DM3270 DM3270
13270
OM3270
DM3270
DM3270
ロM3270
ロM3270
3270
DM3270
DM327
ロM327
DM3270
DM3270
ロM327

TECHNICAL USER MANUAL

Control Unit Display Station

BEEHIVE INTERNATIONAL

MODEL ロM3270

"enhanced
 emulation'"
 IBM 3276-2 type
 stand-alone
 control unit display station
 TECHNICAL
 USER MANUAL

January 1982

This document has been prepared by Beehive International and is furnished on the condition that it will be used by the customer solely for the purpose of supporting the operation, service and maintenance of Beehive products. Beehive believes that the information described in this manual is accurate and reliable, and much care has been taken in its preparation. However, no responsibility, financial or otherwise, is accepted for any consequences arising out of the use of this material. The information contained herein is subject to change Revisions may be issued to advise of such changes and/or additions. The rights of the customer with respect to this document will be governed by mutually acceptable provisions of the contract with Beehive International. This document shall not be duplicated by the customer, nor released, disclosed or used, in whole or in part. for any purpose other than stated herein, without the express written permission of said Beehive International.

Another Terminal from

BEEHIVE INTERNATIONAL

Manulacturer of Quality Computer Systems

> WARNING: This equipment generates, uses, and can radiate radio frequency energy and if not installed and used in accordance with the instructions manual. may cause interference to radio communications. As temporarily permitted by regulation it has not been tested for compliance with the limits for Class A computing devices pursuant to Subpart J of Part 15 of FCC Rules, which are designed provide reasonable protection against such interference. Operation of this equipment in a residential aree is likely to cause interference in which case the user at his own expense will be required to take whatever measures may be required to correct the interference.

TABLE OF CONTENTS

SECTION TITLE1.1INTRODUCTION1-1
SECTION II-INSTALLATION2.1IOUTION2-1
UNPACKING 2-1
INSPECTION FOR IN-SHIPMENT DAMAGE 2-1
IDENTIFICATION 2-1
INSTALLATION 2-1
Placement for Operation 2-1
AC Power Connection 2-2
Data Interface Connection 2-2
PC Board-Mounted Control Switches 2-2
INITIAL TURN-ON PROCEDURE 2-2
REAR PANEL SWITCH USE 2-2
Setting Up Contention Protocol (Point-to-Point) 2-32-3
2.7.3 Optional Beehive Printer (P1600) 2-6
2.7.4 Printer Address (S1-2, S1-3) 2-6
2.7.5
2.7.5 DM3270 Control Unit Address (S1-4, S1-5, S1-6, S1-7, S1-8) DM3270 Control Unit Address (S1-4, S1-5, S1-6, S1-7, S1-8)
2.7 .5
2.7 .5
Printer Flow Control (S2-1, S2-2, S2-3) 2-6 2-6
2.7.6 2-6
Printer Speed (S2-4, S2-5, S2-6) 2.7.7 2-6
2.7.8 Printer Parity (S2-7, S2-8) 2-6
2.8
INTERNAL SWITCH USE (S3-1, S3-2, S3-3) 2-6
SECTION III-OPERATION
3.1
3.1.1BASIC OPERATION3-1
3.1.2
Derating Environmen 3-1Turn-On Procedure3-1
3.1.3 Rear Panel Switches 3-2
3.1.4 Audible Alarm 3-2DISPLAY OPERATION3-2
3-2Display Format and Character Set
3.2.2 Cursor Operation 3-2
3.2.3 Display Fields 3-2
3.2.4 Field Attributes 3-2
3.2.5 Status Line 3-3
3.2.6 Lower Case Inhibit (LCI) 3-3KEYBOARD OPERATION3-3
3-4Keyboard Modes
3.3.2 Typamatic Operation 3-4
3.3.3 Keyboard Disable (Input Inhibit) 3-4
3.3.4 Alphameric Data Entry 3-4
3.3.5 Automatic Skip 3-5
PRINTER OPERATION 3-5SELF-CONFIDENCE TEST3-6

Table of Contents

 (continued)
LIST OF TABLES

tableDESCRIPTION1-1
LIST OF ILLUSTRATIONS

DM3270 Specifications 1-2
AC Power and Ground Connectors 2-2
Printer Port Pin Assignments 2-2
Contention Protocol (Point-to-Point) 2-3
Control Unit Address Chart 2-4
EBCDIC to ASCII Conversion Table 3-5
Self Confidence Test Error Descriptions 3-6DM3270 Keyboard Layout1-1
DM3270 Terminal 1-2
Mounting Requirements 2-1
AC Power and Ground Connectors 2-2
Internal and External Switches With Communications Hookup 2-5
Status Line Messages and Field Descriptions 3-3
Keyboard Layout and Key Description 1 of 2/2 of 2

SECTION I SPECIFICATIONS

1.1 INTRODUCTION

This manual contains setup and operating instructions for the DM3270 terminal. The DM3270 Control Unit Display Station is a 8085A microprocessor-controlled emulator of the IBM 3276* Model 2 Control Unit Display Station. The DM3270 provides the major functional capabilities of the original IBM component. This manual is divided into three sections:

Section I-provides a specification sheet and introduction for general terminal information.

Section II - describes the installation, interface, and initial checkout of the terminal.

Section III - describes to the operator the operational characteristics and functions of the terminal.

The screen display is organized with 24 lines of 80 characters each (1920 characters). The standard set of 3278
field and visual attributes is provided as well as Extended Highlighting Features found in the IBM 3279: reverse video, field blink, and underline. The 25th line is provided for a status line which provides the operator with updated information on operating modes, error messages, and communications.

The keyboard is an 87 key IBM EBCDIC typewriter style, similar to the IBM 462X series with extended features, and a numeric pad (see Figure 1-1). Program function keys 13 through 24 are invoked in the alter mode rather than the standard mode as with the IBM 3276. Keyboard features include typamatic operation, and two-key rollover. Individual field selection is provided through the CURSR SEL key. The monocase display feature (known herein as lower case inhibit) is provided in a modified form.

