
.'

INTERACTIVE GRAPHIC SYSTEMS
A division of United Computing Systems Inc

!llal II lal· •• !I;IIIIIII~I·'S
1·~fel·~IIC~ 111;11111;11

GPL II PROGRAMMER'S REFERENCE MANUAL

© Copyright 1979 CALMA/UCS

April, 1979

Document No. 579-2

PREFACE

This is the First Edition of the GPL II Programmer's
Reference Manual. It accompanies the GDS II
Reference Manuals, Volume I and II, and the GDS II
Menu Manual. It presents an explanation of the GPL
II Programming Language, knowledge of which will
provide the user the facility to extend the system to
meet his needs in the future.

TABLE OF CONTENTS

Section Number and Title Page

SECTION 1
1 . 1
1.2
1.3
1.4
1.5
1.6
1.7

SECTION 2
2.1
2.2
2.3
2.4
2.5

SECTION 3
3.1
3.2
3.2.1
3.2.2
3.2.3
3.2.4
3.2.5
3.2.6
3.2.7
3.2.8
3.2.9
3.3
3.3.1
3.3.2
3.4
3.4.1
3.4.2
3.5
3.5.1
3.5.2
3.5.3
3.5.4
3.5.5
3.5.6
3.5.7
3.5.8
3.5.9
3.5.10
3.5.11
3.5.12

PREFACE .. .

INTRODUCTUION ... 1-1
Interactive Mode .. 1-1
Source Files .. 1-1
Work Area .. 1 -1
GPL II Commands ... 1-1
Data Elements /. 1 -2
Simple Assignment 1-3
Elided Output ~ . 1-3

SYMBOLS .. 2-1
Character Set ... 2-1
Records .. 2-1
Names ... 2-1
Character Constants ... 2-2
Numeric Constants .. 2-2

EXPRESSIONS .. 3-1
Operands ;.................................... 3-1
Structure Operators ... 3-1
TYPEOF Operator ... 3-1
Ravel Operator ... ,.................. 3-1
SHAPE Operator .. 3-2
RANK Operator ... 3-2
SIZE Operator ... 3-2
RESHAPE Operator .. 3-2
IOTA Operator .. 3-3
LENGTH Operator ... 3-3
Equality Operator ... 3-3
Concatenation Operator ... 3-3
Array Concatenation Operator .. 3-4
List Concatenation Operator ... 3-4
Subscript Operators ... 3-5
Array Subscript Operator .. 3-5
List Su bscript Operator .. 3-6
Monadic Array Operators .. 3-6
Identify Operator .. 3-6
Negation Operator 3-6
Signum Operator .. 3-7
Reciprocal Operator ... 3-7
Absolute Value Operator ... 3-7
Floor Operator .. 3-8
Ceiling Operator .. 3-8
Exponential Operator .. 3-8
Natural Logarithm Operator .. 3-8
Pi Operator ... 3-8
Sine Operator ... 3-8
Cosine Operator 3-9

ii

Section Number and Title

SECTION 3
3.5.13
3.5.14
3.5.15
3.6
3.6.1
3.6.2
3.6.3
3.6.4
3.6.5
3~6.6

3.6.7
3.6.8
3.6.9
3.7

SECTION 4
4.1
4.1.1
4.1.2
4.1.3
4.2
4.3
4.3.1
4.3.2
4.4

SECTION 5
5.1
5.2
5.3
5.4
5.5
5.6
5.7

(Continued)
Tangent Operator .. .
Arctangent Operator ~
NOT Operator .. .
Dyadic Array Operators
Addition Operator
Subtraction Operator
Multiplication Operator
Division Operator .. .
Modulo Operator
Minimum Operator
Maximum Operator
Power Operator .. .
Logarithm Operator .. .
Array Extension .. .

STATEMENTS .. .
Assignment Statements .. .
Variable Assignment
Replacement Assignment
Subscripted Assignment .. .
Branch Assignment .. .
Conditional Statement .. .
IF Statement
SWITCH Statement
DO Statements .. .

SUBROUTINES
Subroutine Declaration
External Subroutine Declaration
Local Variable Declaration .. .
Global Variable Declaration
External Variable Declaration
Parameter Passing
ENDSUB

iii

Page

3-9
3-9
3-9
3-9
3-10
3-10
3-10
3-10
3-10
3-10
3-10
3-10
3-10
3-11

4-1
4-1
4-1
4-2
4-2
4-3
4-3
4-3
4-3
4-4

5-1
5-1
5-2
5-2
5-3
5-3
5-3
5-3

SECTION 1
INTRODUCTION

The use of the GPL II Programming Language
requires a general knowledge of the GDS II System
and assumes familiarity with the GDS II Command
Language. The GDS II Command Language and the
GPL II Programming Language have been designed
as different approaches to the same system. Once
the procedures for creating GDS II Menus in terms of
GDS II Command Primitives have been mastered,
only a little additional effort is required to place the
complete resources of the GPL II Programming
System at the user's disposal.

The progression from system operation to menu
definition, and on to programming, follows a natural
order. Although there is nothing to be "unlearned",
there are new concepts to be mastered at each step
and new benefits to be realized. While the menu
facility gives the user the opportunity to customize
the system to meet his immediate needs, the GPL II
Programming Language facility gives the user the
opportunity to extend the system to meet his needs in
the future.

The remainder of this chapter presents an informal
discussion of the basics of the GPL II Programming
Language.

1.1 Interactive Mode

The GPL II Programming Language System has two
basic modes of operation. In interactive mode, GPL II
statements are entered and executed immediately. In
program definition mode, GPL II statements are
collected into a program and saved for later
execution. The interactive mode of execution is best
exemplified by the normal use of the GDS II System:
A command or statement is entered to cause the
desired effect. If the command or statement is to be
repeated, it must be typed in again. One solution for
the problem of command repetition is to define a new
menu button which effectively types in the desired
string of characters with a single keystroke. In many
cases, however, it is necessary to repeat a sequence
of commands with provision for exceptions or with
different parameters, and so on. The GPL II
Programming Language makes it possible to execute
one or more commands, to obtain feedback from the
system, to manipulate data, and to conditionally
execute more commands. Of course, once a program
has been defined, it can be called and executed as
often as desired while in interactive mode.

1 -1

1.2 Source Files

A GPL II program is stored as a file in the GDS II
system. The procedures for program creation,
maintenance, and listing follow the general rules for
text manipulation in the GDS II System. Since text
editing is such a fundamental part of system
operation, the same basic techniques are used
independently of where the text is stored. This
discussion assumes that the user is familiar with
editing text associated with a menu button or located
in a drawing file, and that no detailed editing
techniques need be discussed here. In fact, there is
little difference between the procedures needed to
associate text with a button and defining a
subroutine in a source file and then associating a call
to the subroutine with a button.

While the basic editing techniques are the same
throughout the system, there are special features
which may be useful in a particular application.
These include positioning a source file to a particular
statement identified by number, and so on. All such
features are defined in the editor documentation for
easy reference.

1 .3 Work Area

The GPL II Programming System maintains a work
area for each user which is essentially independent
of the remainder of the GDS II System. These areas
are maintained in such a way that work in progress at
one station is not affected by work in progress at any
other station. The work area serves as a repository for
both compiled programs and data elements. Before a
GPL II program can be executed, it must be translated
into a more suitable form. The result of this
translation is stored in the work area. Intermediate
results created in the process of execution are also
stored in the work area. While the format of the data
stored in the work area is of little concern to the user,
it is important that the work area contents be
distinguished from the system data base contents. In
general, an operation which affects the current
library set will not affect the work area and vice versa.

1.4 GPlll Commands

The GPL II Programming System defines commands
that are applicable to the work area as a whole. A

command consists of a right parenthesis, the
command name, optional parameters, and a carriage
return. The syntax is chosen deliberately so that a
command can be entered only from the operator
console; a system command can not be part of a
program. One example of a command which
demonstrates why this is so is the CLEAR command.
This command,)CLEAR, initializes the work area.
Since this command cannot be placed in a program
that is executed from the work area, the program
cannot wipe itself out.

1 .5 Data Elements

The data structures used in the GPL II Programming
System form the foundation for the programming
language. A thorough knowledge of the data
structures used is very important for writing effective
and efficient GPL II programs.

The simplest data structure is illustrated by a scalar,
which is a single constant. The scalar value can be a
number or a character of text. The next level of
complexity is the vector, which is a sequence of
numbers or characters. All of the individual values in
a vector can be referenced collectively or individually,
depending on the operation programmed. Given the
linear sequence of values in a vector, the next step is
to define a matrix, which is a two-dimensional
pattern of values. This procedure is repeated to
define arrays of higher rank.

The concept of shape is very important in the GPL II
Programming Language. Certainly, the number of
values in a vector is just as important as the
magnitude of any individual value. Similarly, the
number of rows and columns in a matrix is just as
important as an individual datum. If we presuppose
that a frequent use of a matrix is to use the shape of n
rows by 2 columns for the vertices of a polygon, the
importance of shape becomes even clearer. This is so
since polygons are generally characterized by the
number of sides, that is, one less than the number of
rows in the matrix representing the polygon.

