
Britton
WLee,inc. INTELLIGENT DATABASE MACHINE

IDM SOFTWARE REFERENCE MANUAL
VERSION 1.7

I tillYlt"", ,,,,,~1

Ib1BrlttW1LeC ~I

BRITTON LEE INC.

IDM SOFTWARE REFERENCE MANUAL
VERSION 1.7

NOVEMBER 1984
Part Number 202-0500-017

This manual corresponds to
release 31 of the IDM System Software

™ Intelligent Database Machine, IDM, Intelligent Database Language, and IDL are trademarks of Britton Lee Inc.

First Printing. November 1984

This document supercedes all previous documents. This. the first edition is intended for use with
software release number 3.0. and future software releases. until further notice.

The information contained within this document is subject to change without notice. Britton Lee assumes
no responsibility for any errors that may appear in this document.

The software described in this document is furnished under license and can only be used or copied in
accordance with the terms of such license.

All rights reserved
No portion of this text may be reproduced without

express permission of Britton Lee Inc.

© 1984
Britton Lee Inc.

14600 Winchester Boulevard. Los Gatos. CA 95030

General

FOREWORD

This manual contains version 1.4 pages and additional supplement version
pages. Please note that the supplement version pages have an update note on the
bottom of each page. for your convenience.

Because the version 1.7 supplement pages are typeset. they no longer match the
word spacing of the older text. This causes many pages to appear to be shorter.
The last sentence of a page may end mid-page. The text per page is identical to
the page it replaced except where noted by the margin character. The sentences
end with the same word as the older page. This uneven ending has been filled
with a bar" ..

TABLE OF CONTENTS
1 Introduction to IDM Data Management

2

3

User Concept of the Data
Databases•.
Relations ••.......•••••....
Normalized Relations
Views ..•....•...•....
Data Values: Duplicate and Unique Keys
Ordered Data•....•.•.••••.

Data Management Functions in the IDM
Security
Consistency: Transaction Management
Transaction Logging
Crash Recovery
Performance

Introduction to IDL
Beginning Commands
create database
create
append
retrieve
replace
delete
retrieve into
create view
destroy
destroy database
Summary

More Powerful IDL
Range Statements
The Use of AggregateR
Scalar Aggregates
Aggregate Functions

order by •..........
data conversions
string manipulation

IDM: Database Management
Stored Commands
Data Dictionary
Transaction Management

Begin, End and Abort Transaction
Performance Implications of Transaction

Management•.••..•.•
Audit Support and Crash Recovery

Which Relations to Log•....
Dumping the Transaction Log
Using the Transaction Log for Crash Recovery
Using the Transaction Log for the Auditors

User Authentication and Protection •.•.•.••••.
User Authentication for the IDM

Types of Hosts Using Authentication Systems

1-1
1-1
1-2
1-4
l-4
1-4
1-5
1-5
1-5
1-6
1-6
1-7
1-7

2-1
2-1
2-2
2-4
2-4
2-6
2-7
2-7
2-8
2-8
2-9
2-9
2-9
2-9
2-9
2-10
2-11
2-13
2-14
2-15

3-1
3-3
3-6
3-7

3-9
3-10
3-10
3-10
3-11
3-11
3-12
3-12
3-13

Trustworthy Hosts with User Numbers ..••••.••.. 3-13
Trustworthy Hosts with User Names •......•••..• 3-13
Untrustworthy Hosts with User Numbers•..•. 3-14
Untrustworthy Hosts with User Names •.•••.•.•.. 3-14

Configuring Hosts to Specify Type of
Authentication •••••••..•...•..••.•••.•••••• 3-14

Log in Relation •.•••••••.••••..•••.•••••.•••••.• 3-15
Sending Identification to the IDM ••••••••••.••• 3-16

Sending a Host User Id •••••••••.•••.•..•.••.•. 3-16
Send ing a Hos t Use r Name ••••••..••...•••••.... 3-1.6
Sending a Password to the IDM ••••••••••••...•• 3-17
Changing a Password .•.•••.••.•••.•••.••••••... 3-17

Valid Types for Login Tuples •..•.•••••••.•.••.• 3-17
Matching Log in Tuples ••••.•..••••••••••.••.•••• 3-17
Error Message Returned By Authentication

System 3-18
Overriding the Login System •.•..••••.•••••.••.• 3-18

Protection For Individual Databases ••••••••••••• 3-18
Database Creation and Ownership •••••••••••••••• 3-18
Helpful Hints ••••••••.••••..•••••••••••••••••• 3-18.1
Effects of LOAD DATABASE ••••••••••••••••.••••• 3-18.2
Getting out of Trouble •••••••••••••••••••.•••• 3-18.2

Making Users Known in Individual Databases ••••• 3-18.2
Special Cases ••.••••••••.••••.•••••••••••••.•• 3-18.5

Granting Permissions ••••••••.••••••.••••••.•••• 3-18.6
Views and Stored Commands •••••••••••••••••••••. 3-18.7

Performance Improvement Support •••••••.••.••••••• 3-18.7
Create Index ••..•...•••.•••.•.••••••.••••••••••• 3-18.7

The Meaning and Use of Fillfactor and Skip ••••• 3-20
Setting the Index card Field ••••••••••••••••••. 3-20

Adding a Disk •.••••••••••.••••.••••••••••••••••• 3-20.1
putting Databases on Different Disks •.•••••••••• 3-20.1

Updating Views .••..••.••••.•••.•••.•••••••••••••• 3-21
View Definition ••.....••••••••••••••.••••••••••• 3-22
View substitution •••••••••••••••••••.••••••••••• 3-22

The Sizes of Tuples ••.•.•.•••••••••.•.•.•••.•.••• 3-22
Introduction ••..••••••••..•.....•••••••••••••••• 3-22
The Declared Width of a Relation ••••.••••••••••. 3-22
Length of a Tuple •.••••.••••••••••.••.•••..••••• 3-23

The Sizes of Indices ••.•..•••.••...•.••.••••••••• 3-23
Introduction .•.•.•••••••.•••.•••.•••.••..••••••• 3-23
Clustered Indices ••••..••••.•••••••...••.••...•• 3-24
Nonclustered Indices ••••.••.•••..••••••••••••••• 3-24

Tape Specification .•.••..••..••.•••••••.••••••••• 3-26
Functionality .•••••.•.••.••••••••••••.•••••.•.•• 3-26
Tape command-option •••..•••.••••.•••••••.•••.••• 3- 26
Copyin and Copyout with tape •••••••.•••••••••..• 3-28
Configure relation .••.••••••.•.••...•.•••..••.•. 3-28
Permission checking and validation .••...•..•..•• 3-28
Multiple tapes •.•....•...••...••••••..•.•.•••••• 3-29
Tape Format•.•••...•......•..•••.•••.•.•. 3-29

BCD Data Types .•.••••••••.•.••.••....•....••...•. 3-30
Introduction ..•.•.•...••••..••••••.••••••••••••• 3-30

4

5

BCD Constant Format ••.•••••.••••.••••.
Integer and Floating Point Format

Creating as BCD Attribute •.•.•••••
Arithmetic and Conversion Functions
Rounding and Exception Handling

EBCDIC Support••.•.•.
Safepoints and checkpoints
Performance Monitoring
Monitor Relation •••••

primary Memory Usage
Disk Page Caching
Dbin Data Space
Dbin'T'able .••••
Host Input Buffering
Host Output Buffering
Dbin wait Sums ...••

Devmonitor Relation
Disk Drives •.•.•.
Disk Controllers
Tape Controller
Channels .•••••

Per-dbin Measurements
Specifying Memory Usage
Weighted Parameters ..••..

Query Processing Plans
Sending a plan to the IDM
Displaying the Plan

User Accounting ..••.•.

Host Programming: An Overview
End-user Interfaces

Ad-hoc Systems
Pre-planned Commands

Example Query•..
Translating the query
Range Variable Numbers
Sending the Command

The Flow of Control
User Program View
The Operating System Functions

Example of Flow of Control
Summary•.••.••••••.••••

End-user Interface
Introduction ..•.•
The IDM Command Set
Results of a Command ...•.•
General Purpose Query Language
Lexical Analysis
Syntax
Semantics
Target List Semantics
Qualification Semantics

3-30
3-31
3-33
3-34
3-36
3-37
3-39
3-40
3-40
3-41
3-41
3-41
3-41
3-41
3-41
3-42
3-42
3-43
3-43
3-44
3-44
3-44
3-44
3-45
3-47
3-47
3-48
3-48

4-1
4-2
4-3
4-6
4-7
4-9
4-10
4-11
4-:1
4-12
4-13
4-15

5-1
5-1
5-2
5-4
5-4
5-5
5-5
5-5
5-6

6

7

Expression Semantics
Stored Commands ..•..

Embedded Query Language
Protection Within Programs

Subroutine Calls
File System Support
Dump and Load Support

Copy in, Copy out
Dump, Load, and Dump Transact

Report Generators .•.•...••••••

Communicating with the IDM
IDM Channel Communication Commands .••.•.••.
Host-to-IDM Channel Communication Commands
IDM Channel-to-Host Communication Commands

Operating System to Host Device
.n.n Example •••.•••••••••••

Host Device to IDM Channel
Communication Packets and Data Packets
The IDENTIFY Packet
Packet Error Detection
The Acknowledgement Byte and Response Packet
Examples ••••....

Parallel Interface
The IEEE-488 Bus
The Protocol
Resynchronization

The Serial Interface .•••••
The RS-232-C Interface
The Protocol •••..
Resynchronization

10M Command Set
IDL meta-symbol definitions
Target List
Qualification
Expression
Commands

ABORT TRANSACTION
APPEND
ASSOCIATE
AUDIT, AUDIT INTO
BEGIN
CLOSE
CLOSE
COpy
t:REATE

TRANSACTION

FILE

DATABASE
FILE
INDEX

CREATE
CREATE
CREATE
CREATE VIEW
DEFINE, DEFINE PROG~l
DELETE ••.••...•••••••.•.

5-7
5-7
5-8
5-11
5-11
5-12
5-12
5-12
5-13
5-13

6-1
6-2
6-7
f;-8
6-10
6-12
6-13
6-15
6-17
6-18
6-24
1)- 33
6-33
6-35
6-38
6-38
6-38
6-39
6-39

7-1
7-2
7-3
7-5
7-16
7-16
7-17
7-19
7-21
7-24
7-25
7-26
7-27
7-30
7-32
7-35
7-37
7-40
7-42
7-45

IDM Software Reference Manual Version 1.7 Britton Lee Inc.

DENY 7-46
DESTROY 7-49
DESTROY DATABASE . 7-50
DESTROY INDEX 7-51
DUMP DATABASE 7-53
DUMP TRANSACTION. 7-58
END TRANSACTION 7-62
EXECUTE, EXECUTE PROGRAM .. 7-63
EXTEND DATABASE .. 7-66
LOAD DATABASE 7-68
LOAD TRANSACTION 7-72
NEW PASSWORD 7-73.1
OPEN ... 7-74
OPEN FILE ... 7-75
PERMIT ... 7-76
PLAN .. 7-77.1
RANGE 7-78
READ 7-80
RECONFIGURE 7-82
REOPEN 7-83
REPLACE 7-86
RETRIEVE, RETRIEVE INTO . 7-88
ROLLFORWARD 7-92
SETDATE/SETTIME 7-94
SYNC 7-95
TRUNCATE ... 7-95.1
WRITE 7-96
WRITE EOF .. 7-98

Appendices are now to be found in the manual titled, "IDM SYSTEM - APPENDICES A, B, C, D, E".

IDM Software Reference Manual Version 1.4 Britton-Lee Inc.

Britton-Lee Inc.

IDM Software Reference Manual

Document Summary

The Intelligent Database Machine (tDM) is a function
ally complete hardware/software database management machine.
It is designed to be either a stand-alone system, supporting
several programmable terminals, or a back-end system for
several general purpose computers. In either case, the
front-end system must provide the interface between the
end-user and the IDM.

The front-end system must take the database command
from the end-user, translate it to IDM-internal form, then
send it to the IDM. The purpose of this document is to
present a detailed explanation of the functions provided by
the IDM and the alternate user interfaces that may be pro
vided by the front-end system. It is presumed that the
reader has previously read the "IDM 500 Product Description"
and is therefore familiar with the architecture of the IDM.

There are eight sections in this document. The first
three comprise the description of the IDM data management
system. The next three contain information regarding the
front-end programming. The seventh section is a detailed
description of each IDM command, and the last includes the
appendices.

Section 1 is an introduction to the basic concepts of
the IDM database management system. The database command
language IDL (Intelligent Database Language) is introduced
in Section 2. It is necessary to understand IOL in order to
understand the full 10M power and to follow the examples
presented. However, the front-end system is not constrained
to use IDL as its database command language.

Section 3 is a general description of how to use the
10M for data management. Section 4 is an overview of the
programming requirements for any system that front-ends an
10M. It includes extensive examples. The front-end pro
gramming can be broken into two parts: the first part is the
application program that takes the user database command and
translates it to a form understood by the 10M; the second
part includes the operating system functions necessary to
send the command to the 10M and receive the results. The
first part is discussed in Section 5, "End-User Interfaces".
The second is in the following section, "Communicating with
the IDM", which also includes the channel protocols.

~ection 7 is the complete list of the 10M commands. It
includes the IDL syntax, the 10M-internal form and examples
of each of the commands.

Note that a vertical bar in the right margin, as seen
to the right of this paragraph, represents a change from the
previous version of the manual.

10M Software Reference Manual Version 1.4 Britton-Lee Inc.

1. Introduction to 10M Oata Management

The 10M is a relational database management system.
This section introduces the basic concepts of that system.
However, before proceeding with that description, there are
two necessary explanations.

First, this section simply describes what is within the
10M: the OEM determines the interface to it. There are two
types of users of the 10M: those who develop the applica
tions (whom we call the OEM) and those who see only the
OEM-provided interface (whom we call the end-user, or user).
Some features that exist in the IDM may not be provided by
some OEMs to their users if the OEMs decide that such func-
tions are not necessary for their particular applications.
Conversely, the OEM may provide features not found in the
10M, but which will appear to the user to be part of the
data management system.

Second, we use IOL for our examples. 10M commands are
given in IOL (Intelligent Oatabase Language) instead of
10M-internal form because IOL is clearer. It should be
noted that the OEM may choose to implement any database com
mand language, or none: the actual 10M-internal form for the
commands is given in Section 7.

There are two parts to this section. Section 1.1
discusses the user concept of data as implemented in the
IOM~s data management system. Section 1.2 introduces the
functions necessary for a complete data management system.

1.1. User Concept of the Data

The 10M is used to maintain a collection of data. Oata
is stored in "relations". Relations are kept in "data
bases".

1.1.1. Oatabases

Data stored in the 10M is stored in a ~database". In
common parlance, a database is both a logical grouping of
data, and a physical place to store data. In the 10M, a
database is a physical place to store data. Thus you may
hear people speak of the "employees database" and the
"stockroom database", and find that they are both kept in an
10M physical database named "corporate". This means that
the collection of data which people think of as describing
the company~s employees, and the separate collection of data
which describes the company~s inventory, are both kept in
the same 10M database.

In the 10M a database is an independent collection of
objects. These objects contain information about one or
more applications. 10M commands may not span more than one
database, thus all information about one application must be
in a single database: although a single 10M database may

IOM Software Reference Manual Version 1.4 Britton-Lee Inc.

hold information about many applications.

When the IOM is first installed it contains only one
database, the system database. That database is used to
keep track of all the other databases. To make other data
bases, the user sends the "create database" command to the
IOM. This new database can be used to maintain data about
any application the user wishes. This new user database is,
initially, almost empty~ only a few objects exist in the new
database, just enough to let the user begin.

1.1.2. Relations

An IOM database holds many objects.
kind of objects are called "relations".
objects that actually hold the data.

The most important
Relations are the

The data in a relational database management system is
organized into tables, called relations. You can think of
them as sets of records. The rows of the tables are called
"tuples", the columns are called "attributes". Tuples are
like records, and attributes are like data fields. The fol
lowing example shows two relations:

Relation: products

Attributes: name,

1 - 2

name

TV
radio
radio
radio
radio
stereo

part (part name),
quan (amount of this part in the product)

\part

transistor
antenna
cabinet
transistor
speaker
transistor

\quan

15
1
1

12
1

10

Introduction to IOM Oata Management

IOM Software Reference Manual Version 1.4 Britton-Lee Inc.

Relation: parts
Attributes: name (part name) ,

cost,
min amt(re-order when "curr amt"

- falls below this amount),
curr amt (the current inventory total)

name Icost

antenna 323 25 50
cabinet 2140 40 32
picture tube 8000 25 40
speaker 5225

1

25
1

20
transistor 50 225 325

The above relations contain information about the com
ponents of several products. The components are in the
"parts" relation~ the products in the "products" relation.

Relations are related to each other through their data
values. For instance, in order to determine the unit costs
of the parts in a radio the query (in IOL) is:

(1) range of p is parts
(2) range of pr is products
(3) retrieve (p.cost, p.name) where p.name = pr.part

and pr.name = "radio"

Statements (1) and (2) are "range" statements that bind
the variables "pH and "pr" to the relation names "parts" and
"products". "range" statements are explained in detail in
Section 2. Statement (3) is the IOL command to display the
cost and name attributes of all parts that belong to the
component "radio".

results:

name

antenna
cabinet
speaker
transistor

Icost

323
2140
5225

50

The parts used in making a radio are referred to expli
citly, by value, rather than by storage position or schema
definition. Since tuples are never referred to by physical
or schema position, but only by value, the relation~s physi
cal storage structure can change without disturbing applica
tion programs.

Introduction to IOM Oata Management 1 - 3

IDM Software Reference Manual Version 1.5 Britton-Lee Inc.

The values that associate tuples of one relation with
those of another we will call the "linking attributes". The
linking attributes in the above case are the attribute
"part" in the products relation and the attribute "name" in
the parts relation. The linking attributes are determined,
used, and supported by the user. There is no need to
declare the presence of a linking attribute to the IDM~ in
fact, often what is a linking attribute for one query is
simply a data value for another.

1.1.3. Normalized Relations

Relations maintained by the IDM must be in first normal
form. This means that no attributes are composite~ i.e.,
each attribute of each relation is atomic, consisting of a
single value chosen from the domain over which the attribute
is defined. "Repeating Groups" are not allowed.

Beyond first normal form, there are increasing degrees
of normalization. Second, third, and fourth normal forms
are design concepts of crucial importance to the database
administrator, but the IDM requires only first normal form.

1.1.4. Views

A view is a virtual relation which is defined in terms
of real relations or other views. The definition of a view
looks exactly like a retrieve statement. When a range vari
able in a query is a view, then the view definition is sub
stituted for the view before running the query.

View processing is divided into two parts: view defini
tion and view substitution. When the view is defined, cer
tain modifications are done to the query tree and then the
tree is stored in an identical manner to stored commands.
When the view is subsequently referenced, the view defini
tion is fetched, and the view definition is substituted
wherever required.

1.1.5. Data Values: Duplicates and Unique Keys

Many data management systems require that one of the
attributes of the tuples contain a "unique key". A "unique
key" is a value associated with each tuple such that no
other tuple in the relation can have the same key value.
The IDM does not require unique keys. CORRECT OPERATION
DOES REQUIRE THAT EACH TUPLE BE UNIQUE~ that is, that no two
tuples can contain the same values for all attributes.
Duplicates are removed whenever a relation is sorted and
when tuples are added to a sorted relation (a relation is
sorted when a clustered index is created on it). Duplicates
are deleted and a warning message is returned (this is done
by setting a status bit in the "Done packet").

Often an application is such that a unique key exists
for the relation and, furthermore, the user wants the

1 - 4 Updated June 1983 Introduction to IDM Data Management

IDM Software Reference Manual Version 1.4 Britton-Lee Inc.

uniqueness to be enforced. For example, part number is usu
ally a unique key; no two parts can have the same part
number. Normally the user would want attempts to assign the
same number to two parts to be flagged as errors, and not
allowed by the IDM. This is provided for in the IDM by the
create unique index command. The syntax and meaning of this
command are explained in Section 2. This command is further
explained in Sections 3 and 7.

After a unique index on "number" is created for the
"parts" relation, attempts to add tuples with the same part
number as one that exists in the relation will not be
allowed. Also, if the part number for any part is changed
to be the same as an existing part number, the change is not
allowed and flagged as an error.

1.1.6. Ordered Data

Tuples in the IDM relations can be arranged in any
order and the order changed at any time. When data is
retrieved from the IDM, the only way to assure that the
tuples are returned in a specified order is to state the
order as a part of the command:

retrieve (p.name, p.number)
order by number:ascending

The "order by" clause specifies the order in which the
tuples are returned.

1.2. Data Management Functions in the IDM

A functionally complete database management system must
provide for protection, crash recovery, data consistency,
and fast access paths to the data. In this section we
describe the philosophy behind the IDM implementation of
these features. The features are further discussed in Sec
tion 3, with the description of how to use them.

1.2.1. Security

The person who creates the database is the database
administrator (DBA) for the database and has the right to
grant access privileges. The protection types are read,
write, read tape, write tape, execute, create, create index,
and the destroys corresponding to create, and create index.

Users are identified through the host-id and host
user-id provided by the front-end system(s) • The
"host users" relation is a system relation which maps the
host-Td and host-user-id number pair into a single user-id
for that database. The "users" relation is a system rela
tion which maps the user-id into a user name and group. The
DBA assigns access rights to a database by putting a user in
the "host users" relation and the "users" relation. This
provides a-cross-reference between the host-id/host-user-id

Introduction to IDM Data Management 1 - 5

10M Software Reference Manual Version 1.4 Britton-Lee Inc.

pair and user~s name and group. Then the DBA assigns access
rights by user name or group through the use of permit
and/or deny commands.

Users may also create and
relations within the database.
section 3.5, "Protection".

protect their own private
More details can be found in

1.2.2. Consistency: Transaction Management

A "transaction" is a set of one or more 10M commands.
The 10M insures that the user, within a transaction, has a
consistent database. A "consistent database" means that if
two or more users are simultaneously operating on the same
data, the result will be as though only one user was operat
ing at a time. This is done through transaction management,
where the user declares that a set of 10M commands form a
"transaction" that should be treated as a single operation
on the database. If the user first commands begin transac
tion and then reads a tuple of a relation, the tuple will
not change value (unless that user changes it) until after
the transaction has ended. Any tuple that the user changes
will not be accessible by other users until the transaction
is complete. If the transaction is aborted for any reason
before it is ended (due to a system crash or the user typing
abort transaction) the data changed by the transaction is
restored to its pre-transaction value.

1.2.3. Transaction Logging

The 10M provides transaction logging for three reasons:
transaction management, crash recovery, and audit support.
The transaction log includes a record of which values were
changed (the·ir previous and new values are recorded), the
time the change took place, and the 10M user id for the user
who made the change.

The transaction log is kept in the system relation
"transact". It is used in transaction management to "back
out" those changes made during a transaction if an "abort"
is encountered. If the relation was not created with the
parameter "logging" specified, logging is to the "batch"
system relation. The "batch" relation provides only the
transaction management and crash recovery functions of the
"transact" relation~ the audit trail function is not pro
vided, since the "batch" relation is periodically purged.

If the relation that is changed was created with the
parameter "logging" specified, the records are kept for
audit and recovery support. The user should periodically
write the log to another device (either to the front-end, to
tape or to another disk on the 10M) with the dump transac
tion command. The result of the dump transaction command is
that all records of transactions that have ended are written
to the dump device, and deleted from the transaction log.

1 - 6 Introduction to 10M Data Management

IOM Software Reference Manual Version 1.4 Britton-Lee Inc.

The transaction log dump can take place while the database
is being used. The dumped transaction log can then be used
to create an audit report with the audit command, and/or
used as an incremental dump to restore databases lost in a
disk crash.

!.~.i. Crash Recovery

The IOM provides a database dump and a database load
facility. The database dump provides a means of dumping the
entire contents of a single database to a file on the IOM,
to tape or to the front-end system. The database load will
take for input the result of a prior database dump and will
restore the contents of a database to what it was when the
dump was taken.

In the case of disk failure, the user loads the
affected databases one at a time with the load database com
mand. Then the transaction logs are used to bring the data
bases up to date. This is done by the user who issues
roll forward commands per database affected. The transaction
log carries the information to update the database such that
rollforward will work correctly even if a part of the data
base was on a disk that did not have to be restored.

The transaction log is therefore used exactly like an
incremental dump. It records all the changes to relations
that were created with the "logging" with-node-option, and
can be used, together with the complete dump, to restore the
database. How often complete dumps are taken is a function
of the application.

1.2.5. Performance

The IOM provides for fast access to data through user
defined indices. An index is a directory that contains data
values together with pointers to the physical location of
the data. An index is created to facilitate access to data.
For example, if we wanted part number A12 in the "parts"
relation, one way to find it is to read the entire relation,
searching each tuple to determine if it is part A12. That
would be an inefficient way of finding part A12, but is
exactly what would happen if there is not an index on part
number. If there is an index on part number, the index is
first searched for part number A12. Then the block that
contains the part A12 is directly accessed.

The IDM keeps all indices in the form of a B-tree. A
B-tree is a data structure that has the property of very
fast access. B-trees have the additional advantage that
once they are created they do not require periodic mainte
nance by the user.

There are two types of indices: clustered and non
clustered. Creating a clustered index on an attribute (or
group of attributes) of a relation causes the relation to be

Introduction to IOM Data Management 1 - 7

IDM Software Reference Manual Version 1.4 Britton-Lee Inc.

sorted on that attribute (or attributes) and physically
stored in the disk blocks in sort order. The attributes are
specified in the create clustered index command. The DBA
should create a clustered index for almost every relation in
the database, since storing the tuples in sort order means
that they can be quickly accessed when that order is needed.

A relation can have only one clustered index, since the
data can be physically stored only one way. The indices on
other attributes (those for which the data is not in order)
are the nonc1ustered indices.

The design philosophy of the IDM is that the DBA is the
only one with the knowledge of which attributes to create
indices on~ so the DBA is responsible for commanding the IDM
to create indices.

1 - 8 Introduction to IDM Data Management

IDM Software Reference Manual Version 1.4 Britton-Lee Inc.

2. Introduction to IDL

The Intelligent Database Language (IDL) is the general
purpose database command language designed by Britton-Lee to
best use the functions of the IDM.

This section on IDL is included for three reasons:
first, to provide an example of a command language that will
fully use the functionality of the IDM; second, to help the
reader understand the examples in the following text; and
third, as a tutorial for those OEMs who will implement IOL
as their general-purpose command language.

Most front-end systems will take a user-generated data
base command and translate it to an IDM-internal form. IDL
easily translates to the IOM-internal form, and we provide
help (in Section 5) for writing the programs that perform
that translation. However, since the translation task is
the OEM~s responsibility, the OEM can elect to use any com
mand language suitable to the application. The IDM never
sees the original user-generated command. It sees only the
IOM-internal form, and has no idea whether it was generated
from IDL.

2.1. Beginning Commands
~he following commands are given in 'their simplest

form. Section 7 contains the complete definition of each
command.

2.1.1. create database

To make a new database, the command is create database.

Let us assume we wish to put data in a new database called
"inventory". Then the command is:

create database inventory

There are several optional parameters for the create data
base command, which are discussed in section 7. In the
above example, since we specify no parameters, the IDM uses
its default values.

In response to the above create database command, the
IDM sets up the database called "inventory" for the user.

2.1.2.

To communicate to the IOM that the user will be working
on the "inventory" database, the command is:

open inventory

In order to do any work on a database, it must first be the

10M Software Reference Manual Version 1.4 Britton-Lee Inc.

object of an open command.

2.1.3. create

The command create sets up a relation. For instance,
suppose the inventory database is to contain two relations:
"parts" and "products". The commands to set up these rela
tions are:

create parts(name = c14, cost = i4, min amt = i4,
curr_amt = i4)

create products(name = c14, part = c14, quan = i4)

After these commands are executed, the "parts" relation
will contain four attributes: "name" (the name of the part,
a maximum of 14 characters), "cost" (how much the part
costs, a 4-byte integer) , "min amt" (re-order when
"curr amt" falls below this number, a ~-byte integer), and
"curr-amt" (the current amount in inventory, a 4-byte
integer). The "products" relation contains three attri
butes: "name" (the l4-character product name), "part" (a
14-character part name), and "quan" (a 4-byte integer that
shows how many of the part are contained in the product).

The valid types for the attributes of relations are:

2 - 2 Introduction to IOL

IDM Software Reference Manual Version 1.4 Britton-Lee Inc.

Attribute Types

c compressed character string
(trailing blanks are not stored)
max size: 255 characters

uc uncompressed character string
max size: 255 characters

il I-byte integer

i2 2-byte integer

i4 4-byte integer

f4 4-byte floating point
(only limited support: store, retrieve,
and 2~s complement compare)

f8 8-byte floating point
(only limited support: store, retrieve,
and 2~s complement compare)

bcd compressed binary-coded decimal
(leading zeroes are not stored)

max size: 17 bytes, which is 31 digits

ubcd uncompressed binary-coded decimal
max size: 17 bytes, which is 31 digits

bcdflt compressed binary-coded decimal (BCD)
floating-point (leading and trailing
zeroes not stored)
max size: 17 bytes, which is 31 digits

ubcdflt uncompressed binary-coded decimal (BCD)
floating-point

bin

ubin

max size: 17 bytes, which is 31 digits

variable-length binary byte string
(trailing zeros not stored)

max size: 255 bytes

fixed-length binary byte string
max size: 255 bytes

The attribute type and maximum attribute size are specified
in the create statement. For instance, the command

Introduction to IDL 2 - 3

IOM Software Reference Manual Version 1.6 Britton-Lee Inc.

create new (name = c25, salary ~ bcd8, address = c200)

specifies that the relation "new" will have three attri
butes: "name", which is up to 25 characters long, "salary",
which is up to 8 digits (6 bytes) long, and "address", which
is up to 200 characters long. A tuple that is stored must
be no longer than 2000 bytes. A relation may be created with
250 attributes maximum: however, only 140 to 180 attributes
may be accessed at one time, depending on the complexity of
the command. This limit will increase in future releases.

2.1.4. append

One way to get data into the relations is through the
append command, which is in the example below. The other
way:LS through the copy command, which is discussed in Sec-
tion 7. ----

append to parts(name = "transistor", min amt = 225,
cost = 50, curr amt = 32~)

append to products(name = "stereo",
part = "transistor", quan = 10)

The above append commands cause the 10M to store the
data in the relations specified. In an append command, the
names of the attributes must be specified.

2.1.5. retrieve

Let us assume that we have entered data in the rela
tions "parts" and "products" defined above, and that the
relations are as shown below.

Relation: products
Attributes: name, part (part name) ,

quan (amount of this part in the product)
name Ipart Iquan

TV
TV
TV
TV
TV
radio
radio
radio
radio
stereo
stereo
stereo
tape recorder
tape recorder

transistor
speaker
cabinet
antenna
picture tube
antenna
cabinet
transistor
speaker
transistor
cabinet
speaker
tape reel
transistor

2 - 4 Updated March 1984

15
2
1
1
1
1
1

12
1

10
1
4
2

20

Introduction to IOL

10M Software Reference Manual Version 1.4 Britton-Lee Inc.

Relation: parts
Attributes: name (part name),

cost,
min amt(re-order when "curr amt" falls below

- this amount),
curr amt (the current inventory total)

I name Icost

antenna 323 25 50
cabinet 2140 40 32
picture tube 8000 25 40
speaker 5225 25 20
tape reel 327 30 22
transistor 50 225 325

In order to display data from these relations, we must
first provide the range statements. The range statement
binds a variable name to a relation name:

range of p is parts
range of pr is products

Suppose we want to know the quantity and type of each part
that goes into making TV~S. The query is:

retrieve (pr.part, pr.quan) where pr.name = "~T"

The names of the attributes to be "retrieved"
(displayed to the user) are "part" and "quan". The list of
the attributes to be retrieved is called the "target list".
The "qualification" is the specification of which tuples to
get the data from: the qualification in this case is "where
pr.name = "TV"". The qualification is also called the
"where clause".

The above query was a one-variable (single relation)
query. The results are:

part Iquan

transistor
speaker
cabinet
antenna
picture tube

15
2
1
1
1

Now suppose we want to know the cost of the components
that are used in making TVs. This requires that information
from two relations be combined: the part name acts as the
linking attribute. The query is:

Introduction to IOL 2 - 5

IDM Software Reference Manual Version 1.4 Britton-Lee Inc.

retrieve (p.name, part cost = p.cost * pr.quan)
where p.name =-pr.part and pr.name = "TV"

result:

name

antenna
cabinet
picture tube
speaker
transistor

323
2140
8000

10450
750

In the above example, we gave the expression "p.cost *
pr.quan" the name "part cost". When an expression appears
in the target list, IDL requires that it be named so the
front-end program can display the name when the value is
sent by the IDM. Expressions can appear in the target list
and in the qualification.

2.1.6. replace
The command to change the value of a tuple is the

replace command. The tuples in which data is to be
replaced, and the new values, must be specified. Suppose we
wanted to increase the number of transistors used in making
a ~1 to 20. Then the command is:

replace pr (quan = 20) where pr.name = "TV"
and pr.part = "transistor"

Multiple attributes can be specified in the replace command:

replace p (cost = p.cost + 10,
curr amt = p.curr amt + 20)

where p:name = "transistor"

The above command increases the cost by 10 and the current
amount by 20 for the "transistor" part in the "parts" rela
tion.

The qualification may contain an arbitrary number of
expressions. If we received a shipment of parts for TVs,
where there were 10 of each part, the command to update the
attribute "curr amt" would be:

replace p (curr amt = p.curr amt + 10)
where p-:-name = pr.part and pr.name = "TV"

A replace command can only change tuples in one relation.
~o change tuples in several relations, you must send (at
least) one replace command for each relation.

2 - 6 Introduction to IDL

10M Software Reference Manual Version 1.4 Britton-Lee Inc.

2.1.7. delete

~o remove zero or more tuples from a relation, the
delete command is used. The command to remove all the parts
for radios is:

delete p where p.name = pr.part and pr.name = "radio"

All parts used in the construction of radios have now been
removed. Later you will see how to remove ONLY the parts
used to construct radios.

Of course, if we remove all the parts for radios, we
should remove the radio tuple itself:

delete pr where pr.name = "radio"

2.1.8. retrieve into

The command to create a new relation from one or more
old ones is the retrieve into command. Suppose we want to
order parts where the inventory amount is below the minimum
amount and the amount that we order is always three times
the difference between the minimum stock amount and the
stock on hand. Then we can create a new relation, called
Pre order":

retrieve into re order (p.name,
amt = (3 * (p.min amt - p.curr_amt»)

where p.curr_amt < p.min_amt

range of r is re order
retrieve (r.name~ r.amt)

~his relation contains the following parts, and amount to
order:

name

cabinet
speaker
tape reel

lamt

24
15
24

If these parts are ordered and all arrive, the amount in the
"parts" relation can be updated:

replace p (curr amt = p.curr amt + r.amt)
where p:name = r.name

To see the new value for the number of cabinets on hand:
retrieve (p.name, p.cost, p.min amt, p.curr_amt)

where p.name = "cabinetT

Results:

Introduction to IOL 2 - 7

TOM Software Reference Manual Version 1.4 Britton-Lee Inc.

name Icost

cabinet 21401 401 56

2.1.9. create view

The command to create a virtual relation from one or
more relations is the create view command. A view looks
like a relation, but it does not have any data. When we did
the retrieve into command above, the 10M actually copied the
data from the old relations into a new relation. A view
just creates a different way of looking at the old data.

Suppose we want to create a view like the relation
"re order". Then we can type:

create view need to order (p.name,
amt-= (3 * (p.min amt - p.curr_amt»)

where p.curr_amt < p.min_amt

range of n is need to order
retrieve (n.name, n.amt)

This view appears to contain the following parts, and amount
to order:

name

cabinet
speaker
tape reel

lamt

24
15
24

The data is not really stored in "need to order", it is only
stored in "parts"; when "parts" is clianijed, the values and
tuples shown in the view "need to order" will also change.

2.1.10. destroy

To completely eliminate an object, the command is des
troy <object list>. If we wish to destroy the "re order"
relation created above, the command is:

destroy re_order

If we wish to destroy both the "re order" relation and the
"need_to_order" view, the command Is:

destroy re_order, need to order

The only ones who can destroy a relation are the user who
created it and the DBA. If there are views or stored com
mands based on some relations or views, then the base rela
tions or views cannot be destroyed without destroying the
dependent objects first.

2 - 8 Introduction to IDL

10M Software Reference Manual Version 1.4 Britton-Lee Inc.

2.1.11.. destroy database

To eliminate an entire database, the command is destroy
database.

destroy database inventory

The effect of the above command is to completely eliminate
the database "inventory" from the 10M, freeing its disk
space for other databases that may be created.

2.1.12. Summary
The above examples show the basic syntax of IOL: there

is a keyword (e.g. retrieve) I a target list (p.name) and a
qualification (where p.cost < 20). The keywords are the IOL
commands: the complete list is given in Section 7. The tar
get list and qualification generally can contain arbitrary
expressions involving multiple relations.

2.2. More Powerful IOL

2.2.1. Range Statements
A range statement is used to associate a variable name

with a relation name. Range statements are necessary in
order to compare tuples in the same relation to each other.
Suppose we want to know what parts cost more than a tape
reel. The query is:

range of p is parts
range of ps is parts
retrieve (p.name, p.cost) where p.cost > ps.cost

and ps.name = "tape reel"

It was necessary to use two different relation variable
names in the above query because we were comparing tuples in
a relation to each other.

The
variable
tuple is
append,
needs to
tuple.

2.2.2.

delete and replace commands each use
as the target list: that is to make

to be deleted or changed. In the
the actual relation name is used
be specified is the relation, not

The use of aggregates

a single range
it clear which
case of the

since all that
a particular

Aggregates are powerful tools of IOL (and of the 10M).
A scalar aggregate is an arithmetic expression that operates
over one or more relations and returns a single value.
Aggregate functions return a set of values. The aggregation
operators supported by the IDM are:

Introduction to IDL 2 - 9

10M Software Reference Manual Version 1.6

min
max
count
sum
avg
any
once

Britton-Lee Inc.

Aggregate "any" returns 0 if no tuples qualify: other
wise "any" returns 1. Count, sum, once and avg (average)
can h.liJe the optional modifier "unique" which specifies that
only the non-duplicated values of the expression are
included in the aggregate.

Aggr~gate "once" is used when one and only one value
should qualify. It will generate an error message if no
values exist or if more than one value exists. The one value
is returned. "Once" can only be used as a scalar aggregate.

~). Scalar Aggreg~~_~s.

The following command counts the unique (non-
duplicated) values of "part" in the "products" relation.

range of p is parts
range of pr is products
retrieve (num = count unique(pr.part»

The cesult of the aggregate has to be given a name (in this
case "num") so the returned result can be identified. The
10M will count all the unique part names in the "products"
relation, then return the count.

In order to find the total of the unit costs of all the
parts in the "parts" relation, the command is:

retrieve (tot_cost = sum(p.cost»

The results:

I
tot cost I
---=-----------

I--------~~~~~I
Suppose we wanted to know the total amount of stock on hand~
that is just the sum of the "curr amt" attribute of the
"parts" relation:

retrieve (tot_amt = sum(p.curr_amt»

The results:

tot amt

489

2 - 10 Updated March 1984 Introduction to IDL

IOM Software Reference Manual Version 1.6 Britton-Lee Inc.

It is more likely, however, that we would want to know the
total dollar value of the stock on hand: this is the total
of the "curr amt" and "cost" attributes:

retrieve (tot_amt = sum (p.curr_amt * p.cost»

2 - 10.1 Updated March 1984 Introduction to IDL

This page has been intentionally left blank.

10M Software Reference Manual Version 1.4 Britton-Lee Inc.

The results:

tot amt

532574

So there is $5325.74 worth of inventory parts. Now to
determine the total inventory amount excluding the "speaker"
inventory:

retrieve (inv = sum (p.curr amt * p.cost

The results:

inv

428074

where ~.part 1= "speaker"»

Or $1045.00 of the inventory is due to the stockpiling of
speakers.

Note that the qualification (where p.part 1= "speaker") is
written inside the parentheses with the object of the aggre
gation. The qualification refers to the objects being
summed and not to the query as a whole. This is an impor
tant distinction which allows considerable flexibility. An
aggregate is always a self-contained query embedded inside
another query. For example:

retrieve (p.pname, inv = p.cost * p.curr_amt)
where

and

p.cost * p.curr amt >
max(p.cost * p.curr amt where

p.curr_amt-< p.min_amt)

p.cost > 500

In the above query we want the name and inventory value of
those parts which cost more than 500 and whose inventory
value is greater than the inventory value of any parts which
need to be reordered. Note that the qualification
"p.curr amt < p.rnin amt" refers to the tuples used to com
pute thi "max" funcIion and not to the query as a whole.

Aggregates can be multi-variable:
retrieve (tot = sum (p.cost where p.name = pr.part

and pr.name = "TV"»

~he above command gives the total of the unit costs of the
parts that make up a TV. Again note that the qualification
for the aggregate goes inside the aggregate.

~) Aggregate Functions

Introduction to IOL 2 - 11

10M Software Reference Manual Version 1.4 Britton-Lee Inc.

Aggregate functions return a set of values. The
difference in syntax between an aggregate function and a
simple aggregate is the by clause. ~he ~ clause is the
"group by" operator. -

The command to display the inventory cost for each of
the parts in the inventory is:

retrieve (p.name,
tot_cost = sum (p.cost * p.curr_amt by p.name»

"'he ~ clause in this case is "by p.name". This specifies
that the sum is to be grouped by the name of the part, then
the sums printed out.

The results:

name

antenna
cabinet
picture tube
speaker
tape reel
transistor

16150
68480

320000
104500

7194
16250

Now suppose we do not want to see all the inventory costs,
but only of those items where there are more than 30 of them
on hand. ~hen the query is:

retrieve (p.name,
tot cost = sum (p.cost * p.curr_amt by p.name»
where p.curr_amt > 30

The results:

name

antenna
cabinet
picture tube
transistor

16150
68480

320000
16250

Note that the qualification "where p.curr_amt > 30" does not
appear in the parentheses with the aggregate function, since
it is not needed to evaluate the function; instead, it is
needed to specify which amounts to print out, and therefore
is a general "where clause".

In the above query it should also be noted that the
"by-clause" is global to the whole query. The "p.name" in
the target list is the same as the "p.name" in the by-clause
and is the same tuple referred to in the qualification list.
This is a fundamental difference between scalar aggregates
and aggregate functions.

2 - 12 Introduction to IOL

10M Software Reference Manual Version 1.4 Britton-Lee Inc.

Multi-variable aggregate functions provide powerful
facilities; the following example illustrates a multi
variable aggregate function. The purpose of the query is to
find the sum of the costs of the parts that make up each of
the products.

retrieve (pr.name, tot cost = sum (p.cost * pr.quan
by pr.name where pr.part = p.name»

The result:

name I tot_cost

TV I
r~nin

~t~;;o I

tape recorder

21663
8288

23540
1654

The clause "by pr.name" signifies that the aggregate is to
sum the cost * quan into groups according to pr.name. The
clause "where pr.part = p.name" identifies the correct cost
and quantity to multiply.

~ggregates can be used in both the target and qualifi
cation lists of the query. Several aggregations can be per
formed in the same query. The following query asks for the
name and total cost of all the products displayed where the
total cost of the product is greater than the average of the
total costs of all the products.

retrieve (pr.name, tot cost = sum (p.cost * pr.quan
by pr.name where pr.part = p.name»

where sum (p.cost * pr.quan
by pr.name where pr.part = p.name)

> avg (sum (p.cost * pr.quan
by pr.name where pr.part = p.name»

Note that the aggregate for the total cost of the product
must be repeated wherever it is referred to in the query.
Note also that "tot cost" is used only as a column heading
for output. "Tot cost" cannot be used as one would a pro
gramming variable.

