
&J IC:\ CONTI\.OL DATA
~ r:!I CO~OR{\TION

CDC ® CYBER 170
MODELS 825, 835, AND 855
COMPUTER SYSTEMS

GENERAL DESCRIPTION

RESTRICTED DISTRIBUTION
The mater ial contained herein is the property of
Control Data Corporation and is intended solely
fo r use by Cont rol Data personnel. Distribution
is restricted to a specific authorized distribution
list and lock-and-key control is mandatory_ Re
production and/or distribution outside Control
Data is prohibited_

HARDWARE MAINTENANCE MANUAL

60459960

I";:J E::\ CONTR..OL DATA
\::I r::J CORPORf\TION

CDC ® CYBER 170
MODELS 825, 835, AND 855
COMPUTER SYSTEMS

GENERAL DESCRIPTION

RESTRICTED DISTRIBUTION
The material contained herein is the property of
Control Data Corporation and is intended solely
for use by Control Data personnel. Distribution
is restricted to a specific authorized distribution
list and lock·and·key control is mandatory. Re·
production and/or distribution outside Control
Data is prohibited.

HARDWARE MAINTENANCE MANUAL

60459960

REVISION RECORD
REVISION DESCRIPTION

A Manual released.

(07-30-82)

Publication No.
60459960

REVISION LETTERS I, 0, Q,.s, X AND Z ARE NOT USED

© 1982
by Control Data Corporation
All rights reserved
Printed in the United States of America

2

Address comments concerning this
manual to:
Control· .Data Corporation
Publications and Graphics Division
4201 North Lexington Avenue
St. paul, Minnesota 55112

or use Comment Sheet in the back of
this manual.

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual, are indicated by bars in the margins or by a dot
near the pag~ number If the entire page Is affected. A bar by the page number indicates pagination rather than content has changed.

PAGE REV PAGE REV PAGE REV PAGE REV PAGE REV

Front Cover - 3-16 A 7-30 A 10-29 A 10-87 A
Title Page - 3-17 A 7-31 A 10-30 A 10-88 A
2 A 3-18 A 7-32 A 10-31 A 11-1 A
3/4 A 3-19 A 7-33 A 10-32 A 11-2 A
5 A 3-20 A 7-34 A 10-33 A 11-3 A
6 A 3-21 A 7-35 A 10-34 A 11-4 A
7 A 4-1 A 7-36 A 10-35 A 11-5 A
8 A 4-2 A 8-1 A 10-36 A 11-6 A
9 A 4-3 A 8-2 A 10-37 A 11-7 A
1-1 A 4-4 A 8-3 A 10-38 A 12-1 A
1-2 A 4-5 A 8-4 A 10-39 A 12-2 A
1-3 A 4-6 A 8-5 A 10-40 A 12-3 A
1-4 A 4-7 A 8-6 A 10-41 A 12-4 A
1-5 A 4-8 A 8-7 A 10-42 A 12-5 A
1-6 A 4-9 A 8-8 A 10-43 A 12-6 A
1-7 A 5-1 A 9-1 A 10-44 A 12-7 A
1-8 A 5-2 A 9-2 A 10-45 A 12-8 A
1-9 A 5-3 A 9-3 A 10-46 A 12-9 A
1-10 A 5-4 A 9-4 A 10-47 A 12-10 A
1-11 A 5-5 A 9-5 A 10-48 A 12-11 A
1-12 A 5-6 A 9-6 A 10-49 A 12-12 A
1-13 A 5-7 A 9-7 A 10-50 A 12-13 A
1-14 A 6-1 A 9-8 A 10-51 A 12-14 A
1-15 A 6-2 A 9-9 A 10-52 A 12-15 A
1-16 A 6-3 A 9-10 A 10-53 A 12-16 A
1-17 A 6-4 A 9-11 A 10-54 A 12-17 A
1-18 A 6-5 A 9-12 A 10-55 A 12-18 A
1-19 A 6-6 A 9-13 A 10-56 A Comment
1-20 A 6-7 A 9-14 A 10-57 A Sheet A
1-21 A 7-1 A 9-15 A 10-58 A Back Cover -
1-22 A 7-2 A 10-1 A 10-59 A
1-23 A 7-3 A 10-2 A 10-60 A
1-24 A 7-4 A 10-3 A 10-61 A
1-25 A 7-5 A 10-4 A 10-62 A
2-1 A 7-6 A 10-5 A 10-63 A
2-2 A 7-7 A 10-6 A 10-64 A
2-3 A 7-8 A 10-7 A 10-65 A
2-4 A 7-9 A 10-8 A 10-66 A
2-5 A 7-10 A 10-9 A 10-67 A
2-6 A 7-11 A 10-10 A 10-68 A
2-7 A 7-12 A 10-11 A 10-69 A
2-8 A 7-13 A 10-12 A 10-70 A
2-9 A 7-14 A 10-13 A 10-71 A
3-1 A 7-15 A 10-14 A 1'0-72 A
3-2 A 7-16 A 10-15 A 10-73 A
3-3 A 7-17 A 10-16 A 10-74 A
3-4 A 7-18 A 10-17 A 10-75 A
3-5 A 7-19 A 10-18 A 10-76 A
3-6 A 7-20 A 10-19 A 10-77 A .
3-7 A 7-21 A 10-20 A 10-78 A
3-8 A 7-22 A 10-21 A 10-79 A
3-9 A 7-23 A 10-22 A 10-80 A
3-10 A 7-24 A 10-23 A 10-81 A
3-11 A 7-25 A 10-24 A 10-82 A
3-12 A 7-26 A 10-25 A 10-83 A
3-13 A 7-27 A 10-26 A 10-84 A
3-14 A 7-28 A 10-27 A 10-85 A
3-15 A 7-29 A 10-28 A 10-86 A

60459960 A 3/4

1 CYBER 180 OVERVIEW

Introduction
Central Processor
Virtual Memory
Instruction Set
Central Memory
I/O Unit (IOU)
Maintenance Channel
Call/Return Operations
Interrupt Structure
C170 Support
RAM

CYBER 170/180 Similaritiesl
Differences Summary

CPU
Memory
PPs
System

CYBER 180 Hardware Summary
Configuration
Construction

2

Main tenance
Memory
Processors
Virtual Memory/Protection
Peripheral Processors
CYBER 170 State Operation

CPU State Switching
CYBER 170 Central Memory Image
Central Memory Extended (CME)
Soft Extended Core Storage

(ECS)
CPU Management
CYBER 170 Exchange Requests

VIRTUAL MEMORY MECHANISM

Address Translation
Page Size
Hashing Algorithms
Page Table Search

3 SECURITY AND PROTECTION

Software Facilities
Access Control

60459960 A

1-1

1-1
1-2
1-3
1-7
1-8
1-8
1-8
1-9
1-10
1-14
1-15

1-16
1-16
1-17
1-17
1-18
1-19
1-19
1-19
1-19
1-20
1-20
1-20
1-22
1-22
1-23
1-23
1-24

1-24
1-24
1-25

2-1

2-2
2-4
2-5
2-6

3-1

3-1
3-1

CONTENTS

Hardware Facilities
Virtual Memory User Address Space
Segment Attributes
Rings of Protection

Execute Access
Call Access
Read Access
Write Access

Ring Numbers in Pointers
Global and Local Key/Locks

Local Key/Lock Usage
Global Key/Lock Usage
Key/Lock Hardware Mechanism
Key/Lock Example

4 BUFFER MEMORIES

Segment Map
Page Map
Cache Memory
Software Implications

5 CENTRAL PROCESSOR LOGICAL
ENVIRONMENT

Processor State Registers
Process State Registers

6 INTERRUPTS PART I

7 CALL/RETURN/POP MECHANISM

Software Considerations
CALL - The Basic Mechanism
RETURN - The Basic Mechanism
POP - The Basic Mechanism
The Binding Section - Code Sharing
Flags

On-Condition Flag
Critical Frame Flag

Outward-Calls/Inward Returns
Object Module Binding
Virtual Machines

3-3
3-4
3-5
3-8
3-8
3-8
3-9
3-9
3-13
3-15
3-15
3-15
3-15
3-17

4-1

4-2
4-4
4-6
4-8

5-1

5-1
5-4

6-1

7-1

7-1
7-6
7-8
7-11
7-12
7-17
7-17
7-18
7-19
7-25
7-27

5

Zero Ring Number
Flowcharts of the Overall Process

8 CROSSING PROTECTION BOUNDARIES

Changing Address Spaces
Protection Boundaries Within,An

Address Space
Intersegment Branch
When Hardware Checks Occur
Software Conventions

Rings of Protection
Key/Locks
Controlling Procedures

User Responsibilities

9 INTERRUPTS PART II

Interrupt Conditions

6

Monitor Condition Register (MCR)
Detected Uncorrectable Error

(DUE)
Not Assigned
Short Warning
Instruction Specification

Error
Address Specification Error
C170 Exchange Request
Access Violation
Environment Specification

Error
External Interrupt
Page Table Search Without Find
System Call
System Interval Timer
Invalid Segment/Ring Number

Zero
Outward Call/Inward Return
So ft Error Log
Trap Exception

User Condition Register (UCR)
Privileged Instruction Fault
Unimplemented Instruction
Free Flag
Process Interval Timer
Inter-ring POP
Critical Frame Flag
Keypoint
Debug
Invalid BDP Data
Arithmetic Conditions

Conditions Where the
Instruction is Inhibited

Conditions Where the
Instruction is Executed

7-27
7-30

8-1

8-1

8-1
8-4
8-6
8-7
8-7
8-8
8-8
8-8

9-1

9-2
9-2

9-2
9-4
9-4

9-5
9-5
9-5
9-5

9-6
9-7
9-7
9-7
9-8

9-8
9-8
9-9
9-9
9-10
9-10
9-10
9-10
9-10
9-11
9-11
9-11
9-12
9-12
9-12

9-13

9-14

Simulated Interrupts
Multiple Interrupts

10 CENTRAL PROCESSOR INSTRUCTIONS

Registers
General Structure
Instruction Groups

General Instructions
Load/Store Bytes, Words, Bits
Load/Store A Register
Load/Store Mul tiple Registers
Integer Arithmetic
Branch Instructions

Conditional with Increment
Conditional, Ak
Unconditional Branch, Indexed
Unconditional Branch, (A)

Indexed
Copy Instructions
Address Arithmetic
Enter Instructions
Shifts
Logical Operations
Bit String Operations
Mark to Boolean

BDP Instructions
BDP Data Types
Numeric Operations

Arithmetic
Scaling
Move
Compare

Byte Instructions
Compare
Byte Scan
Translate
Move Bytes
Edit
Calculate Subscript
Immediate Data

Floating-Point Instructions
Convert Instructions
Add/Subtract - Single and Double

Precision
Product - Single and Double

Precision
Quotient - Single and Double

Precision .
BRANCH and COMPARE Instructions

Exception Branch
System Instructions

Introd uction
Privileged States of Execution
Exchange Jump
Keypoint
Compare Swap

9-14
9-14

10-1

10-1
10-2
10-3
10-4
10-5
10-5
10-6
10-7
10-8
10-8
10-9
10-9

10-10
10-12
10-12
10-14
10-15
10-16
10-16
10-18
10-20
10-21
10-25
10-26
10-26
10-26
10-27
10-27
10-27
10-30
10-34
10-34
10-34
10-55
10-60
10-61
10-66

10-67

10-68

10-69
10-71
10-72
10-73
10-73
10-73
10-75
10-76
10-77

60459960 A

Test and Set Bit
Test and Set Page
Copy Free Running Counter
Load Page Table Index
Processor Interrupt
Branch On Condition Register
Copy
Purge Buffer

Cache
MAP

Execute Algorithm
Program Error
SCOPE Loop Sync

11 DEBUG

12 CYBER 180 SOFTWARE OVERVIEW

Operating System (NOS/VE)
Product Set

Language Processors
FORTRAN
COBOL

Support Services
Sort/Merge
Data Management

User Interfaces

1-1
1-2
1-3
1-4
1-5
1-6
1-7
1-8
1-9
1-10

1-11

Command Interface
NOS/VE Command Summary

System Access
File System

CYBER 180 Mainframe
Monitor to Job Exchange
Process Virtual Address
System Virtual Address
PVA to RMA Transformation
Typical MAP/CACHE Usage
Typical Maintenance Channel
Monitor Condition Register
User Condition Register
Transitions Between CYBER 180

Tasks
Multiple Level Call

1-12 CYBER 170 Processor Env ironment
2-1 Process Virtual Address
2-2 Address Translation
2-3 Formation of Page Number and

Page Offset (For a 4096 Byte
Page)

2-4 Hashing Algorithm

60459960 A

10-79
10-81
10-81
10-81
10-83
10-83
10-84
10-86
10-87
10-87
10-88
10-88
10-88

11-1

12-1

12-1
12-1
12-1
12-1
12-1
12-1
12-1
12-2
12-2
12-2
12-2
12-2
12-2

Job Management
Resource Management
Program Execution Commands
Program Compilation

Commands
SCL Procedure and Control

Commands
Command Utilities

Program Interface
CYBIL

Basic Syntax
Type Declarations

Fixed Types
Structured Types
Storage Types
Adaptable Types

Examples of Declarations
Type Declarations
CYBIL Declarations

CYBER 180 Operating System (NOS/VE)
System Structure

CPU Monitor
Task Attributes and Componets
System Jobs

Memory Management
Virtual Memory Management

File System
Segment Manager
Compilers
Loader
Object Library Generator

Real Memory Management
Page Managemen t
Job Scheduler

FORTRAN LGO Example

FIGURES

1-1 2-5 Page Table Search Example
1-3 2-6 Page Table Search Flowchart
1-4 3-1 Access Control Example
1-4 3-2 Process Virtual Address
1-5 3-3 Segment Descriptor Entry (SDE)
1-6 3-4 Segment Protection Within an
1-9 Address Space
1-10 3-5 Ring Brackets
1-11 3-6 Example of Ring Brackets

3-7 Ring Protection Within an
1-12 Address Space
1-13 3-8 Process Virtual Address
1-15 3-9 A Register Ring Voting
2-2 3-10 Format of SDE Bits 32-39
2-3 3-11 Key/Lock Example

3-12 Program Address Register
3-13 Conceptualization of a User

2-4 Address Space
2-6

12-3
12-3
12-3

12-4

12-4
12-4
12-4
12-5
12-5
12-6
12-6
12-6
12-6
12-7
12-7
12-7
12-8
12-10
12-10
12-10
12-11
12-11
12-11
12-11
12-11
12-12
12-12
12-12
12-12
12-12
12-12
12-12
12-13

2-7
2-8
3-1
3-4
3-5

3-7
3-10
3-11

3-12
3-13
3-14
3-15
3-17
3-19

3-19

7

3-14

3-15

4-1
4-2
4-3
4-4
4-5
5-1
5-2
5--3
5-4
5-5

5-6
5-7

6-1
6-2
6-3
6-4
6-5
7-1
7-2

7-3
7-4
7-5
7-6
7-7
7-8
7-9
7-10
7-11
7-12
7-13
7-14
7-15
7-16
7-17

7-18
7-19.
7-20
7-21
7-22
8-1
8-2

8-3
9-1
10-1
10-2
10-3
10-4
10-5

8

Virtual Memory Address Transla
tion Flowe hart

Virtual Memory Protection
Flowchart

CYBER 180 Buffer Memories
Se~ent Map Operation
Se~ent Map Allocation
Page Map Operation
Cache Memory Operation
JPS and MPS Registers
PTA Register

3-20

3-21
4-1
4-3
4-4
4-5
4-7
5-1
5-1

Element ID Register 5-2
Processor State Registers 5-3
CYBER 180 Exchange Package

(CYBER 180 Process) 5-4
Process State Registers 5-6
Process State Registers Accessed

by Exchange Operation 5-7
Basic Interrupt Mechanism 6-1
Interrupt Conditions 6-2
Examples of Interrupts 6-4
Interrupt Flowchart
P3 Pipelined Instruction Stream
Example of Block Structure
Stack Frame Manipulation by

Call/Return
Basic Call Mechanism
Basic Return Mechanism
Stack Frame Save Area
Call/Return
Rippling
Example of POP Instruction
Call Indirect Example
Code Shar ing
Loading Mechanism
On-Condition Handling
Outward Call
Inward Return
OS Call
Bind ing Process
Conver s ion f rom Call I nd ir ec t to

Call Relative
Ring Number Zero on Load A
Ring Number Zero on Call
CALL/TRAP
RETURN
POP
Code Base Pointer - CBP
Calling a Procedure on Behalf of

Another Procedure
Interse~ent Branch
Memory Error Detection
General Purpose Registers
General Instruction Formats
A Register Ring Voting
Resul ts of Integer Compare
Conditional Branch with

Increment

6-6
6-7
7-2

7-3
7-5
7-6
7-7
7-9
7-10
7-12
7-14
7-15
7-16
7-18
7-20
7-22
7-24
7-26

7-27
7-28
7-29
7-31
7-34
7-36
8-2

8-3
8-5
9-3
10-2
10-4
10-6
10-7

10-8

10-6
10-7
10-8

10-9
10-10
10-11
10-12
10-13
10-14
10-15

Branch Conditional, Ak
Intersegment Branch
Intersegment Branch - Global Key

Settings
Copy X to A Operation
Address Increment
Address Increment, Modulo
Long Reach Conditional Branch
Enter Signs
Isolate Bit Mask
Isolate to Xk

10-16 Mark to Boolean J-Field Usage
10-17 Mark to Boolean Tests
10-18 BDP Instruction Formats and

BDP Descriptor
10-19 BDP Data Types
10-20 Translated Data Types
10-21 Decimal Add Example
10-22 Collated Compare Operation
10-23 Collated Compare Operation

Flowchart
10-24 Scan While Nonmember Operation
10-25 Edit Instruction
10-26 Edit Mask
10-27 Edit Overview, Including

Initialization
10-28 MOP 0 - Move Source Digits
10-29 MOP 1 - Move Source Characters
10-30 MOP 4 - Move Mask Characters
10-31 MOP 5 - Select Sign as Symbol
10-32 MOP 6 - Select Mask Characters

as Symbols
10-33 MOP 7 - Move Source Digits or

Suppress with Floating Symbol
10-34 MOP 8 - End Float
10-35 MOP 9 - Insert Symbol or SCT

Character

10-9
10-10

10-11
10-12
10-13
10-13
10-14
10-15
10-17
10-17
10-18
10-19

10-20
10-22
10-24
10-25
10-28

10-29
10-31
10-35
10-36

10-38
10-39
10-40
10-41
10-42

10-43

10-44
10-45

10-46
10-36 MOP A - Insert Symbol or SCT

Character if Source is Positive,
Elsewhere Insert Blanks 10-47

10-37 MOP B - Insert Symbol or SCT
Character if Source is Negative,
Else Insert Blanks 10-48

10-38 MOP C - Insert Symbol or SCT
Character, Unless Suppression 10-49

10-39 MOP D - Write SCT Entry 10-50
10-40 MOP E - Spread Suppression

Character
10-41 MOP F - Reset and Suppression

Zero Field
10-42 Numeric Function
10-43 Examine Sign
10-44 ARRAY (3 •• 10, 5 •• 7, 8 •• 9)
10-45 Subscript Range Table
10-46 Calculate Subscript Operation
10-47 Calculate Subscript and Add
10-48 Immediate Data BDP Instructions

10-51

10-52
10-53
10-54
10-56
10-56
10-57
10-59
10-60

60459960 A

10-49 Single Precision Floating-Point 10.-60 Compare/Swap Operation 10.-78
Format 10.-62 10-61 Test and Set Bit 10-80.

10-50. Double Precision Floating-Point 10.-62 Load Page Table Index 10-82
Format 10.-62 10.-63 Processor Register Definitions

10.-51 Floating-Point Representation 10-65 and Accesses 10-85
10.-52 Nonstandard Floating-Point 10.-64 Copy to Single Bit Register 10.-86

Nwnbers 10.-66 11-1 Debug List 11-2
10.-53 Add/Subtract - Nonstandard 11-2 Debug Entries 11-3

Floating-Point Nwnbers 10.-68 11-3 Debug Condition Selec t 11-4
10.-54 Multiply - Nonstandard 11-4 Conceptual Debug Procedure 11-6

Floating-Point Nwnbers 10.-69 12-1 TYPE Declarations 12-7
10-55 Divide - Nonstandard Floating- 12-2 CYBIL Declarations 12-9

Point Nwnbers 10.-70. 12-3 Local File LGO 12-13
10.-56 BRANCH and Co.MPARE - Nonstandard 12-4 FORTRAN LGo. Example 12-15

Floating-Point Nwnbers 10.-72 12-5 Fo.RTRAN LGo. Example, Pointers 12-16
10.-57 Exception Branch 10.-72 12-6 o.bject Library Format - Segment
10.-58 Segment Description Table Level Access File 12-17

Entry - SDE 10.-74 12-7 Fo.RTRAN LGo. Example, Conclusion 12-18
10.-59 Keypoint o.peration 10.-77

60.459960. A 9

CYBER 180 OVERVIEW

This document presents an overview of the CYBER 180 system, primarily from a hardware
perspective. A brief software overview, however, is contained in section 12.

INTRODUCTION

The CYBER 180 mainframes support two architectures:

1

• The CYBER 180 architecture (Virtual State) with 64-bit central memory words, virtual
memory management, 16-bit PP instructions and 16-bit I/O channels, and so forth.
CYBER 180 is the native mode of the processor.

• The CYBER 170 architecture (Real State) with 60-bit central memory words, 12-bit PP
instructions and 12-bit I/O channels, and so forth. The CYBER 170 environment
requires support from the CYBER 180 state of the processor.

Both the CYBER 170 and CYBER 180 environments may be present at the same time with the
processor executing in either environment. The CYBER 170 environment allows current
CYBER 170 application codes to be efficiently run on the CYBER 180 mainframes. Either CYBER
170 NOS or NOS/BE may be installed in the CYBER 170 environment of CYBER 180. This allows
users to install CYBER 180 mainframes and utilize the CYBER 170 application packages and
other existing CYBER 170 programs and then migrate tasks to the CYBER 180 environment as
desired. The CYBER 180-based operating system is termed NOS/VE.

The CYBER 180 mainframe consists of a processor, central memory, and I/O unit (figure 1-1).

MAINTENANCE
CHANNEL

PROCESSOR

CENTRAL
MEMORY

,C- I/O UNIT
~

I I/O SUBSYSTEMS

~
Figure 1-1. CYBER 180 Mainframe

60459960 A 1-1

The first four CYBER 180 systems have been termed S1, S2, S3 and Theta. The smallest of the
four systems, Sl, is approximately equal to a CYBER 172 in performance. Each of the larger
systems is targeted at a 3X increase in performance resulting in Theta being approximately
27 times more powerful than Sl. The four systems with their respective Series 800 product
designations and central memory sizes are as follows:

Sl 825 2 to 8 M Bytes

S2 835 4 to 16 M Bytes

53 855 4 to 16 M Bytes

Theta 885 4 to 32 M Bytes

CENTRAL PROCESSOR

The CYBER 180 processor has the following primary operational registers:

Program Address (P) Register
16 Address (A) Registers
16 Operand (X) Registers

64 bits
48 bits each
64 bits each

These and other registers associated with a specific process (or job) are contained in a 52
word (64 bit words) exchange package. This package contains all the information required
for the processor to initiate or restart a process. These registers represented in the
exchange package are called process registers as they are associated with a specific process
(or job). There are also 14 registers in the processor which contain information relative
to the processor rather than to a specific process. Processor registers include items such
as page table information, options installed, and error logging. Two of these processor
registers, Monitor Process State (MPS) and Job Process State (JPS) contain the real memory
addresses for the current exchange package for monitor and job state respectively. Thus, an
exchange operation from CYBER 180 monitor to job will store the environment of the monitor
process in an exchange package at MPS and initiate the process whose exchange package is
located at JPS. This monitor to job exchange (figure 1-2) is initiated by an Exchange
Instruction within the monitor process. The subsequent job to monitor exchange may be
initiated by either an Exchange instruction or by the occurrence of some condition requiring
monitor intervention such as external interrupt, page fault, and power warning.

1-2 60459960 A

PROCESSOR CENTRAL MEMORY

PROCESSOR REGISTERS

MPS
MPS_

JPS STEP 1
MONITOR EXCHANGE PACKAGE

PROCESS REGISTERS JPS

}-P Register JOB EXCHANGE PACKAGE

16 A Registers

16 X Registers

........ .-

STEP 2

Figure 1-2. Monitor to Job Exchange

VIRTUAL MEMORY

Central processor references to central memory (other than an exchange operation) involve a
virtual mapping algorithm. The transformation from the 48-bit virtual address, used by the
process (or job) to the actual address involves 2 steps as described in the following
paragraphs:

1. Security and access validation (Does this process have permission to access this
address?)

60459960 A 1-3

2. Virtual Memory Management (Where does the desired information actually reside?)

The 48 bit.Process Virtual Address (PVA) (figure 1-3) consists of the following:

16 20 32 63

PVA SEG BN

Figure 1-3. Process Virtual Address

RN: Ring Number (0-15) for security validation
SEG: Segment Number identifying 1 of 4096 segments potentially available within a

single process's address space. Each of these segments has security
properties such as read only and execute only.

BN: Byte Number identifying a specific byte on the leftmost byte of a word or
string within a specific segment.

NOTE

All registers are numbered left to right
with bit 63 as the rightmost bit.

The first step of .this virtual mapping algorithm is organized on a segment basis because
security attributes are assigned per segment. The segment number is used to obtain a Segment
Descriptor from the Segment Table for the process. This Segment Descriptor contains
security information for the segment in this specific process. For example. a segment could
be read only in one process while reads and writes both could be allowed from another
process. This security informat.1on plus the nature of the reference (RN!. read. write. and
so forth) are used to verify the validity of the request relative to security considerations.

When the request is invalid the process will be halted and the operating system notified.
When the request is valid, an Active Segment Identifier (ASID) is obtained from the Segment
Descriptor. This ASID identifies the segment on a system basis. Thus, many processes may
individually use segments such as 0, I, or 2, and have the virtual algorithm map these into
unique system addresses. This also allows segments named uniquely in different processes to
map into a single segment (with potentially different access privileges). This ASID
replaces the Ring Number and Segment Number in the .PVA to produce a System Virtual Address
(SVA) (figure 1-4).

ASID:
BN:

1-4

r ASID BN

Figure 1-4. System Virtual Address

Active Segment Identifier
Byte Number from the PVA

i

60459960 A

The second step of the virtual mapping algorithm is organized on a page basis because
physical memory is managed on a page basis. This step locates the required portion (or
page) of the segment within the system. Tho se pages of the various active segments which
are currently in central memory are listed in the System Page Table. The SVA (produced in
step 1) is used to access this table to determine if the page is in central memory, and if
so, where. When the page is in central memory, the desired references are completed and
processor execution continues. When the page is not in central memory, the process in
execution is interrupted. Control is then given to the operating system which makes the
necessary arrangements to have the desired page brought into central memory after which the
interrupted process may be resumed.

The virtual mapping algorithm, terminating in a Real Memory Address (RMA) for central
memory, may be summarized as shown in figure 1-5.

PVA

1
SEGMENT TABLE

SECURITY
AND ACCESS (Is this a valid reference
VALIDATION for this process?)

t
SVA

t
SYSTEM PAGE TABLE

PHYSICAL
MEMORY (Is this address in a page
MANAGEMENT currently in central

memory?)

t
RMA

Figure 1-5. PVA To RMA Transformation

Since both the Segment Table and System Page Map reside in central memory, it is obvious
that some type of hardware assist will be required to achieve high performance. This
hardware assistance will vary according to the performance requirements of a specific
system; however, figure 1-6 illustrates a typical approach implemented in several processor s.

60459960 A 1-5

A cache-like Segment Map containing the Segment Descriptors for the most recently accessed
segments is first accessed followed by a reference to the Segment Table in central memory
only when the Segment Descriptor is not in the Segment MAP. A Page Map similarily supports
the SVA to RMA translation process. In addition the SVA is used in parallel to the Page MAP
reference to access a cache memory organized by SVA. When the cache contains the data, the
access to the Page MAP is terminated. When the cache does not contain the data, the access
through the Page MAP and on to central memory is continued.

PVA

1 ..

SEGMENT NOT IN SEGMENT
MAP SEGMENT TABLE

MAP I

1
VALID REFERENCES

S A

CACHE

I
PAGE MAP

RMA

CENTRAL
MEMORY

DATA ~-----.....

NOT IN

PAGE
MAP

I

INVALID
REFERENCES

PAGE NOT IN
CENTRAL MEMORY

SYSTEM
PAGE TABLE

I , ,

OPERATING
SYSTEM

CONTROL

Figure 1-6. Typical MAP/CACHE Usage

1-6 60459960 A

INSTRUCTION SET

The CYBER 180 processor instruction set consists of the following 149 i.nstructions:

General (Load, Store, Branch)
System (Call, Return, and so forth)
Floating Point
BDP
Vector (Theta systems only)

76
19
16
18
20

149

The 76 general instructions include load and store operatlons on words (64 blts), bytes and
bits; integer arithmetic operations; branches, copies, address arithmetic, direct enters and
shlft operations.

The system instructions lnclude CALL, RETURN and POP instructions to facilitate the use of
lliod'~:' .,- ,:(',:,.~. The EXCHANGE, COMPARE/SWAP, PROCESSOR INTERRUPT and TEST AND SET BIT support
task management and interprocessor communication. The COPY FREE COUNTER provides access to
a 48-bH microsecond timer for system accounting. The COpy TO/FROM STATE REGISTER instruc
tions allow the reading and writing of certain processor and process state registers. The
LOAD PAGE TABLE INDEX and PURGE BUFFER instructions allows the operating system to maintain
the MAP, cache and System Page Table. The BRANCH ON CONDITION REGISTER instruction allows
the testing and alteration of the registers involved in the interrupt structure. :he
KEYPOINT instruction allows both trace and timing data to be gathered on a process.

The single-precision floating-point instructions operate on 64-bit floating point operands
consisting of a 49-bit sign/magnitude coefficient (48-bit positlve number plus slgn bit) and
a IS-bit exponent allowing a range. of 2+4095 to 2-4096 pllls representations for Indefi
nite. Infinite and Zero. The floating-point operations are two address of the form, Xk
replaced by Xk + Xj (in contrast to CYBER 170 which is Xi replaced by Xj + Xk). There are
also two convert instructions which allow conversion between single-precision operands and
64-bit integers. The double-precision floating-point instructions support use of double
length coefficients (96 bits plus sign). The BRANCH and COMPARE instructi.ons complete this
subset.

The BDP instructions use descriptor fields directly following the instruction in the code
stream to describe fields in central memory involved in the BDP operations. For example,
the DECIMAL SUM instruction reads two decimal fields from central memory, sums them and
replaces one of the two input fields with the result. There are 16 different data formats
which may be specified for these fields including binary, packed and unpacked decimal. Not
all types of data formats are acceptable input for every instruction.

The vee tor instructions perform integer, logical and single-precision floating-point
operations on data fields in central memory up to 51210 words in length. These data
fields are always contiguous except for summation which produces a single output operand and
the Gather, Scatter pair of instructions which are designed specifically for noncontiguous
operations.

Refer to sec tion 10 for more information.

60459960 A 1-7

CENTRAL MEMORY

The central memories for the CYBER 180 systems. are available in the following sizes:

M1 825 2, 4 or 8 MB

M2 835 4, 8, 12 or 16 MB

M3 855 4, 8, 12 or 16 MB

THETA 885 8, 12, 16, 24 or 32 MB

These memories all include Single Error Correction/Double Error Detection (SEC/DED) as is
described under RAM. Each memory contains one port for the I/O unit, one port for the
processor and one port for a second processor.

I/O UNIT (IOU)

The IOU contains up to 20 peripheral processors (PP's) and up to 24 I/O channels (either
CYBER 170 12-bit channels and/or CYBER 180 16-bit channels). The PP's each have a 4K x
16-bit memory and are capable of accessing central memory and any I/O channels.

These PP's execute both a 12-bit instruction set compatible with CYBER 170 and a new 16-bit
instruction set. These are implemented such that the 12-bit instruction set is a subset of
the. 16-bit instruction set. The 12-bit instruction set allows appropriate I/O system
support of the CYBER 170 state in the mainframe such that CYBER 170 NOS and NOS/BE are
supported. The 12-bit instruction set includes 60-bit read/write operations for central
memory. the required processor interrupt signals and the ability to utilize the 12-bit CYBER
170 channels.

The 16~bit instruction set allows support of the CYBER 180 state in the mainframe and
includes 64-bit read/write operations for central memory and the ability to utilize the
16-bit CYBER 180 channels.

MAINTENANCE CHANNEL

The maintenance channel provides an access from any PP to a set 6f maintenance registers
within a specific system element such as processor, memory or 1/0 unit. These registers are:

1~

•
• •

control registers independent of a specific process
error logging and status registers
performance data registers

60459960 A

A typical system is illustrated in figure 1-7.

~
PROCESSOR

~.
CENTRAL
MEMORY

r bU
I/O UNIT

-::: MAC I
MAC = MAINTENANCE ACCESS CHANNEL
MR = MAINTENANCE REGISTERS

Figure 1-7. Typical Maintenance Channel

The PP may use the maintenance channel to perform operations such as:

• writing the processor registers such as Page Table Address
• reading the Corrected Error Logs from central memory
• reading the Options Installed Register in the IOU to determine the number of PPs
• initializing all system elements
• causing the processor to perform a exchange operation loading the exchange package

from the location pointed to by MPS, setting the CYBER 180 Monitor Flag and
beginning execution

• causing the processor to halt, allowing the reading of selected error logs followed
by resumption of processor execution

• causing the processor to halt execution and then to perform a an exchange operation
storing an exchange package into memory

CALL/RETURN OPERATIONS

The CALL, RETU~~ and POP operations efficiently support structured languages like PASCAL.
The CALL instruction simply stores a copy of its current environment such as register
contents or flags into central memory and then branches to a new process and resumes
execution. Wh"!n the new or CALLed process is complete, the execution of a RETURN
instructi.on retrieves the environment from central memory and resumes execution immediately
following the CALI. instruct:!.o"', The environment stored into central memory is called a
STACK FRAME and is si.milar in format to an exchange package. This STACK FRAME is stored

60459960 A 1-9

into an area called a STACK which may contain many STACK FRAMES as successive processes are
CALLed without intervening RETURN operations. The POP instruction facilitates removal of
STACK FRAMES from the STACK in circumstances when a RETURN is not appropriate.

The TRAP operation very closely parallels a CALL except that the TRAP is initiated by the
interrupt structure rather than by an explicit instruction.

INTERRUPT STRUCTURE

The CYBER 180 Interrupt Structure is organized around two 16-bit registers; the Monitor
Condition Register (MCR) and the User Condition Register (UCR). These registers allow the
recording of those program anomalies or other events potentially important enough to justify
the interruption of the process currently being executed. Figures 1-8 and 1-9 list the
conditions represented in each register and outlines the action to be taken for each. Each
bit in the two registers has an associated mask bit which allows some selection of the
action to be taken. The actions to be taken include:

HALT - The processor stops execution.
EXCH - An exchange to CYBER 180 monitor mode.
TRAP - A CALL-like operation to another process without

performing an exchange.
STACK - Record condition but take no further action at this time.

ASSOCIA TED MONITOR MASK
REGISTER BIT SET

TRAP ENABLED TRAP DISABLED

P JOB MONITOR JOB MONITOR
BIT NUMBER AND DEFINITION

REG MODE MODE MODE MODE

- 48 Detected Uncorrectable Error Mon EXCH TRAP EXCH HALT

- 49 Unassigned EXCH TRAP EXCH HALT

P+ 50 Short Warning Sys EXCH TRAP EXCH STACK

P 51 Instruction Specification Error Mon EXCH TRAP EXCH HALT

P 52 Address Specification Error Mon EXCH TRAP EXCH HALT

P+ 53 170 Exchange Request Sys EXCH TRAP EXCH STACK

P 54 Access Violation Mon EXCH TRAP EXCH HALT

P 55 Environment Specification Error Mon EXCH TRAP EXCH HALT

P+ 56 External Interrupt Sys EXCH TRAP EXCH STACK

P 57 Page Table Search Without Find Mon EXCH TRAP EXCH HALT

P+ 58 System Call Status . This bit is a flag only and does not cause any hardware action.

P+ 59 System Interval Timer Sys EXCH TRAP EXCH STACK

P/P+* 60 Invalid Segment/Ring Number Zero Mon EXCH TRAP EXCH HALT

P 61 Outward Call/Inward Return Mon EXCH TRAP EXCH HALT

P+ 62 Soft Error Log Sys EXCH TRAP EXCH STACK

- 63 Trap Exception Status . This bit is a flag only and does not cause any hardware. action.

* P, unless P+ for RNO on loads

Figure 1-8. Monitor Condition Register

MASK
BIT

CLEAR

TRAP
ENABLED

OR
DISABLED

JOB OR
MONITOR

MODE

HALT

HALT

STACK

HALT

HALT

STACK

HALT

HALT

STACK

HALT

STACK

HALT

HALT

STACK

1-10 60459960 A

ASSOCIATED USER MASK
MASK

BIT
REGISTER BIT SET CLEAR

TRAP

TRAP ENABLED . TRAP DISABLED
ENABLED

OR
DISABLED

P JOB MONITOR JOB MONITOR JOB OR
MONITOR

REG BIT NUMBER AND DEFINITION MODE MODE MODE MODE MODE

P 48 Privileged Instruction Fault Man TRAP TRAP EXCH HALT

P 49 Unimplemented Instruction Man TRAP TRAP EXCH HALT
These

P 50 Free Flag User TRAP TRAP STACK STACK mask bits
P+ 51 Process I nterval Timer User TRAP TRAP STACK STACK are

P 52 Inter·ring Pop Man TRAP TRAP EXCH HALT
permanently

set.
P 53 Critical Frame Flag Mon TRAP TRAP EXCH HALT

P+ 54 Keypoint User TRAP TRAP STACK STACK

P 55 Divide Fault User TRAP TRAP STACK STACK STACK

P 56 Debug User TRAP TRAP STACK STACK STACK

P 57 Arithmetic Overflow User TRAP TRAP STACK STACK STACK

P+ 58 Exponent Overflow User TRAP TRAP STACK STACK STACK

P+ 59 Exponent Underflow User TRAP TRAP STACK STACK STACK

P+ 60 F. P. Loss of Significance User TRAP TRAP STACK STACK STACK

P 61 F. P. Indefinite User TRAP TRAP STACK STACK STACK

P 62 Arithmetic Loss of Significance User TRAP TRAP STACK STACK STACK

P 63 Invalid BDP Data User TRAP TRAP STACK STACK STACK

Figure 1-9. User Condition Register

60459960 A 1-11

A simple example is the occurrence of power failure warning with the processor in job mode
which will be indicated by the setting of bit 50 in the MCR. This in turn causes an
Exchange to CYBER 180 monitor which in turn allows the processor to take the appropriate
action in view of imminent shutdown. A process generated condition such as Arithmetic
Overflow (UCR 57) on the other hand may simply be ignored or stacked by the process.
Figure 1-10 illustrates the different methods of transition between various CYBER 180
processes. The CYBER 180 Monitor initiates task A which in turn CALLS task B which at a
later point initiates a RETURN to task A. At some other point in time a condition occurs in
task A which causes a TRAP to the trap handler which subsequently returns control to taskA.

C1S0 MONITOR STATE

C1S0 JOB STATE

Figure 1-10. Transitions Between CYBER 180 Tasks

1-12 60459960 A

Figure 1-11 illustrates the initiation.of task D which CALLs task B which in turn CALLs task
C which subsequently passes control back to task D through a series of two RETURN opera
tions. Note that task B may be shared by A and D.

C180 MONITOR STATE

C180 JOB STATE

Figure 1-11. Multiple Level Call

60459960 A 1-13

C170 SUPPORT

The ability to execute CYBER 170 software on the CYBER 180 mainframes is an important part
of the CYBER 180 strategy. The CYBER 170 enviroment is supported somewhat like a special
purpose CYBER 180 job as illustrated in figure 1-12. Both CYBER 170 monitor and job state
exist within the CYBER 180 job state. CYBER 170 state is not allowed to exist within CYBER
180 monitor state. Transitions between CYBER 170 monitor and CYBER 170 job do not require
any intervention by a CYBER 180 task. The CYBER 170 Exchange Requests from the PP's and
CYBER 170 Central Exchange Jump to MA cause CYBER 170 exchanges directly from CYBER 170 job
to monitor. CYBER 170 Central Exchange Jumps to Bj+K cause CYBER 170 exchanges directly
from CYBER 170 monitor to job.

While the CYBER 170 Exchange Requests from PP's are handled within the CYBER 170
environment, all other interrupts will cause a transition (TRAP or Exchange) to the CYBER
180 state. There is a CYBER 180 task named Executive Interface (EI) which is directly
involved in the support of the CYBER 170 environment and handles any traps from within the
CYBER 170 environment. For example, the CMU instructions are not executed directly in the
CYBER 170 environment but instead cause a Trap to EI which simulates the CMU operation and
then executes a Return to the subsequent CYBER 170 instruction.

Thus, the CYBER 170 environment within the CYBER 180 mainframes consists of the hardware
plus EI and the CYBER 180 monitor.

There are several extensions to the CYBER 170 processor instruction set and architecture to
allow a 2-mill ion word central memory (the instruc tion space of a specific job still being
limited to 131K in CYBER 170). These are extensions rather than modifications, thus, CYBER
170 user jobs that ran under NOS or NOS/BE are directly transportable to the CYBER 180
mainframes with NOS or NOS/BE installed. The operating systems are basically identical to
those running on CYBER 170 mainframes with minor changes to take advantage of the
extensions. There is also the capability to declare part of central memory as Unified
Extended Memory (UEM) and thus to access it via the 011, 012, 014, 015 instructions in a
manner analogous to ECS on the CYBER 170's and LCME on the CYBER 176. This 2-million word
address space, however allocated (CM or UEM), is one CYBER 180 segment with the ASID of
FFFF).

The PPs are capable of running dual state also. When executing 12-bit instructions and
using the 12-bit CYBER 170 channels, the PP's are directly compatible to CYBER 170
mainframes with the addition of a Relocation (R) register to allow access to the entire
CYBER 170 2-million word address space. The PP when running 12-bit instruction may initiate
60-bit read or write operations with central memory. The 60-bit write operations will
automatically cause the purge of appropriate cache entries where necessary. (The byte
number plus the knowledge that 60-bit writes imply an ASID of FFFF allow this purge).

1-14 60459960 A

C180 MONITOR

C180 JOB

Figure 1-12. CYBER 170 Processor Environment

RAM

A key part of the CYBER 180 strategy is to achieve a significant step forward in the
reliability, availability and maintainability of these systems. This has been an integral
part of the hardware design process.

Reliability features are intended to reduce the number of hardware and software failures and
reduce the risk ofa minor component fault becoming a major equipment or system failure.
Availability features provide alternate solutions to failures rather than immediate
correction, thus allowing the system to remain available to users until a later time when
proper corrections can be made. Maintainability features make the system easier to maintain
by improving error isolation and ease of correction. Because these features sometimes

60459960 A 1-15

overlap, there is no attempt made here to separate them according to reliability,
availability, or maintainability. Some of these features are:

• Confidence level tests run against critical system elements during system
initialization.

• Maintenance registers to set certain conditions and report error status.

• Parity checking on major d.ata and address paths.

• SEeDED in central memory.

• Reconfiguration of central memory to bypass a failing area.

• Reconfiguration of peripheral processors to bypass a failing processor.

• On-line diagnostics that can be run concurrent with customer usage.

• An engineering file to predict potential failures.

e Isolation diagr~stics to narrow down the cause of failure.

• Remote technical assistance.

CYBER 170/180 SIMILARITIES/DIFFERENCES SUMMARY

CPU

1-16

CYBER 170

60-bit word

Word addressing

8 X registers (60 bits)
·8 B registers (18 bits)
8 A registers

l's complement arithmetic

CYBER 170 instruction se~

Register-to-register operations

Some character handling instructions

CYBER 180

64-bit word

Byte/word addressing (8
bytes/word,. byte - 8 bits)

16 X registers (64 bits)
No B registers
16 A registers (48 bits)
(store/load instructions)

2's complement arithmetic in CYBER 180
State, l's complement arithmetic in
CYBER 170 State

CYBER 180 + CYBER 170 instruction set mode
bits Virtual Machine Identifier (VMID) in
CYBER 180 exchange package enables CYBER
180 or CYBER 170 State Instructions

Register-to-register operations

Full set of character handling instructions

Vector instructions (memory to memory) on
high-performance models

60459960 A

MEMORY

PPs

CYBER 170

Maximum l3lK word user address space

RA/FL relocation

l7-bit word address within RA/FL
defined address space

262K maximum system executable
memory

Memory moves + swapping to manage
memory

CYBER 170

Up to 2x10 12-bit PPU's

Up to 2x12 12-bit channels

Executes 12-bit PPU code

Memory size is 4K x 12 bits

l2-bit wide data channels

60-bit access to central memory
to central memory

l8-bit central memory address
for PPU read/write

Real central memory addressing

500-ns major cycle time

l6-words long deadstart panel

60459960 A

CYBER 180

4096 times 2**31 byte user virtual address
space

Hardware-segmented memory (maximum 4096
segments per user address space)

Two-part virtual address-segment number
(12 bits)-signed byte offset into segment
(32 bits) space

64-Mbyte (potentially 2**31 byte) executable
rea 1 memory ·7 "'/ 1"7 /' b v

"{/~ I 7/ fa 7#
Hardware paged + swapping to manage memory

CYBER 180

Up to 4x5 16-bit PP's

Up to 6x4 l2/l6-bit channels

Executes l2-bit. l6-bit. or mixture, PP
code (upward compatible with CYBER 170)

Memory size is 4K x 16 bits

12-and/or l6-bit wide data channels

64-(4x16 bits) and 60-(5x12 bits) bit access

28-bit central memory address for PP
read/write

Real central memory addressing

250-ns major cycle time

l6-words long deadstart panel
+

512-word read only memory usable at
deadstart

1-17

SYSTEM

1-18

CYBER 170

No shared memory among user address
spaces (defined by its RA/FL)

Code/data mixed within user's
address space

Exchange operation to go to
CPU Monitor

CPU supports CYBER 170 instruction
set

System runs at System Control
Poin ts or in PPU' s, CPU
Monitor routes RA+1 requests

Subsystems (that is» Telex. Magnet.
Data Manager, and so forth) are
protec.ted by RA/FL mechanisms
from each otheror user, can be
called only via CPU Monitor

CYBER 180

Segments sharable among user address spaces
(code and data sharing possible)

Segments can be read/write/ execute, or
combination - globally sharable code

Exchange operation to go to CPU Monitor

CPU supports coexisting CYBER 180 and
CYBER 170 instruction sets. VMID field,
within CYBER 180 exchange package, is used
to switch between CYBER 170/180 State
instruction sets. The CYBER 170
environment for CYBER 170 NOS or CYBER 170
NOS/BE is established within the CYBER 180
job space and then state switching may be
accomplished by an exchange or trap
operation and Call or Return instructions.
CYBER 170 external interrupts are supported
and handled within the CYBER 170
environment.

Most CYBER 180 system code runs within user
address space and obeys the same calling
calling, loading/linking conventions.

-Levels of system code are protected by a
hardware supported hierarchical ring
mechanism from less capable code modules
(15 ring levels are provided).

-System code can be directly called by
RETURN Jump like CALL instruction without
software assist.