The use of the term shape refers to the way in which
data values are presented algebraically. Within the
constraints of the line length of the output device, a
matrix is literally output as a rectangular pattern of
values. (It is for output considerations that an n by 2
matrix is used to represent a polygon rather than a 2
by n matrix.) Of course, the term shape can also be
used in a geometric sense, but in GPL II programs,
only the shape associated with a data structure is of
importance.

1-2

The definition of shape allows a zero value count.
That is, a null vector is one case of a data structure
that has a null component. It is possible to use other
configurations to advantage, for example, an array of
o rows and 2 columns. Examples of such situations
will be considered in later sections.

The description of a matrix as a two-dimensional
pattern of values must also be considered in an
algebraic sense. In an n by 2 matrix used to represent
a polygon, the first column of values is used for the x
coordinates and the second column of values is used
for the y coordinates. Each row of the matrix
therefore represents one vertex of the polygon. It is
assumed that the first vertex is connected to the
second by a straight line, and so on. The polygon is
closed if the first and last vertices have the same
coordinate values. Note that a line in three
dimensional space could be defined in the same way
by simply using a third column of values for z
coordinates. It must be emphasized that while a
matrix is presented as a two-dimensional pattern of
values, a matrix is definitely not limited to solving a
two-dimensional problem. To avoid confusion, as
much as possible, a matrix will be defined as an array
of rank 2, and the more common method of
describing a matrix as a two-dimensional data
structure will not be used.

The use of the term mode refers to the format in
which individual data items are stored in an array.
The two basic modes are character and numeric. The
numeric mode can be further categorized according
to the internal representation used for the number. A
fundamental rule of the data structure is that all
elements of an array must have the same mode.
Further, the operations which can be performed on
an array can be restricted to either character or
numeric data modes. The various formats used for
numeric values are of no consequence in this regard
since automatic type conversion from one numeric
format to another is supplied. Conversion from
character to numeric mode and vice versa must be
programmed explicitly, however. Of course, this
conversion is easily handled using operators defined
in the GPL " Programming Language.

It must be emphasized that shape and mode are
independent attributes of a data structure. Although
character vectors and numeric matrices are very
common, it is perfectly legal to define numeric
vectors and character matrices.

While the data structures defined thus far have great
utility, there are two important limitations when
arrays are considered. The first limitation is that all
matrices must be rectangular in shape. All rows and
columns must have the same number of data values.
In particular, a character matrix is not well suited for
a paragraph of text unless the text has been justified
so that all lines are the same length. A more
convenient data structure is a list in which each list
element is defined as a character vector. This allows
paragraphs of text to be stored in more compact form
and to be manipulated more easily. The second
limitation of arrays is that a single mode must be
defined for all data values. This restriction does not
apply to lists--a mode is defined for each I ist element.
A list allows, for example, a coordinate and a line of
text to be referenced as a single data structure.

The list structure in GPL II is deliberately kept simple
in the interests of implementation and execution
efficiency. In particular, a list element can at most be
an array; it cannot be another list. In more formal
terms, recursive list processing is not supported.

1-3

1 .6 Simple Assignment

A data structure can be created interactively by giving
the name of the data structure, an assignment
specification, and the desired data value. All storage
is allocated dynamically depending on the shape and
mode of the desired data structure.

For example, typing the statement AA:= 1 creates the
data structure AA and assigns the scalar value 1. Any
previous value assigned to AA will be erased.

1 .7 Elided Output

The result of any expression typed in is output to the
operator's console by default. Elided output is really a
special case of assignment in which the variable
name and assignment symbol are elided, that is,
omitted. Given the variable AA created above, typing
AA would cause the value of AA to be output to the
console. However, typing BB := AA creates a variable
BB which has a shape and value vector copied from
AA.

SECTION 2
SYMBOLS

The term symbol is used to refer to the building blocks
of the GPL II Programming Language. Possible
symbols include constants, names, operators, and
keywords. Symbols are used to build expressions as
will be discussed in Section 3.

2.1 Character Set

Symbols are constructed from one or more
characters. Any character on the GOS II Station
Keyboard which can be entered into a source
program using the Text Editor is legal at some point in
a GPL II program. Of course, at a specific point in a
program, only certain symbols are syntactically
correct. These rules, however, are more easily
defined in terms of symbols than in terms of
sequences of arbitrary characters. For example, the
letter E can be used as part of a program name, a
variable name, a keyword, a real constant, and so on.
The symbolENOSUB always has the same meaning,
even when taken out of context.

With one exception, all devices in the system support
the same character set. The exception is the
character for underscore, which is printed as a left
arrow by some devices.

2.2 Records

A record is defined as an arbitrary sequence of
characters that is terminated with a carriage return.
The concept of a record has general applicability
throughout the GOS II system. In fact, all input typed
at the operator's console is collected on a record
basis. The system task that collects input records
provides character deletion, line deletion, digitizer
conversion, and other essential capabilities. Since
this task serves other programs besides the GPL II
Programming System, no generalized processing of
the contents of the input record is possible at this
level.

Since the task of collecting a record from the console
input device involves echoing each character on the
console output device, a record has a fixed maximum
length. For the purposes of the GPL II Programming
System, a record can be logically continued by
placing an up arrow immediately before the carriage
return. The up arrow and carriage return are
"invisible" as far as further processing by the GPL II

2-1

system is concerned. This definition of a logical
record follows the convention established by the
ROOS Command Line Interpreter.

This manual will proceed to define symbols in terms
of characters, expressions in terms of symbols,
statements in terms of expressions, and programs or
functions in terms of statements. Of all of these
levels, the statement corresponds to a logical record.
The GPL II Commands that will also be defined are
entered in the form of a logical record.

To digress for a moment, the use of a special
character to nullify the effect of a carriage return is
preferred over the ALGOL approach of defining a
special record terminator. Treating the exception as a
special case rather than the rule is deemed more
suitable for interactive use.

2.3 Names

The rules for formulating names in the GPL II
Programming Language follow the same general
rules used throughout the GDS II System. That is, the
first character of a name must be either a dollar sign
or a letter of the alphabet in either upper or lower
case. If a name has more than one character, the
second and succeeding characters must be either a
dollar sign, a letter, a digit, or an underscore
character. The name is terminated by the first
character that is not of the above form. (It should be
noted that an up arrow and carriage return are
understood to be "invisible".) While there is
essentially no limit to the number of characters that
can be written in a name, 32 characters of
significance will be retained. In other words, two
names which are identical in the first 32 characters
are not recognized as being different names.

Some names have been appropriated for system use.
Certain names are used as symbols for operators or
as structural keywords; a complete list of all reserved
words can be found in Appendix A. These names can
be used either in strictly upper case or in strictly
lower case, i.e., PROCEDURE or procedure. The user
is cautioned against using such names as Procedure
in order to avoid confusion.

The most frequent use of names is to reference
variables. Writing the name AA in an expression

references the current value defined for the variable
AA. A new value may be assigned to the name AA by
using the assignment statement to be defined later.
Other uses of names include subroutine calls. Since
the list of GDS II system names and primitives, which
may be referenced by GPL II programs, are strictly in
upper case, the user should consider using lower
case names in programs subject to change.
Examples:

Correct
AA
aa
POLY3
Long-name

Incorrect
AA
a.
3POLY

2.4 Character Constants

Character constants are declared by enclosing the
data in double quotation marks. Any printable
character except a double quote, a less-than sign, or
a greater-than sign represents itself in a character
constant. Spaces and tabs can also be used in
character constants. Other characters must be
encoded when used as part of a character constant.
(In the interest of consistency, the GPL II
Programming Language employs the same rules
defined for Data General's DG/L programming
language.)

Within a character constant, the syntax of a special
character value consists of a less-than sign, the
character code, and a greater-than sign. The
character code can be either a name or an octal
constant. All currently defined names are either two
or three characters chosen to be a mnemonic for the
special character. Octal values can be in the range of
o to 177, inclusive. Leading zeros can be used with
octal values if desired. The following table illustrates
the special character codes:

MNEMONIC OCTAL NAME

<NUL> <0> null
<BEL> <7> bell
<HT> <11> horizontal tab
<LF> <12> line feed
<FF> <14> form feed
<CR> <15> carriage return
<NL> <15> new line
<ESC> <33> escape
<aT> <42> quote

<74> less than
<76> greater than

 <177> delete(or rubout)

2-2

Character Scalars

A character scalar is created by enclosing,
effectively, one character in double quotes. A scalar
representing a double quote, an up arrow, or any
special character can be created as noted above.

Examples:

"a"
"A"
"<CR>"
"<OT>"

Character Vectors

Character vectors are created by enclosing zero or
more than one effective character in double quotes.

Examples:

(a null vector)
"abc"
"A<CR>B" (an A, a carriage return, and a B)

2.5 Numeric Constants

Numeric constants can be defined in three different
formats. It is always good practice to choose the
format of a constant according to the way in which
the value will be used. Because automatic type
conversion is supplied, however, this practice is not
mandatory. Of course, avoiding the automatic type
conversion can increase execution efficiency by a
small amount and may improve the clarity of the
program as well.

