2C-6
2C-2	Maximum Channel I/O Cable Lengths	2C-8
2C-3	FAll3 PCU Voltage Selection	2C-11
2C-4	FAll3 Address Compare Switch Decoding	2C-16
2C-5	FAll3 Non Sequential Addressing Address Ranges	2C-17
2C-6	FAll3 Sequential Addressing Address Ranges	2C-20
2C-7	FAll3 Machine Configuration Jumpers	2C-24
2C-8	FAll3 Power Supply Checks	2C-30
2C-9	FAll3 Special Tools and Test Equipment	2C-32
2C-10	FAll3 Functional Microprogram Listing	2C-34
2C-11	FAll3 Diagnostic Microprogram Listing	2C-35
2D-1	Channel Cable Lengths	2D-7
2D-2	Channel I/O Accessory Cables	2D-9
2D-3	Voltage Jumpers	2D-16
2D-4	Address Switch Settings for FMD Subsystems	2D-31
2D-5	Address Switch settings for DSU Subsystems	2D-42
2D-6	FAl6X Microprogram Listing	2D-45


2D-7	Maintenance Tools	2D-48
2D-8	CTL-I/DDC/Channel Wrap Cable Usage	2D-49
3-1	Address Groups	3-6
3-2	IBM Functional Microprogram Listing	3-13
3-3	IBM Diagnostic Microprogram Listing	3-14
3-4	Enter/Display Select/Data Entry Functions	3-19
3-5	Operation Mode Functions	3-21
4-1	CDC Controller Types	4-2
4-2	CDC High Performance Drive (HPD) Units	4-4
4-3	CDC Non-DAF Capable FMD Units	4-6
4-4	CDC DAF Capable FMD Units	4-9
4-5	CDC Disk Storage Units	4-25
4-6	Controller/Drive Installation Check List	4-26
4A-1	Configuration A-1	4A-5
4A-2	Configuration $\mathrm{A}-2$	4A-11
4A-3	Configuration $\mathrm{B}-1$	4A-18
4A-4	Configurations Cl Through C4	4A-25
4A-5	Configurations C5 Through C7	4A-33
4A-6	Configuration Dl	4A-39
4A-7	Configuration E-l	4A-46
4A-8	Configuration E-2	4A-52
4A-9	Intermix Restrictions	4A-62
4A-10	Controller Power Option Connections	4A-70
4A-11	Drive Power Option Connections	4A-73
4A-12	Maximum External Cable Lengths	4A-79
4A-13	I/O Cables \& Terminators	4A-80
4A-14	Ground Straps	4A-83
4A-15	EPO Cables	4A-85
4A-16	CAU Power Supply Voltages	4A-87
4A-17	HPD Power Supply Voltages	4A-89
4A-18	Special Tools and Test Equipment	4A-92
$4 \mathrm{~B}-1$	Equipment Setup	4B-4
4B-2	Accessories	4B-5
4B-3	Device Physical Address Selection	4B-23
4B-4	Fixed Head/Mode/Emulation Selection	4B-26


4B-5	60-Hz Phase Connections	4B-35
4B-6	50-Hz Phase Connections	4B-36
$4 \mathrm{C}-1$	Equipment Setup	4C-4
4C-2	Accessories	4C-5
4C-3	Device Physical Address Selection	4C-40
4C-4	Fixed Head/Mode/Emulation Selection	4C-43
4C-5	60-Hz Phase Connections	4C-52
4C-6	$50-\mathrm{Hz}$ Phase Connections	4C-53
4D-1	Equipment Setup	4D-4
4D-2	Accessories	4D-5
4D-3	Device Physical Address Selection	4D-28
4D-4	Fixed Head/Mode/Emulation Selection	4D-28
4D-5	$60-\mathrm{Hz}$ Phase Connections	4D-39
4D-6	50-Hz Phase Connections	4D-40
4E-1	Power Consumption	4E-4
4E-2	Special Tools and Test Equipment	4E-5
4E-3	Equipment Setup Procedures	4E-6
4E-4	Accessories	4E-7
4E-5	Assembly-Device Number Correlation	4E-13
4E-6	HDA Cable Connections	4E-14
4E-7	60-Hz Phase Connections	4E-18
4E-8	50-Hz Phase Connections	4E-19
4E-9	AC Power Output Phasing ( 60 Hz )	4E-19
4E-10	50 Hz Input Voltage Selection	4E-23
4E-11	60 Hz MPCU Voltage Selection	4E-25
4E-12	50 Hz MPCU Voltage Selection	4E-26
4E-13	60 Hz SPCU Voltage Selection (Tl)	4E-29
4E-14	50 Hz SPCU Voltage Selection	4E-31
4E-15	HSC Backpanel Board Location Cross Reference	4E-33
4E-16	Low Speed Cabling	4E-36
4E-17	DDC I/O Cables	4E-41
4E-18	Allowed DDC Cable Lengths	4E-42

## ABBREVIATIONS

BIB	Bus In Bit
BLK	Black
BOB	Bus Out Bit
BRN	Brown
CPU	Central Processing
	Unit
CTL	Control (interface)
CU	Control Unit
DAF	Dual Access Feature
DCC	Device to Controller Connection
DDC	Director to Device Controller
DSC	Dual Storage Control
DSU	Disk Storage Unit
DVRR	Dual Volume
	Reserve/Release
ECO	Engineering Change Order
EPO	Emergency Power Off
FCO	Field Change Order
FMC	Fixed Module Drive
	Controller
FMD	Fixed Module Drive
GRN	Green
GRY	Grey
HPD	High Performance Drive
HSC	Head of String
	Controller
I/O	Input/Output

IMPL Initial Microprogram Load
IPL Initial Program Load
ISC Integrated Storage Control

MOD Module, Model
N/A Not Applicable OEM Original Equipment Manufacturers

ORN Orange
PCU Power Control Unit
S/C Series Code
SC Storage Control
SD Storage Director
SEQ Sequence
SPO Special Option
SS String Switch
STO Standard Option

TBS To Be Supplied
VIO Violet
VOL Volume

W/ With
W/O Without
WHT White
YEL Yellow

## SECTION 1

GENERAL INFORMATION

## INTRODUCTION

This section provides general background information to help you understand the basic concept of installing a subsystem. It also contains basic equipment setup procedures applicable to all of the units in a subsystem.

The manual frequently uses specialized abbreviations. Refer to the front matter for their definitions.

## SUBSYSTEM DESCRIPTION

## GENERAL

An end-user disk memory subsystem consists of a storage control unit, one to four controllers, and one to thirty-two drives. The subsystem provides direct access storage for the following medium-to-large scale IBM computer systems:
$\frac{\text { Family }}{\text { System/360 }} \quad \frac{\text { Model }}{85}$

System/370 135 138
145
148
155-II
158
165-II
168
195
System/303X 3031
3032
3033
System/43XX 4331
4341
System 308X
3081
When the subsystem is attached to System/360 Models 85 and 95, or System/ 370 Models l65-II, 168, or 195 , information is interfaced via the system block multiplexer channel. All other mod-
els must be interfaced via the IBM 2880 Block Multiplexer channel.

## STORAGE CONTROL

The storage control is a microprogrammed control unit that interfaces the subsystem to an IBM block multiplexer channel. It interprets commands and control signals received from the channel, transmits and receives data between the channel and controller, and transmits status information to the channel.

## CONTROLLER

The controller interfaces data between the storage control and the drive, receives control signals from the storage control, and transmits controller and drive status to the storage control. The controller establishes the pattern of data to be stored on the drive's storage medium, and checks to ensure that data is read correctly from the storage medium.

A controller function can be either a standalone unit (such as the FV605 CAU) or have its logic integrated with the drive (such as the BZ6XX FMC). Regardless of the physical construction, the controller function is independent of the drive function. The term "string" is used in this manual: a string is a controller and its attached drives. Every string must have a controller to provide control of power on/off and operation for all units in the string.

## DRIVE

The drive is a peripheral storage device that stores data on a recording medium. It receives control signals from the controller, stores and retrieves data, and transmits status information to the controller.

The term "drive" is used as a general name regardless of the official title (Disk Storage, etc.). A drive may have either one or two spindles within one cabinet.

## SUBSYSTEM EQUIPMENT MIX

## STORAGE CONTROL

The subsystem may interface to the channel via one of the following storage controls:

- CDC FA721 or FAl09 Storage Control (SC)
- CDC FAll3 Dual Storage Control (DSC)
- IBM 3830 Model 2 Storage Control (SC)
- IBM System/370 Model 145 and 148 Integrated Storage Control (ISC)
- IBM System/370 Model 145 SC Frame 3345 Models 3,4, and 5 ISC
- IBM System/370 Model 158 and 168 ISC.

When attached to the FA721 or FAl09, or IBM 3830 Model 2, the subsystem provides direct access storage via a single storage and control path. The FAll3 provides two storage and control paths. Figure l-l shows the storage and control paths.

When attached to the IBM ISC, the subsystem provides direct access storage via a block multiplexer channel. Depending upon the computer model, the ISC provides either one or two storage and control paths, as shown in figure l-l.

Each storage and control path is capable of interfacing up to 32 drive spindles (four physical strings of up to 8 spindles).

$9 C 214 A$

Figure l-1. Storage and Control Paths

## CONTROLLER/DRIVE

Each drive string is headed by a controller that is unique to the drive type. The controller interfaces the drive string to the storage control.

A subsystem may consist of the following controller/drive groups:

Group	Controller	Drive Type
I	CDC FMC (w/O DVRR)	CDC FMD
II	CDC FMC (W/DVRR)	CDC FMD
III	CDC CAU	CDC HPD
IV	IBM CAU	IBM $3330-11$
V	IBM FMC	IBM 3350

Controller/drive groups cannot be intermixed within the same string. For example, the group I controller cannot be attached to the group II drive. It is assumed that IBM groups (IV and V) are included in the same subsystem with CDC groups. The subsystem may consist of up to four controller/drive groups (strings) intermixed in any combination. All drive groups must be interfaced to the system via a block multiplexer channel.

## GENERAL GROUNDING REQUIREMENTS

The site power system must have provision for proper equipment grounding. ALL of the following requirements must be met:

1. The branch circuit supplying ac power to the storage control and devices must have an insulated grounding conductor that is equal in cross-section to each of the phase conductors. On domestic installations, the insulated grounding conductor must show either a green color or green with yellow stripe.
2. All equipment grounding conductors within the computer facility must be tied together in the computer room distribution panel and conducted back to main building (earth) ground.
3. All convenience outlets must be equipped with a grounding conductor that is tied to the same ground point as the equipment grounding conductors.
4. All other aspects of the equipment site grounding shall meet the requirements of Article 250 of the National Electrical Code.

## MICROPROGRAMS

Several microprogram disks are available for the various subsystem configurations. Information on the specific effectivity and capability of each disk is provided by tables in each of the section 2 subsections. Table l-1 provides a short list of the available disks and their latest revision levels as of the last revision to this manual. The disks are listed in disk part number order.

## CAUTION

Do not order or use disks based solely on the information in table l-1. Certain disks are not interchangeable between various storage controls and their attached controllers and drives. Always refer to section 2 to determine the basic disk effectivity before using any disk in your unit.

TABLE 1-1. AVAILABLE MICROPROGRAM DISKS

Disk Part Number	End-User Equipment Number	Last FCO		Description (Primary Storage Control Used)
		Standard	OEA	
47386106	MFIIOH	DH06005	None	$\begin{aligned} & \text { CDC } 3330 \mathrm{X} / 33801 / \\ & 3350 \mathrm{D} \text { Device } \\ & \text { Functional (IBn } \\ & \text { ISC or } 3830-2 \\ & \text { storage control) } \end{aligned}$
47389400	MF113H	None	None	IBM 3350 Device Inline Diagnostics (IBM ISC or 3830-2 storage control)
Table Continued on Next Page				

TABLE l-1. AVAILABLE MICROPROGRAM DISKS (Contd)

Disk Part Number	End-User Equipment Number	Last FCO		Description (Primary Storage Control Used)
		Standard	OEM	
47389900	MFI12H	None	None	IBM 3350 Device Inline Diagnostics (FAlO9)
$\begin{gathered} 94092902 \\ (\operatorname{Rev} \mathrm{C}) \end{gathered}$	MF131H	None	None	CDC 3350X Functional Disk Package (SMB Option) (FAl62/FA163)
$\begin{gathered} 94182802 \\ (\operatorname{Rev~C)} \end{gathered}$	MF132H	None	None	CDC 33800 Functional Disk Package (SMB Option) (FAl63)
72880004	MFII9H	DH06025	$\begin{aligned} & \text { DHO6028 } \\ & \text { (FA1A2) } \end{aligned}$	CDC 3330x/33801/ 3350X Device NonSequential Functional (FAll3)
72882200	MF120H	None	None	CDC 33801/3330X/ 3350X: IBM 3330/ 3350 Device Sequential Addressing Functional (FAl09)
72883200	MF122H	None	None	CDC 33801/3330X/ 3350X: IBM 3330/ 3350 Device Sequential Addressing Functional (FAll3). Obsolete.
Table Continued on Next Page				

TABLE 1-1. AVAILABLE MICROPROGRAM DISKS (Contd)

Disk Part Number	End-User   Equipment Number	Last FCO		Description   (Primary Storage Control Used)
		Standard	OEM	
72885100	MF 125 H	None	None	CDC 38302/3350X   Inlines for Dual   Volume (FAl09)
72885400	MF 123 H	None	None	CDC 38304/3350X Inlines for Dual Volume (FAll3)
$\begin{array}{r} 72888417 \\ \text { (Rev V) } \end{array}$	MF 126 H	DJ18045   (Rev V)	N/A	CDC 38800/3350X Functional Disk Package (FAl6l/ FAl62/FAl63)
$\begin{array}{r} 72886404 \\ (\text { Rev } E) \end{array}$	MF 127 H	DJ 18041   (Rev E)	None	CDC 38302/3350X Functional for Dual Volume (FA109)
$\begin{array}{r} 72886504 \\ (\operatorname{Rev} E) \end{array}$	MF 128 H	DJ 18042	None	CDC 38304/3350X Functional for Dual Volume (FAll3)
73151300	MF 106H   MF 125 H	None	None	CDC 33801/3350X Device Surface Analysis Test Disk (FAlO9)
73151601	MFl18H	DH06002	None	CDC 33801/3350X   Device Inline Di-   agnostics (FAll3)
73151800	MF 118 H   MF 123 H	None	None	CDC 33801/3350X Device Surface Analysis Test Disk (FAll3)
Table Continued on Next Page				

TABLE 1-1. AVAILABLE MICROPROGRAM DISKS (Contd)

Disk Part Number	End-user Equipment Number	Last FCO		Description (Primary Storage Control Used)
		Standard	OEM	
73158100	MF116H	None	None	CDC 3330x Device Inline Diagnostics (FAll3)
73158300	MF117H	None	None	IBM 3350 Device Inline Diagnostics (fAll3)
73159700	MF1 18H   MF 12 3H	None	None	CDC Standalone Diagnostics (FAl13)
73680214	$\begin{aligned} & \text { FA721 \& } \\ & \text { TB119 } \end{aligned}$	PE4 5150	PE45198   (FA7B3)	```CDC 3330x Device Inline Diagnos- tics (FA721 & FA109)```
73686710	FA721, MF 10 6H, MF 125H, \& TBl 19	PE4 5164	$\begin{aligned} & \text { PE45165 } \\ & (\text { FA7A9 \& } \\ & \text { FA7B3) } \end{aligned}$	Standalone Diagnostics (FA72l \& FA109)
73698413	None	PE4 5093	$\begin{aligned} & \text { PE45093 } \\ & \text { (FA7A9) } \end{aligned}$	```CDC 8-Volume 3330x Device Functional (fa72l & FA109)```
75126701	MF 105 H	None	None	CDC 3330X Device 2-Channel Functional (IBM ISC or 3830-2 storage control)
Table Continued on Next Page				

TABLE 1-1. AVAILABLE MICROPROGRAM DISKS (Contd)

Disk Part Number	End-User Equipment Number	Last FCO		Description (Primary Storage Control Used)
		Standard	OEM	
77465410	FA721 \& MF 1 11H	PE4 5170	N/A	CDC 32-volume $3330 x$ Device Functional (FA72l)
77472405	TB120	PE4 5161	None	CDC 3330X Device Inline Diagnostics (IBM ISC or 3830-2 storage control)
77829606	$\begin{aligned} & \text { FV649 \& } \\ & \text { FV650 } \end{aligned}$	PE45086	None	$\begin{aligned} & \text { System 360/65 } \\ & \text { (STO 68602) Func- } \\ & \text { tional (FA721) } \end{aligned}$
82322605	$\begin{aligned} & \text { MF } 109 \\ & \left(\begin{array}{ll} \text { S C } & 1-8) \end{array}\right. \end{aligned}$	PE4 5113	None	$\begin{aligned} & \text { CDC } 3330 \times / 33801 \\ & \text { Device Non-DAF } \\ & \text { Functional (FAl09) } \end{aligned}$
82381613	MF 109H	DH06026	$\begin{aligned} & \text { DH06027 } \\ & \text { (FA7B3) } \end{aligned}$	```CDC 3330x/33801/ 3350X; IBM 3350 Device DAF Func- tional (FAlO9)```
83272001	MF 107H	PE4 5159	None	CDC 33801/3350x   Device In line Di-   agnostics (IBM   ISC or 3830-2   storage control)
83272307	MF 10 6H	DH06000	$\begin{aligned} & \text { DH06003 } \\ & \text { (FA7B3) } \end{aligned}$	CDC 33801/3350X Device Inline Diagnostics (FAl09)
83273103	MF 104H	PE45094	None	CDC 3330X Device 4-Channel Functional (IBM ISC or 3830-2 storage control)

## SAFETY PRECAUTIONS

## WARNING

```
Observe all of the following safety precau-
tions. Failure to do so may cause personal
injury or equipment damage. Wear wrist strap
whenever working with boards.
```

1. Do not work alone when exposed high voltages are present. Make sure somebody familiar with all power off controls is present.
2. Unplug ac power input cable before performing any maintenance on power cables, power distribution units, or ac cables to dc power supplies. Unswitched high voltages can be present in or near these assemblies.
3. Do not wear watches, rings, or other jewelry. Do not wear loose clothing.
4. Use only insulated pliers and screwdrivers.
5. Make sure that test instruments have insulated probes. Don't let the probes dangle. Also ensure that controls are set correctly.
6. Wear safety glasses whenever working with sealants or performing mechanical actions that could cause particles to fly out.
7. Keep tools in good condition. Replace them if worn or broken.
8. Keep tool boxes, test equipment, and removed machine covers out of the way where no one can trip over them.
9. Do not bend over to lift items: stand or push up with your legs. Power supplies (especially power distribution units) are very heavy. If power supply exceeds ll kilograms (25 pounds), two people are required to litt the power supply.
10. Remove all power from circuits when removing logic boards or other components.
11. Maintain good housekeeping before, during, and after completing maintenance.
12. Observe all electrostatic precautions.
13. Do not place tools or other metal objects on top of logic chassis as electrical components may be shorted to ground.
14. Do not place manuals or other documents on top of logic chassis, power supplies or PCUs as this will block cooling air flow.

## SECTION 2

## CDC STORAGE CONTROLS INSTALLATION

## INTRODUCTION

The storage control contains the logic required to interpret and execute commands issued by the channel, control the transfer of data between the channel and controller, provide the channel with subsystem status, execute diagnostic tests, and sequence ac power to all attached drive strings.

## STORAGE CONTROLS

Refer to table 2-1 for a description of $C D C$ storage control units.