Subsystems are protected by hardware
supported (key/lock) mechanisms from each
other, directly callable by user code with
out software assist

60459960 A

CYBER 180 HARDWARE SUMMARY

CONFIGURATION

Currently four CYBER 180 systems are in the design/implementation phase:

Sl (Pl processor, M1 memory, 11 IOU)
S2 (P2 processor, M2 memory. 12 IOU)
S3 (P3 processor, M3 memory, 12 IOU)
THETA (processor and memory, 12 IOU)

Performance range (single processor);

P1 approximately 1 x CYBER 172, Theta approximately 36 x CYBER 172

Dual, symmetric multiprocessing in CYBER 180 state

One, maximum 20 pP. I/O unit per system

Maximum memory M2 - 16 Mbytes
M3 - 32 Mbytes

Memory ports M2 - 4 ports each 64-bits wide
M3 - 4 ports each 64-bits wide

CONSTRUCTION

PP's microcoded via ROM control store, 5 per barrel

Processors microcoded via RAM control store

P2 - ECLlOK logic

P3/Theta - LSI and FlOOK logic

Convection/Freon cooled

MAINTENANCE

Dedicated maintenance PP termed MCU - Maintenance Control Unit

8 bit channel protocol to a maintenance channel (that is, 8 bits of data within the
rightmost 8 bits of PP's word is used only)

loads processors' microcode.
read/write processor's/memory's maintenance registers.

60459960 A 1-19

MEMORY

Phased

SECDED error correction

16K chips in M2 and in M3

Memory functions:

to route interrupts frol!!
processor to processor

or
PP to processor (new 16 bit instruction)

to interlock memory

Byte (8 bits) addressable

Top 4 bits of CYBER 180's 64 bit memory word are not used in CYBER 170 State

PROCESSORS

32 program accessible registers

16 X registers (also used for indexing)
16 A registers (48-bit logical/virtual address)

Exchange package

Address of CYBER 180 CPU Monitor's exchange package (MPS) is set at Deadstart.
Job Mode Exchange Package address (JPS) is set by CYBER 180 CPU Monitor.

Exchange Interrupts initiate exchange to CPU Monitor

Trap Interrupts initiate partial exchange within job's Address Space and certain
registers are saved at the address contained in the AO register.

Fast cache per processor

Not cross connected to other processor, must be software managed in CYBER 180 State.
PP initiated central memory writes invalidate corresponding CPU's cache entries on
60-bit transfers.

VIRTUAL HEHORY!PROTECTION

1-20

A logical/virtual address consists of three parts:

31-bit byte offset into a segment.
12-bit segment number, this is a word offset to a Segment Descriptor, within the
Segment Table defined by an Exchange Package.
4-bit ring number (refer to the following explanation).

60459960 A

A logical address is translated to a real memory address through a one-per-address-space
Segment Table (its real memory address is defined by words 34 and 35 of an exchange
package) plus a one-per-system global Page Table. CYBER 180 CPU Monitor runs within its
O~l Addre~s Space and can only access a small part of the physical memory. No direct
real memory addressing.

Protection is on a segment basis: read/write/execute plus rings/keys (refer to the
following explanation).

A special Binding Section is used to transfer control between separately compiled code
modules. The new P address and the address to the list of the called code module's
respective Binding Section entries is extracted by a CALL instruction from the Binding
Section. ThE' new Binding Section's address is left in register A3 on completion of the
CALL instruction initiated transfer.

CALL instruction saves the current execution environment in virtual memory at the
address within AO register. The number of registers saved is specified by a mask in XO
register. The CYBER 180 RETURN instruction is used to return to the previous execution
environment and restore the saved registers.

All linkage information local to an Address Space is placed into a code module specific
Binding Section by the CYBER 180 Loader (for example, address of common and data
sections, pointers to external variables, linkage for external entry points) therefore,
the code module remains globally sharable since it does not contain any address space
specific local information.

Hierarchical protection among segments within an address space is by a hardware
supported ring mechanism.

Instruction counter contains a 4-bit ring number (that is, it is a logical address).
this ring number can only be changed by a CALL, RETURN, or EXCHANGE instruction
initiated transfer.
Segment Description Table Entry contains two ring numbers; Rl and R2.
Hardware checks P against R1 and R2 when executing code from a segment and tests the
Ring Number of the A register against R1 (RN < R2) for a valid write access and
against R2 (RN < R2) for a valid read access.-
Interrupt to CPU Monitor, with Access Violation Monitor condition bit set when
incorrect match is detected, perform memory access operation when everything is
sa tisfac tory.

Keys provide nonhierarchical isolation between segments, within one address space, at
one ring level of protection. Majority of subsystem code (like Telex, Magnet, Data
Manager, Cobol Message Control System) runs in User Job Address Spaces. Without
keys/locks, an error within one subsystem could damage global data owned and managed by
another subsystem within the same hierarchical level of ring protection.

The one-per-address-space Segment Table and the system global page table are not
accessed on every memory reference. Once a logical/virtual address is translated to a
real memory address it is saved in a small one-per-processor Segment/Page Map and reused
on any subsequent access to the same address.

60459960 A 1-21

PERIPHERAL PROCESSORS

Upward compatible with CYBER 170 PPU's.

16-bit memory word

CYBER 170 instructions and 12-b!t mode data are contained within the rightmost 12
bits •
.12/16-bit mode instructions are differentiated by:

leftmost bit 0 for CYBER 170 compatible 12-bit
instruc tions.

= 1 for new CYBER 180 16-bit mode
in s true t ions.

60 and 64-bit mode central memory read/write instructions

CYBER 170 compatible 60-bit transfers from/to 5x12-bit PP words. Top 4 bits of the
16-b!t PP word are set to zeros.
new 64-bit mode instructions transfer to/from 4x16-bit PPU words.

28-bit central memory address

central memory addressing is by real memory addresses.
new relocation register which contains a base address which
18-bit central memory address to form an absolute address.
to load and store it.

is added to a relative,
New 12-bit instructions

12 and 16-bit external channel interfaces (hard wired), if a 12-bit external channel
interface is used on a channel the most significant 4 bits of the internal channel word
are cleared.

Packed input/output instructions transmit 3x16-bit memory words to/from 12-bit external
devices as four channel words.

New 16-bit instruction to interrupt CYBER 180 CPU's, old 26X instruction is still
provided for controlling the execution of the CPU in CYBER 170 State.

CYBER 170 STATE OPERATION

Microcode and hardwired logic (that is, in addition to that required for the execution
of CYBER 180 State instructions), depending on the processor model, provide coexisting
support for both CYBER 180 and CYBER 170 instructions within a CYBER 180 CPU.

CYBER 170 PPU's are upward compatible with PP's in the CYBER 180 I/O Unit. CYBER 170
compatible 12-bit instructions are contained within the lower 12 bits of the new 16-bit PP
memory word.

CYBER 180 hardware is capable of supporting several variant CYBER 170/180 Dual State
User/System Operational Environments. For illustrative purposes, this section assumes a
Cooperative Operational Environment since this mode requires the full support of CYBER l80's
Dual State hardware.

1-22 60459960 A

CPU State Switching

VMID within a CYBER 180 exchange package enables CYBER 180 or CYBER 170 State
instructions

VMID = 0 for CYBER 180.
1 for CYBER 170.

CYBER 180 CPU Monitor can directly manipulate VMIDs.

CYBER 180 or CYBER 170 environment is established by either

exchanging, with the correct VMID set for CYBER 180 or CYBER 170 State, from CYBER
180 Monitor to CYBER 180 Job Mode

or

executing a CALL instruction within a CYBER 180 Job's Address Space and transfer
control directly to the CYBER 170 environment

or

trapping, which may establish VMID=O from either CYBER 170 or CYBER 180 State but
may not establish a VMID-1

or

executing a CYBER 180 RETURN instruction. The target environment is established by
restoring the register images contained in CYBER 180 virtual memory at the address
within A2 register, (that is, for VMID=O return is into CYBER 180 State, for VMID=l
return is to CYBER 170 State).

The target CYBER 170 exchange package must reside within CYBER 180's A and X registers for
the CALL initiated mode switch, or contained within the CYBER 180 exchange package for the
first alternative, previous to initiating the mode switching operation or within the Stack
Frame Save Area for Return. The CYBER 170 State P address and the new VMID (that is,
VMID=l) are both extracted from the Binding Section for the CALL mode of switching.

CYBER 170 Central Memory Image

One CYBER 180 segment contains the CYBER 170 memory image. The ASID for this segment is
FFFF.

Pages of the CYBER 170 memory segment must be at consecutive memory addresses, starting
at Real Memory Address zero.

All CYBER 170 addresses are relocated by the RA register defined by the active exchange
package and used as offset into the CYBER 170 segment. CYBER 180's virtual memory
mechanisms (that is, segment and page table) are used to translate this logical/virtual
address into real memory address.

Pages corresponding to the CYBER 170 segment must have page descriptors in the CYBER 180
Page Table.

CYBER 170 memory segment is managed by a minimally altered NOS or NOS/BE operating
system.

60459960 A 1-23

Central Memory Extended (CME)

Maximum memory size available to the system is two million words.

RAe and FLc are 2l-bit registers which are used to address the memory.

Maximum memory available to a single job is 131K words (17-bit address).

Central memory extended is contained within a single contiguous segment along with CYBER
170 central memory.

Soft Extended Core Storage (ECS)

Maximum size of soft ECS and central memory (including CME) is two million words.

RAe and FLe are used to allocate soft ECS to a job.

Block copy instructions (011,012) and single word load/store instructions (014,015) are
used to reference soft ECS.

Soft ECS is contained within a single contiguous segment along with CYBER 170 central
memory.

CPU Managemen t

Unified CPU Dispatcher assigns processor, within CYBER 180 or CYBER 170 CPU Monitor, to
the highest priority CYBER 170 or CYBER 180 Control Point.

One CYBER 180 Address Space/Control Point is defined as the CYBER 170 Emulator Job. It
is dispatched by the CYBER 180 CPU Monitor when either

the currently highest priority Control Point is executing in CYBER 170 State

or

a PP initiated Exchange Request Monitor Condition is detected (that is, bit 53 of
the Monitor Condition register is found set by the CYBER 180 CPU Monitor).

CYBER 170 CPU Monitor (NOS or NOS/BE variant) services CYBER 170 State PP or RA+1
requests and either dispatches a CYBER 170 Control Point or returns to the CYBER 180
Monitor.

1-24 60459960 A

CYBER 170 Exchange Requests

PP's initiated CYBER 170 State Exchange Request (that is, by a 26X instruction) either

changes the CYBER 170 State Execution environment, as defined for a CYBER 170
processor (that is, enter CYBER 170 CPU Monitor within the CYBER 170 memory segment
via standard CYBER 170 State exchange operations, or do nothing), while the CPU is
executing within the CYBER 170 environment

or

sets bit 53 of the Monitor Condition Register and halts the PP while the processor
is in CYBER 180 State. Setting a bit in the Monitor Condition Register results in
an exchange to CYBER 180 CPU Monitor which immediately dispatches the Emulator Job.
CYBER 170 State is thus entered and exchange to the CYBER 170 CPU Monitor takes
place, the requesting PP is also restarted by the hardware after the A170 exchange,
if necessary. takes place.

60459960 A 1-25

VIRTUAL MEMORY MECHANISM

To understand CYBER 180 completely, it is necessary to get a firm grasp of the three
main areas:

Virtual Memory Mechanism

Interrupt System

Call/Return Mechanism

Until a firm comprehension of all three of these areas has been obtained, it is not
possible to tie them together and appreciate the whole.

This section deals with the basic concepts of the CYBER 180 virtual memory mechanism.

2

Virtual memory was originally conceived as a solution to the overlay problem. However, as
technology has advanced, it has evolved into a soluti.on to the securi.ty proh1em. This is
the primary purpose of the CYBER 180 virtual memory mechanism. Fach executing task operates
in its own, un! que address space which is divided into a number of segments. Each segment
may be 231 - 1 byte s (2 bill ion byte s) long. It will be seen later that it is the segment
which forms the basis of the security and protection mechanisms. It is important to
understand the difference between segments and pages. The segment is the unit of virtual
illemory managem2·',t. Ii l'ds 3t trHlUtes, sl1ch as length, arceSB privileges and other features
peculiar to the protection seheme as will be seen later. :'he page is the unit of real
inemory management. Pages do not have attributes. They are present in the hardware to
assist the software (operating system) with the management of the very large real memories
which may be supported by CYBER 180. The page size is a variable which is set during system
initialization and is constant from one deadstart until the next.

The only addresses available to software are virtual memory addresses. CYBER 180
processors do not have a rea] memory address mode, and the only places they are used are in
hardware tables used in address translation. This section describes the address translation
mechanism. It is of interest to study this mechanism, and there are certain software
responsibilities for the operating system to optimize the process. In the more general
sense however, it is important to understand the role of segments, and \,hat a proliferation
of segments, which are all active concurrently, can do to the performance of the system. In
addition, programmers must maintain good locality of reference. That is, all code that is
being used at one time should be collected in one place (in virtual memory). Likewise, all
data in use at one time should be collected in one place. The importance of this cannot be
overstressed since the hardware depends on this good locality of reference to minimize
address translation time.

60459960 A 2-1

ADDRESS TRANSLATION

The
(PVA) •
It also
(figure

fundamental address, available to a programmer, is the PROCESS VIRTUAL ADDRESS
To the user, this appears as a segment number and a byte offset within the segment.
includes a ring number which is part of the protection mechanism discussed later
2-1).

Sign Bit*

Ring No.

BN

Byte offset within
a segment

* Serves to prevent address increments from exceeding the segment.

Figure 2-1. Process Virtual Address

The segment number is a 12-.bit field which is used as an index into a Process Segment
Table which is created by the operating system for each process (task{l» which is active in
the system.

(1) The terms process and task are synonomous. A task is the unit of execution of the CYBER
180 operating system. A process is the hardware term for a task.

2-2 60459960 A

Segment numbers are assigned sequentially from zero. This is not essential, but is natural
and the hardware has been optimized assuming this to be the case. Segment descriptor table
entries (SDE) are 64-bits long, and contain information relating to the privileges and
protection of that segment. They also contain an ASID which is a l6-bit identifier used and
created by the operating system which identifies each active segment uniquely on a
system-wide basis.

Address translation takes place in two steps. The first step translates a PVA to a
system virtual address (SVA). The process segment descriptor table (SDT) is used for this
purpose. It will be seen later that the concept of the system virtual address is extremely
important. It forms the basis for code sharing, and processor cache memories are organized
on SVA's - not real memory addresses.

In the first step of the translation the hardware takes the ASID from the entry in the
SDT pointed to by the SEG field of the PVA. It then catenates this with the BN field of the
PVA to form the SVA (figure 2-2).

PVA

IRNI SEG BN I
SOT

... I ASIO I

• • SVAI ASIO II
l

i +
l PN PO I

I

+ SPT

I HASH

:;; SIPIO J PFA

~

I RMA I

Fi.gure 2-2. Address Translation

60459960 A 2-3

The processor views the BN as a Page Number (PN) and a byte offs'et within that page. or
Page Offset (PO). To determine where (or if) the page resides in real memory a further
access to the System Page Table (SPT) is made. Since many more pages exist in virtual
memory than in real memory, a hashing algorithm is used to compute the page table index. On
CYBER 180 the page number and the ASID are hashed via an exclusive OR; this is discussed in
more detail later. The page table index is used to select a candidate entry from the system
page table. The table is then searched forward linearly until a valid page with the desired
entry is found, or until 32 entries have been searched. If the search terminates without a
hit, the page is assumed not to be in central memory and a page fault is indicated.

Once a hit is made, the page frame address (PFA) in the page table is catenated with the
page offset from the SVA to fOllli a 32-bit &~A. Figure 2-3 illustrates the formation of PN
and PO for a 4096 Byte Page.

PAGE SIZE

COpy

PAGE NUMBER

Figure 2-3. Formation of Page Number and Page Offset
(For a 4096 Byte Page)

\

The page size is determined by the value of the Page Size Mask (PSM). This is a 7-bit
register which expresses the page size in multiples of 512 bytes such that the page size is
given by:

page size 29 x 27-(+/PSM)

Where the PSM is a solid mask extending from left to right. A PSM of zero indicates the
largest page size (64KB). The term (+/PSM) expresses the summation of the one bits (Pop
Count) in the PSM.

2-4 60459960 A

HASHING ALGORITHMS

The hashing algorithm takes an exclusive OR of the low-order l6-bits of the page number and
the ASID. If the page number is only IS-bits long. then a zero is catenated to the lefthand
end to make it l6-bits. Since the resulting hash must be as random as possible. the most
random low order bits of one quantity should be exclusively OR'ed with the most random high
order bits of another. The low order l6-bits of the PN are the most random part of that
quantity and the same will be true of the ASID if it is assigned sequentially starting from
zero. This is not desirable and it is incumbent upon the operating system to ensure the
appropriate randomness in the ASID. This may be achieved by assigning ASID's from zero on
up and then inverting the bits. Hence. the first 16 ASID's should be:

HEX BINARY

1 0000 0000 0000 0000 0000
2 8000 1000 0000 0000 0000
3 4000 0100 0000 0000 0000
4 eooo 1100 0000 0000 0000
5 2000 0010 0000 0000 0000
6 AOoo 1010 0000 0000 0000
7 6000 0110 0000 0000 0000
8 EOoo 1110 0000 0000 0000
9 1000 0001 0000 0000 0000

10 9000 1001 0000 0000 0000
11 5000 0101 0000 0000 0000
12 DOoo 1101 0000 0000 0000
13 3000 00 11 0000 0000 0000
14 BOoo 1011 0000 0000 0000
15 7000 0111 0000 0000 0000
16 FOoo 1111 0000 0000 0000

and so on. Another technique which could be used by the operating system is to use a
pseudo-random number generator for ASID assignment.

60459960 A 2-5

The result of the hash is AND'ed to the Page Table Length (PTL) and four zeros catenated to
form the page table index (figure 2-4).

PAGE TABLE SEARCH

ASID (16)

PN (15-22)

0000001'11'11'111111'1

111"11'111111"

SELECT LOW·
.... ---------' ORDER 16·BITS

L-....... .J

(PAGE TABLE INDEX)

I 00,0 I

I

Figure 2-4. Hashing Algorithm

Since the hashing algorithm is a many-to-one mapping it is entirely possible for two
different pages to hash to the same page table entry (PTE). To ensure that the correct
entry has been found the ASID and Page Number portion of the SVA is compared with the System
Page ID held in the PTE. If they do not compare equal, then a linear search is initiated
which is controlled by bits 0 & 1 of the PTE. The search continues until 32 entries have
been searched, the correct entry found, or until an end of search condition is indicated by
bit one (figure 2-5).

2-6 60459960 A

Initial
Index

01 4 42

1 1

o 1

1 1

1 1 * REQD. ENTRY *

L 1 - Continue Search

'-- 1 = Valid Entry

Figure 2-5. Page Table Search Example

63

*(1)

*(2)

*(3)

*(41

*(1) The first entry accessed is valid (bit 0-1) but has the wrong Segment Page
Identifier (SPID). Since bit 1-1 the next entry is checked.

*(2) The second entry is invalid but search can continue.

*(3) The third entry is the same as the first.

*(4) The fourth entry matches the required SPID. The sequence terminates at this
point. The continue bit (bit 1) does not necessarily indicate an end of search
at this point since other multiple entries with this hash or an adjacent hash
may be present.

The algorithm for setting the continue search bit is self-evident. When an entry is
invalidated its continue bit is checked. If it is set then no further action is necessary
since it is part of a chain to an entry further down in the Page Table. If it is zero. then
the table may be searched backwards to clear out possible continue bits for the. now.
invalid entry. If the previous entry had its continue bit clear. then the process terminates
since there is no chain to investigate. If the continue bit was set. then it is cleared and
a check made to determine whether further continue bits can be cleared. Conditions for
further clearing are: an ASID of zero (a null entry by software convention); an ASID of
nonzero which hashes directly to this entry - in which case the continue chain being cleared
could have started higher up (figure 2-6). Note that a special system instruction (Load
Page Table Index) has been defined to ,aid in this process. This instruction is described in
a later section.

60459960 A 2-7

In summary. the hardware uses the Segment Descriptor Table to translate a PVA into an
SVA. It then uses the System Page Table to translate the SVA into an RMA. The SDT and the
SPT are hardware tables which are constructed and managed by software. Naturally. if every
reference to memory required at least two additional memory references. the processors would
execute extremely slowly. It will be seen later on that a number of hardware buffers are
utilized to eliminate this overhead.

NO

.---___ ---; GET PREVIOUS
ENTRY

YES

YES

YES

SET CONTINUE
BIT TO ZERO

NO

YES

Figure 2-6. Page Table Search Flowchart

2-8 60459960 A

It is assumed that the Operating System assigns 2 to 4 times as many entries in the page
table as there are pages in real memory. This is to accommodate coincident hash indexes
with the minimum search. Since the general environment contains two processors care must be
taken when changing page table entries and the special interlock instructions must be used
for this purpose. Details of this usage can be found in a later section which deals with
the system instructions.

The only mode of operation of the hardware is a virtual address mode. There are no
instructions which deal directly with real memory addresses. The hardware has been designed
with dynamic paging in mind. That is pages are brought into memory on a demand basis and
page table entries are purged based on a least recently used (LRU) algorithm. This
algorithm is the responsibility of the operating system. However, two flags are kept in the
PTE to help in the process. These are kept in the VM field (bits 2-3) and have the
following meaning:

(i) Whenever a page is used (read, written or executed) the hardware sets bit 2 in the
PTE.

(ii) Whenever a page is modified (written) the hardware sets bit 3 in the PTE.

Combinations of bits 2-3 have the following meanings:

00 - New page, unused and unmodified
01 - Unused but modified (see note below)
10 - Used but not modified
11 - Used and modified

Pages are chosen as candidates for purging based on the value of this VM field and their
LRU status. Since any page which has been modified must be written to mass storage when it
is purged, modified pages will typically have a higher resistance to purging. The status
unused but modified can arise from software algorithms. The VM bits are never cleared by
hardware. They are cleared by software when pages are purged and to force updates to the
LRU status of all pages. In this latter mechanism, it is expected that the Operating System
will periodically zero all used bits in the page table. This will effectively reset the LRU
status. Ensuing activity will automatically update this status.

Although the hardware has been designed with dynamic paging in mind, it is not a
prerequisite. In particular, when running in a pure CYBER 170 State, static paging will be
used. The entire CYBER 170 environment will be assigned to a single CYBER 180 segment which
operates in CYBER 180 job mode. Pages in this segment and in real memory have a one-to-one
correspondence, and once initialized, the page table will not change. CYBER 170 will
operate in a virtual memory segment which has a size corresponding to the amount of real
memory in the system. The ASID is set to HEX FFFF and SEG to zero, a pseudo RMA mode will
exist within the hardware. Note that this is a pseudo mode since the hardware will still go
through the address translation mechanism. However, there will be no page faults.

60459960 A 2-9

SECURITY AND PROTECTION 3

Security is a subject, particularly as it pertains to computer systems, which is rapidly
gaining in importance. Being cognizant of this fact, CYBER 180 has been designed to meet
the most stringent security requirements of the industry. The degree of security achieved
by a CYBER 180 system is controlled by the software exploitation of the hardware features.
The hardware has been designed to provide facilities which will detect breaches of security,
or attempted breaches of security. However, it is the software which really controls the
desired level of security. If a rigid set of conventions is not followed, then loopholes
will exist which will no doubt be detected by ingenious users. The way in which the
software and hardware must play together is similar to other disciplines which must be
followed if a system is to be totally secure. These disciplines embrace the installation
management, the operators. the administration. In fact they embrace the entire
organization. The compu.ter is only one small, albeit important, part of this whole.

The responsibilities of the organization are not discussed here. Instead the discussion
is confined to the hardware and software facilities provided by CYBER 180 systems. It will
be divided into two major areas: the first deals with the software facilities and their
interfaces to the end user, and the second deals with the hardware facilities and their use
by the software.

SOFTWARE FACILITIES

ACCESS CONTROL

A basic objective of NOS/VE is to provide efficient and safe services to multiple users
simultaneously and asynchronously. Levels of service to be provided range from complete
isolation of users from each other to controlled sharing between cooperating users. In
order to allow this range of service levels, the system has adopted a general access control
strategy or security model which serves as the conceptual basis for the detailed
implementation of all the access control mechanism in the system.

The access control strategy is based on a conceptual access control matrix. Rows of the
matrix represent all possible users of the system. In the access control matrix these are
called subjects. Columns of the matrix represent all possible system resources that can be
accessed by a subject. In the access control matrix these are called objects, such as
subjects, files. and equipment. Each element in the matrix identified by a subject-object
pair contains the valid kinds of access or access rights that the subject has to that
particular object. Figure 3-1 illustrates access control.

SUBJECT A

SUBJECT B

SUBJECT
A

SUBJECT
B

ADMIN.

FILE
C

OWNER
R,W

R

FILE
D

OWNER
R,X

Figure 3-1. Access Control Example

TAPE
DRIVE

E

OWNER
USE

60459960 A 3-1

In the example, subject A is the administrator of subject B, the owner of file C and of
tape drive E. Subject A can read and write file C and use tape drive E. Subject B can read
file C and owns and can read and execute file D. Every access any subject makes to any
object is validated via the access control matrix. The access is permitted only if the
corresponding access right is in the appropriate element in the access control matrix.

Obviously, the operating system cannot maintain a physical matrix which is consulted on
every access. A variety of features of the system architecture interact to implement the
conceptual access control matrix. Some of the major features of the NOS/VE implementation
of the access control architecture are listed below:

3-2

User identification and validation
A user must be known before gaining access to the system.
The resources a user can use are a function of user controls, project controls and
the current state of the system.
An attribute of every user is the lowest ring number of execution.
Modification to the user validation information may only be performed by the system,
account and project administrators who control the user's installation.

File system
All files in the system, local or permanent, are owned by a single user.
Access to permanent files by any other user besides the owner is regulated by an
access control list that is associated with each file. The access control list
contains the names and access rights of all users permitted to access the file.
All files, local or permanent, have one or more ring brackets associated with them
which are used as qualifiers to file access.
• If a file is readable, then it possesses a read bracket which defines those

rings in which it can be read.
• If a file is writable, then it possesses a write bracket which defines those

rings in which it can be written.
• If a file is executable, then it possesses an execute bracket which defines

those rings in which it may execute and a call bracket which defines those rings
from which it may be called.

The ring brackets associated with a file are specified by the owner of the file.
However, the file system will not allow any user to specify any ring bracket of
higher privilege than the ring in which the user is executing.
All files, local or permanent, possess certain attributes that describe the contents
of the file. The ring brackets associated with reading, writing, executing and
calling are all file attributes. Whether a given user has read, write or execute
permission to another user's permanent file is determined by the access control list
of the file. The combination of these two factors allow rings to be a unit of
protection recognizable system wide. The reason this is useful to the operating
system is that it wishes to discriminate between system code and nonsystem code
running in a user job regardless of the user on whose behalf the job is executing.
Since the user's installation administrators control the assignment of ring numbers
in the validation files, the user controls the extent and connotation of his
installation ring usage. If an installation chooses to associate different rings
with different security classifications, it may do so. If it wishes to run all
users at a single ring, then the only use of rings will be to protect the operating
system from users' programs.

60459960 A

Segment management
For a file accessed through the system virtual memory mechanism, the file protection
attributes maintained by the file system are used by segment management to build the
segment descriptor table entries used by the CPU address translation logic when
referencing the segment. The attributes the file system software have maintained
are continuously enforced by the hardware when the file is being referenced.
The loader accesses all object libraries through the segment level access facility
of the file and memory management systems. It also uses segment management to
create the transient segments that are used for the data areas of the executing
program. The loader is responsible for creating these segments with the correct
protection attributes to assure proper execution and protection of the program.

An example illustrates how these mechanisms interact to effect access control in
NOS/VE. Consider two users, TOM and BILL. TOM has been validated by the installation to
execute in ring nine. BILL has been validated to run in ring eleven. TOM develops an
application and stores it in the permanent file catalog. Since TOM was executing in ring
nine when he cataloged his application, it has an execute bracket of (nine,nine) by
default. In order to allow BILL to use his application, TOM must set the call bracket of
his application permanent file to eleven and give BILL execute permiSSion in the access
control list of the file. Since TOM is the owner of his application, he is the only user
permitted to set its call bracket and place entries in its access control list.

In order to use TOM's application, BILL must first ATTACH the file for execute access. This
will succeed because TOM has placed BILL in the access control list of -the file and
specified execute access. BILL then executes a program which uses TOM's application.
BILL's program is loaded in ring eleven and TOM's program is loaded in ring nine. Because
TOM's program has a call bracket that extends to ring eleven, BILL's program can call TOM's
and use the service it provides.

HARDWARE FACILITIES

One of the primary design goals of CYBER 180 systems was to improve the overall system
reliability. In the past a limiting factor has been the operating system. This software is
large - of the order of one million lines of code - and is error prone. An error in today's
systems often causes those systems to crash, interrupting normal service. Since it is
unlikely that such a vast quantity of code can be generated error free, other solutions must
be sought. In the CYBER 180 the solution chosen is to give each user his or her own copy of
the operating system; then if a particular copy of the system fails it will cause nothing
more serious than a single job to abort. With this approach, the operating system and the
user's code become an entity, and facilities must be provided to separate and protect
operating system modules from user modules and from each other. This is the primary reason
for the CYBER 180 security system. A second major objective is to provide controlled access
to all code and data. To this end users are protected from each other, and can be protected
from the system.

The key to this protection mechanism is the CYBER 180 virtual memory mechanism. In
particular, the virtual memory segment is the basic element which is protected. However,
before the attributes of this segment are discussed, it is necessary to understand how
segments are arranged in virtual memory for utilization by a user.

60459960 A 3...,3

VIRTUAL MEMORY USER ADDRESS SPACE

The concept of an Address Space is vital to CYBER 180. It is simply the set of
addresses known to an executing process. On CYBER 170 this would be the set of real memory
addresses embraced by RA and FL. On CYBER 180 it is the set of virtual memory addresses
specified by the entries in the SDT. Each process executing in a CYBER 180 system has a
unique SDT. The address and length of this table are specified by process state registers
held in the exchange package used to define the environment of the exchange interval for
each task. Each entry in the SDT consists of a full word and describes all of the
attributes of one segmenc. Jusc as CI~ER 170 users are constrained to an address space by
the RA/FL mechanism, so are CYBER 180 users constrained to an address space by the SDT.
This, then, is the basic element of protection. The discussion of the protection mechanisms
which follow describes the protection offered within a virtual memory address space.

It is useful at this stage to see what happens when a user attempts to access code or
data segments not in his address space. The only addresses known to the user are process
virtual addresses (PVAs). Refer to figure 3-2. Each PVA has three components: a ring
number, a segment number, and a byte number.

SEG BN
63, (ORN r 32

Figure 3-2. Process Virtual Address

The ring number is discussed later in this section. The segment number is assigned by the
operating system (segment manager) in ascending sequential order starting with zero. These
are the names, and are the only names by which the user knows his segments. They act as an
index into the process segment table which contains entries only for those segments to which
the user has access rights. The byte number field simply denotes a byte offset within a
segment. The only way a user can attempt to access a segment which is not contained within
his address space is by specifying a segment number greater than any assigned by the
operating system for that process. However, when an attempt is made to reference that
segment an exchange interrupt results since the segment number is greater than the Segment
Table Length (STL). The STL is set by the operating system and held in a process state
register which can be read but not written - it is set by an exchange jump. The hardware
performs this basic test for every reference which is made to memory.

Whenever an exchange jump occurs, a switch of address spaces occurs. The operating
system monitor r.uns in its own, unique address space. This is not true of the bulk of the
operating system. Services such as those offered by Record Manager reside within the user's
address space. Further protection mechanisms, which are described below, come into play to
protect these parts of the system from the user and vice versa. It is important to
conceptualize and remember that all this happens in virtual memory. Conceptually, operating
system segments which reside in the user address space exist as mul Uple copies in virtual
memory. To optimize the use of real memory the operating system will typically keep a
single copy of the code in real memory which will be shared by several users. The
individual users will be unaware of this since they are only aware of what happens in
virtual memory. There is no possible breach of security here since each user is totally
unaware of the existence of other users.

3-4 60459960 A

SEGMENT ATTRIBUTES

Once a user has been confined to an address space, the segment becomes the basis of the
security mechanism. Each segment has a set of attributes associated with it which are
recorded in the Segment Descriptor Entry (SDE) in the SDT. These attributes are its global
system name, its access attributes, its rings and its global and local locks. A segment
also has a length associated with it, which is not kept in the SDE. Since these are
recorded in the SDE, and the SDE is unique to a given process, it is possible for a segment
to be shared by more than one process, yet have different attributes for each process. The
format of an SDE is shown in figure 3-3:

o 2 4 6 8 12 16 3234 39 63

I ~ I ~ I ~ I ~ I R1 I R2 I ASID

Figure 3-3. Segment Descriptor Entry (SDE)

The first four fields determine the access privileges for the segment. Values for these
fields are as follows:

VL : 00 - Invalid entry. A segment which is no longer being used by a process does not have
to have its SDE removed from the SDT but simply invalidated. If segments are
viewed as files, their entries would be invalidated when the files (segments) are
closed and purged.

01 - Reserved.

10 - Regular segment. This denotes an active segment for the executing process.

11 - Cache by-pass segment. It is important to keep certain tables and interlock words
in a cache by-pass segment. An example is the exchange package. The exchange
jump mechanism works from a real memory address, hence data in cache memory, which
memories are addressed via a System Virtual Address (SVA) , does not get updated.

XP 00 - Nonexecutable segment. This is a data segment which would normally have either
read or write access.

01 - Nonprivileged executable segment. Some instructions can only be executed if they
reside in a segment having the attributes of local or global privilege. In this
way certain operations are restricted for use by the Operating System and cannot
be invoked accidentally by a user executing garbage - for example, literals.

10 - Local-privileged executable segment. Code contained in segments with that
attribute may execute all unprivileged instructions and all instructions
restricted to local privilege. In particular, trap handlers will have at least
local privilege since the trap enable flip-flop and the trap enable delay
flip-flop can only be set by a system copy instruction, and these flags can only
be written in local privileged mode.

11 - Global-privileged executable segment. Code contained in segments having global
privilege may execute all instructions except those restricted to monitor mode.
This includes those instructions restricted to local privileged mode, which is a
subset of global privilege.

60459960 A 3-5

RP 00 - Nonreadable segment. Such a segment will either have write privilege or execute
privilege. An execute privilege segment would normally have only that attribute.
However, literals may be stored in the segment and read from the segment with load
instructions provided for that purpose. The load instructions always load from an
address relative to P - the program address counter. In this case the read access
is implicitly equated to the execute access of the segment.

01 - Read under control of the Key/Lock mechanism. For a segment controlled by a lock,
this control may selectively apply to either the read or write privilege of the
segment. This code indicates that reads are under key/lock control.

10 - Read not under the control of Key/Lock. This is a normal read privilege assigned
to the segment.

11 - Binding Section - Read not under the control of Key/Locks. Binding Sections,
which contain pointers to external procedures and data, always have read
privilege, and are never subject to Key/Lock control.

WP :00 - Nonwritable segment. Typically, all executable segments are nonwritable. This is
because CYBER 180 code is usually organized into pure procedures. A user could
generate a code segment from assembly language which modified code. However, this
code segment would not be sharable with other users.

01 - Write controlled by the Key/Lock mechanism. This is the write counterpart of
RP=OI and indicates that the segment is writable but only if the Key/Lock access
is correct.

10 - Write not under control of Key/Lock. This is a normal, writable data segment.

11 - Reserved.

The XP, RP and WP are the first level of protection offered within a user address space.
Figure 3-4 illustrates segment protection within an address space.

3-6 60459960 A

r"fireWallS"0

USER], USER 2 USER N
ADDRESS ADDRESS ADDRESS • • • SPACE SPACE SPACE

D
I 1

SEG N I I
X R

I
~ -SEG 0 - Q - ~

r-- I I
I I

W B

f-- t--
~ !-

Figure 3-4. Segment Protection Within An Address Space

Hence, users are first absolutely constrained to their address space. Within this
space code and data are organized into segments, then the segments are assigned various
privileges. Most of the operating system and entire subsystems are expected to exist in the
user address space. These mechanisms, therefore, are necessary to ensure the appropriate
security is maintained at all times. Notice that even privileged portions of the operating
system, such as trap handlers with local privilege, can reside in the same address space as
a user who may be executing completely unchecked code - and therefore very unreliable code.

This level of protection will guarantee that code segments are not arbitrarily
over-written by users, leading to unpredictable results, and it will guarantee that
read-only data segments are not destroyed either willfully or accidentally. However, this
level of protection is insufficient by itself. For example, users could read and write
segments of the operating system, or users with inadequate security clearances could gain
access to private data segments. To accommodate these aspects of security three further
mechanisms are provided.

60459960 A 3-7

RINGS OF PROTECTION

To provide a separation between code and data segments, and prevent unauthorized
access, each address space is organized into a series of Rings of Protection. A maximum of
fifteen such rings are permitted in an address space. They may be regarded as separate
machine states having differing privileges. The rings are organized hierarchically such
that the lower the ring number the higher the privilege, Ring 1 having the highest
privilege. In general, code residing in Ring n can read and write segments in Ring nand
higher numbered rings. In addition, code in Ring n can call procedures in Ring n and lower
numbered rings, although such calling is carefully controlled. The ring protection
mechanism Is controlled by the Rl and R2 fields in the SDE, the R3 field in the Code Base
Pointer (CBP) and the ring number carried in all PVA's - particularly those held in
A Registers and P Registers. Code and Data Segments need not reside in a single ring but
may exist in several rings. When this occurs the segment is said to reside in a Ring
Bracket. The extent of this ring bracket is defined by the Rl and R2 fields of the SDE.

There are four Ring Brackets which are associated with each and every segment. These
rings brackets are for read, write, execute and call. The first three of these are truly
segment attributes and are described by the SDE, the fourth - the call bracket - is
associated with the segment by the operating system with no loss in generality. In
practice, the operating system does not only associate these ring brackets with segments but
associates them with every file in the system, either local or permanent, regardless whether
or not a given file is a segment. The checking which is performed by the hardware is
described below for each type of access.

Execute Access

A segment which resides in several rings has its execute bracket described by the Rl
and R2 fields of the SDE. Thus if:

SDE.Rl < P.RN < SDE.R2

then the segment is a member of the execute bracket. If control is transferred to the
segment from within the execute bracket, then the ring number in the P Register (P.RN) is
unchanged. If control is transferred from outside the ring bracket (via an inter-ring
call), then P.RN is always set to SDE.R2. Calls, if permitted, can only be made inward.
The hardware validates execute access once and only once when a segment is entered. The
fact that calls can only be made inward (or to the same ring) often appears confusing, but
the reason is quite straightforward. Care must always be taken when crossing domains of
protection to ensure that no security violation occurs. This is particularly true when
traversing from one domain to another with higher privilege. If an outward call were
permitted then its counterpart, an inward return, would also have to be permitted. However,
a return is an unsolicited GO TO, which implies a traversal of domains of protection without
the necessary control. So it is really an inward return which must be prevented.

Call Access

Two main checks are exercised by the hardware when a call is made. The first ensures
that the call is an inward call:

PVA.RN > SDE.Rl

where PVA.RN is the ring number of the PVA containing the entry point of the called
procedure, and SDE.Rl is the lower range of the ring bracket of the called procedure.

3-8 60459960 A

The second check ensures that the caller has adequate privilege to call the callee:

PVA.RN < CBP.R3

where CBP.R3 is the CBP gate ring number.

Hence, callee can restrict entry to the procedure such that he may only be called from
certain rings. Now one more case is of interest. That is, where a routine is called on
behalf of another caller. This can happen when a caller calls on a more privileged
procedure legitimately, but then requests that the callee in turn call a third procedure to
which callee has access but caller does not. Via a high level language, this is constructed
very simply by a pointer to procedure. To prevent this form of unauthorized call, the
hardware performs an additional check:

Aj.RN i CBP.R3

where Aj.Rn is the ring number of the pointer used to access the binding section containing
the relevant CBP. This A register will not have more privilege than the code requesting the
call. It is that code which must reside within callee's call ring bracket. In practice,
since P.RN will always be less than or equal to Aj.RN the hardware only has to perform the
latter test.

Read Access

An executing procedure may read a segment providing the following is true:

PVA.RN < SDE.R2

where PVA.RN is the ring number of the pointer (held in an A Register) used to access
virtual memory, and SDE.R2 is the outermost ring number for the segment being accessed.

Thus, a procedure may read a segment from a ring of equal or lower privilege than its
own. For the read access to be successful, of course, the segment must have the read
attribute associated with it.

Write Access

An executing procedure may write a segment providing the following is true:

PVA.RN < SDE.Rl

where PVA.RN is the ring number of the pointer (held in the A Register) used to access
virtual memory, and SDE.Rl is the innermost ring number of the ring bracket for the segment
being accessed.

60459960 A

These four major ring brackets are shown in figure 3-5:

MOST PRIVILEGE

WRITE
BRACKET
1~~R1

READ
BRACKET
1~n~R2

EXECUTE
BRACKET
R~n~2

CALL
BRACKET
R2<~R3

1 4 5

EXAMPLE R1=3, R2=5, R3=7

Figure 3-5. Ring Brackets

LEAST PRIVILEGE
6 7

In this example the R1. R2 and R3 parameters. which define the ring brackets for a
particular segment. have been set as follows:

R1 - 3
R2 = 5
R3 = 7

The segment may be written from another segment if that other segment resides in ring 3
or in a lower numbered ring (ring 1 or 2).

The segment may be read from another segment. providing the other segment resides in
r iIig 5 or in a lower numbered ring (rings 1 to 4).

The segment may execute in rings 3, 4 or 5. If the segment is called from ring 3 it
will execute in ring 3. If it is called from ring 5 it will execute in ring 5 and so on.
If it is called from ring 6 (or a ring numbered greater than 6). then it will execute in
ring 5 - the least privileged of rings 3. 4. and 5.

3-10 60459960 A

The segment may be called from either rings 6 or 7. Segments may always be called from
other segments in the same ring that they are in. Consequently, the segment may be called
from rings 3 through 7. It may not be called from any rings greater than 7, which are
outside the call bracket. Neither may it be called from a ring number less than three since
this would constitute an outward call. This case is covered in section 7, where Call/Return
is discussed. Call/Return is the primary mechanism for crossing protection boundaries
within an address space.

Figure 3-6 shows how ring brackets are used:

RING
11

RING
8

RING
3

R,X
(3,11,11)

R,X
(3,3,11)

R,W
(3,3)

R,W
(8,8)

L.. __ .J

Figure 3-6. Example of Ring Brackets

R,X
(11,11,11)

R,W
(11,11)

I
I
I
I

I I
L __ .J

In this example the extremities of the ring brackets for each segment are denoted by the
numbers in parentheses as: (R1,R2,R3). The procedure in ring 11 may calIon the procedure
in ring 8 since the call bracket for this latter procedure has been set to 11. The
procedure in ring 8 may read and write into the data segment belonging to the procedure in
ring 11, since the segment has Read/Write access and its R1 and R2 fields have both been set
to 11. In this way the procedure in ring 11 may pass parameters to and receive results from
the procedure in ring 8. Likewise, the procedure in ring 3 may be called from either the
procedure in ring 8 or the procedure in ring 11, because the ring 3 procedure has its call
bracket equal to ring 11. The logical extensions of the data segments in each ring are
indicated by dotted lines in the diagram. Notice that there are no extensions to the
execute segments since the R1 and R2 fields restrict execution of the segment to a

60459960 A 3-11

particular ring. Thus, the procedure in ring 11 may only be executed in ring 11, the
procedure in ring 8 may only be executed in ring 8, and the procedure in ring 3 may only be
exec uted in ring 3.

On the left side of the figure there is an execute segment having R1 and R2 fields equal
to 3 and 11 respectively. Consequently, this procedure may be executed in any ring between 3
and 11 inclusive. Such a procedure might be a trap handler or the FORTRAN math library. A
user executing in ring 11 may calIon square root, for example, which would then execute in
ring 11. Similarily, a procedure in ring 8 utilizing square root would have it execute in
ring 8. In other words, the square root procedure always executes with the privilege of the
callel". ThIs Is required, since it: is ac ting on behalf of the caller.

Now the segment may only be read, written or executed if it has the appropriate access
permission associated with the segment. In other words for a segment to be written from
another segment it must contain write permission and the other segment must reside in a ring
from which the first segment may be written.

Within a single address space, therefore, rings of protection provide a mechanism for
protecting sensitive code and data. Two cases are of particular interest.

The first of these deals with the need to know. A procedure should have access only to
those procedures and data segments necessary to do its task. Now remember that the ring
mechanism is hierarchical. That is, the lower the ring number, the higher the privilege.
Consequently, the ring mechanism is very attractive in a military environment where security
clearances are also hierarchical. A higher clearance (lower ring number) allows access to
more documents, but a smaller number of individuals (segments) are granted such a clearance.

The second case is concerned with degrees of potential damage. The segments of a system
may be effectively segregated into two or more rings according to the damage that may be
wrought when these segments are misused. The segments whose misuse is likely to cause the
greatest damage are given lower ring numbers. By means of this segregation the bulk of the
operating system may reside within the user's address space and yet be protected from the
vagaries of undebugged user code. If part of the operating system does fail, then the
damage may be contained and cause nothing worse than the user job to abort. Hence, rings
will be used extensively by the operating system for damage control, and also made available
for .the user to create an hierarchical security structure. Figure 3-7 illustrates the
resulting user address space.

[JJ[]J[JJ[]J } RING N+2
w
'-!I
W
-'
H

[JJ[]J[JJ[]J }
:>
H
0:::
D-

RING N+1
'-!I
z
H
Ct:I
<
W

[JJ[]J[:JJ[]J }
0:::
U
z

RING N H

Figure 3-7. Ring Protection Within An Address Space

3-12 60459960 A

The address space, which is the basic unit of protection, now has two further protective
mechanisms. The first restricts the type of access to a segment. and the second limits the
region from which a segment may be accessed.

RING NUMBERS IN POINTERS

The only addresses with which programmers deal are Process Virtual Addresses (PVAs).
Refer to figure 3-8. A set of 16 address registers (A Registers) exists in the hardware to
hold these addresses during instruction execution.

SEG BN i (ORN i 32

Figure 3-8. Process Virtual Address

The SEG and BN fields designate the segment being addressed and the byte offset within
that segment respectively. The RN field is the ring number associated with the access being
made. This ring number is most important to the ring security in the system since it is
common for a procedure to perform work on behalf of another, less privileged procedure.
When this happens it is important that the more privileged procedure does not act with
greater authority than has been assigned to the caller. To this end, whenever an A Register
is loaded, either explicitly (via a Load or Copy instruction), or implicitly (via a Return
or Pop instruction) the hardware places the ring number with least privilege into the
register. A comparison is made between the ring number of an A Register being used for the
load, the ring number of the pointer being loaded and the ring number of the R1 field of the
SDE associated with the A Register used to load the pointer (refer to figure 3-9). The
largest of these three ring numbers is entered into the destination A Register.

