

Copyrlght© 1992, 1991 UNIX System laboratories, Inc.
Copyrlght© 1990,1989,1988,1987,1986,1985,1984 AT&T
All Rights Reserved
Printed In USA

Published by Prentice-Hall, Inc.
A Division of Simon & Schuster
Englewood Cliffs, New Jersey 07632

No part of this publication may be reproduced or transmitted in any form or by any means-graphic,
electronic, electrical, mechanical, or chemical, including photocopying, recording in any medium, tap­
ing, by any computer or information storage and retrieval systems, etc., without prior permissions in
writing from UNIX System Laboratories, Inc. (USL).

IMPORTANT NOTE TO USERS

While every effort has been made to ensure the accuracy and completeness of all information in this
document, USL assumes no liability to any party for any loss or damage caused by errors or omis­
sions or by statements of any kind in this document, its updates, supplements, or special editions,
whether such errors, omissions, or statements result from negligence, accident, or any other cause.
USL further assumes no liability arising out of the application or use of any product or system
described herein; nor any liability for incidental or consequential damages arising from the use of this
document. USL disclaims all warranties regarding the Information contained herein, whether
expressed, Implied or statutory, Including Implied warranties of merchantability or fitness for a
particular purpose. USL makes no representation that the interconnection of products in the
manner described herein will not infringe on existing or future patent rights, nor do the descriptions
contained herein imply the granting of any license to make, use or sell equipment constructed in ac­
cordance with this description.

USL reserves the right to make changes to any products herein without further notice.

TRADEMARKS

UNIX is a registered trademark of UNIX System Laboratories, Inc. in the USA and other countries.
Intel386 and Intel486 are trademarks of Intel Corp.

10 9 8 7 6 5 4 3 2

ISBN 0-13-879529-0

UNIX
PRESS

A Prentice Hall Title

Introduction

Most of the routines, functions, and structures described in this manual are part
of both the DDI and the DKI (cross-referenced by DxDK). As Figure 1 shows,
drivers written to conform to both interfaces are portable to all computers sup­
porting UNIX System V Release 4 Multi-Processor for Intel Processors, and they
will be compatible through and beyond Release 4 Multi-Processor.

~
Note that drivers written to conform with this version of the OOI/OKI may not

NOTE run on systems running UNIX System V Release 4 or Release 4.1 Enhanced
Security, as those releases do not implement the new multiprocessor inter­
faces.

However, a driver written to conform to both interfaces is not guaranteed to be
binary compatible with future releases of the operating system. Binary compati­
bility requires more than just interface definition. It also requires that values for
#define's be standardized, for example. The DDI/DKI is a source code inter­
face. Following it is a necessary, but not sufficient, condition for binary compa­
tibility. To understand more completely what is meant by "portable" and
"compatible" for the DDI and DKI, the scope of each interface must be more
thoroughly explained.

Porting

Software is usually considered portable if it can be adapted to run in a different
environment at a lower cost than if one were to rewrite it. The new environ­
ment may include a different processor, operating system, and even the
language in which the program is written, if a language translator is available.
More often, however, software is ported between environments that share an
operating system, processor, and source language. The source code is modified
to accommodate the differences in compilers, processors, or releases of the
operating system.

In the past, device drivers did not port easily for one or more of the following
reasons:

2

• To enhance functionality, members had been added to kernel data struc­
tures accessed by drivers, or the sizes of existing members had been
redefined.

OOI/OKI Reference Manual

Introduction

• Driver-Hardware. Most hardware drivers include an interrupt handling
entry point, and may also perform direct memory access (DMA). These
and other hardware-specific interactions make up the driver/hardware
interface.

• Driver-Boot/Configuration Software. At boot time, the existence of a
driver is made known to the system through information in system files,
enabling the system to include the driver. The interaction between the
driver and the boot and configuration software is the third interface affect­
ing drivers. Refer to the sections on Installable Drivers (ID) in Chapter 3
of the Integrated Software Development Guide for more information on this.

Scope of the Device Driver Interface (001)

The primary goal of DDI is to facilitate both source and binary portability across
successive releases of UNIX System V on a particular machine. Implicit in this
goal is an important fact. Although there is only one DKI, each processor pro­
duct has its own DDI. Therefore, if a driver is ever to be ported to different
hardware, special attention must be paid to the machine-specific routines that
make up the "DDI only" part of a driver. These include, but are not confined
to, the driver/hardware interface (as described in the previous section). Some
processor-specific functionality also may belong to the driver /kernel interface,
and may not be easy to locate.

