Programming Methodology
for

CDC® CYBER 205 Vector Processor

H. J. Rothmund
K. L. Murphy

CONTROL DATA CORPORATION

27 August 1980

1.0

INTRODUCTION

The CONTROL DATA® CYBER 205 Computer System is based on the architecture

of the CYBER 203 and STAR 100 with significant logical and electronic

advances over those systems. The CYBER 205 uses a second generation

vector processor that makes use of the latest technology in LSI logic.
Array and matrix operations can now be performed at rates up to eight
times faster than those of the CYBER 203 and STAR-100. The performance
of the data motion instructions (gather, scatter, comp;sss, etc.) has

been improved up to 32 times faster than those of the previous systeﬁs.‘

The CYBER 205 1s designed to perform both conventional and special arith-

metic used ‘In the simulation of complex physical environments, which

could previously not be performed, because no computer system was capable

of delivering the required computational power within a reasonable time

frame.

This paper 1illustrates some of the CYBER 205 hardware capabilfties and

provides an introduction to the programming methodology for the CYBER 205

vector processor,

1-1

CYBER 205 ARCHITECTURE

A summary of the architecture of the Control Data CYBER 203 compufer is

The CYBER 205 1is a superscale, highspeed.ecientific>computer

given.
a vector processor

- system with segmented scalar functional units,

containing up to four floating-point pipelines and up to four million

64-bit words of semiconductor memory. Peak performanée on the vector

processor is 800 million 32-bit floating point operations per second for

linked wultiply and add triads. Figure 2-1 is a diagram of the CYBER

205.

Central Processor

The central processor unit consists of three functional areas:

o Scalar processor
o Vector processor
o Input/output

The scalar processor decodes all instructions from central memory and

directs vector/string 1instructions to the vector processor for execu—

tion. An instruction stack provides buffering for 64 virtually addressed

64-bit words, which can contain up to 128 32-bit instructions, 64 64-bit

instructions, or a combination of both. The processor is capable of

issuing instructions at. a peak rate of one instruction e&ery 20

nanoseconds, provided there are no conflicts. The scalar processor can

execute scalar instructions in parallel with wmost vector instructions. if
there are no memory references generated by the scalar instruction for

operands. To minimize wemory references ‘by scalar instructions, a

register file consisting of 256 general purpose registers 1is used to

waintain single element operands within subprograms.
The scalar processor contains five independent functional units:

Add/Subtract umit

Multiply unit

Logical unit

Single cycle unit

Divide/Square Root/ Convert unit

o000 oO

vy AHOW3IW N
(- 1435

'I-'.ll'll'll

+

| 512K MEMORY
SECTIOND

A
\

|

g

!

1

. [
1"""" L

x
oz
WO o
o N z
= G =
2 O T
x o & x
o 446/00 n
” X9 28
°e a Q
E-l
)
W
)
D
z o]
2 5
_mK G
w >
0
w
g
om I NOILO3S
mm HvYIvISsS
2z
\L
3 V
) o4 o
O RO m
ﬁ a? o
ILS =)
AE »
\\ C% mmn
72} >0
x MOI
<, % a. TCU
&4 B o
b ol 0\?0\ ERS
Tm bvl\o g
o e
Z N -
50 nv\ o
= £
X - 3
X
Na
@

AVe

VECTOR
PROCESSOR

CYBER 205

Figure 2-1.

2-2

All functional units are segmented and capable of accepting new operands

every 20 nanoseconds with the exception of the Divide/Square Root/Convert

‘unit which musf 'complete each opération before a new one can begin. All

units are capable of being shortstOpped. _ Shortstop 1is a process by which

a result from an arithmetic unit can be returned directly to either input

of any arithmetic unit without waiting for the result to be stored in the

register file.

Figure 2-2 is a diagram of the functional components of the scalar

processor. Peak performance of the scalar processor is 50 million 32-bit

or 64-bit floating point operations per second.

70 VECTOR PROCESSOR SCALAR FLOATING
} POINT
4 : B iop
PIPE
RNS/ " ImsTRUCTION INSTRUCTION
BRANCH STACK ISSUE
UNIT (8 SWORD) PIPE
MULT
PIPE
J $ D
PRIORITY ‘J r r
VECTOR UNIT
PROCESSOR]
secoED (® ~ N LOGICAL
. PIPE
SINGLE
CYCLE
$ PIPE
’ -
. DIVIDE/
ASSOCIATIVE LoAD/ REGISTER SQRT/
oY STORE e FILE e [T
UNIT (64 X256) COnS
v

ex: T j i

~— DATA DR ADDRESS
v P
— CONTROL ECTOR PROCESSOR

.

Figure 2-2. Functional Components of the Scalar Proce;sor

2-3

The vector unit consists of the stream unit, the string unit, and the

segmented vector pipeline units,
The stream unit receiveé decoded instructions from the scalar unit and

controls the data streams between central memory and the vector pipe-

T y

lines.

The string unit performs operations on byte and bit vectors which are

used for logical and control vector operations.

The vector pipeline units are used for vectof add/subtract, multiply, and

divide/square root operations. For vector addition, subtraction, and

multiplication, the computer contains one, two, or four 64-bit pipelines.

The vector floating point arithmetic iInstructions not only perform the

defined arithmetic operation, but can perform additional bperations

without any increase in operation time. These additional operations are:
o The magnitude (absolute value) of the operands from one or both input

vectors are used.

o The coefficients of the operands from one 1input vector are

complemented before they are used.

The coefficients of all positive operands from one input vector are

made negative before they are used.

Table 2-1 provides approximate vector timing information for selected

CYBER 205 ‘instructions based on féfbit operands. Instructions using

32-bit operands or 1linked triadic operations run at twice the speed;

linked 32-bit triadic operations run at four times the speed.

2-4

b

TABLE 2-1. APPROXIMATE TIMING CHART FOR SELECTED CYBER 205 INSTRUCTIONS

Let N = number of output operands (64-bit)

Let Z = length of control vector

Vector .) 2 Pipes
Operation 32-Bit
Add/Subtract 51 + N/4
Multiply A 52 + N/4

Linked Multiply 84 + N/4
and Add

Divide/Square root 80 + N/.61
Divide/Square root 80 + N/1.22
Upgrade

Periodic Gather

Periodic Scatter

Coupress

'Merge

P

Cycles (20 nsec)-

64-Bit

51 +
52 +
84 +

80 +
80 +

39 +
71+
52 +
58 +

N/2
N/2
N/2

N/.32
N/.64

N/.8
N/.8
z/2
z/2

4 Pipes
32-Bit

51 + N/8
52 + N/8
84 + N/8

80 + N/1.22
80 + N/2.44

64~Bit

51
52
84

80 +

+ N/4
+ N/4
+ N/4&

80 +

39
71
52
58

+ + 4+ 4

N/.64
N/1.28

N/.8
N/.8
z/4
z/4

Therefore the peak performance on linked triads using 32-bit .operands is -

800 million floating point opérations (additgon, subtraction, and multi-

plication) per second (MFLOPS) for a Eompufer with four pipelines and 400

MFLOPS for 64-bit operands with four pipelines.

The input/outpht system contains 8 or 16 1/0 ports, each 32-bits in

width. Each 1/0 port 1is capable of transferring up to 200 million bits
per second. Total bandwidth for the input/output system is 3200 million

bits per second.

2-5

2.2 Mewmory

The memory subsystem is available in sizes of 1 million, 2.m11110n, or 4
million 64-bit words. Mewory words are 78 bits long, providing a 64-bit

data word and 14 bits for singleverror porrecfion and double error detec—

tion (SECDED); seven bits for each 32-bit half word. Each half million

words of memory contain 16 memory stacks arranged in eight "phased

Sequential addresses are assigned to different banks by using
a bank can begin a

banks.
bank phasing. Because the banks are independent,

memory cycle before adjacent banks have completed previously initiated

cycles.

Memory is addressable by single bits, 32-bit half words, 8-bit bytes, or

64-bit full words.

Memory bandwidth of the CYBER 205 permits maximum transfer rate

concurrently for all I/0 ports, while supporting waximum vector

processing rates.

-

3.0 VECTOR PROCESSING METHODOLOGY

’

Two phases exist dufing execution of a CYBER 205 vector instruction. The

first phase is called the startup phase. During this phase the hardware

sets up sufficient buffering for the data streams to ensure that no
Also the segmented

memory conflicts occur during the stream phase.
The time

functional units (pipes) are initially filled and emptied.

consumed by the startup phase varies with the different vector operations

(multiply, divide, etc.) but is independent of the vector length. The

second phase 1is called the stream phase. The time spent during this

Phase is directly proportional to the vector length, mainly the number of

cycles needed to produce one result times the number of result operands.

The performance of a vector operation is wonotonic as a function of

With 1increasing vector length the startup time becomes

vector length.
to the peak

less significant and the performance becomes asymptotic

performance rate. Figure 3-1 and tables 3-1 through 3-5 1llustrate the

performance in millions of floating point operations per second (MFLOPS)

as a function of the vector length.

Before we can talk about vector processing on the CYBER 205, we have to

define a CYBER 205 vector. A CYBER 205 vector is a set of contiguous

memory locations. For real or integer vectors, the memory locations are

64-bit words or 32-bit half words; and for bit vectors they are bits.

An example of a vector is a one-dimensional FORTRAN array:

1 A | aA@ | ON

Therefore, the FORTRAN DO loop:
DO 1000 I = I,N

C (1) = A (I)+ B (I)
1000 CONTINUE

3-1

LENGTH

50000

10000

AR

1000

500

200

20 30 s0 100

S 67810

Approximate MFLOPS Rate as a Function of Vector Length for Vector

Multiply With 64-bit Operands

Figure 3-1.

3-2

3.1

becomes a vector addition, and the DO loop collapses into one instruction

on the CYBER 205.

For the following DO loop:

DO 1000 I = 1,N,M
C (I)=A (1) *B (1)
1000 CONTINUE

If M = 1, this {s a vector operation where vectors A, B, and C are.

contiguous sets of memory.

If M > 1, vectors A, B, and C are noncontiguous and therefore do not

satisfy the definition of a CYBER 205 vector.

The case of M > 1, however, occurs frequently in general scientific and

engineering applications; therefore, the CYBER 205 hardware provides a

set of instructions to make noncontiguous data structures contiguous.

These data wmotion instructions allow the -generation of temporary

contiguous vectors from noncontiguous data structures. In the following
paragraphs we discuss some of the vectorization methods for noncontiguous

data structures.

Control Store

-

Any vector operation associated with a control store uses a bit vector.
A bit vector is defined as a CYBER 205 vector whose elements consist of a

contiguous set of bits. Each bit corresponds to an element in a data

vector. The control store operation stores the elements of a data vector

whose corresponding bits in the bit vector are 1 into the corresponding

positions of a result vector, and leaves the elements untouched whose

corresponding bits are 0. The control store operation 1is done

concurrently with the vector arithmetic operation and does not take

additional computer time., The following example illustrates a control

store:

3-3

3.2

M= 3

DO 1000 I = 1,N,M

C(I) = A(1) - B(I)
1000 CONTINUE f

It can be seen from this DO loop ‘that the difference between A(I) and

B(fs is calculated for every third element. By using the control store

technique we calculate the difference for every element but store only

every third result into C(I). To be able to do that we have to define a

bit vector where every third bit is 1 and the remainder of the bits are

0.

bit vector ——--- > 1001001001001.......
Note that, independent of M, N arithmetic operations will be done. Thus,
for M = 3, the peak result rate will be one-third the peak hardware rate.

The number of redundant operations 1is a 1linear function of M and

Therefore, alternatives:to the

efficiency decreases as M increases.
which

control store algorithm have to be used for larger values of M,

makes the control store an unattractive solution.

Vector Compress/Merge

The compress instruction will cause those elements of a data vector that
correspond to 1l's in the bit vector to be compressed into a temporary

vector whose length is equal to the number of 1's in the bit vector.

Using the vector compress method on our previous example, we have to exe-

cute the following instruction sequence:

compress vector A into Ay

compress vector B into BT

Cp = by = By

merge vector C with vector Cr

Each one of these steps corresponds to a CYBER 205 machine instruction.

Cr» A7, and By are contiguous temporary vectors of length 1 + (N—l)[M.

