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PREFACE 

This is the First Edition of the GPL II Programmer's 
Reference Manual. It accompanies the GDS II 
Reference Manuals, Volume I and II, and the GDS II 
Menu Manual. It presents an explanation of the GPL 
II Programming Language, knowledge of which will 
provide the user the facility to extend the system to 
meet his needs in the future. 
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SECTION 1 
INTRODUCTION 

The use of the GPL II Programming Language 
requires a general knowledge of the GDS II System 
and assumes familiarity with the GDS II Command 
Language. The GDS II Command Language and the 
GPL II Programming Language have been designed 
as different approaches to the same system. Once 
the procedures for creating GDS II Menus in terms of 
GDS II Command Primitives have been mastered, 
only a little additional effort is required to place the 
complete resources of the GPL II Programming 
System at the user's disposal. 

The progression from system operation to menu 
definition, and on to programming, follows a natural 
order. Although there is nothing to be "unlearned", 
there are new concepts to be mastered at each step 
and new benefits to be realized. While the menu 
facility gives the user the opportunity to customize 
the system to meet his immediate needs, the GPL II 
Programming Language facility gives the user the 
opportunity to extend the system to meet his needs in 
the future. 

The remainder of this chapter presents an informal 
discussion of the basics of the GPL II Programming 
Language. 

1.1 Interactive Mode 

The GPL II Programming Language System has two 
basic modes of operation. In interactive mode, GPL II 
statements are entered and executed immediately. In 
program definition mode, GPL II statements are 
collected into a program and saved for later 
execution. The interactive mode of execution is best 
exemplified by the normal use of the GDS II System: 
A command or statement is entered to cause the 
desired effect. If the command or statement is to be 
repeated, it must be typed in again. One solution for 
the problem of command repetition is to define a new 
menu button which effectively types in the desired 
string of characters with a single keystroke. In many 
cases, however, it is necessary to repeat a sequence 
of commands with provision for exceptions or with 
different parameters, and so on. The GPL II 
Programming Language makes it possible to execute 
one or more commands, to obtain feedback from the 
system, to manipulate data, and to conditionally 
execute more commands. Of course, once a program 
has been defined, it can be called and executed as 
often as desired while in interactive mode. 
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1.2 Source Files 

A GPL II program is stored as a file in the GDS II 
system. The procedures for program creation, 
maintenance, and listing follow the general rules for 
text manipulation in the GDS II System. Since text 
editing is such a fundamental part of system 
operation, the same basic techniques are used 
independently of where the text is stored. This 
discussion assumes that the user is familiar with 
editing text associated with a menu button or located 
in a drawing file, and that no detailed editing 
techniques need be discussed here. In fact, there is 
little difference between the procedures needed to 
associate text with a button and defining a 
subroutine in a source file and then associating a call 
to the subroutine with a button. 

While the basic editing techniques are the same 
throughout the system, there are special features 
which may be useful in a particular application. 
These include positioning a source file to a particular 
statement identified by number, and so on. All such 
features are defined in the editor documentation for 
easy reference. 

1 .3 Work Area 

The GPL II Programming System maintains a work 
area for each user which is essentially independent 
of the remainder of the GDS II System. These areas 
are maintained in such a way that work in progress at 
one station is not affected by work in progress at any 
other station. The work area serves as a repository for 
both compiled programs and data elements. Before a 
GPL II program can be executed, it must be translated 
into a more suitable form. The result of this 
translation is stored in the work area. Intermediate 
results created in the process of execution are also 
stored in the work area. While the format of the data 
stored in the work area is of little concern to the user, 
it is important that the work area contents be 
distinguished from the system data base contents. In 
general, an operation which affects the current 
library set will not affect the work area and vice versa. 

1.4 GPlll Commands 

The GPL II Programming System defines commands 
that are applicable to the work area as a whole. A 



command consists of a right parenthesis, the 
command name, optional parameters, and a carriage 
return. The syntax is chosen deliberately so that a 
command can be entered only from the operator 
console; a system command can not be part of a 
program. One example of a command which 
demonstrates why this is so is the CLEAR command. 
This command, )CLEAR, initializes the work area. 
Since this command cannot be placed in a program 
that is executed from the work area, the program 
cannot wipe itself out. 

1 .5 Data Elements 

The data structures used in the GPL II Programming 
System form the foundation for the programming 
language. A thorough knowledge of the data 
structures used is very important for writing effective 
and efficient GPL II programs. 

The simplest data structure is illustrated by a scalar, 
which is a single constant. The scalar value can be a 
number or a character of text. The next level of 
complexity is the vector, which is a sequence of 
numbers or characters. All of the individual values in 
a vector can be referenced collectively or individually, 
depending on the operation programmed. Given the 
linear sequence of values in a vector, the next step is 
to define a matrix, which is a two-dimensional 
pattern of values. This procedure is repeated to 
define arrays of higher rank. 

The concept of shape is very important in the GPL II 
Programming Language. Certainly, the number of 
values in a vector is just as important as the 
magnitude of any individual value. Similarly, the 
number of rows and columns in a matrix is just as 
important as an individual datum. If we presuppose 
that a frequent use of a matrix is to use the shape of n 
rows by 2 columns for the vertices of a polygon, the 
importance of shape becomes even clearer. This is so 
since polygons are generally characterized by the 
number of sides, that is, one less than the number of 
rows in the matrix representing the polygon. 

The use of the term shape refers to the way in which 
data values are presented algebraically. Within the 
constraints of the line length of the output device, a 
matrix is literally output as a rectangular pattern of 
values. (It is for output considerations that an n by 2 
matrix is used to represent a polygon rather than a 2 
by n matrix.) Of course, the term shape can also be 
used in a geometric sense, but in GPL II programs, 
only the shape associated with a data structure is of 
importance. 
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The definition of shape allows a zero value count. 
That is, a null vector is one case of a data structure 
that has a null component. It is possible to use other 
configurations to advantage, for example, an array of 
o rows and 2 columns. Examples of such situations 
will be considered in later sections. 

The description of a matrix as a two-dimensional 
pattern of values must also be considered in an 
algebraic sense. In an n by 2 matrix used to represent 
a polygon, the first column of values is used for the x 
coordinates and the second column of values is used 
for the y coordinates. Each row of the matrix 
therefore represents one vertex of the polygon. It is 
assumed that the first vertex is connected to the 
second by a straight line, and so on. The polygon is 
closed if the first and last vertices have the same 
coordinate values. Note that a line in three
dimensional space could be defined in the same way 
by simply using a third column of values for z 
coordinates. It must be emphasized that while a 
matrix is presented as a two-dimensional pattern of 
values, a matrix is definitely not limited to solving a 
two-dimensional problem. To avoid confusion, as 
much as possible, a matrix will be defined as an array 
of rank 2, and the more common method of 
describing a matrix as a two-dimensional data 
structure will not be used. 

The use of the term mode refers to the format in 
which individual data items are stored in an array. 
The two basic modes are character and numeric. The 
numeric mode can be further categorized according 
to the internal representation used for the number. A 
fundamental rule of the data structure is that all 
elements of an array must have the same mode. 
Further, the operations which can be performed on 
an array can be restricted to either character or 
numeric data modes. The various formats used for 
numeric values are of no consequence in this regard 
since automatic type conversion from one numeric 
format to another is supplied. Conversion from 
character to numeric mode and vice versa must be 
programmed explicitly, however. Of course, this 
conversion is easily handled using operators defined 
in the GPL " Programming Language. 

It must be emphasized that shape and mode are 
independent attributes of a data structure. Although 
character vectors and numeric matrices are very 
common, it is perfectly legal to define numeric 
vectors and character matrices. 



While the data structures defined thus far have great 
utility, there are two important limitations when 
arrays are considered. The first limitation is that all 
matrices must be rectangular in shape. All rows and 
columns must have the same number of data values. 
In particular, a character matrix is not well suited for 
a paragraph of text unless the text has been justified 
so that all lines are the same length. A more 
convenient data structure is a list in which each list 
element is defined as a character vector. This allows 
paragraphs of text to be stored in more compact form 
and to be manipulated more easily. The second 
limitation of arrays is that a single mode must be 
defined for all data values. This restriction does not 
apply to lists--a mode is defined for each I ist element. 
A list allows, for example, a coordinate and a line of 
text to be referenced as a single data structure. 

The list structure in GPL II is deliberately kept simple 
in the interests of implementation and execution 
efficiency. In particular, a list element can at most be 
an array; it cannot be another list. In more formal 
terms, recursive list processing is not supported. 
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1 .6 Simple Assignment 

A data structure can be created interactively by giving 
the name of the data structure, an assignment 
specification, and the desired data value. All storage 
is allocated dynamically depending on the shape and 
mode of the desired data structure. 

For example, typing the statement AA:= 1 creates the 
data structure AA and assigns the scalar value 1. Any 
previous value assigned to AA will be erased. 

1 .7 Elided Output 

The result of any expression typed in is output to the 
operator's console by default. Elided output is really a 
special case of assignment in which the variable 
name and assignment symbol are elided, that is, 
omitted. Given the variable AA created above, typing 
AA would cause the value of AA to be output to the 
console. However, typing BB := AA creates a variable 
BB which has a shape and value vector copied from 
AA. 



