60499400

~ (GP CONTROL DATA

CYBER RECORD MANAGER

ADVANCED ACCESS METHODS
VERSION 2 USER’S GUIDE

CDC OPERATING SYSTEMS:
NOS 1, NOS 2, ;
NOS/BE 1

ALPHABETIC LIST OF
FORTRAN CALL STATEMENTS

INDEXED SEQUENTIAL FILES

CLOSEM 3-8 GETN o .. 3-14 REWND. 3-20
DLTE . . ¢« 3-14 IFETCH o v o 2-3 RMKDEE © . .0 . oL 4-6
FILEIS . © 2-1 OPENM 3-8, 3-13 SKIP . oo o0 v vy 3-18
FITDMP . o L 0 o0 0 7-2 PUTo v 3-8 STARTM . . o v o w o 3-18; 4-14
GET 3-13 REPLC . . . 3-15 STOREF . . . o . . . 2-3

CLOSEM 5-9 GET . .. ¢ . 5-13 PUT o ovvs v 5-9
DLTE . + « o v v v v 5-14 GETN . o v o v o0 . 5-13 REPLC . . ¢ o .. o 5-14
FILEDA 2-1 IFETCH 2-3 RMKDEE oov o0 v v 0 4-6
FITOMP. . . v o o0 L 7-2 OPENM o . . 5-7, 5=12 STOREE . v v v v o 2-3

CLOSEM . v 6-5 GETN . o o . . v o0 6-10 REWND . .o ovov o 6-12
DLTEov .. 6-10 IFETCH o . . . 2-3 RMKDEF . o o oo vh s 4-6
FILEAK o v v o v 00 & 2-1 OPENM.0 L o 6-5, 6-9 Nege 6-12
FITDMP . . v oL o o % 7-2 PUT o0 o ol 0l 6-5, 6-10 STOREF. & . v v v o 2-3
GET . . v oo 6-10 REPLC . . . o 6-10

® ‘ 60499400 B

60499400

(G2 CONTROL DATA

CYBER RECORD MANAGER

ADVANCED ACCESS METHODS
VERSION 2 USER’S GUIDE

CDC OPERATING SYSTEMS:
NOS 1, NOS 2,
NOS/BE 1

REVISION RECORD

Revision Description
A (09/01/79) Original release.
B (05/29/81) This version reflects CRM Advanced Access Methods Version 2.1 at PSR level 528.

Section 4, Multiple-Index Files, has been added, superseding the CRM Version 2
Multiple-Index Processor User’s Guide (Publication No. 60480900). All program examples
have been updated to FORTRAN Version 5.1. Major organizational changes have been made.
This is a complete reprint.

C (03/04/86) Revised at PSR level 647 to document support of the CYBER 170 800 Series models and the
CYBER 180 Computer Systems.

REVISION LETTERS I, O, Q, AND X ARE NOT USED Address comments concerning this manual to:

CONTROL DATA CORPORATION
Publications and Graphics Division
P. 0. Box 3492

OCOPYRIGHT CONTROL DATA CORPORATION 1979, 1981, 1986 SUNNYVALE, CALIFORNIA 94088-3492

All Rights Reserved
Printed in the United States of America or use Comment Sheet in the back of this manual

ii . 60499400 C

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual are indicated by bars
in the margins or by a dot near the page number if the entire page is affected. A bar by the page number
indicates pagination rather than content has changed.

Page Revision

Front Cover

Inside Front Cover
Title Page

ii

1iifiv

v

vi

vii

viii

ix/x

xi
-1 thru l-4
1 thru 2-8
thru 3-6

thru 3-13
4
=15 thru 17
-18
-19 thru 3-21

=1
=7
-8
-9
-1

[
&S W

thru 4-34
thru 5-17
thru 6-14

&

thru 7-6

P NN NOUNE DS ERWWWWWWWW N

1
1
1
2
3
1
-2
3
=4
B~1
B~2
C-1 thru C-3

D-1 thru D~-9

D-10

Index~1 thru -5
Comment Sheet/Mailer
Back Cover

lOU’WOD’WOPPWWD’OWUJU?WOOmWWOwOWOOEﬂWUﬂwa’mOOOOI w1

60499400 C iii/iv

PREFACE

CONTROL DATA® CYBER Record Manager Advanced
Access Methods (AAM) Version 2.1 operates under control
of the following operating systems:

e NOS 1 and NOS 2 for the CONTROL DATA CYBER
180 Series; CYBER 170 Series; CYBER 70 Models 71,
72, 73, 74; and 6000 Series Computer Systems.

[¢ NOS/BE 1 for the cDC® CYBER 180 Series; CYBER
170 Series; CYBER 70 Models 71, 72, 73, 74; and 6000
Series Computer Systems.

AAM handles all input/output processing of files with
indexed sequential, actual key, or direct access
organization. User programs concerned with any of these
file types can communicate with AAM indirectly through a
compiler, using the calls supplied by the language; directly
through COMPASS macros;. or directly through FORTRAN
calls. This guide is designed specifically for FORTRAN
programmers who are processing files through direct calls
to AAM. The material presented, however, can be used to
advantage by programmers utilizing COMPASS or. any of
the languages that provide indirect access to AAM.

The following publications are of primary interest:

If you are already familiar with CYBER Record Manager
file organizations, record types, and general file concepts,
you can skip sections 1 and 2 of this guide and proceed to
the examples of file processing for a specific file
organization (beginning with section 3).

Programming examples, written in FORTRAN version 5,
emphasize file information table (FIT) field values;
specifically, why you set them and how they are
interpreted by AAM.

AAM supports two variants of each file organization,
initial and extended. This guide is written for users of the
extended file organizations. All references to file
organizations imply the extended file organizations.

Related material is contained in the listed publications.
The publications are listed alphabetically within groupings
that indicate relative importance to readers of this manual.

Publication
Publication Number
CYBER Record Manager Advanced Access 60499300
Methods Version 2 Reference Manual
CYBER Record Manager Basic Access 60495700
Methods Version 1.5 Reference Manual
CYBER Record Manager Basic Access 60495800
Methods Version 1.5 User's Guide
FORTRAN Version 5 Reference Manual 50481300
NOQS Version 1 Reference Manual, 60435400
Volume 1 of 2
NOS Version 1 Reference Manual, 60445300
Volume 2 of 2
NOS/BE 1 Reference Manual 60493800

60493400 C v

vi

The following publications are of secondary interest:

Publication
Publication Number
Common Memary Manager Version 1 60499200
Reference Manual
FORM Version 1 Reference Manual 60496200
8-Bit Subroutines Version 1 60495500

Reference Manual

CDC manuals can be ordered from Control Data Corporation, Literature and
Distribution Services, 308 North Dale Street, St. Paul, Minnesota 55103.

This manual describes a subset of the features
documented in the Advanced Access Methods and
FORTRAN Version 5 reference manuals. Control
Data cannot be responsible for the proper functioning
of any features not documented in the Advanced
Access Methads or FORTRAN Version 5 reference
manuals.

60499400 C

1. INTRODUCTION TO CYBER RECORD
MANAGER

CONTENTS

Positioning an Indexed Sequential File
Paositioning to a Specific Record
Random Read Request

A RV RV R RV RV R W)

File Organizations Available 1-2 Start Request
Indexed Sequential Files 1-2 Skipping Recards
Direct Access Files 1-2 Rewinding the File
Actual Key Files 1-4 Obtaining File Statistics
Record Type Selection 1-4
4. MULTIPLE-INDEX FILES
2. FILE PROCESSING CONCEPTS 2-1
Why Use MIP?
Constructing and Using the FIT 2-1 Multiple Key Concepts
Creating the FIT 2-1 Primary Keys
Using the FIT Through FORTRAN Calls 2-2 Alternate Keys
CALL STOREF Statement 2-3 Alternate Key Location
IFETCH Function 2-3 Alternate Key Format
Using the FIT Through COMPASS Macros 2-5 The Index File
The File Statistics Table 2-5 The MIPGEN Utility
Defining the Working Storage Area 2-5 MIPGEN Job Structure
Opening the File 2-6 Directive For Defining Alternate
Processing the File 2-6 Keys - RMKDEF
Reading Records 2-7 Nonrepeating Keys
Writing New Records 2-7 Repeating Group Keys
Updating the File 2-7 Adding a New Index
Closing the File 2-7 Deleting an Index
The FILE Control Statement 2-8 Alternate Key Processing Examples
General Considerations
Indexed Sequential Files With MIP
Creating a Multiple-Index File
3. INDEXED SEQUENTIAL FILE PROCESSING 3-1 Accessing the Multiple-Index File
Actual Key Files With MIP
Concepts of Logical File Structure 3-1 Creating a Multiple-Index File
Data Blocks 3-1 Accessing the Multiple-Index File
Index Blocks 3-2 Index-File-Only Operations
Hierarchy of Index and Data Blocks 3-2 NDX Settings
Specifying File Structure 3-2 . Retrieving Range Count Information
Record Definition 3-2 Single Alternate Key Count
Primary Key Definition 3-4 Range of Alternate Key Count
Symbolic Keys 3-4 Example of Range Count Retrieval
Integer Keys 3-4 Reading Keylists
Uncollated Symbalic Keys 3-4 Single Keylist Read
Collating Sequence Definition 3-4 Range of Keylists
Data Block Definition 3-5 Additional MIP Features
Padding 3-5 Sparse Key Value Suppression
FLBLOK Utility 3-6 Null Value Suppression
Creating an Indexed Sequential File 3-6 The MIPDIS Utility
File Creation by a Source Program 3-8
Establishing the FIT 3-8
Opening the File 3-8 5. DIRECT ACCESS FILE PROCESSING
Writing Records 3-8
Closing the File 3-8 Concepts of Logical File Structure
Sample Creation Program 3-9 Home Blocks
File Creation Through FORM 3-9 Overflow Blocks
Processing an Existing Indexed Sequential File 3-12 Specifying File Structure
Establishing the FIT 3-12 Record Definition
Opening the File 3-13 Primary Key Definition
Reading the File Randomly 3-13 Home Block Definition
Reading the File Sequentially . 3-14 Hashing Routine
Inserting New Records 3-14 Key Analysis Utility
Deleting Existing Records 3-14 User Hashing Routines
Replacing Existing Records 3-15 KYAN Directive
Closing the File 3-15 Source Program Call
Sample Updating Program 3-15 Sample Program, Key Analysis Utility

60499400 B

E=)

[] { [[

WV W N MR

L i1 I i 1 i1 ¢ LN L T I | U U [] [

)

[S L S R~ S g S S R R S S s AR R S S PR S S R R~ S S

AN AN W W AN W RN N NN N 000 Do

PUHWWNNOOO@OOWMWUNEFEON OO

5
e

R A A A A]
S PEEWWHHNMNDNNN

LO RN RV R R AV RN AN Y AV S RV IR, |

Creating a Direct Access File
File Creation Through CREATE
CREATE Directive
Source Program Call
Sample Program, CREATE Utility
File Creation by a Source Program
Establishing the FIT '
Opening the File
Writing Records
Closing the File
Sample Creation Program
File Creation Through FORM
Processing an Existing Direct Access File
Establishing the FIT
Opening the File
Reading the File Randomly
Reading the File Serially
Inserting New Records
Deleting Existing Records
Replacing Existing Records
Closing the File
Samplie Updating Program

6. ACTUAL KEY FILE PROCESSING

Concepts of Logical File Structure
Data Blocks
Overflow Records
Specifying File Structure
Record Definition
Primary Key Definition
Data Block Definition
Creating an Actual Key File
File Creation by a Source Program
Establishing the FIT
Opening the File
Writing Records
Closing the File
" Sample Creation Program
File Creation Through FORM
Processing an Existing Actual Key File
Establishing the FIT
Opening the File
Reading the File Randomly
Reading the File Sequentially
Inserting New Records
Deleting Existing Records
Replacing Existing Records
Closing the File
Sample Updating Program
Pasitioning an Actual Key File
Skipping Records
Rewinding the File

7. DEBUGGING TOOLS

FIT Fields Under User Control
Dayfile Contral, DFC
Error File Control, EFC
Trivial Error Limit, ERL

FIT Fields Under System Control
Trivial Error Count, ECT
Error Status, ES
Fatal/Nonfatal Flag, FNF

Processing the Error File

Dumping the FIT

File Limit

viii

P o o S N E LRV V. RV, V. R I T I PN . NIV |

SELELs L WWWNNRN

EINNNE Y A T N T R I | U TR N I) L]

ARV RV RV R RV RV R R RV R BV R R RG R R R AV AV AN Y]

[o,
)
[u

4 0 & 8 0 8 8 ¢ & & 8 9§ & L ¢ ¢ & & & b @ 1

Pt P b pd et e = = N0 D NN WIS S W RN RN

[S R |
NNFRFHPFRPODOOOO

o a e Jqtu AN e AR s AN w N a \Nw NS AR e AN« A0 = W= A0 W W e N o AN O = AN 0 AN AN+ s 200 & AN = N N0 A9« N

3
i

O R N R)
ERNNNNDNN R

SN N N SN NN N YN

APPENDIXES

A Standard Character Sets A
B Summary of FORTRAN CALL. Statements B
C Glossary C-
D Summary of FIT Fields D

INDEX

FIGURES

1-1 CYBER Record Manager Interfaces 1-1
2-1 CALL FILExx Statement Examples 2-2
2-2 FORTRAN Program Using AAM Direct Calls 2-3
2-3 CALL STOREF Statement Examples 2-3
2-4 IFETCH Function Examples 2-5
2-5 Working Storage Area Use 2-6
2-6 FILE Control Statement Examples 2-8
3-1 Indexed Sequential File Data

Block Structure 3.1
3-2 Indexed Sequential File Index
Block Structure

3-2

3-3 Indexed Sequential File Concept 3-3
3-4 User-Supplied Conversion Table 3-5
3-5 Sample Deck Structure for FLBLOK

Utility - NOS 3-6
3-6 FLBLOK Utility Output 3-7
3-7 Indexed Sequential File Creation 3-10
3-8 Indexed Sequential File Creation,

FORM Utility 3-12
3.9 Major Key Processing 3-14
3-10 Processing an Existing Indexed

Sequential File 3-16

3-11 Positioning an Existing Indexed

Sequential File 3
=12 FLSTAT Utility Output 3
-1 A Multiple-Index File 4-
2 Multiple-Index File Processing 4
3 Logical Structure of Index File with

Two Alternate Keys and Multiple

Alternate Key Values /8
4-4 Telephone Directory Data Base

lilustrating 3 Index File Structures 4-5

MIPGEN Utility Overview 4-6
MIPGEN Control Statement Format 4-6
MIPGEN Example - NOS 4-7
RMKDEF Directive Format 4-8
Using MIPGEN to Add a Repeating

£ J-\-b-i-\é-\-i-\
(Ve lac it s NN]

Group Key - NOS 4-9
-10 Creating an Indexed Sequential File

with Multiple Keys 4-12
4-11 Obtaining File Statistics ©4-15
4-12 Reading an Indexed Sequential File

by Alternate Key 4-17
4-13 Creating an Actual Key File with

Multiple Keys 4-19
4-14 Obtaining File Statistics 4-22
4-15 Reading an Actual Key File by Primary

and Alternate Keys 4-23
4-16 Reading an Actual Key File by Relative

Alternate Key Value 4-26
4-17 Using Only the Index File 4-31
5-1 Direct Access File Home Block Structure 5-1

60499400 B

5-2 Calling the Key Analysis Utility 5-5 7-3 Dumping the FIT 7-5
5-3 Direct Access File Creation, 7-4 Error File Output 7-6
CREATE Utility 5-8
5-4 Direct Access File Creation,
Source Program 5-10
5-5 Direct Access File Creation, TABLES
FORM Utility 5-12
5-6 Processing an Existing Direct 1-1 File Organization Comparison 1-3
Access File 5-15 2-1 Summary of FORTRAN Calls 2-4
6-1 Actual Key File Data Block Structure 6-1 4-1 Summary of FORTRAN Calls for AAM
6-2 Setting the Data Block Size 6-3 Files With MIP 4-29
6-3 Actual Key File Creation, Source Program 6-7 7-1 Error Processing FIT Fields Under
6-4 Actual Key File Creation, FORM Utility 6-8 User Control 7-1
6-5 Processing Existing Actual Key File 6-12 7-2 Error Processing FIT Fields Under
7-1 CRMEP Control Statement Examples 7-2 System Control 7-2
7-2 Error File Notes and Statistics 7-3 7-3 CRMEP Control Statement Parameters 7-3

60499400 B ix/x

NOTATIONS

The following notations are used throughout the manual
with consistent meaning:

UPPERCASE

lowercase

[l

60499400 B

In language syntax, uppercase
indicates a statement keyword or
character that is to be written as
shown. '

In language syntax, lowercase
indicates a name, numt.er, or symbol
that is to be supplied by the
programmer.

In language syntax, brackets indicate
an item that can be used or omitted.

In language syntax, braces indicate
that only one of the vertically stacked
items can be used.

In language syntax, a horizontal
ellipsis indicates that the preceding
optional item in brackets can be
repeated as necessary.

In program examples, a vertical
ellipsis indicates that statements or
parts of the program have not been
shown.

Numbers that appear without a subscript are decimal
values. Other vaiue formats are denoted as:

Neeah
n...nB

M...nW

Value is decimal
Value is octal

Value is decimal, specified in words

xi

INTROD‘UCTION TO CYBER RECORD MANAGER 1

CONTROL DATA CYBER Record Manager (CRM) is a
group of routines that provide an interface between your
programs and the operating system routines that read and
write files on hardware devices. CRM allows you to group
related data into records and to work with organized
collections of records (files). The file processing
capabilities of CYBER Record Manager are divided into
two categories: Basic Access Methods (BAM) and the
Advanced Access Methods (AAM). BAM includes the
CYBER Record Manager routines that prozess sequential
and word addressable file organizations. AAM includes the
Multiple-Index Processor (MIP) and the CYBER Record
Manager routines that process indexed sequential, direct
access, and actual key files. MIP provides the means to
access records by more than one field (that is, alternate
paths are available).

Figure 1-1 illustrates the basic CRM components and
interfaces.

The CYBER Record Manager routines handle the opening,
positioning, and closing of files and perform input/autput
operations for the files based on information provided by
the calling program. This information is conveyed to BAM
and AAM through an area in the user's field length called a
file information table (FIT). The FIT includes descriptive
information that BAM and AAM use to formulate calls for
action by the operating system. FIT entries include items
such as the method by which the file is to be accessed, the
descriptions of record size and type, the current open or
close status, and so on.

Your program establishes a FIT for each file that CRM
routines reference. This operation is usually performed
automatically by the language processor through the
language syntax. In most instances, you need not he

concerned with the FIT or with the way CRM represents
records. As long as you read the file by the same method
used to write it, physical representation is irrelevant to

you.

However, you must be aware of physical record format to
read an existing file from another computer vendor or
through a language different from that used in creating the
file. After a program or control statement describes the

organization and structure of a file, you can access the file
with standard read and write statements. You need not

refer again to the file description.

As a COBOL programmer, you must use READ and WRITE
statements to indirectly access CRM capabilities. As a
programmer indirectly accessing CRM, you can:

¢ Ensure program efficiency by understanding CRM
terminology and concepts.

e Supplement, as necessary, input/output processing

provided by the COBOL language by using a FILE
control statement to override some of the defaults.

As a FORTRAN programmer, you have the following
options: B

e Using FORTRAN input/output statements for all file
manipulations. The fact that CYBER Record Manager
becomes involved in execution of these statements can
be ignored.

User's Field Length

A, CRM
FORTRAN é - XAA;’A OPERATING
PROGRAM é AW l SYSTEM
= ya 7 [
“\ III I’I I
\‘ 'l I'
L / l
Record Area Y Many Records | ////////
in Data Block |
WSA ;
Logical 1/0 | Physical 1/0
I .

Figure 1-1. CYBER Record Manager [nterfaces

60499400 B

e Supplementing input/output processing provided by the
FORTRAN compiler by using a FILE control statement
to override some of the defaults. Files meeting
structure criteria of other systems or languages can be
produced in this way. You need only become involved
with CYBER Record Manager to the point of properly
describing the structure desired.

e Reading and writing files by direct calls to CYBER
Record Manager. By using AAM direct calls, your
processing options are increased and greater program
efficiency can be achieved. CRM must be understood
in more detail to successfully issue direct calls.

The file formats created and recognized by direct calls to
the CRM routines are independent of the language or
processor through which input/output calls are initiated. A
file created by one source language can b2 processed by
another. For example, as a FORTRAN programmer with
no working knowledge of the COBOL. language, you can (by
using direct calls) access a file that was created by a
COBOL. program. Similarly, as a COMPASS programmer
with no working knowledge of the FORTRAN language, you
can access a file that was created by a FORTRAN program.

Languages that utilize the file management capabilities of
BAM and AAM include FORTRAN,; COBOL, ALGOL, PL/I,
and Query Update. The Sort/Merge and FORM utilities
also use CRM. BASIC, UPDATE, and APL do not utilize
CRM.

FILE ORGANIZATIONS AVAILABLE

AAM controls the physical processing of indexed sequential
(IS), direct access (DA), and actual key (AK) files.
Additional processing features are available toc all three
AAM file organizations when multiple keys are defined.
" Table 1-1 compares the three AAM organizations.

Some factors you should consider in choosing a file
organization includes

e User requirements

File use - Are all records processed at each use, or are
only selected records required? Do you want the best
sequential processing, the best random processing, or a
good combination?

File order - Must records be sorted? How often?

Record keys - Are record key values grouped or
scattered? Are keys unique? Must your keys have
user meaning? Do you want access by multiple keys?

e Programming effort

Program creation and maintenance - Do you have
programmer expertise for special file creation
considerations? Are ease of coding and program
maintenance prime considerations?

e File growth
File size and stability - Are records changed
frequently? Isthe file expected to grow? Will records
be added primarily at the end?

e Performance
Speed and efficiency - Would your file fit in central

memory? How important are processing speed and
response-time?

T 1-2

Each file organization offers advantages, depending on the
specific file and task at hand. By praviding multiple paths
to records, MIP improves performance and adds flexibility
of access for all AAM file organizations. Often, no file
organization will meet all of your needs, and compromises
are necessary. A brief overview of each AAM file
organization follows.

INDEXED SEQUENTIAL FILES

Indexed sequential (IS) files add the advantages of random
processing and updating to those of a sorted sequential
file. Records in these files are always logically in
ascending order by primary keys. Existing records can be
deleted or replaced, and new records can be added, without
affecting the remainder of the file. A replacement record
can be longer or shorter than the existing record.

Using the character or numeric key associated with each
record, CRM creates and maintains an index of the records
in the file. You can read any record by specifying its key.
In response, CRM searches the index to find the mass
storage address of the record and returns to your program
the record associated with the key.

Indexed sequential organization is best suited to very large
files or files that you need to access both randomly and
sequentially. Access times depend upon the number of
index levels and the amount of memory allocated to index
and data blocks. Typically 0 to 2 disk accesses are
required. However, a maximum of 15 accesses might be
required in a large, poorly organized file.

Records are grouped into data blocks. Index blocks keep
track of data blocks. At creation time, you can plan space
for expected growth of indexed sequential files by
specifying the size of index and data blocks and by
specifying a padding factor. The padding (empty space)
can allow for new record insertions without necessarily
changing file structure or average retrieval time. Disk
storage space must be sacrificed, however. Data block
padding should be used with care because the padding is
allocated in each data block in the entire file.

Indexed sequential files are generally the easiest to
program. Indexed sequential is the best file organization
for files processed both sequentially and randomly. IS files
are a good compromise between strictly sequential access
and strictly random access.

An indexed sequential file becomes a multiple-index file
when you define alternate keys for use in retrieving
records. An IS file with MIP can be accessed by either its
primary key or an alternate key. If you often need to
access a file by more than one field, you can improve your
program efficiency (in terms of retrieval speed or response
time) by using MIP with an IS file.

DIRECT ACCESS FILES

Direct access (DA) files use an access key method
involving randomization. The caleulation (hashing
algorithm) uses the value of the primary key to compute a
block number. You can write a routine that performs the
necessary calculation or use the system routine provided.
The computation should yield block numbers randomly
distributed across the range of permissible block numbers.
Ideally, a calculated key requires only one access to the
mass storage device to find any randomly selected record.

60499400 B

key

TABLE 1-1. FILE ORGANIZATION COMPARISON
Characteristic Indexed Sequential Direct Access Actual Key Similarities
Creatidn Mode Random by ordered Random Random

Logical File
‘Structure

Sorted by ascending
key value

Random according to
hashed key value

In order by block
and record slot
number

Physical
Structure
in Storage

Records in data
blocks

System maintained
index blocks

Records in home
blocks

Home blocks pre-
allocated

Records in data
blocks with continu-
ous record slots

Updating Possible

Delete, add,
replace records

User Requirements

Random by key

Sequential by
position and by
ascending key

Good hybrid
of random and
sequential access

Random by key

Seria11¥ by position
but no logical order

Best random
processing when
alternate keys

Serially

Best random
processing when
alternate keys

are not needed are needed
Major key access
Programming Easiest Harder Hardest
Effort
File Growth Moderate Worst Best

Performance

0-15 disk accesses
(two or less is
typical. Depends on
index levels, etc.)

1 disk access is the
goal (possible with

good hashing
algorithm)

1 disk access

With MIP, fewest
disk accesses and
smallest key
possible

‘Record Types
Possible

AN

Keys

Symbolic, integer or
uncollated keys

Embedded key most
efficient use of
disk

Entire key hashed to
home block address

Embedded key most
efficient use of
disk

Key represents
storage location
(block number and
slot number)

Non-embedded key
most efficient use
of disk

CRM generates key
values

Primary key
need not be
embedded

Alternate keys
possible

Storage Medium
Possible

Must reside

on mass
storage during
accessing

Utilities

FORM to restructure

MIPGEN to add/delete
alternate keys

FLBLOK to choose
best data block size

CREATE to create/
restructure file

MIPGEN to add/delete
alternate keys

KYAN for analysis of
HMB values and :
hashing routines

FORM to restructure

MIPGEN to add/delete
alternate keys

60499400 B

1-3

Records are not maintained in any recognized order, so
physical positioning to the next logically sequential record
is not possible. However, a direct access file can be
processed serially if all records need to be processed. The
order of records is not significant in this case.

Direct access file organization is best suited to
applications that handle large mass storage files requiring
rapid random access (for example, an on-line inventory). A
direct access file requires preallocation of disk space.

Direct access file organization is usually the worst choice
for files that will change size dramatically (such as a
credit check system). DA files require more programming
effort than indexed sequential files. Special file creation
considerations, such as selection of a hashing algorithm,
are required.

Alternate keys can also be defined for a direct access file.
A DA file with MIP can be accessed by either its primary
key or an alternate key. If you often need to access a file
by more than one field, you can improve your program
efficiency (in terms of retrieval speed or response time) by

using MIP with a DA file.

ACTUAL KEY FILES

Actual key (AK) files use a block number and a record
number in that block as the primary key for a given
record. Therefore, the unique key for each record
represents its storage location. Unlike keys for indexed
sequential or direct access files, keys for actual key files
do not have an external meaning, such as emplayee name
or number. Logical sequential access by key has no
meaning.

CRM generates a key when a record is written to the file.
The key value is returned to your program and can be used
for future random access by key.

Alternate keys should be defined for most actual key files.
AK files with MIP require the fewest disk accesses to
obtain a record and the smallest primary key to reduce disk
space in the file.

Without MIP, AK files give fast random acecess to file
records, but you are responsible for knowing the storage
location (the actual key) of any record. Because you must
save the key values generated by AAM for future access by
key, AK files require additional effort on your part. You
can reduce this effort by combining multiple-index
processing with actual key file organization. Actual key
values are saved automatically when multiple-index
processing is used in conjunction with actual key file
organization.

Actual key files might be used for a large data base with
many keys to the same record. One file of data records in
actual key organization could contain detail information
regarding employees. Other files would link the external
keys, such as an employee number or department, with the
actual key of the data in the first file.

RECORD TYPE SELECTION

The smallest unit of information passed between the user
and AAM is a record. The amount of information in a
record is determined according to the record type (RT) you
specify. Eight different record types are supported by
AAM: D, F, R, S, T, U, W, and Z. AAM handles W and S
type records as U type records. Each record type is
applicable to a specific situation. All records in a given
file must be the same record type.

@ RT=F

Use F-type records when each record in your file
contains the same number of characters. The
following additional FIT field must be defineds

FL - fixed record length in 6-bit character
bytes.

e RT=Z

Use Z-type records when you want to eliminate
trailing blanks in records. The following additional
FIT field must be defined:

FL - full record length., This is the
maximum number of characters in any
record.

e RT=T

Use T-type records when your records consist of a
fixed-length portion (header) followed by a variable
number of fixed-length items (trailers). The following
additional FIT fields must be defined:

HL - Header length in characters

CpP - Starting character position of count
field (numbered from 0)

CL - Count field length in characters (one
through six)

TL - Trailer length in characters

MRL - Maximum record length

e RT=W

W-type records are the default. The following
additional FIT fields must be defined:

RL -. Record length in characters
MRL - Maximum record length

More detail on record types (including types D, R, S, and U)
can be found in the BAM and AAM reference manuals.

60499400 B

FILE PROCESSING CONCEPTS 2

J

You process all AAM files in the same general manner:
1. Open the file.

2. Position to a specific record, if desired.

3. Read, write, rewrite, or delete records.

4. Close the file.

This section of the guide presents the basic concepts of file
processing to familiarize you with the general principles
invalved in processing an AAM file. Subsequent sections
discuss file processing in detail for each AAM file
organization. All examples use FORTRAN direct calls to
AAM. COBOL users should refer to the COBOL user's
guide.

You might issue direct calls to AAM if you are one of the
following:

e A FORTRAN programmer writing applications
programs that require the advantages available
through direct calls to AAM.

e A FORTRAN or COMPASS programmer writing
execution time routines for high level languages.

e A FORTRAN or COMPASS programmer writing
input/output modules for use by applications programs.

e A COMPASS programmer writing modules to handle
user label processing for applications programs.

As a programmer directly accessing AAM, you are
respansible for the following:

e Establishing the FIT to define the file structure and
* subsequent processing limits.

e [Establishing a working storage area (WSA) in a
program for passing data records between the program

and the file storage device.

e [Issuing direct calls to AAM to open the file, to process
input and output operations, and to close the file.

When an AAM file processing statement is executed,
parameters in the statement are placed in their respective
FIT fields. Omitted parameters do not affect the current
FIT values.

CONSTRUCTING AND USING
THE FIT

You must establish a file information table (FIT) for each
file AAM is to process before you can open the file. The
contents of the fields in this table define the structure of
the file and govern file processing. The FIT is a 35-word
table in the user's field length that contains information
such as record type, record size, file organization, error
count, error flags, and information used by internal system
routines to determine file status and position. Some fields
are set by you, and other fields are set by AAM.

60499400 B

FIT fields can be set when CRM constructs the FIT, opens
the file, executes a processing statement, or executes a
STORE macro (in COMPASS) or a CALL STOREF (in
FORTRAN). When the file is opened, many fields that
have not been set to a specific value are set to default
values. A default value is in effect until the field is

changed. When a file processing statement is executed,
AAM uses the current contents of the applicable FIT fields.

CREATING THE FIT

You must allocate 35 words of central memory for the
FIT. The allocated space is then used when your call to the
FILExx subroutine is executed. The format of this call is:

CALL FILExx (fit, field, value, ...)

The mnemonic specified for xx determines the file
organization.

e FILEIS specifies an indexed sequential file.
e FILEDA specifies a direct access file.
e FILEAK specifies an actual key file.

The first parameter in the CALL FILExx statement is_the
name of the array in which the FIT is to be built. This
name identifies the FIT and is the first parameter in every

direct call to AAM. The remaining paramsters are FIT
field mnemonics and values for the fields. When the CALL

FILExx statement is executed, the FIT is established in the
named array, zeros are entered in all fields, and then the
specified fields are set to the designated values.

All of the FIT fields required for file processing can be set
by the CALL FILExx statement. You identify FIT fields by
mnemonics such as RT (record type) and LFN (logical file
name). Values for the fields can be program locations,
positive integers, and symbolic options. Appendix D lists
the FIT fields applicable to each file organization and
indicates the fields that can be set by the CALL FILExx
statement. More detailed discussions of the individual FIT

fields can be found in the sections on the file organizations.

The first parameter in a CALL FILExx statement is the
array name that reserves space for the FIT. All subsequent
parameters in the statement are paired. The first
parameter of a pair specifies the FIT field mnemonic, and

the second parameter specifies the value for the field.
Some examples of paired parameters are:
e 'LFNYNEWFILE'
Logical file name NEWFILE
e 'RT,F'
F type records
e L2

Fixed-length records of 42 characters

2-1

Pairs of parameters can appear in any order in the
parameter list. Figure 2-1 shows some examples of the
CALL FILExx statement.

CALL FILEIS (ISFIT, 'LFN', "ISFILE', 'RT", 'F")

The FIT for the indexed sequential file is constructed
in the array named ISFIT; the logical file name is
ISFILE and the record type is F.

CALL FILEAK {(AKFIT, 'LFN', 'AKFILE", 'KL', 6,
'MNR', 80, 'MRL', 100)

The FIT for the actual key file is constructed in the
array named AKFIT; the logical file name is AKFILE,
the key length is 6 characters; the minimum and
maximum record fengths are 80 and 100 characters,
respectively.

CALL FILEDA (DAFIT, 'LFN’', 'DAFILE', '"HMB', 53,
'RB', 11)

The FIT for the direct access file is constructed in
the array named DAFIT; the logical file name is
DAFILE, the number of home blocks is 53, and
the number of records per block is 11.

Figure 2-1. CALL FILExx Statement Examples

Many fields are assigned a default value if no value is
specified. You should be aware of each default value and
the effect it can have on a program (See appendix D).

Any specified value that exceeds the maximum field size is

truncated. Misspelled or otherwise unrecognizable FIT
mnemonics are noted on the dayfile and ignored. In each
of these cases, CRM issues an informative diagnostic. A
mnemonic that is valid but not applicable to the specified
file organization is ignored providing it produces no
conflict with other mnemonics. If a conflict exists, CRM
issues an appropriate diagnostic at execution time. FIT
field values are also checked for validity and consistency
at execution time. If the same value is referenced more
than once, the last value specified is used.

The following fields should be considered for the CALL
FILExx statement in most programs:

LFN Logical file name
ORG Old/New (initial/extended) version of file
organization - NEW should be.specified and is

required to override the installation default

RT Record type (and additional fields required by
the individual record type)

WSA Working storage area
KA Key address

EMK Embedded key

KL Key length

KP Key position

RKW Relative key word

RKP Relative key position
FL. Fixed/full record length
MRL Maximum record length
MNR Minimum record length
MBL Maximum block length
EFC Error file control

DFC Dayfile control

USING THE FIT THROUGH FORTRAN CALLS

FORTRAN routines access BAM and AAM through direct
calls to routines in the system library. Appendix B

summarizes the call statements and their appropriate
parameters.

With FORTRAN direct calls to AAM, you can process files
with organizations not available through the standard
language statements. By specifying the primary key, you
can read or write any record in an indexed sequential,
actual key, or direct access file without regard for any
other record in the file.

Execution of an AAM file processing statement depends on
the current contents of the FIT. When you open an existing
file, some values stored in the File Statistics Table (FSTT)
are returned to the FIT (such as KL, RKP, RKW, KT, and
MRL). You are responsible for setting the contents of
appropriate flelds at execution time. You can provide a
field value in one of several ways:

e Specifying the field and value in the CALL FILExx
statement. The value becomes part of the FIT when
the statement is executed.

e Omitting the field definition (if permitted) and
accepting the default value. The default becomes part
of the FIT at the time the file is opened.

e Specifying the field as a parameter in the FILE control
statement. The value becomes part of the FIT when
the file is opened, and it aoverrides any previous value
set in the field.

e [Executing the CALL STOREF statement to store a
value directly into the FIT. The field is set at the
time the statement is executed and overrides any
previous value set in the fieid.

e Setting the field value in a file processing statement.
A value from a CALL GET ar CALL PUT statement is
set in the FIT when the statement is executed.

The last value set in a FIT field governs an operation using
that field. The default value remains in effect until it is

changed.

Figure 2-2 illustrates a FORTRAN program with direct
calls.

60499400 B

PROGRAM NEWIS
IMPLICIT INTEGER (A-2)

Allocate memory space for FIT and WSA

DIMENSION ISFIT (35), ISWSA (5)
CALL FILEIS (ISFIT, 'LFN', 'ISFILE', 'ORG', 'NEW',

TWSA', ISWSA,

'RTY, 'F', 'FL', SO,

'MBL', 590, 'NL', 3,

'KL', 4 'EMK®, 'YES',

'RKW', 0, 'RKP', 4,

'EFCY, 3, 'DFC',)

E R s

Identify file named ISFILE and set FIT fields

Open file

CALL OPENM C(ISFIT, 'NEW"
10 READ (%, '(3A10, 2110)', END =
CALL PUT (ISFIT)
PRINT 100, ISWSA
60 TO 10
20 CALL CLOSEM (ISFIT)

20) ISWSA }

$<._._.._.. Process

Close file

STOP
FORMAT (3A10, 2110)
END

100

Figure 2-2.

When AAM is called directly, the program must meet the
following conditions for each file:

1. You must allocate a 35-word block of central memory
for the file information table (FIT).

2. You must identify the file organization by a CALL
FILExx statement. Any file defined to AAM through a
CALL FILExx statement must not appear in the
PROGRAM statement.

You must issue the CALL FILExx statement before
any other AAM call. Parameters in the call to FILExx
establish the logical file name and other FIT fields to
guide processing.

3. You must open the file by a call to OPENM.

4. You must use AAM calls for all read and write
operations on the file identified in the CALL FILExx
statement. READ and WRITE or other standard input
and output statements, including READMS and
WRITMS, must not be used for processing the AAM
file.

5. After all processing, you must close the file by a call
to CLOSEM to ensure file integrity.

You can write records to the file from an array or
character variable identified by the working storage area
(WSA) field in the FIT. You can change the WSA field at
any time, or you can leave it pointing to the same array or
variable.

Table 2-1 FORTRAN direct call

statements.

summarizes the

CALL STOREF Statement

You can set or change a FIT field value during program
execution by the CALL STOREF statement. The format of
this statement is as follows:

CALL STOREF (fit, field, value)

60499400 B

FORTRAN Program Using AAM Direct Calls

You can execute the CALL STOREF statement before or
after opening the file. However, the statement. must de
after execution of the CALL FILExx statement. Some FIT
fields cannot be set after opening the file (such as ™MRL
and MNR). Other FIT fields can be set after opening the
file (such as WSA). Appendix B indicates fields that can be
set by the CALL STOREF statement.

You can set only cne field in the FIT by each CALL
STOREF statement. The mnemonic for the field and the
value to be stored in the field are specified in the
statement. The value can be an integer, integer variablg,
or a symbelic option. Integer values are retained as
right-justified integers in the F1T. Symbolic values become
bit strings and are fetched as a single bit or an integer,
depending on the bit string length.

Figure 2-3 shows some examples of the CALL. STOREF
statement.

CALL STOREF (ISFIT, 'RL', 80}

Execution of this statement stores 80 in the RL
{record length) field of the FIT in the array named
ISFIT.

CALL STOREF (DAFIT, 'ERL', 10)
Execution of this statement stores 10 in the ERL

(trivial error limit} field of the FIT in the array
named DAFIT.

Figure 2-3. CALL STOREF Statement Examples

IFETCH Function

You can retrieve the value in a FIT field by using the
IFETCH integer function. The format is as follows:

IFETCH (fit, field)

2-3

TABLE 2-1. SUMMARY OF FORTRAN CALLS
Function Call Name AppTicable Action Taken Comments
File Types
File creation and FILExx IS,AK, DA Creates a file Must be the first call executed.
maintenance information table Any file name defined in this
(FIT). statement must not appear in the
PROGRAM statement.

IFETCH IS,AK,DA Retrieves the value Can precede an OPENM call.
of a specified
field in the FIT.

STOREF IS,AK,DA Sets a value in a Can precede an OPENM call.
field in the FIT.

FITDMP IS,AK,DA Dumps the contents Forces the EFC field to 2 or 3.
of a FIT to the
error file,

File 1ni§ia1jzation OPERM IS,AK,DA Opens a file. Must be executed before any file
and termination access call can be executed.

CLOSEM IS,AK,DA Closes a file. Only IFETCH, STOREF, and FITDMP

calls can follow a CLOSEM call.
Data transfer GET TIS,AK,DA Reads a record The specified key value identi-
randomly by key. fies the record to be retrieved.

GETN TIS,AK,DA Reads the next Retrieves records in sequence
record in sequence. of position in the file.

PUT IS,AK,DA Writes a record by The RL field must be set to the
primary key. record length for U type records.

File updating DLTE IS,AK,DA Deletes a record. The specified primary key must
- identify an existing record.
REPLC IS,AK,DA Replaces a record. The primary key in the new
record must duplicate an existing
primary key.
File positioning REWND TIS,AK,DA Rewinds a file. The file rewinds to beginning-of-
information.

SKIP TIS,AK Skips a number of Positions the file relative to
records forward or the current file position.
backward.

STARTM IS Positions a file Positioning depends on a speci-

’ for sequential fied condition.
processing.
TA]so applies to alternate key index files (see section 4).

You can use IFETCH before or after opening the file. ®
Appendix B indicates fields that can be retrieved by
IFETCH.

The format of the value returned depends on the type of ®
field you request, as follows:

¢ A field that you specify as an integer is returned as a
right-justified integer.

® A length field value is returned as a count of 6-bit
characters except for the buffer size (BFS) field,
which is returned as a count of 60-bit words (as
specified).

2-4

A one-bit field value is returned as a positive integer
for 0 or a negative integer for 1.

A symbolic field value that requires more than one bit
is returned as a positive integer. For example, the
LFN field is returmed as a hollerith constant

(left-justified and zero filled) in the integer variable.
(Refer ta appendix D for the integer values.

60499400 B

Figure 2-4 shows some examples of the IFETCH function.

IF (IFETCH (ISFIT, 'ES') .NE. 0) GO TO 50
This statement causes a branch to statement 50 if the
ES (error status) field contains a nonzero value.

IF (IFETCH (ISFIT, 'FP") .EQ. 0"0") GO TO 20
This statement causes a branch to statement 20 if the
FP (file position) field is set to 10.

ICOUNT = IFETCH (AKFIT, 'RL"
This statement returns the value of the RL {(record
length) field to the variable ICOUNT.

IF (JIFETCH (ISFIT, 'LFN') .EQ. L"ISFILE") GO TO 20

This statement causes a branch to statement 20 if the
LFN field is set to ISFILE.

Figure 2-4. [FETCH Function Examples

USING THE FIT THROUGH COMPASS MACROS

COMPASS routines access AAM through macro calls. The
AAM reference manual details the macros and their
appropriate parameters.

You should use COMPASS macro calls to AAM if you want
to use AAM files. The READ, WRITE, or other macros
previously available that used the CPC (central program
control) routines cannot access AAM files. You cannot use
both CRM and CPC in one program to process a given file.
Both sets of macros can be used in the same program only
as long as they are processing different files. Existing files
created through CPC can be processed by CRM once the
file and record structure are properly defined in CRM
terminology.

When AAM is called directly, the program must meet the
following conditions for each file:

e The FILE macro must appear in a nonexecutable
portion of the program. The macro is an
assembly-time statement that results in construction
af the FIT. The FIT address, rather than the file
name, is used in all AAM macro references to the file.

e The file must be opened by an OPENM macra.

e All read and write operations for the file must occur
through AAM macros.

e After all processing, the file must be closed by a
CLOSEM macro.

THE FILE STATISTICS TABLE

The file statistics table (FSTT) contains file characteristics
and access statistics. AAM creates and maintains the
FSTT. The FSTT is always the first two physical record
units (PRUs) in an AAM file. The FSTT stares information

that cannot be changed for the life of the file and
statistics about the file.

60499400 B

The FSTT is created when the file is created and is a
permanent part of the file. When the file is opened for
creation, the file and primary key structures you defined in
the FIT are stored in the FSTT. This information is
returned to the FIT whenever you subsequently open the
file. FSTT information guides processing as long as the file
exists. If you set fields in the FIT to change file structure,
values that do not conform to the FSTT are rejected.
Because you cannot directly access the FSTT, a program
cannot inadvertently destroy the file through the FIT.

Statistics such as the number of records inserted or deleted
are accumulated with each use of the file and are stored in
the FSTT. You can sample the statistical information by
using the FLSTAT control statement.

DEFINING THE WORKING
STORAGE AREA

The working storage area is a user-defined area in the
program where AAM finds or returns one record for a write
or read operation. The address of this area is stored in the
working storage area (WSA) field in the FIT. The waorking
storage area is typically a one-dimensional, character or
integer array. If specified as a character type data
structure, WSA must be word-aligned.

Figure 2-5 shows the events that occur in response to your
request to write a record. AAM moves the record from the
working storage area into the file data block area in
central memory. (No input/output is performed at this
time.) AAM makes a request to the operating system to
transfer the data block contents to a storage device.

In response to your request to read a record, AAM moves
one record from the data block area into the working
storage area. If the record is not in the data block
currently in central memory, the operating system is
requested to transfer the proper block of information to
central memory so that your request can be carried out.
You are aware only that records are moved from and to the
working storage area upon request. All other record or
black movement is internal to AAM.

The working storage area can be changed anytime during
execution of the program. Each record written can
originate in a different area of the program. You need not
move a record to a specific area for writing. Any program
location specified for the WSA field by the write request,
or stored in the WSA field before the write request, is used
during execution of the write request. Likewise, you need
not move a record to a specific area after reading. The
program location specified by the WSA field is used during
execution of the read request.

AAM does not consider the working storage area to have a
specific length. AAM uses the record type (RT) field (and
any associated FIT fields) to determine how many
characters are to be transferred to or from the working
storage area. You must allocate space for the working

storage area accordingly.

A full record is returned for each read request. The
number of characters in the record is always returned to
you in the RL field in the FIT. The working storage area is
defined as an integral number of words. However, only the

specific number of characters (RL) that are a part of the
record are valid.

RA User Field Length

User's Program

User program sets WSA field in FIT.

g

EIT { WSA Pointer

— Pointer to working storage area.

2,

WSA

—— i,

/ // jj:ord

| 4

PUT statement in user program moves record
in working storage area to data block area.

Many records
coliected in

7 7/
/ Record /
I ILI7A 7Y

AAM uses operating
system routines to
transfer data ———3>

Standard CDC

L

data block area

2,

block to storage.

F!A+FLi

2

Figure 2-5. Working Storage Area Use

A write request uses the RL field only for U, W, S, or
Z type records. AAM transfers the number of characters
set in the field. For record types other than U, W, 5, and

Z, AAM transfers the number of characters calculated
apcnrding to the record type.

OPENING THE FILE

You must open the file (with OPENM) before performing
any other file processing. Open processing includes the
following events in the order listed:

1. FIT fields specified on the OPENM call statement are
set.

2. FILE control statement parameters are placed in FIT
fields. FILE statement values can override values
previously set by the CALL FILExx or the CALL
STOREF statement.

3. For an existing file, file descriptions are extracted
from the FSTT and stored in the FIT. FSTT values can
override previous FIT values.

4. Minimum parameters required by the file organization
are checked. .

5. FIT fields are checked for consistency in logic.

6. Buffer space is calculated by AAM unless the space
has been allocated by the user.

2-6

7. The open/close flag (OC) field in the FIT is set to open.

8. For a new file, the file statistics table (FSTT) is
constructed.

If AAM detects an error in format or detects an omission
or inconsistency in logic in the FIT fields, an error status
code is put in the ES field and an appropriate diagnostic is
issued (if EFC and/or DFC have been properly set). Errors
frequently occur when not all fields required for a
particular file organization have been defined caorrectly, or
when one specified field precludes another specified field.
An error detected during open processing prevents the
open/close flag (OC) field from being set to open. After an
OPENM, you should check the ES field.

PROCESSING THE FILE

You can read, write, delete, and replace records in an AAM
file. Both sequential and random access are supported for

AAM files.

The following is a list of suggested programming practices
to use during all AAM file processing (FORTRAN direct
calls are assumed).

e Declare the 35-word FIT array INTEGER.

@ Declare the WSA field CHARACTER or INTEGER (If
CHARACTER is used, the WSA field must be
word-aligned.)

60499400 B

e Check the error status (ES) field after every file
operation.

e If the ES field is valid (the value is zero), then check
the file position (FP) field after every GET or GETN

call.

Py If the ES and FP fields are both valid, then check the
record length (RL) field after every GET or GETN call.

e Use the FILExx statement to set most FIT parameters
prior to the file operation.

e Use only the FIT name parameter for most direct
calls. (In most cases, the FIT name is the only
required parameter.)

™ Use the STOREF subroutine ta change FTT fields.

The processing direction (PD) field in the FIT determines
the operations that can be performed on the file. For
reading records, you must set the PD field to either INPUT
or I-O. For writing records, PD must be set to either
OUTPUT or I-O. Delete and replace operations require the
PD field to be set to I-O. NEW specified with the OPENM
macro {(in COMPASS) or the CALL OPENM call (in
FORTRAN) sets the ON field to NEW and the PD field to
OUTPUT, as required for file creation.

READING RECORDS

You can read records either sequentially by position or

randomly by key value. A sequential read (using GETN)
accesses the next record in the file. A random read (using
GET) accesses the record associated with the specified key
value. When a read operation is performed, AAM returns a
record from the buffer to the working storage area defined
by the WSA field in the FIT.

At the end of the read operation, the record length (RL)
field in the FIT is set by AAM if there were no errors. The
RL field reflects the number of characters returned to the
working storage area. After a GET or GETN, you should
check the ES field, the FP field, and then the RL field.

The number of characters transferred to the working
storage area during any read operation is affected by the
maximum record length (MRL) field in the FIT as well as
by any other control information pertinent to the record.

The value in the MRL field sets an absolute limit on data
transfer as follows:

e If the MRL field is zero, no data can be transferred to
the working storage area.

e If the MRL field is greater than zero, the specified
value sets an upper limit on the number of characters
that you can read, even if this limit is smaller than a
given record.

