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Chapter 1 
Introduction 

Page 1 

During the past decade, the technology of packet-switching 
has come into increasing use in the design and construction of 
computer networks. Networks using this technology are generally 
characterized by: 

1. A subnetwork of communications processors to which the 
host computers are connected. 

2. A high degree of connectivity among the communications 
processors forming the nodes of this subnetwork. 

3. The division of messages into packets, typically 1000 
bits in length, by the communications processor to which 
the originating host is connected. 

4. The dynamic routing of packets to the 
communications processor for reassembly and 
the host to which the message is addressed. 

destination 
delivery to 

The pioneering, largest, and most advanced of these networks 
is the ARPANET(!) whose approximately 60 nodes currently net over 
120 host computers; it has been in operation since 1969. Its 
basic technology has been adopted by computer networks in 
government and industry, both here and abroad, e.g., AUTODIN II, 
CTNE, CYCLADES, DATAPAC, DDX, EIN, EPSS, NPL, TELENET, TRANSPAC. 

Some networks, e.g., EDN, COINS, PLATFORM, PWIN, use the 
same (or substantially the same) equipment and terminology as the 
ARPANET, including the communications processor which, for these 
networks, is called the Interface Message Processor (IMP). Two 
kinds of !MPs are in use: the Honeywell H-316(2) and the Bolt 
Beranek and Newman (BBN) Pluribus.(3) 

(1) "Selected Bibliography and 
ARPANET," Becker and Hayes, Inc., 
NTIS AD-A026900. 

Index to Publications 
Los Angeles, California, 

about 
1976. 

(2) F.E. Heart, et al., "The Interface Message Processor for the 
ARPA Computer Network," AFIPS Conference Proceedings, Vol. 36, 
1970, PP• 551-567. 
(3) F.E. Heart, et al., "A New Minicomputer/Multiprocessor for 
the ARPA Network," AFIPS Conference Proceedings, Vol. 42, 1973, 
PP• 529-537. 
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The message packet processing functions performed by a 
Pluribus IMP are the same as those of a H-316 IMP, but there are 
significant differences in the manner in which their programs are 
designed and implemented. These differences are dictated by the 
architectural differences between the two types of computers. 
The H-316 is a single-processor, interrupt-driven machine while 
the Pluribus is a multiprocessor which uses parallel processing 
and a priority ordered Pseudo Interrupt Device (PID) to control 
the sequence of execution of all program tasks and the servicing 
of I/O devices to achieve real-time response. 

The Pluribus consists of processors, memory modules, I/O 
devices, buses over which these communicate, and bus couplers to 
interconnect the individual buses. Within this framework, a wide 
variety of systems can be configured, ranging from small 
single-bus machines to large multibus systems with tens of 
processors, up to 1024K bytes of main memory, and many diverse 
I/O devices. All Pluribus processors are functionally 
equivalent; any processor can perform any system task and 
control any device. 

The principal responsibility for maintaining reliability in 
the Pluribus is placed on its software. The Pluribus hardware 
was designed to provide an appropriate vehicle for the software 
reliability mechanism. When hardware errors are detected, the 
software exploits the redundancy of the hardware by constructing 
a new logical system configuration which excludes the failing 
resource, using redundant counterparts in its place. A small 
hierarchical operating system called STAGE(4) coordinates the 
software reliability mechanisms involved. 

The H-316 IMP program has been documented in BBN Technical 
Information Report No. 89, The Interface Message Processor 
Program, March 1977 (periodically updated). The purpose of the 
present report is to document the Pluribus IMP program. The 
report is divided into two volumes. Volume I contains, in 
addition to this introduction, descriptions of the IMP and STAGE 
system programs; the debugging system DDT, detailed program 
descriptions, and data formats are included in Volume II. A 
general familiarity with packet switching and with the Pluribus 
architecture, e.g., as described in Pluribus Document 2, System 
Handbook, (BBN Report No. 2930), will be helpful in using and 
understanding the present report. Unless otherwise stated, all 

(4) J.G. Robinson and E. s. Roberts, "Software Fault-Tolerance in 
the Pluribus," AFIPS Conference Proceedings, Vol. 47, June 1978. 
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numbers are decimal; 
are followed by a"!". 

Page 3 

where hexadecimal numbers are used, they 

As a final note, it is pointed out that some networks, e.g., 
Platform, use Pluribus IMPs with memory and I/O devices on the 
same bus, called an M/I bus. The Pluribus program treats these 
buses as if they were separate I/O and memory buses. In line 
with this approach, the discussion in the body of this document 
is functionally oriented and the reader should keep in mind that, 
for machines with M/I buses, all references to memory or I/O 
buses actually refer to the memory or I/O space of the M/I bus. 
The single instance involving a routine that deals specifically 
with the M/I bus structure is discussed in Section 3.5 (Stage 
CD). 
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Chapter 2 
The IMP 

Page 4 

This chapter describes the algorithms that the IMP uses in 
performing its functions as a network communications processor. 
The flow of messages through the network is illustrated in Figure 
1. The host sends the IMP a message up to 8063 bits long, 
preceded by a leader which specifies its destination. The source 
IMP accepts the message in packets up to 1008 bits long. Each 
packet has a header to allow for the transmission from IMP to 
IMP.(S) Figure 1 demonstrates how message 1 is transferred from 
IMP to IMP in three packets, numbered 1-1, 1-2, and 1-3. When a 
packet is successfully received at each IMP, an acknowledgement 
or ack is sent back to the previous IMP. Inter-IMP acks are 
shown returning for each packet. Finally the message arrives at 
the destination IMP where it is reassembled: that is, the 
packets are recombined into the original message. The message is 
sent to the destination host and a Ready for Next Message (RFNM) 
is sent back to the source host. A RFNM is a unique, one-packet 
message and it is acknowledged at each IMP to IMP hop on its 
return path. 

As shown 
involved in 
in different 

in Figure 2, several layers of nested protocols are 
transmitting a message between application programs 

hosts, as follows: 

1. 

2. 

3. 

4. 

5. 

Host-to-Host. 
hosts. 

Protocols between source and 

Host/IMP. Protocols between a host and its 

Subnetwork. Protocols between IMPs. 

End-to-End. Protocols between source and 
IMPs. 

IMP- to- IMP. Protocols be tween adjacent I MPs 
store-and-forward nodes. 

destination 

1 ocal IMP. 

destination 

serving as 

(5) Note the distinction between the leader, which app~ars at the 
beginning of a message as it passes between a host and an IMP, 
and a header, which appears in front of a packet in an IMP or in 
transit between IMPs. 
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The highest level of protocol in the network is the 
host-to-host protocol governing the transmission of messages from 
a source to a destination host. A message originating in a 
host's application program is passed to that host's Network 
Control Program (NCP) which performs all communication between 
its host and the network. The host-to-host protocols are 
implemented in the NCP. They establish the rules by which the 
conversation between the source and destination hosts will be 
held. This permits two architecturally different hosts to 
communicate. 

The next protocol level is the host/IMP protocols which 
enables the host's NCP to pass a message on to the local IMP. 
This is accomplished by following the so-called "1822" protocol 
described in BBN Report No. 1822, "Specifications for the 
Interconnection of a Host and an IMP." That document defines the 
hardware interface between a host and an IMP and specifies the 
protocol to be followed in transmitting messages between them. 
The host's NCP casts the message into the proper format and 
precedes it by a leader which specifies such data as the 
destination host's network address, the message's priority, etc. 
It then takes the appropriate hardware actions to transmit the 
leader and message to the IMP. At some subsequent time, the IMP 
to which the receiving host is connected receives the message and 
passes it to the host through its own 1822 interface. 

The remaining lower protocols are implemented 
IMPs ·of the subnetwork and no longer concern the 
hosts. This is indicated in Figure 2 by the shaded 

between the 
participating 
box. 

The next protocol level is the end-to-end message protocol. 
The source IMP receives the message through the 1822 interface 
and passes it to the host-to-IMP (HI) module. The information 
from the leader is stored in a transaction block, a data area 
reserved for the purpose, and the leader is examined to determine 
the addressee. For data to flow in the network, a conversation 
must be initiated with the destination IMP unless such a 
conversation already exists. A series of protocol messages is 
transmitted back and forth between the source IMP and the 
destination IMP, resulting in a transmit message (TM) block in 
the source IMP and a receive message (RM) block in the 
destination IMP. When each IMP knows of the existence and 
identity of the relevant block in the other, the conversation has 
been initiated. Note that "conversation" is a technical term 
referring to a one-way transmission of data. Although control 
messages pass in both directions in a conversation, data move in 
one direction only. (A two-way exchange between hosts actually 
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involves two conversations in the IMP subnetwork.) Once a 
conversation has been initiated, it may be used for many 
messages; it is terminated automatically by the IMP subnetwork 
when it falls into disuse. 

Having initiated the conversation, the host-to-IMP module 
(HI) in the source IMP breaks the message into packets up to 1008 
bits long and invokes the basic store-and-forward module TASK to 
send each packet to the destination IMP. TASK is called upon to 
transmit only one packet at a time. Once the message has been 
received at the destination IMP, the module TASK in the 
destination IMP invokes the IMP-to-host module (IR) to transmit 
the message to the destination host. Notice that this level of 
discussion starts with a message received in the IMP through HI 
which is passed off to TASK in that IMP, and that TASK in the 
destination IMP passes the message through IR to the receiving 
host. All processing just described takes place even if both 
hosts are connected to the same IMP. 

The next level of discussion involves the transmission of a 
single packet from one IMP to another. TASK is invoked by 
handing it a packet which it is to move towards its ultimate 
destination. Such packets may arise from either of two sources: 
from HI as just described, or from an adjacent IMP. The effect 
is the same in either case. 

When an IMP receives a packet, that packet is either 
addressed to a host connected to this IMP or to a host connected 
to some other IMP. In the latter case TASK must determine the 
next leg of the packet's route. Each IMP has several 
communication links connecting it to adjacent IMPs, and TASK must 
determine which of these links is the best one to the 
destination, given the present state of the network. The routing 
algorithm gathers data about the current status of network 
traffic and transmits these data periodically from one IMP to 
another. The results of this data gathering operation are used 
to create tables which TASK can interrogate to determine, for any 
given destination IMP, the best line over which to transmit the 
packet. Since routing messages are received periodically by each 
IMP, successive packets of a message may be transmitted via 
different routes, leading to the possibility that the packets are 
received at the destination IMP out of order. (New routing 
information may reveal a less busy route, so that a subsequent 
packet may travel more rapidly than an earlier one.) For this 
reason, the IMP algorithms are designed to reassemble the packets 
of a multi-packet message in the proper order. 
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Having determined the line over which to transmit the 
packet, TASK then transmits it to an adjacent IMP (which may or 
may not be the destination IMP). TASK in that IMP goes through 
an identical process. This process continues until the packet 
arrives at the destination IMP, at which time TASK passes it to 
the module FORUS which performs the necessary reassembly of the 
packets into a message. FORUS also insures that messages are 
passed to the host in proper order. 

A final protocol is the low-level IMP-to-IMP protocol, which 
governs usage of the communication links between !MPs. Each 
physical link between IMPs i~ divided (by the software) into up 
to 128 logical channels, so that up to 128 packets at a time may 
be in transit in each direction between each pair of IMPs. The 
channel concept permits each IMP to initiate transmission of 
subsequent packets over a link before receiving acknowledgement 
of the successful transmission of the first. Note the 
distinction between the end-to-end protocol and the low-level 
IMP-to-IMP protocol. The former is concerned with the concept of 
the conversation, the latter with chanriels. 

2.1 The IMP Algorithm: Introduction and Overview 

The data flow through the IMP is 
schematic drawing of packet processing. 
are described below. 

shown in Figure 3, a 
The processing programs 

The host-to-IMP routine (HI, shown in the lower left corner 
of the figure) handles messages being transmitted into the IMP 
from a local host. The routine first accepts the leader to 
construct a header that is prefixed to each packet of the 
message. It then accepts the first packet and, if no allocation 
of space exists for the destination IMP, constructs a request for 
buffer allocation which it places on TASK's queue. A 
single-packet message is placed directly on the task queue 
regardless of allocation status and a copy is held in the 
transaction block until either a RFNM or allocation is returned. 
A returned RFNM causes the packet to be released (since the 
message has been received), while a returned allocation for the 
single-packet message causes retransmission by TASK. Requests 
for multi-packet allocation are sent without actual message data. 
The request is recorded at the destination IMP and an allocation 
message is returned by a background process as soon as space is 
available. A returned allocation causes HI to place the first 
packet with header on TASK's queue. Input of the rest of the 
message is then accepted from the host. HI also verifies the 
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message format. 
connected to the 

The routine is reentrant and services all hosts 
IMP. 

The modem-to-IMP routine (M2I, shown in the upper right 
corner of the figure) handles inputs from the modems through 
which the IMP is connected to the communication links. This 
routine first sets up a new input buffer, previously obtained 
from the free list. (That is, M2I performs double buffering.) 
If a buffer cannot be obtained, the received packet is not 
acknowledged and the buffer is reused immediately to read in the 
next packet. The discarded packet is retransmitted later by the 
distant IMP as soon as a timer runs out. M2I processes returning 
acknowledgements for previously transmitted packets and either 
releases the packets to the free list or signals their subsequent 
release to the IMP-to-modem routine. M2I then places the buffer 
on the end of TASK's queue. 

TASK uses the header information to direct packets to their 
proper destination. It routes packets from the task queue either 
to a local host queue or onto an output modem determined from the 
routing tables. If the packet is for non-local delivery, TASK 
determines whether sufficient store-and-forward buffer space is 
available. If not, buffers from modem lines are flushed and no 
subsequent acknowledgement is returned by I2M. (Normally, an 
acknowledgement is returned with the next outgoing packet over 
that modem line.) Packets from hosts which cannot get 
store-and-forward space are freed by TASK and requeued at a later 
time by HI. 

If a packet from a modem line is addressed for local 
delivery, its message number is checked to see whether a 
duplicate packet has been received. Each IMP maintains for each 
connection a window of contiguous message numbers which it will 
accept from the other end of the connection. Packets with 
out-of-range numbers are considered duplicates and are discarded. 
The receipt of a RFNM for the oldest message at the source IMP 
permits the window to be moved up by one number. 

Replies such 
transaction blocks. 
host. 

as RFNMs or Dead Host messages are placed in 
TASK then pokes IH to initiate output to the 

Message packets for local delivery are linked together with 
other packets of the same message number in a reassembly block. 
When a message is completely reassembled, the leading packet is 
linked to the appropriate host output queue for processing by IH. 
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Incoming routing messages are processed by the routing 
program with high priority so that outgoing routing messages and 
the routing directory immediately reflect any new information 
received. M2I generates I-heard-you messages to indicate to the 
neighbor receipt of the routing message. 

The IMP-to-modem routine (I2M) transmits successive packets from 
the modem output queues and sends piggybacked acknowledgements 
for packets correctly received by M2I and accepted by TASK. 

The IMP-to-host routine (IH) passes messages to local hosts and 
informs a background process when a RFNM should be returned to 
the source host. 

A fake host is a program in the IMP which acts like a real host 
in many ways, including being the source or destination of 
network traffic. The four fake hosts are: 

1. Fake Host 0--The terminal connected to the Pluribus IMP. 

2. Fake Host 1--The debugging process DDT. 

3. Fake Host 2--The packet core process used to reload part 
of the memory should it be found to be incorrect. 

4. Fake Host 3--Used for miscellaneous purposes such as 
reports to the NCC, message generation, etc. 

Selected hosts and IMPs, particularly the Network Control Center 
(NCC), find it necessary or useful to communicate with one or 
more of these fake hosts. 

The TTY fake host assembles characters from the terminal 
into network messages and decodes network messages into 
characters for the terminal. TTY's default message 
("crosspatch") destination is the DDT fake host at its own IMP. 
It can, however, be connected to any other IMP terminal, any 
other IMP's DDT fake host, or to any host program with compatible 
format. 

DDT permits the operational program and its data to be 
inspected and changed. Although its normal message source is the 
TTY fake host at its own IMP, DDT responds to a message of the 
correct format from any source. This program is normally 
inhibited from changing the operational IMP program; NCC 
intervention is required to activate the program's full power. 
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The STATISTICS fake host collects measurements about network 
operation and periodically transmits them to a designated host. 
This program sends but does not receive messages. 

The PACKET CORE fake host loads and dumps portions of its 
own IMP's memory, or acts as an intermediary in loading and 
dumping portions of the memory belonging to a neighbor who is 
unable to communicate via the normal IMP-to-IMP protocol. The 
PACKET CORE facility allows for dissimilar machines to coexist as 
IMPs on the network; reloading and diagnostic dumping of a 
malfunctioning IMP can be done without the requirement that one 
of its neighbors be of the same machine type. 

Background Hosts. These are modules which are run periodically 
and search the IMP's data bases for certain tasks to perform. 
They send connection protocol messages, incomplete transmission 
messages, allocations, and RFNMs, as well as returning GIVEBACKs 
closing unused connections. The background hosts run in a 
slightly different manner than the fake hosts in that they do not 
simulate the host/IMP channel hardware~ They do not go through 
the host/IMP code at all, but put their messages directly on the 
task queue. Nonetheless, the principle is the same. 

