
* *
*
*
*

The New Dynamic Overlay SChane •••••••• for BI:S C vl.4
August, 1980

*
*
*

In order to allow C programs to be lon;er than physical rrenory, without resorting to "exec" or ,
"execl" (~ch nay irxleed get the job done, but resemble "chain" operations rrore than true
segmentation tools), a new set of capabilities has been b.rl.lt into the CLINK program~
Nonnally, the run-time environment of an executing C program lc:x:ks like this:

lew rnenory: base+lOOh: c.ca: run-t.ime utility package (csiz bytes)

rarn+csiz: . start of program co:le
• •• (program cxxle) •••

xxxx-l : end of program c:x:xle

XXXX:

xxxx+y:

????:

machine stack:

high me!'TOry: b:los:

Note that IIXXXX" is the first location
menory needed for external variables.

external variable area (y bytes Ion;)
• •• (external data)

free memory,
available for

storage
allc:x:ation

as low as the nachi.ne stack ever gets
local data, function parameters,
inter.mediate ~ression results,
etc. etc.

machine stack top (grcws dOtm)

fol1o.dng the program code and "y" is t.lle - arrount of

To implenent O\1erlays, the first thing necessary is to decide just Where the swapped-in o::xSe is
to reside. Far lier versions of BrS C had local data frames grG\Ting up :fran 10ft' mem::>ry I
starting fran Where the externals ended, making it difficult to detennine the lOtlest rnem::>ry
location safe to Svlap into. The schE!l)e suggested then for handling overlays was to leave
sufficient rcx::rn between the end of the root segment code (the root segment oontains the ''rra.in"
function and run-time packa.ge; it loads at the start. of the TPA, always ranains in Ine!'tOty, and
oontrols the top level of overlay swapping) and start. of the external data area to accolilodate
the largest possible swapped-in segment caribination. '!his is still a viable schene for version
1.4; here is the nodified rrerrory map, accamodating this first nethcx:l of handling overlays:

1
Br5 C Over lays, August 1980

------------ ---------
. low merrory: base+ lOOh: c. a:=c run-time utility package (csiz bytes)

ram+csiz: start of root segment code
••• (root segment code) •••

zzzz-l: end of !'CX)t segment code .

zzzz: start of crverlay area
••• (overlay area) •••

xxxx-l: end of overlay area

XXXX: external. variable area (y bytes long)
••• (external data)

xxxx+y: free Ite"COry,

????:

available for
storage

. allocation

machine stack:

as laY as the machine stack ever gets
local data, function parameters,
intermediate e~ression results,
etc. etc.

high merrory: l::xlos: machine stack top (gI"OflS dc:wn)

Note that "zzzz" is Where segrrents get swapPed in, guaranteed that the longest segment doesn't
reach "xxxx".

With version 1.4, .it is just as feasible to prt the overlay area AFTER the externals.
menory map for this alternative oonfiguration would be:

low menory: base+ 1 OOh:

ram+csiz:

xxxx-l:

xxxx:

xxxx+y-l:

xxxx+y:

xxxx+y+ssss-l:

xxxx+y+ssss:

????:

machine stack:

high rceTOry: roos:

c. CCC run-time utility package (csiz bytes)
start of root segment code
• •• (root segri'eht code) •••
end of ro:::>t segment c:xXie

external variable area (y bytes long)
• •• (external data) •••
end of external data area

start of overlay area (ssss bjtes long'
••• (overlay area) •••
end of overlay area

<unused rnsrcory>

as low as the machine stack ever gets
local data, function parameters,
intermediate e~ression results,
etc. etc.

'machine stack top (gratis dCMn)

If :you plan to use the storage allocation functions (alloc, free, sbrk, rsvstk) in ~

2.
BI:S C Over lays, August' 1980

program, then this second schene, \rtOuld require you to call the "sbrk" function with argtment
"ssss" (the size of the overlay area) since, by 'default, storage allocation always begins with
the area imnediately follONing the end of the externals. Fbr the renainder of this document, I
·-Vill assure the FIRST of the abo\re two schemes is being used.

~'K, wi th the generalities out of the way, let me say sanething al::aJt just hew to create "root"
~egrrents and "swappable" segments with BDS C. First of all, we would like all functions defined
within the ro::1t segment to be accessible by the swapped segrrent(s) ••• this is aCCOl'q:>lished by
causing CLINK to write oot a symb::>l table file (containing all function addresses) to disk When
the root segment is linked. '!he ..." option to CLINK will do the trick: this symb::>l table will be
used later When linking the swappable segments.

When linking the root segment, use the -e option to set the external data area location: keep
in mind that there nust 'be enough roan belew the externals to b:>ld the largest swapped-in
segment at nm time (lim using the term ''belcw'' in the sense that lew me!'IOry is '~lc:w" high ..
lllE!IOry: graPhically, in the preceding nercory maps, ''belaY''' neans 't:cMard the tq> of the page.)
If the -e c:pt.ion is anitted, CLINK will assune the external data ~ :imnediately after the
end of the root segment code: this is OK only if you I re usin; the SEX:DND scheme.

Within the code of the root. segrrent, then, a swappable segm:mt is loaded into tnem::)ry fran disk
by saying:

swapin (name, addr) : f* read in a segnent •• don't nm it '*f

~ere "addr" is the location folladng the last byte of root segment code (for the first
, scheme.) You can find this value by linking the root once without giving the -e option and
reading the -s statistics written to the console after the linkage. 'lb actually execute the
segrrent, you have to call it indirectly using a p::>inter-to-function variable.

