-

-

Burroughs @

B 90 /B 900/CP 9500
B 1800/B 1900

Computer

Management

Systems
(CMS)

System Software

OPERATION GUIDE

COPYRIGHT © 1980, BURROUGHS MACHINES LIMITED, Hounslow, England
COPYRIGHT © 1980, BURROUGHS CORPORATION, Detroit, Michigan 48232

PRICED ITEM /

Printed in U.S. America

November 1980 2015228

N

Burroughs
ROBERT L. OLSE

S TR, AE\:,‘?A“::!"
! TERRITGRY MANAGIR

e T AR DA Qi
555 BEACH BLVDL,

Jat Nt b %
JACKSONYILLE,

Z,

B 90/B 900/CP 9500
B1800/B 1900
Computer
Management
Systems
(CMS)
System Software

OPERATION GUIDE

COPYRIGHT © 1981, BURROUGHS MACHINES LIMITED, Hounslow, England
COPYRIGHT © 1981, BURROUGHS CORPORATION, Detroit, Michigan, 48232

PRICED ITEM

_/

E
F.E. Dist. Code

Printed in U.S. America

Cover Revised For

October 1981

Library Binder 702
Form 2015228-003

Burroughs believes that the software described in this
document is accurate and reliable. and much care has
been taken in its preparation. However. no responsibility
financial or otherwise. is accepted for any consequences
arising out of use of this software material. including loss
of profit. Indirect. special. or consequential damages.
There are no warranties other than those expressly set
forth in the PROGRAM PRODUCTS LICENSE AND
SERVICE AGREEMENT.

The Customer should exercise care to assure that use
of the software material will be in full compliance with
the laws. rules. and regulations of the jurisdictions with
respect to which it is used.

The information contained herein is subject to change
without notice. Revisions may be issued from time to
time to advise of such changes and/or additions.

This edition includes the information released under the following:

PCN 2015228-001 (November 30, 1980)
PCN 2015228-002 (January 1981)
PCN 2015228-003 (October 1981)

Correspondence regarding this publication should be forwarded using the
Remarks form at the back of the manual. or may be addressed directly to
TIO Europe Documentation. Burroughs Machines Limited. Cumbernauld.
Glasgow. Scotland G68 OBN

ii

TABLE OF CONTENTS

Section Page Section Page
1 INTRODUCTION SF (Substitute Disk File) 3-23
The CMS Concept 1-1 ST (Temporarily Suspend a Running
Software Release Levels 1-3 Program) 3-24
Software Patches 1-3 SV (Save Peripheral) 3-25
Software Support 1-3 VL (Vertical Format on Printer) 3-26
To the Reader 1-3
: 4 CMS-COMMON UTILITIES
2 BASIC CMS OPERATION Introduction 4-—1
Introduction 21 Star Files 4-1
Peripherals 2-1 SYS-SUPERUTL 4-3
System and User Disks 2-2 SYSLANGUAGE 4-4
Disk Format 2-2 Pseudo-packs 4—4
Disk Initialization 2-2 Logging 4-5
Disk Files 2-3 Common Utility Output Messages 4-5
Disk File Names 2-3 ADD (Add Files from Library Tape to
Disk File Group Names 2—-4 Disk) 4-7
Disk Directory 2-4 AMEND (Disk File Amending) 4-9
Indexed Files 2-5 BF 4-13
Dual Pack Files 2-5 CH (Change File Name) 4-15
Magnetic Tape File Names 2-7 CHECKADUMP (Compare Library
Printer Files 2-7 Tape with Disk) 4-17
Other Peripherals 2-17 CHECK.DISK (Check all Sectors of a
Programs 27 Disk) 4-19
Executing Programs 2-7 COMPARE (Compare Files) 4-21
Intrinsics 2-8 Additional Capabilites 4-22
Mix Numbers 2-9 COPY (File Copy) 4-26
Output Messages 2-9 Copying Keyfiles 4-26
Format Diagrams 2-10 Additional Capabilites 4-217
Railroad Diagrams 2—11 CP (Compute) 4-36
CREATE (Create Disk Files) 4-38
3 CMS—COMMON INTRINSICS ‘ DA (Disk Analysis) 443
Introduction 3-1 Disk Mode 4-43
AD (Assign Peripheral Device) 3-2 END 4-43
AX (Accept a message for a program) 3-3 LABEL 4-43
CL (Clear Peripheral) 3-4 DFH 4-43
DC (Data Communications operator AVAIL.TABLE 4—-44
input) 3-5 NAME.LIST 4-44
DP (Discontinue and Dump) 3-6 READ 4-44
DS (Discontinue Program) 3-7 DISPLAY 4-45
DT (Systems Date and Time) 3-8 ' KFPB 4-45
FD (Form Define) 3-10 PPIT 445
GO (Restart a Stopped Program) 3-11 File Mode 4-45
MX (Display Current Mix) 3-12 General Notes 4—-45
OL (Request for Status Information Abbreviations 4-46
of Peripherals) 3-16 DCR (Disk Confidence Routine) 448
PG (Purge Tape) 3-18 Operating Instructions 4—49
PO (Power Off a disk) 3-19 DD (Disk Dump) 4-63
PR (Assign Program Priority) 3-21 Store Function 4-63
RY (Ready a Peripheral) 3-22 Restore Function 4-63

2015228003 v

Section

4

TABLE OF CONTENTS (Continued)

DSKUTL
Format 1, RF
Format 2, LIST
Format 3, COPY
Recommendations for Read/
Write Errors
DUMP (Dump Files to Library Tape
from Disk)
DUMPADISK (Disk Dump)
Format 1, PRINT.DIR
Format 2, DUMP or UNLOAD
Format 3, ADD or LOAD
Error Recovery
ECMA.LD (Load/Dump of ECMA
Tape Files)
Basic Initiation
Compact Initiation
FL (Display File Attributes on Self-
Scan)
FS (File Squash)
ICMD (Industry Compatible Mini
Disk Access)
IR (Initiate Log Recall)

KA (Analyze Disk Space Assignment)

KEY.CHECK
KX (Disk Allocation Information)
LB (Look Back in Log)
LD (Tape Library Utility)
LF (Look Forward in Log)
LIST (File List)
Additional Capabilities
LOAD (Load Library Tape Files to
Disk)
LOAD.VFU (Load Vertical Format
Unit)
LR (List Directory)
MODIFY (Program Code File
Modification)
Interactive Mode
File Attributes
PB (List Printer Backup Files)
PB Inititating Message Parameters
PD (Print Disk Directory)
PL (Print Log Files)

Page

4-65
4-66
4-73
4-75

4-120
4-123
4-126
4-127
4-127
4-132
4-132
4-140
4-142

PPID (Pseudo Pack Identifier Display) 4—146

RB (Remove Printer Backup Files)
RL (Relabel Disk)

RM (Remove Files from Disk)
SCR (System Confidence Routine)

4--147
4-149
4-150
4-152

Section

Operating Instructions
Execution Details
DCR
CPU.IO
SCR.MPL
SCR.COBOL
MT.IO
OTHER.IO
SQ (Squash Disk)

General Guidelines
SYCOPY (Copy Library Tapes)
TAPELR (List Library Tape

Directory)

TAPEPD (Print Name of a Library

Tape)

TL (Transfer Log Files)

UNLOAD (Unload Files from Disk
to Library Tape)

UPDATE (Disk File Update)

WL (What Log File)

XD (Delete Bad Disk Sectors)

THE SORT/MERGE

Introduction

General Features

Invoking the SORT

The SORT Language
The File Statement
The Key Statement
The User-Option Statement

Functional Description
Regular Record Sort
Inplace Record Sort
Keyfile Creation
Tagfile Creation
Merge
Details of Sort Keys
Deleted Records
Output Messages

COMPILATION FACILITIES

Introduction

To Initiate a Single Compilation

Use of Macro Calls

Compiler Dollar Options

To Interrogate the Status of
Compilations

To Restart an Aborted Compilation

To Clear an Aborted Compilation

Zip Failures

Page

4-153
4-159
4-159
4-159
4-159
4—-160
4-161
4-162
4-164
4-169
4-170

4-174

4-176
4-177

4-181
4-183
4-186
4-187

[T

| | |

|
O 00 00 00 U B W) B —

| |

|

|

AN L L i U v D i L W
|

|

L
30 TABLE OF CONTENTS (Continued)
Section Page Section Page
6 Reserved Words 6-14 8 , PDX (Print Disk Directories) 8—25
Error Messages 6—15 PO (Power Off) 8-26
I Restarting Executing CO Versions 619 RF (Reformat Disk) 8-27
’ ' RL (Relabel a Disk) 8-29
7 NUMBERED SYSTEM SOFTWARE RM (Remove Disk Files) 8-30
OUTPUT MESSAGES WS (Warm Start) 8-32
Introduction 7-1 Initialization of Disks on Console —
Events # 1-9 7-2 less Systems 8—-32-1
Software Information 7--2 Loading the MCP 8-33
Events # 10-19 7-4 Basic Operation under MCP Control 8-35
Software Suspensions 7-4 D-Lights 8-35
Events # 20-40 7-17 MCP States 8-35
Invalid Request on Class A or B Mix Numbers 8-35
Communicate to MCP 7-7 Automatic Volume Recognition (AVR) 8-36
Events # 41-49 7-11 : Console Keyboard Under MCP Control 8-36
Fatal Device Errors 7-11 Interrupting the MCP 8-37
Events # 50-69 713 Memory Dump to Cgssette 3—-38
Load Failures 7-13 Memory Dur.np to Disk §-39
ROM Scanning Algorithm 8-40
Events # 70.99 7-16 Bootstrap S ine Aleorith 8_40—1
System Errors 7_16 00ts rap canning Algorithm -
Events # 100-169 7-17 System Load Errors 8-40-2
F‘ ‘ . Program Errors 7.17 Diagnosis of Disk Errors at System Load
- Events # 170-199 7-23 Time 842
‘ort Exception Events 7-23 Errors under MCP (;o'nFrol B-a4
. B 90 Dependent Utilities 8—49
8 B90 DEPENDENT SYSTEM CONFIGURER (Configure B 90 Software
SOFTWARE 8—1 System) 8—50
Introduction 8—-1
Power On 81 DUMPANALYSE (Analyze B 90 Program
Dump Files) 8—-52
CMS Bootstrap Mode 83 GEN.DUMPFL (Create Empty B 90 Memory
A Note on Forcing System s
e e s Dump File) 8—-54
Initialization 8-3
e GT (General Trace) 8-55
Stand Alone Utilities 8—4 ND (New D 8_58
Loading Stand-Alone Utilities 84 ND (New Density) .
'8 : PATCHMAKER (Patch B 90 Machine-Code
Functions Available 8—4 Obiect P Fil _
ject Program Files) 8-60
C9mmon SAU Output Messages 8—5 Sample Flash 862
l Disk 1/0 Errors during SAU 8-5 PMB90 (Analyze B 90 Memory Dumps) 8-66
A Note on Dual Pack Files 8—6 Starting the Utility 8_66
CH (Change disk file name) 87 Using the Utility 8—67
CLEAN (Clean BSM Drive Read/Write Power Off 8-72
Heads) 8-9 SAU.INIT 8-73
COMPARE (Compare two Disk Files) 8-10
COPY (Copy files disk to disk) 8—-12 9 B 900/CP 9500 DEPENDENT |
Dual Pack Files 8—14 SYSTEM SOFTWARE 9-1
DISCOPY (Duplicate a BSMII Disk) 8—16 General 9-1
FE (Initialize MTR Disk) 8—17 B 900/CP 9500 Control Panel 9-1
IN (Initialize a Disk) 8—19 Hexadecimal Display Lights 9-2
LD (Load Disk) 8-21 System Switches 9.2
’ LS \List File Sizes) 8—-23 Data Communications Transmit
; OL (Print Status of Drives) 8-24 and Receive Indicators 9-2

2015228-003 . vii

viii

Section

9

TABLE OF CONTENTS (Continued)

Data Communications Group
Select Switch
System Initialization Concepts
System Startup

SYSINITBOOT
Bank A

SYSBOOTSTRAP
Bank A

SYSINITBOOT and SYSBOOT-

STRAP Error Codes
Coldstart

Operator Attended Mode
Idle Loop
Cancelling a Coldstart Function

(The ?DS. Option)
Resolving Duplicate Packids
Initiation of Coldstart
FE (Initialize MTR Disk)
HE (Help)

IN (Initialize)

Increasing Fixed Disk

LD (Load)

OL (Disks On Line)

PT (Patch System Files)
RF (Reformat)

RP (Replace System Files)
WS (Warmstart)

Operator Unattended Mode
Initialize, Load, Warmstart
Patch, Warmstart
Replace, Warmstart

Coldstart Messages

Disk Selection

Default Assignments

Warmstart

Default Configuration

Operator Attended-Mode

Operator Unattanded Mode

Warmstart Messages
Bank A
Bank B
Bank C

OS And Disk Processor Switches

OS PRC1/0S PRC2 Switch

DSK PRC1/DSK PRC2 Switch

Memory Dump
GTMD

Read-Only-Memory (ROM)

Dump Routine

Hexadecimal MTR Keypad
ROM Dump Usage of Displays
Operation of ROM Dump
Initiation

Page

9-2
9-3
9-3
94
94
94
9-5

9-6
9-10
9-11
9-11

9-11
9-11
9-12
9-13
9-13
9-13
9-15
915
9-16
9.16
9.17
9-18
9-19
9-19
920
9-20
921
921
927
927
928
928
9.29
929
9-29
9.29
9-30
9-30
934
9-34
9-34

9-34

\O
(9
EN

\© 0 00 O
D e
W G w L
S I R O RS

Option Idle State
Option Mode
Dump-to-Display (Shifted A)
Continue-Dump-to-Display
(Shifted C)
Dump-to-Disk (Shifted D)
Reset (Shifted B)
Dump-to-Display
Address Specification
Continue-Dump-to-Display
Dump-to-Disk
ROM Dump Messages
RL (Relabel)
RLD (Release Level Display)
RLD Messages
RO (Reset Option)
SO (Set Option)
SYSANALYZER (System Dump
Analyzer)
SYSANALYZER Example
SYSANALYZER Output
Analysis
Disk Management Analysis
Buffer Memory Analysis
System Analyzer Error
Messages
Analyzer (User Program Dump
Analyzer)
ROMANALYZER (ROM
Dump File Analyzer)
Page Descriptor Format
Format of Hexadecimal Dump
ROMANALYZER Messages
ROMCONVERT (ROM Dump
File Converter)
FPP (Field Patch Program)
Entering the Patch
Format of Patch Line
Patching the Release Disk
FPP Messages
Configurer
SYSCONFIG Layout
Sample SYSCONFIG File
Initiation
Mode Selection
LIST Mode
Sample SYSCONFIG File
MAKE Mode
LOGINFO
MISCINFO
B9OOINFO
OSINFO
PERIPHINFO

Page

9-35
9-36
9-36

9-36
9-36
9-36
9-36
9-36
9-37
9-37
9-38
940
941
942
942
942

943
945
945
945
947
947

947
947

948
949
949
9-50

9-51

9-52
9.53
9-53
9-54
9-54
9-55

9-55

9-56
9-56
9-56
9-57
9-57
9-58

9-59
9-59

9-59
960
9-60

Section

9 DCINFO
B90OCONFIG
FIX Mode
OS And Data Comm Buffer
Memory Validation
Processor Configuration

10 B 1800/B 1900 DEPENDENT SYSTEM
SOFTWARE

CMS-UTILITIES

BF
Examples
Messages

Configurer
Introduction
Syntax
Defaults
Update Messages
Error Messages
Warning Messages