SECTION 2 
SYMBOLS 

The term symbol is used to refer to the building blocks 
of the GPL II Programming Language. Possible 
symbols include constants, names, operators, and 
keywords. Symbols are used to build expressions as 
will be discussed in Section 3. 

2.1 Character Set 

Symbols are constructed from one or more 
characters. Any character on the GOS II Station 
Keyboard which can be entered into a source 
program using the Text Editor is legal at some point in 
a GPL II program. Of course, at a specific point in a 
program, only certain symbols are syntactically 
correct. These rules, however, are more easily 
defined in terms of symbols than in terms of 
sequences of arbitrary characters. For example, the 
letter E can be used as part of a program name, a 
variable name, a keyword, a real constant, and so on. 
The symbolENOSUB always has the same meaning, 
even when taken out of context. 

With one exception, all devices in the system support 
the same character set. The exception is the 
character for underscore, which is printed as a left 
arrow by some devices. 

2.2 Records 

A record is defined as an arbitrary sequence of 
characters that is terminated with a carriage return. 
The concept of a record has general applicability 
throughout the GOS II system. In fact, all input typed 
at the operator's console is collected on a record 
basis. The system task that collects input records 
provides character deletion, line deletion, digitizer 
conversion, and other essential capabilities. Since 
this task serves other programs besides the GPL II 
Programming System, no generalized processing of 
the contents of the input record is possible at this 
level. 

Since the task of collecting a record from the console 
input device involves echoing each character on the 
console output device, a record has a fixed maximum 
length. For the purposes of the GPL II Programming 
System, a record can be logically continued by 
placing an up arrow immediately before the carriage 
return. The up arrow and carriage return are 
"invisible" as far as further processing by the GPL II 
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system is concerned. This definition of a logical 
record follows the convention established by the 
ROOS Command Line Interpreter. 

This manual will proceed to define symbols in terms 
of characters, expressions in terms of symbols, 
statements in terms of expressions, and programs or 
functions in terms of statements. Of all of these 
levels, the statement corresponds to a logical record. 
The GPL II Commands that will also be defined are 
entered in the form of a logical record. 

To digress for a moment, the use of a special 
character to nullify the effect of a carriage return is 
preferred over the ALGOL approach of defining a 
special record terminator. Treating the exception as a 
special case rather than the rule is deemed more 
suitable for interactive use. 

2.3 Names 

The rules for formulating names in the GPL II 
Programming Language follow the same general 
rules used throughout the GDS II System. That is, the 
first character of a name must be either a dollar sign 
or a letter of the alphabet in either upper or lower 
case. If a name has more than one character, the 
second and succeeding characters must be either a 
dollar sign, a letter, a digit, or an underscore 
character. The name is terminated by the first 
character that is not of the above form. (It should be 
noted that an up arrow and carriage return are 
understood to be "invisible".) While there is 
essentially no limit to the number of characters that 
can be written in a name, 32 characters of 
significance will be retained. In other words, two 
names which are identical in the first 32 characters 
are not recognized as being different names. 

Some names have been appropriated for system use. 
Certain names are used as symbols for operators or 
as structural keywords; a complete list of all reserved 
words can be found in Appendix A. These names can 
be used either in strictly upper case or in strictly 
lower case, i.e., PROCEDURE or procedure. The user 
is cautioned against using such names as Procedure 
in order to avoid confusion. 

The most frequent use of names is to reference 
variables. Writing the name AA in an expression 



references the current value defined for the variable 
AA. A new value may be assigned to the name AA by 
using the assignment statement to be defined later. 
Other uses of names include subroutine calls. Since 
the list of GDS II system names and primitives, which 
may be referenced by GPL II programs, are strictly in 
upper case, the user should consider using lower 
case names in programs subject to change. 
Examples: 

Correct 
AA 
aa 
POLY3 
Long-name 

Incorrect 
AA 
a. 
3POLY 

2.4 Character Constants 

Character constants are declared by enclosing the 
data in double quotation marks. Any printable 
character except a double quote, a less-than sign, or 
a greater-than sign represents itself in a character 
constant. Spaces and tabs can also be used in 
character constants. Other characters must be 
encoded when used as part of a character constant. 
(In the interest of consistency, the GPL II 
Programming Language employs the same rules 
defined for Data General's DG/L programming 
language.) 

Within a character constant, the syntax of a special 
character value consists of a less-than sign, the 
character code, and a greater-than sign. The 
character code can be either a name or an octal 
constant. All currently defined names are either two 
or three characters chosen to be a mnemonic for the 
special character. Octal values can be in the range of 
o to 177, inclusive. Leading zeros can be used with 
octal values if desired. The following table illustrates 
the special character codes: 

MNEMONIC OCTAL NAME 

<NUL> <0> null 
<BEL> <7> bell 
<HT> <11> horizontal tab 
<LF> <12> line feed 
<FF> <14> form feed 
<CR> <15> carriage return 
<NL> <15> new line 
<ESC> <33> escape 
<aT> <42> quote 

<74> less than 
<76> greater than 

<DEL> <177> delete(or rubout) 
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Character Scalars 

A character scalar is created by enclosing, 
effectively, one character in double quotes. A scalar 
representing a double quote, an up arrow, or any 
special character can be created as noted above. 

Examples: 

"a" 
"A" 
"<CR>" 
"<OT>" 

Character Vectors 

Character vectors are created by enclosing zero or 
more than one effective character in double quotes. 

Examples: 

(a null vector) 
"abc" 
"A<CR>B" (an A, a carriage return, and a B) 

2.5 Numeric Constants 

Numeric constants can be defined in three different 
formats. It is always good practice to choose the 
format of a constant according to the way in which 
the value will be used. Because automatic type 
conversion is supplied, however, this practice is not 
mandatory. Of course, avoiding the automatic type 
conversion can increase execution efficiency by a 
small amount and may improve the clarity of the 
program as well. 

Logical Scalars 

The simplest numeric constant is a logical scalar. A 
logical constant can have only one of two values, one 
or zero. On input, these values can be selected by 
using TRUE or FALSE, respectively. 

Examples: 

Correct 
o 
1 
TRUE 
FALSE 

Incorrect 

Any value not shown on the left 



Integer Scalars 

The integer data representation can be used for 
whole numbers within the range of minus 32768 to 
plus 32767. This range represents the total range of 
values that can be stored in a 16-bit word using a sign 
bit. Positive integer constants are specified by simply 
entering the digits in successive character positions. 
Negative integer constants are specified by entering 
a negative sign followed immediately by the 
magnitude of the value. No spaces, commas, or any 
other character may be used between the sign and 
the first digit of the value or between any two digits of 
the value. In the GPL II Programming Language, it is 
very important to distinguish between a negative 
sign used in an integer constant and the symbol for 
the negation operator. If a space is used between the 
sign and the first digit of the number, the negation 
operator is interpreted. (In a programming language 
that has only scalar constants, or even in a GPL II 
program which deals only with scalar quantities, the 
negation operator applied to a scalar constant 
produces the same effect as a negative constant. The 
distinction is critical in vector constants, however, so 
the user is cautioned against overuse ofthe negation 
operator.) 

Examples: 

Correct 
-5 
3 
127 

Incorrect 
-50000 (Doesn't fit in 16 bits) 
1.5 (Has a fractional part) 
1,000 (Comma illegal) 

While the constant 1 is treated as a logical constant, 
it can be used just as if it were an integer constant. Of 
course, the converse is not true: integer values 
cannot be used when logical values are required. 
Furthermore, although 50000 is an integral value, it 
is stored as a real constant because of the magnitude. 
Real constants which have integral values can 
always be used when integer constants are 
nominally required, provided that the value is in 
range. 

Real Scalars 

The real data representation can be used for any 
numeric value in the approximate range of 10 to the 
negative 78th power to 10 to the 75th power. The 
internal format used for real numbers provides a 
precisionof from 51 to 54 bits, or 16.2 decimal digits. 
Therefore, integral numbers even larger than 10 to 
the 16th power can be stored exactly. (The actual 
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limit is 16914398509481983.) This high degree of 
precision also applies to non integral values. For 
example, the value of pi is taken to be 
3.14159263589793. 

The basic format used for real numbers consists of an 
optional negative sign, the integral part of the 
number, a decimal point, and the fractional part. Ifthe 
integral part of the number is zero, it can be omitted if 
the decimal point and fractional part are specified. 
That is, a zero is not required before the decimal point 
if the number is positive or between the negative sign 
and the decimal if the number is negative. If the 
fractional part of the number is zero, it can be omitted 
if the integral part and the decimal point are 
specified. 

Examples: 

2.15 
-2.5 
-0.5 
-.5 
.5 
0.5 
0.5000 
0.0 
128 
-30000 
10000000000000000000000 
10000000000000000000001 

The input value can indicate more precision than 
what is available without generating an error. The 
last two examples above result in the same number 
in the internal representation. 

Because of the large range possible with real 
numbers, engineering notation is frequently used for 
inputting real numbers. This allows a scale factor 
defined as a power of 10 to be applied to the number. 
The form of the scale factor is the letter E followed by 
an optional negative sign and an integral power of 10. 
The scale factor can be used only as a suffix for a real 
number in the form described above. This is so since 
El0, for example, is a perfectly valid variable name. 