You are responsible for setting the MRL field before the
file is created. The value is stored in the file statistics
table and is available during any future access without
repeating the specification. It is a good idea to set the
MRL field to the size of the working storage area.

WRITING NEW RECORDS

A write operation (using PUT) causes a record to be moved
from a working storage area to the buffer (data block area)
for the file being praocessed. The value of the primary key
determines the position that a record occupies in the file.

60499400 B

Determine the length of the record written by looking at
the record length (RL) field in the FIT or other control
information appropriate to the record type. After a PUT,
you should check the ES field, the FP field, and then the
RL field.

Indexed sequential files can be written ‘sequentially or
randomly. On a creation run, however, you should try to
write records in sequential order by primary key value for
a more efficient run. On subsequent runs, records can be
inserted randomly.

Direct access files are always written randomly. The
primary key of the record determines the home block in

which the record resides.

If you want to create a direct access file with a large
number of records, it is more efficient to use the CREATE
utility than to put each record into the file as it comes
from the source program. The CREATE utility sorts the
records to minimize disk accesses to the file.

When actual key files are written, AAM generates the
primary key value for each record as blocks are filled.

UPDATING THE FILE

You add records to an existing file by using a write request
(PUT). You can also delete records (with DLTE) ar replace
them with new records (with REPLC). All updating

operations require the primary key to identify the affected
record.

You delete a record from the file by providing the primary
key value for the record. The working storage area is not
required. The record is either flagged as deleted or

physically deleted from the file.

You can replace any record in an existing file by a new
record that has the same primary key value. The new
record can be shorter or longer than the original record as
long as the record length is within the limits established by
the minimum record length (MNR) and maximum record
length (MRL) fields in the FIT. The record in the working
storage area replaces the record in the file with the

specified primary key value.

An error detected during file updating operations is
returned to the ES field. After a PUT, DLTE, or REPLC
call, you should check the ES field.

CLOSING THE FILE

When file processing is complete, the file must be closed
(with CLOSEM). Close processing includes the following

events:

e User data records are written to the file storage
device from the central. memory buffer.

e The file statistics table (FSTT) is updated.

e The open/close flag (OC) field in the FIT is set to
closed.

A CLOSEM (in COMPASS) or CALL CLOSEM (in
FORTRAN) allows the file to be reopened later. However,
the closed file is returned to the operating system when U
is specified as the second parameter in the CLOSEM
statement.

2-7

THE FILE CONTROL STATEMENT

The FILE control statement is used to set values in FIT
fields when the file is opened. The specified values can
either set fields not previously set or override values
specified in the CALL FILExx statement. Values from the
FILE contro! statement are saved by CRM until the file is
opened for the first time during program execution. The
FILE control statement can appear anywhere in the control
statement record before the load sequence that calls for
execution of the compiled program.

Many of the FIT fields that can be set by the CALL FILExx
statement can also be set by the FILE control statement.
Fields that specify a program address, however, (such as
WSA or KA) cannot be set by a FILE statement.
Appendix D lists the FIT fields applicable to each file
organization and indicates the fields that you can set by
the FILE control statement.

The first parameter in the FILE control statement must be
the logical file name. This is followed by one or more
parameter pairs that specify FIT field settings. Each pair
consists of a FIT field mnemonic and a value separated by
an equal sign. Figure 2-6 shows some examples of the
FILE control statement.

You cannot use the FILE control statement to change
permanent information about an existing file. For
example, the black size cannot be changed after file
creation. Any attempt to change such a field is overridden
by the value stored in the FSTT. A diagnostic is not
issued. Fields specifying permanent information are used
by AAM only on a file creation run.

A FILE control statement cannot be continued to a second
statement. When you cannot specify all parameters in one
statement, you can include additional FILE control
statements with the same logical file name. If the same

FILE(DAFILE,FO=DA HMB=5 MRL=80,KL=10}

The direct access file has the logical file name
DAFILE. The number of home blocks {HMB),
maximum record length (MRL), and key length
(KL) fields are specified for the file.

FILE(AKFILE,FO=AK,EFC=1,RB=64,BCK=YES)

The actual key file has the logical file name
AKFILE. The error file control (EFC), records
per block {RB), and block checksum (BCK)
fields are specified for the file.

Figure 2-6. FILE Controi Statement Examples

FIT field is referenced in more than one FILE control
statement, the last value encountered defines the field.

The PREVIOUS FIELD OQVERLAPPED message is recorded
on the dayfile.
The following FILE statements are often useful:
e FILElfn.
Cancels preceding FIL.E control statements for 1fn.
e FLLE
Cancels all preceding FILE control statements.
An error in the FILE control statement causes the entire
statement to be ignored. The error and the parameter in

question are printed on the dayfile. Control transfers to
any appropriate EXIT control statement.

60499400 B

INDEXED SEQUENTIAL FILE PROCESSING 3

An indexed sequential file is a mass storage file of records
that are stored in logically sequential order. You can
access records randomly by key value or sequentially by
position in the file. This file organization is well suited for
applications requiring efficient storage and retrieval of
records both randomly and sequentially.

This section discusses the requirements for creating and
processing an indexed sequential file by primary key. For
alternate key processing, refer to section 4. If alternate
keys are defined, the data file must conform to the
requirements discussed in this section. The alternate key
index is separate from the index associated with the data
records.

Each record in an indexed sequential file has a primary key
associated with it. As records are written to the file, AAM
creates an index using that key. The order of the index
entries, as well as the order of the records, depends on the
value of the primary key. Keys can be symbelic, integer,
or uncollated. However, all keys in one file must be the
same type. AAM locates the record for any given primary
key by searching the index. The primary key need not be
embedded in the record.

An indexed sequential file must reside an a mass storage
device. The file can be dumped to tape with a COPYBF or
a permanent file dump routine. Because all addresses of
index and data blocks are expressed internally as relative
locations, the file can be returned later to mass storage
without the need to create a new file structure.

Using the FORM utility, you can create an indexed
sequential file from a sequential, direct access, or actual
key file. You can also re-create an existing indexed
sequential file in the same or different file structure.

CONCEPTS OF LOGICAL
FILE STRUCTURE

An indexed sequential file consists of data blocks
containing a group of records and internal pointers to those
records, a file index grouped into index blocks, and a file
statistics table (FSTT) created and used by internal
routines. You are responsible for defining data block size
but you do not manipulate information in the blocks. All
index and data blocks are the same size. AAM has sole
responsibility for creation and use of the FSTT.

DATA BLOCKS

Records in an indexed sequential file are grouped into data
blocks. All data blocks in the file are the same size. Each
block contains a two-word header, data records, padding,
and record pointers.

Records are always in logical ascending order according to
the primary key values. Integer keys are ranked according
to numeric value. Symbolic keys are ranked according to a
callating sequence value associated with each character.
When the collating sequence values are ordered, the
symbolic keys are ordered. Fram your standpoint, the file

60499400 B

beginning is the start of the data record with the lowest
key value. The end of the file is the data record with the
highest key value. Read operations do not return the
FSTT, record pointers, index blocks, block headers, or
other information created by AAM.

The data records are stored following the block header in
ascending sequence of primary key values. When records
are added to the file, AAM relocates existing records in
the block so that records are always in physical and logical
order for sequential access. If the data block cannot
accommodate another record, the block is split. Some of
the records remain in the existing block; the rest are
moved to a newly created data block.

Record pointers are stored at the end of the data block
beginning with the last word. Two record pointers are
stored in one word. Only one record pointer per block is
needed when all records in the block are the same length.
Otherwise, one record pointer is required for each record
in the black.

Figure 3-1 illustrates the structure of a data block. The
two-word block header is at the beginning of the block and
is immediately followed by four data records. The four
record pointers are in the last two words of the block.
Empty space (padding) has been included between the last
data record and the record pointers to allow for inserting
records at a later time.

7/, 777,
wo2rds { 7 Block Header

Record 1

Record 2

Record 3

Record 4

Empty Space

[7 ’
/. Record Pointer 4 /Record Pointer 3 7]

Record Pointer 17

Record Pointer 2

Figure 3-1. Indexed Sequential File Data Block Structure

3-1

INDEX BLOCKS

AAM creates and maintains an index that links the primary
key of a record to the data block in which the record
resides. Entries for the index are grouped into index
blocks. A single primary index block, which can lead to
lower level index blocks, is always maintained by AAM. A
maximurm of 15 levels of index blocks is allowed. However,
performance is better when no more than three levels exist.

Index blocks are all the same size, which is also the same
size as data blocks. The first two words of the index block
are the block header. The header is followed by key entry
records, empty space (padding), and a record pointer. Only
one record pointer per block is needed because the entries
are fixed length.

A key entry record contains the primary key value for the
first record in a block and the physical record unit (PRU)
number of that block. Key entry records are stored in
ascending sequence of primary key values. A key entry
identifies all records with primary key values between its
key and the key identified by the next ordered key entry.
The block referenced by the key entry record is either an
index block in the next lower level of index blocks or the
data block containing the record.

Padding in index blocks is particularly significant because
index blocks must contain a key entry record for each data
block in the file. If no padding exists in index blocks at the
end of file creation, new data blocks cannot be added
without forcing another index block. Ancther index level
could result. If the file structure is defined with initial
padding that allows for more key eniry records, the index
levels will probably remain constant.

The structure of an index block is shown in figure 3-2. The
six key entry records reference the first record in each of
six lower level index blocks or six data blocks. Only one
record pointer is needed because key entry records are
fixed length.

woids { Block Header

Key Entry Record 1

Key Entry Record 2

Key Entry Record 3

Key Entry Record 4

. Key Entry Record 5

Key Entry Record 6

Empty Space

Record Pointer

Figure 3-2. Indexed Sequential File Index Block Structure

3-2

HIERARCHY OF INDEX
AND DATA BLOCKS

When the first data record is written to the file, no index
blacks exist. When the need for a second data block arises,
AAM creates a primary (or level 0) index block. A key
entry record is stored in the index block as each new data
block is created. When the index block cannot hold any
mare records, a second (or level 1) index block is created
for data block key entries. At the same time, a new
primary index block is created to hold key entries
referencing the level 1 index blocks. Additional level 1
index blocks are formed until the primary index block is
filled and another level of indexing is needed.

The time required to randomly retrieve a record from the
file is related directly to the number of index levels. Each
index block accessed and searched adds to retrieval time.
As long as the number of index levels remains constant, the
random record retrieval time remains the same.

Figure 3-3 illustrates the hierarchy of index blocks and
data blocks in an indexed sequential file with two levels of
index blocks. The level 0 (primary) index block contains
two key entry records that point to the two level 1

(secondary) index blocks. Each level 1 index block contains
three key entries that point to three data blocks.

SPECIFYING FILE STRUCTURE

The structure of an indexed sequential file is defined when
the file is created. This structure cannot be changed for
the life of the file. File structure is defined in terms of:

® Data and index block size

® Record size

e Primary key type, size, and location

® Collating sequence if the file has symbolic keys

RECORD DEFINITION
You must establish the type and size of records before the
file is first opened on a creation run. The record type (RT)
field in the FIT is either set to one of the six record types
or the default of W type records is accepted; however,
AAM processes the records as U type records. Other FIT
fields are required for record definition depending on the
record type selected. Record size specification is also
dependent on record type.
e D type records

LP Length field beginning character position

LL Length field length

MNR Minimum record length

MRL Maximum record length
@ F type records

FL Fixed length

60499400 B

AAB
MOM
Level O
Index Block
|
f)
AAB MOM
—1 CAL — PAV
FIL UND
Level 1
index Blocks
] {
\ \ \ \
Record AAB Record CAL Record FIL Record MOM Record PAV Record UND
Record HMK Data Record PXA
Record ADF d Blocks Record VRY
Record ENP Record OCA Record REZ
Record BGC Record KLZ
Record TUT Record ZXU
Empty Empty Em Empty
pty Empty Empty
Space Space Space Space Space Space
|]

Figure 3-3. Indexed Sequential File Concept

R type records

RMK
MNR

MRL.

Record mark character
Minimum record length

Maximum record length

T type records

HL
TL
cP
CL
MNR
MRL

60499400 B

Header length

Trailer length

Trailer count beginning character position
Count field length

Minimum record length

Maximum record length

e U type records {includes W and S type records)
RL Record length
MNR Minimum record length
MRL Maximum record length

e Ztyperecords

FL Full length

The MNR and MRL fields specify the minimum and
maximum number of characters in any record in the file.
The value of the MNR field cannot be zero and must not be
greater than the value of the MRL field. If the primary
key is embedded in the record, the minimum record length
must include the full primary key. For the life of the file,
any record that is larger or smaller is rejected as a trivial
error.

3-3

PRIMARY KEY DEFINITION

Each record in an indexed sequential file has a primary key
associated with it. The value of this key determines the
position of the record within the file. The primary key can
be embedded or nonembedded. Embedded keys require less
space and are, therefore, more efficient.

Two FIT fields are required to define the primary keys:

KT Key type; symbolic, integer, or uncollated;
default is symbolic.

KL Key length; number of characters in the
primary key.

The key type and length determine the size of the key
entry records in the index blocks. A key entry record
consists of a primary key value followed by the relative
PRU number of the next level index block or the data block
containing the record.

If the primary key is embedded in the record, the following
FIT fields are also required:

EMK Embedded key (set to YES).

RKW Relative key word; word within the record in
which the primary key begins, counting from 0;
default is 0.

RKP Relative key position; character position within
the relative key word in which the primary key
begins, counting from 0; defauit is 0.

If the primary key is not embedded in the record, the
following FIT fields are required in addition to the KT and
KL fields:

KA K=y address; location of the word containing
the primary key.

KP Beginning key position; for a symbolic key,
starting character position in the word
indicated by the KA field; default is 0.

Symbelic Keys

A symbolic key is a string of alphanumeric characters;
maximum key length is 255 characters. To describe a
symbolic key, the KT field is set to S and the KL field is
set to the number of characters in the key.

Records with symbolic keys are in order according to the
sequence indicated by the display code to collating
sequence conversion table, which is stored in the file
statistics table (FSTT). If you supply a collating sequence
table when the file is created, that table is used;
otherwise, a default table is used.

Each character is stored internally in its 6-bit display code
equivalent, 10 characters per word. The number of
characters in the key determines the size of the key entry
records in the index blocks. The key length plus four
characters for the PRU number, rounded up to the next full
word, is the key entry record length.

integer Keys
Integer keys consist of 60-bit signed binary values.

Floating point items can be defined as integer keys. To
describe an integer key, the KT field is set to I and the KL

3-4

field is set to 10. A key entry record in an index block
requires two words for an integer key.

When integer keys are defined for a file, records are stored
in order of the magnitude of the key values. For example,
a record with the key value 50 precedes a record with the
key value 55.

Uncollated Symbolic Keys

An uncollated symbolic key is the same as a symbolic key
except that characters are ranked according to their binary
display code values (0 through 63). To describe an
uncollated symbolic key, the KT field is set to U and the
KL field is set to the number of characters in the key.

COLLATING SEQUENCE DEFINITION

When symbolic keys are specified, you can either use the
default collating sequence or you can provide a collating
sequence. Only one collating sequence can exist during the
life of the file; it must be defined before opening the file
on the creation run. The collating sequence is stored in the
FSTT and becomes a permanent part of the file. It need
not be referenced again by the user.

To define a collating sequence, you must construct a table
for converting display code values to the desired collating
sequence. - AAM generates the reverse conversion table
from the user-supplied table. The display code to collating
sequence conversion table (DCT) field in the FIT must be
set to the name of the array that holds the table.

The conversion table is an eight-word table that establishes
the relationship between 6-bit display codes and collating
sequence ranking. Each display code equivalent of a
character is assigned a collating sequence value. The eight
words, numbered 0 through 7, are divided into ten fields,
numbered 0 through 9 from the left. Fields 8 and 9 are not
used and should be set to 55g, representing a blank in
display code. The display code value for a character is
represented by a combination of the word number and field
number:

® The first digit of a display code value indicates the
table word number.

® The second digit of a display code value indicates the
field number within that word.

The collating sequence value for a character is entered at
the intersection of the word and field representing the
display code value for the character. For example, the
letter S has a display code value of 23g. The collating
sequence value for the letter S is entered in word 2, field 3.

A user-supplied conversion table is not checked for
duplicates or inconsistencies; however, duplication and
inconsistency should be avoided. Any inadvertent
duplication is accepted and deliberate duplication is
allowed. Fields O through 7 must be defined for all eight
words of the table.

Figure 3-4 shows an array set up for the display code to
collating sequence conversion table. The DCT field must
be set to DCTABLE before the file is opened. This
conversion table ranks the numbers 0 through 9 (beginning
in word 3, field 3) before the letters A through Z
(beginning in word 0, field 1). Fields 8 and 9 for all words
are also set to blanks.

60499400 B

DIMENSION ISFIT (35)

DIMENSION DCTABLE (8)

DATA DCTABLE/ 77 13 14 15 16 17 20 21 55 55
22 23 24 25 26 27 30 31 55 55
32 33 34 35 36 37 40 41 55 55
42 43 44 01 02 03 04 05 55 55
06 07 10 11 12 63 66 65 55 55
67 71 61 64 72 00 70 60 55 55
51 47 76 46 73 50 75 52 55 55
53 54 74 55 45 56 57 62 55 55

CALL FILEIS (ISFIT,'DCT',DCTABLE, .. .)

WWWPCDCDUJUD

Figure 3-4. User-Supplied Conversion Table

DATA BLOCK DEFINITION

AAM uses the values in various FIT fields when data blocks
are created. Data block definition is specified in one of
two ways:

@ Specify the block length (MBL) directly

e Accept the default block size calculated by AAM

You specify the data block size directly by defining the
maximum block length (MBL). This is the preferred
method. MBL is the maximum number of user characters
in the data block. The block size specified by the MBL
field must be large enough to hold at least one
maximum-length record plus enough words to hold the
primary key (if not embedded). The maximum record
length (MRL.) must also be defined.

You should use the FLBLOK utility to help select the
appropriate value for the MBL field. FLBLOK is described
later in this section.

AAM increases the specified MBL to use mass storage
efficiently, The resulting physical data block size will be:

[(Specified MBL + 50 characters) rounded ta the next
PRU multiple]- 20 characters

Therefore, you shouid specify an MBL value 50 characters
less than the PRU multiple desired.

Alternatively, you can accept the default block size. If an
installation default has not been defined, AAM will
calculate the default as follows:

1. The mean of MRL and MNR values are used as the
average record length. If MNR is not defined, it is
assumed to be zero.

2. If the RB field is not specified, it is set to 2.
3. The FLM value is used as the estimated maximum

number of records in the file. If FLM is not specified,
100000 is used.

4, The NL value is used as the maximum number of index
levels. If the NL field is not defined, 2 is used.

60499400 8

5. Increasing from 8 PRUs, AAM looks for the smallest
block size that wills)

Contain RB average records,
and

Contain enough index records that when the file
has grown to the estimated maximum number of
data records (FLM), the number of index levels
(NL) will be within the maximum.

Typically 8 PRUs is generated as the default block size. A
maximum number of 128 PRUs are allowed in one block.

If a file is usually processed sequentially, large data blocks
are most efficient because the next record to be accessed
will usually be in the block already in the buffer and
transfer of another block into central memory is not
required. If a file is usually processed randomly, small
data blocks are most efficient because the next record to
be accessed usually will not be in the block currently in the
buffer in central memory. Therefore, a disk access will
almost always be necessary, and time will be saved if the
access involves reading a short block rather than a long
block.

PADDING

Padding is the unused area in a data block at file creation
time. As a data block is created (assuming sequentially
ordered records), data records and record pointers are
stored in the block until the specified percentage of the
black remains empty; then a new block is started. The
first time the file is closed, this reserved space ceases to
be respected and the space is used as needed.

Later, you can add records to the file without necessitating
additional data blocks. If the file is not expected to grow
or to grow only at the end, a padding percentage of zero
(the default) can be used. Data block padding should be
used with care because the padding is allocated in every
data block in the data file.

You can specify data block padding directly by defining the
following field:

DP Data block padding. Percentage of data blaock
reserved for padding. Default of zero percent
can be used. Values 0 to 99 are valid.

Index blocks are the same size as data blocks. Therefore,
index block size is automatically defined when data block
size is defined. The percentage of padding, however, need
not be the same as data block padding. A small percentage
of index block padding is usually recommended. If index
block padding is specified at file creation time, index
entries can be added without necessitating additional index
levels.

In addition to the FIT fields used to create data blocks,
AAM uses the following field to create index blocks:

P Index block padding. Percentage of index black

reserved for padding. Default of zero percent
can be used. Values 0 to 99 are valid.

3-5

FLBLOK UTILITY

Block size has major effects on both the physical structure
and the performance characteristics of the indexed
sequential file. The FLBLOK utility assists you in
selecting the appropriate value for the maximum block
length (MBL) field. The utility computes various file
characteristics for different block sizes based on specified
file characteristics.

The FLBLOK control statement provides the file
description that is used by the utility. The description is
specified by the following parameters:

NR Number of records; total number of records the
file is expected to contain; default is 100000.

KL Key length; number of characters in the
primary key; default is 10.

RL Record length; average number of characters in
a record; default is 80.

P Index block padding; percentage of index block
reserved for padding; default is O.

DP Data block padding; percentage of data block
reserved for padding; default is 0.

NL Number of index levels; the highest number of
index levels for the file.

MRL Maximum record length; maximum number of
characters in a record; default is RL value.

Subsequent calculations are based on these parameters.
For best results, all parameters should be specified in the
FLBLOK control statement.

Results of the FLBLOK utility depend heavily on the value
of the RL parameter. When the file contains
variable-length records, the value for the RL parameter
should be determined as follows:

© If most records in the file are of a specific length, the
" RL parameter should be set to that length.

e If record lengths are well distributed, the RL
parameter shauld be set to the median average. That
is, half the records are larger and half are smaller
than the RL value.

e If the EMK field is set to NO, AAM appends the key to
the record. Therefore, the key length (KL) value must
be added to the RL value.

Output from the FLBLOK utility is a listing of file
characteristics that are calculated for different values in
the MBL and NL fields. The MBL field is increased
(stepping by PRU) until the file can be built in the number
of index levels indicated by the NL parameter. File
characteristics are calculated and listed as output. The
utility continues increasing MBL and calculating file
characteristics for each lower number of index levels.

The output listing indicates the minimum MBL value for
each index level. In batch mode, the listing also indicates
the MBL value when disk usage decreases within each index
level. This can be important when disk usage is critical.

- 3-6

Figure 3-5 illustrates a job structure for the FLBLOK
utility. The file is to contain 100000 records with a
primary key length of 20 characters; maximum record
length is 1000 characters and average record length is 750
characters. The first control statement specifies no
padding for both index and data blocks with one index
level. The second control statement specifies five percent
padding for both index and data blocks with two index
levels. Output generated by these two control statements
is shown in figure 3-6.

Job statement

USER statement

CHARGE statement

FLBLOK (OUTPUT,NR=100000,K1=20,R L=750,IP=0,
DP=0,NL=1,MRL=1000)

FLBLOK (OQUTPUT,NR=100000,KL=20,RL=750,IP=5,
DP=5,NL=2 MRL=1000)

- - EQI

Figure 3-5. Sample Deck Structure for
FLBLOK Utility - NOS

CREATING AN INDEXED
SEQUENTIAL FILE

You can create an indexed sequential file through a source
program or through the FORM utility. The file statistics
table (FSTT) is created on the file creation run and
becomes a permanent part of the file.

You must set the old/new file (ON) field to NEW for the
file creation run. Other FIT fields that must be defined
and cannot be subsequently changed are as follows:

FO File organization; set to IS by the CALL FILEIS
statement.

ORG Old/new (initial or extended) file organization;
must be set to NEW.

KT Key type; default is symbolic keys.

KL Key length; number of characters for symbolic
keys, 10 for integer keys.

MRL Maximum record length; maximum number of
characters in any record; set by AAM when FL

is specified for F or Z type records.

RT Record type; default is W, which AAM
processes as Uj; fields required by the record
type must also be specified.

One additional FIT field that you must define for the file
creation run, but you can change on subsequent runs, is as
follows:

LFN Logical file name; one to seven characters,
beginning with a letter.

If your program will define alternate keys during file
creation, you must specify the following FIT field:

XN Index file name.

60499400 B

/flblok Coutput ,nr=100000,k L=20,r=750, ip=0,dp=0,nL=1,mr=1000)
INDEXED SEQUENTIAL FILE PARAMETER ESTIMATE .
CONTROL CARD : FLBLOK(OUTPUT,NR=100000,KL=20,RL=750,1P=
0,NL=1,MRL=1000)
MAXIMUM RECORD LENGTH (MRL) = 1000 NUMBER OF INDEX LEVELS(NL) = 1
AVERAGE RECORD LENGTH(RL) = 750 DATA BLOCK PADDING(DP) = 0
KEY LENGTH(CHARACTERS)(KL) = 20 INDEX BLOCK PADDING(IP) = 0
TOTAL NUMBER OF RECORDS(NR) = 100000
BLOCK 844-21 1/2 ACCESSES NON-POOLED MAXIMUM
NO. LENGTH TRK. DISK PER BUFFER MIN. FILE
NDX. (MBL) GET EST. GET SIZE(WDS) BUFFER CAPACITY
LVLS (CHARS/ (SEQ./ (SEQ./ (SEQ./ SIZE IN
(NL) PRUS) RANDOM) RANDOM) RANDOM) (WORDS) RECORDS
1 47950/75 2.0/126 .016/1 14555714555 9755 100674
.038 CP SECONDS EXECUTION TIME.
/fLblok {output ,,nr=100000,k =20, r1=750,1p=5,dp=5,nl=2,mr =1000)
INDEXED SEQUENTIAL FILE PARAMETER ESTIMATE
CONTROL. CARD : FLBLOK(OUTPUT,NR=100000,KL=20,RL=750,IP=
5,0P=5,NL=2 ,MRL=1000)
MAXIMUM RECORD LENGTH(MRL) = 1000 NUMBER OF INDEX LEVELS(NL) = 2
AVERAGE RECORD LENGTH(RL) = 750 DATA BLOCK PADDING(DP) = 5
KEY LENGTH(CHARACTERS) (KL) = 20 INDEX BLOCK PADDING(IP) = 5
TOTAL NUMBER OF RECORDS(NR) = 100000
BLOCK 844~21 1/2 ACCESSES NON-POOLED MAXIMUM
NO. LENGTH TRK. DISK PER BUFFER MIN. FILE
NDX. (MBL) GET EST. GET SIZE(WDS) BUFFER CAPACITY
LVLS (CHARS/ (SEQ./ (SEQ./ (SEQ./ SIZE IN
(NL) PRUS) RANUOM) RANDOM) RANDOM) (WORDS) RECORDS
2 5070/8 6.5/78 .167/2 1691/2203 1179 171366
1 50510/79 2.1/131 .016/1 15323715323 10267 111078
.045 CP SECONDS EXECUTION TIME.
/

Figure 3-6. FLBLOK Utility Qutput

If you do not specify the following FIT fields on the
creation run, the default values are effective for the life

of the file:

P

MBL

DCT

BCK

EMK

Index block padding; default is zero percent
padding.

Maximum block length for data and . index
blocks; default is number of characters required
far two average size records.

Data block padding; default is zero percent
padding.

conversion
default is
(refer to

Display code to collating sequence
table for collated symbolic keys;
standard CDC collating sequence
appendix A).

Block checksum; default is no checksums.
Embedded key; set to YES if the primary key is

embedded within the record; default is NO.
(YES is moare efficient.)

60499400 C

If primary keys are embedded, two additional FIT fields are

required:

RKW
RKP

Other opti

Relative key word in which the key begins;
default is word 0.

Relative key position within the ward in which
the key begins; default is character position 0.

onal FIT fields that you can define on the

creation run and you can change on a subsequent run are as

follows:
ERL
FLM

DFC

Trivial error limit; default is no limit.
File limit; default is no limit imposed by AAM.

Dayfile control; default
messages to the dayfile.

is only fatal error
Error file control; default is no messages to the

AAM error file.

Forced write indicator; default is buffers are
written only when space is needed.

FWB First word address of the buffer; default is the
buffer provided by AAM.

BFS Buffer size; default is buffer size calculated
by AAM, .

CPA Compression routine address; default is no
compression of records.

DCA Decompression routine address; default depends

on the CPA field (refer to appendix F).

DX End-of-data exit; default is no exit subroutine.

EX Error exit; default is no exit subroutine.

FILE CREATION BY A SOURCE PROGRAM

When an indexed sequential file is created through a source
program, file structure and key characteristics must be
defined by setting applicable fields in the FIT before the
file is opened. FIT fields can be specified in the FILE
control statement, the CALL FILEIS statement, and the
CALL STOREF statement.

The old/new file (ON) field must be set to NEW for a file
creation run. This is accomplished by setting the ON field
with one of the FIT manipulation statements or by
specifying NEW for the processing direction (pd) parameter
in the open request. Setting the pd parameter to NEW sets
the ON field to NEW and the PD field to OUTPUT.
Records can then be inserted into the file with write
requests.

After all records have been written, the file should be
closed. On a file creation run, the only file processing
requests that can be issued are those that establish the
FIT, open and close the file, write records, and read and
write fields in the FIT,

Establishing the FIT

The first statement referencing the indexed sequential file
must be the CALL FILEIS statement. When this statement
is executed, the FIT is constructed and the specified values
are stored in the FIT. The first parameter in the CALL
FILEIS statement is the name of the 35-word array to hold
the FIT. The same FIT array name is the first parameter
in every statement accessing the indexed sequential file.
Refer to section 2 for a more detailed explanation of the
FIT and the CALL FILEIS statement.

Opening the File

You must open the indexed sequential file by executing a
CALL OPENM statement before any records can be
written to the file. The format of this statement is shown
in the AAM reference manual.

The following statement opens the file for output:

CALL OPENM (ISFIT, 'NEW"

This statement performs open processing for the indexed
sequential file whose FIT is stored in the array named
ISFIT. The second parameter must specify NEW to set the
processing direction (PD) field in the FIT to OUTPUT .and
the old/new file (ON) field to NEW. If the PD and ON
fields are set before the file is opened, the second
parameter in the open request can be omitted.

3-8

Open processing includes storing FILE control statement
values in the FIT, processing buffer parameters, supplying
default values for FIT fields not set by the user, and
checking the FIT for logical consistency and required fields.

Writing Records

Records are written to an indexed sequential file by
executing a CALL PUT statement. The format of this
statement is shown in appendix B.

The following statement writes a record to the file:
CALL PUT (ISFIT)

The FIT for the indexed sequential file is in the array
named ISFIT.

Fields not specified in the write request default to the
current values in the FIT. After the record is written,
AAM sets the RL field to the number of characters in the
record.

Records should be presented to AAM with primary key
values in ascending order. This order results in data and
index blocks that preserve the padding specified by the DP
and IP fields in the FIT and also shartens the time required
for file creation. If records are not written in order by
primary key values, the result is inefficient file structure
with more data blocks than necessary because of the
numerous data block splits. More overhead time is also
required.

The record to be written on the file must be established in
the working storage area location. If the primary key is
nat embedded, the location of the key value for the record
to be written must also be established. For embedded
primary keys, the key location is determined by the RKW
and RKP fields.

Closing the File

The last program statement referencing the file must be a
CALL CLOSEM statement to ensure file integrity. The
format of this statement is shown in appendix B.

The following statement initiates clase processing:
CALL CLOSEM (ISFIT, 'U")

ISFIT is the name of the array containing the FIT. The file
is rewound, the OC flag is cleared, and the file is returned
to the permanent file manager. If the file is subsequently
reopened, FIT verification and FILE control statement
processing are repeated.

The second parameter sets a value for the close flag (CF)
field. The following values can be specified for the ZF
fields:
R (rewind)
The file is rewound to beginning-of-information;
this is the default setting. The open/close flag
(OC) field is set to closed.
N (no rewind)
The file is not rewound; it remains at the current

position, even when reopened. The OC field is set
to closed.

60499400 C

U (unload) or RET (return)

The file is rewound and the OC field is cleared. A
permanent file is detached from the job and
returned to the permanent file manager. Scratch
mass storage space assigned to a nonpermanent
file is released. -

DET (detach)

The file is not rewound and the OC field is
cleared.

When the close request is executed, any data or index
blocks in the central memory buffer are written to the
mass storage file. The FSTT, which is used to maintain
continuity over the life of the file, is also written to the
file. File statistics are written to the error file, if
requested.

A close request issued for a file that has never been opened
or that has been closed but neither unloaded nor reopened
results in a trivial error. The file is positioned as specified
before the error is issued.

Sample Creation Program

Program NEWIS, shown in figure 3-7, creates an indexed
sequential file through direct calls to AAM. The program
reads an input file from the file CORP and writes records
to the new indexed sequential file ISFILE. Each input
record is printed on the file OUTPUT to show the records
used to create the file.

Program statements that are related to creation of the
indexed sequential file are defined as follows:

¢ DIMENSION ISFIT(35), ISWSA(5)
This statement allocates a 35-word array named ISFIT
for construction of the FIT and a 5-word array named
ISWSA for the working storage area.
e CALL FILEIS (ISFIT, 'LFN', 'ISFILE",...)
This statement sets fields in the FIT to describe the
structure of the indexed sequential file. Required
parameters in the statement are:
FIT array (ISFIT)
Logical file name (ISFILE)
Extended file organization (NEW)
Record type (fixed length)
Fixed record length (50 characters)
Primary key type (uncollated symbalic)

Primary kéy length (4 characters)

Embedded key and location (EMK, RKW, and RKP)

The statement also defines the following:
Maximum block length (590 characters)

Index block padding (10 percent)

60499400 B

Data block padding (5 percent)

Error file control (3, errors and notes)

.o CALL OPENM (ISFIT, 'NEW")

This statement opens the file, sets the PD field to
QUTPUT, and sets the ON field to NEW for a creation
. run. Records can only be written to the file.

e CALL PUT (ISFIT)

This statement writes the record in the working
storage area ISWSA to the indexed sequential file.
The primary key location is not specified because the
key is embedded in the record. AAM uses the RKW
and RKP fields to locate the primary key.

e CALL CLOSEM (ISFIT)

This statement initiates close processing, which
includes writing the FSTT and any blocks in the buffer
to the file.

FILE CREATION THROUGH FORM

You can use the FORM utility to create an indexed
sequential file. FORM can also be used to restructure an
existing indexed sequential file or to dump an existing file
to tape for backup or storage purposes. Refer to the
FORM reference manual for more detailed information on
the FORM utility.

FORM uses CYBER Record Manager routines to perform
input on the input file and output on the indexed sequential
file being created. FILE control statements are used to
provide descriptions of the input and output files.
Parameters in the FILE control statement for the input file
depend on the file organization. The FILE control
statement describing the new indexed sequential file must
specify the logical file name and the following FIT fields:

FO File organization; must be FO=IS for indexed
sequential file organization.

ORG Old/new (initial or extended) file organization;
must be ORG=NEW to specify extended file
organization.

KT Key type; can be S (symbolic); U (uncollated
symbolic), or I (integer).

KL Key length; number of characters for symbolic
keys, 10 for integer keys.

MRL Maximum record length; maximum number of
characters in any record; set by AAM when FL
is specified for F or Z type records.

MNR Minimum record length; minimum number of
characters in any record; set by AAM when FL
is specified for F or Z type records.

RT Record type; default assigned by FORM is W,
which AAM processes as U; fields required by
the record type must also be specified.

3-9

A. NOS Operating System NOS/BE Operating System

Job statement Job statement

USER statement ACCOUNT statement

CHARGE statement FTNS.

FTN5. . REQUEST(ISFILE PF)
DEFINE(ISFILE/CT=PU M=W) ATTACH(CORP,ID=AAMUG)
ATTACH(CORP) . LGO.

LGO. CATALOG(ISFILE,ID=AAMUG)

CRMEP(LO,RU) CRMEP(LO,RU)

B. Input File: CORP

B695 ABC DISTRIBUTORS 412568 7880621
E482 CORP SALES INC 89207 1145833
H314 DAY AND NIGHT SALES 52573 2066122
K260 FRIENDLY SALES 1027866 6347410
M857 OAKVILLE CORP 149287 3014192
R500 RETAILERS INC 76854 1255868
7258 SELECTIVE SALES CO 248916 4337092
T289 SKITH AND SON 95625 1528863
V440 WORLD SALES cO 914819 6844272
X179 YOUNG BROTHERS 527638 2428535

C. Source Program

PROGRAM NEWIS

B T B R
#* THIS PROGRAM CREATES AN IS FILE (ISFILE) FROM A SEQUENTIAL

% FILE (CORP). EACH RECORD IS ALSO PRINTED AS OUTPUT. ®
Bt L T T R S e e e ey

OO OO0

IMPLICIT INTEGER (A-2)
DIMENSION ISFIT(35), ISWSA(S)
CALL FILEIS (ISFIT, °LFN®, "ISFILE', °ORG', 'NEHW°,
YWSA', ISWSA,
"RT*, °F', 'FL', 50,
'MBLY, 590, *IP', 10, ‘DP°*, 5,
'KT®, *U', 'KL®, &, 'EMK®, 'YES®, 'RKW", 0, 'RKP', &,
'EFCY, 3, 'OFC', 3)
OPEN (2, FILE = *CORP")
CALL OPENM (ISFIT, 'NEW')
IF (IFETCH (ISFIT, 'ES') .NE. 0) 60 TG 50
10 READ (2, '(3A10, 2110)', END = 30) ISWSA
CALL PUT (ISFIT)
IF (IFETCH (ISFIT, 'ES') .NE. 0) GO TO 50
PRINT 100, ISWSA
60 TO 10 :
30 CALL CLOSEM (ISFIT)
STOP
50 PRINT 902, IFETCH (ISFIT, 'ES")
CALL CLOSEM (ISFIT)
STOP "CRM ERROR RETURNED®
100 FORMAT (3A10, 2110)
902 FORMAT ('ES = ', 03)
END

o+

D. Output

(same as input)

Figure 3-7. indexed Sequential File Creation

3-10 60499400 B

If the primary key is embedded in the output record, the
following FIT fields are also required:

EMK Embedded key; use EMK=YES.

RKW Relative key word in which the key begins;
default is word 0.

RKP Relative key position within the word in which
the key begins; default is character position 0.

Unless default values are to be accepted for data and index
blocks, the following FIT fields must be specified in the
FILE control statement:

MBL Maximum block length for deta and index
blocks; default assigned by FORM is 640
characters.

DP Data block padding; default is zero percent
padding.

P Index block padding; default is zero percent
padding.

When you use FORM, block size is either the length
specified for the MBL field or the default assigned by
FORM. Specifying the records per black (RB) field is not
sufficient for block size calculation.

Other optional FIT fields can be set by the FILE control
statement or be set to the default values. The FORM
directive OUT can specify values for the following FIT
fields:

FLM File limit; maximum number of records for the
indexed sequential file; default is no limit.

CPA Compression routine address; number or entry
point name of the compression routine; default
is no compression of records.

EX Error exit; entry point name of the
user-supplied error processing routine; default
is no error exit subroutine.

If the input file is a sequential or initial direct access file,
each record must contain the primary key. Primary keys
of all records must be the same type and must be in the
same location within the records in the input file. An
existing sequential file with records that do not contain a
key can have an integer key added through the FORM
directive SEQ. If the input file is an existing indexed
sequential, actual key, or extended direct access file, the
primary keys need not be within the records.

A job using FORM to create an indexed sequential file
must contain the following:

@ A FILE control statement describing the input file

structure, unless the file is a sequential file with
default file structure characteristics.

60499400 B

e A FILE control statement describing the new indexed
sequential file structure.

e A FORM control statement.

e FORM directives.

The FORM directives INP and OUT identify the input and
output files, respectively. Other FORM directives are
available to specify record selection criteria, reformatting,
and conversion. Consult the FORM reference manual for
details of optional directives that might be useful.

The INP directive specifies the source of input records for
the FORM run. The logical file name of the input file is
the only required parameter. Optional parameters that can
be included in the directive specify the maximum number
of records to be processed, rewind action at end of run, and
owncode routines for various options. The choice of
optional parameters depends on the file structure.

The QUT directive defines an output file to be generated
by FORM. The logical file name of the output file is the
only required parameter. Optional parameters in this
directive include the KEY parameter, which describes the
location of the primary key and specifies whether or not
the key is to be embedded in the record. The KEY
parameter is required under the following conditions:

e The indexed sequential file being created has
nonembedded primary keys.

e The input file is an indexed sequential, actual key, or
direct access file and the primary key for the new
indexed sequential file is not the primary key for the
input file.

e The input file is a sequential file.

The format of the KEY parameter is:
KEY=+Tm
+ The primary key is embedded in the output record.

- The primary key is extracted from the input
record and not embedded in the output record.

i Character position in which the primary key
begins, counting by the FORM convention where
the first character position is 1.

T Key type in FORM terminology; must be I for an
integer key or X for a symbolic key.

m Number of 6-bit display code characters in a
symbolic key; omitted for an integer key.

Figure 3-8 shows the job structure for creating the file
ISFILE through the FORM utility. If only the INP and OUT
directives with file names are required, they can be
specified in the FORM control statement.

3-11

NOS Operating System

Job statement

USER statement

CHARGE statement

DEFINE(ISFILE/CT=PU M=W)

FILE(ISFILE FO=IS,0RG=NEW KT=U,KL=4 RT=F FL=50,
MBL=590)

FILE(ISFILE EMK=YES,RKW=0,RKP=4,DP=5,IP=10,NL=3)

FORM(INP=INPUT,OUT=ISFILE)

- - EOR

Input data

- - EOI

NOS/BE Operating System

Job statement

ACCOUNT statement

REQUEST(ISFILE PF)

FILE(ISFILE,FO=IS,0RG=NEW KT=U,KL=4,RT=F FL=50,
MBL=590)

FILE(ISFILE EMK=YES,RKW=0,RKP=4,DP=5,P=10,NL=3)

FORMI(INP=INPUT OUT=ISFILE)

CATALOG(ISFILE,ID=AAMUG)

*EQOR

Input data

*EOI

Figure 3-8. Indexed Sequential File Creation,
FORM Utility

PROCESSING AN EXISTING
INDEXED SEQUENTIAL FILE

After the file creation run, an indexed sequential file can
be read randomly or sequentially, new records can be
inserted into the file, and existing records can be deleted
or be replaced by other records with the same primary key
values. File processing is governed by many of the FIT
fields set on the file creation run. You need not set the
following FIT fields before opening an existing files

MBL Maximum block length for data and index blocks
NL Number of index levels

MNR Minimum record length

MRL Maximum record length

KT Key type

KL Key length

RKW Relative key word for embedded keys

RKP Relative key position within RKW for embedded
keys

DCT Display code to collating sequence conversion
table

The values for these fields are preserved in the FSTT and
are returned to the FIT when the file is opened. Any
attempt to change block or record size is ignored. An
attempt to change any primary key specification prevents
further file access.

3-12

You must set the fdllowing FIT fields the same as on the
file creation runs

RT Record type; all applicable fields must also be
set

ORG Old/new (initial or extended) file organization
The logical file name (LLFN) field must be set to the
current logical file name for the file. This name need not

be the same as the name used on the file creation run.

If alternate keys have been defined, the index file name
must be specified with the XN parameter.

If you do not set the following FIT fields before the file is
opened, the default values must be accepted:

FWB First word address of the buffer; default is
buffer location provided by AAM.

BFS Buffer size; default is buffer size calculated
by AAM.

CPA Compression routine address; default is no
compression of records.

DCA Decompression routine address; default depends
on the CPA field.

Optional FIT fields that can be set at any time before
being required by a file processing statement are as follows:

DFC Dayfile control

EFC Error file control

ERL. Trivial error limit

EX Error exit

DX End-of-data exit

FLM File limit

FWI Forced write indicator

MKL Major key length

KA Key address

KP Key position
The KA and KP fields are required for nonembedded keys
and for random access or deletion of records with
embedded keys.
Various FIT fields can be set by the file processing
statements. The default value listed for a field used by
one of these statements is applicable only if the field has
not been set by any other statement. The current value in
a FIT field is always used by a file processing statement.
ESTABLISHING THE FIT
The FIT is established for an existing file in the same
manner as for a new file during the creation run. The
CALL FILEIS statement is the first statement that can
reference the indexed sequential file. It specifies the

name of the array that is to contain the FIT and the logical
file name. Fields defining file structure are not specified,

60499400 B

however, because file structure information is saved in the
FSTT and is returned to the FIT when the file is opened.
Other fields that need to be set for program execution can
be specified in the CALL FILEIS statement. The FILE
control statement can also be used to set FIT fields or to
override values set by the CALL FILEIS statement.

OPENING THE FILE

Before any data records in an existing file can be accessed,
you must open the file by executing a CALL OPENM
statement. The format of this statement is shown in
appendix B.

The following example is a typical open request:
CALL OPENM (ISFIT, -0

The file is opened and positioned to beginning-
of-information. Records can be read, written, rewritten or
deleted.

The setting of the PD field (second parameter in the call)
determines the input/output statements that can be
executed. The PD field can be set as follows:

INPUT Only statements that read or position the
file can be executed; this is the default
setting.

OUTPUT Only statements that write new records to
. the file can be executed.

1-0 Any file processing statement related to
input/output can be executed. (If the PD
field is set by any other statement, the
two-character mnemonic 10 must be
specified.)

Values from the FSTT are stored in applicable FIT fields
during open processing. FILE control statement processing
and FIT consistency checking are performed in the same
manner as on a file creation run.

The first time you open an indexed sequential file after the
creation run, the old/new file (ON) field in the FIT must be
changed from NEW to OLD. This can be accomplished by
the CALL FILEIS statement, the FILE control statement,
or the CALL STOREF statement before the file is opened.
If the ON field is not set by one of these statements, it is
set to OLD by specifying INPUT, OUTPUT, or I-O for the
processing direction parameter in the open request.

A trivial error occurs if you attempt execution of a file
processing statement and the PD field is not set to an
appropriate value for that statement. A fatal error occurs
if the ON field is not set to OLD.

READING THE FILE RANDOMLY

Records in an indexed sequential file can be read randomly
by primary key values by executing a CALL GET
statement. For a random read, the file must be open for
either input or input/output (the PD field is set to INPUT
or 10). The format of the CALL GET statement is shown
in appendix 8.

The following statement reads a record randomly from the
file associated with the FIT stored in the array ISFIT:

CALL GET (ISFIT)

60499400 B

When this GET statement is executed, the record with the
current primary key value indicated by the KA field is
returned to the working storage area.

You must set the WSA and KA fields either through the
read request or through the CALL FILEIS or CALL
STOREF statement. The location indicated by the KA
field is set to the primary key value for the record to be
read. Execution of the read request then returns the
record to the specified working storage area. If a record
with the specified primary key value cannot be located, a
trivial error occurs; the file is positioned at the point
where the record should exist.

At the completion of the read request, the record length
(RL.) field is set to the number of characters returned to
the working storage area. Any user value for the RL field
is ignored for the read operation. The number of
characters returned is determined by the length of the
record written.

You can set the MKL field when a major key is to be used
for the random read. A major key is defined to be a
number of leading left-hand characters in the key location
for a symbolic key. The length of the major key is
specified by the MKL field; it must be at least one
character but less than the full key length. The major key
value for the random read must be set in the location
indicated by the KA field and must be aligned so that it
begins in the character position indicated by the KP field.
For example, a full key with a length (KL) of 6 and starting
position (KP) of 4 is aligned as follows:

If major key length (MKL) is defined as 3, the value for the
random read must be aligned as follows:

The contents of the positions following the major key (7
through 9 in this example) are irrelevant. The MKL field is
reset to zero after the read request is executed.

When a record is read randomly by major key, the first
record that has a matching major key is returned to the
working storage area. The full key of the first record with
the specified major key is returned to the location
indicated by the KA and KP fields (positions 4 through 9 in
the previous examgple).

Figure 3-9 illustrates major key processing. The
10-character symbolic key consists of three codes: three
characters (SAL. through SWY) for the state, four
characters (CO01 through C100) for the county, and three
characters (TOl through T99) for the town. The first
example shows the primary key value at location KA for
accessing town 26 (T26) of county 080 (CO080) in Alabama
(SAL). Example 2 shows the seven-character major key
value at location KA for accessing the first town of
county 080 in Alabama. Example 3 shows the three-
character major key value at location KA for accessing the
first town of the first county in Alabama.

1. FULL SYMBOLIC KEY; MKL SET TO O

KA |]S]J]AjL|ClO}B|jO}T]2}6

State County Town
One specific town can be referenced.

2. MAJOR KEY; MKL SET TO 7

KA jslAajLicjolsjolalala
N, i i, T

State County

All towns in a specific county can be referenced
sequentially,

3. MAJOR KEY; MKL SET TO 3

KA S{A|JL]lAajalalalajala

State

All towns in a specific state can be referenced
sequentially.

Figure 3-9. Major Key Processing

READING THE FILE SEQUENTIALLY

Sequential reading of records in an indexed sequential file
retrieves the records in ascending primary key order.
Records are read sequentially by executing a CALL GETN
statement. The file must be open for either input or
input/output (the PD field is set to INPUT or IO). The
format of the CALL GETN statement is shown in
appendix B.

The WSA field must be set before the sequential read
request can be executed. When the statement is executed,
the next record in primary key sequence is returned to the
specified working storage area. If the KA field is set and
the EMK field is set to NO, the primary key of the record
retrieved is returned to the location indicated by the KA
field. If the KA field is specified, its value (location) will
remain fixed until changed by using it again. Therefore, if
subsequent GETN calls do not specify KA, the primary key
will be returned to the same location.

When a sequential read request is issued, the next record in
primary key sequence from the current file position is
returned to the working storage area. File pasition is
changed by an open, rewind, read (random or sequential),
start, or skip request. A replace or delete request does not
alter the current file position. File positioning is discussed
in more detail later in this section.

The following statement reads the next record in sequences

CALL GETN (ISFIT)

This statement reads the next sequential record and moves
it to the working storage area.

3-14

INSERTING NEW RECORDS

New records are written to an existing indexed sequential
file in the same manner as when the file was originally
created. The format of the write request is identical to
the format for a file creation run. The file must be open
for ol)Jtput or input/output (the PD field is set to OUTPUT
or [0).