The controller portion of the display station appears to the mainframe/host as an IBM 3287 Model 1 printer, thereby making the terminal compatible with existing mainframe and applications programs. The controller also provides the translation required to allow the use of an ASCII printer which utilizes an RS232C type interface.
*May be a registered trademark of IBM

Figure 1-1 DM3270 Keyboard Layout

Table 1-1 DM3270 Specifications

Communications Mode
Synchronous half duplex (over leased or dial up lines)
Communications Code
EBCDIC
Communications Protocol
Binary Synchronous (BSC)
Modem Compatability
Compatible with a wide range of modem types.
(Bell* 201, 208, 209)
Indicators
All INDICATORS will be provided via the status line, (see Figure 3-1).
Bell
Audible alarm upon invalid keyboard entry and audible click upon key entry when selected.
Keyboard
A detachable keyboard with 87 keys, including a numeric pad, cursor control keys, edit keys, shift lock, 24 program function keys, and 3 program access keys.
Self-Test
Initiated by operator command and upon powerup. Extensively tests the terminal.
Monitor Mode
Data link analyzer displays all codes (see Figure 3-2).
Input Voltage and Frequency
$115 \mathrm{VAC}+-10 \%$ @ 60 Hz
. $230 \mathrm{VAC}+-10 \%$ @ 50 Hz
Environmental Specifications

Altitude:	0 to 10,000 feet
Temperature:	0 to 40 degrees C
Humidity:	0 to 80% (noncondensing)
erminal Slze	

Humidity: $\quad 0$ to 80% (noncondensing)
Mont
Monitor:

Terminal Weight
Monitor: 34 lbs.

Keyboard: 4 lbs.
Total: $\quad 38$ lbs
Shipping Weight: 50 lbs .
IBM Features Not Supported
Security Keylock
Magnetic Read Control
APL and Data Entry Keyboards
Numeric Lock
Terminal Clustering
Multiple Printers and the Authorization Rating
3276 Dial Operation
Nonbuffered Print
14 Bit Buffer Addressing
SNA Protocol
Integrated Modems

- May be a registered trademark

Figure 1-2 DM3270 Terminal

SECTION II
 INSTALLATION

2.1 INTRODUCTION

This section contains information on unpacking, receiving/ inspection, connection of the communications interface, physical placement of the terminal, and functional control settings for specific user requirements.

2.2 UNPACKING

The following items are furnished with each DM3270 terminal:
a. The display terminal with detachable keyboard.
b. Technical User Manual.
c. Warranty return card and a manual order form blank.

There are no tie-downs or packing materials inside the plastic cover that need to be removed.

2.3 INSPECTION FOR IN-SHIPMENT DAMAGE

All Beehive terminals are packed in material designed to withstand normal handling in transit. Mishandling should be evident upon inspection of the shipping container. If evidence of excessive moisture, heat or physical damage is observed on the exterior of the shipping container, be careful to inspect the terminal for any irregularities immediately so that a claim can be filed with the carrier. Save all evidence (including the shipping container), document the damage with photographs. Save the container and packing material for any future shipping which may be necessary.

2.4 IDENTIFICATION

An identification plate is located on the rear of the terminal and provides the model number, part number, serial number, weight, voltage/current requirements, and frequency/ power classifications.

2.5 INSTALLATION

2.5.1 Placement for Operation

The terminal is fully self-contained except for the AC power source and appropriate I/O cables (terminal to modem and/or terminal to printer) making it very easy to install or move. Select a convenient, level surface where the cables are not in the way of the operator and are not inadvertently pulled or disturbed by minor changes in the terminal's position. The keyboard should be placed so that operator use is as comfortable as possible.

CAUTION: Do not place the terminal on any surface that blocks cooling air from the back of the cabinet. The terminal has an internal fan for cooling which circulates air through a grille in the back and to spacing at the bottom sides between the cover and terminal frame. To maintain efficient air circulation, keep at least three-and-one-half inches of clearance at the rear and sides of the terminal (see Figure 2-1).

Figure 2-1 Mounting Requirements

Figure 2-2 AC Power and Ground Connectors

2.5.2 AC Power Connection

The terminal is shipped with either a 115 or 230 volt power cord and a corresponding internal power transformer configuration. Your AC power outlet must supply a voltage within $+-10 \%$ of 115 or 230 volts (whichever is configured) for proper operation.

The grounding conductors indicated in Figure 2-2 provide important electrical connections which should always be preserved by plugging the terminal into a properly grounded outlet or adapter. Grounding is vital not only from an operator safety standpoint, but also to suppress radio frequency/electromagnetic interference (RFI/EMI) and drain off static electricity charges which may accumulate and impair data integrity.

Any extension cord used to provide power to the terminal must be three wire type which preserves grounding integrity. Its wire size must be sufficient to insure adherence to local electrical codes.

Table 2-1 Main Port Pin Assignments

PIN NO.	RS2320	DESCR.	SIGNAL DIRECTION	ASSIGNMENTS
1	AA	Frame Ground	-	Chasels ground; electrically bonded to frame.
2	BA	Tranemit Data	DM \rightarrow Data Sot	Pin 2 will be in the mark conclition whth no output eignal
3	BB	Receive Data	DM --Data Sot	Data from hoet
4	CA	Request to Send	DM- Data Set	Goes hi churing tranemiecion; drope to upon completion.
5	CP	Cloar to Send	DM<-Data Set	When hi, tresemilecion le enabled. When held lo, transmiceion ls disabled.
6	CC	Data Set Ready	DM-Dota Set	Indicates the modem is reedy.
7	AB	Signal Ground	-	Same potential as chescis ground (pin 1).
15	DB	Transmit Clock	DM-L-Data Set	X1 Tranemission clock from modem.
17	DD	Receive Clock	DM	X1 Receive Clock from modem.
20	CD	Data Terminal Ready	DM-Data Set	Hold inl when the terminal ie reedy.