DCP.ANALYZER
How To Take A DCP Dump

How To Analyze A DCP Dump

Syntax
Commands
Formatters
DISKDUMP
DSKDSK
DSKMTP
MTPDSK
VERIFY
Error Handling
Limitations
DP.ANALYZER
Examples
LT
MEM.ANALYZER
PATCH.MAKER
Error Messages Displayed
Patch Level Discrepancy
¢ Initial Sumcheck Discrepancy
Final Sumcheck Discrepancy
Address Error
Old/New Micro Discrepancy

2015228-002

Page

9-62
9-62
9-64

9-64
9-65

101
10-1
10-1
10-2
10-2
10-3
10-3
10-3
10-6
10-6
10-7
10-7
10-8
10-8
10-8
10-8
10-10
10-10
10-14
10-14
10-14
10-15
10-15
10-15
10-15

10-16 -

10-17
10-17

10-19
10-21
10-22

10-22
10-22
10-22
10-22
10-22

TABLE OF CONTENTS (Continued)

Section

Example
Operating Instructions For
Patching The MCP File
Operating Instructions For
Patching The Interpreters Or
NPC3.B1000

RB
Examples
Messages

Retrieve
Messages

STAND-ALONE UTILITIES
Creation Of Cassettes
Syntax
Operating Instructions
Initiation Of The Stand-Alone Utilities
B 1000 System
B 1830 System
Operation
Error Messages
CLEARSTART
Disk Initializers (CART.INIT/
PACK.INIT)
MEMORY.DUMP
SYSTEM HALTS DOCUMENTATION
System Halts
Clearstart Halts
MCP Halts
System Dependant Fetch Values
Physical I/O
Logical 1/0
Data Communications Errors

A COMPLETE RAILROAD

DIAGRAMS

B EXAMPLES OF PRINTED UTILITY
OUTPUT

C GLOSSARY OF TECHNICAL
TERMS

D RELATED DOCUMENTATION

Page
10-22

10-23

10-24
10-24
10-25
10-26
10-26
10-27
10-28
10-28
10-28

10-28
10-29

10-29

10-29
10-30

10-31
10-32

10-33
10-36

10-38
10-38
10-38
10-38
10-41
1041
10-42
10-42

D-1

Figure

1-1
2-1
2-2
2-3
2—-4
2-5
2-6
2-17
2-8
4-1
4-2
4-3

|

|

CMS Portability 1
Physical Disk Structure 2
Disk Directory Structure 2
Indexed Files 2
Dual-Pack Files 2
Sample SPO List 2—
Railroad Diagram Sample 1 2
Railroad Diagram Sample 2 2
Railroad Diagram Sample 3 2
Fixed Disk Directory Structure 4
Railroad Chart for Compare Utility 4
Railroad Chart for Copy Utility
(Sheet 1 of 2)

Figure

*ﬁ
w

[I
—_— B W= O\ WD

muxuuu‘cllv.l;.l;.;;

00 o
[

LIST OF ILLUSTRATIONS

LIST OF TABLES

Page
Peripherals Required by CMS-Common
Utilities 4-2
DISKUTL — Supported Disk Types 4—65
BOOTSTRAP Table 4—67

File Attributes Accessible by MODIFY 4-130

PPB Attributes Accessible by MODIFY 4—-131

Mnemonics for Device Attributes for
MODIFY

Sign Convention for Signed 8-Bit
Alphanumeric Fields 5-17

Sign Convention for Signed 4-Bit

Numeric Fields 5-18

4-131

" Table

5-3

6—1
62
6-3
9-1

9-2

Page

Railroad Chart for Copy Utility
(Sheet 2 of 2) 4-28

Railroad Chart for List Utility 4-113
Paper Vertical Format Tape 4-120
OTHER.IO Sample Printer Ou.put 4—163
Regular Record Sort 5-14
Keyfile Creation 5-14
Tagfile Creation 5—-15
File Merge' : 5-16
Multiple Key Sort 5-17
Operation of CO Utility 6-2
B 80 Coldstart and Warmstart 8-2

Page

Sign Convention for Separate Sign
Character with 8-Bit Alphanumeric

Fields 5-18
Zip Failure Messages 6—13
CO Reserved Words 6—-14
Error Messages from CO 6—15

Startup Display Reference Tables 9-8
Warmstart Display Reference Tables 9-33

SECTION 1
INTRODUCTION

THE CMS CONCEPT

CMS (Computer Management System) software is a powerful set of software items designed to operate on
a number of different hardware products.

To the user of an individual hardware product running CMS software, there is a well-defined operator inter-
face and set of programming languages. The importance of CMS is that the same user may use a different hard-
ware product running CMS software, and with the same languages. This portability eliminates major operator
retraining between different CMS products. It also allows freedom of interchange of programs between hardware
products, limited only by availability of hardware features. For example, a program may be developed and com-
piled on one system, and run on another. Also, because the compilers are also programs, there is portability
of compilers between hardware systems as well. Data files are similarly transferable from one system to another.
This portability is achieved by building on the “soft machine” concept. Refer to figure 1-1.

SOURCE
PROGRAM
Y
COMPILER
Y
OBJECT
CODE
PROGRAM
(S-CODE)
<& N,

INTERPRETER < > INTERPRETER
A B
HARDWARE HARDWARE
A B
SOFT MACHINE A SOFT MACHINE B

Figure 1-1. CMS Portability

2015228 1-1

The programmer writes a program in a high-level language. The CMS programming languages are:
COBOL
RPG (including RPGII)
MPL (CMS Message Processing Language)
NDL (Network Definition Language).

This program is writen in ‘source code‘. This is then input to one of the CMS compilers which converts it
to “object code” or “S-code”. This is the executable program. The ““S-code” is similar in design to the “‘machine
code” of earlier generations of computer.

In earlier generations of computer this * ‘S-code” would be executed by hard-wired instructions. With the ad-
vent of fast micro-processor computers, however, it is possible to build a set of micro-instructions which inter-
prets each “S-code™ and executes it. The set of micro-instructions is therefore called an “interpreter”. The com-
bination of interpreter and micro-processor hardware is sometimes termed a ‘“‘soft machine™.

Now as the “S-code” is independent of any particular hardware, it is possible (and has been achieved in CMS)
to build several soft machines which will execute a “object program” in a similar manner. Hence the CMS ob-
ject programs are portable across the different CMS machines.

These machines include:

B90
B 1800
B 1900

There are different CMS interpreters on each system. For example. on the B90 the interpreters are:

BILINTERPX
COBOLINTX
NDL.INTERPX

BILINTERPX is used to execute programs written in MPL and in BIL (an implementation language used
for compiler-writing which is so similar to MPL that they share the same S-code format). COBOLINTX is
used to execute programs written in COBOL and RPG (these two languages share the same S-code format).
NDL.INTERPX is used to interpret data communication controller programs written in NDL.

Certain common features needed in all programs (such as the handling of peripheral devices) have been collected
together into' a Master Control Program (MCP). The MCP is a micro-code program and is therefore specifically
written for each hardware product. Thus there is a B90 MCP, a B 1800 MCP and a B 1900 MCP. The MCP also
controls the operator interface (which is standard across the CMS range) and mainhains overall control of the system,
providing complete resource management including multi-programming, I/O device handling and memory manage-
ment.

CMS software also provides a number of utility programs. As these are written in MPL, they also are portable
across the CMS range, limited only by hardware feature availability.

To cover the complete features of each CMS product line, certain aspects of the software are written for a
specific product. These additional features include important operational characteristics, and are described in
sections 8 through 10. Sections 2 through 7 of this manual cover items which are applicable to any CMS product.

e SOFTWARE RELEASE LEVELS

Each item on a CMS software release is identified by a three-part number, as follows:

X, XX, XX

l |——— patch number
level number

mark number

The mark and level numbers constitute the release number. For example, the COBOL compiler 3.01.08 is
the COBOL compiler included in the 3.01 release of system software, with patch number 08.

Software items from different releases should not be used together. For example, an interpreter from release
3.01 should not be used with an MCP from release 3.00.

This book describes system software relative to the 3.03 release. I

Software Patches

Within a particular release, patches to individual items may be issued. For example, an MCP identified by
3.02.12 contains certain improvements over an MCP identified by 3.02.11. A patch always increases the patch
number. It is always advisable to use the highest patch versions within any one release. All system software
items within a given release (mark and level numbers) may be used together, regardless cf the patch number,
unless explicitly stated otherwise at the time of release of the item.

Certain items may be patched by the user. The details are machine-dependent and are described in the rele-
vent section (8 through 10). l

SOFTWARE SUPPORT

Throughout this book, suggestions are made for corrective action where possible, following a particular output
message or symptom of failure. Sometimes the phrase “request technical assistance” has been used. This should
be interpreted as a recommendation to contact your immediately higher support level if you are not sure of
what to do or do not feel justified in attempting further action without competent advice.

All problems with the system should be recorded. This is for two purposes: to report the problem; and to
avoid similar problems in the future. The report should contain the date and time and list the systems. As a
minimum it is recommended that the SPO hard-copy printout or SPO log is kept for future reference.

TO THE READER

This book is written as reference material. It is a guide to be consulted during operation of any CMS machine.

This book explains how to start and to stop the system software. As this is normally hardware-dependent,
the relevant section (8 through 10) should be consulted.

Once the system software has started (that is, the system is under MCP control), the operator may interface
with the MCP via the SPO (Supervisory Printout) device in order to execute programs. The type of device may
vary with the hardware product, but input and output messages are standardized.

Section 2 of this book explains some general terms which should be understood in order to make full use
of the CMS features. It explains how to cause programs to be executed. This section also explains how to read
the diagrams used throughout the book to describe the format of input messages and other details.

Details of input messages are given, in alphabetical order, in sections 3 and 4. The items in section 4 are
e utility programs which are executed in the same manner as other programs. The items in section 3 are embedded
~ features in the MCP. Refer to section 2 for a fuller explanation.

2015228003

Sections 5 and 6 describe the sort/merge feature and the compilation feature respectively, and will be of spe-
cial interest to programmers. Section 5 includes a functional description of the sort/merge feature.

Section 7 lists the messages which may be output to the SPO by the system software during execution of
the system. As each message is identified on the SPO by a number, reference to this book can be made by
this number.

For other items such as hardware and system software failures, refer to the particular hardware section (8
through 10) for details.

SECTION 2
BASIC CMS OPERATION

INTRODUCTION

All CMS operation has two basic principles: it is disk-based; and operator communication is with the MCP
by a SPO device. Other peripherals may be present, depending on the configuration. This section introduces
some basic principles which should be understood by all CMS operators. The material in this section is common
to all CMS products. Other details that are machine-dependent are given in the relevant section.

PERIPHERALS

Each peripheral is referenced by a three-character abbreviation, where the first two characters give the type
of peripheral and the third character refers to the particular peripheral by the letter A, B, and so on. For exam-
ple, LP is the abbreviation for a line printer, so the first line printer is referred to as LPA, and the second
is LPB.

The peripheral types are listed below:
AC - console with any output device
_ AM - any multi-function card unit
AP - any (serial or line) printer
AR - any card reader
AT - any magnetic tape '
CP - any card punch
CT - cassette tape
DC - data communications controller
DF - fixed disk
DI - industry-compatible mini-disk (ICMD)
DK - disk cartridge (any type of speed)
DM - Burroughs super mini disk (BSMD and BSMDII)
DP - disk pack
KB - Keyboard
LP - line printer
MT - magnetic tape (reel)
M8 — 80-column multi-function card unit
M9 — 96-column multi-function card unit
PC - console with serial printer
P8 — 80-column card punch
P9 - 96-column card punch
R8 - 80-column card reader
R9 — 96-column card reader
RS - Reader Sorter

e RT - Real Time Clock

2015228-003 2—1

SC - console with SELF-SCAN ®device
SD - Screen Display

SP - serial printer (on console)

SS - SELF-SCAN ® gevice

If the configuration contains more than one device of the same type, the designation (A, B, and so on) de-
pends on the location of the peripheral controller in the hardware. If there is only one dual-drive cartridge con-
troller, the upper drive is DKA and the lower drive is DKB. If there is only one dual-drive Burroughs super-
mini-disk controller (for example, on a small B 80 with in-built mini disk), the upper drive is DMA and the
lower drive is DMB.

The three-character references are used in all operator communication with the MCP (refer to section 3).

SYSTEM AND USER DISKS

- The MCP resides on a disk unit. At warmstart time (when the system is started up and the MCP begins to
function) the MCP notes the disk containing the executing MCP code. This is called the “system disk™.

During operation there is only one system disk. Other disks may contain a copy of the MCP code, but only
the disk from which the MCP is running is the system disk.

All other disks on the system during machine operation are called “user disks”.

There is one restriction on the portability of system disks between different CMS products. A system disk
may not be taken to a different CMS product and used there as a system disk. It may, however, be used on
the second system as a user disk. It may also be used on the first system as a user disk. User disks may always
be interchanged between different systems.

DISK FORMAT

A disk consists of one or more platters, one or both surfaces of which may be used to record data. The re-
cording area of disks is divided into the following physical items:

Track:

An area of one surface of a disk which is at the same distance from the center of the disk. The entire track
can be accessed without moving the position of the read/write head.

Sector:

The basic unit of disk address, size 180 bytes on all Burroughs disks, and 128 bytes on ICMD. A physical
read or write uses a complete sector. There are several additional bytes in each sector, used only by the hard-
ware and not accessible to user programs. The sector is also called a “‘segment”.

Cylinder:

If there is more than one surface, each track at the same distance from the center makes a cylinder. The
entire cylinder may be accessed without altering the position of the read/write heads.

Figure 2-1 illustrates these terms.

Disk Initialization

Each disk must be initialized before use on a CMS machine. Initialization creates correct sector addresses
throughout the disk recording surface, then writes certain data in the low-address part of the disk. The first
sector is numbered sector zero, and the first track is numbered track zero. A disk with-a bad track cannot be
initialized. The method of initializing the disk is machine-dependent (refer to the appropriate section).

Sector zero contains the disk label. This includes the name of the disk, or “disk-id”. Every disk has a disk-
name. This disk-name can be from one to seven characters, using the set A to Z, 0 to 9, and the dot (*“.”)
and hyphen (“=7).

SELF-SCAN ® isa registered trademark of Burroughs Corporation.
2-2

TOP VIEW :
ONE TPACK, MADE OF
SEVERAL SECTORS
ANOTHER TRACK, MADE OF THE
SAME NUMBER OF SECTORS
SIDE VIEW :

\b ONE CYLINDER

READ/
WRITE
HEADS

v
ds | s |«

Figure 2-1. Physical Disk Structure

Disk Files

Information is stored on a disk in a “‘disk file”. There may be many files on one disk. Each file is referenced
by a “file name”. A file name can be from one to twelve characters, using the set A to Z, 0 to 9, and the
dot and hyphen. Each disk contains a directory of the files on that disk. This directory is accessed by utilities
such as KA and PD (see section 4).

Information can be of different types: normal data, accessed by programs; special data, accessed by the MCP;
and programs themselves. The MCP is itself a program, and so are other “system files” such as the interpreters.
System files have special restrictions in that a control is placed on their removal (see RM section 4).

Disk File Names

On any system, every disk file (whether data or a program) is accessed by a two part reference, as follows:
disk-name/file-name

For example, the disk file M101A/REP200 is a file with a file-name REP200 to be found on the disk with
a disk-name M101A.

