
• UNISYS A Series
DMSII Interpretive
Interface
Programming
Reference Manual

Release 3.9.0

Priced Item

September 1991

US America
8600 0155-000

• UNISYS A Series
DMSII Interpretive
Interface
Programming
Reference Manual

Copyright © 1991 Unisys Corporation
All rights reserved.
Unisys is a registered trademark of Unisys Corporation.

Release 3.9.0

Priced Item

September 1991

US America
8600 0155-000

The names, places, and/or events used in this publication are not intended to correspond to any
individual, group, or association existing, living, or otherwise. Any similarity or likeness of the
names, places, and/or events with the names of any individual, living or otherwise, or that of any
group or association is purely coincidental and unintentional.

NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THE DOCUMENT. Any product and
related material disclosed herein are only furnished pursuant and subject to the terms and
conditions of a duly executed Program Product License or Agreement to purchase or lease
equipment. The only warranties made by Unisys, if any, with respect to the products described in
this document are set forth in such License or Agreement. Unisys cannot accept any financial or
other responsibility that may be the result of your use of the information in this document or
software material, including direct, indirect, special or consequential damages.

You should be very careful to ensure that the use of this information and/or software material
complies with the laws, rules, and regulations of the jurisdictions with respect to which it is used.

The information contained herein is subject to change without notice. Revisions may be issued to
advise of such changes and/or additions.

Correspondence regarding this publication may be forwarded using the Product Information card at
the back of the manual, or may be addressed directly to Unisys, Product Information, 19 Morgan,
Irvine, CA 92718.

Page Status

Page Issue

iii -000
iv Blank
v through xi -000
xii Blank
xiii through xvii -000
xviii Blank
xix -000
xx Blank
xxi through xxii -000
1-1 through 1-9 -000
1-10 Blank
2-1 through 2-18 -000
3-1 through 3-79 -000
3-80 Blank
4-1 th rough 4-63 -000
4-64 Blank
5-1 through 5-10 -000
6-1 through 6-4 -000
7-1 through 7-8 -000
A-I through A-17 -000
A-IS Blank
8-1 through 8-20 -000
C-l through C-31 -000
C-32 Blank
D-l through D-8 -000
Glossary-l through 21 -000
Glossary-22 Blank
Bibliography-l through 3 -000
Bibliography-4 Blank
I ndex-l th rough 21 -000
Index-22 Blank

Unisys uses an II-digit document numbering system. The suffix of the document
number (1234 5678-xyz) indicates the document level. The first digit of the suffix (x)
designates a revision level; the second digit (y) designates an update level. For example,
the first release of a document has a suffix of -000. A suffix of -130 designates the
third update to revision 1. The third digit (z) is used to indicate an e.rrata for a particular
level and is not reflected in the page status summary.

8600 0155-000 iii

iv 8600 0155-000

About This Manual

Purpose

Scope

The A Series DMSII Interpretive Interface Programming Reference Manual describes
how to code effective and efficient application programs that access and manipulate a
Data Management System II (DMSlI) database, using the DMSII interpretive interface.

This manual details how to code DMINTERPRETER library entry points and how to
. generate the DMINTERPRETER library.

Audience
This manual has two primary audiences: application programmers who are responsible
for programs that report or update information in a DMSII database and database
administrators who generate the DMINTERPRETER library.

Prerequisites
Before programming DMSII applications, you should be familiar with

• Basic A Series concepts

• Basic DMSII concepts

• The Data and Structure Definition Language (DASDL)

• Libraries and entry points

• The programming languages you intend to use

You should also know how to use the A Series Command and Edit (CANDE) message
control system (MCS) to enter code and know how to use CANDE and the Work Flow
Language (WFL) to compile and runjobs.

8600 0155-000 v

About This Manual

How to Use This Manual

vi

This manual is designed as a reference to help you code effective and efficient DMSII
application programs that use the interpretive interface.

If you are new to the interpretive interface, read Section 1 for an overview of the
interface. Next, read Section 2 for an explanation of how to access the library and entry
points in your application program. Then read Sections 3 through 6 for information on
coding entry points.

If you are an experienced DMSII interpretive interface programmer, you can go directly
to the entry point explanations in Sections 3 through 6. The entry points are divided by
task:

• Section 3 covers tasks performed by standard entry points.

• Section 4 deals with data transfer tasks.

• Section 5 focuses on exception-handling tasks.

• Section 6 explains attribute setting.

Use either the table of contents or the index to locate a specific task or entry point.

If you are writing a general-purpose program that can access any database and is
data independent, read Section 7 for information on how to use DBSTRUCTURE, an
intrinsic, read-only data set.

While Section 5 presents coding guidelines for handling exceptions and error conditions
within your application program, Appendix B details the actual exception and error
messages returned by the Accessroutines to your application program.

Database administrators and programmers who are responsible for the
DMINTERPRETER library should read Appendix A carefully before generating the
library.

Although the interpretive interface can be used by any programming language that can
import library objects, only ALGOL, COBOL74, and FORTRAN77 program fragments
are used for text examples. The samples of complete programs, in Appendix C, are
also given only for ALGOL, COBOL74, and FORTRAN77. If you are programming in
another language, such as C, COBOL, COBOL85, Pascal, or PL/l, consult the language
reference manual.

The separate COBOL languages (COBOL, COBOL74, and COBOL85) are referred
to colleCtively in the text, index, and glossary as COBOL. However, if there are any
differences, the specific ANSI-version of the language is identified.

To distinguish interpretive interface entry points from language extensions, the text
notes the entry points by their COBOL name in the DATABASE/DMINTERPRETER
file. For example, while both DBFIND and FIND refer to the find operation, DBFIND is
the entry point and FIND is the command

8600 0155--000

About This Manual

The entry points for transferring data from the user work area to user-declared
variables are referred to collectively as DBGET entry points. The entry points for
transferring data from user-declared variables to the user work area are referred to
collectively as DBPUT entry points.

Metatokens are used for describing syntactical elements. For example, the metatoken
< data set qualified name> refers to the syntax of a data set name. Syntax diagrams
and syntax elements are noted in the index under the appropriate metatoken. An
explanation of railroad diagrams (a Unisys method of depicting syntax) is found in
AppendixD.

This manual uses the word access as both a noun and a verb.

• As a noun, Access always appears with a capital A and refers to a database part.

• As a verb, access means to use or retrieve something.

This manual also uses the word recreate as both a verb and a DMSn operation.

• As a verb, re-create always appears with a hyphen.

• As a DMSII operation, recreate always appears without the hyphen.

Throughout the document, A Series is used to refer collectively to A Series and B 7900
systems. Unless otherwise noted, all references to related documentation within
the text are for A Series product information. These references are included in the
bibliography. All acronyms used in the guide, including those used in documentation
titles, are spelled out and defined in the glossary.

For a broader view of programming DMSII applications, you can also do the following:

• Consult the A Series DMSII Technical Overview for background information and for
an explanation of designing and maintaining databases.

• Read the A Series DMSII Application Program Interfaces Programming Guide for
general guidelines and for an introduction to both the interpretive interface and the
language extensions interface.

• Read the A Series DMSII Data and Structure Definition Language (DASDL)
Programming Reference Manual for DASDL option specifics.

• Refer to the A Series DMSII Utilities Operations Guide for detailed information on
the use of DMSII programs.

Organization
This manual is organized into seven sections. Each section explores topics and tasks that
pertain to the DMSII interpretive interface. In addition, four appendixes, a glossary, a
bibliography, and an index appear at the end of the guide.

Section 1. Understanding the DMSn Interpretive Interface

Section 1 overviews the basic structure and advantages of the interpretive interface.
It introduces the major components of the interface and presents programming

8600 0155-000 vii

About This Manual

viii

considerations, recommendations, and guidelines that pertain to the interpretive
interface only.

This section also overviews the four types of entry points provided by the
DMINTERPRETER library: the standard, data transfer, exception handling, and
attribute setting entry points.

Section 2. Accessing the Interpretive Interface

Section 2 explains how, for each supported user language, an application program can
access both a DMINTERPRETER library and its task-specific entry points, and then
invoke the entry points.

Section 3. Manipulating the Database

Section 3 details the function and coding of each standard entry point to the
DMINTERPRETER library. These entry points perform functions comparable to those
performed by language extensions in manipulating the database, such as opening the
database, finding records, creating new records, changing records, and storing records.

Section 4. Transferring Data

Section 4 details how the user areas are made available and how each data transfer entry
pomt to the DMINTERPRETER library is coded .

. Section 5. Handling Exceptions

Section 5 details the function and coding of each exception handling entry point to the
DMINTERPRETER library.

Section 6. Restricting Calls to the Accessroutines

Section 6 details the function and coding of the attribute setting entry point to the
DMINTERPRETER library, the entry point that restricts the number of calls to the
Accessroutines.

Section 7. Determining the Database Structure

Section 7 discusses how to use the data set DBSTRUCTURE to determine the structure
of the database at run time.

Appendix A. Generating the DMINTERPRETER Library

Appendix A details how to generate the DMINTERPRETER library either through the
Work Flow Language (WFL) or interactively through the program BUllJ)INQ. The
library can interface with an entire physical database, a logical database, or selected
parts of a database.

8600 0155-000

About This Manual

Appendix B. DMSn Exceptions and Errors

Appendix B lists the exceptions and errors returned to an application program by the
Accessroutines.

Appendix C. Sample Programs That Use the Interpretive Interface

Appendix C contains the required DASDL description and the listing for ALGOL,
COBOL74, and FORTRAN77 application programs that demonstrate possible coding
techniques for programs that use the interpretive interface.

Appendix D. Understanding Railroad Diagrams

Appendix D explains how to read railroad diagrams.

Related Product Information
The following list contains companion Unisys docwnents for this guide.

A Series ALGOL Programming Reference Manual, Volume 1: Basic
Implementation (form. 86000098)

This manual describes the basic features of the Extended ALGOL programming
language. This manual is written for programmers who are familiar with programming
concepts.

A Series ALGOL Programming Reference Manual, Volume 2: Product
Interfaces (form 8600 0734)

This manual describes the extensions to the Extended ALGOL language that allow
application programs to use the Advanced Data Dictionary System (ADDS), the
Communications Management System (CaMS), the Data Management System II
(DMSll), the Screen Design Facility Plus (SDF Plus), or the Semantic Information
Manager (SIM). This manual is written for programmers who are familiar with Extended
ALGOL programming language concepts and terms.

A Series ALGOL Test and Debug System (TAnS) Programming Guide
(form 1169539)

This guide describes the features of ALGOL TADS, an interactive tool used for testing
and debugging ALGOL programs and libraries. ALGOL TADS allows the programmer
to monitor and control the execution of programs under test and examine the data at any
given point during program. execution. This guide is written for programmers who are
familiar with ALGOL programming language concepts and terms.

A Series C Programming Reference Manual (form 3950 8775)

This manual describes the C programming language, including the A Series extensions.
Where the implementation of A Series C differs from the proposed draft ANSI C
standard, the differences are noted in the manual.

8600 0155-000 ix

About This Manual

x

A Series COBOL ANSI-68 Programming Reference Manual (form 8600 0320)

This manual provides a complete description of COBOL as developed by the CODASYL
Committee and described by the American National Standards Institute in X3.23-1968.
This manual is written for programmers who are familiar with programming concepts.

A Series COBOL ANSI-74 Programming Reference Manual, Volume 1: Basic
Implementation (form. 8600 0296)

This manual describes the basic features of the standard COBOL ANSI-74 programming
language, which is fully compatible with the American National Standard,X3.23-1974.
This manual is written for programmers who are familiar with programming concepts. .

A Series COBOL ANSI-74 Programming Reference Manual, Volume 2: Product
Interfaces (form 86000130)

This manual describes the extensions to the standard COBOL ANSI-74 language.
These extensions are designed to allow application programs to interface with the
Advanced Data Dictionary System (ADDS), the Communications Management System
(COMS), the Data Management System II (DMSII), the DMSII Transaction Processing
System (TPS), the Screen Design Facility (SDF), the Screen Design Facility Plus (SDF
Plus), and Semantic Information Manager (S1M) products. This manual is written for
programmers who are familiar with COBOL74 programming language concepts and
terms.

A Series COBOL ANSI-85 Programming Reference Manual, Volume 1: Basic
Implementation (form. 8600 1518)

This manual describes the basic features of the COBOL ANSI -85 programming language,
as implemented on Unisys A Series systems. This manual is written for programmers
who are familiar with programming concepts.

A Series COBOL ANSI-85 Programming Reference Manual, Volume 2: Product
Interfaces (form 8600 1526)

This manual describes the extensions to the standard COBOL85 language. These
extensions are designed to allow application programs to interface With the
Communications Management System (CaMS) and Data Management System IT
(DMSlI) products. This manual is written for programmers who are familiar with
COBOL85 programming language concepts and terms.

A Series DMSH Application Program Interfaces Programming Guide
(form 5044225). Formerly A Series DMSH User Language Interface
Programming Guide

This guide explains how to write effective and efficient application programs that access
and manipulate a Data Management System n (DMSlI) database using either the
DMSn interpretive interface or the DMSIT language extensions. This guide is written
for application programmers and database administrators who are already familiar with
the basic concepts of DMSIT.

8600 0155-000

About This Manual

A Series DMSH Data and Structure Definition Language (DASDL)
Programming Reference Manual (form 8600 0213)

This manual provides instructions for defining and maintaining a Data Management
System II (DMSII) database using DASDL. This manual is written for database
administrators and staff.

A Series FORTRAN77 Programming Reference Manual (form 3950 8759)

This manual describes the FORTRAN 77 programming language, which is fully
compatible with the American National Standard X3.9-1978. This manual is written for
programmers who are familiar with programming concepts.

A Series FORTRAN77 Test and Debug System (TAnS) Programming Guide
(form 1222667)

This guide describes an interactive tool for testing and debugging FORTRAN77
programs and libraries. This manual is written for programmers who are familiar with
FORTRAN77 programming language concepts and terms.

A Series Task Attributes Programming Reference Manual (form 8600 0502).
Formerly A Series Work Flow Administration and Programming Guide

This manual describes all the task attributes available on A Series systems. It also gives
examples of statements for reading and assigning task attributes in various programming
languages. The A Series Task Management Programming Guide is a companion
manual.

A Series Task Management Programming Guide (form 8600 0494). Formerly
Work Flow Administration and Programming Guide

This guide explains how to initiate, monitor, and control processes on an A Series system.
It describes process structures and process family relationships, introduces the uses of
many task attributes, and gives an overview of interprocess communication techniques.
The A Series Task Attributes Programming Reference Manual is a companion manual.

8600 0155-000 xi

xii 8600 0155-000

Contents

About This Manual . v

Section 1. Understanding the DMSII Interpretive Interface

Compilers That Can Use the Interpretive Interface. 1-1
Interpretive Interface Run-Time and Compile-Time Interfaces. . . 1-1
Using the Run-Time Libraries 1-4

Reporting Errors through the DMSUPPORT Library. . . 1-4
Accessing a Database through the DMINTERPRETER'

Library. 1-4
Identifying the Four Types of DMINTERPRETER

Entry Points . 1-4
Accessing DMINTERPRETER Library Entry Points 1-5

For ALGOL and FORTRAN77 Programs . . . 1-5
. For COBOL Programs. 1-6

Renaming Entry Points within an Application
Program. • 1-6

Using Parameters in Entry Points 1-7
Returning Exceptions. 1-7

Programming Considerations for the Interpretive Interface Only . 1-7
Sequencing Entry Points. 1-8
Reducing Run-Time Overhead. . . . • 1-8

Section 2. Accessing the Interpretive Interface

General Guidelines for Accessing the Interpretive Interface 2-1
Accessing the Interpretive Interface in ALGOL Programs 2-2

Declaring a DMINTERPRETER Library in an ALGOL
Program. • • 2-2

Declaring ALGOL Entry Points as Boolean Procedures . 2-3
Using the Release Tape to Declare ALGOL Entry

Points. • • • • . 2-4
Using a Procedure Declaration for ALGOL Entry

Points. . • . . . • . • • . . • . • • . . • 2-5
Declaring a Subset of ALGOL Entry Points . 2-5
Renaming ALGOL Entry Points • • • • . • . • . 2-6
Coding ALGOL Procedure Declarations. . . . 2-6

Invoking ALGOL Entry Points 2-7
Accessing the Interpretive Interface in COBOL Programs. • • • • . 2-8

Exported Names of COBOL Entry Points on the Release
Tape. • • • • 2-8

Using the COBOL CHANGE Construct to Invoke a
DMINTERPRETER Library • • • . . . • . . • • 2-9

Invoking COBOL Entry Points • . . . • • . . • • 2-11
Passing Parameters with the USING Clause in

COBOL ... '. • • • . • • 2-11

86000155-000 xiii

Contents

Exception Handling with the GIVING Clause in
COBOL. ·2-12

Accessing the Interpretive Interface in FORTRAN77 Programs. . 2-12
Declaring a DMINTERPRETER Library in FORTRAN77

Programs ; 2-13
Declaring FORTRAN77 Entry Points as Logical

Functions. 2-14
Using the Release Tape to Declare FORTRAN77

Entry Points . 2-14
Using the Logical Function for FORTRAN77 Entry

Points . 2-16
Declaring a Subset of the FORTRAN77

Entry Points 2-16
Coding the FORTRAN77 Library Entry Point

Declaration. 2-16
. Renaming FORTRAN77 Entry Points. 2-17

Coding a FORTRAN77 IN LIBRARY
Statement 2-17

Invoking FORTRAN77 Entry Points. 2-18

Section 3. Manipulating the Database

Guidelines for Using Standard Entry Points. 3-3
Opening a Database '. 3-6
Creating Reserve Space for New Records 3-9
Setting the Current Path. 3-13
Explicitly Freeing Records. 3-17
Explicitly Freeing Structures . 3-21
Finding Records. 3-24
Locking Records. 3-29
Locking Structures. 3-34
Securing Records . 3-37
Securing Structures 3-42
Begin Transaction - Entering Transaction State 3-45
Aborting Transactions . 3-48
Saving Transaction Points . 3-50
Canceling Transactions Back to Savepoints 3-53
Deleting Data Records .•............................ 3-56
Re-creating Records. • 3-61
Storing Records ; • • 3-66
End Transaction - Leaving Transaction State ... ; • . • 3-69
Closing a DMSII Database. 3-72
Executing· Language Extensions. 3-74

Section 4. Transferring Data

Guidelines for Using Data Transfer Entry Points. 4-3
Moving Character Strings to Variables 4-6
Moving Kanji Alpha Character Strings to Variables •......... 4-11
Moving Numeric Values to Variables 4-16
Moving Double-Precision Values to Variables ..•.•... 4-21

xiv 8600 0155-000

Contents

Retrieving Boolean Values. 4-26
Placing Strings into Data Items. 4-31
Placing Strings into Kanji Alpha Items. 4-36
Placing Numeric Values into Data Items. 4-41
Placing Double-Precision Values into Data Items. 4-46
Setting Data Items to Boolean Values. 4-51
Setting Data Items to Null Values. 4-56
Constructing Data Transfers during Program Execution 4-60

Section 5. Handling Exceptions

Returning the Exception Word. 5-3
Returning the Text of an Exception Message. 5-5
Identifying the Type of Exception. 5-8

Section 6. Restricting Calls to the Accessroutines

Section 7. Determining the Database Structure

Generating the DBSTRUCTURE Data Set. 7-1
Accessing the DBSTRUCTURE Data Set. 7-1
Describing the Structure and Contents of DBSTRUCTURE 7-2

Appendix A. Generating the DMINTERPRETER Library

Capabilities of the BUILDINQ Program. A-l
Files Associated with a DMINTERPRETER Library A-I
Ensuring Directory-Level Consistency between Files A-4
Generating the DMINTERPRETER Library Interactively. A-4

Remote Generation Using the ZIP Option. A-5
Step 1'. Initiating the BUILDINQ Program. A-5
Step 2. Selecting the Database. A-5
Step 3. Selecting a View of the Database. A-6
Step 4. Selecting Data Sets A-I0
Step 5. Entering the Name of a Logical Database A-II
Step 6. Determining the Compiled Access Mode

for the DMINTERPRETER Library • . . A-II
Step 7. Renaming Hyphenated Logical Database

Names.• • A-II
Step 8. Entering a Database Name for the

DMINTERPRETER Code File. • A-12
Step 9. Entering the Compilation Queue. A-12
Step 10. Displaying the Verification Message. . . A-12

Remote Generation Using the NOZIP Option. A-13
Selecting the NOZIP Option A-13
Compiling a DMINTERPRETER Library Where

NOZIP Is Set A-14

8600 0155-000 xv

Contents

xvi

Generating the DMINTERPRETER Library from WFL Job Decks. A-15

Appendix B. DMSII Exceptions and Errors

Categorizing Exceptions and Errors 8-2
ABORT Category. 8-2
AUDITERROR Category 8-3
CLOSEERROR Category . B-4
DATAERROR Category . B-4
DEADLOCK Category .. 8-5
DUPLICATES Category . 8-5
FATALERROR Category. B-6
INTEGRITYERROR Category . B-6
INTLIBERROR Category. B-6
INUSE Category. 8-8
IOERROR Category. 8-9
KEYCHANGED Category . • 8-9
LlMITERROR Category. 8-10
NORECORD Category. 8-10
NOTFOUND Category. 8-11
NOTLOCKED Category ; ". . 8-12
OPENERROR Category. 8-12
READONLY Category. 8-15
SECURITYERROR Category 8-16
SYSTEMERROR Category. 8-16
VERSION ERROR Category. 8-18
Summarizing the Relationship of Data Management Operations to

Exceptions and Errors. 8-19

Appendix C. Sample Programs That Use the Interpretive
Interface

DASDL Database for Sample Programs. ~2
ALGOL Application Program Using the Interpretive Interface. . . ~5
COBOL74 Application Program Using the Interpretive Interface . ~15
FORTRAN77 Application Program Using the Interpretive

Interface ". ~25

Appendix D. Understanding Railroad Diagrams
"

What Are Railroad Diagrams? • . . 0-1
Constants and Variables. • . . 0-2
Constraints. . . • . • . . 0-2

Following the Paths of a Railroad Diagram • . . • . • . . 0-5
Railroad Diagram Examples with Sample Input. D-6

Glossary. 1

8600 0155-000

Contents

Bibliography. 1

Index '. . . . 1

86000155-000 xvii

xviii 8600 0155-000

Figures

I-I. Database Processing with the Interpretive Interface 1-3

3-I. Standard Entry Point Operations In and Out of Transaction State 3-5

4-I. Three Steps in Transferring Data 0 0 0 . 0 .. 4-4

A-I. Relationship of BUILDINQ Files 0 A-3
A-2. Compiling a DMINTERPRETER Library for the Total Database 0 .. A-7
A-3. Compiling a DMINTERPRETER Library for Selected Data Sets 0 0 0 0 0 . 0 0 A-8
A-4. Compiling a DMINTERPRETER Library for a Logical Database 0 .. A-9
A-50 Using the BUILDINQ Program with the NOZIP Option 0 A-14

8-I. Relationship of Data Management Operations to Errors and Exceptions .. 8-20

D-I. Railroad Constraints .. 0 0 0 .. 0 0 . 0 0-5

8600 01554)00 xix

xx 8600 0155-000

Tables

1-1.

2-1.
2-2.
2-3.

3-1.
3-2.
3-3.
3-4.
3-5.
3-6.
3-7.
3-8.
3-9.
3-10.
3-11.
3-12.
3-13.
3-14.
3-15.
3-16.
3-17.
3-18.
3-19.
3-20.
3-21.

4-1.
4-2.
4-3.
4-4.
4-5.
4-6.
4-7.
4-8.
4-9 ..
4-10.
4-11.
4-12.
4-13.

5-1.
5-2.
5-3.
5-4.

8600 0155--000

Purpose of Each Type of Entry Point•....

ALGOL Entry Points•....
COBOL, COBOL74, and COBOl85 Entry Points•....
FORTRAN77 Entry Points•....

Standard Entry Points to the DMINTERPRETER Library by Task
Opening a Database
Creating Reserve Space for New Records
Setting the Current Path•....
Explicitly Freeing Records•....
Explicitly Freeing Structures
Finding Records•....
Locki ng Records .
locking Structures
Securing Records
Securing Structures•. ~ ..
Begin Transaction - Entering Transaction State•....
Export Names of Entry Points Used to Abort a Transaction
Saving Transaction Points•....
CancelingTransactions Back to Savepoints•....
Deleti ng a Data Record•....
Re-creating a Record•....
Storing Records
End Transaction - leaving Transaction State•....
Export Names of Entry Points Used to Close a Database .•.....•....
Executing language Extensions•.•.....

Data Entry Points to the DMINTERPRETER Library by Task
Moving Character Strings to Variables•....
Moving Kanji Character Strings to Variables•.....•....
Moving Numeric Values to Variables •..................••.•....
Moving Double-Precision Values to Variables•....
Retrieving Boolean Values••.•....
Placing Strings into Data Items •......•...........•..•.••....
Placing Strings into Kanji Alpha Items ..•...•.•.•...•..•..•..•.
Placing Numeric Values into Data Items .•...•..••...•..••••....
Placing Double-Precision Values. into Data Items ...•...•..•.......
Setting Data Items to Boolean Values ..•...........•..•..•..•.
Setting Data Items to Null Values•.•...•••...•....•...••
Constructing Transfers during Program Execution ...•......••.•....

Exception Handling Entry Points to the DMINTERPRETER Library by Task
Returning an Exception Word•.•...........•..•.
Returning the Text of an Exception Message ..•..••...•..•.•...•.
Identifying the Type of Exception•..•........•..•..•....

1-5

2-4
2-8

2-15

3-1
3-6
3-9

3-13
3-17
3-21
3-25
3-29
3-34
3-37
3-42
3-45
3-48
3-50
3-53
3-57
3-62
3-66
3-69
3-72
3-74

4-1
4-6

4-11
4-17
4-21
4-26
4-31
4-36
4-41
4-46
4-51
4-56
4-60

5-2
5-3
5-6
5-9

xxi

Tables

xxii

6-1.

7-1.
7-2.
7-3.
7-4.
7-5.

A-I.
A-2.

8-1.
8-2.
8-3.
8-4.
8-5.
B-6.
8-7.
8-8.
8-9.
8-10.
8-11.
8-12.
8-13.
8-14.
8-15.
8-16.
8-17 ..
8-18.
8-19.
8-20.
8-21.

Attribute Setting Entry Points- Restricting Calls to Accessroutines

DBSTRUCTURE Items
DBSTRUCTURE Items for a DB-TYPE of DATASET
DBSTRUCTURE Items for a DB-TYPE of SET
DBSTRUCTURE Items for a DB-TYPE of ITEM
DBSTRUCTURE Items for a DB-TYPE of LINK

Files Associated with a DMINTERPRETER Library
WFL Cards Used to Generate a DMINTERPRETER Library

Major Categories for Exceptions and Errors by Category Number
ABORT Subcategories
AUDITERROR Subcategories

. CLOSEERROR Subcategories
DATAERROR Subcategories
DEADLOCK Subcategories
DUPLICATES Subcategories ~
INTEGRITYERROR Subcategories
INTLIBERROR Subcategories
INUSE Subcategories
IOERROR Subcategories
KEYCHANGED Subcategories
LlMITERROR Subcategories
NORECORD Subcategories
NOTFOUND Subcategories
NOTLOCKED Subcategories
OPENERROR Subcategories
READONLY Subcategories
SECURITYERROR Subcategories
SYSTEM ERROR Subcategories
VERSIONERROR Subcategories

6-2

7-3
7-4
7-5
7-6
7-8

A-2
A-15

8-2
B-3
8-3
8-4
8-4
8-5
8-6
8-6
8-7
8-8
B-9

8-10
8-10
8-11
8-11
8-12
8-13
8-16
8-16
8-16
8-18

8600 0155-000

Section 1
Understanding the OMSII Interpretive
Interface

There are two DMSII application program interfaces:

• The DMSII language extensions

• The DMSII interpretive interface

The language extensions are explained in Volume 2 of the ALGOL, COBOL, COBOL74,
COBOL85, and RPG reference manuals. The interpretive interface is detailed in this
manual. Consult the DMSII Application Programming Guide for a comparison of the
language extensions and the interpretive interface.

This section describes the major features of the interpretive interface.

Compilers That Can Use the Interpretive Interface
Only a standard language compiler that can import library objects can use the
interpretive interface. For A Series systems, this restriction means that application
programs written for use with the following compilers are able to use the interpretive
interface:

ALGOL

C

COBOL

COBOL74

COBOL85

FORTRAN77

Pascal

PIJI

RPG

Interpretive Interface Run-Time and Compile-Time
Interfaces

The interpretive interface uses the standard language compiler as its compile-time
interface and the Accessroutines as its run-time interface. The standard language
compiler is responsible for producing the error-free object code file for your application
program. The Accessroutines communicate with the da~base, allowing you to write and
compile application programs before the database is compiled. The application program
never directly accesses the database. This arrangement means that

• A single application program, through the library mechanism, can invoke as many
databases as desired. (A DMINTERPRETER library must be compiled for each
database.)

• You can use the open operation to create general-purpose programs that can access
any database.

86000155-000 1-1

Understanding the DMSII Interpretive Interface

1-2

• You can postpone decisions about database operations until run time.

• Programs can use the intrinsic data set DBSTRUCTURE to interrogate the
structure of a database at run time.

Figure 1-1 shows the modules and timing involved in compiling an application program
that uses the interpretive interface.

8600 0155-000

DMINTERPRETER
Library

DMSUPPORT
Library

Understanding the DMSlllnterpretive Interface

Standard
Language
Compoi ler

Compoiled
Program

Accessroutines

DMSII
Data
Files

t
Compo; 1 e T; meo

Run Time-

Control
File

Figure 1-1. Database Processing with the Interpretive Interface

8600 0155-000 1-3

Understanding the DMSII Interpretive Interface

Using the Run-Time Libraries
The interpretive interface uses two run-time libraries: the DMSUPPORT library and
the DMINTERPRETER library.

.• The DMSUPPORT library provides entry points that allow you to obtain DMSn
error and exception codes.

• The DMINTERPRETER library provides entry points that allow your program to
access the database.

Reporting Errors through the DMSUPPORT Library

The DMSUPPORT library is a general support library used with all DMSII software.
The library provides error messages and exception handling for all DMSII software ..

For more information about exception handling through entry points, read Section
5, "Handling Exceptions." For details about the exception and error messages, read
Appendix B, "DMSII Exceptions and Errors" and the DMSII Application Programming
Guide. For a details of the DMSUPPORT library, consult the DMSII Utilities
Operations Guide.

Accessing a Database through the DMINTERPRETER Library

The DMINTERPRETER library provides entry points that allow application programs to
access, manage, and manipulate a DMSII database without executing DMSII language
extensions. Section 2, "Accessing the Interpretive Interface," explains how to access the
library and the "entry points.

Each entry point is a procedure in a library program (known as a library) that can be
called by another program through a process known as exporting. A library exports
entry points, and the calling program imports entry points. Exporting allows the library
procedure to be accessed by programs that are external to the library. Sections 3
through 6 detail the DMINTERPRETER library entry points.

Each database has it own D:MINTERPRETER library written in DMALGOL. Using
the program BUILDINQ, the database administrator generates the library after
compiling the DASDL description for the database. Read Appendix A, "Generating the
D:MINTERPRETER Library," for the details of executing BUILDINQ.

Identifying the Four Types of DMINTERPRETER Entry Points

1-4

The interpretive interface uses four types of entry points: standard, data transfer,
exception handling, and attribute setting. Each type performs a specific function, as
shown in Table 1-1.

8600 0155-000

Understanding the DMSII Interpretive Interface

Table 1-1. Purpose of Each Type of Entry Point

Type Purpose Detailed in

Standard Performs functions that correspond to functions Section 3,
specified in DMSlllanguage extensions. For "Manipulating
example, both interfaces provide a means of the Database"
opening and closing a database.

Data transfer Moves data between the database and the use~ Section 4,
work area, and between the user work area and "Transferring
the program. Data"

Exception Returns result of a call. The result reports whether Section 5,
handling the call was successful and, if it was not "Handling

successful, the category, subcategory, and Exceptions"
structure number associated with the exception.

Attribute setting Restricts the number of times the Section 6,
DMINTERPRETER library can call the "Restricting Calls
Accessroutines to complete a find operation. to the

Accessroutines"

Accessing DMINTERPRETER Library Entry Points

DATABASE/DMlNTERPRETER, the DMINTERPRETER library symbolic file, contains
declarations of library entry points for each language. Depending on which user
langUage you use to code your program, you must use different procedures and syntax to
access (import) the exported declarations.

For ALGOL and FORTRAN77 Programs

If you are coding either an ALGOL and FORTRAN77 program, you must follow a
three-step process to .access entry points:

1. Declare the library.

2. Declare the entry points.

3. Invoke the entry points.

Once the DMlNTERPRETER library for the database is establish~d, declare the entry
. points either by

• Using the $INCLUDE compiler control option to declare all the entry points

• Declaring each entry point individually

If you use the $INCLUDE option, all the entry points are exported. If you declare entry
points individually, you can create your own subset of entry points and you can rename
the entry points.

8600 0155-000 1-5

Understanding the DMSII Interpretive Interface

Once an entry point is declared, it can be invoked (called) to perform its run-time
function.

Read Section 2, "Accessing the Interpretive Interface," for detailed explanations of how
to access the library and how to use the $INCLUDE compiler control option.

For COBOL Programs

If you are coding programs in any supported COBOL language, you must follow a
two-step proc~ss to access entry points:

1. Declare the library.

2. Invoke all the entry points.

Once the library is established, the entry points can be invoked; they are not declared.

Read Section 2, "Accessing the Interpretive Interface," for a detailed explanation of how
to access the library and how to invoke the entry points.

Renaming Entry Points within an Application Program

1-6

The DMINTERPRETER library symbolic file, DATABASE/DMINTERPRETER,
contains the names by which the interpretive interface expects the entry points to be .
called. These are the exported names. DATABASE/DMINTERPRETER is part of the
release tape.

ALGOL exported entry point names begin with ALGOL, for instance, ALGOLFIND.
FORTRAN77 exported entry point names begin with FORTRAN77, such as
FORTRAN77FIND. By using the ACTUALNAME clause of their library declaration,
ALGOL and FORTRAN77 application programs can rename exported entry points
withln the program.

Refer to the Section 2, "Accessing the Interpretive Interface," for the specifics of
renaming entry points.

COBOL exported entry point names always begin with the prefix DB, for example,
DBFIND. Application programs written in any of the supported COBOL languages
cannot rename entry points.

Example of Renaming an Entry Point

In this ALGOL program fragment, ALGOLFIND is renamed as MYFIND. MYFIND is an
internal name that is used only withln the application program. The. name of the entry
point in the DMI library remains ALGOLFIND.

LIBRARY DMI;
BOOLEAN PROCEDURE MYFIND(DIRECTION,STRUCTURE,CONDITION);

STRING DIRECTION, STRUCTURE, CONDITION;
LIBRARY OMI (ACTUALNAME = "ALGOLFINO");

8600 0155-000

Understanding the DMSII Interpretive Interfaoo

Using Parameters in Entry Points

Regardless of the application language, each entry point uses the same number of
parameters, has the same required parameters, and requires input in the same order.
For instance, the entry point to move a numeric value to a variable has three required
parameters. In a1llanguages, you enter the name of the structure first, the name of the
item second, and the name of the variable third.

While the data type of the same parameter might vary among the different languages,
the parameter contains the same information. For example, a parameter might be a
string in ALGOL, a display in COBOL, and a character in FORTRAN77.

Basic syntax diagrams describing the internal format of the entry point parameters
are provided in Sections 3 through 6 with individual entry point descriptions for each
language. The syntax and semantics of the parameters for each entry point are very
similar to those for the corresponding language extension. Behavioral differences
between DMINTERPRETER entry points and language extensions are described in the
text.

Returning Exceptions

DMSII software evaluates each call to a DMINTERPRETER entry point. If the call
cannot be successfully or correctly completed, DMSII returns an exception word to the
program.

The exception handling entry points use the DMSUPPORT library to interpret and
report the exceptions. Read Section 5, "Handling Exceptions," for details of the
exception handling entry points.

Programming Considerations for the Interpretive
Interface Only

The following guidelines apply to the interpretive interface only. They explain how to
sequence entry points and how to code your program. Consult the DMSII Application
Programming Guide for more extensive programming guidelines for both the
interpretive interface and the language extension interface.

How you sequence the DMINTERPRETER entry points within your application program
can determine how efficiently you access, manage, and manipulate the database. Your
choice of application programming language, your choice of entry points, and your style
of coding can reduce run-time overhead.

8600 0155--000 1-7

Understanding the DMSII Interpretive Interface

Sequencing Entry Points

The interpretive interface is designed to provide a record-at-a-time interface to a
database. For programming efficiency, use the following guidelines:

• Locate records by using the DBFIND standard entry point. Examine the values of
each item by using the appropriate DBGET data transfer entry point.

• Add a new record to the database by first calling the DBCREATE standard entry
point. Then use the appropriate DBPUT data transfer entry point to move the
values of each item into the user work area Finally, store the record by calling the
DBSTORE standard entry point.

• Modify a record by first calling the DBLOCK standard entry point to locate it. Then
call the appropriate DBPUT data transfer entry points to alter the values of the
items. Use the DBSTORE standard entry point to store the modified values.

• Remove a record from the database by calling the DBDELETE standard entry point.

Reducing Run-Time Overhead

When accessing the interpretive interface, follow these recommendations to reduce
run-time overhead:

• Whenever possible, write application programs in ALGOL.

Because ALGOL programs directly call the entry points that perform the functions
of the interpretive interface, they markedly reduce run-time overhead.

• In ALGOL, use preinitialized string variables instead of string expressions as
parameters. Doing so eliminates the need to allocate string temporaries in the
calling procedure.

• Use consecutive calls to minimize structure-switching overhead.

The DMINTERPRETER library remembers the last structure on which it operated.
Therefore, you can reduce structure-switching overhead if calls on one structure are
not interspersed with calls on another structure.

• Minimize the use ofb1anks.

Avoid passing unnecessary blanks to the interpretive interface. To eliminate
the unnecessary blanks, allocate string temporaries and make calls to additional
procedures.

The following example shows code with unnecessary blanks:

OBSTORE (" OS II)

The interpretive interface processes the following call faster:

OBSTORE("DS")

Note: Do not eliminate all blanks. Include blanks where they make your
code more readable. Always include required blanks.

• Unconditionally call DBBEGINTRANSACTION and DBENDTRANSACTION entry
points.

1-8 86000155-000

Understanding the DMSII Interpretive Interface

DMSII software ignores DBBEGINTRANSACTION and DBENDTRANSACTION
calls for unaudited databases. You can simplify application programs by
unconditionally calling these entry points. The programs can then be run unaltered
against an audited or unaudited database.

• Use code-locking protocols within your application program.

The DMINTERPRETER library stack uses global items to retain information
between calls. Using global items greatly speeds up execution, but prevents
multiprocessing. Thus, if the library declared by a parent task is visible to two or
more offspring tasks, the offspring can receive unexpected results if they call the
library simultaneously.

Locking conventions within the DMINTERPRETER library can prevent unexpected
results, but the locking conventions slow down execution speed. Consequently, when
the library is visible to multiple offspring tasks, the application program should
implement its own locking protocols.

• Compile separate code files for each database.

Do not use a database equation when accessing the DMINTERPRETER library.
Instead, compile a separate DMINTERPRETER library code file for each database.

8600 0155-000 1-9

1-10 8600 0155-000

Section 2
Accessing the I nterpretive Interface

The DMSII interpretive interface works with any programming language that can import
library objects. This section, organized alphabetically by language, details the steps and
syntax used in ALGOL, COBOL, and FORTRAN77 application programs to access a
DMINTERPRETER library and its entry points.

General Guidelines for Accessing the Interpretive
Interface

As you write your application program, consider the following factors:

• Invoking or declaring a DMSII database actually invokes or declares the associated
DMINTERPRETER library.

• Invoking or declaring a DMINTERPRETER library has two main purposes:

- To make the names of the data items available to the application program

- To perform syntax checking

• Access to a database must be explicitly requested by opening the database.

• Declaring an entry point makes the entry point available to the program.

- In COBOL, invoking the database also declares the entry points.

- In ALGOL and FORTRAN77, declaring the entry points is a separate
programming step.

• Invoking an entry point, also known as calling the entry point, causes the actual task
to be performed at run time.

• The symbolic file DATABASE/DMINTERPRETER, supplied on the release tape,
contains declarations of library entry points for each language.

If you code your programs in COBOL, you cannot select a subset nor can you rename
the entry points.

If you code your programs in ALGOL or FORTRAN77, you can choose to .

- Declare all the entry points through the $INCLUDE compiler control option.

- Select a subset of the entry points.

- Rename the entry points.

Read Sections 3 through 6 for details of how to code each of the entry points.

86000155-000 2-1

Accessing the Interpretive Interface

Accessing the Interpretive Interface in ALGOL
Programs

Application programs written in ALGOL use a 3-step process to access the interpretive
interface. The program code must

1. Declare the DMINTERPRETER library.

2. Declare the entry points as Boolean procedures.

3. Invoke the entry points.

Declaring a DMINTERPRETER Library in an ALGOL Program

2-2

ALGOL programs must link. to a DMINTERPRETER library directly; the
DMINTERPRETER library contains the procedures that are named in the EXPORT
declaration.

Use either the long or short form of the LIBRARY declaration to declare an identifier
(m) as the library ID. The TITLE attribute can be used to specify the object code file
title of the library. Both the long and short form of the LIBRARY declaration are valid.

You can declare a library in any block of your user program. The library and its entry
points are valid only within the scope of the block. If you exit the block, the program is
no longer linked to the library.

The following syntax diagram shows the long form of the LIBRARY declaration:

<library declaration>

- LIBRARY -<library ID>>----------------~

-+ [(- TITLE - = - II - <EBCDIC string> -" [OJ) OJ

Use the following syntax for the short form of the LIBRARY declaration:

<library declaration>

<library ID>.TITLE:="<EBCDIC string>lI;

As shown in the following syntax diagram, a library identifier is an ALGOL identifier.

<library ID>

-<identifier>>-----------------------I

8600 0155-000

Accessing the Interpretive Interface

The variable elements of the diagrams are explained as follows:

Element

<library ID>

< identifier>

< EBCDIC string>

Explanation

An internal name within the application program used to refer to the
DMINTERPRETER library.

Any sequence of characters beginning with a letter and consisting of
letters, digits, hyphens H, and underscores C).

A connected group or sequence of EBCDIC characters, excluding double
quotation marks CI).

In the long form, the EBCDIC string must have a period (.) as its last
character and must be a properly formed file title.

In the short form, the EBCDIC string need not have a period as the last
character.

Consult the ALGOL Reference Manual, Vol. 1 for detailed information on libraries, the
EXPORT declaration, and the LIBRARY declaration.

Examples of ALGOL Linkage to a DMINTERPRETER Library

The following LIBRARY declaration specifies DMI as the library ID:

LIBRARY OMI;

In the next example, the TITLE attribute assigns the external name
DMINTERPRETER/EMPJOB to the library ID. Because the example shows the long
form of the declaration, the EBCDIC string has a period as its last character.

LIBRARY OMI (TITLE="OMINTERPRETER/EMPJOB.");

The next example shows the short form of LIBRARY declaration. Again, the library ID
is DMI and the external name is D:MINTERPRETER/EMPJOB. Note that the EBCDIC
string does not have a period as its last character.

OMI.TITLE:= "OMINTERPRETER/EMPJOB";

Declaring ALGOL Entry Points as Boolean Procedures

In ALGOL, you must declare each entry point of a D:MINTERPRETER library as a
Boolean procedure. You can declare the entry points in one of two ways:

• Use the declaration of the D:MINTERPRETER library and the ALGOL entry points
contained on ~he release tape.

• Individually declare the entry points in your application program.

8600 0155-000 2-3

(
Accessing the Interpretive Interface

Using the Release Tape to Declare ALGOL Entry Points

2-4

The DAT ABASE/DMINTERPRETER symbolic file provided on the release. tape contains

• A declaration of the DMINTERPRETER library

• Declarations of the ALGOL entry points

• Type declarations for the entry points

To incorporate all these declarations in your application program, use the $INCLUDE
compiler control option and specify the sequence range 20100000 through 20199999
within the DATABASEJDMINTERPRETER symbolic file. All the ALGOL entry points
in the library are exported.

On the release tape, the library identifier is DMI. The exported names of the entry
points are declared and renamed with the prefix DB. Table 2-1 lists the exported name of
each entry point, the type of the entry point, and how it is renamed.

Table 2-1. ALGOL Entry Points

Exported Name Type Renamed As

ALGOLABORITRANSACTION Standard DBABORITRANSACTION

ALGOLBEGINTRANSACTION Standard DBBEGINTRANSACTION

ALGOLCANCELTRPOINT Standard DBCANCELTRPOINT

ALGOLCLOSE Standard DBCLOSE

ALGOLCREATE Standard DBCREATE

ALGOLDATA Data transfer DBDATA

ALGOLDELETE Standard DBDELETE

ALGOLENDTRANSACTION Standard DBENDTRANSACTION

ALGOLEXCEPTIONNAME Exception handling DBEXCEPTIONNAME

ALGOLEXCEPTIONTEXT Exception handling DBEXCEPTIONTEXT

ALGOLFIND Standard DBFIND

ALGOLFREE Standard DB FREE

ALGOLFREESTR Standard DBFREESTR

ALGOLGETBOOLEAN Data transfer DBGETBOOLEAN

ALGOLGETDOUBLE Data transfer DBGETDOUBLE

ALGOLGETKANJI Data tra nsfer DBGETKANJI

ALGOLGETREAL Data transfer DBGETREAL

ALGOLGETSTRING Data transfer DBGETSTRING

ALGOLLOCK Standard DBLOCK

continued

86000155-000

Accessing the Interpretive Interface

Table 2-1. ALGOL Entry Points (cont.)

Exported Name Type Renamed As

ALGOLLOCKSTR Standard DBLOCKSTR

ALGOLOPEN Standard DBOPEN

ALGOLPUTBOOLEAN Data transfer DBPUTBOOLEAN

ALGOLPUTDOUBLE Data transfer DBPUTDOUBLE

ALGOLPUTKANJ I Data transfer DBPUTKANJI

ALGOLPUTNULL Data transfer DBPUTNULL

ALGOLPUTREAL Data transfer DBPUTREAL

ALGOLPUTSTRING Data transfer DBPUTSTRING

ALGOLRECREATE Standard DBRECREATE

ALGOLSAVETRPOINT Standard DBSAVETRPOINT

ALGOLSECURE Standard DBSECURE

ALGOLSECURESTR Standard DBSECURESTR

ALGOLSET Standard DBSET

ALGOLSETLIMIT Attribute setting DBSETLIMIT

ALGOLSTATUS Exception handling DBSTATUS

ALGOLSTORE Standard DBSTORE

ALGOLVERB Standard DBVERB

A table comparing the types of entry points (standard, data transfer, exception handling,
and attribute setting) appears under "Identifying the Four Types of DMINTERPRETER
Entry Points" in Section 1. The function and coding for each entry point are detailed in
Sections 3 through 6.

Using a Procedure Declaration for ALGOL Entry Points

Individually declare entry points in a procedure dec1aration if you want to

• Declare a subset of the entry points.

• Rename the entry points.

Declaring a Subset of ALGOL Entry Points

If you use the $INCLUDE option, all ALGOL entry points in the library are exported.
However, in some instances, your program only needs a few or selected entry points. In
these cases, to improve processing time, declare each individual entry points in separate
procedure declarations rather than export all the entry points. .

8600 0155-000 2-5

Accessing the Interpretive Interface

Renaming ALGOL Entry Points

Unless specifically renamed, a library entry point is exported (accessed by the ALGOL
program) by its name in the DATABASEJDMINTERPRETER symbolic file. The
ACTUALNAME clause in a procedure declaration lets you rename a library entry point.

Coding ALGOL Procedure Declarations

2-6

Use the procedure declaration to declare individual library entry points in an ALGOL
program. The procedure identifier, given in the procedure heading, links to the
appropriate entry point given in the ACTUALNAME clause. The following diagram
shows the syntax of the procedure declaration:

<library entry point declaration>

-<procedure heading>-- ; - LIBRARY -<library ID>>--------,~

~ [(- ACTUALNAME - = - II - <EBCDIC string> - II _) OJ

<procedure heading>

-<procedure 10> [
<formal parameter part::--J

Each variable element in the procedure declaration is explained as follows:

Element

<procedure 10>

<formal
parameter part>

<library 10>

< EBCDIC string>

Explanation

A unique sequence of characters beginning with a letter and consisting of
letters, digits, hyphens (-), and underscores C) that identify the
procedure. The identified procedure cannot be declared FORWARD or
EXTERNAL.

A list of items to be passed as parameters when the procedure is
invoked.

An internal name within the application program used to refer to the
DMINTERPRETER library. The library 10 must be previously declared in
an available LIBRARY declaration.

The actual name that is given for this procedure in the template of this
library. Th~ name is given as a connected group of EBCDIC characters,
excluding the quotation marks(").

In the ACTUALNAME clause, the EBCDIC string cannot contain any
leading, trailing, or embedded blanks and must be a valid ALGOL
identifier.

Example of Declaring and Renaming an Entry Point in ALGOL

This example shows how an entry point can be declared within an ALGOL program. The
LffiRARY declaration gives DMI as the library ID. The LIBRARY declaration is followed
by the two-part LIBRARY entry point declaration; the procedure declaration and the
library notation.

8600 0155-000

Accessing the Interpretive Interface

The Boolean procedure declaration names the entry point DBOPEN and defines its
parameter, OPENTYPE, as a string. The next LffiRARY declaration tells the application
program to use the procedure ALGOLOPEN in the DMI library every time DBOPEN
is invoked. For this program only, ALGOLOPEN is renamed as DBOPEN. The actual
name of the entry point in the library remains ALGOLOPEN.

LIBRARY OMI;
BOOLEAN PROCEDURE OBOPEN (OPENTYPE);

STRING OPENTYPE;
LIBRARY OMI (ACTUALNAME="ALGOLOPEN");

Invoking ALGOL Entry Points

Once you have declared a DMINTERPRETER library and its entry points in your
ALGOL application program, you can invoke any declared entry point as a Boolean
procedure.

Mter an entry point call on the DMINTERPRETER library, a result descriptor is
returned as a Boolean value. This result descriptor is a 48-bit word, which is the
standard DMSII exception word. It includes the exception category and subcategory,
and the structure number.

When a call on the DMINTERPRETER library causes an exception, the last bit in the
48-bit word is set to 1. When a call on the library is successful, the 48-bit word contains
all zeros.

Content of Exception Word

o
1

Meaning

The call was successful.

An exception occurred.

For more information on exceptions, refer to Section 5, "Handling Exceptions."

Typical Method for Invoking an ALGOL Entry Point

The following is a typical method for invoking an ALGOL entry point, where RSLT
is a Boolean 'variable, DBOPEN is the renamed entry point ALGOLOPEN, and
EXCEPTIONHANDLER is a procedure for handling exceptions:

RSLT:=DBOPEN(OPEN_TYPE);
IF RSLT

THEN EXCEPTIONHANDLER;

8600 0155-000 2-7

Accessing the Interpretive Interface

Accessing the Interpretive Interface in COBOL
Programs

Application programs written in any of the supported COBOL languages use a 2-step
process to access the interpretive interface. The program code must

1. Change the TITLE attribute of the DMINTERPRETER library.

2. Invoke the entry points through a CALL statement.

Consult volume 1 of the appropriate COBOL reference manual for details of COBOL,
COBOL74, and COBOL85 syntax.

Exported Names of COBOL Entry Points on the Release Tape

2-8

The DATABASE/DMINTERPRETER symbolic file provided on the release tape contains
the exported names of the COBOL entryr points. You cannot explicitly declare or rename
any library entry point. Table 2-2 lists the type and exported name for each entry point.

Note: The parameters for COBOL entry points are translated into
parameters that are compatible with ALGOL. The ALGOL entry
points within the DMINTERPRETER library perform the actual
operations against the database.

Table 2-2. COBOL, COBOl74, and COBOl8S Entry Points

Type Exported Name

Standard DBABORTTRANSACTION

Standard DBBEGINTRANSACTION

Standard DBCANCELTRPOINT

Standard DBCLOSE·

Standard DBCREATE

Data transfer DBDATA

Standard DBDELETE

Standard DBENDTRANSACTION

Exception handling DBEXCEPTIONNAME

Exception handling DBEXCEPTIONTEXT

Standard DBFIND

Standard DBFREE

Standard DBFREESTR

continued

8600 0155-000

Accessing the Interpretive Interface

Table 2-2. COBOL, COBOl74, and COBOl8S Entry Points (cont.)

Type Exported Name

Data transfer DBG ETBOOLEAN

Data transfer DBGETDISPLAY

Data transfer DBGETDOUBLE

Data transfer DBGETKANJI

Data transfer DBGETREAL

Standard DBLOCK

Standard DBLOCKSTR

Standard DBOPEN

Data tra nsfer DSPUTBOOLEAN

Data transfer DBPUTDISPLAY

Data transfer DBPUTDOUBLE

Data transfer DBPUTKANJI

Oata transfer DBPUTNULL

Data transfer DBPUTREAL

Standard DBRECREATE

Standard DBSAVETRPOI NT

Standard DBSECURE

Standard DBSECURESTR

Standard DBSET

Attribute setting DBSETLIMIT

Exception handling o BSTATUS

Standard DBSTORE

Standard DSVERS

A table comparing the types of entry points (standard, . data transfer, exception handling,
and attribute setting) appears under "Identifying the Four Types ofD::MINTERPRETER
Entry Points" in Section 1. The function and coding for each entry point are detailed in
Sections 3 through 6.

Using the COBOL CHANGE Construct to Invoke a DMINTERPRETER
Library

To invoke the D::MINTERPRETER library in COBOL application programs, use the
CHANGE construct to change the TITLE attribute of the library to the actual name of
the library code file.

8600 0155-000 2-9

Accessing the Interpretive Interface

2-10

The CHANGE construct changes the library ID to an identifier or a nonnumeric literal
within the application program. Every time the program makes a call on the library
ID, the call is directed to the library whose name corresponds to the identifier or the
nonnumeric literal. The following syntax diagram shows how to code the CHANGE
construct:

CHANGE Construct

- CHANGE - ATTRIBUTE - TITLE L ~~ T II -<1 ibrary IO>- .11 -TO -~

~~<identifier>
L-<nonnumeric literal~

Each variable element of the CHANGE construct is explained as follows:

Element

<library 10>

<identifier>

<nonnumeric
literal>

Explanation

The file name of the library to be called. The file name can be composed
of letters, numbers, hyphens (-), underscores C), and slashes (j). The
library 10, including slashes, is used as the title of the library.

If the library ID does not contain slashes, the entire name can be used as
the internal name (lNTNAME) for the library.

If the library 10 contains slashes, then the identifier that follows the last
slash is used as the internal name (INTNAME) for the library.

A data-name followed by the syntactically correct combination of
qualifiers, subscripts, and indexes needed to uniquely reference the data
item.

A character string bounded by double quotation marks (II). The string can
include any character in the character set of the computer. (To represent
a single quotation mark character, use two single contiguous quotation
marks. To represent a double quotation mark, use three single
contiguous quotation marks.)

Example of COBOL Linkage to a DMINTERPRETER Library

This example changes the library identifier DMINTERPRETER to the identifier
DMI-NAME. Within the program, all references to the library are to DMI-NAME.

***Declaring the identifier

01 DMI-NAME PIC X(24) VALUE IS "DMINTERPRETER/EMPJOB".

***Linking to DMINTERPRETER library

CHANGE ATTRIBUTE TITLE OF "DMINTERPRETER" TO DMI-NAME.

8600 0155-000

Accessing the Interpretive Interface

Invoking COBOL Entry Points

Use a CALL nonnumeric literal statement to invoke entry points to the
DMINTERPRETER library. The CALL statement passes the required parameters in
a USING clause and receives a result in a GIVING clause, as shown in the following
syntax:

<call nonnumeric literal statement>

- CALL - II -<procedure 1D>-c 6~ =r-<library ID>-- II _____ ~

~ [rf-·-- t ~ [GIVING <data-name> =oJ
USING -L-<data-name

The variable elements of the CALL statement are explained as follows:

Element Explanation

Name of the procedural entry point. <procedure 10>

<library 10> The file name of the library to be called. The file name can be composed
of letters, numbers, hyphens (-), underscores C), and slashes (f).

<data-name> In the USING clause, the name of the entry point to the
DMINTERPRETER library.

In the GIVING clause, the name of the variable where the result of the
ca II is stored.

Refer to Sections 3 through 6 for examples and detailed explanations of how to use the
required parameters for each entry point.

Passing Parameters with the USING Clause in COBOL

Although parameters for the standard entry points and for most of the data transfer
entry poilits are declared as the same type and at the same level for all COBOL
languages, there are some differences:

• Standard entry points and most data transfer entry points in all COBOL languages
are DISPLAY items declared at level 01.

• In COBOL, the following data transfer entry points must be declared as COMP-4 or
COMP-5 items at level 77. In COBOL74 and COBOL85, they must be declared as
REAL or DOUBLE items at level 77.

8600 0155--000

DBGETREAL
DBGETDOUBLE

DBPUTREAL
DBPUTDOUBLE

2-11

Accessing the Interpretive Interface

Exception Handling with the GIVING Clause in COBOL

After a call on an entry point of the DMINTERPRETER library, a result descriptor is
returned as an integer into the result variable identified in the GIVING clause. The
returned integer is either 0 or 1, as shown in the following table.

Returned Integer

o
1

Meaning

The call was successful.

An exception occurred.

For COBOL, the result variable must be a COMP-2 item declared at level 01. For
COBOL74 and COBOL85, the result variable must be a COMP item declared at level 01.

If an exception occurs, the program must then call the exception handling entry points.
For more information on exceptions, refer to Section 5, "Handling Exceptions."

Typical Method for Invoking a COBOL Entry Point

The following example invokes the COBOL entry point DBCREATE in the
DMINTERPRETER library. Two parameters are passed: one in the variable
DATA-SET-NAME and one in the variable SPACE-I. The result descriptor is returned
in the varl~ble F..ES1JLT.

01 DATA-SET-NAME
01 SPACE-l

PIC XCI7) VALUE IS "EMP".
PIC XCI) VALUE IS " "

CALL "DBCREATE OF DMINTERPRETER"
USING DATA-SET-NAME, SPACE-l
GIVING RESULT.

Accessing the Interpretive Interface in FORTRAN77
Programs

2-12

Application programs written in FORTRAN77 use a 3-step process to access the
interpretive interf~ce:

1. Declare the DMINTERPRETER library.

2. Declare the entry points as logical functions.

3. Invoke the entry points.

Your FORTRAN77 program must explicitly declare a DMINTERPR;ETER library and
each of the DMINTERPRETER library entry points that will be used. The declarations
must appear once only, in the BLOCK GLOBALS subprogram. You must include the
type declarations in every subprogram Within the program.

86000155-000

Accessing the Interpretive Interface

Declaring a DMINTERPRETER Library in FORTRAN77 Programs

FORTRAN77 programs must link to a DMINTERPRETER library directly; the
DMINTERPRETER library contains the named functions.

Use the LIBRARY statement to declare a symbolic name as the library ill. You can use
. the TITLE attribute to assign the external name of the library code file to the library ID.
Then, within the application program, you can use the library ID as an internal name of
the DMINTERPRETER library. .

In FORTRAN77 programs, libraries are declared in a BLOCK GLOBALS subprogram.
Each program. has only one BLOCK GLOBALS subprogram. The subprogram must
precede all other source statements. The subprogram is initiated by a BLOCK
GLOBALS statement and terminated by an END statement.

Consult the FORTRAN77 Reference Manual for more information on direct linkage,
BLOCK GLOBALS subprograms, and the LIBRARY statement ..

The following diagram gives the syntax of the FORTRAN77 library statement:

<library statement>

- LIBRARY -<1 i brary 10>
L (- TITLE - = -<string>-) .J

<library 10>

-<symbol i c name>>----------------------I

Each variable element in the library statement is explained as follows:

Element

<library 10>

Explanation

An internal name within the application program used to refer to the
OMINTERPRETER library.

<symbolic
name>

A sequence of from 1 to 31 letters, digits, underscores (), or the dollar
sign ($) that identifies the internal name of a OMINTERPRETER library.
The first character must be either a letter or the dollar sign ($).

<string> Name of the library code file. The string can consist of no more than
255 characters, terminated by a period (.). The string must be delimited
with an apostrophe (') or double quotation mark e'). An empty string is
not allowed.

Note: Any input record that begins with a dollar sign ($) in column 1 or
column 2 is treated as a compiler control image. If your program
code has a symbolic name that begins with a dollar sign and starts in
column 1 or column 2, your program wilt not compile successfully.

8600 0155-000 2-13

Accessing the Interpretive Interface

Example of FORTRAN77 Linkage to a DMINTERPRETER Library

The following code shows how the LIBRARY statement is used in a BLOCK GLOBALS
subprogram. The library ID is DMI. The TITLE attribute is used to assign. the external
name DMINTERPRETER/EMPJOB to the library ID.

BLOCK GLOBALS
LIBRARY DMI(TITLE="DMINTERPRETER/EMPJOB. II

)

END

Declaring FORTRAN77 Entry Points as Logical Functions

In FORTRAN77, you must declare each entry point of a DMINTERPRETER library as a
logical function. You can do so in one of two ways:

• Use the declaration of the DMINTERPRETER library and the FORTRAN77 entry
points contained on the release tape.

• Individually declare the entry points in your application program.

Using the Release Tape to Declare FORTRAN77 Entry Points

2-14

The DATABASE/DMINTERPRETER symbolic file provided on the release tape contains

• A declaration of the DMINTERPRETER library

• Declarations of the FORTRAN77 entry points

• Type declarations for the entry points

To incorporate these declarations in your application programs, use the $INCLUDE
. compiler control option and specify the following sequence ranges within the

DATABASEJDMINTERPRETER symbolic file:

Declaration

Library entry point declaration

Type declaration

Sequence Range

20200000 through 20249999

20290000 through 20299999

All the FORTRAN77 entry points in the library are exported.

On the release tape, the library identifier is DMI. The exported names of the entry
points are declared and renamed with the prefix DB. Table 2-3 lists the exported name of
each entry point, the type of the entry point, and how it is renamed.