The parameters in the write request are the same as in the
write request on a file creation run. (See the AAM
reference manual.)

Execution of the following statement adds a new record to
the file:

CALL PUT (ISFIT)

The record to be written is stored in the array defined by
WSA. At the completion of the write request, AAM sets
the RL field to the number of characters in the record
written to the file.

When adding a group of contiguous records, execution is
faster if the records are sorted in ascending primary key
order and are then presented to AAM in sequential order.

DELETING EXISTING RECORDS

A record in an indexed sequential file can be eliminated
from the file by executing a CALL DLTE statement. The
file must be open for input/output (the PD field is set to
10) to delete a record. The format of the CALL DLTE
statement is shown in appendix B.

Execution of the following statement deletes a record from
the file:

CALL DLTE (ISFIT)

The primary key value for the record to be deleted must be
established at the location indicated by the KA field. (The
KA field is typically set by the CALL FILEIS statement.)
A trivial error results if the specified key value does not
match the primary key for any existing record.

The data record is deleted physically as well as logically.
Any remaining records in the data block are relocated to
eliminate the space previously occupied by the deleted
record. When the first record in a data block is deleted,
index blocks are updated as applicable.

When the file contains fixed-length records and a series of
contiguous records are being deleted, significant saving in
execution time results by beginning with the highest
primary key value. Deletion of the last record in a data
block is performed quickly by changing the block header
field pointing to the next available empty word. Deletion
of the first record in a data block, however, requires
relocation of all remaining records in the data block. By
deleting the record with the highest key value first,
relocation of records to be deleted subsequently can be
avoided.

The primary key for the record to be deleted can be
established by a return from a sequential read request. For
example, the following sequence of statements |is
acceptable:

CALL GET (ISFIT)
CALL SKIP (ISFIT, +3)
CALL GETN (ISFIT)
CALL DLTE (ISFIT)

60499400 C

ISFIT is the name of the FIT array. The GET statement
reads a record randomly by primary key value. The SKIP
statement then positions the file forward three records.
The sequential read statement returns the primary key
value for the record to the area indicated by KA. The
DLTE statement deletes the record with that primary key
value. .

If a data block or index block contains no records as a
result of the delete request, it is linked into a chain of
deleted blocks. These blocks are then used when new
blocks are required for file expansion.

REPLACING EXISTING RECORDS

The contents of any record in an indexed sequential file
can be modified and the changed record rewritten to the
file by executing a CALL REPLC statement. The file must
be open for input/output (the PD field is set to IO). The
format of the CALL REPLC statement is shown in
appendix B.

The following statement replaces an existing record in the
file with the record in the working storage area:

CALL REPLC (ISFIT)

If the primary key value at location KA does not duplicate
the primary key value for any existing record, a trivial
error occurs and the replace request is ignored.

The new record can be smaller or larger than the existing
record; however, it must be within the minimum and
maximum record lengths established in the MNR and MRL
fields of the FIT when the file was created.

CLOSING THE FILE

The last reference to the indexed sequential file should be
a close request. This ensures that all updated records are
written to the file and that the file statistics table
contains current information. The format of the CALL
CL.OSEM statement is shown in appendix B.

Close processing is performed when the following
statement is executed:

CALL CLOSEM (ISFIT)

This statement initiates claose processing for the file
associated with the FIT stored in the array ISFIT. The CF
field is not set and the current contents of the field
determine file positioning.

If the error file control (EFC) field is set to 2 or 3, file
statistics are written to the error file. If the dayfile
control (DFC) field is set to 2 or 3, file statistics are
written to the dayfile.

A close request for a file that has never been opened or
that has been closed but neither unloaded nor reopened
results in a trivial error. File position does not change.

SAMPLE UPDATING PROGRAM

Program ISUPDAT, shown in figure 3-10, accesses the
existing indexed sequential file ISFILE through direct calls
to AAM. Input records, which are read from the file
UPDAT, contain a code number in the first field (CODE).
The code number indicates whether to update (code
number 1), add (code number 2), or delete (code number 3)

60499400 B

a record. After all input records have been processed, the
indexed sequential file is rewound to beginning-of-
information and read sequentially.

Program statements related to processing the existing
indexed sequential file are defined as follows:

e CALL FILEIS (ISFIT, 'LFN, "SFILE',...)

This statement sets the FIT fields required for
processing the existing file:

FIT array (ISFIT)
Logical file name (ISFILE)
Extended file organization (NEW)

Record type (must be the same as for the creation
run)

e CALL OPENM (ISFIT, 'I-QY)

This statement opens the file for input/output
processing. The PD field is set to IO and the ON field
is set to OLD.

e CALL GET (ISFIT)
This statement reads a record randomly and returns it
to the working storage area ISWSA. The variable

ISKEY contains the primary key for the record to be
retrieved.

e CALL REPLC (ISFIT)

This statement rewrites the updated record in the
working storage area ISWSA to the file.

e CALL PUT (ISFIT)

This statement adds the new record in the working
storage area ISWSA to the file.

e CALL DLTE (ISFIT)
This statement deletes a record from the file. The

primary key for the record to be deleted is in the
variable ISKEY beginning in character position 0.

e CALL GETN (ISFIT)
This statement reads the next record in sequence and
returns it to the working storage area ISWSA.

e [IF (IFETCH (ISFIT, '¥P") .NE. 0"20") GO TO 80
This statement checks the file position (FP) field in

the FIT for a valid read. The FP field is set to 20g
when a record is successfully read from the file.

e CALL CLOSEM (ISFIT)

This statement writes the updated FSTT and any
altered data and index blocks in the buffer to the file,
closes the file, and disposes it according to the current
value in the CF field.

3-15

A. NOS Operating System NOS/BE Operating System

Job statement Job statement

USER statement ACCOUNT statement
CHARGE statement FTNS.

FTNSG. ATTACH(ISFILE,ID=AAMUG)
ATTACH(ISFILE/UN=userno,M=W) ATTACH(UPDAT,ID=AAMUG)
ATTACH(UPDAT) LGO.

LGO. CRMEP(LO,RU)

CRMEP(LO,RU)

B. Input File: UPDAT

e 4 1 RSO0 104476
update 9 1 B&95 382592
add w2 S703 $703 ROYAL SUPPLY 185722

delete === 3 H314

C. Source Program

PROGRAM ISUPDAT

drkkdkiokiok ook dodedioirioiokodokdokotok ook ko ook d ok ok koo ko kokodokdokdeok ik dokk ke
* THIS PROGRAM UPDATES THE IS FILE NAMED ISFILE. INPUT *
* RECORDS, CONTAINING UPDATE INFORMATION, EXIST ON THE FILE=

* NAMED UPDAT. %
Fhdddkkhdddokdtokdotioloddekdedeiedee dok ok fefok ek deodefok dokd de dodok el dodode Aok de sk

OO

IMPLICIT INTEGER (A-Z)
DIMENSION ISFIT (35), ISWSA (5)
CALL FILEIS (ISFIT, 'LFN', "ISFILE®, 'ORG®, 'MEW',
"WSA®, ISWSA,
'RT, °F°,
KA, ISKEY,
YEFC', 3, 'DFC', 3)
OPEN (2, FILE = *UPDAT")
CALL OPENM (ISFIT, ‘I-0")
IF (IFETCH (ISFIT, "ES') .NE. 0) GO TO 90
PRINT 100
10 READ (2, 110, END = 60) CODE, ISKEY, ORDER, ISWSA
20 PRINT 140, CODE, ISKEY, ORDER, ISWSA

+ + + +

C
C -UPDATE EXISTING RECORD IN THE FILE
c
IF (CODE .EQ. 1) THEN
CALL GET (ISFIT)
IF (IFETCH (ISFIT, 'ES") .NE. 0) THEN
PRINT 903, IFETCH (ISFIT, 'ES")
CALL CLOSEM (ISFIT)
STOP 'CRM ERROR RETURNED®
END IF
ISWSA (4) = ORDER
ISWSA (5) = ISWSA (5) + ORDER
CALL REPLC (ISFIT)
GO TO 10
END IF
[
C ADD NEW RECORD TO THE FILE
c

IF (CODE .EQ. 2) THEN
CALL PUT (ISFIT)
IF (IFETCH (ISFIT, ‘ES°) .NE. 0) GO TO 90
GO TO 10
END IF

184722

3-16

Figure 3-10. Processing an Existing Indexed Sequential File {Sheet 1 of 2)

60499400 8

Source Program {Contd)

o
C DELETE EXISTING RECORD FROM THE FILE
c

IF (CODE .EQ. 3) THEN
CALL DLTE (ISFIT)
IF (IFETCH (ISFIT, 'ES') .NE. 0) GO TO 90

GO TO 10

END IF
c
C REWIND THE FILE FOR SEQUENTIAL READING
c

60 CALL REWND (ISFIT)
PRINT 120
70 CALL GETN (ISFIT)
IF (IFETCH CISFIT, 'ES') .NE. 0) GO TO 90
IF (IFETCH (ISFIT, 'FP') .NE. 0"20") GO TO 80
PRINT 130, ISWSA
60 TO 70
80 CALL CLOSEM (ISFIT)
STOP "NORMAL TERMINATION®
90 PRINT 903, IFETCH (ISFIT, 'ES®)
CALL CLOSEM (ISFIT)
STOP 'CRM ERROR RETURNED'
100 FORMAT ('1CODE KEY ORDER AMT NEW RECORD')
110 FORMAT (1X, I1, 2X, A4, 2X, 110, 10X, 3A10, 2110)

120 FORMAT (1 KEY COMPANY ORDER YTD AMT")

130 FORMAT (3A10, 21100

140 FORMAT (4X, I1, 2X, A4, 2X, 110, 10X, 3A10, 2110)

902 FORMAT (5X, 8A10)

903 FORMAT ('ES = ', 03)
END
D. Output

CODE KEY ORDER AMT NEW RECORD
1 RS00 104476 : 0 0
1 B695 382592 0 0
2 sS733 0 $703 ROYAL SUPPLY 185722 184722
3 H314 0 0 0
KEY - COMPANY ORDER YTD AMT
B695 ABC DISTRIBUTORS 382592 8263213
E482 CORP SALES INC 89207 1145833
K260 FRIENDLY SALES 1027866 6347410
M857 OAKVILLE CORP 149287 3014192
RS00 RETAILERS INC 104476 1360344
S703 ROYAL SUPPLY 185722 184722
T258 SELECTIVE SALES CO 248916 4337092
T289 SMITH AND SON 95625 1528863
V440 WORLD SALES CO 914819 6844272
X179 YOUNG BROTHERS 527638 2428535

Figure 3-10. Processing an Existing Indexed Sequential File (Sheet 2 of 2}

Figure 3-10 (Part D) shows the printed output from '
program ISUPDAT. The first part of the listing shows the
input records. The last part of the listing shows the
contents of the updated file, which can be compared with
the original file contents shown in figure 3-7. The updated

year-to-date amount.

The record for ABC Distributors (primary key B695)
was updated with a new order amount and an increased

file reflects the following operations: e

e The record for Retailers Inc (primary key R500) was
updated with a new order amount and an increased e
year-to-date amount.

60499400 B

The record for Royal Supply (primary key 5703) was
inserted into the file.

The record for Day and Night Sales (primary key H314)
was deleted from the file.

3-17

POSITIONING AN INDEXED
SEQUENTIAL FILE

A file with indexed sequential organization can be
positioned” in several ways. Because data records are in
sequential order, sequential access is possible from the
beginning of the file or from any record at which the file is
positioned. File position is accomplished as follows:

e An open request positions the file either at the
beginning of the first record or after the last record in
the file,

@ A random read request positions the file at the end of
the record with the specified primary key and returns
that record to the working storage area.

@ A start request positions the file at thes beginning of
the record that meets a specified condition; the record
is not returned to the working storage area.

® A skip request positions the file forward or backward
to the beginning of a record identified by its
sequential position in the file.

@ A rewind request positions the file at the beginning of
the first record in the file.

When a series of sequential read requests are being issued,
the sequential file position is not affected by intervening
write, replace, or delete requests.

POSITIONING TO A SPECIFIC RECORD

An indexed sequential file is positioned to a specific record
within the file by either a random read request or a start
request. In both cases, sequential read requests can then
be issued to access the file sequentially from that
position. For a random read request, the record is returned
to the user. For astart request, the record is not returned.

Random Read Request

A random read request transfers to the working storage
area the record associated with the specified primary key
value. File position is changed by the record transfer. A
sequential read request then returns the next logical file
record. The randomi read alters the current file position to
the record returned. Each sequential read increments the
current file position by one record.

If the file has symbolic primary key values AKEY through
ZKEY, a random read request with the primary key value
SKEY changes the current file position to the end of the
record with that primary key value and returns the record
to the user. A sequential read request then advances the
current file position one record and returns the record with
the primary key value TKEY.

Start Request

The start request only positions the file; it does not return
a record to the working storage area. The file is positioned
to the beginning of the record with the primary key value
that satisfies a certain primary key relationship. This type
of file positioning is accomplished by executing a CALL
STARTM statement. The format of this statement is
shown in appendix B.

3-18

The following statements position the file at the first
record in which the primary key is greater than a specified
value:

CALL STOREF (ISFIT, 'REL', 'GT"
CALL STARTM (ISFIT)

If the value of the MKL field is zero, the full primary key
is used to pasition the file, If the MKL field is not zero,
the file is positioned by major key. The full primary key of
the record at which the file is positioned is returned to the
location indicated by the KA and KP fields. If GETN is
called and the KA field it not specified following a
STARTM call, the primary key will be returned to the
address specified by the STARTM call.

Setting the key relation (REL) field establishes the
relationship between the primary key of the record at
which the file is positioned and the primary key at the
location indicated by the KA field. The possible
relationships are as follows:

e REL field set to EQ

The data record primary key is equal to the primary
key at location KA.

® REL field set to GE

The data record primary key is equal to the primary
key at location KA if an equal key exists, or it is the
next greater primary key value.

e REL field set to GT

The data record primary key is the first key value
greater than the primary key at location KA.

If the REL field is set to EQ and an equal primary key does
not exist in the file, a trivial error occurs and the file is
positioned at the record with the next greater primary key
value.

The MKL field is set when the file is to be positioned
according to a major key. Major key processing is the
same for a start request as it is for a random read request.
The number of leading characters in the symbolic key to be
used as a major key is specified by the MKL field. The file
is then positioned to the first record with a major key that
satisfies the relationship, and the full primary key is
returned to the user.

Program STARTCK, shown in figure 3-11, issues a start
request to position the file for sequential reading. The
REL. field is set to EQ by the CALL STOREF statement
and the file is positioned to the record with the primary
key value read interactively. Sequential reading then
begins with that record.

SKIPPING RECORDS

You can reposition an indexed sequential file forward or
backward a specified number of records by executing a
CALL SKIP statement. The format of this statement is
shown in appendix B.

The following statement causes a forward skip of five
records:

CALL SKIP (ISFIT, +5)

60499400 C

NOS Operating System

NOS/BE Operating System

Job statement Job statement

USER statement ACCOUNT statement
CHARGE statement FTN5.

FTNS. ’ ATTACH(ISFILE,ID=AAMUG)
ATTACH(ISFILE/UN=userno) LOG.

L.GO. CRMEP(LO,RU)

CRMEP(LO,RU)

Input File: ISFILE

B695 ABC DISTRIBUTORS 382592 8263213
E482 CORP SALES INC 89207 1145833
K260 FRIENDLY SALES 1027866 6347410
M857 OAKVILLE CORP 149287 3014192
R500 RETAILERS INC 104476 1360344
$703 ROYAL SUPPLY 185722 184722
T258 SELECTIVE SALES CO 248916 4337092
T289 SMITH AND SON 95625 1528863
V440 WORLD SALES €O 914819 6844272
X179 YOUNG BROTHERS 527638 2428535

Source Program

PROGRAM STARTCK

c
C Jedededededededekddeddkhkkdikhhkikhkhhhkhkhhkhiihhkieddhkkkkidokikkiiikkiki
C * THIS PROGRAM ILLUSTRATES THE POSITIONING OF AN IS FILE +
¢ + (ISFILE) BY SETTING THE REL FIELD AND THEN USING THE *
C +# THE CALL STARTM STATEMENT. *
C dedek gk dokddhkhihhkkkkhkikkkkhkihkkhkhkkhkhkiokkhihihhhihkiddkikiik
c
IMPLICIT INTEGER (A-Z)
DIMENSION ISFIT (35), ISWSA (5)
CALL FILEIS (ISFIT, 'LFN', 'ISFILE', 'ORG', 'NEW®,
+ 'WSA', ISWSA, -
+ 1 RT 1] , 1] F [] ,
+ "EFC’, 3, 'DFC', 3)
CALL OPENM (ISFIT)
IF (IFETCH (ISFIT, 'ES') .NE. Q) GO TO 50
5 READ (%, "(A4)') ISKEY
CALL STOREF (ISFIT, 'REL', ‘EQ")
CALL STARTM (ISFIT, ISKEY)
¢
¢ TEST FOR KEY NOT FOUND
c
IF (IFETCH (ISFIT, 'ES') .EQ. 0"445") THEN
PRINT #, 'KEY NOT FOUND'
60 TO 5
END IF
¢
¢ TEST FOR AMY OTHER CRM ERROR
c

IF (IFETCH (ISFIT, 'ES') .NE. 0) THEN
PRINT 902, IFETCH (ISFIT, ‘'ES')
CALL CLOSEM (ISFIT)
STOP 'CRM ERROR RETURNED'
END IF
10 CALL GETN (ISFIT)
IF (IFETCH (ISFIT, 'ES') .NE. 0) GO TO 50
IF CIFETCH CISFIT, 'FP') .NE. 0"20") GO TO 20
PRINT 110, ISWSA
GO0 T0 10
20 CALL CLOSEM (ISFIT)
STOP

60499400 B

Figure 3-11. Positioning an Existing Indexed Sequential -File {Sheet 1 of 2)

3-19

Source Program {Contd)
50 PRINT 902, IFETCH (ISFIT, ‘ES")
CALL CLOSEM (ISFIT)
. STOP °"CRM ERROR RETURNED'
110 FORMAT (1X, 3A10, 21100
902 FORMAT ('ES = ', 03)
END
D. Sample Output
/.60
? m857
M857 OAKVILLE CORP 149287 3014192
R500 RETAILERS INC 106476 1360344
$703 ROYAL SUPPLY 185722 184722
T258 SELECTIVE SALES CO 248916 4337092
T289 SMITH AND SON 95625 1528863
V440 WORLD SALES €O 914819 6844272
X179 YOUNG BROTHERS 527638 2428535
.028 CP SECONDS EXECUTION TIME.
/REWIND %
93 FILE(S) PROCESSED.
/L60 :
? s703
$703 ROYAL SUPPLY 185722 184722
T258 SELECTIVE SALES CO 268916 4337092
7289 SMITH AND SON 95625 1528863
V440 WORLD SALES CO 914819 6844272
X179 YOUNG BROTHERS 527638 2428535
026 CP SECONDS EXECUTION TIME.
/REWIND ,*
13 FILE(S) PROCESSED.
/LGO
? bad1
KEY NOT FOUND
? 289
T289 SMITH AND SON 95625 1528863
V4640 WORLD SALES CO 914819 6844272
X179 YOUNG BROTHERS 527638 2428535
027 CP SECONDS EXECUTION TIME.

Figure 3-11. Positioning an Existing Indexed Sequeniial File (Sheet 2 of 2)

The skip request specifies the name of the FIT array; the
direction of the skip, and the number of records to be
skipped. The skip direction and count parameter is
specified as followss

of

+count Skip forward the specified number

records.
-count Skip backward the specified number of
records.

No FIT fields are set by the skip request. Skipping stops if
beginning-of-information or end-of-information is reached
before the specified number of records have been skipped.
If the end-of-data exit (DX) field has been set to a
subroutine name, the subroutine is executed. The file
position (FP) field is set to 1 for beginning-of-information
or 100g for end-of-information.

Skipping either direction always positions the file to the
beginning of another record. The skip request should be
used only for skipping a small number of records. This is
because AAM reads and counts each intervening record and
thus increases execution time. A random read request
takes less time than a lengthy skip request.

3-20

REWINDING THE FILE

Execution of a CALL REWND statement positions the file
to beginning-of-information, which is the start of the
record with the lowest primary key value. The format of
this statement is shown in appendix B.

Execution of the following statement rewinds the file to
beginning-of-information.

CALL REWND (ISFIT)

The file must be open when the rewind request is issued.
Rewinding the file is preferable to extensive backward
skipping of records. The only parameter in the rewind
request is the name of the array containing the FIT.

The CALL REWND statement must not be used during an
indexed sequential file creation run.

60499400 B

OBTAINING FILE STATISTICS

Various statistics are accumulated in the file statistics
table for an indexed sequential file (as for all AAM files).
These statistics can be accessed by the user through the
FLSTAT utility. This utility can be called into execution
following program execution or it can be run in a separate
job after attaching the permanent indexed sequential file.
Output from the FLSTAT utility includes current file
structure, primary key information, and total file
transaction counts.

Information in the output provides clues to file efficiency.
An increase in the number of index levels over the last use
of the file indicates an increase in the time required to
retrieve a given record by primary key.

The number of empty blocks reveals unused area in the
mass storage allocated to the file. - Empty blocks, which
are created by the deletion of all records in the blocks, are
used when new blocks are required for file expansion.
Empty blocks are assigned to the current file and are not
released to the operating system for reallocation to other
jobs. Therefore, it might be desirable to re-create the file
in a more compact area of storage.

If the utility is executed both before and after the file is
processed, the difference in the statistics reflects the
processing performed during program execution.

The FLSTAT contral statement specifies the logical file
names of the indexed sequential file and the output file for
the statistics. Only one indexed sequential file can be
named in the control statement. Multiple statements are
needed to obtain information about several indexed
sequential files. The output file need not be named if
statistics are to be written to the system file OUTPUT.

The control statement used to generate the output shown
in figure 3-12 is as follows:

FLSTAT (ISFILE)

The output file is not specified in the control statement; it
defaults to the system file QUTPUT.

60499400 B

STATISTICS FOR FILE ISFILE
ORGANIZATION======= Is
CREATION DATE—====- 81/02/26.
DATE OF LAST CLOSE- 81/02/26.
TIME OF LAST CLOSE- 13.10.02.

FILE IS NOT MIPPED
COLLATION IS STANDARD

PRIMARY KEY INFORMATION
STARTING WORD POSITION ———=-- 0
STARTING CHARACTER POSITION - 4
TYPE -— UNSIGNED
LENGTH IN CHARACTERS —===—=--= 4

MAXIMUM RECORD SIZE 50
MINIMUM RECORD SIZE 50

TOTAL TRANSACTIONS

NUMBER OF PUTS =—=w=== 11
NUMBER OF GETS =~=—m=- 2
NUMBER OF DELETES =-- 1

NUMBER OF REPLACES -~ 2
NUMBER OF GETNEXTS -- 29

CIO CALLS FOR FILE
NUMBER OF READS --—-- 8
NUMBER OF WRITES -~-- 2
NUMBER OF RECALLS --- 1
NUMBER OF REWRITES -- 7

NUMBER OF BLOCKS=~==—--
NUMBER OF EMPTY BLOCKS-
BLOCK SIZE IN PRUS-~=-- 1
NUMBER OF DATA RECORDS- 10

e T=Y

FILE LENGTH IN PRUS 3
NUMBER OF INDEX LEVELS IN USE O
FLSTAT,ISFILE.

Figure 3-12. FLSTAT Utility Output

3-21

MULTIPLE INDEX FILES 4

The multiple-index capability provides added features to
the AAM file structuring and management facilities for
indexed sequential, direct access, and actual key file
organizations. The term multiple-index file refers to an
indexed sequential, direct access, or actual key file for
which additional keys, called altenate keys, have been
defined. (The terms multiple-index file and alternate key
file are interchangeable.) AAM can locate a record in a
multiple~-index file by the primary key or by one of the
alternate keys. You can create multiple-index files
through COBOL, FORTRAN, COMPASS, CDCS, and Query
Update., This section illustrates the usage of the
Multiple-Index Processor (MIP) through FORTRAN 5.

WHY USE MIP?

Consider the data base shown in figure 4-1. The file is
indexed sequential file organization and NAME is the key.
Suppose you want a list of all persons who live in
DETROIT. Each record in the file must be read and each
CITY field must be examined for DETROIT. This would
result in poor performance, especially for a large data base
file. In a time-sharing environment, response time would
be unacceptable.

Primary —=f Age ity
Key
Bob 32 Detroit
George 20 New York
Mary 38 Detroit
Sue 49 Seattle
Tom 67 Chicago
DATA FILE
Alternate City Name
Keys -
Chicago Tom
Detroit Bob Table for
Mary Alternate
New York George Key #1
Seattle Sue
Age Name
20 George
32 Bob Table for
38 Mary Alternate
49 Sue Key #2
67 Tom
INDEX FILE

Figure 4-1. A Multiple-Index File

60499400 B

To improve performance, CITY can be defined as an
alternate key and a table can be constructed to list all
NAMES for each CITY. The table can then be scanned for
DETROIT. Random accesses of the data file return all the
names for Detroit.

Similarly, if AGE is defined as an alternate key, a table
can be constructed to list all NAMES for each AGE.
Locating all persons within a given age range would be easy.

Alternate key reads are more efficient (requiring fewer
disk accessesgl than a sequential pass through the data file.
When you define a field as an alternate key, MIP
automatically constructs a table such as the tables shown
in figure 4-1. The table scan for a particular value and the
random accesses of the data file are also automatic. Other
MIP facilities include:

@ Automatic updating of the index file when the data
file is changed.

@ Counting the number of record occurrences for a given
alternate key value or for a given range of alternate
key values.

e Retrieving only primary keys of records for a given
alternate key value or for a given range of alternate
key values. .

Although more alternate keys add more flexibility, there is
a cost involved. If a file is to be updated frequently, you
should avoid unnecessary alternate keys since each key
would generate extra disk accesses per update of a record.

MULTIPLE KEY CONCEPTS

Figure 4-2 illustrates the flow of control within AAM for
alternate key processing. Control passes to MIP if an
alternate key is specified on a read or if an alternate key
file is being updated. On a read, MIP obtains a primary key
from the index file and returns control to the appropriate
AAM module to actually retrieve a record from the file .
and return it to your working storage area. On a write or
update of the file, MIP updates the index file to reflect any
changes.

When a primary key is specified on a read of a
multiple-index file, control does not pass to MIP. The
record is retrieved exactly the same way as it would be for
a file that did not have alternate keys defined for it.

The basic principles of multiple-index file structure and
processing with which you should be familiar include the
following:

e The indexed sequential, direct access, or actual key
data file structure is not affected by the definition of
alternate keys.

e One index file exists for each data file. Within the
index file, MIP creates a separate index for each
alternate key defined for the data file. Both the data
file and the index file must be present for the file to
be accessed by alternate keys.

USER
PROGRAM

1
l

Al
AAM ternate Key MIP

Retrievals f
/
Primary Key /
Retrievals /
/ -~
/ ~
e
- -
IS/DA/AK ==~ ~
-~
~

r__________
\

Figure 4-2. Multiple-Index File Processing

® The MIPGEN utility is used to define alternate keys
for an existing data file, to delete alternate keys from
an existing index file, and to add new alternate keys to
an existing index file.

e Each alternate key is defined by the RKW, RKP, and
KL values. (There is no name associated with an
alternate key.)

e Reading of records can be by either primary or
alternate key values, but the data file is updated by
primary key values only.

e Information from the index file can be retrieved
through FORTRAN (or COMPASS) programs without
accessing the data file.

PRIMARY KEYS

A primary key is a field whose contents determine the
physical location of the record within the data file. The
location of the primary key in a data record is established
when the file is created; it remains the means by which the
system accesses each record for the life of the file. A
primary key can be located within the record (embedded)
or outside of the record (non-embedded). Primary key
values must be unique.

A program can always access a record by its primary key
value. All write or rewrite operations must be according
to primary key value. Read access, however, can be by
primary key value or by the value of any alternate key
defined for the record. MIP translates alternate keys into
the primary record key. The program can specify an
alternate key value, but the system request is for the
proper primary key value.

ALTERNATE KEYS

An alternate key is a field within a record, the contents of
which can be. used to access the record. An alternate key
position can be either defined through a source program at
the time a new data file and its index file are created, or
defined through the MIPGEN utility if the data file already
exists. (MIPGEN is more efficient.) Up to 255 alternate
keys can be defined.

You cannot use the alternate key value to update a record
directly. You can, however, use the alternate key value to
locate the primary key value and then perform a delete or
rewrite by primary key. Each read by alternate key value
can return the value of the primary key to the program,
depending on the file organization and key handling.

Alternate key values can be unique (such as a social
security number for each name) or can identify a group of
data records (such as one city associated with many
names). Further, an alternate key can be defined as a field
within a group that repeats within a record, so that a single
definition might result in several alternate key values for
that record (such as license numbers of cars owned by one
person).

Shorter keys are preferable for alternate keys because of
space considerations in the index file. An index block can
hold twice as many 10-character keys as 20-character
keys. For alternate keys with unique values, the number of
characters in the alternate key and the primary key can
affect how much storage space is needed. For example,
because round-up to a full word boundary is performed, an
alternate key with 6 characters and a primary key with 15
characters would require three words of storage space,
while an alternate key with 5 characters and a primary key
with 15 characters would require only two words.
(Selection of actual key file organization and a small key
length minimizes many of these problems.)

Alternate Key Location

You define an alternate key by its length and position
within the data record. For MIPGEN purpases, and for key
definition through COMPASS and FORTRAN, the position
is described by the starting location and length in words
and characters. You must also specify the format of the
key and whether or not it is within a repeating group.

Alternate keys defined for a file must be contained within
the data record (embedded). All alternate keys must be
within the minimum record length specified by the MNR
field of the FIT (except for T-type records, when
MNR=HL). Alternate key positions can overlap. One
alternate key can begin at the same location as another
alternate key or at the same location as the primary key;
however, their lengths must differ if they begin at the
same location. An example of overlapping definition might
be employee name, where two alternate keys could be
defined to provide retrieval on the last name and whole
name.

60499400 B

e Words in the data record are numbered from 0, with
ten 6-bit characters per word.

e Characters within a word are numbered O through 9,
left to right, with six bits per character.

e The length of an alternate key is specified in
characters, whether the key contains character or
numeric data.

The content of an alternate key field is interpreted
according to the key format specification.

Alternate Key Format

Use the format of the alternate key to rank the alternate
key contents. (Within an index for a single alternate key
field, alternate key values are always in ascending order.)
Each alternate key field can be a different format, since
each field appears in its own index within the index file.
The following formats can be defined:

e Symbolic (KT=S)

The content of the key field is a string of letters,
digits, or special characters. These keys are sorted
according to the collating sequence in effect. (For an
indexed sequential file, a user-defined or a default
collating sequence is used for both the data file and
the index when the key is symbolic format. For a
direct access or actual key file, any user-defined
collating sequence specified by the DCT/CDT
parameters is used for the index only.) Key length is 1
to 255 characters. If you do not supply a collating
sequence, the standard collating sequence is used (see
appendix A).

e Integer (KT=I)

The content of the key field is interpreted as an
integer; the left-most bit of the field indicates the
sign (O for positive, 1 for negative), and the remainder
of the field indicates the absolute value of the number
(complemented, if negative). These keys are sorted by
magnitude. You must specify an integer key as 10
characters in length; the key must begin on a ward
boundary. Floating point numbers are stored with
KT=I. '

e Uncollated (KT=U)

The content of the key field is interpreted as a
positive integer, even though the content might be a
character string. These keys are sorted by
magnitude. Key length must be a multiple of six bits,
1 to 255 characters. ’

THE INDEX FILE

The index file is separate from the data file. It is created
in response to one of the following:

e A FORTRAN or COMPASS program defining at least
one alternate key. The RMKDEF subroutine is used to
define alternate keys after the file is opened and
before the first record is created.

fe The MIPGEN utility (RMKDEF directive) when the
named index file is not attached to the job and the
data file FSTT indicates that an index file does not
exist. (This is the most efficient method of creating
an index file.)

60499400 C

You now have two ways to define alternate keys: using the
RMKDEF subroutine in a FORTRAN program or using the
RMKDEF directive with the MIPGEN utility. The first
parameter of the RMKDEF directive is Ifn; however, the
first parameter of the RMKDEF subroutine is fit. The
parameters differ because within a FORTRAN program all
references to an AAM file are made through the FIT.

You are responsible for permanent file operations with the
index file and for making it available to any-job that
accesses the data file by alternate keys or that updates
records in the data file. The correct permissions must be
specified. The XN field of the FIT for the data file
specifies the index file name. :

Once an index file has been associated with a data file, you
must attach that index file to any job that either:

e Attaches and updates the data file.
ar
® Retrieves records by alternate key.

Within the index file is the logical structure shown in
figure 4-3. All programmer operations are concerned anly
with the logical structure.

Notice that the index file contains only key information. A
read by alternate key value requires a search of the index
file, then access to the data file using the primary key
value obtained from the index for a particular alternate
key field.

Figure 4-3 illustrates the two following words, index and
keylist, that are used in describing index files:

® An index is a part of an index file that pertains to a
single alternate key field. As many -indexes exist as
there are alternate keys defined.

@ A keylist is a part of an index that pertains to a single
alternate key value. One keylist contains the primary
keys of all data records with a particular value of an
alternate key. As many keylists exist as there are
alternate key values. A keylist can take one of three
structures: indexed sequential, unique, and
first-in-first-out (FIFO). These structures are
specified on the RMKDEF call by I, U, or F,
respectively. :

Consider the data base for a telephone directory shown in
figure 4-4. Assume the file was created with records in
the order listed in part A of the figure. NAME is the
primary key. Three alternate keys are defined: AREA (the
3-digit area code), PHONE (the complete 10-digit phone
number), and CITY (the 7-character city code).

The index file, shown in part B, has three indexes. The
index for AREA can have multiple NAME values for each
area code. You can select either the indexed or FIFO
structure for the keylist. Assumin;; that you have defined
the key with indexed structure (by specifying I on the
RMKDEF directive), the index for AREA appears as shown
in part B of the figure. Notice that FERON precedes
WADE and ANTON precedes JONES.

The index for PHONE has a unique NAME for each value of
the alternate key. Therefore, you must define the key as
unique (by specifying U on the RMKDEF directive).

The index for CITY can have multiple NAME vaiues for
each city. Assuming that you have defined the key with
FIFO structure {by specifying I on the RMKDEF directive)
the index for CITY appears as shown in part B of

4-3

Index File

e T T E—— R
Index for another

I Alternate Key | | Alternate Key Field

| Field- | | l

I L l l ° I l '

I Alternate Alternate Alternate | i |

I Key Value Key Value Key Value ‘ | |

l]

l J I I |

I (A I I I A ! [I
1 ° e e ¥ 1]

| ') .) ' ; ' I | |
] Primary Primary Primary ' ']

|y | ke Key Kev | 1 P t l
: Value Value Value . . i

I ! ' ! ! I I I
t 1]]

| ' KEYLIST : s KEYLIST, | | |
Bom owE mem me o Gmes e e e os e S em e o oew oo of . L a

| | I |

L INDE)iJ L INDEX J

Figure 4-3. Logical Structure of Index File with Two Alternate Keys and Multiple Alternate Key Values

the figure. WNotice that JONES comes before ANTON.
(This methed is not recommended.)

The keylist structure for a particular index is selected
when the alternate key is defined originally or is added to
the index file. One of the following structures can be
specified for the keylists

e Indexed

The primary keys are stored in the keylist in sorted
order. Numeric keys (integers) are stored in ascending
order. Symbolic keys are stored in sorted order, with
the order depending on the file organization and the
means used to create the index. Uncollated keys are
stored in order of magnitude of their display code
values. ’

Keys for a file in indexed sequential organization
always are stored in the order established by the
collating sequence in effect for the data file.

Keys for a file in direct access or actual key
organization are stored in one of two ways:

If the MIPGEN utility creates the index, the keys
are in the default collating sequence order.

If the index is created at the same time the data
file is created, the order is affected by your use of
the DCT/CDT fields of the FIT. If you establish a
table to convert display code to a collating
sequence, that sequence is used for the index;
otherwise, the default collating sequence is used.

|

The indexed keylist structure is preferable to FIFO
because it gives superior performance when an
alternate key file is accessed.

® Unigque
Each alternate key value can be contained in only one
record in the file; the keylist for each alternats key
value has only aone primary key. :

e First-in-first-out (FIFO)
The primary keys are stored in the keylist in the order
in which their corresponding records are written to the
data file. If MIPGEN is used to define alternate keys
for an existing data file, the primary keys are stored in
the order in which the records are read by MIPGEN.

F1F O structure cannot be used for repeating group keys.

THE MIPGEN UTILITY

The MIPGEN utility performs the following operations:

e Defines alternate keys and an index file for an existing
file that does not have them.

® Adds or removes alternate key indexes to/from an

existing multiple-index file.

The MIPGEN utility is the only method by which you can
change alternate key definitions after an.index file has
been created. You cannot add, replace, or delete alternate
keys through source language directives (that is, through
FORTRAN or COMPASS calls to RMKDEF). Figure 4-5
illustrates an overview of MIPGEN processing.

60499400 C

Order in which records were written:

NAME PHONE CITY
' AREA LOCAL

Jones, P 612 853-5523 Denver
Wade, D 4156 393-7204 Boise
Anton, R 612 482-3933 Denver
Feron, A 415 297-4841 Boise

Tabb, W 404 465-3207 Houston
S s
Primary W
Key \
Alternate
Keys
Structure of index file
AREA NAME PHONE NAME
404 " Tabb, W 404-465-3207 Tabb, W
415 Feron, A 415-297-4841 Feron, A
Wade, D 415-393-7204 Wade, D
612 Anton, R 612-482-3933 Anton, R
Jones, P 612-853-5523 Jones, P
Alternate Key Index Alternate Key Index #2
{Indexed) (Unique}
CITY NAME
Boise Wade, D
Feron, A
Denver Jones, P
Anton, R
Houston Tabb, W

Alternate Key Index #3
(FIFO)

Figure 4-4. Telephone Directory Data Base [llustrating 3 Index File Structures

The MIPGEN utility is used to generate a new index file or
to add or remove an entire index in an existing index file.
It is more efficient for most applications to create an
index file through MIPGEN rather than to create the index
file and the data file at the same time through the source
language. If the data file is created in a separate job step,
MIP can then sort the records and build a compact index
file. Minimum input/output operations are involved. If the
data file and the index file are created at the same time,
records are randomly written to the index file and a large
number of input/output operations are required. This
method is always inefficient for large files, especially if a
file has more than one alternate key.

The format of the MIPGEN control statement is shown in
figure 4-6. The logical file name of the existing data file
is a required parameter. The logical file names of the
directive file and the output listing file are optional when
the defaults (INPUT and CUTPUT) are applicable.

One or more RMKDEF directives are required to define the
alternate keys to be incorporated in or removed from an
index file. MIPGEN obtains primary key information from
the data file FSTT.,

60499400 B

Consider the records shown in the data base in part A of
figure 4-7. NAME is the primary key. Suppose you want
to use MIPGEN to add AUTO as an alternate key. Part B
of the figure shows the statements you need. Part C of
the figure shows the output and the dayfile from the
MIPGEN utility execution.

MIPGEN JOB STRUCTURE

The MIPGEN utility is called by a control statement.
During execution, the utility reads user-specified
directives from a directive file and then creates or
modifies an index file according to the instructions on
those directives.

A job that calls MIPGEN must contain control statements
to describe the files, to ensure files are properly handled
by the permanent file part of the operating system, and to
call the utility itself. The directives for the utility can
exist as part of a job deck or as a separate file. The data
file must be in existence before the utility is called.

4-5

RMKDEF |
Directives

Add, delete,

or replace
alternate keys

MIPGEN

Figure 4-5. MIPGEN Utility Overview

directs Name of the file containing the RMKDEF direc-

MIPGEN(prifile directs,Ifile)

prifile Logical file name of the existing indexed
sequential, direct access, or actual key file.
tives; optional; default is INPUT.

ifile Name of the file that contains the output listing
from MIPGEN; optional; default is QUTPUT.

Figure 4-6. MIPGEN Contro! Statement Format

The control statements that you need for a MIPGEN job
include:

An ATTACH control statement to attach the existing
data file. Write permission is required since the data
file FSTT on disk will be updated to indicate the
presence of the MIP file.

Permanent file control statements for the index files
for NOS, the DEFINE control statement; for NOS/BE,
the REQUEST and CATALOG control statements.
These are required if no index file exists prior to the
run. For subsequent runs, an ATTACH control
statement (with write permission) is required to attach
the existing index file.

The FILE control statement to communicate to AAM.
The logical file name of the index file must be
specified via the XN parameter, and the organization
of the data file must be specified via the FO
parameter.

4-6

e The record type (RT) must be specified for T-type
records, if the alternate key is in the trailer portion of
the record. The associated parameters (HL, CP, CL,
TL, and MRL.) must also be defined.

e If the file named by the XN parameter is not attached
to the job, and if the data file FSTT indicates that no
index file exists, the utility creates such a file. If the
file exists, the utility modifies it. In either case, the
alternate key definitions are read from the directive
file.

e The default index file block size is the data file block
size. Accepting the default is more efficient.
However, the default can be overridden by specifying
a value in the XBS field of the FIT.

e The MIPGEN control statement to identify the data
file and the source of directives and to initiate loading
and execution of the utility program.

e An RMKDEF directive for each alternate key. A
directive need not be included for the primary key.

If the directives are on a separate file, the file must
have CRM sequential organization with C-type
blocking and Z-type records.

DIRECTIVE FOR DEFINING
ALTERNATE KEYS - RMKDEF

When an index file is being created, each RMKDEF
directive defines the location of one alternate key within
the record. Figure 4-8 shows the directive format for
defining an alternate key faor the index file.

60499400 B

CARS File
NAME AUTO

Bill Saab
Jim Fiat

John Ford
Paul Saab

column 1 column 11

Define Auto as an Alternate Key

Job statement
USER statement
CHARGE statement

ATTACH,CARS/M=W

Attach CARS with write permission

FILE,CARS,FO=1S,0RG=NEW,RT=F,FL=20,XN=XCARS -«~——— Specify XCARS as index file

DEFINE,XCARS

MIPGEN,CARS
- - EOR

RMKDEF(CARS,T,0,1‘0,0,5,”

- - EOt
Key
length

Key Keylist
location structure
Key
format

MIPGEN OQutput and Job Dayfile

MIPGEN DIRECTIVES 80/10/03. 15.37.13.

RMKDEF (CARS,1,0,10,0,5,D)

ACMQCLE. 80/10/03.(22) SVL SN112 NOS.

15.37.03.ADDKEY.
15.37.03.UCCR, 7641, 0.009KCDS.
15.37.04.USER (AAMUG)
15.37.04 . CHARGE (XXXX, XXXXXX)
15.37.06.ATTACH,CARS/M=W.
15.37.07.FILE, CARS ,FO=1S5,0RG=NEW, XN=XCARS.
15.37.07.DEFINE, XCARS.
15.37.08.MIPGEN, CARS.

15.37.16.%%*KEY COMPARISON USED

15.37.18.MIPGEN COMPLETE

15.37.19.UEAD. 0.002KUNS .
15.37.19.UEPF, 0.027KUNS .
15.37.19.UEMS, 0.815KUNS.
15.37.19.UECP, 0.059sECS.
15.37.19.AESR, 2.285UNTS.
15.37.24.UCLP, 7645, 0.192KLNS .

Allocate permanent file space for index file
Call utility to add key

Directive to define the AUTO field

Defines Key added

You now have a multiple-index file CARS
and an index file XCARS

60499400 B

Figure 4-7. MIPGEN Example - NOS

4-7

prifile
rkw
rkp

ki

kf

ks

kg

ke

ch

RMKDEF(prifile,rkw,rkp,kl,0,kf, ks kg,kc,nl ie,ch)

Logical file name of the existing indexed sequen-
tial, direct access, or actual key file; required.

Relative word in the record in which the alternate
key begins, counting from 0; required.

Relative beginning character position within the
relative key word (rkw), counting from O; required,

Number of characters in the key, 1 to 255;
required.

Required to mark position for the reserved field.
Key format, required:

OorS Symbolic

Torl {nteger

2orU Uncollated

3 or P Purge alternate key definition from
the index

Substructure for each primary key list in the index;
optional:

U Unique {(default)

| Indexed sequential: recommended
for efficiency in processing

F First-in first-out

Length in characters in the entire repeating group
in which the key resides.

Maximum number of occurrences of the repeating
group; zero for T type records, and a number for a
repeating group embedded within the record.

Null suppression; a null value is all spaces
{symbolic key) or all zeros (integer key):

0 Null vaiues are included in the
index (default)

N Nufl values are not included in the
index

include/exclude sparse control character:

[Include alternate key value if the
record contains a sparse control
character

E Exclude alternate key value if the
record contains a sparse control
character

Characters that qualify as sparse control charac-
ters; up to 36 letters and digits can be specified
as a character string.

4-8

Figure 4-8. RMKDEF Directive Format

Nonrepeating Keys

All RMKDEF directive parameters, except kg and kec, are
applicable to an alternate key that does not repeat within
the record. An example of a nonrepeating field was shown
in figure 4-7.

Repeating Group Keys

A repeating group key is a single alternate key that can
have several values within one data record because the key
field can occur more than once within the record. MIP
treats each occurrence as a separate value for the same
alternate key field. Any of the values can be used to
access the data record.

Consider the SPORTS file shown in Part A of figure 4-9.
From one to three repetitions of the alternate key
ACTIVITY can occur in the record. Part B of the figure
shows the usage of the MIPGEN utility to add the alternate
key ACTIVITY.

In the RMKDEF directive, the rkw, rkp, kl, kg, and kc
parameters are all needed to define the group. The word
and position for rkw and rkp must be that of the first
occurrence of the key. The kl parameter specifies the
length of a single occurrence of the key; the kg parameter
specifies the number of characters in the entire group in
which the key field resides. The repeating group can
appear a fixed number of times or a variable number of
times, depending on record format. The kc value either
equals zerc for a variable number or equals the fixed
number.

In order to minimize mass storage required for each data
record, you can establish a variable number of occurrences
of the key field by using a repeating group at the end of
the record. (Select T-type records.) Selection of T-type
records, however, trades processing time for mass storage
space.

The RMKDEF directive that describes the alternate key
for the records in figure 4-9 is:

RMKDEF(SPORTS,3,4,6,0,5,1,6,0)

Notice that the last parameter is 0 to indicate that
the content of the KOUNT field establishes the
number of repetitions.

The keylist structure cannot be FIFO for a repeating group
key. If F is specified in the directive, AAM changes it to I
without a message.

Adding a New Index

When a new alternate key index is to be added to an
existing index file an RMKDEF directive defines the key to
be added. The format of the RMKDEF directive is the
same as that when an alternate key is being defined for a
new index file. The format shown in figure 4-8 should be
used with parameters, depending on the characteristics of
the alternate key field.

60499400 B

A. SPORTS File

B. Add ACTIVITY as an Alternate Key

JOoB

USER

CHARGE
ATTACH,SPORTS/M=W

DEFINE,XSPORT
MIPGEN,SPORTS

- - EOR
RMKDEF(SPORTS,3,4,6,0,5,1,6,0)
- - EOF 2

Key length

ACTIVITY field begins
at word 3, character 4

CLASS NAME KOUNT ACTIVITY
SOPH DIANE 2 GYMN |SKIi
FRESHMAN | MIKE 1 SKI
SENIOR RICH 2 TRACK | SOCCER
JUNIOR RON 3 SWIM SK1 TENNIS
JUNIOR SUSAN 1 TENNIS
Column 1 21 31 35 52
~ ~"

FILE,SPORTS,RT=T HL=34,CP=30,CL=1,TL=6MRL=52
FILE,SPORTS,FO=IS,0RG=NEW,XN=XSPORT

For T-type records

No. characters in
in repeating group

3 Repeating Groups
6 chars each

Figure 4-8. Using the MIPGEN Utility to Add a Repeating Group Key - NOS

Deleting an Index

When an existing alternate key index is being removed
from an index file, use the first six parameters of the
RMKDEF directive format shown in figure 4-8. The key to
be removed is identified by its starting position and length,
as it is for all MIPGEN operations. The ks parameter,
which under other circumstances establishes the structure
of the keylist for each alternate key value, must be set to
P to indicate that an index is to be removed from the index
file.

ALTERNATE KEY PROCESSING
EXAMPLES

This section describes the creation and processing of
indexed sequential, direct access, and actual key files that
have alternate keys defined.

Concepts are illustrated through FORTRAN 5 programs
that show:

e Creating an indexed sequential file with an embedded
primary key and two alternate keys.

e Reading an indexed sequential file by alternate key
values.

e Creating an actual key file with a nonembedded
primary key and two aiternate keys.

Reading an actual key file by alternate key values.

60499400 B

e Reading an actual key file through alternate key
values, using relations other than equality.

The processing described in the examples is, in general,
applicable to all AAM file organizations. Differences in
processing arise from the underlying differences in

multiple-index processing.

GENERAL CONSIDERATIONS

The following steps are needed in the creation of a
multiple-index file:

1. Define the logical file names for both the data file
(LFN parameter) and the index file (XN parameter)

2. Set additional FIT fields as required.

3. Create the data file and index file in one of two ways:

Create both at the same time through the source
program

or
Create only the data file through the source
program and then create the index file through
MIPGEN (generally more efficient).

4-9

The following steps are needed in the processing of a
muitiple-index file, when accessing by alternate key:

1. Attach the data file and the index file.

2. Open the data file. (The index file is opened
automatically by AAM.)

3. Establish the alternate key field to be used for
access. (Set values for RKW, RKP, and KL).

4. Establish search criteria. (Set values for KA, KP, and
REL.)

5. Position the index file to a specific key value.
(STARTM can be used).

6. Deliver a record to the working storage area. (GETN
can be used.)

7. Check for file position (Use IFETCH (FIT, 'FP").)

8. Close the data file.

In addition, when processing a multiple-index file, you
should be aware of the followings

e The current values of the RKW, RKP, and KL fields
determine whether a primary key or alternate key
controls the read. (The key currently being used to
access a record is sometimes called the key of
reference.) The RKW, RKP, and KL fields are set to
the primary key when a CALLL OPENM statement is
executed.

o The REL setting for STARTM positions to the keylist
for the first alternate key value that satisfies the REL
condition.