It is not necessary to give the name of the system disk when referring to files residing on the system disk.
Alternatively, a disk-name of 0000000 by convention refers to the system disk. For example, the disk file
REP200 or 0000000/REP200 is a file with a file-name REP200 to be found on the system disk.

It is not allowed to have two disks of the same disk-name in use at the same time. It is not allowed to have
two files of the same file-name on the same disk. However, it is quite permissible for two different disks to
contain a file with the same file-name. For example, the files M100A/REP200 and M101A/REP200 refer to two
different disk files (although one may be a copy or update of the other).

2015228-003 2-3

Disk File Group Names

In many utilities (see section 4) it is convenient to refer to groups of files, depending on common starting
characters of their file-names.

All files on a disk may be referenced by the equals symbol (“="). For example, the reference M101A/=
refers to all files on the disk with disk-name M101A.

All files beginning with, say, the characters REP may be referenced by REP=. For example, the reference
M101A/REP= refers to all files on disk M101A with file-names of REP200, REPA, REP678P, and so on.

In general, a group-name consists of an equals symbol (“=") optionally preceded by up to ten symbols which
are the first part of the file-names of each. of the files in the group.

Example:

Consider a disk M101A containing files with file-names:
PR200,REP100,REP200,REP250,RQ510,CRCOPY

Then the following group-names refer to the files indicated:

MI101A/=

PR200, REP100, REP200, REP250, RQ510, CRCOPY
M101A/REP=

REP100, REP200, REP250
M101A/R=

REP100, REP200, REP250, RQ510

Disk Directory

The disk directory is a table on every CMS-initialized disk which enables the MCP to locate any disk file by name. Full
details of the directory layout are given in the CMS MCP manual.

The directory is a fixed size determined at disk initialization time, based on the maximum number of files
to be placed on the disk. An attempt to create more files than there are entries in the directory will give
an appropriate MCP run-time error message, :

The directory consists of three parts:
the name-list
the disk file headers for each file
the available table

The relationship between these parts are given in figure 2-2. The name-list is a list, by file-name, of each
file existing on that disk. A search through this name-list will reveal if a file is present or not: if present, the
name-list entry points to the disk file header for the file. This is a table giving the location of each part of
actual data in the file (the file may be divided into up to sixteen separate physical areas on the disk). In the
figure only one area is indicated. The available table is a list of the disk areas not in use by a file. When a
new disk file is created, an available space is found from this table and an entry made in the name-list, then
the space is used to write the file information. When a disk file is removed its entry is deleted from the name-
list and the areas specified in the disk file header are entered in the available table.

If there is insufficient space on a disk to allocate new disk file areas, a ‘““NO USER DISK’ message is
given by the MCP. The operator may remove a file (see RM) to make more space available. The KA utility
(see section 4) and KX function provide information on the available space on a disk. The Stand-Alone utility
LS will also give the available space on a disk whose files have been listed by an LS/=.

2-4

TRACKO DISK LABEL

: | ‘

V V v
DIRECTORY | AVAILABLE] DISK FILE
TABLE NAME-LIST HEADERS
l .|
vV
DISK SPACE <
FOR FILES

Figure 2-2. Disk Directory Structure

As a simplification, it may be stated that when a disk is initialized the directory is rebuilt with no entries,
indicating that the entire disk space is available apart from the directory itself. In fact, any bad areas on the
disk are marked in the directory so that they cannot be allocated to files (see also the XD utility); also, there
is a special entry called “SYSMEM” which enables certain programs such-as PD and RM (which access the
directory) to operate successfully.

Indexed Files

Indexed files are in fact a pair of files, the*key file” and the “data file”’. They may reside on the same or
separate disks. Each file in the pair has a separate entry in the disk directory of the disk on which it resides.
A special table at the beginning of the key file (the‘“‘key file parameter block”) gives, among other information,
the disk-name and file-name of the associated data file. See figure 2-3 for a diagram of the relationships between
the two files.

The purpose of indexed files is to simplify access to data in the data file by using a set of keys (such as ac-
count number) in each record of the data file. These keys are placed in the key file. A key file may be created
by the SORT utility and intrinsic (see section 5, where examples are given).

Special consideration must be given to copying indexed files, due to the link between the key file and data
file. This is especially true when copying from one disk to another. Details are given in each relevent section
(see COPY utility, section 4; also the machine-dependent copy facilities).

Dual Pack Files

As mentioned before, a disk file may be divided into up to sixteen’separate areas. If these areas are located
on two separate disks the file is known as a“dual pack file”. Such files may be created by the AD intrinsic
in response to a“NO USER DISK” message (see section 3).

There is an entry in the directories of both disks for a dual pack file, together with the disk-name of the
other disk. Each disk directory has a copy of the disk file header for this file, but the table of locations for
each file area also indicates if the area is located on‘‘this” disk or the“other” disk. This is shown diagrammatical-
ly for a file with four areas in figure 2-4. In most applications it is necessary for both disks of a dual-pack file
to be on-line at the same time.

2015228 2-5

DIRECTORY ENTRY

e DISK LABEL OF DISK
WITH DATA FILE

s

DIRECTORY ENTRY
FOR DATA FILE

FOR KEY FILE
~
DATA FILE
DISK-NAME
DATAFILE
FILE-NAME
KEY FILE

DISK LABEL OF DISK

DATA FILE

Figure 2-3. Indexed Files

DISK LABEL OF DISK

s ;

. B

DIRECTORY ENTRY <
FOR DUAL-PACK FILE

DIRECTORY ENTRY
FOR DUAL-PACK FILE

V
AREA 1
> AREA 2
AREA3 €—
DISK A

> AREA 4

DiIsK B

Figure 2-4. Dual-Pack Files

MAGNETIC TAPE FILE NAMES

Note: this includes tape cassette.

A tape may be used to store data either on one file (a “single-file tape”) or as a “multifile tape”. Each file
is separated by a tape mark. Additionally, each file normally has a beginning and an ending label. A multifile
tape has also a special beginning (‘“volume”) label.

On loading a tape, the MCP reads the first label to determine the tape name. Tape file names are in two
parts:

multifile-name/file-name

For a single-file tape, the multifile-name will be “0000000. The format of the multifile-name is the same
as for the disk-name of a disk file.

The COPY utility (section 4) produces a single-file tape when copying to tape. The LD utility (section 4)
always produces multifile tapes called “library tapes”. Library tapes are referenced by the multifile-name: there
is a standard convention for labelling all the files on a library tape. For full details of tape formats, refer to
the CMS MCP manual.

Tapes (multi-file or single-file) may be unlabelled. Such tapes must always be accessed via the AD intrinsic
(section 3) because there is no label that the MCP can recognize when the tape is loaded. Tapes containing
labels that are non-standard are also treated as multifile unlabelled tapes.

PRINTER FILES

There are two types of printer: a wide line printer and a console printer, depending on available hardware.
The console printer is also known as a “serial printer”. These hardware devices are also referred to as “files”
and are given file-names of up to seven characters. When the file is opened and closed, an identifying print
line is given to indicate the name of the file. This file-name is also used in MCP messages. Refer to the CMS
MCP manual for full details.

It is possible to designate a file type of “any printer”. Such a file will be written to a wide line printer if
this peripheral is available. If not available, this file will be written to the console printer if available. If there
is no console printer either, the MCP will display a “NO FILE” or “DEVICE REQUIRED” message.

OTHER PERIPHERALS

All peripherals are treated as files for input, output or a combination of input/output, depending on the hard-
ware type. The use of any peripheral device is governed by the file-name of up to seven characters, which
will appear in any related MCP messages. Refer to the OL intrinsic (section 3) for other details.

PROGRAMS

An executable program is information stored on disk as a disk file. It is referenced in the same way as any
data file: that is, through the disk-name and file-name (or just the file-name if the program resides on the system
disk). The rules for the program name are the same as for any disk file name.

A ‘“utility” is a program provided for general use by all CMS operators, for house-keeping and other general
purposes. For example, the LD utility enables operators to load and dump disk files from disk to magnetic tape
for backup purposes.

Executing Programs

In order to execute a program, part or all of the information in the disk file must be brought into memory
and placed under control of the MCP. This is called “program load‘, and takes a certain interval of time.

2015228-003 27

Programs may be loaded and executed by merely providing the name of program file to the MCP. If so de-
sired, the keyword “EX” may be place before the program name. For example, suppose one wishes to execute
a program that resides on a disk PR200A in a file called DCS. Either the input

EX PR200A/DCS

or just
PR200A/DCS

will cause the program to be loaded and executed.

Depending on the system, a BOJ (beginning-of-job) message may be displayed by the MCP after the program
has been loaded, and a EOJ (end-of-job) message may be displayed by the MCP at the end of the program.
The display of these messages may be turned on or off for individual programs by the MODIFY utility (see
section 4).

Failures may occur when attempting to load a program. For example, the requested program may not be on
disk. A list of load failure messages is given in section 7.

Many programs enable the operator to enter further information after the program name. This is known as
an “initiating message” and the contents are entirely dependent on the program. Nearly all the utilities in section
4 allow further information, the format of which is given in the description of each utility program. For example,
the ihput

COPY REP202 TO RPTAPE

consists of the command to load and execute the program called “COPY” (found on the system disk in this
example), followed by the information “REP202 TO RPTAPE” which is passed to the program. There are two
types of error which can be made: either there is a load failure (because, for example, the COPY program
is not on the system disk), when the MCP would issue an appropriate message; or the following information
is an incorrect format for the program, when the program itself would issue a message. In the former case,
the MCP message is described in section 7. In the latter case, the output message is described under each utility.

Note that if the utility resides on, say, the disk PR2, the input message would be
PR2/COPY REP202 TO RPTAPE

or
EX PR2/COPY REP202 TO RPTAPE

In section 4 this additional information is omitted in the interest of clarity. It is, however, common for utilities
to reside on a disk other than the system disk, in which case the disk-name must be provided.

It is also possible for programs to be automatically executed by another program. In this case, the first pro-
gram is said to “zip” the second program. No operator input is used in this case, but the BOJ message may
be displayed for the zipped program.

INTRINSICS

There is an important type of operator input that does not involve a command to execute programs or
utilities. These messages are calls on “intrinsics” which are part of the MCP. Those intrinsics which are common
to all CMS machines are described in section 3. Other intrinsics are given in the relevent machine-dependent
section.

Because an intrinsic is part of the MCP, there is no separate program corresponding to the name of the intrin-
sic. Therefore the keyword “EX” is not allowed in a call on an intrinsic, neither can a user disk-name be
specified. There is no program load time because the MCP is already executing. For example, the input

RY DMA

is a request to the MCP to ready (RY) the disk peripheral designated by DMA. This input message to the
MCP must not be preceded by the keyword “EX”.

2-8

MIX NUMBERS

As a program is loaded, the MCP assigns it a number from its table of executing tasks. This is the *“mix-
number” and is used in any messages output by MCP relating to this task. The mix-number is also used in
all messages input by the operator for this task. Some input messages also require the corresponding program

name as well as the mix-number. The MX intrinsic (see section 3) may be used to determine the current mix
of tasks.

The allocation of mix-numbers is dependent on the CMS product. Refer to the corresponding section for more
details.

OUTPUT MESSAGES

As mentioned earlier, messages may be output on the SPO either by the MCP and other system software
or by the program. It is important to distinguish between the two types of output messages in order to look
up the message in the appropriate place.

Messages output by the MCP are of two kinds: short responses to intrinsics, and longer descriptions of any
event to be brought to the attention of the operator. The short descriptions are self-explanatory: for example,
the input message

OL LPA

(an intrinsic to inquire of the status of line printer LPA) may result in the response
LPA READY

Similarly, the short message
LPA NOT READY

will be displayed if LPA is stopped by the operator or through any fault. The longer descriptions are always
referenced by an “event number” enclosed in brackets. The format of these messages is given in section 7, and
operators should be generally able to recognize that such a message has been output by the MCP.

For example, the message
10/LIST <17> WAITING UNLAB LISTPRT AP NO FILE

indicates an MCP message with event number 17, and reference should be made to section 7 for information
on possible causes and suggested actions to take.

Messages with event numbers may also be output by other parts of the system software such as interpreters
and the sort-intrinsic, although the overall format is similar. After recognizing the event number, reference
should be made to section 7 (or section 5 for sort-related messages).

Messages output by all other programs are known as ‘“‘displays” and may be preceded by the keyword
“DISP”. Note, however, that utility programs may display messages without this preceding keyword.

All messages output by the utility programs described in this manual are listed under the respective utility.
For example, messages displayed by COPY utility are listed under the COPY utility. Messages may additionally
be displayed by the MCP for events related to the execution of the COPY, DCR and SCR utilities (for exam-
ple, if the COPY utility needs space on a particular disk, a ‘““NO USER DISK”’ message will be output) but
these MCP messages will always be distinguished by the event number.

Messages displayed by other programs are not discussed in this manual. Reference must be made to the ap-
propriate manual or ‘operating instructions for that program.

Figure 2-5 illustrates a sample SPO list giving a mixture of messages described in this section. Note in this
example that the utility programs LIST and LR do not give rise to BOJ and EOJ or DISP messages. The user

program PROGA shows all three messages. These messages may be turned on for utilities by using the
MODIFY utility (section 4).

2015228-003 2-9

input commanc to run LIST ==>
MCP output message event 10=>
input commanc to run PROGA =>
MCP message for PROCGA EBOJ ==>
input commanc to run LR ====>
next Line is PRCGA cisplay =>
actuzl display infcrmation =>
input recuest COL intrinsic =>
MCP resoonse to OL message -=>
input reguest MX intrinsic =>
MCP respcnse to MX message =>

->

=->

->
MCP messaae for PRCCA EOJ ==>
input recuest ST intrinsic =>
MCP respcnse to ST nessage =>

LIST COLLETTE
01/LIST <1C> WAITING CCLLETTE DK NO FILE
PROGA)
02/PROGA BGJ PR IS A
LR =
N2/PROCA TDISF:
PROGRAM A VERSICN 2.(C1.05
OL LFA .
LPA LRPRINT IN USE BY (3/LR
MX
C1/LIST SUSFENDEC WAITING CN ANC FILE
«e.CONDITION
02/PFCGCA A EXECUTING
C3/LR B EXECUTING
CZ/PROGA ECJ
ST 2
03/LR STCPFED

Figure 2-5. Sample SPO List

FORMAT DIAGRAMS

Most of the descriptions of input messages in this book are given as simple format diagrams with correspond-
ing descriptive text and examples. An example will illustrate how to read such format diagrams.

Example:

EX disk-name / \1/ TST200 \I/ number I
TST201

In this format, items in lower-case (“disk-name” and “‘number” in this example) are to be replaced by actual
values (such as “PR2” and ““27”"). Other items are included in the input message as they are found. Spaces
are required whenever necessary to avoid ambiguity. In the example, it is not strictly necessary to separate the
disk-name and the slash (4/) with a space because the slash cannot be part of the disk-name according to the
rules for disk-names. Extra spaces may however, be added for legibility. If an arrow in the left-to-right direction
is encountered, the items under the arrow may be omitted. Curly brackets are used to denote alternatives. The
alternatives are placed in a list underneath each other. (Each alternative item may be more complex than the
example quoted: it may contain optional parts and further alternatives). If an arrow in the right-to-left direction
is encountered, one may return to the point underneath the arrow and continue building up a valid input mes-
sage In the example quoted, after adding a valid number (say “27”’) one may return to add a second number
(say “52”). In fact, the format diagram does not specify how many times one may continue to do this, but
details are given in the text.