3-4

TABLE 3-1. APPROXIMATE VECTOR ADD PERFORMANCE IN MFLOPS

2 Vector Pipelines 4 Vector Pipelines

1 Vector Pipeline

N 32-Bit 64-Bit 32-Bit 64-Bit 32-Bit 64-Bit
25 19.8 16.4 22.7 - 19.8 - 23.1 25.7
. 50 32.9 — 24.8 39.7 32.§ 43.9 39.7
100 49.5 33.1 65.8 - 49.5 79.4 65.8
soo. 83.1 45.4 142.0 83.1 221.2 142.0
1,000 90.7 47.6 166.1 90.7 284.1 166.1
10,000 99.0 49.7 196.0 99.0 384.3 196.0
50,000 99.8 49.9 199.2 99.8 396.8 199.2
Asyuptote 100.0 50.0 200.0 100.0 400.0 200.0

3-5

TABLE 3-2, APPROXIMATE VECTOR MULTIPLY PERFORMANCE IN MFLOPS

1 Vector Pipeline 2 Vector Pipelines .4 Vector Pipelines

N |' 32-Bit = 64-Bit 32-Bit 64-Bit 32-Bit 64-Bit
25 ' | 19;5 16.2 2i.6 19.5 22,7 21.6
50 | 32.5‘ 24.5 39.1 32.5 43,1 39.1
100 ﬁ9.0 32.9 64.9 49.0 78.1 64.9
500 82.8 45.3 141.2 82.8 219.3 \ 141.2
1,000 90.6 47.5 165.6 90.6 281.5 165.6
10,000 99.0 49.7 195.9 99.0 384.0 '195.9
50,000 - 99.8 | 49.9 199.2 99.8 396.7 199.2
Asymptote 100.0 50.0 200.0 100.0 400.0 200.0

TABLE '3-3. APPROXIMATE LINKED VECTOR MULTIPLY AND ADD PERFORMANCE IN MFLOPS

1 Vector Pipeline 2 Vector Pipelines 4 Vector Pipelines

N 32-Bit 64-Bit 32-Bit 64-Bit 32-Bit 64-Bit
25 26.0 22.9 27.8 26.0 28.7 27.8 -
50 45.9 37.3 52.1 - 45.9 55.6 52.1
10 746 54.3 91.7 74.6 104.2 91.7
500 149.7 85.6 239.2 149.7 342.5 239.2
1,000 171.2 92.3 299.4° 171.2 478.5 299.4
10,000 196.7 99.2 © 387.0 196.7 749.6 387.0
50,000 . 199.3 99.8 »397.3 199.3 789.4 397.3
Asymptote 200.0 100.0 400.0 1200.0 800.0 400.0

3-7

.

TABLE 3-4. APPROXIMATE VECTOR DIVIDE AND SQUARE ROOT PERFORMANCE IN MFLOPS

1 Vector Pipeline 2 Vecfor Pipelin‘es' 4 Vector Pipelines
N 32-Bit 64-Bit 32-Bit’ 64-Bit 32-Bit 64-B1it
25 7.9 5.3 10.3 7.9 12.5 10.5)

50 10.6 6.4 15.5 10.6 20.8 15.8
100 12.8 ‘ 7.1 . 20.6 12.6 31.1 21.2
50 15.2 7.8 27.8 15.2 51.1 29.0
1,000 15.6 7.9 29.1 15.6 55.6 30.5
10,000 16.0 8.0 30,4 15.9 60.4 31.8
50,000 16.0 8:0 30.5 16.0 60.9 31.9
Asymptote 16.0 8.0 30.5 16.0 61.0 32.0

3-8

TABLE 3-5. APPROXIMATE VECTOR DIVIDE AND SQUARE ROOT
UPGRADE PERFGRMANCE IN MFLOPS)

2 Vector Pipelineér 4 Vector Pipelines

1 Vector Pipeline

N 32-Bit 64-Bit 32-Bit 64-Bit

25 f (not available)'. iZ.SI H 10.5 13.9 12.6

50 20.8 1558 25.0 21.0

100 31.{ 21.2 41.7. 31.6
500 51.1 29.0 88.0 53.2
1,000 55.6 30.5 102.2 58?1
10,000 - 60.4 31.8 119.7 ' 63.4
50,000 A 60.9 32.0 121.5 63.9
Asymptote 60.9 32.0 121.6 - 63.9

3-9

3.3

Periodic Gather/Scatter

"The periodic gather

instruction creates a temporary contiguous data
vector by transﬁitting elements from another vector of the same data type

indexed by a periodic index "M." The.peiioaié écatter'instfuction_is the

inverse of the gather instruction.

Using the gather/scatter method as our example, the following instruction

sequence has to be generated:

gatﬁer vector A into AT
gather vector B into By

Cr = Ar - B

scatter vector C.r into vector C

Cr» Ar, and Bp are contiguous temporary vectors.

Figures 3-2 through 3-4 show the performance results measured in MFLOPS

of the discussed vectorization methods for noncontiguous vectors. As it

can be seen from those graphs, the bes£ method chosen depends upon the

values of M, N, and OPS (number of vector operations). In general, for .

small M's and OPS's, the increased number of redundant operations in the
The compress/merge and

control store method reduces the perfotrmance.
With

gather/scatter methods result in a better performance in this case.

the increase of the number of vector operations, the time spent for the

data mwotion operations (compress, merge, gather, and scatter) in

comparison -to the time spent for the vector operations becomes increas-

Also, with increasing periodic indexes M, the.

ingly 1less significant.
The

gather/scatter method clearly outperforms the other two methods.

periodic gather/scatter wethod is applied by the automatic vectorizer of

the CYBER 205 FORTRAN compiler for periodic noncontiguous data’

structures,

i

3-11

S0000

10000

T
Vi) M_
SRR &
s :
;.TM, : e
— i
1 q_ : = T
L “ d =E R
.:._T go= s
: ARERNE el debgp el
1 T 14 T ~ N
. p<ﬁHJ - T ==t e
[YO b w2l o) ol
A= - - P P A LA SN g S e - .
I [S s B O 6 g ! e o et T
e T bt e o o g e v
EaERRE AR RRRCERRRRRP, i H] b
-] Foall A) ca - e——t—
4 |_|L“, :'.lJ | ! IJJA'.A”ITM V9T a a .
"l o Y r R ' bk M ol oo
.- . . cl = lam...LUH,.'gL.UJI DR ¢
- e A e Inte :.ﬂ._
TBREI Py - -
D L.urHWJ.Uw“uFWw_uuu. XS
Ty] T RS A ERAL
RS EEe s VAT
i i R TR TR
PR == T ==, nw bk Re
P g o s et e = it
. —+ P e et
ons P e b ——f g A e T 9 S mand
R == == 3=
g By e o e Jl_l.w ==y ul.mlw :
- v — 1=iz b
L i B e T b s s=
-~ : 1 _ et e > .nl.“.
S eeoneste S B
iRyt I be e =
TLigs IW ..Jnr Io/i.IH.«. N i) n.«\“ -
e e e e s] b : =
—~—— . 4 1 - bl
t PO LAt R e e, Vs TN b Bnashaved
ey oy =t anad - —— 1 i —
I et et oy i | [0 Ul ot te S’ ==
- I - Y N v v
- - i e ey -.Y!clﬂ' T j 'Ll.vtﬂi
"10'1'101”1 ! — }#VM A~ — pilansnindn
re t—A——x .
- oo T -AJFA AN '14\ T —r———i
—— —— i — T/ —— il ' Ty
S R =R oy
~t—~ = v T - D N
| S — TN TS R
- . /‘4 . ™ LIRS TR PR
- . . : T RS [rrem——— e oee e
-y J_ H] o - //l.lv/dd O M | e
- oy H T T T T - 1)
i... A A T AN | BN\ DA
]] T — AN) A
t l 4 L ot g o T 7 AL
e o e L e T T TR i
4 T =t e ‘ : ! ™1 ORI e ~'\N
b DY+ i M . 1 T =TT T...b.ll.flj
4 X_ x| T I ™11 — - P =% ;
1 — O, W r H " T : / B I aw .
LI e < ™17 T [ttt 4 . o
R — . 1y “l Uit I L |
—pee e w ' = handaa 4 Hﬁ
BT T] T ARAANNAN
' =) teae T v INRERER AN)
y - a -k i . !] f | i _1 LI g 1 ‘— Ji R e Ve
; . a4 T i CT I T ™1 + =
! z x T I ! ! __ J/ S
il OO« au PSRRI H Y I L . v v B
. ‘....jr..ub. -.Lulml. AR ! 1] : 1/-
—] _ R R N
A j ! y W
_ | T —..J- - i :
' 1 .’L J.r !M. J ‘ |
T $ it} . i M ™ »
! i [A== e
1 1 T I .
—— ! 17 ! W.J.!_ R
(7] i T dode [o N
2. Ll LT T e i
-l o (=] o (=] A -
vy o o -]
- w -~ M ~ -

500" 1000
Approximate MFLOPS Rates for M = 2

Figure 3-2,

20t

10

[PPy

e g e 4
- .

e
. .

L PP

T

i

]

[

1 1
-
i

-
1!,
1T
1
|
i
] -{11 RN
:LH‘
[
3

ST DU
vt

i
T
H

1ty
-
¥
1‘

Y

*.

i1
H .
-t

1]

! -
-]
'

.*;'_11:.,-14]
111

Dy

SRS b
+
H
TR
S BT
=Hs
NS
i)
1
T~
gLl
BN
|

50000

10000

A.!.-...I.
} . o
| PPy * !
0 T
A==
: T Een
T P LR =0 e i
ot ook qreng T
i e el 85 K KNSR S
Pl o ot preniivs a4
==
™33 P g =
o et s
beee. ot e e e
1 o
UMD g0 punty [S ey punt
it b
g peas
B bynaps queest poy sy
——
1
i) S,
jpona by
vy +
ot dd
Jout g o
P (S SN QU Auniy Gu A0S Juh s (i

500 1000

deoan .
T T
¥ T
ey - T -+
M T Y
Y (A O S
———nei e e P
T
-]lT
—

LI 7
—— e L
= - J—
Tty —
T T
B D 1T -
v — 1 . s
PO R R T : .:.;v o
T T T T ™ \ o
B S gl o ~ i \\ o Sl ke
Liin ol T _"‘1.!1.-' ' 1 O & WEand Tame
O e =
LIS BRI s T " ~ f
MR 1 NMIﬂHl_ T X . ‘1o
ML L A B I 1 i T T]w»
I BREDE - Wb A i A ' A
! j{lﬂ. ol .../ﬂ T T H MRS | RN . -
: " _QO&R, | INBERE T 1 Tt T ._Tutlll.lul«"lf
_ e V¥] T + T t + N
; Ly o | _ * _F “ (. } H _ﬂ A , { v
z = REE ' I RENR | 1
T S S s T RAR EREREE =\
v ™ A2 _ + + _ _ . ﬁ -t
| R I |1 | [N [T
R e T i trig
—r | | . - . L ...IPL ! 1
T T e -1 T
e + ! __ i Lo [#M
IRERERR HEL] 1] T T\
! j 1 T 14) T 1
._ . ~] g — tl H —
T ESERRE 1
w + " 4 S S -q . - ,*ug . op 4_ {
o [T T, T T KRR RERE
-t
.

60
30
20
10

3-12

Approximate MFLOPS Rates for M = 5

Figure 3-3.

- 10

1 ’ =2 v .
=i SRR o :
Teeas L.‘. _ﬁ . llﬂJ.‘l. r 47.*
1. I e Mw%ﬁ == %”s.
= 0 e e ol B e Smasil
. _ =
- I — - M
PO ot b e o o i e g 0 e i
L Lpao T
e “bef- e T At T e
RERREST S len
L 1o S ,lﬁﬁﬂnup.-i
—t- o
-] T b = Py]
i . L -~ Jl
ln.. — - T I I B I3NLA R
brd ol e oyl 5 S ey L
=k Akt L
1 e e e Bl e s S hee
T ey e o8 I I S o R
Mmul_ L o= lT.huWu =
ud l ot e [Rt J O o o Pt fem gl
PR .hl*ll«. . B llo.!rT i et
o . == =T 3
perbi =o Uit . N
. B Rt e ey e Uy
=" } ;
i P g ot g o =
== e e Lt A =\
= g an sum gt s At !
.I-... —a T ~—1]
. -1 1
M. AR Tl R [T et e
E — = T —T-
— .ml v— “ L
PO e ~—t o e] : -
prt— L :
Pt i b T T -
S Mpa | L !
RGPS tuicg phmdni e
kot Wil e &4 —t
ottt et it r —
L= = : 1 i
Fer ¢ ¢y e + — e ——1
. PO R -——]
R TIY o np S . ! . .
IR SR R MRS !
X N v — T T
t b r
= — T i
BN 0 R AP A 0 0 L A
- -4 -— +
. r—— gy ..4..!«”.1] t | —
S I I ! e
0 Snamatt M daat fn e - e e i e
T T v T T
M I o i ! L
It T 11
ey W T !
v T Tt~ ok [- - QNS + — ‘ Il
LR LI AT U o o £ A O L L
: - X o T 17 VT R
-—r— f -
T uH-4xlu;q 1
) = T FeTrT
Tt Lo Ml U !) i
T 7 © < T Tt T
_ 1 D - ey - Sl V9 2 Y
Lr.o x| T !
I T NN
e =< 1T f
—io W.,.
i

MFLOPS

wdw.. _wﬁ.ﬁxhq,mwul <%
h,Hu“ “uW|lxlﬂ. =oer MM -

i

It 1 ¢
]
WS) W S

50000

10000

- {—t

60

20 50 100 500 1000

10

Approximate MFLOPS Rates for M = 10

Figure 3-4.