8600 0155-000

Accessi ng the I nterpretive Interface

Table 2-3. FORTRAN77 Entry Points

Exported Name Type Renamed As

FORTRAN77 ABORTIRANSACTION Standard DBATR

FORTRAN77BEGI NTRANSACTION Standard DBBTR

FORTRAN77CANCELTRPOI NT Standard DBCNCL

FORTRAN77CLOSE Standard DBCLOSE

FORTRAN77CREATE Standard DBCR

FORTRAN77DATA Data transfer DBDATA

FORTRAN77DELETE Standard DBDEL

FORTRAN77EN DTRANSACTION Standard DBETR

FORTRAN77EXCEPTIONNAME Exception handling DBEXCN

FORTRAN77EXCEPTIONTEXT Exception handling DBEXCT

FORTRAN77FI N D Standard DBFIND

FORTRAN77FREE Standard DBFREE

FORTRAN77FREESTR Standard DBFSTR

FORTRAN77GETCHARACTER Data transfer DBGETC

FORTRAN77GETDOUBLE Data transfer DBGETD

FORTRAN77G ETKANJ I Data tra nsfer DBGETK

FORTRAN77GETLOGICAL Data transfer DBGETL

FORTRAN77GETREAL Data tra nsfer DBGETR

FORTRAN77LOCK Standard DBLOCK

FORTRAN77LOCKSTR Standard DBLSTR

FORTRAN770PEN Standard DBOPEN

FORTRAN77PUTCHARACTER Data transfer DBPUTC

FORTRAN77PUTDOUBLE Data transfer DBPUTD

FORTRAN77PUTKANJI Data transfer DBPUTK

FORTRAN77PUTLOGICAL Data transfer DBPUTL

. FORTRAN77PUTNULL Data transfer DBPUTN

FORTRAN77PUTREAL Data transfer DBPUTR .

FORTRAN77RECREATE Standard DBRCR

FORTRAN77SAVETRPOINT Standard DBSAVE

FORTRAN77SECURE Standard DBSEC

FORTRAN77SECURESTR Standard DBSSTR

continued

86000155-000 2-15

Accessing the Interpretive Interface

Table 2-3. FORTRAN77 Entry Points (cont.)

Exported Name Type Renamed As

FORTRAN77SET Standard OBSET

FORTRAN77SETLIMIT Attribute setting OBSETL

FORTRAN77STATUS Exception handling o BSTAT

FORTRAN77STORE Standard OBSTORE

FORTRAN77VERB Standard OBVERB

A table comparing the types of entry points (standard, data transfer, exception handling,
and attribute setting) appears under "Identifying the Four Types of DMINTERPRETER
Entry Points" in Section 1. The ftUlction and coding for each entry point are detailed in
Sections 3 through 6.

Using the Logical Function for FORTRAN77 Entry Points

Individually declare entry points if you want to do the following:

• Declare a subset of the FORTRAN77 entry points.

• Rename the FORTRAN77 entry points.

To individually declare entry points, you need to use the LOGICAL FUNCTION library
entry point declaration, type statements, and the IN LIBRARY statement. The entry
point declaration and IN LIBRARY statement are explained in the following text. For
specific information about type statements, consult the FORTRAN77 Reference Manual.

Declaring a Subset of the FORTRAN77 Entry Points

If you use the $INCLUDE option, all FORTRAN77 entry points in the library are
exported. However, in some instances, your program only needs a few or selected entry
points. In these cases, to improve processing time, declare the individual entry points
rather than export all the entry points.

Coding the FORTRAN77 Library Entry Point Declaration

2-16

The LOGICAL FUNCTION library entry point declaration identifies the entry point and
parameters. The following diagram shows the syntax of the declaration:

<library entry point declaration>

- LOGICAL FUNCTION -<logical function name>- (~m~t;;=L) -1

8600 0155-000

Accessing the Interpretive Interface

Each variable element in the LOGICAL FUNCTION is explained as follows:

Element

<logical function
name>

<parameter>

Explanation

A unique name that identifies the entry point in the library

A list of items to be passed as parameters when the entry point is
invoked

You must give the data type for each parameter in a type statement. For example,
the following type statement identifies the data type of the parameter OTYPE as a
character:

LOGICAL FUNCTION OSOPEN (OTYPE)
CHARACTER OTYPE

The type statements must immediately follow the LOGICAL FUNCTION and must
precede the IN LffiRARY statement.

Renaming FORTRAN77 Entry Points

Unless specifically renamed, a library entry point is exported (accessed by the
FORTRAN77 program) by its name in the DATABASEJDMINTERPRETER symbolic
file. The ACTUALNAME clause in an IN LffiRARY statement allows you to rename a
library entry point.

Coding a FORTRAN77 IN LIBRARY Statement

The IN LIBRARY statement associates the logical function name (given in the library
entry point declaration) with the library identifier. The ACTUALNAME clause allows
you to rename the library entry point. The following diagram shows the syntax. of the
statement:

<in library statement>

- IN LIBRARY -<library 10>
L (- ACTUALNAME - = -<string>-) ~

Each variable element in the statement is explained as follows:

Explanation Element

<library ID> A unique sequence of from 1 to 31 characters consisting of letters, digits,
underscores e), or the dollar sign ($) that identifies the symbolic name
of the library. The first character must be either a letter or the dollar sign
($).

<string> The actual name given for this logical function in the template of the
library.

Note: Any input record that begins with a dollar sign ($) in column 1 or
column 2 is treated as a compiler control image. If your program
code has a symbolic name that begins with a dollar sign and starts in
column 1 or column 2, your program will not. compile successfully.

8600 0155-000 2-17

Accessing the Interpretive Interface

Example of Declaring an Entry Point in a FORTRAN77 Program

The following example shows how an entry point might be declared within a
FORTRAN77 program. The logical function name is DBOPEN. Its one parameter,
OTYPE, has a data type of character. The IN LIBRARY statement tells the application
program to use the procedure FORTRAN770PEN in the D:MI library every time
DBOPEN is invoked. For this program only, FORTRAN770PEN is renamed DBOPEN.

This program must have a preceding LIBRARY statement in a BLOCK GLOBALS
subprogram to declare the DMINTERPRETER library before declaring the library entry
point.

LOGICAL FUNCTION OBOPEN (OTYPE)
CHARACTER OTYPE
IN LIBRARY OMI (ACTUALNAME = II FORTRAN770PEN II

)

END

Invoking FORTRAN77 Entry Points

2-18

Once you have declared a DMINTERPRETER library and its entry points in your
FORTRAN77 application program, you can invoke any declared entry point using a
logical assignment statement.

After an entry point call on the D:MINTERPRETER library, DMSn software evaluates
the logical function and returns a logical value to a program-assigned variable. The
variable contains the result of the call, a result descriptor.

The result descriptor is a 48-bit word, which is the standard DMSn exception word. It
includes the exception category and subcategory, as well as the structure number. When
a call on the DMINTERPRETER library causes an exception, the last bit in the 48-bit
word is set to 1. When a call on the library is successful, the 48-bit word contains all
zeros.

Content of Exception Word

o
1

Meaning

The call was successful.

An exception occurred.

For more information on exceptions, refer to Section 5, "Handling Exceptions."

Typical Method for Invoking a FORTRAN77 Entry Point

The following is a typical method for invoking a FORTRAN77 entry point, where RSLT
is a logical variable, DBOPEN is the renamed entry point FORTRAN770PEN, and
EXCEPT is a subroutine for handling exceptions:

RSLT = DBOPEN(UPDATE)
IF (RSLT) CALL EXCEPT

8600 0155-000

Section 3
Manipulating the Database

Standard entry points perform the standard database manipulation tasks, such as
locating a record, beginning and ending transaction state, and storing records.

Each standard database manipulation task with its corresponding entry points are listed
in Table 3-1. Use the heading for each listed task to locate the pages that detail the
entry point. For example, a description of the standard entry points ALGOLOPEN,
DBOPEN, and FORTRAN770PEN is found under "Opening a DatalJase." The tasks
are presented in the general order in which they are usually coded, starting with opening
the database and ending with closing the database. General guidelines for using the
standard entry points precede the task descriptions.

Table 3-1. Standard Entry. Points to the DMINTERPRETER Library by Task

Task Entry Points

Opening a database ALGOLOPEN

DBOPEN

FORTRAN770PEN

Creating reserve space for new records ALGOLCREATE

DBCREATE

FORTRAN77CREATE

Setting the current path ALGOLSET

DBSET

FORTRAN77SET

ExpliCitly freeing records ALGOLFREE

DBFREE

FORTRAN77FREE

Explicitly freeing structures ALGOLFREESTR

DBFREESTR

FORTRAN77FREESTR

Finding records ALGOLFIND

DBFIND

FORTRAN77FIND

continued

8600 0155-000 3-1

Manipulating the Database

, Table 3-1. Standard Entry Points to the DMINTERPRETER Library by Task (cont.)

Task· Entry Points

Locking records ALGOLLOCK

DBLOCK

FORTRAN77LOCK

Locking structures ALGOLLOCKSTR

DBLOCKSTR

FORTRAN77LOCKSTR

Securing records ALGOLSECURE

DBSECURE

FORTRAN77SECU RE

Securing structures ALGOLSECURESTR

DBSECURESTR

FORTRAN77SECURESTR

Begin transaction - entering transaction state ALGOLBEGINTRANSACTION

DBBEG INTRANSACTION

FORTRAN77BEGI NTRANSACTION

Aborting tranSactions ALGOLABORTTRANSACTION

DBABORTTRANSACTION

FORTRAN77 ABORTTRANSACTION

Saving transaction points ALGOLSAVETRPOINT

DBSAVETRPOINT

FORTRAN77SAVETRPOINT

canceling transactions t;ack to savepoints ALGOLCANCELTRPOINT

DBSCANCELTRPOINT

FORTRAN77CANCELTRPOINT

Deleting data records ALGOLDELETE

DBDELETE

FORTRAN77DELETE

Re-creating records ALGOLRECREATE

DBRECREATE

FORTRAN77RECREATE

continued

3-2 8600 0155-000

Manipulating the Database

Table 3-1. Standard Entry Points to the DMINTERPRETER Library by Task (cont.)

Task Entry Points

Storing records ALGOLSTORE

DBSTORE

FORTRAN77STORE

End transaction -leaving transaction state ALGOLENDTRANSACTION

DBENDTRANSACTION

FORTRAN77ENDTRANSACTION

Closing a database ALGOLCLOSE

DBCLOSE

FORTRAN77CLOSE

Executing language extensions ALGOLVERB

DBVERB

FORTRAN77VERB

The discussion of each task includes the following:

• A brief explanation of the function of the entry point

• Syntax diagrams and semantics that describe required parameters

• Program fragments that illustrate

- Declaring variables for the entry points

- Invoking the entry point

- Returning results from the D:MINTERPRETER library

Unless specifically noted, COBOL, COBOL74, and COBOL85 have the-same
requirements.

Guidelines for Using Standard Entry Points
For programming efficiency, use the following guidelines:

• Always open the database explicitly as the first database operation.

• Create and find records outside transaction state.

• Make all data transfers outside transaction state. (Read Section 4, "Transferring
Data," for details of transferring data using DBGET and DBPUT data transfer entry
points.)

8600 0155-000 3-3

Manipulating the Database

3-4

• Re-create a record immediately after deleting the base record and before any
operation can alter the user work area. You can re-create the record either in or out
of transaction state.

• Enter transaction state to store and delete records.

• Always explicitly close the database.

Figure 3-1 illustrates the ideal flow for standard entry point operations in and out of
transaction state. The figure emphasizes that you must declare (invoke) the database
before using any entry point operation. The figure does not show how the flow is
effected by the use of data transfer entry points, exception handling entry points, or the
attribute setting entry point.

Read Sections 4 through 6 for the syntax. of data transfer entry points, exception
handling entry points, and the attribute setting "entry point, respectively. Section
2, "Accessing the Interpretive Interface," details how each language accesses the
interpretive interface and how each language invokes an entry point.

86000155-000

8600 0155-000

Manipulating the Database

DECLARE or INVOKE
database

CREATE record
FIND record
FREE record
FREE structure
LOCK record
LOCK structure

No

OPEN
database

RECREATE record
SECURE record
SECURE structure
SET current path

BEGIN
TRANSACTION STATE

ABORT transaction RECREATE record
CANCEL transaction point SAVE transacti on point
DELETE record STORE record

No

END
TRANSACTION STATE

No

CLOSE
database

r-----,
I

Operations
Outside

I Transaction I
State L ____ -1

r-----,
I

Operations .
Inside

I Transaction I
State L ____ -1

Figure 3-1. Standard Entry Point Operations In and Out of Transaction State

3-5

Opening a Database

Opening a Database

3-6

An open operation establishes the way in which the program accesses data values and
performs database operations.

• Inquiry access allows the program to retrieve data but not add, delete, or alter data.

• Update access allows the program to retrieve and manipulate data

You must explicitly open the database before performing any database operation. Until
the database is explicitly opened, any call on a standard entry point, data transfer
entry point, or attribute setting entry point results in an error. However, whether the
database is opened or closed, your program can call the exception handling entry points
and perform operations on the intrinsic qata set DBSTRUCTURE.

To reduce system overhead, open each database only once in any given program
execution.

Passing a Parameter

The standard entry point used to open the database has one required parameter - open
disposition:

Parameter

<open
disposition>

Explanation

Determines the access mode-whether the database is opened for
inquiry (read-only) or for both inquiry and updates

Note that the you do not pass the name of the database to the entry point. The entry
point assumes you want to open the most recently declared database.

Table 3-2 gives the exported names of the entry points, along with the parameter and
the data type of the parameter.

Table 3-2. Opening a Database

Data Type of
Exported Name of Entry Point Parameter Parameter

ALGOLOPEN <open disposition> STRING

DeOPEN <open disposition> DISPLAY

FORTRAN770PEN <open disposition> CHARACTER

8600 0155-000

Opening a Database (cont.)

The following syntax cliagram shows that the open disposition parameter can set the
access mode to one of two values:

<open disposition>

-,- INQUIRY--.J
L UPDATE

The values of the open disposition parameter are explained as follows:

Element

INQUIRY

UPDATE

Explanation

Allows the program to retrieve data only; does not allow updates. Any
request to add, delete, or alter records results in an exception condition.

Allows the program to retrieve data and to add, delete, or alter data.

Programming Examples

The following program fragments set the open disposition to INQumY. The database is
open for both inquiries and updates.

ALGOL Program Fragment

%Oeclaring local variables

STRING
OPEN_TYPE;

BOOLEAN
RSLT;

%Assigning values to parameters

OPEN_TYPE:="UPOATE II
;

%Oeclaring library entry point

LIBRARY OMI;
BOOLEAN PROCEDURE OBOPEN (OPENTYPE);

STRING OPENTYPE;
LIBRARY DMI (ACTUALNAME=IIALGOLOPEN II);

%Invoking entry point

RSLT:=OBOPEN(OPEN_TYPE);
IF RSLT

THEN EXCEPTIONHANOLER;

8600 0155-000 3-7

Opening a Database (cont.)

3-8

COBOL74 or COBOl85 Program Fragment

Note: In the following example, the variable RESULT is declared as
a COMP item, making this example a COBOL74 or COB0L85
program fragment. If RESULT were declared as a COMP-2 item,
this fragment could be used in a COBOL program.

***Declaring variables

01 OPEN-TYPE
01 RESULT

PIC X(6) VALUE "UPDATE II
•

PIC 9(1) COMP VALUE IS 0.

***Invoking entry point

CALL "DBOPEN OF DMINTERPRETER"
USING OPEN-TYPE
GIVING RESULT.

FORTRAN77 Program Fragment

***Library declaration for entry point

LOGICAL FUNCTION DBOPEN (OTYPE)
CHARACTER OTYPE
IN LIBRARY DMI (ACTUALNAME = "FORTRAN770PEN")

END

***Setting variables to initial values

CHARACTER UPDATE *6

***Declaring local variables

LOGICAL RSLT

***Invoking entry point

RSLT = DBOPEN(UPDATE)
IF (RSLT) CALL EXCEPT

t'UPDATE"j

8600 0155-000

Creating Reserve Space for New Records

Creating Reserve Space for New Records
Adding a new record is a three-step operation:

1. Reserve space in the user work area for the new record (using either
ALGOLCREATE, DBCREATE, or FORTRAN77CREATE). DMSII initializes the
work area with null values for each item in the record.

2. Move values from program-declared variables into the record using DBPUT data
transfer entry points. (See Section 4, "Transferring Data.")

3. Store the record into the database. (See "Storing Records" later in this section.)

You can created new records both in and out of transaction state. You can transfer
values both in and out of transaction state. However, your program must be in
transaction state to store the record. For faster processing time, create new records and
transfer values outside of transaction state. Then enter transaction state to store the
record.

Passing Parameters

The standard entry point used to reserve space in the user work area has two required
parameters: the data set qualified name and the record type.

Parameter

<data set
qualified name>

<record type>

Explanation

Identifies the data set for the new record.

Determines whether the record has a variable or a fixed format. (The
DMSII Technical Overview has a detailed explanation of variable
and fixed-format records.)

Table 3-3 gives the exported names of the entry points, along with the parameters and
the data type of each parameter.

Table 3-3. Creating Reserve Space for New Records

Data Type of
Exported Name of Entry Point Parameter Parameter

ALGOLCREATE <data set qualified name> STRING

<record type> STRING

DSCREATE <data set qualified name> DISPLAY

< record type> DISPLAY

FORTRAN77CREATE <data set qualified name> CHARACTER

<record type> CHARACTER

8600 0155-000 . 3-9

Creating Reserve Space for New Records (cont.)

3-10

Data Set Qualified Name

The data set name must be unique. The following syntax diagram shows you can use a
maximum of 12 qualifying parameters to uniquely identify the data set:

<data set qualified name>

-<name>

~. OF~~~ ~ /12\
• -<name

The variable element < name> of the data set name is explained as follows:

Element

<name>

Explanation

Identifies the data set for the new record.

The name can consist of from 1 to 17 letters, digits, and -depending on
the language-either underscores C) or hyphens (-). The first character
must be a letter. The last character must be either a letter or a digit.

For example, if your program accesses two databases (DB1 and DB2) and each database
has a data set named CLASS, you must qualify the data set name by naming the
database.

Record Type

Use the following syntax to specify the record type for the new record:

< record type>

- II <integer> II ---------------1
-r=~one or mo~e blanks>=j
~empty strl ng>>-------'

The variable elements of the record type are explained as follows:

Element

<integer>

one or more
blanks

empty string

Explanation

Creates a variable-format record. An integer is a whole number
(0123456789) that consists of 1 to 12 digits and whose maximum
value can be 549755813887.

A variable format consists of two parts: a fixed part (header) and a
variable part (trailer).

• Enter a nonzero integer to create both parts of a variable-format
record.

• Enter a zero (0) to create only the fixed part of a variable-format
record ..

Creates a fixed-format record.

Creates a fixed-format record.

8600 0155-000

Creating Reserve Space for New Records (cont.)

Programming Examples

The following program fragments create a new fixed-format record for the data set EMP.
The data set name is unique and does not need any qualifying parameters.

ALGOL Program Fragment

%Oeclaring local variables

STRING
OATA_SET_NAME, SPACE_I;

BOOLEAN
RSLT;

%Assigning values to parameters

OATA_SET_NAME:="EMP";
SPACE_l:=" ";

%Oeclaring library entry point

LIBRARY DMI;
BOOLEAN PROCEDURE DBCREATE(STRUCTURE,RECORDTYPE);

STRING STRUCTURE,RECORDTYPE;
LIBRARY OMI (ACTUALNAME="ALGOLCREATE");

%Invoking entry point

RSLT:=OBCREATE(DATA_SET_NAME,SPACE_l);
IF RSLT

THEN EXCEPTIONHANDLER;

COBOL74 or COBOL8S Program Fragment

Note: In the following example, the variable RESULT is declared as
a COMP item, making this example a COBOL74 or COB0L85
program fragment. If RESULT were declared as a COMP-2 item,
this fragment could be used in a COBOL program.

***Declaring variables

91 DATA-SET-NAME
91 SPACE-1
91 RESULT

***Invoking entry pOint

PIC X(17) VALUE IS "EMp l
•

PIC X(l) VALUE IS II II.
PIC 9(1) COMP VALUE IS 9.

CALL IIOBCREATE OF DMINTERPRETER"
USING DATA-SET-NAME, SPACE-l
GIVING RESULT.

8600 0155-000 3-11

Creating Reserve Space for New Records (cont.)

3-12

FORTRAN77 Program Fragment

***Declaring library entry point

LOGICAL FUNCTION DBCR (STR, RECTYP)
CHARACTER STR, RECTYP
IN LIBRARY DMI (ACTUALNAME = IIFORTRAN77CREATE")

END

***Setting variables to initial values

CHARACTER DSNAME
* SPACE

*4
*1

***Declaringlocal variables

LOGICAL RSLT

***Invoking entry point

RSLT = DBCR(DSNAME,SPACE)
IF (RSLT) CALL EXCEPT

/"EMP"/,
/11 "/

8600 0155-000

Setting the Current Path

Setting the Current Path
As your program invokes a structure, the DMSII software creates and maintains a
current path for that structure. The current path points to the record in that structure
your program is currently using. This record is known as the current record.

You can position, or set, the current path of a data set to either the beginning or ending
of the structure. The beginning of the structure is one record position before the first
physical record. The end of the structure is one record position after the last physical
record.

You also can set the current path of an index set with the ALGOLSET, DBSET, and
FORTRAN77SET entry points. The current point of an index set is positioned to the
current record within the spanned data ,set.

Passing Parameters

, The standard entry point used to set a current path has two required parameters: the
name of a structure and a target location.

Parameter

<structure>

<target>

Explanation

Identifies either the data set or index set whose current path will be
reset.

Identifies the location where the current path should point: the beginning
of the structure, the end of the structure, or, for an index set, the current
record in a particular data set.

Table 3-4 gives the exported names of the entry points, along with the parameters and
the data type of each parameter.

Table 3-4. Setting the Current Path

Data Type of
Exported Name of Entry Point Parameter Parameter

ALGOLSET <structure> STRING

<target> STRING

DBSET <structure> DISPLAY

<target> DISPLAY

FORTRAN77SET <structure> CHARACTER

<target> CHARACTER

8600 0155-000 3-13

Setting the Current Path (cont.)

3-14

Structure

The structure can be either a data set or an index set. The name of the set must be
unique. The following syntax diagram shows you can use a maximum of 12 qualifying
parameters to uniquely identify the data set or index set:

<structure>

~<data set qualified name>~
l-<index set qualified name~

<qualified name>

-<name> "

tfor~~~ +-- /12\
• -<name

The variable elements of the structure parameter are explained as follows:

Element

<data set
qualified name>

<index set
qualified name>

<name>

Explanation

Identifies the data set whose current path is repositioned at run time.

Identifies the index set whose current path is repositioned at run time.

Identifies the name of the data set or index set. A name can consist of
from 1 to 17 letters, digits, and -depending on the language-either
underscores C) or hyphens (-). The first character must be a letter. The
last character must be either a letter or a digit.

For example, if your program accesses two databases (DB1 and DB2) and each database
has a data set named CLASS, you must qualify the data set name by naming the
database.

Target

Use the following syntax to set the location target for the pointer:

<target>

tJEGINNING
ENDING ;:J
ata set qualified name

The variable elements of the·target parameter are explained as follows:

Element .

BEGINNING

ENDING

Explanation

Sets the current path to the start of the file at run time.

Sets the current path to the end of the file at run time.

<data set
qualified name>

Identifies the data set spanned by the index set and repositions the
pointer of the index set to the current record within the spanned data set.
Valid only for index sets.

8600 0155-000

Setting the Current Path (cont.)

Programming Examples

In the program fragments, the data set EMP is set to its beginning point.

ALGOL Program Fragment

%Declaring local variables

STRING
OATA_SET_NAME;
BEGIN_I;

BOOLEAN
RSLT;

%Assigning values to parameters

DATA SET NAME:=IIEMP"· - - ,
BEGIN 1:=IIBEGINNING"· - ,

%Oeclaring library entry point

lIBRARY OMI;
BOOLEAN PROCEDURE OBSET(STRUCTURE,TARGET);

STRING STRUCTURE, TARGET;
LIBRARY OMI (ACTUALNAME=IIALGOlSET II);

%Invoking entry point

RSlT:=OBSET(OATA_SET_NAME,BEGIN_l);
IF RSLT

THEN EXCEPTIONHANOLER;

COBOl74 or COBOl8S Program Fragment

Note: In this example, the variable RESULT is declared as a COMP item,
making this example a COBOL74 or COB0L85 program fragment.
If RESULT were declared as a COMP item, this fragment could be
used as a COBOL program.

***Oeclaring variables

01 DATA-SET-NAME
01 BEGIN-1
01 RESULT

***Invoking entry point

PIC X(17) VALUE IS "EMPII.
PIC X(9) VALUE IS "BEGINNING".
PIC-9(1) COMP VALUE IS 0.

CALL "OBSET OF OMINTERPRETERII
USING OATA-SET-NAME, BEGIN-l
GIVING RESULT.

8600 0155-000 3-15

Setting the Current Path (cont.)

3-16

FORTRAN77 Program Fragment

***Declaring library entry point

LOGICAL FUNCTION DBSET (STR,TARGET)
CHARACTER STR, TARGET
IN LIBRARY DMI (ACTUALNAME = II FORTRAN77SET II

)

END

***Setting variables to initial values

CHARACTER DSNAME
CHARACTER BEGIN

*4
*4

***Declaring local variables

LOGICAL RSLT

***Invoking entry point

RSLT = DBSET(DSNAME,BEGIN)
IF (RSLT) CALL EXCEPT

/IlEMp li
/

/"BEGINNING fI
/

8600 0155-000

Explicitly Freeing Records

Explicitly Freeing Records
When your program locks a record, DMSII guarantees you exclusive use of that record
until your program frees (unlocks) the record. Freeing a record releases the record from
a11lock or secure restrictions so that the record is available to other users and programs.

Depending on which DASDL options are set for the database and whether or not
the program is in transaction state, several data management operations implicitly
free a record by repositioning the current path. However, if your program is outside
of transaction state, you can explicitly free a record by executing a free operation. If
there is no concurrency control for the database, you can explicitly free a record within
transaction state by executing a free operation.

Note: If a record is part of a locked or secured structure, you cannot
explicitly free the record. The entire structure must be explicitly freed
in order for the record to be freed.

For more details on explicitly and implicitly freeing records, read the DMSI! Application
Programming Guide. For more information on explicitly freeing a structure, read
"Explicitly Freeing Structures" later in this section.

Passing a Parameter

The standard entry point used to explicitly free a record has one required
parameter - the structure where the record is stored.

Parameter

<structure>

Explanation

Identifies either a data set (to free a data set record) or a database (to
free a global data record).

Note that DMSII frees the current record in the named structure. Therefore, if the
structure is a data set, DMSII frees the current data set record. If the structure is a
database, DMSII frees the global data record.

Table 3-5 gives the exported names of the entry points, along with the parameter and
the data type of the parameter.

Table 3-5. Explicitly Freeing Records

Data Type of
Exported Name of Entry Point Parameter Parameter

ALGOLFREE <structure> STRING

DB FREE <structure> DISPLAY

FORTRAN77FREE <structure> CHARACTER

You can eXplicitly free either a data set record or a global data record. The name of the
structure must be unique. The following syntax diagram shows you can use a maximum

8600 0155-000 3-17

Explicitly Freeing Records (cont.)

3-18

of 12 qualifying parameters to uniquely identify the data set name. The database name
cannot be qualified.

<structure>

~data set qualified name>
L<database name>>------'

<data set qualified name>

--<name> ~~~~~
/12\

• -<name

The variable elements of the structure parameter are explained as follows:

Element

<data set
qualified name>

<database
name>

<name>

Explanation

Identifies the data set that is accessed at run time. This element is used
only to free a data set record.

Identifies the database for which the DMINTERPRETER library was
compiled. This element is used only to free a global data record.

Identifies either the data set or the database. A name can consist of from
1 to 17 letters, digits, and -depending on the language-either
underscores (J or hyphens (-). The first character must be a letter. The
last character must be either a letter or a digit.

For example, if your program accesses two databases (DB1 and DB2) and each database
has a data set named CLASS, you must qualifY the data set name by naming the
database.

The following program fragments show how to unlock a record in the data set EMP.
Because the data set name EMP is unique, you need not qualifY it.

8600 0155-000

Explicitly Freeing Records (cont.)

ALGOL Program Fragment

%Declaring local variables

STRING
DATA_SET_NAME;

BOOLEAN
RSLT;

%Assigning values to parameters

DATA SET NAME:="EMP"· - - ,

%Declaring library entry point

LIBRARY DMI;
BOOLEAN PROCEDURE DBFREE(STRUCTURE);

STRING STRUCTURE;
LIBRARY DMI (ACTUALNAME="ALGOLFREE");

%Invoking entry point

RSLT:=DBFREE(DATA_SET_NAME);
IF RSLT

THEN EXCEPTIONHANDLER;

COBOl74 or COBOl85 Program Fragment

Note: In the following example, the variable RESULT is declared as
a COMP item, making this example a COBOL74 or COB0L85
program fragment. If RESULT is declared as a COMP item, this
fragment could be used in a COBOL program.

***Declaring variables

01 DATA-SET-NAME
01 RESULT

***Invoking entry point

PIC X(17) VALUE IS "EMp lI
•

PIC 9(1) COMP VALUE IS 0.

CALL "DBFREE OF DMINTERPRETER"
USING DATA-SET-NAME
GIVING RESULT.

8600 0155-000 3-19

Explicitly Freeing Records (cont.)

3-20

FORTRAN77 Program Fragment

***Declaring library entry point

LOGICAL FUNCTION DBFREE (STR)
CHARACTER STR
IN LIBRARY DMI (ACTUALNAME = II FORTRAN77FREE")

END

***Setting variables to initial values

CHARACTER DSNAME *4

***Declaring local variables

LOGICAL RSLT

***Invoking entry point

RSLT= DBFREE (DSNAME)
IF (RSLT) CALL EXCEPT

/IiEMpli/

8600 0155-000

Explicitly Freeing Structures

Explicitly Freeing Structures
When your program locks a structure, DMSII guarantees you exclusive use of that
structure and all its records until your program frees (unlocks) the structure. Freeing a
structure releases the structure from all lock or secure restrictions so that the structure
is available to other users and programs. AIl locked or secured records in the structure
are freed.

You must explicitly free a structure. You cannot implicitly free a structure.

Note: If a record is part of a locked or secured structure, you cannot
explicitly free the record. The entire structure must be explicitly freed
in order for the record to be freed.

Passing a Parameter

The standard entry point used to explicitly free a record has ,one required
parameter - the name of the data set in which the structure is stored.

Parameter

<data set
qualified name>

Explanation

Identifies the data set that is accessed at run time.

Table 3-6 gives the exported names of the entry points, along with the parameter and
the data type of the parameter.

Table 3-6. Explicitly Freeing Structures

Data Type of
Exported Name of Entry Point Parameter Parameter

ALGOLFREESTR <data set qualified name> STRING

DBFREE <data set qualified name> DISPLAY

FORTRAN77FREE <data set qualified name> CHARACTER

The name must be unique. You can use a maximum. of 12 qualifying parameters to
uniquely identify the data set name.

<data set qualified name>

-<name>

8600 0155-000

/12\
OF -<name ~~~~.

3-21

Explicitly Freeing Structures (cont.)

3-22

The variable elements of the data set parameter are explained as follows:

Element Explanation

<data set
qualified name>

Identifies the data set that is accessed at run time. This element is used
only to free a data set record.

<name> Identifies the data set. A name can consist of from 1 to 17 letters, digits,
and-depending on the language-either underscores C) or hyphens (-).
The first character must be a letter. The last character must be either a
letter or a digit.

Programming Examples

The following program fragments show how to free a structure in the data set EM:P.
Because the data set name EMF is unique, you need not qualify it.

ALGOL Program Fragment

%Declaring local variables

STRING
DATA_SET_NAME;

BOOLEAN
RSLT;

%Assigning values to parameters

DATA SET NAME:="EMP"· - - ,

%Declaring library entry point

LIBRARY DMI;
BOOLEAN PROCEDURE DBFREESTR(STRUCTURE);

STRING STRUCTURE;
LIBRARY DMI (ACTUALNAME="ALGOLFREESTRII

);

%Invoking entry point

RSLT:=DBFREESTR(DATA SET NAME);
IF RSLT

THEN EXCEPTIONHANDLER;

8600 0155-000

Explicitly Freeing Structures (cont.)

COBOl74 or COBOl85 Program Fragment

Note: In the following example, the variable RESULT is declared as
a COMP item, making this example a COBOL74 or COB0L85
program fragment. If RESULT is declared as a COMP item, this
fragment could be used in a COBOL program.

***Declaring variables

01 DATA-SET-NAME
01 RESULT

PIC X(17) VALUE IS "EMP".
PIC 9(1) COMP VALUE IS 0.

***Invoking entry point

CALL "DBFREESTR OF DMINTERPRETER"
USING DATA-SET-NAME
GIVING RESULT.

FORTRAN77 Program Fragment

***Declaring library entry point

LOGICAL FUNCTION DBFSTR (STR)
CHARACTER STR
IN LIBRARY DM! (ACTUALNAME = "FORTRAN77FREESTR")

END

***Setting variables to initial values

CHARACTER DSNAME *4

***Declaring local variables

LOGICAL RSLT

***Invoking entry point

RSLT = DBFSTR(DSNAME)
IF (RSLT) CALL EXCEPT

8600 0155-000

/"EMP"/

3-23

Findi ng Records

Finding Records

3-24

The find operation retrieves a data record from the database, using a serial search,
a random search, or a combined search. A serial search retrieves records using the
physical sequence of records. A random search retrieves records based on selection
criteria. You also can search for a record using both the physical location and selection
criteria. For example, you can retrieve the next record in a data set where the last name
is the same as the current record.

The find operation does not lock or secure the record.

Note: This entry point corresponds to the language extension FIND
statement. However, the interpretive interface entry point is
more sophisticated. Several restrictions have been eaSed,
and some algorithmic enhancements have been made. These
improvements- as well as a discussion of search and retrieval
techniques, current records and paths, and user work areas- are
detailed in the DMSII Application Programming Guide.

Passing Parameters

The standard entry point used to find a record has three parameters: the direction of
the retrieval, the name of the structure, and any condition to be used in the search for
the record.

Parameter

<direction>

<structure>

<condition>

Explanation

Identifies the physical sequence for a sequential search.

Identifies the structure to be searched. It can be either a data set,
an index set, or a database.

Identifies restrictions for a random search.

Only the name of structure is required; the other parameters are optional. If only the
name is given, the current record is moved to the user work area

Table 3-7 gives the exported names of the entry points, along with the parameters and
the data type of each parameter.

8600 0155-000

Finding Records (cont.)

Table 3-7. Finding Records

Data Type of
Exported Name of Entry Point Parameter Parameter

ALGOLFIND <direction> STRING

< structu re > STRING

<condition> STRING

DBFIND <direction> DISPLAY

<structure> DISPLAY

<condition> DISPLAY

FORTRAN77FIND <direction> CHARACTER

<structure> CHARACTER

<condition> CHARACTER

Direction

The direction parameter is part of the serial search. Use the following syntax to identifY
the direction of a sequential search:

<direction>

~ FIRST~ NEXT
PRIOR
LAST

The variable elements of the direction'parameter are explained as follows:

Element

empty or blanks

FIRST

NEXT

PRIOR

LAST

8600 0155-000

Explanation

(Default) Indicates that the find operation does not use a sequential
search.

Note: If you leave both the direction and condition
parameters blank, DMSII transfers the current record
in the specified structure to the user work area.

Transfers the first record in the specified structure to the user work area.

Transfers the next record in the specified structure to the user work area.

Transfers the prior record in the specified structure to the user work area.

Transfers the last record in the specified structure to the user work area.

3-25

Finding Records (cont.)

3-26

Structure

The structure to be searched can be either a data set, an index set, or a database. The
following syntax diagram shows if the name of the data set or index is not unique, you
can use a maximum. of 12 qualifYing parameters to uniquely identify the data set or index
set. The database name cannot be qualified.

<structure>

~
data set qualified name>:=]
index set qualified name~

<database name>;>-------'

