
CDC®VSOS USER 1 S GUIDE
FOR FORTRAN 200
PROGRAMMERS

FOR USE WITH
CDC® CYBER 200
SYSTEM COMPUTER

USER'S GUIDE

60455390

@:~
CONTl\.OL

DATA

REVISION RECORD

REVISION DESCRIPTION

A Manual released.
(12-14-84)

B Manual revised to reflect VSOS 2.3 at PSR level 670.
(12-05-86)

Publication No.
60455390

REVISION LETTERS I, 0, Q, S, X AND Z ARE NOT USED.

© 1984, 1986
by Control Data Corporation
All rights reserved
Printed in the United States of America

2

Address comments concerning this
manual to:

Control Data Corporation
Technology and Publications Division
4201 North Lexington Avenue
St. Paul, Minnesota 55126-6198

or use Comment Sheet in the back of
this manual.

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual, are indicated by bars in the margins or by a dot
near the page number if the entire page is affected. A bar by the page number indicates pagination rather than content has changed.

PAGE REV PAGE REV PAGE REV PAGE REV PAGE REV

Front Cover - 4-12 A A-3 A
Title Page - 5-1 A A-4 B
2 B 5-2 A A-5 B
3/4 B 5-3 A A-6 B
5 A 5-4 A Index-1 B
6 A 5-5 A Index-2 A
7 A 5-6 A Index-3 B
8 A 5-7 A Comment Sheet B
9 A 5-8 A Back Cover -
1-1 A 6-1 B
2-1 A 6-2 A
2-2 A 6-3 A
2-3 A 6-4 B
2-4 A 6-5 B
2-5 B 6-6 A
2-6 A 6-7 B
2-7 A 6-8 A
2-8 A 6-9 A
2-9 A 6-10 B
2-10 A 6-11 A
2-11 B 6-12 B
2-12 A 6-13 A
3-1 A 6-14 B
3-2 B 6-15 B
3-3 B 6-16 A
3-4 A 7-1 B
3-5 A 7-2 B
3-6 B 7-3 B
3-7 B 7-4 A
3-8 B 7-5 B
3-9 B 7-6 B
3-10 A 7-7 A
3-11 A 7-8 A
3-12 B 8-1 A
3-13 A 8-2 B
3-14 A 8-3 A
3-15 A 8-4 A
3-16 A 8-5 B
3-17 A 8-6 A
3-18 A 8-7 A
3-19 A 8-8 A
3-20 B 8-9 A
3-21 A 8-10 B
3-22 B 8-11 B
3-23 A 8-12 B
3-24 A 8-13 B
3-25 B 8-14 B
4-1 A 8-15 B
4-2 B 8-16 B
4-3 A 8-17 B
4-4 A 8-18 B
4-5 A 8-19 A
4-6 B 8-20 B
4-7 A 8-21 B
4-8 A 8-22 B
4-9 A 8-23 B
4-10 A A-1 B
4-11 A A-2 A

60455390 B 3/4

PREFACE

AUDIENCE

This manual provides an overview of the CDC® Virtual Storage Operating System (VSOS) and an
introduction to the FORTRAN 200 compiler. The manual is intended for the experienced
FORTRAN programmer who is new to VSOS and to FORTRAN 200.

ORGANIZATION

The major topics discussed are as follows:

• CYBER 200 system access

• VSOS file management

• Differences between FORTRAN 5 and FORTRAN 200

• Handling FORTRAN I/O functions

• Abnormal job termination

• Optimizing job performance

RELATED PUBLICATIONS

Related information can be found in the following publications:

Publication

.VSOS Version 2 Reference Manual, Volume 1

VSOS Version 2 Reference Manual, Volume 2

FORTRAN 200 Version 1 Reference Manual

CYBER 200 FORTRAN Language Version 2 Reference Manual

Remote Host Facility Handbook (used with NOS systems)

Remote Host Facility Handbook for IBM Systems
(used with MVS/JES2, MVS/JES3, and MVT/ASP systems)

CYBER 200 Model 205 Hardware Reference Manual

60455390 A

Publication
Number

60459410

60459420

60480200

60485000

60459060

60459050

60256020

5

6

DISCLAIMER
This product is intended for use only as
described in this document. Control Data
cannot be responsible for the proper
functioning of undescribed features or
parameters.

60455390 A

1. INTRODUCTION

2. CYBER 200 SYSTEM ACCESS

CYBER 200 Access Validation
Constructing a CYBER 200 Job File

Control Statement Group
Job Statement
USER Statement
RESOURCE Statement
Subsequent Statements

Input Groups
Submitting the Batch Job

Submit Errors
Checking Job Status
Finding Your Output File
Job Dayfile

Batch Job Submittal
Interactive Access

3. FILE MANAGEMENT

File Types in CYBER 200 Jobs
File Use in CYBER 200 Jobs
Connecting Files to Your FTN200

Program
Changing File Connections on the

Program Execution Statement
Job Example That Uses Input Data

Twice
Using the Compile and GO Option
Drop File Space

Specifying Drop File Size With a
LOAD Statement

Using CYBER 200 Mass Storage Files
Temporary Files
Permanent Files

Permanent File Entry
Information

File Ownership
Public Files
Private Files

Attaching Private Files
Belonging to Another User

Permitting Other Users to
Attach Your Private Files

Giving Your Private Files
to Another User

Pool Files

60455390 A

CONTENTS

1-1

2-1

2-2
2-2
2-4
2-4
2-4
2-5
2-5
2-5
2-6
2-6
2-6
2-7
2-8
2-8
2-11

3-1

3-1
3-2

3-3

3-4

3-5
3-6
3-7

3-8
3-8
3-8
3-9

3-9
3-10
3-10
3-10

3-10

3-11

3-12
3-12

Transferring Files to and From a
Front-End System

Character Data Transfers
Character Data Transfer

Example
Binary Data Transfers

CRH Data Delimiters
Data Conversion
Binary Data Transfer Example

Using a CYBER 200 File Interactively
Using Magnetic Tape Files

Reserving Tape Drives
Requesting a Tape File

4. FORTRAN PROGRAM CONVERSION

FORTRAN 5/FORTRAN 200 Syntax
Differences

FORTRAN-Supplied Functions
Boolean Functions
I/O Functions

FORTRAN-Supplied Subroutines
Subroutines With Functional

Equivalents
Subroutines Without Functional

Equivalents
Product Interfaces
Machine-Dependent Differences

Integer Representation
Floating-Point Representation

Converting to Normalized
CYBER 200 Real Format

Converting From CYBER 200
Normalized Real Format

Floating-Point Zero and
Floating-Point Indefinite

Double-Precision Representation
Complex Representation
Logical Representation

5. FORTRAN I/O

Mixing FORTRAN Runtime and SIL I/O
Record I/O

FORTRAN Runtime Record I/O
SIL Record I/O
Access Methods

Data Transfer
Block I/O

3-12
3-13

3-14
3-14
3-16
3-17
3-19
3-20
3-24
3-24
3-24

4-1

4-1
4-3
4-3
4-3
4-4

4-5

4-6
4-6
4-7
4-8
4-9

4-9

4-10

4-11
4-11
4-12
4-12

5-1

5-2
5-4
5-4
5-4
5-5
5-6
5-7

7

6. CYBER 20Cl MEMORY MANAGEMENT 6-1 Scalar Processor 8-2
Register File 8-3

Memory Paging 6-1 Instruction Stack 8-4
Program Components 6-2 Scalar Optimization 8-4
Generating the Executable File 6-3 Automatic Optimization 8-4
User-Controllable Page Mapping 6-10 DO Loop Modification 8-5
Advising the System of Memory Using Recursive DO Loops 8-5

Requirements 6-11 Merging Short DO Loops 8-5
Implicit I/O 6-12 Unrolling DO Loops 8-6
System Shared Library 6-14 Splitting DO Loops 8-7
Controllee Files 6-15 Vector Processor 8-8

Two-Pipe and Four-Pipe
Processors 8-9

7. ABNORMAL TERMINATION 7-1 Storing Arrays 8-9
Vector Optimization 8-9

CYBER 200 Job Termination 7-1 Automatic Vectorization 8-10
TV Control Statement 7-1 Linked Triads 8-10

CYBER 200 Task Termination 7-2 Factorizing DO Loops 8-11
User Reprieve Processing 7-2 Contiguity in Memory 8-12
Abnormal Termination Control 7-2 Maximum Vector Length 8-13
SIL Status Code Processing 7-2 Explicit Vectorization 8-13
Data Flag Branch Manager 7-4 Explicit Vector Syntax 8-14

System Error Processor 7-5 Implicit Vector Syntax 8-15
Debugging Tools 7-5 Other Vector Functions 8-17

MDUMP Subroutine 7-5 Vector Functions 8-17
DUMP Control Statement 7-6 Control Vectors 8-18
LOOK Utility 7-6 WHERE Statements 8-19
DEBUG Utility 7-7 QB Functions 8-20

Speeding Up Subroutine Calls 8-21
Register File Swapping 8-22

8. PROGRAM OPTIMIZATION 8-1 Parameter Passing 8-23

APPENDIX
A. GLOSSARY A-1

INDEX

8 60455390 A

2-1 CYBER 200 System Access
2-2 CYBER 200 Job File
2-3 CYBER 200 Control Statement

Group
2-4 Sample Batch Job Submittal
2-5 Successful Interactive Login

and Logout
2-6 Unsuccussful CYBER 200

Connection Attempt
2-7 Unsuccessful CYBER 200 Login

Attempt
3-1 Files Used in Job Execution
3-2 Job That Uses Job File Data

Twice
3-3 Modified CYBER 200 Job File
3-4 Character Data Transfer

Example
3-5 TDUMP Octal Dump Example
3-6 Binary Data Transfer Example
3-7 Data Dumps From MFLINK Job

Example
3-8 Job File Modified for

Interactive I/O

4-1 FORTRAN 5/FORTRAN 200 Syntax
Differences

60455390 A

FIGURES
2-1 3-9 Interactive I/O Example
2-3 5-1 FORTRAN I/O Interface

5-2 Mixed I/O Examples
2-4 5-3 Direct Access Program
2-9 Example

5-4 Explicit I/O Data Transfers
2-11 5-5 Block I/O Example

6-1 SUMMARY Output Example
2-12 6-2 Storage Map Example

6-3 Load Map Example
2-12 6-4 Task Virtual Space Mapping
3-2 6-5 Mapping Uninitialized

Common to the Drop File
3-5 6-6 Implicit I/O Job Example
3-7 6-7 System Shared Library

Format
3-15 6-8 Memory Allocation for
3-17 Dynamic Files
3-18 7-1 DEBUG Session Example

8-1 Scalar Processor Diagram
3-21 8-2 Vector Processor Diagram

8-3 Explicit Vector Syntax
3-22 8-4 Use of the WHERE Statement

TABLES

4-2
4-2 FORTRAN 5 Intrinsic Functions

Not Provided by FORTRAN 200

3-23
5-1
5-3

5-5
5-6
5-7
6-2
6-4
6-7
6-9

6-11
6-13

6-14

6-16
7-8
8-2
8-8
8-15
8-20

4-4

9

CYBER 200 SYSTEM ACCESS

A CYBER 200 system is always a back-end system. This means the system is accessed only
through a smaller front-end computer. Figure 2-1 illustrates CYBER 200 system access.

USER

FRONT-END
SYSTEM

CYBER 205
SYSTEM

Figure 2-1. CYBER 200 System Access

A front-end computer system keeps the CYBER 200 as free as possible for the primary purpose
of large-scale computation. To allow this, the front-end system performs housekeeping tasks
such as file editing, job submission, and input/output handling.

2

A CYBER 200 system can be connected to more than one front-end system. One system frequently
used as a front-end system is the CDC CYBER 170 Computer System. The operating system on the
CYBER 170 computer can be either the Network Operating System (NOS), the Network Operating
System/Batch Environment (NOS/BE), the Network Operating System/Virtual Environment (NOS/VE),
or SCOPE. The operating system on the CYBER 200 computer is the Virtual Storage Operating
System (VSOS). This manual uses CYBER 170/NOS 2 examples to illustrate front-end system use.

60455390 A 2-1

This manual assumes that you already know how to perform the following functions on your
site's front-end system:

• Log in and log out

• Text file editing

• File storage and deletion

If you have questions in these areas, refer to the Remote Host Facility Handbook for your
front-end system. (See the list of related publications in the preface.) You may also ask
site personnel for help.

CYBER 200 ACCESS VALIDATION

To access a CYBER 200 system, ask site personnel for the following information:

• User validation on the front-end system if you do not already have such validation.

• The three-character logical identifier (LID) for the CYBER 200 system.

• A six-digit user number and an account name recognized by VSOS. If your site
requires user password entry, you must also ask for your initial password.

This information is required to complete the following actions:

• To submit a CYBER 200 batch job

• To log in interactively to the CYBER 200 system

The job examples in this manual use representative values for these items.

CONSTRUCTING A CYBER 200 JOB FILE
Like a CYBER 170 job, a CYBER 200 job begins as a text file called a job file (figure 2-2).

The sample CYBER 200 job file in figure 2-2 contains three delimiters. These delimiters
split the sequence of lines in the job file into groups.

2-2 60455390 A

ADEY,ST=ABC.
USER,USER=123456,ACCOUNT=ACCT933,PASSWORD=XYZ.
RESOURCE,TL=10.
FTN200.
LOAD.
GO.
(Delimiter)

PROGRAM LOOP
K = 0
DO 10 I=1,5
READ 100,J

100 FORMATCI1)
10 K = J + K

PRINT 200
200 FORMAT(' THE SUM IS')

PRINT 300,K
300 FORMATC1X,I2)

STOP
END

(Delimiter)
1
2
3
4
5
(End of file delimiter)

Figure 2-2. CYBER 200 Job File

The first group is the control statement group. The groups that follow the control statement
group contain input requested by the control statements.

Every job requires a control statement group. Subsequent groups are optional. If the
control statements do not request input, no other groups are needed, and the job consists
only of the control statement group.

If a job file has more than one group, you must insert delimiters between groups. To insert
a delimiter into a CYBER 200 job file, use a text editor on the front-end system to insert an
end-of-record indicator at the appropriate point in the text. When you transfer the job file
to the CYBER 200 system for execution, each end-of-record indicator is converted to the ASCII
GS character (hexadecimal code lD) that the CYBER 200 system recognizes as an end-of-group
delimiter.

60455390 A 2-3

CONTROL STATEMENT GROUP

The control statement group is the first group in a job file. All control statements for a
job are in this group. The control statement group contains only control statements; it
contains no data or directives.

Figure 2-3 lists the control statements from the job file in figure 2-2. Generally, control
statements are executed in the order in which they appear in the group.

Job Statement

ADEY,ST=ABC.
USER,USER=123456,ACCOUNT=ACCT933,PASSWORD=XYZ.
RESOURCE,TL=10.
FTN200.
LOAD.
GO.

Figure 2-3. CYBER 200 Control Statement Group

The first statement in the control statement group is the job statement (ADEY,ST=ABC in
figure 2-3). The software that transfers the job file uses the job statement. This
statement specifies two items of information: the name you give the job (ADEY) and the
logical identifier of the CYBER 200 system to which the job file is transferred (ST•ABC).
This logical identifier (LID) is obtained from site administration.

USER Statement

The second statement in the control statement group must be the USER statement. The user
statement contains the information VSOS needs to determine if you are a valid user.

The USER statement specifies your user number, your account name, and, if necessary, the
password and security level for your job. The user number and the account name are re qui red.

Your site determines whether the USER statement requires a password and a security level
specification. The USER statement in figure 2-3 specifies a user number (USER=l23456), an
account name (ACCOUNT=ACCT9 33), and a password (PASSWORD=XYZ). The sample USER statement
assumes that the default security level (level 1) is appropriate. For more information about
security levels, refer to the VSOS Reference Manual, Volume 1.

2-4 60455390 A

RESOURCE Statement

You can use the RESOURCE statement to specify resource constraints under which VSOS executes
your job. The RESOURCE statement is optional. If you include a RESOURCE statement in your
job, it must be the control statement following the USER statement.

The RESOURCE statement can specify time limit, job category, working set size, and the large
page limit for a batch job. It can also reserve tape drives for use by a job. The RESOURCE
statement in figure 2-3 specifies a job time limit of 10 seconds (TL=lO). If you do not
specify a time limit, the default job time limit is determined by site administration (it is I
site dependent).

Subsequent Statements

When VSOS is ready to execute the job, the batch processor portion of VSOS (called BATCHPRO)
executes the sequence of tasks indicated by the statements following the RESOURCE statement.
The tasks executed for the sample job in figure 2-3 are named FTN200, LOAD, and GO.

When BATCHPRO reads a task name, such as FTN200, it searches for an executable file having
that name. When searching for a file, BATCHPRO searches the files attached to the batch job
or to the interactive session in order by ownership category. First, BATCHPRO searches
private (local, attached permanent) files. Next, it searches pool files in reverse order by
which the pools were attached. Finally, BATCHPRO searches the system public files. The
system public files may contain assemblers, compilers, and other general purpose routines.

It is assumed that the statement sequence FTN200, LOAD, and GO intends to sequentially
execute the FORTRAN 200 compiler in public file FTN200, the program loader in public file
LOAD, and finally the object program prepared by the loader on file GO.

INPUT GROUPS

For a batch job, file INPUT is the entire job that is submitted for processing. The system
uses the first group of file INPUT, which contains the control statements. The commands use
the data contained in the remaining groups.

In the sample job, the FTN200 task, by default, requests input from file INPUT. BATCHPRO
provides the task with the source program in the second group of the job file. The next
task, which is LOAD, does not require input from file INPUT. However, the object program
that is compiled by FTN200 and prepared for execution by LOAD on file GO does require input
from the INPUT file. (The program contains a FORTRAN-formatted READ statement that, by
default, reads from file INPUT.) Therefore, BATCHPRO provides the object program with the
data from the third group in the job file.

Source programs and input data may be read from files other than file INPUT. When no task in
a job requires input from file INPUT, the job file contains only the control statement group.

60455390 B 2-5

I

SUBMITTING THE BATCH JOB
When your CYBER 200 job file is ready, you can submit the job for execution using one of the
following commands:

e SUBMIT,filename,E

e ROUTE,filename,DC=IN,UN

If you enter the SUBMIT command, NOS submits the job to the remote input queue. When
complete, NOS returns the following message:

17.08.18 SUBMIT COMPLETE. JSN IS ABQP.

This NOS message gives the time that the job was submitted (17.08.18) and the job sequence
name (JSN IS ABQP) that identifies your job in the NOS input queue.

If you use the ROUTE command, NOS routes your files according to the parameters specified on
the ROUTE command. When the routing is completed, NOS returns the following message:

ROUTE COMPLETE. JSN IS ABQP.

SUBMIT ERRORS

If the logical identifier (LID) specified on the first line of the job file is invalid, a
submit attempt fails. In this case, NOS responds to the SUBMIT command with the following
message:

DSP - INVALID LID

To clear this error, correct the logical identifier and resubmit the job.

A submit attempt also fails if the submitted job will exceed your deferred batch jobs limit.
If submission of an additional job will exceed this limit, NOS responds to the SUBMIT command
with the following message:

DSP - TOO MANY DEFERRED BATCH JOBS.

To determine your deferred batch job limit, enter a LIMITS command and look for the number
listed after the words DEFERRED BATCH FILES. This number is the maximum deferred batch jobs
you can execute concurrently.

CHECKING JOB STATUS

To see the status of all your jobs, enter one of the following commands:

•
•

2-6

ENQUIRE,JSN

ENQUIRE,UJN

60455390 A

NOS then displays the job sequence name and the status of all jobs associated with your user
name. The display indicates whether the job is in the input queue, is in the print queue, or
is executing. (Only NOS jobs can be listed as executing. Executing CYBER 200 jobs are not
shown on the NOS job status display.)

Command ENQUIRE,JSN could return the following display:

JSN SC CS DS LID STATUS
ABQP.B. .RB.ABC.INPUT QUEUE

Where:

Job ABQP is the job you submitted to logical identifier ABC.

Command ENQUIRE,UJN could return the following display:

JSN SC CS DS LID UJN STATUS EXECUTING MESSAGE
ABQP.T.ON.BC.ABC.MYJOB EXECUTING

Where:

MYJOB is the name you assigned to your job. This name uniquely identifies your job for
input and appears on the banner page of your job's output as UJN=MYJOB.

FINDING YOUR OUTPUT FILE

The following ENQUIRE,JSN display indicates there is a job in the output queue:

JSN SC CS DS LID STATUS
ABQZ.R. .RB.C17.PRINT QUEUE

60455390 A

I NOTE I
The JSN of this job is not the JSN of the
job that was in the input queue. Neverthe­
less, ABQZ is the job output file written by
the submitted job.

2-7

If the CYBER 200 system has accepted your job from the remote input queue and executed it,
the output file contains at least the job dayfile. If the CYBER 200 system is not accepting
jobs, however, the output file contains only the following message:

USER 12306 - FILE NOT WANTED BY ALL REMOTE HOSTS, QTF.

JOB DAYFILE

The last record in the job output file contains the job dayfile. The dayfile lists each
control statement executed followed by messages describing the execution of the task.

When looking at your dayfile, you should determine whether any task returned an error. An
error message for a task specifies a return code as follows:

• Return code 8 fatal error

• Return code 4 nonfatal error

• Return code 0 = no errors

Unless you use a TV control statement to specify otherwise, a fatal error causes control to
be passed to an EXIT statement or causes abnormal termination of the job. (The TV control
statement is described in section 7, Abnormal Termination. The EXIT statement is explained
in section 3, File Management.)

BATCH JOB SUBMITTAL

Figure 2-4 shows an interactive session in which the user submits a CYBER 200 batch job. The
job file is on a NOS indirect access file named JOBFILE. The user calls the text editor full
screen editor (FSE) to display the job file contents, exits from FSE, and submits the job for
execution.

2-8 60455390 A

84/09/20. 13.06.48. L25T1
COO> CYBER 73 SIN 101 CYBER 200 CLSH.
FAMILY: ,987654,xpwxpwx,IAF
JSN: ABQW, NAMIAF

/batch
RFL,O.
/get,jobfi le
/fse ,jobfi le

NOS FULL SCREEN
?? pa

EDITOR

- NOS login banner.
NOS 2-620/587-12.

- NOS login with IAF request.
- Interactive Access Facility

(IAF) connection is successful.

- Switches NOS to batch mode.

-Gets the file JOBFILE.
- Calls full screen editor to

display the job file contents.
-Prints all of file.

ADEY,ST=ABC.
USER,USER=123456,ACCOUNT=ACCT933,PASSWORD=XYZ.
RESOURCE,TL=S.
FTN200.
LOAD.
GO.
CEOR)

PROGRAM LOOP
K = 0
DO 10 I=1,5
READ 100,J

100 FORMATCI1)
10 K = J + K

PRINT 200
200 FORMATC' THE SUM IS')

PRINT 300,K
300 FORMATC1X,I2)

CEOR)
1
2
3
4
5
CEOF)
?? qr

STOP
END

JOBFILE IS A LOCAL FILE
/submit,jobfile,e
13.08.17 SUBMIT COMPLETE. JSN IS ADYF

- Exits from full screen editor.

- Submits the job for execution.

Figure 2-4. Sample Batch Job Submittal (Sheet 1 of 2)

60455390 A 2-9

/enquire,jsn
JSN SC CS DS LID STATUS
ADYF.B. .RB.ABC. INPUT QUEUE

/enquire,jsn

..-- Requests job status.
JSN SC CS DS LID STATUS
ABQW. T .ON.BC. .EXECUTING

JSN SC CS DS LID STATUS JSN SC CS DS LID STATUS
ABQW.T.ON.BC. .EXECUTING
/enquire,jsn

....__Job sent to CYBER 205; thus,
does not display on NOS queue.

JSN SC CS DS LID STATUS
ADVZ.13. .RB.ABC.PRINT QUEUE

JSN SC CS DS LID STATUS
ABQW.T.ON.BC. .EXECUTING

/qget,adyz,pr
QGET COl't'IPLETE.

/fse ,::idyz

.._ Output file becomes local file.

NOS FULL SCREEN EDITOR
?? L /adey

.._ Calls a text editor to display
the output file.

(EOR)

1 13.06.31 RSYSL620
09/20/84

?? pa
1 13.06.31 RSYSL620

09/20/84
13.06.32 RESOURCE,TL=5.
13.06.32 FTN200.

VSYSL620

VSYSL620

13.06.35 FORTRAN 200 CYCLE L607
13.06.37 COMPILING LOOP
13.06.37 NO ERRORS

--- Locates the job name.
at the top of dayfile.

987654 PUBLIC G ADEY

....__ Prints entire dayfile.
987654 PUBLIC G ADEY

BUILT 03/21/84 14:31

13.06.46 0.049 SECONDS COMPILATION TIME
13.06.50 ALL DONE
13.06.52 LOAD.
13.06.55 LOAD R2.1 CYCLE L592
13.07.03 ALL DONE
13.07.05 GO.
13.07.10 STOP
13.07.13 ALL DONE
13.07.14 SYSTEl't'I TIME UNITS (STU)
13.07.14 $$COMPLETES$

(EOF>

5.188

?? L /the sum
00008

is/2__ Locates the two occurences of
200 FORMAT(' THE SUM IS'> the text string.

0001/00008
(EOR>
(EOR)
?? pa__ Prints entire output.

THE SUl't'I IS
15

?? qr
ADYZ IS A LOCAL FILE
/route,adyz,dc=Lp

ROUTE COMPLETE.
/bye

UN=987654
JSN=ABQW

LOG OFF
SRU-S

13. 23.10.
1.693

IAF CONNECT TIME: 00.15.46.
LOGGED OUT.

-- Exits full screen -- Routes the output
printer. -- Logout request.

.._ Logout response.

Figure 2-4. Sample B~tch Job Submittal (Sheet 2 of 2)

editor.

file to a

2-10 60455390 A

INTERACTIVE ACCESS
This manual assumes that your primary access method to the CYBER 200 system is through batch
job submission. If permitted by your site, however, you can also log in to the CYBER 200
system from a front-end system and execute tasks interactively. Most of the control
statements described in this manual for use in a batch job can also be used interactively.
The VSOS Reference Manual, Volume l fully describes control statement use in batch and
interactive jobs.