3-13

3.4

Random Gather/Scatter

¢

The random gather instruction uses the elements of an integer index
vector as indices to take possibly disparate elements from a ‘source data

vector and make them contiguous in a'temporafy vector.

For an example, the following FORTRAN DO loop can be replaced by one

gather instruction:

DO 1000 J = 1,N
B(J) = A(1(J))
1000 CONTINUE

The random scatter instruction is the inverse of the gather instruction.

"DO 1000 J = 1,N
ACI(J3)) = B(J)
1000 CONTINUE

4.0

MATRIX ADDITION AND MULTIPLICATION

For two full matrices stored in the same order as contiguous data struc-—

tures, the matrix sum can be evaluated with one instruction, provided the

: sizg 18 255 x 255 or less.

" For the product of two N x N matricés, the inner (or DOT) product of the..

" jth row of one matrix and the kth column of the other matrix is formed.

If one matrix is stored by rows and the other one by columns, the product

matrix can be formed with N2 inner products.

The timing for the inner product instruction is:

107 + N cycles (each cycle 1is 20 nsec)

Therefore, the total time is:

10782 + N3

If the two matrices are not stored by rows and columns, one must gather

the appropriate entities. However, there is an algorithm that does not

require the gather and is asymptotically four times faster than the inner

product algorithm. This algorithm 1is called the "outer product" and is

based on the fact that: »
Cix A1) Ap2 Aln
. = Blk ° + BZk . + esee +Bnk .
an . Anl An2 Ann

If A {5 stored by columns and B is stored in any fashion, then:

-

DO 1000 K = 1,N .
4C(I,K0N) - B(I,K) * A(I’I;N)\

DO 1000 L = 2,N

C(1,K;N) = C(1,K;N) + B(L,K) * A(1,L;N)

1000 CONTINUE

will compute matrix C and store it by columns.

4-1

The time for this algorithm is:

N3/2 + O(Nz) on a 2-pipe machine
N3/4 + 0(N2) on a 4-pipe machine

Note that the inner loop of the algorithm is a linked triad. Not only is
thig algorithm asymptotically four times faster than the first algorithm,

but the O(NZ) is much swmaller due to the fact that no data motion is

»

required,

The foliowing table shows the necessary data structures to achieve the

matrix operations listed:

| - DATA STRUCTURE

C rows C columns C columns C rows

| FULL MATRIX I FULL MATRIX |

| ADDITION | MULTIPLICATION |

I C=A+B I C = AB I

| | A rows A columns | A columns A * |
| B rows B columns | B * B rows |

I I |

| I

| MEAN VECTOR LENGTH | N2 N

| CYCLE COUNT | | B I
| 2-pipe CYBER 205 I N%2/2 + o(D) | N3/2 + o(n?) |
| 4—pipe CYBER 205 | N2/4 + 0(1) | N34 + oz |

Figuré 4-1 shows the MFLOPS rates for a matrix multiplication using the

“outer product” algorithm and assumes the total number of operations to

be 2N3.

4-2

RFLOPS

Figure 4-

1.‘ Approximate MFLOPS Rates of NxN Matrix Multiply (64-bit Operands)

4-3

S.O

CONCLUSION

The material presented in this bayer is only an introduction to the

capabilitfies of the CYBER 205. Many syntactic FORTRAN kernelg are

reduced to single instructions due to the vector proceésing capabilities

of the system.

The concept of vector processing introduced in this paper shows that even
with a Qector length of less than 100 elements, the perfbrmance is very
More importantly, implicit vectorization of FORTRAN kernelsg
However, to achieve peak

of the powerful CYBER 205

impressive.
is done automatically by the compiler.

performance rates and to wmake full use

vector numerical analysis type algorithms have to be .
L

instruction set,

developed,

5-1

BIBLIOGRAPHY

~ ., -~

CTontrol Data Corporation, CYBER 200 Hardware Manual, 60256010.
. Control Data Corporation, CYBER 200 FORTRAN Language, 60457040.
Kascic, M.\J.,\"Vector Processing on the CYBER 200." ’

Control Data Corporation, CYBER 200 Series Model 205 Computer System.'

- Bibliog-1

VECTOR PROCESSING ON THE CYBER 200

M. J. KASCIC, JR.

- Control Data Corpd;atio'n
/4201 North Lexington Avenue
St. Paul, Minpegota -,_55115 -

-

First publisﬁed in the Infotech State of the Art Report
“Supercomputers”, Infotech International Limited,
Maidenhead, UK (1979).

VECTOR PROCESSING ON THE CYBER 200

M. J. KASCIC, JR.
Control Data Corporation
4201 North Lexington Avenue
St. Paul, Minnesota 55112

ABSTRACT

The CDC CYBER 200 series computer provides computational capability measured in
the hundreds of mflops (millions of floating operations per. second)... This capability is
due to its vector processing hardware. : ~

The goal of this paper is twofold:

1. To illustrate this hardware capability by a selected set of syntactic kernels,
and

2. To provide an introduction to the applicability of vector processing to some
basic algorithms of numerical linear algebra.

1. INTRODUCTION

Although basic advances in technology have contributed significantly to the ability of
Successive generations of computers to solve problems faster, in the last decade the
architectural revolution known as vector processing has been most responsible for
pushing out the frontiers of ecaleulational capability.

Rather than acting on individual operands, the vector processor acts on assemblages of
operands (called by various authors vectors, arrays, strings, ete.). This allows the
processor to configure itself more effieiently to perform a certain operation.

Let me illustrate with a trivial example. Suppose one thousand floating operands are
to be added to another thousand floating operands and the results stored in a thousand
words in memory. The traditional hardware (hereafter termed scalar hardware) must
execute code somewhat similar if not identical to the following:

Load, Load, Add, Store, Index and Branch.

Thus, the operands must be fetched individually from memory into a staging area
called the register file, then added, then stored back into memory one at a time.
Finally, the decision must be made whether there are any more passes to be made
through the code sequence. For this simple example, the scalar processor must
execute five or six thousand instructions. Moreover, when executed in the order given
above, much of the time various parts of the processor are idle, e.g., while waiting for
operands to be loaded into the register file, the adder is not doing any useful work.
While it is true that software can alleviate some of this problem by techniques such as
bottom load - top store code generation, it is still true that the individual instructions
perform such a small piece of the total algorithm that the processor can not "know" -
how best to overlap its various functional units. In particular, the branch instruction is
usually several times slower than an arithmetie instruetion. Recognizing this problem,
crafty programmers have come up with the technique of loop unrolling. Essentially,
this amounts to doing several pieces of arithmetic per branch. This not only cuts down
on the number of branches, but allows a segmented arithmetic funetional unit to keep
more of its segments or stations busy during a given time period. -

Several factors limit this technique in a scalar processor:

1. the size of the instruetion stack which must hold all the instructions
necessary for one pass.

2. the ability of the Load/Store unit to fetech and return operands to memory.
3. the number of registers to act as a staging area.
The ultimate evolution of this technique is to design hardware that

1. has a high bandwidth (ability to pass data) between the memory and the
calculational unit to allow simultaneous Load/Store overlapped with
calculation.

2. will route the proper number of operands without a need for branehing as such
or an explicit staging area in a register file.

This solution is embodied in the CYBER 200 vector processing hardware. The CYBER
200 series is an outgrowth of the STAR 100 processor. The reader that is interested in
more hardware detail may consult (1), (2), and (5).

Basically, there is one hardware instruction to perform up to 65535 additions,
subtractions, multiplications or divisions. At issue of such an instruction, the CYBER
200 "organizes" itself to carry out the one operation on many operands in the most
efficient manner.

The execution of a CYBER 200 vector arithmetic instruction consists of two phases.
The first phase is the startup phase. The time consumed by this phase is independent
of vector length. During this period, sufficient buffering is automatically set up by the
hardware to ensure no memory conflict among the various streams of data into and out
of the memory. Also the general purpose segmented functional units (called pipes) are
initially filled (and emptied). The second phase is the stream phase. The time
consumed by this phase is directly proportional to the vector length, the constant of
proportionality being the average number of cycles needed to produce one result
operand.

The foregoing should make it clear that performance will be monotonic as a funetion
of vector length since the longer the vector, the more time to amortize the startup.
The asymptotic performance is that performance that would occur if there were no
startup. — ——
It should also be clear that the number of instructions issued in a given time period is
no longer a valid measure of performance for a vector processor. Indeed, the simple
addition kernel that we considered before can be effectively computed on the CYBER
200 with one instruction. A more useful measure of performance is the megaflop
(mflop), the capability to perform a million floating operations in one second.

In terms of mflops, the state of the art for scalar computing is on the order of
magnitude of one to ten mflops. By the very nature of scalar computing this number
varies from kernel to Kernel, as well as from programmer to programmer. By contrast,
consider the following tables of vector performance of the CYBER 200 series. (The
CYBER 203 numbers represent actual performance data. The CYBER 203E, a CYBER
203 with LSI vector pipes, is at the coneclusion of the design phase at the time of this
writing. Thus its performance represents expected design goals.) The tables give
mflop rates for 64 bit arithmetic operations. For 32 bit arithmetic, the CYBER 203
add rate is doubled, the CYBER 203 multiply rate is quadrupled and all CYBER 203E
rates are doubled. The bottom lines in each case are asymptotic performance.

(1.1) : CYBER 203

VECTOR

LENGTH ADDITION MULIPLICATION

25 7.5 3.4

50 13.0 6.0

100 20.7 9.7

500 38.9 19.0

1000 43.8 216

10000 49.3 24.6

50000 49.9 : 24.9
50.0 - 250

(1.2) : CYBER 205 VECTOR ADD OR MULTIPLY MEGAFLOP RATE

VECTOR 4 PIPE, 64-BIT
LENGTH 2 PIPE,; 64-BIT | 2 PIPE, 32-BIT | 4 PIPE, 32-BIT
32 239 271 - 29.1
64 38.6 47.8 54.2
100 49.5 65.8 78.1
250 71.0 109.6 150.6
500 83.1 142.0 219.3
1000 90.7 166:1 - - 284.1
10000 99.0 196.0 384.3
50000 99.8 199.2 396.8

100.0 200.0 400.0

In addition, the CYBER 203E is éxpeéted to >ﬁave linked triad capability as follows.
Various triadic operations involve two input veetor streams and one input scalar
stream. Such triads will be ecalculated as one vector operation. Two important
examples of such triads that we will see in the succeeding sections are

1. Vector + Scalar*Vector

2. (Vector + Scalar) *Vector

The CYBER 203E performance for 64 bit operands on such triads will be

(1.3) CYBER 205 LINKED TRIAD MEGAFLOP RATE
VECTOR 4 PIPE, 64-BIT
LENGTH 2 PIPE, 64-BIT 2 PIPE, 32-BIT | 4 PIPE, 32-BIT
32 31.7 34.4 36.0
64 54.7 63.4 68.8
100 741 90.9 . 102.0
250 119.0 168.9 213.7
500 149.3 238.1 337.8
1000 170.9 2985 476.2
10000 196.7 386.8 749.1
50000 199.3 . 397.3 . .7893
2000 -~ 400.0 800.0

Thus vector processing even now offers an order of magnitude performance over scalar
and very shortly will offer two orders of magnitude. Indeed, processors are now being
designed for the mid 80's with sustainable 1000 mflop performance and peak rates of
3000 mflops, a full three orders of magnitude over scalar performance.

One of the fundamental laws of the universe is that you do not get something for
nothing. This law certainly holds true for vector processing. We shall see in the next
two sections that some programming sophistication is needed to get the full several
orders of magnitude performance. Of course, the same law holds true for scalar
programming. There is a remarkable difference between the performance of "casual"
FORTRAN and "tuned" code on such sophisticated scalar processors as the CDC 7600
(or the CYBER 200 for that matter). The difference is that the performance range on
scalar processors is narrower, i.e., the best performance increase one can expect to
get is usually a factor of two or three. Now we are talking about orders of magnitude.
The stakes have gone up. Thus it is crucial to understand how to use the vector .
processing capability intelligently. '

2. VECTOR PROCESSING

In the introduction we spoke of the programming discipline needed for vector
processing. A large part of this discipline is the recognition of data structure. To be
more precise, let us ask the question, "What isa vector on the CYBER 200?"

(2.1) Def. Vector — Contlguous set of memory locations

For real or integer vectors, the memory locatlons are words, for complex vectors pairs
of words, for bit vectors they are bltS.

Up to this point we have been discussing the hardware of vectors. It is time to bring
software into the picture. Where or how do vectors make their appearance from the
programmers point of view?

The most primitive example of a vector is a one-dimensional FORTRAN array:

A(1) A(2) .o A(N)

Thus, the fundamental FORTRAN DO loop

(2.2) ' DO 9000 | = 1,N
c() = A(l) + B(l)
CONTINUE

actually performs the operation of a vector addition:

BN

A1) A(2) | ..., A(N)

B(1) B(2) | "BI(N)

c(1) c@2 - [..... C(N)

How does one code the vector addition?