Aggregates can be nested. In the example above, the average
sum of costs was specified by nesting the "sum" aggregate
inside the "average" aggregate.

2.2.3. order ~
The user specifies the order of the data with the order

~ clause:

retrieve (p.name, p.cost) order by cost:ascending

The above command lists the parts names and costs, and pro
duces the output in ascending order:

Introduction to IOL 2 - 13

IDM Software Reference Manual Version 1.4 Britton-Lee Inc.

Results:

name

transistor
antenna
tape reel
cabinet
speaker
picture tube

Icost

50
323
327

2140
5225
8000

The only way to assure that data will appear in a given
order is to explicitly state that order in an "order by"
clause. If an order ~ clause is not present, the 10M will
return tuples in the order the 10M found most efficient for
processing.

2.2.4. data conversions

Occasionally data will need to be converted to a dif
ferent type for comparison, arithmetic, or output. In that
case, one of the 10M's conversion functions must be used.
The functions are:

Function

intI
int2
int4
bcd
fixed bcd
bcdflt
fixed bcdflt
bcdfixed
string
fixed string
binary

Conversion Functions

Converts To:

I-byte integer
2-byte integer
4-byte integer
compressed BCD integer
uncompressed BCD integer
compressed BCD floating-point
uncompressed BCD floating-point
uncompressed BCD fixed-point
compressed character string
uncompressed character string
binary string

Attributes of any of the above types can be converted
to each other. Length parameters are used to specify the
length of the result when converting to character, binary
string, or BCD formats. An example is:

retrieve (new_quan = string(lO, pr.quan»

The above command converts the integer value "quan" to
ASCII, then sends it to the front-end.

2 - 14 Introduction to 10L

10M Software Reference Manual Version 1.7 Britton-Lee Inc.

replace p (curr_amt =
p.cuff_amt - (avg(int2(p.curr_amt»/2)

The above command shows the conversion of "curr_amt" to a two-byte integer, then the
average computed, and finally each of the "curr_amt" values for parts replaced by the current
value less half of the average.

Arithmetic expressions which contain a mixture of intl, int2, and int4 terms are evaluated by
first converting all terms to the length of the longest term.

2.2.5. String Manipulation

The 10M provides three string manipulation functions: substring, concatenate, and pattern
matching. Substring and concatenate can be used with both character and binary objects; pattern
matching can only be used with character objects. An example of pattern matching follows.

Suppose we want to print the names and costs of all parts that begin with a "t". Then the
command is:

retrieve (p.name, p.cost) where p.name = "t·"

The results:

I name Icost I
1-----------1--------1
Itape reel I 3271
Itransistor I 501
1-----------1--------1

The "." is a general pattern matching character. The pattern matching characters are:

• - matches zero or more characters.
? - matches anyone character.
[- begin a group of characters anyone of which may be matched.
] - end the group of characters.
\ - escape any of the above (used before • \ ? [] to indicate that the

following character is not a special pattern matching character).

A hyphen can be used within the square brackets to indicate a range of characters: "[a-e]" is
the same as "[abcde]" . A hyphen always has its special meaning within the brackets, its meaning
cannot be escaped.

Pattern matching characters can only be used in the qualification portion of commands.

"concat" takes two character or binary strings, strips any trailing blanks (zeros for binary
strings) from the first string (all but one, if the string is all blank), strips all trailing blanks from
the second string, and appends the second to the first. For -------------

Introduction to IOL Updated September 1984 2-15

IDM Software Reference Manual Version 1.4 Britton-Lee Inc.

2-16

instance,

retrieve (newname = concat(pr.name, pr.part))

returns the product names and component part names concatenated together.

Inewname
1-------------------------------
ITVtransistor
ITVspeaker
TVcabinet
TVantenna
TVpicture tube
radioantenna
radiocabinet
radiotransistor
radiospeaker
stereotransistor
stereocabinet
stereospeaker
tape recordertape reel 1

tape recordertransistor 1

-------------------------------1

Note that it is only trailing blanks that are deleted, not internal ones.

The syntax for "substring" is substring (beg, length, expression). "substring" takes bytes
beginning at position "beg" of a character or binary string "expression" and copies them to a
result position. The number of characters to copy is denoted by "length". "beg" and "length" are
one-byte integer constants. For instance,

retrieve (little = substring (2,5,p.name))

will display the characters beginning at position 2 in the attribute "name" of the "parts"
relation for a length of 5 characters.

Introduction to IDL

IOM Software Reference Manual Version 1.4 Britton-Lee Inc.

3. 10M: Oatabase Management

This section contains a description of the functions of
the TOM that can be used to provide a good data management
environment. These include stored commands, data dictionary
facilities, transaction management, data dump and restore
facilities, data protection, and performance tuning support.

3.1. Stored Commands

~he IOM has a facility for storing commands and command
sequences on the TOM itself in a pre-processed form. When
the command is to be run, the host system simply specifies
the parameters and the command name or number; then the com
mand is executed.

An example of the use of stored queries is the follow
ing: let us assume we wish to define an "add parts" command
for the "inventory" database of Section 2. If is convenient
for the users if an "add parts" command is defined, so the
user does not have to type-the full "append" command for
each part added to the "parts" relation. The define command
is:

define add parts
append to parts (name = $1, min amt = $2,

cost = $3, curr amt = $4)
end define -

After the keyword define comes the name of the stored com
mand. ~hen the commands making up that stored command are
listed. Finally the phrase end define terminates the stored
command. Parameters are indicated, in IOL, by a dollar
sign.

The 10M command execute causes the IOM to execute the
stored command that is specified. The positions of the
parameters in the "execute" command correspond to the lexi
cal sort sequence of the parameters in the define command.

execute add_parts "knobs", 112, 50, 125

The above execute command caused the IOM to add a tuple to
the "parts" relation, exactly as if the command had been
received as:

append to parts (name = "knobs",
min amt = 112,
cosf = 50,
curr_amt = 125)

The reasons to use stored commands are:

!) Efficiency

10M Software Reference Manual Version 1.4 Britton-Lee Inc.

Rtored commands are pre-processed when they are stored
in the 10M to save time when they are executed. Also, there
is less information that has to be passed to the 10M when a
stored command is executed because only a short name or
number and the parameters, instead of the representation of
a full command, are sent to the 10M. Therefore using stored
commands saves both 10M execution time and host/10M
transmission time.

~) Controlled access

In the above example, a stored command was used to
append data to a relation; similarly, sets of stored com
mands can be used to control access to relations. If the
OEM, through the application program, only allows the users
to execute stored commands, then the data added to and
retrieved from relations can be tightly controlled. As an
example, let us assume we have the "parts" and "products"
relations from Section 2. The OEM has decided that, as far
as the user is concerned, there are simply products and
parts that make up those products, and the application is
such that the user never has to be explicitly aware of the
structure of the actual data. Now suppose there is a new
product added, which possibly involves new parts. Then a
stored query can be executed which will update both rela
tions without explicit user intervention.

Assume the command was defined as follows:

define add product
append to products (name = $1, part = $2, quan = $3)
append to parts (name = $2)
end define

Then the user types:

execute add product "clock", "gear", 3
execute add-product "clock", "box", 1
execute add=product "clock", "hand", 2

The define command directs the 10M to accept the com
mands between it and the end define command as a single com
mand sequence. That command sequence is pre-processed, then
stored. The execute command directs the 10M to execute the
entire sequence.

l) New Commands

Stored commands can be used to define a new command for
the user, a command that is a combination of 10M commands.
For example:

3 - 2 10M: Database Management

10M Software Reference Manual Version 1.4

define got part
range of p-is parts
replace p (curr amt = p.curr amt + $2)

where p:name = $1
range of r is re order
replace r (amt =-r.amt - $2)

where r.name = $1
delete r where r.amt <= 0
end define

Britton-Lee Inc.

The above example shows how to define a command which, when
the user types

execute got_part "cabinet", 12

will cause the current amount field in the "parts" relation
to be increased by 12 for the part "cabinet". It will also
cause the amount in the "re order" relation to be decreased
by 12, and will delete from the "re order" relation any
parts that have less than 0 parts remainIng to be ordered.

3.2. Data Dictionary

A data dictionary is a service provided by a data
management system to its users, to enable the users to
interactively define the data schema and to look up that
schema once it is defined. The data dictionary functions of
the 10M are performed through the use of the 10M system
relations and stored commands. There are several system
relations per database; a complete list is given in
Appendix A. The relations of interest in performing data
dictionary functions are:

"relation" relation

This relation contains a list of all relations in the
database, including the 10M-assigned relation id (relid),
the name of the relation (name), the user id of the owner of
the relation (owner), the number of tuples, and other infor
mation that the 10M needs to process commands on that rela
tion.

"attribute" relation

The "attribute" relation contains information about
each attribute of each relation in the database. The attri
bute name, type, relid of the relation that the attribute
belongs to, and 10M-assigned attribute id (attid) are kept
(along with other information needed by the 10M) in the
"attribute" relation.

"descriptions" relation

The "descriptions" relation is used to associate one or
more descriptions (up to 255 characters long) with a

10M: Oatabase Management 3 - 3

IDM Software Reference Manual Version 1.6 Britton-Lee Inc.

relid/attid pair. If the attid is zero, it is assumed that
the description is associated with the relid alone.

The "relation" and "attribute" relations are automati
cally updated when the user creates a relation. After
creating a relation, the user can add a tuple to the
"descriptions" relation, using the 255-character "text"
attribute to store information about the relation.

When the relation is destroyed, the associated tuples
in the "attribute", "relation", and "descriptions" relations
are deleted automatically by the IDM.

To facilitate access to the data dictionary, stored
commands can be used to access these relations. For exam
ple:

range of d is descriptions
range of a is attribute
range of r is relation
define help
retrieve (r.name, d.text) where r.relid = d.relid

and d.attid = 0 and r.name = $rel
end define

define attinfo
retrieve (a.name, d.text)

where r.relid = d.relid
a.relid = r.relid
r.name = $rel

end define

define rename
replace r (name = $2)

and
and

where r.name = $1 and r.owner = userid
end define

The user enters the above commands, then (at any time in the
future) types:

execute help reI = "parts"

The query "help" retrieves the description of the named
relation. In the above example, the information about the
"parts" relation would be displayed.

In the above example the parameter was specified with a
name ("reIn) rather than the positional specification used
for most stored commands in this document. Either form is
acceptable for IDL.

To see the information for the attributes the user
would execute "attinfo". It is up to the host system or
database administrator to add the information to the
"descriptions" relation.

To allow the owner of a relation to change the
relation's name, the "rename" command can be used. "userid"

3 - 4 Updated March 1984 IDM: Database Management

IDM Software Reference Manual Version 1.4 Britton-Lee Inc.

is a special IDM function which returns the user identifier
of the current user.

Creating and destroying both relations and views are
simple commands. It is anticipated that they will be common
occurrences, especially when an application is first imple
mented. The definition of a database is often an evolution
ary process. In the following example, a database is
created (line 1). Then it is opened (to open a database is
to declare that you are going to be accessing the data in
it) • A relation is created (line 3), and several tuples
added (lines 4 - n). (For clarity we used the append com
mand to add data: the bulk load ~ facility described in
section 7 could have been used as well.)

(1) create database inventory
(2) open inventory
(3) create parts (number = i4, description = c30)

(4) append to parts (number = 21,
description = "-ntenna")

(5) append to parts (number = 45,
description = "cabinet")

(n) append to parts (number = 4112,
description = "speaker")

Now suppose part number A13ll must be added, and that it is
discovered that several part numbers contain non-numeric
information. The decision therefore is made to change the
parts number field to be a character attribute. One of the
design goals of the IDM is to make such data definition
changes as simple as possible: the following commands can be
used to change the definition of the "parts" relation:

(1) range of p is parts
(2) create nparts (number = clO, description = c30)
(3) append to nparts

(number = string(lO, p.number),
description = p.description)

(4) destroy parts

(5) execute rename nparts, parts

Line (1) is the previously-discussed "range command".
Line (2) creates the new relation. Line (3) is an append
which causes the IDM to copy data from the old relation
"parts" to the new relation "nparts". Since there is no
where clause in the append command, every tuple in "parts"
is copied into "nparts". The "number" attribute is the

IDM: Database Management 3 - 5

IDM Software Reference Manual Version 1.4 Britton-Lee Inc.

character string resulting from converting the integer part
number in "parts" to a maximum of 10 characters. The
"description" attribute is a direct copy of the "parts"
"description" attribute.

The retrieve into command could have been used in place
of lines 2 and 3. ~DBA chose to use the create command in
order to have explicit control over the type of the attri
bute "number".

When the append command is finished executing, there
are two copies of the data in the "parts" relation~ that in
"parts", and the data with the character part number in
"nparts". So the "parts" relation is removed (line (4»
with the destroy command. The "relation" relation keeps
track of the names of all the relations in the database~
line (5) results in changing the name of "nparts" to "parts"
using the previously defined stored command.

In the above five lines we redefined a data structure
to meet changing needs of the database. That is the kind of
action that is anticipated in the evolutionary process of
bringing up an application on an IDM database. The OEM can
define the necessary stored commands when installing a sys
tem.

3.3. Transaction Management

The default for a transaction in the 1DM is a single
command. If more than one command is to be included in a
transaction, the begin transaction and end transaction com
mands must explicitly be used.

The reason for transaction management is to maintain
database consistency over a set of commands. Database con
sistency means that if there are two or more transactions
that affect the same set of data, the end result will appear
as if only one user at a time had been operating on the
data. That is, the results will appear as if the transac
tions were "serialized". Consistency is not a problem in
single-user systems, where the only changes to the data are
those that the one user makes. However, in multi-user
environments consistency must be explicitly enforced.

For example, consider the following problem. User 1 at
terminal 1 is ordering parts for which the current inventory
level is below the minimum level. He types:

range of p is parts
retrieve (p.name, p.cost, p.curr amt)

where p.curr_amt < p.min=amt

Then he reviews the parts that are printed out, determining
(based on cost and lead time) which parts to order. He
decides to order those parts for which the total cost of the
order is less than $100, and to keep track of the rest of
the parts in the existing relation, "needs". The command he

3 - 6 IDM: Database Management

IDM Software Reference Manual Version 1.4 Britton-Lee Inc.

types is:

append to needs (p.name, p.cost,
amount = p.cost * (p.min amt - p.curr_amt»

where p.curr amt < p.rnin amt-
and p.cost * (p.min_amt - p.curr_amt) >= 10000

Now suppose that, before the second command from terminal 1
is issued, at terminal 2, the stockroom clerk issues some
parts:

replace p (curr amt = p.curr amt - 10)
where p:-name = "cabinet"

Then the user at terminal 1 would not see the part "cabinet"
Ln the list of parts that need to be ordered, but it would
mysteriously appear in the "needs" relation! In this case
we say that user 1 has seen an "inconsistent" database. To
keep this from happening, user 1 must surround those com
mands that demand consistency with the explicit
transaction-delimiting commands begin transaction and end
transaction.

3.3.1. Begin, End and Abort Transaction

The commands used to delimit a transaction are begin tran
saction and end transaction:

begin transaction
retrieve (p.name, p.cost, p.curr amt)

where p.curr_amt < p.min=amt

If user 1 in the above example types the above command
sequence, the "parts" relation is locked: it cannot be
changed by anyone except user 1 until the transaction is
ended or aborted. When user 1 types:

append to needs (p.name, p.cost,
amount = p.cost * (p.min amt - p.curr_amt»

where p.curr amt < p.min amt-
and p.cost * (p.min_amt - p.curr_amt) > 10000

end transaction

the lock on the "parts" relation is released, and updates by
other users on the "parts" relation can be processed.

If the transaction involves changing values, an abort
transaction command backs out the changes, returning them to
their original value. For example, assume that in our exam
ple database there is a "customers" relation that contains

. information about customers, including the customer name,
credit limit ("cr_line"), and current amount owed ("bal").

Then, assume that "Stereo City" orders 10 TVs. First,
we make certain that there are enough parts to make 10 TVs.

IDM: Database Management 3 - 7

IDM Software Reference Manual Version 1.4 Britton-Lee Inc.

begin transaction
replace p (curr amt = p.curr amt - 10 * pr.quan)

where p:name = pr.part and pr.name = "TV"

retrieve (p.name, p.cost, p.min amt, p.curr amt)
where p.curr amt < 0 ana p.name = pr.part

and pr.name = "TV"

Printed results:

name Icost

If any were less than zero, we would abort the transaction
and the relation would be restored to its original condi
tion. Since there were no negative amounts, we can con
tinue:

range of c is customers
replace c (ba1 = c.ba1 + sum (p.cost * pr.quan * 10

where pr.name = "TV" and p.name = pr.part)}
~ere c.name = "Stereo City"

//

retrieve (c.name, c.ba1, c.cr line)
where c.name = "Stere~ City"

Printed results:

name Iba1

Stereo City 6566301 450000

Since the transaction would result in the customer's
owing more than is allowed, the transaction is aborted: all
relations return to their original condition.

abort transaction

retrieve (c.name, c.ba1, c.cr line)
where c.name = "Stere~ City"

Printed results:

name Iba1

Stereo City 4400001 450000

In the above example, note that the changes to the
database are immediately reflected to the user. That is,
the user who changes the database during a transaction will

3 - 8 IDM: Database Management

IDM Software Reference Manual Version 1.5 Britton-Lee Inc.

see the changes immediately, although no other users can see
the changed relation until the transaction is ended.

1.1.1. Performance Implications of Transaction Management

The IDM implements transaction management through the
use of "locking" relations or blocks (2K-byte blocks of
data). A block, group of blocks, or an entire relation is
"read-locked" (no one can change it) while it is read.
Read-locks are shared: multiple users can read the same data
concurrently. The item (block, group of blocks, or rela
tion) is read-locked until all users who hold read locks on
the locked items have completed their current transactions.
If the item is not read-locked, a user can change data
within that item. In that case, the block, group of blocks,
or entire relation, is "write-locked". No user can "write
lock" a relation that is currently "read-locked"1 the IDM
will delay the "writer" transaction until all "readers" have
finished. If new "readers" begin, the "writer" may wait
again. The IDM automatically enforces that no new "readers"
can block a "writer" who has been waiting a pre-determined
amount of time.

A write-lock is not shared. After a user has changed a
relation, the "write-locked" blocks of that relation are not
freed until the end of the transaction.

This method of transaction management provides what is
called degree 3 consistency and insures that a "reader" will
always see the same data within a transaction no matter how
many times it is read. However, the interactive user who
begins a long transaction and may lock out updates for a
long period of time. The IDM allows the user to specify in
the RANGE statement a lower level of consitency on reads
(called degree 2). When degree 2 is specified a process
releases the lock on a block when it is finished with the
processing of that block, allowing "writers" to update the
block prior to the end of the transaction. The performance
of the system will be degraded when degree 2 locking is
specified since more accesses to the lock table are
required. This does not handle the user who begins a tran
saction, changes several relation blocks, and goes to coffee
without ending the transaction, he will effectiv ly lock all
other users out of those relation blocks for the duration of
his coffee break. The IDM will know if a host system has
crashed (see section 6.3.2), but it cannot know if the user
has disappeared or is just thinking for a long time.

OEMs who are implementing applications with high
amounts of concurrent access should have a "time out"
feature in the host that either aborts or ends a transaction
after an application-determined wait period.

A second problem is deadlock. Deadlock occurs when two
or more users are blocked, waiting for locks that the other

IDM: Database Management Updated June 1983 3 - 9

This page has been intentionally left blank.

IOM Software Reference Manual Version 1.5 Britton-Lee Inc.

holds. The frequency of deadlock is application dependent
but in practice deadlock is usually a rare event. If a
deadlock occurs, the IOM detects it, chooses a transaction
to kill and aborts it, backing out all data changes done by
the transaction. The IOM does not restart the killed tran
saction~ if appropriate, the host software can resubmit the
command.

The host pro?r~m that contains a "begin transaction"
must, upon rece1v1ng a "transaction aborted" error signal
from the IOM, go back to the "begin transaction" and start
over. This is a rare occurrence, but one that the OEM
should be aware can occur.

IOM: Database Management Updated June 1983 3 - 9.1

10M Software Reference Manual Version 1.5 Britton-Lee Inc.

3.4. Audit Support and Crash Recovery

Both audit support and crash recovery are provided
through the use of the 10M transaction log. The transaction
log is a relation that keeps a record of each change to the
logged relations. There is one transaction log per data
base. A relation is declared to be a logged relation at the
time it is created. The transaction log is used for two
purposes: to provide reports for auditors, and to provide
backup facilities for the important relations. The 10M will
automatically bring a database to a consistent state after a
crash using the current transaction log, if it is intact.
Non-logged relations are also brought to a consistent state.
This process is speeded by "checkpoints". A checkpoint
forces all disk blocks which have new information to the
disks. The 10M will automatically do checkpoints at inter
vals set by the DBA. The checkpoint is noted in the log and
recovery can proceed from the checkpoint rather than the
beginning of the log.

l.~.l. Which Relations to Log

Relations that the auditors will be interested in and
relations that need a back-up capability should be logged.
The cost of maintaining the transaction log is the number of
disk writes necessary to keep track of every change to a
relation; if the relation is a temporary relation, used
only, for example, to create a report, logging is probably
not necessary for that relation. Such relations are still
protected against system crashes that do not damage the
disks.

3.4.2. Dumping the Transaction Log

The transaction log grows as the relations it is moni
toring are updated. Therefore it is necessary to periodi
cally move the contents of the log to other media, for exam
ple, to a tape.

The following is an example of dumping the transaction log
to a file on the 10M:

(1)
(2)

Command
we are
mand (2)
database

open backup
dump transaction inventory transact to trans1

(1) in the above command sequence tells the 10M that
operating within the database named "backup". Com
causes the transaction log for the "inventory"
to be written into the file "trans1".

3 - 10 Updated June 1983 10M: Database Management

IDM Software Reference Manual Version 1.4 Britton-Lee Inc.

When the transaction log is dumped it is shortened; all
records preceeding the first active update are removed.
Other processing continues while the transaction dump is
done.

3.4.3. Using the Transaction Log for Crash Recovery

In case of a disk malfunction, the transaction log can
be used to restore the logged relations to their state at
the time of the last readable log. This is done by first
restoring the database from the last dump, then applying the
transaction log:

(1) open backup
(2) load database inventory from file2
(3) roll forward inventory from transl

The first command declares that we are working in the data
base named "backup". Command 2 restores the "inventory"
database from the last dump taken, which is on "file2" of
the database "backup". The third command causes the tran
saction log to be applied.

Backup may be done from the host system:

(1) load database inventory
(2) load transaction scratch inventrans
(3) open scratch
(4) rollforward inventory from inventrans

The database "scratch" is used to hold the transaction log
for the rollforward command. The log must not be loaded to
the database which is being restored. The roll forward com
mand can only work from a relation.

3.4.4. Using the Transaction Log for the Auditors
The transaction log is one of the few system relations

that is practically unreadable by the casual user. That is
because the data is kept in a compressed, binary form for
efficiency in writing and applying the log. To display the
log for an auditor, the command is:

range of t is transact
audit (t.relid, t.user, t.type)

Section 7 contains the complete set of parameters for the
audit command. The audit command must be run in the data
base to which it applies. If we dumped the transaction log
to another database or to the host, it must be first loaded.

IDM: Database Management 3 - 11

10M Software Reference Manual Version 1.6 Britton-Lee Inc.

(1) open backup
(2) load transaction inventory newtrans from transl
(3) open inventory
(4) range of n is newtrans
(5) audit (n.user, n.type, n.value)

where n.relid = rel_id("parts")
Commands (1) and (2) load a copy of the transaction log into
the "inventory" database. Then in (3) and (4) the audit
report is retrieved. The requirements for backup and audit
ing are different and so it is necessary to move the log
before retrieving the audit.

3.5. User Authentication and Protection

Authentication is the process of securely recognizing
the identity of a user of the 1DM system. Once a user's
identity has been authenticated, the 10M protection system
takes over. The protection system determines what database,
relations, views and stored commands a user may use.

3.5.1. User Authentication for the 10M

Users interact with a host computer which, in turn,
interacts with the 10M database management system. In some
environments, the host computer will authenticate the user
(typically by asking the user for a login name and pass
word). In other environments, it is necessary for the 10M
to authenticate the user. The designer of a database appli
cation has the choice of

1. Host computer user authentication
2. 10M user authentication
3. Both Host and IDM user authentication

This choice is based on whether a host computer is
"trustworthy" or "untrustworthy". A trustworthy host
environment is one in which the host operating system
authenticates the user and prevents the user from directly
telling the IDM the user's identification. Examples of
trustworthy systems are mainframes and minicomputers running
multi-user operating systems. An untrustworthy host
environment is one in which the user can directly communi
cate his identification to the 10M. Examples of
untrustworthy systems are personal computers and computers
connected over some networks. On untrustworthy systems, the
user must supply the 10M a password in order to use the 10M.

Users are identified either by name or by number. Host
computers are identified by number. These identifications
are called:

Hid
Huid

Huname

Host identification
User identification number
on host computer
User identification name

3 - 12 Updated March 1984 10M: Database Management

IOM software Reference Manual Version 1.6 Britton-Lee Inc.

on host computer

3.5.1.1. Types of Hosts Using Authentication System

The method of user authentication is determined by the
host type and the "login" relation on the IOM. There are
four basic host types:

1. Trustworthy host with user numbers
(examples:VAX/VMS, VAX/UNIX)

2. Trustworthy host with user names
(example:VM/CMS)

3. Untrustworthy host with user numbers
(unlikely to be used by anyone)

4. Untrustworthy host with user names
(example:IBM PC, Ethernet based hosts
with standard driver)

The IOM protection system requires knowing the hid and huid
for every user. Accounting of user dbp usage in the
"account" relation of the "system" database also uses the
hid and huid to identify every user. Host types 1 and 3
provide the hid and huid directly. For other host types,
the huname must be translated to an huid. The "login" rela
tion in the IOM's "system" database provides this transla
tion. The "login" relation has the following attributes

login (type, hid, huid, huname, password, class)

This relation is used to

1. translate hid, huname pair into huid
(for host types 2 or 4)

2. verify passwords
(for host types 3 or 4)

3. provide password protection
(optional check for host types 1 or 2)

3.5.!.!.!. Trustworthy Host~ with User Numbers

If the host computer is trustworthy and provides the
IOM with the user's huid, no entry is required in the 10g1n
relation. If an entry is present, the user must match the
specified password. The optional login entry gives the user
additional protection. Someone must know the user's host
password and the user's IOM password to use the IOM.

The BLI parallel and serial drivers for VAX/VMS and
VAX/UNIX use this technique. Either VMS or UNIX authenti
cates the user and identifies the user with a 4 byte number.
The IDM "trusts" the number supplied by VMS or UNIX.

3.5.1.1.2. Trustworthy Hosts with User Names

If the host computer is trustworthy and securely pro
vides the IDM with the user's name, the IDM will look for an

IDM: Oatabase Management Updated March 1984 3 - 13

IDM Software Reference Manual Version 1.6 Britton-Lee Inc.

entry in the login relation which matches the given hid and
huname. In this environment, an entry must be present in
the login relation for the user to use the 10M. The pass
word here, is completely optional. If it is present in the
login relation, the user must supply a matching password.

The BLI block multiplexor driver uses this technique
for VM/CMS. Users are identified on CMS by name. The
driver securely passes that name to the 10M. The 10M
"trusts" that the name is correct and cannot be forged.

If a host sends trustworthy hunames and the login rela
tion is empty, any user from this host will be assigned an
huid of O. This simplifies installing the 10M, and is use
ful in development environments.

3.5.1.1.3.

If the host is untrustworthy, the user must supply a
password which matches an entry in the login relation. The
host supplies an hid and huid but the 10M will not trust the
correctness of those numbers. The login relation is
searched for an entry with a matching hid and huid. If no
entry is found or if the user does not provide a matching
password, no access to the IDM is allowed.

3.5.1.1.4. untrustworthy Host~ ~ith User Name~

If the host is untrustworthy, the user of the 10M must
provide a name and password. The host still provides the
hid. An entry must be found in the login relation with a
matching hid, huname and password.

This environment is typical of personal computers and
work stations. The host is untrustworthy because the user
can directly program the interface to the IDM.

3.5.1.2. Configurin~ ~~sts to S£eci.fy TyP! of Authentica
tion- -

Hosts can be marked as sending trustworthy or
untrustworthy huids or hunames in the configure relation of
the system database. Hosts can be marked as sending
untrustworthy huids by setting bit 11 (octal 04000) in the
value field for parallel, serial, blkmux and especially Eth
ernet channels (type = "P", "S", "B", or "E"). This would
be required for host type 3 and 4. Although host type 4
normally sends an huname, if no huname were sent, the huid
would be used for the login authentication. This value
would also be untrustworthy and so host type 4 should also
be configured as sending untrustworthy huids. Hosts are
assumed to send trustworthy huids by default.

Hosts can be marked as sending trustworthy hunames by
setting bit 10 (octal 02000) in the value field. This would
be required for host type 2, such as a VM/CMS system.

3 - 14 Updated March 1984 IDM: Database Management

10M Software Reference Manual Version 1.6 Britton-Lee Inc.

Hunames are untrustworthy by default.

3.5.1.3. Login Relation

The login relation maps an hid/huname into an hid/huid
and it provides passwords. It is a system relation which
exists only in the system database. Only the DBA of the
system database can access this relation. The DBA is respon
sible for appending tuples for all users requiring login
tuples (generally all users from hosts not sending a
trustworthy huid). This relation is initially empty. In
the typical environment, the DBA can provide a stored com
mand which allows a user to change his own password. The
"type", "hid", "huld", "huname" and "class" fields can be
made readable if desired. The definition of the login rela
tion is as follows:

login (type, hid, huid, huname, password, class)

type - determines whether the tuple applies only to
trustworthy hosts, all host, or is disabled.
"T" - untrustworthy hosts will not be allowed

access for login tuples with this type.
"N" - no host will be allowed access for login

tuples with this type. This is a way of
disabling an account without deleting
the tuple.

"A" or " " - any host can match this tuple.
If the type field is anything else, it is
assumed the same as "N".

hid - this matches the hid supplied by the host. A
value of -1 is a "wild card" and will match
any hid if there is no exact match.

huid - this matches the huid supplied by the host for
host types 1 and 3. If the login is by name,
this becomes the assigned huid for the user.

huname - this matches the huname for host types 2
and 4. A value of "guest" will match any
huname from a given host if there is no exact
match. If the login is by number (host types
1 and 3), this attribute is ignored.

password - this is the password which the user must
match for host types 3 and 4. If the pass
word is assigned the value "" (empty string),
it means no password is present. For host
types 3 and 4, the password must be present
and the user must match it. For host types
1 and 2, the password is optional. If it is
present, the user must match it.

10M: Database Management Updated March 1984 3 - 15

10M Software Reference Manual Version 1.6 Britton-Lee Inc.

class

3.5.1.4.

3.5.1.4.1.

- This attribute is available for the DBA to
use as desired. The rDM ignores its value.
The attribute could be used to hold additional
information about the user or it could be used
to note the "lifetime" of the account. For ex
ample, it might the show the expiration date
of the account. The DBA can then run a REPLACE
command to set the type attribute to "N"
(disabled) based on examining the value
in the class attribute.

Sending Identification to the IDM

Sendin~ ~ Host User Id

The huid is sent to the 10M in the "host communications
packet" (see section 6.3.1 "Communications Packets and Data
Packets"). This packet is normally trustworthy since it is
usually sent by the host operating system and cannot be
specified by the user. In an Ethernet environment it may be
possible for a user process to send its own huid (and hid) ,
so the login identification from any host communicating over
an Ethernet could be untrustworthy. By default, huids are
considered trustworthy, as described above in the configura
tion section.

3.5.1.4.2. Sending ~ Host User Name

The huname is sent in the same data packet as the first
open database command sent by any user process (see section
4.4 "Example of Flow of Control" and section 6.3.1). This
is the open database command sent for DBIN = O. A DBIN of 0
is sent when a user process is first created on the IDM.
The 10M creates a new DBIN (not = 0), which is returned to
the host for use with succeeding commands from the same user
process. The huname is sent before this open database com
mand. The HUNAME token is sent followed by the length of the
huname and then the huname. If more than one huname is sent
before the first open database command, the 10M accepts only
the first one sent. Hunames may only be sent with the first
open database command for a user process on the 10M (DBIN =
0) •

If an huname is sent, it overrides whatever huid was
sent in the "host communications packet". If the host
operating system normally sends an huname and is able to
validate this huname, it can be considered trustworthy. If
the host operating system does not normally send a validated
huname, any huname sent should be considered untrustworthy,
since any huname sent will override the huid. By default,
hunames are considered untrustworthy, as described above.

3 - 16 Updated March 1984 10M: Database Management

10M Software Reference Manual Version 1.6 Britton-Lee Inc.

3.5.1.4.3. Sending ~ passwo~~ ~~ the 10M
Passwords can be sent to the 10M in the same data

packet as the first open database command sent by any user
process (see section 4.4 and section 6.3.1). This is indi
cated by the PASSWORO token. It is followed by the length
of the password and then the password. The password is sent
before this open database command. Passwords may only be
sent with the first open database command for a user process
on the 10M (OBIN = 0).

3.5.1.4.4. Changing ~ Password

A password may be changed by updating the login rela
tion in the system database or by using the "new password"
command to dbin 0 (see section 7.5.29A). This command is
only valid to dbin 0 and must follow a valid huname and
password. It is not possible to change the "guest" login
tuple password with this command.

3.5.1.5. Valid Types fo£ ~~9in Tuples
Users sending trustworthy or untrustworthy log ins must

have a type of "A" (all) or blank (uninitialized) in their
login tuple. Users sending trustworthy logins may also have
no login tuple at all or may have a type of "T" (trustworthy
only) in their login tuple. A type "T" means the account
may only be accessed if the login is trustworthy. This can
increase security for users sending trustworthy login ids.

The OBA may turn off a user's account by setting the
type of a user's login tuple to an invalid value such as "N"
(no access). This prevents the user from logging onto the
10M.

3.5.1.6. Matchin~ Login Tuples
When sending login identification to the IDM, the login

relation is first searched for an exactly matching login
tuple, matching either by hid and huname if an huname is
sent, or by hid and huid if not.

If no exact match is found, the login relation is
searched for a tuple with the same huid or huname and an hid
of -1. A login tuple with an hid of -1 may be convenient if
the user has accounts on many similar hosts, all with the
same huid or huname. This avoids having a login tuple for
the user's account on every host.

For users sending an huname, if neither an exact match
nor a matching login tuple with an hid of -1 is found, there
may be a guest tuple in the login relation with the huname
"guest" and a matching hid or hid of -1. If present, this
tuple matches all unknown users from a given host or all
hosts.

10M: Database Management Updated March 1984 3 - 17

1DM Software Reference Manual Version 1.6 Britton-Lee Inc.

For any of the above matching tuples, the login tuple
and the login id sent from the host must meet the require
ments of a valid password and type, as described above; oth
erwise the user is denied access to the 10M.

3.5.1.7. Error ~essage Retu£~~~ ~ Authentication System

Whenever users are denied access to the IDM, the mes
sage "Permission Denied" is returned for the database they
were trying to open at the time. If users do not send a
valid login id, they will get the message even if the data
base does not exist.

3.5.1.8. Over~iding the Login Sy~~~~

The system DBA may override the protection mechanism of
the 10M login system by turning the switch to maintenance
mode and sending set 14 before the first open database com
mand (see "Getting Out of Trouble" below). This allows the
system DBA to configure any host as sending trustworthy
hunames or to insert, delete or replace any tuples in the
login relation. Hosts sending trustworthy hunames will need
to use this feature when installing the 10M.

3.5.2. Protection For Individual Databases -- -------
3.5.2.1. Database Cr~ation and O~~~rship

Database creation is controlled by the DBA of the SyS
TEM database. To create a database, you must either (1) be
the DBA of the SYSTEM database or (2) be granted permission
to create a database by the DBA. In either case, the "crea
tor" of the database is the only one who can destroy the
database. The creator of the database is also made the
default DBA of the newly created database. The DBA of a
database is the owner of the system relations.

Every database in the 10M is independent and has its
own protection system. If, for example, user 2 created a
database called "demo", three events would happen:

1. An entry would be placed in the "databases"
relation

2. The database would be created
3. The "host users" relation in "demo" would be

initialized

The entry in the "databases" relation would show that user 2
in the "system" database is the owner of the database. In
addition, the DBA of "demo" would be any user in "demo" with
uid 2. 'T'he "host users" relation in "demo" would have one
tuple with

hid \huid \uid

12\ 2

3 - 18 Updated March 1984 10M: Database Management

IDM Software Reference Manual Version 1.6 Britton-Lee Inc.

1---------------------------1
To enable another user to be the DBA of "demo", a tuple is
appended to "host_users", for example,

append host_users(hid=1,huid=10,uid=2)

would let user 10 on host 1 also become the DBA of "demo".

A "host users" relation exists in every database. It
identifies who can use the database and their user identifi
cation, for example:

open system
range of h is host_users
retrieve (h.hid,h.huid,h.uid)
go

hid Ihuid luid

1
1
1.

10
12
20

1
2
1

In this example, there are three users allowed to use the
database. Users 10 and 20 on host 1 are assigned IDM user
id 1 in the database. User 12 on host 1 is assigned IDM
user id 2. This relation allows many users on the same or
different hosts to be the same logical user in a particular
database in the TDM.

3.5.2.1.1. Helpfu~ f!ints
The IDM has two built-in functions which give the DBA

and current user id, for example:

retrieve (administrator = dba, user = userid)

"Dba" returns the id of the DBA of the current database.
"Userid" returns your id in the current database.

After the IDM is initially formatted, the SYSTEM data
base is created and is left unprotected, that is, everyone
is the DBA. This changes as soon as a tuple is appended to
"host users". If you are initially setting up an IOM and
are not sure what your "hid" and "huid" are, you can use the
"dbinstat" relation to find out. Run the command:

open system
range of d is dbinstat
retrieve (d.hid,d.huid)
where d.dbin > 1
go

If you are the only user on the IOM, the tuple returned will
show you what your host told the IDM your "hid" and "huid"
are.

3 - 18.1 Updated March 1984 IDM: Database Management

IDM Software Reference Manual Version 1.6 Britton-Lee Inc.

3.5.2.1.2. Effects of LOAD DATABASE - - - - - _. _. ----
The IDM allows whole databases to be dumped and

reloaded. ~he IDM guarantees that the owner of a database
is always the DBA of the database after a LOAD DATABASE is
completed. It does this by appending a tuple to the
"host users" relation with the hid, and huid of the database
owner- and the ~id of the DBA. This is necessary since the
owner of the database may not be the DBA of the database
being loaded. This can happen, for example, iE a ~ser tries
to load someone e1se~s database or a database from another
TDM system. The owner of the database does not change.

1.2.~.1.1. Getting out o~ Tr~uble

It is possible for the DBA of a database to acciden
tally change the host users relation such that no one is the
DBA. This problem ca~ be corrected with help from the DBA
of the system database. The DBA of the system database can
override the normal protection system with command-option
14. with this option set, the DB.~ of the system database
can become the DBA of any database. For example,

open system go
set 14
open demo go

The user is now the DBA of "demo". As the DBA, (s)he can
now fix up the host users relation. Note that commanc]
option 14 only has effect if it is used in the system data
base by the nBA of the system database. It is silently
ignored in all other cases.

If the system database is inaccessible, the lDM can be
brought up in "maintenance" mode and command-option 14 can
be llsed to open the system database. Users of hosts sending
hunames will need to use this feature when installing the
lDM. For example:

1. turn lDM to MAlNT
2. in response to the line "lDM 500/<n> Filename:"

type "kernal" on the console
3. when the lDM comes up ente}~ the following commands

from a host:
me

set 14
open system
go

4. change "host users" or "login" relations,
or both, as required

5. turn lOM to RUN

3.5.2.2.

The protection of relations, vi ws, files, and stored
commands is communicated to the lDM with permit and deny

3 - 18.2 Updated March 1984 lDM: Database Management

IDM Software Reference Manual Version 1.6 Britton-Lee Inc.

commands. A typical protection command is:

permit read of parts to george

The above command gives the user "george" permission to read
the relation or file "parts". The permission is given by
user name. This is the name in the "users" relation. It is
not necessarily the same as the huname which the host ~om
puter may send to identify the user and which is used in the
login relation of the system database. For each command
that it processes, the IDM checks to be certain that the
user who issued the command has the right to do so. For
instance, if "george" accesses the relation "parts", the
permissions for "parts" are checked to se@ if "ge~(ge" has
read permission for "parts".

However, when a command is sent to the IDM, the name of
the user issuing the command is not necessariiy supplied by
the host system. Instead, the following identification 1S
provided: a host ID (hid), which uniquely identifies to the
IDM the host from which the command is issued, and either a
user identification number (huid) or name (huname) which the
host assigned to the user issuing the command. If the host
computer sends an huname, the IDM authentication system maps
tht~ h~li1atne and hid into an huid when the user sends the
first command to the IDM. This is done using the login
relation in the system database. For every command sent to
the IDM, the hid and huid are available so the protection
system can check the user~s permission for that command.

To illustrate the host ID, let us assume that there dre
thcee hosts attached to an IDi~: 'A, B, and C. When the IDM
is turned on and each host establishes the first communica
tion, each gives the rnM its hid: let us say A~s hid is 124,
B~S is 312, and C~s is 515. The value chosen by the host
system programmers as the hid does not matter to the IDM, as
long as the hid is unique across all hosts attached to that
IDM and as long as it is less than 32767 (fits in a 2-byte
integer) .

To illustrate the host user ID and host user name, let
us assume that "george" has accounts on all three machines:
on ~ he has huid 1212, on R he has huid 25, and on C, which
we will say identifies users by name, he has huname "king
george". Now, when he is on machine C and issues his first
command to the IDM, the command is sent to the IDM with the
hid/huname pair 5l5/"kinggeorge". For each command he
sends, the 10M must associate that pair correctly with the
protection associated with the user "george". This is done
with three relations: the "login" relation, which maps every
hid/huname pair to an huid (and is used for password check
ing if required): the "host users" relation, which maps each
hid/huid pair to the proper-uid: and the "users" relation,
which relates the user name "george" (and other information
about a user) with the unique uid for this user. The

3 - 18.3 Updated March 1984 10M: Database Management

1~~ Software Reference Manual Version 1.6 Britton-Lee Inc.

"login" relation is a system relation which exists only in
the system database (see Authentication above). The
"host users" and "users" relations are system relations, and
are present in each database.

host users (sl, hid, huid, uid)
users (stat, id, name, gid, passwd)

For the system database, "users" and "host users" are
initially empty. ~his means that anyone who opens the data
base will be the DBA. The first person opening the system
database should be careful to add a tuple to "host users" to
make them the DBA. -

For user databases, "host users" is initialized so that
the creator of the database-is the DBA for that database.
The "users" relation is initially empty.

The nB.~ must fill in the "host users" relation, supply
ing the host ID and host user ID f~r each user, and assign
ing the uid. Only users with a tuple in the "host users"
relation will be allowed to open that database. rrhe "'users"
relation must also be updated, filling in the applicable
information.

Continuing the example of "george", to allow him to
communicate with the IDM from the C host, the following
update must be made to the login relation in the system
database:

append to login (hid = 515,
huname = "kinggeorge",
huid = 464)

This single tuple is required only for "george's" account on
the C host, which sends hunames to identify users. This
tuple maps the huname "kinggeorge" on the C host (hid 515),
to the huid 464. The huid 464 is not used in communicating
with the host computer. No entry is required for his
accounts on the other hosts, which send huids rather than
hunames. ~he DBA of the system database is responsible for
maintaining the "login" relation.

