CONTROL DATA゚ BUFFERED DATA CHANNEL 1706-A, DT129-A, FV430-A

DIAGRAMS AND
CIRCUIT DESCRIPTION MAINTENANCE PARTS DATA

RECORD Of REVISIONS	
REVISION	NOTES
01	Initial printing; reflects information through Product Designation 1706-A01.
(3-9-66)	
A	Publications Change Order 14309.: All previous editions of this manual are obsoleted. This
(8-8-66)	manual reflects information through Product Designation 1706-A02 (Field Change Order 13762).
B	Publications Change Order 16289, no Product Designation changes. Pages 1-iii, 1-4, 1-5, 1-7,
(4-20-67)	1-9, 1-11, 1-13, 1-15, 1, 1-15.3, 1-17.1, 1-17.3, 1-19.1, 1-21, 1-23 and 1-25 revised.
C	Field Change Order 17810, (MDR 3) new Product Designation 1706-A03. Pages 1-6, 1-9, 1-11,
(12-7-68)	1-13, 1-27 and 1-29 revised.
D	Engineering Change Order 20413. Pages 1-6, 1-7, 1-10, 1-11, 1-12, 1-15.1, 1-15.3, 1-17.1,
(8-30-68)	1-17.3, 1-18, 1-19.1, 1-19.3, 1-20, 1-21, 1-23 and 1-25 revised.
E	Manual revised, includes Field Change Order 21644, equipment level 1706-A01 through A03.
(5-14-68)	Pages 1-9, 1-11, 1-13, 1-15. 3 and 1-29 revised.
F	Manual revised; includes Field Change Order 24763, equipment level 1706-A01 through A05
(1-4-71)	(retrofit on failure). Page 1-5 change to 1-5.0 and 1-29 revised. Page 1-5.1 added.
G	Manual revised includes Field Change Order 27463, equipment levels DT129-A01 and 1706-A01
(11-1-71)	through A06. Pages 1-3, 1-4, 1-5. $0,1-5.1,1-7,1-9,1-13,1-15.3,1-29,3-3$, Cover, Title Page
	revised. Correlation Sheet added.
H	Manual revised; includes Engineering Change Order 29964, publication change_nnly Pages y. 1-13
(12-15-71)	1-17. 1, 1-17.3, 1-25, 1-29, and Cover revised. Pages 1-21.1, 1-23.1, and 3-7 added. FV430-A
	Documentation added at this time.
J	Manual revised to add new series level per ECO CA28023.
(10/74)	
K	Manual revised, includes ECO DS017026. Pages 1-21.1, 1-23.1, 1-25, 1-29, and 3-7 changed,
(2/75)	
	: ${ }^{\text {a }}$,
	$!$

Address comments concerning this manual to:

Pub No. 60165700
${ }_{\text {© }} 1966,1967,1968,1969,1971,1974,1975$
by Control Data Corporation
Printed in United States of America
Small Computer Systems Division 4455 Eastgate Mall La Jolla, California 02037
or use Comment Sheet in the back of this manual.

MANUAL TO EQUIPMENT LEVEL CORRELATION SHEET

CONTENTS

Part 1. Diagrams and Circuit Description
Logic Diagram Symbols 1 -ii
Block Diagram 1-1
A/Q Channel Timing 1-2
Direct Storage Access Timing
Scanner Detail Including Switch 1-51-3
Receiver, Transmitter Control Signals 1-7
Status, Peripheral Read/Write Control 1-9
Storage Address, W Translator, F Register Control Signals 1-11
Reply, Reject Control 1-13
-
Data Transmitter, Data Receiver, X Register Bits 00-07
1-15. 3
Part 3. Parts List
Data Transmitter, Data Receiver, X Register Bits 08-15
1-17. 1Introduction3-1
Introduction 2-1
Physical Description 2-2
Cabling Information 2-2
Register, Storage Transmitter (ADR) Bits 08-14 1-23
Incrementer, Storage Address
Storage Hold, Compare, AuxiliaryAddress Register1-25
Timing Sequence 1-27
Card Placement Map 1-29
Part 2. Maintenance
Register, Storage TransmitterIncrementer, Storage Address
(ADR) Bits 00-07 1-21
1-15.11-17. 3
Parts List Breakdown 3-2
Q Receiver, Q Transmitter, W Translator, F Register 1-19
W Translator Z62, 63, 64 CardsL. S.
-19. 3
,
Part 4. Card Placement
See Page 1-29
FIGURES

$1-1$	Control Signal Transmission	$1-6$	$1-6$	Incrementer Network	$1-20$
$1-2$	Read/Write Timing	$1-8$	$1-7$	Compare Network	$1-24$
$1-3$	Data Flow in BDC	$1-14$	$1-8$	Z52 Module	$1-24$
$1-4$	BDC Address Flow	$1-18$	$2-1$	1706 Chassis	$2-3$
$1-5$	I/O Address Format	$1-18$	$2-2$	1706 Connector Panel	$2-4$

TABLES
1-1 Control Signals 1-6
2-1 Physical Characteristics 2-2
1-8 2-2 A/Q Channel 2-6
2-3 Direct Storage Access Bus 2-7
1-3 1706 Addresses and Operations

FOREWORD

This manual contains logic diagrams and circuit descriptions, card placement, maintenance information, and a parts list for the CONTROL DATA* 1706-A/DT129-A Buffered Data Channel (BDC). Information for Standard Option FV430-A which provides the BDC with 65 K addressing capabilities, is also contained in this manual.

