

Turbo C® Programmer's
Library

Kris Jamsa

BORLAN>•OSBORtE/McGRAW•HILL

PROGRAMMING SERIES

Osborne McGraw-Hill
2600 Tenth Street
Berkeley, California 94710
U.S.A.

For information on translations and book distributors outside of the U.S.A.,
please write to Osborne McGraw-Hill at the above address.

A complete list of trademarks appears on page 671.

Turbo C® Programmer's Library

Copyright © 1988 by McGraw-Hill, Inc. All rights reserved. Printed in the
United States of America. Except as permitted under the Copyright Act of
1976, no part of this publication may be reproduced or distributed in any form
or by any means, or stored in a database or retrieval system, without the prior
written permission of the publisher, with the exception that the program list­
ings may be entered, stored, and executed in a computer system, but they may
not be reproduced for publication.

1234567890 DODO 898

ISBN 0-07-881394-8

Information has been obtained by Osborne McGraw-Hill from sources believed to be reliable. How­
ever, because of the possibility of human or mechanical errors by our sources, Osborne McGraw-Hill,
or others, Osborne McGraw-Hill does not guarantee the accuracy, adequacy, or completeness of any
information and is not responsible for any errors or omissions or the results obtained from use of such
information.

Contents

1

2

Foreword

Preface

Getting Started with the Turbo C Library
Turbo C Run-Time Library 2
Routine Presentation 3
Understanding Function Prototypes 6
Assembly Language Routines 8
A Final Word 9

String Manipulation
Getting Started 12
Strings as Parameters 14
Array Bounds 15
Minimizing Source Code 18
String Copy 19
String Append 21
String Insertion 23
Case Manipulation 26
String Reversal 28
Exchanging Strings 30
String Padding 33
Character Manipulation 36
White Space 41
String Comparision 43
Substring Manipulation 47
Pattern Matching 53

vii

ix

1

11

3

4

5

6

7

8

9

10

Pointer Manipulation
Getting Started 56
Pointers and Functions 59
Pointers and Strings 62
String-Manipulation Routines 64
Conversion Routines 76
Arrays of Pointers 79
Command-Line Processing 80
Accessing Environment Entries 82
Far Pointers 84

Recursion
Getting Started with Recursion 90
Considerations for Recursive Functions 114

Pipe and I/0 Redirection
Getting Started with 1/0 Redirection 120
Using Standard Error (stderr) 132

DOS Interface
8088 Registers 136
INT 21H 138
DOS System Services 140
Using the Programs 190

Turbo C BIOS Interface

Turbo C ANSI Support
Cursor-Manipulation Routines 210
Erasing 215
Screen Attributes 216
Keyboard Reassignment 222

File-Manipulation Routines
Understanding find_first and find_next
File-Manipulation Routines 232
Utility Programs 234

Array Manipulation
Array Considerations 248
Array-Manipulation Routines 253

226

55

89

115

135

191

207

225

247

11

12

13

14

15

A

B

Variance and Standard Deviation 261
Least Squares Fit 265
Using Macros 269
Multidimensional Arrays 271

Searching and Sorting
Searching 274
Sorting 284
Arrays of Character Strings 305

Input/Output Routines
Output Routines 321
Input Routines 329
User-Consistent I/0 336

Dynamic Memory
Dynamic Lists 347
Maintaining a Sorted List 355
Doubly Linked Lists 363
Binary Trees 366

Memory Mapping
Video Display Pages 390

Menus and Special I/0
Menu Structure 407
Framing a Menu 408
Displaying and Using a Menu 411
Pop-Up Menus 417
Advanced Video Pop-Up Menus 425

ASCII Codes

Turbo C Run-Time Library

Index

435

273

319

345

381

405

431

To my grandparents:

For your unmatched support, encouragement, and love.

Foreword
It is a pleasure to present-with our co-publisher Osborne/McGraw­
Hill-Turbo C Programmer's Library for the benefit of the many
users of Borland's Turbo C.

The power, flexibility, and portability of Turbo C have won this
complete, interactive development environment an enthusiastic
acceptance by the programming community. We have responded to
that endorsement with a commitment to support professional pro­
grammers and developers in every way possible: with a technically
superior product, outstanding technical and customer support ser­
vices, and quality books that help them expand their uses of Turbo C.

vii

viii TURBO C PROGRAMMER'S LIBRARY

Turbo C Programmer's Library by veteran author Kris J amsa is,
therefore, an integral piece in our Turbo C support program. Here,
in one indispensable volume, are the examples of good code and the
techniques programmers and developers need to develop a library of
hundreds of powerful Turbo C routines. In addition, J amsa provides
insight into the development of the run-time library to help users
take full advantage of the library's routines.

We recommend Turbo C Programmer's Library as the perfect
companion for developing programs with Turbo C.

Philippe Kahn
President
Borland International, Inc.

Preface
Developing a library of Turbo C routines is one of the best ways to
enhance the productivity of programmers. If you work with other
programmers, keeping a library of functions will increase every­
one's productivity, for several reasons. First, programmers often
spend a significant amount of time developing routines that already
exist in other applications. A library of routines can minimize
duplication of effort because programmer has access to the routines
in the library. Second, programming skills are improved through
exposure to "good" coding techniques. another programmer's code
provides an important opportunity for information and learning new
techniques. In addition, you can standardize code and documenta-

ix

X TURBO C PROGRAMMER'S LIBRARY

tion and minimize errors. If you are programming at home, placing
your routines into a library will greatly improve the organization of
your disks.

This book provides an extensive library of Turbo C routines.
Each routine was developed to simplify its integration into your
application programs. This library meets the needs of both the
novice and experienced Turbo C programmer'. The novice can create
useful programs in just minutes, and the experienced programmer
can learn how to increase the flexibility of applications through
memory mapping and pop-up menus. All programmers will learn
how to write routines that support the DOS pipe, DOS wildcard
characters, and the DOS and BIOS system services.

Turbo C Run-Time Library
For those of you who are already familiar with the Turbo C run­

time library, you will be pleased to find many routines presented
here for the first time. By experimenting with the routines in this
book, you can add significant power to your Turbo C programs.
manipulation. In other cases, they are provided to increase your
appreciation of Borland's routines and to teach you how to use them
more effectively.

For those of you who are already familiar with the Turbo C run­
time library, you will be pleased to find many routines presented
here for the first time. By experimenting with the routines in this
book, you can add significant power to your Turbo C programs.

Development Philosophy
This book was written with two major goals. First, the routines had
to offer new capabilities to Turbo C programmers at all levels of
experience. For the novice, this book offers valuable information and
an opportunity to extend his or her knowledge of Turbo C. To meet

PREFACE xi

the diverse needs of advanced programmers, it offers routines for
dynamic memory manipulation, pop-up menus, memory-mapped
1/0, and support for DOS wildcard characters.

The second (and more important) goal was to illustrate good pro­
gramming practice. Thus, each routine presented in this text has
the following attributes:

• Complete documentation

• Consistent usage

• Well-structured code

• Thorough error detection

• Restriction of side effects

As you examine the routines in this text, you should note their
consistent documentation. Since you must examine hundreds of rou­
tines, consistent documentation is more important than you may at
first realize. You will also note that the code is quite structured.
There are no goto statements, and, when applicable, functions have
only one entry and exit point. Turbo C prototypes have been used
extensively throughout the text to help the compiler locate as many
errors as possible. If you have not yet developed your own program­
ming standards, use the ones in this text for your foundation.

Chapter Contents
This text assumes that you are familiar with, or are in the process of
learning, Turbo C. It is not intended to be a tutorial on Turbo C.

Chapter 1 provides you with an overview of the Turbo C run-time
library, introduces C function prototyping, and discusses the conven­
tions used throughout the text.

Chapter 2 is a detailed presentation of string manipulation. Sev­
eral of the functions normally found in the Turbo C run-time library
are enhanced to provide additional functionality.

xii TURBO C PROGRAMMER'S LIBRARY

Chapter 3 discusses string manipulation using pointers. Many of
the routines presented in Chapter 2 are greatly simplified by the use
of pointers. Because string manipulation is common in Turbo C, this
chapter is critical to understanding the language.

Chapter 4 examines recursion. Simply stated, a recursive func­
tion invokes itself to perform a specific task.

Chapter 5 shows how to develop Turbo C programs that support
the DOS pipe and I/0 redirection.

Chapter 6 introduces the DOS system services. All of the com­
mands that you normally issue from the DOS prompt (such as those
used for subdirectory manipulation) can be called by your Turbo C
programs. This chapter teaches you how to get the most from DOS.

Chapter 7 presents the BIOS system services that perform the
basic input/output services for your computer. You can gain consid­
erable flexibility by using the BIOS for I/O processing instead of
standard Turbo C functions.

Chapter 8 introduces the ANSI driver that is available to your
Turbo C programs once ANSI.SYS is installed during system start­
up. The ANSI driver provides enhanced screen output capabilities
along with keyboard redefinition.

Chapter 9 demonstrates advanced file-manipulation techniques
with Turbo C. You will learn how to support DOS wildcard charac­
ters as well as multiple command-line parameters.

Chapter 10 presents array-manipulation routines. It also presents
several techniques including the use of macro procedures, to help
you keep your routines as generic as possible.

Chapter 11 demonstrates several sorting and searching algo­
rithms. You will learn the bubble, selection, Shell, and quick sorts as
well as use sequential and binary searches.

Chapter 12 examines advanced I/0 routines. You will develop
routines that prompt for and validate integer, floating, and charac­
ter string values.

Chapter 13 looks at dynamic memory manipulation. You will
learn to program singly linked lists, doubly linked lists, and binary
trees.

Chapter 14 presents mapped video in Turbo C. Because many of
the routines update the video display, the chapter presents two

PREFACE xiii

assembly language routines that synchronize video memory refer­
ences to the horizontal screen refresh.

Chapter 15 examines menu manipulation. It includes several rou­
tines that work for essentially any menu, and discusses video pop-up
menus.

Appendix A provides an ASCII chart. Appendix B provides the
calling sequence and notes for each of the routines in the Turbo C
run-time library.

Disk Packages
There are thousands of lines of code in this book. All the routines are
presented in their entirety, so you can type them at your computer as
you need them. To save you time and testing, a disk package contain­
ing all of the routines in this book is available for $39.95 plus ship­
ping and handling.

The Turbo C Help disk package provides you with on-line help
for Turbo C statements, reserved words, and constructs, as well as
the complete calling sequence and notes on each Turbo C run-time
library routine. This package allows you to put your Turbo C docu­
mentation back on the shelf. Turbo C Help is available for $29.95
plus shipping and handling.

To order these packages, use the coupons on the following page.

Please send me the disk package for Turbo C Programmer's Library.
My payment of $42.45 (39.95 plus $2.50 shipping and handling) is
enclosed. {For orders to Canada and Europe, please include $7.50 for
shipping and handling ($47.45).

____ check
____ money order

Name ----------------------~
Address _____________________ _

City ___ State ___ ZIP

Kris Jamsa Software, Inc. Box 26031 Las Vegas, Nevada 89126

This is solely the offering of Kris Jamsa Software, Inc. Osborne/ McGraw-Hill takes no
responsibility for the fulfillment of this order.

Please send me Turbo Help on disk. My payment for $32.45 ($29.95
plus $2.50 shipping and handling) is enclosed. For orders to Canada
and Europe, please include $5.00 for shipping and handling
($34.95).

____ check
____ money order

NaITie ----------------------~
Address _____________________ _

City --- State ___ ZIP -----------

Kris Jamsa Software, Inc. Box 26031 Las Vegas, Nevada 89126

This is solely the offering of Kris Jamsa Software, Inc. Osborne/McGraw-Hill takes no
responsibility for the fulfillment of this order.

c H A p T E R

Getting Started with
the Turbo C Library

This book was written to save you time-development time, coding
time, and testing time-as you write your Turbo C programs. This
book provides you with a library (or, specifically, a collection of rou­
tines) that you can use to complete your Turbo C programs. Because
the routines in this text are already written, you can simply insert
them into your Turbo C programs, and, because each routine has
been thoroughly tested, you can greatly reduce the testing time
normally associated with program development. If you are new to
Turbo C, DOS, or the IBM PC, these routines can teach you a great

1

2 TURBO C PROGRAMMER'S LIBRARY

deal about these topics. By examining the source code presented
here, your Turbo C programs should improve. Considerable time
and effort has been spent to maintain the readability, modifiability,
and generic characteristics of each routine.

As you progress through each chapter, keep in mind that these
routines are only the start of your Turbo C library. Build on these
routines and you will find that your library of Turbo C functions
never seems to stop growing. Feel free to modify any of these rou­
tines to meet your individual needs. Only by experimenting with
each function can you fully understand its processing. Libraries
exist to make your programs easier to develop. Programming in
Turbo C should be easy and fun.

Turbo C Run-Time Library
A major function of any programming library is to reduce the
duplication of code. After all, if someone else has written code to
perform a specific task, why reinvent the wheel? Borland Interna­
tional, Inc., provides you with a powerful collection of routines called
the run-time library that you should use whenever possible. Borland
developed Turbo C and employs many of the true Turbo C experts.
All of the routines in the run-time library are well written and
highly optimized. You should spend considerable time becoming
familiar with these routines. Each of these routines is listed in
Appendix B. The time you spend now becoming conversant with the
run-time library routines will save you much more time in the
future.

In some cases, you may wonder why routines in this text appear
to duplicate functions in the run-time library. In most cases, the
answer is simply for instruction. In the case of strings, Turbo C pro­
vides a powerful collection of string-manipulation routines in the
run-time libraries. Because strings are so widely used, you should
fully understand string manipulation. The only way to accomplish
this is by examining source code. Without source code for these rou-

GETTING STARTED WITH THE TURBO C LIBRARY 3

tines, you could never modify them to meet your individual needs.
By examining the routines in this text, you will gain a much better
understanding of the Turbo C run-time library.

If you are performing serious Turbo C development, you should
strongly consider purchasing the run-time library source code from
Borland. This source code provides excellent examples of how to get
the most from Turbo C.

Routine Presentation
All of the routines in this text are presented in the same fashion:
first pictorially and then in source code. For example, consider the
routine sum that receives two values and returns their sum. This
routine is presented pictorially as follows:

int a= 300;
int b = 625; Sum

925 Sum of the
two parameters

First, note the two variables passed to the routine:

;,, '~ 300' ---l S"rn
int b = 625; --I

4 TURBO C PROGRAMMER'S LIBRARY

This illustration tells you that both of the variables are of type int
and gives you possible values that can be assigned to each. In this
case, the values 300 and 625 will be added.

Next, note how the returned value is presented:

Sum

[925 Sum of the
two parameters

Each routine that returns a value will show the return value coming
out of the bottom of the box. Consider the routine add_and_
display. Rather than returning the result of the addition, this rou­
tine instead displays it to the screen, as shown here:

int a= 300;
int b = 625;

add_and_display

Any routine that writes data to the screen will be presented in this
manner.

Similarly, if the routine get_a_character uses the keyboard, it
is presented as follows:

GETTING STARTED WITH THE TURBO C LIBRARY 5

fDI \~
get_a_character

C Character entered by the user

If a routine modifies one or more of its parameters, the updated
parameter is shown exiting the right-hand side of the box, as follows:

fDI

char str[BO]; get_a_string "string entered"

The goal of presenting each routine pictorially, is to build in your
mind an image of the processing of the routine before you examine
the source code. In many cases, you will find that you really do not
need to know how a routine works, but rather what the routine does.
These illustrations are meant to aid you in understanding the pro­
cessing involved.

The source code for each routine is also presented in a consistent
manner. Given the routine sum presented previously, the code will
contain the following:

I*
* sum (a, b)
*
* Return the sum of the two integer values specified.
*
* a (in) : First value to sum.

6 TURBO C PROGRAMMER'S LIBRARY

* b (in) : Second value to sum.
*
*result= sum {6, 7);
*
*/

sum (a, b)
int a, b;

{
return (a + b);

}

Note the descriptive header that precedes the function code:

/*
* sum (a, b)

* Return the sum of the two integer values specified.
*
* a (in) : First value to sum.
* b (in) : Second value to sum.
*
*result= sum (6, 7);

*/

By examining this header information, you should be able to under­
stand the routine's function, variables, and usage before you exam­
ine the source code that follows. Note that each parameter in the
descriptive block is labeled as either (in) or (out). A parameter that
does not change within a function is an (in) parameter. A function
that does not use the original parameter value (but rather changes
it) is an (out). If the function uses and then modifies the parameter,
it is labeled (in/out).

Understanding Function
Prototypes

For those who have never worked with Turbo C prototypes, you are
in for a real treat. Turbo C allows you to define and declare a func-

GETTING STARTED WITH THE TURBO C LIBRARY 7

tion. When you define a function, you provide its source code, as
shown here:

float sum (a, b, c)
fl oat a_, b, c;

{
return (a+ b + c);

)

When you declare a function, you tell another function information
about the first function.

float sum () ;

For years, many C programmers declared C functions only when
the functions returned a value of a type other than int. By proto­
typing your functions, you can prevent many run-time errors simply
because the errors are caught by the compiler.

Consider the following example:

float sum (a, b, c)
float a, b, c;

{
return (a+ b + c);

)

main ()
{
float sum () ;

printf ("%f\n", sum (i.2, 2.4));
)

In this case, the routine sum expects three parameters, but only two
are present. Because the compiler has no knowledge about sum, the
program code is acceptable. Hence, a possibly difficult-to-detect run­
time error will occur.

By using prototypes you can prevent this error from occurring.
Notice how you can change the function header for sum. You move
the location of the parameter definitions within the parentheses, as
shown here:

8 TURBO C PROGRAMMER'S LIBRARY

float sum (float a, float b, float c)
{
return (a+ b + c);

}

Within main, you must declare sum as a function and specify the
type of each parameter, as shown here:

float sum (float a, float b, float c)
{
return (a + b + c} ;

)

main ()
{
float sum (float, float, float);

printf ("%f\n", sum (1.2, 2.4));
)

Because main has knowledge about sum, it detects the invocation

printf ("%f\n", sum (1.2, 2.4));

as an error during compilation time.
During the development of this text, function prototyping saved

me an immeasurable amount of time. You should always declare
each routine you will use, along with the types of each of the rou­
tine's arguments. You will save considerable testing and debugging
time in the future.

Assembly Language Routines
Chapters 14 and 15 present several functions based on two assembly
language routines that provide a hardware interface. In order to use
these routines, you must have either the Microsoft macro assembler
or the object code library disk discussed in the Preface. A goal in
any program development is to write as much of the software as
possible in a high-level language. That goal has been met here.

GETTING STARTED WITH THE TURBO C LIBRARY 9

Unfortunately, for the routines to execute fast enough to prevent
snow on the screen display, the two interface routines must be writ­
ten in assembly language.

To compile routines that contain in-line assembly language code.
you must use the TCC command-line compiler (as opposed to the TC
integrated environment).

A Final Word
Have fun and experiment. You have hundreds of routines with which
to work. Your program development time should be drastically
reduced. Make use of this time by studying the source code pre­
sented in this text.

c H A p T E R

String
Manipulation

The most widely used routines in any C programmer's library are
those that perform string manipulation. Most C compilers provide a
solid library of general-purpose string-manipulation functions and
Turbo C is no exception. Because of the tremendous use of strings,
however, you must fully understand how C stores and manipulates
strings.

This chapter examines strings in detail. Many possible imple­
mentations could be used to solve the problems presented in this
chapter. By the end of this chapter, you should be able to recognize
the factors that make one solution "better" than another. This chap­
ter will help you understand how some of Turbo C's standard library
functions work while providing you with a complete set of string­
manipulation routines. Your programs will exploit each of these rou­
tines on a regular basis.

11

12 TURBO C PROGRAMMER'S LIBRARY

Getting Started
A character string is a sequence of one or more characters. The C
language stores character strings as arrays, in which each character
in the string resides in contiguous memory locations. For example,
consider the string declaration shown here:

char some_string [255];

In this case, C creates a character string variable with storage space
for 255 characters. Like all C arrays, C strings are indexed begin­
ning at offset 0. As such, the previous declaration creates an array of
characters indexed as shown in Figure 2-1.

By default, C contains no built-in method to determine the
number of characters contained in a C string. Instead, the standard

some_string[O]
1---------1

some_string[1]
~-------<

some_string[2]
~-------<

some_string[3]

some_string[251]
1---------1

some_string[252]
t-----~---t

some_string[253]
~-------1

some_string[254]_ ____ __,

some_string

Figure 2-1. Indexed array of characters

STRING MANIPULATION 13

is to place a null character (ASCII O) immediately following the last
character in the string. Thus, C stores the string "Turbo C" as char­
acters in an array with the null character appended (see Figure
2-2).

Because each character string terminates with the null charac­
ter, you can determine the number of characters in the string s
simply by searching for the null character (\0), as shown here:

for (i = O; s [i] != '\0'; i++)

'

Each time you specify a character string within double quotation
marks, Turbo C places the null character at the end of the string for
you. For example:

#define COMPILER "Turbo C"

T

u

r

b

0

c
\0

Figure 2-2. Placement of null character in a string

14 TURBO C PROGRAMMER'S LIBRARY

In most cases, however, ensuring that a character string is ter­
minated by a null character becomes the responsibility of the pro­
grammer, as shown here:

main ()
{

char alphabet [27]; /* 26 letters and space for null*/

char letter;

int index;

for (index= O, letter= 'A'; letter<= 'Z'; index++, letter++)
alphabet [index] = letter;

alphabet [index] = '\0'; /* append the null character */

printf ("%s\n", alphabet);

Strings as Parameters
One of the contributing factors that helps you write generic string­
manipulation routines is the manner in which C treats arrays passed
to functions. Assume that you have a function called string_length
that returns the number of characters in a string. Invoke it from
your program, as shown here:

count = string_length (strvar);

Since you are passing a character array, you can declare the string
within the function with no array bounds:

string length (char str[J)
{ -
/* code here */

}

All of the routines in the remainder of this chapter declare the
formal string parameters in this manner.

STRING MANIPULATION 15

String Length
The following routine returns the length of a string by examining
succeeding characters for the null character:

I*
* string_length (string)

*
* Return the number of characters in the string.
*
* string (in): string to return the length of.
*
*count string_length (string);
*
*/

int string_length (char string[])
{
int i;

for (i = O; string[i]; i++)

return (i);
)

Array Bounds
In most programming applications, time is always a tradeoff against
other factors. In some cases, the tradeoff becomes time versus space.
String-manipulation routines are no exception.

Consider this routine, which copies the contents of one string to
another:

/*
* void first_copy (source, target)

* Copy the contents of the source string to the target.

*
* sl (in): source string containing characters to copy.
* s2 (out): string receiving characters copied.

*
* first_copy ("This is a test", stringvar);
*
* first_copy does not perform bounds checking.
*
*/

16 TURBO C PROGRAMMER'S LIBRARY

void first copy (char sl[], char s2[])
{ -
int i;

for (i = O; sl[i] != '\0'; ++i)
s2[i] = sl[i];

s2 [i] = '\0';
)

This routine copies characters from the first string (sl) to the second
(s2), one at a time, until the null character is found (see Figure 2-3).

This routine will work properly in most cases. However, con­
sider this program, which uses first-copy:

main ()
{

s2 [5];

first_copy ("long string", s2);

Here, first-copy appears to copy characters from sl to s2, as
desired. Actually, however, the copy has exceeded the array bounds
of s2. The character string "long string" contains 11 characters

a

e e

i

0

u

\0

s1 s2

Figure 2-3. Copying characters from first string to second string

STRING MANIPULATION 17

(including the null character), while s2 only has space for 5. As a
result, first-copy overwrites the contents of the routine's stack
space and produces an error. To remedy this problem, you can
include a parameter that defines the maximum number of charac­
ters to be assigned to the target string, as shown here:

second_copy ("long string", s, sizeof(s));

The following routine implements second-copy:

/*
* int second_copy (source, target, array_bound)
*
* Copy the source string to the target string variable.
*
* sl (in) : Contains the characters to be copied.
* s2 (out) : Receives the characters copied.
* maxchar (in) : specifies the maximum number of characters
* that s2 can store.
*
*status= second_copy ("This is", stringvar, sizeof (stringvar));
*
* If the array bounds are exceeded, second copy returns the value
* 1; otherwise it returns the value 0. -
*
*/

int second_copy (char sl[], char s2[], int maxchar)
{
int index;

maxchar--; /* leave space for null */

for (index= O; (sl[index] != '\0') && index< maxchar; index++)
s2[index] = sl[index];

s2[index] = '\0';

return (sl[index] && (index== maxchar));
}

This routine indeed allows you to prevent the error that previously
occurred. However, because you must now include the second test

(sl [index] ! = '\0') && (index < maxchar)

you increase the required processing time for each iteration of the
loop.

18 TURBO C PROGRAMMER'S LIBRARY

Minimizing Source Code
Although the previous routines were quite readable (assuming that
you are familiar with C arrays), you can simplify (reduce) the code
required to implement them.

Consider this code fragment: ·

for (i = O; sl [i] != '\0'; ++i)
s2[i] = sl[i];

82 [i] = I \0 1 ;

C allows you to change this code, as shown here:

for (i = O; (s2 [i] = sl [i]) != '\0'; ++i)

In both cases, each fragment performs the identical function. In
the second code fragment, Turbo C will test the value that is
assigned to s2 with each iteration of the loop. If that value is null, C
terminates the loop. If not, C simply assigns the next character in sl
to s2, thus repeating the test. Once the null character has been
assigned to s2, the loop terminates. Since the code contained within
the for loop has already assigned the null character to s2, you can
eliminate the line

s2[i]='\0';

When this code assigns the null character to s2, the value
returned from the test

(s2[i] = sl[i]) != '\0'

is 0 (null is the ASCII O). Since C equates the Boolean false to 0, you
can again modify this code as follows:

for (i = O; (s2 [i] = sl [i]) ; ++i)

STRING MANIPULATION 19

As you develop your C string-manipulation routines, keep the
following in mind:

• Is execution speed more important than reliability?

• Is the code as simple as possible?

• Does the code maintain readability?

As you develop your library of string-manipulation routines, you
should constantly attempt to balance the tradeoffs between speed,
reliability, and readability. Actual implementation will likely be
based upon your programming requirements. As such, the decision
of which routine to use can often have as great an impact on your
program as the code that actually implements the routine.

String Copy
Two functions implement a string copy routine. The first, fast-copy,
copies the contents of the first string specified to the second without
bounds checking. The second, copy _string, also performs the same
processing, but with bounds checking enabled.

/*

char •s="'TEST"~ "TEST"
char •s2; ~''TEST''

Warning: fast_copy does not perform bounds checking.

* void fast copy (source, target)
* -
* Copy the contents of the source string to the target.
* * sl (in): source string containing characters to copy.

20 TURBO C PROGRAMMER'S IJBRARY

* s2 (out) : string receiving characters copied.
*
* fast_copy ("This is a test", stringvar);
*
* fast_copy does not perform bounds checking.
*
*/

void fast_copy (char sl[J, char s2[J)
{
int i;

for (i = O; (s2 [i] sl[i]) ++i)

If the routine cannot successfully complete the copy, it returns
the value 1. Otherwise, it returns the value 0.

char •s="lEST"
char •s1
int maxchar-=sizeof(s1)

copy _string "lEST"
"lEST"

O Successful copy
1 Incomplete copy

/*
: int copy_string (source, target, array_bound)

* Copy the source string to the target string variable.
*
* sl (in) : contains the characters to be copied.
* s2 (out): receives the characters copied.
* maxchar (in) : specifies the maximum number of characters
* that s2 can store.
*
*status= copy_string ("This is", stringvar, sizeof (stringvar));
*
* If the array bounds are exceeded, string copy returns the value
* l; otherwise it returns the value 0. -
*
*/

int copy_string (char sl[J, char s2[J, int maxchar)
{
int i;

maxchar--; /* leave space for null */

for (i O; (s2 [i] = sl [i]) && i < maxchar; i++)

if (i maxchar && sl[i]) /* see if characters remain in sl */
{
s2[i] = '\0';

return (1);
}

else
return (0);

String Append

STRING MANIPULATION 21

The following two routines append the contents of the first string
specified to the second. The routine first locates the end of the
second string (the null character) and then begins appending char­
acters from the first string at that point. Once the null character
from the first string is appended to the second string, the loop ter­
minates. As before, the routine called fast-append does not perform
bounds checking, but the routine called append-string does.

char •s=''ONE'' ~
char •s1="PART" ~"PART ONE"

Warning: fast-append does not perform bounds checking.

/*
: void fast_append (source, target)

* Append the contents of the source string to the target.
*
* sl (in): source string containing characters to append.
* s2 (out) : string receiving characters copied.
* * fast_append ("This is a test", stringvar);
* * fast_append does not perform bounds checking.
*
*I

void fast append (char sl[J, char s2[))
{ -
int i, j;

for (i = O; s2[i) ; ++i) /* find the end of s2 */

for (j = 0; s2[i) = sl[j]; i++, j++) /* append sl */

22 TURBO C PROGRAMMER'S LIBRARY

If the following routine cannot successfully append the string, it
returns the value 1. Otherwise, it returns the value 0.

int maxchar=sizeof(s2)
char •s="ONE"
char •s2="PART"

"PART ONE"
append_string

0 Successful
1 Incomplete

/*
* insert_string (source, target, location, array_bounds)

* Insert the contents of the source string to the target
* at the index location specified.
*
* sl (in): source string containing characters to copy.
* s2 (out) : string receiving characters copied.
* index (in): location within target to insert sl at.
* maxchar (in): maximum number of characters in s2.
*
*insert string ("Pocket", stringvar, 6, sizeof (stringvar));
*
* insert string returns one of the following:

-1 insufficient memory 0 successful insertion
*

1 incomplete

*I

int insert_string (char sl[], char s2[], int start index, int maxchar)
{
int i, j, lenl, len2;

char *temp;
void *calloc(unsigned, unsigned);

for (lenl O; sl[lenl]; ++lenl) /* get length of sl */

for (len2 = O; s2[len2]; ++len2) /* get length of s2 */

if (start_index > len2) start index = len2; /* append */

if ((temp= (char*) calloc (1, lenl+len2+1)) == '\0')
return (-1); /*unable to allocate memory*/

for (i = O; i < start index; ++i)
temp[i] = s2 [i]; -

for (j = O; temp[i+il "l I i l ; j t t)

while (temp[i+j] ~ s2[iJ)
++i;

STRING MANIPULATION 23

for (i = O; (s2 [i] temp[i]) && i < maxchar; i11)

free (temp);

if (i == maxchar && s2[i])
{
s2[i] = '\0';
return (l);

)
else

return (0);

String Insertion
One of the keys to successful input-and-output (1/0) routines is the
ability to insert one series of characters into another. The routine
fast-insert does just that, but without bounds checking. If you are
sure that inserting the new characters within the target string will
not exceed the required storage space, this routine will indeed pro­
vide excellent performance. If you are not sure of this, you should
use the routine insert-string instead.

/*

char *S1="DEF"
char *S2="ABCGHI"
int index =3

fast_ insert "ABCDEFGHI"

O Successful
-1 Insufficient memory

Warning: fast_insert does not perform bounds checking.

* int fast_insert (source, target, index)
* * Insert the contents of the source string to the target
* at the index location specified.
* * sl (in): source string containing characters to copy.
* s2 (out) : string receiving characters copied.
* index (in): location within target to insert sl at.
* * fast_ insert ("Pocket'', stringvar, 6);
*
* fast insert does not perform bounds checking. If an error
*. occurs during processing, fast insert returns -1. If the
* insertion is successful, fast_Tnsert returns 0.
*
*/

24 TURBO C PROGRAMMER'S LIBRARY

int fast insert (char sl[], char s2[], int start_index)
{ -
int i, j, lenl, len2;

char *temp;
void *calloc(unsigned, unsigned);

for (lenl O; sl[lenl]; ++lenl) /* get the length of sl */

for (len2 O; s2[len2]; ++len2) /* get the length of s2 */

if (start_index > len2) start_index = len2; /* append */

if ((temp= (char*) callee (1, lenl+len2+1)) == '\0')
return (-1); /*unable to allocate memory*/

for (i = O; i < start index; ++i)
temp[i] = s2[i]; -

for (j = O; temp[i+j] = sl[j]; j++)

while (temp[i+j] = s2[i])
++i;

for (i = 0; s2[i] = temp[i]; i++)

free (temp) ;

return (0);
}

/* successful insertion */

If this routine cannot insert the string without overwriting the
array bounds, it returns the value 1. If the routine cannot allocate
sufficient memory, it returns -1. If the insertion is successful, the
routine returns the value 0.

char *S1="DEF"
char *S2="ABCGHI"
int index=3
maxchar=sizeof(s2)

insert-string "ABCDEFGHI"

0 Successful
1 Bounds error

-1 Insufficient memory

STRING MANIPULATION 25

/*
* insert_string (source, target, location, array_bounds)
*
* Insert the contents of the source string to the target
w at the index location specified.
*
* sl (in): source string containing characters to copy.
* s2 (out) : string receiving characters copied.
* index (in): location within target to insert sl at.
* maxchar (in): maximum number of characters in s2.
*
* insert_string ("Pocket", stringvar, 6, sizeof (stringvar));
*
* insert string returns one of the following:
* -1 insufficient memory 0 successful insertion 1 incomplete
*
*/

int insert_string (char sl[], char s2[], int start_index, int maxchar)
{
int i, j, lenl, len2;

char *temp;
void *calloc(unsigned, unsigned);

for (lenl O; sl[lenl]; ++lenl) /* get length of sl */

for (len2 = O; s2[len2]; ++len2} /* get length of s2 */

if (start_index > len2} start_index = len2; /* append */

if ((temp= (char*) callee (1, lenl+len2+1}) == '\0')
return (-1); /*unable to allocate memory*/

for (i = O; i < start index; ++i}
temp[i] = s2[i]; -

for (j = O; temp[i+j] = sl[j]; j++}

while (temp[i+j] = s2[i]}
++i;

for (i = 0; (s2 [i] = temp[i] J && i < maxchar; i++}

free (temp);

if (i == maxchar && s2[i])
{

}

s2 [i l = ' \ 0' ;
return (1);

else
return (0);

/* insertion is incomplete */

26 TURBO C PROGRAMMER'S LIBRARY

Case Manipulation
Many programmers often choose to convert a string of characters to
either uppercase or lowercase in order to simplify future processing.
Although the methods for converting characters in this manner are
many, you can use a simple fact about ASCII characters to speed up
conversion routines: All ASCII characters use a byte (8 bits) of stor­
age. The sixth-bit location determines the character's case. For
example, if you examine the lowercase letter "a"

11 a11 ASCII 97 Binary 0110 0001

along with the character "A,"

11 A 11 ASCII 65 Binary 0100 0001

you note that the only difference between them is the sixth bit:

11a11 Binary 0110 0001
11 A 11 Binary 0100 0001

With this in mind, you can use C bitwise operators to perform quick
comparisons:

'A': 32 = 'a'
0100 0001 : 0010 0000 = 0110 0001

'a' & -32 ='A'
0110 0001 & 1101 1111 = 0100 0001

The following routines convert a character string from upper­
case to lowercase, and vice versa:

STRING MANIPULATION 27

char •s= "AAAA" str _to_ lowercase ''aaaa''

/*
* void str_to_uppercase (s)

• Convert a string to UPPERCASE characters .
•
• s (in/out): string to convert to UPPERCASE.

• str_to_uppercase (filename);
•
• str to uppercase uses bit manipulation to convert characters
• to uppercase .
•
*/

void str_to_uppercase (char s[])
{

I*

int i;

for (i = O; s[i]; i++)
if (s[i] >='a' && s[i] <= 'z')

s[f] = s[i] & -32;

char •s= "aaaa"---J str_to_uppercase 1--"AAAA"

* void str_to_lowercase (s)
•
* Convert a string to lowercase characters .
•
* s (in/out): string to convert to lowercase .
•
* str to lowercase (filename);
•
* str to lowercase uses bit manipulation to convert characters
• to lowercase.

*/

void str_to_lowercase (char s[])
{
int i;

28 TURBO C PROGRAMMER'S LIBRARY

for Ci= O; s[iJ; i++)
if (s[i] >='A' && s[i] <= 'Z')

s[i] = s[i] I 32;

String Reversal
When a program manipulates a mathematical expression as a
string, the result shows the string reversed. Just as you have many
ways to convert a string from uppercase to lowercase, you also have
many ways to reverse the contents of a character string.

Consider two alternatives. The first method, reverse-string,
begins swapping characters in the string starting with the first and
last characters, then the second and next to last, and so on. This
effective method results in 1.5 * n exchanges, where n is the number
of array elements.

char *S="EDCBA"~"ABCDE"

/*
* void reverse string (s)
* -
* Reverse the contents of the character string specified.
* * s (in/out): string to reverse the contents of.
* * reverse_string (binary_result);
* * This method requires 1.5 * n exchanges.
*
*I

void reverse string (char s[J)
{ -
char temp;

int i, j;

for (j = O; s[j); ++j) /* find the end of string */

for (i = 0 1 j--; i < j; i++, j--)
{

temp=s[i];
s[i] = s[j];
s[j] =temp;

STRING MANIPULATION 29

The second method has additional overhead in the form of a call
to allocate memory large enough to buffer the string contents. Once
this space is allocated, the first string is simply copied to the buffer
and then back to the string in reverse order.
/*

* int reverse_string (s)
*
* Reverse the contents of the character string specified.

* s (in/out): string to reverse the contents of.
*
*result= reverse_string (binary_result);
*
* This method requires 2.0 * n exchanges. If an error in
* processing occurs, reverse_string returns -1.
*
*/

int reverse_string (chars[])
{
char *temp;
void *callee (unsigned, unsigned);

int i, j;

for (j = 0; s [j] ; ++ j) /* find the end of string */

if ((temp= (char*) callee (1, j)) == '\0')
return (-1); /*couldn't allocate memory*/

for (i = O, j--; j >= O; i++, j--)
temp [i l = s [j l;

for (j = O; j < i; j++)
s [j] = temp [j l ;

return (0);
)

This method results in 2 * n exchanges.
Given a string of 512 characters, the first method requires 768

exchanges, while the second method requires 1024. The first method
is clearly superior. Your algorithm decision (even for simple rou­
tines) can have a significant impact on the performance of your
program.

30 TURBO C PROGRAMMER'S LIBRARY

Exchanging Strings
Based on the preceding analysis of the string reverse routine, you
can conclude that the fastest way to exchange two strings is by using
a three-variable swap (see Figure 2-4).

A a
E e

A
i

0 0

u u

\0 \0

a ~ a

E I I e
A

I i

0 0

u u
\0 \0

a A

E A e

I

0 0

u u

\0 \0

Figure 2-4. Three-variable swap

STRING MANIPULATION 31

The following routines do just that. However, you must again
consider the possibility that the user did not allocate the same
amount of space for each string, as shown here:

char s1[32], s2[64J;

To exchange two strings whose boundaries are not identical
could have devastating results. Again, you have two alternative
routines-fast-exchange, which does not perform bounds checking,
and string_exchange, which does.

char •s1="AAAA"
char •s2="8888" fast-exchange

"8888"
"AAAA"

Warning: fast-exchange does not perform bounds checking.

/*
* void fast_exchange (sl, s2)
*
* Exchange the characters contained in two character strings.
* * sl (in/out) : contains characters to exchange.
* s2 (in/out): contains characters to exchange.
*
* fast_exchange (oldname, newname);
*
*/

void fast_exchange (char sl[J, char s2[))
{
int i, j;
char temp;

for (i • 0; sl[i) && s2[i]; i++)
{

temp • sl [i);
sl [i) s2 [iJ;
s2[i) •temp;

if (sl [i))
{
. j = i;

while (sl [i))
s2[i) = sl[i++J;

s2 [i J - ' \ O' ;

32 TURBO C PROGRAMMER'S LIBRARY

sl[j] = '\0';
}

else if (s2 [i])
{

j = i;
while (s2[i])

sl[i] = s2[i++];
sl[i] '\0';
s2[j]='\0';

The following routine performs bounds checking, which pre­
vents it from exceeding the array bounds:

char *S1="AAAA"
char •s2="BBBB"
int size1=sizeof(s1)
int size2=sizeof(s2)

string_exchange

0 Successful

"BBBB"
"AAAA"

1 Bounds error

/*
* string_exchange (sl, s2, sizel, size2)
*
* Exchange the contents of two character strings.
*
* sl (in/out): contains characters to exchange.
* s2 (in/out): contains characters to exchange.
* sizel (in): maximum number of characters in sl.
* size2 (in): maximum number of characters in s2.
*
*result= string_exchange (name, a, sizeof (name), sizeof (a));
*
* string exchange returns one of the following:
* 0 successful exchange -1 Insufficient memory 1. Incomplete
*
*I

int string_exchange (char sl[], char s2[], int sizel, int size2)
{
int i, j;
char temp;

for (i = 0; sl[i]; i++) /*get length of sl */

STRING MANIPULATION 33

if (i >= size2) /* too large for s2 ? */
return (1);

for (i = O; s2[i]; i++) /*get length of s2 */

if (i >= sizel) /* too large for sl ? */
return (1);

for (i = O; sl[i] && s2[i]; i++)
{

temp= sl[i];
sl[i] = s2[i];
s2[i] =temp;

if (sl [i])
{

}

j = i;
while (sl[i])

s2[i] = sl[i++];
S2 [i] = I \ 0 I ;

sl[j]='\0';

else if (s2 [i])
{

j = i; -
while (s2[i])

sl[i] = s2[i++];
sl[i] = '\0';
s2[j] = '\0';

return (0);
}

If the exchange is successful, the routine returns the value 0. If
one string contained too many characters, the routine returns the
value 1.

String Padding
Many reports that appear aligned on the computer screen often
require one or two leading blanks so that they will be aligned prop­
erly on printed output. The following routine enables you to place
additional blanks in front of a string. Once again, bounds checking
is a concern when producing the routines fast-pad and pad-string,
as shown here:

34 TURBO C PROGRAMMER'S LIBRARY

"AAA" char •s1="AAA"
int num-blanks=3

fast_pad

---- 0
-1

Successful
Insufficient memory

Warning: fast_pad does not perform bounds checking.

/*
* int fast_pad (s, num_blanks)

* Place the number of blanks specified at the front of a
* string.

* s (in/out) : string to pad
* num_blanks (in): number of blanks to insert.

* result = fast_pad (s, 33);

* pad string returns the value -1 if insufficient memory
* prevented the insertion.

*/

int fast_pad (chars[], int num_blanks)
{
int i, j;

char *temp;

void *calloc(unsigned, unsigned);

for (i = O; s[i]; i++) /* get the length of s */

if ((temp= (char*) callee (1, i + num blanks+ 1))
return (-1); /*couldn't get memory*/

for (i = O; i < num_blanks; i++)
temp [i] = ' ';

for (j 0; temp [i l = s [j] ; ++ j, ++ i)

temp [i] = '\0';

for (i = 0; s [i]

free (temp);

return (0);
}

temp [i]; i++)

, \0')

STRING MANIPULATION 35

If the padding is successful, the following routine returns the value
0. If insufficient memory is available, the routine returns a value -1.
If the array bounds are exceeded, the routine returns 1.

char *S1="AAA"
int num_blanks==3
int maxchar=sizeof{s1)

"AAA"
pad-string

0 Successful
Bounds error

-1 Insufficient memory

/*
* int pad_string (s, num_blanks, maxchar)
*
* Place the number of blanks specified at the front of a
* string.
*
* s (in/out) : string to pad
* num blanks (in): number of blanks to insert.
* maxchar (in): maximum number of characters in s.
*
*result= pad_string (s, 33, sizeof (s));
*
* pad string returns one of the following values:
* -1 Insufficient Memory 0 Successful 1 Incomplete
*
*/

int pad_string (chars[], int num_blanks, int maxchar)
{
int i, j;

char *temp;

void *calloc(unsigned, unsigned);

for (i = 0; s[i]; i++) /* get length of s */

if (i + num blanks >= maxchar) /* will blanks fit */
return (l);

else if ((temp= (char*) calloc (1, i + num blanks+ 1))
return (-1); /*can't get-memory*/

for (i = O; i < num blanks; i++)
temp [i] = ' ';

for (j = O; temp [i] = s [j]; ++j, ++i)

, \0')

36 TURBO C PROGRAMMER'S LIBRARY

temp !ii = '\0';

for (i = O; s[i) = temp[i); i++)

free (temp) ;

return (0);
}

Character Manipulation
Before discussing the more difficult routines that perform string
comparisons and substring matching, you should first consider rou­
tines that manipulate a single character within a string. The follow­
ing routines locate, replace, or delete a specific character within a
string.

The first function, char -count, returns the number of occur­
rences of a character within a string:

char •s=" AAAaaa"
char letter=' A' char_count

/*
* char_count (s, letter)
"

3 A occurs three times in AAAaaa
0 If letter not found

* Return the number of occurrences of letter in s.
" * s (in) : string to search.
* letter (in): letter to search for.
" *count= char_cnt ("This is a test", 's');
" */

char count (char s[J, char letter)
{ -
int i, count = O;

for (i = O; s [i]; i++)
if (s[i] ==letter)

count++;

return (count);
}

STRING MANIPULATION 37

Similarly, the routine remove-character removes each occurrence
of the specified character:

char •s="AaAaAa"
char letter='a' remove_character

"AAA"

0 Successful
-1 Insufficient memory

/*
* remove_character (s, letter)
*
* Remove each occurrence of letter from s.
*.
* s (in/out): string to remove the letter from.
* letter (in): letter to remove.
*
* remove_character (s, 'a');
*
* remove character returns the value -1 if insuffient memory
* prevented the removal, otherwise, 0.

*/

int remove character (chars[], char letter)
{
int i, j;

char *temp;

void *calloc(unsigned, unsigned);

for (i = O; s[i]; i++)

if ((temp= (char*) callee (1, i))
return (-1) ;

for (i = 0 1 j O; s[i]; i++)
if (s [i] != letter)

temp[j++J = s[i];

I \0')

38 TURBO C PROGRAMMER'S LIBRARY

for (ternp[j)

free (temp);

return(O);
}

'\0', i O; s[i) ternp[i); i++)

The function char _index returns the first occurrence of a char­
acter string within a string. If the character is not found, the routine
returns the value -1.

char •s="ABab"
char letter='a'

char_index

2 a is at offset 2
-1 If letter not found

/*
* char_index (s, letter}
*
* Return the location of the first occurrence of letter in s.
*
* s (in}: string to search for letter.
* letter (in): letter to search for.
*
*index= char index (s, letter);
*
* char index returns -1 if the letter is not found.
*
*/

int char_index (char s[J, char letter)
{
int i, location = -1;;

for (i = O; s[i) && (location
if (s[i) ==letter)

location = i;

-1); i++)

return (location);
}

/* -1 if not found */

Similarly, the routine right-char _index returns the last occur­
rence of the character specified in a string or the value -1 if the
character is not found.

STRING MANIPULATION 39

char *S="ABAB"
char letter=' A'

2 Second A appears at offset 2
-1 If letter not found

/*
* right_char_index (s, letter)
*
* Returns the rightmost occurrence of letter in s.
*
* s (in): string to search for the letter.
* letter (in): letter to search for.
*
*result= right_char_index (s, 'A');
*
* right_char_index returns -1 if the letter is not found.
*
*/

int right_char_index (chars[], char letter)
{
int i, location = -1;

for (i = 0; s[i]; i++)
if (s[i] == letter)

location = i;

return (location);
I

/* -1 if not found */

The routine replace-char replaces each occurrence of the first
specified character with the second specified character.

/*

char •s="Hill"
char letter 1='i'
char letter2='a' ·

replace_ char

* void char_replace (s, source_letter, target_letter)
*

"Hall"

* Replace each occurrence of source letter with target_letter
* within the string s.
*

40 TURBO C PROGRAMMER'S LIBRARY

* s (in/out): string to replace characters in.
* source letter (in): letter to replace.
* target-letter (in): replacement letter.
*
* char_replace (s, 'A', 'a');
*
*I

void char replace (s, source letter, target_letter)
char s [];
int source letter, target letter;

{ -
int i;

if (source letter != target letter)
for (i = O; s[i]; i++)
if (s[i] == source letter)

s[i] = target_letter;

The routine fill-string fills a character string with a specific
number of occurrences of the specified character. The routine per­
forms bounds checking to ensure that it does not overwrite the array
bounds. If the assignment is successful, the routine returns the value
0. Otherwise, the routine returns the value 1.

char •s="
char letter=' A'
int count=5 fill-string

omy ,scvjst=sizeof(s)

/*
* fill_string (s, letter, count, maxchar)
*

0 Successful
Bounds error

* Place count occurrences of letter into the string s.
*
* s (in/out): string to fill.
* letter (in): letter to place into the string.
* count (in): number of times to insert the letter.
* maxchar (in): maximum number of characters in s.

* fill_string (s, 'A', 10, sizeof (s));
*

STRING MANIPULATION 41

* fill string returns 1 if the fill was unsuccessful, 0 if
* successful.
*
*/

int fill_ string (char s [], int letter, int count, int maxcohar)
{
int i;

if (count+l > maxchar)
return (1);

/* +l reserves space for null */
/* insufficient memory */

for (i = O; i < count; ++i) /* fill the string */
s[i] = letter;

s[i] = '\0';

return (0);
}

White Space
Programmers who use C often define white space as either the
blank character (ASCII 32) or the tab character (ASCII 9). Just as
your programs require you to place blank characters at the start of
character strings, they periodically require that you remove them.
The following routines allow you to locate the first and last
nonwhite-space character in a string. The first function, called
first-nonwhite, returns the location of the first character in the
string that is not a white-space character, or the value -1 if the
string contains solely white space.

char •s="AAA"

/* first nonwhite (s) . -

first-nonwhite

O First character is nonwhite space
-1 If string contains only white space

• Return the index of the first character that is not white

42 TURBO C PROGRAMMER'S LIBRARY

* space (a blank or a tab) .
*
* s (in): string to examine for nonwhite space.
*
*result= first_nonwhite (name);
*
* If the string contains all white space, -1 is returned.
*
*/

int first_nonwhite (chars[])
{
int i, location = -1;

for (i = O; s[i] && (location== -1); ++i)
if ((s[i] !=' ') && (s[i] != '\t'))

location = i;

return (location) ;
)

/* -1 if all white space */

Similarly, the routine last-nonwhite returns the location of the last
nonwhite-space character in the string, or the value -1 if the string
contains only white space.

char •s="AAA" last_ nonwhite

I* last_nonwhite (s)
*

0 Last character is nonwhite space
-1 If string contains only white space

* Return the index of the last character that is not white
* space (a blank or a tab) .
*
* s (in): string to examine for nonwhite space.
*
*result= last_nonwhite (name);
*
* If the string contains all white space, -1 is returned.
*
*/

int last_nonwhite (chars[])
{
int i, location = -1;

for (i = O; s[i]; ++i)
if ((s[i] !=' ') && (s[i] != '\t'))

location = i;

return (location); /* -1 if all white space*/
)

String Comparison

STRING MANIPULATION 43

Most applications that perform string manipulation eventually must
perform string comparisons. Many existing routines will help you
determine whether two strings are equal. For example, consider this
loop, which compares two strings:

for (i = O; sl[i] == s2[i]; ++i)
if (sl [i] == '\0')

{

}

printf ("Equal strings\n");
break;

The routine begins with the first letter in each string and compares
them. As long as the letters are equal, the routine compares succeed­
ing characters. This process continues until either two characters
are not equal, or the ends of both strings are found.

Consider these examples:

a

I~ ~I
a

b b

c c Equal strings

\0 \0

s1 s2

A

1· ·1
a

B b

c c Not equal

\0 \0

s1 s2

44 TURBO C PROGRAMMER'S LIBRARY

Although this routine works, often the program would like the
strings to be considered equal, regardless of the case of the letters. '
Here, the routine should show the strings "Turbo C" and "TURBO
C" as equivalent. In order to support the capability to perform case­
sensitive comparisons, you must add a third parameter, as shown
here:

equal_strings (sl, s2, ignore_case);

Thus, one routine serves both possible requirements of the user.
The following routine returns the value 1 if the two strings are

equal, and 0 otherwise. It supports case-sensitive processing.

char •s1=" AAA"
char •s2="aaa"

int ignore_case=1
equal-strings

1 Equal strings
O Not equal strings

/*
* equal_strings (sl, 52, ignore_case)
*
* Return 1 if the strings sl and s2 are equal, otherwise return
* 0. Support case sensitive processing.
*
* sl (in): string to compare.
* s2 (in): string to compare.
* ignore_case (in) : if not 0, case of letters is ignored.
*
* if (equal_strings ("THIS", "this", 1))
*
* equal strings returns 1 if the strings are equal, 0
* otherwise.
*
*/

int equal_strings (char sl[], char s2[], int ignore_case)
{
int i;
char a, b;

for (i = O; sl[i] && s2[i]; i++)
if (sl[i] != s2[i])

{

STRING MANIPULATION 45

if (ignore case)
{ -
a= (sl[i] >='a' && sl[i] <= 'z') ? sl[i] & -32: sl[i];
b = (s2[i] >='a' && s2[i] <= 'z') ? s2[i] & -32: s2[i];
if (a != b)

break;

else
break;

if (sl[i] 11 s2[i])
return (0);

else
return (l);

Similarly, the following routine returns the location of the first
character that differs between two strings, or -1 if no difference
occurs. This routine supports case-sensitive processing.

char •s1="TEST"
char •s2="TEST"
ing ignore_case=O

first_difference

/*

Index to first different character
-1 If strings are equal

* first_difference (sl, s2, ignore_case)
*
* Return the location of the first difference between two strings
* or the value -1 if the strings are equal.

* sl (in): string to compare.
* s2 (in): string to compare.
* ignore_case (in): if 1, case is ignored.
*
* location first difference ("This", "THIS", 1);
*
*/

int first difference (char sl[], char s2[], int ignore_case)
{
int i;
char a, b;

for (i = O; sl[i] && s2[i]; i++)
if (sl[i] != s2[i])

{

46 TURBO C PROGRAMMER'S LIBRARY

if (ignore case)
{ -
a= (sl[i] >='a' && sl[i] <= 'z') ? sl[i] & -32: sl[i];
b = (s2[i] >='a' && s2[i] <= 'z') s2[i] & -32: s2[i];
if (a != b)

break;
)

else
break;

if (sl[i] 11 s2[i])
return (i);

else
return (-1);

The routine string-comp examines two character strings and
returns one of the following values:

/*

char •s1="AAA"
char •s2=" AA"
int ignore_case=1;

0 Strings are equal
1 First string is greater
2 Second string is greater

string _compare

0 If strings are equal
1 If s1>s2
2 If s2>s1

• string_comp (sl, s2, ignore_case)

• Compare the strings specified. Return 1 if sl > s2, 2 if
• s2 > sl and 0 if the strings are equal. Support case sensitive
• processing .
•
• sl (in): string to compare.
• s2 (in): string to compare.
• ignore_case (in) : if not O, case of letters is ignored .
•
• if (string_comp ("THIS", "this", 1) == 1)
•
•/

STRING MANIPULATION 4 7

int string comp (char sl[], char s2[], int ignore_case)
{ -

int i;
char a, b;
int result = O; /* 0 equal, 1 sl greater, 2 s2 greater */

for (i = 0; sl[iJ && s2[i]; i++)
if (sl[i] != s2[i])

{
if (ignore case)

{ -
a= (sl[i] >='a' && sl[i] <= 'z')
b = (s2[i] >='a' && s2[i] <= 'z')
if (a != b)

{
if (a > b)

result 1;
else

result 2;

break;
}

}
else

{
if (sl[i] > s2[i])

result 1;
else

result = 2;

break;
}

if (result == 0)
{
if (sl[i] == s2[i])

result = O;

else if (sl[i])
result 1;

else
result = 2;

return (result);
}

Substring Manipulation

sl[iJ & -32: sl[i];
s2[i] & -32: s2[i];

Just as a character string is a sequence of characters, a substring is
a series of characters within a string. For example, given the string
"Turbo C Programmer's Library", "Turbo" is a five-character sub­
string that begins at offset 0.

The following routines enable you to locate, replace, and count
the number of occurrences of a substring within a string. The first

48 TURBO C PROGRAMMER'S LIBRARY

routine, str _index, returns the starting offset of a substring within
a string, or the value -1 if the substring is not found.

Given the string "McGraw-Hill" and the substring "Hill", the
routine processes as follows:

1. Increment the index until string[index]==substring[O], or the
end of the string is found (see Figure 2-5).

2. Increment the index of the string and substring as long as
the corresponding letters are equal, or until the end of either
string is found (see Figure 2-6).

3. If the substring is found, return the index within the string
that corresponds to the start of the substring. Otherwise,
resume Step 1.

M substring[O] H

c

G

r

a \0

w

-

string[?] H

i

I

I

\0

Figure 2-5. Incrementing the index

string[7)

string[8]

string[9)

string[1 OJ

string[11]

M

c

G

r

a

w

-
H

i

I

I

\0

STRING MANIPULATION 49

substring[O] H

substring[1) i

substring [2] I

substring[3) I

substring[4] \0

Figure 2- 6. Incrementing the index until length of string and
substring are equal, or until end of string

This code implements str _index:

char •str="THIS"
char •sub="IS"

str _index

2 Index at which substring begins
-1 If substring is not found

I

I

I'

50 TURBO C PROGRAMMER'S LIBRARY

/*
* index (substring, string)
*
* Return the starting index of the substring within a string
* or the value -1 if the substring is not found.

* substring (in): substring to search for.
* string (in): string to examine.

*
*if (index ("PATH=", *ENV[l]) != -1)
*
*/

int index (char substr[], char str[])
{

int,1 i, j, k;

for (i = O; str[i); i++)
for (j = i, k = O; str[j]

if (! substr[k+l])
return (i);

return (-1);
}

substr[k]; j++, k++)
/* end of substring */

/* substring not found */

Similarly, the following routine returns a count of the number of
times that a substring appears in a string:

/*

char •str="THIS IS"
char •sub="IS"

* str_count (substring, string)

*

str _count

2 IS appears twice
0 If substring not found

* Return the number of occurrences of the substring within
* the string specified.
*
* substring (in): substring to search for.
* string (in): string to examine.

* count str count (''is'', ''This i~ a test'');

*/

STRING MANIPULATION 51

int str count (char substr[], char str[])
{ -

int i, j, k, count = O;

for (i = O; str[i]; i++)
for (j = i, k = O; str[j]

if (! substr[k+l])
count++;

substr[k]; j++, k++)
/* end of substring */

return (count);
}

/* 0 if string not found */

The routine remove-substring deletes each occurrence of a
substring from a string:

char •str="AABBCC"
char •sub="BB" --

remove_substring "AACC"

0 Successful
-1 Substring not found

/*
* remove_substring (substring, string)

* Removes the first occurrence of a substring from within a string.

* substring (in): substring to remove.
* string (in/out) : string to remove the substring from.
*
*status= remove substring (''is'', strvar);

* If successful, remove substring returns the value 0. If the
* substring is not found, remove_substring returns the value -1.

*/

int remove_substring (char substr[J, char str[J)
{
int i, j, k, location = -1;

for (i = 0; str[i] && (location== -1); i++)
for (j = i, k = O; str[j] substr[k]; j++, k++)

if (! substr[k+l]) /*end of substring*/
location = i;

if (location != -1)
{

52 TURBO C PROGRAMMER'S LIBRARY

for (k O; substr[k]; k++)

for (j = location, i
str[j] = str[i];

location+ k; str[i]; j++, i++)

str[j] '\0';

return (0);
}

else
return (-1); /* substring not found */

The routine next-Str _occurrence returns the next occurrence
of a substring within a string that follows the index given. If the
substring is not found, the routine returns the value -1.

char *Str="THIS IS"
char *SUb="IS" next_str _occurrence
int index=4

/*

5 Starting index of next
occurrence of the substring

-1 If not found

* next_str_occurrence (substring, string, start_index)
*
* Return the index of the next occurrence of the substring
* within the string starting at the index specified.
*
* substring (in): substring to search for.
* string (in) : string to examine.
* index (in) : starting index of the search.
*
*location= next str occurrence ("is", "this is a test", 4);
*
* If the substring is not found, -1 is returned.
*
*/

int next str occurrence (char substr[], char str[], int index)
{
int i, j, k;

for (i =index; str[i]; i++)
for (j = i, k = O; str[j]

if (! substr[k+l])
return (i);

substr[k]; j++, k++)
/* end of substring */

STRING MANIPULATION 53

return (-1);
I

/* substring not found */

Pattern Matching
The last obstacle facing the completion of your library of string­
manipulation routines is the matching of wildcard characters. For
example, assume that you are concerned with only the first and last
three letters of a file named ABC??FGH. Since you do not care about
the middle two characters, they are replaced with question marks.
With the routines just shown, you can modify the search loops, as
shown here:

char*str= "TH IS"
char*SUb= "??IS" pattern-index

/*
* pattern_index (substring, string)
*

Index where substring starts
-1 If substring is not found

* Return the starting index of the substring within the string.
* Allow the user to place the ? wildcard character within the
* substring for "don't care" letters.
*
*pattern index ("this???", "this bbb a test");
* -
* If the substring is not found, pattern_index returns -1.
*
*/

int pattern index (substr, str)
char substr[J, str[];

{
int i, j, k;

54 TURBO C PROGRAMMER'S LIBRARY

for (i = O; str[i]; i++)
for (j = i, k = 0; (str[j] == substr[k])

II (substr[k] '?'); j++, k++)

if (! substr[k+l])
return (i);

return (-1);
)

/* end of substring */

/* substring not found */

This simple addition adds considerable flexibility to your routines.

c H A p T E R

Pointer
Manipulation

Chapter 2 created a valuable library of string-manipulation rou­
tines. To do so, each string was treated as an array of characters, as
shown here:

char s[lOO];

Although each of the character array routines is fully functional,
you can in many cases reduce to an even greater extent the amount
of code required to implement each routine by using pointers. Many
C programs make extensive use of pointers, so you must understand
them.

By the end of this chapter, you should feel comfortable with the
use and manipulation of pointers. In fact, you will be developing
pointer-manipulation routines that possess tremendous capabilities.

55

56 TURBO C PROGRAMMER'S LIBRARY

Getting Started
All of the variables that you use in your programs are stored in
memory. In order to be able to access each specific variable, C must
have a means of differentiating variables (see Figure 3-1). C does
this by assigning each variable a unique memory address, as shown
in Figure 3-2.

The C ampersand operator (&) returns a variable's address.
Note that the following program does not display the value each vari­
able contains, but rather the location of each variable in memory:

main ()
{
int a = 5, b = 10;

printf ("Address of a %u -- Address of b %u\n",
&a, &b);

By adding a simple modification to the program, you can dis­
play the address and value of each variable, as shown here:

main ()
{

}

int a = 5, b = 10;

printf ("Address of a %u Value %d\n", &a, a);
printf ("Address of b %u Value %d\n", &b, b);

A pointer is a variable that contains a memory address. To
declare a pointer variable, use the following format:

variable_type *variable_name;

For example, to declare a pointer to a value of type int, use the
following:

int *int_pointer;

The asterisk tells C that the variable is a pointer to a memory
location that contains a value of type int. To assign an address to the

POINTER MANIPULATION 57

pointer, use the ampersand operator, as shown here:

int_pointer = &integer_variable;

Notice the absence of the asterisk(*). When a program refer­
ences a pointer without an asterisk, it is referring to a memory
address. For example, in the previous assignment you were assign­
ing the address of the variable integer _variable to the pointer
int-pointer, so no asterisk was used. When an asterisk is used with
a pointer, the value contained at the memory location referenced by
the pointer is manipulated (as opposed to the address).

Consider the following example:

main ()
{
int i, *int_pointer;

int_pointer = &i;

*~nt_pointer = 5;
)

This program begins by assigning the address of i to the pointer
int_pointer. Following this assignment, int-pointer contains the
memory address of i.

Address

1024 5 1--i ~ int-pointer
i-----

*int_pointer=5;

Memory

58 TURBO C PROGRAMMER'S LIBRARY

main()
---a

---b

---c int a,b,c; ,__ ____ __

Memory

Figure 3-1. Differentiating among variables

main()

int a,b,c;

Address

1000

1002

1004

---a

----b

---c

Memory

Figure 3-2. Assigning variables unique memory addresses

POINTER MANIPULATION 59

You can verify this by adding the following line of code:

printf ("Address of i %u Value of int_pointer\n",
&i, int_pointer);

Next, the program assigns the value 5 to the memory location
referenced by int-pointer.

Address

1024 __ s __ J---.i ~ int_pointer

•int_pointer=5;

Memory

In so doing, the variable i (which also refers to the same memory
location) is assigned the value 5.

Pointers and Functions
Chapter 2 examined several functions that returned a status value
indicating the success of their processing. In cases such as this
where the function needs to return only one value, you have no addi­
tional processing concerns. For example, the following function
returns the sum of two integer values:
sum (int a, int b)

{
return (a+ b);

)

60 TURBO C PROGRAMMER'S LIBRARY

In this case, the function returns one value and cannot modify the
contents of its parameters.

C passes parameters to functions by using a technique known as
call "fly value. Each time a parameter is passed to a function, C
assigns a copy of the value in the parameter to the function parame­
ters (formal parameters). Consider the following program, which
passes two integer variables to a function. The function first dis­
plays the original values and then modifies each of the parameter
values. However, when the program control returns to main, the
original variable values remain unchanged because the function
modified copies of the values contained in the variables (as opposed
to the variables themselves).

main ()
{
int a = 5, b = 10;

some_function (a, b);

printf (•In main a= %db= %d\n•, a, b);
}

some function (int a,·int b)
{ -
printf ("In some_function a= %db= %d\n", a, b);

a = 9;
b = 11;

printf ("In sorne_function a= %db= %d\n", a, b);
}

On invocation, this program displays the following:

If you want to modify the actual parameters within a function,
you must use pointers. For example, assume that you have two vari­
ables (a and b) that you want to initialize by using a function. To do

POINTER MANIPULATION 61

so, you must pass the addresses of each variable to the function by
using the ampersand operator, as shown here:

main ()
{
int a, b;

initialize (&a, &b);

printf ("a= %db= %d\n", a, b);
)

Within the function, you must specify to C that you are using point­
ers, as shown here:

initialize (int *a, int *b)
{
*a = 1;
*b = 2;

)

On invocation, this program displays the following:

This is because the function variables referenced the same memory
locations as the actual parameters (see Figure 3-3).

In a similar manner, the following function increments all three
of its parameters:

increment (int *a, int *b, int *c)
{

)

(*a+)+;
(*b) ++;
(*c)++;

Once again, invoke the function as follows:

increment (&valuel, &value2, &value3);

62 TURBO C PROGRAMMER'S LIBRARY

main()

int a,b;
initialize(&a,&b);

i.nitializE1(a,b)
int *a,*b;

a

b

Memory

Figure 3-3. Variables referencing same merrwry locations
as parameters

Pointers and Strings
Probably the greatest use of pointers in C is for string manipulation.
Each time C passes an array to a function, it passes the address of
the first element in the array. Remember, strings in C are treated as
arrays.

Since you are dealing with memory addresses, this provides an
ideal application for pointers. Consider the following function, which
displays the first character in the array of characters that it
receives:
show first (char *s)

{ -
printf ("%c\n", *s);

}

POINTER MANIPULATION 63

Address

1000

1001

1002

1003

1004

1005

1006

1007

T

u

r

b

0

c
\0

{ 1000
s

Figure 3-4. References of sin "Turbo C" string

]

..

On invocation, s points to the first letter in the string. Assuming that
the string is "Turbo C", s references as shown in Figure 3-4. If you
simply add 1 to the memory address, you can point to the second
letter in the string, as shown here:

show second (char *s)
{ -
s++; /* point to second character */
printf ("%c\n", *s);

}

The following routine displays the contents of the string it
receives:

show string (char *s)
{ -

while (*s != '\0')
{

printf ("%c", *s};
s++;

64 TURBO C PROGRAMMER'S LIBRARY

With each iteration, you simply add 1 to the pointer (called incre­
menting the address).

Next, you can reduce the code to an even greater extent by using
the following expression:

*s++

In this case, C will first use the value contained in the memory
address referenced by s and then increment it. As such, the code
fragments

a = *s++;

and

a = *s;
s++;

perform identical functions. With this concept in mind, you can
modify the code as shown here:

show string (char *s)
{ -
while (*s != '\0')

printf ("%c", *s++);

The following routines make extensive use of pointers. Many of
these routines perform functions that are similar to the functions of
routines presented in Chapter 2. You must understand the process­
ing involved in the routines that follow.

String-Manipulation Routines
The first function, string-length, returns the number of characters
in a string:

POINTER MANIPULATION 65

char •s1="Test" string-length

4 Number of characters in the string

/*
* string_length (s)

* Return the number of characters in the string.
*
* s (in): string to count the characters in.
*
*length= string_length ("This is a test");
*
*/

string length (char *s)
{ ~

int len = O;

while (*s++)
len++;

return (len);
}

In a similar manner, the routine char _index returns the first
occurrence of the letter specified within the string. If the letter is
not found, char _index returns the value -1.

char •s="This is"
char letter="i"

char-index

2 index of the letter i in the string
-1 If the letter is not found

66 TURBO C PROGRAMMER'S LIBRARY

/*
* char_index (s, letter)
*
* Return the index of the first occurrence of letter in
* the character string specified.
*
* s (in): string to search for the letter.
* letter (in): character to search for.
*
* index value char index ("This is a test", 'i');
*
*/

char_index (char *s, char letter)

int count, location = -1;

for (count = O; *s && (location
if (*s++ == letter)

location = count;

return (location);
)

-1); count++)

The routine char _count returns the number of occurrences of
the letter specified within the string. If the letter is not found,
char -count returns the value 0.

char •s="This is"
char letter "i"

/*

char_count

2 Number of times i appears in the string
0 If letter not found

* char_count (s, letter)

* Return the number of occurrences of a letter in the
* character string specified.

* s (in): string to search for the letter.
* letter (in): character to search for.

* count char_count (11 This is a test", 1 i');

*/

POINTER MANIPULATION 67

char count (char *s, char letter)
{ -

int count = O;

while (*s)
if (*s++ == letter)

count++;

return (count);
}

The function replace-character replaces each occurrence of the
first letter specified in the first string with the letter contained in
the second string.