2.5.3 Data Interface Connection

Signals used in communicating with the DM3270 conform to the requirements of EIA specification RS232C. In particular, output voltages swing from -10 V to +10 V , while the receivers present a minimum of 3 k ohms impedance to the line. The input resistance is approximately $\mathbf{4 k}$ ohms. The driver circuits have a current limit of 10 mA on both source and sink. All data source interconnections are made via the rear panel input/output connector (see Figure 2-3). A 25-pin miniature D-type ITT Cannon connector (DM-25S or equivalent) is used for connection to the computer. Pin assignments are defined in Tables 2-1 and 2-2. The communications line from the modem connects to the main port and the printer connects to the AUX port (printer port).

Table 2-2 Printer Port Pin Assignments

PIN NO.	RS232C	DESCR.	SIGNAL DIRECTION	ASSIGNMENTS
1	AA	Frame Ground	-	Chassis ground; electrically bonded to frame.
2	BA	Receive	DM<-Printer	Data received from printer.
3	B8	Transmit	DM \rightarrow Printer	Data output to printer.
4	CA	Request	DM <-Printer	Ignored by DM3270
5	CB	Clear Send	DN-Printer	Remains hi at ell timee.
6	CC	$\begin{aligned} & \text { Data Set } \\ & \text { Ready } \end{aligned}$	DM- Printer	nemains hi at all times.
7	AB	Signal Ground	-	Same potential as pin 1.
8	CF	Carrier Detect	DM- Printer	Remalns hi at all timee.
11		Printer Not Busy	DM <-Printer	When hi, primter can recetve data. When lo, printer la buay.
19		Printer Not Busy	DM <-Printer	Same as Pin 11
20	CD	Data Terminal Ready	DM<- Printer	When hi, printer is online. When io, printer is offiline.

2.5.4 PC Boerd-Mounted Control Switches

Three switch blocks are mounted on the printed circuit board. Two are located at the rear of the board and are accessible for resetting through an external opening. The other switch block is located near the left rear comer of the board and can be reached by removing the cover. These switches are illustrated in Figure 2-3.

2.6 INITIAL TURN-ON PROCEDURE

The proper turn on procedure for the terminal is described in Subhead 3.1.2.

2.7 REAR PANEL SWITCH USE

The operating configuration of the DM3270 is defined by rear panel and internal switch positions as described in

Figure 2-3 and the remainder of this subsection.

2.7.1 LCI - Lower Case Inhibit S1-1

When LCI is not selected (S1-1 down), alpha characters are displayed in upper and lower case just as they are entered in the display buffer. When LCI is selected (S1-1 up), all lower case character codes are entered and displayed upper case characters. Changing the switch setting only affects data entered into the display buffer after the switch as been changed. Data already displayed is not affected.

2.7.2 Setting Up Contention Protocol (Point-to-Point)*

The terminal may be configured in a contention protocol or point-to-point mode (switched line, dial up). This protocol allows the host to interact, by specific address, with up to 128 terminals. Set the rear panel switches as follows:

1. Set switch 4 of the internal switch block 3 (S3) to the "on" position (see Figure 2.3).
2. To set the terminal address, use the following chart and set switches 2 through 8 on external switch S1 to reflect the desired 3 digit terminal I.D. number.
Table 2-3 Contention Protocol (point-to-point)

TERMINAL I.D. NUMBER	SWITCH NUMBERS						
	2	3	4	5	6	7	8
000	OFF						
001	OFF	OFF	OFF	OFF	OFF	OFF	ON
002	OFF	OFF	OFF	OFF	OFF	ON	OFF
003	OFF	OFF	OFF	OFF	OFF	ON	ON
004	OFF	OFF	OFF	OFF	ON	OFF	OFF
005	OFF	OFF	OFF	OFF	ON	OFF	ON
006	OFF	OFF	OFF	OFF	ON	ON	OFF
007	OFF	OFF	OFF	OFF	ON	ON	ON
008	OFF	OFF	OFF	ON	OFF	OFF	OFF
009	OFF	OFF	OFF	ON	OFF	OFF	ON
010	OFF	OFF	OFF	ON	OFF	ON	OFF
011	OFF	OFF	OFF	ON	OFF	ON	ON
012	OFF	OFF	OFF	ON	ON	OFF	OFF
013	OFF	OFF	OFF	ON	ON	OFF	ON
014	OFF	OFF	OFF	ON	ON	ON	OFF
015	OFF	OFF	OFF	ON	ON .	ON	ON
016	OFF	OFF	ON	OFF	OFF	OFF	OFF
017	OFF	OFF	ON	OFF	OFF	OFF	ON
018	OFF	OFF	ON	OFF	OFF	ON	OFF
019	OFF	OFF	ON	OFF	OFF	ON	ON
020	OFF	OFF	ON	OFF	ON	OFF	OFF
021	OFF	OFF	ON	OFF	ON	OFF	ON
022	OFF	OFF	ON	OFF	ON	ON	OFF
023	OFF	OFF	ON	OFF	ON	ON	ON
024	OFF	OFF	ON	ON	OFF	OFF	OFF
025	OFF	OFF	ON	ON	OFF	OFF	ON
026	OFF	OFF	ON	ON	OFF	ON	OFF
027	OFF	OFF	ON	ON	OFF	ON	ON
028	OFF	OFF	ON	ON	ON	OFF	OFF
029	OFF	OFF	ON	ON	ON	OFF	ON
030	OFF	OFF	ON	ON	ON	ON	OFF
031	OFF	OFF	ON	ON	ON	ON	ON
032	OFF	ON	OFF	OFF	OFF	OFF	OFF
033	OFF	ON	OFF	OFF	OFF	OFF	ON
034	OFF	ON	OFF	OFF	OFF	ON	OFF
035	OFF	ON	OFF	OFF	OFF	ON	ON
036	OFF	ON	OFF	OFF	ON	OFF	OFF
037	OFF	ON	OFF	OFF	ON	OFF	ON
038	OFF	ON	OFF	OFF	ON	ON	OFF
039	OFF	ON	OFF	OFF	ON	ON	ON
040	OFF	ON	OFF	ON	OFF	OFF	OFF
041	OFF	ON	OFF	ON	OFF	OFF	ON
042	OFF	ON	OFF	ON	OFF	ON	OFF
043	OFF	ON	OFF	ON	OFF	ON	ON
044	OFF	ON	OFF	ON	ON	OFF	OFF
045	OFF	ON	OFF	ON	ON	OFF	ON

*NOTE: Disregard paragraphs 2.7.4, Printer Address and 2.7.5, DM3270 Control Unit Address when using 3275 point-to-point. Use these paragraphs when operating in 3276 multipoint only.