## INSTALLATION CHECK LIST

The installation check list (table 2-2) is for experienced service personnel to use as a guide in performing installation checks. More detailed information is provided in each of the storage control subsections.

TABLE 2-1. STORAGE CONTROL PRODUCT NUMBERS

Product Number	Note	Equipment   Number	Attachable Channels	$\begin{gathered} \text { Memory } \\ \text { Size } \end{gathered}$	Operating Frequency
38302-1		$\begin{aligned} & \text { FA721-A } \\ & \text { FA721-B } \end{aligned}$	one	4K	$\begin{aligned} & 60 \mathrm{~Hz} \\ & 50 \mathrm{~Hz} \end{aligned}$
38302-2		$\begin{aligned} & \text { FA72l-C } \\ & \text { FA72l-D } \end{aligned}$	two		$\begin{aligned} & 60 \mathrm{~Hz} \\ & 50 \mathrm{~Hz} \end{aligned}$
9086-1		FA7A9-A			60 Hz
38302-3		$\begin{aligned} & \text { FA721-G, N } \\ & \text { FA721-H, } \end{aligned}$	one	6K	$\begin{aligned} & 60 \mathrm{~Hz} \\ & 50 \mathrm{~Hz} \end{aligned}$
38302-4		$\begin{array}{ll} \text { FA721-J, } & R \\ \text { FA721-K, } & S \end{array}$	two		$\begin{aligned} & 60 \mathrm{~Hz} \\ & 50 \mathrm{~Hz} \end{aligned}$
38302-5		$\begin{aligned} & \text { FA721-L, T } \\ & \text { FA721-M, U } \end{aligned}$	four		$\begin{aligned} & 60 \mathrm{~Hz} \\ & 50 \mathrm{~Hz} \end{aligned}$
38302-6	1	$\begin{aligned} & \text { FA109-N } \\ & \text { FAl09-P } \end{aligned}$	one	8K	$\begin{aligned} & 60 \mathrm{~Hz} \\ & 50 \mathrm{~Hz} \end{aligned}$
38302-7	1	$\begin{aligned} & \text { FAl09-R } \\ & \text { FAl09-S } \end{aligned}$	two		$\begin{aligned} & 60 \mathrm{~Hz} \\ & 50 \mathrm{~Hz} \end{aligned}$
38302-8	1	$\begin{aligned} & \text { FAl09-T } \\ & \text { FAl09-U } \end{aligned}$	four		$\begin{aligned} & 60 \mathrm{~Hz} \\ & 50 \mathrm{~Hz} \end{aligned}$
38304-1	2	$\begin{aligned} & \text { FAll3-A } \\ & \text { FAll3-B } \end{aligned}$	one   per SD	$8 \mathrm{~K}$   per $S D$	60 Hz 50 Hz
38304-2	2	$\begin{aligned} & \text { FAll3-C } \\ & \text { FAll3-D } \end{aligned}$	two   per SD		$\begin{aligned} & 60 \mathrm{~Hz} \\ & 50 \mathrm{~Hz} \end{aligned}$
38304-4	2	$\begin{aligned} & \text { FAll3-E } \\ & \text { FAll3-F } \end{aligned}$	four per SD		$\begin{aligned} & 60 \mathrm{~Hz} \\ & 50 \mathrm{~Hz} \end{aligned}$
Table Continued on Next Page					

TABLE 2-1. STORAGE CONTROL PRODUCT NUMBERS

Product   Number	Note	Equipment   Number	Attachable   Channels	Memory   Size	Operating   Frequency
$38800-1$					

NOTES:

1. For OEM models, product number is 9088; equipment number is FA7B2 or FA7B3.
2. For OEM models, product number is 9079; equipment number is FAlA2.
3. Storage directors control controllers via the CTL interface. No comparable OEM models.
4. Storage directors control controllers via the DDC interface. For OEM models, product number is 90880-3; equipment number is FAlA3 or FAlB2.

TABLE 2-2. STORAGE CONTROL INSTALLATION CHECK LIST

PRE-INSTALLATION	
( )	Check to ensure that all applicable hot line TWXs, service bulletins, unverified service bul-
( )	Check to ensure that all applicable manuals (at correct revision level) are on site.
( )	Check to ensure that customer-provided power receptacle/connector has the proper current rating and is located no more than 3.7 metres ( 12 feet) from the storage control.
( )	Check to ensure that customer source voltage is in accordance with equipment specifications.
( )	Check planned floor layout and floor cutouts for compliance with site planning kit.
( )	Check air conditioning ducts to ensure adequate equipment cooling.
( )	Check to ensure that special tools, test equipment, spares, etc. are on site.
EQUIPMENT SETUP	
	Uncrate storage control and check for damage in transit. Refer damage complaints to carrier.
( )	Remove and inventory all storage control accessories and loose parts.
Table Continued on Next Page	

TABLE 2-2. STORAGE CONTROL INSTALLATION CHECK LIST (Contd)

	Remove floor tiles as necessary and place all channel cables into position underneath false floor. Label all bus and tag cables. Replace tiles.   Move storage control into position and place power cord underneath false floor. Plug in power cord (main ac circuit breaker should be off).
MECHANICAL INSPECTION	
$\begin{aligned} & 1 \\ & (1) \end{aligned}$	Visually inspect back panel. Check for bent pins, recessed pins, broken wires, etc.   Visually inspect card rack. Check for missing, loose, or improperly positioned cards.
ELECTRICAL INSPECTION	
( ) ( )	Set voltage taps on power control unit and dc power supplies to proper source voltage. Storage control is normally set at factory to accept $208 \mathrm{~V}, 60 \mathrm{~Hz}$ or $380 \mathrm{~V}, 50 \mathrm{~Hz}$.   Check all power supply connections, fuse holders, filters, circuit breakers, etc.
	Table Continued on Next Page

TABLE 2-2. STORAGE CONTROL INSTALLATION CHECK LIST (Contd)

JUMPER/SWITCH SELECTIONS	
( )	Set up address, channel priority, mode, and machine configuration switch/jumper selections.
POWER ON CHECKS	
$\begin{aligned} & 1 \\ & (1) \\ & (1) \\ & (1) \\ & (1) \end{aligned}$	Install all channel cables. Install all required channel terminators and EPO plugs.   Set storage control circuit breakers to their on position.   Turn on power and check for power on indication. Ensure that logic gate fans are operating.   Check power supplies for proper voltage levels.   Check operation of maintenance and operator panels.
DIAGNOSTIC CHECKS	
( )	Perform diagnostic tests as called for in applicable storage control installation subsection.

## SECTION 2A

CDC FA721 STORAGE CONTROL INSTALLATION

## SECTION 2D

## CDC FAl6x STORAGE CONTROL INSTALLATION

## INTRODUCTION

This section contains installation procedures, a listing of special tools and equipment, and a listing of the currently available microprogram flexible disks.

NOTE
The two storage directors within the storage control have unrelated electronic connections, response to channel operations, logical addressing, and availability for maintenance routines. Except for the ac power connections, all other connections and procedures must be performed twice.

All units must be configured for the on-site source voltage. Address and option selections must be made in cooperation with the user and in accordance with the equipment within the system. Finally, the unit must be checked for proper operation before being put into service.

## TERMINOLOGY

The following discussion defines the terminology used in this section:

Mod 1 This is the FAl6l and it controls 3350-type drives via the FMC (Fixed Module Controller). Signals between a storage director and controller use the CTL interface.

Mod 2 This is the FAl62. The first storage director (SDl) provides features of a Mod 1 unit while the second (SD2) provides those features of the Mod 3.

Mod 3 This is the FAl63 and it controls 3380-type (DSU) drives via the HSC (Head of String Controller). Signals between a storage director and controller use the DDC interface.

This is the 3380 -type drive (such as the BZ640) and is the drive used with the Mod 2 and 3 storage control units.

Unless otherwise specified, all procedures in this section apply to all fal6x storage controls.

## ELECTROSTATICALLY SENSITIVE PRECAUTIONS

Metal oxide semiconductor (MOS) integrated circuits are used on the logic boards and $I / O$ boards in the unit. MOS integrated circuits are extremely sensitive and therefore require special handling to avoid damage caused by static electricity. Observe the following precautions. whenever any maintenance is performed:

- Turn off power before removing and installing the logic board.
- Ensure that anything or anyone coming in contact with the board is electrically connected to ground, including tools, the body, clothing, containers, etc.
- Plug grounded wrist strap into any one of the four banana jacks on the frame as shown in figure $2 \mathrm{D}-1$.
- Touch the logic chassis to bleed off any accumulated static charge before removing or installing the board.
- Handle the board only by a non-circuit portion. Do not touch pins and circuit connections points.
- Never use an ohmmeter on boards having microprocessor assemblies.
- Always remove the boards before using an ohmmeter on the controller.
- Place the board in a conductive shielded bag immediately following its removal from the unit. The board and the bag must be in contact with logic chassis ground before and during the time that the board is inserted or removed from the bag. The bag should have a warning label indicating that it contains an electrostatic-sensitive device. The logic board must remain in the bag or at a properly prepared work station whenever it is not installed in the logic chassis.


Figure 2D-1. Wrist Strap Plug-in Locations

## SPACE REQUIREMENTS

Figure $2 \mathrm{D}-2$ illustrates the floor space requirements for the storage control. All cables connected to the storage control must be routed underneath the false floor. The floor cutout dimensions should match the cable entry shown in figure 2D-2.


Figure 2D-2. Storage Control Space Requirements

## INSPECTION

When uncrating the equipment, inspect the carton for possible shipping damage. All claims for this type of damage should be filed with the carrier involved.

Most crating materials may be reused if reasonable care is taken when uncrating.

If it becomes necessary to repackage the equipment for reshipment, packaging instructions can be obtained from:

Packaging Engineer, Material Service Dept.
Magnetic Peripherals, Inc
7801 Computer Avenue
Minneapolis, MN 55435

## UNCRATING

Uncrating instructions are packed on the outside of the shipping crate. Refer to these instructions for proper handing of the unit.

## INVENTORY

When uncrating is complete, check off all parts listed in the shipping bill accompanying the equipment. Discrepancies, missing items, damaged equipment, etc, should be reported to your Account Sales Representative responsible for the equipment.

## LEVELING AND PLACEMENT

Roll unit into its final floor position as assigned in the site planning kit. Level unit by performing the following steps:

1. Open side doors.
2. Insert leveler extension and screw into frame far enough so that pad can be pressed into place. press pad in place as shown in figure 2D-3. Turn leveler until pad touches the floor.
3. Repeat these steps for all levelers.
4. Use $5 / 8$ inch wrench on the hex surface (just above the pad) of each leveler to lower levelers until casters are off the floor.
5. Place spirit level on base of frame so ends of level point to front and rear of unit.
6. Adjust levelers until bubble is centered on spirit level.
7. Place spirit leveler on base of frame so ends of level point to sides of unit.
8. Adjust levelers until bubble is centered on spirit level.
9. Repeat steps 4 through 8 until unit is level.


Figure 2D-3. Leveling

## I/O CABLES

All I/O cables (signal. EPO, and grounding) between the storage director and the channel, and between the storage director and its controllers, connect to connectors on the PCU and the I/O panel as shown in figure 2D-4. Table $2 \mathrm{D}-1$ lists the channel cable lengths and table $2 \mathrm{D}-2$ lists the most commonly used channel I/O accessory cable lengths.

The maximum path length is reduced 4.6 metres (15 feet) for each additional daisy-chained storage director/controller.

TABLE 2D-1. CHANNEL CABLE LENGTHS

CPU Model	Configuration	Length (Metres)
135. 138. 145.		
148. 155. 158	All	76 (250 ft)
168/2880	All	76 (250 ft)
4331-2. 4341. 303X	Without Speed Matching Buffer	121.9 (400 ft)
4331-2, 4341. 303x	*With Speed Matching Buffer	76 (250 ft)
$\begin{aligned} & 4331-2,4341,303 \mathrm{X} \\ & 308 \mathrm{X} \end{aligned}$	*Data Streaming	122 (400 ft)
NOTE: *speed Matching Buffer and Data Streaming options used on Mod 3 units only.		



Figure 2D-4. I/O-EPO Connector Panel

TABLE 2D-2. CHANNEL I/O ACCESSORY CABLES

Part	$\begin{aligned} & \text { Length } \\ & (\text { metres) } \end{aligned}$		Part No.
NOT	See end of table for special notes.		
BUS/TAG	$2$   3   5   6   8   9   11   12   14   15   17   18   20   21   23   24   26   27   29   30   34   36   40   43   45	$\begin{aligned} & (5 \mathrm{ft}) \\ & (10 \mathrm{ft}) \\ & (15 \mathrm{ft}) \\ & (20 \mathrm{ft}) \\ & (25 \mathrm{ft}) \\ & (30 \mathrm{ft}) \\ & (35 \mathrm{ft}) \\ & (40 \mathrm{ft}) \\ & (45 \mathrm{ft}) \\ & (50 \mathrm{ft}) \\ & (55 \mathrm{ft}) \\ & (60 \mathrm{ft}) \\ & (65 \mathrm{ft}) \\ & (70 \mathrm{ft}) \\ & (75 \mathrm{ft}) \\ & (80 \mathrm{ft}) \\ & (85 \mathrm{ft}) \\ & (90 \mathrm{ft}) \\ & (95 \mathrm{ft}) \\ & (100 \mathrm{ft}) \\ & (110 \mathrm{ft}) \\ & (120 \mathrm{ft}) \\ & (130 \mathrm{ft}) \\ & (140 \mathrm{ft}) \\ & (150 \mathrm{ft}) \end{aligned}$	73168600   73168601   73168602   73168603   73168604   73168605   73168606   73168607   73168608   73168609   73168610   73168611   73168612   73168613   73168614   73168615   73168616   73168617   73168618   73168619   73168620   73168621   73168622   73168623   73168624
Table Continued on Next Page			

TABLE 2D-2. CHANNEL I/O ACCESSORY CABLES (Contd)

Part	Length (metres)		Part No.
BUS/TAG	49   52   55   58   60   67   73   79   85   91   98   104   110   116   122	```(160 ft) (170 ft) (180 ft) (190 ft) (200 ft) (220 ft) (240 ft) (260 ft) (280 ft) (300 ft) (320 ft) (340 ft) (360 ft) (380 ft) (400 ft)```	73168625   7316862.6   73168627   73168628   73168629   83645430   83645431   83645432   83645433   83645434   83645435   83645436   83645437   83645438   83645439
EPO	$\begin{aligned} & 2 \\ & 3 \\ & 5 \\ & 6 \\ & 8 \\ & 9 \\ & 11 \\ & 12 \\ & 14 \end{aligned}$	$\begin{aligned} & (5 \mathrm{ft}) \\ & (10 \mathrm{ft}) \\ & (15 \mathrm{ft}) \\ & (20 \mathrm{ft}) \\ & (25 \mathrm{ft}) \\ & (30 \mathrm{ft}) \\ & (35 \mathrm{ft}) \\ & (40 \mathrm{ft}) \\ & (45 \mathrm{ft}) \end{aligned}$	$\begin{aligned} & 72920800 \\ & 72920801 \\ & 72920802 \\ & 72920803 \\ & 72920804 \\ & 72920805 \\ & 72920806 \\ & 72920807 \\ & 72920808 \end{aligned}$
	Con	inued on	

TABLE 2D-2. CHANNEL I/O ACCESSORY CABLES (Contd)

Part	Length (metres)		Part No.
EPO	15	( 50 ft )	72920809
	17	( 55 ft )	72920810
	18	( 60 ft )	72920811
	20	( 65 ft )	72920812
	21	( 70 ft )	72920813
	23	(75 ft)	72920814
	24	(80 ft)	72920815
	26	(85 ft)	72920816
	27	(90 ft)	72920817
	29	(95 ft)	72920818
	30	(100 ft)	72920819
	34	(110 ft)	72920820
	36	(120 ft)	72920821
	40	(130 ft)	72920822
	43	( 140 ft )	72920823
	45	(150 ft)	72920824
	49	(160 ft)	72920825
	52	(170 ft)	72920826
	55	(180 ft)	72920827
	58	(190 ft)	72920828
	60	(200 ft)	72920829
	67	(220 ft)	72920833
	73	(240 ft)	72920837
	79	(260 ft)	72920841
	85	(280 ft)	72920845

Table Continued on Next Page

TABLE 2D-2. CHANNEL I/O ACCESSORY CABLES (Contd)


## I/O SIGNAL CABLES

All data and data control (I/O) signals are transfered as follows:

- All channel-to-storage director are bus/tag cables
- Storage director-to-FMDs are bus/tag cables.
- Storage director-to-HSCs are DDC (director to device cables).

All cable connections to the storage director are made at the front of the $1 / 0$ panel as shown in figure 2D-3; available tag and bus cable lengths are shown in table 2D-2. Cables listed in table 2D-2 are used with Mod 1 units. For cable information pertaining to Mod 3 units, refer to section 4 E of this manual.

Cables from channels are either terminated at the storage director by tag terminator $P / N 94252800$ and bus terminator $P / N$ 75268900 , or are daisy chained to following storage directors and storage controllers.

Cables to controllers are ajisy chained, and terminated at the last controller by P/N 75268900 ( 2 each channel) in FMDs and by P/N 75268902 in HSCs.

Do not install controller cables until directed by Initial Startup and Testing. Terminators are required on all controller connectors for testing.

Foute two signal cables through cable clamp and tighten clamps as shown in figure $2 \mathrm{D}-4$.


10M154

Figure 2D-5. Routing $I / O$ Signal Cables

## POWER SEQUENCE CONTROL CABLES

All emergency power-off (EPO) and normal power-on sequence signals are communicated between a CPU and a storage director by one EPO cable; each CPU requires one cable regardiess of the number of its channels connected to the storage director. Each controller attached to the storage director requires a separate EPO cable. All of the EPO cables are connected at the storage director $I / O$ panel locations shown in figure 2D-4. The available EPO cable lengths are shown in table $2 \mathrm{D}-1$.

- EPO cables from the CPU may connect to any connector PC-1 through PC-8.
- EPO cables to the controllers of storage director 1 may connect to any connector PC-9 through PC-12, with power-up in that sequence by the microprogram.
- Storage director 2 uses connectors PC-13 through PC-16 in the same manner.

Do not install CPU or controller EPO cables until directed by Initial Startup and Testing. Install simulator plugs as follows:

1. Install plug P/N 72947100 in any one of the CPU connectors PC-1 through PC-8. This plug provides an EPO return path so that the unit can be turned on.
2. Install plug $P / N 72947101$ in all controller connectors PC-9 through PC-16. These plugs provide a Power Complete path back to the storage control.

## POWER CONNECTIONS

SOURCE VOLTAGE JUMPER INSTALLATION

## CAUTION

Voltage jumpers must be attached to power supply terminals rated at, or lower than, the measured site voltage, before connecting to site power. Failure to match storage control power supply inputs to the measured site voltage can damage power supplies and degrade performance.

When shipped, storage controls are connected for either of the following power sources:

- 208 V . $60-\mathrm{Hz}$ (phase to phase), or
- 220 V. $50-\mathrm{Hz}$ (phase-to-neutral)

Four alternative voltages shown on the voltage jumper label (figure 2D-6) may be selected by moving one jumper at transformer $T 2$, and three jumpers $(60-\mathrm{Hz})$ or two jumpers ( $50-\mathrm{Hz}$ ) on card _MTN in the power control unit.

## WARNING

Disconnect site power before removing the power control unit cover to move jumpers. Unswitched high voltage is present within the PCU.

To move jumpers refer table 2D-3. Figure $2 \mathrm{D}-6$ shows power jumper installation information.