The logic diagrams are arranged according to modules and wherever possible, a complete module appears on a logic diagram. The Logic Diagram Symbols, page 1-ii, precedes the logic diagrams. This page illustrates and describes each of the standard logic symbols used in the logic diagrams. The block diagram on page 1-1 indicates signal flow through the BDC. BDC operations are used in the description of the block diagram.

The maintenance section provides a physical description of the BDC, cabling information, and general maintenance information.

The parts list in this manual provides a listing of all parts of the BDC and its power supply.

[^0]PART 1

DIAGRAMS AND CIRCUIT DESCRIPTION

Two signals, a logical " 0 " and a logical " 1 ", are the possible input or output conditions of a circuit. By convention, " 1 " is considered "up" and " 0 " is considered "down" on a timing chart, for example. Detailed descriptions of logic symbols and their associated electronic representations are contained in the Printed Circuits Manual, Vols. 3 and 4.

STANDARD LOGIC SYMBOLS

The 1700 Computer logic is mainly composed of the CONTROL DATA 6000 Series printed circuit modules. Standard logic diagram symbols for this type of printed circuit modules are inverters, test points, flip-flops, and twisted pair line drivers.

INVERTERS

An inverter is a logic element which provides an output that is an inversion of its input. When an inverter receives more than one input, " 0 ' s " take precedence over "1's" and drive the output of the inverter to " 1 ". Because all of the several inputs have to be " 1 " to drive the output of the inverter to a " 0 ", the inverter may be considered an inverting AND (or NAND) gate when more than one input is present. Logic diagrams show the basic inverter as an arrow into either a circle or a square (see Figure 1). Both symbols represent the same electronic circuit and have the same logical interpretation. In a logic sequence of inverters, circle and square symbols are usually alternated as an aid in tracing signals, e.g., a " 1 " output from a square symbol implies a " 1 " output from subsequent squares in the logic chain if each symbol in the chain has only one input.
Acceptable conventions for showing multiple inputs and outputs are given in Figure 2. Note that the output of inverter A is " 0 " only if inputs X , Y , and Z Figure 2. Note that the output of inverter A is
are all " 1 . The multiple outputs are identical.

Figure 3 shows an example of an inverter network. Because multiple outputs are identical, Figure 4 shows only one arrow in cases where an inverter (A) serves as the single input to several succeeding inverters. In more complex inverter networks, multiple arrows are used (B to C and D because B is not the only input to \mathbf{C} or D).

Figure 1. Inverter Symbols

Figure 2. Multiple Inputs/Outputs

Figure 3. Inverter Networks

TEST POINTS

A test point performs no logic function. Logic diagrams show the test point as a triangle (see Figure 4). Test points are numbered from 1 to 6 .

Figure 4. Test Point Symbols

FLIP-FLOPS (FF)

The flip-flop is composed of two inverters and functions as a storage device with two stable states designated as set and clear (see Figure 5). The flipflop is set when the set output (B) is a " 1 " and clear when it is a " 0 ". Note that the input (A) must be " 0 " to set the flip-flop, and (C) must be " 0 " to clear it.

Figure 5. Flip-Flop Symbol

WIRE TAB DESIGNATIONS

Wire tab designations written next to a pin indicate where in the drawings the pin is connected. $3,5,7-\mathrm{C} 37-6$ indicates a connection with pin 6 of module C37, found on pages 3,5 , and 7. See Figure 5.1.

x IN PLACE OF PIN NUMBERS DENOTES GROUND)

Figure 5.1. Wire Tab Designations

TWISTED PAIR DRIVERS
A Line Driver circuit transmits logic signals from one module to another. Modules are connected by twisted-pair lines. The standard square or circle represents the are connected by twisted-pair lines. The standard square or circle represents the twisted-pair driver. However, the output of the square or circle connects to a pin
of the module. The pin is then wired to a pin on another module (see Figure 6). of the module. The pin is then wired to a pin on another module (see Figure 6).
The ground wire of the pair is wired to the connector ground bus of each module. The pins are represented by small circles and are numbered from 1 to 28 . (Pins 29 and 30 are ground and +6 volts, respectively, and generally are not shown in logic diagrams.) The module location is shown above the card, and the module type is denoted in the upper right-hand corner.

Figure 6. Twisted-Pair Line Driver
RECEIVER/TRANSMITTER CIRCUITS
The Receiver and Transmitter circuits detect and transmit signals from and to I/O interface respectively. The Receiver and Transmitter circuits are modifications of the standard 3000 Series circuits of the same name. These circuits are contained on a printed circuit module along with the standard inverter circuits.

Figures 7 and 8 shows that Receiver and Transmitter circuits are represented by the square symbol with an " R " or " T " respectively. The two inputs to the receiver are each connected to two pins on the module.

In Figure 7, a " 1 " input to R is inverted, causing a " 1 " output from pin 6 and $a^{"} 0^{\prime \prime}$ output from pin 13. Thus, with a " 1 " input, the Receiver circuit produces both True and Not outputs.