To achieve the goal of source and binary compatibility, the functions, routines,
and structures specified in the DDI must be used according to these rules.

4

• Drivers cannot access system state structures (for example, u and
sysinfo) directly.

• For structures external to the driver that may be accessed directly, only
the utility functions provided in Section 3 of this manual should be used.
More generally, these functions should be used wherever possible.

• The header file ddi.h must be included at the end of the list of system
header files. This header file "undefines" several macros that are reimple­
mented as functions. Device driver-specific include files should be listed
after ddLh to insure only the DDI/DKI interface is used by the driver.

OOI/OKI Reference Manual

Introduction

• Single-threaded drivers which conform to the DDI/DKI will be portable
across uniprocessor implementations which support the DDI/DKI .

• Multiprocessor implementations which support the DDI/DKI are not
required to support single-threaded drivers that conform to the DDI/DKI,
although some multiprocessor implementations may choose to support
such drivers by preventing concurrent execution of code within a given
single-threaded driver.

Driver writers are encouraged to write multithreaded rather than single­
threaded drivers, as these will be more widely portable and can benefit from the
parallelism inherent on a multiprocessor. Writing a multithreaded driver
requires that shared data within the driver be protected against certain forms of
concurrent access. This is done by using appropriate locking primitives to
prevent concurrent execution of code which accesses a given piece of shared
data. This document defines interfaces to several types of locking and syn­
chronization primitives, namely basic locks, read/write locks, sleep locks and
synchronization variables. Basic locks and read/write locks are intended for use·
within multithreaded drivers, while sleep locks and synchronization variables
are useful in both single-threaded and multithreaded drivers. The characteris­
tics of the various locking and synchronization primitives are described on the
relevant manual pages in Section 3.

Audience

This manual is for experienced C programmers responsible for creating, modify­
ing, or maintaining drivers that run on UNIX System V Release 4 Multi­
Processor for Intel Processors and beyond. It assumes that the reader is familiar
with UNIX system internals and the advanced capabilities of the C Programming
Language. In addition, programmers writing multithreaded drivers are
assumed to be familiar with the fundamentals of concurrent programming and
the appropriate use of locking primitives to protect shared data.

6 OOI/OKI Reference Manual

Introduction

The manual contains five sections:

D1 driver data definitions

D2 driver entry points

D3 kernel functions used by drivers

D4 kernel data structures accessed by drivers

D5 kernel #define's used by drivers

Each section number is suffixed with a letter indicating the interfaces covered.
The suffixes used are:

D Device Driver Interface only (DOl)

K Driver-Kernel Interface only (DKI)

DK both DOl and DKI

X DDI-only Platform-specific Interface

For example, open(D2DK) refers to the open entry point routine for a driver, not
to the open(2) system call documented in the Programmer's Reference Manual.
For clarity, the platform-specific manual pages have been put in an appendix,
separate from the rest of the DDI/DKI manual pages.

Reference pages contain the following headings, where applicable:

• NAME gives the routine's name and a short summary of its purpose.
• SYNOPSIS summarizes the routine's calling and return syntax.
• ARGUMENTS describes each of the routine's arguments.
• DESCRIPTION provides general information about the routine.
• STRUCTURE MEMBERS describes all accessible data structure members.
• RETURN VALUE summarizes the return value from the function.
• LEVEL gives an indication of when the routine can be used.
• NOTES provides restrictions on use and cautionary information.
• SEE ALSO gives sources for further information.
• EXAMPLE provides an example of common usage.

8 OOI/OKI Reference Manual

Introduction

STREAMS

The Programmer's Guide: STREAMS tells how to write drivers and access devices
that use the STREAMS driver interface for character access.

The Programmer's Guide: Networking Interfaces provides detailed information,
with examples, on the Section 3N library that comprises the UNIX system Tran­
sport Level Interface (TU).

The Programmer's Guide: ANSI C and Programming Support Tools includes instruc­
tions on using a number of UNIX utilities, including make and sees.

Operating Systems

The UNIX System V reference manuals are the standard reference materials for
the UNIX operating system. This information is organized into three manuals,
published separately for each system:

10

• The User's Reference Manual/System Administrator's Reference Manual
includes information on UNIX system user-level commands (Section 1) and
administrative commands (Section 1M).