Examples: 

1.0E3 
1000 

1.E-3 
.001 



6.28E2 
628. 

Note that the pairs of numbers in the examples above 
are equivalent forms of the same value. 

Finally, the decimal point can be omitted in a real 
number specification if the scale factor is specified. 
Hence, 1 E3 is the same as 1.0E3. If both the decimal 
point and the scale factor are omitted, the format is 
still legal, but, depending on the magnitude, the 
result may not be stored as a real number. A number 
such as 3000 follows the rules for integer numbers 
described above. 

Numeric Vectors 

Numeric vectors are created by using mUltiple values 
of the form defined for numeric scalars with 
successive values separated by spaces or tabs. The 
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mode of the vector depends on the mode or modes 
used for the values in the vector. The result will be in 
logical mode if, and only if, all values are in logical 
mode. The result will be in integer mode if, and only if, 
one or more values are written in integer mode and 
any remaining values are written in logical mode. The 
result will be in real mode if any value in the vector is 
written in real mode. Note that the mode for the 
entire vector need not be indicated by the format of 
the first value in the sequence. 

Examples: 

o 1 0 
012 
O. 1 2 
1 1.5 1000 
o -1 2 

(A logical vector) 
(An integer vector) 
(A real vector) 
(A real vector) 
(An integer vector with a negative 
value) 



SECTION 3 
EXPRESSIONS 

The term expression is used to refer to an operand 
symbol or to a sequence of operator and operand 
symbols that are syntactically correct. The 
expression defines what operands and operators are 
to be used and in what order operations are to be 
executed. Execution of an expression typically results 
in a data structure that can be used as an operand in 
another expression. The rules for creating an 
expression and determining the execution order are 
covered in this section. 

3. 1 Operands 

An operand is a data structure. An operand can 
contain one or many data values, depending on the 
rank and shape. Depending on the use to which the 
operand is put, only part of the complete data 
structure may be of interest, i.e., either the data 
values or the shape. Examples of operands include 
constants, variable references, or the result of an 
expression. 

3.2 Structure Operators 

The structure of an operand is as important as the 
actual data values contained within the operand. 
Various aspects of the data structure are accessible 
and redefinable with the structure operators. 

3.2.1 TYPEOF Operator 

The TYPEOF operator returns a character vector 
indicating the type associated with a name. The 
TYPEOF operator is a special case in that the name 
need not be associated with a data structure. The 
eight possible types are: "UNDEFINED", "NUMERIC", 
"CHARACTER", "NULL", "LIST", "FUNCTION", 
"PROGRAM", and "LABEL". 

The TYPEOF operator is very useful in interactive 
mode for program debugging. Consider the following 
terminal session: 
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Operator Input 

)CLEAR 
TYPEOF AA 
AA:= 1 
TYPEOF AA 
AA := "AB" 
TYPEOF AA 
AA:= "" 
TYPEOF AA 
AA := 1 2;"ABC" 
TYPEOF AA 
TYPEOF AA[1] 
TYPEOF AA[2] 

Response 

WORK AREA INITIALIZED 
UNDEFINED 

NUMERIC 

CHARACTER 

NULL 

LIST 
NUMERIC 
CHARACTER 

A second use for the TYPEOF operator is determining 
whether an operation is legal. This operator is 
described first so that it can be used in the remaining 
operator descriptions. 

3.2.2 Ravel Operator 

The ravel operator returns the values of an array data 
structure as a vector. 

Format: , array 

The ravel of a scalar is defined as a one-element 
vector. The ravel of a vector is equivalent to the 
original vector. The ravel of an array of higher rank is 
defined as a vector containing all the elements of the 
array taken in row order. That is, the column 
subscript varies the fastest, then the row, then the 
plane, and so on for arrays of higher rank. For a 
matrix, this is equivalent to saying that all the values 
in the first row are taken, then all the values in the 
second row, and so on until all rows are exhausted. 
This is the same order in which the values appear 
when an array is formatted for output. 

Examples: 

,1 is the vector of one element containing 1 
,"a" is a one element vector containing a 
, 1 2 3 is the vector 1 2 3 
, "ABC" is the same as "ABC" 
,AA is the vector 1 2 3 4 5 6 if AA is pictured as: 

1 2 3 
456 



Error Conditions: The operand must be an array data 
structure. If the operand is a list, a DOMAIN ERROR 
results. 

3.2.3 SHAPE Operator 

The SHAPE operator returns the shape of an array 
operand. 

Format: SHAPE array 

The shape is defined as a vector with an element 
count equal to the rank of the array operand. If the 
element count is greater than zero, the values in the 
vector define the element count along each 
coordinate. If the operand is scalar, the rank is zero, 
so the shape is a null vector. If the operand is a vector, 
the rank is one, so the shape is a one-element vector. 
The value of the vector is the number of elements in 
the operand. If the operand is a matrix, the rank is 
two, so the shape of the resu It is a vector with two 
elements. The first value is the number of rows in the 
matrix; the second value is the number of columns. 
The shape is defined analogously for array operands 
of higher rank. 

Examples: 

SHAPE 1 
SHAPE "A" 
SHAPE "" 
SHAPE "abc" 
SHAPE 1. 2 
SHAPE AA 

is a null vector 
is a null vector 
is 0 
is 3 
is 2 
is 2 3 if AA is a 2 by 3 matrix. 

Error Conditions: The operand must be an array data 
structure. If the operand is a list, a DOMAIN ERROR 
results. 

3.2.4 RANK Operator 

The RANK operator returns the rank of an array 
operand. The rank of a scalar is zero, the rank of a 
vector is 1, the rank of a matrix is 2, and so on. 

Format: RANK array 

The rank of an operand is formally defined as the 
SHAPE of the SHAPE of an operand. 
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Examples: 

RANK 1 
RANK 2 
RANK AA 
RANK "A" 

is 0 
is 1 
is 2 if AA is any matrix 
is 0 

RANK "" is 1 
RANK "abcd" is 1 

Error Conditions: The operand must be an array data 
structure. (DOMAIN ERROR). 

3.2.5 SIZE Operator 

The SIZE operator returns the number of values in an 
array data structure. The size of a scalar is one, the 
size of a vector is its element count, the size of a 
matrix is the product of its rows and columns, and so 
on. 

Format: SIZE array 

The SIZE of an array operand is formally defined as 
the product reduction of its SHAPE vector. 

Examples: 

SIZE '"' 
SIZE 100 
SIZE AA 

is 0 
is 1 
is 6 if AA is, for example, a 2 by 3 
matrix 

3.2.6 RESHAPE Operator 

The RESHAPE operator creates a new data structure, 
given the desired shape vector and value vector. The 
reshape operator is dyadic; the shape vector is 
written on the left and the value vector is written on 
the right. 

Format: vector RESHAPE array 

The shape of the result of a reshape operation is 
completely specified by left operand. Note that this 
operand uniquely specifies the rank and size of the 
result. In particular, a null vector used as the left 
operand results in a scalar shape. A one-element 
vector (or scalar) results in a vector shape. A vector 
with two elements results in a matrix and so on. 

The values in the resulting data structure are 
completely specified by the right operand. If the 
resulting shape requires fewer values than specified, 



the extra values are ignored. That is, it is possible to 
select only the first element of a vector, for example, 
and turn it into a scalar. Ifthe resulting data structure 
requires more values than specified, the existing 
values are reused in a cyclic manner. 

The shape of the right operand is ignored by the 
reshape operator. 

The values in the right operand are automatically 
raveled. 

Examples: 

2 3 RESHAPE 1 2 3 4 5 6 is 

3 2 RESHAPE 1 2 3 4 5 6 is 

2 3 RESHAPE 1 2 3 4 is 

2 3 RESHAPE 1 2 3 4 5 6 7 is 

AA := 2 3 RESHAPE 1 2 is 

6 RESHAPE AA is 
1 RESHAPE AA is 
"" RESHAPE AA is 

3.2.7 IOTA Operator 

123 
456 
1 2 
34 
56 
1 2 3 
412 
1 2 3 
456 
1 2 1 
212 
12121 2 
,1 (a vector) 
1 (a scalar) 

The IOTA operator creates a new data structure that 
is a vector of integers. The iota operator requires a 
single operand which may take various forms. If the 
SIZE of the operand is one and the value is positive, a 
vector of that length is created containing the first 
SIZE positive integers. If the SIZE of the operand is 
one and the value is zero, a null vector is created. If 
the SIZE of the operand is one and the value is 
negative, an error is detected since it is impossible to 
have a resulting SIZE less than zero. 

An index vector can be created with an initial value 
other than one by using a vector operand with two 
elements. In this case, the first value in the operand 
vector defines the initial value in the resulting index 
vector, and the second value in the operand defines 
the last value in the resulting index vector. Either or 
both values may be negative or zero, provided that the 
second value is algebraically greater than, or equal 
to, the first. This is required since the SIZE of the 
resulting vector is determined by the difference in the 
two values. 
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An index vector can be created with a specific initial 
value and a specific delta value by using a vector 
operand with three elements. In this case, the first 
value defines the starting value, the second value 
defines the step size, and the last value in the 
operand defines the terminating value in the result. 