Here are several valid input messages which can be generated from the example. (Note that a disk-name can
consist of up to seven characters, see earlier):

EX TST200 57

EX TST201 259

EX PR2/TST200 36

EX PR2/TST200 2 52 574 361
EX MI101A/TST201 1 2

2-10

Here are several invalid input messages according to the example: "~ ROBERT L. OLSEN
EX PR2/TST200 TERRITGRY MAI
EX PR2 TST200 36 : 7555 BE LVD. -
EX TST202 36 JECKSOVILLE, FLORIDA 2210
TST201 259 1 oo
EX PR2/M101A/TST201 1 2

Here is a slightly more complicated example, which makes the number or list of numbers optional:

Example:

EX disk-name / TST200 [\
TST201

] v

number

The input messages
EX PR2/TST200
EX PR2/TST200 56
EX PR2/TST200 27 56

are now all valid.

These simple format diagrams are easy to understand in conjunction with descriptive text and examples, but
cannot be used if the format becomes too complex. In the latter case a rigorous notation known as “railroad
diagrams” is employed (see below). In some case in the text of this book, the format has been deliberately
simplified for the sake of clarity, with further details given in the text. More complex features have been de-
scribed by railroad diagrams (see, for example, the COPY and LIST utilities in section 4). Appendix B gives
complete railroad diagrams as a handy reference for those who need the exact definition of any input message.

RAILROAD DIAGRAMS

The equivalent railroad diagram to the first format diagram is given in figure 2-6.

< disk-name> — /
. I_ 1{ [~ TST200 — l
EX B ‘ < number > —>

TST201 —

Figure 2-6. Railroad Diagram Sample 1

To form valid input, follow the railroad “track” from left to right or in the direction of the arrows. A junction
in the track indicates that alternative paths may be followed. Items enclosed in angled brackets “<” and “>”)
must be replaced with actual values, as before. Each item not enclosed in angled brackets is included as it is
found. Spaces are added where necessary, as in format diagrams.

The equivalent railroad diagram to the second format diagram is given in figure 2-7.

<disk-name> — / < number >
l_ - TST200 —
EX—

— TST201 —

\ /4

Figure 2-7. Railroad Diagram Sample 2

2015228 2-11

There are two other features available in railroad diagrams to make possible the exact sp..ucation of any
input message. These are illustrated in figure 2-8. Firstly, the maximum number of times rround a loop may
be controlled by including the number

<disk-name> — <A>—y < number > 2
[- ,l, — TST200 — \I, T ,l,
N
B ”

L TST200 ——d

Figure 2-8. Railroad Diagram Sample 3

in the track of the loop. In the example, it is possible to omit the <number>, or to include either one or
two values of <number>. Secondly, if angled brackets are to be included as part of the message, these must
be underlined. In the example, there is an optional part of the message which consists of the three characters
“<A>”. The following messages would then be valid: .

EX PR2/TST200

EX PR2/TST200 27

EX PR2/TST201 27 56
EX PR2/TST201 <A>
EX PR2/TST200 <A> 56

but the following would be invalid:
EX PR2/TST200 27 56 243
EX PR2/TST201 A
EX PR2/TST201 A 73

Note also that if a number under a loop is preceded by an asterisk (““ * *), then that loop must be included in the syntax
at least the number of times specified. For example, if the loop included the characters “ *1”°, then the loop must be included
at least once.

° SECTION 3 e
CMS-COMMON INTRINSICS

INTRODUCTION

This section describes, in alphabetical order, those input commands which are embedded in (“intrinsic to”)
the MCP, and which are common to all CMS products.

As discussed in section 2, it is not valid to precede these messages with “EX”, because the intrinsics are not
separate programs to be loaded and executed. The intrinsics cannot be executed from a user disk, because by
nature they are part of the MCP which is on the system disk.

The response to these intrinsics may vary slightly between different CMS products, due to different hardware
being used. These variations have been noted in the text where. applicable.

2015228

AD (Assign Peripheral Device)

This intrinsic allows the operator to assign a particular peripheral to a program that has called for an “unla-
belled input file”, or that requests a particular output device.

It may also be used to allow file overflow onto a second disk if no disk space is available

Format:

v

AD mix-number r / program-name peripheral

Example 1:

Copy utility requires another disk:

COPY INIST TO INDISK3/INIST
10/COPY <12 > WAITING FILE10 NO
... USER DISK

AD 10 DMB

(The first message is output by the MCP and the operator responds with the AD message by assigning DMB
as the disk to which the remainder of file INIST will be copied. This creates file INIST as a ““dual-pack file‘).

Example 2:

Program “COBOL7”, mix number 03, requires a line printer type device:

03 COBOL7 <17 > WAITING LP NO FILE
AD 03 LPA

(The first message is output by the MCP, and the operator responds with the AD message by assigning LPA
to mix number 03).

Example 3:

The LIST utility requires an unlabelled tape:
LIST TAPE1 MTP NO.LABEL
01/LIST <14> WAITING UNLAB SPURIUS/TAPE1 AT
...DEVICE REQUIRED ‘
AD 01 CTB

Output messages:

MESSAGE POSSIBLE CAUSES SUGGESTED ACTION

mix number/program Specified crogran Check with MX

AD INVALID was not suspended tor rame of suspended
Wwaiting for a cevice progrem.
assignment.

3-2

AX (Accept a message for a program)

This intrinsic allows the operator to communicate with a program in the mix. The program must already be
suspended waiting for an “accept” (ACPT).

The MCP will prompt the operator for input by printing ‘“‘mix number/program-name ACPT” on the SPO.

The maximum length of the “text” or operator input is 50 characters. Operating intructions for individual
programs will provide the operator with valid “text” responses.

Format:

AX mix-number r / program-name \ text

Example:

The program BMOO01 displays a message asking for a file name to be entered. The operator responds with
the appropriate text, in this case ARSCHG, by the AX message.

BMOO1

01/BM001 BOJ
ENTER BM202 FILE NAME
01/BMO001 ACPT

AX 01 ARSCHG

Output messages:

MESSAGE POSSIBLE CAUSES SUGGESTED ACTICN

mix~number /
program=name AX
INVALID

Specified program
was not waitinc for
an "accept”

or
mix nurber and
specified prograr
nare do not matckh.

Check with MX for

proper mix=nurbter
and trogram~nale
combinétion.

2015228

3-3

CL (Clelar;?' Peripheral)

- This intrinsic allows the operator to clear the peripheral from the program and bring the program to End ‘
of Job (EOJ). It breaks the “links” between the program and the peripheral.

For example, if the line printer “hangs” during the printing of a report and an attempt is made to DS the
- program, it will not be possible to discontinue the program unless the line printer is made ready or CL is used
to break the “link” between the program and the line printer..

Format:
printer peripheral
tape peripheral
cL 4 self-scan peripheral r
ICMD peripheral
— -
Examples:
CL LPA
CL SSA
Output messages:
MESSAGE POSSIBLE CAUSES SUGGESTED ACTIQN

CL periphersl
INVALID

Programs is not wgitirg Cteck input.
on "hung™ peripheral.

{
[
DC (Data Communications operator input) | /

This intrinsic enables the operator to enter messages from the SPO to the Message Control System (MCS)
if data communications activity is in process.The message text, after being stripped of the “DC” characters and
the following blank character, is transferred to the MCS input message queue and marked as ‘“‘operator input”.

The interpretation of the message text is defined by the particular MCS.

Format:

DC text

Example:

To enter the text “MAKE STATION 2 READY*
DC MAKE STATION 2 READY

Output messages:

MESSAGE POSSIBLE CAUSES SUGGESTED ACTICN

none MCS input successful none
DC INVALID no MCS in the mix check input; execute
the MCS
DC NOSPACE There 1is ro avaflable wait 3 short time then
message space in re-irpLt messages if
memory for this unsuccessful several
message timess» request

techrical assistance.

2015228 3-5

DP (Discontinue and Dump)

This intrinsi¢ is similar to the “DS” intrinsic. The difference is that the disk work space (Virtual Memory
on Disk, Virtual Disk) is not freed up and returned to an available status.

The disk work space is, instead, updated from memory with all the most current information about the pro-
gram. The disk backup is then made into a file (locked) and given a name, “DMFILnn” (‘nn” is the mix number
for user programs, utilities, and MCP intrinsics).

The peripherals and memory in use by the specified program are made available to other programs.

DP is used when a technical analysis of a particular program is required following a failure during its
operation.

Example:
DP 01/GL060

Output messages:

MESSAGE POSSIBLE CAUSES SUGGESTED ACTICN

mix number/program= DP success ful none .
name DP'ed

input INVALIC mix nurber does rot Check input (reinput
correspond to if necessary).
program name ~ or

Check with MX for
proper mix numter and
Frograw name comtinat -
ione.

input INVALID - prcgram=*name is Check with MX anc
NEEDS PROGRAM=ID missing re-irpite.

DS (Discontinue Program)

This intrinsic causes the orderly termination of the specified program. All peripherals in use by the program
are made available to other programs.

Format:
DS mix-number / program-name

Examble:

To terminate the program AR040 which has mix number 2:

DS 02/AR040
Output messages:
MESSAGE POSSIBLE CAUSES SUGGESTED ACTICN
mix/grog DS'ed DS success ful none
input INVALID mix number does rot check with MX»
correspond to proaras reinput
name? or program is
an MCS.
: input INVALIC-NEEDS program name not check with MX»
PROGRAM 10 specified reinput

Note: if the program is waiting on a “hung” peripheral device, try the CL intrinsic.

DT (Systems Date and Time)

This intrinsic allows the operator to inquire about or change the system date and time maintained by the
MCP. ,

Format:

\/

DT mm/dd/yy hhmm

Examples:

To inquire about the system date (and time if the system contains a real time clock)
DT

To change the system date:
DT 01/01/78

To change the system date and time:
DT 03/23/78 1234

(March 23, 1978 is the new date. 12:34 is the time).

3-8

Output messages:

MESSAGE

PCSSIBLE CAUSES

SUGGESTED ACTION

HHMM DOA"
where

month.
YY = Yearl

*DD MON YY YYDDD

DD = day of month
MON = 2 letter
abbreviagtior of

YYDDL = Julian date

HKHMM = time (hours
and minutes)

DOW = day of week.

Normal respornse
to "DT“.

rone

<INVALID DATE>

Ap error Wwas made
in one of the follow"
ing fields:

MM

Dp

Yy
For example = &
MM entry ot Q0" or
greater thén 12
is invalid.
The entire dste is
rejectec» tut &
valic time entry
in the same meSsS~
age will te &ccept-
ed.

Feincut date
portion of
meSSage

<INVALID TIME>

A time greater thar
2359 was enterede.

The tine 1S rejectece.
A valic date entry in
the same messace will
be acceptede.

ReinpLt time
portion cof
TESSECE.

<NO CLoOCK>

Time entry was
macesr» but syster
has no real=time
clock.

Valic date ertry
will be acceptec
in samre mMeSS3QEe.

rone

MM/DD/YY

HEIMM

Normal rescorse
to 97 inquiry
(830C)

rone

2015228003

3-9

FD (Form Define)

This intrinsic allows the operator to define a logical page for a serial printer (SPA) or set top of page for
the SPA.

Unless the operator indicates otherwise, the current position is taken as the top of the page.

If the three parameters (HEIGHT, WIDTH, and OFFSET) are specified, then they are used to define a
logical page on the SPA. HEIGHT specifies the number of lines on a logical page; WIDTH the maximum num-
ber of characters in one line; and OFFSET the number of characters that the printing area is to be offset from
the left. An OFFSET of zero specifies the left-most physical position.

WIDTH and OFFSET added together must not be greater than the number of physical print positions on
the serial printer. For example, if the physical printer has 255 columns the maximum printing area is given by
a WIDTH of 255 and OFFSET of zero. The logical page will remain the same as defined by FD or next warm-
start. ,

Format:

FD SPA height, width, offset
Examples:
1. FD SPA 66, 120, 5

defines a logical page on SPA where height is 66 lines and the printing area is 120 characters wide offset
5 columns from the left (that is, from columns 6 through 125, numbering the left-most column as column 1).

2.In order to change the top-of-page position, move the paper to the desired position then execute
FD SPA <empty>.

Output messages:

MESSAGF POSSIBLE CAUSES SUGGESTELC ACTION
FD SPA numters FD specifications Cteck input ard re-
INVALID for heichts» wicths enter .

and/or offset are
not acceptable.
Attempt to print
beyond SPA capabil-
ities.

3-10

GO (Restart a Stopped Program)

This intrinsic allows the operator to restart a program which has been stopped with the “ST” command.

Format:

GO mix-number [/ program-name

Examples:

\%

To restart program whose mix-number is 3:

GO 3

To restart program PR020:
GO 3/PR020

Output messages:

MESSAGE

POSSIBLE CAUSES

SUGGESTED ACTION

mix~number/prog~name
NOT STOPPED

Specified program
was not Wwaiting
for a "GO"™ comrande.

Check with MX for
sLsSpenced prograe
waiting for "GOC"
reinpute.

mix~number/prog-name
INVALID

Optional program
name Was usec anc it
did not match the
mix nurber specified.

Check with MX for
correct mix nurber
énc metching program
rerke. Feinput.

2015228

3-11

MX (Display Current Mix)

This intrinsic allows the operator to inquire about the status of any program(s) currently processing. ‘

Format:

MX mix-number Q/ I

/ program-name

Examples:

To inquire about all programs currently processing:
MX

To inquire about a particular program:
MX 03/PR020
or MX 03

Output messages:

MESSAGE

PROBABLE CAUSES

SUGGESTED ACTICN

INVALID MIX

Specified prograrn
is not currently
running.

Creck input (re~input

if necessary)e.

name was used and
it did not match
the mix numrber
specified.

NULL MIX No programs are Nonee.
currently proc*
essing.

INVALID PROGRAM 1ID Optional program Re=irput

For each program specified, the following information is provided:

MIX NUMBER

a number assigned by MCP to this program as it was loaded into memory.

PROGRAM NAME

PROGRAM PRIORITY - “A”, “B” or “C”

A = lowest priority (that is, application program)

B
C

3-12

medium priority (that is, system utility)

- highest priority (that is, data communications)

STATUS OF PROGRAM
° EXECUTING - program processing normally
SUSPENDED WAITED ON - program processing was temporarily halted. For reasons, see chart below.

SHORT WAITED ON - program is waiting on a resource (that is, Virtual Memory or 1/O buffer) which
the system can guarantee will be made available in a relatively short time. '

SWAPPED OUT WAITED ON - portioﬁs of this previously suspended program were temporarily removed
from real memory and returned to disk. Memory space was required for other programs in the mix. (Reasons
for “swap outs” are same as for program suspension).

Possible messages are summarized by the chart below:

mix / program priority EXECUTING

number name SHORT WAITED ON —
SUSPENDED

WAITED ON —
SWAPPED 0OUT
WAITED ON —

n/cC

vy

SCL TASK

CPERATCFR INFUT

ACCEPT

21F

1/0 OR EVENT

NC DISK FILE (NG FILE)

DUPLICATE FILE

SYSMEV FILE

NO USER DISK

DIRECTCKY SPACE

— DEVICE (NO FILE)

GC COVMMAND

EVENT TIMER

TTTT 1T T

rl

Output message examples:

MESSAGE POSSIBLE CAUSES SUGGESTELC ACTICN
04/PFR060 A EXECUTINC Program processing None
normally
04/PF060 A SUSPENDED Prcgras is waiting or MNone ¢ program will
WAITED ON 0/C a file open or close- te resumed when file
, ‘ tas teen ofened of
closed.
04/PFO60 A SUSPENDED Program is waiting None : do not try to
WAITED ON VM on Virtual Memory. execLte too many prog-
rams at this timee.