Figure 2-5 shows an interactive session where the user first logs in to the NOS front-end
system, then logs in to the CYBER 200 system, and finally logs out. Figure 2-6 shows an
interactive session where the user enters an invalid CYBER 200 mainframe identifier (LID).
Figure 2-7 shows an interactive session where the user enters two invalid login lines.

84/09/10. 13.06.48. L25T1
COO> CYBER 73 S/N 101 CYBER 200 CLSH.
FAMILY: ,987654,xpwxpwx
JSN: ABQW, NAMIAF

/hello,itf

UN=987654 LOG OFF
JSN=ABQW SRU-S
IAF CONNECT TIME:

ITF 1.0 - 596

13. 23 .10.
1.693

00.15.46.

Terminal T1335, Connection 3

Enter LID (or?): abc

._NOS login banner.
NOS 2-602/587-12.

._NOS login.

._IAF connection is successful.

._Requests Interactive Transfer
Facility (ITF) connection.

.....-Disconnect from IAF.

..--valid logical ID entry.
[ITF,connected to host ABC on ACN 1/TCN4.1

PLEASE ENTER CY200 LOGIN-Successful link to VSOS.
.....-cYBER 200 login line. login,123456,acct933,xyz

VSOS 2.3 RSYS620 VSYS620 G 09977.0207 ACTIVE JOBS 0 ..--Banner for

NIL
bye

BYE

CYBER 200 operating system,
.....-Indicates no files for user,
._CY BER 200 logout request,
.....- Logout response.

[ITF, terminal connection ended by host ABC.]
Enter LID (or ?) : bye- ITF logout request •

ITF CONNECT TIME: 00.02.52.-ITF logout response.
LOGGED OUT.

Figure 2-5. Successful Interactive Login and Logout

60455390 B 2-11

I

/hello,itf

UN=987654 LOG OFF
JSN=ABQW SRU-S
IAF CONNECT TIME:

ITF 1.0 - 596

13.23.10.
1.693

00.15.46.

Terminal T1335, Connection 3

Enter LID Cor ?>: bed
[ITF, BCD is not a defined Lid.]

......_ Command entered within a NOS
interactive session.

~Disconnect from IAF.

~ Invalid logical ID entry.

Enter LID Cor ?): ? ~User enters a?.
Enter the 3-character Logical IDentifier of the
remote host to which you wish to connect,

or enter BYE to LOGOUT,
or enter BYE,IAF to return to IAF,
or enter CCR) to connect to host ABC.
ENTER LID Cor ?): bye
ITF CONNECT TIME: 00.02.52.
LOGGED OUT.

~ ITF logout request.
~ ITF logout response.

Figure 2-6. Unsuccessful CYBER 200 Connection Attempt

/hello,itf ~ ITF connection request.

UN=987654 LOG OFF
JSN=ABQW SRU-S
IAF CONNECT TIME:

ITF 1.0 - 596

13.23.10.
1.693

00.15.46.

Terminal T1335, Connection 3

Enter LID Cor ?): abc
[ITF,connected to host ABC on ACN 1/TCN4.J

PLEASE ENTER CY200 LOGIN
Login
LOGIN FORMAT ERROR

~Disconnect from IAF.

~Valid logical ID entry.

~ CYBER 200 login request.
~ Login line without all

required parameters.
[ITF, terminal connection ended by host ABC.]
Enter LID (or?): abc ~Valid logical ID entry.
[ITF,connected to host ABC on ACN 1/TCN4.J

PLEASE ENTER CY200 LOGIN
Login,m12345,acct933,xyz
BAD LOGIN

~ CYBER 200 login request.
~ Invalid login information.

[ITF, terminal connection ended by host ABC.]
Enter LID Cor ?): bye ~ ITF logout request.

ITF CONNECT TIME: 00.02.52. ~ ITF logout response.
LOGGED OUT.

Figure 2-7. Unsuccessful CYBER 200 Login Attempt

2-12 60455390 A

FILE MANAGEMENT

This section describes file types and explains how you can use files within your CYBER 200
job. The chapter uses a simple CYBER 200 job example to outline file use. The section then
focuses on the following topics:

• Connecting files to your FTN200 program

• Managing drop file space

• Using CYBER 200 mass storage files

• Transferring files to and from a NOS front-end system

• Using CYBER 200 files interactively

FILE TYPES IN CYBER 200 JOBS

VSOS recognizes the following four types of files:

• Controllee files

• Data files

• Drop files

• Output files

A controllee file is an executable file. The controllee file contains all the information
needed to execute the object code within a file. The LOAD utility generates the controllee
file. (For FORTRAN 200 programs, you may also use the compile and GO feature to completely
bypass the LOAD statement. This option is discussed later in this section.)

A data file is any CYBER 200 file that is not a controllee file and not a drop file. A data
file is not executable.

3

A drop file is created by the system. When a task references virtual address space that is
not associated with the controllee file or another mass storage file, the system associates
the virtual address space with the task drop file. Modified pages of the controllee file are
also written to the drop file.

Output files contain data to be processed by an output device.

60455390 A 3-1

FILE USE IN CYBER 200 JOBS

The CYBER 200 operating system, VSOS, is a task-oriented system. A task is defined as an
execution of a controllee file for a user number. A job is simply a sequence of tasks. The
primary means of communication between tasks and jobs is via file I/O.

In general, when a task ends, the results of the task processing are contained in the files
the task wrote. Subsequent tasks in the job can read those files. When the job terminates,
the results of job processing are either in the output file printed for the job or stored in
permanent files.

To illustrate this, figure 3-1 shows the sequence of files used to execute a job designed to
execute the following task sequence:

FTN200.
LOAD.
GO.

FROM
FRONT·
END ___,.
COMPUTER
SYSTEM

l1NPuTI__.~_.~
JOB/~~\ INPUT t
FILE

PROGRAM

DATA

Figure 3-1. Files Used in Job Execution

JOB
OUTPUT
FILE

FTN200
OUTPUT

LOAO
OUTPUT

GO
OUTPUT

JOB
DAYFILE

TO
FRONT·

->END
COMPUTER
SYSTEM

D =DATAFILE

0 D EXECUTABLE
FILE

<>=OUTPUT
FILE

3-2 60455390 B

The FTN200 task, by default, reads its input from file INPUT. By default, the task writes I
two forms of output: a binary file on file BINARY and a listing and error file on file
OUTPUT.

The LOAD task, by default, processes the input from file BINARY. LOAD also reads SYSLIB to
satisfy unsatisfied external references in the object modules. The LOAD task writes two
forms of output: an executable program on file GO and a load map on file OUTPUT.

The GO task reads and writes files as specified in the FTN200 source program. If no other
file names are specified, the GO task also, by default, reads its input from file INPUT and
writes its output on file OUTPUT.

As the task terminates, BATCHPRO discards the file named INPUT. The file named OUTPUT is
copied to the job output file and is then discarded. This does not mean that a task cannot
read from the same input file as a previous task or read the output file of an earlier task.
Figure 3-2 contains an example of a job that uses input data twice.

When a job terminates, the job dayfile is copied to the job output file which is then routed,
by default, to the front-end system from which the job came.

CONNECTING FILES TO YOUR FTN200 PROGRAM

A file is useful only when a task can read from or write to the file. For your FTN200
program to read or write a file, the program must declare the file name and connect it to a
unit identifier.

As an example, the following PROGRAM statement first declares the file name to be MYFILE and
then associates unit identifier 1 with the file named MYFILE. A subsequent READ statement
specifies unit identifier 1.

PROGRAM LOOPCMYFILE, UNIT1=MYFILE)

READCUNIT=1,FMT=100,END=20) J

A file name can be connected to more than one unit identifier, but a unit identifier can be
connected to only one file name. For example, a PROGRAM statement can contain both
UNITl=MYFILE and UNIT2=MYFILE. However, the statement PROGRAM cannot contain both
UNITl=MYFILE and UNITl=HERFILE.

The unit identifiers UNITn and TAPEn are special because they connect a file name to more
than one unit identifier. For example, the connection UNITl=MYFILE allows subsequent READ
statements to reference MYFILE as unit 1, unit 5HUNIT1, and unit 5HTAPE1. The connection
TAPEl=MYFILE allows subsequent READ statements to reference the file as unit 1 and unit
5HTAPE1.

Initially, the system uses the file names and the unit identifier connections specified on
the PROGRAM statement of your program. The control statement that executes your program
however, may change or add to these file names and connections. Also, during task execution,
an OPEN statement may perform additional file connections.

60455390 B 3-3

CHANGING FILE CONNECTIONS ON THE PROGRAM EXECUTION STATEMENT

Using the PROGRAM statement to connect files allows you change file connections when a
program is executed.

I NOTE I

File connections specified on OPEN statements
cannot be changed at execution time.

For example, a program contains the following PROGRAM statement associating the file name
MYFILE with the unit identifier 1:

PROGRAM LOOPCMYFILE,UNIT1=MYFILE)

First, assume that when the program executes, you want the program to read from file INPUTl
instead of file MYFILE. If LOAD writes the program on file GO, the following control
statement executes the program and changes the file connection:

GO,**INPUT1,UNIT1=INPUT1.

The two asterisks (**) before the file specification indicate that what follows replaces the
entire PROGRAM statement connection specifier list (MYFILE,UNITl=MYFILE). Each statement
that reads from unit identifier 1 (or 5HUNIT1 or 5HTAPE1) reads from file INPUTl instead of
file MYFILE.

Next, assume that program LOOP writes to file OUTPUT. (Files INPUT and OUTPUT need not be
declared or connected.) If you want the program to read from file MYFILE as specified on the
PROGRAM statement, but you want the program to write to file LISTFIL instead of file OUTPUT,
you concatenate the new file declaration and connection to the PROGRAM statement as follows:

GO,LISTFIL,OUTPUT=LISTFIL.

Without the two asterisks (**), the file specification LISTFIL,OUTPUT=LISTFIL is concatenated
to the PROGRAM statement specifications.

3-4 60455390 A

JOB EXAMPLE THAT USES INPUT DATA TWICE

Earlier, it was stated that generally no two tasks can read the same input group from file
INPUT. The job listed in figure 3-2, however, shows how two tasks can read the same job file
data.

Except for files named OUTPUT, your program can read data from a file written by an earlier
task in the same job. A file written by an earlier task remains assigned to the job until
the file is explicitly returned or the job terminates.

To use the data in an input group twice, copy the data to a temporary file before executing
the first program. Assuming both programs are written to read from the same data in file
I~UT, the job file appears as shown in figure 3-2.

Note that the sequence of the input groups must match the sequence of the control statements
that read from file INPUT; that is, the two FTN200 statements and the COPY statement.

ADEY,ST=ABC.
USER,USER=123456,ACCOUNT=ACCT933,PASSWORD=XYZ.
RESOURCE,TL=20._Longer time limit needed for two programs.

FTN200.

LOAD.

COPY,INPUT,DATA1.

GO,DATA1,INPUT=DATA1.

FTN200,B=BINARY2.

LOAD,BINARY2,CN=G02.

G02,DATA1,INPUT=DATA1.

(Delimiter)

~ Compiles program in first input group.

~ Loads first program on file GO.

....._ Copies data in the second input group
to a temporary file named DATAl •

....._Executes GO with data from DATAl.

~ Compiles program in third input group •

....._ Loads the second program on file G02.

~ Executes G02 with data from DATAl.

Source for first FORTRAN program

(Delimiter)

Data for both programs

(Delimiter)

Source for second FORTRAN program

(End of file)

Figure 3-2. Job That Uses Job File Data Twice

60455390 A 3-5

The following summarizes the files (other than public files) read and written by the job in
figure 3-2:

Task Files Read Files Written

First FTN200 INPUT (containing OUTPUT, BINARY
first program)

First LOAD BINARY OUTPUT, GO

COPY INPUT (containing DAT Al
data)

GO DAT Al OUTPUT

Second FTN200 INPUT (containing OUTPUT, BINARY2
second program)

Second LOAD BINARY2 OUTPUT, G02

G02 DATA! OUTPUT

Note that, unlike a similar NOS job, the CYBER 200 job does not require a REWIND statement to I reuse the DATA! file. When each task begins, all disk and interactive files are positioned
at the beginning of information.

USING THE COMPILE AND GO OPTION

Up to this point, the examples have used the LOAD statement, but there is another option.
The FORTRAN 200 compiler allows you to skip the LOAD statement by using the compile and GO
option. To alter the job shown in the previous example, consider the following control
statement:

FTN200,G0=1.

When you specify GO=l, your FORTRAN program executes upon completion of a nonfatal
compilation. Your program executes using the system shared library and the LINKER utility.

The system shared library is a file that contains directories, shared utilities, a shared
SYSLIB, and a dynamic LINKER utility. The system shared library file allows users to share
the same pages of virtual memory.

If you choose the compile and GO option when working interactively, you must create two files
(INPUT and Q5INPUT) before beginning the compile of your program. INPUT is used by the
compiler, and Q5INPUT contains runtime data. When working interactively, the compile and GO
option sends the compiler listing to file Q50UTPUT and your program output to file OUTPUT.

For batch jobs, the GO task reads and writes files as specified in the FTN200 source I program. File INPUT is used for your pro~ram source. File Q5INPUT contains the program
data, if any. After the program is compiled, the FORTRAN 200 compiler returns the INPUT file
and renames the Q5INPUT file as INPUT. As each of the tasks terminates, BATCHPRO discards
the INPUT file. For batch jobs, BATCHPRO then copies the OUTPUT and the Q50UTPUT files to
the job output file.

Figure 3-3 illustrates the CYBER 200 job file example shown in figure 2-2 modified for use
with the compile and GO option.

3-6 60455390 B

DROP FILE SPACE

ADEY,ST=ABC.
USER,USER=123456,ACCOUNT=ACCT933,PASSWORD=XYZ.
RESOURCE,TL=10.
FTN200,G0=1.
(Delimiter)

PROGRAM LOOP
K = 0
DO 10 I=1,5
READ 100,J

100 FORMAT CI1)
10 K = J + K

PRINT 200
200 FORMAT C' THE SUM IS')

PRINT 300,K
300 FORMAT C1X,I2)

STOP
END

(Delimiter)
1
2
3
4
5
(End of file delimiter)

Figure 3-3. Modified CYBER 200 Job File

A drop file is space used to store all modified pages that are not already assigned space in
a disk file. Because the CYBER 200 computer is a virtual memory machine, all memory assigned
to a task must have corresponding disk file space assigned to it. This is required because
as VSOS reassigns physical memory, VSOS stores the current contents of the physical memory on
disk. When the task later references this stored data, VSOS automatically recopies the data
into physical memory and assigns that memory to the task.

VSOS creates a drop file when it begins task execution and extends the drop file as more
space is needed during task execution. These extensions are automatic, and no messages are
printed indicating an extension has occurred.

The name the system gives to the drop file is made up of the following two parts:

• A single decimal digit (1 - 9)

• The file name

60455390 B 3-7

I

SPECIFYING DROP FILE SIZE WITH A LOAD ST A TEMENT

If you know your job uses only a very small drop file, you can specify an initial drop file
size on the LOAD control statement. This specification minimizes the size of the extensions
and reduces system overhead. You may use the DFL parameter to specify drop file size. The
following LOAD statement, for example, specifies an initial drop file size of 200 blocks:

LOAD,DFL=200.

USING CYBER 200 MASS STORAGE FILES

I The CYBER 200 system allows users to create and to access mass storage files. A mass storage
file consists of space allocated on CYBER 200 disk units. Space is assigned to a file in
segments. A segment is contiguous file space. The first segment is allocated when the file
is created. The other segments are allocated as needed when the file is extended as it is
written.

In general, a task creates the file to which it writes if the file does not already exist as
an attached permanent file. For example, a FTN200 task creates the file on which it writes
the object program if the file does not already exist.

TEMPORARY FILES

You can create both temporary and permanent files within a job. Temporary files are those
files that are no longer accessible to you or to another user after the job that created them
is finished.

To create a temporary mass storage file, use the REQUEST statement. For example, the
following control statement creates a temporary mass storage file named TEMPFIL whose initial
length is 50 blocks.

REQUEST,TEMPFIL/50.

The REQUEST statement has many other optional parameters. For their descriptions, refer to
the VSOS Reference Manual, Volume 1.

After a task has been completed successfully and has written the results to file TEMPFIL;
your job can change the temporary file, TEMPFIL, to a permanent file so that the task results
are available to other jobs. The following DEFINE statement changes TEMPFIL to a permanent
file:

DEFINE,TEMPFIL.

If the task that uses the data written on TEMPFIL is in the same job as the task that created
TEMPFIL and if that task completes successfully, there may be no need to keep TEMPFIL file
space.

RETURN,TEMPFIL.

A job is not required to discard its temporary files explicitly. If a job does not discard a
temporary file, VSOS discards the file when the job terminates.

3-8 60455390 B

PERMANENT FILES

A permanent file is a mass storage file that continues to exist until the user explicitly
destroys it. The file remains stored after the job that created it terminates. A permanent
file is entered in the disk's permanent file directory.

Each disk unit has a directory that describes all permanent files on that disk unit. If a
file has an entry in the permanent file directory, its space and characteristics remain
defined as long as the entry exists. Because this entry is independent from any job and
independent from system execution, the entry continues to exist after the job using the file
terminates and even after system execution terminates.

A job can use a permanent file only if the file is accessible to the job. Attaching a
permanent file makes the file accessible and provides the job with the information contained
in the permanent file entry. A permanent file created by a job is implicitly attached to the
job. A permanent file remains attached to a job until the job returns the file or the job
terminates.

Permanent File Entry Information

The AUDIT control statement lists information about permanent mass storage files. Suppose a
control statement group ends with this control statement sequence:

GO.
EXIT.
DEFINE,GO.
AUDIT ,GO.

Assuming that GO is a local file and that the job terminates abnormally, VSOS executes the
DEFINE and AUDIT statements that follow the EXIT statement. The DEFINE statement saves the
executable file (GO) as a permanent file. The AUDIT statement produces the following output:

NAME
GO

OWNER
123456

TY
VC

FC RT BT
u u c

ACS EXT
RW SX

SL DEVICE
1 PACK01

DSET
DVST01

FLEN
98

The AUDIT produces a partial listing of the contents of the permanent file entry for file
GO. For a full listing, specify LO=F on the AUDIT statement. Refer to the VSOS Reference
Manual, Volume 1, for a complete description of the AUDIT listing.

In addition to the AUDIT statement, you may also use the FILES control statement to list
information about a file. Using the previous example, FILES produces the following output:

NAME
GO

ACS
XR

LEN JON
002656- 124

ORI.DATE
08/30/84

OWNER
*123456

TYPE
vc

DT
MS

FC
u

BT
c

RT
u

FO
s

Like AUDIT, FILES also produces a partial listing of the contents of the permanent file entry
for file GO.

60455390 B 3-9

I

FILE OWNERSHIP

A permanent file entry records the owner of a file. Each file has an owner who controls file
use.

There are three file ownership categories in the CYBER 200 permanent file system. These
categories are as follows:

• Public files

• Private files

• Pool files

Public Files

Public files are the set of system files accessible to all users. These files are
automatically attached to each executing job. Site personnel determine which files are
public files. All public files belong to user number 000000, which indicates system
ownership. Compilers, loaders, and other system utilities are examples of public files.

Private Files

A private file is a permanent file that belongs to the user number of the job that created
the file. By default, owners can access their private files; however, no other user can
access these files unless the owner grants access.

A private file is created with a DEFINE statement. The file is accessed with an ATTACH
statement, detached with a RETURN statement, and destroyed with a PURGE statement.

A RETURN statement ends the attachment of the permanent file to the job, but the file
continues to exist. A PURGE statement deletes the permanent file entry and releases the file
space when the file is detached. Only a job executing for the user number that created the
file can purge a private file.

Attaching Private Files Belonging to Another User

If a task in your job reads from a private file that belongs to another user, the other user
must grant your user number access to the file. Once you have access to another user's
private file, you can attach it to your program with an A'ITACH statement.

For example, a task in your job reads a private file named COMDATA, which belongs to user
987654. If user 987654 grants your user number access to file COMDATA, the following
statement attaches the file to your job:

ATTACH,COMDATA,USER=987654.

3-10 60455390 A

If you are not sure whether you have access to file COMDATA, you can list the files belonging
to user 987654 that you can attach by executing this statement:

FILES,USER=987654.

The FILES statement lists the files belonging to user 987654 that you can access. If user
987654 has not granted you access to any files, the FILES output message is as follows:

FILES NOT FOUND.

Permitting Other Users to Attach Your Private Files

To permit other users to attach your private files, you must define one or more access
permission sets for a file. The PERMIT statement defines an access permission set. A
general access permission set is an access permission set that applies to all users. An
individual access permission set applies to a single user. You can also define the type of
access you want to give to another user: read (R), write (W), execute (X), append (A),
modify (M), or none (NONE).

To permit all users to read your private file TESTDATA, execute the following statement:

PERMIT,TESTDATA,USER=GENERAL,ACCESS=R.

To permit user 987654 to read file TESTDATA, execute the following statement:

PERMIT,TESTDATA,USER=987654,ACCESS=R.

To deny access to user 776655 after having previously granted access, execute the following
statement:

PERMIT,TESTDATA,USER=776655,ACCESS=NONE.

To list the results of the three PERMIT statements, execute a LISTAC statement to list all
access permission sets that apply to file TESTDATA:

LISTAC,TESTDATA,USER=*·

The * requests all access permission sets, including the access permission set for the file
owner. The LISTAC output appears as follows:

NAME OWNER

TESTDATA 012306

60455390 A

USER

012306
987654
776655
GENERAL

ACCESS

XMARW
R
NONE
R

3-11

Giving Your Private Files to Another User

The owner of a private file can change file ownership by giving the file to another user or
to a pool. The other user or the pool becomes the new owner, and the former owner cannot
access the file unless granted access by the new owner.

The GIVE control statement changes the file ownership. The following statement, for example,
gives file FILEl to user 987654.

GIVE,FILE1,U=987654.

Pool Files

I A pool is a group of files that can be accessed through a single command. Once a pool has
been created, you can attach all files in the pool through a single control statement.

If your user name has access to a pool named DATAPOOL, for example, your job can attach all
files in DATAPOOL by executing the following control statement:

PATTACH,DATAPOOL.

To list the files in the attached pool, execute the following statement:

FILES,POOL=DATAPOOL.

These pool files remain attached to your job until your job terminates unless your job
executes the following statement:

PDETACH,DATAPOOL.

For information on creating pools and granting pool access to other users, refer to the VSOS
Reference Manual, Volume 1.

TRANSFERRING FILES TO AND FROM A FRONT-END SYSTEM

Your CYBER 200 job can transfer data to and from a front-end system. Your job can request
that data is copied from a front-end file to a temporary or permanent CYBER 200 file.
Similarly, your job can request that data is copied from a temporary or permanent CYBER 200
file to a front-end file.

Data is transferred between the CYBER 200 system and its front-end systems over hardware
called the loosely coupled network (LCN) using the software called the remote host facility
(RHF). The RHF applications that process data file transfers are called the permanent file
transfer facility (PTF) and the permanent file transfer facility servicer (PTFS). For a more
complete description of RHF transfers, refer to the RHF handbook for your system.

3-12 60455390 B

The control statement that requests a data file transfer is the MFLINK statement. An MFLINK
can be initiated on either a front-end or back-end system. This statement specifies the
following information:

• The name of the CYBER 200 data file

• The identifier of the front-end system

• A data declaration indicating the format of the data to be transferred

• Directives to be passed to the front-end system

For example, the following MFLINK statement copies a NOS file to a CYBER 200 file:

MFLINK,INFILE1,ST=ADB,DD=UU,
JCS="USER,12345,XPWXPWX.","CHARGE,PROJ,ACCOUNT.",
"GET,OTFILE1.".

The CYBER 200 file name is INFILEl. If INFILEl is already an attached permanent file, MFLINK
uses the existing file. If INFILEl does not exist, however, MFLINK creates a local file
named INFILEl. If INFILEl exists as a local file, MFLINK discards the old local file and
creates a new local file named INF ILE!.

The ST parameter specifies the front-end system identifier ADB.

The DD parameter specifies the data declaration keyword UU. RHF recognizes four data
declaration keywords. There are two keywords for character data (C6 and CB) and two keywords
for binary data (US and UU). Use of the C6 and CB keywords is described under the Character
Data Transfers heading. Use of the US and UU keywords is described under the Binary Data
Transfers heading.

The JCS parameter specifies three directives to be passed to the front-end system (in this
example, NOS). The USER and the CHARGE directives specify the required NOS validation
information. The GET directive specifies an indirect file to be copied to the CYBER 205.

CHARACTER DAT A TRANSFERS

For character data transfers, the data declaration keyword, C6 or CB, is required only if the
front-end system uses more than one character set.

CYBER 170 systems use both 6-bit display code (the default display code) and B/12 ASCII
code. You may specify C6 if the file uses or will use display code. You must specify CB if
the file uses or will use B/12 ASCII code. In either case, RHF performs all required
character code conversion between the character set of the front-end system and the ASCII
character set used on the CYBER 200 system.

60455390 A 3-13

Character Data Transfer Example

Figure 3-4 shows a job that performs a character data transfer. The figure lists the CYBER
200 job file with its NOS input and output files. The job performs the following steps:

1. Copies the data in the NOS file INFILEl to the CYBER 200 file INFILEl. The NOS file
contains four records of 6-bit display code characters that MFLINK converts to four
records of 8-bit ASCII characters.

2. Compiles and loads the program TRIANG.

3. Executes the TRIANG program, which iterates a loop that performs the following steps:

a. Reads a line using formatted 1/0. The READ statement reads three fields of seven
characters each and converts each field to a CYBER 200 floating-point number.

b. Determines if the values are valid lengths for the three sides of a triangle. If
so, the program computes the area of the triangle.

c. Writes one or two lines of character data to file OTFILE2. The first line
contains the three input values reconverted to ASCII character data. The second
line, if written, contains the computed area value that the CYBER 200 file
OTFILE2 transferred to the NOS file OTFILE2. MFLINK converts five records of
8-bit ASCII character code to five records of 6-bit display code.