There are two basic approaches to vectorization. One approach is so called automatic
vectorization. This means writing traditional scalar FORTRAN and depending on a
"vectorizer", a software module, to "see" the vector construet. The other approach is
to provide high level language construects that directly access the vector hardware.

It is not the purpose of this paper to debate the pros and cons of these two
approaches. As any complete system should, the CYBER 200 has both options
available.

The present task is to explore the second approach, with the explicit goal of
delineating a wide range of CYBER 200 vector hardware primitives along with
concomitant FORTRAN constructs.

The most basic software construet in the family that we shall persue is the descriptor.

(2.3) Def. Descriptor — Pointer to a vector
The internal format of a descriptor contains the starting address and the length of the
vector pointed to. There are two FORTRAN syntaxes for the descriptor.

The explicit descriptor has the form

(2.4) “array name’’(“index’’;integer expression’’)

which points to the vector whose first element is
(2.5) - “array name”(“index") -

[

and whose length is

"integer expression".

Thus A(1;N) is an explicit descriptor pointing to the vector whose first element is A1)
and whose length is N.

There is also a variable type called descriptor which allows one to assemble the
information for a descriptor and access it by name. Thus the declarative

(2.6) DESCRIPTOR AD

informs the compiler that the variable name AD is to be a descriptor. The executable
statement -

(2.7) ASSIGN AD,A(T:N)

compiles into code to form the deseriptor and store it under the name AD. Since the
ASSIGN statement is an executable statement, the vector pointed to by AD may be
dynamically changed. -
Further details about the FORTRAN descriptor construct may be found in (3) and (5).
One uses descriptors in artihmetic statements as follows:

(2.8) descriptor = descriptor op descriptor

compiles into code to perform op on the vectors pointed to by the descriptors on the
right hand side and store the result in the vector pointed to by the descriptor on the
left hand side.

Bringing all of these facts together, the DO loop (2.2) reduces to

(2.9) C(1:N) = A(1;N) + B(1;N)

or equivalently

(2.10) CD = AD + BD

if the descriptor variables have been properly initialized.

Next let us consider two-dimensional arrays. Consider

(2.11) DIMENSION A(N,N),B(N,N),C(N,N)

DO 9000 | = 1,N

DO 9000 J = 1,N

CW,) = A1) .+ BW,1)
9000 CONTINUE

-2

It is clear that the inner loop is a "vectorizable" kernel. Indeed, the code

(2.12) DO 9000 | = 1,N
C(1,,N) = A(1,I;N) + B(1,I:N)
9000 CONTINUE

eliminates one level of nesting and executes with mean vector length N.

However, a moment's reflection will reveal that for the purposes of the DO loop (2.11),.
the total data structure involved in the kernel is one vector for each array. Consider

— - -

A1) FARYD [...]AINT[A(M,2) |...]|AIN2)]. .. A(1N)|. .. |A(N,N)

=1 | = 2———» [——1[=N

Thus the entire DO loop (2.11) ean be reduced to

(2.13) C(1,1:N*N) = A(1,1;N*N) + B(1,1;N*N) ~
or even
(2.14) CD = AD + BD

The vector version (2.13) executes with vector length N2. This results in greatly
improved vector performance. The reader is invited to check this fact, say for N = 100.

If all the data structures encountered in applications programs were contiguous, our
discourse would be over. The straightforward descriptor syntax could be used to
generate vector instructions and all problems would be solved!!
There are, of course, three main reasons why this scenario is naive.

1. Data structures are often non-contiguous.

2. Arithmetic may depend on conditional statements.

3. Even when vectors exist, their existence may be masked by the scalar
expression of an algorithm.

Points #1 and #2 are syntactic in nature and will be discussed in the remainder of this
section. Point #3 is more semantic in nature and will be discussed to a limited extent
in the next section.

Let us consider the same double DO loop (2.11) with the following declarative

(2.15) DIMENSION A(N+1,N+1),B(N+1,N+1),C(N+1,N+1)

While the vectorized version (2.11) still is valid, it would seem that the superior
solution (2.13) is no longer possible. This lowers the mean vector length from N2 to N.

A(1,1)

A(2,1)

A(N,1)

A(N+1,1)

A(1,2)

A(N,2)

A(N+1,2)

A(N+1,N+1)

P

l._.=z__.l

not used

not used

not used

Since the majority of data elements of the arrays is active, it seems a shame to lose
the more effective vector length. Indeed, since each-of the three arrays has the same
activity pattern

ON-

ON

ON

OFF

ON | ON

ON

OFF

ON

ON | OFF

if only one could suppress the arithmetic on every (N+1)st elemeht, the higher
megaflop rate could be restored.

This brings us to the first vector primitive other than basic arithmetic.

(2.16)

Def. Control Store — Given .

4

Given ii.

AD

BITD B> bq, by, b,

D A1,A2,A3,....

pr

IAN

A source bit vector pointed to by BITD

*

A source arithmetic vector pomted to by AD

Given iii. A target arithmetic vector pointed to by BD :

BD D> By ByBg....

rBN

the process of control store stores Aj over Bj whenever bj is '1' and leaves Bj untouched
when bj is '0', all at vector speed.

The control store operation can be done as a separate operation which executes at the
same rate as vector addition. It is also possible to do the control store as part of a

vector arithmetic -instruection.

execution time invariant.

When_ done in this fashion,

it literally leaves the

In the FORTRAN enwronment the control store can be aff ected w1th the syntax

(2.17)

&

‘ BD QBVCTRL(AD BITD'BD)

where AD is a descriptor for the source vector, BITD is a descriptor for the controlling
bit vector and BD is a descriptor for the target vector.

- When done as part of an arithmetic operation, at the present time, there is a "special

call syntax" which allows the FORTRAN programmer to imbed META (CYBER 200
assembly language) in a FORTRAN program. In particular, the DO loop (2.11) with the
effective declarative (2.15) can be reduced to one FORTRAN "special call syntax"
statement, namely

(2.18) CALL QBADDNV(,,AD,,BD,BITD;CD)

where BITD is a desecriptor pointing to a bit vector consisting of
T4, 1011,..10,... 011, .., 1.0

B N s
and AD,BD,CD are descriptors pointing to the entire arrays as vectors.

Thus we are able to operate on the non-contiguous data structure with almost full
efficiency. The "extra work" we must perform includes the bit veetor construction and
the redundant arithmetie.

As for the bit vector, it is possible to construet this particular one with one instruction
which translates to one line of FORTRAN. This instruction is very efficient, and in
any case, bit vectors of this type have values which are structure dependent rather
than value dependent. Hence the values in the bit veetor do not change over the
course of execution.

As for the redundant arithmetie, intuitively it is clear that the half cycle spent doing
the addition on each (N+1)st element whose storage to memory is suppressed by the
controlling bit vector, is a small price to pay to avoid the extra veetor startup.
Quantitatively, let

S = Startup time for a vector addition

R = Stream rate for a vector addition

A,B,C be dimensioned (N+M)x(N+M)

Then the control store technique is superior to the naive technique of restarting the
vector whenever

S/R>M

Since S/R is between 150 and 200, if M ‘is'small, as in our little example, clearly the
control store technique is superior.

10

The control store technique is also useful in vectorizing IF test controlled arithmetic
done inside DO loops.

(2.19) Def. Vector Relational — Given i, Two source arithmetic vectors pointed to by AD and BD
AD D> Ay Ay Ay ..., Ay
BD > By, ByBy...,B,

Given ii. A target bit vector pointed to by BITD

BITD D> by, by, bs, ..., by

the statement
(2.20) BITD = AD.GT.BD

will cause Aj to be compared with Bj at vector processing speed. If Aj is strictly
greater than Bj, bj will be set to '1' and conversely.

Thus "decision structures" can be constructed at vector speed. Bit vectors so
constructed can be used to econtrol arithmetie.

Consider the following simplified one-dimensional flux trading model. It is assumed
that an array of flux rates DXDT(J) J=1,N exists. I the model] predicts a flux rate
over a time step which is too large, one option is to pass no flux that time step. Thus

(2.21) DO 9000 J=1,N
FLUX(J) = DT+DXDT(J)
IF(FLUX(J).GT.X(J)) GO TO 9000
XW) = X(J) - FLUX(J)
9000 CONTINUE

-NOTE THAT THE ORDER OF EVENTS IN SCALAR IS
[iRITHMETIC DECISION - . . E\RITHMETIC DECISION , ETC.

Thus the scalar code forces the computer to change its disposition with each operation
from arithmetic processor to decision maker. The key to vector processing in this
kernel is the ability to make the computer perform all of a given kind of operation "at
once",

Using implicit deseriptors, the vectorized form of this kernel is:
(2.22) FLUXD = DT+DXDTD

BITD = FLUXD.LE.XD
CALL Q8SUBNV (,XD, FLUXD,BITD,XD)

11

The first line calculates all the fluxes with one vector operation. The second line
builds the decision structure, i.e., the bits pointed to by BITD contain the outecomes of
all the IF tests. This is again one vector operation. The third line trades the fluxes
whenever possible with one vector operation.

As for efficiency, one assumes in a well behaved model that the percentage of 1's in
the bit vector is high.

Let me make two final comments on this kernel. First, if one suspects that the model
is behaving poorly, i.e., the bit vector is .mostly 0's, one can ascertain very easily how
many 1's there are. There are several efficient alternatives. We will not speak of
them here. Secondly, the scalar DO loop (2.21) compites into 12003-instructions. The
vector kernel compiles into 3 instructions.

While the control store is an invaluable tool, the following kernel illustrates the need _
for what we shall call "data motion" primitives. T

Suppose it is desired to evaluate a polynomial

(2.23)

for various values of X which are evenly spaced within an array. Using Horner
decomposition, such a kernel might be written

(2.24) DO 8000 J=1,N,M
Y(J) = A(1) » X(J)
DO 9010 K=2,L
YWJ) = Y(J) + A(K)
Y(J) = X(J) * Y(J)
9010 CONTINUE
YWU) = Y(J) + A(L+1)
9000 CONTINUE

If M=1, this is elearly a vectorizable kernel:

(2.25) YD = A(1)»XD
DO 9010 K=2,L
YD = YD+A(K)
YD = XD+YD
- 9010 CONTINUE
YD = YD+A(L+1)

12

If M>1, one can write the above kernel using special call syntax with the appropriate
bit vector and control store the arithmetic.

Note that, independent of M, 2LN arithmetic operations will be done. Thus, for M=2,
the peak result rate will be half the peak hardware rate.

The problem here is that the data structure is "fractured". Indeed only 1 out of each M
elements is active.

Perhaps it would be better to get the active elements together. For this particular-
kernel, we should investigate the compress.

- -~ ~—

(2.26) Def. Compress — Given i. A source data vector pointed to by AD, ie.
AD D A1,A2,A3,...,AN
And a bit vector pointed to by BITD, ie.
BITD D> by, by, by, ..., by
Given ii. A target data vector pointed to by BD, ie.
BD [By ...,B
The statement
BD = Q8VCMPRS (AD,BITD; BD)
will cause those elements of the vector that

correspond to 1’s in the bit vector to be
compressed into the B vector.

Concomitantly there is an operation called expand which allows one to put the answers
back into the proper places in the array. ,

The alternative to the control store algorithm is to compress the X values into a
temporary vector, do full efficiency vector arithmetic and expand the answers. In
comparing the two approaches we shall assume that N is large enough to ignore startup
time. We also note that the pair '

YD =YD + A(K)

YD =YD *XD

is a linked triad and can be calculated at one cyecle per result per pipe on the CYBER
203E.

The following chart contains the cycle co:mt (20 nsec. cycles) for the stream time for
the two approaches on various architectures.

13

(2.27) RECALL N = LENGTH OF ARRAY
M = DISTANCE BETWEEN ACTIVE ELEMENTS

L = DEGREE OF POLYNOMIAL

CYBER 203 2 PIPE CYBER 203E 4 PIPE CYBER 203E
NTROL
S?TOORE 3NL -';— (L+1) -Ej- {(L+1)
3LN N(L+1)_~' — N N(L+1)
COMPRESS 9N + TR N + ———-2M 2 + am

For M >1, as L gets larger it is clear that the compress gets more efficient. This is
true since the- compress-expand time can be amortized over more arithmetic
operations, whereas the redundant calculation in the control store technique varies
directly with the total arithmetic operation count. In particular, one can construct the
following table of crossover values, i.e.,, those wvalues of L at which the
compress-expand technique becomes superior for fixed values of M.

(2.28) STAR 100 2 PIPE CYBER 203E 4 PIPE CYBER 203E
M= 2 L=86 L=3 L=3
M= 5 L=4 L=2 L=2
M =10 L=3 L=2 L=2

Finally, while the exact algorithm we have analyzed is not that common, it is
illustrative of a large class of syntactic kernels, i.e., those that require much
intermediate arithmetic on non-contiguous data. Neither the polynomial form nor the
periodicity of data were essential to the discussion. ’

Another data motion primitive is the merge.