Examples: 

IOTA 5 is 1 234 5 
IOTA ,5 is 1 234 5 
IOTA 1 5 is 1 234 5 
IOTA 1 1 5 is 1 234 5 
IOTA 1 2 5 is 135 
IOTA 0 is 
IOTA 1 is ,1 
IOTA 1 1 1 is , 1 
IOTA-13is -10123 

3.2.8 LENGTH Operator 

The LENGTH operator is defined for list data 
structures. The length of a list is the number of 
elements in a list. 

Format: LENGTH list 

Examples: LENGTH 1 ;2;3 is 3 

3.2.9 Equality Operator 

The equality operator allows two data structures to 
be tested for equality. The result of the comparison is 
a logical scalar, TRUE or FALSE 

Two structures are equal only if several tests are 
satisfied. First, both structures must have the same 
TYPE. If the TYPEOF structure A is NUMERIC and the 
TYPEOF structure B is LIST, the two structures are 
obviously not equal. Second, if both structures are 
arrays of the same type, then both must have 
identical SHAPEs; if both structures are lists, then 
both must have identical LENGTHs. Finally, both 
structures must have identical values in order for the 
two structures to be equal. 

Format: structurel = structure2 

3.3 Concatenation Operators 

Concatenation allows two data structures to be 
merged together. Concatenation of array structured 
operands, for example, allows another row or column 



to be appended to a matrix. An alternate form of 
concatenation allows list data structures to be built. 
A common property in all forms of concatenation is 
that the SIZE of the result is always the sum of the 
SIZEs of the operands. 

3.3.1 Array Concatenation Operator 

The array concatenation operator allows two arrays 
of conformable shape to be merged. The 
concatenation of two vectors each having one data 
value in order to create a vector with two data values 
is the simplest example of concatenation. 
Technically, the concatenation of two scalars to form 
a two-element vector is an example of lamination 
(see Section 3.8) since the result has a higher rank 
tha operand. 

Format: array, array2 
array ,[axis] array2 

The first rule for determining whether two operands 
can be concatenated is that both operands must be of 
the same mode. Both operands must be numeric or 
both operands must be in character mode. The 
internal representation of numeric data is not 
important; automatic mode conversion is used where 
appropriate. For example, concatenation of a 
numeric integer scalar with a real vector results in a 
real vector. However, concatenation of any number 
with a character vector results in a DOMAIN ERROR. 

The second rule for determining whether two 
operands can be concatenated is that both operands 
must either have the same rank or differ in rank by 
one. The rank of the result is always the same as the 
greater of the two operand ranks. An example of 
concatenating two operands of the same rank is the 
concatenation of two vectors. Because of the above 
rule, it is also possible to concatenate a scalar with a 
vector or a vector with a scalar and obtain a vector 
result. 

The third rule for determining whether two operands 
can be concatenated is that the operands must be 
conformable in shape. This rule is applicable when 
one or both of the operands is of matrix rank or 
higher. Although this rule sounds complicated, it is 
basically a matter of common sense. Before defining 
conformability, it is necessary to describe additional 
information that may be required in concatenating 
matrix or higher rank operands. 
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Concatenation requires an axis of application when 
one or both of the operands are of matrix rank or 
higher. The difficulty is illustrated in concatenating, 
for example, two 2 by 2 matrices. The desired effect 
could be the placement of the second operand along 
the right side of the first operand. An equally valid 
result would be the placement of the second operand 
below the first in the resulting data structure. The 
shape of the result can be either 4 rows by 2 columns 
or 2 rows by 4 columns. To resolve this difficulty, an 
axis of concatenation is required to indicate whether 
the number of rows or the number of columns is to be 
increased. In effect, the concatenation operator is 
subscripted to provide this additional information. If 
the axis of concatenation is omitted, the last 
coordinate is assumed. Therefore, it is never 
necessary to specify an axis of concatenation when 
the highest rank involved is one. 

The axis of concatenation is required if only one of the 
operands is a matrix. If it is desired to concatenate a 2 
by 2 matrix with a 2 element vector, the axis of 
concatenation specifies whether the vector is 
considered to be a row vector or a column vector. 

Examples: 

1, 2 is 
"abc", "d" is 
"A","bc" is 

1 2 
"abcd" 
"Abc" 

3.3.2 List Concatenation Operator 

The list concatenation operator allows any two 
operands to be merged into a list data structure. 
Either or both operands can be a list or an array data 
structure. No restrictions are placed on mode 
compatibility or shape conformability. 

The list concatenation is not intended to be used in 
place of the array concatenation operator. There are 
numerous operators which are defined for arrays but 
which are not defined for lists. Lists are very useful in 
situations where an array cannot be used. Perhaps 
the standard example is treating a coordinate and a 
line of text as a single data structure. 

The symbol for list concatenation is the semicolon. 
Multiple semicolons can be used in succession to 
indicate a null list element. A very common use of a 
list is to specify a subscript. In this case, the list is 
enclosed in square brackets, and a null first element 
or a null last element can be specified. (The subscript 



operation is also an example of a case in which a null 
list element is more than a simple "placeholder".) 
The second common use of a list is as parameters to a 
system routine. In this case, the list can optionally be 
enclosed in braces. This form is optional because of 
the frequency with which it is used in an interactive 
system. This form would be required, however, if a 
null first or last list element were to be passed. This 
form can also be used to generate a null list. 

Format: list; list2 
list; list2 

Examples: 

AA := 100 200;"line of text" 
BB := AA; "xyz" 
CC := ;"line 1 <CR>";;"line 3<CR>" 

3.4 Subscript Operators 

The subscript operation allows a portion of a data 
structure to be selected. The subscript operation can 
be applied to select one or several elements of an 
array data structure. An alternate form of subscript 
allows one element of a list to be selected. 

3.4.1 Array Subscript Operator 

The array subscript operation allows a subarray to be 
selected from an array data structure. The subscript 
is written as a list with the length of the list matching 
the rank of the data structure. In the simplest case, 
each element of the list is a scalar and the result of 
the subscript is a scalar. If V is a vector, then V[2] 
selects the second element of V. If M is a matrix, then 
M[2;4] selects the element located in the second row 
and the fourth column. 

The subscript operation is not limited to selection of a 
single element. If any of the subscript terms is non
scalar, the result will be non-scalar. In fact, the rank 
and shape of the result are completely determined by 
the ranks and shapes of the subscript terms. 

The subscript operation may be used on the left of an 
assignment. The subscript in this case selects the 
elements of the array to be updated. 

Format: array [ list] 

The first rule for a legal subscript operation is that the 
RANK of the array must equal the LENGTH of the 
subscript list. (One consequence of this rule is that a 
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scalar can be subscripted by explicitly using a null 
list. While this does not have great utility in a 
programming mode, it is very useful in subsequent 
sections of this manual.) 

The SHAPE of the result of the subscript operation is 
created by concatenating the SHAPEs of all items in 
the subscript list. Therefore, the following conditions 
also hold: the RANK of the result is the sum of the 
RANKs of the subscript terms, and the SIZE of the 
result is the product of the SIZEs of the subscript 
terms. 

All items in the subscript list must have a TYPE which 
is NUMERIC or NULL. 

An example of non-scalar subscripting will be 
covered in detail. Consider a matrix, AA, created as 
follows: 

AA := 3 4 RESHAPE IOTA 9 

Then, AA would be output, and may be pictured, as 
follows: 

1 234 
5678 
9 1 2 3 

Now, consider a subscript reference AA[1 3; 1 2 4]. 
We can select the first and third rows 'and the first, 
second, and fourth columns: 

-1-2-3-4-

567 8 

-9-1-2-3-

By selecting all intersections, we have the following: 

1 2 4 
913 

Hence, the result is a 2 by 3 matrix. To re-examine the 
original subscript operation, note that the first 
subscript term has a SHAPE of ,2 and the second 
term has a SHAPE of ,3. By the rules of 
concatenation, the resulting SHAPE IS ,2 3. 
Summing the RANKs of the terms gives 2, the 
LENGTH of the result. Multiplying the SIZEs of the 
subscript terms gives 6, the SIZE of the result. 



For another example, consider the same matrix AA 
defined above. Now consider a subscript operation 
such as AA[2;4 3]. We know that the SHAPE of the 
result is a one elementvector--becausethe SHAPE of 
the scalar 2 is a null vector and the SHAPE of the 
vector 4 3 is a two-element vector. So, the RANK of 
the result is one and the SIZE is two. It should be clear 
that the result is the vector 87. Notice thatthefourth 
column was selected before the third column; 
therefore, the 8 precedes the 7 in the result. 

The subscript operation also features the capability of 
selecting all values along a coordinate. In the matrix 
example, all elements of a row or a column can be 
selected. This capability is programmed by using a 
null list element in the desired coordinate position. To 
continue with the matrix AA from above, AA[2;] is 
equivalent to AA[2; 1 2 3 4] since there are four 
columns in AA. The result of this subscript operation 
is then 5 6 7 8. 

The elided subscript is convenient in addressing n by 
2 matrices representing polygons. If PP is a 5 by 2 
matrix representing a polygon, PP[l;] is the first row 
of PP. A reference to PP[l;] returns the x and y values 
for the first point in the polygon. Similarly, PP[5;] is 
the last row in PP and the last point in the polygon. 