<qualified name>

-<name>

~~~~ /12\ 
• -<name 

The variable elements of the structure parameter are explained as follows: 

Element 

<data set 
qualified name> 

<index set 
qualified name> 

<database 
name> 

<name> 

Explanation 

Identifies the data set to be searched at run time. 

Identifies the index set to be searched at run time. 

Identifies the database for which the DMINTERPRETER library was 
compiled. 

Identifies either a data set, an index set, or a database. A name can 
consist of from 1 to 17 letters, digits, and-depending on the 
language-either underscores C> or hyphens (-). The first character 
must be a letter. The last character must be either a letter or a digit. 

For example, if your program accesses two databases (DB! and DB2) and each database 
has a data set named CLASS, you must qualify the data set name by naming the 
database. 

Conditions 

Use the following syntax to identify any conditions governing a random search: 

<condition> 

~s~lection expression>:j 
~11 nk»--------' 

8600 0155-000 



Finding Records (cont.) 

The variable elements of the condition parameter are explained as follows: 

Element Explanation 

empty or blanks (Default) Indicates that the search does not use any selection criteria. 

Note: If you le(JJ.)e both the condition and direction 
parameters blank, DMSII transfers the current record 
in the specified structure to the user work area. 

<selection 
expression> 

Establishes criteria for the search during the find operation. (For 
languages that also support language extensions, consult the reference 
manual for selection expression syntax. Read the DMSII Application 
Programming Guide for a detailed explanation of a selection 
expression.) 

<link> Identifies the database structure or data set item that links the current 
record to a record in another data set. 

Programming Examples 

In the following program fragments, the program retrieves the first record in which 
EMP-NO is equal to 11 in the data set EMF. 

ALGOL Program Fragment 

%Declaring local variables 

STRING 
FIRST_I, 
DATA_SET_NAME, 
CONDITION_I; 

BOOLEAN 
RSLT 

%Assigning values to parameters 

FIRST_l:=IFIRST"; 
DATA SET NAME:="EMP"· - - , 
CONDITION l:=IEMP-NO=ll"· - , 

%Declaring library entry point 

LIBRARY DMI; 
BOOLEAN PROCEDURE DBFIND(DIRECTION,STRUCTURE,CONPITION); 

STRING DIRECTION, STRUCTURE, CONDITION; 
LIBRARY OMI (ACTUALNAME="ALGOLFINO"); 

%Invoking entry point 

RSLT:=DBFINO(FIRST_l,OATA_SET_NAME,CONDITION_l); 
IF RSLT 

THEN EXCEPTIONHANOLER; 

8600 0155-000 3-27 



Finding Records (cont.) 

3-28 

COBOl74 or COBOlas Program Fragment 

Note: In this example, the variable RESULT is declared as a COMP item, 
making this example a COBOL74 or COB0L85 program fragment. 
If RESULT were declared as a COMP-2 item, this fragment could be 
used in a COBOL program. 

***Declaring variables 

01 FIRST-l 
01 DATA-SET-NAME 
01 CONDITION-1 
01 RESULT 

***Invoking entry point 

PIC X(5) VALUE IS "FIRST". 
PIC X(17) VALUE IS "EMP". 
PIC X(9) VALUE IS "EMP-NO=11". 
PIC 9(1) COMP VALUE IS 0. 

CALL "DBFIND OF DMINTERPRETER" 
USING FIRST-I, DATA-SET-NAME, CONDITION-l 
GIVING RESULT. 

FORTRAN77 Program Fragment 

***Declaring library entry point 

LOGICAL FUNCTION DBFIND (STR,ITEM,WHERE) 
CHARACTER STR, ITEM, WHERE 
IN LIBRARY DMI (ACTUALNAME = "FORTRAN77FIND") 

END 

***Setting variables to initial values 

CHARACTER FIRST 
* DSNAME 
* COND 

*10 
*4 
*9 

***Declaring local variables 

LOGICAL RSL T 

***Invoking entry point 

/"FIRST"/ 
/"EMP"/ 
/"EMP-NO=IP/ 

RSLT = DBFIND(FIRST,DSNAME,COND) 
IF (RSLT) CALL EXCEPT 

8600 0155-000 



Locki ng Records 

Locking Records 
The lock operation has two main objectives: to find a designated record and to lock the 
record. Locking the record prevents other users from simultaneously modifying the 
record. A program might lock a record' (and check the content) before deleting the 
record or changing the values in a field. 

Note: This entry point functions in the same manner as does the find 
operation entry point except that a record is locked after it is found. 
The entry point can locate a record using a random, sequential, or 
combination search. Refer to "Finding Records" in this section. 

Passing Parameters 

The standard entry point used to find and lock a record has three parameters: the 
direction of the retrieval, the name of the structure, and any condition to be used in the 
search for the record. 

Parameter 

, <direction> 

<structure> 

<condition> 

Explanation 

Identifies the physical sequence for a sequential search. 

Identifies the structure to be searched. It can be either a data set, 
an index set, or a database. 

Identifies restrictions for a random search. 

Only the name of structure is required; the other parameters are optional. If only the 
name is given, the current record is moved to the user work area and locked. 

Table 3-8 gives the exported names of the entry points, along with the parameters and 
the data: type of each parameter. 

Table 3-8. Locking Records 

Data Type of 
Exported Name of Entry Point Parameter Parameter 

ALGOLLOCK <direction> STRING 

<structure> STRING 

<condition> STRING 

DBLOCK <direction> DISPLAY 

<structure> DISPLAY 

<condition> DISPLAY 

FORTRAN77LOCK <direction> CHARACTER 

<structure> CHARACTER 

<condition> CHARACTER 

8600 0155-000 3-29 



Locking Records (cont.) 

3-30 

Direction 

The direction parameter is part of the serial search. Use the following syntax to identify 
the direction of a sequential search: 

<direction> 

~ FI~T~ NEXT 
PRIOR 
LAST 

The variable elements of the direction parameter are explained as follows: 

Element 

empty or blanks 

FIRST 

NEXT 

PRIOR 

LAST 

Structure 

Explanation 

(Default) Indicates that the lock operation does not use a sequential 
search. 

Note: If you leave both the direction and condition 
parameters blank, DMSII transfers the current record 
in the specified structure to the user work area. 

Transfers the first record in the specified structure to the user work area 
a nd locks it. 

Transfers the next record in the specified structure to the user work area 
a nd locks it. 

Transfers the prior record in the specified structure to the use~ work area 
a nd locks it. 

Transfers the last record in the specified structure to the user work area 
a nd locks it. 

The structure to be searched can be either a data set, an index set, or a database. The 
following syntax diagram shows if the name of the data set or index set is not unique, 
you can use a maximum of 12 qualifying parameters to uniquely identify the data set or 
index set. The database name cannot be qualified. 

<structure> 

~
dataset qual;f;ed name>::] 
;ndex set qual;f;ed name~ 
database name» ____ -J 

<qualified name> 

-<name> ~o: ~~~~e 
/12\ 

• --<name 

8600 0155-000 



Locking Records (cont.) 

The variable elements of the structure parameter are explained as follows: 

Element 

<data set 
qualified name> 

<index set 
qualified name> 

<database 
name> 

<name> 

Explanation 

Identifies the data set that is searched at run time. 

Identifies the index set that is searched at run time. 

Identifies the database for which the DMINTERPRETER library was 
compiled. 

Identifies either a data set, an index set, or a database. A name can 
consist of from 1 to 17 letters, digits, and - depending on the 
language-either underscores C) or hyphens (-). The first character 
must be a letter. The last character must be either a letter or a digit. 

For example, if your program accesses two databases (DB! and DB2) and each database 
has a data set named CLASS, you must qualify the data set name by naming the 
database. 

Conditions 

Use the following syntax to identify any conditions governing a random search: 

< condition> 

~s~lection expression>=j 
~11 nk» ---------' 

The variable elements of the condition parameter are explained as follows: 

Element 

empty or blanks 

<selection 
expression> 

<link> 

86000155-000 

Explanation 

(Default) Indicates that the search does not use any selection criteria. 

Note: If you leave both the direction and condition 
parameters blank, DMSII transfers the current record 
in the specified structure to the user work area. 

Establishes criteria for the search during the lock operation. (For 
languages that also support language extensions, consult the reference 
manual for selection expression syntax. Read the DMSII Application 
Programming Guide for a detailed explanation of a selection 
expression.) 

Identifies the database structure or data set item that links the current 
record to a record in another data set. 

3-31 



Locking Records (cont.) 

3-32 

Programming Examples 

In the following program fragments, the program retrieves the first record in which 
EMP-NO is equal to 11 in the data set EMP. The record is then locked. 

ALGOL Program Fragment 

%Declaring local variables 

STRING 
FIRST_I, 
DATA_SET_NAME, 
CONDITION_I; 

BOOLEAN 
RSLT 

%Assigning values to parameters 

FIRST_I :=11 FIRST II ; 
DATA SET NAME:=IIEMp lI

• - - , 
CONDITION 1:=IIEMP-NO=ll l1

• - , 

%Declaring library entry point 

LIBRARY DMI; 
BOOLEAN PROCEDURE DBLOCK(DIRECTION,STRUCTURE,CONDITION); 

STRING DIRECTION, STRUCTURE, CONDITION; 
LIBRARY DMI (ACTUALNAME=IIALGOLLOCKII ); 

%Invoking entry point 

RSLT:=DBLOCK(FIRST_I,DATA_SET_NAME,CONDITION_l); 
IF RSLT 

THEN EXCEPTIONHANDLER; 

8600 0155-000 



Locking Records (cont.) 

COBOl74 or COBOl85 Program Fragment 

Note: In the following example, the variable RESULT is declared as 
a COMP item, making this example a COBOL74 or COB0L85 
program fragment. If RESULT were declared as a COMP-2 item, 
this fragment could be used in a COBOL program. 

***Declaring variables 

01 FIRST-l 
01 DATA-SET-NAME 
01 CONDITION-l 
01 RESULT 

***Invoking entry point 

PIC XeS) VALUE IS "FIRST". 
PIC X(17) VALUE IS "EMp l

• 

PIC X(9) VALUE IS IEMP-NO=11". 
PIC 9(1) COMP VALUE IS 0. 

CALL "DBLOCK OF DMINTERPRETER" 
USING FIRST-I, DATA-SET-NAME, CONDITION-l 
GIVING RESULT. 

FORTRAN77 Program Fragment 

***Declaring library entry point 

LOGICAL FUNCTION DBLOCK (STR,ITEM,WHERE) 
CHARACTER STR, ITEM, WHERE 
IN lIBRARY DMI (ACTUALNAME = II FORTRAN77 LOCK" ) 

END 

***Setting variables to initial values 

CHARACTER FIRST 
* DSNAME 
* COND 

*10 
*4 
*9 

***Declaring local variables 

LOGICAL RSlT 

***Invoking entry point 

/"FIRST"/ 
/"EMp l

/ 

/IIEMP-NO=11 11
/ 

RSLT = DBLOCK(FIRST ,OSNAME,COND) 
IF (RSLT) CALL EXCEPT 

8600 0155-000 3-33 



Locking StructureS 

Locking Structures 

3-34 

The lock structure operation has two main objectives: to find the designated structure 
and to lock the structure. Locking a structure prevents other users from simultaneously 
modifying the structure. 

All records in the structure are locked. The records are freed only when the structure is 
explicitly freed or the database is closed.· The records are not implicitly freed after the 
DMSII executes an end transaction operation. 

Read "Freeing Structures" in this section for more information on explicitly freeing 
a structure. Read "Closing a Database" in this section for more details on closing a 
database. 

Passing a Parameter 

The standard entry point used to find and lock a structure has one parameter- the name 
of the data set that is accessed at run time. 

Parameter 

<data set qualified 
name> 

Explanation 

Identifies the data set to be accessed at run time. 

Table 3-9 gives the exported names of the entry points, along with the parameters and 
the data type of each parameter. 

Table 3-9. Locking Structures 

Data Type .of 
Exported Name of Entry Point Parameter Parameter 

ALGOLLOCKSTR <data set qualified name> STRING 

DBLOCKSTR <data set qualified name> DISPLAY 

FORTRAN77 LOCKSTR <data set qualified name> CHARACTER 

The data set must be uniquely identified. You can use a maximum of 12 qualifying 
parameters to uniquely identify the data set. 

<data set qualified name> 

-<name> ~~ ~~~~e 
/12\ 

• -<name 

8600 0155-000 



Locking Structures (cont.) 

The variable elements of the data set parameter are explained as follows: 

Element 

<data set 
qualified name> 

Explanation 

Identifies the data set that is searched at run time. 

<name> Identifies the data set. A name can consist of from 1 to 17 letters, digits, 
and-depending on the language-either underscores C} or hyphens (-). 
The first character must be a letter. The last character must be either a 
letter or a digit. 

Programming Examples 

In the following program fragments, the program retrieves and locks the data set 
DATA SET NAME. All records in the data set are locked. The entire structure must be 
explicitly freed in order to free any of the locked records. 

ALGOL Program Fragment 

%Declaring local variables 

STRING 
DATA_SET_NAME, 

BOOLEAN 
RSLT 

%Assigning values to parameters 

DATA SET NAME:=JlEMP"· - - , 

%Declaring library entry point 

LIBRARY OMI; 
BOOLEAN PROCEDURE DBLOCKSTR(STRUCTURE); 

STRING STRUCTURE 
LIBRARY DMI (ACTUALNAME="ALGOLLOCKSTR"); 

%Invoking entry point 

RSLT:=DBLOCKSTR(DATA_SET_NAME); 
IF RSLT 

THEN EXCEPTIONHANOLER; 

8600 0155-000 3-35 



Locking Structures (cont.) 

3-36 

COBOl74 or COBOl85 Program Fragment 

Note: In the following example, the variable RESULT is declared as 
a COMP item, making this example a COBOL74 or COB0L85 
program fragment. If RESULT were declared as a COMP-2 item, 
this fragment could be used in a COBOL program. 

***Declaring variables 

01 DATA-SET-NAME 
01 RESULT 

PIC X(17) VALUE IS "EMP". 
PIC 9(1) COMP VALUE IS 0. 

***Invoking entry point 

CALL "DBLOCKSTR OF DMINTERPRETER II 

USING DATA-SET-NAME 
GIVING RESULT. 

FORTRAN77 Program Fragment 

***Declaring library entry point 

LOGICAL FUNCTION DBSTR (ITEM) 
CHARACTER ITEM 
IN LIBRARY DMI (ACTUALNAME = II FORTRAN77 LOCKSTR" ) 

END 

***Setting variables to initial values 

CHARACTER DSNAME *4 

***Declaring local variables 

LOGICAL RSLT 

***Invoking entry point 

RSLT = DBSTR(DSNAME) 
IF (RSLT) CALL EXCEPT 

/"EMP"/ 

8600 0155-000 



Securing Records 

Securing Records 
. The secure operation has two main objectives:· to find a designated record and to secure 
the record. Securing a rec()rd guarantees no other user can modify the record but allows 
other users to access the record and retrieve information. 

Note: This entry point functions in the same manner as does the find 
operation entry point except that a record is secured after it is found. 
The entry point can locate a record Using a random, sequential, or 
combination search. Refer to "Finding Records" in this section. 

Passing Parameters 

The standard entry point used to find and secure a record has three parameters: the 
direction of the retrieval, the name of the structure, and any condition to be used in the 
search for the record. 

Parameter 

<direction> 

<structure> 

<condition> 

Explanation 

Identifies the physical sequence for a sequential search. 

Identifies the structure to be searched. It can be either a data set, 
an index set, or a database. 

Identifies restrictions for a random search. 

Only the name of structure is required; the other parameters are optional. If ~nly the 
name is given, the current record is moved to the user work area and secured. 

Table 3-10 gives the exported names of the entry points, along with the parameters. and 
the data type of each parameter. 

Table 3-10. Securing Records 

Data Type of 
Exported Name of Entry Point Parameter Parameter 

ALGOLSECURE <direction> STRING 

<structure> STRING 

<condition> STRING 

DBSECURE <direction> DISPLAY 

<structure> DISPLAY 

<condition> DISPLAY 

FORTRAN77SECURE <direction> CHARACTER 

<structure> CHARACTER 

<condition> CHARACTER 

8600 0155-000 3-37 



Securing Records (cont.) 

3-38 

Direction 

The direction parameter is part of the serial search. Use the following syntax to identify 
the direction of a sequential search: 

< direction> 

~ FIRSTj NEXT 
PRIOR 
LAST 

The variable elements of the direction parameter are explained as follows: 

Element 

empty or blanks 

FIRST 

NEXT 

PRIOR 

LAST 

Structure 

Explanation 

(Default) Indicates that the secure operation does not use a sequential 
search. 

Note: If you leave both the direction and condition 
parameters blank, DMSII transfers the current record 
in the specified structure to the user work area. 

Transfers the first record in the specified structure to the user work area 
and secures it. 

Transfers the next record in the specified structure to the user work area 
and secures it. 

Transfers the prior record in the specified structure to the user work area 
and secures it. 

Transfers the last record in the specified structure to the user work area 
and secures it. 

The structure to be searched can be either a data set, an index set, or a database. The 
following syntax diagram shows if the name of the data set or index set is not unique, 
you can use a maximum of 12 qualifying parameters to uniquely identify the data set or 
index set. The database name cannot be qualified. 

<structure> 

~
data set qualified name>:=] 
index set qualified name~ 
database name» ----~ 

<qualified name> 

-<name> tPt ~~ 
/12\ 

• -<name 

8600 0155-000 



Securing Records (cant.) 

The variable elements of the structure parameter are explained as follows: 

Element 

<data set 
qualified name> 

<index set 
qualified name> 

<database 
name> 

<name> 

Explanation 

Identifies the data set that is searched at run time. 

Identifies the index set that is searched at run time. 

Identifies the database for which the DMINTERPRETER library was 
compiled. 

Identifies either a data set, an index set, or a database. A name can 
consist of from 1 to 17 letters, digits, and-depending on the 
language-either underscores C) or hyphens (-). The first character 
must be a letter. The last character must be either a letter or a digit. 

For example, if your program accesses two databases (DB! and DB2) and each database 
has a data set named CLASS, you must qualify the data set name by naming the 
database. 

Conditions 

Use the following syntax to identify any conditions governing a random search: 

<condition> 

L-<s:lection expreSSion>=] 
L<11 nk»--------' 

The variable elements of the condition parameter are explained as follows: 

Element 

empty or blanks 

<selection 
expression> 

<link> 

8600 0155-000 

Explanation 

(Default) Indicates that the search does not use any selection criteria. 

Note: If you leave both the direction and condition 
parameters blank, DMSII transfers the current record 
in the specified structure to the user work area. 

Establishes criteria for the search during the secure operation. (For 
languages that also support language extensions, consult the reference 
manual for selection expression syntax. Read the DMSII Application 
Programming Guide for a detailed explanation of a selection 
expression.) 

Identifies the database structure or data set item that links the current 
record to a record in another data set. 

3-39 



Securing Records (cont.) 

3-40 

Programming Examples 

In the following program fragments, the program retrieves the first record in which 
EMP-NO is equal to 11 in the data set EMF. The record is then secured. 

ALGOL Program Fragment 

%Declaring local variables 

STRING 
FIRST_I, 
DATA_SET_NAME, 
CONDITION_1; 

BOOLEAN 
RSLT 

%Assigning values to parameters 

FIRST_l :=11 FIRST II ; 
DATA_SET_NAME:=IIEMPII; 
CONDITION_I:=IIEMP-NO=ll II; 

%Declaring library entry point 

LIBRARY DMI; 
BOOLEAN PROCEDURE DBSECURE (DIRECTION,STRUCTURE,CONDITION); 

STRING DIRECTION, STRUCTURE, CONDITION; 
LIBRARY DMI (ACTUALNAME=IIALGOLSECURE II

); 

%Invoking entry point 

RSLT:=DBSECURE(FIRST_l,DATA_SET_NAME,CONDITION_l); 
IF RSLT 

THEN EXCEPTIONHANDLER; 

8600 0155-000 



Securing Records (cont.) 

COBOl74 or COBOl8S Program Fragment 

Note: In the following example, the variable RESULT is declared as 
a COMP item, making this example a COBOL74 or COB0L85 
program fragment. If RESULT were declared as a COMP-2 item, 
this fragment could be used in a COBOL program. 

***Declaring variables 

01 FIRST-1 
01 DATA-SET-NAME 
01 CONDITION-1 
01 RESULT 

***Invoking entry point 

PIC XeS) VALUE IS "FIRST". 
PIC X(17) VALUE IS "EMP". 
PIC X(9) VALUE IS "EMP-NO=11". 
PIC 9(1) COMP VALUE IS 0. 

CALL "DBSECURE OF DMINTERPRETER" 
USING FIRST-1, DATA-SET-NAME, CONDITION-l 
GIVING RESULT. 

FORTRAN77 Program Fragment 

***Declaring library entry point 

LOGICAL FUNCTION DBSEC (STR,ITEM,WHERE) 
CHARACTER STR, ITEM, WHERE 
IN LIBRARY DMI (ACTUALNAME = "FORTRAN77SECURP) 

END 

***Setting variables to initial values 

CHARACTER FIRST 
* DSNAME 
* COND 

*10 
*4 
*9 

***Declaring local variables 

LOGICAL RSLT 

***Invoking entry point 

/"FIRST II / 
/"EMp li

/ 

/IIEMP-NO=1P/ 

RSLT = DBSEC(FIRST,DSNAME,COND) 
IF (RSLT) CALL EXCEPT 

8600 0155-000 3-41 



Securing Structures 

Securing Structures 

3-42 

The secure structure operation has two main objectives: to find the designated 
structure and to secure the structure. Securing a structure prevents other users from 
simultaneously modifying any records in the structure. However, other users can access 
and retrieve information from records in the structure. 

All records in the structure are secured. The records are freed only when the structure 
is explicitly freed or the database is closed. The records are not implicitly freed after the 
DMSII executes an end transaction operation. 

Read "Freeing Structures" in this section for more information on explicitly freeing 
a structure. Read "Closing a Database" in this section for more details on closing a 
database. 

Passing a Parameter 

The standard entry point used to find and secure a structure has one parameter - the 
name of the data set that is accessed at run time. 

Parameter 

<data set qualified 
name> 

Explanation 

Identifies the data set to be accessed at run time. 

Table 3-11 gives the exported names of the entry points, along with the parameters and 
the data type of each parameter. 

Table 3-11. Securing Structures 

Data Type of 
Exported Name of Entry Point Parameter Parameter 

ALGOLSECURESTR <data set qualified name> STRING 

DBSECURESTR <data set qualified name> DISPLAY 

FORTRAN77SECURESTR <data set qualified name> CHARACTER 

The data set must be uniquely identified. You can use a maximum. of 12 qualifying 
parameters to uniquely identify the data set. 

<data set qualified name> 

-<name> tPt ~~gj 
~ /12\ 

• -<name 

8600 0155-000 



Securing Structures (cont.) 

The variable elements of the data set parameter are explained as follows: 

Element 

<data set 
qualified name> 

Explanation 

Identifies the data set that is searched at run time. 

<name> Identifies the data set. A name can consist of from 1 to 17 letters, digits, 
and-depending on the language-either underscores C> or hyphens (-). 
The first character must be a letter. The last character must be either a 
letter or a digit. 

Programming Examples 

In the following program fragments, the program retrieves and secures the data set 
DATA SET NAME. All records in the data set are secured: other users can access - -
information but cannot modify information. 

ALGOL Program Fragment 

%Declaring local variables 

STRING 
DATA_SET_NAME, 

BOOLEAN 
RSLT 

%Assigning values to parameters 

%Declaring library entry point 

LIBRARY DMI; 
BOOLEAN PROCEDURE DBSECURESTR(STRUCTURE}; 

STRING STRUCTURE 
LIBRARY DMI (ACTUALNAME="ALGOLSECURESTR"); 

%Invoking entry point 

RSLT:=DBSECURESTR(DATA_SET_NAME}; 
IF RSLT 

THEN EXCEPTIONHANDLER; 

8600 0155-000 3-43 



Securing Structures (cont.) 

3-44 

COBOl74 or COBOl85 Program Fragment 

Note: In the following example, the variable RESULT is declared as 
a COMP item, making this example a COBOL74 or COB0L85 
program fragment. If RESULT were declared as a COMP-2 item, 
this fragment could be used in a COBOL program. 

***Declaring variables 

01 DATA-SET-NAME 
01 RESULT 

PIC X(17) VALUE IS "EMP". 
PIC 9 (1) . COMP VALUE IS 0. 

***Invoking entry point 

CALL "DBSECURESTR OF DMINTERPRETER" 
USING DATA-SET-NAME 
GIVING RESULT. 

FORTRAN77 Program Fragment 

***Declaring library entry point 

LOGICAL FUNCTION DBSSTR (ITEM) 
CHARACTER ITEM 
IN LIBRARY DMI (ACTUALNAME = "FORTRAN77SECURESTR") 

END 

***Setting variables to initial values 

CHARACTER DSNAME *4 

***Declaring local variables 

LOGICAL RSLT 

***Invoking entry point 

RSLT = DBSSTR(DSNAME) 
IF (RSLT) CALL EXCEPT 

/"EMP"/ 

86000155-000 



Begin Transaction - Entering Transaction State 

Begin Transaction - Entering Transaction State 
For each audited database, DMSII maintains a log (audit trail) of all activities that 
update the database. For example, the audit trail notes all records that are deleted or 
added and all data changes. This audit trail is used by the recovery software to prevent 
database corruption. 

When a program opens an audited database to update it, the database can be in one of 
two states: protected or transaction. In a protected state, no update activity can be 
performed. By default, an audited database is opened in a protected state. 

An application program must specifically place the audited database in the transaction 
state in order to perform any update activities, such as storing or deleting records. 

Notes: 

• DMSII ignores invocations to begin or end transaction state for 
unaudited databases. 

• Read the DMSII Application Programming Guide for transaction 
and recovery guidelines. 

Passing a Parameter 

The standard entry point used to place an opened, audited database in transaction state 
has one required parameter - the audit parameter. 

Parameter 

<audit> 

Explanation 

Specifies whether an image of the current restart data set record is to be 
audited. (The restart data set is used for restart routines. Consult the 
DMSII DASDL Reference Manual for details about the content of 
the restart data set. Consult the DMSII Application Programming 
Guide for programming considerations.) 

Table 3-12 gives the exported names of the entry points, along with the parameter and 
the data type of the parameter. 

Table 3-12. Begin Transaction - Entering Transaction State 

Data Type of 
Exported Name of Entry Point Parameter Parameter 

ALGOLBEGINTRANSACTION <audit> STRING 

DBBEGINTRANSACTION <audit> DISPLAY 

FORTRAN77BEGINTRANSACTION <audit> CHARACTER 

8600 0155-000 3-45 



Begin Transaction - Entering Transaction State (cont.) 

3-46 

Use the following syntax to begin transaction state: 

<audit> 

--r AUDIT 
L NOAUD IT -.J 

Note: In order for your program to enter transaction state, you must set the 
value of th~ audit parameter to AUDIT. 

The variable element of the audit parameter is explained as follows: 

Element Explanation 

AUDIT 

NOAUDIT 

DMSII audits an image of the current restart data set record. 

DMSII does not perform an audit. 

Programming Examples 

The following program fragments place an opened, audited database in transaction state. 
DMSII audits an image of the current restart data set record. 

ALGOL Program Fragment 

%Declaring local variables 

STRING 
P_AUDIT; 

BOOLEAN 
RSLT; 

%Assigning values to parameters 

P_AUDIT:="AUDIT"; 

%Declaring library entry point 

LIBRARY DMI; 
BOOLEAN PROCEDURE DBBEGINTRANSACTION (AUDIT); 

STRING AUDIT; 
LIBRARY DMI (ACTUALNAME=" ALGOLBEGINTRANSACTIONII ) 

%Invoking entry point 

RSLT:=DBBEGINTRANSACTION(P_AUDIT); 
IF RSLT 

THEN EXCEPTIONHANDLER; 

8600 0155-000 



Begin Transaction - Entering Transaction State (cont.) 

COBOl74 or COBOl85 Program Fragment 

Note: In the following example, the variable RESULT is declared as 
a COMP item, making this example a COBOL74 or COB0L85 
program fragment. If RESULT were declared as a COMP-2 item, 
this fragment could be used in a COBOL program. 

***Declaring variables 

01 P-AUDIT 
01 RESULT 

PIC XeS) VALUE IS "AUDIT". 
PIC 9(1) COMP VALUE IS 0. 

***Invoking entry point 

CALL "DBBEGINTRANSACTION OF DMINTERPRETER" 
USING P-AUDIT 
GIVING RESULT. 

FORTRAN77 Program Fragment 

***Declaring library entry point 

LOGICAL FUNCTION DBBTR (AUDIT) 
CHARACTER AUDIT 
IN LIBRARY DMI (ACTUALNAME = "FORTRAN77BEGINTRANSACTION") 

END 

***Setting variables to initial values 

CHARACTER AUDIT *10 

***Declaring local variables 

LOGICAL RSLT 

***Invoking entry point 

RSLT = DBBTR(AUDIT) 
IF (RSLT) CALL EXCEPT 

8600 0155-000 

/"AUDIT"/ 

3-47 



Aborting Transactions 

Aborting Transactions 

3-48 

An abort transaction operation discards all updates made in a transaction and brings 
the database back to the point immediately before the begin transaction operation 
that initiated the update activity. The program and all concurrent programs continue 
running. All other transactions are processed. 

Notes: 

• If the DASDL INDEPENDENTTRANS option is not set for the 
database, any attempt to abort a transaction is ignored. 

• DMSII ignores invocations to abort transactions for unaudited 
databases. 

• For audited databases, the database must be in transaction state 
to perform an abort operation. 

• Read the DMSII Application Programming Guide for transaction 
and recovery guidelines. 

Passing Parameters 

The standard entry point used to abort a transaction has no parameters. Table 3-13 
gives the exported names of the entry points. 

Table 3-13. Export Names of Entry Points Used to Abort a Transaction 

programming Examples 

Export Names 

ALGOLABORTTRANSACTION 

DBABORTTRANSACTION 

FORTRAN77 ABORTTRANSACTION 

The following program fragments abort a transaction. The audited database must be in 
transaction state. 

8600 0155-000 



Aborting Transactions (cont.) 

ALGOL Program Fragment 

%Declaring local variables 

BOOLEAN 
RSLT; 

%Declaring library entry point 

LIBRARY DMI; 
BOOLEAN PROCEDURE DBABORTTRANSACTION; 

LIBRARY DMI (ACTUALNAME=" ALGOLBEGINTRANSACTION") 

%Invoking entry point 

RSLT:=DBABORTTRANSACTION; 
IF RSLT 

THEN EXCEPTIONHANDLER; 

COBOl74 or COBOl8S Program Fragment 

Note: In the following example, the variable RESULT is declared as 
a COMP item, making this example a COBOL74 or COB0L85 
program fragment. If RESULT were declared as a COMP-2 item, 
this fragment could be used in a COBOL program. 

***Declaring variables 

01 RESULT PIC 9(1) COMP VALUE IS 0. 

***Invoki ng entry poi nt . 

CALL "DBABORTTRANSACTION OF DMINTERPRETER" 
GIVING RESULT. 

FORTRAN77 Program Fragment 

***Declaring library entry point 

LOGICAL FUNCTION OBATR 
IN LIBRARY OMI (ACTUALNAME = "FORTRAN77ABORTTRANSACTION") 

END 

***Declaring local variables 

LOGICAL RSlT 

***Invoking entry point 

RSLT = OBATR 
IF (RSLT) CALL EXCEPT 

8600 0155-000 3-49 



Saving Transaction Points 

Saving Transaction Points 

3-50 

A save transaction point operation writes a savepoint record to the audit trail. The 
savepoint applies only to the current transaction and does not affect holdlload recovery. 
You can write more than one savepoint record to the audit trail within a transaction. 

Notes: 

• If the DASDL INDEPENDENTTRANS option is not set for the 
database, any attempt to create a save point is ignored. 

• DMSII ignores invocations to save transaction points for 
unaudited databases. 

• For audited databases,. the database must be in transaction state 
to perform a save transaction point operation. 

• Read the DMSn Application Programming Guide for transaction 
and recovery guidelines. 

Passing a Parameter 

The standard entry point used to save a transaction point has one required 
parameter - a unique identifier for the savepoint. 

Parameter Explanation 

<savepoint> Specifies the unique number assigned to the savepoint. 

Table 3-14 gives the exported names of the entry points, along with the parameter and 
the data type of the parameter. 

Table 3-14. Saving Transaction Points 

Data Type of 
Exported Name of Entry Point Parameter Parameter 

ALGOLSAVETRPOINT < savepoint > INTEGER 

DBSAVETRPOINT <savepoint> DISPLAY 

FORTRAN77SAVETRPOINT <savepoint> INTEGER 

Use the following syntax to create a savepoint record: 

< savepoint > 

- <integer> -----------------------1 

8600 0155-000 



Saving Transaction Points (cont.) 

The variable element of the savepoint parameter is explained as follows: 

Element 

<integer> 

Explanation 

A user-assigned whole number that uniquely identifies the savepoint 
record. The number must be enclosed within parentheses. 

The following program fragments write a savepoint record to the audit trail. The 
database must be in transaction state. 

ALGOL Program Fragment 

%Declaring local variables 

INTEGER 
SAVE_POINT; 

BOOLEAN 
RSLT; 

%Assigning values to parameters 

SAVE POINT:=1872"· - , 

%Declaring library entry point 

LIBRARY DMI; 
BOOLEAN PROCEDURE DBSAVETRPOINT (SAVE_POINT); 

INTEGER SAVE_POINT; 
LIBRARY DMI (ACTUALNAME="ALGOLSAVETRPOINT") 

%Invoking entry point 

RSLT:=DBSAVETRPOINT(SAVE_POINT); 
IF RSLT 

THEN EXCEPTIONHANDLER; 

8600 0155-000 3-51 



Saving Transaction Points (cont.) 

3-52 

COBOl74 or COBOl85 Program Fragment 

Note: In the following example, the variable RESULT is declared as 
a COMP item, making this example a COBOL74 or COB0L85 
program fragment. If RESULT were declared as a COMP-2 item, 
this fragment could be used in a COBOL program. 

***Declaring variables 

01 S-POINT 
01 RESULT 

PIC X(l) VALUE IS "1". 
PIC 9(1) COMP VALUE IS 0. 

***Invoking entry point 

CALL "DBSAVETRPOINT OF DMINTERPRETER" 
USING S-POINT 
GIVING RESULT. 

FORTRAN77 Program Fragment 

***Declaring library entry point 

LOGICAL FUNCTION DBSAVE (SPOINT) 
STRING SPOINT 
IN LIBRARY DMI (ACTUALNAME = II FORTRAN77SAVETRPOINT II

) 

END 

***Setting variables to initial values 

INTEGER SPOINT *10 

***Declaring local variables 

LOGICAL RSL T 

***Invoking entry point 

RSLT = DBSAVE(SPOINT) 
IF (RSLT) CALL EXCEPT 

/"1" / 

8600 0155-000 



Canceling Transactions Back to Savepoints 

Canceling Transactions Back to Savepoints 
Cancel transaction point operations abort the current transaction back to a specified 
savepoint. The program and all concurrent programs continue running. All other 
transactions are processed. 

Notes: 

• If the DASDL INDEPENDENTTRANS option is not set for the 
database, any attempt to cancel a transaction is ignored. 

• DMSII ignores invocations to cancel transactions for unaudited 
databases. 

• For audited databases, the database must be in transaction state 
to perform a cancel transaction point operation. 

• Read the DMSII Application Programming Guide for transaction 
and recovery guidelines. 

Passing a Parameter 

The standard entry point used to cancel a transaction point has one required 
parameter-a unique identifier for the savepoint. . 

Parameter Explanation 

<savepoint> Specifies the unique number assigned to the savepoint. 

Table 3-15 gives the exported names of the entry points, along with the parameter and 
the data type of the parameter. 

Table 3-15. Canceling Transactions Back to Savepoints 

Data Type of 
Exp()rted Name of Entry Point Parameter Parameter 

ALGOLCANCELTRPOINT <savepoint> INTEGER 

DBCANCELTRPOINT <savepoint> DISPLAY 

FORTRAN77CANCELTRPOINT <savepoint> INTEGER 

Use the following syntax to identify a savepoint record: 

<savepoint> 

- <integer> -----------------------\ 

8QOO 0155-000 3-53 



Canceling Transactions Back to Savepoints (cont.) 

3-54 

The variable element of the savepoint parameter is explained as follows: 

Element Explanation 

<integer> A user-assigned whole number that uniquely identifies the savepoint 
record. The number must be enclosed within parentheses. 

If no corresponding savepoint record is found or if the savepoint parameter is not 
entered, all updates performed during the current transaction start are aborted. 
The cancel transaction point operation is executed as if it were an abort transaction 
operation. 

Programming Examples 

The following program fragments write a savepoint record to the audit trail. The 
database must be in transaction state. . 

ALGOL Program Fragment 

%Oeclaring local variables 

INTEGER 
CANCEL..:.POINT; 

BOOLEAN 
RSLT; 

%Assigning values to parameters 

%Oeclaring library entry point 

LIBRARY OMI; 
BOOLEAN PROCEDURE OBCANCELTRPOINT (CANCEL_POINT); 

INTEGER CANCEL_POINT; 
LIBRARY OMI (ACTUALNAME=IIALGOLCANCELTRPOINTII ) 

%Invoking entry point 

RSLT:=OBCANCELTRPOINT(CANCEL POINT); 
IF RSLT . -

THEN EXCEPTIONHANOLER; 

8600 0155-000 



Canceling Transactions Back to Savepoints (cont.) 

COBOl74 or COBOl85 Program Fragment 

Note: In the following example, the variable RESULT is declared as 
a COMP item, making this example a COBOL74 or COB0L85 
program fragment. If RESULT were declared as a COMP-2 item, 
this fragment could be used in a COBOL program. 

***Declaring variables 

01 C-POINT 
01 RESULT 

PIC X(l) VALUE IS "1". 
PIC 9(1) COMP VALUE IS 0. 

***Invoking entry point 

CALL "DBCANCELTRPOINT OF DMINTERPRETER" 
USING S-POINT 
GIVING RESULT. 

FORTRAN77 Program Fragment 

***Declaring library entry point 

LOGICAL FUNCTION OBCNCL (CPOINT) 
STRING CPOINT 
IN LIBRARY DMI (ACTUALNAME = II FORTRAN77CANCELTRPOINT") 

END 

***Setting variables to initial values 

INTEGER CPOINT *10 

***Declaring local variables 

LOGICAL RSLT 

***Invoking entry point 

RSLT = DBCNCL(CPOINT) 
IF (RSLT) CALL EXCEPT 

8600 0155-000 

/"1"/ 

3-55 



Deleting Data Records 

Deleting Data Records 

3-56 

The deletion operation has three main objectives: to find a designated record, lock the 
record, and then delete the record. However, you cannot use the deletion operation to 
delete a global data record. 

For audited databases, the database must be in transaction state to perform a deletion 
operation. 

Notes: 

• This entry point functions in the same manner as does the find 
operation entry point except that a record is locked and deleted 
after it is found. The entry point can locate the record using a 
random, sequential, or combination search. Refer to "Finding 
Records" in this section. . 

• The deletion operation leaves an image of the deleted record 
in the user work area. This image is used by the re-create 
operation. See "Re-creating Records" later in this section. 

Passing Parameters 

The standard entry point used to delete a record has three parameters: the direction of 
the retrieval, the name of the data set, and any condition to be used in the search for the 
record. 

Parameter 

<direction> 

<structure> 

<condition> 

Explanation 

Identifies the physical sequence for a sequential search. 

Identifies the structure to be searched. It can be either a data set, 
an index set, or a database. 

Gives the special criteria for a random search. 

Only the name of structure is required; the other parameters are optional. If only the 
name is given, the current record is moved to the user work area and deleted. 

Table 3-16 gives the exported names of the entry points, al6ng with the parameters and 
the data type of each parameter. 

8600 0155-000 



Deleting Data Records (cont.) 

Table 3-16. Deleting a Data Record 

Data Type of 
Exported Name of Entry Point Parameter Parameter 

ALGOLDELETE <direction> STRING 

<structure> STRING 

<condition> STRING 

DBDELETE <direction> DISPLAY 

<structure> DISPLAY 

<condition> DISPLAY 

FORTRAN77DELETE <direction> CHARACTER 

<structure> CHARACTER 

<condition> CHARACTER 

Direction 

The direction parameter is part of the serial search. Use the following syntax to identify 
the direction of a sequential search: 

<direction> 

~ FI~T~ NEXT 
PRIOR 
LAST 

The variable elements of the direction parameter are explained as follows: 

Element 

empty or blanks 

FIRST 

NEXT 

PRIOR 

LAST 

8600 0155-000 

Explanation 

(Default) Indicates that the deletion operation does not use a sequential 
search. 

Note: If you leave both the direction and condition 
parameters blank, DMSII transfers the current record 
in the specified structure to the user work area. 

Transfers the first record in the specified structure to the user work area 
before deleting the record. 

Transfers the next record in the specified structure to the user work area 
before deleting the record. 

Transfers the prior record in the specified structure to the user work area 
before deleting the record. 

Transfers the last record in the specified structure to the user work area 
before deleting the record. 

3-57 



Deleting Data Records (cont.) 

·3-58 

Structure 

The record must be in a data set. The data set name must be unique. The following 
syntax diagram shows you can use a maximum of 12 qualifying parameters to uniquely 
identify the data set: 

<data set qualified name> 

-<name> 

tfor~~5j . E-- /12\ 
. -<name 

The variable element of the data: set name is explained as follows: 

Element 

<name> 

Explanation 

Identifies the data set that is searched for the record at run time. The 
name can consist of from 1· to 17 letters, digits, and -depending on the 
language-either underscores C) or hyphens (-). The first character 
must be a letter. The last character must be either a letter or a digit. 

For example, if your program accesses two databases (DB1 and DB2) and each database 
has a data set named CLASS, you must qualify the data set name by naming the 
database. 

Conditions 

Use the following syntax to identify any conditions governing a random search: 

<condition> 

~s~lection expression>:] 
~11 nk>>---------J 

The variable elements of the condition parameter are explained as follows: 

Element 

empty or blanks 

<selection 
expression> 

<link> 

Explanation 

(Default) Indicates that the search does not use any selection criteria. 

Note: If you leave both the direction and condition 
parameters blank, DMSII transfers the current record 
in the specified structure to the user work area. 

Establishes criteria for the search during the deletion operation. (For 
languages that also support language extensions, consult the reference 
manual for selection expression syntax. Read the DMSII Application 
Programming Guide for a detailed explanation of a selection 
expression.) 

Identifies the database structure or data set item that links the current 
record to a record in another data set. 

8600 0155-000 



Deleting Data Records (cont.) 

Programming Examples 

In these program fragments, the entry point is used to find the first record in the data 
set EMP in which the EMP-NO is 11. Unless that record is a global data record, it is 
deleted. . 

ALGOL Program Fragment 

%Declaring local variables 

STRING 
FIRST_l, 
DATA_SET_NAME, 
CONDITION_l; 

BOOLEAN 
RSLT 

%Assigning values to parameters 

FIRST_l:=IIFIRSTII; 
DATA SET NAME:=IIEMP"· - - , 
CONDITION 1:=IIEMP-NO=11 1l

• - , 

%Declaring library entry point 

LIBRARY DMI; 
BOOLEAN PROCEDURE DBDELETE(DIRECTION,STRUCTURE,CONDITION); 

STRING DIRECTION, STRUCTURE, CONDITION; 
LIBRARY DMI (ACTUALNAME="ALGOLDELETE"); 

%Invoking entry point 

RSLT:=DBDELETE(FIRST_l,DATA_SET_NAME,CONDITION_l); 
IF RSLT 

THEN EXCEPTIONHANDLER; 

8600 0155-000 3-59 



Deleting Data Records (cont.) 

3-60 

COBOl74 or COBOl85 Program Fragment 

Note: In the following example, the variable RESULT is declared as 
a COMP item, making this example a COBOL74 or COB0L85 
program fragment. If RESULT were declared as a COMP-2 item, 
this fragment could be used in a COBOL program. 

***Declaring variables 

01 FIRST-1 
01 DATA-SET-NAME 
01 CONDITION-I 
01 RESULT 

***Invoking entry point 

PIC X (5) VALUE IS II FIRST II • 
PIC X (17) VALUE IS II EMPII. 
PIC X(9) VALUE IS "EMP-NO=IIII. 
PIC 9(1) COMP VALUE IS 0. 

CALL IIDBDELETE OF DMINTERPRETERII 
USING FIRST-I, DATA-SET-NAME, CONDITION-I 
GIVING RESULT. 

FORTRAN77 Program Fragment 

***Declaring library entry point 

LOGICAL FUNCTION DBDEL (STR,ITEM,WHERE) 
CHARACTER STR, ITEM, WHERE 
IN LIBRARY DMI (ACTUALNAME = IIFORTRAN77DELETEII ) 

END 

***Setting variables to initial values 

CHARACTER FIRST 
* DSNAME· 
* COND 

*10 
*4 
*9 

***Declaring local variables 

LOGICAL RSLT 

***Invoking entry point 

/IIFIRSTII / 
/IiEMp lI

/ 

/IiEMP-NO=Il li
/ 

RSlT = DBDEL(FIRST,DSNAME,COND) 
IF (RSLT) CALL EXCEPT 

8600 0155-000 



Re-creating Records 

Re-creating Records 
In existing records, if an item is not required, you can change the value of the item by 
finding and locking the record, moving data from the application program directly into 
the item, and 'storing the record back in the database. Any item in the original record 
that is not specifically changed remains the same. 

However, if a required item is part of a set in which duplicates are not allowed or if the 
DASDL KEYCHANGEOK option is not set, you must reconstruct the entire record 
and specifically enter the values for all modified items. To modify a required item, your 
program must do the following: 

1. Delete the original record. 

2. Immediately re-create the record format. 

3. Use the DBPUT data transfer entry points to place values into the re-created 
record. (See Section 4, "Transferring Data," for details of DB PUT entry points.) 
Any item that is not specifically changed remains as it was in the original (deleted) 
record. 

4. Store the newly re-created record in the database while the database is in 
transaction state. 

The re-create operation allows the program. to access the user work area in which a 
previously deleted record image resides and to reuse the record. Re-creating can be done 
either in or out of transaction state. However, since a record can be deleted and stored 
only in transaction state, re-creating records in transaction state is more efficient. 

Caution· 

When you delete a record, an image of the record format and values remains 
in the user work area. The re-create operation uses this image to re-create the 
record. If your program performs any operation that affects the user work area 
after the deletion operation and before the re-create operation, you will not be 
able to re-create the record. 

Passing Par8;lDeters 

The standard entry point used to re-create a record has two required parameters: the 
data set qualified name and the record type. 

Parameter 

<data set 
qualified name> 

<record type> 

8600 0155-000 

Explanation 

Identifies the data set in which the record resides. 

Determines whether the duplicated record has a variable or a fixed 
format. (The DMSII Technical Overview has a detailed explanation 
of variable and fixed-format records.) 

3-61 



Re-creating Records (cont.) 

3-62 

Table 3-17 gives the exported names of the entry points, along with the parameters and 
the data type of each parameter. 

Table 3-17. Re-creating a Record 

Data Type of 
Exported Name of Entry Point Parameter Parameter 

ALGOLRECREATE <data set qualified name> STRING 

<record type> STRING 

DBRECREATE <data set qualified name> DISPLAY 

<record type> DISPLAY 

FORTRAN77 RECREATE <data set qualified name> CHARACTER 

< record type> CHARACTER 

Data Set Name 

The data set name must be unique. The following syntax diagram shows you can use up 
to 12 qualifYing parameters to uniquely identify the data set: 

<data set qualified name> 

-<name> 

tF~§j +-- /12\ 
. -<name 

The variable element of the data set name is explained as follows: 

Element 

<data set 
qualified name>, 

Explanation 

Identifies the data set in which the existing record resides. 

The name can consist of from 1 to 17 letters, digits, and-depending on 
the language-either underscores C) or hyphens (-). The first character 
must be a letter. The last character must be either a letter or a digit. 

For example, if your program accesses two databases (DB1 and DB2) and each database 
has a data set named CLASS, you must qualify the data set name by naming the 
database. 

8600 0155--000 



Re-creating Records (cont.) 

Record Type 

Use the following syntax to identify the record type: 

< record type> 

- II -ei nteger> II 

blank> ;J 
empty string 

The variable elements of the record type parameter are explained as follows: 

Element Explanation 

<integer> Creates a variable-format record. An integer is a whole number 
(0123456789) that consists of from 1 to 12 digits and whose maximum 
value can be 549755813887. 

blank 

empty string 

A variable format consists of two parts: a fixed part (header) and a 
variable part (trailer): 

• Entry of a nonzero integer creates both parts of a variable-format 
record. 

• Entry ofa zero (0) creates only the fixed part of a variable-format 
record. 

Creates a fixed-format record. 

Creates a fixed-format record. 

programming Examples 

The following program fragments re-create a fixed format record in the data set EMP. 

8600 0155-000 3-63 



Re-creating Records (cont.) 

3-64 

ALGOL Program Fragment 

%Declaring local variables 

STRING 
DATA_SET_NAME, SPACE_I; 

BOOLEAN 
RSLT; 

%Assigning values to parameters 

DATA_SET_NAME:=IIEMPII; 
SPACE_1:=1I II; 

%Declaring library entry point 

LIBRARY DMI; 
BOOLEAN PROCEDURE DBRECREATE (STRUCTURE,RECORDTYPE); 

STRING STRUCTURE, RECORDTYPE; 
LIBRARY DMI (ACTUALNAME=IIALGOLRECREATE"); 

%Invoking entry point 

RSLT:=DBRECREATE(DATA_SET_NAME,SPACE_1); 
IF RSLT 

THEN EXCEPTIONHANDLER; 

COBOl74 or COBOl85 Program Fragment 

Note: In the following example, the variable RESULT is declared as 
a COMP item, making this example a COBOL74 or COB0L85 
program fragment. If RESULT were declared as a COMP-2 item, 
this fragment could be used in a COBOL program. 

***Declaring variables 

01 DATA-SET-NAME 
01 SPACE-1 
01 RESULT 

***Invoking entry point 

PIC X(17) VALUE IS "EMp l
• 

PIC XCI) VALUE IS II ". 

PIC 9(1) COMP VALUE IS 0. 

CALL IIDBRECREATE OF DMINTERPRETERII 

USING DATA-SET-NAME, SPACE-l 
GIVING RESULT. 

8600 0155-000 



Re-creating Records (cont.) 

FORTRAN77 Program Fragment 

***Declaring library entry point 
«icomp> 
LOGICAL FUNCTION DBRCR (STR, RECTYP) 

CHARACTER STR, RECTYP 
IN LIBRARY DMI (ACTUALNAME = II FORTRAN77RECREATP) 

END 

***Setting variables to initial values 

CHARACTER DSNAME 
* SPACE 

*4 
*1 

***Declaring local variables 

LOGICAL RSLT 

***Invoking entry point 

RSLT = DBRCR(DSNAME,SPACE) 
IF (RSLT) CALL EXCEPT 

8600 0155-000 

/"EMP"/, 
/" "/ 

3-65 



Storing Records 

Storing Records 

3-66 

You must use a store operation to enter a newly created, re,.created, or modified record 
into a specified structure. The store operation also makes the appropriate entries into 
each set associated with the data set. 

Only records that have been placed into the work area of the program by a lock, create, 
re,.create, or store operation can be stored. 

Note: You can store a record in an audited database only when the program 
is in transaction state. 

Passing a Parameter 

The standard entry point used to store a record has one required parameter - the name 
of the data set or database. 

Parameter Explanation 

<structure> Identifies either the data set or the database where the record is to be 
stored. 

Table 3-18 gives the exported names of the entry points, along with the parameter and 
the data type of the parameter. 

Table 3-18. Storing Records 

Data Type of 
Exported Name of Entry Point Parameter Parameter 

ALGOLSTORE <structure> STRING 

DBSTORE <structure> DISPLAY 

FORTRAN77STORE <structure> CHARACTER 

The structure can be either a data set or a database. The following syntax diagrams 
show if the name of the data set is not unique, you can use up to 12 qualifying 
parameters to uniquely identify the data set. A database name cannot be qualified. 

<structure> 

~data set qualified name> 
'-<database name»-------' 

<data set qualified name> 

~ame>tpt~~ 
/12\ 

• --<name 

8600 0155--000 



Storing Records (cont.) 

The variable element of the structure parameter is explained as follows: 

Element 

<data set 
qualified name> 

<database 
name> 

Explanation 

Identifies the data set in which the record will be stored. The data set 
must be defined as a data set within the specified database. 

Identifies the database for which the DMINTERPRETER library was 
compiled. The stored information is stored in the global record for the 
database. 

<name> Identifies the name of the data set or database. A name can consist of 
from 1 to 17 letters, digits, and-depending on the language-either 
underscores C) or hyphens (-). The first character must be a letter. The 
last character must be either a letter or a digit. 

For example, if your program. accesses two databases (DBl and DB2) and each database 
has a data set named CLASS, you must qualify the data set name by naming the 
database. 

Programming Examples 

The following program fragments show how to store a record in a data set named EMP. 

ALGOL Program Fragment 

%Declaring local variables 

STRING 
DATA_SET_NAME; 

BOOLEAN 
RSLT; 

%Assigning values to parameters 

DATA SET NAME:="EMp l
• - - , 

%Declaring library entry point 

LIBRARY DMI; 
BOOLEAN PROCEDURE DBSTORE (STRUCTURE); 

STRING STRUCTURE; 
LIBRARY DMI (ACTUALNAME="ALGOLSTORE"); 

%Invoking entry point 

RSLT:=DBSTORE(DATA SET NAME); 
IF RSLT 

THEN EXCEPTIONHANDLER; 

8600 0155-000 3-67 



Storing Records (cont.) 

3-68 

COBOL74 or COBOl85 Program Fragment 

Note: In the following example, the variable RESULT is declared as 
a COMP item, making this example a COBOL74 or COB0L85 
program fragment. If RESULT were declared as a COMP-2 item, 
this fragment could be used in a COBOL program. 

***Declaring variables 

01 DATA-SET-NAME 
01 RESULT 

PIC X(l7) VALUE IS "EMp lI
• 

PIC 9(1) COMP VALUE IS 0. 

***Invoking entry point 

CALL "DBSTORE OF DMINTERPRETER" 
USING DATA-SET-NAME 
GIVING RESULT. 

FORTRAN77 Program Fragment 

***Declaring library entry point 

LOGICAL FUNCTION DBSTORE (STR) 
CHARACTER STR 
IN LIBRARY DMI (ACTUALNAME = II FORTRAN77STORE II

) 

END 

***Setting variables to initial values 

CHARACTER DSNAME *4 

***Declaring local variables 

LOGICAL RSLT 

***Invoking entry point 

RSLT = DBSTORE(DSNAME) 
IF (RSLT) CALL EXCEPT 

/"EMP"/ 

8600 0155-000 



End Transaction - Leaving Transaction State 

End Transaction - Leaving Transaction State 
When transactions are completed, the end transaction operation takes the audited 
database out of transaction state and placed the database a protected state. In the 
protected state, no update activity can be performed. 

Note: DMSII ignores invocations to begin or end transaction state for 
unaudited databases. 

Passing a Parameter 

The standard entry point used to leave transaction state has one required 
parameter - the audit syncpoint parameter. 

Parameter 

<auditsync> 

Explanation 

Specifies whether an image of the current restart data set is to be 
audited and can force a syncpoint. 

The restart data set is used for restart routines. A syncpoint minimizes 
application recovery time by controlling how often the database is forced 
to be synchronized with the audit trail. (Consult the DMSII Technical 
Overview, the DMSII DASDL Reference Manual, and the 
DMSII Application Programming Guide for details about restart 
data sets and syncpoints.) -

Table 3-19 gives the exported names of the entry points, along with the parameter and. 
the data type of the parameter. 

Table 3-19. End Transaction-Leaving Transaction State 

Data Type of 
Exported Name of Entry Point Parameter Parameter 

ALGOLENDTRANSACTION <auditsync> STRING 

DBENDTRANSACTION <auditsync> DISPLAY 

FORTRAN77ENDTRANSACTION <auditsync> CHARACTER 

Use the following syntax to end transaction state: 

< auditsync > 

-<audi t> [ OJ 
SYNC 

<audit> 

t AUDIT :;-j 
NOAUDIT 

8600 0155-000 3-69 



End Transaction - Leaving Transaction Stat~ (cont.) 

3-70 

The elements of the audit syncpoint parameter are explained as follows: 

Element Explanation 

(Default) NOAUDIT assumed. 

Audits an image of the current restart data set record. 

No auditing occurs. 

empty or blanks 

AUDIT 

NOAUDIT 

SYNC Forces a syncpoint after the Jransaction is successfully completed. 

Use the SYNC option in an end transaction operation to override the syncpoint option 
set in the DASDL description of the database. The end transaction operation should be 
immediately followed by recovery code~ 

You can use the SYNC option with either the AUDIT or NOAUDIT option; both AUDIT 
SYNC and NOAUDIT SYNC are valid. 

Programming Examples 

The following program fragments cause a program to exit transaction state with the 
current restart data set record being audited. In these instances, your program must set 
a variable to AUDIT or AUDIT SYNC before invoking the entry point. 

ALGOL Program Fragment 

%Declaring local variables 

STRING 
P_AUDIT; 

BOOLEAN 
RSLT; 

%Assigning values to parameters 

P_AUDIT:="AUDIT"; 

%Declaring library entry point 

LIBRARY DMI; 
BOOLEAN PROCEDURE DBENDTRANSACTION (AUDITSYNC); 

STRING AUDITSYNC; 
LIBRARY DMI (ACTUALNAME="ALGOLENDTRANSACTION"); 

%Invoking entry point 

RSLT:=DBENDTRANSACTION(P_AUDIT); 
IF RSLT 

THEN EXCEPTIONHANDLER; 

8600 0155-000 



End Transaction - Leaving Transaction State (cont.) 

COBOl74 or COBOl85 Program Fragment 

Note: In the following example, the variable RESULT is declared as 
a COMP item, making this example a COBOL74 or COB0L85 
program fragment. If RESULT were declared as a COMP-2 item, 
this fragment could be used in a COBOL program. 

***Declaring variables 

01 P-AUDIT 
01 RESULT 

PIC XeS) VALUE IS "AUDIT". 
PIC 9(1) COMP VALUE IS 0. 

***Invoking entry point 

CALL "DBENDTRANSACTION OF DMINTERPRETER" 
USING P-AUDIT 
GIVING RESULT. 

FORTRAN77 Program Fragment 

***Declaring library entry point 

LOGICAL 'FUNCTION DBETR (AUDIT) 
CHARACTER AUDIT 
IN LIBRARY DMI' (ACTUALNAME = "FORTRAN77ENDTRANSACTION") 

END 

***Setting variables to initial values 

CHARACTER AUDIT \*10 

***Declaring local variables 

LOGICAL RSLT 

***Invoking entry point 

RSLT = DBETR(AUDIT) 
IF (RSlT) CALL EXCEPT 

8600 015&-000 

/"AUDIT"/ 

. 3-71 



Closing a DMSII Database 

Closing a DMSII Database 

3-72 

Mter closing a DMSn database, your application program can no longer access any of the 
files associated with the database. Although the database is implicitly closed when the 
library execution is complete, explicitly closing the database is a recovery safeguard. 

Note: Do not close a database when the database is in transaction state. 
The transaction state should be explicitly exited before the database is 
closed. See "End Transaction - Leaving Transaction State" in this 
section. 

Passing Parameters 

The standard entry point that explicitly closes the database has no required parameters. 
Table 3-20 gives the exported names of the entry points. 

Table 3-20. Export Names of Entry Points Used to Close a Database 

Programming Examples 

Export Names 

ALGOLCLOSE 

DBCLOSE 

FORTRAN77CLOSE 

The following program fragments close a database. 

ALGOL Program Fragment 

Note: You do not need to assign ALGOLCLOSE values to parameters in 
order to use the ALGOLCLOSE entry point. 

%Declaring local variables 

BOOLEAN 
RSLT; 

%Declaring library entry point 

LIBRARY DMI; 
BOOLEAN PROCEDURE DBCLOSE; 

LIBRARY DMI (ACTUALNAME="ALGOLCLOSE"); 

%Invoking entry point 

RSLT:=DBCLOSE; 
IF RSLT 

THEN EXCEPTIONHANDLER; 

8600 0155-000 



Closing a DMSII Database (cont.) 

COBOl74 or COBOl85 Program Fragment 

Note: In the following example, the variable RESULT is declared as 
a COMP item, making this example a COBOL74 or COB0L85 
program fragment. If RESULT were declared as a COMP-2 item, 
this fragment could be used in a COBOL program. 

***Declaring variables 

01 RESULT PIC 9(1) COMP VALUE IS 0. 

***Invoking entry point 

CALL "DBCLOSE OF DMINTERPRETER" 
GIVING RESULT. 

FORTRAN77 Program Fragment 

Note: You do not need to set FORTRAN77CLOSE variables to initial 
values in order to use the FORTRAN77CLOSE entry point. 

***Declaring library entry point 

LOGICAL FUNCTION DBCLOSE() 
IN LIBRARY DMI (ACTUALNAME = II FORTRAN77CLOSE") 

END 

***Declaring local variables 

LOGICAL RSLT 

***Invoking entry point 

RSLT = DBCLOSE( ) 
IF (RSLT) CALL EXCEPT 

8600 0155-000 3-73 



Executing Language Extensions 

Executing Language Extensions 
You can execute language extensions through a standard entry point. The entry point 
allows flexible, run-time definition ofDMSn operations and provides users with an easy 
transition from DMSn language extensions. However, because the input to this entry 
point must be completely parsed, the entry point runs at higher processor cost. 

Passing a Parameter 

As seen in Table 3-21, there is one required parameter - the language extension 
statement. This parameter must evaluate to a complete statement. Exception actions 
and. input and output mapping are not allowed. 

Note: FORTRAN77 does not support the DMSII language extensions 
interface. However, you can use the FORTRAN77VERB entry point. 

Table 3-21. Executing Language Extensions 

Exported Nam~ of Entry 
Point Parameter 

ALGOLVERS < language extension statement> 

DSVERS <language extension statement> 

FORTRAN77VERB < language extension statement> 

The following DMsn user language constructs can be used as the required parameter: 

Database statement 

Create statement 

Transaction statement 

Record statement 

Set statement 

Search statement 

Status statement 

Brief descriptions of these statements are included here. If your application language 
supports the DMSn language extensions, consult the appropriate language-specific 
reference manual for more information. 

Database Statement 

A database statement performs one of two functions: 

• Closes the database 

• Opens the database for either inquiry or inquiry and update 

3-74 86000155-000 



Executing Language Extensions (cont.) 

<database statement> 

-,- CLOSE 
L OPEN E INQlJIRvJ 

UPDATE 

Create Statement 

A create statement initializes the user work area for a new or re-created image of a data 
set record. 

<create statement> 

-,- CREATE --,-<data set> 
L RECREATE --.J L ( -<integer>- ) .J 

Transaction Statement 

A transaction statement causes a program to either enter or exit transaction state, with 
or without auditing an image of the current restart data set and forcing a syncpoint. If a 
name is specified, it is the restart data set. 

<transaction statement> 

BEGINTRANSACTION 1<audit 
<name>------; 

<name>-<audi t>-------1 
ENDTRANSACTION 1:audit 

<name 
name>-<audit 

BEGIN-TRANSACTION· [: ~ <name 
NO-AUDIT 
AUDIT 

END-TRANSACTION [: ~ <name 
NO-AUDIT 
AUDIT 

Record Statement 

SYNC 

A record statement performs one of two functions: 

• Stores a new or modified record in a specified structure 

• Unlocks a record residing in a specified structure 

<record statement> 

-,- STORE -.-<structure> 
L FREE --.J 

Set Statement 

A set statement sets the current path of a specified structure to the start or end of the 
structure or, if it is an index set, to a particular data set. 

8600 0155-000 3-75 



Executing Language Extensions (cont.) 

<set statement> 

- SET -<structure>- TO -<target>>----------------i 

Search Statement 

A search statement finds a selected record in a specified structure and locks the record 
for modification or deletion. 

<search statement> 

1 
FIND --r-..------r--<structure 
LOCK 
MODIFY 
DELETE 

WHERE ~<expression 
AT ---I 

Status Statement 

A status statement allows the user to find out whether a prior database operation was 
successful. 

<status statement> 

- DMSTATUS -----------------------1 

Notes: 

• The COBOL, COBOL74, and COBOL85 languages cannot use 
the DMSTATUS form of a calion DB VERB. These languages 
cannot pass an exception parameter. Instead, use a direct call 
on the DBSTATUS entry point. 

• The ALGOL and FORTRAN77 languages, when using the 
status statement construct, pass only the string DMSTATUS as 
a parameter. In all other cases, ALGOL programs use complete 
user language interface statements. 

3-76 86000155-000 



Executing Language Extensions (cont.) 

Programming Examples 

The following program fragments show how the entry point can be called to execute the 
set, search, and status language extensions. 

ALGOL Program Fragment 

Note: You do not need to declare local variables or assign values to 
parameters that pertain to the DBVERB when you use the DBVERB 
to execute set, search status language extensions in ALGOL. 

%Declaring library entry point 

LIBRARY DMI; 
BOOLEAN PROCEDURE DBVERB(HOSTSTATEMENT); 

STRING HOSTSTATEMENT; 
LIBRARY DMI (ACTUALNAME="ALGOLVERB II

); 

%Invoking entry point 

% USING DBVERB ON A SET STATEMENT 

RSLT:=DBVERB(IISET EMP TO BEGINNING II ); 
IF RSLT 

THEN EXCEPTIONHANDLER; 

% USING DBVERB ON A SEARCH STATEMENT 

RSLT:=DBVERB("FIND FIRST EMP AT EMP-NO II ); 
IF RSLT 

THEN EXCEPTIONHANOLER; 

% USING OBVERB ON A STATUS STATEMENT 

8600 0155-000 

OBVERB(IIFINO PRIOR EMp lI
); 

RSLT:=OBVERB(1I0MSTATUS II ); 

3-77 



Executing Language Extensions (cont.) 

3-78 

COBOL, COBOl74, or COBOla5 Program Fragment 

***Declaring variables 

01 DATA-REQUEST PIC X(40) VALUE IS SPACES. 

***Invoking entry point 

** 
** USING DBVERB ON A SET STATEMENT 
** 

MOVE "SET EMP TO BEGINNING" TO DATA-REQUEST. 
CALL "DBVERB OF DMINTERPRETERII 

USING DATA-REQUEST 
GIVING RESULT. 

IF RESULT = 1 
PERFORM EXCEPTION-HANDLER. 

** 
** USING DBVERB ON A SEARCH STATEMENT 
** 

MOVE "FIND FIRST EMP AT EMP-NO=lll1 TO DATA-REQUEST. 
CALL "DBVERB OF DMINTERPRETER" 

USING DATA-REQUEST 
GIVING RESULT. 

IF RESULT = 1 
PERFORM EXCEPTION-HANDLER. 

8600 0155-000 



Executing Language Extensions (cont.) 

FORTRAN77 Program Fragment 

Note: You do not have to set any variables that pertain to the DBVERB to 
initial values when you use the DBVERB to execute set, search status 
language extensions in FORTRAN77. 

***Oeclaring library entry point 

LOGICAL FUNCTION oeVERB (STMT) 
CHARACTER STMT 
IN LIBRARY OMI (ACTUALNAME = II FORTRAN77VERB") 

END 

***Oeclaring local variables 

LOGICAL RSLT 

***Invoking entry point 

8600 0155-000 

* USING OBVERB ON A SET STATEMENT 

RSLT = OBVERB("SET EMP TO BEGINNING") 
. IF (RSLT) CALL EXCEPT 

* USING OBVERB ON A SEARCH STATEMENT 

RSLT = OBVERB("FINO FIRST EMP AT EMP-NO=ll") 
IF (RSLT) CALL EXCEPT 

* USING OBVERB ON A STATUS STATEMENT 

RSLT = OBVERB("SET EMP TO BEGINNING") 
IF (RSLT) CALL EXCEPT 
RSLT = OBVERB(" FIND PRIOR EMp lI

) 

RSLT = DBVERB("DMSTATUS") 
CALL DBEXCN(RSLT,MSG) 
CALL DBEXCT(RSLT,MSG) 

3-79 



3-80 8600 0155-000 



Section 4 
Transferring Data 

With the DMSn language extensions interface, any program written in a supported 
COBOL language can directly access data in the database. All other languages must use 
input and output mapping statements. Direct access is available because the COBOL 
compilers can access the DASDL database description during program compilation 
and can enforce data-type checking. In contrast, any compiler in which formal data 
structures are not directly supported cannot enforce data-type checking. 

With the interpretive interface, direct access to data is not possible through any 
language compiler for these reasons: 

• The compiler might not be able to enforce data-type checking in all situations. 

• The format of a user work area might not be known during program compilation. 

Instead of accessing the data directly, the interpretive interface uses data transfer entry 
points, provided through the DMINTERPRETER library, to access and move data The 
DBGET and DBPUT data transfer entry points move data into and out of a user work 
area. 

Each data transfer task., with its corresponding entry points, are listed in Table 4-1. Use 
the heading for each listed data transfer task to locate the pages that detail the entry 
point. For example, a description of the data transfer entry points ALGOLGETSTRING, 
DBGETDISPLAY, and FORTRAN77GETCHARACTER is found under, "Moving 
Character Strings to Variables." The tasks are grouped; all DBGET data entry points 
are presented before all DBPUT data entry points. Constructing data transfers during 
program execution is explained as the last data entry point. General guidelines for using 
the data entry points precede the task "descriptions. 

Table 4-1. Data Entry Points to the DMINTERPRETER Library by Task 

Task Entry Points 

Moving character strings to variables ALGOLGETSTRING 

DBGETDISPLAY 

FORTRAN77GETCHARACTER 

Moving Kanji alpha character strings to variables ALGOLGETKANJI 

DBGETKANJI 

FORTRAN77GETKANJI 

continued 

8600 0155-000 4-1 



Transferring Data 

Table 4-1. Data Entry Points to the DMINTERPRETER Library by Task (cent.) 

Task Entry Points 

Moving numeric values to variables ALGOLGETREAL 

DBGETREAL 

FORTRAN77GETREAL 

Moving double-precision values to variables ALGOLGETDOUBLE 

DBGETDOUBLE 

FORTRAN77GETDOUBLE 

Retrieving Boolean values ALGOLG ETBOOLEAN 

DBGETBOOLEAN 

FORTRAN77GETLOGICAL 

Placing strings into data items ALGOLPUTSTRING 

DBPUTDISPLA Y 

FORTRAN77PUTCHARACTER 

Placing strings into Kanji alpha items ALGOLPUTKANJI 

DBPUTKANJI 

FORTRAN77PUTKANJI 

Placing numeric values into data items ALGOLPUTREAL 

DBPUTREAL 

FORTRAN77PUTCHARACTER 

Placing double-precision values into data items ALGOLPUTDOUBLE 

DBPUTDOUBLE 

FORTRAN77PUTDOUBLE 

Setting data items to Boolean values ALGOLPUTBOOLEAN 

DBPUTBOOLEAN 

FORTRAN77PUTLOGICAL 

Setting data items to a null value ALGOLPUTNUL 

DBPUTNULL 

FORTRAN77PUTNULL 

Constructing data transfers during program execution ALGOLDATA 

DBDATA 

FO RTRAN 77 DATA 

4-2 8600 0155-000 



Tra nsferri ng Data 

The discussion of each task includes the following: 

• A brief explanation of the function of the entry point 

• Syntax diagrams and semantics that describe required parameters 

• Program fragments that illustrate 

Declaring variables for the entry points 

Invoking the entry point 

Returning results from the DMINTERPRETER library 

Unless specifically noted, COBOL, COBOL74, and COBOL85 have the same 
requirements. 

Guidelines for Using Data Transfer Entry Points 
DBGET and DBPUT data transfer entry points operate on data in the following manner: 

• DBGET entry points move data from the user's work area to user-declared 
variables. The DBGETentry points return an exception if the declared variable is 
too short to hold the specified data item. 

• DBPUT entry points move data from user-declared variables to user work areas. 
The DBPUT entry points return an exception if the value to be put into the database 
does not fit into the specified data item. 

As illustrated in Figure 4-1, modifying the database with the interpretive interface 
resembles the following three-step process: 

1. Prepare the user work area in one of two ways: 

• Use a find, delete, lock or secure operation to retrieve and move data from an 
existing record to the user work area. 

• Use a create or re-create operation to reserve space in the user work area. 

2. Use the DBPUT and DBGET data tranSfer entry points to transfer values between 
the program and the work area. 

3. Use the store operation to transfer data from the user work area back to the 
database. 

8600 0155-000 4-3 



Transferring Data 

4-4 

STEP 1 

STEP 2 

STEP 3 

~DMSII 
~Database 

DELETE 
FIND 
LOAD 

OMS II 
User Work Area 

DMSII 
User Work Area 

GET 
1 r 

User-Declared 
Variables 

DMSII 
User Work Area 

STORE 

PUT 

~DMSII 
gDatabase 

Figure 4-1. Three Steps in Transferring Data 

The DMINTERPRETER library checks the parameters of data transfer entry points to 
ensure that the requested operation is compatible with the DASDL database description. 
For example, items declared in the DASDL description with an OCCURS clause must be 
subscripted. 

8600 0155-000 



Tra nsferring Data 

For more information read the following sections: 

• Section 2, "Accessing the Interpretive Interface," details how each language accesses 
the interpretive interface and how each language invokes an entry point. 

• Section 3, "Manipulating the Database," explains how to find, lock, create, re-create, 
and store records. 

• Section 5, "Handling Exceptions," contains detailed information on exception 
handling. 

• Appendix B, "DMSII Exceptions and Errors," contains the specific messages for the 
DBGET and DBPUT exceptions. 

8600 0155-000 4-5 



Moving Character Strings to Variables 

Moving Character Strings to Variables 

4-6 

You can move the content of an alpha or a group item character string to a 
program-declared variable, using a DBGET data transfer entry point. 

Passing Parameters 

The data transfer entry points that move character strings to variables have three 
required parameters: the name of the structure, the name of the item, and the name of 
the variable. 

Parameter 

<structure> 

<item name> 

<variable name> 

Explanation 

Identifies either the data set (for an alpha item) or the database (for a 
global item) in which the item is located. 

Identifies the data set item whose string value is to be moved to the 
user-declared variable. 

Identifies the user-declared variable by its name in the program. The 
variable must be able to contain a string. 

Table 4-2 gives the exported names of the entry points, as well as the parameters and 
the data type of each parameter. 

Table 4-2. Moving Character Strings to Variables 

Data Type of 
Exported Name of Entry Point Parameter Parameter 

ALGOLGETSTRING <structure> STRING 

<item name> STRING 

<variable name> STRING 

DBGETDISPLAY <structure> DISPLAY 

<item name> DISPLAY 

<variable name> DISPLAY 

FORTRAN77GETCHARACTER <structure> CHARACTER 

<item name> CHARACTER 

<variable name> CHARACTER 

Structure 

The structure can be either a data set or a database. The following syntax diagrams 
show that if the name of the data set is not unique, you can use up to 12 qualifying 
parameters to uniquely identify the data set. A database name cannot be qualified. 

8600 0155-000 



Moving Character Strings to Variables (cont.) 

<structure> 

--.-<data set qualified name> 
L<database name>>------' 

<data set qualified name> 

-<name> 

~~~~ E-- /12\ 
• -<name

The variable elements of the structure parameter are explained as follows:

Element Explanation

<data set
qualified name>

Identifies the data set in which the alpha item is located.

<database
name>

<name>

Item Name

Identifies the database in which the global data item is located.

Identifies the name of the data set or database. A name can consist of
from 1 to 17 letters, digits, and~epending on the language-either
underscores C) or hyphens (-). The first character must be a letter. The
last character must be either a letter or a digit.

The following syntax diagrams show the valid combinations of characters that can be
used to form an item name:

<item name>

~<underscore name>-,
L<hyphen name>------1 t r~ --, j

[-L-<inte~er>-L-]

(~ege;;l)

<underscore name>

-<letter'>-~--------------------------------~----------~

<hyphen name>

/15\ --eletter
d i gi t-------I
underscore

-<letter'~r------------------------------r--~----------~

8600 0155-000

/15\ --el etter
digit
hyphen

4-7

Moving Character Strings to Variables (cant.)

4-8

The variable elements of an item name are explained as follows:

Element

<underscore
name>

< hyphen name>

<integer>

Variable Name

Explanation

A string of from 1 to 17 letters, digits, and underscores C), starting with
a letter and ending with either a letter or a digit.

A string of from 1 to 17 letters, digits, and hyphens (-), starting with a
letter and ending with either a letter or a digit.

A subscript for an OCCURS clause item. An integer is a whole number
(0123456789) that consists of from 1 to 12 digits and that has a
maximum value of 549755813887.

Each language has a different way of identifying the variable that contains or evaluates
to the string. Consult the appropriate language reference manual for more information
on variables that can contain a string.

Program Examples

The following program fragments use data transfer entry points to move character
strings from the user work area to variables declared in the application program.

ALGOL Program Fragment

In the ALGOL example, the data set name (the structure) is initialized as EMP at the
beginning of the program. The item name is set to EMP _ FNAME before the entry point
is invoked. The variable is set to EXPR_ 3 in body of the program.

86000155-000

Moving Character Strings to Variables (cont.)

%Declaring local variables

STRING
DATA_SET_NAME, ITEM_NAME, EXPR_3;

BOOLEAN
RSLT;

%Assigning values to parameters

%Declaring library entry point

LIBRARY DMI;
BOOLEAN PROCEDURE DBGETSTRING(STRUCTURE,ITEM,VARIABLE);

STRING STRUCTURE, ITEM;
REAL VARIABLE;
LIBRARY DMI (ACTUALNAME="ALGOLGETSTRING");

%Invoking entry point

ITEM_NAME:="EMP_FNAME";
RSLT:=DBGETSTRING(DATA_SET_NAME,ITEM_NAME,EXPR_3);
IF RSLT

THEN EXCEPTIONHANDLER;

COBOL74 or COBOL85 Program Fragment

In the following example, the structure is declared as EMP at the beginning of the
program. The item name is set to EMP-FNAME before the entry point is invoked. The
variable is set to V AR-3 in body of the program.

Note: In this example, the variable RESULT is declared as a'COMP item,
making this example a COBOL74 or COB0L85 program fragment.
If RESULT were declared as a COMP-2 item, this fragment could be
used in a COBOL program.

***Declaring variables

01 DATA-SET-NAME
01 ITEM-NAME
01 VAR-3
01 RESULT

***Invoking entry point

PIC X(17) VALUE IS "EMP".
PIC X(17) VALUE IS SPACES.
PIC X(10) VALUE IS SPACES.
PIC 9(1) COMP VALUE IS 0.

MOVE II EMP-FNAME" TO ITEM-NAME.
CALL "DBGETDISPLAY OF DMINTERPRETER"

8600 0155-000

USING DATA-SET-NAME, ITEM-NAME, VAR-3
GIVING RESULT.

4-9

Moving Character Strings to Variables (cont.)

4-10

FORTRAN77 Program Fragment

In this FORTRAN77 example, the structure is set to EMP through the,variable
DSNAME. The item name is assigned before the entry point is invoked. The variable is
set to EXPR3 in the body of the program.

***Declaring library entry point

LOGICAL FUNCTION DBGETC (STR, ITEM, VAR)
CHARACTER STR, ITEM, VAR
IN LIBRARY DM! (ACTUALNAME = II FORTRAN77GETCHARACTER II)

END

***Setting variables to 'initial values

CHARACTER DSNAME
* ITMNAM
* EXPR3

*4
*13
*22

***Declaring local variables

LOGICAL RSLT

***Invoking entry point

ITMNAM = IIEMP-FNAMEII

/IEMp li
/ ,

RSLT = DBGETC(DSNAME,ITMNAM,EXPR3)
IF (RSLT) CALL EXCEPT

8600 0155-000

Moving Kanji Alpha Character Strings to Variables

Moving Kanji Alpha Character Strings to Variables
You can move the content of a Kanji alpha character string to a program-declared
variable, using a GETKANJI data transfer entry point.

Passing Parameters

The GETKANJI entry points have three required parameters: the name of the
structure, the name of the item, and the name of the variable.

Parameter

<structure>

<item name>

<variable name>

Explanation

Identifies the data set or the database in which the item is located.

Identifies the data set item whose Kanji string value is to be moved to
the user-declared variable. .

Identifies the user-declared variable by its name in the program. The
variable must be able to contain a Kanji string.

Table 4-3 gives the exported names of the entry points, as well as the parameters and
the data type of each parameter.

Table ~3. Moving Kanji Character Strings to Variables

Data Type of
Exported Name of Entry Point Parameter Parameter

ALGOLGETKANJI <structure> STRING

<item name> STRING

<variable name> STRING

DBGETKANJI <structure> DISPLAY

<item name> DISPLAY

<variable name> DISPLAY or
KANJI

FORTRAN77GETKANJI <structure> CHARACTER

<item name> CHARACTER

<variable name> CHARACTER

Structure

The structure can be either a data set or a database. The following syntax diagrams
show that if the name of the data set is not unique, you can use up to 12 qualifying
parameters to uniquely identify the data set. A database name cannot be qualified.

8600 0155-000 4-11

Moving Kanji Alpha Character Strings to Variables (cont.)

4-12

<structure>

~<data set qualified name>
'-<database name>>-----.-J

<data set qualified name>

-<name>

W~~~· fo- /12\
~ -<name

The variable elements of the structure parameter are explained as follows:

Element Explanation

<data set
qualified name>

Identifies the data set that is to be accessed at run time.

<database
name>

<name>

Item Name

Identifies the database for which the DMINTERPRETER library was
compiled.

Identifies the name of the data set or database. A name can consist of
from 1 to 17 letters, digits, and-depending on the Janguage-either
underscores (J or hyphens (-). The first character must be a Jetter. The
last character must be either a letter or a digit.

The following syntax diagrams show the valid combinations of characters that can be
used to form an item name:

<item name>

---r<underscore name>---,
L<hyphen name>-----1 t r+- ~ j

[~e?er>-L-]

(-Cintege~)

<underscore name>

--<letter·~~------------------------------~----------~

/15\ 1:1etter
di gi t.>----I
underscore

<hyphen name>

-<1 etter:>-,,......---------------------------~----------__I
1---------------, -<1 etter

/15\ 1:1etter
digit
hyphen

digit

8600 0155-000

Moving Kanji Alpha Character Strings to Variables (cont.)

The variable elements of a name are explained as follows:

Element

< underscore
name>

< hyphen name>

<integer>

Variable Name

Explanation

A string of from 1 to 17 letters, digits, and underscores (J, starting with
a letter and ending with either a letter or a digit.

A string of from 1 to 17 letters, digits, and hyphens (-), starting with a
letter and ending with either a letter or a digit.

A subscript for an OCCURS clause item. An integer is a whole number
(0123456789) that consists of from 1 to 12 digits and that has a
maximum value of 549755813887.

Each language has a different way of identifying the variable that contains or evaluates
to a Kanji string. Consult the appropriate language reference manual for more
information on variables that can contain a string.

Note: COBOL does not support Kanji characters. In COBOL74 and
COBOL85, where Kanji is supported, the variable can be defined as
PIC X(2n) or PIC X(n) USAGE IS KANJI.

Program Examples

The following program fragments use GETKANJI data transfer entry points to move
Kanji items from the user work area to variables declared in the application program.

ALGOL Program Fragment

In the ALGOL example, the structure is EMP, the item name is EMP _ KNAME, and the
variable is EXPR 3.

8600 0155-000 4-13

Moving Kanji Alpha Character Strings to Variables (cont.)

4-14

%Declaring local variables

STRING
DATA_SET_NAME, ITEM_NAME, EXPR_3;

BOOLEAN
RSLT;

%Assigning values to parameters

DATA SET NAME:=IIEMp lI
• - - ,

%Declaring library entry point

LIBRARY DMI;
BOOLEAN PROCEDURE DBGETKANJI(STRUCTURE,ITEM,VARIABLE);

STRING STRUCTURE, ITEM;
REAL VARIABLE;
LIBRARY DMI (ACTUALNAME=IIALGOLGETKANJP);

%Invoking entry point

ITEM NAME:=IIEMP KNAME II • - -' RSLT:=DBGETKANJI(DATA_SET_NAME,ITEM_NAME,EXPR_3);
IF RSLT

THEN EXCEPTIONHANDLER;

COBOl74 or COBOl85 Program Fragment

In this example, the structure is EMP, the item name is EMP-KNAME, and the variable
is V AR-I. The variable RESULT is declared as a COMP item, making this example a
COBOL74 or COBOL85 program fragment.

Note: COBOL does not support Kanji characters.

***Declaring variables.

01 DATA-SET-NAME
01 ITEM-NAME
01 VAR-l

01 RESULT

***Invoking entry point

PIC X(17) VALUE IS IIEMp lI
•

PIC X(17) VALUE IS SPACES.
PIC X(10) USAGE IS KANJI.

VALUE IS SPACES.
PIC 9(1) COMP VALUE IS 0.

MOVE "EMP-KNAME II TO ITEM-NAME.
CALL "DBGETKANJI OF DMINTERPRETER"

USING DATA-SET-NAME, ITEM-NAME, VAR-l
GIVING RESULT.

8600 0155-000

Moving Kanji Alpha Character Strings to Variables (cont.)

FORTRAN77 Program Fragment

In this FORTRAN77 example, the structure is EMF, the item name is EMP-KNAME,
and the variable is EXPR3.

***Declaring library entry point

LOGICAL FUNCTION DBGETK (STR, ITEM, VAR)
CHARACTER STR, ITEM, VAR
IN LIBRARY DMI (ACTUALNAME = IFORTRAN77GETKANJI")

END

***Setting variables to initial values

CHARACTER DSNAME
* ITMNAM
* EXPR3

*4
*13
*22

***Declaring local variables

LOGICAL RSLT

***Invoking entry point

ITMNAM = IIEMP-KNAME"
RSLT = DBGETK(DSNAME,ITMNAM,EXPR3)
IF (RSLT) CALL EXCEPT

8600 0155-000 4-15

Moving Numeric Values to Variables

Moving Numeric Values to Variables

4-16

You can transfer the numeric value of a number, real, field, count, record-type, or
population item to a program-declared variable, using a GETREAL data transfer entry
point.

Passing Parameters

The GETREAL entry points have three required parameters: the name of the structure,
the name of the item, and the name of the variable.

Parameter Explanation

<structure>

<item name>

. Identifies the data set or the database in which the item is located.

Identifies the data set item whose numeric value is moved to the
user-declared variable.

<variable name> Identifies the user-declared variable by its name in the program. The
variable must be able to contain a real value.

Notes:

• If the declared variable is too small to hold the specified
data item, the variable is set to HIGH-VALUE (the largest
integer that can be represented) and an appropriate exception
is returned. Consult the DMSII Teclmica1 Overview for an
explanation of HIGH-VALUE. Read Appendix B, "DMSII
Exceptions and Errors, " for more information on exceptions.

• If the numeric items that are too large to be transferred by
ALGOLGETREAL, DBGETREAL, or FORTRAN77GETREAL,
use the ALGOLGETDOUBLE, DBGETREAL, or
FORTRAN77GETDOUBLE entry point, respectively.

Table 4-4 gives the exported names of the entry points, as well as the parameters and
the data type of each parameter.

8600 0155-000

Moving Numeric Values to Variables (cont.)

Table 4-4. Moving Numeric Values to Variables

Exported Name of
Entry Point Parameter Data Type of Parameter

AlGOlG ETREAl <structure> STRING

<item name> STRING

<variable name> REAL

DBGETREAl <structure> DISPLAY

<item name> DISPLAY

<variable name> COMP-4 (COBOL)

REAL (COBOl74 or COBOl85)

FORTRAN77GETREAl <structure> CHARACTER

<item name> CHARACTER

<variable name> REAL

Structure

The structure can be either a data set or a database. The following syntax diagrams
show that if the name of the data set is not unique, you can use up to 12 qualifying
parameters to uniquely identify the data set. A database name cannot be qualified.

<structure>

~<data set qualified name>
L<database name>:>------'

<data set qualified name>

-<name> ~o: ~~~~:
/12\

• -<name

The variables elements of the structure parameter are explained as follows:

Element

<data set
qualified name>

<database
name>

Explanation

Identifies the data set that is to be accessed at run time.

Identifies the database for which the DMINTERPRETER library was
compiled.

continued

8600 0155-000 4-17

Moving Numeric Values to Variables (cont.)

4-18

continued

Element

<name>

Item Name

Explanation

Identifies the name of the data set or database. A name can consist of
from 1 to 17 letters, digits, and-depending on the language-either
underscores C) or hyphens (-). The first character must be a letter. The
last character must be either a letter or a digit.

The following syntax diagrams show the valid combinations of characters that can be
used to form an item name:

<item name>

-,--<underscore name>--,
L<hyphen name>-----1 t rE-,-- ~ j

[~<inte?er>-L-]

(~intege~)

<underscore name>

--<letter~------------------------------~-----~
1-------------.-....-<1 etter

<hyphen name>

/15\ 1<letter
<di g i t:>----I
<underscore

<digit

--<1 etter~-----------------------r----------~
1-----------,-~<1 etter

/15\ 1<letter
<digit
<hyphen

<digit

The variable elements of an item name are explained as follows:,

Element

<underscore
name>

<hyphen name>

<integer>

Variable Name

Explanation

A string of from 1 to 17 letters, digits, and underscores C), starting with
a letter and ending with either a letter or a digit.