/*

char •s="aaaBBB"
char old="a"
char new=" A"

replace_character

* void replace_character (s, oldletter, newletter)

* Replace each occurrence of oldletter in a string with
* the character contained in newletter.
*
* s (in/out): string to replace the letters in.
* oldletter (in): letter to replace.
* newletter (in): replacement letter.

* replace_character (some_string, 'A', 'a');
*
*/

"AAABBB"

void replace_character (char *s, char oldletter, char newletter)
{
while (*s)

if (*s == oldletter)
*s++ = newletter;

else
s++;

In a manner similar to the routines in Chapter 2, the following
routines use bit manipulation to convert a string to uppercase or
lowercase letters:

68 TURBO C PROGRAMMER'S LIBRARY

char •s="aaabbb" str _to uppercase "AAABBB"

I*
* void str_to_uppercase (s)
* * Convert a string to UPPERCASE characters.
*
* s (in/out) : string to convert to UPPERCASE.
*
* str_to_uppercase (filename);
*
* str to uppercase uses bit manipulation to convert characters
* to uppercase.
*
*/

void str_to_uppercase (char *s)
{

/*

while (*s)
if (*s >= 'a' && *s <= 'z')

*s++ &= -32;
else

s++;

char •s=" AAABBB"

* void str_to_lowercase (s)
*

str-to_lowercase

* Convert a string to lowercase characters.
*
* s (in/out) : string to convert to lowercase.
*
* str_to_lowercase (filename);
*

"aaabbb"

* str to lowercase uses bit manipulation to convert characters
* to lowercase.
*
*/

void str to lowercase (s)
char *s; -

{
while (*s)
if (*s >= 'A' && *s <= 'Z')

*s++ I= 32;
else

.s++;

POINTER MANIPULATION 69

This routine copies the contents of the first string specified to
the second string. This routine does not perform bounds checking.

char •s1="AAAA" ---j I
char •s2 --i _fa_s_t ___ c_o_P_Y_ - "AAAA"

Warning: fast-copy does not perform bounds checking.

/*
* void fast_copy (source, target)
*
* Copy the contents of the source string to the target.

* sl (in): source string containing characters to copy.
* s2 (out) : string receiving characters copied.

*fast copy ("This is a test", stringvar);
*
* fast_copy does not perform bounds checking.

*
*/

void fast copy (sl, s2)
char *sl, *s2;

{
while (*s2++ = *sl++)

You can implement bounds checking simply by adding the maxchar
qualifier (as shown in Chapter 2):

char •s1="AAAA"
char •s2 copy_string -- "AAAA"
int maxchar=sizeof(s2)

/*
* int string_copy (source, target, array_bound)
*

0 Successful
1 Bounds error

70 TURBO C PROGRAMMER'S LIBRARY

* Copy the source string to the target string variable.
*
* sl (in) : contains the characters to be copied.
* s2 (out) : receives the characters copied.
* maxchar (in) : specifies the maximum number of characters
* that s2 can store.
*
* status= string_copy ("This is", stringvar, sizeof (stringvar));
*
* If the array bounds are exceeded, string copy returns the value
* 1; otherwise it returns the value 0. -
*
*/

int string_copy (char *sl, char *s2, int maxchar)
{
int i;

maxchar--; /* leave space for null */

for (i = O; (-*s2++ *sl++) '&& (i < maxchar); i++)

if ((i maxchar) && *sl) /* see if characters remain in sl */
{
*s2 = '\0';
retu.rn (1) ;

}
else

return (0);

The routine fast-append appends the contents of the first spec­
ified string to the second string. No bounds checking is performed.

char *s1=''CCC'' ~ _
char •s2="AAABBB" ~ "AAABBBCCC"

Warning: fast-append does not perform bounds checking.

/*
* void fast_append (source, target)
* * Append the contents of the source string to the target.
* * sl (in): source string containing characters to append.
* s2 (out): string receiving characters copied.
*
* fast_append ("This is a test", stringvar);
* * fast_append does not perform bounds checking.
*
*/

POINTER MANIPULATION 71

void fast_append (char *sl, char *s2)
{
while (*s2) /* find the end of s2 */

s2++;

while (*s2++ = *sl++) I* append sl */

The following routines perform case-sensitive string compari­
sons.

The first routine, equal-strings, returns the value 1 if two
strings are identical. Otherwise, it returns 0.

char •s1="This"
char •s2="THIS"
int ignore_case=1

equal-strings

1 Strings are equal
O Strings differ

/*
* equal_strings (sl, s2, ignore_case)
*
* Return 1 if the strings sl and s2 are equal, otherwise return
* 0. Support case sensitive processing.
*
* sl (in): string to compare.
* s2 (in): string to compare.
* ignore_case (in) : if not O, case of letters is ignored.
*
*if (equal_strings ("THIS", "this", 1))
*
* equal strings returns 1 if the strings are equal, 0
* otherwise.
*
*I

int equal_strings (char *sl, char *s2, int ignore_case)
(
char a, b;

for (; *sl && *s2 ; sl++, s2++)
if (*sl != *s2)

(
if (ignore case)

{ -
a= (*sl >='a' && *sl <= 'z')? *sl & -32: *sl;
b = (*s2 >= 'a' && *s2 <= 'z') ? *s2 & -32: *s2;
if (a != b)

break;

72 TURBO C PROGRAMMER'S LIBRARY

}
else

break;

if (*sl I I *s2)
return (0);

else
return (1);

The routine string-compare returns one of the following
values:

0 Strings are equal
1 String 1 > String2
2 String 1 < String2

char •s1="THAT"
char •s2="THIS"
int ignore_case=1

string-compare

2 s2>s1
O s1=s2
1 s1>s2

/*
* string_comp (sl, s2, ignore_case)
*
* Compa.re the strings specified. Return 1 if sl > s2, 2 if
* s2 > sl and 0 if the strings are equal. Support case sensitive
* processing.
*
* sl (in): string to compare.
* s2 (in): string to compare.
* ignore_case (in) : if not 0, case of letters is ignored.
*
* if (string_comp ("THIS", "this", 1) == 1)
*
*/

int string_comp (char *sl, char *s2, int ignore_case)
{
char a, b;
int result = O; /* O equal, 1 sl greater, 2 s2 greater */

for (; *sl && *s2; sl++, s2++)
if (*sl != *s2)

POINTER MANIPULATION 73

if (ignore case)
{ -
a= (*sl >='a' && *sl <= 'z') ? *sl & -32: *sl;
b = (*s2 >='a' && *s2 <= 'z') ? *s2 & -32: *s2;
if (a ! = b)

{
if (a > b)

result 1;
else

result 2;

break;
}

}
else

{
if (*sl > *s2)

result 1;
else

result = 2;

break;
}

if (result == 0)
{
if (*sl == *s2)

result = O;
else if (*sl)

result = 1;
else

result = 2;
}

return (result);
}

The routine first-difference returns the index of the first char­
acter that differs between two strings. If the strings are equal, the
routine returns the value -1.

char *s1="This"
char *S2="THIS"
int ignore-case=1

fi rst_d ifference

-1 Strings are equal
Index of first character that differs

74 TURBO C PROGRAMMER'S LIBRARY

/*
* first_difference (sl, s2, ignore_case)
*
* Return the index location of the first character that differs
* between sl and s2. If the strings are equal, return the value -1.
*
* sl (in): string to compare.
* s2 (in): string to compare.
* ignore_case (in): If 1, ignore case of letters.
*
* location first_difference ("TURBO C", "turbo c", l);
*
*/

int first difference (char *sl, char *s2, int ignore_case)
{
int i;
char a, b;

for (i = O; *sl && *s2; sl++, s2++, i++)
if (*sl != *s2)

{
if (ignore case)

{ -
a= (*sl >='a' && *sl <= 'z') ? *sl & -32: *sl;
b = (*s2 >='a' && *s2 <= 'z') *s2 & -32: *s2;
if (a != b)

break;

else
break;

if (*sl 11 *s2)
return (i);

else
return (-1);

The routine index returns the starting index of a substring
within a string. If the substring is not found, the routine returns the
value -1.

char *Str="This is"
char •substring="is" index

2 Starting index of is
-1 If substring not found

POINTER MANIPULATION 75

/*
* index (substring, string)
*
* Return the starting index of the substring within a string
* or the value -1 if the substring is not found.
*
* substring (in): substring to search for.
* string (in): string to examine.
*
* if (index ("PATH=", *ENV[l]) != -1)

*/

int index (char •substr, char *str)
(
char *substring, *string, *start = str;

while (*str)
for (string = str++, substring = substr;

*string == *substring; string++, substring++)
if (! *(substring+l)) /*end of substring*/

return (str - start - 1);

return (-1);
)

/* substring not found */

The function str _count returns a count of the number of occur­
rences of a substring within a string. If the substring does not occur
in the string, the value 0 is returned.

char •str="this is"
char •substring="is" str_count

/*
* str~count (substring, string)
*

2 Number of occurrences
of is in the string

0 If substring is not found

* Return the number of occurrences of the substring in the string
* or the value 0 if the substring is not found.
*
* substring (in): substring to search for.
* string (in): string to examine.
*

76 TURBO C PROGRAMMER'S LIBRARY

*count str_count ("is", "This is a test");
*
*/

int str_count (char *substr, char *str)
{
char *substring, *string;

int count = O;

while (*str)
for (string = str++, substring = substr;

*string == *substring; string++, substring++)
if (! *(substring+l)) /*end of substring*/

++count;

return (count);
)

Conversion Routines

/* substring not found */

Periodically a program must convert a string representation of a
value to its numeric format. Consider the following program:

main ()
{
char agestr[5];
int age;

printf ("Enter your age\n");

gets (agestr);

if (ascii to int (agestr, &age) != -1)
printf <"'lsd\n", age);

else
printf ("Invalid age entered\n");

The program invokes the function ascii-to-int, which converts a
string representation of an integer value to an actual value of type
int. If the string contains "1233", the routine returns the integer
value 1233. However, if the string contains an invalid character
(such as "123d3"), the routine returns an error status value.

char •ascii="123"
int •value

ascii_to_int

POINTER MANIPULATION 77

123

O Successful
-1 Invalid character found

/*
* ascii_to_int (str, value)
*
* Convert a string representation of a numeric value to the
* actual integer value.
*
* str (in) : string containing numeric representation.
* value (out): actual integer value.
*
* if (ascii_to_int ("1112", &value) != -1)
*
* If the character contains invalid characters, the value -1 is
* returned.
*
*/

asc11_to_int (char *str, int *value)
{
int sign 1; /* -1 if negative value */

*value = 0;

while (*str ==' ') /*skip leading blanks*/
str++;

if (*str == '-' 11 *str '+')
sign= (*str++ == '-') ? -1: 1;

while (*str)
if ((*str >= '0') && (*str <= '9'))

*value= (*value* 10) + (*str++ - 48);
else

return (-1); /* invalid character*/

*value *= sign;

return (0);
}

In just the opposite manner, the routine int-to-ascii converts
an integer value to its string representation.

78 TURBO C PROGRAMMER'S LIBRARY

char *ascii ~"555"
int value=555 ~

/*
* int_to_ascii (value, str)
*
* Convert an integer value to its character string representation.
*
* Str (out): string to contain the numeric representation.
* value (in): integer value to convert.
*
* int_to_ascii (str, 22);
*
*/

int to ascii (int value, char *str)
{-
int sign = value;

char temp, *savestr str;

if (value < 0)
value *= -1;

do
{

}

*str++ = (value % 10) + 48;
value = value I 10;

while (value> 0);

if (sign < 0)
*str++ = '-';

*str-- = '\0';

while (savestr < str)
{

}

temp = *str;
*str-- = *savestr;
*savestr++ = temp;

Admittedly, this has been a fast trip through pointer-manipulation
routines. If you do not yet feel comfortable with the concept of a
pointer, experiment with the previous routines before proceeding.

POINTER MANIPULATION 79

Arrays of Pointers
Just as Callows you to have an array of characters, it also allows you
to create an array of pointers. For example, consider the following
definition:

char *summer [3];

C will create an array indexed from 0 to 2 that contains three point­
ers to character strings. You can assign values to each string ele­
ment and then display them, as shown here:

main ()
{
char *summer[3];

int i;

summer [0]
summer [1]
summer [2]

"June";
"July";
"August";

for (i = O; i < 3; i++)
printf ("%s\n", summer [i]);

Using this concept, you can define many useful arrays of point­
ers to character strings, as shown here:

char *DAYS[?] = {"Sunday", "Monday", "Tuesday",
"Wednesday", "Thursday", "Friday",
"Saturday");

This program uses an array of pointers to display an ASCII,
decimal, octal, and hexadecimal chart.

char *ascii[] = { 11 NUL 11 , "SOH", "STX", "EXT", "EOT",
"ENQ", 11 ACK 11 , "BEL", "BS ..

I "HT .. ,
"LF ..

I "VT " , "FF .. , "CR ..
I "SO .. ,

"SI " I "DLE", "DCl", "DC2", "DC3",
"DC4", "NAK", "SYN", "ETB", "CAN",
"EM ..

I "SUB", "ESC", "FS ..
I "GS .. ,

"RS ..
I "US ..

I "SPACE") ;

80 TURBO C PROGRAMMER'S LIBRARY

main ()
{

int i;

for (i ; O; i < 33; i++)
printf ("%03d %030 %03x %s\n", i, i, i, ascii[i]);

for (; i < 128; i++)
printf ("%03d %030 %03x %3c\n", i, i, i, i);

In order to fully exploit the capabilities found in C, you must be
able to understand and utilize arrays of pointers to character
strings.

Command-Line Processing
Each time you enter a command from the DOS prompt, the
sequence of characters you enter constitutes a command line, as
shown here:

(~A->~CO_P_Y_s_o_u_RC-E~TAR~GE-T~~~~~~~~~J

One of the most powerful capabilities of C is that it allows easy
access to the command line used to invoke the program. In order to
exploit this access, you must define main within your program, as
shown here:

main (int argc, char *argv[])
{

These two parameters provide your access to the command line. The
first, argc, contains the number of command-line arguments. The
second, argv, is an array of pointers to character strings that contain
the actual arguments.

POINTER MANIPULATION 81

Before your C program executes, built-in header code (which
assigns the number of command-line arguments to argc and the
actual arguments to the elements of the array argv) executes. Once
this processing is complete, this code invokes main. In the following
command line,

(~A->~co_P_Y_s_o_u_Rc_E~TAR~GE-T~~~~~~~~~J

the variable argc will contain the value 3 and the elements of argv
will point to the following:

You can verify this simply by executing the following program,
which displays each of its command-line parameters:

main (int argc, char *argv[])
{
int i;
for (i = 0; i < argc; i++)

printf ("%s\n", argv[i]);

The true power of command-line processing is shown when you
examine the file-manipulation programs later in this text. For now,
here is a program that displays the contents of the file specified by a
command-line argument:

(A> SHOW FILENAME.EXT

finclude <stdio.h>

main (int argc, char *argv[])
{

J

82 TURBO C PROGRAMMER'S LIBRARY

FILE *fopen (), *fp;

char str[255];

if (argc > 1)
if (!(fp = fopen (argv[l], "r")))

printf ("Invalid file %s\n", argv[l]);
else

{
while (fgets (str, 255, fp))

printf ("%s", str);

fclose (fp);

Accessing Environment Entries
You may be familiar with the DOS environment, which is a region
of memory that DOS sets aside to store information.

For example, issue the DOS set command as follows:

(~A>_s_ET~~~~~~~~-J

DOS will display the contents of its environment entries:

COMSPEC=C:\COMMAND.COM
PATH=C:\DOS;C:\TURBOC

To place a value in the environment, simply use the SET command
as shown here:

(~A->~SE-T~F-IL_E_N_AM_E_=_TE_S_T~~~~~~~~~-J

To verify that the entry was successful, agam issue the SET
command:

A> SET
COMSPEC=C:\COMMAND.COM
PATH=C:\DOS;C:\TURBOC
FILENAME=TEST

POINTER MANIPULATION 83

Many programs often require access to the environme,nt entries.
As such, Turbo Callows you to access the environment in a manner
similar to the command line. Once again, you must modify your
definition of main:

main (int argc, char *argv[J, char ~env[J)
{

Just as argv is an array of pointers to the command line, env is
an array of pointers to the environment entries. This program uses
env to display the current environment.

main (int argc, char *argv[J, char *env[J)
{
while (*env)

printf ("%s\n'', *env++);

The following program combines command-line manipulation
with environment processing to display the value of a specific envir­
onment entry.

(~A->~S_H_ow_E_NV~P_A_T_H_=~~~~~~~~~~~~J

In this case, the program displays the value associated with the
PATH entry (if it is found):

main (int argc, char *argv[J, char *env [J)
{
void str_to_uppercase();

if (argc > 1)
{

84 TURBO C PROGRAMMER'S LIBRARY

str_to_uppercase (argv[l]);

while (*env)
if (index (argv[l], *env) == 0)

printf ("%s\n", *env++);
else

env++;

Some programmers have difficulty opening files that do not
reside in a fixed directory or the current directory. The DOS envir­
onment may provide a solution. Assume that the file you need to
open is called DATA.DAT. This file can reside in any DOS subdirec­
tory. As such, you can simply place an entry in the environment that
tells you where the file resides:

(A> SET DATAFILE=C:\SOMEDIR\DATA.DAT J

The program then uses this information to locate the file in order to
successfully open the file. The program simply searches each envi­
ronment entry as shown in the previous program.

Far Pointers
Each of the pointers used thus far was a 16-bit address. Such point­
ers are termed near pointers because they can only be used to access
memory locations within the 64KB data segment. Most C programs
never have access to memory regions beyond this.

However, an advanced program periodically has a requirement
to access memory outside of this region. In such cases, the program
must use Jar pointers, which contain 32-bit addresses. Unlike near
pointers (which can only offset into the current 64KB data segment),
a far pointer allows you to define a 16-bit segment along with a 16-
bit offset address (see Figure 3-5).

POINTER MANIPULATION 85

31 16 15 0

Segment Offset

1---- 32-bit address ----1

Figure 3-5. Offset address of far pointer

Examine the DOS memory map shown in Figure 3-6. Note that
the computer uses the memory region B800:0000 to address the color
video display memory. Knowing this, you can use a far pointer to
reference this memory region. In so doing, you can perform
memory-mapped output.

The computer displays characters by placing the ASCII code for
the character into one of these memory locations, followed imme­
diately by the character's display attribute value (color, boldface,
and so on), as shown in Figure 3-7. As such, you can place the letter
"A" in the upper left corner of the screen, as shown here:

main ()
{

)

char far *letter = OxB8000000;
char far *attr = OxB8000001;

*letter = 65;
*attr = 7;

DOS Power User's Guide (Kris Jamsa, Osborne/McGraw-Hill,
1988) provides several example routines that use far pointers. In
fact, that book contains a chapter dedicated to memory mapping. in
most cases, you will use near pointers for your manipulation. How-

86 TURBO C PROGRAMMER'S LIBRARY

OH Interrupt vectors

BIOS data area

DOS

Application
Space

------· Transient
COMMAND.COM

AOOOH
Reserved tor
future video

BOOOH
Monochrome

video
BBOOH

CGA video

Figure 3..;6. Color video display memory address

ever, you should understand the functional capabilities of far
pointers.

POINTER MANIPULATION 87

f:),p I:)'\

r:s'lS r:s~<J
<o'O<J <o'O<J

I
char attr char attr char attr 80 x 2 (char, attr)

(/)

3:
e
LO
N

l char attr char attr

Figure 3-7. Displaying a character on screen using ASCII codes and
display attributes

c H A p T E R

Recursion
Earlier chapters presented several programs and functions that
perform their processing by invoking other functions. With Turbo C,
a function (and even a program) can invoke itself to perform a spe­
cific task. This is known as recursion. Many advanced programmers
use recursion to greatly reduce the amount of code in their
programs.

In later chapters, you will examine the manipulation of dynamic
variables to perform specific tasks. Many of the algorithms for those
programs will be recursive. As you examine the routines in this
chapter, you will find that many of them have been previously
implemented nonrecursively. In most cases you can implement a
function more efficiently without recursion than with it. (The rea­
sons for this are presented later in this chapter.) However, because
many Tur ho C programmers make extensive use of recursion in

89

I

I'

90 TURBO C PROGRAMMER'S LIBRARY

their programs, you should understand the general flow of control
for recursive functions.

Take the time to experiment with the routines presented in this
chapter, and you will find recursion to be a straightforward, power­
ful, and even enjoyable feature of Turbo C programming.

Getting Started with Recursion
The following program invokes the routine show _digit with the
value 5. The function show _digit in turn uses printf to display the
value it receives. The routine then invokes itself with the value -1
(in this case, 4). This process repeats until the value received is equal
to 0. When invoked, the program displays the following:

A> SHOWDGT
5
4
3
2
1

A>

The following code implements show _digit:

/*
* void show digit (digit)
* -
* Recursively display the numbers from digit to zero.
*
* digit (in): starting number of the digits to display.
*
*show digit (7);
* -
*I

void show digit (int digit)
(-
if (digit != 0)

(
printf ("%d\n", digit);
s.how digit (--digit);

} -

RECURSION 91

On the first invocation of show _digit, the parameter digit con­
tains the value 5. The function then displays that value and invokes
itself with the value 4:

show_digit (5)
if (digit !=O)

; { Urintf ("%d \n", 5);
show_digit (5-1);

l--------,;
show_digit (4) ·

The second invocation of the function displays the value 4 and then
invokes itself with the value 3:

92 TURBO C PROGRAMMER'S LIBRARY

show_digit (4)
if (digit !=O)
{
printf ("%d \n", 4);
show-digit(4-1);

}

show_digit (3)

This process repeats until the value of digit is 0, as shown in Figure
4-1.

Once digit is 0, show _digit no longer invokes itself recursively.
The last invocation of the function terminates and returns control to
the previous invocation.

show-digit (0)

show_digit (1)
if (digit !=0)
{
printf ("%d \n", 1);
show-digit (1-1);

}

show_digit (3)
if (digit !=O)
{
printf ("%d \n", 3);
show_digit (3-1);

)

show_digit (2)
if (digit !=O)

I
printf ("%d \n", 2);
show_digit (2-1);

)

show_digit (1)
if (digit !=0)

I
printf ("%d \n", 1);
show_digit (1-1);

)

show_digit (0)

RECURSION 93

Figure 4-1. Processing involved in show_digit program (until the
value of digit is 0)

94 TURBO C PROGRAMMER'S LIBRARY

show_digit (1)

show_digit (2)
if (digit !=O)
{

}

printf ("%d\n",2);
show-digit (2-1);

This process repeats until no invocation of show _digit is active, as
shown in Figure 4-2. A recursive function, then, is one that calls
itself until an ending condition is met.

Chapter 2 discussed how Turbo C terminates strings with the
null character. With this concept in mind, you can write a recursive
function that determines the number of characters in a string by
searching for the null character. Given the string "ABC", the func­
tion examines the first character. If the current character in the
string is not the null character, the routine simply adds the value of
1 to the value returned by the next invocation of the routine string_
length. Thus, by using "ABC", the processing becomes that shown in
Figure 4-3.

show_diglt (2)
if (digit !=O)
I
printf("%d \n", 2);
show_digit (2-1);

J

show_digit (3)
if (digit !=0)

I
printf ("%d \n", 3);
show_digit (3-1);

J

show_digit (4)
if (digit !=0)
I
printf ("%d \n'', 4);
show_digit (4-1);

l

show_digit (5)
if (digit !=O)

I
printf ("%d \n", 5);
show_digit (5-1);

J

RECURSION 95

Figure 4-2. Processing involved in show_digit program (until
program is no longer active)

II
cl
I
1

96 TURBO C PROGRAMMER'S LIBRARY

string_length ("ABC")
if (•s)

return (Hstring_length (++s));

string_length ("BC")
if (•s)

return (Hstring_length (++s));

string_length ("C")
if (•s)

return (Hstring_length (++s));

string_length (" ")
if (•s)

return (Hstring_length (++s));
else

return (O);

Figure 4-3. Processing involved in string_length program

RECURSION 97

Once it locates the null character, the routine simply works its
way back through the series of recursive invocations. The following
routine implements string_length:

char•s="Turbo C" string_ length

7 Number of characters in the string

/*
* string_length (s)
*
* Return the number of characters in the string.
*
* s (in): string to return the length of.
*
*count= string length (string);
* -
*/

int string length (s)
char *s;-

{
return ((*s) ? 1 + string_length (++s): 0);

Similarly, the routine display _string displays the contents of a
character string by using recursion. The routine begins by examin­
ing the current character. If that character is not null, the routine
displays the character and then invokes itself with the next charac­
ter. This process repeats until the null character is found. Given the
string "ABC", the processing becomes that shown in Figure 4-4.

98 TURBO C PROGRAMMER'S LIBRARY

display_string ("ABC")

if (•s)
I
print! ("%c", 'A');
disp/ay_string (++s);

I

L
1

display_string ("BC")
if (·s)
I
printf ("%c",'B');
disp/ay_string (++s);
I

l
display_string ("C")

if (•s)
I
print! ("%c", 'C');
display_string (++s);

I

display _string (" ")

Figure 4-4. Processing involved in display_string program

In the following case, once the routine locates the null character,
no further processing is required. The function simply returns con­
trol to the previous invocation.

RECURSION 99

char •S'="Turbo C"~ turbo jg]

/*
* display_string (string)
*
* Display the contents of a character string on the screen display.
*
* string (in): character string to display.
*
* display_string ("This is a test");
*
*/

display_string (char *s)
{
if (*s)

{
printf ("%c", *s);
display string (++s);

} -

/* do characters remain? */

/* output current character */
/* recursively display other characters */

By changing the following lines of code,

printf ("%c", *s);
display_string (++s);

to

display string (s+l);
printf 1"%c", *s++);

100 TURBO C PROGRAMMER'S LIBRARY

the routine displays the string in reverse order. This is because the
function first examines the current character in the string. If the
character is not the null character, the routine invokes itself recur­
sively with the next character. This process repeats until the routine
locates the null character. Once the null character is found, the rou­
tines begin working their way back through the series of invocations
to display the characters in reverse order, as shown in Figure 4-5.

The following code implements show -I"everse:

char •l>O"Tuibo C" ~ f obruT]:I

/*
* show_reverse (String)
*
* Display the contents of a character string on the screen display
* in reverse order.
*
* string (in): character string to display.
*
*show reverse ("This is a test");
* -
*I

show reverse (char *s)
{ -
if (*s)

{

)

show reverse (s+l) ;
printf ("%c", *s);

/* do characters remain? */

/* recursively show other characters */
/* output current character */

Probably the most popular use of recursion is for determining the
factorial of a value. Table 4-1 illustrates how to calculate the facto­
rials for the values 1 through 5. The factorial of 5 is

5 * factorial (4)

show_reverse ("ABC")

if (•s)
I

I

show_reverse (s+1);
print! ("%c". 'A');

show_reverse ("BC")

if (•s)
I

I

show_reverse (s+1);
print! ("%c", 'B');

show_reverse ("C")

if (•s)
I

I

show_reverse (s+1);
print! ("%c", 'C');

RECURSION 101

show_reverse (" ")

c

B

A

Figure 4- 5. Processing involved in show _reverse program

102 TURBO C PROGRAMMER'S LIBRARY

Table 4-1. Factorials of Values 1 Through 5

Value Definition

1 1
2 1*2
3 1*2*3
4 1*2*3*4
5 1*2*3*4*5

The factorial of 4 is

4 * factorial (3)

Result

1

2

6

24
120

This process continues until the factorial of 1 (which, by definition,
is 1) is reached. For example, to determine the factorial of the value
3, the processing shown in Figure 4-6 is performed.

The following routine implements factorial:

int a=3---1 factorial J c6 Result of 3•2•1

/*
* factorial (value)

* Return the factorial of the value specified.

* value (in): value to return the factorial of.
*
* fact= factorial (5);

*/

factorial (int value)
{

return ((value<= 1) 1: value* factorial (value-1));
}

RECURSION 103

factorial (3)

if (value> 1)
return (3 • factorial (3-1));

factorial (2)

if (value > 1)
return (2 •factorial (2-1)):

return (6);

6 Result

factorial (1)

if (value > 1)
return (value • factorial (value-1));

else
return (1);

return (2);

Figure 4- 6. Determining the factorial of the value 3

104 TURBO C PROGRAMMER'S LIBRARY

Similarly, recursion can be used to compute a Fibonacci number.
Table 4-2 shows you how to calculate the Fibonacci numbers from 1
to 5. The following code implements Fibonacci:

int value=10; Fibonacci

55 Value of the tenth Fibonacci number

/*
* fibonacci (value)
* * Return the Fibonacci number for the value specified.
*
* value (in): value to return the Fibonacci number of.
*
* fibon = fibonacci (10);
* * A Fibonacci number is the sum of the previous two Fibonacci numbers.
*
*/

fibonacci (int value)
I
return ((value== 1 I I value== 2) ? 1:

fibonacci (value - 1) + fibonacci (value - 2));

C is a portable programming language, which means that the code
that you write on one type of computer in C will likely recompile and
run on a different type of computer (with little or no modification).
Portability is one of C's most important characteristics. However,
exceptions to the rule always exist. Depending on your target com­
puter, the number of bits that C uses to represent value of type int
may differ from 16 to 32 bits. Thus, the range of values that each
can store may also differ (see Table 4-3).

In either case, C always uses the most significant (leftmost) bit of
an integer value as the sign bit, as shown in Figure 4-7. When this
bit is set (1), the value contained in the lower order bits is considered
a negative value. When this bit is clear (0), the value is positive. You

RECURSION 105

Table 4-2. C alculatWri of Fibonacci Numbers 1 Through 5

Value Definition Fibonacci Number
1 1 1

2 1 1

3 1+1 2

4 2+1 3

5 3+2 5

Table 4-3. Number of Bits Versus Minimum and Maximum Values

Number of Bits

16
32

s
i
g
n

Data bits
b
i
I

15 14

Minimum Value
-32768

-2147483648

s
i
g
n

b
i
I

') 31 30

Maximum Value

32767
2147483647

Data bits

0

Figure 4- 7. Example of Turbo C using most significant bit of
an integer value

106 TURBO C PROGRAMMER'S LIBRARY

can use this bit to determine the number of bits Turbo C is using to
store values of type int.

If you begin by assigning a value of type int the value 1, you can
repeatedly shift the value to the left one location until the sign bit
becomes set. When this occurs, you know the size of the variable (see
Figure 4-8).

0 I 000 0000 0000 0001 I Count= 1

0 I ooo 0000 0000 0010 I Count= 2

0 I ooo 0000 0000 0100 I Count= 3

O I 010 0000 0000 0000 I Count = 14

0 I 100 0000 0000 0000 I Count = 15

I 000 0000 0000 0000 I Count = 16

Figure 4- 8. Shifting a value left one location until sign bit is set

RECURSION 107

The following code implements word-Size:

int i=1~ word_size I
L 16 or 32 (depending on your compiler)

/*
* word_count (value)
*
* Return the number of bits in a value of type int.
*
* value (in): value to shift left until negative.
*
* num bits= word count (1);
*
*/

word count (int a)
{ -
return ((a> 0) ? 1 +word count (a<< 1): 1);

}

The following routine invokes a recursive implementation of the
routine fast-copy. Given the string "ABC", the processing is that
shown in Figure 4-9.

The following code implements fast-copy. Note that this routine
does not perform bounds checking.

char •s1 ="AAA";~ I "AAA"
h fast-copy "AAA" c ar •s2;_ _____

Warning: fast-copy does not perform bounds checking.

108 TURBO C PROGRAMMER'S LIBRARY

tast_copy I "ABC", s2)

If (s2 ='A')
fast-copy ("BC". s2);

tasLcopy ("BC", s2)

If (s2= 'B')
fast-copy ("C", s2);

return;

fast_copy ("C", 82)

If (s2 = 'C')
fast-copy (" ", s2);

fast_copy I" ",82)

If (s2 = "")
fast-copy("BC", s2);;

else
retu · .

Figure 4- 9. Processing involved in fast-Copy program

/*
* void fast_copy (source, target)
*
* Copy the contents of the source string to the target.
*
* sl (in): source string containing characters to copy.
* s2 (out) : string receiving characters copied.
*
* fast_copy ("This is a test", stringvar);
*
* fast_copy does not perform bounds checking.
*
*/

void fast copy (sl, s2)
char *sT, *s2;

{
if (*s2 = *sl)

fast_copy (++sl, ++s2);

RECURSION 109

The following program uses recursion to display the contents of a
small text file in reverse order. Just as the string-manipulation rou­
tines presented in Chapter 2 searched a character string one letter
at a time until the null character was found, the file__reverse rou­
tine searches for the end of a file. Given the following file,

AAAA
8888
cc cc

the processing becomes that shown in Figure 4-10.
The following program uses file_reverse to display the contents

of a file specified by argv[l] in reverse order.

#include <stdio.h>

main (int argc, char *argv[))
{
FILE *fp, *fopen();

110 TURBO C PROGRAMMER'S LIBRARY

if(fgets (s, 132, Ip))
I
file_reverse (Ip);
!puts (" AAAA", Stdout);
I

if (!gets (s, 132, Ip))
I
file_reverse (Ip);
!puts ("BBBB", stdout);1
I

"AAAA"

if (!gets (s, 132, Ip))

I ! lile_reverse (Ip);
!puts ("CCCC", stdout);
I

ii (!gets (s, 132, Ip))
I
file_reverse (Ip);
!puts (" AAAA", stdout)
I

else
return;

Figure 4-10. Processing involved in file_reverse program

I*

void file_reverse (FILE *fp);

if (argc < 2)
printf ("Invalid usage: FILEREV FILENAME.EXT\n");

else if (! (fp = fopen (argv[l], "r")))
printf ("Could not open %s\n", argv[l]);

else
(

)

file reverse (fp);
fclose (fp) ;

* void file_reverse (file_pointer)

RECURSION 111

* Display the contents of the file specified last line to first line.

* file_pointer (in): pointer to the desired file.
*
*file reverse (fp);
*
* file reverse only works for small files.
*
*/

void file_reverse (FILE *fp)
(
char string[132];

if (fgets (string, 132, fp))
I

file reverse (fp);
fputs (string, stdout);

Similarly, the program file_pointer uses recursion to display the
last ten lines of a file. For example, the command

A> LAST FILENAME.EXT

displays the last ten lines of the file FILENAME.EXT, as shown
here:

finclude <stdio.h>

main (int argc, char *argv[])
I
FILE *fp, *fopen();

char *lines[lO], *mal!oc();

int index;

112 TURBO C PROGRAMMER'S LIBRARY

/*

int last (FILE *, char *[], int);

if (argc < 2)
printf ("Invalid usage: LAST FILENAME.EXT\n");

else if(! (fp = fopen (argv[l], "r")))
printf ("Could not open %s\n", argv[l]);

else
{

)

/* allocate space for
for (index = O; index
if (! (lines [index]

{

a circular buffer */
< 10; index++)

rnalloc (132))}

printf ("Unable to allocate necessary rnernory\n");
exit (l};

last (fp, lines, 0);
fclose (fp};

* last (file_pointer, lines, index)
*
* Display the last 10 lines of the file specified.
*
* file_pointer (in}: pointer to the desired file.
* lines (in/out): buffer that 10 lines are stored in.
* index (in): index to the current line.
*
* last (fp, lines, 0);
*
*I

last (FILE *fp, char *lines[], int index}
{
if (fgets (lines[index], 132, fp})

last (fp, lines, (index + 1) % 10);

else
{
int i;

i = (index + 1) % 10;
while (i != index}

{

I

fputs (lines[i], stdout};
i = (i + 1) % 10;

In Turbo C, even the main program is considered to be a func­
tion. You can invoke main in a recursive manner, as shown here:

main (int argc, char •argv[])
I
if (*++argv)

I

I

printf ("%s\n", •argv);
main (argc, argv);

RECURSION 113

In this case, if the program has the following command-line
parameters,

A> RECMAIN A B C

the program displays the first command-line parameter and then
invokes itself to recursively display the second. This process con­
tinues until no parameters remain on the command line.

By simply changing the code to the following,

main (int argc, char •argv[])
I
if (*++argv)

I
main (argc, argv);
printf ("%s\n", •argv);

I .

the program now displays the command-line arguments in reverse
order.

114 TURBO C PROGRAMMER'S LIBRARY

Considerations for Recursive
Functions

In many cases, you can reduce the amount of code required to per­
form a specific task by using recursive functions.

Essentially, every routine presented thus far could be imple­
mented recursively. The reasons why you do not do just that are
speed and space.

Each time you invoke a Turbo C function, the program must
place the return address and function parameters into an area of
memory called the stack, which in turn produces overhead. In most
cases, the overhead associated with functions is an acceptable trade­
off in order to achieve increased readability and modularity of code.
This is not always the case with recursion, however. A recursive
function may require many invocations in order to perform a spe­
cific task. With each invocation comes the overhead of placing the
return address and variables onto the stack. This overhead can
make recursive functions quite slow.

The second concern with recursion is stack space. With each
invocation of a function, Turbo C places data onto the stack. In most
cases, the stack can only store 64K of data. Thus, if you have a recur­
sive function that requires many or large local variables, you can
quickly use up your allotted stack space.

During the discussion of dynamic variables in later chapters, you
will find recursion to be a powerful tool. For now, just concentrate
on the flow of control for your recursive routines.

c H A p T E R

Pipe and 1/0
Redirection

By default, each time that you issue a DOS command, the operating
system obtains its input from the keyboard and displays its output to
the screen. Thus, the keyboard and screen make up the DOS default
standard input source and standard output destination (see Figure
5-1). DOS defines the standard input source as stdin and standard
output destination as stdout.

Issue the following command:

115

116 TURBO C PROGRAMMER'S LIBRARY

/01

Keyboard
(stdin)

Figure 5 -1. Standard in'JYIJ,t source and standard out'JYIJ,t destination

DOS displays the results of the command to the screen (stdout), as
shown in Figure 5-2.

DOS also provides several 1/0 redirection operators that allow
you to redefine stdin and stdout for a program. For example, issue
the following command:

(A> DIR > DIR.LST)

/01 ~- ,,,.,..1'"~-+~1--{[]J]
Keyboard

(std in)
DIR

Command
stdout

Figure 5 -2. Displaying the results of a command to stdout

PIPE AND 1/0 REDIRECTION 117

In this case, rather than displaying the output of the DIR command
to the screen, DOS has redirected stdout to point to the file DIR.LST,
as shown in Figure 5-3.

Turn on your system printer and issue the following command:

(~A_>_o_r_R_>_P_R_N_=~~~~~~~~~~~)

This time DOS redirects the output of the DIR command from the
screen to the printer, as shown in Figure 5-4.

/01

Write to DIR.LST

Figure 5-3. Outpu,t of DIR to DIR.LST

Ii
\

'··· .

. ,

118 TURBO C PROGRAMMER'S LIBRARY

/01 '\-__ _____,,_,,~ [Jl~J
Keyboard

(std in)
DOS

Figure 5-4. 1/0 redirection from screen to printer

Printer
(std out)

Use an existing text file on your disk and issue the following
command:

(A> MORE < FILENAME. EXT J

In this case, DOS leaves stdout unchanged and displays the output of
the command on the screen. DOS now modifies stdin for the MORE
command and redirects stdin from the keyboard to the file, as
shown in Figure 5-5.

The DOS pipe operator allows you to direct the output of one
command to become the input of a second command, as shown here:

PIPE AND 1/0 REDIRECTION 119

(_A_>_o_r_~_1~so_R_T~~~~~~~~~~~J

In this case, DOS redirects stdout for the DIR command and stdin
for the SORT command, as shown in Figure 5-6.

You should note that you can use many of these operators on one
command line, as shown here:

(A> SORT < FILENAME.EXT I MORE)

Programs that support the DOS input/output (I/0) redirection opera­
tors are easy to implement with Turbo C.

/01
L ~ .

MORE Command

[i]
FILENAME.EXT

Figure 5-5. Redirection of stdinfor MORE command

120 TURBO C PROGRAMMER'S LIBRARY

/o
Keyboard

(std in)
Monitor

stdin a
~to~~~\~rlllllll~l::-~~=-:::;::1~=· ~I - [11:1

Keyboard DOS SORT Monitor
(stdout)

Figure 5 - 6. Redirection of stdout for DIR command to std in for
SORT command

Getting Started with 1/0
Redirection

The first Turbo C program example supports I/0 redirection. This
example program counts the number of lines of redirected input and
displays the final count following the last line read. For example, if
your disk contains the following files,

f
Volume in drive A is TURBO C
Directory of A:\

TEST c 155 2-05-88 10:46a
MAIN c 1050 6-03-87 l:OOa
SHOW c 351 1-26-88 12:19a
TEE c 498 2-06-88 6:01p
FACT c 402 2-05-88 5:27p
LAST c 1241 2-05-88 6:59p
TAB c 543 2-06-88 1:44p
F2 c 927 2-06-88 5:20p
MORE c 362 2-06-88 5:56p

9 File (s) 351232 bytes free

PIPE AND 1/0 REDIRECTION 121

the command

(~A->~D-IR~1_c_o_u_N_T~~~~~~~~~~~~J

will display

(~L-i_n_e_c_o_un_t~=-1_4~~~~~~~~~~~~)

You can also use COUNT to display the number of lines in a file, as
shown here:

(A> COUNT < FILENAME.EXT)
._____ ---------

The following program implements COUNT:

#include <stdio.h>

main ()
{
int count = 0;

char line [132];

while (fgets (line, 132, stdin))
count++;

printf ("Line count= %d\n", count);
}

The processing required for COUNT is straightforward. The pro­
gram simply reads data from stdin until the end of the file is found.

122 TURBO C PROGRAMMER'S LIBRARY

Next, COUNT displays the count of the number of lines read.
Similarly, the program LINENUM places a line number before

each of the lines it reads from stdin. The command

(~A->~D-IR~l~L-IN_E_N-UM~~~~~~~~~~~~J

results in

' 1
2 Volume in drive A is TURBO C
3 Directory of A:\
4
5 TEST c 155 2-05-88 10:46a
6 MAIN c 1050 6-03-87 l:OOa
7 SHOW c 351 1-26-88 12:19a
8 TEE c 498 2-06-88 6:0lp
9 FACT c 402 2-05-88 5:2_7p
10 LAST c 1241 2-05-88 6:59p
11 TAB c 543 2-06-88 1:44p
12 F2 c 927 2-06-88 5:20p
13 MORE c 362 2-06-88 5:56p
14 9 File (s) 351232 bytes free

.J

This following code implements LINENUM:

#include <stdio.h>

main ()
{
int line number = O;

char line[l32];

while (fgets (line, 132, stdin))
printf ("%d %s", ++line_number, line);

Note that printf writes all of the data to stdout. Thus, you can
redirect output from LINENUM, as shown here:

PIPE AND I/0 REDIRECTION 123

(~A->~DI_R~l-L_r_N_EN_u_M~l-M_o_RE~~~~~~~~~J

The program STATS combines features from the previous pro­
grams to display the number of lines, pages, words, and characters
contained in a file (or redirected input). For example, given the fol­
lowing file,

the command

This is a test file.
Don't forget about the
carriage return and line
feed at the end of each
line.

[~_A>~S-TA_T_s~<_F_r_LE_N_AM~E_.E_x_T~~~~~~~~J

displays

Pages = O
Lines = 5
Words = 20
Characters = 100

124 TURBO C PROGRAMMER'S LIBRARY

The following program complements STAT.C:

#include <stdio,h>

#define lines_per_page 23

main ()
{
int lines = 0, words
int in_blanks, i;

O, characters O;

char str[l32];

while (fgets (str, 132, stdin))
{
i = 0;
in blanks = l;

while (str [i])
{
characters++;

if (str[i] ==' ')
{

}

if (! in blanks)
{ -
words++;
in blanks = l;

} -
else if (str[i] != '\n')

in_blanks = O;

else if (! in blanks)
words++; -

i++;
}

lines++;

I* index into string */
/* assume line starts with blanks */

/* another character */

/* blank separates words */
/* two blanks in a row is not a word

/* word ended at end of line */

/* get the next line */

printf ("Pages %d\nLines = %d\nWords = %d\nCharacters = %d\n",
lines I lines_per_page, lines, words, characters);

The program FIRST displays the first n lines of the redirected
input, as shown here:

(__ A_>~F-IR_s_T~l-5_<_._F_r_L_E_NAME~~·E_x_T~~~~~~~~~J

PIPE AND 1/0 REDIRECTION 125

In this case, FIRST displays the first 15 lines. If you omit the
desired number of lines, FIRST displays 10 by default.

(~_A_>_n_r_R~l_F_r_R_s_r~~~~~~~~~~~~~J
The following code implements FIRST:

#include <stdio.h>

main (int argc, char *argv[J)
(
int stop_line = 10; /* number of lines to display */

int count = 0; /* current line number */

char line [132];

int ascii to int (char*, int*);

if (argc > 1) /* see if user specified a· valid number */
if (ascii to int (argv[l], &stop line) == -1)

stop_line ;; 10; -

while (fgets (line, 132, stdin) && (++count<= stop_line))
fputs (line, stdout);

The next program uses the routine LAST (presented in Chapter
4) to display the last ten lines of redirected input, as shown here:

The following code implements LAST:

#include <stdio.h>

main ()
(
char *lines[lOJ, *malloc();

int index;

/* allocate space for a circular buffer */

126 TURBO C PROGRAMMER'S LIBRARY

for (index = O; index < 10; index++)
if (! (lines [index] = malloc (132)))

{
printf ("Unable to allocate necessary memory\n");
exit (1);

last (stdin, lines, 0);
}

Once you develop a library of powerful routines, your program
development becomes much more direct.

In a manner similar to FIRST, the program TAB combines
command-line processing with I/O redirection. In this case, you
specify the number of spaces the output is to be shifted to the right,
as shown here:

If you omit the desired number of spaces,

(A> TAB < FILENAME.EXT J

TAB will use the value 7 by default. Once again, the program is
built by using routines presented earlier in the book.

#include <stdio.h>

main (int argc, char *argv(])
{
int spaces = 7; /* number of spaces to insert */

char line [132 J ;

int ascii to int (char*, int*);
int pad_string (char*, int, int);

if (argc > 1)
{

/* see if user specified a valid number */

if (ascii to int (argv[l], &spaces) -1)
spaces :::;- 7i

while (fgets (line, 132, stdin))
{

PIPE AND I/0 REDIRECTION 127

if (pad string (line, spaces, sizeof (line)) == 1)
{ -

printf ("%c Line exceeds %d characters\n", 7, sizeof (line));
break ;

fputs (line, stdout);

The program FINDWORD displays each line of the redirected
input that contains the word specified by the user:

(A> TYPE STATES.LST I FINDWORD ARIZONA J

In this case, the processing again becomes straightforward.

#include <stdio.h>

main (int argc, char *argv[])
{
char line[132];

int index (char•, char*);

if (argc < 2)
printf ("invalid usage: FINDWORD WORD\n");

else
{

while (fgets (line, sizeof(line), stdin))
if (index (argv[l], line) != -1)

fputs (line, stdout);

To increase the program's capabilities, you can support the /C
and /V qualifiers as follows:

/C Display a count of the number of occur­
rences of the specified word

/V Display lines that do not contain the speci­
fied word

128 TURBO C PROGRAMMER'S LIBRARY

The final program becomes as follows:

#include <stdio.h>

main (int argc, char *argv[J)
{
char line [132 J;
int count_only = O, contain_word = 1, i, count O;

int index (char*, char*);

if (argc < 2)
printf ("invalid usage: FINDWORD WORD [/CJ [/VJ \n");

else
{

)

for (i = 1; i < argc; i++)
if (index ("/C", argv[iJ) != -1)

{

)

count only = 1;
break;

for (i = 1; i < argc; i++)
if (index ("/V", argv[i)) != -1)

{
contain word = 0;
break; -

while (fgets (line, 132, stdin))
if (index (argv [1 J, line) ! = -1)

{
if (count only)

count++;
else if (contain word)

fputs (line, stdout);
)

else if (! contain word)
fputs (line, stdout);

if (count only)
printf ("%s occurs %d times\n", argv[l], count);

Just as the program FINDWORD displayed each occurrence of a
word in redirected input, the program REPLACE replaces each
occurrence of a word with the second word specified.

(A> REPLACE begin BEGIN TEST.PAS NEW.PAS J

PIPE AND 1/0 REDIRECTION 129

The following program implements REPLACE:

#include <stdio.h>

main (int argc, char *argv[])
{
char line[132];

int location, len;

FILE *fopen (), *infile, *outfile;

int remove substring (char*• char*);
int insert-string (char*• char*• int, int);
int next_str_occurrence (char*• char*, int);

if (argc < 3)
printf ("invalid usage: REPLACE TARGET NEW WORD OLDFILE NEWFILE\n");

else if (argc == 3)
{
infile = stdin;
outfile = stdout;

}

else if (argc == 4)
{
if (! (infile = fopen (argv[3], "r")))

{

}

printf ("REPLACE error opening 'lss\n", argv[3]);
exit (1);

outfile = stdout;
}

else if (argc == 5)
{
if (! (infile = fopen (argv[3], "r")))

{

}

printf ("REPLACE error opening 'lss\n", argv[3]);
exit (1);

if (! (outfile = fopen (argv[4], "w")))
{

}

printf ("REPLACE error opening 'lss\n", argv[4]);
exit (1);

len = string_length (argv[2]);

while (fgets (line, 132, infile))
{

if ((location
do

{

index (argv[l], line)) != -1)

130 TURBO C PROGRAMMER'S LIBRARY

remove substring (argv(l], &line[location]);
insert=string (argv[2], line, location, sizeof(line));

)
while ((location= next_str_occurrence (argv(l], line, locatio

fputs (line, outfile);

The program MORE.C implements the DOS MORE command.
Each time MORE displays a screenful of information, it pauses and
waits for you to press the ENTER key to continue.

Volume in drive A is TURBO C
Directory of C:\TURBOC

<DIR> 11-28-87
.. <DIR> 11-28-87
ALLOC H 896 6-03-87
ASSERT H 275 6-03-87
BIOS H 527 6-03-87
CON IO H 517 6-03-87
CTYPE H 1345 6-03-87
DIR H 1222 6-03-87
DOS H 7316 6-03-87
ERRNO H 2648 6-03-87
FCNTL H 991 6-03-87
FLOAT H 2094 6-03-87
IO H 2.407 6-03-87
LIMITS H 757 6-03-87
MATH H 2984 6-03-87
MEM H 906 6-03-87
PROCESS H 1782 6-03-87
SETJMP H 542 6-03-87
SHARE H 434 6-03-87
--MORE--

This code implements MORE:

#include <stdio.h>

#define lines_per_page 24

main ()
{
int line number 0;

8 05p
8 05p
1 ooa
1 OOa
1 OOa
1 OOa
1 ooa
1 OOa
1 OOa
1 OOa
1 ooa
1 ooa
1 OOa
1 OOa
1 OOa
1 OOa
1 OOa
1 OOa
1 OOa

PIPE AND I/0 REDIRECTION 131

char line[l32];

while (fgets(line, 132, stdin))
if (++line number % lines per page)

fputs (lTne, stdout); - -
else

{

)

fflush (stdout);
fputs ("--MORE--\n", stdout);
fflush (stdout);
bioskey (0);

The program TEE allows you to file intermediate results while
you continue I/0 redirection, as shown here:

A> TYPE FILENAME.EXT I SORT I TEE SORTFILE.EXT I MORE

This command is illustrated in Figure 5-7.

TYPE FILENAME -(...)'---__ __,)- SORT -(...,.) __ ...,

bJ
!

)- MORE

....-----

SORTFILE.EXT

Figure 5 - 7. Processing involved with program TEE

132 TURBO C PROGRAMMER'S LIBRARY

By using TEE, you can write results to a file and also to stdout,
as shown here:

#include <stdio.h>

main (int argc, char *argv[J)
{
FILE *fopen(), *fp;

char line[132J;

if (argc < 2)
fputs ("invalid usage: TEE FILENAME\n'', stdout);

else
{
if(! (fp=fopen(argv[l], "w")))

fputs ("TEE: unable to open output file\n", stdout);
else

{
while (fgets (line, 132, stdin))

{

}

fputs (line, stdout);
fputs (line, fp);

fclose (fp);
}

Using Standard Error (stderr)
Periodically your programs will experience an error that results in
an error message. If you write the following error message to stdout,

printf ("invalid usage: TEE FILENAME");

the error message will also be redirected. For this reason, you may
never see the error message. To make sure you see your messages,
DOS defines an output source called stderr that is guaranteed to
display error messages to the screen, regardless of redirection. Your
programs should write all error messages to stderr, as shown here:

fputs ("invalid usage: TEE FILENAME", stderr);

PIPE AND I/0 REDIRECTION 133

The following program modifies TEE.C to do just that:

#include <stdio.h>

main (int arqc, char •argv[])
{ ~

FILE *fopen(), *fp;

char line[132];

if (argc < 2)
fputs ("invalid usage: TEE FILENAME\n", stderr);

else
{
if(! (fp = fopen(argv[l], "w")))

fputs ("TEE: unable to open output file\n", stderr);
else

{
while (fgets (line, 132, stdin))

{

}

fputs (line, stdout);
fputs (line, fp);

fclose (fp);
}

1/0 redirection is a powerful tool. Later chapters discuss how to
modify many of the programs presented in this chapter so that they
support 1/0 redirection and command-line processing. For now,
experiment with the programs presented in this chapter to increase
your understanding of 1/0 redirection.

c H A p T E R

DOS Interj ace

You are probably familiar with DOS, the operating system for the
IBM PC and PC compatibles. What you may not know is that a sig­
nificant portion of DOS is written in C. As is the case with all oper­
ating systems, the DOS developers were faced with a monumental
programming task when they wrote DOS. To simplify their task, the
developers broke it into many small, manageable functions. These
functions are responsible for operating system tasks such as the
following:

• File manipulation (open, read, write, close operations)

135

136 TURBO C PROGRAMMER'S LIBRARY

• Keyboard input

• Program startup and termination

• File-creation, file-deletion, and rename operations

• Memory management (allocate, free, modify)

• Disk-drive manipulation

• Directory manipulation

Because DOS must use these services on a continual basis in
order to operate, each function must remain immediately available
for use. Thus, you can make use of these services from within your
programs. DOS uses the 8088 registers as its interface to the DOS
system services.

Many of these routines appear in the Turbo C run-time library.
Their names and parameters may differ from the routines pre­
sented here though the functionality is the same. Use whichever
implementation best suits your needs, but still study these routines;
they can teach you a great deal about DOS.

8088 Registers
The IBM PC and PC compatibles are based on a processor chip
called the 8088. Within this chip is a set of storage locations known
as registers. Since registers are contained within the control process­
ing unit (CPU) itself, the 8088 can manipulate the values contained
in the registers quite rapidly. The 8088 has 14 registers, each capa­
ble of storing 16 bits of data, as the following shows:

DOS INTERFACE 137

General-Purpose Registers

AH AL CH CL

AX ex

BH BL DH DL

BX DX

Base and Index Registers

SP SI

Stack pointer Source index

BP DI

Base pointer Destination index

Special-Purpose Registers

IP

Flags register Instruction pointer

Segment Registers

cs SS

Code segment Stack segment

DS ES

Data segment Extended segment

138 TURBO C PROGRAMMER'S LIBRARY

Your programs communicate to the DOS system services through
these registers. For example, assume that you want to determine the
DOS version number that you are using. Place the following value
into AH register and invoke the DOS interrupt (INT 21H):

AH 30H (Get DOS version number)

On completion, this service places the major and minor versions of
the operating system into register AX, as shown here:

AH Contains the minor version number
AL Contains the major version number

The following language code fragment invokes the DOS Get Ver­
sion Number system service:

MOV AH, 30H
INT 21H

INT 21H serves as your means of executing a DOS system service.

INT21H
An interrupt is a signal to the CPU from a program or hardware
device instructing the CPU to suspend temporarily the function that
it is performing and instead execute a different task. For example,
each time you simultaneously press the SHIFT and PRINT SCREEN
keys, DOS temporarily suspends what it is doing in order to print
the current screen contents. DOS uses INT 21H as its interface to
the DOS system services. Each time DOS encounters an INT 21H, it
examines the contents of each of the 8088 registers to determine the
specific DOS service to perform; along with the required parame­
ters for the service. In most cases, DOS obtains the service number
from register AH.

DOS INTERFACE 139

In the previous example, DOS found the value 30H in AH, which
directed it to perform the Get DOS Version service. In this case, the
DOS service 02H directs DOS to display the character contained in
register DL. To invoke this routine, place the corresponding values
into the 8088 registers and invoke INT 21H, as shown here:

MOV AH, 2
MOV DL, 65

display character service
character to display

INT 21H invoke DOS service

A goal in developing applications is to write as much of the code
as possible in a high-level language such as C (as opposed to assem­
bly language). You must have a means of executing DOS system ser­
vices from such languages. In the case of Turbo C, a routine called
intdos provides your interface. To use this routine, you must include
the file dos.h, as shown here:

#include <dos.h>

Remember, the DOS system services use the 8088 registers as
their interface. The file dos.h contains a structure definition that
allows your program to emulate the 8088 registers, as shown here:

struct WORDREGS
{
unsigned int
};

struct BYTEREGS
{

ax, bx, ex, dx, si, di, cflag, flags;

unsigned char al, ah, bl, bh, cl, ch, dl, dh;
} ;

union REGS {
struct WORDREGS x;
struct BYTEREGS h;
} ;

struct SREGS {
unsigned int es;
unsigned int cs;
unsigned int ss;

140 TURBO C PROGRAMMER'S LIBRARY

unsigned int ds;
);

struct REGPACK
{
unsigned
unsigned
) ;

r ax, r_bx, r ex, r dx;
r=bp, r_si, r=di, r=ds, r_es, r_flags;

Within your C program you simply assign appropriate values to
each register (member of the structure). When you later invoke
intdos, that routine maps the values contained in your structure into
the appropriate registers, as shown in Figure 6-1.

When the DOS system service completes, intdos again maps the
register values back to your structure, as shown in Figure 6-2. The
following C program displays the current DOS version:

#include <dos.h>

main ()
{
union REGS inregs, outregs;

inregs.h.ah = Ox30;
intdos (&inregs, &outregs);

printf ("DOS Version %d.%d\n", outregs.h.al, outregs.h.ah);
}

DOS System Services
The DOS system services are quite powerful. In fact, these services
make up the toolkit that the DOS developers used to build DOS. By
using these routines in your programs, you can quickly develop rou­
tines of professional quality. This section discusses the commonly
used DOS system services and shows their Turbo C implementa­
tions. Most of the services are quite straightforward to use and
many will greatly increase the capabilities of your application.

Note that many of these routines assume you are usi11g the small
memory model of the Turbo C compiler. These routines do not pass
segment addresses of strings to the intdos routine; instead, they
simply use the value of the current data segment. Since the small
memory model is assumed, the routines are successful. If you are

DOS INTERFACE 141

regs.ax

regs.bx AX BX

regs.ex ex DX
regs.dx

regs.si --1 intdos -- DI SI

regs.di ES DS

regs.ds
flags

regs.es

regs.flags

C Structure

Figure 6-1. Mapping of structure values lJy intdos

using a different memory model, refer to the Osborne/McGraw-Hill
text DOS Power User's Guide, by Kris Jamsa (Berkeley, 1988), for
specifics on each system service.

Many of the routines presented in this section are also available
as run-time library routines under Turbo C. However, because of the
importance of the DOS system services (along with the tremendous
capabilities that these services provide), the routines are presented
for your examination. Experiment with the DOS system services
and you should find them to be extremely useful.

142 TURBO C PROGRAMMER'S LIBRARY

regs.ax

regs.bx

regs.ex
AX BX

regs.dx ex DX

regs.cf lag

regs.si I -- intdos -- cflag SI

regs.di DI DS

regs.ds
ES flags

regs.es

regs.flags

C Structure

Figure 6-2. Mapping of register values by indtdos

/lJ~f ___ K_e~yb_o_a_rd ____ _.\\---1~ __ s_t_di_n~--c_ha_r __ _.

L ASCII character
or keyboard scan code

DOS INTERFACE 143

#include <dos.h>

I*
* st din_ char ()

* Get a character from the standard input device.
*
*character= stdin_char ();

* If the uses presses a special function key, stdin_char
* returns the null value on the first invocation. You must
* again invoke stdin char to determine the scan code of the
* special key pressed. This routine echos the character entered
* by the user to the screen.

*/

int stdin_char ()
{

}

union REGS inregs, outregs;

inregs.h.ah = OxOl;
intdos (&inregs, &outregs);
return (outregs.h.al);

char letter="a";

#include <dos.h>

I*

stdout_output

* void stdout_output (character)
*
* Write the character specified to the standard output device.
*
* character (in): character to be written.
*
* stdout_output (65);

*/

144 TURBO C PROGRAMMER'S LIBRARY

void stdout output (char character)
{ -
union REGS inregs, outregs;

inregs.h.ah = Ox02;
inregs.h.dl = character;

intdos (&inregs, &outregs);
}

- I aux_char I ---,..__ __ ___._

L ASCII character

finclude <dos.h>

/*
* aux_char ()
*
* Get a character from the standard auxiliary device.
*
*character= aux char ();
*
* If a character is not present, aux char waits until one
* becomes available.
*
*/

int aux char ()

I

}

union REGS inregs, outregs;

inregs.h.ah = Ox03;
intdos (&inregs, &outregs);
return (outregs.h.al);

DOS INTERFACE 145

cha<letts,,."a";~ ~
~

finclude <dos.h>

/*void aux_output (character);
*
* Write a character to the standard auxiliary device.
*
* character (in): character to be written.
*
* aux_output (65);
*
* By default, DOS uses 2400 baud, no parity, 1 stop bit, and
* 8 data bits.
*
*/

void aux_output (char character)
I

146 TURBO C PROGRAMMER'S LIBRARY

union REGS inregs, outregs;

inregs.h.ah = Ox04;
inregs.h.dl = character;

intdos (&inregs, &outregs);
}

char letter="a"; stdprn_output

#include <dos.h>

/*
*void stdprn_output (character);

* Write a character to the standard printer device.

* character (in): character to be printed.
* * stdprn_output (65);

*/

void stdprn_output (char character)
{
union REGS inregs, outregs;

inregs.h.ah = Ox05;
inregs.h.dl = chaiacter;

intdos (&inregs, &outregs);
}

DOS INTERFACE 147

char byte=OxFF; ..._~~d-i_re_ct~ __ 1_0~~__,----~/={]~/~~k~e~yb~o~a~rd~~\~\~

char byte=65 direct_IO

ASCII character or
keyboard scan code

a
If byte equals 255 (OxFF), input is performed;
otherwise, byte is written to the screen

#include <dos.h>

/*
* direct_IO (byte)
*
* Read a character from stdin or write a character to stdout
* depending upon the value in the variable byte.

* byte (in): if OxFF, read a character from stdin. If byte
* contains any other value, write it to stdout.
*
*direct IO (65);
*character direct IO (OxFF);
*
*/

int direct_IO (char byte)
{

I

union REGS inregs, outregs;

inregs.h.ah = Ox06;
inregs.h.dl = byte;
intdos (&inregs, &outregs);
return (outregs.h.al);

148 TURBO C PROGRAMMER'S LIBRARY

/01 Keyboard

#include <dos.h>

I*
* no_echo_read ()
*

no_echo_read

ASCII character or
keyboard scan code

* Read a character from stdin without echoing the character
* back to the screen display.
*
*character= no_echo_read ();
*
* If a character is not present in the keyboard buffer, this
* routine waits for one to become available.
*
* If the user presses a special function key, stdin char
* returns the null value on the first invocation. You must
* again invoke stdin char to determine the scan code of the
* special key pressed.
*
*I

int no_echo_read ()
{

I

union REGS inregs, outregs;

inregs.h.ah = Ox07;
intdos (&inregs, &outregs);
return (outregs.h.al);

DOS INTERFACE 149

char•string="TEST" string_display

#include <dos.h>

/*
* void string_display (string)
*
* Display the character string specified to the standard
* output device.
* * string (out) : character string to be displayed.
*
* string_display ("Turbo C Programmer's Library");
*
*I

void string_display (char string[])
{

}

union REGS inregs, outregs;

int i;

for (i = O; string[i]; i++)

string[i] = '$';

inregs.h.ah = 9;
inregs.x.dx = string;

/* $ indicates last character to display */

intdos (&inregs, &outregs);

string[i] = '\0';

150 TURBO C PROGRAMMER'S LU3RARY

char buffer [255];

int size=sizeof(buffer)

#include <dos.h>

I*

buffered_input

: void buffered_input (buffer, size)

/01 Keyboard

* Read characters from the standard input device into a user
* defined buffer.
* * buffer (in/out): buffer to store characters input.
* size (in): maximum number_of characters that the buffer can store.
*
* buffered_input (array, sizeof(array));
*
* The buffer must be defined as follows:
*
* buffer[O] contains the maximum size of the buffer
* buffer[!] contains the number of characters read
* buffer[2) contains the first character read
*
*I

void buffered_input (char buffer[), int size)
{
union REGS inregs, outregs;

buffer[OJ = size;
inregs.h.ah = OxA;
inregs.x.dx = buffer;

intdos (&inregs, &outregs);
}

/* maximum buffer size */

/* offset of buffer */

'\

DOS INTERFACE 151

fDI Keyboard check_character _available

#include <dos.h>

/*
* check_character_available ()
*

255 if character available

0 if no character

* Return the value 255 if a character is currently available in
* the standard input device, otherwise return the value 0.
*
*status= check_character_available ();
*
*/

int check_character_available ()
{

)

union REGS inregs, outregs;

inregs.h.ah = OxOB;
intdos (&inregs, &outregs);
return (outregs.h.al);

152 TURBO C PROGRAMMER'S LIBRARY

int service; '---k-ey_b_o_a_rd __ r-s-er_v_ic_e _ __,- ~t~D~/==K:=e:;:y:;:bo:;:a:;:r:;:d==~\ \:;;}

#include <dos.h>

/*
* keyboard_service (service)
*

ASCII character or
keyboard scan code

* Clear the keyboard buff er and perform the keyboard service
* specified.
*
* service (in): DOS keyboard service to perform.
*
*character= keyboard_service (7);
*
* By invoking keyboard services in this fashion, you can insure
* that the type ahead buffer is empty prior to your read operations.
*
*/

int keyboard_service (int service)
{

)

union REGS inregs, outregs;

inregs.h.ah = OxOC;
inregs.h.al = service;
intdos (&inregs, &outregs);
return (outregs.h.al);

DOSINTERFACE 153

int dr'ive=2;--i .. ___ s_e_t __ d_ri_v_e ___ _,

#include <dos.h>

/*
* void set drive (drive)
* * Set the disk drive to the drive number specified.
* * drive (in): Disk drive desired.
* * set_drive (2);
* * Drive numbers are defined as:
* A = O, B = 1, C = 2
*
*I

void set_drive (int drive)
(
union REGS inregs, outregs;

inregs.h.ah = OxOE;
inregs.h.dl = drive;
intdos (&inregs, &outregs);

I

154 TURBO C PROGRAMMER'S LIBRARY

char buffer [128]; --j set_disk_transfer_address

tinclude <dos.h>

I*
* void set_disk_transfer address (buffer)
* * Define a new buffer for the DOS disk transfer area.
* * buffer (in) : buffer to be used as the OTA.
* * set_disk_transfer_address (char_array);
* * By default, the OTA points to offset 80H of the PSP. In
* later chapters we will use this region to perform command
* line operations. By modifying the OTA we can prevent DOS
* from overwriting the command line.
*
*/

void set_disk_transfer_address (char buffer[])
{

}

union REGS inregs, outregs;

inregs.h.ah = OxlA;
inregs.x.dx =buffer; /* minimum 128 bytes */
intdos (&inregs, &outregs);

int •spc;
int •sector _size;
int •num_clusters;

#include <dos.h>

/*

disk_information

DOS INTERFACE 155

4 sectors per cluster
512 bytes per sector

1048 clusters per disk

* void disk_information (spc, sector_size, num_clusters)

* Return the number of sectors per cluster, the sector size,
* and the number of clusters for the current disk drive .
•
* spc (out): sectors per cluster.
* sector size (out): bytes per sector.
• num_cluster (out): clusters per disk.

