
~ ~r
~ J

\' ,;~~

~." (

.. ~',~,;,,;S"'----'f'i"""'/%<~' ~<+--Y;o-'l0II1l:1'--' --;:,~~-,--,~ ~,t,-· _~~·~--T ,t": ~ .~ .. '---'N1f:C-'--

,; " '/II,J1'tt-(~if; ,
JI!~,?A ~(l.: / ~:!./~~?

---... ".-.-,.---~ .. -------.-- ---.-.. --. -- " ------_ .. _ .. _--._-,-_ ----- ... _ ... ------

Technical Report TR-169
NGR 21-002-206

September, 1971

CDL Des'cription of the CDC 6600 Stunt Box

by

Jon B. Hertzog

UNIVERSITY OF MARYLAND

COMPUTER SCIENCE CENTER
COLLEGE PARK, MARYLAND

Technical Report TR-169
NGR 21-002-206

September, 1971

CDL Description of the CDC 6600 Stunt Box

by

Jon B. Hertzog

This research was supported in part by Grant
NGR 21-002-206 from the National Aeronautics and Space
Administration to the Computer Science Center of the
University of Maryland.

Abstract

The CDC 6600 central memory control (stunt box) is

described utilizing CDL (Computer Design Language), block dia­

grams, and text. The stunt box is a "clearing house" for all cen­

.tral memory references from the 6600 central and peripheral pro­

cessors. Since memory requests can be issued simultaneously, the

stunt box must be capable of assigning priorities to requests,

of labeling requests so that the data will be distributed correct­

ly, and of remembering rejected addresses due to memory conflicts.

Table of Contents

Abstract

1. Introduction

2. Six Major Elements

2.1 Peripheral control
2.2 Central control
-2.3 Priority network
2.4 Hopper input network
2.5 Tag Generator
2.6 Hopper

3. CDL Description

3.1 Configuration
3.2 Sequence

4. References

1

CDL Description of the CDC 6600 Stunt Box

Jon B. Hertzog

1. Introduction

The CDC (Control Data Corporation) 6600 is one of the first computers

which utilizes a parallel hardware systems structure while retaining the con-

ventional serial organization of the computer programs it executes. In 'its

most typical form, the 6600 consists of a central processor, ten peripheral

processors, twelve channels, central memory and the requisite controlcir-

cuitry (i.e., instruction issue control, central memory control, register con-

trol, and reservation control).

As a consequence of this parallel organization, it often occurs that

"-
the central processor and one of the peripheral processors will be attempting

simultaneous communications with central memory. Under the correct circum-

stances, this situation, if left unchecked, could generate invalid results.

Thus, it is essential that some method exist for the orderly acceptance and

distribution of requests for central memory time.

The central ,memory of the 6600 is divided into 32 (or less for some

configurations) independent banks of 4096 60-bit words that can be accessed

sequentially in an overlapping fashion. A memory cycle requires 1000 nano-

seconds for completion but with central memory interleaving allowing a memory

reference every 100 nanoseconds, an effective memory cycle time of 100 nano-

seconds can be realized. To make the most effective use of central memory and

to handle any conflicts that may arise, a regio~ in the central processor known

as central memory control, or, more commonly, the STUNT BOX, exists. It is

to this circuitry that all references to central memory must first be made.

Once these references have been received, it is the function of the stunt box

to' collect these requests for central memory access and then to distribute

them in an orderly fashion.

Within the 6600 computer system a variety of requests for central

memory references can be made. Each of the peripheral processors can request

read or write operations anywhere in central memory. They can also execute

2

an exchange jump instruction which interrupts the central processor and requires

central memory access. The central processor can reference memory for instruc­

tion words or to read and store operands. The central processor memory access

is limited to a fixed region in memory which is defined by the contents of

two registers 1) RA (reference address register)-a base address, 2) FL (field

length register)-a maximum displacement from the base address.