The Transmitter circuit receives a " 1 " input signal from a standard inverter or FF and transmits a " 1 " output signal to the I/O interface. In Figure 7, a "1" input to pins 7 and 9 causes a " 1 " output from T and thus to the I/O line.

Figure 7. Receiver/Transmitter Circuit Examples

Figure 8. ZS Transmitter/Receiver Module

SPECIAL CIRCUITS

In addition to the standard symbols, the diagrams also use symbols representing special nonstandard circuits. The symbols for these circuits along with a brief description are given below.

Special variations of the standard building block are indicated by the symbols shown on Figure 9. The symbol and schematic for the corresponding special circuit are shown on the applicable logic diagram and also on the module schematic in the Printed Circuits Manual.

Figure 9. Special Circuits

CAPACITIVE DELAY CIRCUITS

Capacitive Delay circuits delay input " 1 " signals a prescribed time before issuing an output 1 signal. The 1700 uses both fixed and variable delay circuits. Figure 10 shows examples of both types. The delay time of the circuit and capacitor value are isted beside the capacitor symbol. The variable potentiometer enables adjustment of the delay time of the circuit within certain limits

FIXED DELAY

VARIABLE DELAY

Figure 10. Capacitive Delay Circuits

BUFFERED DATA CHANNEL

 BLOCK DIAGRAMThe $\mathbf{1 7 0 6 - A}$ Buffered Data Channel (BDC) provides a 16-bit, bi-directional, buffered input/output path between the 1704 Computer and up to eight peripheral equipment devices (controllers).

The BDC contains no indicators or controls; so all operations must be initiated by the I / O instruction from the Q register of the computer. In response to an I / O instruction, the BDC connects the computer to one of the external controllers, and sets up the external controllers for a Read or Write operation. The BDC then controls the Read or Write operation, obtaining access to storage via the Direct Storage Access (DSA) when necessary to fetch or store information.

The Q receiver of the BDC receives the I / O instruction and transmits it to the W field translator and the F register. The W field translator translates bits 15-11 that control the BDC operation. The F register holds the I/O instruction during the entire buffered operation and gates it to the Q transmitter which in turn sends it to . the peripheral controllers. Bits 10-00 select and address one of the peripheral controllers attached to the BDC.

The A transmitter and the A receiver of the BDC connect to the A register of the computer via the AQ channel. During a Direct Output operation, a 16-bit data word is transferred by the A receiver from the A register of the computer to the peripheral transmitter where it is presented to the selected peripheral device. During a buffered operation, the data word transmitted from the A register is the first word address minus one (FWA-1) of the block of data being transferred. During a BDC Function operation, the data word from the A register contains the function code. The A transmitter returns a 16 -bit data word to the computer which contaịns:

1) Status information during a Status operation.
2) A 16 -bit data word from the pertpheral device through the peripheral receiver during a Direct Input operation.
3) The current address during a Terminate operation.

During a buffered operation, the Storage Address register receives the address of the control word (FWA-1) from the A receiver. The control word is the last word address plus one (LWA +1) of the block of data being transferred and is held in the Storage Hold register. The current address is in the Storage Address register and temporarily held in the Auxiliary Address register where it is available to the computer upon request. After each transfer of a data word in the block, the current address is incremented by one in the Incrementer register. The Compare register compares this address to the LWA +1 from the Storage Hold register. If the two addresses are equal, the buffered operation is complete and a signal is sent to BDC control that terminates the buffered operation. If the addresses are not equal, the current address is sent to storage by the Storage transmitter. A transfer to that location occurs during an Input operation or a transfer from that location occurs during an Output operation.

The Storage transmitter (address) sends the address of the location in storage from which the Storage receiver (data) receives data or to which the Storage transmitter (data) transmits data.

The peripheral transmitter and peripheral receiver transmit data to and from the peripheral controllers. The X register is a temporary holding register, holding a data word until storage or the peripheral controller is ready to accept it.

NOTE :
THE ADDRESS BITS WILL BE ON THE CHANNEL A MINIMUM OF O.I μ SEC BEFORE AND AFTER THE READ OR WRITE SIGNAL.

A-Q CHANNEL TIMING

DIRECT STORAGE ACCESS TIMING

Each device that connects to the Direct Storage Access contains in its logic a Scanner FF that is one stage of a distributed scanner. The various stages of the scanner are connected together via receiver-transmitter transmission lines. The last stage of the scanner transmits its output to the first stage, thus forming an oscillating scanner. If there is only one device on the DSA, the output from the Scanner FF is gated from the transmitter to the receiver of that device, thereby completing the circuit and still maintaining an oscillating scanner.

Any device connected to the DSA has a 5 -position selector switch that indicates the position of the scanner stage. The five positions of the switch are: FIRST, MIDDLE, LAST, ONE UNIT, and OUT. The switch must be set to FIRST, MIDDLE, or LAST depending on whether the device contains the first, middle, or last stage of the Scanner circuit. There may be more than one middle stage in the Scanner circuit since any stage that is not the first or last stage is considered to be a middle stage. The switch must be set to ONE UNIT if there is only one device connected to the DSA. If there is a need to remove one of the devices from operation temporarily, the switch of that device must be set to OUT and the switches on the other devices must be changed to correspond to the new position that they acquired in the Scanner circuit.