2.1.1 IMPs and Hosts 

The software interface between an IMP and a host will now be 
defined; the details of the hardware interface are to be found 
in BBN Report No. 1822. Each IMP serves hosts whose cable 
distances from the IMP are less than 2000 feet. A modem channel 
must be used for greater distances; this latter type of host 
connection is termed a Very Distant Host (VDH) and is also 
discussed in BBN Report No. 1822. 

Connecting an IMP to a wide variety of different local hosts 
requires a hardware interface, some part of which must be custom 
tailored to each host. The interface is therefore partitioned so 
that a standard portion can be built into the IMP which is 
identical for all hosts, while a special portion of the interface 
is unique to each host. The interface is designed to allow 
messages to flow in both directions at once; a bit-serial 
interface is used. 

The host interface operates asynchronously, each data bit 
being passed across the interface via a four-way 
Ready-for-Next-Bit/There's-Your-Bit handshake procedure. This 
technique permits the bit rate to adjust to the rate of the 
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slower member of the pair and allows necessary interruptions when 
words must be stored into or retrieved from memory. 

A message from a host consists of a leader followed by data 
bits. The leader format was changed in late 1976 to accommodate 
more than 63 !MPs in the network and more than 4 hosts per IMP. 
Since some hosts have yet to be reprogrammed for the new format, 
the !MPs support either format although all internal processing 
in the IMP assumes new format. Any leader in old format is 
translated to new format immediately upon receipt by HI, and the 
format is changed just before transmission of a message by IH to 
a host using old format. 

The format of the message leader provides a 16-bit field for 
IMP numbers, so that in principle there can be as many as 2**16 
IMPS. In practice, other restrictions limit the !MPs to being 
numbered between 1 and 67.(6) Host numbers are in an 8-bit field 
and may range from 0 to 255. Because of storage limitations, 26 
(including fake hosts) is the maximum possible number of hosts. 
Four of these host numbers are reserved permanently for fake 
hosts, numbered 252 through 255, as follows: 

252 local terminal 
253 DDT, the debugging process 
254 packet core 
255 statistics, message generation/discard 

The software for the fake host simulates 1822 hardware. 

Messages intended for dead hosts (which are not the same as 
dead !MPs) cannot be delivered; they require special handling to 
avoid indefinite circulation in the network and spurious arrival 
at a later time. Such messages are purged from the network at 
the destination IMP. A host computer is notified about a dead 
host only when it attempts to send a message to it. 

(6) IMP number 0 is not usable because of certain conventions in 
message fields, and 67 is the maximum number of fields 
transmittable in certain parts of routing information. 
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2.1.2 Network Flow Control 

A major hazard in a message-switching network is congestion, 
which can arise either from system failures or from peak traffic 
flow. Congestion typically occurs when a destination IMP becomes 
flooded with ineoming messages for one or more of its hosts. If 
the flow of messages to this destination is not regulated, the 
congestion backs up into the network, affecting other IMPs and 
degrading or even completely clogging the communication service. 
To avoid this problem, the IMPs incorporate a quenching scheme 
that limits the flow of messages to a given destination before 
congestion begins to occur. 

This quenching scheme requires that buffer space be 
allocated where it will be needed before a message may enter the 
system. If buffering is provided in the source IMP, one can 
optimize for low delay transmissions; while if the buffering is 
provided at the destination IMP, one can optimize for high 
bandwidth transmissions. To be consistent with the goal of a 
balanced communications system, the approach used utilizes some 
buffer storage at both the source and the destination as well as 
a request mechanism from source IMP to destination IMP. 

Specifically, no multi-packet message is allowed to enter 
the network until enough storage for the message has been 
allocated at the destination IMP. As soon as the source IMP 
realizes that a message is multi-packet, it sends a control 
message to the destination IMP requesting that reassembly storage 
be reserved at the destination for this message. It does not 
take in further packets from the host until it receives an 
allocation message in reply.(7) The destination IMP queues the 
request and sends the allocation message to the source IMP when 
enough reassembly storage is free; at this point the source IMP 
accepts the (rest of the) message from the host and starts to 
send it to the destination.\ 

Effective bandwidth is maximized for sequences of long 
messages by permitting all but the first message to bypass the 
request mechanism. When the message itself arrives at the 
destination and the destination IMP is about to return the Ready 
For Next Message (RFNM), the destination IMP waits until it has 

(7) This is not completely accurate, since the double buffering 
scheme employed in HI permits two packets to be read in while 
waiting for the allocation. In the usual case, the allocation 
arives before the host interface must be blocked. 
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reassembly space for an additional 
and then piggybacks a storage allocation 
source host is prompt in answering the 
message, an allocation is ready and the 

message can be transmitted at once. If the source host delays 
too long, or if the data transfer is complete, the source IMP 
returns the unused allocation to the destination. With this 
mechanism, the inter-message delay has been minimized and the 
hosts can obtain the full bandwidth of the network. 

The delay for a short message has been minimized by 
transmitting it to the destination immediately upon its receipt 
from the host, retaining a copy in the source IMP. If there is 
space at the destination, the message is accepted at once and 
passed on to a host and a RFNM is returned, the source IMP 
discarding the message when it receives the RFNM. If there is 
not enough space, the destination IMP discards the message and 
queues within itself a request for allocation. (Effectively, it 
treats it as a request for space.) When space becomes available, 
the source IMP is notified that the message may now be 
retransmitted. Thus, there is no setup delay at all in the vast 
majority of cases in which storage is available at the 
destination. 

These mechanisms make the IMP network fairly insensitive to 
unresponsive hosts, since holding the source host to a 
transmission rate equal to the reception rate of the destination 
host prevents clogging the network with messages. Further, 
reassembly lockup is prevented because the destination IMP never 
has to turn away a multi-packet message destined for one of its 
hosts; reassembly storage has been allocated for each such 
message prior to its entry into the network. 

2.1.3 End to End Communications 

To communicate, both source and destination IMPs must 
establish a record of the connection between them. This simplex 
connection, consisting of a Transmit Message (TM) block at the 
source, and a corresponding Receive Message (RM) block at the 
destination, is created and later removed using a special 
protocol which detects duplicate or missing messages. Each 
message transmitted as part of a conversation contains the index 
of the relevant block (TM or RM) at the far end. The connection 
is disallowed if the host/host access control mechanism does not 
permit that host pair to communicate. 
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Every IMP maintains for each of its hosts a pair of Host 
Access Control (HAC) words in which each of the 16 bits 
represents one of sixteen logical subnetworks. The bits in one 
word signify membership in, and in the other word signify 
permission to communicate with, the subnetworks. A pair of hosts 
may communicate with each other only if they are members of the 
same logical subnetwork or if one is allowed to communicate with 
hosts in a subnetwork of which the other is a member. 

A conversation is a one-way message path from a source IMP 
to a destination IMP, where "one-way" means that data are 
transmitted in only one direction although control messages move 
in both directions. The basic control loop in HI that deals with 
conversations is shown in Figure 4. After going through some 

initiate conversation 

request allocation 
(or have it) 

I 
I 
I 

<-----

send packets ---------

Figure 4 
Basic Loop in HI 

1 
I 
I 
I 

initial protocol to set up the conversation, the two remaining 
steps are to request an allocation and to send packets. The 
action of requesting an allocate can be by-passed in the event 
that an allocation is available. (It may have been provided on 
the RFNM returned for the previous message.) 

The message sent to the remote IMP to initiate a 
conversation is GETABLOCK, which asks that an RM block be set up. 
The receiving IMP replies either GOTABLOCK or CANT, depending 
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upon whether or not there is an available RM block which it can 
allocate for this conversation. If it finds such a block, then a 
conversation has beett successfully initiated. 

For each conversation, an independent message number 
sequence is maintained by each of the two participating !MPs, 
the originating IMP maintaining it in the TM block and the 
destination IMP in the RM block. The counter is incremented by 
one for each message sent over the conversation. The 
transmitting IMP assigns the message numbers in sequence, and the 
receiving IMP uses the same message number as part of the 
acknowledgement. Since it is an inherent property of the 
store-and-forward protocol that messages may arrive at the 
destination out of order, a window of eight messages is 
maintained, and the reassembly process is willing to accept any 
message within that window. (FORUS assures that messages are 
delivered to the host in proper order.) As it receives a message 
and acknowledges it to the source (by a RFNM), the transmitting 
IMP moves the window up past each successfully acknowledged 
message. The end-to-end protocol permits up to eight messages 
per conversation to be in the network at any time, thus allowing 
a host to send messages rapidly accross the network despite 
delays in returning RFNMs. If a host tries to get ahead by more 
than eight messages, the transmitting IMP blocks it. Messages 
arriving at a destination IMP with message numbers outside of the 
current window or with message numbers already marked as received 
are duplicates to be discarded. The message number concept 
serves two purposes: it orders the messages for delivery to the 
destination host, and it provides for the detection of duplicate 
and missing messages. The message number is internal to the IMP 
subnetwork and invisible to the hosts. 

A sequence control system based on a single 
source/destination connection, however, does not permit priority 
traffic to go ahead of other traffic. More generally, a host may 
wish to request special treatment for a message; thus, a 
separate connection is created for each "handling type." 
Currently, there are two possible handling types: regular (for 
high bandwidth) and priority (for low delay). 

When a request for an allocate comes in to an IMP with an 
associated message number, that message number should be in 
an idle state. (If the message number is busy, the allocation is 
a duplicate and is discarded.) FORUS puts this conversation in 
the state "need an allocate." 
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When an allocate is returned, it goes into the TM block. 
That is, a record is made in the TM block of the amount of space 
allocated. The originating host is blocked until the allocate is 
returned. When the source IMP receives the allocate, it starts 
to send packets. Because of the double buffering in the 
host-to-IMP interface, the source host may have already sent two 
packets. However, the IMP cannot receive more than that and does 
not attempt to do so until it has received word from the 
destination IMP that the storage allocation is available. It is 
for this reason that it is important that allocation processing 
be expedited; therefore, the destination IMP is willing to wait 
for up to half a second to be .able to piggyback the allocation on 
a RFNM for a previous multi-packet message. 

At the destination IMP, the packets are collected as they 
are received. The reassembly block contains a pointer to the 
first packet received, and each successive packet is threaded 
onto this packet list in the proper order for the message. Thus 
duplicate packets can be discarded as soon as they are received 
when the attempt to thread them onto the list reveals an already 
received packet with the same packet number. If a packet is 
lost, the source IMP sends an Incomplete Query message after 
30-45 seconds. 

Special processing is provided for single packet messages so 
that they can be transmitted expeditiously. Upon receiving a 
single packet message from the host, HI transmits it to the 
destination IMP as a request for an allocation of one block but 
also retains a copy in the transaction block. However, all of 
the data accompanies this request for allocation. The 
destination IMP attempts to find a buffer for the data and (if it 
is not the next message to go to the host) a reassembly block. 
If it is able to find both, then the message is complete; it is 
sent to the destination host and a RFNM is returned. If there is 
no available buffer and reassembly block, the message is treated 
as if it were merely a request for an allocation and the data 
that accompanied it is discarded. Eventually a reassembly block 
and a buffer are allocated and an allocation of one is sent to 
the source IMP. 
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2.1.3.1 Error Recovery 

Since 
unreliable 
detect and 
algorithm 
if packets 
techniques 

packets· are sent between IMPs via potentially 
communication links, procedures have been developed to 
account for a lost packet or message. The IMP 
takes various steps to continue smooth operation even 
or protocol messages are lost in transit. Some of the 
employed are presented in this section. 

The source IMP keeps track of all messages for which a RFNM 
has not yet been received, and the destination IMP keeps track of 
the replies it either has yet to send or has already sent. When 
the RFNM is not received for too long (about 30-45 seconds), the 
source IMP sends an "Incomplete Query" protocol message (using 
the same message numberJ to the destination, a messa~e which 
inquires in effect, "What is the status of this message number?" 
If the destination has already received that message (that is, if 
the acknowledgement was lost in the n'etwork), then a duplicate 
acknowledgement is sent. If some part of the message was lost in 
transmission, the destination replies, "I've just received an 
incomplete message." This reply includes enough details about 
the error so that appropriate corrective action can be taken. At 
the very least, the originating host can be informed that the 
message was lost in transit. The source IMP continues inquiring 
until it receives a response. This technique generally insures 
that the source and destination IMPs keep their message number 
sequences synchronized and that any allocated .space is released 
should a message become lost in the subnetwork because of a 
machine or communication line failure. 

A conversation is terminated either after a prolonged period 
of inactivity, or after a somewhat shorter period of inactivity 
coupled with the need for the message block by some other 
connection, or by the need to resynchronize a message number 
sequence that has been broken. The special termination protocol 
can be initiated by either the source or the destination in the 
first two of the cases mentioned above, or by the source in the 
third case upon the receipt of an "out of range" response to an 
Incomplete Query. Upon closing a conversation, both source and 
destination IMPs release all resources held or allocated for that 
conversation. 
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2.1.3.2 Raw Packets 

The network provides a facility outside of the normal 
host/host connection mechanism for sending and receiving "raw 
packets." These messages are identified by a special host-IMP 
and IMP-host code and bypass the connection mechanism. They are 
routed normally through the subnetwork, but no sequencing, error 
control, reassembly, or storage allocation is performed. Thus, 
they may arrive out of order at the destination host, some 
packets may be missing or duplicated, or packets may be thrown 
away by the subnetwork if insufficient resources are available to 
handle them. No RFNMs or other messages are sent back to the 
source host about such raw packets. Since there is no flow 
control, a host can overload the net with raw packets and cause 
it to fail; therefore, a special privilege bit (in the host 
access word) is required for a host to be permitted to send them. 

2. 1.4 IMP to IMP Communication 

The preceding section dealt 
sending messages from a source IMP 
lower level is the IMP-to-IMP 
individual packets from one IMP to 
discussed. 

with the end-to-end protocol of 
to a destination IMP. At a 
protocol involved in sending 
another. This protocol is now 

The mode of operation in connection with IMP-to-IMP 
transmission of packets is as follows: when a packet is 
transmitted from one IMP to ~nother, the sending IMP retains a 
copy. W'hen the IMP at the other end of the link has successfully 
received the packet, it acknowledges it to the sender. On 
receipt of that acknowledgement, the sender is able to release 
the buffer space in which the packet copy is held. If an 
acknowledgement is not received in time, the sending IMP merely 
retransmits the packet. The exact length of time an IMP will 
wait before retransmission depends on the type of line being used 
(land vs. satellite) as well as the bandwidth of the link (low 
speed vs. high speed). 

A simple acknowledgement discipline applies to a channel,(8) 
a connection between one IMP and another. Over each channel, 
each packet is assigned a gender as being either even or odd; 

(8) "Channel" is a technical term; 
found later in this section. 

a full definition will be 
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associated with each packet is a single bit which specifies the 
packet's gender. For a channel from IMP A to IMP B, every data 
packet or null sent back from B to A contains an acknowledgement 
(ACK) field specifying for each channel the gender of the last 
packet received from A. It is this field which provides the 
acknowledgement required by the IMP-to-IMP protocol. For 
example, after a packet of gender even has been transmitted from 
A to B, the ACK field in each packet sent back from B to A is 
examined. When that field shows that the channel status is even, 
then IMP A knows that the packet has been received correctly and 
that it is able to discard its copy and to transmit additional 
packets over the channel. The next packet it transmits then has 
gender odd, and again the acknowledgement is detected when the 
ACK field in any packet from B to A indicates that the gender of 
the channel is odd. Note that loss of a packet along with its 
associated ACK bits causes no harm other than a slight delay 
until the sender notes the acknowledgement, since the gender 
status is repeated in the next packet. 

The purpose of multiple channels is to reduce the total 
delay in transmission over links with long delay, such as 
satellite links. Multiple channels allow an IMP to begin 
transmission of a second packet over a given link before it has 
received acknowledgement of the first one, with up to 128 packets 
in transit at any instant as already described. The number of 
channels available is dependent on the particular link and is 
contained in the MAXCHN word of each modem parameter block. On 
links with very long transit times it is appropriate to have 
large numbers of channels. The Pluribus IMP software supports 
eight channels on terrestrial links and up to 128 channels on 
satellite links. 

Each physical link connecting one IMP to another is divided 
into 8 to 128 logical channels, and each packet sent over the 
link is assigned a channel number. Each packet transmitted has a 
channel field which identifies its channel number and has in 
addition a gender bit which specifies whether the packet is even 
or odd. Additionally, the ACK field is piggybacked onto every 
packet transmitted (other than routing) between IMPs. Thus IMP A 
is sending messages on each of up to 128 channels to IMP B, and 
each packet from B to A contains an ACK field specifying the 
gender of the last packet successfully received from A on each of 
the eight channels. At any particular instant, there can be 
between 0 and 127 packets pending receipt between any two IMPs in 
either direction. (This count of packets waiting is used in the 
routing algorithm as a measure of link activity, as described in 
section 2.2.4.) Since the algorithm in the 316 IMPs limits the 
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maximum number of channels to 8 (16 with a special configuration 
option), more than 16 channels may be used only on links between 
two Pluribus !MPs. 