Since the central and peripheral processors can send requests si­

multaneously to the stunt box, there must exist some means of assigning priorities

to these requests, and furthermore, there must be some method for naming each

of the memory requests in order that the data once acquired, will be distri-

buted correctly. In addition, there must be a means of remembering addresses

that have been rejected on the first attempted access because of a memory

conflict.

In general, the stunt box performs the following functions:

(a) it allows several simultaneous memory requests.

(b) it establishes a priority for issuing addresses to central memory.

(c) it issues the addresses to memory at a rate that will make maximum use

of the 32 (or less) independent banks.

(d) it remembers addresses that have not been accepted by the memory and must

be re-issued.

(e) it adds a tag to the addresses to correctly distribute the data.

FROM PERIP~RAL PROCESSOR ,
I

f PPIR (17-0)1

__ TN -
I ERW(17-0)

Peripheral

Control

,.
K(4-0) I I EAK(17-0) 1

+

15 ; -----+--+-----.1 a fj ~
. " . _L--'--__

n ~, TAG-GEN

HOPPER

INPUT ~-__ ------r-----------------~
!NETWORK --

Ml(TAG) Ml (FULL)
I
i

~ddress i

18 bit + ~
,

Ml
M4
M3

HOPPER

M2 E
-

j~ .

Tag " . -;
l6bit IAccept I SAR(17-D) I

.. ..

~
,~

PRIORITY
NETWORK

4~

z
~ u
Z
~

FROM CENTRAi PROCESSOR

Central

Control

(;
Z
H

~,. ~r
1'---- J MO'-::-4--=I=N=CR,--/I'----=M!:.::::O~1 (~1~7--=1+)-.-l I r1 !-O)

l MD" RA I

••

J

..

Figure 1. Stunt Box Block Diagram

2. Six Major Elements

Fig. 1 is a block diagram showing the six major components of

the central memory control. These six major elements are:

(1) peripheral control,

(2) central control,

(3) priority network

(4) tag generator

(5) hopper input network

(6) hopper

These elements are now described below.

2.1 Peripheral Control

Peripheral Control handles addresses and signals from the peripheral

processors requesting storage access. When the peripheral processors send

an address to the stunt box, an accompanying signal informs Peripheral Control

whether it is a read, write, or an exchange jump address. Peripheral Control

then transfers this information to the tag generator to enable the path to

the ERW (exchange/read/write) register. In an exchange jump, this signal also

stops the central processor. When the BRK (breakpoint) signal indicates that

the central processor and central memory have stopped, it starts the EAK (ex­

change address) and the ETK (exchange tag) counters. The EAK then updates

the address of the ERW register for each step of the exchange process upon re­

ceipt of the ACCEPT signal from central memory. When the ETK=16, Peripheral

Control sends an exchange resume back to the peripheral processors. Write

and read resumes are sent back from central memory.

EXCH
BRK ~

EXCHANGE

PPREAD

PPWRITE

EXCHFF

To Priority Network

PPW To Tag
~------~~~Generator

ENDEX ETKFl6 ~i-----~D4

CENBUSY

COtmter • ___J

ETK (4-0)

PPADR(l7-0)

S'roPCP

I-----------.t~* ,..
FLIPFLOP

~~(17-0)

Figure 2. Peripheral Control Block Diagram

VI

6

When the peripheral processor address is attempt;ing to gain prior­

ity .in the stunt box, the CENBUSY (central busy) flip-flop .in the peripheral

processor is set. This prevents any 9ther peripheral processor from attempt­

ing a central memory reference. The.CENBUSY flip-flop will only be cleared

after the address has been accepted by central memory. To avoid the situ­

ation where the central processor ties up the hopper such that a peripheral

processor request for memory cannot be honored, the circuitry stops the

central processor, honors the peripheral request, and then restarts the .central

processor.

Conditions for stopping the central processor are:

(1) address in M2 not accepted.

(2) Ml full

(3) M3 full

(4) M4 full

(5) peripheral read or write request.