The Z61 module contains the scanner stage and storage reference control logic for the BDC. When the Need FF and the Scanner FF are both set, the Halt Scanner FF will set. The clear side of the Halt Scanner FF is used to block clearing of the Scanner FF, thus halting the scanner. The Need FF and the Halt Scanner FF are
both cleared by a (Resume and Request Memory) signal (Z61, pins 5 and 10).

In a multiple word transfer the Need FF is cleared and reset after each word is transferred until current address equals the LWA +1 .

The Priority FF, when set, blocks clearing of the Scanner FF (output "C" of Priority FF). This prevents cycling of the scanner to allow multiple word transfers. Need and Halt continue to clear and reset after each word is transferred. The connected peripheral device will provide priority if it needs high speed transfer of data

When the computer recognizes the memory request, it returns a Resume signal that enters the Z61 module at pin 10. The Resume signal is ANDed with the Request Memory signal at inverter E . A " 0 " output from inverter E sets the Resume'FF and clears the Halt Scanner FF. This starts the scanner oscillating again.

The ZR (page 1-5.0) and V36 (page 1-9) modules are receivers for the peripheral equipment and the computer memory. The ZT module transmits signals from the scanner to stage B of the switch. The schematic insert shows the 4 sections (A, B, C, and D) of the switch and the address cables that connect to it.

The Z 51 module operates as a terminator for the transmission lines connecting the stages of the distributed scanner.

RECEIVER AND TRANSLIITTER CONTROL SIGNALS

TABLE 1-1. CONTROL SIGNALS

SIG NAL	DEFINITION
Read	A " 1 " signal from the computer to the peripheral equipment initiating an input transfer of one data word.
Write	A " 1 " signal from the computer to the peripheral equipment initiating an output transfer of one data word.
Reply	A " 1 " signal from the peripheral equipment to the computer in response to a computer Read or Write signal. The Reply drops after the Read or Write signal drops.
Reject	A " 1 " signal from the peripheral equipment in response to a computer Read or Write signal indicating that the operation cannot be performed.
Master Clear	A " 1 " signal from the computer to clear the I/O channels and peripheral equipment.
Program Protect	A "1" signal from the computer to the peripheral equipment indicating that the data transfer is initiated by an instruction whose Program Protect bit is set.
Character Input	A " 1 " signal from the peripheral equipment to the computer during a Direct Input instruction transferring a lower 8 -bit character into the lower 8 bits of the A register without disturbing the upper 8 bits.
Priority	A "1" signal from the BDC to the computer to obtain exclusive access to storage.
Buffer Active	A " 1 " output from the BDC to the peripheral equipment indicating that the BDC is in either a Buffered Input or BufferedOutput operation.
Timing Pulse	A pulse from the computer to the BDC indicating that the computer is running.
$W=0$	A signal from the computer to the peripheral equipment enabling the operation of the peripheral equipment. (Peripheral equipment may be accessed through either the A / Q channel or the BDC. A $W=0$ signal is needed to enable peripheral equipment. The BDC uses the W field for selecting an operation and therefore cannot transmit a $\mathrm{W}=0$ in a conventional method. The BDC gains access to the peripheral equipment by transmitting a signal that the peripheral equipment recognizes as a $W=0$ signal. This is accomplished by feeding Q15 to the Q transmitter at location F09.)

The block diagram in Figure 1-1 illustrates the transmission of control signals between the computer, the BDC, and the peripheral devices. It includes all the modules on page 1-7 except the storage receiver module at location F02. That portion of the storage receiver senses for a Program Protect fault. If a violation of the Program Protect system has occurred, storage returns a signal to the storage receiver which in turn transmits the signal to the control module at location B13 on page 1-9. Here the signal sets the Program Protect Fault FF.

Figure 1-1. Control Signal Transmission

STATUS AND PERIPHERAL READ/WRITE CONTROL

The Z58 module contains the logic that controls BDC status. Table 1-2 defines the status bits that are represented in the logic by the corresponding FFs on the Z 58 module.

The Buffer Active FF provides a signal to the BDC indicating that a buffered operation is in progress, but this signal is not a part of BDC status. The FF is cleared after the last Reply of the buffered operation,

Inputs to pins 15,17 , and 22 of the $Z 58$ module determine the BDC Function operation. The only function operation available on the BDC is Interrupt on End of Operation. Bits A15 and A00 have the following definitions:

A15 $\left\{\begin{array}{l}=1 \text { set condition for " } 1 \text { 's" in A14-A00 } \\ =0 \mathrm{clr} \text { condition for " } 1 \text { 's" in A14-A00 }\end{array}\right.$
A00 enables interrupt on 1706 End of Operation
TABLE 1-2. BDC STATUS BITS

$\begin{aligned} & \text { A-REGISTER } \\ & \text { BIT } \end{aligned}$	FF NAME	DEFINITION
15-10		Not Used
9	Device Reply	Indicates that the peripheral device accepted the last data word transfer.
8	Device Reject	Indicates that the peripheral device rejected the last data word transfer.
7		Not Used
6	Program Protect Fault	Indicates that the reference to computer storage caused a Program Protect fault.
5		Not Used
4	End of Operation	Indicates that the buffered I/O transfer has been completed.
3		Not Used
2	Interrupt	Indicates the end of a buffered operation.
1	Busy	Indicates that BDC is busy. (This bit is set from the time the BDC accepts an output word from the computer initiating a block transfer until the block transfer is terminated, or during a direct operation.)
0	Ready	Indicates that the power is on.