A string of from 1 to 17 letters, digits,and hyphens (-), starting with a
letter and ending with either a letter or a digit.

A subscript for an OCCURS clause item. An integer is a whole number.
(0123456789) that consists of from 1 to 12 digits and that has a
maximum value of 549755813887.

Each language has a different way of identifying the variable that contains or evaluates
to a real numeric value. Consult the appropriate language reference manual for more
information on variables that can contain a real numeric value.

8600 0155-000

Moving Numeric Values to Variables (cont.)

Note: For COBOL, the variable must be declared in the WORKING­
STORAGE section of the program as a level 77 COMP-4 item. For
COBOL74 and COB0L85, the variable must be declared as a level 77
REAL item.

Program Examples

The following program fragments use GETREAL data transfer entry points to move
numeric values from the user work area to variables declared in the application program.

ALGOL Program Fragment

In the ALGOL example, the data set is EMP, the item is ElMP _NO, and the variable is
EXPRl.

%Declaring local variables

REAL
EXPR_l;

STRING
DATA_SET_NAME, ITEM_NAME;

BOOLEAN
RSLT;

%Assigning values to parameters

%Declaring library entry point

LI BRARY DMI;
BOOLEAN PROCEDURE DBGETREAL(STRUCTURE,ITEM,VARIABLE);

STRING STRUCTURE, ITEM;
REAL VARIABLE;
LIBRARY DMI (ACTUALNAME=" ALGOLGETREAL") ;

%Invoking entry point

ITEM NAME:="EMP NO"· - -' RSLT:=DBGETREAL(DATA_SET_NAME,ITEM_NAME,EXPR_l);
IF RSLT

THEN EXCEPTIONHANDLER;

COBOl74 or COBOl85 Program Fragment

In this example, the data set is EMP, the item is EMF-NO, and the variable is V AR-2.
Since V AR-2 is dectared as a REAL item and RESULT is declared as a COMP item, this
example can be either a COBOL74 or a COBOL85 program fragment.

8600 0155-000 4-19

Moving Numeric Values to Variables (cont.)

4-20

Note: To make this a COBOL program fragment, declare the variable
VAR-2 as a COMP-4 item and the variable RESULT as a COMP-2
item.

***Declaring variables

01 DATA-SET-NAME
01 ITEM-NAME
01 VAR-2
01 RESULT

***Invoking entry point

MOVE IIEMP-NO II TO ITEM-NAME.

PIC X (17) VALUE IS "EMP".
PIC X(17) VALUE IS SPACES.
REAL.
PIC 9(1) COMP VALUE IS 0.

CALL IIDBGETREAL OF· DMINTERPRETER"
USING DATA-SET-NAME, ITEM-NAME, VAR-2
GIVING RESULT.

FORTRAN77 Program Fragment

In this FORTRAN77 example, a value for DSNAME (the structure) is initialized at the
beginning of the program; the value of ITMNAM (the item) is assigned in the body of the
program. The variable is EXPRl.

***Declaring library entry point

LOGICAL FUNCTION DBGETR (STR, ITEM, VAR)
CHARACTER STR, ITEM
REAL VAR
IN LIBRARY DMI (ACTUALNAME = II FORTRAN77GETREALII)

END

***Setting variables to initial values

CHARACTER DSNAME
* ITMNAM

REAL EXPR1

*4
*13

***Declaring local variables

LOGICAL RSL T

***Invoking entry point

ITMNAM = JlEMP-NO"
RSLT = DBGETR(DSNAME,ITMNAM,EXPRl)
IF (RSLT) CALL EXCEPT

86000155-000

Moving Double-Precision Values to Variables·

Moving Double-Precision Values to Variables
Use the GETDOUBLE data transfer entry point to move a numeric value that exceeds
the capacity of a real variable from a number, real, field, count, record-type, or population
item to a program-declared variable. (See "Moving Numeric Values to Variables" in this
section.)

Passing Parameters

The GETDOUBLE entry points have three required parameters: the name of the
structure, the name of the item, and the name of the variable.

Parameter Explanation

<structure>

<item name>

Identifies the data set or the database in which the item is located.

Identifies the data set item whose double-precision value is to be moved
to the user-declared variable.

<variable name> Identifies the user-declared variable by its name in the program. The
variable must be able to contain a double-precision value.

Note: If an exception occurs, the variable is set to HIGH-VALUE (all bits
ON), and an appropriate exception is returned. Read Appendix B,
"DMSII Exceptions and Errors," for more information on exceptions.
Consult the DMSII Technical Overview for an explanation of
HIGH-VALUE.

Table 4-5 gives the exported names of the entry points, as well as the parameters and
the data. type of each parameter.

Table 4-5. Moving Double-Precision Values'to Variables

Exported Name of
Entry Point Parameter Data Type of Parameter

ALGOLGETDOUBLE <structure> STRING

<item name> STRING

<variable name> DOUBLE

DBGETDOUBLE <structure> DISPLAY

<item name> DISPLAY

<variable name> COMP-5 (COBOL)

DOUBLE (COBOL74 or COBOL85)

FORTRAN77GETDOUBLE <structure> CHARACTER

<item name> CHARACTER

<variable name> DOUBLE PRECISION

8600 0155-000 4-21

Moving Double-Precision Values to Variables (cont.)

4-22

Structure

The structure can be either a data set or a database. The following syntax diagrams
show that if the name of the data set is not unique, you can use up to 12 qualifying
parameters to uniquely identify the data set. A database name cannot be qualified.

<structure>

~<data set qualified name>
L<database name>>------'