2.2 Central Control

Central Control handles addresses from the central processor re­

questing access to central memory for instructions· or operands. Central

Control controls entry into MO and requests entry (vi~ the priority network)

into MI. When an operand address is sent by one of the two increment units,

the lNADR (increment address flip-flop) will set and the entry signal into

MO is enabled as soon as MO is empty. Simultaneously, the ENCEN (enter central

flip-flop) sets indicating to the priority network that a central proce~sor

address is waiting to enter central memory. When a program address is ready

in P, the PRADR (program address flip-flop) sets, enabling the P to MO sig-

nal if MO is empty and if no operand address is waiting. This slgoal also

Instil: Addr
. -~~~~-~ IIII~-----.

INCR 1 P(l7-0)

INADR

INCR 2

Io •. ,t

PRADR

INCH

RJP

Gl
MO(l7-0) l

ENDEX

DIS

....,

Figure 3. Central Control Network

sets the ENCEN flip-flop. If a RJP (return jump instruction) or a ENDEX

(end exchange signal) occurs, the DIS (disable flip-flop) sets and the pro­

gram address in P passes through the P-incrementor without being incremented.

2.3 Priority Network

The priority network controls inputs to the hopper by sequencing

entry to the hopper when more than one address attempts to enter at the same

time. The fixed order of priority is as follows:

(1) Address from Hopper

(2) Addresses from the Central Processor

(3) Addresses from the Peripheral Processors

8

An address from the hopper is given first priority since it is an ~-accepted

address resulting from· a central memory bank conflict.

Addresses with second priority are from the central processor

(Le. MO). Since, for the central processor, storage modes cannot be mixed

in the hopper, the read or write tags are examined before priority is granted.

In attempting a read, no write address is allowed in M1 or M4. In attempting

a write, no read address is allowed in M1 or·M4. If modes are mixed, priority

is not granted and entry of the address into the hopper is delayed until

central memory has accepted those addresses and modes. are no longer mixed.

Addresses from the peripheral processors are assigned lowest prior­

·ity. Thus, peripheral read and write operations from and to central memory

. may have to wait for hopper and central processor addresses. There are two

exceptions to this. One was mentioned above in the discussion of Peripheral

Control; the other occurs during an exchange jump. An exchange jump a) stops

the central processor, and b) inhibits communications between the peripheral

processors and the central memory. In this case, exchange jump addresses

A

ACCEPTl CRD

~ Mi('(_73J
'

~---I.~~ ~* 11----
"--

WEN

CNR

Ml(23)

G

F

f ~[J--------~--------~

MOSFL

PPRW .84 EXCH
T""'I"T,.,T-w ... Tl

C
'---_________ ... ___ •• __ _._ ••••• _ •• _.- 0 _-_n •• _

~

El

Figure .4. Priority Network

10

are the only addresses entering the hopper. With each address sent to the

hopper, a full bit is generated, to indicate that,. the hopper register contains

a usuable address.

If there is at least one address request to be sent to central memory,

the priority network sets one of three flip-flops, A, B, or C, to select

which address will be sent to the hopper. Flip-flop A is set if an address

from the hopper is to have priority. Flip-flop B is set if an address from

the central processor is ,to have priority. Flip-flop C is set if an addresS'

from one of the peripheral processor is to have·priority.

2.4 Hopper Input Network

The hopper input network controls the entry of addresses into the

hopper by means of the priority flip-flops as set by the priority network.

Depending on whether flip-flop A, B,or C is set an address from the hopper,

an address from the central processor, or an address from a peripheral pro­

cessor will enter the Ml register of the hopper.

2.5 Tag Generator

When an address enters the hopper, a six-bit tag is appended to

control the address and data flow. Depending on the source of the addresses,

these tages are generated from three sources:

1) An un-accepted address resulting from a bank conflict retains the tag

that was generated when the address first entered the hopper.

2) An operand or instruction address from the central processor gets its

tag from the translation of the F designators of the increment units

or from the central processor (in case of exit mode stops or return

jumps) and from the priority network.