READ/WRITE CONTROL
The Z96 module contains the control FFs for Read/Write operations.
The Peripheral Read FF is set during a Buffered Input operation. If a Reply signal is returned, the output of inverter C will gate the Read signal out to pin 6 (see Figure 1-2). A Reject will input a " 0 " on pin 3 and block the Read signal. The Reject signal does not clear the Read FF. The Read FF is cleared by Reply + Exit.

In a Direct Input the Read signal is fed to pin 4 and the resulting " 0 " signal forces pin 6 to a Read (constant " 1 "). Peripheral Read FF is not set during a Direct Input.

Figure 1-2. Read/Write Timing
The Peripheral Write FF is set during a Buffered Output operation and the oscillating output of pin 25 is identical to that of pin 6 with the Write pulse replacing the Read pulse (Figure 1-2).

If data can be accepted when the Write signal rises, data is transferred to the appropriate register, and within 4 usec a Reply signal is returned to BDC. The Reply signal drops when the Write signal drops.

During a Buffered Input operation the Memory Write FF is set. This output is ANDed with the set-side output of the Gate FF which enables data to be written into storage. The Gate FF being set also gates address information on the address cable.

The Z 55 module is a time delay module that functions as a pulse shaper.
(

The storage address control module contains the logic for monitoring the address in buffered I/O operations.

During the first cycle of a buffered operation, the Buffered Reply signal sets the Fetch Control Word FF, indicating to the BDC that the current word being transferred is a control word and not a data word. These same conditions set the Change Storage Address FF which enables the contents of the A register to be transferred to the Storage Address register. The contents of the Storage Address register is then the FWA-1 of the block of data being transferred. The contents of the FWA-1 is the control word (LWA+1) and is stored in the Storage Hold register where it is compared to the current address during each cycle of the buffered operation.

During each succeeding cycle of the buffered operation, the Change Storage Address FF sets and enables the current address to be incremented by one. The Fetch Control Word FF sets only on the first cycle.

The $Z 56$ module is part of the W translator, the other being the $Z 6 X$ (C11) module on page 1-19.1. The $Z 56$ module receives inputs from the $Z 6 X$ (C11) module and transmits signals representing the translated BDC operation.

-

Bit 15 of the BDC address in the $Z 56$ module is the continue bit.

The BDC may be addressed using the continue bit. The continue bit operates as follows:

1) Address the device with the correct code and Q15 will set to " 0 ".
2) All successive addresses with Q15 = 1 will be recognized by that device.
3) To access a different device, use the new address with $\mathrm{Q} 15=0$.

The BDC will interpret an access with Q15 = 1 as a Direct Input on a Read and a Direct Output on a Write.

The V01 module is a portion of the F register. This register holds the operation code that was translated in the W translator module.

The TH and Z53 modules are fan-out modules.

REPLY AND REJECT CONTROL

The Reply/Reject $Z 59$ module contains the logic that senses the operating state of the BDC. It generates Reply, Reject, and Exit Control signals, and the status Busy signal.

To perform a buffered or direct operation, the appropriate address is transmitted via the A/Q channel to the BDC. The address is translated and its signal is ANDed with a BDC Not Busy signal. The resultant signal sets the B+D (buffered or direct) Reply FF that enables the operation. If the BDC is Busy, the clear output of the B+D Reply FF transmits a Reject signal out of pin 23 of the Z 59 module.

The computer requests BDC status by transmitting a $\mathrm{W}=03$ (current address) or a $\mathrm{W}=04$ (1706 Status). The $\mathrm{W}=03$ or $\mathrm{W}=04$ translation will gate the data to the A register of the computer (page 1-11, module C12). The BDC will respond to the status request within 4 microseconds with either a Reply or Reject. If a Reject occurs, there is a protect fault or the 1706 is not physically connected to the computer.

One of the bits associated with BDC status is the Busy signal controlled by the Busy FF. This FF sets at the beginning of a buffered, direct, or terminate operation and remains set until the operation is complete.

The Exit FF provides a signal to the BDC indicating completion of a buffered. direct, or terminate operation.

The Z 79 module functions as a line filter, removing noise and transients from the various signals.

The Z 53 and TH modules operate as fan-out modules. The Z 55 module is a time delay module that functions as a pulse shaper

The block diagram in Figure 1-3 illustrates the data flow (bits 00-07) in the 1706-A.

Figure 1-3. Data Flow in BDC

Data from the controllers enters the peripheral receiver (locations F10, F11, and F12). If the BDC is in a Direct Input operation, the data from the peripheral receiver enters a fan-in (locations C14 and C15), and is transferred to the A
ransmitter (locations E13, E14, and E15). The data is then transmitted via the A/Q channel to the A register of the computer.

During a Buffered Input, the data from the peripheral receiver is gated into a fan-in (location D06). The output from this fan-in is transmitted to the X register (location D07) where it is held until the BDC has access to memory.

During a Buffered Input operation, data is gated from the X register to the storage transmitter (locations E01, E02, and E03) and then to storage

During a Buffered Output operation, data is gated from the X register to a fan-in (location D12), to the peripheral transmitter (locations F10, F11, and F12), and then to the controllers.