Each packet is individually routed from IMP to IMP through 
the network toward the destination. At each IMP along the way, 
the transmitting hardware generates initial and terminal framing 
characters and hardware checksum. digits that are shipped with the 
packet and are used for error detection by the receiving hardware 
of the next IMP. The format of a packet on an inter-IMP channel 
is shown in Figure S. 

Errors in transmission can affect a packet by destroying the 
framing and/or by modifying the data content. If the framing is 
disturbed in any way, the packet either is not recognized or is 
rejected by the receiver. In addition, the check digits provide 
protection against errors that affect only the data. The check 
digits can datect all patterns of four or fewer errors occurring 
within a packet, and any single error burst of a length less than 
twenty-four bits. An overwhelming majo.rity of all other possible 
er~ors (all but about one in 2**24) is also detected. Thus, the 
mean time between undetected errors in the subnet should be on 
the order of years. 

The network is designed to be largely invulnerable to 
circuit or IMP failure as well as to outages for maintenance. 
Special status and test procedures are employed to help cope with 
various failures. In the normal course of events the IMP program 
transmits "hellos" (routing messages) periodically to each of its 
neighbors. The acknowledgement for a "hello" packet is a null 
packet in which the I-heard-you (IHY) bit is set. 

A dead link is detected by the sustained absence 
{approximately 3.2 sec) of !HY messages on that link. No new 
packets are routed onto a dead link, and any packets awaiting 
transmission are rerouted. Routing tables throughout the network 
are gradually adjusted to reflect the loss. Receipt of 
consecutive !HY packets for about 30 seconds is required before a 
dead lin~s defined to be alive once again. Section 2.2.1 
contains fuirther details. 

A dead link may reflect trouble either in the communication 
facilities or in the neighboring IMP. Normal link errors caused 
by dropouts, impulse noise, or other similar conditions usually 
do not result in a dead link, because such errors typically last 
only a few milliseconds and only occasionally as long as a few 
tenths of a second. Therefore, it is expected that a link is 
defined as dead only when serious trouble conditions occur. 
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2.1.5 Routing 

The purpose of the routing algorithm is to gather the 
necessary data so that TASK can readily direct each pa~ket to its 
destination along a path for which the total estimated transit 
time is minimized. This selection is made by a fast and simple 
table lookup procedure. For each possible destination, an entry 
in the table designates the appropriate next leg. The values of 
these entries reflect line or IMP trouble, traffic congestion, 
and current local subnet ~onnectivity. This routing table is 
updated periodically by the routing algorithm, as described 
below. 

Each IMP estimates the delay it expects a packet to 
encounter in reaching every possible destination IMP over each of 
its output links. It selects the minimum delay estimate for each 
destination and periodically passes these estimates to its 
immediate neighbors in a ''routing message." Each IMP then 
constructs its own routing table by combining its neighbors' 
estimates with its own estimates of the delay to each neighbor. 
The former is in the received routing message; the latter is 
based upon both queue lengths and the recent performance of the 
connecting communication circuit. For each destination, the 
table is then made to specify that selected output link for which 
the sum of the estimated delay to the neighbor plus the 
neighbor's delay to the destination is smallest. 

Finally, the !MPs perform the routing computation on an 
incremental basis as each routing message is received. This 
strategy assures that the routing message output on a given link 
is as up-to-date as possible. The routing messages carry serial 
numbers to permit the !MPs to detect that a new set of routing 
data has arrived which is then used, with the current data, to 
form the next routing message. 

2.1.6 IMP Reliability 

The Pluribus IMP system includes software whose purpose is 
to maintain IMP reliability. This software must be contrasted 
with the STAGE system described in Chapter 3 which serves a 
different purpose. STAGE is independent of the application and 
serves to insure that the hardware is working properly. The 
reliability part of the IMP attempts to insure that certain 
things have not gone wrong with the application. The IMP 
reliability package assumes that the STAGE system is working 
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properly and that the required hardware is available and working 
correctly. Figure 6 shows the relationship between the three 
major components of the Pluribus software. 

The components of the IMP program dedicated to improving 
reliability have two main functions. First, the software is 
built to be as invulnerable as possible to hardware failures. 
Se~ond, the software isolates and reports what failures it can 
detect to the NCC. With intermittent failures, it is important 
to keep the IMP program running and to diagnose the problem 
rather than letting the IMP go down for long periods to run 
special hardware diagnostics. 

The discussion that follows describes the three major types 
of reliability mechanisms used. 

1. Checks are made in line in the code to detect events 
"that can't possibly happen" and to take sensible actions 
when they do. For example, the routine that frees a 
buffer objects if its caller does not own the buffer. 

2. Checks are performed by background hosts (as well as by 
other routines) which are poked periodically by TIMEOUT. 

3. So-called "watchdog" timers are used to insure that the 
time between su~cessive occurrences of an event is not 
excessive. Although details vary depending on the 
application, a typical technique is to set a timer 
positive whenever the associated event occurs. A 
background process decrements the timer periodically, 
complaining if it ever reachee zero. 

In all three cases above, the action on detecting an error is to 
rectify the situation as much as possible, given the amount of 
context available. Also, a message is sent to the NCC reporting 
the occurrence. See section 2.2.8 for further details; 

The !MPs use the technique of software checksums on all 
transmissions to detect errors in packets, protecting the 
integrity of the data and isolating hardware failures. The 
end-to-end software checksum on packets operates as follows: 

A checksum is computed at the source IMP for each packet 
as it is received from the source host. 

The checksum is verified at each intermediate IMP as it 
is received over the circuit from the previous IMP. 
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If the checksum is in error, the packet is discarded, and 
the previous IMP retransmits the packet when it does not 
receive an acknowledgement. 

To cut the number of checks in half, the previous IMP 
verifies the checksum of a packet only when it must be 
retransmitted and not before the original transmission. 
If a checksum error is found, an intra-IMP failure has 
been detected and the packet is lost. If not, the 
original transmission was lost .due to an inter-IMP 
failure, circuit error, or was simply refused by the 
adjacent IMP. The previous IMP holds a good copy of the 
packet, which it then retransmits. 

After the packet has successfully traversed several 
intermediate !MPs, it arrives at the destination IMP. 
The checksum is verified just before the packet is sent 
to the host. 

This technique provides a checksum from the source IMP to the 
destination IMP on each packet, with no gaps in time when the 
packet is unchecked. Further, the length of each packet is 
verified as part of the checksumming operation. Any errors are 
reported to the NCC in full, with a copy of the packet in 
question. This method helps to make the !MPs reliable and 
fault-tolerant, and it provides a maximum of diagnostic 
information for use in fault isolation. 

When an IMP has received and acknowledged a packet and fails 
before it is able to transmit the packet to the next IMP, the 
message is lost to the network and cannot be recovered; the 
receipt of the acknowledgement by the previous IMP has caused the 
release of the only copy of the packei. The source IMP informs 
the originating host that something went wrong with the message 
when it checks why no RFNM has been received, but recovery is 
possible only if effected by the originating host. 

It is possible that a packet is received, sent on to the 
next IMP, but has not yet been acknowledged when the IMP goes 
down. In that case the sending IMP never receives an 
acknowledgement and ultimately retransmits the packet. However, 
it retransmits it via a different route so that the destination 
IMP may receive two copies of that packet. The algorithms are 
designed so that such duplication is detected and the second copy 
of the packet is discarded. 
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2.1.7 Timeout 

Both the application program and the STAGE system require 
that certain items be checked periodically. A variety of timeout 
mechanisms are used to insure that such checks are performed. 

The Pluribus real-time clock (RTC) provides the system's 
basic timing mechanism as well as a common time reference for all 
processors. The RTC generates a distinct PID level every 25.6 
milliseconds; the routine invoked as a result is called the fast 
timeout strip. Some of TIMEOUT's responsibilities include 
checking for the correct operation of each RTC in dual-RTC 
machines, poking all modem output routines and fake host 
processes, and maintaining line state timers. 

Every 128 milliseconds (5 clock ticks) TIMEOUT insures that 
certain other routines be performed. These "medium" timeout 
functions include maintaining the host interface hardware 
watchdog timers. 

The slow timeout PID is poked by TIMEOUT every 640 
milliseconds (25 clock ticks). Slow timeout is responsible for 
polling various routines which perform timing functions, 
reliability checks, and other assorted checks. Slow timeout 
polls these routines by scanning each common memory code page. 
The timeout table on each page, if any, lists the addresses of 
routines to be polled every slow timeout period. Slow timeout 
continues to poke itself until it has completed a pass through 
all the routines contained in the timeout table. 

2.2 Organization of Major Modules 

Section 2.1 presented the various algorithms of the IMP in 
overview form; the present section describes the IMP's major 
modules in greater detail. 

Section 2.2.1 addresses modem input/output, the modules that 
interface the IMP to the communication lines that lead to other 
IMPs. Module M2I interfaces a modem to the IMP, and module I2M 

, interfaces the IMP to a modem. 

The IMP's software interface to the host is implemented in 
two modules, module HI which interfaces from the host to the IMP, 
and module IH which interfaces from the IMP to a host. These are 
discussed in section 2.2.2. 
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Section 2.2.3 presents TASK, the routine that provides 
packets to the low level IMP-to-IMP protocol. TASK receives 
inputs from, and directs its output to, local hosts and modems. 
The host software communicates with the hosts through the 1822 
interface, and communicates with TASK through the TASK queues. 
TASK in turn communicates with the store-and-forward routines 
described previously. The communication in all cases consists of 
both data and control flow. 

An overview of the 
section 2.1.5; section 
operation. 

routing algorithm 
2.2.4 contains the 

was presented in 
details of its 

Background hosts are host-like modules that run periodically 
to perform tasks not conveniently performed elsewhere; they are 
described in section 2.2.5. 

Fake hosts are also host-like modules, but they communicate 
with other hosts while background hosts are invisible from 
outside the IMP. The fake hosts include the local terminal, a 
diagnostic debugger, a module capable of loading the IMP's core 
should it be damaged, and a module that gathers statistics and 
performs certain other tasks. They are discussed in section 
2.2.6. 

Section 2.2.7 discusses Very Distant Hosts which are used 
when the cable distance between a host and an IMP is greater than 
2000 feet. 

Finally, section 2.2.8 addresses IMP reliability issues. 

2.2.1 Modem Input/Output 

This section presents first the modem-to-IMP module M2I and 
the IMP-to-modem module I2M, and then discusses the strategy for· 
determining the status of a link between IMPs. The data and 
attributes concerning any given modem are contained in an 
associated modem parameter block shared by both M2I and I2M 
which resides on the variables page. Each entry in the data base 
M2PBLK is a pointer to the parameter block for that modem. 

M2I. The module that receives packets from the modem and passes 
them to the IMP is called M2I. The I/O device on Pluribus pokes 
M2I's PID whenever a packet has been received. Additionally, M2I 
is poked every 25.6 milliseconds. The following activities are 
performed by M2I: 
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Assuming the current input has completed, input from the 
modem is started to a new buffer, using a double 
buffering scheme. This new buffer has been allocated as 
described in step 4 below. 

A check is made for hardware errors. Any 
error or checksum failure is detected here. 
are tabulated as a measure of the quality of 

transmission 
Such errors 

the link. 

3. A check is made to insure that the length of the packet 
is greater than the minimum (5 words) and is not greater 
than the maximum (71 w~rds). If this check fails, a 
problem has been detected. Such an error might be caused 
by a loss of character sync in the modem interface. 

4. Another buffer is obtained from the buffer pool. This 
buffer is used (see step 1 above) as the buffer to fill 
after completion of the next packet. 

5. A software checksum is calculated. If this is incorrect, 
the packet is known to be in error. 

6. If the packet contains an ACK field, this field is saved. 

7. A dispatch is made on the packet type, as follows. 
Packet types 0 and 1 (data packets and control messages) 
are placed on the TASK queue. Type 2 packets (routing 
messages) are placed on the routing queue, unless they 
are null in which case they are discarded. (Such packets 
serve the special purpose of carrying ACKs and IHYs.) 
Packets of type 3 are packet reload messages and are 
placed on the packet core queue. 

8. In all cases, on completion of the processing of packets 
to the TASK queue, as well as the packets which are null, 
the acknowledgements are processed. 

I2M. The IMP-to-modem output module I2M has the job of 
transmitting assembled packets through the modem interface to an 
adjacent IMP. It is awakened by the hardware on completion of 
sending a packet, awakened by the software whenever a packet is 
found in TASK to be sent to the modem, and poked every 25.6 
milliseconds. Its work is done as follows: 

1. I2M determines whether the modem hardware is currently in 
use. If so, processing for this module is completed 
since it cannot do anything if the hardware is busy. 
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2. 

3. 

A check is made for hardware errors. 
occurred, it.is reported. 

The next action depends on the type of the 
has just been transmitted over the modem. 
performed as follows: 
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If one has 

packet which 
A dispatch is 

Routing Packet - A use count for the routing buffer 
is decremented. 

Data Packet - If the flush switch is set, the packet 
last sent has been acknowledged while in transit and 
the buffer is freed. Otherwise the packet is saved 
on SENTQ for possible retransmission. 

Null Packet - Certain timing actions are taken. 

4. The algorithm determines the next packet to be sent. The 
order of importance (from most important to least 
important) is as follows: packet core messages and 
reload demands, routing packets, null packets which are 
sometimes required for sending an IHY or for sending ACKs 
when there is no data packet to carry them, 
retransmission of packets previously sent but 
unacknowledged for MRTIME*lOO microseconds, and new data 
packets with priority data packets ahead of non-priority 
data packets. After selecting a packet, I2M sends it. 

The above processing is performed by I2M on each entry. 

Link Up/Down Status. Links between IMPs have failures which must 
be detected and compensated for by the software. There are four 
possible states of a link: up, down, up but not very reliable, 
or looped. The first consideration is whether the link is up or 
down and how both ends of the link can be in agreement about its 
status. 

To be considered up, a link must be useful for transmission 
in both directions. It is therefore important that the link-up 
protocol insure that the IMPs at both ends of the link agree on 
the link's status. When a link is up, each IMP from time to time 
sends a "hello" message which is replied to with an "I heard you" 
(IHY) message. These packets must be exchanged periodically or 
link trouble is suspected. The "hello" message is a routing 
message, and the "I heard you" message is a null packet sent in 
reply. 
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When a link is down, each IMP spends a certain period of 
time in a link hold-down state in which it refuses to transmit 
anything at all over the link, thus insuring that the IMP at the 
other end also sees link trouble. (Certain modem failures can 
leave the link operable in one direction but not the other, and 
it is important that such links not be used at all~) It then 
enters a "coming up" state in which a protocol is used to bring 
up the link. The IMP sends "hello" messages and looks for IHY 
messages. When enough of these have been successfully 
transmitted and received, the IMP declares the link up and goes 
ahead and uses it. If the mechanism for bringing the link up 
fails, the IMP returns to the link hold-down state for an 
appropriate period. 

If while the link is up there occurs an extended period 
without IHY messages, the IMP declares the link as going down and 
stops using it, immediately entering the hold-down state. 

The algorithm for bringing a link up is based on an 8-bit 
state counter (LSTATE). At the beginning of the coming up phase, 
the state counter is set to a ''half-count" value H. Table 1 
shows the values of H for various· line speeds U!?ed • The : IMP 

Speed (kb s) H 

4.8 16 
1.2 16 
9.6 16 

48 64 
50 64 

120 64 

Table 1 
Half-count Values for Various Line Speeds 

starts to send out "hello" messages. Each time it receives an 
IHY message, it decreases the counter by 1. If the "hello" 
message is not acknowledged, it increases the counter by 1. If 
the counter ever gets to twice its H value, the IMP declares the 
link dead and sets the counter to 128. This is the hold-down 
state and the IMP stays in that state until the counter reaches 
141, (i.e., the line has been down for about 8 seconds), at which 
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time it reverts to H. If IHY messages are received and the 
counter gets reduced. to 4, it is left at 4 which is the "link up" 
state. If IHY messages are missed, the counter is decreased by 
1. If the counter passes 0, the link is then declared as being 
down and the state is set to 129. 

This algorithm insures that a link cannot be declared up 
unless both IMPs believe in it. A failure of transmission in 
either direction causes the link to be declared dead. It is the 
link hold-down state that guarantees this effect. For any line 
that has gone down, all pending packets are rerouted by 
resubmitting them to TASK. Any routes that were using this line 
are marked for maximum hops or delay, and hold-down is entered so 
that the "bad news" about this line will propagate to other IMPs 
in the network. 

The IMPs determination of a missed IHY message (the basis 
for the above counting mechanism) is dependent upon a basic clock 
cycle. For a 50 kilobit land line the cycle is the slow TIMEOUT, 
640 milliseconds. A three~second cycle is used for a 9.6 kilobit 
link. The algorithm is set for each link at the indicated clock 
rate. 