..L.l

pp

WEN

G

EXCH

"0"

"1"

I

23 " a
d

2 d ETK (3-0)
e 21 -
r 0

2

INCRFD

INADR

Figure 5. Tag Generator

- -~' .. ," '--:-'--~~~"-.--~.-=-'

12

24 23 18 17 16 2 1 0

5 4 3 2 1 0

~ ---II·-· ___ ,..,)
y ~~-----------\r~----~-----

12 .bit address
'-y-/

Full
bit

6 bit1tag

I :
I 'Not
: ;Used
I I

'---y---"
Register selection
A,:S, or X

\-------- Set for C.P. memory cycle

ExfttiffIlge j uplp
(l Xyeg)
("0" A&B reg)

I:--------Set for exchange jump

~-------------------Set for any write operation

Fig~re 6: Ad~ress·and Tag Format from Stunt Box

Chas sis Bank
Selection Selection

·13

3) Addresses' from the peripheral processors obtain their tags from peri-

pheral control. The ETK (exchange tagcounter)~ which controls the

execution of the exchange jump, generates the tags for all addresses of the

exchange jump package.

2.6 Hopper

The hopper consists of four registers (MI, M2, M3, and M4) each

capable of holding an 18-bit address, a 6-bit tag, and a single full bit • .
(M2 is an exception and does not have a full bit). An address is sent to cen-

tral memory from hopper register MI. Hopper registers M2-M4 store the address

in case it must be're-issued because of a bank conflict. If the address is

accepted by central memory , it drops out of M2.

In the case of bank conflict, the priority network gates the un-

accepted address from M2 back into Ml every 300 nanoseconds, until it is

accepted by central memory. An address can be accepted only if the specified

. bank is free at the time the address is in MI. Otherwise, it is possible for

another address to request access to the same bank and tie it up for a memory

cycle. Notice, however, that because of the way the hopper is designed, it

is impossible for an address to circulate infinitely long in the hopper.

There are three reasons for this:

1) un-accepted addresses have priority in the hopper,

2) an address in the hopper circulates every 300 nuooseconds,

3) a memory cycle is 1000 nanoseconds.

The six tage bits travel through the hopper with each address.

The hopper serves as a delay line for the tag. This line is extended by two

ad4itional registers, but since they do. not affect the operation of the stunt.

box,they will not· be mentioned in the eDL description of the mechanism. In

each step of flow through the hopper,. the tag controls address and data flow.

To C.P.