4. Copies tha data in the CYBER 200 file OTFILE to the NOS file 'oTFILE2. MFLINK
converts five records of 8-bit ASCII character code to five records of 6-bit display
code.

BINARY DAT A TRANSFERS

The binary data keywords, UU and US, indicate that no character code conversion is
performed. Data is transferred as a bit string. Use of the UU or the US keyword depends on
whether the data transferred requires the use of the logical structure indicators (EOR, EOF,
and EOI).

For binary data transfers to the CYBER 200 system, specifying UU discards the EOR and EOF
indicators and converts the EOI to the end-of-file indicator. In this case, the CYBER 200
file must use the system interface language (SIL) record type U. When keyword US is
specified, the CYBER 200 file must use the SIL record type W. Use of the US keyword keeps
the logical structure indicators, however, these indicators are converted to their record
type W equivalents.

3-14 60455390 A

Job File:

ADEY,ST=ABC.
USER,USER=123456,ACCOUNT=ACCT933,PASSWORD=XYZ.
RESOURCE,TL=20.
MFLINK,INFILE1,ST=ADB,DD=C6,JCS="USER,12345,XPWXPWX.",
"CHARGE,PROJ,ACCOUNT.","GET,INFILE1.".
FTN200.
LOAD.
GO.
MFLINK,OTFILE1,ST=ADB,DD=C6,JCS="USER,12345,XPWXPWX.",
"CHARGE,PROJ,ACCOUNT.","SAVE,OTFILE1.".
CEOR>

c

c

PROGRAM TRIANGCINFILE1,0TFILE1,UNIT1=INFILE1,UNIT2=0TFILE1)

10 READC1,100) A, B, C
100 FORMATC3F7.0>

IF CA .EQ. 0.0) STOP
S = CA + B + C) I 2.0
RDCL = S * CS-A> * CS-B) * CS-C)
IF CRDCL .LT. 0.0) GO TO 20
AREA = SQRTCRDCL)
WRITEC2,200) A, B, C, AREA

200 FORMATC'SIDES ARE', 3F9.4, I,' AREA IS', F11.41>
GO TO 10

20 CONTINUE
WRITEC2,300) A, B, C

300 FORMATC'SIDES OF ', 3F9.4, ' FORM AN INVALID TRIANGLE',/)
GO TO 10
END

CEOR)

Input File INFILEl:

3.0000 4.0000 5.0000
2.0000 1.0000 5.0000
1.5197 1.5197 1.5197
0 0 0

Output File OTFILEl:

SIDES ARE
AREA IS
SIDES OF
SIDES ARE
AREA IS

3.0000 4.0000 5.0000
6.0000

2.0000 1.0000 5.0000 FORM AN INVALID TRIANGLE
1.5197 1.5197 1.5197
1.0000

Figure 3-4. Character Data Transfer Example

60455390 A 3-15

For binary data transfers from the CYBER 200 system, the keyword used depends on the SIL
record type of the CYBER 200 file. The US keyword is valid only if the SIL record type is
W. The transfer converts the logical structure indicated by the W control words to the
logical structure indicators (EOR, EOF, and EOI) of the front-end system. The UU keyword
causes MFLINK to transfer the file as a bit string with no logical structure indicators. If
the file uses the SIL record type R or W, the record marks or control words are not
converted. They are transferred as data.

In summary, use of the UU or US keyword depends on whether the data requires a logical
structure.

• The US keyword maintains the logical structure. The CYBER 200 file must use the W
record type.

• The UU keyword does not maintain the logical structure. When transferring data to
the CYBER 200, VSOS discards the logical structure indicators. The CYBER 200 file
must use the U record type.

I NOTE I

If you intend to transfer an output file from
the FORTRAN 200 program to the front-end
system using the UU keyword, explicitly
request the output file to be record type u.
Otherwise, the FORTRAN 200 program creates an
output file having record type W.

For example, in figure 3-6 all operands are read into an array and converted by a single
call. In this case, no logical structure is needed, and the UU keyboard can transfer the
file. If the program contains more than one READ statement so that more than one sequence of
operands is read and converted, however, a logical structure is required to delimit the
sequences of operands.

CRM Data Delimiters

A binary data transfer on a CYBER 170 front-end system transfers all the CYBER record manager
(CRM) delimiters embedded in the data. For example, if the data being transferred is written
using the CRM record type W (the FORTRAN 5 default), the control words that delimit records
and groups are transferred embedded in the data. It is recommended, therefore, that you
write all binary data to be transferred using the CRM record type S which does not use
embedded delimiters.

3-16 60455390 A

To specify the CRH record type S for a file, execute a NOS FILE control statement before
executing the program that writes the file. For example, before executing the program. that
writes file INFILEl, execute this statement:

FILE,INFILE1,RT=S.

On NOS you can check that a file contains no CRH delimiters. Use a TDUMP statement to look
at the file contents. For example, assume that you specify CRM record type S for file
INFILEl and then execute a FORTRAN 5 program in which an unformatted WRITE statement writes
an array of integers on file INFILEl. Figure 3-5 shows an octal dump of the file performed
by a NOS TDUMP statement.

/tdump,i=infile1,o
F 1 R 1 W 0- 0000 0000 0000 0000 0001
F 1 R 1 W 2- 0000 0000 0000 0000 0003
F 1 R 1 W 4- 0000 0000 0000 0000 0005
F 1 R 1 W 6- 0000 0000 0000 0000 0007
F 1 R 1 W 8- 0000 0000 0000 0000 0011
F 1 R 1 W 12- 0000 0000 0000 0000 0013
F 1 R 1 W 14- 0000 0000 0000 0000 0015
F 1 R 1 W 16- 0000 0000 0000 0000 0017

0000 0000 0000 0000 0002
0000 0000 0000 0000 0004
0000 0000 0000 0000 0006
0000 0000 0000 0000 0010
0000 0000 0000 0000 0012
0000 0000 0000 0000 0014
0000 0000 0000 0000 0016
0000 0000 0000 0000 0020

Figure 3-5. TDUMP Octal Dump Example

Data Conversion

The TDUMP output in figure 3-5 shows a sequence of CYBER 170 integers in octal notation. To
interpret the contents of a dump, you need to know the data representations used. Section 4
describes the data representations used for FORTRAN 5 and for FORTRAN 200.

Because data representations differ between the CYBER 200 and its front-end systems, the
FORTRAN 200 program must convert all transferred integer or floating-point numbers to the
corresponding CYBER 200 formats before using the numbers as operands. Similarly, before
transferring binary results to the front-end system, the FORTRAN 200 program DI.1st convert the
data to the appropriate front-end format.

VSOS provides FORTRAN data conversion routines to perform integer and floating-point
conversion. 'ntese data conversion routines have names that begin with Q9 and are described
in an appendix of the VSOS Reference Manual, Volume 1. The job file example in figure 3-6
uses the Q9LCI and Q9CLI subroutines.

60455390 A

I NOTE I
To be converted by a data conversion sub­
routine, operands must be read into an array
as a packed string of operands. The entire
array must then be read by a single READ
statement. This READ statement reads one
record containing the entire string of
operands.

3-17

ADEY ,ST=ABC.
USER,USER=123456,ACCOUNT=ACCT933,PASSWORD=XYZ.
RESOURCE,TL=20.
DEFINE,INFILE1,RT=W.
MFLINK,INFILE1 ,ST=ADB,DD=US ,JCS=11USER, 12306,XPWXPWX. II,

11 CHARGE,PROJ,ACCOUNT. 11 , 11GET,INFILE1. 11 •

LOOK,INFILE1.
FTN200.
LOAD
GO.
LOOK,OTFILE2.
MFLINK,OTF ILE2,ST=ADB, DD=US ,Jc S="USER, 12306 ,XPWXPWX. II,

11 CHARGE,PROJ,ACCOUNT. 11 , 11SAVE,OTFILE2. 11 •

PURGE,INFILE1.
CEOR)
HEX,0,10
END
CEOR)

c

c

c

PROGRAM LOOPCINFILE1,0TFILE2,UNIT1=INFILE1,UNIT2=0TFILE2)
INTEGER CMPARAY, OUTARAY
DIMENSION INARAYC15), CMPARAYC16), OUTARAYC17)

READCUNIT=1,END=10) INARAY
10 CALL MDUMPCINARAY,15,'Z',6HOUTPUT)

CALL Q9LCICINARAY,CMPARAY,16,ISTAT)
IF CISTAT .NE. 0) THEN
PRINT 100, ISTAT

100 FORMATC1X,18)
END IF
CALL MDUMPCCMPARAY,16,'Z',6~0UTPUT)

CMPARAYC16) = 0
DO 20 1=1, 15

20 CMPARAYC16) = CMPARAYC16) + CMPARAYCI)

CALL Q9CLICCMPARAY,OUTARAY~17,ISTAT)
IF CISTAT .NE. 0) THEN
PRINT 100, ISTAT
END IF
CALL MDUMPCOUTARAY,16,'Z',6HOUTPUT)
WRITECUNIT=2) OUTARAY
STOP
END

CEOR)
HEX,0,11
END

Figure 3-6. Binary Data Transfer Example

3-18 60455390 A

Binary Data Transfer Example

When the CYBER 200 job shown in figure 3-6 is executed, it performs the following steps:

1. Defines a file named INFILEl having the CYBER 200 System Interface Language (SIL)
record type W.

2. Copies the data from NOS file INFILEl to CYBER 200 file INFILEl. MFLINK requests the
temporary file INFILEl with SIL record type W.

3. Compiles and loads the program LOOP.

4. Executes the LOOP program that performs the following steps:

a. Reads a record of data from file INFILEl into an array.

b. Calls the Q9LCI subroutine to convert the data from CYBER 170 integer format to
CYBER 200 integer format.

c. Adds the integers in the array and stores the sum as the last element in the
array.

d. Calls the Q9CLI subroutine to convert the data from CYBER 200 integer format to
CYBER 170 integer format.

e. Writes the converted data as a record on file OTFILE2. By default, it has
requested the temporary file OTFILE2 with SIL record type W.

5. Copies the data from the CYBER 200 file OTFILE2 to the NOS indirect access file
OTFILE2.

6. Purges the INFILEl file defined by the job.

The LOOK statements and MDUMP subroutine calls are not required for a job. They are inserted
so you can trace changes in the data.

The LOOK control statements dump the data in hexadecimal notation before and after the
program uses the data. Each LOOK statement requires an input group that contains LOOK
directives. The VSOS Reference Manual, Volume 1, fully describes the LOOK utility.

The MDUMP calls within program LOOP dump the data in hexadecimal notation before and after
the dump is converted to CYBER 200 representation. MDUMP also provides a third dump of data
after the data is reconverted to CYBER 170 representation. The FORTRAN 200 Reference Manual
fully describes the MDUMP subroutine.

Using the data in NOS file INFILEl in figure 3-6, the output from the LOOK statements and
MDUMP calls is shown in figure 3-7.

• The first LOOK dump in figure 3-7 indicates that the data shown in figure 3-6 has
been transferred as a single record type W on the CYBER 200 file.

• The first MDUMP dump shows that the FORTRAN READ statement read the data, but
discarded the SIL control words.

60455390 A 3-19

• The second MDUMP dump shows the data converted to CYBER 200 integer format.

• The third MDUMP dump shows the data and its sum converted back to CYBER 170 integer
format.

• The second LOOK dump shows that the FORTRAN WRITE statement wrote the data as a
single record type W.

I The job saves the output file on the front-end system. If you execute a TDUMP statement on
the front-end system, the dump shows that the contents of the OTFILE2 file are the same as
the contents of the input file data shown in figure 3-5 plus the following three words:

0000 0000 0000 0000 0210 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000

The first word is the sum of the operands as computed by the FORTRAN 200 program.

USING A CYBER 200 FILE INTERACTIVELY

So far, this section has described program input that is read from existing files. There are
times, however, when you do not want your program to read data that has been previously
stored in a file. Instead, you may wish to enter data directly from an interactive terminal
to your executing program and have the program send a response.

To perform interactive I/O, a program uses formatted I/O statements or SIL calls to read from
and write to an interactive terminal file (device type TE). Interactive terminal files are
fully described in the VSOS Reference Manual, Volume 1. The example in figure 3-8 shows the
use of interactive terminal files.

You can change the triangle area calculation program shown in figure 2-4 to enable you to
enter input and to receive output interactively. Modifying the program for interactive I/O
results in the following program changes:

• Because the interactive terminal file is used as the input file and the output file,
the READ and WRITE statements must reference the same file.

• Because the program is interactive, it sends messages to the user describing the
input the program expects. The program also sends a final termination message to the
user. Refer to figure 3-9 for examples of messages sent from the system to the user.

Figure 3-8 shows modifications made to the triangle calculation program to allow for
interactive use.

3-20 60455390 B

"' 0
.po
VI
VI
w
\Q
0

>

w
I

N

First LOOK:

BIT ADDR
000000000000
000000000100
000000000200
000000000300

First MDUMP:

SIT ADDRESS

000000083A00
000000083800
000000083COO
000000083DOO

Second lilDUMP:

BIT .f\DDRESS

000000082E80
000000082F80
000000083080
000000083180

Thi rd MDUMP:

BIT f\DDRESS

0000000833CO
0000000834CO
0000000835CO
0000000836CO

Second LOOK:

'3IT f\DDR
000000000000
000000000100
000000000200
000000000300
000000000400

WORD ADDR CONTENTS ASCII
00000000000 00110000 08000078 00000000 00000010 00000000 00000200 00000000 00003000 x 0
00000000004 00000000 00040000 00000000 00500000 00000000 06000000 00000000 70000000 p p
00000000008 00000008 00000000 00000090 00000000 OOOOOAOO 00000000 00008000 00000000
ooooooooooc ooocoooo 00000000 OODOOOOO 00000000 OEOOOOOO 00000000 FOOOOOOO 00000010

C-0-N-T-E-N-T-S WORD ADDRESS ASCII

00000000 00000010 00000000 00000200 00000000 00003000 00000000 00040000 000000020El3 0
00000000 00500000 00000000 06000000 00000000 70000000 000000013 00000000 000000020EC p p
00000090 00000000 OOOOOAOO 00000000 00008000 00000000 ooocoooo 00000000 000000020FO
OODOOOOO 00000000 OEOOOOOO 00000000 FOOOOOOO 00000010 000000020F4

C-0-N-T-E-N-T-S WORD f\DDRESS ASCII

00000000 00000001 00000000 00000002 00000000 00000003 00000000 00000004 000000020'3f\
00000000 00000005 00000000 00000006 00000000 00000007 00000000 00000008 0000000208E
00000000 00000009 00000000 OOOOOOOA 00000000 00000008 00000000 oooooooc 000000020C2
OODOOOOO OOOOOOOD 00000000 OOOOOOOE 00000000 OOOOOOOF 00000000 00000010 000000020C<S

C-0-N-T-E-N-l-S WORD f\DDRESS ASCII

00000000 00000010 00000000 00000200 00000000 00003000 00000000 00040000 000000020CF 0
00000000 00500000 00000000 06000000 00000000 70000000 00000008 00000000 000000020D3 p p
00000090 00000000 OOOOOAOO 00000000 00008000 00000000 ooocoooo 00000000 000000020D7
OODOOOOO 00000000 OEOOOOOO 00000000 FOOOOOOO 00000010 00000000 00000880 000000020D8

WORD ADDR CONTENTS ASCII
00000000000 00110000 08000088 00000000 00000010 00000000 00000200 00000000 00003000 0
00000000004 00000000 00040000 00000000 00500000 00000000 06000000 00000000 70000000 p p
00000000008 00000008 00000000 00000090 00000000 OOOOOAOO 00000000 00008000 00000000
ooooooooooc ooocoooo 00000000 OODOOOOO 00000000 OEOOOOOO 00000010 FOOOOOOO 00000010
00000000010 00000000 000008130 00000000 00000088 00130000 90000000 ooocoooo 08000000

Figure 3-7. Data Dumps From MFLINK Job Example

ADEY,ST=ABC.
USER,USER=123456,ACCOUNT=ACCT933,PASSWORD=XYZ.
RESOURCE,TL=20.
FTN200.
LOAD.
DEFINE,GO.
CEOR>

c

c

c

c

PROGRAM TRIANGCINFILE1,UNIT1=INFILE1>
WRITE C1, 100)

100 FORMATC'TRIANGLE AREA CALCULATION')

10 WRITE C1,200>
200 FORMATC'WAIT FOR THE •• PROMPT AND THEN ENTER ')

WRITE C1,250>
250 FORMATC'THE TRIANGLE SIDE LENGTHS AS THREE 7-CHAR FIELDS')

WRITE C1,300>
300 FORMATC'OR ENTER 0 (ZERO) TO STOP.'>

READC1,400> A, B, C
400 FORMATC3F7.0)

IF CA .EQ. 0.0) GO TO 30
S = CA + B + C) I 2.0
RDCL = S * CS-A) * CS-B) * CS-C)
IF CRDCL .LT. 0.0) GO TO 20
AREA = SQRTCRDCL)
WRITEC1,500) A, B, C, AREA

500 FORMATC'SIDES ARE', 3F9.4, I,' AREA IS ', F11.4/)
GO TO 10

20 CONTINUE
WRITEC2,600) A, B, C

600 FORMATC'SIDES OF ', 3F9.4, ' FORM AN INVALID TRIANGLE',/)
GO TO 10

30 WRITEC1,700>
700 FORMATC'ZERO ENTERED. TRIANGLE AREA CALCULATION ENDS.'>

STOP
END

CEOR>

Figure 3-8. Job File Modified for Interactive I/O

I After the modified program is compiled and loaded, and the executable file is defined as the
permanent CYBER 200 file named GO, the interactive session can begin. Figure 3-9 shows a
CYBER 200 interactive session that executes file GO.

3-22 60455390 B

PLEASE ENTER CY200 LOGIN
Login,123456,acct933,xyz
VSOS 2.2 RSYS22E3 VSYS22E3

.,..._CYBER 200 login line
G 09980.6596 ACTIVE NONE

attach,go
ALL DONE

request,infile1,device=te
ALL DONE

....,__ Attaches the executable file.

-4--Requests the terminal file.

go -4--Executes the interactive task.
TRIANGLE AREA CALCULATION
WAIT FOR THE •• PROMPT AND THEN ENTER
THE TRIANGLE SIDE LENGTHS AS THREE 7-CHAR FIELDS
OR ENTER 0 CZERO) TO STOP.

3.0 4.0 5.0
SIDES ARE 3.0000 4.0000 5.0000
SEOR

AREA IS
SEOR

6.0000

WAIT FOR THE •• PROMPT AND THEN ENTER

-4--First set of input values.

......_ First result value.

THE TRIANGLE SIDE LENGTHS AS THREE 7-CHAR FIELDS
OR ENTER 0 CZERO) TO STOP.

2
SIDES OF
SEOR

1 5,__Second set of input values.
2.0000 1.0000 5.0000 FORM AN INVALID TRIANGLE

WAIT FOR THE •• PROMPT AND THEN ENTER
THE TRIANGLE SIDE LENGTHS AS THREE 7-CHAR FIELDS
OR ENTER 0 (ZERO) TO STOP.

0,__ Stops program execution.
ZERO ENTERED. TRIANGLE AREA CALCULATION ENDS.
SEOR

STOP
ALL DONE

Sbye_ Ends CYBER 200 interactive
session.

BYE
ITF CONNECT TIME 00.03.20.

Figure 3-9. Interactive I/O Example

60455390 A 3-23

USING MAGNETIC TAPE FILES
If the input data for your CYBER 200 program is stored on magnetic tape, there are two
possible ways to read the data.

The first method uses the tape drives in the front-end system configuration. The front-end
job reads the data and copies it to a front-end mass storage file. The subsequent CYBER 200
job then transfers the data from the front-end file to a CYBER 200 file.

If your site is configured with a CYBER 200 tape system, there is a second method to read
data stored on tape. This second method uses the CYBER 200 online tape drives. If your site
has a CYBER 200 tape system, your CYBER 200 job can read and write data directly to these
tape files.

RESERVING TAPE DRIVES

When a CYBER 200 job reads or writes tape files, the job reserves the tape drives for use on
the RESOURCE statement NT parameter. The following statement, for example'· reserves one tape
drive:

RESOURCE,NT=1.

REQUESTING A TAPE FILE

A CYBER 200 job requests each tape file with a REQUEST statement. The REQUEST statement has
numerous parameters. Except for the file name and the device assignment, the following
parameters are optional:

3-24

1. Specify file name and device assignment. These are required. Default device
assignment is to disk, DEVICE=MS.

2. Specify if you intend to write to the file. If you intend to write to the file, you
must specify write, ACCESS=W. Default for tape files is read only, ACCESS=R.

3, Specify the volume serial number of the tape volume on the VSN parameter
(VSN=xxxxxx). If you want the operator to mount a scratch tape, omit the VSN
parameter and specify an operator message on the MESSAGE parameter (such as
MESSAGE=''MOUNT SCRATCH TAPE").

4. Specify a recording density with the DENSITY parameter. VSOS supports two recording
densities; phase encoded (PE), 1600 cpl, and group encoded (GE), 6250 cpl. If
density is omitted, the installation-defined density is used.

5. Specify tape labeling. If a tape is unlabeled, specify LABEL=UL. If the tape has
nonstandard labels, specify LABEL=NS. Your program can process nonstandard labels
using SIL calls as described in the VSOS Reference Manual, Volume 1. Default is ANSI
standard labels, LABEL=AN.

If you specify ACCESS=RW, the labels are not rewritten unless you specify LPROC=W.
If you specify ACCESS=W, the labels are rewritten unless you specify LPROC=R.

6. Specify the volume accessibility character in the VOLl label. The character is
specified on VA parameter, VA=xx.

60455390 A

7. Specify whether file data is recorded as character codes or as binary data. For
character data, use the CONVERT parameter. Specify the character code set (AS for
ASCII or EB for EBCDIC) on the CM parameter.

8. Specify the tape format and blocking type with the TF and BT parameters (refer to the
VSOS Reference Manual, Volume 1). If the data format is V, use the MPRU parameter to 1 specify the maximum PRU size. If the blocking type is K, use the RPB parameter to
specify the number of records per block.

9. Specify the SIL record type with the RT parameter. The following additional
parameters provide record specifications:

RMD Nondefault record delimiter character for record type R

PC Nonblank padding character for record type F

RLMAX Maximum record length or the fixed record length for record type F

RLMIN Minimum record length

10. Specify any special tape processing options as follows:

HEC=N Use standard error recovery instead of on-the-fly correction

IU=Y Inhibit unload of tape volumes

RETRY=N Omit standard error recovery

RU=Y Read past end-of-tape marker

60455390 B

I

3-25

FORTRAN PROGRAM CONVERSION 4

This guide assumes that your primary reason for learning about the CYBER 200 system is to
enable you to compile and to execute FORTRAN programs on the system. The guide also assumes
that you intend to use the CDC FORTRAN 200 Version 1 compiler, which is referred to hereafter
as FORTRAN 200.

FORTRAN 200 is a superset of the American National Standards Institute FORTRAN language,
which is described in ANSI document X3.9-1978. FORTRAN 200 is fully described in the FORTRAN
200 Version 1 Reference Manual (publication 60480200). Access to the FORTRAN 200 Reference
Manual is required to use the full capabilities of the compiler.

In many respects, FORTRAN 200 resembles CDC FORTRAN Extended Version 5, which is referred to
hereafter as FORTRAN 5. Both compilers are supersets of ANSI FORTRAN X3.9-1978. Both
support many standard CDC FORTRAN extensions.

This section highlights the areas in which the FORTRAN 200 and FORTRAN 5 compilers differ.
These differences can be categorized as follows:

• Syntax differences

• FORTRAN-provided function differences

• FORTRAN-provided subroutine differences

• Product interface differences

• Machine-dependent differences

FORTRAN 5 /FORTRAN 200 SYNTAX DIFFERENCES

If you have a FORTRAN program that compiles with the FORTRAN 5 compiler and you want to
convert the program to compile with the FORTRAN 200 compiler, you must begin by searching the
source code for syntax that is not supported by FORTRAN 200. Table 4-1 lists syntax
differences between the two compilers.

60455390 A 4-1

I

Table 4-1. FORTRAN 5/FORTRAN 200 Syntax Differences

Item Difference

Character set

Boolean type

Octal
constants

Complex array
subscripts

PARAMETER
statement

OVERLAY
statement

LEVEL
statement

DATA
statement

Computed GO
TO statements

FORMAT
statement

I/O statements

RETURN
statement

4-2

Unlike the FORTRAN 5 character set, the FORTRAN 200 character set does
not include the $ and " characters. This results in the following
changes:

• No C$ compiler directives

• No $ in namelist input; replace each $ character with a &
character

• No Boolean constants enclosed in quotes (")

• No " edit specifier

FORTRAN 200 does not support the Boolean data type. Each Boolean
constant, variable, and array must be converted to another data type
depending on its content. Boolean type can be changed to character,
Hollerith, hexadecimal, or bit data type.

FORTRAN 200 does not support octal constants. Convert each octal
constant to the appropriate decimal or hexadecimal constant. Hexa­
decimal constants can only be used in DATA statements; a hexadecimal
constant cannot be a symbolic constant.

FORTRAN 200 does not support complex array subscripts. Convert the
subscripts to integer values.

FORTRAN 200 does not support extended constant expressions in a PARAMETER
statement. Convert each extended constant expression to a simple
constant expression.

FORTRAN 200 does not support the OVERLAY statement because it is not
needed on a virtual storage machine. For the same reason, FORTRAN 200
does not provide STATIC capsule loading routines.

FORTRAN 200 does not support the LEVEL statement because a CYBER 200
system does not have extended memory.

FORTRAN 200 does not support the form r(c,c, •••) on DATA statements.
Convert each r(c,c, •••) specification to individual r*c specifications.

FORTRAN 200 does not support arithmetic or Boolean expressions on
computed GO TO statements. Convert each arithmetic or Boolean
expression to an integer expression.

FORTRAN 200 does not support the 0 or " edit descriptors.

The unit specification cannot be a display code name in L format.

FORTRAN 200 does not return CRM error codes in the IOSTAT variable; it
returns its own execution-time error codes instead.