(2.29) Def. Merge — Given i. Two source data vectors pointed to by AD and BD.
And a bit vector pointed to by BITD.
Given ii. A target vector pointed to by CD, the statement

CD = Q8VMERG(AD,BD,BITD; CD)"

will examine consecutive bits in the bit vector. If the
bit is ‘1, the next unused element of the A vector will
be placed in the next contiguous element in the C vector.
Concomitantly, if the bit is ‘0’, the next unused element
of the B vector will be placed in the C vector.

14

For example, if
ADD A1, A9, A3, Ay
BD >Bj, B9, B3, B4, Bs
BITDP>100111000

" Then after merging,

CDP>Aj, B;,Bg, Ag, A3, Ay, B3, By, Bs .

This operation allows one to veectorize kernels with IF tests by both the control store
and compress-merge approaches.

Consider the following calculation tree

IF TEST
ARITHMETIC ARITHMETIC

Where the arithmetic depends on the results of an IF test, the whole tree being inside a
DO loop.

The IF test translates to a vector relational creating a bit vector. Then one can do all
the arithmetie in both branches using the bit vector to control store results; or one can
use the bit vector to compress out active data, do full efficiency vector arithmetic on
the active data, and conclude with a merge back into the original data structure.

The relative efficiency of one approach over the other depends on such factors as
vector length and the amount of arithmetie in each branch.

There are two limitations to the control store and compress-merge techniques
1. The output data stream elements are in the same order as the input data, i.e.,

if Aj oceurs before Ay in a data structure before compressing or merging, the
same will be true after the given operation. _

15

2. The time to process a control store, compress or merge is proportional to the
total data structure size. For very sparse active data this exaets a high price.

Let us illustrate the second point with an example that more properly belongs to the
next section.

Let A be an N X N matrix stored by columns, i.e., standard FORTRAN storage.
Suppose we wish to operate on a row of the matrix, say to equilibrate it. One could
compress out every Nth element from the N2 elements. This would take 0 (N2) cycles
even though we seek only N elements. :

To overcome these limitations, there is the capability of scatter/gather.

(2.30)‘ Def. Gather — Given: A source data vector pointed to by AD, an index list, ie.,
an integer data vector pointed to by ID and a target data
vector pointed to by BD, the statament Co

BD = Q8VGATHR (AD, ID; BD)

will use the integers pointed to by ID as indices to take
possibly disparate elements from the A vector and make
them contiguous in the B vector.

Essentially, it accomplishes the following:

(2.31) DO 9000 J=1,N
B(J) = A(I{(J))
9000 CONTINUE

and does it in 0 (N) cycles.

Concomitantly, there is Q8VSCATR to accomplish

(2.32) AU = BQ)

" The constant of proportlonahty in the O(N) tlme to gather or scatter changes radically
. with succeeding archltectures

(2.33) ARCHITECTURE TIME PER FETCH RATIO
STAR 100 MICRO-CODED INSTRUCTION 800 ns
CYBER 203 SCALAR L/S ALGORITHM . 100ns - |. 8
CYBER 203E MICRO-CODED INSTRUCTION 30 ns 26

16

This tremendous efficiency increase will be needed as we move to three-dimensional
data structures, gathering and scattering two-dimensional and one-dimensional
substructures.

For our final kernel in this section, let us consider a subroutine to calculate a
piecewise linear function on a vector of data. -

Let f(nd) = Y(n+1) n=0,N and for nA<X< (n+1)A

f(X) = Y(n+1) + (X-nd) (Y(n+2) - Y(n+1))
A

-— i~ ——

We wish to caleulate Z(J)=f(X(J)) J=1,N where the values of X(J) are not in any
pre-assigned order. Thus, we must gather the ordinate values "to the left and right",

Y

'
Y(2)

Y(4) Y(5)

©Y(1)d

Y(3)

If we multiply the X values by 1/A, the resulting vector elements will have an integral
part which is equal to nA such that nA<X<(n+1)A and hence the fractional part is
(X-nd).

Propitiously, the operation "greatest integer less than or equal to" is one vector
instruetion on the CYBER 200. Hence, the algorithm can be completely vectorized.

1. Multiply X vector by 1/A
2. Find "floor" of resulting vector and use as index list for gather

3. Subtract to get vector of (X-nA)'s

17

4. Gather left hand ordinate values
Gather right hand ordinate values

5. Evaluate f(X) with simple vector arithmetic

Further syntactic details of data motion can be found in (3) and (5).

3. VECTOR NUMERICAL LINEAR ALGEBRA

Matrices can be divided into four classes depending on the structure of sparsity, i.e.,
the number and placement of zeros.

1. Full matrices - Those matrices where one may not assume any given element -
is a priori zero

2. Large banded - Those matrices that are Nx N such that there exists P<< N
with Ag ;=10 for ,k-—j IZP'i Pictorially such matrices look like

A1q \ Ap 0
\
Ap1 \ AN-P+1,N
\\
0 AN,N-P+1 ANN

where the hatched-in region contains the non-zeros. Usually P—® as N —=®.

3. Structured sparse - Those matrices that are N x N with 0(N) non-zeros placed
in a structured pattern, usually along a fixed bounded number of diagonals.
Pictorially such matrices look like

T

18

4. Random sparse - Those matrices that are NxN with 0(N) non-zeros placed in
a random pattern.

The various sparsity regimes just outlined demand widely differing data structures for
optimal execution of various numerical linear algebraic algorithms on a vector
processor. While this fact is true and is being recognized within the computing
community, there is also a belief that this is not true for sealar processors. Before we
get on to the proper discussion of this section, let me address this topie.

It is not true that one can ignore data structure on a scalar processor and get optimal -
performance. There are basically two reasons why this misbelief is widely held.

1. The difference in performance on a scalar processor between '"casual"
FORTRAN and optimal FORTRAN is usually much less than an order of
magnitude. Thus the most one can procure for one's efforts is usually a
factor of 2 or 3. -

2. The indexing nomenclature of FORTRAN would lead one to believe that
accessing a multi-dimensional data strueture is painless regardless of the
order of acquisition.

The fact of the matter is that one can improve scalar performance by carefully
indexing within a data structure. But the improvement to be attained is not nearly so
pronounced as on a vector processor. But rather than saying that a scalar processor
can execute the primitive operations (such as loading, arithmetie, storing, ete.) as well
for structured sparse problems as for full problems, it is true that to a certain extent
it executes the primitive operations for a full problem as poorly as it does for a
structured sparse problem.

The final truth is that for a contiguous data struecture, the processor can maximize its
ability to exchange data with memory and process it. The vector hardware of the
CYBER 200 is designed around this basie truth.

We shall discuss various fundamental algorithms for matrices in sparsity regimes #1-3.
Even on scalar processors, regime #4, the random sparse regime, needs very careful
attention. As of yet it is not possible to vectorize operations in this regime to the
same extent as the other three.

Let us begin with matrix addition and multiplication for full matrices.

If two full matrices are stored in the same order as contiguous data structures, we
have already seen that the matrix sum, being an element by element sum can be
accomplished with one instruction provided the size is 255x255 or less. However, even
for a 1000x1000 case one would need only 16 instructions. In particular, for ecolumnar
or row storage, (2.13) and (2.14) illustrate this fact.

19

Matrix multiplication is not quite so trivial a matter. Let us recall the definition of
the product of two NxN matrices:

Given full matrices A,B both Nx N then f:or C=AB,

N
Ck = E Ajl Bik

If one examines (3.1) one can see that the jk element of C is the inner (or DOT)
product of the jth row of A and the kth column of B. This naturally leads to our first

- algorithm. If A is stored by rows and B by columns, the produet matrix can be formed
in any storage fashion with N2 inner products. — ~

— —— _— ———

(3.1)
—— e . S

j A]1' Ajz, P AjN sz

’

Bk .

On the CYBER 203, the timing for the inner produect instruction is
12N + 260 (20 nsec.) cycles

while for the CYBER 203E it is projected to be
N + 0(1) eyeles.

Thus, the total time for the first algorithm is

(CLE COUNT IN3 + 0(N2) CYBER 203
CYBER 203
2 PIPE CYBER 203E3 + 0(N2) CYBER 203E

R 203E . e
4 PIPE CYBEu A 15 not stored by rows or B by columns, one must gather the appropriate entities.

This will affect only the 0(N2) term of course. However, one should not expect to find
this particular storage order too often. One would expect that both would be stored
one way or the other. ‘

Is it possible to find an algorithm that dispenses with the necessity of the gathers and
yet is efficient? Indeed there is. Not only is it possible to do away with the gathers,
but asymptotically this seecond algorithm we shall consider will be four times faster
than the first algorithm!!

It is. based on the linear algebraic fact that

(3.2)

This leads to the so called "outer product" algorithm, namely:
If A is stored byrcolumns, B is stored in any fashion then

(3.3) DO 9000 K = 1,N
C(1,K;N) = B(1,K) + A{1,1;:N)
DO 9010 L = 2N
C(LK;N) = C(1;K:N) +- B(L,K) » A(1,L:N)
9010 CONTINUE :
9000 CONTINUE

will compute C and store it by columns.

Note that the vector statement in the inner loop is a linked triad.

JEAN VECTOR LENGT L
The time for this algorithm is

3N3 + 0(N2) CYBER 203
N3/2 + 0(N2) CYBER 203E two pipe
N3/4 + 0(N2) CYBER 203E four pipe

Not only is_this algorithm asymptotically four times faster than the first algorithm,
but the 0(N2) is much smaller due to the fact that no data motion is required.

The reader versed in linear algebra will immediately see that the dual form of (3.2)
which expresses the Kth row of C as a linear combination of the rows of B yields an
algorithm identical in performance to (3.3). This algorithm demands that B be stored
by rows and calculates C by rows, but places no restrictions on A.

21

To sum up, the following table presents the necessary data structures to achieve the
matrix operations listed with the mean vector length given on various architectures.

3.4
(3.4) FULL MATRIX FULL MATRIX
ADDITION MULTIPLICATION
C=A+B C=AB
DATA STRUCTURE A rows A cols. A cols. A= \
B rows B cols. B » B rows

C rows C cols.-

. Ccols. C.rows '

- N2 N
N2 + 0(1) an3 + o(N?)
N2/2 + 0(1) N372 + o(N?)
: s N2/a + 0(1) N34 + 0(ND)

Since the mean vector length for the multiplication algorithms is the length of a
column of the matrix, it is clear that the data for the entire matrix need not be stored
contiguously, but merely the data for the columns (or rows). In particular, if an
augmented matrix is stored by rows, this will not affect the efficacy of the algorithm.

Next let us discuss the operations of matrix addition and multiplication for the other
two sparsity regimes.

We shall start with the structured sparse, since it will allow us to introduce a new
storage order.

For a structured sparse matrix, and in certain circumstances for a large banded
matrix, the preferred storage order for matrix multiplication is diagonal storage. The
number of non-zeros in each row or column is small, usually less than ten. Hence there
is no way to get efficient vectorization with this sparsity. However, the number of
elements in the non-zero diagonals varies from N to N-P+1. This is indeed more like
what we seek. Can this storage order give rise to an efficient algorithm, though? The
answer is yes. The details are left to the reader who may consult (7). We shall
illustrate this fact with the product of two tridiagonal matrices.

-

22

These matrices are such that
Ag g=0unless |[K-J| <1.

The product of two tridiagonal matrices is pentadiagonal. The main diagonal terms of
the product are given by

(3.5) Ckk = AkK-1 Bk-1k * Akk Bkk * Akk+1 Btk K=IN

where A10 = Bo1 = AN,N+1 = BN+1,N = 0.

as K runs from 1 to N

Ckk traverses Main diagonal of C
AK,K-1 traverses Sub diagonal of A
Bg-1,K traverses Super diagonal of B
ARk traverses Main diagonal of A
Bk traverses Main diagonal of B
AR K+1 traverses Super diagonal of A
Bk+1,K traverses Sub diagonal of B

Hence (3.5) directly translates into vectorized CYBER 200 FORTRAN. The exact
form will depend upon how the desecriptors for the various diagonals are set up.

Large banded matrices lie somewhere between the extremes of full and structured
sparse. We shall see that both of the storage orders we have discussed (row-column,
diagonal) can be efficiently applied to this sparsity regime. If all we were interested
in were addition and multiplication of matrices, the diagonal order would be
preferred. However, usually one is interested in the solution of the linear system
embodying the matrix. For this, row-column storage is preferred. Again, if the large
banded matrix is formed from a product of, say tridiagonal matrices, the diagonal
order is preferred. The individual choice must be made on the basis of more exact
problem details.

As for the storage orders themselves, it should be clear that the algorithm illustrated
for the product of tridiagonal matrices goes over to large banded matrices. Indeed,
diagonal storage can even be used for full matrices. The stream time for
multiplication in this case will be the same as it was for the row-eolumn algorithm, but
the startup time will be longer. One can see this qualitatively by noting that each of
the vectors in the row-column algorithm have length N while in the diagonal algorithm
lengths will vary from one to N. . :

23

The row-column algorithm for full matrices depended upon having contiguous
non-zeros in a given row or column. In the full case, there are N of them. In the large
banded case, there are between P and 2P-1. Hence the row-column algorithm goes
right over with a mean vector length of 2P-0(P2/N) which we assume is 2P -0(1).
There is some ancillary bookkeeping to do to keep track of the top and bottom of the
non-zeros, but no more so than for a scalar process.