14

Hopper lInput Network
18 bit Address

FULL BIT --.... -----t-=241;·; .-"-----.- 0 Ml

~~--~----~~------------~r_------------~

STOPCP

~~~~~~~ _______ ~r-______ ~O~ M4 

... ___ .-..,;;P...;;.PRW 

To Tag Generator 

Figure 7. Hopper Block Diagram 

To Hopper Input 
Network 

o M3 

o M2 



.-- ~'~-;~;. : .......... ~-;. - .'" 

l5 

Hopper registers Ml, M4, and M3 have full bits associated with the 

address. The purpose of the full bit is to indicate to the priority network 

that the address must be reissued to central memory if no accept is returned. 

Note that the full bits are also sampled to see if we need to stop the central 

processor so that a peripheral address can be accepted. 

The hopper can contains maximum of three addresses. An address 

must be in HI at the time the memory cycle for its bank finished so that it 

can be accepted by memory, otherwise a bank conflict occurs. The longest 

time an address will have to' wait to be accepted in memory is when the address 

enters HI 300 ns after the memory cycle started. 



3. CDL Description 

In the CDL description that follows, one modification of the language 

has been made. In the labels, instead of mentioning a clock cycle, a time in 

nanoseconds, corresponding to the time at which the event actually occurs 

in the hardware, is mentioned. Thus for an event that occurs 25 nanoseconds 

after time 0, its labe~ will be represented as: It251. 

3.1 Stunt Box Configuration 

Comment, first we describe the inputs coming into the Stunt Box from external 

sources,. 

Terminal, CRD $indicates a CPU read 

CWR $irtdicates a CPU write 

INCH $indicates a fetch operation from CPU 

INCRFD(2-D) $inc'temeat"'unit F designator 

INCR(l7-D) $address from increment units 

PPREAD $25 ns pulse indicates a PP read CM 

PPWRITE $25 ns pulse indicates a PP write CM 

EXCHANGE $25 ns pulse indicates a PP exchange jump 

PPADDR(17-0) .$I»~ address from, PP. A HgJ.ater 

BIK $bre~kpoint--ind1eate8 CPU halted 

INeRl $indicate CM request from increment unit 1 

INCR2 $indicate CM request from-increment unit.2 

RJP $indicates CPU return jump instruction 

ERRSTP $indicates a CPU error stop condition 



·17 

Comment, now we describe the. outputs sent by the Stunt Box to external sources. 

Terminal, CENBUSY 
ENDEX 
STOPCP 

$set to prevent any otherP? from attempting a CM reference 
$signalsend of exchange jump operation 
$signal sent to halt CPU 

COinment, define the signal that comes from eM indicating accept of request. 

Terminal, .'IACCEPT $indicates last eM request has been accepted by the 
addressed memory bank. 

Comment,define the components of the Stunt Box. 

Register, PPRW 

EXCHFF 

EXCH 

IN 

PPIR(17-0) 

ETK(4-0) 

EAK(17-o) 

ERW(17-0) 

INADR 

Gl 

DIS 

P(l7-o) 

D 

PRADR 

ENCEN 

MO(17-o) 

E 

F 

A 

$indicates PP read or write CM 

$indicates start of exchange jump operation 

$exchange jump flip-flop--on for duration of exchange. 
jump operation 

$set to indicate a PP CM operation 

$PP address input register 

$exchange tag· counter 

$exchange address counter (holds temporarily contents 
of ERW) 

$exchange/read/Write register 

$indicates eM request from increment units 

$temporary flip-flop that indicates either a return 
jump or end of exchange jump 

~disables incrementing of P register 

$program address register 

$controls issuing of CPU CM requests (checks to see 
if there are outstanding requests, if so, current one 
must wait) 

$indicates program address (fetch operation) 

$enter central 

$CPU address holding register for input to hopper 