*disk information (&spc, §or_size, &num_clusters);
•
*/

void disk_information (int *spc, int •sector size, int *num_clusters)
{
union REGS inregs, outregs;

inregs.h.ah = OxlB;
intdos (&inregs, &outregs);
spc = outregs.h.al; / sectors per cluster */
•sector size = outregs.x.cx;
*num clUsters = outregs.xedx;

} -

156 TURBO C PROGRAMMER'S LIBRARY

int interrupt_number;

int segment_address;

int offset_address;

finclude <dos.h>

/*

set_interru pt_ vector

* void set_interrupt_vector (interrupt_number, segment, offset)
*
* Specify a new interrupt handler routine for a specific interrupt.
*
* interrupt number (in): Interrupt number to modify.
* segment <in) : Segment address of new routine.
* offset (in): Offset address of new routine.
*
* set_interrupt_vector (5, segment_address, offset_address);
*
*/

void set interrupt vector (int interrupt number,

{
- - int segment, Tnt offset)

union REGS inregs, outregs;

struct SREGS segregs;

inregs.h.ah
inregs.h.al
inregs.x.ds
inregs.x.dx

Ox25;
interrupt number;
segment; -
offset;

intdosx (&inregs, &outregs, &segregs);
}

int •day;

int •month;
int •year;
int •day_of_week;

#include <dos.h>

/*

get_date

* void get_date (day, month, year, day_of _week)
*
* Return the current system date.
*
* day (out): day of of the month (1-31)
* month (out) : month of the year (1-12)
* year (out) : current year (19xx)

DOS INTERFACE 157

25

12

1988

6

* day_of_week (out): current day of the week (O=Sunday, 6=Saturday)
*
* get_date (&day, &month, &year, &day_of_week);
*
*I

void get date (int *day, int *month, int *year,
- int *day_of_week)

)

union REGS inregs, outregs;

inregs.h.ah = Ox2A;
intdos (&inregs, &outregs);

*day = outregs.h.dl;
*day of week = outregs.h.al;
*month ~ outregs.h.dh;
*year = outregs.x.cx;

158 TURBO C PROGRAMMER'S LIBRARY

int day=25;
int month=12;

int year-1988;

#include <dos.h>

I*

set_date

* set_date (day, month, year)
*
* Set the current system date.
*

255 if date is invalid; 0 otherwise

* day (in) : day of of the month (1-31)
* month (in) : month of the year (1-12)
* year (in) : current year (19xx)
*
* status= set_date (&day, &month, &year);
*
* If the date specified is invalid, set_date returns the value 255.
*
*/

int set date (int day, int month, int year)
{
union REGS inregs, outregs;

inregs.h.ah
inregs.h.dh
inregs.h.dl =
inregs.x.cx

Ox2B;
month;
day;
year;

intdos (&inregs, &outregs);

return (outr.egs.h.al);
}

int •hour;

int •minute;

int •second;
int •hundredths;

#include <dos.h>

/*

get_ time

* void get_time (hours, minutes, seconds, hundredths)
*
* Get the current system time.
*
* hours (out): current hour of the day.
* minutes (out): current minute of the day.
* seconds (out): current second of the day.
* hundredths (out): current hundredths of seconds.
*
* get_time (&hours, &minutes, &seconds, &hundredths);
*
*/

void get time (int *hours, int *minutes, int *seconds,

{

)

- int *hundredths)

union REGS inregs, outregs;

inregs.h.ah = Ox2C;

intdos (&inregs, &outregs);

*hours = outregs.h.ch;
*minutes = outregs.h.cl;
*hundredths = outregs.h.dl;
*seconds = outregs.h.dh;

DOSINTERFACE 159

12
20
29
73

160 TURBO C PROGRAMMER'S LIBRARY

int hours=12;
int minutes=30;

int seconds=29;

int hundredths=75;

#include <dos.h>

/*

set_time

255 if time is invalid; 0 otherwise

* set_time (hours, minutes, seconds, hundredths)
*
* Set the current system time.
*
* hours (out): current hour of the day.
* minutes (out): current minute of the day.
* seconds (out): current second of the day.
* hundredths (out): current hundredths of seconds.
*
*status= set time (10, 30, 0, 0);
*
* If the time specified is invalid, set_time returns the value 255.
*I

int set time (int hours, int minutes, int seconds,
int hundredths)

{
union REGS inregs, outregs;

DOS INTERFACE 161

inregs.h.ah Ox2D;
inregs.h.ch hours;
inregs.h.cl minutes;
inregs.h.dl hundredths;
inregs.h.dh seconds;
intdos (&inregs, &outregs);

return (outregs.h.al);
}

int •major;
int •minor;

#include <dos.h>

/*
* void DOS_version (major, minor)
*

DOS_ version

* Return the current DOS version number.
*
* major (out): major version number (DOS 3.1 major is 3)
* minor (out): minor version number (DOS 3.1 minor is 1)

3

162 TURBO C PROGRAMMER'S LIBRARY

*
* DOS_version (&major, &minor);
*
*I

int DOS_version (int *major, int *minor)
{

}

union REGS inregs, outregs;

inregs.h.ah = Ox30;
intdos (&inregs, &outregs);
*major outregs.h.al;
*minor = outregs.h.ah;

int exit_status =1; --

int paragraphs=1000;-

#include <dos.h>

/*

terminate_resident

* void terminate_resident (status, paragraphs)
*
* Terminate the current program resident in memory.
*
* status (in) : exit status value for the program.
* paragraphs (in) : number of 16 byte paragraphs regions of memory
* required for termination.
*
* terminate_resident (1, 500);
*
*/

terminate resident (int status, int paragraphs)
{ -

)

union REGS inregs, outregs;

inregs.h.ah Ox31;
inregs.h.al = status;
inregs.x.dx = paragraphs;

intdos (&inregs, &outregs);

int function=O;
int •state; ctrl_break_status

DOSINTERFACE 163

0

0 CTRL-BREAK checking disabled
CTRL-BREAK checking enabled

#include <dos.h>

/*

If the value of function is 0, the routine returns current
state. If function is 1, the routine sets the current state.

• ctrl_break_status (function, state);
•
• Get or set the control break status .
•
• function (in): if function is 0, return the current Ctrl-Break state
• if function is 1, set the current Ctrl-Break state
• state (in) : if state is O, disable Ctrl-Break checking ·

if state is 1, enable Ctrl-Break checking
•
• status ctrl_break_status (0, 0};

•/

int ctrl_break_status (int function, int state}
{

164 TURBO C PROGRAMMER'S LIBRARY

union REGS inregs, outregs;

inregs.h.ah Ox33;
inregs.h.al = function;
inregs.h.dl = state;

intdos (&inregs, &outregs);

return (outregs.h.dl);
)

int •segment;

int •offset;
t:. 16-bit segment address

. get_disk_transfer_address .
. . 16-bit offset address

finclude <dos.h>

/*
* void get_disk_transfer_address (segment, offset)
*
* Return the segment and offset for the DOS disk transfer area.
*
* segment (out) : segment address of the DTA.
* offset (out) : offset address of the OTA.
*
* get_disk_transfer_address (&segment, &offset);
*
* By default, the DTA points to offset 80H of the PSP.
*
*/

DOS INTERFACE 165

void get disk transfer address (segment, offset)
int *segment, *offset;

{
union REGS inregs, outregs;
struct SREGS segregs;

inregs.h.ah = Ox2F;
intdosx (&inregs, &outregs, &segregs);

*segment = segregs.es;
*offset = outregs.x.bx;

)

int interrupt_number=5;
int •segment_address;
int •offset_address;

#include <dos.h>

/*

get_interrupt_vector OxOOFE
Ox FF FF

* void get_interrupt_vector (interrupt_number, segment, offset)
* * Return the address of the interrupt handler routine for a
* specific interrupt.
*
* interrupt number (in) : Interrupt number desired.
* segment (out) : Segment address of the routine.
* offset (in): Offset address of the routine.
*
* get_interrupt_vector (5, &segment_address, &offset_address);

166 TURBO C PROGRAMMER'S LIBRARY

*
*/

void get interrupt vector (int interrupt number,
- - int *segment,-int *offset)

union REGS inregs, outregs;

struct SREGS segregs;

inregs.h.ah = Ox35;
inregs.h.al = interrupt number;
intdosx (&inregs, &outregs, &segregs);

*segment = segregs.es;
*offset = outregs.x.bx;

I

int drive=O; -{ get_free_disk_space J

#include <dos.h>

/*
* long get_free_disk_space (drive)
*

L long int containing
free space in bytes

* Return the number of available bytes for the disk drive specified.
*
* drive (in): disk drive id desired.
*
* disk_drive = get_free_disk_space (0);

* Disk drives are specified as:
0 = Current, 1 = A, 2 = B, 3 C

*/

long get free disk space (int drive)
{ - - -
union REGS inregs, outregs;

inregs.h.ah = Ox36;
inregs.h.dl = drive;
intdos (&inregs, &outregs);

return ((long) outregs.x.ax * (long) outregs.x.bx
* (long) outregs.x.cx);

DOS INTERFACE 167

char •dir=" \ \TURBO C"; --i._ __ m_a_k_e __ __,d""ir_e_ct_o_r_y _ __.

L

#include <dos.h>

I*
* make_directory (directory)
*

DOS error status or
0 if successful

* Create a DOS subdirectory with the name specified.
*
* directory (in): name of the subdirectory to create.
*
*status= make_directory ("\\TURBOC");
*
* If make directory cannot create the directory specified, it will
* return a DOS error status. Otherwise, make_directory returns 0.
*
*/

make_directory (char directory[])
{
union REGS inregs, outregs;

inregs.h.ah = Ox39;

168 TURBO C PROGRAMMER'S LIBRARY

inregs.x.dx = directory;

intdos (&inregs, &outregs);

return ((outregs.x.cflag) ? outregs.x.ax: 0);
}

char •dir=" \ \ TCOLD"; remove_directory

#include <dos.h>

/*
* remove_directory (directory)
*

DOS error status or
O if successful

* Remove the DOS subdirectory with the name specified.
*
* directory (in): name of the subdirectory to remove.
*
*status= remove_directory ("\\TCOLD");
*
* If remove directory cannot remove the directory specified, it will
* return a DOS error status. Otherwise, remove_directory returns 0.
*
*/

remove directory (char directory[])
{ -
union REGS inregs, outregs;

inregs.h.ah Ox3A;
inregs.x.dx = directory;

intdos (&inregs, &outregs);

return ((outregs.x.cflag) ? outregs.x.ax: 0);
}

DOS INTERFACE 169

char •dir="TURBO C"; change_directory

#include <dos.h>

/*
* change_directory (directory}
*

DOS error status
0 if successful

* Set the default DOS subdirectory to the directory specified.
*
* directory (in): name of the subdirectory to select.
*
*status= change_directory ("\\TURBOC");
*
* If change directory cannot select the directory specified, it will
* return a DOS error status. Otherwise, change_directory returns 0.
*
*/

change directory (char directory[])
{ -
union REGS inregs, outregs;

inregs.h.ah = Ox3B;
inregs.x.dx = directory;

intdos (&inregs, &outregs);

return ((outregs.x.cflag) ? outregs.x.ax: 0);
}

170 TURBO C PROGRAMMER'S LIBRARY

char •filename="CHudson";
int attribute=O;
int •status;

create_file
0 If successful

If error

DOS file handle if status equals O;
otherwise, DOS error status

#include <dos.h>

/*
* create_file (filename, attribute, status)
* * Create a DOS file with the name specified. Return a file handle
* associated with the new file.
*
* filename (in): name of the file to create.
* attribute (in): desired file attribute.
* status (out): -1 if an error occurred, otherwise O.
*
* filehandle = create_file ("CHudson"), O, &status);
*
* If create file cannot create the file as specified, it returns
* the error-status value. If the creation is successful, create file
* returns a file handle to the file.
*
*/

create_file (char *filename, int attribute, int *status)
{
union REGS inregs, outregs;

inregs.h.ah Ox3C;
inregs.x.cx = attribute;
inregs.x.dx = filename;

intdos (&inregs, &outregs);

*status = (outregs.x.cflag) ? -1: O;

return (outregs.x.ax);
I

char •filename="CHudson";
int mode=O;
int •status;

open_ file

DOS INTERFACE 171

0 If successful
If error

DOS file handle if status equals O;
otherwise, DOS error status

#include <dos.h>

/•
• open_file (filename, mode, status)

• Open the DOS file with the name specified in the mode given.
• Return a file handle associated with the new file .
•
• filename (in): name of the file to open.
• mode (in) : specifies how the file is to be opened:
• 0 is readonly, 1 is write only, 2 is read/write
• status (out): -1 if an error occurred, otherwise 0 .
•
• filehandle = open_file ("CHudson", O, &status);
•
• If open file cannot create the file as specified, it returns
• the DOS-error status value. If the open is successful, open_file
• returns a file handle to the file .
•
•/

open_file (char *filename, int mode, int •status)

union REGS inregs, outregs;

inregs.h.ah Ox3D;
inregs.h.al = mode;
inregs.x.dx = filename;

intdos (&inregs, &outregs);

•status = (outregs.x.cflag) ? -1: O;

return (outregs.x.ax);
}

172 TURBO C PROGRAMMER'S LIBRARY

int file handle; ~ .. __ c_1_o_se"T __ fi_1e __ _,

L

#include <dos.h>

/*
* close_file (filehandle)
*

DOS error status or
0 if successful

* Close the DOS file associated with the file handle specified.
* * filehandle (in): file handle assoicated with the file to close.
* * If close file cannot close the file specified, it returns
* the DOS error status value. If the close is successful,
* close file returns the value 0.
*
*/

close_file (int filehandle)
{
union REGS inregs, outregs;

inregs.h.ah = Ox3E;
inregs.x.bx = filehandle;

intdos (&inregs, &outregs);

return ((outregs.x.cflag) ? outregs.x.ax: 0);
}

int file handle;
char buffer[255)
int size=sizeof(buffer);
int •status;

read_ file

DOS INTERFACE 173

Data

O If successful
If error

DOS error status if status equals 1;
otherwise, the number of bytes read

#include <dos.h>

/*
* read_file (filehandle, buffer, numbytes, status)
*
* Read the number of bytes specfied from a given file into the
* buffer provided.
*
* filehandle (in): filehandle of the desired file.
* buffer (out): buffer to contain the bytes read.
* numbytes (in): number of bytes to read from the file.
* status (out): error status 1 if error, 0 if successful.
*
*bytes= read_file (filehandle, buffer, 255, &status);
*
* If an error occurs during the read operation, read file
* returns an error status value. Otherwise, read file
* returns the number of bytes read.
*
*I

read_file (int filehandle, char *buffer,
int numbytes, int *status)

union REGS inregs, outregs;

174 TURBO C PROGRAMMER'S LIBRARY

inregs.h.ah
inregs.x.bx
inregs.x.cx
inregs.x.dx

Ox3F;
filehandle;
numbytes;
buffer;

intdos (&inregs, &outregs);

*status = (outregs.x.cflag) ? 1: O;

return (outregs.x.ax);
}

int file handle;
char buffer[255];

int numbytes==sizeof(buffer);

int *status;

write_file

O If successful
- 1 If error

DOS error status

#include <dos.h>

/*

if the value of status is 1;
otherwise, the number of
bytes written

* write_file (filehandle, buffer, numbytes, status)
*
* Write the number of bytes specfied to a given file from the
* buffer provided.

* filehandle (in): filehandle of the desired file.
* buffer (in): buffer containing the bytes to write.
* numbytes (in): number of bytes to write to the file.
* status (out): error status 1 if error, 0 if successful.
*
*bytes= write_file (filehandle, buffer, 255, &status);

* If an error occurs during the write operation, write file
* returns an error status value. Otherwise, write file
* returns the number of bytes written. -

*/

DOSINTERFACE 175

write file (int filehandle, char *buffer, int numbytes)
{ -
union REGS inregs, outregs;

inregs.h.ah
inregs.x.bx
inregs.x.cx
inregs.x.dx

Ox40;
filehandle;
numbytes;
buffer;

intdos (&inregs, &outregs);

return ((outregs.x.cflag)
)

char •filename="POCKET.OLD";

#include <dos.h>

/*
* delete_file (filename);

outregs.x.ax: 0);

delete_file

DOS error status or O if successful

* Delete the file with the name specified.

* filename (in): name of the file to delete.

*delete file ("POCKET.OLD");

* If an error occurs during the delete operation, delete file
* returns an error status value. Otherwise, delete file-
* returns 0.

*/

delete file (char *filename)

176 TURBO C PROGRAMMER'S LIBRARY

union REGS inregs, outregs;

inregs.h.ah = Ox41;
inregs.x.dx = filename;

intdos (&inregs, &outregs);

return ((outregs.x.cflag) ? outregs.x.ax: 0);
}

int file handle;

int directive=O;

int highoffset=O;

int lowoffset=255; ·

#include <dos.h>

/*

lseek

DOS error status or 0 if successful

* lseek (filehandle, directive, hioffset, looffset)
*
* Move the file pointer in the file associated with a file
* handle as specified.

* filehandle (in): file handle of desired file.
* directive (in) : Specifies how to move the file pointer:
* 0 beginning of file, 1 current location, 3 end of file
* hioffset: high order 16 bits of the offset to branch to.
* looffset: low order 16 bits of the offset to branch to.
* * lseek (filehandle, O, 0, 512);
* * Offsets are treated as a 32 bit value. As such, we specify
* a high and low 16 bit combination.
*
*/

lseek (int filehandle, int directive,
int hioffset, int looffset)

I
union REGS inregs, outregs;

inregs.h.ah
inregs.h.al
inregs.x.bx
inregs.x.cx
inregs.x.dx

Ox42;
directive;
filehandle;
hioffset;
looffset;

intdos (&inregs, &outregs);

return ((outregs.x.cflag) ? outregs.x.ax: 0);
}

char •filename="TURBO"; get_fi le_attri butes

DOS INTERFACE 177

-1 if error; otherwise, the file's
attributes

#include <dos.h>

/*
* get_file_attributes (filename)
*
* Return the file attributes for the file specified.
*
* filename (in): file to return the file attributes of.
*
*attributes= get_file_attributes ("Turbo");
*
* File attributes include:
* 1 readonly 2 hidden 4 system
* 8 volume 16 subdirectory 32 archive
*
* If an error occurs, get_file_attributes returns the value -1.
*
*/

get_file_attributes (char *filename)
{
union REGS inregs, outregs;

inregs.x.ax Ox4300;
inregs.x.dx = filename;

178 TURBO C PROGRAMMER'S LIBRARY

intdos (&inregs, &outregs);

return ((outregs.x.cflag) ? -1: outregs.x.ax);
)

char •filename ="TURBO";
int attribute=1 set_fi le_attributes

-1 If error

#include <dos.h>

/*
* set file attributes (filename, attribute)
*
* Set the file attributes for a file as specified.
*
* filename (in): file to set the file attributes of.
* attribute (in): desired file attributes.
*
*status= set_file_attributes ("Turbo", 32);
*
* File attributes include:
* 1 readonly 2 hidden 4 system
* 8 volume 16 subdirectory 32 archive
*

O If successful

* If an error occurs, set file attributes returns the value -1.
*
*/

DOS INTERFACE 179

set file attributes (char *filename, int attribute)
{
union REGS inregs, outregs;

inregs.x.ax
inregs.x.cx
inregs.x.dx

Ox4301;
attribute;
filename;

intdos (&inregs, &outregs);

return ((outregs.x.cflag)
}

char dir[64];

#include <dos.h>

/*

-1: 0);

get_directory

* get_directory (directory, drive);

"TURBO"

DOS error starus or
0 if successful

* Return the current directory for the disk drive specified.

* directory (out): current directory name.
* drive (in): disk drive number of the drive of interest.

*status~ get_directory (directory, 0);

180 TURBO C PROGRAMMER'S LIBRARY

*
* Disk drive numbers are specified as:
* 0 = Current, 1 = A, 2 = B, 3 = C
*
*/

get directory (char *directory, int drive)
{-
union REGS inregs, outregs;

inregs.h.ah Ox47;
inregs.h.dl = drive;
inregs.x.si = directory;

intdos (&inregs, &outregs);

return ((outregs.x.cflag) ? outregs.x.ax: 0);
)

char search spec="•.•";

char filename[13];

int attribute=O;

int •hour;

int •minute;

int •second;

int •day;

int •month;

int •year;

long •size

find_first

"ALLOC.H"

12

30

0

25

12

1988

589

DOS error status or
0 If successful

DOS INTERFACE 181

#include <dos.h>

/*
* find first (searchspec, filename, attribute, hour, minute,

- second, day, month, year, size)

* Return information on the first file matching the search
* specification given.

* searchspec (in): File name or DOS wildcard characters of the
* file(s) to match ("A", "TEST.C", "*.*").
* filename (out): Name of the first matching file.
* attribute (in) : Attributes of the files we are searching for.
* hour (out) : Hour time stamp.
* minute (out) : Minute time stamp.
* second (out) : Second time stamp.
* day (out): Day time stamp.
* month (out) : Month time stamp.
* year (out) : Year time stamp.
* size (out): File size in bytes.

* status = find first ("*.c", filename, 0, &hour, &minute,
&second, &day, &month, &year, &size);

* If an error occurs, find first returns the error status value.
* Otherwise, find first returns the value 0.
*
*/

find first (char *searchspec, char *filename, int attribute,
int *hour, int *minute, int *second,
int *day, int *month, int *year, long int *size)

union REGS inregs, outregs;

int segment, offset, i;
unsigned int time, date;

void get_disk_transfer_address (int *, int *);

inregs.h.ah = Ox4E;
inregs.x.dx = searchspec;
inregs.x.cx = attribute;
intdos (&inregs, &outregs);

if (outregs.x.cflag)
return (outregs.x.ax);

get_disk_transfer_address (&segment, &offset) ;

time
date

peek(segment, offset+22);
peek(segment, offset+24);

182 TURBO C PROGRAMMER'S LIBRARY

*year = (date >> 9) + 1980;
*month = (date & OxlEO) >> 5;
*day = date & OxlF;
*hour = time >> 11;
*minute = (time & Ox7EO) >> 5;
*second = (time & OxlF) * 2;

*size peek(segment, offset+28);
*size = *size << 16;
*size+= (unsigned) peek(segment, offset+26);

for (i = O; i < 13; i++)
*filename++= peekb(segment, offset+30+i);

*filename= '\0';

return (0);
}

char filename[13];

int attribute=O;

int •hour;

int •minute;

int •second;

int •day;

int •month;

int •year;

long •size;

find_next

"ADDC"

12

30

0

25

12

1988

590

DOS error status or
0 If successful

DOS INTERFACE 183

#include <dos.h>

I*
* find next (filename, attribute, hour, minute,
* - second, day, month, year, size)
*
*Return information on the next file matching the search
* specification given on a call to find_first.
*
* filename (out): Name of the first matchi11g file.
* attribute (in): Attributes of the files we are searching for.
* hour (out): Hour time stamp.
* minute (out): Minute time stamp.
* second (out): Second time stamp.
* day (out) : Day time stamp.
* month (out): Month time stamp.
* year (out) : Year time stamp.
* size (out): File size in bytes.
*
* status : find next (filename, 0, &hour, &minute,
* &second, &day, &month, &year, &size);
*
* If an error occurs, find next returns the error status value.
* Otherwise, find next returns the value 0.
*
*/

find next (char *filename, int attribute, int *hour,

{

int *minute, int •second, int *day, int •month,
int *year, long int *size)

union REGS inregs, outregs;

int segment, offset, i;
unsigned int time, date;

void get_disk_transfer_address (int•, int*);

inregs.h.ah : Ox4F;
inregs.x.cx : attribute;
intdos (&inregs, &outregs);

if (outregs.x.cflag)
return (outregs.x.ax);

get_disk_transfer_address (&segment, &offset);

time
date

peek(segment, offset+22);
peek(segment, offset+24);

•year : (date >> 9) + 1980;
•month : (date & OxlEO) >> 5;
*day : date & OxlF;

184 TURBO C PROGRAMMER'S LIBRARY

*hour = time >> 11;
*minute = (time & Ox7EO) >> 5;
*second = (time & OxlF) * 2;

*size peek(segment, offset+28);
*size = *size << 16;
*size+= (unsigned) peek(segment, offset+26);

for (i = O; i < 13; i++)
*filename++= peekb(segment, offset+30+i);

*filename= '\0';

return (0);
}

l get_disk_verification J

tinclude <dos.h>

/*
* get_disk_verification ()
*

Lo Verify is off
Verify is on

* Return the current state of disk verification on (1) or off (0) .
*
* state get_disk_verification ();
*
*/

int get disk verification ()
{ - -

I

union REGS inregs, outregs;

inregs.h.ah = Ox54;
intdos (&inregs, &outregs);
return (outregs.h.al);

char •source="CONFIG.OLD";
char •target="CONFIG.SAV";

#include <dos.h>

/*
* rename_file (source, target)
*

DOS INTERFACE 185

rename_ file

DOS error status or O

if successful

* Rename the file specified by source to the name given by target.
* * source (in): old file name.
* target (in): desired file name.
* * rename_file ("CONFIG.OLD", "CONFIG.SAV");
* * If an error occurs, rename file returns the DOS error status code.
* Otherwise, rename_file returns the value O.
*
*/

186 TURBO C PROGRAMMER'S LIBRARY

rename file (char *source, char *target)
{ -
union REGS inregs, outregs;

inregs.h.ah Ox56;
inregs.x.dx = s 0urce;
inregs.x.di = target;

intdos (&inregs, &outregs);

return ((outregs.x.cflag) ? outregs.x.ax: 0);
I

int file handle; ---
int •day;
int •month;
int •year; get_file_datetime
int •hour;

int •minute;

int •second;

-- 25 --- 12 --- 1988 --- 12 -- 30

0

DOS error status or
0 if successful

#include <dos.h>

/*
* get_file_datetime (filehandle, day, month, year,
* hour, minute, second);
*
* Return the date and time stamp for the file associated with
* the file handle given.
* * filehandle (in): file handle of the desired file.
* day (out) : day of month the file was created or modified (1-31) •
* month (out) : month of year the file was created or modified (1-12) .

DOS INTERFACE 187

* year (out) : year file was created or modified (1980-2099) .
* hour (out) : hour of day file was created or modified (0-23) .
* minute (out): minute of day file was created or modified (0-59).
* second (out): second of day file was created or modified (0-59).

* get_file_datetime (filehandle, &day, &month, &year,
* &hour, &minute, &second)
*
*/

get_file datetime (int filehandle, int *day, int *month,
- int *year, int *hour, int *minute, int *second)

union REGS inregs, outregs;

inregs.x.ax = Ox5700;
inregs.x.bx = filehandle;

intdos (&inregs, &outregs);

*year= (outregs.x.dx >> 9) + 1980;
*month = (outregs.x.dx & OxlEO) >> 5;
*day = outregs.x.dx & OxlF;
*hour = outregs.x.cx >> 11;
*minute = (outregs.x.cx & Ox7E0) >> 5;
*second = (outregs.x.dx & OxlF) * 2;

return ((outregs.x.cflag) ? outregs.x.ax: 0);
}

int filehandle;

int day=25;

int month=12;

int year=1988; set_ file_dateti me
int hour=10;

int minute=15;

int second=30;

DOS error status or 0
if successful

188 TURBO C PROGRAMMER'S LIBRARY

#include <dos.h>

I*
* set_file_datetime (filehandle, day, month, year,
* hour, minute, second);
*
* Set the date and time stamp for the file associated with
* the file handle given.
*
* filehandle (in): file handle of the desired file.
* day (out): day of month the file was created or modified (1-31).
* month (out) : month of year the file was created or modified (1-12) .
* year (out): year file was created or modified (1980-2099).
* hour (out) : hour of day file was created or modified (0-23) .
* minute (out) : minute of day file was created or modified (0-59) .
* second (out) : second of day file was created or modified (0-59) .
*
* set_file_datetime (filehandle, 25, 12, 1988, 10, 30, 0);
*
*/

set file datetime (int filehandle, int day, int month,
- - int year, int hour, int minute, int second)

{
union REGS inregs, outregs;

inregs.x.ax = Ox5701;
inregs.x.bx = filehandle;
inregs.x.dx· = (year - 1980) << 9;
inregs.x.dx += month << 5;
inregs.x.dx += day;
inregs.x.cx = hour << 11;
inregs.x.cx +=minute << 5;
inregs.x.cx += second I 2;

intdos (&inregs, &outregs);

return ((outregs.x.cflag) ? outregs.x.ax: 0);
}

char path="\ \TURBOC\ \";
int attribute=O;

create_unique_file "\ \TURBOC\ \
12345678"

DOS error status
or O if successful

DOS INTERFACE 189

#include <dos.h>

/*
* create_unique_file (pathname, attribute)

* Create a file with a unique name in the directory specified.

* pathname (in): directory path to place the file in.
* attribute (in): desired attribute for the file.
*
*status= create_unique_file (path, attribute);

* Path names may be defined as:

char path [255]
char path [255]

"\ \TURBOC\ \OLDFILES\ \ ";
u \ \ '1 i

*/

create_unique file (char *pathname, int attribute)
{
union REGS inregs, outregs;

inregs.h.ah
inregs.x.cx
inregs.x.dx

Ox5A;
attribute;
pathname;

intdos (&inregs, &outregs);

return ((outregs.x.cflag) ? outregs.x.ax: 0);
}

get_program_seg ment_prefix

Segment address of PSP

#include <dos.h>

/*
* get_program_segment_prefix ()
*

190 TURBO C PROGRAMMER'S LIBRARY

* Return the segment address of the program segment prefix for
* the current program.
*
*/

get_program_segment_prefix ()
{

)

union REGS inregs, outregs;

inregs.h.ah ; Ox62;
intdos (&inregs, &outregs);
return (outregs.x.bx);

Using the Programs
Admittedly, this chapter has presented you with a large collection of
routines. Although many of these routines appeared to perform
basic functions, they become quite powerful when you use them in
larger programs. Many of the programs in later chapters make
extensive use of these routines.

c H A p T E R

Turbo C BIOS
Interface

Chapter 6 discussed how to use the DOS system services to add
many powerful routines to your library of Turbo C functions. Just as
DOS provides a series of routines that your Turbo C programs can
access, so do the IBM PC and PC compatibles. This collection of
routines resides in the PC's read-only memory (ROM) and is com­
monly called the ROM BIOS. This is because the routines perform
the Basic Input Output Services (BIOS).

As was the case in Chapter 6, this chapter does not attempt to
implement all of the BIOS services; instead, it examines a select

191

192 TURBO C PROGRAMMER'S LIBRARY

group of services that are useful in many Turbo C applications. Most
of the routines in this chapter deal specifically with video control.

As with the DOS system services, you must again use the 8088
registers as your interface to the BIOS services. Thus, you must
include the file dos.h at the beginning of your programs, as shown
here:

#include <dos.h>

Unlike the DOS services (which used the routines intdos and
intdosx), the BIOS services use int86. The calling sequence for int86
is as follows:

int86 (interrupt_number, &inregs, &outregs);

DOS services use INT 21H, as discussed in Chapter 6. The BIOS
services, however, use the following interrupts:

Print screen
Video services
Equipment service
Memory size
Disk services
Port services
AT extended services
Keyboard services
Printer services
ROM BASIC
Reboot service
Time services

INT 05H
INT lOH
INT llH
INT 12H
INT 13H
INT 14H
INT 15H
INT 16H
INT 17H
INT 18H
INT 19H
INT lAH

In addition to the input and output register structures, you must
specify an interrupt number, as shown here:

int86 (OxlO, &intregs, &outregs);

As before, many of these routines exist in the Turbo C run-time
library. To help you better understand how to control your PC, how-

TURBO C BIOS INTERFACE 193

ever, the following routines implement a library of ROM BIOS
routines:

El-
#include <dos.h>

/*
* void print_screen ()
*

print_screen e I--.

* Print the contents of the current screen display.
* * print_screen ();
*
*I

void print screen ()
{ -
union REGS inreqs, outreqs;

int86 (5, &inreqs, &outreqs);
I

int mode=3; --- set_video_mode

194 TURBO C PROGRAMMER'S LIBRARY

#include <dos.h>

I*
* void set video_mode (mode)
*
* Set the current video display mode.
*
* mode (in): Video mode desired. Common modes include:
* 0 40 x 25 grey 1 40 x 25 color 2
* 3 80 x 25 color 4 320 x 200 color
* 5 320 x 200 grey 6 640 x 400 graphics
* 7 85 x 25 text
*
* set_video_mode (4);
*
*/

void set_video_mode (int mode)
I
union REGS inregs, outregs;

inregs.h.ah = O;
inregs.h.al = mode;
int86 (OxlO, &inregs, &outregs);

}

int top=6;

int bottom=?;

#include <stdio.h>

#include <dos.h>

/*

set_cursor _size

* void set_cursor_size (start, stop)
*
* Set the current cursor size.
*
* start (in): top scan line.
* stop (in): bottom scan line.
*
* set_cursor_size (8, 7);
*

80 x 25 grey

*For CGA scan lines range from 0 to 7. For monochrome scan
* lines range from 0 to 13. If you make the top scan line larger

TURBO C BIOS INTERFACE 195

*than the bottom scan line, the cursor disappears.

*/

void set cursor size (int start, int stop)
{

union REGS inregs, outregs;

inregs.h.ah = 1;
inregs.h.ch = start;
inregs.h.cl = stop;
int86 (OxlO, &inregs, &outregs);

)

int page_number=O;
int row=10; set_cursor _position
int column=15;

iinclude <dos.h>

/*
* void set_cursor_position (page_number, row, column)
*
* Place the CLlrsor at the row and column given for the video
* display page specified.
*
* page number (in): Video page number.
* row (in): Desired row number.
* column (in): Desired column number.
*
* set_cursor_position (0, 10, 15);
*
*/

void set_cursor_position (int page_number, int row, int column)
I
union REGS inregs, outregs;

inregs.h.ah 2;
inregs.h.bh = page_number;
inregs.h.dh = row;
inregs.h.dl = column;
int86 (OxlO, &inregs, &outregs);

}

196 TURBO C PROGRAMMER'S LIBRARY

int page_number=O;

int row;

int column;

int top;

int bottom;

#include <dos.h>

/*

get_cursor _position

10

15

6

7

• void get_cursor_position (page_number, row, column, start, stop)
•
• Get cursor information for the video page specified .
•
• page number (in): Page number to return cursor information for.
• row (out): Current cursor row number.
• column (out): Current cursor column number.
• start (out): Top cursor scan line.
• stop (out): Bottom cursor scan line .
•
• get_cursor_position (0, &row, &column, &start, &stop);
•
*I

void get cursor position (int page number, int *row,
- - int •column, int •start, int *stop)

}

union REGS inregs, outregs;

inregs.h.ah = 3;
inregs.h.bh = page number;
int86 (OxlO, &inregs, &outregs);
•row = outregs.h.dh;
*column = outregs.h.dl;
*start = outregs.h.ch;
*stop = outregs.h.cl;

TURBO C BIOS INTERFACE 197

int page=O; ---r-[set_active_display_page

#include <dos.h>

/*
* set_active_display_page (page)

* Select the video display page that is visible on the screen.
*
* page (in): Desired video display page.
*
* set_active_display_page (3);

* By writing to a nonactive video display and then selecting
* the page as active, the video output appears instantaneous.
*
*/

void set_active_display_page (int page)
{
union REGS inregs, outregs;

nregs.h.ah = 5;
nregs.h.al = page;
nt86 (OxlO, &inregs, &outregs);

int numlines=1;

int attribute=O;

int top_row=10;

int bottom_row=20;

int left_column=10;

int right_column=?O;

scroll_up

198 TURBO C PROGRAMMER'S LIBRARY

#include <dos.h>

/*
* scroll up (numlines, attribute, top row, bottom_row,
* - left_column, right_column)
*
* Scroll the text on a region of the screen up as specified.

* numlines (in): Number of lines to scroll up.
* attribute (in): Attribute of line(s) left blank by the scroll.
* top row (in): Upper row of the region to scroll.
* bottom row (in): Lower row of the region to scroll.
* left column (in): Left column of the region to scroll.
* right_column (in): Right column of the region to scroll.

* scroll_up (1, O, 10, 20, 10, 50);

*/

void scroll_up (int numlines, int attribute, int top row,
int bottom_row, int left_column, int-right_column)

}

union REGS inregs, outregs;

inregs.h.ah 6;
inregs.h.al numlines;
inregs.h.bh attribute;
inregs.h.ch top row;
inregs.h.dh bottom row;
inregs.h.cl left_column;
inregs.h.dl right column;
int86 (OxlO, &inregs, &outregs);

int numlines=1;

int attribute=O;

int top_row=10;

int bottom_row=20;

int left_column=10;

int right_column=70;

scroll_down

TURBO C BIOS INTERFACE 199

tinclude <dos.h>

/*
* scroll down (numlines, attribute, top row, bottom row,
* left_column, right_column) -
*
* Scroll the text on a region of the screen down as specified.
*
* numlines (in): Number of lines to scroll down.
* attribute (in): Attribute of line(s) left blank by the scroll.
* top row (in): Upper row of the region to scroll.
* bottom row (in): Lower row of the region to scroll.
* left column (in): Left column of the region to scroll.
* right_column (in): Right column of the region to scroll.
*
* scroll_down (1, 0, 10, 20, 10, 50);
*
*/

void scroll down (int numlines, int attribute, int top row,

{

}

- int bottom_row, int left_column, int-right_column)

union REGS inregs, outregs;

inregs.h.ah 7;
inregs.h.al numlines;
inregs.h.bh attribute;
inregs.h.ch top row;
inregs.h.dh bottom row;
inregs.h.cl left_column;
inregs.h.dl right column;
int86 (OxlO, &inregs, &outregs);

int page=O;
int character=65;

int attribute=14;

int count=1;

write_char _and_attr

200 TURBO C PROGRAMMER'S LIBRARY

#include <dos.h>

/*
* void write_char_and_attr (page, character, attribute, count)

* Write the number of occurrences specified of a given
* character (and attribute) on the display page provided.

* page (in): Video display page to write character to.
* character (in): ASCII character to display.
* attribute (in): Video display attribute of character.
* count (in): Number of times to display character.
*
*write char and attr (0, 65, 14, 10);
*
*/

void write_char_and_attr (int page, int character,
int attribute, int count)

union REGS inregs, outregs;

inregs.h.ah 9;
inregs.h.al character;
inregs.h.bh page;
inregs.h.bl attribute;
inregs.x.cx count;
int86 (OxlO, &inregs, &outregs);,

}

int palette=O;
int color=1;

#include <dos.h>

/*

set_color _palette

* void set_color_palette (palette, color)

* Set the color palette and select a color for graphics display.

*
* palette (in): Desired color palette.
* color (in) : Desired color from the palette selected.
*
* set_color_palette (0, l);
*
*/

TURBO C BIOS INTERFACE 201

void set color palette (int palette, int color)
{ - -
union REGS inregs, outregs;

inregs.h.ah = OxOB;
inregs.h.bh = palette;
inregs.h.bl = color;
int86 (OxlO, &inregs, &outregs);

)

int row=10;
int column=10;
int color=1;

#include <dos.h>

I*

write_pixel

* void write_pixel (row, column, color)
*
* Write a graphics pixel of the color given at the row and column
* location specified.
*
* row (in): Pixel row position.
* column (in): Pixel column position.
* color (in): Pixel color.
*
* write_pixel (10, 10, 1);
*
*/

void write_pixel (int row, int column, int color)
{
union REGS inregs, outregs;

inregs.h.ah OxOC;
inregs.h.al = color;
inregs.x.cx = column;
inregs.h.dl = row;
int86 (OxlO, &inregs, &outregs);

)

202 TURBO C PROGRAMMER'S LIBRARY

int row=10;
int column=10;

read_pixel

Pixel color

#include <dos.h>

/*
* read_pixel (row, column)

* Return the color of the pixel at the row and column specified.
*
* row (in) : Pixel row position.
* column (in): Pixel column position.

* color read_pixel (10, 10);
*
*/

read__pixel (int row, int column)
{
union REGS inregs, outregs;

inregs.h.ah = OxOD;
inregs.x.cx = column;
inregs.h.dl = row;
int86 (OxlO, &inregs, &outregs);

return (outregs.h.al);
}

TURBO C BIOS INTERFACE 203

#include <dos.h>

/*

int width;
int mode;
int page;

get_ video_mode

* void get_video_mode (width, mode, page)

* Return the current video display status.

* width (out) : Number of characters per line (40 or 80).
* mode (out): Current video mode. (See set video mode)
* page (out): Current video display page. - -

* get_video_mode (&width, &mode, &page);

*/

void get_video_mode (int *width, int *mode, int *page)
{

)

union REGS inregs, outregs;

inregs.h.ah = OxOF;
int86 (OxlO, &inregs, &outregs);

*width = outregs.h.ah;
*mode outregs.h.al;
*page = outregs.h.bh;

80

3
0

204 TURBO C PROGRAMMER'S LIBRARY

memory_size

Kilobytes of memory

#include <dos.h>

/*
* memory_size ()
*
* Return the number of kilobytes of memory in the system.
*
* num_bytes
*
*/

memory_size ()
{

memory_size ();

union REGS inregs, outregs;

int86 (Ox12, &inregs, &outregs);

return (outregs.x.ax);
}

/01 Keyboard get_shift_state

Keyboard status

TURBO C BIOS INTERFACE 205

#include <dos.h>

/*
* get shift_state ()

* Return the current keyboard state.
*
*state= get_shift state ();
*
* get shift state returns a byte whose bits define:

bit 0 Right shift depressed bit 1 Left shift depressed
bit 2 Ctrl depressed bit 3 Alt depressed
bit 4 scroll lock on bit 5 num lock on
bit 6 caps lock on bit 7 ins on

*/

get_shift state ()

union REGS inregs, outregs;

inregs.h.ah = 2;
int86 (0xl6, &inregs, &outregs);

return (outregs.h.al);
}

int color=1; ----,""""

#include <dos.h>

/*

set_border _color

* void set_border_color (color)
*
* Set the current border color for CGA monitors in text mode.
*
* color (in): Desired color (0 - 15).
*

206 TURBO C PROGRAMMER'S LIBRARY

*set border color (1);
* - -
*/

void set border color (int color)
{ - -
union REGS inregs, outregs;

inregs.h.ah = OxOB;
inregs.h.bh = O;
inregs.h.bl = color;
int86 (OxlO, &inregs, &outregs);

)

By using the routines provided in this chapter, you can quickly
produce routines of professional quality. Experiment with these
functions, and your programs should gain tremendous flexibility.

c H A p T E R

Turbo C ANSI
Support

Chapters 6 and 7 included several routines that provided video and
I/0 support from DOS and the ROM BIOS services. In addition to
these routines, the Turbo C run-time library provides many useful
I/0 functions. This chapter, which completes your library of screen­
manipulation routines, examines the ANSI driver provided with
both MS-DOS and PC DOS.

The ANSI driver software intercepts data that is sent from the
keyboard and data that is sent to the video display in search of
ANSI commands (see Figure 8-1).

207

208 TURBO C PROGRAMMER'S LIBRARY

Keyboard ANSI
Driver

DOS

Figure 8-1. Operation of the ANSI driver

ANSI
Driver

An ANSI command is a series of characters that begin with an
ASCII 27 (commonly known as an escape character). For example,
the following ANSI command clears the screen display and places
the cursor in the upper-left (home) position on the screen:

ESC[2J

The following program uses this escape sequence and printf to clear
the contents of the screen display (similar to the DOS CLS
command):

main ()
{
printf ("\033[2J");

)

All of the ANSI commands are this easy to use.
Before you can use the ANSI driver, you must be sure that the

ANSI driver software is installed on your system. To do so, be sure
that the file ANSI.SYS is on your boot disk by issuing the following
command:

C> DIR ANSI.SYS

Volume in drive C is S
Directory of C:\

TURBO C ANSI SUPPORT 209

ANSI SYS 1651 8-01-87 12:00a
1 File(s) 1093632 bytes free

Next, place the following entry in the CONFIG.SYS file and reboot:

DEVICE=ANSI.SYS

Once the system restarts, DOS will have loaded the ANSI driver
support.

Table 8-1 summarizes the ANSI commands discussed in this
chapter.

Table 8-1. Summary of ANSI Commands

Function

Set Cursor
Cursor Up
Cursor Down
Cursor Forward
Cursor Back
Save Cursor
Restore Cursor
Clear Screen
Clear EOL
Set Graphic
Set Mode
Key Change
Key Define

ANSI Command
ESC[#;#H
ESC[#A
ESC[#B
ESC[#C
ESC[#D
ESC[s
ESC[u
ESC[2J
ESC[K
ESC[#; ... ;#m
ESC[=#h
ESC[#;#p
ESC[#;#;"text";13p

210 TURBO C PROGRAMMER'S LIBRARY

Cursor-Manipulation Routines
The following routines use the ANSI services to perform cursor
manipulation.

introw=10; ~a set_cursor
int column=10 g

I*
* void set_cursor (row, column)
*
* Use the ANSI driver to set the cursor to the row and
* column position specified.

* row (in): Desired row number.
* column (in): Desired column number.
*
*set cursor (10, 10);

*/

void set_cursor (int row, int column)
{
printf ("\033[%d;%dH", row, column);

}

TURBO C ANSI SUPPORT 211

/*
* cursor_up (numrows)
*
* Use the ANSI driver to move the cursor up the number
* of row specified.

* numrows (in): Number of rows to move the cursor.

* cursor_up (10);

* If the cursor reaches the top of the screen, the routine
* completes.

*/

void cursor_up (int numrows)
{
printf ("\033(%dA", numrows);

}

int numrows= 10;----;-iJ
L

/*
* cursor_down (numrows)
*

cursor _down a

* Use the ANSI driver to move the cursor down the number
* of row specified.

* numrows (in): Number of rows to move the cursor.

*cursor down (5);
*
* If the cursor reaches the bottom of the screen, the routine
* completes.
*
*/

void cursor_down (int numrows)
{
printf ("\033(%dB", numrows);

}

212 TURBO C PROGRAMMER'S LIBRARY

· int numcolumns==25; --11-4 cursor _forward

/*
* void cursor_forward (numcolumns)
* * Use the ANSI driver to move the cursor forward the number
* of columns specified.
* * numcolumns (in) : Number of columns to move cursor forward.
*
* cursor_forward (10);
*
* If the cursor reaches the right side of the screen, the
* routine completes.
*
*/

void cursor_forward (int numcolumns)
{
printf ("\033[%dC", numcolumns);

}

int numcolumns==25; --'"4{ cursor _back

TURBO C ANSI SUPPORT 213

/*
* void cursor_back (numcolumns)
*
* Use the ANSI driver to move the cursor backward the number
* of columns specified.
*
* numcolumns (in) : Number of columns to move cursor backward.

* cursor_backward (10);
*
* If the cursor reaches the left side of the screen, the
* routine completes.

*I

void cursor_back (int numcolumns)
{
printf ("\033[%dD", numcolumns);

}

._____.'"""dome 1---C

/*
* void cursor_home ()
*
* Use the ANSI driver to place the cursor in the home position.

*
*cursor home ();

*/

void cursor_home ()
{
printf ("\033[H");

}

214 TURBO C PROGRAMMER'S LIBRARY

~ve_cursor

/*
* void save_cursor ()

* Use the ANSI driver to save the current cursor position for
* later restoration by restore cursor.

* save cursor ();

*/

void save_cursor ()
{
printf ("\033[s\n");

I

""o"-'""o' L __ [[] ll____.____.r-- g

TURBO C ANSI SUPPORT 215

/*
* void restore_cursor ()

* Use the ANSI driver to restore the cursor position that
* was saved by a previous call to save cursor.
*
*restore cursor ();
*
*/

void restore_cursor ()
{

Erasing

printf ("\033[u\n•;;
}

The following set of routines uses the ANSI commands to erase the
entire screen display, and to erase the screen display from the cur­
rent cursor position to the end of the line:

oleau0<000 [__ [[] J] ~r---- g

/*
* void clear_screen ()
*
* Use the ANSI driver to clear the current screen contents
* placing the cursor in the home position.

216 TURBO C PROGRAMMER'S LIBRARY

*
*clear screen ();

*/

void clear screen ()
{ -
printf ("\033[2J");

}

clear _col L____ .____ _ ___,,--

/*
* void clear_eol ()
*

[] ..

0 .

* Use the ANSI driver to clear the current line from the
* current cursor position.
*
*clear eol ();
*
*/

void clear_eol ()
{
printf ("\033[K");

)

Screen Attributes
The following routines use the ANSI services to modify the video
display and the output attributes of data on the screen:

TURBO C ANSI SUPPORT 217

.____set-___,OOld ~ [[JI]

/*
* void set_bold (command)
*
* Use the ANSI driver to enable or disable bold text display.
*
* command (in): If command is 1, bolding is enabled, otherwise
* bolding is disabled.
*
*set bold (1); printf ("BOLD TEXT");
*set-bold (0); printf ("NORMAL TEXT");
*
*I

void set_bold (int command)
{
printf ("\033 [%dm", · (command) 1: 0);

)

218 TURBO C PROGRAMMER'S LIBRARY

/*
* void set_blink (command)

* Use the ANSI driver to enable or disable blinking text display.
*
* command (in): If command is 1, blinking is enabled, otherwise
* blinking is disabled.
*
*set blink (1);
*set-blink (0);

printf ("BLINKING TEXT");
printf ("NORMAL TEXT");

*/

void set_blink (int command)
{
printf ("\033[%dm", (command) 5: 0);

}

/*
* void set_reverse (command)

* Use the ANSI driver to enable or disable reverse video text display.

* command (in): If command is 1, reverse video is enabled, otherwise
reverse video is disabled.

*set reverse (1);
*set-reverse (0);

printf ("REVERSED TEXT");
printf ("NORMAL TEXT");

*
*/

void set reverse (int command)
{
printf ("\033 [%dm", (command)

)
7: 0) ;

/*

int foreground=34;

int background=47;
set_colors

* void set_colors (foreground, background)

TURBO C ANSI SUPPORT 219

* Use the ANSI driver to set the foreground and background
* colors for text display.
*
* foreground (in): Desired foreground color:
* 30 black 31 red 32 green 33 yellow

34 blue 35 magenta 36 cyan 37 white
* background (in): Desired background color:

40 black 41 red 42 green 43 yellow
44 blue 45 magenta 46 cyan 47 white

*
* set colors (31, 47);
*
*/

void set_colors (int foreground, int background)
{
if ((foreground>= 30) && (foreground<= 37))

if ((background>= 40) && (background>= 47))
printf ("\033[%d;%dm", foreground, background);

char •str="TEST"; ----1 print_reverse_video

220 TURBO C PROGRAMMER'S LIBRARY

/*
* void print_reverse_video (string)
*
* Use the ANSI driver to print the string specified in reverse
* video.
*
* string (in): Character string to display.
*
* print_reverse_video ("TEST STRING");
*
*/

void print_reverse_video (char *string)
{
printf ("\033[7m%s\033[0m", string);

)

char •str=''TEST''; ~

/*
* void print_blinking (string)
*

\ t I f I I/

~TEST~
... (l l I \ "

* Use the ANSI driver to print the string specified blinking.
*
* string (in): Character string to display.
*
* print_blinking ("TEST STRING");
*
*/

void print_blinking (char *string}
{
printf ("\033[5m%s\033[0m", string};

)

0
0

TURBO C ANSI SUPPORT 221

chac ... ~"BOLD";~ [[BOLD JI]

/*
* void print_bold (string)
*
* Use the ANSI driver to print the string specified bold.
*
* string (in): Character string to display.
*
* print_bold ("TEST STRING");
*
*I

void print_bold (char *string)
{
printf ("\033[1rn%s\033[0rn", string);

}

int mode=3;--- ansi_set_mode
80x25
color

0
0

222 TURBO C PROGRAMMER'S LIBRARY

/*
* void ansi set mode (mode)
* - -
* Use the ANSI driver to select the mode specified.
*
* mode (in): Desired video mode:
* 0 4 0 x 25 bw 1 4 0 x 25 color
* 2 80 x 25 bw 3 80 x 25 color
* 4 320 x 200 color 5 320 x 200 bw
* 6 640 x 200 bw 7 wrap at end of line
*
* ansi set mode (3);

*I

void ansi set mode (int mode)
(- -
if ((mode >= 0) && (mode <= 7))

printf ("\033[=%dh", mode);

Keyboard Reassignment
The routines presented in this section enable you to trap data from
the keyboard and to replace that data with either a different key­
stroke or a series of keystrokes. This means that the ANSI driver
enables you to redefine a DOS function key (such as FlO) with a DOS
command (such as DIR). Once defined, each time you press the FlO
key from the DOS prompt, DOS will respond with the DIR com­
mand, as shown here:

TURBO C ANSI SUPPORT 223

int old="A"; ~~iOf \\
int old="a"; ~ i:: ._ _________ __._, J

Keyboard

/*
* void change_key (old, new)

* Use the ANSI driver to redefine the ASCII code associated
* with the key specified.

* old (in): ASCII code of key to redefine.
* new (in): ASCII code of new key.
*
* change_key ('A', 'a');
*
*/

void change_key (int old, int new)
{

printf ("\033[%d;%dp", old, new);

int scancode=68; =1 H
define_function_key /JJ

char •str="DIR"; ~-------~

/*
* void define function_key (scancode, string)
*

Keyboard

* Use the ANSI driver to associate a character string with
* a DOS function key.

224 TURBO C PROGRAMMER'S LIBRARY

* scancode (in) : Scan code of the key to reassign.
* string (in): String to associate with the key.
*
* define function key (68, "DIR"); (68 is FlO)
* - -
*/

void define function key (int scancode, char *string)
{ - -

printf ("\033[0;%d;\"%s\";13p", scancode, string);
)

The ANSI functions are indeed quite powerful and quite conve­
nient. However, to avoid problems, be sure that the user has installed
the ANSI driver. If your program uses the ANSI escape sequences
to perform I/O operations and the ANSI driver is not installed, the
screen will contain a strange combination of characters. If this
occurs, be sure the user installs the ANSI driver as previously
explained.

Since Turbo C provides several powerful routines for controlling
your output (see Appendix B), you may choose to use the run-time
library routines in place of the ANSI routines. In either case, if you
program under DOS, it is important that you understand that the
ANSI driver capabilities exist.

c H A p T E R

File Manipulation
Chapter 5 examined many programs that use the DOS pipe and 1/0
redirection operators to perform file and stream manipulation. This
chapter builds on those programs to enable support for DOS
command-line processing and 1/0 redirection, as shown here:

[
A> DIR I FIRST J
A> FIRST FILENAME.TXT

~·---

225

226. TURBO C PROGRAMMER'S LIBRARY

In the latter case, many of the programs presented in this chapter
will also support DOS wildcard characters by using the routines
find_first and find-next, which were presented in Chapter 6.

(~A_>_F_r_Rs_r_*_·_*~~~~~~~~~~~J

By supporting both command-line arguments and DOS 1/0 redi­
rection, the programs presented in this chapter will provide you
with maximum flexibility.

Understanding find-first
and find-next

Before examining the text file-manipulation routines presented
later in this chapter, you should first understand how wildcard pro­
cessing is performed. The following program, LS.C, performs a
DOS directory command. You can invoke the program as follows:

A> LS
A> LS FILENAME.EXT
A> LS *.C

(List all files by default)
(List all C files)

FILE MANIPULATION 227

The program will display all of the information normally dis­
played by the DOS DIR command. For example, if your directory
contains the following,

f
--= --·----

Volume in drive A is C FILES
Directory of A:\ -

APPENDIX c 2688 11-04-87 11 :55a
ALPHA c 320 2-15-88 6:58p
ASCIIINT c 562 2-15-88 6:58p
AUX CHAR c 446 2-15-88 6:58p
AUXWRITE c 596 2-15-88 6:58p
ANSI TEST c 50 2-15-88 6:58p
ASETCUR c 431 2-15-88 6:58p

7 File (S) 353280 bytes free
\... ..)

the command

(~A> L_S ___ _______,]

will display the following:

APPENDIX.C 11/04/1987 11:55 44 2688 bytes
ALPHA.C 02/15/1988 18:58 00 320 bytes
ASCII INT .C 02/15/1988 18:58 00 562 bytes
AUXCHAR.C 02/15/1988 18:58 00 446 bytes
AUXWRITE.C 02/15/1988 18:58 00 596 bytes
ANSITEST.C 02/15/1988 18:58 00 50 bytes
ASETCUR.C 02/15/1988 18:58 00 431 bytes

The program begins by passing either the contents of argv[l] or
the character string * * to the routine find_first. If find_first

228 TURBO C PROGRAMMER'S LIBRARY

locates a matching file, the program displays the related data. Oth­
erwise, the program terminates.

If find-first successfully locates a file, the program invokes the
routine find-next to locate the next file matching the original
search specification. If a new file is found, the program displays the
file information, and this process repeats. Otherwise, the program
terminates. The following code implements LS:

main (argc, argv)
int argc;

{
char *argv [l ;

int day, month, year, hour, minute, second, status;
long size;
char filename[l3];

int find first (char *, char *, int, int *, int *, int *
- int*, int*, int*, long int*);

int find_next (char *, int, int *, int *, int *,
int*, int*, int*, long int*);

if (argc < 2)
status= find first ("*·*", filename, O, &hour, &minute,

&second, &day, &month, &year, &size);
else

status= find first (argv[l], filename, O, &hour, &minute,
&second, &day, &month, &year, &size);

while (status == 0)
{
printf ("%-15s %02d/%02d/%d\t%02d:%02d:%02d %9ld bytes\n",

filename, month, day, year, hour, minute, second, size);
status = find next (filename, O, &hour, &minute, &second,

- &day, &month, &year, &size);

The program ATTR.C enhances the DOS ATTRIB command,
which sets or displays a file's attributes. This program supports the
attributes shown in Table 9-1.

FILE MANIPULATION 229

Table 9-1. Attributes Supported by ATTR C Program

Attribute
0
1
2
4
8

16
32

Meaning
Normal
Read-only
Hidden
System
Volume label
Subdirectory
Archive

Invue the ATTR.C program as follows:

A> ATTR *·*
A> ATTR 1 *.C
A> ATTR 0 *.*

(Display file attributes)
(Set C files to read-only)
(Set files to normal attributes)

If you use ATTR to set a file to read-only and later try to delete or
modify the file, DOS will display the following:

230 TURBO C PROGRAMMER'S LIBRARY

(~A_c_c_e_s_s~D_e_n_i_e_d~~~~~~~~~~~~~~~~J

The following code implements ATTR.C:

main (argc, argv)
int argc;

{
char *argv[];

int status, attributes, day, month, year, hour, minute, second;
long size;
char filename[l3];

if (argc == 1)
{

}

printf ("ATTR invalid usage: ATTR [attribu~e] FILESPEC\n");
exit (1);

else if (argc == 2)
status find first (argv[l], filename, 0, &hour, &minute, &second,

&day, &month, &year, &size);
else

{
if (ascii to int (argv[l], &att+ibutes) == -1)

{

}

printf ("ATTR invalid attribute %s\n", argv[l]);
exit (1);

status find first (argv[2], filename, 0, &hour, &minute, &second,
&day, &month, &year, &size);

while (status == 0)

if (argc == 2)
printf ("%-15s %d\n", filename, get file attributes (filename));

else if (set file attributes (filename, attributes) == -1)
printf <"ATTR-Error modifying %s\n", filename);

status find next (filename, O, &hour, &minute, &second,
- &day, &month, &year, &size);

The program STAMP.C allows you to set a date and time stamp
for a file (or files) to the current system date. Invoke the program as
follows:

A> STAMP FILENAME.EXT
A> STAMP * .C
A> STAMP *. *

FILE MANIPULATION 231

The following code implements STAMP.C:

main (argc, argv)
int argc;
char *argv [];

int file, status, fday, fmonth, fyear, fhour, fminute, fsecond;
int sys_dow, sys_day, sys_month, sys_year, sys_hour,

sys_minute, sys_second, sys_hundredths;

long int size;

char filename[l3J;

if (argc < 2)
{

)

printf ("STAMP invalid usage: STAMP FILESPEC\n") ;
exit (1);

status= find first (argv[l], filename, O, &fday, &fmonth,
- &fyear, &fhour, &fminute, &fsecond, &size);

get time (&sys hour, &sys minute, &sys second, &sys hundredths);
get=date (&sys=day, &sys_month, &sys_year, &sys_dow);

while (status == OJ
{
file= open file (filename, 1, &status);
if (status ~= -1)

printf ("STAMP error modifying %s\n", filename);

status = set file datetime (file, sys day, sys month, sys_year,
- - sys_hour, -sys_minute, sys_second);

if (status == -1)
printf ("STAMP error modifying %s\n", filename);

close (file);

status = find next (filename, 0, &fday, &fmonth, &fyear,
&fhour, &fminute, &fsecond, &size);

The routines find_first and find-next add tremendous flexibil-

232 TURBO C PROGRAMMER'S LIBRARY

ity to your programs. Each of these routines will be used extensively
throughout this chapter.

File-Manipulation Routines
The following utility programs deal exclusively with file manipula­
tion that is based on command-line arguments. The first program,
DISPLAY.C, enhances the functional capabilities of the DOS TYPE
command by supporting wildcard characters and multiple command­
line arguments, as shown here:

A> DISPLAY*·*
A> DISPLAY TEST.C TEST.H DISPLAY.C

The following code implements DISPLAY.C:

main (int argc, char *argv[])
{
int i, status, day, month, year, hour, minute, second;
long size;
char filename[13], buffer[132];

FILE *fopen (), *fp;

int find first (char *, char *, int, int *, int *, int *,
- int*, int*, int*, long int*);

int find next (char *, int, int *, int *, int *,
'int*, int*, int*, long int*);

i = 1;

if (argc == 1)
printf ("DISPLAY invalid usage: DISPLAY FILESPEC [...]\n");

else
do {
status= find first (argv[i++], filename, 0, &hour, &minute,

&second, &day, &month, &year, &size);

while (status == 0)
{
if(! (fp = fopen (filename, "r")),)

FILE MANIPULATION 233

printf ("DISPLAY error opening %s\n", filename);
else

}

while (fgets (buffer, sizeof(buffer), fp))
fputs (buffer, stdout);

fclose (fp) ;

status find next (filename, 0, &day, &month, &year,
&hour, &minute, &second, &size);

while (i < argc);

The program FILECOPY uses the DOS low-level file-manipula­
tion routines presented in Chapter 6 to copy the contents of the first
file specified to the second, as shown here:

(_A_>~F_r_L_E_c_oP_Y~s_o_u_R_c_E_._E_x_T~TAR~G-E_r_._E_x_r~~~~~-J

The program does not support DOS wildcard characters. The fol­
lowing code implements FILECOPY.C:

main (int argc, char *argv[J)
{
int source_file, target_file, status, num_bytes;

char buffer[255);

int open file (char*, int, int *);
int create file (char*, int, int*);
int read file (int, char*, int, int*);
int write file (int, char*, int, int*);
int close=file (int);

if (argc < 3)
{
printf ("FILECOPY invalid usage: FILECOPY SOURCE TARGET\n");
exit (1);

} ''~

else
{
source file= open file (argv[l], 0, &status);
if (status == -1) -

{

}

printf ("FILECOPY error opening %s\n", argv[l]);
exit (1);

234 TURBO C PROGRAMMER'S LIBRARY

target file= create file (argv[2), 0, &status);
if (status == -1) -

{

}

printf ("FILECOPY error opening %s\n", argv[2));
exit (1);

while (num_bytes = read file (source file, buffer,
sizeof(buffer), &status))

{
if (status == -1)

{

}

printf ("FILECOPY error reading %s\n", argv[l]);
exit (1);

write file (target_file, buffer, num_bytes, &status);
if (status == -1)

{

}

printf ("FILECOPY error writing %s\n", argv[l]);
exit (1);

close file (source file);
close=file (target=file);

Utility Programs
The following programs help complete your library of DOS file­
manipulation routines. Each program presented in this section sup­
ports both command-line arguments and DOS 1/0 redirection. As
such, these programs maximize your command-line flexibility.

The first program, MORE.C, modifies the program presented in
Chapter 5 t.o support command-line processing and 1/0 redirection,
as shown heit:

A> MORE FILENAME.EXT
A> MORE *. *
A> DIR I MORE

'-

FILE MANIPULATION 235

The program begins by examining its command-line parameters. If
none are present, MORE assumes that its input is redirected I/0, as
shown here:

(A> DIR I MORE

If the user has instead specified a file,

[_A~>_M_o_R_E~F_r_L_E_N_AM_E~.E_x_T~~~~~~~~~~~~J

MORE uses the specified file. The following code implements
MORE.C:

#include <stdio.h>

#define lines_per_page 24

main (int argc, char *argv[])
{
FILE *file, *fopen();

int status, i = l;
int hour, minute, second, day, month, year;
long int size;

char filename[l3];

void show file (FILE *) ;
int find first (char *, char *, int, int *, int *, int *,

- int *, int *, int *, long int *);
int find next (char *, int, int *, int *, int *,

- int*, int*, int*, long int *);

if (argc == 1)
show file (stdin) ;

else
{
do

status find first (argv[i], filename, O, &hour, &minute,
&second, &day, &month, &year, &size);

236 TURBO C PROGRAMMER'S LIBRARY

}

while (status == 0)

if (! (file = fopen (filename, "r")))
printf ("MORE error opening %s\n", filename);

else
show file (file);

fclose-(file);
status find next (filename, 0, &hour, &minute,

- &second, &day, &month, &year, &size);

while (++i < argc) ;

void show file (FILE *file)
{ -
char line[l32];

int line number = O;

while (fgets(line, sizeof(line), file))
if (++line_number % lines_per_page)

fputs (line, stdout);
else

{

}

fflush (stdout);
fputs ("--MORE--\n", stdout);
fflush (stdout);
bioskey (0);

In a similar manner, the program LAST.C displays the last ten
lines of a file or redirected input, as shown here:

A> LAST FILENAME.EXT
A> TYPE FILENAME.EXT I LAST
A> LAST *·*

The following code implements LAST.C:

#include <stdio.h>

main (argc, argv)
int argc;
char *argv [];

{

FILE MANIPULATION 237

FILE *file, *fopen();

int i = 1, status, index, hour, minute, second, day, month, year;

long int size;

char *lines[lOJ, filename[13J, *malloc();

int last (FILE*, char*[], int);
int find first (char *, char *, int, int *, int *, int *,

- int*, int*, int*, long int*);
int find next (char *, int, int *, int *, int *,

int *, int *, int*, long int *);

I* allocate space for a circular buffer */
for (index = O; index < 10; index++)
if (! (lines [index] = malloc (132)))

{
printf ("Unable to allocate necessary memory\n");
exit (1);

else
*lines[index] = '\0';

if (argc == 1)
last (stdin, lines, 0);

else
{

J
}

do

}

status= find first (argv[i], filename, O, &hour, &minute,
- &second, &day, &month, &year, &size);

if (status != 0)
printf ("LAST file not found\n");

while (status == 0)

if (! (file = fopen (filename, "r")))
printf ("LAST error opening %s\n", filename);

else
last (file, lines, 0);

fclose (file);
status find next (filename, O, &hour, &minute,

- &second, &day, &month, &year, &size);

while (++i < argc);

In the opposite manner, the program FIRST.C displays the first
n lines of a file or redirected input, as shown here:

A> FIRST 100 FILENAME.EXT
A> FIRST *.*
A> TYPE FILENAME.EXT I FIRST

238 TURBO C PROGRAMMER'S LIBRARY

The following code implements FIRST.C:

#include <stdio.h>

main (int argc, char *argv[J)
{
int stop_line 10; /* number of lines to display */

int i = 2, done = 0, status, index, hour, minute, second,
day, month, year;

long int size;

char filename[13J;

FILE *fopen(), *file;

void first (FILE*, int);
int find first (char *, char *, int, int *, int *, int *,

- int*, int•, int*, long int*);
int find next (char *, int, int *, int •, int *,

- int•, int*, int•, long int*);
int ascii_to_int (char•, int *);

if (argc == 1)
{

}

first (stdin, stop_line);
done = 1;

/* user entered FIRST */

else if (argc == 2) /* FIRST value or FIRST file */
{

}

if (ascii to int (argv[l], &stop_line) == -1)
{ - -

}
else

{

stop line = 10;
i = T;

first (stdin, stop_line);
done = 1;

}

else if (argc > 2) /* FIRST value file or FIRST file file */
{
if (ascii to int (argv[l], &stop_line} == -1)

{ - -
stop line = 10;
i ; I;

if (! done)
do {

status find first (argv[i], filename, O, &hour, &minute,

FILE MANIPULATION 239

&second, &day, &month, &year, &size);

}

if (status != 0)
printf ("FIRST file not found\n");

while (status == 0)

if (! (file = fopen (filename, "r")))
printf ("FIRST error opening %s\n", filename);

else
first (file, stop line);

fclose (file); -
status find next (filename, 0, &hour, &minute,

- &second, &day, &month, &year, &size);

while (++i < argc) ;

void first (file, stop_line}
FILE *file;
int stop line;

{ -
int count = O; /* current line number */

char line [132];

while (fgets (line, sizeof(line), file) && (++count<= stop_line))
fputs (line, stdout);

The program FINDSTR.C displays each occurrence of a speci­
fied string either in a file (or files) or in redirected input, as shown
here:

r
A> FINDSTR ARIZONA STATES.LST
A> FINDSTR DOS *.*
A> TYPE TEST.PAS I FINDSTR begin

_

The program REPLACE.C replaces each occurrence of a word
with a second word in either a file or redirected input, as shown
here:

240 TURBO C PROGRAMMER'S LIBRARY

A> REPLACE BEGIN begin TEST.PAS NEWFILE.EXT
A> TYPE TEST.PAS I REPLACE BEGIN begin

Note that REPLACE does not perform wildcard processing. The fol­
lowing code implements REPLACE.C:

#include <stdio.h>

main (int argc, char *argv[])
{
char line [132];

int location, len;

FILE *fopen (), *infile, *outfile;

int remove substring (char*, char*);
int insert-string (char*, char*, int, int);
int next_str_occurrence (char*, char*, int);

if (argc < 3)
printf ("invalid usage: REPLACE TARGET NEW WORD OLDFILE NEWFILE\n");

else if (argc == 3)
{
infile = stdin;
outfile = stdout;

I

else if (argc == 4)
{
if (! (infile = fopen (argv[3], "r")l)

{

I

printf ("REPLACE error opening %s\n", argv[3]);
exit (1);

outfile = stdout;
I

else if (argc == 5)
{
if(! (infile = fopen (argv[3], "r")))

{

I

printf ("REPLACE error opening %s\n", argv[3]);
exit (1);

if (! (outfile = fopen (argv[4], "w")))
{

}

printf ("REPLACE error opening %s\n", argv[4]);
exit (1);

len string_length (argv[2));

while (fgets (line, 132, infile))
(

FILE MANIPULATION 241

if ((location= index (arqv{l], line)) !~ -1)
do

{
remove substring (argv[l], &line[location]);
insert=string (argv[2], line, location, sizeof{line));

}
while ((location= next str occurrence (argv[l], line,

location + len)) ! = -l); -

fputs (line, outfile);

The program TAB.C enables you to precede lines of a file or
redirected input, as shown here:

A> TAB FILENAME.EXT NEWFILE.EXT
A> TAB 25 FILENAME.EXT NEWFILE.EXT
A> DIR I TAB 7

'-

The following code implements TAB.C:

#include <stdio.h>

main (int argc, char *argv[))
{
FILE *fopen (), *infile, *outfile;

int spaces = 7; /* number of spaces to insert */

int i = 2;

char line[l32J;

int ascii to int (char*, int*);
int pad_string (char*, int, int);

infile = stdin;
outfile = stdout;

if (argc > 1) /* see if user specified a valid number */
{
if (ascii to int (argv[l), &spaces) == -1)

{ - -
spaces = 7;

242 TURBO C PROGRAMMER'S LIBRARY

i = 1;
}

if (*argv(i])
if (! (infile fopen (argv[i], "r")))

{

}

printf ("TAB error opening %s\n", argv[i});
exit (1);

if (*argv[i] && *argv[i+l])
if(! (outfile = fopen (argv[i+l], "w")))

{

}

printf ("TAB error opening %s\n", argv[i+l]);
exit (1);

while (fgets (line, 132, infile))
{

if (pad string (line, spaces, sizeof (line)) == 1)
{ -

printf ("%c Line exceeds %d characters\n", 7, sizeof (line));
break ;

fputs (line, outfile);

The programs EXTRACT.C and REMOVE.C enable you to
select or remove various portions of a file or redirected input. The
first, EXTRACT.C, writes selected lines of a file (or redirected
input) to a second file or to the screen, as follows:

A> EXTRACT 0 50 TEST.C TEST.NEW
A> DIR I EXTRACT 0 25

Assuming that the file C.DAT contains the following,

1 AAAA
2 BBBB
3 cccc
4 DDDD
5 EEEE
6 FFFF
7 GGGG
8 HHHH
9 IIII

the command

(_A_>_E_x_r_RA_c_r~3-S~C-.D-A_T~~~~~~~~~-J

will display the following:

[
3 cccc J 4 DDDD

-5-EEE_E~~~~~~~

FILE MANIPULATION 243

The following code implements EXTRACT.C:

#include <stdio.h>

main (int argc, char *argv[])
{

244 TURBO C PROGRAMMER'S LIBRARY

FILE *fopen (), *infile, *outfile;

int start_line, stop_line, count;

char line [132];

int ascii to int (char*, int*);

infile = stdin;
outfile = stdout;

if (argc < 3)
{

printf ("EXTRACT invalid usage: EXTRACT## FILE FILE\n");
exit (l);

if (ascii to int (argv[l], &start line) == -1)
printf ("EXTRACT invalid start Tine %d\n", argv[l]);

if (ascii to int (argv[2], &stop line) == -1)
printf ("EXTRACT invalid stop Tine %d\n", argv[2]);

if (argc >= 4)
if(! (infile = fopen (argv[3], "r")))

{
printf ("EXTRACT error opening %s\n", argv[3]);
exit (l);

if (argc == 5)
if(! (outfile = fopen (argv[4], "w")))

{
printf ("EXTRACT error opening %s\n", argv[4]);
exit (l);

for (count= l; fgets (line, sizeof(line), infile); count++)
{

if (count >= start line)
fputs (line, outfile);

if (count
break ;

stop_line)

In a similar manner, the program REMOVE.C deletes lines
from a file (or redirected input) and writes the result to the screen
or to a second file, as shown here:

A> REMOVE 0 10 FILENAME.EXT NEWFILE.EXT

A> TYPE FILENAME.EXT I REMOVE 0 10 NEWFILE.EXT

Given the file C.DAT, the command

[~A->~R_E_M_o_VE~-3~5-C~.n_A_T~~~~~~~~~~~~J
will display the following:

1 AAAA
2 BBBB
6 FFFF
7 GGGG
8 HHHH
9 IIII

FILE MANIPULATION 245

The following code implements REMOVE.C:

#include <stdio.h>

main (int argc, char *argv[])
{
FILE *fopen (), *infile, *outfile;

int start_line, stop_line, count;

char line[132];

int ascii_to_int (char *, int *);

infile = stdin;
outfile = stdout;

if (argc < 3)
{

printf ("REMOVE invalid usage: REMOVE ii ii FILE FILE\n");
exit (1);

if (ascii to int (argv[l], &start line) == -1)
printf ("REMOVE invalid start line %d\n", argv[l]);

if (ascii to int (argv[2], &stop line) == -1)
printf ("REMOVE invalid stop line %d\n", argv[2]);

if (argc >= 4)
if(! (infile = fopen (argv[3], "r")))

{
printf ("REMOVE error opening %s\n", argv[3]);

246 TURBO C PROGRAMMER'S LIBRARY

exit (1);

if (argc == 5)
if (! (out file = fopen (argv [4], "w")))

{
printf ("REMOVE error opening %s\n", argv[4]);
exit {1);

for (count= 1; fgets (line, sizeof(line), infile); count++)
if ((count < start line) I I (count > stop line))

fputs (line, outfile); -

With Turbo C, developing useful utility programs is quite
straightforward. Experiment with the programs in this chapter
and you should be able to assemble a library of countless utility
programs.

c H A p T E R

Array
Manipulation

Because of the tremendous use of arrays in string manipulation,
most Turbo C programmers have a solid foundation from which to
build a library of array-manipulation routines. Throughout this text,
routines have been as generic as possible. This practice has greatly
increased the number of applications that can use the functions
without modification of the code of the routine. This chapter exam­
ines routines that manipulate arrays. In an effort to limit the dupli­
cation of code, a reduction has been made to the amount of coding
and testing that must be performed when modifications are made.