60459960 A 3-13

BN

CENTRAL MEMORY

Ak (DESTINATION)

Figure 3-9. A Register Ring Voting

When an A Register is loaded via a Copy from an X Register, a comparison is made between
.the Ring Number of the pointer held in the X Register and the Ring Number held in the P
Register, the larger of the two values being used. Since this cannot be as rigorous a test
as that used for loading A Registers, care must be exercised in its use. For example, if a
procedure calls on a second procedure in a more privileged ring, and a pointer or pointers
are passed via loading an X Register and copying the X Register to an A Register, then the
callee may end up acting on behalf of caller, with more privilege than caller is allowed.
However, when this happens callee - the more privileged procedure - is at fault. It is
incumbent upon the more privileged - and therefore more trustworthy - procedure to maintain
the security of the system down through his level. If this fundamental software convention
is not followed, there is nothing the hardware can do to maintain system integrity.

3-14 60459960 A

GLOBAL AND LOCAL KEY/LOCKS

Keys and locks provide two other protection mechanisms in the hardware. These deal with
mutually suspicious code segments which reside within the same ring of protection. Here
again, two cases are of interest: the protection of local data (where Local Key/Locks are
used), and the isolation of competing applications. Some examples will help to clarify the
problems being addressed by these mechanisms. Following these examples there is a
description of how the hardware functions, and then a final example to tie the entire
concept together.

Local Key/Lock Usage

An example of Local Key/Lock usage may be taken from a math function which has been
developed and is being marketed by some organization. Since the function is general purpose
it will typically reside in the same ring of execution as the user who is calling it.
However, the developer may wish to restrict access to coefficients he has derived and which
exist in a separate (read-only) segment. Hence, the scenario is one in which a read-only
data segment can only be accessed from a given code segment or segments in a given ring.
This type of access protection is accomplished by means of Local Keys and Locks being
applied to all segments in that ring.

Global Key/Lock Usage

Notice that the purpose of Local Key/Locks is to protect local data (data which is used
by a particular procedure or procedures). Global Key/Locks, in turn, are used for isolation
rather than for protection. For example, two proprietary applications for competing
organizations may coexist within a user address space. The applications are regarded as
subsystems and, as such, have been placed in a ring of execution of more privilege than that
of the end user. Within this ring it is necessary to isolate the applications so that they
may neither call each other, nor read nor write data from one to the other. Global Key/Locks
are used to achieve this isolation.

Key/Lock Hardware Mechanism

There is a lock associated with every segment. It is described by a six-bit field in
the SDE, hence up to 64 different locks may coexist. Whenever a segment is executed, the
lock associated with that segment becomes the current key. The various values which locks
may have assume no hierarchical significance, as with rings. Of importance only is whether
the key/locks are the same or different. TWo bits in the SDE describe whether the lock
associated with the segment is a Local Lock or a Global Lock, or whether the single six-bit
lock value acts as both a Local and Global Lock. The format of SDE bits 32-39 is shown in
figure 3-10:

32 33 34 39

G L KEY/LOCK

Figure 3-10. Format of SDE Bits 32-39

60459960 A 3-15

The G and L fields have the following meaning:

Procedure Global

G
o
o
1
1

Data

G
o
o
1
1

L
o Master Key
1 Master Key
o 6-bit Key
1 6-bit Key

L
o No Lock
1 No Lock
o 6-bit Lock
1 6-bit Lock

Local

Master Key
6-bit Key
Master Key
6-bit Key

No Lock
6-bit Lock
No Lock
6-bit Lock

A Master Key will fit any Lock, and any Key will fit a No Lock. In general, access to
one segment from another segment will only be granted if the first segment has no lock
(Local and Global), or if the second segment has a Master Key (Local and Global), or if the
Global and Local Keys exactly match the Global and !~o,..a) T,orki"e 'l'he",'" t-egt" ",h-;("h "!,i"

executed by the hardware, are in addition to these already described for rings and type of
access. However, the Key/Lock tests are performed selectively as controlled by the RP and
WP fields in the SDE. Hence, even though a Global and/or Local Lock may have been specified
for a segment, the test for read access will only apply when the Lock applies to read access
as indicated by an RP value of 01. Write accesses are similarly controlled by WP.

In addition to the tests performed for read and write access, Global Key/Lock tests are
performed on Calls and Returns. A call is permitted when callee has a Master Key, when
caller has No Lock, or when callee's Key exactly equals caller's Lock. The Key
transformations which take place on a call are summarized as follows:

Caller's Global Callee's Global New Global
Key Lock Key

0 0 0
0 K2 K2
Kl 0 K1
Kl K2 Kl if K1 = K2

else Access Violation

On a Return, the hardware checks (against caller's SDE) to ensure that caller's Global Key,
obtained from the Stack Frame Save Area, is equal to Caller's Global Lock. The following
combinations are permitted:

New Global Key
(from SFSA)

o
Kl
Kl

Global Lock
(from SDE)

o
Kl
o

All other Key/Lock transformations result in an Access Violation.

The new Local Key on a call is always taken unconditionally from Callee's Local Key value
in the SDE. On Return the hardware verifies that the Local Key obtained from the SFSA
exactly matches the Local Lock taken from Caller's SDE.

3-16 60459960 A

Key/Lock Example

Figure 3-11 illustrates the usage of Key/Lock values and should help to clarify the
mechanism.

R,W
(3,3,R,W)

USER (11)

R,X
(0,5)

R,W
(3,O,R,W)

R,W
(O,S,R,W)

R,W
(0,5)

OPERATING SYSTEM (3)

R,W
(O,1,W)

R,X
(0,2)

PROTECTED
APPLICATION (8)

R,W
(4,4,R,W)

R,W
(O,2,W)

R,W
(4,O,R,W}

Figure 3-11. Key/Lock Example

60459960 A 3-17

In this. example, three rings of protection are utilized. Ring 3 is the most privileged
ring, where parts of the operating system reside. Ring 8 contains two applications which
must be isolated from each other, but callable from a user in Ring 11. The information in
parentheses defines the Global Lock, Local Lock and whether these Locks apply to read
accesses (R), write accesses (W) or both.

In order to isolate the applications from each other they are assigned different Global
Key/Locks. Likewise, for them to be called by a user in Ring 11, and to be able to call the
operating system in Ring 3, the user and the operating system are assigned Global Key/Lock
values equal to zero. In other words the user and the operating system have Master Global
Keys - No Global Locks. Tnis is consistent with the general software convention for Global
Locks: Subsystems are confined to rings greater than those for the operating system but less
than those for the user. Each Subsystem in these rings is assigned a unique Global Key/Lock
value. This limits the total number of Subsystems within a single user address space to
63. In the example, Application A cannot read or write Application B's data segments since
the Global Key/Lock values are different. Likewise the applications cannot call each other.
Consequently, they have been totally isolated from each other, even though they reside in
the same ring of protection. However, the user, in Ring 11 may calIon either application
and on the operating system, since the user has a Global Key/Lock of zero - a Master Global
Key. When a call is made on an application it runs with its own Global Key, thus ensuring
continued isolation. On return to the user, the user's Global key is restored to him. The
user cannot read or write the applications' ring:, When the o!,erAt-i.ng flystem is ~ALled from
the user it runs with a Master Global Key (user has a Master Global Key, operating system
has No Global Lock). Hence, nominally, the operating system can read and write the
applications data segments. However, when the operating system is called from an
application, then it executes with the Global Key of that application and cannot read or
write the other application's data segments. Hence when the operating system executes on
behalf of a protected or isolated application, it executes with the privilege of that
application, and consequently cannot be tricked by that application into giving it access to
data from which it is otherwise isolated.

Local Key/Locks work rather differently. Whenever a call is made to a procedure in
another segment, callee executes with his own Local Key. This value is associated with the
Local Lock of the data segments .accessed by that procedure. In the example, the user has a
read/write data segment to which Key/Lock verification applies. It has a unique Local
Key/Lock value of five. Consequently, the applications in Ring 8, which have Local Keys of
three and four respectively, and the operating system which executes in Ring 3 with a Local
Key value of either one or two cannot access this data segment. This is true even though
the data segment is available for reading and writing, and resides in Ring 11 - a ring with
very little privilege. Similarly, the operating system cannot read or write either of the
applications' data segments since they have different Local Key/Lock values from the
operating system, and each other. Hence, Local Key/Locks are used to protect local data
regardless of the ring structure in ·use.

By software convention the operating system segments (both code and data) are assigned
nonzero Local Key/Locks. This has the added advantage that various modules of the operating
system can be protected from each other. In the example, there are two modules, both in
Ring 3, which can call each other and can read each others data segments. However, the data
segments can only be written from the module to which they belong. This is a very powerful
debug aid for the operating system. In today's systems it is not uncommon for one module of
the operating system to accidentally destroy data belonging to another module. The damage
is not discovered until the second module is called, by which time the culprit is
unidentifiable. Through the use of Local Key/Locks the culprit can be identified at the
time the data was over-written, or at the time when this was attempted.

3-18 60459960 A

Since the SDE contains a single Key/Lock value for Global and Local Key/Locks, and since
the algorithms for transforming Global Key values on a call are different for the two types
of Key/Locks, it is necessary to maintain two separate values for the current key. The
current key is maintained in the P Register and figure 3-12 indicates that two separate
six-bit fields exist in the P Register for this purpose.

o 2 8 10 16 20 3233 63

~GLOBAL~ LOCALIRINGI
KEY KEY NO.

S'EG H BN

Figure 3-12. Program Address Register

In summary, there are three basic forms of protection from within a user space: the type
of access to a segment, the ring protection mechanism, and Global and Local Key/Lock
values. For every access attempted, all three of these tests must be successful. If any
one of them fails, an Access Violation interrupt results, and the user is exchanged out of
his address space into the Operating System monitor address space where appropriate action
results. The complete, protected user address space is illustrated in figure 3-13:

USER

l[jJ~pIIBJBJ~1 ~~
SUB-SYSTEMS

~BJB1@ BJ[!jJBJ@
OPERATING SYSTEM

113J1~II~rDeDl eDBJ
Figure 3-13. Conceptualization of a User Address Space

60459960 A 3-19

The following flowcharts (figures 3-14 and 3-15) describe the complete virtual memory
address translation and access control.

vun PVAf N' uu ~PE(ERROR}

YES

N. VALID SliEr
iINVA.LU SEG"ENn

Figure 3~14. Virtual Memory Address Translation Flowchart

60459960 A

g)
.l>
V!
I,()
\Q
Q\
o

>

w
~

YES

YES

.0
"lITE'

.0

.0
.0

YES

YES

.0

••
YES

•• '.'11: • SI£.'I(1'"::> vrs •

YES

YES

.0

p.LtC • .,..mJ>--_-....-J

Figure 3-lS. Virtual Meaory Protection Flowchart

BUFFER MEMORIES

To minimize the time necessary to translate a PVA to an RMA a number of hardware buffer
memories are utilized. The description given here is based on P3 buffer memories. The
organization varies from processor to processor, but the fundamental concepts are the same.

4

Figure 4-1 gives a pictorial representation of these buffer memories. The Segment MAP
contains the most recently used entries from the Process Segment Table. In the first stage
of address translation the processor uses this MAP to translate the PVA to an SVA. This SVA
is then transmitted to the cache memory and the Page MAP. Each of these buffers are
organized on the basis of the SVA, the Page MAP containing the most recently used entries in
the 8PT, and the cache containing the most recently used words in system virtual memory.
Simultaneously, a search is made of the Page MAP and cache. If a cache hit occurs, then no
further action is required. However if the required data is not in cache, then the search
of the Page MAP is relevant. If a hit occurs the required address translation completes and
central memory may be accesssed via the appropriate RMA. Only when there is no hit in the
page MAP must the processor actually search the 8PT in real memory.

SEGMENT
MAP

~L ...
SDT

,

CENTRAL
PROCESSOR

SPT

SVA

PAGE
MAP CACHE

CENTRAL
. MEMORY

Figure 4-1. CYBER 180 Buffer Memories

60459960 A 4-1

SEGMENT MAP

The purpose of the segment MAP is to translate a segment number (SEG) to an Active
Segment Identifier (ASID). This is the first step in the address translation mechanism and
translates aPVA to an SVA. Figure 4-2 illustrates the general process. A set associative
technique is employed whereby an index is used to select a set, and then an associative
(simultaneous) comparison is made between each entry in the set and the required segment
number. P3 has 16 .. such sets in its Segment MAP, each set having two members. To index into
the MAP the lower four bits of the segment number are used as a hash index. These bits are
the most random part of tt~ segment number.

The hash index identifies one of two entries in the segment MAP which are candidates for
translation of the given SEG. The segment MAP simultaneously compares the set tag entries
with the mode of operation (job/monitor) and the upper eight bits of the SEG. If a hit is
made, then the ASID is taken from the segment descriptor word held in the MAP. If no hit
occurs, then the ASID must be fetched from the segment descriptor table in real memory.

The tag field of the segment MAP contains a bit to indicate which entry in the two sets
is the least recently used (LRU). There are only two candidates. This entry is then used to
receive the new segment descriptor. The tag field does not contain the segment table
address (STA). Instead two registers are used: one for the job ST4 ~md mM~ ferr I!M)\nJ to!' c

During an exchange to monitor state the monitor STA is compared to that obtained from the
monitor exchange package. Simils.rlj with the job STA when an exchange to job state occurs.
If the values do not compare, then all entries for either job or monitor in the segment MAP
are invalidated.

60459960 A

SEG

I a I 4

UPPER a·BITS OF SEG

ELEMENT 0 ELEMENT 1
TAG SEGMENT TAG

DESCRIPTOR I SEGMENT
DESCRIPTOR

~-"I..

DISABLED IF
A HIT

Figure 4-2. Segment Map Operation

S
E
L
E
C
T

The most recently used segment numbers appear in the MAP. Hence. the more segments used
by a process the less likely it will be to find the entry in the MAP. The system performs
most efficiently if the MAP entries for monitor and job are not hashed to the same location
in the MAP. This is best handled by the operating system assigning job segment numbers
sequentially from zero. and monitor segment numbers from FFF downwards sequentially. This
has the affect of creating a 32 entry buffer which is filled from the top with job segment
descriptors. and from the bottom with monitor segment descriptors (figure 4-3). The choice
of a starting segment number for monitor need not be FFF. but should be of the form XXF. In

60459960 A 4-3

fact, FFF will probably be used for some special purpose by the operating system, and, in
any case, would maximize the dead space in the monitor segment table. The practical choice
for the starting segment number is computed from:

(number of monitor segments) .OR. OOF

in which case the maximum number of dead entries will be 15.

When the MAP is degraded (due to a parity error) one set is eliminated. This means that
the probability of a miss is heightened and performance degrades.

MTR SEG 0 ---+
MTR SEG 1 ---+

.. I.' r

JOB SEG 1 --+

.....

T

JOB SEG 0' --+t------t----------t

Figure 4-3. ' segment Map Allocation

PAGE HAP

TOTAL 32 ENTRIES

The purpose of the page MAP (figure 4-4) is to translate the SVA from the segment MAP
into an RMA. As with the. segment: MAP a set associative technique is used. In this case
there are 32 sets, and the low order five bits of the page number are used as a hash index
to select a set. The page number is formed from the byte number by executing a logical
product with the page size mask. Depending on the page size the page number will not be
right justified, and the hardware performs the necessary justification before extracting the
hash index.

4-4 60459960 A

SVA (FROM SEGMENT MAP) A. TO I ASIO BN

o 0
V CACHE

ASID II

ELEMENT 0
~T~A~G~ PFA

ASID

LRU STATUS

'----VALID

PN PO

ELEMENT 1
r--.&...""'I
TAG PFA

)

PN LESS 5·BITS

Figure 4-4. Page Map Operation

S
E
L
E
C
T

The page MAP simultaneously compares the set tag entries with the high-order 33-bits of
the SVA. Note that the valid bit is not included in this operation. Invalid PVA's (and
therefore invalid SVA's) do not get this far in the translation mechanism. If a hit is made,
then the RMA is formed from theSVA in the page MAP data table. and the page offset.
Otherwise. a page table search is initiated.

The tag field in the page MAP contains two bits to indicate which entry in the two sets
is the LRU. There are only two candidates. However, two bits are allocated on P3 to allow
for up to four entries per set.

60459960 A 4-5

The most recently used pages appear in the page MAP. Hence, the more pages used by"s
process, the less likely it will be to find the entry in the MAP. When the page MAP is
degraded, one group of entries is eliminated. The probability of a hit is reduced, and
performance degrades.

The modified bit is carried in the page MAP, but not the used bit. Actions taken on a
hit and a miss are described below, and clarify the setting of these bits:

1) MAP Miss - Page Table Hit

R1Sad

Write

2) MAP Hit

Read

Write

(ii)
(iii)

(ii)
(iii)

(i) Set tt~ tiB~d bit in the PTE
Copy the modify bit to the MAP
Copy the addresses to the MAP

(i) Set used and modify bits in the PTE
Copy the modify bit to the MAP
Copy the addresses to the MAP

(i) Simply form the RMA - no page table access is necessary

(i) If the modify bit is set in the MAP, then the process is identical to
read.

(ii) If the modify bit is not set in the MAP, then a page table search is
required to set the modify bit in the PTE. The same bit is set in the MAP.
At this time the modify bit in" the PTE and in the MAP is set, and the used
bit is set in the PTE.

The MAP and the cache perform similar functions. Once the segment MAP has formed an SVA
it sends it simultaneously to the page MAP and the cache. If there is a cache hit, and the
operation is a read, then there is no need to access the page MAP, data being read directly
from cache.

On a read the cache hit overrides everything. Consequently, it is possible to to get a
cache hit even when the relevant page is not in central memory. This is because the cache
is organized on the SVA. The operating system must ensure that cache accurately reflects
the contents of system virtual memory at all times. Whether the data actually resides on
disk or in real memory is immaterial. On writes, the situation is different. CYBER 180
processors always write through cache. This means that ~he appropriate entry in cache is
either updated or purged on a write. Actual implementation is processor model dependent.
On P3 when a cache hit occurs on a write, if it is a full-word write, then the word is
updated. For a partial-word write, the word is purged. On another processor cache is
updated regardless of the nature of the write.

CACHE MEMORY

CYBER180 supports very large, cost effective memories. It achieves this at the expense
of some memory speed, and to make up for this loss of speed a buffer memory, (cache memory),
is placed in the faster processors. The most recently used words in system virtual memory
are held in a much smaller, faster memory. The management of this memory is in figure 4-5.
A set-associative technique is used to control entries in the cache. On P3 a maximum of
four entries per associative set are employed. An entry in a set consists of a tag field,
which identifies the entry, and 32 bytes (4 words) of data which are termed a BLOCK. There
are 256 sets on P3.

4-6 60459960 A

I ASID I

ASID UPPER 19-BITS OF BN

BN

-l L BYTE WITHIN WORD

.------' WORD WITHIN
BLOCK

TAG DATA BLOCK

Figure 4-5. Cache Memory Operation

256
B
L
o
C
K
S

Bits 51-58 of the SVA are used as a hash index into the sets. These represent the most
random part of the SVA. The low-order five bits of the SVA represent the word within block,
and the byte within word respectively. Note that the ASID does not enter into the hash
index computation. This is deliberate since in CYBER 170 State only a single segment
(ASID" FFFF) is used. and this has no randomness.

Once a set has been selected. a simultaneous comparison of the upper 35 bits of the SVA
and the tag entries is made. If there is a hit. and the entry is valid, that entry is
used. If there is no hit, then a set is chosen for the new entry and the appropriate words
read up. Entries are chosen first on the basis of their validity. and then on their LRU
status. Whenever a new entry is made in a set an entire block (four words) is read uP.

60459960 A 4-7

starting with the required word and proceeding left to right unless the instruction is a
right to left (BDP numeric) type. Cache regards central memory as a series of four-word
blocks which always start on a block boundary.

If, at any time, cache is not busy after it found a hit, then it automatically looks
ahead one block. If it gets a hit, then the sequence ends, otherwise it initiates a read on
that block.

Cache will always be organized on SVA for C180 processors.

SOFTWARE IMPLICATIONS

There are several software implications in the use of the cache and the MAP's,
particularly in a multiprocessing environment. It is incumbent upon the operating system
software to ensure that stale data does not exist at any time in the MAP or the cache (CYBER
180 physical I/O and memory writes performed by another processor do not update
automatically the processor local cache). The following guidelines should be followed by
the software:

4-8

1) Whenever a page table entry is changed the Page MAP must be purged. Not only the
Psg~ ~.aAP in the prccessvL" updating the page tcibles but iil th~ seculiu pI:oceSSOL", if
available. Care must be exercised by the software at this time, and to some extent,
the hardware depends on the software to take certain precautions. The reason for
this is the noninterruptibility of the CYBER 180 instructions. Before an
instruction is placed in execution it is preva1idated. The hardware ensures that
all pages required to complete the execution of the instruction are in memory before
execution commences. Once execution starts, the processor assumes that the pages it
requires will remain there. Hence, a second processor must not delete a page from
memory without first notifying the other processor. A typical sequence of events is:

(1) Set the invalid bit in the PTE - This ensures that an instruction cannot start
which requires this page, but that it can complete if it has already started.
In other words, the processor ignores the valid bit once an instruction has been
prevalidated.

(2) Send an interrupt to the second processor asking to purge MAP.

(3) First processor waits for acknowledgement from second processor that M.~ has
been purged.

(4) First processor updates the page table entry.

(5) First processor sets valid bit in PTE.

Since the valid bit was dropped prior to sending the interrupt, no instruction can
be started using the page which is absent or deleted. An instruction making such a
reference would cause a page fault, and this page fault will not be processed until
the in progress page table update has been completed. This is another interlock
which must be set up by the O/S software. That is, only one processor can execute a
page table update at one time.

Notice also that when a page table update is made, cache memory need not be purged
if the operation is a write, since writes always write through cache memory,
preva1idation will ensure that the page exists in memory. If the operation is a
read, even though the page has been purged from memory, the copy in cache memory is
still good, and the hardware will use this copy as has already been described.

60459960 A

2) There is a danger, in a multiprocessor environment, of the cache becoming stale
whenever a processor is assigned to a job. At this time, the O/S should check the
LPID (Last Processor ID) field in the Job Exchange package against the processor ID
(PID). If the quantities are not identical, then cache must be purged.

These are not the only times when cache and the MAP must be purged. It will be seen in a
later section (Purge Buffer) that similar problems arise during I/O. The points made here
are merely illustrative. There has to be a cooperative effort between the hardware and
software, and great care must be exercised when designing for the multiprocessor environment.

60459960 A 4-9

CENTRAL PROCESSOR LOGICAL ENVIRONMENT

This chapter discusses processor state and process state registers. Processor state
registers define the operational state of the processor without regard to a specific
process. Process state registers define a specific process.

PROCESSOR STATE REGISTERS

5

Each processor has a set of registers which define the operational state of the
processor. These registers are described fully in the MIGDS. however. several points are of
interest here:

1. CYBER 180 has an exchange mechanism. similar in function to CYBER 170. which executes
quite differently from CYBER 170. Whereas on CYBER 170 a true exchange occurs (that is.
the operating registers are stored in memory and loaded with the contents of those same
memory cells). on CYBER 180 the operating registers (process state registers) are stored
in one area of memory and loaded from a different area in memory. Since an exchange
jump always changes the operating mode from job to monitor, or vice versa. two exchange
packages are located in memory: a monitor exchange package and a job exchange package.
These exchange packages are located at real memory addresses specified by the Job
Process State (JPS) and the Monitor Process State (MPS) registers. They must not be
located at the same address. nor must they overlap. Finally. they must be on a double
word boundary. To this end, the least significant four bits of the JPS and MPS are
ignored (treated as zeros - figures 5-1 and 5-2).

2 3

REAL MEMORY ADDRESS

Figure 5-1. JPS and MPS Registers

1 2 3
o 5 3 1

~ f77zJ'i02
Figure 5-2. PTA Register

60459960 A 5-1

2. Two registers the Page Table Address (PTA) and the Page Table Length (PTL) specify the
size of the Page Table. The Page Table must be located on a boundary which is zero
modulo the Page Table Length. The reason for this is that the hardware accesses the
Page .. Table frequently and computes an index for this purpose. To find the address of
the required entry. instead of adding the index to the PTA it is simply catenated - a
much faster operation. Depending on the page table length the low-order 9-17 bits of
the PTA must be set to zero.

The PTL. which indicates the length of the Page Table. is simply used as a mask which is
used to ensure that a hash index with the page table remains within the bounds of the
page .table. Its use is described it. the section dealing with virtual memory.

3. The Page Size Mask (PSM) specifies the page size to be used. The page size may be chosen
from 512 bytes to 64K bytes. However, typical page sizes are expected to be 2KB and 4KB.
As with the PTL, the use of the PSM is discussed fully in the virtual memory section.

4. Two registers deal with equipment identification - the Element ID (EID) and the
Processor ID (PID). The first is a unique, world-wide identification, the format is
shown in figure 5-3. The second (the PID) is a abbreviated version which uniquely
identifies an equipment within a system. The PID is used on exchanges to identify the
Last Processor ID (LPID), and is used in a self-discovery process during system
initialization. A third Tegi.~ter - Or;tioDI3! I1H\tRJl~d (On - c~mplete§ the d~l!Icript.ion
of the equipment. This is a 64-bit register which indicates the number of PP's, cache
mamcry siZe, perts to central memory, aid SU forth.

1 1 3
0 7 8 5 b

TYPE MODEL SERIA L NUMBER ID NO.

Figure 5-3. Element ID Register

5. There is a 32-bit microsecond counter - the System Interval Timer (SIT) - which counts
down, and is used to establish job time slices.

6. One final register is of interest at this stage and that is the Virtual Machine
Capability List (VMCL). Many of the CYBER 180 processors are microprocessors and the
microcode may describe various machines which are termed virtual machines. CYBER 180 is
one such virtual machine but many others are possible, in particular CYBER 170. This
l6-bit register controls the vir·tual machines the user (customer) is permitted to run.
For example, a CYBER 180 customer who has not purchased the CYBER 170 emulator is
prevented from executing CYBER 170 code via the register.

5-2 60459960 A

The remaining processor state registers (there are several) deal with the operational
status of the processor and its maintenance. Many of these registers are model dependent.

Access to these registers is controlled. Most registers can be read and written from
the Maintenance Control Unit (MCU) J and can be .read from the processor. However J registers
can only be written when the appropriate privilege has been granted. Access to the
registers is illustrated in the figure 5-4.

PROCESSOR
ACCESS

Iss I STATUS SUMMARY

PID I PROCESSOR IDENTIFIER
VMCl I VIRTUAL MACHINE CAP. LIST
EID ELEMENT 10.
01 OPTIONS INSTAllED I

I CONTROL MEMORY ADDRESS
I CONTROL MEMORY BREAKPOINT

DEC ENVIRONMENT CONTROL I

PTL I PAGE TABLE lENGTH

PSM I PAGE SIZE MASK
PTA PAGE TABLE ADD.

MPS MTR. PROC. STATE

PTM* I PROCESSOR TEST MODE
JPS JOB PROC. STATE **
SIT SYS. INT. TIMER **

CACHE CEl* CORRECTED ERROR lOG

MAP CEl* CORRECTED ERROR lOG

CONTROL MEMORY CEl * I
RETRY CORRECTED ERROR lOG* I
PFS* PROCESSOR FAULT STATUS I

* WRITE IN GLOBAL PRIVilEGE MODE ONLY

** . WRITE IN MONITOR MODE ONLY

Figure 5-4. Processor State Registers

MCH
ACCESS

60459960 A 5-3

PROCESS STATE REGISTERS

There is a large set of registers which define each process state, these include the P,
A, and X registers. These registers completely describe the operational environment of a
job or process, and if the process is interrupted for any reason that environment must be
captured in order for processing to resume after the interrupt has been dealt with. This is
accomplished by the exchange mechanism during which all the process state registers are
saved in an exchange package (figure 5-5), and a fresh set of registers (defining the
process exchanged to) are loaded from a second exchange package.

BYTE(HEX) WORD(DEC)

10

18

20

28

30 A5

38 A6

40

48 Keypoint Code

50 10

58 Process I nt. Timer 11

60 12

68 Base Constant 13

70 14

78 15

80 16

88 17
90 18

CO 24

C8 25

DO 26

D8 21

EO 28

EB 29

FO 30

Fa 31

100 32

108 33

110 Segment Table Address 34

118 35
120 36
128 37

198 51

63

Figure 5-5. CYBER 180 Exchange Package (CYBER 180 Process)

5-4 60459960 A

The process state registers are summarized below. The 33 basic oL and if the process is
Perating registers (P, A and X registers) are described elsewhere in this document. This
section w:l.ll cover the remaining process state registers. The VMID designates the virtual
machine to which control is being transferred. VMID's of zero (CYBER 180) and one (CYBER
170) have been defined for the CYBER 180 processors. The UVMID is a register used to
designate an invalid (undefined) VMID to which the processor attempted to transfer control.
If an exchange jump is attempted to a nonexistent virtual machine, then the exchange
completes, and a second exchange interrupt occurs immediately on an Environment
Specification Error. This is when the UVMID is set to identify the fault to the operating
system.

A series of flags are located in word 2 of the exchange package. These are: The
Critical Frame Flag (CFF); the On Condition Flag (OCF); the Keypoint Enable Flag (KEF); and
two flags to control trap interrupts. These are primarily software flags which are carried
by the hardware. Their usage is described in later sections of this document.

The User and Monitor Mask Registers and Condition Registers are used to control
interrupts and are discussed fully in the section dealing with interrupts. Similarly, the
Keypoint Class, Keypoint Mask and Keypoint Code Registers are described in the section
dealing with Keypoint. These registers control the keypoint process.

The LPID (Last Processor ID) has already been introduced (refer to Cache Memory). It
records the PID of the processor executing a given exchange interval. The PIT (Processor
Interval Timer) is a 32-bit microsecond timer analagous to the SIT. It counts down, at a
microsecond rate, and interrupts the processor whenever it reaches zero. It is used for
timing within a given task (or process).

The Base Constant is a register used by the O/S as an index to a control point area for
an executing task. The STA and STL (Segment Table Address and Length) specify the RMA and
length of the SDT to the hardware. Remember, the SDT is a hardware table used in the
virtual memory address translation and, as such, it must be located at a real memory
address. The combination of the STA and STL also uniquely define the task address space.

The model dependent flags and word are used by the hardware, typically, to help in
hardware checkout. They do not have any particular significance to the software. The Debug
Index, Debug Mask and Debug List Pointer are used to control the debug facility, and are
discussed fully in a later section.

The Trap Pointer carries the address of the trap handler to be used by an executing
task. It is discussed in the section dealing with interrupts. Likewise, the Untranslatable
Pointer (UTP) is also covered in the interrupt section. This register holds the pointer or
address which could not be translated, causing an exchange to O/S monitor. Finally, there
are 15 Top of Stack Pointers, one for each ring of execution. Their utilization is covered
in the section dealing with Call/Return. On most processors (at least Pl-P3) these pointers
are not kept in live registers but reside in the exchange package in central memory. The
Largest Ring Number Register has been included in the event that the Top of Stack Pointers
are kept in live registers. In which case the hardware could be organized such that the
exchange mechanism would only have to exchange those pointers actually in use in the process.

As with the processor state registers, access to the process state registers is
carefully controlled. This access is illustrated in figures 5-6 and 5-7.

60459960 A 5-5

PROCESSOR
ACCESS

STL I SEGMENT TABLE LENGTH

MCR MONITOR CONDITION REGISTE R

UCR USER CONDITION REGISTER

MDF MODEL DEPENDENT FLAGS

STA jSEG. TABLE ADDRESS
Be IBASE CONSTANT

UTP UNTRANSLATABLE POINTERI

P REGISTER I
MOW MODEL DEPENDENT WORD I

~FF CRITICAL FRAME FLAG

OCF ON CONDITION FLAG
.Df ,,!;~U~ ~~fnF)f

~DEB~G MAS~ REGISTER

IUM I USER MASK

iTeI TRAP ENABLES*

lKCNl KEYPOINT CLASS NUMBER *

KM* I KEYPOINT MASK

KC* I KEYPOINT CODE

PIT* I PROC. INT. TIMER

TP* TRAP POINTER I
DLP" DEBUG liST POiNTER i

I L-M_M __ --II MONITOR MASK **

*

**

WRITE IN LOCAL PRIVILEGED MODE ONLY

WRITE IN MONITOR MODE ONLY

MCH
ACCESS

~
\ READIWRITEj·

\ I I
\J V

NOTE: ONLY THOSE PROCESS STATE REGISTERS WHICH MAY BE
ACCESSED VIA THE PROCESSOR COPY INSTRUCTION OR
VIA THE MAINTENANCE CHANNEL ARE SHOWN.

Figure 5-6. Process State Registers

5-6 60459960 A

-
VMIO VIRTUAL MACHINE 10

-
UVMIO UNTRANSLATABLE VIRT. MACH. I o -
LRN LARGEST RING NUMBER

I LPI LAST PROCESSOR ID

TOS1 TOP OF STACK RING 1

TOS2 TOP OF STACK RING 2

~~ SiS

TOS14 TOP OF STACK RING 14

TOS15 TOP OF STACK RING 15

Figure 5-7. Process State Registers Accessed by Exchange Operation

60459960 A 5-7

INTERRUPTS PART I

First of all, the CYBER 180 interrupt system is hierarchical. That is, a process may be
interrupted and control transferred to an operating system interrupt handler. Depending on
the status of this new environment, it may be interrupted itself but via a different
mechanism. The two basic interrupt mechanisms are termed: exchange interrupts and trap
interrupts. Both forms of interrupt save the current environment (as described by the
process state registers) and transfer control to some other code module. In the case of an
exchange interrupt, control transfers from a user or subsystem address space to the monitor
address space. Trap interrupts, on the other hand, are processed within the address space
of the current process.

6

Trap interrupts are controlled by two process state registers: the trap enable flip-flop
(TEF) and the trap enable delay flip-flop (TED). The settings of these registers are
controlled by the exchange mechanism. Hence, it is the software designer's choice whether a
monitor exchange interrupt is handled with traps enabled or disabled. This is an important
design decision as will be seen later on.

Two pairs of process state registers are used to monitor interrupts and control the
actions taken when a condition arises which may interrupt a process. These are the Monitor
Condition Register (MCR) and the Monitor Mask Register (MM), and the User Condition Register
(UCR) and User Mask Register (UM). The condition registers are normally filled with zeros.
Each bit in the registers corresponds to a particular interrupt condition and when that
condition is encountered, the bit is set to indicate that fact. For each bit in the
condition registers, there is a corresponding bit in the mask registers and when both bits
are set, an interrupt is taken. In other words, the processor takes the logical product of
the two register pairs, and then takes an interrupt if the result is nonzero (figure 6-1).

o 15

MeR 0 0 0 0 0 0 0 0 0 000 0 0 0 ~--------~

15

MMR 0 0 1 1

15

00000 000 0 o 0 0 0 0 0 I+-------------..J

INTERRUPT

Figure 6-1. Basic Interrupt Mechanism

60459960 A 6-1

Now although there are only two condition registers (for the monitor and user), there
are really four classes of conditions. They have been grouped into two registers simply for
software convenience. The four classes are monitor conditions. system conditions, user
conditions, and status indicators (figure 6-2). Conditions which are signaled in the MCR
have a higher priority than (are acted on before) those flagged in the OCR. Notice that the
MCR contains all system conditions, flags and most of the monitor conditions. The OCR
contains all user conditions and some monitor conditions. The monitor conditions which are
in the OCR are there so that the user may process them via a trap interrupt from within the
user address space.

SYSTEM CONDITIONS MONITOR CONDITIONS

• Power Warning

I-
• Detected Uncorrectable Error

• External Interrupt • Instruction SpeCification Error

• SY1tem Interval Timer • Address Specification Error

• Soft Error Log • Invalid Segment

• C170 Exchange Request • Aceess Violation -, • Environment Specification Error

• Page Table Search Without Find

• Outward Call'l nward Return

~l
• Unimplemented Instruction

• Privileged Instruction Fault

• Inter-Ring Pop

• Critical Frame Fleg

+
I MONITOR CONDITION I USER CONDITION J REGISTER REGISTER

f f

STATUS INDICATORS USER CONDITIONS

• Monitor Call

l~ • Free Flag

• Trap Exception • Process Interval Timer

• Kevpoint

• Divide Fault

• Debug

• Arithmetic Overflow

• Exponent Overflow - • Exponent Underflow

• Floating-point Loss of Significance

• Floating-point Indefinite

• Arithmetic Loss of Significance

• Invalid BOP Data

Figure 6-2. Interrupt Conditions

6-2 60459960 A

Monitor conditions are organized such that they are typically only encountered in job
mode, the exceptions being uncorrectable errors which can occur at any time. When these
conditions arise, an exchange jump from job mode to monitor mode takes place. A recurrence
of the same condition (or another monitor condition) causes the processor to halt when traps
are disabled. That is, with the exception of hardware diagnostics, the code executed in
monitor state is arranged so that these conditions cannot arise. System conditions, on the
other hand, occur any time, cause an exchange interrupt from job state to monitor state, and
are stacked when encountered in monitor mode with trap disabled. This means that care must
be taken when processing an interrupt to ensure that conditions are not lost.

Consider the following situation: The machine is in job mode, traps enabled and a page
fault occurs (figure 6-3). During the processing of the page fault (in monitor mode), a
soft error occurs. If traps are disabled. then this condition is simply remembered
(stacked). When the page fault processing completes if an exchange is taken back to the
process originally interrupted or another process, then the soft error is lost. It is
stored away in the monitor exchange package. There is only one way to guarantee that this
condition is not lost and that is to run in monitor mode. traps enabled. Testing the live
MCR does not suffice, since subsequent to this test, an exchange back to job state must be
made, and there is a finite time between the test and the point where the exchange is
committed.

60459960 A 6-3

I Awning Pra' Jab IIDdt • Traps· [nlbl.1'

lICit

III

II A Peg. 'Iult '"urs

010--

o

lICit i •• 'liv.' r.gist.r which co1l.cts int.rrupts.
nn is • 'llv.' reglst.r which hIs conditions
s.l.ct.d.

M:t- treps
bl.d.

Condition ,ausing the
int.rrupt Is .av.d In
the .xchang. packag.
point.d to by '/PS.

Th. 'llv.' lICit regist.r Is 10lded
fro. th~ .xchlng. pecklg. polnt.d
to bV "S.

In sort Error CMI"Uoo
nCB
~ Old
nn

Nothing hl~p.ns. Th. ,ondltlon Is stack.d (, ••••
re .. lb.r.d) but no furth.r let Ion Is tlk.n.

IV PIg. 'aylt Pro,~sslng C''91.t.s

Stored 'n "S .,

Th. lICit In the "PS .xchang. packeg. Is z.ro.d and an •• chang. to job
.. d •• x.cut.d. Th. soft .rror Is now s.v.d In the .. S .xchang. plckag ••
.AD.II .u ~ .IS1aII JlD..

Figure 6-3. Examples of Interrupts

6-4 60459960 A

However. it is not necessary to have traps enabled for all monitor mode processing. The
preferable sequence is to enter monitor with traps enabled. immediately disable traps.
complete processing of the interrupt. enable traps, and return to job mode. Any conditions
which have arisen during the interrupt processing are handled via an appropriate trap
handler.

The interrupt system is hierarchical. The hierarchy does have a meaning and should be
used. For conditions logged in the Monitor Condition Register, the hierarchy is:

+--) STACK
--+

EXCHANGE -) TRAP
-+

+--) HALT

Thus, an interrupt occurring in C180 job mode will cause an exchange to C180 monitor. An
interrupt in C180 monitor with traps enabled will cause a trap. An interrupt in C180
monitor with traps disabled will cause either a stack or halt depending on the specific
interrupt. It is incumbent upon the system to spend as little time as possible processing
interrupts with traps disabled because a higher priority interrupt may be pending. Some
care is necessary when designing the Operating System in this area.

The interrupt processing, as it affects the MCR, is very similar for the UCR. This
register collects user conditions which typically lead to a trap interrupt. These
conditions are best handled from within the user's address space - built by a system
routine. The hierarchy for these conditions is simply:

TRAP -) STACK

Thus, an interrupt with traps enabled will cause a trap whether in C180 job or monitor; an
interrupt with traps disabled will be stacked.

In other words, the condition may be acted on or remembered. However, interrupt handlers
are organized such that these conditions cannot arise, hence stacking will not occur very
often. As has been previously stated, the relationship between the UCR and the User Mask
Register (UM) is the same as that between the MCR and MM. If a particular condition has not
been selected by the user in the OM then, effectively, it is stacked indefinitely. Certain
instructions (floating-point arithmetic) yield results which could differ depending on the
settings in the User Mask. This occurs when end-cases such as exponent overflow and
underflow are encountered. Also held in the UCR are four monitor conditions. The hierarchy
for these is:

TRAP -) EXCHANGE -) HALT

Thus, an interrupt with traps enabled will cause a trap whether in CIBO job or monitor. An
interrupt with traps disabled will cause an exchange to C180 monitor when an interrupt
occurs in CIBO job mode and a halt when an interrupt occurs in Cl80 monitor mode.

The exchange and halt conditions should normally arise very infrequently or not at all
since the interrupt handlers can be organized to prevent this. These monitor conditions
have been placed in the UCR for specific reasons. For example, a trap on an unimplemented
instruction is intended to be used for a software simulation of an instruction which is not
in the repertoire of CYBER 180. This simulation must take place from within the users
address space. Other monitor conditions in the UCR will have to wait until the system
instructions have been discussed, in particular CALL/RETURN.

60459960 A 6-5

A more detailed discussion of the interrupt system where each condition is considered is
postponed until the stack processing characteristics of CYBER 180 are described. Some final
points will help to clarify the general process at this stage:

1. The overall scheme of events is represented in figure 6-4. In this flowchart stacked
conditions lead to an RNI (Read Next Instruction). As indicated in the previous
paragraph, this is a conceptual process only.

YES

* TRAPS ENABLED MEANS THE TRAP ENABLE FLIP·FlOP (TEF) IS SET
AND THE TRAP ENABLE DELAY FlIp·FLOP (TED) IS CLEAR.

Figure 6-4. Interrupt Flowchart

6-6 60459960 A

2. Conceptually, the hardware checks for interrupts before, during and after instructions.
In actuality, only uncorrectable errors can occur at any point, and the wrap-up after
one instruction and prevalidation for the next can become essentially a single process.

3. The hardware typically collects interrupts not between instructions, but between the
instructions' points of no return. There comes a point in every CYBER 180 instruction
when something is written (memory, register file, and so forth). Once this happens, the
instruction is committed, and, with the exception of hardware faults, interrupt
conditions which arise apply up to the next point of no return (figure 6-5).

Points of No Return

INST. A INST. B

Interrupts between
here and here apply
to instruction B, etc.

INST. C

Figure 6-5. P3 Pipelined Instruction Stream

INST

The concept of a point of no return is important, since hardware errors which occur
before this point can be retried. If the retry is successful, then a soft error condition
is recorded, otherwise a Detected Uncorrectable Error (DUE) is flagged.

60459960 A 6-7

CALL/RETURN/POP MECHANISM

The CYBER 180 CALL/RETURN mechanism is the technique for crossing protection boundaries
within an address space. It is also used for transferring control between procedures
(subroutines). It is designed to satisfy the requirements of block structured languages
permitting recursive calls such as CYBIL - the implementation language for CYBER 180.

SOFTWARE CONSIDERATIONS

7

Before describing the CALL/RETURN mechanism, a short introduction to block structured
languages is in order. Procedures (subroutines) in a block structured language are organized
into a series of nested blocks (figure 7-1). In each set of blocks, variables are related.
Variables are classified into two types: static and dynamic. Static variables are allocated
to fixed memory addresses and tend to be used throughout a program. Dynamic variables are
allocated to different memory address each time a procedure is called. This allocation
occurs in a stack. A stack is an area of memory which can grow and shrink dynamically, in
accordance with the demands. Each time a procedure is called a new stack frame for that
procedure is created. On CYBER 180 much of the management of this stack is accomplished by
the hardware of the CALL/RETURN mechanism. The objective is to contain the code for a given
function in a compartment for which there are controlled modes of entry. The variables used
by this compartment (or block) are generated each time the block is entered and are erased
when the block is exited.

60459960 A 7-1

ERROR

ERROR

LINE
NUMBER

24
:r1

6
7
8
9

procedure a;

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

SEVERITY
LEVEL

ERROR
ERROR

var
i_a,
La: integer;

procedure b;
var

i_b: integer;
procedure c;

var
i_c: integer.
i_a: boolean;

Lc := U~;
if i_a then

i..JI := Lc;
if
d; ~Call procedure D}

procend c;
Lb :- j_a;
i_b := Lc;
c; {Call procedure C}

procend b;

procedure d;
var

Ld: integer;
procedure e;

var
Le: integer;

Le := i_d; ._e := La;
procend e;
c; {Call procedure C}

procend d;
b; Call procedure B

procend a;

ERROR MESSAGE
Undeclared identifier - LC.
Undeclared identifier - C

Figure 7-1. Example of Block Structure

In the diagram. two sets of nested blocks are shown in module A. These are (B.C) and
(D.E). The replacement statements in procedure C involve variables described in the program
module A and in the procedures Band C. Knowledge of the whereabouts of these variables is
maint.ained by a static link which is held in the stack frame for each procedure. This
linkage is called static since it is known by the compiler at compile time and never changes.

7-2 60459960 A

Figure 7-2 illustrates the stack mechanism. The process starts by creating a stack
frame for the dynamic variables in the module A. A Current Stack Frame pointer (CSF) points
to the beginning of this stack frame and a Dynamic Space Pointer (DSP) points to the next
available (free) space in the stack. On CYBER 180, the stack frame and the pointers are
established by software. When procedure B is called, procedure Als environment is saved and
a stack frame created for procedure B. A dynamic link is created pointing to procedure Als
stack frame, and a static link pointing (in this case) to the same stack frame. The dynamic
link is termed the Previous Save Area pointer (PSA) and is automatically updated on a CALL
and RETURN by the CYBER 180 hardware.

A START
B

C

CD
CALL C

0

E

[
CALL B

DSP

CSF

DSP--.I--___ -I

A FRAME
CSF-.'--___

DSP

CSF

CALL C CALL 0

DSP

CSF
o FRAME

C FRAME C FRAME

PSA
B FRAME B FRAME

A FRAME A FRAME

B FRAME

A FRAME

PSA

Figure 7-2. Stack Frame Manipulation by Call/Return

PSA

60459960 A· 7-3

A calIon procedure C follows in much the same way. and again the static and dynamic
links simply point to the previous stack frame. However, when procedure C calls on
procedure D, the dynamic iink (for stack management) points to the previous stack frame,
whereas the static link points to the stack frame for module A, but not to those declared in
blocks Band C which are contained within A but do not contain D. The reason for this is
that procedure D is a block within the base module, A, and procedure D has access to
variables declared in module A, but not to those declared in blocks B or C.

On each procedure call the DSP is updated to point to the next available space within
the stack. This is a software function on CYBER 180, and represents the reservation of an
area in the stack which is large enough to accommodate all of the dynamic variables for a
given procedure - a quantity which is known only to the software.

Since each time a procedure is called, the caller's environment is saved, it is easy to
see that a procedure may be reentered or called recursively. This is true providing all
code is organized into pure procedures. That is, no code modification is permitted.

The CALL/RETURN mechanism provides facilities for protection, dynamic linking and
virtual machine switching. These features of CALL and RETURN are developed separately
because of their importance. First, it is necessary to understand the hardware support for
the basic mechanism.

Consider an executing procedure (procedure A) which calls a second procedure,
procedure B. Refer to figure 7-3. Four parameters are of interest:

Top of Stack (TOS) Pointer - in exchange package.
Dynamic Space Pointer (DSP)- held in AO.
Current Stack Frame (CSF) - held in AI.
Previous Stack Frame (PSF) - held in A2.