To allow "george" access to any given database, the
following updates must be made to the "host users" relation
for that database:

3 - 18.4 Updated March 1984 IDM: Database Management

IDM Software Reference Manual Version 1.6 Britton-Lee Inc.

append to host users (hid = 124,
huid = 1212,
uid = 7)

append to host users (hid = 312,
huid = 25,
uid = 7)

append to host users (hid = SIS,
huid = 464,
uid = 7)

A record must be entered in the "host users" relation for
each different hid/huid pair that correspond to the same
user. The uid is chosen by the DBA, and uniquely
corresponds to the user. The huid for the user~s account on
any host sending hunames must match the value in the "login"
relation for that user. Here, the huid must be 464 for the
host with hid SIS (the C host).

The "users" relation maps between the "name" and the
internally-used uid. The DBA also is responsible for main
taining the "users" relation:

append to users (id = 7,
name = "george",
gid = 10,
status = 1)

append to users (id = 10,
name = "clerks",
gid = 10)

The first command gives to user number 7 the name "george"
and places him in group 10. The second command gives group
10 the name "clerks". A person can belong to only one
group.

The IDM uses the "name" attribute to identify the uids
of the users specified in the protection commands. To grant
permission to an individual (or group), that individual (or
group) must have a name, and therefore must have a tuple in
the "users" relation.

l.~.~.~.l. Special Cases
The DBA should NOT use zero (0)

gids. These values are reserved for
granted to all users. A tuple may be
relation to indicate this:

append to users (id = 0,

for either uids or
indicating permissions
placed in the "users"

name = "EVERYONE",
.gid = 0)

Sometimes the DBA wishes to allow anyone to access a
database. This can be done by adding a "guest tuple" to
"host users". If the DBA places in "host users" a tuple

3 - 18.5 Updated March 1984 IDM: Database Management

TDM Software Reference Manual Version 1.6 Britton-Lee Inc.

with hid = -1 and huid = 0, then that is a "guest tuple":

append to host users (hid = -1,
huid = 0,
uid = 100)

Anyone may now open the database. If someone who does not
ha~e another tuple in "host users", tries to open this data
base, (s)he will become (in-this example) user 100. User
100 can be given a name:

append to host users (id = 100,
- name = "ANYONE",

gid = 10)

and granted permissions, just like any other user.

If there are no tuples in "host users", then anyone can
open that database, and (s)he will be the DBA. This is the
initial condition of the system database. It can be gen
erated in any database, if the DBA deletes all the tuples in
"host users".

3.5.2.3. Granting permis~~~ns
There are two protection commands: permit and deny.

The types of protection are read, write, and execute. Refa
tions, views, specific attributes of relations and views,
files and stored commands can be protected. An example of a
f>erm~~ command is:

permit read of parts to george

Now the user "george" is allowed to read the entire relation
"parts".

deny write of parts (cost) to george

The above command denies "george" the ability to change the
"cost" attribute in the "parts" relation.

Groups are used to specify sets of users who have the
same access rights. To use a group instead of an individual
in any of the protection co~~ands, the group ~ is speci
fied instead of the user name. For instance,

permit read of employee (salary) to clerks
The above command allows all the clerks to read the salary
attribute of the relation "employee".

The order of protection commands is important. If no
protections are issued for a relation it has protections
equivalf-~nt to:

deny all RELNAME to all
permi t all on RELNAME to REIJOWNER

In the above commands, "RELOWNER" is the user who created
the relation "RELNAME". If the owner now issues:

3 - 18.6 Updated March 1984 IOM: Database Management

10M Software Reference Manual Version 1.6 Britton-Lee Inc.

deny wri te of RELN.~\1E to all

then the owner could not write the relation. The effect of
the above three commands is the same as the following com
mand sequence:

deny all on RELNAME to all
permit read on RELNAME to RELOWNER

In addition to controlling access rights the permit and
deny statements can be used to grant rights to use the
create, create index and create database commands. Create
database may only- be grantea Trltfie-s"ystem database. For
example; the system administrator may issue the command:

permit create database to dbas

which would allow those in the "dbas" group to create data
bases.

Users other than the database administrator may grant
access to their relations, views and stored commands. Only
the database administrator can grant access to objects owned
by others and grant the use of the commands given above.

3.5.2.4. Views and Stored Commands

Views and stored commands can be used to refine the
level of protection. If the owner of a relation defines a
view on that relation, the rights granted to the view take
precedence over those of the base relation. In particular,
a user must have write permission on all attributes of a
relation to append or delete tuples. If users are granted
write permission on all attributes of an updatable view they
may append to and delete from the base relation using the
view. Stored commands written by the owner of the relations
and views they reference also take precedence over protec
tions of the objects. Never does a view or stored command
Wilich references objects owned by others affect the protec
tions of those objects. The access rights to referenced
objects are rechecked when such a view or stored command is
accessed.

3.6. Performance Improvemen~ ~~~e~~~
There are three areas for performance tuning the 10M:

1) creating or re-creating indices
2) assigning databases to separate disks
3) dcljlJsting 10M hardware configuration

3.6.1. Create Index

An index is a directory that relates the physical loca
tion of each tuple of a relation to the value of an attri
bute or group of attributes of that tuple. The creation of
an index improves the performance of the system by providing

3 - 18.7 Updated March 1984 InM: Database Management

IDM Software Reference Manual Version 1.6 Britton-Lee Inc.

a direct access path to the data.

3 - 18.8 Updated March 1984 10M: Database Management

IDM Software Reference Manual Version 1.6 Britton-Lee Inc.

Indices are either clustered (the data is physically
sorted according to the index) or non-clustered. To create
a clustered index on the "parts" relation, the command is:

create clustered index on parts (number)

The above command causes the IDM to sort the relation
"parts" on the part number, then create a directory that
relates the part number to the physical location of the
associated part tuple. If the relation is already sorted
(clustered) on another attribute, then the command to create
an index on number is:

create nonclustered index on parts (number)

One of the parameters of the create index command is
whether the attribute or group of attributes--'to be indexed
is unique. ~ unique attribute is one for which no duplicate
values exist within that relation. The knowledge that an
attribute is unique is useful to the 10M in planning fast
command processing strategies. It is also helpful for the
users to have the IDM enforce that an attribute is unique.
There are some attributes, such as part number, that should
be unique: no duplicate part numbers should ever be allowed
into t.he relation. The command to create a unique index is:

create unique clustered index on parts (number)
or

create unique nonclustered index on parts (number)

After either of the above commands is executed, the IDM will
check to see if a duplicate attribute exists before adding a
tuple with that part number to the relation, and before
updating the part number in the relation. If a duplicate
part number exists, the 1DM will either silently delete the
part in the "parts" relation, or notify the user of the
error and abort the update. Which action is taken depends
on the command-option specified in the "command-options"
section of the command. If the index is created with the
delete-dups option, any duplicates will be "silently"
deleted and a warning message issued. See section 7 for
more detailed information.

Indices should be created when the accesses to the data
are mostly on a given key. The creation of a clustered
index causes the relation to be sorted by the value of the
index. Then if the data is mainly needed in that order, it
can be read from the disk efficiently. If the relation is
growing, addition of extra records may force the allocation
of data blocks to become less than optimal, so that retriev
ing the data in sort order is less efficient. In that case,
the index should be created again.

IDM: Database Management Updated March 1984 3 - 19

IDM Software Reference Manual Version 1.5 Britton-Lee Inc.

1.~.1.1. The Meaning and Use of Fillfactor and Skip

A fillfactor tells the IDM how full to make the blocks
of a relation when a clustered index is created on it:

create clustered index on parts (name)
with fillfactor = 50, skip = 2

The above command causes the previously created "parts"
relation to be sorted and an index created on it. The
fillfactor is 50, which means that the relation blocks are
to be filled 50% full. The fillfactor is necessary because
if the relation is initially created with completely full
blocks, random growth will tend to spread its blocks over
several cylinders, thus creating head movement when the
entire relation is read. The fillfactor reserves empty
space within the relation blocks to minimize the "growth
spread" from the random addition of data.

An additional way to reserve space is to use the "skip"
command-option. "Skip" tells the IDM how many blank blocks
to leave between data blocks.

The DBA should specify the fillfactor whenever creating
a clustered index on a relation. Creation of an existing
clustered index forces the relation to be re-sorted so
blocks are filled with data in the order specified. Using
the "with recreate" option prevents the data from being re
sorted and the fillfactor is ignored.

1.~.1.~. Setting the Index card Field

The attribute CARD in the indices relation has special
meaning IDM~s internal access path selection operations. If
the attribute is non-zero and the index is non-unique, it is
assumed to be an indication of how many tuples would qualify
on a retrieve with an equal clause on the keys defined in
the index. This is the selectivity of the index.

For example, assume a parts relation with an index on
color. (indid = 1, relid = 6042)

partno type color

I 123 A white

I 234 B white

I 542 C black

I 679 B green

I 768 B black

I 470 A yellow

3 - 20 Updated June 1983 10M: Database Management

ID M Software Reference Manual Version 1.7 Britton-Lee Inc.

441 C green

451 D green

The selectivity for the color index should be 2. The best way to set this is to find the average
of the count of distinct values in the index. In IDL this would look like:

range of i is indices
range of p is parts
replace i (card = avg (count (p.color by p.color)))

where Lrelid := 6042 and Lindid = 1 go

This also holds for indices defined on more than one key. In this case, the count by list I
should reference all the key attributes. In the above example if a second index were defined on
color and type, the IDL statement would be:

range of i is indices
range of p is parts
replace i (card = avg (count (p.color by p.color, p.type)))

where Lrelid = 6042 and Lindid = 2 go

3.6.2. Adding a Disk

Data that may be referenced concurrently can be put on separate disks to reduce disk head I
contention, and therefore reduce access time.

When the IDM first arrives at a site it is configured with at least one disk. That disk is in
IDM format, and databases can be created on it. To add new disks, the steps below are followed:

(1) The IDM is brought into "maintenance" mode by turning the key switch on the front panel to
"maint" .

(2) The new disk is plugged into the back panel.
(3) The disk formatting program is loaded from the diagnostic device, and executed. 1

3.6.3. Putting Databases on Different Disks

A database is a physical entity: it consists of at least one zone (group of cylinders) on a given
disk. The number of (2k-byte) disk blocks within a zone is variable, ----------

1 See the IDM Operation Manual (part number 201-1078) for details of the disk formatting procedure.

IDM: Database Management Updated September 1984 3-20.1

IDM Software Reference Manual Version 1.7 Britton-Lee Inc.

This page has been intentionally left blank.

3-20.2 IDM: Database Management

IDM Software Reference Manual Version 1.4 Britton-Lee Inc.

depending on the particular disk track size.

When a database is created, the logical disk name and
number of zones are specified:

create database inventory with demand = 12500 on "disk2"

The above command created the database "inventory" and allo
cated it 12500 2-K byte blocks on the disk named disk2. The
default value for the number of zones is 1; the database
will reside in the first available space if the disk name is
unspecified.

Databases should be put on separate disks to minimize
disk head movement. If the DBA is aware that two databases
will be highly active at the same time, she should allocate
them to separate disks so they will not interfere with each
other~s performance.

3.6.5. putting Relations on Different Disks
Section Removed.

3.7. Updating Views

Views have certain abnormalities when they are used as
the update variable (or relation) in a delete, replace, or
append. The following "rules" determine whether an update
is legal:

1. Aggregates in target list (delete, replace, append):
If an aggregate exists in the target list of the
view, that is, an attribute in the view is defined
as an aggregation, then the view cannot be updated.

2. Multi-variable views (delete, append): If the view
is multi-variable, then it cannot be the object of a
delete or append.

3. Multi-variable replace (replace): If a replace
statement is changing more than one attribute of the
view and the attributes involve more than one rela
tion, then the update is illegal.

4. Non-simple view attributes (replace): If an attri
bute of a view is an expression other than name =
variable, the attribute "name" cannot be updated.

5. Appends whose attributes are qualified (append): For
all practical purposes, a view cannot be the object
of an append statement. If any variable used in the
target list of the view is also used in the qualifi
cation of the view, then the view cannot be appended
to. This prevents phantom updates.

IOM: Database Management 3 - 21

IDM Software Reference Manual Version 1.4 Britton-Lee Inc.

3.7.1. View definition

A view definition looks like a "retrieve into". Th~
target list is a collection of RESATTR nodes (see Appendix
B) and the qualification and target list expressions have no
special restrictions. The tree is syntactically checked as
if it were a "retrieve into". This results in the type and
length of each RESATTR being computed.

Certain information is computed into the "view tree" in
order to speed subsequent processing. The view as a whole
and each of the target list elements are examined for upda
tability.

3.7.2. View substitution

When a command refers to a view, the view definition is
substituted for the view references. This includes (1)
appending the view qualification to the root of the query
and to the root of all aggregates which reference the view,
(2) If the view is being updated, verify that the update is
legal and replace each update attribute number with the
corresponding one in the view, (3) Every VAR node which is
used in the view is replaced by the definition.

As previously mentioned, certain checks for updatabil
ity are done when the view is stored. The policy for updat
ing views is:

A view is updatable if the result of performing the
update on the view and then materializing that view
is the same as the result of materializing the view
and then performing the update.

3.8. The Sizes of Tuples

3.8.1. Introduction

No tuple may be longer than 2000 bytes. Included
within this 2000 byte limit are some fields required for the
internal functioning of the IDM. This section shows how to
calculate the length of a tuple.

3.8.2. The Declared Width of a Relation

Once a relation is created, its declared width can be
calculated. To do this you must:

3 - 22 IDM: Database Management

10M Software Reference Manual Version 1.4 Britton-Lee Inc.

(1) Sum the width of all the attributes (using the
maximum width for compressed attributes).

(2) Add 1 for the tuple ID.
(3) Add 1 if there are any compressed attributes.
(4) Add 1 for each compressed attribute.
(5) If the total is greater than 255:

(5a) Add 1 if there are any compressed
attributes.

(5b) Add 1 for each compressed attribute.

This yields the declared width of a relation. A tuple can
never be wider than 2000 bytes, thus, only a relation with
compressed attributes can be declared wider than 2000 bytes.
Even if the relation's declared width is wider than 2000
bytes, ALL TUPLES stored in that relation must still meet
the 2000 byte limit.

~.~.~. The Length of ~ Tuple
To calculate the length of a tuple, you must know the

declared width of the relation. To calculate a tuple's
length, you must:

(1) Sum the width of all the attributes (use the
width of the data for compressed attributes,
ignore blanks)

(2) Add 1 for the tuple ID.
(3) If the declared width is less than or equal to

255:
(3a) Add 1 if there are any compressed

attributes.
(3b) Add 1 if for each compressed attribute.

(4) If the declared width is greater than 255:
(4a) Add 2 if there are any compressed

attributes.
(4b) Add 2 if for each compressed attribute.

The total must be less than or equal to 2000.

3.9. The Sizes of Indices

3.9.1. Introduction

This section describes algorithms for calculating the
size of an index. The result size is expressed in terms of
disk blocks (2048 bytes). There is an algorithm for non
clustered indices and one for clustered indices. Both are
iterative solutions. Both describe the size of an index
immediately after its creation, before updating causes any
changes to the structure of the index. Thus the results
should be regarded as minimum index sizes, since replace and
append commands will only increase the size of an index or
leave the size unchanged. Delete commands may decrease the
size of an index but are not guaranteed to do so.

IDM: Database Management 3 - 23

IDM Software Reference Manual Version 1.5 Britton-Lee Inc.

The exactness of the results of these algorithms relies
on the exactness of the attribute sizes used in the calcula
tions. If any attributes are compressed then average attri-'
bute sizes must be used; the resulting index sizes are then
approximate.

3.9.2. Clustered Indices

A clustered index tuple
a pointer to a data page.
(tuple) for each data block,
are the leaves of the index
lows:

consists of a key value(s) and
A clustered index has one index
and the data blocks themselves
tree. The algorithm is as fol-

(1) Set B[O] = the number of data blocks in the relation.

If B[O] = 1, the clustered index will occupy no space.

(2) Set W = the width of an index entry (tuple).
W must be <= 255 bytes. W is the sum of the widths of
the attributes on which the index is defined, plus 1
byte for each compressed attribute in the index, plus 3
bytes for a pointer, plus 1 byte if there are any
compressed attributes in the index.

(3) Set N = 1.
N is the index level; "1" denotes the bottom level (ig
noring the data blocks).

(4) set E = 2034 / W.
Discard any remainder after the division. E is the
number of entries per block in the index.

(5) set B[N] = B[N - 1] / E.
If there is a nonzero remainder after the division, add
1 to B[N]. B[N] is the number of index blocks at level
N of the index.

(6) If B[N] is not 1, set N = N + 1 and go back to step 5
above, otherwise the sum of all the B[N]'s for N >= 1
is the number of blocks in the index.

3.9.3. Nonclustered Indices
A nonclustered index tuple consists of a key value(s)

and a pointer to a data tuple. A nonclustered index has one
entry (tuple) for each data tuple in the relation# and the
data tuples themselves are the leaves of the index tree.
The algorithm is as follows:

3 - 24 Updated June 1983 IDM: Database Management

IDM Software Reference Manual Version 1.4 Britton-Lee Inc.

(1) Set W = the
2
width of an index entry at the leaf (bot

tom) level.

W is the sum of the widths of the attributes on which
the index is defined, plus I byte for each compressed
attribute in the index, plus 4 bytes for a pointer,
plus I byte if there are any compressed attributes in
the index.

(2) Set E = 2034 / w.

Discard any remainder after the division. E is the
number of entries per block in the leaf level of the
index.

(3) Set B[l] = (number of tuples in the relation) / E.

If there is a nonzero remainder after the division, add
1 to B[l]. B[l] is the number of index blocks at the
leaf level of the index.

(4) If B[l] = 1, the index has only one block and the pro
cedure is complete. Otherwise, proceed.

(5) Set W = W + 3. 2

Each entry is 3 bytes larger above the leaf level.

(6) Set E = 2034 / w.

Discard any remainder after the division. E is now the
number of entries per block in all levels above the
leaf level of the index.

(7) Set N = 2.

N is the index level.

(8) Se t B [N] = B [N - 1] / E.

If there is a nonzero remainder after the division, add
1 to B[N]. B[N] is the number of index blocks at level
N of the index.

2 W must be <= 255 bytes at both steps.

1DM: Database Management 3 - 25

IDM Software Reference Manual Version 1.4 Britton-Lee Inc.

(9) If B[N] is not 1, set N = N + 1 and go back to step 8
above; otherwise the sum of all the B[N]~s for N >= l'
is the number of blocks in the index.

1.10. Tape Specification

3.10.1. Functionality

A maximum of one tape controller (TPC) is allowed per
tDM. ~he TPC interfaces to a Pertec type PCC Microfor
matter. A single TPC can be connected to two microfor
matters which in turn can be connected to four transports
each. Thus, up to 8 tape transports can be controlled by
one TPC. At this time, there are at least four major com
panies building tape drives that are Pertec PCC Microfor
matter compatible. These are Control Data Corp., Pertec,
Kennedy, and Cipher Data. They all offer a variety of trad
itional and streamer type transports.

In general, the IDM Tape Controller supports industry
standard 1600 BPI, PE, 9-track tape, with the guarantee that
it can read every byte of data that anyone conforming to the
American National Standard Code for Information Interchange,
standards document 'X3.39-1973, writes on a tape. In addi
tion, 800 BPI NRZI format and 3200 BPI PE format are sup
ported, without any assurance of industry level compatibil
ity. If the user generates a tape that conforms exactly
with our format specifications, we will have no problems
reading it even if it has not been generated on an IDM. Our
tape system supports tape velocities up to 100 IPS and data
transfer speeds up to 160 kbytes per second.

The commands which can send output or receive input
from tape are:

copy in lout
dump database I transaction
load database transaction
read I write file

1.10.~. Tape command-option

To indicate to the IDM that the input or output of a
command is a tape, an OPTIONS token (41) followed by a tape
command-option token (13) should precede the ENDOFCOMMAND
token (208). The tape command-option token must be followed
by 28 bytes which are the parameters to the tape operation.
Thus the tape command-option uses 29 bytes: 1 byte for the
tape command-option token itself and 28 bytes for the param
eters to the tape command. The parameters are:

3 - 26 IDM: Database Management

1DM Software Reference Manual Version 1.6 Britton-Lee Inc.

transport number
this parameter is ignored
file number
mode
old name of tape
new name of tape

(1 byte)
(1 byte)
(1 byte)
(1 byte)
(12 bytes)
(12 bytes)

The allowed transport numbers are in the range 0-7. Files
on a tape are sequentially numbered starting at O. The
allowed file numbers on a write to tape are:

o overwrite tape
1 append to end of tape

Modes are specified by turning on various bits in the mode
parameter. The allowed modes are:
0001

0002

check name
The "old name" parameter should match the name on
the tape.
do not write name
If this bit is not set, the "new name" parameter
will overwrite the current name of the tape. Note
that the entire header is overwritt~n tnthat case.
If a tape has never been written before, the header
must be written and thus the bit should not be set.
If the bit is set, the header will not be overwrit
ten.

0004 erase
Protection erase of tape before overwrite.

0010 host translate for copy
If the bit is set, o~ta should be translated accord
ing to the host characteristics supplieo ~ith the
identify communication command. If the bit is not
set, no translation is performed, allowing the tape
to be copied into a host with different characteris
tics.

0100 ASCII tape bit for copy
If the host translate bit is off and this bit is
set, any character data on the tape being read (for
a copy in) will be assumed to be ASCII and will be
translated only if the data is being copied into an
EBCDIC database. For copy out, this bit specifies
that the character data on the resulting tape should
be ASCII and will be translated only if the data is
being copied out of an EBCDIC database.

0200 EBCDIC tape bit for copy
This is the EBCDIC corollary of the ASCII tape bit.
If the host translate bit is off and this bit is
set, it means, create EBCDIC tape for copy out, or
assume EBCDIC tape for copy in.

Depending on the operation, some of these parameters become
irrelevant and will therefore be ignored. The density can
be set manually on the tape drive. An example of a command
which requests input or output to tape is the following:

IDM: Database Management updated March 1984 3 - 27

This page has been intentionally left blank.

10M Software Reference Manual Version 1.6 Britton-Lee Inc.

<command>
<parse tree>
<command-option token>
29
<tape token>
<tape operation parameters>
ENOOFCOMMANO

where the <tape operation parameters> take up
Other command-options may precede or follow
command-option.

28 bytes.
the tape

IDM: Database Management Updated March 1984 3 - 27.1

IOM Software Reference Manual Version 1.5 Britton-Lee Inc.

3.10.3. Copyin and Copyout with tape

The copyin and copyout commands for use with tape, are
sent to the IOM 1n the format described in the section
above. For a copyin command, the host sends the copyin parse
tree, followed by tape command-options, followed by the
ENOOFCOMMANO token. The host then waits for the DONE struc
ture from the IOM indicating that the copyin from tape has
completed. Notice that the IOM does not expect a final
ENOOFCOMMANO from the host which normally follows the data
when copying from the host. The IOM expects to read the
data followed by an ENOOFCOMMAND from the tape.

For a copyout command, the host sends the copyout
parse tree, followed by tape command-options, followed by
the ENDOFCOMMAND token. The host then waits for the DONE
structure from the IDM indicating that the copyout to tape
has completed. The done structure that is returned to the
host is the final done that is normally received by the host
following a copy out to the host. The IOM also places this
final done structure on the tape followed by the ENDOFCOM
MAND token, which is the format expected by the copyin com
mand.

3.10.4. Configure relation

Entries in the configure relation which pertain to the
tape have the following attributes:

type "T"
number transport number (in the range 0-7)
value the two rightmost bits are ignored for the

moment. The third bit from the right is for
speed. 0 indicates low speed and 1 indicates
high speed.

1.10.~. Permission checking and validation

To read or write to tape, the user must have tape per
mission. To permit or deny use of the IOM tape the Permit
and Deny commands can be used. The modes for tape are:

mode octal code

read tape 4
write tape 10
all tape 14

The DBA of the working database (currently open) grants or
denys permissions on the IDM tape by issuing, while in the
working database: permit/deny read/write tape to <username>.

If an incorrect tape name is provided on a read or
write to a tape which had been given a name earlier, the IDM
will respond with an error and will return the correct name
of the tape. Thus, any user who has permission to use tape

3 - 28 Updated June 1983 IOM: Database Management

10M Software Reference Manual Version 1.5 Britton-Lee Inc.

is a trusted user. The name of the tape is not a password
but a protection against accidents.

~ ~ ~.--;t12t

~~/~
6uop ~rdJ('~

3 - 28.1 Updated June 1983

"'" ,
.. ~

10M: Database Management

This page has been intentionally left blank.

10M Software Reference Manual Version 1.5 Britton-Lee Inc.

3.10.6. Multiple tapes

The 10M can handle commands which have input or Qutput
which exceeds the capacity of one tape. When the 10M
encounters the end of a tape while processing a command, it
will send a DONE token to the host computer. The OONE
status word will have its DONE VOLUME bit (bit 16) set. The
10M will then wait for a response from the host. The host
should respond with a one byte transport number followed by
an ENOOFCOMMANO token. Upon receiving the response from the
host, the 10M will resume operation on the indicated tran
sport.

3.10.7. Tape Format

Tapes which are supportea oy the 1DM must have a header
block at the beginning. A header block is 8K bytes long.
The first 12 bytes contain the name of the tape and are fol
lowed by a 1 byte tape sequence number. The remaining bytes
of the header are ignored. The tape format supported by the
10M is the following:

Header block (8K bytes)
EOF
File 0
EOF

.
File n
EOF
EOF

Two consecutive EOFs indicate the logical end-of-tape. If
the physical end-of-tape is encountered on File n, the file
has to be continued on another tape. In this case the for
mat of the tapes is the following:

First Tape
Header blk (seq no 0)
EOF
File 0
EOF

File n
Header blk (seq no 0)
EOF
EOF

Second Tape
Header blk (seq no 1)
EOF
Rest of file n
EOF
EOF

The names on the first tape and the second tape should be
the same. Each file, in turn will consist of a sequence of
records. Each record will be of 8K bytes followed by an end
of record gap. Thus a file will look as follows:

IDM: Database Management Updated June 1983 3 - 29

10M Software Reference Manual Version 1.4 Britton-Lee Inc.

record 0
eor

record m
eor
EOF

All records in the file must be of 8K bytes.
record is zero padded if necessary.

3.11. BCD Data Types

3.11.1. Introduction

The last

The 10M supports both an integer and a floating point
binary coded decimal (BCD) data type. The integer BCD data
type is supported by integer arithmetic and the floating
point BCD data type is supported by decimal floating point
arithmetic in the IDM. Relational operators and conversion
functions to and from other numeric data types and character
strings are also provided. For applications involving
strictly integer decimal numbers, the host may use integer
BCD. However, for applications requiring decimal numbers
with fractional parts or, numbers with greater magnitudes
than can be supported by a fixed point integer BCD the user
is provided with floating point BCD.

Traditionally, decimal numbers have been supported on
hosts strictly as integers, if they are supported at all.
In applications where a decimal point is employed, the
application program or language compiler is required to
maintain decimal point information and to adjust results in
order to obtain meaningful data. The 10M support of decimal
floating point numbers eliminates the need for this compli
cated processing in the host and provides the host with
arithmetic capabilities that perhaps were not available pre
viously.

3.11.2. BCD Constant Format

BCD numbers are sent to the 10M in a format similar to
character strings, i.e. the BCD token is followed by the
length of the BCD string in bytes, which is followed by the
actual BCD string. Two BCD tokens exist, one for integer BCD
numbers, "BCD", and one for floating point BCD numbers,
"BCDFLT".

3 - 30 10M: Database Management

10M Software Reference Manual Version 1.4 Britton-Lee Inc.

3.11.2.1. Integer Format

section Removed.

1.ll.~.~. Integer and Floating Point Format

This format allows the user to represent both integer
and floating point BCD numbers. The "BCD" token is used to
specify that the following BCD string is an integer and that
integer arithmetic should be performed. The "BCDFLT" token
indicates that the following BCD string is a floating point
number and that floating point operations should be per
formed. In this format, the maximum string length is 17
bytes which allows for representation of 31 digits. BCD
numbers are represented in this format by a sign (S) , an
exponent (E) , and a significant digit field (I.F) such that
the BCD number X is:

S E-l024
X = (-1) * 10 * (I.F)

and is stored as:

BCD string

bit 0 1

E I I I F

12 16

S = sign bit
E = exponent, 11 bit binary integer

biased by 1024
I = leading digit
F = fractional digits packed 2 digits per byte

with a maximum of 15 bytes or 30 digits

F.xamples of this format are given below. The BCD string
itself is specified in hexadecimal and numbers followed by
"x" are hexadecimal constants.

10M: Database M nagement 3 - 31

IDM Software Reference Manual Version 1.4 Britton-Lee Inc.

NUMBER FORMAT

I token 11ength Istring.I •••

1

+123. (integer) =
2

2 3 4 5 6

1.23 * 10 S = 0 E = 2x + 400x I = Ix F = 2x 3x

BCD 3

-1234. (floating point) =
3

14: 0 12: 112: 31

-1.234 * 10 S = 1 E = 3x + 400x I = Ix F = 2x 3x 4x

I BCDFLT I 4

+12.34 (floating point) =
1

Ic: 013: 112: 314: 0 I

+1.234 * 10 S = 0 E = Ix + 400x I = Ix F = 2x 3x 4x

I BCDFLT 1 4 14: 0 11: 112: 314: 0 I

-.0006 (floating point) =
-4

-6. * 10 S = 1 E = 7FCx + 400x I = 6x

I BCDFLT I 2

+.0006 (floating point) =
-4

I B : F I C : 6 I

+6. * 10 S = 0 E = 7FCx + 400x I = 6x

1 BCDFLT I

+9000. (integer) =
3

2 13: F I C : 6 I

+9. * 10 S = 0 E = 3x + 400x I = 9x

BCD 2 14: 0 13: 91

3 - 32 IDM: Database Management

IDM Software Reference Manual Version 1.4 Britton-Lee Inc.

Numbers which contain the BCD token must
A number containing a fractional part
represented in the format as a BCD integer
regarded as an illegal operand.

be integers.
must not be
and will be

Numbers with the largest and smallest exponents are
reserved operands, i.e. numbers with biased exponent E = Ox
or E = 7FFx. ~herefore, the exponent range supported is:

-1023
10 to

1022
10

Zero may be represented as a zero length string as in the
previous format. Additionally, the biased exponent E = 0
and significant digit field 1.F = 0 is also used to
represent zero. The remaining reserved operands are
currently not accepted as legal BCD numbers and will not be
returned as results of any operation. These operands are
currently reserved for future enhancements.

E = 0
E = 7FFx
E = 7FFx

1.F <> 0
1.F = 0
1.F <> 0

1.11.1. Creating ~ BCD Attribute

Both BCD data types may be stored in the 1DM in a
compressed (variable length) form or an uncompressed (fixed
length) form. Therefore, the IDM supports four BCD data
types:

bcd variable length integer
ubcd uncompressed integer
bcdflt variable length floating point
ubcdflt uncompressed floating point

To create a relation with a BCD attribute, the user must
specify one of the above data types followed by the number
of significant decimal digits desired. For example, to
create a relation, "employees", with a variable length
floating point BCD attribute, "salary", the CREATE statement
is used as follows:

create employees (salary = bcdflt7)

which specifies a floating point BCD attribute with 7 signi
ficant digits. An uncompressed integer BCD attribute would
be specified:

create employees (salary = ubcd7)

IDM: Database Management 3 - 33

IDM Software Reference Manual Version 1.4 Britton-Lee Inc.

in which case the attribute field would contain a BCD
integer with 7 decimal digits.

Due to the storage format of the BCD data type, a BCD
number is always stored with an odd number of significant
decimal digits. The user may create a BCD attribute of even
length, n, in which case storage will be allocated for n + 1
decimal digits.

The number specified in the "create" statement has a
different meaning for the intege and the floating point BCD
data type. In the case of an integer BCD attribute, the
number specified indicates the number of decimal digits to
store, implying the range of the numbers that may be stored
in the resulting attribute. For floating point BCD, this
number specifies the number of significant digits, i.e. the
precision of the number. The range of all floating point
BCD numbers is determined by the exponent provided in the
BCD data type.

3.11.4. Arithmetic and Conversion Functions

Both integer and floating point BCD data types are
fully supported with comparison, arithmetic, and conversion
functions. The set of arithmetic operators include:

compare
add
subtract
multiply
divide
mod
negate

«, >, <=, >=, =, 1=)
(+)
(-)
(*)
(I)

(-)

Conversion is supported to and from the data types: bcd,
bcdflt, string, intI, int2, and int4. Conversion to a BCD
data type from an expression of type bcd, bcdflt, string,
intI, int2, or int4 is provided by the following functions.
Strings are used as the expression to be converted in the
examples below.

3 - 34 IDM: Database Management

IDM Software Reference Manual Version 1.4 Britton-Lee Inc.

bcd(precision, expression)
converts "expression" to a BCD integer
with a maximum of "precision" digits
e.g. bcd(5, "123") returns a BCD integer

whose value is 123

bcd(3, "12345") returns OVERFLOW

bcd(4, "1234.56") returns the
truncated integer 1234

bcdf1t(precision, expression)
,.."....""y .. ~.,.'-~ "~"'Y"\W""",,,,,: " .. n " ~, "': ,. """: ~
\",VlIV'II;;.L\..";:' 'II;;,At'.L'II;;";:''';:'..LVlI \..V Q .L...LVQL...Lll'::f to'V..LllL.

BCD number with a maximum of "precision"
significant digits, rounding the value if
necessary
e.g. bcdflt(4, "123.45") returns a floating

point BCD number whose value is
123.4:

2
1.234 * 10

bcdf1t(5, "1234567.89") returns a floating
point BCD number whose value is
1234600:

6
1.2346 * 10

bcdfixed(precision, fraction, expression)
converts "expression" to a fixed floating point
BCD number with a maximum of "precision" digits,
and a maximum of "fraction" significant fractional
digits, rounding the value if necessary
e.g. bcdfixed(5, 2, "768.534") returns a fixed

floating point BCD number whose
value is 768.53:

2
7.6853 * 10

bcdfixed(4, 3, "123.45") returns OVERFLOW

bcdfixed(8, 2, "35.478") returns a fixed
floating point BCD number whose
value is 35.48:

1
3.54800000 * 10

If the precision parameter is 0, the number of digits
required to store the converted expression is used. In
addition, the functions "bcd" and "bcdf1t" can be preceeding
by "fixed" to indicate that the "precision" parameter

IDM: Database Management 3 - 35

IDM Roftware Reference Manual Version 1.4 Britton-Lee Inc.

specifies the exact number of digits to be generated. The
number is padded with zeros to the right of the decimal
point to accommodate the field. It does not affect the
arithmetic routines.

Conversion from the BCD data types is supported by the
various other data type conversion functions:

string(length, expression)
intl(expression)
int2(expression)
int4(expression)

where:
expression = a BCD data type

The user may use the bcd, bcdflt, and bcdfixed conversion
routines to convert from character strings to the BCD data
type, as well as to convert from one BCD precision format to
another. The precision parameter always indicates the "max
imum" number of digits required and the resulting BCD
number will only be padded to support the maximum number if
the "fixed" option is specified.

3.11.5. Rounding and Exception Handling

The rounding performed for conversion and arithmetic
operations guarantees that a single rounding error produces
a result that is within half of a unit in the last digit
from the exact result. This ensures that the result produced
is the closest number representable in the format to the
exact result. In the case of a tie, the even number is
chosen.

The following exceptions are detected during BCD arith
metic operations:

3 - 36 IDM: Database Management

IDM Software Reference Manual Version 1.4 Britton-Lee Inc.

overflow - integer

overflow - floating

underflow - floating

divide by zero

inexact - floating

badbcd

number of digits in
result exceeds the maximum
BCD field or specified precision -
defaults on/returns largest integer
with appropriate sign

result exceeds exponent range
for floating point BCD -
defaults on/returns largest
floating point number with
appropriate sign

exponent of result is smaller
than smallest floating
point BCD exponent -
defaults on/returns 0

division operation occurred
with divisor zero -
defaults on/returns largest
integer or floating point
number with appropriate sign

rounding error occurred meaning
a loss of significant digits -
defaults off/returns correctly
rounded result

an illegal BCD representation
was sent -
defaults on/returns 0

The user may reverse these defaults by specifying the
appropriate options in query control. If the option is set,
the exception will cause the IDM to stop processing and
return the error status. If it is not set, the exception
will be ignored and processing will continue with the
default value specified in the table above. Care should be
taken in ignoring the "inexact" exception. If the user
does not specify a sufficient number of significant digits
to contain a result, any loss of significant digits (provid
ing the exponent of the number is still within range) will
result in a rounding error or "inexact" exception. This
includes digits in the integer part of the number.

3.12. EBCDIC Support

It is possible to use the IDM with host computers which
use EBCDIC character representation. The IDM uses ASCII
representation internally. For EBCDIC hosts, the IDM will
translate all character data communications from EBCDIC to

IDM: Database Management 3 - 37

IOM Software Reference Manual Version 1.6 Britton-Lee Inc.

ASCII on the way in, and from ASCII to EBCDIC on the way
out. Examples of commands which communicate character data
are retrieves, appends and copy in and out. The dump, load,
file read and write commands send and receive physical data,
hence no translation is done for these commands.

When ASCII character data is sorted on the IDM, the
ordering will be the normal ASCII sort order. This ordering
has digits first, then upper case letters, then lower case
letters.

To use an EBCDIC host, the user must specify in the
host identify packet that the character representation is
EBCDIC (see chapter 6). Also, the host representation of
pattern matching characters must be as follows:

pattern matching character
*
?
[
)

EBCDIC host
0334
0335
0336
0337

ASCII host
0200
0201
0202
0203

For host computers that use the EBCDIC character set,
user databases (other than the system database) may be
created so that characters are stored internally using the
EBCDIC character representation. This will improve perfor
mance by avoiding the translation step between the IDM and
the host. It will also mean that character data sorted on
the IDM will be in the same order as on the host. This nor
mal EBCDIC ordering has lower case letters first, then upper
case letters, then digits. ASCII hosts can access EBCDIC
databases. Character data will be translated appropriately
when going between the host an~ the IDM.

To create a database that uses the EBCDIC character
set, the BBCDIC with node option (value 14) can be sent with
the create database command. Databases may be explicitly
specified as being ASCII by sending the ASCII with node op
tion (value 13). By default, databases will be created to
use the ASCII character set. To change this default so that
databases are created to use the EBCDIC character set
(without having to send an EBCDIC with node option), a tuple
may be appended to the configure relation of the system da
tabase with a type of "0" and a value of 1. A value of 0
wi.th this type, or no configure tuple with type = "0" means
create ASCII databases by default.

The stat field of the databases relation of the system
database indicates the character representation of the data
base. The second bit (value 2) is set if the database lS
E~CnIC and clear for ASCII databases.

Dumping and loading databases do not translate charac
ter data. If an ASCII database is loaded into a database

3 - 38 Updated March 1984 10M: Database Management

IDM Software Reference Manual Version 1.6 Britton-Lee Inc.

that was EBCDIC, the type of the database will be ASCII.

3 - 38.1 Updated March 1984 IDM: Database Management

This page has been intentionally left blank.

10M Software Reference Manual Version 1.4 Britton-Lee Inc.

ASCII to IBM EBCDIC:
using the ascii bit pattern as an index into the array,
the value is the corresponding ebcdic bit pattern.

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 0 1 2 3 37 2d 2e 2f 16 5 25 b c d e f
10 10 11 12 13 3c 3d 32 26 18 19 3f 27 lc Id Ie If
20 40 Sa 7f 7b 5b 6c 50 7d 4d 5d 5c 4e 6b 60 4b 61
30 fO fl f2 f3 f4 f5 f6 f7 f8 f9 7a 5e 4c 7e 6e 6f
40 7c cl c2 c3 c4 c5 c6 c7 c8 c9 dl d2 d3 d4 d5 d6
50 d7 d8 d9 e2 e3 e4 e5 e6 e7 e8 e9 ad eO bd Sf 6d
60 79 81 82 83 84 85 86 87 88 89 91 92 93 94 95 96
70 97 1"\1"\ 1"\1"\ a2 -~

_ A
_r" -, -"" _n _n _n A~ .:In -, ..,

::10 '1::1 a.l a't a::> aO ell aO (1:1 ~u 'tJ. UU ClJ. I

80 dc dd de df 24 15 6 17 28 29 2a 2b 2c 9 a Ib
90 30 31 la 33 34 35 36 8 38 39 3a 3b 4 14 3e el
aO 41 42 43 44 45 46 47 48 49 51 52 53 54 55 56 57
bO 58 59 62 63 64 65 66 67 68 69 70 71 72 73 74 75
cO 76 77 78 80 8a 8b 8c 8d 8e 8f 90 9a 9b 9c 9d ge
dO 9f aO aa ab ac 4a ae af bO b1 b2 b3 b4 b5 b6 b7
eO b8 b9 ba bb bc 6a be bf ca cb cc cd ce cf da db
fO 20 21 22 23 ea eb ec ed ee ef fa fb fc fd fe ff

IBM EBCDIC to ASCII:
Using the ebcdic bit pattern as an index into the array,
the value is the corresponding ascii bit pattern.

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 0 1 2 3 9c 9 86 7f 97 8d 8e b c d e f
10 10 11 12 13 9d 85 8 87 18 19 92 8f 1c Id Ie If
20 fO f1 f2 f3 84 a 17 Ib 88 89 8a 8b 8c 5 6 7
30 90 91 16 93 94 95 96 4 98 99 9a 9b 14 15 ge la
40 20 aO al a2 a3 a4 as a6 a7 a8 d5 2e 3c 28 2b 7c
50 26 a9 aa ab ac ad ae af bO b1 21 24 2a 29 3b 5e
60 2d 2f b2 b3 b4 b5 b6 b7 b8 b9 e5 2c 25 Sf 3e 3f
70 ba bb bc bd be bf cO c1 c2 60 3a 23 40 27 3d 22
80 c3 61 62 63 64 65 66 67 68 69 c4 c5 c6 c7 c8 c9
90 ca 6a 6b 6c 6d 6e 6f 70 71 72 cb cc cd ce cf dO
aO dl 7e 73 74 75 76 77 78 79 7a d2 d3 d4 5b d6 d7
bO d8 d9 da db dc dd de df eO el e2 e3 e4 5d e6 e7
cO 7b 41 42 43 44 45 46 47 48 49 e8 e9 ea eb ec ed
dO 7d 4a 4b 4c 4d 4e 4f 50 51 52 ee ef 80 81 82 83
eO 5c 9f 53 54 55 56 57 58 59 Sa f4 f5 f6 f7 f8 f9
fO 30 31 32 33 34 35 36 37 38 39 fa fb fc fd fe ff

3.13. Safepoints and checkpoints

The 10M defaults to "checkpointing" all active data
bases every ten minutes. The default can be changed by

10M: Database Management 3 - 39

IOM Software Reference Manual Version 1.6 Britton-Lee Inc.

specifying the checkpoint in the "configure" relation. Por
example, to checkpoint every five minutes:

open system
append configure (type = ItCH, value = 5)

Type "c" specifies "checkpoint". The value is the time in
minutes between checkpoints. A count of zero turns off
checkpoin ting • If no blple is present wi th type "C", then a
default of ten minutes is used. A safepoint is a checkpoint
which occurs when no transactions are any longer active on a
database.

3.14. Perfo~m~!lc~ MO!,!i t<?r. ~I!~

Two relations, "monitor" and "devmonitor", are included
in the "system" database for reporting performance informa
tion. All times measured in these relations are in six
t U~ ths of seconds. The updating of these relations is en
abled through the "conf igure" relation.

To enable performance monitoring, append a tuple with
type "M" to the configure relation of the system database.
The value field specifies the number of minutes in the !Roni
toring interval. A value of zero (0), or no configure tuple
wi.th type "M", turns monitoring off.