247

248 TURBO C PROGRAMMER'S LIBRARY

Array Considerations
One of the most difficult functions to consider when developing a
library of array-manipulation routines is how to deal with different
array types. For example, the following routine returns the sum of
the values contained in an array of type float:

float sum array (float array[], int num_elements)
{ -

float result = 0.0;

int i;

for (i = O; i < num elements; i++)
result += array[i];

return (result);
I

The array type and value returned from the function are of the type
float. Although this routine works for floating-point values, the rou­
tine must be duplicated for an array of type int. Although this
appears to be a simple fix, remember that Turbo Chas many types,
including the following:

int
unsigned int

float
double

char
short int

long int

As a result, you can quickly create several different functions, each
of which performs an identical task.

When you create array-manipulation routines, you have three
alternatives. The first, which was just discussed, is simply to create
duplicate routines for the required type, as shown here:

ARRAY MANIPULATION 249

long int sum array (int array[], int num_elements)
{ -
int result = 0;

int i;

for (i = O; i < num elements; i++)
result += array[i];

return (result);
)

However, the shortcoming of this solution is the proliferation of rou­
tines required for different array types.

The second alternative is to develop a routine based on the two
user-defined types shown here:

typedef int array type;
typedef int result_type;

The array-manipulation routine is now defined as follows:

result type sum array (array type array[], int num_elements)
{ - - -
result_type result = O;

int i;

for (i = O; i < num elements; i++)
result += array[i];

return (result);
}

To use this routine for an array of type float, change the user­
defined types, as shown here:

typedef float array type;
typedef float result_type;

250 TURBO C PROGRAMMER'S LIBRARY

This processing .restricts duplication of code, but it too has lim­
itations. With each application you must recompile the array-manip­
ulation routines to be sure that the correct types are used. In addi­
tion, if your program must use several arrays of differing types, this
method supports only one array type.

The third alternative requires the user to specify the array type
as a parameter, as shown here:

sum values (array, num_elements, type);

In this case, type is defined as

0 char
1 int
2 float
3 long int
4 unsigned int
5 double
6 short int

Rather than passing an array of type int, float, or double to the rou­
tine, the user instead passes an array whose type is defined by a
union, as shown here:

union array types {
char cvalT
int ival;
float fval;
unsigned int uval;
double dval;
short int sval;

) ;

ARRAY MANIPULATION 251

Within the routine, you access the correct type based on the type of
variable, as shown here:

double sum array (union array types array[],
- int num_elements, int type)

double result = 0.0;

int i;

for (i 0; i < num_elements; i++)
switch (type) {

case 0: result += (double) array[i] .cval;
break;

case 1: result += (double) array[i] .ival;
break;

case 2: result += (double) array[i] .fval;
break;

case 3: result += (double) array[i] .uval;
break;

case 4: result += (double) array[i] .dval;
break;

case 5: result += (double) array[i] .sval;
break;

return (result);
}

The following program uses this routine to display the sum of the
values in several types of arrays by using a single array to sum
them:
main ()

{

}

union array_types a[lOJ, b[lOJ, c[lOJ;

double sum value (union array_types *, int, int);

int i;

for (i = O; i < 10; i++)
{
a[i).ival
b[i) .cval
c [i]. fval

}

5;
1;
3.0;

printf ("int ARRAY %f\n", sum array (a, 10, 1));
printf ("char ARRAY %f\n", sum array (b, 10, 0));
printf ("float ARRAY %f\n", sum_array (c, 10, 2));

252 TURBO C PROGRAMMER'S LIBRARY

The difficulty of this type of routine is that you must now assign
values to the correct union members, as shown here:

for (i = O; i < 10; i++)
{

}

a[i] .ival 'C 5;
b[i] .cval = 1;
c[i] .fval = 3.0;

This may be an unreasonable requirement to place on all your
programs.

Multiple array types can be quite frustrating to Turbo C pro­
grammers. The development of your array-manipulation routines is
a tradeoff among the following factors:

• Duplication of code for each type

• Code recompilation with each application

• Impact upon code outside of the function (unions)

The routines in the remainder of this chapter are based on the
types array _type and return-type. For example, if your array
types were of type int, you would simply place the following typedef
statement at the beginning of your program:

typedef int array type;
typedef int result_type;

If you were using arrays of type float, you would use the following:

typedef float array type;
typedef float result_type;

Within your programs, you define your array in terms of these two
types:

typedef float result type;
typedef float array_type;

main()
{

array_type salary[SO];

ARRAY MANIPULATION 253

If you are building a library of routines, you may want to change the
names of each routine to reflect its type, as shown here:

floaL....sum_values
int_sum_values
double_sum_values

Array-Manipulation Routines
The first routine, sum_array returns the sum of all of the values
contained in an array:

array_type array [];
int num_elements=10;

sum_ values

Sum of array values

/*
* result_type sum_array (array, num_elements);
*
* Return the sum of the values in an array.
* * array (in): array containing the values to sum.
* num_elements (in): number of elements in the array.
*
* sum= sum_array (scores, 10);
*

254 TURBO C PROGRAMMER'S LIBRARY

* This routine requires you to define the types result type
* and array_type as required depending upon your array-type.
*
*/

result type sum_array (array_type array[), int num_elements)
{ -
int i;

result_type result = O;

for (i = O; i < num elements; i++)
result += array[iJ;

return (result);
)

The next routine, average_value, returns the average of the
values contained in an array.

array_type array [];
int num_elements=30; average_ value

Average of the values in the array

/*
* result_type average_value (array, num_elements);
*
* Return the average value in an array.
*
* array (in): array containing of values to compute the average of.
* num_elements (in): number of elements in the array.
*
*avg= average_value (scores, 10);
*
* This routine requires you to define the types result type
* and array_type as required depending upon your array-type.
*
*/

result_type average_value (array_type array[], int num_elements)
{
int i;

result_type result = O;

for (i = O; i < num elements; i++)
result += array[i];

return (result I num_elements);
}

ARRAY MANIPULATION 255

The routine minimum-value searches the elements of an array
and returns the smallest value found, as follows:

array_type array [);
int num_elements=30;

minimum_value

Smallest value in the array

/*
* result_type minimum_value (array, num_elements);
*
* Return the smallest value in an array.
*
* array (in): array of values to return minimum value from.
* num_elements (in): number of elements in the array.
*
*min= minimum_value (scores, 10);
*
* This routine requires you to define the types result type
* and array_type as required depending upon your array-type.
*
*/

result type minimum_value (array_type array[], int num_elements)
{ -
int i;

result_type minimum= array[O];

for (i = 1; i < num elements; i++)
if (minimum > array [i l)

minimum= array[i];

return (minimum);
}.

256 TURBO C PROGRAMMER'S LIBRARY

The routine maximum_value returns the largest value m an
array, as shown here:

array_type· array (];
int num_elements=30;

maximum_ value

Largest value in the array

/*
* result_type maximum_value (array, num elements);
*
* Return the largest value in an array.
*
* array (in) : array of values to return maximum value from.
* num_elements (in): number of elements in the array.
*
*max= maximum_value (scores, 10);
*
* This routine requires you to define the types result type
* and array_type as required depending upon your array-type.
*
*/

result_type maximum value (array_type array[], int num_elements)
(
int i;

result_type maximum= array[O];

for (i = l; i < num elements; i++)
if (maximum< array[i])

maximum= array[i];

return (maximum);
)

The routine median_value returns the median value (middle
value) contained in an array. Given the array

ARRAY MANIPULATION 257

10
20
30 ---Median value

40
50

the routine median-value returns the value 30. However, if the
array contains an even number of elements,

0
10
20
30
40

50

the routine returns the value 25, as calculated here:

0
10
20
30

> 20 + 30 =50/2 = 25

40
50

258 TURBO C PROGRAMMER'S LIBRARY

The values must be in ascending order or median_ value returns the
error status -1.

array_type array [];
int num_elements=20;

int •status;

median_ value
O If successful

-1 If values are not ascending

Median value in the array

/*
* result_type median_value (array, num_elements, status);
*
* Return the largest value in an array.
*
* array (in): array of values to return median value from.
* num elements (in): number of elements in the array.
* status (out): 0 if successful, -1 if elements are not ascending.
*
*median= median value (scores, 10);
*
* This routine requires you to define the type array_type
* as required depending upon your array type.
*
*/

float median value (array_type array[), int num_elements, int *status)
{
int i;

result_type median;

*status = O;

/* insure array is ascending */
for (i = 0; i < num elements-1; i++)

if (array[i) > array[i+l))
*status = -1;

if (! *status)
if (num elements % 2)

median array[num elements I 2];
else -

median = (array[num elements I 2] +
array[num=elements - (num_elements I 2) - 1)) I 2;

return (median);
}

ARRAY MANIPULATION 259

The routine modal-value returns the modal value of an array.
The modal value is simply the value that occurs most often in the
array. For example, given the following array,

0

1

1

2

2

2

3

the modal value is 2. As was the case, with the routine median_
value, the values of the array must be in ascending order. Given the
following array,

0

10 > 1--------1 Modal value
10

20
30

the routine modal-value returns the value 10. If duplicate modal
values exist,

260 TURBO C PROGRAMMER'S LIBRARY

0
10
10
20
20

30
40

the routine returns the status value 1.

array_type array [];
int num_elements=30;
int •status;

modal_ value -1 If values are not ascending
0 If successful

If duplicate modes
Modal value in the array of values

/*
* result_type modal_value (array, num_elements, status);
*
* Return the modal value of an array.
* * array (in) : array of values to return modal value from.
* num elements (in): number of elements in the array.
* status (out): 0 if successful, -1 if values not ascending,
* 1 if duplicate modes
*
*mode= modal_value (scores, 10, &status);
*
* This routine requires you to define the types result type
* and array_type as required depending upon your array-type.
*
*/

ARRAY MANIPULATION 261

result_type modal_value ,(array_type array[), int num_elements,
int *status)

(
int i, current_count, max_count = -1;

array_type current_value, max value 0.0;

*status = 0;

/* insure array is ascending */
for (i = 0; i < num elements-1; i++)

if (array[i] > array[i+l))
*status = -1;

if (*status != -1)
(
i = O;

while (i < num_elements)
{
current value= array[i];
current-count = O;
while ((array[i] == current_value) && (i < num_elements))

(.

}

current count++;
i++; -

if (current count > max_count)
(-

}

max count = current count;
max-value = current-value;
*status = O; -

else if (current_count == max_count)

*status = 1;

return (max_value);
}

Variance and Standard
Deviation

/* duplicate mode */

Two of the most widely used statistical tools are variance and stan­
dard deviation. Statisticians use them to analyze the expected value,
or average of a population. For example, if 100 different programs
are run on two computers, an expected value can be computed that
represents how much faster the first computer is in comparison to

262 TURBO C PROGRAMMER'S LIBRARY

the second. Statisticians can use either the variance or standard
deviation to determine the accuracy of the expected value by describ­
ing the average deviation from the sample mean.

The variance is computed by using the following equation:

N

V = k k (Di-M)2

i=l

The standard deviation is computed by taking the square root of the
variance, as shown here:

In both equations, N represents the number of elements in the mean
of the sample.

The standard deviation is more important than variance because
its result is more readily understood. In the example just given, if
the first computer averages 3 seconds faster than the second comput­
er, possible values would be as follows:

Expected value:
Variance:
Standard deviation:

ARRAY MANIPULATION 263

3 seconds
4 (seconds)2

2 seconds

When the variance is calculated, the difference between each
element and the mean is squared to produce only positive values.
The following routine determines the variance of the values m an
array:

array_type array[];~ I variance
int num_elements=25; _

~--~c::--v-a-r~iance of the values in the array

/*
* float variance (array, num_elements)
*
* Return the variance of values in an array.
*
* array (in): array of values to return variance of.
* num_elements (in): number of elements in the array.
*
*var= variance (scores, 10);
*
* This routine requires you to define the type array type
* as required depending upon your array type. This routine
* uses the routine average_value contained in the array library.
*
*/

float variance (array_type array[], int num_elements)
{
int i;

float sum= 0.0;

array_type average, average_value (array_type *, int);

average = average_value (array, num_elements);

264 TURBO C PROGRAMMER'S LIBRARY

for (i = O; i < num elements; i++)
sum+= (array[i] ~average) * (array[i] - average);

return (sum I num_elements);
}

The routine standard-deviation returns the standard deviation of
the values in an array:

array_type array []; ·
int num_elements=30; standard_deviation

/*

Standard deviation of
the values in the array

* float standard_deviation (array, num_elements)
*
* Return the standard deviation of values in an array.
* * array (in): array of values to return standard deviation of.
* num_elements (in): number of elements in the array.
*
* stdd~v = standard_deviation (scores, 10);
*
* This routine requires you to define the type array_type
* as required depending upon your array type. This routine
* uses the routine variance contained in the array library.
*
*/

ARRAY MANIPULATION 265

#include <math.h>

float standard deviation (array_type array[), int num_elements)
(-
float variance (array_type *, int);

return (sqrt((variance (array, num elements) * num_elements) I
(num_elements - 1)));-

Least Squares Fit
The least squares fit is one of the simplest methods used to deter­
mine the linear equation that best fits a collection of data values. For
example, given the following distribution of values,

30K

25K x
"O
Q)
c 20K t1' w x x
(/)

lSK x
~ x x
0
0 10K x x

SK
x

_.

1K 2K 3K 4K SK 6K 7K BK 9K 10K

Advertising Expense

266 TURBO C PROGRAMMER'S LIBRARY

the least squares algorithm provides a linear equation that best fits
the data, as shown here:

30K
y=mx+b

25K
"'O
(J)
c

20K (ij
w
Cf)

15K
~
0
0 10K

SK

1K 2K 3K 4K SK 6K 7K SK 9K 10K

Advertising Expense

The line shown is called the line of best fit. The slope and inter­
cept of this line are used to determine missing points in your data.
Linear equations are expressed in slope-intercept format.

The procedure least-square returns the slope and intercept of
the line that best fits the data.

array_type xarray [];
array_type yarray [];
int num_elements=30;

array_type •slope;
array_type •intercept;

least_square

5 Slope of line
0 Intercept

ARRAY MANIPULATION 267

/*
* void least_square (x, y, num_elements, slope, intercept)
*
* Return the slope and intercept of the line that best fits
* the x and y data values given.
*
* x (in): array of x coordinates.
* y (in): array of y coordinates.
* num elements (in): number of elements in the array.
* slope (out): slope of the line.
* intercept (out): intercept of the line.
*
* least_square (x, y, 10, &slope, &intercept);
*
* This routine requires you to define the type array_type
* based upon the type of your array.
*
*/

void least square (array type x[], array type y[], int num_elements,
- float-*slope, float *intercept)

float xsum = 0.0, ysum = 0.0, xsquared_sum = 0.0, xy_sum = 0.0;

int i;

for (i = O; i < num_elements; i++)
{
xsum += x[i];
ysum += y[i];
xsquared sum+= x[i] * x[i];
xy sum+~ x[i] * y[i];

} -

*slope= ((xsum * ysum) - (num elements* xy sum}) I
((xsum * xsum) - (num=elements * xsquared_sum));

*intercept= (ysum - (*slope* xsum)) I num_elements;
}

Once you know the slope and intercept for the data, you can use
them to estimate missing points, as shown here:

slope = 5 intercept = 1
x = 1.5
y = slope * x + intercept
y = slope * 1.5 + intercept
y = 5 * 1.5 + 1
y = 7.5 + 1
y = 8.5

268 TURBO C PROGRAMMER'S LIBRARY

Statisticians use residuals to determine the goodness of fit of the
linear equation produced by least-square. A residual value is the
distance between each value and the line of best fit. For example,
the difference between the actual value of Y and the approximated
value Y' can be computed by the following equation:

RESIDUAL = Y - Y';

The sum of the residuals for an array can determine the validity
of the linear equation. For example, if the data is linear,

30K

"O 25K
Q)
c

20K <ti w
(/) 15K ..S!
0
0 10K

5K

1K 2K 3K 4K SK 6K 7K BK 9K 10K

Advertising Expense

the sum of the residuals will be 0. As the line less approximates the
data this sum will be greater, as shown here:

ARRAY MANIPULATION 269

30K

x
25K

"O
(lJ 20K E
c:tl

x
w 15K en
~
0 10K
0 x

x
5K

1K 2K 3K 4K 5K 6K 7K 8K 9K 10K

Advertising Expense

Using Macros
Many Turbo C programmers must often balance the increased code
size produced by C macros (over that of functions) against their
increased flexibility. Developing generic array-manipulation rou­
tines in Turbo C is not an easy task. However, you can often use
macros instead to increase the flexibility of your code. For example,
the following macro returns the sum of the elements in an array:

#define sum array(array, num elements, rslt) \
{- ,- \

int index = O; \
rslt = O; \
while (index < (num elements)) \

rslt = rslt + array[index++]; \

i

I

270 TURBO C PROGRAMMER'S LIBRARY

Note the differences between the macro code and the routine
presented previously in this chapter. First, because the code is a
macro and not a function, it does not return a value. You must pass a
parameter to the macro that will store the result, as shown here:

#define sum_array(array, num_elements, rslt) \

Second, because the macro does not define an array type, it will
work without modification for arrays of any type. For example, the
following program obtains the sum of arrays of type int and float by
using the single macro:

#define sum array(array, num elements, rslt) \

main ()
{

{- - \
int index = O; \
rslt = O; \
while (index < (num elements)) \

rslt = rslt + array[index++]; \

int int array[lOJ, int result;
float float_array[lOJ,-float_result;

int i;

for (i = O; i < 10; i++)
{

int array[i] = i;
float_array[il = i;

sum array(int array, 10, int result);
sum=array(float_array, 10, float_result);

printf ("Result of int array sum %d\n", int result);
printf ("Result of float_array sum %f\n", fToat_result);

)

All of the routines in this chapter can be implemented as macros
in this fashion. In many cases, your code will actually execute
slightly faster since you do not have the stack overhead associated
with functions. The tradeoff, however, is increased code size.

ARRAY MANIPULATION 271

Multidimensional Arrays
All of the arrays presented thus far have been single-dimensional
arrays like the following:

float scores [10]
int grades[5];

However, many applications require arrays of multiple dimensions,
as shown here:

float box [3] [3];
int tax_table [3] [5] [10];

Because of the way that Turbo C usually stores arrays, you can nor­
mally pass single-dimensional or multidimensional arrays to your
functions without modification to the code. For example, assume you
have the array shown here with the values given:

int X[3] [3];

1 2 3

4 5 6

7 8 9

In most cases, Turbo C actually stores the array as a single­
dimensional array, as follows:

I

272 TURBO C PROGRAMMER'S LIBRARY

1

2

3
4

5

6

7

8

9

Thus, you can normally pass the array to your array-manipulation
routines regardless of the number of dimensions. Simply remember
to pass the correct number of elements, as shown here:

float box [3][3] has 3 * 3, or 9, elements

int tax_table [3][5][10) has 3 * 5 * 10, or 150, elements

In most cases, despite the number of dimensions, the routines pre­
sented work without modification. Experiment with these routines
and you should find that they are quite flexible. If you are using
arrays of pointers, be aware of the fact that Turbo C is not required
to store arrays in a linear manner. The only ANSI requirement is
that array[i] is directly equivalent to *((array)+(i)). As a result, you
will likely need to modify your array-manipulation routines.

Admittedly, many of the routines presented in this chapter are
quite simple. However, by creating libraries of routines like these,
your program development becomes much simpler and much faster.
Remember that these library routines are your building blocks for
larger programs.

c H A p T E R

Searching
and Sorting

Many applications that use arrays to store data also perform table
look-ups. These applications search for specific values (or process
the data contained in the array) with the assumption that the data is
in either ascending or descending order. Searching and sorting
operations are important aspects of most computer applications.
Choosing the correct sorting or searching algorithm has a signif­
icant impact on the execution time of your programs.

Computer scientists have thoroughly researched the characteris­
tics of sorting and searching algorithms. They found that several
algorithms execute much faster because fewer iterations are
required to sort an array or to locate a specific value.

273

27 4 TURBO C PROGRAMMER'S LIBRARY

This chapter discusses sequential and binary searches. The sort­
ing algorithms in this chapter include the bubble, selection, Shell,
and quick sorts. As in Chapter 10, the routines are as generic as
possible. Each routine is based on the user-defined type array-type.
To minimize duplicate sorting routines, the sorting order (either
ascending or descending) is a parameter to each routine.

Searching
Many programming applications must search arrays for specific
values. For example, assume that the following arrays contain
employee information:

0 Boy 1111 30000

Burnham 2222 45000

2 Byrd 3700 38000

3 Davis 4201 25000

4 Eubank 5001 60000

5 Grant 5500 35000

6 Jones 6200 45000

7 Kempf 7777 50000

8 Rosaschi 8001 55000

9 Watson 8372 32000

Index EMPLOYEE ID NUMBER SALARY

SEARCHING AND SORTING 275

If management wants to access the salary of Jones, a program can
sequentially search the array employee until the name is found. The
program can then locate the salary associated with the index value
that points to Jones. In this case, index 6 points to a salary of
$45,000. The goal of the search routines presented here is to locate a
value and return the corresponding index. If the value is not found,
each routine will return the value -1.

Sequential Search
The sequential search is the simplest searching algorithm. The
values to be examined here are stored as elements in the array.
Each time a value must be found, the sequential search starts with
the first element in the array. The search examines the elements one
after another until either the value is found or the array elements
are exhausted. In the example of the employee information array,
the search would first test the element Boy and then examine suc­
cessive values of the array until it found the element Jones. The fol­
lowing routine implements the sequential search:

/*

array_type desired_value;
array_type values[10];
int num_elements = 10;

sequential_search

Index value associated
with desired_value or
-1 if not found

* sequential_search (value, array, num_elements)
*
* Sequentially search the array of values given in order to locate
* a specific value. Return the index of the value, or -1 if the
* value is not found.

I

lj
I!

~;
'1

276 TURBO C PROGRAMMER'S LIBRARY

*
* value (in): Value to search for.
* array (in): Array of values to examine.
* num_elements (in): Number of elements in the array.
*
*index= sequential_search (5, scores, 10);
*
* If multiple occurrences of. the same value are present in the
* array, this routine returns the index of the first occurrence.
*
*/

int sequential search (array type value, array_type values[],
- int num_elements)

{
int i, location = -1;

for (i = 0; (i < num elements) && location
if (value== values[i])

location = i;

return (location);
}

-1; i++)

Keep in mind that you can again use C macros in order to increase
the generic nature of each routine. For example, this macro imple­
ments a generic segmental search:

#define se'l_search(value, values, num_elements, location)
{

\
\
\
\
\

int k;
location = -1;

for (k = O; (k < num elements - 1) && location
if (value== values[k])

location = k;

-1; k++) \
\
\

This technique can be used for all of the routines presented in this
chapter. The drawback, however, is increased code size.

Binary Search
In the previous application, the sequential search successfully found
the desired information. In many cases, you can reduce the number
of iterations the routine must perform to find the data by using a

SEARCHING AND SORTING 277

different searching algorithm, such as the binary search. To per­
form a binary search, the values in the array must be in order, tra­
ditionally ascending order (lowest to highest).

The binary search is one of the quickest searching algorithms
used by programmers. Unlike the sequential search (which exam­
ines successive elements of the array), the binary search reduces the
number of elements that must be examined (by a factor of two) with
each iteration, until the desired record is found.

This process is similar to the one you use when you look up a
telephone number. Assume that you are looking up the name Jones.
You will probably start near the middle of the book. If the names on
that page begin with a letter other than "J," you have effectively cut
in half the number of pages you must search for the name. If the
name Jones is not on this page, you simply repeat this process until
the name is found.

Admittedly, you could have used a sequential search to find the
name Jones by starting at the first page in the telephone book and
examining every page. In a small town, this might not take long.
However, in a city such as New York, a sequential search would take
far too much time.

You could use the sequential search to search the array of
employee information for the salary of Jones. The process requires
seven iterations, but the binary search requires only four iterations.
This obviously reduces the execution time of the program. The
decrease in execution time becomes important as array sizes
increase.

The first iteration of the binary search examines the entire array
(just as you examined the entire telephone book). Using the employee
information example, the variables low and high are assigned the
values 0 and 9. The variable mid-index is the middle element in the
search range. The array element values[mid_index] contains the
value that you will compare to desired-value. To calculate mid­
index, use the following line:

mid_index = (high + low) I 2;

278 TURBO C PROGRAMMER'S LIBRARY

Since the routine performs integer division, mid_index is assigned
the value 4, as shown here:

0 Boy .- LOW

Burnham

2 Byrd

3 Davis

4 Eubank ~ MID_INDEX

5 Grant

6 Jones

7 Kempf

8 Rosaschi

9 Watson ~HIGH

If the value contained in values[mid-index] equals the desired
value, the search is completed by setting a variable called found to
true.

If the value contained in values[mid-index] is greater than the
desired value, the algorithm modifies the search range because the
value indicates that searching past that point for the desired value is
not necessary. For example, if the array contains the following,

SEARCHING AND SORTING 279

0 Barnes ...,.__LOW

Bean

2 Jones

3 Kempf

4 Moore -4-- MID_INDEX

5 Ogborne

6 Parrish

7 Rosaschi

8 Smith

9 Stewart- HIGH

and you are searching for Jones, you have no reason to search above
values[index] for the value. The search then modifies the value of
high as follows:

high = rnid_index - 1;

In effect, this process creates a new range of names to examine.
The value of mid-index must also be modified, as shown here:

280 TURBO C PROGRAMMER'S LIBRARY

mid_index = (high + low) / 2;

The new range of names then contains the following:

O Barnes ..-- LOW

Bean -4-- MID_INDEX

2 Jones

3 Kempf -4-- HIGH

Similarly, if the initial array contains the following,

0

2

3

4

5

6

7

8

9

Adams

Boy

Burnham

Burns

Burrows

Daniel

Davis

Eubank

Jones

Ogawa

.-- LOW

..-. MID_INDEX

.,_.. HIGH

SEARCHING AND SORTING 281

and you are searching for Jones, you need not search below
values[mid-index] for the value. The search modifies the value con­
tained in low by the following statement:

low = mid_index + 1;

This statement then produces this new range:

5 Daniel ~ LOW

6 Davis

7 Eubank

8 Jones

9 Ogawa- HIGH

The algorithm recomputes mid-index to yield

5 Daniel- LOW

6 Davis

7 Eubank- MID-INDEX

8 Jones

9 Ogawa_ HIGH

282 TURBO C PROGRAMMER'S LIBRARY

After the desired value is found, the variable found terminates
the search. If the value is not found, a secondary test is required. For
example, if the array contains

0 Barnes- LOW

Kempf ..-. MID_INDEX

2 Parrish ...-- HIGH

and the desired value is Jones, the first iteration modifies high and
mid-index as follows:

0 Barnes-- LOW

Kempf-- MID_INDEX
t------1....-HIGH

2 Parrish

The second iteration produces

SEARCHING AND SORTING 283

The third iteration illustrates the error that occurs if the algo­
rithm does not perform the secondary test that prevents the array
boundaries from being overrun, as shown here:

0 Barnes
,.__HIGH
,..__ MID_INDEX ----.....

Kempf ..-LOW

2 Parrish

If the desired value is not found, the algorithm attempts to access
invalid subscripts, which results in an error. The complete test
necessary to prevent this error becomes

while ((! found) && (high >= low))

If the desired value is not found, the variable found remains false
and should be examined by the calling routine.

The following routine implements the complete binary search:

array_type desired_value;
array_type values[10];
int num_elements = 10;

binary_search

Index value associated
with desired_value or
-1 if not found

284 TURBO C PROGRAMMER'S LIBRARY

/*
* binary_search (value, array, num_elements)
*
* Use a binary search of the array of values given in order to locate
* a specific value. Return the index of the value, or -1 if the
* value is not found.
*
* value (in): Value to search for.
* array (in): Array of values to examine.
* num_elements (in): Number of elements in the array.
*
*index= binary_search (5, scores, 10);
*
*/

int binary_search (array type value, array_type values[],
int num_elements)

Sorting

{
int found = O;
int high, low, mid_index;

low = O;
high = num elements;
mid_index ~ (high + low) I 2;

while ((! found) && (high>= low))
{
if (value== values[mid index])

found = 1; -
else if (value< values[mid index])

high = mid index - 1; -
else if (value> values[mid index])

low = mid index + 1; -
mid index =-(high + low) I 2;

} -

return ((found) ? mid index : -1);
}

Many programming applications require that data be processed in
either ascending (lowest to highest) or descending (highest to lowest)
order. In such instances, a sorting algorithm must be used to place
the data in order. The sorting algorithms introduced in this chapter
are the bubble sort, the selection sort, the Shell sort, and the quick
sort.

All of the array-manipulation routines in Chapter 10 were based

SEARCHING AND SORTING 285

on the type array _type. Consequently, duplicate routines for arrays
of different types did not have to be developed. Remember, if you
develop two routines to sort data in ascending and descending order,
your programming efforts have been needlessly duplicated. To avoid
duplicate routines, the sorting algorithms provided in this chapter
allow you to specify as a parameter the desired order (ascending or
descending), as shown here:

Bubble Sort

Value

0
1

Sort Order

Ascending
Descending

The bubble sort is a popular sorting algorithm because of its simplic­
ity. It is so named because with each iteration, a value rises (like a
bubble) to the top of the array. The bubble sort gets values in the
correct order by comparing adjacent array elements and exchang­
ing those that are out of sequence. Because of this, the number of
iterations the bubble sort requires makes it an inefficient sort for
large arrays. If your array contains more than 30 elements, you
should use either the Shell sort or the quick sort.

Assume that the array values contain the following:

0 44

33

2 55

3 22

4 11

286 TURBO C PROGRAMMER'S LIBRARY

The first iteration of the bubble sort for ascending order will per­
form four evaluations:

44 ~~
33

55

22

11

33

44 rp
55

22

11

33

44

55 ~D
22

11

0 0 0 33

44

22

55 r-

~ 11

0

2 2 2 2

3 3 3 3

4 4 4 4

Since the largest value in the array is in the correct location after
the first iteration, the algorithm examines only the first four ele­
ments on the second iteration:

0 0 0 33

22

44 1J
I"

11

33 t1 D
44

22

11

33

44 r1 0
22

11

2 2 2

3 3 3

4 55 4 55 4 55

In the third iteration, only two elements are examined:

SEARCHING AND SORTING 287

0 33 '1 D 0 22

22

11 2

33 ~~
11 2

3 44 3 44

4 55 4 55

The final iteration ensures that the first two array elements are in
the correct order:

Result

0 22 l/
11

I'

0 11

22

2 33 2 33

3 44 3 44

4 55 4 55

The following routine implements the bubble sort:

288 TURBO C PROGRAMMER'S LIBRARY

array_type values[10]; 3
int num_elements = 10;
int sorting_order = O; .._ ______ __.

- Sorted array
bubble_sort

/*
* void bubble sort (values, num_elements, order)
*
* Sort the array of values in the order specified.
*
* values (in/out): Array of values to sort.
* num elements (in) : Number of elements in the
* order (in) : Desired sorting order:

0 for ascending
* 1 for descending
*
*bubble sort (values, 10, 1);
*
*/

void bubble sort (array type values[],
- int num_elements, int order)

array_type temp;

int i, j;

for (i = O; i < num elements - l; i++)
for (j = i + 1; j-< num elements; j++)

array.

if ((! order && (values[i] > values[j])) 11
(order && (values[i] < values[j])))

temp= values[i];
values[i] values[j];
values[j] =temp;

Selection Sort
The selection sort is another simple sorting algorithm. Although

SEARCHING AND SORTING 289

most schools teach the bubble sort, many programmers find that the
selection sort is easier to understand and to use without losing
efficiency.

In the selection sort, elements are sorted by selecting the maxi­
mum or minimum value (depending on ascending or descending
order) with each iteration.

Assume that the following array is sorted in ascending order:

0 44

33

2 55

3 22

4 11

The first iteration selects the minimum value and places it in the
first element. To accomplish this iteration, the sort first selects the
first element as the current index. The sort then compares elements
in the array to values[current]. If one of the values is greater, the
two values are exchanged.

The first iteration selects the minimum value as follows:

290 TURBO C PROGRAMMER'S LIBRARY

0

1

2

3

4

44

33

55

22

11

~ ~
0

1

2

3

4

33

44

55

22

11

0

1

2

3

4

33

44

55

22

11

rf\ 0

2

3

4

22

44

55

33

11

The second iteration places the second smallest value in element 2:

0

2

3

4

11

44

55

33

22

YD
0

2

3

4

11

44

55

33

22

0

2

3

4

11

33 i\
55

44

II
22

SEARCHING AND SORTING 291

The third iteration selects the third smallest value:

0 11 0 11

1 22 1 22

2 55 HD 2 44 ~D L._

3 44 3 55

4 33 4 33

The fourth iteration results in the sorted array:

0

2

3

4

11

22

33

55

44

r'

D

0

2

3

4

Result

11

22

33

44

55

The following routine implements the selection sort:

292 TURBO C PROGRAMMER'S LIBRARY

/*

array_type values[10];
int num_elements = 10;
int sorting_order = O;

selection_sort

* void selection_sort (values, num_elements, order)
*
* Sort the array of values in the order specified.
*
*values (in/out): Array of values to sort.
* num elements (in): Number of elements in the array.
* order (in) : Desired sorting order:
* 0 for ascending
* 1 for descending
* * selection_sort (values, 10, 1);
*
*/

Sorted array

void selection sort (array_type values[], int num_elements, int order)
{
array_type temp;

int j, current;

for (current = 0; current < num_elements - l; current++)
{
for {j = current + l; j < num elements; j++)

if((! order && (values[current] > values[j])) II
(order && (values[current] < values[j])))

temp= values[current];
values[current] = values[j];
values[j] =temp;

SEARCHING AND SORTING 293

Shell Sort
To enhance the efficiency of sorting algorithms for large arrays,
Donald Shell created a sorting algorithm that is now called the Shell
sort. The Shell sort differs from the bubble sort in that it compares
elements that are spaced farther apart before comparing adjacent
elements. This removes much of the array's disorder in early itera­
tions.

The Shell sort uses a variable called gap that is initially set to the
value of one-half of the number of elements in the array. The value
of gap specifies the distance between each pair of comparison ele­
ments in the array. In the following example, the elements com­
pared will initially be separated by a gap of 4:

0 1011

1088

2 1022

3 1077

4 1033

5 1066

6 1044

7 1055

For the first iteration of the sort, gap is assigned a value of 4. This
iteration of the array compares all of the elements separated by this
distance. The process is repeated until no exchanges occur with a
gap of 4:

294 TURBO C PROGRAMMER'S LIBRARY

0 1011

l\ 1088

1022

1077 j

1011

1088 1-j

f\ 1022

1077

0

2

3

0 1011

1066

1022 ~I\
1077

2

3

2

3

4 1033 4 1033 Ii 4 1033

5 1066 5 1066 5 1088 i
6 1044 6 1044 6 1044

7 1055 7 1055 7 1055

No exchanges

0 1011 0 1011

1066 1066

2 1022 2 1022

1077 ~f\
1033

3

4

1055

1033

3

4

5 1088 5 1088

6 1044 l/ 6 1044

7 1055 7 1077

When no more exchanges can occur with a gap of 4, the algo­
rithm modifies gap to gap / 2. The elements separated by a gap of 2
are then compared until no exchanges occur:

SEARCHING AND SORTING 295

1011 .D
1066

1022 I'

1055

0

2

3

1011

1066

·o 1022 ,,
1055

0

2

3

1011

1055

1022 rD
1066

0

2

3

4 1033 4 1033 4 1033

5 1088 5 1088 5 1088

6 1044 6 1044 6 1044

7 1077 7 1077 7 1077

No exchanges

0 1011 0 1011 0 1011 0 1011

1055 1055 1055 1055

2 1022 2 1022 2 1022 2 1022

1066

D 1033

1088
,,,.

1044

1066

1033 rlD
1088

1044

3

4

5

6

1066

1033

1088 nJ
1044

~

1066

1033

1077

1044

3

4

5

6

3

4

5

6'

3

4

5

6

7 1077 7 1077 7 1077 7 1088

296 TURBO C PROGRAMMER'S LIBRARY

When no more exchanges can occur with a gap of 2, gap is again
modified to gap / 2, and the process is continued with a gap of 1.
When no exchanges occur with a gap of 1, gap is assigned the value
of gap I 2. In this case, integer division assigns gap the value of 0,
which is the ending condition:

No exchanges

0 1011

1022

2 1033

3 1044

4 1055

5 1066

6 1077

7 1088

The following routine implements the Shell sort:

array_type values[10];
int num_elements = 10;
int sorting_order = O;

shell_sort
Sorted array

SEARCHING AND SORTING 297

/*
* void shell_sort (values, num_elements, order)

* Sort the array of values in the order specified.
*
* values (in/out): Array of values to sort.
* num elements (in): Number of elements in the array.
* order (in): Desired sorting order:
*· 0 for ascending
* 1 for descending

*
*shell sort (values, 10, 1);

*
*/

void shell sort (array type values[],

}

- ·int num_elements, int order)

array_type temp;

int i, gap, exchange_occurred;

gap = num elements I 2;

do
do {

}

exchange_occurred = O;

for (i = O; i < num_elements - gap; i++)
if ((! order && (values [i] > values [i+gap])) I I

(order && (values[i] < values[i+gap])))
{
temp= values[i];
values[i] = values[i+gap];
values[i+gap] =temp;
exchange occurred = 1;

} -

while (exchange occurred);
while (gap= gap 7 2);

Quick Sort
Although the efficiency of the Shell sort increases as the number of
elements in the array increases, it, too, has limitations. The quick
sort (which is often implemented recursively) increases the speed of
the sort as the number of elements in the array approaches 150 to
200 elements. In fact, the quick sort is one of the fastest array­
sorting algorithms in use today.

298 TURBO C PROGRAMMER'S LIBRARY

The quick sort sorts data by breaking a list of values into a series
of smaller sorted lists. For example, if the array

START 0 60

20

2 10

3 30

4 40

5 50

6 80

7 70

END_LIST 8 0

is passed to the quick sort routine, th~ algorithm will select the
value contained in values[(start+end-list) / 2] (which in this case is
values[4]) as the list separator. Any values in the list that are less
than or equal to the list separator are placed in one list, and the
values that are greater than the list separator are placed into a
second list, as shown here:

SEARCHING AND SORTING 299

.....-
60

START
20 60

20 10 50

2 10 30 80

3 30 > 40 70

4 40 14--LIST _SEPARATOR 0 LIST 2

5 50 LIST 1

6 80

7 70

HIGH_..8 0 14-- END_ LIST

The same process is carried out on each sublist, or range, until
each contains only one element. At that point, the array will be
sorted.

Figure 11-1 illustrates the sequence in which the sublists are
constructed. The sort splits the list into two parts: The smaller
items are placed in the left-hand list, and the larger items into the
right-hand list. The process is repeated until there is only one item
in each list and the items are sorted from left to right.

As another example, imagine that the following array

300 TURBO C PROGRAMMER'S LIBRARY

LOW 100 START

200

900

800

400 LIST _SEPARATOR = 400

600

300

700

HIGH 500 END_ LIST

is passed to the quick sort routine to be sorted in ascending order. It
is first divided into two lists. The variable low is assigned to the first
element in the list. The variable high is assigned to the last element
in the list. The variable low is then incremented until values[low]
contains a value that is greater than or equal to the list-separator
(for descending order, the value must be less than the list­
separator).

while (values [low] < list_separator)
low++;

SEARCHING AND SORTING 301

60 20 10 30 40 50 80 70 0

0 20 30 40

20 40

30 70

Figure 11-1. Sequence of sublist construction using a quick sort

When values[low] contains a value that is greater than or equal to
the value contained in the list-separator the while loop terminates.
The value in high is then decremented until values[high] contains a
value that is less than or equal to the list-separator:

302 TURBO C PROGRAMMER'S LIBRARY

100 START

200

LOW__.. 900

800

400 LIST _SEPARATOR

600

HIGH 300

700

500 ENO_LIST

When the value contained in values[high] is less than or equal to the
value contained in the list-separator the wbile loop terminates and
the values contained in low and high are compared. If the value in
low is less than the value in high, the values are exchanged; the
value in low is incremented while the value in high is decremented,
as shown here:

if (low <= high)
{

}

temp= values[low];
values[low++J = values[high];
values[high--J =temp;

SEARCHING AND SORTING 303

This process is repeated until low is greater than high.
Once the value in low is greater than the value in high, you have

two lists. The first contains the elements from start to high, and the
second contains the elements from low to end-list:

100 START

200

300 100 START 600 LOW

HIGH 400 200 800

LOW 600 300 900

800 400 HIGH 700

900 500 END_ LIST

700

500 END-LIST

Each list then is passed recursively to the routine, and each is also
subdivided into lists. This process will continue until each list con­
tains only one element.

The following routine implements the quick sort:

304 TURBO C PROGRAMMER'S LIBRARY

array_type values[10]; _ _..-------..,.__

I*

int start = O;
int end_list = 9;
int sort_order = O;

quick_sort

* void quick_sort (values, first, last, order)
*
* Sort the array of values in the order specified.
*
* values (in/out): Array of values to sort.

Sorted array of values

* first (in): Index of the first element in the list to sort.
* last (in): Index of the last element in the list to sort.
* order (in) : Desired sorting order:
* 0 for ascending
* 1 for descending
*
* quick_sort (values, O, 9, l);
*
*/

void quick sort (array type values[], int start,
- int end_list, int order)

array type temp;
int low = start;
int high = end list;
int list_separator values [(start+end_list) I 2];

do {
if (! order)

{
/* ascending */

I
else

{

while (values[low] <list separator)
low++; -

while (values[high] > list_separator)
high--;

/* descending */

while (values[low] > list_separator)
low++;

while (values[high] < list_separator)
high--;

if (low <= high)
{

}
}

temp= values[low];
values[low++] = values[high];
values[high--] =temp;

while (low<= high);

if (start < high}
quick_sort (values, start, high, order);

if (low < end list}

SEARCHING AND SORTING 305

quick_sort (values, low, end_list, order};

Arrays of Character Strings
All of the arrays presented thus far have been arrays of type, int,
float, double, and so on. Turbo C also allows you to create arrays of
character strings (argv and env). Just as you traverse arrays of type
float with an index value,

for (i = O; i < 10; i++)
printf ("%f\n", floating_point_values [i]};

arrays of character strings are manipulated the same way:

main (argc, argv}
int argc;

{
char *argv[];

int i;
for (i = O; i < argc; i++)

printf ("%s\n", argv[i]};

306 TURBO C PROGRAMMER'S LIBRARY

Although the arrays contain character strings, manipulation of
the arrays is essentially the same. The same holds true for sorting
and searching algorithms. The only difference is the code used to
perform element comparisons. For example, the following program
uses the routine equal-strings from Chapter 3 to implement a
sequential search:

array_type desired.-.value;
array_type values[10]; str _sequential_search
int num_elements = 10;

/*

Index value associated
with desired_value or
-1 if not found

* str_sequential_search (value, array, num_elements)

* Sequentially search the array of values given in order to locate
* a character string. Return the index of the value, or -1 if the
* value is not found.

* value (in): String to search for.
* array (in): Array of values to examine.
* num_elements (in): Number of elements in the array.

* index= str_sequential search ("Monday", days, 10);
*
* If multiple occurrences of the same value are present in the
* array, this routine returns the index of the first occurrence.

*/

int str_sequential_search (array type value, array _type values[],
int num_elements)

int i, location = -1;

for (i = O; (i < num elements) && location
if (equal strings (values[i], value, 0))

location = i;

return (locationj ;
}

-1; i++)

SEARCHING AND SORTING 307

Assuming that your array contains the following,

the function invocation

0

2

3

4

5

6

7

8

Adams

Brown

Durand

Matta

Page

Roberts

Smith

Wagner

Young

Names

index= str_sequential_search ("Roberts", Names, 9);

returns the index value 5. Likewise, the invocation

index= str_sequential_search ("Kellie", Names, 9);

returns the value -1 since the array does not contain the string. The
following routine uses compare-strings (presented in Chapter 3) to
implement a binary search:

308 TURBO C PROGRAMMER'S LIBRARY

array_type desired_value;
array_type values[10]; str _binary _search
int num_elements = 10;

/*
* str_binary_search (value, array, num_elements)
*

Index value associated
with desired_value or
-1 if not found

* Use a binary search of the array of values given in order to
* locate a character string. Return the index of the value, or
* -1 if the value is not found.

* value (in): String to search for.
* array (in): Array of values to examine.
* num_elements (in): Number of elements in the array.
*
* index str_binary_search ("Monday", days, 10);
*
*/

int str_binary_search (array type value, array_type values[],
int num_elements)

int i, found = O;
int high, low, mid_index, result;

low = 0;
high = num elements;
mid_index ~ (high + low) I 2;

while ((! found) && (high>= low))
{
result= string_comp (value, values[mid_index], 0);

if (result == 0)
found = 1;

else if (result == 2)
high = mid index - 1;

else if (result == 1)
low = mid_index + 1;

mid index = (high + low) I 2;
} -

return ((found) ? mid index: ~1);
}

SEARCHING AND SORTING 309

The only real difference between the string-searching routines and
those presented at the beginning of this chapter is the code that per­
forms the element comparisons.

if (value == values[i])

Versus

if (equal_strings (value, values[i]))

You can indeed develop a single routine to handle both types. To
do so, you have a couple of alternatives.

The first alternative is to pass, as a parameter to the routine, the
address of a function that is to perform the actual element compari­
sons, as shown here:

generic_search (value, array, num_elements, compare_routine);

For an array of type float, this routine would be defined as follows:

float compare (float a, float bl
{ -
return (a== b);

I

Within a program that uses the array, you would pass the address of
float-compare to the generic-search routine, as shown here:

typedef float array_type;

main ()
{
float values[lOJ;

int generic_search (array~type, array_type [], int, int (*) ());

int i;

for (i = 0; i < 10; i++)
values[i] = i * 1.0;

printf ("Location of %f in array is %d\n", 3.0,
generic_search (3.0, values, 10, float_compare));

310 TURBO C PROGRAMMER'S LIBRARY

The following code implements the generic search:

int generic search (array type value, array type values[],
- int num elements, -

{
int (*compare) (array_type, array_type))

int i, location = -1;

for (i = O; (i < num elements) && (location== -i); i++)
if ((*compare) (value, values [i]))

location = i;

return (location);
}

Note the definition of the routine that performs the actual compari­
son of array elements:

int (*compare) (array_type, array_type)

If you examine the contents of the first set of parentheses, you find
that compare is a pointer. The second set of parentheses indicates
that it is a pointer to a function. The type int defines the type of
value returned by the function. This differs greatly from the
declaration

int *compare (array_type, array_type)

which declares compare to be a function that returns a pointer to a
value of type int.

Knowing this, you can later pass an array of character strings
and the routine equal-Strings to generic-Search, as shown here:

index= generic_search ("MONDAY", days, 10, equal_strings);

Remember that, although you are using the same routine for each
type, you must define the type array _type and recompile for each
type of array.

Although this algorithm seems powerful because of its use of a
pointer to a function, it has several drawbacks. First, you may have

SEARCHING AND SORTING 311

to create several additional functions to perform your element
comparisons:

float compare (float a, float b)
{ -
return (a== b);

}

int compare (int a, int b}
{-
return (a== b);

}

double compare (double a, double b)
{ -
return (a== b);

)

Remember, function invocations add overhead. This routine greatly
increases the number of invocations required, since each comparison
is now a function call. As such, the routine will run slower than
previous routines.

A second alternative is to pass the parameter that describes the
type of array, as shown here:

Value

0
1

Type

Nonstring array
Array of character strings

Within the routine, you simply perform a comparison based on this
type, as shown here:

int generic search (array type value, array type values[],
- int num_elements, int type)

int i, location = -1;

for {i = O; (i < num element) && {location == -1); i++)
if {{type== 0) &&-{value== values[i]))

location = i;
else if {{type== 1) && {equal_strings {value, values[i])))

location = i;

return {location);
}

This routine requires additional function invocations. You must
still recompile this routine with each array type. As such, most pro-

312 TURBO C PROGRAMMER'S LIBRARY

grammers find it simpler to develop a library of routines for string
arrays and nonstring array types:

int bubble sort (values, num elements, order);
float bubble sort (values, num elements, order);
string_bubble_sort (values, num_elements, order);

Since you have already seen how the sorting routines work, no
discussion of implementation is presented here for arrays that con­
tain character strings. The following routines implement the bubble,
selection, Shell, and quick sorts for arrays of character strings:

/*

array _type values[10];
int num_elements = 10;
int sorting_order = O;

str _bubble_sort

* void str_bubble_sort (values, num_elements, order)
* * Sort the array of strings in the order specified.
* * values (in/out): Array of values to sort.
* num elements (in): Number of elements in the array.
* order (in): Desired sorting order:
* 0 for ascending
* 1 for descending
* * str_bubble_sort (values, 10, l);
*
*/

Sorted array

void str_bubble_sort (array_type values[), int num_elements, int order)
{
array_type temp;

void fast_exchange ();

int i, j;

for (i = O; i < num elements - l; i++)
for (j = i + l; j-< num elements; j++)

if ((! order && (string comp (values[i], values[j)) ==l)) I I
(order && (string comp (values[i], values[j]) == 2)))

fast_exchange (values[i), values[j));

SEARCHING AND SORTING 313

/*

array_type values(10];
int num_elements = 10;
int sorting_order = O;

str _selection_sort

* void str_selection_sort (values, num_elements, order)

* Sort the array of strings in the order specified.
*
* values (in/out): Array of strings to sort.
* num elements (in): Number of elements in the array.
* order (in) : Desired sorting order:
* 0 for ascending

1 for descending
*
* str selection sort (values, 10, 1);
*
*/

void str selection sort - - (array type values[],
int num_elements, int order)

int i, j, current;

void fast_exchange ();

for (i = O; i < num elements - 1; i++)
{ -
current = i;
for (j = i + 1; j < num elements; j++)

Sorted array

if((! order && (string comp (values[currentJ, values[j]) ==l)) 11

(order && (string comp (values[current], values[j]) == 2)))
fast_exchange (values[current], values(j]);

array_type values[10];
int num_elements = 10;
int sorting_order = O;

str _shell_sort
Sorted array

314 TURBO C PROGRAMMER'S LIBRARY

/*
* void str_shell_sort (values, num_elements, order)
*
* Sort the array of strings in the order specified.
*
* values (in/out): Array of strings to sort.
* num elements (in): Number of element& in the array.
* order (in): Desired sorting order:
* 0 for ascending
* 1 for descending
*
* str shell sort (values, 10, 1);

*
*/

void str shell sort (array type values[],

I

- - int num_elements, int order)

array_type temp;

int i, gap, exchange_occurred;

gap num elements I 2;

do
do

I

exchange_occurred = O;

for (i = O; i < num elements - gap; i++)
if ((! order && (string comp (values[i], values[i+gap]) == 1))

(order && (string comp (values[i], values[i+gap]) == 2)))
{ -
temp= values[i];
values[i] = values[i+gap];
values[i+gap] =temp;
exchange occurred = 1;

I -

while (exchange occurred);
while (gap= gap 7 2);

array_type values(10]; --..--------..,_~-sorted array of values
int start = O;
int end_list = 9;
int sort_order = O;

str _quick_sort

SEARCHING AND SORTING 315

/*
* void str_quick_sort (values, first, last, order)
*
* Sort the array of values in the order specified.

*
* values (in/out): Array of values to sort.
* first (in): Index of the first element in the list to sort.
* last (in): Index of the last element in the list to sort.
* order (in): Desired sorting order:
* 0 for ascending
* 1 for descending
*
* str_quick_sort (values, 0, 9, 1);

*
*/

void str_quick_sort (array type values[], int start,
int end_list, int order)

array type temp;
int low = start;
int high = end list;
int list_separator_index

void fast_exchange ();

char list_separator [128);

(start+end_list) I 2;

copy_string (values[list separator index], list_separator,
sizeof(list=separator));

do I
if (! order)

{
/* ascending */

while (string comp (values[low], list_separator) == 2)
low++; -

while (string comp (values[high], list_separator) == 1)
high--; -

else
{

/* descending */

while (string comp (values[low], list_separator) == 1)
low++; -

while (string comp (values[high], list separator) == 2)
high--; -

if (low <= high)
fast_exchange (values[low++J, values[high--]);

}
while (low<= high);

if (start < high)
str_quick_sort (values, start, high, order);

if (low < end list)
str_quick_sort (values, low, end_list, order);

316 TURBO C PROGRAMMER'S LIBRARY

This chapter was written with two goals. First, to present several
routines that you can get up and running in a hurry. Second, and
perhaps more important, to teach you how several of the most popular
sorting and searching algorithms work. It also is important to point out
the bsearch, qsort, and !search routines in the Turbo C run-time
library. These routines provide generic sorting and searching func­
tions that you can use readily within your Turbo C programs.

You might wonder, if Borland can develop generic sorting and
searching routines, why is it not possible for you to do so. The answer is
that you can. The difficulty becomes doing so in a manner that is still
readily understandable.

Because you are already conversant with the sequential search, it
will be used as a test case. However, remember that the following
code uses a significant number of pointers, casts, and redirections.

As before, you must define functions to compare two values. In this
case, you will be searching an array of type int and one of type float.

int cmp (int *x, int *y)
{-
if (*x == *y)

return (1);
else

return (0);

flt cmp ,(float *x, float *y)
{ -
if (*x == *y)

return (1);
else

return (0);

Next, you must define the routine that will perform the actual search:

int generic_seq__search (void *value, void *values,
int num elements, int width,

{
int (*compare) (void *, void *))

int i, location = -1;

for (i = 0; (i < num elements - 1) && location == -1; i++)
if ((*compare) (value, (void *) ((char *) values + (i*width))))

location = i;

return (location);
}

SEARCHING AND SORTING 317

Note that both the desired value and the array are defined as void
pointers. Here is where the routine lays its generic foundation.

The next confusing fragment is the actual comparison.

if ((*compare) (value, (void *) ((char *) values + (i*width))))

Since you are dealing with pointers, you are yet to be concerned with
the array type. The goal in the comparison is to pass the address of the
desired value along with the address of the current array element. The
routine that performs the comparison is the only code fragment con­
cerned with the array type. For example, the routine int_cmp simply
uses the addresses it receives as pointers to the type int. Since this was
the original goal, the routines work as desired.

This program passes arrays of type int and float to the search
routine. Note that the desired value must be passed by address:

main ()
{
int flt cmp (float*, float*);
int int=cmp (int*, int*);

int int values[lOJ;
float float_values[lO];

int int value = 2;
float float_value = 2.0;

int i;

for (i = 0; i < 10; i++)
{
int values[i] = i * 1;
float values[i] = i * 1.0;

} -

printf ("int result %d\n",
generic_seq_search (&int_value, int_values, 10,

sizeof(int), int_cmp));

printf ("float result %d\n",
generic_seq_search (&float_value, float_values, 10,

sizeof(float), flt_cmp));

Admittedly, this code is generic. Its difficulty lies in its readability. You
can apply this concept to all of the routines in this chapter. This is how
the searching and sorting routines in the Turbo C run-time library
work.

Selecting the proper sorting and searching algorithm has a definite
impact on the execution time of your routines. Compilers that provide a

318 TURBO C PROGRAMMER'S LIBRARY

sorting routine often use the quick sort. If you experiment with each
routine using arrays of 30, 300, and 3000 elements, you should find that
for 30 elements, the execution time of each routine is almost the same;
that the bubble sort is much slower than the other sorts for 300 ele­
ments; and that the quick sort is much faster than the others for an
array of 3000 elements. However, you also will find that the recursive
nature of the quick sort makes it slower for smaller lists.

Each sorting routine has attributes that make it more efficient for a
specific application. You will find that you can increase the speed of
your sorts by examining the number of elements in the array and
invoking the sort that is best suited to the application.

c H A p T E R

Input/Output
Routines

Probably the most important aspect of any computer program is its
user interface. Good programs are too often under-utilized simply
because users find them awkward. Unless your programs are easy to
use, they will be of little use to others.

Everyone in the computer industry has a definition of "user
friendly." To many, "user friendly" means a mouse-driven applica­
tion. However, to most programmers, the command line is more than
adequate to make a program user friendly. Writing user-friendly

319

320 TURBO C PROGRAMMER'S LIBRARY

programs depends to a great extent on the target audience. A pro­
gram that is designed for an advanced user to operate from the
command line will be terribly frightening to a novice. A mouse­
driven system can have tremendous overhead, which frustrates
advanced users. Perhaps a more suitable goal is to make your pro­
grams "user consistent." A good program should make the user's
next response obvious.

For example, assume that you need the user to enter a mailing
address, as follows:

Name:
Address:
City: State: Zip:

Some programs will prompt the user a line at a time, as shown here:

Enter name: Kevin Shafer

Enter address:

To minimize surprising the user (and to help put the user at ease), a
program should first display all of the prompts to which the user
must respond:

Name:

Address:

City: State: Zip:

Next, the user can begin filling in the fields, as shown here:

INPUT/OUTPUT ROUTINES 321

Name: Kevin Shafer

Address:

City: State: Zip:

This allows the user to build a mental image of the screen and to
have a good concept as to what comes next.

If you use the routines presented in this chapter, developing user­
consistent programs will be much easier. Rather than forcing you to
worry about input/output (1/0) processing when you develop your
programs, these routines enable you to concentrate on the task at
hand. Most experienced programmers will testify that they spend
the majority of their time strictly on 1/0 processing. The goal of this
chapter is to develop powerful 1/0 routines once, and then to use
them many times in the future.

Output Routines
The first collection of routines performs output operations. These
routines output strings, integer values, and floating-point values.
You do not use printf in these routines· because of its slow speed and
limited capabilities.

Since the routines presented in this chapter are based on the rou­
tine write-char _and_attr from Chapter 7, they bypass Turbo C's
output routines and directly access the BIOS services. This enables
you to control your own output. More important, by using write_
char ~and_attr, your programs can easily specify the display attri­
butes of each character on the screen display. Each of the routines in

322 TURBO C PROGRAMMER'S LIBRARY

this chapter allows you to specify the video display page that is cur­
rently active. Most of you will always use display page 0. However,
advanced programs often write output to one display page and then
select that page as active (by using routines from Chapter 7). In so
doing, the output appears instantaneously.

The IBM PC and PC compatibles allow you to define the display
attribute of every character on the screen. Display attributes
include color, boldness, and even blinking. Each character displayed
on the screen has an 8-bit attribute byte associated with it. Table
12-1 defines the function of each bit in the attribute byte.

The following program displays each of the attribute values by
showing the number of the attribute that uses the attribute value.
Use this program to help you select desirable attributes for your
programs.

#include <stdio.h>

main ()
{
char str[4];

int attr, i;

for (attr = O; attr <= 255; attr++)
{

)

int_to_ascii (attr, str);

for (i = O; str[i]; i++)
{
set_cursor_position (0, 10, 39 + i);

)write_char_and_attr (0, str[i], attr, 1);

getchar ();

The routine put-string enables you to specify the screen row and
column location, along with the display attributes for a given string.

main ()
{
int page = O, row= 10, column = 10, attribute = 7;

put string ("User Prompt:", page, row, column, attribute, 80);
} -

INPUT/OUTPUT ROUTINES 323

Tahle 12-1. Functions of Bits in Attribute Byte

Bit Color
0 Blue foreground
1 Green foreground
2 Red foreground
3 Bold
4 Blue background
5 Green background
6 Red background
7 Blinking

By using your previously developed library of routines, put_string
is quite straightforward.

/*

char •str = "TEST";

int page= O;

int row= O;

int column = O;

int attribute = 7;

int length = 4;

put_string

* void put_string (string, page, row, column, attribute, length)
*
* Output a character string at the row and column specified.
*
* string (in) : String to be displayed.
* page (in): Desired video display page.
* row (in): Screen row to write the string at.
* column (in): Screen column to write the string at.
* attribute (in): Video display attribute for the string.

324 TURBO C PROGRAMMER'S LIBRARY

* length (in): Maximum number of characters to display.
*
* put_string ("User Prompt:", 0, 10, 10, 7, 11);
*
*/

void put string (char *str, int page, int row,
- int column, int attribute, int length)

{
int count = 0;
void write char and attr (int, int, int, int);
void set_cursor=:J>osTtion (int, int, int);

while ((*str) && (count < length).)
{

set_cursor_position (page, row, column+ count++);
write_char_and_attr (page, *str++, attribute, 1);

The routine put_centered-String enables you to output a char­
acter string centered on the specified row. The routine is based on
an 80-column screen display.

I*

char •string = "Turbo";
int page= O;
int row= 10;
int attribute = 7;

put_centered_string

* void put_centered_string (string, page, row, attribute)
*
* Center a character string on the screen row specified.
*
* string (in): Character string to be displayed centered.
* page (in): Desired video display page.
* row (in): Desired screen row position for the string.
* attribute (in): Desired display attribute.
*
* put_centered_string ("Turbo C Programmer's Library", O, 5, 7);
*
* This routine assumes an 80 column screen display.
*
*/

INPUT/OUTPUT ROUTINES 325

void put_centered_string (char *str, int page,
int row, int attribute)

{
int count = 0;
int column;

void write char and attr (int, int, int, int);
void set_cursor::J>osition (int, int, int);

while (*(str +count))
count++;

column= 39 - (count I 2);

while (*str)
{

set cursor_poflition (page, row, column++);
write_char_and_attr (page, *str++, attribute, 1);

The routine put-int enables you to output an integer value at a
specific row and column location. As before, this routine also enables
you to specify the display attribute and desired video page.

/*

int value= 77;

int page= O;

int row= 10;

int column = 10;

int attribute = 7;

int length = 5;

puLint

* void put_int (value, page, row, column, attribute, length)
*
* Output an integer value at the row and column specified.
*
* value (in) : Integer value to be displayed.
* page (in): Desired video display page.
*row (in): Screen row to write the string at.
* column (in): Screen column to write the string at.
* attribute (in): Video display attribute for the string.
* length (in): Maximum number of characters to display.

326 TURBO C PROGRAMMER'S LIBRARY

*
* put_int (12345, O, 10, 10, 7, 11);
*
*/

void put_int (int value, int page, int row,

{
int column, int attribute, int length)

int count = 0;

void write char and attr (int, int, int, int);
void set_cursor::J>osTtion (int, int, int);

char str[l32];

int_to~ascii (value, str);

while ((str[count]) && (count < length))
{

set_cursor_position (page, row, column+ count);
write_char_and_attr (page, str[count++], attribute, 1);

The routine put_float places a floating-point value anywhere on
the screen. The field-length specifier enables you to suppress the
display of insignificant digits (values of type float have seven digits
of significance).

/*

float value = 77.66;

int page= O;

int row= 10;

int column = 10;

int attribute = 7;

int length = 10;

int num_elements = 3;

put_ float

-

* void put float (value, page, row, column, attribute,
* - length, num_decimals)
* * Output a floating point value at the row and column specified.
*

INPUT/OUTPUT ROUTINES 327

* value (in): Floating point value to be displayed.
* page (in): Desired video display page.
* row (in): Screen row to write the string at.
* column (in): Screen column to write the string at.
* attribute (in): Video display attribute for the string.
* length (in): Maximum number of characters to display.
* num decimals (in): Maximum number of digits to the right of
* - the decimal point.

* put_float (12345.67, 0, 10, 10, 7, 11, 2);
*
*/

void put_float (float value, int page, int row,

{

int column, int attribute, int length,
int num_decimals)

int count = O;

void write char and attr (int, int, int, int);
void set_cursor=posTtion (int, ,int, int);

char *str;

int sign, decimal_position;

char *ecvt (double, int, int *, int *);

str = ecvt ((double) value, length, &decimal_position, &sign);

while ((str[count]) && (count< length))
{

set cursor position (page, row, column+ count);
if (count ;;= decimal position)

{ -

)

write char and attr (pag~, '.' '· attribute, 1);
count++; -

else
write_char_and attr (page, str[count++J, attribute, 1);

if (count> (num_decimals + decimal_pos~tion))
break;

The routine put_prompt enables you to output prompt text to the
screen in a manner similar to put__string. Unlike put-String, put_
prompt displays the text and then removes any other characters
remaining on that line. Thus, you must not worry about the previous
screen contents when you display your prompt.

328 TURBO C PROGRAMMER'S LIBRARY

/*

char •prompt = "Name:";

int page= O;

int row= 10;

int column = 10;

int attribute = 7;

int length = 10;

put_ prompt

* void put_prompt (prompt, page, row, column, attribute, length)
*
* Output a prompt at the row and column specified. Clear the
* text remaining on the line following the prompt.
* * prompt (in) : Prompt to be displayed.
* page (in): Desired video display page.
* row (in): Screen row to write the string at.
* column (in): Screen column to write the string at.
* attribute (in): Video display attribute for the string.
* length (in): Maximum number of characters to display.
* * put_prompt ("Enter Name:", O, 10, 10, 7, 15);
*
*I

void put prompt (char *str, int page, int row,

{
- int column, int attribute, int length)

int count = O;
void write char and attr (int, int, int, int);
void set_cursor=position (int, int, int); '

while ((*str) && (count< length))
{

set cursor position (page, row, column + count++) ;
write_char=and_attr (page, *str++, attribute, 1);

/* clear characters remaining on the line */

column += count;

while (column < 80)
{

set_cursor_position (page, row, ++column) ;
write_char_and~attr (page, O, O, 1);

INPUT/OUTPUT ROUTINES 329

Invut Routines
The next collection of routines enables you to get a character string,
integer value, or floating-point value from the user in a controlled
manner. Each of the routines presented in this section is based on
the routine get_string.

Many C programs often prompt a user to enter data that is
stored internally as a character string. Because C programs use
strings so frequently, a powerful function that enables you to control
string input can be quite convenient.

The following routine provides several significant features. It
enables you to specify the screen location and maximum number of
characters in the string.

The routine allows you to provide a default string for the user to
either select or edit. For example, if you are developing a mailing­
list program and the most frequently used state is AZ, the user
should not have to type in these letters with each new entry. Instead,
you provide the letters "AZ" as the default.