A RETURN statement can only specify an integer or a simple integer
variable.

60455390 B

FORTRAN-SUPPLIED FUNCTIONS
FORTRAN 200 provides the same ANSI standard intrinsic functions that FORTRAN 5 provides and
many of the FORTRAN 5 nonstandard functions. FORTRAN 200, however, does not provide all
FORTRAN 5 intrinsic functions. ·Table 4-2 lists the missing intrinsic functions.

BOOLEAN FUNCTIONS

Because FORTRAN 200 does not support the Boolean data type, it does not provide the Boolean
functions BOOL, EQV, or NEQV. Other Boolean functions are provided for compatibility
although the result is typeless, rather than Boolean. (A typeless result is not converted
when used as an argument or when assigned to a variable of another type.)

The argument type for the following functions can be logical, integer, or real. The result
is typeless.

AND

COMPL

MASK

OR

SHIFI'

XOR

Bit-by-bit logical product

Bit-by-bit Boolean complement

Bit mask generator (0 to 64 bits set to 1, starting at the left of the word)

Bit-by-bit logical sum

Bit shift (Positive integer argument, left circular shift. Negative integer
argument, right end-off shift with sign extension)

Bit-by-bit exclusive OR

Appendix G of the FORTRAN 200 Reference Manual describes these functions.

1/0 FUNCTIONS

FORTRAN 200 provides the UNIT and LENGTII functions for buffer I/O compatibility. These
functions are described in appendix G of the FORTRAN 200 Reference Manual.

60455390 A 4-3

FORTRAN-SUPPLIED SUBROUTINES
FORTRAN 5 and FORTRAN 200 each provide a set of subroutines that extend the capabilities of
the program. However, not all suhroutines provided by FORTRAN 5 are provided by FORTRAN
200. 'nl.e following paragraphs list the FORTRAN 5 subroutines that FORTRAN 200 does not have.

Table 4-2. FORTRAN 5 Intrinsic Functions Not Provided by FORTRAN 200

Name Function

FORTRAN 5 Boolean Functions

BOOL Type conversion to Boolean.

EQV Boolean equivalence.

NEQV Boolean nonequivalence.

Trigonometic Functions

AT ANH Hyperbolic arctangent (replace with computation using
hyperbolic tangent function, TANH).

COSD Cosine from argument expressed in degrees (replace with
computation using radians and COS function).

SIND Sine from argument expressed in degrees (replace with
computation using radians and SIN function).

TAND Tangent from argument expressed in degrees (replace with
computation using radians and TAN function).

I/O Functions

EOF Use the END specifier on the I/O statement.

IOCHEC No specific parity error function is provided; however,
the IOSTAT specifier on an I/O statement can return an
error code.

Other Functions

JD ATE Current Julian date (use DATE or call Q5TIME for the
binary Julian date).

CLOCK Current time (use TIME).

ERF Error function; computes the following:

Jr o'f.x
-t2

erf(x) "' e dt

ERFC Complement of ERF function.

LOCF Address of. argument (FORTRAN 5 does not recommend use of
LOCF).

4-4 60455390 A

SUBROUTINES WITH FUNCTIONAL EQUIVALENTS

The following FORTRAN 5 subroutines are not available to the FORTRAN 200 programmer, but
other methods are available to perform these same functions. The VSOS system interface
language (SIL) subroutines usually provide a functional equivalent. Each SIL subroutine name
begins with the characters Q5. Sections 8 and 9 of the VSOS Reference Manual, Volume 1,
describe SIL.

Subroutine

DISPLAY
or
REMARK

LENGTHX

EXIT

CHEKPTX

RECOVR

CONNEC
and
DISCON

LABEL

OPENMS
WRITMS
READ MS
CLOSMS
STINDX

DUMP
PDUMP
STRACE
LEGVAR
SYSTEM
SYSTEMC
LIMERR

60455390 A

Equivalent Processing

Call Q5SNDMDF to send a message to the job dayfile. Call Q5SNDMOP
to send a message to the system console.

VSOS SIL calls return the number of bytes read or written.

Use a STOP statement.

Use the CHKPNT subroutine to checkpoint a task as described in section
7 of the VSOS Reference Manual, Volume 1.

Use abnormal termination control (ATC) calls for condition interrupts
or the data flag branch manager (DFBM) for computation errors. The
VSOS Reference Manual, Volume 1, describes ATC. DFBM is explained in
the FORTRAN 200 Reference Manual.

For interactive files, call Q5RQUEST to request a local file. Call
Q5RETURN to return an interactive file.

Use VSOS SIL calls to read and write tape labels.

Use VSOS SIL direct access file organization to read and write records
randomly.

For debugging, use the MDUMP subroutine and the DEBUG utility.

4-5

I

SUBROUTINES WITHOUT FUNCTIONAL EQUIVALENTS

The following FORTRAN 5 subroutines are not available to the CYBER 200 progra111111er. No
functional equivalent is provided.

Subroutine

GETPARM

SS WT CH

MOVLEV
or
MOVLCll

COL SEQ
WT SET
C&>WN

Equivalent Processing

VSOS does not provide a subroutine to get the parameters from the
execution statement.

VSOS does not maintain sense switches for a task.

The CYBER 200 does not use extended memory.

FORTRAN 200 does not provide a collating sequence control capability.

PRODUCT INTERFACES

A CYBER 200 program cannot interface with CYBER 170 products. Functional equivalents,
however, are available for the following CYBER 170 products:

Product

NOS permanent file commands
(PF subroutine)

CYBER Record Manager (CRM)

CYBER Memory Manager (CMM)

COMPASS

8-Bit Subroutines

Functional Equivalent

SIL calls can perform all VSOS permanent file
functions.

SIL calls can manipulate the file information table
(FIT) and perform record and block 1/0.

SIL calls can advise the system of the program's
memory requirements (Q5ADVISE and Q5MEMORY).

A program can call subprograms written in CYBER 200
assembly language (META) or its implementation
language (IMPL).

VSOS provides arithmetic conversion routines for IBM
and CYBER 170 data.

Functional equivalents are not available for the following CYBER 170 product interfaces:
Sort/Merge, CYBER Database Control System (CDCS), Information Management Facility (IMF),
Queued Terminal Record Manager (QTRM), and Transaction Facility (TAF).

4-6 60455390 B

MACHINE-DEPENDENT DIFFERENCES

Machine-dependent code is code that executes correctly only on a particular computer. 'nlis
code often assumes that certain ~ata representation is used. When converting a FORTRAN
program for use on the CYBER 200, look closely for machine dependencies in the following
areas:

• Masking expressions

• Shift operations

• Logical operators used for purposes other than creating logical variables

• Equivalenced real and integer variables

• Initialization of real and integer variables when the difference in data types is
ignored

• Plus and minus zero

• Hollerith variables

• Character variables/data (especially if equivalenced)

'nle machine-dependent differences between a CYBER 200 and a CYBER 170 stem from the following
two differences:

• Different word size (64 bits on the CYBER 200 instead of 60 bits on the CYBER 170)

• Different number representation (two's complement on the CYBER 200 instead of one's
complement on the CYBER 170).

The different word size affects the character codes and the base in which numbers are
displayed.

• The 60-bit CYBER 170 word is split into ten 6-bit bytes. Each byte represents one
display code. The 64-bit CYBER 200 word is split into eight 8-bit bytes. Each byte
representing one ASCII character.

• CYBER 170 numbers are shown using octal notation with 3 bits per digit. CYBER 200
numbers are shown using hexadecimal notation with 4 bits per digit.

Two's complement number representation results in the same representation for positive and
negative zero. Integer zero and floating-point zero, however, do not have the same
representation.

Note also that the bits within a CYBER 170 word are numbered from right to left (bits 59
through 0). 'nle bits within a CYBER 200 word are numbered from left to right (bits 0 through
63). 'nle CYBER 200 is a bit-addressable machine, so each successive bit has the next bit
address in sequence.

The following paragraphs focus on the differences in data representation for each data type.
For more information on number systems and CYBER 200 arithmetic operations, refer to
appendixes A and B in the CYBER 200 Model 205 Hardware Reference Manual.

60455390 A 4-7

INTEGER REPRESENTATION

The following are graphic representations of the CYBER 170 integer format and the CYBER 200
integer format:

CYBER 170: INTEGER

59 0

CYBER 200: INTEGER

0 15 16 63

Bit 59 is the sign bit for a CYBER 170 integer (0 for a positive number, 1 for a negative
number). Bit 16 is the sign bit for a CYBER 200 integer (0 for a p·ositive number, 1 for a
negative number).

In most cases for a CYBER 170 integer, only the lower 48 bits are used for multiplication and
division or for conversion from an integer to a real number. The full 60 bits are used for
addition and subtraction.

The following examples show the same integer values as represented in the CYBER 170 and in
the CYBER 200. CYBER 170 numbers are shown using octal notation. CYBER 200 numbers are
shown using hexadecimal notation:

Integer

47
+2 -1

+1

+o

-o
-1

47
-2 -1

4-8

CYBER 170
Representation

00003777777777777777

00000000000000000001

00000000000000000000

77777777777777777777

77777777777777777776

77774000000000000000

CYBER 200
Representation

00007FFFFFFFFFFF

0000000000000001

0000000000000000

0000000000000000

OOOOFFFFFFFFFFFF

0000800000000001

60455390 A

Consider the following example that determines the value of a negative two's complement
integer:

0000FFFFFFFFFC2
1

OOOOFFFFFFFFFCl

OOOOFFFFFFFFFFF
OOOOFFFFFFFFFCl
00000000000003E

}
}

Bit 16 is 1 so the number is negative.
Subtract one.

Take the one's complement of the rightmost 48 bits.

The value is -3E.

FLOATING-POINT REPRESENTATION

The following are graphic representations of the CYBER 170 floating-point (real) format and
the CYBER 200 floating-point format:

CYBER 170:
59 48 47 0

CYBER 200:
0 15 16 63

The exponent in the CYBER 200 floating-point format is not biased; the value of a
floating-point number with exponent E and mantissa M is exactly M*(2**E).

Both CYBER 170 and CYBER 200 floating-points are normalized. In a normalized CYBER 170
floating-point, bit 47 is different from bit 59 (the sign bit). In a normalized CYBER 200
floating-point, bit 16 (the sign bit) is different from bit 17.

Converting to Normalized CYBER 200 Real F~rmat

The following example converts the value 0.25 to normalized CYBER 200 floating-point format.

The decimal value 0.25 is 0.0100 binary or 0.4 hexadecimal. By shifting the decimal point
2 bits to the right, the value can be represented as 1.0 * 2**-2. Because the exponent is
negative, it is converted to two's complement form as follows:

FFFF Take the one's .complement.
0002
FFFD

1 Add one.
FFFE

The 16-bit exponent value is FFFE. The unnormalized floating-point number is as follows:

FFFE 0000 0000 0001

60455390 A 4-9

To normalize the floating-point number, the mantissa is shifted left until bits 16 and 17
differ. At the same time, the exponent is decremented by 1 for each bit shifted left. The
normalized mantissa appears as follows (bit 16 is zero, bit 17 is 1):

4000 0000 0000

To move bit 1 to bit 17 requires 46 decimal shifts left (2E hexadecimal). Therefore, 2E is
subtracted from the unnormalized exponent FFFE as follows:

FFFE
--1!
FFDO Normalized exponent

Combining the normalized exponent and mantissa, the normalized form of the floating-point
number 0.4 hexadecimal is as follows:

FFDO 4000 0000 0000

Converting From CYBER 200 Normalized Real Format

Consider the following CYBER 200 floating-point number:

FFDO COOO 0000 0000

Because the leftmost bit of the mantissa is a 1 (C is 1100 binary), the value is negative.
Both the exponent and the mantissa, therefore, are in two's complement form. Convert each as
follows:

FFDO
__ l

FFCF

FFFF
FFCF
0030

cooo 0000 00001 }
Subtract one.

BFFF FFFF FFFF

FFFF FFFF FFFF } Take the one's
BFFF FFFF FFFF complement.
4000 0000 0000

To convert the value to unnormalized form, shift the rightmost bit to the right and decrement
the exponent until the exponent is 0000 or the bit has reached the rightmost bit of the
word. (If you shifted further, the value would lose significance.) The unnormalized value
appears as follows:

0002 0000 0000 0001

Remember that both the exponent and the mantissa are negative values translated from two's
complement. The unnormalized number, therefore, represents -1.0 * 2**-2, -0.0100 binary or
-0.4 hexadecimal.

4-10 60455390 A

Floating-Point Zero and Floating-Point Indefinite

Each floating-point number whose exponent begins with the digit 8 represents floating-point
zero. Each floating-point num~er whose exponent begins with the digit 7 represents an
indefinite value.

Unlike the CYBER 170 representations, floating-point zero and integer zero are not the same
in a CYBER 200 machine:

Floating-point zero:
Integer zero:

8xxx xxxx xxxx xxx:x
0000 0000 0000 0000

This is significant when you initialize an element to zero. If initialized to integer zero,
the value can be used for integer arithmetic operations, but not for floating-point
arithmetic. If initialized to floating-point zero, the value can be used for floating-point
arithmetic operations, but not for integer arithmetic.

It is recommended that the program perform its own initialization rather than use the system
preset value. If the system clears space to all zeros, for example, it is a valid value for
integer operations but it is not valid for floating-point operations.

DOUBLE - PRECISION REPRESENTATION

The following are graphic representations of the CYBER 170 double-precision format and the
CYBER 200 double-precision format:

EXPONENT MANTISSA MOST
CYBER 170:

59 48 47 0 SIGNIFICANT

I EXPONENT I MANTISSA I LEAST
SIGNIFICANT

EXPONENT MANTISSA MOST
CYBER 200:

0 15 16 63 SIGNIFICANT

I EXPONENT I MANTISSA I LEAST
SIGNIFICANT

In general, a double-precision number is represented using two words in floating-point
format. The first word represents the more significant half of the value, and the second
word represents the less significant half of the value.

The exponent of the second word in the CYBER 200 double-precision format is the exponent of
the first word minus 47. The mantissa of the second word is not normalized. The second word
is always zero or positive; that is, bit 16 is zero even when the number is negative.

60455390 A 4-11

COMPLEX REPRESENTATION

The following are graphic representations of the CYBER 170 complex format and the CYBER 200
complex format:

EXPONENT MANTISSA REAL
CYBER 170: 59 48 47 0

EXPONENT MANTISSA IMAGINARY

EXPONENT MANTISSA REAL
CYBER 200: 0 15 16 63

EXPONENT MANTISSA IMAGINARY

A complex value on either the CYBER 170 or the CYBER 200 is represented as two words in
floating-point format. The first word represents the real part, and the second word
represents the imaginary part of the complex value.

LOGICAL REPRESENTATION

The following are graphic representations of the CYBER 170 logical format and the CYBER 200
logical format:

CYBER 170: TRUE 1

59 0

FALSE 0

CYBER 200: TRUE 1

0 63

FALSE 0

Only bit 59 (the sign bit) is significant within a CYBER 170 word representing a logical
value. If bit 59 is 1, the value is true; if bit 59 is 0, the value is false.

Only bit 63 is significant within a CYBER 200 word representing a logical value. If bit 63
is 1, the value is true; if bit 63 is 0, the value is false.

4- 12 60455390 A

FORTRAN 1/0

The File Management section of this manual showed how to connect a file to your FORTRAN 200
program. The section showed file I/O using READ, WRITE, and PRINT statements. However,
FORTRAN programs executed on a CYBER 200 system have two methods of performing file I/O.
These methods are as follows:

5

• File I/O using READ, WRITE, PRINT, and PUNCH statements (the standard FORTRAN runtime
routines)

• File I/O using system interface language (SIL) calls.

As illustrated in figure 5-1, a FORTRAN program executes FORTRAN runtime I/O routines that
call SIL I/O routines to issue system I/O requests.

FORTRAN ___.
PROGRAM ..,.._

FORTRAN __..
RUNTIME
ROUTINES ..,.._

SIL l/O ---+- SYSTEM
1/0

ROUTINES ..__ REQUESTS

Figure 5-1. FORTRAN I/O Interface

The FORTRAN 200 Reference Manual describes file I/O using FORTRAN runtime routines. The same
I/O methods you have used with other CDC FORTRAN compilers generally are available with
FORTRAN 200. These I/O methods include the following.:

• Formatted I/O

• Unformatted I/O

• List-directed I/0

• Namelist I/O

• Buffer I/O

A FORTRAN program can also call SIL I/O routines directly without the intervening FORTRAN
runtime I/O routines. This allows the program to specify the file data format in greater
detail. Problems may arise, however, if a program mixes the two I/O methods.

60455390 A 5-1

MIXING FORTRAN RUNTIME AND SIL I/ 0

Do not attempt to use both standard FORTRAN runtime I/O and SIL I/O routines to open the same
file at the same time.

When a FORTRAN runtime routine opens a file, the routine associates the file with a unit
identifier. The file remains associated with that unit identifier until the file is closed.
SIL calls cannot reference a file by its unit identifier and, therefore, cannot reference the
same instance of opening.

When a SIL call (QSOPEN or QSGETFIL) opens a file, the SIL call associates the file with a
file logical unit number (FLUN) and a file information table (FIT). Subsequent SIL calls can
reference the file by the FLUN and use the information in the file's FIT. A FORTRAN runtime
routine, however, must first use a QSREQUEST followed by an OPEN call to reference the file
by its FLUN. FORTRAN runtime routines cannot reference a file by its FLUN or directly
reference the information in the FIT. An OPEN statement that attempts to open the file would
call QSOPEN and receive an error status message because the file is already open.

Therefore, if your program first performs I/O on a file using SIL routines, issue a QSCLOSE
call to close the file before performing I/O on the file using FORTRAN runtime routines.
Similarly, after performing file I/O using FORTRAN runtime routines, execute a CLOSE
statement before opening the file for SIL I/O.

Figure 5-2 shows a program that opens and closes a file twice. The first time, SIL calls are
used to open and close the file, and the second time, FORTRAN statements are used. A
QSGETFIL call creates a file named NEW and opens it, a QSPUTN call writes a sequence of
integers to the file, and a QSCLOSE call closes the file. An OPEN statement reopens the
file, a READ statement reads the integers from the file, and the CLOSE statement closes the
file again.

Notice the RFLUN and FLUN parameters on the SIL calls. The RFLUN parameter returns the file
logical unit number (FLUN) for the instance of open. The FLUN is an integer that identifies
the instance of open. It is recommended that SIL calls identify an open file by its FLUN
instead of by its file name (LFN) because this creates greater I/O efficiency. When a call
specifies an open file by name, SIL must search for the FLUN associated with that name.

The QSGETFIL call specifies W as the record type (RT) because that is the record type used in
the file that the QSGETFIL call will create by default. If the QSGETFIL call references an
existing file, this file is opened and used regardless of the record type used on the
existing file.

Note that the QSPUTN call specifies the length of the integers it writes (WSL=) as 8 bytes.
SIL adds the control word delimiter to the data when the QSPUTN call stores it in the
buffer. In the second example, the QSGETN transfers only 8 bytes (the integer) to the
OUTARAY element.

The MDUMP calls are not required. They were added to display the contents of the WSA array.

5-2 60455390 A

60455390 A

Example 1:

PROliiRAM MIX
INTEGER FLUN, WSA, INARAYC512), OUTARAYC512)
COMMON /BUFFER/ INARAY, OUTARAY

CALL Q5GETFILC'LFN=','MIXED','RFLUN=',FLUN,
+ 'BUF1=',INARAY,'BUFL1=',1,'RT=','W')

DO 10 I=1,512
WSA = I

10 CALL Q5PUTNC'FLUN=',FLUN,'WSA=',WSA,'WSL=',8)
CALL Q5CLOSEC'FLUN=',FLUN)

OPENCUNIT=1,FILE='MIXED')
DO 20 I=1,512

20 READCUNIT=1> OUTARAYCI>
CLOSE CUNIT=1)

CALL MDUMPCOUTARAY,512,'Z',6HOUTPUT)
STOP
END

Example 2:

PROGRAM MIX
INTEGER FLUN, WSA, INARAYC512), OUTARAYC512)
COMMON /BUFFER/ INARAY, OUTARAY

OPENCUNIT=1,FILE='MIXED')
DO 10 I=1,512
WSA = I

10 WRITECUNIT=1) WSA
CLOSE CUNIT=1)

CALL Q5GETFILC'LFN=','MIXED','RFLUN=',FLUN,
+ 'BUF1=',INARAY,'BUFL1=',1,'RT=','W')

DO 10 I=1,512
10 CALL Q5GETNC'FLUN=',FLUN,'WSA=',OUTARAYCI>,

+ 'WSL=', 16>

CALL Q5CLOSEC' FLUN=' ,FLUN)

CALL MDUMPCOUTARAY,512,'Z',6HOUTPUT>

STOP

END

Figure 5-2. Mixed I/O Examples

5-3

RECORD 1/0

Record I/O is the reading and writing of data records. The data records exist on the file
within a logical record structure~ A request to read a record extracts a record of data from
the logical structure. A request to write a record writes the data and any record delimiters
required by the logical structure.

Either FORTRAN runtime routines or SIL calls can perform record I/O.

FORTRAN RUNTIME RECORD I/ 0

The READ, WRITE, PRINT, and PUNCli statements perform record I/O. Each statement reads or
writes one or more data records.

The FORTRAN runtime routines read and write data within a SIL record structure. However,
this record structure is transparent to the program when using FORTRAN runtime routines.
Delimiters are added or removed without program specification.

However, as shown in figures 3-6 and 3-7, you can see the SIL record delimiters if you
request a dump of the file data. If the file is a sequential-access file that, by default,
uses the record type W format (variable-length records with control word delimiters), you can
see the delimiters embedded in the data. If the file is a direct-access file that, by
default, uses the record type F format (fixed-length records with no delimiters), you can see
the padding characters added to short records.

SIL RECORD 1/0

The SIL calls that perform record I/O are called get and put calls because they either read
(get) or write (put) a data record. These calls can read or write a single record, the next
record in a group of records, or a partial record.

Get Calls

Q5GETB

Q5GETN

Q5GETP

Put Calls

Q5PUTB

Q5PUTN

Q5PUTP

Record Read/Written

A single record

The next record

A partial record

Using the Q5GETP and Q5PUTP calls for partial record I/O, the program can read and write
records longer than the working storage area in the program. The call specifies which part
of the record is being read or written.

A Q5ENDPAR call can write a group delimiter to a group of records as they are written.

SIL calls do not perform formatted I/O. Data is read or written without data editing.

SIL calls allow tailoring of the file structure by specifying the record type and/or blocking
type. The available record and blocking types are described in the VSOS Reference Manual,
Volume 1.

5-4 60455390 A

ACCESS METHODS

Sequential access is the default access method. In sequential access, records are accessed
in the order they were written •. A request to read or write a record positions the file to
read or write the next record.

You can request direct access on a FORTRAN OPEN statement or on a QSOPEN or Q5GETFIL call.
When any of these statements are used to open a file, records are accessed by number.

The ACCESS parameter on the OPEN statement or the SFO= parameter on the QSOPEN or Q5GETFIL
call requests direct access.

Direct access normally uses record type F (fixed-length records with no delimiters). If a
different record type is used, direct access may require specification of record length. The
OPEN statement specifies the record length using the RECL= parameter. The QSOPEN or Q5GETFIL
call specifies the record length with its MXR= parameter.

Each read or write request specifies the record number. The record number is specified on
the REC= parameter of the READ statement or the REC= parameter on the Q5GETN call.

The direct access program example in figure 5-3 lists a program that opens a file for direct
access and writes a sequence of integers on the file. The program then reads the records in
reverse order, copying the integers to an array. The MDUMP call prints the contents of the
array showing the integers in reverse order.

Note that the RESOURCE statement in figure 5-3 specifies a larger time limit than previous
jobs in the manual. A longer time limit is required because the file is repositioned for
each read.

ADEY,ST=ABC.
USER,USER=123456,ACCOUNT=ACCT933.
RESOURCE,TL=25.
FTN200.
LOAD.
GO.
CEOR)

c

PROGRAM DIRECT
INTEGER X, WSA(512)

OPEN(UNIT=1,FILE='NEW',ACCESS='DIRECT',RECL=8)
DO 10 I=1,512
X=I

10 WRITEC1, REC=I) X
c

c

DO 20 I=1,512
N = 513 - I

20 READC1, REC=N) WSA(I)

CALL MDUMPCWSA,512,'Z',6HOUTPUT)
STOP
END

Figure 5-3. Direct Access Program Example

60455390 A 5-5

DAT A TRANSFER

As illustrated in figure 5-4, record 1/0 transfers data between a working storage area and a
data buffer in the program. A r~ad request reads a record from the buffer. A write request
writes a record to the buffer. The syst~m manages the transfer of data between the buffer
and the file; that is, when writing data, the system waits until the buffer is full before
writing the data to the file. When reading data, the system fills the buffer when required
by the program.

Figure 5-4 also illustrates block 1/0 transfer. In this case, the program allocates only a
data buffer. There is no working storage area because the program requests the transfer of
data only between the buffer and the file; that is, a read request fills the entire buffer.
A write request writes the entire buffer.

RECORD 1/0

WORKING STORAGE
AREA IN PROGRAM

DATA BUFFER
IN PROGRAM

DATA BUFFER
IN PROGRAM

BLOCK 1/0

...

....
...

FILE

Figure 5-4. Explicit 1/0 Data Transfers

FILE

Note that the data transferred between the data buffer and the file includes embedded record
delimiters. A request to read a record (that is, transfer a record from the data buffer to
the working storage area) removes the record delimiter. A request to write a record (that is,
transfer a record from the working storage area to the data buffer) adds the record delimiter.

5-6 60455390 A

BLOCK 1/0
Block I/O allows your program to perform concurrent I/O. Block I/O means the program can
issue a call to read or write data and then perform other computations while the data
requested is being read or written. When the program is ready to use the data that was just
read or the program is ready to write more data, it checks to see if the previously issued
I/O request is completed.

Like record I/O, either FORTRAN runtime routines or SIL calls can perform block I/O. The
FORTRAN runtime routines that perform block I/O are Q7BUFIN, Q7BUFOUT, and Q7SEEK.