TABLE 2D-3. VOLTAGE JUMPERS

Hz	Input Voltage	$\begin{gathered} \text { T2 } \\ \text { INPUT } \end{gathered}$	A2 (T1) JUMPERS					
			FROM	TO	FROM	TO	FROM	TO
60	200	4	E2	E24	E20	E42	E38	E6
	208*	5	E2	E21	E20	E39	E38	E3
	220	6	E2	E34	E20	E52	E38	E16
	230	7	E2	E31	E20	E49	E38	E13
	240	8	E2	E28	E20	E46	E38	E10
50	345 360	4	E6	E24	E26	E42		
	360	5	E3	E21	E23	E29		
	380*	6	E16	E34	E36	E52		
	400	7	E13	E31	E33	E49		
	415	8	E10	E28	E30	E46		
* UNITS SHIPPED IN THIS CONFIGURATION								

## POWER CABLE INSTALLATION

## CAUTION

Voltage jumper installation must be correct and the UNIT POWER switch on the power control unit (figure 2D-6) must be off to avoid damage to power supplies.

Storage control power is provided through a 4.6 metre ( $15-\mathrm{foot}$ ) trailing power cable from the power control unit (PCU). The $50-H z$ trailing power cables use no end connector, and are hard-wired to site power.


Figure 2D-6. Power Jumper Installation

## SWITCH SETTINGS

## CAUTION

Observe all electrostatically sensitive precautions when handling all boards.

The following procedures describe the switch settings for switches that must be set during installation.

## CHANNEL TRANSMITTER/RECEIVER BOARD

-CSN Board
The Select Out Bypass switch located on the Channel Transmitter/Receiver Board (_CSN Board) on the I/O panel should be in NORM position unless channel wraps are being executed. The board location is shown in figure 2D-7. Refer to the Hardware Diagnostic Reference manual for specific test information.
-GWN Board -- 8 Channel Option
The Normal/Test switch is located on a Channel Transmitter/ Receiver Board (GWN Board) as shown in figure 2D-7. Both toggles on the switch must be set the same. Set switches to NORM position unless channel wraps are being executed. Refer to the Hardware Diagnostic Reference manual for specific test information.


Figure 2D-7. Channel Transmitter/Receiver Board

## CHANNEL SEQUENCE CONTROL BOARD

The Channel Sequence Control boards ( REX Board) are located at location 12 of the two I/O backpanels. The location of the Channel Speed Selection switches is shown in figure 2D-8. Each switch corresponds to a channel where switch l corresponds to channel A and switch 8 corresponds to channel H. Set switches as follows:

Mod 1 Switch Setting
Set all switches in OFF (open) position, which places each channel into Offset Interlock mode.

Mod 3 Switch Setting
NOTE
Check that the channel Unit Control Words (UCW's) are properly plugged.

Set all switches to $O N$ (closea) for Data Streaming.
With Speed Matching Buffer Option - Each channel may be set $O N$ (closed) individually to suit system requirements.


Figure 2D-8. Channel Sequence Control Board

## DIRECTOR-TO-DEVICE CONTROLLER BOARD

The director-to-device controller (DDC) boaras (_RJX board for Mod l, RHX board for Mod 3) are located at location 13 in the two I/O backpanels. Figure 2D-9 shows the location of the SD Configuration switches and the SD Identification switches.


Figure 2D-9. Director to Device Controller Boarãs

## Storage Director Identification Number Switch Setting

The SD Identification Number switches (figure 2D-9) contain the $S D$ identification number, which is readable by both the storage director and the diagnostic processor. The storage director identification number is a unique number assigned to each storage director. In the event of a malfunction, this number is stored with the sense bytes. It is also stored by the diagnostic processor in the storage director error log on the floppy when a hard stop occurs in the storage director. Set the switches as follows:

Switches 1-8 Select an identification number in the range $00-F F$ with site personnel at the time of installation. Enter the hexadecimal equivalent in the individual switches.

Switch 9 Set switch $0 N$ for odd parity of the other eight switches.

## SD Configuration Switch Setting

These switches (figure 2D-9) contain miscellaneous storage director information that is read only by the diagnostic processor. Ignore toggle switches 3 through 6 and set the remaining toggle switches as follows:

## NOTE

After switches are set or changed, an IML must be executed. New settings will be ignored until IML is completed.

Switch l: Selects which functional will be loaded. Notice the label on the floppy has two functionals (FUNC) listed. Set switch OFF to select first functional listed. Set switch ON to select the second functional listed.

Switch 2: Set OFF. When switch is set ON, hardcore testing is bypassed.

Switch 7: In Mod 1 units, set switch $O N$ when sequential addressing is selected.

In Mod 3 units, set switch $O N$ when devices are in $2 \times 16$ mode.

Switch 8: In Mod 1 units, set switch $O N$ if the dual volume reserve/release feature (DVRR) is installed in any controller attached to this storage director.

In Mod 3 units, set switch $O N$ when devices are in $2 \times 16$ mode.

## CHANNEL INTERFACE BOARD

There is one Channel Interface board ( RCX board) for each channel. The Channel $A$ board is at location 01 of the $I / O$ Logic, Channel B is at 02, up through Channel H at 08. Each
card has three switches (figure 2D-l0). The top two switches control channel addressing and the bottom switch selects the channel selection priority. This procedure must be repeated for each channel.

## Channel Addressing Switches

## NOTE

After switches are set or changed, an IML must be executed. New settings will be ignored until IML is completed.

You should be thoroughly familiar with the specific planned configuration of all units in the subsystem, including the total number of address paths to each logical volume, as well as the actual addresses that the customer wants to use. This information is contained in the Installation Planning Configurator worked out beforehand by the customer and the CDC sales representative, and should be readily available.


Figure 2D-10. Channel Interface Board

If the storage control is to be connected to a block multiplexer channel, the unit control words (UCWs) must be wired for unshared operation. Check to ensure that the customer has performed this operation and that UCWs are properly wired.

## NOTE

All System/370 channels attached to Models l55-II and above are normally wired for unshared operation. Models below this number are normally wired for shared operation unless previously connected to IBM 3330, 3340, or 3350-type devices. If attached to a selector channel, UCW assignments may be ignored.

In Mod 3 units the top switch block serves a dual purpose for both the address and the volume select. The volume select should be set to the lowest possible value that will support your configuration. For example, for four volumes set the switch to 8 volumes and for twelve volumes set the switch to 16 volumes. In all cases the volumes selected should be equal to or less than the block of UCWs selected. If more volumes that UCWs exist, you will experience missing interrupts.

If Mod 2 or Mod 3 is being installed, then Blk Mux and Data streaming must be specified at the same time when assigning UCWs for the 33800. It is true Blk Mux on large systems default to unshared or Blk Mux mode. But when Data Streaming is specified and Blk Mux isn't Selected also (assuming it will default), then channel overruns occur.

Address Decode

## NOTE

The following discussion is background information. You need not read it to set up the addressing and may proceed directly to the Address Switch Settings Procedure.

The combined effects of the SD Base Address Select switch and the Non-Sequential Address switch control the decode of the bits on Channel Bus Out when it raises Address Out. In addition, the SD Base Address Select switch sets the SD address for Bus In during a Disconnect-In sequence.

The logic on the ${ }^{\text {RCX board decodes Bus out Bits } 0 \text { through } 4 . ~}$ When these bits have the $0 / 1$ pattern matching the selected configuration of the addressing switches, the board generates Address Compare. The microprogram manipulates the remaining bits to control further subsystem address decoding.

There is a difference between contiguous addresses and sequential addresses:

Contiguous addresses occur when there is no gap in device addresses in strings attached to the same channel. For example, consider a l6-volume FMD subsystem. Contiguous addresses could have hexadecimal addresses $00-07$ on one string and addresses $08-0 \mathrm{~F}$ on another string. Note that there is no address gap between the 07 and the 08 . Noncontiguous addresses would have $00-07$ and $20-27$ on the same string. The gap in addresses is obvious.

Subsystems with sequential addressing use Bus out Bit 7 to select the volume: $0=p r i m a r y ; ~ l=s e c o n d a r y$. Therefore, the addresses differ by one. Nonsequential subsystems use Bit 2 to define the volume. This means that the address differs by 2016 ( 3210 ). Typical address formats are as follows:

$$
\begin{aligned}
& \text { Sequential addressing: S S C C D D D V } \\
& \text { Nonsequential addressing: S S V C C D D D } \\
& \text { Where: } S=S D \text { address bits } \\
& \text { C=String controller address bits } \\
& \mathrm{V}=\mathrm{Volume} \text { select bit } \\
& \text { D=Device address bits }
\end{aligned}
$$

Do not confuse nonsequential addressing with the Non-Sequential Address switch. The Non-Sequential Address switch is used to select noncontiguous groups of addresses to fit into an existing customer configuration. Keep the following general principles in mind:

- DSU subsystems have sequential and contiguous addresses.
- FMD subsystems using sequential addressing always have contiguous addresses. When sequential addressing is
selected, toggle 7 of the $S D$ Configuration switch (_RJX board) was set $O N$ in the previous procedure.
- Dual-volume FMD nonsequential subsystems (with less than 64 volumes) always have noncontiguous addresses. When nonsequential addressing is selected, toggle 7 of the SD Configuration switch (_RJX board) was set OFF in the previous procedure.
- Single-volume FMD subsystems may have either contiguous or noncontiguous addresses.

In turn, the $S D$ Base Address Select switch performs three functions:

1. Contains the $S D$ portion of the channel address for this particular channel.
2. Contains the drive address select range in logical volumes.
3. Contains a master disable switch for this channel interface.

## Addressing with Contiguous Addresses

When all strings attached to a channel have contiguous addresses, the toggle positions of the $S D$ Base Address select switch have the following definitions:


The rules for setting up contiguous addresses are as follows:
l. Only one logical volume switch may be set. All switch toggles to the right of the selected volume switch must be off.
2. Switch toggles to the left of the logical volume toggle become the SD base address.

Example: If 32 volumes are selected (switch toggle 4 set), then switch toggles 1,2 , and 3 provide the $S D$ base address. Switch toggles 5 and 6 must be off.
3. Switch toggle 7 selects odd parity for the first six toggles.
4. Switch toggle 8 is a master disable control for that channel. When $O N$, it forces propagation of select Out.
5. The five switch toggles of the Non-Sequential Address switch are set to their default value of 11001.

Addressing with Noncontiguous Addresses
The Non-Sequential Address switch controls addressing when addresses are noncontiguous.

## NOTE

This discussion assumes that the subsystem contains FMDs. DSU subsystems normally use contiguous addressing only.

The Non-Sequential Address switch controls the decoding of channel Bus Out Bits 3 and 4. The toggle positions of this switch have the following definitions:


The SD Base Address Select switch basically controls the decode of Bus Out Bits 0 through 4. Bits 5 through 7 are not decoded by the SD; they are decoded by the controller/device.

- Bus Out Bits 0 and 1 are always part of the $S D$ base address. SD Base Address Select switch toggles 1 and 2 decode these bits. When ON, Address Compare is partially enabled if the corresponding Bus Out Bit is a "l."
- Bus Out Bits 2, 3, and 4 are selectively decoded within the SD. They may be decoded or ignored, depending upon the subsystem volume configuration.
- Bus Out Bit 2 is controlled by the SD Base Address Select switch toggle 3. Switch toggles 4,5 , and 6 must be OFF; switch toggles 1 and 2 are the $S D$ base address.
- Bus Out Bit 3 is controlled by $S D$ Base Address Select switch toggle 4. Positions 5 and 6 are OFF; toggles 1 , 2, and 3 are the $S D$ base address. With this switch ON for noncontiguous addresses, the Non-Sequential Address switch controls Bus Out Bit 3 decoding. The effects are:


## Toggle 1

ON =Ignore Bit 3 Must be OFF
OFF=Decode Bit 3

Toggle 3

OFF=Decode Bit 3 as "0" ON =Decode Bit 3 as "l"

Bus out Bit 4 is controlled by SD Base Address Select switch toggle 5. Position 6 is OFF; toggles l through 4 are the SD base address. With this switch ON for noncontiguous addresses, the Non-Sequential Address switch controls Bus Out Bit 4 decoding. The effects are:

Toggle 2
ON =Ignore Bit $4 \quad$ Must be OFF
$\begin{array}{ll}\text { OFF=Decode Bit } 4 & O F F=\text { Decode Bit } 4 \text { as " }{ }^{n \prime \prime} \\ & O N=D e c o d e ~ B i t ~\end{array}$

Bus out Bit 5 is controlled by $S D$ Base Address select switch toggle 6.

SD Base Address Select switch toggle 7 selects odd/even parity for switches 1 through 6. Always set it for odd parity. Toggle 8 is a master disable control for that channel. When $O N$, it forces propagation of Select Out.

Non-Sequential Address switch toggle 5 selects odd parity for switch toggles 1 through 4.

Table 2D-4 provides a listing of commonly used addresses in FMD subsystems. For other address ranges, the least complicated addressing scheme is as follows:

1. Set the Non-Sequential Address switch to its default setting (11001).
2. Select a contiguous group of addresses.
3. Select the number of logical volumes that are to be addressed. Set the corresponding $S D$ Base Address Select switch toggle to the ON position.
4. Set the lower-numbered toggles in the $S D$ Base Address Select switch to the base address of the group of selected addresses selected in step 2.
5. Set odd parity in SD Base Address Select switch toggle 7.
6. Attempt to IML the subsystem. The microcode will not configure the channel if an invalid address is set into the SD Base Address Select switch.

## Address Switch Settings Procedure

Perform this procedure for all channels on both SDs. Proceed as follows:

1. Perform Step 1 (Basic Factfinding) of Appendix A to determine that the selected addresses are legal. All channel boards, whether they are used or not, must have the same volume format ( $1 \mathbf{x}$ l6, $2 \times 8$, etc.). Addresses may be different, but the volume groups must be the same on a storage director.
2. For Mod 1/FMD subsystems only:
a. Perform Step 2 (Storage Control Addressing) of Appendix A. This will lead you to the applicable sheet of figure A-1 in Appendix A. Make sure to verify that the selected addresses meet all of the requirements of Step 2.

## NOTE

Ignore figure A-l switch settings.
b. Refer to the first column in table $2 \mathrm{D}-4$ to find the figure A-1 sheet that you just came from.
c. Set the switches on the $S D$ Base Address Select switch and the Non-Sequential Address switch in accordance with table 2D-4 for the selected address range.
3. For Mod 3/DSU subsystems only: set the switches on the SD Base Address Select switch and the Non-Sequential Address switch in accordance with table $2 \mathrm{D}-5$.

## Channel Priority Switch

This two-toggle switch controls whether the storage director samples the Select Out or Select In channel interface signals. Both toggles must always be set the same. High Priority picks Select Out while Low Priority picks Select In.

Refer to the IBM. System/370 Interface OEM Information Manual (Publication Number GA22-6974) for a more detailed description of channel priority.

TABLE 2D-4. ADDRESS SWITCH SETTINGS FOR FMD SUBSYSTEMS (Contd)

|  | Vol | \|Address Range |SD Base Address|| Non-Séquential| |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | 11213 | \|3|4| |  | 111 | 31 | 4 |  |
|  |  |  |  | 1 1 | $1 \mid 1$ | $1111 * 1$ | 1 |  |  |  |
| $\begin{aligned} & *=\text { Set toggle in OFF position to enable channel. } \\ & 0=O F F \quad 1=Q N \end{aligned}$ |  |  |  |  |  |  |  |  |  |  |
| 14 | $\left\lvert\, \begin{array}{lll} 2 & x & 16 \\ (\text { Seq }) \end{array}\right.$ |  |  |  |  |  |  |  |  |  |
|  |  |  | OF | 10101 | 11101 | 101010101 | 1111 | 01 | 01 |  |
|  |  | 20 | 2 F | 101011 | 1110 | 101010101 | 11111 | 01 | 01 |  |
|  |  |  |  | 111 | 11 | 11111 | 111 | 1 |  |  |
|  |  | 10 | $1 F$ | 10101 | 12101 | 101010101 | $\|1\| 11$ | 01 | 01 |  |
|  |  | 30 |  | 10101 | 1101 | 101010101 | 11111 | 01 | 01 |  |
|  |  |  |  | - |  | 101011 1 | 111 | 1 |  |  |
|  |  | 40 |  | 0-111 | $11\|0\|$ | 101011101 | $\|1\| 11$ | 01 |  |  |
|  |  | 60 | 6 F | $101 N$ | 1101 | 101011101 | \| 1111 | 01 | 01 |  |
|  |  |  |  | 111 | M 1 | 11111 | 111 | 1 |  |  |
|  |  | 50 |  | 101111 | 1110 | 101011101 | 11111 | 01 | 01 |  |
|  |  | 70 | 7 F | 10111 | 1110 | 10101101 | $\|1\| 1 \mid$ | 01 | 01 |  |
|  |  |  |  |  | 111 | 1 N111 | 111 | 1 |  |  |
|  |  |  | 8 F | 11101 | \|1|0| | $1010 \times 1101$ | 11111 | 01 | 01 |  |
|  |  | A0 | AF | 111011 | 11101 | $101011 \times 01$ | 11111 | 01 | 01 |  |
|  |  |  |  | 111 | 11 | 1111 | 11 | 1 |  |  |
|  |  | 90 | 9 F | 11101 | 11101 | 101011101 | (1) 11 |  |  |  |
|  |  | B0 | BF | 111011 | 11010 | 101011101 | 1 H 11 | 01 |  |  |
|  |  |  |  | 111 | 111 | 111 | N! | 1 |  |  |
|  |  | Co | CF | \|1|11 | $11\|0\|$ | 101010101 | 1111 |  | 01 |  |
|  |  | E0 | EF | 111111 | 11101 | 101010101 | \| 1111 |  |  |  |
|  |  |  |  | 111 | 111 | 11111 | 111 | 1 |  |  |
|  |  | D0 | DF | \|11111 | 11101 | 101010101 | $\|1\| 1 \mid$ |  |  |  |
|  |  | F0 | FF | \|1|1| | $11\|0\|$ | 101010101 | $1 \mid 11$ | 01 | 01 |  |
|  |  |  |  | 111 | 111 | 11111 | 111 | 1 |  |  |



TABLE 2D-5. ADDRESS SWITCH SETTINGS FOR DSU SUBSYSTEMS (Contd)


TABLE 2D-5. ADDRESS SWITCH SETTINGS FOR DSU SUBSYSTEMS (Contd)


## MICROPROGRAM FLEXIBLE DISK

NOTE
When new disk is installed, press DP Reset on the DP board (_KEX Board).

The functional microprogram, storage director, controller, and device test and utility programs are on one flexible disk. Table 2D-6 lists the available microprograms for this subsystem.

## TABLE 2D-6. FA16x MICROPROGRAM LISTING

SUPPORTED CONFIGURATIONS	$\begin{gathered} \text { CDC } \\ \text { Storage Control } \end{gathered}$	
	Mod	Mod 3
One Channel Basic   Two Channel Option   Four Channel Option   Eight Channel Option   CDC/IBM 3330-Type Devices   CDC 33801/3350X-Type Devices   3330x String Switch   $33801 / 3350 x$ string Switch   3330 X Dual Access   $33801 / 3350 \mathrm{X}$ Dual Access   Dual Volume   Dynamic Path Selection   16 Volume Enhancement   IBM 3350-Type Devices   Sequential Addressing   Dual Volume Reserve/Release   Storage Control Diagnostics   Inline Diagnostics   Speed Matching Buffer   *Yes, with Revision E	Yes   Yes   Yes   Yes   No   No   Yes   No   Yes   Yes   No   No   Yes   Yes   Yes   Yes   No	Yes   Yes   Yes   Yes   No   Yes   No   No   No   No   Yes   yes   Yes
DISKS: $\quad$Disk Part   $\frac{\text { Number }}{728884 \mathrm{x}}$	$\begin{gathered} \quad \text { Nam } \\ 5 \mathrm{embly} \\ 350 \mathrm{y} / 3 \end{gathered}$	MFl26H

## INITIAL STARTUP AND TESTING

NOTE
Before putting subsystems having the DPS fea-
ture (FV7l6-C, D; FV7A5-C, D, G, \& H) online,
refer to the storage control's Hardware Diag-
nostic Reference Manual (publication number
83324410 ) for the DPS Array Procedures and
Precautions.