• The Programmer's Reference Manual: Operating System API includes infor­
mation on UNIX system calls (Section 2) and C language library routines
(Section 3).

• The System Files and Devices Reference Manual includes information on
UNIX system file formats (Section 4), miscellaneous facilities (Section 5),
and special device files (Section 7).

OOI/OKI Reference Manual

Table of Contents

bp _ mapout(D3DK) deallocate virtual address space for buffer page list
brelse(D3DK) .. return a buffer to the system's free list
btop (D3DK) .. convert size in bytes to size in pages (round down)
btopr(D3DK) .. convert size in bytes to size in pages (round up)
bufcall(D3DK) ... call a function when a buffer becomes available
bzero(D3DK) .. clear memory for a given number of bytes
canput(D3DK) .. test for room in a message queue
canputnext(D3DK) ... test for flow control in a stream
clrbuf(D3DK) ... erase the contents of a buffer
cmn _err (D3DK) .. display an error message or panic the system
copyb(D3DK) .. copy a message block
copyin(D3DK) .. copy data from a user buffer to a driver buffer
copymsg(D3DK) ... copy a message
copyout(D3DK) .. copy data from a driver buffer to a user buffer
datamsg(D3DK) ... test whether a message is a data message
delay(D3DK) delay process execution for a specified number of clock ticks
dma-IJageio(D3DK) .. break up an I/O request into manageable units
drv _getparm(D3DK) ... retrieve kernel state information
drv _ hztousec (D3DK) ... convert clock ticks to microseconds
drv -IJriv(D3DK) .. determine whether credentials are privileged
drv _setparm(D3DK) .. set kernel state information
drv _ usectohz (D3DK) ... convert microseconds to clock ticks
drv _ usecwait(D3DK) .. busy-wait for specified interval
dtimeout(D3DK)

....................... execute a function on a specified processor, after a specified length of time
dupb(D3DK) ... duplicate a message block
dupmsg(D3DK) ... duplicate a message
enableok(D3DK) .. allow a queue to be serviced
esballoc(D3DK) allocate a message block using an externally-supplied buffer
esbbcall(D3DK) call a function when an externally-supplied buffer can be allocated
etoimajor(D3DK) ... convert external to internal major device number
flushband(D3DK) .. flush messages in a specified priority band
flushq(D3DK) ... flush messages on a queue
freeb (D3DK) ... free a message block
freemsg(D3DK) ... free a message
freerbuf(D3DK) .. free a raw buffer header
freezestr(D3DK) .. freeze the state of a stream
geteblk(D3DK) ... get an empty buffer
getemajor(D3DK) .. get external major device number
geteminor(D3DK) ... get external minor device number

2 OOIIOKI Reference Manual

Table of Contents

procJef(D3DK) ... obtain a reference to a process for signaling
proc_signal(D3DK) ... send a signal to a process
proc _ unref(D3DK) ... release a reference to a process
ptob (D3DK) .. convert size in pages to size in bytes
put (D3DK) ... call a put procedure
putbq (D3DK) ... place a message at the head of a queue
putctl(D3DK) .. send a control message to a queue
putctll (D3DK) send a control message with a one-byte parameter to a queue
putnext(D3DK) .. send a message to the next queue
putnextctl (D3DK) .. send a control message to a queue
putnextctll (D3DK) send a control message with a one byte parameter to a queue
putq (D3DK) .. put a message on a queue
qenable(D3DK) ... schedule a queue's service routine to be run
qprocsoff(D3DK) .. disable put and service routines
qprocson(D3DK) ... enable put and service routines
qreply(D3DK) .. send a message in the opposite direction in a stream
qsize(D3DK) .. find the number of messages on a queue
RD(D3DK) .. get a pointer to the read queue
repinsb(D3DK) .. read bytes from I/O port to buffer
repinsd(D3DK) ... read 32 bit words from I/O port to buffer
repinsw(D3DK) .. read 16 bit words from I/O port to buffer
repoutsb(D3DK) ... write bytes from buffer to an I/O port
repoutsd(D3DK) .. write 32 bit words from buffer to an I/O port
repoutsw(D3DK) ... write 16 bit words from buffer to an I/O port
rmalloc(D3DK) ... allocate space from a private space management map
rmallocmap(D3DK) allocate and initialize a private space management map
rmalloc _ wait (D3DK) allocate space from a private space management map
rmfree(D3DK) ... free space into a private space management map
rmfreemap(D3DK) .. free a private space management map
rmvb(D3DK) ... remove a message block from a message
rmvq(D3DK) .. remove a message from a queue
RW _ ALLOC (D3DK) ... allocate and initialize a read/write lock
RW _ DEALLOC(D3DK) ... deallocate an instance of a read/write lock
RW _ RDLOCK(D3DK) ... acquire a read/write lock in read mode
RW _ TRYRDLOCK(D3DK) try to acquire a read/write lock in read mode
RW _ TRYWRLOCK (D3DK) try to acquire a read/write lock in write mode
RW_VNLOCK(D3DK) .. release a read/write lock
RW _WRLOCK(D3DK) ... acquire a read/write lock in write mode
SAMESTR(D3DK) .. test if next queue is same type
SLEEP _ ALLOC(D3DK) .. allocate and initialize a sleep lock