2.2.2 Host Input/Output 

This section presents the two modules that provide 
communication between the IMP and its local hosts. Module HI 
provides communication from a host to the lMP, and IH from an lMP 
to a host. The data concerning a given host are kept in a single 
host parameter block. Each host parameter block contains a 
variable FAKE which has four states: real host, fake host, 
background host, or VDH. The parameter block for a real host is 
a 56-word structure shared by HI and IH. Most of the entries in 
this block are variables reflecting some aspect of the state of 
the connection to the host. The host parameter block also 
contains about 10 words of temporary storage. A single data base 
in the IMP called H2PBLK contains an entry for each host; the 
entry being a pointer to the parameter block for that host. All 
host parameter blocks reside on the variables page. 

HI. In Figure 7, State Wis a state in which the IMP is waiting 
for a leader. The hardware has been initialized to read data 
from the host interface into a transaction block. This state may 
persist for arbitrarily long periods of time, since the host may 
not be generating net traffic. It is for this reason that 
transaction blocks do not time out as do other kinds of buffers. 



5/78 

WAIT FOR LEADER 

S INITIATE CONVERSATION 
i-----i~ WITH RE-MOTE IMP 

READ FIRST PACKET 

ONLY 1 PACKET LONG? 

YES 

SEND IT, 
KEEP A COPY 

NO 

REQUEST ALLOCATE 

SEND PACKET i....----

MORE? 

DISCARD NO YES 

READ PACKET 

Figure 7. States of Module HI 

Page 35 



5/78 Page 36 

If the source host's parameter block indicates that the host uses 
old leader format, HI makes the conversion to new format. 

A transmit message block (TM block) is a block of data in 
the IMP which keeps track of the status of a given conversation 
or message stream. There is in the receiving IMP a receive 
message block (RM block) which records the status of that same 
conversation from the receiver's point of view. 

State S is entered when the hardware signals that the leader 
has been read into the transaction block. (The host interface is 
blocked as soon as this has happened.) Upon examination of the 
leader, HI uses the subroutine MESGET to initiate a conversation. 
MESGET sets up a TM block at the source host, and sends a message 
to the destination host requesting that the conversation be 
initiated. The destination host then sets up a RM block. When 
the RM block has been acknowledged, MESGET gets a message number, 
cycling through 256 possible numbers. It may enter a wait state 
until a free message number is available. Normally, the 
conversation is already open and MESGET simply returns the next 
available message number. 

Each packet sent from the source IMP to the destination IMP 
holds a pointer to the RM block at the destination, and each 
acknowledgement from the destination to the source contains a 
pointer to the TM block at the source. The pointer is an 8-bit 
index indicating which RM block or TM block is referred to. The 
receiver of a message always verifies that the block pointed to 
is appropriate for the message by checking the consistency of the 
identity of the IMP at the far end. 

The method for sending a multipacket message is presented 
first, since the one packet message is a special case and is 
discussed in section 2.2.3. The system proceeds as follows: 

1. It must be determined whether or not the destination IMP 
has space to receive the message. In some circumstances 
(explained in 4 below), the IMP already knows that such 
space is available. If not, HI sends a message to the 
destination IMP requesting space for an eight-packet 
message. The same TM and RM blocks are used but a new 
transaction block is needed as well as a new message 
number. The IMP must then wait until it receives the 
allocation. 

2. Upon receipt of the allocation, the packets of the 
message are sent out sequentially. 
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After all packets of the message are received at the 
destination IMP, the message is acknowledged with a RFNM. 
The RFNM is generally accompanied by an allocate of space 
for another eight-packet message, providing the 
destination IMP has space for it. 

If the source IMP receives a multipacket message soon 
enough from the host, it can be sent immediately using 
the allocate that was sent with the last RFNM. 

S. If no new traffic comes from the host within a suitable 
period, the source IMP gives back the allocation with the 
GIVEBACK protocol message. 

State D is entered to throw away the rest of the message if 
something has gone wrong. A single junk buffer is maintained in 
the IMP into which any hardware device can be directed to send 
its data. As no routine ever looks at this buffer, it can in 
fact be simultaneously a destination for more than one hardware 
device. This serves as a place to put incoming data which is 
known to be invalid. 

If the IMP is unable to transmit a message to the 
destination or the message is lost in any way, the host is 
notified with a suitable IMP-host protocol message. If the 
leader in a message from the host to the IMP is invalid or has 
other problems, the host is notified immediately. 

IR. The IMP-to-host routine IR takes messages from its input 
queue and sends each message to the appropriate host. It 
maintains a regular queue RQ as well as a priority queue PQ. IH 
sends to the host, in the order named, control messages (such as 
RFNM, destination dead, etc.), messages from the priority queue 
as long as there are any, and messages from the regular queue. 
Ordering of messages is not an issue since FORUS insures that 
messages appear on IH's queue in the proper order. IR changes 
the status of the message as recorded in the RM block to reflect 
either that the message has been transmitted successfully to the 
host or that for some reason the transmission failed, as for 
example if the host is dead. Having detected this change, 
Background Host 5 (as described in section 2.2.S.l) then sends 
to the transmitting IMP the appropriate RFNM, RFNM with Allocate, 
or other relevant control message. 

The other task performed by 
format if necessary. If the 
parameter block) as using old 

old leader 
(in the host 

IR makes the 

IR is conversion to 
host is marked 
leader format, 
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conversion just before sending the packet to the host. If the 
originating host is connected to an IMP with number greater than 
63, or if that host's number on its IMP exceeds 3, then it is not 
possible to incorporate these data in the old leader format (the 
fields are not wide enough) and the two hosts cannot communicate. 
IH discards the message and returns the appropriate protocol 
message to the originator. This function is normally performed 
at connection SETUP time (i.e., GETABLOCK, GOTABLOCK). 

2.2.3 TASK 

Each packet received in the IMP from another IMP (or host) 
is dispatched to TASK, the central routine that decides what to 
do with it. There are two possibilities: either the packet is 
for a host at this IMP (FORDS), or it is to be stored and 
f-0rwarded to another IMP (S/F). 

Moving a packet towards its destination requires placing the 
buffer holding it on TASK's input queue, a queue of buffers 
waiting to be processed. Each buffer is self-contained in that 
the buffer header contains the data which tell TASK what to do. 
The input to TASK originates either from a modem or from one of 
the local hosts. Similarly, the destination is either a modem or 
a local host. The code in TASK which prepares a buffer for a 
local host is called FORDS. (~odule IH also does part of this 
work.) S/F is that part of TASK that implements the packet 
switching aspect of the IMP. The next two subsections describe 
TASK. Section 2.2.3.1 describes TASK's basic loop and presents 
the details of the store-and-forwarding operation; section 
2.2.3.2 describes the FORDS part of TASK that handles packets for 
a local IMP. 

The 
buffers 
follows: 

Store-and-Forward 

store-and-forward operation of TASK is to process 
one at a time as they are found on the input queue, as 

1. The top packet is taken from the queue of packets waiting 
to be processed and TASK's PID is poked again so TASK 
will continue to run. 

2. The destination of the 
the local IMP, the 
(See the next section 
processing continues. 

packet is examined. If it is for 
FORDS module is entered directly. 

for further details.) Otherwise, 
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3. The routing tables are examined to determine over which 
link (i.e., which modem) to send the packet. If no route 
is found, the destination IMP is dead; the packet is 
ACKed, flushed, and a trap is recorded. If there is 
inadequate store-and-forward buffer space, the packet is 
flushed; it will be retransmitted later by the source 
IMP. The channel tables for that modem are now examined. 
Packets which cannot be transmitted because of no 
available channel are placed on a separate auxiliary TASK 
queue which is periodically placed at the beginning of 
the TASK queue in anticipation of a channel becoming 
available later. In this way the packet is retried about 
five times as often as the source retransmits it. 

4. The current packet has now been successfully received (in 
that the program is able to send it on to the next IMP) 
and must therefore be acknowledged. If the source of the 
packet is a local host, it is acknowledged by setting the 
TSKFOK flag in the host's parameter block. If the packet 
arrived from another IMP, the acknowledgement protocol is 
followed. Details are provided in section 2.1.4. 

5. The packet is queued onto the relevant modem for output, 
either on a priority or a regular queue. 

6. The proper modem output process is poked. 

2.2.3.2 FORUS 

The FORUS discussion which follows is keyed to the labels on 
the blocks in Figure 8. 

In block W the code looks at the packet header to determine 
which RM or TM block is referred to. A brief check on the 
validity of the block is made to insure that it deals with a 
conversation with the IMP which originated the current packet. 
If this validity check is not passed, block G is entered. This 
need not indicate an error, since the GETABLOCK packet of 
necessity does not have an a•sociated RM block. If this packet 
is in fact GETABLOCK, then the proper GOTABLOCK reply is 
constructed. If not, then it is possible that the remote IMP is 
sending some sort of protocol query packet. If this is the case, 
an appropriate reply is constructed; if not, the current packet 
is merely discarded. 
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FOR US 

CHECK TM & RM BLOCKS 

OK? 

Yes No 

LOCK THE BLOCK G i--....i GETABLOCK? y Construct 
es__...Reply 

PARTIAL PROCESS 

DISPATCH ON 
PACKET TYPE 

• 
• • 
• 

No 

INCOMPLETE ~Yes___.Construct 
QUERY? Reply 

No 

DISCARD 
PACKET 

Figure 8. States of FORUS 
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Continuing with the successful processing of a correct 
packet, block L is entered. The TM or RM block is locked and 
then certain preliminary processing is performed which is common 
to several of the possible packet types. Finally, the program 
dispatches on the packet type to an appropriate routine. The 
packet types are as follows: 

DATA PACKET. If the packet is part of a multi-packet message, it 
is expected and there is guaranteed to be adequate buffer space 
for it. FORUS searches for a reassembly block that is 
associated with (points to) the RM block. It is this reassembly 
block which in turn provides the mechanism for storing the 
buffer. When all of the packets of a message have arrived, FORUS 
looks at the RM block. If this message is the next one to be 
sent to the host, it is put immediately on !H's input queue and 
the reassembly block is released. FORUS then looks to see if 
there is another complete message waiting to be sent to the host. 
If the present message is not the next one, indicating that an 
earlier message has not yet been received in its entirety, then 
the present message is merely left waiting until its turn 
arrives. Messages must be sent to the destination host in the 
same order they were emitted by the sending host. 

REQUEST FOR ALLOCATION. If the allocation is for a multi-packet 
message, flags are set up which are looked at later by Background 
Host 5. Since the actual allocation is performed by this 
background host, FORUS is finished. If the request for allocate 
is for a one-packet message, the data have been transmitted as 
part of the request for allocation. If the IMP has room, it 
queues the message for the destination host and replies with a 
RFNM. If there is no space available, flags are set to inform 
Background Host 5 of the request. The data are discarded. 

GIVEBACK. 
block for 
returned. 

This serves to giveback an allocation. A reassembly 
this conversation is freed and the allocated buffers 

When the source has detected a failure once 
has been assigned, it is necessary to free 
FORUS tells the destination to free up any 

this message and an Incomplete Reply is 

INCOMPLETE MESSAGE. 
the message number 
that message number. 
pending fragment for 
queued. 

INCOMPLETE QUERY. This is an attempt to find out what happened 
to a message number that has not been acknowledged. If the 
message number in question is out of range, an Out-of-Range reply 
is sent. In the case where the message number is within the last 
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eight messages and the reply state is idle, a duplicate reply is 
sent. If the 
sent. When the 
FORUS performs 
reply state for 

rep1y state is not idle, an Out-of-Range reply is 
message number is in the current message window, 

a cleanup of reassembly resources and marks the 
an Incomplete Reply. 

GETABLOCK. Although the flow chart of Figure 8 suggests that box 
G intercepts this kind of message, this is not always the case. 
If the block number field in the GETABLOCK message happened to 
refer to a block which passed the relevant validity checks, 
control would have passed to block L as opposed to block G as 
previously described. Nothing bad has transpired and the 
dispatch in this case is to block G. 

RESET. This resets a block that is no longer in use; a RESET 
REPLY is sent immediately. 

RFNM. This indicates the successful receipt of the current 
message. The transmit message number is marked complete. If it 
was a real data message, FORUS queues a RFNM control message for 
the host. 

RFNM WITH ALLOCATE. If this was sent upon receipt of the last 
packet of a multi-packet message, it indicates that the 
destination has adequate resources (eight buffers and a 
reassembly block) to receive another multi-packet message and 
contains an allocate. If it is the reply to a single-packet 
Request for Allocation, the saved copy of the message is 
retrieved and sent. If it was a real data message, FORUS queues 
a RFNM control message for the host. 

DESTINATION DEAD. This indicates that the host addressed 
receive the message. The message is thrown away. If 
real data message, FORUS queues a RFNM control message 
host. 

cannot 
it was a 
for the 

INCOMPLETE REPLY. This is a reply to an Incomplete Query or 
Incomplete Message. It indicates that the message was not 
successfully delivered and why. The condition codes in the 
transaction block are adjusted accordingly. If it was a real 
data message, FORUS queues a RFNM control message for the host. 

OUT-OF-RANGE. This indicates a bad message number in reply to an 
Incomplete Query. A RESET message is sent immediately. 

GOTABLOCK. This is a reply to the GETABLOCK message. The TM 
block state is appropriately modified to open the conversation. 
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A sub-case GOTNOBLOCK, which is indicated by status bits in the 
header, results in the local host being notified of the dead 
destination. 

RESET REQUEST. This is the destination IMP's way to initiate a 
reset of a conversation. It is sent under certain timeout 
circumstances, as described in section 2.1.3.1. The source IMP 
may ignore the request if the conversation has just become active 
again. 

RESET REPLY. 
RESET. It 
conversation 
block idle. 

This is the destination IMP's way of replying to a 
indicates that it has reset its end of the 

and freed the RM block. FORDS can now mark the TM 

2.2.4 Routing Algorithm 

The routing algorithm is identical in both the Pluribus and 
316 IMPs. It is necessary that both use identical algorithms 
since they exchange routing information and no IMP knows the 
machine type of its neighbor. 

The basic algorithm, as implemented by the Pluribus IMP, 
consists of a strip; each execution of the strip processes one 
entry of a routing message. The strip may be poked by M2I upon 
receipt of a routing message, slow TIMEOUT every 640 
milliseconds, or itself when there are more entries of the 
routing message to process. A state word indicates whether or 
not a routing message is currently being processed. When the 
strip is entered, it proceeds as follows: 

1. The routing lock is locked. 

2. If there are additional entries to be processed for the 
current routing message, the routing strip pokes itself. 
If there are no more entries to be processed, the routing 
message queue is examined. If it is empty, there are no 
further incoming routing messages to deal with and the 
strip constructs the IMP's new routing message to be 
sent; if it is not empty, the top message from the 
routing queue is taken off and that message is marked as 
the current routing message to process. The counter of 
entries is initialized to the first entry of the routing 
message. 
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The current routing message requires processing, so the 
next IMP n~mber in the routing table to be processed is 
noted. The PID level for this process is poked. 

The routing lock (set in step 1) is unlocked so that 
another processor (if available) can start executing this 
same strip. 

The delay and hop calculation for this IMP are calculated 
as described below. The routing calculation for each 
node is independent of that for all others, so several 
processors may be executing this phase of the operation 
in parallel. 

The routing table is locked, the answers calculated above 
are stored, and the routing table is unlocked. 

The routing table consists of three entries for every IMP in 
the network. The first entry is a count of the number of links 
on the shortest path from this IMP to that one. This is one 
greater than the number of intermediate !MPs through which a 
message must pass to reach the destination. The second field is 
the so-called "delay'' field. This is an approximate measure of 
the delay a packet can expect when traveling through the network 
to the destination. The third entry specifies the modem which 
should be used to transmit a packet to the destination IMP. 

Each IMP periodically sends to each of its neighbors a copy 
of its routing table. It therefore follows that each IMP 
periodically receives a copy of the routing data as perceived by 
each of its neighbors. In this way, any change in the network's 
situation is gradually propagated throughout the entire network. 

It should be noted that only the first two of the three 
routing table entries mentioned above are actually transmitted, 
since only the number of hops to the destination and the delay 
expected are of interest. (Modem information is unique to each 
IMP.) On receipt of a routing packet, the following processing 
is performed for each IMP in the network; i.e., for each line of 
the routing table. 

1. The IMP's count of the minimum hops to the destination is 
compared with the count received in the routing packet. 
If the IMP's count is less than the 
received-count-plus-1, no change is made; if it is 
greater, the IMP concludes that the sending IMP knows a 
better way to the destination and sets its new count to 
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completion of this 
represents the shortest 

2. The received delay value is examined. The IMP calculates 
N, such that N = 4 + the local delay on the link to the 
sending IMP. (The local delay is the number of channels, 
between 0 and 127, currently in use between the IMP and 
the sending IMP.) If the IMP's delay entry is less than 
N, no change is made to the routing table; otherwise, N 
becomes the new delay. At the conclusion of this 
calculation, the table entry for delay to the relevant 
IMP is the shortest expected delay. 

3. If the delay value was decreased by entering the value N 
based on the routing message just received, the IMP 
updates the table of modem links to use. This insures 
that for this destination, the IMP will use the link over 
which it has just received the routing message. 