The SIL calls used to perform block I/Oare Q5READ, Q5WRITE, and Q5CHECK. Q5CHECK can return
the status of an I/O request (whether the request has been completed or not). Q5CHECK can
also suspend program execution until an I/O request is completed. If it is possible that
more than one I/O request is outstanding, the Q5CHECK call should identify the request by
specifying the request number (RSN) returned by the Q5READ or Q5WRITE call.

Figure 5-5 illustrates a job that compiles, loads, and executes a program that opens file
OLD, reads 16 blocks of data, and then writes the data on file NEW. While reading data from
file OLD, the program executes a subprogram that does not use the data being read. When the
subprogram completes, Q5CHECK suspends program execution until the read request completes.

ADEY,ST=ABC.
USER,USER=123456,ACCOUNT=ACCT933.
RESOURCE,TL=10.
ATTACH,OLD.
FTN200.
LOAD,GRSP=•BUFFER.
GO.
CEOR)

PROGRAM BLOCCPY
INTEGER FLUN, FLUN2, RSN, BIGARAYC8192)
COMMON /BUFFER/ BIGARAY

CALL Q50PENC'LFN=','OLD','RFLUN=',FLUN)
CALL Q5READC'FLUN=',FLUN,'BUFFER=',BIGARAY,

+ 'BUFLEN=',16~'RSN=',RSN)
CALL SUBPROG
CALL Q5CHECKC'FLUN=',FLUN,'RSN=',RSN,'WAIT')
CALL Q5GETFILC'LFN=','NEW','RFLUN=',FLUN2')
CALL Q5WRITEC'FLUN=',FLUN2,'BUFFER=',BIGARAY,

+ 'BYTCNT=',65536)
STOP
END

Figure S-5. Block I/O Example

60455390 A 5-7

Notice that BIGARAY is in a common block. A common block is required to be aligned on a page
boundary and to be a multiple of 512 words. To align the common block on a page boundary,
specify the common block on a GRSPs or GRLP= parameter on the LOAD statement. The
GRSP=*BUFFER parameter on the LOAD statement aligns common block BUFFER on a small page
boundary.

The Q5READ call specifies the length of the data read as sixteen 512-word blocks using the
BUFLEN= parameter. The Q5WRITE call specifies the length of the data written as 65536 bytes
using the BYTCNT= parameter.

5-8 60455390 A

CYBER 200 MEMORY MANAGEMENT 6

The CYBER 200 Computer is a virtual memory machine. This means that each program has its own
virtual address space in which it can reference any virtual address between 4000 and
800 000 000 000 hexadecimal. (The top of this range is increased to COO 000 000 000
hexadecimal when the shared library is active.) While this fact suggests that the program
has unlimited virtual memory available, there are limitations to the amount of virtual memory
the program can use.

A virtual memory addressing scheme requires that every virtual address referenced by a
program must be mapped to a location on a disk file. The virtual memory available to the
program, therefore, is limited by the disk and map space available to the program.

The operating system limits the physical memory available to your program. The operating
system must determine if there is enough physical memory available to schedule a program for
execution. The operating system must also determine when an executing task should get any
additional physical memory it needs.

Memory management is important to your job. With efficient memory management, your job
requires fewer system resources and completes faster. To understand how you can improve the
efficiency of your program, you must understand memory paging.

MEMORY PAGING

Program space (or virtual space) is the range of virtual addresses used by the execution of
the program. When the program is executed, the virtual space is mapped to physical space
(central memory and disk space). During execution, the program is assigned central memory
only for the code and the data the program is currently using. The rest of the code and data
remain on disk. When the program requires additional code or data that is not currently in
central memory, VSOS automatically copies it from disk to central memory. The process of
copying code and data in and out of central memory is called paging.

VSOS uses two page sizes: small pages and large pages. Small page size is determined by
site. A small page can be one, four, or sixteen 512-word blocks. Large page size is always
128 512-word blocks (65536).

A virtual address specification is often required to be on a block or page boundary.

• A virtual address is on a block boundary if the address is a multiple of 8000
hexadecimal

• A virtual address is on a large-page boundary if the address is a multiple of 400000
hexadecimal

• A virtual address is on a small-page boundary if the address is one of the following:

a multiple of 8000 hexadecimal for a 1-block page

a multiple of 20000 hexadecimal for a 4-block page

a multiple of 80000 hexadecimal for a 16-block page

60455390 B 6-1

I

A page fault occurs when an executing program references a virtual address whose contents are
not currently in physical memory. A page fault suspends program execution until the system
copies the contents of the referenced virtual address into physical memory. This, however,
is not always just a one-page copy. It may be a two-page copy if the system must first save
the page currently in memory on a disk to make room for the new page and then copy the new
page contents from disk to the newly available page.

To minimize the execution time of your program, you should minimize page faults. You should
also consider whether the page faults are for large pages or small pages. A page fault for a
large page takes much longer than a page fault for a small page. For large volumes of data,
however, paging in one large page is more efficient than paging in the corresponding number
of small pages because less I/O overhead is incurred.

The SUMMARY control statement can tell you how many small page and large page faults your job
has required. Figure 6-1 shows an example of the SUMMARY output contained in a job dayfile.
This job required no large page faults; therefore, the Number of Large Page Faults line is
omitted from the SUMMARY output.

16.11.43
16.11.43
16.11.43
16.11.43
16.11.43
16.11.43
16.11. 43
16.11.43
16.11.43
16.11.43

SUMMARY.
SYSTEM TIME UNITS CSTU)
USER CPU TIME CSECS)
SYSTEM CPU TIME CSECS)
USER MEMORY USAGE CPAGE*SECS)
USER AVERAGE WORKING SET SIZE CPAGES)
NUMBER OF VIRTUAL SYSTEM REQUESTS
NUMBER OF SMALL PAGE FAlA.TS
NUMBER OF DISK I/O REQUESTS
NUMBER OF DISK SECTORS TRANSFERRED

Figure 6-1. SUMMARY Output Example

PROGRAM COMPONENTS

5.273
1.053
1.628

393.512
373
338

65
20

147

A program consists of the executable statements that indicate what the program does and the
data structures that indicate how the program references data. These statements are often
split between two or more subprograms. The compiler transforms the statements in each
subprogram into a code module.

Data structures are either local variables accessible by only one module or common blocks
accessible by more than one module. FORTRAN common blocks can be named or unnamed. (Named
common is also called labeled common. Unnamed common is also called blank or unlabeled
common.)

If you specify the M option on the LO~ parameter of the FTN200 control statement, the FORTRAN
200 compilation writes a register file map and a storage map for the program. The register
file map lists the contents of the 256-register register file. The storage map lists the
components of the FORTRAN 200 program.

6-2 60455390 A

Figure 6-2 shows a sample storage map. (The program whose compile generated the sample
storage map is shown in figure 6-6.) Storage maps list the following items:

1. Program name

2. Starting address of the data area copy for all registers

3. Name, location, class, and data type of all scalars, constants, and externals
assigned to registers

4. Name, location, and class of descriptors assigned to registers

5. Length and starting address of the object code

6. Length and starting address of character constants, literals, and format segments

7. Length and starting address of argument vectors

8. Length and starting addresses of constants, externals, descriptors, variables not in
common, namelist groups, and character scalars not assigned to registers

9. Location of temporary storage

10. Common blocks

11. Entry points

12. Externals

GENERA TING THE EXECUTABLE FILE

The LOAD utility generates the controllee file by combining the components of the program as
specified on the LOAD statement. These components include code modules and comm.on blocks.

Code modules are the modules copied from the object code files specified on the LOAD
statement and the modules that load copies from object libraries to satisfy external
references. In the previous job examples, the LOAD statement has copied code modules from
the default object code file (BINARY) written by the preceding FORTRAN 200 compilation.

LOAD attempts to satisfy external references by copying code modules from the F200LIB object
library. If no code module in the F200LIB library has an entry point matching an unsatisfied
external reference, LOAD looks for the entry point on the SYSLIB library file.

As shown in figure 6-3, the load map lists the code modules copied to the controllee file.
The load map lists the module name, its address within the controllee file, its length, and
the file from which the module was copied.

60455390 A 6-3

er ,,,..

"" 0 ,,,..
V1
V1
w
\D
0

°"

- - -
FORTRAN 200 CYCLE L670 BUILT 06/08/86 17:08 STORAGE MAP SEQ COMPILED 09/14/86 13:50 PAGE 3

(!)PROGRAM NAME IS SEQ TOTAL LENGTH IS 35 HEX HALF WORDS

(!}DATA AREA COPY OF ALL REGISTERS USED BY THIS FORTRAN PROGRAM
START ADDRESS = ADO CSTART ADDRESS IS RELATIVE TO DATA AREA BASE ADDRESS>

(!)scALARS AND CONSTANTS ASSIGNED TO REGISTERS
LOCATION REG.NO NAME

ABO
ACO
B40
BSD

22
23
25
26

Pl DYNSP
c #200
D-L 0000
I . -

~DESCRIPTIONS ASSIGNED TO REGISTERS
LOCATION REG.NO NAME

coo
C40
C80

28
29
2A

BIGARAY 8F __ DESCR
•ARG VECT
•ARG ·veer

(LOCATIONS ARE RELATIVE TO DATA AREA BASE ADDRESS)
CLASS TYPE

SIMPLE VARIABLE
CONSTANT
SIMPLE VARIABLE
SIMPLE VARIABLE

INTGR
INTGR
INTGR
INT GR

(LOCATIONS ARE RELATIVE TO DATA AREA BASE ADDRESS)
CLASS

ARRAY NAME
ARGUMENT VECTOR
ARGUMENT VECTOR

NOTE: TOTAL NUMBER OF REGISTERS TO BE FETCHED INTO REG.FILE STARTING WITH REG.20 HEX IS OB HEX

(!}GENERATED OBJECT CODE
START ADDRESS = 0 LENGTH =

(!)CHARACTER CONSTANTS,LITERALS AND FORMAT SEGMENTS
START ADDRESS = 0 LENGTH =

{!)ARGUMENT VECTORS
START ADDRESS = 240 LENGTH =

35 HEX HALF WORDS <START ADDRESS IS RELATIVE TO CODE AREA BASE ADDRESS>

12 HEX HALF WORDS <START ADDRESS IS RELATIVE TO DATA AREA BASE ADDRESS>

1A HEX HALF WORDS <START ADDRESS IS RELATIVE TO DATA AREA BASE ADDRESS)

(!)CONSTANTS, DESCRIPTORS, NON-COMMON VARIABLES, AND NAMELISTS NOT ASSIGNED TO REGISTERS
START ADDRESS = 580 LENGTH = 0 HEX HALF WORDS (START ADDRESS IS RELATIVE TO DATA AREA BASE ADDRESS)

(!) LOCATION

500
600
680
700
780
800

SYMBOLIC NAME OR HEX VALUE

TEMPORARY STORAGE

COMMON BLOCKS

RLEN
F PROLOG
Q5.MAPIN
Q5GETFIL
F EPILOG

. 80

LENGTH =

CLASS

SIMPLE VARIABLE
REF.EXTERNAL SUBPR
REF.EXTERNAL SUBPR
REF.EXTERNAL SUBPR
REF.EXTERNAL SUBPR
CONSTANT

TYPE (LOCATIONS ARE RELATIVE TO DATA AREA BASE ADDRESS)

INTGR
UNKNW
REAL
REAL
INTGR
INTGR

0 HEX HALF WORDS (STORAGE IS SCATTERED THROUGHOUT DATA AREA)

Figure 6-2. Storage Map Example (Sheet 1 of 2)

"' 0
~
U1
U1
I,,.)

'° 0

t::<I

"' I
U1

FORTRAN 200 CYCLE L670

<!!)coMMON BLOCKS

BUILT 06/08/86 17:08 STORAGE MAP SEQ COMPILED 09/14/86 13:50

BLANK COMMON NAME BLOCK

BLANK COMMON NAME BLOCK IS NOT SPECIFIED

NAMED COMMON BLOCK BUFFER

START ADDRESS =

LOCATION SYMBOLIC NAME

0 BI GARAY

@LIST OF ALL ENTRY POINTS

LOCATION SYMBOLIC NAME

0 SEQ

(!!}LIST OF ALL EXTERNALS

SYMBOLIC NAME

NO ERRORS

F EPILOG
QSGETFIL
QSMAPIN
F_PROLOG

-

0 LENGTH = 20000 HEX HALF WORDS

CLASS TYPE (LOCATIONS ARE RELATIVE TO COMMON BLOCK START ADDR.l

ARRAY VARIABLE INT GR

(LOCATIONS ARE RELATIVE TO DATA AREA BASE ADDRESS)

(LOCATIONS ARE RELATIVE TO DATA AREA BASE ADDRESS>

Figure 6-2. Storage Map Example (Sheet 2 of 2)

-

PAGE 4

Beside each code module listed in the load map is a description of the database for the
module. A database is space for data constants and variables accessed by a module. Unless
the LOAD statement specifies GDWC=NO, LOAD copies the database for a module immediately after
the module in the controllee file. TI!.is is done so that the code and the database used by
the code are grouped together in virtual memory. This improves the chances that the code can
access its database and bring in the data without causing a page fault.

After the code modules and databases, LOAD reserves space for the named comm.on blocks. If a
DATA statement initializes variables in the comm.on block, LOAD initializes the comm.on block
space in the executable file to the specified values.

LOAD records an entry for blank comm.on but never reserves space for blank comm.on in the
controllee file. Blank comm.on space is always allocated in the drop file.

If the GROS or GROL option is specified, LOAD can also allocate named comm.on blocks to the
drop file without reserving space in the controllee file.

The load map in figure 6-3 is a listing of how memory was allocated by the loader for your
job. TI!.e listing shows the following items:

1. Loader update level

2. Job-specified parameters

3. Name, location, and other information about all object modules and data bases in the
controllee file

4. Compilation/assembly date and time of memory allocation for object modules and data
bases

5. Name, address, and word length of all common blocks

6. Address and word length of all error processing information

7. Address and block length of bound virtual map entries

8. Address and block length of drop file map entries

9. Address of the dynamic stack (Unless specified otherwise by the DSA parameter, the
dynamic stack is always allocated following the last virtual address allocated when
the task executed.)

10. Size of the controllee file in blocks

6-6 60455390 A

"' 0 LOAD "AP "" V1
V1 (!:)LOAD R2.3 CYCLE L670
'° @PARAMETERS SPECIFIED: 0 GROL=•BUFFER,LIB=F200L ta

CCI

©MODULES

NAME CODE ADDRESS WORD LENGTH CHEXl FILE DATA BASE ADDRESS WORD LENGTH CHEXl PROCESSORS ©DATE TIME

SEQ 80080 1E BINARY 80780 34 FTN200 84/9/14 13:50
F EPILOG 81500 7C F200LIB 83380 1E META 841612 17:24
QSGTFIL 83880 1A2 SYSLIB 8A380 7E IMPL 84/9/6 17:45
Q5MAPIN 95080 AE SYSLIB 97880 50 IllPL 841916 17:45
F PROLOG 98880 152 F200LIB AOC80 58 META 84/9/2 17:Z4
QSCLOSE A2300 226 SYSLIB AA COO 66 IMPL 84/9/6 17:45
Q5REDUCE 81080 88 SYSLIB B3ZOO 48 I"PL 84/9/6 17:45
R5RETURN B5D80 AE SYSLIB B8880 4C IMPL 84/9/6 17:45
Q5SNDMCR BBB OD 24 SYSLIB BC380 AO META 84/9/6 17:3Z
Q5TERM BE COO 36 SYSLIB BF900 9E "ETA 841916 17:32
Q5 DCDCK C2100 11E SYSLIB C6800 46 I"PL 84/9/6 17:45
Q5LFIHIR C8080 60 SYSLIB C9800 AZ META 84/9/6 17:32
Q5DCDPFI CC100 234 SYSLIB D4D80 E4 META 84/9/6 17:32

Q5 PROER 1DDBOO 4C SYSLIB 1DED80 0 "ETA 84/9/6 17:32
Q5 PTNUP 1DEEOO Z8 SYSLIB 1DF780 0 "ETA 8419/6 17:32
Q5 MVEDL 1DF800 1C SYSLIB 1DFE80 0 META 84/9/6 17:32
Q5-SELSS 1 DFFOO 32 SYSLIB 1EOBOO 0 META 84/9/6 17:3Z
Q5LSTCH 1EOB80 BO SYSLIB 1E3700 40 I"PL 84/9/6 17:54
Q5GENFIT 1E6C80 1FA SYSLIB 1EEA80 6E IMPL 84/9/6 17:45
F DFD"P 1F6100 2E F200LIB 1F6COO 5A META 84/6/Z 17:Z5
QSGETMPG 1F8300 2E SYSLIB 1F8EOO 2E I"PL 84/9/6 17:54
Q5RECALL 1 FA900 32 SYSLIB 1 FB500 2E IMPL 84/9/6 17:54
Q5PUTP 1FDOOO 596 SYSLIB 213500 DA UIPL 841916 17:45
F CPOPEN 21A900 F2 F200LIB Z1E500 66 META 841612 17:22
Q5SKIP 21 FFOO 716 SYSLIB 23C400 A4 IMPL 84/9/6 17:45
Q5READ 241400 316 SYSLIB 24D900 78 IMPL 84/9/6 17:45
Q5GETFIT 25Z600 56 SYSLIB 253800 42 IMPL 84/9/6 17:45

MODULE HEADER ADDRESS IS CODE ADDRESS MINUS #80.

COll .. ON BLOCKS

@ NAME ADDRESS WORD LENGTH
HEX DECI .. AL

SQ5GTFIL 8C300 234 564
SQ5MAPIN 98F80 AZ 162
SQ5CLOSE AC580 12A 298
SQ5REDUC B4400 64 100
SQ5RETUR B9B80 7C 124

SQ5CHECK 1A9FOO AC 172
SQ5CLIOE 1B1B80 9A 154
SQ5ENDPA 1C3980 96 150
SQ5WRITE 1 D5COO BE 190

"' I Figure 6-3 • Load Map Example (Sheet 1 of 2)

er-
I oc

cr-
0
~

"" "" w
\C
0

>

' SQ5RETFI 1DAF80
SQ5LSTCH 1E4700
SQ5GENFI 1 F0600
SQ5GETMP 1F9980
SQ5RECAL 1 FC080
SQ5PIJTP 216880
SQ5SKIP 23ED00
SQ5READ 24F700

Q5 CLFHI 292180
Q5-MNE01 293A80
Q5-EMS04 294700
Q5-DCDPF 294A80
Q5-MNE02 29D180
Q5CGETTN 2A0880
Q5CGETCR 2A1880
Q5BETA 2A3BOO
99415048 300000
99575341 330000
99464954 500000
55000000 56EOOO
99434642 76E400
8UFFER 800000

ERROR PROCESSING INFORMATION

©ADDRESS

2A4400

BOUND VIRTUAL '!AP ENTRIES

0 ADDRESS

80000
DROP FILE MAP ENTRIES

@ADDRESS

500000
300000

0 DYNAMIC STACK ADDRESS = 1000000

® coNTROLLEE FILE SIZE (BLOCKS)

HEX DECIMAL

52 82

3C 60
94 148

16A 362
3C 60
3C 60
F4 244
9A 154
BA 186

64 100
32 50

E 14
21C 540

DC 220
4C 76
7E 126
24 36

coo 3072
6000 24576
1B80 7040
8010 32784

FA 250
10000 65536

WORD LENGTH (HEX)

AA7

BLOCK LENGTH (HEX)

50

BLOCK LENGTH (HEX)

50
40

Figure 6-3. Load Map Example (Sheet 2 of 2)

Figure 6-4 shows how a controllee file is mapped into its virtual address space.

PAGES

VIRTUAL
SPACE

3

DISK
SPACE

CONTROLLEE FILE

DROP FILE

~ NAMED

1-----------1< 4 ___ co~~_

Mapping occurs as follows:

... I 5 L.. - - y::~~E~
. _ MODIFIED

CONTROL LEE
PAGES

Figure 6-4. Task Virtual Space Mapping

1. By default, the controllee file is mapped to small pages.

2. Named common is mapped to small pages.

3. Space is allocated for named common in virtual space and in the task's drop file.

4. Room for the dynamic stack area is allocated in virtual space and in the drop file.
The dynamic stack area is scratch space used for stacking register contents on
subroutine calls and for compiler-generated intermediate vectors. (Vectors can also
be explicitly assigned to the dynamic stack area using the descriptor ASSIGN
statement.)

5. During task execution, if the system must page out modified pages from the controllee
file, the modified pages are copied to the drop file, not to the controllee file.
(The controllee file is not modified during execution.)

60455390 A 6-9

USER-CONTROLLABLE PAGE MAPPING
Page mapping does not have t~ be controlled entirely by VSOS. You can determine the way data
in your program is mapped to virtual space.

Suppose your program declares three common blocks: A, B, and C. One part of the program
uses the arrays in common block B and another part of the program uses the arrays in common
blocks A and C. It may be worthwhile to tell the system to group common blocks A and C
together when mapping the controllee into virtual space. This grouping indicates that blocks
are combined for one mapping that begins on a page boundary. (Grouping does not indicate any
ordering of the common blocks in memory.)

To tell the system to group common blocks A and C, specify these blocks on the grouping
parameter of the LOAD statement. If common blocks A and C are too small to use a large page
efficiently, specify them on the GRSP parameter as follows:

GRSP=•A,•C

If common blocks A and C are large enough to use a large page efficiently, you should specify
them on the GRLP parameter as follows:

GRLP=•A,*C

If the unnamed common block is very large, it may be more efficient if the block is mapped to
large pages. To specify large pages, include the following parameter on the LOAD statement:

GRLP=•

To reduce the size of the controllee file, specify the cOlllBon blocks on a GROS or GROL
parameter. Use GROS if the blocks should use small pages. Use GROL if the blocks should use
large pages. If a named common block is not initialized by a DATA statement, it need not
have space reserved in the controllee file.

For common blocks specified on GROS or GROL parameters, LOAD records an entry describing the
common block in the controllee file but does not reserve space for the block. No space is
allocated for the block until the block is actually referenced by the executing program. The
memory allocated for the common block requires corresponding space on a disk file. The
allocated disk space is in the drop file, not in the controllee file. This process, which
results in a shorter controllee file and in a longer drop file, is illustrated in figure 6-5.

Normally, dynamic stack space is mapped to small pages. If your program uses many vector
operations, however, dynamic stack space may use a large page efficiently. The specification
to map dynamic stack space to a large page is on the PROGRAM statement of your program, not
on the LOAD statement in your job.

6-10 60455390 B

PAGES

VIRTUAL
SPACE

DISK
SPACE

CONTROLLEE FILE l 1 CODE AND
~ DATABASES

1------------1 ~ 2 - NAMED- - - -

1--~~~~~~~IJ>~._~CO~M-M_o_N~BL_o_c_K_s~~

I 3 LDROP FILE

I NAMED
... L: UNINITIALIZED

1---------~J... 4 I- _COMMON BLQ_C!_S _ _

I - -NAME_'.'._ <:<WO':_ _

5

. DYNAMIC
.. STACK AREA

-.. MODIFIED
CONTROLLEE
PAGES

Figure 6-5. Mapping Uninitialized Common to the Drop File

In figure 6-5, the mapping occurs as follows:

1. By default, the controllee file is mapped to small pages.

2. Named common is mapped to small pages.

3. Space is allocated for named common in virtual space and in the task's drop file.

4. Room for the dynamic stack area is allocated in virtual space and in the drop file.

5. During task execution, if the system must page out modified pages from the controllee
file, the modified pages are copied to the drop file, not to the controllee file.
(The controllee file is not modified by its execution.)

6. Uninitialized named common is mapped to the drop file. (Because of this, use of the
GROS and GROL parameters can increase the size of the drop file.)

ADVISING THE SYSTEM OF MEMORY REQUIREMENTS

The previous job examples have used the RESOURCE statement to specify a time limit for the
job and to reserve tape drives. The RESOURCE statement can also advise the system of job
memory requirements.

60455390 A 6-11

Each site can set up job categories that the system uses in job scheduling. The site
specifies time and memory limits for each job category. Specifying a job category with the
JCAT parameter on the RESOURCE statement changes the maximum limits of the job from the
default job category limits to the limits of the specified category. Specifying a category
whose limits are lower than the default limits could result in quicker scheduling of your
job, but the job must execute within those limits.

I
The RESOURCE statement provides automatic job category selection based on WS= (small page
memory), LP= (large page memory), and TL= (time limit) specifications.

If you know that the memory requirements for your job are higher than what is allowed by the
job category, you can also use the WS=parameter to specify that your job requires all
available memory in the machine by specifying the following:

WS=*

If the job uses large pages, you can advise the system of the maximum number of large pages
required with the LP=parameter on the RESOURCE statement.

You can advise the system of changes in the job memory requirements with the SET control
statement. A Q5SETLP call can specify changes in large-page requirements within a program.
Using a Q5ADVISE call, your program can tell the system which large arrays it can page out
because the arrays are not currently needed and which arrays it should leave paged in because
these arrays are needed shortly. The SET statement and the Q5SETLP and Q5ADVISE calls are
described in the VSOS Reference Manual, Volume 1.

IMPLICIT I/ 0
A program can use the paging mechanism of the system to perform file I/O. This process is
called implicit I/O and requires no explicit READ or WRITE statements. Instead, the program
calls Q5MAPIN to associate an array with a disk file. (This array must not be allocated on
the controllee file or mapped to the drop file prior to the Q5MAPIN call.) Similarly, a
program can call Q5MAPOUT to end the association and move the data back to the disk file.

While an array is associated with a file, the program reads file data by referencing the
array and writes file data by storing data in the array. This is possible only if the array
is in a common block and that common block is not in the controllee file. Blank common is
never in the controllee file. If the common block is a named common block, you must specify
the common block on the GROS or GROL parameter on the LOAD statement so that LOAD does not
reserve space for the common block in the controllee file.

Figure 6-6 shows a job that compiles, loads, and executes a FORTRAN 200 program that performs
implicit I/O on a file named TEST. The job defines the file TEST and then writes a sequence
of integers on the file.