Because you can provide a default string, the user should be able
to edit it. The routine get_string enables you to use the right arrow
and left arrow keys, the BACKSPACE key, and the INS key to insert
text. Because all of the routines in this section have been based on
get-String, each routine provides all of these editing capabilities.

char •string = "Default";

int page= O;

int row= O;

int column = O;

int attribute = 7;

int high_light = 64; -

int length = 10; --

get_string Result string

'--~~~~~~~~

330 TURBO C PROGRAMMER'S LIBRARY

I*
* get string (string, page, row, column, attribute,
* - high_light, length);
*
* Display a default string to the user allowing the user to
* edit the string as desired.
*
* string (in): Default string which once edited becomes result.
* page (in): Desired video display page.
* row (in): Screen row to input the string at.
* column (in): Screen column to input the string at.
* attribute (in): Display attribute of the string.
* high light (in): Display attribute of the blank space remaining
* - in the input field.
* length (in): Maximum number of characters in the input field.
*
* get_string (string, O, 10, 10, 7, 65, 10);
*
*/

void get_string (char *str, int page, int row,
int column, int attribute,
int high_light, int length)

{
void write_char and attr (int, int, int, int);
void set_cursor_position (int, int, int);
int no echo read (void);
int get_shift_state (void);

int i, count = O, done = 0, letter, scan_code;

/* display the default string */
while ((str[count]) && (count< length))

{
set_cursor_position (page, row, column+ count);
write_char_and_attr (page, str[count++], attribute, 1);

set_cursor_position (page, row, column+ count);

if (length - count)
write_char_and_attr (page, 32, high_light, length - count);

count = O;
set_cursor_position (page, row, column+ count);

while (! done)
{

letter= no echo read();

switch (letter) {
case 8: /* back space */

if (count > 0)

{

/* get the keystroke */

/* no characters to delete */

if (count + 1 length)
{
if (str[count])

str[count] = '\0';

INPUT/OUTPUT ROUTINES 331

else
set_cursor_J>osition (page, row, column+ --count);

str[count] = '\0';

write_char_and_attr (page, 32, high_light, 1);

break;
I

else
{

/* shift all following char down */

for (i = --count + 1; i < length; i++)
str[i-1] = str[i];

i = O;
while ((str[i]) && (i <length))

{
set cursor position (page, row, column+ i);
write char-and attr (page, str[i++J, attribute,

I - - -

set cursor_position (page, row, column + i);

if (length > i)
write char and attr (page, 32, high light,

- - - length - i); -

set_cursor_position (page, row, column+ count);

break;

case 13: /* carriage return */
done = 1;
break;

case 0: scan code= no echo read ();
if (scan code ~= 77) /* right arrow */

{ -

I

if ((str[count]) && ((count+ 1) !=length))
{
write char and attr (page, str[count++], attribute,
set cursor-position (page, row, column + count);

I - -

else if (scan code == 75) /* left arrow */
if (count) -

set_cursor_position (page, row, column+ --count);

break;

default: if (get shift_state () & 1'28)
{
for (i = length -1; i > count; i--)

str[i] = str[i-1];

for (i = count+l; i < length; i++)
if (str[i])

332 TURBO C PROGRAMMER'S LIBRARY

}

set cursor position (page, row, column+ i);
write_char=and_attr (page, str[i], attribute,

else
break;

set cursor_position (page, row, column+count);

str[count] = letter;
write char and attr (page, letter, attribute, 1);
if (count + 1 T= length)

set_cursor_position (page, row, column+ ++count);

break;

for (i = O; str[i] && (i <length); i++)
count++;

str[count] = '\0';

The routine get_int enables you to get an integer value from the
user at any location on the screen. This routine uses the routines
ascii_to_int and int_to_ascii (presented previously in this text).
This code implements get-int:

/*

int value = 77;

int page= O;

int row= 10;

int column = 10;

int attribute = 7;

int high_light = 65;-

int length = 10; --
get_int

Integer value entered

* get_int (value, page, row, column, attribute,
* high_light, length);
* * Display a integer value to the user allowing the user to
* edit the value as desired.

INPUT/OUTPUT ROUTINES 333

*
* value (in): Default value which once edited becomes result.
* page (in): Desired video display page.
* row (in): Screen row to input the value at.
* column (in): Screen column to input the value at.
* attribute (in): Display attribute of the value.
* high light (in) : Display attribute of the blank space remaining
* - in the input field.
* length (in) : Maximum number of characters in the input field.
*
* result get_int (12345, O, 10, 10, 7, 65, 10);
*
*/

get int (int value, int page, int row, int column,
- int attribute, int high_light, int length)

{
void get_string (char*, int, int, int, int, int, int);

char str[132);

int done = O;
int status;

while (! done)
{

int to ascii (value, str);
get-string (str, page, row, column, attribute,

- high_light, length);

status= ascii to int (str, &value);

if (status != -1)
done = 1;

return (value);
}

The routine get_float allows you to get a floating-point value
from the user. The routine requires the routine ascii_to_float,
which converts an ASCII representation of a floating-point value to
a numeric value, as shown here:

char •str = "88.77";
float result; ascii_to_float 88.77

O if routine is successful
-1 if a conversion error occurred

334 TURBO C PROGRAMMER'S LIBRARY

I*
* ascii_to_float (string, result)
*
* Convert an ASCII representation of a floating point value
* to its numeric equivalent.
*
* string (in): String to convert.
* result (out): Floating point result.
*
*status= ascii_to_float ("123.333", &result);
*
* If successful, ascii_to_float returns the value 0.
*
*/

ascii to float (char *str, float *result)
{ -
int count, sign = 1;

double powlO(int);

*result = 0.0;

while (*str ' ')
str++;

if ((*str == '-') 11 (*sfr == '+'))
sign= (*str++ == '-') ? -1: 1;

while (*str)
if ((*str >= '0') && (*str <= '9'))

*result= *result* 10.0 + (*str++ - '0');
else if (*str++ == '.')

break ;
else

return (-1);

if (*str)
for (count = 1; *str; ++count, ++str)
if ((*str >= '0') && (*str <= '9'))

*result = *result + ((*str - 'O') I powlO (count));
else

return (-1);

*result = *result * sign;

return (0);
I

This routine implements get_float:

/*

float value = 88.77;

int page= O;

int row= 10;

int column = 10;

int attribute = 7;

int high_light = 65; --

int length = 10; ---
get_ float

INPUT/OUTPUT ROUTINES 335

Floating-point value entered

* get_float (value, page, row, column, attribute,
* high_light, length);
*
* Display a floating point value to the user allowing the user to
* edit the value as desired.
*
* value (in): Default value.
* page (in): Desired video display page.
* row (in): Screen row to input the value at.
* column (in): Screen column to input the value at.
* attribute (in): Display attribute of the value.
* high light (in): Display attribute of the blank space remaining
* - in the input field.
* length- (in) : Maximum number of characters in the input field.
*
* result get_float (12345.67, 0, 10, 10, 7, 65, 10);
*
*/

float get_float (float value, int page, int row, int column,
int attribute, int high_light, int length)

/:·_

336 TURBO C PROGRAMMER'S LIBRARY

{
void get string (char*, int, int, int, int, int, int);
char *ecVt (double, int, int*, int*);
int ascii_to_float (char*, float*);

char *str;

int done = 0, decimal_yt, sign;

int status, i, len;

while (! done)
{

str e~vt ((double) value, length+l, &decimal_yt, &sign);

for (len 0; str[len]; len++) ;

for (i = len; i > decimal_yt; i--)
str[i] = str[i - 1];

str[decimal_yt] '.';

if (sign)
{
for (i = len+l; i > O; i--)

str[i] = str[i - 1];

str[O] = '-';
}

get_string (str, page, row, column, attribute,
high_light, length);

status= ascii_to_float (str, &value);

if (status != -1)
done = 1;

return (value);
}

User-Consistent 1/0
Programs should provide a constant interface that mm1mizes the
possibility of user surprise (or confusion). Consider the previous
example of the mailing-list program:

Name:

Address:

City: State: Zip:

INPUT/OUTPUT ROUTINES 337

You can produce code to obtain this information from the user, as
shown here:

main ()
{
void put_string (char *, int, int, int, int, int);

put string ("Name:", 0, 1, 10, 1, 10);
put-string ("Address:", 0, 3, 10, 1, 10);
put-string ("City:", 0, S, 10, 1, 10);
put-string ("State:", 0, 5, 30, 1, 10);
put-string ("Zip:", 0, S, SO, 1, 10);

} -

Although this program is much improved over a one-line-at-a­
time interface discussed at the beginning of this chapter, you can
make it even better. First, the program should make the current
prompt (such as Name:) distinct from other prompts by changing
the display attribute of the current prompt. The program should
display a single line of explanatory text at the bottom of the screen,
as shown here:

Name:

Address:

City: State: Zip:

Enter your full name (Example: Tom Burns)

Once the user enters the data required for that entry, the prompt
attribute should reset and the descriptive (or help text) should
disappear.

The following routines are basically all-in-one routines that allow
you to prompt the user for a string, integer, or floating-point value.
These routines enable you to specify the following:

338 TURBO C PROGRAMMER'S LIBRARY

• PROMPT (such as Name:)-Row, Column, Attribute

• Input/Output value (such as namestr)-Row, Column,
Attribute

• Help or Descriptive text-Row, Column, Attribute

Before examining these routines, consider a possible invocation of
get_prompted_string.

char str[132] = "Tom Burns";

get_prompted_string (str, 0, 10, 20, 30, 7, 64, "Enter Name:",
10, 7, 13, "Enter your name.", 23, 7,
40, 7);

Upon invocation, this program displays the following:

Enter Name: Tom Burns

Enter your name.

The following helps you to relate the parameters of get_
prompted_string to the actual display output:

Enter Name: Tom Burns

Prompt Default string

Enter your Ji.a.me.

Description help text

This routine implements get_prompted_string:

INPUT/OUTPUT ROUTINES 339

char •str = "Default";

int page= O;

int str _row = 10;

int str_column = 20;

int str _length = 10;

int attribute = 7;

int high_light = 65;

char •prompt = "Enter Name";

int prompt_row = 10;

int prompt_column = 10;

int prompt_length = 10;

char •desc = "Enter your name.";

int desc_row = 23;

int desc_column = 10;

int desc_length = 30;

int normal_attribute = O;

/*

-- Result string

get_prompted_string

* void get prompted string (str, page, str row, str column,
* str length, attribute, high light, prompt, prompt row,
* prompt column, prompt length, desc, desc row, desc column,
* desc_length, normal_attribute) - -
*
* Prompt the user for a character string providing a default
* for editing purposes. Display help text as specified which
* is erased from the screen once the data entry is complete.
*
* str (in/out): Default string which once edited becomes result.
* page (in): Desired video display page.
* str row (in): Screen row for string display.
* str-column (in): Screen column for string display.
* str-length (in): Maximum number of characters in the string.
* attribute (in): Display attribute of string.
* high light (in): Display attribute of empty field space.
* prompt (in): Desired user prompt.
* prompt row (in): Screen row for user prompt.
* prompt-column (in): Screen column for user prompt.
* prompt-length (in): Maximum number of characters in prompt.
* desc (in): Help text.
* desc row (in): Screen row of the help text.
* desc-column (in): Screen column of the help text.
* desc=length (in): Maximum number of characters in help text.

I,'

I'.
I' I(
!j
l'l

340 TURBO C PROGRAMMER'S LIBRARY

* normal_attribute (in): Current background color attribute.
* * get prompted string (str, 0, 10, 20, 30, 7, 64, "Enter Name:",
* - 10, 7, 13, "Enter your first name.", 23, 7, 40, 7);
*
*/

void get_prompted_string (char *str, int page, int str_row,

{

int str column, int str length, int attribute, int high light,
char *prompt, int prompt row, int prompt column, int prompt length,
char *desc, int desc row~ int desc column, int desc length,-
int normal_attribute) - -

void get string (char*, int, int, int, int, int, int);
void put-string (char*, int, int, int, int, int);
void put:J>rompt (char*, int, int, int, int, int);

put_prompt (prompt, page, prompt row, prompt column,
high_light, prompt_length); -

put_string (desc, page, desc row, desc_column, high_light,
desc_length); -

get_string (str, page, str row, str column, attribute,
high_light, str_length)T

put_string (prompt, page, prompt_row, prompt_column,
normal_attribute, prompt_length);

put string (desc, page, desc_row, desc_column, O, desc_length);
} -

This routine implements get_prompted_int:

int 'default = 5;

int pagll"" O;

int row= 10;

int column = 20;

int length = 10;

int attribute = 7;

int high_light = 65;

char •prompt = "Enter age"

inf prompt_rom = 20;

int prompt_column = 1;

int prompt_ length = 7;

char •desc = "Type in your age"

char desc_row = 23;

char desc_column = 5;

int normal_attribute = O;

get_prompted_string

int value entered

INPUT/OUTPUT ROUTINES 341

/*
* int get_prompted int (value, page, row, column,
* length, attribute, high_light, prompt, prompt_row,
* prompt_column, prompt_length, desc, desc_row, desc_column,
* desc_length,. normal_attribute)
* * Prompt the user for an integer value providing a default
* for editing purposes. Display help text as specified which
* is erased from the screen once the data entry is complete.
* *value (in): Default value for editing.
*page (in): Desired video display page.
*row (in): Screen row for value display.
*column (in): Screen column for value display.
*length (in): Maximum number of characters in the value.
*attribute (in): Display attribute of string.
*high light (in): Display attribute of empty field space.
*prompt (in): Desired user prompt.
*prompt row (in): screen row for user prompt.
*prompt-column (in): Screen column for user prompt.
*prompt-length (in): Maximum number of characters in prompt.
* desc (In): Help text.
* desc row (in): Screen row of the help text.
* desc-column (in): screen column of the help text.
* desc-length (in): Maximum number of characters in help text.
* normal_attribute (in): current background color attribute.
* * age get_prompted_int (27, O, 10, 20, 30, 7, 64, "Enter Age:",

10, 7, 13,"Enter age and press Enter.", 23, 7, 40, 7); *
* *I

int get..,.Prompted int (int value, int page, int row,
int column, int length, int attribute, int high light,
char *prompt, int prompt row, int prompt column~
int prompt length, char *desc, int desc_row, int desc_column,
int desc_length, int normal_attribute)

{void get string
void put:string
void put_prompt

(char•, int, int, int, int, int, int);
(char*, int, int, int, int, int);
(char •, int, int, int, int, int);

}

int get_int (int, int, int, int, int, int, int);

put_prompt (prompt, page, prompt_row, prompt_column,
high_light, prompt_length);

put_string (desc, page, desc row, desc_column, high_light,
desc_length); -

value = get int (value, page, row, column, attribute,
- high_light, length);

put_string (prompt, page, prompt row, prompt column,
normal_attribute, prompt_length)l

put_string (desc, page, desc_row, desc_column, O, desc_length);

return (value);

The routine get_prompted_float allows you to obtain a floating­
point value from the user, as shown here:

342 TURBO C PROGRAMMER'S LIBRARY

float value;

value = get_prompted_float (45000.00, 0, 10, 20, 10, 14, 64,
"Enter Salary:", 10, 5, 13, "Enter your current salary.",

23, 7, 40, 7);

Upon invocation, this program will display the following:

Enter Salary: 45000.00

Enter your current salary.

This code implements get_prompted_float:

float default= 5.50;

int page= O;

Int row= 10;

int column = 20;

Int length = 10;

Int attribute = 7;

int hlgh_llght = 65;

char •prompt = "Enter Cost";

Int prompLrow = 20;

Int prompLcolumn = 1.;

int prompLlength = 10;

char •desc = "Type In amount";

char desc_row = 23;

char desc_column = 5;

int normal_attribute = O;

get_prompted_float

Float value entered

INPUT/OUTPUT ROUTINES 343

/*
• float get prompted float (value, page, row, column,

length,-attribute, high light, prompt, prompt row,
prompt column, prompt length, desc, desc row,-desc column, •

• desc_length, normal_attribute) - -

• Prompt the user for a floating point value providing a default
• for editing purposes. Display help text as specified which
• is erased from the screen once the data entry is complete .
•
• value (in): Default value for editing.
• page (in): Desired video display page.
• row (in): Screen row for value display.
• column (in): Screen column for value display.
• length (in): Maximum number of characters in the value.
• attribute (in): Display attribute of string.
• high light (in): Display attribute of empty field space.
• prompt (in): Desired user prompt.
• prompt row (in): Screen row for user prompt.
• prompt-column (in): Screen column for user prompt.
• prompt-length (in): Maximum number of characters in prompt.
• desc (in): Help text.
* desc row (in): Screen row of the help text.
• desc-column (in): Screen column of the help text.
• desc-length (in): Maximum number of characters in help text.
* normal_attribute (in): Current background color attribute.

• salary = get_prompted_float (27, O, 10, 20, 30, 7, 64,
• "Enter Salary:•, 10, 7, 13,"Enter your current salary.•,
• 23, 7, 40, 7);
•
•/

float get_prompted_float (float value, int page, int row,

{

int column, int length, int attribute, int high light,
char *prompt, int prompt row, int prompt column; int prompt length
char *desc, int desc row; int desc column, int desc length,-
int normal_attribute) - -

void get string (char•, int, int, int, int, int, int);
void put-string (char•, int, int, int, int, int);
void put:prompt (char•, int, int, int, int, int);

float get_float (float, int, int, int, int, int, int);

put_prompt (prompt, page, prompt row, prompt column,
high_light, prompt_length); -

put_string (desc, page, desc row, desc_column, high_light,
desc_length); -

value = get_float (value, page, row, column, attribute,
high_light, length);

put_string (prompt, page, prompt row, prompt column,
normal_attribute, prompt_lengthlT

put_string (desc, page, desc_row, desc_column, 0, desc_length);

return (value);
I

344 TURBO C PROGRAMMER'S LIBRARY

Probably the most important collection of routines that you can
place into a library are those that perform I/0. Build on the routines
presented in this chapter and your I/0 processing should become
much easier.

c H A p T E R

Dynamic Memory
Chapter 10 examined arrays and the manipulation of arrays within
Turbo C. Chapter 11 extended array manipulation to sorting and
searching operations. Although you can often use arrays effectively
within most applications, many instances occur where fixed array
sizes cause programs to be restrictive.

Consider this example. A program tracks account balances for
100 clients by using the arrays shown here:

main ()
{
int employee_id [100];

float account balances (100];

float accounts_rec [100];

/* program code here */
} 345

346 TURBO C PROGRAMMER'S LIBRARY

Each time the program must update an account balance, it searches
the array customer _id for the corresponding customer index. Once
it finds the array, the program uses the index to update the accounts
receivable array. Although this algorithm seems effective, it encoun­
ters problems when it gets to customer 101. The arrays no longer
provide adequate storage space. You must now modify the program.

If you have based your array declarations and program loops on
macro constants,

main ()
{
int employee_id [MAX_CUSTOMER];

float account_balances [MAX_CUSTOMER];

float accounts_rec [MAX_CUSTOMER];

/* program code here */
}

you can modify a single statement in order to increase the size of
your arrays.

#define MAX_CUSTOMER 150

Although this simple change will successfully modify the pro­
gram, the code must still be recompiled. This step is relatively easy
if you are a programmer. However, if you have distributed the exe­
cutable files to many end users, you must now build a new execut­
able file each time customer bases change.

A possible solution is to allocate a large amount of space for more
array entries than could ever possibly exist, as shown here:

#define MAX_CUSTOMER 10000

Although this solves one problem, it unfortunately creates several
additional ones. In this case, you have wasted considerable memory
on empty array elements. If you have multiple arrays that must be
maintained, you will soon run out of memory.

DYNAMIC MEMORY 347

Dynamic variables provide a data structure that can actually
grow or shrink by itself as your needs require. This reduces wasted
memory space and prevents a program's storage requirements from
being restricted. If you place elements into the dynamic lists in a
specific manner, you can greatly reduce the number of sorting and
searching algorithms that you may later have to perform. This chap­
ter presents several algorithms that are commonly used in dynamic­
list manipulation. Although in most cases you must modify these
routines to suit your specific needs, the routines will provide a foun­
dation on which you can build.

Dynamic Lists
Each time you use arrays, you must specify the storage require­
ments during program development. The array declaration

int values[lO];

creates an array with space for ten values, as shown here:

1--------1
values [OJ

values [1]
1--------1

1--------1
values [2]

values [3]
1--------1

values [4]
1--------1

1--------1
values [5]

values [6]
1--------1

values [7]
1--------1

values [8]
1--------1

values [9] _____ __,

values-

348 TURBO C PROGRAMMER'S LIBRARY

A dynamic list starts with a single element called a rwde. This
element serves as the start (or head) of the list, as shown here:

Value

Pointer

,. Start

As you place values into the list, you simply create and connect addi­
tional nodes; as shown here:

Value Value Value

Pointer Pointer Pointer

Start

If an element in the list goes away (is no longer needed), you shrink
the list, as shown next: /

DYNAMIC MEMORY 349

Value Value

Pointer Pointer

Start

Value Value

Pointer Pointer

Start

To create a linked list, you must first define a structure that pro­
vides storage space not only for the value to store, but also for a
pointer to the next entry in the list. If you want to store customer
account balances, your structure might contain the following:

struct customers {
char name[32];
char phone[ll];
char address[32];
char city[15];
char state[3];
char zip[lOJ;
float balance;
struct customers *next;

) ;

Note that the pointer within the structure is a pointer to a struc­
ture of the same type. This should make sense because all of the
elements in the list are the same. A structure containing a pointer
that points to a structure of the same type is called a self-referential
structure.

To use a linked list, you normally perform the following steps:

350 TURBO C PROGRAMMER'S LIBRARY

1. Define a structure to contain the desired values and pointer to
the next node in the list.

2. Create the first node in the list by allocating memory through
the use of calloc or malloc (Turbo C run-time library routines).
Assign the memory to the first pointer in the list (called start
or head).

3. Create nodes for the remaining entries, again by using calloc
or malloc. Assign the pointer of each node to point to the next
node in the list. The last node in the list should point to NULL.

4. Use the list of entries as required.

5. Once the nodes are no longer required, use the routine free
(Turbo C run-time library) to release allocated memory.

The following program creates a linked list that contains the
uppercase letters of the alphabet:

l-A---11 . ----I B-1 .1 c ;i ... "-I y---11 .--I N~---ILL
Start

If you follow the steps previously listed, your processing is as follows:

1. Define a structure to contain the desired values and pointer to
the next node in the list.

struct list entry {
char letter;
struct list entry *next;

I *start, *node, *next;

DYNAMIC MEMORY 351

2. Create the first node in the list by allocating memory through
the use of calloc or malloc (Turbo C run-time library routines).
Assign the memory to the first pointer in the list (called start
or head).

if ((start= (struct list entry*)
calloc(l, sizeof(struct list_entry))) ==NULL)

printf ("Unable to allocate memory for the list\n");
exit (1);

Note the type coercion of the type returned by the call to calloc.

if ((start= (struct list entry*)
calloc(l, sizeof(struct list_entry))) ==NULL)

By default, calloc returns a pointer to the type void. Since the struc­
ture is not type void, we will use the cast. Also note that if calloc
cannot allocate the desired memory, it returns the value NULL.

3. Create nodes for the remaining entries again by using calloc
or malloc. Assign the pointer of each node to point to the next
node in the list. The last node in the list should point to NULL.

for (letter= 'A'; letter<= 'Z'; letter++)
{

l

if ((node->next = (struct list entry*)
calloc(l, sizeof(struct list_entry))) ==NULL)

printf ("Unable to allocate memory for the list\n");
exit (1);

node = node->next;
node->letter = letter;
node->next = NULL;

352 TURBO C PROGRAMMER'S LIBRARY

Once you have created the list, you want to print out the values that
it contains. This becomes step 4.

4. Use the list of entries as required.

for (node = start->next; node != NULL; node = node->next)
printf ("%c\n", node->letter);

This loop begins by examining the first element in the list
(pointed to by start). If that element exists, its value is displayed (the
letter "A"). Next, the loop assigns the current node to point to the
next element in the list (the letter "B"). This process continues until
you reach the letter "Z". Once "Z" is printed, the current node is
assigned the value NULL, which is the ending condition.

5. Once the nodes are no longer required, use the routine free
(Turbo C run-time library) to release allocated memory.

for (node = start; node != NULL; node = next)
{

)

next = node->next;
free (node);

To remove nodes from the list, you use the third pointer (next).
Begin by assigning node to point to start, and next to point to
node->next.

...1 y ~f---N-~-LL--1

node next

DYNAMIC MEMORY 353

Once this processing is finished, you can free the memory pointed to
by node.

B c
___, r- · · .1-__ v _ __,I -11--N-~-L-L --'I

next

The pointer node is now assigned the value contained in next, and
next is assigned node->next. This process repeats until all of the
memory has been released.

Putting all of the pieces together, the complete program is as
follows:

#include <stdio.h>

main ()
{
void *callee (unsigned, unsigned);

struct list entry {
char letter;
struct list entry *next;

} *start, *node, *next;

char letter;

if ((start= (struct list entry*)
calloc(l, sizeof(struct list_entry))) ==NULL)

printf ("Unable to allocate memory for the list\n");
exit (1);

node.= start;

for (letter= 'A'; letter<= 'Z'; letter++)
{
if ((node->next = (struct list entry*)

calloc(l, sizeof(struct list_entry))) ==NULL)

printf ("Unable to allocate memory for the list\n");
exit (1);

354 TURBO C PROGRAMMER'S LIBRARY

}

I
node = node->next;
node->letter = letter;
node->next = NULL;

for (node = start->next; node != NULL; node = node->next)
printf ("%c\n", node->letter);

for (node = start; node != NULL; node = next)
(

}

next = node->next;
free (node);

In this example, the nodes contained simple data. However, you
could have been creating a list of customer information, as shown
here:

(Customer ID)

(Balance)

22
39.88

Start

41

55.76

3

870.11
~ NULL

Although the structure is different, the steps required to create the
list are the same. The structure in this case could be as follows:

struct customers {
char name[30];
char address[30];
char city[l5];
char state[3];
char zip[ll];
char phone[ll];
float balance;
struct customers *next;

I ;

DYNAMIC MEMORY 355

Maintaining a Sorted List
If you place items in your list in a specified manner, you can often
reduce the amount of sorting you may later need to perform. For
example, if you want to create a list of numbers entered by the user,
and the user types these numbers,

1 7 3 5 2

you can build the list in sorted order, as shown here:

;w NULL

Start

;w 1 ;w NULL

Start

;w 1 ;w I -1 NULL

Start

I ~ 1 ;wl---3~--1 5 ;u N~LL I
Start

~I • 1---I ---1;H1-------1;w1---Nu____,LL

Start

In this case, use a routine called list-insert, which places an
element into the list based upon the value in the member value:

/*
* list_insert (value, start)

* Place a value into a linked list in sorted order.

* value (in): Value to add to the list.

356 TURBO C PROGRAMMER'S LIBRARY

* start (in): First node in the list.
*
*status= list_insert (5, start);
*
* If list insert cannot allocate the memory required, it returns
* the value -1. If successful, this routine returns the value 0.
*
*/

int list_insert (int value, struct list_entry *start)
{
struct list_entry *new_node, *node, *previous;

void *calloc(unsigned, unsigned);

node=start->next;
previous = start;

while ((node ! = NULL) && (node->value < value))
{
previous = node;
node = node->next;

}

if ((new node= (struct list entry*)
calloc(l, sizeof(struct list entry)))

return (-1); -

new node->value = value;
new-node->next node;
previous->next new_node;

return (0);
}

NULL)

Modifying the previous program slightly to use this routine, the code
now becomes

#include <stdio.h>

struct list entry {
char value;
struct list entry *next;

} ; -

main ()
{
void *calloc (unsigned, unsigned);

struct list_entry *start, *node, *next;

char letter;

if ((start= (struct list entry*)
calloc(l, sizeof(struct list_entry))) ==NULL)

printf ("Unable to allocate memory for the list\n");
exit (1);

node = start;
node->next = NULL;

for (letter= 'A'; letter<= 'Z'; letter++)
if (list insert (letter, start) == -1)

(-

DYNAMIC MEMORY 357

printf ("Unable to allocate memory for the list\n");
exit (1);

}

for (node = start->next; node != NULL; node = node->next)
printf ("%c\n", node->value);

for (node = start; node != NULL; node = next)
{

}

next node->next;
free (node);

By using this routine, you can place ten integer values into the
list, as shown here:

#include <stdio.h>

struct list entry {
int valueT
struct list entry *next;

} ; -
main ()

(
void *callee (unsigned, unsigned);

struct list_entry *start, *node, *next;

int i, value;

int get_prompted_int (int, int, int, int, int, int, int,
char *, int, int, int, char *, int,
int, int, int);

if ((start= (struct list entry*)
calloc(l, sizeof(struct list_entry)JJ ==NULL)

printf ("Unable to allocate memory for the list\n");
exit (1);

node = start;
node->next = NULL;

for (i = 0; i < 10; i++)
{
value = get prompted int (0 1 O, 10, 20, 30, 7, 64, "Value:'',

10, 7, 13,"Enter an integer then press Enter.", 23, 7 1 40, 7);

if (list insert (value, start) == -1)

358 TURBO C PROGRAMMER'S LIBRARY

{

}

printf ("Unable to allocate memory for the list\n");
exit (1);

for (node = start->next; node != NULL; node = node->next)
printf ("%d\n", node->value);

for (node = start; node != NULL; node = next)
{

}

next = node->next;
free (node};

The routine works by tracking two nodes (the previous and current),
as shown here:

Value

l ! 1 2 7 J
[NULL] J ~

2J
~

Previous Current

As you traverse the list in search of the correct location at which
to insert the value, you must update both pointers, as shown next:

DYNAMIC MEMORY 359

Value

,__________.I .1 I -1 2 I . ,___, N~----ILL
Start

66
Previous Current

Once you find the correct location, insert the value by using the two
nodes, as illustrated here:

c=J
Value

I -1
·:

2

: ·:
7

:

NULL

Start

f f
Previous Current

I . I -1
2

I .1 3

I -1
7

NULL

Start

360 TURBO C PROGRAMMER'S LIBRARY

Note the processing that is required to free the memory allocated by
list.

for (node = start; node != NULL; node = next)
{

)

/*

next = node->next;
free (node);

You can instead use the routine free-list, as illustrated here:

* void free_list (start)
*
* Release memory previous allocated for a dynamic structure.
*
* start (in): First node in the list.
*
*free list (start);

*/

void free_list (struct list_entry *start)
{
struct list_entry *node, *next;

for (node = start; node != NULL; node = next)
{

next = node->next;
free (node) ;

Deleting an element from a linked list is similar to inserting a
node into the list. You again use two nodes to track the previous and
current nodes. Given the list,

DYNAMIC MEMORY 361

Start

the processing to delete the node containing the value 7 becomes as
follows:

I -1
·:

5

:
. :

7

:
-1

9

NULL

Start

f f

Previous Current

I -1 I .1 5 I .1 9

NULL

Start

7

Value

362 TURBO C PROGRAMMER'S LIBRARY

The routine list-delete deletes a node from the linked list.
Again, it is based upon the contents of the member value. If multi­
ple nodes contain the same value,

Start

only the first node is deleted.

>--------<I -1 ~---ti -~1 3-----tl . ~1 N~-----tll
Start

/*
* list_delete (value, start)
*
* Remove a node containing the value specified from a linked list.
*
*value (in): Value to remove from the list.
* start (in): First node in the list.
*
* status= list_delete (5, start);
*
* If list delete is successful, it returns the value O, otherwise
* it returns the value -1.
*
*/

int list_delete (int value, struct list_entry *start)
{
struct list_entry *node, *previous;

node=start->next;
previous = start;

while ((node !=NULL) && (node->value !=value))
{

}

previous = node;
node = node->next;

if (node)
{

previous->next = node->next;
free (node);
return (0);

else
return (-1);

Doubly Linked Lists

DYNAMIC MEMORY 363

By now, you should understand that a linked list can provide consid­
erable flexibility. The difficulty with linked lists at this point may be
the processing required to insert and delete a node. You can create
an even more flexible dynamic structure called a doubly linked list.
Unlike a singly linked list (which only contains a pointer to the next
element), a doubly linked list contains a pointer to the next and to
the previous elements, as shown here:

Start

The structure now contains two pointers, as follows:

struct double link {
int value; -
struct double link *previous;
struct double-link *next;

} ; -

364 TURBO C PROGRAMMER'S LIBRARY

Since you now have a pointer to the previous and next elements in
the list, you can eliminate the need for tracking two pointers during
insert and delete operations.

8
Value

NULL

1· .I 1 · . I 1 · .I 5 8
NULL

Start ..

NULL

1· .I 1· .I 1· . I 1 · 5 6

Start

/*
* doubly_list_insert (value, start)
*
* Insert a value in a doubly linked list in sorted order.
*
* value (in): Value to placed into the list.
* start (in): First node in the list.
*
*status= doubly_list_insert (5, start);
*

. I

* If doubly list insert is successful, it returns the value 0,
* otherwise~ this routine returns the value -1.
*
*I

int doubly_list_insert (int value, struct list_entry *start)
{
struct list_entry *new_node, *node;

void *calloc(unsigned, unsigned);

node=start->next;

8

NULL

DYNAMIC MEMORY 365

/* locate insertion point */
while ((node !=NULL) && (node->value <value))
if (node->next != NULL)

node = node->next;
else

break;

if ((new node= (struct list entry*)
calloc(l, sizeof(struct list_entry)))

return (-1);

new_node->value = value;

NULL)

if ((node !=NULL) && (node->next !=NULL)) /*not last entry*/
{

new node->next = node;
new-node->previous = node->previous;
(node->previous)->next =new node;
node->previous = new_node; -

else /* first, last or next to last entry */
{

if ((start->next ==node) && (node== NULL))
{

}

new node->previous = start;
start->next = new node;
new node->next = NULL;

el·se if (value < node->value)
{

/* first list entry */

/* next to last */

new node->next = node;
new-node->previous = node->previous;
(node->previous)->next new node;

} -

else
{
new node->next = NULL;
new-node->previous = node;
node->next new node;

} -

/* last entry */

return (0);
}

/* successful insertion */

In a similar manner, this routine deletes an element from a dou­
bly linked list. Once again, if two elements have the same value, only
the first is deleted.
/*

* doubly_list_delete (value, start)
*
* Remove a node containing a specified value in a doubly linked
* list.
*

366 TURBO C PROGRAMMER'S LIBRARY

* value (in) : Value to be removed.
* start (in): First node in the list.
*
* status= doubly_list_delete (5, start);
*
* If successful, this routine returns the value 0, otherwise it
*returns the value -1. If multiple occurrences of the value
* exist in the list, only the first is deleted.
*
*/

int doubly_list_delete (int value, struct list_entry *start)
{
struct list_entry *node;

node=start->next;

/* find the value */
while ((node !=NULL) && (node->value !=value))

node = node->next;

if (node)
{

(node->previous)->next = node->next;
if (node->next != NULL)

(node->next)->previous = node->previous;
free (node);
return (0);

}
else

return (-1);

Binary Trees
Linked lists add considerable flexibility to your programs. By using
a structure similar to that of a doubly linked list,

struct binary tree {
int value; -
struct binary tree *right;
struct binary-tree *left;

} ; -

you can create a data structure in which all of the elements are
automatically placed into a presorted order. When you later need to
locate a value, you can do so with the same performance as that
associated with a binary search. The new structure is called a
binary tree. The structure appears as follows:

l Value J
l Pointer l Pointer]

DYNAMIC MEMORY 367

Each time you add a value to the binary tree, you begin by exam­
ining the first node (or root) of the tree. If the value is less than that
of the root, you traverse the left side of the tree. If the value is
greater than or equal to that of the root, you traverse the right side
of the tree. Given the following numbers,

3 5 1 7 2 9 8

you would construct the tree as follows. The value 3 will be placed in
the root node of the tree.

3

NULLl NULL

Since the value 5 is larger than 3, it becomes a right node.

3

NULLJ _l

1
1
5

NULL} NULL

368 TURBO C PROGRAMMER'S LIBRARY

Likewise, the value 1 is less than 3, so it becomes a left node.

3

1 5

NULL NULL NULL NULL

Since 7 is greater than 3, you traverse the right side of the tree.
Since it is also greater than 5, it becomes a right node.

3

1 5

NULL NULL NULL

7

NULL N_ULL

Since 2 is less than 3 but greater than 1, it is inserted in the tree, as
shown next:

DYNAMIC MEMORY 369

3

5

NULL NULL

2 7

NULL NULL NULL NULL

Finally, the values 9 and 8 are added as shown in Figure 13-1.

3

5

NULL NULL

2

NULL NULL

9

NULL

Figure 13-1. Binary tree after adding values 8 and 9

370 TURBO C PROGRAMMER'S LIBRARY

To list the elements in the tree, follow similar steps. First, you
begin at the root and traverse the left side of the tree. You traverse
nodes to the left until no nodes remain. At that point you print the
value of the current node, move up one node and print its value, and
then begin traversing the right nodes, if they exist. Given the tree,

5

7

NULL NULL NULL NULL

you would display the values as shown in Figure 13-2.
Likewise, given the tree,

4

2 5

NULL NULL

3

NULL NULL NULL NULL

DYNAMIC MEMORY 371

5

7

NULL NULL NULL NULL

5

0
.-----~

7

NULL NULL NULL NULL

Value 1 is displayed

5

7

NULL NULL NULL NULL

Value 5 is displayed

5

7

NULL NULL NULL NULL

Value 7 is displayed

Figure 13-2. Values displayed while traversing rwdes

the values would be printed as shown in Figure 13-3.
The following routine places a node into a binary tree:

372 TURBO C PROGRAMMER'S LIBRARY ·

Value 1 is printed Value 4 is printed

3

NULL NULL

Value 2 is printed Value 5 is printed

NULL NULL

Value 3 is printed

Figure 13-3. Values printed from binary tree

DYNAMIC MEMORY 373

/*
* tree_insert (value, node)
*
* Place a value into a binary tree.

* value (in): Value to placed into the tree.
* node (in): Starting node in the "current" binary tree.

*status= tree insert (5, node);
*
* If successful, tree insert returns the value O, otherwise
* it returns the value -1.
*
*/

int tree_insert (int value, struct list_entry *node)
{
void *calloc(unsigned, unsigned);

if (value < node->value)
if (node->left != NULL)

tree insert (value, node->left);
else -

{

}
else

if ((node->left = (struct list entry*)
calloc(l, sizeof(struct list_entry)))

return (-1);

(node->left)->right =NULL;
(node->left)->left =NULL;
(node->left)->value =value;

if (node->right != NULL}
tree insert (value, node->right);

else -
{

}

if ((node->right = (struct list entry*)
calloc(l, sizeof(struct-list entry}))

return (-1); -

(node->right)->right =NULL;
(node->right)->left =NULL;
(node->right)->value =value;

return (0);
}

NULL)

NULL)

Note that the routine is recursive. This is because of the recursive
definition of a binary tree. If you consider each subtree as its own
binary tree, your processing is identical at each node.

In a similar manner, the following routine displays the contents
of a binary tree by using the algorithm previously discussed:

374 TURBO C PROGRAMMER'S LIBRARY

/*
* void show_tree (node)
*
* node (in): Start of the "current" binary tree.

* show_tree (root);

* You must change the printf control sequence based upon
* the type of value to display.
*
*/

void show_tree (struct list_entry *node)
{
if (node->left)

show_tree (node->left);

printf ("%d\n", node->value);

if (node->right)
show_tree (node->right);

In a similar manner, the following routine releases memory pre­
vously allocated for a binary tree:

/*
* void free_tree (node)

* Release the memory previously allocated for a binary tree.
*
* node (in): Starting node in the "current" node.

* free tree (root);
*
*/

void free_tree (struct list_entry *node)
{
if (node->left)

free_tree (node->left);

if (node->right)
free_tree (node->right);

free (node);
}

Just as you must be able to insert items into the binary tree, you
must also be able to delete them. Given the following tree,

DYNAMIC MEMORY 375

5

3 7

2

NULL NULL

the processing to delete the node containing the value 7 requires two
steps. First, you must assign the right pointer of the previous node to
point to the left node of the node to delete (assuming that it exists).

5

6 7

NULL NULL

2 8

NULL NULL NULL

9

NULL NULL

376 TURBfl C PROGRAMMER'S LIBRARY

Second, you must assign the right node of the node to delete to the
first node in the new chain that points to NULL.

5

3

NULL NULL

NULL NULL

The following routine performs a binary tree deletion:

/*
* delete_tree (value, start)
*
* Remove a node containing the value specified from a binary tree.

* value (in): Value to delete.
* start (in): Pointer to the first node in the list.

*status= delete (5, &root);

* If multiple nodes contain the value specified, only the first
* node found is deleted. This routine uses the routine
* delete tree entry if the the root does not point to the desired
* value.- -

*
*I

delete_tree (int value, struct list_entry **start)
{
struct list_entry *current_node;

if (value== (*start)->value)
{

if ((*start)->left)
current node= (*start)->left;

else if ((*start)->right)
current node= (*start)->right;

else
return (1); /*only one node in the tree*/

while (current node->right)
current_node-= current_node->right;

if (current node != (*start)->right)
current_node->right = (*start)->right;

current_node = *start;

if ((*start)->left)
*start= (*start)->left;

else if ((*start)->right)
*start= (*start)->right;

free (current_node);

retur)1 (0);
}

else if (value< (*start)->value)

DYNAMIC MEMORY 377

return (delete_tree_entry (value, *start, (*start)->left));
else

return (delete_tree_entry (value, *start, (*start)->right));

/*
* delete_tree_entry (value, previous, node)
*
* Remove a node containing the value specified from a binary tree.

* value (in): Value to delete.
* previous (in): Pointer to the node preceeding the current node.
* node (in): Current node in the binary tree.
*
* status= delete_tree_entry (5, root, root->next);
*
* This routine is called by delete tree when the root does not
* contain the value desired. -
*
*./

delete_tree_entry (int value, struct list entry *previous,
struct list_entry *node)

{
struct list_entry *current_node;

int result = -1;

if (node == NULL)
return (-1);

if (node->value == value)
{
if (previous->left == node)

previous->left = NULL;

378 TURBO C PROGRAMMER'S LIBRARY

if (previous->value < value)
{

)

previous->right = node->left;
current_node = previous;

while (current node->right)
current_node-= current_node->right;

current_node->right = node->right;
)

else
{
previous->left = node->left;
current node = previous;

if (current node->left)
{ -

current node = current_node->left;

while (current node->right)
current_node-= current_node->right;

current_node->right = node->right;

)
else

current node->left

free (node);
result = O;

node->right;

else if (node->value > value)
{
if (node->right)
result= delete_tree_entry (value, node, node->right);

if ((node->left) && (result== -1))
result= delete tree entry (value, node, node->left);

else - -

else
{

return (-1);

if (node->left)
result= delete_tree_entry (value, node, node->left)i

if ((node->right) && (result== -1))
result= delete_tree_entry (value, node, node->right);

else
return (-1);

return (result);
)

The following program uses a binary tree to display the contents
of a small file in sorted order:

DYNAMIC MEMORY 379

#include <stdio.h>

struct list entry (
char value[l32J;
struct list entry *right;
struct list-entry *left;

) ;

main (int argc, char *argv[])
(

)

void *calloc (unsigned, unsigned), free tree ();

struct list_entry *start, *node, *new_node;

FILE *fopen (), *fp;

char line[l32];

if (argc < 2)
(

)

printf ("SORT: Invalid usage: SORT FILENAME.EXT\n");
exit (1);

else if (! (fp = fopen (argv[l], "r")))
{

printf ("SORT: Unable to open the file %s\n", argv[l]);
exit (1);

else if ((start= (struct list entry*)
calloc(l, sizeof(struct list_entry))) ==NULL)

printf ("Unable to allocate memory for the list\n");
exit (1);

else
(

node = start;
node->right = NULL;
node->left = NULL;
fgets (start->value, sizeof(line), fp);

while (fgets (line, sizeof(line), fp))
{
if (tree insert (line, start) == -1)

(

)

printf ("Unable to allocate memory for the list\n");
exit (1);

fclose (fp) ;
show tree (start);
free-tree (start);

int tree insert (char *value, struct list_entry *node)
(
void calloc ();

if (string_comp (value, node->value, 0) 2)

380 TURBO C PROGRAMMER'S LIBRARY

if (node->left != NULL)
tree insert (value, node->left);

else -
{
if ((node->left = (struct list entry*)

calloc(l, sizeof(struct list_entry)))
return (-1);

(node->left)->right =NULL;
(node->left)->left =NULL;
copy string (value, (node->left)->value, 132);

) -
else

if (node->right != NULL)
tree insert (value, node->right);

else -
{
if ((node->right = (struct list entry*)

calloc(l, sizeof(struct-list entry)))
return · (-1); -

(node->right)->right =NULL;
(node->right)->left =NULL;
copy string (value, (node->right)->value, 132);

) -

return (0);
)

show tree (struct list_entry *node)
{ -
if (node->left)

show_tree (node->left);

printf ("%s\n", node->value);

if (node->right)
show_tree (node->right);

NULL)

NULL)

The code fragments in this chapter are intended to provide foun­
dations on which you can build your programs.

c H A p T E R

Memory Mapping
Chapter 3 examined the use of pointers in Turbo C string manipula­
tion. That discussion showed that a pointer is a value that "points to"
(or references) a specific location in memory and that most pointers
reference memory locations contained within a 64K data segment.

char *ptr;

Although the following pointers could easily access all of the
memory locations within the example region, the pointers cannot
access memory locations beyond the region.

381

382 TURBO C PROGRAMMER'S LIBRARY

Code
segment

cs 64K

64K
Data

segment DS I char •ptr; I
64K Stack

segment
SS

Memory

Pointers of this type are often called near pointers because the
locations they reference must be within a 64K region. Memory loca­
tions within the IBM PC and PC compatibles are addressed by way
of a segment and offset combination. The segment address defines
the location of a specific 64K region. The offset address is used to
access individual memory locations with the segment, as shown in
Figure 14-1.

A program that performs memory mapping uses a segment and
offset address to access specific memory locations. The most common
use of memory mapping is for input and output.

Chapters 6 and 7 examined several DOS and BIOS services that
perform sophisticated I/0 operations. However, in some cases these
services are simply too slow. As a result, many programmers
instead place output characters directly into the video display
memory.

The IBM PC and PC compatibles set aside a region of memory
called the video display merrwry. Before a letter can appear on your
screen, it must reside in the video display memory. Depending on
your monitor type, the following memory locations are used:

Segment

FFFE

FFFF

FFFE:FFF8

FFFE:FFF9

FFFE:FFFA

FFFE:FFFB

FFFE:FFFC

FFFE:FFFD

FFFE:FFFE

FFFE:FFFF

FFFF: 0000

FFFF:0001

FFFF:0002

FFFF:0003

FFFF:0004

FFFF:OOOS

FFFF:0006

FFFF:0007

FFFF:0008

FFFF:0009

FFFF:OOOA

Memory

Offset

FFF8

MEMORY MAPPING 383

FFF9

FFFA

FFFB

FFFC

FFFD

FFFE

FFFF

0000

0001

0002

0003

0004

0005

0006

0007

0008

0009

OOOA

Figure 14-1. Adding offsets to access memory locations

384 TURBO C PROGRAMMER'S LIBRARY

....._M_o_n_o_c-hr_o_m_e-1 9ooo:OOOO

__ d_is~p_la ... Y_-1 8800:0000

Color display

Memory

Picture the video display memory as a two-dimensional array
with 25 rows and 160 columns (see Figure 14-2). The 25 rows corre­
spond to the 25 rows on your screen. Remember, each character dis­
played on the screen has an attribute byte with which it is asso­
ciated. Thus, the value 160 is calculated by the following equation:

80 screen columns * 2 bytes (character and attribute)

To place a letter in the upper-left corner of the screen, you would
reference the following memory locations:

OxBOOOOOOO
OxB8000000

(Monochrome display)
(Color display)

The attribute for the letter must reside in the memory location
immediately following the character, as shown here:

OxBOOOOOOl
OxB8000001

(Monochrome display)
(Color display)

MEMORY MAPPING 385

row O row 0, row 0, row 0, row 0, row 0, row 0,
column O column 0 column 1 column 1 ... column 79 column 79
character attribute character attribute character attribute

row 1, row 1, row 1, row 1, row 1, row 1,
column O column 0 column 1 column 1 ... column 79 column 79
character attribute character attribute character attribute

row 24, row 24, row 24, row 24, row 24, row 24,
column O column O column 1 column 1 ... column 79 column 79
character attribute character attribute character attribute

Figure 14-2. Two-dimensional array of video display memory

The following program displays the letter "A" in the upper-left
corner of a color screen display. Unlike previous programs that used
a 16-bit (offset) pointer to a location in the data segment, this pro­
gram uses a far pointer that allows you to define a segment and
offset combination.

main ()
(
char far *ptr = OxBBOOOOOO;

*ptr = 'A';
)

386 TURBO C PROGRAMMER'S LIBRARY

With the previous addressing scheme in mind, you can determine
the memory location at which to display a character, as shown here:

char far *ptr;

ptr = (char far *) (0xB8000000 + (row * 160) + (column * 2))

The following program displays the letters "A-Z" in the middle
of your screen and constantly changes their display attributes:

[~~-AB~C-D-EF_G_H_IJ_K_L_MN_o_P_Q_Rs_r_uvw~x-y_z~~~~~J
main ()

{
char far *ptr, letter;

int i, j, row = 10, column = 25, attr;

ptr = (char far *) (0xB8000000 + (row * 160) + (column * 2));

for (i. = O, letter= 'A'; letter<= 'Z'; i += 2, letter++)
*(ptr + i) =letter;

for (i = 1; i < 100; i++)
for (attr = 1; attr <= 255; attr++)

for (j = 1, letter= 'A'; letter<= 'Z'; += 2, letter++)
*(ptr + j) = attr;

Depending on your type of monitor, you may begin to experience
snow on your screen display as the program executes. This is
because of the manner in which the IBM PC updates the display.
Every one-eighteenth of a second, the PC performs a horizontal
retrace of the contents of the screen to refresh the screen display. If
you access the video display memory during this retrace cycle, snow
is likely to occur.

To prevent snow from appearing, you must determine when the
retrace is in effect and coordinate your video memory accesses with
the retrace. The IBM PC and PC compatibles use the first bit in the
value contained in port Ox3DA to specify when the retrace is active.
Knowing this, you can obtain this value and determine when to per­
form your I/0 operations (see Figure 14-3).

(.._ __ st...-art _ __,)

Yes

Update screen
display

Stop

MEMORY MAPPING 387

Figure 14-3. Process1:ng to determine when to perform I/0 operations

Turbo C provides a run-time library routine called inportb that
returns the byte value from a port. As such, you would assume that
you could use the following code fragment to control your output:

while ((inportb (Ox3DA) & 1) ! = 1)

while ((inportb (0x3DA) & 1) 1)

388 TURBO C PROGRAMMER'S LIBRARY

Unfortunately, the horizontal retrace occurs so fast that by the time
this fragment completes, you do not have time to output the charac­
ter. You can use the following assembly language routine instead:

/*
* void memory_map_yut (segment, offset, value)
* * Map the given value into a memory location within the video
* display memory. Insure that the memory reference is in
* sync with the horizontal retrace.
*
* segment (in): Segment address of the video display memory.
* offset (in): Offset address within the video display memory.
* value (in): Value to place into the memory.
* * memory_map_yut (0xB800, O, 65);
*
*/

void memory_map_yut (int segment, int offset, int value)
{

#pragma inline

asm push DX
asm push ES
asm push DI
asm push BX
asm push AX

asm MOV ES, segment
asm MOV DI, offset
asm MOV BX, value

asm MOV DX, 03DAH
A:

asm IN AL, DX
asm TEST AL, 1
asm JNZ A
asm CLI

B:
asm IN AL, DX
asm TEST AL, 1
as~ JZ B
asm MOV BYTE PTR ES: [DI], BL
asm STI
asm pop AX
asm pop BX
asm pop DI
asm pop ES
asm pop DX

This routine receives a segment and offset address along with the
value to be placed in the memory location. Since the routine does not
have the same overhead as the previous Turbo C code fragment, you
have time to output the desired value.

MEMORY MAPPING 389

To use inline code within Turbo C programs, you must use the
Microsoft macro assembler to assemble the code. Invoke the Turbo C
compiler and linker from the command line, as shown here:

~C> TCC FILENAME.C J
Turbo C will take care of invoking the macro assembler for you.

Turbo C Inline Code
To use inline code from within a Turbo C program, you must have the
Microsoft macro assembler. Next, invoke the Turbo C compiler from the
command line, as shown here:

C> TCC FILENAME.C

You can now use this code fragment to place the letters "A-Z" on
the screen and constantly update the attributes of the letters, as
shown here:

main ()
{
void memory_map_put (int, int, int);

int letter, i, j, offset, row = 10, column 25, attr;

offset= (row* 160) + (column* 2);

for (i = 0, letter= 'A'; letter<= 'Z'; i += 2, letter++)
memory_map_put (0xB800, offset+ i, letter);

for (i = l; i < 100; i++)
for (attr = l; attr <= 255; attr++)

for (j = 1, letter= 'A'; letter<= 'Z'; j += 2, letter++)
memory_map_put (OxBBOO, offset + j, attr);

No snow will appear this time.

390 TURBO C PROGRAMMER'S LIBRARY

Video Display Pages
Depending on your type of monitor, you . may save a considerable
amount of memory set aside for video display output. Since a screen­
ful of information requires only 4000 bytes (25 * 160) of storage, the
additional memory can be divided up into additional video display
buffers called pages. For example, in 80 mode the color graphics
adapter (CGA) has space for four video display pages, as shown
here:

8800
Video page 0-4K ____, Color graphics l 16K
Video page 1-4K - Adapter

Video page 2-4K - Display

Video page 3-4K - Memory

Memory

Each video display page is capable of storing a screenful of
information. Many of the routines in Chapter 7 allowed you to output
to a specific display page. In most cases, you will use display page 0.
However, by utilizing video display pages, you can often increase the
flair of your applications by making output appear instantaneously.
For example, the following program writes a screenful of letters to
page 1 and then selects that page as the active display page:

#include <stdio.h>

main ()
{

int i;

void set cursor positon ();
void set=active=display_page ();

for (i = O; i < 25; i++)
{

set cursor position (1, i, 0);
write_char=and_attr (1, 'A', 7, 80);

set active display page (1);
get char(); - -
set_active_display_page (0);

MEMORY MAPPING 391

In so doing, the page of letters appears instantaneously.
Note that the previous program resets the video display back to 0

before terminating. Many applications that perform memory­
mapped 1/0 fail to check which display page is active. As such,
these applications only display output to page 0. If you do not reset
the active display page to 0 before terminating, other applications
may not work. Also note that the application simply exits if the dis­
play is monochrome. This is because the monochrome system does
not support video display pages.

Video display pages can be quite convenient. You can use
memory-mapped 1/0 to increase the speed of applications that use
video display pages. The PC sets aside 4096 bytes for each video
display page. Knowing that the starting memory location is
OxB8000000, you can compute the location of each video display
page as shown here:

page_location = OxB8000000 + (page * 4096);

With this in mind, the following routines implement several con­
venient 1/0 routines. The first, clear _display _page, clears the con­
tents of the specified video display page.

392 TURBO C PROGRAMMER'S LIBRARY

int page= O; clear _display_page

/*
* void clear_display_page (page)
*
* Clear the screen display by setting each character on the
* screen to an ASCII 32 (space character).
*
* page (in): Video display page to clear.
*
* clear_display_page (0);
*
* This routine only supports 80 column mode.

*/

void clear_display_page (int page)
{
int width, mode, current_page, i, j, segment, offset;

void get video mode (int*, int*, int*);
void memory_map_put (int, int, int);

get_video_mode (&width, &mo.de, ¤t_page);

/* only support 80 column text mode */
if ((width!= 80) II (page> 3))

return

if (mode == 7)
{
page = O;
segment OxBOOO;

{
else

segment OxB800;

for (i = 0; i <= 25; i++)
{
offset= (page* 4096) + (i * 160);

for (j = O; j <= 79; j++)

MEMORY MAPPING 393

memory_map_put (segment, offset+ (j * 2), 32);

Next, clear-line erases the contents of the specified line from
the desired video page.

/*

int page= O;
int row= 10;

* void clear_line (page, row)
*

clear_line

* Clear a line on the screen display by setting each character
* on the line to an ASCII 32 (space character) .
*
* page (in) : Video display page desired.
* row (in): Display row to clear.
*
* clear_line (0, 10);
*
* This routine only supports 80 column mode.
*
*/

void clear_line (int page, int line)
{

int width, mode, current_page, i, segment, offset;

394 TURBO C PROGRAMMER'S LIBRARY

void get video mode (int *, int *, int *);
void memory_map_put (int, int, int);

get_video_mode (&width, &mode, ¤t_page);

if ((width != 80) I I (page > 3))
return

if (mode == 7)
{
page = O;
segment OxBOOO;

}
else

segment = OxB800;

offset= (page* 4096) + (line* 160);

for (i = O; i <= 79; i++)
memory_map_put (segment, offset+ (i * 2), 32);

The routine set-display _page_attribute sets the attribute byte
for all of the characters on a specific video display page.

set_d isplay _page_attribute
int page= O;
int attribute = 7;

/*
: void set_display_page_attribute (page, attribute)

* Set the character display attribute for the video display
* page specified.
*
* page (in) : Video display page desired.
* attribute (in): Desired video attribute.
*

MEMORY MAPPING 395

* set_display_page attribute (0, 7);

* This routine only supports 80 column mode.

*/

void set_display_page attribute (int page, int attribute)
{
int width, mode, current_page, i, j, segment, offset;

void get video mode (int *, int*, int *);
void memory_map_put (int, int, int);

get_video_mode (&width, &mode, ¤t_page);

if ((width != 80) 11 (page > 3))
return

if (mode == 7)
{

}

segment = OxBOOO;
page = 80;

else
segment = OxB800;

for (i = O; i <= 25; i++)
{
offset (page * 4096) + (i * 160);

for (j O; j <= 79; j++)
memory_map_put (segment, offset + (j * 2) + 1, attribute);

In a similar manner, the routine set-line-attribute sets the
video display attribute for a specific row on the screen display.

int page= O;
int line = 10;
int attribute = 7;

set_line_attribute a

396 TURBO C PROGRAMMER'S LIBRARY

/*
* void set_line_attribute (page, line, attribute)
*
* Set the character display attribute for a line on the video
* display page specified.
*
* page (in) : Video display page desired.
* line (in): Row to set the display attribute for.
* attribute (in): Desired video attribute.
*
* set_line_attribute (0, 10, 7);
*
* This routine only supports 80 column mode.
*
*/

void set_line_attribute (int page, int line, int attribute)
{
int width, mode, current_page, i, segment, offset;

void get video mode (int*, int*, int*);
void memory_map_put (int, int, int);

get_video_mode (&width, &mode, ¤t_page);

if ((width != 80) 11 (page > 3))
return

if (mode == 7)
{

}

segment = OxBOOO;
page = O;

else
segment = OxB800;

offset (page* 4096) + (line* 160);

for (i 0; i <= 79; i++)
memory_map_put (segment, offset+ (i * 2) + 1, attribute);

Next, buffer _screen-region saves the contents of a video dis­
play page (or region) on the display page.

/*

int page= O;
int top= 10;

int bottom = 20;

int left = 10;

int right = 70;

char buffer[size);

buffer _screen_region

MEMORY MAPPING 397

Screen characters
and attributes

* void buffer_screen_region (page, top, bottom, left,
* right, buffer)
*
* Store a region of the screen display into the buffer provided.

* page (in) : Video display page desired.
* top (in): Top row of the region to save.
* bottom (in): Bottom row of the region to save.
* left (in): Leftmost column of the region to save.
* right (in): Rightmost column of the region to save.
* buffer (out): Buffer containing the region to store.

398 TURBO C PROGRAMMER'S LIBRARY

* buffer_screen_region (0, 10, 20, O, 79, buffer);

* Remember that you are buffering not only the characters, but
* also the attributes. As such, your buffer size needs to be:
*

2 * (bottom - top) * (right - left)
*
*/

void buffer_screen_region (int page, int top, int bottom,

{
int left, int right, char *buffer)

int i, j, k O;

int offset, segment, mode, width, current_page;

void get_video_mode (int*, int*, int*);

get_video_mode (&width, &mode, ¤t_page);

if ((width != 80) 11 (page > 3))
return

if (mode == 7)
{
page = O;
segment OxBOOO;

)
else

segment = OxB800;

for (i = top; i <= bottom; i++)
{
offset (page * 4096) + (i * 160);

for (j
{

left;

bl.iffer[k++]
buffer[k++]

<= right; j++)

memory map get (segment, offset+ (j * 2));
memory=map=get (segment, offset + (j * 2) + 1)

MEMORY MAPPING 399

Just as an assembly language routine was required to place
values into the video display memory, the following routine reads a
byte from the specified segment and offset location.

/*

int segment = Ox8800;
int offset = O;

* memory_map_get (segment, offset)

memory_map_get

Character or attribute
at the specified location

* Return the value contained in a memory location within the video
* display memory. Insure that the memory reference is in sync with
* the horizontal retrace.
*
* segment (in): Segment address of the video display memory.
* offset (in): Offset address within the video display memory.

400 TURBO C PROGRAMMER'S LIBRARY

* value memory_map_get (0xB800, 0);

*/

memory_map_get (int segment, int offset)
{

char value;

#pragma inline

asm push DX
asm push ES
asm push DI
asm push AX

asm MOV ES, segment
asm MOV DI, offset

asm MOV DX, 03DAH
A:

asm IN AL, DX
asm TEST AL, 1
asm JNZ A
asm CLI

B:
asm IN AL, DX
asm TEST AL, 1
asm JZ B
asm MOV al, BYTE PTR
asm MOV value, al
asm STI
asm pop AX
asm pop DI
asm pop ES
asm pop DX

return (value);

ES: [DI]

In a similar manner, the routine restore-screen-region restores
a previously buffered region of the video display.

/*

int page= O;

int top= 10;

int bottom = 20;

int left= 10;
restore_screen_region

int right = 70; ~
char buffer[size]; --! ___________ _

MEMORY MAPPING 401

* void restore screen region (page, top, bottom, left,
right, buffer)

* Restore a previously stored region of the screen display
* from the buffer provided.

* page (in): Video display page desired.
* top (in): Top row of the region to restore.
* bottom (in): Bottom row of the region to restore.
* left (in): Leftmost column of the region to restore.
* right (in): Rightmost column of the region to restore.
* buffer (out): Buffer containing the region to restore.
*
* restore_screen_region (0, 10, 20, 0, 79, buffer);
*
*/

void restore_screen_region (int page, int top, int bottom,
int left, int right, char *buffer)

402 TURBO C PROGRAMMER'S LIBRARY

int i, j, k = O;

int offset, segment, mode, width, current_page;

void get video mode (int*, int*, int*);
void memory_map_put (int, int, int);

get_video_mode (&width, &mode, ¤t_page);

if ((width != 80) 11 (page > 3))
return

if (mode == 7)
{
page = O;
segment OxBOOO;

}
else

segment = OxB800;

for (i = top; i <= bottom; i++)
{
offset (page* 4096) + (i * 160);

for (j
{

left; <= right; j++)

memory map put (segment, offset+ (j * 2), buffer[k++]);
memory=map=put (segment, offset+ (j * 2) + 1, buffer[k++]);

The routine put-line writes a character string to the video
memory by using the specified attribute.

int page= O;
int row= 10;
int attribute = 7;
char •str = "TEST";

put_line

MEMORY MAPPING 403

/*
* void put line (page, row, attribute, line)
* * Place a character string at the row specified using the
* display attribute given.
*
* page (in) : Video display page desired.
* row (in): Display row to place the string at.
* attribute (in): Desired video display attribute.
* line (in): Character string to display.
*
* put_line (0, 10, 7, "This is a test");
*
* This routine only supports 80 column mode.
*
*/

void put line (int page, int line, int attribute, char *str)
{
int width, mode, current_page, i, segment, offset;

void get video mode (int*, int*, int*);
void memory_map_put (int, int, int);

get_video_mode (&width, &mode, ¤t_page);

if ((width ! = 80) I I (page > 3))
return

if (mode == 7)
{

}

segment = OxBOOO;
page = 0;

else
segment = OxB800;

offset (page* 4096) + (line* 160);

for (i O; i <= 79; i++)
{
if (*str)

{
memory map put (segment, offset+ (i * 2), *str++);
memory-map-put (segment, offset+ (i * 2) + 1, attribute};

} - -
else

break ;

Experiment with the routines presented in this chapter and you
should find them to be quite fast. In fact, many of the I/0 manipula­
tion routines in this book can be converted to memory-mapped out­
put if your needs require. Many of the routines in Chapter 15 are
based on memory-mapped output.

c H A p T E R

Menus and
Special 1/0

Chapter 12 examined a series of 1/0 routines that greatly simplify
your programming of the user interface. Those routines allow your
programs to prompt for and obtain data from the user in a consis­
tent manner, so users can feel more at ease with the programs they
are running. However, anytime a user must interact with a pro­
gram, the chance of human error increases. Many program develop­
ers (and end users) prefer to develop menu-driven systems.

Traditionally, menus have taken the following form:

405

406 TURBO C PROGRAMMER'S LIBRARY

(
General Ledger

Perform Payroll ...••.•..•.... l
Accounts Receivable •..•...... 2
Print Checks .•.••..•.•..•.... 3
Accounts Payable ...•.....•... 4
Past Due Accounts •.•......... 5
Quit .••••.•••...•........•... 6

Here the user must enter the number that corresponds with a
desired choice.

As more people are exposed to computers on a regular basis, they
begin to expect more from the user interface. The routines in this
chapter address several expectations of users concerning menu­
driven applications. They display the menu in a manner that is tra­
ditional in appearance, but more flexible in functional capabilities,
as shown here:

General Ledger Accounting Package

P Perform Payroll operations
R Update Accounts Receivable
C Print Checks
A Update Accounts Payable
L Process Past Due Accounts
Q Quit General Ledger Returning to DOS

Press desired key or use arrow keys and press Enter

The routines in this chapter support two extremes of user prefer­
ences with regard to menus. The traditional "enter the correspond­
ing letter or number" response is fully supported. In front of each
menu option is a single character. If the user presses the the key that
corresponds to that character, the option is selected.

The second option involves the keyboard arrow keys. The current
option is always highlighted. To select a different option, the user
simply presses the UP ARROW or DOWN ARROW key to highlight a
different option. Once the desired option is highlighted, the user
presses the ENTER key to select it.

MENUS AND SPECIAL I/0 407

A significant amount of code can be duplicated in menu-driven
programs. In many cases, if you have several menus, you may have
simply cut and pasted the required code. However, this chapter
develops three standard menu-manipulation routines. Rather than
duplicating code, you simply pass a structure containing the
required menu information to the routine. The routine, in turn, dis­
plays the appropriate menu and entry selections.

The final topic examined in this chapter is pop-up menus. By
building on routines presented in Chapter 14, pop-up menu process­
ing becomes relatively simple.

Menu Structure
Each menu routine in this section is based on a menu structure that
contains the following:

struct menus {
int num entries;
char choices [15];
char *entries[l5];
char *title;
char *prompt;

} ;

Each menu is restricted to a maximum of 14 entries. This restric­
tion is not because of processing, but rather because of ease of use. If
your menu contains too many entries, your screen becomes cluttered.
Likewise, too many menu entries also become cumbersome to the
end user. Given the following structure,

struct menus {
int num entries;
char choices [15];
char *entries[15];
char *title;
char *prompt;

408 TURBO C PROGRAMMER'S LIBRARY

payroll menu =
{ 6, -"PRCALQ" I

{"Perform Payroll Operations",
"Update Accounts Receivable",
"Print Checks",
"Update Accounts Payable",
"Process Past Due Accounts",
"Quit General Ledger Returning' to DOS"},
"General Ledger Accounting Package",
"Press desired key or use arrow keys and press Enter"

the routine display-menu (which appears later in this chapter) dis­
plays the following:

General Ledqer Accounting Package

P Perform Payroll Operations
R Update Accounts Receivable
c Print Checks
A Update Accounts Payable
L Process Past cue Accounts
Q Quit General Ledqer Returning to DOS

Press desired key or use arrow keys and press Enter

Note the use of the choices field within the menu structure. Each
menu option has a character that corresponds to it. The choices field
defines those characters.