7-4 60459960 A

PROCEDURE A:

CALL B;

DSP-..

STACK

TO~-..
FRAI\IIE
FORA

CSF

PSA-"

INITIAL STATE

DSP-'

STACK

TOS.~~ TOS-.
FRAME

CSF CSF
FOR B

ENVIRONMENT ENVIRONMENT

PSA-" OF A PSA-' OF A -------- ---------
STACK STACK
FRAME FRAME
FOR A FOR A

AFTER CALL AFTER SOFTWARE

ISSUED CREATION OF STACK
FRAME FOR B

Figure 7-3. Basic Call Mechanism

These quantities are pointing within the stack as indiCated prior to the CALL. When the
CALL is issued, the following steps occur:

1. Caller's environment is saved in caller's stack frame, and TOS is updated to reflect the
next free space in the stack.

2. PSA is set to DSP.

3. CSF and DSP are set to TOS.

60459960 A 7-5

The next step is for the .software to create a st.ack frame to hold dynamic variables for
procedure B. At this time, the four key parameters are pointing into the stack for
procedure B precisely as they had been for procedure A. Return can be accomplished easily
since the pointers to A's stack frame have been saved (in AO-A2) in the stack frame save
area (figure 7-4).

PROCEDUREB;

DSP

STACK
RETURN FRAME
END TOS FOR B

CSF
ENVIRONMENT

PSA OF A -------
STACK
FRAME
FORA

INITIAL STATE

DSP---~ __________ ~

STACK
FRAME

CSF
TOS~~~ __ ~FO~R~A~~

PSA---

DSP, CSF and·PSA are all
reset from A's stack frame
save area.

TOS is reset from final
value in A1 (CSF) by the
RETURN mechanism.

Figure 7-4. Basic Return Mechanism

CALL - THE BASIC MECHANISM

))

A stack is created by the operating system for each ring of execution. A TOS pOinter
for each of these stacks is kept in. the exchange package. Whenever a procedure calls
another procedure, the caller's environment is saved in the stack frame save area (figure
7-5). The first four words of this area are stored unconditionally, the remaining words are
stored under the control of the caller. The caller formats a Stack Frame De.scriptor in
XO-Right prior to issuing the CALL. The descriptor specifies which X and A registers are to
be saved, in addition to those saved by default. Registers saved must be contiguously
numbered. In the case of A registers, since AO-A2 are saved unconditionally,

60459960 A

it is only necessary to specify the upper limit of the contiguous list. The descriptor is
analagous to that used by load/store multiple instructions, w~ich are described later. It
must be supplied, and the terminal A register designator must be greater or equal to two.
If no X registers are to be saved then the terminal X register designator (Xt) should be
less than the starting X register designator (Xs). When callee returns to caller, these
registers are automatically restored. Hence, the operation of the hardware strongly
suggests a software calling convention whereby the caller saves the environment.

WORD(DEC)

r-__ ~~~ ______ -.~~~~P~R~E~G~I~ST~E~R~ __ ~~ ____ ~~ ______ ~O
AO REGISTER (DYNAMIC SPACE POINTER)
A1 REGISTER (CURRENT STACK FRAME POINTER) 2

A2 REGISTER (PREVIOUS SAVE AREA POINTER) 3
A3 REGISTER (BINDING SECTION POINTER) 4
A4 REGISTER (ARGUMENT POINTER) 5
A5 REGISTER 6
A6 REGISTER 7
A7 REGISTER 8

• • •
~~========~~LJA~FJR~E~G~IS!T~E~R~~~ __________________ ~16

XO REGISTER 17

• • • S:T~32
XF REGISTER _

~-------~~~==============================~.~~
* STORED ONLY ON TRAP OPERATIONS

Figure 7-5. Stack Frame Save Area

CYBER 180 supports two forms of the CALL instruction which may be loosely regarded as
general purpose (CALL INDIRECT) and special purpose (CALL RELATIVE) calls. The CALL
INDIRECT may call into a different segment in a different ring, and as will be shown later,
into a different virtual machine. Whereas the CALL RELATIVE calls into the same
environment. Although the same basic mechanism applies to both forms of the call, the
general purpose version must guarantee the privacy of the callee and caller who may have
quite different privileges.

The flowcharts given at the end of this section describe these instructions completely
but the following basic steps are followed:

1) Caller's environment is saved
2) Caller's stack frame is' pushed
3) The P register is updated to point to the first instruction of the calleeto be

executed.

60459960 A 7-7

There is a single return in.struction which simply inverts this process:

1) Callee's stack frame is popped.
2) Caller's environment is restored.
3) The PRegister is updated (from caller's environment) so that it points to the first

instruction following the original CALL, to be executed.

General Notes:

1) Caller's environment is saved in caller's stack. In fact, it is saved at the top of
caller's stack. To minimize the execution time for a CALL this environment is
stored on word boundaries. If the top of stack happens not to be on a word
boundary, then the stack frame save area will be forced to a word boundary by the
CALL instruction.

2) Callee's stack frame is not created per se. The CSF pointer is updated to point to
the first entry in the stack frame, but it is the responsibility of callee, via
software, to reserve the appropriate amount of space in the stack. It is also
recommended that an integral number of words be reserved for that purpose.

3) Since the CALL RELATIVE call s to a word boundary, every procedure (subroutine) must
start on a word boundary. While this is not strictly necessary for external
procedures, when the process of binding is described, the reason for this convention
will become apparent.

RETURN -THE BASIC MECHANISM

The basic return mechanism, pops callee's stack frame and restores caller's stack frame
as the active frame. In other words, the environment which exists following the execution
of a RETURN instruction is precisely that which existed prior to the execution of the
associated CALL instruction. Figure 7-6 illustrates the changes which occur in the stack
when this sequence is followed:

7-8

CALL (intra-ring)
CALL (inter-ring) from ring 11 to ring 3)
RETURN
RETURN

60459960 A

0\

~
\J1
1.0
1.0
0\
o
>

'-I
I

1.0

RING 3

TOS TOS

RING 11

DSP-

TOS.CSF-

PSA- SFSA SFSA

DSP*-

TOS.CSF- TOS TOS

RETURN RETURN
TOS-

PSA- SFSA DSP-

Inter-ring CALL

TOS.CSF_

SFSA PSA- SFSA DSP-

TOS.CSF-
SFSA SFSA PSA- SFSA

" Moved by software

Figure 7-6. Call/Return

Since calls are typically to inner rings, returns are typically to outer, less privileged
rings. Care must be exercised to ensure that callee's greater privileges are not
transmitted back to caller. Callee's ring number may appear in any A Register used by
.callee - not just· those saved by caller. To ensure that this ring number does not get
returned to caller, a check is made by the return instruction to ensure that no A Register
is returned to caller with a ring number that exceeds caller's ring number. This process is
termed rippling, and figure 7-7 illustrates the process. Caller's overall privileges,
maintained in the P Regi.ster are automatically restored when caller's P Register is loaded
from the stack frame save area. A check is made to ensure that the global and local keys
which are loaded are identically equal to those to be found in caller's Segment
Descriptor Entry.

Yes

Get Next
A-Register

Set A.RN=P.RN

Ves

Figure 7-7. Rippling

END

7-10 60459960 A

General Notes:

1) Processes start execution, typically, in their outermost ring. Stacks in all rings
will be empty except for the one in the primary ring of execution. As calls are
made inward entries are made in other'stacks which will be emptied as RETURN's are
issued. The question might reasonably be asked, "Why have fifteen stacks?". Again
when the security of the system is considered the reason for this becomes obvious.
Since the stack holds the dynamic variables for an executing process. that process
has Read/Write access to the stack. If there were only a single stack then an
executing process could make a call to a procedure in an inner ring, and then access
that procedure's dynamic variables, which would be at the top of the stack. The
only way to prevent this would be for callee to zero out all dynamic variables
used. This would be prohibitively time consuming.

2) CALL and RETURN are time consumi.ng operations and are designed to satisfy the
general architectural requirements of CYBER 180. In particular, the generalized
form of CALL (CALL INDIRECT) should only be used when an external procedure call is
made to a procedure in another segment. When binding is discussed it is seen that
the Binder actually assists with this task.

The flowcharts at the end of this section describe the overall process for RETURN.

POP - THE BASIC MECHANISM

There are times, typically in the presence of an error, or a nonlocal GOTO, when it is
necessary to eliminate an entry or a number of entries from a particular stack. Since these
entries will have been created by a series of calls, a similar series of returns will
accomplish the required purge. However, when the purging is to be completed without
executing intervening instructions this can only be achieved by an appropriate software
sequence, or by issuing a POP instruction which has been provided for this purpose. The POP
instruction simply moves the CSF, PSA and TOS pointers eliminating the stack frame but not
changing the P-counter. Figure 7-8 is an example wherein calls have been made three deep
into the structure of a program and then the entire set of calls aborted. pop's can only be
issued within the current ring of execution. Access violations are not checked, and if a
POP is attempted across rings (as indicated by the ring number in A2-PSA), then the
instruction execution is inhibited and the program interrupted.

60459960 A 7-11

OSP

CSF

OSP t--_---t PSA

X CSF -..... __ ...I
START

....

...
A

X

Control returned _
line from C

OSP ...
CSF
PSA

....
B

A

X

x

CALL A CALL B

Procedure A

Procedure B

Procedure C

POP
POP
RETURN

CALL C

CALL B

CALLA

OSP

CSF
PSA

.....

.....
C

B

A

X

CALL C

OSP

CSF
PSA

...

... ... B

.A

X

POP

Figure 7-8. Example of POP Instruction

THE BINDING SECTION - CODE SHARING

OSP

CSF
PSA

...

.... ...
A

X

POP RETURN

It is important that the entry to procedures be carefully controlled. That is,
procedures must receive control only at those points they expect to receive control - their
entry points. To make this possible, procedures are not entered directly, but are entered
via a pointer to the procedure. This pointer is held in a Binding Section. All such
pointers are placed in the Binding Section by the Loader, and the CALL mechanism then
guarantees that the call is made via a Binding Section.

The objective on CYBER 180 is to have one copy of a code segment in memory which is
shared by several users. Each user has a copy of each code sequence required in his virtual
memory address space. For example, the FORTRAN compiler exists only one time in real
memory, but depending on which user has the CPU it operates on different compi.1ation units.
There mt!st 1-)e noth1.nt; in the co,:e segment: whi~h makes a direct c"eference to data which 18
modified. This is accomplished by placing pointers to such data in a Binding Section which
is created along with each code module, and then give the address of the Binding Section to
the callee when the procedure call is invoked.

7-12 60459960 A

Each ta.sk executing then, has some code, which it may be sharing with other tasks, and
some data which is typically unique to itself. WIlen a comptler compiles some source code,
it campi les offsets tnt 0 the Bind ing Sec tion and d j rec U 'h'8 t n the loader for b,,; ld 1ng the
Binding Section. Tt is then the responsihillty of the loader to link all code modules and
build the nece'3sary Binding Sections. This process is described more fully in the section
on software.

The lHnding Sectfor> is in a separate segment and is i.dentified uniquely by Hs segment
descriptor entry (r0Fer tc section on virte31 memor v). It typically contains pointers to
extf'TllaJ procedpre c: m,n pointers to worki:'.g 8~orage areas whIch hold statIc variable's. That
is, variables which do not appear in a stack frame. When a procedure calls on another
procedure which is defined externally, then the call points into the Binding Section. The
Binding Section (by convention) has one, or two, full word entries which contain a Code Base
Pointer (CBP) and a pointer to the callee's Binding Section (figure 7-9). The CBP points to
the first executable statement in procedure D. The VMID and R3 fields in the CBP are
discussed shortly. The EPF (external procedure flag) field in the one state indicates that
the procedure being called is an external procedure, and therefore the next entry in the
Binding Section is the pointer to callee's Binding Section. This field is nothing more than
a flag to differentiate between single-word and double-word entries in the Binding Section.

60459960 A 7-13

A

CALL B

A's BINDING
SECTION

r--
~
1--

~-io-,
i.-

c~"1----

WORKING
STORAGE
SECTION
FOR A

B

~ ...
~ Qf6'»

;~

CODE BASE POINTER

~VMIDI~f?a R3 I RN I SEG

POINTER TO CALLEE'S BINDING SECTION

~RNI SEG I

Figure 7-9. Call Indirect Example

B's BINDI NG
N SECTIO

..... ..--

"""'-

BN

BN

Whenever a call is made to a procedure in another ring, this form of the call
instruction (via the Binding Section) must be used. However, for critical (intrasegment.
intraring) calls a shorter form of the call instruction should be used. This form finds the
first executa.ble statement of the caller at P plus an offset and obviates the need for a
CBP. The offset used by this instruction is a 16-bit long word offset, hence all pr0c('dures
must start on a word boundary.

7-14 60459960 A

In ')rder to make code sharing possible, each task sharing the code must have its own
data. The location of thi!' data is defined through the Bind ing Sec t ion, which, in turn, is
defined via the Process Segment Table. The Segment Table Address is defined by the Exchange
Package for that process. Hence, each instance of a process has an exchange package which
describes the process state registers for that exchange interval. This defines the
whereabouts of the code and data to be used by the process, via the virtual memory
mechanism. Different tasks using the same code will have their own Segment Tables and will
have unique entries in the System Page Table for their Binding Sections and data. However,
the page table entry for the code segment will be shared by all tasks sharing the code
(figure 7-10). The way this happens is quite simple if one remembers the basic virtual
memory address translation mechanism.

r~-----------------------------------=, ASI(I

.. -._ -...... -_0 ,,-- "'" ,

I
I
L

r

--;-r
T

c\U FOR USK .. lAU J,
0' •

I Il """AS"
PijI, fOIl: USte ... CotE

• 0 ,

I 'fUM

.J,
'"HASH

- - - - - - - - - --

- - - - - - - - - - -
ASIC 8

~. roo TA" • roo,
In

I
PYA FOR TASK B lATA

O. 1 Ir
1 HASH

u.n: A ATN IItu: Sill. P(lINTER

I,
~ ...

I

.... AS.

"" Imol
I

IcSill

I

10021

1

- - - - -

- - - - -
KP {al-

_8 "'-,,~ 0,

b02'1

I
k,,,
J

h

I

r = - - - - -
SYSTEft PAGE TABLE

J

I
I

- ...I Pr.

...
-, 'FA r

I
I r--- 'f
I I
I - PI"

I I
I
I
I
I
L - - - - - -

~
TAil:! ... -- I

BlUING
SECTION

I -
II

I
D

n- - -
II

(OJ[

II 1(,1I:IT

" T -
II -
II
II - - -I

I ,
TASK 8

I
BIN)1N'
UnION

I
~

I

1 USI!: A
LITEitUS

USK ..

WORUHG

STOItAGE

SEGnEHT

-

,
r - - -

I
I

I
I

I
I

I
I

I
I

I I

~ - - - -
1 TASK 8

LITERALS

TASK 8

WORKING

STORAGE

UGft[PfT

t--

I

~

I L _____________________________________ ~

Figure 7-10. Code Sharing

60459960 A 7-15

The key to code sharing lies with concept of the SVA. Code which is being shared actually
resides as two conceptually separate copies in two address spaces. When this code is
referenced (via a PVA) the first step is to translate the PVA into an SVA. The operating
system arranges for code which is to be shared to have common SVAs. The translation to a
real memory address will then result in the same locations in central memory regardless of
the process requesting the translation. This is accomplished by assigning common ASID's to
shared code segments, which happens the first time the segment is referenced. Neither the
originator of the code being shared, nor any users of it need be aware that the code is
being shared. The only contingency 1.s that code be organized into pure procedures. Code
sharing per se, is unrelated to CALL/RETURN. However, the separation of code and data, the
absence of direct references to the data in the code, and the Binding section all play their
part. When a procedure is called from another procedure, caller gives callee's Binding
Section to him. That is, ct111er carries a pointer to cal1ee's Bjnding Section as a
parameter (,f the call. It is by this mecbanisfll that shared code (thal is, code shared in
real memory) receives di..ff-2,rent ddtri [;ets nn \ihi.ch '.NO 7hf;: ~Lc'redbOut th~ge

Binding Sect1rms is determined by the Loader ;,'~dch loads uli-,lt1l;}C l()!-,ic,,~: the code whicll
will ultimately be shared, into virtual memory (figure 7-11).

A

r-- CALL 8

8SA

8

- CALL C

8S8

C

8SC

..

~
J

l

--

...

8SA

CALL 8

LOADED INTO
VIRTUAL MEMORY

CALL C

Figure 7-11. Loading Mechanism

7-16 60459960 A

Two further areas, software conventions and parameter passing, need to be discussed
before the basic mechanism can be summarized. Parameter passing is discussed first. In
general, when a procedure is called from another procedure, parameters need to be passed
between them. The general parameter passing technique selected for CYBER 180 is to pass an
argument list pointer to the callee. Typically, this argument list pointer points to a list
of pointers which in turn point to data to be referenced by the called procedure. By
convention, the argument pointer is held in A4 and the c'Jnvention is supported by the
hardware which transfers the argument list pointer to /,.4 durIng the execution of a CALL
instruction.

Two other pointers are used by procedures, namely the Binding Section pointer and the
static link. Of these, the Binding Section pointer is by far the more important and by
convention is held in A3. As with the argument list pointer, this software convention is
supported by the hardware. The choice of registers A3 and A4 to hold these quantities
simplifies the saving and restoring of them during CALL's and RETURN's since the
instructions always saves a contiguous set of A Registers, and AO-A2 are always saved by a
CALL. The static link is not always required, and for those cases where it is needed it is
carried by software and the hardware has no part in its maintenance.

FLAGS

There are two flags which are handled by the CALL/RETURN/POP instructions. These are
the On-Condition Flag (OCF) and the Critical Frame Flag (CFF). They are software flags
which are reset by the hardware on each call to a new procedure.

ON-CONDITION FLAG

The end-user causes the OCF to be set by requesting that a particular code sequence be
executed when a chosen error arises. This is generally done via a high level language, and
the compiler generates the code necessary to set the OCF and generate a dummy stack frame
for the On-Condition processing (figure 7-12). A pointer in the user's stack frame points
to this dummy. All exception conditions are typically selected by the process monitor.
When one arises a trap interrupt occurs and the trap handler searches the stack for the
presence of an OCF which is set. On-Conditions are set by a particular procedure. When a
CALL is made, the OCF associated with the calling procedure is saved (in the stack frame
save area) as part of caller's environment, and the OCF is cleared. If an appropriate
exception arises, then it will be handled by caller's On-Condition action, unless ca1lee had
also requested specific action to be taken on the same exception. The following should be
remembered:

• Actions to be taken on exceptions are specified by the user. They are recorded in a
dummy stack frame, and by setting the OCF.

• Actions are established by a given procedure but carry across procedure calls.

• Each procedure may have its own unique set of On-Conditions.

60459960 A 7-17

...

PROCEDURE A

ON-CONDITION DO

CALL 8

PROCEDURE 8

OCF set and
I+-dummy stack

frame created

~OCF saved in
SF SA of A and
then cleared.

--.

8

- -------

DUMMY
FOR

ON-CONDITION

A

Figure 7-12. On-Condition Handling

CRITICAL FRAME FLAG

The critical frame flag is a software device for declaring a procedure critical. The
term critical is used to denote the fact that some tidy-up is required before leaving the
procedure is question. In other words exit from the procedure must take place in an orderly
manner. An example will help to clarify this:

7-18

Imagine a job running under the control of a subsystem. The job may open a file or set
some locks which must be closed or cleared before the job is terminated. If the job
terminates abnormally the standard tidy-up procedure would pop the stack frames in use
prior to returning to the subsystem for final exit. However, in the case where
particular action is required before a stack frame is eliminated, a different path must
be followed. The critical frame flag is used to alert the subsystem in control of this
situation. When the locks are set or files opened, the critical frame flag is also set,
and subsequently saved, in the procedures stack frame save area, whenever it calls on

60459960 A

another procedure. An attempt to pop a stack frame with the critical frame flag set is
detected by the hardware and a trap interrupt taken. The trap handler hands control
back to the subsystem which (by an investigation of user's stack) can perform the
necessary tidy-up operations.

OUTWARD-CALLS/INWARD RETURNS

Calls may only be made within the same ring of protection or to an inner ring (figure
7-13). However, there are various circumstances which require the execution of a call to an
outer ring. For example, when an end-user job is initiated a call must be made to the outer
ring where the user program resides. Since the hardware prohibits the execution of this
call it must be accomplished by the software.

When an outward call is attempted, an interrupt occurs and the following steps are taken
(assuming the machine is in job mode, traps enabled):

1) An exchange interrupt occurs (outward-call).

2) The exchange interrupt handler sets the free-flag and issues an exchange. This will
cause control to return to the original outward call instruction. However, before
it can be reissued:

3) A trap interrupt occurs (free-flag). This is really an implicit call into the stack
in caller's ring of execution. The free-flag is nothing more than a mechanism for
converting an exchange interrupt into a trap interrupt.

4) The trap handler creates two dummy frames in callee's stack. The first dummy frame
is callee's eventual stack frame, the second is created simply to be popped via a
return which will transfer control to callee.

5) The trap handler executes a RETURN to callee. This pops the sec~nd dummy stack
frame (figure 7-13).

60459960 A 7-19

"t
~

0'
o
.po
\.J1
\0
\0
0-
o
>

OUTER RING R+

OutWard Call
issued from
procedure in
ring R- to
procedure in
ring R+

final
exception
sensed is
Outward
Call

TOS{R+} ~1.. ___ ..J

INNER UNG R-

TOS{R-} _'-__ ---'

J,. Exchange
interrupt
occurs

2. Int .. Handler
sats fre. flag
and exchanges

3. Trap interrupt
occurs

TOS{R+}~

NOTE: P-,..ago in
trap fralle points
to Call
i "structian

AO.,A1 ---II

TOS{R-}

'2~§

].. Trap Handle,..
forMs dUIII.Y
stack fra ..
in calh.'s
r in9

2- Save area
det.rmined by
original call.

TO~~R!~ ~r----I

A2~~

NOTE: II'-reg in
dUlllmy (rallie
points to Call
instruc:tion

TOS<'-} -----1~--_l

Trap Handle,..
forll5 second
dUIIIIY frau
in Calla.'s
ring. P"'reg. in
this frallla
points to Calle

AC,Al :1
TOS{R:: =~:~~~~§

TOS<R-}

Figure 7-13. Outward Call

Trap Handle,..
issues a
Return and
anters call

T O~~.! ~ ---11-------1

A2J I

TOS{R-} ---1~---l

Hence. to execute an outward call. the interrupt handler software arranges to an outward
return to callee. An inward return is the reverse of this procedure and consists of
executing an inward call to the original caller as follows:

1) An exchange interrupt occurs (inward call).

2) The exchange interrupt handler sets the free-flag and issues an exchange. This
causes control to return to the original inward return instruction. However, before
it can be reissued:

3) A trap interrupt occurs (free-flag). This is really an implied call into the stack
in callee's ring of execution.

4) The trap handler calls on Task Monitor in caller's ring of execution.

Task Monitor:

5) Eliminates three frames from callee's stack.

6) Adjusts its own stack frame to point to caller's stack frame

7) Issues a return.

On the inward return the implicit call to replace the return is actually an inward call
to Task Monitor (figure 7-14).

60459960 A 7-21

.....
I
~
~

g
01>
Ut
\0
\0
0-
o
>

OUTER RING R+

AD,A].
TOS{R+)

Aa

INNER RING R-

TOUR-} ----0

Rout in. issues
an inward Nt 1.1""

AD.ll
TOUR+}

.a_
1. Exceptions

.r. sensed
~. EXChange

Inte,.,.upt
occUr'S

3· Int, Handler
•• ts 'r •• Fh9
and exch.ng ••

If. Trap interr"pt
occur,

TOUR-} _

T, Handle,. caUs T Isk IIonl tor cl •• r! Task fIon!t ...
T.sk 1Io"ltor in thr •• fr •• , out hsues I return
ring of original of c.l1 •• ' I .tack
(.11 ... i~d c:rl~;~:· :;::,.

fra .. to point to
original C.ll

All
plus ...

TOS(R+}

TOS{R-} ___ AD.A}
TO$<R-}

Aa TOUR-)

Figure 7-14. Inward Return

The general case of an outward call and inward return has been treated here. It can be
a time consuming process, and it should be used sparingly. Fortunately, the operating
system generally knows ahead of time that an outward call is to be issued and need not
bother to take the exchange jump and force a trap interrupt. Instead, the functions
performed by the trap handler can be performed by the caller before issuing an outward call,
and an outward return can be issued directly to transfer control to callee. Similarly, when
an outward call is made, it is known that there will be a subsequent inward return. The
functions performed by Task MOnitor can be performed by caller prior to issuing the outward
call. This can be accomplished by caller calling on an outward call Service Procedure which
creates two stack frames in callee's stack such that it appears as though callee was called
by a Service Procedure in his own ring of execution, and called the original (outward call)
Service Procedure. The outward call Service Procedure then returns to callee to transfer
control. Callee subsequently returns to an inward return Service Procedure in his own ring
of execution, which pops its own stack frame before making an inward calIon the original
outward call Service Procedure. This procedure then returns to the original caller (figure
7-15).

60459960 A 7-23

7-24

-.---------------~

! J
~ ~ f

~~

I

i
~

V~ ~

I ' 1
~ I ~ \ M~

t
~ .

------.-1 }

------ ------ ----T~J--· J

... · . i~i:
OWf\!'
L.L.'-W · ~. e .. ; •
'::!!iz · "' 011'100.

I
i

~

~

[

i
~

A

t

1 ' I
V~

I ~ I
i
~~

l'l t
V .

I 1 ----t- -
~ ~
~ ~
A V

60459960 A

OBJECT MODULE BINDING

Whenever a procedure is compiled or assembled, directives are compiled with it to enable
the loader to create a Binding Section. In fact, all references to Working Storage,
external procedures, and so forth, are compiled as offsets into the Binding Section. Hence,
when a program is executed, there will be multiple Binding Sections (one per procedure).
There is nothing wrong with this except that procedures which are called from several other
procedures will have an entry in several Binding Sections. This is wasteful in terms,of
space. Also, many calls to external procedures will translate into calls within the same
segment (intrasegment calls). These are really only, external procedure calls at compile
time. They become internal procedures at execute time. The difference is that an external
procedure call must be made with a CALL INDIRECT via the Binding Section, whereas an
internal procedure call can be made with the more efficient CALL RELATIVE instruction. The
Object Library Generator minimizes these space and time inefficiencies.

The Object Library Generator performs two major functions:

1) It eliminates redundancy by taking all procedures in a module to be bound and
placing them in a single code section. It also combines all Binding Sections into a
single Binding Section and eliminates redundant entries to external procedures.

2) Since many calls to external procedures will translate to calls to internal
procedures during the coalescing of the Binding Sections, the CALL INDIRECT
instructions are converted to CALL RELATIVE instructions for these procedures, and
their entries eliminated completely from the Binding Section (figure 7-16).

60459960 A 7-25

A A

-
CALL C '- 'r CALL B

CALL E

- CALL C

....- CALL B

CALL E--

--B

B

CALL C r CALL C ~

CALL E

CALL E -

-C

C- CALL 1)

CALL 1)

"'J)

CALL E -
1)

CALL E t

Figure 7-16. Binding Process

This second major function of the Object Library Generator imposes a restriction on the
format of the call instructions which have been designed with this purpose in mind. Since
they have similar formats, all that need be done by the Object Library Generator is to
change the operation code from B5 to BO, set the desired value in the Q-field and force the
j-field to three, which is the conventional register for the Binding Section (figure 7-17).

7-26 60459960 A

CALL INDIRECT

Binding
Section
Pointe,.

Argu.ent List Pointer

Q2

Figure 7-17. Conversion from Call Indirect to Call Relative

VIRTUAL MACHINES

CYBER 180 provides a capability to support several virtual machines. The two most
important of these are the native machine (CYBER 180) and CYBER 170. The call mechanism
permits a procedure being executed on one virtual machine to call another procedure which
will execute with a different virtual machine. The exact mechani.sm which accomplishes this
machine switch will not be described here but will be covered in a separate section on
virtual machines.

ZERO RING NUMBER

In the section on virtual memory it was explained that there are fifteen rings of
protection on CYBER 180. These are numbered 1-15. Ring number zero has been reserved for a
special purpose, namely: Dynamic Linking. Traditionally, a program has been written as a
series of subroutines or procedures. These subroutines are compiled separately, then linked
together with a loader prior to their execution. Depending on the system, all subroutines
referenced had to be present before the program could be placed in execution. Frequently,
this restriction is levied even though all subro.utines may not be used. This happens to be
one way of solving the problem of linking, loading and placing a program into execution, but
it is by no means the only one. Certainly, this alternative is open to CYBER 180 and may be
a common method invoked by the user. However, CYBER 180 provides another option which is to
link and load a procedure the first time it is called and not before. If a procedure is
referenced but never called, it need never go through the linking and loading mechanism, and
will never require that memory.be allocated to it. This process is known as Dynamic
Linking, and a ring number of zero is reserved to denote an unlinked pointer.

Ri!!g !1umbE'!,5' 0~ ?er0 ~3!: ·:,c~l...~!" !~ C"!'!e f:-'f ~w-:- ~,.yays ~ II"! a!'! atte~pt

an A register, and in an attempt to calIon an unlinked procedure.

60459960 A

tc leac a pointer into
The CYBER 180 hardware

7-27

automatically detects this condition and causes an exchange interrupt to be taken if the
machine is in job mode. The exchange interrupt handler can then schedule the appropriate
operating system procedure to form the necessary link and load the required procedure.

When a ring number zero is detected on a load instruction the following sequence occurs:

1) The load instruction completes, loading the invalid pointer into the appropriate A
register with a ring number determined by the normal ring number contention
mechanisms. Refer to figure 7-18.

2) An exchange interrupt occurs. The P Register stored in the exchange package (at
JPS) points to the instruction following the load instruction.

JPS

LOU A , A , Q
+----' ~ RN=O

Dlfffl BN [

{)
AS

d f f f 1 AN

"--

Figure 7-18. Ring Number Zero on Load A

When a ring number zero is detected on a CALL instruction the following sequence occurs:

1) The. execution of the call instruction is inhibited.

2) An exchange interrupt is taken. The P Register stored in the exchange package (at
JPS) points to the CALL instruction iL

7-28 60459960 A

M the necessary link an question, and the Untranslatable Pointer Register stored in the same
exchange package, contains the CBP (with a ring number of zero) from the Binding Section
which caused the interrupt (figure 7-19).

JPS

cQ .RN .. O

as UTP

!..-..to CALL A3.AIf,Q -

Figure 7-19. Ring Number Zero on Call

The Untranslatable Pointer (UTP) is the key to handling this exception condition which
is combined with an Invalid Segment exception. The sequence the interrupt handler should
follow on sensing an Invalid Segment condition is to check on the Untranslatable Pointer
Register. If this has a zero ring number plus a segment number of all ones, then a ring
number zero condition has been detected by a CALL instruction (as opposed to an Invalid
Segment). The Untranslatable Pointer, by software convention contains a dummy Segment
Number of all ones (to flag an unlinked pOinter) .and the Byte Offset contains a pointer to
loader tables which contain information necessary to form the required link. The
appropriate entry is made in the Binding Section containing the unlinked Code Base Pointer
and an exchange jump executed, which will cause the CALL to be reissued.

If the UTP contained no indication of the fault (this must be established by software
convention) then the individual A Registers (at JPS) must be scanned for the fake segment
number. The zero ring number will no longer exist in the register or registers in question,
since it will be eliminated by the ring number voting mechanism. The register or registers
in question are loaded with the correct segment number and byte offset and an exchange jump
issued to continue processing. Remember to scan all A Registers since several of them could
have zero ring numbers if a Load Multiple instruction is used.

Dynamic linking is an option provided by the CYBER 180 hardware. It provides an
alternative to conventional loading techniques. However, there is no need to support this
particular technique by software. That is an operating system design decision.
Nevertheless, without hardware support of this nature the choice would not be available.

60459960 A 7-29

FLOWCHARTS OF THE OVERALL PROCESS

Figures 7-20, 7-21, and 7-22 describe the overall process for CALL, RETURN and POP.
Included in the flow-chart for CALL are those steps which are unique to a trap interrupt.
Remember a trap interrupt is nothing more than an unsolicited call in which all theA
registers and X registers are saved. There are some additional steps. In particular the
condition causing the trap is erased from either the User Condition Register or the Monitor
Condition Register and those registers are captured in the Stack Frame Save Area.

60459960 A

60459960 A

'es

No

No

N.

Aj+!*Q a No
.... alid PYA?' >---+---l

Ves

".

Aj SD(No
.... a li d1 >....c. __ --,

inding

R!:~t ;::a;~1 >_"",0,+-_-,

N.

ill.hITRAP

Instruction -I
SPl!cification~

Address
Specification

E •

In alid Segment

Page T able Search
lIIithout Find

NOTE: DOUble edgad boxes apply to CAlL .DIRECT, CALL RELATIVE and TRAP-.
Single edged boxes apply to CALL DIRECT and TRAP.

Figure 7-20. CALL/TRAP (Sheet 1 of 3)

7-31

7-32

No

ll.lli!I!P

No

No

, ..
Aj.RN!.CBP.W3f No

No

Y.,

'a.

No

...
P SK velidf ..

..

No

Y ..

.• ".alt·Rl" >-'''''=.' ------I

No

Envi"Dn .. nt
Sptd fiution

NOTE: IDuble edgad boxes apply to ' LL IIRECT~ CALL REUTIV[and TRAP.
Single edged boxes- apply to CALL IIRECT and TRAP.

Figure 7-20. CALL/TRAP (Sheet 2 of 3)

60459960 A

60459960 A

(allu's £:ntr"y Point
t. P

Set ,1.3 to Binding
Sei:tion Point ...

..

,,,

..

1I08s
calla,. have
.aster kay'

Intr"a
IU"g Call
{P.RN~Call ••

}[:.~2}

(yeER 50
PI"OCadUN
bdng <aHa

,,,
External

Procedure
.,

NOH: Double edged bO)(IiS apply to CALL JlIRECT, CALL RElATIYE and TRAP.
Single '.dged butts apply to CUl DIRECT and TRAP.

Figure 7-20. CALL/TRAP (Sheet 3 of 3)