Logical Scalars

The simplest numeric constant is a logical scalar. A
logical constant can have only one of two values, one
or zero. On input, these values can be selected by
using TRUE or FALSE, respectively.

Examples:

Correct
o
1
TRUE
FALSE

Incorrect

Any value not shown on the left

Integer Scalars

The integer data representation can be used for
whole numbers within the range of minus 32768 to
plus 32767. This range represents the total range of
values that can be stored in a 16-bit word using a sign
bit. Positive integer constants are specified by simply
entering the digits in successive character positions.
Negative integer constants are specified by entering
a negative sign followed immediately by the
magnitude of the value. No spaces, commas, or any
other character may be used between the sign and
the first digit of the value or between any two digits of
the value. In the GPL II Programming Language, it is
very important to distinguish between a negative
sign used in an integer constant and the symbol for
the negation operator. If a space is used between the
sign and the first digit of the number, the negation
operator is interpreted. (In a programming language
that has only scalar constants, or even in a GPL II
program which deals only with scalar quantities, the
negation operator applied to a scalar constant
produces the same effect as a negative constant. The
distinction is critical in vector constants, however, so
the user is cautioned against overuse ofthe negation
operator.)

Examples:

Correct
-5
3
127

Incorrect
-50000 (Doesn't fit in 16 bits)
1.5 (Has a fractional part)
1,000 (Comma illegal)

While the constant 1 is treated as a logical constant,
it can be used just as if it were an integer constant. Of
course, the converse is not true: integer values
cannot be used when logical values are required.
Furthermore, although 50000 is an integral value, it
is stored as a real constant because of the magnitude.
Real constants which have integral values can
always be used when integer constants are
nominally required, provided that the value is in
range.

Real Scalars

The real data representation can be used for any
numeric value in the approximate range of 10 to the
negative 78th power to 10 to the 75th power. The
internal format used for real numbers provides a
precisionof from 51 to 54 bits, or 16.2 decimal digits.
Therefore, integral numbers even larger than 10 to
the 16th power can be stored exactly. (The actual

2-3

limit is 16914398509481983.) This high degree of
precision also applies to non integral values. For
example, the value of pi is taken to be
3.14159263589793.

The basic format used for real numbers consists of an
optional negative sign, the integral part of the
number, a decimal point, and the fractional part. Ifthe
integral part of the number is zero, it can be omitted if
the decimal point and fractional part are specified.
That is, a zero is not required before the decimal point
if the number is positive or between the negative sign
and the decimal if the number is negative. If the
fractional part of the number is zero, it can be omitted
if the integral part and the decimal point are
specified.

Examples:

2.15
-2.5
-0.5
-.5
.5
0.5
0.5000
0.0
128
-30000
10000000000000000000000
10000000000000000000001

The input value can indicate more precision than
what is available without generating an error. The
last two examples above result in the same number
in the internal representation.

Because of the large range possible with real
numbers, engineering notation is frequently used for
inputting real numbers. This allows a scale factor
defined as a power of 10 to be applied to the number.
The form of the scale factor is the letter E followed by
an optional negative sign and an integral power of 10.
The scale factor can be used only as a suffix for a real
number in the form described above. This is so since
El0, for example, is a perfectly valid variable name.

Examples:

1.0E3
1000

1.E-3
.001

6.28E2
628.

Note that the pairs of numbers in the examples above
are equivalent forms of the same value.

Finally, the decimal point can be omitted in a real
number specification if the scale factor is specified.
Hence, 1 E3 is the same as 1.0E3. If both the decimal
point and the scale factor are omitted, the format is
still legal, but, depending on the magnitude, the
result may not be stored as a real number. A number
such as 3000 follows the rules for integer numbers
described above.

Numeric Vectors

Numeric vectors are created by using mUltiple values
of the form defined for numeric scalars with
successive values separated by spaces or tabs. The

2-4

mode of the vector depends on the mode or modes
used for the values in the vector. The result will be in
logical mode if, and only if, all values are in logical
mode. The result will be in integer mode if, and only if,
one or more values are written in integer mode and
any remaining values are written in logical mode. The
result will be in real mode if any value in the vector is
written in real mode. Note that the mode for the
entire vector need not be indicated by the format of
the first value in the sequence.

Examples:

o 1 0
012
O. 1 2
1 1.5 1000
o -1 2

(A logical vector)
(An integer vector)
(A real vector)
(A real vector)
(An integer vector with a negative
value)

SECTION 3
EXPRESSIONS

The term expression is used to refer to an operand
symbol or to a sequence of operator and operand
symbols that are syntactically correct. The
expression defines what operands and operators are
to be used and in what order operations are to be
executed. Execution of an expression typically results
in a data structure that can be used as an operand in
another expression. The rules for creating an
expression and determining the execution order are
covered in this section.

3. 1 Operands

An operand is a data structure. An operand can
contain one or many data values, depending on the
rank and shape. Depending on the use to which the
operand is put, only part of the complete data
structure may be of interest, i.e., either the data
values or the shape. Examples of operands include
constants, variable references, or the result of an
expression.

3.2 Structure Operators

The structure of an operand is as important as the
actual data values contained within the operand.
Various aspects of the data structure are accessible
and redefinable with the structure operators.

3.2.1 TYPEOF Operator

The TYPEOF operator returns a character vector
indicating the type associated with a name. The
TYPEOF operator is a special case in that the name
need not be associated with a data structure. The
eight possible types are: "UNDEFINED", "NUMERIC",
"CHARACTER", "NULL", "LIST", "FUNCTION",
"PROGRAM", and "LABEL".

The TYPEOF operator is very useful in interactive
mode for program debugging. Consider the following
terminal session:

3-1

Operator Input

)CLEAR
TYPEOF AA
AA:= 1
TYPEOF AA
AA := "AB"
TYPEOF AA
AA:= ""
TYPEOF AA
AA := 1 2;"ABC"
TYPEOF AA
TYPEOF AA[1]
TYPEOF AA[2]

Response

WORK AREA INITIALIZED
UNDEFINED

NUMERIC

CHARACTER

NULL

LIST
NUMERIC
CHARACTER

A second use for the TYPEOF operator is determining
whether an operation is legal. This operator is
described first so that it can be used in the remaining
operator descriptions.

3.2.2 Ravel Operator

The ravel operator returns the values of an array data
structure as a vector.

Format: , array

The ravel of a scalar is defined as a one-element
vector. The ravel of a vector is equivalent to the
original vector. The ravel of an array of higher rank is
defined as a vector containing all the elements of the
array taken in row order. That is, the column
subscript varies the fastest, then the row, then the
plane, and so on for arrays of higher rank. For a
matrix, this is equivalent to saying that all the values
in the first row are taken, then all the values in the
second row, and so on until all rows are exhausted.
This is the same order in which the values appear
when an array is formatted for output.

Examples:

,1 is the vector of one element containing 1
,"a" is a one element vector containing a
, 1 2 3 is the vector 1 2 3
, "ABC" is the same as "ABC"
,AA is the vector 1 2 3 4 5 6 if AA is pictured as:

1 2 3
456

Error Conditions: The operand must be an array data
structure. If the operand is a list, a DOMAIN ERROR
results.

3.2.3 SHAPE Operator

The SHAPE operator returns the shape of an array
operand.

Format: SHAPE array

The shape is defined as a vector with an element
count equal to the rank of the array operand. If the
element count is greater than zero, the values in the
vector define the element count along each
coordinate. If the operand is scalar, the rank is zero,
so the shape is a null vector. If the operand is a vector,
the rank is one, so the shape is a one-element vector.
The value of the vector is the number of elements in
the operand. If the operand is a matrix, the rank is
two, so the shape of the resu It is a vector with two
elements. The first value is the number of rows in the
matrix; the second value is the number of columns.
The shape is defined analogously for array operands
of higher rank.

Examples:

SHAPE 1
SHAPE "A"
SHAPE ""
SHAPE "abc"
SHAPE 1. 2
SHAPE AA

is a null vector
is a null vector
is 0
is 3
is 2
is 2 3 if AA is a 2 by 3 matrix.

Error Conditions: The operand must be an array data
structure. If the operand is a list, a DOMAIN ERROR
results.

3.2.4 RANK Operator

The RANK operator returns the rank of an array
operand. The rank of a scalar is zero, the rank of a
vector is 1, the rank of a matrix is 2, and so on.

Format: RANK array

The rank of an operand is formally defined as the
SHAPE of the SHAPE of an operand.

3-2

Examples:

RANK 1
RANK 2
RANK AA
RANK "A"

is 0
is 1
is 2 if AA is any matrix
is 0

RANK "" is 1
RANK "abcd" is 1

Error Conditions: The operand must be an array data
structure. (DOMAIN ERROR).

3.2.5 SIZE Operator

The SIZE operator returns the number of values in an
array data structure. The size of a scalar is one, the
size of a vector is its element count, the size of a
matrix is the product of its rows and columns, and so
on.

Format: SIZE array

The SIZE of an array operand is formally defined as
the product reduction of its SHAPE vector.