Initial startup and testing requires installation of some channel and controller interface simulators, installation of a flexible disk, and application of power. Perform the following steps.

1. Install terminators on all controller connectors for both storage directors, if not already installed. See I/O Cable Installation for terminator part numbers, and figure 2D-4 for connector locations.
2. Install simulators in all eight controller EPO connectors PC-9 through PC-16 and in CPU EPO connector PC-l, if not already installed. See EPO Cable Installation for terminator part numbers, and figure 2D-4 for connector locations.
3. Insert the flexible disk and set the power control unit and power panel switches to power up locally as shown in the hardware reference manual, with the exception that the power panel DEVICE SEQUENCE switch is set to DISABLE.

The storage director conducts microprogram-controlled self testing and indicates the result as follows:

No errors detected: POWER SEQ COMPLETE and WAIT lights on the operator control panel.

Errors detected: DP CHECK or HOST CHECK lights on the maintenance panel; POWER CHECK or CHECK lights on the operator panel. Proceed to the Hardware Diagnostic Reference manual for problem analysis and repair procedure.

The following operator panel indications occur if the SD Base Address Select switch toggles are incorrectly set:

- For Mod l units, microprogram turns on CHANNEL ENABLE indicators, but does not turn on any status indicators.
- For Mod 3 units, microprogram hangs with PROCESS indicator on, but does not turn on any CHANNEL ENABLE indicators.

4. During the power-up sequence hardcore diagnostic testing is automatically performed.
5. Perform CTL-I Wrap Around and Channel Wrap Around test described in the Hardware Diagnostic Reference manual.
6. Turn off the UNIT POWER switch on the power control unit.
7. Remove the CPU EPO simulator from PC-l. Connect an EPO cable to PC-l through PC-8 from each CPU served by either storage director. Each CPU requires one EPO cable for each storage control.
8. Remove from connectors PC-9 through PC-12 the same number of EPO simulators as controllers to be attached to storage director 1. Attach the controller EPO cables in the open connectors in the desired power-up sequence, starting with connector PC-9. Repeat for connectors PC-13 through PC-16 and storage director 2. Do not remove controller EPO simulators from any unassigned EPO connectors.
9. Attach controller tag and bus cables to both storage directors. See I/O Cable Installation for cable lengths and part numbers.

## SPECIAL TOOLS AND TEST EQUIPMENT

A list of recommended tools and test equipment is provided in table 2D-7. Table $2 \mathrm{D}-8$ provides CTL/DDC/Channel Wrap Cable usage information.

TABLE 2D-7. MAINTENANCE TOOLS


TABLE 2D-8. CTL-I/DDC/CHANNEL WRAP CABLE USAGE

Part Number	Cable Name	Storage Control Units
```73683405 (Short Cable) 73683408 (Long Cable)```	Channel Wrap	FAl61, FAl62 - Mod 1 side (Without 8-channel switch)
73683406 *	DDC Wrap	FAl62-Mod 3 side, FAl63
73683407	CTL-I Wrap	FAl61, FAl62 - Mod 1 side
83645521 *	CTL-I Wrap	FAl61, FAl62 - Mod 1 side (Used with _UTX board from channel wrap part number 83633870)
83633871 *	Channel Wrap Assembly	FAl61, FAl62 - Mod 1 side (Used on 8-channel switch). Mod 3 storage directors require _RJX in slot 13 of $1 / O$ chassis.
*Preferred cables for testing		

SECTION 3

IBM STORAGE CONTROL INSTALLATION

SECTION 4

CDC CONTROLLER/DRIVE INSTALLATION

INTRODUCTION

The controller contains the logic required to interpret control signals from the storage control and determine the pattern of data sent to the drive. The drive stores and retrieves data. The controller and drive return status information to the storage control to ensure that all operations are properly performed.

CONTROLLER PRODUCT NUMBERS

Refer to table 4-1 for a description of CDC controller units.

DRIVE PRODUCT NUMBERS

Tables 4-2 through 4-5 provide a description of CDC end-user and OEM drive units.

Table 4-2 applies to the HPDs. Installation procedures for these units are in section 4 A .

Table 4-3 applies to FMDs that are incapable of having the Dual Access Feature (DAF) installed. Installation procedures for these units are in section 4B.

Table 4-4 lists FMDs that either have DAF installea, or are capable of a field-upgrade to add DAF. The "Interface Switch" column in that table has the following meaning: an SS means that String Switch is installed; DVRR means that Dual Volume Reserve/Release is installed; Neither means that neither SS nor DVRR is installed. Installation procedures without DVRR are in section 4C; units with DVRR are covered in section 4D.

Table 4-5 lists DSUs. Installation procedures are in section 4 E .

INSTALLATION CHECK LIST

The installation check list (table 4-6) is for experienced service personnel to use as a guide in performing installation checks. More detailed information is provided in each of the controller/drive subsections.

TABLE 4-1. CDC CONTROLLER TYPES

Product Number	Equipment Number	Storage Control Access Paths	Drive Access Paths*	Operating Frequency
$\begin{aligned} & 33332-1 \\ & \text { CAU } \end{aligned}$	FV605-A FV605-B FV605-D FV605-E	One	One	60 Hz 50 Hz 60 Hz 50 Hz
$\begin{gathered} 33332-2 \\ \text { CAU } \end{gathered}$	$\begin{aligned} & \text { FV605-F } \\ & \text { FV605-G } \end{aligned}$	Two	One	$\begin{aligned} & 60 \mathrm{~Hz} \\ & 50 \mathrm{~Hz} \end{aligned}$
$\begin{gathered} 33332-3 \\ \text { CAU } \end{gathered}$	$\begin{aligned} & \text { FV605-K } \\ & \text { FV605-L } \end{aligned}$	One	Two	$\begin{aligned} & 60 \mathrm{~Hz} \\ & 50 \mathrm{~Hz} \end{aligned}$
$\begin{gathered} 33332-4 \\ \text { CAU } \end{gathered}$	$\begin{aligned} & \text { FV605-M } \\ & \text { FV605-N } \end{aligned}$	Two	Two	$\begin{aligned} & 60 \mathrm{~Hz} \\ & 50 \mathrm{~Hz} \end{aligned}$
FMC**	BZ6XX BZ8XX	One/Two***	One/ Two****	$\begin{aligned} & 60 \mathrm{~Hz} \\ & 50 \mathrm{~Hz} \end{aligned}$
$\begin{aligned} & 33800-\mathrm{A} \\ & \text { HSC } \\ & 90380-1 \\ & \text { HSC } \end{aligned}$	FV716-A FV716-B FA7A5-A FA7A5-B	One	Four Disk Storage Units (l6 logical addresses)	60 Hz 50 Hz 60 Hz 50 Hz
Table Continued on Next Page				

TABLE 4-1. CDC CONTROLLER TYPES (Contd)

Product Number	Equipment Number	Storage Control Access Paths	Drive Access Paths*	Operating Frequency
$\begin{aligned} & 33800-A A \\ & \text { HSC } \\ & 90380-2 \\ & \text { HSC } \end{aligned}$	FV716-C FV716-D FA7A5-C FA7A5-D	Two	Four Disk Storage Units (l6 logical addresses)	$\text { s } \begin{aligned} & 60 \mathrm{~Hz} \\ & 50 \mathrm{~Hz} \\ & 60 \mathrm{~Hz} \\ & 50 \mathrm{~Hz} \end{aligned}$

Notes

* Each drive access path can interface up to 8 drives.
** Controller contained within drive unit. Refer to "A2" units in tables 4-3 and 4-4.
*** Two storage control access paths on string switch units only.
**** Two drive access paths on DAF units only.

TABLE 4-2. CDC HIGH PERFORMANCE DRIVE (HPD) UNITS

Product/Equipment Number	Channels	Frequency (Hz)	Description
$\begin{gathered} 33301 \\ \text { BR501-A } \end{gathered}$	1	60	Bolt-together
$\begin{gathered} 33301 \\ \text { BR501-B } \end{gathered}$	1	50	Bolt-together
$\begin{gathered} 33301 \\ B R 502-A \end{gathered}$	2	60	Both-together
$\begin{gathered} 33301 \\ \text { BR502-B } \end{gathered}$	2	50	Bolt-together
$\begin{gathered} 33301 \\ \text { BR503-A } \end{gathered}$	1	60	Standalone
$\begin{gathered} 33301 \\ \text { BR503-B } \end{gathered}$	1	50	Standalone
$\begin{gathered} 33301 \\ \text { BR504-E } \end{gathered}$	2	60	Standalone
$\begin{gathered} 33301 \\ \text { BR504-D } \end{gathered}$	2	50	Standalone
$\begin{gathered} 33302-1 \\ \text { BR306-A } \end{gathered}$	1	60	Standalone
$\begin{aligned} & 33302-1 \\ & \text { BR306-B } \end{aligned}$	1	50	Standalone
$\begin{aligned} & 33302-1 \\ & \text { BR306-E } \end{aligned}$	1	60	Standalone
$\begin{aligned} & 33302-1 \\ & \text { BR306-D } \end{aligned}$	1	50	Standalone
Table Continued on Next Page			

TABLE 4-2. CDC HIGH PERFORMANCE DRIVE (HPD) UNITS (Contd)

Product/Equip- ment Number	Channels	Frequency (Hz)	Description
$33302-1$ BR307-E $33302-1$ BR307-D $33302-11$ BR310-A $33302-11$ BR310-B	2	60	Standalone
$33302-11$ BR310-C	1	50	Standalone
$33302-11$ BR310-D $33302-11$ BR311-A	1	60	Standalone
$33302-11$ BR311-B	2	50	Standalone

TABLE 4-3. CDC NON-DAF CAPABLE FMD UNITS

Equipment Number	Frequency (Hz)	Fixed Heads	String Switch	16/8 Device Capability
33801 A2 Models				
Bz601-A	60	No	No	NO
BZ601-B	50	No	No	No
B2601-C	60	Yes	No	No
B2601-D	50	Yes	No	No
BZ601-E	60	No	Yes	No
BZ601-F	50	No	Yes	No
BZ601-G	60	Yes	Yes	No
BZ601-H	50	Yes	Yes	No
33502 A2 Models				
BZ602-A	60	No	No	No
BZ602-B	50	No	No	No
BZ602-C	60	Yes	No	No
B 2602 -D	50	Yes	No	No
BZ602-E	60	No	Yes	No
BZ602-F	50	No	Yes	No
BZ602-G	60	Yes	Yes	No
BZ602-H	50	Yes	Yes	No
Table Continued on Next Page				

TABLE 4-3. CDC NON-DAF CAPABLE FMD UNITS (Contd)

Equipment Number	Frequency (Hz)	Fixed Heads	String 16 Switch	8 Device ability
33501 A2 Models				
BZ606-A	60	No	No	No
BZ606-B	50	No	No	No
BZ606-C	60	Yes	No	No
B2606-D	50	Yes	No	No
BZ606-E	60	No	Yes	No
BZ606-F	50	No	Yes	No
BZ606-G	60	Yes	Yes	No
BZ606-H	50	Yes	Yes	No
33801 B2 Models				
BZ701-A	60	No	Not	Not
BZ701-B	50	No	Applicable	Applicable
BZ701-C	60	Yes		
BZ701-D	50	Yes		
33502 B2 Models				
BZ702-A	60	No	Not	Not
BZ702-B	50	No	Applicable	Applicable
BZ702-C	60	Yes		
BZ702-D	50	Yes		
Table Continued on Next Page				

TABLE 4-3. CDC NON-DAF CAPABLE FMD UNITS (Contd)

Equipment Number	Frequency (Hz)	Fixed Heads	String Switch	l6/8 Device Capability
33501 B2 Models				
BZ706-A	60	No	Not	Not
BZ706-B	50	No	Applicable	Applicable
BZ706-C	60	Yes		
BZ706-D	50	Yes		

TABLE 4-4. CDC DAF CAPABLE FMD UNITS

Equipment Number	$\begin{gathered} \text { Frequency } \\ (\mathrm{Hz}) \end{gathered}$	Fixed Heads	Interface Switch	$\begin{aligned} & \text { DAF In- } \\ & \text { stalled } \end{aligned}$	16/8 Device Capability
33801 A2 Models (800 MB)					
BZ604-A	60	No	Neither	No	No
BZ604-B	50	No	Neither	No	No
BZ604-C	60	Yes	Neither	No	No
B2604-D	50	Yes	Neither	No	No
B 2604 -	60	No	SS	No	No
BZ604-F	50	No	SS	No	No
BZ604-G	60	Yes	SS	No	No
BZ604-H	50	Yes	SS	No	No
BZ604-J	60	No	Neither	Yes	No
BZ604-K	50	No	Neither	Yes	No
BZ604-L	60	Yes	Neither	Yes	No
BZ604-M	50	Yes	Neither	Yes	No
BZ604-N	60	No	ss	Yes	No
BZ604-P	50	No	SS	Yes	No
BZ604-R	60	Yes	SS	Yes	No
BZ604-S	50	Yes	ss	Yes	No
B 2614 -A	60	No	Neither	No	Yes
BZ614-B	50	No	Neither	No	Yes
B2614-C	60	Yes	Neither	No	Yes
B2614-D	50	Yes	Neither	No	Yes
BZ614-E	60	No	SS	No	Yes
BZ614-F	50	No	SS	No	Yes
BZ614-G	60	Yes	SS	No	Yes
Table Continued on Next Page					

TABLE 4-4. CDC DAF CAPABLE FMD UNITS (Contd)

Equipment Number	$\begin{aligned} & \text { Frequency } \\ & (\mathrm{Hz}) \end{aligned}$	Fixed Heads	Interface Switch	$\begin{aligned} & \text { DAF In- } \\ & \text { stalled } \end{aligned}$	16/8 Device Capability
BZ614-H	50	Yes	ss	No	Yes
BZ614-J	60	No	Neither	Yes	Yes
BZ614-K	50	No	Neither	Yes	Yes
BZ614-L	60	Yes	Neither	Yes	Yes
BZ614-M	50	Yes	Neither	Yes	Yes
BZ614-N	60	No	SS	Yes	Yes
B 2614 -P	50	No	SS	Yes	Yes
B2614-R	60	Yes	SS	Yes	Yes
BZ614-S	50	Yes	SS	Yes	Yes
BZ6 24-A	60	No	DVRR	No	Yes
B2624-B	50	No	DVRR	No	Yes
BZ6 24-C	60	Yes	DVRR	No	Yes
BZ624-D	50	Yes	DVRR	No	Yes
BZ624-J	60	No	DVRR	Yes	Yes
BZ624-K	50	No	DVRR	Yes	Yes
BZ6 24-L	60	Yes	DVRR	Yes	Yes
BZ624-M	50	Yes	DVRR	Yes	Yes
33501 A2 Models (635 MB)					
BZ607-A	60	No	Neither	No	No
B 2607 -	50	No	Neither	No	No
B 2607 -	60	Yes	Neither	No	No
B 2607 - D	50	Yes	Neither	No	No
B2607-E	60	No	SS	No	No
Table Continued on Next Page					

TABLE 4-4. CDC DAF CAPABLE FMD UNITS (Contd)

Equipment Number	$\begin{gathered} \text { Frequency } \\ (\mathrm{Hz}) \end{gathered}$	Fixed Heads	Interface Switch	$\begin{aligned} & \text { DAF In- } \\ & \text { stalled } \end{aligned}$	16/8 Device Capability
BZ607-F	50	No	SS	No	No
B2607-G	60	Yes	SS	No	No
BZ607-H	50	Yes	SS	No	No
BZ607-J	60	No	Neither	Yes	No
BZ607-K	50	No	Neither	Yes	No
B2607-L	60	Yes	Neither	Yes	No
BZ607-M	50	Yes	Neither	Yes	No
BZ607-N	60	No	SS	Yes	No
B2607-P	50	No	SS	Yes	No
BZ607-R	60	Yes	SS	Yes	No
BZ607-S	50	Yes	SS	Yes	No
B 2617 -A	60	No	Neither	No	Yes
B2617-B	50	No	Neither	No	Yes
B2617-C	60	Yes	Neither	No	Yes
BZ617-D	50	Yes	Neither	No	Yes
BZ617-E	60	No	SS	No	Yes
BZ617-F	50	No	SS	No	Yes
B2617-G	60	Yes	ss	NOं	Yes
BZ617-H	50	Yes	SS	No	Yes
BZ617-J	60	No	Neither	Yes	Yes
B $2617-K$	50	No	Neither	Yes	Yes
B2617-L	60	Yes	Neither	Yes	Yes
BZ617-M	50	Yes	Neither	Yes	Yes
B2617-N	60	No	ss	Yes	Yes
BZ617-P	50	No	ss	Yes	Yes
Table Continued on Next Page					

TABLE 4-4. CDC DAF CAPABLE FMD UNITS (Contd)

Equipment Number	$\begin{gathered} \text { Frequency } \\ (\mathrm{Hz}) \end{gathered}$	Fixed Heads	Interface Switch	DAF Installed	16/8 Device Capability
B 2617 -R	60	Yes	SS	Yes	Yes
BZ617-S	50	Yes	SS	Yes	Yes
BZ627-A	60	No	DVRR	No	Yes
BZ627-B	50	No	DVRR	No	Yes
B2627-C	60	Yes	DVRR	No	Yes
BZ627-D	50	Yes	DVRR	No	Yes
BZ627-J	60	No	DVRR	Yes	Yes
BZ6 27-K	50	No	DVRR	Yes	Yes
BZ627-L	60	Yes	DVRR	Yes	Yes
BZ6 27-M	50	Yes	DVRR	Yes	Yes
33502 A2 Models (1270 MB)					
BZ605-A	60	No	Neither	No	No
B 2605 -	50	No	Neither	No	No
B2605-C	60	Yes	Neither	No	No
BZ605-D	50	Yes	Neither	No	No
BZ605-E	60	No	Ss	No	No
BZ605-F	50	No	SS	No	No
B2605-G	60	Yes	SS	No	No
BZ605-H	50	Yes.	SS	No	No
B2605-J	60	No	Neither	Yes	No
B2605-K	50	No	Neither	Yes	No
BZ605-L	60	Yes	Neither	Yes	No
BZ605-M	50	Yes	Neither	Yes	No
Table Continued on Next Page					

TABLE 4-4. CDC DAF CAPABLE FMD UNITS (Contd)

Equipment Number	$\begin{gathered} \text { Frequency } \\ (\mathrm{Hz}) \end{gathered}$	Fixed Heads	Interface Switch	DAF In- stalled	16/8 Device Capability
BZ605-N	60	No	SS	Yes	No
BZ605-P	50	No	SS	Yes	No
B2605-R	60	Yes	SS	Yes	No
BZ605-S	50	Yes	ss	Yes	No
BZ615-A	60	No	Neither	No	Yes
BZ615-B	50	No	Neither	No	Yes
BZ615-C	60	Yes	Neither	No	Yes
B $2615-\mathrm{D}$	50	Yes	Neither	No	Yes
BZ615-E	60	No	ss	No	Yes
BZ615-F	50	No	SS	NO	Yes
BZ615-G	60	Yes	SS	No	Yes
BZ615-H	50	Yes	ss	No	Yes
BZ615-J	60	No	Neither	Yes	Yes
BZ615-K	50	No	Neither	Yes	Yes
B2615-L	60	Yes	Neither	Yes	Yes
BZ615-M	50	Yes	Neither	Yes	Yes
B2615-N	60	No	SS	Yes	Yes
BZ615-P	50	No	ss	Yes	Yes
B 2615 -R	60	Yes	SS	Yes	Yes
B2615-S	50	Yes	SS	Yes	Yes
B $2625-A$	60	No	DVRR	No	Yes
B 26 25-B	50	No	DVRR	No	Yes
BZ625-C	60	Yes	DVRR	No	Yes
BZ625-D	50	Yes	DVRR	No	Yes
BZ625-J	60	No	DVRR	Yes	Yes
Table Continued on Next Page					

TABLE 4-4. CDC DAF CAPABLE FMD UNITS (Contd)

Equipment Number	$\begin{gathered} \text { Frequency } \\ (\mathrm{Hz}) \end{gathered}$	Fixed Heads	Interface Switch	DAF Installed	16/8 Device Capability
BZ625-K	50	No	DVRR	Yes	Yes
BZ6 25-L	60	Yes	DVRR	Yes	Yes
BZ625-M	50	Yes	DVRR	Yes	Yes
33801 B2 Models (800 MB)					
BZ704-A	60	No	Not	No	Not
BZ704-B	50	No	Appli-	No	Appli-
BZ704-C	60	Yes	cable	No	cable
BZ704-D	50	Yes		No	
BZ704-E	60	No		Yes	
BZ704-F	50	No		Yes	
BZ704-G	60	Yes		Yes	
BZ7 04-H	50	Yes		Yes	
33501 B2 Models (635 MB)					
BZ707-A	60	No	Not	No	Not
B2707-B	50	No	Appli-	No	Appli-
BZ707-C	60	Yes	cable	No	cable
BZ707-D	50	Yes		No	
BZ707-E	60	No		Yes	
BZ707-F	50	No		Yes	
BZ707-G	60	Yes		Yes	
BZ707-H	50	Yes		Yes	
Table Continued on Next Page					

TABLE 4-4. CDC DAF CAPABLE FMD UNITS (Contd)

Equipment Number	Frequency (Hz)	Fixed Heads	Interface Switch	DAF Installed	16/8 Device Capability
33502 B2 Models (1270 MB)					
B2705-A	60	No	Not	No	Not
B $2705-\mathrm{B}$	50	No	Appli-	No	Appli-
B2705-C	60	Yes	cable	No	cable
B $2705-\mathrm{D}$	50	Yes		No	
B $2705-\mathrm{E}$	60	No		Yes	
B 27 05-F	50	No		Yes	
B 7705 -G	60	Yes		Yes	
B $2705-\mathrm{H}$	50	Yes		Yes	
33801 C2 Models (800 MB)					
B2804-A	60	No	Neither	No	No
B. 2804 -	50	No	Neither	No	No
B2804-C	60	Yes	Neither	No	No
B 2804 -D	50	Yes	Neither	No	No
B 2804 -	60	No	SS	No	No
B 2804 -	50	No	SS	No	No
B2804-G	60	Yes	SS	No	No
B 2804 -	50	Yes	SS	No	No
B2804-J	60	No	Neither	Yes	No
B2804-K	50	No	Neither	Yes	No
B2804-L	60	Yes	Neither	Yes	No
B 2804 -M	50	Yes	Neither	Yes	No
Table Continued on Next Page					

TABLE 4-4. CDC DAF CAPABLE FMD UNITS (Contd)

Equipment Number	$\begin{gathered} \text { Frequency } \\ (\mathrm{Hz}) \end{gathered}$	Fixed Heads	Interface Switch	DAF Installed	16/8 Device Capability
BZ804-N	60	No	SS	Yes	No
BZ804-P	50	No	SS	Yes	No
BZ804-R	60	Yes	SS	Yes	No
BZ804-S	50	Yes	SS	Yes	No
B 2814 -A	60	No	Neither	No	Yes
B7814-B	50	No	Neither	No	Yes
B2814-C	60	Yes	Neither	No	Yes
B7814-D	50	Yes	Neither	No	Yes
B7814-E	60	No	ss	No	Yes
Bz814-F	50	No	SS	No	Yes
B7814-G	60	Yes	SS	No	Yes
BZ814-H	50	Yes	SS	No	Yes
B7814-J	60	No	Neither	Yes	Yes
BZ814-K	50	No	Neither	Yes	Yes
B2814-L	60	Yes	Neither	Yes	Yes
BZ814-M	50	Yes	Neither	Yes	Yes
B2814-N	60	No	SS	Yes	Yes
B7814-P	50	No	SS	Yes	Yes
B7814-R	60	Yes	ss	Yes	Yes
B7814-S	50	Yes	SS	Yes	Yes
Table Continued on Next Page					

TABLE 4-4. CDC DAF CAPABLE FMD UNITS (Contd)

Equipment Number	$\begin{gathered} \text { Frequency } \\ (\mathrm{Hz}) \end{gathered}$	Fixed Heads	Interface Switch	DAF In-	16/8 Device Capability
33501 C2 Models (635 MB)					
B2807-A	60	No	Neither	No	No
B2807-B	50	No	Neither	No	No
B2807-C	60	Yes	Neither	No	No
B 2807 -	50	Yes	Neither	No	No
B 2807 -	60	No	SS	No	No
B2807-F	50	No	SS	No	No
B2807-G	60	Yes	SS	No	No
B2807-H	50	Yes	SS	No	No
B2807-J	60	No	Neither	Yes	No
B 2807 -K	50	No	Neither	Yes	No
B 2807 -L	60	Yes	Neither	Yes	No
B2807-M	50	Yes	Neither	Yes	No
B2807-N	60	No	SS	Yes	No
B2807-P	50	No	SS	Yes	No
B 2807 -R	60	Yes	SS	Yes	No
B2807-S	50	Yes	SS	Yes	No
B2817-A	60	No	Neither	No	Yes
B2817-B	50	No	Neither	No	Yes
B2817-C	60	Yes	Neither	No	Yes
B 2817 - D	50	Yes	Neither	No	Yes
B2817-E	60	No	SS	No	Yes
B2817-F	50	No	SS	No	Yes
B2817-G	60	Yes	SS	No	Yes
Table Continued on Next Page					

TABLE 4-4. CDC DAF CAPABLE FMD UNITS (Contd)

Equipment Number	$\begin{aligned} & \text { Frequency } \\ & (\mathrm{Hz}) \end{aligned}$	Fixed Heads	Interface Switch	$\begin{aligned} & \text { DAF In- } \\ & \text { stalled } \end{aligned}$	16/8 Device Capability
B2817-H	50	Yes	Ss	No	Yes
B2817-J	60	No	Neither	Yes	Yes
B2817-K	50	No	Neither	Yes	Yes
B2817-L	60	Yes	Neither	Yes	Yes
B 2817 -M	50	Yes	Neither	Yes	Yes
B2817-N	60	No	SS	Yes	Yes
B2817-P	50	No	SS	Yes	Yes
B 2817 -R	60	Yes	SS	Yes	Yes
B2817-S	50	Yes	ss	Yes	Yes
33502 C2 Models (1270 MB)					
B28 05-A	60	No	Neither	No	No
B 2805 -	50	No	Neither	No	No
B 28 05-C	60	Yes	Neither	No	No
B 2805 -	50	Yes	Neither	No	No
B 28 05-E	60	No	SS	No	No
B 2805 -	50	No	SS	No	No
B2805-G	60	Yes	SS	No	No
B 2805 -	50	Yes	SS	No	No
B2805-J	60	No	Neither	Yes	No
B2805-K	50	No	Neither	Yes	No
B2805-L	60	Yes	Neither	Yes	No
BZ805-M	50	Yes	Neither	Yes	No
B2805-N	60	No	SS	Yes	No
Table Continued on Next Page					

TABLE 4-4. CDC DAF CAPABLE FMD UNITS (Contd)

Equipment Number	$\begin{gathered} \text { Frequency } \\ (\mathrm{Hz}) \end{gathered}$	Fixed Heads	Interface Switch	DAF Installed	16/8 Device Capability
BZ805-P	50	No	ss	Yes	No
BZ805-R	60	Yes	ss	Yes	No
BZ805-S	50	Yes	ss	Yes	No
BZ815-A	60	No	Neither	No	Yes
BZ815-B	50	No	Neither	No	Yes
BZ815-C	60	Yes	Neither	No	Yes
BZ815-D	50	Yes	Neither	No	Yes
BZ815-E	60	No	SS	No	Yes
BZ815-F	50	No	ss	No	Yes
B $2815-\mathrm{G}$	60	Yes	ss	No	Yes
BZ815-H	50	Yes	ss	No	Yes
BZ815-J	60	No	Neither	Yes	Yes
BZ815-K	50	No	Neither	Yes	Yes
BZ815-L	60	Yes	Neither	Yes	Yes
B2815-M	50	Yes	Neither	Yes	Yes
BZ815-N	60	No	ss	Yes.	Yes
BZ815-P	50	NO	SS	Yes	Yes
Bz815-R	60	Yes	ss	Yes	Yes
BZ815-S	50	Yes	ss	Yes	Yes
Table Continued on Next Page					

TABLE 4-4. CDC DAF CAPABLE FMD UNITS (Contd)

Equipment Number	$\begin{gathered} \text { Frequency } \\ (\mathrm{Hz}) \end{gathered}$	Fixed Heads	Interface Switch	DAF Installed	16/8 Device Capability
OEM 9776 A2 Models (1270 MB)					
BZ6Al-A	60	No	Neither	No	No
BZ6A1-B	50	No	Neither	No	No
BZ6A1-C	60	Yes	Neither	No	No
BZ6A1-D	50	Yes	Neither	No	No
BZ6Al-E	60	No	SS	No	No
BZ6A1-F	50	No	SS	No	No
BZ6A1-G	60	Yes	ss	No	No
BZ6A1-H	50	Yes	SS	No	No
BZ6A1-J	60	No	Neither	Yes	No
BZ6A1-K	50	No	Neither	Yes	No
BZ6A1-L	60	Yes	Neither	Yes	NO
BZ6A1-M	50	Yes	Neither	Yes	No
BZ6Al-N	60	No	Ss	Yes	No
BZ6A1-P	50	No	SS	Yes	No
BZ6A1-R	60	Yes	SS	Yes	No
BZ6Al-S	50	Yes	SS	Yes	No
BZ6A2-J	60	No	Neither	No	No
BZ6A2-L	60	Yes	Neither	No	No
B76B1-A	60	No	Neither	No	Yes
BZ6B1-B	50	No	Neither	No	Yes
B26B1-C	60	Yes	Neither	No	Yes
BZ6Bl-D	50	Yes	Neither	No	Yes
BZ6Bl-E	60	No	SS	No	Yes
Table Continued on Next Page					

TABLE 4-4. CDC DAF CAPABLE FMD UNITS (Contd)

Equipment Number	Frequency (Hz)	Fixed Heads	Interface Switch	DAF Installed	16/8 Device Capability
B26B1-F	50	No	ss	No	Yes
BZ6Bl-G	60	Yes	SS	No	Yes
BZ6Bl-H	50	Yes	SS	No	Yes
BZ6Bl-J	60	No	Neither	Yes	Yes
BZ6Bl-K	50	No	Neither	Yes	Yes
BZ6Bl-L	60	Yes	Neither	Yes	Yes
BZ6Bl-M	50	Yes	Neither	Yes	Yes
BZ6Bl-N	60	No	SS	Yes	Yes
BZ6B1-P	50	No	SS	Yes	Yes
BZ6Bl-R	60	Yes	SS	Yes	Yes
BZ6Bl-S	50	Yes	SS	Yes	Yes
BZ6B2-A	60	No	DVRR	No	Yes
B $2682-\mathrm{B}$	50	No	DVRR	No	Yes
BZ6B2-C	60	Yes	DVRR	No	Yes
BZ6B2-D	50	Yes	DVRR	No	Yes
BZ6B2-J	60	No	DVRR	Yes	Yes
BZ6B2-K	50	No	DVRR	Yes	Yes
BZ6B2-L	60	Yes	DVRR	Yes	Yes
B76B2-M	50	Yes	DVRR	Yes	Yes
B26B3-A	60	No	Neither	No	No
B26B3-B	50	No	Neither	No	No
B26B3-C	60	Yes	Neither	No	No
B $2683-$ D	50	Yes	Neither	No	No
BZ6B3-E	60	No	SS	No	No
BZ6B3-F	50	No	ss	No	No
Table Continued on Next Page					

TABLE 4-4. CDC DAF CAPABLE FMD UNITS (Contd)

Equipment Number	$\begin{gathered} \text { Frequency } \\ (\mathrm{Hz}) \end{gathered}$	Fixed Heads	Interface Switch	$\begin{aligned} & \text { DAF In- } \\ & \text { stalled } \end{aligned}$	16/8 Device Capability
BZ6B3-G	60	Yes	SS	No	No
BZ6B3-H	50	Yes	SS	No	No
BZ6B3-J	60	No	Neither	Yes	No
BZ6B3-K	50	No	Neither	Yes	No
B26B3-L	60	Yes	Neither	Yes	No
B76B3-M	50	Yes	Neither	Yes	No
BZ6B3-N	60	No	SS	Yes	No
BZ6B3-P	50	No	SS	Yes	No
BZ6B3-R	60	Yes	ss	Yes	No
BZ6B3-S	50	Yes	SS	Yes	No
BZ6B4-A	60	No	DVRR	No	No
BZ6B4-B	50	No	DVRR	No	No
BZ6B4-C	60	Yes	DVRR	No	No
BZ6B4-D	50	Yes	DVRR	No	No
BZ6B4-J	60	No	DVRR	Yes	No
BZ6B4-K	50	No	DVRR	Yes	No
BZ6B4-L	60	Yes	DVRR	Yes	No
BZ6B4-M	50	Yes	DVRR	Yes	No
OEM 9776 B2 Models (1270 MB)					
BZ7B1-A	60	No	Not	No	Not
BZ7B1-B	50	No	Appli-	No	Appli-
Bz7Bl-C	60	Yes	cable	No	cable
BZ7Bl-D	50	Yes		No	
Table Continued on Next Page					