Table 2-3 Control Unit Address Chart 3276 Mode Only

S1-4	S1-5	S1-6	S1-7	S1-8	Control Unit or Device Address	Contro Code I/O Char.	Unit CDIC) Hex Code	$\begin{aligned} & \text { Sele } \\ & \text { I/O } \\ & \text { Char. } \end{aligned}$	Poll Hex Code
Down	Down	Down	Down	Down	0	SP	40	-	60
Down	Down	Down	Down	Up	1	A	C1	1	61
Down	Down	Down	Up	Down	2	B	C2	S	E2
Down	Down	Down	Up	Up	3	C	C3	T	E3
Down	Down	Up	Down	Down	4	D	C4	U	E4
Down	Down	Up	Down	Up	5	E	C5	V	E5
Down	Down	Up	Up	Down	6	F	C6	W	E6
Down	Down	Up	Up	Up	7	G	C7	X	E7
Down	Up	Down	Down	Down	8	H	C8	Y	E8
Down	Up	Down	Down	Up	9	1	C9	Z	E9
Down	Up	Down	Up	Down	10	\pm	4A	:	6A
Down	Up	Down	Up	Up	11		4B		6 B
Down	Up	Up	Down	Down	12	$<$	4 C	\%	6C
Down	Up	Up	Down		13	1	4D	\pm	6D
Down	Up	Up	Up	Down	14	+	4 E	>	6 E
Down	Up	Up	Up	Up	15	1	4F	?	6F
Up	Down	Down	Down	Down	16	8	50	0	F0
Up	Down	Down	Down	Up	17	J	D1	1	F1
Up	Down	Down	Up	Down	18	K	D2	2	F2
Up	Down	Down	Up	Up	19	L	D3	3	F3
Up	Down	Up	Down	Down	20	M	D4	4	F4
Up	Down	Up	Down	Up	21	N	D5	5	F5
Up	Down	Up	Up	Down	22	0	D6	6	F6
Up	Down	Up	Up	Up	23	P	D7	7	F7
Up	Up	Down	Down	Down	24	Q	D8	8	F8 F9
Up	Up	Down	Down	Up	25	R	D9	9	F9
Up	Up	Down	Up	Down	26	!	5A	\#	7A
Up	Up	Down	Up	Up	27	\$	5B	\#	$7 B$ 78 78
Up	Up	Up	Down	Down	28	*	5 C	@	78 70
			Down	Up	29	.	5D	=	7D
Up	Up	Up	Up	Down	30	\ddagger	5 E 5 F	$=$	7E 7F
Up	Up	Up	Up	Up	31	7	5F		7F

Printer Port
EXTERNAL SWITCHES

Figure 2-3 Internal and External Switches With Communications Hookup

2.7.3 Optional Beehive Printer (P1600)

A desk top serial printer for use as an IBM 3287 type printing unit. This printer will print via the DM3270 control unit data from the host or direct from the DM3270. Consult the Printer Operator manual, sent with the printer, for further installation instructions.

2.7.4 Printer Address (S1-2, S1-3)*

These switches specify the address used by the host to select the printer when in the 3276 contention mode. The address can be any number from 1-4 selected as follows:

S1-2	S1-3	Device/ Address	Hex Code Number	I/O
Char				

2.7.5 DM3270 Control Unit Address*
 S1-4, S1-5, S1-6, S1-7, S1-8

This is the address by which the DM3270 is polled or selected by the host when in 3276 contention mode. The address can be any number in a program from 0-31 selected from Table 2-3. Also shown are the actual I/O charaters transmitted over the communications line for each control unit address and for each printer address. I/ O character ('") is transmitted as the device address during a general poll operation.

2.7.6 Printer Flow Control S2-1, S2-2, S2-3

Several types of printers can be attached to the printer port of the DM3270. These printers use different means for signaling the DM3270 that the printer is busy and cannot accept data. Each printer must provide Data Terminal Ready (DTR) on Pin 20.

S2-1	S2-2	S2-3	Flow Control Type and Printer Type
Down	Down	Down	No Printer attached
Down	Down	Up	Pin 11/19 = Ready
Down	Up	Down	Pin 11/19 = Busy
down	Up	Up	Pin 11/19 = Reverse Channel
Up	Down	Down	ETX/ACK
Up	Down	Up	XON/OFF
Up	Up	Down	ACK/NAK
Up	Up	Up	TTY

*NOTE: Disregard paragraphs 2.7.4, Printer Address and 2.7.5, DM3270 Control Unit Address when using 3275 point-to-point. Use these paragraphs when operating in 3276 multipoint only.

2.7.7 Printer Speed S2-4, S2-5, S2-6

These switches allow the user to match the terminal baud rate (through the AUX / printer port) with the printer baud rate.

S2-4	S2-5	S2-6	Baud Rate
Down	Down	Down	110 (2 stop bits)
Down	Down	Up	$150(1$ stop bit)
Down	Up	Down	300 (1 stop bit)
Down	Up	Up	600 (1 stop bit)
Up	Down	Down	1200 (1 stop bit)
Up	Down	Up	2400 (1 stop bit)
Up	Up	Down	4800 (1 stop bit)
Up	Up	Up	9600 (1 stop bit)

2.7.8 Printer Parity S2-7, S2-8

These switches match the parity of the terminal with the parity of the printer. The switches have the following definitions:

2.8 INTERNAL SWITCH USE S3-1, S3-2, S3-3

Internal switch S3-1 is used to specify whether the DM3270 will support the buffered or non-buffered print command. The buffer printer operation requires a unique printer address, where the non-buffered print uses the CRT as the buffer.