The storage receiver (locations E01, E02, and E03) accepts data from storage and transmits it to a fan-in (location D06) and then to the X register during a Buffered Output operation.

The A receiver (locations E13, E14, and E15) receives data from the A register of the computer. It transmits the data to the peripheral transmitter via a fan-in (location D12) and then to the controllers.

DATA TRANSMITTER, DATA RECEIVER, I REGISTER BITS 08-15

The logic diagrams on pages 1-17.1 and 1-17.3 show bits $08-15$ of data flow in the BDC. The logic involved in bits 08-15 is identical to that in bits $00-07$ shown on pages $1-15.1$ and 1-15.3.

The logic diagram on page $1-19.1$ shows the Q receiver, the F register, the W translator, and the Q transmitter. The block diagram in Figure $1-4$ illustrates the flow through these modules. The Q receiver receives the contents of the Q register via the address cable and transmits it to the F register and the W translator. The F register temporarily stores the address (contents of the Q register). The W translator translates the W field (bits 11-15) of the address. The Q transmitter transmits the address to the controller.

Figure 1-4. BDC Address Flow
The format of the address in the W field of the Q register which directs BDC operation is shown in Figure 1-5. The address consists of two digits (5 bits) with the left digit (bit 15) in binary and the right digit (bits 11-14) in hexadecimal.

Figure 1-5. I/O Address Format

Table 1-3 lists the addresses and the corresponding operations for the BDC.
TABLE 1-3. 1706-A ADDRESSES AND OPERATIONS

W TRA NSLATOR ADDRESS		COMPUTER OPERATION		
1706 No. 3	1706 No. 2	1706 No. 1	INPUT	OUTPUT
0 C	07	02	Direct Input	Direct Output
0 D	08	03	Terminate Buffer; 1706 Current Address	Function
0 E	09	04	1706 Status	Buffered Output
0 F	0 A	05	1706 Current Address	Buffered Input

Bit 15 of the address which enters the V 36 module at Location E11 is the continue bit. This is explained on page 1-10.

The W translator may be one of three types of modules. A Z62, Z63, or Z64 module is used depending on whether the 1706 is a number one, two, or three 1706. In the logic diagram the Z 6 X module is used to represent one of the three types of modules. (See page 19.3 for logic schematics.)

INCREME NTER, STORAGE ADDRESS REGISTER, AND STORAGE TRANSMITTER ADDRESS BITS 00-07

The logic diagrams on pages 1-21 and 1-23 illustrate the logic associated with incrementing, storing, and transmitting of storage addresses. The block diagram in Figure 1-6 illustrates this sequence.

Figure 1-6. Incrementer Network

During the first cycle of a buffered operation, the fan-in receives the FWA-1 from the A receiver. (The contents of FWA-1 is the LWA+1.) The FWA-1 is sent to the Storage Address register where it is gated to the fan-out. The fan-out has two outputs. It transmits the address to the Storage Transmitter where it is sent to storage and it gates the address back to the incrementer to be incremented by one.

During all succeeding cycles of a buffered operation, the fan-in receives the address from the incrementer. The fan-in receives an input from the A receiver only on the first cycle.

The fan-in again gates output to the Storage Address register. The set-side outputs of the Storage Address Register FFs are applied to the fan-out and the clear-side outputs are applied to the compare module (page 1-25). The fan-out again transmits the address to the storage transmitter where it is sent to storage and gates the address back to the incrementer. This cycle continues until the current address equals the LWA+1. The compare module (page 1-25) checks for this equality.

The incrementer is composed of five QK modules, each containing 3 bits of the address. The total of 15 address bits is sufficient to address any storage location. The input to pins 25 through 28 of each QK module enables a carry from one module to the next. A logical " 1 " from the K inverter in each QK module enables the logic of that module.

INCREMENTER, STORAGE ADDRESS REGISTER, AND STORAGE TRANSMITTER ADDRESS BITS 08-14
The logic diagram on page 1-23 shows bits 08-1t of the Storage Address register. The logic involved is identical to that in bits $00-07$ shown on page $1-21$.

The logic for the storage hold, compare, and auxiliary address register modules is shown on page 1-25. The block diagram in Figure 1-7 illustrates the flow through these modules during a buffered operation.

Figure 1-7. Compare Network

Figure 1-8. Z52 Module

The complement of LWA +1 enters the storage hold modules from the storage receiver and is then gated into the compare modules. The complement of the current address enters the compare modules from the Storage Address register (pages 1-21 and 1-23) and is then compared with the complement of LWA +1 . If the current address equals the LWA +1 , a logical " 1 " from pin 10 of the compare modules (locations B10, B11, and B12) is applied to the control circuitry (page 1-11) ending the buffered operation.

The Auxiliary Address register holds the current address and transmits it to the A transmitter during a Current Address operation. When the computer initiates a Current Address operation, the current address present in the Auxiliary Address register is transmitted to the computer. The incremented address that is generated during each step of the buffered operation is blocked from entering the Auxiliary Address register until the Current Address operation is completed.

note:

PART 2

MAINTENANCE

PART 2
 MAINTENANCE

INTRODUCTION

This section of the manual includes a general physical description of the 1706 BDC. Detailed information regarding specific maintenance procedures will be distributed as the information is received from personnel in the field.