```
TABLE 4-4. CDC DAF'CAPABLE FMD UNITS (Contd)
```

Equipment Number	Frequency (Hz)	Fixed Heads	Interface Switch	$\begin{aligned} & \text { DAF In- } \\ & \text { stalled } \end{aligned}$	16/8 Device Capability
$\begin{aligned} & \text { BZ7B1-E } \\ & \text { BZ7B1-F } \\ & \text { BZ7Bl-G } \\ & \text { BZ7Bl-H } \\ & \text { BZ7B2-E } \\ & \text { BZ7B2-G } \\ & \text { BZ7B3-A } \\ & \text { BZ7B3-B } \\ & \text { BZ7B3-C } \\ & \text { BZ7B3-D } \\ & \text { BZ7B3-E } \\ & \text { BZ7B3-F } \\ & \text { BZ7B3-G } \\ & \text { BZ7B3-H } \end{aligned}$	$\begin{aligned} & 60 \\ & 50 \\ & 60 \\ & 50 \\ & 60 \\ & 60 \end{aligned}$ 60 50 60 50 60 50 60 50	No No Yes Yes No Yes No No Yes Yes No No Yes Yes	Not Appli cable	Yes Yes Yes Yes No No No No No No Yes Yes Yes Yes	Not Appli- cable
OEM 9776 C2 Models (1270 MB)					
BZ8A1-A BZ8A1-B BZ8A1-C BZ8A1-D BZ8A1-E BZ8A1-F BZ8A1-G BZ8Al-H	$\begin{aligned} & 60 \\ & 50 \\ & 60 \end{aligned}$	No No Yes Yes No No Yes Yes	Neither Neither Neither Neither SS SS SS SS	No No	No No No No No No No No
Table Continued on Next Page					