3.4.2 List Subscript Operator 

The list subscript operator allows a list element to be 
selected from a list data structure. 

Format: list {scalar} 

3.5 Monadic Array Operators 

A monadic array operator is defined to be one of a 
special class of operators in the GPL II Programming 
Language. While these operators are generally less 
familiar than their counterparts, the dyadic array 
operators, these operators are simpler and will be 
discussed first. The best example of a monadic array 
operator, for those who have FORTRAN experience, 
is negation. 

All monadic array operators share several common 
properties. First, the SHAPE of the result of any 
monadic array operation is the same as the SHAPE of 
the operand. For example, a monadic array operator 
applied to a scalar always returns a scalar result. 
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Second, monadic array operators can be applied only 
to array data structures; a list data structure cannot 
be manipulated with any of these operators. Finally, 
monadic array operators are defined only for numeric 
values. 

3.5.1 Identify Operator 

The identity operator allows a numeric array data 
structure to be stored in the most compact internal 
representation. 

Format: + array 

The identity operator is defined as a no operation in 
the mathematical sense since execution of the 
identity operator results in a data structure having 
the same shape and data values as the operand. 
While the identity operator exists primarily for the 
sake of completeness, it does have the property of 
reformatting an array into the most efficient internal 
representation. The identity operator can be useful 
when large arrays are manipulated. 

The result of numerous operations in the GPL II 
Programming Language are stored in real mode. 
Examples include multiplication and division of 
integer quantities. If the result of a division operation 
is known to have integral values, the result can be 
forced into integer mode with the identity operator. 

Examples: 

+1 is 
1 

+1 -3 is 1 -3 

Error Conditions: The operand must be in numeric 
mode. 

3.5.2 Negation Operator 

The negation operator is the monadic form of 
subtraction. Given an array operand in numeric form, 
execution of the negation operator results in a data 
structure having the same shape as the operand and 
each non-zero data value negated. 

Format: - array 

Negation is formally defined in terms of subtraction. 
Negation is identical to subtracting the operand from 
zero. If Z := -A, then SHAPE Z equals SHAPE A, and 
Z[L] = a - A[L] 



Examples: 

- 5 is -5 
- 1 3 is -1 -3 
- 1 -3 is -1 3 
-(-1 -3) is 1 3 
- A is -2 3 -4 if A is 2 -3 4 

Error Conditions: The operand must be a numeric 
array. 

CAUTION 
The negation operator must be 
distinguished from the negative sign, 
particularly where non-scalar values 
are concerned. The negation of the 
scalar 5, shown above, is equivalent to 
the constant minus 5. The negation of a 
vector containing a plus 5 and a minus 5, 
however, is not equivalent to a vector 
containing two minus fives. While 
misusing 'the negation operator for a 
negative sign costs only an insignificant 
amount of execution time when scalars 
are involved, the same mistake with 
vectors or arrays is more serious. 

3.5.3 Signum Operator 

The signum operator distinguishes among negative, 
zero, and positive numbers. Given an array operand 
in numeric form, execution of the signum operator 
results in a data structure having the same shape as 
the operand. Each data value in the result is either 
plus one, zero, or minus one, according to whether 
the corresponding value in the operand was positive, 
zero, or negative, respectively. 

Format: * array 

The signum operator is formally defined as follows: If 
Z := * A, then SHAPE Z equals SHAPE A, and 

Z[l] is 1 if A[l] > 
Z[l] is 0 if A[l] = 0 
Z[l] is -1 if A[l] > a 

Examples: 

*10.5 is 
*0 is 
*-0.5 is 
*(-1 08 3) is 

1 
o 
-1 
-1 0 1 
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Error Conditions: The operand must be a numeric 
array. 

3.5.4 Reciprocal Operator 

The reciprocal operator is the monadic form of 
division. Given an array operand in numeric form, 
execution of the reciprocal operator results in a data 
structure having the same shape. Each data value in 
the result is the reciprocal of the corresponding data 
value in the operand. 

Format: % array 

The reciprocal operation is formally defined in terms 
of division. If Z := % A, then SHAPE Z equals SHAPE A, 
and Z[L] = 1 % A[l] 

Examples: 

%5 is .2 
%.25 is 4. 
%1 is 1, 

Error Conditions: The operand must be a numeric 
scalar or array. All values in the operand must have a 
defined value for the reciprocal. 

If a zero operand value is found, a ZERO DIVISOR 
error occurs (this is a non-fatal error; the 
corresponding value in the result is set to the largest 
possible value, and execution continues.) Since the 
range of real numbers is not symmetric with respect 
to zero, a FLOATING POINT OVERFLOW error is also 
possible with the reciprocal operation. 

3.5.5 Absolute Value Operator 

The absolute value operator returns the absolute 
value of a number. 

Format: ASS array 

The absolute value operator is formally defined as 
follows: If Z := ASS A, then SHAPE Z equals SHAPE A, 
and 

Z[l] = A[l] if A[l] >= a 
Z[l] = -A[l] if A[l] < a 



Examples: 

ASS 2.5 is 
ASS -3 is 
ASS 5 0 -1 00 is 

2.5 
3 
50100 

Error Conditions: The operand must be a numeric 
array. 

3.5.6 Floor Operator 

The floor operation returns the largest integral value 
that is not greater than the specified number. The 
floor operator is also known as the entier function. 

Format: FLOOR array 

The FLOOR operator is defined as follows: If Z 
:=FLOOR A, then, SHAPE Z equals SHAPE A, and Z[L] 
= A[L] less any fractional part of A. 

The floor operation historically has been used as the 
basis for a rounding operation. For any number, 
adding 0.5 to the number, and taking the floor, 
rounds the number to the nearest integral value. For 
example, the floor of 1.1 + 0.5 is 1 while the floor of 
1.6 + 0.5 is 2. Note that the greatest integer is defined 
in an algebraic sense. For example, the floor of -0.5 is 
-1 while the floor of 0.5 is O. 

Examples: 

FLOOR 1 is 
FLOOR 1.6 is 
FLOOR 2.1 is 
FLOOR -1.6 is 
FLOOR -2. 1 is 

1 
1 
2 
-2 
-3 

Error Conditions: The operand must be a numeric 
array. 

Note: Fuzz is used in taking the floor. That is, the 
FLOOR of 2.99999999999999 is taken as 3. 

3.5.7 Ceiling Operator 

The ceiling operator returns the smallest integral 
value that is not less than the specified number. 

Format: CEILING array 

The ceiling operator is formally defined as follows: If Z 
:= CEILING A, then SHAPE Z = SHAPE A, and Z[L] = 
A[L] if A[L] has no fractional part, A[L] + 1 otherwise. 
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3.5.8 Exponential Operator 

The exponential operator raises the constant e to the 
specified power. The constant e is defined as the base 
of the natural logarithms. 

Format: EXP array 

Examples: 

EXP 1 is 
EXP 2 is 

2.7182818284590 
7.3890560989306 

3.5.9 Natural Logarithm Operator 

The natural logarithm operator returns the logarithm 
of the operand to the base e. 

Format: LN array 

Examples: 

LN 2 is 0.69314718055995 

3.5.10 Pi Operator 

The pi operator returns the specified multiple of pi. 

Format: PI array 

The pi operator is formally defined to be the operand 
times the constant pi. 

The PI operator is especially convenient in interactive 
mode since PI 1 returns the value of pi to 16+ decimal 
places. 

Examples: 

PI 1 is 
PI %180 is 

3.1415926535898 
0.017453292519943 

3.5.11 Sine Operator 

The sine operator returns the trigonmetric sine of an 
angle specified in degrees. 

Format: SIN array 



Examples: 

SIN O. is 
SIN 30. is 
SIN 45. is 
SIN 60. is 
SIN 90. is 

O. 
0.5 
0.70710678118655 
0.86602540378444 
0.99999999999999995 

3.5.12 Cosine Operator 

The cosine operator returns the cosine of an angle 
specified in degrees. 

Format: COS array 

Examples: 

COS O. is 
COS 60. is 
COS 90. is 

0.99999999999999995 
0.5 
O. 

3.5. 13 Tangent Operator 

The tangent operator returns the tangent of an angle 
specified in degrees. 

Format: TAN array 

The tangent function is not defined for any multiple of 
90 degrees. Computing the tangent of 90 degrees 
results in a FLOATING POINT OVERFLOW warning 
message. The largest possible value is used in this 
case and execution continues. 

Examples: 

TAN O. is 
TAN 45. is 

O. 
1. 

3.5.14 Arctangent Operator 

The arctangent operator returns the arctangent of an 
angle with the result specified in degrees. 

Format: ARCTAN array 

The arctangent returns a result in the range of -90 
degrees to +90 degrees. 

3-9 

Examples: 

ARCTAN -1.7320508075689 is 
ARCTAN O. is 
ARCTAN 1. is 
ARCTAN 3. is 

3.5.15 NOT Operator 

-60. 
O. 
45. 

71.565051177078 

The NOT operator returns the ones complement of 
the operand. 

Format: NOT array 

The NOT operator is frequently used in Boolean 
operations. 