As for matrix addition, the fundamental fact still holds, namely, if the two matrices
have their non-zeros stored contiguously in the same order, whether row, column or
diagonal, the sum can be calculated with one instruetion. .

Let us turn to the subject of linear equation solution— There are twe-basic approaches
to this problem, the direct and the iterative. For full (and large banded) systems, we
shall illustrate Gaussian Elimination and SOR, the most popular direct and iterative
procedures. We shall see that each of these algorithms can be implemented on the
CYBER 200 with great efficiency. -

For structured éparse systems, the implementation demands a bit more subtlety. We
shall illustrate Red-Black SOR, a workable iterative scheme for certain structured
sparse systems and cyclic reduction, a direct scheme for point and block tridiagonal
systems.

As with many direct methods, Gaussian Elimination is composed of two parts, the
decomposition phase and the substitution phase. The decomposition phase consists of
applying a succession of elementary transformations to the augmented matrix which
result in upper semi-triangular form. The substitution phase consists in the solution of
the derived upper semi-triangular system by uncoupling the variables one by one.
Interchanging rows in the augmented matrix is an allowable elementary transformation
and can be used to pivot.

Let us dispense with the question of pivoting once and for all. We shall be concerned
with implementation of Gaussian Elimination for both a rowlike and a columnar
storage scheme for the matrix.

Partial pivoting consists of two phases, the search and the row interchange. For
rowlike storage, the search for the maximal element is a simple vector operation.
Indeed the CYBER 200 has one instruction which searches for the maximum absolute
value contained in a vector, returning the value and its location. The row interchange
is accomplished with two gathers and two scatters. For rowlike storage, a gather is
necessary before the search can be done, but the row interchange is a succession of
simple vector moves.

The decomposition consists of two parts, the multiplier formation and the reduction.
These phases are repeated (N-1) times until the matrfix is transformed into upper
semi-triangular form. Le us illustrate the first occurrence of these phases.

Consider the matrix in original form:

3.6)
(A Az - - Ay

Azq

An1
We wish to find a set of multipliers such that when the first row is multiplied by the

Kth multiplier and added to the (K+1)st row, the (K+1)st element in the first column -
will become zero. Provided that Ajj is not zero, it is clear that

(3.7) - Ax/Aq1 - Agi/Aqq, .. - Agg/Aqg

is such a set of multipliers. The problem of A11 being zero or even very small is part
of the problem of pivoting which we have already considered.

Thus, for the multiplier formation, the columnar storage is favored since (3.7) can be
formed with one vector multiplication without the need for a gather.

Before we discuss the reduction phase, let us distinguish two types of rowlike storage
for the augmented matrix. Let M be the number of right hand sides to be solved for.
The most common values for M are one and N. When M =N we are usually solving for
the inverse of the matrix A. When M=N we will consider two cases of rowlike
storage. In the standard case, the matrix A and the matrix of right hand sides will be
considered to be separate. In the augmented case, the augmented matrix A:Y will be
stored by rows. Thus the following elements will be contiguous:

AK,1 AK,2 - AR, N YK,1 YK,2 . YK, M

The first reduction phase entails multiplying the first row by the succession of
multipliers and adding the results to the succession of rows below.

This has traditionally been presented as a rowlike algorithm, i.e., one takes one

multiplier, say (-A91/A11) and multiplies the whole row A19...A1N and adds to the
whole row Ag9 ... Agy.

Indeed, this operation is a linked triad on the CYBER 203E, and if we have augmented
rowlike storage, the entire row of A and Y-can be treated with one vector instruction.

However, when one investigates the total work to be done in treating the minor of the
augmented matrix, there is no reason why one cannot use all the multipliers, multiply
by one element in the first row and add this vector to the respective column in A.
Similarly for Yjg.

(3.8) -Ayq
A A2k

-An1 — -
A1q

’

Thus, the reduction phase is just as much a columnar algorithm. Perhaps the reason
why this a posteriori obvious fact has not been more generally recognized is that
traditionally numerical analysis texts have considered matrices as rowlike objects. (It
is curious that given this fact, FORTRAN standards treat matrices as columnar objects
when mapping them onto essentially one-dimensional memories.)

Since the decomposition phase has an 0(N3) operation count, while the substitution
phase has an 0(N2) count, if M, the number of right hand sides, is small, then
decomposition will clearly be the dominant phase. If, however, M=N, then
substitution also becomes an 0(N3) phase. Thus we will also consider the vectorization
of substitution.

First, let us summarize the vectorizability of decomposition:

(3.9) Augmented

Column Storage Row Storage Row Storage
Multiplier Vectors — Mean Gather Gather
Formation Length N/2 Necessary Necessary
Reduction Vectors — Mean Vectors — Mean Vectors — Mean
M =1 Length 2N/3 Length 2N/3 " Length 2N/3 + 1
Reduétion Vectors — Mean Vectors — Mean Vectors — Mean
M = N Length 2N/3 Length 5N/6 Length 5N/3

26

Thus for M =1 columnar storage is clearly superior, while for M =N, the extra time to
gather is more than offset by the longer mean vector length during reduction. Of
course, when M =N, we must consider the substitution phase before deciding since in
this case the two phases have comparable operation ecounts.

At the conclusion of the decomposition, the matrix is in upper semi-triangular form. If
the multipliers have been saved, then the LU decomposition has been affected. '

The substitution phase is recursive in that one solves for

XNK = Y_.NK K=1,M
ANN

and then

XN-1,K = —-—1—--— (YN-l,K -AN-1,N XN,K) K=1,M etc.
AN-1,N-1

This presents no problem for rowlike storage for M large. Indeed, the two equations
above represent simple vector operations of length M. The problem of M=1 or column
storage seems to leave us with an inner product algorithm, i.e.,

XN-L= —1 (YN-L - AN-L,N XN- AN-L,N-I XN-1 o)
AN-L,N-L

However, for column storage, if we observe carefully, it is possible to perform the
substitution phase using vector linked triads.

The key insight is that when Xy is solved for, its affect on all the variables
X1s -, XN-1 Can be "put back" into the equations. This can best be seen by looking at
the calculational tableau for a small case, say N=4.

X4 = 1 (Yq)
Agq
X3 = L (Y3-A34Xy)

X2 = L1 (Y2-Ag4X4-Ag3X3)

X; = —L (Y1-A14X4-A13X3-A12 X))

-

27

After solving for X4, one can multiply the column Aj4,Ag4,A34 by X4 and subtract
from the column Y3, Yg, Y3. This is a linked triad and when completed, the tableau is

X3 = 1 (Y3
A33

X9 = 1 (Yg-Ag3 X3)
Ag2

X = L (Y1-A13X3-4A19X9)
A1l

The above process can be repeated until all X's are solved for.

Let us then summarize the vectorizability of substitution:

(3.10) - - .
Column Storage Row Storage
M = 1 Vectors — Mean Inner Product
Length N/2 Necessary
M = N Vectors — Mean Vectors — Mean
Length N/2 Length N

This only confirms what we discovered about decomposition, namely for M=1
columnar storage is clearly superior, whereas for M =N the situation is reversed,
especially if augmented row storage is possible.

We have been discussing alternative storage schemes to optimize the vectorization of
Gaussian Elimination. But is it possible to make a choice in general? The answer to
this question depends upon analysis of the whole program. In particular, if the matrix
A is formed by scalar code, one can arrange its storage order as one pleases. Even in
certain vectorized cases one can still choose. Such considerations are global in nature
rather than local. To get the best performance, one cannot look at one DO loop or
even one subroutine, but at the usage of the data structure as a whole.

If we consider the foregoing discussion for the case of large banded systems, it is clear
that for both storage orders the preceding analysis still holds, but with vector length P
replacing N/2 and 2N/3 in the various phases. The efficiency in this case is determined
by the size of P. - i

It is also clear the foregoing analysis cannot efficiently be applied to structured sparse
systems. We shall return to this question a little later.

Let us go back to a full system which we wish to solve iteratively. There are many
methods which have been evolved to attack this problem. But there are several basic
considerations which are common to most or all of these methods. We shall illustrate
these basies, starting with the Jacobi and SOR algorithms for a full system.

Since SOR differs from Gauss Seidel only in the addition of a multiple of the diagonal
to the right hand side, without loss of .generality we shall consider the Jacobi and-
Gauss Seidel algorithms.

The basis for an iterative solution to AX=Y is to decompose A =M-N and attempt to
find X such that MX = NX+Y.

This "f&xed ognt" is soug{lt lgy makzng a guess x(0) and repeating the algorithm
MX(*+1) = NX(N)+ v untit X(0+1) and x(0) gre very close in the appropriate norm. Note
that the iterative technique trades solving AX=Y once for solving MX{n*1l) = Nx(n) +y
many times.

Much of the variety of iterative methods comes from the various ways one can form
M,N such that M-N=A. At the heart of many of these is the following additive
decomposition of A

A=AD+AL+AU

Where AD is the diagonal portion of A, Ay, is the lower triangular portion and Ay is
the upper triangular portion.

In terms of the notation above, the Jacobi iterative scheme is characterized by
Jacobi M=Ap N=-(Ap+Ayp)

This method typifies those methods that do not update variables until the end of a
given iteration. It is also well known that for a large class of problems it is the
slowest converging method in terms of the number of iterations necessary for
sufficient accuracy. It is not our business here to discuss this. Our object is to discuss
the vectorization of the scheme.

For full A, Jacobi vectorizes with length N. All one has to do is have a copy of the
matrix with the main diagonal zeroed out. Then the multiplication of (AL, +Ay)
times X' is multiplication of a full matrix times a vector which we already know can
be vectorized with a linked triad algorithm with vector length N. One simply adds Y
and the right hand side is formed. - o

The solution of ADX(“"'l) =RHS is a trivial vector multiply by the vector of reciprocals
of diagonal elements of A.

29

By contrast the Gauss Seidel iterative scheme is characterized by
Gauss Seidel M=Ap +Ay, N=-Ay
This method typifies those that do update variables as soon as a new value is available.
As for the vectorization, evaluation of the right hand side,
~Agx(n+y
Vectorizes to a linked triad algorithm with mean vector length N/2.
The solution of
(Ap+Ap)x(n+1) = rys

is recursive, but the form of the recursion is the same as the substitution phase of
Gaussian Elimination. Hence it vectorizes to a linked triad algorithm with mean
vector length N/2.

As before, these same algorithms work efficiently for large banded systems with
suitable modifications and large enough P.

As for structured sparse systems, the Jacobi algorithm easily transports as long as
-(AL, + Ay) is stored by diagonals. However, the Gauss Seidel algorithm does not go
over.

In summary, for the algorithms we have just presented

(3.11)
Jacobi or JOR Gauss Seidel or SOR

Full " Vectors — Mean Vectors — Mean
System Length N Length N/2
Large Vectors — Mean Vectors — Mean
Banded System Length 2P Length P
Structured Vectors — Mean Not Vectorizable
Sparse System Length > N-P, '

where Py is the non-zero diagonal f urthest-froni the main diagor'lal.\"

It is fair to say that we have rather definitively treated the veectorization of the linear
equation solution techniques just discussed, at least when the problem is main memory
contained, for full and large banded systems. It is also fair to point out that except for
the Jacobi iterative algorithm we have not given any results for structured sparse
problems.

30

In a certain sense, there are no definitive answers here. That is not to say that there
have not been algorithms developed, but that they are special case developments,
geared to specific problems. Thus this is a very active area of research.

We will close with two specific problems, one to illustrate the vectorization of an
interative method for a structured sparse problem and the other to illustrate a direct
method.

In general, one does not use SOR type algorithms for full systems of equations. The
typical usage of this scheme is for structured sparse problems arising in the solution of -
boundary value problems of partial differential equations.

o ——

Suppose one wishes to solve Poisson's equation

with Dirichlet boundary conditions on a rectangle. Using a uniform mesh, one can
consider the rectangular region as a sequence of nodes. Replacing v2 by the sum of
second order central differences in the X and Y directions, the partial differential
equation is replaced by a system of linear equations:

X X X . : : : x

X X X . : : : X

X " x X X

X x X X

X X X X

(3.12) T ' i
Pk " 20t ik Pkt T 2%t P
A2 A2 ik

Numbering the nodes in lexicbg‘raphic order
1,1 2,1 N,1 1,2 ... N,N ,

the system of linear equations has the form -

31

(3.13) -4 | 1 1
1 \
1
1 ¢ =Y
1
1 1 a4

where Y is formed from the boundary values of ¢ and the values of p. This is an
archtypal structured sparse system. T

There are five non-zero diagonals, with three of them eclustered around the main
diagonal and the other two spaced apart from these by a distance equal to the number
of nodes in one direction on the grid. This sparsity pattern defies vectorization with
the algorithms introduced so far.