When an IMP notes that a link goes down (see section 2.2.1), 
it is unable to tell whether it is the link or the IMP at the far 
end that has failed. In either case, it reacts by setting both 
the minimum hop length and the delay time to very large values in 
the routing table for the IMP at the other end of the link. 

Difficulty arises because information about an IMP or a 
link going down propagates extremely slowly through the network, 
and there can be very bad effects while the message is 
propagating. Through use of a technique called "hold-down" as 
previously described in section 2.2.1, the !MPs delay the route 
changeover process for a few seconds and in this way permit a 
faster and smoother cutover. When the best route is about to 
change, the IMP first makes sure that the neighboring !MPs know 
that the old route has gone bad before it attempts to change; 
this strategy prevents the adjacent !MPs from slowing down the 
process by transmitting old information. 

Each IMP measures the bandwidth and loading of each of the 
circuits to which it is connected, sending routing 
proportionately more often on faster links. Thus, the percentage 
of link bandwidth used for routing varies between 3% and 15%, 
approximately, as a function of link use. 

If dead links eliminate all routes between two !MPs, the 
!MPs are said to be disconnected and each discards messages 
destined for the other. As disconnected !MPs cannot be rapidly 
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detected from the delay estimates that arrive from neighboring 
IMPs, the hop cou~t is maintained as well. If this count ever 
exceeds the maximum expected number of network nodes, the 
destination IMP is assumed to be unreachable and therefore 
disconnected. 

2.2.s Background Hosts 

Certain IMP activities relating to end-to-end message 
processing must be performed periodically. When control messages 
require reserving resources, or timing out idle resources, TASK 
itself cannot perform the function. The background ho•ts were 
created for these resource-reserving and freeing functions. 

A background host is a process, complete with PID levels, 
which runs periodically, examining some data base. When 
necessary, it generates an appropriate message for transmission 
over the network. The use of background hosts makes it possible 
for the originating processes, which are not in a position for 
one reason or another to generate a message, to be able to 
arrange internal software states so that the message will 
ultimately be sent. Since the background hosts are only 
originators of messages and never destinations, they do not have 
host numbers in the local IMP. Each background host is poked by 
fast TIMEOUT every 2S.6 milliseconds, and some are poked more 
often as needed by routines which have work for them. 

Each background host has a parameter block which is very 
similar to a real host parameter block but about half the size. 
A background host uses its host parameter block to communicate 
with an IMP in a manner similar to the HI software. The 
background host simulates the host-to-IMP part of the 1822 
interface. 

The individual background hosts are now described. 

2.2.s.1 Background Host S 

BACKS is the background process that sends RFNMs, allocates, 
Destination Deads, and Incomplete Replies. BACKS scans all of 
the RM blocks continuously, starting one after the last block 
serviced (for fairness). If it finds an RM block whose state is 
"need an allocation of 8," it looks to see if eight buffers are 
available. It also gets a reassembly block for the message. If 
one is available, and the eight buffers are available, it sends 
the requested allocate. 
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If BACKS finds an RM block whos~ state is ''need an allocate 
of l," it attempts to find one buffer and a reassembly block and 
sends an allocate-!. This state can only occur if a one-packet 
request was received and the IMP did not have space to accept the 
message at that time (as described in section 2.1.2). 

BACKS also sends RFNMs for messages whose packets have all 
arrived. If space is available and the message was a 
multi-packet message, BACKS instead sends a RFNM with Allocate. 

Upon receipt of an Incomplete Query or an Incomplete 
Message, BACKS responds with an Incomplete Reply which indicates 
that the message was not successfully delivered and the reason 
why. In addition, BACKS is capable of sending a Destination Dead 
which indicates that the destination host is unable to receive 
the message. In this case, the undeliverable message is thrown 
away. 

If BACKS is processing a Request for Allocation and the 
space required is not available, it waits one-half second in an 
attempt to get the space. It does this by going to sleep, 
knowing that it will be reawakened by TIMEOUT every 2S.6 
milliseconds. After a half second it gives up and proceeds to 
the next RM block. It is appropriate for BACKS to make such a 
strong attempt to supply the allocate, since the originating host 
at the source IMP is blocked by the host-to-IMP interface. 

BACKS operates by making up a message in its own work area. 
It then gets a buffer (waiting as long as necessary for one), and 
uses that buffer to send the message. 

2.2.s.2 Background Host 6 

If a packet or a RFNM gets lost in the network, there is an 
outstanding message number and BACK7 can never free the 
conversation; the transmitting host is prohibited from 
proceeding ahead by more than seven additional message numbers 
(see section 2.1.J). BACK6 solves this problem by scanning 
through all of the- TM blocks, looking at the incomplete timer. 
This timer is held off by any progress on message numbers. If 
the timer reaches zero, BACK6 locates the relevant transaction 
block and sends an Incomplete Query message. This message, which 
is accompanied by all data relevant to the conversation, asks the 
destination IMP what it knows about this message number. If the 
destination has received that message, it sends a duplicate 
response. If the message is only partially received, a packet 
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has been lost and, therefore, the message is lost. The 
destination IMP sends an Incomplete Reply and the message number 
is then considered complete. 

2.2.5.3 Background Host 7 

BACK7 computes AGE ''clips" beyond which to reset RM and TM 
blocks, based on how many free blocks there are left (i.e., how 
busy the IMP is in terms of the number of active conversations). 
RESETS (for TM blocks) or RESET REQUESTs (for RM blocks) are sent 
for any blocks that have reached the corresponding clip. 

BACK7 proceeds by first scanning all the TM blocks, counting 
blocks which are free or in the process of being reset, and 
computing the associated age clips accordingly. It then scans 
through all of the TM blocks a second time. A consistency check 
is made on each TM block to see if it looks broken. The AGE 
field is examined to determine whether the block is old enough to 
discard. If the conversation appears to be quiescent (the TM 
block has reached its clip), a RESET is sent to the destination. 
The destination IMP then frees the relevant RM block and responds 
with a RESET REPLY. The source IMP can then free the TM block. 
This reset protocol is never entered if there are outstanding 
message numbers or message numbers to be returned. 

BACK7 then scans all of the RM blocks to determine the AGE 
clips in terms of received conversations. 

It makes a second scan of all the RM blocks to see which 
ones are too old. For each such conversation, it sends a "let's 
terminate" message (RESET REQUEST) to the source IMP. At that 
IMP, FORUS sets the AGE of the associated TM block to be very 
high, so that BACK7 on the source IMP will ultimately initiate 
the freeing operation described above. 

If no more RESETs or RESET REQUESTs need to be sent, BACK7 
waits 640 milliseconds before trying again (since this is how 
often the TM or RM blocks can be aged). 
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2.2.s.4 Background Host 9 

When a conversation has ended, it is necessary to perform 
certain clean up operations and free all blocks no longer needed. 

BACK9 scans all of the TM blocks. Each TM block has an AGE 
field as described in the previous section which is set to 4 
whenever the block is used. A timer increments AGE in a 
non-linear fashion, at a slower rate as it gets older. A value 
of AGE that is too high is an indication that the conversation 
has lapsed into disuse. If, upon examining AGE, BACK9 determines 
that the TM block is too old, all the buffers are given back. 

BACK9 must free storage allocation held by the source IMP if 
they are no longer needed. An allocate timer in the TM block 
runs out in 250 milliseconds but is held off by use of the 
allocate by a host. BACK9 sends a GIVEBACK when three or more 
allocates are being held no matter the state of the timer. This 
can happen if the transmitting IMP has started the transmission 
of several multi-packet messages before the acknowledgement of 
the first one is received, since each of these multi-packet 
messages can produce a RFNM with Allocate. When three allocates 
accumulate in the transmitting IMP, it sends a GIVEBACK to the 
destination IMP. 

Each GIVEBACK has a message number and its reply is a RFNM 
without an allocate. When the destination IMP receives a 
GIVEBACK, it releases the relevant reassembly block and the 
buffers. 

2.2.6 Fake Hosts 

The IMP contains within itself certain "fake hosts," 
software modules which simulate many of the functions of real 
hosts in that they accept or produce messages through simulated 
1822 interfaces. Each fake host consists of two processes; one 
for IMP-to-host messages and one for host-to-IMP messages. 

Communication with fake hosts is very similar to 
communication with a real host. Each fake host has an 8-word 
block in memory formatted very much like the I/O block for a real 
host hardware interface. The difference, of course, is that 
writing into a hardware I/O block causes the I/O hardware to take 
some action, whereas writing into a fake host's block has no 
immediate effect. Thus a program which wants a fake host to do 
something must first write into the fake host's communicatons 
block and then poke the relevant PID. 
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The fake hosts are referred to as Fake Hosts 0 through 3. 
In net traffic they are addressed as hosts 252 to 255, the 
largest host numbers available in the 8-bit host field. These 
fake host numbers and their functions are the same in both the 
Pluribus and 316 IMPs for compatibility of operation over the 
network. 

The four fake hosts are now described. 

2.2.6.1 Fake Host 0: Local Terminal 

Fake Host 0 (host 252) is responsible for communications 
between the IMP and the teletype (or other terminal) connected to 
the IMP. Characters are taken from the teletype input buffer, 
passed through the fake host interface, and sent as messages (one 
character per message) to the current crosspatch destination. 
Messages destined for the TTY fake host are accepted one word at 
a time by the fake host interface. Characters are then passed in 
order, 8 bits at a time, to the teletype handler to be output on 
the IMP's terminal. 

If a semicolon is read, the fake host uses a separate leader 
and sends characters as a single message until a second semicolon 
is read (so-called "semicolon message"). When the IMP is 
initialized, or if a NUL (code 80!, CTL-@) is typed and sent, the 
crosspatch destination is reset to be the debugging process DDT 
(Fake Host 1 in the same IMP). 

2.2.6.2 Fake Host 1: DDT 

Fake Host 1 (host 253) is the diagnostic debugger DDT. 
Messages to Fake Host 1 are interpreted by DDT as debugging 
instructions. The DDT fake host-to-IMP process accepts 
characters from the DDT process and sends them to the originator 
of the last message to DDT from the network. Characters are sent 
as a single message until terminated by semicolons, which the DDT 
fake IMP to host process sends through DDT. This ensures that a 
multi-character response to a single DDT command is sent to the 
proper source. Conversely, DDT fake's IMP-to-host process reads 
messages from the network and passes them to DDT. As each 
message terminates, it sends a semicolon which, after DDT echoes 
it back, will cause the DDT fake host-to-IMP process to send a 
message. The normal mode of operation is for Fake Hosts 0 and 1 
to be crosspatched so that typing on the console terminal 
controls DDT. 
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Fake Host 2: Packet Core 

Fake Host 2 (host 254) is the source and destination for 
packet core transmissions. Its IMP-to-host process accepts 
packets which control the loading and dumping of core areas 
within the IMP. When converted to special packet core messages, 
they may be sent to a specified malfunctioning neighbor IMP. 

Upon receiving packet core packets that have arrived from a 
neighbor IMP, the fake host-to-IMP process sends them as messages 
into the network. In addition, it checks the block transfer 
state to see if packet core is active in its own IMP and if so, 
gets a free buffer and polls the process that constructs packet 
core messages from the IMP. 

See also section 3.7 on packet reload. 

2.2.6.4 Fake Host 3: Statistics and Discard 

Fake Host 3 (host 255) provides the 
the IMP: 

following services to 

1. Periodic reports are provided to the NCC. Such reports 

2. 

must occur every minute to keep the NCC convinced that 
the site is still alive. The NCC host reports to the NCC 
operators excessive delay between such messages. 

The IMP originates system throughput 
them to the NCC. 

reports and sends 

3. Messages for discard. Fake Host 3 originates messages 
whose destination is Fake Host 3 within the same IMP. On 
receipt of such a message, a RFNM is returned and it is 
the receipt of this RFNM by Fake Host 3 which holds off 
the watch-dog timer since this is convincing evidence 
that most of the software paths within the IMP are 
working. Excessive time lapse without receipt of such a 
message is an indication that something is wrong within 
the IMP. Fake Host 3 is also frequently the destination 
for a message generator, and a real host is permitted to 
send to discard if it wishes. 

4. Message generation occurs for measurements and debugging. 
The length, frequency, and destination address of these 
messages can be controlled as operator supplied 
parameters. 
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5. Certain diagnostic IMP and queue data are reported 
periodically to the NCC. 

6. The TLOG process sends certain detailed reports 
periodically to the NCC. These include snapshots when 
anomalies are detected and data about the Pluribus 
hardware configuration. 

Except for function 4, all of the above functions are run 
continually. The frequency and nature of the reporting are 
controlled by parameters which can be changed dynamically (after 
initialization). 

2.2.7 Very Distant Hosts 

In instances where a host is located more than 2000 feet 
from the IMP, connection is made by means of the standard modem 
interface hardware normally used for IMP-to-IMP communication. 
BBN Report No. 1822 contains a detailed description of the 
protocol used for this type of interface. 

Briefly, the method used to assure successful IMP-to-host 
transfers is similar to that used for the IMP-to-IMP channels. 
Logical channels are used as described in section 2.1.4, although 
in this case only two channels are employed and the order of 
transmission is important. Therefore, both the host and the IMP 
software must be aware of packets. For example, assume packet A 
is transmitted from an IMP on channel O, and packet B is then 
transmitted on channel 1. If an error were detected in packet A, 
but not B, no ACK would be returned for A. The host would retain 
packet B until A is retransmitted to it and received 
successfully, thus insuring delivery of the packets to its own 
processes in order A-B. 

2.2.8 Reliability Mechanisms 

Certain of the reliability mechanisms mentioned in 
section 2.1.6 are described in greater detail in this section. 
Addressed are buffers, counters, and crossed or looped queues. 
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2.2.s.1 Buffer Reliability 

A major part of the IMP reliability system is buffer 
reliability since buffers serve such, an important function in 
the IMP. Packets are collected in buffers and placed on 
appropriate queues. An important design principle is that the 
data in a buffer are never copied from one place to another. For 
example, a message received from a host in HI is read directly 
into a buffer by the I/O ha~dware. A pointer to that buffer is 
then placed on the queue to TASK. Subsequently, the hardware 
will be directed to output the contents of the buffer to a modem 
interface. The data are never moved around in memory; what is 
moved is a pointer to the data. 

A queue of buffers is a linked list of pointers. The 
pointers are not kept in the buffers themselves but in a single 
vector on the second variables page. (The purpose of doing this 
is to preclude the need to change map registers while progressing 
through a queue, since the buffer in general resides on a 
different page from the variables.) An entry in a queue of 
buffers in the IMP, as for example the queue of ~uffers waiting 
for processing by TASK, is a word which contains the index in 
various tables of the data describing that buffer. The vector 
POINT contains the addresses of each buffer in the usual packed 
format for loading into map registers. (The left 7 bits contain 
the map setting of the buffer's memory page to be loaded directly 
into a map register and the right~most 9 bits when shifted left 4 
contain the offset of the buffer in the page.) A parallel table 
to POINT is the table CHAIN. Each entry in CHAIN indicates 
either the end of a chain or the index of another buffer, as just 
described. 

There are three more parallel tables, WHERE, FLUSHD, and 
CHAN, whose contents are dependent on which queue contains the 
buffer. They, like the CHAIN words, are other data associated 
with the buffer but kept on the second variables page to be 
readily available. 

A buffer itself consists of 80 words. The first 8 are 
header information, the next 63 words are the data itself, the 
next word is unused, and the last 8 words are other variables 
associated with the buffer. One of these words points to the end 
of the real data in the buffer. 

The vector WHERE is bit coded and contains use bits for each 
buffer. There is a use bit associated with each of the twelve 
possible buffer users, such as M2I, HI, etc. In some cases more 



5/78 Page 54 

than one use bit is on. A use bit being on indicates that the 
particular module has associated itself with that buffer. If a 
buffer is on the free list, all use bits are o. There is also a 
4-bit count field which indexes a vector of buffer accounting 
variables. 

A new buffer ii obtained by calling the subroutine FREGET, 
with two parameters. One parameter is a word containing the use 
bits to be stored into WHERE, and the other parameter is a COUNT. 
The subroutine FLUSH is called with a pointer to a buffer to 
return it to the free list. It also takes a use bit as a 
parameter, and issues a trap if the buffer in question does not 
have that use bit turned on. FLUSH turns the specified bit off. 
If no other bits are on for that buffer, the buffer is 
re-threaded onto the free list, the count specified by the WHERE 
vector is decremented, and FLUSHD is set to be non-zero. The 
presence of other bits indicates that one or more other routines 
is associated in some way with that buffer; in this case the 
buffer is not freed and FLUSH just returns. 

The FLUSHD field is used for finding lost buffers. FLUSHD 
is set non-zero each time a buffer is freed. A periodic process 
looks at each buffer every two minutes and sets FLUSHD to zero 
for all buffers except those on the free list. If it finds a 
buffer zero after two minutes have passed, it assumes that the 
buffer has been lost and arbitrarily puts it on the free list. 
Any buffers chained after it are left hanging, to be picked up 
later by this same mechanism if they are truly lost. 