@ The FP field reflects a file position in relation to an
index when an alternate key position is identified in
the FIT. The proper interpretation of FP is:

10g A record returned to the working storage
area from the current call to GET or
GETN. The record is the last in the
keylist.

20g A record was successfully returned to the
working storage area.

100g The last GETN attempt encountered the
end of the index file.

Table 4-1 contains a summary of FORTRAN calls for use
with AAM files with alternate keys defined.

INDEXED SEQUENTIAL FILES WITH MIP

The programs that follow illustrate the creation of an
indexed sequential file and the reading of the file by
alternate key. The file processing shown is, in general,
applicable to all AAM files with MIP,

Creating a Multiple-Index File

The program MAKXIS, shown in figure 4-10, creates an
indexed sequential file (FLRECS) from a sequential file
(MOVIES). The program establishes the FIT for the data

file, specifies the index file name, defines two alternate
keys, reads a file of input records, and writes the records
to a new file. Any job that executes program MAKXIS is
respongible for preserving both the data file and the index
file as permanent files.

A FILE control statement is used to specify the maximum
bloek length (MBL). (It could be included in the FILEIS call
instead.) If MBL is not specified, a default value is
calculated by AAM.

Define File Names

The indexed sequential file to be created is given the
logical file name FLRECS. Its FIT is to be constructed in
the array XISFIT, which is dimensioned to 35 words as
required for all FITs.

The index file to be created is given the logical file name
FLRXIP. You must specify the XN field when creating a
file with alternate keys. Notice that this is the only
reference you need for the index file. The file is created
automatically by MIP,

The first line of the FILEIS call specifies the FIT name,
data file name, and index file name.

CALL FILEIS (XISFIT, 'LFN, 'FLRECS'", XN,
'FLRXIPY,

The next line of the FILEIS call specifies extended AAM
file organization, as required.

'ORG'; 'NEW’

Set Additional FIT Fields

Input data records exist on a file MOVIES (shown in part B
of figure 4-10). The records have a maximum length of 80
characters and contain character data giving the name,
date, and actors in a motion picture. The input file has CZ
format (Z-type records and C-type blocking). Any other
structure would require a FILE statement specifying the
BT and RT fields.

The third line of the FILEIS call specifies record structure
for the output file by setting the following FIT field values:

RT, 'F, 'FL, 80

Each record in the data file contains the primary key
(name of movie) in positions 4 through 31. The fourth line
of the FILEIS call defines the primary key as 2B characters
long, embedded, and located in word 0, character 3.

WKLY, 28, 'EMK!, 'YES', 'RKW!, 0, 'RKP, 3,

The EMK field is set to YES for greater efficiency.
Because the key is located within the record, AAM does
not need to use additional space for the key value that is
prefixed to each record when EMK=NO. Alternate keys
are defined in the same manner regardless of whether the
primary key is embedded in the record.

The working storage area from which AAM writes the
record to the file is defined to be the eight words of REC.

'WSA', REC

60499400 B

TABLE 4-1. SUMMARY OF FORTRAN CALLS FOR AAM FILES WITH MIP
. X . 1
a1l Namef Function for Data File Corgggggng}?g ? S§2§6?¥T°n Funct1?RD§2$E§??$¥ File
CLOSEM Close data file Close index file Close index file only
DLTE Delete record with identified Index is updated None
primary key
FILEIS Establish FIT FIT for data and index files FIT for index file only
GET Read record identified by key None Read keylist for alternate
at RKW, RKP, KL key value
GETN Read next sequential record Read next record indicated in Read more of keylist
in data file keylist
OPENM Open data file Open index file Open index file only
PUT Write record identified by Index is updated None
primary key
REPLC Replace record identified by Index is updated None
primary key :
REWND Rewind data file Rewind index file Rewind index file
RMKDEF None Establish alternate key None
SKIP Skip records on IS or AK file None Skip keys in keylist for IS,
(forward only) DA, or AK file (forward
only)
STARTM Establish key of reference Position index file to first Same
for data file value in keylist
STOREF Set value in FIT field None None
IFETCH Retrieve FIT field vé1ue None None
Tassociated parameters are shown in appendix B.
'TTFunction performed through references to the FIT for the data file.
T NDx must be reset to NO before data file is closed.

The last line of the FILEIS call controls the listing of error
messages and file statistics. The EFC field is set to 3;
therefore error messages, file statistics and processing
notes are written to the error file. The CRMEP control
statement is used to list the information from the error
file., The DFC field is also set to 3; therefore error
messages, file statistics and notes are written to the
dayfile. The NOS DAYFILE control statement can be used
in an interactive or batch environment to list the
information from the dayfile.

'EFCY, 3, 'DFCY, 3

Because values are not otherwise specified, the system
uses default values for these file characteristics: no
padding for the data blocks and index blocks, no block
checksums, no compression of records, no trivial error
limit, and no limit on the number of records in the file.
The primary key and alternate keys are sorted according to
the default collating sequence, as no other sequence is
specified.

60499400 B

Characteristics of the index file can be specified both
through the FIT and through the RMKDEF calls that
specify alternate key positions. The file name is indicated
through the XN field of the FIT. In the absence of an XBS
field setting, the size of the blocks in the index file is the
same as the size of the blocks of the data file.

The program requires two RMKDEF calls to define two
alternate keys. RMKDEF calls must be executed after the
file is opened but before any records are written to the
file. These calls have the same parameters as the
RMKDEF directives of the MIPGEN utility. (Refer to

figure 4-B).

The first RMKDEF directive defines the year-movie-made
as an alternate key: ;

CALL RMKDEF (XISFIT, 0, G, 2, 0, 'S', ')

A. NOS Control Statements

Job statement
USER statement
CHARGE statement
FTNG.
DEFINE,FLRECS
DEFINE,FLRXIP
FILE,FLRECS,MBL=3790
LGO.
CRMEP(LO,RU)
FLSTAT,FLRECS
FLSTAT,FLRXIP

B. Input File: MOVIES

THE ADVENTURES OF ROBIN HOOD4
THE AFRICAN QUEEN

IN QUR TIME

THE PHILADELPHIA STORY
CASABLANCA

ADAM'S RIB

JOAN OF PARIS

BRINGING UP BABY

THE LITTLE FOXES

NOW VOYAGER

DECEPTION

THE LITTLE MINISTER

THE INVISIBLE MAN

MR SMITH GOES TO WASHINGTON
ELIZABETH AND ESSEX

OF HUMAN BONDAGE

GOODBYE MR CHIPS

ROPE OF SAND

SHE DONE HIM WRONG

BETWEEN TWO WORLDS

ARSENIC AND OLD LACE
CAPTAIN BLOOD

THE CONSPIRATORS

DODGE CITY

ACTION IN THE NORTH ATLANTIC
NIGHT TRAIN TO MUNICH

THE SPANISH MAIN
DEVOTION

SONG OF LOVE
THE SCAR
N

38
51
bb4
40
42
49
41
38
41
42
46
34
33
39
39
34
39
49
33
b
bb
35
bb
39
43
40
45
46
47
48

———

\-—b—\—l—h—bNN—lNN—le—l-&‘UM—‘—IMWNN—&N:L\WNN

Maximum Record Length 80 characters

FLYNN
BOGART
LUPINO
HEPBURN
HENREID
TRACY
HENREID
HEPBURN
DAVIS
HENREID
DAVIS
HEPBURN
RAINS
RAINS
FLYNN
DAVIS
HENREID
LORRE
GRANT
HENREID
LORRE
FLYNN
HENREID
FLYNN
MASSEY
HENREID
HENREID
HENREID
HENREID
HENREID

NOS/BE Control Statements

Job statement

ACCOUNT statement

FTNS5,

REQUEST,FLRECS,PF
REQUEST,FLRXIP PF
FILE,FLRECS,MBL=3790

LGO.
CATALOG,FLRECS,ID=AAMUG
CATALOG,FLRXIP,ID=AAMUG
CRMEP,LO,RU :
FLSTAT,FLRECS
FLSTAT,FLRXIP

RAINS DEHAVILLANDRATHBONE
HEPBURN

HENREID

GRANT STEWART

BERGMAN RAINS LORRE
HEPBURN

GRANT

MARSHALL

DAVIS RAINS

HENREID RAINS

STEWART .

DAVIS DEHAVILLAND

HOWARD PARKER HENREID
RAINS HENREID

WEST

GRANT MASSEY

DEHAVILLAND

DEHAVILLAND

BOGART

T e

2-character 28 character
year made movie title

Col 34

Actor's Name

Figure 4-10. CREATING an Indexed Sequential File With Multiple Keys (Sheet 1 of 2)

4-12

60499400

D.

Source Program

OOOOO0ON OO0
* % ¥ *

OO

50

800
850

900
902

PROGRAM MAKXIS

T
(
A
2
T

o+

IMPLICIT INTEGER (A-2)

dedo ke dedo o dododedo e dode dode de o dode dedo ke dodo ke de e dodode dedede dede dededededododedo ke dededededede e dededokededekeokok

HIS PROGRAM ILLUSTRATES THE CREATION OF AN IS FILE
FLRECS) FROM A SEQUENTIAL FILE (MOVIES). ALL RECORDS
RE THEN LISTED. TWO ALTERNATE KEYS ARE DEFINED (THE
~CHARACTER YEAR-MOVIE-MADE AND THE ACTOR'S NAME).

HE INDEX FILE IS NAMED FLRXIP.

¥ * *

e e s de e e e e v e e de e de e de e de e e de e e de e dede dede dedede e dededekededededededede kodekodekedededeok ek dedekk

DIMENSION XISFIT(35), REC(8)

CALL FILEIS (XISFIT, 'LFN', 'FLRECS', 'XN', 'FLRXIP',
'0RG', 'NEW',
'RTY, YF', fFL', 80,
KLY, 28, 'EMK', 'YES', 'RKW', 0, 'RKP', 3,
"WSA', REC,

'EFC', 3, 'DFC*, 3

OPEN FILE BEFORE ALTERNATE KEYS DEFINED

CALL OPENM (XISFIT, 'NEW")
IF (IFETCH (XISFIT, 'ES') .NE. 0) GO TO 850

CALL RMKDEF (XISFIT, 0, 0, 2, 0, 'S', 'I")

CALL RMKDEF (XISFIT,3, 3, 11, 0, 's', 'I', 11, & }
OPEN (2, FILE = 'MOVIES')

CONTINUE

READ (2, '(8A10)', END = 800) REC

CALL PUT (XISFIT)

IF (IFETCH (XISFIT, 'ES') .NE. 0) THEN
PRINT %, 'ES = ', ES l

STOP. ' CRM ERROR RETURNED®
END IF
PRINT 900, REC

CALL CLOSEM (XISFIT) j

G0 TO 50

CALL CLOSEM (XISFIT)
sTOP

PRINT 902, IFETCH (XISFIT, ‘ES")
CALL CLOSEM (XISFIT)

STOP °*CRM ERROR RETURNED'

FORMAT (1X, 8A10)

FORMAT ('ES = ', 03)

END

Notice that the program does not (and must not)
contain OPEN, PUT, CLOSE, etc. for the index
file FLRXIP. Only XN=FLRXIP is required.
CRM automatically opens the index file.

Qutput files:

FLRECS - data file {same as input shown in Part A.)
FLRXIP - index file

Required

Optional (but recommended)

Open data file

Define 2 alternate keys

Write a record to FLRECS

Check for non-zero error status

Close data file

60499400 B

Figure 4-10. CREATING an Indexed Sequential File With Multiple Keys (Sheet 2 of 2}

This call specifies word 0, character 0 as the beginning -

location of the key. Key length is defined as two
characters. The key forrnat is character ('S). The keylist
structure is indexed ('I). The key is not a repeating group
key.

The second RMKDEF directive defines the actor's name as
an alternate key:

CALL RMKDEF (XISFIT, 3, 3, 11, O, 'S', 'T', 11, 4)

This call specifies word 3, character 3 (column 34) as the
beginning location of the key. Key length is defined as 11
characters. The key format is character. The keylist
structure is indexed. The key is a repeating group key
?ccurring four times (kc=4) at intervals of 11 characters
kg=11).

Create Data and Index Files

Execution of the program in figure 4-10 produces a data
file FLRECS and an index file FLRXIP. The CALL PUT
(XISFIT) statement causes records to be written to
FLRECS. As records are written to the data file, the index
file is autornatically created also. All references in CRM
calls identify the file by the array in which the FIT for the
data file exists. The XN value is the only direct reference
to the index file.

Obtain File Statistics

Because the EFC field is set to 3, error messages and file
statistics/notes are written to the error file. The CRMEP
control statement (shown in part A of figure 4-11) lists the
information that was written to the error file during the
creation of the file FLLRECS.

File statistics from the FSTT far the data file FLRECS and
the FSTT for the index file FLRXIP are shown in parts B
and C of figure 4-11. The following statements call the
FLSTAT utility, which reflects the file processing
performed during the execution of program MAKXIS:

e FLSTAT,FLRECS
o FLSTAT,FLRXIP

Accessing the Multiple-Index File

The program SEEFILM (shown in figure 4-12) reads an
indexed sequential file by alternate key values. The
program sets specific values for the alternate key (actor's
name) and lists all records with that value.

The data file FLRECS and its index file FLRXIP are those

created through the program in figure 4-10. Since the data
file exists, the file structure is determined from the FSTT.

Attach the Data and Index Files

Both the data file FLRECS and the index file FLRXIP must
be attached, since the data file is to be accessed by
alternate key. The index file is a mass storage permanent
file that must be preserved between jobs. It must be made
available to a job that updates the data file or reads the
data file by alternate key.

Open the Data File

The OPENM (FIT, '1-0O") opens the data file FLRECS and its
associated index file FLRXIP. The XN field must be set at
the time the program executes a call to open the data file.
Any valid method (FILE statement, FILExx call, or
STOREF call) can be used to set XN.

Establish the Alternate Key to be Used

The choice of which alternate key index is to be read
depends on the current value of the RKW, RKP, and KL
fields. When a file is opened, these fields are set from
FSTT information for the primary key. A change in values
for RKW, RKP, and KL. fields changes the index associated
with the key of variable KA during subsequent STARTM
operations.

In this example, records are to be read by specific actor
name values. The RKW, RKP, and KL fields are
immediately reset to the location of that alternate key by
STOREF,

Alternatively, if you wanted to read the entire file (with

GETN operations), you must set RKW, RKP, and KL, and
then issue a REWND call.

Establish Search Criteria

The index position is at the alternate key index that
satisfies the conditions established by the value in variable
KA and the relationship indicated by the current setting of
the REL field of the FIT. The REL field can be set to EQ
(equal to), GT (greater than); or GE (greater than or equal
to) to indicate the relationship between variable KA and
the index position. Since REL is not specified in the
example, EQ is used as the default value. The REL field is
reset to EQ at the end of each operation. If REL is set to
GT with a STOREF call, and then a CALL GET is executed,
the GT value is used.

Position the Index

STARTM execution positions the index to the alternate key
value identified in the call. It does not return a record to
the working storage area.

CALL STARTM (FIT)

Note that the first operation after new values of RKW,
RKP; and KL are stored must position to that index.
Positioning can be performed by any of the following calls:

e REWND

Rewind to the beginning of the index indicated by the
key fields.

e STARTM
Position to the start of the keylist for the value
specified in the location indicated by the KA field of
the FIT.

e GET
Position to the start of the keylist for the value
specified in the location indicated by the KA field of

the FIT. Return data record to the waorking storage
area.

60499400 B

RM NOTE
RM NOTE
RM NOTE
RM NOTE
RM NOTE
RM NOTE
RM NOTE
RM NOTE
RM NOTE

A. CRMEP Output

B. FLSTAT Output for Data File

ORGANIZATION
CREATION DATE

FILE IS MIPPED

NUMBER OF PUTS
NUMBER OF GETS
NUMBER OF DELETES ---
NUMBER OF REPLACES --
NUMBER OF GETNEXTS —--

TOTAL TRANSACTIONS

MAXIMUM RECORD SIZE 80
MINIMUM RECORD SIZE 80

CRMEP,LO,RU.
1001 ON LFN FLRECS FILE OPENED
1002 ON LFN FLRECS FILE CLOSED
1003 ON LFN FLRECS NUMBER OF INDEX LEVELS
1004 ON LFN FLRECS *#**NUMBER OF GETS THIS OPEN
1005 ON LFN FLRECS ***NUMBER OF PUTS THIS OPEN 30 -=————— 30 records were written on
1006 ON LFN FLRECS *#xNUMBER OF REPLACES THIS OPEN 0 FLRECS
1007 ON LFN FLRECS **x%*NUMBER OF DELETES THIS OPEN 0
1033 ON LFN FLRECS **xNUMBER OF GET NEXTS THIS OPEN 0
1010 ON LFN FLRECS *%%xTOTAL DISKAREA*** 512 WORDS
STATISTICS FOR FILE FLRECS
IS FLRECS has IS file organization
------ 81/02/27.
DATE OF LAST CLOSE- 81/02/27.
TIKRE OF LAST CLOSE~ 09.37.47.
COLLATION IS STANDARD
PRIMARY KEY INFORMATION
STARTING WORD POSITION =====—= 0
STARTING CHARACTER POSITION - 3 Information regarding the
TYPE —— COLLATED SYMBOLIC 28-character movie title
LENGTH IN CHARACTERS ~-===w==== 28

Thirty records written

CI0 CALLS FOR FILE
NUMBER OF READS
NUMBER OF WRITES —~--
NUMBER OF RECALLS ---
NUMBER OF REWRITES -~

NUMBER OF BLOCKS=w=====
NUMBER OF EMPTY BLOCKS-
BLOCK SIZE IN PRUS

o0oo

0O mNnNO

Block size is 6 PRU because

NUMBER OF DATA RECORDS-

FILE LENGTH IN PRUS 8
NUMBER OF INDEX LEVELS IN USE

WoO-—

0

MBL was set to 3790 characters
({6 x 640) - 50)

Block size x No. Blocks + 2 FSTT
Bx1+2)

60499400 B

Figure 4-11. Obtaining File Statistics (Sheet 1 of 2)

4-15

C. FLSTAT Output for index File

-*8TATISTICS FOR FILE FLRXIP

ORGANIZATION MIP

CREATION DATE=~——=—w= 81/02/27,
DATE OF LAST CLOSE- 81/02/27.
TIME OF LAST CLOSE- 09.37.47.

PRIMARY KEY INFORMATION
STARTING WORD POSITION —=—w== 0
STARTING CHARACTER POSITION - 3
TYPE -~ COLLATED SYMBOLIC
LENGTH IN CHARACTERS -—==-—-- 28

ALTERNATE KEY INFORMATION
CHARACTERS IN LARGEST KEY-- 11

FLRXIP is an index file

Actor's Name is 11 characters

PRIMARY KEY INFORMATION
NUMBER OF UNIQUE -- O

Two alternate key indexes with

NUMBER OF -IS- ~-- 2
NUMBER OF FIFO --0

CIO CALLS FOR FILE
NUMBER OF READS ~=---
NUMBER OF WRITES -~—-
NUMBER OF RECALLS ~—-
NUMBER OF REWRITES -—-

NN PO

NUMBER OF BLOCKS==ww====
NUMBER OF EMPTY BLOCKS-

Indexed Keylist structure

Same as data file (default)

BLOCK SIZE IN PRUS

NOOW

NUMBER OF DATA RECORDS-

Two alternate key indexes

FILE LENGTH IN PRUS 20
MAX NUMBER OF LEVEL 2 INDEX LEVELS 1
MAX NUMBER OF LEVEL 3 INDEX LEVELS 1

Block size x No. Blocks + 2 FSTT
(6x3+2)

Figure 4-11. Obtaining File Statistics (Sheet 2 of 2)

Deliver a Record to WSA

Program SEEFILM in figure 4-12 assumes interactive
program execution. Part D shows typical output. The
terminal operator is instructed to enter an ll-character
alternate key value of an actor name. That value is then
used in a call to STARTM, which positions to a keylist
within an index. A GETN call is required to return that
record to the working storage area.

During STARTM execution, the following FIT field is set:

RC Total number of records with this same
alternate key value.

KNE Key-not-equal indicator

The program SEEFILM prints the RC value for each key
value entered.

Without a check for the end of the keylist, successive
GETN calls would read through all subsequent alternate
key values in the index until the end of the index occurred.
(An attempt to read past the end of the index is an error.)
GETN can be used to read all of one index for a particular
alternate key position. GETN cannot be used to read all

indexes in the index file unless the index file is
repositioned to the second index by a call to GET,
STARTM, or REWND.

Program SEEFILM continues to ask the operator for an
alternate key value and processes the resulting data
records in a keylist until an interactive end-of-file is
encountered.

ACTUAL KEY FILES WITH MIP

The programs that follow illustrate the creation of an
actual key file and the reading of the file by alternate
key. The file processing shown is, in general, applicable to
all AAM files with MIP.

Creating A Multiple-Index File

The program MAKEIT, shown in figure 4-13, creates an
actual key file AKRECS from a sequential file INRECS.
The program establishes the FIT for the data file, specifies
the index file name, defines two alternate keys, reads a
file of input records, and writes the records to a new file.
Any job that executes MAKEIT is responsible for
preserving both the data file and the index file as
permanent files.

60499400 B

NQOS Control Statements

NOS/BE Control Statements

Job statement Job statement

USER statement ACCOUNT statement
CHARGE statement FTNS.

FTNG. ATTACH,FLRECS,ID=AAMUG
ATTACH,FILRECS ATTACH,FLRXIP,ID=AAMUG
ATTACH,FLRXIP LGO.

LGO. CRMEP,LO,RU
CRMEP,LO,RU

Input Files:

FLRECS - data file (created in program MAKXIS, figure 4-10)
FLRXIP - index file

Source Program

[Nal aoM0 [z NN el OO0 000

o0

[x]

PROGRAM SEEFILM

B T e
* THIS PROGRAM ILLUSTRATES ACCESSING AN INDEXED SEQUENTIAL =*
* FILE (FLRECS) BY A SPECIFIC ALTERNATE KEY (ACTORS NAME). *
* A VALUE FOR ACTOR NAME IS ENTERED INTERACTIVELY AND ALL =*
* RECORDS WITH THAT VALUE ARE LISTED. *
Tededdeddedededoddodododdedodrdedodede dedokedede dededededededededodededodedetededede ot doded dode dede g dededededede

IMPLICIT INTEGER (A-~1)
DIMENSION FIT(35), WSA(B), ACTORKA(2)

CALL FILEIS (FIT, 'LFN', 'FLRECS', 'XN', 'FLRXIP', 'ORG', 'NEW',=-Required

+ 'WSA', WSA,

+ 'EFC*, 3, 'DFC', 3)

SET ACTOR NAME AS THE ALTERNATE KEY TO BE USED
AND POSITION TO BEGINNING OF ACTOR INDEX

CALL OPENM (FIT, *I-0")
IF (IFETCH (FIT, "ES') .NE.) GO TO 300

CALL STOREF (FIT, 'RKP', 3)
CALL STOREF (FIT, 'KL', 11)
CALL REWND (FIT)

CALL STOREF (FIT, 'RKW', 3)}

CLEAR AND ACCEPT ACTOR'S NAME

50 p0o&0 I =1, 10
60 WSA (I) = 10H
PRINT %, * ENTER ACTOR NAME OR EOF (RETURN KEY) '

READ (%, '(A10, A2)', END = 200) ACTORKA
PRINT 900, ACTORKA

CALL STARTM (FIT, ACTORKA)
TEST FOR KEY NOT FOUND

IF (IFETCH (FIT, 'ES') .EQ. 0"506") THEN
PRINT *, 'KEY NOT FOUND®
GO TO 50
END IF

TEST FOR ANY OTHER CRM ERROR
IF (IFETCH (FIT, 'ES') .NE. 0) GO TO 300

PRINT THE NUMBER OF RECORDS FOR SPECIFIED ACTOR NAME

Optional (but recommended)

Open FLRECS and FLRXIP

The first actors-name keylist it to be
associated with subsequent STARTM
operations .

Rewind FLRECS and FLRXIP and
postion to first value in the actor index

Accept a value for actors-name

Position index file to actor's name
entered

Figure 4-12. Reading an Indexed Sequential File by Alternate Key (Sheet 1 of 2)

60499400 B

4-17

Source Program (Contd)

PRINT =, * ENTRIES IN KEYLIST ', IFETCH (FIT, 'RC")

70 CALL GETN (FIT)

IF (IFETCH (FIT, 'ES') .NE. 0) GO TO 300
PRINT 902, (WSA (OO, J =1, 8)
IF (IFETCH (FIT, 'FP') .EQ.
IF (IFETCH (FIT, ‘FP")
Do 80 I =1, 10

80 WwSA (I) = 10K

G0 TO 70

CALL CLOSEM (FIT

STOP °NORMAL TERMINATION®

PRINT 903, IFETCH (FIT, ‘ES")

CALL CLOSEM (FIT)

STOP °CRM ERROR RETURNED®

FORMAT (4X, TNAME ENTERED WAS °,

FORMAT (5X, 8A1D)

FORMAT (*Es = ', 03)

END

200

300

900
902
903

D. Typical Program OQutput

ENTER ACTOR NAME OR EOF (RETURN KEY)
? grant
NAME ENTERED WAS GRANT
ENTRIES IM KEYLIST 4
44 ARSENIC AND OLD LACE
38 BRINGING UP BABY
33 SHE DONE HIM WRONG 2 GRANT
40 THE PHILADELPHIA STORY 3 HEPBURN
ENTER ACTOR NAME OR EOF (RETURN KEY)
? dehavilland
NAME ENTERED WAS DEHAVILLAND
ENTRIES IN KEYLIST &
35 CAPTAIN BLOOD
39 DODGE CITY 2 FLYNN
39 ELIZABETH AND ESSEX 3 FLYNN
38 THE ADVENTURES OF ROBIN HOOD4 FLYNN
ENTER ACTOR NAME OR EOF (RETURN KEY)
? bad one
NAME ENTERED WAS BAD ONE
KEY NOT FOUND
ENTER ACTOR NAME OR EOF (RETURN KEY)
7?7 massey
NAME ENTERED WAS MASSEY
ENTRIES IN KEYLIST 2
43 ACTION IN THE NORTH ATLANTICZ2 MASSEY
44 ARSENIC AND OLD LACE 3 LORRE
ENTER ACTOR NAME OR EOF (RETURN KEY)
? bergman
NAME ENTERED WAS BERGMAN
ENTRIES IN KEYLIST 1
42 CASABLANCA 4 HENREID
ENTER ACTOR NAME OR EOF (RETURN KEY)
? west
NAME ENTERED WAS WEST
ENTRIES IN KEYLIST 1
33 SHE DONE HIM WRONG 2 GRANT
ENTER ACTOR NAME OR EOF (RETURN KEY)
? davis
NAME ENTERED WAS DAVIS
ENTRIES IN KEYLIST 5

3 LORRE
2 HEPBURN

2 FLYNN

46 DECEPTION 3 DAVIS
39 ELIZABETH AND ESSEX 3 FLYNN
42 NOW VOYAGER 3 HENREID
34 OF HUMAN BONDAGE 4 DAVIS
41 THE LITTLE FOXES 2 DAVIS

ENTER ACTOR NAME OR EOF (RETURN KEY)

.043 CP SECONDS EXECUTION TIME.

0100") 60 TO 50
-EQ, 0"10'") 60 TO 50

A10, A2)

GRANT
GRANT
WEST

GRANT

DEHAVILLAND
DEHAVILLAND
DAVIS
RAINS

BOGART
GRANT

BERGMAN

WEST

HENREID
DAVIS
DAVIS
HOWARD
MARSHALL

Next sequential record indicated in
keylist is placed in WSA

MASSEY

STEHWART

DEHAVILLAND
DEHAVILLANDRATHBONE

RASSEY

RAINS LORRE

RAINS
DEHAVILLAND
RAINS

PARKER HENREID

Figure 4-12. Reading an indexed Sequential File by Alternate Key (Sheet 2 of 2)

4-18

60499400

A. NOS Control Statements

Job statement
USER statement
CHARGE statement
DEFINE,AKRECS
DEFINE,MIPAK
LGO.
CRMEP(LO,RU)
FLSTAT,AKRECS
FLSTAT MIPAK

B. Input File: INRECS

Record Length 40 Characters

CAPT NEMO WRITTEN AS RECORD
SUSAN JONES WRITTEN AS RECORD
CHARLESKANE WRITTEN AS REOCRD
CANDY KANE WRITTEN AS RECORD
DAVY JONES WRITTEN AS RECORD
MRS. JONES WRITTEN AS RECORD
ROSE BUD WRITTEN AS RECORD
BIG CASTLE WRITTEN AS RECORD
MRS. NEMO WRITTEN AS RECORD
suB MARINE WRITTEN AS RECORD
XANA DU WRITTEN AS RECORD
sus ROSA WRITTEN AS RECORD

TOUGH SLEDDING WRITTEN AS RECORD
suB STANDARD WRITTEN AS RECORD
MRS. KANE WRITTEN AS RECORD
suB STITUTE WRITTEN AS RECORD
FON by WRITTEN AS RECORD

— .. —

i
7 character
First name

8 character
Second name

C. Source Program

PROGRAM MAKEIT
IMPLICIT INTEGER (A-2)

DIMENSION AKFIT (35), AKWSA
COMMON /AKLAB/ KEY

NOS/BE Control Statements

Job statement

ACCOUNT statement

FTNS.

REQUEST,AKRECS,PF
REQUEST MIPAK,PF

LGO.
CATALOG,AKRECS,ID=AAMUG
CATALOG,MIPAK,ID=AAMUG
CRMEP,LO,RU
FLSTAT,AKRECS

FLSTAT ,MIPAK

01.
02.

04.
05.
Q6.
07.
08.
09.
10.
11.
12.
13.
14.
15.
16.
17.

(4)

c

[
[
C
¢
¢

c
[

fkdkkkdkkkikdkkkikkhkhiiiikkkdldiiokkkikikiikkidiokkkkikiihkkik
#* THIS PROGRAM CREATES AN ACTUAL KEY FILE (AKRECS) FROM *
* A SEQUENTIAL FILE (INRECS). ALL RECORDS ARE THEN LISTED. *
* TWO ALTERNATE KEYS ARE DEFINED (FIRST NAME AND LAST NAME). *
* THE INDEX FILE IS NAMED MIPAK. *

Fededededokddekdekhk ki hkkdokhk Rk ki kkdkkkikikiokdkktkkikkkikdoddkdkdokddddekik

CALL FILEAK (AKFIT, 'LFN', "AKRECS', 'XN', 'MIPAK', 'ORG', 'NEW',

'RT', 'F', 'FL', 40, 'MBL', 400, 'RB', 10,
'KA', KEY, 'KL', 3, 'EMK', 'NO’,
"WSA', AKWSA,

+ 4+

——Required

‘EFC’, 3, 'DFC', 3)

Key must be in common area for
OPT=2 processing

Optional (but recommended)

60499400

Figure 4-13. Creating an Actual Key File With Multiple Keys (Sheet 1 of 2)

B

Source Program {Contd)

C OPEN FILE BEFORE ALTERNATE KEYS ARE DEFINED
C

CALL OPENM (AKFIT,°NEW')
IF (IFETCH (AKFIT, 'ES') .NE. 0) GO TO 300

Define 2 alternate keys

CALL RMKDEF (AKFIT, 0, 0, 7, 0, 'S‘, 'I')}
CALL RMKDEF (AKFIT, 0, 7, 8, 0, 'S', 'F")
OPEN (2, FILE = 'INRECS")

CRM is to generate primary keys

100 KEY = Q
READ (2, "(4A10)", END = 200) AKWSA

Write a record to AKRECS

CALL PUT (AKFIT)
IF (IFETCH (AKFIT, "ES®) .NE. 0) GO 7O 300
GO TO 100

200 CALL CLOSEM (AKFIT)

¢

C REOPEN FILE TO SEE WHAT IS THERE

C

CALL OPENM (AKFIT,°®INPUT')
IF (IFETCH (AKFIT, 'ES') .NE. 0) GO TO 300
CALL REWND (AKFIT)
250 CALL GETN (AKFIT)
IF (IFETCH (AKFIT, "ES*') .NE. 0) THEN
PRINT 902, IFETCH (AKFIT, °ES")

Check for non-zero error status

PRINT 900, (AKWSA (J), I = 1, 4), KEY
CALL CLOSEM (AKFIT)
STOP *CRM ERROR RETURNED®
END IF
IF (IFETCH (AKFIT, 'FP') .NE. 0"20") THEM
CALL CLOSEM (AKFIT)
STOP
END IF
PRINT 901, CAKWSA (J), J= 1, &)
60 TO 250
300 PRINT 902, IFETCH (AKFIT, "ES®)
CALL CLOSEM (AKFIT)
STOP 'CRM ERROR RETURNED®
900 FORMAT (*RECORD IS ', 4A10, 'KEY IS ', 010)
901 FORMAT (5X, 4A10)
902 FORMAT (' ES = ', 03)
END

D. Output Files:

AKRECS - data file {same as input file)
MIPAK - index file

Check for unsuccessful return of

record to WSA

Figure 4-13. Creating an Actual Key File With Muitiple Keys (Sheet 2 of 2)

Define File Names

The actual key file to be created is given the logical file
name AKRECS. Its FIT is to be constructed in the array
AKFIT, which is dimensioned to 35 words as required for
all FITs.

The index file to be created is given the logical file name
MIPAK. You must specify the XN field when creating a
file with alternate keys. Notice that XN is the only direct
reference you need for the index file. The file is created
automatically by MIP.

The first line of the FILEAK call specifies the FIT name
(AKFIT), data file name (AKRECS), the index file name
(MIPAK), and extended AAM file organizatin (NEW).

CALL FILEAK (AKFIT, 'LFN\, 'AKRECS', 'XN,
'MIPAK', 'ORG!, 'NEW!',

Set Additional FIT Fields

Input data records exist on a file INRECS (shown in part B
of figure 4-13). The records have a fixed length of 40
characters. The file has CZ format (Z-type records and
C-type blocking). Any other structure would require a
FILE statement specifying the BT and RT fields.

The second line of the FILEAK call specifies the record
structure for the output file. If MBL and RB are not
specified, default values would be calculated by AAM.

RT, ¥, 'FLY, 40, 'MBL', 400, 'RB', 10,
The third line of the FILEAK call defines a nonembedded
primary key with the name KEY and length 3. Since the

primary key value is set to zero, AAM generates the key
values when the file is created.

KA KEY, "KLY, 3, 'EMK!', 'NO!

60499400 B

The working storage area from which AAM writes the
record to the file is defined in the FILEAK call to be the

four words of AKWSA.
'WSA!, AKWSA

Characteristics of the index file can be specified through
the FIT and through the RMKDEF calls that specify
alternate key positions. The file name is indicated through
the XN field of the FIT. In the absence of an XBS field
setting, the size of the blocks in the index file and in the
data file is the same.

The program shown in figure 4-13 requires two RMKDEF
calls to define two alternate keys. RMKDEF calls must be
executed ‘after the file is opened but before any records
are written to the file. These calls have the same
parameters as the RMKDEF directives of the MIPGEN
utility (Refer to figure 4-8).

The first RMKDEF directive defines the first name in the
record as an alternate key:

CALL RMKDEF (AKFIT, 0, 0, 7, 0, 'S, 'T)

This call specifies word 0, character 0 as the beginning
location of the key. Key length is defined as seven
characters. The key format is character ('S'). The keylist
structure is indexed ('T).

The second RMKDEF directive defines the second name in
the record as an alternate key:

CALL RMKDEF (AKFIT, 0, 7, 8, 0, 'S', 'F")
This call specifies word 0, character 7 as the beginning
location of the key. Key length is defined as eight

characters. The key format is character ('S"). The keylist
structure is first-in-first-out ('F".

Create Data and Index Files

Execution of the program in figure 4-13 produces a data
file AKRECS and an index file MIPAK. The CALL PUT
(AKFIT) statement causes records to be written to
AKRECS. As records are written to the data file, the
index file is automatically created. All references in CRM
calls identify the file by the array in which the FIT for the
data file exists. The XN value is the only direct reference
to the index file.

Obtain File Statistics

File statistics from the FSTT for the data file AKRECS
and the FSTT for the index file MIPAK are shown in
figure 4-14. The following statements call the FLSTAT
utility, which reflects the file processing performed during
the execution of the program MAKEIT.

e FLSTAT,AKRECS

e FLSTAT,MIPAK

Accessing the Multiple-Index File

The program CINDX (shown in figure 4-15) reads an actual
key file first by its primary key and then by each of its
alternate keys. Three passes are made through the file and
all records are listed each time.

60499400 B

The data file AKRECS and its index file MIPAK are those
created through the program in figure 4-13. Since the data
file exists, the file structure can be determined from the

FSTT.

Attach the Data and Index Files

Both the data file AKRECS and the index file MIPAK must
be attached, since the data file is to be accessed by
alternate key. The index file is a mass storage permanent
file that must be preserved between jobs. It must be made
available to a job that updates the data file or reads the

data file by alternate key.

Reading The File by Primary Key

Since AAM initially sets the RKW, RKP, and KL values to
those of the primary key (and because no GET, STARTM,
or REWND has intervened since the OPENM), the first
GETN call in the program (figure 4-15) reads records by
primary key.

Qutput from the first pass through the file is shown in part
D of the figure. Notice that the value of the FP field is
20g after each GETN. This value indicates that a record
has been successfully returned to the working storage
area., When FP equals 100g, the end-of-information on

AKRECS has been reached.

Reading The File by Alternate Keys

Resetting RKW, RKP, and KL values, establishes first
name as the alternate key to be used. A REWND is
necessary to record this change of key and to position the
index file MIPAK to its beginning. The first entry in the
first-name index becomes the key of reference. Records
are then read sequentially (as positioned in the index) by
first name with the GETN call.

Part E of figure 4-15 shows the order in which records
exist in the first-name key index. Notice that the value of
the FP field after each GETN is either 10g or 20g. A
value of 20g indicates that a record has been sucessfully
read and returned to the working storage area. A value of
10g indicates that, in addition to a successful read, the
next first name value is different from the current first
name value (that is, the end of the keylist has been
reached).

For duplicate first name values (such as MRS.), entries
appear in sorted order according to primary key value
(record number), This is due to the I value, indicating
indexed, of the ks parameter on the RMKDEF call when
the file was created.

The second name is then established as the key to be used
next by setting new RKW, RKP, and KL values and issuing
a REWND.

Part F of figure 4-15 shows the order in which records
exist in the second name key index. For duplicate key
values, entries appear in the order in which data records
were written to the file. This is due to the F value
(indicating - first-in-first-out) of the ks parameter of the
RMKDEF call when the file was created.

4-21

/FLSTAT ,AKRECS

STATISTICS FOR FILE AKRECS
ORGANIZATION-=—=—=== AK
CREATION DATE------ 81/03/06.
DATE OF LAST CLOSE- 81/03/06.
TIME OF LAST CLOSE- 11.07.31.

FILE IS MIPPED
PRIMARY KEY INFORMATION

STARTING WORD POSITION —=~w=w=- 0
STARTING CHARACTER POSITION - 10
LENGTH IN CHARACTERS -====——= 3

MAXIMUM RECORD SIZE 40
MINIMUM RECORD SIZE 40

TOTAL TRANSACTIONS
NUMBER OF PUTS ====—- 17
NUMBER OF GETS —====== 0
NUMBER OF DELETES --- 0
NUMBER OF REPLACES -~ O
NUMBER OF GETNEXTS -- 17

CIO CALLS FOR FILE
NUMBER OF READS ===—= 3
NUMBER OF WRITES ==-- 3
NUMBER OF RECALLS --- 0
NUMBER OF REWRITES =- 2

NUMBER OF BLOCKS~—===== 2

NUMBER OF EMPTY BLOCKS- O

BLOCK SIZE IN PRUS—-——-- 1

NUMBER OF DATA RECORDS- 17

NUWBER OF RECORDS PER BLOCK --=-- 10
NUMBER OF OVERFLOW RECORDS —=——-- 4]

FILE LENGTH IN PRUS 4

/FLSTAT ,MIPAK

STATISTICS FOR FILE MIPAK
ORGANIZATION====~ == RIP
CREATION DATE<=—-=-- 81/03/06.

DATE OF LAST CLOSE~ 81/03/06.
TIME OF LAST CLOSE- 11.07.31.

PRIMARY KEY INFORMATION
KEY IS NOT EMBEDDED
TYPE == UNSIGNED
LENGTH IN CHARACTERS ====m=w=== 3

ALTERNATE KEY INFORMATION
CHARACTERS IN LARGEST KEY-- 8

PRIMARY KEY INFORMATION
NUMBER OF UNIQUE -- 0
NUMBER OF <IS= == 1
NUMBER OF FIFO -- 1

CIO CALLS FOR FILE

NUMBER OF READS —w=-—- 9
NUMBER OF WRITES —-—- 4
NUMBER OF RECALLS === 2

NUMBER OF REWRITES -- 3

NUMBER OF BLOCKS=======
NUMBER OF EMPTY BLOCKS-
BLOCK SIZE IN PRUS==w=-
NUMBER OF DATA RECORDS=

N =0OW

FILE LENGTH IN PRUS 5

MAX NUMBER OF LEVEL 2 INDEX LEVELS 1
MAX NUMBER OF LEVEL 3 INDEX LEVELS 1

Figure 4-14. Obtaining File Statistics

Reading the File by Relative Alternate Key Value

In program ALTREL (shown in figure 4-16) interactive
program execution is assumed. You are instructed to enter
a 7-character alternate key value (first name). That value
is then used in a STARTM call which positions the index
file for the subsequent GETN call.

Search criteria are established by setting the REL field
values to EQ, GT, or GE. When REL is set to EQ (the
default), all read operations access records whose alternate
key value is equal to the value at the location specified by
KA. Also, if the specified value cannot be found in the
alternate key index, an error results.

When REL is set to a value other than EQ, however, the
record referenced by a STARTM call is one that satisfies

4-22

the condition established by REL. Any value in the
location established by KA that does not exactly
correspond to an alternate key value normally does not
produce an error. Rather, the value in the key location and
the REL field establish a relationship, and the first record"
in the index that satisfies the relationship is returned to
the working storage area. A key-not-found error exists
only if no record in the index satisfies the relationship (and
not simply the value) indicated through KA.

The REL field, unlike most fields, does not retain its value
across file operations. It is reset to EQ at the end of each
operation.

Program ALTREL continues to ask for an alternate key

value and an REL value until an interactive end-of-file is
encountered.

60499400 B

A, NOS Control Statements

NOS/BE Control Statements

OO0 OO0

100

¢
c
o

250

*

*
*

Job statement Job statement

USER statement ACCOUNT statement
CHARGE statement FTNS.

FTNS. ATTACH,AKRECS,ID=AAMUG
ATTACH,AKRECS ATTACH,MIPAK,ID=AAMU
ATTACH,MIPAK LGO. .
LGO. CRMEP,LO,RU

CRMEP,LO,RU

B. Input Files:

AKRECS - data file (created in program MAKEIT, figure 4-13)
MIPAK - index file

C. Source Program

PROGRAM CINDX

Fkfedodfedod dddedekddohdkdd ke dedok itk kid e kkkdokfkk ke ik kkkkhkikikkkiokikk

* THIS PROGRAM ILLUSTRATES ACCESSING AN ACTUAL KEY FILE
* (AKRECS) BY EACH OF ITS THREE KEYS:

PRIMARY KEY = CRM-ASSIGNED RECORD NUMBER
1ST ALTERNATE KEY = FIRST NAME
2ND ALTERNATE KEY = LAST NAME

%* % % ¥ %

e de e de e o de e e de Jeode dode e do g e de dededode ke dedede deSrdede ke dedededededede ke dodedededededokodeodokoke ek ke kdkokk

IMPLICIT INTEGER (A-2)
DIMENSION FIT(35), WSA(5)
CALL FILEAK (FIT, 'LFN', 'AKRECS', 'XN', "MIPAK', 'ORG', 'NEW',

+ 'WSA®, WSA,
+ KA', KEY,
+ 'EFC’, 3, 'DFC', 3)

CALL OPENM (FIT, 'INPUT®)
IF (IFETCH (FIT, 'ES') .NE. 0) 60 TO 500
PRINT *, ' +++++++ RECORDS FROM PRIMARY KEY ACCESS ++++++d ¥
CALL GETN (FIT)
IF (IFETCH (FIT, 'ES') .NE. 0) THEN

PRINT 902, IFETCH (FIT, 'ES")

CALL CLOSEM (FIT)

STOP 'CRM ERROR RETURNED'

END IF
IF (IFETCH (FIT, 'FP') .EQ. 0"100") GO TO 200
PRINT 901, (WSA (J), J = 1, 4), IFETCH (FIT, 'FP')
GO0 TO 100

200 CONTINUE

ESTABLISH FIRST NAME AS THE KEY TO BE USED

CALL STOREF (FIT, 'RKW', 0)
CALL STOREF (FIT, 'RKP', O)
CALL STOREF (FIT, 'KL', 7)
PRINT *, ° +++++++ RECORDS FROM FIRST NAME KEY ACCESS #++++++!
CALL REWND (FIT)
CALL GETN (FIT)
IF (IFETCH (FIT, 'ES') .NE. 0) THEN
PRINT 902, IFETCH (FIT, ‘ES")
CALL CLOSEM (FIT)
STOP 'CRM ERROR RETURNED'
END IF
IF (IFETCH (FIT, 'FP*) .EQ. 0"100") GO ToO 300
PRINT 901, (WSA (J), J =1, 4), IFETCH (FIT, 'FP")
GO TO 250

300 CONTINUE

60499400 B

Figure 4-15. Reading an Actual Key File by Primary and Alternate Keys {Sheet 1 of 3)

4-23

Source Program (Contd)

c

END

D. Output

R e Y
RECORD
RECORD
RECORD
RECORD
RECORD
RECORD
RECORD
RECORD
RECORD
RECORD
RECORD
RECORD
RECORD
RECORD
RECORD
RECORD
RECORD

L (T T I (O T I (O T O T T I T

b+
RECORD
RECORD
RECORD
RECORD
RECORD
RECORD
RECORD
RECORD
RECORD
RECORD
RECORD
RECORD
RECORD
RECORD
RECORD

RECORD
RECORD

LU T | O | O (IO T R | O T I TR T}

CALL STOREF (FIT, 'RKW', O
CALL STOREF (FIT, 'RKP', 7)
CALL STOREF (FIT, 'KL®, 8)
PRINT *, ' +++++++ RECORDS FROM SECOND NAME KEY ACCESS ++++tit?
CALL REWND (FIT)
350 CALL GETN (FIT)
IF (IFETCH (FIT, 'ES®) .NE. 0) THEN
PRINT 902, IFETCH (FIT, °ES")
CALL CLOSEM (FIT)
STOP °CRM ERROR RETURNED®
END IF
IF (IFETCH (FIT, 'FP') .EQ. 0"100™ GO TO 400
PRINT 901, (WSA (M), M = 1, 4), IFETCH (FIT, 'FP')
GO TO 350
400 CALL CLOSEM (FIT)
STOP
901 FORMAT (' RECORD = *, 4A10, *
500 PRINT 902, ES
CALL CLOSEM (FIT)
STOP °CRM ERROR RETURNED'
902 FORMAT ('ES = ', 03)

FP =

C ESTABLISH SECOND NAME AS THE KEY TO BE USED

', 03)

RECORDS FROM PRIMARY KEY ACCESS ++++it+

CAPT NEMO
SUSAN JONES
CHARLESKANE
CANDY KANE
DAVY JONES
MRS. JONES
ROSE BUD
BIG CASTLE
MRS. NEMO
suB MARINE
XANA DU

suB ROSA

TOUGH SLEDDING

suB STANDARD
MRS. KANE

suB STITUTE
FON buU

E. OQutput (Contd)

WRITTEN
WRITTEN
WRITTEN
WRITTEN
WRITTEN
WRITTEN
WRITTEN
WRITTEN
WRITTEN
WRITTEN
WRITTEN
WRITTEN
WRITTEN
WRITTEN
WRITTEN
WRITTEN
WRITTEN

RECORDS FROM FIRST NAME

BIG CASTLE
CANDY KANE
CAPT NEMO
CHARLESKANE
DAVY JONES
FON bu

MRS. JONES
MRS. NEMO
MRS. KANE
ROSE BUD

suB MARINE
suB ROSA
suB STANDARD
SuB STITUTE

SUSAN JONES

TOUGH SLEDDING
XANA DU

WRITTEN
WRITTEN
WRITTEN
WRITTEN
WRITTEN
WRITTEN
WRITTEN
WRITTEN
WRITTEN
WRITTEN
WRITTEN
WRITTEN
WRITTEN
WRITTEN
WRITTEN

WRITTEN
WRITTEN

AS
AS
AS
AS
AS
AS
AS
AS
AS
AS
AS
AS
AS
AS
As
AS
AS

KEY ACCESS +++++++

AS
AS
AS
AS
AS
AS
AS
AS
AS
AS
AS
AS
AS
AS
AS

AS
AS

RECORD
RECORD
REOCRD
RECORD
RECORD
RECORD
RECORD
RECORD
RECORD
RECORD
RECORD
RECORD
RECORD
RECORD
RECORD
RECORD
RECORD

RECORD
RECORD
RECORD
REOCRD
RECORD
RECORD
RECORD
RECORD
RECORD
RECORD
RECORD
RECORD
RECORD
RECORD
RECORD

RECORD
RECORD

01.
0z2.
03.
04.
05.
06.
07.
08.
09.
10.
11.
12.
13.
14.
15.
16.
i7.

08.
04.
01.
03.
05.
17.
06.
09.
15.
07.
10.
12.
14,
16.
02.

13.
11.