7-33

No

No

No

No

Address
Speci fication

Invalid Segment

Access Violation

No Page T able Search
~~~--~~------~ Without Find 

Yes 

No 
Invalid Segment 

No 

N 

Figure 7-21. RETURN (Sheet 1 of 2) 

7-34 60459960 A 



Access Violation 

Invalid Return 

Critical Frame 
Flag 

Figure 7-21. RETURN (Sheet 2 of 2) 

60459960 A 7-35 



PSA 
SJ)E valid? 

SF SA in 
Rea 1 Memory? 

No 

No 

No Segment 
J)escrip~or 

No 
~--------~--------~ Address Violation 

No Page Table Search 
~--------~--------~ Without Find 

No Environment 
Specification 

No 
P.RN=PSA{A1}.RN?~------~~------~Inter-ring POP 

Ves 
CFF Set? 

Figure 7-22. POP 

Critical Frame 
Flag 

7-36 60459960 A 



CROSSING PROTECTION BOUNDARIES 

The foregoing sections described the basic protection mechanisms provided by the CYBER 
180 hardware. This included the primary protection afforded by address space as well as 
other protection mechanisms within the address space. It is now necessary to describe the 
techniques for crossing protection boundaries. TWo techniques are available, one for 
switching between address spaces and one for crossing protection boundaries within an 
address space. 

CHANGING ADDRESS SPACES 

The. exchange jlL'np is used to transfer control from one add ress space to another. When 
an exchange jump occurs the machine state changes hetween Job Mode and Monitor Mode. This 
state is controlled by a flip-flop which cannot be cleared or set by software other thar. by 
an exchange jump when the flip-flop is complemented. CYBER 180 processors are always 

8 

dead started into Noniror Node 'Ita a half exchange. The operating system monitor is the most 
privileged module of the operating system. It resides in its own address space and has 
additional, special privileges because it operates in a unique machine state. It is the 
most trustworthy piece of code in the system. The operating system monitor establishes 
users' operating environments (by defining their exchange packages) and, consequently, 
establishes in part their level of security. This concept of trustworthiness is very 
important to CYBER 180 systems. In general, the lower the ring of execution, the more 
trustworthy is a code module. CYBER 180 hardware provides the tools necessary to construct 
a system with any desired level of security. Nevertheless, those hardware facilities are 
only as good as the software which uses them. For a system to be truly secure, software 
conventions must be enforced. These conventions form part of the overall architectural 
design of the system. In concert with this theme the hardware does very little checking on 
the operating system monitor. In particular, no ring number checks are performed during an 
exchange jump. If the monitor elects to increase a user's authority (by assigning an A 
Register Ring Number lower than his ring of execution), then the user runs with that greater 
privilege. Because of this and other reasons, the operating system monitor should be an 
extremely small, thoroughly debugged piece of code. 

PROTECTION BOUNDARIES WITHIN AN ADDRESS SPACE 

Call/Return is the primary mechanism for crossing protection boundaries within an 
address space. It is the only mechanism for crossing ring boundaries. Two conditions must 
be satisifed before crossing a protection boundary. First, the caller must be permitted to 
make the call; second, the callee must not act on behalf of caller with more authority than 
caller. (The following discussion assumes that the reader is familiar with the basic 
Call/Return mechanism.) Tn CaU!Returr:, the caller always pruvides the callee with his 
privileges. As a resul t. it is only poss.ible to llIake a call from a more privileged ring to 
<'l less privileged ring of execution. If the reverse happens then callee, in a less 
pri vileged ring than caller, would receive caller's privileges and there would be an 
immediate, potential breach in security. The hardware prevents this eventuality by 
detecting attempts either to call outward to a ring of less privilege, or to return inward 
to a ring of more privilege. Such an attempted breach in security causes an exchange 
interrupt into the monitor address space. 

60459960 A 8-1 



Most of the information pertaining to security is managed by hardware and is contained 
in hardware tables - albeit they are constructed by software. The main such table is the 
segment descriptor table (SDT). Whenever a call is made to another segment across a 
protection boundary, the transfer must take place in a controlled manner. To accomplish 
this, calls 'across protection boundaries do not take place directly but use instead an 
indirect address (PVA) held in a pointer in a binding section. By software convention, 
binding sections are not writable in user rings, and are constructed by the Loader based on 
directives issued by compilers and assemblers. The hardware ensures that all calls across 
protection boundaries take place via a binding section entry. An access violation interrupt 
causes an exchange to monitor mode if an attempt is made to bypass this mechanism. 

Many other security checks are performed by the hardware during a call. Some are fairly 
straightforward. For example: 

• The Stack Frame Save Area must be in a segment which has write permission. 

• Callee's entry point (obtained from the binding section) must be in a segment which 
has execute permission. 

• Caller's Global Key must be identical to Callee's Global Lock, unless either Caller 
has a Master Global Key, or callee has no Global Lock. 

The hardware also ensures that the Caller is within Callee's call Bracket - as described in 
the section on Rings of Protection. The pointer to callee's entry point in the binding 
section is named a Code Base Pointer (CBP) and has the following format (figure 8-1): 

o 4 89 12 16 20 32 63 

SEG BN 

VMID VIRTUAL MACHINE IDENTIFIER 

EPF EXTERNAL PROCEDURE FLAG 

R3 HIGHEST RING NUMBER FOR CALL 

RN RING NUMBER 

Figure 8-1. Code Base Pointer - CBP 

A call is permitted providing 

PVA.RN < CBP.R3 

The first check performed by the hardware during a Call ensures that Caller's ring number 
(held in the P Register) is within Callee's call bracket. That is: 

P.RN < CBP.R3 

In practice this check is made implicitly. An explicit check is made against the Aj ring 
number as described below. Of itself this check is insufficient since a caller could ask a 
more privileged procedure to call a third procedure on his behalf to which he does not 
normally have access. 

8-2 60459960 A 



In figure 8-2, procedure A resides in ring 13 and procedure B resides in ring 11. 

RIN G 13 RING '1 

PROCEDURE A as PROCEDURE 8 

,- 85 - '-:\ ,-
P.RN - 13> } 
A3.RN - '3 1- )1 

P.RN-" }_ 
AJ.RN.l" 

l \'~P.R3-'3 
CALL 8 ~~ 

':'~'~~'!:~ 
T' .... I .... to : I 

CALL AJ, AK, Q 

WIle,. AJ.RN-13 • the ,ing 
numbM of A', 8inding Section. 

Figure 8-2. Calling a Procedure on Behalf of Another Procedure 

Procedure A is allowed to call procedure B since it is within procedure B's call bracket. 
Similarly, procedure B is allowed to calIon procedure C. However, procedure A is not 
allowed to calIon procedure C, and if procedure B, acting on behalf of procedure A, is 
asked to call call procedure C, via procedure A's binding section, then the call must be 
disallowed. The hardware detects this condition by ensuring that 

7*C Aj.RN ~ CBP.R3 

where Aj. RN is the ring number contained in the po in ter to A's bind ing sec tion. This ring 
number will be greater than or equal to procedure A's ring of execution, even though it is 
being used by procedure B. A combination of the hardware ring number voting mechanism and 
software conventions ensures that the correct ring number has been entered into Register Aj. 

Two final security actions take place during a call. First, a software convention which 
is supported by the hardware places the Argument List Pointer in Register A4. This register 
contains caller's Ring number (or a ring number greater than caller's). This is guaranteed 
by the hardware. However, software is responsible for ensuring that all parameters used 
from caller, by callee are referenced via this argument list pointer. This is just one 
example where a software convention comes into play to ensure that the correct level of 
security is maintained. The'lDfl:iortant fact to note is that it is always the more privileged 
procedure which must enforce the software convention. The final security action during a 
ca11 is for the hardware to copy ca11er's P-Ieft (bits 0-31) into Register XO-Ieft. This 
provides callee with an unforgeable copy of caller's privileges - Ring, Global Key, Local 

60459960 A 8-3 



Key and Segment Number. If the more trustworthy callee wants to make absolutely sure he is 
not being tricked in any way by caller, he should make use of this data to validate all 
accesses to code and data made on behalf of caller. 

So far only the call mechanism has been discussed. However, eventually, the called 
procedure must return to the caller. At this time care must be taken to ensure that caller 
does not receive more privilege than he is entitled to receive. The caller's environment is 
saved in caller's stack, which is a read/write segment within the user's address space which 
can be modified. It is important to ensure that the ring numbers and key/lock values 
restored to caller reflect his original privileges. When a return is issued the hardware 
performs the following tests to ensure that caller's privileges are correct: 

1) Caller's stack must reside in a readable segment. This is determined by ensuring 
that the segment number in A2 (PSA) points to a segment which has read access. 

2) Caller's code segment must have execute access. This is determined from the new 
P Register obtained from the previous stack frame save area. 

3) Caller's Local key must be identical to the Local Key of the caller's code segment. 

4) Caller's Global Key must be identical to the Global Lock of the caller's code 
segment, provided the associated segments Global Lock is not a No Lock. 

5) For each A Register loaded from the SFSA the normal ring voting procedure is 
applied. The Key here is that the A Register used to load the remaining A Registers 
is A2 which callee received directly from caller. 

6) For each A Register not loaded from the SFSA, the ring number shall be forced to be 
at least as great as caller's ring of execution. Hence, if caller did not elect to 
save certain A Registers, but callee used them, they may have callee's ring number 
in them. The mechanism of forcing them to at least caller's ring, which is known as 
Rippling, ensures that there is no breach in security. 

The hardware per forms two further tests in addition to these. The first test ensures 
that the initial value held in A2 (PSA) exactly equals the value of AO (nSP) stored in the 
stack frame save area. This is known as a stack check. Strictly speaking this is not an 
access violation, but it does indicate that if the caller's SFSA is inconsistent, it has 
probably been overwritten. The hardware flags an environment specification error rather than 
an access violation in this case. The second test which is relevant ensures that callee 
returns to an outer ring. That is, caller's ring number must not be less than the ring 
number initially held in A2 (PSA). 

Many of the security checks performed by the hardware require that A2 is intact. Since 
this is handed to callee by the hardware with at least caller's ring number, this provides 
very tight security protection provided callee does not use A2 for any general purpose in 
his procedure. Here again, a software convention must be followed to maintain system 
security. In general, A Registers AO-A2 should be reserved for stack manipulation only. 

INTERSEGfENT BRANCH 

It was mentioned earlier that the Call/Return mechanism is the primary mechanism 
employed for crossing protection boundaries. It is the only mechanism available for 
crossing rings. However, another instruction, Intersegment Branch, may be used to transfer 
control from one segment to another. Since such a transfer of control involves 
transgressing a Key/Lock protection boundary the hardware must ensure that the correct 
Key/Lock transformations occur. The execution of this instruction is illustrated in figure 
8-3. 

8-4 60459960 A 



OLD P REGISTER 

~ GK ta LK IRNI SEG BN 

Aj REGISTER 

-

NEW P REGISTER 

Figure 8-3. Intersegment Branch 

Notice that the new P Register ring number is forced to the value in the old P Register. 
Ring boundaries cannot be crossed by this instruction. In addition, the new P Register 
Local Key is taken from the associated SDE Local Lock - an executing procedure always runs 
with its own Local Key. Global Key/Lock transformations follow the rules established for 
calling a procedure. That is, the new Global Key must be identically equal to the old 
Global Key unless the old Global Key was a Master Key or the new Global Key was obtained 
from a No Lock. In summary: 

Old Global I New SDE New Global 
. Ker I Global Lock Key 

-----------+-------------+-----------------
o I 0 I 0 
o I K2 I K2 
Kl I 0 I Kl 
Kl I K2 I Access Violation 

This gives rise to an apparent anomaly. If procedure A with a Master Global Key 
transfers control to procedure B with a Nonmaster Global Lock, then procedure B will execute 
with the Nonmaster Global Key. If procedure B subsequently transfers control back to 
procedure .A, procedure A will then execute with a Nonmaster Global Key, even though it is 
entitled to the Master Global Key. Here again, software conventions come into play. If the 
previous discussion on Key/Locks is referenced, it will be noticed that, by convention, for 
rings containing segments with Nonmaster Global Keys, all segments will have a Nonmaster 
Global Key. All other segments (in other rings) will have Master Global Keys. Hence, the 
situation described above should never arise since the Intersegment branch instruction never 
crosses a ring boundary_ 

60459960 A 8-5 



WHEN HARDWARE CHECKS OCCUR 

The hardware makes the following checks for access violations on each occurrence of the 
actions listed below: 

8-6 

Read Access to a segment: 

(a) The segment must have read access. 

(b) The segment must be readable £rom the ring of the procedure making the access 
(this is via the ring number of the A Register used to make this access). 

(c) The current Local Key exactly equals the Local Lock of the segment, in the 
absence of a Master Local Key or No Lock. 

(d) The current Global Key exactly equals the Global Lock of the segment, in the 
absence of a Master Global Key or No Lock. 

Write Access to a segment: 

(a) The segment must have write access. 

(b) The segment must be writable from the ring of the procedure making the access 
(this is via the ring number of the A Register used to make the access). 

(c) The current Local Key exactly equals the Local Lock of the segment, in the 
absence of a Master Local Key or No Lock. 

(d) The current Global Key exactly equals the Global Lock of the Segment, in the 
absence of a Master Global Key or No Lock. 

Call to an external procedure: 

(a) The CBP must be in a binding section. 

(b) The current Stack Frame Save Area must be in a segment which has write access. 

(c) The procedure being called must be in a segment which has execute access. 

(d) Caller must be within callee's call bracket. 

(e) Caller's Global Key must be exactly equal to callee's Global Lock, in the 
absence of a Master Global Key or No Lock. 

(f) The call must not be an outward call. 

Return from an external procedure: 

(a) The previous Stack Frame Save Area must be in a segment which has read access. 

(b) The procedure to which control is returned must be in a segment which has 
execute access. 

(c) The final Local Key (obtained from the P Register in the SFSA) exactly equals 
the associated segment's (caller's) Local Lock. 

60459960 A 



(d) The final Global Key (obtained from the P Register in the SFSA) exactly equals 
the associated segment's (caller's) Global Lock. provided the associated 
segment's Global Lock is not a No Lock. 

(e) The return must be an outward return. 

In addition. for each A Register ring number which is less than the final P Register 
ring number, the associated A Registers ring number is set equal to the P Register ring 
number. 

First instruction issued from a new segment: 

(a) The segment must have execute access. This check is not repeated for further 
instructions issued from the same segment. Normally, the check occurs during 
the execution of the instruction which transferred control to the new segment -
that is during the call or intersegment branch. 

Branch to a new segment: 

(a) The current Global Key (in the P Register) exactly equals the associated 
segment's (branch to) Global Lock, in the absence of a Master Global Key or No 
Global Lock. 

These are not the only checks performed by the hardware during the execution of these 
instructions. These are just the checks which are made to ensure that an access violation 
is not being attempted. Many other chec.ks are made to ensure that the hardware functions 
correctly. For example. all branches must be to parcel. boundaries, and all calls must be to 
word boundaries. 

SOFTWARE CONVENTIONS 

The hardware provides the mechanism necessary to construct a secure system. However, it 
is the software usage of the hardware which determines the ultimate level of security. For 
the system to be completely secure, the software must adhere to several conventions. Some 
of these have been discussed in the previous sections, they are now summarized in this 
section. 

RINGS OF PROTECTION 

Since the ring protection mechanism is hierarchical, the higher the privilege assigned 
to a procedure (the lower the ring number), the more trustworthy that procedure must be. 
This has two implications: the more privileged a procedure, the more thoroughly it must be 
checked out. The operating system monitor, which is the most privileged procedure in the 
system, should be kept as small as possible and thoroughly checked out. Secondly, it is 
always incumbent on the more privileged procedure to ensure that its own integrity is not 
jeopardized. In particular, care must be exercised when a procedure acts on behalf of a 
less privileged procedure. In this case whenever data is referenced via caller's arguments, 
callee must reference this data through directly loaded A Registers. In other words callee 
must ensure that the hardware A Register ring voting is exercised whenever caller's pointers 
are used. This is as opposed to loading a pointer in an X Register and then switching this 
into an A Register (using a Copy X to A instruction) when callee's ring number could result 
in caller's pointer. Since most software will be developed in a high level language, it is 
the compilers which must adhere to this convention. 

6045.9960 A 8-7 



KEY/LOCKS 

Two types of Key/Locks are provided to protect local code and data and to isolate 
mutually suspicious subsystems. For these non hierarchical mechanisms to function as 
desired, their values must be assigned in accordance with certain conventions regarding the 
allocation of Key/Lock values. 

First of all for Global Key/Locks: for every segment in rings isolating subsystems from 
each other the Global Lock must be set to a nonzero value. Segments in all other rings must 
carry a Global Lock value equal to zero. This ensures that users may freely call on 
subsystems and the operating system, subsystems may freely calIon the operating system, yet 
subsystems are totally isolated from each other. 

In general, user, subsystem and system procedures will be assigned with a nonzero Local 
Lock. That is, no procedure will have a Master Local Key. This ensures that data can be 
restricted to be written or accessed by only local procedures. Typically, all nonlocal data 
are not controlled. . 

CONTROLLING PROCEDURES 

As has already been described, much of the security of the system is ensured by the 
hardware. The hardware utilizes various hardware tables, in particular, the Segment 
Descriptor Table. These tables are constructed by software procedures. These procedures are 
very trustworthy; they will execute in low numbered rings but not necessarily RiDg 1. They 
should be developed in such away that they are self-contained, as small as possible, and 
impossible to tamper with unless the most stringent security checks have been taken and 
passed. The security mechanisms which have already been described will take care of 
security problems when the procedures are being executed. However, when they are modified, 
either statically or dynamically, a combination of installation procedures and operating 
system services must be brought into play to ensure that the security of the system is 
maintained. 

USER RESPONSIBILITIES 

The hardware and software mechanisms which interplay to provide system-wide security and 
protection have been described. At first glance it may appear that the utilization of these 
facilities places a heavy burden on the end-user. Fortunately, this is not the case, 
al though an onus is placed on the installation management. Much of the security of the 
system is centered on the operating system file system. Every file carries with it the four 
ring brackets - for Read, Write, Execute and Call - which have already been described. 
These ring brackets are assigned based on the privilege which the user has been validated. 
Hence, before a user can log in to the system, in either batch or interactive mode, that 
user must be known to the system. He will identify himself via a user number and a 
password. These parameters will direct the system to a validation file containing the 
privileges of the user. 

The normal end-user should be totally unaware of his ring of executlon and whether or 
not his code and data segments carry nonzero Local Locks. For an end-user the Global Lock 
will be zero. If the user desires- to protect some local data, then suitable directives to 
the operating system will cause the setting of the appropriate Local Lock values. Again the 
actual value of these Local Locks is of no concern to the user. Consequently, the average 
end-user who is, for example, running FORTRAN codes need not be concerned with the security 
mechanisms of the system. At the same time these mechanisms will be in play to isolate him 
from other users and from the system. 

8-8 60459960 A 



INTERRUPTS PART II 

The section on CALL/RETURN should be thoroughly understood before proceeding with this 
section. When the subject of interrupts was introduced their hierarchical nature was 
described. This hierarchy involved two types of interrupts: exchange interrupts and trap 
interrupts. In an exchange interrupt the state of the machine changes from job mode to 
monitor mode, all process state registers are saved in one area of memory and loaded from 
another area. Included in the process state registers is the P Register and execution 
continues after the exchange at the address pointed to by the P Register. 

9 

In a trap interrupt, although the purpose is similar (that is, to stop the normal 
sequence of operation and transfer control to another instruction sequence in such a way 
that the original sequence can be restarted at the point that it was interrupted) the 
mechanism is quite different. In fact, a trap interrupt is an implicit CALL. Not all the 
process state registers are saved and very few are loaded with different values. A maximum 
stack frame save area is created and all A Registers and X Registers are saved in it, along 
with other key process state registers. The P Register is saved, and processing continues at 
the address given by a Code Base Pointer (CBP) in the Binding Section of the interrupted 
process. The address of this CBP is given by the Trap Pointer, and the CBP must point to an 
external procedure for the trap interrupt to complete. 

Trap interrupts, therefore, transfer control to an address within the address space of 
the executing process. This is important because the trap handler will normally have to 
make reference to flags and data held in user's stack. In fact, the outward-call/inward
return mechanism described in the last section was conducted primarily in the user address 
space even though it was initiated by an exchange interrupt. The free-flag was used to 
cause an interrupt to take place in user's address space. 

Of major importance to the trap interrupt operation is the management of the condition 
registers and trap control flags: the trap enable flip-flop (TEF) and trap enable delay 
(TED). When the trap interrupt is taken the User and Monitor Condition registers are .stored 
in the stack frame save area and the bit (or bits) which cause the interrupt are cleared 
from the appropriate condition register. Hence, these registers are reset on the trap and 
can start collecting new fault conditions in an unambiguous manner. Also, when the trap 
interrupt is taken, traps are disabled - the TEF is cleared. 

To reenable interrupts, two mechanisms are available. Simply setting the TEF via a COPY 
instruction will accomplish this. However, this is not the normal technique used. The trap 
interrupt is an implicit CALL, and the continuation of normal processing is accomplished by 
a RETURN instruction. Part of the RETURN mechanism reenables interrupts. The sequence of 
events is to set the TEF and the TED (by a single COPY instruction), then issue the RETURN. 
When the TED is set traps are disabled regardless of the setting of the TEF. The RETURN. 
instruction clears the TED which, if the TEF is set, reenables interrupts. Since the TED is 
cleared only upon completion of the RETURN instruction, problems associated with enabling 
traps in one instruction step, then returning in a second step, are avoided. 

60459960 A 9-1 



INTERRUPT CONDITIONS 

Now that the basic interrupt mechanism has been described, we can proceed to the 
individual interrupt conditions. CYBER 180 interrupts are precise. That is, the interrupt 
handler can always refer back exactly to the instruction which caused the interrupt, or 
which was being executed when the interrupt occurred. However, depending on the nature of 
the interrupt, the method for tracing back to the instruction in question varies. 

A basic architectur.al philosophy ofCYBER 180 is that an instruction is not interrupted 
during its execution. Conditions which would prevent an instruction from executing are 
checked before the instruction is committed. The concept of a point of no return was 
introduced in an earlier section on interrupts and this is an important concept. Any 
exception conditions detected before the point of no return will prevent the instruction 
from executing, an interrupt will be taken, and the P Register, at the time of the 
interrupt, will point to the instruction which could not be executed. 

MONITOR CONDITION REGISTER (MCR) 

Figure 1-8 lists the conditions recorded in the Monitor Condition Register. Following 
are some notes on these conditions. 

Detected Uncorrectable Error (DUE) 

This interrupt indicates that an uncorrectable error has been detected in either the 
processor or the memory on a reference generated by the processor. 

Major data paths, registers, control memories all carry either parity or SECDED. Any 
error which is detected before the point of no return of an instruction causes the 
instruction to be retried. A retry counter (one counter which applies to all errors) may be 
set. If the instruction retry is unsuccessful, then a Detected Uncorrectable Error is 
recorded. The P Register saved by the interrupt, points to the instruction that was in 
execution (but before its point of no return) at the time the interrupt occurred. If the 
error arose after the point of no return, then it will be handled by the complete portion of 
the instruction execution. In this case the P Register saved by the interrupt points .to the 
instruction following the one which was in execution when the error was detected. This 
means that there is no way of resuming the instruction stream after the interrupt. However, 
since the state of the process which was executing is undefined there is little point in 
doing this. 

To aid recovering processors at this point the Processor Not Damaged (PND) flag is set 
if the fault .occurred before the point of no return. When this flag is set the process 
environment is intact even though further processing may be impossible. This fact may be 
utilized by the damaged assessor to effect a subsequent restart of the process. 

Memory malfunctions are included in this condition. An understanding of the types of 
errors which can arise in memory may help in an assessment as to the best way to handle 
them. A simplified picture of memory error detection is shown in figure 9-1. Data 
transmissions .between a processor and memory are checked for correct parity at the processor 
port, the memory port and at the memory array paks. Memory itself, such as chips and bank 
logic, has a SECDED. 

9-2 60459960 A 



r---------- ------1 
I ElJ 1 r;;--

PROC. T~ ---------,,.....-iO~ ~R ~--,....._il, SECDED L ,GEN/CHECK ,1-----1 
MEMORY 
ARRAY 
PACKS 

I 

I 

I 
1 ~ 

READ I. L -r - - ~ - - - - - - - - - - - --l 

FULL 
WRITE 

* PARITY * PARITY 

~ 
* PARITY 

* SECDED 

-1- --
* PARITY 

~ -I PARTIAL ________________ ~~--------~ 
WRITE 

* PARITY * PARITY 

I· 
* SECDED 

1- --
PROCESSOR A A MEMORY DETECTED ERRORS 

DETECTED Y L.y' 
ERRORS 

- - - -

- - - -

Figure 9-1. Memory Error Detection 

.• SECDED CODE 
GENERATED AND 
WORD STORED 

• SECDED CODE 
GENERATED AND 
WORD STORED 

A read request is essentially a synchronous process. The requesting processor must wait 
for the data transmission to complete. The transmission does a SEeDED check and then is 
parity checked at the memory port before being routed to the processor. Errors detected up 
to this point result in a memory detected malfunction. The transmission is then parity 
checked at the processor port and an error here results in a processor detected 
malfunction. The now incorrect data continues to its destination and the process in 
execution should be handled as previously described. 

Two forms of write request are of interest: a partial write, in which only a portion of 
a 64-bit central memory word is written; and a full-word write, in which a 64-bit word is 
stored in central memory. 

On a partial write, the word being modified must first be fetched from central memory, 
then rewritten. The data transmission is checked for parity at the memory port and again at 
the memory array paks (actually at the SEeDED generator). The word to be modified is then 
fetched and checked for SEeDED. Finally it is updated, has a new SECDED code generated for 
it, and then is saved in central memory. Any error which is detected is recorded as a 
memory detected malfunction. 

On a full-word write the sequence is the same as for the partial write, except that the 
steps where the word is read from central memory and updated are omitted. Hence on a 
fu11-word write only parity errors can be detected. 

60459960 A 9-3 



A write request is essentially an asynchronous event. The processor issues the request 
to memory and continues processing. Any errors which are detected (by memory) are reported 
back to the processor at a point .in the processing which is not associated with the write 
operation which failed. Hence,it is virtually impossible to relate back to the instruction 
which is affected by the error. It is pointless therefore, to continue execution of the 
process in question. 

It is not a bad strategy when the errors are encountered, to. assume that a user job was 
being processed, and attempt to take the interrupt. If the error was transient or in a part 
of the machine that can be bypassed,. then the task can be aborted and processing can 
proceed, maybe after an appropriate reconfiguration has taken place. If a second occurrence 
of the failure is encountered during the interrupt, the processor will either try to trap or 
will halt. In the extreme case the processor will halt. 

When a DUE is present there may be other bits set in the MCR/UCR as a result of the 
error, all of which should be disregarded. 

Not ASsigned 

This bit is not set implicitly by any hardware condition, but may be set or cleared 
explicitly by software on Exchange or Branch on Condition Register as any other condition 
register bit. When set explicitly, this bit causes program interruptions in a manner 
identical to bit 48 of the MeR. 

ShOrt Warning 

A short warning interrupt is one of several asynchronous interrupts (external events) 
which can arise. In all cases like these the P Register saved by the interrupt points to 
the next instruction in sequence to be executed. In other words, it is always detected at 
the next point of no return ell-countered. A short warning interrupt indicates that within a 
minimum of 2.5 seconds a system critical component will fail and will automatically shut 
itself down. It is up to the operating system to take the necessary steps within this 
timeframe to ensure an orderly restart. System critical components include as a minimum the 
MG set (main power supply) and all mainframe elements (processors, memories and the IOU). 
In addition, customers have an option to purchase a Configuration EnviroJ;lment Monitor (CEM) 
which will detect and report impending shutdowns in key peripheral equipment such as the 
system disk(s) and controller(s). This interrupt signals an impending shutdown of a key 
equipment. It may be a power failure, but it could be a high-temperature condition or some 
other condition which is likely to cause damage to the equipment unless prompt action is 
taken. This interrupt will never cause the processor to halt. 

The short warning bit in the MCR remains set as long as the condition holds. 
even though an exchange interrupt occurs, and a new copy of the MCR is obtained, 
warning bit remains set. Hence, if the operating system monitor is entered with 
enabled, an immediate trap results. 

That is, 
the power 
the traps 

There is a second indication of a short warning which is intended for use in CYBER 170 
State. A bit is reserved for that purpose in the Processor Status Summary Register. The 
process of recording the condition is basically the same as that for the MCR. As long as 
the situation holds, the condition remains recorded in the Status Summary Register. In the 
event that it clears (a transient power loss) the condition goes away. This enables 
software to monitor for restart conditions. 

9-4 60459960 A 



Instruction Specification Error 

This is one of a class of errors where either the user has made an error (such as 
executing data) or is deliberately trying to tamper with the system. In either event an 
exchange interrupt is taken with the P Register saved (at JPS) pointing to the instruction 
which caused the error. The only case where a user may be deliberately trying to destroy 
the system is when the user attempts to execute a monitor instruction in job mode. These 
special instructions for use only by monitor are described in a later section. The 
interrupt enables the operating system to abort the job and report to the end-user the 
precise instruction, and address within the process being executed which caused the fault. 

Address Specification Error 

Certain instructions require a particular form of an address to be used. If the 
required form is not used this interrupt will occur, and the operating system can follow the 
actions suggested for an instruction specification error. Here also the P Register saved 
(at JPS) points to the instruction with the faulty address. In addition, the faulty address 
is loaded into the Untranslatable Pointer Register (UTP). 

C170 Exchange Request 

CYBER 180 is designed such that it may execute the instructions not only of CYBER 180 
but of other machines as well. CYBER 170 is the most important of these. On CYBER 170 the 
IOU can initiate an exchange jump in the CPU. However. when this happens on CYBER 180 it 
can only be executed if the CYBER 170 virtual machine is being executed. If the CYBER 180 
virtual machine is being executed. then an exchange request interrupt occurs and the CYBER 
180 monitor must then exchange to the CYBER 170 virtual machine in order for the request to 
be satisfied. This is an asynchronous interrupt and the P Register stored (at JPS) by the 
interrupt is set accordingly. 

Access Violation 

This interrupt occurs when a user attempts to access code or data to which he has not 
been granted access privelege. The CYBER 180 protection mechanism is described fully in the 
section dealing with virtual memory. It is a mechanism which is built into the hardware and 
any attempt to circumvent it leads to this interrupt. This is the same as an instruction 
specification error in that the P Register (saved at JPS) points to the instruction which 
attempted to violate the protection mechanism. 

60459960 A 9-5 



Environment Specification Error 

This interrupt indicates that the environment has been destroyed in some way, typically 
by a p,rogramming error. The destruction is s\lCh that an illogical or impossible situation 
develops and further processing is impossible. The most common cause of this is the 
destruction of the information in the stack by a user. Since the stack has read/write 
access and contains dynamic variables along with link information for calls and returns, 
this is not uncommon. Further processing is impossible and the operating system must abort 
the job. This interrupt behaves exactly as an instr\lCtion specification error with one 
exception. In most cases the P Register saved during the interrupt points to the 
instr\lCtion which caused the error. However, this error can arise when the processor is 
attempting to trap or exchange on another interrupt. If a trap was being attempted but 
could not complete, then an exchange will be attempted if the machine is in job mode. If 
the exchange is successful, then the P Register saved (at JPS) points to the instruction 
which originally caused the trap and the trap exception bit will be set. The operating 
system must abort the job at this time, but should check for the trap exception and then 
report to the user: 

a) the instruction executed or about to be executed when the original interrupt occurred 

b) the nature of the original interrupt 

c) the final reason for the job abort - which is the environment specification error 

If the machine is in monitor mode when the trap exception occurs it will halt, since the 
monitor's environment has been destroyed. 

For exchange interrupts the situation is different. If an exchange from monitor to job 
is attempted such that the job in question is not permitted to execute the given virtual 
machine to which it is exchanging, then the following happens: 

a) The exchange from monitor to job completes and an environment specification error is 
detected. 

b) An exchange is taken immediately from job to monitor. 

That is, the environment specification error is associated with the job and recorded in the 
exchange package stored at JPS. Also. the P Register saved in this exchange package is 
identical to that which was loaded from JPS when the origin~l exchange from monitor to job 
was attempted. 

If a virtual machine mismatch occurs on an attempted exchange from job to monitor, then 
the hardware must have failed in some serious, undetected manner. The processor has no 
recourse other than to halt. This situation is unlikely to occur and is also difficult to 
detect. There will be no indication in the processor error logs and there will be no 
indication in either the exchange package at JPS or that at MPS. An investigation of the PVA 
in the P Register at the time of the halt (by the MCU) and an investigation of the Monitor 
Condition Register (and Monitor Mask Register), followed by a check on the registers 
controlling virtual machine switching should reveal the nature of the problem. If 
unexplained processor hal ts are to be avoided. then the code in the MCU should include a 
check for these conditions. 

9-6 60459960 A 



External Interrupt 

An external interrupt is an asynchronous interrupt. It is. a signal to a processor that 
another processor requires some action to be performed. Precisely which processor is making 
the request and the nature of the request must be relayed by software convention. A message 
buffer must be set up in central memory to contain this information. Once the request is 
satisfied. an exchange jump back to job continues normal processing. 

Page Table Search Without Find 

This is a simple page fault - a user has tried to access a page which is not in real 
memory. The operating system must arrange for the page to be brought into memory before 
processing can continue. This condition is always caught in the prevalidation of an 
instruction. that is, before the point of no return. Consequently, the P Register saved by 
the interrupt (at JPS) points to the instruction which could not be executed because of the 
missing page. In addition, the Untranslatable Pointer register (UTP) contains the address 
(PVA) which gave the page faul t. Hence. in order to satisfy the page faul t the operating 
system does not have to trace back through the code being executed. It can gain all the 
information it requires from the UTP. Once the page fault is satisfied, an exchange back to 
job continues normal processing. Page faulting does not always result in loading a fresh 
page in memory. The operating system must apply various safeguards to ensure that a process 
that is running away in a write loop does not consume all of real memory. Typically, this 
can be done by limiting the size of the segments being used by the user. 

One last point: certain code segments of the operating system must be wired down, that 
is, not paged. This is to avoid the recursion of faults which could otherwise occur. For 
example, the Page Fault Handler, itself, cannot get a page fault •. Such a condition normally 
causes a processor halt via the hierarchy mechanism of the CYBER 180 interrupt system. 

System Call 

Unlike the conditions discussed to this point, the system call condition is not an 
interrupt condition but is a flag for the operating system monitor. The value of the 
corresponding bit in the MOnitor Mask register has no affect on the setting of this flag. A 
process executing in job mode may need to make a request on the operating system monitor for 
some action. To do this, the process stores a request message in a message buffer. then 
issues an exchange jump. This switches the machine state from job to monitor, and to all 
intents and purposes appears to monitor as if an exchange interrupt occurred. An 
investigation of the MCR at JPS reveals the system call flag set, and the necessary action 
is taken. The P Register saved during the exchange (at JPS) points to the instruction 
following the exchange jump, hence an exchange back to job continues normal processing. 
Unlike true interrupt conditions. if this flag is set by the special system instruction 
which modi.f1es the MeR, then an interrupt does not result. 

Care should be taken by the interrupt handler to ensure that only the MeR is checked for 
that condition. This is different from the normal mechanism in which the logical product of 
the MM and MeR is checked. The simplest procedure for the operating system to follow is to 
ensure that the MM bit (bit 10) is always set on exchange to job. 

604599.60 A 9-7 



System Interval Timer 

The System Interval Timer (SIT) resides in a processor state register. It is the single 
timer for the entire system. It is a 32-bit counter which is decremented once every 
microsecond. When it counts to zero this interrupt is taken. This is an asynchronous 
interrupt and the P Register stored at JPS points to the instruction following the one being 
executed when the SIT decremented to zero. The SIT is intended to be used for time slicing 
and accounting •. Once the counter has decremented to zero it does not stop counting. That 
is ,it will next decrement to -1 (2**32 -1) and continue decrementing. 

Invalid Segment/Ring Number Zero 

The invalid segment condition bit in the MeR combines two conditions. The first of 
these is a true invalid segment and the second is an unlinked pointer, ring number zero. An 
invalid segment condition arises when either a segment descriptor table entry (SDE) has been 
flagged as an invalid entry (VL field mOO), or when the Segment Table Length (STL) has been 
exceeded. This latter condition occurs when the Segment Number (SEG) portion of a PVA is 
greater than STL, that is, when SEG > STL. For these conditions the P Register stored at 
JPS points to the instruction which attempted the central memory access which gave rise to 
the condition. 

A ring number zero condition arises when an unlinked pointer has been loaded. The 
operating system must arrange for the loader to form the necessary links as described 
previously in the section dealing with dynamiC loading. In all cases the unlinked pointer 
is placed in the Untranslatable Pointer Register (UTP) and contains all the information 
necessary for the operating system to form the appropriate link. When an unlinked pointer 
is loaded, then the load completes before the interrupt is taken. Hence, the P Register 
stored atJPS points to the instruction following the load instruction which loaded the 
unlinked pointer. This means the unlinked pointer was loaded into an A Register and the 
operating system must take care to replace this register value with the correct, linked 
pointer. 

Outward Call/Inward Return 

The ring hierarchy has been established such that procedures in inner rings may access 
code and data in outer rings (rings with higher numbers and lower privilege), and procedures 
in outer rings may CAU. on procedures in inner rings in a controlled manner. This has been 
described in the section on CALL/RETURN. This condition has been provided to prevent a user 
from attempting an outward call or an inward return, and thereby causing a possible security 
breach. The PRegister stored at JPS points to the CALL or RETURN instruction in question, 
and the operating system must either abort the job or simulate the required call. This 
latter process has already been described. 

9-8 60459960 A 



This condition bit sets when the processor encounters a hardware error which was 
corrected by the hardware. This includes correctable errors in the processor itself and may 
include, if selected, single bit errors in central memory. Examples in the processor 
include a successful instruction retry, cache or MAP parity errors, and so forth. These 
vary from processor type to processor type. These correctable errors are also reported in 
the Status Summary register (for processor or memory) hence it is not necessary for the 
processor to be interrupted on every correctable error. The choice may be made to ignore 
this interrupt (by not setting the appropriate bit in the Monitor Mask register) and treat 
these errors in an asynchronous manner via the Maintenance Control Unit (MCU) - a designated 
PP in the IOU. The P Register stored at JPS points to the next instruction to be executed. 
That is, if the interrupt is taken, then the operating system monitor after processing the 
interrupt has only to issue an exchange to continue normal processing. 

Trap Exception 

Trap exception is similar to system call in that it is not an interrupt condition but is 
a flag to the operating system. The flag indicates that for some reason a trap interrupt 
was attempted but could not be completed because a condition was encountered which prevented 
it. Hence, at least two other bits will be set in the MCR whenever the Trap Exception bit 
is set, one being the bit which prevented the trap from completing, and the other being the 
bit that caused the trap. An example of this process is an arithmetic overflow encountered 
and a trap attempted. However, in attempting to store the Stack Frame Save Area a page 
fault in the Stack is detected and an exchange interrupt taken. After satisfying the page 
fault the operating system exchanges back to the user (taking care to clear the Trap 
Exception bit in the MCR), whereupon the trap will take place since the condition has not 
been removed from the UCR. The P Register stored at JPS contains the PVA which would have 
been laid down in the Stack Frame Save Area had the trap been successful. 

General Notes on the MCR: 

• The condition bits in the MeR have been sequenced in a priority order from left to 
right with the most serious conditions towards the leftmost end of the register. 
The recommended (but not mandatory) order of processing is in this sequence. 
Consequently, the fatal system conditions occupy the first three bits in the 
register and the trap exception flag the last. 

• Whenever an invalid pointer is encountered for whatever reason, an interrupt occurs 
and the invalid pointer is placed in the Untranslatable Pointer Register. 

• Interrupts which may occur in multiples of particular interest are the four which 
cause entries in the UTP: Invalid Segment/Ring Number Zero (ISG), Address 
Specification Error (ASE), Access Violation (AV), and Page Table Search Without Find 
(PSWF). If these occur in combination, then the following precedence applies to the 
PVA entered in the UTP: ISG, ASE, AV, PSWF. 

60459960 A 9-9 



USER CONDITION REGISTER (UCR) 

Figure 1-9 lists the conditions recorded in the User Condition Register. Fo110wingare 
some notes on these conditions. Rather than repeat information. the arithmetic conditions 
have been grouped into classes which describe their behavior. 

Privileged Instruction Fault 

This is really a monitor condition and could have been implemented in the MCR. However. 
by recording it in the UCR there is an opportunity for handling the condition from within 
the user's address space. This is the first of four monitor conditions which are recorded 
in the UCR. They are all characterized by the fact that they cannot be stacked and are 
termed the nonstackable conditions. In practice this condition, which arises because a user 
has attempted to execute a privileged instruction in a nonprivileged mode, will normally be 
handled by the operating system directly. For a discussion on the privileged modes of 
operation of CYBER 180, refer to section on system instructions. 

The P Register stored in the Stack Frame Save Area (SFSA) points to the instruction 
which gave the fault. The execution of this instruction is inhibited. 

Unimplemented Instruction 

This is the second monitor condition which is flagged in the UCR. It provides a 
capability for emulating a model dependent instruction with suitable software. Since the 
emulation should occur from within the user's address space a trap rather than an exchange 
is taken. TheP Register stored in the SFSA points to the illegal instruction which caused 
the trap. 

Free Flag 

An example of the use of this flag is given in the section on CALL/RETURN mechanism. In 
that case an outward CALL was simulated by the operating system from within the user's 
address space. The transition from the monitor's address space to the user's address space 
was made by setting the Free Flag in the exchange package at JPS, and executing an exchange 
jump from monitor to job. In the preva1idation of the next instruction to be executed in 
the user's job, the Free Flag is detected and a trap taken. The P Register stored in the 
SFSA points to the next instruction to be executed in the user's code. This UCR condition 
is unique in that it takes priority over MCR conditions which may arise at the same time. 

Process Interval Timer 

The Process Interval Timer (PIT) is a 32-bit counter which decrements once every 
microsecond. Each process has a unique counter when it is in execution. Whenever a PIT 
reaches zero a condition bit sets in the UCR, and if enabled, a trap is taken. The PIT 
continues counting at this time. One microsecond after the PIT has zeroed, the counter 
assumes a value of -1 (2**32-1) and the decrementing continues. This condition is an 
asynchronous interrupt similar to the SIT which is recorded in the MCR. The P Register 
saved in the SFSA points to the next instruction to be executed. In other words, when the 
trap handler has completed its processing and issued a RETURN. normal instruction execution 
resumes. 

9-10 60459960 A 



Inter-ring pop 

This is the third monitor condition which is recorded in the UCR. The pop instruction 
is described in the section on CALL/RETURN mechanism. Its function is to dispose of stack 
frames, typically during tidy-up when a process is being terminated. The pop instruction 
merely moves pointers (DSP,CSF,PSA,TOS) which point at a given stack. It does not contain 
any of the safeguards required when crossing rings. Hence. if a ring crossing is attempted 
in the tidy-up process, a trap is taken and software procedures are invoked to ensure the 
ring crossing takes place in a controlled manner. The P Register saved in the SFSA points 
to the pop instruction which attempted the ring crossing. and whose execution was inhibited. 

Critical Frame Flag 

This is the fourth and final monitor condition which is recorded in the UCR. The 
Critical Frame Flag (CFF) is a software flag which is acted on by the hardware. Software 
sets this flag to prevent the disposal of certain stack frames which may be shared by 
separate tasks running in the same address space. The flag is cleared by CALL and trap so 
that each instance of a procedure begins in a noncritical state. It is likewise restored on 
a POP or a RETURN in order for the criticality of the current stack frame to be determined. 
This condition provides an interrupt into the user's address space and the trap handler must 
determine how the stack frame can be disposed. In other words the criticality of the stack 
frame is set by software convention, and any alteration of the criticality or disposal of 
the stack frame must be under the control of the same software. The P Register, saved in 
the SFSA. points to the RETURN or POP instruction which attempted to eliminate the critical 
stack frame. 

Keypoint 

The keypoint condition indicates that software is to collect hardware performance data 
at this point of the program. For a full discussion of this topic see the section dealing 
with Performance Monitoring. In this case the P Register saved in the SFSA points to the 
instruction following the keypoint instruction which caused the trap. 

General Notes: 

a) The first seven conditions recorded in the UCR have been described above. They 
comprise four monitor conditions and three user conditions. The bits in the User 
Mask Register (UM) corresponding to these seven conditions are permanently selected 
by the hardware. Hence, if one of these conditions arises, and traps are enabled, 
then a trap will be taken. 