<data set qualified name>

-<name>

~~~~ /12\ 
. -<name 

The variable elements of the structure parameter are explained as follows: 

Element 

<data set 
qualified name> 

<database 
name> 

<name> 

Item Name 

Explanation 

Identifies the data set that is to be accessed at run time. 

Identifies the database for which the DMINTERPRETER library was 
compiled. 

Identifies the name of the data set or database. A name can consist of 
from 1 to 17 letters, digits, and-depending on the language-either 
underscores C) or hyphens (-). The first character must be a letter. The 
last character must be either a letter or a digit. 

The following syntax diagrams show the valid combinations of characters that can be 
used to form an item name: 

<item name> 

~underscore name>-, 
L<hyphen name>-----l t ~ ---, j 

[ -1-<inte~er>-L- ] 

( --Ci;rtege;;:l) . 

< underscore name> 

-<letter~~------------------------------~----------~ 
...-----------.,--,r-<1 etter 

/15\ Better 
igit>----i 

underscore 

digit 

8600 0155-000 



Moving Double-Precision Values to Variables (cont.) 

<hyphen name> 

-<letter>-r----------------r----------l 
1-----------,-~,<1 etter 

/15\ ~letter 
<digit 
<hyphen 

<digit 

The variable elements of an item name are explained as follows: 

Element Explanation 

< underscore 
name> 

A string of from 1 to 17 letters, digits, and underscores C), starting with 
a letter and ending with either a letter or a digit. 

<hyphen name> A string of from 1 to 17 letters, digits, and hyphens (-), starting with a 
letter and ending with either a letter or a digit. 

<integer> A subscript for an OCCURS clause item. An integer is a whole number 
(0123456789) that consists from of 1 to 12 digits and that has a 
maximum value of 549755813887. 

Variable Name 

Each language has a different way of identifying the entity that contains or evaluates to 
a real, double-precision numeric value. ConsUlt the appropriate language reference 
manual for more information on variables that can contain a real, double-precision 
numeric value. 

Note: For COBOL, the variable must be declared in the WORKING­
STORAGE section as a level 77 COMP-5 item. For COBOL74 and 
COB0L85, the variable must be declared as a level 77 DOUBLE item. 

Program Examples 

The following program fragments use the DBGETDOUBLE data transfer entry points to 
move double-precision numeric values from the user work area to variables declared in 
the application program. 

ALGOL Program Fragment 

In the ALGOL example, the structure is initialized as EMP at the beginning of the 
program. The item name is is EMP _SSN. The variable is EXPR _ 2. 

8600 0155-000 4-23 



Moving Double-Precision Values to Variables (cont.) 

4-24 

%Declaring local variables 

DOUBLE 
EXPR_2; 

STRING 
DATA_SET_NAME, ITEM_NAME; 

BOOLEAN 
RSLT; 

%Assigning values to parameters 

DATA SET NAME:="EMP"· - - , 

%Declaring library entry point 

LIBRARY DMI; 
BOOLEAN PROCEDURE DBGETDOUBLE(STRUCTURE,ITEM,VARIABLE); 

STRING STRUCTURE, ITEM; 
DOUBLE VARIABLE; 
LIBRARY DMI (ACTUALNAME=" ALGOLGETDOUBLE") ; 

%Invoking entry point 

ITEM_NAME:="EMP_SSN"; 
RSLT:=DBGETDO~BLE(DATA_SET_NAME,ITEM_NAME,EXPR_2); 
IF RSLT 

THEN EXCEPTIONHANDLER; 

COBOL74 or COBOL85 Program Fragment 

In this example, the structure is EMP; the item is EMP-SSN. Since V AR-3 is declared as 
a DOUBLE item and RESULT is dec1ar,ed as a COMP item, this example can be either a 
COBOL74 or a COBOL85 program fragment. 

Note: To make this example a COBOL program fragment, declare the 
variable V AR-3 as a COMP-5 item and the variable RESULT as a 
COMP-2item. 

***Declaring variables 

01 DATA-SET-NAME 
01 ITEM-NAME 
01 VAR-3 
01 RESULT 

***Invoking entry point 

MOVE IIEMP-SSN II TO ITEM-NAME. 

PIC X(17} VALUE IS "EMp l
• 

PIC X(17} VALUE IS SPACES. 
DOUBLE. 
PIC 9(1) COMP VALUE IS 0. 

CALL IIDBGETDOUBLE OF DMINTERPRETER" 
USING DATA-SET-NAME, ITEM-NAME, VAR-3 
GIVING RESULT. 

8600 0155-000 



Moving Double-Precision Values to Variables (cont.) 

FORTRAN77 Program Fragment 

In this FORTRAN77 example, EMP is the structure. The item name is EMP-SSN. The 
variable is EXPR2. 

***Declaring library entry point 

LOGICAL FUNCTION DBGETD (STR, ITEM, VAR) 
CHARACTER STR, ITEM 
DOUBLE PRECISION VAR 
IN LIBRARY DMI (ACTUALNAME = II FORTRAN77GETDOUBLE II ) 

END 

***Setting variables to initial values 

CHARACTER 
* 

DSNAME 
ITMNAM 

DOUBLE PRECISION EXPR2 

***Declaring local variables 

LOGICAL RSLT 

***Invoking entry point 

ITMNAM = II EMP-SSN 1' 

*4 
*13 

RSLT = DBGETD(DSNAME,ITMNAM,EXPR2) 
IF (RSLT) CALL EXCEPT 

8600 0155-000 

/IIEMP"/, 

4-25 



Retrieving Boolean Values 

Retrieving Boolean Values 

4-26 

Use the GETBOOLEAN data transfer entry point to perform two functions: 

• Retrieve a Boolean value from either a Boolean item or a bit in a field item. 

• Set the value of a variable, as appropriate, to either TRUE or FALSE. 

Passing Parameters 

The GETBOOLEAN entry points have three required parameters: the name of the 
structure, the name of the item, and the name of the variable. 

Parameter 

<structure> 

<item name> 

<variable name> 

Explanation 

Identifies the data set or the database in which the item is located. 

Identifies the data set item whose Boolean value is to be moved to the 
user-declared variable. 

Identifies the user-declared variable by its name in the program. The 
variable must be able to contain a Boolean value (TRUE or FALSE). 

Note: If an exception occurs, the value of the variable is set to show a false 
condition. Consult Appendix B, "DMSII Exceptions and Errors," for 
more information on exceptions. 

Table 4-6 gives the exported names of the entry points, as well as the parameters and 
the data type of each parameter. 

Table 4-6. Retrieving Boolean Values 

Data Type of 
Exported Name of Entry Point Parameter Parameter 

ALGOLGETBOOLEAN <structure> STRING 

<item name> STRING 

<variable name> BOOLEAN 

DBGETBOOLEAN <structure> DISPLAY 

<item name> DISPLAY 

<variable name> DISPLAY 

FORTRAN77GETBOOLEAN <structure> CHARACTER 

<item name> CHARACTER 

<variable name> LOGICAL 

8.600 0155--000 



Retrieving Boolean Values (cont.) 

Structure 

The structure can be either a data set or a database. The following syntax diagrams 
show that if the name of the data set is not unique, you can use up to 12 qualifying 
parameters to uniquely identify the data set. A database name cannot be qualified. 

<structure> 

~<data set qualified name> 
L<database name>>------I 

< data set qualified name> 

-<name> 

tfr~~ - /12\ 
. -<name 

The variable elements of the structure parameter are explained as follows: 

Element 

<data set 
qualified name> 

<database 
name> 

Explanation 

Identifies the data set that is to be accessed at run time. 

Identifies the database for which the DMINTERPRETER library was 
compiled. 

<name> Identifies the name of the data set or database. A name can consist from 
of 1 to 17 letters, digits, and-depending on the language, either 
underscores C) or hyphens (-). The first character must be a letter. The 
last character must be either a letter or a digit. 

Item Name 

The following syntax diagrams show the valid combinations of characters that can be 
used to form an item name: 

<item name> 

---r<underscore name>-, 
L<hyphen name>---1 t r-- ----, j 

[ ~inte~er>-i- ] 

(~ege;::L ) 

<underscore name> 

~letter~~----------------------------~---------~ 
1----------------------.--..-<1 etter 

digit 
/15\ 1:1 ette.r 

d i gi t>-----I 
underscore 

86000155-000 4-27 



Retrieving Boolean Values (cont.) 

4-28 

<hyphen name> 

-<1 etter>-.----------------r----------I 
t-----------,--r-<1 etter 

/15\ -e1etter 
digit 

. <hyphen 

digit 

The variable elements of an item name are explained as follows: 

Element 

< underscore 
name> 

<hyphen name> 

<integer> 

Variable Name 

Explanation 

A string of from 1 to 17 letters, digits, and underscores C), starting with 
a letter and ending with either a letter or a digit. 

A string of from 1 to 17 letters, digits, and hyphens (-), starting with a 
letter and ending with either a letter or a digit. 

A subscript for an OCCURS clause item. An integer is a whole number 
(0123456789) that consists of from 1 to 12 digits and that has a 
maximum value of 549755813887. 

The Boolean parameter must evaluate .to either the value TRUE or FALSE. Consult 
the appropriate language reference manual for more information on Boolean variables 
(ALGOL or COBOL) and logical variables (FORTRAN77). 

Program Examples 

The following program fragments use the GETBOOLEAN entry points to move Boolean 
values from the user work area to variables declared in the application program. 

ALGOL Program Fragment 

In the ALGOL example, DATA _ SET_NAME is initialized at the beginning of the 
program to the value of the structure E:MP. The value for the item name, ITEM_NAME, 
is assigned as EMP _SEC_CLEAR in the body of the program. The variable is EXPR_ 4. 

8600 0155-000 



Retrieving Boolean Values (cont.) 

%Declaring local variables 

STRING 
DATA_SET_NAME, ITEM_NAME; 

BOOLEAN 
EXPR_4, RSLT; 

%Assigning values to parameters 

DATA SET NAME:=IIEMp li
• - - , 

%Declaring library entry point 

LIBRARY DMI; 
BOOLEAN PROCEDURE DBGETBOOLEAN(STRUCTURE,ITEM,VARIABLE); 

STRING STRUCTURE, ITEM; 
BOOLEAN VARIABLE; 
LIBRARY DMI (ACTUALNAME=IIALGOLGETBOOLEAW'); 

%Invoking entry point 

ITEM NAME:=IIEMP SEC CLEARII • - - - , 
RSLT:=DBGETBOOLEAN(DATA_SET_NAME,ITEM_NAME,EXPR_4); 
IF RSLT 

THEN EXCEPTIONHANDLER; 

COBOl74 or COBOl85 Program Fragment 

This example uses the structure EMP, the item EMP-SEC-CLEAR, and the variable 
V AR-l. Because the variable RESULT is declared as a COMP item, this example can be 
either a COBOL74 or a COBOL85 program. 

Note: To make this example a COBOL program fragment, declare the 
variable RESULT as a COMP-2 item. 

***Declaring variables 

01 DATA-SET-NAME 
01 ITEM-NAME 
01 VAR-1 
01 RESULT 

***Invoking entry point 

PIC X(17) VALUE IS "EMp li
• 

PIC X(17) VALUE IS SPACES. 
PIC X(10) VALUE IS SPACES. 
PIC 9(1) COMP VALUE IS 0. 

MOVE IIEMP-SEC-CLEARII TO ITEM-NAME. 
CAll IIDBGETBOOLEAN OF DMINTERPRETERII 

USINGDATA-SET-NAME, ITEM-NAME, VAR-1 
GIVING RESULT. 

8600 0155-000 4-29 



Retrieving Boolean Values (cont.) 

4-30 

FORTRAN77 Program Fragment 

In this FORTRAN77 example, a value for DSNAME is initialized to EMP at the 
beginning of the program. The value ofEMP-SEC-CLEAR is assigned to ITMNAM in 
the body of the program. The variable is EXPR4. 

***Declaring library entry poi,nt 

LOGICAL FUNCTION DBGETL (STR, ITEM, VAR) 
CHARACTER STR, ITEM 
LOGICAL VAR 
IN LIBRARY DMI (ACTUALNAME = II FORTRAN77GETLOGICAL II

) 

END 

***Setting variables to initial values 

CHARACTER DSNAME 
* ITMNAM 

LOGICAL EXPR4 

*4 
*13 

***Declaring local variables 

LOGICAL RSLT 

***Invoking entry point 

ITMNAM = "EMP-SEC-CLEAR" 

/"EMp ll
/, 

RSLT = DBGETL(DSNAME,ITMNAM,EXPR4) 
IF (RSLT) CALL EXCEPT 

8600 0155-000 



Placing Strings into Data Items 

Placing Strings into Data Items 
Using a DBPUT data transfer entry point, you can move a string from a 
program-declared variable into a data item. The data item must be declared in the 
DASDL description as either an alpha item or a group item. 

Passing Parameters 

The data transfer entry points that move a string from a program-declared variable to a 
data item have three required parameters: the name of the structure, the name of the 
item, and the expression containing the string. 

Parameter 

<structure> 

<item name> 

<expression> 

Explanation 

Identifies either the data set (for an alpha item) or the database (for a 
global item) that is to be accessed at run time. 

Identifies the data set item to be modified. 

Identifies the user-declared variable by its name in the program. 

Note: If the string exceeds the defined length of the data item, DMSII 
returns an exception to the program. 

Table 4-7 gives the exported names of the entry points, as well as the parameters and 
the data type of each parameter. 

Table 4-7. Placing Strings into Data Items 

Data Type of 
Exported Name of Entry Point Parameter Parameter 

ALGOLPUTSTRING <structure> STRING 

<item name> STRING 

<expression> STRING 

DBPUTDISPLAY <structure> DISPLAY 

<item name> DISPLAY 

<variable> DISPLAY 

FORTRAN77PUTCHARACTER <structure> CHARACTER 

<item name> CHARACTER 

<expression> CHARACTER 

Structure 

The structure can be either a data set or a database. The following syntax diagrams 
show that if the name of the data set is not unique, you can use up to 12 qualifying 
parameters to uniquely identify the· data set. A database name cannot be qualified. 

8600 0155-000 4-31 



Placing Strings into Data Items (cont.) 

4-32 

<structure> 

--,-<data set qualified name> 
L<database name>>-------' 

<data set qualified name> 

-<name> 

W~~~ - /12\ 
• -<name 

The variable elements of the structure parameter are explained as follows: 

Element Explanation 

<data set 
qualified name> 

Identifies the data set that is to be accessed at run time. 

<database 
name> 

<name> 

Item Name 

Identifies the database for which the DMINTERPRETER library was 
compiled. 

Identifies the name of the data set or database. A name can consist of 
from 1 to 17 letters, digits, and-<fepending on the language-either 
underscores C) or hyphens (-). The first character must be a letter. The 
last character must be either a letter or a digit. 

The following syntax diagrams show the valid combinations of characters that can be 
used to form an item name: 

<item name> 

~<underscore name>-, 
L<hyphen name:.-J t ~.-- --, j 

[ ~<inte?er>-L- ] 

( ~intege;;:l ) 

<underscore name> 

----<letter·~~--------------------------------~-------~ 

/15\ 1:1etter 
di gi t>----I 
underscore 

<hyphen name> 

----<letter'~~--------------------------------------~---------------~ 
t--------------------------r-r-<l etter 

/15\ 1:1etter 
digit 
hyphen 

igit 

86000155-000 



Placing Strings into Data Items (cont.) 

The variable elements of a name are explained as follows: 

Element Explanation 

< underscore 
name> 

A string of from 1 to 17 letters, digits, and underscores (J, starting with 
a letter and ending with either a letter or a digit. 

< hyphen name> 

<integer> 

Expression 

A string of from 1 to 17 letters, digits, and hyphens (-), starting with a 
letter and ending with either a letter or a digit. 

A subscript for an OCCURS clause item. An integer is a whole number 
(0123456789) that consists of from 1 to 12 digits and that has a 
maximum value of 549755813887. 

Each language has a different way of identifying the expression that contains or 
evaluates to the string: 

• For ALGOL, it is a string expression. 

• For COBOL, it is a DISPLAY variable. 

• For FORTRAN77, it is a character expression. 

The syntax for the ALGOL string expression and for the FORTRAN77 character 
expression are shown in the following diagrams: 

<string expression> 

-<string primary> 

~ fAt :r-<string primary>=tJ 

<character expression> 

r+----- / / ------, 
--I--,--<;character constant>---r......L....----------------l 

constant name::>-----; 
variable name::>-----; 

<array element name 
substring name:>------; 
function reference 
character expression" 

Consult the appropriate language reference manual for more information on expressions 
that can contain a string. 

Program Examples 

The following program fragments show how to use data transfer entry points to move 
data item values from string expressions declared in the application program to a DMSII 
user work area 

8600 0155-000 4-33 



Placing Strings into Data Items (cont.) 

4-34 

ALGOL Program Fragment 

In the ALGOL example, the structure is E:MP, the item name is EMP _ FNAME, and 
EXPR_ 3 contains the string expression. Concatenation is used to create a string for the 
employee name being put into the database. 

%Declaring local variables 

STRING 
DATA_SET_NAME, ITEM_NAME, EXP~3; 

BOOLEAN 
RSLT; 

%Assigning values to parameters 

DATA_SET_NAME:=IIEMPII; 

%Declaring library entry point 

LIBRARY DMI; 
BOOLEAN PROCEDURE DBPUTSTRING(STRUCTURE,ITEM,VARIABLE); 

STRING STRUCTURE, ITEM, VARIABLE; 
LIBRARY DMI (ACTUALNAME=IIALGOLPUTSTRING II ); 

%Invoking entry point 

ITEM_NAME:=IIEMP_FNAMEII; 
RSLT:=DBPUTSTRING(DATA_SET_NAME,ITEM_NAME,EXPR_3 CAT IILINAII); 
IF RSLT . 

THEN EXCEPTIONHANDLERj 

COBOL74 or COBOl85 Program Fragment 

This example declares the structure as EMP, the item as EMP-FNAME, and the variable 
as V AR-l. Because the variable RESULT is declared as a COMP item, the example 

. could be either a COBOL74 or a COBOL85 program fragment. 

Note: [{the variable RESULT is declared as a COMP·2, this example could 
be used as a COBOL program fragment. 

8600 0155-000 



Placing Strings into Kanji Alpha Items (cont.) 

<structure> 

~<data set qualified name> 
L<database name>>------" 

<data set qualified name> 

-<name> ~ ~~~g] 
f-- /12\ 

. -<name 

The variable elements of the structure parameter are explained as follows: 

Element 

<data set 
qualified name> 

<database 
name> 

Explanation 

Identifies the data set that is to be accessed at run time. 

Identifies the database for which the DMINTERPRETER library was 
compiled. 

<name~ Identifies the name of the data set or database. A name can consist of 
from 1 to 17 letters, digits, and-depending on the language-either 
underscores C) or hyphens (-). The first character must be a letter. The 
last character must be either a letter or a digit. 

Item Name 

The following syntax diagrams show the valid combinations of characters that can be 
used to form an item name: 

<item name> 

~<underscore name>-, ~ 
'-<hyphen name>------l L [ {:i nt~e~ 1 J 

( integer~ ) ~ 

<underscore name> 

~letter~~------------------------------~----------~ 

<hyphen name> 

/15\ 1:,etter 
digit>----~ 
underscore 

~'etter·~~--------------------------~--------------~ 

86000155-000 

I-------------------,-~l etter 

/15\ 1:,etter 
digit 
hyphen 

digit 

4-37 



Placing Strings into Kanji Alpha Items (cont.) 

4-38 

The variable elements of an item name are explained as follows: 

Element Explanation 

<underscore A string of from 1 to 17 letters, digits, and underscores C), starting with 
name> a letter and ending with either a letter or a digit. 

<hyphen name> ~ A string of from 1 to 17 letters, digits, and hyphens (-), starting with a 
letter and ending with either a letter or a digit. 

<integer> A subscript for an OCCURS clause item. An integer is a whole number 
(0123456789) that consists of from 1 to 12 digits and that has a 
maximum value of 549755813887. 

Expression 

Each language has a different way of identifying the variable that contains or evaluates 
to the string: 

• For ALGOL, it is a string expression. 

• For COBOL74 and COBOL85, it is a variable. It can be defined as PIC X(2n) or PIC 
X(n) USAGE IS KANJI. 

• For FORTRAN77, it is a character expression. 

Note: Only COBOL74 and COBOL85 support Kanji characters; COBOL 
does not. 

<string expression> 

-<string primary> 

~ ,Ai :y-<str;ng pr;mary;JLJ 

<character expression> 

'---- / / -------, 
<character constant>-----.--..L...----------------I 
<constant name;>----I 
variable name,;>----I 
array element name 
substring name>------4 
function reference 
character expression 

Consult the appropriate language reference manual for more information on variables 
that can contain a Kanji string. 

Program Examples 

The following program fragments use PUTKANJI entry points to move data item values 
from string expressions declared in the application program to a DMSn user work area 

8600 0155-000 



Placing Strings into Data Items (cont.) 

***Declaring variables 

01 DATA-SET-NAME 
01 ITEM-NAME 
01 VAR-1 
01 RESULT 

***Invoking entry point 

PIC X(17) VALUE IS "EMP". 
PIC X(17) VALUE IS SPACES. 
PIC X(10) VALUE IS SPACES. 
PIC 9(1) COMP VALUE IS 0. 

MOVE "EMP-FNAME" TO ITEM-NAME. 
CALL IIDBPUTDISPLAY OF DMINTERPRETER" 

USING DATA-SET-NAME, ITEM-NAME, VAR-1 
GIVING RESULT. 

FORTRAN77 Program Fragment 

In this FORTRAN77 example, DSNAME contains the structure; ITMNAM is the item 
name, EMP-FNAME; and EXPR3 contains the character expression. Concatenation is 
used to create a string for the employee name being put into the database. 

***Declaring library entry point 

LOGICAL FUNCTION DBPUTC (STR, ITEM, VAR) 
CHARACTER STR, ITEM, VAR 
IN LIBRARY DMI (ACTUALNAME = II FORTRAN77PUTCHARACTER") 

END 

***Setting variables to initial values 

CHARACTER DSNAME 
* ITMNAM 
* EXPR3 

*4 
*13 
*22 

***Declaring local variables 

LOGICAL RSLT 

***Invoking entry point 

ITMNAM = "EMP-FNAME" 
EXPR3 = "CATHY" 

/"EMP"/, 

RSLT = DBPUTC(DSNAME,ITMNAM,EXPR3) 
IF (RSLT) CALL EXCEPT 

86000155-000 4-35 



Placing Strings into Kanji Alpha Items 

Placing Strings into Kanji Alpha Items 

4-36 

Using a PUTKANJI data transfer entry point, you can move a Kanji string into the user 
work area. The Kanji string must be in an alpha item that was declared in the DASDL 
description as USAGE IS KANJI. 

Passing Parameters . 

The PUTKANJI entry points have three required parameters: the name of the 
structure, the name of the item, and the program-declared expression containing the 
string. 

Parameter Explanation 

<structure> Identifies either the data set or the database that is to be accessed at run 
time. 

Identifies the data set item to be modified. <item name> 

<expression> Identifies the user-declared variable by its name in the program. 

Note: If the string exceeds the defined length of the data item, DMSII 
returns an exception to the program. 

Table 4-8 gives the exported names of the entry points, as well as the parameters and 
the data type of each parameter. 

Table 4-8. Placing Strings into Kanji Alpha Items 

Data Type of 
Exported Name of Entry Point Parameter Parameter 

ALGOLPUTKANJI <structure> STRING 

<item name> STRING 

<expression> STRING 

DBPUTKANJI <structure> DISPLAY 

<item name> DISPLAY 

<variable> DISPLAY or 
KANJI 

FORTRAN77PUTKANJI <structure> CHARACTER 

<item name> CHARACTER 

<expression> CHARACTER 

Structure 

The structure can be either a data set or a database. The following syntax diagrams 
show that if the name of the data set is not unique, you can use up ~o 12 qualifying 
parameters to uniquely identify the data set. A database name cannot be qualified. 

8600 0155-000 



Placing Strings into Kanji Alpha Items (cont.) 

ALGOL Program Fragment 

In the ALGOL example, the structure is EMP, the item is EMP _ KNAME, and the 
variable is EXPR _3. Concatenation is used to create a string for the employee name 
before it is placed in the database. KANJI_STRING is a string item containing Kanji 
characters that do not have a start-of-Kanji (SOK) or end-of-Kanji (EOK) characters. 

%Declaring local variables 

STRING 
DATA_SET_NAME, ITEM_NAME, EXPR_3; 

BOOLEAN 
RSLT; 

%Assigning values to parameters 

DATA SET NAME:="EMp l
• - - , 

%De~laring library entry point 

LIBRARY DMI; 
BOOLEAN PROCEDURE DBPUTKANJI(STRUCTURE,ITEM,VARIABLE); 

STRING STRUCTURE, ITEM, VARIABLE; 
LIBRARY DMI (ACTUALNAME="ALGOLPUTKANJI"); 

%Invoking entry point 

ITEM NAME:="EMP KNAME"· - -' EXPR_3:=KANJI_STRING; 
. RSLT:=DBPUTKANJI(DATA_SET_NAME,ITEM_NAME;EXPR_3 CAT KANI_STRING); 
IF RSLT 

THEN EXCEPTIONHANDLER; 

COBOl74 or COBOl85 Program Fragment 

In this example, the structure is EMP, the item is E:MP-KNAME, and the variable is 
V AR-l. The variable RESULT is declared as a CO:MP item. This program fragment 
could appear in either a COBOL74 or a COBOL85 program. 

Note: COBOL does not support Kanji characters. 

8600 0155-000 4-39 



Placing Strings into Kanji Alpha Items (cont.) 

4-40 

***Declaring variables 

01 DATA-SET-NAME 
01 ITEM-NAME 
01 VAR-1 

01 RESULT 

***Invoking entry point 

PIC X(17) VALUE IS "EMP". 
PIC X(17) VALUE IS SPACES. 
PIC X(10) USAGE IS KANJI. 

VALUE IS SPACES. 
PIC 9(1) COMP VALUE IS 0. 

MOVE IIEMP-KNAME" TO ITEM-NAME. 
CALL IIDBPUTKANJI OF DMINTERPRETER" 

USING DATA-SET-NAME, ITEM-NAME, VAR-l 
GIVING RESULT. 

FORTRAN77 Program Fragment 

In this FORTRAN77 example, a value for DSNAME is initialized at the beginning of the 
program; the values of ITMNAM and EXPR3 are assigned in the body of the program. 
KNJSTR is a string item containing Kanji characters without the start-of-Kanji (SOK) or 
end-of-Kanji (EOK) characters. 

***Declaring library entry point 

LOGICAL FUNCTION DBPUTK (STR, ITEM, VAR) 
CHARACTER STR, ITEM, VAR 
IN LIBRARY DMI (ACTUALNAME = "FORTRAN77PUTKANJI") 

END 

***Setting variables to initial values 

CHARACTER DSNAME 
* ITMNAM 
* EXPR3 

*4 
*13 
*22 

***Declaring local variables 

LOGICAL RSL T 

***Invoking entry point 

ITMNAM = II EMP-KNAME" 
EXPR3 = KNJSTR 

/"EMP"/, 

RSLT = DBPUTK(DSNAME,ITMNAM,EXPR3) 
IF (RSLT) CALL EXCEPT 

8600 0155-000 



Placing Numeric Values into Data Items 

Placing Numeric Values into Data Items 
Use the PUTREAL data transfer entry point to place a numeric value from a number, 
real, or field item into the user work area 

Passing Parameters 

The PUTREAL entry points have three required parameters: the name of the 
structure, the name of the item, and the name of the expression that contains the 
numeric value. 

Parameter Explanation 

<structure> 

<item name> 

<expression> 

Identifies the data set or the database that is to be accessed at run time. 

Identifies the data set item to be modified. 

Notes: 

Identifies the user-declared variable by its name in the program. 

• If the parameter for the real value produces an incorrect new 
value, DMSII returns an exception to the program. 

• If the number of significant digits exceeds the capacity of the 
data item, use the ALGOLPUTDOUBLE, DBPUTDOUBLE, or 
FORTRAN77PUTDOUBLE entry point to place the real value 
into the item. 

Table 4-9 gives the exported names of the entry points, as well as the parameters and 
the data type of each parameter. 

Table 4-9. Placing Numeric Values into Data Items 

Exported Name of 
Entry Point Parameter Data Type of Parameter 

AlGOlPUTREAl <structure> STRING 

<item name> STRING 

<expression> REAL 

DBPUTREAl <structure> DISPLAY 

<item name> DISPLAY 

<variable> COMP-4 (COBOL) 

REAL (COBOl74 or COBOl85) 

FORTRAN77PUTREAl <structure> CHARACTER 

<item name> CHARACTER 

<expression> REAL 

8600 0155-000 4-41 



Placing Numeric Values into Data Items (cont.) 

4-42 

Structure 

The structure can be either a data set or a database. The following syntax diagrams 
show that if the name of the data set is not unique, you can use up to 12 qualifYing 
parameters to uniquely identify the. data set. A database name cannot be qualified. 

<structure> 

--.-<data set qualified name> 
L<database name>>-------' 

<data set qualified name> 

-<name> 

tfr~!~~ (-- /12\ 
. -<name 

The variable elements of the structure parameter are explained as follows: 

Element 

<data set 
qualified name> 

<database 
name> 

<name> 

Item Name 

Explanation 

Identifies the data set that is to be accessed at run time. 

Identifies the database for which the DMINTERPRETER library was 
compiled. 

Identifies the name of the data set or database. A name can consist of 
from 1 to 17 letters, digits, and-depending on the language-either 
underscores C) or hyphens (-). The first character must be a letter. The 
last character must be either a letter or a digit. 

The following syntax diagrams show the valid combinations of characters that can be 
used to form an item name: 

<item name> 

--r<underscore name>--, 
L<hyphen name>-----1 t r(--- ---, j 

[ ~;nte?er>-i- ] 

(~ege;::L ) 

< underscore name> 

--<letter'>-~------------------------------~----------~ 

/15\ 1:1etter 
d; g; t>----I 
underscore 

8600 0155-000 



Placing Numeric Values into Data Items (cont.) 

<hyphen name> 

--<letter~-----------------------------,--------------~ 
1-------------------,-...,.-<1 etter 

/15\ 1<letter 
<digit 
<hyphen 

<digit 

The variable elements of an item name are explained as follows: 

Element Explanation 

< underscore 
name> 

A string of from 1 to 17 letters, digits, and underscores C>, starting with 
a letter and ending with either a letter or a digit. 

< hyphen name> A string of from 1 to 17 letters, digits, and hyphens (-), starting with a 
letter and ending with either a letter or a digit. 

<integer> A subscript for an OCCURS clause item. An integer is a whole number 
(0123456789) that consists of from 1 to 12 digits and that has a 
maximum value of 549755813887. 

Expression 

Each language has a different way of identifying the entity that contains or evaluates to a 
real numeric value: 

• For ALGOL, it is an arithmetic expression. 

• For COBOL; the variable must be declared in the WORKING-STORAGE section of 
the program as a level 77 COMP-4 item. 

• For COBOL74 and COBOL85, the variable must be declared in the 
WORKING-STORAGE section of the program. as a level 77 REAL item. 

• For FORTRAN77, it is an arithmetic expression. 

<arithmetic expression> in ALGOL 

~<simp1e arithmetic expression> 
L-<conditiona1 arithmetic expression~ 

<arithmetic expression> in FORTRAN77 

~arithmetic operation>:J 
--"E-~-j--.---'-L.c-<t)operand> --

Consult the appropriate language reference manual for more information on variables 
that can contain a real numeric value. 

Program Examples 

The following program fragments use PUTREAL entry points to move numeric values 
from variables declared in the application program. to the uSer work area 

8600 0155-000 4-43 



Placing Numeric Values into Data Items (cont.) 

4-44 

ALGOL Program Fragment 

In the ALGOL example, a value for DATA_BET_NAME (the structure) is initialized at 
the beginning of the program; the value for ITEM_NAME (item name) and the value for 
EXPR_l (the variable) are assigned in the body of the program. 

%Declaring local variables 

REAL 
EXPR_1 ; 

STRING 
DATA_SET_NAME, ITEM_NAME; 

BOOLEAN 
RSLT; 

%Assigning values to parameters 

%Oeclaring library entry point 

LIBRARY DMI; 
BOOLEAN PROCEDURE DBPUTREAL(STRUCTURE,ITEM,VARIABLE); 

STRING STRUCTURE, ITEM; 
REAL VARIABLE; 
LIBRARY OMI (ACTUALNAME="ALGOLPUTREAL"); 

%Invoking entry point 

ITEM NAME:="EMP NOli. - -' EXPR 1:="11'" - , 
RSLT:=DBPUTREAL(OATA_SET_NAME,ITEM_NAME,EXPR_1); 
IF RSLT 

THEN EXCEPTIONHANOLER; 

COBOl74 or COBOla5 Program Fragment 

This example shows either a COBOL74 or a COBOL85 program fragment. The variable 
V AR-2 is declared as a REAL item and RESULT as a COMP item. The structure is EMP 
and the item is EMP-NO. 

Note: IfVAR-2 is declared as a COMP-4 item and RESULT is declared as 
a COMP-2 item, this example could be used in a COBOL program. 

8600 0155-000 



Placing Numeric Values into Data Items (cont.) 

***Declaring variables 

01 DATA-SET-NAME 
01 ITEM-NAME 
01 VAR-2 
01 RESULT 

***Invoking entry point 

MOVE "EMP-NO" TO ITEM-NAME. 
MOVE 11 TO VAR-2. 

PIC X(17) VALUE IS "EMP". 
PIC X(17) VALUE IS SPACES. 
REAL. 
PIC 9(1) COMP VALUE IS 0. 

CALL "DBPUTREAL OF DMINTERPRETER" 
USING DATA-SET-NAME, ITEM-NAM~, VAR-2 
GIVING RESULT. 

FORTRAN77 Program Fragment 

In this FORTRAN77 example, a value for DSNAME is initialized at the beginning of the 
program; the value of ITMNAM and the value of EXPRl are assigned in the body of the 
program. 

***Declaring library entry point 

LOGICAL FUNCTION DBPUTR (STR, ITEM, VAR) 
CHARACTER STR, ITEM 
REAL VAR 
IN LIBRARY DMI (ACTUALNAME = "FORTRAN77PUTREAL") 

END 

***Setting variables to initial values 

CHARACTER DSNAME 
* ITMNAM 

REAL EXPRI 

*4 
*13 

***Declaring local variables 

LOGICAL RSLT 

***Invoking entry point 

ITMNAM= IIEMP-NO" 
EXPRI = 11 
RSLT = DBPUTR(DSNAME,ITMNAM,EXPRl) 
IF (RSLT) CALL EXCEPT 

8600 0155-000 4-45 



Placing Double-Precision Values into Data Items 

Placing Double-Precision Values into Data Items 

4-46 

Use the PUTDOUBLE data transfer entry points to move a double-precision numeric 
value from a program-declared variable to a data item. The data item must be defined in 
the DASDL description as a number, real, or field item. (See "Placing Numeric Values 
into Data Items" in this section.) 

Passing Parameters 

The PUTDOUBLE entry points have three required parameters: the name of the 
structure, the name of the item, and the name of the expression that contains the 
numeric value. 

Parameter 

<structure> 

<item name> 

<expression> 

Explanation 

Identifies the data set or the database that is to be accessed at run time. 

Identifies the data set item to be modified. 

Identifies the user-declared variable by its name in the program. 

Note: If the parameter for the real value produces an incorrect new value, 
DMSII returns an exception to the program. 

Table 4-10 gives the exported names of the entry points, as well as the parameters and 
the data type of each parameter. 

Table 4-10. Placing Double-Precision Values into Data Items 

Exported Name of 
Entry Point ,Parameter Data Type of Parameter 

ALGOLPUTDOUBLE <structure> STRING 

<item name> STRING 

<expression> DOUBLE 

DBPUTDOUBLE <structure> DISPLAY 

<item name> DISPLAY 

<variable> COMP-5 (COBOL) 

DOUBLE (COBOL74 or COBOL85) 

FORTRAN77PUTDOUBLE <structure> CHARACTER 

<item name> CHARACTER 

<expression> DOUBLE 

8600 0155-000 



Placing Double-Precision Values into Data Items (cont.) 

Structure 

The structure can be either a data set or a database. The followirig syntax diagrams 
show that if the name of the data set is not unique, you can use up to 12 qualifYing 
parameters to uniquely identify the data set. A database name cannot be qualified. 

<structure> 

~<data set qualified name> 
L<database name>>------J 

<data set qualified name> 

-<name> 

W~~~~ f-- /12\ 
. -<name 

The variable elements of the structure parameter are explained as follows: 

Element 

<data set 
qualified name> 

<database 
name> 

Explanation 

Identifies the data set that is to be accessed at run time. 

Identifies the database for which the DMINTERPRETER library was 
compiled. 

<name> Identifies the name of the data set or database~ A name can consist of 
from 1 to 17 letters, digits, and-depending on the language-either 
underscores C) or hyphens H. The first character must be a letter. The 
last character must be either a letter or a digit. 

Item Name 

The following syntax diagrams show the valid combinations of characters that can be 
used to form an item name: 

<item name> 

~underscore name>-, 
l-<hyphen name~ t . ~ -. j 

[ -L-<inte~er>-L- ] 

(~ege;;:L ) 

<underscore name> 

-<letter'~~------------------------------~----------~ 

8600 0155-000 

/15\ 1:1etter . 
digit>---I 
underscore 

4-47 



Placing Double-Precision Values into Data Items (cont.) 

4-48 

<hyphen name> 

--<letter~------------------------------~--------------4 
I---------------r---.--<l etter 

/15\ ~letter 
<digit 
<hyphen 

digit 

The variable elements of an item name are explained as follows: 

Element Explanation 

< underscore 
name> 

A string of from 1 to 17 letters, digits, and underscores C), starting with 
a letter and ending with either a letter or a digit. 

<hyphen name> A string of from 1 to 17 letters, digits, and hyphens (-), starting with a 
letter and ending with either a letter or a digit. 

<integer> A subscript for an OCCURS clause item. An integer is a whole number 
(0123456789) that consists of from 1 to 12 digits and that has a 
maximum value of 549755813887. 

Expression 

Each language has a different way of identifYing the entity that contains or evaluates to a 
real, double-precision numeric value: 

.• For ALGOL, it is an arithmetic expression. 

• For COBOL, the variable must be declared in the WORKING-STORAGE section of 
,the program as a level 77 COMP-5 item. 

• For COBOL 74 and COBOL85, the variable must be declared in the 
WORKING-STORAGE section of the program as a level 77 DOUBLE item. 

• For FORTRAN77, it is an arithmetic expression. 

<arithmetic expression> in ALGOL 

--r-<simple arithmetic expression> 
L-<conditional arithmetic expression~ 

<arithmetic expression> in FORTRAN77 

~arithmetic operation>:J 
--'Er--~--j~ .... L.:-<t)operand> -

Consult the appropriate language reference manual for more information on variables 
that can contain a real, double-precision, numeric value. 

Program. Examples 

The following program fragments use PUTDOUBLE entry points to move numeric 
values from variables declared in the application program. to the user work area. 

8600 0155-000 



Placing Double-Precision Values into Data Items (cont.) 

ALGOL Program Fragment 

In the ALGOL example, the structure is EMP, the item is EMP-SSN, and the arithmetic 
expression is (EXPR_2 -11). 

%Declaring local variables 

DOUBLE 
EXPR_2; 

STRING 
DATA_SET_NAME, ITEM_NAME; 

BOOLEAN 
RSLT; 

%Assigning values to parameters 

DATA SET NAME:="EMp l
• - - , 

%Declaring library entry point 

LIBRARY DMI; 
BOOLEAN PROCEDURE DBPUTDOUBLE (STRUCTURE,ITEM,VARIABLE); 

STRING STRUCTURE, ITEM; 
DOUBLE VARIABLE; 
LIBRARY DMI (ACTUALNAME=" ALGOLPUTDOUBLE") ; 

%Invoking entry point 

ITEM_NAME:=IIEMP_SSN"; 
EXPR 2:="573230911"; 
RSLT7=DBPUTDOUBLE(DATA_SET_NAME,ITEM_NAME,EXPR_2 -11); 
IF RSLT 

THEN EXCEPTIONHANDLER; 

COBOL74 or COBOl8S Program Fragment 

Because V AR-3 is declared as a DOUBLE item and RESULT is declared as a COMP 
item, this program fragment can be used in either a COBOL74 or a COBOL85 program. 

Note: By declaring the variable V AR-3 a COMP-5 item and RESULT as a 
COMP-2 item, this example becomes a COBOL program fragment. 

8600 0155-000 4-49 



Placing Double-Precision Values into Data Items (cont.) 

4-50 

***Declaring variables 

01 DATA-SET-NAME 
01 ITEM-NAME 
01 VAR-3 
01 RESULT 

***Invoking entry point 

MOVE "EMP-SSN" TO ITEM-NAME. 
MOVE 573230911 TO VAR-3. 

PIC X(l?) VALUE IS "EMp ll
• 

PIC X(17) VALUE IS SPACES. 
DOUBLE. 
PIC 9(1) COMP VALUE IS 0. 

CALL "DBPUTDOUBLE OF DMINTERPRETER" 
USING DATA-SET-NAME, ITEM-NAME, VAR-3 
GIVING RESULT. 

FORTRAN77 Program Fragment 

In this FORTRAN77 example, a value for DSNAME is initialized at the begiruring of the 
program; the value of ITMNAM and the value of EXPR2 are assigned in the body of the 
program. The arithmetic expression is (EXPR2 -11). 

***Declaringlibrary entry point 

LOGICAL FUNCTION DBPUTD (STR, ITEM, VAR) 
CHARACTER STR, ITEM 
DOUBLE PRECISION VAR 
IN LIBRARY DMI (ACTUALNAME = II FORTRAN77PUTDOUBLE") 

END 

***Setting variables to initial values 

CHARACTER 
* 

DSNAME 
ITMNAM 

DOUBLE PRECISION EXPR2 

***Declaring local variables 

LOGICAL RSLT 

***Invoking entry point 

ITMNAM = IIEMP-SSN" 
EXPR2 = 573230911 

*4 
*13 

RSLT = DBPUTD(DSNAME,ITMNAM,EXPR2 - 11 ) 
IF (RSLT) CALL EXCEPT 

/"EMp li
/, 

8600 0155-000 



Setting Data Items to Boolean Values 

Setting Data Items to Boolean Values 
You can use a DBPUT data transfer entry point to place a Boolean value into a 
BOOLEAN item. 

Passing Parameters 

The data transfer entry points that place Boolean values into Boolean items have 
three required parameters: the name of the structure, the name of the item, and the 
expression containing the Boolean value. 

Parameter Explanation 

<structure> 

<item name> 

< expression> 

Identifies the data set or the database that is to be accessed at run time. 

Identifies the data set item to be modified. 

Identifies the user-declared variable by its name in the program. In all 
cases, the expression must evaluate to either TRUE or FALSE. 

Table 4-11 gives the exported names of the entry points, as well as the parameters and 
the data type of each parameter. . 

Table 4-11. Setting Data Items to Boolean Values 

Data Type of 
Exported Name of Entry Point Parameter Parameter 

ALGOLPUTBOOLEAN <structure> STRING 

<item name> STRING 

<expression> BOOLEAN 

DBPUTBOOLEAN <structure> DISPLAY 

<item name> DISPLAY 

<variable> DISPLAY 

FO RTRAN 77 PUTLOG ICAL <structure> CHARACTER 

<item name> CHARACTER 

<expression> LOGICAL 

Structure 

The structure can be either a data set or a database. The following syntax diagrams 
show that if the name of the data set is not uDique, you can use up to 12 qualifying 
parameters to uniquely identify the data set. A database name cannot be qualified. 

8600 0155-000 4-51 



Setting Data Items to Boolean Values (cont.) 

4-52 

<structure> 

~<data set qualified name> 
L<database name>->----...... 

<data set qualified name> 

-<name> 

W~~~~ fo- /12\ 
. -<name 

The variable elements of the structure parameter are explained as follows: 

Element 

<data set 
qualified name> 

Explanation 

Identifies the data set that is to be accessed at run time. 

<database 
name> 

Identifies the database for which the DMINTERPRETER library was 
compiled. 

<name> Identifies the name of the data set or database. A name can consist of 
from 1 to 17 letters, digits, and-depending on the language-either 
underscores (J or hyphens (-). The first character must be a letter. The 
last character must be either a letter or a digit. C 

Item Name 

The following syntax diagrams show the valid combinations of characters that can be 
used to form an item name: 

<item name> 

--r-<underscore name>-, 
L<hyphen name>------1 t r-- --, j 

[ ~i nteger>-l- ] 

( -Cirrtege~ ) 

<underscore name> 

-<letter'~~---------------------------~---------~ 
1------------------------, ......... -<1 etter 

digit 
/15\ Buetter 

i gi t>----I 
underscore 

<hyphen name> 

-<letter'>-~----------------------------~--------------~ 
1-------------------.....--..-<1 etter 

/15\ -e1etter 
digit 
hyphen 

digit 

8600015!H>00 



Setting Data Items to Boolean Values (cont.) 

The variable elements of an item name are explained as follows: 

Element Explanation 

<underscore 
name> 

A string of from 1 to 17 letters, digits, and underscores <J, starting with 
a letter and ending with either a letter or a digit. 

<hyphen name> A string of from 1 to 17 letters, digits, and hyphens (-), starting with a 
letter and ending with either a letter or a digit. 

<integer> A subscript for an OCCURS clause item. An integer is a whole number 
(0123456789) that consists of from 1 to 12 digits and that has a 
maximum value of 549755813887. 

Expression 

The Boolean parameter must evaluate to either the value TRUE or FALSE: 

• For ALGOL, it is a Boolean expression. 

• For COBOL, it is a DISPLAY variable that holds the Boolean value. 

• For FORTRAN77, it is a logical expression and must evaluate to either. TRUE or 
.F ALBE. (Note that the period preceding the keyword is required.) 

< Boolean expression> 

--.-<simple Boolean expression> 
L-<conditional Boolean expression~ 

<logical expression> 

~l 09; ca 1 operand>-''''-T------------r-'"''---------t 
.ANO.Il09ical operand 
.OR • 
• NEQ • 
• EQ. 

Consult the appropriate language reference manual for more information on Boolean 
expressions. 

Program Examples 

The following program fragments use data transfer entry points to move a value of 
FALSE from a Boolean item in the program to a user work area. 

. ALGOL Program Fragment 

In the ALGOL example, DATA_SET _NAME is the structure, ITEM_NAME is the item, 
and EXPR _ 4 contains the Boolean expression. 

8600 0155-000 4-53 



Setting Data Items to Boolean Values (cont.) 

4-54 

%Declaring local variables 

STRING 
DATA_SET_NAME, ITEM_NAME; 

BOOLEAN 
EXPR_4, RSLT; 

%Assigning values to parameters 

%Declaring library entry point 

LIBRARY DMI; 
BOOLEAN PROCEDU.RE DBPUTBOOLEAN (STRUCTURE, ITEM, VARIABLE) ; 

STRING STRUCTURE, ITEM; 
BOOLEAN VARIABLE; 
LIBRARY DMI (ACTUALNAME="ALGOLPUTBOOLEAN"); 

%Invoking entry point 

ITEM_NAME:="EMP_SEC_CLEAR"; 
EXPR_4:=TRUE; 
RSLT:=DBPUTBOOLEAN(DATA_SET_NAME,ITEM_NAME,EXPR_4); 
IF RSLT 

THEN EXCEPTIONHANDLER; 

COBOl74 or COBOl85 Program Fragment 

In this example, EMP is the structure, EMP-SEC-CLEAR is the item, and V AR-l is the 
variable. The variable RESULT is declared as a COMP item, making this example a 
COBOL74 or a COBOL85 program fragment. 

Note: To make this a COBOL program fragment, declare the variable 
RESULT as a COMP-2 item. 

***Declaring variables 

01 DATA-SET-NAME 
01 ITEM-NAME 
01 VAR-l 
01 RESULT 

***Invoking entry point 

PIC X(l7) VALUE IS "EMP". 
PIC X(17) VALUE IS SPACES. 
PIC X(10) VALUE IS SPACES. 
PIC 9(1) COMP VALUE IS 0. 

MOVE "EMP-SEC-ClEAR" TO ITEM-NAME. 
MOVE "TRUE" TO VAR-l. 
CALL "DBPUTBOOLEAN OF DMINTERPRETER" 

USING DATA-SET-NAME, ITEM-NAME, VAR-1 
GIVING RESULT. 

86000155-000 



Setting Data Items to Boolean Values (cont.) 

FORTRAN77 Program Fragment 

In this FORTRAN77 example, a vruue for DSNAME is initialized at the beginning of the 
program; the value of ITMNAM and the value ofEXPR4 are assigned in the body of the 
program. 

***Declaring library entry point 

LOGICAL FUNCTION DBPUTL (STR, ITEM, VAR) 
CHARACTER STR, ITEM 
LOGICAL VAR 
IN LIBRARY OMI (ACTUALNAME = II FORTRAN77PUTLOGICALII ) 

END 

***Setting variables to initial values 

CHARACTER DSNAME 
* ITMNAM 

LOGICAL EXPR4 

*4 
*13 

***Declaring local variables 

LOGICAL RSLT 

***Invoking entry point 

ITMNAM = IIEMP-SEC-CLEARII 
EXPR4 = .TRUE 

/IIEMpll/, 

RSLT = DBPUTL(DSNAME,ITMNAM,EXPR4) 
IF (RSLT) CALL EXCEPT 

8600 0155-000 4-55 



Setting Data Items to Null Values 

Setting Data Items to Null Values 

4-56 

Use PUTNULL entry points to set a data item to its null value. The data item cannot 
be defined in the DASDL description as either a logical, a count, 'a record-type, or a 
population item. 

Passing Parameters 

PUTNULL entry points have two required parameters: the name of the structure and 
the name of the item. 

Parameter Explanation 

<structure> 

<item name> 

Identifies the data set or the database that is to be accessed at run time. 

Identifies the data set item to be modified. 

Table 4-12 gives the exported names of the e:o.try points, as well as the parameters and 
the data type of each parameter. 

Table 4-12. Setting Data Items to Null Values 

Data Type of 
Exported, Name of Entry Point Parameter Parameter 

ALGOLPUTNULL <structure> STRING 

<item name> STRING 

DBPUTNULL <structure> DISPLAY 

<item name> DISPLAY 

FORTRAN77PUTNULL <structure> CHARACTER 

<item name> CHARACTER 

Structure 

The structure can be either a data set or a database. The following syntax diagrams 
show that if the name of the data set is not unique, you can use up to 12 qualifying 
parameters to uniquely identify the data set. A database name cannot be qualified. 

<structure> 

~data set qualified name> 
L<database name~» ------' 

8600 0155-000 



Setting Data Items to Null Values (cont.) 

<data set qualified name> 

-<name> 

tfr~~:;j (-- /12\ 
• -<name 

The variable elements of the structure parameter are explained as follows: 

Element 

<data set 
qualified name> 

<database 
name> 

Explanation 

Identifies the data set that is to be accessed at run time. 

Identifies the database for which the DMINTERPRETER library was 
compiled. 

<name> Identifies the name of the data set or database. A name can consist of 
from 1 to 17 letters, digits, and-depending on the language-either 
underscores C) or hyphens (-). The first character must be a letter. The 
last character must be either a letter or a digit. 

Item Name 

The following syntax diagrams show the valid combinations of characters that can be 
used to form an item name: 

<item name> 

-r<underscore name>--, 
L<hyphen name>-------1 t r+-- ----'I j 

[ -L-<inte~er>-L- ] 

(~ege~) 

<underscore name> 

-<letter~~------------------------------~~----------~ 
I------------------------,r-r-<l etter 

/15\ ~letter 
digit>-----I 
underscore 

digit 

<hyphen name> 

-<letter'>-~-------------------------~--------------~ 
t--------------------r-~l etter 

digit 

86000155-000 4-57 



Setting Data Items to Null Values (cont.) 

4-58 

The variable elements of an item name are explained as follows: 

Element Explanation 

<underscore 
name> 

A string of from 1 to 17 letters, digits, and underscores C), starting with 
a letter and ending with either a letter or a digit. 

<hyphen name> A string of from 1 to 17 letters, digits, and hyphens (-), starting with a 
letter and ending with either a letter or a digit. 

<integer> A subscript for an OCCURS clause item. An integer is a whole number 
(0123456789) that consists of from 1 to 12 digits and that has a 
maximum value of 549755813887. 

Program Examples 

The following program fragments use the PUTNULL entry points to set data items to 
their null values~ The structure is EMP. 

ALGOL Program Fragment 

In the ALGOL example, the data item value is EMP _SALARY. 

%Declaring local variables 

STRING 
DATA_SET_NAME, ITEM_NAME; 

BOOLEAN 
RSLT; 

%Assigning values to parameters 

DATA SET NAME:="EMP"· - - , 

%Declaring library entry point 

LIBRARY DMI; 
BOOLEAN PROCEDURE DBPUTNULL(STRUCTURE,ITEM); 

STRING STRUCTURE, ITEM; 
LIBRARY DMI (ACTUALNAME="ALGOLPUTNULL II

); 

%Invoking entry point 

ITEM NAME:=IIEMP SALARY"· - - , 
RSLT:=DBPUTBOOLEAN(DATA_SET_NAME,ITEM_NAME); 
IF RSLT 

THEN EXCEPTIONHANDLER; 

8600 0155-000 



Setting Data Items to Null Values (cont.) 

COBOl74 or COBOl85 Program Fragment 

In the example, the data item value is EMP-SALARY. Because the variable RESULT is 
declared as a COMP item, this fragment can be used in a COBOL74 or a COBOL85 
program. 

Note: To make this example a COBOL program fragment, declare 
RESULT as a COMP-2 item. 

***Declaring variables 

01 DATA-SET-NAME 
01 ITEM-NAME 
01 RESULT 

***Invoking entry point 

PIC X (17) VALUE IS II EMP" • 
PIC X(17) VALUE IS SPACES. 
PIC 9(1)COMP VALUE IS 0. 

MOVE IIEMP-SALARY" TO ITEM-NAME. 
CALL "DBPUTNULL OF OMINTERPRETER" 

USING DATA-SET-NAME, ITEM-NAME 
GIVING RESULT. 

FORTRAN77 Program Fragment 

In the FORTRAN77 example, the data item value is EMP-SALARY. 

***Oeclaring library entry point 

LOGICAL FUNCTION OBPUTN (STR, ITEM) 
CHARACTER STR, ITEM 
IN LIBRARY OMI (ACTUALNAME = II FORTRAN77PUTNULL") 

END 

***Setting variables to initial values 

CHARACTER OSNAME 
* ITMNAM 

*4 
*13 

***Declaring local variables 

LOGICAL RSLT 

***Invoking entry point 

ITMNAM = "EMP-SALARY" 
RSlT = DBPUTN(DSNAME,ITMNAM) 
IF (RSLT) CALL EXCEPT 

8600 0155-000 

/"EMP"/, 

~59 



Constructing Data Transfers during Program Execution 

Constructing Data Transfers during Program Execution 

4-60 

You Can dynBmically construct DBGET and DBPUT operations during program 
execution through a DATA data transfer entry point. 

Passing Parameters 

The DATA entry points have two required parameters: the data request parameter and 
the data parameter. 

Parameter 

<data request> 

<data> 

Explanation 

Specifies the type of operation (DBGET or DBPUT), the data type of the 
item to be transferred, and the structure and item involved in the 
operation. 

For DBPUT operations, specifies the actual data that is moved to the 
user work area from the program. 

For DBGET operations, specifies the actual data that is moved from the 
user work area to the program. 

Table 4-13 gives the exported names of the entry points, as well as the parameters and 
the data type of each parameter. 

Table 4-13. Constructing Transfers during Program Execution 

Data Type of 
Exported Name of Entry Point Parameter Parameter 

ALGOLDATA <data request> STRING 

<data> STRING 

DBDATA <data request> DISPLAY 

<data> DISPLAY 

FO RTRAN 77 DATA <data request> CHARACTER 

<data> CHARACTER 

There are two syntaxes for the data request parameter: one for ALGOL and COBOL, 
and one for FORTRAN77. Alllanguage~ use the same syntax for the data parameter. 

ALGOL and COBOL <data request> 

1 
GET ~ BO~LEAN structure>--<item> 
PUT REAL 

STRING 
KANJI 

PUT - NULL 

8600 0155-000 



Constructing Data Transfers during Program Execution (cant.) 

FORTRAN77 <data request> 

structure>--<i tem>>-------------i 
PUT REAL ---I 1 GET ~ LOGICAL 

CHARACTER 
KANJI 

. PUT - NULL --_ ....... 

Element 

GET <data type> 
<structure> 
<item> 

PUT <data type> 
<structure> 
<item> 

<data> 

Explanation 

For ALGOL, COBOL, COBOL74, and COBOL85 programs, moves a data 
value of type Boolean, real, string, or Kanji to a variable declared in the 
program. The user work area is searched for the specified structure and 
data set item. The structure can be either a data set or a database. 

For FORTRAN77 programs, moves a data value of type logical, real, 
character, or Kanji to a variable declared in the program. The user work 
area is searched for the specified structure and data set item. The 
structure can be either a data set or a database. 

For ALGOL, COBOL, COBOL74, and COBOL85 programs, moves a data 
value of type Boolean, real, string, Kanji, or null from a variable declared 
in the program to the work area. During a store operation, the value will 
be stored in the specified structure and data set item. The structure can ~ 
be either a data set or a database. 

For FORTRAN77, moves a data value of type logical, real,character, 
Kanji, or null from a variable declared in the program to the specified 
data set item in the structure. The structure can be either a data set or a 
database. 

r:<BOOlean varia~ 
<real variable 
string variable 

Element 

<data> 

8600 0155-000 

Explanation 

A Boolean, real, or string variable declared in the program. The variable 
must meet the appropriate language requirements for a variable of that 
type. Consult the appropriate language reference manual. 

4-61 



Constructing Data Transfers during Program Execution (cont.) 

4-62 

Program Examples 

The following program fragments use DATA entry points to to set data items to their . 
null values. 

ALGOL Program Fragment 

%Declaring local variables 

STRING 
DATA_REQUEST, DATA_BUFFER; 

BOOLEAN 
RSLT; 

%Assigning values to parameters 

%Values are assigned to the declared variables within the body of the 
%program. 

%Declaring library entry point 

LIBRARY DMI; 
BOOLEAN PROCEDURE DBDATA(REQUEST,DATA); 

STRING REQUEST, DATA; 
LIBRARY DMI (ACTUALNAME="ALGOLDATA"); 

%Invoking entry point 

DATA_REQUEST:="PUT REAL EMP EMP-DATE-HIRED"; 
DATA BUFFER:="811223"· - , 
RSLT:=DBDATA(DATA_REQUEST,DATA_BUFFER); 
IF RSLT 

THEN EXCEPTIONHANDLER; 

COBOl74 or COBOl8S Program Fragment 

Note: . The variable RESULT is declared as a COMP item, making this 
example either a COBOL74 or a COB0L85 program fragment. [fit 
had been declared as COMP-2 item, the fragment could be used in a 
COBOL program. 

8600 0155-000 



Constructing Data Transfers during Program Execution (cont.) 

***Declaring variables 

01 DATA-REQUEST 
01 DATA-BUFFER 
01 RESULT 

***Invoking entry point 

PIC X(40) VALUE IS SPACES. 
PIC X(10) VALUE IS SPACES. 
PIC 9(1) COMP-2 VALUE IS 0. 

MOVE "GET REAL EMP EMP-NO" TO DATA_REQUEST. 
CALL "DBDATA OF DMINTERPRETER" 

USING DATA-REQUEST, DATA-BUFFER 
GIVING RESULT. 

FORTRAN77 Program Fragment 

***Declaring library entry point 

LOGICAL FUNCTION DBDATA (REQUST, DATUM) 
CHARACTER REQUST, DATUM 
IN LIBRARY DMI (ACTUALNAME = II FORTRAN77 DATA II ) 

END 

***Setting variables to initial values 

CHARACTER DATREQ *40 
* DATBUF *22 

***Declaring local variables 

LOGICAL RSLT 

***Invoking entry point 

DATREQ = "GET REAL EMP EMP-SSN" 
RSLT = DBDATA(DATREQ,DATBUF) 
IF (RSLT) CALL EXCEPT 

DATREQ = "GET REAL EMP EMP-DATE-HIRED" 
RSLT = DBDATA(DATREQ,DATBUF) 
IF (RSLT) CALL EXCEPT 

DATREQ = IIGET STRING EMP EMP-LNAME" 
RSLT = DBDATA(DATREQ,DATBUF) 
IF (RSLT) CALL EXCEPT 

8600 0155-000 4-63 



4-64 86000155-000 



Section 5 
Handling Exceptions 

Whenever a call to a DMlNTERPRETER library standard entry point, data transfer 
entry point, or attribute setting entry point cannot be successfully or correctly 
completed, the DMSII software returns an exception word to the program. 

The exception word, also called a result descriptor, contains three items of information: 

• A value that can be used to determine if an error or exception occurred. (An 
exception affects only the application program that detected the exception. An error 
is caused by a problem within the database. An error affects all programs that 
request similar data management operations.) 

• The exception category and subcategory. 

• The structure number involved. 

The exception handling entry points allow you to return the exception word, the text of 
the exception message, or the name of the exception category to your program. Your 
program locates the text of the message and the name (type) of the category by calling 
the DMSUPPORT library. 

Note: All the exceptions and errors that can be returned by the language 
extensions can also be returned by the interpretive interface. 
In addition, the interpretive interface can return a category of 
exceptions called INTLIBERROR. These errors are valid only for the 
interpretive interface. For more information about exceptions that 
might occur, refer to Appendix B, "DMSII Exceptions and Errors. " 

This section details the exception handling entry points by task. Each exception 
handling task with its corresponding entry points are listed in Table 5-1. Use the 
heading for each listed task to locate the pages that details the entry point. For example, 
a description of the exception handling entry points ALGOLSTATUS, DBSTATUS, and 
FORTRAN77STATUS is found under "Returning the Exception Word." 

8600 0155-000 5--1 



Handling Exceptions 

Table 5-1. Exception Handling Entry Points to the DMINTERPRETER Library by Task 

Task Entry Points 

Returning the exception word ALGOLSTATUS 

DBSTATUS 

FORTRAN77STATUS 

Returning the text of an exception message ALGOLEXCEPTIONTEXT 

DBEXCEPTIONTEXT 

FORTRAN77EXCEPTIONTEXT 

Identifying the type of exception ALGOLEXCEPTION NAME 

DBEXCEPTION NAM E 

FORTRAN77EXCEPTIONNAME 

The discussion of each task inc1qdes the following: 

• A brief explanation of the function of the entry point 

• Syntax diagrams and semantics that describe required parameters 

• Program fragments that illustrate 

Declaring variables for the entry points 

Invoking the entry point 

Returning results from the DMINTERPRETER library 

Handling exceptions returned by the entry point 

Unless otherwise noted, COBOL, COBOL74, and COBOL85 have the same 
requirements. 

Refer to Section 3, "Manipulating the Database," Section 4, "Transferring Data," and 
Section 6, "Restricting Calls to the Accessroutines," for information on standard entry 
points, data transfer entry points, and attribute setting entry points, respectively. 

Note: Until the database is explicitly opened, any callan a standard 
entry point, a data transfer entry point, or an attribute setting entry 
point results in an error. However, your program can call the three 
exception handling entry points and perform operations on the 
intrinsic data set DBSTRUCTURE whether the database is opened 
or closed. 

5-2 8600 0155-000 



Returning the Exception Word 

Returning the Exception Word 
The status entry point returns the exception word for the last called entry point. The 
exception word contains three items: 

• A value that can be used to determine if an error or exception occurred 

• The exception category and subcategory 

• The structure number involved 

The exception word can be passed to the exception text entry point (to retrieve the text 
of the exception message) or to the exception name entry point (to retrieve the name of 
the exception category). 

Passing a Parameter 

For ALGOL and FORTRAN77, the status exception handling entry point has no 
required parameter. 

For COBOL, COBOL74, and COBOL85, your program needs an exception variable. 

Parameter 

<exception> 

Explanation 

A variable containing a value that signifies whether an exception 
occurred during the last entry point call. 

For COBOL, the variable must be declared at level 01 as a PIC 9(12} 
COMP-2 item. For COBOL74 and COBOL85, the variable must be 
declared at level 01 as a PIC 9(12} COMP item. 

Table 5-2 gives the exported names of the entry points, as well as the parameters and 
the data type of each parameter. 

Table 5-2. Returning an Exception Word 

Exported Name of 
Entry Point Parameter Data Type of Parameter 

ALGOLSTATUS Not applicable. Not applicable. 

DBSTATUS <exception> COMP-2 (COBOL) 

COMP (COBOL74 and COBOL85) 

FORTRAN77STATUS . Not applicable. Not applicable. 

Program Examples 

The following program fragments illustrate how to obtain an exception word from the 
last called entry point. 

8600 0155-000 5-3 



Returning the Exception Word (cont.) 

5-4 

ALGOL Program Fragment 

%Declaring local variables 

BOOLEAN 
STATUSRSLT; 

%Declaring library entry point 

LIBRARY DMI; 
BOOLEAN PROCEDURE DBSTATUS; 

BOOLEAN PROCEDURE DBSTATUS; 
LIBRARY DMI (ACTUALNAME="ALGOLSTATUS II ); 

%Invoking entry point 

STATUSRSLT:=DBSTATUS; 

COBOL, COBOl74, or COBOla5 Program Fragment 

***Declaring variables for COBOL 

01 EXCEPTION-WORD PIC 9(12) COMP-2. 

***Declaring variables for COBOL74 and COBOLaS 

01 EXCEPTION-WORD PIC 9(12) COMP. 

***Invoking entry point 

CALL IIDBSTATUS OF DMINTERPRETER" 
USING EXCEPTION-WORD. 

FORTRAN77 Program Fragment 

***Declaring library entry pOint 

LOGICAL FUNCTION OBSTAT () 
IN LIBRARY OMI (ACTUALNAME = "FORTRAN77STATUS") 

END 

***Setting variables to initial values 

LOGICAL RESULT 

***Invoking entry point 

RESULT = OBSTAT() 

8600 0155-000 



Returning the Text of an Exception Message 

Returning the Text of an Exception Message 
After the status operation returns the exception word to the program, you can use the 
exception text operation to return and display the text of an exception message. 

The text of the message is returned from the DMSUPPORT library. The message is 
identified by the category, subcategory, and structure number in the exception word. 
(Refer to Appendix B, "DMSII Exceptions and Errors," for more information on 
categories and subcategories.) 

Notes: 

• A calIon a status entry point must precede any calIon an 
exception text entry point. 

• If you receive an error message during an exception text 
operation, check whether the DMSUPPORT library is currently 
un01Jailable. 

Passing Parameters 

There are two required parameters: a variable denoting whether an exception has 
occurred and a variable for the text of the message. 

Parameter 

< exception> 

Explanation 

A variable containing a value that signifies whether an exception 
occurred during the last entry point call. 

ForCOBOL, the variable must be declared at level 01 as a PIC 9(12) 
COMP-2 item. For COBOL74 and COBOL85, the variable must be 
declared at level 01 as a PIC 9(12) COMP item. 

<text of exception 
message> 

A variable containing the category name, the structure name and number 
(if a structure is involved), and the text of the exception or error message. 

If the text cannot fit into the variable, the message is truncated. If the 
text does not fill the variable, it is padded with trailing blanks. 

If no exception has occurred, the variable contains the text NO 
EXCEPTION. 

Table 5-3 gives the data types for the parameters and the exported names of the entry 
points. 

8600 0155-000 5-5 



Returning the Text of an Exception Message (cont.) 

5-6 

Table 5-3. Returning the Text of an Exception Message 

Exported Name of Entry Point· Parameter Data Type of Parameter 

ALGOLEXCEPTIONTEXT <exception> BOOLEAN 

<text> STRING 

DBEXCEPTIONTEXT < exception> COMP-2 (COBOL) 

COMP (COBOL74 and COBOL85) 

<text> DISPLAY 

FORTRAN77EXCEPTIONTEXT < exception> LOGICAL 

<text> CHARACTER 

Program Examples 

The following program fragments use an exception text operation to obtain an exception 
message. 

ALGOL Program Fragment 

%Declaring library entry point 

LIBRARY DMI; 
BOOLEAN PROCEDURE DBEXCEPTIONTEXT(EXCEPTION,MSG); 

VALUE EXCEPTION; 
BOOLEAN EXCEPTION; 
STRING MSG; 
LIBRARY DMI (ACTUALNAME="ALGOLEXCEPTIONTEXT"); 

%Exception handling procedure 

PROCEDURE EXCEPTIONHANDLER; 
BEGIN 

STRING. EXCEPTIONMSG; 
BOOLEAN STATUSRSLT; 

STATUSRSLT:=DBSTATUS; 
DBEXCEPTIONTEXT(STATUSRSLT,EXCEPTIONMSG); 
WRITE(REMOTEFILE,<EXCEPTION_TEXT="»; 
WRITE(REMOTEFILE,<A80>,EXCEPTIONMSG); 

END OF EXCEPTIONHANDLER; 

86000155-000 



Returning the Text of an Exception Message (cont.) 

COBOL, COBOl74, or COBOl85 Program Fragment 

***Declaring variables for COBOL 

01 EXCEPTION-WORD 
01 EXCEPTION-MSG 

PIC 9(12) COMP-2. 
PIC X(80). 

***Declaring variables for COBOL74 and COBOL8S 

01 EXCEPTION-WORD 
01 EXCEPTION-MSG 

***Invoking entry point 

PIC 9(12) COMP. 
PIC X(80). 

CALL "DBSTATUS OF DMINTERPRETER" 
USING EXCEPTION-WORD. 

CALL "DBEXCEPTIONTEXT OF DMINTERPRETER" 
USING EXCEPTION-WORD, EXCEPTION-MSG. 

MOVE EXCEPTION-MSG TO REMOTE-REC. 
WRITE REMOTE-REC. 

FORTRAN77 Program Fragment 

***Declaring library entry point 

SUBROUTINE DBEXCT (EXCEPT, TEXT) 
LOGICAL EXCEPT 
CHARACTER TEXT 
IN LIBRARY DMI (ACTUALNAME = II FORTRAN77 EXCEPTIONTEXT II 

) 

END 

***Exception handling subroutine 

SUBROUTINE EXCEPT(RESULT) 

$INCLUDE "DATABASE/DMINTERPRETER" 2~290000-20299999 

CHARACTER 
LOGICAL 

MSG *70 
RESULT 

RESULT = DBSTAT() 

CALL DBEXCN(RESULT,MSG) 
WRITE (6,200) MSG 

CALL DBEXCT(RESULT,MSG) 
WRITE(6,200)MSG 

200 FORMAT(1X,A) 
RETURN 
END 

8600 0155-000 5-7 



Identifying the Type of Exception 

Identifying the Type of Exception 

5--8 

After the status operation returns the exception word to the program, can use an 
exception name operation to return the type of exception. Your program can then 
display the exception category. 

The Accessroutines can return 21 types of exceptions. Each type is considered a distinct 
major category. The category name is returned from the DMSUPPORT library. Refer to 
Appendix B, "DMSn Exceptions and Errors," for more information on categories and 
subcategories. 

Notes: 

• A calIon a status entry point must precede any calion an 
exception name entry point. 

• If you receive an error message during an exception name 
operation, check whether the DMSUPPORT library is currently 
unavailable. 

Passing Parameters 

The exception name entry points have two required parameters: a variable denoting 
whether an exception has occurred and a variable containing the name of the type of 
exception. 

Parameter 

<exception> 

<name of 
exception 
category> 

Explanation 

A variable containing a value that signifies whether an exception 
occurred during the last entry point call. 

For COBOL, the variable must be declared at level 01 as a PIC 9(12) 
COMP-2 item. For COBOl74 and COBOl85, the variable must be 
declared at level 01 as a PIC 9(12) COMP item. 

A variable containing the name of the exception. If the name cannot fit 
into the variable, the name is truncated. For example, if the variable 
holds only five characters, the category OPEN ERROR is stored as 
OPENE. If the name does not fill the variable, trailing blanks are added .. 

If no exception has occurred, the variable contains the text NO 
EXCEPTION. 

Table 5-4 gives the data types for the parameters and the exported names of the entry 
points. 

8600 0155-000 



Identifying the Type of Exception (cont.) 

Table 5-4. Identifying the Type of Exception 

Exported Name of Entry Point Parameter Data Type of Parameter . 

ALGOLEXCEPTIONNAME <exception> BOOLEAN 

<name> STRING 

DBEXCEPTIONNAME < exception> COMP-2 (COBOL) 

COMP (COBOL74 and COBOL85) 

<name> DISPLAY 

FORTRAN77EXCEPTIONNAME < exception> LOGICAL 

<name> CHARACTER 

Program. Examples 

The following program fragments use an exception name operation to obtain the type of 
exception. 

ALGOL Program Fragment 

%Declaring library entry point 

LIBRARY DMI; 
BOOLEAN PROCEDURE DBEXCEPTIONNAME(EXCEPTION,CATEGORY); 

VALUE EXCEPTION; 
BOOLEAN EXCEPTION; 
STRING CATEGORY; 
LIBRARY DMI (ACTUALNAME=II ALGOLEXCEPTIONNAME II ) ; 

%Exception handling procedure 

PROCEDURE EXCEPTIONHANDLER; 
BEGIN 

STRING EXCEPTIONMSG; 
BOOLEAN STATUSRSLT; 

STATUSRSLT:=DBSTATUS; 
DBEXCEPTIONNAME(SJATUSRSLT,EXCEPTIONMSG); 
WRITE(REMOTEFILE,<EXCEPTION_NAME=III1,A14>,EXCEPTIONMSG»; 

END OF EXCEPTIONHANDLER; 

. 8600 0155-000 5-9 



Identifying the Type of Exception (cant.) 

5-10 

COBOL, COBOL74, or COBOl8S Program Fragment 

**~Declaring variables for COBOL 

01 EXCEPTION-WORD 
01 EXCEPTION-NAME 

PIC 9(12) COMP-2 •. 
PIC X(14). 

***Declaring variables for COBOL74 and COBOL85 

01 EXCEPTION-WORD 
01 EXCEPTION-NAME 

***Invoking entry point 

PIC 9(12) COMP. 
PIC X (14) • 

CALL "DBSTATUS OF DMINTERPRETER" 
USING EXCEPTION-WORD. 

CALL "DBEXCEPTIONNAME OF DMINTERPRETER" 
USING EXCEPTION-WORD, EXCEPTION-NAME. 

MOVE EXCEPTION-NAME TO REMOTE-REC. 
WRITE REMOTE-REC. 

FORTRAN77 Program Fragment 

***Declaring library entry point 

SUBROUTINE DBEXCN (EXCEPT, TEXT) 
LOGICAL EXCEPT 
CHARACTER NAME 
IN LIBRARY DMI (ACTUALNAME = II FORTRAN77 EXCEPTIONNAME" ) 

END· 

***Exception handling subroutine 

SUBROUTINE EXCEPT(RESULT) 

$INCLUDE "DATABASE/DMINTERPRETER" 20290000-20299999 

CHARACTER 
LOGICAL 

MSG *70 
RESULT 

RESULT = DBSTAT() 

CALL DBEXCN(RESULT,MSG) 
WRITE(6,200)MSG 

CALL DBEXCT(RESULT,MSG) 
WRITE(6,200)MSG 

200 FORMAT (lX,A) 
RETURN 
END 

8600 0155-000 



Section 6 
Restricting Calls to the Accessroutines 

This section details the attribute setting entry point you use to restrict the number of 
times the DMINTERPRETER library can call the Accessroutines to complete a find, 

. lock, or secure operation. 

The discussion includes the following: 

• A brief explanation of the function of the entry point 

• An ·explanation of the required parameters 

Read Section 2, "Accessing the Interpretive Interface," for an explanation of how each 
language accesses the interpretive interface and invokes an entry point. 

Passing Parameters 

Each language has only one attribute setting entry point. (COBOL, COBOL74, and 
COBOL85 have the same requirements.) The entry point has two parameters: limit 
type and limit value. 

Parameter 

<limit type> 

<limit value> 

Explanation 

A string parameter that specifies the type of limit to be set (what 
operation to restrict). 

Note: The only valid limit type is FINDLIMIT. It restricts 
find, lock, and secure operations and prevents long 
linear searches. Both record and structure find, lock, 
and secure operations are restricted. 

An integer string parameter that specifies the maximum number of times 
the OMINTERPRETER can call the Accessroutines to perform a find, 
lock, or secure operation. The limit value has two restrictions: 

• When the OM INTERPRETER is first initialized, FINOLiMIT is set to 
the default value of 0 (zero). A zero value disables the FINOLiMIT 
mechanism, permitting a linear search of the entire data set. 

• Negative values are not allowed. 

Table 6-1 gives the exp~rted names of the entry points, as well as the parameters and 
the data type of each parameter. 

8600 0155-000 6--1 



Restricting Calls to the Accessroutines 

6-2 

Table 6-1. Attribute Setting Entry Points- Restricting Calls to Accessroutines 

Data Type of 
Exported Name of Entry Point Parameter Parameter 

ALGOLSETLIM IT <limit type> STRING 

<limit value> STRING 

DBSETLIMIT <limit type> DISPLAY 

<limit value> DISPLAY 

FORTRAN77SETLIMIT <limit type> CHARACTER 

<limit value> CHARACTER 

J 

Note: 

• If you specify an invalid limit type, the Accessroutines returns 
INTLIBERROR 33. 

• If the DMINTERPRETER library exceeds the limit value, the 
Accessroutines returns INTLIBERROR 35. 

Refer to Appendix B, "DMSn Exceptions and Errors," for more information on 
INTLIBERROR errors. 

P~ogram Examples 

The following ALGOL, COBOL, and FORTRAN77 program fragments limit find, lock, 
and secure operations (on both records and s~ructures), overriding the system default. 

In each program. fragment the limit type is FINDLIMIT and the limit value is 9. 

86000155-000 



Restricting Calls to the Accessroutines 

ALGOL Program Fragment 

%Declaring local variables 

STRING 
LIMIT_TYPE, LIMIT_VALUE; 

BOOLEAN 
RSLT; 

%Assigning values to parameters 

LIMIT TYPE: =" FINDLIMIT"· - , 
LIMIT VALUE:=19"· - , 

%Declaring library entry point 

LIBRARY DMI; 