2.2.a.2 Counters 

To prevent various kinds of lockup, a counter mechanism has 
been devised to insure that certain processes are always able to 
get buffers, no matter how busy the IMP is. Associated with each 
process, or collection of allied processes, is a count of the 
number of buffers guaranteed to that process. Also, a counter is 
maintained of how many buffers that process has allocated to it 
at any instant. If a process needs a buffer and the number of 
buffers currently allocated to it is less than its guaranteed 
count, it immediately gets a buffer. (The algorithm insures that 
in such a case the buffer is available.) If it already has more 
buffers than its guarantee, it is given a buffer only if there 
are enough remaining in the overflow pool of available buffers. 
There are buffers in the overflow pool only when the number of 
buffers in the free list exceeds the number required to meet all 
guarantees. The size of the overflow pool is equal to this 
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this pool is 

These guarantee values are recalculated from time to time 
during the operation of the system. Some counts change at times, 
as for example when a host or a modem line comes up or down. 

It is important that the- system maintain a count of the 
number of buffers owned by each process. If the software 
cooperates, this is not difficult. However, when the buffer 
reliability code (discussed in the preceding section) forcibly 
places a buffer onto the free list; it is an indication that 
something has gone wrong and all the counts must be properly 
adjusted. Since buffers are continually being shuffled around, 
it is impossible to stop all use of buffers and scan them to 
determine which ones are in use and by whom. The reliability 
code therefore maintains the usage counts while the system is 
running. 

The reliability code first initializes a new estimate of all 
the counters and new minimum guarantees based on the current 
state of hosts, modems, etc. It then scans all of the buffers, 
calculating all of the counts from the WHERE words. This takes 
several strip times and counts may be chariging. Next it 
calculates the error between the counts stored in the system and 
the counts which it just determined. A new error is calculated 
to be 3/4 of the old error plus 1/4 of the new error. Should the 
new error represent more than one buffer, the corresponding 
system count is adjusted and the accumulated error is set to 
zero. This algorithm effects an exponential smoothing of the 
system counts towards their proper values. 

2.2.8.3 Crossed or Looped Queues 

Two serious problems which might arise are the appearance of 
a buffer on more than one queue and a loop in a queue. When a 
module (such as TASK or IH) takes the next buffer from its input 
queue, it makes several checks. One of these is to insure that 
the buffer is owned by this process, i.e., it has the correct 
ownership bit set. If not, the buffer is ignored and the queue 
it came from is made empty. This mechanism detects joined queues 
and breaks a loop in a queue, since ultimately a process finds 
(as its input) a buffer which it is not supposed to own. 

When a bad buffer is detected in this way, it and the 
buffers to which it is chained are ignored since they are found 
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in the two-minute timeout and returned to the free list if no one 
else points to them. The variable FREE points to the head of the 
free list and FREEND points to the last buffer on it. A buffer 
that is being freed is tacked on to the end of the free list, 
thus guaranteeing that all buffers are used over a period of 
time. Since buffers on the free list have no use bits set, the 
free list is scanned periodically to validate its structure. 
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The STAGE system consists of a set of eleven modules 
(stages) that allow each processor to determine the status and 
current configuration of the Pluribus hardware. The first 
section in this chapter presents an overview of the STAGE system, 
next the data bases are described, and then the individual stages 
are presented in detail. Finally, two sections address the Block 
Transfer routine (BLT) and the Packet Reload mechanism. 

3.1 Introduction and Overview 

STAGE's basic purpose is to insure that the required 
hardware is available to the application program. To the extent 
that more hardware becomes available, STAGE discovers it and 
makes it known to the application program. In the event of a 
failure causing certain hardware resources to disappear, STAGE 
discovers that fact and reconfigures as necessary. 

The STAGE system is run in each processor under two quite 
different circumstances. First, STAGE is run at startup time 
and at any point at which a sufficiently serious failure 
condition arises to make it necessary for a processor to restart 
the checklist operation. Generally, each stage assumes the 
successful execution of all preceding stages and application 
programs cannot be run until all stages have been completed. 
Second, even in a smoothly running system, each processor checks 
the time as part of the dispatch loop and schedules STAGE at 
regular intervals. 

Thus, at startup time, the STAGE system serves as an 
initialization mechanism whose function is to find out what 
resources are available and to make them known to the 
application. STAGE is also run as a low-priority task in the 
running system to determine whether anything has changed or gone 
wrong. 

The hardware configuration may appear different when viewed 
from different processors, since many processor or bus failures 
may only affect certain processors or specific processor-resource 
pairs. To handle this possibility, the STAGE system must also 
maintain "consensus" information that insures that the processors 
interact when attempting to determine the machine configuration 
before taking unilateral action. 
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3.2 Interconnection of STAGE Modules 

Throughout the operation of each of the STAGE modules there 
are a number of common routines and data structures that handle 
the sequencing of the various stages, interprocessor control and 
strip-time discipline, and the management of consensus checking 
and vote-taking. This section describes a number of the 
structures and routines that affect the operation of the entire 
STAGE system rather than being specific to an individual module. 

3.2.1 Sequencing the STAGE Modules 

The operation of STAGE for each processor is controlled by a 
variable local to each processor called WDIS. WDIS is used to 
inhibit certain stages from running and keep track of the 
progress of STAGE. Each stage is assigned a bit position (Stage 
LK is bit 0, and so forth), and the system may only run 
individual STAGE modules if the corresponding bit in word WDIS is 
a O. Thus, at restart time, WDIS is set to -2 (FFFE!) to 
indicate that only Stage LK may run at that point. As each stage 
successfully runs to completion, it clears the next bit in WDIS 
to allow the STAGE processing to proceed. If some stage 
discovers trouble at some point, it can force the processor to 
hang in a particular stage by setting the bits for all future 
stages and waiting until the offending condition is cleared or 
until enough processors have run this stage to agree on a course 
of action. Two routines are provided for the STAGE modules to 
perform these functions: SOKAY enables the next stage while SBAD 
forces the processor to hang in the current stage. SOKAY 
initializes the next dispatch if it actually turns off a bit. 
The actual stage in progress for a processor is contained in the 
variable WSTAGE, which need not be the highest stage enabled by 
WDIS. 

3.2.2 Interprocessor Control and Strip Timing 

In order to break up the operation of stage into strip-sized 
chunks, STAGE contains its own scheduler routine which operates 
in much the same manner as the main PID-driven LOOP code. Since 
the STAGE system does not discover the PIDs until Stage BD, an 
alternative mechanism is required, which is coded as WSLEEP. At 
the completion of each stage, the stage routine terminates by 
calling WSLEEP which (1) checks to see if the system is runnable 
(all stages are enabled in WDIS) and, if so, returns to the main 
loop, and (2) if Stage RC is enabled (but not the system), calls 
the Block Transfer (BLT) process. Unlike the main loop, WSLEEP 
preserves the current stage of the computation by saving all 
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registers in a special register block for each stage local to the 
processor, so that computation for the STAGE system will proceed 
from where it left off whenever the STAGE system is reentered. 
If the system is not enabled, control flows into SJ6, and the 
STAGE system continues to run. Ordinarily, the next stage 
indicated by the previous pass through the STAGE loop is run at 
this point. If the next stage is disabled, the last-called stage 
is called again (and perhaps BLT), although a timer is maintained 
to restart Stage LK to insure that all stages are scheduled from 
time to time. Thus, when the processor is verifying its 
environment, its attention is concentrated on the highest-level 
stage that is enabled, although other stages will not be totally 
neglected. 

There are a number of entry points to the STAGE system from 
the rest of the system. In particular, the main loop enters 
STAGE at SJ6 when the timer for running STAGE has elapsed. In 
the case of most error conditions, the entry point WST is used, 
which is generally called with a JSB R4,WST. Register R4 is 
saved in the variable UWST and serves as an indication of why 
STAGE was restarted. 

3.2.3 Consensus Words 

To prevent one processor from taking unilateral action which 
may turn out to be wrong, most stages operate under the control 
of a consensus which keeps track of the identity of all 
processors participating in the decisions. For each decision to 
be made, the processors in the consensus then cast their votes 
into a FIXIT word in common memory and action depends on the 
joint decision (either unanimity or majority vote may be 
required, depending on circumstances). The consensus for each 
stage is maintained on either the special communications page 
which is determined during Stage MD and is updated as part of the 
standard exit from STAGE (WSLEEP), or on the reliability kernel 
page (Stage RK). All stages except LK make use of consensus 
decisions. 
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The consensus itself consists of three words in memory as 
shown below in Figure 9. 

+----------------------+ 
! smoothed consensus 

+----------------------+ 
next consensus 

+----------------------+ 
time for next update ! 

+----------------------+ 

Figure 9 
Consensus Words 

Each processor is assigned one bit position in the consensus 
word which indicates that the processor is participating if the 
given bit is on. The smoothed consensus word is used as the 
basis for all decisions made with respect to a particular 
consensus, while the next consensus word is used to compute any 
change in the consensus membership. Periodically (as the timer 
in the third word of the consensus elapses) the next consensus is 
copied into the smoothed consensus word and the next consensus 
word is set to the bit of the active processor. To join a 
consensus, a processor IORs its bit into the next consensus word. 
Since more than one processor may try to update this 
simultaneously, the next consensus is in fact used as a lock 
(note that the word should never be zero, since it was set to at 
least the bit corresponding to the processor that last updated 
the smoothed consensus). The processor must thus continue to IOR 
its bit at least as often as the update rate. 

3.2.4 FIXIT Words 

The FIXIT words are handled in a similar manner. Whenever a 
processor decides that some corrective action is required for a 
resource, it may call one of two STAGE subroutines, SFIXIT or 
SFXBAD, with respect to the particular FIXIT word. If SFIXIT is 
called and the FIXIT word (relative to the smoothed consensus 
word) gives that processor the authority to make the change, then 
the action is taken. Otherwise, SFIXIT includes this processor's 
bit in the FIXIT word. Note that the processor who acquires 
authority does not place its bit into the FIXIT word; this 
implicitly gives it a lock on the corrective action routine. If 
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the SFXBAD routine is called, it disables the following stages 
(via SBAD) and performs SFIXIT. Two additional routines are 
provided to manipulate the FIXIT words, SCLEAR and SCLROK. 
SCLEAR removes the active processor's bit from the FIXIT word and 
SCLROK clears the processor's bit as well as enabling the next 
stage (see SOKAY). 

3.3 Data Bases 

All memory in the Pluribus is divided into two 4K-word 
pages. An important aspect of STAGE's operation is maintenance 
of the pages of common memory that hold the code and data for the 
application program and for STAGE. The next section describes 
the data that are stored at the bottom of every memory. 

3.3.1 Page Types 

There are five kinds of pages in a Pluribus IMP. Each 
application requires pages of types 1 and 2, and the application 
cannot run unless the required number of such pages is available. 
Since both kinds are required, the issue of order of importance 
between these two is not relevant. Otherwise, the page types are 
presented in the order of decreasing importance. The five page 
types are as follows: 

1. Code ~· A code page contains code to be run; it is 
checksummed and never altered. (That is, all the code is 
pure procedure.) In some cases, part of the page is used 
for variables local to the code on that page, in which 
case only the code part is checksummed. 

2. Required variables. These pages contain variables which 
are used by the application. The important distinction 
between a code page and a required variables page is that 
the latter can be created from scratch, while a copy of 
the code is required in order to recreate a code page. 

3. Desired variables ~· Such a page is of some use to 
the application in that although the application runs 
better with the page, it is nonetheless able to run 
without it. If adequate memory is available, it is used 
for desired variables in preference to spare code pages, 
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since this strategy helps all the time while spare code 
pages are of assistance only in recovering more rapidly 
in case of certain failures. 

4. Spare code ~· A spare code page contains an extra 
copy of a code page. To the extent that there is enough 
memory, STA~E attempts to keep an extra copy of each code 
page so that the code can be recreated from the spare 
copy should it be destroyed. Equivalently, a smashed 
spare copy can be recreated from the code page. 

5. Optional variables. Some applications desire optional 
variable pages for purposes such as extra buffers. To 
the extent that space is available, such pages are 
allocated. For example, an application requiring buffer 
space presumably runs more efficiently if extra buffers 
are allocated above the minimum. 

The communications page is the lowest numbered page which can be 
seen by all operable processors. It holds all consensus data and 
various other data required by the earliest stages. 

3.3.2 Page Format 

Not all of the words on each page are available for 
application program use, the first 192 (CO!) words being reserved 
for use by STAGE. For convenience, page addresses are referred 
to in the following discussion as if they were referenced through 
map 0 and thus have addresses from 4000! through 5FFF!. 
Addresses 4000! through 40BF! are reserved for system use as 
described below. Each is preceded by the name which it has in 
the code. 

SMDBUC This is a bucket into which a store may be freely made. 
Stage MD uses it to write into to see if the page 
exists. (Writing into a non-existent page results in a 
QUIT.) 

WMLOCK This word is used as a lock by Stage MD. It 
interlocks the next few words which are used for a 
memory test. It is necessary to insure that not more 
than one processor at a time is testing a given page. 

SMDBLK This block of 8 bytes is the place into which the 
memory test is performed in Stage MD. 
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SLFPTR This is a pointer to this page. It is maintained by 
the STAGE system and used by application programs to 
determine the contents of map registers 0, 1, or 2. 
Thft technique is described at the end of this section. 

SLFLK This word is a locked copy of the previous word, with 2 
in the rightmost bits. It is used with the mechanism 
described at the ~nd of this section to determine the 
contents of map 3. 

COMPTR This is the page number of 
page. 

the current communication 

COMTST This timer word is used in a special way as a consensus 
in Stage MD for repairing COMPTR if it has an improper 
value. See the description of Stage MD. 

The words discussed above are used on every page in the system; 
the next few words are used only on the communication page. 
However, since any page may, without warning, become the 
communication page, space for these words is reserved on every 
page. These variables are maintained and kept up to date on the 
communication page only. 

SYTIME This is the system time and is updated every 25.6 
milliseconds. The updating is performed while the 
application is running by fast TIMEOUT. During system 
startup time, STAGE updates it by monitoring the 
reading from the real time clock (RTC). 

SEGCON This is a 3-word consensus area for Stage MD, 

SEGFIX This is the FIXIT word for Stage MD. 

MEMSEG This block of words contains 
pages. The table is 

the bit table of existing 
created and checked for 

MEMTOT 

correctness in Stage MD. 

This contains the total number of pages 
available; it is maintained by Stage MD. 

of memory 

STGCON This block of 3 words is used 
Stage RK. 

for the consensus for 

STGFIX This is the FIXIT word for Stage RK. 
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COMREL This is the address of the page in common memory 
containing reliability code. 

The following words are used by every page and constitute its own 
housekeeping area. 

CKSFIX This is the FIXIT word 
processors which want 
page. 

for Stage MC and indicates 
to fix the checksum for this 

INTIME This is the initialization timer held by TIMEOUT. Its 
use is dependent on the page type and the application. 

CKSUM This is the page's checksum. 

TLIMIT This is the upper limit for checksumming. It is the 
address of the first location which does not 
participate in the checksum. TLIMIT itself is the 
first word to checksum. 

PGINIT This is the address of the initialization routine for 
this page, or zero if none exists. 

TOPNTR This is a pointer to the configuration/timeout table, 
or zero if there is no table. 

TYPE4K This is the page type of this page, 
described in section 3.3.1. 

the types being 

This completes the description of variables appearing on every 
page. All succeeding words are available to the application 
program. 

The words SLFPTR and SLFLK are used to determine the 
contents of map registers since it is a property of the Pluribus 
hardware that map registers cannot be read. The convention is 
that every page has in location SLFPTR the value that must be 
loaded into a map register to address that page. (This location 
is maintained by Stage MD.) Thus the processor may deduce the 
map contents by reading that location through the map. 

This simple mechanism cannot be used safely to read map 3, 
since attempting to do so clears the word to zero. The processor 
could restore the location to its previous value on the next 
instruction, but another processor might happen to access the 
word while it is incorrectly zero. Therefore, SLFLK is 
maintained in the same format as SLFPTR but with an extra bit 
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(the "2" bit) at the right end of the word. (That bit is ignored 
if loaded into a map register.) The usual lock discipline is 
used, accessing the word repeatedly until it is non-zero, and the 
value read is immediately stored back into the location. The 
purpose of the extra bit is to insure that the proper value is 
non-zero, since otherwise page zero would have zero in SLFLK. 

3.4 Interrupt Routines 

Although interrupts are not used in Pluribus in dealing with 
input/output, they are nonetheless a necessary part of the 
operation. A block of cells at the bottom of local memory 
contains a data block for each of the six possible interrupt 
types. This block specifies the destination transfer location 
when the interrupt takes place and also provides room in which 
the hardware stores certain status information at the time of the 
interrupt, such as the contents of relevant registers. The five 
interrupt types (the sixth is not used) are QUIT, ILLOP, the 
clock interrupt JIFFY, the remote power failure interrupt, and 
the paper tape reader (PTR); these five are now discussed. 