Examples: 

NOT 1 is -2 

3.6 Dyadic Array Operators 

A dyadic array operator is defined to be one of a 
special class of operators in the GPL II Programming 
Language. The familiar operations of addition, 
subtraction, multiplication, and division are all 
examples of dyadic array operators. 

A dyadic array operator is not limited to scalar 
operands. Two matrices, each having 3 rows and 2 
columns, can be added, value by value, by 
programming a single addition operation. Further 
extensions common to all dyadic array operators will 
be defined in this section. 

Both operands specified in a dyadic array operation 
must have comformable shapes. If both operands 
have the same SHAPE vector, the operands are 
conformable by definition. In particular, two scalar 
operands are always conformable. The shape of the 
result of such an operation matches the shape of the 
operands. 



3.6.1 Addition Operator 

The addition operator returns the sum of two 
operands. 

Examples: 

2 + 2 is 
-3 + 8 is 
1 + -10 is 
246+ 1 -3 5 is 

4. 
5. 
-9. 
3. 1. 11. 

3.6.2 Subtraction Operator 

The subtraction operator returns the difference of 
two operands. 

Examples: 

2 - 2 is 
-3 - 8 is 
1 3 5 - 2 1 0 is 

O. 
-11. 
-1. 2. 5. 

Note that care must be used in visually distinguishing 
the subtraction operator from a negative sign. The 
rule is that a minus sign followed immediately by a 
digit is interpreted as a negative sign. A minus sign 
followed by some other character followed by a 
number or a variable is interpreted as a subtraction 
operator or a negation operator according to whether 
or not anything preceeds the minus sign. 

3.6.3 Multiplication Operator 

The multiplication operator returns the product of 
two operands. 

Examples: 

2 * 2 is 
5 * 10 is 

4. 
50. 

3.6.4 Division Operator 

The division operator returns the quotient of two 
operands. 

Examples: 

2 % 2 is 
3 % 7 is 

1 . 
0.42857142857143 
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3.6.5 Modulo Operator 

The modulo operator returns the remainder of the 
division of two operands. 

Examples: 

5 MOD 2 is 
5.2 MOD 1.5 is 

1. 
0.7 

3.6.6 Minimum Operator 

The minimum operator returns the lesser of two 
operands. 

Examples: 

3 MIN 7 is 
7 MIN 3 is 

3 
3 

3.6.7 Maximum Operator 

The maximum operator returns the greater of two 
operands. 

Examples: 

3 MAX 7 is 
7 MAX 3 is 

3.6.8 Power Operator 

7 
7 

The power operator returns the left operand to the 
specified power. 

Examples: 

2 POWER 2 is 
2 POWER .5 is 

4. 
1.414 ........ 

3.6.9 Logarithm Operator 

The logarithm operator returns the logarithm of the 
right operand to the base specified by the left 
operand. 

Examples: 

10 LOG BASE 2 is 
2 LOGBASE 32 is 

0.30103 ... 
5. 



3.7 Array Extension 

In the preceding section, it was said that the 
operands for array operators are conformable if the 
operands have identical shapes. 

A second way in which operands can be conformable 
is if one of the operands has a SIZE of one. The 
operand that has an element count of one is 
effectively extended to match the shape of the other 
operand. This operand is typically a scalar, so this is 
called scalar extension. A vector or matrix having one 
element is also extendable, however. If both 
operands have a SIZE of one but different SHAPE 
vectors, the operand having the lowest RANK is 
extended. The shape of the result of such an 
operation matches the shape of the operand having 
the greater rank. 

Array extension along a specified coordinate can also 
be programmed. In this case, the ranks must differ by 
one and the shape of the operand having the higher 
rank, modified to exclude the value for the specified 
coordinate, must match the shape of the other 
operand. 
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To illustrate the various ways in which dyadic array 
operators can be extended, consider the arrays 
created by: 

MM := 3 2 RESHAPE IOTA 6 
NN := 3 2 RESHAPE -1 5 8 3 9 6 
VV := 1020 
SS := 5 
TT := 3 

The various forms of extension will use the addition 
operator. 

SS + IT is 8 
MM + NN is 

MM + SS is 

MM + [1] VV is 

o 7 
11 7 
14 12 
6 7 
8 9 

10 11 
1122 
12 23 
13 24 



SECTION 4 
STATEMENTS 

The term statement is used to refer to a logical 
construction in GPL II Programming Language. An 
executable statement is a statement which contains 
one or more operators. (Some statements, e.g., 
compiler directives or remarks, do not generate 
object codes.) Examples of executable statements 
discussed in this chapter include the assignment 
statement, and the do statement. 

Any executable statement can be labeled. A 
statement label consists of a name and a colon. The 
rules for the statement label nam'e are the same as 
those used in defining variable names. The following 
are examples of labeled statements: 

ALPHA: AA:= 1 
BETA: GO TO ALPHA 

The term block is used to refer to a sequence of 
statements that can be used as well-defined points in 
the program. One form of conditional statement 
defined below specifies that if the result of a certain 
expression is true, a block of statements is to be 
executed. Since blocks are used in ther situations as 
well, the general rules for blocks will be discussed 
here. 

A block can contain any number of statements, 
specifically including the case of a single statement. 
Anywhere a block is called for, a single statement is 
sufficient. Any type of executable statement can be 
programmed in a block. This implies, of course, that 
blocks can be nested. A DO statement block can 
contain another DO statement, and so on. Any 
statement in the block can be labeled; however, a 
label in a block can be referenced only from within 
the current block or from a block at a subordinate 
level. That is, a branch out of a block can be 
programmed but a branch into a block is illegal. In 
general, a branch into a DO statement block where 
the execution ofthe loop is controlled by a FOR clause 
would result, if permitted by the compiler, in an 
undefined loop control variable. (If a branch out of a 
loop is programmed, the value of the loop control 
variable does remain defined in GPL II.) 

While the use of a block is always implicit in the 
context of a program, e.g., DO block ENDO, explicit 
block declaration can also be programmed. 
Delimiting a block with BEGIN and END keywords 
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may seem more natural to some programmers who 
have ALGOL! experience. The programmer can 
choose to declare a block at any point in the program. 
Whenever a block is declared, however, the 
restriction against branching into the middle of the 
block is always enforced. 

4.1 Assignment Statements 

An assignment statement is used to associate a data 
structure with a variable name or to reassign 
selected data values in an existing data structure. 
The assignment statement consists of either a 
variable name or a subscripted variable name, an 
assignment symbol, and an expression. The symbol 
for assignment can be either a colon followed 
immediately by an equal sign, or two less-than signs 
in succession. The first symbol has the advantage of 
following the ALGOL precedent, while the second 
symbol is easier to use in interactive mode. The first 
form of assignment, using the := symbol, is the more 
general case in that the space required for the result 
is allocated independently of any previous space 
reserved for that variable. The second form of 
assignment, using the « symbol, specifies that the 
value to be assigned to the variable must be 
conformable with the previous value. This form, if 
consistently used in interactive mode, insures that, 
for example, a large data array will not be destroyed 
inadvertently by using the same name for a scratch 
variable. 

In the following discussion, assignment is referred to 
as an operator. This is done to acknowledge the fact 
that mUltiple assignments can be done in a single 
statement. In effect, assignment is an operation that 
has the lowest operator precedence. 

4.1.1 Variable Assignment 

A variable assignment statement consists of a 
variable name, an assignment symbol, and an 
expression. The assignment symbol is frequently 
read as becomes, that is, the variable becomes the 
value and shape of the expression on the right-hand 
side. Any previous value associated with a variable is 
erased. (The previous statement applies within the 
execution of any given program or function. This will 
be re-examined in the light of local and global 
variables in the next section.) 



Format: var:= expression 

There are no restrictions on the expression on the 
right-hand side of an assignment operation. The 
TYPE of the expression can be NUMERIC, 
CHARACTER, NULL, or LIST. 

Consider the following simple assignment 
statement: 

AA:= 1 

In this case, the expression is the scalar constant 
one. So, the value of AA becomes the scalar constant 
one. A value may previously have been assigned to 
AA; if so, the previous value is lost. 

A previous value of a variable is erased as part of the 
function of the assignment operation. For example: 

AA:= AA + 1 

In this statement, the addition operator is executed 
first since it has higher precedence than assignment. 
Therefore, whatever value AA has is increased by 
one to obtain a value for the expression. The new 
value is assigned to the variable AA and the old value 
is discarded. While this explanation has tacitly 
assumed that AA was a scalar, the statement is 
equally valid if AA is a vector, a matrix, or an array of 
any rank so long as the TYPE of AA is NUMERIC. (Note 
that these restrictions result from using the addition 
operator; they are not limitations on th~ assignment 
operation.) 

Examples: 

Assignment Form of the result 

AA := 1 + 2 Scalar 
BB := 2 3 4 5 Vector 
CC := 2 3 RESHAPE 1 2 Matrix 
DO := 10 20; "text" List 

4. 1.2 Replacement Assignment 

A replacement assignment statement consists of a 
variable name, an assignment symbol, and an 
expression. Any previous value associated with the 
variable is replaced, provided that the new value 
conforms in RANK and SHAPE with the old value. 
This form of assignment is intended for both 
programmed and interactive use. The replacement 
assignment is more efficient in programs since the 
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same space used by the old value of the variable is 
reused. The replacement assignment is useful in 
interactive mode since it protects against data loss 
while debugging, and it is slightly easier to type. 