Framing a Menu
Each of the routines in this chapter provides a frame around the
menus it displays. This tends to draw the attention of the user to the
menu options. Depending on the number of entries in the menu, the
size of the frame will differ from menu to menu. The routines use
the extended ASCII character set illustrated here to box the menu:

MENUS AND SPECIAL I/0 409

205

11-186 186-11

U:;o 205

i

The following code implements display _frame:

int page= O; --
int upper _row = 5; -

int leftmost_column = 10; -

int lower _row = 20; -

int rightmosLcolumn = 70;­

int attribute= 64; --

display_frame

410 TURBO C PROGRAMMER'S LIBRARY

/*
* void display frame (page, upper row, leftmost column,
* - lower_row, rightmost_column, attribute)
*
* Using extended ASCII characters, display a box on the screen
* that can be used as a frame for messages or menus.
*
* page (in): Desired video display page.
* upper row (in): Top row of the display frame.
* leftmost column (in): Leftmost column of the display frame.
*lower row (in): Lower row of the display frame.
* attribute (in) : Video attribute desired.
*
* display_frame (0, 10, 5, 20, 65, 64);
*
*/

void display_frame (int page, int upper row,
int leftmost.column~ int lower row,
int rightmost_column, int attribute)

{
int width, mode, current_page, i, segment, offset;

void get video mode (int*, int*, int*);
void memory_map_put (int, int, int);

get_video_mode (&width, &mode, ¤t_page);

if ((width != 80) 11 (page > 3)) /* only support 80 columns */
return

if (mode 7)
{
segment = OxBOOO;
page = O;

/* monochrome */

I
else

segment = OxB800;

/* put in upper corners */

off set = (page
memory map put
memory=map=put

memory map put
memory=map=put

* 4096) + (upper row* 160);
(segment, offset-+ (leftmost column* 2), 201);
(segment, offset + (leftmost-column * 2) + 1,
attribute); -

(segment, offset+ (rightmost column* 2), 187);
(segment, offset + (rightmost=column * 2) + 1,
attribute);

/* top row of frame */

for (i leftmost_column+l; i <= rightmost_column-1; i++)

memory map put (segment, offset+ (i * 2), 205);
memory=map~ut (segment, offset+ (i * 2) + 1, attribute);

/* put in bottom corners */

offset= (page* 4096) + (lower row* 160);
memory_map_put (segment, offset-+ (leftmost column* 2), 200);
memory_map_put (segment, offset + (leftmost-column * 2) + 1,

attribute); -

MENUS AND SPECIAL I/0 411

memory map put (segment, offset+ (rightmost column* 2), 188);
memory=map=put (segment, offset + (rightmost=column * 2) + 1,

attribute);

/* bottom row of frame */

for (i = leftmost_column+l; i <= rightmost_column-1; i++)
{

memory_map_put (segment, offset+ (i * 2), 205);
memory_map_put (segment, offset+ (i * 2) + 1, attribute);

/* put in the sides */

for (i upper_row + 1; i <= lower_row -1; i++)

)
)

{
offset = (page
memory map put
memory=mapyut

memory_map_put
memory_map_put

* 4096) + (i * 160);
(segment, offset+ (leftmost column* 2), 186);
(segment, offset + (leftmost=column * 2) + 1,
attribute);

(segment, offset +
(segment, offset +
attribute);

(rightmost column* 2), 186);
(rightmost=column * 2) + 1,

Displaying and Using a Menu
The following routine displays a menu on the screen. As previously
stated, the menu is surrounded by a frame, and provides a user
prompt at the bottom of the screen, as shown here:

Printer Selection

H Select HP Laser Printer
P Select Postscript Laser Printer
L Select Letter Quality Printer
D Select Dct Matrix Printer

Press desired key or use arrow keys and press Enter

The following routine, display _memo, displays a menu:

412 TURBO C PROGRAMMER'S LIBRARY

I*

int page= O;
struct menus menu;
int attribute= 64;

display_menu

* void display_menu (page, menu, attribute)
* * Display a menu on the video display page specified.
*
* page (in) : Video display page desired.
* menu (in) : Structure containing desired menu.
* attribute (in): Video. display attribute for the menu.
*
* display_menu (0, main_menu, 7);
*
*/

A Print
B Displa
C Quit g

void display_menu (int page, struct menus menu, int attribute)
{
int upper row, lower row, leftmost column, rightmost column;
int title-row, prompt row, title column, prompt column, max_size;
int width~ mode, current_;page, i~ j, segment, offset;

void get video mode (int*, int*, int*);
void memory map put (int, int, int);
void display_frame (int, int, int, int, int, int);

get_video_mode (&width, &mode, ¤t_;page);

if ((width != 80) 11 (page > 3))
return /* only support 80 column */

if (mode == 7) /* monochrome system */
{

I

segment = OxBOOO;
page = 0;

else
segment = OxB800;

/* determine upper and lower frame row */

upper row= 13 - 4 - (menu.num entries I 2);
lower=row = 13 + 1 + ((menu.num entries% 2) ?

((menu.num_entries + 1)-/ 2): (menu.num_entries I 2));

MENUS AND SPECIAL 1/0 413

/* determine title location and display title */

title row = upper row + 2;
for (i = O; menu.title[i]; i++)
title column = 39 - (i I 2);
offset (page * 4096) + (title_row * 160) + (title column * 2);

for (i
{

0; menu.title[i]; i++)

memory map put (segment, offset+ (i * 2), menu.title[i]);
memory=map=put (segment, offset + (i * 2) + 1, attribute);

max size i; /* largest string display thus far */
/* frame size is relative */

/* determine largest string for frame size */

for (i = 0; i < menu.num_entries; i++)
{
for (j = O; menu.entries [i] [j]; j++)

if (j > max size)
max size j;

/* center menu on column 39 */

leftmost column= 39 - ((max size+ 8) /2);
rightmost column= 39 + ((max_size + 8) /2);

display frame (page, upper row, leftmost column,
- lower_row, rightmost column, 7);

/* display the menu choices */

for (i = O; i < menu.num_entries; i++)
{
offset= (page* 4096) + ((title row+ 2 + i) * 160);
memory map put (segment, offset + (leftmost_column + 2) * 2,

menu:choices[i]);
memory map put (segment, offset + (leftmost_column + 2) * 2 + 1,

attribute);

offset= (page* 4096) + ((title row+ 2 + i) * 160) +
(leftmost_column + 4) *-2;

for (j = 0; menu.entries [i] [j]; j++)
{

memory map put (segment, offset+ (j * 2), menu.entries[i] [j]);
memory=map=put (segment, offset+ (j * 2) + 1, attribute);

/* determine the location for the menu prompt and display it */

prompt row = 23;
for (i-= O; menu.prompt[i]; i++) ;
prompt column= 39 - (i I 2);
offset- (page* 4096) + (prompt row* 160) + (prompt_column * 2);
for (i = O; menu.prompt[i]; i++)

414 TURBO C PROGRAMMER'S LIBRARY

memory map put (segment, offset+ (i * 2), menu.prompt[i]);
memory-map-put (segment, offset+ (i * 2) + 1, attribute);

} - -

Once the menu is displayed, the following routine obtains the user
selection:

int page= O;
struct menus menu;
int defaulLchoice = O;
int attribute = 64;

geLmenu_response

/*

Index of the desired
menu option

* get_menu_response (page, menu, default_choice, attribute)
*
* Get the user's response to the menu specified.
*
* page (in): Video display page desired.
* menu (in): Structure containing the desired menu.
* default choice (in): Default menu option.
* attribute (in): Desired video attribute.
*
* selection get_menu_response (0, main_menu, O, 64);
*
*/

get menu response (int page, struct menus menu,
- - int default choice, int attribute)

int upper row, leftmost column;
int width~ mode, current page, i, j, segment, offset;
int done = O, row, old_row, max_size, choice, valid_key;

void get video mode (int*, int*, int *);
void memory_map_put (int, int, int);

get_video_mode (&width, &mode, ¤t_page);

if ((width != 80) 11 (page > 3))
return /* only support 80 column */

if (mode == 7) /* monochrome system */
{

}

segment = OxBOOO;
page = O;

else
segment OxB800;

upper_row 13 - 4 - (menu.num_entries I 2);

for (i = O; menu.title[i]; i++) ;

MENUS AND SPECIAL I/0 415

max size ;::: i; /* largest string display thus far */
/* frame size is relative */

/* determine the largest string in the menu */

for (i = 0; i < menu.num_entries; i++)
{
for (j = O; menu.entries[i] [j]; j++)

,
if (j > max_size)

max size = j;

/* determine the leftmost column based on centering */

leftmost column= 39 - ((max_size + 8) /2);
row = default_choice;

/* get the user response */

while (! done)
{
/* determine and highlight the current row */

offset= (page* 4096) + ((upper row+ 4 +row) * 160);
memory map put (segment, offset + (leftmost column + 2) * 2 + 1,

7); - -

offset= (page* 4096) + ((upper row+ 4 +row) * 160) +
(leftmost_column + 4) *-2;

for (j = O; menu.entries [row] [j]; j++)
memory_map_put (segment, offset+ (j * 2) + 1, 7);

choice= no echo read();
valid key =-0; -
old row = row;

/* see if the user pressed a function or arrow key */

if (choice == 0)
{
choice= no echo read();
switch (choice} T

case 72: if (row == 0) /.* up arrow */

416 TURBO C PROGRAMMER'S LIBRARY

}

row = menu.num entries - l;
else -

row--;
valid key = 1;
breakT

case 80: if (row == menu.num entries - 1)
row = O; /* down arrow */

else
row++;

valid key l;
break-

if (valid_key)
{.

}
else

{

/* dehighlight previous row, highlight new row */

offset= (page* 4096) + ((upper row+ 4 +old row) * 160);
memory_map_put (segment, offset + (leftmost_coiumn + 2) * 2 +

attribute};
offset= (page* 4096) + ((upper row+ 4 + old_row) * 160) +

(leftmost_column + 4) * 2;

for (j = O; menu.entries[old row] [j]; j++)
memory_map_put (segment,-offset + (j * 2) + 1, attribute);

offset= (page* 4096) + ((upper row+ 4 +row) * 160);
memory map put (segment, offset + (leftmost column + 2) * 2 + 1

7);- - -

offset= (page* 4096) + ((upper row+ 4 +row} * 160) +
(leftmost column + 4) * 2; -

for (j = O; menu.entries[row] [j]; j++)
memory_map_put (segment, offset+ (j * 2) + 1, 7);

if (choice == 13)
return (row} ;

else

/* carriage return */

/* test letter pressed */
for (i = 0
if ((cho

((cho
return

i < menu.num entries; i++}
ce == menu. choices [i]) I I
ce & ~32) == menu.choices[i]}}
(i};

The routines are implemented separately simply to reduce the
amount of code in each function.

MENUS AND SPECIAL 1/0 417

Pop-Up Menus
Most applications that use menus to prompt the user for information
normally clear the screen display and then place the menu on a
blank screen. However, in some cases, it is more convenient for the
end user to leave the current display active and to place the menu in
a corner of the screen display, as shown here:

source Code Display

A Display Ada Proqrams
B Display BASIC Proqrams
C Display C Proqrams
D Display DBASE Proqrams

tate: California Zip: 81203

bats right, 415 lifetime average.

with the Giants.

Press desired key or use arrow keys and press Enter

Once the user makes a selection, the menu disappears, as shown
here:

Enter Name: Kevin Shafer

Address: 1234 - First Ave

City: San Francisco state: California Zip: 81203

Description: Short stop, bats right, 415 lifetime average.

Brief stint with the Giants.

Such a menu is called a pop-up menu, since it apparently appears
from nowhere and overlays the current contents of the screen. Pop-

418 TURBO C PROGRAMMER'S LIBRARY

up menu processing is quite straightforward. First, you simply save
to a buffer (containing characters and their attributes) the contents
of the section of the display that you will overwrite. Next, you dis­
play and process the menu that obtains the user selection. Lastly,
you must restore the screen contents that were previously buffered
(see Figure 15-1).

Using the routines buffer _video-region and restore-video_
region presented in Chapter 14, the processing becomes quite sim­
ple. The routines are based on the menu type previously discussed.
The only difference is that the routines now allow you to pass the
coordinates of the upper-left corner of the menu.

The following routine displays a video pop-up menu to the screen.
Assuming that the menu structure is as follows,

struct menus {
int num entries;
char choices [15];
char *entries[15J;
char *title;
char *prompt;
prt menu : { 4, "HPLD",

- {"Select HP Laser Printer",

the invocation

"Select Postscript Laser Printer",
"Select Letter Quality Printer",
"Select Dot Matrix Printer"},
''Printer Selection'',
"Press desired key or use arrow keys and press Enter't

display_popup_menu (0, 1, 2, prt_menu, 7);

Figure 15-1.

Start

Buffer screen
region

Display pop-up
menu

Get user selection

Restore screen
region

Stop

MENUS AND SPECIAL I/0 419

Processing involved in pop-up menu display

420 TURBO C PROGRAMMER'S LIBRARY

displays the following:

Printer Selection

H Select HP Laser Printer
P Select Postscript Laser Printer
L Select Letter Quality Printer
D Select Dot Matrix Printer

Press desired key or use arrow keys and press Enter

The following routine implements display _popup_menu.

/*

int page= O;

int row= 10;

int column = 25;

struct menus menu;

int attribute = 7;

display_popup_menu
A Print
B Display
Q Quit

* void display_popup_menu (page, row, column, menu, attribute)
*
* Display the video popup menu specified. Save the previous
* screen contents restoring them once the popup is complete.

* page (in): Video display page desired.
* row (in): Desired upper row for the popup menu.
* column (in): Desired leftmost column for the popup menu.
* menu (in): Structure containing the popup menu.

0
0

MENUS AND SPECIAL 1/0 421

* attribute: Video display attribute desired.

* display_popup_menu (0, 0, 0, printer_menu, 64);
*
* display popup menu relies on a global variable called buffer
* that it-can store the current screen contents into. By making
* this variable global, it is easily accessed by the routine
* get_popup_menu_response which later restores the screen.
*
*/

void display_popup_menu (int page, int row, int column,
struct menus menu, int attribute)

{
int upper row, lower row, leftmost column, rightmost column;
int title-row, prompt row, title column, prompt column, max size;
int title=size, width~ mode, current_page, i, j~ segment, offset;

void get video mode (int*, int*, int *);
void memory map put (int, int, int);
void buffer-video region (int, int, int, int, int, char*);
void display_frame (int, int, int, int, int, int);

get_video_mode (&width, &mode, ¤t_page);

if ((width != 80)
return

I I (page > 3))
/* only support 80 column */

if (mode
{

7) /* monochrome system */

segment = OxBOOO;
page = 0;

)
else

segmeht OxB800;

/* save the previous screen contents */

buffer_screen_region (page, 0, 24, 0, 79, buffer);

row; upper_row

lower row
title-row

row + 5 + menu.num entries;
upper_row + 2; -

for (i = O; menu.title[i]; i++)

max size = i;

title size = i;

/* largest string display thus far */
/* frame size is relative */

/* determine the largest string in the menu */

for (i = O; i < menu.num_entries; i++)
{
for (j = O; menu.entries[i] [j]; j++)

,
if (j > max size)

max size j;

leftmost column = column;
rightmost_column max size + column + 8;

422 TURBO C PROGRAMMER'S LIBRARY

/* clear the screen region which will contain the menu */

for (i = row; i < row + 6 + menu.num_entries; i++)
{
offset= (page* 4096) + (i * 160);
for (j = leftmost column; j <= rightmost column; j++)

memory_map_put (segment, offset+ (j *-2) + 1, 0);

/* determine the location of the title and display it */

title column = ((column + 8 + max size) I 2) - (title size 2);
offset (page* 4096) + (title row* 160) + (title_column * 2);

for (i
{

O; menu.title[i]; i++)

memory map put (segment, offset + (i * 2), menu.title[i]);
memory-map-put (segment, offset + (i * 2) + 1, attribute);

} - -

display_frame (page, upper row, leftmost column,
lower row, rightmost coluffin, 7);

/* display the menu choices */

for (i = O; i < menu.num_entries; i++)
{
offset= (page* 4096) + ((title row+ 2 + i) * 160);
memory map put (segment, offset + (leftmost column + 2) * 2,

menu~choices[i]);
memory map put (segment, offset + (leftmost column + 2) * 2 + 1,

attribute);
offset (page* 4096) + ((title row+ 2 + i) * 160) +

(leftmost_column + 4) *-2;

for (j = O; menu.entries [i] [j]; j++)
{

memory map put (segment, offset+ (j * 2), menu.entries[i] [j]);
memory=map=put (segment, offset+ (j * 2) + 1, attribute);

/* determine the location of the prompt and display it */

prompt row = row + 7 + menu.num entries;
for (i-= O; menu.prompt[i]; i++);
prompt column = column;
offset- (page* 4096) + (prompt row* 160) + (prompt column* 2);

for (i = O; menu.prompt[i]; i++)
{
memory map put (segment, offset+ (i * 2), menu.prompt[i]);
memory-map-put (segment, offset+ (i * 2) + 1, attribute);

} - -

The following routine obtains a user response to the menu and
then restores the previous screen contents:

MENUS AND SPECIAL I/0 423

int page= O;

int row= 10;

int column = 10;

struct menus menu;
get_popup_menu_response

/*

int defaulLchoice = O;

int attribute = 64;

Index of the selected
menu option

* get_popup_menu_response (page, row, column, menu,
default_choice, attribute)

*
*Get the user's response to a video popup menu. Once the
* response is known, restore the previous screen contents.

* page (in): Video display page desired.
* row (in): Upper row of the display frame.
* column (in): Leftmost column of the display frame.
* menu (in): Structure containing the popup menu.
* default choice (in): Default menu option.
* attribute (in) : Video display attribute desired.
*
* get_popup_menu_response (0, 0, O, printer_menu, O, 64);

* get popup menu response uses a global variable called buffer
* which contains-the screen contents to restore.

*/

get popup menu response (int page, int row, int column,
- -struct menus menu, int default_choice, int attribute)

int upper row, leftmost column;
int width~ mode, current page, i, j, segment, offset;
int done = o, old_row, max_size, choice, valid_key;

void get video mode (int *, int *, int *);
void memory map put (int, int, int);
void display_ frame (int, int, int, int, int, int);

get_ video_ mode (&width, &mode, ¤t_page);

if ((width != 80) 11 (page > 3))

424 TURBO C PROGRAMMER'S LIBRARY

return /* only support 80 column */

if (mode
{

7) /* monochrome system */

)

segment = OxBOOO;
page = O;

else
segment OxB800;

upper row row;
row =-default choice;
leftmost column = column;

while (! done)
{

/* highlight the current option */

offset= (page* 4096) + ((upper row+ 4 +row) * 160);
memory map put (segment, offset + (leftmost_column + 2) * 2 + 1,

7); -

offset= (page* 4096) + ((upper row+ 4 +row) * 160) +
(leftmost_column + 4) *-2;

for (j = O; menu.entries [row] [j]; j++)
memory_map_put (segment, offset+ (j * 2) + 1, 7);

choice= no echo read();
valid key =-0;
old row = row;

/* test if user pressed function or arrow key */

if (choice == 0)
{
choice= no echo read();
switch (choice) T

)

case 72: if (row== 0) /* up arrow */
row = menu.num entries - 1;

else
row--;

valid key
break!

case 80: if (row
row = O;

else
row++;

valid key
break-

1;

menu.num entries - 1)
/* down arrow */

1;

if (valid_ key)
{
/* dehighlight previous option, hightlight new row */

offset= (page* 4096) + ((upper row+ 4 +old row) * 160);
memory map put (segment, offset + (leftmost_coTumn + 2) * 2 +

attribute);
offset= (page* 4096) + ((upper_row + 4 + old_row) * 160) +

(leftmost column + 4) * 2;
for (j = O; menu.entries[old row] [j]; j++)

memory_map_put (segment,-offset + (j * 2) + 1, attribute);

}
else

{

MENUS AND SPECIAL I/0 425

offset= (page* 4096) + ((upper row+ 4 +row) * 160);
memory map put (segment,. offset+ (leftmost_column + 2) * 2 +

7) ;- -

offset= (page* 4096) + ((upper row+ 4 +row) * 160) +
(leftmost column + 4) * 2;

for (j = 0; menu.entries[row] [j]; j++)
memory_map_put (segment, offset+ (j * 2) + 1, 7);

if (choice == 13) /* carriage return */
{

restore screen_region (page, O, 24, 0, 79, buffer);
return (row);

else /* test the letter entered */
for (i = O; i < menu.num entries; i++)

if ((choice == menu.choices [i]) 11
((choice & -32) == menu.choices[i]))

restore screen region (page, 0, 24, 0, 79, buffer);
return (i); -

Advanced Video Pop-Up Menus
Video pop-up menus can be easily implemented. With them, your
screen processing capabilities are virtually unlimited. Consider the
following pop-up, which allows the user to add, subtract, multiply,
or divide two numbers.

value: o. 00000000

Value:

Result:

F7 Addition FS subtraction
F9 Multiplication F10 Division

Enter first value.

The routine can be very useful in cases where the user must
enter a numeric response. If your program allows the user to press
the F9 key, for example, to activate the pop-up, the user can first
perform calculations and then respond to the numeric prompt. Once
the user selects the Quit option, the original screen contents are re­
stored. For example, if the user needs to know the result of 625
divided by 17, the first entry would be

Value: 625. 000000

Value:

Result:

F7 Addition FB Subtraction
F9 Multiplication FlO Division

Enter first value.

followed by

Value: 625. 000000

Value: 17. 0000000

Result:

F7 Addition FB Subtraction
F9 Multiplication FlO Division

Enter second value.

Once the user presses the FlO key for division, the result is displayed
and the user is asked to press any key to continue.

Value: 625. 000000

Value: 17. 0000000

Result: 36.64705

F7 Addition FB Subtraction
F9 Multiplication FlO Division

Press any key to continue

MENUS AND SPECIAL I/0 427

The following routine implements the pop-up math processor:

int page= O; calc

Result of
math operation

/*
* float calc (page)

* Display a video popup calculator on the display page specified.
*
* page (in): Desired video display page.

*result= calc (0);

* calc saves the current screen contents and then displays a
* simple calculator. Once the operation is complete, calc
* restores the previous screen contents and returns the result
* of the operation.

*/

float calc (int page)
{
int upper row, lower row, leftmost column, rightmost column;
int attribute, width; mode, current page, i, j, segment, offset;
int key, done = O; -

char buffer[SOOOJ;

float a, b, result;

void get video mode (int*, int*, int*);
void memory map put (int, int, int);
void buffer-video region (int, int, int, int, int, char*);
void put float (float, int, int, int, int, int, int);
void put-string (char*, int, int, int, int, int);

float get prompted float (float, int, int, int, int, int,
Tnt, char-*, int, int, int, char *, int, int, int, in.t);

attribute = 7;

get_video_mode (&width, &mode, ¤t_page);

428 TURBO C PROGRAMMER'S LIBRARY

if ((width != 80) 11 (page > 3))
return /* only support 80 column */

if (mode == 7) /* monochrome system */
{

)

segment = OxBOOO;
page = O;

else
segment = OxB800;

buffer_screen_region (page, 0, 24, 0, 79, buffer);

upper row = 0;
lower-row = upper row + 14;
leftmost column =-0;
rightmost_column = 79;

/* clear the screen region to be used by the calculator */

for (i = upper_row; i < lower_row; i++)
{
offset= (page* 4096) + (i * 160);
for (j = leftmost column; j <= rightmost column; j++)

memory_map_put (segment, offset+ (j *-2) + 1, 0);

/* display the upper row of the frame */

offset= (page* 4096) + (upper row* 160);
memory_map_put (segment, offset-+ (leftmost column* 2), 201);
memory_map_put (segment, offset + (leftmost=column * 2) + 1,

attribute);
memory_map_put (segment, offset+ (rightmost column* 2), 187);
memory_map_put (segment, offset + (rightmost=column * 2) + 1,

attribute) ;

for (i = leftmost_column+l; i <= rightmost_column-1; i++)
{

memory map put (segment, offset+ (i * 2), 205);
memory=map=put (segment, offset+ (i * 2) + 1, attribute);

/* display the lower row of the frame */

offset = (page
memory_map_put
memory_map_put

* 4096) + (lower row* 160);
(segment, offset-+ (leftmost column* 2), 200);
(segment, offset + (leftmost=column * 2) + 1,
attribute);

memory_map_put (segment, offset+ (rightmost column* 2), 188);
memory_map_put (segment, offset + (rightmost=column * 2) + 1,

attribute);

for (i = leftmost_column+l; i <= rightmost_column-1; i++)
{

memory map put (segment, offset+ (i * 2), 205);
memory=map=put (segment, offset+ (i * 2) + 1, attribute);

MENUS AND SPECIAL I/0 429

put string ("Value:", page, 2, 4, attribute, 10);
put-string ("Value:", page, 4, 4, attribute, 10);
put-string ("Result:", page, 6, 4, attribute, 10);
put-string ("F7 Addition F8 Subtraction", page,

8, 4, attribute, 40);
put string ("F9 Multiplication FlO Divsion", page,

9, 4, attribute, 40);

a = get prompted float (0, page, 2, 12,
- 10-; 7, 7, "Value:", 2, 4, 10,

"Enter firstvalue. 11 , 12, 4, 25, 7);

b get prompted float (0, page, 4, 12,
- io-; 7, 7, 11 Value:", 4, 4, 10,

''Enter second value.'', 12, 4, 25, 7);

put string ("Select function key desired " 0, 12,
4, 7, 30);

while (! done)
{

key= no echo read();

if (key == 0) /* need a function key */
{
key= no echo read ();

if (key == 65)
{

}

result = a + b;
done l·

/* F7 */

else if (key
{

66) /* F8 */

}

result = a - b;
done l;

else if (key
{

67) /* F9 */

)

result = a * b;
done l;

else if (key 68) /* FlO */
{

}

result = a I b;
done l;

put float (result, page, 6, 12, 7, 20, 5);

put string ("Press any key to continue
4, 7, 30);

key= no echo read ();

11 f 0, 12,

if (key~= 0)-no echo read (); /* read second half of
special or function key */

restore screen region (page, 0, 24, 0, 79, buffer);

return (result);
}

430 TURBO C PROGRAMMER'S LIBRARY

Menus and video pop-up menus can be used effectively to control
the user interface. The routines in this chapter are meant to provide
you with the foundation from which you can develop more powerful
routines in the future.

A p p E N D x

ASCII Codes
Table A-1 lists the ASCII codes for characters.

Table A-1. ASCII Character Codes

DEC OCTAL HEX ASCII DEC OCTAL HEX ASCII

0 000 00 NUL 10 012 OA LF
1 001 01 SOH 11 013 OB VT
2 002 02 STX 12 014 oc FF
3 003 03 ETX 13 015 OD CR
4 004 04 EOT 14 016 OE so
5 005 05 ENQ 15 017 OF SI
6 006 06 ACK 16 020 10 DLE
7 007 07 BEL 17 021 11 DCl
8 010 08 BS 18 022 12 DC2
9 011 09 HT 19 023 13 DC3

431

432 TURBO C PROGRAMMER'S LIBRARY

Table A-1. ASCII Character Codes (continued)

DEC OCTAL HEX ASCII DEC OCTAL HEX ASCII

20 024 14 DC4 64 100 40 @

21 025 15 NAK 65 101 41 A
22 026 16 SYN 66 102 42 B
23 027 17 ETB 67 103 43 c
24 030 18 CAN 68 104 44 D
25 031 19 EM 69 105 45 E
26 032 lA SUB 70 106 46 F
27 033 1B ESC 71 107 47 G
28 034 lC FS 72 110 48 H
29 035 1D GS 73 111 49 I
30 036 1E RS 74 112 4A J
31 037 lF us 75 113 4B K
32 040 20 SPACE 76 114 4C L
33 041 2i ! 77 115 4D M
34 042 22 " 78 116 4E N
35 043 23 # ' 79 117 4F 0
36 044 24 $ 80 120 50 p
37 045 25 % 81 121 51 Q
38 046 26 & 82 122 52 R
39 047 27 ' 83 123 53 s
40 050 28 (84 124 54 T
41 051 29) 85 125 55 u
42 052 2A * 86 126 56 v
43 053 2B + 87 127 57 w
44 054 2C ' 88 130 58 x
45 055 2D - 89 131 59 y
46 056 2E 90 132 5A z
47 057 2F I 91 133 5B [
48 060 30 0 92 134 5C \
49 061 31 1 93 135 5D l
50 062 32 2 94 136 5E A

51 063 33 3 95 137 5F -

52 064 34 4 96 140 60 '
53 065 35 5 97 141 61 a
54 066 36 6 98 142 62 b
55 067 37 7 99 143 63 c
56 070 38 8 100 144 64 d
57 071 39 9 101 145 65 e
58 072 3A 102 146 66 f
59 073 3B

'
103 147 67 g

60 074 3C < 104 150 68 h
61 075 3D = 105 151 69 i
62 076 3E > 106 152 6A J
63 077 3F ? 107 153 6B k

ASCII CODES 433

Table A-1. ASCII Character Codes (continued)

DEC OCTAL HEX ASCII DEC OCTAL HEX ASCII

108 154 6C I 118 166 76 v
109 155 6D m 119 167 77 w
110 156 6E n 120 170 78 x
111 157 6F 0 121 171 79 y
112 160 70 p 122 172 7A z
113 161 71 q 123 173 7B {
114 162 72 r 124 174 7C I
115 163 73 s 125 175 7D l
116 164 74 t 126 176 7E -
117 165 75 u 127 177 7F DEL

A p p E N D x

B

Turbo C
Run-Time
Library

This appendix provides you with the calling sequence and function
of each routine in the Turbo C run-time library. As stated earlier in
this text, the goal of developing a complete library of routines is to
reduce duplication of effort. As such, it is very important that you
become familar with the Turbo C run-time library.

As you will find, Borland provides you with a myriad of routines
that you can use extensively within your applications. Take some
time now to examine the Borland Turbo C run-time library.

435

436 TURBO C PROGRAMMER'S LIBRARY

void abort (void);
Function Writes a termination message to stderr, aborting the
current application by invoking _exit(3).

Include File <stdlib.h>

Example

abort();

int abs (int);
Function Returns the absolute value of the specified integer
value.

Include File <stdlib.h>

Example

result = abs (a * b);

Note If you do not include stdlib.h, Turbo C will invoke abs as a
macro, as opposed to a function. The abs routine will return a value
in the range 0 to 32, 767.

int absread (int disk,
int num-Sectors, int first-Sector,
void *buff er); ·

Function Reads a physical sector or sectors from disk into the
specified buffer.

Include File <dos.h>

disk (in):
num_sectors (in):
first_sector (in):
buffer (out):

Example

TURBO C RUN-TIME LIBRARY 437

Disk drive desired (A = 0, B = 1, C = 2)
Number of sectors to read
Starting sector number for read
Buffer to read disk information into

status = absread (0, 1, 0, boot-record);

Note If successful, absread returns O; otherwise, it returns -1.

int ahswrite (int disk,
int num-Sectors, int first-sector,
void *buffer);

Function Writes a physical sector or sectors from disk to the
specified buffer.

Include File <dos.h>

disk (in):
num_sectors (in):
first_sector (in):
buffer (out):

Example

Disk drive desired (A = 0, B = 1, C = 2)
Number of sectors to write
Starting sector number for write
Buffer to write disk information from

status = abswrite (0, 1, 0, boot-record);

Note If successful, abswrite returns O; otherwise, it returns -1.

438 TURBO C PROGRAMMER'S LIBRARY

int access (char *filename,
int access-mode);

Function Determines if the specified file exists, and if so, how
the file can be accessed.

Include File <io.h>

filename (in):
access-mode (in):

Example

File desired
Bit pattern specifying the mode of
access desired:
0 File existence 1 Executable
2 Writeable 4 Readable
6 Read/write access

status = access ("TURBO.NTS", O);

Note If the access mode is valid for the specified file, access
returns the value O; otherwise, it returns -1.

double acos (double);
Function Returns the arc cosine of the specified expression.

Include File <math.h>

Example

result = acos (pi);

TURBO C RUN-TIME LIBRARY 439

int allocmem (unsigned paragraphs,
unsigned *segment-address);

Function Allocates a DOS memory segment.

Include File <dos.h>

paragraphs (in): Number of 16-byte paragraphs
desired

segment-address (in): Pointer to the segment address
returned

Example

status= allocmem (1000, &seg_addr);

Note If successful, allocmem returns the value -1; otherwise, it
returns the size of the largest available block. You should not use this
function with malloc or calloc, farmalloc or faralloc.

void far arc (int xloc, int yloc,
int start-angle,
int end-angle, int radius);

Function Draws a circular arc at the specified x,y location,
using the starting and ending angles provided.

440
,

TURBO C PROGRAMMER'8 LIRRARY

Include File <graphics.h>

xloc, yloc (in):
start_angle (in):
end_angle (in):
radius (in):

Example

arc (100, 200, 0, 360, 10);

Specifies the center of the arc
Starting angle for the arc (0-360)
Ending angle for the arc (0-360)
Radius of the arc

Note The arc routine uses the current drawing color.

char *asctime (struct tm *time);
Function Converts a date and time to its ASCII representation.

Include File <time.h>

Example

time-string= asctime (¤t-datetime);

double asin (double);
Function Returns the arc sine of the specified expression.

TURBO C RUN-TIME LIBRARY 441

Include File <math.h>

Example

result = asin

void assert (int condition);
Function Tests the specified condition. If the test fails, assert termin­
ates the current program and displays the message

Assertion failed: file PROGRAM, line LINE-NUMBER

Include File <assert.h>

condition (in): Boolean expression to test

Example

assert(argc > 1);

Note If you set the NDEBUG directive to no debugging prior to
an assert, Turbo C will ignore the assert.

double atan (double);
Function Returns the arc tangent of the specified expression.

442 TURBO C PROGRAMMER'S LIBRARY

Include File <math.h>

Example

result = atan (pi)

double atan2 (double, double);
Function Returns the arc tangent of x and y expressions.

Include File <math.h>

Example

result = atan2 (y, x);

int atexit (atexit-t function-name);
Function Defines a function that Turbo C will invoke (without
arguments) at program termination prior to returning control to the
operating system.

Include File <stdlib.h>

function_name (in):

Example

void test()

Entry point of function to add to
exit list

printf ("Test called \n");

main()
{

status = atexit (test);

TURBO C RUN-TIME LIBRARY 443

Note If successful, atexit returns the value 0. If an error occurs,
atexit returns a nonzero value.

double atof (char *str);
Function Converts an ASCII string representation of a value to
a floating-point value.

Include File <math.h>

str (in): ASCII representation of value

Example

salary = atof ("77500.34");

Note If the string cannot be converted, atof returns 0.

int atoi (char *str);
Function Converts a string representation of an integer value to
a value of type int.

444 TURBO C PROGRAMMER'S LIBRARY

Include File <stdlib.h>

str (in): ASCII representation of the value

Example

age = atoi ("59");

Note If the string cannot be converted, atoi returns 0.

long atol (char *str);
Function Converts an ASCII representation of a value to a value
of type long int.

Include File <stdlib.h>

Example

zip_code = atol ("89126");

Note If the string cannot be converted, atol returns the value 0.

TURBO C RUN-TIME LIBRARY 445

void far bar (int left-corner,
int top-corner, int right-corner,
int bottom-corner);

Function Draws a bar (for a bar graph) with the specified
corners.

Include File <graphics.h>

left_corner (in): Specifies the x coordinate of the
upper-left corner

top_corner (in): Specifies the y coordinate of the
upper-left corner

bottom_corner (in): Specifies the y coordinate of the
lower-right corner

right_corner (in): Specifies the x coordinate of the
lower-right corner

Example

bar (10, 10, sales, offset);

Note The bar routine uses the current fill pattern and color.

void far bar3d (int left-corner,
int top-corner, int right-corner,
int bottom-corner, int depth,
int top-flag);

Function Draws a bar (for a bar graph) with the specified
corners.

446 TURBO C PROGRAMMER'S LIBRARY

Include File <graphics.h>

left_corner (in):

top_corner (in):

Specifies the x coordinate of the
upper-left corner
Specifies the y coordinate of the
upper-left corner

bottom_corner (in): Specifies the y coordinate of the
lower-right corner

right_corner (in):

depth (in):
top_flag (in):

Example

Specifies the x coordinate of the
lower-right corner
Depth of the bar in pixels
If 0, the bar is not drawn in 3D. If
nonzero, the number of pixels speci­
fied by depth are added to the bar

bar3d (10, 10, sales, offset,3, 1);

Note The bar3d routine uses the current fill pattern and color.

int bdos (int DOS/unction,
unsigned dx, unsigned al);

Function Invokes a DOS function (small memory model) that
only requires the DX and AX registers.

Include File <dos.h>

DOSfunction (in):
dx (in):
al (in):

Example

DOS service to be performed
DX register contents for service
AL register contents for service

current-drive= bdos (OX19, 0, O);
~

~

TURBO C RUN-TIME LIBRARY 447

Note The bdos routine returns the contents of the AX register or
the value -1 if an error occurs.

int bdosptr (int DOS/unction, void *parameter,
unsigned al);

Function Invokes a DOS function that requires a pointer to an
argument and AX registers.

Include File <dos.h>

DOSfunction (in):
parameter (in):
al (in):

Example

DOS service to perform
Parameter required for the service
AL register contents for service

current-drive= bdosptr (OX19, 0, O);

Note The bdosptr routine returns the contents of the AX regis­
ter or the value -1 if an error occurs.

int bioscom (int command,
char fyyte, int port-id);

Function Performs serial 1/0 through the specified port.

448 TURBO C PROGRAMMER'S LIBRARY

Include File <bios.h>

command (in):

byte (in):
port-id (in):

Example

Operation to perform:
0 Set port 1 Send character
2 Receive char 3 Return status
Port settings or char to output
Serial port ID (O-coml, 1-com2)

status= bioscom (1, 65, O);

Note Refer to bios.h for more specifics on port settings.

int biosdisk (int command,
int disk, int side, int track,
int sector, int numsectors,
void *buff er);

Function Performs disk operations by means of BIOS interrupt
13H.

Include File <bios.h>

command (in): Disk operation to perform:
0 Resets disk system
1 Returns last operation status
2 Reads sector(s)
3 Writes sector(s)
4 Verifies sector(s)
5 Formats track
(AT and XT Services)

disk (in):
side (in):
track (in):
sector (in):
numsectors (in):
buffer (in/out):

Example

TURBO C RUN-TIME LIBRARY 449

6 Formats track set bad sector
flags

7 Formats drive
8 Returns disk drive parameters
9 Initializes drive parameters
OxA Long read operation
OxB Long write operation
OxC Disk seek
OxD Alternate disk reset
OxE Reads sector buffer
OxF Writes sector buff er
OxlO Test drive ready
Oxll Recalibrates drive
Ox12 Controller diagnostic
Ox13 Drive diagnostic
Ox14 Controller internal diagnostic
Disk drive desired (A = 0, B = 1, C = 2)
Side of disk desired (O or 1)
Track desired
Starting sector for operations
Number of sectors to manipulate
Data buffer for operations

status = biosdisk (2, 0, 0, 0, 0, 1, bootrecord);

Note If the operation is successful, 0 is returned. Otherwise,
biosdisk returns an error status value.

int biosequip (void);
Function Returns a value specifying the current equipment
connections.

Include File <bios.h>

450 TURBO C PROGRAMMER'S LIBRARY

Example

equipment = biosequip ();

Note The integer value returned specifies the following:

Bit 1
Bits 2-3

Bits 4-5

Bits 6-7

Bit 11
Bit 12
Bits 14-15

Math coprocessor present
Motherboard RAM (0=16K, 1=32K,
2=48K, 3=64K)
Video mode (O=n/a, 1=40X25 color,
2=80X25 color, 3=80X25 bw)
Number of diskettes (O=l drive, 1=2
drives, 2=3 drives, 3=4 drives)
Number of serial ports
Game adapter present
Number of printers present

int bioskey (int command);
Function Provides an interface for BIOS keyboard services.

Include File <bios.h>

command (in): Operation to perform:
0 returns the next key pressed. If the

lower byte is 0, the upper byte con­
tains the scan code for the key
pressed

1 returns the next key in the buff er if
a keystroke is available; otherwise,
returns the value 0

2 returns the current keyboard status:
Oxl Right SHIFT key pressed
Ox2 Left SHIFT key pressed
Ox4 CTRL key pressed
Ox8 ALT key pressed

Example

status = bioskey (2);

TURBO C RUN-TIME LIBRARY 451

OxlO SCROLL LOCK on
Ox20 NUM LOCK on
Ox40 CAPS LOCK on
Ox80 INS on

int biosmemory (void);
Function Returns the amount of system memory in kilobytes.

Include File <bios.h>

Example

Kbytes = biosmemory ();

int biosprint (inc command,
int byte, int port-id);

Function BIOS printer interface routine.

Include File <bios.h>

command (in):

byte (in):
port_id (in):

Command to perform:
0 prints the character in bytes
1 initializes the specified printer port
2 returns the printer status
Character to be printed for command 1
Port number affected (O-LPTl, 1-LPT2)

452 TURBO C PROGRAMMER'S LIBRARY

Example

status = biosprint (1, 65, O);

Note Valid return status values include the following:

OxOl Device time out
OxlO Printer selected
Ox40 Ack

Ox08 Output error
Ox20 Printer out of paper
Ox80 Printer not busy

long biostime (int command,
long new-realtime);

Function Sets or returns the current system real-time clock
counts.

Include File <bios.h>

command (in):

new _realtime (in):

Example

Command to perform (O returns
current count, 1 sets current count)
Clock ticks since midnight

count= biostime (0, dummy);

Note The real-time clock on the IBM PC and PC compatibles
ticks 18.2 times per second. This routine returns the number of clock
ticks since midnight.

TURBO C RUN-TIME LIBRARY 453

int brk (void *end-datasegment);
Function Modifies the data segment space allocation.

Include File <alloc.h>

end_datasegment (in): The new desired end of the data
segment

Example

status = brk (endds);

Note The memory location that immediately follows the data
segment is called the break value. By modifying this value you can
resize the application's data segment size.

void *bsearch (void *key,
void *base, int number-of-elements,
int width, int (*compare-function)());

Function Performs a binary search to locate a specific element
in an array.

Include File <stdlib.h>

key (in): The search key of the desired
item

454 TURBO C PROGRAMMER'S LIBRARY

base (in):

number _of_elements (in):

width (in):
compare_function (in):
Return a value < 0 if a < b
Return a value = 0 a = b
Return a value> 0 if a> b

Example

Pointer to element 0 of the
array
Number of elements in the
array
Size of each entry in bytes
Function to perform element
comparisons

index = bsearch (ssan, social, 100, 2, comp);

Note If the element is not found, bsearch returns the value 0.

double cahs (struct complex number);
Function Returns the absolute value of a complex number.

Include File <math.h>

number (in): Complex number desired

Example

result = cabs (complex);

TURBO C RUN-TIME LIBRARY 455

void *calloc (size-t number-of-elements,
size-t element-Size);

Function Allocates a contiguous block of memory and initializes
it to zero.

Include File <stdlib.h>, <alloc.h>

number _of_elements (in):

element_size (in):

Example

pointer = (char *) calloc (1, 255);

double ceil (double);

Number of elements to al­
locate space for
Size of each element in
bytes

Function Rounds the value of a double expression up.

Include File <math.h>

Example

max = ceil (value);

456 TURBO C PROGRAMMER'S LIBRARY

char *cgets (char *string);
Function Reads a character string from the console device.

Include File <conio.h>

string (in/out): String to be read. Upon input, string[O]
should contain the number of characters
to read. Upon completion, the string will
contain string[11 the number of characters
read, or string[2], the first character
read

Example

cgets (string);

Note The cgets routine replaces the newline character with the
null character.

int chdir (char *']Jathname);
Function Selects the specified current directory.

Include File <dir.h>

Example

status= chdir.(" \ \TURBOC");

TURBO C RUN-TIME LIBRARY 457

Note If successful, chdir returns the value 0. If an error occurs,
it returns the value -1.

int -chmod (char *filename,
int functionl int attribute]);

Function Sets or returns the attributes for a file.

Include File <io.h>

filename (in):
function (in):

attribute (in):

Example

Name of the desired file
If 0, the current attribute is re­
turned; if l, the current attribute
is set
Desired file attribute:
FA_RDONLY
FA-HIDDEN
FA-SYSTEM

attribute = _chmod (" ALLOC.H", O);

Note If successful, _chmod returns the value 0. If an error occurs,
the routine returns -1.

int chmod (char *filename,
int access);

Function Modifies the file access restrictions for the specified
file.

458 TURBO C PROGRAiviivIER'S LIBRARY

Include File <io.h>

filename (in):
access (in):

Example

Name of the desired file
File access desired:
S_IWRITE
S_IREAD
s_mEAD 1 s_IWRITE

result = chmod (''TEST.C", S-IWRITE);

Write access
Read access
Read/write access

Note If the routine is successful, chmod returns the value 0. If
an error occurs, the routine returns -1.

int chsize (int file-handle,
long new-Size);

Function Sets the size attribute for a file as specified.

Include File <io.h>

handle (in):

new _size (in):

Example

File handle associated with the file
whose size is being set
Desired size of the file in bytes

result = chsize (file-handle, 32000);

Note The file must be opened in either write or read/write
mode.

void far circle (int xloc,
int yloc, int radius);

TURBO C RUN-TIME LIBRARY 459

Function Draws a circle at the specified x and y location.

Include File <graphics.h>

xloc, yloc (in):

radius (in):

Example

circle (100, 100, 10);

The x and y locations of the center of
the circle
Desired size of the circle's radius

Note The circle routine uses the current drawing color.

unsigned int -clear87 (void);
Function Clears the math coprocessor floating-point status word.

Include File <float.h>

Example

status = _clear87();

Note The value returned by _clear87 contains the previous sta­
tus word.

460 TURBO C PROGRAMMER'S LIBRARY

void far cleardevice (void);
Function Clears the screen display in graphics mode.

Include File <graphics.h>

Example

cleardevice();

Note The cleardevice routine erases the entire graphics screen
and updates the current position to 0,0.

void clearerr (FILE *file-pointer);
Function Clears a file's (stream's) error status indicator,

Include File <stdio.h>

file_pointer (in): Data stream desired

Example

clearerr (file_pointer);

Note This service is closely related to ferror.

TURBO C RUN-TIME LIBRARY 461

void far clearviewport (void);
Function Clears the current viewport in graphics mode.

Example

clearviewport ();

Note The clearviewport routine erases the current viewport and
updates the current position to 0,0.

int -close (int file-handle);
Function Closes the file associated with the given file handle.

Include File <io.h>

file_handle (in): File handle of the file to close

Example

status = _close (file-handle);

Note If successful, _close returns the value O; otherwise, it
returns the value -1. Unlike close, _close does not place an end-of­
file marker ('Z) at the end of the file.

int close (int file-handle);
Function Closes the file associated with the given file handle.

Include File <io.h>

file_handle (in): File handle of the file to close

Example

status = close (file-handle);

Note If successful, -close returns the value O; otherwise, it
returns the value -1. The _close routine is a text file manipulation
routine. Upon invocation, this routine places a "z end-of-file marker
at the end of the file.

void far closegraph (void);
Function Turns off graphics, returning you to text mode.

Include File <graphics.h>

Note The closegraph routine performs the inverse function of
initgraph.

void clreol (void);
Function Clears text from the current cursor position to the end
of the current line for the current text window.

TURBO C RUN-TIME LIBRARY 463

Include File <conio.h>

Example

clreol();

Note The clreol routine does not move the current cursor
position.

void clrscr();
Function Clears the current text window and places the cursor
in the upper-left corner of the window (1,1).

Include File <conio.h>

Example

clrscr();

unsigned coreleft (void);
Function Returns the number of bytes of core memory that are
currently unused.

Al£! Al rnTTflDA 0 DDA0D /I. l\Kl\ITDD'C! T TOD /I. DV
':l:U'-2: l- UJ.\..LJV V .1. J.\..VU.l\...L:l-J.U .. J.U..LIJ.\. l.J ~.1..LJ'J.\."'-.t...1.llJ.

Include File <alloc.h>

Example

bytes = coreleft ();

Note For the compact, large, and huge memory models, use a
return type of unsigned long.

double cos (double);
Function Returns the cosine of the specified double expression.

Include File <math.h>

Example

result = double (pi);

double cosh (double);
Function Returns the hyperbolic cosine of the given double ex­
pression.

Include File <math.h>

TURBO C RUN-TIME LIBRARY 465

Example

result = double (pi);

struct country *country-info (int country-code,
struct country *country-info);

Function Returns country-specific information.

Include File <dos.h>

country _code (in): Country code number of the desired
country

country _info (out): Structure containing country infor­
mation

Note The DOS.H file defines the country structure.

int cprintf (char *format­
string [, parameter[, ...]]);

Function Sends formatted output to the BIOS or video RAM.

Include File <conio.h>

format_string (in): String specifying the output format
parameter (in): Data to be output

466 TURBO C PROGRAMMER'S LIBRARY

Example

cprintf ("String o/oS Number %d \n", str, 10);

Note This routine does not expand newline characters into a
carriage return/linefeed. This routine writes its output to the cur­
rent window.

void cputs (char *string);
Function Writes a character string to BIOS or video RAM.

Include File <conio.h>

string (in): Character string to display

Example

cputs ("This is a test string \n");

Note The cputs routine does not append a newline character.
This routine writes its output to the current window.

int -creat (char *filename,
int attribute);

Function Creates a file with the specified name and attribute.

TURBO C RUN-TIME LIBRARY 467

Include File <dos.h>

filename (in):
attribute (in):

Example

Filename to create
Desired file attribute

result = _creat ("TEST.DAT", O);

Note If a file with the specified name exists, _creat overwrites it
if the write attribute is set. If successful, _creat returns a file han­
dle to the desired file; otherwise, it returns the value -1.

int creat (char *filename,
int access);

Function Creates a file with the specified name and access.

Include File <sys \stat.h>

filename (in):
access (in):

Example

Filename to create
File access:
S_IWRITE
S_IREAD
s_rwRITE 1 s_rREAD

result= creat ("TEST.DAT", S_IWRITE);

Write access
Read access
Read/write
access

468 TURBO C PROGRAMMER'S LIBRARY

Note If a file with the specified name exists, creat overwrites it. If
successful, creat returns a file handle to the desired file; otherwise,
it returns the value -1.

int creatnew (char *filename,
int attribute);

Function Creates a file with the specified name and attribute.

Include File <io.h>

filename (in):
attribute (in):

Example

Filename to create
Desired file attribute

result= creatnew ("TEST.DAT", O);

Note If a file with the specified name exists, creatnew overwrites
it. If successful, creatnew returns a file handle to the desired file;
otherwise, it returns the value -1.

int creattemp (char *filename,
int attribute);

Function Creates a temporary file with the specified path given
in filename and attribute.

TURBO C RUN-TIME LIBRARY 469

Include File <io.h>

filename (in/out): Path in which to create temporary file
attribute (in): Desired file attribute

Example

result = creattemp ("TEST.DAT", O);

Note If successful, creattemp returns a file handle to the desired
file; otherwise, it returns the value -1.

int cscanf (char *format­
sequence [, arguments]);

Function Performs formatted input to the console device in a
manner similar to scanf.

format_sequence (in): Specifies the input format desired
arguments (in): Pointers to the variables to be

input

Example

num_fields = cscanf ("%d %d", &valuel, &value2);

Note The cscanf routine returns the number of input fields suc­
cessfully scanned and stored.

4 70 TURBO C PROGRAMMER'S LIBRARY

char *ctime (long *seconds
-since-01-01-1970);

Function Returns a string that corresponds to the specified date.

Include File <time.h>

seconds_since-01_01_1970 (in): Number of seconds
since 00:00 Jan 1, 1970

Example

printf ("Date o/o.s \n", ctime (&seconds));

Note The Turbo C routine time returns the number of seconds
since 01/01/1970 for the current date.

void ctrlbrk (int (*function)(void));
Function Defines a control-break handler.

Include File <dos.h>

function (in): Address of the function DOS will
execute each time interrupt 23H
occurs. This interrupt occurs when­
ever the user presses CTRL-C or
CTRL-BREAK.

Example

int my _handler ();
ctrlbrk (my-handler);

TURBO C RUN-TIME LIBRARY 471

Note Upon program termination, DOS resets the interrupt 23H
handler to its original value.

void delay (unsigned milliseconds);
Function Temporarily suspends processing for the specified
duration.

Include File <dos.h>

milliseconds (in): Number of milliseconds to delay for

Example

delay (1000); /* delay 1 second */

void delline (void);
Function Deletes the line containing the cursor in the current
window, and scrolls all of the lines below the current line up one
line.

Include File <conio.h>

472 TURBO C PROGR .. A"""lV!lVIER'S LIBRARY

Example

delline();

void far detectgraph (int far *graph-driver,
int far *graph-mode);

Function Returns the graphics driver and mode to be used with
the current hardware.

Include File <graphics.h>

graph_driver (out): Graphics driver to use for current
hardware

graph_mode (out): Graphics mode to use for current
hardware

Example

detectgraph (&graph-driver, &graph-mode);

double difjtime (time-t time2,
time-t time1);

Function Returns the number of seconds by which the two speci­
fied times differ.

TURBO C RUN-TIME LIBRARY 473

Include File <time.h>

time2 (in):
timel (in):

Time to subtract timel from

Example

Time subtracted from time2 to yield the
difference in seconds

result = difftime (today, yesterday);

void disable (void);
Function Disables hardware interrupts (with the exception of unmask­
able interrupts).

Include File <dos.h>

Example

disable();

Note To reenable interrupts, you must use the enable routine.

div-t div (int numerator,
int denominator);

Function Performs integer division, returning both a quotient
and a remainder.

474 TURBO C PROGRAMMER'S LIBRARY

Include File <stdlib.h>

numerator (in):
denominator (in):

Example

result = div (16, 3);

Number to be divided
Number divided into the numerator

Note div_t is a structure containing

typedef struct {
int quot;
int rem;

} div_t;

int dosexterr (struct DOSERR *error-info);
Function Fills the structure pointed to by error _info with the
extended error information for the last failing DOS system service.

Include File <dos.h>

error _info (out):

Example

Structure to contain extended error
information

result = dosexterr (&error _info);

TURBO C RUN-TIME LIBRARY 475

Note If dosexterr returns the value 0, the previous DOS system
service did not experience an error.

long dostounix (struct date *date-ptr,
struct time *time-ptr);

Function Converts the DOS date and time format into a UNIX
date and time format.

Include File <dos.h>

date_ptr (in):

time_ptr (in):

Example

Structure containing the current
DOS date
Structure containing the current
DOS time

unix_time = dostounix (&date_var, &time-var);

void far drawpoly (int number-of-points,
int far *points);

Function Draws the outline of the polygon contained in the
points array.

r
4 76 TURBO C PROGRAMMER'S LIBRARY

Include File <graphics.h>

number _of_points (in): Number of points in the polygon
points (in): Array containing the x,y coor­

dinates of the polygon

Example

drawpoly (4, triangle);

Note If an error occurs in drawpoly, graphresult will contain
-6.

int dup (int file-handle);
Function Duplicates a DOS file handle.

Include File <io.h>

file_handle (in): File handle to duplicate

Example

new -handle = dup (file-handle);

Note If dup is successful, it returns a positive file handle. Oth­
erwise, dup returns a negative value.

TURBO C RUN-TIME LIBRARY 477

int dup2 (int old-file-handle,
int new-file-handle);

Function Duplicates a DOS file handle.

Include File <io.h>

old_file_handle (in):
new _file_handle (in):

Example

dup (oldfile, filehandle);

File handle to duplicate
New copy of file handle

Note This routine is provided for compatibility with UNIX.

char *ecvt (double value,
int number-of-digits,
int *decimal-loc, int *sign);

Function Converts a floating-point number into a character
string.

Include File <stdlib.h>

value (in):

number _of_digits (in):

Floating-point value to con­
vert
Number of digits in the
string representation of the
value

4 78 TURBO C PROGRAMMER'S LIBRARY

decimal_loc (out):
sign (out):

Example

Location of the decimal point
Negative value if the value is
nonzero; 0 otherwise

str = ecvt (664.333, 7, &loc, &sign);

Note This routine does not place the decimal into the string or
place a negative sign at the front of the string.

void far ellipse (int x-loc,
int Y-loc, int start-angle,
int end-angle,
int X-radius, int Y-radius);

Function Draws an ellipse, at the given location, with the aspect
ratio specified by x_radius and y _radius.

Include File <graphics.h>

x_loc, y _loc (in):

start_angle (in):
end_angle (in):
x_radius (in):
y _radius (in):

Example

The x and y locations of the center of the
ellipse
Starting angle for the ellipse
End angle for the ellipse
Radius of the ellipse along the x axis
Radius of the ellipse along the y axis

ellipse (100, 100, 0, 360, 10, 5);

TURBO C RUN-TIME LIBRARY 479

Note The ellipse routine uses the current drawing color.

void enable (void);
Function Enables interrupts previously disabled by the run-time
library disable routine.

Include File <dos.h>

Example

enable();

Note The disable routine can only disable unmaskable interrupts.

int eof (int file-handle);
Function Returns true if the file associated with the given file
handle has reached end of file; otherwise, eof returns the value 0.

Include File <io.h>

Example

while (! eof (file-handle))

Note If eof experiences an error, it returns the value -1.

480 TURBO C PROGRAMMER'S LIBRARY

int exec . . . (char *Path,
char *argO, char *arg1
NULL);

. '

Function Spawns a DOS command as a child process.

Include File <process.h>

path (in):
argO-argn:

Example

Name of the command to spawn
Command-line parameters for the
spawned program

status= execl ("TEST.EXE", "TEST.EXE", "Al", NULL);

Note The execl routine is similar to exec but only searches the root
or current directory for the child. If you add the suffix "p," it will
search for the child program in the directories contained in the DOS
path. If you add the suffix "l," you pass the command-line parame­
ters as individual values. If you add "v," you are passing the
command-line parameters as an array of pointers. Lastly, the "e"
suffix allows you to pass an environment to the child process. If no
environment is specified, the child inherits the current environment.

void -exit (int status);
Function Terminates the current program, returning the speci­
fied status value.

TURBO C RUN-TIME LIBRARY 481

Include File <process.h>

status (in):

Example

_exit (O);

Status value to return to the parent process
or DOS

Note The _exit routine does not close open files.

void exit (int status);
Function Terminates the current program, returning the speci­
fied status value.

Include File <process.h>

status (in):

Example

exit (O);

Status value to return to the parent
process or DOS

Note The exit routine flushes file buffers and appropriately
updates files.

double exp (double value);
Function Returns the exponential of the specified value.

482 TURBO C PROGRA.l\1:l\1:ER'S LIBH.1.A.-.RY

Include File <math.h>

value (in): Value to return the exponential of

Example

result = exp (x);

double Jabs (double value);
Function Returns the absolute value of a<double-precision
expression.

Include File <math.h>

value (in): Value to return the absolute value of

Example

result = fabs (-44.3332);

void Jar *farcalloc (unsigned long number
-Of-entries,
unsigned long entry-Size);

Function Allocates memory from the far heap and clears it.

TURBO C RUN-TIME LIBRARY 483

Include File <alloc.h>

number _of_entries (in): Number of elements to allocate
space for

entry_size (in): Number of bytes in each
element

Example

chunk = faralloc (1, 65000);

Note If faralloc cannot allocate the specified space, it returns the
value NULL.

long f arcoreleft (void);
Function Returns the number of bytes available in the far heap.

Include File <alloc.h>

Example

long_var = farcoreleft ();

void f arfree (void far *ptr);
Function Returns previously allocated memory to the far heap.

Include File <alloc.h>

484 TURBO C PROGRAMMER'S LIBRARY

Example

farfree (chunk);

void far *farmalloc (unsigned long number
-Of-IYytes);

Function Allocates space from the far heap.

Include File <alloc.h>

number _of_bytes (in): Number of bytes of memory to
allocate

Example

buffer= farmalloc (65000);

Note If farmalloc cannot satisfy the request, it returns the value
NULL; otherwise, it returns a pointer to the desired memory.

void far *farrealloc (void far *'J>tr,
unsigned long num-IYytes);

Function Reallocates memory for a previously allocated segment
of memory from the far heap.

TURBO C RUN-TIME LIBRARY 485

Include File <alloc.h>

ptr (in): Pointer to the previously allocated
memory

num_bytes (in): Number of bytes of memory desired

Example

block = farrealloc (block, 65001);

int f close (FILE *stream);
Function Flushes all of the buffers associated with a file and
updates the file on disk.

Include File <stdio.h>

Example

status = fclose (file);

Note If successful, fclose returns the value 0.

int f close all (void);
Function Flushes all of the buffers associated with open files and
updates each file on disk as it closes it.

486 TURBO C PROGRAMMER'S LIBRARY

Include File <stdio.h>

Example

status = f closeall ();

Note This routine returns the number of file streams closed.

char *fcvt (double value,
int number-of-digits,
int *decimal-loc, int *sign);

Function Converts a floating-point number into a character
string.

Include File <stdlib.h>

value (in):
number _of_digits (in):

decimal-lac (out):
sign (out):

Example

Floating-point value to convert
Number of digits in the string
representation of the value
Location of the decimal point
Negative value if the value is
negative; 0 otherwise

str = ecvt (664.333, 7, &loc, &sign);

Note This routine does not place the decimal into the string or
place a negative sign at the front of the string. This routine differs
from ecvt in that it rounds to FORTRAN F format the number of
digits specified.

TURBO C RUN-TIME LIBRARY 487

FILE *fd-Open (int handle,
char *open-type);

Function Associates a stream with the file handle returned by
creat, dup, dup2, or open.

Include File <stdio.h>

handle (in):
open_type (in):

Example

File handle to associate with the stream
Specifies how the file can be accessed:
r Read-only w Write access
a Append r+ Read/write
w+ Create new a+ Create for ap-

pend if no file

file-pointer = fdopen (handle, "r");

Note If an error occurs, fdopen returns the value NULL.

int feof (FILE *stream);
Function Returns true (1) if the specified file has reached end of
file; otherwise, returns 0.

Include File <stdio.h>

stream (in): File stream to examine for end of file

Example

while (! feof (in-file))

488 TURBO C PROGRAMMER'S LIBRARY

int /error (FILE *stream);
Function Returns true (1) if the specified file experienced a read
or write error; otherwise, returns 0.

Include File <stdio.h>

stream (in): File stream to examine for error

Example

status = ferror (in-file);

int !flush (FILE *stream);
Function Flushes the file buffers for the specified file.

Include File <stdio.h>

Example

status = fflush (in-file);

Note If the file is an input file, fflush flushes the input stream.

int fgetc (FILE *stream);
Function Reads the next character from the specified file
stream.

TURBO C RUN-TIME LIBRARY 489

Include File <stdio.h>

Example

ltr = fgetc(in_file);

Note If fgetc obtains EOF or an error occurs, it will return the
value EOF.

int fgetchar (void);
Function Reads the next character from stdin.

Include File <stdio.h>

Example

ltr = fgetchar;

Note If fgetchar obtains EOF or an error occurs, it will return the
value EOF. Unlike getchar, fgetchar is a function.

intfgetpos (FILE *file-Stream,
fpos-t *file-position);

Function Stores the current file position of the file associated with
file-Stream into the location pointed to by file-position.

49G TURBO C PROGRAiviJ'viER'S LIBRARY

Include File <stdio.h>

file_stream (in): File pointer associated with the
file of interest

file_position (out): Location at which current file posi­
tion is stored

Example

status = fgetpos (fp, &file-position);

Note If successful, fgetpos returns O; otherwise, it returns a non­
zero value.

char *f gets (char *string,
int num-bytes, FILE *stream);

Function Reads a character string from an input stream.

Include File <stdio.h>

string (out):
num_bytes (in):

stream (in):

Example

Character string of data read
Maximum number of characters in the
string
File stream to read the characters from

status = fgets (str, 255, fp);

TURBO C RUN-TIME LIBRARY 491

Note Upon end of file, fgets returns NULL. It leaves the newline
character at the end of each string.

long filelength (int file-handle);
Function Returns the number of bytes in the file associated with
the given file handle.

Include File <io.h>

file_handle (in):

Example

File handle returned from open or
er eat

long_var = filelength (handle);

Note If filelength encounters an error, it returns the value - lL.

int fileno (FILE *stream);
Function Obtains a file handle for a given file stream.

Include File <stdio.h>

stream (in): File stream to return a file handle to

492 TURBO C PROGRAMMER'S LIBRARY

Example

file-handle = fileno (fp);

void far fill poly (int number­
of-points, int far *Points);

Function Draws the outline for, and fills in, the polygon specified
in the points array.

Include File <graphics.h>

number _of_points (in): Number of points in the polygon
points (in): Array of points specifying the

polygon's shape

Example

fillpoly (10, points);

Note The fillpoly routine uses the current drawing and fill colors
and fill pattern.

int findjirst (char *Path,
struct ffblk *fileblock,
int attribute);

Function Searches a directory of files for a file that matches the
given description (filename or wildcard characters).

TURBO C RUN-TIME LIBRARY 493

Include File <dir.h>

path (in): DOS pathname (including optional
drive) of the path to examine in search of
the files

fileblock (out): File block structure containing
struct ffblk {

};

char ff_reserved[21];
char ff_attrib;
int ff_ftime;
int ff_fdate;
long ff _fsize;
char ff_name[13];

attribute (in): File attribute to be used in matching
files

Example

status= findfirst ("*·*",&file-block, O);

Note Use findfirst to locate the first matching file and the findnext
routine to locate subsequent files. If findfirst is successful, it returns
the value 0.

int findnext (struct ffblk *fileblock);
Function Searches a directory of files for a file that matches the
description (filename or wildcard characters) given in a call to
findfirst.

494 TURBO C PROCRANH,fER'S LIBRARY

Include File <dir.h>

fileblock (out): File block structure as defined in find­
first

Example

status = findnext (&file-block);

Note Use findfirst to locate the first matching file and the findnext
routine to locate subsequent files. If successful, the findfirst routine
returns the value 0.

void far flood/ill (int X-loc,
int Y-loc, int border-color);

Function Fills a region bounded by the color specified in border_
color with the current fill pattern and color.

Include File <graphics.h>

x_loc (in): The x point that resides within the region
to fill

y _loc (in): The y point that resides within the region
to fill

border _color: Color surrounding the region to fill

Example

floodfill (100, 100, red);

TURBO C RUN-TIME LIBRARY 495

Note If floodfill encounters an error, graphresult will contain -7.

double floor (double value);
Function Rounds a double-precision value down to the largest in­
teger that is not greater than the value.

Include File <math.h>

value (in): Double-precision value to round

Example

approx-cost = floor (purchase_price * tax);

int flushall (void);
Function Flushes all of the disk buffers for open file streams.

Include File <stdio.h>

Note The flushall routine returns 0 upon success.

double frrwd (double x, double y);

Function Returns the remainder of the division of two double­
precision values.

496 TURBO C PROGRAMMER'S LIBRARY

Include File <math.h>

x (in):
y (in):

Value y is divided into
The divisor

Example

result= fmod (total-Sales, employees);

Note See also the modf routine.

void Jn merge (char *path,
char *drive, char *directory,
char *filename, char *extension);

Function Builds a complete DOS pathname from all of the compo­
nent parts.

Include File <dir.h>

path (out):
drive (in):
directory (in):
filename (in):
extension (in):

Example

Complete DOS pathname
Desired drive letter, including colon
DOS directory path desired
8-character DOS filename
3-character DOS file extension

fnmerge (path, "A:","\ \TURBOC\ \","TEST", "C");

Note See also the fnsplit routine.

voidfnsplit (char *]Jath,
char *drive, char *directory,
char *filename,
char *extension);

TURBO C RUN-TIME LIBRARY 497

Function Breaks down a complete DOS pathname into all of its
component parts.

Include File <dir.h>

path (out):
drive (in):
directory (in):
filename (in):
extension (in):

Example

Complete DOS pathname
Desired drive letter, including colon
DOS directory path
8-character DOS filename
3-character DOS file extension

fnsplit ("A:\\ TBO \ \FILENAME.C", drive, path, file, ext);

Note See also the fnmerge routine.

FILE */open (char *filename,
char *access-type);

Function Opens a DOS file stream.

Include File <stdio.h>

498 TURBO C PROGRAMMER'S LIBRARY

filename (in):
access-type (in):

Example

fp = fopen (argv[l], "r");

Name of the file to open
Defines how the file will be accessed:
r Read-only w Write
a Append r+ Read/write
w+ Create write a+ Append create

if new file

Note If unsuccessful, fopen returns NULL. If you need to open a
file in binary mode, simply attach a b to the access type, as in rb or
wb. For text mode, you can append the letter t.

unsigned FP-OFF(void far *far-pointer);
Function Returns the offset portion of a far pointer.

Include File <dos.h>

far _pointer (in): Far pointer to return the offset portion
of

Example

offset = FP _QFF (far _pointer);

void -!preset (void);
Function Reinitializes the floating-point math library.

TURBO C RUN-TIME LIBRARY 499

Include File <float.h>

Note Early DOS versions (before version 2.x) allowed child pro­
cesses to leave the 8087 in an inconsistent state. This routine resets
the math coprocessor to a known state.

int fprintf (FILE *stream,
char *f ormat-Bequence [, arguments . . .]);

Function Performs formatted output to a file stream.

Include File <stdio.h>

stream (in):
format_sequence (in):

arguments (in):

Example

File stream to be written to
Control sequence specifying the
output format
Data to be written to the file

num_bytes = fprintf (fp, "o/od o/of \n", days, salary);

Note The fprintf routine returns the number of bytes written to
the data stream.

500 TURBO C PROGRAMMER'S LIBRARY

unsigned FP-SEG(void far
*far-pointer);

Function Returns the segment portion of a far pointer.

Include File <dos.h>

far _pointer (in): Far pointer to return the segment por­
tion of

Example

segment = FP-SEG (far _pointer);

int fputc (int character,
FILE *stream);

Function Outputs a single character to a file stream.

Include File <stdio.h>

character (in): Character to be written to the file
stream

stream (in): File stream to be written to

Example

result= fputc ('a', fp);

Note If successful, fputc returns the character written. If an error
occurs, fputc returns EOF.

TURBO C RUN-TIME LIBRARY 501

int /puts (char *str,
FILE *stream);

Function Writes a character string to a file stream.

str (in): Character string to be written to the data
stream

stream (in): File string to be written to

Example

last_char = fputs ("This is a test \n", fp);

Note If successful, fputs returns the last character written. If an
error occurs, fputs returns EOF.

int /read (void *pointer,
int num-bJJtes, int num-items,
FILE *stream);

Function Reads the specified number of bytes from a data stream.

Include File <stdio.h>

pointer (in):
num_bytes (in):
num_items (in):

Pointer to the data buffer
Number of bytes in each entry
Number of items of num_bytes length
to read

502 TURBO C PROGRAMMER'S LIBRARY

Example

num_items-read = fread(buffer, 255, 5, fp);

Note If successful, fread returns the number of items read. If an
error occurs, fread returns an invalid count.

void free (void *]Jointer);
Function Releases a section of previously allocated memory.

Include File <stdlib.h>

pointer (in):

Example

free (list-node);

Pointer to the previously allocated
memory

int freemem (unsigned segment);
Function Frees a previously allocated DOS segment.

Include File <dos.h>

segment (in): Segment address of the memory block to
release

TURBO C RUN-TIME LIBRARY 503

Example

result= freemem (segment-addr);

Note If successful, freemem returns 0. If an error occurs, it
returns -1.

FILE */reopen (char *filename,
char *access-type,
FILE *stream);

Function Substitutes a named file in place of a file stream.

Include File <stdio.h>

filename (in):
access_type (in):

stream (in):

Example

Name of the file to open
Specifies how the file is to be opened:
r Read-only w Write
a Append r+ Read/write
w+ Create write a+ Append create

if new file
File pointer to be associated with the
file

fp = freopen ("TEMP.DAT', "w", stdout);

Note If successful, freopen returns the value of the file pointer. If
an error occurs, it returns the value NULL.