```
TABLE 4-4. CDC DAF CAPABLE FMD UNITS (Contd)
```

Equipment Number	$\begin{gathered} \text { Frequency } \\ (\mathrm{Hz}) \end{gathered}$	Fixed Heads	Interface Switch	DAF Installed	16/8 Device Capability
B28A1-J	60	No	Neither	Yes	No
B 28 Al-K	50	No	Neither	Yes	No
BK8Al-L	60	Yes	Neither	Yes	No
BZ8A1-M	50	Yes	Neither	Yes	No
B $2881-\mathrm{N}$	60	No	SS	Yes	No
B 78 Al-P	50	No	SS	Yes	No
B28Al-R	60	Yes	SS	Yes	No
B28A1-S	50	Yes	SS	Yes	No
B $2881-A$	60	No	Neither	No	Yes
B $2881-\mathrm{B}$	50	No	Neither	No	Yes
B28B1-C	60	Yes	Neither	No	Yes
BZ8Bl-D	50	Yes	Neither	No	Yes
B28B1-E	60	No	SS	No	Yes
B28Bl-F	50	No	SS	No	Yes
B 28 BI 1 G	60	Yes	SS	No	Yes
B28B1-H	50	Yes	SS	No	Yes
B78Bl-J	60	No	Neither	Yes	Yes
BZ8B1-K	50	No	Neither	Yes	Yes
B $2881-$ L	60	Yes	Neither	Yes	Yes
B $2881-\mathrm{M}$	50	Yes	Neither	Yes	Yes
BZ8Bl-N	60	No	SS	Yes	Yes
B28B1-P	50	No	SS	Yes	Yes
B $2881-\mathrm{R}$	60	Yes	SS	Yes	Yes
B28B1-S	50	Yes	SS	Yes	Yes

TABLE 4-5. CDC DISK STORAGE UNITS

Product Number	Equipment Number	Frequency (Hz)	Number of Devices	Capacity
CDC Standard units				
33800-B2	B $2640-\mathrm{A}$	60	2	1260 MB
33800-B2	BZ640-B	50	2	1260 MB
33800-B4	B $2640-\mathrm{C}$	60	4	2520 ME
33800-B4	B2640-D	50	4	2520 MB
OEM UNITS				
97380-13G	BZ8Gl-A	60	2	1260 MB
97380-13G	B28GI-B	50	2	1260 MB
97380-26G	BZ8G1-C	60	4	2510 MB
97380-26G	B28G1-D	50	4	2520 MB
97380-13G	BZ8Hl-A	60	2	1260 MB
97380-13G	B28H1-B	50	2	1260 MB
97380-26G	BZ8H1-C	60	4	2510 MB
97380-26G	BZ8H1-D	50	4	2520 MB

TABLE 4-6. CONTROLLER/DRIVE INSTALLATION CHECK LIST

PRE-INSTALLATION

() Check to ensure that all applicable hot line TwXs, service bulletins, unverified service bulletins, and deviations are on site.
() Check to ensure that all applicable manuals (at correct revision level) are on site.
() Check to ensure that customer-provided power receptacle/connector has the proper current rating and is located no more than 3.7 metres (12 feet) from the storage control.
() Check to ensure that customer source voltage is in accordance with equipment specifications.
() Check planned floor layout and floor cutouts for compliance with site planning kit.
() Check air conditioning ducts to ensure adequate equipment cooling.
() Check to ensure that special tools, test equipment, spares, etc. are on site.

EQUIPMENT SETUP

() Uncrate controller/drive and check for damage in transit. Refer damage complaints to carrier.
() Remove and inventory all controller/drive accessories and loose parts.

Table Continued on Next Page

TABLE 4-6. CONTROLLER/DRIVE INSTALLATION CHECK LIST (Contd)

() ()	Remove floor tiles as necessary and place all interface cables into position underneath false floor. Label all bus and tag cables. Replace tiles. Move controller/drive into position and place power cord underneath false floor. Plug in power cord (main ac circuit breaker should be off).
MECHANICAL INSPECTION	
$\begin{aligned} & (1) \\ & () \end{aligned}$	Visually inspect back panel. Check for bent pins, recessed pins, broken wires, etc. Visually inspect card rack. Check for missing, loose, or improperly positioned cards.
ELECTRICAL INSPECTION	
$\begin{aligned} & () \\ & () \end{aligned}$	Set power supply voltage taps to proper source voltage. Controller/drives are normally set at factory to accept $208 \mathrm{~V}, 60 \mathrm{~Hz}$ or $380 \mathrm{~V}, 50 \mathrm{~Hz}$. Check all power supply connections, fuse holders, filters, circuit breakers, etc.
JUMPER/SWITCH SELECTIONS	
()	Set up switch/jumper selections.
Table Continued on Next Page	

TABLE 4-6. CONTROLLER/DRIVE INSTALLATION CHECK LIST (Contd)

POWER ON CHECKS	
()	Install all interface cables. Install all required terminators and EPO plugs.
()	Set controller/drive circuit breakers to their ON position.
()	Check power supplies for proper voltage levels.
()	Check operation of maintenance and operator panels.
DIAGNOSTIC CHECKS	
()	Load inline microdiagnostic disk in storage control.
()	Execute inline tests. Refer to troubleshooting manual for operating procedure.

SECTION 4A

CAU/HPD INSTALLATION

SECTION 4E

H̄SC/DSU INSTALLATION

INTRODUCTION

This subsection contains information relating to the installation and checkout of the Head of String Controller (HSC) and Disk Storage Unit (DSU). The information in this subsection relates to site requirements, equipment setup, power, cabling. unpacking, address selections, and final checks.

TERMINOLOGY

The following discussion defines terminology used in this section.

DSU Refers to a cabinet that contains four devices (or spindles) and associated power circuits.

HSC Refers to a cabinet that contains one or two controllers plus power supplies, cabling, etc.

SITE REQUIREMENTS

ENVIRONMENTAL SPECIFICATIONS

The site must provide a suitable environment for both pieces of equipment, as defined in the applicable Hardware Reference Manual.

PHYSICAL SPECIFICATIONS

Figure $4 E-1$ illustrates the floor space requirements for the HSC and the DSU. A minimum clearance of 760 millimetres (30 inches) must be provided at the front and rear of both equipment types. The HSC requires at least 610 millimetres (24 inches) of side clearance. All DSU and HSCs are bolted together in a string and the HSC may be bolted at either end of the string of DSUs.

HSC

12F9-1A
Figure 4E-1. Space Requirements (Sheet 1 of 2)

Figure 4E-1. Space Requirements (Sheet 2)

ELECTRICAL SPECIFICATIONS

Power for all DSUs in a string is routed through the HSC, which receives its power directly from the site power source or site distribution panel. The current-carrying capacity of the site power bus must be 60 A , maximum, for a 208 -volt $60-\mathrm{Hz}$ source. Power bus ratings for other voltages must agree with the applicable electrical code.

All HSCs and DSUs are shipped prewired for either 208 V ac. 60 Hz . 3-phase delta or 380 V ac. 50 Hz . 3-phase wye.

HSCs designed for $60-\mathrm{Hz}$ operation will operate satisfactorily over a frequency range from 59.0 to 60.6 Hz , and at a voltage range of 180 to $253 \mathrm{~V} . a \mathrm{c} .3$-phase delta wiring.

HSCs and DSUs designed for 50 Hz operation will operate satisfactorily over a frequency range of 49.0 to 50.5 Hz and within either of the following voltage ranges:

170 to 242 V ac. 3-phase, delta-wired
323 to 449 V ac. 3-phase, wye-wired

Table $4 E-1$ contains the power consumption information for the DSU and HSC.

TABLE 4E-1. POWER CONSUMPTION

Unit Type	Apparent Power	Power Factor	Power Consumption
HSC	0.85 kVA	0.88	750 W
DSU	2.2 kVA	0.82	1800 W

* For 50 Hz units only, a label on the first unit (an HSC) plus a string of four drives carries the maximum ratings for the complete string as follows: 3 phase, 36 ampere/phase. 3 or 4 wire (as applicable). 8750 watts

SPECIAL TOOLS AND TEST EQUIPMENT

Table 4E-2 lists tools and test equipment used at installation and for maintenance procedures.

TABLE 4E-2. SPECIAL TOOLS AND TEST EQUIPMENT

Description	Part Number
_SQX Component Assembly (MTD Adapter Card)	54364900
Brake Pulley Gauge	8513690 X
Card Extender (HSC)	83633015
Card Extender (1/2) (DSU)	82318800
Card Extender (Full) (DSU)	82318700
Conductive Static Shielding Bags:	
(5 x 8)	12263624
(8 12)	12263625
\quad (l4 x l2)	12263626
(16 x 24)	12263499
DDC Terminator	12263627
Hex driver (6mm)	75268902
Maintenance Panel Round Cable	94391311
Spring Compression Tool	73164620
Wrist Straps:	85148000
Small	
Large	12263623
Wrist Strap Tester	12263496

EQUIPMENT SETUP

The following paragraphs describe how to set up and connect each of the DSUs to an HSC in the subsystem. In general. it is wise to complete the setup procedures in the order listed in table 4E-3. Table 4E-4 lists the installation accessories.

NOTE
It is less confusing if cabling, labeling, and HDA installation are performed on a device-bydevice basis rather than attempting to mark all cables, route them, and then install all HDAs. The overall sequence in table 4E-3 should be followed, as it applies to both techniques.

TABLE 4E-3. EQUIPMENT SETUP PROCEDURES

Procedure	Unit Affected	
	DSU	HSC
Uncrating	X	X
Inventory	X	X
Preinstallation Inspection	X	X
Power and Power Cabling	X	X
Interface Cabling	X	X
Final Unpacking	X	X
Address and Jumper Selections	X	X
Final Visual Checks	X	X
Final Checkout	X	X

UNCRATING

CAUTION

Do not remove any internal packing material until instructed to do so.

Uncrating instructions are packed on the outside of the shipping crate. Refer to those instructions for proper handing of the unit.

TABLE 4E-4. ACCESSORIES

Description	Part Number	Quantity
Leveler Leveler Extension	$\begin{aligned} & 94402800 \\ & 73068802 \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$
Frame Bolt-together * Screws. 5/16-18 x 1 Washers. Flat. 5/16 Washers. Spring Lock, 5/16 Nut. Hex. 5/16-18 *Provided with DSU Side Panels (provided with HSC)	$\begin{aligned} & 92855196 \\ & 10125609 \\ & 10125807 \\ & 10125302 \end{aligned}$ Refer to FV716 Maintenance Manual (Parts Data)	$\begin{aligned} & 4 \\ & 8 \\ & 4 \\ & 4 \\ & \\ & 2 \end{aligned}$

INVENTORY

When uncrating is complete, check off all parts listed on the shipping bill against the actual items received. Report all discrepancies, missing items, damaged items, etc. to the Account Sales Representative responsible for the equipment.

PREINSTALLATION INSPECTION

Perform the following steps prior to installation.

1. Inspect all DSUs and HSCs for possible shipping damage. Promptly file any claims for this type of damage with the carrier involved. If you file a claim, save the original shipping materials.
2. Verify that all internal cabling appears to be intact and that there are no broken or damaged wires.
3. Check the backpanels of all units for broken or shorted pins or wires.

FINAL UNPACKING

LEVELING AND PLACEMENT

Remove side panel from the HSC that is closest to the DSU by performing the following steps:

1. Open front and rear doors.
2. Unlock side panels (on HSC) by inserting a 6 -mm hex wrench into the fastener located inside frame rail (figure $4 \mathrm{E}-2$) and turning the wrench counterclockwise 1/4 turn.
3. Remove and retain the quarter turn fasteners and retaining ring that secure the side panel to the frame.

Figure 4E-2. Side Panel Removal
3. Disconnect ground straps and lift side panel out of unit. Retain longer ground strap for future use.

Roll unit into its final floor position as assigned in the site planning kit. Level unit by performing the following steps:

1. Open front and rear doors.
2. Insert extension and screw it into frame from below far enough so that pad can be pressed into place as shown in figure 4E-3. Press pad in place. Turn leveler until pad touches the floor.
3. Repeat step 2 for all levelers.
4. Use $5 / 8$ inch wrench on the hex surface (just above the pad) of each leveler to lower levelers until casters are off the floor.
5. Place spirit level on base of frame so ends of level point to front and rear of unit.

NOTE: LEVELERS ADDED TO EACH CORNER OF HOC \& DU

LEVELER EXTENSION LEVELER

PAD
12F71

Figure 4E-3. Leveling Pad Installation
6. Adjust levelers until bubble is centered on spirit level.
7. Place spirit level on base of frame so ends of level point to sides of unit.
8. Adjust levelers until bubble is centered on spirit level.
9. Repeat steps 4 through 8 until cabinet is level.
10. Repeat steps 1 through 9 for each cabinet in the string. Maintain a uniform height for all cabinets.

NOTE
On HSC remove $1 / 4$ turn fastener before attempting to bolt units together.
11. Secure the frames together at top and bottom of frame with hardware shown in figure 4E-4.

Figure 4E-4. Bolting Frames Together
12. Attach side panel removed from HSC. Add longer ground strap (removed earlier) between frame and side panel.

NOTE
Install new retaining rings if rings are damaged during removal. Failing to install a retaining ring or installing a damaged ring may cause fastener to loosen and fall into the DSU.
13. Install quarter turn fasteners and retaining rings on the side of the DSU frame on which the side panel is installed.

AIR MOVER SHIPPING RESTRAINTS

Four restraining brackets, one attached to each air mover shock mount, prevent movement of the air mover during shipment. The brackets are illustrated in figure $4 \mathrm{E}-5$ and are released as follows:

1. Loosen the two nuts that secure each of the four restraining brackets to the air mover panel.
2. Swing the slotted end of the bracket outward 180 degrees.
3. Tighten both nuts to secure each of the brackets in the stowed position and prevent the hardware from being lost.

DSU LOGIC CHASSIS RETAINER REMOVAL

Cut straps and remove $2 x 4$ boards holding logic chassis in place during shipment. Retain boards in case unit must be returned to manufacturer.

HDA UNPACKING

You will need a copy of the Disk Storage Unit Maintenance Manual (Publication Number 83337450) before performing this procedure.

HDAs are packaged separately from the DSU when it is shipped from the factory. The packaged HDA is strapped to a pallet for handing convenience and protection during shipment. Each HDA is identified by a label, indicating the unit (DSU) serial number, model number (BZXXX), and the device (HDA) number (0,1,

Figure 4E-5. Air Mover Shipping Restraint Removal
2. or 3). This label allows installation of the HDA in the same position in the DSU in which the unit was tested at the factory.

WARNING

Two persons are required to lift an HDA since it weighs approximately 36.3 kg (80 pounds).

An HDA contains static-sensitive components and is subject to damage if improperly handled. Review the Safety Precautions, Handing Electrostatically Sensitive Assemblies, and HDA Handling procedures in section 1A of the Disk Storage Unit Maintenance Manual (Publication Number 83337450) before attempting to unpack and install an HDA.

1. Transport packaged HDAs to an area where they can be unpacked with minimal danger of damage from shock, heat. cold. vibration, andor contamination.
2. Remove the box cover and allow the bagged HDA to stabilize to the ambient temperature of the installation/operational environment. Allow four hours minimum stabilization time if the "transit/storage" to "installation/operational" temperature differential is 16.7 degrees C (30 degrees F) or less. Allow at least eight hours stabilization time if the temperature differential is over. 16.7 degrees C (30 degrees F). or cannot be reasonably determined.

CAUTION

Continue to unpack the HDA only after the required temperature stabilization period.
3. Unpack the HDA using the unpacking instructions supplied with it.
4. Ensure the DSU is installed in its final operating location, is leveled, and all applicable unpacking procedures have been completed. This eliminates the need to move the unit after HDA installation.
5. Loosen the nut on each of the HDA shock mounts in the DSU. Position each nut so it is flush with the end of the bolt.
6. Install each HDA into the proper position using steps 7 through 12 of the $H D A$ Replacement procedure in section $1 C$ of the Disk Storage Maintenance Manual (83337450). HDA location information (device number) is provided on the HDA label. An assembly locator diagram is provided on the logic rack card cover. Assembly designators and device (HDA) numbers are listed in table 4E-5. HDA drive belts, belt tension springs, and belt guards were packed and taped inside the DSU for shipment.

TABLE 4E-5. ASSEMBLY-DEVICE NUMBER CORRELATION

Assembly Designator	Device Number
A7A0	0
A7Al	1
A7A2	2
A7A3	3

7. Electrical connections to the HDA were made if step 6 was correctly performed. They are in table $4 \mathrm{E}-6$ for checking purposes.

TABLE 4E-6. HDA CABLE CONNECTIONS

HDA Connector	Mating Connector	Description
A7AXJ9	A7AXP9	Index/speed Transducer
A7AXJI	A7AXP1	HDMA Cable to Head Select Card
A7AXJ 2	A7AXP2	HDA Flat Cable to Select Card
A7AXJ 6	A7AXP6	Servo (voice coil) Cable Beneath Magnet Housing
A7AXJ 10	A7AXP10	Carriage Interlock Switch
A7AXEl *	Ground Cable Faston	HDA Static Ground Wire
* Faston tab located at top/front of the HDA		

HDA DRIVE BELT AND BELT GUARD INSTALLATION

After HDAs are in the installed position and leveled, install the HDA belts and belt guards as shown in figure $4 \mathrm{E}-6$.

WARNING

Obtain spring compression tool P/N 85148000 to compress the belt tension spring before starting this procedure. Use of any other tool may cause the spring to slip out with enough force to cause personal injury and/or damage to the the equipment.

1. Open front and rear doors to gain access to HDA belts and belt guards stored on the PCU top cover during shipment.

Figure 4E-6. Drive Belt and Belt Guard Installation
2. Remove steel band that secures $H D A$ and drive motor during shipment.
3. Install spring compression tool and compress the spring.
4. Install the drive belt on the motor and HDA pulleys, ensuring it is centered.
5. Slowly release the spring compression tool to tension the belt.
6. Unlock the spindle.
7. Install belt guard.
8. Repeat steps 3 through 7 until all belts and belt guards are installed.

POWER AND POWER CABLING

WARNING

Do not connect site power until instructed to do so.

All HSCs and DSUs are shipped prewired for either $208 \mathrm{~V}, 60 \mathrm{~Hz}$ or 380 V. 50 Hz . Every DSU is furnished with its own 3.6 metre (12 ft) input power cable and connector. Every 60 Hz HSC is supplied with its own 4.5 metre (l5 ft) power cable and connector: however, each 50 Hz HSC is supplied with a 4.5 metre (15 ft) cable.

Figure 4E-7 illustrates power cord routing for the subsystem. Connect the power cord from each master or slave power supply in a DSU to the appropriate connector on the bottom of the power control unit in the HSC.

AC POWER

CAUTION

Heed the instructions in the following paragraphs regarding proper phasing of the ac power cable. Correct phase rotation is normally indicated by the PHASE GOOD indicator on the HSC's PCU being lighted.

Phase detection circuits within the HSC will normally prevent a successful power up sequence if phases of the ac input power are connected incorrectly.

Interchanging the phase A. B, or C conductor with the neutral conductor on 60 Hz units will not be detected by the phase rotation circuits. This type of wiring error prevents the drive motors from reaching full speed and consequently results in overheating.

The HSC 60 Hz power cord has a four-pin male connector (figure 4E-8) that is plugged into a mating female connector wired according to the phasing described in table 4E-7.

Figure 4E-7. Power Cord Routing

Since the power cord for a 50 Hz HSC has no connector (seefigure $4 \mathrm{E}-9$). refer to table $4 \mathrm{E}-8$ for proper phasing connections. Note that the green wire is a safety ground and should not be used as a neutral line.

CAUTION

ON 50 HZ UNITS

It is possible that the PHASE GOOD indicator will still light if one or more of the phases are not connected at all.

Figure 4E-8. 60 Hz Cable Connector

12 F53

Figure 4E-9. 50 Hz Power Cord Connection

TABLE 4E-7. 60-Hz PHASE CONNECTIONS

Phase	Connector Pin	Wire Color	Line Filter Terminal
A		Black	A
B	Y	Red	B
C	Z	Brown	C
Gnd	G	Green Wire	Gnd Stud
-	G	(\& Shield)	Cable Clamp

TABLE 4E-8. 50-Hz PHASE CONNECTIONS

Phase	Wire Color	Line Filter Terminal
A	Black	A
B	Brown	B
C	Black	C
Neutral	Blue	Gnd Stud
Gnd	Grn/Yel	

OUTPUT POWER CABLES

The HSC has four 7-pin, output ac power connectors used for supplying ac power to the drives. Table $4 \mathrm{E}-9$ shows how the phasing is distributed to the four DSUs.

TABLE 4E-9. AC POWER OUTPUT PHASING (60 Hz)

Pin No.	Drive 1 (Dev 0-3)	Drive 2 (Dev 4-7)	Drive 3 (Dev 8-B)	Drive 4 (Dev C-F)
$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \end{aligned}$	Phase B Phase A NC Safety Gnd Phase C NC Safety Gnd	Phase A Phase C NC Safety Gnd Phase B NC Safety Gnd	Phase C* Phase B** NC Safety Gnd Phase A*** NC Safety Gnd	Phase B\# Phase A\#\# NC Safety Gnd Phase C\#\#\# NC Safety Gnd
NC $=$ No Connection $*$ $=$ Phase B for 50 Hz unit $* *$ $=$ Phase A for 50 Hz unit $* * *$ $=$ Phase C for 50 Hz unit $\#$ $=$ Phase C for 50 Hz unit $\# \# \#$ $=$ Phase B for 50 Hz unit $\# \# \#$ $=$ Phase A for 50 Hz unit				

HSC POWER CONTROL UNIT VOLTAGE SELECTION

PCU operating voltage selections, other than those wired into a unit at the time of shipment from the factory, may be changed.

In 60 Hz power control units proceed as follows:

1. Figure 4E-10 shows the locations of transformers A4Tl and A4T3 and other parts that must be removed to gain access to these transformers.

Figure 4E-10. Transformer Locator for Controller Voltage Selections
2. Normally, A4Tl is wired for 208 V ac. delta configuration. To select 230 V ac. move the brown wire pin 2 (A4Tl) to pin 3 and also move the black wire pin 2 (A4T3) to pin 4 as shown in figures $4 E-11$ and $4 E-12$.
3. Replace all items that were removed to gain access to the transformers.

In 50 Hz power control units. proceed as follows:

1. Refer to figure $4 E-10$ for the locations of transformers A4Tl and A4T3.
2. Normally, A4Tl is wired for 380 V ac, wye configuration (primary wires of A4Tl terminate at connector P7, which is mated with J6 on power option board). To

Figure 4E-11. Transformer $T 3$ Pin Locations

$12 F 85$

Figure 4E-12. Transformer Tl Pin Locations
locate $P 7$, manually follow the two primary wires of A4Tl (brown and red) over to the power option board A4A2 (located on the outside of the PCU's filter box). To select a delta configuration, move P 7 from J6 to J5. To select different voltage, move the taps of transformers A4Tl and A4T3 as shown in table 4E-10.
3. Replace all items that were removed to gain access to the transformers.

TABLE 4E-10. 50 Hz INPUT VOLTAGE SELECTION

Input Power Line Voltage	Connect P7 to A4A2Jx	Move A4T1 red wire to pin:	Move A4T3 black wire to pin:
200/208 V AC, delta	J5	2	2
220 V AC. delta	J 5	3	3
230/235/240 V AC, delta	J5	12	4
380 V AC. wye	J 6	3	3
398/400/408/415 V AC, wye	J 6	12	4
NOTE: Some units do not contain transformer A4T3.			

DSU POWER CONTROL UNIT INPUT VOLTAGE SELECTION

Ac input voltage selection may be changed from the voltages wired in the factory at installation. Voltage selection must agree with site power. Voltage selection is accomplished by selecting appropriate taps on the transformer primary windings. The motor power cable connection to the ac distribution board (_CMV) must be verified on 50 Hz units. Access to the transformers and _CMV board in the $P C U$ is gained by removing the top cover.

Master Power Control Unit

The 60 Hz master $P C U$ is factory wired for $200 / 208 \mathrm{~V}$ operation. Figure 4E-l3 shows the locations of the transformers (Tl and T2) and the _CMV board. Table $4 E-11$ provides wiring information for transformers Tl and T2. Transformer taps are illustrated in figure $4 \mathrm{E}-14$ (T1) and figure 4E-15 (T2).

The 50 Hz master $P C U$ is factory wired for 380 V operation. Table 4E-l2 provides wiring information for transformers Tl and T2, and indicates the proper motor power cable connection (J2 or J3) on the ac distribution board (_CMV). Figures 4E-l4 and 4E-16 illustrate transformer taps and figure 4E-17 illustrates motor power connections.

Figure 4E-13. Transformer Locator for DSU MPCU Voltage Selections

TABLE 4E-11. 60 Hz MPCU VOLTAGE SELECTION

Input Power Line Voltage	Black Wire to Tl Terminal	Red Wire to T2 Terminal
200	2	13
$208 *$	3	13
230	5	14
Factory Wired		

Figure $4 \mathrm{E}-15.60 \mathrm{~Hz}$ MPCU Voltage Selection (T2)
tABLE 4E-12. 50 Hz MPCU VOLTAGE SELECTION

Input Power Line Voltage	CMV Plug J2 or J3	Black Wire to T1 Terminal	Black Wire to T2 Terminal
200	$J 2$	2	13
208	$J 2$	3	13
220	$J 2$	4	14
$230 / 235 / 240$	$J 2$	5	15
$380 *$	$J 3$	4	14
$398 / 400 / 408 / 415$	$J 3$	5	15
Factory Wired			

Figure 4E-16. 50 Hz MPCU Voltage Selection (T2)

NOTES
A CONNECT TO J2 FOR 200, 208, 220, 230, 235, 240 V 50 Hz OPERATION CONNECT TO J3 FOR $380,398,400,408,415 \mathrm{~V} 50 \mathrm{~Hz}$ OPERATION

12C96A

Figure 4E-17. _CMV Board Connections (50 Hz)

Slave Power Control Unit

The 60 Hz slave $P C U$ is factory wired for 208 V operation. Table 4E-13 provides wiring information for transformer Tl. Figure $4 \mathrm{E}-18$ shows the location of the tranformer in the slave PCU. Transformer taps are illustrated in figure 4E-19.

The 50 Hz slave PCU is factory wired for 380 V operation. Table 4E-14 provides wiring information for transformer $T l$ and indicates the proper motor power cable connection (J2 or J3) on the ac distribution board (_CMV). Figure 4E-20 illustrates transformer taps and motor power connections are shown in figure 4E-l8.

TABLE 4E-13. 60 Hz SPCU VOLTAGE SELECTION (TI)

Input Voltage	Red Wire To Tl Terminal
$200 / 208 *$	13
230	14
Factory Wired	

$\begin{array}{cl}\text { Figure 4E-l8. Transformer Locator for DSU SPCU } \\ & \text { Voltage Selection }\end{array}$

Figure 4E-19. 60 Hz SPCU (TI)

TABLE 4E-14. 50 Hz SPCU VOLTAGE SELECTION

Input Power Line Voltage	J2 or J3	Red Wire to Tl Terminal
$200 / 208$	J2	13
220	J2	14
$230 / 235 / 240$	J2	15
$380 *$	J3	14
$398 / 400 / 408 / 415$	J3	15

* Factory Wired

GROUNDING

The importance of proper grounding procedures cannot be over emphasized. To be properly grounded, all units in a system must have two ground connections: (l) site ac power system safety ground and (2) a system ground. Both of these subjects are explained in the following paragraphs.

SITE POWER SYSTEM :

The safety ground is provided by the green (or green with yellow stripes) wire in the ac power cord. This wire connects both to the drive's frame and controller's frame. It is routed through the ac power cord to earth ground via the ac branch circuit supplying power to the system.

SYSTEM GROUND

The system is grounded when the DSUs and HSC are bolted together. Grounding for the DDC interface is described in the DDC Interface procedure in this section.

INTERFACE CABLING

There are different types of interface cabling between the SCU and HSC and between the HSC and drives. The following paragraphs discuss installation of all of these types of cabling.

HSC BACKPANEL CONFIGURATIONS

The HSC may have either of two backpanels. Early units contain the ADPV backpanel. Later units (Series Code 09 and above, or earlier units with ECO 16368 installed) have the CDPV backpanel. Board locations between these two backpanels differ: these locations are shown in table 4E-l5.

TABLE 4E-15. HSC BACKPANEL BOARD•LOCATION CROSS REFERENCE

Board Type	ADPV B/P Slots	
	CTLR 1	CTLR 2
SQX	02	15
_SMX	03	14
_SLX	04	13
CSKX	05	12
CTLR 1	CTLR 2	
SJX	06	11
SNX	07	10
SPX	08	09
06	09	

CDP INTERFACE:

NOTE
The following cable installation procedure will be easier if two people are available to help perform the procedure.

The HSC provides connectors for up to 16 low-speed Controller to Device Port (CDP) cables and four high-speed read/write data cables (one to each device - see figure 4E-2l). CDP cables are provided for the first two DSUs in a string: additional cables for additional DSUs must be ordered separately.

CAUTION

Carefully route all CDP cables from cabinet to cabinet since connectors can be broken or damaged in the installation process.

With front and rear cabinet doors open and the logic chassis open, begin with the first DSU in the string and route the low speed cables (flat) through the cable trellis along the top of the cabinet as shown in figure 4E-22. Secure the cables to
Figure 4E－21．HSC／DSU Cabling

Figure 4E-22. HSC/DSU Cable Routing
the cable trellis as necessary. Excess cabling should be coiled and placed in the trellis basket in the HSC. Table 4E-16 provides low speed cabling information for cabling from the HSC to the DSU. This table is organized like the backpanel with connections starting from the top to the bottom.

High speed cables (round read/write) are connected between the HSC's backpanel and the appropriate device connector. Labels are furnished for the cable sets supplied with each drive. Mark the labels to identify device connectors as desired and attach them to those device connectors before routing the cables through the string of drives. Figure $4 \mathrm{E}-23$ shows where device connectors plug onto backpanel pins of the HSC; and therefore, illustrates one method of labeling device connectors.

TABLE 4E-16. LOW SPEED CABLING

Backpanel Connector	Drive	Device	Cable ID Number
J/P41	3	D	A5UPA30
J/P43	3	F	A5LPA30
J/P20	1	4	A5UPA10
J/P22	1	6	A5LPA10
J/P21	1	5	A5UPA30
J/P23	1	7	A5LPA30
J/P33	2	B	A5UPA10
J/P31	2	9	A5UPA30
J/P12	0	2	A5LPA10
J/P13	0	3	A5LPA30
J/P10	0	0	A5UPA10
J/P11	0	1	A5UPA30
J/P42	3	E	A5LPA10
J/P40	3	C	A5UPA10
J/P32	2	A	A5LPA10
J/P30	2	8	A5LPA30

HSC BACKPANEL (ADPV)

Figure 4E-23. High Speed Cabling

Route the high speed cables through the cable trellis along the top of the DSU cabinets starting with the last DSU in the string. Then route the cables down the side of the trellis basket and connect the plugs into the HSC backpanel. One cable assembly services two devices; therefore, HSC connectors are labelled with two sets of pin numbers (7A-14B and 15A-22B). Figure 4E-23 illustrates the installation positions of HSC-end connectors on the HSC backpanel at location 09 and the pins (in parentheses) which those connectors cover. Connector numbers at the device end of the cable(s) are shown in brackets. Although not shown on figure 4E-23, all device connectors have the same pin numbers 4B through 9B.

DDC INTERFACE:

The Director to Device Controller (DDC) interface mates the HSC to the storage director within a storage control via two connectors and a 24 -twisted pair cable assembly. If the HSC has two controllers, then the interface hardware doubles to four connectors and two cable assemblies (see figures 4E-24 and 4E-25). The DDC cables also connect the HSCs in a daisy-chain configuration. The maximum accumulated length (for one or two HSCs) of each of these cables is 61 metres (200 feet), including 10 feet of internal HSC cabling to the second HSC. Table 4E-17 lists the various lengths of DDC I/O cables available.

NOTE

Before proceeding further, check the HSC's Serdes/PLO boards (type _SNX and _SPX). Refer to table 4E-15 for their locations.

If the boards are not MSNX and NSPX (or above), then you cannot use table 4E-18. The only allowable cable lengths are 30 and 180 feet, or else 180 and 30 feet.

Before installing DDC cables, check the cables supplied with the subsystem against table $4 \mathrm{E}-18$. Use the first column if there is only one HSC. Verify that this cable length has an "X" (indicating a legal cable length). This column also applies for the cable from the storage director to the first HSC if there are two HSCs.

If there are two HSCs in the string, verify that the cable length to the first HSC has an "X" and ensure that the length of the cable from HSCl to HSC2 also has an "X" in its corresponding table column.

12FI5B

Figure 4E-24. DDC Interface Cabling

Although figure $4 \mathrm{E}-25$ does not show it, the HSC is shipped with AlPA5 connected in place on the backpanel and A2Pl and A2P2 trailing from the logic chassis. These cables are connected at the time of installation to the _GVN board on the I/O panel as shown in figure 4E-24.

DDC cables are shipped with several inches of the outer plastic covering removed near one end of the cable to expose the braided shield. At installation be sure to locate the cable clamp over the braided shield (see figure $4 \mathrm{E}-25$) and tighten the hex screw securely to the HSC's frame.

12F 39B

Figure 4E-25. DDC Interface Installation

Connect the DDC interface cable to J7 (DDC 1 IN). Terminate J5 (DDC 1 OUT) with terminator $P / N 75268902$. Connect ground wire (part of the cable assembly) to one of the spade lugs on the ground for terminators as shown in figure 4E-25.

NOTE
The _GVN board is exploded from the I/O panel in figure $4 \mathrm{E}-25$ for plug orientation purposes only.

TABLE 4E-17. DDC I/O CABLES

Part	Length (metres)	Part Number	
DDC I/O Cables	6	$(20 \mathrm{ft})$	83634302
	9	$(30 \mathrm{ft})$	83634303
	12	$(40 \mathrm{ft})$	83634304
	15	$(50 \mathrm{ft})$	83634305
	18	$(60 \mathrm{ft})$	83634306
	24	$(80 \mathrm{ft})$	83634307
	30	$(100 \mathrm{ft})$	83634308
	37	$(120 \mathrm{ft})$	83634309
	43	$(140 \mathrm{ft})$	83634310
	49	$(160 \mathrm{ft})$	83634311
	55	$(180 \mathrm{ft})$	83634312
	61	$(200 \mathrm{ft})$	83634313

TABLE 4E-18. ALLOWED DDC CABLE LENGTHS

SCU to single HSC or SCU to HSCl		Then the allowable daisy-chained cables from HSCl to HSC2 can be:											
20	X						x	X	X	X	X		
30	X						X	x	X	X	X		
40	X					X	X	X	X	X			
50													
60													
80													
100													
120	X	X	X	X	X	X							
140	X	X	X	X	X								
160	X	X	X										
180	X												
200	X												

NOTES:

1. All cable lengths are in feet.
2. X indicates lengths to single HSC or combinations of daisy-chained lengths that are allowed. All others are disallowed.
3. Units now using 30 and 180-foot cables (or 180 and 30-foot cables) may continue to use them even though this chart disallows those combinations.

EPO CABLING

EPO cabling is routed from the I / O panel of the storage control to the rear panel of the HSC's PCU. The cable from storage director 1 is connected to $J 5$ (figure 4E-26) and the cable from storage director 2 is connected to J6. Also, be sure to attach the quick connect clip (attached to the trailing black ground wire with each cable assembly), to the ground terminal next to both connectors J5 and J6.

If it becomes necessary to order additional EPO cables, refer to table 2D-2 in Section 2 D of this manual.

12F76A

Figure 4E-26. HSC EPO Cable Connections

ADDRESS AND JUMPER SELECTIONS

CAUTION

Observe all electrostatic precautions in the applicable maintenance manual. Before performing any of these procedures, all power must be off in the HSC or DSU.

All switches in the following procedures are located on the edge of the board. Before setting any switches, observe the position and type of switch on the board since position and type of switch may differ.

The Device Selection procedure must be repeated for each device within every DSU in the string. The Controller Selection, Controller ID and Sequencer Board procedures apply to the HSC.

DEVICE SELECTION

Device address selections are made on the _SFX I/O Transmitter/ Receiver board at locations A10/A30 in the upper and lower logic chassis of the DSU. Figure $4 \mathrm{E}-27$ shows the locations of these switches on the _SFX board and the resulting addresses produced by the switch settings as shown.

CONTROLLER SELECTION

NOTE

Refer to table $4 E-15$ for a chart comparing
board locations between the ADPV and CDPV
backpanels.

Controller logical addresses are selected by the proper placement of jumper blocks over backpanel pins opposite the _SKX board slots. Refer to figure $4 \mathrm{E}-28$ and note that a jumper block covers only two rows of pins. In the figure, the position of the jumper block at location 05 (ADPV backpanel only) illustrates an address of logical zero for controller 1 ; the position of the other jumper block at location 12 (either backpanel) illustrates an address of logical one for controller 2. Either address may be selected for either controller.

Figure 4E-27. Device Selections

(LOGICAL ADDRESSES)

12F67B

Figure 4E-28. Controller Jumper Block Installation (ADPV Backpanel Shown)

CONTROLLER IDENTIFICATION.

NOTE

Refer to table $4 \mathrm{E}-15$ for a chart comparing board locations between the ADPV and CDPV backpanels.

Prior to, or at the time of installation, physical identifiers are assigned to the controllers within an HSC. The rules governing the assignment of physical identifiers depend upon the configuration of the storage subsystem. Figure 4E-29 illustrates a few of the most probable configurations likely to be required at a typical site. The eight switches on the _SLX
board(s) in location(s) 04 (ADPV backpanel only) andor 13 are set to correspond to the physical identifiers previously assigned. Each two-character hexadecimal physical identifier must be used only once at each customer location and ideally should never be changed. .

The general rules for determining how to choose HSC physical identifiers are as follows:

If B/P Jumper	Then, CTLR	And, set HSC ID switches
Block is ON:	Logical Address	SW2 - SW7 to Desired

Type _skx 0
pins 12. 13 \&
14. rows B \& C

Type _sKX 1 pins 12. 13. 14, rows $A \& B$

1
路

VIEW A - ONE SD, ONE HSC W/ONE CTLR

VIEW B - ONE SD, TWO HSCs (DAISY-CHAINED) W/ONE CTLR EACH

VIEW C - TWO SDs, ONE HSC W/DPS AND TWO CTLRs

Figure 4E-29. Typical Installation Configurations (Sheet 1 of 2)

12F86-2

Figure 4E-29. Typical Installation Configurations (Sheet 2)

For HSCs having only one controller, only one physical identifier is needed and it may be odd or even.

Bit 0 and bit 7 (switches SWl and SW8 on the _SLX boards) are of particular interest to the installer. Examine these two bit positions in the examples shown in figure $4 \mathrm{E}-29$ and note the differences that would be required in switch settings, especially in HSCs having the DPSE feature.

Basically, the switch for bit 0 (SWl) is set to represent the address of either controller in HSCs having two controllers. Bit 7 (SW8) is set to distinguish between controller lor controller 2 (right and left, respectively, as viewed from the pin side of the backpanel). Also, note the identifying labels CTLR 1 and CTLR 2 on the backpanel.

Proceed as follows:
NOTE
This procedure assumes switches are being set on an ADPV backpanel. Refer to table 4E-15 for a chart comparing board locations between the ADPV and CDPV backpanels.

1. Set SWl (bit O, labeled Controller Address on figure 4E-30) to match the backpanel jumper installation as shown on figure $4 \mathrm{E}-28$. For example, if the jumper block was installed over the B and C rows of pins at backpanel location 05 (resulting in the logical address of 0) then set SWl on the _SLX board at location 04 to ON .
2. Next, set SW8 (bit 7 labeled Controller 2 on figure $4 \mathrm{E}-30$) to establish the identity of controller 1 and 2. If the HSC has two controllers set SW8 on the _SLX board at location 13 to ON (closed) and SW8 on the _SLX board at location 04 to OFF (open). These settings identify the left controller as CTLR 1 and the right controller as CTLR 2.
3. Finally, set the six HSC physical identifier switches (SW2 - SW7 on figure 4E-31 at locations 04 and 13 as follows:

- Select hexadecimal numbers to identify the HSC cabinets.
- Convert the hexadecimal numbers to their binary equivalents as shown as an example in figure 4E-29.

Figure 4E-30. Controller Physical Identification

12F87A

Figure 4E-31. HSC ID Conversion Example

In the example (figure 4E-31), remember that both SWl and SW8 have already been set to desired positions for both controllers. Therefore, only six bits are actually available for conversion to binary code. It follows, then, that the decoded logical values for bits 0 and 7 (resulting from the HSC physical identifiers chosen) must be identical to the logical values already established when SWl and SW8 were set previously.

TRACE ENCODE AND DPSE SWITCH SETTINGS

The Trace Encode Switches, which are used in troubleshooting, are located on the HSC's Processor-Sequencer board (_SJX). Refer to table $4 \mathrm{E}-15$ for a chart comparing board locations between the ADPV and CDPV backpanels. Since these switches are set to various positions as needed by the troubleshooter, you should leave all four switches (SWl - SW4) in the off (open) positions. Figure $4 \mathrm{E}-32$ shows the location of these switches on the board.

If two controllers are installed in the same HSC cabinet. set the DPSE switch in both controllers to the closed position (see figure 4E-32).

12F10D

Figure 4E-32. Trace Encode and DPSE Switch Locations

FINAL VISUAL CHECKS

Before applying power to any unit make the following visual checks:

1. Check that all connectors on the DC power supply modules and PCUs are firmly seated.
2. Check that all backpanel connectors are firmly seated and that the terminating jumpers are installed over the proper pins.
3. Check that all logic boards have been installed and are firmly seated in the board slots.
4. Check that all read/write, controller to device port (CDP), and device to director cables (DDC) cables are properly mated and firmly seated.

FINAL CHECKOUT

NOTE

Before putting subsystems having the DPSE feature online, refer to the Hardware Diagnostic Reference Manual, (publication number 83324410) for specific DPSE Array Procedures and Precautions procedure.

Procedures for diagnosing the proper operation of each device. are found in the Hardware Diagnostic Reference Manual (publication number 83337530).

INITIAL STARTUP

For initial startup and operating procedures, refer to the Hardware Reference Manual (publication number 83337500).

REPACKAGING

If it becomes necessary to repackage a unit for reshipment, packaging instructions may be obtained from:

Packaging Engineer, Material Services Department Magnetic Peripherals. Inc.
7801 Computer Avenue
Minneapolis. MN 55435

- SECTION 5

IBM 3333 CONTROLLER/3330 DRIVE INSTALLATION

INTRODUCTION

A subsystem may consist of one or more strings of IBM 3330-type drives intermixed with CDC drives.

PROCEDURES

The following procedures enable CDC maintenance personnel to reconfigure IBM drives into a mixed CDC/IBM subsystem. It is assumed that the IBM equipment is already operation on site. Additional information on the installation of IBM drives may be found in the corresponding controller/drive maintenance library.

CONTROLLER ADDRESS SELECTION
Figure 5-l illustrates the addressing jumper card within the 3333 controller. A separate address must be wired for each channel port.

DRIVE ADDRESS SELECTION

Figure 5-2 illustrates the addressing jumper card within the 3330 device.

CONTROLLER 3 (DRIVES 8-F)

TO MAKE THESE ADDRESSES EFFECTIVE, THE FOLLOWING BACK PANEL WIRING IS CE INSTALLED ON THE CONtroller logic gate.

	3333	ALD CC101, 102, 103
CONTROLLER	0 (DRIVES 0-7)	C-AlJ2G04 TO J2S10
CONTROLLER	1 (DRIVES 8-F)	C-AlJ2G04 TO J2U09
CONTROLLER	2 (DRIVES 0-7)	C-A1J2GO4 T0 J2S09
CONTROLLER	3 (DRIVES 8-F)	C-AlJ2G04 TO J2U02

$9 C 239$

Figure 5-1. 3333 Controller Addressing

A MANUALLY INSTALLED JUMPER IS USED TO DEFINE THE ADDRESS ON STAGE I UNITS AS SHOWN IN THE FOLLOWING TABLE:

	JUMPER FROM						
DRIVE	V3B02	V3B03	V3B04	V3B05	V3B06	V3B07	
A	M2P11	M2P04	M2P05	-••...0	-•.....	-......	
B	M2P11	M2P04	-••	-	M2P05	-
C	M2P11	M2P04	.	M2P05	$\stackrel{ }{\square}$
D	M2P11s..	M2P04	M2P05	$\stackrel{\sim}{4}$
E	-••....	M2P11	M2P04	M2P05	늘
F	M2P11	-......	M2P04	M2P05	$亏$
G	-	...	M2P11	M2P04	M2P05	. \cdot	
H	M2P11	M2P04	M2P05	

ADDRESSING DRIVE LOGIC BOARD PART NUMBERS: 2276210,2354252 , and 2354250

A JUMPER CARD LOCATED IN POSITION Y5 IS USED TO DEFINE THE ADDRESS ON STAGE II UNITS. THE FOLLOWING TABLE LISTS THE PART NUMBERS USED TO DEFINE EACH LOGICAL ADDRESS:

ADDRESS PART NUMBER ADDRESS PART NUMBER

A	2311176	E	2311180
B	2311177	F	2311181
C	2311178	G	2311182
D	2311179	H	2311183

CheCk the device type selection using the chart below.

MODEL	BOARD P/N	P/N OF CARD AT Y2
1	2311190	NONE
1 or 2	2276210	2311176
1 or 2	2354250	NONE
11	2354250 or	2311180

9C237A
Figure 5-2. 3330 Device Addressing (Sheet 1 of 2)

$9 C 238$
Figure 5-2. 3330 Device Addressing (Sheet 2)

SECTION 6

IBM 3350 CONTROLLER/DRIVE INSTALLATION

INTRODUCTION

A subsystem may consist of one or more strings of IBM 3350-type drives intermixed with CDC drives.

PROCEDURES

The following procedures enable CDC maintenance personnel to reconfigure IBM drives into a mixed CDC/IBM subsystem. It is assuemd that the IBM equipment is already operation on site. Additional information on the installation of IBM drives may be found in the corresponding controller/drive maintenance library.

CONTROLLER ADDRESS SELECTION

Figure 6-1 illustrates the addressing jumper card within the 3350 controller. A separate address must be wired.for each channel port.

DRIVE ADDRESS SELECTION

Figure 6-2 illustrates the addressing jumper card within the 3350 device.

9C230A