Examples:

SIZE '"'
SIZE 100
SIZE AA

is 0
is 1
is 6 if AA is, for example, a 2 by 3
matrix

3.2.6 RESHAPE Operator

The RESHAPE operator creates a new data structure,
given the desired shape vector and value vector. The
reshape operator is dyadic; the shape vector is
written on the left and the value vector is written on
the right.

Format: vector RESHAPE array

The shape of the result of a reshape operation is
completely specified by left operand. Note that this
operand uniquely specifies the rank and size of the
result. In particular, a null vector used as the left
operand results in a scalar shape. A one-element
vector (or scalar) results in a vector shape. A vector
with two elements results in a matrix and so on.

The values in the resulting data structure are
completely specified by the right operand. If the
resulting shape requires fewer values than specified,

the extra values are ignored. That is, it is possible to
select only the first element of a vector, for example,
and turn it into a scalar. Ifthe resulting data structure
requires more values than specified, the existing
values are reused in a cyclic manner.

The shape of the right operand is ignored by the
reshape operator.

The values in the right operand are automatically
raveled.

Examples:

2 3 RESHAPE 1 2 3 4 5 6 is

3 2 RESHAPE 1 2 3 4 5 6 is

2 3 RESHAPE 1 2 3 4 is

2 3 RESHAPE 1 2 3 4 5 6 7 is

AA := 2 3 RESHAPE 1 2 is

6 RESHAPE AA is
1 RESHAPE AA is
"" RESHAPE AA is

3.2.7 IOTA Operator

123
456
1 2
34
56
1 2 3
412
1 2 3
456
1 2 1
212
12121 2
,1 (a vector)
1 (a scalar)

The IOTA operator creates a new data structure that
is a vector of integers. The iota operator requires a
single operand which may take various forms. If the
SIZE of the operand is one and the value is positive, a
vector of that length is created containing the first
SIZE positive integers. If the SIZE of the operand is
one and the value is zero, a null vector is created. If
the SIZE of the operand is one and the value is
negative, an error is detected since it is impossible to
have a resulting SIZE less than zero.

An index vector can be created with an initial value
other than one by using a vector operand with two
elements. In this case, the first value in the operand
vector defines the initial value in the resulting index
vector, and the second value in the operand defines
the last value in the resulting index vector. Either or
both values may be negative or zero, provided that the
second value is algebraically greater than, or equal
to, the first. This is required since the SIZE of the
resulting vector is determined by the difference in the
two values.

3-3

An index vector can be created with a specific initial
value and a specific delta value by using a vector
operand with three elements. In this case, the first
value defines the starting value, the second value
defines the step size, and the last value in the
operand defines the terminating value in the result.

Examples:

IOTA 5 is 1 234 5
IOTA ,5 is 1 234 5
IOTA 1 5 is 1 234 5
IOTA 1 1 5 is 1 234 5
IOTA 1 2 5 is 135
IOTA 0 is
IOTA 1 is ,1
IOTA 1 1 1 is , 1
IOTA-13is -10123

3.2.8 LENGTH Operator

The LENGTH operator is defined for list data
structures. The length of a list is the number of
elements in a list.

Format: LENGTH list

Examples: LENGTH 1 ;2;3 is 3

3.2.9 Equality Operator

The equality operator allows two data structures to
be tested for equality. The result of the comparison is
a logical scalar, TRUE or FALSE

Two structures are equal only if several tests are
satisfied. First, both structures must have the same
TYPE. If the TYPEOF structure A is NUMERIC and the
TYPEOF structure B is LIST, the two structures are
obviously not equal. Second, if both structures are
arrays of the same type, then both must have
identical SHAPEs; if both structures are lists, then
both must have identical LENGTHs. Finally, both
structures must have identical values in order for the
two structures to be equal.

Format: structurel = structure2

3.3 Concatenation Operators

Concatenation allows two data structures to be
merged together. Concatenation of array structured
operands, for example, allows another row or column

to be appended to a matrix. An alternate form of
concatenation allows list data structures to be built.
A common property in all forms of concatenation is
that the SIZE of the result is always the sum of the
SIZEs of the operands.

3.3.1 Array Concatenation Operator

The array concatenation operator allows two arrays
of conformable shape to be merged. The
concatenation of two vectors each having one data
value in order to create a vector with two data values
is the simplest example of concatenation.
Technically, the concatenation of two scalars to form
a two-element vector is an example of lamination
(see Section 3.8) since the result has a higher rank
tha operand.

Format: array, array2
array ,[axis] array2

The first rule for determining whether two operands
can be concatenated is that both operands must be of
the same mode. Both operands must be numeric or
both operands must be in character mode. The
internal representation of numeric data is not
important; automatic mode conversion is used where
appropriate. For example, concatenation of a
numeric integer scalar with a real vector results in a
real vector. However, concatenation of any number
with a character vector results in a DOMAIN ERROR.

The second rule for determining whether two
operands can be concatenated is that both operands
must either have the same rank or differ in rank by
one. The rank of the result is always the same as the
greater of the two operand ranks. An example of
concatenating two operands of the same rank is the
concatenation of two vectors. Because of the above
rule, it is also possible to concatenate a scalar with a
vector or a vector with a scalar and obtain a vector
result.

The third rule for determining whether two operands
can be concatenated is that the operands must be
conformable in shape. This rule is applicable when
one or both of the operands is of matrix rank or
higher. Although this rule sounds complicated, it is
basically a matter of common sense. Before defining
conformability, it is necessary to describe additional
information that may be required in concatenating
matrix or higher rank operands.

3-4

Concatenation requires an axis of application when
one or both of the operands are of matrix rank or
higher. The difficulty is illustrated in concatenating,
for example, two 2 by 2 matrices. The desired effect
could be the placement of the second operand along
the right side of the first operand. An equally valid
result would be the placement of the second operand
below the first in the resulting data structure. The
shape of the result can be either 4 rows by 2 columns
or 2 rows by 4 columns. To resolve this difficulty, an
axis of concatenation is required to indicate whether
the number of rows or the number of columns is to be
increased. In effect, the concatenation operator is
subscripted to provide this additional information. If
the axis of concatenation is omitted, the last
coordinate is assumed. Therefore, it is never
necessary to specify an axis of concatenation when
the highest rank involved is one.

The axis of concatenation is required if only one of the
operands is a matrix. If it is desired to concatenate a 2
by 2 matrix with a 2 element vector, the axis of
concatenation specifies whether the vector is
considered to be a row vector or a column vector.

Examples:

1, 2 is
"abc", "d" is
"A","bc" is

1 2
"abcd"
"Abc"

3.3.2 List Concatenation Operator

The list concatenation operator allows any two
operands to be merged into a list data structure.
Either or both operands can be a list or an array data
structure. No restrictions are placed on mode
compatibility or shape conformability.

The list concatenation is not intended to be used in
place of the array concatenation operator. There are
numerous operators which are defined for arrays but
which are not defined for lists. Lists are very useful in
situations where an array cannot be used. Perhaps
the standard example is treating a coordinate and a
line of text as a single data structure.

The symbol for list concatenation is the semicolon.
Multiple semicolons can be used in succession to
indicate a null list element. A very common use of a
list is to specify a subscript. In this case, the list is
enclosed in square brackets, and a null first element
or a null last element can be specified. (The subscript

operation is also an example of a case in which a null
list element is more than a simple "placeholder".)
The second common use of a list is as parameters to a
system routine. In this case, the list can optionally be
enclosed in braces. This form is optional because of
the frequency with which it is used in an interactive
system. This form would be required, however, if a
null first or last list element were to be passed. This
form can also be used to generate a null list.

Format: list; list2
list; list2

Examples:

AA := 100 200;"line of text"
BB := AA; "xyz"
CC := ;"line 1 <CR>";;"line 3<CR>"

3.4 Subscript Operators

The subscript operation allows a portion of a data
structure to be selected. The subscript operation can
be applied to select one or several elements of an
array data structure. An alternate form of subscript
allows one element of a list to be selected.

3.4.1 Array Subscript Operator

The array subscript operation allows a subarray to be
selected from an array data structure. The subscript
is written as a list with the length of the list matching
the rank of the data structure. In the simplest case,
each element of the list is a scalar and the result of
the subscript is a scalar. If V is a vector, then V[2]
selects the second element of V. If M is a matrix, then
M[2;4] selects the element located in the second row
and the fourth column.

The subscript operation is not limited to selection of a
single element. If any of the subscript terms is non
scalar, the result will be non-scalar. In fact, the rank
and shape of the result are completely determined by
the ranks and shapes of the subscript terms.

The subscript operation may be used on the left of an
assignment. The subscript in this case selects the
elements of the array to be updated.

Format: array [list]

The first rule for a legal subscript operation is that the
RANK of the array must equal the LENGTH of the
subscript list. (One consequence of this rule is that a

3-5

scalar can be subscripted by explicitly using a null
list. While this does not have great utility in a
programming mode, it is very useful in subsequent
sections of this manual.)

The SHAPE of the result of the subscript operation is
created by concatenating the SHAPEs of all items in
the subscript list. Therefore, the following conditions
also hold: the RANK of the result is the sum of the
RANKs of the subscript terms, and the SIZE of the
result is the product of the SIZEs of the subscript
terms.

All items in the subscript list must have a TYPE which
is NUMERIC or NULL.