Supporting documents include:

1700 Site Preparation and Installation Manual
1700 CE Maintenance and Parts List Manual
1700 Customer Engineering Manual Diagrams and Circuit Description, Command Timing Sequences
1700 Computer System Systems Manual

Pub. No. 60158400
Pub. No. 60160400

Pub. No. 60152700
Pub. No. 60152900

PHYSICAL DESCRIPTION

The 1706 BDC is built on a chassis which mounts into the 1700 vertical cabinet or in some cases, the 1700 horizontal cabinet. Table 2-1 shows the physical characteristics of the BDC.

TABLE 2-1. PHYSICAL CHARACTERISTICS

PHYSICAL CONFIGURATION	
Height:	23 inches
Width:	18 inches
Depth:	10 inches
Weight:	90 pounds
POWER REQUIREMENTS	
+6 vdc at 27 amperes -6 vdc at 10 amperes	
OPERATIONAL ENVIRONMENT	
Temperature: Relative Humidity:	$\begin{aligned} & 40^{\circ} \mathrm{F} \text { to } 120^{\circ} \mathrm{F} \\ & 0 \% \text { to } 80 \% \end{aligned}$

The logic chassis is cooled by forced air provided by the cabinet in which it is mounted. The logic modules are 6600-type, providing 100% silicon semiconductors.

A 40 vdc terminator power supply is required for the BDC. This power is provided by an external power supply which supplies power to all equipment in the 1700 system.

CABLING INFORMATION

The BDC communicates with the computer via the A / Q channel and the Direct Storage Access (DSA) bus.

Both communication lines employ two 29 twisted-pair cables that terminate in 61-pin connectors. The communication lines use the transmission technique of a balanced,

Figure 2-1. 1706 Chassis

Figure 2-2. 1706 Connector Panel
terminated transmission line. Each pair of lines is terminated with its characteristic impedance by the use of an appropriate terminator plug. On the connector panel, the first receptacle of each corresponding pair is used to receive a signal cable, the second to terminate the cable or connect to a device via another signal cable.

CAUTION

Do not connect signal cables or terminators while terminator power is on. Pins F9 and F10 of each receptacle carry terminator voltage (+20 and -20 vdc). This 40 vdc can burn out terminator sections and printed circuits if it accidentally contacts a transmission line while the connector is being positioned. Turn off the toggle switch on the terminator power supply while cables are being connected or changed.

Table 2-2 lists the A / Q channel cables, signals, and pin assignment.
TABLE 2-2. A/Q CHANNEL

Table 2-3 lists the DSA bus cables, signals, and pin assignments.
TABLE 2-3. DIRECT STORAGE ACCESS BUS

DATA CABLE SIGNAL (To/From Z Register)	$\begin{aligned} & \text { PIN } \\ & \text { NO. } \end{aligned}$	ADDRESS CABLE SIGNAL (To S Register)
Data Bit 00	A1, 2	Address Bit 00
01	3, 4	01
02	5, 6	02
03	7, 8	03
04	A9, 10	04
05	B1, 2	05
06	3, 4	06
07	5, 6	07
08	7, 8	08
09	B9, 10	09
10	C1, 2	10
11	3, 4	11
12	5, 6	12
13	7, 8	13
14	C9, 10	Address Bit 14
Data Bit 15	D1, 2	Scanner Forward
Storage Parity 16	3, 4	Priority
Program Protect 17	5, 6	Program Protect
Reply	7, 8	Request
Storage Parity Error	D9, 10	Write Enable
Program Protect Fault	E1, 2	Master Clear
Interrupt Line 1	3, 4	Interrupt Line 9
Interrupt Line 2	5, 6	Interrupt Line 10
Interrupt Line 3	7, 8	Interrupt Line 11
Interrupt Line 4 4 *	E9, 10	Interrupt Line 12 $\}$ *
Interrupt Line 5	F1, 2	Interrupt Line 13
Interrupt Line 6	3, 4	Interrupt Line 14
Interrupt Line 7	5, 6	Interrupt Line 15
Interrupt Line 8]	7, 8	Scanner Return
Terminator Power	F9, 10	Terminator Power
* Termination for interrupt lines in 1700 computer main frame only.		

PART 3

PARTS LIST

INTRODUCTION

The parts list provides the identificiation and ordering data necessary for the replacement of electrical and hardware parts for the CONTROL DATA 1'T06-A.

Electrical Contents: All chassis items are included except jumper wires and bulk wire.

Hardware Contents: All chassis items are included except standard hardware such as screws, nuts, bolts, washers and raw material.

The chassis assembly and associated subassemblies are broken down into individual parts, listed in alphabetical rather than disassembly order.
'The following publication contains information on peripheral cabinets and power supplies necessary to complete a total breandown of the equipment:

Peripheral Controller Cabinets
Customer Engineering Instruction
Manual (includes power supplies) Pub. No. 60097300

ORDERING OF PARTS

When ordering Control Data parts, include the following information: CDC drawing number, description, quantity needed, equipment used on.