The key fact needed to vectorize this problem is that the matrix above is a
consistently ordered 2-cyeclic matrix.

One might know the 2-cyclic nature of this matrix from the fact that it is block
tridiagonal, but this fact is geometrically recognizable if we go back to the mesh and
ask ourselves what the SOR method implies.

Each iteration, one passes over all the nodes, uwdating the value for ¢ from those
values "around it". If we order the nodes lexicographically, each node is updated from
two values at the last iteration and two values of the given iteration. The recursion is -
obvious. What if we reorder the nodes, dividing them into two classes, say the red and
the black.

(3.14)
X 0 X X
0 X 0 0
X 0 X X
0 X 0 0
X 0 X X

32

It is geometrically clear that the red nodes are updated from the black nodes and
conversely. Thus, with this ordering, it should be possible to vectorize the SOR.

If we go back to the algebraic problem and reorder the nodes so that all the black
nodes precede the red ones, the system assumes the form

(3.15) | 7
D, B ¢, Y,

where Dj and Dg are diagonal matrices, B and C are structured sparse matrices, ¢1
and ¢9 are the ¢ values on the black and red nodes, respectively.

The Gauss Seidel algorithm applied to this reordered system yields:

(3.16) D1 ¢1(I1+1) = Y.‘ -B ¢2(l‘l)
D, ™1 = y,_.c g,

Note that the structured sparse matrices are now on the righthand side, not the
lefthand side. Thus, we have traded equation solution with a struetured sparse system
for matrix multiplication by a structured sparse matrix. This latter operation is
eminently vectorizable if B and C are stored by diagonals.

For a general discussion of SOR methods see (9) and (10). For implementation
information on a red-black problem see (8).

Finally, we must address the question of convergence. When we rearrange the order of

the variables in a scheme such as SOR which updates as soon as possible, there is at
least the possibility that the convergence rate may be altered, if not destroyed.

33

However, in this case it is known that both the lexicographic order and the red-black
order are consistent orders, and thus the spectral radius of the respective SOR
iterative matrices are equal which implies that the asymptotic convergence rates are
equal. Of course this does not guarantee that one will see identical convergence rates
for a finite number of iterations. Experiments in a large number of cases has
demonstrated heuristically that actual rate of convergence for the red-black ordering
is no worse than the lexicographie. Indeed, in most cases it has been slightly better
from the standpoint of number of iterations. Of course the speedup in time per
iteration is phenomenal.

Finally, it should be pointed out that the same red-black ordering may be applied to
three-dimensional problems. (Indeed it can be applied- to -ene-dimensional problems as
well.) Also, replacing the Laplacian with a more general elliptic operator does not
affect the sparsity considerations, but may affect the actual convergence rate.

We close with an example of vectorized direct approach to a structured sparse
problem, namely point cyclic reduction applied to a tridiagonal system.

Recall that a tridiagonal system is one in which all elements except for the three
diagonals about the main diagonal are zero. A 5x5 tridiagonal matrix has the form:

(3.17) Ay G 0 0 0
B, A C, 0 0
0 By A3 C3 0
0 ,0 By A, C4

0 0 0 By Ag

Matrices such as this arise in many applications, especially in alternating direction
implicit methods.

There are several popular methods for solving such systems on a vector processor.
While Gaussian Elimination becomes a scalar recursive algorithm due to the sparsity

pattern, it can still be done efficiently for moderate size systems on the CYBER 200
by using the large register file and tuning the scalar code accordingly.

34

One can think of a tridiagonal system as arising from lexicographic ordering for a
one-dimensional mesh. Thus the red-black ordering scheme discussed previously can be
employed.

However, cyclic reduction is the most efficient method for large systems.

The basis for the eyelic reduction algorithm on tridiagonal systems is the following set
of observations.

1.

Consider three consecutive rows of the matrix with an even row in the middle

2-1 00 ... OXX XO0-00... 6
2k 00... 00X XXO0O0... o
'2K+1oo...oooxxxo...o -

The 2Kth row couples Xog with Xog4+; and X2K-1- If we add the proper
multiples of rows (2K-1) and (2K+1) to row 2K, we can eliminate this coupling
at the cost of coupling Xgg with Xo9g+9 and X9Kg-2. Thus

2K 0 0 0X® x®X o

If we carry out this procedure for all even rows

(i) We have uncoupled all the even variables from the odd variables.
(i) The resulting system for the even variables is again tridiagonal.
(iii) The odd equations provide a diagonal system for solving the odd

variables in terms of the even variables.

By observation (ii) we can apply cyelic reduction again and again, each time
halving the size of the system remaining.

Can we vectorize this algorithm, and what kind of data storage will it take to
accomplish it?

35

If one looks at the multipliers needed to accomplish the first stage reduction:

(3.18) B, c,
- — row1l + row 2 + - — row 3 row 2
A A
i 3
By Cy
- — row3 + rowd + - — row 5 row 4
A3 ' e As

By - By ,
row 4 0 B3 - A— 0 A4 + C3 - 4Z_'
3 T 3 '

The reduction phase can be continued as long as one likes. At each stage the size of
the remaining tridiagonal system will be halved. »

Eventually the remaining system will be small enough to solve by Gaussian Elimination
or any other technique. Then begins the substitution phase.

The following figure illustrates the order in which the variables are solved for N =8,
The variables above the line are found from the diagonal system involving the variables
below the line which have already been found:

(3.20)

4
8

co-p-|a:~
comhnlqmw..

36

Thus at each stage of the substitution one must merge variables just solved for in order
to prepare for the next level. As for the vectorizability of the diagonal system
solution, if one considers the last diagonal system for N = 5,

(3.21) 1

X3 = Az (Y3 -C3 X4 - By X

XS = A5 t (Ys T - B.é X4) T

- — - - . — - - — — ——

we see that the diagonal storage scheme allows this to be completely vectorized.”

Experiments on the STAR 100 (6) have shown that cyclic reduction is superior to
Gaussian Elimination (essentially scalar for tridiagonal systems) for N >150. There is
no doubt that this crossover number rises on the CYBER 203, due to its enhanced
scalar performance. Tests are being conducted at the time of this writing. However,
if one recalls the projected speedups in the compress and merge operations on the
CYBER 203E (Specifically, see (2.27).) it is clear that the cross over point will drop
dramatically on this architecture.

4. CONCLUSION

By no means have we exhausted the material that could have been presented in section
. In particular, no mention was made concerning the problems of eigenvalue and
eigenvector solution. This will be left for a later publication.

Finally, one should not forget that the CYBER 200 is a powerful scalar processor as
well. An excellent example of a dual vector-scalar algorithm for Bunemann's variant
of block cyelie reduetion can be found in (4).

We have introduced the concept of vector processing as embodied on the CYBER 200.
We have endeavored to show that the CYBER 200 hardware has the primitive
operations, supported by FORTRAN, to translate many syntactic kernels into single
instructions. More importantly we have endeavored to show that semantic
vectorization is possible and that vector numerical analysis is being developed to
provide the algorithm designer with the insights that will enable a new plateau of
caleulational ability to be reached. w -

37

10.

BIBLIOGRAPHY

Control Data Corp. STAR 100 Hardware Manual, #60256000 Rev. 10
Control Data Corp. STAR 100A Hardware Manual, #60256010 Rev. 01
Control Data Corp. STAR FORTRAN Manual, #60386200 Rev. G

Kascie, M. J., A Direct Poisson Solver on STAR, Proc. of the 1978 Workshop on-
Vector and Parallel Processors, Los Alamos Laboratories, LA-7491-C

Kasecie, M. J., Notes from the CYBER 200 Vector Applications Seminar

Madsen, N. K., Rodrigue, G. H., A comparison of Direct Methods for Tridiagonal .
Systems on the CDC - STAR 100, Lawrence Livermore Laboratory #UCRL-76993,
Rev. 1

Madsen, N. K., Rodrigue, G. H., Karush, J. L., Matrix Multiplication by Diagonals
on a Vector/Parallel Processor, Information Processing Letters Vol. 5, #2 June 1976

Nolen, J. S., Kuba, D. W., Kascie, M. J., Jr., Application of Vector Processors to
the Solution of Finite Difference Equations, Fifth Symposium on Reservoir
Simulation, Society of Petroleum Engineers, SPE 7675

Varga, R. S., Matrix Iterative Analysis, Prentice Hall 1962

Young, D. M., Iterative Solution of Large Linear Systems, Academic Press 1971

38

PSI EXCERPTS September, 1980
| Page 148- 31
(DC CYBER 17?0/70/L000/200

VECTOR PROCESSING - PROBLEM OR OPPORTUNITY by Michael J- Kascicy Jr.

INTRODUCTION

The invention of the stored program computer along with the
construct of high level languajes has revolutionized Numerical
.Analysis. This revolution has spread through much of Applied
Mathematics as well as some aspects of Pure Mathematics. The
essence of this revolution is the capability of carrying out
computations easily and efficiently which are beyond the realm

of possibility of a human with pencil and paper.

For example, Kawaguti in 1953 published results for the classic
Fluid Dynamics problem of two-dimensional flow past a circular
cylinder based on aoproximately LOS min. of calculation using

a8 mechanical desk calculator. Recencly B. Fornberg of the
California Institute of Technology has published further re-
sults on this problem for higher Reynolds number. His esti-
mate for the problem solution on a standard commercial scala-

processor of the present is LDE min.

It is by now widely appreciated that the difference between LDS
min. of human resource and even LD2 min. of computer time rep-
resents a revolution. A year and a half of a person’s life is
an incredible price to pay for one set of numbers. If as
Hamming has saids " The object of computing is insight. not

numbers”™. then one must consider Kawaguti's attempt a valiant

failure in the art of computing.
\

COMPANY PRIVATE

PSI EXCERPTS September
.
Page ly48-132

CDC CYBER 170/70/L000/200

VECTOR PROCESSING - PROBLEM OR OPPORTUNITY {cont'd}

Although the 10% min. is a feasible execution time, it is not good
enough. If one were experimenting with the various parameters of
this problem. such as mesh size or outflow boundary conditions-

even LDE beéins to loom large. These considerations are mostly
‘quantitative. Of far more qualitative interest is the fact that

as the Reynolds number increases- the computations needed to

solve even one case become enormous- In particular. up to the
present. there were no reliable results for Reynolds number adove
200. For all the power of scalar computersas solutions in this
regime are beyond them. What we need is another revolution. That's
what we've got!! Fornberg has just published computationally re-
liable results for the flow past cylinder problem with Reynolds
number 300. Such a solution takes uncer 1 min. on the CDC STAR-
100. This two order of magnitude increase in computational effic-
iency represents just as miach an advance over the scalar computer

as the scalar computer represents an advance over Kawajuti's heroic
attempt. And yet it is only the beginning. - Even at Reynolds number
300 one cannot decide between the Brodetsky vs. the Batchelor con-

jectures concerning the nature of such flows as the Reynolds num-

ber increases-

Where do we go from here? UWhat is the qualitative essence of this
revolution? What problems can we expect to solve with this new

tool? UWhat problems can we not expect to solve with this new

-~

tool? It is our objective here to at least develop a vocabulary
so that we can ask these questions in an intelligent manner. The
answers.: hopefullys will keep us happily and gainfully employed

for the near future.
&

COMPANY PRIVATE

19480

PSI'EXCER?TS September. 1980
Page 148-33

¢DC CYBER 170/70/t000/200

VECTOR PROCESSING - PROBLEM OR OPPORTUNITY {cont'd}

How is the vector processor qualitatively different from the
scalar processor? The scalar processor treats each individual
calculation as a new adventure- Hence. within the limits of
memory banking. a scalar processor can treat data that is not
contiguous as well as it can data that is contiguous. Perhaps

a better way to put this fact is that the scalar processor treats
contiguous data as poorly as it does non-contiguous data. The
vector processor. on the otﬁer hand- trea%s acsemblages of data
as units. B8y "taking the larger view™ it is possible to gain
internal parallelism and optimize the hardware within the pro-

cessar.-

It is not our object here to detail the internal architecture

of the CYBER 200 nor to debate its merits vs-. other vector

architectures: nor even to demand that a system like the CYBER
200 must be 100% utilized to be cost effective. Some users will
be content with attaining that portion of the system'’s power
which is achievadle with present programming practices. They
will see performance improvements due primarily to the large
memory and scalar processing capabilities» and secondarily to
vector processing ability. Taking advantage of only a portion
common occurence for

of a large computer's architecture is a

at least some portion of each installation’s work.

B

COMPANY PRIVATE

PSI EXCERPTS September.

Page 148-3y
CDC CYBER 170/70/L000/200

VECTOR PROCESSING - PROBLEM 0OR OPPORTUNITY {cont'd}

Today I address those in.the supercomputer community who are
interested in assaulting the next plateau of computational
ability. The success or failure of a 3iven tool in this en-

deavor will depend as much on how intelligently it is used-.

as how intelligently it is designed. What we must ask is whether

a given design evinces the promise of allowing human intelligence

to use it to its fullest. Thus we will limit ourselves to g phen-
omenological description of CYBER 200 performance and how it applies

to some common linear algebraic algorithms.