An example of non-scalar subscripting will be
covered in detail. Consider a matrix, AA, created as
follows:

AA := 3 4 RESHAPE IOTA 9

Then, AA would be output, and may be pictured, as
follows:

1 234
5678
9 1 2 3

Now, consider a subscript reference AA[1 3; 1 2 4].
We can select the first and third rows 'and the first,
second, and fourth columns:

-1-2-3-4-

567 8

-9-1-2-3-

By selecting all intersections, we have the following:

1 2 4
913

Hence, the result is a 2 by 3 matrix. To re-examine the
original subscript operation, note that the first
subscript term has a SHAPE of ,2 and the second
term has a SHAPE of ,3. By the rules of
concatenation, the resulting SHAPE IS ,2 3.
Summing the RANKs of the terms gives 2, the
LENGTH of the result. Multiplying the SIZEs of the
subscript terms gives 6, the SIZE of the result.

For another example, consider the same matrix AA
defined above. Now consider a subscript operation
such as AA[2;4 3]. We know that the SHAPE of the
result is a one elementvector--becausethe SHAPE of
the scalar 2 is a null vector and the SHAPE of the
vector 4 3 is a two-element vector. So, the RANK of
the result is one and the SIZE is two. It should be clear
that the result is the vector 87. Notice thatthefourth
column was selected before the third column;
therefore, the 8 precedes the 7 in the result.

The subscript operation also features the capability of
selecting all values along a coordinate. In the matrix
example, all elements of a row or a column can be
selected. This capability is programmed by using a
null list element in the desired coordinate position. To
continue with the matrix AA from above, AA[2;] is
equivalent to AA[2; 1 2 3 4] since there are four
columns in AA. The result of this subscript operation
is then 5 6 7 8.

The elided subscript is convenient in addressing n by
2 matrices representing polygons. If PP is a 5 by 2
matrix representing a polygon, PP[l;] is the first row
of PP. A reference to PP[l;] returns the x and y values
for the first point in the polygon. Similarly, PP[5;] is
the last row in PP and the last point in the polygon.

3.4.2 List Subscript Operator

The list subscript operator allows a list element to be
selected from a list data structure.

Format: list {scalar}

3.5 Monadic Array Operators

A monadic array operator is defined to be one of a
special class of operators in the GPL II Programming
Language. While these operators are generally less
familiar than their counterparts, the dyadic array
operators, these operators are simpler and will be
discussed first. The best example of a monadic array
operator, for those who have FORTRAN experience,
is negation.

All monadic array operators share several common
properties. First, the SHAPE of the result of any
monadic array operation is the same as the SHAPE of
the operand. For example, a monadic array operator
applied to a scalar always returns a scalar result.

3-6

Second, monadic array operators can be applied only
to array data structures; a list data structure cannot
be manipulated with any of these operators. Finally,
monadic array operators are defined only for numeric
values.

3.5.1 Identify Operator

The identity operator allows a numeric array data
structure to be stored in the most compact internal
representation.

Format: + array

The identity operator is defined as a no operation in
the mathematical sense since execution of the
identity operator results in a data structure having
the same shape and data values as the operand.
While the identity operator exists primarily for the
sake of completeness, it does have the property of
reformatting an array into the most efficient internal
representation. The identity operator can be useful
when large arrays are manipulated.

The result of numerous operations in the GPL II
Programming Language are stored in real mode.
Examples include multiplication and division of
integer quantities. If the result of a division operation
is known to have integral values, the result can be
forced into integer mode with the identity operator.

Examples:

+1 is
1

+1 -3 is 1 -3

Error Conditions: The operand must be in numeric
mode.

3.5.2 Negation Operator

The negation operator is the monadic form of
subtraction. Given an array operand in numeric form,
execution of the negation operator results in a data
structure having the same shape as the operand and
each non-zero data value negated.

Format: - array

Negation is formally defined in terms of subtraction.
Negation is identical to subtracting the operand from
zero. If Z := -A, then SHAPE Z equals SHAPE A, and
Z[L] = a - A[L]

Examples:

- 5 is -5
- 1 3 is -1 -3
- 1 -3 is -1 3
-(-1 -3) is 1 3
- A is -2 3 -4 if A is 2 -3 4

Error Conditions: The operand must be a numeric
array.

CAUTION
The negation operator must be
distinguished from the negative sign,
particularly where non-scalar values
are concerned. The negation of the
scalar 5, shown above, is equivalent to
the constant minus 5. The negation of a
vector containing a plus 5 and a minus 5,
however, is not equivalent to a vector
containing two minus fives. While
misusing 'the negation operator for a
negative sign costs only an insignificant
amount of execution time when scalars
are involved, the same mistake with
vectors or arrays is more serious.

3.5.3 Signum Operator

The signum operator distinguishes among negative,
zero, and positive numbers. Given an array operand
in numeric form, execution of the signum operator
results in a data structure having the same shape as
the operand. Each data value in the result is either
plus one, zero, or minus one, according to whether
the corresponding value in the operand was positive,
zero, or negative, respectively.

Format: * array

The signum operator is formally defined as follows: If
Z := * A, then SHAPE Z equals SHAPE A, and

Z[l] is 1 if A[l] >
Z[l] is 0 if A[l] = 0
Z[l] is -1 if A[l] > a

Examples:

*10.5 is
*0 is
*-0.5 is
*(-1 08 3) is

1
o
-1
-1 0 1

3-7

Error Conditions: The operand must be a numeric
array.

3.5.4 Reciprocal Operator

The reciprocal operator is the monadic form of
division. Given an array operand in numeric form,
execution of the reciprocal operator results in a data
structure having the same shape. Each data value in
the result is the reciprocal of the corresponding data
value in the operand.

Format: % array

The reciprocal operation is formally defined in terms
of division. If Z := % A, then SHAPE Z equals SHAPE A,
and Z[L] = 1 % A[l]

Examples:

%5 is .2
%.25 is 4.
%1 is 1,

Error Conditions: The operand must be a numeric
scalar or array. All values in the operand must have a
defined value for the reciprocal.

If a zero operand value is found, a ZERO DIVISOR
error occurs (this is a non-fatal error; the
corresponding value in the result is set to the largest
possible value, and execution continues.) Since the
range of real numbers is not symmetric with respect
to zero, a FLOATING POINT OVERFLOW error is also
possible with the reciprocal operation.

3.5.5 Absolute Value Operator

The absolute value operator returns the absolute
value of a number.

Format: ASS array

The absolute value operator is formally defined as
follows: If Z := ASS A, then SHAPE Z equals SHAPE A,
and

Z[l] = A[l] if A[l] >= a
Z[l] = -A[l] if A[l] < a

Examples:

ASS 2.5 is
ASS -3 is
ASS 5 0 -1 00 is

2.5
3
50100

Error Conditions: The operand must be a numeric
array.

3.5.6 Floor Operator

The floor operation returns the largest integral value
that is not greater than the specified number. The
floor operator is also known as the entier function.

Format: FLOOR array

The FLOOR operator is defined as follows: If Z
:=FLOOR A, then, SHAPE Z equals SHAPE A, and Z[L]
= A[L] less any fractional part of A.

The floor operation historically has been used as the
basis for a rounding operation. For any number,
adding 0.5 to the number, and taking the floor,
rounds the number to the nearest integral value. For
example, the floor of 1.1 + 0.5 is 1 while the floor of
1.6 + 0.5 is 2. Note that the greatest integer is defined
in an algebraic sense. For example, the floor of -0.5 is
-1 while the floor of 0.5 is O.

Examples:

FLOOR 1 is
FLOOR 1.6 is
FLOOR 2.1 is
FLOOR -1.6 is
FLOOR -2. 1 is

1
1
2
-2
-3

Error Conditions: The operand must be a numeric
array.

Note: Fuzz is used in taking the floor. That is, the
FLOOR of 2.99999999999999 is taken as 3.

3.5.7 Ceiling Operator

The ceiling operator returns the smallest integral
value that is not less than the specified number.

Format: CEILING array

The ceiling operator is formally defined as follows: If Z
:= CEILING A, then SHAPE Z = SHAPE A, and Z[L] =
A[L] if A[L] has no fractional part, A[L] + 1 otherwise.

3-8

3.5.8 Exponential Operator

The exponential operator raises the constant e to the
specified power. The constant e is defined as the base
of the natural logarithms.

Format: EXP array

Examples:

EXP 1 is
EXP 2 is

2.7182818284590
7.3890560989306

3.5.9 Natural Logarithm Operator

The natural logarithm operator returns the logarithm
of the operand to the base e.

Format: LN array

Examples:

LN 2 is 0.69314718055995

3.5.10 Pi Operator

The pi operator returns the specified multiple of pi.

Format: PI array

The pi operator is formally defined to be the operand
times the constant pi.

The PI operator is especially convenient in interactive
mode since PI 1 returns the value of pi to 16+ decimal
places.

Examples:

PI 1 is
PI %180 is

3.1415926535898
0.017453292519943

3.5.11 Sine Operator

The sine operator returns the trigonmetric sine of an
angle specified in degrees.