If monitoring is enabled, every monitoring interval a
tuple is appended to the monitor relation, and a tuple for
each peripheral device is appended to the devmonitor cela
tion. The size of the monitor relation is limited to 3 2K
blocks of disk space. This allows up to 54 tuples. When a
new tuple is appended that would cause the monitor relation
to grow beyond 3 blocks, the oldest tuple is first deleted.
The devmonitor relation is ~lso limited to 54 tuples for
each device being monitored.

3.14.1. Monitor Relation

Each tuple in the "monitor" relation contains perfor
mance information for a time interval. The date dnd time at
the end of the interval are specified in the date and time
attributes. The amount of time in the interval is contained
in the length attribute. The attribute seqno is used as
link to tuples in the "devmonitor" relation.

A number of attribllt~s in the "monitor" relation are
described below. Attributes concerned with the uses of pri
mary memory and activities of active dbins are described
further on.

The attribute cpu contains the amount of time the cpu
or accelerator were-OUsy during the interval. The attribute
dac gives the amount of time the database accelerator was
busy or, in its absence, the amount of the time the cpu
spent executing logically equivalent code. ~he attribute

3 - 40 Updated March lq84 TOM: Database Management

TDM Software Reference Manual Version 1.6 Britton-Lee Inc.

idle contains the amount of time none of the cpu, accelera
tor, tape controller or (lisk GOr1trollers were busy.

The attribute deadlocks gives the number of deadlocks
that occurred during the interval.

The attribute cmnds holds the number of commands (in
teractions with t~fDM, not full transactions) that com
pleted during the interval. The attribute avgcmnd gives the
average completion time of the completed commands. These
times are roughly the same as the ti:nes returned using the
"set 5" option (command-option 5).

3 - 40.1 U~dated March 1984 IDM: Database Management

This page has been intentionally left blank.

IDM Software Reference Manual Version 1.4 Britton-Lee Inc.

3.14.1.1. Primary Memory Usage

The 10M requires a fixed amount'of primary memory to
hold text and data for its kernel and system dbins. The
remaining memory is used for disk page caching, dbin data
space, the dbin table, host input buffering and host output
buffering. Attributes are included in the "monitor" rela
tion to measure usage for each of these memory categories
and the penalties incurred for insufficient allocation.

If too little memory is used for anyone purpose,
bottlenecks can occur. Such bottlenecks can currently be
corrected by adding memory to the 10M, thereby lncreasing
the amount of memory for each category of usage. The 10M
makes default choices on how memory is used. In later ver
sions of the 10M it will be possible to override the
defaults and specify how memory is to be used through the
configure relation.

3.14.1.2. Oisk Page Caching

The number of disk cache hits
in the hits and reads attributes.
recorded-rn-the writes attribute.
to be written out before it can
the number of disk page writes
enlarging the cache.

3.14.1.3. Obin Oata Space

and misses are recorded
The number of writes are

Because a page may have
be replaced in the cache,

can also be reduced by

During the processing of a transaction a dbin requires
memory for its data space. The minimum number of unused
pages that are reserved for this purpose is contained in the
unmem attribute. The memloss attribute measures the amount
of time the cpu is idle while there are dbins waiting for
memory to process a command.

3.14.1.4. Dbin Table

The minimum number of dbins that were unused during the
interval is recorded in the undbin attribute. The number of
times that a dbin could not be allocated for lack of a dbin
table entry is given in the dbinfails attribute.

3.14.1.5. Host Input Buffering

The minimum amount of unused host input buffering (in
bytes) is given in the unin attribute. The amount of idle
cpu time while the kernel cannot accept host input from a
channel is given in the indelay attribute.

3.14.1.6. Host Output Buffering

When the number of output buffers for a process reaches
a predetermined number, the process gives up the cpu until
the output buffer count falls below an acceptable level.

TOM: Database Management 3 - 41

IDM Software Reference Manual Version 1.4 Britton-Lee Inc.

1DM processes always expect to be able to use this predeter
mined number of output buffers. If there is no output
buffer available when a process expects one, it does not
give up the cpu until one becomes available. This will pose
a serious performance deficiency if there are other active
processes since they will not run until the output space is
freed. ~he minimum amount of unused host output buffering
(in bytes) is given in the unout attribute. The amount of
time processing is suspended for lack of output buffers is
given in the outdelay attribute.

3.14.1.7. Dbin Wait Sums

While a dbin is processing a transaction, it will wait
for certain events. ~he following are a group of attributes
that are useful for determining where active dbins spend
their time. These are the sums of waiting times for all
active dbins during the interval.

The attribute inwait gives the accumulated amounts of
time that active dbins spent waiting for input from a host.

Dbins that are waiting for input but are not inside a
transaction may have their memory stolen from them if
another dbin is in need. When a dbin receives a command
from the host, if no dbin memory is available, it will have
to wait until some active dbin finishes its transaction.
The attribute memwait gives the accumulated time that dbins
spend waiting for memory.

The attribute cpuwait contains the accumulated time
that dbins spend waiting to use the cpu.

~he attribute diskwait gives the amount of time that
dbins spend waiting for disk commands to complete.

The attribute tapewait contains the amount of time that
dbins spend waiting for tape commands to complete.

The attribute outwait gives the accumulated time that
dbins spend waiting for their output to drain to a host.

~he attribute blockwait contains the amount of time
that dbins spend waiting for a data "lock" or are tem
porarily suspended for a checkpoint.

3.14.2. Devrnonitor Relation

The "devmonitor" relation tuples contain performance
information for a single device during a time interval. The
time interval for a "devmonitor" tuple may be determined by
finding the "monitor" relation tuple with the equivalent
seqno attribute. The attribute type in "devmonitor" gives
the type of device. The possible types are given below.
The attribute slot gives the IDM slot number of the device.
Attributes dl,~ d3 and d4 contain performance information
depending on-the-type of device.

3 - 42 IDM: Database Management

IDM Software Reference Manual Version 1.6 Britton-Lee Inc.

3.14.2.1. Disk Drives

Disk drives have the value "D" for the type attribute.
The slot attribute contains the slot number of the disk con
troller the disk drive is connected to. The dl attribute
cl)ntains the amount of time the drive was in use. Attribute
d2 contains the number of commands (page transfers) on the
arive. The attribute d3 contains the low block number of
the drive. To find the drive name, drive use and number of
commands for each time Inter\1al (with the date and time end
ing the interval) the query would be:

r~nge of m 19 monitor
range of dm is devrnonitor
range of d is disks
retrieve(d.name, use = dm.dl,

cmnds = dm.d2, m.date, m.time)
where dm.type = "0"
and dm.d3 = d.low
and dm.seqno = m.seqno

3.14.2.2. Disk Controllers

Disk controllprs have the value "N" for the type attri
bute. The attributes dl and d2 contain the amount of time
the controller was used and the-number of disk commands com
pleted, respectively.

IE there are simultaneous commands for two different
drives on the same GOJ1troller, it is most probable that one
of the commands will have to walt for the other. This is
because once the arm of a drive reaches the correct
cylinder, the controller dedicates itself to that drive un
til the completion of the command. To determine the amount
of time a controller has commands for two or more drives
simultaneously, subtract the use time for the controller
from the sum of the use ti.mes for the relevant dr ives. This
is done in the following query:

range of m is roon i tor
range of d is devmonitor
range of n is devmonitor
retrieve(m.date, m.time, n.slot, multiuse =

sum(d.dl by d.seqno, d.slot
where d.type = "0") - n.dl)

where n.type = "N" and n.slot = d.slot
and n.seqno = d.seqno and d.seqno = m.seqno

Controller multi-use may be (educed by adding a con
troller or rearranging drives among controller8.

IDM: Database Management Updated March 1984 3 - 43

IDM Software Reference Manual Version 1.6 Britton-Lee Inc.

l.14.~.~. ~ape Controller

The value of the type attribute for a tape controller
is "T". Attribute drcontains the (~ontroller use time for
tape reads and writes-.- Attribute d2 contains the number of
pages read or written. Attributed3 contains the use time
for commands other than reads and wrIt s.

3.14.2.4. Channels

The values of the type attribute are "s" and "P" for
serial and parallel channels respectively. Determi~ing
whether additional channels will help system performance is
a difficult problem that is not fully addressed by the moni
toring information. However, one measurement of channel
OVAr-use is included.

Channels buffer results in their local memory. If the
memory of the channel is filled with results that are not
being t'equested bi hosts and there are results from dbins
that are not in channel memory that are being requested by a
host, the channel will return some of its unrequested
results to the 10M kernel to make room Eor the requested
results. ~his process is known as aged results. The number
of such occurrences is recorded in the dl attribute.

3.14.3. ~er-dbin Measurements

The IOM will return some of the above measurements on a
per-dbin basis. The user can request these numbers by
specifying options 33-46 (see section B). The measurements
are returned after any data and before the nO~E structure.
The format of the messages is:

MEASURE n <type> xxx

where n is the option number. This is followed by one or
more values as irl an error message. The value will always
be proceeded by its type as in an error message. All times
returned are in 1/60 of a second intervals. Values may
overflow on long commands.

3.14.4. 8pecifyin~ ~~~~~~ Usage

The amount of memory the 10M uses for certain purposes
is djustable. The number of disk buffers, actively open
relations, concurrently runni.ng dbins, and the amount of
channel input and output space can be set by "K" tuples in
the configure relation. The "number" attrihute identifies
the parameter to be adjusted. The "value" field indicates
ho'-'1 the parameter should be changed.

3 - 44 Updated March 1984 10M: Database Management

TOM Software Reference Manual Version 1.6 Britton-Lee Inc.

NUMBER VALUE

1 Sets the descriptor count, the maximum number of simul
taneously open relations. Each open database requires
13 descriptors for its system relations: the system da
tabase is always open and needs 22. All dbins that ac
cess a relation share the descriptor, so the number of
active dbins is not limited by the number of descrip
tors. Each descriptor uses 40 bytes in the "descriptor
table". The default value is 128 (5K total in descrip
tor table).

2 sets the dbin count, the maximum number of simultaneous
connections to the 10M. Each dbin uses 64 bytes in the
"process table". The default value is 96 dbins for the
first megabyte of memory, 160 dbins for each megabyte
of memory beyond the first megabyte (lK in process
table per half-meg). ~he minimum is 30 dbins.

3 Sets the proportion of the free memory pool that will
be used for disk cache buffers. See "Weighted Parame
ters"

4 Sets the proportion of the free memory pool that will
be used for channel input space (queries sent to the
10M). See "Weighted Parameters"

5 Sets the proportion of the free memory pool that will
b@ used for channel output space (results returning
from the 1DM). See "Weighted Parameters"

6 Set the number of megabytes of memory to use. This
flag allows one to determine how the 1DM would respond
if it had less memory. The ~value~ field indicates how
many megabytes of memory the system will use.

3.14.5. Weighted ~~~ame~~~~

The disk cache buffers, channel input and output space,
and dbin data pages are adjustable based on a percentage of
free memory after the 10M code has been loaded and descrip
tor and process tables have been allocated. There is a
minimum allocation for each of the regions. After all the
initial requirements have been fulfilled, the remaining
memory is distributed among the different regions in the
proportions specified, or in the following default propor
tions:

1DM: Oatabase Management Updated March 1984 3 - 45

10M Software Reference Manual Version 1.6 Br it ton-T.Jee Inc.

Default Memory Usage Weighting ~ahle
==============~=~~~~================

Region Proportion Of Free
Pages Allocated

To 'I'he Region

disk cache buffers 65%
input space 4%
output space 8%

The remaining memory is dynamically allocated and used
by dbins to process qller. les and to maintain concurrency
locks. Each active dbin can require from 5 to 9 2K dbin
data pages; the exact amount of memory required d~pends on
the size and complexity of each query.

Any or all of the above weights may be set independent
ly. Thus, it is possible to increase the amount of output
space by appending the following tuple to the configure re
lation:

append configure (type="K", number=5, value=12}

The weights for buffers and input space will be un
changed. The number of process and lock pages will be re
duced by 4%.

If the sum of the user-specified percentages is more
than 95, the message

Invalid kernal tuples in configure

will appear on the console and the default parameters will
be used. This prevents accidentally setting the memory
usage so there are too few dbin data pages for the 10M to
run.

Summary Of Configurable Memory Usage

number value default minimum maximum

1 * of descriptors 128 30 descriptors 400 descriptors
2 * of dbins 1% 30 dbins 4094 dbins
3 % of buffer space 65% 20 2K pages 1000 2K pages
4 % of input space 4% 4 2K pages 40 2K pages
5 % output space 8% 8 2K pages 80 2K pages
6 * of megs to use <all mem> 1 Meg 6 Meg

3 - 46 Updated March 1984 IDM: Database Management

10M Software Reference Manual Version 1.6 Britton-Lee Inc.

3.15. Query ~rocessing Plans

3.15.1. Sending ~ plan to the 10M

When a query is executed, a plan is built by the 10M
which describes the processing order and the access path
used for each relation in the query. It is possible but not
necessary to directly influence this plan by sending infor
mation on the PLAN statement. By specifying the relation
number, an index id (or -1), and an order number, the user
can tell the 10M which index to use for the relation and the
relative order in which it should be processed. An index id
of -1 tells the 10M to use a relation scan to process the
relation. The PLAN statement for a relation must follow the
RANGE statement that describes the relation.

It is also possible to send down a partial plan (i.e.
not all the relations have corresponding PLAN statements) •
In this case, the 10M will finish constructing the plan for
those relations not mentioned in the user plan.

The user plan is validated to ensure that any indices
specified actually exist and that they are "useful". "Use
ful" means that a join or simple clause which involves that
relation, references attributes which are keys in the index.
An order number must be supplied. The order number is the
relative processing sequence number of the relation with
respect to other relations in the query.

For example using 10L syntax:

range of a is a with dindex=l, dorder=l
range of b is b with dindex=O, dorder=2
••••• query •••

Relation "a" will be processed first using the first
nonclustered index and then relation "b" will be accessed
via the clustered index.

range of c is c
range of a is a with dindex=3, dorder=lO
range of b is b with dorder=2
range of d is d
•.••• query •••

Relation "b" will be processed first using a relation
scan (an index id of -1 was generated by the parser). Rela
tion "a" is second in the processing sequence and it will·be
accessed via the nonclustered index with id = 3. Relations
"c" and "d" have no user plans, so the 10M will select the
access paths and the processing order for these two rela
tions.

10M: Oatabase Management Updated March 1984 3 - 47

IDM Software Reference Manual Version 1.6 Britt n-Lee Inc.

The plan information is stored in the range table entry
for each relation. Stored commands can also have user
plans, however, there are no dependencies stored for the in
dices that are referenced. If an index is destroyed, the
next time that stored command is executed, the plan valida
tion routine on the IDM will generate a user error.

See section 7 under PLAN for the complete description
of the tokens that are required.

3.15.2. Displaying the Plan

Setting opti-n 60 returns informational messages about
the plan that was used to execute a query. The plan
describes the order in which relations were processed and
what index (if any) was selected as the access path to each
relation. This information is returned like the per-process
monitoring statistics. (See section 3.14.3). A MEASURE to
ken is returned followed by 60 (the option number), and 4
plan parameters.

The first parameter identifies the piece of the query.
This will either be ROOT (for the main query) or AOPxxx
(where xxx is SUM, CNT, etc) for each independent aggregate.
If aggregates were combined, only the first type in the list
is returned. Also, some aggregates automatically generate a
CNT. This CNT is always the first in the list, even if a
count was not in the query, the type on the plan will be
AOPCNT. MIN, MAX, ONCE and AVG will always generate a CNT
aggregate. See Appendix B for the actual token values.

The next parameter is the type of processing. The pos
sibilities are: no variables, one variable, tuple substitu
tion, or temp index made. For example, no variables, would
look like:

retrieve (x=l).

"Temp index made" means the relation was restricted and a
temporary clustered index was built to perform the join.

The next parameter is the relation nam -r TEMP. TEMP
is printed to indicate a temporary relation such as the
result of an aggregate function or a reference to DBINSTAT
or LOCK. Finally, the index number used is printed. 0
means the clustered index. Relation scan means no index was
used, instead a serial scan of the relation occurred.

3.16. User Accounting

IDM
The
by
the

Accounting of the DBP and DAC usage of each user of the
is done in the account relation of the system database.

account relation has a tuple for each user, identified
the host computer id (hid attribute) and the user id on
host computer (huid attribute). The usage attribute is

3 - 48 Updated March 1984 IDM: Database Management

10M Software Reference Manual Version 1.6 Britton-Lee Inc.

the number of 1/60ths of a second of OBP or OAC time for the
user. The time and date attributes represent the last time
the usage was updated. The accounting relation is updated
by the 10M when a dbin is created on the 10M, when the dbin
exits (sends a EXITIOM token), and when the time to be added
to the usage for the user exceeds one minute and the dbin is
between commands.

A system dba would periodically charge people by copy
ing the account information and decrementing the usage count
back down. For example:

range of a is account
retrieve into charge (a.all) where a.usage > 0
range of c is charge
replace a (usage = a.usage - c.usage)

where a.hid = c.hid and a.huid = c.huid

10M: Oatabase Management Updated March 1984 3 - 49

IOM Software Reference Manual Version 1.4 Britton-Lee Inc.

4. Host Programming: An Overview

This section provides an overview of the necessary pro
gramming functions in a system that hosts an IOM. The fol
lowing functions are performed by such systems:

Host Functions

1) Communicate with the users.
The host system takes the user command as it is
interactively typed at a terminal or as it appears in a
batch program.

2) Translate user commands to IOM-internal form.
This is usually a parsing function.

3) Send commands to the IOM.
IOM communication consists of reading and writing data
to/from the IOM. The protocols are defined in this
document.

4) Receive results from the IOM.
The IOM buffers results until the host requests them.

5) Format the results and display to the user.
Formatting information is provided by the IOM.

Each of the above functions is described in more detail
in Sections 5 and 6. This section consists mainly of the
narration of a single example query, from the time the user
enters it into the host system until the answer is displayed
to the user. It is intended as an extensive, detailed
analysis of the treatment of a single query: the general
cases are addressed in Sections 5 and 6.

Section 4.1 is a discussion of the end-user interfaces
required by functions (1) and (5), above. In Section 4.2 we
trace the translation of an example user query, function
(2). Section 5 is the detailed description of the end-user
interfaces and the command translation.

Section 4.3 is a general discussion of the operating
system functions required in functions (3) and (4). These
functions are further described in Section 6.

Finally, Section 4.4 is the summary.

4.1. End-user Interfaces
The level of complexity of the end-user interface pro

grams is a function of the needs of the application system.
We will discuss two types of interfaces: those that support
ad-hoc database commands, and those that support pre-planned

TOM Software Reference Manual Version 1.4 Britton-Lee Inc.

commands.

In an ad-hoc system, the database commands are directly
entered by the user: the major function of the host inter
face program is to parse the commands and send them to the
10M. The pre-planned system is more complex: the commands
are not directly entered by the users, but implemented in a
program that communicates with the users. The two types of
interfaces actually overlap: one host can perform both types
of interfaces. For clarity they will first be discussed
separately.

4.1.1. Ad-hoc Systems

In an ad-hoc system, the user (either interactively, by
typing on a terminal, or through the use of a previously
written file) phrases all commands in a general purpose
query language. An ad-hoc system allows the users to
directly manipulate the 10M databases subject to the protec
tion provided by the 10M. It allows the most latitude for
casual users. Since it can also be used as an application
development tool, it will typically be the first interface
implemented on any host, even those that will be primarily
dedicated to pre-planned commands.

An example of the use of such a system follows:

Example A. Ad-hoc user

User input:

range of d is department
retrieve (avgsal = avg(d.sal)}

Host interface program:

1) parses each statement and checks for syntax errors
2} calls the operating system to send commands to the 10M.
3) formats and displays result to the user

If the application system is one that will support a great
deal of interactive ad-hoc use of the 10M databases, it is
recommended that a complete terminal monitor be implemented.
Such a terminal monitor could include:

(I) an editor, to allow users to correct mistyped commands:

(2) a screen definition facility, to allow convenient for
matting of the data:

(3) a facility to direct 10M output to other host programs,
such as data analysis packages:

(4) macro definition and substitution capabilities which
allow more freedom for the ad-hoc user:

4 - 2 Host Programming: An Overview

10M Software Reference Manual Version 1.4 Britton-Lee Inc.

(5) a process that reads a data file and puts it in tuple
format for bulk loading the 10M using the ~ command.

4.1.2. Pre-planned Commands

In many applications, the same commands are repeated
continually. For such systems pre-planned commands are the
most convenient to use.

The simplest implementation of pre-planned commands is
a subroutine library that contains the IOM-internal form of
the commands that are used. Such an implementation avoids
the parsing of user commands completely, and simply calls
the required subroutine when a aataoase command is to be
processed. Section 7 shows the 10M-internal form of the
database commands.

A subroutine library implementation is a highly inflex
ible system. In most cases customized user interfaces will
be implemented by embedding a general purpose query language
In a high level programming language. An embedded command
is one that appears in the midst of a program in another
language. The following program fragment is an example of
embedding IOL in FORTRAN.

Host Programming: An Overview 4 - 3

10M Software Reference Manual Version 1.4 Britton-Lee Inc.

Figure 1. Embedded IDL Example

C ***** FRAGMENT OF THE CUSTOMER ORDER TRANSACTION

200

M
M

c *****

M
M
M

c *****

M 300

C *****

C *****
M
M

C *****
M
M

400
C *****

M
M

30

CALL GETINFO (CUSTNO, ORDERNO, PARTNO, AMT)

RANGE OF P IS PARTS
RANGE OF C IS CUSTOMERS

FIRST GET AMOUNT ON HAND AND PRICE

BEGIN TRANSACTION
DO 300 RETRIEVE(ONHAND = P.AMTONHAND,PR = P.PRICE)

WHERE P.NUMBER = PARTNO

EXTRA PROCESSING OF RETURNED TUPLES GOES HERE

CONTINUE

IS THERE ENOUGH TO SATISFY THIS ORDER?
IF (ONHAND.LT.AMT) GO TO 400

YES - PROCESS ORDER
REPLACE P (AMTONHAND = P.AMTONHAND - AMT)

WHERE P.NUMBER = PARTNO

UPDATE CUSTOMER'S AMOUNT OWED
REPLACE C (OWED = C.OWED + (PR * AMT»

WHERE C.NUMBER = CUSTNO

GO TO 500
CONTINUE
IF THERE WAS NOT ENOUGH ON HAND, ADD TO ON ORDER

APPEND TO ONORDER (NUMBER = PARTNO,
AMOUNT = AMT - ONHAND)

PRINT 30
FORMAT (" CAN'T DO ORDER II)

GOTO 600

.
C ***** END OF TRANSACTION: RETURN TO ACCEPT ANOTHER
500 CONTINUE

PRINT 40
40 FORMAT (" TRANSACTION COMPLETE")
600 CONTINUE

4 - 4 Host Programming: An Overview

10M Software Reference Manual Version 1.4

M ENO TRANSACTION
GO TO 200

Britton-Lee Inc.

Figure 1 represents a section of a parts order system.
The end-user, at a terminal, enters only the customer
number, part number, price, and order number. The program,
written in FORTRAN, controls what calls are made to the IOM.
These calls are given a special symbol (in this example, an
M in the first column) to separate them from the normal FOR
TRAN statements. The program, on receiving a transaction
type "order", first checks to see if the parts on hand will
satisfy the order (if not, the part must be ordered) • Then
the customer~s account is updated with the amount owed from
this order; the number of items on hand is changed to
reflect the order, and so on.

Embedding the data management commands in the FORTRAN pro
gram has several advantages:

(1) It is a simple method of combining the power of the IOM
with the flexibility of a high-level, procedural pro
gramming language. Note that the example FORTRAN pro
gram in Figure 1 does not need to perform any data
management tasks. The IOM is taking care of back-up
and recovery, access rights, query optimization, con
currency control, etc.

(2) Complex commands involving many different types of data
are easy to write using the IOM. IOL makes the data
base manipulation a clearly separate function from the
user customization so the structure of the program is
more easily understood.

(3) High-level programs written with embedded IOL are
easily maintained. Since the structure of the program
is obvious it is more readable and readily understood.

(4) The IOM provides the necessary speed for good user
response time; the host system designer can concentrate
on writing clear, highly functional end-user inter
faces.

(5) The final program can be smaller and require less
resources than the full ad-hoc system.

The design of a host system that supports embedded IOL
is shown in Figure 2.

Host Programming: An Overview 4 - 5

10M Software Reference Manual Version 1.4 Britton-Lee Inc.

Figure 2. Embedded Command System

pre-processing (done in host system):

program

\ /
IOL-parser

\ /

high-level language
with embedded IDL commands

produces calls to
run-time subroutines

compiler produces runnable programs
links to IOL library routines

runtime:

internal
form

host

program I
/ \

unformatted results
\ /

10M

IDL can be embedded in any high-level language. For clar
ity, let us assume that we are embedding IDL in FORTRAN, as
in the Figure 1 example. Then the host system must include
a pre-processor that will read a FORTRAN program, find all
the IOL calls, and send them to the IOL parser. This is
represented in Figure 2 by the function labelled "IOL
Parser". The IOL parser produces calls in FORTRAN to the
run-time subroutines that interface to the 10M. These calls
are substituted in the high-level program for the IDL calls;
then the entire program is compiled. At run-time the sub
routine calls result in the execution of the 10M commands.
The host system designer may wish to have the pre
processor/IOL parser create stored commands for the IOL com
mands. Stored (defined) commands, as explained in Section
3, are much more efficient.

4.2. Example Query

The following is the tracing of the processing of an
entire database command.

4 - 6 Host Programming: An Overview

IOM Software Reference Manual Version 1.4 Britton-Lee Inc.

4.2.1. Translating the query

Let us assume that a user at a terminal types in the
query:

range of e is employees
retrieve (e.name, e.salary)

where e.number > 100
or e.salary >= 1000

This command displays the employee names and salaries of all
those employees who make 1000 or over, or whose employee
numbers are over 100.

The function of the translating program is to pu~ the
user command into IOM-internal form. This is a standard
parsing procedure. The result of parsing the query is a
parse tree. A conceptualization of the parse tree for this
example is shown in Figure 3.

Figure 3. Parse Tree

root
\ /

/
attrl

\

/ \
/ -ployee

attr2 (name)
/ \

/ employee
end (salary)

employee
(number)

\

/

\

>

\
\

or
/ \

/ \

\
100

>=
/ \

employee \
(salary) \

1000

The left side of the root of the parse tree is the tar
get list; the right is the qualification. Actually, the
parse tree will be formed with IOM internal symbols; the
complete list of the symbols is included in Appendix B. The
Figure 3 tree, with the nodes labelled with their correct
TOM symbols, is shown in Figure 4.

Host Programming: An Overview 4 - 7

IOM Software Reference Manual Version 1.4

Figure 4. Parse Tree - IOM format

ROOT
/ \

/ \
/ \

/ \
/ \

RESOOM OR
/ \ /

/ \ /
/ VAR 5 /

RESOOM (0 name) GT
/ \ / \

/ \ / INTI
/ \ VAR 7 100

TLENO VAR 7 (0 number)
(0 salary) VAR

\

/
7

\
\

/
/

/

(0 salary

Britton-Lee Inc.

GE
\
INT2
1000

The symbol RESOOM denotes that the node is a domain
(attribute) in the target (result) list. There are vari
ables (the symbol VAR in the above tree) in both the target
list and the qualification. These represent references to
"range variable" and to "attribute". A range variable
ranges over a relation and stands for an instance of a tuple
in that relation. These are shown with the lengths of the
arguments that must be passed to the 10M, the number of the
range variable, and the attribute name. For example,

VAR 5
(0 name)

means that the node denotes a variable. The data in the
node is 5 bytes in length. The value of the 5 bytes is 0
for one byte (the variable number is 0) and the ASCII char
acters n, a, m, and e for the remaining 4 bytes. The con
stants involved are represented by their types and their
values. TLENO denotes the end of the target list. The
derivation of the variable number is discussed in the next
section. A complete description of trees required for each
query type is contained in Section 7. To communicate this
tree to the 10M the host must put it in postfix order. This
is shown in Figure 5.

4 - 8 Host programming: An Overview

10M Software Reference Manual Version 1.4 Britton-Lee Inc.

Figure 5
Translated Query

data following actual octal representation * symbol

TLENO 0001
VAR 7 a salary 0050 0007 0000 "salary"
RESOOM 0200
VAR 5 a name 0050 0005 0000 "name"
RESOOM 0200
VAR 7 a number 0050 0007 0000 "number"
INTI 100 0060 0144
GT 0203
\TAR 7 a salary 0050 0007 0000 "salary"
INT2 1000 0064 0003 0350
GE 0204
OR 0211
ROOT 0264

* Items in quotes (....) are sent to the 10M as character strings.

The left-hand column in Figure 5 is a traversal of the
tree, starting at the root and recursively taking the left
descendant of the node, then the right descendant, then the
node itself. The next column shows additional data for
those tokens longer than one byte. To transmit this to the
10M the "symbol" words (in capital letters) must be filled
in with the values from Appendix B, as is shown in the
"actual octal representation" column. In the remainder of
this document, only the symbol will be used; it is assumed
that the host system correctly translates the symbol to the
octal code specified in Appendix B. The names in quotes,
such as "salary", are sent as character strings.

4.2.2. Range Variable Numbers

All accesses to relations are done by specifying range
variables. The host must therefore maintain a "range table"
to keep track of which variables are associated with which
relations. There should be three values in this table: the
relation name, the user-defined range variable name, and a
unique number chosen by the host. The appropriate entries
in the range table are sent to the 10M with each query. The
10M will accept up to 16 variables for each command and they
must be numbered anywhere between a and 15.

For example, if the user types the following:

range of emp is employee

Host Programming: An Overview 4 - 9

IDM Software Reference Manual Version 1.4 Britton-Lee Inc.

The host should update its range table for the user with the
information:

host range table

relation name user variable name unique number

employee emp a

Whenever a command is sent to the IDM that specifies "emp",
the host sends the "range" token, and the information that
range variable 0, relation "employee", is being used.

4.2.3. Sending the Command

All commands to the 10M begin with a "command" token
(see Section 7 for the list of commands). Following the
command token is the "range" if it is used in the command.
At the end of the query, the ENDOFCOMMAND symbol must
appear. The commands sequence sent to the 1DM is summarized
in Figure 6.

Figure 6
Commands Sent to the 10M

symbol following data

RETRIEVE
RANGE 9 a "employee"

translated query (from Figure 5)

ENDOFCOMMAND

The command is then given to the operating system.
When the data is returned to the host, it must format it and
display it to the user. If two tuples qualified, Figure 7
shows the results as they are received from the IDM.

Figure 7
Data Sent to Host

symbol following data

FORMAT 3,CHAR,20,INT4
TUPLE 5, "Jones"

5000
TUPLE 7,"Johnson"

300
DONE NORMAL,2

4 - 10 Host Programming: An Overview

10M Software Reference Manual Version 1.4 Britton-Lee Inc.

The data returned by the 10M for this query begins with the format specification. This
describes the format of each attribute of the result tuples. In the above example, the FORMAT
token is followed by the length of the format data (3 bytes). The second token (CHAR) says the
first returned attribute is a character field; it is followed by the number "20", which says the
maximum length of the character field is 20 bytes. The third token says that the last (second)
attribute of the returned data is a 4-byte integer field. FORMAT tokens are further explained in
Section 5.3.

Each returned tuple begins with a tuple token, followed by the tuple in the specified format.
In the above example, there are two attributes in the returned tuples. The first, since it is a
CHAR attribute, begins with the actual length of the returned data, then the data itself (as a
character string). The second is simply a 4-byte integer. The OONE token follows the last tuple.
It specifies any error conditions and the number of tuples which satisfied the qualification.
Variable length attributes are sent with a preceding byte-count. The host takes the data that is
returned, formats it, and displays it for the user.

4.3. The Flow of Control

This section describes the flow of control for getting commands to the 10M and returning
results back to the user program. In particular, the role of the operating system is discussed.

The 10M is an unusual device in that it performs its own scheduling and buffering of user
commands. As a result, the host operating system has very few functions to perform. This section
begins by describing how the 10M would appear to a user program in a typical implementation.
Next, the manner in which the operating system interacts with the 10M is discussed. Finally, an
example is given which illustrates the flow of control. The interaction between the operating
system and the 10M is discussed further in Section 6.

4.3.1. User Program View

In a typical host implementation, programs in the host would issue system calls to their
operating system in order to communicate with the 10M. A possible implementation of the
system calls is:

writeidm (dbin, address, count)

readidm (dbin, address, count)

cancelidm (dbin)

"Writeidm" sends a command to the 10M. "Readidm" gets data from the 10M, and
"cancelidm" cance~ out~anding~~~~~~~~~~~~~~~~~~~~~~~~

Host Programming: An Overview 4-11

10M Software Reference Manual Version 1.6 Britton-Lee Inc.

requests to the 10M. These are each discussed further in Section 6.

For "writeidm" t the command to be sent is written in a contiguous area of memory in the
user program. "Address" specifies the starting address of the command and "count" specifies
the number of bytes in the query. For "readidm" the "address" is the address of-the data area
where the data is to be stored after it is sent by the 10M and count specifies the maximum
number of bytes to transfer.

The "dbin" is supplied by the 10M and returned when a database is opened by a user
program. It represents the "database instantiation number". It is needed for all three commands.

Note that the user program specifies where to put the results of a query and how much space
is available for the results. It is permissible for the amount of space supplied by the user program
to be less than the amount of space needed to hold the results of the query. In such a case t
another "readidm" will get the next block of data.

The actual size of the result is encoded in the results. As illustrated previously in Figure 7 t
the results of a command are encoded with control tokens which specify the start of every tuple
(TUPLE token) and the end of the results (the OONE token). If the OONE token is not
encounteredt then the results are larger than the available space and the next block of results can
be retrieved by calling "readidm" again.

4.3.2. The Operating System Functions

The operating system is responsible for providing the userts identificationt which is either a
name of up to 20 characters (huname) or a number (huid) t and for uniquely identifying the user
program (pid). It must also forward the user programts request to the 10M. If the operating
system does not securely provide an huid or huname to the IOMt a password maybe sent for
the 10M to validate the userts identity. If either a password or a huname is sent t it should be
sent only with the first open database command.

The "pid" is a four-byte number which identifies the instantiation of the user program on
that host. It must uniquely identify which process is accessing the 10M on that host but it does
not have to be unique across multiple hosts.

Note that the operating system need not care about the "dbin". The operating system either
sends user commands to the 10M or requests the results of user queries. A request for a result
mayor may not be granted depending on whether the query has been processed yet.

4-12 Updated March 1984 Host Programming: An Overview

IDM Software Reference Manual Version 1.6

Operating system requests:

write (dbin, pid, huid, address, count)

read (dbin, pid, address, count)

Britton-Lee Inc.

The IDM will acknowledge each request from the operating system. The response to a
"write" depends on whether the IDM can process the command. If scheduling the commands
would cause it to thrash, the IDM will refuse the "write" request. The response to a "read"
depends on whether the query has been sufficiently processed.

The operating system has two options with both the "write" and "read" commands: it can
wait for the request to be granted, or it can ask to be notified when the request can be granted.

4.4. Example of Flow Control

We will now illustrate the flow of control with an example. Let us assume that in this
example the operating system has the IDM notify it when the results are ready. The user program
will perform two interactions with the IDM. First, it opens a database and then it runs a query on
the database.

PROGRAM

writeidm (0, addr ,cnt)

readidm (0, addr ,cnt)

(take dbin from result
of open database)

OPERATING SYSTEM

read (dbin,pid, addr, cnt)

writeidm (dbin, addr,cnt)
write(dbin,pid,huid,addr,cnt)

readidm(dbin,addr,cnt)

Host Programming: An Overview

IDM

receives open database command
and possibly a password and/or
hun arne

transfers results (OS; db in for
database open

receives command (e.g., a retrieve)

Updated March 1984 4-13

10M Software Reference Manual Version 1.4 Britton-Lee Inc.

4-14

read(dbin,pid,addr,cnt)

suspends program

swaps program in
read (dbin, pid, addr ,cnt)

activate program

process results

refuses request (results not
available)

results become available; notifies
host

transfers results

Before a user program opens a database, there is no database instantiation number (dbin).
When dbin=O is sent with an open database command, a new user process, with its own dbin
(not = 0), is created in the 10M. The new dbin is returned to the host for use with subsequent
commands from the same user program. When a database is opened with a non-zero dbin, the
current database is closed and the new one opened using the same dbin.

The example illustrates the two cases which can happen when a request for a result is made.
In the first case, the results were available at the time of the request so they were returned
immediately. In the second case the results were not available at the time they were requested.
The operating system suspended the program and possibly the program was swapped out in the
normal operation of the host system. The 10M then informed the host that a previously
requested result had become available. The operating system determined which process was
waiting for the new results. The process was then loaded into memory (if it has been swapped
out) and then a new request to transfer results was issued. The new request is guaranteed to
succeed and the program then continues.

The primary goals of the handshaking operations between the 10M and the operating system
are to simplify the task of the operating system and to aviod the need to double buffer the results
of a query. Avoiding double buffering is valuable in timesharing systems. When a program tries
to read the results of a query, it is typically suspended until the results are available. When the
10M notifies the operating system that the query results are available, the operating system can
reschedule the user program, move it back into ------------------

Host Programming: An Overview

IOM Software Reference Manual Version 1.4 Britton-Lee Inc.

memory if it was swapped out, and then tell the IOM where to
put the results. This minimizes the amount of time the user
program is "locked" in memory. Alternatively, in different
environments it is desirable for the host program to wait
for requested results. This option is discussed in Section
6.

4.5. Summary

The IOM can serve as a backend to a variety of hosts,
from programmable terminals to mainframes. It is easy for
the end user to communicate with the IOM through ad-hoc
queries written in a general purpose query language, general
purpose programs, or custom applications.

The IOM has been designed to have a minimum impact on
the host processor and host operating system. A moderate
amount of system support software is necessary to use the
TOM. The IDM performs the database management tasks, free
ing the system designer to concentrate on the user interface
and on solving the user~s problems.

Host Programming: An Overview 4 - 15

10M Software Reference Manual Version 1.4 Britton-Lee Inc.

5. End-user Interfaces

5.1. Introduction

This section describes different ways to implement end
user interfaces. It is not intended to be an exhaustive
list, nor does it provide recipes for building them. These
are suggestions for designing such programs. Each OEM
environment will require different features and different
application programs.

5.2. The 10M Command Set

The 10M does not have a "machine language" in the usual
sense. To "program" the 10M, a series of commands must be
sent to it. An 10M command consists of a byte stream of at
least two bytes. The first byte of every command is the
"command token." The command token is like an op code and
tells the 10M which command is to be performed (see Sec
tion 7 for a complete list of commands). The last byte of a
command is always the ENOOFCOMMANO token which tells the 10M
that the command is complete and that processing can begin.
To tell the IDM to begin a transaction, for example, the
following bytes would be sent:

"Token"
BEGINXACT
ENDOFCOMMANO

"Octal"
0324
0320

Most commands are modified by arguments.
five types of arguments to a command.

Immediate
Range declarations
Query tree
Order declarations
Command-options

There are

An immediate argument follows the command token. Such com
mands are noted in Appendix B. To create a database the
command would be:

OBCREATE 4 mike
ENOOFCOMMANO

The argument "mike" is preceded by its length. The command
is terminated by the ENOOFCOMMANO token.

Range, Query tree and Order arguments provide complete
specification of retrievals, updates and other commands.
Range declarations specify range variables used in the tree
and must precede the tree. Range variables are numbered
from 0 to 15 and are associated with a relation in the
declaration. A range declaration begins with the RANGE
token which is followed by the length of the declaration,

10M Software Reference Manual Version 1.4 Britton-Lee Inc.

and then the variable number and the relation name:

RANGE 6 3 parts

states that the variable 3 will stand for the relation
"parts". The query tree arguments, defined in detail in
section 7, are binary trees. The tree is sent as a byte
stream using a post order traversal. This allows rebuild
ing the tree in the 10M without having to send physical
pointers. Each node of the tree consists of a token and
possibly some associated data. Tokens are divided into
three classes: those which have no associated data, those
which have fixed length data and those which have variable
length data.

Order declarations are used with retrievals to specify
an ordering on the data which is returned. An order
declaration refers to a domain in the target list of the
query tree. The order declarations must come after the
query tree. Each declaration consists of an order token
which determines if the domain is to be sorted in ascending
or descending order followed by the number of the domain.

ORDERA 3
ORDERO 1

declares that the sort order on tuples returned should be
first ascending on domain 3, and within identical values of
domain 3, it should be descending on domain 1.

Command-options are used to indicate that format infor
mation should be returned, that certain error conditions
(e.g., overflow) should be ignored, and other miscellaneous
parameters of the command. Command-options are sent using
the OPTIONS token followed by the count of the number of
options and the options themselves. Each command-option has
a single byte value except for the tape command option (see
section 3.10). One options specifier may be sent per com
mand.

5.3. Results of a Command

The results of a command may just indicate that
command was completed successfully or in error, or the
mand may return any amount of data. How the results
handled depends on the interface being designed. The
eral format is described here.

the
com
are

gen-

The simplest result is a OONE token followed by eight
bytes of data. These are formatted into two 2-byte integers
and a 4-byte integer. The 4-byte integer is the count of

1 Starting at the root, for each sub-tree send the left
child, then the right child and then the parent, recursive
ly, i.e., the extreme left leaf is sent first and the root
is sent last.

5 - 2 End-user Interfaces

IDM Software Reference Manual Version 1.4 Britton-Lee Inc.

the number of tuples affected by this command. The first
two-byte integer is a status word and the second is used for
returning single values for certain commands. The DONE may
be preceded by error messages. Each error message consists
of the ERROR token, followed by the error number (see Appen
dix C) and possibly some data with its format information.
For example:

ERROR 6 CHAR 5 parts

would mean that the relation "parts" was not found in the
current database.

If the command was a retrieval then data may be
returnede Each tuple returned is preceded by the TUPLE
token. The data has no embedded format information except
for the length of variable length fields. If the applica
tion program needs the format of the data being returned,
the SENDFORMAT command-option should be sent with the com
mand. In that case the format will be sent prior to the
data. A format specification starts with the FORMAT token
followed by the number of bytes in the specification and
then the format tokens and possible lengths. The format
tokens will be from the set:

BCD
BCDFLT
BINARY
CHAR
INTI
INT2
INT4
FLT4
FLT8

The first three types will be followed by the maximum size
of an element of that domain. For example if a query is
returning tuples with two integer fields and one character
field that has a maximum length of 10 bytes, the following
results would be returned:

FORMAT 4
TUPLE
TUPLE

DONE o

INTI
3
6

o

INT2
o 2
1 23

o

CHAR
4
3

o

10
b
n

o

o
u

o

1
t

o

t

2

The interface program received 4 bytes of format indicating
that every tuple would have a one-byte integer followed by a
two-byte integer followed by a character field of at most
ten bytes. Then two tuples were received, one with a 4-byte
character field, "bolt" and one with a three-byte character
field, "nut". ~hen the DONE was received indicating zero
status and 2 tuples returned. Since the length of the for
mat string is limited to 255 bytes it may be necessary to
send two strings. Each will be preceded by the FORMAT token

End-user Interfaces 5 - 3

IDM Software Reference Manual Version 1.4 Britton-Lee Inc.

and length. A format specifier will never be broken between
the token and length.

If the target list of a retrieve is sent with RESATTR
nodes rather than RESDOM nodes, the "send names" command
option may be sent with the command, so that the names of
the result attributes are retrieved immediately preceding
the format information (if any). Each name is sent like a
character constant: the CHAR token, followed by a I-byte
length, followed by the name. The "send names" command
option has no effect if the command it follows is not a
retrieve command.