To quantify the performance of the CYBER 200 architecture let us
introduce the following:
DEF. MEGAFLOP {a3breviated mflop henceforth}: the ability to do

one million floating point operations in one second.

As a scale of references the CDC 7600 is a 3-10 mflop computer
depending upon the particular algorithm and its implementation.
The key fact. however, is that this range of performance can be
considered 0{1} mflop. Several present vector processors. in-
cluding the STAR-100 are capable of 0{10} mflop. In contrast.to
thiss consider the following hardware rates for the CYBER pgs,.
an enhanced version of the Control Data CYBER 203. This Computer
€an do arithmetic in both 32 and bLY-bit modes and has either two

or four vector pipelines.

f.OMPANY PRIVATE

1980

PSI EXCERPTS September. 1980
Page~lH8*3§
CDC CYBER 170/70/L000/200

VECTOR PROCESSING - PROBLEM OR OPPORTUNITY {cont'd}

.TABLE I

_CYBER 205 ° ADD OR MULTIPLY MEGAFLOP RATE
Column A is for the two pipe architecture and b4-bit operands.
Lolumn B is for the two pipe architecture and 32-bit operands or
the four pipe architecture and bY-bit operands.

Column C is for the four pipe architecture and 32-bit operands.

VECTOR

LENGTH A 8 4

25 20.0 22.2 23-1

50 33.3 40.0 43.7

bY 38.4 47?.8 54.2

100 50.0 bb.? 8.4

500 83.3 142.9 220.3

1000 90.0 1bb.? 284.1

10000 99.0 196-1 384.3

50000 99.8 199.2 39.8
100 200 400

It is clear that here is a tool almost orders Of magnitude better
than tﬁe best scalar computer of today. and almost an order of
magnitude better than the present class of vector processors. And
this is only the beginning. For certain algorithas, their ex-
pression as data structures leads to linked triads defined b2lou.

TABLE II details the hardware performance of such triads on the

CYBER 205, {Columns A. B and C mean the same 3s in TASLE I.}

COMPANY PRIVATE

PSI EXCERPTS September, 1980
Page 14s8-34
€DC CYBER 170/70/L000/200

VECTOR PROCESSING - PROBLEM OR OPPORTUNITY {cont'd}

DEF. LINKED TRIAD - a triadic combination of two vectors and one

scalar that can be evaluated as one operation.
The two most important examples of this structure are:
Vector + ScalarsVector

{Vector+Scalar} * Vector

TABLE II
CYBER 20§- LINKED TRIAD MEGAFLOP RATE

VECTOR
LENGTH A 8 4

25 25.b 27.4 28. 4

50 45.5 51.3 54.8

bY 54.7 L3.Y4 La.8

100 4.1 90. 9) 102.%

500 349.3 238.1 339.0

1000 370.9 298.5 426.2

10000 196.7 38L.8 249.1

50000 199.3 399.3 789.3

200 400 300

To complete this description of the CYBER 205 capavility. let
us also mention that the full vector processing capability is
sustainadle while up to 1b channels are bursting at 200 megadits
each. Real memory will be available with up to Y4 million words.
Last but not least, Control Data‘expects to complete the first
CYBER 205 jin 1980. ye are thus not talking about some future

dream based Upon as yet unrealized breakthroughs. UWe are talking

about a real computer. COMPANY pRivATT

PSI EXCERPTS September. 19ag
Page 1ys5-37
CDC CYBER l?D/?D/bUUD/EDD

VECTOR PROCESSING - PROBLEM OR_OPPORTUNITY {cont'ay

Indeed. if one would like to speculate aSout the near future,
CdC is even now designing'computers for the middle 80's with

peak perforﬁance in the D{lODU}mflop range.

What we have described so far is a calculational engine of immense
raw power. Can it be harnassed to perform useful work without
serious degradation? Depending upon your viewpoint, this question

poses a problem or provides an Opportunity.

To see this. ¢ s perform the following thought experiment.
Suppose our processor has the Capability of perforaming calculations
simultaneously in the vector and scalar processor. {The CYSER 205
has this capability}. Without rega~d for the possible logical de-
pendencies. given that the vector processor is one order of magni-
tude faster than the scalar processor. it is necessary for 0% of
thé calculations to be done in the vector processor in order not to
be "scalar”™ bound. With a two orders of magnitude ratio, the per-
centage climbs to 99% and for three orders of majnitude 9.9%. Is
this attainable? Herein lies the problem+----Crr the opportunity.
How can we solve the problen..... or take advanlaje of the opportunity?

Let us first outline one methodology that definitely, PQSitiVely will}

not work-

The general philosophy of thjs methodology iS to take all the sccy-
mulated prejudices that haye been acqu}red working with previous
generations of computers ang Use them to jud3e the °°55ibility of

attaining the performance listeq j, 7agLes I and II.

Company PRIVATE

PST EXCERPTS September. 1930

Page 148-33
€DdC CYBER L?D/?O/EQQQ/EDD

VECTOR PROCESSING - PROBLEM OR OPPORTUNTITY {cont'gd}

The practical dpplication of this philosophy is not to speak of
moving to new plateaus of solving physics problems, opr engineering
problems, or mathematics problems, or algorithmic pProblems. byt to
Speak of veétorinzing codes, usually old codes.

Once you have gotten this far, you are trapped. The only way out

at this point is to deny the information theoretic counterpart of

the second 1au of thermodynamics. As an original problem is syc-
S —

Cessively transformed, it is being filtered., until it js finally 4

computer code. Each filter degrades the information content a little

Mmany cases. but consider, even if Ore quarter of the arithmetic
Operations a-e left to the scalar processor, ang the vector pro-
cessor runs at infinite rate, performance js only amplified by a
factor of four. One does not have to be 4 professional skebtic to
See that syntactijc vectorization of gqy of a code is a formidable

problem indeed.

Instead-of thinking of all this 2S a problem, let’s start thinking
of it as an Oppor~tunity., the opportunity to solve problems beyond
the ranje of the scalar ang vector pPOCeSSO;S of today. Recently

@ researcher in fluig dynamics was ciscussing an algorithm he would
have liked to pursue. He discarded it out of hand because it would
have involved solving 1p0Q0g equations jn 1000 unknowns. This was ob-
viously Unthinkable to higm. Using Gaussian Elimination {without
pivoting}, this set of equations can pg solved in under 2.5 seconds
on the fayr Pipe CYBER g5 When ddvised of this fact, he got that
far away 1ook in his eyes. wWhat ney dvenues of thought does thijs

Processor open up? COMPANYPRIVATE

PSI EXCERPTS September,

Page 148~ 39
CDC CYBER l?U/?D/bUDU/EOO
VECTOR PROCESSING - PROBLEM OR OPPORTUNITY {cont gy

Yell, don't run off to the ivory tower. This is not a Case of
unconstrajneqd Optimization. Let's try to outline a positive
approach to this opportunity that Satisfieg the necessary con-

straints.

First, it is clear that not every problen should be solved on 4
Super vector Processor. Whether or not the loarge real semory
makes even the scalar component worth the pPrice of the whole
Computer is not the point. e regularly solve probleas with -
hand or desktop instruments that once were mainframe problesns.

Uhy do w2 stil} have @mainframas» Obviously because ve have en-
larged Qut problem haorizon as we have enlarged our Computing

Capanility. [Let’s not stop ngy.

This does not means of course, that the large problenms i{n today'’s

ance gain with purely Syntactic transition. 8ut when You-deal wijth
@ machine with a peak Stream rate of 800 mflop. 40 aflop just doesn’t

look all that impressive any more.

What have we concluded sg far:

1. Syntactic conversion of codes will gain us ré@spectahle rerform-

ance but will not do jn the long run.

2. Components of existing Codes that can take advantage of the

Super vector pracessor’g Stream rate should be identi!ied

-~

to aid in the transition,

3. New prograas should pe develypeg jn terss of dlgorithas thy,

map well onto the supen VeCtor processor-

COMPANY pgiVATE

1980

EXCERPTS September. 1980

: 148-4y)
CYBER 170/?0/L000/200

OR PROCESSING - PROBLEN OR OPPORTUNITY {cont'd}

various applicable disciplines. While the more subtle results of

this activity are yet to be determined. a good place to start is

with ’
VECTOR NUMERICAL LINEAR ALGEBRA

.The algorithms of Linear Algebra provide a convenient starting
point for constructing our desired algorithm class. Matrix multi-
plication and linear equstion solution a~e not only important in
real world applications. but they have also achieved a certain
status as benchmark problems. <{In some Wayss our analysis is
paralleled by that of {3} in the construction of the BLAS. Houw-
ever. we differ in that in terms of our algorithm criteria. the
BLAS are toco low level. too general {and yet too specific}, and

too syntax oriented. They may be fina on a scalar processor, but

will not do on the super vector processor}.

We shall limit ourselves here to brief examples of several ele-
mentary operations and how present knowledge of their proper im-

plementation on the CY8BER 205 does or does not fit our criteria.

Let us first estadlish a vocabulary of matrix sparsity. A matrix
is considered full if a priori a1] elemerts aust be considered
non-zero. A m@airix is considerag la~ge banded iff all elemants
outside the diajocnals P diagonals from the main diagonal are zerg
and all elements inside these diajonals are considered non-zerg. A
matrix is structured sparse i{ff tpe non-zeros lie along a fixead

relatively small numYer of diagonals. f{There'is a fourth class

which consists of those matrices phgr have {4} nor-zeros in g

completely random pattern. We sha]) not <onsider theseg}.

COMPANY pRivVATE

PST EXCERPTS September, 1980

Page L48-yp

CDC CYBER L?U/?D/BUDU/BDD
————————=/70/k000/200
{cont’ g3

VECTOR PROCESSING - PROBLEM oR OPPORTUNITY

of mean vector length} 0n certain fundamental linear algebraic al-
gorithms. Fqp More details ang further references, See {2}. The

terms "row"n, "col." and "diagonal”® refer to the Storage order of g

given matrix.

TABLE IIT
DATA MEAN LINKED
OPERATION STRUCTURE VECTOR LENSTH TRIAD
MATRIX NULTIPLICATION
\\\\7\\
C=AB :
FuLL A col. A--- N YES

B--- or B row
C col. C row

LARGE BANDED Ditto ap YES
STRUCTURED -
SPARSE A diagonal lengths
B diajonal of NO
€ diagonal diagonalsl

v

GAUSSIAN ELTHINATION
T

Ax=r COMPANY PRIvaTE

A

IRPTS
3-43
R 170/70/000/200
SROCESSING - PROBLEN OR OPPORTUNITY {cont'd}
REDUCTION
FuLL A .row or col- 2N/3
LARGE BANDED A row or col. P
SUBSTITUTION
FuLL A rou N/2
A col. N/2
LARGE BANDED A col. P
A row P
FULL GAUSSIAN
INVERSTON
AX=7
REDUCTION A row or col- 2N/3
AY augmented
rows SN/3
SUBSTITUTION A row N
A col. N/2

n

SOR on full or la~ge bandez systems uses the

and substituticn algorithms listed a%ove-

STRUCTURED SPARSE {SOR}

as applied to an
3

N~ mesh to
solve red-black .
elliptic 8Y node order nse
problem .

COMPANY pmVATE

a
=

»
-

rix

o

39

1
.

Septembers 1980

YES
YES

INNER PRODUCT
YES

YES
INNER PRODUCT

YES

YES
YES
YES

tiplication

NO

PSI EXCERPTS September. 1980

Page lyg8-yy
CDC CYBER 170/70/L000/200

VECTOR PROCESSING - PROBLEM OR OPPORTUNITY {cont'd}

CYCLIC REDUCTION

LOR TRIDIAGONAL

SYSTENM

AX=y - . A diagona} N/log N NoO

Let us examine the algorithms jn TABLE IITI in the light of the
'five Criteria. First, they are general purpose. Many "dusty deck"
programs could benefit immediately from insertion of these algor-
ithms. As for Specificity, admittedly this is an area where much
growth is needed. This will not happen unti] the aforementioned
loop is closed to connect Computationa} entities with the original
mathematical ognes. This is the ainm of the Contro] Data sponsored
research in this area. Bhile these algorithms are not considered
low level from the programming standpoint, frop the applications
problem viewpoint they certainly are. On the other hand. they are
high level enough to allow a super vector pProcessor like the CYBER
205 not to get bogged down. i-.e., to allow the actual performancg
“to Closely match the theoretical Perfaormance for a given vector
length. Finally, within the limitation of real memory. each of
these algorithnms is monotonically More efficient as the problem

size increases.

In conclusion, the super vector Processor presents an unprecedented
Opportunity to move into new calculatjona) regimes. provided we
approach it intelligently. Part of this intelligence is the recog-
nition that such a Processor must be sggp a5 g4 full partner jn the
quest for insight along with physica] intuition, engineering ingen-

uity and mathematical rigor.

COMPANY PRIvaTE