Internal switch S3-2 is used to provide additional printer support. With this switch in the on position, a local print will not compress null lines and will do a form feed after the print is completed. This option allows information that is displayed on the screen to be formatted on forms using a local print.
Internal switch S3-3 specifies the frequency of the power source. The display should match the power line frequency to avoid beat interference.
Switch 4 is "on" for 3275 point-to-point protocol (see Subhead 2.7.2) and "off" for 3276 multipoint protocol (see Subhead 2.7.4 and 2.7.5).

Switches 6 and 7 must always be on and should not be changed since they control the reverse video and highlight features.

3.1 BASIC OPERATION

This section provides detailed operating instructions for the DM3270 Control Unit Display Station. Subhead 3.1 provides a description of the basic operating environment and explains how to turn on the terminal. Subhead 3.2 gives a detailed description of the operation of the display and Subhead 3.3 describes how to operate the keyboard. Subhead 3.4 describes the operation of the printer, and Subhead 3.5 describes the self-confidence test provided with the terminal.

3.1.1 Operating Environment

The DM3270 is a remote terminal operating in a polled communications environment where operation may be over either leased/dedicated communication lines or through a display facility. For this use, the terminal does not communicate with the host computer as each key on the keyboard is depressed. Instead, the operator enters a logical set of data into the terminal's display buffer in response to a request from a host program and then transmits all the data to the host as a single message.

A logical set of data could consist of several paragraphs of a document being edited (unformatted data), it could be several fields of data entered in response to a formatted display produced by a host application program, or it could be the selection of an item from a displayed menu. When the requested data has been entered, the operator uses one of the program attention keys to tell the terminal to transmit data to the host. At the next poll or request from the host for a data transmission, the terminal's display buffer is transmitted to the host. The operator then waits while the host program processes the entered data and generates a response which is usually displayed on the screen. The response may include a request for more data. A typical application will include a series of such operations as has just been described.

The display screen keeps the operator informed on the state of the terminal. The first 24 lines show the contents of the display buffer. Any change in the contents of the buffer, either by the operator (through the keyboard) or by the host is immediately shown on the display. The 25th line of the display is a status line which informs the operator of all other aspects of the terminal's operation. For example, the operator can tell if the terminal is being polled by the host, whether or not the terminal is transmitting or receiving data from the host, the status of the printer, whether or not the keyboard is enabled and the type of field into which data is currently being entered. Subhead 3.2 describes the status line display and its operation.

Keyboard operation is simple and straightforward. Any typist can master the keyboard, which bears a close re-
semblance to the standard typewriter. The few additional keys function as operator-oriented convenience features and selector switches for the terminal's operating modes. Subhead 3.3 describes in detail how to operate the keyboard.

The printer (if attached) is shared by the terminal operator and the host. The operator can request a print out of the terminals's display buffer and the host can independently transmit data to the terminal for printing without disturbing the display. Subhead 3.4 describes printer operation in detail.

3.1.2 Turn-On Procedure

Before the DM3270 is used, it must be properly installed and setup in accordance with Section 2 of this manual. The installation should be done only by qualified personnel.

An identification plate located on the rear panel of the terminal specifies its electrical power requirements. When moving the terminal to an alternate operating position, make sure that the selected power outlet is properly grounded and supplies the correct operating voltage and frequency. Get technical assistance, if necessary, in making this determination.

The proper turn-on procedure for the terminal is as follows:
a. Set the rear panel POWER ON/OFF switch to ON (see Figure 2-3; allow a warm-up period of about a minute and ensure that the cursor and status line have appeared on the screen. If both the cursor and status line do not appear, check the brightness and contrast adjustments as explained in b .
b. Turn the brightness control (BRT located on the rear panel; see Figure 2-3, if necessary) until a raster is faintly visible on the screen. Enter several characters on the screen. Reduce the brightness until the background raster (diagonal lines) is extinguished. Adjust the contrast control (CONT on the rear panel) until the characters are easily read in the available room light. The adjustment can best be made when characters are displayed in both normal and bright intensity. Such a display must be called up from the host CPU.
c. Any time power is initially applied to the DM3270, it performs a display memory test and a terminal operation test. Because of the CRT warmup time, there is no visible effect on the screen. If the unit is turned off and back on, a slight display flicker occurs while the test is run. When the self-test is successfully completed, "Idle" appears on the status line. In the event of a test failure, error messages (see Subhead 3.2.5) will appear
on the screen. The self-test may also be initiated by pressing the TEST key.

3.1.3 Rear Panel Switches

Switch blocks 1 and 2 (S1 and S2) on the rear panel select certain operating features of the DM3270. There are a total of 16 miniature switches, eight on each switch block. Most rear panel switches require no operator attention because they must be properly set when the terminal is installed. Subhead 2.7 describes how to change a switch.

3.1.4 Audlble Alarm

The audible alarm capability within the terminal alerts the operator when error conditions arise. The following conditions sound the audible alarm.

1. At the start of the self-confidence test.
2. An invalid keyboard entry.
3. The host computer wants to alert the operator.

3.2 DISPLAY OPERATION

3.2.1 Display Format and Character Set

Data to be displayed on the CRT screen is stored in a 1,920 character buffer. The data is displayed as 24 lines of 80 characters. The data in the buffer consists of displayable data and field attributes. The displayable data consists of 95 EBCDIC displayable characters (alphanumerics-includes space) and 11 graphic symbols for drawing lines and tables. Data are entered into the display buffer and consequently displayed on the screen either by the operator pressing keys on the keyboard or by the host transmitting data over the communications line to the DM3270. The graphic symbols can only be placed in the display buffer by the host. There are no keys on the keyboard for this purpose.

3.2.2 Cursor Operation

A cursor is provided to identify the position in the display where the next character entered from the keyboard will be displayed. Two types of cursors can be displayed: 1) The normal cursor appears as an underline. 2) The alternate cursor appears as a reverse image of the character displayed in the cursor position, i.e., a dark character in a light background. By using the ALT CURSR and CURSR BLINK keys (see Figure 3-2, page 1), the type of cursor can be selected and the cursor can be made to appear steady or blink on and off continuously.