3.4.1 QUIT 

A QUIT is an event triggered by Pluribus hardware for 
various reasons. If a processor attempts to access a memory 
location which does not exist, a QUIT is generated. If the 
memory location is not recognized by any of the bus coupler units 
on the processor bus, the QUIT is generated by the arbiter. If 
one of the bus coupler units recognizes the address but the 
memory bus is unable to return a valid content, then the arbiter 
for that bus generates the QUIT. In any case, the QUIT is 
generated by an attempt to access an address that does not exist 
in the available memory as seen by the processor. QUITs are also 
generated by the I/O system for certain relevant events. It is 
possible that a QUIT may occur while in the QUIT handler; this 
is an indication that something is seriously amiss. Since the 
QUIT interrupt cannot be suppressed, the QUIT handler very early 
sets a flag saying "I am in QUIT handler." This flag is cleared 
at the end of processing a QUIT. If another QUIT takes place 
while this flag is set, the effect is as for any unexpected QUIT. 

A QUIT that occurs unexpectedly is an indication of a 
problem in the system and causes STAGE to be restarted. However, 
in many important cases QUITs can be anticipated; for example, 
since the code which checks to see what memory can be seen by a 
processor encounters a QUIT each time it accesses a non-existent 
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page, it must be prepared to handle such QUITs. The mechanism 
used is as follows: By convention, any instruction which is 
likely to encounter a QUIT has a certain special instruction 
immediately following it, one unlikely to occur accidentally. 
The QUIT handler checks on entry to see if that special 
instruction appears immediately after the instruction that caused 
the QUIT. If so, it assumes that the QUIT was anticipated. The 
special instruction used is a NOP (no operation) with an address 
to which the QUIT handler transfers in the event that a QUIT 
takes place. (If there is no QUIT, the NOP is merely executed by 
the processor with no effect.) This mechanism effectively gives 
the programmer the ability to do a "load register and transfer in 
case of QUIT" command. It should be noted that this is an 
expensive command to execute if the QUIT does in fact take place, 
because the entire interrupt mechanism is invoked. The macro 
QUTPAT is used in the coding to generate this ~i~ ~tern. 

3.4.2 ILLOP 

The second interrupt type is for an illegal .£.E_eration code, 
referred to as ILLOP. In general, such an interrupt is an 
indication of a trap. In many places in the application program 
(and also in STAGE) the programmer wishes a simple way to report 
that something seriously wrong has occurred. The Pluribus 
hardware traps any instruction of the form(9) EXXX! or FXXX! as 
an ILLOP. The ILLOP interrupt handler checks for such a word, 
treating it as an indication of the XXX! trap and reporting its 
occurrence to the NCC. For traps of the form EXXX!, there is 
merely a report that the trap has occurred, while reports of 
FXXX! traps include also the contents of certain relevant 
registers. (This latter is used by maintenance personnel to 
gather information about hard-to-track-down bugs in the hardware 
or software.) The interrupt handler records the trap data in a 
special place in local memory, and Stage AR copies those data to 
common memory. It is then sent to NCC by Fake Host 3. As a 
special case, if the debugging mode is enabled, the instruction 
FADE! is treated by the ILLOP handler as a desire to stop the 
Pluribus. A switch is set so that each processor stops as soon 
as it returns to LOOP. 

(9) The following numbers are hexadecimal, with "X" standing for 
any hex digit; as previously noted,"!" is used to denote that a 
number is hexadecimal. 
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3.4.3 JIFFY 

The Pluribus is interrupted 60 times per second by the 60 
Hertz clock interrupt (the JIFFY interrupt). This interrupt is 
used to check that certain events are continuing to occur. In 
particular, the processor checks on JIFFY interrupt to determine 
if it is stuck awaiting a lock or stuck in some other loop. A 
loop is indicated by the failure of the processor to enter STAGE 
for longer than about 150 milliseconds. If the loop is caused by 
a stuck interlock, which the JIFFY interrupt handler determines 
by examining the pattern of instructions being executed, the lock 
is arbitrarily cleared. Otherwise, STAGE is restarted. Either 
action is reported with a trap. The same interrupt level is also 
used for a local power failure and for power restoring. The 
Pluribus power supplies are built so that the processor is given 
a warning a few milliseconds before the power actually leaves the 
buses, time enough for an orderly shutdown. When power is 
restored, a distinct interrupt is given so that the processor can 
again start up cleanly. 

3.4.4 Remote Power Failure Interrupt 

The fourth interrupt occurs in case of a remote power 
failure such as a failure on a memory or I/O bus, and also if the 
attention button on the operator's console is depressed. The 
effect of the former is an orderly shutdown of the processor (as 
for a local power failure) and that of the latter is to report 
(trap) an unexpected interrupt. 

3.4.5 Paper Tape Reader (PTR) 

When the paper tape loading code in DDT has been triggered, 
DDT enables interrupts from the paper tape reader. The interrupt 
handler enters incoming characters into a ring buffer in common 
memory. If the buffer fills, the interrupt for the paper tape 
reader is disabled until DDT can run and remove some of the 
characters from the buffer. At all other times, paper tape 
reader interrupts are inhibited and the handler is never entered. 
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3.5 Individual Stages 

STAGE consists of eleven modules. Each module in the 
sequence examines an increasingly more complicated aspect of the 
system configuration, so that the STAGE processing begins by 
verifying the basic _local state and then moves outward to check 
additional resources until the entire system has been examined. 
Each STAGE module depends on the successful completion of. 
previous checklist procedures for correct operation, and the 
system must insure that no STAGE module is run until the earlier 
stages have been successfully completed. 

The individual stages are now described in turn. 
executed at system startup time in the order presented 
identified by a two-letter mnemonic as follows: 

LK local kernel checksum 
MD ~emory £iscovery 
RK £eliability ~ernel discovery 
BD common lus £iscovery 
CD £0Upler and processor £iscovery 
RC £eliability page £hecksum 
LC local memory £hecksum 
MC common ~emory £hecksum 
MM common memory management 
ID ~/O device £is~overy 
AR ~pplication £eliability dispatch 

3.5.1 Stage LK -- Local Kernel Checksum 

They are 
and are 

Stage LK is run by a single processor and assumes only local 
memory. That is, it makes no assumption that there are other 
processors, any common memory, or any I/O. Its purpose is to 
initialize the processor and perform certain other tasks, and to 
be sure that the STAGE code in local memory is correct. Its 
actions are as follows: 

1. Set the local interrupt vectors and enable interrupts. 
The code insures that the interrupt vectors have proper 
values and then executes the appropriate instructions to 
enable the interrupts. This action enables the power 
failure, restore, and JIFFY interrupts. (The QUIT and 
ILLOP interrupts cannot be disabled.) Since the JIFFY 
interrupt is enabled, locks encountered in succeeding 
stages which are held locked are properly cleared. (See 
section 3.4.) 
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2. 

3. 

Discover the console. 
require a console, it 
exists. In particular, 

Page 6 9 

Although the system does not 
takes advantage of one if it 

certain values (such as 
status) are displayed in the processor, host, and modem 

address and data lights. 

Checksum the local kernel. This includes the code for 
Stage LK and the next two stages, as well as all code 
used in interrupt handlers and several shared 
subroutines. Once this area has been checksummed and 
found correct, it is safe for this stage to continue, for 
interrupts to take place, and for the next two stages to 
be run. None of these assumptions can be made until this 
checksum has taken place. If the checksum is bad, the 
processor halts and waits for another processor to fix 
things up and restart it. 

4. Find a real-time clock (RTC). Once this is discovered, 
the variable SYTIME can be kept up to date and consensus 
for the later stages may be maintained. 

On successful conclusion of this stage, 
interrupts work correctly and are enabled, 
code in local memory has the correct checksum. 

it is known that 
and that the stage 

3. 5. 2 Stage MD -- Memory Discovery 

Now that it has been established that the local processor is 
operational, that the STAGE code in that processor's local 
memory is correct, and that the interrupt handling is assumed to 
be usable, the next task is to discover what common memory 
exists. This stage takes place in two major steps. First, the 
code examines common memory and attempts to determine what is 
there. Each page is looked at and certain consistency checks are 
performed on that page. Also, the communication page is located. 
The second major step is to compare the results of the first step 
with those of the other processors, using the usual consensus 
mechanism. At the completion of this stage, it has been 
established that this processor sees at least the same memory 
that is seen by the rest of the system. If the processor sees 
extra memory, it tries to update the common memory table. 
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3.s.2.1 Stage MD Part 1: Memory Test 

The memory test consists of looking at all possible pages in 
the address space. Although the Pluribus address space includes 
pages 0 through 127, an assembly parameter is used to establish a 
smaller, more realistic upper limit to save time. This limit is 
63 in the IMP. The memory test is performed in steps as follows: 

1. Store into word SMDBUC of the page. If 
the page does not exist and is skipped; 
looking at other parts of the page. 

a QUIT occurs, 
if not, continue 

2. Lock the test area. Since it is important that not more 
than one processor at a time be performing the memory 
test, lock word WMLOCK is used. Note that if this lock 
word (or any other lock used by STAGE) happens to be 
initially zero (i.e., locked) at system startup time, the 
JIFFY interrupt handler detects that the processor is 
hung on this lock and ultimately clears it. 

3. Store patterns. This tests the memory to see if various 
patterns of l's and O's can be stored and retrieved 
correctly. The block of memory at SMDBLK is used. 

4. Check the locking operation. A load-and-clear reference 
(through map 3) is performed, and a check is made that 
the result is zero; if not, the memory is unusable. 

s. 

6. 

Check that the self-pointer word SLFLK contains 
proper value. If it is incorrect, it is repaired. 
this point the lock set in step 2 is cleared. 

the 
At 

Establish the communication page. 
discussed below. 

The method used is 

The communication page, the lowest numbered page that can be 
seen by all processors, is used by STAGE for communicating 
between the processors. An important item of communication is 
the consensus, in which all processors must agree on some action. 
The communication page provides the place to store consensus 
data. Stage MD has the task of getting all processors to agree 
on which page is to be the communication page. This requires 
unanimous agreement of all processors, but there is not yet an 
agreed upon place where the processors can record their views on 
the matter. Thus the following method is used. 
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The main loop in Stage MD 
some upper limit, examining 
encounters which passes memory 
that processor's candidate for 
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is to look from page 0 through 
each page. The first page it 

test steps 1 through 5 above is 
the communication page. 

Every page in the Pluribus has a word called COMPTR which 
contains in its left 7 bits the address of the communication 
page. There is additionally-a word COMTST on each page which is 
used to establish, by a type of consensus, just which page is to 
be used for communication. This is achieved by assigning each 
processor its own bit in COMTST in the same format as the FIXIT 
word. A processor running MD which concludes that the value of 
COMPTR on a given page is correct sets the entire COMTST word on 
that page to zero. A processor concluding that COMPTR is 
incorrect sets its bit in COMTST to 1 and then waits one minute. 
If at the end of that time the bit is still 1 (i.e., no other 
processor running Stage MD has set COMTST to zero), it sets its 
bit to zero and changes COMPTR to what it determines to be the 
communication page. If, during the one minute waiting period, 
another processor running Stage MD agrees with the existing value 
in COMPTR, it will set COMTST to zero and the waiting processor 
will never get the chance to make the change. In this case, the 
waiting processor proceeds no further in STAGE and is unavailable 
to run the application since it cannot agree with other 
processors on where to communicate. 

Once all of these tests have succeeded for an individual 
page, the proper bit for that page is set in the MYSEGS table. 
This table is contained in local memory and reflects all common 
memory pages visible to the local processor. Further, the 
processor sets the COMPTR word of all pages to the page which it 
determines to be the communications page. If other processors 
are running, then the COMPTR words reflect the value agreed on by 
all processors. 

At the completion of part 1 of Stage MD, MYSEGS contains the 
bit map of all pages which the current processor can see, and the 
normal consensus mechanism can now be used. 
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3.5.2.2 Stage MD Part 2: Page Map Consensus 

STAGE maintains on the communication page a data base called 
MEMSEG which is a bit map of the pages that are available on the 
system. This last part of Stage MD is a comparison of MYSEGS 
with MEMSEG. If they disagree, the consensus and FIXIT 
mechanism is used to set MEMSEG to the value of MYSEGS. As noted 
above, it is now possible to use a consensus because processors 
agree on the communication page. 

At the end of Stage MD, all running processors agree on 
which common memory pages exist and may be used, as well as on 
which page is to be used for communication. 

3.5.3 Stage RK -- Reliability Kernel Discovery 

This stage and the two previous stages run in local memory, 
since up until this point it is not yet known where in common 
memory anything can be found. The purpose of Stage RK is to find 
that page in common memory (known as the reliability page) which 
contains the code for the next three stages, a code referred to 
as the reliability kernel. Once it has been found, succeeding 
stages can be run from it in common memory. As local memory is a 
precious commodity and in short supply, it is mostly reserved 
for frequently executed application code. Since STAGE is not 
executed very often during the running of the application, it is 
desirable to store as little of it as possible in local memory. 
Of course, some of it must be in local memory since certain parts 
of STAGE run before common memory is discovered. 

There is one other important aspect of Stage RK. Once the 
reliability kernel has been located, it is known that the 
necessary code to perform a reload exists and is correct. If at 
any point thereafter it is determined that parts of the code are 
incorrect (i.e., have an incorrect checksum) or that needed code 
(or other data) are not available, it is possible to get a good 
copy of that code or data. The code is obtained through a packet 
reload whereby pieces of code are obtained from elsewhere in the 
network. The assumption is that after Stage RK has run 
successfully, it is possible to do a reload, since the code 
needed to perform the reload is contained in the reliability 
kernel which is now known to be correct. 

Stage RK looks through all of the pages of common memory to 
locate the reliability kernel. This page is recognized in two 
ways. While the system is running, the word COMREL on the 
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communication page points to the reliability page. In addition, 
the reliability page has the password ACE! .(10) While the system 
is running, Stage RK need merely look at the page pointed to by 
COMREL to be sure that it has the proper password. During system 
initialization time, however, Stage RK looks at all pages in 
memory to find one containing the proper password. When it is 
found, two checksum operati~ns are performed on the reliability 
page. First, STAGE RK determines the checksum for just that 
part of the page containing the reliability kernel, and then it 
performs the usual checksum operation on the whole page. The 
reliability kernel code is usable if just its own checksum is 
correct, although of course it is preferable if the entire page 
checksum is correct. If the reliability kernel checksum is not 
correct, the system can proceed no further. If it is correct and 
the page checksum is not correct, COMREL is set with a 1 in the 
least significant bit to indicate to subsequent code (Stage RC) 
that the page must be reloaded. 

On completion of Stage RK, all processors have agreed on the 
location of the reliability page. The consensus mechanism is 
used to do a FIXIT on COMREL to be sure that it is correct and 
that all agree. From this point on, STAGE can run from common 
memory. 

3.5.4 Stage BD -- Common Bus Discovery 

This stage discovers the memory and I/O busses that exist in 
the hardware. It proceeds as follows: 

1. Initialize storage. The STAGE variables which are 

2. 

maintained in the high addresses of the reliability page 
are checked for consistency (via a software watchdog 
timer) and initialized if necessary. 

Scan the variables area for QUITs, reinitializing 
necessary. 

if 

3. Discover the buses. First all memory buses are deduced 
from the data stored in MEMSEG. Then all I/O buses are 
discovered. A check is made for the existence of PIDs 
and RTCs. 

(10) The password is a particular word in the checksummed part of 
a code page. The reliability page has ACE! in that word, a 
pattern which does not correspond to any reasonable Pluribus 
instruction. 
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4. If no PIDs exist, the processor reenters STAGE from the 
beginning (Stage LK). 

5. Us~ng the consensus mechanism, the results 
are stored in the single word USEBUS 
leftmost bits represent RTCs and the 
represent buses. 

3.5.5 Stage CD -- Coupler and Processor Discovery 

of Stage BD 
in which the 

rightmost bits 

This stage discovers processor and I/O bus couplers. 

A coupler appearing on all I/O buses is assumed to be a 
processor. Its proper backwards bus coupler (BBC) password is 
determined from configuration tables in the reliability kernel. 
The code tries to set this BBC state into nne of the I/O 
couplers. If this results in a QUIT, the processor's own coupler 
has been found. Note that M/I to M/I bus couplers must not 
appear in I/O space (but instead in memory space) on the target 
bus to avoid possible interference with processor discovery. 
Consensus agreement is obtained for the COUBUS and IOCTAB tables 
which are filled out as couplers are found. 

Since M/I to M/I bus couplers appear in memory (as opposed 
to 1/0) address space, they will not interfere with processor bus 
discovery. Once this stage has completed and reached consensus, 
the Block Transfer and Packet Reload routines will be polled. 
Under consensus agreement, this stage fills the following tables: 

COUTAB is the list of processor couplers. This is the list 
of processor names also, since coupler addresses are assigned in 
the Pluribus according to the physical location of the bus. 