b) For the four, nonstackable, monitor conditions, execution of the instruction causing 
the trap is always inhibited. Furthermore, the offending instruction is rarely if 
ever executed. However, since the P Register saved in the SFSA points to the 
offending instruction, the trap handler must advance the value of the P Register 
saved in the SF SA , before issuing a RETURN. 

60459960 A 9-11 



This condition indicates that a debug condition was met such as a storage reference made 
or branch taken. For a full discussion of the facilities in this area. see the section on 
debug. The P Register saved in the SFSA points to the instruction which caused the trap to 
occur. 

Invalid BDP Data -_._-_._--
This condition indicates that a BDP instruction 'encountered data which did not match the 

required format. In this case the P Register saved in the SFSA points to the instruction 
which encountered the invalid BDP data. Fora full discussion of required formats. refer to 
section on BDP instructions. 

Arithmetic Conditions 

The remaining seven user conditions are arithmetic conditions. 

Divide Fault 
Arithmetic Overflow 
Floating Point Indefinite 
Arithmetic Loss of Significance 
Exponent Overflow 
Exponent Underflow 
Floating Point Loss of Significance 

They fall into two classes depending on whether the P Register stored in the SFSA points to 
the instruction which caused the fault or whether it points to the instruction following the 
one which caused the fault. In addition, the instruction mayor may not be executed before 
the trap is taken. In general, the intent of CYBER 180 is to be able to identify the 
instruction which caused the fault. This means that the P Register saved in the SFSA 
normally points to the instruction in question. This is particularly important since it is 
impossible to back up the instruction stream when an instruction has executed and the 
P Register has been advanced. (It follows automatically that the instruction execution is 
normally inhibited.) However. in the case of floating-point instruc tions the following is 
apparent. If the result is not indefinite or infinite. but is an exponent overflow or 
underflow condition. then it will be a true value even though it is out-of-range of the 
standard floating-point numbers. In the general scheme of events this Is unimportant. but 
code can be provided to correct the situation without loss. 

The vector 
involved. 
The vector 
completion 

instructions require some special attention because of the multiple operands 
Floating-point vectors may encounter several (up to four) of these conditions. 
instruction execution is not inhibited and the interrupt occurs after the" 
of the vector instruction. 

60459960 A 



• If a single condition is encountered. the P Register saved in the SFSA will follow 
the pattern for scalar instructions. 

P points to the following instruction for: 

Exponent Overflow 
Exponent Underflow 
Floating Point Lost of Significance 

P points to the vector instruction which encountered the interrupt for: 

Divide Fault 
Arithmetic Overflow 
Floating Point Indefinite 
Arithmetic Loss of Significance 

• If multiple conditions are encountered which require different values of P, the P 
will always be set to point to the instruction following the vector instruction 
which encountered the multiple conditions. 

Since the conditions themselves are self-explanatory the discussion below groups them 
into two major categories and is restricted to irregularities. 

Conditions Where the Instruction is Inhibited 

For this class of arithmetic faults. the execution of the instruction which caused the 
fault is inhibited. and the P Register saved in the SFSA points to that instruction. 
Exceptions are noted in the following text. The conditions which fall into this category 
are: 

Divide Fault (integer. decimal. floating-point) 
Arithmetic Overflow (integer. decimal) 
Floating-point Indefinite 
Arithmetic Loss of Significance (integer,decimal) 

General Notes: 

a) Floating-point indefinite falls into this category since it can arise on a branch 
instruction (32-bits) as well as on an arithmetic operation (16-bits). Hence, it is 
not possible to backup the instruction stream. 

b) A divide fault occurs either on a divide by zero or when the divisor is an 
unnormalized floating-point number. The latter case does not necessarily result in a 
divide fault, but the single and double precision quotient operations do not 
prenormalize. (However, all floating-point operations postnormalize to the extent 
that normalized numbers will emerge if normalized numbers are input to the 
floating-point unit.) Also, if traps are disabled or the divide faul t interrupt is 
not selected, then the instruction is still inhibited and execution continues at the 
next instruction in sequence. 

c) Traps on user conditions have been included for convenience. They may be selected 
or disabled by the user via the UM, and cause an interruption to the normal 
execution sequence. When the condition has not been selected but is encountered, 
the appropriate bit is still set in the UCR, and may be tested and cleared by a 
special instruction: Branch on Condition Register. This instruction is discussed in 
the section dealing with system instruction. 

60459960 A 9-13 



Conditions Where the Instruction is Executed 

For this class of arithmetic faul ts, the execution of the instruction which caused the 
fault is completed, and the P register, saved in the SFSA, points to the next instruction. 
The conditions which fall into this category are: 

-Exponent Overflow 
-Exponent Underflow 
-Floating Point Loss of Significance 

General Notea: 

1) It is important that the instructions during which the condition arose are executed, 
since the CYBER 180 floating point format has been chosen such that, even though an 
exponent overflow or underflow occurs,a true result is returned. This is explained 
in more detail in the section on floating-point instructions. It provides a 
programmer with the opportunity to scale variables and continue processing if 
desired. 

SIMULATED INTERRUPTS 

There are two ways in which an interrupt can be generated artificially. These are by 
setting a bit in the UCR (by a Branch on Condition Register instruction), and by setting a 
bit in the OM when the corresponding bit is already set in the UCR. In both instances, the 
P Register saved in the SFSA points to the instruction following that which set the bit in 
either a Mask Register or a Condition Register, that is, following a Branch on Condition 
Register (BCR) or a copy. It is not good practice to set bits in a UCR. This facility has 
been included as a diagnostic aid to verify that the interrupt system is functioning 
correctly. 

MULTIPLE INTERRUPTS 

When more than one interrupt condition arises at one time the following rules apply: 

a) Exchange interrupts are always serviced before trap interrupts by the hardware. 

b) When multiple interrupts of the same 
recorded in the condition registers. 
dependent: some processors recording 
others recording them one at a time. 
multiple, simultaneous interrupts. 

type occur simultaneously, they are all 
The precise mechanism is processor model 

all coincident conditions simultaneously, 
The interrupt handlers must accommodate 

Mul tiple interrupts arise because of the asynchronous nature of certain interrupt 
conditions. Since the P Register saved by the interrupt is intended to pOint to either the 
instruction which caused the fault or to the following instruction, it is important to 
understand what is contained in that register. The following general rules should help. 

9-14 

a) A Detected Uncorrectable Error (DUE) always takes precedence and leaves the 
P Register in an undefined state. 

60459960 A 



b) The synchronous interrupts take priority over the asynchronous interrupts. 

Care must be taken when designing and generating interrupt handlers, and these rules 
must be applied at all times. The following example will clarify the pitfalls. 

When an asynchronous interrupt occurs (for example, a PIT), the P Register saved in the 
SFSA points to the next instruction to be executed. Hence, the trap is tak t-! 11 , pl"ncessed. 
and a RETURN issued, which continues normal processing. However, if a PIT occurs 
simultaneously With, for example, an unimplemented instruction, then the P Register saved in 
the SFSA points to the unimplemented instruction. If only the PIT is acted on, then the 
RETURN will cause the unimplemented instruction fault to be detected again. However, if 
only the unimplemented instruction was acted on the PIT would never be seen. This Is 
because on a trap the UCR is saved in the SFSA and the live UCR is zeroed. It is the live 
UCR which carries back across the return. This is different from the exchange mechanism 
when a fresh copy of the condition registers is invoked (either from the exchange package at 
MPS, or that at JPS) for each exchange interval. If an exchange condition is processed. but 
the bit in the condition register in the exchange package in memory is not cleared, then an 
exchange loop will follow. 

Probably the safest rule to follow is to process all conditions which have arisen, and 
which have been selected, at one time. 

Finally, software cooperation is needed when interrupts are caused artificially (for 
example, by setting the UM dynamically). If the normal action taken by the interrupt 
handler is to advance the P counter, then in this case an instruction will be omitted. For 
example. in this sequence 

ENTE XF ,X'E6~ 
ENTP XE, 1 
CPYXS XE, XF 
LX XF, A5, ABC 

the LX instruction may be spaced over by the interrupt handler. To avoid such an 
occurrence, it is recommended that a do nothing (CPYXX XO,XO) be inserted immediately 
following the instruction causing the trap - in this case (CPYXS XE,XF). 

60459960 A 9-15 





CENTRAL PROCESSOR INSTRUCTIONS 

Complete details of the operation of the central processor instructions for CYBER 1BO 
may be found in the MIGDS. It is not the intention to repeat all the information here. 

10 

This section will confine itself to features of these instructions which are unique to CYBER 
lBO, and it will highlight some characteristics about which questions have frequently been 
asked. 

REGISTERS 

CYBER l,BO has 33 general purpose registers. These are the P Register, 16 64-bit 
X Registers. and 16 4B-bit A Registers (figure 10-1). 

The P Register or Program Address Register contains the PVA of the instruction in 
central memory during the time it is read, interpreted and executed by the processor. It 
also carries information relating to the privacy of the code segment being executed. This 
information contains the current ring of execution and the global .and local keys of the 
process. 

The 16 X Registers are named XO-XF using hexadecimal notation. They are general purpose 
registers used to hold logical quantities • signed integers and signed floating-point 
numbers. They have a left half and a right half and there are instructions which operate on 
the entire 64-bit register. and other instructions which operate only on the lower 32-bits 
(bits 32-63) in which case the register is referred to as X-Right. Instructions which 
operate on the lower 32-bits of an X register do not modify the upper 32 bits. 

The 16 A Registers are used to hold PVA's to address operands in central memory. They 
are referred to as AO-AF and are identical to the low-order 48-bits of the P Register. 
There is no implied relationship between the A Register and X Register as on CYBER 170. 

60459960 A 10-1 



P REGISTER FORMAT 
o 2 8 10 16 20 32 63 

~ GK SEG ] BN 

A REGISTER FORMAT - PYA 
16 20 32 63 

RN SEG BN 

X REGISTER FORMAT 
0 3132 63 

I X-LEFT X-RIGHT I 
Figure 10-1. General Purpose Registers 

GENERAL STRUCTURE 

Bit numbering on CYBER 180 processors is left to right zero origin. This system applies 
to words in memory. bytes in words. bits in bytes. bits in registers. and so forth. 

CYBER 180 is a byte addressable machine - unlike CYBER 170 which is a word addressable 
machine. For this reason there is no No Operation (NOP) instruction. All instructions 
consist of an integral number of bytes and instruction parcels can span word boundaries or 
page boundaries but not segment boundaries • Each segment is a unique entity and has no 
relation to the segments numbered immediately prior to or following it. 

CYBER 180 instructions are noninterruptible. The processor always prevalidates an 
instruction before executing it. It is not possible to have a page fault during the 
execution of an instruction. This design philosophy has been chosen to simplify the 
development of CYBER 180 processors and is directly responsible for restrictions on the 
lengths of certain operands. These restrictions are particularly in evidence in the BDP 
instructions. 

10-2 60459960 A 



Another major difference between CYBER 180 and CYBER 170 is that CYBER 180 instructions 
are basically 2-address instructions whereas CYBER 170 instructions are basically 3-address. 

INSTRUCTION GROUPS 

There are four groups of instructions on CYBER 180 as follows: 

General Instructions (76) Load/Store, Integer Arithmetic, Logicals, 
Branches, Enters, Copies, Address Arithmetic, 
Shifts, and so forth. 

BDP Instructions (18) Moves, Compares, Decimal Arithmetic, Translate, 
Edit. 

Floating-Point Instructions (16) 

System Instructions (19) 

Floating-Point Arithmetic, Branches, Compare. 

Subroutine link, page table management, cache 
management, maintenance register copies, 
interlocks, and so forth. 

These groups are discussed separately in that sequence. 

60459960 A 

NOTE 

This document does not include a discussion 
of CYBER 180 vector instructions. 

10-3 



GENERAL INSTRUCTIONS 

Four instruction formats (figure 10-2), one one-parcel and three two-parcel instructions 
are used for the general instructions. These instructions are termed jkiD, SjkiD, jk and 
jkQ instructions. j,k and i refer to register subscript designators such as Xj, Ak, Xi. Q 
is always a signed (2's complement) 16-bit constant, D is an unsigned 12-bit constant 
(except when used in the shift and scale instructions), and S is a suboperation. 

jkiD INSTRUCTION FORMAT 

o 8 12 16 20 31 

OP D 

SjkiD INSTRUCTION FORMAT 

o 5 8 12 16 20 31 

D 

jk INSTRUCTION FORMAT 

o 8 12 15 

OP 
I· 

jkQ INSTRUCTION FORMAT 

o 8 12 16 31 

OP Q 

Figure 10-2. General Instruction Formats 

10-4 60459960 A 



LOAD/STORE BYTES, WORDS, BITS 

These instructions load data into and store data from X Registers. Points to be noted 
are: 

1) If XO is specified as a register for index arithmetic, it is interpreted as no index. 

2) If the information to be loaded is less than a full register (64-bits) then the 
information is loaded right justified, zero fill. 

3) If a 64-bit word is loaded or stored the data must be located on a full word 
boundary or an address specification error will be flagged. 

4) The address of the data to be loaded or stored is the address of the leftmost byte 
in memory for load/store byte. 

LOAD/STORE A REGISTER 

A Registers are used to address operands to be fetched from or stored in central 
memory. When these operations occur a security check is made to ensure that the privacy of 
the data is maintained. Part of that security check consists of ensuring that data is not 
accessed outside a segment's ring bracket. The ring number in the PVA held in an A Register 
is used for this purpose. It is possible to change a ring number in a PVA held in central 
memory. However, that PVA can only be used via an A Register, hence when an A Register is 
loaded, the processor ensures that a ring number smaller than that permitted is not entered 
in the register. It accomplishes this by selecting the largest ring number from: 

(a) The six bytes addressed in central memory. 

(b) The current Aj Register. 

(c) The SDE.R1 pointed to by the segment number in Aj Register. 

and inserting that into the PVA.RN of the destination register (figure 10-3). 

60459960 A 10-5 



BN 

CENTRAL MEMORY 

Figure 10-3. A Register Ring Voting 

The importance of the ring number assignment is discussed, in depth. in the section on 
security. In that section, software conventions are also described which are necessary if 
the integrity of the system is to be maintained. 

LOAD/STORE MULTIPLE REGISTERS 

These instructions permit the simultaneous loading and storing of a set of A Registers 
and a set of X Registers. Points to note are: 

• One X Register (XO) is lost to the process itself. It holds the designations of the 
register sets to be stored or loaded. 

• Registers to be saved or restored must lie on a full-word boundary in central 
memory. Failure to specify a full-word address will result in an address 
specification error. 

• A single set of contiguous A Registers, and a single set of contiguous X Registers 
maybe saved or loaded by these instruction. 

• When a set of A Registers is loaded, ring number validation occurs as described in 
the section on single A Register loading. 

10-6 60459960 A 



• If a single A Register or a single X Register is to be loaded/stored, then the start 
and end designators must be equal. 

• If no A Register or no X Register is to be loaded/stored, then the starting 
designator must be set greater than the end designator. 

INTEGER ARITHMETIC 

Integer arithmetic is fairly standard. A full set of operations is provided for both 
the 32-bit integers and the 64-bit integers. 

• Integer arithmetic is 2'5 complement arithmetic. Hence (-X .NE. NOT X), minus zero 
(-0) does NOT exist, and the magnitude of the largest negative number is one greater 
than the magnitude of the largest positive number. 

• The major difference between the 32-bit operands and the 64-bit operands is the 
point at which overflow is detected. 

• No rounding occurs on any of the instructions. 

• The branch tests for less than and less than or equal to are generated by switching 
the operands in the greater than and greater than or equal to tests. 

• The results of an integer compare are placed in bits 32 and 33 of register 
Xl-Right. These bit settings are 00, 01 and 11 for Xj equal to, greater than and 
less than Xk respectively (figure 10-4). The remainder of Xl-Right is cleared, 
hence a nonzero branch on Xl-Right detects a not equal result. 

Xj 

Xk 

1000 01 EQUAL 

X1R 1010 01 Xj GREATER THAN Xk 

1110 01 Xj LESS THAN Xk 

Figure 10-4. Results of Integer Compare 

60459960 A 10-7 



• Register XO (or XO-Right) cannot be tested explicitly by a branch or compare 
instruction, since the use of this register by any of these instructions is 
interpreted as zero. The designation XO is used to test other registers for a 
nonzero or zero value. If it is necessary to test XO it must first be copied to 
another register. 

• The range of 64-bit operations is provided to satisfy the requirements of FORTRAN, 
and other processors dealing with large integer values. In particular, numerical 
analysis, commonly conducted in unnormalized floating point arithmetic on CYBER 170 
and other machines, is expected to be performed using this arithmetic. 32-bit 
integers are designed for U$e in index and address arithmetic, the overflow 
condition arising at the upper byte number address within a segment. 

• All branches must be to a parcel boundary or an address specification error is 
detected. 

BRANCH INSTRUCTIONS 

Conditional with Increment 

This instruction (figure 10-5), which operates on 64-bit operands is intended for use by 
FORTRAN in DO loop compilations. Points to note are: 

• Whenever the branch is taken, Xk is incremented by one. 

• If Xj is specified as XO then all zeros is assumed by the hardware. The intent here 
is to use a negative index to count through zero. 

Xk • Xk • 1 

BRANCH TO 
(P+i!*') 

NO 

Figure 10-5. Conditional Branch with Increment 

10-8 60459960 A 



Conditional, Ak 

The purpose of this instruction is to compare two A Registers (figure 10-6). However, 
since A Registers contain only PVA's, and PVA's have three components, special actions are 
required. Points to note are: 

• The ring numbers of the PVA's form no part of the comparison. 

• Segment number fields (SEG) are compared strictly on an equality/nonequality basis. 

• Byte numbers (BN) are compared as signed 32-bit, 2's complement integers. 

NO 

Unconditional Branch, Indexed 

NO 
YES 

nR-ODD--D 

BRANCH CXIT 
no P=i!*Q} 

Figure 10-6. Branch Conditional, Ak 

The reach of this instruction is controlled by the index value in Xk-Right. It is 
expected that the 24-bit operand, enter instruction will be used in conjunction with this 
branch. 

60459960 A 10-9 



Unconditional Branch, (A) Indexed 

The branches discussed so far are all branches made relative to the current value of the 
P Register. The branches occur within a segment and no checking on the privacy has to be 
made when the branch is taken since the segment is the basis of the privacy in the system. 
One instruction, the Intersegment Branch (figure 10-7), is provided to enable branches to be 
taken directly from one segment to another. 

SEG BN 

Aj REGISTER 

Figure 10-7. Intersegment Branch 

The following actions occur in the execution of this instruction (figure 10-8). 

1) The P Register byte number is set to the byte number of Aj plus an index 
(2*Xk-Right) • 

2) The P Register segment number is set to the Aj segment number. 

3) The P Register ring number is not changed. 

4) The P Register global keys are set as follows: 

10-10 

Old P-Reg I Segment Descriptor I New P-Reg 
G-Key I (Aj SEG) G-Key I G-Key 

----------+--------------------+----------
o I 0 I 0 
o I K I K 
K I 0 I K 
K I K I K 

60459960 A 



The new P Register local key is taken from the segment descriptor local lock. 

SEGMENT A SEGMENT B 
GLOBAL KEY = D {MASTER} GLOBAL KEY = b 

P-GK = D 
BRANCH {SIR CALL} P-GK = b 

P=GK = b ... -
BRANCH 

{SIR RETURN} 

Figure 10-8. Intersegment Branch - Global Key Settings 

This instruction can be used as a short subroutine call. In general, the code for CYBER 
180 is collected into a series of pure procedures (nonmodifiable code) which may be entered 
recursively. Special CALL and RETURN instructions are provided for the purpose. However, 
since these instructions require considerable access validation, and stack processing 
(retention of the environment) the overhead is relatively high. To circumvent this overhead 
for short general purpose subroutines (that is, functions), the intersegment branch can be 
used. When used in this manner, the return address must be loaded into an A Register prior 
to the branch. However, care must be exercised. The global key of the new P Register is 
always set to the lower privilege of the two segments involved. Hence, if an intersegment 
branch is made to a segment with less privilege than the current one, when a return is made 
(via. another inter segment branch) the original P Register (for the original segment) will 
have a global key with less privilege than it started out with (figure 10-8). Local keys 
will not exhibit this characteristic. This instruction must work in this manner, since a 
user can never increase his privileges without the express action of the operating system. 
Since. privilege is inviolate from the hardware point of view. care must be exercised. 

In practice, this situation should never arise due to the intended usage of global 
Key/Locks and the associated software conventions. Refer to section on Key/Lock mechanism. 
Hence. procedure calls within the same ring between mutually suspicious subsystems are not 
permitted, and calls inter-ring must use the CALL/RETURN mechanism. 

One last point. the next instruction fetch is included in this instruction validation 
procedure. Hence. if the segment being branched to does not have execute access, or its 
ring bracket is inside that of the old PRegister ring number, then an access violation will 
result. 

60459960 A 10-11 



COPY INSTRUCTIONS 

These instructions are straightforward. Copy X to X, A to A, X-Right to X-Right, A to X 
and X to A. The only point of note concerns the Copy X to A. Here again the question of 
privacy arises. More privilege must not be granted via the ring number portion of the PVA 
than is permitted. To prevent this the hardware enters the larger of the ring numbers found 
in the P Register and the X Register into the destination A Register (figure 10-9). 

P REGISTER 
BN BN 

Figure 10-9. Copy X to A Operation 

ADDRESS ARITHMETIC 

These instructions modify the value of the PVA held in an A Register. The ring number 
field is never changed and, in general, the segment number is replaced and the byte number 
modified. Points to note are: 

• 

• 

10-12 

The Copy P with Indexing and Displacement will copy the P Register, less its keys 
and ring number into an A Register if the X Register index specified is XO and the 
displacement is zero. 

The Copy A with Displacement, Modulo is intended to modify an A Register and force 
the resul ting byte number field to a byte parcel, half-word or full-word boundary 
(figures 10-10 and 10-11). This is done by truncating the appropriate number of 
bits in the least significant portion of the BN field. The most common usage is 
expected to be to force to the next boundary. In this case the D field of the 
instruction would be set to the complement of the j-field. For example, to force an 
address to the next full-word boundary D would be 7 and j zero. In this instruction 
the D field is a positive integer constant. It is zero extended, not sign extended 
to the left when it is added to the BN field. 

60459960 A 



BN I 
Aj 

I I R~ SEG BN .. 
1 

Ak 

+Q f 

Figure 10-10. Address Increment 

FILL 

{four bits: DODO} 

o 
AND II 

Figure 10-11. Address Increment, Modulo 

60459960 A 10-13 



ENTER INSTRUCTIONS 

These instructions, in general, operate on 64-bit X Registers. Three instructions enter 
positive or negative 4-bit values obtained from the j-field of the instruction, and enter a 
16-bit signed integer into the 64-bit register. 

Four other instructions deal with entering values into XO and Xl. The first two 
instructions enter 8-bit logical quantitites into XO and Xl respectively. The third 
instruction enters a 24-bit quantity into Xl. The value entered is a 24-bit signed integer 
and it is intended that this instruction be used in conjunction with the unconditional 
indexed branch instruction to extend the reach of the branch. The range of the 24-bit 
integer is: 

and since the branch works on a parcel boundary (indexed by 2*XI-Right) the effective reach 
is: 

-224 ~ reach ~ (224-2) 

or roughly +/- 16,000,000 bytes. This is not a full segment but it is an enormous reach. 
This is important since the reach of the conditional branch instruction is limited to the 
size of the Q-field. In bytes this is: 

-216 ~ reach ~ (216-2) 

or roughly +/- 65,000 bytes, which is not enough for a generalized compilation process. 
When difficulties are encountered in this area, the conditional branch should be inverted 
and used in conjunction with an unconditional branch (figure 10-12). 

BRREQ XS,X6,LABEL ----+ 
I 

becomes : v Reach > 216 

+--BRRNE 
I ENTC 
I BRREL 

LAB1 +-> 

X5,X6,LAB1 
X1,(LABEL-*)/2 
Xl ----+ 

I 
v Long Reach > 224 

Figure 10-12. Long Reach Conditional Branch 

The fourth instruction enters a 24-bit quantity into XO. It is intended for use in 
conjunction with the CALL instruction. A descriptor value (in the low-order 16-bits) and an 
8-bit quantity can be entered with a single instruction. The 8-bit quantity will be used by 
software to indicate the number of parameters to be transmitted on the call. 

10-14 60459960 A 



The final enter instruction is the only instruction in the repertoire that pertains to 
the left half of an X Register exclusively. Three options are provided (figure 10-13). 

1) Clear Xk-Left - set to zeros 

2) Set Xk-Left - set to ones 

3) Set Xk-Left to the sign of Xk-Right. 

The last option is expected to be the most commonly used and drags the sign of the Xk-Right, 
or converts a half-word integer into a full-word integer. 

I OP ~ J! Ii: I 

XK-LEFT 

-J~OO ~oo o I 

~J=Ol XK- LEFT 

----1 11 1 I 
J=lD 0" 11 

XK-LEFT t Xt:-IUGIlI 
Iss sid 

Figure 10-13. Enter Signs 

SHIFTS 

Circular and End-Off shifts are provided for the full X Register and End-Off shifts for 
the right half of an X Register. Points to note are: 

• Shift counts are formed .. 4;rom the summation of Xi-Right and D. These quantities are 
signed 2's complementrE-b1:t integers • 

...,---_..--"' 

• The sign of the 8-bit shift count determines the direction of the shift. Positive 
is interpreted as left shift. 

• Left shift end-off has zero fill in the right of the register. 

• Right shift end-off is with sign-extension. In other words this is an arithmetic 
shift. 

• There is no logical right shift end-off. 

The hardware checks the sign of the 8-bit shift count to determine the direction of the 
shift, and complements the count if it is negative. It then extracts either the low-order 
6-bits (for full-word shifts) or the low-order 5-bits (for half-word shifts). Consequently, 
left shifts range fronl·O-63 (or 31) and right shifts range from 1-64 (or 32). 

\ 

60459960 A 10-15 



LOGICAL OPERATIONS 

The logical instructions operate on 64-bit quantities and are standard. Five operations 
are provided: 

1) Logical Sum - OR 

2) Logical Difference - EOR 

3) Logical Product - AND 

4) Logical Complement - NOT 

5) Logical Inhibit - AND NOT 

The truth tables for these operations are shown in the accompanying diagram. 

OR 

0011 
0101 

0111 

BIT STRING OPERATIONS 

EOR 

0011 
0101 

0110 

0011 
0101 

0001 

NOT 

1111 
0101 

1010 

AND NOT 

0011 
0101 

0010 

LOGICAL TRUTH TABLES 

These instructions pertain to a contiguous string of bits in a 64-bit (full word) 
X Register. The address and size of the bit string is specified by a 12-bit deSignator 
which is interpreted as a starting bit address and a number of bits (length). 

o 5 6 11 
r------------.------------, 
/Starting Bit/ Length - 1 / 
/ Address / / L-___________ ~ __________ ~ 

The instructions all use a bit string descriptor formed by adding a 12-bit offset 
(unsigned. positive integer) to the right half of an X Register with no overflow detection. 
If the sum of the starting bit address and the length is greater than 63 an instruction 
specification error is flagged. Use of XO as an index is interpreted as all zeros. 

10-16 60459960 A 



" 

Three instruc tions are provided: /" 
/ 

1) Isolate Bit Mask - Forms a solid mask in a 64-bit X Register (figure 10-14). 

2) 

;;: 2. 3 ) BIT DESCRIPTOR {~D.l'} 

1 1 ! ~ " S 5 " .. c: 0 " II 2 .. o y e 2 .. 
u10 

!I 6 2 II D ] XK r Diu 

Figure 10-14. Isolate Bit Mask 

!.hoVJ 
Isolate to Xk - Extracts a 
designator and places them 

string of bits from Xj as specified by the bit string 
in XK right justified zero fill (figure 10-15). 

(OCTAL NUMBER) 2 4 2 6 I BIT DESCRIPTOR 120.221 

? 0 

+ + 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 63 

+ o~o 01 

t 
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 63 

x_I 

Figure 10-15. Isolate to Xk 

3) Insert into Xk - Performs the inverse of the previous instruction, taking the right 
most bits from Xj as specified by the length field in the bit string descriptor, and 
inserts them into Xk as per the bit string descriptor. All other bits in Xk are 
unchanged. 

60459960 A 10-17 



MARK TO BOOLEAN 

This instruction is intended to take the result of a compare instruction which is in 
Xl-Right bits 32 and 33, and convert it to a Boolean (True/False) result. Results from all 
compare instructions are as follows. 

r----------~---------T_-----_, 

1 Relation 1 Xl-Right 1 Value 1 
1 1 32 33 1 1 
r----------+----------+-------i 
1 XK = XJ 1 0 010 1 
IXK>XJ 10 II 1 1 
1 XK < XJ 1 1 1 1 3 1 L-_________ ~ _________ ~ _____ _J 

However, relational expressions are frequently encountered with the form: 

(A t- B) 

The Mark to Boolean is designed to produce a Boolean result for any relational 
expression. It does this by using the j-field of the instruction to define the relational 
expression being evaluated. 

The value of the j-field relates to the value of the Xl-Right comparison result. Four 
values are possible (0,1,2,3) of which three (0,1,3) are used by the compare instructions. 
Each bit in the j-field points to a value in the Xl-Register. For example; 1000 points to 
value 0, 0100 points to value I, 1001 points to values 0 and 3 (figure 10-16). 

VALU 
o 

2 

3 

J.FIELD 

ES 

... 
~ 

.. .... 

Figure 10-16. Mark to Boolean J-Field Usage 

If the value pointed to by the j-field is true, then a true result is set in the XK-Register 
by setting bit 0 (sign bit) and clearing the remaining 63 bits. Otherwise a false value is 
indicated by clearing XK. Only six relational values are of interest: <, >, t-, , <, and 
>. Hence only six values for j are required. These are 1,4,5,8,9 and C for <, >, 1, ~, 
and ~ respectively (figure 10-17). 

10-18 60459960 A 



i-FIELD TEST TEST 
HEX BINARY (LITERAL) ACTUAL REaD 

0 0000 NONE NONE NO 

1 0001 < < YES 

2 0010 NONE NONE NO 

3 0011 < < NO 

4 0100 > > YES 

5 0101 >&< :f:. YES 

6 0110 > > NO 

7 0111 >&< :f:. NO 

8 1000 = = YES 

9 1001 <&= ~ YES 

A 1010 = = NO 

B 1011 <&= ~ NO 

C 1100 >&= ;:: YES 

0 1101 >,<&= ALL NO 

E 1110 >&= ;:: NO 

F 1111 >, <&= ALL NO 

Figure 10-17. Mark to Boolean Tests 

60459960 A 10-19 



BDP INSTRUCTIONS 

The BDP instructions utilize three instruction formats: jK plus two descriptors, jKiD 
plus two descriptors and jKiD plus one descriptor (figure 10-18). 

BDP Instruction Formats 

jk PLUS TWO DESCRIPTORS 

p I OP k I 
~2~1 _______________ D_ES_C_R_IPT __ O_R~j ______________ ~ 

~~I _______________ D_ES_C_R_IP_T_O_R_k ______________ ~ 

jkiD PLUS TWO DESCRIPTORS 

pi ~ ___ O_P __ ~~~ __ k~I __ -L ______ D ____ ~ 

~~I _______________ D_E~ __ R_'PT __ O_R_j ______________ j 

~~I ______________ D_E_~_R_I_PT_O_R_k ____________ ~ 

jkiD PLUS ONE DESCRIPTOR / 

P ·'~ ___ op __ ~ __ ~I_k~ __ ~ _____ D ____ ~IJ 

~41 DESCRIPTOR j I 

BDP Descriptor 

31 

l l L LOFFSET 
. OPERAND LENGTH IF F=O 

DATA TYPE . 
LENGTH FLAG 

Figure 10-18. BDP Instruction Formats and BDPDescriptor 

10-20 60459960 A 



~ rvVJl\ 

the main Data de.eriptor. are ]2-bit. 10og, .ituated on a~~undary, are in 
instruction stream and contain information about the locat on, size and type 
The following points should be noted: 

of the data. 

• BDP data is always referenced by the BDP instruction via data descriptors. 

• Data descriptors form part of the code stream and since CYBER 180 is designed to 
operate on pure procedures (no code modification), the data descriptors cannot be 
modified. 

• The length of BDP operands may be specified in the descriptor (F=O), or may be 
treated as a variable (F-1) located in either XO or Xl for the j-descriptor and 
K-descriptor (first and second) respectively. Values of length in the descriptor 
from OO-FF correspond to lengths of 0-255 bytes. When the length is obtained from 
an X Register (XO or Xl) bits 55-63 are used values 000-100 corresponding to lengths 
of 0-256 respectively. Lengths greater them 256 iHC' illegal. This f<'striction 
arises from the philosophy of noninterruptible instructions. 

• The maximum lengths of operands are a function of the operand type as follows. 

Pac ked Dec imal 
Unpacked Decimal 
Binary 
Alphanumeric 

(Types 0-3,12,13) 19 Bytes 
(Types 4-8) 38 Bytes 
(Types 10,11,14,15) - 8 Bytes 
(Type 9) - 256 Bytes 

• Instructions are typically 2-Address. This means that one of the operands is 
usually modified by the operation, such as: 

A = A+B 

Since BDP operations function on a memory-to-memory basis that can lead to problems 
if care is not used. 

• When source and destination data fields overlap (other than exactly overlay each 
other) the BDP instructions result in undefined data. 

BDP DATA TYPES 

Sixteen data types have been defined for use by the BDP instructions (figure 10-19). 
They include: 

- Four Packed Decimal Types 
- Five Unpacked Decimal Types 
- One Alphanumeric Type (ASCII) 
- Two Binary Types 
- Four Translated Types (2 Packed and 2 Binary) 

60459960 A 10-21 



PACKED DECIMAL NO SIGN 

TYPE 0 I 0 I 0 I 0 I 0 I 
PACKED DECIMAL NO SIGN SLACK DIGIT 

TYPE1Io\D\D!D! 

PACKED DECIMAL SIGNED\' 

TYPE 2 \ 0 I 0 I 0 \ 0 I 
PACKED DECIMAL SIGNED SLACK DIGIT 

TYPE 3 I ° DOD 

UNPACKED DECIMAL UNSIGNED 

TYPE 4 I 0 I 0 I 0 

} I 0 I S I 

} I 0 I S 

UNPACKED DECIMAL TRAILING SIGN COMBINED HOLLERITH 

MAXIMUM 
BYTE COUNT 

19 

19 

19 

19 

38 

TYPE 5 0 0 0 ~! 0 C 38 

UNPACKED DECIMAL TRAILING SIGN SEPARA~T..;;;E..-__ ....., ___ ..., 

TYPE 6 I 0 0 0 I I )L.......II __ D_.J..-_S_.....I 38 

UNPACKED DECIMAL LEADING SIGN COMBINED HOLLERITH 

TYPE 7 I COD 38 

UNPACKED DECIMAL LEADING SIGN SEPARATE 

TYPE 8 \ SOD < 38 

ALPHANUMERIC (ASCII) 

TYPE 9 C C C 258 

BINARY UNSIGNED 

TY~101~ ________________ ~~ 8 

BINARY SIGNED 

TYPE 111 2'S COMPLEMENT 8 

TYPE 12 = TRANSLATED PACKED DECIMAL SIGNED (=2) 19 
TYPE 13 = TRANSLATED PACKED DECIMAL SIGNED SLACK DIGIT (=3) 19 
TYPE 14 = TRANSLATED BINARY UNSIGNED (= 101 8 
TYPE 15 = TRANSLATED BINARY SIGNED (= 111 8 

Figure 10-19. BDP Data Types 

The following points should be noted: 

• 
• 

10-22 

The only character code recognized by the hardware is ASCII • 

The hardware does not operate on digit boundaries where digits are 4-bit packed 
decimal quantities. The concept of the slack digit has been invented to accommodate 
packed decimal quantities with odd numbered lengths. This is strictly an internal 
data representation. 

60459960 A 



• Sign conventions are as follows: 

Packed Decimal : + HEX A,B,C,E,F - C preferred 
- HEX D 

Unpacked Decimal : + HEX 2B (ASCII +) 
Separate - HEX 2D (ASCII -) 

Unpacked Decimal 
Combined 

r-------T-------T----------------T-----------, 
1 1 1 1 1 

1 ASCII 1 HEX 1 Interpretation 1 
1 1 1 1 

Comments 1 
1 

r-------+-------+----------------+-----------i 
1 1 1 1 1 
I 1-9 1 31-39 1 +1 - +9 1 1 
1 A-I 1 41-49 1 1 Preferred I 
1 J-R 1 4A-4F 1 -1 - -9 1 1 
1 1 50-52 1 1 I 
1 { 1 7B 1 +0 I Preferred I 
10130 I +0 I I 
I & 1 26 1 +0 1 1 
1 } 1 7D 1 -0 I Preferred 1 
1 1 2D 1 -0 I 1 
1 1 1 1 1 L-______ ~ ______ ~ ________________ ~ __________ ~ 

• Both +0 and -0 can occur and are treated as equivalent. 

• Operations need not be on the same type operands. 

Translated Data Types 

There are four translated data types which are: 

./ 

Translated Packed Decimal Signed with and without slack digit. 

Translated Binary signed and unsigned. 

The purpose of these data types is to be able to handle EBCDIC data via the hardware. Now 
the only characters recognized within the CYBER 180 system boundaries are ASCII characters. 
However, outside the system boundaries EBCDIC data is very important. It is the intent on 
CYBER 180 to translate EBCDIC data character by character as it crosses the system boundary 
to its ASCII equivalent. (Typically this data will be on magnetic tape, and the translation 
will occur on the fly in the magnetic tape controller). For the purposes of this 
translation the incoming data will be translated eight bits at a time regardless of data 
type. This means that integer values (signed and unsigned) and packed decimal values will 
be translated to a meaningless jumble. However, the translation algorithm is well defined. 
CYBER 180 processors recognize these data types, translate them to meaningful data, operate 
on them, and, if necessary translate the results back to meaningless jumble (figure 10-20). 

The only data type not handled by this technique is Packed Decimal Unsigned. Unpacked 
Decimal Data translates correctly from EBCDIC to its ASCII equivalent. 

The translation algorithms are straightforward and are defined in the MIGDS. They will 
not be restated here. 

60459960 A 10-23 



10-24 

CYBER 180 4-----+----" EXTERNAL ENVIRONMENT 
ENVIRONMENT: ASCII 

TRANSLATED 
DATA 

SYSTEM BOUNDARY 

i4----------1r------EBCDIC DATA 

BDP-OP 

JUMBLE 

JUMBLE 

Figure 10-20. Translated Data Types 

60459960 A 



Figure 10-21 is an example of a decimal add. 

1 lr--------, 
1'--7 --0 -;,==; =;I=k =11 

1000 4 10 02 

lot%! 0 I 0 8 I 01 

PACKED DECIMAL 17349682 '--

+ + 

UNPACKED DECIMAL 4319 

PACKED DECIMAL 11354061 

M 1 I 1 I 

41 3 4 I 

1 I 7 I 
ADD Ak + 0, (TYPE 0 • PACKED DECIMAL UNSIGNED, LENGTH 8) TO 

3 I 

3 

3 I 

Ai + O2 (TYPE 4· UNPACKED DECIMAL UNSIGNED, LENGTH 4) RESULT TO 

Ak + O2 (SAME TYPE AS SECOND OPERAND) 

4 I 9 I 6 I 8 I 

3 I 3 1 I 3 

{) 
5 I 4 I 0 I 6 I 

Figure 10-21. Decimal Add Example 

NUMERIC OPERATIONS 

General points of interest are: 

2 I 

9 I 

1 I 

• These operations, in general, work right to left. Cache memory operation takes this 
into account when loading words into a block in cache memory. 

• When the results exceed the length of the destination field an Arithmetic Loss of 
Significance or an Arithmetic Overflow condition is detected, depending on the 
instruction. 

• Leading zeros are supplied or leading digits truncated to accommodate unequal source 
and destination field lengths. (With 2-Address instructions, one operand serves as 
both source and destination). 

• Destination operand lengths of zero are treated as NOP's, except that error sensing 
will occur unless the source operand field length is also zero. 

60459960 A 10-25 



Arithmetic 

Four operations are provided: sum, difference, product and quotient. Points to note are: 

• Data types which may be freely mixed are: 0-6, 12 and 13. All other data types must 
be converted to one of these data types via a Numeric Move prior to the operation. 

• If the operands are of unequal length, then the shorter one has leading zeros 
appended to equalize the lengths. If significant digits cannot be stored because the 
length of the result is greater than the length of the destination field, the 
leading digits are truncated and an arithmetic overflow is flagged. The only 
exception to this rule is a divide by zero, when a divide fault is flagged, and the 
destination field is unchanged. 

Scaling in.truct~. are 
points should be 

Two 
Several 

provided to facilitate multiplying and dividing by ten (scaling). 
noted: 

Move 

• Scaling is accomplished by shifting the decimal quantity left or right. The shift 
count is a signed 32-bit integer formed from [Xi]+D. The sign of the shift count 
gives the direction of the shift, left being positive. The shift count is taken 
from the least significant 8-bits of the shift count field (the 2's complement of 
these if a right shift). 

• Shifting is end-off, zero fill regardless of direction. 

• If the destination field is longer than the source field then zeros are appended to 
the left of the result. 

• When nonzero digits are shifted end-off, or the source field is truncated to fit the 
destination field an arithmetic loss of significance is flagged. 

• Rounding on right shifts is accomplished by adding five to the last digit shifted 
end-off and propogating the carry. 

• Alphanumerics are treated as type 4 (unpacked decimal, unsigned) and cannot be used 
as a destination field. 

• Signs are transferred (not shifted) unless the result is zero in which case the sign 
is positive. Preferred signs are always used in the destination field. 

The following points should be noted: 

• Decimal move operates right to left. 

• All data types can be freely mixed in this instruction. 

• A primary use of this instruction is to convert from one data type to another. 

• Alphanumerics are treated as type 4 (unpacked decimal, unsigned). 

• If nonzero digits are truncated to fit the destination field, then an arithmetic 
loss of Significance is flagged. 

10~26 60459960 A 



Compare 

The following points should be noted: 

• The instruction performs an algebraic comparison. 

• If the lengths of the operands are unequal, then zeros are appended to the left hand 
end of the shorter operand prior to the comparison. 

• Data types 0-6. 12 and 13 may be freely mixed in this instruction. 

• The result of the comparison is returned in Xl in the standard CYBER 180 manner: 

Source s destination: Xl-Right • 000---0 
Source> destination: Xl-Right - 010---0 
Source < destination: Xl-Right - 110---0 

BYTE INSTRUCTIONS 

These instructions: 

• Operate on alphanumeric quantities (type 9). 

• Operate left to right. 

• Use ASCII blanks as a fill character when unequal operand lengths are encountered. 

• Destination field lengths of zero result in a NOP except that exception sensing on 
nonzero source field lengths will occur. 

Compare 

Two compare instructions are provided: unco11ated and collated. In the former, each 
character is treated as an 8-bit absolute value. The following points should be noted: 

• The operation proceeds from left to right. 

• Trailing spaces are appended to equalize field lengths. 

• The results of the comparison are left in Xl-Right in the standard CYBER 180 manner, 
that is: 

Source = Destination 
Source > Destination 
Source < Destination 

Xl-Right = 000---0 
Xl-Right - 010---0 
Xl-Right = 110---0 

In addition, the sequence number of the unequal bytes is placed in XO-Right. 

• Collated compare proceeds as the unco1lated until an inequality is detected, at 
which stage the unequal characters are translated according to the collate table (at 
(Aj)+D) and the translated characters compared. If these compare equal, then the 
comparison continues (figures 10-22 and 10-23). 

60459960 A 10-27 



• The collate table is provided by the user and contains 256 characters. The 
character to be translated is used as an index into this table. The complete table 
must always be provided since instructions are always prevalidated. If the complete 
table did not exist, it is possible to get a page fault during the prevalidation 
which could lead to a job abort. 

• The collated compare instructions can require up to seven pages to be resident in 
memory before execution starts. This is more than any other instruction. Seven 
pages come from the instruction itself, two for each operand and two for the collate 
table, assuming that all these quantities cross page boundaries, which is possible. 

Aj 

I 0 ], 2 3 I.! S 6 7 8 , A B C D E F 

BI LI A Ie/ K/ 0 ~ 

I ], 

A 

i 2 TRANSLATE EQUAL 

3 @'""'/ ~ :b 11/ u I e I 4 ~02 03 04 OS DB OC--OF 
.. - I 
6 0]' 02 03 04 OS DB OC--OF 

7 
10 ~1 ~n;Y :LA 

8 , 
A 'A ~ u {Ol< lS} 

B 

C 

D 

E 
f 

Figure 10-22. Collated Compare Operation 

10-28 60459960 A 



YES 

Figure 10-23. 

60459960 A 

YES 

YES 

Cs .. Source Character 
Cd .. lestinatign Charactel" 
1.5 = SOUI"C8 length 
Ld .. Jastinetion Length 

TRANS .. Us. Cs or Cd .s an index 
into the collatLng tabla 
to obtain tha saquance 
nullbar. 

NO 

YES 

00 

Collated Compare Operation Flowchart 

\ 
I 

~ 
! 

10-29 



Byte Scan 

This instruction is intended to examine a character string for the presence or absence 
of a character or characters. It is similar in function to a repeated equality search. 
However, its operation is the reverse of an equality search. Instead of comparing a search 
character with each character in a character string, the character string is passed over a 
set of characters to determine whether or not there is a match. In fact an actual set of 
characters is not specified for the scan, but a bit map indicating the presence or absence 
of a character in the set is established by the user. Characters are treated left to right 
in the source field and each character is used as an index into the bit map. If the bit is 
ON (=1), then the operation terminates, otherwise the next character is taken. Points to 
note are: 

• 

• 

• 
• 

• 

10-30 

Each character in the source field is treated as an 8-bit absolute value regardless 
of the data type specified in the descriptor field. 

The sequence number of the character causing the instruction to terminate is 
returned in XO-Right. 

The character which caused the instruction to terminate is returned in Xl-Right. 

If the scan terminates by exhausting all characters in the source field, then 
XO-Right contains the length of the original byte string, and Xl-Right is set to 
80000000 (HEX) (sign bit set, remainder cleared). 

If the bit map is complemented, then the operation switches from a Byte Scan While 
Nonmember (figure 10-24) to a Byte Scan While Member. 

60459960 A 



NO 

C = 0 

C C+], 

Next Char 
{Cd 

XDR C-1 

X:LR Cs 

Cs = Currant Source Character 
Ls = Source Operand Length 

BITIAP = Bit array indicating set members 

YES 

XDR Ls 

Figure 10-24. Scan While Nonmember O~eration 

604599.60 A 10-31 



Some examples will help to clarify the operation. Remembering that the ASCII representation 
in hex, for A-Z = 41-5A, for a-z = 61-7A and blank = 20 • 

. Example 1. Search a character string for the first blank. 

Since we are only looking for a blank here, we want the scan to stop on a blank, which 
means the bit map should have a one in the 20(HEX) position and zeros everywhere else. 
In other words the bit map set, is a set of one element. 

o 1 2 3 4 5 6 7 8 9 ABC D E F HEX 
r--------------------------------, 

o 0-------------------------0 01 0000 
1 0 0-------------------------0 01 0000 
2 1 0-------------------------0 01 8000 
3 0 0-------------------------0 01 0000 
4 1 0000 
5 , 0000 
6 1 0000 
7 1 0000 
8 1 0000 
9 1 0000 
A 1 0000 
B 1 0000 
C 1 0000 
D 1 0000 
E 0 0-------------------------0 01 0000 
F 0 0-------------------------0 01 0000 

L-______________________________ -J 

Example 2. Search a character string for the first nonblank; discard leading blanks. 

This is the converse of the previous example, and the bit map set is the complement of 
the previous one. That is, ones everywhere except in the 20 (hex) position. 

10-32 60459960 A 



Example 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
A 
B 
C 
D 
E 
F 

3. 

o 1 2 3 4 5 6 7 8 9 ABC D E F HEX 
r--------------------------------, 

1 1-------------------------1 1 FFFF 
1 1-------------------------1 1 FFFF 
o 1-------------------------1 1 7FFF 
1 1-------------------------1 1 FFFF 

FFFF 
FFFF 
FFFF 
FFFF 
FFFF 
FFFF 
FFFF 
FFFF 
FFFF 
FFFF 

1 1-------------------------1 1 FFFF 
1 1-------------------------1 11 FFFF L-_______________________________ ~ 

Search a character string for the first nonalphabetic, nonb1ank character. Set 
bits 41-5A (hex), 61-7A (hex) and 20 (hex) equal to zero and all else ones. The 
bit map is everything except blank and the alphabetics. 

o 1 2 3 4 5 6 7 8 9 ABC D E F HEX 
r--------------------------------, 

o I 1 1-------------------------1 1 FFFF 
1 I 1 1-------------------------1 1 FFFF 
2 I 0 1-------------------------1 1 7FFF 
3 I 1 1-------------------------1 1 FFFF 
4 I 0 0------------------------ 0 0 0000 
5 I 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 001F 
6 I 0 0-------------------------0 0 0000 
7 I 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 001F 
8 I 1 1-------------------------1 1 FFFF 
9 I FFFF 
A I FFFF 
B I FFFF 
C I FFFF 
D I FFFF 
Ell 1-------------------------1 11 FFFF 
F I 1 1-------------------------1 11 FFFF L-______________________________ ~ 

60459960 A 10-33 



Translate 

The translate instruction translates from one 8-bit character representation to a second 
8-bit character representation via a translate table. Points to note are: 

• Translation occurs left to right. If the source field is longer than the 
destination field, the rightmost characters are truncated. If the source field is 
shorter than the destination field, the destination field is filled in its rightmost 
characters with translated blanks. 

• The data type field is ignored. Each 8-bit character is interpreted as an absolute 
8-bit quantity. 

• Translation occurs exactly as for collated compare. Each character in the source 
field is treated as an index into a 256 byte translate table. 

• All values in the translate table must be supplied if a job is not to be aborted 
prematurely. 

Move Bytes 

This instruction simply performs a memory-to-memory move of a string of characters. 
Points to note are: 

• The operation proceeds left to right. 

• Unequal source and destination field lengths are accommodated by truncating trailing 
characters, or fU1ing trailing characters with blanks (20(hex». 

• If the source and destination fields overlap in any way other than exactly, then the 
results will be undefined. 

Edit 

The EDIT instruction is intended 
source data field and formats it for 
the execution of which is controlled 
sequence of micro-operations (figure 

10-34 

for use primarily in COBOL compilations. 
subsequent display. It is a very complex 
by an edit mask (located at (Ai+D» which 
10-25). 

It takes a 
in s truc tion , 
consists of a 

60459960 A 



EDIT INSTRUCTION 

OP I k I D -----I I 

I~ TP I L1 I 01 I 
I 

I~ 9 I L2 I 02 I 
i 

Lr SOURCE DATA FIELD I 

0 
I EDIT MASK ~ 

~ 
DESTINATION DATA FIELD ~ 

INITIAL VALUES OF THE SPECIAL CHARACTERS TABLE 

NEGATIVE SIGN 
POSITIVE SIGN 

BLANK· SUPPRESSION CHARACTER 
BLANK· FILL CHARACTER 

Figure 10-25. Edit Instruction 

Points to note are: 

• The destination field is always alphanumeric (type 9). 

• With the exception of binary data (types 10,11,14 & 15) all data types are 
acceptable in the source field. 

• A number of special tables and flags are made available to the edit instruction by 
the hardware. These are described in the key to symbols for flow-charts. 

60459960 A 10-35 



• The source field sign is skipped by micro-ops addressing the source field. For 
combined signs, the numeric value only is interpreted. 

• If the length of the edit mask is zero or one, then the instruction results in no 
operation. 

The Ed it Mask 

The edit mask consists of a string of 8-bit bytes each containing a micro-operation code 
(MOP) and a specification value (SV) (figure 10-26). -The first byte of the edit mask 
contains the length of the edit mask including itself. Bence, up to 254 MOP's may be 
specified per edit instruction. 

LENGTH OF EDIT MASK INCLUDING ITSELF 

MICRO-OPERATION CODE 

Figure 10-26. Edit Mask 

General Notes on EDIT: 

• Edit is a complex instruction. It is really a set of instructions which are built 
up in the edit mask, much like an instruction stack. Each micro-operation directs 
some control over the destination field, so that source data can be formatted in a 
generalized manner. 

• Edit is best understood by working through examples. In appendix C of the MIGDS 
there are numerous examples of edit masks and their affect on a variety of source 
fields. These examples will not be repeated here but are recommended reading for 
anyone wishing to understand this instruction fully. 

Figures 10-27 through 10-43 describe the operation of the edit instruction itself, and 
the operation of each micro-op. 

10-36 60459960 A 



Key to Symbols: 

i Index for the source field in bytes for data type 9 and in digits for all other 
data types (skipping slack digits on data types I, 3,and 13 and skipping 
separate sign on data types 2, 3, 6, 8 and 12). 