504 TURBO C PROGRAMMER'S LIBRARY

double frexp (double value,
int *exponent);

Function Splits a double-precision value into an exponent and
mantissa.

Include File <math.h>

value (in):
exponent (out):

Example

Value to be split
Exponent of the value

mantissa = frexp (value, &exponent);

Note The value returned by frexp is the mantissa.

int fscanf (FILE *stream,
char format-sequence[, argument ...]);

Function Writes formatted output to a file stream.

Include File <stdio.h>

stream (in):
format_sequence (in):

arguments (in):

Example

File stream to write to
Control sequence specifying the output
format
Data to be written to the file

num_fields = fscanf (fp, "o/od o/od %fn", &a, &b, &c);

TURBO C RUN-TIME LIBRARY 505

Note The fscanf routine returns the number of fields filled suc­
cessfully.

int /seek (FILE *stream,
long offset, int location);

Function Moves the file pointer in a file stream.

Include File <stdio.h>

stream (in):
offset (in):
location (in):

Example

File stream desired
Desired byte offset in the file
Location to offset from:
SEEK_SET (O) Start of file
SEEK-CUR (1) Current file position
SEEK-END (2) End of file

status= fseek (fp, 128, SEEK-SET);

Note If successful, fseek returns the value 0. If an error occurs, it
returns a nonzero value.

int fsetpos (FILE *file -Stream,
const fpos-t *file·-position);

Function Sets the current file position for the specified file to the
value last saved by fgetpos.

506 TURBO C PROGRAMMER'S LIBRARY

Include File <stdio.h>

file__stream (in): File pointer associated with the de­
sired file

file_position (in): File position to be selected for the file

Example

result = fsetpos (fp, &file-position);

Note If successful, fsetpos returns O; otherwise, it returns a non­
zero value.

int f stat (char *handle,
struct stat *stat-info);

Function Returns information about the file associated with a file
handle.

Include File <stat.h>

handle (in):

stat_info (out):

Example

File handle associated with the de­
sired file
Structure containing the file
information

result = fstat (file-handle, &stat-info);

Note If successful, fstat returns the value O; otherwise, it returns
the value -1.

TURBO C RUN-TIME LIBRARY 507

long /tell (FILE *stream);
Function Returns the current file-pointer location.

Include File <stdio.h>

stream (in): Data file stream desired

Example

loc = ftell (fp);

int /write (void *buff er,
int num-bytes, int num-items,
FILE *stream);

Function Writes the specified number of bytes to a data stream.

Include File <stdio.h>

pointer (in):
num_bytes (in):
num_items (in):

Example

Pointer to the data buffer
Number of bytes in each entry
Number of items of num_bytes
length to read

num_items-written = fwrite(buffer, 255, 5, fp);

508 TURBO C PROGRAMMER'S LIBRARY

Note If successful, fwrite returns the number of items written. If
an error occurs, it returns an invalid count.

char *gcvt (double value,
int num-digits, char *Str);

Function Converts a double-precision value into its character
string representation.

Include File <stdlib.h>

value (in):
num_digits (in):
str (out):

Example

Double-precision value
Number of digits in the string
ASCII representation of the floating­
point value

status = gcvt (334.33, 10, str);

Note gcvt returns a value of type string.

void geninterrupt (int interrupt­
number);

Function Generates the desired software interrupt.

TURBO C RUN-TIME LIBRARY 509

Include File <dos.h>

interrupt_number (in): Desired software interrupt
number

Example

geninterrupt (Ox21);

void far getarccoords
(struct arccoordstype far *arc
-Coord);

Function Returns the coordinates of the last call to arc.

Include File <graphics.h>

arc_coord (out):

Example

getarccoords (&arc_coords);

Note The structure type is

struct arccoordstype {
int X, y;

Structure containing the arc coordinates

int xstart, ystart, xend, yend;
};

510 TURBO C PROGRAMMER'S LIBRARY

void Jar getaspectratio (int Jar =Ex-aspect,
int Jar *JJ-aspect);

Function Returns the aspect ratio for the current graphics mode.

Include File <graphics.h>

x_aspect (out):

y_aspect (out):

Example

The aspect ratio for the current
graphics mode
The aspect ratio (normalized to
10000) for the current mode

getaspectratio (&x-aspect, &y-aspect);

int Jar getbkcolor (void);
Function Returns the current graphics mode background color.

Include File <graphics.h>

Example

background-color = getbkcolor ();

Note The setbkcolor routine sets the current background color.

TURBO C RUN-TIME LIBRARY 511

int getc(FILE *stream);
Function Gets the next character in a file stream.

Include File <stdio.h>

stream (in): File stream to read a character from

Note If getc encounters an end of file, it returns EOF.

int getcbrk (void);
Function Returns the current state of control-break checking, on
(1) or off (O).

Include File <dos.h>

Example

state = getcbrk();

Note The setcbrk routine enables or disables control-break
checking.

int getch(void);
Function Gets a character from the console device without echoing
that character.

512 TURBO C PROGRAMMER'S LIBRARY

Include File <conio.h>

Example

letter = getch();

Note If getch encounters an end of file or an error, it returns the
value EOF.

int getchar(void);

Function Gets the next character from the stdin file stream.

Include File <stdio.h>

Example

letter = getchar();

Note If getchar encounters an end of file or an error, it returns the
value EOF.

int getche(void);

Function Gets a character from the console device echoing that
character.

TURBO C RUN-TIME LIBRARY 513

Include File <conio.h>

Example

letter = getche();

Note If getche encounters an end of file or an error, it returns the
value EOF. The routine echoes the character to the current window.

int far getcolor (void);
Function Returns the current graphics color.

Include File <graphics.h>

Example

foreground-color = getcolor ();

Note The setcolor routine specifies the current color.

int getcurdir (int drive,
char *directory);

Function Returns the current directory for the specified disk
drive.

514 TURBO C PROGRAMMER'S LIBRARY

Include File <dir.h>

drive (in):

directory (out):

Example

Disk drive ID desired (0 = current,
1 =A, 2 = B)
DOS pathname of the directory

status = getcurdir (1, directory);

Note If getcurdir encounters an error, the value -1 is returned.

char *getcwd (char *directory,
int num-bytes);

Function Returns the current working directory.

Include File <dir.h>

directory (in):

num_bytes (in):

Example

Buffer containing the current di­
rectory
Number of bytes malloc should allo­
cate to store the current directory.
DOS directory names do not exceed
64 characters

status= getcwd (directory, 64);

Note If getcwd encounters an error, it returns -1.

TURBO C RUN-TIME LIBRARY 515

void getdate (struct date *current-date);
Function Returns the current DOS system date.

Include File <dos.h>

current_date (out): Structure containing the current sys­
tem date:
struct date {

int da_year;
char da_day;
char da_mon;

} ;

Example

getdate (¤t-date);

void getdfree (int drive,
struct dfree *disk-info);

Function Returns the amount of free space on the specified
drive.

Include File <dos.h>

drive (in): Disk drive desired (0 = A, 1 = B,
2= C)

disk_info (out): Structure containing the disk space in­
formation:
struct dfree {

unsigned df__avail; /* clusters available */

516 TURBO C PROGRAMMER'S LIBRARY

};

Example

unsigned df_total; /* total clusters */
unsigned df_bsec; /* bytes per
sector */

unsigned df_sclus; /* sectors per
cluster */

status= getdfree (O, &disk-info);

Note If getdfree encounters an error, it returns -1.

int getdisk (void);
Function Returns the current disk drive.

Include File <dir.h>

Example

drive = getdisk();

Note Disk drives are identified as 0 = A, 1 = B, 2 = C.

char *far getdta (void);
Function. Returns the address of the disk transfer.

Include File <dos.h>

TURBO C RUN-TIME LIBRARY 517

Example

far _address = getdta();

Note By default, DOS places the disk transfer's address at offset
Ox80 of the program segment prefix.

char *getenv(char *environment­
variahle);

Function Returns the value assigned to an environment variable.

Include File <stdlib.h>

environment_variable (in):

Example

str = getenv ("INCLUDE");

Environment variable to re­
turn the value of

Note If getenv cannot find a matching entry, it returns a NULL
string.

void get! at (int drive,
struct fatinfo *fat-info);

Function Returns file allocation table information for the specified
disk drive.

518 TURBO C PROGRAMMER'S LIBRARY

Include File <dos.h>

drive (in): Disk drive desired (0 = current, 1 = A, 2 =
B, 3 = C)

fat_info (in): Structure containing the FAT information:
struct fatinfo {

};

Example

getfat (1, &fat-info);

char fi_sclus; /* sectors/cluster */
char fi_fatid; /* fat ID byte */
int fi_nclus; /* number of clusters */
int fi_bysec; /* bytes/sector */

void getf atd (struct f atinf o */at-info);
Function Returns file allocation table information for the default
disk drive.

Include File <dos.h>

fat_info (in): Structure containing the FAT information:

Example

getfatd (&fat_info);

struct fatinfo {

};

char fi_sclus; /* sectors/cluster */
char fi_fatid; /* fat ID byte */
int fi_nclus; /*number of clusters */
int fi_bysec; /* bytes/sector */

TURBO C RUN-TIME LIBRARY 519

void far getfillpattern (char far *fill­
pattern);

Function Copies a user-defined fill pattern into memory for fill
operations in graphics mode.

Include File <graphics.h>

Example

fill_pattern (in): An 8-byte array, where each byte
represents 8 pixels; thus, an 8 X 8
pattern can be specified

get_fillpattern (my _pattern);

void far getfillsettings (struct
fillsettingstype far *fill-info);

Function Returns the current graphics mode fill pattern and
color.

Include File <graphics.h>

fill_info (out): Structure containing the current fill
pattern and color:
struct fillsettingstype {

int pattern;
int color;

} ;

520 TURBO C PROGRAMMER'S LIBRARY

Example

getfillsettings (&fill_info);

Note If the pattern returned is 12, a user-defined pattern is m
effect. Predefined patterns include

0 Empty fill
1 Solid fill
2 Line fill -
3 Left-slash fill /
4 Thick left-slash fill
5 Backslash fill \
6 Thick backslash fill
7 Light hatch fill
8 Heavy crosshatch fill
9 Interleaving line fill

10 Wide-spaced dot fill
11 Close-spaced dot fill

int getjtime (int file-handle,
struct ftime *file-Stamp);

Function Gets a file's date and time stamp.

Include File <dos.h>

file_handle (in): File handle associated with the de­
sired file

file__stamp (out): Structure containing the file's date
and time:
struct ftime {

unsigned ft_tsec:5;
unsigned ft_min:6;
unsigned ft_hour:5;
unsigned ft_day: 5;
unsigned ft_month:4;
unsigned ft_year: 7;

);

TURBO C RUN-TIME LIBRARY 521

Example

status = getftime (filehandle, &file-Stamp);

Note If successful, getftime returns the value 0.

int far getgraphmode ();
Function Returns the current graphics mode.

Include File <graphics.h>

Example

save-mode = getgraphmode ();

Note See graphics.h for definitions of graphics modes.

voidfar getimage (int left-corner,
int top-corner, int right-corner,
int bottom-comer, void far *image);

Function Saves a bit image from the specified screen coordinates.

522 TURBO C PROGRAMMER'S LIBRARY

Include File <graphics.h>

left_corner (in):

top_corner (in):

right-corner (in):

bottom_corner (in):

image (out):

Example

getimage (10, 20, 20, 30, buffer);

Leftmost corner of the image
to save
Topmost corner of the image
to save
Rightmost corner of the im­
age to save
Bottommost corner of the im­
age to save
Buffer containing the bit
image

Note The image size cannot exceed 64K.

int far getmaxcolor (void);
Function Returns the number associated with the last color value
you can specify in graphics mode.

Include File <graphics.h>

Example

max-color = getmaxcolor ();

TURBO C RUN-TIME LIBRARY 523

int far getmaxx (void);
Function Returns the maximum x screen coordinate.

Include File <graphics.h>

Example

max_x = getmaxx ();

int far getmaxy (void);
Function Returns the maximum y screen coordinate.

Include File <graphics.h>

Example

max_y = getmaxy ();

void far getmoderange (int graph-driver,
int far *lowest-mode,
int far *highest-mode);

Function Returns the lowest and highest graphics mode values
that you can specify for the given graph driver.

524 TURBO C PROGRAMMER'S LIBRARY

Include File <graphics.h>

Example

getmoderange (graph-driver, &low, &high);

Note If the graphics driver specified is invalid, both low and
high are set to -1.

voidfar getpalette (struct palettetypefar *J>alette);
Function Returns information about the current available colors.

Include Fiie <graphics.h>

Example

palette (out): Structure containing palette information:
struct palettetype {

unsigned char size;
signed char colors [MAX-COLORS +1];

}; '

getpalette (&palette);

Note See graphics.h for color definitions.

TURBO C RUN-TIME LIBRARY 525

char *getpass (char *Prompt);
Function Prompts the user to enter a password and returns the
password entered.

Include File <conio.h>

prompt (in): Character string prompt

Example

pass = getpass ("Enter your secret password");

Note The password can contain up to eight characters.

int far getpixel (int X-loc,
int Y-loc);

Function Returns the color of the pixel at the specified x,y
location.

Include File <graphics.h>

x_loc, y _loc (in):

Example

color = getpixel (10, 20);

The x and y location of the
desired pixel

526 TURBO C PROGRAMMER'S LIBRARY

unsigned getpsp (void);
Function Returns the program segment prefix address.

Include File <dos.h>

Example

segment_addr = getpsp ();

Note getpsp only works under DOS 3.x.

char *gets (char *string)
Function Returns a character string from the stdin stream.

Include File <stdio.h>

string (out): Character string read

Example

status = gets (str);

Note If gets encounters an error or end of file, it returns EOF. It
replaces a newline character with the NULL character.

int gettext (int left-corner,
int top-corner,

TURBO C RUN-TIME LIBRARY 527

int right-corner, int bottom-comer, void *buff er);
Function Copies text from your screen display into a buffer.

left_corner (in): Specifies the x coordinate of the
upper-left corner of the region to
copy

top_corner (in): Specifies the y coordinate of the
upper-left corner of the region to
copy

bottom_corner (in): Specifies the y coordinate of the
lower-right corner of the region to
copy

right_corner (in): Specifies the x coordinate of the
lower-right corner of the region to
copy

buffer (out): Buffer in memory that the text is
copied to

Example

gettext (0, 10, 20, 79, buff er);

Note All coordinates are screen coordinates, as opposed to window
coordinates. Calculate your buff er size as

size = (rows) * (columns) * 2

528 TURBO C PROGRAMMER'S LIBRARY

gettextinf o (struct text-info *text­
record);

Function Returns specifics about text mode.

Include File <conio.h>

text_record (out):

Example

gettextinfo (&text-record);

void far gettextsettings

Structure containing text mode infor­
mation:
struct text_info {

);

unsigned char winleft;
unsigned char wintop;
unsigned char winright;
unsigned char winbottom;
unsigned char attribute;
unsigned char normattr;
unsigned char currmode;
unsigned char screenheight;
unsigned char screenwidth;
unsigned char curx;
unsigned char cury;

(struct textsettingstype far text­
record);

Function Returns information about graphics mode text settings.

Include File <graphics.h>

text_record (out):

Example

TURBO C RUN-TIME LIBRARY 529

Structure containing graphics text
information:
struct textsettingstype {

int font;

};

int direction;
int charsize;
int horiz;
int vert;

gettextsettings (&text-record);

void gettime (struct time *system-time);
Function Returns the current system time.

Include File <dos.h>

system_time (out): Structure assigned the current sys­
tem time:

Example

gettime (¤t-time);

struct time {

};

unsigned char ti_min;
unsigned char ti_hour;
unsigned char ti_hund;
unsigned char ti-Sec;

530 TURBO C PROGRAMMER'S LIBRARY

unsigned interrupt
(*getvect(int interrupt-number))();

Function Returns the interrupt vector address for the specified in­
terrupt.

Include File <dos.h>

interrupt_ number (in): Interrupt number to return the
vector for

Example

vector -address = getvect (5);

getviewsettings
(struct viewporttype far *View-port);

Function Returns specifics about the current viewport.

Include File <graphics.h>

viewport (out): Structure containing specifics about the
current viewport:
struct viewporttype {

};

int left, top, right, bottom;
int clipflag;

TURBO C RUN-TIME LIBRARY 531

Example

getviewsettings (&view _port);

int getverify (void);
Function Returns the current state of disk verification.

Include File <dos.h>

Example

status = getverify ();

Note If disk verification is on, getverify returns the value 1. If disk
verification is off, getverify returns 0.

~nt getw (FILE *stream);
Function Gets an integer value from a data stream.

Include File <stdio.h>

stream (in): Data file stream

Example

value= getw (fp);

532 TURBO C PROGRAMMER'S LIBRARY

int far getx (void);
Function Returns the current position's x coordinate in graphics
mode.

Include File <graphics.h>

Example

xloc = getx();

Note Coordinates are viewport relative.

int far gety (void);
Function Returns the current position's y coordinate in graphics
mode.

Include File <graphics.h>

Example

yloc = gety();

Note Coordinates are viewport relative.

TURBO C RUN-TIME LIBRARY 533

struct tm *gmtime(long *clock);
Function Converts a date and time to Greenwich mean time.

Include File <time.h>

clock (in): Structure containing the time to convert

Example

gmt_time = gmtime (¤t-time);

void gotoxy (int x-loc, int y
-loc);

Function Sets the cursor position (column,row) in text mode.

Include File <conio.h>

x_loc (in):
y_loc (in):

Example

gotoxy (10, 10);

Desired column for the cursor
Desired row for the cursor

Note The cursor is positioned within the current window.

534 TURBO C PROGRAMMER'S LIBRARY

char far *grapherrormsg (int error­
code);

Function Returns an error message string for the specified graph­
result.

Include File <graphics.h>

error _code (in): Error code value contained in graph­
result

Example

msg = grapherrormsg (-8);

void far -graphfreemem (void far *'pointer,
unsigned fyytes);

Function Releases memory allocated for graphics by _graph­
getmem.

Include File <graphics.h>

pointer (in):
bytes (in):

Example

Pointer to the allocated memory
Number of bytes to release

_graphfreemem (buffer, 1024);

TURBO C RUN-TIME LIBRARY 535

void far *far
-graphgetmem (unsigned size);

Function Allocates memory for graphics manipulation.

Include File <graphics.h>

size (in): Number of bytes of memory to allocate

Example

buffer= _graphgetmem (1024);

int far graph result (void);
Function Returns the error code for the last unsuccessful graphics
operation.

Include File <graphics.h>

Example

status = graphresult ();

Note Once you invoke graphresult, Turbo C resets its value to 0.
Common error status codes include

0 No error
-1 Graphics not installed; use initgraph
-2 Graphics hardware not found

536 TURBO C PROGRAMMER'S LIBRARY

-3 Device driver not found
-4 Invalid device driver file
-5 Insufficient memory to load driver
-6 Out of memory in scan fill
-7 Out of memory in flood fill
-8 Font file not found
-9 Insufficient memory to load font
-10 Invalid graphics mode for driver selected
-11 Graphics error
-12 Graphics I/O error
-13 Invalid font file
-14 Invalid font number
-15 Invalid device number

int gsignal (int signal);
Function Raises the specified signal, and executes the action
routine.

Include File <signal.h>

signal (in): Software signal, ranging from 1 to 15

Example

result = gsignal (2);

Note The gsignal routine returns the value returned by the action
defined or the constant SIG-DFL if the signal is invalid.

TURBO C RUN-TIME LIBRARY 537

void harderr (int (*function-ptr) ());
Function Defines a hardware error handler.

Include File <dos.h>

function_ptr (in): Address of the function to serve as the
hard error handler

Example

harderr (my-handler);

Note Hard errors occur when interrupt Ox24 is invoked. The most
common occurrence ofthis is an open disk drive. You can define your
own error-handling routine. When interrupt Ox24 occurs, your rou­
tine will receive these parameters:

(int error _value, int ax, int bp, int si);

See the Turbo C manual for more specifics on the information con­
tained in these parameters.

void hardresume (int resume-code);
Function Returns 2 (abort), 1 (retry), or 0 (ignore) based upon a
hard error-handling routine to DOS.

538 TURBO C PROGRAMMER'S LIBRARY

Include File <dos.h>

resume_code (in):

Example

hardresume (O);

Return status value (2=abort,
1 =retry, O=ignore)

void hardretn (int error-code);
Function Returns an error status code to the application based
upon a hard error handler.

Include File <dos.h>

error _code (in):

Example

hardretn (O);

void highvideo (void);

Value returned to the application
program

Function Selects high-intensity attributes for text display.

Include File <conio.h>

TURBO C RUN-TIME LIBRARY 539

Example

high video ();

Note This routine allows you to make some text appear in a heav­
ier boldface on your screen display.

double hypot (double x, double y);
Function Returns the hypotenuse of a right triangle.

Include File <math.h>

x (in):
y (in):

Example

z = hypot (x, y);

x side of the triangle
y side of the triangle

unsigned far imagesize (int left-corner,
int top-corner,
int right-corner,
int bottom-corner);

Function Returns the number of bytes required to store the speci­
fied graphics image.

540 TURBO C PROGRAMMER'S LIBRARY

Include File <graphics.h>

left_corner (in):

top_corner (in):

bottom-corner (in):

right_corner (in):

Example

Specifies the x coordinate of the
upper-left corner of the region to
copy
Specifies the y coordinate of the
upper-left corner of the region to
copy
Specifies the y coordinate of the
lower-right corner of the region to
copy
Specifies the x coordinate of the
lower-right corner of the region to
copy

num_bytes = imagesize (10, 10, 20, 20);

void far initgraph (int far *graph-driver,
int far *graph-mode,
char far *driver-path);

Function Initializes graphics by loading a graphics driver from
disk, validating the driver, and placing the system into graphics
mode.

Include File <graphics.h>

graph_driver (in):
graph_mode (in):
driver _path (in):

Graphics driver for system
Desired graphics mode
DOS subdirectory that con­
tains graphics device driver
files

TURBO C RUN-TIME LIBRARY 541

Example

initgraph (&graphics-driver, &graphics-mode, "");

Note If driver _path is NULL, BGI files must be in the current
directory. Use the following values for graphics drivers:

0 DETECT Autodetect correct driver for hardware
1 CGA monitor
2 MCGA monitor
3 EGA monitor
4 EGA64 monitor
5 EGAMONO monitor
6 RESERVED
7 HERCMONO Hercules monitor
8 ATT400 monitor
9 VGA monitor
10 PC3270 monitor

See the file graphics.h for graphics modes.

int inport (int port-number);
Function Inputs a word from the specified hardware port.

Include File <dos.h>

port_number (in): Desired hardware port number

Example

status = inport (Ox3da);

542 TURBO C PROGRAMMER'S LIBRARY

int inportb (int port-number);
Function Inputs a byte from the specified hardware port.

Include File <dos.h>

port-number (in): Desired hardware port number

Example

status = inportb (Ox3da);

void insline (void);
Function Inserts a blank line at the current cursor position in
the current text window.

Include File <conio.h>

Example

insline();

Note All lines (including the current line and below) are moved
down one line.

TURBO C RUN-TIME LIBRARY 543

int int86x (int interrupt-number,
union REGS *inregs,
union REGS *outregs);

Function Invoke the specified 8086 interrupt and assign the 8086
registers the values contained in the structure inregs.

Include File <dos.h>

interrupt_number (in):
inregs (in):

outregs (out):

Example

Desired 8086 interrupt
Structure containing the values to
assign to the 8086 registers (see
Chapter 6)
Structure containing the values
contained in the 8086 registers fol­
lowing the interrupt service

status = int86 (OxlO, inregs, outregs);

Note int86 returns the value of the AX register upon completion of
the interrupt routine.

544 TURBO C PROGRAMMER'S LIBRARY

int int86 (int interrupt-number,
union REGS *inregs,
union REGS *outregs,
struct SREGS *segregs);

Function Invokes the specified 8086 interrupt and assigns the
8086 registers the values contained in the structures inregs and
sregs.

Include File <dos.h>

interrupt_number (in):
inregs (in):

outregs (out):

sregs (in/out):

Example

Desired 8086 interrupt
Structure containing the values
to assign to the 8086 registers
(see Chapter 6)
Structure containing the values
contained in the 8086 registers
following the interrupt service
Structure containing the 8086
segment registers

status = int86x (OxlO, inregs, outregs, sregs);

Note int86x returns the value of the AX register upon completion
of the interrupt service routine.

TURBO C RUN-TIME LIBRARY 545

int intdos(union REGS *inregs,
union REGS *outregs);

Function Invokes DOS interrupt Ox21 (general-purpose interrupt)
after assigning the 8086 registers the values contained in the struc­
ture inregs.

Include File <dos.h>

inregs (in): Structure containing the values to assign
to the 8086 registers (see Chapter 6)

outregs (out): Structure containing the values contained
in the 8086 registers following the inter­
rupt service

Example

status = intdos (inregs, outregs);

Note intdos returns the value of the AX register upon completion
of the interrupt service routine.

int intdosx(union REGS *inregs,
union REGS *outregs,
struct SREGS sregs);

Function Invokes DOS interrupt Ox21 (general-purpose inter­
rupt) after assigning the 8086 registers the values contained in the
structures inregs and sregs.

546 TURBO C PROGRAMMER'S LIBRARY

Include File <dos.h>

inregs (in):

outregs (out):

sregs (in/out):

Example

Structure containing the values to
assign to the 8086 registers (see
Chapter 6)
Structure containing the values
contained in the 8086 registers fol­
lowing the interrupt service
Structure containing the 8086 seg­
ment registers

status = intdosx (inregs, outregs, sregs);

Note intdosx returns the value of the AX register upon completion
of the interrupt service routine.

void intr (int interrupt­
number,
struct REGPACK *regs);

Function Execute 8086 interrupt service routine.

Include File <dos.h>

interrupt_number (in):
regs (in/out):

Desired interrupt service routine
Structure containing 8086 registers:
struct REGPACK {

};

unsigned r _ax, r _bx, r _cx, r _dx;
unsigned r _bp, r _si, r _di, r _ds;
unsigned r _es, r _flags;

TURBO C RUN-TIME LIBRARY 547

Example

intr (5, regs);

int ioctl (int devhandle,
int command [,int argdx,
int argcx]);

Function Extended control to an I/0 device.

Include File <io.h>

devhandle (in): Handle to the desired device
command (in): Specific command to perform:

0 Get device info

Example

1 Set device info into argdx
2 Read the number of bytes specified by

argcx into the buffer pointed to by
argdx

3 Write the number of bytes specified by
argcx from the buffer pointed to by
argdx

4 Same as command 2. Treat the device
handle as a disk-drive specifier.

5 Same as command 3. Treat the device
handle as a disk-drive specifier.

6 Get input status
7 Get output status
8 Test device removeability

11 Reset sharing conflict retry count

status = ioctl (handle, 0, &argcx, &argdx);

Note This routine provides direct device-driver access.

548 TURBO C PROGRAMMER'S LIBRARY

int isalnum(int character);
Function Returns 1 if the character contained in the parameter
character is alphanumeric; otherwise, returns 0.

Include File <io.h>

character (in): Character to examine

Example

while (isalnum (letter));

int isalpha (int character);
Function Returns 1 if the character contained in the parameter
character is in the range A-Z or a-z; otherwise, returns 0.

Include File <io.h>

character (in): Character to examine

Example

while (isalpha (letter));

TURBO C RUN-TIME LIBRARY 549

int isascii(int character);
Function Returns 1 if the character contained in the parameter
character is in the range 0-127.

Include File <io.h>

character (in): Character to examine

Example

while (isascii (letter));

int isatty (int devicehandle);
Function Returns 1 if the device associated with the device handle
is a tty device.

Include File <io.h>

devicehandle (in): Handle to the desired device

Example

status = isatty (handle);

Note isatty returns the value 1 if the device is a console, terminal,
printer, or serial port.

550 TURBO C PROGRAMMER'S LIBRARY

int iscntrl(int character);
Function Returns 1 if the character contained in the parameter
character is in the range 0-0xlF.

Include File <io.h>

character (in): Character to examine

Example

while (iscntrl (letter));

int isdigit(int character);
Function Returns 1 if the character contained in the parameter
character is in the range '0'-'9'.

Include File <io.h>

character (in): Character to examine

Example

while (isdigit (letter));

TURBO C RUN-TIME LIBRARY 551

int isgraph(int character);
Function Returns 1 if the character contained in the parameter
character is a printable character other than a space.

Include File <io.h>

character (in): Character to examine

Example

while (isgraph(letter));

int islower(int character);
Function Returns 1 if the character contained in the parameter
character is a lowercase character.

Include File <io.h>

character (in): Character to examine

Example

while (islower(letter));

552 TURBO C PROGRAMMER'S LIBRARY

int isprint(int character);
Function Returns 1 if the character contained in the parameter
character is a printable character.

Include File <io.h>

character (in): Character to examine

Example

while (isprint(letter));

int ispunct(int character);
Function Returns 1 if the character contained in the parameter
character is a punctuation character (iscntrl or isspace).

Include File <io.h>

character (in): Character to examine

Example

while (ispunct(letter));

TURBO C RUN-TIME LIBRARY 553

int isspace(int character);
Function Returns 1 if the character contained in the parameter
character is a space, carriage return, tab, form feed, newline, or
vertical tab.

Include File <io.h>

character (in): Character to examine

Example

while (isspace(letter));

int isupper(int character);
Function Returns 1 if the character contained in the parameter
character is an uppercase letter.

Include File <io.h>

character (in): Character to examine

Example

while (isupper(letter));

int isxdigit(int character);
Function Returns 1 if the character contained in the parameter
character is a hexidecimal digit (0-9, 'A'-'F').

554 TURBO C PROGRAMMER'S LIBRARY

Include File <io.h>

character (in): Character to examine

Example

while (isxdigit(letter));

char *itoa (int value,
char *str, int radix);

Function Converts an integer value to its ASCII representation.

Include File <stdlib.h>

value (in):
str (out):
radix (in):

Example

Integer value to convert
String to contain ASCII representation
Specifies the desired radix (2-36):
2 (binary), 10 (decimal), 8 (octal), 16 (hex),
and so forth)

result = itoa (3344, str, 10);

Note itoa does not return an error status.

int kbhit (void);
Function Returns a nonzero value if keys are available in the key­
board buffer. If no keys have been pressed, kbhit returns the value 0.

Include File <conio.h>

Example

while (! kbhit());

void keep (int status,
int paragraphs);

TURBO C RUN-TIME LIBRARY 555

Function Terminates the current program resident in memory.

Include File <dos.h>

status (in): Exit status value returned to DOS
paragraphs (in): Number of 16-byte paragraphs DOS

must allocate for the memory-resident
program

Example

keep (1, 1000);

Note For more information on memory-resident C programs, refer
to Osborne/McGraw-Hill's C Power User's Guide.

long labs (long value);
Function Returns the absolute value of a long variable.

Include File <math.h>

value (in): Value of which to return the absolute
value

556 TURBO C PROGRAMMER'S LIBRARY

Example

result = labs (-3443223L);

double ldexp (double value,
int exponent);

Function Returns the result of value * 2 raised to the exponent.

Include File <math.h>

value (in):

exponent (in):

Example

Value to be multiplied by the expression
2 to the power of exponent
Power to which to raise the value 2

result = ldexp (value, 10);

ldiv-t ldiv (long numerator,
long denominator);

Function Returns the quotient and remainder of the integer divi­
sion of two numbers.

Include File <stdlib.h>

numerator (in): Number to be divided
denominator (in): Number divided into the numerator

TURBO C RUN-TIME LIBRARY 557

Example

result = ldiv (160000L, 56555L);

Note ldiv _t is a structure containing:

typedef struct {
long quot;
long rem;

} ldiv_t;

void *lfind (void *key-desired,
void *base-address,
int *num-elements,
int element-width,
int (*compare-function)());

Function Performs a generic search of an array for the specified
key value.

Include File <stdlib.h>

key _desired (in):
base_address (in):

num_elements (in):
element_width (in):
compare_function (in):

Pointer to the desired value
Starting address of the array to
search
Number of elements in the array
Number of bytes in each element
Pointer to the function to be used
for element comparisons:

Return a value< 0 if a< b
Return a value = 0 if a = b
Return a value> 0 if a> b

558 TURBO C PROGRAMMER'S LIBRARY

Example

location = lfind (name, namearray, &num_elements,
sizeof(name), str _comp);

Note This is a generic sequential search routine. It will work for
all types (int, float, char, and so forth). lfind returns the address of
the matching element if it is found, or the value 0, otherwise.

void far line (int xstart,
int ystart, int xend, int yend);

Function Draws a line between two specified points.

Include File <graphics.h>

xstart, ystart (in):
xend, yend (in):

Example

line (10, 10, 20, 20);

x and y start coordinates of the line
x and y end coordinates of the line

Note line uses the current drawing color.

void far linerel (int X-offset,
int Y-off set);

Function Draws a line from the current position to the position
specified by the x and y offset.

Include File <graphics.h>

x_offset (in):
y _offset (in):

Example

linerel (10, 10);

TURBO C RUN-TIME LIBRARY 559

Relative distance along x axis
Relative distance along y axis

Note linerel uses the current drawing color.

void far lineto (int X-loc,
int Y-loc);

Function Draws a line from the current position to the position
xloc, yloc.

Include File <graphics.h>

x_loc (in):
y_loc (in):

Example

lineto (10, 10);

Point on x axis to which to draw
Point on y axis to which to draw

Note lineto uses the current drawing color.

560 TURBO C PROGRAMMER'S LIBRARY

struct tm *localtime (long *seconds);
Function Returns a structure containing the current time
broken down into its individual parts.

Include File <time.h>

seconds (in): Seconds since 00:00:0 GMT 01/01/1970

Example

current-time= localtime (&timeinseconds);

Note The structure returned contains:

struct tm {

};

int tm_sec;
int tm_min;
int tm_hour;
int tm_mday;
int tm_mon;
int tm_year;
int tm_wday;
int tm_yday;
int tm_isdst;

TURBO C RUN-TIME LIBRARY 561

int lock (int filehandle,
long off set, long length);

Function Locks a portion of a file as specified.

Include File <io.h>

filehandle (in):

offset (in):
length (in):

Example

File handle associated with the de­
sired file
Offset to the first byte to lock
Number of bytes to lock

status = lock (file, 256, 512);

Note lock provides file locking under DOS 3.X. If successful, lock
returns the value O; otherwise, it returns -1.

d-Ouble log (d-Ouble value);
Function Returns the natural logarithm for the specified value.

Include File <math.h>

value (in): Value of which to return the natural
logarithm

562 TURBO C PROGRAMMER'S LIBRARY

Example

result = log (value);

double log10 (double value);
Function Returns the log to the base 10 of the specified value.

Include File <math.h>

value (in): Value of which to return the log to the base 10

Example

result = loglO (value);

void longjmp (jmp-buf task-state,
int return-value);

Function Performs a long goto outside of the current block of code.

Include File <setjmp.h>

task_state (in):

return-value (in):

Example

longjmp (task_state, 1);

Buffer storing the values of CS,
DS, ES, SS, SI, DI, SP, FP, and
flags
Value to return from jump

TURBO C RUN-TIME LIBRARY 563

Note See the routine setjmp.

void lowvideo (void);
Function Selects low-intensity attributes for text display.

Include File <conio.h>

Example

lowvideo ();

Note This routine allows you to make some text appear duller on
your screen display.

unsigned long-lrotl (unsigned long long-value,
int num-shijts);

Function Rotates an unsigned long value to the left by the speci­
fied number of shifts.

Include File <stdlib.h>

long_value (in):
num_shifts (in):

Unsigned long value to shift left
Number of shifts to perform

564 TURBO C PROGRAMMER'S LIBRARY

Example

long_result = _lrotl (address, 16);

unsigned long
-lrotr (unsigned long long-value,
int num-shifts);

Function Rotates an unsigned long value to the right the specified
number of shifts.

Include File <stdlib.h>

long_value (in):
num_shifts (in):

Example

Unsigned long value to shift right
Number of shifts to perform

long_result = _lrotr (address, 16);

void *lsearch (void *desired-key,
void *base-address,
int num-elements,
int width,
int (*compare-function)());

Function Searches an array for a specific value. If the value is
found, lsearch returns its address. Otherwise, lsearch appends it to
the end of the list.

Include File <stdlib.h>

desired-key (in):

base_address (in):
num_elements (in):

width (in):

compare_function (in):

Example

TURBO C RUN-TIME LIBRARY 565

Value to search for, or append if
not found
Starting address of the array
Number of elements in the
array
Number of bytes in each
element
Pointer to the function to be
used for the element compar­
ison:

Return a value < 0 if a < b
Return a value = 0 if a = b
Return a value> 0 if a> b

result = lsearch (&ssan, table, &num_elements, sizeof (ssan),
compare-float);

Note If lsearch appends the value, it returns the value 0. Other­
wise, lsearch returns the address of the desired element.

long lseek (int filehandle,
long off set, int location);

Function Moves the file pointer associated with the given file han­
dle to the specified offset.

Include File <io.h>

filehandle (in): File handle associated with the desired
file

566 TURBO C PROGRAMMER'S LIBRARY

offset (in):
location (in):

Example

Desired offset within the file
Location from which to branch:

SEEK-SET (0) Beginning of file
SEEK-CUR (1) Current position
SEEK_END (2) End of file

result= lseek (filehandle, 1024, SEEK-SET);

Note If successful, lseek returns the new file position; otherwise, it
returns the value -1.

char *ltoa (long value,
char *str, int radix);

Function Converts a long int value to its ASCII representation.

Include File <stdlib.h>

value (in):
str (out):
radix (in):

Example

Long value to convert
String to contain ASCII representation
Specifies the desired radix (2-36):
2 (binary), 10 (decimal), 8 (octal), 16 (hex),
and so forth

result = ltoa (334114L, str, 10);

TURBO C RUN-TIME LIBRARY 567

Note ltoa does not return an error status.

void *malloc (size
-t num-bytes);

Function Allocates the number of bytes specified from memory.

Include File <alloc.h>

num_bytes (in): Number of bytes to allocate

Example

node = malloc (255);

Note If successful, malloc returns a pointer to the allocated
memory. If unsuccessful, malloc returns the value NULL.

double matherr (struct exception *except);
Function Defines a math error exception handler.

568 TURBO C PROGRAMMER'S LIBRARY

Include File <math.h>

except (in):

Example

Structure containing information about the
math exception:
struct exception {

int type;
char *name;
double argl, arg2, retval;

};

matherr is not directly called by the user

Notes When Turbo C encounters an exception while performing a
mathematical routine from the run-time library, it invokes the rou­
tine matherr. By default, this routine simply returns 0. However, you
can develop your own matherr routine to interrogate the exception
structure. The file math.h defines each of the possible exceptions.

*Void memcmp (void *']Jtr1, void *']Jtr2,
unsigned num-fyytes);

Function Compares the values pointed to by ptrl to those pointed
to by ptr2.

TURBO C RUN-TIME LIBRARY 569

Include File <mem.h>

ptrl (in): Pointer to the first block of memory
ptr2 (in): Pointer to the second block of memory
num_bytes (in): Number of bytes to compare

Example

result= memcmp (sl, s2, 255);

Note memcmp returns one of the following:

0 if sl == s2
> 0 if sl > s2
< 0 if sl < s2

void *memcpy (void *destination,
void *source,
unsigned num-bytes);

Function Copies the number of specified bytes from one memory
location to another.

Include File <mem.h>

destination (in): Location to which the bytes are
copied

570 TURBO C PROGRAMMER'S LIBRARY

source (in):

num_bytes (in):

Example

Location from which the bytes
are copied
Number of bytes to copy

memcpy (array_b, array_a, sizeof (array_a));

void *memccpy (void *destination,
void *source,
unsigned char letter,
unsigned num-bytes);

Function Copies the number of specified bytes from one memory
location to another, or until the letter contained in the variable letter
is copied to the destination.

Include File <mem.h>

destination (in):

source (in):

letter (in):

num_bytes (in):

Example

Location to which the bytes are
copied
Location from which the bytes
are copied
Letter that, when copied, termin­
ates the copy
Number of bytes to copy

memccpy (array-b, array_a, 'a', sizeof (array_a));

TURBO C RUN-TIME LIBRARY 571

Note memccpy returns the byte immediately following letter if let­
ter was copied. Otherwise, memccpy returns the value NULL.

void *memchr (void *'ptr,
char letter, unsigned num-bJJtes);

Function Searches the first num-bytes of an array for the letter
contained in the variable letter.

Include File <mem.h>

ptr (in): Pointer to the array in memory
letter (in): Letter for which to search
num_bytes (in): Number of bytes to search in the array

Example

location = memchr (str, 'A', sizeof (str));

Note memchr returns a pointer to the first occurrence of letter in
the string, or the value NULL if letter is not found.

572 TURBO C PROGRAMMER'S LIBRARY

*Void memicmp (void *'J>tr1, void *'J>tr2,
unsigned num-bytes);

Function Compares the values pointed to by ptrl to those pointed
to by ptr2 and ignores the case of each letter.

Include File <mem.h>

ptrl (in): Pointer to the first block of memory
ptr2 (in): Pointer to the second block of memory
num_bytes (in): Number of bytes to compare

Example

result = memicmp (sl, s2, 255);

Note memicmp returns one of the following:

0 if sl = = s2
> 0 if sl > s2
< 0 if sl < s2

void *memmove (void *destination,
void *source,
unsigned num-bytes);

Function Copies num_bytes from the source memory location to
the destination.

TURBO C RUN-TIME LIBRARY 573

Include File <string.h>

destination (in):

source (in):

num_bytes (in):

Example

Pointer to the destination location in
memory
Pointer to the source location in mem­
ory that contains the data to copy
Number of bytes to copy

ptr = memmove (strl, str2, strlen (strl));

void *memset (void *']Jtr,
char letter, unsigned num-bytes);

Function Sets the number of bytes specified in the array pointed
to by ptr to the value in the variable letter.

Include File <mem.h>

ptr (in):
letter (in):
num_bytes (in):

Example

Pointer to the array in memory
Letter to assign to the memory locations
Number of bytes to which to assign the
value

memset (str, 'A', sizeof (str));

Note memset returns a pointer to the array in memory.

574 TURBO C PROGRAMMER'S LIBRARY

int mkdir (char *DOSpathname);
Function Creates the specified DOS subdirectory.

Include File <dir.h>

DOSpathname (in): DOS subdirectory name to create

Example

status= mkdir ("TESTDIR");

Note If successful, mkdir returns the value 0. Otherwise, mkdir
returns the value -1.

void far *MK-FP (unsigned segment,
unsigned offset);

Function Returns a far pointer that is a combination of the pro­
vided segment and offset.

Include File <dos.h>

segment (in):
offset (in):

Example

Segment address portion of the far address
Offset address portion of the far address

far -address = MK-FP (segment, offset);

TURBO C RUN-TIME LIBRARY 575

char *mktemp (char *template);
Function Creates a unique filename.

Include File <dir.h>

template (in): A string containing 6 X's (XXXXXX)

Example

result = mktemp (template);

Notes The string template should be in the form "XXXXXX". The
routine mktemp replaces the "X's" with a unique filename in the
form AA.AAA. mktemp returns a pointer to the new filename.

double rrwdf (d-Ouble value,
double *integer-portion);

Function Splits a double-precision value into an integer and frac­
tional portion.

Include File <math.h>

value (in): Value to split
integer _portion (out): Integer portion of the value

Example

fractional_part = modf (value, &integer _part);

576 TURBO C PROGRAMMER'S LIBRARY

void movedata (int source­
segment, int source-offset,
int target-segment,
int target-offset,
unsigned num-bytes);

Function Moves the number of specified bytes from the source
location to the target.

Include File <mem.h>

source-Segment (in): Segment address of the source
location

source_offset (in): Offset address of the source

target-Segment (in):
target_offset (in):
num_bytes (in):

Example

location
Segment address of target location
Offset address of the target location
Number of bytes to transfer

movedata (segment, offset, OxBOOO, 0, 4000);

Note movedata does not return a value.

void far moverel (int X­

offset, int Y-off set);
Function Moves the current position to the position specified by the x
and y offsets.

TURBO C RUN-TIME LIBRARY 577

Include File <graphics.h>

x_offset (in):
y _offset (in):

Example

moverel (10, 10);

Relative distance along x axis
Relative distance along y axis

int m.ovetext (int left-corner,
int t01>-corner,
int right-corner,
int bottom-comer,
int new-leftcorner,
int new-topcorner);

Function Moves a region of text from one location on the screen
to another.

left_corner (in):

top_corner (in):

bottom_corner (in):

right_corner (in):

new _leftcorner (in):

new _topcorner (in):

Specifies the x coordinate of
the upper-left corner of the
region to move
Specifies the y coordinate of
the upper-left corner of the
region to move
Specifies the y coordinate of
the lower-right corner of the
region to move
Specifies the x coordinate of
the lower-right corner of the
region to move
Location to which to move
text
Location to which to move
text

578 TURBO C PROGRAMMER'S LIBRARY

Example

movetext (15, 20, 21, 25, 5, 10);

Note If successful, movetext returns the value 1; otherwise, move­
text returns 0.

void far moveto (int x-loc,
int Y-loc);

Function Moves the current position to the position xloc, yloc.

Include File <graphics.h>

x_loc (in):
y_loc (in):

Example

moveto (10, 10);

Point on x axis to which to move
Point on y axis to which to move

void movmem (void *source, void target,
unsigned num-bytes);

Function Moves the number of bytes specified from a source to a
target location.

Include File <mem.h>

source (in): Pointer to the source location in mem­
ory

target (in):

num_bytes (in):

Example

TURBO C RUN-TIME LIBRARY 579

Pointer to the target location in mem­
ory
Number of bytes to move

movmem (my-array, your _array, sizeof(my_array));

Note movmem does not return a value.

void normvideo (void);
Function Selects normal video display attributes for text following
a call to either highvideo or lowvideo.

Include File <conio.h>

Example

norm video ();

void nosound (void);
Function Turns off the IBM PC speaker.

Include File <dos.h>

Example

nosound();

580 TURBO C PROGRAMMER'S LIBRARY

Note The routine sound turns on the PC speaker.

int -open (char *DOSpathname,
int access-type);

Function Opens a file for read or write access.

Include File <io.h>

DOSpathname (in): String containing the filename to
open

access_type (in): Specifies the mode of access to
support:

Example

Q_NOINHERIT Not passed to child
process

O_DENYALL ·Only current handle
can access

0-DENYWRITE Only current handle
can write access
any open can read
the file

0-DENYREAD Only current handle
can read access any
other open can
write

O_DENYNONE Shared file

handle = -open ("TEST.DAT", 0-DENYNONE);

Note This function is unique to DOS. If an error occurs, -open
returns the value -1.

TURBO C RUN-TIME LIBRARY 581

int open (char *DO Spath name,
int access-type£ int permissions]);

Function Opens a file for read or write access.

Include File <io.h>

DOSpathname (in):

access_type (in):

permission (in):

Example

String containing the filename to
open
Specifies the
support:
Q_RDONLY
Q_WRONLY
O_RDWR
Q_NDELAY
0-APPEND

Q_CREAT

Q_TRUNC

mode of access to

Read-only access
Write-only access
Read/write access
Not used
Open in append
mode
Create the file if non­
existent
Truncate the file
to 0 bytes if it exists

Q_EXCL Not used
Q_BINARY Binary mode open
Q_TEXT Text mode open
Defines the file permissions:
s_IWRITE Write access granted
S_IREAD Read access granted
S_IREAD I Read/write access
S_IWRITE

handle= open ("TEST.DAT", Q_BJNARY);

582 TURBO C PROGRAMMER'S LIBRARY

Note If open experiences an error, it returns the value -1.

void outport (int pord-id,
int word);

Function Outputs a value to the specified hardware port.

Include File <dos.h>

port_id (in):
word (in):

Example

outport (Ox3da, O);

Desired port address
Value to output to the port

void outportb (int pord-id,
char fyyte);

Function Outputs a byte value to the specified hardware port.

Include File <dos.h>

port_id (in):
.byte (in):

Example

outportb (Ox3da, 255);

Port address desired
Value to output to the port

TURBO C RUN-TIME LIBRARY 583

void far outtext (char far *string);
Function Outputs a character string at the current position in the
viewport.

Include File <graphics.h>

string (in): Character string to display

Example

outtext ("TEXT");

void far outtextxy (int x-loc,
int Y-loc, char far *string);

Function Displays a text string within the current viewport at the
specified x and y location.

Include File <graphics.h>

x_loc, y _Joe (in):

string (in):

Example

outtextxy (5, 10, "TEXT");

Location in the viewport at
which to display the string
Character string to display

584 TURBO C PROGRAMMER'S LIBRARY

char *]Jars/nm (char *command-line,
struct f cb */ilecontrol-block,
int al-register);

Function Parses a string into a file-control block containing a
drive, filename, and extension.

Include File <dos.h>

command-line (in): String to parse in search of the
filename

filecontrol_block (in): Structure into which drive, file­
name, and extension are placed

al-registers (in): AL register setting for DOS in­
terrupt:

Example

0 Scan past leading separators
2 Match FCB drive specifier

with drive found in the com­
mand line

4 Match FCB filename to file­
name found in the command
line

8 Match FCB file extension to
the file extension found in the
command line

result= parsfnm (commline, &file_control_block):

Note If successful, parsfnm returns a pointer to the first byte
following the filename. Otherwise, parsfnm returns NULL.

int peek (int segment,
int off set);

TURBO C RUN-TIME LIBRARY 585

Function Returns the integer value contained in the memory loca­
tion pointed to by the specified segment and offset value.

Include File <dos.h>

segment (in):
offset (in):

Example

Segment address desired
Offset address desired

char _and-color = peek (Oxb800, O);

int peekb (int segment,
int offset);

Function Returns the byte value contained in the memory loca­
tion pointed to by the specified segment and offset value.

Include File <dos.h>

segment (in):
offset (in):

Example

Desired segment address
Desired offset address

color= peekb (Oxb800, 1);

586 TURBO C PROGRAMMER'S LIBRARY

void perror (char *string);
Function Displays an error message to stderr and describes the
error associated with the most recent system call.

Include File <stdio.h>

string (in):

Example

perror ("FILECOPY");

The name of the program encountering
the error

void far pieslice (int X-loc,
Y-loc, int start-angle,
int end-angle, int radius);

Function Draws a pie slice on your screen at the specified x and y
location by using the starting and stopping angles given with a
radius as provided. Fill the pie slice with the current fill pattern
and color.

x_loc, y _loc (in):
start_angle (in):

end_angle (in):
radius (in):

Example

Location at which to draw
Starting angle of the pie arc
(0-360)
Ending angle of the pie arc (0-360)
Desired radius in pixels

pieslice (100, 100, 45, 90, 30);

TURBO C RUN-TIME LIBRARY 587

Note pieslice uses the current fill pattern and color.

void poke (int segment,
int off set, int value);

Function Places the specified integer value into the memory loca­
tion given by segment and offset.

Include File <dos.h>

segment (in):

offset (in):

value (in):

Example

Segment address of the desired memory
location
Offset address of the desired memory lo­
cation
Value to place into the memory location

poke (OxB800, 0, Ox4807);

void pokeb (int segment,
int off set, int value);

Function Places the specified byte value into the memory loca­
tion given by segment and offset.

Include File <dos.h>

segment (in):

offset (in):

Segment address of the desired memory
location
Offset address of the desired memory
location

588 TURBO C PROGRAMMER'S LIBRARY

value (in):

Example

pokeb (OxB800, 0, 'a');

Byte value to place into the memory
location

double poly (double x,
int degree,
double *]>oly-array);

Function Generates a polynomial of degree n from the coefficients
specified in poly _array. Evaluates the polynomial for the value
specified in x and returns the result.

Include File <math.h>

x (in):

degree (in):
poly _array (in):

Example

Value for which to evaluate the poly­
nomial
Degree of the polynomial
Array containing the polynomial coef­
ficients

result = poly (5, 3, coeffs);

double pow (double value,
double power);

Function Returns the result of value raised to the specified
power.

TURBO C RUN-TIME LIBRARY 589

Include File <math.h>

value (in):
power (in):

Value to raise to the specified power
Desired power

Example

result = pow (5, 2);

double pow10 (int power);
Function Returns the result of the value 10 raised to the specified
power.

Include File <math.h>

power (in): Power to raise the value of 10 to

Example

one_hundred = powlO (2);

int print! (char *format-sequence l
argument . . .]);

Function Provides formatted output to stdout.

590 TURBO C PROGRAMMER'S LIBRARY

Include File <stdio.h>

format_sequence (in): Control characters that specify the
format of the data to be output

argument (in): Data to be output

Example

printf ("DATA %d %f o/os \n", 5, 33.44, str _var);

Note The printf routine supports the following control sequences:

o/od Signed integer
o/oi Signed integer
o/oo Octal value
o/ou Unsigned integer
o/ox Unsigned hexidecimal
o/oX Unsigned hexidecimal
o/of Floating-point value
o/oe Floating-point value in [-]d.dddd e [+/-]ddd
o/og Floating-point value in either f or e format, de-

pending upon value or precision
o/oc Character
o/oS String value
o/oo/o o/o character is printed
o/on Pointer to the type int
o/op Pointer value

You can also append the following input size modifiers:

1 Long value
h Short integer
f Far pointer
N Near pointer

int putc (int character,
FILE *stream);

TURBO C RUN-TIME LIBRARY 591

Function Outputs the specified character to the file associated
with stream.

Include File <stdio.h>

character (in):
stream (in):

Example

Character to be output
File to which character is to be output

result = putc ('A', stdout);

Note If successful, putc returns the value of the output character.

int putch (int character);
Function Outputs the specified character to BDOS or video
memory.

Include File <conio.h>

character (in): Character to be output

Example

(in): result = putch(character);

Note putch writes its output to the current window.

592 TURBO C PROGRAMMER'S LIBRARY

int putchar(int character);
Function Outputs a character to the stdout stream.

Include File <stdio.h>

character (in): Character to be output

Example

result = putchar(' A');

Note The putchar routine is a C macro defined as putc (character,
stdout).

int putenv (char *environment-entry);
Function Places an entry in the current environment.

Include File <stdlib.h>

environment_entry (in): Character string to be placed
into the current environment

Example

result= putenv ("FILE=MYFILE");

TURBO C RUN-TIME LIBRARY 593

Note If successful, putenv returns the value 0. If an error occurs,
putenv returns -1. DOS assigns a copy of the current DOS envi­
ronment to the executing program. Therefore, putenv does not place
an entry in the actual DOS environment, but rather the program's
copy.

void far putimage (int X-loc,
Y-loc, void far *buffer,
int operation);

Function Places a graphics image previously saved by getimage
back on the screen display at the specified location.

Include File <graphics.h>

x_loc, y _loc (in):

buffer (in):

operation (in):

Example

putimage (100, 100, box, O);

Coordinates of upper-left corner of
the image
Buffer containing the graphics
image
Specifies how the pixels are placed
back onto the screen:
0 Straight copy
1 Exclusive or
2 Inclusive or
3 And
4 Inverse source copy

594 TURBO C PROGRAMMER'S LIBRARY

void far putpixel (int x-loc,
int Y-loc, int pixel-color);

Function Displays a pixel of the specified color at the x and y loca­
tion given.

Include File <graphics.h>

x_loc, y _loc (in):

pixel_color (in):

Example

putpixel (100, 100, 1);

int puts (char *string);

Location at which to display the
pixel
Color of the pixel

Function Writes a string to the stream associated with stdout.

Include File <stdio.h>

string (in): Character string to be displayed

Example

puts ("String to output");

Note If successful, puts returns the last character written. If an
error occurs, puts returns EOF.

int puttext (int left-corner,
int top-corner,
int right-corner,

TURBO C RUN-TIME LIBRARY 595

int bottom-corner, void *buff er);
Function Copies text stored in a buffer back to the screen display.

left_corner (in): Specifies the x coordinate of the
upper-left corner of the region to
restore

top_corner (in): Specifies the y coordinate of the
upper-left corner of the region to
restore

bottom_corner (in): Specifies the y coordinate of the
lower-right corner of the region to
restore

right_corner (in): Specifies the x coordinate of the
lower-right corner of the region to
restore

Example

status = puttext (10, 10, 20, 20, buffer);

Note If successful, puttext returns 1; otherwise, it returns 0.

int putw (int word,
FILE *stream);

Function Outputs a word (16 bit) value to the specified file stream.

596 TURBO C PROGRAMMER'S LIBRARY

Include File <stdio.h>

word (in):
stream (in):

16-bit value to be output
File stream to output to

Example

result = putw (1024, fp);

Note If successful, putw returns the integer value output.

void qsort (void *base-address,
int num-elements,
int width,
int (*compare-function)());

Function Uses quick sort to sort the items in an array.

Include File <stdlib.h>

base_address (in): Address of the first element in the
array

num_elements (in): Number of array elements
width (in): Number of bytes in each element
compare_function (in): Function to be used to compare

array elements

TURBO C RUN-TIME LIBRARY 597

Example

qsort (my _array, 10, sizeof(float), float-compare);

Note This quick sort is a generic quick sort algorithm that works
for all array types. See Chapter 11 for more information on the com­
parison functions.

int rand(void);
Function Returns a random number.

Include File <stdlib.h>

Example

random = rand ();

Note To reseed t~e random number generator, use srand.

int randbrd (struct f cb *file-control-block,
int num-records);

Function Using a file control block, reads the number of records
specified by num_records.

598 TURBO C PROGRAMMER'S LIBRARY

Include File <dos.h>

file_control_block (in):

num_records (in):

Example

Pointer to a file control
block that contains the file
characteristics
Number of records to read

result = randbrd (&file-control-block, 5);

Note: The randbrd routine returns one of the following
values:

0 All records were read
1 End of file reached (all records read)
2 Incomplete records are read
3 End of file reached (records incompletely read)

int randbwr (struct f cb *file-control-block,
int num-records);

Function Using a file control block, writes the number of
records specified by num-records.

Include File <dos.h>

file_control_block (in):

num_records (in):

Pointer to a file control
block that contains the file
characteristics
Number of records to write

TURBO C RUN-TIME LIBRARY 599

Example

result= randbwr (&file_control-block, 5);

Note The randbwr routine returns one of the following values:

0 All records written
1 Insufficient disk space

int random (int boundary);
Function Returns a random number between 0 and the value of bound­
ary -1.

Include File <stdlib.h>

boundary (in):

Example

start = random (10);

This value -1 is the highest value rand
can return

Note The random routine is defined as rand % num.

600 TURBO C PROGRAMMER'S LIBRARY

void randomize (void);
Function Initializes the random number generator.

Include File <stdlib.h>

Example

randomize ();

Note The randomize routine initializes the random number genera­
tor with a random value.

int -read (int file-handle,
void *buff er, int num-bytes);

Function Reads the specified number of bytes from the file asso­
ciated with the file handle.

Include File <io.h>

file_handle (in):

buffer (in):
num_bytes (in):

Example

File handle associated with the desired
file
Location to read the data into
Number of bytes to read

result = _read (filehandle, buffer, 256);

TURBO C RUN-TIME LIBRARY 601

Note If successful, -read returns the number of bytes read. If an
error occurs, _read returns -1, and on end of file, it returns the value
0. The -read routine directly calls a DOS system service. The maxi­
mum number of bytes this routine can read is 65,534.

int read (int file-handle,
void *buff er, int num-bytes);

Function Reads the specified number of bytes from the file asso­
ciated with the file handle.

Include File <io.h>

file_handle (in):

buffer (in):
num_bytes (in):

Example

File handle associated with the
desired file
Location to read the data into
Number of bytes to read

result = read (filehandle, buffer, 256);

Note If successful, read returns the number of bytes read. If an
error occurs, read returns -1, and on end of file, it returns the value
0. The maximum number of bytes this routine can read is 65,534.

void *realloc (void *'pointer,
unsigned newsize-in-bytes);

Function Modifies the amount of a previously allocated section of
memory.

602 TURBO C PROGRAMMER'S LIBRARY

Include File <alloc.h>

pointer (in):

newsize_in_bytes (in):

Example

ptr = realloc (ptr, 1024);

Pointer to the previously allocated
memory
Size desired for the memory block

Note If successful, realloc returns a pointer to the new block of
allocated memory. If the request is unsuccessful, realloc returns
NULL.

void far rectangle (int left-corner,
int top-corner,
int right-corner,
int bottom-comer);

Function Draws a rectangle with the specified corners.

Include File <graphics.h>

left_corner (in): Specifies the x coordinate of the
upper-left corner of the rectangle

top_corner (in): Specifies the y coordinate of the
upper-left corner of the rectangle

bottom_corner (in): Specifies the y coordinate of the
lower-right corner of the rectangle

right_corner (in): Specifies the x coordinate of the
lower-right corner of the retangle

TURBO C RUN-TIME LIBRARY 603

Example

rectangle (10, 10, 20, 30);

Note The rectangle routine uses the current line thickness and
drawing color.

int registerbgidriver (void (*driver)(void));
Function Registers linked-in graphics driver code.

Include File <graphics.h>

Example

status= registerbgidriver (EGA-driver);

Note If registerbgidriver encounters an error, it returns the corre­
ponding error code; otherwise, it returns the value 0.

int registerbgifont (void(*font)(void));
Function Registers a linked-in graphics font.

Include File <graphics.h>

604 TURBO C PROGRAMMER'S LIBRARY

Example

status = registerbgifont (big_font);

Note If registerbgifont encounters an error, it returns the corre­
sponding error code; otherwise, it returns the value 0.

int rename (char *Oldname,
char *'newname);

Function Renames an existing file as specified.

Include File <stdio.h>

oldname (in):
newname (in):

Example

Current name of the file to rename
Desired name of the file to rename

result= rename ("TEST.C", "TEST.SAY");

Note If successful, rename returns the value 0. If an error occurs,
rename returns the value -1.

void far restorecrtmode (void);
Function Restores the screen mode to the setting that was in effect
prior to a call to initgraph.

Include File <graphics.h>

TURBO C RUN-TIME LIBRARY 605

Example

restorecrtmode ();

int rewind (FILE *stream);
Function Resets the file pointer of the specified stream to the
beginning of a file.

Include File <stdio.h>

stream (in): File stream associated with the file to reset

Example

result = rewind (fp);

Note If successful, rewind returns the value 0. If an error
occurs, rewind will return a nonzero result.

int rmdir (char *directory-name);
Function Removes the specified DOS directory.

Include File <dir.h>

directory_name (in): Name of the DOS subdirectory to
remove

606 TURBO C PROGRAMMER'S LIBRARY

Example

result= rmdir ("QUICKC");

Note The rmdir routine cannot remove a directory if the directory
contains files, the directory is the current directory, or the directory is
the root directory. If successful, rmdir returns the value 0. Otherwise,
rmdir returns the value -1.

unsigned -rotl (unsigned value,
int num-shifts);

Function Rotates an unsigned value to the left the number of shifts
specified.

Include File <stdlib.h>

value (in): Unsigned value to shift left
num_shifts (in): Number of shifts to perform

Example

result= -rotl (address, 16);

unsigned -rotr (unsigned value,
int num-shifts);

Function Rotates an unsigned value to the right the number of
shifts specified.

TURBO C RUN-TIME LIBRARY 607

Include File <stdlib.h>

value (in): Unsigned value to shift right
num_shifts (in): Number of shifts to perform

Example

result = _rotr (address, 16);

char *sbrk (int increment);
Function Adds the number of bytes specified to the data space
allocation (see brk).

Include File <alloc.h>

increment (in): Number of bytes to add to the data
space

Example

result = sbrk (1024);

Note If successful, sbrk returns the previous brk value.

int scan! (char format­
sequence [,argument . . .]);

Function Perform formatted input from stdin.

608 TURBO C PROGRAMMER'S LIBRARY

Include File <stdio.h>

format_sequence (in): Control sequence specifying the out­
put format

argument (in): Data to be read

Example

num_fields = scanf ("o/od o/od o/of \n", &a, &b, &c);

Note The scanf routine returns the number of fields successfully
filled. See printf for the control-sequence formatting characters.

char *search path (char *filename);
Function Searches the DOS PATH for a file that matches the
name given, and if the file is found, returns a complete DOS path­
name to the file.

Include File <dir.h>

filename (in): Name of the DOS file to search for

Example

pathname = searchpath ("TURBOC.DAT");

TURBO C RUN-TIME LIBRARY 609

Note If successful, searchpath returns the complete pathname. If
the file is not found, searchpath returns the value NULL.

void segread (struct REGS *segment­
registers);

Function Returns the current values of the segment registers.

Include File <dos.h>

segment_registers (in): Structure containing the DOS
segment registers

Example

segread (&segment-registers);

void far setactivepage (int page­
number);

Function Specifies the active video display page for graphics
output.

Include File <graphics.h>

page_number (in): Desired video display page number

Example

setactivepage (2);

610 TURBO C PROGRAMMER'S LIBRARY

Note Only EGA, VGA, and Hercules graphics cards support
multiple graphics display pages.

void far setallpalette
(struct palettetype far *'Palette);

Function Defines the colors of the palette.

Include File <graphics.h>

palette (in): Structure containing the palette
colors:

Example

setall pallette (&my _palette);

struct palettetype {
unsigned char size;
signed char colors
[MAX-COLORS+ 1];

};

void far setbkcolor (int background-color);
Function Sets the current graphics background color.

TURBO C RUN-TIME LIBRARY 611

Include File <graphics.h>

background_color (in): Desired color from your current
palette

Example

setbkcolor (1);

int setblock (int segment,
int newsize-in-lYytes);

Function Modifies the size of a previously allocated DOS
segment.

Include File <dos.h>

segment (in): Previously allocated DOS
segment

newsize_in_bytes (in): Desired segment size in bytes

Note If successful, setblock returns the value -1. If an error
occurs, setblock returns the value of the largest available block.

void setbuf (FILE *stream,
char *buffer);

Function Assigns a new buffer to be used for file 1/0 to the
specified stream.

612 TURBO C PROGRAMMER'S LIBRARY

Include File <stdio.h>

stream (in):
buffer (in):

Example

File stream to be buffered
Memory location to be used for buffering

setbuf (fp, char _array);

Note If the buffer specified is NULL, 1/0 to the file stream is
not buffered.

int setcbrk (int status);
Function Enables/disables control-break checking.

Include File <dos.h>

status (in):

Example

result = setcbrk (1);

Desired control break setting:
0 Disables control-break checking
1 Enables control-break checking

Note The setcbrk routine returns the current state of control­
break checking.

TURBO C RUN-TIME LIBRARY 613

void far setcolor (int color);
Function Sets the current drawing color.

color (in):

Example

setcolor (2);

Desired drawing color from your cur­
rent palette

void setdate (struct date *current-date);
Function Sets the current DOS system date.

Include File <dos.h>

current-date (out): Structure containing the current sys­
tem date:

Example

struct date {

l;

int da_year;
char da_day;
char da_mon;

status = setdate (¤t-date);

614 TURBO C PROGRAMMER'S LIBRARY

int setdisk (int disk-drive);
Function Sets the disk drive as specified.

Include File <dir.h>

disk_drive (in): Desired disk drive (A = 0, B = 1,
c = 2 ...)

Example

result = setdisk (1);

Note The setdisk routine returns the number of disk drives
available.

void setdta (char far *disk­
transfer-address);

Function Defines a new disk transfer address.

Include File <dos.h>

disk_transfer _address (in): Address of the desired disk
transfer

Example

setdta ((char far *) buff er);

TURBO C RUN-TIME LIBRARY 615

setfillpattern (char far *fill-pattern,
int color);

Function Selects a user-defined fill pattern for graphics mode.

fill_pattern (in):

color (in):

Example

setfillpattern (xxx, 1);

Array containing desired fill
pattern
Desired fill color from current
palette

void far setfillstyle (int fill-style,
int color);

Function Selects a fill style and color.

fill-pattern (in): Desired fill style:
0 Empty fill
1 Solid fill
2 Line fill -
3 Left-slash fill /
4 Thick left-slash fill
5 Backslash fill \
6 Thick backslash fill
7 Light hatch fill
8 Heavy crosshatch fill
9 Interleaving line fill

10 Wide-spaced dot fill
11 Close-spaced dot fill

color (in): Desired fill color from your current
palette

616 TURBO C PROGRAMMER'S LIBRARY

Example

setfillstyle (3, 1);

int setftime (int file-handle,
struct ftime *file-Stamp);

Function Sets a file's date and time stamp.

Include File <dos.h>

file_handle (in): File handle associated with the de­
sired file

file_stamp (out): Structure containing the file's date
and time:

Example

struct ftime {

);

unsigned ft_tsec:5;
unsigned ft_min:6;
unsigned ft_hour:5;
unsigned ft_day: 5;
unsigned ft_month:4;
unsigned ft_year: 7;

status = setftime (filehandle, &file-stamp);

Note If successful, setftime returns the value 0.

unsigned far setgraphbufsize
(unsigned buffer -Size);

TURBO C RUN-TIME LIBRARY 617

Function Defines the size of the internal graphics buffer.

buffer _size (in): Size, in bytes, of the buffer desired

Example

setgraphbufsize (9182);

Note You must call setgraphbufsize before initgraph.

void far setgraphmode (int graphics-mode);
Function Selects the current graphics mode.

Include File <graphics.h>

graphics-mode (in): Desired graphics mode

Example

setgraphmode (CGA);

Note See the graphics.h file for graphics modes.

int setjmp (jmp-buf task-state);

Function Marks the location for a future goto that is outside the
current block of code.

618 TURBO C PROGRAMMER'S LIBRARY

Include File <setjmp.h>

task_state (in):

Example

setjmp (&task-state);

Buffer storing the values of CS, DS,
ES, SS, SI, DI, SP, FP, and flags

Note See the longjmp routine.

void far setlinestyle (int line-style,
unsigned pattern,
int thickness);

Function Sets the current width and line style.

Include File <graphics.h>

line-style (in):

pattern (in):

thickness (in):

Desired line style:
0 Solid line
1 Dotted line
2 Centered line
3 Dashed line
4 User-defined line style
Desired line pattern if user-de­
fined pattern is used
Desired thickness for the line:
1 One-pixel thickness
3 Three-pixel thickness

TURBO C RUN-TIME LIBRARY 619

Example

setlinestyle (O, 0, 1);

void setmem (void *address,
int num-lmtes, char letter);

Function Assigns the number of occurrences of the specified let­
ter to the address given.