"Here is an example. We'll declare a pointer-to-function variable called "ptr£n", swap in a
~egment named "£00" at location 300Oh, and call the segnent. '!he sequence would look like this:

int (*ptrfn) () i
ptrfn = 0x3000:

f* can be Whatever type you like '* f

if (swapin("foo" ,Ox3000) 1= -1) f* check for load error *f
(*ptrfn) (args •••): f* if none, call the segment * f

'!he "sw~pin" routine returns -1 When a load error occurs. N::>te that the swapped-in code might
.n:::rt return any value, but the pointer-to-ftmction m.lst be declared with s::ME kind of type. Use
"int" if nothing else canes to mind. When a segnent is invOked, as above, control passes to the
segm;nt's "main" function. There is no reason at all to require args to be of the "argc" and
"argv" fonn; there is nothing special aboJt a "nain" function other than the property it has of
getting called first. 'Ihe ''ma.in'' function within the swapped-in segnent is the ONLYallOfled
entry point for the segment.

A sinple tlswapin" function is given in STDLIB2.C. It can be nade shorter l::!i skipping all the
error testing, or can be exJ?a.nded to detect an attempted load over the external data area by
CCJ"l't.Pa.ring the last address loaded with the contents of location ramrllSh ••• if you've never done
any lON-level hackery, you get the value of the 16-bit address at location ram+llSh l::!i using
indirection on a p::>inter-to-integer (or -unsigned.) Note that location RAM+llSh ~ cootains
the address of the base of the external data area.

Now we 'Jalo.,.7 h:M'to do everything except actually create a swappable segment.

3
BDS C Overlays, August ·1980

C<" a Silappable segment is basically just a normal C program, hav J.u~ a "main" function jt~st
ike the root segrrent, except that the c.o:c run-time utility package is NCY.r tacked CXl to the
ront of a swappable segment (the C.CCC in the root ~t will be shared ~ everyone.) '!he
:her difference between a swappable segrrent and the root segment is the load address; while
"le rc::ot segment always loads at ram+lOOh (Where "ram" is 0 for standard CP/M, or 4200h for ~e
rodified" CP/M), a swappable segment may be made to load anyWhere. (hce you've c:xnpiled the
..;appilile 'segment, you give a special form of the CLINK camand to link it:

A> clink segmentname -v -1 xxxx -y syrribolfile [-s ••• J <cr>

'1ere "segmantnameCl is the narre of the CRL file containing the segment, "-v" indicates to CLINK
~t a swappilile segment is to be created (so that C.~ is not attached), and "-1 xxxxtl

letter ell follcwed by a hex address) indicates the load address for the segrrent.

,ince you'll probably want to yank in the syrribol file created ~ the linkage of the root
;;egment, use the -y c:pt.ion to do so. If you don't, then CLINK will yank in fresh cOpies of
'unctions ~e ttpRINI'F" and "FOPEN", etc., even if they have already been linked into the root
-;egment. It woUld be a waste to have nul tiple copies of those rrerory h:::>gs in there at the same
ime! By reading in the syrribol table fran the root segment, it is insured that any routines
lready linked in the root will be made available to the swapped-in segment. '!he root segrrent,
J1ough, cannot Xncw about functions belonging to the swapped-in 'segment through the use of a
yml::ol table. '!hat would require sane kind of JIIltua.lly referential linking system beyond the

cccope of this package.

)h·well. When linking the segment, you may specify -s to generate a stat map on the console,
md -w to 'Write out an augrrented syrribol table containing not only the syrribols read in fran the
·oot segment I s syrribol file, but also the swappable segment I s CMn. syrribols. '!his new' syrribol file
ay then be used <Xl another level of swapping, should that be desired.

,xarcple: (The addresses given in thisexanple are for a RAM at OOOOh CP/M; if you have the
~odified 4200h CP/M, fudge accordingly.), '.

et • s' say you' ve got a program RCOI'. C, ~ch will Svrcip in and execute SEGl. C and then overlay
:A31 • C wi til SEX32 • c. RX1I' • CCM loads at lOCh and ends, say, before 300011. We' 11 load , in the .
.egnents at 300Oh, and set the rese of the external data area to SOOOh (this assunes neither
~rent is longer than 200Oh.)

""ne linkage of RO:1I' would be:

A>c1ink root -e 5000 -w -s <cr>

'lus tells CLINK that RO:1I'.o::M is to be a root segrcent (no "-v" c:pt.ion used), the externals
rtart. at SOOOh, a syrribol file called RCXJI'.SYM is to be written, and a statistics s\.JTITaIY -is to
:e printed to the c::onso1e.

'be linkage of each segnent ~uld appear as:

A>clink segl -v -1 3000 -y root -s -0 segl. <cr>

:be a:mnand line tells CLINK that SIDl. o:M is to be a swappab1e segnent (the "-v" c:pt.ion) to
cad at location 300Oh, the syrribol file named ROOI'.SYM should be scanned for pre-defined
<i.m.ctionaddresses, a statistics s\.JTITaIY should be. printed after the linkage, and the object
<:ile is to be 'Written out as SEDl (as opposed to SE3l.a::M, to avoid accidentally invoking it as
- CP 1M ccmnand.)

4
)S C Overlays, . August 1980