2015228 313

POSSIBLE CAUSES

SUGGESTED ACTION

04/PFO60 A SUSPENDED
WAITED ON SCL TASK

Progras is waitirg

for a "command™ from
the MCP to be completed
(such 38s respons€e to an

None : program will
te resumec when SCL
task has completed.

"OL" irput).
10/LR B SUSPENDED Program is wsiting for Provice program with
WAITED ON OPERATCR sore input frorm cperst= epprorriate irpute.
JINPUT or. (EX: A progranm Frogram will continye

previously suspended
by ST requires a GO
commenc to contirue)d.

processinge.

08/GL060 A SWAPPED
OUT WAITED CON ACCEFT

Progranr has disolayec
an "ACPT™ message on
SP0 and is waiting for
appropriagte response.

Refer to this program's
opersting instructions
for suggested responses
to ACFT. Ther enter AX,
rix nurber and select-
ed resronse.

05/AP020 A SUSPENDED
WAITED ON 2IP

Progranm requestec
assistance of anoth-
program in order to
complete this jot.
MCP will automatic~
ally load into memory
the necessary prog-
rar{(s).

Nonee.

04/PRO60 A SKORT
WAITED OMN I/C

Usually incicative
of normal process-
ing» involving 1/0
activity tc cisk or

peripheral .

Nore.

05/PF020 A SUSPENDEC
WAITED ON NO DISK
FILE

Prcgram needs (ard
has not founc) a
particular file in
order to Continue
prccessinge

Check SPO for message

irdicating name of file
this program is seekinrgd
Then supply missing
file (COPY fron
teckup medium or
create it). If in
coubt refer to
Frogranm instruct-
ions .

C2/PR020 A SUSPENDECL
WAITED ON DUPLICATE
FILE

Program is attempt-
ing to place a file
of a certain nanme

on disk. Howevers
another file ty the
same name currently
resides on disk. A
disk may not contain
2 files with the
same name.

MNormellys remove

the existing file
from cisk with RM,
If in coubtsr refer
to precgram instrict=-
ions .

MESSAGE

POSSIBLE CAUSES

SUGGESTED ACTION

10/COPY B SUSPENDEC
WAITED ON DIRECTORY
SPACE

When the disk was
initializec the cisk
directory was constr-
ucted to contain a
fixed number of file
names. The directory
has now reachec its
capacitye.

Femove with RM any
utnnecessary files and
crograr will continue;
or DS the suspencec
progran. Renlace

¢isk with ano ther

gisk hzving sufficient
cirectory spaces anc
re~execute the orocrarn.

10/C0PY B SUSPENDED
WAITED ON NO USER
DISK

There is no more
available spzace on
disk’ or space avail-
able is insufficient
to holo the file the
system is attenpting
to write; or disk is
"checkertoarcec".

bith KAs» analyze amourt
cf available srace
remaining. If cisk is
filled remove with RM
ény unnecessary files;
cr if cisk is fillec
and ¢ ocual=pack file

is desireds> assign a
cifferent Cisk to this
grrogran (see AD intrin-
sic)s cr if disk is
cteckerboardecs» use

€6 utility to consol-
idate disk spaces then
re~execute prcgram

that ercountered
suspension.

10/L1IST B SUSPENDEC
WAITED ON SYSMEM

F ILE

SYSMEM file cannot
te Llocatede-

Request technical
eassisterce-

C4/PR0O60Q A SUSPENDED
WAITED ON NO FILE
39)

E90N

Device that a groagran
needs in order to
continue processing
is either unevail~
able or not reacy?

or

kY regLired device; or
¢ssicn program to al-
ternzive device (see
AT iptrinsic)e.

Program needs (arc
has not found) a
particular file ir
order to continue
processinge.

Check SPC for messczce
indicating name of file
grogran is seekirge.
Supply missing file
(CCPY trom backup med~
ium cr creete)d.

04/PRO6)D A SULSPENDEC
WAITED CN CEVICE
B800

Device that a prcararm
needs 1n order to
continue processing
is either uncveil-
able or not rezcy.

FY required device;
cr assignr grocranm

to alternate cevice
(see AL intrinsic).

02/LF B SUSPENDED
WAITED ON GC COMMNE

Prcgram wWwas suspenc-
ed by ST command.

Type "™CO"™ plus mix
number of suspendec
Crogreéne.

2015228—-003

3-15

oL (Request for Status Information of Peripherals)

This intrinsic allows the operator to request the status of peripherals on the system.

Format:

peripheral

o | v

Examples:

To display status of all system peripherals:

OL
To display status of a particular peripheral:
OL DKB
OL LPA
Output messages:
MESSAGE POSSIBLE CAUSES SUGGESTED ACTION
rericherasl NOT Peripheral is rot Cteck input C(reinput
READY on the system; if necessary)
Peripheral may heve Reedy periphersal
been "saveq"; -if necessary.
peripheral may not
be correctly lcacec.
OL peripheral peripheral is rot rone
NOT CN SYSTEW configured on machine
OL reripheral A ron-existant device Cteck input
INVALID has teen specified (reirput if
(that is» CL CCC) recessary).

Other output messages produced by OL depend upon type of peripheral. Refer to the following examples
for details.

Examples of disk device output:

The general format of the output message is:

SYS DISK \l/ number of
disk-peripheral disk-name/ | < NOT READY files FILES OPEN
currently

PO'D in use
Examples:
DKA AR1/0 FILES OPEN
DKB AR2/SYS DISK 2 FILES OPEN
DMA PRA/NOT READY 0 FILES OPEN
DKA AR1/PO’D 0 FILES OPEN

Examples of magnetic tape device output:

The general format of the output message is:

NOT READY
multi-file name
magnetic tape device { file name)
UNLABELLED
PURGED

or

multi-file name l \v
magnetic tape device < file name { NOT READY } IN USE,..
UNLABELLED SAVED

o« BY mix-number / program-name

Examples:
CTA NOT READY
CTA ARTAPE
CTA ARTAPE/IN USE BY 10/TAPELR
CTA ARTAPE/NOT READY IN USE BY 10/TAPELR

Examples of output from any other device:

The general format of the output message is:

peripheral ‘ NOT READY

of
‘ multi-file name | . W
peripheral file name NOT READY INUSE, ..
UNLABELLED SAVED
 « « BY mix-number / program- name
Examples:

LPA NOT READY

LPA NOT READY IN USE BY 04/PR020
SSA SAVED

SPA SAVED IN USE BY 06/PR060

2015228-003 3-17

PG (Purge Tape) .

This intrinsic allows the operator to purge (erase) magnetic tape and cassette tape files, thus labelling them
as available for output.

Format:

PG tape or cassette peripheral

Examples:

To purge a cassette tape on drive CTA :

PG CTA
To purge a magnetic tape on drive MTC :
PG MTC
Output messages:
MES SAGE POSSIBLE CAUSES SUGGESTED ACTICON
peripherzl PG successful. Ncre.
* PURGED =
PG INVALID peripheral not Fe=irput messczce
specified in message.
PG peripheral Tape could not be Mske certain red tabs
INVALID purged» as it is cn tcp of cassette are
I "write inhibited"» turned outwards make
or peripheral is certein "write permit
not on the syster. ring™ is insertec ir
tape. Fetry FC.

Note: if an attempt is made to purge a tape which is in use, then the response to the OL message for that
peripheral is displayed.

PO (Power Off a disk)

This intrinsic allows the operator to “logically” power off a disk (instruct the MCP that the disk is no longer
required). At any time when the MCP is idle it is valid to logically power off the system disk with the PO

command. This will cause the MCP to terminate. All systems
will go to End of Job (EOJ).

disk files will be closed and SYS-SUPERUTL

No disk should be removed from the disk drive, no disk units should be powered down, nor should the main
cabinet be switched off, until disks have been logically powered off with PO. Failure to observe this practice
might cause disk problems at a later date.

Format:

PO disk peripheral

éxamples:

PO DKA (disk cartridge)
PO DMB (mini disk)
PO DFA (fixed disk)

Output messages:

MESSAGE

POSSIBLE CAUSES

SUGGESTED ACTION

disk peripheral 0K
or

disk peripheratl
POWERED OFF

Disk was lcgicelly
powered offe.

It is row perrissitle
to physically cower off
énc remove the disk
frowm tre disk drive.

disk peripheral
REMOVED wWITHOUT PO

Disk was physically
remgved before teing
logically power-=

ec off.

Check cisk for possible
corrupted data before
re=usce.

NOT CN SYSTEN.

PO disk gperigpheral specified cisk Feincute.
INVALID peripheral 1is

non-existarte.

(ex: PO DKW)
PO disk peripheral Specified disk is Feinpute.

not currently on
tine.

CANNOT POWER OFF
SYSTEM. MIX NOT
EMPTY.

or

PO disk perirheral
INVALID

Atterpt has been made
to PC the system disk
while a prograrm is
processings

Allow program to
co tc Enag of Job
(E0J)» then reinput.

2015228003

3-19

If an attempt to Power Off a disk is made while files on that disk are in use, the OL message for the disk
is printed. No further program will be allowed to open files on the disk and when all files in use have been ‘
- closed, the disk will be logically powered off. If the disk is in use, it will not be powered off immediately after
giving the PO command though it will print “disk peripheral PO’ED X FILES OPEN”, for all disks.

If a disk is removed without being logically powered off, any program using files on that disk will eventually
terminate with an error condition indicating hardware failure.

A PO’d user disk may be made ready again by the RY command or by physically powering the unit off and
on. i

PR (Assign Program Priority)

This intrinsic allows the operator to alter the priority of a program by n;oving it to the highest priority position
in the class specified.

Priority “A” is low or normal priority, used for regular work. Within this class, programs which perform more
physical 1/O operations are given precedence.

Priority “B” is medium priority, used for utilities or programs which may be expected to do emergency work.
The priority within this class is reverse historical: that is, a program of this priority placed in the mix will take
precedence over previous programs of the same priority.

Priority “C” is high priority, used for data communications programs that are transaction-driven. These are
normally dormant, awaiting a transaction, but when required to process a transaction they take high priority
to minimize response times. Within this class, programs which do more physical I/O are given precedence.
This intrinsic is not implemented on B 90 systems.

A
PR mix-number / program-name { B }
C

To change the priority of mix-number 3 (program REPS506) to B:
PR 03/REP506 B

Format:

Example:

Output messages:

MESSAGE POSSIBLE CAUSES SUGGESTED ACTICN
mix-nurber/gprogream- Input sccepted Ncne
name PR IS
priority
mix=-number/program= Mix-nurber and Check with MX for
name PR INVALID program~name do prop€r inputs zna

not wmatch re~enter

or

priority value
incorrect

2015228003

3-21

RY (Ready a Peripheral) .

This intrinsic is used to “ready” a peripheral so the MCP can use it as a resource. When warmstarting, the
system will automatically ready all peripherals on the system that are powered on. RY may also be used to
Ready a previousy PO’d user disk.

Format:
RY peripheral
Examples:
To ready a self-scan:
RY SSA
To ready a line printer:
‘ RY LPA
Output messages:
MESSAGE POSSIBLE CAUSES SUGGESTED ACTION
RY peripheral Attempt was mace to Creck input C(reinput
INVALID Reedy a non~existant if necessary)
peripheral (that is»
RY LLP); ‘
Attempt was made to
ready a device alreacy
"ready"e.
RY reripheral NOT Attempt was mace to Cteck input C(reinrpet
ON SYSTEWN ready a peripheral if necessary).
on=line to the
computer.

3-22

SF (Substitute Disk File)

This intrinsic allows the operator to direct a program to a particular disk file if it is waiting on a “NO FILE”,
“NO PACK”, “DUPLICATE FILE”, or “BAD FILE NAME” condition.

This command causes temporary modification of the program’s file parameter block. The modification remains
in effect for the current execution only, or until it is remodified by the program during the current execution.

The command can only be used when the program is suspended waiting on one of the above conditions. It
is not possible to anticipate the program’s requirements and modify the file parameter block in advance.

This intrinsic is not implemented on B 90 and B 900 systems. l
Format:
\l/ disk-name /
SF mix-number r / program-name d:sk-zamz/ﬁle-name
file-name
Examples:

Program AP10 (mix number 01) requests a disk file called APD2T on disk APD. To direct the program to
use file APD2S on the same disk:

01/AP10 <10> WAITING APD/APD2T DK NO FILE
SF 01/AP10 APD2S

(the first line is the MCP output message; the second is the input SF message in response to the “NO FILE”
condition).

To direct the same program to use file APD2T on disk APD1:
SF 01/AP10 APD1/

or
SF 01 APD1/

To direct the same program to use file APTEMP on disk ARTD:
SF 01 ARTD/APTEMP

Output message:

MESSAGE POSSIBLE CAUSF , SUGGESTED ACT ICN
rix=rumber / Program is not Check with MX and
Drogram=name waiting on 3 "no re"entere.

SF INVALID file” or other

condition* or
mix=number and
prcgramr=nanme

do not corresponcCe

2015228-003 3-23

ST (Temporarily Suspend a Running Program)

This intrinsic places a temporary halt on a program that is running. The program still appears in the mix.
The data needed to restart the program exactly where it stopped is transferred from memory and stored on
disk. The memory that was being used by the “stopped” program is now made available to the MCP for other
use. The GO command must be used to restart the program.

Format:

\%

ST mix-number {/ program-name

Examples:

To stop the program whose mix-number is 3:
ST 3

To stop the program PR020:
ST 3/PR020

Output messages:

MESSAGE POSSIBLE CAUSES SUGGESTED ACTICN

mi x“number/progran ST success ful ~ rone
name STOPPED

rRix=rumber/program Program has already Check with . MX for status
name INVALIL been stopped cf procram; (reinput if
or necesséry)de.
precgram is not ir
the mixe

3-24

SV (Save Peripheral)

This intrinsic allows the operator to “logically” power off any input/output device (except disks, see PO intrin-
sic) in order to prevent their use by any program.

“Tape peripherals” include magnetic tape (MT) and cassette tape (CT).
“Printer peripherals” include line printer (LP) and serial printer (SP).

Format:

— e—
tape peripheral
printer peripheral
SV <« self-scan peripheral >
card-reader peripheral
card-punch peripheral
— -
Examples
SV LPA
SV SSA

It is possible to “save” a device that is being used by a program. This will allow the program presently as-
signed to this device to continue using it, but will prevent any subsequent programs from using the device. For
example:

SV LPA
LPA SAVED IN USE BY 06/PR060

A “saved” device may be made “ready” again with the RY command or by physically powering the unit off
and on.

Output messages:

MESSAGE POSSIBLE CAUSES SUGGESTED ACTION
peripheral OK SV success ful None.
SV geripheral Attempt was made to Feinput (if necessary
INVALID save a2 cdisk perip- Lsinc correct perip-
heral teral.
or

device has already
been saved.

SV peripheral Specified peripheral Check inputi reinput
NOT GN SYSTEN is not on=lire tc if necessarye.
the computere.

periphefat POWER~ SV successful. None.
ED OFF ‘

2015228 3-25

VF (Vertical Format on Printer)

This command allows the operator to define the actions to be taken by the printer when certain vertical for-
mat commands are sent. This command applies only to printers which have soft vertical format control.

Format:

S AN |

The height field specifies the page height in lines. The channel number and line number fields are optional

but when specified they must both be present as a pair. The channel number should be 2-11 and page height
should not be more than 94.