```
9C229
```

Figure 6-2. 3350 Device Addressing

APPENDIX A

CDC EQUIPMENT DETAILED ADDRESSING PROCEDURE

INTRODUCTION

This Appendix provides a step-by-step procedure for setting up the addresses in an all-CDC subsystem. The steps should be performed in sequence for each channel connected to the storage control, controller, and device. The steps are arranged to enable you to determine if your addressing scheme is valid. You should read through the entire appendix before starting, since several sample addressing schemes are provided.

NOTE
This procedure must be performed twice in subsystems using the FAll3 dual storage control.

ADDRESSING

STEP 1 - BASIC FACTFINDING

Review the Site Planning Kit and confer with the customer to determine the following:
a. Total number of CPUs.
b. Total number of channels.
c. Total number of storage control units.
d. Total number of active controllers.
e. Total number of devices.
f. Total number of logical volumes.
g. Number of channels attaching to each storage control (1,2 , or 4 channels).
h. Number of storage controls attaching to each controller (l or 2).
i. Number of controllers attaching to each device (l or $2)$.
j. Total number of device addresses required per channel (maximum=32).
k. Total number of volume addresses required per channel (maximum=64).

1. Total number of addressing paths per volume. (This is important on single-CPU subsystems using alternate path retry or channel rotation features.)
m. Specific addresses requested by the customer for each channel.

STEP 2 - STORAGE CONTROL ADDRESSING

Go to sheet 1 of figure $A-1$ to find out which of the tables on sheets 2 through 14 should be used to validate the addressing scheme.

Go to the referenced sheet in the table. Find the column containing the addresses requested by the customer. All of the requested addresses must appear somewhere in the table; otherwise, different addresses must be selected. In addition, all of the requested addresses for a single channel must appear in one column; otherwise, different addresses must be selected.

NOTE
The same column can be used again for a different channel.

After selecting a column, follow the arrow from the top of the column to determine which bits of the subsystem address will be used to decode the storage control address.

STEP 3 - CONTROLLER ADDRESSING

Follow over to the left of the selected address column to determine the associated string (controller) address.

$\begin{aligned} & \text { CONTROL } \\ & \text { STORE } \\ & \text { SIZE } \end{aligned}$	SEQUENTIAL ADDRESSING	DRIVES ATTACHED TO STORAGE CONTROL			NUMBER OF CONTIGUOUS ADDRESS GROUPS	ADDRESS COMPARE SWITCH						
		HPD	$\begin{gathered} \text { 1-VOL } \\ \text { FMD } \end{gathered}$	$\begin{aligned} & \text { 2-VOL } \\ & \text { FMD } \end{aligned}$		SETTING	SHEET					
4K	NO	YES	NO	NO	$10 F 16$	0	2					
6K	NO	YES	NO	NO	1 OF 32	1	3					
8K	NO	-	-	NO	$10 \mathrm{~F} 8(00-7 \mathrm{~F})$	8	4					
					10 F 8 (80-FF)	8	5					
					$1 \mathrm{OF}_{16}$	0	2					
					1 OF 32	1	3					
					2 OF 8	9	6					
		-	-	YES	1 OF 64	3	7					
					$20 F 8$	A	8					
					2 OF 16	2	9					
					4 OF 8	B	10					
	YES	-	-		1 OF 16	0	11					
					1 OF 32	1	12					
					1 OF 64	3	13					
					2 OF 16	2	14					
HOW TO USE THIS CHART:												
DETERMINE SYSTEM CONFIGURATION: CONTROL STORE CAPACITY, WHETHER												
TYPES ATTACHED TO STORAGE CONTROL ($-=$ DON'T CARE). "NUMBER OF												
THAT ARE VALID FOR EACH CONFIGURATION - - IF THE CUSTOMER REQUESTED												
ADDRESS RANGE IS NOT LISTED, EITHER THE SUBSYSTEM MUST BE RECONFIG-												
URED OR ELSE THE CUSTOMER MUST CHANGE THE. REQUESTED ADDRESS RANGE.												
If the requested addresses are legal, set the address compare SWITCH TO THE "SETTING" PROVIDED ABOVE. THEN PROCEED TO THE LISTED SHEET NUMBER OF THIS FIGURE FOR ADDRESS SWITCH AND BIT 4												

8G137-1

Figure A-1. Address Validation (Sheet 1 of 14)

string 0
string 1
string 2
siring 3

2

AT
SWITCHES

installed

$$
\begin{aligned}
& \text { on }=\text { Up } \\
& \text { OFF }=\text { DOWH }
\end{aligned}
$$

$$
\text { notes: } 1 \text { channel address shitch location on addressimi card: }
$$

$\begin{array}{rl}\bullet A & =01-67 \\ \bullet B & 01.50\end{array}$
$\begin{aligned} \bullet B & =01.50 \\ C & =01-25\end{aligned}$
2．addressing card had separate bit 4 jumper for each chaniel：huniver，al
UMPERS MUST BE ON OR OFF．

ADOBES COJNAHE SWHEH SETHAG

siring 0
string 0
string 1

String 2
Figure A－1．Address Validation（Sheet 9）

ADDRESSING SCHEME EXAMPLES

WITHOUT SEQUENTIAL ADDRESSING

Here are examples using Steps 1 through 3.

Example 1

The customer has purchased a storage control, one full string of 33502 (2 x 3350) devices, one full string of 33801 (2 x 3330-11) devices, one full string of 33501 (l x 3350) devices, and one full string of 33302 type devices. The total number of addresses required for this subsystem is as follows:
a. full physical string of 33502
b. full physical string of 33801
c. full physical string of 33501
d. full physical string of 33302
$=16$ addresses
$=16$ addresses
= 8 addresses
= 8 addresses

TOTAL: 48 Addresses
Glancing at sheet 1 of figure $A-1$, it can be determined that we must use one of the dual volume tables (sheets 7 through 10), and it must be a table with 48 or more addresses within each column. In addition, it must be a table that provides for up to four logical strings per column (one physical string equals one logical string when operating in l6-device DAF mode). Only sheet 7 (Address Compare switch $=3$) qualifies. The available column addresses are: 00-3F, 40-7F, 80-BF, or C0-FF. Because each column provides a total of 64 addresses, and only 48 addresses are required, 15 addresses from the selected column are wasted and cannot be used elsewhere.

Example 2

The customer has purchased a storage control, one full string of 33502 (2 x 3350) devices, one full string of 33501 (1 x 3350) devices, and one full string of 33302 type devices. The total number of addresses required for this subsystem is as follows:

```
a. full physical string of 33502 =l6 addresses
b. full physical string of 33501 = 8 addresses
c. full physical string of 3330-11 = 8 addresses
```

TOTAL: 32 Addresses
Checking sheet 1 of figure $A-1$, it can be determined that we must use one of the dual volume tables, and it must be a table
with 32 or more logical addresses within each column. It must also be a table that provides for three or more strings per column (one physical string equals one logical string when operating in l6-device DAF mode). In this instance, we can select only from sheet 7, which provides for up to four strings. A total of 32 addresses are wasted (16 secondary addresses from strings b and c as well as the full complement of 16 addresses for the nonexistent fourth string).

Example 3

The customer has purchased a storage control, one full string of 33502 (2 x 3350) devices, and one full string of 33801 (2 x 3330-11) devices. The total number of addresses required for this subsystem are as follows:
a. Full physical string of $33502=16$ addresses
b. Full physical string of $33801=16$ addresses

$$
\text { TOTAL }=32 \text { Addresses }
$$

Checking sheet l of figure $A-1$, it can be determined that we must use one of the dual volume tables, and it must be a table with 32 or more addresses within each column. It must also be a table that provides for two or more logical strings per column (one physical string equals one logical string when operating in l6-device DAF mode). In this instance, we can select from sheet 7 (64 continguous addresses), sheet 10 (4 groups of 8 addresses), or sheet 9 (2 groups of 16 addresses). Selecting sheet 7 would be wasteful of addresses, but would provide some flexibility if additional units were to be added in the future. If future additions are not probable, the addresses should be chosen from sheet 9 or sheet 10 .

WITH SEQUENTIAL ADDRESSING

Here are examples using Steps 1 through 3.

Example 1

The customer has purchased a storage control, one full string of 33502 (2 x 3350) devices, one full string of 33801 (2 x 3330-11) devices, one full string of 33501 (1 x 3350) devices,
and one full string of 33302 type devices. The total number of addresses required for this subsystem is as follows:
a. full physical string of $33502=16$ addresses
b. full physical string of $33801=16$ addresses
c. full physical string of $33501=8$ addresses
d. full physical string of $33302=8$ addresses

TOTAL: 48 Addresses
Glancing at sheet 1 of figure $A-1$, it can be determined that we must use a table with 48 or more addresses within each column. In addition, it must be a table that provides for up to four logical strings per column (one physical string equals one logical string when operating in l6-device DAF mode). only sheet 13 (Address Compare switch $=3$) qualifies. The available column addresses are: 00-3F, 40-7F, 80-BF, or CO-FF. Because each column provides a total of 64 addresses, and only 48 addresses are required, 15 addresses from the selected column are wasted and cannot be used elsewhere.

Example 2

The customer has purchased a storage control, one full string of 33502 (2 x 3350) devices, one full string of 33501 (1 x 3350) devices, and one full string of 33302 type devices. The total number of addresses required for this subsystem is as follows:
a. full physical string of $33502=16$ addresses
b. full physical string of $33501=8$ addresses
c. full physical string of 3330-11 $=8$ addresses

TOTAL: 32 Addresses
Checking sheet 1 of figure $A-1$, it can be determined that we must use a table with 32 or more logical addresses within each column. It must also be a table that provides for three or more strings per column (one physical string equals one logical string when operating in l6-device DAF mode). In this instance, we can select only from sheet 13 , which provides for up to four strings. A total of 32 addresses are wasted (16 secondary addresses from strings b and c as well as the full complement of 16 addresses for the nonexistent fourth string).

Example 3

The customer has purchased a storage control, one full string of 33502 (2 x 3350) devices, and one full string of 33801 (2 x 3330-11) devices. The total number of addresses required for this subsystem are as follows:
a. Full physical string of $33502=16$ addresses
b. Full physical string of $33801=16$ addresses

TOTAL = 32 Addresses
Checking sheet 1 of figure $A-1$, it can be determined that we must use a table with 32 or more addresses within each column. It must also be a table that provides for two or more logical strings per column (one physical string equals one logical string when operating in l6-device DAF mode). In this instance, we can select from sheet 13 (64 continguous addresses) or sheet 14 (2 groups of 16 addresses). Selecting sheet 13 would be wasteful of addresses, but would provide some flexibility if additional units were to be added in the future. If future additions are not probable, the addresses should be chosen from sheet 14.

SWITCH SETTING EXAMPLES - NON-SEQUENTIAL ADDRESSING

EXAMPLE 1

Going back to example \#l, assume the customer has requested an address range of $00-3 F$. Because we have set Address Compare to hexadecimal 3, we can determine that only bits 0 and 1 of the channel address will be significant in the storage control. In addition, because we have chosen addresses $00-3 F$, we can determine that these two bits must both decode as zeroes.

Enter hexadecimal 3 in the Address Compare switch. Set switch sections 1 and 2 (channel address bits 0 and l) on the appropriate Channel Address switch to the OFF (down) position. Switch sections 3 and 4 (channel address bits 2 and 3) are ignored in the storage control but, as a precaution, they should be set to the OFF (down) position. Bit 4 of the channel address is also ignored in the storage control and should be left unjumpered.

Channel address bit 2 (Volume bit) is used at the device level to select a physical range of cylinders from decimal 00 through 420 (primary cylinders) or 421 to 841 (secondary cylinders).

The string and device address are defined by decoding bits 3 through 7 of the channel address. Bits 3 and 4 are decoded in
the A2/C2 controller logic (33801/3350x strings) or in the CAU ($33301 / 33302$ strings). Bits 5 through 7 are always associated with the device address.

EXAMPLE 2

Example \#2 is translated in the same manner as example \#l.

EXAMPLE 3

Example \#3 is more complex. Assume the customer has selected 4 groups of 8 addresses (sheet 10) rather than 2 groups of 16 addresses (sheet 9). Let us also assume that the customer has then selected the leftmost column of addresses from the table. Selecting from this column forces us to define the addresses of the strings as 0 and 2. Within string 0 we have a range of primary addresses from 00 through 07 and a secondary range of addresses from 20 through 27. Within string 2 we have a range of primary addresses from 10 through 17 and a secondary range of addresses from 30 through 37.

The channel address bits used to decode the storage control are 0 , 1 , and 4. (The reason for this is because we selected "B" on the Address Compare switch.) We must, therefore, set switch sections 1 and 2 to the OFF (down) position. Switch sections 3 and 4 (channel address bits 2 and 3) are ignored in the storage control. Bit 4 of the channel address is significant and must be decoded as a zero. A jumper must be installed for the Bus Out Bit 4 decode on the channel being decoded.

In this instance, bit 4 is decoded in the storage control and also in the controller to form part of the string address.

All other bits are decoded in the same manner as that given in example \#l.

SWITCH SETTING EXAMPLES - SEQUENTIAL ADDRESSING

EXAMPLE 1

Going back to example \#l, assume the customer has requested an address range of 00-3F. Because we have set Address Compare to hexadecimal 3, we can determine that only bits 0 and 1 of the channel address will be significant in the storage control. In addition, because we have chosen addresses $00-3 F$, we can determine that these two bits must both decode as zeroes.

Enter hexadecimal 3 in the Address Compare switch. Set switch sections 1 and 2 (channel address bits 0 and 1) on the appro-
priate Channel Address switch to the OFF (down) position. Switch sections 3 and 4 (channel address bits 2 and 3) are ignored in the storage control but, as a precaution, they should be set to the OFF (down) position. Bit 4 of the channel address is also ignored in the storage control and should be left unjumpered.

Channel address bit 7 (Volume bit) is used at the device level to select a physical range of cylinders from decimal 00 through 420 (primary cylinders) or 421 to 841 (secondary cylinders).

The string and device address are defined by decoding bits 2 through 6 of the channel address. Bits 2 and 3 are decoded in the controller logic. Bits 4 through 6 are always associated with the device address.

EXAMPLE 2

Example \#2 is translated in the same manner as example \#l.

EXAMPLE 3

Example \#3 is more complex. Assume the customer has selected 2 groups of 16 addresses (sheet 14). Let us also assume that the customer has then selected the leftmost column of addresses from the table. Selecting from this column forces us to define the addresses of the strings as 0 and 2. Within string 0 we have a range of primary addresses from 00 through $0 F$, where all even addresses are primary and all odd addresses are secondary. Within string 2 we have a range of primary addresses from 20 through 2F.

The channel address bits used to decode the storage control are 0,1 , and 3. (The reason for this is because we selected "2" on the Address Compare switch.) We must, therefore, set switch sections 1,2 , and 4 to the $O F F$ (down) position. Switch section 3 (channel address bit 2) is ignored in the storage control.

All other bits are decoded in the same manner as that given in example \#l.

COMMENT SHEET

MANUAL TTTL:

NUMCATION MO.: REVSION:

NamE:

COMPANY:
STREET ADORESS. \qquad
arY: \qquad STATE: \qquad 21P CODE: \qquad

This foem is not intended to be uned as an oder blenk. Control Data Corperation welcomes your avaluation of this manual. Please indicate eny errers, suggested additions or deletiens, er general comments below (please include page number references).

\author{

- Prose Reply
 - No Reply Necessary
}