Format: var« expression 

Replacement assignment causes all elements in the 
data structure to be replaced with the elements in a 
conformable data structure. Replacement 
assignment does not provide extension in the same 
way as the dyadic array operators or subscripted 
assignments do. If AA is a vector of 10 elements, the 
result of any expression assigned to AA must also be 
a vector of 10 elements. That is, AA « IOTA 1 0 is 
legal, but AA « 1 is not. A further restriction is that 
the internal format used for numeric data must be 
compatible in order for the same space to be used. If 
the named data structure contains elements in 
integer format, then replacement elements must 
have integral values. 

4.1.3 Subscripted Assignment 

A subscripted assignment consists of a variable 
name, a subscript specification, an assignment 
symbol, and an expression. Either the replacement 
assignment symbol or the more general variable 
assignment symbol can be used. 

The subscript operation has been defined and 
illustrated previously in terms of fetching specific 
elements of an array or a list for further processing. If 
the subscript operatin is considered to be a general 
selection operator, it can be used to select the 
specific elements of an array or a list to be replaced. 

For example, assume that we have a vector AA with 
the fifth element value of two, that is, AA[5] = 2. To 
replace just that element, it is natural to write AA[5] 
« 1 O. This statement updates the fifth element value 
without affecting the remaining elements in AA. 

As mentioned above, the assignment operator takes 
on many of the properties of a dyadic array operator. 
The previous example was that multiple assignments 
could be used in a statement. For a subscripted 
assignment, the array extension properties of dyadic 
array operators also hold. The number of terms 
selected for update must be conformable with the 
result of the expression following the same rules. In 
particular, if a subscripted assignment selects a 
vector and the result of the expression is a scalar, the 
scalar will be extended to match the vector. A simple 



example is setting all elements of a vector to zero. 
Using the elided subscript form, this is programmed 
as AA[]« O. 

Subscripted assignment will result in the mode of the 
variable being converted to an equivalent form if 
necessary. Given a vector of integers, replacing one 
element of the vector with a real number will result in 
the vector being converted to real format. There is no 
side effect of truncation as is typical of most 
computer languages. 

4.2 Branch Statement 

As noted above, any GPL II statement can be labeled. 
A label is required to receive a branch. 

A branch statement consists of the keyword GOTO 
and a statement label. Execution of a branch 
statement causes control to be diverted to the 
specified statement. 

The use of the branch statement is a matter of 
personal taste. It is recommended, however, that use 
of the branch statement should be avoided where 
possible. (Some recently developed programming 
languages do not even define. a branch statement. 
We do not go that far, since elimination of the branch 
statement does not guarantee "structured 
programming".) 

4.3 Conditional Statement 

A conditional statement allows a block of statements 
to be executed based on the result of executing an 
expression. 

4.3.1 IF Statement 

The simplest form of a conditional statement consists 
of an IF-clause, a block, and the ENDIF keyword. The 
IF-clause consists of the keyword IF followed by an 
expression. If execution of the expression results in a 
non-zero value, the associated block is executed. If 
the result of the expression is non-scalar, only the 
fi~st numeric value from the raveled result is tested. 

Format: IF expression THEN block ENDIF 

The IF statement may be extended to include two 
mutually exclusive cases, as follows: 

Format: IF expression THEN block ELSE 
block ENDIF 
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In this form, the first block is executed if, and only if, 
the first value of the expression result is non-zero. 
Otherwise, the second block is executed. 

The IF statement can be further extended to any 
number of independent cases, as follows: 

Format: IF expression THEN block ELiF 
expression THEN block ENDIF 

The word ELiF is used as a contraction for the words 
ELSE IF. In this form, the first block is executed if, and 
only if, the first value of the expression result is non
zero. This is no different from any other IF-clause. In 
the event that the first block is· not executed, 
however, the ELiF-clause provides another test to 
determine whether or not the second block is to be 
executed. Multiple ELiF-ciauses can be programmed 
if desired. Further, an ELSE block can be used with 
ELiF-ciauses. 

The expressions used in a sequence of ELiF-ciauses 
need not be mutually exclusive. The expressions are 
simple evaluated in the order programmed, and the 
first successful condition causes the associated block 
to be executed. All ofthe clauses are considered to be 
at the same level of nesting. Consider the following 
examples: 

IF AA < 10 THEN BB := 5 ENDIF 
IF (AA >= 10) AND (AA < 20) THEN BB := 10 ENDIF 
IF AA >= 20 THEN BB:= 15 ENDIF 

IF AA < 20 THEN 
IF AA < 10 THEN BB := 5 
ELSE BB := 10 
ENDIF 

ELSE BB:= 15 
ENDIF 

IF AA < 10 THEN BB := 5 
ELiF AA < 20 THEN BS := 10 
ELSE BB:= 15 
ENDIF 

All three examples are equivalent and set BB to 5,10, 
or 15 according to the value of AA. The third form is 
the most efficient and, more important, is easier to 
read. 

4.3.2 SWITCH Statement 

A different approach to conditional execution is 
provided by the SWITCH statement. This allows any 



number of mutually exclusive conditions to be 
processed with one logical statement. 

The SWITCH statement consists of the keyword 
SWITCH followed by an expression, the keyword OF, 
a case block, and the keyboard ENDSWITCH. The 
case block consists of as many blocks as desired 
where each block is prefixed by an constant and a 
colon. 

SWITCH "ABCD" INDEXOF " OF 
CASE 1: JJ := "A" 
CASE 2: JJ := "B" 
CASE 3: JJ := "c" 
CASE 4: JJ := "0" 

JJ := "NONE OF THE ABOVE" 
ENDSWITCH 

The constant which identifies the case is not 
restricted to numeric or scalar values. For example, 
the character vector constant "ABC" is a legal case 
identifier. One use of vector numeric constants is 
shown in the following example. Note that the form 
"" is a convenient method of specifying a null vector. 

SWITCH SHAPE MAT OF 
CASE '''':IX IS NULL" 
CASE 2: 
CASE 1 2: 
CASE 5 2: 

ENDIF 
ENDSWITCH 

"MATRIX REPRESENTS A POINT" 
IF MAT[1;] = MAT[5;] THEN 
"MATRIX IS A FOUR SIDED 
POLYGON" 

4.4 DO Statements 

The DO statement allows a block to be executed 
iteratively. The various forms include: 

FOR variable RANGE vector DO block ENDDO 
WHILE expression DO block ENDDO 
DO block UNTIL expression ENDDO 
DO block ENDDO 

Note that the FOR-clause performs a special kind of 
assignment where the control variable is always a 
scalar which takes on successive values from a 
vector. FOR variables must be declared as local 
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variables in order to guarantee that the loop control is 
not disturbed by subroutine calls. 

Example: 

FOR I RANGE IOTA 10 DO AA[I] := BB[I] ENDDO 

(Examples in this section are for illustration only and 
may not be the most efficient method of 
implementation. The last example, in particular, 
should be programmed with the equivalent form, 
AA[IOT A 10] := BB[IOTA 10].) 

The RANGE vector in a FOR-clause can be the result 
of any expression that evaluates to produce a 
numeric vector. The following are equivalent: 

FOR I RANGE 1 2345678 910DObiock ENDDO 
FOR I RANGE 1,2,3,4,5,6,7,8,9,10 DO block ENDDO 
FOR I RANGE IOTA 10 DO block ENDDO 

The position of a clause with respect to the body of 
the DO statement indicates when the clause will be 
executed. If a FOR clause is used, it must be first 
since the FOR vector is always created once before 
the loop begins. A WHILE clause, positioned before 
the body of the loop, is executed before each 
iteration. An UNTIL clause, positioned after the body 
of the loop, is executed at the conclusion of each 
iteration. 

Any number of conditional clauses may be used to 
control a DO loop. If no clauses are used, we have the 
last form shown above. In this case, it is presumed 
that a branch statement exists somewhere in the 
loop, since the loop shown will execute endlessly. In 
case more than one termination criteria is 
programmed, the loop executes only until the first 
criterion is satisfied. Consider the following loop: 

DONE := 0 
FOR I RANGE IOTA 10 WHILE NOT DONE DO 

AA[I] := -AA[I] 
IF AA[I] < 0 THEN 

DONE := 1 
ENDDO 

The above loop will negate successive elements of A 
until either 10 elements have been negated or a 
negated element is less than zero. 



SECTION 5 
SUBROUTINES 

The term subroutine is used to refer to a self
contained group of statements in the GPL II 
Programming Language. While interactive input 
consists of a single statement, a subroutine contains 
any number of locially related statements which 
implement a desired capability. The main 
significiance of subroutines is that a subroutine is the 
measure of how many statements are compiled at 
anyone time. Conversely, all subroutines are 
independently compiled. 

Subroutines can be categorized according to whether 
or not the subroutine returns a result and whether or 
not the subroutine accepts any parameters. The 
question of whether or not a result is returned has 
historically been the more important distinction. 
Subroutines which do return a result are called 
functions, and subroutines which do not return a 
result are called procedures. The term subroutine is 
used in a general sense in this manual. The terms 
function and procedure are used only where the 
existence of a result is important. 