$hopper address must have priority 

$not a CPU memory operation 

$set priority for hopper Sddress 



B 

C 

PPW 

Register, WEN 

CPRW 

MTRAN 

RA(17-o) 

FL(17-o) 

Ml(24-Q) 

M4(24-o) 

M3(24-o) 

M2(23-0) 

SAR(17-0) 

$set priority for CPU address 

$set priority for PPU address 

$indicates a PP write operation 

$write enabl~ 

$iridicates CPU read or write CM 

$indicates transfer from MO to Ml occurred 

$reference address register 

$field length register 

$hopper register 

$hopper register 

Shopper regis ter 

Shopper register 

$storage address register 

G $indicates if CPU address is withing FL limit 

Comment, define components of the hopper registers 

Subregister,Ml(FULL,TAG,ADDR)aMl(24,23-l8,17-0) 

M4(FULL,TAG,ADDR)=M4(i4,23-l8,17-o) 

M3~~LL,TAG,ADDR)-M3(24,23-l8,17-o) 

.M2 (TAG,ADDR)=M2 (23-18,17-0) 

Comment, FULL designates the full bit in the hopper register 

Comment, TAG designates the tag portion of the hopper register 

Comment, ADDR designates the address" portion of the hopper register 

18 



( 

3.2 Stunt Box Sequence 

Comment, description 9f peripheral control 

!tOOl IF (PPREAD+PPWRITE=l) THEN (PPRW~l) ELSE (PPR~), 

IF (PPWRITE=l) THEN (P~l), 

IF (EXCHANGE=l) THEN (EXCHFF'f-l, STOPCP~l) ELSE (EXCHFFf- ), 

/tOO*EXCHFF/ $initiation of exchange jump operation 

ETK~, 

IF (BRK-1) THEN (EXCH~l,EXCHFF~O) ELSE (EXCHf-Q) 

/tOO*EXCH/ IF (ETK=16) THEN (EXCH~O,ENDEX~I) 

Comment, check to see if CPU halted to allow a PP address into the hopper 

/t2S/ IF (ACCEPT'*M1(FULL)*M4(FULL)*M3(FULL)*PPRW) THEN (STOPCP~l) 

ELSE (STOPCP~ ) 

It2S*(PPREAD+PPWRITE+EXCHFF)/ $is there a PP eM request 

IN+-I,9ENBUSY~I, PPIR"-PPADDR 

/tSO*IN/ ERWt-PPIR 

/tSO*(EXCH+PPRW*IN')/ ERW~EAK 

/t7-S*IN/ EAK.f-EAK add I, 

ETK+-countup ETK 

19 



20 

Comment, description of central control 

/tOO/ Gl~RJP+ENDEX, lNADR+-<>, 

/t25/ lNAD.R ........ INCRl + INCR2, DoE-ENCEN' -+MTRAN , 

PRADR~INCH+Gl, ENCE~t DIS--Gl 

/t50*DIS'*EXCH'*ERRSTP'*D*INADR'*PRADR/ P~P add 1 

/t75*D*INADR/ MO~INCR, ENCE~l 

/t7S*D*INADR'*PRADR/ M~P, ENCE~l 

. Comment, description of priority network 

/tOO/ E+M3(24)*ACCEPT', F~ENCEN', A~, B~, C~O 

Comment, check for mixed read and write 1n the hopper. 

/t2S*E'*CRD/ IF (Ml(23)'*M4(23)'=1) THEN (CPR~l) ELSE (CPR~) 

/t2S*E'*CWR/ ~F «Ml(23)+Ml(21)')*(M4(23)+M4(21)')=1) THEN (WENt-l, CPRW~l) 

ELSE (WEN-4-0, CPllW4-0) 

/tSO*F'/ IF (MO .GT. FL) THEN (~) ELSE (~l) 

/t7S*E/ A~l, Ml(FULLH-l 

/t7S*(PPRW+EXCH)*F*E'/ C~l, ML(FULL)f-l, CENBUSY~, PPRW~ 



.1 

Comment; description of hopper input network 

/tOO*A'*B'*c'f Ml(FULL)~O 

/tOO*A/ Ml (ADDR)+-M2 (ADDR) 

/tOO*B/ Ml (ADDR)+-MO add RA, MTRAN~l 

/tOO*C/ Ml (ADDR)+-ERW 

Comment, description of the tag generator 

Ml (TAG )+-M2 (TAG) /tOO*A/ 

/tOO*B/ IF (INADR=l) THEN (Ml(TAG(2-0»~INCRFD) ELSE, (Ml(TAG(2-o»~O), 

Ml(TAG(3»~1, Ml(TAG(4»~, Ml(TAG(5»~WEN*G 

/tOO*C/ IF (EXCH=l) THEN (Ml(TAG(3-o»~ETK) ELSE (Ml(TAG(3-0)~), 

Ml(TAG(4»~EXCH, Ml(TAG(5»+-PPW, PPW~O, 

Comment, description of the hop~er 

/t25*Ml(FULL)/ SAR~Ml(ADDR) 

/t75/ 

/t50/ 

/t25/ 

M4~Ml 

M3+-M4 

M2~M3 (TAG ,ADDR) 

END 



.22 

4. lef erences· 

L Y. Chu,IntJroduction to Computer Organization, Prentice-Hall, Inc., 

1970. 

2. J. E. Thornton, Design of a Computer the Control Data 6600 t .. Scott, 
Foresman and Company, 1970. 

3. Control Data I~stitute, 6600 Central Processor, Vol. 1 Control and 
Memory, 2nd ed., Control Data Corporation, 1968. 

4. Control Data Corporation, 6400/6500/6600 Computer Systems Reference:. 
Manual, Control Data Corporation, rev. H, 1969. 