LU | T T O T T 1 T I TR [' (1]

LI T T S (O 1 T O LA T 1S 1A 1 IO 1}

020
Q20
020
020
020
020
020
020
020
020
020
020
020
020
020
020
020

010
010
010
010
010
010
020
020
010
010
020
020
020
010
010

010
010

020 indicates a record successfully returned
to WSA

010 indicates a successful read and the last
record in keylist

[

Notice that these records are not the last
} in the keylist

Figure 4-15. Reading an Actual Key File by Primary and Alternate Keys {Sheet 2 of 3)

60499400 B

F. Output {Contd)
+++++++ RECORDS FROM SECOND NAME KEY ACCESS ++é++++
RECORD = ROSE BUD WRITTEN AS RECORD 07.
RECORD = BIG CASTLE WRITTEN AS RECORD 0B.
RECORD = XANA WRITTEN AS RECORD 11.
RECORD = FON WRITTEN AS RECORD 17.
RECORD = SUSAN [JONES| WRITTEN AS RECORD 02.
RECORD = DAVY |JONES| WRITTEN AS RECORD 05.
RECORD = MRS. |JONES| WRITTEN AS RECORD 06.
RECORD = CHARLESKANE WRITTEN AS REOCRD 03.
RECORD = CANDY |KANE WRITTEN AS RECORD 04.
RECORD = MRS. [KANE | WRITTEN AS RECORD 15.
RECORD = SUB MARINE WRITTEN AS RECORD 10.
RECORD = CAPT [NEMO WRITTEN AS RECORD 01.
RECORD = MRS. |NEMO WRITTEN AS RECORD 09.
RECORD = SUB ROSA WRITTEN AS RECORD 12.
RECORD = TOUGH SLEDDING WRITTEN AS RECORD 13.
RECORD = SUB STANDARD WRITTEN AS RECORD 14.
RECORD = SUB STITUTE WRITTEN AS RECORD 16.

FP = 010
FP = 010
FP = 020
FP = 010
FP = 020 }
FP = 020
::'; - g;g }/ Not last record in keylist
FP = 020
FP = 010
FP = 010
FP = 020
FP = 010
FP = 010
FP = 010
FP = 010
FP = 010

Figure 4-15. Reading an Actual Key File by Primary and Alternate Keys (Sheet 3 of 3)

INDEX-FILE-ONLY OPERATIONS

As a FORTRAN or COMPASS programmer, you can access
the index file independent of the data file. Operations on
the data file return records to the working storage area.
Index-file-only operations, on the other hand, ignore the
data file and return only index information to the working
storage area. (During data file operations, the index file
might be updated. Although this is an internal operation on
the index file, it is not included when the term index file
operation is used in this section.)

Two types of information can be obtained from the index
file.

e Count Information
Count information includes the following:

The number of records with a particular alternate
key value.

The number of records within a range of alternate
key values.

e Primary Key Values

Either of the following can be returned to the working
storage area:

The primary keys of records having a particular
alternate key value.

The primary keys of records having a range of
alternate key values.

For example (referring to the data file shown in
figure 4-1), you could obtain the following type of
information using only index file operations:

e The number of people in New York

e The number of people between the ages of 21 and 65

60499400 B

¢ A list of names of all people in Seattle

e A list of names of all people between the ages of 60
and 70

NDX SETTINGS

The NDX field of the data file FIT controls whether the
data file or the index file is accessed in response to a CRM
call, as follows:

e When NDX is set to NO, all information returned to
the program references the data file. This is the
normal mode of operation.

® When NDX is set to YES, the program references only
the index file.

Data file and index file operations can be intermixed by
changing the value in the NDX field between CRM calls, if
NDX was set to NO when OPENM was issued.

‘You can set the NDX field of the FIT through a call to

STOREF, through a FILExx call, or through a FILE control
statement.

If NDX is set to YES before a call to OPENM, the system
opens only the index file. In this instance, the data file
need not be attached to the job; and if it is attached, it is
not opened. NDX must not be switched to NO after such
an OPENM, If NDX=NO at the open call, the index file
must be present, and the system opens both files.
Subsequent setting of NDX=YES restricts access to the
index file only.

Whenever the data file has been opened, NDX should be set
to NO before the call to CLOSEM. In the absence of
NDX=NQO, only the index file is closed normally.

4-25

A. NOS Control Statements NOS/BE Control Statements

Job statement Job statement

USER statement ACCOUNT statement
CHARGE statement FTNB.

FTNS. ATTACH,AKRECS,ID=AAMUG
ATTACH,AKRECS ATTACH MIPAK,ID=AAMUG
ATTACH,MIPAK LGO.

LGO. CRMEP,LO,RU

CRMEP,LO,RU

B. Input Files

AKRECS - data file (created in program MAKEIT, figure 4-13)
MIPAK - index file

C. Source Program

PROGRAM ALTREL

Frdedrde ok ek kbR dkddkidihik bk kiok kklohldkdioddkhddk ki kidriiot ik ki iohd

¢

[L St L 14
C * THIS PROGRAM ILLUSTRATES ACCESSING AN AK FILE (AKRECS) *
C * BY A SPECIFIC KEY (FIRST NAME). A VALUE FOR THE FIRST *
C = MAME IS ENTERED INTERACTIVELY; A REL VALUE OF EQ, GE, OR GT*
C * IS ENTERED. ALL RECORDS SATISFYING THE RELATIONSHIP *
C = ARE LISTED. *
¢

c

IMPLICIT INTEGER (A-2)
DIMENSION FIT(35), WSA(5)
CALL FILEAK (FIT, °"LFN°, 'AKRECS®, °XN°, 'WIPAK', °"ORG®, "NEW®°,

+ KA, KEY,
+ 'WSA', WSA,
+ YEFCY, 3, °BFC', 3)

CALL OPENM (FIT, 'INPUTY)
IF (IFETCH (FIT, °ES®) .NE. 0) GO TO 850

©

C ESTABLISH FIRST NAME AS THE KEY TO BE USED

CALL STOREF (FIT, °RKW®Y, 0)l

CALL STOREF (FIT, °RKP°, O)
CALL STOREF (FIT, "KL', 7 g
100 PRINT #, ' ENTER 7 CHARACTER ALTERNATE KEY'®

READ (*, '(A7)', END = 800) KEY
PRINT #, ' ENTER REL VALUE EQ, GE OR GT®

READ (%, '(A2)') REL
PRINT 903, KEY, REL

SET RELATION AND KEY VALUE

OO0

CALL STOREF (FIT, 'REL®, REL)

CALL STARTM (FIT)

TEST FOR KEY NOT FOUND

o0

IF (IFETCH (FIT, "ES') .NE. 0"506") THEN
PRINT *, ' KEY NOT FOUND'
G0 1O 100
END IF

TEST FOR ANY OTHER CRM ERROR

OO0

IF (IFETCH (FIT, "ES') .NE. 0) GO TO 850

First name index will be used for
subsequent GETN

Accept a first name value

Accept a REL value

Set REL field
Pasition index to the first name
value entered

Figure 4-16. Reading an Actual Key File by Relative Alternate Key Value (Sheet 1 of 2)

4-26

60499400

Source Program (Contd)

C PRINT THE NUMBER OF RECORDS SATISFYING THE RELATIONSHIP

¢
RC = IFETCH (FIT, 'RCY)
PRINT *, ' RC FROM STARTM IS ', RC
DO 200 I = 1, RC

CALL GETN (FIT)
IF (IFETCH (FIT, 'ES*') .NE. 0) 60 TO 850

IF (IFETCH (FIT, 'FP') .EQ. 0'00™) GO TO 100

PRINT 901, (WSA ¢J), 4 =1, &)
200 CONTINUE

G0 TO 100
800 CONTINUE

PROCESS AS DESIRED

OO0

CALL CLOSEM (FIT)
STOP ‘NORMAL TERMINATION®
850 PRINT 902, IFETCH (FIT, "ES')
CALL CLOSEM (FIT)
STOP "CRM ERROR RETURNED®
901 FORMAT (5X, 4A10)
902 FORMAT (' ES = °, 03)
903 FORMAT (' KEY ENTERED WAS ', A7, ' REL WAS
END

D. Typical Qutput From Execution

ENTER 7 CHARACTER ALTERNATE KEY
? capt
ENTER REL VALUE EQ, GE OR GT
? eq
KEY ENTERED WAS CAPT REL WAS EQ
RC FROM STARTM IS 1
CAPT NEMO WRITTEN AS RECORD 01.
ENTER 7 CHARACTER ALTERNATE KEY
? Lloooooo
ENTER REL VALUE EQ, GE OR GT
? ge
KEY ENTERED WAS LO00000 REL WAS GE
RC FROM STARTM 1S 3
MRS. JONES WRITTEN AS RECORD 06.
MRS. NEMO WRITTEN AS RECORD Q9.
MRS. KANE WRITTEN AS RECORD 15.
ENTER 7 CHARACTER ALTERNATE KEY
? tough
ENTER REL VALUE EQ, GE OR GT
? gt .
KEY ENTERED WAS TOUGH REL WAS GT
RC FROM STARTM IS 1
XANA by WRITTEN AS RECORD 11.
ENTER 7 CHARACTER ALTERNATE KEY
? eopopop
ENTER REL VALUE EQ, GE OR GT
? eq
KEY ENTERED WAS EOPOPOP REL WAS EQ
KEY NOT FOUND
ENTER 7 CHARACTER ALTERNATE KEY
? fon
ENTER REL VALUE EQ, GE OR GT
? ge
KEY ENTERED WAS FON REL WAS GE
RC FROM STARTM IS 1
FON] WRITTEN AS RECORD 17.
ENTER 7 CHARACTER ALTERNATE KEY
2
.042 CP SECONDS EXECUTION TIME.

SET ANOTHER ALTERNATE KEY IN RKW, RKP, AND KL
POSITION INDEX BY GET, REWND, OR STARTM

', A2)

Return a record

Test for end-of-information

Figure 4-16. Reading an Actual Key File by Relative Alternate Key Value (Sheet 2 of 2)

60499400 B

4-27

When the NDX field is set to YES and only the index file is
accessed:

o Keylists, rather than data records, are returned to the
working storage area.

e File updating operations are not possible, since the
data file is not necessarily attached to the jab.

e The FP field has these meanings:

0 The working storage area has been filled,
but the end of the keylist has not been
encountered.

10g The entire keylist has been delivered to
the working storage area.

100g The end of the index has been
encountered.

Notice that these FP values are not the same as those
returned when NDX=NO.

e GETN and SKIP point to key values and use the REL
field. (These calls function differently when
NDX=NQ.)

Generally, subroutines have the following uses for index
file operations:

e For count retrieval operations

STARTM retrieves the count of the number of records
with the specified alternate key value. The FIT field
that shows the count is RC.

STARTM/REWND followed by SKIP retrieves the
count of the number of records in a range of alternate
key values. You can set the low end of the range to
the start of the index, or to either an exclusive or
inclusive alternate key value. The high end of the
range can be set to the end of the index, or to either
an inclusive or exclusive alternate key value. The FIT
field that shows the count in a range is RL.

& For keylist retrieval operations

STARTM/REWND followed by GETN retrieves the
keylist for a range of alternate key values. GETN
terminates on the KA and REL condition established.
No keylist entries are transferred to the working
storage area if KA and REL are the same for a GETN
as for the preceding STARTM, for this would indicate
a range whose end coincides with its beginning.

Count information and primary key values returned are
discussed separately in this section. One operation can
retrieve both types of information.

Table 4-2 summarizes subroutine usage and the meaningful
FIT fields.

The RKW, RKP, and KL field values establish the
particular alternate or primary key on which the operation
occurs.

RETRIEVING RANGE COUNT INFORMATION

The number of records with a particular alternate key
value, or range of values, is one of the two types of
information that can be retrieved from the index file. The
NDX field must first be set to YES.

4-28

The subroutines to be called and the use of FIT fields differ
depending on whether the information to be retrieved is for
a single alternate key value or a range of values.

Single Alternate Key Count

The STARTM call retrieves the number of records with a
particular alternate key value. At the time of the
STARTM call, the REL field of the FIT normally is set to
EQ. The value of the alternate key should be in the
variable established by the KA and KP fields of the FIT.

For count retrieval operations, major keys are not
applicable.

In response to STARTM, MIP positions the index and sets
the RC and KNE fields to reflect that position. Since REL
is EQ, the KA variable should contain the value of an
existing alternate key. In this instance, the RC field of the
FIT reflects the number of entries in the keylist for the
alternate key value at KA.

If the alternate key value at KA does not exist within the
index, however, an error situation exists.

At the conclusion of STARTM, MIP sets the KNE (when
REL is GE) and RC fields:

KNE Key-not-equal indicator

0 The value of the key at KA matches that of
an alternate key in the index, and the index
is positioned to that keylist.

1 The value of the key at KA could not be
found within the index. The index paosition
is at the next higher alternate key value
(might also be the end of the index).

RC Count of number of entries for the keylist at
the current file position. This is the desired
count only when KNE is 0.

Range of Alternate Key Count

The number of records containing any of a range of
alternate key values is obtained by the following procedure:

@ Establish the low end of the range in one of two ways.

REWND call to position to the beginning of the
index.

STARTM call with an alternate key value in
variable KA and the REL field of the FIT set to
GE, GT, or EQ.

e Establish the high end of the range in one of two ways.
Reset value in KA and set REL to GE, GT, or EQ.
Indicate end of index by setting KA to 0.

e Call SKIP with a skip count of 0.

CALL SKIP(fit,0)
In response to the SKIP call, the index position changes
until the condition established by REL and KA is met. The

position change must always be forward. As with any index
file operation, you must be familiar with key values.

60499400 B

abueu uy

Unod
w40 juad pue eAaLJlad

S3LUIUB JO JBqUNN suoN 19°19 3junod JoJ pus ybtry 38§ dIs
patisiies
SL T3¥/yA Meu UOLILPUOD TIU/WM
LL3un Jo 3wty Mau pue WIYYIS 483de
TuW 03 LLL4 | 39°19 pead 1si|Aay anuiiuo)
NL3D Sty uo ysM
01 paJusjsuedy 139 49340
S8tJ3us jO JIqUNN Td+ =T 19 pead 3sL{Ad3 8nuiijuo) NL3D
J4=1d
uayy (padsaaigsp
skoy Aaewrad (paJaaL|ap 239 dwod
0 9stmJuayjo tLe “re°L) shkay |Le jou SL J3jsuedy
{pasdsysuedy 0T=d4 31 139 f*3°1) 0=d4 41| 3sLihey [Liun
B840 SILJUIUD SLY3 paJJdjsuedl K3y patstoads J40y 40 JhWLL
LLe JL O4dZUON 7Y Se BWeS |SILJAIUB JO JBQUNN SILJIIUS JO JBQUNN oW 03 LLLd b3 {asLifAey abuLs aasL438Y 139
1 st LeABLUYaL 3SEL
shempe INY -A3) 4O |BABLJI34 JUNOD
0] ‘03=13y 41 9°19 Joy abued pua Mol 38§
punoy)
jou b3 T |Aey pariioeds Joy
punoj d3 0 | $9LJIUD JO UBqUINN auoy 03 LeAaLJ3a4 Junod 3ibulg WLYVIS
dd q1d Rt} 3NA i sanjep
109443 VSM 134 asn auLlnoagng
393443 PL8td 114 91 qL550d
S3A=XAN N3HM SNOILYY3d0 3714 X3IOANI ‘"¢~ I8yl

4-29

60499400 B

At the end of this sequence, the RL field of the FIT
reflects the number of entries that has been skipped. (In
contrast, the count for a single key value is returned to
RC.) The RL count excludes the number of entries in
which REL and KA terminate the skip.

Other FIT fields at the end of the skip operation reflect
the current index position, which is after the rarge
indicated.

Both the low end and the high end of the range can be set
by KA and REL. It is important to note that the REL and
KA. relationship at ‘the beginning of the range is not
interpreted the same as at the end of the range.

At the low end of the range, index position is as follows:

GE Index position is at the beginning of the keylist
for any value specified for KA. (RL includes
KA value keylist if it exists.)

GT Index- position is at the beginning of the keylist
after that specified by KA., (RL excludes KA
value keylist.)

At the high end of the range, the SKIP operation
terminates when the next alternate key in the index
satisfies the condition specified by KA and REL. At the
high end of the range, index position is as follows:

GE Index position is at the beginning of the keylist
for any alternate key value at KA. (RL does
not include the primary keys for the value at
KA.) :

GT The index position is at the beginning of the
keylist for the next higher alternate key value
than is specified by KA. (RL includes the
primary keys for the value at KA if it exists.)

If KA is set to O for the high end of the range, all keylists
through the end of the index are included in the RL count.

The alternate key value for the high end of the range must
be greater than the value for the beginning of the range. A
wrap-around search does not occur. Rather, when the
values are not in relative order, RL reflects the number of
primary keys between the first KA/REL specified and the
end of the index. No error condition is indicated. You
have full responsibility for knowing which of two alternate
key values is higher.

Example of Range Count Retrieval

Program RGREAD in figure 4-17 illustrates the obtaining
of index information for a range of key values. The
program uses index file FLRXIP (created in figure 4-10).

READING KEYLISTS

The keylist read operations return primary key values to
the working storage area. The operation requires the NDX
field of the FIT to be set to YES.

Format of the primary key entries returned to the working
storage area depends on the key type specified on an
RMKDEF directive or call. If the key type is symbolic or
uncollated, the primary key is returned left-justified with
blank fill in as many words as required by key length. If
the key type is integer, a 60-bit integer is returned.

4-30

As with all other multiple index file operations, the current
values of RKW, RKP, and KL establish the particular index
within the index file.

You must control the working storage area length through
the MRL field of the FIT. It must be at least long enough
to contain one primary key value. The value is rounded up
to an integral number of words.

The operations required to read keylists depend on whether
you are retrieving a single keylist or a range of keylists.

Single Keylist Read

A STARTM call sets an alternate key value to be used in
the retrieval of one keylist. The keylist associated with a
single alternate key value is returned to the working
storage area through a call to GETN. Parameters of the
call are the same as for read of a data record, except that
neither the major key nor the record length parameter is
applicable. At the time of the GETN call, the REL field of
the FIT should be set to EQ.

In response to GETN, MIP returns the keylist for the
alternate key value in the variable indicated by the KA and
KP fields of the FIT. Since REL is EQ, the value of an
existing alternate key should have been specified.

If no alternate key value in the index matches that in the
variable KA, an error situation exists. In this instance,
MIP sets the KNE field of the FIT to 1 to indicate that a
key match was not found.

For a GETN operation that reads a keylist, transfer of
entries to the working storage area ends when one of the
following conditions occurs:

@ One entire keylist has been transferred.

e The working storage area is filled, as established by
the MRL field.

If the entire keylist has been transferred, the FP field has
a value of 10g. (The FP might have a value of 100g if
the end of the keylist is also the end of the index.)

If the entire keylist has not been transferred, the FP field
has a value of 0. In this instance, you must set REL to GT
and call GETN to read the remaining entries in the keylist.

Transfer of entries from the keylist to the working storage
area begins at the current position within the keylist. This
position must always be within a keylist, as indicated by a
0 value in the FP field. Transfer continues until one of the
following occurs:

e The working storage area is filled to the limit
established by MRL.

e The entire keylist begun with the previous GETN has
been transferred to the working storage area.

If GETN completes transfer of the keylist, the FP field has

a nonzero value. A value of 0 in the FP field indicates that
you must call GETN again to transfer additional entries.

The actual number of entries transferred to the working

storage area for GETN is reflected in the PTL field or the
RL field of the FIT. See table 4-2.

60499400 B

NOS Control Statements ‘ NOS/BE Control Statements

Job statement Job statement

USER statement ACCOUNT statement
CHARGE statement FTNS.

FTNSG. ATTACH,FLRECS,ID=AAMUG
ATTACH,FLRECS ATTACH,FLRXIP,ID=AAMUG
ATTACH,FLRXIP LGO.

LGO.

Source Program

PROGRAM RGREAD
IMPLICIT INTEGER (A-1)
DIMENSION FIT(35), KEY(2)

[+
C ddkidokhdkddkdidkkkdikdkkkkhihkrihhikkikiokiihkikikkikidirrkkik
¢ * THIS PROGRAM ILLUSTRATES THE FOLLOWING OPERATIONS ON THE *
C = INDEX FILE FLRXIP: *
c = INTERACTIVELY SET A LOW KEY VALUE FOR ACTOR®S NAME *
c = INTERACTIVELY SET A HIGH KEY VALUE FOR ACTOR'S NAME «*
C = OBTAIN THE COUNT OF RECORDS WITHIN THE RANGE *
€ drkkdkkdhkkkdkdhkddkhdodokdoidfokdodioddiohiokodok ok i dokdokdkodokdokdokok ok ok
c

CALL FILEIS (FIT, 'LFN', 'FLRECS', 'XN', 'FLRXIP', 'NDX', 'YES',

+ 'ORG', 'NEW', 'KA', KEY)

¢
C SELECT ACTOR NAME INDEX
c

CALL OPENM (FIT, "INPUT®)

IF (IFETCH (FIT, 'ES') .NE. 0) GO TO 950

CALL STOREF (FIT, 'RKW', 3)

CALL STOREF (FIT, ‘RKP', 3)

CALL STOREF (FIT, 'KL', 11
c
C SET HIGH AND LOW KEY VALUES
c

6 PRINT #, ' ENTER GT OR GE ~- OR EOF (RETURN KEY)'
READ (%, '(A2)', END = 800) REL
CALL STOREF (FIT, 'REL', REL)
PRINT *, 'ENTER LOW END OF RANGE °
READ (%, '(2A10)', END = 800) KEY
PRINT 75, KEY, REL
CALL STARTH (FIT)
IF CIFETCH (FIT, 'ES') .NE. 0 GO TO 950
PRINT #, 'ENTER HIGH END OF RANGE '
READ (#, "(2A10)*, END = 800) KEY
PRINT *, ® ENTER GE OR GT '
. READ (*, '(A2)', END = 800) REL
CALL STOREF (FIT, 'REL', REL)
PRINT 75, KEY, REL
CALL SKIP (FIT, O)
IF (IFETCH (FIT, 'ES') .NE. 0) 60 TO 950
PRINT %, ' NUMBER OF RECORDS IN RANGE IS ', IFETCH (FIT, 'RL")
GO TO 6
800 CONTINUE
CALL REWND (FIT)
: 0O 801 I =1, 2
801 KEY (I) = O
CALL SKIP (FIT, 0)
IF (IFETCH (FIT, 'ES') .NE. 0) GO TO 950
PRINT %, * RL AFTER REWIND AND SKIP IS ', IFETCH (FIT, 'RL")
900 CALL CLOSEM (FIT)
STOP
950 PRINT 76, IFETCH (FIT, 'ES")
CALL CLOSEM (FIT)
STOP "CRM ERROR RETURNED®
75 FORMAT (4X, ' KEY IS ', 2A10, ' REL IS ', A2)
76 FORMAT ('ES = ', 03)
END

60499400 B

Figure 4-17. Using Oniy the Index File (Sheet 1 of 2)

4-31

C. Typical Program Qutput

NUMBER OF RECORDS IN RANGE IS 32
ENTER GT OR GE -- OR EOF (RETURN KEY)

RL AFTER REWIND AND SKIP IS 88

/LGO
ENTER GT OR GE =--= OR EOF (RETURN KEY)
? eq
ENTER LOW END OF RANGE
? bogart
KEY IS BOGART REL IS E@
ENTER HIGH END OF RANGE
? lorre
ENTER GE OR GT
7 eq
KEY IS LORRE REL. IS EQ
NUMBER OF RECORDS IN RANGE IS 40
ENTER GT OR GE -~ OR EOF (RETURN KEY)
? gt
ENTER LOW END OF RANGE
? bogart
KEY IS BOGART REL IS GT
ENTER HIGH END OF RANGE
? henreid
ENTER GE OR GT
? gt
KEY IS HENREID REL IS 6T

-036 CP SECONDS EXECUTION TIME.

Figure 4-17. Using Only the Index File (Sheet 2 of 2)

You must monitor the FP field to determine when the
complete keylist has been transferred. A zero value
indicates that additional entries exist in the keylist. You
should not try to compare the RC field with the total in RL
to determine the end of the keylist; at the time control is
returned to the program, the RC value has ne meaning for
the previous GETN.

Range of Keylists

The keylists associated with a range of alternate key
values are returned to the working storage area through a
three-step operation similar to that for retrieving the
count of a range of keylist entries.

o Establish the low end of the range by either of the
following:

REWND call to position to the beginning of the
index.

STARTM call with alternate key value in variable
KA and with the REL field of the FIT set to GE or
GT.

e Establish the high end of the range in one of two ways:
Reset value in KA and set REL to GE or GT
Indicate end of index by setting KA to D

e Call GETN repetitively until FP is nonzero.

In response, GETN operates as it does for retrieving

additional entries for a single value of an alternate key.

GETN transfers entries from the keylists to the working
storage area until one of the following conditions occurs:

4-32

e The working storage area is filled to the limit
established by the MRL field of the FIT. In this
instance; GETN must be recalled to complete the
retrieval.

e All entries that conform to the condition established
by KA and REL are transferred to the working storage
area.

e The end of the index is reached.

The series of GETN calls does not necessarily fill the
working storage area, but terminates when the current
index position corresponds to the condition established by
the KA and REL values. {Consequently, a STARTM call
that positions the index also establishes the conditions to
terminate a subsequent GETN; and no entries are
transferred for a GETN call after STARTM unless the KA
value is changed.)

When the end of the keylist has been reached as a result of
GETN, FP is set to 10g or 100g. No entries for the
subsequent key value are moved to the working storage
area even if space exists for them.

You must monitor the FP field of the FIT to determine
when all the desired entries have been transferred. FP has
a zero value until transfer is complete.

The conditions for establishing the range are determined by
the contents of the KA variable and the REL field of the
FIT. As with count retrieval, GE or GT can be established
for REL. Interpretation of REL at the beginning of the
range is not the same as at the end of the range.

60499400 B

At the beginning of the range:

e GF results in transfer of keylist entries for the value
in variable KA if it exists.

e GT excludes the entries for the alternate key value of
KA.

At the end of the range:

e GF excludes the entries for the alternate key value of
KA.

e GT includes the entries for the alternate key value of

You must know the relative order of key values and specify
the low end of the range before the high end of the range.
A wrap-around search does not occur. FP is set to 100g
if the end of the index is reached before the condition for
the high end of the range is encountered.

You can use the entries returned to the working storage
area to access the data file. To do this, however, you must
change the NDX field to NO before GET (or any
subroutine) is called to read the data file. Execution of
subroutines always depends on the NDX setting.
Therefore, data file and index file operations can be
intermixed.

ADDITIONAL MIP FEATURES

Several features exist for the experienced AAM/MIP user.
Null value suppression or sparse key suppression can
improve program efficiency. The MIPDIS utility is used for
file maintenance.

SPARSE KEY VALUE SUPPRESSION

In the normal use of alternate keys, every alternate key
value is entered in the index file according to the contents
of every defined alternate key. If a data file has 100000
records and 3 alternate keys, for example, each of the
three indexes in the index file contains 100000 primary
keys.

MIP provides the ability ta designate certain records to be
excluded from.the index file if they are generally of no
interest or if they will never be used for retrieval. For
example, a delinquent field on a credit file might be of
interest only when it is non-blank or contains a particular
value. The features of null value suppression and sparse
key suppression allow you to control whether the value of
the field appears in the index.

A sparse key control field is a one-character field within a
data record. The content of this field determines whether
the record is ta be included in the index file. The control
field can be anywhere in the record, including within the
primary key field or the alternate key field. To specify the
sparse control field, use an RMKDEF call with KL=0.

60499400 B

Only one sparse key control field can be defined for each
file. It can be applied to more than one aiternate key,
however. And, multiple values can be specified for
exclusion. At the time the alternate key is defined, you
must specify whether the sparse key field is to be

_ considered in relation to the alternate key field; if so, you

must also specify a string of 1 through 36 letters or digits.
If one of the specified letters or digits appears in the
control field of a record, that record is excluded from the
index according to RMKDEF call (assuming E is specified
in the ie parameter).

For example, the following RMKDEF calls could have been
used in the MIPGEN illustration (figure 4-9) to define
ACTIVITY as an alternate key. Assume that you have no
interest in the SPORTS file for members aof the freshman
class.

e RMKDEF(SPORTS,1,0,0)

® RMKDEF(SPORTS,3,6,6,0,5,1,6,0,N,E,F)

NULL VALUE SUPPRESSION

A null value consists of all spaces (blanks) in an alternate
key field described as symbolic type. A null value consists
of all zeros in an alternate key field described as integer or
uncollated symbolic.

You can include or exclude null values in an index at your
option. To suppress the null values, specify N in the nl
parameter on the RMKDEF call. (Refer to figure 4-8.)

For example, the following RMKDEF call could have been
used in the example in figure 4-9 to define ACTIVITY as an

alternate key.

RMKDEF(SPORTS,3,6,6,0,5,1,6,0,N)

Since the nl parameter is set to N, any record with all
spaces in the ACTIVITY field is omitted from the alternate

key index.

The first RMKDEF call defines the first character of the
CLASS field as the sparse key control field. (Word I,
character 0, KL=0). The second RMKDEF call specifies £
for the ie parameter, and F for the specific value to be
excluded. That is, all records with an F in the first
position of the CLASS field will be excluded from the
alternate key index file.

Instead of excluding all freshman records, you could
include only sophomore, junior, and senior records. You
would replace E,F (exclude F's) by 1,53 (include S and J) in
the second RMKDEF call.

Sparse key control can be specified together with null
values. The null suppression takes precedence and
suppresses an index entry even if the control field would
otherwise cause it to appear in the index.

4-33

THE MIPDIS UTILITY

The MIPDIS utility exists to disassociate the index and data
files. This allows, for example, the data file to be
restructured through FORM so the size of data blocks can
be changed or unused space eliminated, without the need to
recreate the index file.)

The MIPDIS utility is the only methad by which you ecan
disagsociate an index file from its data file. The utility
can also be used to reassociate an index file with its data
file, after a temporary disassociation. The number and
content of the records in the data file must not have
changed during the disassociation.

The MIPDIS utility temporarily or permanently
disassociates an index file from its data file. The index

4-34

file can be reassociated with the data file if the primary
and alternate key fields have not been updated during the
disassociation. The format of the MIPDIS control
statement is shown in the AAM reference manual.

You might find MIPDIS wuseful in the following
circumstances:

e A data file is no longer being accessed by alternate
key and, therefore, the index file is no longer needed.

® A data file is to be rearganized (through FORM or
through a user program) to redistribute extraneous
padding in data blocks. The index file can be
temporarily disassociated with the data file during
reorganization. MIPDIS can be used for both the
disassociation and the reassociation of index file with
the data file.

60499400 B

DIRECT ACCESS FILE PROCESSING

A direct access file is composed of records that are stored
randomly in home blocks on mass storage. Home blocks
are fixed-length areas preallocated for the file at the time
the file is created. Records are usually accessed randomly
by primary key. Serial access is also possible, but the key
of a record has no necessary relation to the key of the
preceding record. Direct access file organization is
particularly well suited to applications where random
access speed is of paramount importance and symbolic
primary keys are used.

This section discusses the requirements for creating and
processing a direct access file by primary key. Refer to
section 4 for alternate key processing. If alternate keys
are defined, the data file must conform to the
requirements discussed in this section.

Each record in a direct access file must have a unique
primary key associated with it. The primary key value is
converted to a number signifying a home block. The
process of converting the primary key value to a home
block number is called hashing. It can be considered a
mapping technique that uses an algorithm to calculate a
value to be equated with a home block. Only one hashing
routine can be used for the life of the file. It can be the
routine supplied with the release system or a routine
written by you.

Mass storage residence is necessary for a direct access
file. The file can be dumped to tape for backup or storage
purposes with a COPYBF or a permanent file dump
routine. At a later time, the file can be restored to mass
storage for processing.

You can use the CREATE utility to create a direct access
file. For most files, file creation through this utility is
more efficient than through source program statements.
The CREATE utility is called into execution by statements
in a source program written in COMPASS, FORTRAN, or
coBOL.

You can use the FORM utility to create a direct access file
from a sequential, actual key, or indexed sequentiai file
(not the most efficient method). FORM can also re-create
an existing direct access file in the same or different file
structure.

CONCEPTS OF LOGICAL
FILE STRUCTURE

A direct access file consists of an internal file statistics
table (FSTT), a user-defined number of home blocks, and
any overflow blocks established by AAM. The creation and
use of the FSTT is controlled by AAM. You are responsible
for defining the size and number of home blacks.

60499400 B

HOME BLOCKS

Records in a direct access file are grouped into home
blocks. The specific home block in which a record resides
is determined by hashing the primary key value to a hame
block number. The size and the number of home blocks are
defined at file creation time; mass storage equivalent to
all home blocks is reserved for the file the first time a
record is written to the file. Only direct access files have
preallocated storage.

Fach home block contains a two-word block header, a
number of data records, and record pointers. All home
blocks in the file are the same size. If the block checksum
option has been selected, the checksum is stored in the
block header.

Varying numbers of records appear in home blocks,
dependent entirely on the results of primary key hashing.
When variable-length records are stored in the home
blocks, the blocks often have unused storage space. Data
records are stared following the block header in the order
they are written to the file.

Record pointers are stored at the end of the home block
beginning with the last word. Two record pointers are
stored in one word. Only one record pointer per block is
needed when all records in the block are the same size;
otherwise, one record pointer is required for each record in
the block.

Figure 5-1 illustrates the structure af a home block in a
direct access file. The block header at the beginning of
the block is followed by four variable-length records. The
primary keys of the records have no logical relationship to
each other. The four record pointers are stored in the last
two words of the block.

2
words { BIock/Header

Data Record 1

Data Record 2

Data Record 3

Data Record 4

7 Record Pointer 4 Record Pointer 3

Record Pointer 2 Record Pointer 1

Figure 5-1. Direct Access File Home Block Structure

5-1

OVERFLOW BLOCKS

Home blocks are all the same fixed-length size. When the
primary key of a record to be written hashes to a block
that cannot accommodate the record, AAM creates an
overflow block to hold the record. Overflow blocks are the
same size as home blocks. A pointer in the block header of
the home block specifies the location of the averflow
block. If an overflow block becomes full, another overflow
block is created. Records that are stored in overflow
blocks require at least two mass storage accesses, thus
resulting in an increase in execution time. When the file
has no overflow blocks, execution time is faster.

SPECIFYING FILE STRUCTURE

On the file creation run, the structure of the direct access
file is defined. This structure remains the same for the
life of the file. File structure is defined in terms of:

@ Record size
@ Primary key size and location
e Home block size

e HMHashing routine

RECORD DEFINITION

Before the file is first opened on the creation run, you
must establish the record structure. If you do not set the
record type (RT) field in the FIT, the default of W type
records is set in the RT field. However, AAM processes
the records as U type records. Other FIT fields required
for record definition depend on the record type selected.
Record size specification is alsa dependent on record type.

The FIT fields unique to a record type are described in the
section 3 discussion of record definition. The MNR and
MRL fields specify the minimum and maximum number of
characters in any record in the file. The value of the MNR
field cannot be zero and cannot exceed the value of the
MRL field. If the primary key is embedded in the record,
the minimum record length must include the full primary
key. For the life of the file, any record larger or smaller
than the limits established by the MNR and MRL fields is
rejected as a trivial error.

PRIMARY KEY DEFINITION

Each record in a direct access file is identified by a unique
primary key value. This value is hashed to indicate the
home block in which the record is stored. Any key suitable
to your program is acceptable as long as it is an integral
number of characters less than the minimum record length.

Two FIT fields are required to define the primary key:

EMK Embedded key; primary key is within the
record; default is YES, (YES is more efficient.)

KL Key length; number of characters in the
primary key.

5-2

If primary keys are embedded (the EMK field is set to
YES), the following FIT fields are also required:

RKW Relative key word; word within the record in
which the primary key begins, counting from 0;
default is 0.

RKP Relative key position; character position within
the relative key word in which the primary key
begins, counting from 0; default is 0.

If primary keys are not embedded (the EMK field is set to
NO), two different FIT fields are required. These two
fields, which are also required to read the direct access
file randomly, are as follows:

KA Key address; location of the word containing
the primary key.

KP Beginning key position; starting character
position in the word indicated by the KA field;
default is 0.

HOME BLOCK DEFINITION

You must define the number and size of home blocks in the
file before the file is opened on the file creation run. The
number of home blocks must be specified by setting the
following field in the FIT:

HMB Number of home blocks; should be a prime
number for the default hashing routine.

A more even distribution is often obtained by selecting a
prime number for the HMB field. Different values for the
HMB field can be tested by the key analysis utility. This
utility shows the distribution of input records for different
numbers of home blocks. Refer to the AAM reference
manual.

Home block size is determined by the maximum block
length (MBL) field in the FIT, which is set in one of three
ways:

Specify the block size directly.
Accept the default calculated by AAM.

Specify the blocking factor and accept the block size
calculated by AAM.

The default calculated by AAM is based on two average
size records per home block. The average record size is
determined from the following FIT fields set by the user:

MNR Minimum record length; minimum number of
characters in any record; cannot be zero and
must not exceed the maximum record length.

MRL Maximum record length; maximum number of
characters in any record.

A blocking factor other than two average size records per
block can be used by AAM to calculate block size. In
addition to the MNR and MRL fields, you must specify the
following FIT field:

RB Records per block; number of average size
records per home block; cannot be zero; does
not necessarily affect the actual number of
records in a blaock.

60499400 B

When you directly specify the block size, the MNR and
MRL fields are not involved with block size specification;
however, the fields must still be specified for file
creation. The following FIT field is set to specify block
size directlys .

MBL Maximum block length; maximum number of
characters in a home block.

The setting of the MBL field, in all three cases, must be
large enough to hold at least one maximum length record
(specified by the MRL field), the system-supplied two-word
block header, and one record pointer. AAM increases the
value of the MBL field, if necessary, to an integral
multiple of physical record unit (PRU) size less two words.

You should specify an MBL value 50 characters less than
the PRU multiple desired. The resulting data block size
will be:

[(Specified MBL + 50 characters) rounded to the next
PRU multiple] - 20 characters

HASHING ROUTINE

You have the option of writing a hashing routine or of using
the default routine released with AAM. The hashing
routine is required to manipulate the primary key to
determine the block where the record resides.

Extensive analysis of the record key structure, key range,
and key distribution is necessary to implement a randomly
organized file in an optimum manner. An ideal hashing
algorithm distributes records uniformly across all home
blocks.

The hashing routine used to determine the home block in
which a record is stored depends on the setting of the
following FIT field:

HRL Hashing routine location; name of the routine
for hashing primary key values; default is the
system-supplied routine.

When a user-supplied hashing routine is specified, the
routine must be made available to the program. The HRL
field must be set before the file is opened on the file
creation run and the same hashing routine must be used for
the life of the file. A user-supplied hashing routine does
not become part of the file. You need not call the
routine. AAM calls the hashing routine each time it is
required. AAM passes three parameters to the hashing
routine. These parameters are the values in the following
FIT fields:

KL, Key length; number of characters in the
primary key.

KA Key address; location of the word containing
the primary key.

HMB Number aof home blocks; total number of home
blocks allacated at file creation.

When a user-supplied hashing routine is written in
FORTRAN, it should begin in the following manner:

SUBROUTINE HASHING (1, J, K, L)
DIMENSION J(26)

60499400 B

In this example, I and K represent the KL and HMB fields,
respectively. L is an integer variable in which the resuit
must be stored before returning. J represents an array
containing the primary key with a maximum length of
255 characters. The key is left-justified in this array. If
the key length is not a multiple of 10 characters, the last
word of the key has binary zero padding.

The user hashing routine must return an integer hashed
result. AAM divides the returned integer by the value of
the HMB field to ensure a value in the range of home block
numbers. Only the lower 48 bits of the returned integer
are used for the division.

During open processing for an existing file, AAM uses the
hashing routine indicated by the HRL field. The hashed
value of the first record in the file is checked to verify
that no change has occurred in the hashing routine. Any
change in the hashing routine would deny access to existing
records.

KEY ANALYSIS UTILITY

The key analysis utility assists you in selecting the most
effective hashing routine or the number of home blocks
that best suits a particular file. Ideally, a good hashing
routine results in a uniform distribution of records in all
home blocks, with no overflow blocks. When the file has no
overflow blocks, execution time is faster. However, mass
storage requirements for the file could be greater.

Information about hypothetical record distribution for the
file is provided by the key analysis utility. Changing the
number of home blocks or the routine that distributes
records among home blocks allows the user to balance mass
storage requirements and access time considerations
before the file is actually created. For each record in the
file, the key analysis utility reads the primary key and
determines the home block where the record would reside.
After all primary keys have been examined, statistics are
output by the utility.

Up to five different hashing routines, including the
system-supplied routine, can be tested during execution of
the key analysis utility. The same hashing routine can also
be tested with different values for the number of home
blocks. The results of the utility are output to a file
named KEYLIST. If the file is to be printed, it must be
rewound and copied to the file OUTPUT.

User Hashing Routines

Any user-supplied hashing routine to be run with the key
analysis utility must have the following characteristics:

e It must be in relocatable binary format on the file
identified by the LFN parameter in the KYAN
directive.

e It must have an entry point identified by the
H parameter in the KYAN directive.

e Execution of the hashing routine must result in an
integer value in the lower 48 bits of a word.

KYAN Directive

The KYAN directive must be supplied to describe the
proposed file parameters. When the key analysis utility is
invoked, the KYAN directive must be the next unexecuted
record on the file INPUT.

You must specify a minimum of six parameters in the
KYAN directive. These parameters, which must be
specified in the order listed, are as follows:

@ LFN=Ifn

Name of the file containing the hashing routine in
relocatable binary format; LFN=0 when anly the
system hashing routine is used; LFN=L.GO when the
user hashing routine is submitted with the job as
source code.

e MRL=mrl

Maximum record length; must be defined in the
directive, but it is not used.

e KL=kl
Number of characters in the primary key.
@ RKP=rkp

Relative character position (counting from 0) in which
the key begins within the word addressed by the
parameter when SDAKEYH is called.

o RKW=0

Relative key word; must be defined in the directive,
but it is not used.

e Hl=entry,hmb,option

Name of the entry point for the hashing routine
(SDAHASH for the system routine), number of home
blocks, and type of statistics to be output; available
output options are:

S Number of keys (synonyms) that hash to each
block

D Standard deviation of records in all blocks

B Both synonyms and standard deviation

The last parameter can be specified as many as five times
using H2 through H5 for the additional parameters. This
allows the key analysis utility to perform up to five
different tests for one file. Any combination of hashing
routine entry points and number of home blocks can be
specified. When more than one hashing routine is tested,
any user hashing routines must reside on the file identified
by the LFN parameter.

The parameter list in the KYAN directive must be enclosed
in parentheses. Blanks can appear after commas but must
not be embedded within a parameter. When all parameters
cannot be contained within 80 columns, a slash (/) must be
placed in column 80 to indicate that the directive is
continued. The directive can be continued as many as six
times.

5-4

Source Program Call

You call the key analysis utility into execution by using
two entry points, SDAKEYH and SDAENDH. The entry
points are referenced as subroutines by a source program
written in COMPASS, FORTRAN, or COBOL. The source
program must provide the key analyzer with key values one
by one. The values are usually taken from records on an
existing sequential file; however, the source program could
get them from a simple list of keys or even generate the
key values in some way. In any case, the source program
has to locate each new key value and then call SDAKEYH
with one parameter, which gives the address of the first
word of the key value.

After the last key value has been analyzed (this is usually
when the end of the sequential file has been reached), a
call to SDAENDH must be executed to write the resuits of
the key analysis utility to the file KEYLIST. The file
KEYLIST can then be rewound and copied to the file
OUTPUT for printing.

The first time the key analysis utility is entered, the next
unexecuted record on the file INPUT must contain the
KYAN directive. This prevents the job from reading input
records directly from the file INPUT. The utility reads
this and calls for loading the file that contains the hashing
routines. You should ensure that the file is available to the
job but should not load the hashing routines.

If the KYAN directive specifies more than one hashing
routine or more than one blocking factor to be tested, each
hashing routine and blocking factor is used for each
primary key value before control is returned to your
program. All user-supplied hashing routines specified in
the KYAN directive must reside on the same file.

Semple Program, Key Analysis Utility

Figure 5-2 shows a program that calls the key analysis
utility into execution. Program KEYHASH reads an input
record and then issues a call to SDAKEVYH. After all
records in the input file have been read, a call to
SDAENDH is issued. Subroutine MYHASH is a user routine
for hashing primary key values. The input file contains the
records for the direct access file to be subsequently
created. The KYAN directive provides the following
information:

@ User hashing routine location (file HASHBIN)
e Maximum record length (50 characters)
@ Primary key length (6 characters)

® Primary key beginning position (first character of first
word)

@ Hashing routine entry points (user routine MYHASH
and system routine SDAHASH)

e Number of hame blocks (5 for both routines)

e Type of statistics (synonyms and standard deviation
for bath routines)

The figure also shows the statistics output by the key
analysis utility. The last column is the system routine
statistics, which indicate a more even distribution of
records in the five home blocks.

60499400 B

NOS Operating System

Job statement

USER statement
CHARGE statement
FTNS.
FTN5,B=HASHBIN.
LDSET(LIB=AAMLIB)
ATTACH(ACCOUNT)
LGO.
REWIND(KEYLIST)
COPYBF{KEYLIST,OUTPUT)
- - EOR

PROGRAM KEYHASH

IMPLICIT INTEGER (A-2)
DIMENSION DATA(5)

OPEN (2, FILE = 'ACCOUNT®)

CALL SDAKEYH (DATR)
G0 TO 10
40 CALL SDAENDH
STOP
END

- - EOR

KW = (KLTH + 9) / 10
HKEY = 1
D0 20 I =1, KW

20 HKEY = HKEY + KEYADD (I)
END

- - EOR

- - EOI
QUTPUT
HOME BLOCK

0 7 7
1 3 2
2 0 2
3 4 3
4 5 5

STANDARD DEVIATION

10 READ (2, '(5A10)', END=40) DATA

SUBROUTINE MYHASH (KLTH, KEYADD, HBLKS, HKEY)
INTEGER KEYADD(1), HBLKS, HKEY, KLTH, KW

KYAN (LFN=HASHBIN,MRL=50,KL=6,RKP=0,RKW=0,H1=MYHASH, 5,8, H2=SDAHASH,5,B)

2.57 2.15

NOS/BE Operating System

Job statement

ACCOUNT statement

FTNS.

FTNS,B=HASHBIN.
LDSET(LIB=AAMLIB)
ATTACH(ACCOUNT,ID=AAMUG)
LGO. -

REWIND(KEYLIST)
COPYBF(KEYLIST,OUTPUT)

Figure 5-2. Calling the Key Analysis Utility

CREATING A DIRECT ACCESS FILE

You can use a source program, the CREATE utility, or the
FORM utility to create a direct access file. On the file
creation run, the file statistics table (FSTT) is created by
AAM and becomes a permanent part of the file.

Various fields in the FIT must be defined on the file
creation run. You must set the old/new file (ON) field to
NEW. The following FIT fields are defined when the file is
created and cannot be changed for the life of the files

60499400 B

FO File organization; set to DA by the CALL
FILEDA statement.

ORG Old/new file organization; must be set to NEW.

HMB Home blocks; number of home blocks to be
allocated for the file.

KL Key length; number of characters in the
primary key.

5-5

MRL Maximum record length; maximum number of
characters in any record; set by AAM when FL
is specified for F or Z type records.

MNR Minimum record length; minimum number of
characters in any record; cannot be zero; set by
AAM when FL is specified for F or Z type
records. '

RT Record type; default is W, which AAM
processes as U; fields required by the record
type must also be specified.

One additional FIT field must be defined for the file
creation run; however, this field can be changed on
subsequent runs. The following FIT field must be set:

LFN Logical file name; one to seven characters,
beginning with a letter.

If alternate keys are to be defined during the file creation
run, you must specify the following FIT field:

XN Index file name

You must define the following FIT fields on the file
creation run or the default values are effective for the life
of the file:

MBL Maximum block length; default is number of

words required for two average size records per
home block.

BCK Block checksum; default is no checksums.

HRL Hashing routine location; name of the entry
point for the hashing routine; default is the
system-supplied routine.

EMK Embedded key; must be set to NO if the
primary key is not contained within the record;
default is YES.

If the primary key is embedded, you must define two
additional FIT fields:

RKW Relative key word in which the key begins;
default is word Q.

RKP Relative key position within the word in which
the key begins; default is character position 0.

Other optional FIT fields that you can define on the
creation run and can change on a subsequent run are as
follows:

DFC Dayfile control; default is only fatal error
messages to the dayfile.

EFC Error file control; default is no messages to the
error file.

ERL. Trivial error limit; default is no limit.
FLM File limit; default is no limit.

FWI Forced write indicator; default is buffers
written only when space is needed.

FWB First word address of the buffer; default is
buffer address provided by AAM.

BFS Buffer size; default is buffer size calculated by
AAM.

5-6

CPA Compression routine address; default is no
compression of records.

DCA Decompression routine address; default depends
on the CPA field (refer to appendix F).

DX End-of-data exit; default is no exit subroutine.

EX Error exity default is no exit subroutine.

FILE CREATION THROUGH CREATE

You can use the CREATE utility through a COBOL,
COMPASS, or FORTRAN source program to create a
direct access file. The system-supplied hashing routine or
a user-supplied hashing routine can be used with the
CREATE utility. The SORT library must be available in
order to use this utility.

When you are creating a large file (more than 1000
records), you should use the CREATE utility. A large file
can be created more efficiently by using this utility
because all records whose primary keys hash to a given
home block are written in one mass storage access. When
the file is created by other methods, a hame block must be
transferred from mass storage to the central memory
buffer for each record to be written.

The CREATE utility hashes the primary key in the input
record and prefixes it to the record. After all records have
been read, the utility calls the SORT routines to sort the
records according to the hashed primary key values. When
the sort operation is complete, the CREATE utility calls
AAM to create the direct access file. The hashed key
values are removed from the records; they are only used by
the sort routines.