When the cursor is positioned over an existing character in the display, that character will still be visible and can be changed or deleted by keyboard action. Only one cursor will appear in the display. When the terminal is turned on, the cursor will appear at the leftmost character position of the first line of a blank screen. The cursor can be moved around the screen by using the cursor movement keys (see

Figure 3-2).

3.2.3 Display Fields

The host CPU can organize the display, in one or more separate display fields, by the introduction of attribute characters into the display buffer. The operator can only enter displayable data into the display buffer.

Display fields can simplify operations, both for the operator and for the programmer. Headings can be displayed to prompt the operator to enter data and separate fields can be defined for entry of the data. The host program can identify the fields that contain entered data without reading the entire buffer. The field can also be restricted as to the data that can be entered, thus saving the program time on error checks. In addition, the attribute character serves as a tab stop. This makes it easier for the operator to move the cursor from one field to another by using the tabbing keys.

A display field begins with an attribute character. This character occupies a display position on the screen but is displayed as a blank. All character positions following the attribute character up to , but not including, the next attribute character constitute the field. A field may wrap from one line to the next, i.e., if the field begins in the middle of one line and the next attribute character is located in other than the first character position of the next line, the field will contain character positions in both lines. Similarly, a field may wrap the screen. If the first character position of the first line of the display does not contain an attribute character, the last field of the screen will wrap from the last line of the display to the first line. All logical attributes (see Subhead 3.2.4) will wrap with a field and visual attributes will wrap from line to line or from the bottom to the top line of the screen.

3.2.4 Field Attributes

There are two types of field attributes, visual and logical. Visual attributes determine the manner in which the fields appears to someone observing the screen. Data are normally displayed at a normal intensity (normal mode). If it is desirable to highlight an important field, the field can be intensified (intensified mode), and the field will appear much brighter. A field can also be displayed in security mode. Even though the data exists in the display buffer, the data will be dislayed as blanks. This mode can be used, for example, to enter a password without allowing it being observed by someone else looking at the screen.

The DM3270 also provides the extended field highlighting capability of the IBM 3278 . This field highlighting attribute provides the capability of underlining, blinking and reverse video.
Logical attributes can be used to restrict data entry in a particular field. The field can be defined either as protected or unprotected. Data cannot be entered from the keyboard into a protected field. An attempt to enter data into a protected field will disable the keyboard and the operator will not be able to enter any data until the RESET key is depressed (see Subhead 3.3.4). A protected field may be defined
as an automatic skip field. This attribute causes the cursor to skip to the next unprotected field when it enters an automatic skip field, which again makes it easier for the operator to move from one data field to another.

If a field is unprotected, it can also be defined as alphameric or numeric. Any displayable character can be entered into an alphameric field. Only numeric data can be entered into a numeric field (see Subhead 3.3.4). Again, an attempt to enter invalid data into a numeric field will disable the keyboard.

Any displayed field may be given the selector light pen detectable attribute. This attribute allows the field to be selected for transmission to the host by operating the CURSR SET key. This feature allows the programmer to restrict the amount of data that must be transmitted to the host.

3.2.5 Status Line

The status line occupies the 25th line of the display. It is not accessible to the operator or the host. It is only accessible to the DM3270 for the display of current status information. Normal status indications are displayed as dark char-
acters in a light background. Error indications can be displayed in a blinking mode. The status line contains 9 fields, A-I, spaced sequentially across the line. Each field is separated from the next field by one character position displayed as a blank in normal video mode (dark background). Each field is discussed in Figure 3-1.

3.2.6 Lower Case Inhibit (LCI)

LCl mode allows the operator to limit the display to upper case characters only. When the LCl switch is in the inhibit position (see Figure 2-3), all new alphabetic character codes entered into the display buffer, either from the I/O or the keyboard, are stored and displayed as upper case characters. When the LCl switch is changed to the noninhibit position, new alphabetic character codes entered are stored and displayed in their natural mode (as upper or lower case characters). When the switch is changed back and forth from one position to another, previous data entered on the screen are not updated by the switch.

3.3 KEYBOARD OPERATION

The keyboard enables the operator to change, edit, or

A	B	c	D	E	F	G	H

Field A Indicates whether the keyboerd is inhibhed or not. The meseage "Input Inhibited" will be diaplayed whenover the operator cannot key in any data. See Subhead 3.3.3 for the situations that will cause this meseage and how to clear h.

Field B Indicates the state of the terminal in communicating with the host. The messages that can be displayed in this field are as follows:
IDLE The terminal is in an idie state. Refer to the poll field of the status line (Fiold I) to see if the terminal is being polled by the host. This is the state in which the operator can enter data.

ENTER The ENTER key has been depressed and the terminal is either awaling a poll or transmitting text to the host. The keyboard is disabled.

SYSTEM The terminal has recelved an acknowiedge for the last entry and the system is currently processing the text message. The keyboard is disebled.

TEXT The terminal has received a start uf text character (STX) and is recolving toxt. This measage will be displayed until the acknowledge has been sent to the host. The keyboard is disabled.

NOTE: If during any of these operations a negative acknowledge (NAK), a retransmit request (ENQ) or a time-out is experienced, this field will blink.
Field C Indicates the prosence or abeence of the Datiu Set Roedy signal from the modem. The field will always contain the measage "DSR". If the DSR signal is prosent, the message will be displayed at normal intensity and nonblink mode. If the DSR signal is not prosent, the message will blink at bright intensity.

Field D Indicates the type of attribute that is controlling the field in which the cursor is located. The possible messages are as follows:

ALPHA Any alphanumeric character can be entered.