5.4. General Purpose Query Language

A general purpose query language interface allows users
to pose arbitrary queries to the IDM and to get the results
displayed. The interface program may also provide editing,
file handling, and display formatting capabilities, but the
inclusion and implementation of such features is mostly
independent of the main function of the interface, i.e.
parsing the query language and translating it into IDM com
mands. For the purposes of this discussion we will assume
that IDL is being used as the query language. The full
definition of the IDL command set is given in section 7.
This section provides suggestions on how to build a parser
for IDL. It is assumed that the reader is familiar with the
basics of compiler construction. The use of a parser gen
erator is recommended as the syntax is large but regular.
The language can be ~ecognized with an LALR(l) parser such
as generated by YACC •

5.4.1. Lexical Analysis

Tokens in IDL are separated by blanks or operators.
Blank, tab and end-of-line should be ignored except for del
imiting tokens. The language has the following classes of
tokens:

Keywords
Names
Strings

- reserved and may not appear in other contexts
- alphanumeric sequences
- surrounded by double quotes: ~"~

2 Johnson, S. C., "YACC-yet another compiler compiler",
CSTR 32 Bell Laboratories, Murray Hill, N.J. Also in "UNIX
Programmers Manual, Seventh Edition", Vol. 2b. See also
"LALR(l) Parser Constructor to Translate Computer Languages"
by David M. Stern, DECUS program library #11-312, which runs
under RSX-ll on DEC. PDP-lIs, or "LR, Automatic Parser Gen
erator and LR(l) Parser", by Charles Wetherell and Alfred
Shannon, Preprint UCRL-82926, LLL Po box 808, Livermore, Ca.
which runs in ANSI fortran. For a discussion of such gen
erators see chapter 6 of "Principles of Compiler Design" by
Aho and Ullman.

5 - 4 End-user Interfaces

IDM Software Reference Manual Version 1.4

Operators - one or two non-alphanumeric characters
Numbers - one or more digits with optional decimal point

Britton-Lee Inc.

BCD - one or more digits beginning with "#" with optional FORTRAN-style scientific
notation

Parameters- alphanumeric sequence beginning with "$"

During the parsing process it should not be necessary to add to the set of tokens. The only
possible new token type introduced is the "range variable" and it is easier to recognize one as a
name and then give an error if the name has not been declared in a "range" statement. With the
exception of "range tt statements t tokens need only be preserved for one statement and the
storage for them reused.

5.4.2. Syntax

The syntax of IDL is keyword driven. Ali statements begin with one or two keywords and
have a set syntax. The complete syntax is defined in Section 7. The syntax of most commands is
broken into two parts: the target list and the qualification. The target list is usually a list of
names t as in the create index command or a list of "name = expression" pairs as in the retrieve
command. The target list of the create command is an exception in that the expression in the
target list must be a type specifier.

Qualifications come in three varieties. One is a boolean expression tree which is used in
query commands such as retrieve and replace. The second is used in maintenance commands
such as create and usually begins with the key word with. This type is a comma separated list of
specifiers of the form:

<with-no de-option> = <constant>

The third is a list of names and is used in the permitt deny and associate commands.

5.4.3. Semantics

The main job of the semantic routines of the parser is to build up a query tree creating nodes
of the proper type for each significant token. When the end of the statement is detected the
command must be sent to the IDM. TypicallYt the parser will request that format information be
returned, using a command-options argument t for a retrieve.

5.4.3.1. Target List Semantics

The target list specifies those domains which are retrieved or affected by the IDM command.
Where the order is important t retrieval for example t the first domain is the left child of the root
of the tree and the last is the parent of the target list end node (TLEND). In a retrieve command
the names of the result domains are not significant -----------------

End-user Interfaces 5-5

IDM Software Reference Manual Version 1.7 Britton-Lee Inc.

and need not be sent to the IDM. In this case a RESDOM node may be sent rather than a
RESA TTR node, which requires a length. For display purposes on the front-end, the domain
names are either specified by the user or can be defaulted to the attribute name if there is no
expression involved. When defining a stored retrieval the names can be stored in the IDM using
the RESATTR nodes and can be requested when the query is executed. -

It is convenient for users to type:

retrieve (x.all) where x.name = "John"

The all stands for all domains in the relation associated with the variable "x". It only makes I
sense to use all in the target list of a retrieve.

The "order by" clause in IDL may reference result domain names in the target list, or
expressions not in the target list. In the former case the proper expression must be found and an
order argument sent with the command referring to that node in the target list. In the latter case
a new ORDERDOM node must be added to the target list. Note that an ORDERDOM expression
is only used for ordering the results and will not be returned by the IDM.

When data is returned on a retrieve it will be necessary to format and display the data. While
parsing the target list an array of records can be used to store the domain names. The IDM can
be requested to return the types of the domains being retrieved prior to sending any data. This
information would also be put into these records and used when the data is returned for
formatting.

5.4.3.2. Qualification Semantics

The qualification of an IDL command appears as the right sub-tree of the ROOT node. The
minimum qualification is just a qualification end node (QLEND). If the qualification specifies
with-node-options, a "with clause" will contain a list of options or modifications to the
command. The parser must translate the option names into the one-byte --------

5-6 Updated September 1984 End-user Interfaces

IDM Software Reference Manual Version 1.4 Britton-Lee Inc.

option specifier and put it in the tree following the WITH
node. The value of the option is the left child of the node
while the next WITH node must be the right child. The
boolean expression tree form represents the restrictions and
joins in the command. The tree contains AND and OR nodes
with relational clauses as children. In the permit command
the user and group names go in the qualification as charac
ter constants which are the left children of QUALDOM nodes.
section 7 contains the full specification of all qualifica
tion trees.

5.4.3.3. Expression Semantics

All operator precedence is expressed in the query tree.
IDL defines multiplication and division to have higher pre
cedence than addition and subtraction, but this is tran
sparent to the IDM, which processes expressions as they
appear in the query tree.

5.4.4. Stored Commands

When executing a stored command no query tree is sent.
This is to make transmitting and executing stored commands
as efficient as possible. The EXEC token is sent followed
by the name of the command. Parameters are sent as a stream
of tokens. The parameter names may be specified, or the
parameter values may be sent in order. The order of the
parameters is the alphabetic order of their names except
that totally numeric names are put in ascending numeric
order. If the parameters are sent by name the name is pre
ceded by a PARAM token and its length. The parameters are
sent, preceded by a "type" token (INTI, INT2, I~T4, BCD,
BCDFLT, CHAR, FLT4, or FLT8) and possibly a length. If the
user types:

execute get 5, "john"

the parser would send

EXEC 3 get
INTI 5
CHAR 4 john
ENDOFCOMMAND

The user could type, equivalently:

execute get with name = "john", age = 5

and the parser would send:

3 A trick to implement this form is to build a list of
parameters as a tree which, when transmitted in post order,
will send the parameters in the right order.

End-user Interfaces 5 - 7

10M Software Reference Manual Version 1.4

EXEC 3 get
PARAM 4 name
CHAR 4 john
PARAM 3 age
INTI 5
ENOOFCOMMANO

5.5. Embedded Query Language

Britton-Lee Inc.

~he embedding of lot in a general purpose programming
language can take different forms. A minimal implementation
will be discussed here, in which all queries are formulated
at compile time and only parameters are provided at run
time. It is possible to construct an embedding which allows
queries to be constructed at run time as well. This would
require invoking parsing routines at run time, i.e., combin
ing what is discussed here with the features of a general
query interface.

To embed the 101. in a programming language it is neces
sary to write a preprocessor which recognizis IOL statements
and translates them into the host language. The program
then can be compiled normally, including some run time sup
port routines. The simplest way for the preprocessor to
recognize the IOL statements is to begin each line which
contains one with a special symbol, dollar sign ~$~, for
example (an "M" was used in Section 4). In this way the
preprocessor need not parse the host language. This also
makes it easy to modify the preprocessor to handle other
host languages. Once the lOt statements are recognized they
are parsed by the preprocessor and checked for syntax
errors. Each 10M command is then sent to the 10M as a
stored command using the define program command. The 10M
will return a 4-byte number by which the command can be run.
The source of the lot statement is then deleted from the
program and replaced by code which invokes the stored com
mand.

The above works if the program only runs updates
without any parameters. To process retrieves and handle
parameterized commands it is necessary to parse the part of
the host language that is involved with variable declara
tions. The embedding can require that variables used in IOL
statements be declared on lines beginning with ~$~. When
such lines are parsed the name and type of the variable is
saved and the special symbol is deleted. When such vari
ables are recognized in an lOt statement in the place of a
constant in the grammar, the preprocesser replaces them with
parameters in the stored command and generates code to send

4 It is possible to put this function directly into the
host language compiler, but this is often difficult unless
you write your own compiler.

5 - 8 End-user Interfaces

IOM Software Reference Manual Version 1.4 Britton-Lee Inc.

the run time value of the variable when the stored command
is executed from the program.

To make retrievals useful in a programming language, it
must be possible to get values out of the database and into
programming variables. Since more than one value will gen
erally be returned, the embedding should allow for the pro
cessing of the values individually. This can be done by
making the retrieve command a looping construct in the host
language and by putting programming variables in the target
list. For example, IOL embedded in Pascal:

$ var i, j : integer;

$ range of e is employee
$ retrieve (i = e.salary) where e.number = j
$ begin

Pascal code

$ end

would retrieve all salaries into the variable ~i~, one at a
time by generating the following Pascal code:

var i, j : integer;
idmparam : array[l •• MAXPARM] of record

case t : idmtype of
i2: (int2 : -32768 •• 32767);
i4: (int : integer);
character : (chr : string_type)

end
end;

idmparam[l] .int := j;
idmparam[l].t := i4;
idmexecute(2048, 1, idmparam);
while idmnewtup do
begin

end

i := idmint4;
Pascal code

The routines "idmexecute", "idmnewtup" and "idmint" must be
included by the preprocessor. "Idmexecute" takes as argu
ments the query number to execute and the count of parame
ters to send with it and an array of parameters.
"Idmnewtup" returns "true" if there is another tuple and
"false" otherwise. "Idmint4" returns the value returned in
the tuple. When there are no more values the program will
fallout of the loop and continue with the rest of the code.
While the programmer sees one tuple at a time, the underly
ing code should buffer a convenient amount of data from the
IOM.

Rnd-user Interfaces 5 - 9

IDM Software Reference Manual Version 1.4 Britton-Lee Inc.

It is sometimes necessary to terminate the retrieval
before all the tuples have been returned. The embedding
should define a way to exit the implied loop of the
retrieve. In Pascal this could be done by defining a pro
cedure which the application programmer could call in the
loop which would clear any buffered input and, if necessary,
send a "cancel" command to the IDM. "Idmnewtup" would then
get a DONE and return "false". When the DONE is returned
the data should be placed in a global record so that the
programmer can look at the values returned.

The preprocessor needs to insure that the values
returned to the program are the same type as the variable to
which they will be assigned. This can be done by adding an
explicit conversion to expressions in the target list. In
the example above the preprocessor would generate a target
list which looked like:

RESDOM
/ \

TLEND CNVTI4
\
VAR

(0 number)

If "e.number" was already a four-byte integer the IDM optim
izations would delete the CNVTI4.

It is possible to issue several commands at once from a
program. ~his requires, however, that the database be
opened more than once at run time since each concurrent com
mand needs a separate database instantiation number.
Depending on how restrictive the embedding is, different
implementations can be used. A simple implementation could
prevent all concurrent accesses. This requires only opening
the database once. The programmer could be required to
explicitly open the database again if the program had con
current access. A full implementation would have to detect
the nesting at run time and open the database again. Alter
natively the embedding could require that any concurrent
accesses be nested statically. For example:

....
f not good style }

S retrieve (i = e.number)
S begin

if i = 10 then
$ delete e where i = 10

else
update(i);

$ end

5 - 10 End-user Interfaces

IOM Software Reference Manual Version 1.4 Britton-Lee Inc.

Under the latter implementation the delete would be legal
but the procedure "update" could not do any database calls.

5.5.1. Protection Within Programs

Like all stored commands, those coming from embedded
commands can have access rights granted to them. Protection
is done by the program name, so all commands stored under
the same program name have the same protection. If the
application needs different protection on different commands
then a program statement can be used to change the name
associated with some commands. For example, if a personnel
application is being written which interactively retrieves
information about employees, the user may request informa
tion which is protected. The host program does not need to
look up the access rights of the person running the program.
Instead different commands within the program are given dif
ferent protections.

$ program prog 1
$ permit execute of prog_l to all

$
$

fa request for name}
retrieve (name = e.name) where e.id =
begin

f print name }
$ end

fmore code •••

ident

the user asks to look at a salary}
$ program prog 2
$ permit execute of prog_2 to managers

$ retrieve (sal = e.salary) where e.name = name
$

The permit commands are issued at preprocessing time rather
than at run time. A null define program command may be
issued to the 10M to establish the program name prior to
storing any commands. If the program already exists this
will cause an error. The protection statements may then be
issued.

5.6. Subroutine Calls

Using a subroutine call interface is similar to embed
ding IOL, except that the preprocessing must be done by the
applications programmer. A library of routines is created
which communicates with the IOM. Routines similar to those
in the previous section would be provided for the programmer
to call directly. The stored commands would be stored by
the programmer prior to running the program.

End-user Interfaces 5 - 11

10M Software Reference Manual Version 1.4 Britton-Lee Inc.

5.7. File System Support

The 10M provides a random access file system. The pur
poses of the system include:

1) A convenient way to store non-database information
such as executable programs for intelligent terminal
based systems.

2) The dump and load commands can store and retrieve
information from an 10M file instead of from the
host.

3) A complete file system can be based on 10M files
instead of a separate host file system. For exam
ple, a hierarchical file system could be built with
10M relations used for file directories.

When used as a simple file system for storing programs,
a host would need to provide a program which could copy a
file from the host to the 10M and back. For example:

writefile idm filename host filename

might be a program running on the host which verifies the
existence of "host filename", creates "idm filename" -nd
then copies the file-contents to the 10M. To load the file
into a programmable terminal, a ROM- or PROM-based loader in
the terminal would need to observe the 10M communication
conventions to talk to the 10M to request a file.

5.8. Dump and Load Support

The 10M provides three types of "dump" and "load" com-
mands:

1. copy in, copy out
2. dump, load
3. dump transaction, rollforward

Copy in/out is useful for initially loading a database and
for bul~moving of data between the 10M and a host. The
data format used by the copy commands is independent of the
device and 10M so it can be interpreted by any host com
puter. Dump and load are used to quickly backup a database.
Dump transact in conjunction with rollforward is a fast way
to save and restore recent changes to the database.

2.~ . .!. Copy in, Copy out

Copy in and copy out provide a "bulk load" capability
between the 10M and a host. A host program is needed to
accept or send data and do any special formatting. For
example, a user may have a file or tape on the host system
in some special format. A "bulkload" program on the host
could accept a format description of the input data and the
name of a relation on the 10M to receive the data. The
"bulkload" program would request from the 10M the format of
the attributes in the relation, convert the input data to
the proper data type, one domain at a time, and send the

5 - 12 End-user Interfaces

10M Software Reference Manual Version 1.4 Britton-Lee Inc.

data to the IOM using the copy in
a user may want a relation on the
formatted in some particular way.
could request the data from the
out command or a retrieve command.

command. Correspondingly,
IOM copied to the host and

The "bulkload" program
IOM using either the copy

Copy in and ~ out can also be used to transfer
between IOMs or dlfferent databases on the same 10M.
relations are copied using the copy out command, the
and formats of the relations are sent along with the
of the relation. The information could be sent back
10M using the copy in command.

data
When

names
tuples
to an

2.~.~. Oump, Load, and Oump Transact

These commands are used for backup purposes. Whole
databases can be dumped and reloaded. The information from
a dump can be stored:

1. on the host
2. in an IOM file on another database
3. on IOM tape

The general strategy for backup is to occasionally dump
database and to frequently dump the transaction log.
database must be restored from a dump, the most recent
plete copy is loaded back in, and then each transaction
must be loaded and rolled forward. Note that it is not
ficient to load a database and then apply only the
recent transaction dump. (In fact, the IOM detects
case and issues an error.)

the
If a
com
dump
suf
most
this

Host support for dump and load depends on whether the
data is being sent back to the host or kept in the IOM. If
all data is dumped to IOM files, then support for dump and
load can be put in the ad-hoc query language; otherwise, a
host program is needed to send the dump/load command and
store/retrieve the data. The main requirement of the host
program is to supply the data in the same order as it was
received.

5.9. Report Generators

A report generator provides a facility for formatting
data from the IOM in a flexible way. A report generator
could be combined with an interactive query facility or be a
separate program. Using a report generator the user can
specify what data to display, where it goes on the page,
what order the data should be in, what to print on the top
or bottom of each page, and many other things. The IOM can
be used to project, restrict and sort the data before the
generator processes it. The IOM can also be used to store
and catalogue report descriptions. The relation "reports"
could be used to store report names and queries. A "desc"
relation can be used to store descriptions of the reports.

End-user Interfaces 5 - 13

IOM Software Reference Manual Version 1.4 Britton-Lee Inc.

reports (name, number, query, description)
desc(number, record, type, line, start,

length, just, value)

A report would consist of several records with the same
"number". The "type" would specify that this was part of a
page heading, column heading, data field, or other type of
specification. The "line" specifies the line on the page to
which this record refers. "Start" tells where to start this
field, "length" is the maximum length of the field and
"just" tells how to justify the the actual string in the
field (left, right, center). The value would be the actual
string to print or the attribute or the relation being
reported. When a report is defined, the generator could
store a command on the IOM which would retrieve the data
needed to do the report. The stored command number would be
saved along with the report name, number and description (or
title) in the "reports" relation. The description is
translated from the report description language and entered
in the "desc" relation.

When the report is to be generated the generator reads
the "reports" and "desc" relations which tell how to format
the report. The stored command is run (possibly with param
eters from the user) and the generator receives and formats
the data.

5 - 14 End-user Interfaces

10M Software Reference Manual Version 1.4 Britton-Lee Inc.

6. Communicating with the 10M

The following section describes the set of commands and
protocol used for communication between the host and the 10M
channel. The first subsections describe the general inter
face, independent of serial or parallel communication. A
description of the commands and protocol is given and a
model host interface is described to illustrate the communi
cation. The model interface described assumes that the
front end is a general purpose computer. In the stand alone
system where the "host" is a programmable terminal, the
interface is simplified and some of the information concern
ing the interface can be ignored. The last two subsections
describe the details of the serial and parallel interface.

The communication between the host and the 10M channel
can be described as the following set of interfaces:

host
user

program

host host 10M
<---> operating <---> communication <---> channel

system device

The characteristics of the above host modules will, of
course, vary greatly among different hosts. However, a model
interface will illustrate the important issues of the com
munication and give insight into particular implementations.

~he interface between the user program and the host
operating system has been described in earlier sections. For
the discussion here, it is sufficient to recognize that the
user program wishes to write to and read from the 10M. The
remaining two interfaces, i.e., the interface between the
operating system and the host communication device, and
between the device and the 10M channel are described in this
section. The "host communication device" is a term given to
the handler program and the hardware of the I/O device that
is directly communicating with the 10M.

6.1. 10M Channel Communication Commands

The IOM channel supports a set of commands for communi
cation between host and channel. These commands are called
communication commands. The subset that is issued by the
host consists primarily of commands to write to the 10M,
i.e., send 10M commands, and to read from the 10M, i.e.,
read results. In addition, the subset includes communica
tion commands to cancel 10M requests.

10M Software Reference Manual Version 1.4 Britton-Lee Inc.

6.1.1. Host-to-IOM Channel Communication Commands

The 10M supports a protocol for sending 10M commands
and requesting results which allows for flexibility in host
operating systems or host interface programs. The opera
tions of writing to the 10M and reading from the 10M are
each supported by three separate communication commands. The
host may issue anyone of these commands to read from or
write to the 10M.

The different READ and WRITE communication commands
indicate the action that the host will take if the request
cannot be immediately granted by the 10M. The host operat
ing system may choose to: wait until the request can be
granted, not wait until the request can be granted and send
the request again at a later time, or not wait until the
request can be granted but ask that the 10M "call" the host
when the host should re-issue the request. For example, the
general purpose computer host running a timesharing operat
ing system might choose the third method of reading and
writing. This would allow for efficient operation in the
host. A host terminal program in a stand alone environment,
however, would most likely choose to wait until a request
can be granted. The second alternative method for reading
and writing would be used by a host which does not wish to
wait, but also does not wish to support calls from the 10M
indicating that the request should be re-issued. In this
case, the host re-issues the request after a host-dependent
time period. Host characteristics will determine the
appropriate READ and WRITE communication commands.

The operating system may use anyone of the
communication commands described below to write
It must also supply the following additional

three WRITE
to the 10M.
information

(described in Section 4).

dbin - data base instantiation number
pid - process id
huid - host user id
count - number of bytes of data

The 10M responds YES to the WRITE command if it is
currently able to accept the WRITE request and NO if it is
not. If the response is YES, the 10M sends a count to the
host. This count is less than or equal to the "count" sent
by the host and indicates the number of bytes that may be
written. The host then sends the data to the 10M. If the
response is NO, the 10M sends an error code indicating why
the request cannot be granted. Error conditions are dis
cussed below.

WRITENW

6 - 2

WRITE command, No Wait
This is a request to write to the 10M. If space
is available to write, the response from the 10M
is YES, followed by a ""ount". The host will then

Communicating with the 10M

IOM Software Reference Manual Version 1.5 Britton-Lee Inc.

send "count" bytes. If space is not available, or
an error has occurred, the response is NO and an
error code is sent. If space was not aval1ab1e,
the host may try to write at a later time.

WRITEW WRITE command, Wait
This is a request to write to the IOM. If space
is not available to write, the host will wait.
Unless an error has occurred, the response from
the IOM is always YES, followed by a "count", and
occurs when space becomes available. The host
will then send "count" bytes. If an error has
occurred, the response is NO, followed by an error
code.

WRITECALL WRITE command, Call
This is a request to write to the IOM. If space
is available to write, the response from the IOM
is YES, followed by a "count". The host will then
send "count" bytes. If space is not available or
an error has occurred, the response is NO and an
error code is sent. If space was not available,
the host will not wait but requests that it be
called when space is available. The IOM later
calls the host (WAVAIL) indicating that space is
available for writing.

The NO response to a WRITE request is accompanied by a code
indicating one of the following situations:

1) insufficient space available for writing
This is a temporary condition and is handled as
described in the communication commands above.

2) illegal communication command or negative count
This is a host system error.

3) too many commands on this "dbin"
This is a host user or host system error. It
indicates that too many IOM commands have been
issued on this "dbin". This may be caused by a
user program which continually sends WRITE
requests to the IOM. This error should result in
a cancellation of the user program.

4) not accepting write requests on this "dbin"
This is a temporary condition and can occur during
a physical or logical load. The host program is
sending data faster than it can be loaded by the
IOM. Eventually, the host program will be allowed
to continue. If a WRITECALL was used, the IOM
will notify the host (WCONTINUE) when this write
may continue. Otherwise, the host program must

Communicating with the IOM Updated June 1983 6 - 3

10M Software Reference Manual Version 1.5 Britton-Lee Inc.

try again later.
Additional error conditions are described in section 6.3.4.

All results from the 10M must be requested by the host.
This is done using one of the three READ communication com
mands described below. The operating system must provide
the following additional information.

dbin - data base instantiation number
pid - process id
huid - host user id
count - maximum number of bytes read

The 10M responds YES if results are available. The 10M
also sends a count indicating the actual number of bytes to
read. This count is less than or equal to the "count" sent
by the host. The 10M then sends the data. If the results
are not available or an error has occurred, the response
from the 10M is NO and an error code indicating why the
request cannot be granted is sent.

REAONW READ results, No Wait
This is a request to read results from the 10M.
If the results are available, the 10M responds
with YES and returns a "count". The 10M then
sends "count" bytes of data. If the results are
not yet available or an error has occurred, the
response is NO and an error code is sent. If the
results were not available, the host may request
the results at a later time.

REAOW REAO results, Wait
This is a request to read results from the 10M.
If the results are not available, the host will
wait. When the results are available, the 10M
responds with YES and also returns a "count" indi
cating the number of bytes to be returned. Unless
an error has occurred, the response from the 10M
is always YES, and occurs when the results become
available. After the "count", the 10M sends
"count" bytes of data. If an error has occurred,
the NO response is sent, followed by an error
code.

REAOCALL REAO results, Call
This is a request to read results from the 10M.
If the results are available, the 10M responds
with YES and also returns a "count" indicating the
number of bytes to be returned. The 10M then
sends "count" bytes of data. If the results were
not yet available or an error has occurred, the
response is NO, followed by an error code. If the
results are not available, the host will not wait

6 - 4 Updated June 1983 Communicating with the 10M

10M Software Reference Manual Version 1.5 Britton-Lee Inc.

but requests that it be called when results are
available. The 10M later calls the host i~dicat
ing that these results are now available.

The NO response to a REAO request is accompanied by a code
indicating one of the following conditions:

1) results are not yet available
This is a temporary condition and indicates that
results for this "dbin" are not available. Even
tually, either results will be available (RESULTS)
or an error condition will by reported. This con
dition is handled as described in the communica
tion commands above.

2) illegal communication command or negative count
This is a host system error.

3) illegal "dbin"
This is a host user or host system error.

4) insufficient space to accept REAOCALL requests
This is a temporary condition. The 10M will
notify the host (RAVAIL) when REAOCALLs will be
accepted.

Additional error conditions are described in section 6.3.4.
The remaining communication commands from the host to

the IOM are:

WRCALL

IOENTIFY

This command is a WRITECALL request to the IOM
with an implicit REAOCALL request to read the
results. It is provided to increase the effi
ciency of the communication required to write an
10M command and read the results. Typically, the
host program will write an 10M command and immedi
ately read the results. This command allows the
host to send both requests with one communication
command. The response from the IOM is the
response that would be received if the WRITECALL
request were issued. The 10M then will notify the
host when the results are available.

This command is used as the first communication
with the IOM or to re-establish communication.
The host must send the "hostid" (hid) to the 10M
at this time. Additionally, the host characteris
tics must be sent to the 10M. These

Communicating with the IOM Updated June 1983 6 - 5

rOM Software Reference Manual Version 1.4 Britton-Lee Inc.

CANCEL

CANCELP

CANCELH

HELLO

6 - 6

characteristics include: binary integer represen
tation, character representation, BCO integer
representation, and error detection options. The
exact format for specifying this information is
given in the next section. Unless an error has
occurred, the 10M responds with YES followed by
its "idmid". This is a unique 10M identification
number to the host.

This command is used to cancel the current 10M
command issued by a host program. The "dbin" and
"pid" of the program that issued the command must
be provided. The current command is aborted and
results are flushed. In order to ensure that all
buffers containing data for this dbin are flushed
within the 10M and within the host system, the
CANCEL command is followed by an acknowledgement
which must be read by the host. The host issues a
CANCEL command to the 10M, and the IDM immediately
responds with a YES response (unless an error has
occurred) • Then, the host must issue a read com
mand on the same dbin, and the 10M will respond to
it with a NO response, accompanied by a special
error code indicating the CANCEL acknowledge.
~his protocol is illustrated in section 6.3.5.

This command is used to cancel all pending 10M
commands issued by a particular program on the
host. The host must supply the "pid" of the pro
gram. All pending transactions will be aborted and
all results will be flushed. This command is used
when a program on the host has abnormally ter
minated. The 10M sends a YES response, or a NO
response with an error code.

This command is used to cancel all pending 10M
commands issued by the host. All pending transac
tions will be aborted and all results will be
flushed. This command is used following a host
system failure. When the host returns on-line, it
must issue the IOENTIFY command and then issue the
CANCELH command. The 10M sends a YES response, or
a NO response with an error code. In the serial
interface, the host is identified by the serial
port over which it communicates. In the parallel
interface, the host is identified by the address
it uses on the interface bus.

This command is used primarily to indicate to the

Communicating with the 10M

10M Software Reference Manual Version 1.5 Britton-Lee Inc.

10M that the host is still on-line. The host must
communicate with the 10M at least every "TIMEOUT"
minutes. "TIMEOUT" is a host defined time period,
which is specified as a host characteristic in the
IOENTIFY command. If the host is not sending any
communications to the 10M, then it must send a
HELLO command at least every "TIMEOUT" minutes.
If "TIMEOUT" minutes pass and no communication is
received by the 10M, the host is assumed to be
down. The host can optionally turn off this
facility. The HELLO command can also be used by
the host to determine whether the 10M is on-line.
The IOM sends a YES response, or a NO response
with an error code.

6.1.2. 10M Channel-to-Host Communication Commands

The set of communication commands which the IOM uses to
communicate with the host is described below. If the host
chooses not to use REAOCALL and WRITECALL, the host will not
receive these asynchronous communication commands from the
10M; in that case, any communication from the IOM would be
an immediate response to commands sent by the host.

RESULTS - Requested Results Available
This command informs the host that requested
results are available. This command is only
issued as a response to a REAOCALL or WRCALL from
the host. The 10M supplies the "pid" and "dbin"
of the requester. The host must then send the
corresponding REAOCALL request to read the
results.

RAVAIL - Read Available
This command informs the host that the IOM now can
accept REAOCALL or WRCALL requests. It is only
issued following a REAOCALL request in which the
10M responded NO and indicated that REAOCALL
requests could not be accepted.

WCONTINUE - write Continue
This command informs the host that a particular
write request may now continue. It is only issued
following a WRITECALL or WRCALL in which the 10M
responded that it could not accept a write on this
"dbin". The 10M supplies the "dbin" and "pid" of
the request and the host may then send the write
request.

WAVAIL - Write Available

Communicating with the 10M Updated June 1983 6 - 7

IDM Software Reference Manual Version 1.5 Britton-Lee Inc.

This command informs the host that the IOM is now
available for writing. The command is only issued
following a WRITECALL or WRCALL request in which
the IOM responded that there was no space avail
able for writing. This command is not associated
with any particular "dbin" or "pid". The host
then may send a WRITE request.

6.2. Operating System to Host Device

In order to send communication commands to the IOM and
receive them from the IOM, the host must define an interface
between the host operating system (or host program) and the
host communication device. In our model interface, the
operating system will receive a program read or write
request, append the necessary parameter information, and
deliver the request to the host communication device. The
operating system in our example uses REAOCALL and WRITECALL
requ~sts. The device then performs the communication with
the IOM. Also, the device is responsible for receiving com
munication commands from the IOM and delivering the informa
tion to the operating system. The details of the device
to-IOM communication are given in the next section.

To perform the communication between the operating sys
tem and the host device, the model host device contains two
independent sets of registers: the SEND/RECEIVE registers
and the ASYNC RECEIVE registers. The SEND/RECEIVE registers
are used to issue communication commands from the host and
to receive the responses. The ASYNC RECEIVE registers are
used to receive communication commands issued by the IOM.
Each set of registers consists of a status/command register
and registers for the parameters required by the communica
tion command. Alternatively, these parameters could be kept
in a parameter block and a single register containing the
address of the block could accompany the status register.
This is an implementation detail determined by the charac
teristics of the host machine and the former design has been
chosen for this example. ~he registers are defined as fol
lows:

6 - 8 Updated June 1983 Communicating with the IOM

IDM Software Reference Manual Version 1.4 Britton-Lee Inc.

SEND/RECEIVE Registers

SR STATUS - host word size - status bits for sending
communication command and
receiving response

The status bits are:
communication command - 8 bits
READY bit - device ready
INTRENABLE bit - interrupt enable bit
GO bit - transfer information to IDM
DONE bit - request completed
RETURN bit - response from the IDM (YES / NO)
RECERROR bit - recoverable error occurred
NRECERROR bit - non-recoverable error occurred

S DBIN
S-PID
S-HUID

- 16 bits - data base instantiation number
- 32 bits - process id

- 32 bits - host user id
S ADDR -

S COUNT

host word size - address of bytes to send or
address of location for results

host word size - number of bytes to send or
receive

R COUNT host word size - number of bytes actually
returned

R ERROR - 16 bits - error code if RETURN bit is NO

ASYNC RECEIVE Registers

AR STATUS - host word size - status bits for receiving a
communication command
from the IDM

The status bits are:
communication command - 4 bits
ATTN bit - attention bit
INTRENABLE bit - interrupt enable

AR DBIN - 16 bits - data base instantiation
number of requester

AR PID - 32 bits - process id of requester

The SEND/RECEIVE registers are used as follows. The
READY bit in the SR STATUS register indicates that the dev
ice is ready to accept a communication command from the
operating system. At this time, if the operating system has
a command to send, the device handler loads the device SEND
registers with the request information. The device handler
then sets the GO bit. The GO bit initiates the transfer of
the information.

Communicating with the IDM 6 - 9

rOM Software Reference Manual Version 1.4 Britton-Lee Inc.

The device communicates the information to the 10M,
receives a response, and takes the appropriate action, such
as reading bytes or sending bytes. On a WRITE request, the
device uses the address in the S AOOR register and the count
in the S COUNT register to send the data to the 10M. On a
REAO request, the device uses the S AOOR register to store
the data returned from the 10M. After this is completed,
the DONE bit is set indicating the completion of the
request. At this time, the RETURN bit indicates the
response from the 10M (YES/NO), the RECERROR and NRECERROR
bits indicate whether a recoverable or non-recoverable
transmission error occurred, and the R ERROR register con
tains an error code if the RETURN bit is-NO. In the case of
a REAO request, the R COUNT register contains the number of
bytes returned. -

The ASYNC RECEIVE registers are used to accept the com
munication commands from the 10M. When a communication com
mand is received by the device, it loads the ASYNC RECEIVE
registers with the information received from the 10M and
sets the ATTN bit to interrupt and alert the operating sys
tem. The operating system then reschedules the requests
which were waiting on this call from the 10M.

6.2.1. An Example

We can now describe the flow of control from the user
program to the host communication device for our model
interface. Consider a user program that wishes to send an
TOM command to the 10M. The operating system receives this
request:

writeIOM(dbin,addr,cnt)

This indicates the "dbin" of this user program request and
the address and count of the command to be sent. The
operating system must now communicate this request to the
host device, supplying the "pid" and "huid" of the request
ing program. The operating system in our example always
chooses to use WRITECALL or REAOCALL. Therefore, if space is
not available or results are not available, the operating
system does not wait on the particular request and expects
to be called by the 10M when the request can be completed.

The operating system places the new user request on a
queue of requests, adding the "pid" and "huid" of the user
program. It then checks the communication device. If the
device is inactive, the operating system must invoke the
handler routine to process this request. Otherwise, the
request is handled at interrupt time when it reaches the
head of the queue. The handler places the request informa
tion in the SENO registers, loads the SR STATUS register

6 - 10 Communicating with the 10M

IDM Software Reference Manual Version 1.4 Britton-Lee Inc.

with the WRITECALL command and sets the GO bit.

The device then handles the communication with the IDM.
If the WRITE request was granted, the device sends the
bytes to the IDM. When the communication is completed, the
RESULT register is set to indicate a YES response, the ERROR
registers are set appropriately, and finally the DONE bit is
set. The operating system can now resume the requesting
program and the device handler processes the next request.

If the response from the IDM had been NO, the operating
system could then suspend the requesting program, and the
device handler would process the next request. At a later
time, the IDM would send a WAVAIL communication command to
the host. The device would receive the request and inform
the operating system. The operating system would re-issue
the WRITE request by placing the request in the queue once
again.

A user program requesting to READ results,

readIDM(dbin,addr,cnt)

would be processed in an analogous manner.

To summarize, the operating system handles requests to
write or read the IDM as follows:

OPERATING SYSTEM

o. receive readIDM or writeIDM system call
1. add the "pid" and Quid" of the user program

to the request
2. place the request on the queue
3. check the READY bit of the device

if the device is idle:
invoke the handler routine to process
this request

4. done

When the device completes a request, it sets the DONE bit
and interrupts. The interrupt handler proceeds as follows:

Communicating with the IDM 6 - 11

1DM Software Reference Manual Version 1.4 Britton-Lee Inc.

SEND/RECEIVE INTERRUPT HANDLER

o. disable interrupts
1. check the RETURN bit to determine the IDM response

if response is NO:
record error information from the

R ERROR register for user program
waiting on this request

2. wakeup user program waiting on this request
3. remove request from the queue
4. check queue for next request

if not empty:
load the SEND registers with request

information
set the device GO bit

5. enable interrupts
6. done

The operating system would invoke the SEND/RECEIVE INTERRUPT
HANDLER at step 4.

When an asynchronous communication command arrives from the
IDM, the device sets the ATTN bit and interrupts. The
interrupt handler which is invoked by this interrupt
proceeds as follows:

ASYNC RECEIVE INTERRUPT HANDLER

O. disable interrupts
1. read the AR STATUS register for the communication

command sent
2. wakeup user program waiting on this command
3. place request back on the queue
4. enable interrupts
5. done

6.3. Host Device to IDM Channel -- --- ------
The function of the host communication device is to

secure the sending and receiving of communication commands
and data to and from the IDM. The communication commands
and appropriate responses are used to define a protocol for
the communication between the host device and the IDM chan
nel. All communication between host and IDM is done using
packets. A packet, which is the unit of communication, is a
series of bytes that is always acknowledged by the receiver.
Two kinds of packets are used: communication packets and
data packets. Communication packets are fixed length and
contain communication information. Data packets are vari
able length and contain actual data.

Communicating with the IDM 6 - 12

IDM Software Reference Manual Version 1.4 Britton-Lee Inc.

6.3.1. Communication Packets and Data Packets - - - --- ---- -------
A communication packet from the host to the IDM -is a

l6-byte packet. It contains a communication command and the
associated parameters required by the IDM. The first byte
of every communication packet is a special HEADER byte,
which is followed by a communication command. The last two
bytes of every communication packet are used for a "check",
which is an error detection quantity. Packet error detec
tion is described in the next section. The octal codes for
the communication commands and the HEADER byte are given
below.

Communication Command Codes
(OCTAL)

Host to IDM

IDENTIFY
WRITENW
WRITEW
WRITECALL
READNW
READW
READCALL
CANCEL
CANCELP
CANCELH
HELLO
WRCALL

000
001
002
003
004
005
006
007
010
011
012
013

HEADER byte -- OCTAL 347

IDM to Host

WAVAIL 001
RAVAIL 002
WCONTINUE 003
RESULTS 006

With the exception of the IDENTIFY packet, a communica
tion packet from the host to the IDM consists of:

Communicating with the IDM 6 - 13

10M Software Reference Manual Version 1.4 Britton-Lee Inc.

Host to 10M
Communication

Packet

I HEADER I 1 byte

I command I 1

dbin I 2

pid
I

4

huid

I
4

count 2

check 2

The parameters that are supplied in the communication
packet, i.e. the "dbin", "pid", "huid", "count", and "check"
are expected to be sent in the 2-byte or 4-byte integer for
mat of the host. The IOM channel will convert the data
types to its own internal data type.

The 10M will ignore any parameter in a communication
packet which does not pertain to the particular communica
tion command. For example, CANCEL, CANCELP, CANCELH, and
HELLO commands are all sent in a 16-byte communication
packet with the appropriate parameters included.

A communication packet from the 10M to the host is a
lO-byte packet containing an "10M to host" communication
command. This packet is used to send the RESULTS, WCON
TINUE, WAVAIL or RAVAIL commands. The IOM-to-Host communi
cation packet contains:

6 - 14 Communicating with the 10M

IDM Software Reference Manual Version 1.4 Britton-Lee Inc.

IDM to Host
Communication

Packet

HEADER 1 byte

I command 1

I dbin 2

pid 4

check 2

The RESULTS and WCONTINUE communication commands make
use of the "dbin" and "pid" in this communication packet,
while the other commands do not.

A data packet from the host or from the IDM is variable
length and contains a maximum of 2048 bytes. Every data
packet is followed by a 2-byte check. Therefore, the maximum
data packet is 2K + 2 bytes. The dbp and a serial channel
communicate by default in packets of 256 bytes; and the dbp
and a parallel channel communicate by default in packets of
2 Kbytes. In case of a parallel channel, it is possible to
override this default. The other allowed sizes are: 1
Kbytes, 512 bytes and 256 bytes. See appendix A for infor
mation on how to set the dbp to channel packet size through
the configure relation.

6.3.2. The IDENTIFY Packet

The IDENTIFY packet must be sent as the first communi
cation with the IDM. It is also sent following a loss of
communication or a resynchronization; resynchronization is
discussed in the Parallel Interface and Serial Interface
sections. The IDENTIFY packet consists of a different set
of parameters than the other communication packets. These
parameters contain the host-dependent characteristics. The
IDM uses this information to convert different data
representations supported by various hosts to the represen
tation of data used by the IDM.

The following list of host characteristics are recog
nized by the IDM. Each characteristic is represented by 1
byte in the IDENTIFY packet, and the octal code for each
byte is given below.

Communicating with the IDM 6 - 15

IDM Software Reference Manual Version 1.5 Britton-Lee Inc.

HOST CHARACTERISTICS

int20rder - order of bytes for 2-byte integer
least significant byte followed

OCTAL CODE

by most significant byte 000
most significant byte followed

by least significant byte 001

int40rder - order of int2's for 4-byte integer
least significant int2's followed

by most significant int2's 000
most significant int2's followed

by least significant int2's 001

The int2's in these 4-byte integers
are assumed to be in the order
specified by "int2order"

char rep - character representation
ASCII code 000
EBCDIC code 001

errordet - error detection
2's complement checksum (2 byte) 000
none (2-byte check ignored) 377

timeout - a l-byte integer in minutes
The host agrees to send a communication
command at least every "timeout" minutes.
If "timeout" minutes passes and no communi
cation from the host is received, the host
is assumed to be down. A "timeout" value
of a turns off this feature. The channel
cancels all commands issued by a "timedout"
host just as if the host had sent a CANCELH.

hostid - a 2-byte integer used for identification
of the host. This integer is assumed to
be in the host 2-byte integer format.

6 - 16 Updated June 1983 Communicating with the IOM

IDM Software Reference Manual Version 1.4 Britton-Lee Inc.

IDENTIFY PACKET

HOST to IDM

HEADER 1 byte

I IDENTIFY cmd I 1

1

int20rder 1

int40rder I 1

I I 1

I I 1

charrep I 1

errordet 1

1

timeout I 1

I 1

hostid I 2

check 2

The IDENTIFY packet is used to: initially establish
communication, re-establish communication following a host
or IDM failure, and resynchronize following a loss of syn
chronization. When the host is re-establishing communica
tion following a host failure, it must also cancel all pend
ing IDM requests by issuing a CANCELH command. When the
host and IDM are attempting to resynchronize, it is neces
sary for the host to know whether an IDM failure has
occurred. If this has happened, all pending host requests
have been cancelled. Therefore, the response to the IDEN
TIFY packet includes the "idmid" and an indication of
whether the IDM has just come back on-line.

6.3.3. Packet Error Detection

Each communication packet and data packet includes an
additional 2-byte quantity for error detection, and is

Communicating with the IDM 6 - 17

IDM Software Reference Manual Version 1.5 Britton-Lee Inc.

acknowledged by the receiver. When either the host or the
IDM sends a packet, it must wait for a positive acknowledge~
ment from the receiver. If a negative acknowledgement is
returned, then the communication or data packet must be
resent.

The IDM supports a 2-byte checksum for error detection
of packets. The host specifies, in the IDENTIFY packet,
whether it will support a checksum or no error detection.
In either case, the 2-byte error detection quantity is
present at the end of every packet and every packet must be
acknowledged. The IDENTIFY packet must include the error
detection quantity that the host has chosen to provide.