BOOLEAN PROCEDURE DBSETLIMIT(LIMITTYPE, LIMITVALUE) 

STRING LIMITTYPE, LIMITVALUE; 
LIBRARY DMI (ACTUALNAME=" ALGOLSETLIMIT") ; 

%Invoking entry point 

RSLT: =DBSETLIMIT (LIMIT_TYPE, LIMIT_VALUE); 
IF RSLT 

THEN EXCEPTIONHANDLER; 

COBOL, COBOl74, or COBOl85 Program Fragment 

***Declaring variables 

01 LIMIT-TYPE 
01 LIMIT-VALUE 
01 RESULT 

***Invoking entry point 

MOVE "9" TO LIMIT -VALUE. 

PIC X(17) VALUE IS "FINDLIMIT". 
PIC X(17) VALUER IS SPACES. 
PIC 9(1) COMP-1 VALUE IS 0. 

CALL "DBSETLIMIT OF DMINTERPRETER" 
USING LIMIT-TYPE, LIMIT-VALUE 
GIVING RESULT. 

8600 0155-000 6-3 . 



Restricting Calls to the Accessroutines 

6-4 

FORTRAN77 Program Fragment 

***Declaring library entry point 

LOGICAL FUNCTION DBSETLIMIT (LTT, LTV) 
CHARACTER LTT, LTV 
IN LIBRARY DMI (ACTUALNAME=" FORTRAN77SETTLIMIT") 

***Setting variables to initial values 

CHARACTER LL T 
LTV 

*9 
*2 

/" FINDLIMIT" / 
/"9"/ 

***Declaring local variables 

LOGICAL RSLT 

***Invoking entry point 

RSLT = DBSETL(LTT,LTV) 
IF (RSLT) CALL EXCEPT 

8600 0155-000 



Section 7 
Determining the Database Structure 

The DMINTERPRETER library contains an intrinsic, read-only data set named 
DBSTRUCTURE. This data set holds structural information about the database that 
allows your application program to do the following: 

• Determine the database structure at run time. 

• Use general-purpose routines that can access any database and yet be 
data-independent. 

Generating the DB'STRUCTURE Data Set 
As one of its options, the program BUILDINQ can automatically generate the 
DBSTRUCTURE data set when the DMINTERPRETER library is compiled. If the data 
set is generated, it need not be declared in the DASDL description of the database. 

Notes: 

• If the DASDL description of the database contains a 
user-declared data set named DBSTRUCTURE, ~UILDINQ 
cannot generate the intrinsic data set DBSTRUCTURE. 

• If you are using A Series Extended Retrieval with Graphic 
Output (ERGO), you must generate the intrinsic data set 
DBSTRUCTURE. 

For more information on how to use BUILDINQ to generate the data set, refer to 
Appendix A, "Generating the DMINTERPRETER Library." 

Accessing the DBSTRUCTURE Dat~ Set 
Unlike other data sets, your application program can access the intrinsic 
DBSTRUCTURE data set before opening the database. However, at all times, only 
three operations can be performed on the DBSTRUCTURE data set: find, get, and set. 

To access items in the DBSTRUCTURE 4ata set, use a find operation entry point. 
For example, the following call to DBFIND locates the next required item in 
DBSTRUCTURE: 

DBFIND ("NEXT", "DBSTRUCTURE", "ITEM-REQUIRED") 

8600 0155-000 7-1 



Determining the Database Structure 

Describing the Structure and Contents of 
DBSTRUCTURE 

7-2 

DBSTRUCTUltE contains an entry for each data set, set, subset, access, item; and link 
in the database. No sets or subsets spanDBSTRUCTURE. 

DBSTRUCTURE behaves as if it had the following DASDL description: 

DBSTRUCTURE DATA SET 

(DB-ID 
DB-OWNER 
DB-NAME 
DB-TYPE 

FIELD(16) 
FIELD(16) 
ALPHA(17) 
ALPHA(17) 

% ITEMS PRESENT WHEN DB-TYPE = "DATASET" 

DATASET-SUBTYPE ALPHA (17) ; 

% ITEMS PRESENT WHEN DB-TYPE = "SET" 

SET-SUBTYPE 
SET-ACCESS-METHOD 
SET-SPANS-DATASET 

ALPHA(17) ; 
ALPHA(17) ; 
NUMBER(4); 

% ITEMS PRESENT WHEN DB-TYPE = "ITEM" 

ITEM-SUBTYPE 
ITEM-SUBSCRIPTS 
ITEM-OCCURS 
ITEM-OWNER-GROUP 
ITEM-REQUIRED 
ITEM-SIZE 
ITEM-SCALE-FACTOR 
ITEM-SIGNED 
ITEM-KEY-CLASS 
ITEM-RECORD-TYPE 

ALPHA(17); 
NUMBER(2); 
NUMBER(4); 
NUMBER(4); 
BOOLEAN; 
NUMBER(4); 
NUMBER(2); 
BOOLEAN; 
ALPHA(17); 
NUMBER(3); 

% ITEMS PRESENT WHEN DB-TYPE = "LINK" 

LINK-TO-DATASET 
LINK-OCCURS 

) ; 

NUMBER(4); 
NUMBER(4); 

REQUIRED; 
REQUIRED; 
REQUIRED; 
REQUIRED; 

As described in Table 7-1, the first four items in the record (DB-ID, DB-OWNER, 
DB-NAME, and DB-TYPE) uniquely identify the database. These items always have 
nonnull values; they are required items. When a record is stored in the data set, the 
sYstem tests all required items. If a req~ed item contains a null value, the storing 
program receives an exception and does not store the record. You can use the required 
option to ensure that all data items, with the exception of Boolean items, are assigned a 
nonnull value. 

8600 0155-000 



Determining the Database Structure 

Table 7-1. DBSTRUCTURE Items 

Item Description 

DB-ID Contains a positive number that uniquely identifies each component 
in the database. OB-IO allows records in OBSTRUCTURE to be 
associated with each other. Items in more than one variable record 
type are considered to be different entities, each with a different 
OB-IO. 

DB-OWNER Contains the OB-IO of the data set that owns this entry. DB-OWNER 
is 0 (zero) for the global data entry. All disjoint structures and global 
data items have the DB-ID for global data. 

DB-NAME Contains the name of the entity. Trailing blanks are added, if 
needed. 

DB-TYPE Contains a string describing the type of the entity. Valid values and 
their explanations are as follows: 

• DATASET. Specifies a data set. 

• SET. Specifies a set, subset, or access. 

• ITEM. Specifies a data item. 

• LINK. Specifies a link. 

Entities are assigned nonnull and null values as follows: 

• If the DB-TYPE is DATASET, the item DATASET-SUBTYPE has a nonnull value. 
All SET, ITEM, and LINK. entities are null. 

• If the DB-TYPE is SET, the items SET-SUBTYPE, SET-ACCESS-METHOD, and 
SET-SP ANS-DATASET have nonnull values. All DATASET, ITEM, and LINK 
entities are null. 

• If the DB-TYPE is ITEM, all items beginning with "ITEM-" have nonnull values. All 
DATASET, SET, and LINK entities are null. 

• If the DB-TYPE is LINK, the items LINK-TO-DATASET and LINK-OCCURS have 
nonnull values. All DATASET, SET, and ITEM entities are null. 

Notes: 

• All sets with group keys have the following two entries in the 
DBSTRUCTURE intrinsic data set: 

An entry that lists the group as its key 

An entry that lists the elementary items as its keys 

• Each database also has an entry for global data. This entry can 
be used to find all the disjoint structures and global data items 
in the database. 

8600 0155-000 7-3 



Determining the Database Structure 

7-4 

Tables 7-2 through 7-5 describe the items associated with each value of DB-TYPE. 

• The items for DATASET are described in Table 7-2. 

• The items for SET are explained in Table 7-3. 

• The items for ITEM are shown in Table 7-4. 

• The items for LINK are given in Table 7-5. 

Table 7-2. DBSTRUCTURE Items for a DB-TYPE of DATASET 

Item 

DATASET·SUBTYPE 

Description 

Contains a string describing the type of a data set. Valid values and 
their explanation are as follows: 

• STANDARD. Identifies a data set that stores new records in 
areas vacated by old records. 

• RANDOM. Identifies a data set that uses a function on an 
Access to retrieve records. 

• ORDERED. Identifies a data set that orders records in the 
sequence defined by the alphanUmeric key. 

• UNORDERED. Identifies a data set that stores records in an 
unpredictable order. 

• GLOBAL. Identifies a data set that locates all disjoint structures 
and global data items in the database. 

• DIRECT. Identifies a data set that uses an index known as an 
access. 

• RESTART. Identifies a data set that the programs access during 
recovery. 

• COMPACT. Identifies a data set that removes null items and 
trailing blanks from alpha items before storing records on disk. 

• STRUCTURE. Identifies the DBSTRUCTURE itself. 

The different types of data sets are detailed in the DMSII Technical Overview. 

8600 0155-000 



Determining the Database Structure 

Table 7-3. DBSTRUCTURE Items for a DB-TYPE of SET 

Item Description 

SET·SUBTYPE Contains a string describing the type of a set. Valid values and their 
explanations are as follows: 

• SET. Identifies a structure that permits logical sequence access. 
It contains one entry for each record in the data set. The set 
can be disjoint or embedded. Records are indexed through a 
key in the data set. 

• SUBSET. Identifies a structure similar to a set, except it only 
indexes certain members of data set. A subset can be 
automatic or manual. 

• ACCESS. Identifies a method of retrieving records from direct, 
random, and ordered data sets in the order defined by a key. 
Accesses do not physically exist on disk. 

SET·SEARCH· Contains a string describing the accessing method used by a set. 
METHOD Valid values and their explanations are as follows: 

• DIRECT. Specifies. direct data set accesses. 

• BINARY. Specifies ordered data set accesses, and index 
sequential and ordered list sets. 

• HASH. Specifies random data set accesses and index random 
sets. 

• LINEAR. Specifies unordered data set accesses and bit vector 
sets. 

SET·SPANS-DATASET Contains the DB-ID of the data set spanned by a set. 

Consult the DMSII Technical Overview for an explanation of types of sets. Read the 
DMSII Application Programming Guide for an explanation of search methods and 
techniques. 

8600 0155-000 7-5 



Determining the Database Structure 

7-6 

Table 7-4. DBSTRUCTURE Items for a DB-TYPE of ITEM 

Item 

ITEM-SUBTYPE 

ITEM-SUBSCRIPTS 

ITEM-OCCURS 

Description 

Contains a string describing the type of an item. Valid values and 
their explanations are as follows: 

• ALPHA. Identifies words and characters stored as EBCDIC 
characters. 

• GROUP. Identifies a collection of related items. The items can 
be alphabetic or numeric items. 

• FIELD. Identifies from 1 to 48 Boolean values or an unsigned, 
nonnegative integer up to 48 bits long. 

• NUMBER. Identifies integers and fractions with or without 
signs. 

• REAL. Identifies single precision floating-point numbers. 

• BOOLEAN. Identifies true or false values. 

• COUNT. Identifies a value that tracks the number of links 
pointing to the record. 

• TYPE. Identifies the record type of the current record. 

• POPULATION. Identifies a value that estimates the expected 
size of the data set. 

Contains the number of subscripts required when the item is used. 
If no subscripts are required, ITEM-SUBSCRIPTS is 0 (zero). 

Stores the subscript limit for an item declared with an OCCURS 
clause in the DASDLdescription. 

Notes: 

• If ITEM-SUBSCRIPTS is 0 (zero), 
ITEM-OCCURS contains a null value. 

• Items that have a nonzero value in 
ITEM-SUBSCRIPTS and a null value in 
ITEM-OCCURS are nonoccurring items. 

• To find the other subscript limits for 
multiple-subscripted items, inspect the 
ITEM-OCCURS entries in which DB-ID 
equals ITEM-OWNER-GROUP. 

continued 

8600 0155-000 



Determining the Database Structure 

Table 7-4. DBSTRUCTURE Items for a DB-TYPE of ITEM (cont.) 

Item 

ITEM-OWNER· 
GROUP 

ITEM·REQUI RED 

ITEM·SIZE 

ITEM·SCALE-FACTOR 

ITEM·SIGNED 

8600 0155-000 

Description 

Contains the DB-ID of the next higher group or field that contains an 
item. The DB-ID can be used to determine 

• The index limit for items in occurring groups and fields. 

• The items that belong to a given group or field. 

If an item does not belong to a group or field, ITEM-OWNER-GROUP 
is O. 

Contains the value TRUE if the entity is a required item. Otherwise, 
the value is FALSE. 

Contains the declared length of a number, field, alpha, or group item 
in hexadecimal digits, bits, EBCDIC bytes, and bytes, respectively. 

Note: Ordinarily, ITEM-SIZE does not include any 
spaces for signed values. However, it does include 
spaces for group items containing signed number 
items. 

Contains the declared number of digits to the right of the decimal 
point for number items and real items that have a scale factor 
declared in the DASDL description. 

The value of a number cannot exceed the following: (The symbol ** 
is used to represent the exponent.) 

10**[(ITEM-SIZE) - (ITEM-SCALE-FACTOR)] 

Unless the real value is declared without precision, the real value 
must be less than the following: 

549755813887.5/10**(ITEM-SCALE-FACTOR) 

Contains the value TRUE for a number item or real item if the item 
can be negative (in other words, declared as signed in the DASDL 
description). It contains the value FALSE for a number or real item 
that cannot be signed. 

continued 

7-7 



Determining the Database Structure 

7-8 

Table 7-4. DBSTRUCTURE Items for a DB-TYPE of ITEM (cant.) 

Item 

ITEM·KEY·CLASS 

ITEM·RECORD·TYPE 

ITEM·USAGE 

Description 

Contains a string indicating the key status of an item in a spanning 
set. Valid entries and their explanations are as follows: 

• MAJOR. Identifies the item as the major key of a spanning set 
or access. (The major key is defined as the first key listed in the 
dec/a ration of the set.) 

• MINOR. Identifies the items as a key of the set. The item is not 
the major key of a spanning set or access. 

• DATA. Specifies that the item appears only as key data in 
spanning sets or accesses. 

• NONE. Specifies that the item does not appear in the key area 
of any access or spanning set. 

Contains the record type of an item. The ITEM-RECORD-TYPE is 0 
(zero) for items in fixed-format records or in the fixed part of 
variable-format records. 

Note: Because an item with a particular DB-ID can only 
be in records of one type, any other item of the 
same name in a different record type has a 
different DB-ID. 

Contains a string describing the usage of an item. Valid values are 
EBCDIC and KANJI. 

Consult the DMSII Technical Overview for information on types of items, the OCCURS 
clause, key status, key items, and record types. 

Table 7-5. DBSTRUCTURE Items for a DB-TYPE of LINK 

Item Description 

lINK-TO·DATASET Contains the DB-ID of the data set to which a link points. 

LINK-OCCURS Contains the limit of the OCCURS clause for a link. If 
LINK-OCCURS is 0 (zero), no OCCURS clause was present in the 
declaration of the link. 

The DMSII Technical Overview contains detailed information about links. 

8600 0155-000 



Appendix A 
Generating the OM I NTERPRETER Library 

To use the interpretive interface, each database must have its own custom-tailored 
DMINTERPRETER library. You can use the program BUILDINQ to generate the 
library interactively or from a Work Flow Language (WFL) job deck. 

Usually, a DMINTERPRETER library is generated only once - after the DASDL source 
code for the database is compiled. However, if there is a directory-level mismatch or if 
you use the REORGANIZATION program. to make physical changes to the database 
description, you need to generate the DMINTERPRETER library again. (Consult the 
DMSII Utilities Operations Guide for specifics of the REORGANIZATION program.) 

Capabilities of the BUILDINQ Program 
The BUILDINQ program does the following: 

• Associates a cycle, version, and timestamp with a copy of each generated file 

• Sets either the DASDL option ZIP or the RECOVER option NOZIP 

• Allows your application program to interface with 

- An entire physical database 

- Selected parts of a database 

- A logical database 

- A maximum of 255 structures plus global data 

• Specifies if the database can be compiled for inquiry only or for inquiry and update 

Files Associated with a DMINTERPRETER Library 
Table A-llists the files associated with a DMINTERPRETER library. 

8600 0155-000 A-I 



c 

Genera~ting the DMINTERPRETER Library 

Table A-I. Files Associated with a DMINTERPRETER Library 

File Name Use 

SYMBOi./BUILDINQ Symbolic file of the program compiled to produce 
OBJECT/BUILDINQ. 

SYMBOL/BUILDINQ can be compiled using DMALGOL 
by equating the DMALGOL file TAPE to the file 
SYMBOL/BUILDINQ. 

SYSTEM/BUILDINQ Object code file for SYMBOL/BUILDINQ. 

SYSTEM/BUILDINQ builds a directory for the portion 
of the database that DMINTERPRETER can access. 
The directory, named 
DMIDIRECTORY/<database name>, is compiled and 
included in the DMINTERPRETER code file for 
run-time interpretation of the database structure. 

DATABASE/DMINTERPRETER Symbolic file for DMINTERPRETER. 

DATABASE/PROPERTIES and 
DMIDIRECTORY/<database name> are included in 
this symbolic file. 

SYSTEM/DMINTERFACE An external coroutine, called by the compilers, to 
extract and check information from 
DESCRIPTION/ <database name>. 

DATABASE/PROPERTIES Each statement in this file defines some aspect of the 
database. The file is included in both the DASDL 
compilation and DATABASE/DMINTERPRETER. 

DESCRIPTION/<database name> File containing a complete description of the database 
in encoded form. This file is the output from a DASDL 
compilation and is used by SYSTEM/DMINTERFACE. 

DMINTERPRETER/<database name> The generated DMINTERPRETER code file. 

DMIDIRECTORY/<database name> The intermediate compiler input file. It is produced by 
SYSTEM/BUILDINQ and included by 
DATABASE/DMINTERPRETER. 

A-2 8600 0155-000 



Generating the DMINTERPRETER Library 

Figure A-l illustrates the relationships among the files. 

DATABASE/PROPERTIES 
(DMSI I fi 1 e) 

DATABASE/DMINTERPRETER 
(DMSII fil e) 

DESCRIPTION/<database name> 
(DASDL file) 

SYSTEM/BUILDINQ 

SYMBOL/BUILDINQ 

SYSTEM/DMINTERFACE 
(DMSII fil e) 

DMIDIRECTORY/<database name> 

DMINTERPRETER/<database name> 

Figure A-I. Relationship of BUILDINQ Files 

8600 0155-000 A-3 



Generating the DMINTERPRETER Library 

Ensuring Directory-Level Consistency between Files 
In order for you to use the interpretive interface, the directory level of the intermediate 
compiler input file DMIDmECTORY/ < database name> and the directory level of the 
symbolic program file DAT ABASE/DMINTERPRETER must be the same. 

During compilation of the interpretive interface, the directory levels are checked to 
ensure consistency. If·a level mismatch is found, the error count for the compiler 
increases by 1, and the following error message is displayed: 

DMIDIRECTORY LEVEL MISMATCH 

You cannot successfully generate the DMINTERPRETER library with a directory-level 
mismatch. To correct the problem, rerun the BUILDINQ program to create a new 
DMIDffiECTORY file with the correct directory level. 

Generating the DMINTERPRETER Library Interactively 

A-4 

You can use the BUILDINQ program to interactively generate a DMINTERPRETER 
library from a remote terminal and to set the RECOVER option NOZIP. 

By default, the DASDL option ZIP is set. The ZIP option causes automatic compilation 
of the DMINTERPRETER program; the NOZIP option inhibits automatic compilation. 
When the NOZIP option is set, BUILDINQ builds a Work Flow Language (WFL) deck 
for compiling DMINTERPRETER. Use the NOZIP option if you want to set any of the 
following: 

• Class specification 

• Family specification 

• U sercode specification 

• Fetch specification 

• Job attribute assignment 

The procedure to use the default of ZIP and the procedure to set NOZIP are basically 
the same. The procedure for using the default is explained in "Remote Generation 
Using the ZIP Option." The differing steps needed to set the NOZIP option are 
explained in "Remote Generation Using the NOZIP Option." 

Note: All input to the BUILDINQ program must be entered in uppercase 
letters. If you use any lowercase letters, you are reprompted. 

8600 0155-000 



Generating the DMINTERPRETER Library 

Remote Generation Using the ZI P Option 

Use the following basic procedure to execute BUILDINQ and to use the default ZIP 
option: I 

1. Initiate the BUILDINQ program. 

2. Select the database. 

3. Select a view of the database. 

4. IT applicable, select data sets. 

5. IT applicable, enter the name of a logical database. 

6. Determine the compiled access mode for the DMINTERPRETER library. 

7. IT applicable, rename hyphenated logical database name. 

8. Enter a database name for the DMINTERPRETER code file. 

9. Enter compilation queue. 

10. Check for verification message. 

These 10 steps are detailed in the following text, including an explanation of when they 
apply. 

Consult the DMSII DASDL Reference Manual and the DMSII Utilities Operations 
Guide for more information about the ZIP option. 

Step 1. Initiating the BUILDING Program 

Begin executing the BUILDINQ program using the RUN command. (RUN c8.n be 
abbreviated as R or RU.) 

R BUILDINQ 

Step 2. Selecting the Database 

Each database must have its own, custom DMINTERPRETER library. At the following 
prompt, enter the name of the database: 

WHAT DATABASE? 

Note: To use the NOZIP option, follow the steps shown in "Remote 
Generation Using the NOZIP Option" in this section before 
proceeding to Step 3. 

8600 0155-000 A-5 



Generating the DMINTERPRETER Library 

Step 3. Selecting a View of the Database 

A-6 

You can generate the DMINTERPRETER library for the physical database, disjoint data 
sets, or a logical database. At the following prompt, enter the number for the database 
option you want: . 

WHICH OPTION? 
1 TOTAL DATABASE 
2 SELECTED DATASETS 
3 LOGICAL DATABASE 

Note: If no logical databases are declared for the specified database, 
option 3 is not displayed. 

As shown in the following table, your entry determines the subsequent sequence of 
prompts: 

Option 

1 

2 

3 

Result 

Accesses the physical database-all database structures, including the 
intrinsic data set DBSTRUCTURE. 

The program skips steps 4 and 5; it resumes at "Step 6. Determining the 
Compiled Access Mode for the DMINTERPRETER." See Figure A-2. 

Accesses only those disjoint data sets that are interactively selected. 

The program continues at "Step 4. Selecting Data Sets." See Figure A-3. 

Accesses only a logical database. The logical database represents only parts 
of the database to be used for limited purposes. 

The program skips step 4 and continues at "Step 5. Entering the Name of a 
Logical Database." See Figure A-4. 

The following three flowcharts, A-2, A-3, and A-4, illustrate how the sequence of steps 
differs, depending on your choice. 

8600 0155-000 



Generating the DMINTERPRETER Library 

Figure A-2 is a flowchart for compiling a Dl\1INTERPRETER library for the total 
database. 

Initiate (See step 1) 
BUILINQ 

I 
Enter' (See step 2) 

database name 

I 
Select 

TOTAL DATABASE 
option (See step 3) 

I 
Select (See step 6) 

access mO'de 

I 
Select 

database name for (See step 8) 
DMINTERPRETER/<database name> 

I 
Enter (See step 9) 

comp'; 1 ation queue 

I 
Wait for (See step 10) 

verification message 

Figure A-2. Compiling a DMINTERPRETER Library for the Total Database 

8600 0155-000 A-7 



Generating the DMINTERPRETER Library 

A-8 

Figure A-3 is a flowchart for compiling a DMINTERPRETER library for selected data 
sets. 

Initiate (See step 1) 
BUILINQ 

I 
Enter (See step 2) 

database name 

I 
Select (See step 3) 

SELECTED DATASETS 
option 

I 
Exclude and include (See step 4) 

data sets 

I 
Select (See step 6) 

access mO'de 

J 
Select 

database name for (See step 8) 
DMINTERPRETER/<database name> 

I 
Enter (See step 9) 

compilation queue 

I 
Wait for (See step 10) 

verification message 

Figure A-3. Compiling a DMINTERPRETER Library for Selected Data Sets 

86000155-000 



Generating the DMINTERPRETER Library 

Figure A-4 is a flowchart for compiling a DMINTERPRETER library for a logical 
database. 

Initiate (See step 1) 
BUILINQ 

I 
Enter 

database name' (See step 2) 

I 
Select 

LOGICAL DATABASE (See step 3) 
option 

I 
Enter name' of (See step 5) 

logical database 

I 
Select 

access mode (See step 6) 

Yes Logi cal 
Rename C1atabase name (See step 7) 

logical database hYP,henated 

No 

Select 
database name for (See step 8) 

DMINTERPRETER/<database name> 

I 
- Enter 

comp'i1 at i on queue (See step 9) 

I 
Wait for (See step 10) 

verification message 

Figure A4. Compiling a DMINTERPRETER Library for a Logical Database 

86000155-000 A-9 



Generating the DMINTERPRETER Library 

Step 4. Selecting Data Sets 

A-I0 

If you choose to generate a DMINTERPRETER library for selected data sets, 
BUILDINQ displays the name of each disjoint data set, one at a time. Mter each data 
set name is shown, BUILDINQ displays the following prompt: 

FOR FOLLOWING DATASETS ENTER: 

E (OR EMPTY INPUT) TO EXCLUDE FROM SOFTWARE 

I TO INCLUDE INTO SOFTWARE 

C TO INDICATE DONE 

* TO TERMINATE 

By entering E or I, you decide whether to exclude or include each disjoint data set. 

By entering C or an asterisk (*), you signal the BUILDINQ that you want to terminate 
the run. 

• To terminate the run and generate a DMINTERPRETER library for the 
included data sets, as well as deciding if you want to include the intrinsic data set 
DBSTRUCTURE, enter a C. 

• To terminate the run without generating any DMINTERPRETER library, enter the 
asterisk. 

Option 

E 

null entry 

C 

* 

Result 

Excludes the data set. 

Excludes the data set. 

Includes the data set. 

Indicates that a" desired disjoint data sets have been included. 

BUILDINQ then asks if you want the intrinsic data set DBSTRUCTURE 
included with the selected data sets. Enter YES or NO. 

Terminates the run without generating a DMINTERPRETER library~ 

Note: DBSTRUCTURE is an optional intrinsic data set that hold 
structural information about the database. DBSTRUCTURE can be 
accessed before the database is opened. 

If you use Extended Retrieval with Graphic Output (ERGO) on the 
database, you must explicitly include the DBSTRUCTURE data set 
using the I option. 

For more information about the DBSTRUCTURE data set, read 
Section 7, "Determining the Database Structure." 

Once you have selected the data sets and decided whether to include the 
DBSTRUCTURE data set, BUILDINQ skips step 5 and continues at step 6. 

8600 0155-000 



Generating the DMINTERPRETER Library 

Step 5. Entering the Name of a Logical Database 

At step 3 you can narrow the access to a logical database only. The logical database must 
be identified by name. At the following prompt, enter the name of the logical database: 

LOGICAL DATABASE NAME? 

Note: If the logical database contains an embedded .set that is invoked more 
than once, a remap error can occur. 

Step 6. Determining the Compiled Access Mode for the DMINTERPRETER Library 

A DMINTERPRETER library can be compiled with inquiry-only access (read-only) or 
with both inquiry and update access. At the following prompt, enter the access mode you 
want for the DMINTERPRETER library: 

INQUIRY ONLY (YES OR NO)? 

The following table gives the result of each entry: 

Option Result 

YES Programs that access the database cannot create, delete, or update records; 
the programs can report data. 

NO Programs that access the database can create, delete, update, or report 
data. 

Note: If you compile a DMINTERPRETER library with an inquiry-only 
access, any attempt by a program to open a database with an OPEN 
UPDATE command results in an UNKNOWN OPEN TYPE error. 
Attempts to create, delete, or update records result in READONLY 
errors. 

If your logical database name (as entered in step 5) has no hyphen (-), BUILDINQ goes 
to step 8 and then step 9. If your database name has a hyphen, BUILDINQ proceeds to 
step 8, where you identify the interpreter library, and then proceeds to step 9. 

Step 7. Renaming Hyphenated Logical Database Names 

The BUILDINQ program. uses the name of the database as part of the name for the 
DMINTERPRETER code file DMINTERPRETER/ < database name>. The database 
name cannot contain any hyphens. Therefore, if the logical database name entered at 
step 4 contains a hyphen, BUILDINQ displays the following prompt: 

INTERPRETER NAME? 

Enter" a name consisting of from 1 to 11 identifiers separated by slashes. Each identifier 
can contain from 1 to 17 alphanumeric characters only. For example, the database 
ACCOUNTING/P AYROLL 5 bas two identifiers: ACCOUNTING and PAYROLL5. 
Each identifier is separated by a slash. Each identifier is less than 17 alphanumeric 
characters. 

8600 0155-000 A-11 



Generating the DMINTERPRETER Library 

Note: If a file with the same name already exists, it is replaced by the newly 
compiled file. 

BUILDINQ then proceeds to step 9. 

Step 8. Entering a Database Name for the DMINTERPRETER Code File 

At the following prompt, enter the database name to be used in creating the generated 
DMINTERPRETER code file DMINTERPRETER/ < database name> : 

INTERPRETER NAME (NULL FOR DEFAULT)? 

You can either enter an unhyphenated name or use the default - the name you entered 
in step 2. If you enter a name, the name can consist of from 1 to 11 identifiers separated 
by slashes. Each identifier can contain 1 to 17 alphanumeric characters only. For 
example, the database BRANCHES/OVERSEAS/EUROPE has three identifiers: 
BRANCHES, OVERSEASA, and EUROPE. Each identifier is separated by a slash. Each 
identifier is less than 17 alphanumeric characters. 

Entry 

<database 
name> 

null 

Result 

BUILDINQ uses this database name when it generates the code file 
DMINTERPRETER/<database name>. 

BUILDINQ uses the <database name> you entered in step 2 when it 
generates the code file. 

Note: If a file with the same name already exists, it is replaced by the newly 
compiled file. 

Step 9. Entering the Compilation Queue 

At the following prompt, enter the number of the queue where the DMINTERPRETER 
library should be compiled: 

WHAT QUEUE (NULL FOR DEFAULT)? 

You can use the system default queue or;select a specific queue: 

Option 

null 

<queue 
number> 

Result 

BUILDINQ compiles DMINTERPRETER in the system default queue. 

BUILDINQ compiles DMINTERPRETER in the specified queue. 

Step 10. Displaying the Verification Message 

A-12 

The BUILDINQ program displays the following message as it initiates the compilation of 
the DMINTERPRETER library: 

# GENERATING DMINTERPRETER 

8600 0155-000 



Generating the DMINTERPRETER Library 

Remote Generation Using the NOZIP Option 

You can elect to run BUILDINQ but inhibit the ZIP option by entering $NOZIP at the 
prompt for a database name. Use the NOZIP option when you want to set any of the 
following: 

• Class specification 

• Family specification 

• U sercode specification 

• Fetch specification 

• Job attribute assignment 

Selecting the NOZIP Option 

The procedure for setting NOZIP is identical to the procedure for generating a 
DMINTERPRETER library with the ZIP option, with the following exceptions: 

• You must respond twice to the WHAT DATABASE prompt: once to inhibit ZIP and 
once to name the database. 

• When NOZIP is used, BUILDINQ does not prompt you for a queue; the default 
system queue is always used. 

• BUILDINQ does not compile the DMINTERPRETER library; you must use a WFL 
job deck to compile the library. 

The first prompt after you initiate the BUILDINQ program requests the name of the 
database. To inhibit ZIP, enter $NOZIP. When the BUILDINQ program reprompts for 
the database name, enter the name of the database. 

You begin the sequence by entering 

R BUILDINQ 

The rest of the sequence is as follows: 

BUILDINQ Prompt 

WHAT DATABASE? 

WHAT DATABASE? 

Your Entry 

$NOZIP 

<database name> 

BUILDINQ continues by requesting the view of the database. (See "Step 3. Selecting a 
View of the DatabaSe," in this appendix.) 

Figure A-5 shows the flow of steps when you use the NOZIP option. 

8600 0155-000 A-13 



Generating the DMINTERPRETER Library 

r 

I 
I 
L 

Initiate 
BUILINQ 

I 
Enter 

$NOZIP 

I 
Enter database 

name' 

~ ____ 1 _____ 

(As requi red) 

-----T-----
Select database 

name' for 
DMINTERPRETER/<database name> 

I 
BUILINQ 

ends 

I 
Run 

WFL deck 

I 
I 

...J 

(See step 1) 

(See step 2) 

(See step ~) 

Figure A-5. Using the BUILDINQ Program with the NOZIP Option 

Compiling a DMINTERPRETER Library Where NOZIP Is Set 

A-14 

The BUILDINQ program. cannot compile a DMINTERPRETER library where the 
NOZIP option is set; therefore BUILDINQ does not display a request for the compilation 

8600 0155-000 



Generating the DMINTERPRETER Library 

queue. Instead., after you enter the database name for the D::MINTERPRETER code file, 
BUILDINQ successfully terminates. 

To compile a DMINTERPRETER library with the NOZIP option, you must use a WFL 
job deck that includes the following cards. Do not include a QUEUE statement; any 
queue information is ignored. 

COMPILE DMINTERPRETER/<database name> 
WITH DMALGOL LIBRARY; 

COMPILER FILE TAPE = DATABASE/DMINTERPRETER; 
COMPILER FILE DASDL = DMIDIRECTORY/<database name>; 
COMPILER FILE PROPERTIES = DATABASE/PROPERTIES; 

? DATA 
$ MERGE 
? END 

Note: The file-equation cards might require modification, depending on the 
location of the files being used. 

Generating the DMINTERPRETER Library from WFL 
Job Decks 

BUILDINQ can also be run entirely using a WFL job deck. The cards listed in Table A-2 
can appear, in any order, in the WFL job. 

Table A-2. WFL Cards Used to Generate a DMINTERPRETER Library 

card Action 

DATABASE: <database name> If this card is present, the database description file is 
found in a file titled DESCRIPTION/<database 
name>. BUILDINQ produces the DMIOIRECTORY but 
does not begin compilation of OM INTERPRETER. 

If this card is not present, the OASOL source file must 
be label-equated to the title of the database 
description file. 

DMINTERPRETER This card must be present to specify the 
OM INTERPRETER. 

LDBNAME : <database name> If this card is present, access to the specified logical 
database is assumed; otherwise, access to the total 
database is assumed. The <database name> must 
refer to a logical database declared in OASDL. 

QUEUE: <integer> If this card is present, OM INTERPRETER is compiled 
in the specified queue; otherwise, it is compiled in the 
system default queue. 

continued 

8600 0155-000 A-15 



Generating the DMINTERPRETER Library 

A-16 

Table A-2. WFL Cards Used to Generate a DMINTERPRETER Library (cont.) 

Card 

NOUPDATE 

Action 

If this card is present, records cannot be updated. 
There is no ability to create, delete, or update records; 
you only can inquire. If this card is not present, 
records can be created, deleted, and updated, and you 
also can inquire. 

Note: If you compile a DMINTERPRETER 
library with an INQUIRY only access, 
any attempt by a program 'to open a 
database with an OPEN UPDATE 
command results in an UNKNOWN 
OPEN TYPE error. Attempts to 
create, delete, or update records result 
in READONLYerrors. 

The CARD input file for BUILDINQ can be made into a file of type DISK, REMOTE, or 
READER. 

If the WFL compiler encounters an an error when running the BUILDINQ job deck, 
WFL displays the appropriate error message and terminates BUILDINQ without 
completing the job. 

Consult the Task Attributes Reference Manual, the Task Management Guide, and the 
WFL Reference Manual for more information about WFL and WFLjob decks. 

The following three examples show how to use these cards in'a WFL job deck. 

Example 1: Basic Implementation 

In the first WFL job, the DATABASE card specifies the database (MYDB) whose 
description file is used to build DMINTERPRETER. D:MlNTERPRETER is compiled 
from queue 40. 

?BEGIN JOB BUILDINQFROMCARDSi 
RUN OBJECT/BUILDINQi 
DATA 
DATABASE : HYDB 
DMINTERPRETER 
QUEUE : 40 
?END JOB. 

8600 0155-000 



Generating the DMINTERPRETER Library 

Example 2: Using a File Equation 

The second WFL job uses a file equation to give the external name of the DASDL 
file (DESCRIPTION/MYDB) for the database whose description file is used to build 
DMINTERPRETER. Again, DMINTERPRETER is compiled from queue 40. 

?BEGIN JOB BUILDINQFROMCARDS; 
RUN OBJECT/BUILDINQ; 
FILE DASDL (TITLE=DESCRIPTION/MYDB); 
DATA 
DMINTERPRETER 
QUEUE : 40 
?END JOB 

Example 3: Generating in a Batch Environment 

The third WLF job shows how the interpretive interface can be generated in a batch 
environment for a database named DMlDB. 

?BEGIN JOB CREATE/DMINTERPRETER; 
TASK T; 
REMOVE DMIDIRECTORY/DMIDB; 
RUN OBJECT/BUILDINQ [T]; 
DATA 
$NOZIP 
DATABASE : DMIDB 
DMINTERPRETER 
? % --- END BUILDINQ INPUT --­
IF T ISNT COMPLETEDOK THEN 
ABORT "BUILDINQ RUN FAILED"; 
COMPILE DMINTERPRETER/DMIDB WITH DMALGOL [T] LIBRARY; 
COMPILER FILE DASDL (TITLE=DMIDIRECTORY/DMIDB); 
COMPILER FILE CARD (KIND=PACK, 

TITLE=DATABASE/DMINTERPRETER); 
IF T ISNT COMPILEDOK THEN 
ABORT "DMINTERPRETER COMPILE FAILED"; 
?END JOB. 

8600 0155-000 A-17 



A-l8 8600 0155-000 



Appendix B 
DMSII Exceptions and Errors 

The Accessroutines returns exception and error messages to an application program 
when data management operations carmot be successfully or correctly completed. 

• Exceptions are caused by problems within the application program. For example, an 
. exception is returned if your application program tries to nest logical transactions. 

• Errors are caused by problems within the database or DMSII software. For 
instance, an error is returned if there is an invalid index within the DMSII code. 

Many responses to error messages require running DMSII utilities such as 
REORGANIZATION, DBCERTIFICATION, DMUTILITY, and REBUILD. For details 
about the DMSII utilities, consult the DMSII Utilities Operations Guide. Some 
responses require changes to the DASDL source file for your database. For in-depth 
information on DASDL, read the DMSII DASDL Reference Manual. 

8600 0155-000 B-1 



DMSII Exceptions and Errors 

Categorizing Exceptions and Errors 

The exceptions and errors are divided into 21 major categories. Each major category has 
an associated category number and mnemonic. For example, the major category known 
by the mnemonic SYSTEMERROR is also known as major category 7. Table B-1 lists 
the numbers and mnemonics for the major categories by category number, in ascending 
order. 

Table 8-l. Major Categories for Exceptions and Errors by Category Number 

Number Mnemonic Number Mnemonic 

1 NOTFOUND 11 OPEN ERROR 

2 DUPLICATES 12 CLOSEERROR 

3 DEADLOCK 13 NORECORD 

4 DATAERROR 14 INUSE 

5 . NOTLOCKED 15 AUDITERROR 

6 KEYCHANGED 16 ABORT 

7 SYSTEM ERROR 17 SECURITYERROR 

8 READONLY 18 VERSION ERROR 

9 IOERROR 19 FATALERROR 

10 L1MITERROR 20 INTEGRITYERROR 

21 INTLIBERROR 

Note: Any message that can be returned through the language extensions 
can be returned through the interpretive interface. However, 
INTLIBERROR (category 21) messages can be returned only to 
application programs using the interpretive interface. 

Within each major category, each cause for the exception or error is a subcategory. Every 
subcategory has an associated subcategory number. Tables B-2 through B-21 list the 
major categories alphabetically by mnemonic. Under each category, the table lists the 
valid subcategories and their meaning. 

ABORT Category 

B-2 

The ABORT category is also known as major category 16. The most probable cause for 
an ABORT message is a database abort or a rollback. 

Table B-2 lists the exceptions and errors SUbcategories associated with an ABORT 
message. 

8600 0155--000 



DMSII Exceptions and Errors 

Table B-2. ABORT Subcategories 

Subcategory 
Number Meaning 

1 The database was aborted and rolled back. 

2 An abort occurred, and the Transaction Processing System (TPS) rerun was not 
finished. 

AUDITERROR Category 
The AUDITERROR category is also known as major category 15. The most probable 
cause for an AUDlTERROR message is a conflict in transaction state. 

Table B-3 lists the exceptions and errors subcategories associated with an 
AUIDTERROR message. 

Table B-3. AUDITERROR Subcategories 

Subcategory 
Number Meaning 

1 The program attempted to execute a begin transaction operation on·a database 
that is already in transaction state. 

2 The program attempted to execute an end transaction operation on a database that 
is not in transaction state. 

8600 0155-000 

3 The program attempted to execute a MIDTRANSACTION statement on a database 
that is not in transaction state. 

4 The program attempted to execute a normal begin or end transaction operation on 
a database that was opened by TPS. 

5 The program attempted to execute a TPS begin transaction or end transaction 
operation on a database that was not opened by TPS. 

6 The transaction record has an improper TRSTATE value. 

7 The program attempted to execute a MIDTRANSACTION statement on a database 
that was not opened by TPS. 

8 The program attempted to update an audited database when the program was not 
in transaction state. 

9 The program attempted to abort a single transaction when the program was not in 
transaction state. 

10· The program attempted to write a savepoint record when the program was not in 
transaction state. 

continued 

B-3 



DMSII Exceptions and Errors 

Table 8-3. AUDITERROR Subcategories (cont.) 

. Subcategory 
Number Meaning 

11 The program attempted either to abort a single transaction or to write a savepoint 
record, but the DASDL option INDEPENDENTTRANS was not set for the database. 

CLOSEERROR Category 
The CLOSEERROR category is also known as major category 12. The most probable 
cause for a CLOSEERROR message is an error in closing the database. 

Table B-4lists the exceptions and errors subcategories associated with a CLOSEERROR 
message. 

Table 8-4. CLOSEERROR Subcategories 

Subcategory 
Number Meaning 

1 The database is not open. 

2 An Accessroutines error occurred on one or more structures. 

DATAERROR Category 

8-4 

The DATAERROR category is also known as major category 4. The most probable cause 
for a DATAERROR message is a null value in a required item. 

Table B-5 lists the exceptions and errors subcategories associated with a DATAERROR 
message. 

Table 8-5. DATAERROR Subcategories 

Subcategory 
Number Meaning 

1 Either some required items are null,or the VERIFY condition failed. (The divisor of 
an aggregate item must not be zero.) 

2 The program attempted to create variable-format records with an invalid value for 
the record type. 

continued 

8600 0155-000 



DMSII Exceptions and Errors 

Table 8-5. DATAERROR Subcategories (cont.) 

Subcategory 
Number Meaning 

3 The partition variable yielded an illegal file identifier. 

4 READONLY items were changed and now cannot be stored. 

5 The divisor of a virtual item was 0 (zero). (This condition is data dependent.) 

DEADLOCK Category 
The DEADLOCK category is also known as major category 3. The most probable cause 
for a DEADLOCK message is either a deadly embrace or deadlock condition. 

Table B-6 lists the exceptions and errors subcategories associated with a DEADLOCK 
message. 

Table 8-6. DEADLOCK Subcategories 

Subcategory 
Number Meaning 

1 A deadly embrace occurred when the program attempted to lock a record or while 
the program was waiting for a begin transaction operation. 

The system automatically frees all records for this program. 

2 A timeout occurred when the program attempted to lock a record or while the 
program was waiting for a begin transaction operation. 

3 The LOCKLIMIT value was exceeded. Too many records in this database are 
currently locked. 

DUPLICATES Category 
The DUPLICATES category is also known as major category 2. This category usually is 
reported when duplicates are not allowed. 

Table B-7lists the exceptions and errors subcategories associated with a DUPLICATES 
message. 

8600 0155-000 8-5 



DMSII Exceptions and Errors 

Table B-7. DUPLICATES Subcategories 

Subcategory 
Number Meaning 

1 The program attempted to store a duplicate key item in an index set in which 
duplicates are not allowed. 

2 The program attempted to insert a duplicate key item in a subset or data set in 
which duplicates are not allowed. 

FATALERROR Category 
. The FATALERROR category is also known as major category 19. The most probable 
cause for a FATALERROR message is a fatal error in the Accessroutines. No exception 
subcategories are returned for large systems. 

INTEGRITYERROR Category 
The INTEGRITYERROR category is also known as major category 20. The most 
probable cause for an INTEGRITYERROR message is an internal structure problem in 
the database. 

Table B-8 lists the exceptions and errors subcategories associated with an 
INTEGRITYERROR message. 

Table 8-8. INTEGRITYERROR Subcategories 

SubCategory 
Number Meaning 

1 The key and the data do not match. 

2 The program attempted to store a record in a missing automatic set or subset. 

3 The program attempted to delete a record in a missing automatic set or subset. 

4 An automatic set or subset is pointing to a deleted record. 

5 The program attempted to allocate more than 1000 rows in a file. 

INTLIBERROR Category 

B-6 

The INTLIBERROR category is also known as major category 21. This category relates 
only to exceptions and errors generated when the interpretive interface is used 

8600 0155-000 



DMSII Exceptions and Errors 

Table B-9 lists the exceptions and errors subcategories associated with an 
INTLffiERROR message. 

Table 8-9. INTLIBERROR Subcategories 

Subcategory 
Number Meaning 

1 The first parameter of the entry point DSVERS or DBDATA is not a valid language 
extension verb. 

2 The specified string parameter is not a valid keyword. 

3 The specified structure is not the correct structure type. 

4 The structure or link name is not a known database identifier. 

5 The program gave conflicting or insufficient qualification for the structure or link 
name. 

6 The item name is not a database identifier. 

7 The item type does not correspond to the requested data type. 

8 The specified item is not in the specified structure. 

9 The program gave an invalid index for an OCCURS item. 

10 The program gave an incorrect n,umber of subscripts for an OCCURS item. 

11 Either the specified item is not in the current variable record type, or the program 
specified an incorrect record-type syntax. 

12 The program placed a negative value in an unsigned item. 

13 The program attempted a get operation for this item and found that the value was 
nUll. 

14 The string parameter in a putstring operation is not the same length as the item. 

15 The structure or link name is invalid. 

16 The item name is invalid. 

17 A selection expression contains an invalid literal. 

18 A right parenthesis is missing in the selection expression. 

19 A relational operator is expected in the selection expression. 

20 In a selection expression, either a relational operator specified a null value for a 
required item, or the relational operator was neither EQU (equal to) nor GEQ 
(greater than or equal to). 

21 Either the selection expression did not end correctly, or some unknown error 
occurred. 

22 A numeric argument to a put operation is invalid for the item. 

23 This operation is not valid for global data. 

continued 

8600 0155-000 B-7 



DMSII Exceptions and Errors 

Table 8-9. INTLIBERROR Subcategories (cont.) 

Subcategory 
Number Meaning 

24 In a selection expression, an item and a literal have either a mismatched length or 
type. 

25 More than 47 relations appear in a selection expression. 

26 No valid set spans the embedded data set. 

27 A software failure occurred in a selection expression tree execution. 

28 The program attempted to execute an invalid request while the database was 
closed. 

29 The program attempted to execute a store or delete operation when the program 
was not in transaction state. 

30 An index set was left undefined by a data set condition search. 

31 The parameter is too short to hold the response. 

32 The value of a number item does not fit into a real parameter. 

33 The LlMITTYPE parameter is invalid. 

34 The LlMITVALUE parameter is invalid. 

35 The FINDLIMIT value was exceeded. 

INUSE Category 

The INUSE category is also known as major category 14. The most probable cause for 
an INUSE messages is a problem with a master record that has embedded records. 

Table B-10 lists the exceptions and errors subcategories associated with an INUSE 
message. 

Table 8-10. INUSE Subcategories 

Subcategory 
Number Meaning 

1 The program attempted to delete a record without setting its reference and 
embedded set to nUll. 

2 The program attempted to delete a record when the count item was not zero. 

3 The program attempted to delete a record that has a nonnull embedded structure. 

B-8 86000155-000 



DMSII Exceptions and Errors 

IOERROR Category 
The IOERROR category is also known as major category 9. The most probable cause for 
an IOERROR message is an input or output error. 

Table B-ll lists the exceptions and errors subcategories associated with an IOERROR 
message. 

Table 8-11. IOERROR Subcategories 

Subcategory . 
Number Meaning 

1 The unit is not ready. 

2 A read parity error occurred. 

4 A descriptor error occurred. 

5 The Accessroutines encountered a NO SPACE condition. This type of exception can 
occur under the following conditions: 

• A DMSII data file is contained on a multipack family. 

• One of the packs of the multipack family is re-created. 

• A program attempted a DMSII operation involving a record on the newly 
re-created pack. 

6 The program attempted to read past the end of the file. 

7 The program attempted to read or write past the end of the last row. 

8 The I/O was canceled. 

11 A pack write-lockout occurred. 

12 A multiplexor or controller error occurred. 

13 The pack drive failed. 

14 A pack sector format error ~curred. 

15 A storage unit timeout occurred. 

16 A row was locked out because of a previous write error. 

17 The checksum operation failed. 

99 An error was generated by an unknown cause. 

256 The ADDRESSCHECK operation failed. 

KEYCHANGED Category 
The KEYCHANGED category is also known as major category 6. The most probable 
cause for a KEYCHANGED message is a change to a key item when no duplicates are 
allowed. 

86000155-000 8-9 



DMSII Exceptions and Errors 

Table B-12 lists the exceptions and errors subcategory associated with a KEYCHANGED 
. message. 

Table 8-12. KEYCHANGED Subcategories 

Subcategory 
Number Meaning 

1 The program attempted to change the key item of a set or automatic subset that 
does not allow duplicate keys. 

LIMITERROR Category 
The LIMITERROR category is also known as major category 10. The most probable 
cause for a LIMITERROR message is a file reaching its maximum physical limit. 

Table B-13 lists the exceptions and errors subcategories associated with a LIMITERROR 
message. 

Table 8-13. LlMITERROR Subcategories 

Subcategory 
Number Meaning 

1 The program attempted to store too many records in a structure. 

2 The program attempted to make too many counted links refer to one record. The 
count list in the DASDL source file was exceeded. 

3 The program attempted to put too many entries into a set or subset. 

5 The program attempted to open too many partitions. 

6 The program referenced a partitioned structure in a DMUTILITY INITIALIZE 
statement. 

7 There are too many pointers for this structure. 

, NORECORD Category 

8-10 

The NORECORD category is also known as major category 13. The most probable cause 
for a NORECORD message is an invalid current path. 

Table B-14 lists the exceptions and errors subcategories associated ·with a NORECORD 
message. 

8600 0155-000 



DMSII Exceptions and Errors 

Table 8-14. NORECORD Subcategories 

Subcategory 
Number Meaning 

1 The current path of the record to be inserted is not valid. 

2 The current path of the record to be deleted (removed) is not valid. 

3 The current path containing the link is not valid. 

4 The current path of the record to be linked to is not valid. 

5 The current path of the master record is ,not valid. 

6 The current path of the record to be found is not valid. 

NOTFOUND Category 
The NOTFOUND category is also known as major category 1. A NOTFOUND message 
is most likely to be issued when no record that meets the given criteria can be found. 

Table B-15 lists the exceptions and errors SUbcategories associated with a NOTFOUND 
message. 

Table 8-15. NOTFOUND Subcategories 

Subcategory 
Number Meaning 

86000155-000 

1 No record satisfies the condition. 

2 The program attempted to execute a next operation when the pointer was at the 
last entry in the structure. 

3 The program attempted to execute a prior operation when the pointer was at the 
first entry in the structure. 

4 The manual subset key does not correspond with the key in the data record. 

5 No current record could be found. 

6 The current path is undefined. 

7 Either the master record pOinter is undefined, or the embedded structure has not 
been created. 

8 The link is undefined. 

9 The link does not agree with the data record. 

continued 

B-11 



DMSII Exceptions and Errors 

Table 8-15. NOTFOUND Subcategories (cont.) 

Subcat~gory 

Number Meaning 

10 The link does not exist in the current record. (The program specified the wrong 
type of variable-format record.) . 

11 A select-text error occurred. 

12 An invalid index resulted from an OCCURS clause. 

NOTLOCKED Category 
The NOTLOCKED category is also known as major category 5. A NOTLOCKED 
message is most likely to be issued when a store operation is not-preceded by a create or 
modify operation. 

Table B-16 lists the exceptions and errors subcategories associated with a NOTLOCKED 
message. 

Table 8-16. NOTLOCKED Subcategories 

Subcategory 
Number Meaning 

1 The program attempted to execute a store operation without first performing either 
a create operation, a lock and modify operation, or a store operation. 

2 The program attempted to modify an unlocked record. 

OPEN ERROR Category 

8-12 

The OPENERROR category is also known as major category 11. The most probable 
cause for an OPENERROR message is an error in opening the database. 

Table B-17 lists the exceptions and errors subcategories associated with an 
OPENERROR message. 

86000155-000 



DMSII Exceptions and Errors 

Table 8-17. OPEN ERROR Subcategories 

Subcategory 
Number Meaning 

8600 0155-000 

1 The Accessroutines is not present on disk. 

2 An 1/0 error occurred in the Accessroutines code file. 

4 The DMUTILITY program tried to initialize when the database was in use. 

5 The run-time description of the database does not match the compile-time 
descri ption. 

6 An Accessroutines error occurred on one or more structures. 

7 The description files for the application program and the DMSUPPORT library were 
compiled with different timestamps. 

9 The program attempted to open RECOVERY, but RECOVERY was not necessary. 

10 The program discontinued when the restart data set was opened. 

11 A read error occurred on segment 0 of the restart data set. 

12 The program discontinued when initializing the restart data set to empty. 

13 The program discontinued when changing the names of the restart data set. 

14 The restart data set is not present. 

15 The program attempted to open RECOVERY, but RECOVERY was already in 
progress. 

16 A required structure was not invoked. 

17 An invoked structure was not found. 

18 The program attempted to open RECONSTRUCTION when RECONSTRUCTION 
was already in progress. 

19 The reconstruction was unsuccessful. 

20 The DBS stack overflowed. 

23 The program attempted to initialize one or more partitions when the partitions 
already existed. 

24 The program discontinued because a file attribute error occurred when the program 
attempted to open a file. 

25 The program attemptec1 to open a logical database that did not exiSt. 

26 The program received a security error when attempting to execute an open 
operation. 

continued 

8-13 



DMSII Exceptions and Errors 

8-14 

Table B-17. OPENERROR Subcategories (cont.) 

Subcategory 
Number Meaning 

27 The Accessroutines code file is not the same as the code file used by the database. 

If the Accessroutines is copied while the database is open, any subsequent 
program that opens the database also receives this error until the database is 
closed. 

Either specify the correct Accessroutines title in the DASDL source file, or remove 
the incorrect copy from the usercode and family of the program that opened the 
database. 

28 The system' was unable to read row 0 of the restart data set. Run the 
RECONSTRUCT program. 

29 The program was compiled with a description file that has a higher updat~ level 
than the description file used to compile the DMSUPPORT library. 

31 An 1/0 error occurred in the control file. 

32 . The program attempted to execute an unknown type of open operation. 

33 The database was open when a halt/load occurred. 

34 The audit trail could not be initialized. 

35 There is insufficient memory for the DBS stack. 

36 The Accessroutines code file is unacceptable. 

37 An open error occurred in the control file. 

38 The database software does not match the format for the structure. 

39 The control. file is locked by an exclusive function. 

40 The application program must be recompiled on a more recent release. 

41 The program and the DMSUPPORT library are compiled with different description 
files. 

44 The DBS is not visible from the subsystem for the program. 

45 This option is not permitted while TPS is active. 

46 This option is not permitted until the TPS RECOVERY program is complete. 

47 The initiation of the Accessroutines failed. 

48 The application program discontinued before the Accessroutines was frozen. 

49 The control file is not present on disk. 

50 The program received an VO error while reading block 0 of the control file. 

56 The Accessroutines code file does not support audit. 

continued 

8600 0155-000 



DMSII Exceptions and Errors 

Table 8-17. OPEN ERROR Subcategories (cont.) 

Subcategory 
Number Meaning 

57 The Accessroutines code file does not support partitions. 

58 The Accessroutines code file does not support local buffering. 

59 The program attempted to open a database that is already in use by an exclusive 
or single update user. 

60 The program attempted to either open a database exclusively or make a database a 
single update database when the database is already in use by another program. 

61 The program attempted to open a Semantic Information Manager (SIM) database, 
but SIM has not been implemented on the system. 

62 The program attempted to update a SIM database that can be accessed only for 
inquiry purposes. 

63 The program attempted to update a DMSII database that can be accessed only for 
inquiry purposes. 

64 The program attempted to library-equate a new DMSUPPORT library, but either 
there is an existing DMSUPPORT library or the old DMSUPPORT library is still 
being accessed. 

65 The usercode under which the database control file is stored is not a valid 
usercode for the system. 

Either make the usercode a valid system usercode, or move the control file to an 
existing valid system usercode. 

66 The DMSUPPORT library is not resident. 

67 The DMSUPPORT library needs to be recompiled. 

68 The Absolute Block Serial Number (ASSN) is approaching its maximum allowable 
value and must be reset. (For information on resetting the ASSN, refer to the 
DMSII Utilities Operations Guide.) 

69 A rebuild or rollback procedure is.in progress. 

70 The charge code for the database owner is no longer valid. 

READONLY Category 
The READONLY category is also known as major category 8. The most probable cause 
for a READONLY message is an attempt to alter a record when the database is open for 
inquiry only. 

Table B-18 lists the exceptions and errors subcategories associated with a READONL Y 
message. 

8600 0155-000 B-15 



DMSII Exceptions and Errors 

Table 8-18. READONLY Subcategories 

Subcategory 
Number Meaning 

1 The program attempted to change the database while in the inquiry access mode. 

2 The program attempted an insert or remove operation on a READONLY record. 

3 The program attempted a create operation for a new partition while in inquiry 
mode. 

SECURITYERROR Category 
The SECURITYERROR category is also known as major category 17. The most probable 
cause for a SECURITYERROR message is a violation of system security. 

Table B-19 lists the exceptions and errors subcategory associated with a 
SECURITYERROR message. 

Table 8-19. SECURITYERROR Subcategories 

Subcategory 
Number Meaning 

1 Verb security: either the program or the user is not permitted to use this function. 

SYSTEM ERROR Category 

8-16 

The SYSTEMERROR category is also known as major category 7. The most probable 
cause for a SYSTEMERROR message is an invalid structure number. 

Table B-20 lists the exceptions and errors subcategories associated with a 
SYSTEMERROR message. 

Table 8-20. SYSTEM ERROR Subcategories 

Subcategory 
Number Meaning 

1 The program attempted a find first, next, prior, or last operation on an embedded 
standard or compact data set. 

2 A generate operation is not allowed on this type of set. 

continued 

8600 0155-000 



DMSII Exceptions and Errors 

Table 8-20. SYSTEM ERROR Subcategories (cont.) 

Subcategory 
Number Meaning 

8600 0155-000 

3 The system attempted to read beyond the end of the file. 

4 An Accessroutines fault occurred during a DMSFREE operation. 

5 An invalid calling sequence or other sequence of events occurred. 

6 A fatal software error occurred. A fatal software error is produced in the following 
situations: 

• Internal system locks are used inconsistently. 

• Linkage between blocks of data is inconsistent. 

• Information read from a mass storage device is inconsistent with information 
requested. 

7 A fatal integrity error occurred. A fatal integrity error is produced in the following 
situations: 

• An address of 0 (zero) is encountered. 

• A block address is not on a block boundary. 

• A record address is not on a record boundary. 

• The value of a key item in a set or subset does not match the value in a data 
set. 

• A set or an automatic subset points to a deleted record. 

• A record does not have an entry in a set or an automatic subset when it 
shou Id have such an entry. 

8 A fatal VO error occurred. A fatal VO error occurs in the following situations: 

• The audit file cannot be opened. 

• Recovery information cannot be read or written. 

• The Accessroutines encountered VO errors when attempting to allocate or 
deallocate file available space. 

9 A fatal resource error occurred. A fatal resource error is encountered in the 
following situations: 

• The main memory is exhausted. 

• There is not enough space in the restart data set. 

10 A fatal unknown error occurred. This error occurs when abOrt recovery terminates 
on an error.· 

continued 

8-17 



DMSII Exceptions and Errors 

Table 8-20. SYSTEMERROR Subcategories (cont.) 

Subcategory 
Number Meaning 

11 A fatal operator discontinue database error occurred. This error occurs in the 
following situations: 

• A program attempted to open a database just after the operator discontinued 
the database. 

• The database is being terminated due to some fatal error .. 

12 A software error occurred in the control file handler. 

13 The partitions control in the control file are not initialized. 

14 The Accessroutines code file is compiled without this structure type. 

15 An error occurred while the system was executing an internal SIM remap and test 
procedure. 

VERSIONERROR Category 
The VERSIONERROR category is also known as major category 18. The most probable 
cause for a VERSIONERROR message is a program-to-database mismatch. 

Table B-21 lists the exceptions and errors subcategories associated with a 
VERSIONERROR message. 

Table 8-21. VERSIONERROR Subcategories 

Subcategory 
Number Meaning 

1 The link is unknown or was deleted. 

2 . The program attempted to reference a structure that has been deleted or changed 
since the program was compiled. 

8-18 86000155-000 



DMSII Exceptions and Errors 

Summarizing the Relationship of Data Management 
Operations to Exceptions and Errors 

Figure B-1 summarizes the data management operations that can cause each exception 
and error subcategory. 

Notes: 

86000155-000 

• Exception categories and subcategories resulting from a close 
operation are valid, whether or not the exception branch is 
taken. 

• No DMSII data management operation produces a 
FATALERROR exception. 

• Any entry point in the DMINTERPRETER library can cause an . 
INTLIBERROR exception. 

• The specified LIMITERROR exceptions apply only when the file 
size is exceeded. Any operation which causes a new partition 
to be opened implicitly can cause a limiterror. The close, begin 
transaction, and end transaction operations are the only 
operations that cannot produce a LIMITERROR exception. 

• A test link for null can result in a VERSION ERROR if the link 
was deleted using the REORGANIZATION program. 

8-19 



DMSII Exceptions and Errors 

ERRORS AND a:: 
0 EXCEPTIONS a:: a:: a:: 0 a:: ...., a:: a:: a:: 0 a:: a:: (I) a:: 0 a:: a:: 0 a:: 

0 ~ a:: ...., 
~ >- a:: ...., 0 0 a:: ...., a:: a:: a:: 0 ~ l- t:; a:: t!l a:: 0 0 ...., 

~ >- >- a:: ...., 
a:: a:: a:: u <C a:: ...., a:: z: a:: a:: z: ~ ...J I-- ...., z: ...., ...., a:: 0 ~ 

...., a:: co ~ <C ...., 0 :::> u a:: z: ~ ::E 8 Ii !:: 
...., W ...J ...J t!l ..... ...., :I: I-- U 0 0 ...., 0 ...., 
V) ~ 0 ...J ~ W ...J V) a:: u 

~ 
...., u.. ...J z: 0 :::> l- V) 

0 0 0 <C 0- I-- I-- :::> ...., >- a:: I-- I-- w <C U CI) a:: 
OPERATION co :::> ...J <C ...., ;:) 

L:E :s :s :s 8 w 0 0 0 0- ...., ...., >- w 
<C <C u 0 0 0 ~ ...J z: z: z: 0 a:: V) V) > 

ABORTTRANSACTION X -X X [X [X X X ~ ASSIGN 
'-[X [X X ~ BEGINTRANSACTION -CANCELTRANSACTION ~ -

CLOSE I~ X -
COMPUTE ~ - 0 

X s-
CREATE s-

Q) 

DELETE X X X Z III [X X ~ X X ~ X X X .... 
oJ:: 

DMKEY +' 
Q) - III 

DMTERMINATE =s 
ctI - u 

ENDTRANSACTION ~ X X ~ c 
ctI 

Z 
u 

X X X X X X FIND Q) a:: 
c ...., 
0 I-

FREE z: w 
a:: 

X - 0-

X X X X GENERATE a:: ...., 
- I-

z: 
GET i: - c 
IF c .... -INSERT X X +' [X X X [X [X X rx c 

LOCK/MODIFY [X Z ·0 [X ~ X ~ C>< X Q,. 

MIDTRANSACTION [X ~ 
+' 

!-- c 

~ ~ OPEN Q), 

!-- ~ 
PUT <C 

X 
I--

RECREATE 

X 
!--

~ C>< [X X ~ X X REMOVE 

LX 
!--

SAVEPOINT 

SECURE ~ ~ X C>< X X X X 
SET X lX X 
STORE X X X X [X X ~ [X X C>< X 

Figure B-1. Relationship of Data Management Operations to Errors and Exceptions 

8-20 86000155-000 



Appendix C 
Sample Programs That Use the 
I nterpretive Interface 

The ALGOL, COBOL74, and FORTRAN77 application programs shown in this appendix 
use the DMSII interpretive interface to create, store, retrieve, delete, and re-create 
various data items of differing types. 

All the programs use the same database. The DASDL description of the database is 
presented first, followed by the programs. 

8600 0155-000 C-1 



DASDL Database for Sample Programs 

DASDL Database for Sample Programs 

C-2 

The following DASDL code creates EMPJOB, the database that is accessed by all the 
sample application programs provided in this appendix. 

EMPJOB contains a restart data set, a global record, and three data sets: EMP, JOB, 
andADR. 

• The EMP data set has an embedded data set (EMP-ED), three sets 
CEMP-DATE-SET, EMP-NO-SET and EMP-LNAME-SET), and an automatic subset 
CEMP-OVERIO-SUBSET). 

• The JOB data set is a variable format data set with two record types. The JOB data 
set has a set (JOB-CODE-SET), an automatic subset (JOB-MNG-SUBSET), and an 
embedded, manual subset (JOB-EMP-SUBSET). 

• The ADR data set has one set, ADR-ZIP-SET. 

For details on DASDL, read the DMSII DASDL Programming Reference Manual. For 
database design techniques, read the DMSII Technical Overview. 

8600 0155-000 



DASDL Database for Sample Programs (cont.) 

RSTART RESTART DATA SET 
(ALPHAID ALPHA(7»; 

***** GLOBAL RECORD ***** 

FISCAL-YEAR IINEEDS UPDATING EVERY YEAR II NUMBER (6); 
POP-EMP POPULATION (50) OF EMP; 
DIV-NUMBER NUMBER (5); 

***** EMP ***** 

EMP DATA SET IIMASTER EMPLOYEE FILE" 
POPULATION = 50 
( 
EMP-NO 
EMP-NAME 
" ( 
" EMP-LNAME 
" EMP-FNAME 
" ); 

·EMP-SSN 

NUMBER 
GROUP 

ALPHA 
ALPHA 

NUMBER 

(4); %ACTUAL EMP NUMBER 

(10) ; 
(10) ; 

(9) ; 
EMP-DATE-HIRED "YYMMDD II NUMBER 
EMP-SEC-CLEAR "T=YES II BOOLEAN 

(6) ; 
, 

EMP-SALARY IIMONTHLY II NUMBER (6,2); 

" %**** EMP-ED ****** 

EMP-ED DATA SET "EDUCATIONAL RECORDS FOR EACH EMPLOYEE II 
" POPULATION = 10 
" ( 
" 
" 
" 
" 

ED-DATE "YYMMDD" 
ED-INST-NAME 
ED-INST-CODE 
ED-COURSE 

. " ED-GPA 
" ); 
ED-DATE-SET 
EMP-JOB-REF 
) ; 
EMP-NO-SET 
EMP-LNAME-SET 

NUMBER 
ALPHA 
NUMBER 
ALPHA 
NUMBER 

(6) ; 
(30) ; 
(4); %UNIQUE TO SCHOOL 

(10); 
(3,2); %GRADE PT AVR 

SET OF EMP-ED KEY ED-DATE I-S; 
REFERENCE TO JOB COUNTED; 

SET OF EMP KEY EMP-NO I-S; 
SET OF EMP 

KEY EMP-LNAME DUPLICATES I-S; 
EMP-OVER10-SUBSET "VESTED EMPLOYEES" SUBSET OF EMP 
, WHERE (EMP-DATE-HIRED < 700000) 
" BIT VECTOR; 

***** JOB ***** 

JOB DATA SET "REC TYPE 1 IS CLERICAL, REt TYPE 2 IS NON-CLERICAL" 
POPULATION = 10 
( 
JOB-COUNT 
JOB-TYPE 

8600 0155-000 

COUNT 
TYPE 

(10); 
(2) ; 

C-3 



DASDL Database for Sample Programs (cont.) 

C-4 

JOB-CODE 
JOB-TITLE 
JOB-EMP-SUBSET 
) , 

NUMBER (4); 
ALPHA (30); 

SUBSET OF EMP KEY EMP-NO; 

1: 
( 
TYPE-SPEED 
SHORTHAND-SPEED 
CRTUSE-REQD 
) , 

2: 
( 
SPANISH-REQD 
DRIVING-REQD 
JOB-COMMENT 
) ; 

NUMBER 
NUMBER 
BOOLEAN 

BOOLEAN 
BOOLEAN 
ALPHA 

(2) ; 
(2) ; 

, 
(50) ; 

JOB-CODE-SET . SET OF JOB KEY JOB-CODE I-S; 
JOB-MNG-SUBSET II MANAGERS II SUBSET OF JOB WHERE 
, (JOB-CODE> 4999); 

***** ADR ***** 

ADR DATA SET IIMASTER ADDRESS FILEII 
POPULATION = 50 
( 
ADR-EMP-NO NUMBER 
ADR-INFO GROUP 
, ( 

,. ADR-STREET-NO ALPHA 
, ADR-ZIP NUMBER 
, ) ; 

(4) ; 

(30) ; 
(5) ; 

) ; 
ADR-ZIP-SET SET OF ADR KEY ADR-ZIP I-S DUPLICATES; 

8600 0155-000 



ALGOL Application Program Using the Interpretive Interface 

ALGOL Application Program Using the Interpretive 
Interface 

BEGIN 
FILE REMOTEFILE 

(KIND=REMOTE 
,UNITS~CHARACTERS 

,MAXRECSIZE=1920 
,MINRECSIZE=l 
,FILETYPE=3 
) ; 

$$ INCLUDE DMISYM="DATABASE/DMINTERPRETER" 20100000-20199999 

%**********************************************************************% 
%* This program uses the ALGOL declaration of library entry points *% 
%* from the DATABASE/DMINTERPRETER symbolic file rather than *% 
%* explicitly declaring each entry point. *% 
%**********************************************************************% 

%******~***************************************************************% 

~* o LOCAL DECLARATIONS *% 
%**********************************************************************% 
REAL 

EXPR_l; 
DOUBLE 

EXPR_2; 
STRING 

DATA_SET_NAME 
,FIRST_l 
,PRIOR_1 
,NEXT_1 
,P_AUDIT 
,OPEN_TYPE 
,BEGIN_1 
,CONDITION_l 
,SPACE_1 
,DATA_BUFFER 
,DATA_REQUEST 
,ITEM_NAME 
,EXPR_3 
,EXCEPTIONMSG; 

BOOLEAN 

8600 0155-000 

RSLT 
,EXPJL4; 

C-5 



ALGOL Application Program Using the Interpretive Interface (cont.) 

C-6 

%**********************************************************************% 
~* o INTERNAL PROCEDURE TO HANDLE EXCEPTIONS *% 
%**********************************************************************% 

PROCEDURE EXCEPTIONHANDLER; 
BEGIN 
STRING 

EXCEPTIONMSG; 
BOOLEAN 

STATUSRSLT; 

STATUSRSLT:=DBSTATUS; 
DBEXCEPTIONNAME(STATUSRSLT,EXCEPTIONMSG); 
WRITE(REMOTEFILE,<"EXCEPTION-NAME=",AI4>,EXCEPTIONMSG); 
DBEXCEPTIONTEXT(STATUSRSLT,EXCEPTIONMSG); 
WRITE(REMOTEFILE,<"EXCEPTION-TEXT="»; 
WRITE(REMOTEFILE,<A60>,EXCEPTIONMSG); 

END OF EXCEPTIONHANDLER; 

%**********************************************************************% 
%* BODY OF MAIN PROGRAM *% 
%**********************************************************************% 

DMI.TITLE:="DMINTERPRETER/EMPJOB"; 
%************************************~*********************************% 

DATA SET NAME:="EMP"· - - , 
FIRST l:="FIRST"· - , 
PRIOR_l:="PRIOR"; 
NEXT_l:="NEXT"; 
P_AUDIT:="AUDIT"; 
OPEN_TYPE:="UPDATE"; 
BEGIN_l:="BEGINNING"; 
CONDITION_l:="EMP-NO=II"; 
SPACE_l:=" II; 

%**********************************************************************% 
%* OPENING THE DATABASE *% 
%**********************************************************************% 

RSLT:=DBOPEN(OPEN_TYPE); 
IF RSLT 

THEN EXCEPTIONHANDLER; 
WRITE(REMOTEFILE,<"SUCCESSFUL OPEN OF EMPJOB"»; 

8600 0155-000 



ALGOL Application Program Using the Interpr.etive Interface (cont.) 