NUM Only numeric data (0-9..., or DUP) can be entered.
PROTECT No entry may be made in this field.
: ATTRIBUTE
NOTE: If any invalid entry is made, the keyboard will be disabled, field D will blink, and field A will display "Input Inhibited." The keyboard will remain disabled until RESET key is pressed.
Field E Indicates whether or not either of the SHIFT keys is depressed or the SHIFT LOCK key is locked. This field will be blank when none of the keys is depreseed. The field will display "SHIFT" when either of the SHIFT keys is depressed or the SHIFT LOCK key is in the locked position.

Field F Indicates whether or not the terminal is in insert mode. The messege "Insert" will be displayed when the operator depresses the INSERT key. This field will be cleared when the keyboard is reset.

NOTE: If the operator tries to enter more data into a field than it can hold, the keyboard will be disabled. Field F will blink and field A will display "Input Inhibit." The keyboard will remain disabled until reset.

Field $\mathbf{G} \quad$ Indicates the status of the printer. The ready signal is Data Terminal Ready (DSR). The printer does not have any ready signal, therofore, the printer is always assumed ready. The mes sages that can be displayed in this field are:

PRNTR CHK

BLANK	The terminal is not receiving a ready signal from the printer.
PRNTR RDY	The terminal is receiving a rendy signal from the printer.
PRNTR BSY	The printer is processing a print request.

Field H Reserved for future expansion.
Field I This field displays a polling indicator while the terminal is being polled. The field is blank when the terminal is not being polled.

Figure 3-1 Status Line Messages and Field Descriptions
create character displays and transmit them to the host computer or to the local printer. Figure 3-2 shows the keyboard layout and gives a functional description of each key.

The keyboard looks very much like a typewriter keyboard. The keys in the center produce the alphabetic characters, numeric characters, punctuation marks and special symbols. These are displayable characters (alphamerics). Surrounding these keys are the special function keys which are used to perform control functions. To the far right is a numeric pad which is convenient to use in data entry applications and is also used in special function operations.

3.3.1 Keyboard Modes

The keyboard operates in 3 modes, unshifted, shifted, and alter. Each mode provides a different interpretation of some of the keys and extends the number of key functions without requiring an excessive number of keys. Each key is labeled to indicate the function it performs in each mode. The symbols on the top face of the key indicate the function performed in unshifted mode (lower symbol) and the shifted mode (upper symbol). For example, the key containing the 2 and @ acts as a 2 in unshifted mode and a @ in shifted mode. The symbol on the front face of the key indicates the function performed in alter mode. For example, the 2 key acts as a PROGRAM FUNCTION KEY 2 when in alter mode.

The shifted mode is selected by depressing either one of the SHIFT keys marked with the Δ symbol or by pressing the SHIFT LOCK key marked with the \boldsymbol{B} symbol. The SHIFT keys are active only while depressed. Releasing them returns the keyboard to the unshifted mode. The SHIFT LOCK key also becomes active when depressed and remains active until a SHIFT key is again depressed. The shifted status of the keyboard is indicated in the status line (see Figure 3-1).

The alter mode is selected by depressing and holding the ALT key while pressing one of the other keys. The alter mode is used mainly to activate special function keys that might have serious consequences if activated accidently, e.g., the CLEAR key which would clear the display buffer.

3.3.2 Typamatic Operation

Normally, when a key is pressed, it will only perform its intended operation once. Some keys will repeat their operation continuously as long as they are held down. This is called typamatic operation. All alphameric keys operate in this manner. The special function keys that have typamatic operation are identified in Figure 3-2. The repeat rate is 10 characters per second.

3.3.3 Keyboard Disable (Input Inhibit)

Certain conditions disable the keyboard and prevent further entry by the operator. This condition is indicated by an
"Input Inhibit" message in the status line and may sound the audible alarm. See Figure 3-1 and CLICK key description in Figure 3-2, page 2. The conditions that disable the keyboard are listed below. Conditions 4, 5, and 6 cause the audible alarm to sound.

1. Operation of any program attention key.
2. A host-initiated I/O operation addressed to the terminal.
3. An operator initiated print operation, during the transfer of the display buffer to the printer buffer. If the printer buffer is full, the transfer cannot take place, so the keyboard will be disabled until the full condition goes away.
4. Operation of any alphameric key or of the DUP, FIELD MARK, ERASE EOF, or delete key (\mathbf{a}^{*}), when the cursor is in a protected field or in a field-attribute location.
5. Operation of any alphameric key not included in the numeric grouping when the cursor is in a numeric field.
6. An attempt is made to insert data into a full field.

The keyboard disable condition can be cleared by the following.

1. Pressing the RESET key for conditions 4,5 , and 6 above.
2. Pressing DEV CNCL for printer busy conditions (condition 3).
3. Host initiated I/O will be reset by specific command from the host. Condition 1 will normally be reset in this manner also.

3.3.4 Alphameric Data Entry

Keyboard entry of an alphameric character into the display buffer occurs at the cursor location. An attempt to enter an alphameric character into a protected data field or into an attribute character location will be blocked. Successful keyboard entry of the alphameric character causes the cursor to advance to the next character location within the unprotected data field. If the cursor advanced to the right-most character position on the line, it automatically moves to the first character position on the following line.

If the cursor, after advancing, is at an attribute character location, it advances to the first character position of the field defined by the attribute character. If, however, the field has been defined as an AUTO SKIP field, the cursor skips to the first character position of the next unprotected field, or if there are no unprotected character locations in the buffer, to the first character position in the buffer.

In a formatted buffer, attempting to enter a character into a field invokes several tests on that field. First, the field must be defined as unprotected. Second, if the field is defined as a numeric field, the character being entered must be one of the following:

$$
0123456789 \text {. - DUP }
$$

If either of these two conditions is violated, the keyboard is disabled.

3.3.5 Automatic Skip

Upon entry of a character into the last location of an unprotected data field, the cursor is repositioned according to the attribute character controlling the next field. If the attribute character defines the next field as either alphameric (protected or unprotected) or numeric and unprotected, the cursor is positioned at the first character location in the field past the attribute character. If the attribute character defines the field as numeric and protected, the cursor skips
that field and is positioned to the first location of the next unprotected field.