j Index for destination field, initialized to O. 

k Index for mask, initialized to O. 

SCi Source character addressed by base of source field indexed by i. 

SDi Source digit addressed by base of source field indexed by i. 

DCj Destination byte addressed by base of destination field indexed by j. 

MCk Mask byte addressed by base of mask field indexed by k. 

ES End supression toggle (initialized False and then set True when end supression 
occurs) • 

ZF Zero field toggle (initialized True and then set False when nonzero source digit 
is processed). 

SN Sign toggle (initialized False and then set True if source field is negative). 

SCT Special character table (initialized by hardware as indicated in edit overview 
diagram, and may be read/written by certain MOPs). 

SCTn The (n+l)th entry in the SCT (n must be 0-7). 

SV Specification value. 

SM Symbol, which is a string of 0-15 characters which may be created and inserted 
into the destination field. It is initialized to zero length and once used must 
be recreated before further use. 

SMc The cth symbol character. 

LS Length of source field in digits (or in charac tersfor type 9). 

LM Length of edit mask in bytes. 

LD Length of destination of field in bytes. 

LSM Length of the symbol in bytes, initialized to O. 

r Loop counting mechanism associated with SV and SM. 

t Loop counting mechanism associated with L8M and 8M. 

60459960 A 1O~37 



•• 

I. 

Figure 10-27. 

10-38 

YES 

NEGATIVE SIG. 
POSITIYE SIGN 

SLASH 

»OLLAR :U'N 

BUNIC .. SUPPRESSION CHARACTEJI 

au.NK .. P'ILL CHARACTER 

INVIAL VALues or tHE SPECIAL CHAI!A(f[!!S TABLe neT} 

INVALn a)p tAT ...... Th ••• flowch .. ts 
do not descI"ibl _~ specific step 
following thl d.tection. of Invalid liP 
ht. blelU'l thl Individual proc ... or 
is- fr .. either to t.e'.inete the 

~::~~~~!Ot.~·~::~:::r: C::d~:~:~;U' 
..... t. (In .ithr en. thl output 
fidd is undafinld ;mid bit ~3 of the 
UCR is 14ft.) 

YES 

[ 

Th is instruction 
"Y tar.inet. 

____ during the IXICU" 

tion. of • flOP by 
IICh.ustin9 .nk ' 
Ilngth·,.tc. 

Edit Overview. Including Initialization 

60459960 A 



60459960 A 

YES 

YES 

YES 
r > SV f 

YES 

YES 

1. This MOP translates 1-15 digits in the source field to their equivalent 
ASCII characters and copies them to the destination field. 

2. The function NUMERIC is flolll-charted elsewhere" and insures that ·the data 
being translated is valid" nUlIM!ric data~ 

3. Set ES true if SV #. o. 

Figure 10-28. MOP 0 - Move Source Digits 

10-39 



!Ill.W' 
1. This MOP copies 1-15 

characters frolR the 
source field to the 
destination field-

y~S 

y~S 

Figure 10-29. MOP 1 - Move Source Characters 

10..;.40 60459960 A 



r = Il 

r = r+1 

k k+1 

YES 

YES 

j+1 

!!tlfi§': 

1· This MOP moves 1-15 characters from the 
edit mask {in essence a micro-op string} 
to the destination field. 

2. Any of the source data types Il, 1, 2, 3, 
4, 5, b, 7, 8, 9, 12 or 13 are legal for this MOP. 

Figure 10-30. MOP 4 - Move Mask Characters 

60459960 A 10-41 



LSM = 1 

YES NO 

S"o = seT3 

1. This MOP sets the symbol to a single character 
representing the sign of the source data field. 

2. If the source data field is negative, then the sign 
is either set to minus {default value in the SeT} or 
to the value which has been stored in SeT{3}. 

3. If the source data field is positive, then the sign 
is set to a value selected from the S(T indexed by the 
least significant three bits of the specification value· 
Assuming a default SeT SV would normally have a value 
equal to ], or 2 corresponding to blank and plus. 

4. All values of SV are legal although only the rightmost 
three bits are interpreted when SV is used as an index. 

5. Any of source data types 0, 1, 2, 3, 4, 5, b, 7, 8, ~, 
12 or 13 are legal for this MOP. 

Figure 10-31. MOP 5 - Select Sign as Symbol 

10-42 60459960 A 



LSM • SV 

r = 0 

r = r + 1 

YES 

YES 

No~U: 

1. This MOP copies 1-15 characters from the edit 
mask to the symbol. 

2. All values of SV are legal for this MOP. 
3. Any of the source data types 0, 1, 2, 3, 4, 5, b, 

7, a, 9, 12 or 13 are legal for this MOP. 

Figure 10-32. MOP 6 - Select Mask Characters as Symbols 

60459960 A 10-43 



10-44 

YES 

YES 
YES 

YES 
~:"":~":+.21.r-"'--i j = j + :L 

ES = TRUE ? >--I~--, 

YES 

YES 

1!!tt!!:. 
L. This I10P translates 1-15 digits from 

the source field to thair ASCII 
equivalent and capias thaI! to the 
destination fillilld. Leading zeros 
are suprassed .. replaced by SCT(U 
which defaults to a blank .. and the 
first nonzero digit is preceded by 
the characters iif any} in the symbol. 

2. The test for :UH = 0 is for tha value 
D. for exampla, a coda of 3C on type 
5 has the value D. 

Figure 10-33. MOP 7 - Move Source Digits or Suppress with Floating Symbol 

60459960 A 



YES 

ES TRUE 

t 0 

t t+1 

YES 

YES 

NO 

j+1 

Notes: 

1. If the End Suppression flag {ES} is not set, 
then this MOP copies the characters in the 
symbol to the destination field. 

2. Any of source data types 0, 1, 2, 3, 4, 5, 6, 7, 
a, " 12 or 13 are legal for this MOP. 

Figure 10-34. MOP 8 - End Float 

60459960 A 10-45 



YES 

l ~--.-----'t 0 

t = t +1 

YES 
t > LSM ? 

YES 
j ~ LD ? 

NO 

j+1 

SV>7 ? 
NO 

j ~ lD ? 

DCj 

NO 

SCT 
sv 

j+1 

1. This MOP either inserts the symbol characters or a 
character from the SCT into the destination field. 

2. This MOP is controlled by the SV field. The most 
significant bit of this field is used as a flag. 
If set, then the symbol is inserted into the 
destination field, otherwise the svth character 
from the SCT is inserted into the destination field. 

3. Any of source data types 0, 1, 2, 3, 4, 5, 6, 7, 8, 
9, 12 or 13 are legal for this MOP. 

YES 

Figure 10-35. MOP 9 - Insert Symbol or SCT Character 

10-46 60459960 A 



60459960 A 

YES NO 
sv,. ? ? 

YES 

t .). LSM ? 

f 
~l 
~ 

of 

1. SV > 7 

Copy the SYllbol to the -destination field when the source 
~~:~~c~!/~~i~~:eSy~~~~~wise copy SeTO once for each 

2. SV ~ 7 

Copy SeTsv once to the destination field when the source 
field is positiVE!, otherwise copy SeTo once. 

3. Any of source data types O. 1. 2, 3 .. q, S, b .. 7 .. 13, 9 .. 
12 or 13 are legal for this MOP. 

NO 

SN TRUE 

Figure 10-36. MOP A - Insert Symbol or SCT Character if Source is 
Positive, Elsewhere Insert Blanks 

YES 

10-47 



NO 

10-48 

YES NO 

NO 

YES 

YES 

YES 
SN = TRUE ? >_-._--.., 

Notes: 1. This HOP is identical in all respects to ftOp A. except 
that the blank insertion occurs for a ~ rather than 
negative source field. 

~. Any of source data types Q., 1" C'I 3 .. If, 5 .. b .. 7 .. ~ .. !:i., 
12- or 13 are legal for, this noP. 

Figure 10-37. MOP B - Insert Symbol or SCT Character if 
Source is Negative, Else Insert Blanks 

YES 

YES 

60459960 A 



YES 

YES 
LSM= D 

YES 

NO YES 
ES • TRUE' >---+--, 

Notas: \. This flOP is identical in all respects to !'lOP A. except 
that the blank insertion occurs on11' whan zero suppression 
is in affect. 

2. Any of source data types 0 .. 1 .. 2, 3, It .. 5, &a .. 7 .. &, .... 
],2, or :113 are 18gl1 for this PlOP. 

NO 

Figure 10-38. MOP C - Insert Symbol or SCT Character. 
Unless Suppression 

60459960. A 10-49 



k = k +1 

YES 

seT MCk 
sv 

Notes: 1. This nop co~ies the next character from the edit mask 
into the SV h character of the SeT. 

2. Only the low-order three bits of the SV are used by this nop. 
3. Any of source data types 0, 1, 2, 3, 4, 5, b, 7, 8, 9, 

12 or 13 are legal for th is nop. 

Figure 10-39. MOP D - Write SeT Entry 

10-50 60459960 A 



r = 0 

r = r+l 

DCj SCT 1 

j j+l 

Notes: 1. This MOP copies the suppression character {from SCT{l}} into 
the destination field SV times. 

2. Any of source data types 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 
12, or 13 are legal for this MOP. 

Figure 10-40. MOP E - Spread Suppression Character 

60459960 A 10-51 



This reset of the destination field index} 
causes all characters previously 
transMitted to the destination field 
to be. in effect. discarded {even when 
more than SV characters were previously 
transMitted} • 

NO 

r = 0 

r = r+1 

j j+l 

Notes' ],. This nop functions only for source fields with a zero value. A non-zero source 
field causes the termination of the edit instruction {not just this MOP}. 

2. For a 28,..0 source field, SY suppression cbaracters are copied into the 
destination field. 

3. Any of source data types O. 1. 2. 3. 4. 5. b. 7. &,9. 12 or 13 are legal for this noP. 

Figure 10-41. MOP F - Reset and Suppression Zero Field 

10-52 60459960 A 



See MOP 0 and ? 

NO 
D( j ={]0}1b +SD i 

YES 

SD i {21} 16¢ 

NO 

YES 

SD i {26}161 

NO 

YES 

NO 

YES 

SD i {301b? 

YES 
D; {78}1b? 

NO 

YES 
SD i {7li}16 ? 

Figure 10-42. Numeric Function 

60459960 A 10-53 



Translate 
Jumbl. 

EBCDIC to 
Packed 
Numeric 

Set SN 
True 

Yes 

Set SN 
True 

Inval id 
BDP Data 

Figure 10-43. Examine Sign 

No 

10-54 60459960 A 



Calculate Subscript 

This instruction facilitates the .computation of offsets in a multidimensioned array 
(figure 10-44). To understand how this instruction works it is necessary to formulate the 
equations used to calculate an index into an array. First of all it is assumed that the 
index values have an arbitrary origin. That is an array may be declared with an index that 
runs from a minimum to a maximum value such as: 2-10, -5-4, 0-15, 1-100, and so forth. Also 
it is assumed that an array may have an arbitrary number of dimensions, although repeated 
use of this instruction is required if the number of dimensions is greater than two. 

The general expression for calculating a zero origin index into a multi-dimensional 
array A * B * C * D * ... is: 

([(a-A)(b.-B+1)+(b-B)](c.-C+1)+(c-C»(d.-D+1)+(d-D) •••• 

Where a. = maximum value of a 

and A = minimum value of a, and so forth. 

For example, take the array defined as follows 

(3 •• 10, 5 •• 7, 8 •• 9) (figure 10-44) 

In this case: a. = 9; A • 8; 

b. = 7; B = 5; 

c. - 10; C = 3; 

and the O-origin index is given by 

[(a-8)(3) + (b-5)] (8) + (c-3) 

For example, the index of the element (6,6,8) [(c,b,a)] is: 

[(8-8).3 + (6-5)] 8 + (6-3) - 11 

Calculate Subscript is designed to compute the index of a 2-dimensional array. This is 
given by: 

i - (a-A) (b.-B+l) + (b-B) 

The terms A, Band b. are constants, as is the expression bo, A, B. The terms Band 
b. and the expression b.-B+l are called the minimum and maximum values, and the size 
respectively. 

60459960 A 10-55 



j' 3,5,9 4,5,9 5,5,9 6,5,9 7,5,9 8,5,9 9,5,9 10,5,9 

. 
10,6,9 

3,5,8 4,5,8 5,5,8 6,5,8 7,5,8 8,5,8 9,5,8 10,5,8 

10,7,9 

3,6,8 4,6,8 5,6,8 6,6,8 7,6,8 8,6,8 9,6,8 10,6,8 

'. B 3,7;8 4,7,8 5,7,8 6,7,8 7,7,8 8,7,8 9,7,8 10,7,8 

Figure 10-44. ARRAY (3 •• 10, 5 •• 7, 8 •• 9) 

To form the required index the quantities a, b, b., A, B and SIZE need to be specified. 
In the Calculate Subscript instruction the maximum, minimum and size quantities are supplied 
by a table found at (Ai)+D called the Subscript Range Table (SRT) (figure 10-45). The raw 
index values (a and b) are found in the source field (Aj) and destination register (Xk). 
The instruction proceeds as follows (figure 10-46): 

SIZE 

32 

16·BITS, SIGNED 
16-BITS. UNSIGNED 

MAX 

32-BITS, .SIGNED 

Figure 10-45. Subscript Range Table 

10-56 60459960 A 



I OP I j I k I i I D I -----I ! 

+ SRT 

I SIZE I MIN I MAX I 

1f?2J TP I L I 0 I 
1 

Xk-R 

I INDEX I 

I SOURCE DATA (e) I 
{> 

I (e) - MIN = ON I 
{> 

I (e - MIN) * SIZE I + 

Xk-R 
0 

I INDEX + ON I 

Figure 10-46. Calculate Subscript Operation 

1. Take the binary value of the source field and subtract MIN from this value. (a-A)" 
occurrence number (ON) 

2. Check that the occurrence number lies in the range: 

a < ON < MAX 

3. Multiply this value by SIZE. [(a-A)(b.-B+l)]. 

4. Add this product (ON * SIZE) to the contents of Xk Right. 

60459960 A 10-57 



Points to note are: 

• The SRT must be situated on a full word boundary. Failure to do so results in an 
Address Specification Error. 

• The instruction performs a range check (step 3). If the index is out of range, then 
an Invalid BDP Data condition is detected. 

• Since the contents of Xk are expected to be used as an index to access an array 
element, Xk is expected to hold the starting index of the most frequently changing 
variable corrected for a zero origin. In other words Xk should hold (b-B). 

• For multiply dimensioned arrays where more than two dimensions are involved the 
general formula is viewed as follows: 

index = (a-A) + (b-B)(a.-a) + (c-A)(a.-A)(b.-B) + ••• 

The Calculate Subscript instruction may be used twice as follows: 

(a) Set Xk to (a-A) • 

(b) Calculate subscript and add - Aj will point to b, (Ai) + D will point to SRT(l) • 

( c) Calculate subscript and add -Aj will point to c, (Ai) + D will point to SRT(2). 

The SRT entries are: 

~---------------~--~-----, 

ISize IMinlMax 
~---------------+---+------i 
l(a.-A+1) IA I(b.-B) I 
~---------------+---+------i 
l(a.+1-A)(b.+1-B)IB I(c.-C)I L-_______________ ~ __ ~ _____ ~ 

• Source field data types which are permitted are 0-6, 10 and 11. 

A flowchart for Calculate Subscript is shown in figure 10-47. 

10-58 60459960 A 



60459960 A 

SRT Address 
= [Ai] + ]) 

Source Field 
Address = 
[Ai] + 0 

Convert Source 
Data to Binary 
{i f necessary} 

ON = Source 
Data- SRHMIN} 

ONc::O ? 

ON > SRHMAXl-

ON ON * SRT 

XkR • 
XkR+ON 

{SIZE} 

Figure 10-47. 

NO 

Il1valid BDP Data 

YES 

YES 

NO 
Mask Bit Set? 

Invalid B])P ])ata 

Calculate Subscript and Add 



Immediate Data 

There are three instructions in this group which operate with a single byte of source 
data held in the instruction itself. The instructions move or add to, or compare with a 
destination data element. Since there is a single descriptor the j-field, which is usually 
used with a descriptor to locate the source date, has a special function, namely that of 
determining the data type of the immediate operand. 

For move and compare an operand is formed from the immediate operand which is controlled 
by the destination data type, and is either moved to or compared with the destination 
field. The lower order two bits of the j-field determine how this operand is formed as 
shown in figure 10-48: 

1 1 1 2 2 
o 7 0 2 6 r7-;;,4 

~P wI K~ 
IMMEDIATE.-J 

Operand Data Type 

Figure 10-48. Immediate Data BDP Instructions 

l----i~~IIMMED. OPD .1 

10-60 60459960 A 



~--------'T----------r------------r-------------------------------, 

I I 
I j-field I Source I DestinationlAction 
I IData Type I Data Type I I 
r---------+---------+-----------+-------------------------------i 
I I I I I 
I 00 I 10 110.11,14,15IBinary: operand is right I 
I I I I justified zero filled. I 
I I I I I 
I 01 I 4 10-6,12,13 IDecimal: operand is right I 
I I I I justified zero filled. with I 
I I I Isign (plus) supplied as I 
I I I I required. I 
I I I I I 
I 10 I 9 I Ignored IAlphanumeric: immediate I 
I I I loperand is repeated throughout I 
I I I I the receiving field. I 
I I I I I 
I 11 I 9 I Ignored IAlphanumeric: operand is left I 
I I I I justified. blank filled. I L-_______ -..L.-________ .... ___________ ~ _____________________ , _________ .J 

For Add, only the first two of these values for j have any meaning. In other words. only 
the low order bit of the j-field is used. 

Points to note are: 

• Once the immediate operand has been formed. these instructions perform exactly as 
their numeric counterparts. 

• Unauthorized data types yield an Instruction Specification Error. 

• On Immediate Add, if an overflow condition occurs, it is recognized and the program 
interrupt taken as required. 

• The results of the compare are specified in Xl-Right in the standard CYBER 180 
manner: 

Source = destination 
Source> destination 
Source < destination 

FLOATING-POINT INSTRUCTIONS 

Xl-Right = 00---0 
Xl-Right = 01---0 
Xl-Right = 11---0 

There are sixteen instructions which operate on floating-point variables. Before 
describing them, it is necessary to understand the CYBER 180 floating-point format. In 
designing this format the objective was to yield the same results as CYBER 170 when 
operating with the same data using the same instructions. Since CYBER 170 has a 60-bit word 
and CYBER 180 has a 64-bit word there will be differences unless 4-bits of the CYBER 180 

60459960 A 10-61 



word are ignored. This was considered unacceptable, hence some trade-offs were made. The 
basic objective was used to define the magnitude of the fraction, end-cases will occur at 
different times on the two machines. General points of interest are: 

• Single precision floating-point numbers consist of a Sign, a signed exponent, and a 
48-bit fraction (figure 10-49). Double precision floating-point numbers consist of 
a sign, a signed exponent and a 96-bit fraction (figure 10-50). 

• 

• 

• 

• 

• 

• 

• 

10-62 

01 1516 

SIGN [.,NARY POINT 

FRACTION I[ EXPONENT 

Figure 10-49. Single Precision Floating-Point Format 

01 1516 I[ EXPONENT 

SIGN 
64 

LEFT HALF OF FRACTION 

7980 

( RIGHT HALF OF FRACTION 

L NOT USED AS INPUT, BUT SET ON OUTPUT 

Figure 10-50. Double Precision Floating-Point Format 

63 

63 

127 

The binary point occurs to the left of the fraction - as opposed to CYBER 170 where 
it is on the right. 

/ 
The representation is signed-magnitude. The fraction is always a positive value.'-' 
It also means that both plus zero (+0) and minus zero (-0) are represented. 

The exponent is a 15-bit biased quantity which has two bits reserved immediately to 
the right of the most significant (bias) bit. These bits are used to flag the 
special conditions of overflow (infinite), underflow (zero), and indefinite. 

Actual exponent values take 12-bits as opposed to 10-bits on CYBER 170 and this 
affects end cases. 

There are no rounding instructions on CYBER 180. This will lead to differences 
between CYBER 180 and CYBER 170 for those CYBER 170 procedures using rounded 
arithmetic - notably the FORTRAN math library. 

There is, a full complement of instructions which operate on double precision 
floating-point numbers. Typically these execute in microcode and have not been 
included for reasons of speed, but for convenience. Hence, it is not practical 
time-wise to simulate rounded single-precision arithmetic using these instructions. 

The sign and exponent of the lower half of a double precision floating-point number 
are ignored on input to a double precision operation and set equal to the sign and 
exponent of the upper half on output. This convention simplifies the task of 
programming a double precision floating-point compare for which there is no hardware 
instruction. 

60459960 A 



The FORTRAN statement: 

DOUBLE A,B 

IF(A-B) 10,20,30 

can be compiled as follows, assuming A and B to be in 
registers X2-X5. 

BRFEQ 
BRFGT 

A10R BSS 

ATMI'II BRFEQ 
BRFGT 
BRXEQ 

X2 ,X4 ,ATMI'# 
X2,X4,A3011 
o 

X3,X5,A20R 
X3,X5,A3011 
XO ,XO ,A10R 

.upper halves equal 

.A>B (A-B +ve) 

.A<B (A-B -ve) 

.A"B (A-B zero) 

.A>B (A-B +ve) 

.A<B (A-B -ve) 

which is a reasonably compact sequence. 

Some care must be taken when constructing double-precision numbers to adhere to the 
hardware conventions, or comparisons may yield spurious results. The lower half of a 
double-precision quantity may have a fraction consisting entirely of zeroes, but have an 
exponent which is in range. These numbers are denoted by the symbol Z3 and are really 
unnormalized zeros. If Z3 is compared to Zero (a word of all zeros) the result may be 
less than or greater than, depending on the sign of Z3. However, Z3 compares equal to 
itself. 

• Unlike CYBER 170, there is no explicit normalization operation. However, when 
normalized operands are presented to the floating-point units, normalized numbers 
result. In particular, add and subtract instructions perform a full 
post-normalization. hence, a floating add of zero will suffice to normalize a 
floating-point number. 

Results emitted by the floating-point units vary in accordance with the user mask (UM) 
register setting. When an operation yields either an exponent overflow or exponent 
underflow, a predetermined result of either infinity or zero will be returned unless the 
UM bit is set which corresponds to that condition. In these cases the true result is 
returned. This is made possible by the representation chosen for floating-point 
variables and is discussed more fully below in the section dealing with nonstandard 
floating-point numbers. When both the UM bit is set and traps are enabled, the 
floating-point operations exhibit a unique feature: they complete execution before the 
trap is taken. This is made possible by two factors. First, the floating-point 
representation accommodates all out-of-range numbers which can be generated by the 
hardware. Next, all floating-point arithmetic instructions are l6-bit instructions. 
Consequently, there can be no loss of precision as a result of executing the 
instruction. This is true for underflow and overflow results and for floating-point 
loss of significance. It is not true for indefinite, which can arise in both l6-bit and 
32-bit instructions (branches). A predetermined result will always be returned for 
indefinite unless the corresponding UM bit is set and traps are enabled, in which case 
instruction execution is inhibited. 

60459960 A 10-63 



Nonstandard Numbers 

Standard floating-point numbers have biased exponents in the range (hex.): 

(3000) ~ e < (5000) 

This leaves numbers with exponents in the ranges (hex.) of: 

(0000) ~ e < (3000) and 

(5000) ~ e < (7FFF) 

for the representation of nonstandard numbers. These gaps in the range have the following 
meanings (hex.): 

(7000) ~ e ~ (7FFF) 

(5000) ~ e < (7000) 

INDEFINITE 

INFINITE 

These numbers with exponent overflow may be generated by the hardware. 

(1000) ~ e ( (3000) : UNDERFLOW 

These numbers with exponent overflow may be generated by the hardware. 

(0000) ~ e < (1000) : ZERO 

With the single exception of the hex. number (0000), these numbers cannot be 
generated by the hardware .• 

Input operands having exponents in the range (hex.) of: 

(0000) .s e < (3000) 

are interpreted as Zero by the hardware. 

The full range of floating-point numbers is tabulated (figure 10-51), followed by an 
illustration of the nonstandard numbers (figure 10-52). A word consisting entirely of zeros 
may be received as input to, or issued as output from, a floating-point unit as a true 
zero. By hardware convention, however, zero is a nonstandard floating-point number. 

10-64 60459960 A 



HEXADECIMAL EXPONENT INCLUDING CO·EFFICIENT SIGN 

ACTUAL EXPONENT (TO THE BASE 2) 

INPUT ARGUMENTS 

7XXX ---- INDEFINITE 

6FFF 212,287 

f r 
INFINITE 

COEFFICIENT 
SIGN EQUAL 

TO 0 5000 ;14,096 

(POSITIVE 
NUMBERS) 

4FFF ;14095 

+ ~ 
NUMBERS IN THIS RANGE 

4000 STANDARD WITH ZERO COEFFICIENTS 

3FFF 2-1 ARE TERMED +Z3 

~ + 3000 2-4,096 

2FFF 2-4,097 

+ + 
1000 2-12,288 ZERO +Z2 

OXXX - - -- ZERO +Z1 

8XXX - - -- ZERO -Z1 

COEFFICIENT 9000 2-12,288 
SIGN EaUAL + + ZERO -Z2 
TO 1 AFFF 2-4,097 
(NEGATIVE 
NUMBERS) BOOO 2-4,096 

+ + NUMBERS IN THIS RANGE 
BFFF 2-1 

COOO 2° STANDARD 
WITH ZERO COEFFICIENTS 

+ + 
ARE TERMED -Z3 

CFFF 24,095 

0000 z4096 

+ + INFINITE 
EFFF 212,287 

, FXXX - -- INDEFINITE 

Figure 10-51. Floating-Point Representation 

60459960 A 10-65 



INPUT 

o 1 234 15 

S = SIGN 10/1) 
\S 0 0 X 'Il EO 

X = BINARY 
DIGIT 10/11 IS o X 0 X Xl 

IS 1 lOX 'II =0:1 
Is 1 0 1 X Xl 

IS 1 1 1 X Xl = INDEF 

OUTPIJT 

o 1 2 3 4 15 

10 01 =0 

\S 1 o 1 0 01 500 

Is 1 1 1 0 01 = INDEF 

Figure 10-52. Nonstandard Floating-Point Numbers 

CONVERT INSTRUCTIONS 

Two instructions are provided to translate between integers and floating-point numbers. 
Points to note are: 

• When converting from integer, numbers outside the range: 

-248 through (248 -1) 

are truncated in their rightmost 

10-66 60459960 A 



• When converting to integer, numbers which are: ~ 

~~ 
-indefinite ~. 
-infinite 
-have actual (unbiased) exponents < 0 
-have fractions - 0 

are converted to zero. 

Numbers in the range: 

are converted exactly, and numbers outside this range have the least significant 
64-bits of the result returned as the result with a floating-point loss of 
significance condition detected. 

ADD/SUBTRACT - SINGLE AND DOUBlE PRECISION 

Points to note are: 

• These are 2-address instructions. 

• Double precision operands are located in registers Xj and Xj+l, Xk and Xk+l. If j 
or k - F then (j+l) or (k+l) - O. 

• Indefinite or infinite source operands yield indefinite or infinite results (figure 
10-53) • 

• Nonstandard numbers (in the gap) are input as zero. 

• These instructions post-normalize. In fact, they provide the mechanism for 
normalizing unnormalized numbers. 

• When an exponent overflow occurs one of two things happens depending on the 
condition of the mask bit corresponding with this condition. If the mask bit is not 
set: no interrupt occurs and the standard form for infinity is output. 

If the mask bit is set: the exponent along with its bias, and the normalized 
fraction along ,,;ith its sign is returnt!d as the result. Even though an overflow 
condition has been de Lec ted, the result is still a true and accurate floating-point 
representation of the result. An interrupt is taken and actions which follow are 
then determined by the code compiled (by the user) to handle this interrupt. 

• When an exponent underflow occurs, precisely the same actions take place as with an 
exponent overflow, except that when the mask bit (for exponent underflow) is not set 
a resul t of zero (all zeros) is returned. With the mask bit set, the resul t will be 
true result in the gap between zero and the stand.ard floating point numbers. 

""\. ~ 1 
• When the operation results in a zero fraction (including the overflow bit) a result 

of all zeros is returned if the mask bit associated with floating-point loss of 
significance is clear. If the mask bit is set, then the exponent along with its 
bias, is returned with a zero fraction, and a floating-point loss of significance is 
recorded. The exception to this rule occurs when both operands are zero, as defined 
by their exponents. No loss of significance occurs in this c~se. If both operands 
are zero, however, and at least one of them has a standard exponent and a zero 
fraction (Z3), then a floating-point loss of significance results. 

60459960 A 



Add 

~ Xk II .... ·Do :INl> 

II S - ·Do IN!> 

..... +Do - IN!> IN!> 

.... .Do IN) .Do IN) 

;INII INII INII INII INII 

Subtract 

~ Xk 
II .Do ·Do ;INl> 

II II ·Do +Do IN!> 

+Do +Do INII +Do IN]) 

.Do .Do -Do IN» IN!> 

:tINII INII IN!> INl> IN!> 

Figure 10-53. Add/Subtract - Nonstandard Floating-Point Numbers 

PRODUCT - SINGLE AND DOUBLE PRECISION 

Points to note are: 

• This is a 2-address instruction (A=A*B). 

• Indefinite, infinite or zero source operands yield indefinite, infinite or zero 
results (figure 10-54). 

• Nonstandard numbers (in the gap) are input as zero. 

• This operation performs the following function: 

a b (a+b) 
A.2 * B.2 = A.B.2 

10-68 60459960 A 



• 

~ x. +N -N ·0 -0 - - ;In 

·N .p -p 0 0 - - IN. 

-N -p .p 0 0 - ... INI 

·0 0 0 0 0 lID INI INI 

-0 0 0 0 0 lID 1111 IND 

... ... - INI INI ... -.. INI 

-.. ... - INI IN' -.. ... INI 

n .. IN. INI lID INI lID INI IN. 

Figure 10-54. Multiply - Nonstandard Floating-Point Numbers 

In single precision it forms a 96-bit product from two 48-bit source operands then 
normalizes one bit position. This means that normalized input yields normalized 
output. However, if the source operands are unnormalized. the state of the product 
is unknown. The reason for this one bit normalization is that the smallest 
normalized coefficient is a half. If this is squared. the smallest product results 
(namely a quarter) which is unnormalized by one bit position. 

Exponent underflow and exponent overflow are handled as previously with 
add/subtract. Since the exponents are added in this case. the largest positive 
exponent that can be obtained is 8190 and the largest negative exponent is -8192. 
Both of these quantities fall in the range of nonstandard numbers. Hence, if they 
are generated. and the associated mask bit is set. a cor~ect value is returned. 

"-I do; ( '-\\~t l 
'I \./" /f.. QUOTIENT - SINGLE AND DOUBLE PRECISION 

7 ( 

Points to note are: 

• This is a 2-address instruction (A-A/B). 

• Indefinite. infinite and zero source operands yield indefinite, infinite or zero 
results (figure 10-55). 

60459960 A 10-6.9 



~ Xk +N -N +0 -0 .... -Do +IND 

.. .. .. .. 
+N +Q -Q < < 0 0 IND .. .. .. .. ,., ,., 

... ... 
-N -Q +Q .. .. 0 0 IND c c ,.. ,.. 

of ... , , 
+0 0 0 ,., ,., 0 0 IND 

>< .. ,., ,., ,.. n 
C !:i -0 0 0 ... 0 0 IND .. .... 
0 0 z z .. ... IND IND IN!) +Do +Do -Do Z Z 
% % ... ... 
CD II) ... ... 
of ... IU IN. IN]) -Do -Do +Do ,., 1"1 .. .. 

+IN) IN» IN]) IN) IN. IN)) 

Figure 10-55. Divide - Nonstandard Floating-Point Numbers 

• Nonstandard numbers (in the gap) are input as zero. 

• This operation performs the following function: 

10-70 

a b 
A.2 / B.2 

(a-b) 
(A/B) • 2 

In single precision a 96-bit dividend is formed by appending 48-zeros to the low 
order bit of the second operand. A 48-bit quotient is formed which is normalized 
one bit position. This means that normalized input yields normalized output. 
However, if the source operands are unnormalized, then the state of the quotient is 
unknown. The reason for this one bit normalization is that the largest normalized 
fraction is 

-48 
1 - 2 

and the smallest normalized fraction is a half. The quotient formed by dividing 
these quantities is 

-47 
2 - 2 

which overflows by one bit. 

60459960 A 



• Two cases are of special interest. These are a divisor of zero, and a resulting 
quotient which would be equal to or greater than 2.0. In those cases, the 
instruction execution is inhibited, a divide fault indicated and the corresponding 
interrupt taken if the mask bit is set. 

BRANCH AND COMPARE INSTRUCTIONS 

Two single-preci.sion floating-point quantities may be compared for: equal, not equal, 
greater than, greater than or equal. When the condition is met either a branch may be taken 
or the results of the comparison may be returned to register Xl-Right. When the result of 
the comparison is transmitted to Xl-Right in the standard CYBER 180 manner: 

Xj Xk, 
Xj > Xk, 
Xj < Xk, 

Xl-Right = 000---0 
Xl-Right = 010---0 
Xl-Right = 110---0 

In addition, an indefinite condition is flagged by the value 100---0 in Xl-Right. 
Points to note are: 

1) Operands compared by branch instructions will have the same results as those 
compared by the compare instruction. All of those instructions examine the 
exponents and signs of the input operands to determine the nature of the 
comparison. The result is determined directly if the exponent of either operand 
shows it to be zero, infinite, or indefinite. This is also true if the operand 
signs differ. While this approach minimizes execution time, some anomalies may 
occur if the operands are unnormalized. Of particular interest is the 23 operand, 
which has an in-range exponent but a zero fraction. 23 is an unnormalized zero, but 
since these preliminary decisions are based solely on examination of the exponent, 
comparisons involving Z3 yield arbitrary results. 

When 23 is compared to a true zero (as defined by its exponent), the result «,» is 
determined by the sign of Z3. An equal comparison is not possible. When Z3 is 
compared to an in-range quantity, however, the result «,>,=) is based not only on 
the sign, but in the case of the signs being equal, it is based on the magnitude of 
the exponent as well. In the peculiar case of Z3 having a large exponent (but a 
zero fraction) and the second operand having a small exponent (but a nonzero 
fraction), this second operand will have its fraction driven to zero during exponent 
equalization, and the quantitites will compare equal. Comparisons involving Z3 are 
unique in that they may yield results which differ from other similar operations, 
such as subtracting the two quantities being compared and then branching on the 
result. Figures 10-56 and 10-57 at the end of this section should help clarify 
these and other issues relating to floating-point 'instructions. 

2) If XO is sr-(~cJfi(~d ,:is a t·cgiste_r) it is interpreted as all zeros. This means that 
the contents of XO cannot be tested explicitly. 

3) If either operand 
and a normal exit taken. 

a floating-point indefinite condition is recorded 
1"'-' 

4) When both operands are standard floating-point numbers, a floating-point subtract is 
executed to determine the results of the comparison. 

60459960 A 10-71 



~ Xk +N -N +0 -0 + ... -... +IN' 

+N • < < < > < tNt 

-N > • > > > < INt 

+0 > < . . > < IN • 

-0 > < . . > < IN • 

.... < < < < IN • < INt 

.... > > > > > IN. INt 

;IND IN. IN. INt INt IN. IN. INt 

Figure 10-56. BRANCH and COMPARE - Nonstandard Floating-Point Numbers 

~xception Branch 

This instruction tests a single precision floating-point number for an exception 
condition (figure 10-57). Conditions sensed are exponent overflow, exponent underflow and 
indefinite and then are determined by the exponent value as described previously. 

A user may elect not. to set the mask bits in the user condition register to force an 
interrupt when an exception condition arises. Instead, the conditions may be sensed in line 
via use of that instruction. 

J 

• 1 
00 - EXPONENT OVEftfLO¥ 
01 - EXPONENT UN.EftfLO¥ 

10 or 11 - IN.E'INITE 

Figure 10-57. Exception Branch 

10-72 60459960 A 



SYSTEM INSTRUCTIONS 

INTRODUCTION 

The CYBER 180 instruction repertoire includes 16 instructions which are designed to 
facilitate operating system processing. These instructions include the CALL/RETURN/POP 
instructions which have already been discussed. While some of these are specific to the 
operating system, others,like CALL/RETURN, have a more general utility. A mechanism has 
been defined whereby the operating system specific instructions cannot be executed by users 
in a destructive or accidental manner. This mechanism is described in the following 
paragraphs. 

PRIVILEGED STATES OF EXECUTION 

There are two major machine states, which are referred to as monitor mode and user 
mode. When the machin~ is in the monitor mode, exchange interrupts are disabled. In 
addition, certain system instructions have their execution restricted to this mode. The 
switch between the two states can only be made with an exchange jump which may be issued 
either explicitly, as in the case of a monitor to job switch or a system call by a user, or 
implicitly in the form of an exchange interrupt in job mode. This machine state cannot be 
altered by any means other than an exchange jump. It is set at deadstart/initialization 
time by master clearing the processor, and it is recorded in the Environment Control 
Register (DEC) for maintenance purposes. 

When the processor is in monitor mode, typically, traps are disabled, which, in turn, 
means that interrupts are locked out. Since the CYBER 180 systems are designed to provide a 
minimum response time to an external stimulus (external interrupt) it is important to 
minimize the time consumed with interrupts locked-out. If operating system instructions are 
restricted to monitor mode, then those processors using these instructions would have to run 
in monitor mode and interrupt response times would increase. For this reason certain other 
privileged states have been introduced. These privileged states are termed: global, local 
and unprivileged and are structured hierarchically. The controlling unit for these states 
is the code segment, the states being established by the Segment Descriptor Entries (SDE's) 
for those code segments (figure 10-58). 

60459960 A 10-73 



Ri! Asn t:1~[YI 
IL _ LOCK 

00 Non-executable Segment 
01 Non-privileged Executable Segment 
10 Local privileged Executable Segment 
11 Global privileged Executable Segaent 

- 00 Invalid 
01 P.eserved 
10 Regular Segaent 
11 Cache By-pass Segment 

Figure 10-58. Segment Description Table Entry - SDE 

This hierarchical concept of privileged states has the following advantages: 

a. The amount of code which must be executed with interrupts disabled can be kept to an 
absolute minimum, which guarantees an interrupt response time. 

b. The operating system monitor can be restricted to a small number of critical 
functions. This minimizes the amount of code which must be developed and maximizes 
the mean time between failures for this code. In fact, the goal is to have no 
software errors in this code. 

c. Access to certain registers, for example hardware maintenance registers, can be 
restricted to users who have the need to access (in particular write) these 
registers. 

As a result, the normal end-user will run in an unprivileged mode, whereas certain 
portions of the operating system will run with various privileges, and maintenance routines 
(on-line diagnostics) will have the privilege necessary to access the hardware maintenance 
registers. A detailed description of the system instructions and their intended usage now 
follows. 

10-74 60459960 A 

.... 



EXCHANGE JUMP 

The exchange jump instruction is used to switch the processor between monitor mode and 
job mode. During an exchange jump the current state of the machine, as described by the 
process state registers, is saved in central memory. and a new state is created by loading 
the process state registers from another area in central memory. Unlike CYBER 170 machines, 
CYBER 180 machines do not swap the contents of central memory and the process state 
registers. Instead, the registers are saved in one area and loaded from another. These 
areas in central memory are specified by two processor state registers: Monitor Process 
State (MPS); and Job Process State (JPS). These registers hold Real Memory Addresses. This 
is very important and has software implications. The exchange jump mechanism is one of the 
very few operations which bypasses the virtual memory mechanism. In turn, this means that 
it bypasses cache for those processors which have cache buffers. Hence, if care is not 
exercised stale data can end up in cache memory (which works off an SVA) after an exchange 
jump. This could be handled by purging the appropriate part of cache. However, the 
recommendation is that exchange packages be placed in cache bypass segments so that they 
never get loaded into cache (refer to figure 10-58). 

Exchange jumps can occur explicitly or implicitly as follows: 

a) If the processor is in monitor mode, an exchange jump will place the processor in 
job mode, and instruction execution will commence at the PVA specified by the 
content of the P Register in word zero of the exchange package at lPS. 

b) If the processor is in job mode, a user may issue an exchange jump, which will place 
the processor in monitor mode at an address specified by the content of the 
P Register found in word zero of the exchange package at MPS. This is termed a 
System Call and sets bi.t 58 in the MCR to differentiate it from other monitor fault 
conditions. 

c) When the processor is in job mode, a monitor fault condition as determined by the 
MCR will cause an exchange interrupt which will place the processor in monitor mode. 

It is important to understand the concept of an address space as defined by the entries 
in a Segment Descriptor Table (SDT) for a process. Each user has an address space which 
contains all the code being executed in that user process and the data on which that code is 
operating. In addition, the user address space will include the operating system services 
required for the process and at least one segment for communication with the operating 
system address space. The user address space and the operating system address space are 
distinct entities. It is impossible for the user to access the operating system address 
space and it is extremely difficult for the operating system to access the user address 
space. The translation of a PVA involves a table look-up in the SDT and since the user's 
SDT is inactive when the operating system monitor is executing, the automatic address 
translation does not function. The operating system has created the user SDT. Hence it can 
simulate the address translate mechanism, but this would be tedious and impractical. This 
is one reason why trap interrupts have been provided so that those conditions which must be 
handled from within the user's address space cause interrupts to that environment. 

When a system call is issued by a user it is necessary for the user to communicate with 
the operating system such that Monitor can determine the reason for the call. There are a 
number of ways this can be accomplished. One way is to communicate the required information 
across the address spaces in X Registers. This is perhaps the simplest technique, although 
it has the drawback that the amount of information which can be transmitted is limited. 
Another technique is for the operating system to create a Segment which exists in both the 
operating system and user address spaces. This is simple to achieve and suggests a general 
communication medium for jobs and the operating system monitor. 

60459960 A 10-75 



The exchange jump mechanism can be used to effect a virtual machine switch. On CYBER 
180 this mechanism, along with the CALL/RETURN mechanism is the technique used to switch 
between CYBER 180 native state and CYBER 170 state. This process is discussed fully in the 
section dealing with CYBER 170 state. When monitor exchanges to job and makes a virtual 
machine switch, a common exchange package is established between the two virtual machines. 
The Virtual Machine Capability List (VMCL) determines which virtual machines exist in a 
given processor. If an exchange is made to a virtual machine which does not exist (a 
VMID/VMCL mismatch), then an Environment Specification Error is detected, and, on completion 
of the exc.hange jump, an exchange interrupt occurs. The converse of this is theoretically 
impossible since the initialization process always commences in a CYBER 180 environment. 
However, a hardware failure could generate this condition, in which case the processor will 
halt, since monitor conditions always cause an exchange interrupt from job mode to CYBER 180 
monitor mode. 

KEYPOINT 

CYBER 180 hardware has built-in facilities for gathering system performance data. These 
facilities are activated by the keypoint instruction. Performance data may be gathered 
either by software or by an optional hardware performance monitoring facility (PMF). 
Software retrieval is governed by the Keypoint Enable Flag (KEF) - a process state register 
which is set for an exchange interval by the operating system. If the KEF is set and traps 
are enabled, then an interrupt will occur on keypoint instructions under control of the 
Keypoint Mask (KM) register. It is then the responsibility of the trap interrupt routine to 
save any required data. Hardware retrieval of performance data is controlled by register 22 
in the PMF, and is independent of any retrieval by software. The hardware records the 
keypoint class, keypoint code, and time of day. This information may be recovered by 
software over the maintenance channel. In. addition to this data, the PMF can monitor other 
specific events such as cac.he hits, MAP hits and Page Table hits, which could not be 
measured readily via software techniques. 

Keypoint instructions are activated under the control of the Keypoint Mask (KM) and 
selected by the Keypoint Class Number (KCN). Complete identification of the instruction is 
by Keypoint Code within KCN. 

The j-field of the instruction contains the KCN which is used as a bit index into the 
Keypoint Mask. That is, a KCN of five indexes bit 5 of the KM - the sixth bit from the 
left-hand end of the KM. If this bit is set, then performance data is collected. This data 
typically includes: time of day; KCN; and Keypoint Code (figure 10-59). 

10-76 60459960 A 



KM 

I111 ~ 11111111111 
L TRAP if set, traps enabled 

and KEF set. 

Q 

I Sign EXT 

Xk 

I KEYPOINT CODE 

Figure 10-59. Keypoint Operation 

+ 

J 

In general, Keypoint instructions are placed throughout code segments where performance 
data is gathered. For example, performance data on I/O routines may be required. A 
Keypoint Class, as specified by the KCN could be established for all I/O routines and 
Keypoint instructions inserted as appropriate with this KCN. The individual routines would 
then be identified uniquely by the Keypoint Code formed from Register-Xk and the Q-field of 
the keypoint instruction. 

COMPARE SWAP 

There are two techniques which are employed by CYBER 180 to interlock data in central 
memory which is accessed/modified by more than one processor. One functions on a word basis 
and the other on a bit basis. The general theory of the interlock instructions is to 
establish a convention whereby a zero indicates unlocked and a one indicates locked. To set 
a lock, a one is set in a register which is then exchanged with the interlock in central 
memory. If the result in the register is a one, then the lock was already set, otherwise it 
has been set and the process can continue. 

60459960 A 10-77 



The actual operation of the Compare/Swap instruction is more complicated than this model 
(figure 10-60) although the theory is the same. In the Compare/Swap a quantity in register 
Xk is compared with the interlock word in central memory whose PVA is contained in register 
Aj. If they are equal, then the lock can be set, and this is accomplished by storing XO in 
the interlock word. If they are unequal, then the interlock word is loaded into register Xk 
to indicate that the lock was already set. In addition to this basic Compare/Swap, or 
compare and set lock, a check is made to determine whether the interlock is locked by 
hardware. If it is, then a branch exit is taken to (P+2*Q). 

Figure 10-60. Compare/Swap Operation 

A single interlock pattern has been reserved for the hardware in this respect. This 
interlock pattern is a word which consists of all ones in its first 32 bit positions. The 
need for this hardware interlock arises from the fact that the total operation does not take 
place in memory. Rather the processor uses a memory exchange function to exchange the 
interlock word with a word having all ones in its leftmost 32 bits. This sets the hardware 
lock if it was not already set. It then proceeds to complete the remainder of the operation 
in the processor, finally storing the appropriate word into the interlock, thereby clearing 
the hardware lock. Software is prevented from setting the hardware lock by this 
instruction. If XO-Ieft contains all ones then an Instruction Specification Error is 
detected. This hardware interlock process ensures that during the execution of this 
instruction no other processor can attempt the same instruction on the same interlock word. 
In other words, once the instruction has been committed it will run to conclusion without 
interference. Instructions which exhibit this characteristic are called Nonpreemptive 
Instructions. 

10-78 60459960 A 



In a monoprocessor environment, a similar problem can arise if memory accesses take 
place out of sequence with respect to the sequence in which they were issued. It is for 
this reason that these instructions are preserialized and postserialized with respect to 
memory accesses on the part of the given processor. All memory requests issued by the 
processor are satisfied before the interlock instruction is issued, and the memory accesses 
for the interlock are completed before the next instruction is issued. On the memories 
designed for S2 and S3, requests are satisfied in the sequence they are issued. However, 
this may not be true for a common bulk memory with a slow access and many banks. For these 
memories it is conceivable that only those requests for the same bank will be sequenced. 
This is an important concept, since this function is not always performed by the hardware 
and it is sometimes incumbent upon the programmer to ensure the desired serialization is 
carr ied out. 

General Notes: 

• Since this instruction swaps the contents of a register and central memory, it 
requires that the interlock word be in a segment which has both Read and Write 
access. 

• The interlock word must reside on a word boundary. This is in order that the 64-bit 
memory exchange function can be used. An Address Specification Error results if 
this condition is not met. 

• The operation (exchange) occurs in central memory and bypasses cache. Cache is 
bypassed on the read portion and purged on the write. Since the purpose is to 
interlock processors a common point must be utilized. Cache memory is peculiar to a 
given processor and, therefore, cannot be used and should be bypassed. 

• To simplify the debug operation the following assumptions are made: 

The operands are not locked (by hardware). 

The operands are used for both read and write access. 

The branch reject address is not used as an argument for debug. 

TEST AND SET BIT 

This is the second instruction available for interlocking processors. Unlike the 
Compare/Swap, the Test and Set Bit instruction functions on a single bit in memory. The 
operation is straight-forward. An interlock bit in central memory is loaded into register 
Xk, right justified, zero filled, and the bit is set in central memory. A subsequent 
investigation of register Xk will determine whether the lock has been set. If Xk is zero, 
the the lock has been set, otherwise it was already locked (figure 10-61). 

60459960 A 10-79 



OP 

Aj 

I RN SEG BN 

+ BIT WITHIN 
,I BYTE 

BYTE II I 
XO-R 

SIGN EXTENSION ... I-----~I=..:~----_;;:n;:_------lr~ 

D T 
RN SEG BN 

BIT UNCONDITIONALLY 
SET BY INSTRUCTION" 

r l:f 1 
Xk 

10 .. II 011 

Figure 10-61. Test and Set Bit 

This instruction is nonpreemptive. No accesses to the byte containing the interlock bit 
are permitted from any port on central memory during the execution of this instruction. It 
also is preserialized and post serialized with respect to this processor as described under 
Compare/Swap. Note, however, that the instruction unconditionally sets the lock. If it was 
already set, then action depending on the lock must be postponed. To clear a lock, the 
store bit instruction, which is described under the general instructions, must be used. 
Since the Store Bit instruction has a general utility it is undesirable to penalize it by 
pre- and postserialization. Nevertheless the requirement remains to preserialize when 
clearing a lock. This may be achieved by issuing a Test and Set Bit instruction before a 
Store Bit to clear a lock. This resets the already set lock and postserializes thereby 
effectively preserializing the following instruction. 

General Notes: 

• The byte containing the interlock bit must reside in a segment which has both Read 
and Write access since the instruction both loads (into Xk) and stores into the 
interlock bit. 

• Here again cache should be bypassed to ensure that the interlock bit resides in a 
memory common to all registers. The instruction bypasses cache on read and purges 
the entry on a write. 

10-80 60459960 A 



• The bit address is formed from the contents of Registers Aj and XO. Aj carries a 
byte address, XO-Register carries a bit address which is treated as a byte address 
and a bit address within that byte. The byte address portion is sign extended in 
its leftmost three bits and added to the Byte Number field of Aj to form the byte 
address of the interlock byte. 

TEST AND SET PAGE 

The purpose of this instruction is to give the Real Memory Address (RMA) corresponding 
to a PVA, provided as an argument to the instruction. If the required page is not in 
memory, then a flag is returned to indicate this fact. The PVA is initially contained in 
register Aj and the RMA returned in Xk-Right. When the page is not in real memory Xk-R is 
returned with the sign bit (bit-32) set. For pages in memory the used bit in the PTE is 
set. The assumption is that the page will be used almost immediately, and that used pages 
are aged via a least frequently used algorithm, hence the page tends to be held in real 
memory. 

When the page is not in memory a page fault does not occur. In general, page fault 
sensing and access violations on Aj do not take place. However, Address Specification 
errors, and Invalid Segment sensing do occur. 

Probably the most prevalent usage of this instruction is to determine an RMA for I/O, 
since the PP's in the IOU can only access real memory addresses. 

COPY FREE RUNNING COUNTER 

There is a one microsecond clock in central memory whose value may be read by this 
instruction. This clock, termed the Free Running Counter, is classified as a central memory 
maintenance register, and is the only such register having access via the memory port. The 
remainder are accessed via the Maintenance Channel (MCH). The Free Running Counter may be 
written (but not read) from the MCH, and may be read by the CPU via the memory port using 
this instruction. The counter is a 48-bit register which is read into register Xk, right 
justified, zero filled. The address of the counter (register BO) is supplied in bits 56-63 
of register Xj. In addition, bit 33 of Xj is used to designate which of two memory ports 
accessible by the processor shall be used. 

LOAD PAGE TABLE INDEX 

This instruction is included in the repertoire specifically to aid in the management of 
the page table. Starting with an SVA it determines whether or not a given entry is in the 
page table, and if so, where it is. 

To use this instruction an SVA must first be derived from a PVA by software. This 
quantity is used by the instruction out of register Xj. The instruction then uses the 
virtual memory mechanism to search the page table for the required entry. The only 
difference between the virtual memory mechanism and the instruction is that the instruction 
ignores the valid bit in the PTE. This is to facilitiate the implementation of the 
algorithm for clearing continue bits in the page table. This algorithm is described in the 
section on virtual memory and requires determining whether a given entry hashed directly to 
the PTE, or was some distance from the direct hash entry. 

60459960 A 10-81 



The instruction returns the index of the PTE in Xk-Right. This is true even when the 
entry is not found, in which case it returns the index of the last entry searched. Xl-Right 
contains the count of entries searched and a flag (bit-32) to indicate whether the required 
entry was found (figure 10-62). An investigation of the quantity answers the hash-direct 
question, and obviates the need for software to simulate the hashing algorithm. 

OP 

Xj \ 
SVA 

1 
B 

Xk-R 

I 
Xl-R 

I 

----

SYSTEM PAGE TABLE 

I 

I 
RESULT 

1 
INDEX 

COUNT 

Figure 10-62. Load Page Table Index 

The instruction is permitted to execute only when the processor is in Local or Global 