6-12 60455390 B

ADEY ,ST=ABC.
USER,USER=123456,PASSWORD=XYZ.
RESOURCE,TL=20.
DEFINE,TEST/128.
FTN200.
COMMENT. THE BUFFER ARRAY IS MAPPED TO FILE TEST.
LOAD,GROL=•BUFFER.
GO.
CEOR)

c

c

PROGRAM SEQ

INTEGER BIGARAY, LEN, RLEN
DIMENSION BIGARAYC65536)
COMMON I BUFFER I BIGARAY

C Opens a file named TEST for implicit I/O.
C The requested file length is specified by LEN;
C the initial file length is returned in RLEN.

c

CALL QSGETFILC'LFN=',4HTEST, 'LEN=',128,
+'RLEN=',RLEN,'IMP'>

C Associates file TEST with array BIGARAY.

c

CALL QSMAPINC'LFN=',4HTEST,'VBA=',BIGARAY,
+'LEN=',RLEN)

C Writes a sequence of integers in TEST.
DO 10 I=1,RLEN•512

10 BIGARAYCI) = I
STOP
END

Figure 6-6. Implicit I/O Job Example

A job to read file TEST using implicit 1/0 would attach the file and then execute a program
to read the file. The program could use the same Q5GETFIL and Q5MAPIN calls used in the
program that wrote the file. Once the file is mapped to an array, the program can reference
the contents of the array as the contents of file TEST.

An array specified on a Q5MAPIN call must be in a comm.on block specified on a GROS or GROL
parameter in the LOAD statement. An attempt to map in an array that is not specified on a
GROS or GROL parameter returns the following message:

F QSMAPIN 1519 VIRTUAL ADDRESS OVERLAP ON FILE TEST

60455390 A

I NOTE I

While GROS and GROL allow Q5MAPIN, they do
not require it.

6-13

SYSTEM SHARED LIBRARY

Up to this point, it has appeared that each user is assigned a portion of virtual memory that
is used exclusively by their program and which no other user can access. This is not
necessarily true. If the system shared library is turned on, users share portions of virtual
memory. The system shared library allows all batch and interactive users to share the same
pages of virtual memory and to share the code of frequently used modules. The system sets
aside a sufficient number of physical pages to contain the working set of the system shared
library file (SHRLIB). These reserved, shared pages are then unavailable for any other use.
The shared pages contain the contents of the system shared library. The format of the system
shared library file is illustrated in figure 6-7.

HEADER

TABLE TYPE 8001 DIRECTORY

DYNAMIC LINKER UTILITY

TABLE TYPE 8002 DIRECTORY

SHARED SYSLIB

TABLE TYPE 8001 DIRECTORY

SHARED UTILITY

•
•
•

TABLE TYPE 8001 DIRECTORY

SHARED UTILITY

Figure 6-7. System Shared Library Format

6-14 60455390 B

In figure 6-7, the following items are illustrated:

• The HEADER describes the system shared library file and indicates the locations of
the directories.

• A TABLE TYPE 8001 DIRECTORY describes a shared utility, including the Dynamic Linker
Utility. There can be more than one directory of this type, and they can reside
anywhere after the header.

• A TABLE TYPE 8002 DIRECTORY describes a shared SYSLIB that is contained in the system
shared library file. There can be more than one of these directories, and they can
reside anywhere after the header.

• SHARED UTILITIES are system utilities whose code resides in the shared library. The
SHARED UTILITIES currently contain BATCHPRO and FTN200.

e A DYNAMIC LINKER UTILITY loads dynamic modules.

• A SHARED SYSLIB contains all the modules you normally expect to find in SYSLIB, a
directory of module names, and a listing of module entry points.

CONTROLLEE FILES

Earlier in this manual a controllee file was defined as an executable file containing the
information needed to execute the object code within a file.

If you are using the LOAD utility (omitting the compile and GO option) and you plan to use
the system shared library and the LINKER utility, specify one of the following items:

e LOAD,LINK=D.

e LOAD,LINK=C.

Specifying LINK=D causes the LOAD utility to expect that all unsatisfied externals will be
dynamically loaded and executed. If you specify LINK=D when the system shared library is
turned off, LOAD builds the controllee file by mapping the existing SHRLIB into the loader's
work space and using the existing SHRLIB to construct the new controllee file. Specifying
LINK=C allows dynamic modules to call modules in the controllee.

You should note that a controllee built for dynamic loading and execution will not execute
with the system library turned off. If a controllee is partially statically loaded with the
system shared library active, and you attempt to run it without having the library turned on,
your job aborts with the following error message:

CONTROLLEE REQUIRES SHARED LIB

Figure 6-8 shows how memory is allocated for controllee files during dynamic loading and
execution.

60455390 B 6-15

I
I

6-16

FFFFFFFFFFFF

cooooooooooo

SHARED
LIBRARY
RANGE

80000000000

7FFFOOOOOOO

USER
RANGE

80000

USER'S REGISTER FILE BLOCK

USER'S MINUS PAGE

UNUSED

STATIC CODE FOR UTILITIES

SHARED SYSLIB

LINKER

LIBRARY DIRECTORY

LIBRARY HEADER

LINKER DATA BASE

STATIC STACK

DEBUG

USER'S DYNAMIC LIBRARY

UNUSED

DYNAMIC STACK

BLANK COMMON

USER'S STATIC COMMON

USER'S STATIC CODE

END OF VIRTUAL SYSTEM

START OF VIRTUAL SYSTEM

END OF SHARED LIBRARY
END OF USER'S RANGE

START OF SHARED LIBRARY

LINKER PLACES DYNAMICALLY
EXECUTED MODULES, THEIR
DATA BASES, AND THEIR
COMMON BLOCKS HERE

START OF USER EXECUTABLE
RANGE

Figure 6-8. Memory Allocation for Dynamic Files

60455390 A

ABNORMAL TERMINATION

This section discusses the CYBER 200 job termination and task termination processes and how
you can control them. The section also describes various tools provided with the system to
help you debug your program.

CYBER 200 JOB TERMINATION

A CYBER 200 job ends with one of the following events:

• Job abort

• Abnormal termination

• Normal termination

If the task abort flag is set, the batch processor dumps task information. (Refer to the
DUMP utility in the VSOS Reference Manual, Volume 1.) The batch processor then initiates
abnormal job termination processing followed by normal job termination procedures.

If a task returns a termination value greater than the job threshold value, abnormal job
termination processing is begun followed by normal job termination procedures.

If the end of the job file is read, only normal job termination procedures are followed.

7

If the job contains an EXIT control statement, job processing continues at the statement
following the EXIT statement if a task has returned an abnormal termination code. If an EXIT
statement is encountered during normal job advancement, job processing ends normally at the
EXIT statement.

TV CONTROL STATEMENT

A task requests abnormal job termination by issuing a return code greater than the threshold
value. By default, the return code 8 (FATAL ERROR) is greater than the threshold value and
initiates abnormal job termination. You can lower this threshold value, however, using a TV
control statement.

If you want return code 4 (NONFATAL ERROR) to initiate abnormal job termination at a certain
point in your job, you can specify this by inserting a TV statement at the desired point.

If you specify TV,O+, any subsequent task that issues a return code greater than 0
(successful termination) initiates abnormal termination.

60455390 B 7-1

I

I

CYBER 200 TASK TERMINATION

When a task terminates, it either requests a job abort or returns a code indicating the
completion status of the task. Code 0 indicates successful task completion. You can control
task termination in your job through the following methods:

• User reprieve processing

• Abnormal termination control (ATC) processing

• SIL status code processing

User reprieve processing is performed when a task terminates normally or abnormally. ATC is
used only when a task terminates abnormally. SIL processing allows you to choose how fatal
status codes are handled.

USER REPRIEVE PROCESSING

User reprieve processing allows you to specify an external entry point to call when a program
terminates. This allows your program to perform whatever cleanup processing is required at
program termination whether the program terminated normally or abnormally.

User reprieve processing goes into effect when the program issues a Q5REPREV call that
specifies the external entry point given control when the task terminates. This entry point
must be declared external.

The user-reprieve subroutine DllSt issue a Q5TERM call to return control to the system.

ABNORMAL TERMINATION CONTROL

Abnormal termination control (ATC) allows you to specify a subroutine that is executed only
when a system error condition occurs during task execution.

ATC processing goes into effect when the program issues a Q5ENATI call that specifies the ATC
subroutine. It remains in effect until the program terminates or the program issues a
Q5DISATI call.

The ATC subroutine can determine whether to abort the task or to allow it to continue
processing. The ATC subroutine may include a Q5RFI call to return control to the interrupted
task, to abort the task, or to continue processing at a specified entry point. Refer to the
VSOS Reference Manual, Volume 1, for a complete description of the ATC subroutine.

SIL STATUS CODE PROCESSING

I You can specify three parameters that return information to you about the last error
encountered (if any) during SIL call processing:

• 'STATUS=',stat

e 'ERRMSG=',mesg

e 'ERRLEN=',Len

7-2 60455390 B

SIL then returns the status code of the last error encountered in the specified integer
variable. (These status codes are listed in the VSOS Reference Manual, Volume 1.)

If you specify the 'ERRMSG=' parameter, SIL returns an error message of up to 80 bytes. The
actual length of the message depends on what you specify on the 'ERRLEN=' parameter.

Each error message has a severity level; that is, either warning or fatal. Warning errors
return control to the caller. Fatal errors also return control to the caller if the
'STATUS=' parameter is specified on the call. If the 'STATUS=' parameter is omitted from the
call and a fatal error occurs, the task is terminated and a fatal error code (8) is returned
to the controller.

Error message routing depends on whether the 'ERRMSG=' parameter is specified and on whether
the task should be aborted as the result of the error. Possible actions are summarized as
follows:

Action

Task to be aborted

Task not to be
aborted

'ERRMSG='Specified

Message sent to the
controller and to
message variable

Message sent to
message variable

'ERRMSG=' Not Specified

Message sent to the
controller

Message sent to the
controller

Messages that are sent to the task's controller usually appear in the dayfile for a batch job
and at the terminal for an interactive job.

When you include a SIL call in your program, you must decide whether to have the program
check and handle the status code returned or allow a fatal status code to request fatal
termination processing for the task. The following Q5DEFINE call, for example, attempts to
define a file named TEST:

CALL Q5DEFINEC'LFN=',4HTEST,'STATUS=',ISTAT,'ERRMSG=')
IF CISTAT .NE. 0) THEN

IF CISTAT .EQ. 1505) THEN
CALL Q5ATTACHC'LFN=',4HTEST)

ELSE
CALL Q5TERMC'FATAL')

END IF
END IF

If Q5DEFINE returns the status code 1505, which indicates the file already exists, the
program attempts to attach the file. If Q5DEFINE returns a nonzero status code other than
1505, the program terminates and returns a fatal error (return code 8).

You can use a Q5TERM call to terminate a program at any time, not just in response to a SIL
call status code. The Q5TERM call can specify 'FATAL' to issue return code 8, 'ERROR' to
issue return code 4, or 'ABORT' to request a job abort.

60455390 B

I NOTE I
Ending your program with a Q5TERM call may
prevent FORTRAN runtime cleanup from
completing.

7-3

I

DAT A FLAG BRANCH MANAGER

The data flag branch manager (DFBM) is the software that processes computational error
conditions detected by the CYBER 200 hardware. By default, DFBM returns an error message and
aborts your program if you have done the following:

• Computed an indefinite result

• Taken the square root of a negative number

• Performed floating-point division by zero

Your program can change the conditions detected by DFBM by calling the Q7DFSET subroutine.
You can use this subroutine to disable detection of any of the default error conditions
listed in this discussion or to enable detection of additional error conditions. You
determine the error conditions disabled and/or enabled.

I NOTE I
The default error conditions result in fatal
errors and job aborts. If enabled, addi­
tional error conditions are only warning
errors unless the system error processor
(SEP) is used.

For example, the following call enables detection of the exponent overflow condition and
disables detection of all other conditions:

CALL Q7DFSETC0,'EX0')

The Q7DFSET subroutine can also specify a subroutine to be executed when one of the enabled
conditions occurs. When a condition processing subroutine is specified, the system executes
the subroutine instead of sending an error message for the condition. For example, the
following call specifies the SUBl error processing subroutine.

CALL Q7DFSETCSUB1)

The subroutine cannot have any arguments. The subroutine nust communicate with other
routines through common blocks.

You can disable detection of any or all of the error conditions listed in this section. To
disable detection of all error conditions whose detection can be disabled, include the
following call in your program:

CALL Q7DFSETC0,'NUL')

For a complete description of the data flag branch manager, refer to the FORTRAN 200
Reference Manual.

7-4 60455390 A

System Error Processor

The DFBM error messages in table B-2 of the FORTRAN 200 Reference Manual include fatal and I
nonfatal execution time error messages. By calling the system error processor (SEP), you can
change certain attributes of execution time errors. You can make the following changes:

• Change the error severity from nonfatal to fatal

• Change the contents of an error message

• Suppress printing of an error message

• Change the number of nonfatal errors that can occur during program execution

The following examples illustrate some possible uses of SEP:

e CALL SEPC022,'F')

This call changes the severity of error number 022 from W (warning) to F (fatal).

• CALL SEPC022,0,0,0,0,53,'FP DIVIDE BY ZERO, EXPONENT OVERFLOW, OR MACHINE ZERO')

This call changes the contents of error message 022.

e CALL SEPC022,0,0,0,'S')

This call suppresses printing of the 022 error message.

• CALL SEPC0,0,0,-1)

This call changes the nonfatal error limit to infinite so that nonfatal errors cannot
cause program termination.

For a complete description of the SEP call format and an explanation of the parameters used
in the sample calls, refer to the FORTRAN 200 Reference Manual.

DEBUGGING TOOLS

The debugging process requires that you take a close look at the part of the program you
believe is causing the problem. The CYBER 200 tools that help you take a close look include
the MDUMP subroutine and the DUMP, LOOK, and DEBUG utilities.

MDUMP SUBROUTINE

The MDUMP subroutine prints the contents of the virtual memory area (usually an array)
specified on the call. Use of the MDUMP subroutine is described in the FORTRAN 200 Reference
Manual.

60455390 B 7-5

DUMP CONTROL STATEMENT

When your job aborts, you receive a dump of information from the drop file of the task that
requested the abort. The DUMP utility lists task information saved in the drop file. The
utility can do this only if the drop file is saved during task termination. A task can save
the drop file by call:l.ng either the CHKPNT or Q5TERM subroutine.

For example, you can insert several CHKPNT calls in your program to copy the current state of
the drop file to file CKPFILE, ending your control statement sequence with the following
statements:

EXIT.
DEFINE,CKPFILE.
DUMP,CKPFILE.

If the task then terminates abnormally, you can use file CKPFILE to restart the task at the
point in processing where the last checkpoint call was processed. The DUMP statement
produces a dump of information showing the state of your task at the last checkpoint executed.

As a second example, your program could terminate when it issues the following SIL call:

CALL Q5TERMC'FATAL','RESTART')

The drop file is available after program termination. Therefore, the job could execute a
DUMP statement to print information from the drop file. For example, if the controllee file
is named GO and the drop file is named 2GO, the DUMP statement for a batch job may be as
follows:

DUMP,2GO.

The information provided in the dump is listed in the DUMP control statement description in
the VSOS Reference Manual, Volume 1, which also describes the CHKPNT and Q5TERM calls.

LOOK UTILITY

The LOOK utility can print all or part of the contents of a mass storage file. The utility
can also search for occurrences of a hexadecimal or character value, and it can replace the
contents of locations within a file.

As shown in figures 3-6 and 3-7, the LOOK utility is called by the LOOK control statement.
The LOOK utility reads directives to determine processing. The directive sequence ends with
an END directive.

The LOOK utility is described in the VSOS Reference ~anual, Volume 1.

7-6 60455390 B

DEBUG UTILITY

You can use the DEBUG utility to suspend execution of a controllee file at specified
breakpoints. The DEBUG utility can also display and change code and the contents of arrays
and variables.

The DEBUG control statement must specify a controllee file. It should also specify an output
file for DEBUG to avoid file name conflicts with the runtime OUTPUT. For example, the
following statement debugs file GO:

DEBUG,GO,O=DOUT.

The DEBUG utility reads directives that indicate processing. In general, these directives
take the following actions:

• Specify breakpoints (BKPT and MBKPT directives)

• Initiate execution (EXECUTE)

• Display the contents of variables or arrays when execution is suspended at a
breakpoint

• Alter the contents of variables or arrays, if appropriate

• Continue execution to the next breakpoint and repeat the display and alteration
process (CONTINUE)

e End DEBUG processing (END)

Figure 7-1 shows a FORTRAN program and a DEBUG session that displays values as the program is
executed. The DEBUG session first sets three breakpoints at statement labels 10, 20, and
40. The session then requests a status listing. The status listing shows the virtual
addresses of the breakpoints and their relative addresses within DBEXMP.

The next command begins program execution. If you wish to change the file connection
identifier list specified on the PROGRAM statement, enter the new connection specifier list
in response to the following prompt:

PLEASE ENTER PRECONNECTION IDENTIFIER LIST:

If you are not going to change the connection identifier list, press the carriage return.

In figure 7-1, when DEBUG reaches the first breakpoint, the user displays variable J. Note
that J is still O. This is because the statement has not been executed. When a program
reaches a breakpoint, the statement or instruction at that point has not yet been executed.
When J is displayed at the next breakpoint, J has been set to 5.

At the final breakpoint, the user displays the fivl:! words in array IARAY. Only the fifth
word has been assigned the value 2. Looking back at the program, the user sees that to
assign 2 to all five words of the array, variable l rather than J should be the IARAY
subscript in the DO loop.

60455390 A 7-7

Program Compiled and Loaded on File GO

PROGRAM DBEXMP
COllf<llON /A/ IARAYC5)

10 J=S
20 K=2

DO 30 I=1,J
30 IARAYCJ) = K
40 CONTINUE

STOP
END

DEBUG Session

attach,go
ALL DONE

debug,go
?bkpt, 10
?bkpt,20
?bkpt,40
?stat

DEBUG STATUS.
BKPTS SET=

000000080320
000000080340
000000080460

NO MBKPT SET.

CDBEXMP=2A0)
CDBEXMP=2CO>
(DBEXMP=3EO>

LAST ROUTINE REFERENCED= DBEXMP
LAST COMMAND ISSUED= BKPT

-
CURRENT DEFAULT LOCATION TYPE =
LAST DISPLAYED ADDRESS= 000000000000
USER NEXT EXECUTE ADDR= 000000080080
?execute

- Sets breakpoint.
- Sets breakpoint.
- Sets breakpoint.
- Produces 1 is ting of

breakpoints; last
DEBUG and BKPT direc­
tives issued; last
routine or program
referenced; last
command, type and
module referenced;
and; next execution
address in user program.

s
(NOT IN CODE)
CDBEXMP=O>

- Begins program
execution.

PLEASE ENTER PRECONNECTION IDENTIFIER LIST:
BKPT ADDRESS - 000000080320 CDBEXMP=2A0)
?display,j
7FFF80008AOO
? continue

00000000 00000000

BKPT ADDRESS - 000000080340
?di splay ,j
7FFF80008AOO
? continue

00000000 00000005

BKPT ADDRESS - 000000080460
?display,iaray,5
000000260000 00000000 00000000
000000260040 00000000 00000000
000000260080 00000000 00000000
0000002600CO 00000000 00000000
000000260100 00000000 00000002

- Displays contents
of variable J.

- Continues to next
breakpoint.

CDBEXMP=2CO>

CDBEXMP=3EO>

?end ...-- Ends DEBUG session.
STOP

ALL DONE

Figure 7-1. DEBUG Session Example

7-8 60455390 A

PROGRAM OPTIMIZATION 8

In general, program optimization is the process of improving efficiency to reduce the
resources required to execute your program. Optimization can be measured in the following two
ways:

• Lower memory requirements

• Shorter execution time

CYBER memory management was described in section 6. Section 8 concentrates on shortening
execution time for your program through the following methods:

• Scalar optimization

• Vector optimization

• Efficient subroutine calls

The CPU on the CYBER 205 has two parts: the scalar processor and the vector processor. The
scalar processor executes scalar instructions. A scalar instruction operates on a value, or a
pair of values, held in registers. For each scalar instruction processed, the value (or
values) must be moved from memory into a register. To perform a scalar operation, the
following three steps DllSt take place in sequence:

1. Load two operands from memory into registers.

2. Perform the operation.

3. Store the result of the operation in memory.

The second part of the CYBER 205 CPU executes vector instructions. Vector instructions
operate directly on memory. By sending the operands through pipes, the vector processor can
perform all of the three previous steps at one time. Once a vector instruction has started,
the vector processor simultaneously can load two operands from memory, compute the result, and
store an earlier result back into memory.

You can increase the efficiency of your programs through proper use of the scalar and vector
processors. In general, shorter execution times result when a program uses the CYBER 205
vector processor. This section concentrates on how you can use these processors to optimize
your code. Details of vector programming are described in the FORTRAN 200 Reference Manual
and in the CYBER 200 FORTRAN Language Reference Manual.

60455390 A 8-1

I

SCALAR PROCESSOR

The CYBER 205 scalar processor can perform any of the functions that you normally expect from
a computer:

• Issue instructions

• Perform integer and floating-point arithmetic

• Perform logical operations

• Branch from one address to another

The scalar processor consists of a central, organizational section surrounded by several
functional units. The central section controls the locating, decoding, and issuing of
instructions. The functional units are responsible for the execution of instructions. Figure
8-1 shows a diagram of the scalar processor.

TO
VECTOR
PROCESSOR

~

KE

J

RNS/
BRANCH
UNIT

- l
PRIORITY r-UNIT
SECDED -::

,, ' ~ ~

ASSOCIATIVE
UNIT

a
Y:

....... DATA OR ADDRESS

_. CONTROL

i-

t-

TO VECTOR PROCESSOR • j~
INSTRUCTION INSTRUCTION
STACK I--+ ISSUE
IBSWORDI PIPE

l

"'I

,,
·~

LOAD/ REGISTER
STORE l+1 FILE
UNIT (64X256l

.._

I ;
VECTOR PROCESSOR

Figure 8-1. Scalar Processor Diagram

SCALAR FLOATING
POINT

~ E

~ --" - E

LOGICAL
PIPE

SINGLE
CYCLE
PIPE

DIVIDE/ SQRT/ - CONVERT
UNIT

8-2 60455390 B

Within the central section. there are two units whose workings can affect the performance of
your code. These units are as follows:

• The register file

• The instruction stack

REGISTER FILE

The register file is a set of 256 64-bit working registers that serve as work space for the
scalar processor when it executes instructions. These registers are used as follows:

• Instruction and operand addressing

• Indexing

• Field length counts

• Source or destination points for register-type instructions (except LOAD and STORE)

By convention. 15 registers are reserved for special purposes and 17 serve as temporary
registers. (A temporary register is one whose contents are not expected to be preserved
across subroutine calls.) When a particular subroutine is entered. an image of all registers
used by the caller is saved in memory. This frees 224 registers that the subroutine can use
until it is time to return to the caller program. Just before the return. the previously
saved image of the registers is loaded back. The caller program. therefore. notices no change
in the contents of the registers.

If a subroutine contains more scalar variables than there is room for in the register file.
some variables are assigned memory locations rather than register file slots.

I NOTE I
When a frequently used variable. such as a
loop index. is located in memory. execution
time will likely be longer than if the
variable has a slot in the register file.

If you suspect that one of your subroutines may include more variables than can be placed in
register files. use the M option on the FORTRAN control card to produce a register file map.
When your program compiles. a map is produced listing which variables in a subroutine are
assigned a register and which are assigned to memory.

The register file map is useful in determining which subroutines make efficient use of the
register files and which routines would perform better if they were split into smaller
routines.

60455390 A 8-3

INSTRUCTION STACK

Prior to execution, the set of instructions that comprises the machine code representation of
the program is stored in the code section of the controllee file. The central, organizational
section of the scalar processor is responsible for decoding and issuing these instructions.
However, the scalar processor can only decode instructions residing in the instruction stack.

The size of the instruction stack is eight swords.
which is a term describing eight consecutive words
not loaded from memory one by one, but in units of
look-ahead feature that tries to keep the contents
ahead.

(Sword is a contraction of super word,
in memory.) Instructions to be decoded are
one sword. The processor contains a
of the instruction stack two full swords

Because of the look-ahead feature, processing of sequential code can proceed without delays
caused by the loading of new swords. However, if a branch instruction is encountered that
points to code not currently in the instruction stack, the appropriate sword must be loaded.
A branch to an out-of-stack instruction takes approximately three times longer than is
required to branch to code that is in-stack.

A DO loop represents a piece of sequential code that is executed from top to bottom and then
is reentered at the top through a backward branch. If you want this branch to be an i~-stack
branch, the DO loop must not exceed six swords. The largest loop that fits in-stack is 81
half words or 40-80 instructions.

SCALAR OPTIMIZATION

Once your code has been modified to run on the CYBER 205, there are two options available to
enhance program performance. These options are as follows:

• Automatic optimization

• DO loop modification

AUTOMATIC OPTIMIZATION

At compile time, you have the option of selecting any of several types of automatic
optimization. This is done on the OPTIMIZE~ parameter of the FTN200 statement card. The
OPTIMIZE= parameter specifies to the compiler whether to optimize scalar code. The parameter
also allows you to choose the type of optimization you wish to use. Two of the most
frequently used choices are as follows:

e OPTIMIZE=D

This tells the compiler to optimize DO loops.

e OPTIMIZE=V

This tells the compiler to vectorize certain types of DO loops and transform other
types into STACKLIB calls.

Refer to the FORTRAN 200 Reference Manual for a complete explanation of all the options
available.

8-4 60455390 A

DO LOOP MODIFICATION

DO loops can be modified in several ways to speed execution time. The four major techniques
you can use are as follows:

• Using recursive DO loops

• Merging short DO loops

• Unrolling DO loops

• Splitting DO loops

However, modifying a loop may adversely affect the compiler's ability to optimize a loop. It I
may be necessary to try different modifications and options to maximize performance.

Using Recursive DO loops

If a pass through a DO loop uses results calculated in an earlier pass, the loop is
recursive. You can significantly speed up recursive loops by keeping duplicates of some
values in a temporary variable.

A typical example using a recursive loop is the following code that computes the factorial of
a number:

FCJ) = CJ-1> !