Example:

VF LPA 66, 60, 2 10

where page height = 66
end of page = 60
channel number = 2
line number = 10

NOTE: For details see LOAD.VFU utility.

Output Messages:

MESSAGE POSSIBLE CAUSES SUGGZSTZID ACTION
VFU LOAD FAIL - Typing error correct the input
ILLEGAL PARAMETER and re=enter

LIST

VFU LOAD FAIL - The speci fied RY the peripheral
peripheral NaT peripheral is not and re-enter

ON LINE ready

VFU LOAD FAIL - The speci fied Wait until progranm
peripheral peripheratl is has closed the pr inter
IN USE | in use by a progran files then re=input
VFU LOAD FAIL - The peripheral is None

peripheral HAS ‘ not a B9249-30/50

hp SOFT VFu line printer

3-26

SECTION 4
CMS-COMMON UTILITIES csi:e

INTRODUCTION

This section describes all standard CMS utilities that form part of a CMS system software release. The appli-
cability of any utility depends on the type of hardware available. For example, utilities requiring console files
cannot be executed on machines without a console: as an example, CREATE, AMEND and UPDATE cannot
be run on a B 1800.

IS
H

JACK

Table 4-1 gives a list of all required peripherals for each utility. In this table, required peripherals are de-
noted by the letter *‘R’’, and optional peripherals by the letter *“O’’. One asterisk (‘‘*’’) indicates that out
of all the options, at least one is required. In particular, those utilities requiring a line printer may use a con-
sole printer by default if the line printer is not present on the system. Two asterisks (‘****’’) indicate that out
of all the options, at least two are required.

STAR FILES

The star-file facility permits the initiating message parameters of most utilities to be specified on a disk file
which is referenced in the initiating message.

The utilities which do not support this feature are:

CP - Compute

DA - Disk Analysis

KEY.CHECK - Key Validity

XD - Delete Bad Disk Sectors

PPID - Pseudo-Pack Identifier

WL - Which Log

ARCS - Automatic Run Control System
BF - display Backup File information
RB - Remove Backup files

as well as the following B 90-only utilities:

GEN.DUMPFL - Create empty B 90 Memory Dump File
PATCHMAKER - Patch B 90 machine code, and object program files
CONFIGURER - Configure B 90 System Software

CO supports a star-file facility which is slightly different from the general utility star-file facility. Refer to
CO, section 6, for details.

The syntax (as inserted in the initiating message) is:

>— < disk-id > /

< file-id > ———>

The utilities which support the star-file feature have the limitation of 400 significant characters within their
initiating message. (The initiating message for LD may be up to 600 significant characters in length).

Star files may contain any number of records, with any record size. A single space is considered a significant
character, and any double space encountered is considered to be a single space (and hence only one significant
character). Spaces at either end of the message are ignored.

Where star files are a feature of a particular utility, the star file may be placed at any point in the initiating
message after the utility name. The initiating message may contain any number of star files but these may
not be nested: that is, the information within a star file must not contain a call on any other star file.

If the specified file cannot be found, a ‘‘<file-name> NOT FOUND”’ message is displayed by the utility.

2015228-003 4-1

Table 4-1. Peripherals Required by CMS-Common Utilities

Cassette

o : Serial 3 Line Card Card | Paper
Utility Console-.|- Disk Printer Self-Scan Printer Mag(.){“ape Reader | Punch | Tape ICMD

ADD R

AMEND * R

BF R

CH

CHECKADUMP

CHECK.DISK

Cco *

COMPARE **

COPY **

Ccp

CREATE *

DA

DCR

DD

DSKUTL

DUMP

FL

FS

ICMD *

IR

KA *

KEY.CHECK R

KX

LB

LD

LF

LIST * *

LOAD

LR *

MODIFY

PB R

PD

PL *

RB R

RL R

RM

SCR R

SQ

SYCOPY R

TAPELR * o o

TAPEPD

TL

UNLOAD

UPDATE * R
D

Examples:
1. RM *M101A/RMFILE
where RMFILE is a disk file on disk M101A containing one record with the contents REP200, REP562,

- RQ=, RCOPY :
2. DA *DISKI1/F ‘
where F is a file containing a list of filenames.

A A A”AX

o
o
o
@)
o

*
o

AAAAARAAAAAORN A AN I A I A A I I RINAIANN OOXIIIIAIX
© ©0O0O0
© ©oOoo

AA”mA™ O

el
~

4-2

3. COPY *DISK2/B
e where B is a file containing the remainder of the initiating message — ‘““FILEA <BOTH> TO DISK3/
FILES”

SYS-SUPERUTL

This system utility provides the following functions:

CH - change the name of a file or group of files
KX - interrogate disk space

PD - interrogate disk directory

RM - remove a file or group of files

IR - initiate recall of SPO log messages

LB - look back in SPO log

LF - look forward in SPO log

It executes automatically if the program file is on the systems disk when one of these functions is required.
This program is also automatically executed at warmstart time and co-ordinates logging functions at that time.

SYS-SUPERUTL supports the following filetypes:

Filetype Description

00 Normal Data

01-0E Source Language

OF Source Library

10-12 Normal Code

13 Protected Code

14-16 Interpreter/SORTINTRINS/MCPX/SAU

% 21 SYSLANGUAGE local language

22 SYSCONFIG - a required file

30 Virtual Memory/Dump

31 System Log

40-41 MPLII Compiler Work

81 Key

A0 Printer Backup

Of these, the following filetypes are system files:

13 Protected Code

14-16 Interpreter/SORTINTRINS/MCPX/SAU

21 SYSLANGUAGE local language
' 22 SYSCONFIG

30 Virtual Memory/Dump

31 System Log

A request for the removal of a system file causes the RM utility to output

<file-name> IS A SYSTEM FILE
AX <mix-no>/RM ACPT

Then, to remove a system file:

AX <mix-no> <file-name> OK

The utility has some features which can cause the operator confusion. The utility does not appear in the
response to the MX command unless it is actually performing one of its functions, when it appears as 12/
PD or 12/CH etc., according to the function which it is currently performing. If an attempt is made to execute
one of the SYS-SUPERUTL functions when it is already busy, then a response of ‘‘<64> LOAD FAILURE
e UTILITY BUSY”’ is returned.

2015228003 , 4-3

SYSLANGUAGE

All CMS utilities which output SPO messages, with the exception of PATCHMAKER, GEN.DUMPFL, BF,
RB and SYCOPY, display these messages from a common SYSLANGUAGE file. THIS FILE MUST BE
PRESENT IN ORDER FOR ANY OF OF THE UTILITIES USING IT TO EXECUTE. Associated with this
file is the message: '

“INVALID DICTIONARY ENTRY <entry-no>"’

which denotes that the utility executing has attempted to display a message which is not contained in the dic-
tionary file SYSLANGUAGE.

PSEUDO-PACKS

Pseudo-packs allow fixed disk units containing multiple disk platters to be handled as one large contiguous
disk. This enables the MCP to address the space on all disk platters as one large available area.

The disk structure that makes this possible is the Pseudo-Pack Identifier Table (PPIT) and is only relevant
to fixed disk directories. The fixed disk directory generated at disk initialization for systems using pseudo-
packs consists of four parts:

The name list.

The disk file headers for each file.

The available table.

The Pseudo-Pack Identifier Table (PPIT).

The relationship between these parts is shown in figure 4-1.

TRACK EL
ZERO DISK LAB
% 2\ 2 N N4
DIRECT- AVAILABLE NAME DISK FILE Pfggg%—:&%x
ORY TABLE LIST HEADERS
TABLE
DISK J/ ‘ \I/ \L
SPACE .
FOR >
FILES S —

Figure 4-1. Fixed Disk Directory Structure

The available table and disk file headers generated at initialization time have entries which reflect the logical
structure of the entire disk unit.

44

The name list now contains a list of each file on the entire disk unit and a unique identifier, which is used
to distinguish files contained on one pseudo-pack from files contained on another pseudo-pack.

The PPIT is a list of ali the pseudo-packs declared on the system. An identical PPIT exists on each fixed
disk unit.

The ADD PACK intrinsic enables the operator to declare a new pseudo-pack to the system. It also allows
the operator to declare the pseudo-pack as restricted or unrestricted. Once a pseudo-pack has been declared
restricted or unrestricted, this designation cannot be changed.

When a new file is created on an unrestricted pseudo-pack, areas for the file may be allocated on any of
the fixed disks. When a file is created on a restricted pseudo-pack (or with physical unit pack-id), areas for
the file are allocated only on the designated unit.

When searching for a file on an unrestricted pseudo-pack, the PPIT and file directories on all fixed disk
units are searched, otherwise, only the PPIT and file directory on the designated unit are searched.

The Pseudo-Pack Identifier Display (PPID) utility allows the operator to list the Pseudo-Pack Identifier Table
on the operator display terminal (ODT) or line printer.

LOGGING

When the system is warmstarted, the SYS-SUPERUTL utility is initiated and SYS-LOG files are created.
The information about the number and size of log-files is stored in a file called ‘“‘SYSCONFIG”’ (see CONFI-
GURER). The MCP then initiates a function of SYS-SUPERUTL, which starts up the ““TL’’ utility, and the
transfer of log-files to a ‘“SYS-LOG-HOLD”’ file begins. When all the log-files are transferred and TL goes
to End of Job, SYS-SUPERUTL removes the old SYS-LOG files and creates new SYS-LOG files.

During a session, all the console input/output messages that normally appear on the SPO are stored in SYS-

LOG files SYS-LOG-01 through SYS-LOG-nn, where ‘‘nn’’ is 03 to 16 (see CONFIGURER). When one log-

file is full, the messages are directed to the next log-file. When all the log-files are full, the logging is directed

to the first file again. This overwrites the information held in the SYS-LOG-01 file unless the utility *“TL’

e is begun beforehand, which will transfer all the transferable log-files and keep them in the “TRANSFERRED”’
state (see TL and WL).

The system will automatically transfer all log-files only at warmstart time.

COMMON UTILITY OUTPUT MESSAGES

MESSAGE POSSIRLE CAUSES SUGGESTED ACZTICN

INVALID CHARACTER Disk rame or file nanme Check incut ard

IN IDENTIFIEFR contains character(s) re-irput if nec-
not permitted ty the €S5arye.

system. Valic charac=
ters are: A=Z» (=6
. (dot), = (gash).

ILLEGAL PARAMETER Typing errcre. Check input. After

LIST words "ILLEGAL
PARAVMETERS LIST"
systemr will disolay
portion of input
mressage that contains
€rror.

file=name NOT FOUMD Specified file name Check input and re-enter
or is not or cisk, if necessarys; check
file"name NOT ON for ccrrect cisk;
LINE supply specified file
(COPY file from tack-=
e up mecium or create

file).

e e+ o el

2015228—-003 4-5

MESSAGE

POSSIBLE CAUSES SUGGESTED ACTION

NO SPECIFICATIONS
GIVEN

Input message is Check input and
incompletee. re“eptere.

DISK disk=name
NOT GPENED NOT ON
LINE

or
DISK disk=nare
NOT AVAILABLE

or
DISK disk=-name
FOR XD NOT
AVAILABLE

Specified cisk is Check input ard

not on-line to

computer,
Feady cisk;

|FILE LIST MAY BE
INCOMPLETE

A group of files on an
unrestr icted pseudo~
disk was requested, but
the disk is off=line.

PSEUDC-DISK pseudo-
disk=name (M DSK
disk=name NOT
AVAILABLE

The pseuco=disk
specified has not been
found.

DISK disk=name IS
A PSELDO-DISK

The disk specified is
not a physical disk

tut a pseucdo=disk:
protatly the input

cisk name is incorrects
This message is printed
ty those utilities
which cannot handle
pseudo-disksSe

Correct the disk
name and reinptte

4-6

re“enter if necessary;
Check for correct disks

ADD (Add Files From Library Tape to Disk)

This function, a part of the utility LD, allows the operator to copy files from a library tape to a disk.

Format:

. . \l/ file-name or
l LD l ADD FROM library-tape-name TO disk-name group-name |< BOTHS |

If the <BOTH> option is used immediately after a request to add a keyfile, the data file will also be copied,
provided it does not precede the keyfile on the library tape. The keyfile will then refer to the disk which now
holds the data file (rather than the disk from which the data file was dumped to the library tape).

A file is copied only if no other files on the specified disk have the same name.

Examples:

To copy all files from ARTAPE to the system disk:
ADD FROM ARTAPE=

To copy a file called PRFILE from PRTAPE to a disk called PRBU:
ADD FROM PRTAPE TO PRBU PRFILE

To copy files called GL300 and GL200 from GLTAPE to the system disk:
LD ADD FROM GLTAPE GL300 GL200

To copy a keyfile called PR240K and its data file from a tape called PRTAPE to a system disk=
ADD FROM PRTAPE PR240K <BOTH>

Since “ADD?” is a part of the utility LD, “LD” is actually what will appear in a mix message. To discontinue
the ADD function, “DS mix-number/LD” must be used.

Output messages:

MESSAGE POSSIBLE CAUSES SUGGESTED ACTICN
file"name LOADED ADG successful None.
Library=tape~name Specified tape does Frovide correct tare
NOT A RECOGNIZED not have a valid C9S énd retrys; or DS LC
DUMP TaAPE Labels» or has not vtility.

been created by the
LD utility (for
examplet tane is a
CDPY tape).

NO FILES IN THE Specified group was Check input and re-
FAMILY qroup-name not found cn Llitrary input if necessary;
ON TAPE Llibrary- tape. Check for correct
tape=-name FOR library=tape.

ADD

2015228-003

4-7

MESSAGE

POSSIBLE CAUSES

SUGGESTED ACTION

NO FILE fite=name
ON TAPE Llibrary=tape-
name FOR ADC

Specified file was not
found on library
tanes

Check input and re-input
if necessary’; check

for correct Llibrary
tace.

file“"name LOAD/

End of File reached

Try tape on different

DUMP DISCREPANCY before expectec. Disk drive in case the
Fitle Header may te drive is at fault.
corrupted. Possitly
due to mis=reacing
of tape.

NO FILES TO LOAD No files were foun? Check input anc re-=
on this tape to cony input if necessarys’

to diske

Check for correct tape.

file=name NOT LOADED
- ALREADY ON 9DISK.
ALTHOUGH WITE
DIFFERENT ATTRIS~-
UTES.

File not copied as a
file with the same

nare already exists

on diske. If the 2

files agiffer in record,
blocks and file sizess
the "DIFFERENT ATTRIZ-
UTEZS™ message prints.

Normglly remove with
kM the duplicete file
and re-attempt the
ADD.

file=name DATA FILES
NOT FOUND ON TAPE
FOR LOAD.

Nata file for given
keyfile does not
follow on tace. Data
file cannot be copiece.
Keyfile is copiec.

None.

Note: Refer to “Common Utility Output Messages” for additional aid.

4-8

- AMEND (Disk File Amending)

This utility is used to modify records within an existing data or source file. The CREATE and UPDATE
utilities use many similar features. It is only available for use on systems which have console files. The utility
supports the star-file feature. If a file is AMENDed, the generation number of the file is incremented by one.

Format:

AMEND disk-name / file-name A l TABSTOP \l/\l/ number ‘

Input may be either alphanumeric (A) or hexadecimal (N) (see CREATE for details). The default is A.

Entering TABSTOP in the initiating message causes AMEND to set up TAB positions coinciding with the
end of the console line as well as any other tabs specified. Tabs must be used with AMEND, despite the
fact that no new records are being entered.