Format: SIN array

Examples:

SIN O. is
SIN 30. is
SIN 45. is
SIN 60. is
SIN 90. is

O.
0.5
0.70710678118655
0.86602540378444
0.99999999999999995

3.5.12 Cosine Operator

The cosine operator returns the cosine of an angle
specified in degrees.

Format: COS array

Examples:

COS O. is
COS 60. is
COS 90. is

0.99999999999999995
0.5
O.

3.5. 13 Tangent Operator

The tangent operator returns the tangent of an angle
specified in degrees.

Format: TAN array

The tangent function is not defined for any multiple of
90 degrees. Computing the tangent of 90 degrees
results in a FLOATING POINT OVERFLOW warning
message. The largest possible value is used in this
case and execution continues.

Examples:

TAN O. is
TAN 45. is

O.
1.

3.5.14 Arctangent Operator

The arctangent operator returns the arctangent of an
angle with the result specified in degrees.

Format: ARCTAN array

The arctangent returns a result in the range of -90
degrees to +90 degrees.

3-9

Examples:

ARCTAN -1.7320508075689 is
ARCTAN O. is
ARCTAN 1. is
ARCTAN 3. is

3.5.15 NOT Operator

-60.
O.
45.

71.565051177078

The NOT operator returns the ones complement of
the operand.

Format: NOT array

The NOT operator is frequently used in Boolean
operations.

Examples:

NOT 1 is -2

3.6 Dyadic Array Operators

A dyadic array operator is defined to be one of a
special class of operators in the GPL II Programming
Language. The familiar operations of addition,
subtraction, multiplication, and division are all
examples of dyadic array operators.

A dyadic array operator is not limited to scalar
operands. Two matrices, each having 3 rows and 2
columns, can be added, value by value, by
programming a single addition operation. Further
extensions common to all dyadic array operators will
be defined in this section.

Both operands specified in a dyadic array operation
must have comformable shapes. If both operands
have the same SHAPE vector, the operands are
conformable by definition. In particular, two scalar
operands are always conformable. The shape of the
result of such an operation matches the shape of the
operands.

3.6.1 Addition Operator

The addition operator returns the sum of two
operands.

Examples:

2 + 2 is
-3 + 8 is
1 + -10 is
246+ 1 -3 5 is

4.
5.
-9.
3. 1. 11.

3.6.2 Subtraction Operator

The subtraction operator returns the difference of
two operands.

Examples:

2 - 2 is
-3 - 8 is
1 3 5 - 2 1 0 is

O.
-11.
-1. 2. 5.

Note that care must be used in visually distinguishing
the subtraction operator from a negative sign. The
rule is that a minus sign followed immediately by a
digit is interpreted as a negative sign. A minus sign
followed by some other character followed by a
number or a variable is interpreted as a subtraction
operator or a negation operator according to whether
or not anything preceeds the minus sign.

3.6.3 Multiplication Operator

The multiplication operator returns the product of
two operands.

Examples:

2 * 2 is
5 * 10 is

4.
50.

3.6.4 Division Operator

The division operator returns the quotient of two
operands.

Examples:

2 % 2 is
3 % 7 is

1 .
0.42857142857143

3-10

3.6.5 Modulo Operator

The modulo operator returns the remainder of the
division of two operands.

Examples:

5 MOD 2 is
5.2 MOD 1.5 is

1.
0.7

3.6.6 Minimum Operator

The minimum operator returns the lesser of two
operands.

Examples:

3 MIN 7 is
7 MIN 3 is

3
3

3.6.7 Maximum Operator

The maximum operator returns the greater of two
operands.

Examples:

3 MAX 7 is
7 MAX 3 is

3.6.8 Power Operator

7
7

The power operator returns the left operand to the
specified power.

Examples:

2 POWER 2 is
2 POWER .5 is

4.
1.414

3.6.9 Logarithm Operator

The logarithm operator returns the logarithm of the
right operand to the base specified by the left
operand.

Examples:

10 LOG BASE 2 is
2 LOGBASE 32 is

0.30103 ...
5.

3.7 Array Extension

In the preceding section, it was said that the
operands for array operators are conformable if the
operands have identical shapes.

A second way in which operands can be conformable
is if one of the operands has a SIZE of one. The
operand that has an element count of one is
effectively extended to match the shape of the other
operand. This operand is typically a scalar, so this is
called scalar extension. A vector or matrix having one
element is also extendable, however. If both
operands have a SIZE of one but different SHAPE
vectors, the operand having the lowest RANK is
extended. The shape of the result of such an
operation matches the shape of the operand having
the greater rank.

Array extension along a specified coordinate can also
be programmed. In this case, the ranks must differ by
one and the shape of the operand having the higher
rank, modified to exclude the value for the specified
coordinate, must match the shape of the other
operand.

3-11

To illustrate the various ways in which dyadic array
operators can be extended, consider the arrays
created by:

MM := 3 2 RESHAPE IOTA 6
NN := 3 2 RESHAPE -1 5 8 3 9 6
VV := 1020
SS := 5
TT := 3

The various forms of extension will use the addition
operator.

SS + IT is 8
MM + NN is

MM + SS is

MM + [1] VV is

o 7
11 7
14 12
6 7
8 9

10 11
1122
12 23
13 24

SECTION 4
STATEMENTS

The term statement is used to refer to a logical
construction in GPL II Programming Language. An
executable statement is a statement which contains
one or more operators. (Some statements, e.g.,
compiler directives or remarks, do not generate
object codes.) Examples of executable statements
discussed in this chapter include the assignment
statement, and the do statement.

Any executable statement can be labeled. A
statement label consists of a name and a colon. The
rules for the statement label nam'e are the same as
those used in defining variable names. The following
are examples of labeled statements:

ALPHA: AA:= 1
BETA: GO TO ALPHA

The term block is used to refer to a sequence of
statements that can be used as well-defined points in
the program. One form of conditional statement
defined below specifies that if the result of a certain
expression is true, a block of statements is to be
executed. Since blocks are used in ther situations as
well, the general rules for blocks will be discussed
here.

A block can contain any number of statements,
specifically including the case of a single statement.
Anywhere a block is called for, a single statement is
sufficient. Any type of executable statement can be
programmed in a block. This implies, of course, that
blocks can be nested. A DO statement block can
contain another DO statement, and so on. Any
statement in the block can be labeled; however, a
label in a block can be referenced only from within
the current block or from a block at a subordinate
level. That is, a branch out of a block can be
programmed but a branch into a block is illegal. In
general, a branch into a DO statement block where
the execution ofthe loop is controlled by a FOR clause
would result, if permitted by the compiler, in an
undefined loop control variable. (If a branch out of a
loop is programmed, the value of the loop control
variable does remain defined in GPL II.)

While the use of a block is always implicit in the
context of a program, e.g., DO block ENDO, explicit
block declaration can also be programmed.
Delimiting a block with BEGIN and END keywords

4-1

may seem more natural to some programmers who
have ALGOL! experience. The programmer can
choose to declare a block at any point in the program.
Whenever a block is declared, however, the
restriction against branching into the middle of the
block is always enforced.

4.1 Assignment Statements

An assignment statement is used to associate a data
structure with a variable name or to reassign
selected data values in an existing data structure.
The assignment statement consists of either a
variable name or a subscripted variable name, an
assignment symbol, and an expression. The symbol
for assignment can be either a colon followed
immediately by an equal sign, or two less-than signs
in succession. The first symbol has the advantage of
following the ALGOL precedent, while the second
symbol is easier to use in interactive mode. The first
form of assignment, using the := symbol, is the more
general case in that the space required for the result
is allocated independently of any previous space
reserved for that variable. The second form of
assignment, using the « symbol, specifies that the
value to be assigned to the variable must be
conformable with the previous value. This form, if
consistently used in interactive mode, insures that,
for example, a large data array will not be destroyed
inadvertently by using the same name for a scratch
variable.

In the following discussion, assignment is referred to
as an operator. This is done to acknowledge the fact
that mUltiple assignments can be done in a single
statement. In effect, assignment is an operation that
has the lowest operator precedence.

4.1.1 Variable Assignment

A variable assignment statement consists of a
variable name, an assignment symbol, and an
expression. The assignment symbol is frequently
read as becomes, that is, the variable becomes the
value and shape of the expression on the right-hand
side. Any previous value associated with a variable is
erased. (The previous statement applies within the
execution of any given program or function. This will
be re-examined in the light of local and global
variables in the next section.)

Format: var:= expression

There are no restrictions on the expression on the
right-hand side of an assignment operation. The
TYPE of the expression can be NUMERIC,
CHARACTER, NULL, or LIST.

Consider the following simple assignment
statement:

AA:= 1

In this case, the expression is the scalar constant
one. So, the value of AA becomes the scalar constant
one. A value may previously have been assigned to
AA; if so, the previous value is lost.

A previous value of a variable is erased as part of the
function of the assignment operation. For example:

AA:= AA + 1

In this statement, the addition operator is executed
first since it has higher precedence than assignment.
Therefore, whatever value AA has is increased by
one to obtain a value for the expression. The new
value is assigned to the variable AA and the old value
is discarded. While this explanation has tacitly
assumed that AA was a scalar, the statement is
equally valid if AA is a vector, a matrix, or an array of
any rank so long as the TYPE of AA is NUMERIC. (Note
that these restrictions result from using the addition
operator; they are not limitations on th~ assignment
operation.)