privileged mode. Although page table management is an operating system function, it is not 
necessarily prudent to do this management in monitor mode when interrupts would be 
disabled. Instead, a system job is created which has special privileges; in this instance 
the job would have at least local privilege. 

10-82 60459960 A 



PROCESSOR INTERRUPT 

This instruction provides the capability for one processor to interrupt one or more 
processors connected to the same memory. The receiving processor has the external interrupt 
bit (bit-56) set in its Monitor Condition Register and reacts according to the state of that 
processor. The actual interrupt is routed from memory port to memory port or ports. 
Register Xk-Right is used by the instruction to determine which memory the interrupts are 
routed through. Bit 33 of Xk-Right selects one of two memory ports connected to the 
interrupting processor, and bits 56-63 select the ports to which the interrupt will be sent. 

General Notes: 

1) Interrupts may be sent to or received from the IOU. When an interrupt is sent to 
the IOU it is ignored. 

2) A software convention must be developed so that the interrupted processor or 
processors can determine the reason for the interrupt. For this reason it is 
necessary for the interrupting processor to preserialize the instruction. That is, 
all memory references on behalf of the interrupting processor are satisfied before 
the instruction is issued to ensure that the message has been stored successfully 
before the interrupt is sent. 

3) It is possible for a processor to interrupt itself, al though this may have limited 
utility. 

4) Examples of the use of this instruction are: 

One processor changing the state of the world. That is, a processor creates a 
new page table and switches to its use. A second processor would be idled while 
the switch was in progress. 

The IOU wants to alert a processor to the fact that is has completed an I/O 
operation. 

The MCU (a special PP in the IOU) wants a processor to perform some maintenance 
func tion on its be half • 

These are all examples of system functions. For this reason this instruction carries 
with it a Global Privilege. 

BRANCH ON CONDITION REGISTER 

This instruction provides the means for testing, setting and clearing bits in the 
condition registers. Testing of bits, and modifying bits in the User Condition Register 
(UCR) are unprivileged operations. However, setting or clearing bits in the Monitor 
Condition Register (MCR) can only occur from monitor mode. 

Although the instruction can be used to test for the presence or absence of a bit in the 
condition register, the most common application will probably be to test for a bit set, and 
if set clear it and branch. This provides a mechanism for checking for interrupts without 
paying the penalty for a trap or an exchange interrupt. Since this instruction can set a 
bit in a condition register it can cause an interrupt. When the bit is set it will appear 
to the hardware that the condition arose. Whenever a bit is set a branch exit is taken, and 
it is this branch address which is saved in the exchange package or stack frame save area as 

60459960 A 10-83 



the interrupt occurs. A subsequent exchange or return instruction will then cause 
processing to resume at the branch address. The ability to set a bit in a condition 
register has been included primarily for diagnostic purposes. However, no special 
privileges apply to the UCR since a user cannot cause wanton destruction of the system 
through that register. Setting a bit in the UCR will cause an interrupt, providing the 
corresponding bit is set in the User Mask Register and traps are enabled. Similarly for the 
MCR except for the two flags which are held in that register. These are the System Call 
(bit-58) and Trap Exception (bit-63). If either of these bits is set in the MCR then there 
will not be an interrupt, regardless of the state of the machine and the value of the 
corresponding bits in the MM. 

COpy 

The copy instructions provide the means for copying state registers (both processor and 
process state registers) to X Registers and vice versa. Most state registers are numbered 
uniquely such that the register number serves as an address, both for the copy instructions 
and for access of the registers over the Maintenance Channel. The copy instructions 
function by taking the address of the state registers from the last eight bits of register 
Xj, and then copying to/from register Xk. The value in Xk will always be right justified 
and zero filled. The following general notes are of interest: 

• 

• 

• 

• 

• 
• 

10-84 

Not all state registers are available to the processor. For example, the Status 
Summary register can only be accessed via the MeR - and then only in a Read Mode. 

Except for those registers which cannot be accessed the Copy to Xk instruction is 
nonprivileged. 

The Copy from Xk instruction, that is, write to a state register, carries various 
privileges depending on the address of the state register. An attempt to write a 
state register from a segment with the wrong privilege causes an interrupt. 

Attempts to write a read-only register or to write a nonexistent register act as no 
operations. 

Attempts to read a nonexistent register result in all zeros being returned. 

Certain process state registers (defined in the exchange package) do not have 
addresses, and cannot be read/written via the copy instructions. In fact, these 
registers can only be set via the exchange jump mechanism. Figure 10-63 illustrates 
the accessibility to the registers. 

60459960 A 



COPY ACCESS PRIVILEGES 

cr: cr: iii 
COPY FROM COpy TO ::J= wa.. w-

t;::J t;ffi STATE STATE ~~ _0 _ID 
REGISTER REGISTER ocr: o:i! 

we w;:) 
REGISTER NAME cr: cr:z REAO WRITE 

OO-OF 00 STATUS SUMMARY NO ACCESS 
10 ELEMENT 10 

10-1F 11 PROCESSOR 10 UNPRIV. NO ACCESS R 
12 OPTIONS INSTALLED 
13 VIRTUAL MACHINE CAPABILITY LIST 
21 PMF KEYPOINT 
22 PMF BUFFER 
30 DEPENDENT ENVIRONMENT CONTROL 

20-2F 31 CONTROL STORE ADDRESS NO ACCESS NO ACCESS RIW 
30-3F 32 CONTROL STORE BREAKPOINT 

40 P REGISTER 
41 MONITOR PROCESS STATE POINTER 
42 MONITOR CONDITION REGISTER 
43 USER CONDITION REGISTER 
44 UNTRANSLATABLE POINTER 

40-4F 45 SEGMENT TABLE LENGTH 
46 SEGMENT TABLE ADDRESS UNPRIV~ NO ACCESS RIW 

50-5F 47 BASE CONSTANT 
48 PAGE TABLE ADDRESS 
49 PAGE TABLE LENGTH 
4A PAGE SIZE MASK 
50 MODEL DEPENDENT FLAGS 
51 MODEL DEPENDENT WORD 
60 MONITOR MASK REGISTER 

60-6F 61 JOB PROCESS STATE POINTER UNPRIV. MONITOR RIW 
70-7F 62 SYSTEM INTERVAL TIMER 

S0-8F PROCESSOR FAULT STATUS 
SO-SF 90 RETRY CORRECTED ERROR LOG 
90-9F 91 CONTROL STORE CORRECTED ERROR LOG UNPRIV. GLOBAL RIW 
AO-AF 92 CACHE. CORRECTED ERROR LOG 
BO-BF 93 MAP CORRECTED ERROR LOG 

AO PROCESSOR TEST MODE 
CO-C3 TRAP ENABLES 

C4 TRAP POINTER 
CO-CF C5 DEBUG POINTER 

C6 KEYPOINT MASK UNPRIV. LOCAL RIW 
DO-DF C7 KEYPOINT CODE 

C8 KEYPOINT CLASS NUMBER 
C9 PROCESS INTERVAL TIMER 

CA·CB KEYPOINT ENABLE FLAG 

~mt. CRITICAL FRAME FLAG 
EO-EF E2-E3 ON CONDITION FLAG 

E4 DEBUG INDEX UNPRIV. UNPRIV. RIW 
FO-FF E5 DEBUG MASK REGISTER 

E6 USER MASK REGISTER _. 

Figure 10-63. Processor Register Definitions and Accesses 

60459960 A 10-85 



• Various flip-flops may be set by the copy instructions and some special provisions 
for these have been made. When a state register is read, it is always possible 
address Xj and the destination Xk to be the same register. When writing, however, 
two registers are usually used. For the single-bit registers multiple addresses 
have been supplied such that a single register can act as both the address and 
data. For example, EO and El are two addresses for the critical frame flag. A copy 
to CFF with a value of EO will clear the CFF, and with El will set it (figure 
10-64). This concept has been carried even further for the Trap Enable Flip-flop 
(TEF) and the Trap Enable Delay (TED), when four addresses are reserved for the 
combined two registers which may be set simultaneously by' a single copy instruction 
(figure 10-64). This is a very important fact when the process of enabling traps 
after a trap interrupt is considered. Traps are enabled when the TEF is set, and 
the TED is clear. When a trap interrupt occurs the TEF clears. To both the TEF and 
the TED are set and a Return issued. The setting of the two flags can take place in 
one instruction. 

OP oJ Ie 

Add,. ••• 
El. "-Cff) 

X ollie I 
E a 

II+-

Figure 10-64. Copy to Single Bit Register 

PURGE BUFFER 

The cache and MAP buffers, present on certain CYBER 180 processors, were described in an 
earlier section. They are fast buffer memories designed to give rapid access to frequently 
used data, and contain copies of data held in central memory. Whenever the copy and the base 
data are different, the copy is said to be stale, and must be purged from the buffer in 
question. Some purging is provided automatically by the hardware, but there are many 
instances where the onus is placed on the software to ensure that "the appropriate buffer or 
buffers are purged. The Purge Buffer instruction has been provided for this purpose. The 
instruction has several options which are controlled by the k-fie1d of the instruction. 

10-86 60459960 A 



These include purging either the MAP or the cache, and either totally or selectively by an 
SVA or a PVA. Purging the cache via a PVA is an unprivileged instruction; all other forms 
of the instruction carry a Local privilege. This is to protect against a user purging 
entries in another user's address space. Technically, such an act would not constitute a 
violation of the security in the system, but it could degrade the performance of another job. 

Selective purging in the cache is for all entries in a 512-byte block, and all entries 
in a segment. For the MAP, all entries for a page or for a segment may be purged. 

The instruction preserializes and postserializes. This is simply to ensure that there 
are no outstanding memory requests from this processor when the buffer is purged, and that 
an outstanding request issued before the purge, does not complete after the purge. 

For those models which do not have cache or MAP buffers this instruction is treated as a 
no operation. 

Care should be exercised deciding when to use the Purge Buffer instruction and deciding 
how much to purge. If no data or too little data is purged results could be fatal and 
erratic. If too much is purged, performance could be affected. Certainly the latter is 
less serious and an initial version of an operating system erring in this direction probably 
would be acceptable. The main point is to be aware of those times when stale data is likely 
to accumulate in a buffer memory. These are described in the following paragraphs. 

Cache 

a) Whenever an ASID is reassigned 

b) In a multiprocessor environment, whenever one processor modifies a page which is 
used (shared) by a second processor 

Cache memory contains a copy of the most recently used words (code and data in most 
models) in system virtual memory. Consequently, software must ensure that the cache always 
reflects accurately what is in system virtual memory. Since virtual memory is represented 
by the file system on CYBER 180, real memory acts as a cache to virtual memory. When a page 
is reassigned in real memory the image of the old page in virtual memory does not change. 
As a result, cache need not be purged. By organizing cache memories as system virtual 
addresses, the number and frequency of necessary purges are minimized. 

MAP 

a) Whenever a used or valid bit is cleared in the page table 

b) Whenever a segment's attributes change 

c) Whenever an ASID is deleted 

In general, the Segment MAP contains a copy of the SDE and the Page MAP contains a copy 
of the PTE. Hence, whenever anything in an SDE or a PTE changes the MAP should be purged. 

60459960 A 10-87 



EXECUTE ALGORITHM 

The Execute Algorithm instruction is a device for reserving an op code for model 
dependent instructions. For example, a customer may buy a pop. count instruction similar 
to that available on CYBER 170. On a machine having no special instructions which utilize 
this feature, execution of the instruction results in an unimplemented instruction error. 
In addition, op. codes BE and BF have been reserved for customer use, such as for software 
simulation of instructions which do not exist within the CYBER 180 instruction repertoire. 

PROGRAM ERROR 

An operation code consisting entirely of zeros has been reserved. Execution of the 
instruction yields an instruction specification error. The idea behind the reservation is 
that when programs run away and start executing data and so forth, it is likely that zero 
bytes will be encountered - hence the condition. 

SCOPE LOOP SYNC 

Execution of this instruction triggers a signal at an external test point which is 
suitable for synchronizing test equipment. Systems with a central memory refresh counter 
also issue a refresh counter resynch function, followed by a read of word 0 of the current 
C180 exchange package. Systems without central memory refresh only provide the external 
test point signal. 

10-88 60459960 A 



DEBUG 11 

CYBER 180 processors provide a debug facility which assists programmers debugging at the 
machine code level in C180 State. The operation of debug is fairly complex since, in 
affect, it provides an interrupt capability during an instruction execution. In practice, 
the instruction is not executed until the debug processing is complete, although 
prevalidation of the instruction may complete prior to the debug. As a result of this 
flexibility the state of the process must be retained across interrupts, and several process 
state registers have been defined for this purpose. 

The user may elect to debug based on a number of conditions. These are: 

• Whenever data is read from a specified area in virtual memory 

• Whenever data is written into a specified area in virtual memory 

• Whenever an instruction is fetched from a specified area in virtual memory 

• Whenever a branch is made to a specified area in virtual memory 

• Whenever either a CALL INDIRECT or a CALL RELATIVE instruction is issued to a 
procedure in a specified area in virtual memory 

These constitute five debug conditions and for any instruction issued the user may elect 
to debug on any combination of these conditions, for up to 32 different areas in virtual 
memory. The conditions are specified in a debug list (figure 11-1), which is provided by 
the user, and further controlled by the Debug Mask Register (DM). Finally, debugging is 
activated by setting bit 56 in the User Mask Register (OM) and enabling traps. 

60459960 A 11-1 



DEBUG LIST POINTER (DLP) 

DEBUG INDEX(Di) 

BRANCH 

INSTRUCTION FETCH 

DATA WRITE 

DATA READ 

! 
UP TO 32 ENTRIES 

BN·LOW 

BN·HIGH 

Figure 11-1. Debug List 

Each entry in the debug list consists of two words, which must be placed on word 
boundaries. The two words describe: 

11-2 

The debug conditions; the segment in virtual memory to which the conditions apply; and 
the range of addresses (byte numbers) in the segment to which the debug conditions are 
restricted (figure 11-2). 

60459960 A 



OEBUG LIST 

;EI~u 

Figure 11-2. Debug List Entries 

The Debug Code (DC) may be selectively activated at run time, by setting the DM 
appropriately. Refer to figure 11-3. For each condition set in the DC there is a 
corresponding condition select in the DM. Debugging occurs only when there is a coincidence 
between a condition bit in the DC, and a condition select bit in the DM. 

60459960 A 11-3 



DEBUG MASK 

DEBUG CODE 

END OF LIST SEEN 

DEBUG SCAN IN PROGRESS 

DATA READ 

DATA WRITE 

INSTRUCTION FETCH 

BRANCH 

CALL 

INSTRUCTION FETCH 

DATA WRITE 

DATA READ 

Figure 11-3. Debug Condition Select 

A user may insert a debug list into his program, set the DM to select a range of 
cond itions, but run in a normal mode by not choosi.ng to trap on debug. In this case the 
overhead due to debugging i~ zero. Performance degradation due to debug testing will occur 
whenever the first two items in the following list are true; however, a debug trap will not 
occur unless all of the following are true: 

11-4 

1) Traps are enabled. 

2) Bit-56 in the UM is set (debugging selected). 

3) The proce ss is C180. 

4) The DM and DC registers both select a test that is satisfied for the current 
instruction. 

5) The end of list seen flag in the DM is not set. 

60459960 A 



When these conditions are met the debug list is scanned and trap interrupts taken, as 
required, by the hardware setting bit 56 in the UCR. 

The hardware utilizes three process state registers to control scanning of the debug 
list. These are: the debug list pointer (DLP); the debug index (DI); and the DM. The DLP 
gives the starting address of the debug list, the DI keeps track of the position within that 
list, and the DM contains two flags to control the initiation and termination of the debug. 
The first of these flags is the Debug Scan in Progress flag which controls the start of the 
process. Conceptually, whenever an instruction is executed this flag is cleared. Then when 
the next instruction is issued and debug is active, the processor starts scanning the debug 
list from the beginning. The second flag is the End of List Seen flag, and controls the 
termination of debugging for the current instruction. This flag is set when either 32 
entries in the debug list have been scanned, or when an end of list bit is encountered in a 
debug code. Again, conceptually, the flag is cleared whenever an instruction is executed. 
The complete, conceptual, hardware process is shown in figure 11-4. These flags are 
primarily hardware flags which have been included in a process state register so that the 
hardware can remember where it is when an interrupt is taken. If they are set by software 
they could perturb the operation of debug. 

60459960 A 11-5 



No 

11-6 

UMSJ. :tet? 

End 
of Li st Seen 

flag Set? 

- -. - - -- - - - - - - - - - .. - -

No 

No 

Ves 

y s 

No 

Execute 
Instruction 

No DC end of list? >-=~--, 

No 

Yes 

DM and DC 
mat ch? 

Figure 11-4. Conceptual Debug Procedure 

I 

• 

60459960 A 



General Notes: 

1) Debugging only occurs when traps are enabled. Hence, the interrupt handlers cannot 
make use of this facility. However, monitor mode code can make use of debug -
providing traps are enabled. 

2) Debug list entries beyond the 32nd are ignored regardless of whether or not an end 
of list seen flag has been encountered in the DC. 

3) The user must have been granted local privilege in order to alter the DLP. In other 
words, local privilege is required to specify a different debug list in the same 
process. 

4) Several instructions apply to more than one debug condition. For example, many BDP 
instructions can trap on both Read and Write since they have both source and 
destination operands in memory. One instruction, CALL INDIRECT, applies to four 
debug conditions (it is a CALL, it reads from the Binding Sec tion, it writes into 
the Stack Frame Save Area, and it is fetched). 

5) Also, some instructions have more than one operand which is checked for a debug 
trap. Typically, these are instructions which specify the address of a table to be 
used in conjunc tion with two operands (for example, Translate and Edit). 

6) Exchange jumps, which branch to a value found in an exchange package at a real 
memory address, do not cause a debug trap on branch. Similarly, Compare and Swap 
does not cause a debug trap on branch when it rejects as a result of a hardware lock 
set. 

7) When a debug trap occurs the P Register stored in the Stack Frame Save Area points 
to the instruction which would have been executed had the debug trap not been 
taken. Also when a debug trap is taken, the DI will have an odd value. That is, it 
will point to the second word of a word pair entry in the debug list. However, while 
the debug list is being scanned, interrupts are enabled, and should an asynchronous 
interrupt occur, such as PIT, and External Interrupt, then the DI may be either odd 
or even. 

60459960 A 11-7 





CYBER 180 SOFTWARE OVERVIEW 12 

This section gives a brief overview of the system software for Control Data's CYBER 180 
program. Included is a discussion of the operating system and product set. Specifically 
excluded is any discussion of maintenance software. 

OPERATING SYSTEM (NOS/VE) 

The internal name for the new operating system for CYBER 180 native state is NOS/VE. 

PRODUCT SET 

LANGUAGE PROCESSORS 

The initial release of CYBER 180 software will include two user languages: FORTRAN and 
COBOL. Subsequent releases will contain the following languages: APL, ALGOL-60, ALGOL-68, 
BASIC, PASCAL, PL/l and JOVIAL. 

FORTRAN 

CYBER 180 FORTRAN is a reimplementation in CYBIL of FORTRAN 5, which is an existing 
CYBER 170 FORTRAN product written in assembly language. 

COBOL 

CYBER 180 COBOL is a reimplementation in CYBIL of the existing CYBER 170 COBOL 6. 

SUPPORT SERVICES 

The CYBER 180 support services include Sort/Merge, Basic and Advanced Access Methods, 
and Loader. The Basic Access Methods and the loader are parts of the NOS/VE operating 
system. 

Sort/Merge 

CYBER 180 Sort/Merge is a reimplementation in CYBIL of the CYBER 170 SORT 5 Product. 

60459960 A 12-1 



Da ta Management 

Data 
(IMF180) 
(EDMS) • 
system. 

Management for CYBER 180 will be provided by the Information Management Facility 
and is based on the existing DMS170 and also on the European Data Management System 
The first release of this product will be with the second release of the operating 

USER INTERFACES 

There are two levels of user interface on CYBER 180. The command interface is the view 
of CYBER 180 as seen by all users from interactive or batch jobs. It is analogous to the 
control card interface on CYBER 170. The program interface is the view of CYBER 180 as seen 
by all programmers: system programmers, application programmers, and user programmers. It 
is analogous to the macro interface on CYBER 170. 

COMMAND INTERFACE 

The key design criteria for the Command Interface is to provide a usable consistent 
interface across all modes of access to the system by all users, operators or system 
maintenance personnel. A major factor in achieving consistency is the use of a System 
Command Language (SCL) which provides a common syntax, control statements and procedure 
mechanism that are used by all commands and command utilities. 

NOS/VE Command Summary 

In order to give an overview of the capabilities of NOS/VE, a list of some of the 
available commands and their more important general characteristics is provided. 

System Access 

All users that access the system must have been previously registered as valid users of 
the system by an installation administrator and must identify themselves each time they use 
the system in interactive or batch mode. The installation administrator can organize users 
into groups called families and within families into groups according to account and project. 

System access command summary: 

LOGIN 
LOGOUT 
SET PASSWORD 

File System 

All users have a master catalog associated with them which is conventionally given the 
same name as their user name. The master catalog can contain an arbitrary number of files 
and subcatalogs. Each subcatalog can also contain an arbitrary number of files or 
subcatalogs which allows users to build their own hierarchy of files. 

Each file consists of data and a set of attributes which describe the data that are used 
to cause the data in the file to be properly interpreted by programs accessing the file. 
Both data and its attributes are maintained in the catalog or subcatalog in which the file 
is located. 

12-2 60459960 A 



File system command summary: 

CREATE FILE 
DELETE-FILE 
CREATE-CATALOG 
DELETE-CATALOG 
CREATE-FILE PERMIT 
DELETE-FILE-PERMIT 
CREATE-CATAWG PERMIT 
DE LETE-CATALOG-PERMIT 
ATTACH-FILE 
DETACH-FILE 
DISPLAY FILE 
SET FILE ATTRIBUTES 
DISPLAY FILE ATTRIBUTES 
CHANGE FILE ATTRIBUTES 
COpy iILE 
COMPARE FILE 

Job Management 

A job is the basic mechanism for organizing work to be performed by the system. A job 
runs on behalf of a single user and is used as the accounting envelope and unit of 
scheduling. 

Job management command summary: 

SUBMIT JOB 
TERMINATE JOB 
PRINT FILE 
DISPLAY JOB STATUS 
DISPLAY-PRINT STATUS 
JOB/JOBEND 

Resource Management 

Resource management command summary: 

RESERv~ RESOURCE 
RELEASE-RESOURCE 
REQUEST-MAGNETIC TAPE 
REQUEST-TERMINA~ 
SET JOB-LIMIT 

Program Execution Commands 

Program execution is the process of combining and executing a number of separately 
produced modules. It is the basic means by which users perform the work they require. 

Program execution command summary: 

EXECUTE TASK 
name call 
SET PROGRAM ATTRIBUTES 
DISPLAY PROGRAM ATTRIBUTES 

60459960 A 12-3 



Program Compilation Commands 

Program compilation command summary: 

FTN 
COBOL 
CDIL 

SCL Procedure and Control Commands 

In addition to providing a consistent syntax for all system supplied commands, SCL also 
provides the facility for users to extend the system in a consistent manner. Thisis 
accomplished by the SCL procedure capability. 

SCL procedure and control command summary: 

PROC 
PROCEND 
procedure name call 
INCLUDE FILE 
EXIT PROC 
IF/ELSE/ELSEIF/IFEND 
FOR/FOREND 
LOOP /LooPEND 
WHILE /WHILEND 
REPEAT/UNTIL 
WHEN/WHENEND 
CREATE VARIABLE 
DELETE-VARIABlE 

Command Utilities 

SOURCE CODE MAINTENANCE 
EDITOR 
OBJECT CODE MAINTENANCE 
INTERACTIVE DEBUGGER (SYMBOLIC FOR CYBIL ONLY) 
ACCOUNT, PROJECT, MEMBER AND USER ADMINISTRATION 

PROGRAM INTERFACE 

User and application programmers access the system primarily via FORTRAN and COBOL. 
User programs written in these standardized languages should migrate easily from CYBER 170 
to CYBER 180. System programmers access the system via CYBIL, the implementation language 
for CYBER 180. Most of NOS/VE will be written in CYBIL, with assembly language only being 
used either to take advantage of specific machine capabilities that are otherwise 
unavailable or to achieve high performance in critical areas. 

The program interface to NOS/VE is accessed via CYBIL procedure calls. The parameters 
and data structures conform to the CDIL rules for variables, constants and types. 
Therefore, in order to understand the program interface to the system, a working knowledge 
of CYBIL is required. 

12-4 60459960 A 



CYBIL 

CYBIL, the implementation language for CYBER 180, is derived from the programming 
language PASCAL developed by Dr. Niklaus Wirth of Switzerland. The four major declarations 
of CYBIL are constants (1, 2 ••• A, B, etc.), variables (cells in memory that contain a 
value), procedures, and types. The concept of type, which was popularized by Dr. Wirth, 
allows a programmer to declare his own types of data. This appears frequently in the NOS/VE 
interfaces, where type declarations define the values the operating system procedures 
operate on. 

Declarations may be specified globally (essentially allocated at load time) or within a 
procedure (allocated when a procedure is called), which is the general concept of block 
structure. 

BASIC SYNTAX 

The module is the basic unit of compilation in a CYBIL program. 

MODULE<module name> 
<declaration> 
<declaration> 
<declaration> 

MODEND<module name>; 

It is essentially a list of global declarations, where each declaration is either a 
constant, variable, procedure, or type declaration. 

The format for a procedure declaration follows: 

PROCEDURE«attributes»<procedure name>«parameter definition» 
<declaration> 
<declaration> 
<declaration> 

<statement> 
<statement> 
<statement> 

PROCEND<procedure name>; 

This includes a list of declarations local to the procedure (constant, variable, 
procedure or type) followed by a series of statements. These declarations are activated each 
time this particular procedure is called and deactivated when the procedure returns, which 
is part of the block structuring capability of CYBIL. The statements available 1n CYBIL are 
typical high-level language statements such as assignment, IF THEN ELSE, FOR, WHILE, and 
procedure reference. 

60459960 A 12-5 



TYPE DECLARATIONS 

The use of programmer-defined types denotes the permissible values that a variable may 
assume. and the structuring method of the variable. Because these type declarations are so 
explicit, a certain amount of internal checking such as access verification is possible at 
compile time. Hence, many errors which have traditionally been found at execution time are 
detected by the compiler at compile time. When programming in CYBIL, it is a common 
experience for a program to execute as soon as an error-free compilation has been obtained, 
even though it might yield incorrect results. 

Fixed Types 

- INTEGER (64 bits) 
- CHARACTER (8-bit ASCII character) 
- ORDINAL 
- BOOLEAN (logical operator) 
- SUBRANGE 
- POINTER 

Fixed type declarations are built into the language. The Ordinal type is a delineated 
list of constants that is a symbolic way of representing values. With the Subrange type, 
the programmer can specify a subset of permissible values for an integer variable. The 
Pointer is a dereferenced version of anyone of the fixed, structured or adaptable types. 

Structured Types 

- SETS 
- STRINGS 
- ARRAY 
- RECORD 

Structured type declarations enable the programmer to define his own types. Sets define 
a series of values that are either present or absent. The Record type, used frequently in 
NOS/VE documentation, is a series of fields each of predefined or user defined type. Such a 
recursive type definition is used to build arbitrary and unique structures. 

Storage Types 

- HEAP 
- SEQUENCE 

A Heap is a memory data structure that is used for the random allocation and 
deallocation of other variables at execution time. A Sequence is used for the sequential 
allocation and/or accessing of other variables at execution time. 

12-6 60459960 A 



Adaptable Types 

- ADAPTABlE STR ING 
- ADAPTABlE ARRAY 
- ADAPTABLE RECORD 
- ADAPTABlE HEAP 
- ADAPTABLE SEQUENCE 

Adaptable type declarations are those whose bound is determined at program execution. 
This applies to variable-length strings or arrays, or to records which contain 
variable-length strings or arrays. Adaptable heap and sequence refer to blocks of memory 
whose sizes are determined at execution time. 

EXAMPLES OF DECLARATIONS 

Type Declarations 

The following module of CYBIL code shows some examples of type declarations (figure 
12-1), and how they relate to variable and procedure declarations. 

5 module type_declarations_example; 
6r-------------------------________________ -, 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

type 
ordinaCexample = (attached, opened, closed, 

type 
record_example = record 

0: ordinal_example, 
i: integer, 
b: boolean, 

recend; 

detached); 

type 
array_type.-example = array [1 .. 10J of recor~example; 

17L-----------------------------------------~ 

18 {No memory allocated yet} 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

var 
i1: 
i2: 
b1: 
b2: 
a1: 
a2: 

integer, 
integer, 
boolean, 
boolean, 
array_type.-example, 
array_type.-example; 

procedure example; 
a1 [3].0 := opened; 
a2 [3].0 := attached; 

31 procend example; 
32 
33 modend type_declaration_example; 

Figure 12-1. TYPE Declarations 

60459960 A 12-7 



The first example on lines 7 and 8 is an ordinal type declaration. This particular 
ordinal type has four values: attached, opened, closed or detached. The other two examples 
on lines 9 through 16 are both structured type declarations. The record type has three 
fields: 0, i, and b. The o-field is of the type ordinal example, which means it may be 
attached, opened, closed, or detached (see line 8). The i-field is an integer type, and the 
b-field is a Boolean type. The third declaration (lines 15 and 16) is an array type, which 
is defined as an array of 1 to 10 of the user-defined type record example (refer to line 10). 

These three examples show how types may be cascaded to form arbitrarily complex 
structures. The program does not allocate memory, but simply defines three kinds of values 
that are associated with the variables shown in lines 20 through 26. 

The key word var in line 20 indicates the allocation of variables. In this instance 
there are six variables of three different types. The first two, il and i2, are both 
integer types. The next two, bl and b2, are both boolean types. The last two variables, al 
and a2, are both array types as defined by the user in line 16. 

The procedure declaration in line 29 specifies that the value of o-field of the third 
element in array al be set to opened. Line 30 specifies that the o-field of the third 
element of array a2 be attached. Both of these declarations are consistent with the list of 
permissible ordinal values specified in line 8. 

CYBIL Declarations 

The following module of CYBIL code shows examples of all declarations (figure 12-2), how 
they may be nested, and what sort of range-checking is done by the compiler. 

This module contains five major declarations: a constant (lines 7 and 8) a variable 
(lines 10 and 11), two types (lines 13 through 17, and lines 19 and 20), and a procedure 
(lines 22 through 49). 

Within the procedure declaration are three more declarations: two variables (lines 24 
and 25, and lines 27 and 28), and a nested procedure (lines 30 through 36). These 
declarations are followed by a series of statements (lines 38 through 48). Within the 
nested procedure are a variable decl.aration (lines 32 and 33), and one statement (line 35). 

In line 44, table (i) is a variable defined in line 11 as an array of the type specified 
by the record in lines 14 through 17. The second field in that record (line 16) is file 
status, which is the ordinal type specified in line 20. Thus, in line 44, when the file 
status of table (i) is designated as opened, the compiler accepts this statement as valid 
because opened is one of the ordinal values declared in line 20. In line 45, however, the 
compiler rejects as an error the assignment of 1 (which is the internal data mapping for 
opened). This makes the code more readable by minimizing unnecessary references to other 
documentation, in this case to look up the definition of 1. 

Another compiler check is shown in line 48 where the subrange k is assigned a value of 
500. According to line 28, however, the variable k can assume any value from 0 to the 
constant table size, which is specified as 100 in line 8. As a result, 500 is beyond the 
range of 0 to 100, and the compiler rejects this statement as an error. 

These and other features of CYBIL make it possible to do a large amount of program 
debugging at compile time. 

12-8 60459960 A 



5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 

*ERROR* 45 
46 
47 

*ERROR* 48 
49 
50 

module eYBI Lx_declarationL example; 

I const 
table size = 100; 

var 
table: arra [1.. tabllLsize] of tabhLentr . 

type 
table_entry = record 

filEt-name: string (10) of char, 
file_status: file_statuLtype, 

recend; 

type 
file_statuLtype = (attached. 0 ened, closed, detached)' 

procedure main_procedure; 

I var 
I: 1. table_size; 

I var 
k: 0 . . table_size; 

procedure nested_ procedure; 

I vark : 1 . . table_size; I 
k: = i; 

procend nested_procedu re; 

k : = 0; 
for i : = 1 to table_size do 

if table [i] . filEt-status = detached then 
table (j] . file_name : = . , 
k : = k + 1; 

ifend; 
table [i] . file_status = opened; 
table [i] . file_status = 1; 

forend; 
nested_procedure; 
k : = 500; 

rocend main_ rocedure' 
modend CYBIL_x_ eclarations_example; 

UNE 
NUMBER 

45 
48 

SEVERITY 
lEVEL 

ERROR 
ERROR 

ERROR MESSAGE 
Incompatible types are not assignable. 
Value out of range. 

Figure 12-2. CYBIL Declarations 

60459960 A 12-9 



CYBER 180 OPERATING SYSTEM (NOS/VE) 

SYSTEM STRUCTURE 

NOS/VE is designed to run predominately in the central processor. There are several 
reasons for this. One is to take advantage of higher level implementation languages and 
lower central memory costs in order to increase the productivity of the software development 
process. Another aspect is the greater reliability derived from protection and security 
mechanisms such as virtual memory translation which are bypassed by the peripheral 
processors. NOS/VE maintainability is also enhanced if its code is not dispersed in the 
peripheral processors. In addition. localizing NOS/VE in the central processor will 
eliminate the architectural necessity of including peripheral processors in successor 
product lines. 

The virtual memory mechanism of CYBER 180 is an advantage both to user programmers and 
to CDC's system programmers. Much of the operating system and most of the product set 
software executes in virtual memory. NOS/VE and user jobs run in the same environment 
without special constraints. Thus. the system can use itself and take advantage of the same 
software made available to the users. 

Initially. CYBER 180 systems will operate in dual state. that is with two separate 
operating systems running in the same mainframe: NOS/VE and NOS/170. or NOS/VE and NOS/BE. 
These two operating systems communicate across a memory link. but do not perform a very 
dynamic sharing of the hardware. Peripheral processors and central memory are partitioned. 
Certain peripheral equipments are associated with CYBER 170 state and others with CYBER 180 
state. Dual state operation is a requirement on initial CYBER 180 systems. and NOS/VE may 
be accessed only by coming through the CYBER 170 operating system. 

NOS/VE is composed of a series of jobs. These may be user jobs. operator jobs. or jobs 
that are part of the operating system. Within each job the unit of execution is the task. 
Each executable task has an exchange package and segment descriptor table associated with 
it. Tasks are further broken down into a series of object modules that are compilations of 
some higher level language such as CYBIL. 

CPU Monitor 

The CPU monitor is the most privileged part of NOS/VE. residing in ring 1. It sees 
exchange packages and segment descriptor tables for a series of tasks. These tasks. whether 
from user jobs or system jobs. are all handled alike by the CPU monitor. The monitor 
communicates to the task through the signal buffer. 

The basic responsibilities of CPU monitor are task dispatching. physical I/O. and 
exchange interrupt processing. 

12-10 60459960 A 



Task Attributes and Components 

In addition to the exchange package, segment descriptor table and signal buffer, each 
task has a set of standard operating system routines for use during execution. The most 
privileged is the task monitor in ring 1, which handles traps and communicates with the CPU 
monitor using an Exchange instruction or by sending a signal via the CPU monitor to a system 
job. Task services occupy rings 2 to 6, and include record manager, Loader, file manager, 
buffer manager, and segment manager. Rings 7 to 15 are available for user, application and 
system modules. Procedure calls are used to communicate between task monitor and task 
services and, in turn, between task services and module code. 

System Jobs 

Tasks in the system job are responsible for multiplexing all of the users across the 
resources of the system. These include job initiator, job terminator, system operator and 
page manager. Page manager manipulates the page table, selecting which pages are in which 
working set, and so forth. 

MEMOR Y MANAGEMENT 

There are two concepts of memory in the CYBER 180: virtual memory and real memory. 
Virtual memory is divided into segments, and is the view of memory as seen by all end users, 
by the software product set, and by a significant portion of NOS/VE. Real memory is divided 
into pages, and is the low-level view of memory as seen by that part of NOS/VE that is 
responsible for manipulating system page tables and other similar functions. 

Even though virtual memory provides a large address space, system programmers can not 
ignore their requirement to write efficient, high-performance code • To accomplish this, 
procedures that reference one another should be placed as close together as possible. This 
.increases the probability that they will be in the same page. Procedure and data references 
within a single page (or low number of pages) increase performance by minimizing working set 
size and eliminating unnecessary page swapping. This concept of locality of reference is 
important to follow, even though the programmer is relieved of many other memory management 
details. 

Virtual Memory Management 

The following NOS/VE components are responsible for virtual memory management. 

File System 

The file system maintains the ring and key attributes for all local and permanent 
files. It also provides segment level access to files, where files are made available in a 
segment of address space and are accessible with loads and stores. 

60459960 A 

NOTE 

Files are also accessible through the record 
manager with gets and puts. 

12-11 



Segment Manager 

The segment manager adds and removes segments from the task address space and assigns 
the active segment identifiers (ASID). 

Compilers 

Compilers are responsible for generating object modules. An object module is produced 
from language-dependent units of source code, for example. a main program or subroutine in 
FORTRAN. or a module in CYBIL. Each object module is separated into multiple object text 
sections that are separately manipulable at load time. The object modules produced by 
compilers typically contain three kinds of sections: executable code (that is. 
instructions), working storage (read only and read write data), and binding information 
(virtual addresses). 

Loader 

The Loader links modules in virtual memory. It also assigns process virtual addresses 
(PVA). This includes the ring number. segment number, and byte number (the offset within a 
segment), all of which are assigned at load time, not compile time •. The Loader also 
enforces binding segment conventions, for example, that procedure descriptors are aligned on 
word boundaries and that they only contain valid protection information. 

Object Library Generator 

The object library generator takes the raw compiler output and reformats these object 
modules into load modules, which can be loaded more efficiently. It also creates object 
libraries, and binds mUltiple modules that were compiled separately into single loadable 
units. 

Real Memory Management 

The following NOS/VE components are responsible for real memory management. 

Page Management 

Page management is responsible for maintaining job working sets, that is the number of 
pages of virtual memory that must be in real memory for the job to progress. This solves 
the same problem that Cl70 systems solve with overlays, however in C180, the system rather 
than the user is responsible for the details of the solution. 

Job Scheduler 

Job scheduler is responsible for sharing the amount of memory among all the job workin~ 
sets. This is similar to the CYBER 170 function of swapping. 

12-12 60459960 A 



FORTRAN LGO EXAMPLE 

In this example, the user is validated to execute in ring 11. The user calls the FORTRAN 
compiler and compiles two programs, one named Main and the other named Sub. The user puts 
the output of both Main and Sub in LGO, and then executes that program. The format of the 
file LGO is shown in figure 12-3. 

LOCAL FI LE LGO Rl=11, R~ll, R3=11 

USER 
COMMAND 

STREAM 
(VALIDATED FOR 

RING 11) 

• 
• • 

FTN,I=MAIN,B=LGO 
FTN,I=SUB,B=LGO 
LGO 

• 
• 
• 

• NAME 
lOR • TIME & DATE CREATED 

• ETC, 
LIB • FTNLlB 

SOC CODE SECTION 

SOC BINDING SECTION 

SOC WORKING STORAGE 
SECTION 

SOC COMMON BLOCKS 

TEX, RPL, BIT, Ret, ADR, 
XRL, EPT, BIN 

RECORDS FOR CODE, BINDING 
AND WORKING STORAGE 
SECTIONS 

TRA. STARTING ADDRESS 
• END OF MODULE 

lOR 

LIB • FTNLlB 
SOC • CODe 
SOC • BINDING 
SOC • WORKING STORAGE 

SOC • COMMON BLOCKS 

TEX, RPL, BIT, Ret, ADR, 
XRL, EPT, BIN 

RECORDS FOR CODE BINDING 
AND WORKING STORAGE 
SECTIONS 

TRA 

Figure 12-3. Local File LGO 

OBJECT 
MODULE 

FOR 
MAIN 

OBJECT 
MODULE 

FOR 
SUB 

60459960 A 12-13 



Note that the Rl, R2, and R3 ring numbers are all ring II, which are the default ring 
numbers derived from the user's validated ring number, in this case ring 11. The user is 
not required to specify these segment attributes, and their assignment is usually 
a function of the installation manager. 

The LGO file itself is comprised of two object modules, one for Main and one for Sub. 
Each module has three separate sections: code, binding, and working storage. These are 
followed by a series of interpretive records that provide the values and fill in the data in 
those three sections. Finally in each module, the transfer record gives the optional 
starting procedure name and specifies that it is the end of the module. 

Several segments are created when the LGO is executed. 

Process Segment Number 

10 
11 
12 
13 
14 

Name 

code segment 
binding segment 
working storage segment 
object library file 
stack segment 

It is important to understand the difference between a section and a segment. A section 
is a part of a module (figure 12-4). At load time, sections from all modules having the 
same attributes are allocated contiguously in the same segment. Thus, a process segment may 
contain similar sections from different modules, which minimizes fragmentation. Segments 
are closely associated with physical memory, and are the basic unit of allocation in virtual 
memory. 

The ring numbers (11 in this example) are derived from the ring numbers of the LGO file 
and applied appropriately to these process segments. The code segment contains instructions 
and has Read and Execute privilege. The binding segment contains addresses of working 
storage and of other routines to be called (in this case Sine and Random). The binding 
segment is readable but not user-writable. All addresses in the binding segment are valid, 
and if one, for instance, should point to an address of a system routine that goes across 
rings, the user cannot overwrite that address. The working storage segment contains static 
data associated with the various modules. 

The object library file is a segment-level access file stored in process segment 13. 
The file is accessed using Load and Store machine instructions to reference directly segment 
13. It is particularly important, therefore, to protect against invalid accesses to this 
type of file. Because this is a read-execute file, the file system software prohibits any 
attempted writes to that file, and when the file is included in a task address space, the 
access attributes in the associated segment descriptor are used by the hardware to prevent 
any write access. 

12-14 60459960 A 



CODE 
SECTION 

FOR 
MAIN 

ENTER MAIN 
CALL SUB 
CALL SINE 
CALL RANDOM 

CODE I ENTER SUB 
SECTION CALL RANDOM 

FOR CALL SINE 
SUB CALL SINE 

PROCESS SEGMENT 10 
R,X(11,l','11 

-

LA 
CALLSEG 
CALLSEG 
CALLSEG 

LA 
CALLSEG 
CALLSEG 
CALLSEG 

13 

A3,A5,2 
A3,A6,1 
A3,A6,3 
A3,A6,5 

A3,A5,2 
A3,A6,1 
A3,A6,3 
A3,A6,3 

R x (111111) 

DICTIONARY 
-----

CODE PAGE 
BOUNDAR Y FOR 

OBJECT 
LIBRARY 

FILE: 
OPENED 

FOR 
SEGMENT 

LEVEL 
ACCESS 

PAGE 
BOUNDAR 

-
Y 

SINE 

CODE 
FOR 

RANDOM 

-----
INTERPRETIVE 

TEXT FOR 
SINE 

INTREPRETIVE 
TEXT FOR 
RANDOM 

11 
B (1111) 

BINDING 
SECTION 
FOR SINE 

BINDING 
SECTION 

FOR RANDOM 

WORKING STORAGE 
SUB 

SINE 

RANDOM 

BINDING 
SECTION 

FOR 
MAIN 

WORKING STORAGE 
RANDOM 

SINE I BINDING 
SECTION 
FOR SUB 

14 
R,W (11,11) 

RUN 
TIME 

STACK 
FOR 

RING 11 

Figure 12-4. FORTRAN LGO Example 

12 
RW (1111) 

WORKING 
STORAGE 

FOR 
MAIN 

WORKING 
STORAGE 
FOR SUB 

WORKING 
STORAGE 

FOR 
SINE 

WORKING 
STORAGE 

FOR 
RANDOM 

60459960 A 12-15 



The object library generator has reformatted the object code for subroutines Sine and 
Random into load modules that can be executed. Also included in the object library file is 
interpretive text for Sine and Random. This directs the Loader on where to locate and how 
to initialize the binding sections and working storage sections for Sine and Random. All of 
the code is together in one part of the file, and all of the interpretive text is together 
in another part of the file. This is done for locality of reference, that is to minimize 
references across page boundaries. 

Figure 12-5 illustrates the various pointers which are established. The pointers with 
broken arrows are generated by the compiler, and are offsets into the Binding Section. The 
pointers shown with unbroken arrows are supplied by the Loader. They all reside in the 
Binding Section (which contains only addresses), and forge the necessary link between a 
program and the data on which it is to operate. 

PROCESS SEGMENT 10 11 

CODE 
SECTION 

FOR 
MAIN 

ENTER MAIN 
CALL SUB 
CALL SINE 
CALL RANDOM 

CODE 1 ENTER SUB 
SECTION CALL RANDOM 

FOR CALL SINE 
SUB CALL SINE 

PAGE 

R,X(ll,ll,ll) 

LA A3,A5,2 
CALLSEG A3,A6,1-
CALLSEG A3,A6,3 

7 
LA A3,A5,2 
CALLSEG A3,A6,1 
CALLSEG A3,A6,3 
CALLSEG A3,A6,3 

13 
R,X (11,11,11) 

DICTIONARY 
----- -

CODE 
BOUNDARY FOR 

OBJECT 
LIBRARY 

FILE: 
OPENED 

FOR 
SEGMENT 

LEVEL 
ACCESS 

SINE 

CODE 
FOR 

RANDOM 

PAGE 
BOUNDARY INTERPRETIVE 

TEXT FOR 
SINE 

INTREPRETIVE 
TEXT FOR 
RANDOM 

B (11,11) 
~ 

70 

"'I -'" 
~ 

BINDING 
SECTION 
FOR SINE 

BINDING 
SECTION 

FOR RANDOM 

WORKING STORAGE 
SUB 

SINE 

RANDOM 

WORKING STORAGE 
RANDOM 

SINE 

14 
R,W (11,11) 

RUN 
TIME 

STACK 
FOR 

RING 11 

Figure 12-5. FORTRAN LGO Example, Pointers 

12 
R,W (11,11) 

~ 

BINDING WORKING 
SECTION STORAGE 

FOR FOR 
MAIN MAIN 

--...... .. WORKING 
BINDING STORAGE 
SECTION FOR SUB 
FOR SUB 

WORKING 
STORAGE 

FOR 
SINE 

WORKING 
STORAGE 

FOR 
RANDOM 

12-16 60459960 A 



When the program is debugged and ready for production operation, Loader overhead is 
reduced by running LGO through the object library generator, turning it into a segment-level 
access file. The two modules in LGO (Main and Sub) are bound into a single loadable module 
(New). Once again. the ring brackets of LGO (11. 11, 11) are carried forward to the new 
object library file. 

The format of this new object library is shown in greater detail in figure 12-6. 

PAGE 
BOUNDARY 

PAGE 
BOUNDARY 

r+ 

--= 

NEW 

------

CODE 
IN 

EXECUTABLE 
FORM 

------r-
MODULE HEADER 

LINKAGE 
ELEMENT 

WORKING 
STORAGE 
ELEMENT 

ENTRY POINT 
Et.EMENT 

INFORMATION 
ELEMENT 

i--

~ 
.... 

... .... 

.... -
... .... 

} DICTIONARY 

CODE 
(INSTRUCTIONS) 

FOR MODULE 
'NEW' 

INTERPRETIVE 
INFORMATION 

FOR 
MODULE 'NEW' 

Figure 12-6. Object Library Format - Segment Level Access File 

60459960 A 12-17 



First is the entry point name dictionary for the single module named New. This points 
to the header, which tells the Loader where to find the other interpretive information for 
this module. The module code is in executable form, and is physically separated from the 
interpretive information. This segment level access file is now contained in process 
segment 10 as shown in figure 12-7. 

DICTIONARY I 

CODE 
SECTION 

FOR 
NEW 

INTERPRETIVE 11 
INFORMATION 

FOR NEW 

ENTER MAIN 
CALL SUB 
CALL SINE 
CALL RANDOM 

ENTER SUB 
CALL RANDOM 
CALL SINE 
CALL SINE 

PROCESS SEGMENT 10 
R,X 111,11,11) 

tA 
-

A3,A5,2 
CALLREL A3,A6,125 
CALLSEG A3,A6,2 
CALLSEG A3,A6,4 

---------LA A3,A5,10 
CALLSEG A3,A6,4 
CALLSEG A3,A6,2 
CALLSEG A3,A6,2 

1---------

11 
B (11,11) 

BINDING 
SECTION 
FOR SINE 

BINDING 
SECTION FOR 

RANDOM 

13 
R,X (11,11,11) 

OBJECT 
LIBRARY 

FILE 
CONTAINING 

SINE 
AND 

RANDOM 

WORKING STORAGE 

WORKING STORAGE 
SINE 

RANDOM 

14 
R,W 111,11) 

RUN 
TIME 

STACK 
FOR 

RING 11 

Figure 12-7. FORTRAN LGO Example, Conclusion 

12 
R,W (11,11) 

WORKING 
STORAGE 
FOR NEW 

(FROM 
MAIN) 

WORKING 
STORAGE 
FOR NEW 

(FROM SUB) 

WORKING 
STORAGE 
FOR SINE 

WORKING 
STORAGE 

FOR 
RANDOM 

In the previous example, Main and Sub were compiled separately. This resulted in 
redundant procedure descriptors for both Sine and Random in the binding segment. Since all 
calls to the operating system are procedure calls, every system call a module makes will 
result in a binding system entry. When several modules are combined together, however, the 
object library generator compresses any redundant entries into single copies within the new 
binding segment, and modifies the code accordingly. 

The working storage segment remains the same as before because all of the static data 
from Main and from Sub is needed by the single module New. 

If this figure is compared with the previous figure showing the load image, some 
important differences can be noted. Not only has the Binding Section for New been 
compressed, but the call from Main to Sub has been modified to a CALLREL (Call Relative) 
from a CALLSEG (Call Indirect). The Call Relative is a shorter form of the general call 
instruction which is reserved for intra segment calls when protection boundaries are not 
crossed. 

12-18 60459960 A 



~ t , : 
~ 1 
) 1 
• 1 
( 1 

; I 
) I 

I 
I 
I 
1 
I 
I 
1 
I 
I 
I 
I 
I 
I 
I 
1 
I 
I 
I 

:, 
,I 
rt 
.1 ., 
J I 
, I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
! 

MANUAL TITLE: 

PUBLICATION NO.: 

COMMENT SHEET 

CDC CYBER 170 Models 825, 835, and 855 Computer Systems 
Hardware Maintenance Manual 

60459960 REVISION: A 

NAME: ____________________________________________________________________ ___ 

COMPANY: ______________________________________________________________ _ 

STREET ADDRESS: ___________________________________________________ _ 

CITY: ____________________ STATE: __________ ZIP CODE: _______ __ 

This form is not intended to be used as an order blank. Control Data Corporation welcomes your evaluation of 
this manual. Please indicate any errors, suggested additions or deletions, or general comments below (please 
include page number references). 

o Please Reply D No Reply Necessary 

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A. 



I 
I 
I 
I 
I 

mw mw I 
---------------------------------------------------------------------------------------------------------------~ 

111111 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 8241 MINNEAPOLIS, MINN. 

POST AGE Will BE PAID BY 

NO POSTAGE 
NECESSARY 

IF MAILED 
IN THE 

UNITED STATES 

I 
I 
I 
I 
I 
I 
I 
I 
I 

UJ 
Z 
:::; 

<.!l z 
CONTROL DATA CORPORATION '0 

Publications and Graphics Division 

ARH219 
4201 North Lexington Avenue 

Saint Paul, Minnesota 55112 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

---------------------------------------------------------------------------------------------------------------~ mrn mw I 
I 
I , , , , , , 
I 
I 
I 

..... 
« 
~ 
:::J 
U 



C ORPORAT E HEADQUARTERS, P .O . BOX 0 , MINNEAPOLIS, MINN. 55440 LITHO IN U .S .A . 
S A LES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD 

@:?) 
CONTI\.OL DATA CO~OR<\TION 