On your first attempt, you might write the following loop if (NMl

Example la: FC1) = 1.
FC2> = 1.
DO 10 J=2, NM1

10 FCJ+1) = J•FCJ)

N-1):

This code requires that the F(J) that is stored during the first pass (pass J) must be
reloaded during the second pass (pass J+l).

If the result of pass J is saved in the register file, the extra load is avoided. Example lb
displays DO loop coding that eliminates the time required for the extra LOAD:

Example lb: FC1) = 1.
FC2>=1.
FACT= 1.
DO 10 J=2, NM1
FACT = FACT•J

10 FCJ+1) = FACT

Merging Short DO loops

A load-bound loop is a loop dominated by the 15 cycles needed to complete a LOAD instruction,
A branch-bound loop is dominated by the 9 cycles required for a test and branch operation at
the end of each pass. Short loops are almost always load bound or branch bound. One way to
avoid load-bound and branch-bound loops is to merge small loops into bigger ones.

60455390 B 8-5

Big loops are usually busy loops in which a lot of work is performed during each pass. In
general, a busy loop is not branch bound or load bound since LOAD instructions often are
issued early. This permits useful work to be done while waiting for the loaded values to
arrive in the register file. Even without more efficient loads, instruction scheduling is
speedier when a loop is busy. The more instructions the scheduler can move, the better the
results.

I Noni

If small loops can be automatically
vectorized, and you plan to select the
OPTIMIZE=V option at compile tiae, then
merging into bigger loops may not save time.

The two following examples illustrate how you can aerge two short DO loops into one longer DO
loop:

Example 2a:
10

20

DO 10 J=1, N
X(J) = ACJ)••2 + B(J)••2
DO 20 J=1,N
Y(J) = R(J) + S(J)

To improve efficiency, you can combine the DO loops as follows:

Example 2b: DO 10 J=1,N
XCJ) = ACJ)••2 + B(J)**2

10 Y(J) = R(J) + S(J)

Unrolling DO loops

In addition to merging DO loops, you can also unroll a DO loop to two or more levels. This
procedure reduces the time required to process a DO loop by providing the instruction
scheduler with more instructions to handle.

There is one drawback to unrolling loops rather than merging them. Unrolling loops that can
be automatically vectorized destroys the vector property of the loops. Merging loops that can
be automatically vectorized does not destroy the vector property of the loops.

The following examples illustrate the unrolling of a short DO loop into two levels:

8-6

Example 3a:
10

DO 10 J=1,N
A(J) = X*B(J) + CCJ)

60455390 A

Unroll the DO loop as follows:

Example 3b: IF CN.EQ.1) GO TO 11
NM1 = N-1
DO 10 J = 1,NM1,2
JJ = J
A(J) = X•B(J) + C(J)

10 ACJ+1) = X•BCJ+1) + CCJ+1)
IF CJJ.EQ.NM1) GO TO 12

11 A(N) = X•BCN) + CCN)
12 CONTINUE

Typically, you can expect performance improvement of 30 to 40 percent when unrolling a DO loop
to two levels. Unrolling a loop to three or more levels does not provide much greater
efficiency than unrolling to two levels, and is usually not worth the effort required.

Splitting DO Loops

If a DO loop contains one or more loop-independent IF tests, you can speed up execution time
by splitting the loop into smaller loops.

The following examples show how to split a loop into smaller loops:

Example 4a: DO 10 J=1,N
A(J) = X(J)••2 + YCJ>••2
IF CIFLAG.EQ.0) ACJ) = A(J) + DELTA

10 CONTINUE

You can split the DO loop in example 4a as follows:

Example 4b:
10

11
12

DO 10 J=1,N
ACJ) = X(J)••2 + Y(J)**2
IF CIFLAG.NE.0) GO TO 12
DO 11 J=1,N
A(J) = ACJ) + DELTA
CONTINUE

The added efficiency of loop 4b points out an important difference between the two examples.
The number of branches within example 4b has less impact on performance than does the IF
statement in loop 4a. The compiler can optimize the two loops in 4b more efficiently than it
can handle the IF statement in 4a. An IF statement in a loop seriously affects the efficiency
of instruction scheduling.

60455390 A. 8-7

VECTOR PROCESSOR
Figure 8-2 shows a simplified view of the vector processor.

SCALAR
PROCESSOR

ISSUE
I FUNCTIONS)

CENTRAL
MEMORY

CHANNELS

CONTROL ==:::>
DATA____.

ALL VECTOR
PROCESSOR
UNITS

FPL

vss

TO ALL UNITS

MAINTENANCE

APL

vsw

ADDRESS TO
CENTRAL
MEMORY VIA
SCALAR
PROCESSOR

CENTRAL
MEMORY

CENTRAL
MEMORY VIA
PRIORITY

Figure 8-2. Vector Processor Diagram

The CYBER 205 has two versions. One has two identical pipes, and one has four identical
pipes. In a two-pipe model, one pipe processes odd pairs of operands, and the other pipe
processes even pairs. In a four-pipe model, a pipe processes every fourth pair of operands.

8-8 60455390 A

TWO.PIPE AND FOUR-PIPE PROCESSORS

In general, the vector processor of the CYBER 205 consists of segmented pipes that carry
information. Each pipe performs one small part of an arithmetic operation.

The important concepts about pipes in the vector processor are as follows:

• Every operation is broken down into a number of steps.

• Operands must travel sequentially through the segmented pipes.

STORING ARRAYS

If you have been writing code for use on a scalar processor, you may not have paid a great
deal of attention to how FORTRAN arrays are stored in memory. This is because the manner in
which arrays are stored does not drastically affect execution time. On a vector processor,
the way arrays are stored has a dramatic affect on execution time. On the CYBER 205, a vector
may be defined as a set of contiguous memory locations. Contiguity, in this instance, is
defined in terms of virtual addresses, not physical memory locations.

The following two DO loops illustrate the importance of understanding the manner in which an
array is stored:

DO 10 J = 1,N
DO 10 K = 1,N

10 ACJ,K) = 0

DO 20 K = 1,N
DO 20 J = 1,N

20 ACJ,K) = 0

If a two-dimensional array is stored in columns; that is, if A(J,K) is followed immediately by
A(J+l,K) in memory, then loop 10 executes more quickly than loop 20.

However, if a two-dimensional array is stored in rows; that is, if A(J,K) is followed
i111D.ediately by A(J,K+l), then loop 20 executes more efficiently than loop 10.

A loop that accesses sequential storage locations in memory is always the better choice. This
is particularly true for virtual memory machines like the CYBER 205. By changing from non­
sequential data access to sequential, execution speed is greatly increased. You gain large
increases in speed because the vector processor unit of the CYBER 205 is designed to operate
on sequential memory locations.

VECTOR OPTIMIZATION

You can control how vector instructions are generated by the compiler in the following two
ways:

• Automatic vectorization by specifying the OPTIMIZE=V option on the FORTRAN control card

• Explicit vectorization by using vector programming statements, vector assign
statements, or vector function references

For details on how to use these two methods, refer to the Automatic Vectorization and the
Explicit Vectorization headings of this section.

60455390 A 8-9

AUTOMATIC VECTORIZATION

You may choose the automatic vectorization option by specifying OPTIMIZE=V on the FTN200
control card. Once you select this option, the compiler attempts to transform each DO loop
into a vector operation. If DO loop vectorization is not possible, the compiler tries to
change the loop into a highly efficient scalar operation called a STACKLIB call.

Sometimes the compiler cannot vectorize a loop or change the loop to a STACKLIB call. In I these cases, the complier listing indicates the loops it could not vectorize. (These loops
are called uncollapsible loops.) The complier listing also indicates the reason the loop
could not be vectorized. Examine any uncollapsible loops shown on the complier listing to
determine if you can rewrite them as vector operations or as DO loops that the compiler can

I

vectorize.

Linked Triads

The CYBER 205 can process certain forms of linked triads in vector mode as if each represents
a single vector instruction. The CYBER 205 can process linked triads in vector mode if the
following conditions are true:

•
•

Using V

•
•
•
•
•
•
•
•

One or two of the input operands are vectors

One of the two operators is a floating-point multiply, and the other is a floating­
point add or subtract

for vector, S for scalar, and R for result, these forms are as follows:

VR = V1 + S1 * V2
VR = V1 - S1 * V2
VR = S1 + V1 * V2
VR = S1 + S2 * V2
VR = V1 + S1 * S2
VR = S1 - V1 * V2
VR = S1 - S2 * V2
VR = V1 - S1 * S2

(The first two forms on the list are the most commonly used computations for linear algebra
routines.)

Linked triad operations off er one major advantage. 'nle processing time for linked triad
operations is about the same as that of all other vector floating-point instructions (except
the divide), yet twice as many arithmetic operations are performed.

However, you may discover that the compiler cannot directly vectorize some of your previously
coded FORTRAN algorithms containing linked triads. 'nlis is not a big problem. Usually, you
only need to reorder the sequence of arithmetic operations to obtain the needed vector
structure.

Consider the problem of multiplying a rectangular matrix A with a column matrix X to obtain
column matrix B; for example:

B = AX

8-10 60455390 B

The elements of B are formed as inner products expressed by the following formula where A has
the dimensions (M, N):

n
bj = SUM Cajk, Xk) CJ = 1,2, ••• ,m)

k=1

You may initially decide to reproduce the mathematic formula as closely as possible, for
example:

DO 10 J = 1,M
BCJ) = 0.
DO 10 K = 1,N

10 BCJ) = BCJ) + ACJ,K)•XCK)

This code executes properly but does not have good vector structure. In the innermost loop,
only X is accessed sequentially; A is accessed by row and B is effectively a scalar.

To obtain good vector structure you must exchange the outer and inner loops as follows:

DO 20 J = 1,M
20 BCJ) = O.

DO 30 K = 1,N
DO 30 J = 1,M

30 BCJ) = BCJ) + ACJ,K)•XCK)

You now have two loops with explicit vector structure.

Factorizing DO Loops

A one-liner is a DO loop that contains exactly one FORTRAN statement (not counting the DO and
the CONTINUE statements). If a DO loop can be broken down into a sequence of one-liners, the
loop can be factorized.

Consider the following example:

DO 10 J = 1,N
XX CJ> = X CJ> **2
YYCJ) = Y CJ)**2
SNCJ) = SQRTCXXCJ)+YYCJ))

10 CONTINUE

You could factorize this example as follows:

DO 11 J = 1,N
11 XXCJ> = XCJ>••2

DO 12 J = 1,N
12 YYCJ> = YCJ>••2

DO 13 J = 1,N
SNCJ> = SQRTCXXCJ)+YYCJ))

13 CONTINUE

60455390 B 8-11

I

I

You also could go one step further and completely factorize loop 13. A loop is considered
completely factorized if each one-liner contains one of the following:

• Only one arithmetic(+, -, *, /,**)operator

• Only one logical (.AND., .OR., .XOR., .NOT.) operator

To completely factorize loop 13, introduce a temporary array called XY as follows:

DO 14 J = 1,N
14 XYCJ> = XXCJ)+YYCJ>

DO 15 J = 1,N
SNCJ) = SQRTCXXCJ))

15 CONTINUE

In this example, you can use SN as a temporary array. That solution, however, is not always
possible. If a scalar appears on the left side of an equal sign, you may have to introduce an
additional temporary array.

This factorization example shows the value of using the criteria of whether a loop can be
factored as a test of whether the loop can be vectorized. One simple rule you can use to
determine if your DO loops can be vectorized is as follows:

A DO loop that can be completely factored can be vectorized if, and only if, all of the
resulting one-liners can be vectorized.

Contiguity in Memory

Earlier, a vector was defined as a set of contiguous storage locations in memory. On the
CYBER 205, you have two machine instructions that move data from nonsequential to sequential
memory locations (GATHER) or move data back to nonsequential memory locations (SCATTER).

Suppose you have written the following code:

DO 10 J = 1,N,2
10 ACJ) = BCJ) + CCJ>

If you have chosen the OPTIMIZE=V option, the compiler processes the loop in five steps as
follows:

1. Gathers (B(J),J=l,N,2) into the first N/2 locations of the dynamic stack area (VB)

2. Gathers (C(J),J=l,N,2) into the next N/2 locations of the dynamic stack area (VC)

3. Performs the vector addition of VB+VC

4. Stores the result of the add in the next N/2 locations of the dynamic stack area (VA)

5. Scatters VA into (A(J),Jsl,N,2)

8-12 60455390 B

Maximum Vector Length

If you want the compiler to optimize your code, be aware of the maximum iteration count of
your DO loops. The largest vector length allowed on the CYBER 205 is 65535. If this length
is exceeded, the compiler will not vectorize your code, for example:

• DO 10 J=1,60000 will vectorize (assuming other conditions are met).

• DO 20 J=1,70000 will not vectorize unless it is the innermost loop.

The innermost loop can be vectorized regardless of the iteration count. In the preceding
examples, the vector lengths are specified as 60000 and 70000, but what can you do to inform
the compiler of the maximum iteration count of the following:

DO 30 J=1,N

In this case, you can inform the compiler of the maximum iteration count through a DIMENSION
statement as follows:

DIMENSION ACS0000,4>,BCSOOOO>
DO 30 J=1,N

30 ACJ,2) = BCJ>••2

Now your loop will not miss being vectorized because of an unknown iteration count. The
compiler uses the 50000 in the DIMENSION statement as the basis of the decision about whether
your loop exceeds the maximum allowable length.

A problem can arise if, within a nest of loops, a control variable only indexes assumed or
adjustable dimensions of dummy arrays at the same time that the loop count is unknown. In
this case, the compiler has no basis for deciding whether to vectorize the outer loops. If
you are sure that no loop counts exceed 65535, you can specify OPTIMIZE=V and UNSAFE=l on the
FORTRAN control card. The V (vectorize) requests vectorization, and the 1 relieves the
compiler of the need to make the decision about whether to vectorize the loop. When you
select these options, vector length no longer is a factor in determining if your DO loops
vectorize.

EXPLICIT VECTORIZATION

There may be times when you are not satisfied with the results of an automatic vector
operation or times when you wish to choose the specific DO loops to be vectorized. Regardless
of why you wish to exercise more control over vector operations, the CYBER 205 FORTRAN
compiler provides a method of vector control. This method is explicit vectorization.

Explicit vectorization uses special vector syntax available as an extension of the FORTRAN 200
language. With the vector syntax, you can explicitly vectorize your code or portions of your
code. The two forms of vector syntax are as follows:

• Explicit syntax

• Implicit syntax

60455390 B 8-13

I

Explicit Vector Syntax

To fully define a vector, specify the following information:

• Starting address

• Data type

• Length

Earlier, a vector was defined as contiguous storage locations in memory. Since arrays are
also stored contiguously in memory, the starting address of a vector is represented by an
array element.

Each element in an array has a defined data type, which is declared in one of two ways. The
data type can be declared implicitly or through a data type declaration statement. If
declared implicitly, the array element used as a pointer automatically defines the data type
of the vector elements. Allowable data types are: REAL, INTEGER, COMPLEX, DOUBLE PRECISION,
and BIT. Specify length as a subscript preceded by a semicolon(;).

The following examples illustrate several types of defined vectors:

• AC1;60) A real vector consisting of (A(J),J=l,60)

• AC5;90) A real vector consisting of (A(J),J=5,94)

• KQC1,2;100) An integer vector consisting of ((KQ(J,K),J=l,50),K=2,3)

• CC1,1;5•100) A complex vector consisting of ((C(J,K),J=l,100),K=l,5)

• RCS,5;996> A real vector consisting of (R(5,J),J=5,1000)

I Once you have explicitly defined a vector, you are free to vectorize manually any loop
displaying vector structure regardless of whether the system would have automatically vectored
the loop.

Figure 8-3, which shows several scalar loops and their vector equivalents, illustrates simple
use of vector syntax. The examples in the figure are only samples of possible explicit vector
syntax. For a complete explanation, refer to the FORTRAN 200 Reference Manual.

With the explicit vector syntax shown in figure 8-3, each vector statement compiles as a
single vector instruction just as if the automatic vectorizer had vectorized the corresponding
scalar loop.

Because the semicolon notation displays all relevent characteristics of a given vector, it is
often referred to as explicit vector notation. The other important type of notation, implicit
or descriptor notation, is discussed next.

8-14 60455390 B

Scalar 10

Vector 10

Scalar 20

Vector 20

Scalar 30

Vector 30

Implicit Vector Syntax

DO 10 J = 1,100
10 RCJ) = SCJ) + TCJ+KX)

RC1;100> = SC1;100> + TC1+KX;100)

DIMENSION AC200,10>,YC200,10>,ZC200,10>
DO 20 K = 1,N
DO 20 J = 1,200

20 ACJ,K) = YCJ,K> + ZCJ,K)

DO 20 K = 1,N
20 AC1,K;200) = YC1,K;200> + ZC1,K;200>

COMPLEX CXC100>, CYC100)
DO 30 J = L,M

30 CX(J) = CYCJ) * CON

CXCL;M-L+1) = CYCL;M-L+1) * CON

Figure 8-3. Explicit Vector Syntax

On the machine level, a vector is represented as a 64-bit word that contains the integer
length in the 16 leftmost bits (the length field) and the starting location in the 48
rightmost bits (the address field):

length field address field

0 15 16 63

This entire 64-bit word is called a descriptor. The compiler will generate code to create
such descriptors for vectors, as in the following example.

60455390 B 8-15

I

The following sample code shows the assembly language (META) representation of the machine
code that the compiler generates for a floating-point vector add that has been written using
explicit vector references:

FORTRAN AC1;N) = BC1;N> + CC1;N>

META PACK N,ADDA,AD
PACK N,ADDB,BD
PACK N,ADDC,CD
ADDNV BD,CD,AD

The PACK instructions create a descriptor for each of the vectors A(l;N), B(l;N), and C(l;N).
The META code shows that each vector instruction creates a certain amount of overhead because
of the scalar instructions involved. This overhead, however, usually is not significant to
the efficient processing of your code. While one vector instruction is running, the scalar
processor can still work to prepare the next scalar instruction. Most vector instructions
permit overlapping scalar processing provided no LOAD/STORE memory references appear.

One other very important fact about the META code is that the value of N is not checked during
execution time. PACK simply strips off the the 16 rightmost bits of N and treats them as the
vector length. The largest number that can be represented by 16 bits is as follows:

2**16-1 = 65535

This explains why 65535 is the longest allowable vector length. Explicit vectorization
requires you to ensure that you do not exceed the maximum vector length permitted.

DESCRIPTOR statements and ASSIGN statements allow you to create and use descriptors directly
in FTN200. The DESCRIPTOR statement is a nonexecutable statement that declares a symbolic
name to be a descriptor. The executable ASSIGN statement associates such a descriptor with a
vector, allowing you to reference the vector using the descriptor symbolic name alone. For
example:

DESCRIPTOR AD,BD,CD

ASSIGN
ASSIGN
ASSIGN
AD = BD

AD,A
BD,B
CD,C
+ CD

C1 ;N)
(1 ;N)
C1 ;N>

The FORTRAN 200 code corresponds directly to the META code shown earlier. Each descriptor
represents a vector. Therefore, each statement (except the ASSIGN) that contains one or more
descriptors, is automatically a vector statement.

Descriptors must be the same data type as the vectors to which they are linked in the ASSIGN
statement. A descriptor can be defined once through an ASSIGN statement, and it can be
redefined many times by using additional ASSIGN statements.

• 8-16 60455390 B

There is one negative fact about using descriptors. They may make it harder for others to
read and maintain your code if the defining characteristics of the vectors appear only in the
ASSIGN statement and not in the vector statements. When using descriptors, you can improve
the legibility of your code by using the following simple guidelines:

• Let all descriptor names end with a D. Avoid a final D on all other variables. If
possible, use the name of the array to which the descriptor name points as the
descriptor name, then add a final D.

• Place all ASSIGN statements just prior to the statements in which they are used. If
necessary, redefine a descriptor to the same value several times. Although this
creates more coding, it helps clarity.

OTHER VECTOR FUNCTIONS

In addition to the capabilities provided by explicit and implicit vector syntax, there are
several other enhancements you can use to improve program performance. These are as follows:

• Vector functions

• Control vectors

• WHERE statements

• QB functions

The use of any or all of these capabilities can help you write more efficient code, speed
execution time for your programs, and reduce your system overhead.

Vector Functions

Most of the intrinsic scalar functions available in any FORTRAN environment are also available
as vector functions on the CYBER 205. The vector names for these functions are simply the
scalar names prefixed by v. (Refer to the FORTRAN 200 Reference Manual for a complete list
and description of the vector functions available.)

Except for DBLE, you cannot use any intrinsic function whose input argument is a DOUBLE
PRECISION data type. Nor can you use a vector expression as the input argument for a vector
function. However, you can use one vector (Vl), two vectors (Vl and V2), or one vector and
one scalar (Vl and Sl) as input arguments. The result of a vector function is always a vector
(VR).

Since a vector represents storage in memory, the syntax of your vector functions must always
include a pointer indicating where the result (VR) of the vector function will reside in
memory or an integer indicating the size of a temporary area that will receive the result.
One easy way of including this pointer is making the result part of the vector function
expression:

VFUNC CV1;VR>
VFUNC CV1;V2;VR>

60455390 B 8-17

Using this type of syntax allows you to treat a vector function expression as a true vector
with its data type determined by the data type of VR. For example, if A and B are REAL arrays
and X is COMPLEX, then:

VSINCAC1;N);BC1;N))
VCMPLXCAC1;N>,BC1;N>;XC1;N))

is a REAL vector
is a COMPLEX vector

I You can use vector functions as vectors in vector expressions. However, their most common use
is in vector assignment statements where the target vector (the left-hand side) coincides with
the vector function's result location, as in the following example:

BC1;N) = VEXPCAC1;N>;BC1;N>>

With the vector functions, you can explicitly vector almost all intrinsic function
references. You are not limited to those that are accepted for automatic vectorization.

The vector length at which vector functions are more efficient than their scalar counterparts
is quite small. It can be as low as a length of five. Therefore, you can use vector
functions frequently in your code. This results in substantial savings of time and resources.

Control Vectors

A logical constant or variable occupies one word of storage. However, only the rightmost bit
of the word is used: 1 for .TRUE. and 0 for .FALSE. This leaves 63 unused bits. More
efficient use of space occurs if 64 logical values are packed into one word. This is exactly
what you can do by using the data type BIT. Using data type BIT packs more than one logical
value into a single word of memory.

Arrays of the BIT type are frequently used to control vector operations. They are often
referred to, therefore, as control vectors rather than BIT vectors.

When you use a descriptor to represent a control vector, you must declare the descriptor as
data type BIT; for example:

DESCRIPTOR BVD
BIT 13V C100> ,BVD
REAL AC100>,BC100>

ASSIGN BVD,BVC1;100)
BVD = AC1;100).GT.0
8(1;100) = Q8VCTRLCAC1;100),BVD;BC1;100))

In this example, the first vector statement compares each element of A with zero. If A(K) is
greater than zero, the BIT element BV(K) is set to one. If A(K) is less than or equal to
zero, BV(K) is cleared to zero. The final result of the compare provides a string of 100 bits
whose value reflects the outcome of the 100 individual comparisons.

In the last line of this example, a Q8-function is used. (QB-functions are described later in I this section.) In this example, Q8VCTRL copies the Kth element of the source vector into the
Kth location of the target vector if the Kth bit of the control vector is set to one. If the
Kth bit of the control vector is zero, Q8VCTRL does nothing.

8-18 60455390 B

Using a control vector in the above example allows you to do the same work as shown in the
following scalar loop, which could not have been vectored without the control vector:

DO 10 J = 1 , 1 00
IF (A(J).GT.0) B(J) = A(J)

10 CONTINUE

You can think of BIT vectors as strings of logical variables. Therefore, like any other
logical variable, BIT vectors can be used in expressions with logical operators as follows:

REAL XC100),Y(100>,AC100>,BC100)
BIT B1C100),B2C100),B3C100)

B1C1;N) = XC1;N).GT.YC1;N)
B2C1;N) = AC1;N).EQ.BC1;N)
B3C1;N> = B1C1;N>.OR.B2C1;N)

Since equal signs always connect items of the same data type, A(l;N).EQ.B(l;N) must be a BIT
vector. Thus, the following expression is legal:

B3C1;N) = B1C1;N>.OR.AC1;N).EQ.BC1;N)

If you wish to clear (zero) a BIT vector, you can use the following expression:

B3C1;N) = B3C1;N>.XOR.B3C1;N)

WHERE Statements

As a standard feature, most vector instructions accept a control vector. Figuratively
speaking, this control vector gives you the ability to turn a vector operation on or off. (In
reality, the operation is always performed. You are simply telling the system whether to
store the result or throw it away.) Use of control vectors in this manner is determined by
your use of the WHERE statement. Refer to the FORTRAN 200 Reference Manual for the exact
format of the WHERE statement.

The following three rules must be observed when writing WHERE statements:

• All of the vector operands in the bit expression and the vector expression that
appears in the assignment statement must be the same length.

• All vectors and vector expressions in the assignment statement must be of the type
INTEGER or REAL.

• A vector expression appearing in the vector assignment statement can contain only +,
-, *, and / operations or a reference to the vector functions VFLOAT, VIFIX, VINT,
VAINT, VSQRT, VABS, or VIABS.

Using the WHERE statement allows you to perform certain operations that in other cases would
cause your program to abort. Consider the examples shown in figure 8-4.

60455390 A 8-19

Scalar 10

Vector 10

Scalar 20

Vector 20

DO 10 J = 1,N
IF CYCJ).NE.O> ACJ) = XCJ)/YCJ)

10 CONTINUE

WHERE CYC1;N).NE.0) AC1;N>=XC1;N)/YC1;N>

DO 20 J = 1,N
IF CYCJ).GE.O> XCJ) = SQRTCYCJ))

20 CONTINUE

BIT BITCN) ,BITD
DESCRIPTOR BITD
ASSIGN BITD,BITC1;N>
BITD = YC1;N).GE.0
WHERE CBITD) XC1;N> = VSQRT CYC1;N>;XC1;N>>

Figure 8-4. Use of the WHERE Statement

When control vectors guide operations in this manner, dividing by zero or taking the square
root of a negative number does not cause your program to abort, because the system throws the
results away.