Examples:

Assignment Form of the result

AA := 1 + 2 Scalar
BB := 2 3 4 5 Vector
CC := 2 3 RESHAPE 1 2 Matrix
DO := 10 20; "text" List

4. 1.2 Replacement Assignment

A replacement assignment statement consists of a
variable name, an assignment symbol, and an
expression. Any previous value associated with the
variable is replaced, provided that the new value
conforms in RANK and SHAPE with the old value.
This form of assignment is intended for both
programmed and interactive use. The replacement
assignment is more efficient in programs since the

4-2

same space used by the old value of the variable is
reused. The replacement assignment is useful in
interactive mode since it protects against data loss
while debugging, and it is slightly easier to type.

Format: var« expression

Replacement assignment causes all elements in the
data structure to be replaced with the elements in a
conformable data structure. Replacement
assignment does not provide extension in the same
way as the dyadic array operators or subscripted
assignments do. If AA is a vector of 10 elements, the
result of any expression assigned to AA must also be
a vector of 10 elements. That is, AA « IOTA 1 0 is
legal, but AA « 1 is not. A further restriction is that
the internal format used for numeric data must be
compatible in order for the same space to be used. If
the named data structure contains elements in
integer format, then replacement elements must
have integral values.

4.1.3 Subscripted Assignment

A subscripted assignment consists of a variable
name, a subscript specification, an assignment
symbol, and an expression. Either the replacement
assignment symbol or the more general variable
assignment symbol can be used.

The subscript operation has been defined and
illustrated previously in terms of fetching specific
elements of an array or a list for further processing. If
the subscript operatin is considered to be a general
selection operator, it can be used to select the
specific elements of an array or a list to be replaced.

For example, assume that we have a vector AA with
the fifth element value of two, that is, AA[5] = 2. To
replace just that element, it is natural to write AA[5]
« 1 O. This statement updates the fifth element value
without affecting the remaining elements in AA.

As mentioned above, the assignment operator takes
on many of the properties of a dyadic array operator.
The previous example was that multiple assignments
could be used in a statement. For a subscripted
assignment, the array extension properties of dyadic
array operators also hold. The number of terms
selected for update must be conformable with the
result of the expression following the same rules. In
particular, if a subscripted assignment selects a
vector and the result of the expression is a scalar, the
scalar will be extended to match the vector. A simple

example is setting all elements of a vector to zero.
Using the elided subscript form, this is programmed
as AA[]« O.

Subscripted assignment will result in the mode of the
variable being converted to an equivalent form if
necessary. Given a vector of integers, replacing one
element of the vector with a real number will result in
the vector being converted to real format. There is no
side effect of truncation as is typical of most
computer languages.

4.2 Branch Statement

As noted above, any GPL II statement can be labeled.
A label is required to receive a branch.

A branch statement consists of the keyword GOTO
and a statement label. Execution of a branch
statement causes control to be diverted to the
specified statement.

The use of the branch statement is a matter of
personal taste. It is recommended, however, that use
of the branch statement should be avoided where
possible. (Some recently developed programming
languages do not even define. a branch statement.
We do not go that far, since elimination of the branch
statement does not guarantee "structured
programming".)

4.3 Conditional Statement

A conditional statement allows a block of statements
to be executed based on the result of executing an
expression.

4.3.1 IF Statement

The simplest form of a conditional statement consists
of an IF-clause, a block, and the ENDIF keyword. The
IF-clause consists of the keyword IF followed by an
expression. If execution of the expression results in a
non-zero value, the associated block is executed. If
the result of the expression is non-scalar, only the
fi~st numeric value from the raveled result is tested.

Format: IF expression THEN block ENDIF

The IF statement may be extended to include two
mutually exclusive cases, as follows:

Format: IF expression THEN block ELSE
block ENDIF

4-3

In this form, the first block is executed if, and only if,
the first value of the expression result is non-zero.
Otherwise, the second block is executed.

The IF statement can be further extended to any
number of independent cases, as follows:

Format: IF expression THEN block ELiF
expression THEN block ENDIF

The word ELiF is used as a contraction for the words
ELSE IF. In this form, the first block is executed if, and
only if, the first value of the expression result is non
zero. This is no different from any other IF-clause. In
the event that the first block is· not executed,
however, the ELiF-clause provides another test to
determine whether or not the second block is to be
executed. Multiple ELiF-ciauses can be programmed
if desired. Further, an ELSE block can be used with
ELiF-ciauses.

The expressions used in a sequence of ELiF-ciauses
need not be mutually exclusive. The expressions are
simple evaluated in the order programmed, and the
first successful condition causes the associated block
to be executed. All ofthe clauses are considered to be
at the same level of nesting. Consider the following
examples:

IF AA < 10 THEN BB := 5 ENDIF
IF (AA >= 10) AND (AA < 20) THEN BB := 10 ENDIF
IF AA >= 20 THEN BB:= 15 ENDIF

IF AA < 20 THEN
IF AA < 10 THEN BB := 5
ELSE BB := 10
ENDIF

ELSE BB:= 15
ENDIF

IF AA < 10 THEN BB := 5
ELiF AA < 20 THEN BS := 10
ELSE BB:= 15
ENDIF

All three examples are equivalent and set BB to 5,10,
or 15 according to the value of AA. The third form is
the most efficient and, more important, is easier to
read.

4.3.2 SWITCH Statement

A different approach to conditional execution is
provided by the SWITCH statement. This allows any

number of mutually exclusive conditions to be
processed with one logical statement.

The SWITCH statement consists of the keyword
SWITCH followed by an expression, the keyword OF,
a case block, and the keyboard ENDSWITCH. The
case block consists of as many blocks as desired
where each block is prefixed by an constant and a
colon.

SWITCH "ABCD" INDEXOF " OF
CASE 1: JJ := "A"
CASE 2: JJ := "B"
CASE 3: JJ := "c"
CASE 4: JJ := "0"

JJ := "NONE OF THE ABOVE"
ENDSWITCH

The constant which identifies the case is not
restricted to numeric or scalar values. For example,
the character vector constant "ABC" is a legal case
identifier. One use of vector numeric constants is
shown in the following example. Note that the form
"" is a convenient method of specifying a null vector.

SWITCH SHAPE MAT OF
CASE '''':IX IS NULL"
CASE 2:
CASE 1 2:
CASE 5 2:

ENDIF
ENDSWITCH

"MATRIX REPRESENTS A POINT"
IF MAT[1;] = MAT[5;] THEN
"MATRIX IS A FOUR SIDED
POLYGON"

4.4 DO Statements

The DO statement allows a block to be executed
iteratively. The various forms include:

FOR variable RANGE vector DO block ENDDO
WHILE expression DO block ENDDO
DO block UNTIL expression ENDDO
DO block ENDDO

Note that the FOR-clause performs a special kind of
assignment where the control variable is always a
scalar which takes on successive values from a
vector. FOR variables must be declared as local

4-4

variables in order to guarantee that the loop control is
not disturbed by subroutine calls.

Example:

FOR I RANGE IOTA 10 DO AA[I] := BB[I] ENDDO

(Examples in this section are for illustration only and
may not be the most efficient method of
implementation. The last example, in particular,
should be programmed with the equivalent form,
AA[IOT A 10] := BB[IOTA 10].)

The RANGE vector in a FOR-clause can be the result
of any expression that evaluates to produce a
numeric vector. The following are equivalent:

FOR I RANGE 1 2345678 910DObiock ENDDO
FOR I RANGE 1,2,3,4,5,6,7,8,9,10 DO block ENDDO
FOR I RANGE IOTA 10 DO block ENDDO

The position of a clause with respect to the body of
the DO statement indicates when the clause will be
executed. If a FOR clause is used, it must be first
since the FOR vector is always created once before
the loop begins. A WHILE clause, positioned before
the body of the loop, is executed before each
iteration. An UNTIL clause, positioned after the body
of the loop, is executed at the conclusion of each
iteration.

Any number of conditional clauses may be used to
control a DO loop. If no clauses are used, we have the
last form shown above. In this case, it is presumed
that a branch statement exists somewhere in the
loop, since the loop shown will execute endlessly. In
case more than one termination criteria is
programmed, the loop executes only until the first
criterion is satisfied. Consider the following loop:

DONE := 0
FOR I RANGE IOTA 10 WHILE NOT DONE DO

AA[I] := -AA[I]
IF AA[I] < 0 THEN

DONE := 1
ENDDO

The above loop will negate successive elements of A
until either 10 elements have been negated or a
negated element is less than zero.

SECTION 5
SUBROUTINES

The term subroutine is used to refer to a self
contained group of statements in the GPL II
Programming Language. While interactive input
consists of a single statement, a subroutine contains
any number of locially related statements which
implement a desired capability. The main
significiance of subroutines is that a subroutine is the
measure of how many statements are compiled at
anyone time. Conversely, all subroutines are
independently compiled.