If the host chooses not to support error detection,
then the 2-byte quantity from the host and from the IDM is
ignored. In this case, all packets are always positively
acknowledged. The checksum provided by the IDM is simply a
2-byte wide sum of all bytes in the packet. The host
includes the checksum by placing it in the 2-byte "check" of
the packet in the host 2-byte integer format.

i.l.i. The Acknowledgement Byte and Response Packet

All communication packets and data packets are ack
nowledged by both the IDM and the host. This is done using
a I-byte acknowledgement. Since a communication packet from
the host also requires a YES or NO response, the ack
nowledgement byte from the IDM to the host includes this
response. The acknowledgement bytes are defined as follows:

6 - 18 updated June 1983 Communicating with the IDM

IDM Software Reference Manual Version 1.4

Host to IDM

ACK
NACK

IOM to Host

ACK-YES
ACK-NO
NACK

HEADER byte

Octal

000
370

Octal

000
037
370

Octal
~----

347

Binary

00000000
11111000

Binary

00000000
00011111
11111000

Binary

11100111

Britton-Lee Inc.

ACK is used to indicate that the packet was correctly
received. If error detection is used, then ACK means that
the error detection quantity has been computed and agrees
with the error detection quantity appended to the packet.
In response to a communication packet, ACK-YES from the IDM
indicates that the packet was correctly received and that
the request may proceed. ACK-NO from the IDM indicates that
the communication packet was correctly received, however the
request may not proceed at this time. NACK, a negative ack
nowledgement, indicates that the packet was not correctly
received and informs the sender to resend the packet. ACK
YES and NACK are the only responses given to a data packet
from the host since data packets only require an ack
nowledgement.

Since the correct transmission of the acknowledgement
byte is critical, the codes for the acknowledgement byte
from the IDM to the host have been chosen to allow for I-bit
or 2-bit error correction. Any I-bit or 2-bit error in this
acknowledgement code can be corrected, since such a code is
still uniquely close to one of the legal acknowledgement
codes. "Uniquely close" means that the code would differ in
bit pattern from only the intended code by 1 or 2 bits
(depending on a 1 or 2 bit error) .

The error correcting of this acknowledgement byte can
be implemented in one of two different ways. The first
implementation is to compare the received code to the legal
codes by using an exclusive-OR. Then the result of each
comparison is bit-counted. A bit count of 0, 1, or 2 indi
cates the correct code assuming that there has been, at
worst, a 2 bit error. Alternatively, the 256 possible codes
that may be received can be kept in a table indicating
either the corresponding transmitted code, or an error
situation.

Communicating with the IDM 6 - 19

IOM Software Reference Manual Version 1.4 Britton-Lee Inc.

The response to a data packet is simply the I-byte ack
nowledgement. However, in response to a communication
packet from the host, each acknowledgement byte from the IOM
is followed by a "response" packet. The response packet con
tains 2 bytes of information in the host 2-byte integer for
mat and is followed by a 2-byte check. This check includes
only the 2 bytes of information in the response packet and
does not include the preceding acknowledgment byte. The
response packet, like all other packets, must be ack
nowledged by the host. If the host returns a NACK to the
response packet, the acknowledgement byte and the response
packet will be resent. The information in the response
packet depends upon the acknowledgement byte that was sent,
but is always 4 bytes in length. Therefore, the IOM
response to a communication packet from the host is always a
S-byte quantity: the acknowledgement byte followed by the
response packet. A response packet is one of the following:

RESPONSE PACKET FROM THE IOM

ACK-YES 1 ACK-NO 1 NACK 1

EOR
------------- -------------I I count I 2 lerror code I 2 I bad check I 2

--------------- ------------- -------------I check I 2 check 2 check 2

------------- -------------

The ACK-YES response is always followed by a "count"
response packet. In response to a REAO or WRITE request,
this count indicates the actual number of bytes that may be
read or written. In other words, the count specifies the
size of the data packet that will be sent or received by the
IOM. This count does not include the 2-byte check appended
to every packet. In response to a REAO request, the most
significant bit of the 2-byte count is set when the IOM is
sending the end of the results. This bit is called the EOR
or End Of Results bit.

The count returned by the IOM in the "count" response
packet may differ from the count sent by the host for both
REAO and WRITE requests. The IOM will read and write data
packets of sizes up to 2K-bytes. Therefore, a REAO or WRITE
request with a count greater than 2K will be acknowledged by
a response packet with a count of 2K or less.

On a WRITE request, provided a count of 2K or less, the
IOM will either grant the write request for the count indi
cated by the host, or will indicate that there is

6 - 20 Communicating with the IOM

10M Software Reference Manual Version 1.5 Britton-Lee Inc.

insufficient space for writing. If a host program wishes to
send more than 2K bytes, this must be done using multiple
WRITE requests. For example, if the host program wishes to
send 10K bytes to the 10M, the device might communicate this
data to the 10M using 5 WRITE requests, each with a "count"
equal to 2K. In any case, when the 10M responds with YES to
the write request, it is always followed by a count response
packet. Therefore, the device may request to send 10K
bytes, and the 10M will return a count indicating how many
bytes may be written, such that "count" <= 2K.

On a READ request, the 10M will return the results that
are available at the time of the request. Therefore, the
10M may send a count less than that requested by the host.
In this case, the device sends multiple READ requests. The
10M indicates the end of the data by setting the EaR bit in
the response packet for the final data packet. The host may
read results until the EaR count is received.

In the ACK-YES response to an IDENTIFY command, the 2-
byte "count" is used for the IDENTIFY command response; i.e.
the "idmid" and the single bit 10M failure indicator.

IDENTIFY PACKET RESPONSE

ACK-YES 1

I idmid 2

msb lsb

check 2

FI - failure indicator - is placed in the most
significant bit of the most significant
byte. When set, it indicates that
the 10M has just returned on-line.

idmid - is placed in the least significant byte of the
2-byte response

In the case of a response to some other 10M command,
such as a CANCEL command, the contents of the count response
packet can be ignored.

The ACK-NO response is always followed by an "error"
response packet. This packet contains a 2-byte error code
indicating the error condition that has occurred. The error
conditions that may arise were discussed previously, and the
corresponding error codes are given below. Negative error
codes indicate host system or user errors. The following
errors apply to revision 37 or higher of the serial channel
and revision 15 or higher of the parallel channel.

Communicating with the 10M Updated June 1983 6 - 21

10M Software Reference Manual Version 1.4 Britton-Lee Inc.

Customers with older channels should refer to version 1.3 of
the Software Reference Manual.

6 - 22 Communicating with the 10M

IDM Software Reference Manual Version 1.5 Britton-Lee Inc.

Communication
Command causing
the error

READNW
READCALL

WRITENW
WRITECALL
WRCALL

READCALL
WRCALL

WRITENW
WRITECALL
WRCALL

ANY

ANY

ANY READ
ANY WRITE

ANY READ

IDENTIFY

ANY WRITE

ANY READ

ANY

ANY WRITE

ANY WRITE

ERROR CODES

Error

Code
in host
2-byte

integer
format

results not available 1

insufficient space for writing 2

not accepting READCALL requests 3

not accepting write requests on 4
this "dbin"

illegal HEADER byte -1

illegal communication command -2

count <= 0 -3

illegal "dbin" -4

illegal code in IDENTIFY packet -5

Read output for this dbin. This -7
means that multiple commands have
been sent without reading any results.
Results must be read before issuing
any new write commands.

CANCEL acknowledge -8

no IDENTIFY sent -11

Must read CANCEL acknowledge before -12
issuing another command. A cancel
was issued by the host and the CANCEL
acknowledge was not read before
another command was issued.

Must read IDM error message before any -13

Communicating with the IDM Updated June 1983 6 - 23

10M Software Reference Manual Version 1.4 Britton-Lee Inc.

ANY REAO

additional writes. This can happen on
a load database, load transaction,
copy in or file write. If an error
happens during one of these commands,
the host program will get this error.
It should then cancel the command it is
running and read the 10M error message.

Results cancelled by channel. This -14
message is returned when the host
specifies a timeout period in the
configure relation and fails to request
results in that amount of time.

The NACK response to a communication packet from the
host is always followed by a "bad-check" response packet.
The 2-byte quantity in this packet contains the "bad" check
sum or CRC that was computed by the 10M. This may be useful
to the host for diagnostic purposes.

6.3.5. Examples

This section illustrates the protocol described in the
preceding sections. Each example has been chosen to illus
trate a different protocol sequence. An arrow (-----»
indicates one communication between the host and the 10M,
i.e. all information is sent before any other communication
can proceed. Asterisks (* * *) indicate that there mayor
may not be additional communication during that time.

A. startup protocol

The IOENTIFY packet is used as the first communication
with the 10M. At startup, the protocol is:

6 - 24

HOST IOM

IOENTIFY
communication

packet

ACK

------->

<-------

------->

ACK YES

Iresponse packetl
FI + idmid

Communicating with the IOM

IDM Software Reference Manual Version 1.4 Britton-Lee Inc.

Following this protocol, host requests can be received
by the IDM.

Communicating with the IDM 6 - 25

IDM Software Reference Manual Version 1.4 Britton-Lee Inc.

B. Re-establishing communication after host failure

Following a loss of communication or following a re
synchronization, the IDENTIFY packet must be issued by the
host. Additionally, if the host has gone down and is now
re-establishing communication with IDM, the CANCELH ~ommand
must be used to cancel all pending IDM commands. Therefore,
the sequence to re-establish communication in this case is:

6 - 26

HOST

IDENTIFY
communication

packet

ACK

CANCELH
communication

packet

ACK

------->

<-------

------->

* * *

------->

<-------

------->

IOM

ACK YES

\
response packet\

FI + idmid

ACK YES

\response packet \

Communicating with the IDM

10M Software Reference Manual Version 1.4 Britton-Lee Inc.

C. A WRITE request

Assume that the device has received a WRITECALL request
from the operating system via the SENO registers. The dev
ice must now send the request to the 10M in the form of a
communication packet. Suppose the "count" of this request
is 100 bytes and that the 10M has space to accept the 100
bytes. The protocol would proceed as follows:

HOST

WRITECALL
communication
packet
count = 100

ACK

data packet
100 bytes

+ check

------->

<-------

------->

<-------

10M

ACK YES

I

response packetl
count = 100

ACK YES

At this point, the transfer is complete and the device
sets the status register appropriately.

Communicating with the 10M 6 - 27

IOM Software Reference Manual Version 1.4 Britton-Lee Inc.

D. A READ request - Results not available

Suppose the next request that the device receives is a
READCALL request. This is the request for the results of
the IOM command that was sent to the IOM in the previous
example. If the results are not yet available, the communi
cation protocol would proceed as follows:

6 - 28

HOST IOM

READCALL
communication
packet

ACK

ACK

REAOCALL
communication
packet

ACK

ACK

------->

<-------

------->

* * *

<-------

------->
* * *

------->

<-------

------->

<-------

------->

ACK NO

response packet
results not
available

RESULTS
communication
packet

ACK YES

I
response packetl
with count

"results"
data
packet

+ check

Communicating with the IOM

IDM Software Reference Manual Version 1.4 Britton-Lee Inc.

E. A READ request - host requests more data than available

To illustrate another communication sequence, suppose
that the host requests to read 4K bytes of results using the
READNW command. The results are available but the total
number of bytes is 3K. The communication protocol would
proceed as follows:

Communicating with the IDM 6 - 29

10M Software Reference Manual Version 1.4

HOST

REAONW
communication

packet
count = 4K

ACK

ACK

REAONW
communication

packet
count = 2K

ACK

ACK

------->

<-------

------->

<-------

------->
* * *

------->

<-------

------->

<-------

------->

Britton-Lee Inc.

10M

ACK YES

I
response packetl

count = 2K

"results"
data

packet
2K bytes
+ check

ACK YES

response packet
count = lK

+ EOR bit set

"results"
data

packet
lK bytes
+ check

6 - 30 Communicating with the 10M

10M Software Reference Manual Version 1.4 Britton-Lee Inc.

F. Negative acknowledgements

The following protocol illustrates the action to be
taken when a negative acknowledgement is received.

HOST

WRITEW
communication

packet

ACK

WRITEW
communication

packet

NACK

ACK

data
packet

+ check

data
packet

+ check

Communicating with the 10M

------->

<-------

------->
* * *

------->

<-------

------->

<-------

------->

<-------
------->

<-------

10M

NACK

lre~~~n~~_~~cketl
luau cueCK I

ACK YES

I

response packetl
with count

ACK YES

I
response packetl

with count

NACK

ACK YES

6 - 31

10M Software Reference Manual Version 1.5 Britton-Lee Inc.

G. Cancel Protocol

The protocol for issuing a CANCEL on a particualar
"dbin" proceeds as follows.

CANCEL
dbin x

communication
packet

ACK

READW,READNW or
READCALL
dbin x

communication
packet

ACK

6 - 32 Updated June 1983

------->

<-------

------->

* * *

------->

<-------

------->

ACK YES

\
response packet\

info = 0

ACK NO

response packet
with cancel

acknowledgement

Communicating with the 10M

IDM Software Reference Manual Version 1.4 Britton-Lee Inc.

6.4. The Parallel Interface

6.4.1. The IEEE-488 Bus

Parallel I/O to the IDM is achieved through the stan
dard IEEE-488 bus (GPIB). The characteristics and features
of this standard are described in "IEEE Standard Digital
Interface for Programmable Instrumentation" This bus can
be used to connect a single host or several hosts to the
IDM. To simplify communication over the bus, to allow for
efficient sharing of the IDM among hosts, and to avoid the
locking of the bus due to a single host failure, the IDM is
the SYSTEM CONTROLLER and CONTROLLER-IN-CHARGE of the bus at
all times. It is assumed that all devices on the bus are
IDM hosts.

The IEEE-488 bus standard document provides capability
identification codes for identifying the interface functions
and subsets implemented by a particular device (Appendix C
of the IEEE-488 Standard). An IDM host that chooses to com
municate using the parallel interface must have talker,
listener and serial poll capabilities. The specific
requirements that an IDM host must satisfy and the IDM
interface characteristics are given in terms of the allow
able subsets defined in the standard document 0

1 "IEEE Standard Digital Interface for Programmable In
strumentation", IEEE Std 488-1978, Published by The Insti
tute of Electrical and Electronics Engineers, Inc., 345 East
47th Street, New York, New York 10017.

Communicating with the IDM 6 - 33

IDM Software Reference Manual Version 1.4 Britton-Lee Inc.

HOST
REQUIREMENTS

Source Handshake
SHI
complete capability

Acceptor Handshake Function
AHI

Talker Function

complete capability

T2
basic talker
serial poll

Talker Extended Function
'T'E 0
no capability

Listener Function
L2
basic listener

Listener Extended Function
LEO
no capability

Service Request Function
SRI
complete capability

Remote Local Function
RLO
no capability

Parallel Poll Function
PPO
no capability

Device Clear Function
DCa
no capabili.ty

Device Trigger Function
DTO
no capability

Controller Function
CO
no capability

IDM
CHARACTERISTICS

SHI
complete capability

AHI
complete capability

T3
basic talker
talk only mode

TEO
no capability

Ll
basic listener
listen only mode

LEO
no capability

SRO
no capability

RLO
no capabili.ty

PPO
no capability

DCa
no capability

DTO
no capability

Cl system controller
C2 send IFC and

6 - 34 Communicating with the 1DM

10M Software Reference Manual Version 1.4 Britton-Lee Inc.

6.4.2. The Protocol

take charge
C4 respond to service

request
C27 send interface

messages and take
control synchron
ously

The host bus address is specified as described in the
Operator Manual, or the default configuration may be used.
The default configuration assumes that there is a single
host on the bus at bus address 1.

When a host wishes to send a communication packet to
the 10M, the host device issues SRQ (service request). The
TOM will SERIAL POLL hosts to determine the requester(s).
After the SERIAL POLL sequence, the 10M addresses each
requester, in turn, to TALK. When the host is addressed to
TALK, it sends a communication packet. The 10M receives the
packet and addresses the host to LISTEN in order to send the
acknowledgement byte and response packet. Continuing the
protocol, the 10M then addresses the host to TALK so that
the host can send the acknowledgement byte. This is the
shortest protocol sequence that is allowed on the bus, i.e.
no other communication can occur before the acknowledgement
byte is received. The IDENTIFY packet is an example of this
sequence. In order to send another communication packet,
the host issues SRQ, and the protocol is repeated. Each
time that the host is addressed to TALK, the 10M later will
issue the UNTALK command to unaddress the host. After a
host is addressed to LISTEN, the UNLISTEN command will be
issued.

At startup, the 10M issues IFC (Interface Clear) to
clear the bus. Following this, the action of the host is to
issue SRQ (service request). A SERIAL POLL then is performed
by the 10M and all addresses are polled. The host must use
the same device address for talking and listening. Follow
ing the serial poll, the host is addressed to TALK, and it
must send the IDENTIFY communication packet. The 10M will
address the host to LISTEN and send the acknowledgement byte
and response packet. The host is addressed to talk to send
its acknowledgement byte and the startup protocol is com
plete.

When the 10M wishes to send a communication packet to
the host, the host will be addressed to LISTEN. This will
only occur outside of a host-to-IOM communication sequence,
l.e. a sequence initiated by the host. Therefore, when
the host is addressed to LISTEN, it can determine which kind

Communicating with the 10M 6 - 35

10M Software Reference Manual Version 1.4 Britton-Lee Inc.

of packet to receive. The 10M then sends the communication
packet, addresses the host to TALK, and expects the return
of the acknowledgement byte.

If the host receives a NACK to a communication packet,
it must acknowledge the NACK response packet and then res
tart the communication sequence by issuing a service
request. If a NACK is received to a data packet, the host
does not issue service request, but simply retransmits the
data packet.

To illustrate the use of the bus protocol with the 10M
protocol, an example from the previous section has been
repeated below. The example assumes that the host is at bus
address 1. The bus protocol is given in angular brackets.
The actual octal bus commands are specified in parentheses.

6 - 36 Communicating with the 10M

10M Software Reference Manual Version 1.4 Britton-Lee Inc.

HOST 10M
==

< service request >

< send status byte >

WRITE
communication
packet

ACK

data packet

< serial poll enable> (030)
< talk host 1 > (101)

< untalk > (137)
< serial poll disable> (031)

< talk host 1 >

------->

< untalk >
< listen host 1 >

ACK YES
<-------

(137)
(041)

Iresponse packet \

< unlisten >
< talk host 1 >

------->

< untalk >
< listen host 1 >

<------- ACK

< unlisten >

YES

(077)
(101)

(137)
(041)

(077)

Communicating with the 10M 6 - 37

10M Software Reference Manual version 1.4 Britton-Lee Inc.

6.4.3.

If transmission errors occur over the communication
line causing the loss of synchronization in the communica
tion protocol, IFC (Interface Clear) will be issued by the
10M. Following every resynchronization, the startup proto
col is performed, and the host must send an IDENTIFY packet.
This action may take place as a result of repeated negative
acknowledgements (NACKs) from the host, when an acknowledge
ment byte is not recognizable, or when synchronization is
lost for any reason.

Loss of synchronization may occur dur ing a host-10M
communication sequence, or outside of such a sequence. The
host must always respond to IFC by performing the startup
protocol. IFC indicates to the host that: synchronization
was lost between the IDM and the host, synchronization was
lost between the IDM and another host on the bus, or the 10M
is returning after a fai lure. Therefore, upon rece iving
IFC, the host must:

1. perform startup protocol
2. check response

if 10M failure occurred:
cancel all user programs waiting

on IDM requests
if the host was in a host-10M

communication sequence:
re-issue interrupted request

6.5. The Serial Interface

6.5.1. The ~R-232-C Interface
.- .- - -~- ._.- --- -- ------.-.---

Ser ial I/O to the 10M is achieved through a standard
RS-232-C Interface. rrhe character istics

2
of this standard

are described in "EIA Standard RS-232-C" Communication is
asynchronous using a full duplex character or iented proto
col. The data transmitted consists of 8 bit binary with no
parity and one stop bit. The baud rates supported by the IDM
are:

---::~------.--- ~-.-

2 "ETA Standard RS-232-C Interface Between Data Termi
nal Equipment and Data Communication Equipment Employing
Serial Binary Data Interchange", Electronic Industries Asso
ciation, August 1969.

Communicating with the 10M 6 - 38

TDM Software Reference Manual Version 1.4

150
300
600

1200
1800
2400
4800
9600

19200

Britton-Lee Inc.

The host RpeciEies the configuration of the serial ports as
described in the Operator Manual, or uses the default confi
guration which assumes all serial ports at 9600 baud.

6.5.2. The Protocol.

The communication protocol descr ibed in the previous
section can be easily achieved for the SERIAL interface.
Although full duplex communication is possible over the RS-
232-C line, the communication protocol defined in the previ
ous section enforces an actual protocol that is similar to
half duplex main channel protocol. The IDM and the host are
not sending data at the same time. Due to the full duplex
capability, however, there exists a race condition in the
serial communication protocol. The HEADER byte, which is
sent with every communication packet, is used to detect this
race condition.

The condi tion can ar ise only if the 1DM is sending a
communication packet (e.g. the IDM has heen requested to
call the host when results are available). If the host and
the IDM both sen~ communication packets at approximately the
same time, they will each receive communication packets
rather than acknowledgement bytes. This condition is easily
detected. The host always reads one byte after sending a
communication command. That byte will be one of the values:
ACK-YES, ACK-NO, NACK, or HEADER. The byte is error
corrected as discussed in the previous section. If the byte
is HEADER, then the race condition has occurred. At this
point the host will read and disregard the communication
packet from the IDM and will await the acknowledgement byte
that it was expecting previously. The IDM also detects the
condition, sends the appropriate acknowledgement and, at a
later time, resends the communication packet that was disre
garded by the host.

~.~.~. Resynchronizat~~~

If synchronization is lost during communication or the
host wishes to abort the current communication sequence with
the IDM, the host may issue BREAK (defined by the RS-232

Communicating with the IDM n - 39

TOM Software Reference Manual Version 1.4 Britton-Lee Tnc.

Standard). This will reset the protocol between the TOM and
the host. Following this BREAK, the TOM is ready to accept
a communication packet from the host.

To aid in the resynchronization process, when the TOM
is expecting to read a communication packet from the host,
it will ignore all characters until it reads a HEADER byte.
Tf it is not possible for the host to send a BREAK, it can
attempt to resynchronize by simply sending a communication
packet to the TOM. The TOM will always attempt to resyn
chronize when it receives characters at a time when charac
ters from the host are not expected. However, without using
BREAK, resynchronization by sending a communication packet
to the TOM is not always possible, since the TOM may be
expecting data from the host.

Resynchronization is used when the program actually
communicating with the TOM abnormally terminates, or when it
is desirable to stop a communication protocol with the 10M.
An example of the latter case is when the host has issued a
REAOW command and is waiting for the results to be returned.
If the host wishes to abort this request, it issues a BREAK
and then the CANCEL communication packet to flush the
results.

6 - 40 Communicating with the 10M

10M Software Reference Manual Version 1.4 Britton-Lee Inc.

7. 10M Command Set

This section presents the 10M command set. The 10M
does not have a "machine language" in the normal sense. To
"program" the 10M it is necessary to send high level com
mands to it and interpret the results. Every command starts
\'li th a command "token" or op-code. Other tokens are used in
the definition of parameters to the command. Throughout
this document tokens are given in capital letters and are
fully defined in Appendix B. Numbers to the immediate right
of the token are one-byte length specifiers. This is sent
after the token and is followed by that many bytes of data
associated with that token.

As mentioned in Section 5, commands take several dif
ferent kinds of parameters. The most complex of these are
the query trees. A discussion of the general syntax of the
trees is given in Section 5. In this section we show the
complete command list and associated query trees for the
10M. The trees are always sent to the 10M using a post
order traversal.

In the query tree examples with each command, the
information below the token in parentheses is sent after the
token. Some of the error messages which could be received
are given with explanations after each command. The com
plete list of error messages is given in Appendix C.

Because it is difficult to understand the commands
without glvlng query-language examples we define the query
language IOL. 10M parse tree syntax is summarized in Appen
di.x E.

For each command we provide four things: the IOL syntax
in a form similar to BNF, the octal command token value, a
description of the command, and examples showing both the
IDL form and the resulting 10M command. To facilitate
presenting the IOL syntax we first define the meta-symbols
which will be used in the command definitions.

7.1. IOL meta-symbol definitions

The following symbols are used in examples of 10M com
mands:

- Parentheses are necessary, and must appear
literally in the command.

- Anything included in square braces is optional.

- A vertical bar indicates that a choice of words
is presented.

- Curly braces indicate that the word may appear

IDM Software Reference Manual Version 1.4 Britton-Lee Inc.

o or more times.

~/*~, ~*/~ - Words between these symbols are explanatory
comments.

Words in angle braces are meta-symbols,
explained below.

All other words are key words and must appear literally.

Definitions of meta-symbols:

7.2. Target List

<target list>: <target list element>
--r; <target list element> }

7 - 2

The target list is the list of objects that are
affected by the command. In the case of a retrieve:

retrieve (e. name)

the target list is the
query tree the target
node. It is ended by a
The query which would
be:

attribute "~.name". In the
list is on the left of the ROOT
TLEND (target list end) node.
be sent with this command would

ROOT
(0 0)

/ \
RESDOM QLEND
/ \

TLEND VAR 5
(0 name)

The tree would be sent using a post order traversal.
Items in parentheses below a node are data associated
with that node and are sent after the token value and
length.

The target list consists of RESDOM, RESATTR and ORDER
DOM nodes along the left edge of the tree with expres
sion subtrees as their right descendants. In a
retrieve, the order of the target list elements is
important because it determines the order in which data
will be returned. The first target list domain is the
left child of the root. The last domain is the parent
of the TLEND node. RESDOM nodes point to result
domains in the target list. RESATTR nodes are used to
send the name of a target list domain, in an append,
for example. ORDERDOM nodes are used in retrieve

IDM Command Set

10M Software Reference Manual Version 1.7 Britton-Lee Inc.

commands to specify a target list element which is not to be returned to the host but is used in
sorting the data.

<target list element>:
<name> = <expression> I attribute I <variable> . all

Target lists can be simple, as in the case above, where the target list was composed of a
single relation variable and an attribute name. Arbitrary expressions, as defined below, can also
be included in the target list. For example:

retrieve (e.name, wages = e.salary * e.hours)

ROOT
(0 0)
I \

I QLENO
RESOOM

I \
I VAR 5

RESOOM (3 name)
I \

TLENO \
MUL
I \

I \
VAR7 VAR6

(3 salary) (3 hours)

In the above query, the target list is composed of the attribute "e.name" and the expression
"e.salary * e.hours". The expression must be given a name in order to be displayed to the user;
the name assigned in the above query is "wages". A RESATTR node must be sent instead of a
RESOOM node if the 10M is to return the names of the columns in response to
command-option 2 in the retrieve command:

10M Command Set Updated September 1984 7-3

IDM Software Reference Manual Version 1.6

ROOT
(0 0)
/ \

/ QLEND
RESDOM 5

(name)
/ \

/ VAR 5
RESATTR 5 (3 name)

(wages)
/

TLEND
\

MUL
/ \

/ \
VAR 7 VAR 6

(3 salary) (3 hours)

Britton-Lee Inc.

The constructt <variable> . alIt is used to reference all attributes of a relation. This is I
represented by an ATTRALL node. The form is only valid in the target list and is expanded by
the IDM to the equivalent tree using RESATTR and VAR nodes.

7.3. QUALIFICATION

<qualification>: (<qualification>)
not <qualification>
<qualification> and <qualification>
<qualification or <qualification>
<clause>

The qualification is the part of the database command that determines which objects are
affected by the command. The command:

delete emp where emp.salary > 24000

deletes from the relation associated with the variable "empn all employees whose salary is
over 24000. The clause "emp.salary > 24000n is the qualification. The above command has no
target list. The following tree would be used in this command: I

7-4 Updated March 1984 IDM Command Set

10M Software Reference Manual Version 1.4 Britton-Lee Inc.

ROOT
(0 0)

/ \
/ \

TLENO GT
/ \

/ \
/ \

VAR 7 INT2
(0 salary) 24000

A qualification is a boolean expression of relational
clauses.

<clause>: <expression> <relop> <expression>

A relational clause may only appear in a qualification.
The operands may be any expression.

<relo >: = /* equal */
1= /* not equal */
< /* less than */
<= /* less than or equal */
> /* greater than */
>= /* greater than or equal */

Relational operators are supported by the 10M for all
data types. If expressions are characters the comparisons
are made on the basis of ASCII sort order. Blanks at the
end of character strings are ignored for comparison pur
poses. Zeros at the end of binary strings are ignored for
comparison purposes. Floating point binary numbers are com
pared as the first byte signed and the remaining bytes
unsigned. The operands may be any expression.

7.4. Expression

<expression>: <aggregate>

I <attribute>
<constant>
<expression> <arithop> <expression>
- <expression>
(<expression>)
<constant function>
<unary function> (<expression>
<with length function> «intI>,

<expression>)
<binary function> (<expression>,

<expression>)
<ternary function> (<intI>, <intI>,

<expression>)

The 10M supports expressions in both the target list

10M Command Set 7 - 5

10M Software Reference Manual Version 1.6 Britton-Lee Inc.

and qualification for most commands.
the terms used above, then give
expressions.

We will explain all of
examples of the use of

<arithop>: +

*
/

/* addition */
/* subtraction */
/* multiplication */
/* division */

Arithmetic operators are supported by the IDM only for
integer and BCD expressions. The IDM allows different
integer types in the same expression. An operation is
always done in the type of its longest integer operand.

<aggregate>: <aggop> (<expression>
[by <expression> ~ , <expression> } 1
[where <qualification>])

An aggregate is an arithmetic function on the data
specified which returns one or a set of values. The "aggop"
defines which function to use.

<aggop>: sum [unique] I count [unique] I
avg [unique] I once [unique]
any I max I min

The aggregate, once, cannot be used in an aggregate
function. "Once" returns one and only one value. If no
value exists, or if more than one value exists, an error
message is generated. The aggregate operators of sum,
count, and avg will perform the sum, count, and avg func
tions on either all the data specified, or, if "unique" is
specified, only on unique values. Sum and avg can only be
used with integer or BCD expressions; the others can be used
on expressions of any type. An example of an aggregate in
the target list is:

retrieve (first = min(e.name»

7 - 6 Updated March 1984 IOM Command Set

IDM Software Reference Manual Version 1.6

RESDOM
/ \

ROOT
(0 0)

/ \
/ QLEND

/ \
TLEND AGHEAD

/ \
/ \

AOPMIN QLEND
I

VAR 5
(2 name)

Britton-Lee Inc.

The above example puts the alphabetically first employee~s
name in the position named "first". Notice that the

7 - 6.1 Updated March 1984 IDM Command Set

This page has been intentionally left blank.

IDM Software Reference Manual Version 1.4 Britton-Lee Inc.

aggregate has a qualification which must be present in the tree even if empty. An example of an
aggregate in the qualification is:

delete emp where emp.sal > avg (emp.sal)

This example deletes from the relation associated with the variable "emp" all those
employees who make more than the average salary.

An example of an aggregate function with a "by clause" is:

retrieve (dept _ totai = sum (e. saiary bye. deptno»

which retrieves the sum of the salaries. grouped by department number. The tree for aggregate
functions has a new node. the BYHEAD. which is the head of the "by list". The by list is
structured exactly like a target list for a retrieval.

ROOT
(0 0)
/ \

/ QLEND
RESDOM
/ \

TLEND \
ARGHEAD

/ \
/ \

BYHEAD QLEND
/ \

/ \
RESDOM AOPSUM
/ \ I

TLEND VAR 7 VAR 7
(3 deptno) (3 salary)

When used with the "by list" aggregates are one of the most powerful tools in IDL. See the
previous section. "Introduction to IDL". for more examples.

<constant function>: userid I dba I host I gettime I getdate I databasename

Constant functions take no arguments. They are useful for getting at IDM system data.

"userid tt returns the IDM user id for the current user (a two-byte integer).

"dba tt returns the IDM user id for the database administrator for the current open database
(a two-byte integer).

IDM Command Set 7-7

IDM Software Reference Manual Version 1.7 Britton-Lee Inc.

"host" returns the IDM host id from which the current command came; it is a 2-byte integer
sent from the host in the IDENTIFY packet. See Chapter 6 for details of the IDENTIFY packet.

"gettime" is the number of 60ths of a second since midnight. The value will typically be
wrong after the IDM has been brought on-line. The "settime" command allows any host to
reinitialize its value.

"getdate·· counts the number of days. It can be initialized to any value by the "setdate"
command. When the time reported by "gettime" reaches the number of 60ths of a second in 24
hours, it is reset and the date reported by "getdate" is incremented by 1.

"databasename" is the character string name of the currently opened database.

<unary function>: int1 I int2 I int4 I reI_name I rel_id I abs I binary

These functions take one argument, which may be any expression except in the case of
"abs". "abs" is invalid for character and binary data types.

The functions int1. int2. and int4 will convert BCD. character. or one-. two-. or four-byte I
integers or fixed length strings of the proper length. to the specified result. For instance,

replace emp
(wages = int4 (emp.salary) * emp.hours)

will cause the IDM to first convert emp.salary to a 4-byte integer, then multiply it by the
employee·s hours. then store the result in wages. If the operand is of type character it must
contain only digits or be of zero length.

"reI_name" expects a relid of an object and returns its name. If the number is invalid, a zero
length string is returned.

"rel_id" expects a name of an object and returns the relid of the object. The object name
argument may be followed by a colon followed by a user name to specify an object not owned by
the user submitting the command. If the name is invalid a zero is returned.

"abs" returns the absolute value of its argument.

"binary" converts its argument to the "binary" type. It does not change the value of the
argument in any way.

7-8 Updated September 1984 IDM Command Set

IDM Software Reference Manual Version 1.4 Britton-Lee Inc.

<with length function>: [fixed] bcd 1 [fixed] bcdflt
--I [fixed] string

The syntax for "bcd" is:

bcd(precision, expression)

The function converts "expression" to a BCD integer with a
maximum of "precision" digits. For example,

bcd (5, "12 3")

returns a BCD integer whose value is 123.

bcd (3, "12345")

returns OVERFLOW status.

bcd(4, "1234.56")

returns the truncated integer 1234.

The syntax for "bcdflt" is:

bcdflt(precision, expression)

The function converts "expression" to a floating-point BCD
number with a maximum of "precision" significant digits,
rounding the value if necessary. For example:

bcdflt(4, "123.45")

returns a floating point BCD number whose value is 123.4.

bcdflt(5, "1234567.89")

returns a floating-point BCD number whose value is 1234600.

If the precision parameter is 0, the number of digits
required to store the converted expression is used. In
addition, the functions "bcd" and "bcdflt" can be preceeded
by "fixed" to indicate that the "precision" parameter speci
fies the exact number of digits to be generated. The number
is padded with zeros to the right of the decimal point to
accommodate the field. It does not affect the arithmetic
routines.

The conversion function "string" will take 1-, 2-, or
4-byte integers, binary, or BCD strings and convert them to
a character string. The length must be a one-byte integer
constant. The length for "string" is expressed in bytes.

If preceeded by "fixed" the result is blank-padded to
that length; otherwise the length specifies the maximum
length of the result. Trailing blanks are deleted or added
as required when non-zero length is specified. If the
length is zero the conversion will be done into the minimum
amount of space needed.

For all three functions, the following lengths (in
bytes) will be generated by zero-length conversions.

IDM Command Set 7 - 9

IDM Software Reference Manual Version 1.4 Britton-Lee Inc.

Conversion Table
Operand type string bcd or bcdflt
lnt 1 4 3
int 2 6 4
int 4 11 7
bcd or bcdflt (2 * length) - 3 no-op
char no-op (length / 2) + 2
binary length length

<binary function>: mod I concat I att_name

The "mod" function takes two arguments and gives the
remainder of the first divided by the second. It can only
be used on integer or BCD expressions. An example is:

replace emp
(num_children = mod(emp.num_children, 12»

which will take the number of children an employee has (as
specified in the relation denoted by "emp"), divide that
number by 12, and store the remainder in num children.
mod(n, 0) is defined to be equal to "nne

/

ROOT
(0 0)

/ \
/ QLEND

RESATTR 12
(num children)
/ - \

TLEND \
MOD

/ \
/ \

VAR 13 INTI
(1 num_children) 12

Note the result variable number in the ROOT node.

"concat" takes two character strings, strips all trail
ing blanks from the first string (all but one, if the string
is all blank), strips all trailing blanks from the second
string, and appends the second to the first. "~oncat" per
forms the same functions for binary strings, except trailing
zero bytes are stripped instead of trailing blanks.

7 - 10 IDM Command Set

IDM Software Reference Manual Version 1.4

For instance:

retrieve (name = concat (emp.first, emp.last))

ROOT
(0 0)

/ \
RESATIR 4 QLEND
(name)

/
/

TLEND

\
\

CONCAT
/ \

/ \
I \

\

VAR 6
(14 first)

VAR 5
(14 last)

Britton-Lee Inc.

would return an employee's first and last names concatenated in the domain named "name".

"au_name" is useful in writing queries to the system catalogues. Its first argument is a
relation id and its second is an attribute id. It returns the name of the attribute or a null string if
the relation id, attribute id pair is invalid.

<ternary function>: substring I bcdfixed

The syntax for "substring" is substring (begin, length, expression). "substring" takes
characters (or binary bytes) beginning at position "begin" of a character string "expression" and
copies them to a result domain. The number of characters (bytes) to copy is denoted by
"length". "begin" and "length" are one-byte integer constants. They follow the SUBSTR token
in the IDM command. For instance,

replace emp (dept_name = substring (3,2,dept.name))

will take the characters beginning at position 3 in dept.name, and copy them for a length of 2
characters, placing them in the attribute dept_name. Substring is valid on character and binary
expressions. If the substring extends past the end of the original string it is blank or null padded
(respectively) .

The syntax for "bcdfixed" is:

bcdfixed (precision, fraction, expression)

The function converts "expression" to a floating-point BCD number with a maximum of
"precision" digits, and a maximum of "fraction" significant fractional digits, rounding the-

IDM Command Set 7-11

IDM Software Reference Manual Version 1.7 Britton-Lee Inc.

value if necessary. For example,

bcdfixed (5, 2, "768.534")

returns a floating-point BCD number whose value is 768.53:

7.6853 • 102

bcdfixed (4, 3, "123.45")

returns OVERFLOW error status.

bcdfixed (8, 2, "35.478")

returns a floating-point BCD number whose value is 35.48:

3.54800000 • 101

If the precIsIOn parameter is 0, the number of digits required to store the converted
expression is used.

<attribute>: <variable>. <name> I <name> 1
An attribute is either the pair (relation variable, attribute name) separated by a period or just

the attribute name. The former is used in IDL statements and is represented as a VAR node in a
query tree. The latter form is used in SQL statements and is represented as a ATTR node. The
A TTR node is followed by the range of range variables to which this attribute might belong and
the name of the attribute. It is an error for the named attribute to be in more than one of the
relations. There are cases in SQL where the name of the attribute is not known. This is
represented by a NV AR node that gives the range variable and attribute number.

<variable>: <name>

A variable is associated with a relation using a range statement. The variable is represented
in the tree by a VAR node. The VAR node has a "variable number" which ranges from 0 to 15,
and a particular domain fo the relation.

<constant>: <string> I <binary string>
<pattern matching string>
<one-byte integer>
<two-byte integer>
<four-byte integer>
<four-byte float>
<eight-byte float>
<bcd>
<bcdflt>
<parameter name>

7-12 Updated September 1984 IDM Command Set

IOM Software Reference Manual Version 1.6 Britton-Lee Inc.

A "string" is a sequence of alphabetic or numeric char
acters. In IOL a "string" is a sequence of alphabetic or
numeric characters delimited with quotation marks ("),
though the delimiters are not actually sent to the IOM. For
instance, to find the salaries of all employees named Jones,
the command is:

retrieve (e.sa1ary) where e.name = "Jones"

7 - 12.1 Updated March 1984 IOM Command Set

This page has been intentionally left blank.

TDM Software Reference Manual Version 1.4 Britton-Lee Inc.

ROOT
(0 0)

/ \
/ \

RESDOM
/ \

/ \
TLEND VAR 7

(1 salary)
(1

\
EQ

/ \
/ \

VAR 5 CHAR 5
name) (~Tones)

A pattern matching string is like a string except that cer
tain characters are used to match patterns.

* - matches zero or more characters.
? - matches anyone character.

- begin a group of characters any one of
which may be matched. , - end the group of characters.

\ - escape any of the above.

Pattern matching strings may only appear in the qualifica
tion of a command. The host program must translate the spe
cial characters into the following values depending on

·whether the host is ASCII or EBCDIC based:

ASCII

* - 0200
? - 0201
[- 0202
1 - 0203
\ - processed

EBCDIC

0334
0335
0336
0337
only in the host.

<name>: /* any alphanumeric sequence
----beginning with an alphabetic character */

Names are limited to 12 characters.

<parameter name>: $<name> I $<integer>

Parameters are used in defining stored queries.

<object name>: <name> [: <user>]

A relation, file, view or stored command may be speci
fied either by just its name or by its name and owner. If
no owner is specified then the object must be owned by the
current user. If that object does not exist then the name
refers to an object owned by the database administrator.
The <object name> meta-symbol will be used for any of the
above objects to signify that it may be given in that for
mat. Often the object must be of a specific type, most
often a relation.

IDM Command set 7 - 13

IDM Software Reference Manual Version 1.4 Britton-Lee Inc.

<with-node-options>: <with-node-o~tion> = <constant>
----!~with-node-option> = <constant> ~

With-node-options are used in place of a qualification
in database maintenance statements such as create and des
troy. Each with-node-option is represented by a one-byte
value (see Appendix B) which is passed in the query tree in
a WITH node. ~he value of the with-node-option is given to
the left of the WITH node. Examples are provided with the
appropriate commands.

<format>: il
i2
i4
f4
f8
cl ••• c255
ucl ••. uc255
binl .. bin255
ubinl .•• ubin255
bcdl •.• bcd3l
ubcdl ••. ubcd31
bcdfltl ••• bcdflt31
ubcdfltl ••. ubcdflt31

Formats are specified in the create command; the avail
able formats are 1- ,2- ,and 4-byte integer, 4- and a-byte
floating point (floating point numbers are stored, compared,
and retrieved only; the IDM does no floating point arith
metic) and three kinds of variable length attributes. Char
acter attributes are either compressed (e.g., clO signifies
a compressed character attribute that is a maximum of 10
characters long) or uncompressed (uc19 signifies that the
attribute is to be always stored as 19 characters, even if
they are all blanks). Character compression is performed by
deleting trailing blanks.

A binary attribute is a binary string that is stored simply
as it is received from the host system. "Uncompressed"
binary strings (e.g. ubin5 means an uncompressed binary
string, 5 bytes long) are zero filled to the length speci
fied when the data is received from the host. "Compressed"
binary strings (e.g. bin200 means a binary string with a
maximum length of 200 bytes) have trailing zero bytes
deleted.

Integer and floating-point BCD attributes also are either
compressed (variable-length) or uncompressed (fixed-length).
The length specified is the number of digits, so the actual
length is (n/2)+2, where n is the number of digits and any
remainder is dropped on the division by 2 (i.e., the number
of digits is always odd; if an even number of digits is

7 - 14 IDM Command Set

10M Software Reference Manual Version 1.4 Britton-Lee Inc.

specified, it is tacitly incremented by one). Compressed
BCD attributes use less storage because leading and trailing
zeros are dropped. Leading and trailing zeros are left
alone in uncompressed BCD attributes.

<attlist>: <name> f, <name>}

The attlist is the list of attributes affected by a
command.

<protect mode>: read I write I execute I all

Protection commands use the protect mode to define the
type of protection desired.

10M Command Set 7 - 15

10M Software Reference Manual Version 1.4 Britton-Lee Inc.

7.5. Commands

7.5.1. ABORT TRANSACTION

IDL SYNTAX
abort transaction

OCTAL COMMAND CODE: 322

DESCRIPTION
Abort transaction causes the current 10M transaction to
be aborted. All logical effects of the transaction
will be undone. If the user did not previously send a
begin transaction this command results in error.