Default tab positions have been chosen to allow a maximum number of characters to be inserted on one
line. AMEND uses nine for the record number and 110 for the contents of the record. In addition, manually
selected tabs may still be used. The end-of-console line-tabs (depending on record size and file-type) are as
follows:

Source or Data alphanumeric : 111 221 331 441
Data Hexadecimal : 56 111 166 221 276 331 386 441 496

These tab positions are the same as those set for CREATE with regard to record input, although AMEND
has no facility to input new records.

Examples:
Tabs Set at:
AMEND FILEA TABSTOP 111 221 331
AMEND FILEB A TABSTOP 51 61 221 51 61 111 221 331 441
AMEND FILEC N TABSTOP S6 111 166 221 276 331 386 441

In these examples, FILEA is a sourcefile with a record size of 410,
FILEB is a datafile with a record size of 500,
FILEC is a datafile with a record size of 450.

The ‘‘number’’ option may be used to set tab positions for character input (see CREATE for details).
The utility operates in two modes: ‘‘Record Modify”” (PK2) and ‘Record Select”” (PK3).

PK1 PK? PK3 PK &4 PK5 PK6
write
tast & | mcaify | select - --" £0J
get
next

An OCK4 “‘help” option is provided, which will output the above options when pressed in either Modify
or Select mode. In order to show which mode the utility was in when OCK4 was pressed, an asterisk (*)
is printed next to that mode on the Help display.

PK1 is used to select the next sequential record in the file to be printed. The use of PK1 terminates “‘Record
Modify”” and “‘Record Select” modes, therefore a re-selection of mode must be made before continuing.

2015228-003 : 4-9

If PK3 (‘“‘Record Select’’ mode) is used, the required record is identified by’logical record number using
this format:

I RECORD number

The ‘‘number”’ may take any value from 1 to the number of records in the file.

PK2 is used to make corrections to existing records. This PK operates as PK2 in CREATE utility (see CRE-
ATE for details).

Example:

To amend a source file called MYFILE, record size 40 bytes, tab set at 5, 10, 15, 20:

AMEND MYFILE 5 10 15 20

First select a record by pressing PK3, and then enter *‘20” for logical record 20 in MYFILE. The utility
selects and prints the contents of record 20:

20 ABCDEFGHIJKLMNOPQRST

To replace characters, press PK2 and type the replacement

D : ZZZZ : OCK1
resulting in 20 ABCDZZZZIJKLMNOPQRST”’

Or if insertion of characters is desired, type the characters to be inserted into the record:

Z : XXXXXX : OCK2
resulting in ‘20 ABCDZXXXXXXZZZOPQRST”’

NOTE
The insertion from character six to eleven will result in the shifting of characters
“ZZZIJKLMN” from byte position 12 to the boundary of the next tab position,
which is 15. Therefore only 3 characters *ZZZ’’ are shifted from 12 to 14 and *‘IJ-
KLMN" are lost. The text from the next tab position 15 onwards is not affected.

Starting Byte for Modification
A starting byte can be specified for the modification of a record.

If both the identifying string and the start position are specified, the utility scans from the start position
for that identifying string. The portion of the record before the start position is ignored. If that identifying
string does not exist, “BYTE WITHIN RECORD SPECIFIED NOT FOUND” is displayed and the utility
then awaits re-input.

Format:

identifying string : amending character string : start position
o amending character string : start position
x identifying string : amending character string

4-10

e Example:
The following file (named FILEA) is to be amended.

Rec. No. Contents of Record

AAAAABBBBBCCCCCDDDDDAAAAABBBBBCCCCCDDDDDEEEEE
AAAAABBBBBCCCCCDDDDDAAAAABBBBBCCCCCDDDDDEEEEE
AAAAABBBBBCCCCCDDDDDAAAAABBBBBCCCCCDDDDDEEEEE
AAAAABBBBBCCCCCDDDDDAAAAABBBBBCCCCCDDDDDEEEEE
AAAAABBBBBCCCCCDDDDDAAAAABBBBBCCCCCDDDDDEEEEE
AAAAABBBBBCCCCCDDDDDAAAAABBBBBCCCCCDDDDDEEEEE
AAAAABBBBBCCCCCDDDDDAAAAABBBBBCCCCCDDDDDEEEEE

NN HEWN -

1. This first example illustrates modification of each record by replacement.
Enter: ‘“AMEND FILEA”
The following is displayed:
DATA AMEND

PK1 PK2 *PK3 PK6
NEXT MODIFY SELECT END

Press PK1. This causes the next record to be displayed (in this case, the first):
1 AAAAABBBBBCCCCCDDDDDAAAAABBBBBCCCCCDDDDDEEEEE
e Enter the amending command and press OCK1 (for replacement):
BBBBB:XXXXX: (OCK1)
AMEND now displays the AMENDed record:
1 AAAAABBBBBXXXXXDDDDDAAAAABBBBBCCCCCDDDDDEEEEE
Press PKI1. -

2 AAAAABBBBBCCCCCDDDDDAAAAABBBBBCCCCCDDDDDEEEEE
XXXXX:11 (OCK1)
2 AAAAABBBBBXXXXXDDDDDAAAAABBBBBCCCCCDDDDDEEEEE
Press PK1
3 AAAAABBBBBCCCCCDDDDDAAAAABBBBBCCCCCDDDDDEEEEE
BBBBB:XXXXX:2 (OCK1)
3 AAAAABBBBBXXXXXDDDDDAAAAABBBBBCCCCCDDDDDEEEEE
Press PK1.
4 AAAAABBBBBCCCCCDDDDDAAAAABBBBBCCCCCDDDDDEEEEE
BBBBB:XXXXX:26 (OCK1)
4 AAAAABBBBBCCCCCDDDDDAAAAABBBBBXXXXXDDDDDEEEEE
Press PK1
5 AAAAABBBBBCCCCCDDDDDAAAAABBBBBCCCCCDDDDDEEEEE
XXXXX:31
5 AAAAABBBBBCCCCCDDDDDAAAAABBBBBXXXXXDDDDDEEEEE
Press PK1
6 AAAAABBBBBCCCCCDDDDDAAAAABBBBBCCCCCDDDDDEEEEE
BBBBB:XXXXX:7
6 AAAAABBBBBCCCCCDDDDDAAAAABBBBBXXXXXDDDDDEEEEE

e ?7END AMEND

2015228003 4-11

2. In this next example, insertion is being performed:
Enter: AMEND FILEA
As for replacement, the following is displayed:

PK1 PK2 *PK3 PK6
NEXT MODIFY SELECT END

Press PK1 to display the next record:
1 AAAAABBBBBCCCCCDDDDDAAAAABBBBBCCCCCDDDDDEEEEE
Enter the amendment followed by OCK2:

BBBBB:XXXXX: (OCK2)
1 AAAAABBBBBXXXXXCCCCCDDDDDAAAAABBBBBCCCCCDDDDD
Press PK1
2 AAAAABBBBBCCCCCDDDDDAAAAABBBBBCCCCCDDDDDEEEEE
:XXXXX:11 (OCK2)
2 AAAAABBBBBXXXXXCCCCCDDDDDAAAAABBBBBCCCCCDDDDD
Press PK1
3 AAAAABBBBBCCCCCDDDDDAAAAABBBBBCCCCCDDDDDEEEEEf
BBBBB:XXXXX:2 (OCK2)
3 AAAAABBBBBXXXXXCCCCCDDDDDAAAAABBBBBCCCCCDDDDD
Press PK1 '
4 AAAAABBBBBCCCCCDDDDDAAAAABBBBBCCCCCDDDDDEEEEE
BBBBB:XXXXX:26 (OCK?2)
4 AAAAABBBBBCCCCCDDDDDAAAAABBBBBXXXXXCCCCCDDDDD
Press PK1
5 AAAAABBBBBCCCCCDDDDDAAAAABBBBBCCCCCDDDDDEEEEE
:XXXXX:31 (OCK2) :
5 AAAAABBBBBCCCCCDDDDDAAAAABBBBBXXXXXCCCCCDDDDD
Press PK1
6 AAAAABBBBBCCCCCDDDDDAAAAABBBBBCCCCCDDDDDEEEEE
BBBBB:XXXXX:7 (OCK2)
6 AAAAABBBBBCCCCCDDDDDAAAAABBBBBXXXXXCCCCCDDDDD

?END AMEND

Output Messages:
Refer to the section on the CREATE utility for output messages.

4-12

BF

The BF utility enables the user to display information about backup files residing on one or more disks.

Entering BF or BF HELP displays the syntax diagram for BF, which is as follows:

’

BF < file-id > >
— FROM —— <disk-id > —‘I — * <file-id>
ON =
ALL
L- <int-1>
<int-2> —
> >
L DETAIL L—— BEFORE <mm>/ <dd>/ <yy>—
L—mer—J |
where:
<disk-id> specifies the disk on which the utility seeks backup files; the default is thev

backup disk designate.

The following specifications designate the files or groups of files about which the information is required:

<file-id>

* <file-id> *

<int.1>

<int.1> - <int.2>
ALL

DETAIL

2015228003

designates a backup file or a family of backup files. Either the external
or the internal file name may be specified.

is used when <file-id> alone could cause confusion (for example, BF *
5 * designates the backup file named 5 instead of the one named
PB00005).

specifies all the backup files PBxxxxx, where 1 = xxxxx = 65535.
specifies the backup file PB<int.1>.

specifies all the backup files from PB<int.1> to PB<int.2>.
specifies all backup files irrespective of their names.

option causes BF to display for each backup file specified:
— the external name of the backup file

the internal name of the backup file

the file’s name in the backup file

the filesize

the creation date and time

the name of the creator program.

The default for DETAIL is to display
<file-id> ON LINE
for each file found within the range specified.

4-13

listed. ‘
MM and DD (month and day respectively) may be either 1 or 2 digits,
while YY must be 2 digits.

BEFORE <mm/dd/yy> option causes all backup files created before the specified date to be ‘

Examples: ,
To specify the file PB00006 from the system disk:

BF 6 :
To specify the file PB00026 and all backup files in the family MPL=, on the disk USEDSK:

BF FROM USEDSK 26 , MPL=

To specify PB00016, PB00019 on the system disk, all the backup files named PBxxxxx on the disk TASK
and all backup files in the range PB00040 to PB00063 on the disk ARDSK, each one of these files subject
to the date given:

BF 16,19 ; FROM TASK = ; FROM ARDSK 40-63 BEFORE 1/6/81

Messages:

The syntax error messages issued by the utility are self-explanatory. The utility goes to EQJ after having
displayed: :

¢ e sk skok ok BF ABORTED *okkkk??

and having advised the user to use the BF HELP utility.

In the cases where the utility issues a message which includes quotes, the user should read ‘‘asterisk’’ in-
stead of ‘“‘quote’’.

If a disk cannot be opened, BF continues executing, going on to the next disk specified, after having dis-
played the following message:

UNABLE TO ACCESS DISK <disk-id>

If a file cannot be found, or no files are found in a family, BF goes on to the next file specified, after having
issued appropriate messages concerning the absent files.

On completion, BF issues the message:
** BF COMPLETE **

Limitations:

Although the filetype for printer-backup files is supported by the B 90, the B 90 system has no current facil-
ities for creating printer-backup files.

CH (Change File Name)
(a function of SYS-SUPERUTL)

This utility allows the operator to change the name of a file or group of files on disk. The <DATA> option
allows the data file of an indexed pair to be changed, and it will also cause the keyfile to refer to the new
data file name (the keyfile name does not change).

Format:
) q/ file-name or ‘ l file-nam
CH disk-name / group-name <DATA> TO group-n:mg.r
Examples:

To change the name of a single file:
CH BPS320D/DCSTSK36K TO DCSTSK
CH DCSTSK TO INDISK3TSK

To change a group of files:
CH BPS320A/AR= TO BP=
CH PRB= TO PR=

To change several different files or groups of files:
CH DCSTSK TO INDISK3TSK, BPS320A/AR= TO BP=

To change the name of the data file of an indexed pair:
CH AR200K <DATA> TO AR200BU

Note: if a change of group file name is specified with the <DATA> option then the data file should appear
in the directory after the keyfile. If this is not the case then the name of the data file is changed first, and
when the attempt to change the key file name is made, a “data file-name NOT FOUND” message will be dis-
played. This will not occur when changing the name of a single indexed file.

Output messages:

MESSAGE POSSIPLE CAUSES SUGGESTED ACTION

"file name”™ CHANGEC 1O File nafme succesSs~ Nore.

"file name” fully changed.

"file name™ NOT Specified file Check input or (re-

CHANGED = NOT FOUNC name is not on jnput 1f necessary)»

disk. Crheck for correct

disk.

NO FILES FOULAD FGR Specified group Check input (re=-ingut

C FANGING IN THE name 1S not on if necessary)

FAMILY. "group-name” disk. Check for correct
diske.

2015228003 4-15

MESSAGE

POSSIBLE CAUSES

SUGGESTED ACTION

"file name™ NOT
CHANGED IN USF

Fite's name cannot

be changed because

it is currently

being used by systerm.

Wait untit file is
ro loncer in use»
then re=input.

"name™ FILE IDENT-
IFIEF TOO LONG

Attempt has been mace
to change a file nane
to more than 12

characters in lerctt.,

Re=irput.

"file name™ NOT
CHANGED = ILLEGAL
REQUEST

Atterpt has been made
to change the name of
a file to "SYSMEM"™

(a name reserved for
system use) or all
Spaces.

Re=irpLt.

"file nare™ NOT
CHANGED = "file name"™
ALREADY ON DISK

Attempt has been made
to duplicate the name
of a file atready on
disk.

Re=irpute.

KEYFILE "file name™
NOW POINTS TO DATA
FILE "file name".

Successful completior
of data file name
change.

None.

<64> LOAD FAILURE
UTILITY 3USY

Another function of
SYS=SUPERUTL is being
executede.

Wait until
SYS=SUPERUTL s
frees then re-input.

4-16

CHECKADUMP (Compare Library Tape with Disk)

This utility allows the operator to compare information in files on a library tape with corresponding files on
disk. It is used to verify that a library tape is correct after files have been DUMPed or UNLOADed, or that
disk files are correct after files have been ADDed or LOADed. Specified tape is processed sequentially, file
by file, and the disk is searched for corresponding files. The utility will notify the operator on up to four errors
in a given file. If there are more than four errors, it will ignore the rest of that file, and proceed to the next

file on tape.

Format:

CHECKADUMP — < library-tape-name > —— WITH <disk-id >)IA(

Examples:

A4

< file-id > ~—

— < group-id > =

To compare files on the tape called PRTAPE with the corresponding files on the system disk:
CHECKADUMP PRTAPE

To compare files on the tape called ARTAPE with the corresponding files on a disk called ARDISK2:
CHECKADUMP ARTAPE WITH ARDISK2

To compare the file TESTFL on the tape called BRTAPE with the corresponding file on the disk called

ARDISK3:

CHECKADUMP BRTAPE WITH ARDISK3/TESTFL

Output messages:

MESSAGE

POSSIBLE CAUSES

SUGGESTED ACTION

Library=-tape-name
NOT A RECOGNIZED
DUMP TAPE

First record of tape
not recognized by
CHECKADUMP. Tare

may not have beern
created by LD
utility.

None. Utility ends

Library=tape=-name
INVALIC DIRECTORY
ON TAPE

More or fewer entries
in directory on tape
than specified ir the
first record of tapee.

Nore. (See CMS MCP
Feference . Manual
for adcitional in-
formation on tape
formastse.