3.4 PRINTER OPERATION

The printer is driven by its own 2K buffer, so it can operate independently of the display. The operator requests a print out by depressing the print key. This action disables the keyboard and transfers the display buffer to a printer buffer. The keyboard is reenabled as soon as the transfer is completed. If the printer is not already busy printing, it will immediately begin printing the display data. If the printer is busy with a previous print job the operator's request is

Table 3-1 EBCDIC to ASCII Conversion Table

queued and will start as soon as the previous job is finished. The keyboard is disabled and the display buffer is copied to the printer buffer as space becomes available. When all the display data has been copied, the keyboard is enabled again. A second print request could be entered by the operator before the first one completes printing. But the display buffer cannot be transferred to the printer buffer until the previous job has printed enough data to release sufficient space in the printer buffer to hold the new display data. All buffers hold 2056 characters, but some of the display data (security fields and null lines) may be transferred on a given print request. The keyboard will be disabled until all the display data has been transferred to the printer buffer.

The status line indicates the printer status in field G (see Figure 3-1). A blank status indicates the printer is not ready. This could indicate conditions such as a nonexistent printer, a malfunctioning printer, the printer is out of paper, the printer has been deselected or perhaps other conditions. The operator will have to check the printer to determine its status. A PRNTR RDY status indicates the printer is ready for a print request. When the printer begins printing, PRNTR BSY is displayed until all the data in the printer buffer is printed.

3.5 SELF-CONFIDENCE TEST

The DM3270 terminal incorporates a basic self-confidence test to insure that the terminal is working correctly. The self-test is invoked when the terminal is powered on or when the operator depresses the TEST key. When the self-test is completed, the terminal is initialized with a clear screen and enters the idle mode.

The self-test begins by sounding the audible alarm and then tests various hardware components of the terminal. Two types of errors are detected: fatal and nonfatal. An error is fatal when it occurs in the RAM memory required by the self-test (address 8700-87FF Hex) or if it is reasonably certain that the CRT display will not work. When a fatal error is detected, the audible alarm will be sounded 3 times and the terminal will stop functioning. The terminal can only be restarted again by turning the power off and on.

Each nonfatal error is reported by displaying a unique number or letter code on the display screen starting at the Home position. The nonfatal errors and their letter codes are listed in Table 3-2.

The DM3270 provides line monitoring capabilities (monitor mode) which displays all data including control characters as they are received or transmitted. The DM3270 usually displays only text addressed to the receiving terminal. In monitor mode, all data that are received from the host is displayed in normal video and all data that are sent to the host, including pads, will be displayed in reverse video. The operator may enter monitor mode by depressing the ALT, SHIFT, and TEST keys simultaneously.

Table 3-2 Self Confidence Test Error Descriptions

Error Code	Error Description
n p	CRC check error for ROM Chip(s) ' n ', where $n=1,2,3,4$, and/or 5 RAM memory has falled
A	Printer port baud rate clock write/read error
8	Main port USART write/reed error
\dot{C}	Kayboard scanner (8255) write/read error
D	Printer port interrupt error
H	Printer port timeout error
1	Printer port receiver error (parity, overrun, framing)
J	Printer port recolved data error
K	$V \mathrm{~V}$ deo clock rate error
L	Printer port baud rate error

The ATTN key is rovided on IBM 3275 temminals tor use with the SNA Protococl. This hey is soontunctional on the DM3270.

Figure 3-2
Keyboard Layout and Key Description

2 of 2

Backtab

 dupiciate opeoration is is indicated for the rest of the fied in which the DUP charecter it is ocatos. The DU

Insert Mode

 Kepyonoract to
Oporation.

operation of the dobite key removes the character trom the

Tab
The curror is moved to the first charactier Itarion of the next unprotectesed datat fer

home
Soursor 1 moved to the first unprotected charactive

NEW LINE
The cursor is moved to the first unporotected cheracter

CLEAR (also see Note 1
Pressing the CLEAR Koy with the ALT They down 1) erae
or blanks every character iocation on the ecree

 cases, the absenneo of the cilick ndit
2. When the clleck key is diablod, the

BEBHIVE INTERNATIONAL

 LIMITED WARRANTY INFORMATION

Bechive's Equipment is warranted against defects in material and workmanship for a period of ninety (90) days from date of shipment to Beehive's direct customer. 'Beehive will repair or, at its option, replace Equipment which proves to be defective during the Warranty Period, provided such Equipment is returned to Beehive's factory as hereinater provided.

No defective Equipment may be returned to Beehive without an Advance Return Authorization from the Beehive Field Service Department ($801 / 355-6000$). The Return Authorization number must be referenced on both the shipping container and the packing list.

Subject to all of the above conditions, Equipment found to be defective may be returned to Beehive's factory freight prepaid. Following repair or replacement, seid Equipment shall be returned to the shipping party, freight collect.

The following items are not covered by warranty:
2. Routine maintenance and adjustment that is required to maintain products for operations as specified in the Maintenance Guide or Operntors Manual.
b. Failure or malfunctions which occur as a result of improper maintenance, operation (including hostile operating environment), or lack of care.
c. Components (if any) which are specified in the Maintenance Guide or Operating Manual as being excluded from warranty.
d. Malfunctions which occur as a result of customer supplied interfecing

LIMITATIONS OF WARRANTY

The foregoing warranties are in lieu of all other warranties express or implied, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. In no event will Seller be liable for consequential damages.
'Bechive's standard terms and conditions provide for a pass-through warranty to its contract customers as follows:

Buyer may pass on to its customer, Seller's standard Equipment warranty in effect at the time such Equipment is purchased by Buyer, provided that Buyer advises Seller in writing as to the date Buyer ships to its customer, including customer address, within ten (10) days from date of shipment to Buyer's customer. Failure to so notify Seller voids all warranty obligations on the part of Seller. In no event shall Seller have any obligation under this warranty clause to Buyer or Buyer's customer after one hundred and eighty (180) days from the date of shipment to Buyer.

In some cases Beehive's direct customer has, by written contract, waived all warranties, express and implied, in exchange for an additional discount.