A job using the CREATE utility must contain the followings

e A FILE control statement describing the new direct
access file, including the key position within the
record if the key is embedded

e A source program call that reads a record and calls
the CREATE utility

e A CREATE directive that is in a separate record in
the job input file

The FILE control statement for the direct access file is
required because you cannot describe the file within the
program calling the CREATE utility. You must set the
following FIT fields by the FILE control statement:

FO File organization; must be FO=DA for direct
access file organization.

ORG Old/new file organization; must be ORG=NEW.,

HMB Home blocks; number of home blocks to be
allocated for the file.

MBL. Maximum block length; number of characters in
a home block.

MNR Minimum record length; minimum number of
characters in any record; cannot be zero; set by
AAM when FL is specified for F or Z type
records.

MRL. Maximum record length; maximum number of

characters in any record; set by AAM when FL
is specified for F or Z type records.

60499400 B

KL Key length; number of characters in the
primary key.

RT Record type; default is W, which AAM
processes as U; fields required by the record
type must also be specified.

EMK Embedded key; must be set to NO if the
primary key is not embedded in the record.

If the primary key is contained within the direct access file
records, you must also set the following fields in the FIT.

RKW Relative key word in which the key begins;
default is word 0.

RKP Relative key position within the word in which
the key begins; default is character position 0.

CREATE Directive

You must supply a CREATE directive as the next
unexecuted record in the file INPUT when the CREATE
utility is called. The format of the CREATE directive is
shown in the AAM reference manual.

The following directive example indicates that the file
named DAFILE is to be created:

CREATE (DAFILE)

Only one CREATE directive can be input to the CREATE
utility. If you supply the hashing routine, it must be on the
specified file in relocatable binary form.

Source Program Call

The CREATE utility is called into execution through a
source program written in COMPASS, FORTRAN, or
COBOL. When you use this utility, the source program
must make calls to two entry points. For each record read,
a CALL SDACRTU statement must be executed to hash
the primary key and affix the hashed value to the record.
The format of this statement is as follows:

CALL SDACRTU (wsa,ka,rl)

Parameters in this statement identify the location of the
record, the primary key, and the number of characters in
the record. After all input records have been read and
processed, a CALL SDAENDC statement must be executed
to complete creating the direct access file. The format of
this statement is as follows:

CALL SDAENDC

The first time the CALL SDACRTU statement is executed,
the CREATE directive must be the next unexecuted record
in the input file. This prevents the job from reading input
records directly from the file INPUT. The parameters
specified in the call cannot override the primary key
specifications existing at the time the file is opened. That
is, key specifications designated in the FILE control
statement are effective for file creation and for the life of
the file.

When the CALL SDAENDC statement is executed, the
records are sorted by the hashed primary key values. AAM
is then called by the CREATE utility to create the direct
access file. The hashed primary key values are removed
from the records. Hashed values do not become part of the
records in the direct access file.

60499400 B

Sample Program, CREATE Utility
Figure 5-3 shows a program that calls the CREATE utility

‘to create a new direct access file.. Program CREATDA

reads a record from the input file and then issues a call to
SDACRTU. Three parameters are passed to the CREATE
utility:

e Working storage area (the array DAWSA)
e Key address (first word of the array DAWSA)
e Record length (50 characters)

After all records in the input file have been read, the
program issues a call to SDAENDC to produce the direct
access file.

FILE CREATION BY A SOURCE PROGRAM

When a direct access file is created through a source
program, file structure and key characteristics must be
defined by setting applicable fields in the FIT before the
file is opened. FIT fields can be specified in the FILE
control statement, the CALL FILEDA statement, and the
CALL STOREF statement.

You must set the old/new file (ON) field to NEW for a file
creation run. This is accomplished by setting the ON field
with one of the FIT manipulation statements or by opening
the file with the processing direction (pd) parameter-in the
open request set to NEW. Setting the pd parameter to
NEW actually sets two FIT fields; the ON field is set to
NEW and the processing direction (PD) field is set to
OUTPUT. You can then insert records into the file with
write requests.

After all records have been written to the file, you should
close the file. The only statements that can be issued on a
file creation run are those that establish the FIT, open and
close the file, write records, and read and write fields in
the FIT.

Establishing the FIT

The first statement referencing the direct access file must
be the CALL FILEDA statement. Execution of this
statement causes the FIT to be constructed and the
specified values to be stored in the FIT. The first
parameter in the CALL FILEDA statement is the name of
the 35-word array to hold the FIT. The same FIT array
name is the first parameter in every statement accessing
the direct access file. Refer to section 2 for a more
detailed explanation of the FIT and the CALL FILEDA
statement.

Opening the File

You must open the direct access file by executing a CALL
OPENM statement to prepare the file for processing before
you can write any records to the file. The format of this
statement is shown in appendix B.

The following statement initiates open processing:

CALL OPENM (DAFIT, 'NEW")
The array named DAFIT contains the FIT for the direct
access file being opened. The second parameter indicates

a file creation run and sets the PD field to QUTPUT and
the ON field to NEW.

5-7

A. NOS Operating System NOS/BE Operating System

Job statement : Job statement

USER statement ACCOUNT statement

CHARGE statement FTNS.

FTNS. ATTACH(EQUIP,ID=AAMUG)

ATTACH(EQUIP/UN=userno) REQUEST(DAFILE,PF)

DEFINE(DAFILE/CT=PU,M=W) FILE(DAFILE,FO=DA, HMB=50RG=NEW,

FILE(DAFILE,FO=DA,HMB=5,0RG=NEW, RT=F,FL=50,KL=6,RB=10)
RT=F,FL=50,KL=6,RB=10) LGO.

LGO. : CATALOG(DAFILE,ID=AAMUG)

B. Input File: EQUIP

AB5972 METAL DESK 038995 004
AB5973 OAK DESK 128250 002
AB5975 WALNUT DESK 130000 002
880013 BULLETIN BOARD 001500 010
€B0168 CHALK BOARD 001952 007

€81001 FILE CAB, 1 DRAWER 004500 004
81003 FILE CAB, 3 DRAWER 006000 010
€B1005 FILE CAB, 5 DRAWER 009000 010

[r s S Gy
VWRNGUWVSIATUWUN=SOVDRINOUWNIWUN=

CHOOS59 ARM CHAIR 029500 007
CHOD60 DESK CHAIR 014995 005
CHOO80 SWIVEL CHAIR 009600 009
CMO575 LETTER RACK 000398 048
SHOO011 BOOK CASE 003995 010
$T0592 STOOL 001620 011
TY5015 TYPEWRITER 036900 002
XM6158 COFFEE TABLE 006500 008
YB0020 DESK LAMP 001995 495
YBOO59 FLOOR LAMP 006995 025
YB0060 TABLE LAMP 003995 020

C. Source Program

PROGRAM CREATDA
DIMENSION DAWSA (5)
OPEN (2, FILE = 'EQUIP")
10 READ (2, '"(5A10)', END = 30) DAWSA
PRINT 50, DAWSA
20 CALL SDACRTU (DAWSA (1), 50)

G0 TO 10
30 CALL SDAENDC
STOP
50 FORMAT (1X, 5A10)
END
- - EOR
CREATE (DAFILE)
- - EOI
D. Output

(same as input}

Figure 5-3. Direct Access File Creation, CREATE Utility

60499400 B

Writing Records

You can write records to a direct access file by executing
a CALL PUT statement. The format of this statement is
shown in appendix B.

The following statement writes a record to the file
associated with the FIT in the array named DAFIT:

CALL PUT (DAFIT)

The record to be written is stored in the location defined
by WSA.

The KA and KP fields are not required when the primary
key is embedded in the record. The relative key word
(RKW) and relative key position (RKP) ficlds define an
embedded key.

FIT fields not set by the write request default to the
current values in the FIT. After the record has been
written to the file, AAM sets the RL field to the number of
characters in the record.

Records written to a direct access file are stored randomly
within the file. The order in which records are written,
therefore, is not significant. The record must be
established in the working storage area when the write
request is issued. If the primary key is not embedded, the
location of the key value for the record to be written must
also be established. For embedded primary keys, the key
location is determined by the RKW and RKP fields.

Closing the File

When all records have been written to the file, a CALL
CLOSEM statement must be executed to ensure file
integrity. The format of this statement is shown in
appendix B.

The following statement illustrates close processing:

CALL CLOSEM (DAFIT)

This statement specifies that the file associated with the
FIT in the array named DAFIT is to be closed and rewound.

Any home blocks in the central memory buffer are written
to the file. The FSTT, which is used to maintain continuity
over the life of the file, is also written to the file. If
requested, file statistics are written to the error file. A
close request issued for a file that has never been opened
or that has been closed but neither unloaded nor reopened
results in a trivial error.

Sample Creation Program

Program NEWDA, shown in figure 5-4, creates a direct
access file through direct calls to AAM. The program
reads an input file from the file EQUIP and writes records
to the new direct access file DAFILE. For illustration
purposes, the program also prints each input record as it is
read.

Program statements related to creation of the direct
access file are defined as follows:

60499400 B

e DIMENSION DAFIT(35), DAWSA(5)

This statement allocates a 35-word array named
DAFIT for construction of the FIT and a 5-word array
named DAWSA for the working storage area.

e CALL FILEDA (DAFIT, 'LFN', 'DAFILE,...)

This statement sets fields in the FIT to describe the
structure of the direct access file. Required
parameters include:

FIT array (DAFIT)

Logical file name (DAFILE)

Extended file organization (NEW)

Record type (fixed length)

Fixed record length (50 characters)

Primary key length (6 characters)

Number of home blocks (5)

Optional parameters include:
Records per block (10)
Embedded primary key (YES)
Error file control (3, errors and notes)

Dayfile control (3, errors and notes)

e CALL OPENM (DAFIT, 'NEW")

This statement opens the file for a creation run.
Records can only be written to the file.

e CALL PUT (DAFIT)

This statement writes the record in-the working
storage area DAWSA to the direct access file.

e CALL CLOSEM (DAFIT)

This statement writes the FSTT and any home blocks
in the buffer to the file.

FILE CREATION THROUGH FORM

The CREATE utility is generally the most efficient means
of creating or restructuring a direct access file. However,
you can use the FORM utility to create a direct access
file. FORM can also be used to restructure an existing
direct access file or to dump an existing file to tape for
backup or storage purposes. The following paragraphs
briefly discuss using FORM to create a direct access file.
Refer to the FORM reference manual for more detailed
information.

NOS Operating System

Job statement

USER statement

CHARGE statement

FTNG.
ATTACH(EQUIP/UN=userno)
DEFINE(DAFILE/CT=PU,M=W)
LGO.

CRMEP(LO,RU)

Input File: EQUIP

AB5972 METAL DESK 038995
ABS973 OAK DESK 128250
ARB5975 WALNUT DESK 130000
880013 BULLETIN BOARD 001500
CBO168 CHALK BOARD 001952
cB1001 FILE CAB, 1 DRAWER 004500
€81003 FILE CAB, 3 DRAWER 006000
CB1005 FILE CAB, 5 DRAWER 009000
CHOO59 ARM CHAIR 029500
CHOO60 DESK CHAIR 014995
CHOO80 SWIVEL CHAIR 009600
CMO575 LETTER RACK 000398
SKHOO011 BOOK CASE 003995
§T0592 STOOL 001620
TY5015 TYPEWRITER 036900
XM6158 COFFEE TABLE 006500
YB0020 DESK LAMP 001995
YBOO59 FLOOR LAMP 006995
YB0060 TABLE LAMP 003995

Source Program

PROGRAM NEWDA
IMPLICIT INTEGER (A<2)
DIMENSION DAFIT (353, DAWSA (5)

NOS/BE Operating System

Job statement

ACCOUNT statement

FTNSG,

REQUEST(DAFILE PF)
ATTACH(EQUIP,ID=AAMUG)
LGO.
CATALOG{DAFILE,ID=AAMUG)
CRMEP(LO,RU)

Q04
002
002
010
0g7

Q04
010

010
007
005
009
048
010
011
0az
008
495
Q25
020

D oD b b wd b D el b D
VOO NV WN DO N0 ~NGVISWN

CALL FILEDA (DAFIT, °"LFN", "DAFILE®, °"ORG®, "NMEW®,

'KL*, 6, "EMK®, 'YES',
"WSA', DAWSA,
- YEFCY, 3, °DFCY, 3)
OPEN (2, FILE = 'EQUIP')
CALL OPENM (DAFIT, 'NEW®)
10 READ (2, '(5A10)°, END = 30) DAWSA
20 CALL PUT (DAFIT)
PRINT 50, DAWSA
60 70 10
30 CALL CLOSEM (DAFIT)
STOP
50 FORMAT (1X, 5A10)
END

o+

Qutput

{same as input)

'RT', 'F%, FL', 50, 'RB', 10, ‘HMB®, 5,

5-10

Figure 5-4. DA File Creation, Source Program

60499400 B

FORM uses CYBER Record Manager to perform input on
the input file and output on the direct access file being
created. Descriptions of the input and output files are
provided in FILE control statements. Parameters in the
FILE control statement for the input file depend on the file
organization. For the direct access file being created, the
FILE control statement must specify the logical file name
and the following FIT fields:

FO File organization; must be FO=DA for direct
access file organization.

ORG OQld/new file organization; must be ORG=NEW.
HMB Home blocks; number of home blocks in the file.

KL Key length; number of characters in the
primary key.

MRL Maximum record length; maximum number of
characters in any record; set by AAM when FL
is specified for F or Z type records.

MNR Minimum record length; minimum number of
characters in any record; set by AAM when FL
is specified for F or Z type records.

RT Record type; FORM default is W, which AAM
processes as U; fields required by the record
type must also be specified.

If the primary key is embedded in the output record, the
following FIT fields are also required:

RKW Relative key word in which the key begins;
default is word O.

RKP Relative key position within the word in which
the key begins; default is character position 0.

If the pi‘imary key is not contained within the record, the
embedded key (EMK) field must be set to NO.

The FILE control statement can also specify optional FIT
fields. Fields not specified are set to the default values.
The FORM directive OUT can specify values for the
following FIT fields:

FLM File limit; maximum number of records for the
direct access file.

CPA Compression routine address; number or entry
point name of the compression routine; default
is no compression of records.

HRL Hashing routine location; entry point name of
the user-supplied hashing routine; default is
system-supplied hashing routine.

EX Error exit; entry point name of the

user-supplied error processing routine; default
is no error exit subroutine.

60499400 B

A job using FORM to create a direct access file must
contain the following:

e A FILE control statement describing the input file
structure unless the file is a sequential file with
default structure characteristics

e A FILE control statement describing the new direct
access file structure

e A FORM control statement

e FORM directives

The input and output files are identified by the FORM
directives INP and OUT, respectively. Other FORM
directives are available to specify record selection
criteria, reformatting, and conversion. Refer to the FORM
reference manual for details of optional directives that
might be useful.

The INP directive specifies the source of input records for
the FORM run. The logical file name is the only required
parameter in the directive. Optional parameters can be
specified to indicate the maximum number of records to be
processed, rewind action at end of run, and owncode exits
for various options.

The output file is declared by the OUT directive. Only the
logical file name need be specified. Other parameters that
can be specified are similar to those in the INP directive.
In addition, the KEY parameter indicates the location of
the primary key and whether or not the key is embedded in
the record. The KEY parameter is required when one of
the following conditions exists:

e The direct access file being created has nonembedded
primary keys.

@ The input file is an indexed sequential, actual key, or
direct access file and the primary key for the new

direct access file is not the primary key for the input
file.

The format of the KEY parameter is:

e KEY=+iTm
+ The primary key is embedded in the output record.

- The primary key is extracted from the input
record and is not embedded in the output record.

i Character position in which the primary key
begins, counting by the FORM convention where
the first character position is L.

T Key type in FORM terminology; must be X.

m Number of characters in the primary key.

The job structure for creating the file DAFILE through the
FORM utility is shown in figure 5-5.

NOS Operating System

Job statement

USER statement

CHARGE statement

DEFINE(DAFILE/CT=PU,M=W)

FILE(DAFILE FO=DA,0RG=NEW,RT=F,FL=50,KL=6
HMB=5,RB=10,EFC=3,ERL=1)

FORM(INP=INPUT,OUT=DAFILE)

- - EOR

Input data

- - EO!

NOS/BE Operating System

Job statement

ACCOUNT statement

REQUEST(DAFILE,PF)

FILE(DAFILE,FO=DA,ORG=NEW, RT=F,FL.=50,K|.=6,
HMB=5,6RB=10,EFC=3,ERL=1)

FORM(INP=INPUT,OUT=DAFILE)

CATALOG(DAFILE,ID=AAMUG)

*EOR

Input data

*EOL

Figure 5-5. Direct Access File Creation, FORM Utility

PROCESSING AN EXISTING
DIRECT ACCESS FILE

After the file ereation run, a direct access file can be read
randomly by primary key or sequentially by order of the
records in home blocks. New records can be inserted into
the file and existing records can be deleted or be replaced
by other records with the same primary key values.
Processing of an existing file is governed by many of the
FIT fields set on the file creation run. You cannot change
the following FIT fields:

HMB Number of home blocks

MBL Maximum home black length

MNR Minimum record length

MRL Maximum record length

KL Key length

RKW Relative key word for embedded keys

RKP Relative key position within RKW for embedded
keys

The values for these fields are preserved in the FSTT and
are reset in the FIT whenever the existing file is opened.
Any attempt to change these fields is ignored by AAM.
After the file has been opened, the MRL. field can be reset
to the size of the working storage area.

FIT fields that must be set the same as on the file creation
run are as follows:

RT Record type; all applicable fields must also be
set.

ORG Old/new file organization.
HRL. Hashing routine location (the address might be

different, but it must be the same routine).

5-12

The logical file name (LFN) field must be set to the
current logical file name for the file. This name need not
be the same as the name used on the file creation run.

If you do not set the following FIT fields before opening
the file, the default values are set in the fields:

FWB First word address of the buffer; default is
buffer location provided by AAM.

BFS Buffer size; default is buffer size calculated by
AAM,

CPA Compression routine address; default is no
compression of records. i

DCA Decompression routine address; default depends
on the CPA field.

BCK Block checksum; applies only if this option was
selected on the file creation run; default is no
checksums for read processing.

Optional FIT fields that you can set at any time before
being required by a file processing statement are as follows:

DFC Dayfile control

EFC Error file control

ERL Trivial error limit

KA Key address

KP Beginning key position
FLM File limit

FWI Forced write indicator
EX Error exit 4
DX End-of-data exit

The KA and KP fields are required for nonembedded keys
and for random access or deletion of records with
embedded keys.

Various FIT fields can be set by the file processing
statements. The default value listed for a field used by
ane of these statements is applicable only if the field has
not been set by any other statement. The current value in
a FIT field is always used by a file processing statement.

ESTABLISHING THE FIT

Before an existing direct access file can be opened for
processing, the FIT must be established. The CALL
FILEDA statement, which is the first statement that can
reference the file, causes construction of the FIT. The
first parameter in this statement specifies the name of the
35-word array in which the FIT is constructed. Additional
parameters specify FIT fields and values to be set in the
fields. You can also use the FILE control statement to set
FIT fields or to override values set by the CALL FILEDA
statement.

OPENING THE FILE

The direct access file must be opened by executing a CALL
OPENM statement before any data records can be
accessed. The format of this statement is shown in
appendix B.

60499400 B

Open processing is initiated by the following statement:
CALL OPENM (DAFIT, "1-0")

Execution of this statement opens the file for both input
and output processing. Specifying I-O for the second
parameter sets the ON field to OLD and the PD field to IO.

The setting of the PD field determines the input/output
statements that can be executed. The PD field can be set
by the open request as follows:

INPUT Only statements that read records or
. position the file can be executed; this is
the default setting.
QUTPUT Only statements that write new records
to the file can be executed.
I-0 Any input/output statement can be

executed. (If the PD field is set by any
other statement, the two-character
mnemonic 10 must be specified.)

Values from the FSTT are stored in applicable FIT fields
during open processing. FILE control statement processing
and FIT consistency checking are performed. Open
processing also includes verification that the existing
hashing routine produces the same results for the first
record in the file. When the file is opened, it is positioned
at the first record in the first home block.

The first time a direct access file is opened after the
creation run, the NEW setting in the old/new file (ON) field
must be changed to OLD. This change can be accomplished
through the FILE control statement, the CALL FILEDA
statement, or the CALL STOREF statement before the file
is opened. If the ON field is not changed by one of these
statements, it is set to OLD by specifying INPUT,
OUTPUT, or I-O for the processing direction (pd)
parameter in the apen request.

A nonfatal error occurs if a file access statement is
attempted before the file has been opened or if the
attempted statement is not consistent with the setting of
the PD field. A fatal error occurs if the ON field is not set
to OLD.

READING THE FILE RANDOMLY

You can read a direct access file randomly by primary key
values by executing a CALL. GET statement. For a random
read, the file must be open for either input or input/output
(the PD field is set to INPUT or I0). The format of the
CALL GET statement is shown in appendix B.

When the following statement is executed, a record is read
randomly from the file associated with the FIT stored in
the array named DAFIT:

CALL GET (DAFIT)

The record is returned to the working storage area, which
is the array defined by WSA.

You must set the WSA and KA fields prior to the GET call.
The CALL FILEDA or CALL STOREF statement can be
used to set the fields. The primary key value for the
record to be read is stored at the location indicated by the
KA field. Execution of the read request (GET call) then
returns the record to the specified working storage area.
If the primary key value at the location indicated by the
KA field does not match any primary key value in the file,
a trivial error occurs.

60499400 B

When a record is read from the file, the number of
characters returned to the working storage area is the
actual length of the record as it exists on the file. Any
value set in the record length (RL) field is ignored for a
read operation. After the record has been read, AAM sets
the RL field to indicate the length of the record returned
to the working storage area.

READING THE FILE SERIALLY

You can read records serially in a direct access file by
executing a CALL GETN statement. Primary key values
have no logical relationship to the order in which records
are retrieved. For serial reading, the file must be open for
either input or input/output (the PD field is set to INPUT ~
or 10). The format of the CALL GETN statement is shown
in appendix B.

The following statement retrieves the next record in
sequences

CALL GETN (DAFIT)

This statement returns the next physically sequential
record to the working storage area, which is the array
defined by WSA.

The WSA field must be set before the serial read request
can be executed. If the KA field is set, the primary key of
the record retrieved is returned to the location indicated
by the KA field.

File position in a direct access file changes only by a
sequential read request or a rewind request. When the file
is first opened, or after a rewind operation, the file is
positioned at the beginning of the first record in the first
home block. A serial read request returns that record to
the working storage area and advances the file position to
the next record in the home block. Subsequent serial read
requests return each data record, in order, through the
relative order of the home blocks. Any overflow blocks are
read after all hame blocks have been read.

During serial reading of the file, intervening statements
that read the file randomly, delete records, or replace
records (unless the new record is a different length from
the original record) do not affect the current file position.
A random read request does not position the file for
subsequent sequential read requests. If a record is
replaced by a longer or shorter record, home block
contents are disturbed and the serial read position is
interrupted. If records are compressed, it is the record
length after compression that must be equal in order to
preserve the serial read position.

INSERTING NEW RECORDS

New - records are added to an existing direct access file
with the same write request format used to originally
create the file. The file must be open for output or
input/output (the PD field is set to OUTPUT or 10).

A new record is inserted into the file by the following
statement:

CALL PUT (DAFIT)

When this statement is executed, the record in the working
storage area is added to the existing file.

At the completion of the write operation, AAM sets the RL

field to the number of characters in the record written to
the file.

5-13

DELETING EXISTING RECORDS

A record in an existing direct access file can be logically
removed from the file by executing a CALL DLTE
statement. The file must be open for input/output (the PD
field is set to I0). The format of this statement is shown
in appendix B.

A record is deleted from the file by the following
statement:

CALL DLTE (DAFTT)

Execution of this statement deletes the record with the
primary key value defined by KA.

The primary key value for the record to be deleted must be
established at the location indicated by the KA field. If
the primary key value does not match the primary key
value of any existing record, a trivial error results.

REPLACING EXISTING RECORDS

The contents of any existing record in a direct access file
can be modified and the changed record rewritten to the
file by executing a CALL REPLC statement. The file must
be open for input/output (the PD field is set to IQ). The
format of the CALL REPLC statement is shown in
appendix B.

The primary key value must duplicate the primary key
value for an existing record. If it does not, a trivial error
occurs.

The new record, which can be larger or smaller than the
existing record, must be within the minimum and maximum
record lengths defined by the MNR and MRL. fields in the
FIT. A larger or smaller record, however, invalidates the
file position if serial reading is in progress.

The following statement replaces an existing record with a
new record:

CALL REPLC (DAFIT)

The modified record is in the array defined by WSA.

CLOSING THE FILE

The last statement referencing a direct access file should
be a CLOSEM. This ensures that the file statistics table
contains current information and that all updated records
are written to the file. The format of the CALL CLOSEM
statement is shown in appendix B.

The following statement initiates close processing:
CALL CLOSEM (DAFIT)

When this statement is executed, close processing is
performed for the file whose FIT is in the array named
DAFIT. The file is rewound (default setting for the CF
field), and the FSTT is updated with current information.

If the error file control (EFC) field is set to 2 or 3, file
statistics are written to the error file. If the dayfile
control (DFC) field is set to 2 or 3, file statistics are
autput to the dayfile.

A trivial error occurs when a close request is issued for a
file that has never been opened or for one that has been
closed but neither unloaded nor recpened. File position
does not change and the error exit, if specified, is taken.

5-14

SAMPLE UPDATING PROGRAM

Program DAUPDAT, shown in figure 5-6, accesses the
existing direct access file DAFILE through direct calls to
AAM. Input records, which are read interactively from a
terminal, contain three fields: the primary key, a code
identifying the transaction to be performed, and data to be
read into the working storage area. Only the transaction
code is required input data. Code numbers are interpreted
as follows:

Codel Find quantity on hand for a given part
number.

Code Z Insert new record into the file.
Code 3 Delete an existing record from the file.
Code 4 Replace an existing record in the file with

new data.

After all input records have been read, the direct access
file is rewound to beginning-of-information and read
serially.

Program statements related to processing the existing
direct access file are defined as follows:

e CALL FILEDA (DAFIT, 'LFN', 'DAFILE", 'ORGY,...)

This statement sets FIT fields required for processing
the existing file:

FIT array (DAFIT)
Logical file name (DAFILE)
Extended file organization (NEW)
e CALL OPENM (DAFIT, 1-09)
This statement opens the file for input/output
processing; the ON field is set to OLD and the PD
field is set to IO.
e CALL GET (DAFIT)
This statement reads a record randomly and returns it
to the working storage area DAWSA. The variable
DAKEY contains the primary key for the record to be
read; the key begins in character position 4 of DAKEY.
e CALL PUT (DAFIT)
This statement inserts into the file the new record in
the working storage area DAWSA. The primary key is
embedded in the record.

e CALL DLTE (DAFIT)

This statement deletes from the file the record
identified by the primary key value in the variable
DAKEY beginning in character position 4.

e CALL REPLC (DAFIT)
This statement replaces an existing record with the
updated record in the working storage area DAWSA.

The primary key for the record to be replaced is
embedded in the new record.

60499400 B

e CALL GETN (DAFIT)

This statement reads records serially. Each record
retrieved is returned to the working storage area
DAWSA.

e IF (IFETCH (DAFIT, FP") .NE. 0"20™) GO TO 90
This statement checks the file position (FP) field in
the FIT for a valid read. The FP field is set to 20g
when a record is read from the file.

e CALL CLOSEM (DAFIT)

This statement writes the updated FSTT and any home
blocks in the buffer to the file.

Figure 5-6 also shows the printed output from program
DAUPDAT. The first part of the output lists the input

records. The second part of the output lists all records
serially by position within the file. The last field in the
records contains numbers indicating the order in which the
records were written to the file. The following
transactions were performed on file DAFILE:

e A random read for part number CBO168 returned
record number 5 to the working storage area; the
quantity on hand and the item description were printed
on the output listing.

e A new record for part number AB5976 was added to
the file (record number 20).

e The record for part number ST0592 was deleted from
the file (record number 14).

e The record for part number CHO060 was updated to
reflect a price change (record number 10).

A. NOS Operating System NOS/BE Operating System
Job statement Job statement
USER statement ACCOUNT statement
CHARGE statement FTN,R.
FTN,R. ATTACH(DAFILE,ID=AAMUG
ATTACH(DAF!LE/UN=userno,M=W) LGO. :
LGO. CRMEP{LO,RU)
CRMEP(LO,RU)
B. input File: DAFILE
AB5972 METAL DESK 038995 004 1
AB5973 OAK DESK 128250 002 2
AB5975 WALNUT DESK 130000 002 3
BBOO13 BULLETIN BOARD 001500 010 4
- €B0168 CHALK BOARD 001952 007 5
¢B1001 FILE CAB, 1 DRAWER 004500 004 6
¢B1003 FILE CAB, 3 DRAWER 006000 010 7
€B1005 FILE CAB, 5 DRAWER 009000 010 8
CHO059 ARM CHAIR 029500 007 9
CHO060 DESK CHAIR 014995 005 10
CHOO080 SWIVEL CHAIR 009600 009 "
CMO575 LETTER RACK 000398 048 12
SHOO11 BOOK CASE 003995 010 13
ST0592 STOOL 001620 011 14
TY5015 TYPEWRITER 0346900 002 15
XM6158 COFFEE TABLE 006500 008 16
YB0020 DESK LAMP 001995 495 17
YB0O59 FLOOR LAMP 006995 025 18
YB0060 TABLE LAMP 003995 020 19

60499400 B

Figure 5-6. Processing an Existing Direct Access File (Sheet 1 of 3)

5-15

C. Source Program

PROGRAM DAUPDAT

IMPLICIT INTEGER (A-Z)

DIMENSION DAFIT (35), DAWSA (5)

CALL FILEDA (DAFIT, 'LFN®, FDAFILE', 'ORG®, °NEW®,

+ TWSA®, DAWSA,
+ KA, DAKEY, °*KP°, 4,
+ 'EFCY, 3, 'DFCY, 3)

CALL OPENM (DAFIT, °‘I-0°)
i0 READ (*, 100, END = 70) DAKEY, CODE, DAWSA
PRINT 100, DAKEY, CODE, DAWSA

¢
€ READ EXISTING RECORD FROM THE FILE
¢
IF (CODE .EQ. 1) THEN
CALL GET (DAFIT)
PRINT 110, DAWSA (5), DAWSA (2), DAWSA (3)
G0 TO 10
END IF
c
C ADD NEW RECORD TO THE FILE
¢
IF (CODE .EQ. 2) THEN
CALL PUT (DAFIT)
60 TO 10
END IF
¢
C DELETE EXISTING RECORD FROM THE FILE
¢
IF (CODE .EQ. 3) THEN
CALL DLTE (DAFIT)
GO TO 10
END IF
c
€ REPLACE EXISTING RECORD WITH NEW RECORD
c
IF (CODE .EQ. 4) THEN
CALL REPLC (DAFIT)
G0 TO 10
END IF
c
C REWIND FILE FOR SEQUENTIAL READING
c

70 CALL REWND (DAFIT)
PRINT 130
80 CALL GETN (DAFIT)
IF (IFETCH (DAFIT, 'FP') .NE. 0%20") GO TO 90
PRINT 120, DAWSA
G6 TO 80
90 CALL CLOSEM (DAFIT)
STOP
100 FORMAT (A10, 3X, I1, 6X, SA10)
110 FORMAT (' REQUESTED QUANTITY IS ', A3, ° FOR ¢, 2A10)
120 FORMAT (1X, 5A10)
130 FORMAT ('PART NO DESCRIPTION PRICE QrTyY REC NO *)
END

Figure 5-6. Processing an Existing Direct Access File (Sheet 2 of 3)

5-16 60499400 B

D.

Sample Output

/
?

CBO168

1

Read this record

REQUESTED QUANTITY IS 007 FOR CHALK BOARD

?

7

STO592

2

CHOO60

?

PART NO
AB5973
cB0168
CHOO60
CHOO80
SHOO11
TY5015
YB0O40
AB5975
€B1001
AB5972
€B1005
CHOO59
CMOS75
AB5976
880013
¢B1003
XM6158
YB0020
YBOO59

20 =« Add record

Delete this record

10 -—— Replace this record

2 AB5976 MAPLE DESK 119500 003

3

4 CHOO60 DESK CHAIR 016550 005

DESCRIPTION PRICE QTY REC NO

0AK DESK 128250 002 2
CHALK BOARD 001952 oor 5
DESK CHAIR 016550 005 10
SWIVEL CHAIR 009600 009 1"
BOOK CASE 003995 010 13
TYPEWRITER 036900 002 15
TABLE LAMP 003995 020 19
WALNUT DESK 130000 002 3
FILE CAB, 1 DRAWER 004500 004 6
METAL DESK 038995 004 1
FILE CAB, 5 DRAWER 009000 010 8
ARM CHAIR 029500 007 9
LETTER RACK 000398 048 12
MAPLE DESK 119500 003 20
BULLETIN BOARD 001500 010 4
FILE CAB, 3 DRAWER 006000 010 7
COFFEE TABLE 006500 008 16
DESK LAMP 001995 495 17
FLOOR LAMP 006995 025 18

Updated File

60499400 B

Figure 5-6. Processing an Existing Direct Access File {Sheet 3 of 3)

5-17

ACTUAL KEY FILE PROCESSING

An actual key file is a mass storage file in which each
record is stored in a location determined from the value of
the primary key associated with that record. Record
access is typically random by key value. Actual key file
organization provides fast random access to records in the
file. This file organization is particularly useful for
applications with alternate key access, especially those
involving large data bases in which many alternate keys
exist.

The requirements for creating and processing an actual key
file by primary key are discussed in this section. Refer to
section 4 for alternate key processing of an actual key
file. If alternate keys are defined, the data file must
conform to the requirements discussed in this section.

Records in an actual key file are stored in data blocks.
Within a data block, records are stored serially in record
slots. The block number and slot number for a particular
record determine the primary key value of that record.
The primary key is a record number that is converted by
AAM to a block and slot number. Primary keys need not be
contained within the records. Key values generated by
AAM are returned to your program. If you do not use
alternate keys, random access is possible only through
primary keys and you must preserve key values.

Mass storage residence is required for creating and
processing an actual key file. For backup purposes, the file
can be copied to tape through the COPYBF utility or a
permanent file dump routine. Because all locations of
blocks and records within blocks are maintained by relative
addresses, the file can later be restored on mass storage.

The FORM utility can be used to create an actual key file
from a sequential, direct access, or indexed sequential
file. It can also re-create an existing actual key file in the
same or different file structure.

CONCEPTS OF LOGICAL
FILE STRUCTURE

An actual key file consists of an internal file statistics
table (FSTT) and data blocks containing records. The FSTT
is created and used by AAM; you need be aware only that
the FSTT exists and that it contains certain information
related to the file. Data block size is defined by you;
however, you cannot manipulate information in the blocks.
Because the primary key is a record number, the primary
key length determines the maximum number of records
that the file can contain. For example, a key length of two
characters limits the file to 4095 records.

DATA BLOCKS

Records are grouped into data blocks for efficiency in
processing. All data blocks are the same size and contain
the same number of record slots. Records can be fixed or
variable in length. Each block contains a two-word header,
data records, padding, and record pointers.

60499400 B

i s

Data records are stored in data blocks according to the
block number and record slot number determined from the
primary key value. Data blocks are created beginning with
block 0 and continuing in consecutive order. All record
slots in a data block need not be filled before the next
block can be created; however, blocks must be created in
order.

Padding for the data block can be specified at file creation
time. This is useful when variable-length records are
defined for the file. Padding allows for an increase in the
average record size.

Record pointers are stored at the end of the data block
beginning with the last word in the block. Two recard
pointers are stared in one word. One record pointer is
required for each record in the block.

Figure 6-1 illustrates the structure of an actual key data
block. The two-word block header is followed by two
records in slot numbers 1 and 2, an overflow pointer record
in slot number 3, and two records in slot numbers 4 and 5.
The record for slot 3 had to be written in another block
because sufficient empty space did not exist in the block.
Record pointers are stored in the last three words of the
block.

Block Header

Slot 1 Record

Slot 2 Record

Slot 3 Pointer Record

Slot 4 Record

Slot 5 Record

Unused Area

/)] Record pointer 5

Record pointer 4 Record pointer 3

Record pointer 2 Record pointer 1

Figure 6-1. Actual Key File Data Block Structure

6-1

OVERFLOW RECORDS

When a data block does not have enough empty space for a
record, an overflow pointer record is written in the
designated record slot. The actual record is written in
another data block that has sufficient empty space. The
record slot containing the actual record is still logically
empty; a read request for that slot does not return a
record. A write request for that slot stores the record in
its designated slot and the overflow record is moved to its
data block, if possible; or to another empty record slot.
The overflow pointer record is either replaced by the
record or updated to point to the new lacation of the
record.

SPECIFYING FILE STRUCTURE

The structure of an actual key file is defined when the file
is created and cannot be changed for the life of the file.
File structure is defined in terms of:

Record size
Primary key size
Blocking factor

Data block size

RECORD DEFINITION

Record structure must be established before the file is
opened on the creation run. If you set the record type (RT)
field in the FIT, the default of W type records is set in the
RT field. However, AAM processes the records as U type
records. Other FIT fields required for record definition
depend an the record type selected.

The FIT fields unique to a record type are described in the
discussion of record definition in section 3. The minimum
and maximum number of characters in any record in the
file are specified by the MNR and MRL fields. The value
of the MNR field cannot be zero and cannot exceed the
value of the MRL field. For the life of the file, any record
larger or smaller than these limits is rejected as a trivial
error.

PRIMARY KEY DEFINITION

The primary key for a record in an actual key file is a
record number that AAM converts to the block and record
slot number in which the record is stored. The key need
not be contained within the record.

Fields in the FIT needed for primary key definition depend
on whether the key is contained within the record. If it is
nat, four FIT fields are required for processing by primary
keys

EMK Embedded key. Set to NO (default).

KL Key length; number of characters in the
primary key, 1 through 8.

KA Key address; location of the word containing
the primary key.

KP Beginning key position; starting character

position of the key within the word indicated by
the KA field; default is 0.

6-2

If the primary key is embedded in the record, the FIT fields
required for primary key definition are as follows:

EMK Embedded key; must be set to YES.

RKW Relative key word; word within the record in
which the primary key begins, counting from 0;
default is 0.

RKP Relative key position; character position within
the relative key word in which the primary key
begins, counting from 0; default is 0.

KL Key length; number of characters in the
primary key, 1 through 8.

DATA BLOCK DEFINITION

You can either specify the size of the data blocks directly
or accept the default block size.

To specify the block size directly, set the maximum block
length (MBL.) field and the records per block (RB) field as
follows:

1. Set the maximum block length by multiplying the
average number of characters per record (RL) by an
estimated number of records per block (RB). Start
with 3 to 10 records per block to favor random
processing and keep central memory usage low. Round
RL x RB up to a PRU muiltiple (640 characters) and
subtract 50 characters that are needed by AAM. The
resulting MBL. characters is the physical limitation on
the size of data blocks.

2. Adjust the number of records per block used in step 1
so that RB times RL is as close to MBL as possible.
By specifying a value for RB; you set the maximum
number of records that can be stored logically within
each data block that has MBL characters.

For examples

Suppose you have records that each consist of 300
characters (RL = 300). With four records per block,
you need data blocks that are 1870 characters or 3
PRUs in length.

[(300 x 4) rounded to PRU multiple]
- 50 characters = 1870

Set MBL to 1870.

Adjust the number of records per black (RB) to six,
because six 300 character records (1800 characters) is
closer to the MBL value specified (1870).

The interaction of the RB field with the key length (KL)
field determines the maximum number of data blocks and
records in the file. The KL field sets a limit on the number
of records in the file. This limit divided by the RB field is
the theoretical maximum number of data blocks in the
file. Any remainder from the division is dropped.

Key length values produce thecretical file limits, as
follows:

KL=1 record maximum is 63

KlL.=2 record maximum is 4095
KL=3 record maximum is 262143
Ki=4 record maximum is 16777215

60499400 B

NOTE e The number of average records that would fit into a

4-PRU block
If you set RB too small, data block space is
wasted. If you set RB too large, logical key e FEight average size records
values are wasted (that is, not all available slot

numbers are used). You must then increase the If you do not specify MBL and you do specify RB, AAM

key length to accommodate the same number of calulates the default block size as follows:
records. Figure 6-2 illustrates the concept.

1. The mean of MRL and MNR values are used as the
Alternatively, you can accept the default block size or average record length. If MNR is not defined, it is

blocking factor. If an installation default has not been assumed to be zero.
defined, AAM calculates defaults for MBL and RB.

2. If the RB field equals one, AAM sets MBL to either 2

If you specify MBL but do nat specify RB (or set it to average size records or the smallest number of PRUs
zera), AAM decides on the appropriate blocking factor. that would contain RB average records.
AAM sets RB to one plus the number of average records
that would fit into MBL characters. 3. If RB is specified as anything except one, AAM sets
the MBL value to the number of characters in the
If you do not specify the MBL field or the RB field (or set smallest number of PRUs that would contain RB
them to zero), AAM sets RB ta the larger of the following: average records.
IF YOU SET RB TOO_SMALL
SPECIFIED: MBL = 1870 RL = 300 RB =4
/—-——-—— Key \(alues ————————\
1200
chars
1870 used
chars . o
(MBL)
WASTED WASTED WASTED
SPACE SPACE SPACE
Block O Block 1 Block 2
IF_YQOU SET RB TOO LARGE
SPECIFIED: MBL = 1870 RL = 300 RB = 8
/-——————Key \J/alues
1800
chars s o e
(MBL)
Block 0 Block 1 Block 6
Only the first 6 slot numbers in each block can be assigned. The last two logical key values in each block are
wasted. In other words, slot numbers 7, 8, 15, 16, . . . cannot be used.
If KL = 1, the theoretical file limits would be 63, records and 7 data blocks (63 + 8 = 7).
However, with RB = 8 only 6 x 7 records can be put in this file. The actual file limit would be 42 records.
KL would have to be increased to 2 to accomodate 63 records. Since this would require more space, it would be
better to decrease RB to 6.

Figure 6-2. Setting the Data Block Size

60499400 B

6-3

You can also specify padding for the data blocks. This
allows for an increase in the average record size. After
block size is determined by AAM, padding is added to the
value in the MBL field. You specify padding by the DP
field.

The final block size must be large enough to hold the
record pointers (two per word), two words for the block
header, and the number of average size records per block
specified by the RB field. AAM increases the MBL value,
if necessary to use mass storage efficiently. Resulting
blocks are always an integral muitiple of PRU size (640
characters) minus two waords:

[(Specified MBL + 50 characters) rounded to- the next
PRU multiple]- 20 characters

If you want to set MBL to specify a certain number of
PRUs per black, you should use the values 590, 1230, 1870,
2510, and so on. That is, you should set MBL to a PRU
multiple less 50 characters.

CREATING AN ACTUAL KEY FILE

An actual key file must be created on a separate file
creation run. The file can be created by a source program
or by the FORM utility. The file statistics table (FSTT),
which becomes a permanent part of the file, is created
when the actual key file is created.

For the file creation run, you must set the old/new file
(ON) field in the FIT to NEW. The following FIT fields
must also be defined and cannot be changed after file
creation:

FO File organization; set to AK by the CALL
FILEAK statement.

ORG Old/new file organization; must be set to NEW.

KL Key length; number of characters in the
primary key, 1 through 8.

MRL Maximum record length; maximum number of
characters in any record; set by AAM when FL
is specified for F or Z type records.

MNR Minimum record length; minimum number of
characters in any record; cannot be zero; set by
AAM when FL is specified for F or Z type
records.

RT Record type; default is W, which AAM
processes as U; fields required by the record
type must also be specified.

You must define one additional FIT field for the file
creation run; however, this field can be changed on
subsequent runs. The following field must be set:

LFN Logical file name; one to seven characters,
beginning with a letter.

If alternate keys are to be defined during the file creation
run, you must specify the following FIT field:

XN Index file name

Other FIT fields that are effective for the life of the file
can be specified by you or you can accept default values.
These fields are as follows:

RB Records per block; number of average size
records in a block for block size calculation;
default is eight records per block.

MBL Maximum block length; default is number of
words required for eight average size records.

op Data block padding; default is zero percent
padding.

BCK Block checksum; default is no checksums.

EMK Embedded key; must be set to YES if the
primary key is embedded within the record;
default is NO. (NO is more efficient.)

If primary keys are embedded, two additional FIT fields are
requireds

RKW Relative key ward in which the primary key
begins; default is word O.

RKP Relative key position within the word in which
the key begins, default is character position 0.

Optional FIT fields that can be supplied on the creation run

and can be changed at any time during subsequent file
access runs are as follows:

ERL Trivial error limit; default is no limit.
FLM File limit; default is no limit.

DFC Dayfile control; default is only fatal error
messages to the dayfile.

EFC Error file control; default is no messages to the
error file.

FWI Forced write indicator; default is buffers are
written only when space is needed.

FWB First word address of the buffer; default is
buffer address provided by AAM.

BFS Buffer size; default is buffer size calculated by
AAM.

CPA Compression routine address; default is no
compression of records.

DCA Decompression routine address; default depends
on the CPA field (refer to appendix F).

DX End-of-data exit; default is no exit subroutine.

EX Error exit; default is no exit subroutine.

FILE CREATION BY A SOURCE PROGRAM

When you create an actual key file by a source program,
you must define file structure and key characteristics by
setting applicable fields in the FIT before the file is
opened. You can use the FILE control statement, the
CALL FILEAK statement, and the CALL STOREF
statement to set fields in the FIT.

60499400 B

The old/new file (ON) field must be set to NEW by one of
the FIT manipulation statements or by opening the file
with the processing direction (pd) parameter in the open
request set to NEW. Setting the pd parameter to NEW
actually sets two fields in the FIT. The ON field is set to
NEW and the processing direction (PD) field is set to
OUTPUT. The program can then insert records into the
file with write requests. '

You should close the file after all records have been
written to the file. On a file creation run, only those
statements that establish the FIT, open and close the file,
write records, and read and write fields in the FIT can be
issued.

Establishing the FIT

The CALL FILEAK statement must be the first statement
that references the actual key file. When it is executed,
the FIT is constructed and FIT field values specified in the
statement are stored in the FIT. The first parameter in
the CALL FILEAK statement is the name of the 35-word
array to hold the FIT. The same FIT array name is the
first parameter in every statement accessing the actual
key file. Refer to section 2 for a more detailed
description of the FIT and the CALL FILEAK statement.

Opening the File

Before any records can be written, you must open the
actual key file by executing a CALL OPENM statement to
prepare the file for processing. The format of this
statement is as follows:

CALL OPENM (fit,pd)

The name of the array containing the FIT is the first
parameter in the open request and is a required
parameter. The second parameter sets the processing
direction (PD) and old/new file (ON) fields in the FIT. If
the PD and ON fields are set before the file is opened, the
second parameter can be omitted; otherwise, it must
specify NEW.

Values from the FILE control statement are stored in the
appropriate fields in the FIT overriding existing values.
Default values are supplied for fields not set by the user,
buffer fields are processed, and the FIT is checked for
consistency in logic and for required fields.

The following statement initiates open processing:

CALL OPENM (AKFIT, 'NEW’)
In this statement, the array named AKFIT contains the FIT
for the actual key file being opened. The second

parameter causes the PD field to be set to OUTPUT and
the ON field to be set to NEW.

Writing Records
Records are written to an actual key file by executing a
CALL PUT statement. The format of this statement is

shown in appendix B.

The following statement writes a record to the file
associated with the FIT in the array named AKFIT:

CALL PUT (AKFIT)

60499400 B

Any of the FIT fields not set by the write request default
to the current value in the FIT. When the record has been
written to the file, AAM sets the RL field to the number of
characters in the record.

Records written to an actual key file are positioned within
the file according to the value of the primary key supplied
by the user or, if the primary key value has been set to
zero, in the location determined by AAM; in the latter
case, the corresponding primary key value is returned to
the user. If the file has nonembedded keys, the key address
(KA) and key position (KP) fields inform AAM where to
find the user-supplied key or where to return the
system-supplied key. If the file has embedded keys, the
location is indicated by the relative key word (RKW) and
relative key position (RKP) fields as specified when the file
was first opened.

The recommended method is to allow AAM to provide the
key values. Before issuing a write request, set the key
location, pointed to by the KA and KP fields or the RKW
and RKP fields, to zero. The write request then causes
AAM to find a suitable position in the file; store the
corresponding key value in the key location, and then copy
the record to that position in the file. You are responsible
for recording the key value if the file is to be accessed by
primary key at any subsequent time.

When yoau supply key values, the value at the key location
must be a unique record number. Data blocks must be
created in ascending numeric order. For example, blocks 0
through 16 must already exist before block 17 can be
created. Record positions in each block need not be filled
in ascending position value; however, processing is more
efficient when the records are in primary key order. An
error occurs if the user-supplied key value is not unique or
if it specifies an invalid block number.

The record to be written to the file must be established in
the working storage area. If the primary key is not
embedded, the location to provide or receive the primary
key must also be established. For embedded keys, the key
location is determined by the RKW and RKP fields.

Closing the File

After all records have been written to the file, a CALL
CLOSEM statement must be executed to ensure file
integrity. The format of this statement is shown in
appendix B.

The fallowing statement‘initiates close processing:
CALL CLOSEM (AKFIT)

When this statement is executed, the file whose FIT is in
the array named AKFIT is closed and rewound to
beginning-to-information. The OC flag is set to closed.
FIT verification and FILE control statement processing are
not repeated if the file is subsequently reopened.

If a close request is not executed, the FSTT, which is used
to maintain continuity over the life of the file, might be
impaired. This could interfere with system checks that
prevent inadvertent destruction of the file.

When the file is closed, any blocks in the central memory
buffer are written to the file, the FSTT is updated, and the’
FSTT is written to the file. File statistics are written to
the error file, if requested, and to the dayfile.

6-5

A trivial error results if the close request is issued for a
file that has never been opened or that has been closed but
neither unloaded nor reopened. The file is positioned as
specified before the error is issued.