ERROR MESSAGES:

illegal command
A user has not sent previously a begin transaction com
mand.

7 - 16 10M Command Set

IDM Software Reference Manual Version 1.4 Britton-Lee Inc.

7.5.2. APPEND

IDL SYNTAX:

append [to] <object name> (<target list>)
[where <qualification>]

OCTAL COMMAND CODE: 303

DESCRIPTION:

The append co~"and adds zero or more tuples to a rela
tion or a view. The attributes are named, and the
value specified for each attribute. An attribute for
which the value is not specified is assigned the
default value: blanks for character attributes, zero
for numeric attributes. Command-options to turn off
overflow and divide by zero checking as well as ignore
duplicates may be given. Command-options to send for
mat and attribute name information are ignored. (See
the retrieve command for the setting of command
options.)

EXAMPLES:

range of pr is newparts
append to parts (name = pr.part, quan = 10)

The above command adds tuples to the "parts" relation,
taking the "name" attribute from the relation bound to
the variable "pr", and assigning a value of "10" to the
quantity attribute of each tuple added.

IDM Command Set 7 - 17

10M Software Reference Manual Version 1.6 Britton-Lee Inc.

APPEND
RANGE 9 2 newparts
RANGE 6 3 parts

ROOT
(3 0)

/ \
/ QLEND

RESATTR 4
(name)

/
/

RESATTR 4
(quan)

/ \
TLEND \

ENDOFCOMMAND

INTI
(10)

\
\

VAR 5
(2 part)

For SQL "insert" statements, RESDOM nodes may be sent
instead of RESATTR statements:

insert into reI
values: ~a~, 1, ~mike~

APPEND
RANGE 4 0 reI

ROOT
(0 0)

/ \
RESDOM QLEND

/ \
/ CHAR 1 ~a~

RESDOM
/ \

/ INTI 1
RESDOM

/ \
TLEND CHAR 4 ~mike~

ENDOFCOMMAND

One RESDOM must be sent for each attribute in the rela
tion or an error will be generated.

ERROR MESSAGES:

out of space
~o m re tuples can be added because the database is out
of free space. The database should be extended, or
relations within the database destroyed.

7 - 18 Updated March 1984 10M Command Set

IDM Software Reference Manual Version 1.6 Britton-Lee Inc.

quota exceeded
When the relation was created a quota was given: the
addition of this tuple would cause the relation to
exceed the quota.

not found
The named relation or attribute was not found.

wrong type specified for attribute
-----Ir-a-conversion from ASCII to integer or numeric (or

vice-versa) must take place, it should be explicitly
stated in the append command:

append to rell (name = string(lO,p.number»
where p.number > 10

The above command adds to the relation "rell" all parts
where the number is above 10: furthermore it converts
the integer "number" to a ten-character value and
stores it in the attribute "name" of the "rell" rela
tion.

tuple too large
One of the appended tuples is more than the maximum
size of a tuple (2000 bytes). The append is therefore
not performed.

7 - 18.1 Updated March 1984 IDM Command Set

This page has been intentionally left blank.

IDM Software Reference Manual Version 1.4 Britton-Lee Inc.

7.5.3. ASSOCIATE

IDL SYNTAX
associate <object name> I <attribute>

<str ing> [, <str ing>]]

OCTAL COMMAND CODE: 333

DESCRIPTION:

[with]

The associate command is used to add or replace infor
mation 1n the description catalogue. If <object name>
is specified then description refers to the entry of
the catalog for that relation, file, view or stored
command. If an attribute is specified then the
description refers to that attribute. The user must be
the owner of the relation, file, view or stored com
mand. The first string corresponds to the "text" field
in the catalogue. The second corresponds to the "key"
field. If the second string is provided it will be
truncated to 2 characters and is treated as a key along
with the relation and attribute id~s. If neither
string is present, all tuples in the "descriptions"
relation applying to <object name> or <attribute> are
deleted and nothing is added. If the associate command
refers to a record which (on all three keys) is already
in the catalogue the description is replaced; otherwise'
it is appended.

EXAMPLES:
To associate a description with the "parts" relation:

associate parts "Relation listing all parts"

ASSOCIATE
RANGE 6 4 parts

ROOT
(4 0)

/ \
/ \

TLEND QUALDOM
/ \

/ \
CHAR 26 QLEND

(Relation listing all parts)
ENDOFCOMMAND

To add the fact that "number" has an index this command
would be used.

range of p is parts
associate p.number

"Has a clustered index on number", "II"

IDM Command Set 7 - 19

rDM Software Reference Manual Version 1.4 Britton-Lee Inc.

ASSOCIATE
RANGE 6 3 parts

ROOT
(3 0)

/ \
/ \

/ \
RESDOM QUALDOM

/ \ / \
TLEND \ CHAR 31 \

VAR 7 (Has •••) QUALDOM
(3 number) / \

/ \
CHAR 2 QLEND
(II)

ENDOFCOMMAND

"II" is a user assigned key, in this case it means that
there is an index on this domain. The command can also
be used with views:

associate myparts
"range of p is parts create view myparts

retrieve (p.all) where p.pnum < 20", "V"
This provides a human-readable definition of the view.

7 - 20 IDM Command Set

IDM Software Reference Manual Version 1.4 Britton-Lee Inc.

7.5.4. AUDIT, AUDIT INTO

IDL SYNTAX:
audit [[into] <object name>

[where <qualification>
(<target list>)

OCTAL COMMAND CODE: 331, 332

DESCRIPTION:
audit creates an audit report from the transaction log
or from a copy of it (i.e. the output of a dump tran
saction). The transaction log is not in a form read
able by users. This command returns a formatted output
of the log in the order in which modifications to the
database took place. For an audit command, the output
is returned to the host, while for an audit into com
mand, the output is stored in a relation specified by
the user. The tuples being returned may have different
formats and will be preceeded by a FORMAT record if it
changes. The qualification and target list are limited
to refer to the following attributes:

time
date
user
relid
number
type
value

- time of the update
- date of the update
- user who did it
- relation involved
- internal transaction number
- type of update
- data which was changed

"value" may not appear in the qualification. If the
audit report is to be generated from a log (as opposed
to the transaction log), the log must belong to the
currently open database and must correspond to that
database. For an audit into command, the value field
may appear in the target list only if a restriction on
relid is imposed which would limit relid to a single
value. One and only one variable can correspond to a
log in the command.

EXAMPLES:

range of t is transact
audit (relation = rel_name(t.relid),

t.type, t.date)
where t.date > getdate - 2

Here we want to see everything done since two days
before today~s date.

IDM Command Set 7 - 21

10M Software Reference Manual Version 1.4 Britton-Lee Inc.

AUDIT
RANGE 9 0 transact

ROOT
(0 0)

/ \
/ \

RESDOM GT
/ \ / \

/ \ VAR 5 \
RESDOM RELNAME (0 date) SUB
/ \ I / \

/ \ VAR 6 / \
RESDOM VAR 5 (0 relid) GETDATE INTI
/ \ (0 type) 2

/ \
TLEND VAR 5

(0 date)
ENDOFCOMMAND

The data retrieved will be in various formats: an exam
ple return would look like:

FORMAT 8 CHAR 12 INTI INT2
TUPLE 5 parts APPEND 10 3
TUPLE 5 parts DELETE 12 4
FORMAT 5 CHAR 12 INTI INT2
TUPLE 6 supply REP OLD 12 100
TUPLE 6 supply REPLACE 12 50

INT2 CHAR
nut 1000
bolt 10
INT2

This might be displayed to the user as:

Relation "parts":

20 INT2

Inumber Iname Iweight
action

append
delete

Relation "supply":
lpnum

action
old
new

range of 1 is logS

10 I
12

nutl
bolt

lsnum

121
100

1 12 50

audit into inv audit (l.type, l.date, I.value)
where I.relid = rel_id("inventory")

1000
1 10

7 - 22 10M Command Set

IDM Software Reference Manual

AUDIT_INTO
RANGE S 0 logS
RANGE 10 2 inv_audit

Version 1.7

ROOT
(2 0)

/ \
/ \

RESDOM EQ
/ \ / \

/ \ / \
RESDOM V AR S V AR 6 CNVTRID
/ \ (0 type) (0 relid) I

/ \ CHAR 9

Britton-Lee Inc.

RESDOM V AR S (inventory)
/ \ (0 data)

i
TLEND

ENDOFCOMMAND

\
VAR 6

(0 value)

This command will store in the relation "inv_audif' all the changes that were made to the
relation "inventory".

ERROR MESSAGES:

Incorrect number of logs
One and only one variable can correspond to a log in the command.

Incorrect use of value or type attribute
The value field can only appear in the target list and no functions can be applied on it. If
the value of a REPLACE record is requested, the audit may not be restricted to exclude
REP BEGIN or REP OLD. If the REP OLD is included REP BEGIN must also be
included. For an audit into command, the value field can be retrieved only if relid is
restricted to a single value.

Bad log
The log does not match the currently open database.

IDM Command Set Updated September 1984 7-23

IDM Software Reference Manual Version 1.5 Britton-Lee Inc.

7.5.5. BEGIN TRANSACTION

IDL SYNTAX:

begin transaction

OCTAL COMMAND CODE: 0324

DESCRIPTION:

The begin transaction command is given whenever multiple IDM commands are to be
treated as a single transaction. Once a begin transaction command is issued, the only legal
commands are:

abort
append
begin
delete
end
replace
reopen
retrieve
sync
execute (of stored commands and of programs containing those commands)

A transaction is aborted by issuing the abort command or in the event of a deadlock. A
transaction is completed when an end transaction command is received. If multiple begin
transaction commands are issued, the transaction is completed only when the same number of
end transaction commands are received.

7-24 Updated June 1983 IDM Command Set

IDM Software Reference Manual Version 1.6 Britton-Lee Inc.

7.5.6. CLOSE

IDL SYNTAX:
close

OCTAL COMMAND CODE: 023

DESCRIPTION:
The user issues a close when she is finished processing
within the database.

EXAMPT.lES:

close

EXITIDM
ENDOFCOMMAND

The above command caused the IDM to mark the fact that
the user has completed processing within the current
database. A new database may be opened, or the user
can log off the system. Since the command must be
associated with a DBIN (an open database) this command
takes no parameters.

If only one dbin has a database open and a close com
mand is received, the database is automatically check
pointed.

A close command terminates the present dbin. When
another database is opened, another dbin will be
created in the IDM.

ERROR MESSAGES:

No database is open.
If close-is-rssued on DBIN O.

IDM Command Set Updated March 1984 7 - 25

IDM Software Reference Manual Version 1.4

7.5.7. CLOSE FILE

SYNTAX:
closefile(filenum)

OCTAL COMMAND CODE: 360

DESCRIPTION:

Britton-Lee Inc.

The command close file is used in the IOM-provided ran
dom access file system to signify that the user has
terminated processing that file. No more reads or
writes to that file may be done without an "open file"
command. The file number is what is returned by the
"open file" command. Close file causes all changed
data blocks of the file to be written to disk storage.

EXAMPLES:

closefile(l)

FILECLOSE 1
ENDOFCOMMANO

The above command closes the file opened as "1" in the
currently active database.

7 - 26 IDM Command Set

IDM Software Reference Manual Version 1.4 Britton-Lee Inc.

7.5.8. COpy

IDL SYNTAX:
copy [in lout] <database

f , <object name> })]

OCTAL COMMAND CODE: 354, 355

DESCRIPTION

name> [(<object name>

Copy is the logical dump facility of the IDM. Copy out
copIes either all relations or the named relations to
the host or to IDM tape in a format readable by copy
in. If no relations are specified, all "user
relations" owned by the current Ul:)t:l. are copied.
("User-relations" are relations created by the user but
not "system relations" or transaction logs.) The user
must have read (resp. write) permission on all domains
of a relation to use copy out (in) on it. The format
of the output which copy out produces for each relation
is: the relation name, followed by the attribute
names, followed by a format description, followed by a
set of TUPLE-value pairs, followed by a DONE token.
Copy out uses the four-byte integer count which follows
~DONE token to indicate the number of relations
copied so far. It stops processing after the first
error.

The general format of a ~ in command is:

1. COPYIN
2. (copyin tree)
3. ENDOFCOMMAND
4. (information for first relation)
5. (information for second relation)

N. ENDOFCOMMAND

where the information for each relation is in the same
format as produced by copy out. If the data is from
tape, the ENDOFCOMMAND token following the last tuple
information is not required. Copy in does not have to
use the results of a copy out command as input;
instead, a host prograrn--may be used to generate the
appropriate input. If relation names are not specified
in the command tree of the copy in command, then all of
the relations in the following data are copied in. If
relation names are specified, then only the specified
relations are copied in. If a relation to be copied in
exists in the database, the format information is
checked and the data is appended, otherwise the rela
tion is created. All of the relations created will be
owned by the user.

IDM Command set 7 - 27

IDM Software Reference M nual Version 1.5 Britton-Lee Inc.

To copy to and from IDM tape, see section 3.10.

EXAMPLES:
To archive some data the following command could be
used.

open archive
copy out mydb(olddata, olderdata)

DBOPEN 7 archive
ENDOFCOMMAND

COpy OUT 4 mydb
ROOT
(0 0)

/ \
/ \

RESDOM QLEND
/ \

/ \
RESDOM CHAR 7
/ \ (olddata)

/ \
TLEND CHAR 9

(olderdata)
ENDOFCOMMAND

If the format of "olddata" and "olderdata" were:

olddata(num=il, name=c20, field = uc2)
olderdata(num=il, name=c20, field = uc2)

the output from the copyout would be:

CHAR 7 olddata
CHAR 3 num
CHAR 4 name
CHAR 5 field
FORMAT 5 INTI CHAR 20 CHAR 2
TUPLE (tuple value in above format)
TUPLE (n)

DONE (status = CONTINUE,
number of relations copied so far,
count of tuples)

CHAR 9 olderdata
CHAR 3 num
CHAR 4 name
CHAR 5 field
FORMAT 5 INTI CHAR 20 CHAR 2
TUPLE (tuple value in above format)
TUPLE (n)

7 - 28 Updated June 1983 IDM Command Set

IDM Software Reference Manual Version 1.4 Britton-Lee Inc.

DONE (status 1= CONTINUE,
number of relations copied,
count of tuples)

To create or append to a relation olddata, the follow
ing command could be used.

open archive
copy in mynewdb(olddata)

DBOPEN 7 archive
ENDOFCOMMAND

COPYIN 7 mynewdb
ROOT
(0 0)

/ \
/ \

RESDOM QLEND
/ \

/ \
TLEND CHAR 7

(olddata)
ENDOFCOMMAND

Data for one or more relations including
the olddata relation goes here. It should
be in exactly the same format as the output
from a copy out command, such as the output
from the above command.

ENDOFCOMMAND

ERROR MESSAGES:

bad tree node
--- there are bad tokens in data

database not found
The specified database was not found.

not found
In copyout: specified relation was not found in the
database. In copyin: specified relation was not found
in the following data.

bad format in copyin
attribute names and formats do not agree in number or
data format does not agree with relation format.

IDM Command Set 7 - 29

IDM Software Reference Manual Version 1.4 Britton-Lee Inc.

7.5.9. CREATE

IDL SYNTAX:
create <object name> (<name> = <format> {

, <name> = <format> }) [with <with-node
options>]

OCTAL COMMAND CODE: 306

DESCRIPTION:
The create command sets up an empty relation in the
database currently open. The create command contains
several optional parameters:

Create with-node-options

Option Number Meaning

quota (1) specifies the maximum size of the
relation, excluding index blocks.
The default is no quota.

logging (4) specifies whether the transaction log
is to be updated whenever this relation
is updated.

The numbers specified above are the "with-node-option
numbers" that appear in the translated command.

When the relation is initially created it is empty, and
no indices exist for it. A clustered index should be
created for it as soon as it has grown to several
blocks of data.

EXAMPLES:

create parts (name = c20, cost = bcd8, quan = i2)
with logging, quota = 50

The above command sets up the relation "parts" with
attributes "name" (a 20 character field), "cost" (an
a-digit BCD field), and "quantI (a two-byte integer
field) •

7 - 30 IDM Command Set

IDM Software Reference Manual Version 1.6 Britton-Lee Inc.

CREATE
RANGE 6 15 parts

ROOT
(15 0)

/ \
/ \

RESATTR 4 WITH
(name) (4)

/ \ /
TYPE QLEND

\
/

RESATTR 4
(cost)

(CHAR 20)
\

WITH
(1)

/ \
/ TYPE

RESATTR 4 (BCD 8)
(quan)

/ \
/ TYPE

TLEND (INT2 2)
(partial tree)
ENDOFCOMMAND

/ \
INTI
(50)

\
QLEND

The relation will be allowed to grow to a total of 50
data blocks, after which an error will be returned to
the user if further additions take place.

The parameter "logging" tells the IDM to log all
changes to the relation in the database transaction
log.

ERROR MESSAGES:

out of space on disk
'The relatIon could not be created because the database

was full. A recommended action is to destroy unused
relations, thus picking up extra space.

tuple too long
The smallest possible
being zero length)
Tuples are limited to
overhead.

permission denied

tuple (all variable width domains
would not fit on a 2-KB block.
fit within one block, including

Not all users have permission to create relations; this
permission is given by the DBA.

illegal command
It is illegal to create relations inside a transaction
or stored command.

IDM Command Set Updated March 1984 7 - 31

IDM Software Reference Manual Version 1.6 Britton-Lee Inc.

7.5.10. CREATE DATABASE

IDL SYNTAX:
create database <name> [with <with-node-options>]

OC~AL COMMAND CODE: 313

DESCRIPTION:
The create database command sets up a database that is
empty except for the system relations.

The number of 2-K blocks assigned to the database is
specified with the create database command. Since
database allocations are only made in whole numbers of
zones, the number of blocks specified will be rounded
up to the first whole number of zones, the allocation
made, and the number of blocks actually allocated
returned to the user. A zone is a group of cylinders:
the precise number of cylinders per zone varies from
disk to disk.

The database will not be allowed to grow beyond the
size specified. An error will be returned to the user
if the database attempts to grow beyond this size. If
the database size is to be extended, the "extend" com
mand should be used.

Create database with-node-options

demand number of blocks to allocate (5)

disk disk to allocate to (3)

ascii create a database using ASCII
character set (13)

ebcdic create a database using EBCDIC
character set (14)

"demand" specifies the desired size of the database.
create database will attempt to allocate approximately
the amount of space specified by "demand". "disk"
specifies the disk(s) on which the database should be
created. If the disk option follows the demand option
"disk = <name>" can be abbreviated as "on <name>"
"ascii" and "ebcdic" can be used to explicitly specify
the character set that will be used to store character
data in the database. The usual default is to store
characters in ASCII. (See section 3.12)

Each option implies the default value of the other

7 - 32 Updated March 1984 TDM Command Set

IDM Software Reference Manual Version 1.6

unless otherwis specified (demand
zone; disk defaults to any disk) •
fied, the demand option precedes the
form a "demand-disk" option group.

Britton-Lee Inc.

defaults to one
Implied or speci
disk option to

This command is only executable from the system data
base. You must have create database permission in the
system database to create a database.

EXAMPLES:
Disk space is allocated by whole zones. If the demand
is equal to 150 blocks and the zone size on the disk is
180 blocks, the IDM wil allocate 180 blocks. The IDM
allocates all of the space requested unless there is
not enough free space on the disk. If there is not
enough free space to meet the demand, the IDM will
allocate as much of the demand as possible. If no
demand is specified, the database will be created with
one zone in size. A zone is between 128 and 254 blocks
depending on the physical characteristics of the disk
drive. The zone size of a disk can be found in the
"bpz" attribute of the "disks" relation in the "system"
database.

create database burt with demand = 7500 on "diskl"1
or I
create database burt with demand = 7500, disk = "diskl"1

The above command creates the database "burt" with a
size limit of 7500 blocks. It will reside on the disk
named "diskl". If there is no space on "diskl" the
database will not be created.

create database burt with disk = "diskl"

will create a database with the minimum demand
zone on "diskl". If there iinsufficient
"diskl", the database will not be created.

of one
space on

create database burt with disk = "diskl", demand = 75001

This command will allocate one zone (default demand)
from "diskl", then allocate the number of zones con
taining 7500 blocks on any drive at all.

7 - 32.1 Updated March 1984 IDM Command Set

This page has been intentionally left blank.

IDM Software Reference Manual Version 1.4 Britton-Lee Inc.

database will not be created.

DBCREATE
RANGE 5 0 burt

ROOT
(0 0)

/ \
/ WITH

TLEND (5)
/ \

INT2 WITH
(7500) (3)

ENDOFCOMMAND

/
/

/
CHAR 5
(diskl)

\
\
\
QLEND

create database db with demand = 1000

This will create a database with 1000 blocks on any
available disk(s).

create database test
with demand = 2500 on "diska",

demand = 2500 on "diskb"

This will create a database on the two disks "diska"
and "diskb". If neither disk has any free space, the
database will not be created.

If no demand is specified, the database will be created
with one zone in size. A zone is between 128 and 254
blocks depending on the physical characteristics of the
disk drive. ~he zone size of a disk can be found in
the "bpz" attribute of the "disks" relation in the
"system" database.

ERROR MESSAGES:

permission denied
A user must have permission from the system DBA to
create a database and must have the system database
open.

already exists
Database names must be unique.

illegal command
It is illegal to create a database inside a transaction

IDM Command Set 7 - 33

IDM Software Reference Manual Version 1.4 Britton-Lee Inc.

or stored command. It is also necessary to open the
system database before creating a database.

7 - 34 IDM Command Set

10M Software Reference Manual Version 1.4 Britton-Lee Inc.

7.5.11. CREATE FILE

IDL SYNTAX:
create file <name> [with <with-node-options>]

OCTAL COMMAND CODE: 336

DESCRIPTION:
The create file command is used in conjunction with the
IDM's random--access file system. It causes a file to
be given the name in the create command. Files are
always associated with databases, and are in the data
base the user had open when the file was created.

IDM random access files have no structure. They are
simply byte streams that are addressable at any point.
The "read file" and "write file" commands both specify
the byte offset into the file that is to be read or
written. Protection for files is specified the same as
for relations, with separate "deny" and "permit" com
mands.

with-node-options for the "create file" command are the
same as the "create" command, except that the logging
option is not allowed. This means that a file is not
guaranteed to have have correct data if a crash occurs.
When a file is closed the changed data is forced to
disk. This guarantees the file data is correct if a
disk failure occurs after closing a file.

In order to manipulate the file, an "open file" command
must be given after the "create file".

EXAMPLES:

create file mine

The name of the file is sent as if it were a result
variable.

IDM Command Set

FILECREATE
RANGE 5 0 mine

ROOT
(0 0)

/ \
/ \

TLEND QLEND

ENDOFCOMMAND

7 - 35

10M Software Reference Manual Version 1.4 Britton-Lee Inc.

ERROR MESSAGES:

out of space
--- -no room for the allocation in the database

7 - 36 10M Command Set

IDM Software Reference Manual Version 1.5 Britton-Lee Inc.

7.5.12. CREATE INDEX

IDL SYNTAX:
create unique] [nonclustered I clustered] index

[on] <object name> (<name> { , <name> })
[with <with-node-options>]

OCTAL COMMAND CODE: 310

DESCRIPTION:
Indices are used to provide direct access to data. A
"clustered" index is one for which the data is physi
cally in order. A nonclustered index is one that 1S
created for an attribute or group of attributes for
which the data is not clustered. The default is to
create a clustered index.

Only one clustered index is allowed per relation
(although it may specify up to 15 attributes). Up to
250 nonclustered indices are allowed per relation. If
a nonclustered index is created that already exists, an
error will be returned. (The old index should first be
destroyed) • If a clustered and a nonclustered index
are created on the same attribute(s) the IDM will use
the clustered index. When a clustered index is created
all indices on that relation are destroyed including a
clustered index on the same attribute if one existed.
(The other indices are not destroyed if the clustered
index is recreated using the with-node-option
"recreate").

When a clustered index is created the data is sorted
according to the attributes specified, then a B-tree
index is created. When the relation is written in
sorted form on the disk, the "fillfactor" parameter is
used to specify how full to make the blocks. Fillfac
tors range from 1 (1% of the block is to be filled) to
100 (the block is to be completely filled.) Relations
that are known to have a high potential for growth
should have a small fillfactor specified so the data
can be kept physically clustered for as long as possi
ble. If a relation has become scattered (blocks that
contain data that should be in sort order are spread
over several cylinders) the DBA will know that fact
because the I/O time will become large with respect to
the average read time. Then the clustered index should
be created again (the old one is automatically des
troyed) and a new fillfactor specified.

A "unique" index is one for which the attribute values
are unique: that is, no two of the attributes (or
attribute combinations) are the same. Unique indices

IDM Command Set Updated June 1983 7 - 37

IDM Software Reference Manual Version 1.6 Britton-Lee Inc.

are provided by the IDM as a convenience for the users
because there are data values, such as employee number,
which for a given application must be unique. By
creating a unique index for such attributes, the user
makes the IDM enforce the fact that the data values
must be unique. If at any time two attributes are
assigned the same value--through a replace, copy or
append command--if the attribute has a unique index on
it, an error will be reported and the update will be
aborted. If the unique index was created using the
with-node-option "delete dups", or if these updates are
done while command option 6 is set, these updates
delete the duplicate without generating an error. The
user is notified of the deletion by an information only
(not an error) message returned as the DUP bit in the

DONE structure.

When a unique index is created, if there are existing
tuples with duplicate values on the indexed attributes,
the index will not be created and an error will be
returned. However, if the "delete dups" with-node
option is sent, the index will be created, one or more
of the tuples will be deleted so that the index is
unique and the DUP bit in the DONE structure will be
set. Command option 6 has no effect at the time the
index is created.

The "recreate" with-node-option may be used if the
index already exists and empty data or index pages must
be deallocated. With this option, the data will not be
resorted. (This option may also be used on system
relations in user data bases except for the relation
and indices relations).

Create inde~ with-node-options

fillfactor
skip

recreate

The options default

delete_dups

fillfactor
skip
recreate

as if not set, i.e. abort
the update if duplicate
unique key is detected (7)
amount to fill disk blocks (9)
skip indicates how many (10)
blank blocks to leave between
the data blocks
if index already exists,
do not resort data

to:

(12)

abort update if duplicate unique
key
100% full
o
false: sort or resort the data

7 - 38 Updated March 1984 IDM Command Set

10M Software Reference Manual Version 1.6 Britton-Lee Inc.

Root node bits for create index

unique
(bit 0)

clustered
(bit 1)

if set, keys are maintained
unique

if set, data is maintained in
order on keys

The maximum size ("width") N of an index must satisfy
the following inequalities:

7 - 38.1 Updated March 1984 10M Command Set

This page has been intentionally left blank.

IDM Software Reference Manual Version 1.6 Britton-Lee Inc.

clustered index
nonclustered index

N <= 252 bytes
N <= 248 bytes

where N is the total width of all indexed attributes; if an
attribute is compressed then add 1 byte per attribute. See
Section 3.9, "Index Sizes", for a description of an algo
rithm for calculating the sizes of newly-created indices.

EXAMPLES:

create clustered index on parts (name, number)
with fillfactor = 40

The above command causes the "parts" relation to be
sorted on (name, number), written on the disk in blocks
40% full, and a B-tree index created for the
(name, number) pairs. Now when an access is made that
specifies (name) or (name, number), the access is
direct; that is, only the index and the exact blocks
needed are read, not the entire relation.

create

The "parts"
(from the
"number" is
access to
specified.
that no two

unique nonclustered index on parts (number)

relation already has a clustered index
above example); the nonclustered index on
created in this example to facilitate

the "parts" relation when "number" alone is
It is a "unique" index, so the IDM enforces
part numbers may ever be the same.

INDCREATE

ERROR MESSAGES:

not owner

RANGE 6 0 parts
ROOT

(0 01)
/ \

/ \
RESDOM QLEND
/ \

/ \
TLEND VAR 7

(0 number)
ENDOFCOMMAND

Only the user who created the relation can create an
index on it.

index exists
A nonclustered index of exactly the same characteris
tics exists.

IDM Command Set updated March 1984 7 - 39

This page has been intentionally left blank.

10M Software Reference Manual Version 1.5 Britton-Lee Inc.

out of space
The space for the index is counted in the space for the
database.

index too large
The size of an index exceeds the maximum size allowed.

system relation
New indices cannot be created on system relations.

index does not exist
When uSlng the with-node-option "recreate", the index
must already exist.

IOM Command Set Updated June 1983 7 - 39.1

10M Software Reference Manual Version 1.4 Britton-Lee Inc.

7.5.13. CREATE VIEW

IDL SYNTAX:
create view <object name> (<target list>)

[where <qualification>

OCTAL COMMAND CODE: 317

DESCRIPTION:
The create view command is used to set up a virtual
relatlon, wliICli is one that is never a physical entity,
but is composed of parts of one or more relations
(called the base relations), or other views. Views may
be protected and destroyed as other relations: they may
be updated if the update can unambiguously be applied
to one of the base relations (see Section 3.7).

EXAMPLES:

range of p is parts
range of pr is products
create view mine (p.name, p.cost, pr.quan)

where pr.name = "TV"
and pr.part = p.name

~he above view is called "mine" and consists of the
names and costs of all parts that are used to make
TV~S, as well as the number of parts required ("quan")
from the "products" relation.

7 - 40 10M Command Set

IDM Software Reference Manual Version 1.6

VIEW
RANGE 6 0 parts
RANGE 9 1 products
RANGE 5 2 mine

/

ROOT
(2 0)

/
RESATTR 4

(name)
/ \

/ VAR 5
RESATTR 4 (0 name)

\

EQ
/\

\
AND
/

/

/ \
/

(cost)
\ VAR 5 CHAR 2

/
RESATTR 4

(quan)
\

VAR 5
(0 cost)

/
TLEND VAR 5

(1 quan)

ENDOFCOMMAND

ERROR MESSAGES:

permission denied

(1 name) (TV)

Britton-Lee Inc.

\
\

EQ

I \ \
VAR 5 VAR 5

(1 part) (0 name)

The user does not have read permission on the relations
used to create the view.

IDM Command Set Updated March 1984 7 - 41

IDM Software Reference Manual Version 1.4 Britton-Lee Inc.

7.5.14. DEFINE, DEFINE PROGRAM

IDL SYNTAX:
define < name> <command> { <command> } end define

/* only for embedded language systems */
define program <object name> <command> { <command> }

end define

OCTAL COMMAND CODE:

DEFINE: 341
DEFINEP: 356

DESCRIPTION:
The define statement defines a stored command. The
<command> may consist of any of:

retrieve
append
replace
delete
begin transaction
end transaction

The command may have parameters in any place a constant
would normally be acceptable. If multiple commands are
in the define there should be only one ENDOFCOMMAND.
The define program command is for use within programs
and returns a 4-6yte number in the count field of the
done block with which to refer to the stored command.
The name provided is the program name in which the
queries are being generated. Each define program with
that program name will be associated with, and physi
cally clustered near, other define program commands in
the same program name. A null define program command
may be issued to verify and insert the name in the
relation catalogue prior to defining any commands. It
is an error to issue a null define program command for
a program which already exists. It is up to the host
system to destroy a stored program prior to prior to
recompiling the host program which contains a given
stored program.

A stored command or program created by the DBA is
accessible to all users who have permission to use it.
A non DBA user can define a stored command or program
with the same name as one defined by the DBA. If a non
owner of that command wants to use it, he must invoke
it as "command name": "owner name". For the ones
created by the DBA, the "owner name" does not have to
be mentioned.

7 - 42 IDM Command Set

IOM Software Reference Manual Version 1.4 Britton-Lee Inc.

Command-options sent with definitions are in effect
when the command is defined. If command-option 15 is
set, the command-options will be used at the time the
command is actually executed. Additional command
options may be sent to the IOM at execute time, and
apply to all commands inside the stored command or pro
gram.

A define or define program command will be logged if
all the -relation and/or views used by the command are
also logged.

define additem
range of i is items
append to items (name = $name, number = $num)
retrieve (count =

count(i.number where i.number = $num»
end define

IOM Command Set 7 - 43

IDM Software Reference Manual Version 1.6

DEFINE 7 additem
APPEND
RANGE 6 2 items

ROOT
(2 0)

/ \
/ QIJEND

RESATTR 4
(name)
/ \

RESATTR 6 \
(number) PARAM 4

/ \ (name)
TLEND PARAM 3

(num)
RETRIEVE
RANGE 6 2 items

/
/

TLEND

ROOT
(0 0)

/ \
/ QLEND

RESATTR 5
(count)

\
AGGHEAD

/ \
/ \

AOPCNT EQ
I / \

VAR 7 / \
(2 number) VAR 7 PARAM 3

(2 number) (num)
ENDOFCOMMAND

ERROR MESSAGES:

already exists

Britton-Lee Inc.

A relatDOn, file, view or stored command has the name
given. All named objects must be unique for each user.

Stored command or program too big.
--~he lnternaI representafion-of a stored command occu

pies more than approximately 8KB, or there are more
than 65000 commands associated with a stored program.

7 - 44 Updated March 1984 TOM Command Set

IOM Software Reference Manual Version 1.4 Britton-Lee Inc.

7.5.15. DELETE

IDL SYNTAX:
delete <variable> [where <qualification>]

OCTAL COMMAND CODE: 304

DESCRIPTION:
The delete command is used to remove one or more tuples
from a relation. The user must have write permission
for the relation.

EXAMPLES:

range of p is parts
range of pr is products
delete p where p.name = pr.part and pr.name = "TV"

The above command deletes all parts where the part is
used in making a TV.

DELETE
RANGE 6 5 parts
RANGE 9 2 products

ROOT
(5 0)

/ \
/ \

TIJEND AND
/

/
EQ

/ \
/ VAR 5

VAR 5 (2 part)
(5 name)

ENDOFCOMMAND

delete p

\
\

EQ
/ \

VAR 5 \
(2 name) CHAR 2

(TV)

The above command deletes every part in the "parts"
relation.

ERROR MESSAGES:

permission denied
The user does not have write permission for the rela
tion.

IDM Command Set 7 - 45

10M Software Reference Manual Version 1.5 Britton-Lee Inc.

7.5.16. DENY

IDL SYNTAX:
deny <protect mode> [on I of] <object name>

[(<attlist>)] [to <user> ~, <user> }]

OCTAL COMMAND CODE: 316

DESCRIPTION:
The deny command is used to deny access permission to
users. The <object name> specified may be a relation,
file, view, or stored command. The <user>'s may be
user names or group names. A group is any entry in the
users catalogue which has the uid field equal to the
gid field. If there are no users specified, the pro
tection applies to everyone. The <protect mode>'s are
listed below. Read and write apply to relations, views
and files. "All" denies both read and write. Execute
applies only to stored commands. A deny command which
contradicts previous permit commands will take pre
cedence. Only the owner of an object or the DBA may
deny permissions. The DBA may also deny rights to use
the create, create index, tape read, tape write, and
create database commands.

The <protect mode> is passed in the second byte of the
root node of the query tree. The following modes are
acceptable:

mode octal code

read 1
write 2
all 3 (read and write)
read tape 4
write tape 10
all tape 14 (read and write)
execute 340
create 306
create index 310
create database 313

The way to protect ranges of values (access to employee
records with salaries less than 1000, for instance) is
to deny access to the relation and then create a view
which restricts the relation. Similarly updates can be
selectively allowed by defining the exact type of
update in a stored command. Views and stored commands
(created by the owner of the relations affected) do not
check permissions, on the affected relations, when they
are referenced; however, views and stored commands
defined by other than the owner of the affected (base)

7 - 46 Updated June 1983 10M Command Set

IDM Software Reference Manual Version 1.5 Britton-Lee Inc.

relations do check permissions on the base relations
when they are referenced.

7 - 46.1 Updated June 1983 IDM Command Set

This page has been intentionally left blank.

IDM software Reference Manual Version 1.4 Britton-Lee Inc.

EXAMPLES:

permit read of parts
deny read of parts to george, harvey, mary

The above commands say that the "parts" relation cannot
be read by the users george, harvey, or mary but every
one else may.

deny write of parts (descript) to clerks

The entire group "clerks"
the description field of
in the "clerks" group who
longer does. "Clerks"
the users relation.

is denied write permission on
the "parts" relation. Anyone
previously had permission no
must be defined as a group in

DENY
RANGE 6 5 parts

ROOT
(5 2)

/ \
/ \

RESDOM QUALDOM
/ \ / \

/ \ CHAR 6 QLEND
TLEND CHAR 8 (clerks)

(descr ipt)
ENDOFCOMMAND

A deny to all deletes previous permissions:

permit read of parts to bob
deny read of parts

Bob does not have permission to read "parts". The
statements in the opposite order would give read per
mission to bob only. When a relation is created pro
tection defaults to:

deny all of relation
permit all of relation to owner
permit read on tape to bob

ERROR MESSAGES:

user not found
The user name is put in the "users" system relation by
the DBA. This error message means that the user speci
fied is not in the "users" relation for this database.

not owner
Only the owner of an object or the dba may grant per
missions on it.

IDM Command Set 7 - 47

IDM Software Reference Manual Version 1.4 Britton-Lee Inc.

7.5.17. DESTROY

ID!. SYNTAX:
destroy <object name> f, <object name> }
destroy (<target list>) [where <qualification>]

OCTAL COMMAND CODE: 307

DESCRIPTION:
The destroy command is used to eliminate relations,
files, views and stored commands. The entire object is
removed from the system, and its space is freed for use
within the current database. Only the owner or the
database administrator can destroy an object. If there
are views or stored commands which depend on the rela
tion or the view they must be destroyed first.

EXAMPLES:
The destroy command has two
spec1f1es the object name:

forms. The first simply

destroy parts, products

The above command destroyed
relations.

the "parts" and "products"

DESTROY
ROOT
(0 O)

/ \
/ \

RESDOM QLEND
/ \

/ \
RESDOM CHAR 5

/ \ (parts)
/ \

TLEND CHAR 8
(products)

ENDOFCOMMAND

In the second form the relation names are specified
through the use of a target list:

range of r is relation
destroy (r.name) where (r.owner = userid)

7 - 48 IDM Command Set

IDM Software Reference Manual Version 1.4 Britton-Lee Inc.

DESTROY
RANGE 9 0 relation

ROOT
(0 0)

/
/

RESDOM
/ \

/ \
TLEND VAR 5

(0 name)
ENDOFCOMMAND

\
\

EQ
/ \

/
VAR 6
(0 owner)

\
USERID

The above command makes uoe ur the system relation
named "relation". The "relation" relation contains
information about each relation in the database,
including the relation names and owners. The "destroy"
above destroyed all relations owned by the user.

This form of the destroy command will return the number
of relations actually destroyed in the "count" field of
the DONE token.

The DBA of a database is allowed to destroy anything.
The following example will destroy all relations,
views, files and commands starting with "temp" regard
less of their owner:

range of r is relation
range of u is users
destroy (name=concat(r.name, concat(":",u.name»)

where r.name = "temp*"
and r.owner = u.id

ERROR MESSAGES:

not owner
Only the owner or DBA may destroy an object.

has dependencies
There are dependent objects which must be destroyed
first.

is open
~ object which is being accessed may not be destroyed,

and someone is currently using the object.

IDM Command Set 7 - 49

IDM Software Reference Manual Version 1.4 Britton-Lee Inc.

7.5.18. DESTROY DATABASE

IDL SYNTAX:
destroy database <name> f , <name> }

OCTAL COMMAND CODE: 314

DESCRIPTION:
The database specified is completely eliminated from
the system: the space is freed for use by other data
bases. All relations and files in the database are
destroyed.

EXAMPLES:

destroy database inventory

DBDESTROY
ROOT

(0 0)

/ \
/ QLEND

RESDOM
/ \

TLEND CHAR 9
(inventory)

ENDOFCOMMAND

The above command results in the destruction of the
database "inventory". All disk space allocated to it
is made free space.

ERROR MESSAGES:

not owner
Only the DBA of the database or the system database can
destroy it.

is open
--SOmeone is using the database.

7 - 50 IDM Command Set

IDM Software Reference Manual Version 1.6 Britton-Lee Inc.

7.5.19. DESTROY INDEX

IDL SYNTAX:
destroy [nonclustered I clustered] index

[on] <object name> (<name> { , <name> })

OCTAL COMMAND CODE: 0311

DESCRIPTION:
The destroy index command is used to remove an index
from the system. This is done for two reasons: first,
because the index is unnecessary, and its space is
needed for other relati-ns: second, because the index
is not used often enough to justify having to ~a~ the
overhead of updating it whenever the tuple attributes
that it indexes are updated. The index is identified
by being either clustered or non-clustered and by the
keys which it indexes.

EXAMPLES:

destroy clustered index on parts (name, number)

The above command destroyed. the index for (name,
number) • Initially the relation remains sorted on
(name, number). New data will be appended at the end
of the relation.

INDDESTROY
RANGE 6 15 parts

ROOT
(15 2)

/ \
/ QLEND

RESDOM
/ \

/ \
RESDOM VAR 5

/ \ (15 name)
/ \

TLEND VAR 7
(15 number)

ENDOFCOMMAND

destroy nonclustered index on parts (number)

The above command destroyed the nonclustered index on
the "number" attribute of the "parts" relation.

IDM Command Set Updated March 1984 7 - 51

IDM Software Reference Manual Version 1.4

ERROR MESSAGES:

not owner

INDDESTROY
RANGE 6 15 parts

ROOT
(15 0)

/ \
/ QLEND

RESDOM
/ \

/ \
TLEND VAR 7

(15 number)
ENDOFCOMMAND

Britton-Lee Inc.

Only the owner of the relation or the DBA for the data
base can destroy indices for that relation.

7 - 52 IDM Command Set

IDM Software Reference Manual Version 1.4 Britton-Lee Inc.

7.5.20. DUMP DATABASE

IDL SYNTAX:
dump database <name> [to [file] <name>] with tran

saction [to [log] <object name>]

OCTAL COMMAND CODE: 344

DESCRIPTION:
The dump database command is the "physical" dump com
mand:--It is accompanied by a mandatory transaction log
dump. The transaction log for the database is first
dumped to the front end system, to a log in the
currently open database, or to tape; then the database
is dumped to the front end system, to a file in the
currently open database, or to tape. The file <name>
and the log <object name> should not already exist in
the open database. They will be created automatically.
If both the database and the transaction log are to be
dumped to the front end system, the transaction log
will be dumped first followed by an EOR bit, then the
database will be dumped followed by an EOR bit.

The dump database command does not allow the database
to be active during the dump. If the database being
dumped is already open, the dump command is not
allowed. During the dump, the database is locked and
noone can open it. If the database or the transaction
log are to be dumped to tape, the tape command-option
should be used. See section 3.10 for a description.
The database may be reloaded to any disk.

Dump database with-node-options (implied)

file dump the database to a file (6)

log dump the transaction log to a log (11)

The protocol between the host computer and the IDM is
the following:

IDM Command Set 7 - 53

10M Software Reference Manual Version 1.4 Britton-Lee Inc.

HOST 10M

DUMPDB command
tree
ENDOFCOMMAND

ENDOFCOMMAND
(this acknowledgment
of receipt is sent by
the host only if the
dump of the transaction
log is to go to the
host)

DONE token
trans10g + EOR
(the above is sent
only if dump of
transaction log is
to go to the host)

DONE token
(the DONE token is
always sent)

database + EOR
(this is sent only
if the dump of the
database is to go
to the host)

The EOR bit is sent in the count field of the last
packet that is sent to the host (see section 6.3.4).

EXAMPLES:

dump database inventory with transaction

DUMPDB 9 inventory
ROOT
(0 0)

/ \
/ \

TLEND QLEND
ENDOFCOMMAND

The above command causes the transaction log to be
read, truncated, and sent to the front-end system. The
entire database (without the transaction log) is then
read and sent to the front-end system.