Include File <mem.h>

address (in):

num_bytes (in):

letter (in):

Example

setmem (ptr, 255, 'A');

Memory address to assign the charac­
ters to
Number of bytes to assign the letters
to
Value to assign to the memory loca­
tions

int setmode (int filehandle,
unsigned mode);

Function Sets the file associated with the given handle to the mode
(text or binary) as specified.

Include File <io.h>

filehandle (in): File handle of the file to modify

620 TURBO C PROGRAMMER'S LIBRARY

mode (in): Desired mode:
Q_BINARY Binary file
Q_TEXT Text file

Example

setmode (fp, Q_BJNARY);

Note If successful, setmode returns the value 0. Otherwise, it
returns the value -1.

void far setpalette (int index,
int color);

Function Assigns an actual color to an index in the current
palette.

Include File <graphics.h>

index (in):

color (in):

Example

setlinestyle (1, 4);

Index into the palette that you are as­
signing a color to
Actual color value assigned to the pal­
ette index

void far settextjustify (int horizontal,
int vertical);

Function Specifies text justification.

TURBO C RUN-TIME LIBRARY 621

Include File <graphics.h>

horizontal (in):

vertical (in):

Example

settextjustify (1, 1);

Specifies how horizontal text is to
be justified:
0 Left justify
1 Center justify
2 right justify
Specifies how vertical text is to be
justified:
0 Bottom justify
1 Center justify
2 Top justify

void far settextstyle (int font,
int direction, int size);

Function Specifies the graphics mode text font, direction, and size.

Include File <graphics.h>

font (in):

direction (in):

Specifies desired font:
0 8 X 8 bit-mapped font
1 Triplex font
2 Small font
3 Sans serif font
4 Gothic font
Specifies how text is to be written:
0 Horizontal left to right
1 Vertical bottom to top

622 TURBO C PROGRAMMER'S LIBRARY

size (in):

Example

settextstyle (0, 0, 1);

Specifies font size (1-10):
1 8X8
2 16Xl6

void settime (struct time *system-time);
Function Sets the current system time.

Include File <dos.h>

system_time (out):

Example

settime (¤t-time);

Structure containing the current
system time:

struct time {

};

unsigned char ti_min;
unsigned char ti_hour;
unsigned char ti_hund;
unsigned char ti_sec;

type (in):

num_bytes (in):

Example

TURBO C RUN-TIME LIBRARY 623

Specifies the type of buffering de­
sired:
_JOFBF Full file buffer for input/

output
_JOLBF Line buffer the file
_JONBF No buffering for the file
Number of bytes to allocate for the
buffer

setvbuf (fp, char _array, _IONBF, O);

Note If the buffer specified is NULL, I/O to the file stream is not
buffered.

void setvect (int interrupt-number,
void interrupt (*service-routine) ());

Function Defines a new interrupt handler for the specified
interrupt.

Include File <dos.h>

interrupt_number (in): Interrupt to define a new ser­
vice routine for

service_routine (in): Function serve as the new
interrupt handler

624 TURBO C PROGRAMMER'S LIBRARY

void far setusercharsize (int xmult,
int xdiv, int ymult,
int ydiv);

Function Specifies graphics mode character magnification.

Include File <graphics.h>

xmult, xdiv (in): Width scaling factors
ymult, ydiv (in): Height scaling factors

Example

setusercharsize (2, 1, 3, 2);

Note These values are only active when you have called the settext­
style routine with charsize equal to 0.

void setvbuf (FILE *Stream,
char 'libuff er, int type,
unsigned num-lYutes);

Function Assigns a new buffer to be used for file 1/0 to the speci­
fied stream.

Include File <stdio.h>

stream (in):
buffer (in):

File stream to be buffered
Memory location to be used for buf­
fering

TURBO C RUN-TIME LIBRARY 625

Example

setvect (5, my_print-routine);

void setverify (int state);
Function Enables or disables disk verification.

Include File <dos.h>

state (in):

Example

setverify (1);

Desired disk verification state: 0 dis­
ables and 1 enables disk verification

void far setviewport (int left-corner,
int top-corner,
int right-corner, int
bottom-comer, int clip);

Function Defines the current viewport for graphics output.

Include File <graphics.h>

left_corner (in):

top_corner (in):

Upper-left corner x viewport co­
ordinate
Upper-left corner y viewport co­
ordinate

626 TURBO C PROGRAMMER'S LIBRARY

right_corner (in): Lower-right corner x viewport co­
ordinate

bottom_corner (in): Lower-right corner y viewport co­
ordinate

clip (in): Specifies whether values outside of
the viewport are clipped. If clip is a
nonzero value, clipping is enabled

Example

setviewport (10, 10, 200, 200, 1);

void far setvisualpage (int page-number);
Function Sets the video display page to be displayed.

Include File <graphics.h>

Example

page_number (in): Desired video display page
number

setvisualpage (2);

Note Only EGA, VGA, and Hercules graphics cards support mul­
tiple graphics display pages.

double sin (double value);
Function Returns the trigonometric sine of the specified value.

TURBO C RUN-TIME LIBRARY 627

Include File <math.h>

value (in): Value to return the sine of

Example

result = sin (pi);

double sink (double value);
Function Returns the hyperbolic sine of a value.

Include File <math.h>

value (in): Value to return the hyperbolic sine of

Example

result = sinh (value);

void sleep (unsigned seconds);
Function Suspends the current application for the interval of time
specified.

Include File <dos.h>

seconds (in):

Example

sleep (10);

Number of seconds to suspend the
application for

628 TURBO C PROGRAMMER'S LIBRARY

void sound (unsigned frequency);
Function Turns on the IBM PC speaker at the specified frequency.

Include File <dos.h>

frequency (in):

Example

sound (14);

Desired frequency for the speaker
sound

int spawn . .. (int rrwde,
char *command,
char *arg [, ...],NULL);

Function Creates and executes a child process.

Include File <process.h>

mode (in):

command (in):

arg (in):

Action taken after spawn call:
P _WAIT Wait until child process

completes
P _NOWAIT Continue to run as child

process runs
P _OVERLAY Overlay child process

in memory previously
contained by the parent

Complete DOS pathname of the com­
mand to execute
Command-line argument passed to the
child process

TURBO C RUN-TIME LIBRARY 629

Example

spawn (P _WAIT, "BACKUP", "C:*.*", "A:", NULL);

Note Several versions of spawn exist:

spawnl

spawnle

spawnp
spawnv

spawnlp
spawnlpe
spawnve
spawnvp
spawnvpe

Search only the root or current di­
rectory
Same as spawnl; also allows environ­
ment to be passed as a parameter
Searches the DOS PATH command
Command-line arguments are passed as
a single array of pointers

See the dos.h file for the calling sequence of each command. If suc­
cessful, spawn returns the value 0.

int sprint! (char *string,
char *format-Sequence[, argument ...]);

Function Writes formatted output to a string, as opposed to a file
stream.

Include File <stdio.h>

string (out): Character string containing the for­
matted output

format_sequence (in): Control sequence that specifies
how to format the data

argument (in): Data to be output

630 TURBO C PROGRAMMER'S LIBRARY

Example

result = sprintf (str, "o/od", age);

Note The sprintf routine returns the number of bytes output, not
including the NULL terminal.

double sqrt (double value);
Function Returns the square root of a value.

Include File <math.h>

value (in): Value to return the square root of

Example

five = sqrt (25.0);

void srand (unsigned seed);
Function Initializes or seeds the random number generator.

Include File <stdlib.h>

seed (in): Desired seed for the random number
generator

Example

srand (time(¤t));

int sscanf (char *string,
char format-
sequence [,argument . . .]);

TURBO C RUN-TIME LIBRARY 631

Function Performs formatted input from a string, as opposed to
a file stream.

Include File <stdio.h>

string (in):
format_sequence (in):

argument (in):

Example

Character string to read from
Control sequence specifying the
output format
Data to be read

num_fields = sscanf (str, "%d o/od %f \n", &a, &b, &c);

Note The sscanf routine returns the number of fields successfully
filled.

int stat (char *Pathname,
struct stat *stat-info);

Function Returns information about the specified file.

632 TURBO C PROGRAMMER'S LIBRARY

Include File <stat.h>

pathname(in):
stat_info (out):

Example

Pathname of the desired file
Structure containing the file in­
formation

result = stat ("TEST.C", &stat-info);

Note If successful, stat returns the value 0. Otherwise, it returns
the value -1.

unsigned int -status87 (void);
Function Returns the current math coprocessor status word.

Include File <float.h>

Example

status = _status87();

Note The float.h file defines the return value of _status87.

TURBO C RUN-TIME LIBRARY 633

int stime (long *seconds);
Function Sets the current system time to the number of seconds
since 00:00 01/01/1970.

Include File <time.h>

seconds (in):

Example

stime (&lots-of-seconds);

Number of seconds since
00:00 01/01/1970

char *stpcpy (char *destination,
char *source);

Function Copies the contents of the source string to the
destination.

Include File <string.h>

destination (out):
source (in):

Example

String characters are copied to
String characters are copied from

result= stpcpy (destination, "STRING TO COPY");

Note The stpcpy routine returns destination +the number of
characters copied.

634 TURBO C PROGRAMMER'S LIBRARY

char *strcat (char *destination,
char *source);

Function Appends the contents of the source string to the
destination.

Include File <string.h>

destination (out):
source (in):

Example

String characters are appended to
String characters are copied from

result = strcat (destination, "STRING TO APPEND");

Note The strcat routine returns destination + the number of
characters appended.

strchr (char *string,
char letter);

Function Searches a given string for the specified character.

Include File <string.h>

string (in):
letter (in):

Character string to search
Letter to search for

TURBO C RUN-TIME LIBRARY 635

Example

loc = strchr (str, 'A');

Note The strchr routine returns a pointer to the first occurrence of
the letter specified or the value NULL if the letter does not exist.

int strcmp (char *s1,
char *s2);

Function Compares the contents of two character strings.

Include File <string.h>

sl, s2 (in): Character strings to compare

Example

result = strcmp ("STRING l", "STRING 2");

Note The strcmp routine returns a value that is

<O if sl < s2
=O if sl == s2
>O if sl > s2

636 TURBO C PROGRAMMER'S LIBRARY

char *strcpy (char *destination,
char *source);

Function Copies the contents of the source string to the destination.

Include File <string.h>

destination (out):
source (in):

Example

String characters are copied to
String characters are copied from

result= strcpy (destination, "STRING TO COPY");

Note The strcpy routine returns destination.

int strcspn (char *81,
char *82);

Function Returns an index into sl that consists entirely of charac­
ters not contained in s2.

Include File <string.h>

sl (in):
s2 (in):

String to return the index into
String of characters to compare sl charac­
ters to

TURBO C RUN-TIME LIBRARY 637

Example

index = strcspn (str, "ABC DE");

char *Strdup (char *str);
Function Returns a pointer to a string containing the same
sequence of characters as the given string.

Include File <string.h>

str (in): Character string to duplicate

Example

result = strdup ("String to duplicate");

Note The strdup routine returns a pointer to the new string, or it
returns the value NULL if space for the string could not be
allocated.

char *-strerror (const char *string);
Function Generates customized error messages.

Include File <string.h>

string (in): Contains the most current error message

638 TURBO C PROGRAMMER'S LIBRARY

Example

result = _strerror (str);

char *strerror (char *string);
Function Returns a pointer to the error message string, allowing
you to develop customized error messages.

Include File <string.h>

string (in): Customized error message

Example

result = strerror ("Invalid disk drive specified \n");

Note If string is NULL, the result of strerror is the error message
associated with the last system error.

int stricmp (char *s1,
char *s2);

Function Compares one string to another, ignoring the case of each
letter.

Include File <string.h>

sl, s2 (in): Character strings to compare

TURBO C RUN-TIME LIBRARY 639

Example

result = stricmp ("String 1", "STRING 1");

Note The stricmp routine returns a value that is

<O if sl < s2
=O if sl == s2
>O if sl > s2

unsigned strlen (char *string);
Function Returns a count of the number of characters in a
string.

Include File <string.h>

string (in):

Example

Character string to return the number of
characters in

length = strlen ("String to count");

char *strlwr (char *string);
Function Converts uppercase letters in a string to lowercase.

Include File <string.h>

640 TURBO C PROGRAMMER'S LIBRARY

string (in/out): String to convert to lowercase

Example

result = strlwr (string);

char *strncat (char *destination,
char *source,
int num-b'utes);

Function Appends the contents of the source string to the destina­
tion. Do not let the resultant string exceed num-bytes characters.

Include File <string.h>

destination (out):
source (in):
num_bytes (in):

Example

String characters are appended to
String characters are copied from
Maximum number of bytes in des­
tination

result = strcat (destination, src, sizeof (destination));

Note The strcat routine returns destination + the number of char­
acters appended.

int strncmp (char *s1,
char *s2, int num-bytes);

TURBO C RUN-TIME LIBRARY 641

Function Compares the contents of two character strings.

Include File <string.h>

sl, s2 (in):
num_bytes (in):

Example

Character strings to compare
Maximum number of bytes
to examine

result = strncmp (sl, "STRING 2", strlen (sl));

Note The strncmp routine returns a value that is

<O if sl < s2
=O if sl == s2
>O if sl > s2

char *strncpy (char *destination,
char *source,
num-bytes);

Function Copies the contents of the source string to the
destination.

Include File <string.h>

destination (out): String characters are copied to

642 TURBO C PROGRAMMER'S LIBRARY

source (in):
num_bytes (in):

Example

String characters are copied from
Maximum number of bytes to copy to
destination

result = strncpy (destination, sl, sizeof (destination));

Note The strncpy routine returns destination.

int strnicmp (char *s1,
char *s2, int num-b'ytes);

Function Compares the contents of two character strings, ignor­
ing the case of each letter.

Include File <string.h>

sl, s2 (in):
num_bytes (in):

Example

Character strings to compare
Maximum number of bytes to
examine

result = strnicmp (sl, "STRING 2", strlen (sl));

Note The strnicmp routine returns a value that is

<O if sl < s2
=O if sl == s2
>O if sl > s2

char *strnset (char *string,
char character,
int max-bytes);

TURBO C RUN-TIME LIBRARY 643

Function Assigns max-bytes occurrences of the specified charac­
ter to the given string.

Include File <string.h>

string (out):

character (in):
max_bytes (in):

Example

Character string to assign the charac­
ters to
Character to assign to the string
Number of characters to assign

result = strnset (str, 'A', sizeof(str));

char *strpbrk (char *s1,
char *s2);

Function Scans s2 for the first occurrence of a character in sl.

Include File <string.h>

s2 (in):
sl (in):

Search to scan
Set of letters to search for

644 TURBO C PROGRAMMER'S LIBRARY

Example

result = strpbrk (sl, s2);

Note The strpbrk routine returns a pointer to the first character
in s2 that occurs in sl. If no characters occur, strpbrk returns the
value NULL.

char *strrchr (char *str,
char character);

Function Searches a string for the rightmost occurrence of the
specified character.

Include File <string.h>

str (in):
character (in):

Example

String to search
Letter to search for

index = strrchr (str, 'z');

Note If the letter does not occur in the string, strrchr returns the
value NULL. If the letter occurs, strrchr returns a pointer to the
rightmost location.

TURBO C RUN-TIME LIBRARY 645

char *strrev (char *string);
Function Reverses the characters contained in the string.

Include File <string.h>

string (in/out):

Example

result = strrev (str);

String containing the characters to
reverse

char *strset (char *string,
char character);

Function Assigns each of the characters in a string to the charac­
ter specified.

Include File <string.h>

string (out):
character (in):

Example

result = strset (str, 'A');

Character string to assign the letter to
Character to assign to the string

646 TURBO C PROGRAMMER'S LIBRARY

char *strstr (char *s1,
char *s2);

Function Searches the sl string for the first occurrence of the s2
string.

Include File <string.h>

sl (in):
sl (in):

Example

String to search for
Character string to search

index_ptr = strstr ("This is it", "is");

Note If the string is found, strstr returns a pointer to the first
occurrence of the string in s2. If the string is not found, strstr
returns the value NULL.

double strtod (char *string,
char **end);

Function Converts a character string representation of a floating­
point value to a value of type double.

Include File <string.h>

string (in):
end (out):

Character string to convert
Character that the conversion stopped at

TURBO C RUN-TIME LIBRARY 647

Example

double-result = strtod ("133.344", &end);

Note The strtod routine stops at NULL or at the first character
that cannot be converted. If *end is not equal to NULL, the string
contained invalid characters.

char *strtok (char *s1,
char *s2);

Function Searches the character string sl for a set of tokens
defined in s2.

Include File <string.h>

sl (in):
s2 (in):

Example

result = strtok (sl, s2);

Character string to search
String of tokens

Note If a token is found, strtok returns a pointer to that location. Other­
wise, strtok returns the value NULL.

648 TURBO C PROGRAMMER'S LIBRARY

long strtol (char *String,
char **end, int radix);

Function Converts a character string representation of a long
value to a value of type long.

Include File <string.h>

string (in):
end (out):
radix (in):

Example

Character string to convert
Character that the conversion stopped at
Base of the value contained in the string

long-result = strtol ("133344L", &end, 10);

Note The strtol routine stops at NULL or at the first character
that cannot be converted. If *end is not equal to NULL, the string
contained invalid characters.

unsigned long strtoul (const char *str,
char **end-pointer,
int radix);

Function Converts a string containing an ASCII representation of
a value to an unsigned long integer.

Include File <stdlib.h>

str (in): String containing ASCII represen­
tation of the value

end_pointer (out):

int radix (in):

Example

TURBO C RUN-TIME LIBRARY 649

Pointer to the last character used
in the conversion
Base of ASCII representation (2, 8,
10, 16)

result = strtoul ("56333", end-pointer, 10);

char *strupr (char *string);
Function Converts a character string to uppercase.

Include File <string.h>

string (in): Character string to convert to uppercase

Example

result = strupr (sl);

void swab (char *s1, char *s2,
int num-bytes);

Function Swaps the specified number of bytes from one string to
another.

Include File <stdlib.h>

sl,s2 (in/out): Strings containing the bytes to exchange

650 TURBO C PROGRAMMER'S LIBRARY

Example

swab (sl, s2, sizeof (sl));

int system (char *DOScommand);
Function Invokes a DOS command from within your program.

Include File <stdlib.h>

DOScommand (in): DOS system command to execute

Example

result = system ("DIR");

Note The value returned is that generated by COMMAND.COM.

double tan (double value);
Function Returns the trigonometric tangent of the specified value.

Include File <math.h>

value (in): Value to return the tangent of

TURBO C RUN-TIME LIBRARY 651

Example

result = tan (pi * x);

double tank (double value);
Function Returns the hyperbolic tangent of the specified value.

Include File <math.h>

value (in): Value to return the tangent of

Example

result = tanh (pi * x);

long tell (int filehandle);
Function Returns the file pointer position for the specified file.

Include File <io.h>

filehandle (in): File handle associated with the desired
file

Example

loc = tell (filehandle);

652 TURBO C PROGRAMMER'S LIBRARY

void textattr (int attribute);
Function Sets foreground and background text mode colors and
attributes.

•
Include File <conio.h>

attribute (in):

Example

textattr (OxAl);

Specifies the foreground and back­
ground colors. First four LSBs are
foreground color; next three LSBs
are background color; MSB is blink
attribute enable bit.

Note The following colors are defined in conio.h:

Foreground and Background:
0 Black · 5 Magenta
1 Blue 6 Brown
2 Green 7 Light gray
3 Cyan 8 Dark gray
4 Red

Foreground Only:
9 Light blue 13 Light magenta

10 Light green 14 Yellow
11 Light cyan 15 White
12 Light red 128 Blink

void textbackground (int background­
color);

Function Selects the desired background color.

TURBO C RUN-TIME LIBRARY 653

Include File <conio.h>

background_color (in): Desired background color (0-7)

Example

textbackground (3);

Note See conio.h for color definitions.

void textcolor (int color);
Function Selects a new character color for text mode.

Include File <conio.h>

color (in):

Example

textcolor (1);

Desired color

int far textheight (char far *string);
Function Returns the pixel height of a string.

654 TURBO C PROGRAMMER'S LIBRARY

Include File <graphics.h>

string (in): String of interest

Example

result = textheight ("TEXT"); /* height by default is 8 */

void textmode (int desired-mode);
Function Selects a specific text video mode.

Include File <conio.h>

desired-mode (in):
-1

0
1
2
3
7

Example

textmode (3);

Desired text mode:
Last text mode selected
Black and white, 40 column
Color, 40 column
Black and white, 80 column
Color, 80 column
Monochrome, 80 column

int far textwidth (char far *string);
Function Returns the pixel width of a string.

TURBO C RUN-TIME LIBRARY 655

Include File <graphics.h>

string (in): String of interest

Example

result = textwidth ("TEXT"); /* width by default is 8 * 4 */

long time (long *Seconds);
Function Returns the number of seconds that have elapsed since
00:00 01/01/1970. .

Include File <time.h>

seconds (out): Number of seconds since 00:00 01/01/1970

Example

result = time (&seconds);

Note The time routine also returns the number of seconds.

int toascii (int character);
Function Converts a given character to a value in the range
0-127.

656 TURBO C PROGRAMMER'S LIBRARY

Include File <ctype.h>

character (in): Character to convert to ASCII

Example

ltr = toascii (extended-ascii-char);

int -tolower (int character);
Function Converts an uppercase letter to lowercase.

Include File <ctype.h>

character (in): Character to convert to lowercase

Example

lower = _to lower(character);

int tolower (int character);
Function Converts an uppercase letter to lowercase.

Include File <ctype.h>

character (in): Character to convert to lowercase

TURBO C RUN-TIME LIBRARY 657

Example

lower = tolower(character);

int -toupper (int character);
Function Converts a lowercase letter to uppercase.

Include File <ctype.h>

character (in): Character to convert to uppercase

Example

upper = _toupper(character);

int toupper (int character);
Function Converts a lowercase letter to uppercase.

Include File <ctype.h>

character (in): Character to convert to uppercase

Example

upper = toupper(character);

void tzet (void);
Function A UNIX-compatibility routine; no function under DOS.

658 TURBO C PROGRAMMER'S LIBRARY

Example

tzet ();

char *Ultoa (unsigned long value,
char *str, int radix);

Function Converts an unsigned long int value to its ASCII
representation.

Include File <stdlib.h>

value (in):
str (out):
radix (in):

Example

Long value to convert
String to contain ASCII representation
Specifies the desired radix (2-36): 2=binary,
lO=decimal, 8=octal, 16=hex, and so on

result = ultoa (334114L, str, 10);

Note The ultoa routine does not return an error status.

int ungetc (char character,
FILE *stream);

Function Pushes a value back into the input file stream.

Include File <stdio.h>

character (in):
stream (in):

Value to put back into the file stream
File stream desired

TURBO C RUN-TIME LIBRARY 659

Example

result = ungetc (letter, fp);

Note The ungetc routine returns the value put back into the file
stream.

int ungetch (char character);
Function Pushes a value back into the keyboard buffer.

Include File <stdio.h>

character (in): Value to put back into the keyboard buffer

Example

result = ungetch (letter);

Note The ungetch routine returns the value put back into the
keyboard buffer.

void unixtodos (long unixtime,
struct date *date-ptr,
struct time *time-ptr);

Function Converts a UNIX time to DOS format.

660 TURBO C PROGRAMMER'S LIBRARY

Include File <dos.h>

unixtime (in):
date_ptr (out):
time_ptr (out):

Example

Date and time in UNIX format
Structure containing the DOS format date
Structure containing the DOS format time

unixtodos (unixdatetime, &dosdate, &dostime);

int unlink (char *DOSfilename);
Function Deletes the specificed DOS file name.

Include File <dos.h>

DOSfilename (in): DOS file to delete

Example

result= unlink ("TEST.BAK");

Note The unlink routine returns 0 if successful and -1 if an
error occurs.

int unlock (int filehandle,
long offset,
long num-bytes);

TURBO C RUN-TIME LIBRARY 661

Function Releases a file-sharing lock previously set by lock.

Include File <dos.h>

filehandle (in): File handle of desired file
offset (in): Location of the first byte to unlock
num_bytes (in): Number of bytes to unlock

Example

result = unlock (filehandle, 1024, 255);

Note The unlock routine returns 0 if successful and -1 if an
error occurs.

usertype va-arg (va-list param,
usertype);

Function Returns the next argument in a variable argument list.

Include File <stdarg.h>

param (in):
type (in):

Variable-length argument list
Data type of the values in the argument list

662 TURBO C PROGRAMMER'S LIBRARY

Example

param = va-arg (arg_list, int);

Note The va_arg routine returns NULL after the last parame­
ter in the list.

void va-end (va-list parameter);
Function Marks the end of a variable argument list.

Include File <stdarg.h>

parameter (in): Variable argument list

Example

va-end (arg_list);

void Va-start (va-list parameter);
Function Marks the start of a variable argument list.

Include File <stdarg.h>

parameter (in): Variable argument list

Example

va_start (arg_list);

int vfprintf (FILE *stream,
char format-Sequence,
va-list arglist);

TURBO C RUN-TIME LIBRARY 663

Function Outputs formatted data to an output stream.

Include File <stdarg.h>

stream (in):
format-sequence (in):

arglist (in):

Example

File stream to output to
Control characters that specify how the
output is to be formatted
Variable-length argument list to be output

result = vfprintf (fp, "o/od o/oc", arg_list);

Note The vfprintf routine returns the number of bytes output.

int vfscanf (FILE *stream,
char format-Sequence,
va-list arglist);

Function Inputs formatted data from an input stream.

664 TURBO C PROGRAMMER'S LIBRARY

Include File <stdarg.h>

stream (in):
format-Sequence (in):

arglist (in):

Example

File stream to input from
Control characters that specify how the
output is to be formatted
Variable-length argument list to be output

result = vfscanf (fp, "o/od %c", arg_list);

Note The vfscanf routine returns the number of fields filled.

int vprintf (char format-sequence,
va-list arglist);

Function Outputs formatted data to stdout.

Include File <stdarg.h>

format-Sequence (in): Control characters that specify how the
output is to be formatted

arglist (in): Variable-length argument list to be output

Example

result = vprintf ("%d %c", arg_list);

Note The vprintf routine returns the number of bytes output.

TURBO C RUN-TIME LIBRARY 665

int vscanf (char format-sequence,
va-list arglist);

Function Inputs formatted data from stdin.

Include File <stdarg.h>

format-Sequence (in): Control characters that specify how the
output is to be formatted

arglist (in): Variable-length argument list to be output

Example

result = vscanf ("o/od o/oe", arg_list);

Note The vscanf routine returns the number of fields filled.

int vsprintf (char *String,
char format-Sequence,
va-list arglist);

Function Outputs formatted data to a character string.

Include File <stdarg.h>

string (in):
format-Sequence (in):

arglist (in):

Character string to output data to
Control characters that specify how the
output is to be formatted
Variable-length argument list to be output

666 TURBO C PROGRAMMER'S LIBRARY

Example

result = vsprintf (str, "o/od o/oc", arg_list);

Note The vsprintf routine returns the number of bytes output.

int vsscanf (char *string,
char format-Sequence,
va-list arglist);

Function Inputs formatted data from a character string.

Include File <stdarg.h>

string (in):
formaL . ..sequence (in):

arglist (in):

Character string to input data from
Control characters that specify how the
output is to be formatted
Variable-length argument list to be output

TURBO C RUN-TIME LIBRARY 667

Example

result = vsscanf (str, "o/od o/oc", arg_list);

Note The vsscanf routine returns the number of fields filled.

int wherex (void);
Function Returns the x coordinate of the cursor within the cur­
rent window.

Include File <conio.h>

Example

x_loc = wherex ();

int wherey (void);
Function Returns the y coordinate of the cursor within the cur­
rent window.

Include File <conio.h>

668 TURBO C PROGRAMMER'S LIBRARY

Example

y_loc = wherey ();

void window (int left-corner,
int top-corner,
int right-corner,
int bottom-corner);

Function Defines the active text mode window.

Include File <conio.h>

left_corner (in):
top_corner (in):
right_corner (in):

Upper-left corner x window coordinate
Upper-left corner y window coordinate
Lower-right corner x window coor­
dinate

bottom_corner (in): Lower-right corner y window coor­
dinate

Example

window (1, l, 80, 25);

int -write (filehandle,
void *buffer, int num-bytes);

Function Writes the specified number of bytes to the file asso­
ciated with the given file handle.

Include File <io.h>

filehandle (in):

buffer (in):

num_bytes (in):

Example

TURBO C RUN-TIME LIBRARY 669

File handle associated with the
desired file
Buffer containing the data to
output
Number of bytes to write to the
file

bytes_wtn = _write (filehandle, buffer, sizeof(buffer));

Note If successful, _write returns the number of bytes written;
otherwise, _write returns the value -1. The maximum number
of bytes this routine can write is 65,534.

int write (filehandle,
void *buffer,
int num-bytes);

Function Writes the specified number of bytes to the file asso­
ciated with the given file handle.

Include File <io.h>

filehandle (in):

buffer (in):
num_bytes (in):

File handle associated with the desired
file
Buffer containing the data to output
Number of bytes to write to the file

670 TURBO C PROGRAMMER'S LIBRARY

Example

bytes-wtn = write (filehandle, buffer, sizeof(buffer));

Note If successful, write returns the number of bytes written;
otherwise, it returns the value -1. The maximum number of
bytes this routine can write is 65,534.

Trademarks

IBM®
MS-DOS®
Turbo C®

International Business Machines Corporation
Microsoft Corporation
Borland International, Inc.

Index
A
Addresses

incrementing, 64
offset, 382- 383
segment, 382

Ampersand (&)operator, 56-57, 61-62
ANSI driver

installation of, 224
operation of, 207 -209, 224
for redefining a DOS function key

with DOS command, 222-224
ANSI support, 207-224

commands for, 208-209
for keyboard reassignment,

222-224
required for multidimensional

ANSI support, continued
arrays, 272

routines for cursor manipulation,
210-215

routines for erasing, 215- 216
routines for, 210-224
routines for screen attributes,

216-222
ANSI.SYS, 208-209
ansi_set_mode, 221- 222
append_string, 21, 22-23
argc, 80-82
argv, 80- 82, 109, 111, 227- 228, 305
array _type, 252- 253

for sorting, 274, 284-285
with quick sort, 310

673

674 TURBO C PROGRAMMER'S LIBRARY

Arrays
bounds of, 14, 15-17
fixed size of, 345- 346
manipulation of, 247-272
multidimensional, 271-272
of character strings, 12-14, 305-318
of pointers, 79- 80
searching, 274- 275
specifying storage requirements,

347
types of, 248- 253
using macros in place of, 269-270

ASCII character(s), 27, 208
array of points to display, 79- 80
as white space, 41-43
case of, 26- 28
codes, 85, 87, 431- 433
representation of floating-point

value to numeric value, 333-334
set for framing menu, 408- 409

ASCII code, to display characters, 85,
87

ascii_to_float, 333-334
ascii_to_int, 76- 78
Asterisk (*)

as character string, 227 -228
for variable as pointer, 56-57

ATTR.C, 228-230
ATTRIB, 228
aux_char, 144-145
aux_output, 145-146
average_value, 254-255

B
Binary trees, 366-380
binary __search, 283-284
BIOS services

interface, 191-193
output routines from, 321
routines, 193-206

Blanks
preceding string (padding), 33-36
removing, 41- 43

Borland International, Inc.
run -time library of, 2- 3
source code of, 3

Bounds checking, 69
bsearch, 316

Bubble sort, 285-288, 318
bubble__sort, 288
buffer _screen_region, 396- 398
buffer _video_region, 418
buffered_input, 150

c
C.DAT, 242-243
calc, 427 -430
calloc, 350, 351
Case

-sensitive comparisons, 44-47, 71-76
manipulation, 26-28

change_directory, 169
change_key, 223
char *--8trerror (const char *String);,

637-638
char *asctime (struct tm ~ime);, 440
char *Cgets (char *String);, 456
char *Ctime (long *Seconds__since_

01_01_1970);, 470
char *ecvt (double value, int number_

of_digits, int *decimal_loc, int
*Sign);, 477-478

char *far getdta (void);, 516- 517
char *fcvt (double value, int number_

of_digits, int *decimal_loc, int
*Sign);, 486

char *fgets (char *String, int num_
bytes, FILE *Stream);, 490-491

char *gcvt (double value, int num_
digits, char *Str);, 508

char *getcwd (char *directory, int
num_bytes);, 514 ·

char *getenv(char *environment_
variable);, 517

char *getpass (char *prompt);, 525
char *itoa (int value, char *Str, int

radix);, 554
char *ltoa (long value, char *Str, int

radix);, 566- 567
char *mktemp (char ~emplate);, 575
char *parsfnm (char *Command_line,

struct fcb *filecontrol_block, int
al_register);, 584

char *Ptr;, 381
char *Sbrk (int increment);, 607
char *Searchpath (char *filename);,

608-609

char *Stpcpy (char *destination, char
*source);, 633

char *Streat (char *destination, char
*Source);, 634

char *Strcpy (char *destination, char
*Source);, 636

char *Strdup (char *Str);, 637
char *Strerror (char *String);, 638
char *Strlwr (char *String);, 639-640
char *Strncat (char *destination, char

*Source, int num_bytes);, 640
char *Strncpy (char *destination, char

*Source, num_bytes);, 641-642
char *Strnset (char *String, char

character, int max_bytes);, 643
char *Strpbrk (char *Sl, char *S2);,

643-644
char *Strrchr (char *Str, char charac­

ter);, 644
char *Strrev (char *string);, 645
char *Strset (char *String, char char-

acter);, 645
char *Strstr (char *Sl, char *S2);, 646
char *Strtok (char *Sl, char *S2);, 647
char *Strupr (char *String);, 649
char *Ultoa (unsigned long value, char

*Str, int radix);, 658
char far *grapherrormsg (int error_

code);, 534
char _count, 36-37, 66-67
char _index, 38, 65- 66
Character string

centered on row, output routine for,
324-325

displayed using recursion, 97 -99
Character strings

arrays of, 305- 318
*· * as, 227 -228

Characters
copying, 16-17
displayed using ASCII code, 85, 87
first occurrence of, in strings, 65-

66, 67
manipulation, 36-41
null (\0), in a string, 13-14
number of, in string, 64- 65, 66- 67
See also Arrays

check_character _available, 151
clear _col, 216

INDEX 675

clear _display _page, 391- 393
clear _line, 393-394
clear _screen, 215- 216
close_file, 172
Command lines

parameters displayed using recur­
sion, 113

processing, 80- 82
user-friendly, 319- 320

compare_strings, 307
CONFIG.SYS, 209
Conversion routines, 76- 78
copy_string, 19, 20-21, 69-70
Copying

fast, recursion used for, 107 -109
fast, of string, 59
strings, 69- 70

COUNT
to display number of file lines,

121-122
to display number of redirected

lines, 120-121
create_file, 170
create_unique_file, 188-189
ctrl_break_status, 163-164
Cursor, manipulation of, 210- 215
cursor_back, 212-213
cursor _down, 211
cursor _forward, 212
cursor_home, 213
cursor _up, 210- 211

D
define_function_key, 223- 224
delete_file, 175-176
DIR, 227

stdout redirected for, 119-120
DIR command, 115-116

output to DIR.LST, 116-117
with PRN, 117

DIR.LST file, from DIR output,
116-117

direct_IO, 147
disk_information, 155
Display attributes

changing, 337
naming, 338
values of, 322, 323

DISPLAY.C, 232-233

676 TURBO C PROGRAMMER'S LIBRARY

Display page. See Video display pages
display_frame, 409-411.
display _memo, 411-414
display _menu, 408
display _popup_menu, 418, 420- 422
display ___string, 97 -99
div _t div (int numerator, int denom­

inator);, 473-474
DOS

directory, 226- 228
environment, accessing, 82-84
memory map. See Memory map
standard input source. See stdin
standard output destination. See

stdout
dos.h, 139-140, 192

with BIOS services, 192
DOS system services, 140-190

INT 21H with, 138-139
interface with, 135-136
use of 8088 registers in, 136-138

DOS_version, 161-162
double acos (double);, 438
double asin (double);, 440-441
double atan2 (double, double);, 442
double atan (double);, 441-442
double atof (char *Str);, 443
double cabs (struct complex number);,

454
double ceil (double);, 455
double cos (double);, 464
double cosh (double);, 464-465
double difftime (time_t time2, time_t

timel);, 472-473
double exp (double value);, 481-482
double fabs (double value);, 482
double floor (double value);, 495
double fmod (double x, double y);,

495-496
double frexp (double value, int *expo­

nent);, 504
double hypot (double x, double y);, 539
double ldexp (double value, int expo-

nent);, 556
double loglO (double value);, 562
double log (double value);, 561-562
double matherr (struct exception

*except);, 567 -568

double modf (double value, double
*integer _portion);, 575

double poly (double x, int degree,
double *poly_array);, 588

double powlO (int power);, 589
double pow (double value, double

power);, 588-589
double sin (double value);, 626-627
double sinh (double value);, 627
double sqrt (double value);, 630
double strtod (char *String, char

**end);, 646-647
double tan (double value);, 650-651
double tanh (double value);, 651
double___sum_values, 253
Dynamic lists, 34 7 -354

doubly linked, 363-366
maintaining sorted, 355-363

Dynamic memory, 345- 380

E
8088 registers, 136-138, 139-140, 192
end_list, 303
env, 83, 305
equal___strings, 44- 45, 71- 72, 306, 310
Erasing, 215- 216
Error

messages, 132-133
run-time, preventing, 7
standard, 132-133

EXTRACT.C, 242-244

F
Factorials, 100, 102-103
fast_append, 21-22, 70-71
fast_copy, 19-20, 69, 107 -109
fast_exchange, 31- 32
fast_insert, 23- 24
fast_pad, 33-34
fibonacci, 104, 105
Fibonacci number, 104, 105
FILE *fdopen (int handle, char

*Open_type);, 487
FILE *fopen (char *filename, char

*access_type);, 497-498
FILE *freopen (char *filename, char

*access_type, FILE *Stream);, 503
file_pointer, 111-112

file_reverse, 109-111
FILECOPY, 233-234
FILECOPY.C, 233-234
Files

deleting lines from, 242, 244- 246
displayed in reverse order using

recursion, 109-111
displaying directory for, 226- 228
displaying first lines of, 237 -239
displaying last lines of, 236-237
displaying specified string in, 239
enhancing capabilities of TYPE

command for, 232-233
last lines displayed using recursion,

111-112
locating, 84
manipulation routines of, 225-246
maximizing command- line flexibil-

ity for, 234-236
preceding lines of, 241- 242
removing portions of, 242-244
replacing word with other word,

239-241
setting date and time stamp for,

230-232
setting or displaying attributes of,

228-230
utility programs for, 234-246

fill-string, 40-41
find_first, 180-182, 226- 228,

231-232
find_next, 182-184, 226-228,

231-232
FINDSTR.C, 239
FINDWORD, 127 -128
FIRST, 124-125
FIRST.C, 237 -239
first_copy, 16-17
first_difference, 45-46, 73- 74
first_nonw hi te, 41- 42
float_bubble_sort, 312
float_compare, 309, 311
float_sum_values, 253
Floating- point value

from user, input routine for,
333-336

on screen, output routine for,
326-327

free, 352
free_list, 360

INDEX 677

Function, assigning parameter value
to, 60

Functions

G

pointers and, 59- 62
presentation of, 6
prototypes, 6- 8

generic_search, 309- 310, 311
get_cursor _position, 196
get_date, 157
get_directory, 179-180
get_disk_transfer _address, 164-165
get_disk_verification, 184-185
get_file_attributes, 177 -178
get_file_datetime, 186-187
get_float, 333-336
get_free_disk_space, 166-167
get_int, 332-333
get_interrupt_vector, 165-166
get_menu_response, 414-416
get_popup_menu_response, 422-425
get_program_segment_prefix,

189-190
get_prompted_float, 341- 343
get_prompted_int, 340- 341
get_prompted_string, 338- 340
get_shift_state, 204-205
get_string, to provide default string,

329-332
get_time, 159
get_video_mode, 203
gettextinfo (struct text_info *text_

record);, 528
getviewsettings (struct viewporttype

far *View _port);, 530

I
1/0, user-consistent

prompting floating-point value,
341-343

prompting integer, 340- 341
prompting string, 338-340

678 TURBO C PROGRAMMER'S LIBRARY

1/0, user-consistent, continued
providing, 336-338
routines, 320-321, 336-334

1/0 redirection, 115-133
counting lines of, 120-122
displaying first lines of redirected

input, 124-125
displaying last lines of redirected

input, 125-126
displaying number of file elements,

123-124
displaying words of redirected

input, 127 -128
filing intermediate results, 131-132
placing line number before lines,

122-123
replacing word with other word,

128-130
specifying number of spaces to

right, 126-127
stdin redirected for MORE com-

mand, 118, 119
stdin and stdout defined, 115-116
stdin and stdout redefined, 116-117
using, 120-132

1/0 routines, 23, 319-344
determining when to perform,

386-387
for video display pages, 391-403
memory mapping and, 403
user-consistent, 320-321, 336-334

Index
incrementing, 48- 49
of characters, 73-74
of substrings, 74- 75

inportb, 387
Input routines, 329- 336

getting floating-point value from
user, 333- 336

getting integer value from any
location, 332-333

providing default string, 329- 332
Input/Output. See 1/0
inserL..string, 23
int86, 192

INT 21H, 138-139
INT, 192
int abs (int);, 436
int absread (int disk, int num_

sectors, int first_sector, void
*buffer};, 436

int abswrite (int disk, int num_
sectors, int first__sector, void
*buffer};, 437

int access (char *filename, int access_
mode;, 438

int allocmem (unsigned paragraphs,
unsigned *Segment_address);, 439

int atexit (atexit_t function_name};,
442-443

int atoi (char *Str};, 443-444
int bdos (int DOSfunction, unsigned

dx, unsigned al};, 446-447
int bdosptr (int DOSfunction, void

*parameter, unsigned al};, 447
int bioscom (int command, char byte,

int port_id};, 447-448
int biosdisk (int command, int disk,

int side, int track, int sector, int
numsectors, void *buffer);, 448-449

int biosequip (void);, 449-450
int bioskey (int command};, 450-451
int biosmemory (void);, 451
int biosprint (inc command, int byte,

int port_id};, 451- 452
int brk (void *end_datasegment};, 453
int chdir (char *pathname);, 456-457
int chmod (char *filename, int access};,

457-458
int chsize (int file_handle, long new_

size);, 458
int close (int file_handle};, 461-462
int cprintf (char *format__string [,

parameter[, ...]]);, 465-466
int creat (char *filename, int access);,

467-468
int creatnew (char *filename, int

attribute};, 468
int creattemp (char *filename, int

attribute);, 468- 469

int cscanf (char *format_sequence [,
arguments]);, 469

int dosexterr (struct DOSERR
*error_info);, 474-475

int dup2 (int old_file_handle, int
new _file_handle);, 477

int dup (int file_handle);, 476
int eof (int file_handle);, 479
int exec ... (char *path, char *argO,

char *argl ... , NULL);, 480
int far getbkcolor (void);, 510
int far getcolor (void);, 513
int far getgraphmode ();, 521
int far getmaxcolor (void);, 522-523
int far getmaxx (void);, 523
int far getmaxy (void);, 523
int far getpixel (int x_loc, int y _loc);,

525
int far getx (void);, 532
int far gety (void);, 532
int far graphresult (void);, 535- 536
int far textheight (char far *String);,

653-654
int far textwidth (char far *String);,

654-655
int fclose (FILE *Stream);, 485
int fcloseall (void);, 485-486
int feof (FILE *Stream);, 487
int ferror (FILE *Stream);, 488
int fflush (FILE *Stream);, 488
int fgetc (FILE *stream);, 488-489
int fgetchar (void);, 489
int fgetpos (FILE *file_stream,

fpos_t *file_position);, 489-490
int fileno (FILE *Stream);, 491- 492
int findfirst (char *path, struct ffblk

*fileblock, int attribute);, 492-493
int findnext (struct ffblk *fileblock);,

493-494
int flushall (void);, 495
int fprintf (FILE *Stream, char

*format_sequence [, argu­
ments ...]);, 499
int fputc (int character, FILE

*stream);, 500

INDEX 679

int fputs (char *Str, FILE *Stream);,
501

int fread (void *pointer, int num_
bytes, int num_items, FILE

*Stream);, 501-502
int freemem (unsigned segment);,

502-503
int fscanf (FILE *Stream, char

format_sequence [, argument ...]);,
504-505

int fseek (FILE *Stream, long offset,
int location);, 505

int fsetpos (FILE *file_stream, canst
fpos_t *file_position);, 505- 506

int fstat (char *handle, struct stat
*Stat_info);, 506

int fwrite (void *buffer, int num_
bytes, int num_items, FILE
*Stream);, 507 -508

int getcbrk (void);, 511
int getc(FILE *Stream);, 511
int getchar(void);, 512
int getche(void);, 512- 513
int getch(void);, 511-512
int getcurdir (int drive, char *direc­

tory);, 513- 514
int getdisk (void);, 516
int getftime (int file_handle, struct

ftime *file_stamp);, 520-521
int gettext (int left_corner, int top_

corner, int right_corner, int
bottom_corner, void *buffer);, 527

int getverify (void);, 531
int getw (FILE *Stream);, 531
int gsignal (int signal);, 536
int inport (int port_number);, 541
int inportb (int port_number);, 542
int int86 (int interrupt_number

union REGS *inregs, union REGS
*outregs);, 543

union REGS *inregs, union REGS
*Segregs);, 544

int intdos(union REGS *inregs, union
REGS *OUtregs);, 545

int intdosx(union REGS *inregs, union

680 TURBO C PROGRAMMER'S LIBRARY

int intdosx, continued
REGS *<mtregs, struct SREGS

*<mtregs, struct SREGS
sregs);, 545- 546
int ioctl (int devhandle, int command

[, int argdx, int argex]);, 547
int isalnum(int character);, 548
int isalpha (int character); 548
int isascii(int character);, 549
int isatty (int devicehandle); 549
int iscntrl(int character);, 550
int isdigit(int character);, 550
int isgraph(int character);, 551
int isprint(int character);, 552
int ispunct(int character):. 552int

isspace(int character);, 553
int isxdigit(int character);, 553-554
int kbhit (void);, 554-555
int lock (int filehandle, long offset,

long length);, 561
int mkdir (char *DOSpathname);, 5'13
int movetext (int left_corner, int top_

corner, int right_corner, int
bottom_corner, int new _leftcorner,
int new_topcorner);, 577-578
int open (char *DOSpathname, int

access_type[, int permissions]);,
581-582

int peek (int segment, int offset);, 585
int peekb (int segment, int offset);, 585
int printf (char *format_sequence [,

argument ...]);, 589- 590
int putc (int character, FILE

*stream);, 591
int putch (int character);, 591
int putchar(int character);, 592
int putenv (char *environment_

entry);, 592-593
int puts (char *String);, 594- 595
int puttext (int left_corner, int top_

corner, int right_corner, int
bottom_corner, void *buffer);, 595

int putw (int word, FILE *Stream);,
595-596

int randbrd (struct fcb *file_control_
block, int num_records);, 597-598

int randbwr (struct fcb *file_
control_block, int num_records);,
598-599

int random (int boundary);, 599
int rand(void);, 597
int read (int file_handle, void *buffer,

int num_bytes);, 601
int registerbgidriver (void

(*driver)(void));, 603
int registerbgifont (void(*font)(void));,

603-604
int rename (char *Oldname, char

*newname);, 604
int rewind (FILE *Stream);, 605
int rmdir (char *directory _name);,

605-606
int scanf (char format_sequence [,

argument ...]);, 607-608
int setblock (int segment, int

newsize_in_bytes);, 611
int setcbrk (int status);, 612
int setdisk (int disk_drive);, 614
int setftime (int file_handle, struct

ftime *file_stamp);, 616
int setjmp (jmp_buf task_state);,

617-618
int setmode (int filehandle, unsigned

mode);, 619-620
int spawn ... (int mode, char

*Command, char *arg [, ...],
NULL);, 628-629

int sprintf (char *String, char
*format_sequence[, argument ...]);,
629-630

int sscanf (char *String, char
format_sequence [, argument. ..]);,
631

int stat (char *pathname, struct stat
*Stat_info);, 631-632

int stime (long *Seconds);, 633
int strcmp (char *Sl, char *S2);, 635
int strcspn (char *Sl, char *S2);,

636-637
int stricmp (char *Sl, char *S2);,

638-639
int strncmp (char *Sl, char *S2, int

num_bytes);, 641
int strnicmp (char *Sl. char *S2, int

num_bytes);, 642
int system (char *DOScommand);, 650
int toascii (int character);, 655-656
int tolower (int character);, 656-657

int toupper (int character);, 657
int ungetc (char character, FILE

*Stream);, 658-659
int ungetch (char character);, 659
int unlink (char *DOSfilename);, 660
int unlock (int filehandle, long offset,

long num_bytes);, 661
int vfprintf (FILE *Stream, char

format_sequence, va_list arglist);,
663

int vfscanf (FILE *Stream, char
format_sequence, va_list arglist);,
663-664

int vprintf (char format_sequence,
va_list arglist);, 664

int vscanf (char format_sequence,
va_list arglist);, 665

int vsprintf (char *String, char
format_sequence, va_list arglist);,
665-666

int vsscanf (char *String, char
format_sequence, va_list arglist);,
666

int wherex (void);, 666-667
int wherey (void);, 667
int write (filehandle, void *buffer, int

num_bytes);, 669
int_chmod (char *filename, int

function[, int attribute]);, 457
int_close (int file_handle);, 461
int_creat (char *filename, int

attribute);, 466-467
int_read (int file_handle, void

*buffer, int num_bytes);, 600-601
int_tolower (int character);, 656
int_toupper (int character);, 657
int_write (filehandle, void *buffer,

int num_bytes);, 668-669
int_bubble_sort, 312
int_open (char *DOSpathname,

int access_type);, 580
int_pointer, 57, 59
int_sum_values, 253
int_to_ascii, 77-78
intdos, 139-140, 141, 142
Integer value

from any location, input routine
for, 332-333

in row and column, output routine
for, 325-326

INDEX 681

Integer values, significant bit for, 104,
105-106

integer _variable, 57
Interface

BIOS, 191-206
DOS, 135-190

Interrupts
for BIOS services, 192

K
Keyboard reassignment, 222-224
keyboard_service, 152

L
LAST, 125-126
LAST.C, 236-237
last_nonwhite, 42-43
ldiv _t ldiv (long numerator, long

denominator);, 556-557
Least squares fit, 265-269

computing residual value in,
268-269

estimating missing points in, 267
returning line of best fit in,

266-267
least_square, 266-267, 268
LINENUM

redirecting output from, 122-123
to place line number before lines,

122-123
list_delete, 362-363
list_insert, 355-358
list_separator, 300-302
Lists, dynamic, 347-354

doubly linked, 363-366
maintaining sorted, 355-363

long atol (char *Str);, 444
long biostime (int command, long

new _realtime);, 452
long dostounix (struct date *date_ptr,

struct time *time_ptr);, 475
long farcoreleft (void);, 483
long filelength (int file_handle);, 491
long ftell (FILE *Stream);, 507
long labs (long value);, 555-556
long lseek (int filehandle, long offset,

int location);, 565-566
long strtol (char *String, char **end,

int radix);, 648
long tell (int filehandle);, 651

682 TURBO C PROGRAMMER'S LIBRARY

long time (long *Seconds);, 655
Lowercase

manipulation, 26-28
See also Case
strings in, 68

LS, 226-228
LS.C, 226-228
lsearch, 316
lseek, 176-177

M
Macros

for segmental searching, 276
using, 269-270

main, 112-113
make_directory, 167-168
malloc, 350, 351
maxchar, qualifier, 69
maximum_value, 256
median_value, 256-258
Memory

allocating, in linked lists, 350, 351
dynamic, 345-380
freeing, allocated by list, 360
mapping, 85, 87, 381-403
model, 140-141
releasing, in linked lists, 352

Memory addresses, 56-59
ampersand (&) operator and, 56-57,

61-62
incrementing, 64
locations of offset, 382-383
locations segment, 382
pointers and strings and, 62-64

memory _map_get, 399-400
memory _size, 204
Menus

applications for, 405-407
displaying, 411-414
framing, 408-411
pop-up, 417-425
pop-up, advanced video, 425-430
pop-up, math with, 425-430
structure of, 407-408
user selection of, 414-416

mid_index, 277-283
minimum_value, 255
modal_value, 259-261
MORE

stdin redirected for, 118, 119

to display screenful of information,
130-131

MORE.C, 130, 234-236

N
next_str _occurrence, 52-53
no_echo_read, 148
Nodes, 348-354

0

in binary trees, 367-368, 371-373,
375-378

in linked lists, 358- 359, 360- 363

open_file, 171
Output routines, 321-328

on display pages, 322

p

to define display attributes, 322,
323

to output character string centered
on row, 324- 325

to output integer value in row and
column, 325- 326

to output prompt text to screen,
327-328

to place floating-point value on
screen, 326-327

to specify row and column location,
322, 323- 324

pad_string, 33, 35- 36
page_location, 391
Parameters

call by value for, 60
command-line displayed using

recursion, 113
for command-line access, 80-82
presentation of, 6
stored in stack, 114

pattern-index, 53- 54
Patterns, matching, 53- 54
Pipe redirection, 118-119
Pointers

arrays of, 79- 80
defined, 56, 381
far, 84-87
functions and, 59- 62
in doubly linked lists, 363-365
in dynamic lists, 349- 354
manipulation of, 55-87

Pointers, continued
near, 84, 382
self-referential structure and, 349
strings and, 62- 64

Portability, 104
print_blinking, 220
print_bold, 221
print_reverse_video, 219- 220
print_screen, 193
printf, 122-123
Printing, 117-118
PRN, 117
Programs

developing user-consistent,
320-321, 336-334

utility, 234- 246
put_centered_string, 324- 325
put_float, 326- 327
put_int, 325- 326
put_line, 402- 403
put_prompt, 327-328
put_string, 322, 323- 324, 327, 337

Q
qsort, 316
Question mark (?), 53
Quick sort, 304- 305, 318
quick_sort, 304- 305
Quotation marks (" "), 13

R
read_file, 173-174
read_pixel, 202
Recursion, 89-114

defined, 89, 94
factorial, 100, 102-103
stack and, 114
used to display character string,

97-99
used to display files in reverse

order, 109-111
used to display last line of file,

111-112
used to display strings in reverse

order, 99-100, 101
used to fast copy, 107-109
used to invoke main program,

112-113
used to terminate strings, 94, 95- 97
with digit value, 90- 94, 95

INDEX 683

REMOVE.C, 242, 244-246
remove_character, 37- 38
remove_directory, 168-169
remove_substring, 51-52
rename_file, 185-186
REPLACE, 128-130
REPLACE.C, 239-241
replace_char _index, 39- 40
replace_character, 67
restore_cursor, 214- 215
restore_screen_region, 400- 402
restore_video_region, 418
return_type, 252-253
reverse_string, 28- 29
right_char _index, 38- 39
ROM BIOS. See BIOS services
Run-time errors, preventing, with

function prototypes, 7
Run-time library, 2- 3, 435- 668

allocating memory using, 350, 351
ANSI routines and, 224

s

BIOS services in, 192
DOS system services routines in,

141
releasing memory using, 352
returning byte value from port
using, 387-388
searching and sorting routines for,

316

save_cursor, 214
Screen. See Video screen
scroll_down, 198-199
scroll_up, 197-198
Searching

algorithms, 273-274
arrays, 274- 275
binary, 276- 285
developing generic routines for,

316-318
run-time library routines for, 316
sequential, 275- 276
sequentially, 316- 318

second_copy, 17
Selection sort, 288- 292
selection_sort, 292
Sequential search, 275-276, 316-318
sequential_search, 275- 276
SET command, 82-84

684 TURBO C PROGRAMMER'S LIBRARY

set_active_display _page, 197
set_blink, 217-218
set_bold, 217
set_border _color, 205- 206
set_color _palette, 200- 201
set_colors, 219
set_cursor, 210
set_cursor _positions, 194-195
set_cursor _size, 195
set_date, 158
set_disk_transfer _address, 154
set_display _page_attribute,

394-395
set_drive, 153
set_file_attributes, 178-179
set_file_datetime, 187-188
set_interrupt_vector, 156
set_line_attribute, 395-396
set_reverse, 218
set_time, 160-161
set_video_mode, 193-194
setfillpattern (char far *fill_pattern,

int color);, 615
Shell sort, 293-297
shelL....sort, 296- 297
show _digit, 90- 94, 95
show _first, 62
show _reverse, 99-100, 101
show _second, 63
show _string, 63- 64
SHOWENV PATH= program, 83-84
slashC, 127-128
slash V, 127-128
SORT, 119-120
Sorting

algorithms, 273- 274, 284- 285
developing generic routines for,

316-318
run-time library routine for, 316
with bubble sort, 285-288, 318
with quick sort, 297-305, 318
with selection sort, 288- 292
with Shell sort, 293- 297

Source code
in run-time library, 2- 3
minimizing, 18-19
presentation of, 5- 6

STAMP.C, 230- 232

Standard deviation
described, 261-263
determining, of values in an array,

264-265
Standard input. See stdin
Standard output. See stdout
standard_deviation, 264- 265
STAT.C, 124
STATS, 123-124
stderr, 132-133
std in

defined, 115-116
redefining, 116-118
redirected for MORE command,

118, 119
redirected for printing, 117-118
redirected for SORT, 119
used with COUNT, 121-122
used with LINENUM, 122-123

stdin_char, 142-143
stdout

defined, 115-116
redirected for DIR, 119
redirected for printing, 117-118

stdout_output, 143-144
stdprn_output, 146
stdout, redefining, 116-118
str _binary _search, 308
str _bubble_sort, 312
str _count, 50- 51, 75-76
str _index, 48, 49- 50
str _quick_sort, 314-315
str _selection_sort, 313
str _sequential_search, 306
str _shell_sort, 313- 314
str _to_lowercase, 27, 68
str _to_uppercase, 27- 28, 68
strchr (char *String, char letter);,

634-635
string_compare, 46- 47, 72-73
string_display, 149
string_exchange, 31, 32- 33
string_length, 64-65, 94, 95-97
String(s)

append routines, 21-23, 70-71
characters, 12-14, 36-41
converted from integer value, 77-78
converted to integer value, 76-77

Strings, continued
copy routine, 19- 21
default, 329- 332
displayed in reverse order using

recursion, 99-100, 101
exchanging, 30- 33
first occurrence of character in,

65-66, 67
length of, 15
manipulation of, 64-76
number of characters in, 64- 65
number of occurrences of character

in, 66-67
padding, 33- 36
as parameters, 14
pointers and, 62- 64
recursion used to terminate, 94,

95-97
reversal, 28- 29
routines, 11- 54, 64-76
routines, in run-time library, 2- 3
See also Substrings

Strings(s), comparisons, 43-47
Strings(s) insertion routines, 23- 25
struct country *Country _info (int

country _code, struct country
*country _info);, 465

struct tm *gmtime(long *Clock);, 533
struct tm *localtime (long *Seconds);,

560
Substrings

manipulation of, 4 7- 53
number of occurrences of, in a

string, 75-76
sum_values, 253-254

T
TAB, 126-127
TAB.C, 241-242
TEE, 131-132
TEE.C, 133
terminate_resident, 162-163
TYPE, 232-233

u
unsigned _rotl (unsigned value,

int num_shifts);, 606
unsigned _rotr (unsigned value,

INDEX 685

int num_shifts);, 606-607
unsigned coreleft (void);, 463- 464
unsigned far imagesize (int

left_corncr, int top_corner, int
right_corner, int bottom_corner);,
539-540

unsigned far setgraphbufsize
(unsigned buffer _size);, 616- 617

unsigned FP _OFF(void far
*far _pointer);, 498

unsigned FP _SEG(void far
*far _pointer);, 500

unsigned getpsp (void);, 526
unsigned int _clear87 (void);, 459
unsigned int _status87 (void);, 632
unsigned interrupt (*getvect(int

interrupt_number))();, 530
unsigned long _lrotr (unsigned long

long_value, int num_shifts);, 564
unsigned long strtoul (canst char *Str,

char **end_pointer, int radix);,
648-649

unsigned long_lrotl (unsigned long
long_value, int num_shifts);,
563-564

unsigned strlen (char *String);, 639
Uppercase

linked list for, 350- 354
manipulation, 26-28
strings in, 68
See also Case

usertype va_arg (va_list param,
usertype);, 661- 662

Utility programs, for file
manipulation, 234-246

v
Value of type int, number of bits in,

104, 105-106
Variables

differentiating between, 56- 58
memory addresses of, 56, 58
presentation of, 6
See also Pointers

variance, 263- 264
Variance

described, 261- 263
determining, of values in an array,

263-264

686 TURBO C PROGRAMMER'S LIBRARY

Video display
ANSI commands and, 207-224
erasing, 215- 216 ·
screen attributes of, 216- 222
support with BIOS services,

193-206
Video display memory

output characters in, 382-383
two-dimensional array of, 384- 386

Video display pages, 322
clearing contents of, 391- 393
erasing contents of line from,

393-394
memory mapping, 390- 391
reading byte from segment and

offset location of, 399- 400
restoring previously buffered

region of, 400- 402
saving contents of, 396- 398
setting attribute byte for

characters on, 394-395
setting attribute for specific row

on, 395-396
writing character string to,

402-403
Video screen

attributes, 216-222
clearing contents of, 208
pop-up menus used with, 425- 430
preventing snow on, 386- 389
processing with video pop-up

menus, 425- 430
void *bsearch (void *key, void *base,

int number _of_elements, int
width, int (*compare_function)());,
453-454

void *Calloc (size_t
number _of_elements,
size_t element__size);, 455

void *lfind (void *key _desired,
void *base_address, int
*num_elements, int
element_width, int
(*Compare_function)());, 557- 558

void *lsearch (void *desired_key, void
*base_address, int num_elements,
int width, int
(*COmpare_function)());, 564- 565

void *malloc (size_t num_bytes);, 567
void *memccpy (void *destination, void

*Source, unsigned char letter,
unsigned num_bytes);, 570- 571

void *memchr (void *ptr, char letter,
unsigned num_bytes);, 571

void *memcpy (void *destination, void
*Source, unsigned num_bytes);, 569

void *memmove (void *destination,
void *SOurce, unsigned num_bytes);,

572-573
void *memset (void *ptr, char letter,

unsigned num_bytes);, 573
void *realloc (void *pointer, unsigned

newsize_in_bytes);, 601- 602
void _exit (int status);, 480- 481
void _fpreset (void);, 498-499
void abort (void);, 436
void assert (int condition);, 441
void clearerr (FILE *file_pointer);,

460
void clreol (void);, 462-463
void clrscr();, 463
void cputs (char *String);, 466
void ctrlbrk (int (*function)(void));,

470-471
void delay (unsigned milliseconds);,

471
void delline (void);, 471-472
void disable (void);, 473
void enable (void);, 479
void exit (int status);, 481
void far *far _graphgetmem

(unsigned size);, 535
void far *farcalloc (unsigned long

number _of_entries, unsigned long
entry _size);, 482-483

void far *farmalloc (unsigned long
number _of_bytes);, 484

void far *farrealloc (void far *ptr,
unsigned long num_bytes);, 484- 485

void far *MK_FP (unsigned segment,
unsigned offset);, 574

void far _graphfreemem (void far
*pointer, unsigned bytes);, 534

void far arc (int xloc, int yloc, int
start_angle, int end_angle, int
radius);, 439- 440

void far bar3d (int left_corner, int
top_corner, int right_corner, int
bottom_corner, int depth, int
top_flag);, 445- 446

void far bar (int left_corner, int
top_corner, int right_corner, int
bottom_corner);, 445

void far circle (int xloc, int yloc,

int radius);, 459
void far cleardevice (void);, 460
void far clearviewport (void);, 461
void far closegraph (void);, 462
void far detectgraph (int far

*graph_driver, int far
*graph_mode);, 472

void far drawpoly (int
number _of_points, int far
*points);, 475-476

void far ellipse (int x_loc, int y _loc,
int start_angle, int end_angle, int
x_radius, int y _radius);, 478-479

void far fillpoly (int
number _of_points, int far
*points);, 492

void far floodfill (int x_loc, int y _loc,
int border _color);, 494-495

void far getarccoords (struct
arccoordstype far *arc_coord);, 509

void far getaspectratio (int far
*X_aspect, int far *Y-aspect);, 510

void far getfillpattern (char far
*fill_pattern);, 519

void far getfillsettings (struct
fillsettingstype far *fill_info);,
519-520

void far getimage (int left_corner, int
top_corner, int right_corner, int
bottom_corner, void far *image);
521-522

void far getmoderange (int graph_
driver, int far * lowest_mode, int far
* highest_mode);, 523-524

void far getpalette (struct palettetype
far *palette);, 524

void far gettextsettings (struct
textsettingstype far text_record);,
528-529

void far initgraph (int far
*graph_driver, int far
*graph_mode, char far
*driver _path);, 540- 541

void far line (int xstart, int ystart, int
xend, int yend);, 558

void far linerel (int x_offset, int
y_offset);, 559-560

void far lineto (int x_loc, int y _loc);,
559

void far moverel (int x_offset, int
y _offset);, 576- 577

INDEX 687

void far moveto (int x_loc, int
y _loc);, 578

void far outtext (char far *String);, 583
void far outtextxy (int x_loc, int

y _loc, char far *String);, 583
void far pieslice (int x_loc, y _loc, int

start_angle, int end_angle, int
radius);, 586- 587

void far putimage (int x_loc, y _loc,
void far *buffer, int operation);, 593

void far putpixel (int x_loc, int
y _loc, int pixel_color);, 594

void far rectangle (int left_corner, int
top_corner, int right_corner, int
bottom_corner);, 602-603

void far restorecrtmode (void);,
604-605

void far setactivepage (int
page_number);, 609-610

void far setallpalette (struct
palettetype far *palette);, 610

void far setbkcolor (int
background_color);, 610-611

void far setcolor (int color);, 613
void far setfillstyle (int fill_style,

int color);, 615- 616
void far setgraphmode (int

graphics_mode);, 617
void far setlinestyle (int line_style,

unsigned pattern, int thickness);,
618-619

void far setpalette (int index, int
color);, 620

void far settextjustify (int horizontal,
int vertical);, 620- 621

void far settextstyle (int font, int
direction, int size);, 621-622

void far setusercharsize (int xmult, int
xdiv, int ymult, int ydiv);, 623

void far setviewport (int left_corner,
int top_corner, int right_corner,
int bottom_corner, int clip);,
625-626
void far setvisualpage (int

page_number);, 626
void farfree (void far *ptr);, 483-484
void fnmerge (char *path, char *drive,

char *directory, char *filename,
char *extension);, 496-497

void fnsplit (char *path, char *drive,
char *directory, char *filename,
char *extension);, 497

688 TURBO C PROGRAMMER'S LIBRARY

void free (void *pointer);, 502
void geninterrupt (int

interrupt_number); 508- 509
void getdate (struct date

*Current_date);, 515
void getdfree (int drive, struct dfree

*disk_info);, 515- 516
void getfat (int drive, struct fatinfo

*fat_info); , 517- 518
void getfatd (struct fatinfo *fat_info);,

518
void gettime (struct time

*System_time);, 529
void gotoxy (int x_loc, int y _loc);,

533
void harderr (int (*function_ptr) ());,

537
void hardresume (int resume_code);,

537-538
void hardretn (int error _code);, 538
void highvideo (void);, 538- 539
void insline (void);, 542
void intr (int interrupt_number,

struct REGPACK *regs);, 546-547
void keep (int status, int paragraphs);,

555
void longjmp (jmp_buf task_state,

int return_value);, 562-563
void lowvideo (void);, 563
void movedata (int source__segment,

int source_offset, int
target_segment, int target_offset,
unsigned num_bytes);, 576

void movmem (void *Source, void
target, unsigned num_bytes);,
578-579

void normvideo (void);, 579
void nosound (void);, 579- 580
void outport (int port_id, int word);,

582
void outportb (int port_id, char byte);,

582
void perror (char *String);, 586
void poke (int segment, int offset, int

value);, 587
void pokeb (int segment, int offset, int

value);, 587- 588
void qsort (void *base_address, int

num_elements, int width, int
(*Compare_function)());, 596- 597

void randomize (void);, 600

void segread (struct REGS
*Segment_registers);, 609

void setbuf (FILE *Stream, char
*buffer);, 611-612

void setdate (struct date
*CUrrent_date);, 613

void setdta (char far
*disk_transfer _address);, 614

void setmem (void *address, int
num_bytes, char letter);, 619

void settime (struct time
*System_time);, 622

void setvbuf (FILE *Stream, char
*buffer, int type, unsigned
num_bytes);, 623- 624

void setvect (int interrupt_number,
void interrupt (*service routine) ());,
624-625

void setverify (int state);, 625
void sleep (unsigned seconds);, 627
void sound (unsigned frequency);, 628
void srand (unsigned seed);, 630- 631
void swab (char *Sl, char *S2, int

num_bytes);, 649-650
void textattr (int attribute);, 652
void textbackground (int

background_color);, 652-653
void textcolor (int color);, 653
void textmode (int desired_mode);,

654
void tzet (void);, 657-658
void unixtodos (long unixtime, struct

date *date_ptr, struct time
*time_ptr);, 659- 660

void va_end (va_list parameter);, 662
void va__start (va_list parameter);,

662-663
void window (int left_corner, int

top_corner, int right_corner, int
bottom_corner);, 667-668

w
White space, 41-43
Wildcard characters

matching, .53- 54
use of, 226-246

word__size, 107
write_char _and_attr, 199- 200,

321-322
write_file, 174-175
write_pixel, 201

The manuscript for this book was prepared and submitted to
Osborne/McGraw-Hill in electronic form. The acquisitions editor
for this project was Cynthia Hudson, the technical reviewer was

Charles P. Jazdzewski, and the project editor was Fran
Haselsteiner.

Cover art by Bay Graphics Design Associates. Color separation by
Colour Image. Cover supplier, Phoenix Color Corp. Book printed
and bound by R.R. Donnelley & Sons Company, Crawfordsville,

Indiana.

$22-95