Sample Creation Program

Program NEWAK, shown in figure 6-3, creates an actual
key file through direct calls to AAM. Records are read
from the input file ZOO and written to the new actual key
file AKFILE. The program prints each input record on the
file QUTPUT to show the records used to create the file.
Figure 6-3 also shows the control statements used to
create the actual key file. The CRMEP control statement,
which is described in detail in section 7, is used to write
the error file to the file QUTPUT.

Program statements that are related to creation of the
actual key file are defined as follows:

e DIMENSION AKFIT(35), AKWSA(8)
This statement sets up twe arrays for the direct calls.
The first array, AKFIT, is allocated 35 words for the
FIT. The second array is allocated 8 words for the
working storage area.

e CALL FILEAK (AKFIT, 'LFN, 'AKFILEY...)

This statement sets fields in the FIT to describe file
structure and sets other file processing parameters:

Fit array (AKFIT)

Logical file name (AKFILE)
Extended file organization (NEW)
Working storage area (AKWSA)

Record type (trailer) and other related character-
isties of T type records (HL, TL, CP, CL)

Minimum and maximum record lengths (MNR and
MRL fields)

Key address (KEY)
Primary key length (2 characters)

Embedded key and location (EMK, RKW, and RKP
fields)

Average size records per block (16 records)
Optional parameters include:
Error file control (3, errors and notes)
Dayfile control (3, errors and notes)
e CALL OPENM (AKFIT, 'NEW?
This statement opens the file, sets the PD field to

OUTPUT and sets the ON field to NEW for a file
creation run. Records can only be written to the file.

6-6

e CALL PUT (AKFIT)

This statement writes the record in the working
storage area AKWSA to the actual key file. The KA
and KP parameters are omitted because keys are
embedded.

e CALL CLOSEM (AKFIT)

This statement initiates close processing, which
includes writing the FSTT and any data blocks in the
buffer to the file.

FILE CREATION THROUGH FORM

You can create an actual key file through the FORM
utility. An existing actual key file can be restructured or
dumped to tape for storage or backup purposes by the
FORM utility. The following paragraphs briefly discuss
using FORM to create an actual key file. Refer to the
FORM reference manual for more detailed information.

FORM uses CYBER Record Manager routines to perform
input on the input file and output on the actual key file
being created. FILE control statements are used to
provide descriptions of the input and output files. The
input file can be any file organization except word
addressable. FILE control statement parameters for the
input file depend on the file organization. For the actual
key file being created, you must specify on the FILE
control statement the logical file name and the following
FIT fields:

FO File organization; must be FO=zAK for actual
key file organization.

ORG Oidfnew (initial or extended) file organization;
must be ORG=NEW.

KL Key length; number of characters in the
primary key.

MRL Maximum record length; maximum number of
characters in any record; set by AAM when FL.
is specified for F or Z type records.

MNR Minimum record length; minimum number of
characters in any record; set by AAM when FL
is specified for F or Z type records.

RT Record type; default is W, which AAM
processes as U; fields required by the record
type must also be specified.

You cannot supply primary key values for an actual key file
being created through FORM. If the system-supplied
primary key is to be embedded in the output record, the
following FIT fields are also required:

EMK Embedded key; must be EMK=YES.

RKW Relative key word in which the key begins;
default is word 0.

RKP Relative key position within the word in which
the key begins; default is character position 0.

60499400 B

A. NOS Operating System NOS/BE Operating System

Job statement Job statement

USER statement ACCOUNT statement

CHARGE statement FTN5.

FTN5. ATTACH(Z00,ID=AAMUG)
ATTACH(Z0O0/UN=userno) REQUEST(AKFILE,PF)
DEFINE(AKFILE/CT=PU,M=W) LGO.

LGO. CATALOG(AKFILE,ID=AAMUG)
CRMEP(LO,RU) CRMEP(LO,RU)

B. Input File: 20O

1MONKEY BANABA MIX6 JOE BIMBA TOMMY SUSIE SALLY JIMBO

SPOLAR BEARFISH 2 SAM PEARL
12BABOON BANANA MIX5 JANEY BOBBY BUCKO MANDY CARRIE
18GOAT MASH 4 BILLY BETTY BUTTS BECKY

24SHEEP MASH 1 CURLY

32RACCOON MEAT MIX 3 RINGO KINKY KELLY
L1PENGUIN FISH MIX 2 PENNY MR MAC
62BROWNBEAR MEAT MIX 2 ROCKY TESSA

C. Source Program

PROGRAM NEWAK

dekdkdkdokkkdkdkdkdohktkiohkhikkkiokhkihkhkidkhhkkhidhhkkkkkrhiikhikk

o
€ dedkdkdkkkddokiokdiokkddkikdokicohiokddocioiiodkiokdokdodkdidokiddkiokddocokdk ook
C * THIS PROGRAM ILLUSTRATES THE CREATION OF AN AK FILE *
C * (AKFILE) FROM A SEQUENTIAL FILE (Z00). EACH RECORD *
C * WRITTEN IS ALSO PRINTED AS OUTPUT. *
c
c

IMPLICIT INTEGER (A-Z)
DIMENSION AKFIT (35), AKWSA(8)
CALL FILEAK (AKFIT, 'LFN', "AKFILE', 'ORG', 'NEW',
'WSA', AKWSA,
'\RT', 'T', 'HL', 32, 'TL', 6, 'CP', 30, 'CL', 1,
TMNR', 32, 'MRL', 80,
'KA', KEY, 'KL', 2, 'EMK', 'YES', 'RKW', 0, 'RKP', 8,
'EFC', 3, 'DFC', 3)
CALL OPENM (AKFIT, 'NEW')
IF (IFETCH (AKFIT, 'ES') .NE. 0) GO TO 50
OPEN (2, FILE= 'Z00")
KEY = 0
10 READ (2, '(I10, 7A10)", END = 30) AKWSA
CALL PUT (AKFIT)
IF (IFETCH (AKFIT, 'ES') .NE. 0) GO TO 50
PRINT 100, AKWSA
60 TO 10
30 CALL CLOSEM (AKFIT)
STOP
SO PRINT 902, IFETCH (AKFIT, 'ES®)
CALL CLOSEM (AKFIT)
STOP "CRM ERROR RETURNED'®
100 FORMAT (I10, 7A10)
902 FORMAT ('ES = ', 03)
END

+ o+ o+ o+

D. Output

(same as input)

Figure 6-3. Actual Key File Creation, Source Program

60499400 B

Other FIT fields not specified in the FILE control
statement are set to the default values. The FORM
directive OUT can specify values for the following FIT
fields:

FLM File limit; maximum number of records for the
actual key file; default is no limit.

CPA Compression routine address; number or entry
paint name of the compression routine; default
is no compression of records.

EX Error exit; entry point name of the user-
supplied error processing routine; default is no
error exit subroutine.

A job using the FORM utility to create an actual key file
must contain the following:

© A FILE control statement describing the input file
structure unless the file is a sequential file with Z
type records and C type blocks

e A FILE control statement describing the new actual
key file structure _

@ A FORM control statement
® FORM directives

The FORM directives INP and OUT identify the input and
output files, respectively. If primary keys are embedded
and you use only the INP and OUT directives, they can be
specified in the FORM control statement. Other FORM
directives are available to specify record selection
criteria, reformatting, and conversion. Consult the FORM
reference manual for details of optional directives that
might be useful.

The source of input records is specified in the INP
directive. The logical file name is the only required
parameter. Optional parameters specify the maximum
number of records to be processed, rewind action at end of
run, and owncode routines for various options. The input
file structure determines the parameters that are used.

The OUT directive specifies the logical file name of the
actual key file to be generated by FORM. Optional
parameters similar to those in the INP directive can also
be specified. The KEY parameter is required only when
the system-supplied primary key values are to be inserted
in the actual key file records. The format of the KEY
parameter is:

KEY+HT
+ The primary key is embedded in the output record.

i Character position in which the primary key
begins, counting by the FORM convention where
the first character position is 1.

T Key type in FORM terminology; must be I for an
integer key.

When you access an actual key file randomly by primary
key values, you must preserve the keys. As each record is
written, FORM returns the key value to location KEYA. A
second file can be created to hold the key values. The REF
directive can be used to reformat the data for the second
file. Because FORM creates the files in the order the
directives are encountered, the directives for the file of
primary key values must follow the directives for the
actual key file.

6-8

Figure 6-4 shows the control statements and FORM
directives used to create an actual key file.

NOS Operating System

Job statement

USER statement

CHARGE statement

DEFINE(AKFILE/CT=PU,M=W)

DEFINE(KEYFILE/CT=PU M=W)

FILE(AKFILE,FO=AK,RT=T KL=2 MNR=32 MR L=80,
DP=15,H1 =32, TL=6)}

FILE(AKFILE,CP=30,CL=1,RB=16,0RG=NEW)

FILE(KEYFILE,FO=IS,RT=F KT=U,KL=10,FL=20,
ORG=NEW,EMK=YES}

FORM.

- - EOR

INP(INPUT)

OUT(AKFILE)

OQUT(KEYFILE)

REF(KEYFILE,1X10=11X10,111=KEYA}

- - EOR

Input data

- - EOI

NOS/BE Operating System

Job statement

ACCOUNT statement

REQUEST(AKFILE,PF)

REQUEST{KEYFILE,PF)

FILE(AKFILE,FO=AK,RT=T ,KL=2,MNR=32 MR =80,
DP=15,HL=32,TL=6)

FILE(AKFILE,CP=30,CL=1,RB=16,0RG=NEW)

FILE(KEYFILE,FO=IS,RT=F KT=U,KL=10,FL=20,
ORG=NEW,EMK=YES)

FORM.

*EOR

INP(INPUT)

OUT(AKFILE)

OUT(KEYFILE)

REF(KEYFILE,1X10=11X10,111=KEYA)

*EOQR

Input data

*EOQI

Figure 6-4. Actual Key File Creation, FORM Utility

PROCESSING AN EXISTING
ACTUAL KEY FILE

An existing actual key file can be read randomly by
primary key or sequentially by the order of records and
blocks. New records can be added and existing records can
be deleted or be replaced by other records with the same
primary key values. File processing is governed by many of
the FIT fields set before the file was opened on the
creation run. The following FIT fields cannot be changed:

MBL Maximum block length
RB Records per block
MNR Minimum record length

MRL Maximum record length

KL Key length

60499400 B

RKW Relative key word for embedded keys

RKP Relative key position within RKW for embedded
keys

When the file is opened, values for these fields are
returned from the FSTT to the FIT. Any attempt to
change key, record, or block length is ignored by AAM.

FIT fields that must be set the same as on the file creation
run are as follows:

RT Record type; all applicable fields must also be
set.

ORG Old/new (initial or extended) file organization.
The logical file name (LFN) field must Je set to the
current logical file name for the file. This name need not

be the same as the name used on the file creation run.

If alternate keys have been defined, you must specify the
following FIT field:

XN Index file name

If you do not set the following FIT fields before the file is
opened, the fields are set to default values:

FWB First word address of the buffer; default is
buffer location provided by AAM,

BFS Buffer size; default is buffer size calculated by
AAM.

CPA Compression routine address; default is no
compression of records.

DCA Decompression routine address; default depends
on the CPA field.

BCK Block checksum; applies only if this option was
selected on the file creation run; default is no
checksums for read processing.

The following optional fields can be set at any time before
being required by a file processing statement:

DFC Dayfile control

EFC Error file control

ERL Trivial error limit

KA Key address

KP Key position

FLM File limit

FWI Forced write indicator

EX Error exit

DX End-of-data exit
The KA and KP fields are required for nonembedded keys
and for random access or deletion of records with
embedded keys.
Various FIT fields can be set by the file processing
statements. The default value listed for a field used by
one of these statements is applicable only if the field has

not been set by any other statement. The current value in
a FIT field is always used by a file processing statement.

60499400 B

ESTABLISHING THE FIT

The first statement referencing the actual key file must be
the CALL FILEAK statement. This statement causes
construction of the FIT. The first parameter in the CALL
FILEAK statement specifies the name of the 35-word array
in which the FIT is constructed. Additional parameters set
FIT fields; the logical file name (LFN) field must be set to
the current logical file name by which the file is attached.
Fields related to file structure are not specified because
this information is saved in the FSTT and returned to the
FIT when the file is opened. The FILE control statement
can also be used to set FIT fields or to override values set
by the CALL FILEAK statement.

OPENING THE FILE

You must open the file by executing a CALL OPENM
statement before any file processing can occur. The
format of this statement is shown in appendix B.

Open processing is initiated by the following statement:

CALL OPENM (AKFIT, '-OY

When this statement is executed, the file is opened for
both input and output. Any file processing statement can
be issued for the file. The ON field is set to OLD. AKFIT
is the name of the array containing the FIT. In addition,
the following FIT field can be set:

PD Processing direction; type of processing to
be performed; default is input processing.

The setting of this field determines the type of processing
that can be performed. The PD field can be set as follows:

INPUT Only statements that read records or
position the file can be executed. This is

the default setting.

OUTPUT Only statements that write new records to
the file can be executed.

1-0 Any input/output statement can be
executed. (If the PD field is set by any
other statement, the two-character
mnemonic IO must be specified.)

When the open request is executed, values from the FSTT
are stored in FIT fields, FIT control statement processing
occurs, and FIT consistency checking is performed. The
file is positioned at the first record in the first block.

The first time an existing file is opened, the old/new file
(ON) field must be changed from NEW to OLD. The ON
field can be set to OLD by the FILE control statement, the
CALL FILEAK statement, or the CALL STOREF
statement. The ON field is automatically set to OLD when
INPUT, OUTPUT, or 1-O is specified for the processing
direction (pd) parameter in the open request.

If an open request is not issued, error procedures are
initiated when any other file access statement for the
actual key file is processed. A trivial error also occurs if a
file processing statement is issued and the PD field is not
set to an appropriate value for that statement.

READING THE FILE RANDOMLY

An actual key file can be read randomly by primary key
values by executing a CALL. GET statement. The file must
be open for input or for input/output (the PD field is set to
INPUT or 10). The format of the CALL GET statement is
shown in appendix B.

The following statement specifies a random read of the file
associated with the FIT stored in the array named AKFIT:

CALL GET (AKFIT)

The WSA and KA fields must be set either through the
random read request or through the CALL FILEAK or
CALL STOREF statement. The primary key value for the
record to be read is stored at the location indicated by the
KA field. The record is then returned t» the location
designated by the WSA field. If no record is stored in the
data block and record slot calculated from the primary key
value, a trivial error occurs and, if defined, the exit is
taken.

At the completion of the read request, the record length
(RL) field is set to the number of characters returned to
the working storage area. Any value set in the RL field
before the read request is issued is ignored; the number of
characters returned is determined by the length of the
record written.

READING THE FILE SEQUENTIALLY

A sequential read request returns the next record in
sequence to the working storage area. Records are read
sequentially by executing a CALL GETN statement.
Sequencing of records in an actual key file is by block and
record slot within the block. The file must be open for
input or input/output (the PD field is set to INPUT or IO).
The format of the CALL GETN statement is shown in
appendix B.

Execution of the following statement reads the next record
in sequence:

CALL GETN (AKFIT)

The WSA field must be set before the sequential read
request can be executed. The KA field is an optional field;
if it is specified, the primary key of the record retrieved
from the file is returned to the designated location if
primary keys are not embedded.

If the sequential read request is the first statement issued
after the file is opened or after a rewind request, the first
record in the file is retrieved. Additional sequential read
requests then retrieve records in the order they are stored
in the file. Empty record slots are ignored. Overflow
records, which are records too large to be stored in the
position indicated by the user-supplied primary key, are
retrieved according to key value, not according to the
position where they are actually stored.

A random read, a replace, or a delete request issued during
a series of sequential read requests does not affect the
sequential position of the file. If end-of-information is
encountered when a sequential read request is issued, the
file position (FP) field is set to 100g. If another
sequential read is executed, a trivial error results and the
error exit, if specified, is taken.

INSERTING NEW RECORDS

New records are written to an existing actual key file with
the same write request format used to create the file. The
file must be open for output or input/output (the PD field
is set to OUTPUT or 10).

Execution of the following statement inserts a new record
in the file:

CALL PUT (AKFIT)

When the primary key value for the record is greater than
zero, AAM converts the value to a block and record slot
number in which the record can be written. The key value
must be unique and must not extend the file by more than
one block. If the key is not valid, the request is rejected
and the error exit, if specified, is taken.

If the primary key value is zero, the record is inserted in
an available record slot and the key value calculated by
AAM is returned to the primary key location. You must
preserve the key for future random access to the record.

DELETING EXISTING RECORDS

Records are eliminated from an actual key file by
executing a CALL DLTE statement. The file must be open
far input/output (the PD field is set to I0). The format of
the CALL DLTE statement is shown in appendix B.

A record is deleted from the file by the following
statement:

CALL DLTE (AKFIT)

The location indicated by the KA field must contain the
primary key value of an existing record. If it does not, a
trivial error results and any defined error exit routine is
executed.

When a delete request is issued, the record header at the
end of the block is physically deleted from the block. The
record image, however, remains in the data portion of the
block until the space is needed as a result of a write or
replace request.

REPLACING EXISTING RECORDS

Any existing record in an actual key file can be modified
and rewritten to the file by executing a CALL REPLC
statement. The file must be open for input/output (PD
field is set to I0). The format of the CALL REPLC
statement is shown in appendix B.

The following statement replaces a record in the file with
the record in the working storage area:

CALL REPLC (AKFIT)

The primary key value must indicate an existing record in
the file. The primary key cannot be set to zero for a
replace request.

The new record can be smaller or larger than the existing
record; however, the record size must be within the
minimum and maximum record lengths established by the
MNR and MRL. fields in the FIT.

60499400 B

CLOSING THE FILE

After completion of all file accesses, you must issue a
CALL CLOSEM statement to ensure file integrity. The
format of this statement is shown in appendix B.

Close processing is initiated by the following statement:

CALL CLOSEM (AKFIT)

The file is rewound and closed. If the file is reopened in
the same job, FIT verification and FILE control statement
processing are not repeated.

Any modified blocks in the central memory buffer are
written to the file and the FSTT is updated.

A trivial error occurs when a close request is issued for a
file that has never been opened or for one that has been
closed but neither unloaded nor reopened. File position
does not change and the error exit, if specified, is taken.

SAMPLE UPDATING PROGRAM

Program AKUPDAT, shown in figure 6-5, accesses the
existing actual key file AKFILE through direct calls to
AAM. Input records are read from the file NEWZOO. A
transaction code (TRANS) in the input record indicates
whether to delete, replace, or add a record. For replacing
or adding a record, a second input record is read into the
working storage area. When all input records have been
read, the actual key file is rewound to beginning-
of-information and read sequentially.

Program statements related to processing the existing
actual key file are defined as follows:
e CALL FILEAK (AKFIT, LFN, 'AKFILE,...)

This statement sets the FIT fields required for existing
file processing:

FIT array (AKFIT)
lLogical file name (AKFILE)

Record type and related fields (must be the same
as for the creation run)

Extended file organization (NEW)

e CALL OPENM (AKFIT, T-OY)
This statement opens the file for input/output
processing; the PD field is set to IO and the ON field
is set to OLD.

e CALL DLTE (AKFIT)
This statement deletes a record from the file. The
primary key for the record to be deleted is in the
variable KEY beginning in character position 8.

e CALL GET (AKFIT)
This statement reads a record randomly and returns it
to the working storage area AKWSA. The primary key

for the record to be retrieved is in the variable KEY
beginning in character position 8.

60499400 B

e CALL REPLC (AKFIT)

This statement replaces an existing record with the
record in the working storage area (AKWSA).

e CALL PUT (AKFIT)

This statement writes the record in the working
storage area AKWSA to the file.

e CALL GETN (AKFIT)

This statement reads the next record in sequence and
returns it to the working storage area AKWSA.

e [IF (IFETCH (AKFIT, 'FP") .NE. 0"20") GO TO 80

This statement checks the file position (FP) field in
the FIT for a valid read. The FP field is set to 20g
when a record is read from the file.

e CALL CLOSEM (AKFIT)

This statement initiates close processing, which
includes updating the FSTT and writing any data
blocks in the buffer to the file.

Printed output from program AKUPDAT is shown in part D
of figure 6-5. The first part of the listing shows the input
records and the record read by the random read request.
The last part of the listing shows the contents of the
updated actual key file. This can be compared with the
original file contents shown in part B of the figure. The
updated file reflects the following transaction processing:

e Record number 5 was deleted and record number 27
was inserted because the animals in cage 5 were
moved to cage 27.

e Record number 45 was added for the new animals in
cage 45.

e Record number 62 was replaced; the updated record
contains another trailer item for the additional animal
in"'cage 62.

POSITIONING AN ACTUAL
KEY FILE

Normally, file paositioning is performed for subsequent
sequential access to the file in primary key order. Because
the primary keys in an actual key file indicate the storage
locations of the records, sequential access is meaningless
in most applications. An actual key file can be paositioned
in the following ways:

e An open request positions the file at the beginning of
the first record in the first block.

e A skip request positions the file forward or backward
to the beginning of a record, as indicated by the
current position and the skip count.

e A rewind request positions the file at the beginning of
the first record in the file.

e A random read request positions the file at the end of
the record read.

When a series of sequential read requests are being issued,

the sequential file position is not affected by intervening
write, replace, or delete requests.

6-11

SKIPPING RECORDS

You can position an actual key file by skipping records
forward or backward by executing a CALL SKIP
statement. The format of this statement is shown in
appendix B.

The following statement specifies that the file is to be
positioned backward three records from the current
position:

CALL SKIP (AKFIT, -3)

No FIT fields are set by the skip request. Skipping stops
when beginning-of-information . or end-of-information is
reached before the specified number of records have been
skipped.

In either direction, the skip request always positions the
file to the beginning of a record. Empty record positions
are ignored and are not included in the skip count. An
overflow record is counted when the position corresponding

to its key value is encountered, not when the actual record
is encountered. Only small skips should be made because
AAM reads and counts each intervening record, thus
increasing execution time.

REWINDING THE FILE

Execution of a CALL REWND statement positions the
actual key file to the beginning of the record in the first
occupied record slot in the first block. The format of this
statement is shown in appendix B.

When the following statement is executed, the file is
rewaund to beginning-to-information:

CALL REWND (AKFIT)

The file must e opened before the rewind request can be
issued. Rewinding the file is more efficient than extensive
backward skipping of records. The name of the array
containing the FIT is the only parameter in the rewind
request.

A. NOS Operating System

NQS/BE Operating Systemn

Job statement
USER statement

CRMEP(LO,RU)

B. Input File: AKFILE

24LSHEEP MASH 1 CURLY

32RACCOON MEAT MIX 3 RINGO KINKY KELLY
4TPENGUIN FISH MIX 2 PENNY MR WAC
62BROWNBEAR MEAT MIX 2 ROCKY TESSA

Input File: NEWZOO

05 -1

27 1

27POLAR BEARFISH 2 SAM PEARL
45 1

45LI0N RAW MEAT 1 LEO

62 0
62BROWN BEARMEAT MIX 3 ROCKY TESSA BRUNO

Job statement
ACCOUNT statement

CHARGE statement FTNS.

FTNG. ATTACH (NEWZOO,ID=AAM)
ATTACH{NEWZ0OO/UN=userno) ATTACH({AKFILE, ID=AAMUG)
ATTACH(AKFILE/UN=userno,M=W) LGO.

LGO. CRMEP(LO,RU)

1HONKEY BANABA MIX6 JOE BIMBA TOMMY SUSIE SALLY JIMBO
SPOLAR BEARFISH 2 SAM PEARL

12BABOON BANANA MIXS JANEY BOBBY BUCKO MANDY CARRIE
18GOAT MASH 4 BILLY BETTY BUTTS BECKY

Figure 6—5; Processing Existing Actual Key File {Sheet 1 of 3)

6-12

60499400 B

Source Program

PROGRAM AKUPDAT

c

C dedekdedkdokdddodododdodokdoddeddododedodeddoddodeodododdeodededododokdedeododedodeodedeodok kkokeokkkkk ®
C * THIS PROGRAM ILLUSTRATES UPDATING AN EXISTING AK FILE *
¢ % (AKFILE). UPDATE INFORMATION EXISTS ON THE INPUT FILE *
C * NEWZOO. TRANSACTION CODES (TRANS) ARE AS FOLLOWS: *
c * -1 MEANS DELETE A RECORD *
co* 1 MEANS ADD A RECORD *
c * 0 MEANS REPLACE A RECORD *
o Jede e Jede e e do e Je de e o do e e de Fedede e o de dedede dede e dede ek dededodededede dede dode ke dede ke dedodo ek de koo
c

IMPLICIT INTEGER (A-2) :

DIMENSION AKFIT (35), AKWSA (8)

CALL FILEAK (AKFIT, 'LFN®, 'AKFILE®, 'ORG', 'NEW',
'WSA', AKWSA,
1RTY, 'T', ‘HL', 32, 'TL', 6, 'CP', 30, 'CL', 1,
TMNR', 32, 'MRL', 80,
TKA', KEY, 'KL', 2, ‘EMK', 'YES', 'KP*, 8,
'EFCt, 3, 'DFCY, 3)

OPEN (2, FILE = "NEWZO0O®)

CALL OPENM (AKFIT, 'I-0%)

IF (IFETCH (AKFIT, 'ES') .NE. 0) GO TO 90

PRINT *, ' TRANS'

10 READ (2, '(2I10)*, END = 60) KEY, TRANS

PRINT %, KEY, TRANS ‘

P

C. DELETE RECORD FROM EXISTING FILE

¢
IF (TRANS .LT. 0) THEN
CALL DLTE (AKFIT)
IF (IFETCH (AKFIT, 'ES') .NE. 0) GO TO 90
G0 TO 10
END IF
c
¢ READ EXISTING RECORD AND REPLACE
c
IF (TRANS .EQ. 0) THEN
CALL GET CAKFIT) _
IF (IFETCH (AKFIT, 'ES') .NE. 0) GO TO 90
PRINT 110, AKWSA
READ (2, *(I10, 7A10)', END = 60) AKWSA
PRINT 130, AKWSA
CALL REPLC (AKFIT)
IF (IFETCH (AKFIT, 'ES') .NE. 0) GO TO 90
G0 TO 10
END IF
c
¢ ADD NEW RECORD TO THE FILE
< ,

IF (TRANS .GT. 0) THEN
READ (2, '(I10, 7A10)', END = 60) AKWSA
PRINT 130, AKWSA
CALL PUT (AKFIT)
IF (IFETCH (AKFIT, "ES') .NE. 0) GO TO 90
GO TO 10
END IF
60 CALL REWND (AKFIT)

60499400 B

Figure 6-5. Processing Existing Actual Key File (Sheet 2 of 3)

6-13

Source Program {Contd)

c

C READ UPDATED FILE SEQUENTIALLY

c

70
75

110

130
902

D. Sample Output

TRANS

5 Delete Record 5

27 Add Record 27
27POLAR BEARFISH 2 SAM PEARL

45 Add Record 45
45LION RAW MEAT 1 LEO

62 Replace Record 62

REPLACE RECORD - 62BROWNBEAR MEAT MIX 2 ROCKY TESSA
‘62BROWN BEARMEAT MIX 3 ROCKY TESSA BRUNO

NEW FILE

PRINT %, 'NEW FILE'
DO75I=1,8

AKWSA (I) = 10H

CALL GETN (AKFIT)

IF (IFETCH (AKFIT, 'ES') .NE. 0) 6O TO 90
IF (IFETCH (AKFIT, *FP') .NE. 0"20") GO TO 80
PRINT 130, AKWSA

60 TO 70

CALL CLOSENM (AKFIT)

STOP

PRINT 902, IFETCH (AKFIT, 'ES®)

CALL CLOSEM (AKFIT)

STOP "CRM ERROR RETURNED®

FORMAT (* REPLACE RECORD - ', 110, 7A10)

FORKMAT (1X, I1D 7A10)
FORMAT ('ES = ', 03)
END

1MONKEY BANABA MIX6 JOE BIMBA TOMMY SUSIE SALLY JIMBO
12BABOON BANANA MIXS5 JANEY BOBBY BUCKO MANDY CARRIE

18GOAT MASH 4 BILLY BETTY BUTTS BECKY
24LSHEEP MASH 1 CURLY
27POLAR BEARFISH 2 SAM PEARL

32RACCOON MEAT MIX 3 RINGO KINKY KELLY

41PENGUIN FISH MIX 2 PENNY MR MAC

45L10M RAW MEAT 1 LEO

62BROWN BEARMEAT MIX 3 ROCKY TESSA BRUNO
-040 CP SECONDS EXECUTION TIME.

Figure 6-5. Processing Existing Actual Key File (Sheet 3 of 3)

60499400 B

DEBUGGING TOOLS 7

w

AAM performs ‘various checks to ensure proper file
processing and maintains information in a number of FIT
fields related to error processing. You can set several of
these FIT fields. AAM sets other fields that you can
examine.

During program execution, AAM generates error messages
and notes. Error messages are generated for fatal and
trivial errors. Notes output by AAM are informative and
statistical messages. You control the dispesition of error
messages and notes through two FIT fields. Unless
otherwise directed, AAM only outputs fatal error messages
to the dayfile. You can examine the error file through the
CRMEP control statement.

The contents of FIT fields can be captured at various
points during processing and recorded on the error file.
This capability is available through the CALL FITDMP
statement, which can appear anywhere within the source
pregram.

FIT FIELDS UNDER USER CONTROL

The most common FIT fields that you can set and use for
error processing are DFC, EFC, and ERL.

These fields are summarized in table 7-1 and described in
the following paragraphs.

DAYFILE CONTROL, DFC

The DFC field controls the listing of error messages on the
dayfile. This field can be set by the CALL FILExx
statement, the CALL STOREF statement, or the FILE
control statement.

Fatal error messages are always written on the dayfile.
The messages written on the dayfile depend on the setting
of the DFC field as follows: ’

0 Fatal messages only (default)
1 All error messages to the dayfile
2 Notes to the dayfile

3 Error messages and notes to the dayfile

ERROR FILE CONTROL, EFC

The EFC field controls the listing of error messages on the
error file. This field can be set by the CALL FILExx
statement, the CALL STOREF statement, or the FILE
control statement.

The error file is a special file created with the logical file
name 2ZZZZEG. The messages written on the error file
depend on the setting of the EFC field as follows:

0 No messages to the error file (default)
1 Error messages to the error file
2 Notes to the error file

3 Error messages and notes to the error file -

TRIVIAL ERROR LIMIT, ERL

Trivial error conditions can interfere with a particular
operation but do not deny further file access. Trivial
errors should not be ignored on the assumption they are
unimportant. Trivial errors might reveal that the correct
file is not being processed. Trivial errors might also reveal
that an entire job completed normally, but the file was not
created because the file was never opened.

TABLE 7-1. ERROR PROCESSING FIT FIELDS UNDER USER CONTROL

FIT Field Definition Set By Values
e e e, e e e e e e e ettt s
DFC Dayfile control FILExx 0 fatal messages only {default)
STOREF 1 error messages
FILE control statement 2 notes
3 error messages and notes
EFC Error file "~ FILExx 0 no entries (default)
control STOREF 1 error messages
FILE control statement 2 notes
3 error messages and notes
ERL Trivial error FILExx 0 no limit (default)
Timit STOREF n error 1imit where n = 1 thru 511
FILE control statement

60499400 B

. The ERL field places a limit on the number of trivial errors
allowed. When the limit is reached, a fatal error occurs.
For example, if ERL is set to 10, nine trivial errors can
occur before the job aborts.

The ERL field can be set by the CALL FILExx statement,
the CALL STOREF statement, or the FILE control
statement. The default is no limit on trivial error
Imessages.

FIT FIELDS UNDER SYSTEM CONTROL

FIT fields that are set by AAM and that you can
interrogate are:

Trivial error count ECT
Error status ES
F atal/nonfatal flag FNF

These fields are summarized in table 7-2 and described in
the following paragraphs.

TABLE 7-2. ERROR PROCESSING FIT FIELDS
UNDER SYSTEM CONTROL

. s s IFETCH
FIT Field Definition Return Value
ECT Trivial error count | 0 thru 511
ES Error status Error code
o (001 thru nnn)
FNF Fatal/nonfatal flag | 0 nonfatal
1 fatal

TRIVIAL ERROR COUNT, ECT

The ECT field holds the trivial error count. When you set
the trivial error limit (ERL) field to a value greater than
zero, the ECT field is incremented by AAM whenever a
trivial error occurs. As long as the value of the ECT field
is less than the value of the ERL field, the trivial error
causes control to pass to the error exit, if specified, or to
the in-line code. When the error count is the same as the
trivial error limit (ECT=ERL), a fatal error occurs.

ERROR STATUS, ES

The ES field holds a three-digit octal error code. When a
fatal or trivial error occurs, AAM sets the ES field to the
appropriate code.

FATAL/NONFATAL FLAG, FNF

The FNF field holds a value that indicates whether an error
is fatal or nonfatal (trivial). AAM sets the FNF field to 1
to indicate a fatal error and to 0 to indicate a nonfatal
error. When FNF is set to 1, the file cannot be processed
further; if an attempt is made to process the file, the job is
aborted.

PROCESSING THE ERROR FILE

The error file is a local mass storage file that disappears at
job termination. To read the information stored on the
error file, you must call the post error processor by the
CRMEP control statement.

The error file buffer is always flushed when the job
terminates abnormally. At the normal completion of a job
step, however, the buffer is flushed only if all files are
closed. Any messages in the buffer are lost if the buffer is
not flushed.

Parameters in the CRMEP control statement specify the
output file to be used and select the error file information
to be listed on the output file. If no parameters are
specified, all fatal and data manager error messages are
listed on the system file OUTPUT. Data manager error
messages are transmitted to the error status (ES) field by
the CYBER Database Control System (CDCS) component
of the DMS-170 data management systein. These messages
comprise the 600 category and can appear when the CDC5
interface applies.

Parameters are specified in two ways: the mnemonic alone
ar the mnemonic followed by an equal sign and one or more
options. Multiple options are separated by a slash.
Table 7-3 lists the various parameters for the CRMEP
control statement and the possible settings for each
parameter. Figure 7-1 shows some examples of the
CRMEP control statement.

CRMEP(LO,SF=ISFILE)

All messages for the file ISFILE are to be listed on
the file OUTPUT. '

CRMEP(LO=-D,0N,L=ERRFILE)
All messages except data manager messages and those
with error codes 142 and 143 are writien to the
output file ERRFILE.

CRMEP{LO=N,SN=1000)
Only notes with the numbers 1000, 1001, and

1002 which are the numbers for the FIT dumps are
to be listed.

Figure 7-1. CRMEP Control Statement Examples

In addition to error messages, various notes and statistics
are written to the error file. Notes are output by AAM to
the error file at various times during program execution.
Statistics, which are output when the file is closed, include
accumulated totals for each type of file processing
request. Figure 7-2 shows the error file notes and
statistics printed after execution of the program shown in
figure 3-10.

DUMPING THE AIT

You can dump the contents of the FIT to the error file as a
note by executing a CALL FITDMP statement. The format
of this statement is as follows:

CALL FITDMP (fit,id)

60499400 C

TABLE 7-3. CRMEP CONTROL STATEMENT PARAMETERS
Mnemonic Omitted Mnemonic Only Mnemonic and Option
L0 Fatal and data manager A1l messages in Select (N) or omit (-N) notes.
error messages are the error file are
listed. listed. Select (F) or omit (-F) fatal messages.
Select (D) or omit (-D) data manager messages.
Select (T) or omit (-T) trivial messages.
SF Select messages for Select messages Select messages only for the specified files.
all files. for all files.
OF Omit messages for no Omit messages for Omit messages only for the specified files.
files. no files. :
SN Select all message Select hardware Select only messages with the specified numbers.
numbers. and parity error
messages.
ON Omit no message Omit only error Omit messages with the specified numbers.
numbers. numbers 142 and
143.
L Qutput file is OUTPUT. Qutput file is Output file is the specified file.
LIST.
RU Error file remains at Error file is Not applicable.
EOI after processing. returned/unloaded
after processing.

CRMEP,LO,RU.
RM NOTE 1001 ON LFN ISFILE FILE OPENE
RM NOTE 1011 ON LFN ISFILE GETN REACH
RM NOTE 1002 ON LFN ISFILE FILE CLOSE
RM NOTE 1003 ON LFN ISFILE NUMBER OF
RM NOTE 1004 ON LFN ISFILE #*xNUMBER
RM NOTE 1005 ON LFN ISFILE *#*NUMBER
RM NOTE 1006 ON LEN ISFILE %x*NUMBER
RM NOTE 1007 ON LFN ISFILE **xNUMBER
RM NOTE 1033 ON LFN ISFILE #%*NUMBER
RM NOTE 1010 ON LFN ISFILE #%*TOTAL D

]

ED EOI

D

INDEX LEVELS 0

OF GETS THIS OPEN

OF PUTS THIS OPEN

OF REPLACES THIS OPEN

OF DELETES THIS OPEN

OF GET NEXTS THIS OPEN 1
IAKAREA*** 256 WORDS

O-=2 NN

Figure 7-2. Error File Notes and Statistics

The first parameter in the FIT dump request is the name of
the array that contains the FIT. When more than one FIT
is being dumped to the error file, a 10-character identifier
can be associated with each FIT. The identifier Is
specified as the second parameter. If the error file control
(EFC) field is set to 0, it is forced to 2; if the field is set
to 1, it is forced to 3. ’

CALL FITDMP (ISFIT)
When this statement is executed, the FIT in the array ISFIT
is dumped to the error file as note 1000.

CALL FITDMP (ISFIT, M)

60499400 B

When this statement is executed, the FIT in the array ISFIT
is dumped to the error file as note 1000 and identified by
the name indicated in the variable M. You can easily
differentiate two FIT dumps for the same file in different
parts of the program by using this convention.

Program EXEXAMP, shown again in figure 7-3, includes a
CALL FITDMP statement to dump the contents of the FIT
to the error file and a CRMEP control statement to print
the contents of the error file. Figure 7-4 shows the first
three entries on the error file. Note 1001 indicates that
the file was successfully opened. The second entry
specifies that an error (0167) occurred. The third entry is
note 1000, which is the FIT dump produced at the time the
error occurred. The content of each FIT field reflects the

7-3

value of the field at the time subroutine ERROR was
entered. Applicable fields and their octal values are as
follows:

CL=1 Trailer count field length of one
character

CP=36 Count field begins in character
position 30

DFC=3 Errors and statistics/notes to the
dayfile

EFC=3 Error messages and notes to the
error file

EMK=1 Primary key is embedded in the
record

ES=167 Error code 167 - record length
outside min-max range

FO=6 Actual key file organization

HL=40 Record fixed length portion of 32
characters

KA=345 Address of the primary key

KL=2 Key length of two characters

KP=10 Key begins in eighth character

position of word at location KA

LFN=AKFILE L.ogical file name

MNR =40 Minimum record length of 32
characters (logical equivalent of HL

for T type records)

7-4

MRL=120 Maximum record length of 80
characters

0C=1 File opened

ON=0 Not a file creation run (old file)

ORG=1 Extended AAM file organization

PD=2 Processing direction of output

RKP=10 Key begins in eighth character
position of RKW

RKW=0 Key begins in first word of the record

RT=5 T type records

TL=6 Trailer length of six characters

WSA=345 Address of working storage area

FILE LIMIT

The file limit option establishes an upper limit on the
number of records in the file. This does not affect the
number of file transactions; it applies only to the maximum
number of records in the file at any time.

The file limit (FLM) field in the FIT is set to place a
maximum on the number of records allowed in the file.
When the limit specified by the FLM field is reached, an
attempt to write more records to the file produces a trivial
error and the write is ignored.

If the FLM field is set to zero, which is also the default
value, an unlimited number of records can be written to
the file. The installation, however, can limit the amount
of mass storage a file or job can occupy.

60499400 B

NOS Operating System NOS/BE Operating System

Job statement Job statement

USER statement ACCOUNT Statement
CHARGE statement FTN5.

FTNS. ATTACH(AKFILE,ID=AAMUG)
ATTACH{AKFILE/UN=userno,M=W) LGO.

LGO. CRMEP,LO.

CRMEP,LO.

Source Program
PROGRAM EXEXAMP

Skdedk kddekiokdk kddiokdeodek ik ok kdokdodokok deekdekododoedodoiokook dkoodeodokek dok dolok ok koo
#« THIS PROGRAM ILLUSTRATES USING THE CALL FITDMP STATEMENT *
% TO DISPLAY THE CONTENTS OF THE FIT WHEN AN ERROR OCCURS *
Feedeked Reded ek dodokekdeicd ok dok dokokoddokdokoiodedededoiok ook dok bk dok dekokodek kb kokkek

OO0 OO0

IMPLICIT INTEGER (A-Z)

DIMENSION AKFIT (35), AKWSA (8)

CALL FILEAK (AKFIT, °LFN', 'AKFILE', ORG®, "NEM®,
'WSA', AKMWSA, 'EMK', 'YES',
'RT', *TY, 'HL', 32, 'TL', 6, 'CP', 30, 'CL', 1,
TKA', AKWSA (1), 'KP', 8,
'EFCY, 3, 'DFC', 3)

CALL OPENM (AKFIT, 'OUTPUT')

IF (IFETCH (AKFIT, "ES') .NE. 0) GO To 20

10 READ (%, '(I10, 7A10)', END = 30) AKWSA

CALL PUT C(AKFIT)

++ + +

c
¢ TEST FOR CRM ERROR AND DUMP THE FIT
c
20 1IF (IFETCH (AKFIT, 'ES') .NE. 0) THEN
PRINT 902, IFETCH (AKFIT, 'ES'), AKWSA (1)
CALL FITDMP (AKFIT)
END IF
GO TO 10
30 CALL CLOSEM (AKFIT)
STOP
902 FORMAT (*ERROR CODE IS ', 03, ° FOR PRIMARY KEY ', 110)
END

Sample Output

4 10tiger meat mix 9 a b c d e f
ERROR CODE IS 167 FOR PRIMARY KEY 10
? 18goat mash 4 billy betty bucky becky
ERROR CODE IS 446 FOR PRIMARY KEY 18
? 99elephant peanuts
ERROR CODE IS 442 FOR PRIMARY KEY 99
o
.031 CP SECONDS EXECUTION TIKME.
/

60499400 B

Figure 7-3. Dumping the FIT

7-5

CRMEP,LO,RU.

RM NOTE 1001 ON LFN AKFILE
RM ERROR 0167 ON LFN AKFILE

MIN-MAX RANGE--REQUEST IGNORED

FILE OPENED
EXIT ADDRESS (14075 RECORD LENGTH OUTSIDE

RM NOTE 1000 ON LFN AKFILE FIT DUMP (FIT AT 000302)
0 ASCII 00 LAC
0 BAL 00000000 LBl
0 BBH 0 LCR
0 BCK 0113061140500 LFN
0 BFF 000000 Lex
000000 BFS 01 LL
0000000000 8N 00 LNG
0 BT 01 LoP
000302 BZF 01 LOPS
0 B8F 00000036 LP
000000 CoT 2 LT
0 CcF 00 LvL
01 cL 000000 LX
0 cM 00006154 MBL
1 CMPLT 000000000000 MFN
0 CNF 000 HKKL
00000036 cpP 00000000 #NB
000000 cPA 00000040 ®NR
0 ¢t 00000120 MRL
00 oC 00 muL
000000 DcA 0 NDX
000000 et 00 NL
3 DFC 0 NOFCP
0 DFLG i0cC
0 DKI 0 oF
000 oP 0 oN
0492 bVT i ORG
000000 bx 0 OVF
000 EcCT 00 PC
3 EFC 2 PD
i EMK 0 PEF
k 0 E0 000000 PKA
0000002701 EOIWA 0 PH
000 ERL 00000000 PNO
167 ES 00 PoOS
000000 EX 00000000 PTL
1 EXD 0000 R8s
0 FF 0000000000 RC
00000120 FL 0 RDR
777777777 FLM 0 REL
0 FNF 10 RKP
6 FO 0000 RKW
020 FpP 00000000 RL
0 FP8 01 RMK
36 FTS 05 RY
032266 FuB 0 sB
0 FWI 0 SBF
0 HB i SbS
00000040 HL 00 SES
00000000 HMB 0 soL
000000 HRL 0 SPR
00000000 iBL 00000006 TL
000 1P 00 TRC
167 IRS 0 uLp
000345 KA 0 VF
002 KL 00 VNO
0 KNE 0000000000 WA
10 KP 0 WPN
0000 KR 00000345 WSA
3 KT 000000 xBS
000000 LA 00000000000000 XN
Figure 7-4. Error File Qutput

60499400 B

STANDARD CHARACTER SETS A

R A i A e

Controi Data operating systems offer the following
variations of a basic character set:

e CDC 64-character set

@ CDC 63-character set

@ ASCII 64-character set

e ASCII 63-character set

Table A-1 shows these character sets. The set in use at a
particular installation is specified when the operating
system is installed or deadstarted.

Depending on another installation option, the system
assumes an input deck has been punched either in 026 or in
029 mode (regardless of the character set in use).

Under NOS/BE, the alternate mode can be specified by a

26 or 29 punched in columns 79 and 80 of the job statement
or any 7/8/9 card. The specified mode remains in effect

60493400 B

throughout the job unless it is reset by specification of the
alternate mode on a subsequent 7/8/9 card.

Under NOS, the alternate mode can be specified by a 26 or
29 punched in columns 79 and 80 of any 6/7/9 card, as
described for a 7/8/9 card. In addition, 026 mode.can be
specified by a card with 5/7/9 multipunched in column 1;
029 mode can be specified by a card with 5/7/9
multipunched in column 1 and a 9 punched in column 2.

Graphic character representation appearing at a terminal
or printer depends on the installation character set and the
terminal type. Characters shown in the CDC Graphic
column of table A-1 are applicable to.BCD terminals;
ASCI graphic characters are applicable to ASCII-CRT and
ASCII-TTY terminals.

Several graphics are not common for all codes. Where
these differences in graphics appear, assignment of
collation positions and translation between codes must be
made. Tables A-2 and A-3 show the CDC and ASCII
character set collating sequences.

TABLE A-1. STANDARD CHARACTER SETS
cDC ASCI
Display Hollerith External .

Code Graphic Punich BCD GSLals h‘tc 732;? (Code
{octal) (026) Code e actal)
oot : (colon) 1T 8-2 00 : (colon) T 8-2 072
01 A 121 61 A 1241 101
02 B 12-2 62 8 12-2 102
03 [¥ 12-3 63 c 12-3 103
04 D 124 64 b] 124 104
05 E 125 65 E 125 105
06 F 12:6 66 F 12-6 106
o7 G 12-7 67 G 127 107
10 H 128 70 H 128 110
11 | 129 71 | 12-9 111
12 J 111 41 J 11-1 112
13 K 11-2 42 K 11-2 113
14 L 11-3 43 L 11-3 114
15 M 11-4 44 M 114 115
16 N 115 45 N 115 116
17] 11-6 46 0 11-6 117
20 P 11-7 47 P 117 120
21 Q 118 50 Q 118 121
22 R 119 51 R 119 122
23 S 02 22 S 0-2 123
24 T 0-3 23 T 0-3 124
25 u 04 24 u 04 125
26 \ 05 25 Y 05 126
27 w 06 26 w 06 127
30 X 0-7 27 X 07 130
31 Y 08 30 Y 08 131
32 4 09 31 Z 09 132
.33 0 0 12 0 0 060
34 1 1 01 1 1 061
35 2 2 02 2 2 062
36 3 3 03 3 3 063
37 4 4 04 4 4 064
40 5 5 05 5 5 065
41 6 6 06 6 6 066
42 7 7 07 7 7 067
43 8 8 10 8 8 070
44 9 9 11] 9 071
45 + 12 60 + 12-8-6 053
46 ; 1 40 - i1 055
47 11-84 54 1184 052
50 / 0-1 21 / 0-1 057
51 (084 34 (12-8.5 050
52) 1284 74) 11-8-6 051
53 3 118-3 53 $ 11-8-3 044
54 = 8-3 13 = 8-6 075
55 blank no punch 20 blank no punch 040
56 , (comma) 0-8-3 33 , (comma) 08-3 054
57 . {period) 12-8-3 73 . {period) 12-8-3 056
60 = 0-8-6 36 # 8-3 043
61 { 87 17 C 1282 133
62] 0-8-2 32 b} 11-8-2 135
63 % tt 86 16 o Tt 084 045
64 = 8-4 14 " (quote) 8-7 042
65 ~ 085 35 _ {undertine) 0-8-5 137
66 v 110 52 ! 12-8-7 041
67 A 08-7 37 12 046
70 H 11-8-6 55 ' (apostrophe) 85 047
71 i 11-8-6 56 ? 087 077
72 < 282177 72 < -84 or 120'"" 074
73 > 1187 57 > 0-8-6 076
74 < 8-5 15 @ 84 100
75 2 12-8-5 75 N\ 082 134
76 . 12-8-6 76 =~ {circumflex} 11-8-7 136
77 ; (semicolon) 12-8-7 77 ; {semicolon) 11-8-6 073

TTwelve zero bits at the end of a 60-bit word in a zero byte record are an end of record mark rather than
two colons,

in installations using a 63-graphic set, display code 00 has no associated

code 63 is the colon (8-2 punch). The % graphic and related card codes do not exist and translations

vield a blank (56g).

graphic or card caode; dispiay

60499400 B

TABLE A-2. CDC CHARACTER SET COLLATING SEQUENCE
Collating Collating
Sequence CDC Display | External Sequence CDC Display | External
Decimal/Octal Graphic Code BCD Decimal/Octal Graphic Code BCD
m:ﬁ: — — ;ﬁ
00 00 blank 55 20 32 40 H 10 70
01 01 < 74 15 33 41 | 11 71
02 02 % 63t 167 34 42 v 66 52
03 03 [61 17 35 43 J 12 41
04 04 - 65 35 36 44 K 13 42
05 05 = 60 36 37 45 L 14 43
06 06 A 67 37 38 46 M 15 44
07 07 f 70 55 39 47 N 16 45
08 10 } 71 56 40 50 0 17 46
09 11 > 73 57 41 51 P 20 47
10 12 > 75 75 42 52 Q 21 50
11 13 —_ 76 76 43 53 R 22 51
12 14 . 57 73 44 54] 62 32
13 15) 52 74 45 55 S 23 22
14 16 ; 77 77 46 56 T 24 23
15 17 + 45 60 47 57 U 25 24
16 20 $ 53 53 48 60 \ 26 25
17 21 * 47 54 49 61 w 27 26
18 22 - 46 40 50 62 X 30 27
19 23 / 50 21 51 63 Y 31 30
20 24 , 56 33 52 64 Z 32 31
21 25 { 51 34 53 65 : 00T nonet
22 26 = b4 13 54 66 0 33 12
23 27 #* 64 14 55 67 1 34 01
24 30 < 72 72 56 70 2 35 02
25 31 A 01 61 57 71 3 36 03
26 32 B 02 62 58 72 4 37 04
27 33 C 03 63 59 73 5 40 05
28 34 D 04 64 60 74 6 41 06
29 35 E 05 65 61 75 7 42 07
30 36 F 06 66 62 76 8 43 10
31 37 G 07 67 63 77 9 44 11
tIn installations using the 63-graphic set, the % graphic does not exist. The : graphic is
display code 63, External BCD 16.