1706-A I/O Channel Assembly, CDC Dwg. No. 17846400 (Mounted in Vertical or Horizontal Peripheral Cabinet) PARTS LIST		
coc-drawing NUMBER	DESCRIPTION	QUANTITY EACH MACHINE
17801900 18027900 17919700 18088600 18028000 17883209 18110700 18110600 through 18110611 17843500 17841800 17900200 17928300 30000401 24562500 30092702 30092706 30092710 30092711 30000901 17896900 24554901 00865004 17912700 00854100 18031900 18032000 17711000 18027800	Bar, Mounting, Card Bar, Mounting, Connector Bar, Support, Chassis Bracket, Mounting, Chassis Bus, Bar, Horizontal Bushing, Flanged, Nylon, 0.312 OD Cable Assembly, 3 Pin Cable Assembly, 61 Pin Card Placement Chassis Assembly Clamp, Bus Bar Clamp, Bus Bar Connector, Plug, 61 Pin, Resistor-Terminator Connector, Receptacle, 30 Socket Connector, Receptacle, 20 Contact, Red Connector, Receptacle, 20 Contact, Blue Connector, Receptacle, 20 Contact, Black Connector, Receptacle, 20 Contact, Natural Connector, Receptacle, 61 Pin Connector, Receptacle, 3 Pin Enclosure Assembly, Resistor-Terminator Grommet, Rubber, for Connector 30000901 Insulator Strip, Bus Bar Knob, Resistor-Terminator Member, Frame, Chassis RH Side Member, Frame, Chassis LH Side Plate, Identification, Serial Panel Assembly, Connector, 12 Position	

1706-A Printed Circuit Module Assembly CDC Dwg. No. 17843500 PARTS LIST		
CDC- DRAWING NUMBER	DESCRIPTION	quantity EACH MACHINE
17945201 17952101 18022001 18024801 18025001 18035001 18035201 18042101 18043201 18042501 18042701 18043101 $* 18047501$ $* 18047701$ $* 18047901$ 18179301 63061001 63063701 63064001 17876201 17876101 17876501 17843501	Printed Circuit Module Assembly, Type V01 Printed Circuit Module Assembly, Type V36 Printed Circuit Module Assembly, Type Z51 Printed Circuit Module Assembly, Type Z52 Printed Circuit Module Assembly, Type Z53 Printed Circuit Module Assembly, Type Z54 Printed Circuit Module Assembly, Type Z55 Printed Circuit Module Assembly, Type Z56 Printed Circuit Module Assembly, Type Z57 Printed Circuit Module Assembly, Type Z58 Printed Circuit Module Assembly, Type Z59 Printed Circuit Module Assembly, Type Z61 Printed Circuit Module Assembly, Type Z62 Printed Circuit Module Assembly, Type Z63 Printed Circuit Module Assembly, Type Z64 Printed Circuit Module Assembly, Type Z79 Printed Circuit Module Assembly, Type QK Printed Circuit Module Assembly, Type TE Printed Circuit Module Assembly, Type TH Printed Circuit Module Assembly, Type ZR Printed Circuit Module Assembly, Type ZS Printed Circuit Module Assembly, Type ZT Printed Circuit Module Assembly, Type RS *Only one of these is used at any one time and is dependent on the code.	


```
Mower Module Assembly, -6v, 25 Amp, PÁRTS LIST
```

CDC-DRAWING NUMBER	DESCRIPTION	QUANTITY EACH MACHINE
18100000	Base, Power Module	
18100100	Bracket, Rectifier	
17883206	Bushing, Flanged, Nylon	
30092519	Capacitor, Fixed, Electrolytic, 7000 uf, 10 w.vdc	
24554602	Connector, Cable Clamp, Strain Relief, Nylon, Black, 0.560 O.D.	
2455460:3	Connector, Cable Clamp, Strain Relief, Nylon, Black, 0.870 O.D.	
17763801	Connector, Plug, Polarized, 6 Pin	
18099900	Cover, Power Module	
00839501	Grommet, Rubber, $1 / 8$ Groove, 3/8I.D.	
00838200	Nut, Sheet Spring, \#6-32	-
17711000	Plate, Identification	
24561604	Rectifier, Silicon, 40 Amp , Reverse Polarity	
30092601	Retainer, Capacitor	
18112100	Transformer-Inductor, 6v, $25 \mathrm{amp}, 400$ Cycle	
181500	Wire List	

AF
SH 2

OTHROTMT

ASSE開跳Y PRTS LIST

mandal tirle 1706-A, DT129-A, FV430-A Buffered Data Channel

Customer Engineering Manual

PUBLICATION NO. 60165700 REVISION K_K

FROM NAME:

BUSDNESS
ADDRESB:

COMMENTS: This form is not intended to be used as an order blank. Your evaluation of this manual will be welcomed by Control Data Corporation. Any errors, suggested additions or deletions, or general comments may be made below. Please include page number.

POSTAGE WILL BE PAID BY
CONTROL DATA CORPORATION
SMALL COMPUTER SYSTEMS DIVISION
4455 EASTGATE MALL
LA JOLLA, CALIFORNIA 92037

ATTN: PUBLICATIONS DEPARTMENT

[^1]CORPORATION

CORPORATE HEADQUARTERS, 8100 34th AVE. SO., MINNEAPOLIS, MINN, 55440 SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD

[^0]: *Registered trademark of Control Data Corporation

[^1]: - CUT OUT fOR USE AS loose -leaf binder title tab