The question of how many parameters are accepted 
by a subroutine is resolved, where important, by the 
use of a qualifying adjective. A subroutine is said to 
be niladic if it accepts no parameters. A monadic 
subroutine accepts one parameter. (That parameter 
may be a list of any number of items, all addressable 
through subscripting.) A dyadic subroutine accepts 
two parameters. 

The term program is generally accepted to mean a top 
level procedure. In the GPL II Programming 
Language, any function or procedure can be invoked 
while in interactive mode and serve as the main 
program. The same subroutine can also be called by 
another subroutine. Therefore, the meaning of 
program is not inherent but merely a consequence of 
usage. When one subroutine calls another, it will be 
convenient to use the term program to refer to the 
calling subroutine. Program is a relative definition in 
that the subroutine can, in turn, be referred to as a 
program by calling another subroutine. 

There are several features common to all 
subroutines. Any subroutine definition must include 
two distinct kinds of information. Declaration 
statements are used to define the external 
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environment of a subroutine. Executable statements 
are used to define the algorithm to be executed by the 
subroutine. 

There are several kinds of declarations that may be 
made in a subroutine. The header statement gives 
the subroutine a name and defines how the 
subroutine is to be called. External subroutine 
declarations define what subroutines are called by 
the subroutine or program in question. Other 
declarations define what variables are referenced by 
the subroutine and what kind of reference is 
required. 

The declarations serve the purpose of defining 
names that are referenced in the subroutine. All 
names in a subroutine must be declared before they 
can be used. Consequently, all declarations are 
typically programmed before any executable 
statements in the subroutine. 

The body of any subroutine can include any of the 
executable statements discussed in Section 3. (In 
fact, the branch statement is the one case that really 
makes sense only in terms of a subroutine.) 

The definition of a subroutine is terminated with the 
ENDSUB keyword. Executi6n of a subroutine is 
terminated by reaching the end of the definition. 

5.1 Subroutine Declaration 

A subroutine can be defined to serve any of 
numerous purposes. Subroutines can be used to 
construct new GDS II commands in terms of existing 
primitive functions built into the system. In addition 
to extending the system, the user can also effectively 
extend the definition of the GPL II Language. With 
minor qualifications, the user can define monadic or 
dyadic functions which extend the GPL II set of 
operators. Unlike many of the built-in functions, 
however, user-defined subroutines must be either 
monadic or dyadic. The same function cannot be used 
in multiple ways like the addition operator can. Also, 
user-defined functions cannot be used with 
reduction, inner product, or outer product 
formulations. 



The header statement defines the name given to a 
subroutine, defines whether the subroutine is a 
procedure or a function, and defines what 
parameters are accepted by the subroutine. The 
header statement must be the first line of the 
subroutine. 

There are six possible header statements: 

NILADIC PROCEDURE name 
MONADIC PROCEDURE name arg 
DYADIC PROCEDURE arg1 name arg2 
NILADIC FUNCTION result := name 
MONADIC FUNCTION result := name arg 
DYADIC FUNCTION result := arg1 name arg2 

The first two words of the header line supply all 
information needed to call the subroutine. That is, a 
subroutine declared to be a NILADIC FUNCTION 
requires no argument and returns a result. 
(Remember that neither an argument value nor the 
result value is limited to scalars in the GPL II 
Programming Language.) The remainder of the 
header statement includes the same information in a 
more graphic form in that this represents a pattern of 
how the subroutine is actually called. The pattern 
also defines the names to be used for any input 
parameters and any function result. 

The following example is a complete subroutine. All 
that it does is an addition; it merely serves to give the 
addition symbol a name. 

DYADIC FUNCTION Z := A ADD B 
LOCAL VARIABLE A;B;Z 
Z := A + B 
ENDSUB 

The association of actual parameters with the 
dummy parameters A and B will be discussed in a 
subsequent section. 

5.2 External Subroutine Declaration 

A subroutine can reference any number of external 
subroutines so long as all such subroutines are 
declared. Since all subroutines are compiled 
independently, an external subroutine declaration is 
necessary to define the required syntax for the 
subroutine call. 
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An external subroutine declaration consists of the 
first two words of the desired subroutine's header 
and the subroutine name. Therefore, there are six 
basic possibilities: 

EXTERNAL NILADIC PROCEDURE NAME 
EXTERNAL MONADIC PROCEDURE NAME 
EXTERNAL DYADIC PROCEDURE NAME 
EXTERNAL NILADIC FUNCTION NAME 
EXTERNAL MONADIC FUNCTION NAME 
EXTERNAL DYADIC FUNCTION NAME 

For convenience, multiple external subroutines of 
the same type can be declared in one statement with 
the names separated by semicolons. For example: 

EXTERNAL DYADIC FUNCTION ADD; SUBTRACT 

is equivalent to: 

EXTERNAL DYADIC FUNCTION ADD 
EXTERNAL DYADIC FUNCTION SUBTRACT 

Note that no parameter names are mentioned in an 
external subroutine declaration. The dummy 
parameter names used by the called subroutine are 
irrelevant to the caller. 

5.3 Local Variable Declaration 

A subroutine can declare variables to be local (as 
opposed to global or external, since a declaration of 
some type is required). For the sake of discussion, 
assume that subroutine QQXV has declared variable 
Q to be a local variable. 

NILADIC PROCEDURE QQXV 
LOCAL Q 
Q:= 1 
END 

Now, we need another subroutine, say ZZ, which 
calls QQXV. In this example, we will refer to ZZ as the 
program and QQXV as the subroutine. 



EXTERNAL PROCEDURE QQXV 

Q:= 3 
QQXV 
IF Q <> 3 THEN "ERROR" 

The program ZZ assigns a value to the variable named 
Q. When QQXV is called and it is determined that Q is 
a local variable, the previous value of Q is stacked and 
Q is reinitialized to have no value. That is, 
immediately after QQXV gains control, TYPE Q 
EQUALS "UNDEFINED". QQXVassigns Q to havethe 
value 1 and exits. Whenever a subroutine exit is 
performed, all values associated with local variables 
are discarded and the previous values, if any, are 
restored. As far as program ZZ is concerned, the 
value of Q is the same as before and the word 
"ERROR" will never be output. The capabi lity of 
declaring local variables allows a subroutine to be 
programmed that will not affect any variables 
declared by any programs that use the subroutine. 
The absence of "side effects" is a feature that greatly 
simplifies program development and maintenance. 
QQXV is an unusual example in that its execution has 
no effect at all. 

The format of a local variable declaration is: 

LOCAL name1; name2; ... ;namen 

5.4 Global Variable Declaration 

A subroutine can declare variables to be global (as 
opposed to local or external). A global variable 
declaration in a subroutine causes a new instance of 
that variable to be created with any previous value 
stacked when the subroutine is called. Unlike local 
variables, however, a global variable declaration 
allows the variable to be accessed by lower level 
subroutines which declare the variable to be 
external. 

The format of a global variable declaration is: 

GLOBAL name; name1 ; ... ;namen 
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5.5 External Variable Declaration 

A subroutine can declare variables to be external (as 
opposed to global or local). An external variable 
declaration in a subroutine allows a global variable 
declared by the calling program to be referenced by 
the same name. 

The format of an external variable declaration is: 

EXTERNAL name; name1 ; ... ;namen 

5.6 Parameter Passing 

A parameter is a variable named in the header 
statement. Parameters are virtually always declared 
as local variables. Parameters cannot be declared as 
external variables. 

No parameters are allowed in a call to a niladic, 
subroutine. One parameter is required to be present 
in a call to a monadic subroutine. Two parameters are 
required in a call to a dyadic subroutine. For monadic 
or dyadic calls, the parameters must be array data 
structures. A parameter may be a list. Each item is 
then accessible within the list by subscripting. The 
declaration of a subroutine with a list of parameters 
is: 

EXTERNAL MONADIC FUNCTION ATTEMPT 
CALLING format is: 

QQ := ATTEMPT VV;XX;WW 

The "A TIEMPT" subroutine is: 

MONADIC FUNCTION QQ := ATIEMPT STUFF 
LOCAL STUFF;QQ;VV;XX;WW 
VV := STUFF[1] 
XX := STUFF[2] 
WW := STUFF[3] 

All parameters are passed by value. 

For the sake of discussion, assume that subroutine 
ADD shown above has declared variable Zto be local. 
When the ADD subroutine is called, a variable named 



Z may already exist. If so, the value of Z is stacked and 
Z is reinitialized to have no value. That is, its type 
becomes "UNDEFINED". The ADD subroutine can 
assign a value to Z during the course of its execution. 
In fact, if Z has been identified as the name for the 
function result, Z must have a value assigned by the 
ADD subroutine. In this case. the value of Z becomes 
the value of the ADD function when ADD returns to 
its caller. Any previous val ue of Z is restored as part of 
the subroutine exit mechanism. 

5-4 

5.7 ENDSUB 

Execution of a subroutine is terminated when the 
ENDSUB statement is encountered. If the subroutine 
is a function, the variable named for the function 
result must have had a value assigned at some point 
during the execution of the function. Given that a 
value has been assigned to the function result 
variable, the function result can be reassigned if 
desired. 
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