%**********************************************************************% 
%* DELETING A RECORD *% 
%**********************************************************************% 

RSLT:=DBBEGINTRANSACTION(P_AUDIT); 
IF RSLT 

THEN EXCEPTIONHANDLER; 

RSLT:=DBDELETE(FIRST_l,DATA_SET_NAME,CONDITION_1); 
IF RSLT 

THE~ EXCEPTION HANDLER; 

CONDITION 1:=IIEMP-NO=1211; 
RSLT:=DBDELETE(FIRST_l,DATA_SET_NAME,CONDITION_1); 
IF RSLT 

THEN EXCEPTIONHANDLER; 

RSLT:=DBENDTRANSACTION(P_AUDIT); 
IF RSLT 

THEN EXCEPTION HANDLER; 

WRITE (REMOTEFILE, <IISUCCESSFUL DELETE OF RECORD"»; 

%**********************************************************************% 
~* o CREATING A RECORD *% 
%*******************************************************************~**% 

RSLT:=DBCREATE(DATA_SET_NAME,SPACE_l); 
IF RSLT 

THEN EXCEPTIONHANDLER; 

WRITE(REMOTEFILE, <"SUCCESSFUL CREATE OF RECORD"»; 

%**********************************************************************% 
~* o FILLING IN A RECORD *% 
%**********************************************************************% 
% 
% USING DBPUTREAL ENTRY POINT 

8600 0155-000 

ITEM_NAME:="EMP-NO"; 
EXPR 1:=11; 
RSLT7=DBPUTREAL(DATA_SET_NAME,ITEM_NAME,EXPR_l); 
IF RSLT 

THEN EXCEPTIONHANDLER; 

ITEM_NAME:="EMP-SALARylI; 
EXPR 1:=45~~.95; 
RSLT7=DBPUTREAL(DATA SET NAME,ITEM NAME, 2 * EXPR 1); Ir RSLT - - - -

THEN EXCEPTIONHANDLER; 

C-7 



ALGOL Application Program Using the Interpretive Interface (cont.) 

C-8 

% USING DBPUTDOUBLE ENTRY POINT 

ITEM_NAME:=" EMP-SSW'; 
EXPR_2:=573230911; 
RSLT:=DBPUTDOUBLE(DATA_SET_NAME,ITEM_NAME,EXPR_2 - 11 ); 
IF RSLT . 

THEN EXCEPTIONHANDLER; 

% USING DBDATA ENTRY POINT 

DATA_REQUEST:="PUT REAL EMP EMP-DATE-HIRED"; 
DATA_BUFFER:="811223"; 
RSLT:=DBDATA(DATA_REQUEST,DATA_BUFFER); 
IF RSLT 

THEN EXCEPTIONHANDLER; 

DATA_REQUEST:="PUT STRING EMP EMP-LNAME"; 
DATA_BUFFER:="STACK"; 
RSLT:=DBDATA(DATA_REQUEST,DATA_BUFFER); 
IF RSLT 

THEN EXCEPTIONHANDLER; 

% USING DBPUTSTRING ENTRY POINT 

ITEM_NAME:="EMP-FNAME"; 
EXPR_3:="CATHY"; 
RSLT:=DBPUTSTRING(DATA_SET_NAME,ITEM_NAME,EXPR_3 CAT "LINA"); 
IF RSLT 

THEN EXCEPTIONHANDLER; 

% USING DBPUTBOOLEAN 

ITEM_NAME:="EMP-SEC-CLEAR"; 
EXPR 4:=TRUE; 
RSLT7=DBPUTBOOLEAN(DATA SET NAME,ITEM NAME,NOT EXPR 4); - - - -
IF RSLT 

THEN EXCEPTIONHANDLER; 

8600 0155-000 



ALGOL Application Program Using the Interpretive Interface (cont.) 

%**********************************************************************% 
~* Q RECORD SETUP IN USER WORK AREA *% 
%***************************************************************~******% 

%* 
%* EMP 
%* NO 

EMP 
LNAME 

EMP 
FNAME 

EMP 
SSN 

EMP 
DATE-HIRED 

EMP 
SEC-CLEAR 

EMP 
SALARY 

*% 
*% 
*% 

%*--------------------------------------------------------------------*% 
%*21 STACK CATHYLINA 573230900 811223 FALSE 9001.9 *% 
%**********************************************************************% 

%**********************************************************************% 
~* Q STORING A RECORD *% 
%**********************************************************************% 

RSLT:=DBBEGINTRANSACTION(P_AUDIT); 
IF RSLT 

THEN EXCEPTIONHANDLER; 

RSLT:=DBSTORE(DATA_SET_NAME); 
IF RSLT 

THEN EXCEPTIONHANDLER; 

RSLT:=DBENDTRANSACTION(P_AUDIT); 
IF RSLT 

THEN EXCEPTIONHANDLER; 

WRITE(REMOTEFILE, <"SUCCESSFUL STORE OF RECORD"»; 

%**********************************************************************% 
~* Q RE-CREATING A RECORD *% 
%**********************************************************************% 

8600 0155-000 

RSLT:=DBRECREATE(DATA_SET_NAME,SPACE_1); 
IF RSLT 

THEN EXCEPTIONHANDLER; 

WRITE(REMOTEFILE, <"SUCCESSFUL RECREATE OF RECORD"»; 

ITEM NAME:=IIEMP-NO"· - , 
EXPR_1:=12; 
RSLT:=DBPUTREAL(DATA SET NAME,ITEM NAME,EXPR 1); - - - -IF RSLT 

THEN EXCEPTIONHANDLER; 

ITEM_NAME:="EMP-SSN"; 
EXPR 2:=549927328; 
RSLT7=DBPUTDOUBLE(DATA_SET_NAME,ITEM_NAME,EXPR_2 - 11 ); 
IF RSLT 

THEN EXCEPTIONHANDLER; 

C-9 



ALGOL Application Program Using the Interpretive Interface (cont.) 

C-10 

DATA_REQUEST: =" PUT REAL EMP EMP-DATE-HIRED"; 
DATA BUFFER:="811228"· - , 
RSLT:=DBDATA(DATA_REQUEST,DATA_BUFFER); 
IF RSLT 

THEN EXCEPTIONHANDLER; 

DATA_REQUEST: =" PUT STRING EMP EMP-LNAME"; 
DATA BUFFER:="WOLVERTON"; 
RSLT7=DBDATA(DATA_REQUEST,DATA_BUFFER); 
IF RSLT 

THEN EXCEPTIONHANDLER; 

ITEM_NAME:="EMP-FNAME"; 
EXPR_3: =" LAURA" ; 
RSLT:=DBPUTSTRING(DATA_SET_NAME,ITEM_NAME,EXP~3 CAT "JANE" ); 
IF RSLT 

THEN EXCEPTIONHANDLER; 

RSLT:=DBBEGINTRANSACTION(P_AUDIT); 
IF RSLT 

THEN EXCEPTIONHANDLER; 

RSLT:=DBSTORE(DATA_SET_NAME); 
IF RSLT 

THEN EXCEPTIONHANDLER; 

RSLT:=DBENDTRANSACTION(P_AUDIT); 
IF RSLT 

THEN EXCEPTIONHANDLER; 

WRITE(REMOTEFILE, <"SUCCESSFUL STORE OF RE-CREATED RECORD"»; 

%**********************************************************************% 
%* SETUP OF RE-CREATED RECORD IN USER WORK AREA *% 
%**********************************************************************% 
%* *% 
%* EMP 
%* NO 

EMP 
LNAME 

EMP 
FNAME 

EMP 
SSN 

EMP EMP EMP *% 
DATE-HIRED SEC-CLEAR SALARY *% 

, %*--------------------------------------------------------------------*% 
%* 12 WOLVERTON LAURAJANE 549927317 811228 FALSE 9001.9 *% 
%**********************************************************************% 

%**********************************************************************% 
%* SETTING DATA SET·TO THE BEGINNING *% 
%**********************************************************************% 

RSLT:=DBSET(DATA_SET_NAME,BEGIN_1); 
IF RSLT 

THEN EXCEPTIONHANDLER; 

WRITE(REMOTEFILE, <"SUCCESSFUL DBSET OF DATA SET"»; 

8600 0155-000 



ALGOL Application Program Using the Interpretive Interface (cont.) 

%**********************************************************************% 
~* o FINDING A RECORD *% 
%**********************************************************************% 

RSLT:=DBFIND(FIRST_l,DATA_SET_NAME,CONDITION_l); 
IF RSLT 

THEN EXCEPTIONHANDLER; 

WRITE(REMOTEFILE, <"SUCCESSFUL FIND OF RECORD"»; 

%**********************************************************************% 
~* o LOCKING A RECORD *% 
%**********************************************************************% 

RSLT:=DBLOCK(FIRST_l,DATA_SET_NAME,CONDITION_l); 
IF RSLT 

THEN EXCEPTIONHANDLER; 

WRITE(REMOTEFILE, <"SUCCESSFUL LOCK OF RECORD"»; 

%**********************************************************************% 
~* o VERIFYING ITEMS IN THE RECORD *% 
%**********************************************************************% 

% USING DBGETREAL ENTRY POINT 

ITEM_NAME:=IIEMP-NOII; 
RSLT:=DBGETREAL(DATA_SET_NAME,ITEM_NAME,EXPR_l); 
IF RSLT 

THEN EXCEPTIONHANDLER; 
WRITE(REMOTEFILE, <IIEMP-NO=II,I4>,EXPR_l); 

ITEM_NAME: =" EMP _SALARY II ; 
RSLT:=DBGETREAL(DATA_SET_NAME,ITEM_NAME,EXPR_l); 
IF RSLT 

THEN 
WRITE(REMOTEFILE, <"EMP-SALARY=",F9.2>,EXPR_l); 

% USING DBGETDOUBLE ENTRY POINT 
% 

8600 0155-000 

ITEM_NAME:=IIEMP-SSN" ; 
RSLT:=DBGETDOUBLE(DATA_SET_NAME,ITEM_NAME,EXPR_2); 
IF RSLT 

THEN EXCEPTIONHANDLER; 
WRITE(REMOTEFILE, <"EMP-SSN=",I9>,EXPR_2); 

C-ll 



ALGOL Application Program Using the Interpretive Interface (cont.) 

C-12 

% 
% USING DBDATA ENTRY POINT 

DATA_REQUEST:=IIGET REAL EMP EMP-DATE-HIRED"; 
RSLT:=DBDATA(DATA REQUEST,DATA BUFFER); - -IF RSLT 

THEN EXCEPTIONHANDLER; 
WRITE (REMOTEFI LE, <IEMP-DATE-HIRED=",A6>,DATA_BUFFER); 

DATA_REQUEST:="GET REAL EMP EMP-SALARY"; 
RSLT~=DBDATA(DATA_REQUEST,DATA_BUFFER); 
IF RSLT 

THEN EXCEPTIONHANDLER; 
WRITE(REMOTEFILE, <IEMP-SALARY=",A6>,DATA_BUFFER); 

DATA_REQUEST:="GET STRING EMP EMP-LNAME"; 
RSLT:=DBDATA(DATA_REQUEST,DATA_BUFFER); 
IF RSLT 

THEN EXCEPTIONHANDLER; 
WRITE(REMOTEFILE, <IEMP-LNAME=",A10>,DATA_BUFFER); 

% USING DBGETSTRING ENTRY POINT 

ITEM_NAME:="EMP-FNAME"; 
RSLT:=DBGETSTRING(DATA SET NAME,ITEM NAME,EXPR 3); - - - -
IF RSLT 

THEN EXCEPTIONHANDLER; 
WRITE(REMOTEFILE, <IEMP-FNAME=",A10>,EXPR 3); 

% 
% USING DBGETBOOLEAN ENTRY POINT 

ITEM NAME:=I/EMP-SEC-CLEARII ; 
RSLT:=DBGETBOOLEAN(DATA SET NAME,ITEM NAME,EXPR 4); - - - -IF RSLT 

THEN EXCEPTIONHANDLER; 
WRITE(REMOTEFILE, <IIEMP-SEC-CLEAR=",L5>,EXPR_4); 

%**********************************************************************% 
%* FREEING A RECORD *% 
%**********************************************************************% 

RSLT:=DBFREE(DATA_SET_NAME); 
IF RSLT 

THEN EXCEPTIONHANDLER; 

WRITE(REMOTEFILE, <I/SUCCESSFUL FREEING OF RECORDI/»; 

8600 0155-000 



ALGOL Application Program Using the Interpretive Interface (cont.) 

%**********************************************************************% 
~* o CAUSING AN EXCEPTION *% 
%***************************~******************************************% 

% 

WRITE(REMOTEFILE, <"CAUSING AN EXCEPTION"»; 

RSLT:=DBSET(DATA_SET_NAME,BEGIN_l); 
IF RSLT 

THEN EXCEPTIONHANDLER; 

RSLT:=DBFIND(PRIOR_l,DATA_SET_NAME,SPACE_l); 
IF RSLT 

THEN EXCEPTION HANDLER; 

%***********************~**********************************************% 

~* o USING DBVERB *% 
%**********************************************************************% 
% 
% USING DBVERB ON A SET STATEMENT 

RSLT:=DBVERB("SET EMP TO BEGINNING"); 
IF RSlT 

THEN EXCEPTIONHANDlER 
WRITE(REMOTEFILE,<"SUCCESSFUL SET EMP TO BEGINNING"»; 

% USING DBVERB ON A SEARCH STATEMENT 

RSlT:=DBVERB("FIND FIRST EMP AT EMP-NO=ll"); 
IF RSlT 

THEN EXCEPTIONHANDlER; 
WRITE(REMOTEFILE,<"SUCCESSFUL FIND FIRST EMP AT EMP';'NO=ll"»; 

% USING DBVERB ON A STATUS STATEMENT 

8600 0155-000 

RSlT:=DBVERB("SET EMP TO BEGINNING"); 
IF RSLT 

THEN EXCEPTIONHANDlER; 
DBVERB(II FIND PRIOR EMP "); 
RSLT:=DBVERB("DMSTATUS"); % TO FIND OUT IF THE FIND WAS OK 
DBEXCEPTIONNAME(RSlT,EXCEPTIONMSG); 
WRITE (REMOTEFIlE,<"EXCEPTION-NAME=",A14>,EXCEPTIONMSG); 
DBEXCEPTIONTEXT(RSlT,EXCEPTIONMSG); 
WRITE(REMOTEFILE,<"EXCEPTION-TEXT="»; 
WRITE(REMOTEFIlE,<A60>,EXCEPTIONMSG); 
WRITE(REMOTEFIlE,<"SUCCESSFUl STATUS STATEMENT"»; 

C-13 



ALGOL Application Program Using the Interpretive Interface (cont.)· 

C-14 

%**********************************************************************% 
~* o CLOSING THE DATABASE *% 
%**********************************************************************% 

RSLT: =DBCLOSE; 
IF RSLT 

THEN EXCEPTIONHANDLER 

WRITE(REMOTEFILE, <IISUCCESSFUL CLOSE OF EMPJOB II »; 

%**********************************************************************% 
%**********************************************************************% 
END OF DMIEXAMPLE. 

8600 0155--000 



COBOL74 Application Program Using the Interpretive Interface 

COBOL74 Application Program Using the Interpretive 
Interface 

************************ 
IDENTIFICATION DIVISION. 

************************ 
*PROGRAM- I D. 
*AUTHOR. 
*INSTALLATION. 
*DATE-WRITTEN. 
*DATE-COMPILED. 
*SECURITY. PUBLIC. 
*REMARKS. 
*THIS PROGRAM USES ENTRY POINTS OF THE DMINTERPRETER"LIBRARY 
*COMPILED FOR THE EMPJOB SAMPLE DATABASE. 
********************* 

ENVIRONMENT DIVISION. 
********************* 

CONFIGURATION SECTION. 
*===================== 

SOURCE-COMPUTER. A 15. 
OBJECT-COMPUTER. A 15. 

*================================== 
INPUT-OUTPUT SECTION. 

*==================== 
FI LE-CONTROL. 

SELECT REMOTEFILE ASSIGN TO REMOTE. 
*************************************** 

DATA DIVISION. 
*************** 

FILE SECTION. 
FD REMOTEFILE 

RECORD CONTAINS 8~ CHARACTERS 
VALUE OF TITLE IS "REMOTEFILE". 

01 REMOTE-REC PIC X(80). 
*==================================== 

WORKING-STORAGE SECTION. 
*DMINTERPRETER CODE FILE. 

*------------------------
01 DMI-NAME 

*DMI VOCABULARY. 
*---------------
01 DATA-SET-NAME 
01 ITEM-NAME 
01 FIRST-1 
01 PRIOR-1 
01 NEXT-1 
01 P-AUDIT 
01 N-AUDIT 
01 OPEN-TYPE 
01 BEGIN-1 

8600 0155-000 

PIC X(24) VALUE "DMINTERPRETER/EMPJOB II
• 

PIC X(17) VALUE IS "EMp li
• 

PIC X(17) VALUE IS SPACES. 
PIC X(5) VALUE "FIRST II

• 

PIC X(5) VALUE "PRIOR". 
PIC X(4) VALUE "NEXT". 
PIC X(5) VALUE "AUDIT". 
PIC X(8) VALUE "NOAUDIT". 
PIC X(6) VALUE "UPDATE". 
PIC X(9) VALUE "BEGINNING". 

C-15 



COBOL74 Application Program Using the Interpretive Interface (cont.) 

C-16 

01 CONDITION-1 
01 SPACE-1 
01 DATA-BUFFER 
01 DATA-REQUEST 
01 VAR-1 

* 
* EXCEPTION AREA 
* 
01 RESULT 
01 EXCEPTION-NAME 
01 EXCEPTION-MSG 
01 EXCEPTION-WORD 

******************** 

* 02 STRUCTURE 
* 02 CATEGORY 
* 02 SUB-CATEGORY 
* 02 FLAG 
* 

PIC X(9) VALUE "EMP-NO=11". 
PIC X(l) VALUE" ". 
PIC X(10) VALUE IS SPACES. 
PIC X(40) VALUE IS SPACES. 
PIC X(10) VALUE IS SPACES. 

PIC 9(1) COMP VALUE IS 0. 
PIC X(14). 
PIC X(80). 
PIC 9(12) COMP. 

EXCEPTION-WORD FIELDS*********************** 

PIC 9(4) COMP. 
PIC 9(3) COMP. 
PIC 9(4) COMP. 
PIC 9 (1) COMP. 

***************************************************************** 

PROCEDURE DIVISION. 
MAIN-SECTION. 

****************************************************************** 
* BODY OF PROGRAM * 
****************************************************************** 

****************** LINKING TO DMI LIBRARY ************************ 

CHANGE ATTRIBUTE TITLE OF "DMINTERPRETER" 
TO DMI-NAME. 

****************************************************************** 

OPEN OUTPUT REMOTEFILE. 

****************************************************************** 
* OPENING THE DATABASE * 
****************************************************************** 

CALL "DBOPEN OF DMINTERPRETER" 
USING OPEN-TYPE 
GIVING RESULT. 

IF RESULT = 1 
PERFORM EXCEPTION-HANDLER. 

8600 0155-000 



COBOL74 Application Program Using the Interpretive Interface (cont.) 

****************************************************************** 
DELETING A RECORD * 

****************************************************************** 

CALL IIDBBEGINTRANSACTION OF DMINTERPRETER" 
USING P-AUDIT 
GIVING RESULT. 

IF RESULT = 1 
PERFORM EXCEPTION-HANDLER. 

CALL "DBDELETE OF DMINTERPRETER" 
USING FIRST-l, DATA-SET-NAME, CONDITION-l 
GIVING RESULT. 

IF RESULT = 1 
PERFORM EXCEPTION-HANDLER. 

MOVE IEMP-NO=12" TO CONDITION-l. 
CALL IIDBDELETE OF DMINTERPRETER" 

USING FIRST-l, DATA-SET-NAME, CONDITION-1 
GIVING RESULT. 

IF RESULT = 1 
PERFORM EXCEPTION-HANDLER. 

CALL IIDBENDTRANSACTION OF DMINTERPRETERII 
USING P-AUDIT 
GIVING RESULT. 

IF RESULT = 1 
PERFORM EXCEPTION-HANDLER. 

****************************************************************** 
* CREATING A RECORD * 
****************************************************************** 

CALL "DBCREATE OF DMINTERPRETER" 
USING DATA-SET-NAME, SPACE-1 
GIVING RESULT. 

IF RESULT = 1 
PERFORM EXCEPTION-HANDLER. 

****************************************************************** 
* FILLING IN A RECORD * 
****************************************************************** 
* 
* 
* 
* 

8600 0155-000 

USING DBDATA ENTRY POINT 

MOVE "PUT REAL EMP EMP-NO·· TO DATA-REQUEST. 
MOVE "11" TO DATA-BUFFER. 
C1\LL "DBDATA OF DMINTERPRETERII 

USING DATA-REQUEST,DATA-BUFFER 
GIVING RESULT. 

IF RESULT = 1 
PERFORM EXCEPTION-HANDLER. 

C-17 



COBOL74 Application Program Using the Interpretive Interface (cont.) 

C-18 

* 
* 
* 

* 
* 
* 

MOVE IIPUT REAL EMP EMP-SALARY" TO DATA-REQUEST. 
MOVE 119001.9011 TO DATA-BUFFER. 
CALL IIDBDATA OF DMINTERPRETER" 

USING DATA-REQUEST,DATA-BUFFER 
GIVING RESULT. 

IF RESULT = 1 
PERFORM EXCEPTION-HANDLER. 

MOVE IIPUT REAL EMP EMP-SSN II TO DATA-REQUEST. 
MOVE "573230911" TO DATA-BUFFER. 
CALL "DBDATA OF DMINTERPRETER" 

USING DATA-REQUEST,DATA-BUFFER 
GIVING RESULT. 

IF RESULT = 1 
PERFORM EXCEPTION-HANDLER. 

MOVE "PUT REAL EMP EMP-DATE-HIRED" TO DATA-REQUEST. 
MOVE 11811223" TO DATA-BUFFER. 
CALL IIDBDATA OF DMINTERPRETER" 

USING DATA-REQUEST,DATA-BUFFER 
GIVING RESULT. 

IF RESULT = 1 
PERFORM EXCEPTION-HANDLER. 

MOVE "PUT STRING EMP EMP-LNAME II TO DATA-REQUEST. 
MOVE "STACK" TO DATA-BUFFER. 
CALL "DBDATA OF DMINTERPRETERII 

USING DATA-REQUEST,DATA-BUFFER 
GIVING RESULT. 

IF RESULT = 1 
PERFORM EXCEPTION-HANDLER. 

USING DBPUTDISPLAY ENTRY POINT 

MOVE "EMP-FNAMP TO ITEM-NAME. 
MOVE "CATHY" TO VAR-1. 
CALL "DBPUTDISPLAY OF DMINTERPRETER" 

USING DATA-SET-NAME,ITEM-NAME,VAR-1 
GIVING RESULT. 

IF RESULT = 1 
PERFORM EXCEPTION-HANDLER. 

USING DBPUTBOOLEAN 

MOVE "EMP-SEC-CLEARII TO ITEM-NAME. 
MOVE "TRUE" TO VAR-l. 
CALL "DBPUTBOOLEAN OF DMINTERPRETERII 

USING DATA-SET-NAME,ITEM-NAME,VAR-l 
GIVING RESULT. 

IF RESULT = 1 
PERFORM EXCEPTION-HANDLER. 

8600 0155-000 



COBOL74 Application Program Using the Interpretive Interface (cont.) 

****************************************************************** 
* RECORD SETUP IN USER WORK AREA * 
****************************************************************** 
* EMP EMP EMP EMP EMP * 
* NO' LNAME 

EMP 
FNAME 

EMP 
SSN DATE-HIRED SEC-CLEAR SALARY * 

*----------------------------------------------------------------* 
* 11 STACK CATHY 573230911 811223 TRUE 9001.90 * 
****************************************************************** 

****************************************************************** 

* STORING A RECORD * 
****************************************************************** 

CALL "DBBEGINTRANSACTION OF DMINTERPRETER II 

USING P-AUDIT 
GIVING RESULT. 

IF RESULT = 1 
PERFORM EXCEPTION-HANDLER. 

CALL "DBSTORE OF DMINTERPRETER" 
USING DATA-SET-NAME 
GIVING RESULT. 

IF RESULT = 1 
PERFORM EXCEPTION-HANDLER. 

CALL "DBENDTRANSACTION OF DMINTERPRETER" 
USING P-AUDIT 
GIVING RESULT. 

IF RESULT = 1 
PERFORM EXCEPTION-HANDLER. 

****************************************************************** 

* RE-CREATING A RECORD * 
****************************************************************** 

8600 0155-000 

CALL "DBRECREATE OF DMINTERPRETER" 
USING DATA-SET-NAME, SPACE-1 
GIVING RESULT. 

IF RESULT = 1 
PERFORM EXCEPTION-HANDLER. 

MOVE "PUT REAL EMP EMP-NO" TO DATA-REQUEST. 
MOVE 1112" TO DATA-BUFFER. 
CALL IIDBDATA OF DMINTERPRETERII 

USING DATA-REQUEST,DATA-BUFFER 
GIVING RESULT. 

IF RESULT = 1 
PERFORM EXCEPTION-HANDLER. 

C-19 



COBOL74 Application Program Using the Interpretive Interface (cont.) 

C-20 

MOVE IIPUT REAL EMP EMP-SSN" TO DATA-REQUEST. 
MOVE 1154992732811 TO DATA-BUFFER. 
CALL "DBDATA OF DMINTERPRETER" 

USING DATA-REQUEST,DATA-BUFFER 
GIVING RESULT. 

IF RESULT = 1 
PERFORM EXCEPTION-HANDLER. 

MOVE "PUT REAL EMP EMP-DATE-HIRED II TO DATA-REQUEST. 
MOVE 1181122811 TO DATA-BUFFER. 
CALL IIDBDATA OF DMINTERPRETER" 

USING DATA-REQUEST,DATA-BUFFER 
GIVING RESULT. 

IF RESULT = 1 
PERFORM EXCEPTION-HANDLER. 

MOVE IIPUT STRING EMP EMP-LNAME" TO DATA-REQUEST. 
MOVE IIWOLVERTON" TO DATA-BUFFER. 
CALL IIDBDATA OF DMINTERPRETER" 

USING DATA-REQUEST,DATA-BUFFER 
GIVING RESULT. 

IF RESULT = 1 
PERFORM EXCEPTION-HANDLER. 

MOVE "EMP-FNAME" TO ITEM-NAME. 
MOVE II LAURA" TO VAR-l. 
CALL JlDBPUTDISPLAY OF DMINTERPRETER" 

USING DATA-SET-NAME,ITEM-NAME,VAR-1 
GIVING RESULT. 

IF RESULT = 1 
PERFORM EXCEPTION-HANDLER. 

8600 0155-000 



COBOL74 Application Program Using the Interpretive Interface (cont.) 

****************************************************************** 
* SETUP OF RE-CREATED RECORD IN USER WORK AREA * 
****************************************************************** 
* EMP EMP EMP 

FNAME 
EMP 
SSN 

EMP EMP EMP * 
* NO LNAME DATE-HIRED SEC-CLEAR SALARY * 
*----------------------------------------------------------------* 
* 12 WOLVERTON LAURA 549927328 811228 TRUE 9001.90 * 
****************************************************************** 

CALL IIDBBEGINTRANSACTION OF DMINTERPRETER" 
USING P-AUDIT 
GIVING RESULT. 

IF RESULT = 1 
PERFORM EXCEPTION-HANDLER. 

CALL IIDBSTORE OF DMINTERPRETER" 
USING DATA-.SET -NAME 
GIVING RESULT. 

IF RESULT = 1 
PERFORM EXCEPTION-HANDLER. 

CALL IIDBENDTRANSACTION OF DMINTERPRETER" 
USING P-AUDIT 
GIVING RESULT. 

IF RESULT = 1 
PERFORM EXCEPTION-HANDLER. 

****************************************************************** 

* SETTING DATA SET TO THE BEGINNING * 
****************************************************************** 

CALL IIDBSET OF DMINTERPRETER" 
USING DATA-SET-NAME, BEGIN-I 
GIVING RESULT. 

IF RESULT = 1 
PERFORM EXCEPTION~HANDLER. 

****************************************************************** 

* FINDING A RECORD * 
****************************************************************** 

8600 0155-000 

CALL II DBFIND OF DMINTERPRETER" 
USING FIRST-I, DATA-SET-NAME, CONDITION-1 
GIVING RESULT. 

IF RESULT = 1 
PERFORM EXCEPTION-HANDLER. 

C-21 



COBOL74 Application Program Using the Interpretive Interface (cont.) 

C-22 

****************************************************************** 
* LOCKING A RECORD * 
****************************************************************** 

CALL "DBLOCK OF DMINTERPRETER" 
USING FIRST-l, DATA-SET-NAME, CONDITION-l 
GIVING RESULT. 

IF RESULT = 1 
PERFORM EXCEPTION-HANDLER. 

****************************************************************** 
* VERIFYING ITEMS IN RECORD * 
****************************************************************** 
* 
* 
* 

USING DBDATA. ENTRY POINT 

MOVE "GET REAL EMP EMP-NO" TO DATA-REQUEST. 
CALL "DBDATA OF DMINTERPRETER" 

USING DATA-REQUEST,DATA-BUFFER 
GIVING RESULT. 

IF RESULT = 1 
PERFORM EXCEPTION-HANDLER. 

MOVE "GET REAL EMP EMP-SALARY" TO DATA-REQUEST. 
CALL "DBDATA OF DMINTERPRETER" 

USING DATA-REQUEST,DATA-BUFFER 
GIVING RESULT. 

IF RESULT = 1 
PERFORM EXCEPTION-HANDLER. 

MOVE "GET REAL EMP EMP-SSN" TO DATA-REQUEST. 
CALL "DBDATA OF DMINTERPRETER" 

USING DATA-REQUEST,DATA-BUFFER 
GIVING RESULT. 

IF RESULT = 1 
PERFORM EXCEPTION-HANDLER. 

MOVE IIGET REAL EMP EMP-DATE-HIRED" TO DATA-REQUEST. 
CALL "DBDATA OF DMINTERPRETERII 

USING DATA-REQUEST,DATA-BUFFER 
GIVING RESULT. 

IF RESULT = 1 
PERFORM EXCEPTION-HANDLER. 

MOVE "GET·STRING EMP EMP-LNAME" TO DATA-REQUEST. 
CALL IIDBDATA OF DMINTERPRETER" 

USING DATA-REQUEST,DATA-BUFFER 
GIVING RESULT. 

IF RESULT = 1 
PERFORM EXCEPTION-HANDLER. 

8600 0155-000 



COBOL74 Application Program Using the Interpretive Interface (cont.) 

* 
* USING DBGETDISPLAY ENTRY POINT 
* 

* 

MOVE IIEMP-FNAME" TO ITEM-NAME. 
CALL IIDBGETDISPLAY OF DMINTERPRETERII 

USING DATA-SET-NAME,ITEM-NAME,VAR-l 
GIVING RESULT. 

IF RESULT:;: 1 
PERFORM EXCEPTION-HANDLER. 

* USING DBGETBOOLEAN 
* 

MOVE IIEMP-SEC-CLEARII TO ITEM-NAME. 
CALL IIDBGETBOOLEAN OF DMINTERPRETERII 

USING DATA-SET-NAME,ITEM-NAME,VAR-l 
GIVING RESULT. 

IF RESULT:;: 1 
PERFORM EXCEPTION-HANDLER. 

****************************************************************** 
* FREEING A RECORD * 
****************************************************************** 

CALL IIDBFREE OF DMINTERPRETERII 
USING DATA-SET-NAME 
GIVING RESULT. 

IF RESULT = 1 
PERFORM EXCEPTION-HANDLER. 

****************************************************************** 
* CAUSING AN EXCEPTION * 
****************************************************************** 

8600 0155-000 

CALL IIDBFIND OF DMINTERPRETERII 
USING FIRST-l, DATA-SET-NAME, SPACE-l 
GIVING RESULT. 

IF RESULT = 1 
PERFORM EXCEPTION-HANDLER. 

CALL IIDBFIND OF DMINTERPRETERII 
USING PRIOR-I, DATA-SET-NAME, SPACE-I 
GIVING RESULT. 

IF RESULT = I 
PERFORM EXCEPTION-HANDLER. 

C-23 



COBOL74 Application Program Using the Interpretive Interface (cont.) 

****************************************************************** 
* USING DBVERB * 
****************************************************************** 
* 
* USING DBVERB ON A SET STATEMENT 
* 

* 

MOVE "SET EMP TO BEGINNING II TO DATA-REQUEST. 
CALL "DBVERB OF DMINTERPRETER" 

USING DATA-REQUEST 
GIVING RESULT. 

IF RESULT = 1 
PERFORM EXCEPTION-HANDLER. 

* USING DBVERB ON A SEARCH STATEMENT 
* 

MOVE "FIND FIRST EMP AT EMP-NO=l1" TO DATA-REQUEST. 
CALL IIDBVERB OF DMINTERPRETER II 

USING DATA-REQUEST 
GIVING RESULT. 

IF RESULT = 1 
PERFORM EXCEPTION-HANDLER. 

****************************************************************** 
* CLOSING THE DATABASE 
***********************************************~****************** 

CALL IIDBCLOSE OF DMINTERPRETERII 
GIVING RESULT. 

IF RESULT = 1 
PERFORM EXCEPTION-HANDLER. 

CLOSE REMOTEFILE. 
STOP RUN. 

EXCEPTION-HANDLER. 

CALL "DBSTATUS OF DMINTERPRETER" 
USING EXCEPTION-WORD. 

CALL "DBEXCEPTIONNAME OF DMINTERPRETERII 
USING EXCEPTION-WORD, EXCEPTION-NAME. 

MOVE EXCEPTION-NAME TO REMOTE-REC. 
WRITE REMOTE-REC. 
CALL IIDBEXCEPTIONTEXT OF DMINTERPRETERII 

USING EXCEPTION-WORD, EXCEPTION-MSG. 
MOVE EXCEPTION-MSG TO REMOTE-REC. 
WRITE REMOTE-REC. 

END-OF-PROGRAM. 
EXIT PROGRAM. 

* 

C-24 8600.0155-000 



FORTRAN77 Application Program Using the Interpretive Interface 

FORTRAN77 Application Program Using the 
I nterpretive Interface 

*********************************************************************** 
* This program uses the FORTRAN77 declaration of library entry points * 
* from the DATABASE/DMINTERPRETER symbolic file rather than * 
* explicitly declaring each entry point. * 
*********************************************************************** 
* 
$ RESET FREE 
* 
*********************************************************************** 
* FORTRAN77 LIBRARY AND ENTRY POINT DECLARATIONS * 
*********************************************************************** 

BLOCK GLOBALS 
LIBRARY DMI (TITLE="DMINTERPRETER/EMPJOB. ") 

END 

$ INCLUDE "DATABASE/DMINTERPRETER" 20200000-20249999 

*********************************************************************** 
* SUBROUTINE EXCEPT * 
*********************************************************************** 

SUBROUTINE EXCEPT 

$ INCLUDE "DATABASE/DMINTERPRETER" 20290000-20299999 

CHARACTER 
LOGICAL 

MSG 
RESULT 

RESULT = DBSTAT( ) 

CALL DBEXCN(RESULT,MSG) 
WRITE(6,200) MSG 

CALL DBEXCT(RESULT,MSG) 
WRITE(6,200} MSG 

200 FORMAT(lX,A)' 
RETURN 
END 

*70 

$ INCLUDE "DATABASE/DMINTERPRETER" 20290000-20299999 

86000155-000 C-25 



FORTRAN77 Application Program Using the Interpretive Interface (cont.) 

C-26 

*********************************************************************** 
* START OF MAIN PROGRAM * 
*********************************************************************** 

CHARACTER DSNAME *4 I"EMP"I, 
* FIRST *10 I"FIRST"I, 
* PRIOR *10 I"PRIOR"I, 
* NEXT *10 I"NEXT"I, 
* BEGIN *9 I"BEGINNING"I, 
* AUDIT *10 I"AUDIT"I, 
* UPDATE *6 I"UPDATE"I, 
* SPACE *1 I" "I, 
* COND *9 l"EMP-NO=11"1, 
* DATREQ *40 
* DATBUF *22 
* ITMNAM *13 
* MSG *70 
* EXPR3 *22 

LOGICAL RSLT, 
* EXPR4 

DOUBLE PRECISION EXPR2 

REAL EXPR1 

*********************************************************************** 
* OPENING THE DATABASE * 
*********************************************************************** 

RSLT = DBOPEN(UPDATE) 
IF (RSLT) CALL EXCEPT 

*********************************************************************** 
* DELETING A RECORD * 
*********************************************************************** 

RSLT = DBBTR(AUDIT) 
IF (RSLT) CALL EXCEPT 

RSLT = DBDEL(FIRST,DSNAME,COND) 
IF (RSLT) CALL EXCEPT 

RSLT = DBETR(AUDIT) 
IF (RSLT) CALL EXCEPT 

8600 0155-000 



FORTRAN77 Application Program Using the Interpretive Interface (cont.) 

*********************************************************************** 
* CREATING A RECORD * 
*********************************************************************** 

RSLT = DBCR(DSNAME,SPACE) 
IF (RSLT) CALL EXCEPT 

*********************************************************************** 

* FILLING IN A RECORD * 
*********************************************************************** 

* 
* USING DBPUTREAL ENTRY POINT 
* 

* 

ITMNAM = "EMP-NO" 
EXPRI = 11 
RSLT = DBPUTR(DSNAME,ITMNAM,EXPRl) 
IF (RSLT) CALL EXCEPT 

ITMNAM = "EMP-SALARY" 
EXPRI = 451010.95 
RSLT = DBPUTR(DSNAME,ITMNAM, 2 * EXPRl) 
IF (RSLT) CALL EXCEPT 

* USING DBPUTDOUBLE ENTRY POINT 
* 

* 
* 
* 

* 
* 
* 

8600 015&-000 

ITMNAM = "EMP-SSN" 
EXPR2 = 5732310911 
RSLT = DBPUTD(DSNAME,ITMNAM, EXPR2 - 11) 
IF (RSLT) CALL EXCEPT 

USING DBDATA ENTRY POINT 

DATREQ = "PUT REAL EMP EMP-DATE-HIRED" 
DATBUF = "811223" 
RSLT = DBDATA(DATREQ,DATBUF) 
IF (RSLT) CALL EXCEPT 

DATREQ = "PUT CHARACTER EMP EMP-LNAME" 
DATBUF = "STACK" 
RSLT = DBDATA(DATREQ,DATBUF) 
IF (RSLT) CALL EXCEPT 

USING DBPUTCHARACTER.ENTRY POINT 

ITMNAM = "EMP-FNAME" 
EXPR3 = II CATHY II 
RSLT = DBPUTC(DSNAME,ITMNAM,EXPR3(1:5) II "LINA") 
IF (RSLT) CALL EXCEPT 

C-27 



FORTRAN77 Application Program Using the Interpretive Interface (cont.) 

C-28 

* 
* USING DBPUTLOGICAL ENTRY POINT 
* 

ITMNAM = IIEMP-SEC-CLEARII 
EXPR4 = • TRUE. 
RSLT = DBPUTL(DSNAME,ITMNAM,.NOT. EXPR4) 
IF (RSLT) CALL EXCEPT 

*********************************************************************** 
* RECORD SETUP IN USER WORK AREA . * 
*********************************************************************** 
* 
* EMP 
* NO 

EMP 
LNAME 

EMP EMP 
FNAME SSN 

EMP 
DATE-HIRED 

* 
EMP EMP * 
SEC-CLEAR SALARY * 

*---------------------------------------------------------------------* 
* 22 STACK CATHY 573230900 811223 FALSE 9001.9 * 
*********************************************************************** 

*********************************************************************** 
* STORING A RECORD * 
*********************************************************************** 

RSLT = DBBTR(AUDIT) 
IF (RSLT) CALL EXCEPT 

RSLT = DBSTORE(DSNAME) 
IF (RSLT) CALL EXCEPT 

RSLT = DBETR(AUDIT) 
IF (RSLT) CALL EXCEPT 

*********************************************************************** 

* RE-CREATING A RECORD * 
*********************************************************************** 

RSLT = DBRECR(DSNAME,SPACE) 
IF (RSLT) CALL EXCEPT 

ITMNAM = IIEMP-NO II 
EXPR1 = 12 
RSLT = DBPUTR(DSNAME,ITMNAM,EXPR1) 
IF (RSLT) CALL EXCEPT 

ITMNAM = IIEMP-SSN II 

EXPR2 = 549273281 
RSLT = DBPUTD(DSNAME,ITMNAM, EXPR2 - 12) 
IF (RSLT) CALL EXCEPT 

DATREQ = "PUT STRING EMP EMP-LNAME" 
DATBUF = IIBLACK" 
RSLT = DBDATA(DATREQ,DATBUF) 
IF (RSLT) CALL EXCEPT 

8600 0155-000 



FORTRAN77 Application Program Using the Interpretive Interface (cont.) 

ITMNAM = IIEMP-FNAME II 
EXPR3 = II SARAH II 
RSLT = DBPUTC(DSNAME,ITMNAM,EXPR3(1:5) II IILEEII) 
IF (RSLT) CALL EXCEPT 

RSLT = DBBTR(AUDIT) 
IF (RSLT) CALL EXCEPT 

RSLT = DBSTORE(DSNAME) 
IF (RSLT) CALL EXCEPT 

RSLT = DBETR(AUDIT) 
IF (RSLT) CALL EXCEPT 

*********************************************************************** 

* SETTING DATA SET TO THE BEGINNING * 
*********************************************************************** 

RSLT = DBSET(DSNAME,BEGIN) 
IF (RSLT) CALL EXCEPT 

*********************************************************************** 
* FINDING A RECORD * 
*********************************************************************** 

RSLT = DBFIND(FIRST,DSNAME,COND) 
IF (RSLT) CALL EXCEPT 

*********************************************************************** 
* LOCKING A RECORD * 
*********************************************************************** 

RSLT = DBLOCK(FIRST,DSNAME,COND) 
IF (RSLT) CALL EXCEPT 

*********************************************************************** 

* VERIFYING ITEMS IN A RECORD * 
*********************************************************************** 
* 
* 
* USING DBGETREAL ENTRY POINT 
* 

8600 0155-000 

ITMNAM = "EMP-NO" 
RSLT = DBGETR(DSNAME,ITMNAM,EXPR1) 
IF (RSLT) CALL EXCEPT 

ITMNAM = IIEMP-SALARY" 
RSLT = DBGETR(DSNAME,ITMNAM,EXPR1) 
IF (RSLT) CALL EXCEPT 

C-29 



FORTRAN77 Application Program Using the Interpretive Interface. (cont.) 

C-30 

* 
* 
* USING DBGETDOUBLE ENTRY POINT 
* 

* 
* 

ITMNAM = "EMP-SSN" 
RSLT = DBGETD(DSNAME,ITMNAM,EXPR2) 
IF (RSLT) CALL EXCEPT 

* USING DB DATA ENTRY POINT 
* 

* 
* 

DATREQ = "GET REAL EMP EMP-DATE-HIRED" 
RSLT = DBDATA(DATREQ,DATBUF) 
IF (RSLT) CALL EXCEPT 

DATREQ = "GET CHARACTER EMP EMP_LNAME" 
RSLT = DBDATA(DATREQ,DATBUF) 
IF (RSLT) CALL EXCEPT 

* USING DBGETCHARACTER ENTRY POINT 
* 

* 
* 

ITMNAM = "EMP-FNAME" 
RSLT = DBGETC(DSNAME,ITMNAM,EXPR3) 
IF (RSLT) CALL EXCEPT 

* USING DBGETLOGICAL ENTRY POINT 
* 

ITMNAM = "EMP-SEC-CLEAR" 
RSLT = DBGETL(DSNAME,ITMNAM,EXPR4) 
IF (RSLT) CALL EXCEPT 

*********************************************************************** 
* FREEING A RECORD * 
*********************************************************************** 

RSLT = DBFREE(DSNAME) 
IF (RSLT) CALL EXCEPT 

*********************************************************************** 
* CAUSING AN EXCEPTION * 
*********************************************************************** 

RSLT = DBSET(DSNAME,BEGIN) 
IF (RSLT) CALL EXCEPT 

RSLT = DBFIND(PRIOR,DSNAME,SPACE) 
IF (RSLT) CALL EXCEPT 

8600 0155-000 



FORTRAN77 Application Program Using the Interpretive Interface (cont.) 

*********************************************************************** 
* USING DBVERB * 
*********************************************************************** 

* 
* USING DBVERB ON A SET STATEMENT 
* 

* 

RSLT = DBVERB("SET EMP TO BEGINNING") 
IF (RSLT) CALL EXCEPT 

* USING DBVERB ON A SEARCH STATEMENT 
* 

* 

RSLT = DBVERB("FIND FIRST EMP AT EMP-NO=ll") 
IF (RSLT) CALL EXCEPT 

* USING DBVERB ON A STATUS STATEMENT 
* 

RSLT = DBVERB("SET EMP TO BEGINNING") 
IF (RSLT) CALL EXCEPT 
RSLT = DBVERB("FIND PRIOR EMp lI

) 

RSLT = DBVERB("DMSTATUS") 
CALL DBEXCN(RSLT,MSG) 
CALL DBEXCT(RSLT,MSG) 

*********************************************************************** 
* CLOSING THE DATABASE * 
*********************************************************************** 

RSLT = DBCLOSE( ) 
IF (RSLT) CALL EXCEPT 

END 

86000155-000 C-31 



C-32 86000155-000 



AppendixD 
Understanding Railroad Diagrams 

What Are Railroad Diagrams? 
Railroad diagrams are diagrams that show you the rules for putting words and symbols 
together into commands and statements that the computer can understand. These 
diagrams consist of a series of paths that show the allowable structure, constants, and 
variables for a command or a statement. Paths show the order in which the command or 
statement is constructed. Paths are represented by horizontal and vertica1lines. Many 
railroad diagrams have a number of different paths you can take to get to the end of the 
diagram.. For example: 

- REMOVE E j 
SOURCE 
OBJECT 

If you follow this railroad diagram. from left to right, you will discover three acceptable 
commands. These commands are 

• REMOVE 

• REMOVE SOURCE 

• REMOVE OBJECT 

If all railroad diagrams were this simple, this explanation could end here. However, 
because the allowed ways of communicating with the computer can be complex, railroad 
diagrams sometimes must also be complex. 

Regardless of the level of complexity, all railroad diagrams are visual representations of 
commands and statements. Railroad diagrams are intended to 

• . Show the mandatory items. 

• Show the user-selected items. 

• Present the order in which the items must appear. 

• Show the number of times an item can be repeated. 

• Show the necessary punctuation. 

To familiarize you with railroad diagrams, this explanation describes the elements of the 
diagrams and provides examples. 

Some of the actual railroad diagrams you will encounter might be more complex. 
However, all railroad diagrams, simple or complex, follow the same basic rules. They 

8600 0155-000 0-1 



Understanding Railroad Diagrams 

all consist of paths that represent the allowable structure, constants, and variables for 
commands and statements. 

By following railroad diagrams, you can easily understand the correct syntax for 
commands and statements. Once you become proficient in the use of railroad notation, 
the diagrams serve as quick references to the commands and statements. 

Constants and Variables 

A constant is an item that c~ot be altered. You must enter the constant as it appears 
in the diagram, either in full or as an allowable abbreviation. If a constant is partially 
underlined, you can abbreviate the constant by entering only the underlined letters. In 
addition to the underlined letters, any of the remaining letters can be entered. If no part 
of the constant is underlined, the constant cannot be abbreviated. Constants can be 
recognized by the fact that they are never enclosed in angle brackets « » and are in 
uppercase letters. 

A variable is an item that represents data. You can replace the variable with data that 
meets the requirements of the particular command or statement. When replacing a 
variable with data, you must follow the ru1es defined for the particu1ar command or 
statement. Variables appear in railroad diagrams enclosed in angle brackets. 

In the following example, BEGIN and END are constants while < statement list> is a 
variable. The constant BEGIN can be abbreviated since it is partially underlined. Valid 
abbreviations for BEGIN are BE, BEG, andBEGI. 

- R.E.GIN -<statement list>- END ----------------4 

Constraints 

0-2 

Constraints are used in a railroad diagram to control progression through the diagram. 
Constraints consist of symbols and unique railroad diagram line paths. They include 

• Vertical bars 

• Percent signs 

• Right arrows 

• Required items 

• User-selected items 

• Loops 

• Bridges 

A description of each item follows. 

8600 0155-000 



Understanding Railroad Diagrams 

Vertical Bar 

The vertical bar symbol ( I) represents the end of a railroad diagram and indicates the 
command or statement can be followed by another command or statement. 

- SECONDWORD - ( -<arithmetic expression>- ) ---------1 

Percent Sign 

The percent sign (%) represents the end of a railroad diagram and indicates the 
command or statement must be on a line by itself. 

- STOP -------------------------------4% 

Right Arrow 

The right arrow symbol (> ) is used when the railroad diagram is too long to fit on one 
line and must continue on the next. A right arrow appears at the end of the first line and 
another right arrow appears at the beginning of the next line. 

- SCALERIGHT - ( -<arithmetic expression>- t -----------~ 

-+-<arithmetic expression>- ) -----------------------1 

Required Items 

A required item can be either a constant, a variable, or punctuation. A required item 
appears as a single entry, by itself or with other items, on a horizontal line. Required 
items can also exist on horizontal lines within alternate paths or nested (lower-level) 
diagrams. If the path you are following contains a required item, you must enter the 
item in the command or statement; the required item cannot be omitted. 

In the following example, the word EVENT is a required constant and < identifier> is a 
required variable: 

- EVENT -<identifier>>-------------------------I 

User-Selected Items 

User-selected items appear one below the other in a vertical list. You can choose anyone 
of the items from the list. If the list also contains an empty path (solid line), none of 
the choices are required. A user-selected item Can be either a constant, a variable, or 
punctuation. In the following railroad diagram, either the plus sign ( + ) or minus sign (-) 
can be entered before the required variable < arithmetic expression>, or the symbols 
can be disregarded because the diagram.a1so contains an empty path. 

E ~ 3 c::arithmeti c expression> 

8600 0155-000 0-3 



Understanding Railroad Diagrams 

D-4 

Loop 

A loop represents an item or group of items that you can repeat. A loop can span all or 
part of a railroad diagram. It always consists of at least two horizontal lines, one below 
the other, connected on both sides by vertical lines. The top line is a right-to-Ieft path 
that contains information about repeating the loop. 

Some loops include a return character. A return character is a character - often a 
comma (,) or semicolon (;) - required before each repetition of a loop. If there is no 
return character, the items must be separated by one or more blank spaces. 

-Cfield ta~>--L---------------------I 

Bridge 

Sometimes a loop also includes a bridge, which is used to show the maximum number of 
times the loop can be repeated. The bridge can precede the contents of the loop, or it 
can precede the return character (if any) on the upper line of the loop. 

The bridge determines the number of times you can cross that point in the diagram. The 
bridge is an integer enclosed in sloping lines (j \). Not all loops have bridges. Those that 
do not can be repeated any number of times tUltil all valid entries have been used. 

In the first bridge example, you can enter LINKAGE or RUNTIME no more than two 
times. In the second bridge example, you can enter LINKAGE or RUNTIME no more 
than three times. 

--L/2\.- LINKAGE -.J.--L-------------------I 
L RUNTIME 

r-/2~INKAGE -.,..-....1.1--------------------1 
--C RUNTIME =:I 

In some bridges an asterisk (*) follows the number. The asterisk means that you must 
select one item from the group. 

--L/1*\.- liNKAGE -.Jr-I-I ------------------1 
L RUNTIME 

The following figure shows the types of constraints used in railroad diagrams. 

8600 0155-000 



Understanding Railroad Diagrams 

SYMBOL/PATH EXPLANATION 

Vertical bar. Indicates that the 
I command or statement can be followed 

by ~nother command or statement. 

0/0 
Percent sign. Indicates that the 
command or statement must be on a 
1i ne by .i tse 1 f. 

) Right arrow. Indicates that the 

> 
diagram occupies mare than one 
line. 

Requi red items'. Indicates the 
-< required >- constants. variables. and 

punctuation that must be entered 
in a command or statement. 

t YNE: J 
User-se 1 ected items'. Indicates the 
items' that appear one below the 
other in a vertical list. You 
select which item 'or items' to include. 

1< I A loop. Indicates an item or group 
of i terns' that can be repeated. 

~/2\J..-
A bridge. Indi cates the maximum ' 
number of time's a loop can be 
repeated. 

Figure 0-1. Railroad Constraints 

Following the Paths of a Railroad Diagram 
The paths of a railroad diagram lead you through the command or statement from 
beginning to end. Some railroad diagrams have only one path, while others have several 
alternate paths. The following railroad diagram indicates there is only one path that 
requires the constant LINKAGE and the variable < linkage mnemonic> : 

- LINKAGE -<linkage mnemon;c»----------------t 

Alternate paths provide choices in the construction of commands and statements. 
Alternate paths are provided by loops, user-selected items, or a combination of both. 
More complex railroad diagrams can consist of many alternate paths, or nested 
Gower-level) diagrams, that show a further level of detail. 

For example, the following railroad diagram consists of a top path and two alternate 
paths. The top path includes an ampersand (&) and the constants (that are 

8600,0155--000 D-5 



Understanding Railroad Diagrams 

user-selected items) in the vertica1list. These constants are within a loop that can be 
repeated any number of times until all options have been selected. The first alternate 
path requires the ampersand and the required constant ADDRESS. The second 
alternate path requires the ampersand followed by the required constant ALTER and 
the required variable < new value> . 

, 
- & lYPE ---,.-.....I.---r----~----------__I 

,ASCII 
.6.CL 
DECIMAL 
.EBCDIC 
HEX 
QCTAL 

AQDRESS ------I 
ALTER --<new value 

Railroad Diagram Examples with Sample Input 

D-6 

The following examples show five railroad diagrams and possible command and 
statement constructions based on the paths of these diagrams. 

Example 1 

<lock statement> 

- LOCK - ( - <file identifier> - ) --------------1 

Sample Input 

LOCK (FILE4) 

Example 2 

<open statement> 

Explanation 

LOCK is a constant and cannot be altered. Because no part 
of the word is underlined, the entire word must be entered. 

The parentheses are required punctuation and FILE4 is a 
sample file identifier. 

- OPEN <database name>->------------~ 

t ~~g~~:Yj 

Sample Input 

OPEN DATABASE! 

OPEN INQUIRY DATABASE! 

Explanation 

The constant OPEN is followed by the variable DATABASE!, 
which is a database name. 

The railroad diagram shows two user-selected items, 
INQUIRY and UPDATE. However, because there is an empty 
path (solid line), these entries are not required. 

The constant OPEN is followed by the user-selected constant 
INQUIRY and the variable DATABASE!. 

continued 

8600 0155-000 



continued 

Sample Input 

OPEN UPDATE DATABASEl 

Example 3 

<generate statement> 

Understanding Railroad Diagrams 

Explanation 

The constant OPEN is followed by the user-selected constant 
UPDATE and the variable DATABASEl. 

-- GENERATE --<subset>-- = ~ NULL 
L<subset>-.-------I 

Sample Input 

GENERATE Z = NULL 

GENERATE Z = x 

GENERATE Z = X AND B 

GENERATE Z = X + B 

Example 4 

<entity reference declaration> 

AN~<subset 
OR 
+ 

Explanation 

The GENERATE constant is followed by the variable Z, an 
equal sign (=), and the user-selected constant NULL. 

The GENERATE constant is followed by the variable Z, an 
equal sign, and the user-selected variable X. 

The GENERATE constant is followed by the variable Z, an 
equal sign, the user-selected variable X, the AND command 
(from the list of user-selected items in the nested path), and 
a third variable, B. 

The GENERATE constant is followed by the variable Z, an 
equal sign, the user-selected variable X, the plus sign (from 
the Jist of user-selected items in the nested path), and a third 
variable, B. 

-- ENTITY REFERENCE .J:;entity ref ID>-- ('--<class ID>-- ) --L... __ --I 

Sample Input 

ENTITY REFERENCE ADVISORl (INSTRUCTOR) 

ENTITY REFERENCE ADVISORl (INSTRUCTOR), 
ADVISOR2 (ASST JNSTRUCTOR) 

8600 0155-000 

Explanation 

The required item ENTITY . 
REFERENCE is followed by the 
variable ADVISORl and the variable 
INSTRUCTOR. The parentheses are 
required. 

Because the diagram contains a 
loop, the pair of variables can be 
repeated any number of times. 

0-7 



Understanding Railroad Diagrams 

D-8 

Example 5 

- PS - MODIFY ----------------------

~r__I__r_-<request number>-------------.----L.--.--------'7 
<request number>-- - --<request number 

ALL~---------------------------~ 
.EXCEPTIONS -----------' 

L...-.J.--r-----,-<fi 1 e a tt ~i bute ph rase>--J---'---' 

I------,r--'<print modifier phrase 

Sample Input 

PS MODIFY 11159 

PS MODIFY 11159,11160,11163 

PS MOD 11159-11161 DESTINATION = 
II LP7" 

PS MOD ALL EXCEPTIONS 

Explanation 

The constants PS and MODIFY are followed 
by the variable 11159, which is a request 
number. 

Because the diagram contains a loop, the 
variable 11159 can be followed by a comma, 
the variable 11160, another comma, and the 
final variable 11163. 

The constants PS and MODIFY are followed 
by the user-selected variables 
11159-11161, which are request numbers, 
and the user-selected variable DESTINATION 
= "LP7", which is a file attribute phrase. 
Note that the constant MODIFY has been 
abbreviated to its minimum allowable form. 

The constants PS and MODIFY are followed 
by the user-selected constants ALL and 
EXCEPTIONS. 

8600 0155-000 



Glossary 

In this glossary, definitions taken from outside sources are preceded by an abbreviation enclosed 
in parentheses. Unless otherwise noted, all definitions that pertain to COBOL also pertain to 
COBOL74 and COBOL85. 

A 
abort 

ABSN 

access 

To terminate an active program or session abnormally and, sometimes, to attempt to 
restart it. 

See audit block serial number. 

(1) To perform an action on an object. Possible actions depend on the type of object; for 
example, interrogating or assigning a value to a variable, reading from or writing to a file, 
or invoking a procedure. (2) A logical index structure that defines the physical ordering 
of records in direct, ordered, and random data sets. An access functions like a set, but no 
physical file is associated with an access. 

access mode 
The manner in which records are to be operated on within a file. The two possible access 
modes are random and sequential. 

Accessroutines 
Routines that perform all physical and logical management of a database and allow many 
users to access the database concurrently. Each data management statement that a user 
language program executes invokes a portion of the Accessroutines to perform all file 
management fWlctions that the statement requires. 

active query 
In database management, a query that the system can process. All queries activated 
within transaction state are deactivated at the end of transaction' state. 

ACTUALNAME clause 

ADDS 

A clause that permits the renaming of a library entry point within a user program by 
using a different procedure identifier to link to the original library entry point name. 
This clause is used in ALGOL, FORTRAN77, and PL/1 application programs when a 
procedure, is declared to be an entry point of a particular library. 

See Advanced Data Dictionary System. 

Advanced Data Dictionary System (ADDS) .,., 
A software product that allows for the centralized definition, storage, and retrieval of 
data descriptions. 

86000155-000 Glossary-1 



Glossary 

afterimage 

ALGOL 

The image of a database record in the audit trail after an update operation is performed. 

Algorithmic language. A structured, high-level programming language that provides 
the basis for the stack architecture of the Unisys A Series systems. ALGOL was the 
first block-structured language developed in the 1960s and served as a basis for such 
languages as Pascal and Ada. It is still used extensively on A Series systems, primarily 
for systems programming. 

alpha data item of usage Kanji 
A database or file item that is declared in either the Data and Structure Definition 
Language (DASDL) or a file description as being ALPHA USAGE IS KANJI. 

alpha item 
A data item that stores alphanumeric information (letters, numbers, special characters, 
and blanks) as EBCDIC characters. An alpha item cannot be used in calculations. 

alphabetic character 
A character that belongs to the following set of letters in either uppercase or lowercase: 
A, B, C, D, E, F, G, H, I, J, K, L, M, N, 0, P, Q, R, S, T, U, V, W, x, Y, Z, and the space 
(blank). 

alphanumeric character 

ANSI 

Any character in the computer's character set. 

American National Standards Institute. A nongovernmental, nonprofit organization that 
is the central body for coordinating voluntary standards in the United States. ANSI also 
serves as the United States member of the International Standards Organization usO). 

arithmetic expression 
An expression containing any of the following: a numeric variable, a numeric elementary 
item, a numeric literal, identifiers and literals separated by arithmetic operators, two 
arithmetic expressions separated by an arithmetic operator, or an arithmetic expression 
enclosed in parentheses. 

arithmetic function 
A function containing calculations that produce a numeric result based on one or more 
records. 

attribute setting entry point 
In the DMINTERPRETER library, an entry point that restricts the number of times 
the DMINTERPRETER library can call the Accessroutines to complete a find or lock 
operation. 

audit block serial number (ABSN) 

Glossary-2 

A number associated with a block in the audit file. The first block in the first audit file is 
noted as ABSN O. The ABSN is incremented by one through the last audit file. 

8600 0155-000 



Glossary 

audit trail 
A file produced by the Accessroutines that contains various control records and a 
sequence of before-update and after-update record images resulting from changes to the 
database. The audit trail is used to recover the database and supply restart information 
to programs after a hardware or software failure has occurred. 

audited database 
A database that stores a record of changes (called the audit trail), which can be used for 
database recovery if a hardware or software failure occurs. 

automatic subset 

B 
back out 

A subset declared with a condition that specifies which members of the data set are to 
be included'in the subset. Entries are automatically inserted into or removed from the 
subset when records are added to or deleted from the data set. 

To undo changes made against a database and to roll back the progress of one or more 
transactions to a previously consistent state. 

beforeimage 
.The image of a database record in the audit trail before an update operation is 
performed. 

binary search 

block 

Boolean 

A quick method of searching for records that are in a known sequence by successively 
halving the area to be searched. 

(1) A group of physically adjacent records that can be transferred to or from a physical 
device as a group. (2) A program, or a part of a program, that is treated by the processor 
as a discrete unit. Examples are a procedure in ALGOL, a procedure or function in 
Pascal, a subroutine or function in FORTRAN, or a complete COBOL program. 

Pertaining to variables, data items, and attributes having a value of TRUE or FALSE. 

Boolean item 
A data item that stores information having a logical value of TRUE or FALSE. 

c 
call 

A programmatic request for another procedure or program to execute. 

CALL statement 
In COBOL, the CALL nonnumeric literal statement is the only construct that enables 
a program to call a library entry point. The CALL statement can pass required 

86000155-000 Glossary-3 



Glossary 

CANDE 

parameters in an optional USING clause and receive a result in an optional GIVING 
clause. 

See Command and Edit. 

CHANGE ATrRffiUTE statement 
In COBOL, the statement that is the only construct that can be used to change library 
attributes. When programming for the interpretive interface, this statement is used to 
change the TITLE attribute of the library to the a~tua1 name of the library object code 
file. 

character 

COBOL 

The actual or' coded representation of a digit, letter, or special symbol in display form. 

Common Business-Oriented Language. A widely used, procedure-oriented language 
intended for use in solving problems in business data processing. The main 
characteristics of COBOL are the easy readability of programs and a considerable degree 
of machine independence. COBOL is the most widely used procedure-oriented language. 

COBOL74 
A version of the COBOL language that is compatible with the American National 
Standard X3.23-1974. 

COBOL85 

code file 

The latest version of the COBOL language. This version is compatible with the 
American National Standard X3.23-1985. 

See object code file, source file. 

Command and Edit (CANDE) 
A time-sharing message control system (MCS) that enables a user to create and edit 
files, and to develop, test, and execute programs, interactively. 

Communications Management System (COMS) 
A general message control system (MCS) that' controls online environments on A Series 
systems. COMS can support the processing of multiprogram transactions, single-station 
remote files, and multistation remote files. 

compile time 
The time during which a compiler analyzes program text and generates an object code 
file. 

complex key 
A key composed of ~ultiple key items. 

COMB 
See Communications Management System. 

Glossary-4 8600 0155-000 



Glossary 

condition 
In COBOL, a status for which a truth value can be determined at execution time. The 
term condition (condition-I, condition-2, and so forth) implies a conditional expression 
consisting of either a simple condition optionally enclosed in parentheses or a combined 
condition consisting of a combination of simple conditions, logical operators, and 
parentheses, for which a truth value can be determined. See also selection expression. 

control file 
A file containing data file coordination information, audit control information, and 
dynamic database parameter values. 

control item 
A count item, population item, or record-type item. 

controlpoint 
A feature that limits the amount of audit information scanned by halt/load and Abort 
recovery. The controlpoint is performed when the last process leaves transaction state. 
Halt/load and Abort recovery do not process any audit images prior to the next to last 
controlpoint in the audit. 

count item 
A control item that contains a system-maintained count of the number of counted links 
that refer to a record. 

current path 
A logical reference into a data set or set from which the current record was retrieved. 

current record 
The actual data set record that a program is currently referencing. Each data set has a 
current record, which is contained in the user work area 

current record area 
See user work area 

D 
DASDL 

See Data and Structure Definition Language. 

Data and Structure Definition Language (DASDL) 
The language used to describe a database 10gica11y and physically, and to specify criteria 
to ensure the integrity of data stored in the database. DASDL is the source language 
that is input to the DASDL compiler, which creates or updates the database description 

. file from the input. 

data independence 
In data management, the property that esta~lishes the ability to change the structural 
format of a database without requiring changes to or recompilation of unaffected 
application programs that use the database. 

8600 6155-00Q Glossary-5 



Glossary 

data item 
A field in a database record or transaction format that contains a particular type of 
information. 

data management 
(1) The operating system function of placing and retrieving data in storage and 
protecting its security and integrity. (2) Data administration. 

Data Management System (DMS) 
The system responsible for storing and retrieving data while protecting data security and 
integrity. 

Data Management System II (DMSll) 

data set 

A specialized system software package used to describe a database and maintain the 
relationships ·among the data elements in the database. 

A collection of related data records stored in a file on a random-access storage device. 
A data set is similar to a conventional file. It contains data items and has logical and 
physical properties . similar to files. However, unlike conventional files, data sets can 
contain other data sets, sets, and subsets. 

data set record 
A record contained in a data set, which can be accessed through a DMSII statement. 

data transfer entry point 
A type of entry point peculiar to the DMINTERPRETER library whereby an item 
needed from a data set record is moved individually to or from a variable or expression 
that has been declared in the application program. 

data type 
An interpretation applied to a string of bits. Data types can be classified as structured 
or scalar. Structured data types are collections of individual data items of the same or 
different data types, such as arrays and records. Scalar data types include real, integer, 
double precision, complex, logical (also called Boolean), character; pointer, and label. 
Most programming languages provide a declaration statement or a standard convention 
to indicate the data type of a variable. 

database (DB) 
An integrated, centralized system of data files and program utilities designed to support 
an application. The data sets and associated index structures are defined by a single 
description. Ideally, all the permanent data pertinent to a particular application resides 
in a single database. The database is considered a global entity that several applications 
can access and update concurrently. 

database administrator (DBA) 
The person or group of people responsible for planning, designing, implementing, and 
maintaining a database. 

database definition 
A description of the logical and physical structures of a database. 

Glossary-6 - 8600 0155-000 



Glossary 

database equation 
The equation that refers to three operations: the specification of database titles during 
compilation, the run-time manipulation of database titles, and the creation of a Work 
Flow Language (WFL) task equation that overrides compiled-in titles by implicitly 
assigning a value to the DATABASE task attribute. 

database management system (DBMS) 
The software used to store, retrieve, update, report on, and protect data in a database. 

database name 
The unique identifier of a particular database. The rules for constructing a database 
name are the same as those for constructing a file name. 

database stack (DBS) 

DB 

DBA 

DBMS 

DBS 

deadlock 

A stack that contains all the information necessary for the Accessroutines to manage a 
database. 

See database. 

See database administrator. 

See database management system. 

See database stack. 

In data management, a situation in which two or more programs have locked records and 
are also attempting to lock records held by each other. 

declaration 
A programming language construct used to identify an object, such as a type or variable, 
to the compiler. A declaration can be used to associate a data type with the object so that 
the object can be used in a program. 

description file 
The file produced by the Data and Structure Definition Language (DASDL) or 
Transaction Formatting Language (TFL) compiler that contains information used when 
compiling all tailored software and all DMSIT user-language programs for a particular 
database or transaction base. 

direct data set 
A collection of related data records stored in a file. These records are maintained in key 
value order .. One unsigned numeric data item in the record is designated as the key item. 

directory 
(1) In Data Management System IT (DMSll), a file with the layout for each field of the 
record that it describes. A directory describes the layout of records within a file. (2) In 

8600 0155--000 G I ossa ry-7 



Glossary 

the Advanced Data Dictionary System (ADDS), a unique identifier by which one or more 
entities can be grouped. . 

directory name 

disjoint 

A name used to refer to a group of files whose file names are identical to the directory 
name, except that the file names have at least one additional node following the directory 
name. 

Pertaining to a data set, set, or subset when it is not contained in another data set. 
Contrast with embedded. 

DMINTERPRETER library 

DMS 

DMsn 

The object code file within the interpretive interface that enables an application program 
to access a DMSII database. 

See Data Management System. 

See Data Management System II. 

DMsn recovery 
A ci8.tabase routine that is initiated after a hardware, software, or operations failure 
while a database is in the update mode. DMSII recovery backs out any partially 
completed transactions by applying audit-trail images to the database to restore it to its 
proper state. It also passes restart information to the programs accessing the database. 

DMSUPPORT library 
An object code file containing the procedures that are tailored for a particular database. 

double precision 

E 
EBCDIC 

Pertaining to an arithmetic value that is represented internally as a signed-magnitude 
mantissa and exponent and is contained in two words. 

Extended Binary Coded Decimal Interchange Code. An 8-bit code representing 256 
graphic and control characters that are the native character set of most mainframe 
systems. 

embedded 
Pertaining to a data set, set, or subset contained within another data set. A record of 
an embedded structure must be accessed through the master data set in which it is 
embedded. Contrast with disjoint. 

end of Kanji (EOK) character 
A character that signals the end of a Kanji character string. 

Glossary-8_ 8600 0155-000 



Glossary 

entry point 
A procedure or function that is a library object. 

EOK 
See end of Kanji character. 

ERGO 
See Extended Retrieval with Graphic Output. 

exception 
In data management, an. error result returned to an. application program by the data 
management software, explaining the reason a requested database operation was not 
performed. 

exception handling entry point 
In the DMINTERPRETER library, an entry point that aids the programmer in handling 
and interpreting exceptions and errors. 

exception result 
Synonym for result descriptor and exception word. 

exception word 
Synonym for result descriptor and exception result. 

execution time 
The time during which an object code file is executed. Synonym for run time and, in 
COBOL, object time. 

export 
To send or carry to an outside entity the original significance or function. 

expression 
A combination of operands and operators that results in the generation of a single value. 

Extended Retrieval with Graphic Output (ERGO) 
A program for Data Management System n (DMSll) database and file access, and for 
report generation. 

F 
:6.elditem 

A data item that can contain an unsigned integer or Boolean values. 

Field Trouble Report (FrR) 
An obsolete term; see User Communication Form. 

:6.le equation 
A mechanism for specifying the values of file attributes when a program is compiled or 
executed. A file equation implicitly assigns a value to the FILECARDS task attribute. 

8600 0155-000 G I ossa ry-9 



.G I ossa ry 

rue-equate 
To specify the file title and other file parameters that are different from the defaults 
provided by the source program. 

FORTRAN 
Formula Translation. A high-level, structured programming language intended primarily 
for scientific use. 

FORTRAN77 

FTR 

G 

A version of the FORTRAN language that is compatible with the ANSI X3.9-1978 
standard. 

An acronym for the obsolete term Field Trouble Report. See User Communication Form. 

GIVING clause 
In COBOL, an optional clause in the CALL non-numeric literal statement that specifies 
a variable as the destination for the integer value 

global data item 
A data item, group item, or population item that is not a part of any data set. Global 
data items generally contain information such as control totals, hash totals, and 
populations that apply to the entire database. 

group item 

H 
halt/load 

A collection of data items that can be viewed as a single data item. 

A system-initialization procedure that temporarily halts the system and loads the master 
control program (MCP) from a disk to main memory. 

hashing algorithm 

I 
ID 

An algorithm used in constructing and maintaining hash tables, which modify record 
keys to produce the addresses of the record keys in a structure. 

See identifier. 

identifier (ID) 
(1) A labeL (2) One node of a file name. 

import 
To bring in from an outside source and still retain the original significance or function. 

Glossa ry...:.1 0- 8600 0155-000 



Glossary 

IN LmRARY statement 
In FORTRAN77, the statement that associates the logical expression name of an entry 
point with the library that is known to the application program through the library 
identifier. 

INCLUDE 
A compiler control option that enables the user to insert an entire file, or sequence range 
within a file, into a program. 

index sequential structure 
A structure that is a collection of tables arranged hierarchically. 

input/output mapping clause 
A clause that can be used with data management operations to assign the value of a 
database item to a program variable (input) and/or to assign the value of a program 
variable to a database item (output). 

inquiry mode· 
A database mode in which data can be read but not updated. 

integer 
A whole number. 

internal file name 
The name used to declare a logical file in a program. The internal name of a file is given 
by the value of its INTNAME file attribute. Work Flow Language (WFL) file equation 
statements can reference the file by implicitly or explicitly specifying an INTNAME value 
that matches the INTNAME attribute of a file in a program. 

interpretive interface 
A set of conventions for passing information using the DMINTERPRETER library. 

INTNAME 

intrinsic 

See internal file name. 

A system-supplied program routine for common mathematical and other operations 
that is loaded onto the system separately. An intrinsic can be invoked by the operating 
system or user programs. 

intrinsic data set 
A data set created by system designers as part of a Data Management System II 
(DMSm software package, as opposed to a data set created by a user. 

invocation 

invoke 

(1) The syntax used to initiate execution of software. (2) The act that transfers control 
to the start of a specified procedure, initializes any parameters, and begins the execution 
of the statements of the procedure. Invocations are of two kinds: entrances and 
initiations. 

(1) To cause to be executed. (2) To cause to be brought into main storage. 

8600 0155-000 Glossary-ll 



Glossary 

item 

J 

job 

K 
Kanji 

A field in a database record that contains an individual piece of information and can be 
referenced by name~ 

An independent process. The job of a particular task is the independent process that is 
the eldest ancestor of that task. 

The standard Japanese character set for information exchange. Each Kanji character is 
2 bytes (16 bits) in length and takes two positions on a form image. 

Kanji alpha string 
A string, delimited by quotation marks, that is further delimited by a start of Kanji 
(SOK) character (48"2B") and an end of Kanji (EOK) character (48"2C"). 

Kanji character literal 

key 

key field 

key item 

L 

A character string bounded on the left by the separator NC" and on the right by a 
quotation mark ('). The string contains Kanji characters between the beginning and 
ending quotation marks. 

(1) A field used to locate or identify a record in an indexed file. (2) A field in a record 
that is used to sort a file. (3) See also key item. 

See key. 

A data item or group item that serves as a retrieval key for a set, subset, or access. 

language extension 

library 

A syntactical addition to a standard language compiler that enables the compiler to 
interface directly with Unisys products. 

(1) A collection of one or more named routines or library objects that are stored in a file 
and can be accessed by other programs. (2) A program that exports objects for use by 
user programs. 

library directory 
A memory structure associated with a library process stack that describes the objects 
exported by the library process. 

G I ossa ry-12 8600 0155-000 



Glossary 

library identifier 
An internal name within an application program that represents the library code file 
being accessed. 

linear search 

link item 

literal 

A method for searching a set of information by examining each element of the set one at 
a time. 

A field that enables one data set record to refer to another. 

A character string whose value is implied by the ordered set of characters that compose 
the string. 

logical database 
A collection of structures declared in the Data and Structure Definition Language 
(DASDL) that provide a view of the database, enforce structure-level security, and 
achieve data independence. When a logical database is declared in DASDL, the data 
sets, sets, subsets, and remaps to be included in the database are listed. 

logical expression 
In FORTRAN77, a rule for computing a value corresponding to . TRUE. or .F ALSE .. 
Logical expressions consist of any valid combination of logical operands, logical operators, 
and parentheses. 

logical function 
In FORTRAN, a function that returns a value of. TRUE. or .FALSE .. 

M 
major key 

The first key in a complex key. 

manual subset 

master 

A subset that has no condition specifying which data set records are to be included in the 
subset. The user must add and delete manual subset entries, using the INSERT and 
REMOVE statements. 

A data set or record that contains one or more embedded data sets or records. In 
DMSII, synonym for master, parent, owner. 

master control program (MCP) 

MCP 

The central program of the A Series operating system. The term applies to any master 
control program that Unisys may release for A Series systems. 

See master control program. 

8600 9155-000 Glossary-13 



Glossary 

MCS 
See message control system. 

member, 
A record of a data set. 

message control system (MCS) 
A program that controls the flow of messages between terminals, application programs, 
and the operating system. MCS fWlctions can include message routing, access control, 
audit and recovery, system management, and message formatting. 

metatoken 
An item that appears in syntax notation as a variable item. 

minor key 
Any key in a complex key that is not the major (first) key. 

mnemonic 

N 

(1) An abbreviation or acronym that is used to assist the human memory. (2) A 