COUBUS tabulates, for each 
common buses it appears on. This 
proper amputation status. IOCTAB 
M/I to M/I buses have been found, 
connect. 

processor bus, which of the 
information is used to maintain 
tabulates what I/O to memory or 
and to which memory buses they 

the results are 
two bits are 
to each of two 

Finally, as processors are discovered, 
tabulated in PROCEX. This is a bit table, where 
assigned for each bus in COUTAB, corresponding 
possible processors per processor bus. 
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3.5.6 Stage RC -- Reliability Page Checksum 

This stage insures that the checksum on the reliability page 
is correct by checking the checksum calculated previously by 
Stage RK and stored in COMREL. If the checksum is found to be 
incorrect, all following stages are disabled and an attempt is 
made to reload the reliability page. 

3.5.7 Stage LC -- Local Memory Checksum 

This stage checks that the checksum for all of the code in 
local memory is correct. Recall that Stage LK performs a 
checksum in local memory, but that check is only for the part of 
local memory used for STAGE. The STAGE system can run 
successfully even if part of local memory is broken, providing 
that the broken part is not needed for running STAGE. Stage LC 
now checks all of local memory. 

Stage LC uses the usual checksumming mechanism to compute 
the checksum of local memory up to the limit specified in HOTLIM. 
It then uses the consensus mechanism but with an interpretation 
differing from that normally used. A processor sets its FIXIT 
bit for this stage to indicate that its own local checksum is 
incorrect. If all processors have an incorrect local checksum, 
the last one to discover this fact initiates the fix as usual for 
a consensus. The fix in this case is to use Packet Reload to 
reload local memory from elsewhere in the network. In the more 
likely situation where at least one processor has correct local 
memory, the bad processors hang in Stage LC. Later, in Stage AR, 
the local memory of these processors is refreshed by a correctly 
running processor. 

3.5.8 Stage MC -- Common Memory Checksum 

This stage checks each page in common memory. First, a 
specified part of each page is checksummed. If a processor finds 
the checksum to be incorrect, it indicates this by setting its 
processor bit in the FIXIT word of that page. If there is a 
consensus that that page has an incorrect checksum, the page type 
is set to -1, the page limits for checksumming are set to include 
only up to the type word, and the checksum is changed to the 
correct value for an empty page. The effect is that the page 
appears to be free. 
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The checksummed area on a common page is, in many cases, 
only a small part of the page, and the next step is to look at 
the rest of the page for QUITs. If a QUIT occurs, the word 
causing it is set to zero and then read back to see if it really 
is zero, thus clearing parity errors in memory. If a QUIT occurs 
for any word in the page, that page is marked for subsequent 
reinitialization. If the zeroing and rereading process fails, 
the processor stops using the page involved. 

3.5.9 Stage MM -- Common Memory Management 

This stage establishes that the necessary pages are in 
common memory. It insures that each required page for the 
application is in common memory and is in the proper place. It 
was noted in section 3.3.1 that there are five kinds of pages: 
code pages, required variables, desired variables, spares, and 
optional variables, in order of decreasing importance. Stage MM 
attempts to place code pages and spare code pages on different 
memory buses, so that the failure of the memory bus containing 
the code does not stop the application. Further, it is desirable 
that variables pages be on a different memory bus from code pages 
so as to minimize memory contention. For this reason, Stage MM 
~orks from both ends of memory. Code pages are loaded at the low 
end (small addresses) of memory, and the upper portion of memory 
contains (from high addresses to lower ones and in the order 
named) required variables, spare code pages, desired variables, 
and optional variables. If any space remains between the top and 
bottom of allocated memory, such pages are marked as being free 
pages. Figure 10 shows the different page types as they reside 
in Pluribus common memory. 

Stage MM looks at the bit table which indicates which pages 
in common memory are available. It maintains two pointers, one 
to the lowest numbered free page and the other to the highest 
numbered free page. As a specified page type is moved to its 
proper place, these two pointers are adjusted accordingly. While 
this stage operates, it is building up a data base called LMAP, 
stored in local memory. LMAP shows the location of every page 
type in common memory. On completion, the stage checks that LMAP 
is in agreement with CMAP, the corresponding data base in common 
memory. 

LMAP and CMAP have identical formats. There is an entry for 
each page type, and the page type serves as the index into LM~ 
The entry in LMAP contains the value to be loaded into a map 
register in order to address the page. During program execution, 
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. 
High Addresses 

REQUIRED VARIABLES 

SPARE CODE 

DESIRED VARIABLES 
OPTIONAL VARIABLES (IF ANY) 

F R E E 

C O D E 

Low Addresses 

Figure 10. Organization of Common Memory 
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the application program uses LMAP to load map register. The sole 
purpose of CMAP is to provide a means by which STAGE can insure 
that all processors have the same picture of common memory. 

A common subroutine is used to perform the processing for 
all five page types. The requirements for each of the five page 
types are described in the order in which the processing takes 
place in Stage MM. 

1. Code pages. Code pages are placed into the low end of 
memory. If the necessary code page can be found, it is 
copied into the proper place. If not, the corresponding 
spare code page is searched for and, if found, copied 
into the proper place. Otherwise, a reload is required. 

2. Required variables. Required variables are loaded 
starting at the top of the memory. If they are not in 
the proper place but found elsewhere, they are moved; 
otherwise, initialization is required. 

3. Spares. Spare pages are loaded only after it has been 
determined whether or not there would be enough room left 
for the desired variables. ·If not, preference is given 
to the desired variables and no spare pages are 

'allocated. If enough space exists for both spares and 
desired variables, the relevant pages for the spares are 
either moved into place or copied from the code pages. 

4. Desired and optional variables. These variables are 
loaded from the top, following the spare code pages (if 
spares exist) or following the required variables (if no 
spare code pages exist). They are either moved from 
where they exist or are created and initialized. Desired 
variables actually appear in the optional variables part 
of LMAP. 

S. Any pages which are as yet unallocated are marked as free 
pages, with page type -1. 

As mentioned above, a single subroutine does the work for 
all five page types. It has two parameters, the page type for 
which it is looking and the place where it is to be put. The 
latter is an indication of which of the two pointers into the 
available page table to use, the one counting down from the top 
of memory or the one counting up from the bottom of the memory. 
The subroutine does its work as follows: It first checks that 
there is room for more pages by determining whether the two 



5/78 Page 79 

pointers have met. If the pointers have met (i.e., no more 
available memory exists) it asks whether enough pages have been 
allocated. That is, have all of the code pages and required 
variables been allocated. If so, the rest of LMAP and CMAP are 
filled with -1 and Stage MM is done. If the required pages have 
not been filled, the stage fails and a bit is set in the FIXIT 
word; there is not enough memory to run the system. If the 
place where the page is to go"does not exist (i.e., that page is 
not in the available memory), the subroutine merely increments 
the place and returns. It is called again to try the next page. 

The routine then looks to see if the page already at the 
given place has the proper type; this is the normal situation. 
However, if that check fails, the stage first looks in 
unallocated memory (the space between the two pointers) to find 
one of three things: a page of the correct type, a spare copy of 
a page of the correct type, or a free page (one of type -1). It 
then performs the appropriate copy operation (under consensus) to 
insure that the proper page is in the proper place. The JIFFY 
interrupt is suppressed to minimize execution time. Part of the 
copying operation is to change the page type (if necessary) of 
the final copy, for example if a spare code page is copied to 
make a code page. Since the page type is part of the checksummed 
area, both the page type and the checksum must be changed 
simultaneously. Another part of the copy operation is a simple 
memory test in which each word stored into the destination is 
read back and checked for accuracy. Since the code which copies 
the reliability page also resides on that page, care must be 
taken to move this code correctly. Finally, the move never takes 
place while BLT is in operation because Packet Reload may be 
attempting to reload the page in question. 

3.5.10 Stage ID -- I/O Device Discovery 

This stage looks through I/O space to determine which I/O 
devices exist. Although Pluribus hardware permits up to 768 I/O 
devices, this stage is constrained by assembly parameters to look 
at only 64 of them to save processor time. It looks at 4 windows 
into I/O space, each consisting of 16 consecutive I/O blocks. 
Each window is identified by one word which gives the address of 
the first device in the window and another word which indicates 
which of the devices starting at that location actually exist. 
Stage ID accomplishes the device discovery by reading the first 
word of the I/O block for each of its 64 possible devices. If 
there is no QUIT, it assumes that the device exists. It also 
insures that there is a PID for each window. 
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Stage ID reports its failure in a FIXIT word, to indicate 
that the view of I/O space which it has differs from that 
maintained in the USEIO data base on the communication page. 
However, this stage differs from all others in using majority 
logic rather than unanimous consent to decide when to perform 
the repair. When a processor detects a variance between its view 
of I/O space and that in USEIO, instead of checking to see if it 
is the last processor to detect this flaw, it merely adds 1 (for 
itself) to the number of bits already in the FIXIT word. If that 
sum exceeds one-half the number of l's in the smoothed consensus 
word, it realizes that a majority of the processors has detected 
a problem and performs the proper fix in USEIO. If not, the 
processor puts its own bit into the FIXIT word for a consensus. 

3.5.11 Stage AR -- Application Reliability Dispatch 

This is the final stage before running the application 
program and is the stage that performs certain final checks to 
insure that all is ready. In particular, it is able to perform 
certain tasks required by the application. It proceeds as 
follows: 

1. Recall that in Stage LC, which checksums local memory, if 
only one or two processors have bad memory they remain 
hung in that stage. The FIXIT word for Stage LC is now 
looked at. Any bit in that word indicates a processor 
whose local memory is incorrect. If any such exists, BLT 
is invoked to copy a correct version into the local 
memory of the complaining processor(s). 

2. If any processors are halted, BLT is used to attempt 
start them. 

to 

3. The initialization routine on each page is polled and 
executed. Word PGINIT in the system part of each page 
contains either zero or the address of an initialization 
routine. This initialization routine, a closed 
subroutine, examines certain data in memory and checks 
for correctness. In the case of application code pages, 
this routine checks certain parts of the application, 
thus giving the application package a chance to have 
STAGE. perform certain checks for it. Failures reported 
by these initialization routines are indicated by a FIXIT 
bit, and the usual consensus mechanism is used. The 
action in the event that all processors agree is to 
return to the application routine to perform the required 
initialization. 
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4. In the event that the processor is an even processor, it 
determines whether or not the 60 Hertz clock is running. 
If not, it executes a trap. 

S. The effect of any trap in the Pluribus IMP is to store 
certain information in local memory of the processor. 
This part of Stage AR causes that trap information, if 
non-zero, to be copied into a buffer in common memory for 
eventual transmission to the NCC. Finally, SOKAY is 
called to enable the application program. 

6. Certain local hardware failures are noted by traps: 

a. Nonworking JIFFY. 

b. Successful QUIT retries. 

c. RTC read errors. 

3.6 BLT -- Block Transfer 

A special part of the STAGE system is a module called BLT, a 
routine used to move blocks of data from one place to another. 
BLT deals with three problems: 

Some of the moves take up to several seconds of processor 
time, much too long for a single strip. BLT must break 
periodically as dictated by the timing requirements of 
the application. 

Moving data into the local memory of another processor 
requires backwards bus coupling. 

When a part of memory is missing, BLT is able to reload 
it from an external medium (a neighbor IMP or the NCC). 

Because of these considerations, BLT is the single routine used 
to move blocks from one place to another. 

When any STAGE code wishes to move something from one place 
in memory to another, it first determines that BLT is not in use. 
If BLT is free, it sets up the parameters for the move and then 
goes about its business. WSLEEP dispatches to BLT periodically 
just as it dispatches to any stage. Whenever BLT is entered, it 
looks in its parameter block to see what it should be doing. If 
it finds nothing, it returns to WSLEEP. If it finds a task, it 
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moves blocks of data of an amount appropriate to the maximum 
strip time dictated by the application. Having done so, it 
adjusts the parameter block appropriately and then returns to 
WSLEEP. This process is repeated until the task is completed. 

The part of STAGE which initiates the call for BLT may well 
be able to go on about its business. If at a certain point it 
cannot proceed until the move is complete, it returns to WSLEEP. 
Every time the stage is re-entered by the normal dispatch, it 
checks to see if BLT has completed. 

BLT operates by being given a source and a destination. It 
first copies the data to be moved from the source to a buffer 
area in BLT, and then copies it from the buffer area to the 
destination. BLT has a state word with three possible values: 
free, source, and destination. Thus BLT always knows what it is 
doing by looking at its state word, and users of BLT can 
determine from that state word whether or not BLT is free. 

BLT is controlled by four values. These are the type of the 
source, the type of the destination, the address, and the length. 
The type of the source or destination specifies whether it is 
local memory, common memory, or external. The address is always 
the same for both source and destination. The length is the 
number of bytes to be transferred. In addition, if the source or 
destination is local memory, there is an associated mask word. 
The mask specifies which are the relevant processors. If the 
source is local memory, the mask specifies which processors may 
be used as the source of the data. Then when BLT is running in 
one of those processors, that processor does the work. If the 
buddy of one of the processors is running BLT, it is the buddy 
that does the work. Otherwise, another processor uses backwards 
bus coupling to fetch the required data. If the destination is 
to be local memory, the mask specifies which processors are to be 
loaded. Each time BLT loads one of these processors, it removes 
its bit from the destination mask. 

An attempt to copy from external (i.e., a reload) is 
sometimes interrupted to take a dump. That is, if the system 
decides that a part of local memory must be reloaded; something 
external to the reload mechanism (such as the NCC) may elect to 
take a dump first of some or all of the Pluribus memory before 
reloading. Thus the transfer from external to Pluribus memory is 
trapped and a copy operation from Pluribus memory to external is 
performed first, followed by the originally requested reload. 
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Recall that Stage AR is used to reload local core in a 
processor and to start it if necessary. This latter task 
(starting a processor) is signaled to BLT by a special bit in its 
state word. If the bit is set, BLT starts the processor at the 
beginning of the STAGE system. BLT is used because it 
incorporates the necessary BBC code. 

BLT is aware of checksum~ed areas. When it copies into such 
an area and a special state bit is set, it takes the necessary 
steps to change the checksum. It does this in such a way that 
any stage simultaneously checksumming that area does not get into 
difficulties. 

Additionally, BLT is used by packet core in the IMP for 
patching a word from the NCC. 

3.7 Packet Reload 

If a page of memory in the Pluribus IMP is found (in Stage 
MM) to be defective, an attempt is made to make a repair. If 
possible, the repair is made using only the resources available 
in the IMP itself. For example, if a checksum error is found on 
a code page and there is a spare copy of that page, the latter is 
copied. Similarly, an error on a variables page is repaired by 
reinitializing the page and restarting the IMP. In some cases, 
however, the IMP is unable to effect the repair itself and 
requires outside help. In the usual case, the outside help is a 
copy of the missing code or data sent from elsewhere on the 
network. The Packet Reload module is the sender or recipient of 
such transmissions. 

The Packet Reload mechanism 
follows: 

involves three processes, as 

The IMP with a problem uses Packet Reload to obtain the 
necessary information from the network. Providing Stage 
BD has run correctly, Packet Reload may be run. 
Essentially, the IMP sends out a special protocol message 
stating what part of memory it wants and the type of the 
IMP (316 or Pluribus) that it is. It then awaits receipt 
of the requested data. 

An IMP elsewhere supplies the data. When an IMP receives 
a reload request from another IMP of the same type, the 
Packet Reload module generates the proper data for 
transmission. 
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There are possible intermediate IMPs between the one with 
the problem and the one with the data. These might be 
IMPs of the other type not capable of supplying the 
requested data. For example, a 316 IMP cannot supply 
reload data for a Pluribus IMP, but it can pass the 
request on to a neighbor until it reaches an IMP which 
can help. Similarly, a Pluribus IMP passes through 
itself reload requests for a 316 IMP. 

A special protocol is used for moving a portion of core 
memory from one IMP to another over the network. A sending or 
receiving process is implemented as Fake Host 2 which is the 
recipient and generator of all Packet Reload messages. 

There are only two message types in the Packet Reload 
protocol. One type is SETUP, which sets up internal variables 
that determine whether the process is sending or receiving, the 
location and size of the core transfer, and the network address 
of the foreign opposite process. The other message type is CORE, 
which contains one or more segments of a core image. A Packet 
Reload process which is idle is unlocked and neither sending nor 
receiving. An idle process accepts any CORE or SETUP message 
with the proper machine type. 

If a process accepts a "SETUP send" message, it locks to the 
foreign process specified in the SETUP data and begins to send 
core segments at a rate specified by the send/receive flag in the 
SETUP. After the last segment is sent, it resets to the idle 
state. A process that is sending only accepts messages from the 
foreign process to which it is locked, and these may be either 
SETUP or CORE messages. 

If a process accepts a "SETUP receive" message, it also 
locks to the foreign process, and waits for CORE messages. When 
a CORE message that completes the specified core transfer is 
received, the process is reset to the idle state. A process 
that is receiving only accepts messages from the foreign process 
to which it is locked, and these may either be any SETUP, or a 
CORE message with a start address equal to the address next 
expected by the process. If the address is too low (i.e., some 
previously received segment), the message is ignored. If it is 
too high (i.e. some segment was missed), a "SETUP send" message 
is sent to the foreign process, specifying the current address 
required. A "SETUP send" is also sent when no messages have been 
received for some time and the process is reset to the idle state 
after a much longer period when no messages are received. 