ON file=-name FILE NOT
FOUND FOR CHECK.

file cannot be founc
for file or tare.

COMPARISON ERROR Header in tody of tape Ffecreate dump tape.
ON library=-tare- is not identical to
name ON DISX FILE respective header in
HEADERS. disk directory. The
error count for the
file is incressed bty 1.
COMPARISON ERROR Corresponding cisk kecreate dump tape.

DISK EXPIRING
BACKUP RECOMMENDED

Self Explanatory

Backup Disk

2015228-003

4-17

MESSAGE POSSIBLE CAUSES SUGGESTED ACTION
COMPARISON ERROR ON Corresponding disk Recreate dump tape.
file=name FILE NOT file cannot be read
AVAILABLE FOR for this file on
CHECK tape.
COMPARISON ERROR ON Discrepancy between Recreate dump tape.
file"name (AROUND disk file and tape
RECORD numbher) file. Record numter

in vacinity of error

in file is printed,

if possible. One is

added to error cCount

for this file.
COMPARISON ERROR ON Difference in length Recreate dump tape.
file“name AROUND of tape and disk filese
END OF FILE One is added to error

“count for that file.

COMPARISON ERROQOR Difference in sizes Recreate dump tapee.
ON file=name DIFFER- of disk and tape
ING FILE SIZ2ES files.
COMPARISON ERROR ON Difference in file Recreate dump tape.
file"name CIFFERING types of files being
FILE TYPES compared.
COMPARISON ERROR ON Difference in recorc Recreate dump tape.
file=name DIFFERING sizes of the files
RECORD SIZES being comparede.
COMPARISON ERROR CON Difference in block Recreate dump tape.
file“name CIFFERING sizes of files being
BLOCK SIZES comparede.
NO DISCREPANCIES CHECKADUMP success*™ None.
BETWEEN DUMP TAPE ful.
Library=tape=nanme
AND. DISK disk=name.
DISCREPANCIES FOUNC Discrepancy discover- Fecreate dump tape.

BETWEEN DUMP TAPE
library=tape-name
AND DISK disk=name.

ed between disk fitle
and tape file.

NOTE: Refer to “Common Utility Output Messages” for additional messages.

4-18

CHECK.DISK (Check all Sectors of a Disk)

This utility checks either a specified area, or the whole area, of the specified disk by checking blocks of
32 sectors. If an error occurs in a block, each sector within that block is checked individually.

Format:

< start-address > — < end-address >

CHECK.DISK =—d— < disk-id > ———— <start-address > < number of sectors >)

It is possible that, because of a hardware failure, an error may be detected when a block read is being per-

Jormed but no errors are detected during the subsequent sector-by-sector read of that block. This is referred
to as an ‘‘inconsistent error’’.

When inconsistent errors are encountered, CHECK.DISK continues execution. It is therefore possible to
have several read error messages output by the MCP while the utility displays a ‘““NO ERRORS’’ message
‘on completion of the check.

Checking of only defined areas is permitted by specifying sector ranges in the initiating message (start and
end addresses or number of sectors).

These sector ranges may be up to 8 decimal numbers or up to six-digit hex numbers delimited by the charac-
ters @ (AT) or . (PERIOD).

Example:
CHECK.DISK ARBK 32-128
or CHECK.DISK ARBL @000020@-@000080@

The disk-name must be specified if sector ranges are required. If sector ranges are not specified, the utility
will default to checking the complete disk from sector zero to the end address.

The utility determines whether a sector with a read error is denoted as BAD in the directory available table
and displays the messages on encountering such an error:

ERROR NOTIFIED ON READING DISK disk-name
followed by SECTOR <address> DENOTED AS BAD IN DISK DIRECTORY
or SECTOR <address> NOT DENOTED AS BAD IN DISK DIRECTORY

If one or more inconsistent errors occur, the message:
“INCONSISTENT ERROR(S) NOTIFIED - POSSIBLE MEDIUM/DRIVE FAULT”

is displayed on completion of a disk or disk area check.

If no consistent errors are found, but one or more inconsistent errors occur, then ““NO CONSISTENT ER-
RORS”’ is displayed with the above message.

If one or more consistent errors are encountered, one of the following two messages is displayed on comple-
tion of a disk or disk area check:

ONE CONSISTENT ERROR NOTIFIED
or <n> CONSISTENT ERRORS NOTIFIED

If no errors — consistent or inconsistent — occur, the. message ‘‘“NO ERRORS’’ is displayed.

On completion of checking an area or the whole disk, if any read errors were encountered on sectors which
are not denoted as BAD in the available table, the message:

nnn BAD SECTOR(S) NOT DENOTED IN DIRECTORY

is displayed following the summary and error count messages.

2015228003 4-19

If the utility detects that it is bein
End of Job if circumstances dictate,

g run on 1 megabyte floppy disk, it will give an additional message at

as follows:

If 15-30 bad sectors are found, the following message is displayed:

DISK disk-id SHOULD BE REINITIALISED SOON

If more than 31 bad sectors are found, the following message is displayed:

DISK disk-id EXCEEDS BAD SECTOR LIMIT
PLEASE POWER OFF DISK disk-id

If this message is given, the disk should not be used again.

Output messages:

disk=name CONPLETED
-ERRORS NITIFIED

or
CHECK.DISK ON
disk=name COMPLET~-
ED=NJ ERROR

AESSAGE POSSIBLE CAUSES SUGGESTED ACTION
CHECK.DISK ON disk- This message is None.
namne CUMPLETED = 0ONF displayec after all
CONSISTENT ERROR sectors have beer read
NOTIFTIEDe and one error has been

detectede.
CHECK.DISK DN disk- The utility has found None.
name COMPLETED = more than one bac
numper FPRCRIS NATIFIED sector.
READ FRROR QN OCL CF An error was None.
disk=namee. encountered while.

reeding sector zero of

the specifiec diske
£RROR NOITIFICZD ON Normal output mressage. None.
READING SFCTOR r Utility continues.
CHECK.DISK aW Normal E£0J messagesa None.

BEYOND END OF DISK
disk-name

CHECK.DISK ON Only one sector specified None.
disk-name SECTOR for checking and found to
address - NO ERROR be readable.

CHECK.DISK ON An area of sectors None.
disk-name AREA checked.

address—-address

COMPLETED

CHECK.DISK ON Every sector of the disk None.
disk-name checked.

COMPLETED

SECTOR start-address The utility will continue None.

with the next sector range

specified.

Note: refer to “Common Utility Output Messages” for additional messages.

4-20

COMPARE (Compare Files)

This utility compares corresponding records in two files, or in pairs of files within two groups. A realignment
feature is also available as an aid to detecting missing records.

Format:
1 I < file-id > 1
COMPARE —— NOPRINT AL—- <disk-id >/ — < group-id > WITH ———9

< file-id >

>—— <dikid> < group-id > R AL—)

The NOPRINT option results in suppression of the full printed error listing. Instead, the following is dis-
played on the SPO only when the first error occurs:

FIRST DIFFERENCE FOUND BETWEEN FILES -

file-name-1 RECORD record-number AT BYTE offset
file-name-2 RECORD record-number AT BYTE offset

Examples:

To compare filerPQ60R on the system disk with file PQ60RS on disk PRB3:
COMPARE PQ60R WITH PRB3/PQ60RS

To compare the groups of files beginning with AR and the files A27Q on disk ARBK1 and ARBK2:
COMPARE ARBK1/AR= WITH ARBK2/AR=,

ARBK1/A27Q WITH ARBK2/A27Q

To compare the file IV20F on the system disk with the file of the same name on disk 132, with realignment: .
COMPARE IV20F WITH I32/IV20F R

If corresponding records are different, the following is printed on a line printer file (or console printer if the
line printer is not available).

DIFFERENCE DETECTED AT BYTE @nnnn@

where n is the number of the byte in the record, starting from 0. The two records are then printed, using
more than one line if necessary,with the following format:

byte-offset
32-byte groups in hexadecimal
32-byte groups in ASCII

(A null character (00) in hex is represented by “..”, and a non-printable character in ASCII represented by
a blank).

Comparison of groups of files works as in the following example:
Assume DISK1 contains the files A, B, C, D, AB, AC, ABC, BC.

Assume DISK2 contains the files A, B, C, D, AB, AC, ABC, BC, BD, EF.

2015228-003 ‘ 4-21

Then
COMPARE DISK1/= WITH DISK2/= compares all files on DISK1 with the corresponding files on .
DISK2.

But

COMPARE DISK2/= WITH DISK1/= compares files on DISK2 with the corresponding files on
DISK1, and will fail to find DISK1/BD and DISK1/EF.
Similarly,

COMPARE DISK1/A= WITH DISK2/A= compares files A, AB, AC and ABC on DISK1 with the
corresponding files A, AB, AC and ABC on DISK1 with the corresponding files on DISK2.
Also,

COMPARE DISK1/A= WITH DISK2/AB= compares the following pair of files:
DISK1/A with DISK2/AB,

DISK1/AB with DISK2/ABB, (not found)

DISK1/AC with DISK2/ABC,

DISK1/ABC with DISK2/ABBC (not found)

The realignment option works in the following manner:

If three consecutive records fail to compare then an attempt is made to compare the third record of the second
file with the next two records of the first file.

If all these five comparisons fail then an attempt is made to compare the fifth record of the first file with
the fourth, fifth, sixth and seventh records from the second file.

If this comparison fails, then the comparison is terminated with an appropriate message (see later).

If a correct comparison occurs at any stage, then the compared records are used as synchronization for restart-
ing normal comparisons.

For example, consider FILE1 containing 10 records A, B, C, D, E, F, G, H, I and J , and FILE2 containing
twelve records K, L, M, N, O, P, Q, R, S, T, U, and V.

The utility compares record A with record K, then B with L, then C with M. If all these comparisons fail,
then if realignment is specified record M is compared with records D and E. If this also fails, record E is com-
pared with records N, O, P and Q. If none of these compare, the comparison is terminated.

Note that if there is a missing record in one file, and realignment is NOT specified, a comparison error will
arise on every succeeding record until end-of-job.

Additional Capabilities

Further features in this utility are summarized in the railroad chart given in figure 4-2, which gives the com-
plete input specifications.

For B 900 systems, the utility attempts to open SYSMEM on all PPIT listed units for directory scanning
and searches for a PPIT entry with a tag of @20@ for the system pseudo disk-name.

Non-disk devices:

Files on devices other than disk may be compared by following the file name by one of the following key-
words:

CRD - any 80-column or 96-column card device

PTR - any paper tape input device

MTP - any magnetic tape or cassette device

DSK - any disk device (the default; this keyword is for
documentation only)

4-22

° [’

COMPARE —1— NOPRINT JQL < comp-spec > >
*» ——<disk-id > /'JL < file-id > ——————
< comp-spec>> is defined as :
< mfid-spec-1>—WITH — < mfid-spec-2 > ‘
VAN
<gid-spec-1>— WITH — < gid-spec-2> —l
< mfid-spec> is defined as :
" ~CRD—
— MTP— ! l—-m—KEY-number-number —
—< mfid ></=< file-id > <nr nb> :
— PTP— 1 ‘= RECORDS-number-number -

e L DSK— 1 \—EBCDIC

< gid-spec> is defined as :

p

—_—t < disk-id>—/— —i < group-id > M—< nr>—[< nb> A

Figure 4-2. Railroad Chart for Compare Utility

Examples:

To compare records on a cassette filke ARDUMP/FILE020 with a file AR578QQ on the disk WDSK:
COMPARE ARDUMP/FILE020 MTP WITH WDSK/ARS578QQ

(note that the two-part name is valid for multi-file tapes or cassettes, refer to section 2 for naming conven-
tions).

To compare two card files DAT1 and DAT2:
COMPARE DAT1 CRD WITH DAT2 CRD

Record and block sizes:

e The record size (and the number of records per block) may be specified after the file name and device key-
word if applicable.

2015228-003 4-23

Examples:

To compare a system disk file CU265 with a magnetic tape file TPF, treating data blocks on the tape as 80-
byte records blocked 9 records to a block:

COMPARE CU265 DSK WITH TPF MTP 80 9

To compare a system disk file SCRO1 containing 90-byte records with a system disk file SCR02 containing
180-byte records, but reblocking the second file as 90-byte records:

COMPARE SCR01 WITH SCRO02 90 2

Note that if the records to be compared are of different lengths, and reblocking is not specified, then only
the number of characters in the shorter record are compared.

If EBCDIC is used the file will be translated from EBCDIC on input. The option KEY allows the comparison
to be done only on the field defined, the remainder of each record will be ignored. The first number is the
offset of the field within the record, the second is its length. If two files have keys of different lengths, the
shorter length will be assumed for both the files.

NOTE: The EBCDIC option is applicable when one of the devices is tape.

Examples

Compare fields starting at byte 11 for 4 characters of FILE1 with FILE2
COMPARE FILE1 KEY 10-4 WITH FILE2 KEY 104

The option RECORDS allows the comparison to be done only on the records specified. The first number
is the starting record number and the second number is the total number of records available for comparison.
No other record will be read from that file.

Example:

Compare records 12, 13, 14 of FILE1 with records 10, 11, 12 of FILE2.
COMPARE FILE1 RECORDS 12 3 WITH FILE2 RECORDS 10 3

Limitations:

The maximum record size is 1024 bytes. If a file exceeds this record size, it may be compared by reblocking.
For example, a file with record size of 1200 can be compared by reblocking as 600 bytes blocked 2, or as 300
bytes blocked 4. The higher the blocking factor, the slower will be the comparison. (If the record size is a prime
number P, it can be reblocked as 1-byte records blocked P).

The use of a star-file terminates the list of pairs of files to be compared. For example,
COMPARE A= WITH DK2/A=, X= WITH DK2/X=,
STFILE, B= WITH DK2/B=

will compare A=, X= and all files mentioned in the file STFILE, but will ignore the comparisons of B=

Output messages:

MESSAGE ‘ POSS IBRLE CAUSES SUGGESTED ACTINON
END OF FILE filename End of one file is None.

BEFORE filename = detected before the

n ERRORS end of the other file

4-24

MESSAGE PCSSIBLE CAUSES SUGGESTED ACTION
f.lename WITH Normal ending message hNone.

filename COMPARED =~ if both files are

n ERRORS Same SizZe.

ILLEGAL SYNTAX Initial input mis- Check input arg
FOR ITEM input typed. re“erter.

CANNGOTY REALIGN

filename WITH
filename=n ERRORS

Ending messaqge if
realignment has teen
specifiec but hgas
failed.

Nonee

INCOMPATIRLE A file is specified Fe=input correct
FILESPECS input to be compared with mess ége.

a grouc of files» or

vice versae.
ITEM TOO LONG inbut Iﬁput meSsage greater Divice input irto

than 256 characters.

separate partss anc
re-erter.

DIFFERENCE DETECTED
AT BYTE annna

See .example earlier

See exzemple eartier

CANNQOT READ RECORD
n OF filename

Parity error on
disk file.

Use tackup copy of
file ccncernec, if
poss ible.

ILLEGAL KEY FOR file-
name: number=number

A key has been

specified with a length

zero or which does not
Lie completely within
the record. The
utility will proceed

Check the key ltength
and re-input if
necessarye.

with next item.
ILLEGAL RECOKDS FOR The record number None.
file-name: number specified for the

starting point of

comparisons is not

present in the file.
CANNOT COMPARE PAST The utility limitation Nonee.
POSITION numoer IN came into effect due
file=name to a request tc compare

teyond an offset of

number bytes.
file=name EXHAUSTECL The file had a<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>