WHERE statements can also be used to define a block WHERE structure. When a block WHERE
structure is executed, the bit expression is evaluated to produce a control vector. This
control vector then is used for all vector assignment statements that appear between the block
WHERE statement and· the END WHERE statement.

The block WHERE and END WHERE statements are often used with the OTHERWISE statement in the
following format:

WHERE

where block

OTHERWISE

otherwise block

END WHERE

Q8 Functions

Some FTN200-supplied functions are provided to give you access to specific machine
instructions that perform vector operations. You can recognize these instructions by their Q8
prefix. Any function name preceded by Q8 indicates that the function is a direct machine
instruction that generates in-line code instead of a subroutine call. There are two forms of
QB-functions:

• Q8S - when computing a scalar result

• QSV - when computing a vector result

8-20 60455390 B

You can use both forms of QB functions in expressions. Their arguments usually determine
their data types. Arguments for Q8 functions can be one vector, two vectors, or a control
vector.

There are two important differences between the Q8V and the Q8S functions. Q8V functions
follow the same syntax as the vector functions; that is, you must specify the value vector
(the result field) as the last argument. The value vector is preceded by a semicolon. This
is not true of Q8S functions because it would be meaningless to specify storage for a scalar
instruction. The second difference is that Q8V functions must not appear in the argument list
of a function reference or a subroutine call.

There are many Q8 functions available. Some perform types of data motion while others perform
miscellaneous tasks. Using these functions improves your explicit vector programming and
represents significant time saving over scalar code.

Refer to the FORTRAN 200 Reference Manual for a complete list and description of all the Q8
functions available.

SPEEDING UP SUBROUTINE CALLS

Most of your programs are composed of several independent program units: one main program and
several subroutines and functions. You gain several advantages by using subroutines.

• Fewer lines of code are needed

• Logic is easier to follow

• Debugging is facilitated

• Code is easier to maintain

The connections between these units are handled by the following three FORTRAN i.nterfaces:

• CALL statements

• Function references

• RETURN statements

These interfaces determine the transfer of control (jumps or branches) and the exchange of
information (parameter passing).

There is one drawback to using subroutines. When you split off a section of code and make it
a subroutine, your code may execute more slowly than before the split. This slower execution
happens because calling a subroutine creates increased overhead. For subroutines that perform
a lot of tasks, the time spent on useful work dominates. Repeated calls to a subroutine that
does only a small task, however, may cause the overhead associated with those calls to show up
as a significant part of your total job cost. The two major factors that create the overhead
cost of subroutine calling are:

• Register file swapping

• Parameter passing

60455390 B 8-21

I

I

REGISTER FILE SWAPPING

Assume that you wrote a subroutine (SUBl) with the following structure, and assume that you
did not specify any optimization options on the FORTRAN control card:

Beginning

Middle

Ending

Save (swap out) the caller's registers
Load (swap in) SUBl's local, scalar variables
Load dummy parameters

Execute FORTRAN statements

Store the dummy parameters
Save (swap out) SUBl's local, scalar variables
Restore (swap in) the caller's registers
Return to caller program

Execution of SUBl interrupts execution of your main program (the caller). When the branch to
SUBl occurs, the system must save the contents of the registers used by the caller in memory.
A machine instruction called SWAP performs this save. The procedure of saving registers is
often referred to as "swapping out."

Once the contents of the registers used by the caller program are saved, the local, scalar
variables of SUBl are "swapped in."

Fortunately, two separate SWAPS are not required. There is only one bidirectional SWAP
performed. The SWAP instruction swaps in and swaps out at the same time. Therefore, only one
machine instruction is necessary to save the caller's registers and to fill these registers
with the local, scalar variables of SUBl. Even this single SWAP, however, causes system
overhead.

For most subroutines that do a lot of work, this overhead time is usually trivial compared to
the amount of time doing useful work. For these routines, you need not worry about avoiding
swaps. If you have a routine that performs little work, you may wish to avoid the type of
swapping described. You may wish to use the zero-swap option explained in the next paragraphs.

Swapping is the standard output of the FORTRAN 200 compiler. Under some circumstances,
however, the compiler may generate a zero-swap routine that can reduce execution time for the
subroutines.

Zero-swap routines use only the 17 temporary registers. Since the contents of these
registers are not expected to be preserved across subroutine calls, no SWAP instruction is
necessary. To qualify for zero-swapping, your subroutine must meet the following seven
criteria:

•
•

•
•
•
•
•

8-22

OPTIMIZE D must be selected at compile time.

There must be no calls or function references other than to FORTRAN routi.nes that
can be generated in-line. (Refer to the FORTRAN 200 Reference Manual.)

There cannot be any INPUT/OUTPUT statements.

There cannot be any explicit vector statements.

There cannot be any vector instructions generated by automatic vectorization.

There cannot be any special calls (for example, CALL Q8).

The code must reasonably be expected to execute using only the 17 temporary
registers.

60455390 B

PARAMETER PASSING

If your program uses subroutines, there are times when you need to pass information between a
caller and its subroutines. The usual way of passing an array in a subroutine call is to pass
the base address of the array. (The base address of an array is the address of the first
element in the array.) Two methods are used to pass scalar variables. They can be passed by
value or by address.

Although passing by value is simpler and requires less overhead than passing by address, value
passing limits the number of scalar parameters that can be passed. Therefore, with the
exception of some calls to special system library routines, scalar parameters are generally
passed by address.

Another way to pass parameters is through COMMON blocks. These blocks allow quicker parameter
passing because they require only a single load. For a COMMON block, the compiler generates
code that effectively treats the entire block as one long array. Like any other array, one
base address is sufficient to access any location in the block. This location may contain a
scalar variable or an array element.

60455390 B 8-23

I

GLOSSARY

The following terms are used in this manual. Refer to the VSOS 2 Reference Manual, Volumes
1 and 2, and the FORTRAN 200 Reference Manual for terms not included in this glossary.

Abnormal termination

The procedure the system follows when a
batch task returns a completion code
greater than the error threshold value
for the batch job.

Byte

CYBER 200 mass storage, a block is 512
64-bit words.

A sequence of 8 bits that is a sub­
division of a word and is sufficient

Access to represent a single character.

Permitted use of a file or files. For
example, a user with access to a pool
can use the files that belong to the
pool. A user with one or more access
permissions to a file can use the file
in the permitted modes.

Account identifier

One through eight characters indicating
who is to be charged for system resources
used by a job.

Batch input file

A mass storage file containing the
control statements, programs, data, and
directives that define a batch job.

Batch job

A sequence of tasks the batch processor
executes for a user number. I BATCHPRO

Refer to Batch Processor.

Batch processor

A system utility that processes batch
jobs. Each batch task is executed as a
controllee of the batch processor.

Block

The smallest quantity of data that one
device access can read or write. On

Checkpoint

A system feature that captures a task
and any of its controllees at some
point into execution such that the
task can be restarted from that
point. A FORTRAN program named CHKPNT
calls checkpoint.

Collapsible loop

A DO loop that is convertible to a
vector operation. (Contrast with
Uncollapsible Loop.)

Controllee

A task started by another task (its
controller).

Controllee chain

An ordered set of tasks. Except for
the first and last tasks in the chain,
each task is started by the task at
the next lower level (its controller)
and starts the task at the next higher
level (its controllee). The chain can
comprise up to nine tasks.

Controllee file

An executable file having a minus page
as the first page and a page 0 as the
second page. The file may or may not
contain code. A controllee file

A

60455390 B A-1

contains all the information needed to
execute the object code contained in
the file. Also called a virtual code
file.

Controller

CPU

A task that starts another task (its
cont rollee).

Central processing unit; the computa­
tional facility of the CYBER 200
system.

Data file

A nonexecutable file; also called a
physical file or physical data file.

Day file

A file in which VSOS maintains a
history of processing events. See
also Job Dayfile and System Dayfile.

Directive

Supplementary control information in a
file required in addition to a utility
call. Directives are required, for
example, with UPDATE and SI.GEN.

Drop file

A file the system creates for each
task to which the system maps modified
pages from the task's virtual space.
The system shifts the controllee file
name right one character and prefixes
it with a one-digit decimal prefix
from 1 to 9 to form the drop file
names.

Dynamic 11 brary

A library of modules that can be
dynamically loaded and linked.

Dynamic linking

A-2

An execution-time process that locates
an external subroutine and causes a
transfer of control to the
subroutine. (Contrast with Static
Linking.)

Dynamic loading

An execution-time process that locates
an external subroutine, initializes
its common blocks and data base, and
causes transfer of control to the
subroutine. The subroutine code is
not moved. (Contrast with Static
Loading.)

Dynamic module

A module that contains unprocessed
loader text. The text does not modify
the code. (Contrast with Static
Module Set.)

End of information (EOI)

The end of the file data. The R, W,
and F record formats mark the EOF with
a file delimiter.

End of file (EOF)

The point in a file after which no
data exists. For labeled tape files
and non-V format unlabeled tape files,
the EOI is the point before the EOFl
label. For V format unlabeled tape
files, two consecutive tape marks
indicate the EOI.

Exponent

File

A number that indicates the position
of a radix point in floating-point
number. This indicates the power to
which the number is raised.

A collection of data that the file
name can access. Unless otherwise
indicated, all references to files in
this manual assume mass storage files.

File index table (FILE!)

A system table that holds all
information relating to file
characteristics. Output from the
AUDIT or FILES utilities shows much of
the table information.

60455390 A

FORTRAN 200

A superset of the American National
Standards Institute FORTRAN language.
FORTRAN 200 is the version of FORTRAN
used on the CYBER 200 Series computers.

FTN200

Refer to FORTRAN 200.

Group

A set of data within a file consisting
of one or more records. Groups can
exist within R and W format files.

Implicit input/output

A means of accessing a mass storage file
in which the system brings a page of the
file into central memory in response to
a reference to that page.

Input/output connector (IOC)

Local file

A private file that is destroyed by
the system after termination of the
batch job or terminal session that
created the file.

Mantissa

Map

The significant digits of a
floating-point number.

1. Process of assigning a physical
address range to a virtual address
range.

2. Table containing the
correspondence between virtual
address ranges and physical
address ranges.

Mass storage

1. Generally, mass storage is disk
An entry in a minus page that links a storage.

Job

mass storage file with a task.

A sequence of tasks initiated by the
batch processor executing for a user
number. The control statement sequence
in the batch input file and any procedure
files inserted into the sequence by BEGIN
statements determine the task sequence.

Job dayfile

A file the batch processor creates to
record the history of a job. The job
dayfile is printed at the end of the job
output.

Large page

128 512-word blocks; 65536 contiguous
64-bit words. (Contrast with Small
Page.)

Library

A file of modules generated by the OLE
utility that the LOAD utility can use to
satisfy external references during
generation of a controllee file.

60455390 A

2. Specifically, a file management
category that indicates no special
file processing after task
termination.

Minus page

The first page of a virtual file that
the system uses to hold items such as
the invisible package, input/output
connector information, and maps of
defined virtual space. Drop files
contain a second minus page.

Multif ile set

A set of tape files that a single tape
file request can access. The files
are contiguous; each is delimited by
the HDRl and EOFl labels. The
multifile set can extend for one or
more tape volumes.

Nonprivileged

A status that allows access to files
owned by the same user number under
which the task is running, to public
files, and to authorized pool files.

A-3

Object code file

A file generated by a compiler or
assembler containing relocatable code
modules.

One-liner

A DO loop that contains one and only one
FORTRAN statement, not counting the DO
and CONTINUE statements.

Output file

1. A file destined for print or punch
equipment.

2. Also, a generic term for a file
being written, as opposed to an
input file being read.

Ownership

Page

A file characteristic that determines
what nonprivileged tasks can access a
mass storage file. Ownership categories
are private, pool, and public. Private
includes local and permanent files.

The unit by which central memory is
allocated. (See also Large Page and
Small Page.)

Page fault

Reference by virtual address to a page
not currently in central memory, causing
a task interrupt and paging in.

Permanent file

A file that continues to exist after
termination of the batch job or inter­
active session that creates the file.

Physical address

Pool

A-4

Actual central memory address.

A group of files accessible by more than
one user, but owned by the pool, not by
an individual user.

Pool file

An ownership category that indicates a
file can be accessed by any privileged
task and by the pool boss or any pool
member.

Private file

An ownership category; a user number
owns a private file. (Contrast with
Public File.)

Privileged

A status that allows access to all
permanent files in the system and to
almost all operating system functions.

Procedure file

A file that contains a sequence of
control statements headed by a PROC
statement. When the batch processor
processes a BEGIN statement that spec­
ifies the procedure file, the batch
processor inserts the control
statement sequence from the procedure
file into the control statement
sequence for the job.

Public file

An ownership category that indicates
all users can access a file.
(Contrast with Private File.)

Record

The smallest logical set of data
defined within a SIL file format.

Scalar

A data item representing a single
value that a scalar machine
instruction processes. (Contrast with
Vector.)

Scalar processor

The normal scalar processor that
performs arithmetic in a scalar mode.
(Contrast with Vector Processor.)

60455390 B

I

Security level

Attribute of a file, task, job, or user
number used to prevent unauthorized data
access. The eight security levels are
numbered 1 through 8, from least to
greatest security.

Segment

An area of contiguous disk space
allocated to a file.

Shared SYSLIB

An OLE library altered by the SLGEN
command so it can exist as a dynamic
library within the shared system library.

Shared utility

A static module set that consists of
loaded code that resides in the system
shared library and a controllee file
containing everything but the code.

SHRLIB

Refer to System Shared Library.

Refer to System Interface Language.

Small page

The smaller of the two page sizes. The
small page size is chosen during VSOS
autoload. The possible sizes are one,
four, or sixteen 512-word blocks.
(Contrast with Large Page.)

Source file

1. A generic term for a file containing
text read by a utility or other task.

2. In an UPDATE utility context, a file
produced by UPDATE that would allow
recreation of a new program library
on a subsequent creation run.

STACKLIB

A set of highly optimized scalar
subroutines.

60455390 B

Static linking

Linking of all external references
prior to execution of any of them.
(Contrast with Dynamic Linking.)

Static loading

Loading of all modules at one time to
resolve all external references.
(Contrast with Dynamic Loading.)

Static module set

A set that consists of a statically
loaded utility whose code resides in
the system shared library and a
controllee file containing everything
but the code. The utility can be
partially statically linked.
(Contrast with Dynamic Module.)

Sword

Contraction of the term "super word"
meaning eight consecutive words in
memory.

System dayfile

A file on which VSOS records
information on all tasks. A
privileged user can send a message to
the system dayfile.

System interface language (SIL)

A set of subroutines that user
programs can call to perform system
functions.

System pool

A pool of files used instead of the
public files with the same names. If
a system pool exists in the current
system, the pool is attached to each
user number when the user number
submits a job or logs on.

System shared library

A file that is read or partially read
during system initialization into the
pages set aside for the shared library
region of memory. This file contains
directories, shared utilities, and a
shared SYSLIB.

A-5

I

Task

The execution of a controllee file.

Threshold value

The maximum error code that a task can
return without causing the batch
processor to initiate abnormal job
termination. The user sets the
threshold value with the TV control
statement.

Uncollapsible loop

A DO loop that cannot be converted to
a vector operation or a STACKLIB
call. (Contrast with Collapsible
Loop.)

User number

Six digits that identify a file owner
or user of system resources.

Vector

A set of data items specified as a
single operand for a vector machine
instruction. Execution of the vector
instruction processes each data item
in the set. (Contrast with Scalar.)

Vector processor

A-6

A processor that performs arithmetic
as vector operations. (Contrast with
Scalar Processor.)

Virtual address

Address referring to virtual memory
and translated by the page table into
a physical address.

Virtual code file

Refer to Controllee File.

Virtual memory

A means of addressing memory in which
the system maps the addresses refer­
enced by a task to actual physical
addresses in memory.

Volume

Word

A reel of magnetic tape.

A division of central memory or mass
storage corresponding to 64 bits.

Working set

The pages of a task's virtual space
that are most frequently referenced
during task execution.

60455390 B

Abnormal termination control 7-2
Access validation 2-2
Account name 2-4
Arrays

Columnwise order 8-9,11
Dummy 8-13
Rowwise order 8-9
Storage in memory 8-9,14
Temporary 8-12

ASSIGN statement 8-16,17
ATC

control See Abnormal termination
ATTACH control statement
Attaching files to your job
AUDIT control statement 3-9

3-10
3-10,12

Batch job
Contents 2-5
Definition A-1
Example 2-9, 10
Routing 2-6
Submitting 2-6,9,10

BATCHPRO
See Batch processor

Batch processor 2-5; A-1
Boolean data type 4-2,3
Boolean functions 4-3

CHKPNT call
CHM

7-6; A-1

See CYBER memory manager
Common blocks

Aligning on a page boundary
Named common 6-2,9,11
Unnamed common 6-2

Compile and GO option 3-6,7
Control statement group 2-4
Control vectors 8-18,19,20
Controllee file 3-1; 6-9,11,15;
Conversion from FORTRAN 5 to

FORTRAN 200 4-1
CRH

See CYBER record manager
CRH delimiters 3-16,17
CYBER memory manager 4-6
CYBER record manager 3-16; 4-6

5-8

A-1

INDEX

CYBER 200
Back-end system 2-1
Login 2-11, 12
Logout 2-11

Data conversion routines
Data declaration keywords
Data dumps 3-21
Data file transfers 3-13
Data files 3-1
Data flag branch manager
Data representation

Complex 4-12
Double-precision 4-11
Floating-point 4-9,11
Integer 4-8
Logical 4-12

DEBUG utility 7-7,8
Debugging 7-5,7
DEFINE control statement
Descriptor notation

3-17,19
3-13,16

7-4

3-8,9

See Implicit vector notation
DESCRIPTOR statement 8-16
Descriptors 8-15,16
DFBM

See Data flag branch manager
DIMENSION statement 8-13
Direct file access 5-5
DO loops

Branch-bound
Collapsible
Combining
Factorizing
Load-bound
One-liners
Recursive
Splitting

8-5
A-2

8-5
8-11, 12

8-5
8-11,12;

8-5
8-7

Uncollapsible loops
Unrolling 8-6

A-4

8-10;

Vectorization of 8-11, 12
Drop files

Creation of 3-7
Definition A-2
File type in a CYBER 200 job
Mapping of 6-9,11
Specifying size 3-8

A-6

3-1

Use with the DUMP statement 7-6
DUMP control statement 7-6

60455390 B Index-1

I

ENQUIRE command 2-6,7
EXIT control statement
Explicit vector notation

2-8; 3-9; 7-1
8-14,15

Factorizing DO loops
See DO loops, Factorizing

File access methods 5-5
File connections

Changing connections 3-4
Establishing connections 3-3

File ownership
Changing file ownership 3-12
Pool files 3-12; A-4
Private files 3-10; A-4
Public 3-10; A-4

File transfer between front-end and
CYBER 200 3-12

File types 3-1
FILES control statement 3-9
Front-end system

Login 2-2,11
Reasons for 2-1
Tape drives on 3-24
Transferring files to
Use of text editor on

FTN200 control statement

and from
2-3,8

As a part of control statement
group 2-4

3-12

As a task in a CYBER 200 job 2-5; 3-6
Use of LO parameter 6-2
Use of OPTIMIZE parameter 8-10,13

GATHER instruction 8-12
GET directive 3-13
GIVE control statement 3-12

Implicit vector notation 8-15
Input files 2-5; 3-6
Input/Output

Block 5-6,7,8
Explicit 5-6
File 3-2; 5-1
Formatted I/O statements
FORTRAN runtime 5-1,2,4
Implicit 6-12
Interactive 3-20,22,23
Record 5-4
SIL 5-1,4

Instruction stack 8-4
Interactive access 2-11,12

Index-2

3-20

Job categories 6-12
Job dayfile 2-8; A-3
Job file 2-2,3; 3-5
Job statement 2-4
Job termination

Abnormal 7-1,2
Abort 7-1,3,6
Normal 7-1

Large pages
LCN

6-1,2,10; A-3

See Loosely coupled network
LID

See Logical identifier
LINKER utility 3-6; 6-15
LISTAC control statement 3-11
Listing access permission sets
Load map 6-3,4,5
LOAD statement 3-6,8; 5-8; 6-12
LOAD utility 2-5; 6-3,6,15
Logical identifier 2-2,4,11,12
LOOK utility 3-19,20; 7-5,6
Loosely coupled network 3-12

Magnetic tape files
File requests 3-24

3-11

Processing options 3-25
Record type specification 3-25
Reserving tape drives 3-24

Mass storage files 3-8,9; 7-6
MDUMP subroutine 3-19,20,21; 5-5; 7-5
Memory requirements

Changing 6-12
Specifying 6-11

MFLINK control statement 3-13,14,15,
16,21

OPTIMIZE compilation option 8-4,6,9,
10,12

Output files 2-7; 3-1,6; A-4

Page fault 6-2; A-4
Page mapping

System controlled 6-9
User controlled 6-10

Paging 6-1
Password 2-2,4
PATTACH control statement 3-12
PDETACH control statement 3-12

60455390 A

Permanent files 3-9, 10
PERMIT control statement 3-11
Physical memory 6-1
Pool files

Attaching pools 3-12
Definition A-5
Removing pools 3-12

Private files
Attaching 3-10
Creating 3-10
Defining access permission 3-11
Definition A-4
Detaching 3-10
Giving to others 3-12
Listing access permission sets 3-11

PROGRAM statement 3-3,4
Public files 3-10; A-4
PURGE control statement 3-10

Q8 functions 8-20
Q9 routines

See Data conversion routines

READ statement 3-17; 5-4,5
Record I/O 5-4,5
Record types 3-16,19
Register file map 6-2; 8-3
Remote host facility 3-12
REQUEST control statement
RESOURCE control statement

6-11

3-8,24
2-5; 3-24; 5-5;

RETURN control statement
RHF

3-8,10

See Remote host facility
ROUTE command 2-6

Scalar processor 8-2; A-4
SCATTER instruction 8-12
Semicolon notation

See Explicit vector notation
SEP

See System error processor
Sequential file access 5-5
SET control statement 6-12
SIL

See System interface language
Small pages 6-1,2,9,10; A-5
STACKLIB calls 8-10; A-5
Storage map 6-2,3,4,5
STORE instruction 8-3
SUBMIT control statement 2-6

60455390 B

SUBMIT error 2-6
Submitting batch jobs 2-6,9,10
Subroutine calls

Advantages of 8-21
Interfaces to 8-21

SUMMARY control statement 6-2
SWAP instruction 8-22
Sword 8-4; A-5
Syntax differences between FORTRAN 5 and

FORTRAN 200 4-2
System error processor 7-4,5
System interface language

Definition A-5
SIL calls 3-19; 5-2,4,7
SIL I/O routines 5-1,4
SIL record types 3-14,15
SIL status codes 7-2,3

System shared library 6-1,14,15; A-6

Task termination
7-2 Abnormal termination control

SIL status code processing
User reprieve processing

7-2,3
7-2

Tasks 3-2,5; A-6
TDUMP subroutine 3-17
Temporary arrays 8-12
Temporary files 3-8

Converting to permanent files
Creating 3-8
Discarding 3-8

Transferring blocks
Transferring data

5-6

Binary data 3-14,18,19
Character data 3-13,14

Transferring files 3-12
Transferring records 5-4,6
TV control statement 2-8; 7-1

UNSAFE compilation option 8-13
USER control statement 2-4
User number 2-4

Vector function~ 8-17,18
Vector length 8-13,16,18
Vector processor 8-8; A-6
Vectorization of DO loops

See DO loops, Vectorization of
Virtual memory 6-1, A-6

WHERE statement 8-19,20

3-8

Index-3

I

w z :::;

COMMENT SHEET

MANUAL TITLE: CDC VSOS User's Guide for FORTRAN 200 Programmers

PUBLICATION NO.: 60455390 REVISION: B

STREET ADDRESS=------------------------------

CITY: ______________ STATE: _______ ZIP CODE: _______ _

Thia form i1 not intended to be u1od a1 an order blank. Control Data Corporation welcomes your evaluation of
this manual. PleaH indicate any errors, 1ugge1ted additions or deletions, or general comments below (pleaH
include page number references).

0 Please Reply 0 No Reply Necessary

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.
FOLD ON DOTTED LINH AND TAPE

FOLD FOLD

---~-~--·

FOLD

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO 8241 MINNEAPOLIS. MN

POSTAGE WILL BE PAID BY ADDRESSEE

(S2)CONT~OL DATA
Technology and Publications Division
ARH219
4201 North Lexington Avenue
Saint Paul, MN 55126-6198

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

FOLD

... z
::;;

~
<
:::>
u

CORPORATE HEADQUARTERS P.O. BOX 0 MINNEAPOLIS. MINNESOTA 55440

@:~
CONT~OL

DATA

	Preface
	Contents
	CYBER 200 System Access
	CYBER 200 Access Validation
	Constructing a CYBER 200 Job File
	Submitting the Batch Job
	Batch Job Submittal
	Interactive Access

	File Management
	File Types in CYBER 200 Jobs
	File Use in CYBER 200 Jobs
	Connecting Files to Your FTN200 Program
	Using the Compile and GO Option
	Drop File Space
	Using CYBER 200 Mass Storage Files
	Transferring Files to and From a Front-End System
	Using a CYBER 200 File Interactively
	Using Magnetic Tape Files

	FORTRAN Program Conversion
	FORTRAN 5/FORTRAN 200 Syntax Differences
	FORTRAN-Supplied Functinos
	FORTRAN-Supplied Subroutines
	Product Interfaces
	Machine-Dependent Differences

	FORTRAN I/O
	Mixing FORTRAN Runtime and SIL I/O
	Record I/O
	Data Transfer
	Block I/O

	CYBER 200 Memory Management
	Memory Paging
	Program Components
	Generating the Executable File
	User-Controllable Page Mapping
	Advising the System of Memory Requirements
	Implicit I/O
	System Shared Library
	Controllee Files

	Abnormal Termination
	CYBER 200 Job Termination
	CYBER 200 Task Termination
	Debugging Tools

	Program Optimization
	Scaler Processor
	Scaler Optimization
	Vector Processor
	Vector Optimization
	Speeding Up Subroutine Calls

	Glossary
	Index