programmer-supplied word associated with a specific function name. (3) A character or 
group of characters intended to serve as a mnemonic. 

nonkeyitem 
An item in the data set being indexed that is not a key item in the selected set. 

null string 
An empty or zero-length string. 

null value 
The value contained in an item that does not contain valid information. 

numeric item 

o 

A data item whose description restricts its contents to a value represented by numeric 
characters. 

object code file 
. A file produced by a compiler when a program. is compiled successfully. The file contains 
instructions in machine-executable object code. 

object time 
In COBOL, the time during which an object program is executed. Synonym for run time, 
execution time. 

Glossary-14_ 8600 0155-000 



Glossary 

OCCURS clause 

ordered 

owner 

p 

parent 

path 

In a Data and Structure Definition Language (DASDL) data item declaration, a 
clause that establishes an ordered (subscripted) collection of data items with identical 
attributes. 

Pertaining to an item maintained in a user-specified sequence. 

See master. 

A process that owns the critical block of a dependent process. If the parent exits 
the critical block before the dependent process terminates, the dependent process is 
discontinued. See also master. 

(1) The route that must be traced from a directory to a subdirectory, or through a series 
of subdirectories, to find a file. (2) A specific location within the logical ordering of a data 
set, set, subset, or access. 

physical database 
An entire database as it is stored on a disk. Whereas a logical database represents only 
parts of a database to be used for limited purposes, a physical database is an entire 
database. 

population 

Q 

For disjoint data sets, the number of records in the data set. For embedded data sets, 
the population is the number of records in the embedded data set owned by the current 
master. 

qualification 
The specification of the data set that owns an item. Qualification is usually used when 
several data sets contain an item with the same name. 

quiet point 
A time during which there are no transactions in progress for a database. See also 
syncpoint. . 

R 
railroad diagram 

A graphic representation of the syntax of a command or statement. 

8600 0155-000 Glossary-15 



Glossary 

RDS 

real item 

See restart data set. 

A data item that stores signed or unsigned, fractional or whole values in single-precision, 
floating-point form. 

real number 

rebuild 

record 

Any number, including fractions and whole numbers. 

In database management, a recovery process in which the entire database is loaded 
from one or more sets of dump .tapes. The recovery process then applies the audit trail 
after-update record images to move the database forward in time. 

(1) A group of logically related items of data in a file that are treated as a unit. (2) The 
data read from or written to a file in one execution of a read or write statement in a 
program. 

record-type item 

recovery 

remap 

Either of the following: a binary integer value used in conjunction with variable-format 
data sets to identify the variable-format part, if any, the record contains; or a control 
item that contains the format number for records in variable-format data sets. 

In data management, a procedure that is initiated following a hardware, software, 
or operations failure while the database is in update mode. Recovery backs out any 
partially completed transactions by applying audit-trail images to the database to restore 
it to a consistent state. In addition, recovery passes restart information to the programs 
accessing the database. 

A logical data set that redefines a physical data set by omitting, reordering, or renaming 
the items. 

remote file 
A file with the KIND attribute specified as REMOTE. A remote file enables object 
programs to co:mmunicate interactively with a terminal. 

reorganization 
The process of reordering or reformatting data sets, sets, or subsets. Reorganization can 
restore space in files, reorder data sets for more efficient retrieval, and reformat data set 
records when items are added, deleted, or changed 

restart data set (RDS) 
A data set containing restart records that application programs can access to recover 
database information after a system failure. . 

restart record 
A record containing user-defined information that enables a user program to restart in 
response to a particular condition. 

Glossary-I 6 8600 0155-000 



Glossary 

result descriptor 

rollback 

RPG 

run time 

A 48-bit word that is the standard Data Management System n (DMSm exception word. 
A result descriptor includes the exception category and subcategory, and the structure 
number involved. When an exception occurs, bit 0 in the 48-bit word is set to 1. When 
an operation is successful, the 48-bit word contains all zeros. 

The recovery of a database or transaction base to a consistent state at an earlier point in 
time. 

Report Program Generator. A high-level, commercially oriented programming language 
used most frequently to produce reports based on information derived from data files. 

The time during which an object code file or user interface system (UIS) is executed. 
Synonym for execution time and, in COBOL, object time. 

run-time error 

s 

An error occurring during the execution of a program, which causes the system software 
to terminate execution of that program abnormally. 

savepoint 

schema 

An user-determined point in a program. that is located between a beginning transaction 
marker and its corresponding end transaction marker. While executing the transaction, 
processing can be specifically backed out to this point. 

The outline or description of a database. The schema acts as a map for the host system 
to use when performing any functions on the database or when accessing the database. 

selection expression 
The entire complement of selection criteria used in a FIND, LOCK, or DELETE 
statement to locate a data set record. The definition of a selection expression 
encompasses both the select options (FIRS~ NEX~ LAST, and PRIOR) and all the 
variations for the key conditions. See also condition. 

Semantic Information Manager (SIM) 
The basis of the InfoExec environment. S1M is a database management system used 
to describe and maintain associations among data by means of subclass-superclass 
relationships and linking attributes. 

serial search 

set 

A method for searching a set of information by examining each element of the set one at 
a time. 

A file of indexes that refers to all the records of a single data set. Sets· are automatically 
maintained by the system. Sets permit access to the recordS of a data set in some logical 

8600 G155-000 Glossary-I 7 



Glossary 

81M 

80K 

sequence and are normally used to optimize certain types of retrievals of the data set 
records. 

, See Semantic Information Manager. 

Seestartof~jicharacte~ 

source file 
(1) A file in which a source program is stored. (2) A file containing instructions written in 
a programming language. 

standard entry point 
In the DMINTERPRETER library, an entry point that performs a fWlction 
corresponding to a fWlction specified in a Data Management System IT (DMSll) user 
language statement. 

start of Kanji (SOK) character 
, A character that signals the beginning of a ~ji character string. 

string 
A connected sequence or group of characters. 

structure 
A data set, set, subset, access, or remap. 

subitem 
An item that is a member of a group item. 

subscript 

subset 

A number that is an index into an array. 

An index structure that is'identical to a set, except that the subset need not contain a 
record for every record of the data set. A set must index every record in its associated 
data set, whereas a subset can index zero, one, several, or all data set records. A 
subset might or might not be automatically maintained by Data Mailagement System n 
(DMSm. 

syncpoint 
A point in time when no program is in a transaction state. 

syntax 
The rules or grammar of a language. 

T 
TFL 

. See Transaction Formatting Language. 

Glossary-IS 8600 0155-000 



Glossary 

timestamp 

TITLE 

TPS 

An encoded, 48-bit numerical value for the time and date. Various timestamps are 
maintained by the system for each disk file. Timestamps note the time and date a file 
was created, last altered, and last accessed. 

A file attribute whose value is the external name of a file. By default, this value is the 
value of the INTNAME attribute. For a file whose KIND attribute is equal to DISK 
or PACK, the TITLE attribute can be assigned a value of the form <file name> ON 
< family name> ; thus, the values of the TITLE and FILENAME attributes, both of 
which specify the external file name, can be different. 

See transaction processing system. 

transaction 
(1) The transfer of one message from a terminal or host program to a receiving host 
program, the processing carried out by the receiving host program, and the return of an 
answer to the sender. (2) In data management, a sequence of operations grouped by a 
user program because the operations constitute a single logical change to the database. 

Transaction Formatting Language (TFL) 
. The Unisys language used to write source files that are compiled to produce description 

files for transaction bases. 

transaction point 
A point that is explicitly assigned in a program between a begin transaction statement 
and an end transaction statement so that the programmer is able to cancel or partially 
cancel a transaction that has not yet completed processing. 

transaction processing system (TPS) 
A Unisys system that provides methods for processing a high volume of transactions, 
keeps track of all input transactions that access the database, enables the user to batch 
data for later processing, and enables transactions t~ be processed on a database that 
resides on a remote system. 

transaction state 

u 
UCF 

The period in a user-language program between a begin transaction operation and an 
end transaction operation. 

See User Communication Form. 
( 

unordered 

update 

Referring to files, data sets, sets, and subsets that are not maintained in a user-specified 
order. 

To delete, insert, or modify information in a database or transaction base. 

8600 D 155-000 Glossary-19 



Glossary 

update mode 
A database or file access mode in which data can be inserted, deleted, or modified. 

User Communication Form (UCF) 
A form used by Unisys customers to report problems and express comments about 
U nisys products to support organizations. 

user work area 
A memory area ina user program where data records are constructed, accessed, or 
modified. The Accessroutines maintain one user work area for each data set or remap 
invoked by a program. 

USING clause 

utility 

v 
variable 

In COBOL, an optional clause in the CALL nonnumeric literal statement that identifies 
the parameters being passed to a library entry point. 

A system software program that performs commonly used functions. 

An object in a program whose value can be changed during program execution. 

variable format 
A record format that consists of two parts: a fixed part and a variable-format part. A 
single record description exists for the fixed part. The variable-format part can describe 
several variable parts. An individual record is constructed by using the fixed part alone, 
or by joining the fixed part with one of the variable parts. 

variable-format data set 

w 
WFL 

WFLjob 

A data set with records that can have several different formats. All records in such a 
data set, known as variable-format records, consist of a common fixed part and optionally 
include one of the variable parts declared in the Data and Structure Definition Language 
(DASDL). 

See Work Flow Language. 

(1) A Work Flow Language (WFL) program, or the execution of such a program. (2) A 
collection ofWFL statements that enable the user to run programs or tasks. 

WFLjobdeck 
See job. 

Glossary-20_ 8600 0155-000 



word 

Glossary 

A unit of computer memory. On A Series systems, a word consists of 48 bits used for 
storage plus tag bits used to indicate how the word is interpreted. 

Work Flow Language (WFL) 

z 
ZIP 

A Unisys language used for constructing jobs. that compile or run programs on A Series 
systems. WFL includes variables, expressions, and flow-of-control statements that offer 
the programmer a wide range of capabilities with regard to task control. . 

A statement that initiates the Work Flow Language (WFL) compiler. A ZIP is commonly 
used to initiate compilations automatically. 

8600 -0155-000 Glossary-21 



GJossary-22 _ 8600 0155-000 



Bibliography 

A Series ALGOL Programming Reference Manual, Volume 1: Basic Implementation 
(form 8600 0098). Unisys Corporation. 

A Series ALGOL Programn:z,ing Reference Manual, Volume 2: Product Interfaces 
(form 86000734). Unisys Corporation. 

A Series ALGOL Test and Debug System (TADS) Programming Guide (form 1169539). 
Unisys Corporation. 

A Series C Programming Reference Manual (form 3950 8775). Unisys Corporation. 

A Series CANDE Configuration Reference Manual (form 8600 1344). Unisys 
Corporation. 

A Series CANDE Operations Reference Manual (form 8600 1500). Dnisys 
Corporation. 

A Series COBOL ANSI-68 Programming Reference Manual (form 8600 0320). Unisys 
Corporation. 

A Series COBOLANSI-74 Programming Reference Manual, Volume 1: Basic 
Implementation (form 8600 0296). Unisys Corporation. 

A Series COBOL ANSI-74 Programming Reference Manual, Volume 2: Product 
. Interfaces (form 8600 0130). Unisys Corporation. 

A Series COBOL ANSI-74 Test and Debug System (TADS) Programming Guide 
(form 1169901). Unisys Corporation. 

A Series COBOL ANSI-85 Programming Reference Manual, Volume 1: Basic 
Implementation (form 86001518). Unisys Corporation. 

A Series COBOL ANSI-85 Programming Reference Manual, Volume 2: Product 
Interfaces (form. 8600 1526). Unisys Corporation. 

A Series Data Management Functional Overoiew (form. 8600 0239). Unisys 
Corporation. 

A Series DMSII Application Program Interfaces Programming Guide (form 5044225). 
Unisys Corporation. Formerly A Series DMSH User Language Interface 
Programming Guide. 

A Series DMSH Data and Structure Definition Language (DASDL) Programming 
Reference Manual (form 86000213). Unisys Corporation. 

A Series DMSII Documents Index (form 8600 1443). Unisys Corporation. 

8600 e 155-000 Bibliography-1 



Bibliography 

A Series DMSII Technical Overview (form 5044191). Unisys Corporation. 

A Series DMSII Transaction Processing System (TPS) Programming Guide 
(form 1164043). Unisys Corporation. 

A Series DMSII Utilities Operations Guide (form 8600 0759). Unisys Corporation. 

A Series Documentation Library Overview (form 8600 0361). Unisys Corporation. 

A Series Editor Operations Guide (form 86000551). Unisys Corporation. 

A Series Extended Retrieval with Graphic Output (ERGO) Operations Guide 
(form 8600 0205). Unisys Corporation. 

A Series FORTRAN77 Programming Reference Manual (form 3950 8759). Unisys 
Corporation. 

A Series FORTRAN77 Test and Debug System (TADS) Programming Guide 
(form 1222667). Unisys Corporation. 

A Series Mark 3.9 Software Release Capabilities Overview (form 86000015). Unisys 
Corporation. 

A Series Pascal Programming Reference Manual, Volume 1: Basic Implementation 
(form 86000080). Unisys Corporation. 

A Series Pascal Programming Reference Manual, Volume 2: Product Interfaces 
(form 86001294). Unisys Corporation. 

A Series PL/1 Reference Manual (form.1169620). Unisys Corporation. 

A Series Railroad Diagram Reference Card (form 5044266). Unisys Corporation. 

A Series Report Program Generator (RPG) Programming Reference Manual, Volume 1: 
Basic Implementation (form 8600 0544). Unisys Corporation. .' 

A Series Report Program Generator (RPG) Programming Reference Manual, Volume 2: 
'Product Interfaces (form 8600 0742). Unisys Corporation. . 

A Series Report Program Generator (RPG) Programming Template (form 1195302). 
Unisys Corporation. 

A Series System Messages Support Reference Manual (form 8600 0429). Unisys 
Corporation. 

A Series Systems Functional Overview (form 8600 0353). Unisys Corporation. 

A Series Task Attributes Programming Reference Manual (form 8600 0502). Unisys 
Corporation. Formerly A Series Work Flow Administration and Programming 
Guide. 

Bibliography-2 8600 0155-000 



Bibliography 

A Series Task Management Programming Guide (form 8600 0494). Unisys Corporation. 
Formerly A Series Work Flow Administration and Programming Guide. 

A Series Work Flow Language (WFL) Programming Reference Manual 
(form 86001047). Unisys Corporation. 

The DMSII Primer, Volume 1. Sonoma, CA: Gregory Publishing Company, 1982. 

8600 0155-000 Bibliography-3 



Bibliography-4 8600 0155-000 



Index 

A 

ABORT category 
exception and error subcategories, B-3 
major category number, B-2 

abort transaction operations, 3-48 
aborting transactions, 3-48, 3-53 
access methods, defining in DBSTRUCTURE 

data set, 7-5 
access modes, for open operations, 3-6 
ACCESS value, as entry for SET-SUBTYPE, 

7-5 
accessing a DMINTERPRETER library 

in ALGOL programs, 2-2 
in COBOL programs, 2-8, 2-9 
in FORTRAN77 programs, 2-13 

accessing databases, using the 
DMINTERPRETER library, 1-4 

accessing entry points, 1-5 
accessing library e~try points 

in ALGOL programs, 2-3 
in COBOL programs, 2-11 
in FORTRAN77 programs, 2-14 

accessing the interpretive interface, 2-1 
in ALGOL programs, 2-2 
in COBOL programs, 2-8 
in FORTRAN77 programs, 2-12 

accessing user work areas, 4-1 
Accessroutines 

as run-time interface, 1-1 
exceptions and errors returned, B-1 
restricting number of calls to, 6-1 

ACTUALNAME clause, renamjng library 
entry points 

in ALGOL programs, 2-6 
in FORTRAN77 programs, 2-17 

adding new records, 3-9 
ALGOL 

aborting transactions, 3-49 
accessing entry points, 1-5,2-2 
accessing library entry points, 2-3 
accessing the interpretive interface, 2-2 
ACTUALNAME clause, using, 2-6 

8600 -0 155-000 

beginning transaction state, 3-46 
canceling transactions to savepoints, 3-54 
changing libraries, 2-2 
closing databases, 3-72 
constructing data entry points dynamically, 

4-62 
creating new records, 3-11 
declaring entry points, 2-3 
declaring the DMINTERPRETER library, 

2-2 
deleting records, 3-59 
ending transaction state, 3-70 
entry points, table of, 2-4 
exception handling, 2-7 
executing language extensions, 3-77 
exported names of entry points, 2-4 
finding records, 3-27 
identifying types of exceptions, 5-9 
invoking entry points, 2-7 
library declaration, 2-2 
locking records, 3-32 
locking structures, 3-35 
moving character strings to variables, 4-8 
moving double-precision values to 

variables, 4-23 
moving Kanji character strings to 

variables, 4-13 
moving numeric values to variables, 4-19 
opening databases, 3-7 . 
placing double-precision values into data 

items, 4-49 
placing numeric values into data items, 

4-44 
placing strings into data items, 4-34 
placing strings into Kanji alpha items, 4-39 
programmjng considerations 

accessing entry points, 1-5, 2-2 
as preferred application programming 

language, 1-8 

Index-1 



Index 

entry point names, 1-6 
re-creating records, 3-64 
renaming entry points, 2-4 
restricting calls to the Accessroutines, 6-2, 

6-3 
retrieving Boolean or field items, 4-28 
returning exceptions, 5-4 
returning text of exception messages, 5-6 
sample program, C-5 
saving transaction points, 3-51 
securing records, 3-40 
securing structures, 3-43 
setting Boolean values, 4-53 
setting current path, 3-15 
setting null values, 4-58 
storing records, 3-67 
table of entry points, 2-4 
TITLE attribute, using, 2-2 
unlocking records, 3-19 
unlocking structures, 3-22 
$INCLUDE compiler control option, use 

of, 2-4 
ALGOLABORTrRANSACTION, aborting 

transactions, 3-48 
ALGOLBEGINTRANSACTION, beginning 

transaction state, 3-45 
ALGOLCANCELTRPOINT, canceling 

transactions to savepoints, 3-53 
ALGOLCLOSE, closing databases, 3-72 
ALGOLCREATE, creating new records, 3-9 
ALGOLDATA, constructing data entry points 

dynamically, 4-60 
ALGOLDELETE' deleting a record, 3-56 
ALGOLENDTRANSACTION, ending 

transaction state, 3-69 
ALGOLEXCEPTIONNAME, identifying 

types of exceptions, 5-8 
ALGOLEXCEPTIONTEXT, returning text of 

exception message, 5-5 
ALGOLFIND, finding records, 3-24 
ALGOLFREE, freeing records, 3-17 
ALGOLFREESTR, freeing structures,. 3-21. 
ALGOLGETBOOLEAN, retrieving Boolean 

or field items, 4-26 
ALGOLGETDOUBLE,mo~gnumeric 

~ues to variables 
double precision, 4-21 

ALGOLGETKANJI, retrieving Kanji 
character strings, 4-11 

ALGOLGETREAL, moving numeric values to 
variables, 4-16 

Index-2 

ALGOLGETSTRING, moving character 
strings to variables, 4-6 

ALGOLLOCK, locking records, 3-29 
ALGOLLOCKSTR, lo·cking structures, 3-34 
ALGOLOPEN, opening a database, 3-6 
ALGOLPUTBOOLEAN, setting data items 

. to Boolean values, 4-51 
ALGOLPUTDOUBLE 

placing double-precision values into data 
items, 4-46 

ALGOLPUTKANJI, placing strings into 
Kanji alpha items, 4-36 

ALGOLPUTNULL, setting null values, 4-56 
ALGOLPUTREAL, placing numeric values 

into data items, 4-41 
ALGOLPUTSTRING, placing strings into 

data items, 4-31 
ALGOLRECREATE, re-creating records, 

3-62 
ALGOLSA VETRPOINT, saving transaction 

points, 3-50 
ALGOLSECURE, securing records, 3-37 
ALGOLSECURESTR, securing structures, 

3-42 
ALGOLSET, setting the current path, 3-13 
ALGOLSETLIMIT, restricting calls on the 

Accessroutines, 6-1 
ALGOLSTATUS, returning exceptions, 5-3 
ALGOLSTORE, storing records, 3-66 
ALGOL VERB, executing language 

extensions, 3-74 
ALPHA entry, for ITEM-SUBTYPE, 7-6 
alpha items 

moving character strings to variables, 4-6 
moving Kanji character strings to 

variables, 4-11 
placing strings into data items, 4-31 
placing strings into Kanji alpha items, 4-36 

application program. interfaces, types of, 1-1 
< arithmetic expression> 

placing double-precision values into data 
items, 4-48 

placing numeric values into data items, 
4-43 

attribute setting entry points, 6-1 
purpose of, 1-4 
table of, 6-1 

AUDIT value 
setting when beginning transaction state, 

3-46 
setting when ending transaction state, 

3-69 

86000155-000 



<audit> 
beginning transaction state, 3-46 
ending transaction state, 3-69 

audited databases 
aborting transactions, 3-48 
beginning transaction state, 3-45 
canceling transactions back to savepoints, 

3-53 
deleting records, 3-56 
ending transaction state, 3-69 
saving transaction points, 3-50 
storing records, 3-66 

AUDITERROR category 
exception and error subcategories, B-3 
major category number, B-2 

< auditsync> , ending transaction state, 3-69 

B 

basics of the interpretive interface, 1-1 
begin transaction operations, 3-45 

guidelines, 1-9 
begin transaction state, 3-45 
BEGINNING value, in setting current path, 

3-14 
BINARY value, as entry for 

SET-SEARCH-METHOD, 7-5 
blanks 

creating new records, 3-10 
re-creating records, 3-62 

blanks, use in interpretive interface 
application programs, 1-8 

BOOLEAN entry, for ITEM-SUBTYPE, 7-6 
< Boolean expression>, setting Boolean 

values in ALGOL, 4-53 
Boolean procedures, dec1aring ALGOL entry 

points, 2-3 
Boolean values 

retrieving, 4-26 
setting,4-51 

BUILDINQ program 
capabilities, A-1 
correcting inconsistencies, A-4 
files used and produced by, A-l 
generating a DMINTERPRETER library, 

A-5 
generating the DBSTRUCTURE data set, 

7-1 
relationship to a DMINTERPRETER 

library, 1-4 
using NOZIP value, A-13 

8600--0155-000 

Index 

using ZIP option, A-5 

c 
CALL statement, COBOL normumeric literal 

statement, 2-11 
calis, restricting number to the 

Accessroutines, 6-1 
cancel transaction point operations, 3-53 
canceling transactions back to savepoints, 

3-53 
categories of exceptions and errors, B-2 
CHANGE construct, invoking 

DMINTERPRETER library in 
COBOL, 2-10 

close database operations, 3-72 
CLOSEERROR category 

exception and error subcategories, B-4 
major category number, B-2 

closing databases, 3-72 
COBOL 

aborting transactions, 3-49 
accessing entry points, 1-6, 2-8 
accessing library entry points, 2-11 
accessing the interpretive interface, 2-8 
beginning transaction state, 3-47 
CALL statement, 2-11 
canceling transactions to savepoints, 3-55 
CHANGE construct, 2-10 
changing libraries, 2-10 
closing databases, 3-73 
constructing data entry points dynamically, 

4-63 
creating new records, 3-11 
deleting records, 3-60 
ending transaction state, 3-71 
entry points, table of, 2-8 
executing language extensions, 3-78 
exported names of entry points, 2-8 
finding records, 3-28 
GIVING clause, 2-12 
identifying types of exceptions, 5-10 
invoking entry points, 2-11 
invoking the DMINTERPRETER library, 

2-9 
locking records, 3-33 
locking structures, 3-36 
moving character strings to variables, 4-9 
moving double-precision values to 

variables, 4-21 
moving numeric values to variables, 4-16 

Index-3 



Index 

opening databases, 3-8 
passing parameters, 2-11 
placing double-precision values into data 

items, 4-46, 4-49 
placing numeric values into data items, 

4-41,4-44 
placing strings into data items, 4-34 
placing strings into ·Kanji alpha items, 4-39 
programming considerations 

accessing entry points, 1-6, 2-8 
entry point names, 1-6 

re-creating records, 3-64 
restricting calls to the Accessroutines, 6-2, 

6-3 
retrieving Boolean or field items, 4-29 
returning exceptions, 5-4 
returning text of exception messages, 5-7 
saving transaction points, 3-52 
securing records, 3-41 
securing structures, 3-44 
setting Boolean values, 4-54 
setting current path, 3-15 
setting null values, 4-59 
storing records, 3-68 
table of entry points, 2-8 
uocUockingrecords,3-19 
uocUocking structures, 3-23 
using TITLE attribute, 2-10 

COBOL74 
aborting transactions, 3-49 
accessing entry points, 1-6, 2-8 
accessing library entry points, 2-11 
accessing the interpretive interface, 2-8 
beginning transaction state, 3-47 
CALL statement, 2-11 
canceling transactions to savepoints, 3-55 
CHANGE construct, 2-10 
changing libraries, 2-10 
closing databases, 3-73 
constructing data entry points dynamically, 

4-63 
creating new records, 3-11 
deleting records linx>, 3-60 
ending transaction state, 3-71 
entry points, table of, 2-8 
executing language extensions, 3-78 
exported names of entry point.s, 2-8 
finding records rmx>, 3-28 
GIVING clause, 2-12 
identifying types of exceptions, 5-10 
invoking entry points, 2-11 

Index-4 

invoking the DMINTERPRETER library, 
2-9 

locking records linx> , 3-33 
locking structures Jinx> , 3-36 
moving character strings to variables, 4-9 
moving double-precision values to 

variables, 4-21 
moving Kanji character strings to 

variables, 4-14 
moving numeric values to variables, 4-16 
opening databases, 3-8 
passing parameters, 2-11 
placing double-precision values into data 

items, 4-46, 4-49 
placing numeric values into data items, 

4-41,4-44 
placing strings into data items, 4-34 
placing strings into Kanji alpha items, 4-39 
programming considerations 

accessing entry points, 1-6, 2-8 
entry point names, 1-6 

re-creating records, 3-64 
restricting calls to the Accessroutines, 6-2, 

6-3 
retrieving Boolean or field items, 4-29 
returning exceptions, 5--4 
returning text of exception messages, 5-7 
sample program, C-15 
saving transaction points, 3-52 
securing records Jinx>, 3-41 
securing structures Jinx>, 3-44 
setting Boolean values, 4-54 
setting current path rmx>, 3-15 
setting null values, 4-59 
storing records, 3-68 
table of entry points, 2-8 
~~records,3-19 
~ocking structures, 3-23 
using TITLE attribute, 2-10 

COBOL85 
aborting transactions, 3-49 
accessing entry points, 1-6, 2-8 
accessing library entry points, 2-11 
accessing the interpretive interface, 2-8 
beginning transaction state, 3-47 
CALL statement, 2-11 
canceling transactions to savepoints, 3-55 
CHANGE construct, 2-10 
changing libraries, 2-10 
closing databases, 3-73 
constructing data entry points dynamically, 

4-63 

86000155-000 



creating new records, 3-11 
deleting records, 3-60 
ending transaction state, 3-71 
entry points, table of, 2-8 
executing language extensions, 3-78 
exported names of entry points, 2-8 
finding records, 3-28 
GIVING clause, 2-12 
identifying types of exceptions, 5-10 
invoking entry points, 2-11 
invoking the DMINTERPRETER library, 

2-9 
locking records, 3-33 
locking structures, 3-36 
moving character strings to variables, 4-9 
moving double-precision values to 

variables, 4-21 
moving Kanji character strings to 

variables, 4-14 
moving numeric values to variables, 4-16 
opening databases, 3-8 
passing parameters, 2-11 
placing double-precision values into data 

items, 4-46, 4-49 
placing numeric values into data items, 

4-41,4-44 
placing strings into data it~ms, 4-34 
placing strings into Kanji alpha items, 4-39 
programming considerations 

accessing entry points, 1-6, 2-8 
entry point names, 1-6 

re-creating records, 3-64 
restricting calls to the Accessroutines, 6-2, 

6-3 
retrieving Boolean or field items, 4-29 
returning exceptions, 5-4 
returning text of exception messages, 5-7 
saving transaction points, 3-52 
securing records, 3-41 
securing structures, 3-44 
setting Boolean values, 4-54 
setting current path, 3-15 
setting null value~ 4-59 
storing records, 3-68 
table of entry points, 2-8 
unlocking records, 3-19 
unlocking structures, 3-23 
using TITLE attribute, 2-10 

coding of standard entry points, sequence, 
3-1 

COMPACT data set, as entry for 
DATASET-SUBTYPE, 7-4 

8600 0155-000 

compile-time interface, 1-1 
compilers that can use the interpretive 

interface, 1-1 
< condition> 

deleting records, 3-58 
finding records, 3-26 
locking records, 3-31 
securing records, 3-39 

Index 

constructing data transfers during program 
execution, 4-60 

copy operations, 3-62 
copying records, through re-creation 

operation, 3-61 
COUNT entry, for ITEM-SUBTYPE, 7-6 
count items 

transferring double-precision values to 
variables, 4-21 

transferring values to variables, 4-16 
create operations, 3-9 
< create statement>, executing through 

entry point, 3-75 
creating new records, 3-9 
current paths, setting,3-13 

o 
DASDL, (See Data Structure and Definition 

Language (DASDL)) 
data items, tables of, 7-2 
data management statements, executing, 

3-74 
< data request>, constructing transfers 

dynamically, 4-60 
< data set qualified name> 

creating new records, 3-10 
deleting records, 3-58 
finding records, 3-26 
freeing data set records, 3-18 
freeing structures, 3-21 
locking records,' 3-31 
locking structures, 3-35 
moving character striilgs to variables, 4-7 
moving double-precision values to 

variables, 4-22 
moving Kanji character strings to 

variables, 4-12 
moving numeric values to variables, 4-17 
placing double-precision values into data 

items,' 4-47 
placing numeric values into data items, 

4-42 

Index-5 



Index 

placing string into Kanji alpha items, 4-37 
placing strings into data items, 4-32 
re-creating records, 3-62 
retrieving Boolean or field items, 4-27 
securing records, 3-39 
securing structures, 3-43 
setting Boolean v~ues, 4-52 
setting current path, 3-14 
setting null values, 4-57 
storing records, 3-66 

data set records, freeing, 3-17 
<dataset> 

locking structures, 3-34 
securing structures, 3-42 

data sets 
defining types of in DB STRUCTURE data 

set, 7-4 
setting current paths, 3-13 

Data Structure and Definition Language 
(DASDL) 

database for sample programs, C-2 
describing the DBSTRUCTURE data set, 

7-2 
using ZIP, A-5 

data transfer entry points, 4-1 
ALGOLDATA, 4-60 
ALGOLGETBOOLEAN, 4-26 
ALGOLGETDOUBLE,4-21 
ALGOLGETKANJI,4-11 
ALGOLGETREAL,4-16 
ALGOLGETSTR]NG,~ 

ALGOLPUTBOOLEAN, 4-51 
ALGOLPUTDOUBLE,446 
ALGOLPUTKANJI, 4-36 
ALGOLPUTNULL, 4-56 
ALGOLPUTREAL, 4-41 
ALGOLPUTSTRING, 4-3,1 
DBDATA, 4-60 
DBGETBOOLEAN,4-26 
DBGETDISPLA~ 4-6 
DBGETDOUBLE, 4-21 
DBGETKANJI, 4-11 
DBGETREAL,4-16 
DBPUTBOOLEAN, 4-51 
DBPUTDISPLA~ 4-31 
DBPUTDOUBLE,4-46 
DBPUTKANJI, 4-36 
DBPUTNULLrmx> , 4-56 
DBPUTREAL, 4-41 
exceptions, 4-4 
FORTRAN77DATA, 4-60 
FORTRAN77GETBOOLEAN,4-26 

Index-6 

FORTRAN77GETCHARACTER, 4-6 
FORTRAN77GETDOUBLE, 4-21 
FORTRAN 77GETKANJI, 4-11 
FORTRAN77GETREAL, 4-16 
FORTRAN77PUTCHARACTER, 4-31 
FORTRAN77PUTDOUBLE, 4-46 
FORTRAN77PUTKANJI, 4-36 
FORTRAN77PUTLOGICAL, 4-51 
FORTRAN77PUTNULL, 4-56 
FORTRAN77PUTREAL, 4-41 
purpose of, 1-4 
table of, 4-1 

data transfer tasks 
performed by entry points to the 

DMINTERPRETER library, 4-4 
DATA value, as entry for ITEM-KEY-CLASS, 

7-8 
< data-name> , invoking COBOL entry 

points, 2-11 
< data> , constructing transfers dynamically, 

4--61 
DATABASE card, A-15 
database definition for 

sample programs, C--2 
database equation, using, 1-9 
< database name> 

finding records, 3-26 
freeing global data records, 3-18 
IQcking records, 3-31 
securing records, 3-39 
storing records, 3-67 

< database statement>, executing through 
entry point, 3-74 

database structure, determining, 7-1 
DATABASE/D:MINTERPRETER 

ensuring consistency with program 
symbolic, A-4 

generating D:MINTERPRETER library, 
A-I 

use in FORTRAN77, 2-14 
DATABASE/D:MINTERPRETER symbolic 

file 
providing declarations of library entry 

points, 1-5 
providing exported names ofIlbrary entry 

points, 1-6 
use in ALGOL programs, 2-4 
use in COBOL programs, 2-8 
use in FORTRAN77 programs, 2-14 

DATABASE/PROPERTIES, generating 
DMINTERPRETER library, A-I 

databases 

86000155-000 



aborting transactions, 3-48 
beginning transaction state, 3-45 
canceling transactions back to savepoints, 

3-53 
closing, 3-72 
declaring,2-1 
ending transaction state, 3-69 
invoking, 2-1 
opening, 2-1,3-6 
saving transaction points, 3-50 

DATAERROR category 
exception and error subcategories, B-4 
major category number, B-2 

DATASET value, as entry for DB-TYPE, 7-3 
DATASET-SUBTYPE item, in 

DBSTRUCTURE data set, 7-4 
DB-ill item, in DB STRUCTURE data set, 

7-3 
DB-NAME item, in DB STRUCTURE data 

set, 7-3 
DB-OWNER item, in DB STRUCTURE data 

set, 7-3 
DB-TYPE item, in DBSTRUCTURE data set, 

7-3 
DB-TYPE of DATASET, DBSTRUCTURE 

items, 7-4 
DB-TYPE of ITEM, DBSTRUCTURE data 

set items, 7-5 
DB-TYPE of LINK, DBSTRUCTURE items, 

7-8 
DB-TYPE of SET, DBSTRUCTURE items, 

7-4 
DBABORTTRANSACTION, aborting 

transactions, 3-48 
DBBEGINTRANSACTION, beginning 

transaction state, 3-45 
DBCANCELTRPOINT, canceling 

transactions to savepoints, 3-53 
DBCLOSE, closing databases, 3-72 
DBCREATE, creating new records, 3-9 
DBDATA, constructing data entry points 

dynamically, 4-60 
DBDELETE, deleting a record, 3-56 
DBENDTRANSACTION, ending transaction 

state, 3-69 
DBEXCEPTIONNAME, identifying types 

exceptions, 5-8 
DBEXCEPTIONTEXT, returning text of 

exception message, 5-5 
DBFIND, finding records, 3-24 
DBFREE, freeing records, 3-17 
DBFREESTR, freeing structures, 3-21 

8600 0155-000 

DBGET entry points, 4-3 
DBGET operations 

Index 

constructing data entry points dynamically, 
4-60 

moving character strings to variables, 4-6 
moving double-precision values to 

variables, 4-21 
moving Kanji strings to variables, 4-11 
moving numeric values to variables, 4-16 
retrieving Boolean or field items, 4-26 
using with DBSTRUCTURE data set, 7-1 

DBGETBOOLEAN, retrieving Boolean or 
field items, 4-26 

DBGETDISPLAY, moving character strings 
to variables, 4-6 

DBGETDOUBLE, moving double-precision 
values to variables, 4-21 

DBGETKANJI, retrieving Kanji character 
strings, 4-11 

DBGETREAL, moving numeric values to 
variables, 4-16 

DBLOCK, locking records, 3-29 
DBLOCKSTR, locking structures, 3-34 
DB OPEN, opening a database, 3-6 
DBPUT entry points, 4-3 
DBPUT operations 

constructing data entry points dynamically, 
4-60 

placing double-precision values into data 
items, 4-46 

placing numeric values into data items, 
4-41 

placing strings into data items, 4-31 
placing strings into Kanji alpha items, 4-36 
setting data items to Boolean values, 4-51 
setting data items to null values, 4-56 

DBPUTBOOLEAN, setting data items to 
Boolean values, 4-51 

DBPUTDISPLAY, placing strings into data 
items, 4-31 

DBPUTDOUBLE, placing double-precision 
values into data items, 4-46 

DBPUTKANJI, placing strings into Kanji 
alpha items, 4-36 

DBPUTNULL, setting null values, 4-56 
DBPUTREAL, placing numeric values into 

data items, 4-41 
DBRECREATE, re-creating records, 3-62 
DBSA VETRPOINT, saving transaction 

points, 3-50 
DBSECURE, securing records, 3-37 
DBSECURESTR, securing structures, 3-42 

Index-7 



Index 

DBSET, setting the current path, 3-13 
DBSETLIMIT, restricting calls on the 

Accessroutines, 6-1 
DBSTATUS, returning exceptions, ~3 
DBSTORE, storing records, 3-66 
DBSTRUCTURE data set 

DASDL description, 7-2 
defining access method, 7-5 
generating, 7-1 
generating via BUILDINQ program, 7-1 
items, 7-4 
items for DB-TYPE of DATASET, 7-4 
items for DB-TYPE of ITEM, 7-5 
items for DB-TYPE of LINK, 7-8 
items for DB-TYPE of SET, 7-4 
provided by DMINTERPRETER library, 

7-1 
types of data sets, 7-4 
types of entities, 7-3 
types of sets, 7-5 
using with ERGO, 7-1 

DBSTRUCTURE data sets 
specifying use through BUILDINQ 

program, A-I0 
use with ERGO, A-I0 

DBVERE, executing language extensions, 
3-74 

DEADLOCK category 
exception and error subcategories, B-5 
major category number, B-2 

deadlocks 
exceptions and errors, B-5 

deadly embrace, (See deadlocks) 
declaring a DMINTERPRETER library 

in ALGOL programs, 2-2 
in FORTRAN77 programs, 2-13 

declaring a subset of the entry points 
in ALGOL programs, 2-5 
in FORTRAN77 programs, 2-16 

declaring databases 
purpose ot; 2-1 

declaring entry points, 1-5 
in ALGOL programs, 2-3 

through procedure declaration, 2-5 
through release tape, 2-4 

in FORTRAN77 programs 
through logical functions, 2-16 
through release tape, 2-14 

purpose ot; 2-1 
declaring library entry points 

in FORTRAN77 programs, 2-14 
delete operations, 3-56 

Index-8 

deleting data records, 3-56 
deleting records 

before recreating a record, 3-61 
DESCRIPTION/ < database name> 

in DMINTERPRETER library, A-I 
determining access mode, in BUILDINQ 

program, A-II 
DffiECT data set, as entry for 

DATASET-SUBTYPE, 7-4 
DffiECTvalue 

as entry for SET-SEAReH-METHOD, 7-5 
< direction> 

deleting records, 3-57 
finding a record, 3-25 
locking records, 3-30 
securing records, 3-38 

DMIDIRECTORY/ < database name> 
ensuring consistency with program 

symbolic, A-4 
generating DMINTERPRETER library, 

A-I 
DMINTERPRETER card, A-15 
DMINTERPRETER library 

attribute setting entry points, 6-1 
BUILDINQ program, relationship to, A-I 
data transfer entry points, 4-3 
database equation, using, 1-9 
DBGET entry points, 4-3 
DBPUT entry points, 4-3 
declaring, 2-1 
exception handling entry points, 5-1 
files produced when generating, A-I 
files used to generate, A-I 
generating, 1-4, A-I 

from remote terminal, A-5 
from WFL job deck, A-15 
using NOZIP value, A-13 
using ZIP, A-5 

invoking, 2-1 
providing DBSTRUCTURE data set, 7-1 
purpose ot; 1-4 
standard entry points, 3-1 
structure switching, 1-8 
tasks performed by entry points 

attribute setting, 6-1 
data transfer, 4-4 
exception handling, 5-1 

types of entry points, 1-4 . 
use of global items, 1-9 

DMINTERPRETER library entry points 
declaring, 2-1 
guidelines for sequencing entry points, 1-8 

8600 0155-000 



invoking, 2-1 
naming and renaming, 1-6 
returning exceptions, 1-7 
types ot; 1-4 
using parameters, 1-7 

DMINTERPRETER/ < database name> , 
generating DMINTERPRETER, A-1 

DMSII application program interfaces, 1-1 
DMSII libraries, using, 1-4 
DMSUPPORT library 

purpose of, 1-4 
use by exception handling entry points, 

1-7 
use in exceptions, 5-1 

DUPLICATES category 
\ exception and error subcategories, B-5 

major category number, B-2 
duplicating records, 3-61 

E 

< EBCDIC string> 
declaring DMINTERPRETER library in 

ALGOL,2-3 
declaring entry points, 2-6 

EBCDIC strings, using in DBSTRUCTURE 
data set, 7-8 

empty string 
creating new records, 3-10 
re-creating records, 3-62 

end transaction operations, 3-69 
programming consideration, 1-9 

ending transaction state, 3-69 
ENDING value, in setting current path, 3-14 
entering compilation queue, in BUILDINQ 

program, A-12 
entering DMINTERPRETER code file name, 

in BUILDINQ program, A-12 
entering the name of a logical database, in 

BUILDINQ program, A-11 
entering transaction state, 3-45 
entities, defining types of in 

DBSTRUCTURE data set, 7-3 
entry point declarations 

in ALGOL programs, 2-3 
in COBOL programs, 2-11 
in FORTRAN77 programs, 2-14 

entry points 
ALGOL, listing o~ 2--4 
attribute setting, ~1 
COBOL, listing of, 2-8 

8600 0155-000 

Index 

coding sequence, 3-1 
constructing transfers' during program 

execution, 4-60 
data transfer, 4-1, 4-4 
DBGET, 4-3 
DBPUT, 4-3 
declaring, 2-1 
declaring in ALGOL programs, 2-3,2-7 
declaring in FORTRAN77 programs, 2-14, 

2-18 
exception handling, 5-1 
exporting, 1-4 
FORTRAN77, listing o~ 2-14 
guidelines for sequencing entry points, 1-8 
identifying types of exceptions, 5-8 
importing, 1-4 
invoking, 2-1 
invoking in ALGOL programs, 2-7 
invoking in COBOL programs, 2-11 
invoking in FORTRAN77 programs, 2-18 
moving ~haracter strings to variables, 4-6 
moving data in and out of a user work 

area, 4-3 
moving double-precision values to 

variables, 4-21 
moving numeric values to variables, 4-16 
placing double-precision values into data 

items, 4-46 
placing numeric values into data items, 

4-41 
placing strings into data items, 4-31 
placing strings into Kanji alpha items, 4-36 
restricting calls to the Accessroutines, ~2 
retrieving Boolean values, 4-26 
retrieving Kanji alpha character strings, 

4-11 
returning exceptions, 1-7, 5-3 
returning text of exception messages, 5-5 
setting data items to Boolean values, 4-51 
setting data items to null values, 4-56 
standard, 3-1 . 
types o~ 1-4 
using parameters, 1-7 
using with DBSTRUCTURE data set, 7-1 

ERGO, (See Extended Retrieval with 
Graphic Output) 

error handling, in interpretive interface, 5-1 
errors 

major categories by number, B-2 
subcategories, B-2 

examples 
aborting transactions 

Index-9 



Index 

ALGOL, 3-49 
COBOL, 3-49 
FORTRAN77, 3-49 

beginning transaction state 
ALGOL, 3-46 
COBOL, 3-47 
FORTRAN77, 3-47 

canceling transactions to savepoints 
ALGOL, 3-54 
COBOL, 3-55 
FORTRAN77, 3-55 

closing databases 
ALGOL, 3-72 
COBOL, 3-73 
FORTRAN77, 3-73 

constructing data entry points dynamically 
ALGOL, 4-62 
COBOL, 4-63 
FORTRAN77, 4-63 

creating new records 
ALGOL, 3-11 
COBOL, 3-11 
FORTRAN77, 3-12 

declaring library entry point . 
ALGOL, 2-7 
FORTRAN77, 2-18 

deleting records 
ALGOL, 3-59 
COBOL, 3-60 
FORTRAN77, 3-60 

ending transaction state 
ALGOL, 3-70 
COBOL, 3-71 
FORTRAN77, 3-71 

executing language extensions 
ALGOL, 3-77 
COBOL, 3-78 
FORTRAN77, 3-79 

finding records 
ALGOL, 3-27 
COBOL, 3-28 
FORTRAN77, 3-28 

identifying types of exceptions 
ALGOL, 5-9 
COBOL, 5-10 
FORTRAN77, 5-10 

invoking an entry point 
ALGOL, 2-7 
COBOL, 2-12 
FORTAN77, 2-18 

linking to a DMlNTERPRETER library 
ALGOL, 2-3 

Index-l0 -

COBOL, 2-10 
FORTRAN77, 2-14 

locking records 
ALGOL, 3-32 
COBOL, 3-33 
FORTRAN77, 3-33 

locking structures 
ALGOL, 3-35 
COBOL, 3-36 
FORTRAN77, 3-36 

moving character strings to variables 
ALGOL,4-8 
COBOL, 4-9 
FORTRAN77,4-10 

moving double-precision values to variables 
ALGOL, 4-23 
COBOL, 4-24 
FORTRAN77, 4-25 

moving Kanji character strings to variables 
ALGOL, 4-13 
COBOL, 4-14 
FORTRAN77, 4-15 

moving numeric values to variables 
ALGOL,4-19 
COBOL,4-20 
FORTRAN77, 4-20 

opening databases 
ALGOL, 3-7 
COBOL, 3-8 
FORTRAN77, 3-8 

placing double-precision into data items 
ALGOL,4-49 
COBOL,4-49 

placing double-precision values into data 
items 

FORTRAN77, 4-50 
placing numeric values into data items 

ALGOL, 4-44 
COBOL, 4-44 
FORTRAN77, 4-45 

placing strings into data items 
ALGOL, 4-34 
COBOL, 4-34 
FORTRAN77, 4-35 

placing strings into Kanji alpha items 
ALGOL, 4-39 
COBOL, 4-39 
FORTRAN77, 4-40 

re-creating records 
ALGOL, 3-64 
COBOL, 3-64 
FORTRAN77, 3-65 

8600 0155-000 



restricting calls to the Accessroutines 
ALGOL, 6-3 
COBOL, 6-3 
FORTRAN77, 6-4 

retrieving Boolean or field items 
ALGOL, 4-28 
COBOL, 4-29 
FORTRAN77, 4-30 

returning exceptions 
ALGOL, 5-4 
COBOL, 5-4 
FORTRAN77, 5-4 

returning text of exception messages 
ALGOL,5-6 
COBOL, 5-7 
FORTRAN77, 5-7 

saving transaction points 
ALGOL, 3-51 
COBOL, 3-52 
FORTRAN77, 3-52 

securing records 
ALGOL, 3-40 
COBOL, 3-41 
FORTRAN77, 3-41 

securing structures 
ALGOL, 3-43 
COBOL, 3-44 
FORTRAN77, 3-44 

setting Boolean values 
ALGOL,4-53 
COBOL, 4-54 
FORTRAN77, 4-55 

setting current path. 
ALGOL, 3-15 
COBOL, 3-15 

setting null values 
ALGOL, 4-58 
COBOL, 4-59 
FORTRAN77, 4-59 

storing records 
ALGOL, 3-67 
COBOL, 3-68 
FORTRAN77, 3-68 

unlocking records 
ALGOL, 3-19 
COBOL, 3-19 
FORTRAN77, 3-20 

unlocking structures 
ALGOL, 3-22 
COBOL,3-23 
FORTRAN77, 3-23 

8600 0155-000 

Index 

using a WFL deck to generate the 
DMINTERPRETER library, A-16 

exception categories, 5-8 
exception handling 

category of exception, 5-8 
in ALGOL programs, 2-7 
in COBOL programs, 2-12 
in FORTRAN77 programs, 2-18 
returning exception result, 5-3 
text of exception message, 5-5 
using the interpretive interface, 5-1 

exception handling entry points, 5-1 
ALGOLEXCEPTIONNAME, 5-8 
ALGOLEXCEPTIONTEX~ 5-5 
ALGOLSTATUS, 5-3 
DBEXCEPTIONNAME, 5-8 
DBEXCEPTIONTEXT, 5-5 
DBSTATUS, 5-3 
FORTRAN77EXCEPTIONNAME, 5-8 
FORTRAN77EXCEPTIONTEXT, 5-5 
FORTRAN77STATUS, 5-3 
purpose of, 1-4 
table of, 5-1 

exception handling tasks, performed by entry 
points, 5-1 

exception message, in interpretive interface, 
5-5 

exception word, returned through entry 
point, 5-3 

exceptions 
major categories by number, B-2 
subcategories, B-2 

executing language extensions, 3-74 
explicitly freeing 

records, 3-17 
structures, 3-21 

exported names 
in ALGOL programs, 2-4 
in COBOL programs, 2-8 
in FORTRAN77 programs, 2-14 
renaming, 1-6 

exporting entry points, 1-4 
renaming, 1-6 

< expression> 
placing double-precision values into data 

items, 4-48 
placing numeric values into data items, 

4-43 
placing values into character strings, 4-33 
placing values into Kanji strings, 4-38 
setting Boolean values, 4-53 

Extended Retrieval with Graphic Output 

Index-II 



Index 

using DBSTRUCTURE data set, 7-1, A-10 

F 

FATALERROR category 
exception and error subcategories, B-6 
major category number, B-2 

FIELD entry, for ITEM-SUBTYPE, 7-6 
field items 

retrieving Boolean values, 4-26 
transferring double-precision values to 

variables, 4-21 
transferring values to variables, 4-16 

find operations, 3-24 
restricting linear search, 6-1 
using DBSTRUCTURE data set, 7-1 

finding records, 3-24 
FINDLIMIT, restricting linear searches, 6-1 
FIRST, as direction for . 

deleting records, 3-57 
locking records, 3-30 
retrieving records, 3-25 
securing records, 3-38 

fixed-format record 
creating new records, 3-10 
recreating records, 3-63 

FORTRAN77 
aborting transactions, 3-49 
accessing entry points, 1-5, 2-12 
accessing library entry points, 2-14 
accessing the interpretive interface, 2-12 
ACTUALNAME clause, using, 2-17 
beginning transaction state, 3-47 
canceling transactions to savepoints, 3-55 
changing libraries, 2-13 
closing databases, 3-73 
constructing data entry points dynamically, 

4-63 
creating new records,~ 3-12 
declaring entry points, 2-14 
declaring the DMINTERPRETER library, 

2-13 
deleting records, 3-60 
ending transaction state, 3-71 
entry points, table o~ 2-14 
exception handling, 2-18 
executing language extensions, 3-79 
exported names of entry points, 2-14 
finding records, 3-28 
identifying types of exceptions, 5-10 
invoking entry points, 2-18 

Index-12 -

LffiRARY statement (declaration), 2-13 
locking records, 3-33 
locking structures, 3-36 
moving character strings to variables, 4-10 
moving double-precision values to 

variables, 4-25 
moving Kanji character strings to 

variables, 4-15 
moving numeric values to variables, 4-20 
opening databases, 3-8 
placing double-precision values into data 

items, 4-50 
placing numeric values into data items, 

4-45 
placing strings into data items, 4-35 
placing strings into Kanji alpha items, 4-40 
programming considerations 

accessing entry points, 1-5, 2-12 
entry point names, 1-6 

re-creating records, 3-65 
renaming exported entry points, 2-14 
restricting calls to the Accessroutines, 6-2, 

6-4 
retrieving Boolean or field items, 4-30 
returning exceptions, 5-4 
returning text of exception message, 5-7 
saving transaction points, 3-52 
securing records, 3-41 
securing structures, 3-44 
setting Boolean values, 4-55 
setting current path, 3-16 
setting null values, 4-59 
storing records, 3-68 
table of entry points, 2-14 
unlocking records, 3-20 
unlocking structures, 3-23 
using TITLE attribute, 2-13 
$INCLUDE compiler control option, use 

o~ 2-14 
FORTRAN77 sample program, C-25 
FORTRAN77ABORTTRANSACTION, 

aborting transactions, 3-48 
FORTRAN77BEGINTRANSACTION, 

beginning transaction state, 3-45 
FORTRAN77CANCELTRPOINT, canceling 

transaction to savepoint, 3-53 
FORTRAN77CLOSE, closing databases, 

3-72,3-73 
FORTRAN77CREATE, creating new records, 

3-9 
FORTRAN77DATA, constructing ~ta entry 

points dynamically, 4-60 

8600 0155-000 



FORTRAN77DELETE, deleting a record, 
3-56 

FORTRAN77ENDTRANSACTION, ending 
transaction state, 3-69 

FORTRAN77EXCEPTIONNAME, 
identifying types of exceptions, 5-8 

FORTRAN77EXCEPTIONTEXT, returning 
text of exception message, 5-5 

FORTRAN77FIND, finding records, 3-24 
FORTRAN77FREE, freeing records, 3-17 
FORTRAN77FREESTR, freeing structures, 

3-21 
FORTRAN77GETBOOLEAN, retrieving 

Boolean or field items, 4-26 
FORTRAN 77GETCHARACTER, moving 

character string to variable, 4-6 
FORTRAN77GETDOUBLE, moving double 

precision to a variable, 4-21 
FORTRAN77GETREAL, moving numeric 

values to variables, 4-16 
FORTRAN77KANJI, retrieving Kanji 

character stringS, 4-11 
FORTRAN77LOCK, locking records, 3-29 
FORTRAN77LOCKSTR, locking structures, 

3-34 
FORTRAN770PEN, opening a database, 3-6 
FORTRAN77PUTCHARACTER, placing 

strings into data items, 4-31 
FORTRAN77PUTDOUBLE 

placing double-precision values into data 
items, 4-46 

FORTRAN77PUTKANJI, placing strings into 
Kanji alpha items, 4-36 

FORTRAN77PUTLOGICAL, setting data 
items to Boolean values, 4-51 

FORTRAN77PUTNULL, setting null values, 
4-56 

FORTRAN77PUTREAL, placing numeric 
values into data items, 4-41 

. FORTRAN77RECREATE, re-creating 
records,3-62 

FORTRAN77SAVETRPOINT, saving 
transaction points, 3-50 

FORTRAN77SECURE, securing records, 
3-37 

FORTRAN77SECURESTR, securing 
structures,~2 

FORTRAN77SET, setting the current path, 
3-13 

FORTRAN77SETLIMIT, restricting calls to 
Accessroutines, 6-1 

86000155-000 

Index 

FORTRAN77STATUS, returning exceptions, 
5-3 

FORTRAN77STORE, storing records, 3-66 
FORTRAN77VERB, executing language 

extensions, 3-74 
free operations, 3-17, 3-21 
freeing 

G 

records, 3-17 
structures, 3-21 

generating a DMINTERPRETER library, A-I 
ensuring consistency, A-4 . 
files used, A-I 
from remote terminals, A-5, A-13 

generating the DBSTRUCTURE data set, 
7-1 

getting field items, 4-26 
GIVING clause, supplying parameters for 

COBOL results, 2-12 
global data records 

deleting, 3-56 
freeing, 3-17 

GLOBAL data set, as entry for 
DATASET-SUBTYPE, 7-4 

global data, in DB STRUCTURE data set, 7-4 
global items, in DMINTERPRETER library 

stack, 1-9 
GROUP entry, for ITEM-SUBTYPE, 7-6 
group items 

moving character strings to variables, 4-6 
placing strings into data items, 4-31 

group keys, in DBSTRUCTURE data set, 7-3 

H 

HASH value, as entry for 
SET-SEARCH-METHOD, 7-5 

< hyphen name> 
moving character strings to variables, 4-7 
moving double-precision value to a 

variable, 4-23 
moving Kanji character strings to 

variables, 4-12 
moving numeric values to variable~ 4-18 
placing double-precision values into data 

items, 4-48 

Index-13 



Index 

placing numeric values into data items, 
4-43 

placing strings into data items, 4-32 
placing strings into Kanji alpha items, 4-37 
retrieving Boolean or field items, 4-28 
setting Boolean values, 4-52 
setting null values, 4-57 

< identifier> 
declaring DMINTERPRETER library in 

ALGOL, 2-3 
invoking DMINTERPRETER library in 

COBOL, 2-10 
identifying types of exceptions, 5-8 
implicitly freeing 

records, 3-17 
structures, 3-21 

importing entry points, 1-4 
< index set qualified name> 

finding records, 3-26 
locking records, 3-31 
securing records, 3-39 
setting current path, 3-14 

index sets 
finding records, 3-26 
locking records, 3-31 
securing records, 3-39 
setting current paths, 3-13 

initiating the BUILDINQ program, A-5 
inquiry access, 3-6 
INQUIRY value, in opening databases, 3-7 
<integer> 

creating new records, 3-10 
moving character strings to variables, 4-7 
moving double-precision values to 

variables, 4-22 
moving Kanji character strings to 

variables, 4-12 
moving numeric values to variables, 4-18 
placing double-precision values into data 

items, 4-47 
placing numeric values into data items, 

4-42 
placing strings into data items, 4-32 
placing strings into Kanji alpha items, 4-37 
re-creating records, 3-62 
retrieving Boolean or field items, 4-27 
setting Boolean values, 4-52 
setting null values, 4-57 

Index-14 -

INTEGRITYERROR category 
exception and error subcategories, B-6 
major category number, B-2 

interspersing consecutive calls on structures, 
1-8 

INTLffiERROR 
messages specific to interpretive interface, 

5-1 
INTLffiERROR category 

exception and error subcategories, B-7 
major category number, B-2 

INUSE category 
exception and error subcategories, B-8 
major categ9ry number, B-2 

invoking databases, purpose of, 2-1 
invoking DMINTERPRETER library 

in COBOL, 2-9 
invoking entry points 

in ALGOL programs, 2-7 
in COBOL programs, 2 .... 11 
in FORTRAN77 programs, 2-18 
purpose of, 2-1 

IOERROR category 
exception and error subcategories, B-9 
major category number, B-2 

<item name> 
moving character strings to variables, 4-7 
moving double-precision values to 

variables, 4-22 
moving Kanji character strings to 

variables, 4-12 
moving numeric values to variables, 4-18 
placing double-precision values into data 

items, 4-47 
placing numeric values into data items, 

4-42 
placing strings into data items, 4-32 
placing strings into Kanji alpha items, 4-37 
retrieving Boolean or field items, 4-27 
setting Boolean values, 4-52 
setting null values, 4-57 

ITEM value, as entry for DB-TYPE, 7..;.a _ 
ITEM-KEY-CLASS item, in 

DBSTRUCTURE data set, 7-8 
ITEM-OCCURS item, in DBSTRUCTURE 

data set, 7-6 
ITEM-OWNER-GROUP item, in 

DBSTRUCTURE data set, 7-7 
ITEM-RECORD-TYPE item, in 

DB STRUCTURE data set, 7-8 
ITEM-REQUIRED item, in DBSTRUCTURE 

data set, 7-7 

8600 0155-000 



ITEM-SCALE-FACTOR item, in 
DBSTRUCTURE data set, 7-7 

ITEM-SIGNED item, in DBSTRUCTURE 
data set, 7-7 

ITEM-SIZE item, in DBSTRUCTURE data 
set, 7-7 

ITEM -SUBSCRIPTS item., in 
DBSTRUCTURE data set, 7-6 

ITEM-SUBTYPE item, in DBSTRUCTURE 
data set, 7-6 

ITEM-USAGE item, in DBSTRUCTURE 
data set, 7-8 

items in DBSTRUCTURE data set, 7-4 

K 

Kanji strings 
moving to variables, 4-11 
placing strings into alpha items, 4-36 
using in DBSTRUCTURE data set, 7-8 

KEYCHANGED category 

L 

exception and error subcategories, B-10 
major category number, B-2 

language extensions, executing, 3-75 
LAST, as direction for 

deleting records, 3-57 
locking records, 3-30 
retrieving records, 3-25 
securing records, 3-38 

LDBNAME card, A-15 
leaving transaction state, 3-69 
libraries, declaring and invoking, 2-1 
library declaration, ALGOL, 2-2 
< library declaration>, declaring 

DMINTERPRETER in ALGOL, 2-2 
< library entry point declaration> 

in ALGOL, 2-6 
in FORTRAN77, 2-16 

library generation, DMINTERPRETER, A-1 
< library ID > 

declaring ALGOL entry points, 2-6 
declaring DMINTERPRETER library in 

ALGOL, 2-2 
declaring DMINTERPRETER library in 

FORTRAN77, 2-13 
declaring FORTRAN77 entry points, 2-17 

86000155-000 

Index 

invoking COBOL entry points, 2-11 
invoking DMINTERPRETER library in 

COBOL, 2-10 
LIBRARY statement, in FORTRAN77, 2-13 
< library statement> , declaring 

DMINTERPRETER library, 2-13 
< limit type> , specifying type of linear 

search, 6-1 
< limit value>, specifying length of linear 

search, 6-1 
LThflTERROR category 

exception and error subcategories, B-10 
major category number, B-2 

limiting find, lock, and secure operations, 6-1 
limiting number of calls to Accessroutines, 

6-1 
linear searches, restricting, 6-1 
LINEAR value, as entry for 

SET-SEARCH-METHOD, 7-5 
LINK value, as entry for DB-TYPE, 7-3 
LINK-OCCURS item, in DBSTRUCTURE 

data set, 7-8 
LINK-TO-DATASET item, in 

DBSTRUCTURE data set, 7-8 
<link> 

deleting records, 3-58 
fin~records,3-27 

locking records, 3-31 
sec~grecords,3-39 

lock operations 
interpretive interface, 3-29 
restricting linear search, 6-1 

lock structure operations 
interpretive interface, 3-34 

locking 
records, 3-29 
structures, 3-34 

< logical expression>, setting Boolean values 
in FORTRAN77, 4-53 

< logical function name>, invoking 
FORTRAN77 entry points, 2-16 

LOGICAL F'ONCTION, declaring 
FORTRAN77 entry points, 2-16 

logical functions, declaring FORTRAN77 
entry points, 2-16 

M 

main interpretive interface software 
components, 1-2 

Index-15 



Index 

major categories for exceptions and errors, 
table of, B-2 

MAJOR value, as entry for 
ITEM-KEY-CLASS, 7-8 

manipulating databases, using standard entry 
points, 3-1 

MlNOR value, as entry for 
ITEM-KEY-CLASS, 7-8 

modifying 
nonreqtrlreduems, 3-61 
required items, 3-61 

moving 

N 

character strings to variables, 4-6 
data in and out of a DMSII user work area, 

4-3 
double-precision values to variables, 4-21 
numeric value to variables 

double-precision, 4-21 
single-precision, 4-16 

NEXT, as direction for 
deleting records, 3-57 
locking records, 3-30 
retrieving records, 3-25 
sec~records,3-38 

NOAUDIT value 
setting when beginning transaction state, 

3-46 
setting when ending transaction state, 

3-69 
NONE value, as entry for 

ITEM-KEY-CLASS, 7-8. 
< nonnumeric literal> , invoking 

D:M1NTERPRETER library, 2-10 
nonreqtrlred items, modifying, 3-61 
NORECORD category 

exception and error subcategories, B-I0 
major category number, B-2 

NOTFOUND category 
exception and error subcategories, B-l1 
major category number, B-2 

NOTLOCKED category 
exception and error subcategories, B-12 
major category number, B-2 

NOUPDATE card, A-16 
NOZIP value, generating the 

DMINTERPRETER library, A-13 
null values, setting, 4-56 
NUMBER entry, for ITEM-SUBTYPE, 7-6 

Index-16 -

number items 

o 

in DBSTRUCTURE data set, 7-7 
signed number in DBSTRUCTURE data 

set, 7-7 
transferring double-precision values to 

variables, 4-21 
transferring values to variables, 4-16 

OCCURS clause, in DB STRUCTURE data 
set, 7-6, 7-8 

open disposition, setting access mode for open 
operation, 3-6 

< open disposition> , in opening DMSII 
database, 3-7 

open operations, 3-6 
OPENERROR category 

exception and error subcategories, B-12 
major category number, B-2 

opening databases, 3-6 
accessing a database, 2-1 
UPDATE versus INQUIRY access mode, 

3-7 
operations 

aborting transactions, 3-48, 3-53 
beginning transaction state, 3-45 
canceling transactions points, 3-53 
closing DMSn databases, 3-72 
creating new records, 3-9 
DBGET 

constructing data entry points 
dynamically, 4-60 

moving character strings to variables, 
4-6 

moving double-precision values to 
variables, 4-21 

moving Kanji strings to variables, 4-11 
moving numeric values to variables, 

4-16 
retrieving Boolean or field items, 4-26 

DBPUT 
constructing data entry points 

dynamically, 4-60 
placing double-precision values into data 

items, 4-46 
placing numeric values into data items, 

4-41 
placing strings into data items, 4-31 
placing strings into Kanji alpha items, 

4-36 

86000155-000 



p 

setting data items to Boolean values, 
4-51 

setting data items to null values, 4-56 
deleting data records, 3-56 
ending transaction state, 3-69 
entering transaction state, 3-45 
executing language extensions, 3-74 
finding records, 3-24 
freeing records, 3-17 
freeing structures, 3-21 
locking records, 3-29 
locking structures, 3-34 
opening databases, 3-6 
re-creating records, 3-61 
reserving space for new records, 3-9 
restricting number of calls to 

Accessroutines, 6-1 
returning exception word, 5-3 
returning text of exception message, 5-5 
returning type of exception message, 5-8 
saving transaction points, 3-50 
securing records, 3-37 
securing structures, 3-42 
setting the current path, 3-13 
storing records, 3-66 

< parameter> , invoking FORTRAN77 entry 
points, 2-16 . 

parameters, using in entry points, 1-7 
passing parameters, in COBOL languages, 

2-11 
placing 

double-precision values into data items, 
4-46 

numeric values into data items, 4-41 
strings into data items, 4-31 
strings into Kanji alpha items, 4-36 

POPULATION entry, for ITEM-SUBTYPE, 
7-6 

population iteUlS 
transferring double-precision values to 

variables, 4-21 
transferring values to variables, 4-16 

PRIOR, as direction for 
deleting records, 3-57 
l~records,3-30 
retrieving records, 3-25 
s~records,3-38 

8600 0155-000 

Index 

procedure declaration, for ALGOL entry 
points, 2-5, 2-6 

< procedure heading> , declaring ALGOL 
entry points, 2-6· 

< procedure ID> 
declaring ALGOL entry points, 2-6 
invoking COBOL entry points, 2-11 

programming considerations and guidelines, 
1-7,2-1 

for standard entry points, 3-3 
reducing run-time overhead, ·1-8 
sequencing entry points, 1-8 

protected state, 3-45 

Q 

QUEUE card 
remote generation of DMINTERPRETER, 

A-14 
WFL generation ofDMINTERPRETER, 

A-15 

R 

Railroad diagrams, explanation of, D-1 
RANDOM data set, as entry for 

DATASET-SUBTYPE, 7-4 
random retrieval, 3-24 
re-create operations, 3-62 
re-creating records, 3-61 
READONLY category 

exception and error subcategories, B-15 
major category number, B-2 

REAL entry, for ITEM-SUBTYPE, 7-6 
real items 

in DBSTRUCTURE data set, 7-7 
transferring double-precision values to 

variables, 4-21 
transferring values to variables, 4-16 

< record statement>, executing through 
entry point, 3-75 

< record type> 
creating new records, 3-10 
re-creating records, 3-63 

record-type items 
transferring double-precision values to 

variables, 4-21 
transferring values to variables, 4-16 

records 

Index-17 



Index 

creating, 3-9 
deleting, 3-56 
finding, 3-24 " 
freeing, 3-17 
locking, 3-29 
re-creating, 3-61 
securing, 3-37 
storing, 3-66 

RECOVER option, use of NO ZIP value, A-13 
reducing overhead guidelines, 1-8 
release tape, declaring entry points for 

ALGOL programs, 2-4 
FORTRAN77 programs, 2-14 
supported COBOL languages, 2-8 

releasing 
records, 3-17 
structures, 3-21 

remote generation of DMINTERPRETER 
library, A-5, A-13 

remote terminal, generating 
DMINTERPRETER library, A-5, 
A-13 

renaming entry points, 1-6 
in ALGOL, 2-4,2-6 
in FORTRAN77, 2-14, 2-17 

renaming hyphenated database names, in 
BUILDINQ program, A-II 

reporting errors, using DMSUPPORT library, 
1-4 

required items 
explanation of, 7-2 
modifying, 3-61 

reserving space for new records, 3-9 
RESTART data set, as entry for 

DATASET-SUBTYPE, 7-4' 
restart data sets 

when begirming transaction state, 3-45 
when ending transaction state, 3-69 

restricting 
calls to the Accessroutines, 6-1 
linear searches, 6-1 
number of ca1ls to the Accessroutines, 6-1 

result descriptor, as DMSll exception word, 
5-1 

retrieving 
Boolean items, 4-26 
field items, 4-26 
Kanji alpha character strings, 4-11 

returning 
exception word operations, 5-3 
exceptions, 1-7, 5-3 
text of exception messages, "5-5 

Index-1S -

type of exception, 5-8 
run-time interface, 1-1 
run-time libraries, purpose of, 1-4 

s 
sample programs 

ALGOL,C-5 
COBOL74, C-15 
DASDL source for, C-2 
FORTRAN77, C-25 

save transaction point operations, 3-50 
< savepoint> 

canceling transactions to savepoints, 3-53 
saving transaction points, 3-50 

saving transaction points, 3-50 
< search statement> , executing through 

entry point, 3-76 
secure operations 

interpretive interface, 3-37 
restricting linear search, 6-1 

secure structure operations 
interpretive interface, 3-42 

securing 
records, 3-37 
structures, 3-42 

SECURITYERROR category 
exception and error subcategories, B-16 
major category number, B-2 

selecting data sets, in BUILDINQ program, 
A-I0 

selecting the database, in BUILDINQ 
program, A-5 

selecting view of database, in BUILDINQ 
program, A-6 

< selection expression> 
deleting records, 3-58 
finding records, 3-27 
locking records, 3-31 
s~records,3-39 

sequence of interpretive interface tasks, 
guidelines, 1-8 

sequence range in 
DATABASE/DMINTERPRETER 

for ALGOL declarations and entry points, 
2-4 

for FORTRAN77 declarations and entry 
points, 2-14 

sequential retrieval, ~24 
set operations, 3-13 

using with DBSTRUCTURE data set, 7-1 

8600 0155-000 



< set statement> , executing through entry 
point, 3-75 

SET value, as entry for DB-TYPE, 7-3 
SET value, as entry for SET-SUBTYPE, 7-5 
SET-SEARCH-METHOD item, in 

DBSTRUCTURE data set, 7-5 
SET-SP ANS-DATASET item, in 

DBSTRUCTURE data set, 7-5 
SET-SUBTYPE item, in DBSTRUCTURE 

data set, 7-5 
sets, defining types of in DBSTRUCTURE 

data set, 7-5 
setting 

Boolean values, 4-51 
current paths, 3-13 
data items to null values, 4-56 
variables to a character string, 6-1 

STANDARD data set, as entry for 
DATASET-SUBTYPE, 7-4 

standard entry points, 3-1 
ALGOLABORTTRANSACTION, 3-48 
ALGOLBEG~SACTION,3-45 

ALGOLCANCELTRPOINT, 3-53 
ALGOLCLOSE, 3-72 
ALGOLCREATE,3-9 
ALGOLDELETE, 3-56 
ALGOLENDTRANSACTION, 3-69 
ALGOLFIND, 3-24 
ALGOLFREE, 3-17 
ALGOLFREESTR, 3-21 
ALGOLLOCK, 3-29 
ALGOLLOCKSTR, 3-34 
ALGOLOPEN,3-6 
ALGOLRECl{EATE, 3-62 
ALGOLSAVETRPOINT, 3-50 
ALGOLSECURE, 3-37 
ALGOLSECURESTR, 3-42 
ALGOLSET, 3-13 
ALGOLSTORE,3-66 
ALGOLVERB,3-74 
DBABORTTRANSACTION,3-48 
DBBEGINTRANSACTION, 3-45 
DBCANCELTRPOINT, 3-53 
DBCLOSE,3-72,3-73 
DBCREATE, 3-9 
DBDELETE, 3-56 
DBENDTRANSACITON,3-69 
DBFIND, 3-24 
DBFREE, 3-17 
DBFREESTR, 3-21 
DBLOCK, 3-2Q 
DBLOCKSTR, 3-34 

86000155-000 

DBOPEN,3-6 
DBRECREATE, 3-62 
DBSAVETRPOINT, 3-50 
DBSECURE, 3-37 
DBSECURESTR,3-42 
DBSET, 3-13 
DBSTORE, 3-66 

Index 

DBVERB' 3-74 
FORTRAN77ABORTTRANSACTION, 

3-48 
FORTRAN77BEGINTRANSACTION, 

3-45 
FORTRAN77CANCELTRPOINT, 3-53 
FORTRAN77CLOSE, 3-72, 3-73 
FORTRAN77CREATE,3-9 
FORTRAN77DELETE, 3-56 
FORTRAN77ENDTRANSACTION, 3-69 
FORTRAN77FIND, 3-24 
FORTRAN77FREE, 3-17 
FORTRAN77FREESTR, 3-21 
FORTRAN77LOCK, 3-29 
FORTRAN77LOCKSTR, 3-34 
FORTRAN770PEN,3-6 
FORTRAN77RECREATE, 3-62 
FORTRAN 77SA VETRPOINT, 3-50 
FORTRAN77SECUltE, 3-37 
FORTRAN77SECURESTR, 3-42 
FORTRAN77SE~ 3-13 
FORTRAN77STORE, 3-66 
FORTRAN77VERB, 3-74 
purpose of, 1-4 
table of, 3-1 

< status statement>, executing through 
entry point, 3-76 

store operations, 3-66 
storing records, 3-66 
string variables, use of preinitialized, 1-8 
<string> 

declaring DMINTERPRETER library in 
FORTRAN77, 2-13 

declaring FORTRAN77 entry points, 2-17 
STRUCTURE data set, as entry for 

DATAsET-SUBTYPE, 7-4 
<·structure> 

finding records, 3-26 
freeing records, 3-18 
locking records, 3-30 
moving character strings to variables, 4-7 
moving double-precision values to 

variables, 4-22 
moving Kanji character strings to 

variables, 4-12 

Index-19 



Index 

moving numeric values to variables, 4-17 
placing double-precision values into data 

items, 4-47 
placing numeric values into data items, 

4-42 
placing strings into data items, 4-32 
placing strings into Kanji alpha items, 4-37 
retrieving Boolean or field items, 4-27 
securing records,. 3-38 
setting Boolean values, 4-52 
setting current path, 3-14 
setting null values, 4-56 
storing records, 3-66 

structures 
locking, 3-34 
securing, 3--42 

subcategories for exceptions and errors, 
tables of, B-2 

SUBSET value, as entry for SET-SUBTYPE, 
7-5 

summary table of exceptions and errors, 
B-18 

symbolic name, in FORTRAN77, 2-13 
< symbolic name> , declaring 

DMINTERPRETER library, 2-13 
SYNC value, setting when ending transaction 

state, 3-69 
syncpoints, setting when ending transaction 

state, 3-69 
SYSTEM/BUILDINQ, generating 

DMINTERPRETER library, A-I 
SYSTEM/INTERF ACE, generating 

DMINTERPRETER library, A-I 
SYSTE:MERROR category 

T 

exception and error subcategories, B-16 
major category number, B-2 

table of exceptions and errors, B-18 
<target>, setting current path, 3-14 
TITLE attribute 

declaring DMINTERPRETER library in 
ALGOL,2-2 
FORTRAN77, 2-13 

invoking DMINTERPRETER .library in 
COBOL, 2-10 

transaction state 
aborting, 3--48 
beginning, 3--45 
canceling, 3-53 

Index-20 

deleting records, 3-56 
ending, 3-69 
saving a transaction point, 3-50 
storing records, 3-66 

< transaction statement> ,. executing 
through entry point, 3-75 

transferring data 
constructing transfers during program 

execution, 4-60 
moving character strings to variables, 4-6 
moving double-precision values to 

variables, 4-21 
moving Kanji alpha character strings to 

variables, 4-11 
moving numeric values to variables, 4-16 
placing double-precision values into data 

items, 4-46 
placing numeric values into data items, 

4-41 
placing strings into data items, 4-31 
placing strings into Kanji alpha items, 4-36 
retrieving Boolean values, 4-26 
setting data items to Boolean values, 4-51 
setting data items to null values, 4-56 

TYPE entry, for ITEM-SUBTYPE, 7-6 
types of 

u 

application program interfaces, 1-1 
data sets in DBSTRUCTURE data set, 7--4 
entities in DBSTRUCTURE, 7-3 
sets in DBSTRUCTURE data set, 7-5 

< underscore name> 
moving character strings to variables, 4-7 
moving double-precision values to 

variables, 4-22 
moving Kanji character strings to 

variables, 4-12 
moving numeric values to variables, 4-18 
placing double-precision values into data 

items, 4-47 
placing numeric values into data items, 

4-42 
placing strings into data items, 4-32 
placing strings into Kanji alpha items, 4--37 
retrieving Boolean or field items, 4-27 
setting Boolean values, 4-52 
setting null values, 4-57 

unlocking 
records,~17 

8600 0155-000 



structures, 3-21 
UNORDERED data set, as entry for 

DATASET-SUBTYPE, 7-4 
update access, 3-6 
UPDATE value, in opening databases, 3-7 
use of DASDL options 

ZIP, A-5 
user work area 

deleting records, 3-56 
finding records, 3-24 

using BUILDINQ program, A-4 
USING clause, supplying parameters for 

COBOL entry points, 2-11 
using the release tape 

v 

declaring ALGOL entry points, 2-4 
declaring· COBOL entry points, 2-8 
declaring FORTRAN77 entry points, 2-14 

< variable name> 
moving character strings to variables, 4-8 
moving double-precision values to 

variables, 4-23 
moving Kanji strings to variables, 4-13 
moving numeric values to variables, 4-18 
retrieving Boolean values, 4-28 

variable-format record 
creating new records, 3-10 
recreating records, 3-63 

verification message, in BUILDINQ program, 
A-12 

VERSIONERROR category 
exception and error subcategories, B-18 
major category number, B-2 

Work Flow Language 

z 

generating the DMINTERPRETER library, 
A-15 

ZIP option, generating the 
DMINTERPRETER library, A-5 

8600 0155-000 

$INCLUDE compiler control option 
reasons to use, 1-5 
use in ALGOL programs, 2-4 

Index 

use in FORTRAN77 programs, 2-14 

Index-21 



Index-22 8600 0155-000 





· 111~MII~nlllllllll~IUml 
86000155-000 