60499400 A

A-3

A-4

TABLE A-3. ASCII CHARACTER SET COLLATING SEQUENCE
Collating ASC” Display | ASCII Collating ASCU Display | ASCII
Sequence Graphic Code Code Sequence Graphic Code Code
Decimal/Octal Subset Decimal/Octal Subset
00 00 blank 55 20 32 40 @ 74 40
01 01 ! 66 21 33 41 A 01 41
02 02 o 64 22 34 42 B 02 42
03 03 # 60 23 35 43 C 03 43
04 04 $ 53 24 36 44 D 04 44
05 05 % 63+ 25 37 45 E ‘05 45
06 06 & 67 26 38 46 F 06 46
07 07 ’ 70 27 39 47 G 07 47
08 10 { 51 28 40 50 H 10 48
09 1) 52 29 41 51 I 11 49
10 12 * 47 2A 42 52 J 12 4A
11 13 + 45 2B 43 53 K 13 48
12 14 56 2C 44 54 L 14 4C
13 15 - 46 2D 45 55 M 15 4D
14 16 . 57 2E 46 56 N 16 4aE
15 17 / 50 2F 47 57 O 17 4F
16 20 0 33 30 48 60 P 20 50
17 21 1 34 31 49 61 Q 21 51
18 22 2 35 32 50 62 R 22 52
19 23 3 36 33 51 63 S 23 53
20 24 4 37 34 52 64 T 24 54
21 25 5 40 35 53 65 u 25 55
22 26 6 41 36 54 66 \Y/ 26 56
23 27 7 42 37 55 67 w 27 57
24 30 8 43 38 56 70 X 30 58
25 31 9 44 39 57 71 Y 31 59
26 32 : 0o+ 3A 58 72 Z 32 5A
27 33 ; 77 3B 59 73 [61 58
28 34 < 72 3C 60 74 \ 75 5C
29 35 = 54 3D 61 75] 62 5D
30 36 > 73 3E 62 76 ~ 76 5E
31 37 ? 71 3F 63 77 65 5F

Tin installations using a 63-graphic set, the % graphic does not exist. The :
graphic is display code 63.

60499400 A

SUMMARY OF FORTRAN CALL STATEMENTS

R T

This appendix includes the general formats of FORTRAN
calls to AAM for indexed sequential, actual key, and direct
access file organizations. Refer to the AAM Reference
manual for a detailed description of the SEEKF macro.
The following conventions are used:

Words in uppercase must appear exactly as they are
shown.

Words in lowercase are generic terms 'hat represent
the words or symbols supplied by the programmer. In
most instances, the terms are the same as actual
names of FIT fields. These fields can be constants or
integer variables.

Subroutines FILExx and STOREF require speci-
fications of field and value. The word field denotes
the name of a FIT field. It must be a character string
in apostrophe or left-justified format. The word value
denotes the value to be placed in the field; it must be
a character string in apostrophe or left-justified
format for symbolic options, an integer representation
for numeric options, or a program name or variable
name (for example, owncode exits and working storage
area).

Function IFETCH requires a field specification. The
word field denotes the name of a FIT field; it must be
a character string in apostrophe or left-justified
format. The word variable denotes an integer variable
in which the value of the FIT field will be returned.

Except for CALL FILExx, the order of parameters is
fixed so that all parameters positioned to the left of a
desired option must be specified. A paramster list can
be truncated at any point after the fit; middle
parameters cannot be defaulted. If a parameter is not
applicable to a particular file organization and its
position is needed in a statement, a zero must be
specified as indicated in the formats. If a parameter
is applicable to the file organization but not applicable
to the record type, a zero must be specified to mark a
needed position. Zeros should never be used for
applicable fields meaning a parameter is not intended.
A zero or the address of the constant zero will be used
as the parameter.

INDEXED SEQUENTIAL FILE

ORGANIZATION

CALL CLOSEM (fit,cf)

CALL DLTE (fit,ka,kp,0,ex)

CALL FILEIS (fit,field,value, . .. ,field,value)

CALL FITDMP (fit,id)

CALL GET (fit,wsa,ka,kp,mkl,0,ex)

CALL GETN (fit,wsa,ka,ex)

60499400 C

CALL GETNR (fit,wsa,ka,ex)
IFETCH (fit,field)

CALL FETCH (fit,field,variable)
CALL OPENM (fit,pd,of)

CALL PUT (fit,wsa,ri,ka,kp,0,ex)
CALL REPLC (fit,wsa,rl,ka,kp,0,ex)
CALL REWND (fit)

CALL RMKDEF (1fn,rkw,rkp,kl,0,kt ks kgke,nl,iech)
CALL SEEKF (fit,ka,kp,mkl,ex)
CALL SKIP (fit,+count)

CALL STARTM (fit,ka,kp,mkl,ex)

CALL STOREF (fit,field,value)

ACTUAL KEY FILE
ORGANIZATION

CALL CLOSEM (fit,cf)

CALL DLTE (fit,ka,kp,0,ex)

CALL FILEAK (fit,field,value,...,fieid,value)
CALL FITOMP (fit,id)

CALL GET (fit,wsa,ka,kp,0,0,ex)

CALL GETN (fit,wsa,ka,ex)

CALL GETNR (fit,wsa,ka,ex)

FETCH (fit,field)

CALL FETCH (fit,field,variable)

CALL OPENM (fit,pd)

CALL PUT (fit,wsa,rl,ka,kp,0,2x)

CALL REPLC (fit,wsa,rl,ka,kp,0,ex)

CALL REWND (fit)

CALL RMKDEF (Ifn,rkw,rkp,ki,0,kt,ks,kg,ke,nl,ie,ch)
CALL SEEKF (fit,ka,kp,0,ex)

CALL SKIP (fit,+count)

CALL STOREF (fit,field,value)

DIRECT ACCESS FILE
ORGANIZATION

CALL CL.OSEM (fit,cf)

CALL DLTE (fit,ka,kp,0,ex)

CALL FILEDA (fit,field,value, . . . ,field,value)
CALL FITDMP (fit,id)

CALL GET (fit,wsa,ka,kp,0,0,ex)

CALL GETN (fit,wsa,ka,ex)

CALL GETNR (fit,wsa,ka,ex)

B-2

IFETCH (fit,field)

CALL FFETCH (fit,field,variable)

CALL OPENM (fit,pd)

CALL PUT (fit,wsa,rl;ka,kp,0,ex)

CALL REPLC (fit,wsa,rl,ka,kp,0,ex)

CALL REWND (fit)

CALL RMKDEF (Ifn,rkw,rkp,kl,0,kt,ks,kg,ke,nl,ie,ch)
CALL SEEKF (fit,ka,kp,0,ex)

CALL STOREF (fit,field,value)

60499400 B

GLOSSARY C

e e e R

Actual Key (AK) File -
A mass storage file in which each record is identified
by a record number that is converted by AAM to the
storage location (block and record slot) of the record.
Access is random or sequential.

Advanced Access Methods (AAM) -
A file manager that processes indexed sequential,
direct access, and actual key file organizations and
supports the Multiple-Index Processor.

Alternate Key -
A key other than the primary key by which an indexed
sequential, direct access, or actual key file can be
accessed. Contrast with Primary Key.

Basic Access Methods (BAM) -
A file manager that processes sequential and word
addressable file organizations.

Beginning-of-Information (BOI) -
The start of the first user record in a file.

Block -
A logical or physical grouping of records to make more
efficient use of hardware. All files are blocked. See
also Data Block, Home Block, Index Block, and
Overflow Block.

Block Checksum -
A number used to check that the contents of a data
block have not been altered accidentally; a means of
ensuring data integrity. Block checksums can be
requested for files by setting the BCK field in the file
information table.

Character -
A letter, digit, punctuation mark, or mathematical
symbol forming part of one or more of the standard
character sets. Also, a unit of measure used to
specify block length, record length, and so forth.

Close -
A set of terminating operations performed on a file
when input and output operations are complete. All
files processed by AAM must be closed.

Compression -
The process of condensing a record to reduce the
amount of storage space required. You can either
supply a compression routine or use a system-supplied
routine. See Decompression.

Creation Run -
All processing of a file, from open to close, the first
time the file is written or made into an AAM file.
Files must be created in a separate creation run during
which only write operations on the file being created
are allowed.

CRMEP Control Statement -
A control statement that processes the AAM error file.

60499400 B

CYBER Record Manager (CRM) -
A generic term relating to the common products BAM
and AAM.)

Data Block -
A block in which user records are stored in an indexed
sequential or actual key file. You can define data
block structure or AAM defaults that are used.
Contrast with Index Block for indexed sequential files.

Decompression -
The process of expanding a compressed record to
restore it to its original size. You can either supply a
decompression routine or use a system-supplied
routine. See Compression.

Default -
A value assumed in the absence of a user-specified
value declaration for the parameter involved. Values
for many defaults are defined by the installation.

Direct Access (DA) File -
A file containing records stored randomly in home
blocks according to the hashed value of the primary
key in each record. Files must be mass storage
resident. All allocation for home blocks occurs when
the file is opened on its creation run. Access is

randomn or sequential.

Directives -

The instructions that supplement processing defined by
a control statement or by a program call for execution
of a utility function or member of a product set.
Directives do not appear in the control statement
record; they are usually in a separate record of the
file INPUT or a file referenced in a control statement
call. Directives are required for execution of FORM,
the CREATE utility, and the key analysis utility
among others.

Embedded Key -
A primary key that is contained within the record.

End-of-Information (EOI) -
The end of the last user record in a file.

Error File -
A special file created with the logical file name
ZZZZZEG to hold AAM error messages; the file is
processed by the CRMEP control statement.

Extended AAM File -
An indexed sequential, direct access, or actual key file

identified by ORG=NEW parameter.

Field -
A portion of a word or record; a subdivision of
information within a record; also, a generic entry in a
file information table identified by a mnemonic.

Field Length -
The area in central memory allocated to a particular
job; the only part of central memory that a job can
directly access, Contrasts with mass storage space
allocated for a job and on which user files reside.

File -
A logically related set of information; the largest
collection of information that can be addressed by a
file name. It starts at beginning-of-information and
ends at end-of-information. Every file in use by a job
must have a logical file name.

FILE Control Statement -

A control statement that supplies file infarmation
table values after a source language program is
compiled or assembled but before the program is
executed. In applications such as those with a control
statement call to the FORM utility, a FILE control
statement must be used. Basic file characteristics
such as organization, record type, and description can
be specified in the FILE control statement.

File Information Table (FIT) -

A table through which a user program communicates
with AAM. For direct processing through AAM, a user
must initiate establishment of this table. All file
processing executes on the basis of information in this
table. You can either set FIT fields directly or use
parameters in a file access call that sets the fields
indirectly. Some product set members set the fields
automatically for you.

File Statistics Table (FSTT) -
A table generated and maintained by AAM to collect
statistics about each file. The FSTT is a permanent
part of a file and contains information such as
organization type, size of blocks, number of current
accesses, and so forth.

Hashing -
The method of using primary keys to search for
relative home block addresses of records in a file with
direct access storage structure.

Home Block -

" A block in a file with direct access storage structure
whose relative address is computed by hashing keys. A
home block contains synonym records whose keys hash
to that relative address. If all the synonym records
cannot be accommodated in the home block, an
overflow block can be created by the system. When
creating a direct access file you must define the
number of home blocks by setting the HMB field in the
file information table.

Index -
A series of keys and pointers to records associated
with the keys.

Index Block -
For an indexed sequential file, a block with ordered
keys and pointers to the data blocks and other index

blocks, forming a directory of the records within a file.

Index File -
A file of indexes for alternate keys defined for a data
file. An index file contains a keylist for each
alternate key value. An index is created and
maintained by AAM, but you are responsible for
making the index part of a job.

c-2

Indexed Sequential (IS) File -
A file organization in which AAM maintains files in
sorted order by use of a user-defined primary key,
which need not be within the record. Keys can be
integer, collated symbolic, or uncollated symbolics
access is random or sequential. Files contain index
blocks and data blocks.

Integer Key -
A 60-bit signed binary key wused with indexed
sequential files. See Symbolic Key.

Key -
A group of contiguous characters or numbers that you
define to identify a record in an AAM file.

Key Analysis Utility -
A utility program that provides information about
hypothetical record distribution for a file with direct
access organization. The utility reads the key of each
record in the file and determines the home block

where the record would reside.

Key of Reference -
Either the alternate key field or the primary key field
currently beirng used to access a record in an indexed
sequential, direct access, or actual key file.

Keylist -
A list of one or more primary key values associated
with a specified value of an alternate key.

Logical File Name -
The name given to a file being used by a job. The
name must be unique for the job and must consist of
one to seven letters or digits, the first of which must

be a letter.

Macro -
A single instruction that when assembled into machine
code generates several machine code instructions.

Major Key -
The leading characters of a symbolic key in an indexed
sequential file.

Mass Storage -
A disk pack that can be accessed randomly. ECS is

not considered mass storage.

MIPGEN -
The utility that adds or deletes an index from the
index file.

Multiple-Index File -
An indexed sequential, direct access, or actual key file
for which additional keys, called alternate keys, are

defined.

Multiple-Index Processor (MIP) -
A processor that allows AAM files to be accessed by
alternate keys.

Open - :

A set of preparatory operations performed on a file
before input and output can take place; required for
all AAM files.

Overflow Block -

A block added to the file by AAM for use when a home
block in a direct access file is fuil.

60499400 B

Owncode -
A routine written by the user to process certain

conditions. Control passes automatically to your
owncode routines defined in the FIT by:

DX End-of-data condition
EX Error condition

CPA Compression routine
DCA Decompression routine

Padding - .
The free space reserved in a file at creation time to
accommodate additional records; specified as a
percentage figure.

Permanent file -
A file on a mass storage permanent file device that
can be retained for longer than a single job. It is
protected against accidental destruction by the system
and can be protected against unauthorized access.

Physical Record Unit (PRU) -
The smallest unit of information that can be
transferred between a peripheral storage device and
central memory. The PRU size is permanently fixed
for all mass storage devices.

Primary Key -
A field in a record whose value uniquely identifies a
record and determines the location of the record in a
file. One primary key field exists for a given file. A
file must be updated by primary key values. Contrast
with Alternate Key.

PRU Device -
A mass storage device in which information has a
physical structure governed by physical record units
(PRUs).

60499400 B

Random Access -
Access method by which any record in a file can be

accessed at any time in any order; applies only to mass
storage files. Contrast with Sequential Access.

Record -
The largest collection of information passed between
AAM and your program in a single read or write
operation. You define the structure and character-
istics of records within a file by declaring a record
format. The beginning and ending points of a record
are implicit in each format.

Rewind - .
To position a file at beginning-of-information.

Sequential Access -
A method in which only the record located at the

current file position can be accessed. Contrast with
Random Access. :

Sparse Key -
An alternate key that is used infrequently. Only those
alternate key values of interest are included in the

index file.

Symbolic Key -
An alphanumeric key used with indexed sequential
files; 1 to 255 characters. See Integer Key.

Synonym Records -
Direct access file records whaose primary keys hash to
the same home block.

Working Storage Area -
An area within the user's field length intended for
receipt of data from a file or transmission of data to
a file. : .

SUMMARY OF FIT FIELDS D

i
This appendix summarizes the FIT fields that are listed in table D-1. The FIT fields applicable to actual key
applicable to the file organizations supported by AAM. files are listed in table D-2. The FIT fields applicable to
The FIT fields applicable to indexed sequential files are direct access files are listed in table D-3.
TABLE D-1. SUMMARY OF FIT FIELDS APPLICABLE TO INDEXED SEQUENTIAL FILES
; Release Change FILE IFETCH
;}me;:‘ﬂd Meaning A\g%:&ﬂe Default After Notes State- Féli)](x SgglﬁF Func-
2 If Any Creation ment tion
BCK . Block checksums YES, NO NO No IFETCH return: X X X X
0= NO
1= YES
BFS Buffer length in 0 thru Provided Yes AAM always X X X X
words 21741 by AAM ensures mini-
mun needed
BZF Input/output status X
word location
CL Trailer count field |1 thru6 | O No RT=T only X X X X
length in char-
acters
cp Trailer count field | O thru 0 No RT=T only X X X X
starting position 81870
in characters
CPA Compression routine | Routine 0 Yes X X X X
address number
or name
Cl Binary length field | YES, NO NO No RT=D/T only X X X X
- DCA Decompression Routine 0 Yes Required if X X X
routine address name CPA is
: routine name
DCT Display code to Table Standard No KT=S only ' X X X
collating sequence location | CDC
table
DFC Dayfile control 0,1,2,3 0 Yes : X X X X
Dp Data -block padding 0 thru 99; 0 No X X X X
percentage
DX End-of-data exit Routine 0 Yes X X X
name '
ECT Trivial error count v X
EFC Error file control 0,1,2,3 0 Yes X X X X
EMK Embedded primary key| YES, NO NO No X X X X
/
ERL Trivial error limit | O thru 0 Yes 0 allows X X X X
511] indefinite .
number
of errors
ES Error status . X

60499400 C D-1

TABLE D-1. SUMMARY OF FIT FIELDS APPLICABLE TO INDEXED SEQUENTIAL FILES (Contd)

: Release Change FILE IFETCH
;gﬂi;?ld Meaning A\]Il?ﬁ:;ﬂe Default After Notes State- Félﬁ)](x Sg(:]%f]EF Func-
If Any Creation ment tion
EX Error exit Routine 0 Yes X X X
nane
FL Record length 1 thru 0 No RT=F/Z only X X X X
in characters 81870
FLM File Timit - maximum | 0 thru 0 Yes 0 aHoﬁs X X X X
records 2291 unlimited
number of
records
FNF Fatal/nonfatal error IFETCH return: X
0 = nonfatal
"1 = fatal
FO File organization IS Required No IFETCH return: X X X X
3=1S
FP File position IFETCH return: X
0 = Mid
record
1 =801
10g = EOK
20g = EOR
100g = EOI
FuB Buffer Tocation Program Provided Yes X X X
Tocation |BY AAM
FWI Flush buffer YES, NO NG Yes IFETCH return: X X X X
immedi ately 0 =NO
1 = YES
HL Fixed header length |1 thru 0 No RT=T only X X X X
in characters 81870
P Index block padding |0 thru 99 |0 No X X X X
percentage
KA Key location Program Yes Required if X X X
Tocation EMK=NO
KL Key length in 10 (KT=I) |{Required No X X X X
characters or 1 thru
255 (KT=
S/U)
KNE Primary key not 0, 1 X
equal to alternate
key
Kp Key starting posi- 0 thru9 |0 Yes KT=S/U only X X X X
tion within KA
KT Key type I, S, U S No IFETCH return: X X X X
1=S5
2=1
3=4U
LFN Logical file name 1to7 Required No Must start X X X X
Tetters with a letter
or digits
LL Length field length |1 thru 6 |0 No RT=D only X X X X
in characters
D-2 50499400 C

TABLE D-1. SUMMARY OF FIT FIELDS APPLICABLE TO INDEXED SEQUENTIAL FILES (Contd)

- : Release Change FILE IFETCH
;ézmz;$gd Meaning AJL?ﬁ:E]e Default After Notes State- Fétgﬁx SEQ?EF Func-
If Any Creation ment Eion
LP Length field . 0 thru 0 No RT=D only X X X X
starting position 81870
in characters
MBL Data block and index | O thru No AAM can X X X X
block length in 81870 calcul ate
characters
MKL Major key length 0 thru KL | O Yes KT=S/U only; X X
in characters set to 0 at
end of every
operation.
MNR Minimum record 0 thru 0 No X X X X
length in characters | MRL :
MRL Maximum record 1 thru Required No X X X X
Tength in characters | 10(213-5)
NDX Index flag 0, 1 0 Yes 1 = index file X X X X
operation
NL Number of index 1 thru 151 No X X X X
Tevels
NOFCP No FILE control YES, NO NO Yes X X X
statement processing
ocC Open/close flag IFETCH return: X
0 = never
opened
1 = opened
2 = closed
oF Open flag R, E R Yes Set at file X X X X
open
ON 01d or new file OLD, NEW | OLD Yes Can be set by X X X X
’ OPENM
0RG 01d/new file O0LD, NEW | OLD No Must be set X X X X
organization to NEW
PD Processing direction | INPUT, INPUT Yes OPENM uses X X X X
ouTPUT, 1-0; IFETCH
10 return:
0 = INPUT
1 = INPUT
2 = QUTPUT
3=10
PKA Primary key address |Address X X X
or.0
RB Number of records 1 thru 2 No MBL overrides X X X X
per block 4095 RB
RC Record count X
REL Relation, key value |EQ, GE, EQ Yes X X X
to key position GT
RKP Relative key 0 thru 9 {0 No Required if X X X X
position in RKW EMK=YES
RKW Relative key word 0 thru 0 No Required if X X X X
in record MRL EMK=YES
60499400 C D-3

TABLE D-1. SUMMARY OF FIT FIELDS APPLICABLE TO INDEXED SEQUENTIAL FILES (Contd)
. Release Change FILE IFETCH
g;&n‘;:‘%d Meaning A\}L??jggle Default After Notes State- Fél{ﬁ)}(x SE?}%F Func-
If Any Creation ment tion
RL Current record MNR thru | O Yes Set by PUT X X
Tength MRL
RMK Record mark Any char- | 62g No RT=R only; X X X X
character acter 62g =
character
RT Record type F, R, Z, | U No X X X
D, T, U
SB Sign overpunch YES, NO NO No RT=D/T only X X X X
length field
TL Trailer length 0 thru 0 No RT=T only X X X X
in characters 2171
WSA Working storage area| Program Required Yes Set by file X X X
location processing
statements
XBS Index file block 0 thru Data No X X X X
size in characters 81870 block
size
XN Index file name 1to7 0 No Must start X X X X
letters with letter
or digits
TABLE D-2. SUMMARY OF FIT FIELDS APPLICABLE TO ACTUAL KEY FILES
; Release Change FILE IFETCH
;ilm';:\?ld Meaning A\],]a?‘ﬁ:g]e Default After Notes State- leﬁ)‘(x SE?}EF Func-
If Any | Creation ment v tion
© BCK Block checksums YES, NO NO No IFETCH return: X X X X
0= NO
1= YES
BFS Buffer length in 0 thru Provided Yes AAM always X X X X
words 2171 by AAM ensures mini-
mum needed
BZF Input/output status X
word location
CL Trailer count field [1 thru 6 |0 No RT=T only X X X X
Tength in characters
cp Trailer count field | O thru 0 No RT=T only X X X X
starting position - 81870
in characters
CPA Compression routine |Routine 0 Yes X X X
address number
or name
c1l Binary length field | YES, NO NO No RT=D/T only X X X X
DCA Decompression Routine 0 Yes Required if X X X
routine address name CPA is routine
name
D-4 60499400 C

TABLE D-2. SUMMARY OF FIT FIELDS APPLICABLE TO ACTUAL KEY FILES (Contd)
: Release Change FILE IFETCH
mzng‘?ld Meaning A\}]a?z:;ﬂe Default After Notes State- F(I:!;?](x Sggﬁ'—_ Func-
If Any Creation ment tion
DFC Dayfile control 0,1,2,3 0 Yes X X X X
P Data block padding 0 thru 99 |0 No X X X X
percentage
DX End-of-data exit Routine 0 Yes X X X
name
ECT Trivial error count X
EFC Error file control 0,1,2,3 0 Yes X X X X
EMK Embedded primary key | YES, NO NO No X X X
ERL Trivial error limit |0 thru 0 Yes 0 allows X X X X
511 indefinite
nunber of
errors
ES Error status X
EX Error exit Routine 0 Yes X X X
name
FL Record length 1 thru 0 No RT=F/Z only X X X X
in characters 81870
FLM File 1imit - maximum {0 thru 0 Yes 0 allows X X X X
records 229.1 unlimi ted
nunber of
records
FNF Fatal/nonfatal error IFETCH return: X
0 = nonfatal
1 = fatal
FO File organization AK Required No IFETCH return: X X X X
6 = AK
FP File position IFETCH return: X
0 = Mid
record
1 =801
10g = £OK
20g = EOR
100g = EOI
FWB Buffer Tocation Program Provided Yes X X X
location | by AAM
FWI Flush buffer YES, NO NO Yes IFETCH return: X X X X
immediately 0=NO
1 = YES
H Fixed header length |1 thru 0 No RT=T only X X X X
in characters 81870
KA Key Tocation Program Yes Required if X X X
location EMK=NO
KL Key length in 1 thru 8 | Required No X X X X
characters
KNE Primary key not 0, 1 X
equal to alternate
key
60499400 C D-5

TABLE D-2. SUMMARY OF FIT FIELDS APPLICABLE TO ACTUAL KEY FILES (Contd)
; Release Change FILE IFETCH
;E‘L“E:ﬁld Meaning A\}L%gg]e Default After Notes State- Félﬁ)}(x SE?%EF Func-
If Any Creation ment tion
Kp Key starting posi- Othrug |0 Yes X X X X
tion within KA
LFN Logical file name 1to7 Required No Must start X X X X
letters with a letter
or digits
LL Length field length |1 thru 6 |0 No RT=D only X X X X
in characters
LP Length field 0 thru 0 No RT=D only X X X X
starting position 81870
in characters
MBL Data block length 1 thru No AAM can X X X X
in characters 81870 calculate
MNR Minimum record 1 thru Required No X X X X
Tength in characters | MRL
MRL Maximum record 1 thru Required No X X X X
Tength in characters | 81870
NDX Index flag 0, 1 0 Yes 1 = index file X X X X
operation
NOF CP No FILE control YES, NO NO Yes X X X
statement processing
0c Open/close flag IFETCH return: X
0 = never
opened
1 = opened
2 = closed
N 01d or new file OLD, NEW | OLD Yes Can be set by X X X X
OPENM
-~ ORG 01d/new file O0LD, NEW | OLD No Must be set X X X X
organization to NEW
PB Processing direction | INPUT, INPUT Yes OPENM uses X X X X
OUTPUT, 1-0; IFETCH
10 return:
0 = INPUT
1 = INPUT
2 = QUTPUT
3=10
PKA Primary key address | Address X X X
or 0
RB Number of records 1 thru 8 No X X X X
per block 4095
RC Record count X
RKP Relative key posi- 0 thru9 |0 No Required if X X X X
tion in RKW EMK=YES
RKW Relative key word 0 thru 0 No Required if X X X X
in record MRL EMK=YES
RL Current record MR thru |0 Yes Set by PUT X X
Tength MRL
D-6 60499400 C

TABLE D-2. SUMMARY OF FIT FIELDS APPLICABLE TO ACTUAL KEY FILES (Contd)
. Release Change FILE IFETCH
&rl‘;niﬁéd Meaning A\}Ta%gg]e Default After Notes State- Fél;l]ﬂ](x SE(;?:ZF Func-
If Any Creation ment tion
RMK Record mark Any char- | 62g No RT=R only; X X X X
character acter 62q =
character
RT Record type F,D,Z, 1U No X X X
D, T, U
SB Sign overpunch YES, NO NO No RT=D/T only X X X X
length field
TL Trailer length Oli;hru 0 No RT=T only X X X X
2L17-1
WSA Working storage area| Program Required Yes Set hy file X X X
Tocation processing
statements
XBS Index file block 0 thru Data No X X X X
size 81870 block
size
XN Index file name 1to?7 0 No Must start X X X X
letters with letter
or digits
TABLE D-3. SUMMARY OF FIT FIELDS APPLICABLE TO DIRECT ACCESS FILES
; Release Change FILE IFETCH
;ilmgr:?ld Meaning A\],]a?ﬁ:gh Default After Notes State- F"I:I;:Z%(x Sgg'ﬁF Func-
If Any Creation ment tion
BCK Block checksums YES, NO NO No IFETCH return: X X X X
0=N0 ‘
1= YES
* BFS Buffer length in 0 thru Provided Yes AAM always X X X X
words 2171 by AAM ensures mini-
mum needed
BZF Input/output status X
word location
cL Trailer count field |1 thru6 } 0 No RT=T only X X X X
length in characters
cp Trailer count field } O thru 0 No RT=T only X X X X
starting position 81870
in characters
CPA Compression routine | Routine 0 Yes X X X
address number
or name
C1l Binary length field | YES, NO NO No RT=0/T only X X X X
DCA Decompression Routine 0 Yes Required if X X X
routine address name CPA is
routine name
DFC Dayfile control 0,1,2,3 0 Yes X X X X
60499400 C D-7

TABLE D-3, SUMMARY OF FIT FIELDS APPLICABLE TO DIRECT ACCESS FILES (Contd)
: Release Change FILE IFETCH
m;nz:ﬁgd Meaning A\g?‘ﬁggle Default After Notes State- Fé';?](x SE%{EF Func-
If Any Creation ment tion
DX End-of-data exit Routine 0 Yes X X X
name
ECT Trivial error count X
EFC Error file 0,1,2,3 0 Yes X X X X
EMK Embedded primary key | YES, NO YES No X X X
ERL Trivial error 1imit |0 thru 0 Yes 0 allows X X X X
511 indefinite
number of
errors
ES Error status X
EX Error exit Routine 0 Yes X X X
name
FL Record length 1 thru 0 No RT=F/Z only X X X X
in characters 81870
FLM File 1imit - maximum | O thru 0 Yes 0 allows X X X X
records 229.1 untimi ted
number of
records
FNF Fatal/nonfatal error IFETCH return: X
0 = nonfatal
1 = fatal
FO File organization DA Reguired No IFETCH return: X X X X
5 = DA
FP File position IFETCH return: X
0 = Mid
Record
1 = 801
10g = EOK
20g = ER
100g = EOI
FWB Buffer location Program Provided Yes X X X
location |by AAM
FWI Flush buffer YES, NO NO Yes IFETCH return: X X X X
immediately 0 = NO
1 = YES
HL Fixed header length |1 thru 0 No RT=T only X X X X
in characters 10(213-5)
HMB Number of home 1 thru Required No X X X
blocks 2241
HRL Hashing routine Routine 0 No 0 uses system X X X
location name hashing
routine
KA Key location Program Yes Required if X X X
Tocation EMK=NO
KL Key length in 1 thru 0 No X X X X
characters MRL
D-8 60499400 C

TO DIRECT ACCESS FILES (Contd)

TABLE D-3. SUMMARY OF FIT FIELDS APPLICABLE
; Release Change FILE IFETCH
;é;ng;fgd Meaning A\}la;)\ﬁggle Default After Notes State- Fél&]E’](X Sgg’ﬁF Func-
If Any Creation ment tion
KNE Primary key not 0, 1 X
equal to alternate
key
Kp Key starting posi- 0thrug |0 Yes X X X X
tion within KA
LFN Logical file name 1to7 Required No Must start X X X X
Tetters with a Tetter
or digits
L Length field length |1 thru 6 |0 No RT=D only X X X X
in characters
Lp Length field 0 thru 0 No RT=D only X X X X
starting position 81870 '
in characters
MBL Data block length 0 thru- No AAM can X X X X
in characters 81870 calculate
MNR Minimum record 1 thru Required No X X X X
Tength in characters | MRL
MRL Maximum record 1 thru Required No X X X X
length in characters | 81870
NDX Index flag 0, 1 0 Yes 1 = index file X X X X
operation
NOFCP | No FILE control YES, NO | NO Yes X X X
statement processing
oc Open/cl ose flag IFETCH return: X
0 = never
opened
= opened
2 = closed
N 01d or new file O0LD, NEW |OLD Yes Can be set by X X X X
OPENM
RG 01d/new file OLD, NEW |OLD No Must be set X X X X
organization to NEW
PD Processing direction | INPUT, INPUT Yes OPENM uses I-0;] X X X X
ouTPUT, IFETCH return:
10 0 = INPUT
1 = INPUT
2 = OUTPUT
3=10
RB Number of records 1 thru 2 No MBL overrides X X X X
per block 4095 RB
RC Record count X
RKP Relative key posi- 0 thrug |O No Required if X X X X
tion in RKW EMK=YES
RKW Relative key word 0 thru 0 No Required if X X X X
in record MRL EMK=YES
RL Current record MNR thru | O Yes Set by PUT X X
Tength MRL
60499400 C D-9

TABLE D-3. SUMMARY OF FIT FIELDS APPLICABLE TO DIRECT ACCESS FILES (Contd)

. Release Change FILE IFETCH
derELnI;;?«]:d Meaning A\]/]a?‘z:B]e Default After Notes State- Félﬁ’]‘x SzgﬁF Func-
If Any Creation ment tion
RMK Record mark Any char- | 62g No RT=R only: X X X X
character acter 62g =
character
RT Record type F, R, Z, |U No | X X X
D, T, U
S8 Sign overpunch YES, NO NO No RT=D/T only X X X X
Tength field
TL Trailer length Olghru 0 No RT=T only X X X X
24741
WSA Working storage area | Program Required Yes Set by file X X X
location processing
statements
XBS Index file block 0 thru Data No X X X X
size 81870 block
size
XN Index file name 1to7 0 No | Must start X X X X
Tetters with letter
or digits
D-10 60499400 B

INDEX

M

AAM CDCS interface 7-2
Defined 1-1 Character sets A-1
FORTRAN calls 2-2, 2-4, B-1 . CL field
Actual key files Summary D-1, D-4, D-7
Close processing 6-5, 6~11 T type records 3-3
Creation Close operations
FORM Utility 6-6 Actual key files 6-5, 6-11
Source program 6-4 Direct access files 5-9, 5-14
Data blocks Indexed sequential files 3-8, 3-15
Defined 6-1 Overview 2-7
Size specification 6-2 CL.OSEM
Defined 6-1 Actual key files 4-5, 4-11
Deleting records 6-10 Direct access files 5-7, 5-15
File limit 6-2 Indexed sequential files 3-8, 3-15
File positioning 6-11 COBQOL programs 1-1
FIT field settings Collating sequence
Existing file 6-8 ASCI character set A-4
New file 6-4 CDC character set A-3
L.ogical structure 6-1 DCT field 3-4,D-1
Open processing 6-5, 6-9 Definition 3-4
Overflow records 6-2 COMPASS macros 2-5
Padding 6-1 CP field
Primary key definition 6-2 Summary D-1, D-4, D-7
Read operations T type records 3-3
Overview 2-7 CPA field
Random 6-10 Summary D-1, D-4, D-7
Sequential 6-10 . CREATE directive 5-7
Record definition 6-2 CREATE utility 5-6
Record pointers 6-1 Creation
Replacing records 6-10 Actual key files 6-4
Summary of FIT fields D-4 Direct access files 5-5
Write operations FIT 2-1
File creation 6-5 Indexed sequential files 3-6
Inserting records 6-10 CRMEP control statement 7-2
Overview 2-7 CYBER Record Manager 1-1
Advanced Access Methods (see AAM) C1 field
Alternate key files 4-1 Summary D-1, D-4, D-7

Alternate key processing 4-9
Alternate keys 4-2

BAM 1-1 D type records 3-2
Basic Access Methods (see BAM) Data blocks
BCK field Actual key files
Summary D-1, D-4, D-7 Defined 6-1
BFS field Size specification 6-2
Summary D-1, D-4, D-7 Indexed sequential files
Blocks Defined 3-1
Actual key files Hierarchy 3-2
Data 6-1 Size specification 3-2
Overflow 6-2 Data manager error messages 7-2
Direct access files DCA field
Home 5-1 Summary D-1, D-4, D-7
Overflow 5-2 DCT field
Indexed sequential files Collating sequence 3-4
Data 3-1 Summary D-1
Hierarchy 3-2 Default values 2-2
Index 3-2 DFC field
BZF field Error processing 7-1
Summary D-1, D-4, D-7 Summary D-1, D-5, D-7

60499400 B Index-1

Direct access files
Close processing 5-9, 5-14
Creation
CREATE utility 5-7
FORM utility 5-9
Source program 5-7
Defined 5-1
Deleting records 5-14
File positioning 5-13
FIT field settings
Existing file 5-12

New file 5-5
Hashing
Defined 5-1

Key analysis 5-4
Routine definition 5-3
Home blocks
Defined 5-1
Size specification 5-1
Logical structure 5-1
Open processing 5-7, 5-12
Overflow blocks 5-2
Primary key definition 5-2
Read operations
Overview 2-7
Random 5-13
Serial 5-13
Record definition 5-2
Record pointers 5-1
Replacing records 5-14
Summary of FIT fields D-7
Write processing
File creation 5-9
Inserting records 5-13
Overview 2-7
Direct calls summary B-l
DLTE
Actual key files 6-10
Direct access files 5-14
Indexed sequential files 3-14
DP field
Data block definition 3-5, 6-4
Summary D-1, D-5
Dumping the FIT 7-2
DX field
Error processing 7-2
Summary D-1, D-5, D-8

ECT field
Error processing 7-2
Summary D-1, D-5, D-8
EFC field
Error processing 7-1
Summary D-1, D-5, D-8
Embedded key 3-4, 3-9, 5-2, 6-2
EMK field

Primary key definition 3-4, 5-2, 6-2

Summary D-1, D-5, D-8
ERL field

Error processing 7-1

Summary D-1, D-5, D-8
Error file 7-2
Error messages

CRMEP control statement 7-2

Data manager 7-2

DFC field 7-1

EFC field 7-1
Error processing

DFC field 7-1

ECT field 7-2

EFC field 7-1

ERL field 7-1

ES field 7-2

Index-2

ES field
Error processing 7-2
Summary D-1, D-5, D-8

EX field summary D-2, D-5, D-8

F type records 1-4
File
Characteristies 1-3, 2-5
Close 2-7
Error 7-1
Initializing 2-6
Limit 2-7
Open 2-6
Positioning 3-18, 6-11
Processing concepts 2-1
Statistics 2.5, 3-21, 7-2
Terminating 2-7
FILE control statement
CREATE utility 5-6
Examples 2-8
FORM utility 3-11, 5-9, 6-6
Setting FIT fields 2-8
File Information Table (see FIT)
File organizations 1-2, 1-3
File processing
Establishing the FIT 2-1
Initialization 2-6
Processing 2-6
Termination 2-7
Updating 2-7
Working storage area 2-5
File statistics
Error file 7-1
FLSTAT utility 3-21
FSTT 2-5
File Statistics Table (see FSTT)
File structure
Actual key files 6-1
Direct access files 5-1
Indexed sequential files 3-1
FILEAK statement 2-1, 6-4, 6-9
FILEDA statement 2-1, 5-7,5-12
FILEIS statement 2-1, 3-8, 3-12
FILEx>x
Examples 2-1
Format 2-1
FIT
Contents 2-1
Creation 2-1
Defined 1-1
Dumping 7-2
Error related fields 7-1
Establishing 2-1
Field defaults 2-1
Field summary D-1
Field values 2-1
FILE control statement 2-8
Mnemonics 2-1
Overriding program values 2-2
Usage 2-2
FITDMP control statement 7-2
FL field
F type records 1-4, 3-2
Summary D-2, D-5, D-8
Z type records 2-6
FLBLOK Utility 3-6
FLM fieid
File limit option 7-4
Summary D-2, D-5, D-8
FLSTAT utility 3-21
FNF field
Error processing 7-2
Summary D-2, D-5, D-8

FO field D-2, D-5,D-8
FORM utility
Creating files
Actual key files 6-6
Direct access files 5-9
Indexed sequential files 3-9
Formats B-1
FORTRAN
Direct calls to AAM 1-2, 2-2
Summary of CALL statements B-1
FP field
File position in index file 4-10
Summary D-2, D-5, D-8
FSTT
Actual key files 6-1
Collating sequence 3-4
Defined 2-5
Direct access files 5-1
Indexed sequential files 3-1
FWB field summary D-2, D-5, D-8
FWI field
Forced write option 2-8
Summary D-2, D-5, D-8

GET
Actual key files 6-10
Direct access files 5-13
Indexed sequential files 3-13
GETN
Actual key files 6-10
Direct access files 5-13
Indexed sequential files 3-14

Hashing routine
CREATE utility 5-9
HRL field 5-3, D-8
Key analysis utility 5-3
Selection 5-3
HL field
Summary D-2, D-5, D-8
T type records 1-4
HMB field
Home block definition 5-3
Summary D-8
Home blocks
Defined 5-1
Size specification 5-2
HRL field
Hashing routine 5-3
Summary D-8

IFETCH function 2-3
Index blocks
Defined 3-2
Size specification 3-5
Index file 4-3, 4-4
Index-file-only operations 4-25
Indexed sequential files
Block hierarchy 3-2
Close processing 3-8, 3-15
Collating sequence definition 3-4
Creation
FORM utility 3-9
Source program 3-8
Data block
Defined 3-1
Size specification 3-5
Defined 3-1
Deleting records 3-14
File limit 7-4
File positioning 3-18

60499400 B

FIT field settings

Existing file 3-12

New file 3-6
FLBLOK utility 3-6
Index blocks

Defined 3-2

Size specification 3-5
Integer keys 3-4
Logical structure 3-1
Major key processing 3-13, 3-18
Open processing 3-8, 3-13
Padding

Data blocks 3-5

Index blocks 3-5
Primary key definition 3-4
Read operations

Overview 2-7

Random 3-13

Sequential 3-14
Record definition 3-2
Record pointers

Data blocks 3-1

Index blocks 3-2
Replacing records 3-15
Summary of FIT fields D-1
Symbolic keys 3-4
Uncollated symbolic keys 3-4
Write operations

File creation 3-8

Inserting records 3-14

Overview 2-7

IP field

Index block definition 3-5
Summary D-2

KA field
File creation 3-12, 3-13, 5-9, 6-6
File positioning 3-18
File updating 3-12, 5-12, 6-9
Search criteria on muitiple-index file 4-10
Summary D-2, D-5, D-8

Key analysis utility 5-4

Keylist 4-3, 4-30

KL field
Alternate key definition 4-10
Primary key definition 3-4, 6-2, 5-3
Summary D-2, D-5, D-8

KNE
Single alternate key count 4-28
Summary D-2, D-5, D-9

KP field summary D-2, D-6, D-9

KT field
Primary key definition 3-4
Summary D-2

KYAN directive 5-4

LFN field
FILExx statement 2-2
Summary D-2, D-6, D-9
LL field
D type records 3-2
Summary D-3, D-6, D-9
LP field
D type records 3-2
Summary D-3, D-6, D-9

Macros
COMPASS 2-5
CPC 2-5
Major key processing 3-13, 3-18

Index-3

MBL. field
Block definition 3-5, 5-2, 6-2
Summary D-3, D-6, D-9
MIPDIS utility 4-34
MIPGEN utility 4-4
MKL field
Major key processing 3-13
Summary D-3
MNR field summary D-3, D-6, D-9
MRL field
D type records 3-2
R type records 3-3
Read operations 2-7
Summary D-3, D-6, D-9
T type records 1-4
U type records 2-5
W type records 1-4
Multiple index files 4-1
Multiple key concepts 4-1

NDX field
Index file operations 4-25, 4-.28
Summary D-3, D-6, D-9
NL field D-3
NOFCP field summary D-3, D-6, D-9
Null alternate key values 4-33

OC field
Close processing 2-7
Open processing 2-6
Summary D-3, D-6, D-9

OF field summary D-3

ON field
Existing files 3-13, 4-9, 5-13
New files 3-6, 5-5, 6-5
Summary D-3, D-6, D-9

Open processing
Actual key files 6-5, 6-9
Direct access files 5-7, 5-12
Indexed sequential files 3-8, 3-13

0C field 2-6
Overview 2-6
OPENM

Actual key files 6-5, 6-6

Direct access files 5-7, 5-13

Indexed sequential files 3-8, 3-9
ORG field

File creation 3-6, 5-6, 6-4

Summary D-3, D-6, D-9

Padding

Actual key files 6-1, 6-3

Indexed sequential files 3-1, 3-2, 3.5
PD field

File processing 2-7

Summary D-3, D-6, D-9
PKA field summary D-3, D-6
Primary key

Actual key files 6-2

Definition 4-2

Direct access files 5-2

FSTT 2-5

Indexed sequential files 3-4
Processing

Actual key files 6-1

Direct access files 5-1

Indexed sequential files 3-1

Index-4

PUT
Actual key files 6-5, 6-10
Direct access files 5-9, 5-13
Indexed sequential files 3-8, 3-14

R type records 3-3
Read operations
Overview 2-7
Random 3-13, 5-13, 6-10

RL field 2-7
Sequential 3-14, 6-10, 5-13
RB field

Block definition 3-5; 5-2, 6-2
Summary D-3, D-6, D-9
RC field D-3, D-6, D-9
Record
Definition
Actual key files 6-2
Direct access files 5-2
Indexed sequential files 3-2
Types 1-4, 3-2
Record pointers
Direct access files 5-1
Indexed sequential files 3-1
Record types
3-2
1-4
3-3
1-4
3-3
1-4
1-4
REL field
File positioning 3-18
Search criteria on multiple-index file 4-10
Summary D-3
Replacing records
Actual key files 6-10
Direct access files 5-14
Indexed sequential files 3-15
REPLC
Actual key files 6-10
Direct access files 5-14
Indexed sequential files 3-15
Rewinding files
Actual key files 6-11
Indexed sequential files 3-20
REWND 3-20, 6-12
RKP field
Alternate key definition 4-10
Primary key definition 3-4, 4-3, 5-3
Summary D-3, D-6, D-9
RKW field
Alternate key definition 4-10
Primary key definition 3-4, 5-2, 6-2
Summary D-3, D-6, D-9
RL field
Read operations 2-7
Summary D-4, D-6, D-9
U type records 3-3
W type records 1-4
RMK field
R type records 3-3
Summary D-4, D-7, D-10
RMKDEF directive 4-6
RT field
D type records 3-2
F type records 1-4, 3-2
R type records 3-2
Summary D-4, D-7, D-10
T type records 1-4, 3-2
U type records 3-2
W type records 1-4
Z type recrods 1-4, 3-3

NgC-2TTMO

SB field summary D-4, D-7, D-10
SKIP
Actual key files 6-12
Indexed sequential files 3-18
Skipping records 3-18, 6-12
Sparse key 4-33
STARTM 3-18
Statements
CLOSEM
Actual key files 6-5, 6-11
Direct access files 5-9, 5-14
Indexed sequential files 3-8, 3-15
CRMEP control 7-2
DLTE
Actual key files 6-10
Direct access files 5-14
Indexed sequential files 3-14
FILE control 2-8
FILExx 2-1
FITDMP 7-2
FLBLOK control 3-6
FLSTAT control 3-21
GET
Actual key files 6-10
Direct access files 5-13
Indexed sequential files 3-13
GETN
Actual key files 6-10
Direct access files 5-13
Indexed sequential files 3-14
IFETCH 2-3
OPENM
Actual key files 6-5, 6-9
Direct access files 5-7, 5-12
Indexed sequential files 3-8, 3-13
PUT
Actual key files 6-5, 6-10
Direct access files 5-9
Indexed sequential files 3-8
REPLC
Actual key files 6-10
Direct access files 5-14
Indexed sequential files 3-15
REWND
Actual key files 6-12
Indexed sequential files 3-20
SDACRTU 5-7
SDAENDC 5-7

60499400 B

SKIP
-Actual key files 6-12
Indexed sequential files 3-18
STARTM 3-18, 4-14 .
STOREF 2-3
Summary B-1
STOREF 2-3

T type records 1-4

TL field
T type records 3-3
Summary D-4, D-7, D-10

U type records 3-2

Updating files
Actual key files 6-8
Direct access files 5-12
Indexed sequential files 3-12
Overview 2-7

W type recards 1-4

Working storage area
Defined 2-5
Read processing 2-5
WSA field 2-5

Write operations
Actual key files 6-5, 6-10
Direct access files 5-9, 5-13
Indexed sequential files 3-8, 3-14
Overview 2-7

WSA field
Summary D-4, D-6, D-9
Working storage area 2-10

XBS field summary D-4, D-7, D-10
XN field
Index file operations 4-9
Summary D-4, D-7, D-10

Z type records 1-4

Index-5

INIT ONOTW 1ND

COMMENT SHEET

MANUAL TITLE: CYBER Record Manager Advanced Access Methods Version 2 User”s Guide

PUBLICATION NO.: 60499400

REVISION: C

This form is not intended to be used as an order blank. Control Data Corporation
welcomes your evaluation of this manual. Please indicate any errors, suggested
additions or deletions, or general comments on the back (please include page number
references).

Please reply No reply necessary

FOLD FOLD

I " || I NO POSTAGE
NECESSARY

IF MAILED

BUSINESS REPLY MAIL ——
FIRST CLASS PERMIT NO. 8241 MINNEAPOLIS, MN. —- S——
POSTAGE WILL BE PAID BY ADDRESSEE oo]
Lo
, []
(©B) CONTROL DATA p——
e
Publications and Graphics Division T
Mail Stop: SVL104 :
P.O. Box 3492
Sunnyvale, California 94088-3492
FOLD)) FOLD

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.
FOLD ON DOTTED LINES AND TAPE
NAME:
COMPANY.:
STREET ADDRESS:

CITY/STATE/ZIP:

<]

TAPE TAP

ORPORATE
ALES OFFIC

HEADQUARTERS, P.O. BOX O, MINNEAPOLIS, Mi

NN 55440

ES AND SERVICE CENTERS IN MAJOR CITIES TH

@5) CONTROL DATA

ROUGHOUT THE WORLD

LITHO IN US.A.