Subroutines can be categorized according to whether
or not the subroutine returns a result and whether or
not the subroutine accepts any parameters. The
question of whether or not a result is returned has
historically been the more important distinction.
Subroutines which do return a result are called
functions, and subroutines which do not return a
result are called procedures. The term subroutine is
used in a general sense in this manual. The terms
function and procedure are used only where the
existence of a result is important.

The question of how many parameters are accepted
by a subroutine is resolved, where important, by the
use of a qualifying adjective. A subroutine is said to
be niladic if it accepts no parameters. A monadic
subroutine accepts one parameter. (That parameter
may be a list of any number of items, all addressable
through subscripting.) A dyadic subroutine accepts
two parameters.

The term program is generally accepted to mean a top
level procedure. In the GPL II Programming
Language, any function or procedure can be invoked
while in interactive mode and serve as the main
program. The same subroutine can also be called by
another subroutine. Therefore, the meaning of
program is not inherent but merely a consequence of
usage. When one subroutine calls another, it will be
convenient to use the term program to refer to the
calling subroutine. Program is a relative definition in
that the subroutine can, in turn, be referred to as a
program by calling another subroutine.

There are several features common to all
subroutines. Any subroutine definition must include
two distinct kinds of information. Declaration
statements are used to define the external

5-1

environment of a subroutine. Executable statements
are used to define the algorithm to be executed by the
subroutine.

There are several kinds of declarations that may be
made in a subroutine. The header statement gives
the subroutine a name and defines how the
subroutine is to be called. External subroutine
declarations define what subroutines are called by
the subroutine or program in question. Other
declarations define what variables are referenced by
the subroutine and what kind of reference is
required.

The declarations serve the purpose of defining
names that are referenced in the subroutine. All
names in a subroutine must be declared before they
can be used. Consequently, all declarations are
typically programmed before any executable
statements in the subroutine.

The body of any subroutine can include any of the
executable statements discussed in Section 3. (In
fact, the branch statement is the one case that really
makes sense only in terms of a subroutine.)

The definition of a subroutine is terminated with the
ENDSUB keyword. Executi6n of a subroutine is
terminated by reaching the end of the definition.

5.1 Subroutine Declaration

A subroutine can be defined to serve any of
numerous purposes. Subroutines can be used to
construct new GDS II commands in terms of existing
primitive functions built into the system. In addition
to extending the system, the user can also effectively
extend the definition of the GPL II Language. With
minor qualifications, the user can define monadic or
dyadic functions which extend the GPL II set of
operators. Unlike many of the built-in functions,
however, user-defined subroutines must be either
monadic or dyadic. The same function cannot be used
in multiple ways like the addition operator can. Also,
user-defined functions cannot be used with
reduction, inner product, or outer product
formulations.

The header statement defines the name given to a
subroutine, defines whether the subroutine is a
procedure or a function, and defines what
parameters are accepted by the subroutine. The
header statement must be the first line of the
subroutine.

There are six possible header statements:

NILADIC PROCEDURE name
MONADIC PROCEDURE name arg
DYADIC PROCEDURE arg1 name arg2
NILADIC FUNCTION result := name
MONADIC FUNCTION result := name arg
DYADIC FUNCTION result := arg1 name arg2

The first two words of the header line supply all
information needed to call the subroutine. That is, a
subroutine declared to be a NILADIC FUNCTION
requires no argument and returns a result.
(Remember that neither an argument value nor the
result value is limited to scalars in the GPL II
Programming Language.) The remainder of the
header statement includes the same information in a
more graphic form in that this represents a pattern of
how the subroutine is actually called. The pattern
also defines the names to be used for any input
parameters and any function result.

The following example is a complete subroutine. All
that it does is an addition; it merely serves to give the
addition symbol a name.

DYADIC FUNCTION Z := A ADD B
LOCAL VARIABLE A;B;Z
Z := A + B
ENDSUB

The association of actual parameters with the
dummy parameters A and B will be discussed in a
subsequent section.

5.2 External Subroutine Declaration

A subroutine can reference any number of external
subroutines so long as all such subroutines are
declared. Since all subroutines are compiled
independently, an external subroutine declaration is
necessary to define the required syntax for the
subroutine call.

5-2

An external subroutine declaration consists of the
first two words of the desired subroutine's header
and the subroutine name. Therefore, there are six
basic possibilities:

EXTERNAL NILADIC PROCEDURE NAME
EXTERNAL MONADIC PROCEDURE NAME
EXTERNAL DYADIC PROCEDURE NAME
EXTERNAL NILADIC FUNCTION NAME
EXTERNAL MONADIC FUNCTION NAME
EXTERNAL DYADIC FUNCTION NAME

For convenience, multiple external subroutines of
the same type can be declared in one statement with
the names separated by semicolons. For example:

EXTERNAL DYADIC FUNCTION ADD; SUBTRACT

is equivalent to:

EXTERNAL DYADIC FUNCTION ADD
EXTERNAL DYADIC FUNCTION SUBTRACT

Note that no parameter names are mentioned in an
external subroutine declaration. The dummy
parameter names used by the called subroutine are
irrelevant to the caller.

5.3 Local Variable Declaration

A subroutine can declare variables to be local (as
opposed to global or external, since a declaration of
some type is required). For the sake of discussion,
assume that subroutine QQXV has declared variable
Q to be a local variable.

NILADIC PROCEDURE QQXV
LOCAL Q
Q:= 1
END

Now, we need another subroutine, say ZZ, which
calls QQXV. In this example, we will refer to ZZ as the
program and QQXV as the subroutine.

EXTERNAL PROCEDURE QQXV

Q:= 3
QQXV
IF Q <> 3 THEN "ERROR"

The program ZZ assigns a value to the variable named
Q. When QQXV is called and it is determined that Q is
a local variable, the previous value of Q is stacked and
Q is reinitialized to have no value. That is,
immediately after QQXV gains control, TYPE Q
EQUALS "UNDEFINED". QQXVassigns Q to havethe
value 1 and exits. Whenever a subroutine exit is
performed, all values associated with local variables
are discarded and the previous values, if any, are
restored. As far as program ZZ is concerned, the
value of Q is the same as before and the word
"ERROR" will never be output. The capabi lity of
declaring local variables allows a subroutine to be
programmed that will not affect any variables
declared by any programs that use the subroutine.
The absence of "side effects" is a feature that greatly
simplifies program development and maintenance.
QQXV is an unusual example in that its execution has
no effect at all.

The format of a local variable declaration is:

LOCAL name1; name2; ... ;namen

5.4 Global Variable Declaration

A subroutine can declare variables to be global (as
opposed to local or external). A global variable
declaration in a subroutine causes a new instance of
that variable to be created with any previous value
stacked when the subroutine is called. Unlike local
variables, however, a global variable declaration
allows the variable to be accessed by lower level
subroutines which declare the variable to be
external.

The format of a global variable declaration is:

GLOBAL name; name1 ; ... ;namen

5-3

5.5 External Variable Declaration

A subroutine can declare variables to be external (as
opposed to global or local). An external variable
declaration in a subroutine allows a global variable
declared by the calling program to be referenced by
the same name.

The format of an external variable declaration is:

EXTERNAL name; name1 ; ... ;namen

5.6 Parameter Passing

A parameter is a variable named in the header
statement. Parameters are virtually always declared
as local variables. Parameters cannot be declared as
external variables.

No parameters are allowed in a call to a niladic,
subroutine. One parameter is required to be present
in a call to a monadic subroutine. Two parameters are
required in a call to a dyadic subroutine. For monadic
or dyadic calls, the parameters must be array data
structures. A parameter may be a list. Each item is
then accessible within the list by subscripting. The
declaration of a subroutine with a list of parameters
is:

EXTERNAL MONADIC FUNCTION ATTEMPT
CALLING format is:

QQ := ATTEMPT VV;XX;WW

The "A TIEMPT" subroutine is:

MONADIC FUNCTION QQ := ATIEMPT STUFF
LOCAL STUFF;QQ;VV;XX;WW
VV := STUFF[1]
XX := STUFF[2]
WW := STUFF[3]

All parameters are passed by value.

For the sake of discussion, assume that subroutine
ADD shown above has declared variable Zto be local.
When the ADD subroutine is called, a variable named

Z may already exist. If so, the value of Z is stacked and
Z is reinitialized to have no value. That is, its type
becomes "UNDEFINED". The ADD subroutine can
assign a value to Z during the course of its execution.
In fact, if Z has been identified as the name for the
function result, Z must have a value assigned by the
ADD subroutine. In this case. the value of Z becomes
the value of the ADD function when ADD returns to
its caller. Any previous val ue of Z is restored as part of
the subroutine exit mechanism.

5-4

5.7 ENDSUB

Execution of a subroutine is terminated when the
ENDSUB statement is encountered. If the subroutine
is a function, the variable named for the function
result must have had a value assigned at some point
during the execution of the function. Given that a
value has been assigned to the function result
variable, the function result can be reassigned if
desired.

	0000
	0001
	001
	002
	003
	1-01
	1-02
	1-03
	2-01
	2-02
	2-03
	2-04
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	4-01
	4-02
	4-03
	4-04
	5-01
	5-02
	5-03
	5-04