7 - 54 10M Command Set

IDM Software Reference Manual Version 1.4 Britton-Lee Inc.

open backup
dump database inventory to JanlO with transaction

DBOPEN 6 backup
ENDOFCOMMAND
DUMPDB 9 inventory

ROOT
(0 0)

/ \
/ \

TLEND WITH
(6)

/
/

CHAR 5
(JanlO)

ENDOFCOMMAND

\
\

QLEND

The transaction log for "inventory" is sent to the
front-end system. The database "inventory" is then
written to the file "JanlO" in the database "backup".

open backup
dump database inventory with transaction to trlog17

DBOPEN 6 backup
ENDOFCOMMAND
DUMPDB 9 inventory

ROOT
(0 0)

/ \
/ \

TLEND WITH
(11)

/ \
/ \

CHAR 7 QLEND
(trlog17)

ENDOFCOMMAND

The transaction log is written to the new log "trlog17"
in database "backup" and the database is written to the
front-end system.

open backup
dump database inventory to JanlO with transaction

to trlog17

IDM Command Set 7 - 55

10M Software Reference Manual Version 1.4

OBOPEN 6 backup
ENDOFCOMMAND
DUMPDB 9 inventory

ROOT
(0 0)

/ \
/ \

TLENO WITH
(11)

/ \
/ \

CHAR 7 WITH
(trlog17) (6)

ENDOFCOMMAND

/
CHAR 5

(JanlO)

/ \

Britton-Lee Inc.

\
QLEND

The transaction log for "inventory" is dumped to the
log "trlog17" in "backup" and the database "inventory"
is dumped to the file "JanlO" in "backup".

ERROR MESSAGES:

out of space
'There must be enough space in the database/file speci

fied to hold the entire database.

does not exist
---- The database does not exist.

db not accessible
-- ~he database is already being dumped.

file exists
The file already exists in the open database.

log exists
--- The log already exists in the open database.

~ free pages
No free pages in the working database (if the database
or transaction are being dumped to the working data
base).

permission denied
The user lssuing the dump command must be dba of the
database (s)he wants dumped.

7 - 56 IDM Command Set

10M Software Reference Manual Version 1.4 Britton-Lee Inc.

7.5.21. DUMP DISK - - -- --------
Section removed.

10M Command Set 7 - 57

IDM Software Reference Manual Version 1.4

7.5.22. DUMP TRANSACTION

IDL SYNTAX:
dump transaction

<object name>

OCTAL COMMAND CODE: 353

DESCRIPTION:

<database name>
]

Britton-Lee Inc.

<object name> [to

The dump transaction command causes most of the con
tents of the transaction log for the named database to
be written to another log in the currently open data
base, to the front-end system, or to tape and trun
cated. The complete contents are not always written
because there may be transactions in progress. If the
<object name> is the name of a log (i.e. the result of
a previous dump transaction or load transaction com
mand)", the entire log is dumped to another log, to the
front-end system, or to tape. If a new log is speci
fied, it should not exist in the currently open data
base. The new log will be created automatically. If
the log is to be dumped to tape, the tape command
option should be used. See section 3.10 for a descrip
tion.

The dump transaction command DOES allow a database to
be active during the dump. The dump will proceed if
the database is active and users may open the database
while the transaction dump is in progress.

The transaction log should be periodically dumped for
two reasons: first, to free up the space it is taking
up in the database; second, to use the dumped log as a
part of a backup strategy.

Dump transaction with-node-options (implied)

log dump the transaction log to a log (II)

The protocol between the host computer and the IDM is
the following:

7 - 58 IDM Command Set

IDM Software Reference Manual Version 1.4 Britton-Lee Inc.

HOST IDM

DUMPXACT command
tree
ENDOFCOMMAND

ENDOFCOMMAND
(this acknowledgment
of receipt is sent by
the host only if the
dump of the transaction
log is to go to the
host)

DONE token
(the DONE token is
always sent)

translog + EOR
(this is sent only
if dump of tran
saction log is to
go to the host)

The EOR bit is sent in the count field of the last
packet that is sent to the host (see sect. 6.3.4).

EXAMPLES:

dump transaction personnel transact

DUMPXACT 9 personnel
RANGE 9 0 transact

ROOT
(0 0)

/ \
/ \

TLEND QLEND
ENDOFCOMMAND

The transaction log is emptied of all but the active
transactions, and written to the front end system.

open backup
dump transaction personnel transact to May trans

IDM Command Set 7 - 59

10M Software Reference Manual Version 1.4 Britton-Lee Inc.

OBOPEN 6 backup
ENOOFCOMMANO
OUMPXACT 9 personnel
RANGE 9 0 transact

ROOT
(0 0)

/ \
/ \

TLENO WITH
(11)

/ \
/ \

CHAR 8 QLENO
(May trans)

ENOOFCOMMANO

The transaction log is emptied of all but the active
tran~actions, and written to the log "May trans".

open backup
dump transaction personnel trlog5 to May trans

OBOPEN 6 backup
ENOOFCOMMANO
OUMPXACT 9 personnel
RANGE 7 0 trlog5

ROOT
(0 0)

/ \
/ \

TLENO WITH
(11)

/ \
/ \

CHAR 8 QLENO
(May trans)

ENOOFCOMMANO

The log "trlog5" in the database "personnel" is copied
to the log "May trans" in the database "backup".

ERROR MESSAGES:

out of space
--- ~here must be enough space in the database/file speci

fied to hold the entire log.

does not exist
---- The database does not exist.

log exists

7 - 60 10M Command Set

IOM Software Reference Manual Version 1.4 Britton-Lee Inc.

The log already exists in the open database.

IOM Command Set 7 - 61

IDM Software Reference Manual Version 1.4 Britton-Lee Inc.

7.5.23. END TRANSACTION ---
IDL SYNTAX:

end transaction

OCTAL COMMAND CODE: 325

DESCRIPTION:
The end transaction command is given whenever a
commands that began with a "begin transaction"
plete, and the user wishes to make the results
transaction known to the rest of the system.

set of
is com
of the

7 - 62 IDM Command Set

IDM Software Reference Manual Version 1.7 Britton-Lee Inc.

7.5.24. EXECUTE, EXECUTE PROGRAM

IDL SYNTAX:

[execute] <query name> [[with] [(]
[name =] <constant> { , [name =] <constant>} [)]]

OCTAL COMMAND CODE: 340, 370

DESCRIPTION:

The execute command executes a stored command. When unambiguous, the execute key
word may be omitted. The parameters are passed as a linear list. If the names are given, the
values are substituted for the named parameters. If the parameters are not named then the
parameters are substituted for the name list which is sorted in alphabetic order. If more than one
command is executed by the execute command each command will generate a DONE block. All
but the last DONE block will have the CONTINUE bit set in its status field. The execute program
command (EXECP) is used within programs which contain embedded IDL statements. The
EXECP command is followed by the 4-byte number returned by the define program command.

PCHAR parameters may be sent only if they do not appear in the target list of a retrieve or
append command inside the definition.

When parameters are not named, attention should be paid to the way parameter names are
sorted. They are sorted as ASCII character strings, so that, for example, "2" sorts after" 10". If
the user wants to use ten parameters, they should be referred to as "01", "02', ... , "09', and
"10' .

When argument names are used in the execute sequence, as in the first example below, the I
actual arguments are matched with the corresponding formal arguments in the definition,
regardless of how the names of the formal arguments are sorted, and regardless of the order of
the arguments in the execute sequence.

EXAMPLES:

execute update with name = "mike", amount = 44

Here the parameters are explicitly identified.

EXEC 6 update
PARAM 4 name
CHAR 4 mike
PARAM 5 amount
INTI 44
ENDOFCOMMAND

help "relation"

IDM Command Set 7-63

IDM Software Reference Manual

EXEC 4 help
CHAR 8 relation
OPTION 2 1 2
ENDOFCOMMAND

Version 1.4 Britton-Lee Inc.

The second example requests that both format and name information is returned before the data.

From a program a command might be:

EXECP 2112001
CHAR 6 foobar
INT17
ENDOFCOMMAND

ERROR MESSAGES:

not found
The command was not found in the current database.

parameter not found
A parameter was sent which was not in the stored command.

too many parameters

7-64 IDM Command Set

IDM software Reference Manual Version 1.4 Britton-Lee Inc.

7.5.25. EXTEND

section Deleted.

IDM Command set 7 - 65

10M Software Reference Manual Version 1.4 Britton-Lee Inc.

7.5.26. EXTEND DATABASE

IDL SYNTAX:
extend database <name> with <with-node-options>

OCTAL COMMAND CODE: 0327

DESCRIPTION:
The extend database command is used to increase or
decrease the allocation for a database. The <with
node-options> accepted are as in the create database
command, except that the demand option may be negative.
The rules for positive allocation are the same as for
the create database command. The extend database com
mand can only be executed from the system database.

To decrease the allocation for a database, a negative
value is given with the demand option. Since dealloca
tion is only done for whole zones, the number of
blocks specified will be rounded up to the next multi
ple of the number of blocks per zone. The number of
blocks per zone varies between disks.

Only entirely freeable zones will be removed from the
database. A freeable zone contains no pages
which are either used or demanded. If there are not
enough freeable zones in the database to satisfy
the number of blocks demanded, all freeable zones will
be deallocated. In any case, the actual number of
blocks which are deallocated will be returned to the
user.

If a disk option is also given with a negative demand
option, the deallocation will only be done from free
able zones on the specified disk(s). If no disk
option is given, the deallocation will be from zones
which belong to the database on any disks.

EXAMPLES:

extend database test with demand = -2000

This command will remove 2000 blocks from the data
base "test". If there are not enough freeable zones in
"test", all freeable zones will be removed from the
database.

extend database accounts
with demand = -3500 on "diska" on "diskb",

demand = -1500 on "diskc"

This command will remove from the "accounts" database a
total of 3500 blocks between "diska" and "diskb", and
1500 blocks on "diskc".

7 - 66 10M Command Set

IDM software Reference Manual Version 1.6 Britton-Lee Inc.

It is also possible to include extend and deextends in
the same command. The negative demands (deextends)
will be processed first.

ERROR MESSAGES:

illegal command
The user must be in the system database to execute this
command.

permission denied
Only the owner of this database can extend the data
base.

Database is open and cannot be locked
When-aecreasIng the size-of a database, no other user
may have the database open.

10M Command Set Updated March 1984 7 - 67

IDM Software Reference Manual Version 1.4 Britton-Lee Inc.

7.5.27. LOAD DATABASE

IDL SYNTAX:
load database <name> [from [file] <name>]

OCTAL COMMAND CODE: 345

DESCRIPTION:
The load database command causes a physical load of the
database. The database must already exist. It is then
overwritten by the contents of the specified file or
the data stream arriving from the host or from tape.
The input must have been obtained by an earlier dump of
the database.

The load database command will not compact data. To
reorganIze a database and reclaim space, ~ in and
~07Y out should be used. Note, however, that ~
ln out will not handle files or stored commands.

If the IDM fails during a load database, the database
is marked as inaccessible. The database must be des
troyed and recreated. A message identifying this con
dition will be printed by recover and when someone
tries to open the database.

Load database requires that the host computer correctly
supply data unaltered. The IDM checks input from the
host for reasonable consistency but it is possible that
an incorrect host program could supply "load database"
with bad data which will result in the 1DM code failing
or the data being loaded incorrectly.

If the database is to be loaded
command-option should be used.
description.

from tape, the tape
See section 3.10 for a

Load database with-node-options (implied)

file load the database from a file (6)

The protocol between the host computer and the IDM is
the following:

7 - 68 IDM Command Set

IDM Software Reference Manual Version 1.4 Britton-Lee Inc.

EXAMPLES:

HOST IDM

LOAD DB command
tree
ENDOFCOMMAND
(above is always sent)

database
(above is sent only if
input is to be received
from the host)

load database inventory

LOADDB 9 inventory
ROOT
(0 0)

/ \
/ \

DONE token

TLEND QLEND
ENDOFCOMMAND

This command loads the database "inventory" from a file
on the front-end system. The file on the host must be
the result of an earlier dump of "inventory".

open backup
load database inventory from May6

DBOPEN 6 backup
ENDOFCOMMAND
LOADDB 9 inventory

ROOT
(0 0)

/ \
/ \

TLEND WITH
(6)

/ \
/ \

CHAR 4 QLEND
(May6)

ENDOFCOMMAND

This command presumes that the database "inventory" was
previously dumped to the "backup" database, file
"May6", with a dump database command. If the load is

IDM Command Set 7 - 69

IOM Software Reference Manual Version 1.4 Britton-Lee Inc.

being done to recover from a loss of data, the transac
tion logs that were created after the "May6" dump
should be applied with "rollforward" commands.

ERROR MESSAGES:

wrong format
The nam~d file or data from the host is not a dump of a
database.

does not exist
The database does not currently exist.

out of space
~he space currently occupied by the database is not
sufficient to hold the earlier version of the database.
The new database must have at least as many blocks as
its older version whether or not the blocks were used
on the older version.

corrupt input file
The input-rIre is not in the proper format.

7 - 70 IOM Command Set

IDM Software Reference Manual Version 1.4

2 · ~ · 28 • LOAD DISK
Section removed.

IDM Command Set

Britton-Lee Inc.

7 - 71

IDM Software Reference Manual Version 1.6 Britton-Lee Inc.

7.5.29. LOAD TRANSACTION

IDL SYNTAX:

load transaction <database name> <object name> [from
<object name>]

DESCRIPTION
This command is used to load or move a copy of the
transaction log. ~he <database name> is the name of
the database to which the log should be loaded. The
log is loaded to the named relation, either from a
relation in the currently opened database, from the
host, or from tape. The source must be the result of a
dump transaction or dump database commands (dump data
base arways forces a-aurnp transaction).

Load transaction requires that the host computer
correctly supply data unaltered. The IDM checks input
from the host for reasonable consistency but it is pos
sible that an incorrect host program could supply "load
transaction" with bad data which will result in the IDM
code failing or the data being loaded incorrectly.

If the log is
command-option
description.

to be loaded
should be used.

from tape, the tape
See section 3.10 for a

Load transaction wit~-node-options (implied)

log load the transaction log from a log (11)

The protocol between the host computer and the 10M is
the following:

HOST

LOADXACT command
tree
ENDOFCOMMAND
(above is always sent)

transaction log
(above is sent only if
input is to be received
from the host)

7 - 72 updated March 1984

10M

DONE token

1DM Command Set

IDM Software Reference Manual Version 1.6

EXAMPLES:

load transaction inventory May

LOADXACT 9 inventory
RANGE 4 0 May

ROOT
(0 0)

/ \
/ \

TLEND QLEND
ENDOFCOMMAND

Britton-Lee Inc.

This command will load a transaction log from the
front-end system and will store it in the log "May" in
the "inventory" database. The log "May" should not
exist beforehand and will be created by the command.

open backup
load transaction inventory June from invjune

ERROR MESSAGES:

out of space

DBOPEN 6 backup
ENDOFCOMMAND
LOADXACT 9 inventory
RANGE 5 0 June

ROOT
(0 0)

/ \
/ \

TLEND WITH
(11)

/ \
/ \

CHAR 7 QLEND
(invjune)

ENDOFCOMMAND

-Ifhere must be enough space in the named database/log to
hold the input.

does not exist
The named database does not exist.

log exists
--- ~lOamed log already exists.

illegal source log
The object being copied is not a transaction log.

IDM Command Set updated March 1984 7 - 73

This page has been intentionally left blank.

IDM Software Reference Manual Version 1.6 Britton-Lee Inc.

7.5.29A. NEW PASSWORD

IDIJ SYNTAX
newpassword <new password>

OCTAL COMMAND CODE: 346

DESCRIPTION:
The new password command is used to change the password
of a-u6er in the login relation of the system database.
It allows users to change their passwords without being
allowed access to the system database. This command
can only be used if there is an existing login tuple
for the user. The new password command must be sent
from DBIN O. It must be-preceded by the old password
for the user. If the host computer sends user names
(hunames) rather than numbers (huids) to identify users
on the host, the command must also be preceded by the
huname of the user.

EXAMPLES:
From a host which sends host user ids (huids) to iden
tify users the host system would send to the IDM using
DBIN 0:

PASSWORD 11 oldpassword
NEWPASSWORD 11 newpassword
ENDOFCOMMAND

From a host which sends host user
identify users the host system
using DBIN 0:

HUNAME 4 jack
PASSWORD 11 anypassword
NEWPASSWORD 14 betterpassword
ENDOFCOMMAND

ERROR MESSAGES:

permission denied

names (hunames) to
would send to the IDM

The user was not found in the login relation of the
system database, or did not send the correct old pass-
word before the new password.

unknown command
----'f.he command was sent to a dbin other than O.

IDM Command Set updated March 1984 7 - 73.1

IDM Software Reference Manual Version 1.4 Britton-Lee Inc.

7.5.30. OPEN

IDL SYNTAX
open <database name>

OCTAL TOKEN NUMBER: 342

DESCRIPTION:
The open command is used to open a database for
activity. In addition the open returns a database
instantiation number (DBIN) in the done block. The
DBIN is used to identify the messages between the user
and the IDM. The user sends the first message on DBIN
o and it must be an open command. An open command on a
non-zero DBIN c1oses~ current database and opens a
new one. The DBIN is transparent to the IDL user
(i.e., a parser may be written which hides dbin from
the user).

EXAMPLES:
At the beginning of an interactive session a user would
type:

open mydata

The host system would write to the IDM using DBIN 0:

DBOPEN 6 mydata
ENDOFCOMMAND

The IDM would return a DONE block with a DBIN for
future commands:

DONE statword dbin unused

If the user in the same session typed:

open demo

The host system would send the command on the current
DBIN. This would close "mydata" and open "demo".

ERROR MESSAGES:

not found
The database does not exist

database is locked.
A physical dump, load, ro11forward, create or destroy
is in progress on the database.

7 - 74 IDM Command Set

10M Software Reference Manual Version 1.4 Britton-Lee Inc.

7.5.31. OPEN FILE

SYNTAX
filenumber = openfile«mode>, <file name»

DESCRIPTION
The 10M file facility is not defined as part of IDL.
oped file should only be used from a host program. The
<mo e~termines if the file is to be opened for read,
write or both. The mode is sent after the FILEOPEN
token and argument byte count. The file is looked up
in the current database. The user must have the proper
permissions to do the open. The filenumber is returned
as a two byte integer in the DONE token and is used to
identify the file in read file and write file commands.
There is a limit of 20 open files per DBI~

EXAMPLES

read
write
read and write

Open file modes
o
1
2

fn = openfile("read", "textfile")

FILEOPEN 9 0 textfile
ENDOFCOMMAND

ERROR MESSAGES:

permission denied
You cannot read or write this file.

not a file
--- -The named object is not a file.

illegal mode
The mode of the open was not 0, 1 or 2.

too many open files
--- ~re-rs a limit of 20 open files per DBIN.

10M Command Set 7 - 75

IDM Software Reference Manual Version 1.6 Britton-Lee Inc.

7.5.33. PERMIT

IDL SYNTAX:
permit <protect mode> [on I of] <object name>

[(<attlist>) J [to <user> l, <user> }]

OCTAL COMMAND CODE: 315

DESCRIPTION:
The permit command is a protection control command. It
allows access to a specific user or a group. The user
names and groups are recorded in the "users" relation
by the DBA. If no names are specified the permission
applies to everyone. All conflicting deny tuples are
removed. The <object name> may be a relation, view,
file or stored command. Read, write or all may be
specified for the <protect mode> of relations, views,
files and IDM tape drives. Execute must be specified
for stored commands. Relations, views, files and
stored commands default to no access allowed by anyone
except the owner. To allow others to access a rela
tion, the permit command must be used.

The database administrator may also grant permission to
use the create, create index and create database com
mands. These default to denying permIssion. The
"create" permissi.on applies to relations, views, files
and transaction logs.

EXAMPLES:

permit read of parts to george

The "parts" relation can be read by the user "george".

deny execute of getsum
permit execute of getsum to managers
permit execute of getsum to dave

Dave and all users in the group "managers" are allowed
to execute the stored query "getsum". To allow all
others to create relations the dba must issue:

permit create

To permit dave to read from an IDM tape drive:

permit read on tape to dave

ERROR MESSAGES:

unknown user
The"liS'ers" relation for the currently open database
must include the user (or group) specified.

not owner

7 - 76 Updated March 1984 IDM Command Set

10M Software Reference Manual Version 1.6 Britton-Lee Inc.

Only the owner or DBA may grant permissions on an object.

SEE ALSO: DENY 7.5.16.

10M Command Set Updated March 1984 7-77

IDM Software Reference Manual Version 1. 7 Britton-Lee Inc.

This page has been intentionally left blank.

7-77.0 Updated March 1984 IDM Command Set

IDM Software Reference Manual Version 1.6 Britton-Lee Inc.

7.S.32A PLAN

IDL SYNTAX
range of <variable> is <object name> [with

[dindex=<index id>,] dorder=<order number>]

OCTAL COMMAND CODE: 373

DESCRIPTION
The plan command associates a user plan with the vari
able--number of a relation. In IDL the user plan is
specified on the RANGE statement but the host system
sends the information to the TDM on a separate PLAN
statement.

EXAMPLES:

range of p is products with dindex=l, dorder=l
range of s is suppliers with dorder=3
range of r is requests

The host system would generate RANGE statements of the
form:

RANGE 9 0 products
RANGE 10 1 suppliers
RANGE 9 2 requests

and would follow them with the PLAN statements:

PLAN OIl
PLAN 1 -1 3

The first PLAN statement tells the IDM to use the first
nonclustered index as an access path to the relation
products and to process it first. The second PLAN
statement tells the IDM to do a relation scan of the
relati-n suppliers and to process it secondly. Notice
that no plan was specified for the relation requests.
The TDM will decide what access path to use to access
requests.

ERROR MESSAGES:
There are no error messages form the IDM for the plan
statements, because the TDM never sees the plan state
ments independent of an IDM command. The IDM will send
error messages when the plan declarations are actually
sent if they are in error.

Range number is too big
---Range varIable -numbers must be 0 - 15

Bad order number supplied for a variable

TDM Command Set Updated March 1984 7 - 77.1

IOM Software Reference Manual Version 1.6 Britton-Lee Inc.

-1 was sent as the order number. It can be any number
other than -1.

Bad index id supplied for a variable
An index id was supplIed that either does not exist or
is not "useful" for that variable. "Useful" means that
the attributes that are referenced in simple clauses or
join clauses, match the key attributes in the index.

IOM Command Set Updated March 1984 7 - 77.2

IDM Software Reference Manual Version 1.6 Britton-Lee Inc.

This page has been intentionally left blank

IDM Command Set Updated March 1984 7-77.3

10M Software Reference Manual Version 1.5 Britton-Lee Inc.

7.5.33. RANGE

IDL SYNTAX:

range of <variable> is <object name> [with minlocks]

OCTAL COMMAND CODE: 343

DESCRIPTION:

The range command associates a variable name with the name of a relation or view. Most
10M commands require the range variable, not the actual relation name. Typically, the host
program will keep the range table in a least recently used order and remember the range
statements between IOL commands. The 10M, however, requires the statements on every
command in which a variable is used.

The host system participates in the assignment of range variables. Actually, the 10M never
sees the relation variable itself, but a range variable number assigned by the host.

The optional "with minlocks" specifies that the 10M should use the minimum amount of
locking on this variable. This provides degree 2 consistency rather than the default degree 3
consistency. With degree 2 consistency, page locks are released as the process finishes with the
page rather than at the end of the transaction. Oegree 2 locking will only be used for read locking
and only if the relation has not had degree 3 locking in an earlier step in the transaction. There is
a substantial processing expense in using degree 2 locking.

The RANGE token is followed by the length of the relation name plus 1 as a single byte, then
the range number and the name of the relation. If "minlocks" is specified, then octal 100 is
or' ed with the range number.

EXAMPLES:

range of products is products

Now the name "products" can be used in retrieve statements; this is sometimes useful for
beginning users.

range of p is products: bill

Now the variable p is associated with the relation "products" and specifies that bill is the owner
of this relation, since a database object is specified by the name of the object and by owner's
name. Several users may own completely differently relations with the same name in the same
database. If the owner's name is not -----------------------

7-78 Updated June 1983 10M Command Set

IDM Software Reference Manual Version 1.5 Britton-Lee Inc.

given then the object is pressumed to be owned by a
current user or by the DBA. If current user does not
own the object and does not specify the owner~s name of
the object to which he refers then the IDM will send an
error message: "The <object name> not found" after an
attempt to execute a query.

range of t is temp
range of t is parts

The variable "t" is associated with the last relation
in a range statement involving it, so it is bound to
the relation "parts" at the end of this command
sequence~ Note that this is a property of a possible
IDL implementation. If the range declarations above
are actually sent to the IDM, the "duplicate range
number" error (see below) is returned by the IDM to the
originating host.

ERROR MESSAGES:

There are no error messages from the IDM for the range
statements, because the IDM never sees the range state
ment independent of an IDM command. The IDM will send
error messages when the range declarations are actually
sent if they are in error.

Range number is too big
Range variable numbers must be 0 - 15

Duplicate range number
A number was used twice in the range declarations for a
single command.

IDM Command Set Updated June 1983 7 - 79

IDM Software Reference Manual Version 1.4 Britton-Lee Inc.

7.5.34. READ

SYNTAX:
read(filenum, count, offset, addr)

OCTAL COMMAND CODE: 361

DESCRIPTION:
The read command is used by the IDM random access file
system, and is not part of IDL. Relations may not be
read with the read command: only files created with a
create file can be the objects of the read and write
commands:--To read a file, it must first ~pened with
the open file command. This command returns a file
numbe~hi~ust be furnished in any read commands
for the file. The read command takes three parameters,
all mandatory: the file number, the byte-count offset
within the file, and the number of bytes to read. The
first byte of the file is addressed with an offset of
O. The "addr" is only used by the host interface rou
tine to put the returned data in the right place.

The read command returns the number of bytes actually
read. If this number is less than the number specified
in "count", the end of the file has been reached. The
actual interface to the 10M file system is determined
by the host. The communication between the host pro
gram and the IDM is shown in the example below.

EXAMPLE:
Assuming a file has been previously opened for reading
using the FILEOPEN command, the following sequence will
read 300 bytes starting at byte offset 1200.

FILEREAD 4
INT2 1200
INT2 300
ENDOFCOMMAND

The IDM will respond with a DONE token
followed by the actual data.

DONE status, unused, count
DATA

Note that the offset and count for the FILEREAD command
can be expressed as INTI, INT2 or INT4. The value "4"
from FILEREAD was the "filenumber" returned from a pre
vious FILEOPEN command. After the sending the FILEREAD
command to the IDM, the host program reads the DONE
token which will have the actual number of bytes being
returned. Any errors (bad file number, etc.) would
have been returned before the DONE token. In such a

7 - 80 IDM Command Set

IDM Software Reference Manual Version 1.4 Britton-Lee Inc.

case, the count in the DONE token would be zero and no
data would follow the DONE token. Note that the IDM
does not send anything after the last byte of DATA.
The DONE token status word will have the DONE CONTINUE
and DONE COUNT bits set if the FILEREAD is -correct,
otherwise, the DONE ERROR will be set. In either case,
the count in the DONE token will contain the actual
number of DATA bytes being returned.

ERROR MESSAGES:

file not opened with proper mode
The filp must have been opened with
"read/write" mode.

1DM Command Set

"read" or

7 - 81

10M Software Reference Manual Version 1.4

7.5.35. RECONFIGURE

IDL SYNTAX:
reconfigure

OCTAL COMMAND CODE: 334

DESCRIPTION:

Britton-Lee Inc.

The reconfigure command will cause the configuration of
the IDM to be updated according to the information in
the "configure" relation.

EXAMPLES:

7 - 82

reconfigure

CONFIGURE
ENDOFCOMMAND

IDM Command Set

IDM Software Reference Manual Version 1.4 Britton-Lee Inc.

7.5.36. REOPEN

IDL SYNTAX
not applicable

OCTAL TOKEN NUMBER: 330

DESCRIPTION:
The reopen command is used to allow several processes
to share the same transaction id in the IDM. It is not
part of IDL. It should be used whenever an update
needs to be nested inside one or more retrieves. Reo
pen returns a database instantiation number (DBIN)--oI
the child process in the done block. The process
issueing the reopens is called the parent process. The
child DBIN is used to identify the nested command
between the USER and the IDM, similar to the DBIN
returned by OPEN. The DBIN is transparent to the IDL
user (i.e., a parser may be written which hides dbin
from the user). A reopen should be issued for each
level of nesting required by the application.

There are some restrictions which apply to its usage.

(1) The command can only be issued inside of a transaction
and no updates must have occurred for the dbin issuing
the command (called the parent) between the BEGIN TRAN
SACTION and the first DBREOPEN.

(2) Only 7 reopens can be issued inside one transaction.

(3) All the children dbins must be released (via EXITIDM)
before the end of the transaction.

(4) In an abort or deadlock situation, the output for each
outstanding command for each dbin in the "family" must
be CANCELed and all the children dbins released. In
this situation the children dbins are placed in a spe
cial state which only allows CANCEL and EXITIDM com
mands to be processed. All others will be returned
with an ILLEGAL COMMAND error. If the children dbins
are not removed with a EXITIDM they will remain waiting
for input until the IDM is reset or a cancel process or
cancel host command is received.

(5) Only the following commands will be accepted by a child
dbin: RETRIEVE, REPLACE, APPEND, DELETE, SYNC, and
DBCLOSE. BEGIN TRANSACTION and END TRANSACTION are
accepted but they are noops. Stored commands can be
executed using the child dbin also.

(6) None of the updates will be seen until the end of the
transaction. The END TRANSACTION triggers the parent
to process all the updates written in the log for
itself and its children dbins. There is a possibility
that some updates will not happen. If two dbins modify

IDM Command Set 7 - 83

IDM Software Reference Manual Version 1.4 Britton-Lee Inc.

the same tuple, only 1 will happen because the updates
are done at the end and the first replace can move the
tuple so that the second won~t find it.

EXAMPLES:
After opening the desired database and starting a tran
saction the user should issue as many reopens as are
needed to nest the updates. The host system would
write to the IDM using the DBIN from the open database:

OPEN database (returns parent dbin)
BEGIN TRANSACTION (parent)

DBREOPEN (returns childl dbin)
DBREOPEN (returns child2 dbin)

RETRIEVE (using parent)
RETRIEVE (using childl)

REPLACE (using child2)
if deadlock (or some other error)

CANCEL (using parent)

EXITIDM
EXITIDM

END TRANSACTION

CANCEL (using childl)
CANCEL (using child2)
EXITIDM (using childl)
EXITIDM (using child2)
other exception processing

(using childl)
(using child2)

The IDM would return a DONE block with a child DBIN for
future commands:

DONE statword dbin unused

That DBIN is then sent with all commands at the desired
level of nesting in the transaction.

ERROR MESSAGES:

too many reopens in this transaction
--- 'The limit is~.

children still active at end of transaction
The END TRANSACTION is not processed. The transaction
will remain active until the children are released and
an ABORT or END TRANSACTION is issued. The program can

7 - 84 IDM Command Set

10M Software Reference Manual Version 1.4 Britton-Lee Inc.

also be canceled which will abort the transaction.

parent already.has.updates - reopen denied.
The dbin issuing the OBREOPEN has already issued update
commands in this transaction.

10M Command Set 7 - 85

IDM Software Reference Manual Version 1.4

7.5.37. REPLACE

IDL SYNTAX:
replace <variable> (<target list>

[where <qualification>]

OCTAL COMMAND CODE: 305

DESCRIPTION:

Britton-Lee Inc.

The replace command replaces one or more attributes in
zero or more tuples of a relation. The variable is
outside the target list since only one relation may be
affected by a single replace command. The replace may
access more than one relation in calculating what is to
be updated and how it is to change.

EXAMPLES:
range of p is parts
range of pr is products
replace p (cost = p.cost + p.cost / 10)

where p.name = pr.part and pr.name = "TV"

The cost of each part that is included in making a "TV"
is raised by 10%.

replace p (name = "electronic") where p.name = "t*"

The "name" attributes for all tuples in the relation
"parts" for which the "name" fields begin with a "t"
are changed to the value "electronic".

REPLACE
RANGE 6 10 parts

ROOT
(10 0)
/ \

/ \
RESATTR 4 \

(name) \
/ \ EQ

/ CHAR 10 / \
TLEND (electronic) / \

ENDOFCOMMAND

ERROR MESSAGES:

permission denied:

VAR 6 PCHAR 2
(10 parts) (t\200)

You do not have write permission for this relation

wrong type attribute

7 - 86 IDM Command Set

IOM Software Reference Manual Version 1.5 Britton-Lee Inc.

Character and numeric attribute types must be expli
citly converted. The command "append" has examples of
type conversion.

WARNING:
Care should be taken when replacing values in relation
a with values from relation b that only one value in
relation b qualify for each replacement in a. A syntac
tically correct replace may be ambiguous. In that case,
the 10M will choose one among the qualifying values.

10M Command Set Updated June 1983 7 - 87

10M Software Reference Manual Version 1.4 Britton-Lee Inc.

7.5.38. RETRIEVE, RETRIEVE INTO

IOL SYNTAX:
retrieve [unique] [[into] <object name>
(<target list>)

[. order [by] <order_spec> f: a I d
f , <order spec> [: a I d]]
[where <qualification>]

OCTAL COMMAND CODE: 301, 302

DESCRIPTION:
The retrieve command (301) causes data to be sent to
the host. The retrieve into (302) sets up a new rela
tion, and puts the result-or-the retrieve into the new
relation. The "retrieve" command can reference up to
15 relations; all of them must be in the same database.
The "order by" clause specifies the sort order of the
returned data. The <order spec> may either be the name
of an object in the target-list or a new expression.

7 - 88

Rootnode bytes for retrieve/retrieve into

retrieve
retrieve unique
retrieve into
retrieve unique into

ROOT 0 0
ROOT 0 1
ROOT rno 0
ROOT rno 1

where rno is the range number
of the result variable.

Retrieve command-options

send format before data 1
send domain names before format 2

ignore over/under flow
ignore divide by zero

3
4

normally arithmetic exceptions
cause an abort.

10M Command Set

IDM Software Reference Manual Version 1.4 Britton-Lee Inc.

EXAMPLES:

range of p is parts
retrieve (p.name, p.cost)

order by cost:descending
where p.cost > avg (p.cost)

RETRIEVE
RANGE 6 0 parts

ROOT
(0 0)

/ \
/ \

/ \
RESDOM GT
/ \ / \

/ \ VAR 5 \
RESDOM VAR 5 (0 cost) \
/ \ (0 name) AGHEAD

/ \ / \
TLEND VAR 5 AOPAVG \

(0 cost) I QLENO

ORDERO 2
OPTIONS 1 1
ENOOFCOMMANO

VAR 5
(0 cost)

The above command causes the IOM to first calculate the
average of the "cost" field of each tuple in the rela
tion "parts". Then the IOM accumulates the "name" and
"cost" attributes of the tuples which contained a
"cost" greater than the average. These are sorted by
the value in the "cost" attribute, largest value first,
and sent to the host, preceded by the format of "name"
and "cost" as requested by command-option 1.

Sometimes, it may be nesessary to create a new relation
and to put the results of the retrieve into the new
relation.

retrieve into exp parts(p.name, p.cost)
order by cost:descending
where p.cost > avg (p.cost)

IOM Command Set 7 - 89

IDM Software Reference Manual Version 1.4 Britton-Lee Inc.

RETRIEVE
RANGE 6 0 parts
RANGE 10 1 exp_parts

ROOT
(1 0)

/ \
/ \

/ \
RESDOM GT
/ \ / \

/ \ VAR 5 \
RESDOM VAR 5 (0 cost) \
/ \ (0 name) AGHEAD

/ \ / \
TLEND VAR 5 AOPAVG \

(0 cost) I QLEND

ORDERD 2
OPTIONS 1 1
ENDOFCOMMAND

VAR 5
(0 cost)

retrieve (o.customer, o.part)
order by o.date_ordered

Here we have an example of an "order by" clause which
references a new expression.

7 - 90

RETRIEVE
RANGE 9 0 order log

ROOT
(0 0)

/ \
/ \

RESDOM QLEND
/ \

/ \
RESDOM VAR 9

/ \ (0 customer)
/ \

ORDERDOM VAR 5
/ \ (0 part)

/ \
TLEND VAR 13

(0 date_ordered)
ORDERA 3
ENDOFCOMMAND

IDM Command Set

IDM Software Reference Manual Version 1.4 Britton-Lee Inc.

ERROR MESSAGES:

permission denied
You must have read permission on all domains in the
query.

not found
The named attribute or relation was not found.

IDM Command Set 7 - 91

10M Software Reference Manual Version 1.4 Britton-Lee Inc.

7.5.39. ROLLFORWARD

IDL SYNTAX:
rollforward <database> from <object name> [to <date>

[<time>]]

OCTAL COMMAND CODE: 352

DESCRIPTION:
The roll forward command is used to update a database
after a load database command. The relation specified
must have been created with a load transaction command
or be the "transact" catalogue:--The <date> and <time>
specify that only transactions committed by that time
will be redone. If the date and time are not specified
then the whole log is used. Only the DBA may run this
command.

A rol1forward cannot be restarted or interrupted. If,
for example, power is lost during a rol1forward, the
database must be reloaded from the last dump and the
previous rollforward commands reissued.

EXAMPLES:

open backup
rol1forward inventory from transl to May 30, 8:00

DBOPEN 6 backup
ENDOFCOMMAND
ROLLFORWARD 9 inventory
RANGE 7 15 transl

/
/

TLEND

ROOT
(15 0)

\
\

QUALDOM
/ \

/ \
INT4 QUALDOM
2344 / \

/ \
INT4 QLEND

1728000
ENDOFCOMMAN0

Note that the host system must convert the date to
internal date count and time to the number of 60'ths of
a second since midnight.

7 - 92 10M Command Set

IDM Software Reference Manual Version 1.4 Britton-Lee Inc.

ERROR MESSAGES:

wrong format
The named relation or disk was not in transaction log
format.

log out of seJuence
The log oes not match the system~s recorded time of
the last dump or ro11forward.

IDM Command Set 7 - 93

1DM Software Reference Manual Version 1.6 Britton-Lee Inc.

7.5.41. SETDATE/SETT1ME

IDL SYNTAX:
setdate <4-byte integer> I settime <4-byte integer>

OCTAL COMMAND CODE: 371, 372

DESCRIPTION:
The SETDATE and SETTIME commands are not part of IOL.
System time and date are set to the time and date of
the last checkpoint in the system database when the IDM
is brought up. SETDATE and SETTIME allow the dba in
the system database to specify the time and date. A
checkpoint in the system database automatically happens
any time the SETDATE or SETTIME command is issued. The
IDM treats "time" as the number of 60th of a second
since midnight. When "time" reaches 5,184,000 (60 * 60
* 60 * 24), it wraps around to zero and "date" is
incremented. The time and date are automatically
stored with each ENOTRANSACTION record in the transac
tion and batch logs. They can be accessed using AUOIT.
They can also be retrieved or tested as an INT4 using
the GETTIME and GETDATE functions. The time and date
are sent to the IDM as 4-byte integers.

EXAMPLE:
The following sets the time of the 10M to 432000.

SETTIME
432000
ENDOFCOMMAND

The 10M will respond with a normal DONE token.

7 - 94 updated March 1984 10M Command set

IDM Software Reference Manual Version 1.4 Britton-Lee Inc.

7.5.41. SYNC

IDL SYNTAX:

sync

OCTAL COMMAND CODE: 33

DESCRIPTION:

The sync command causes a checkpoint on the currently open database. If no databases are
open before the sync command is sent (that is. the sync command is sent to dbin 0). sync will
cause a checkpoint on all active databases.

EXAMPLE:

open inventory
sync

The above command will checkpoint the database inventory.

SYNC
ENDOFCOMMAND

IDM Command Set 7-95

IDM Software Reference Manual Version 1.7 Britton-Lee Inc.

This page has been intentionally left blank

7-95.0 IDM Command Set

IDM Software Reference Manual Version 1. 7 Britton-Lee Inc.

7.S.41A TRUNCATE

IDL SYNTAX:

truncate <object name> {, <object name>}

OCTAL COMMAND CODE: 312

DESCRIPTION:

The truncate command is used to quickly delete all tuples from a relation. The individual
tuples are not recorded in the transaction log, so it is not possible to see which tuples were
deleted with the audit command. A truncate command may be executed within a stored
command or program, but since a truncate command cannot be backed out, it is not possible to
truncate a relation inside a transaction.

EXAMPLE:

truncate monthtotal

The above command will delete all tuples from the "monthtotal" relation. All pages but one per
index allocated to the relation will be made free.

TRUNCATE

ENDOFCOMMAND

IDM ERROR MESSAGES:

not owner

ROOT
(0 0)

/
RESDOM

/ \

\
QLEND

TLEND CHAR 10
(monthtotal)

Only the owner of the relation, or the dba, can truncate the relation.

not relation

Only relations can be truncated. Other objects are not allowed.

illegal command

The truncate command cannot be executed inside a transaction.

relation is open

The user must be the only one accessing the relation.

system relation

System relations cannot be truncated.

IDM Command Set Updated September 1984 7-95.1

IDM Software Reference Manual Version 1.4 Britton Lee Inc.

7.5.42. WRITE

SYNTAX:

write (fnum. count. offset. addr)

OCTAL COMMAND CODE: 362

DESCRIPTION:

The write command is used by the IDM random access file system and is not part of IDL. A
relation may not be the object of the write command; only files created with a create file can be
the objects of the read and write commands. To write a file. it must first be opened with the open
file command. This command returns a file number which must be furnished in any write
commands for the file.

The write command takes three parameters. none of them optional: the file number.
byte-count offset within the file and the number of bytes to write.

The write command returns the number of bytes actually written. If this number is less than
the number specified in "count". there was an error in processing the write. If an error occurs in
the FILEWRITE command itself. the IDM channel will disallow writing on the given dbin until a
read is performed.

Writes to a file do not have to be contiguous. The length of a file is determined by the
maximum offset ever written. "Holes" in a file read as zeros and occupy no space if they are at
least 2K in length and fall on a 2K boundary. For example. creating a file and then writing one
byte at offset 100000 will create a file of length 100001. Bytes 0-99999 will read as zero.

EXAMPLE:

7-96

The following writes 2000 bytes of data to a previously opened file starting at offset 100000.

FILEWRITE 2
INT4 100000
INT2 2000
ENDOFCOMMAND
DATA

The IDM will respond with a normal DONE token. The "count" value in the DONE token will
contain the actual number of bytes written. Note that the offset and count values can be supplied
as INT1. INT2 or INT4 tokens.

IDM Command Set

10M Software Reference Manual Version 1.4 Britton-Lee Inc.

ERROR MESSAGES:

file opened with wrong mode
A file must have been opened for write or read/write.

bad file number
--- The file number does not correspond to an open file for

this OBIN

10M Command Set 7 - 97

IDM Software Reference Manual Version 1.4 Britton-Lee Inc.

7.5.43. WRITE EOF ---
SYNTAX

writeeof(fi1e, count, offset, addr)

OCTAL COMMAND CODE: 363

DESCRIPTION
Writeeof is like the write command except that the file
is truncated to the length "offset + count".

EXAMPLES:
To truncate a file:

7 - 98

writeeof(fi1e, 0, 0, 0)

FILEWRITE 2
INT1 0
INT1 0
ENDOFCOMMAND

IDM Command Set

"Intelligent Database Machine. 10M. Intelligent Database Language and IDL are (applied for) trademarks of Britton-Lee. Inc.
Specifications subject to change Litho in U.S.A.

"Britton
"Lee,Inc.
14600 WINCHESTER BLVD.
LOS GATOS, CALIFORNIA 95030
(408) 378-7000