4 OOI/OKI Reference Manual

Table of Contents

04. Data Structures

intro (D4DK) .. introduction to kernel data structures
buf(D4DK) ... block I/O data transfer structure
copyreq (D4DK) ... STREAMS transparent ioctl copy request structure
copyresp (D4DK) ... STREAMS transparent ioctl copy response structure
datab (D4DK) .. STREAMS data block structure
free Jtn (D4DK) ... STREAMS driver's message free routine structure
iocblk(D4DK) .. STREAMS ioctl structure
iovec(D4DK) ... data storage structure for I/O using uio(D4DK)
linkblk(D4DK) ... STREAMS multiplexor link structure
module_info(D4DK) STREAMS driver and module information structure
msgb(D4DK) ... STREAMS message block structure
qinit(D4DK) .. STREAMS queue initialization structure
queue (D4DK) ... STREAMS queue structure
streamtab (D4DK) ... STREAMS driver and module declaration structure
stroptions(D4DK) .. stream head option structure
uio(D4DK) ... scatter/gather I/O request structure
intro(D4X) .. introduction to DMA data structures
dma_buf(D4X) ... DMA buffer descriptor structure
dma _ cb (D4X) .. DMA command block structure

05. Kernel Defines

intro(D5DK) ... introduction to kernel #define's
errnos(D5DK) .. error numbers
messages(D5DK) ... STREAMS messages
signals (D5DK) .. signal numbers

Appendix A: Migration from Release 3.2 to Release 4 Multi­
Processor

Appendix B: Migration from Release 4 to Release 4 Multi­
Processor

6 OOIIOKI Reference Manual

Table of Contents

mps _ msg: mps _ msg_getsrcmid, mps _ msg_getmsgtyp, mps _ msg_getbrlen,
mps _ msg_getreqid, mps _ msg_getlsnid, mps _ msg_getsrcpid,
mps _ msg_gettrnsid, mps _ msg_getudp, mps _ msg_iscancel, mps _ msg_iseot,
mps _ msg_iserror, mps _ msg_iscompletion, mps _ msg_ isreq (D3DK)
.......... .. macros used to decode message handler message

mps_open_chan(D3DK) .. opens a channel

8 OOI/OKI Reference Manual

Permuted Index

lock LOCK ALLOC
structure phalloc

space management map rmallocmap
read/write lock RW_ALLOC

lock SLEEP ALLOC
synchronization variable SV _ ALLOC

management map rmalloc
management map rmalloc _wait

memory kmem _alloc
buffer page list bp _ mapin

dma jree _ buf free a previously
dma jree _ cb free a previously

externally-supplied buffer can be
kmem _free free previously

mps _free_tid frees a previously
mps_get_msgbuf

mps _get_tid

enableok

ASSERT verify
/ fragments when buffer space is not

a function when a buffer becomes
query whether a sleep lock is

flow control in specified priority
control in a specified priority

messages in a specified priority
get information about a queue or

change information about a queue or
allocate and initialize a

LOCK acquire a
deallocate an instance of a
TRYLOCK try to acquire a

UNLOCK release a
specified priority band

in a specified priority band
locations in the kernel

call a function when a buffer
dma _get_best_ mode determine

2

I/O and wakeup processes
within a buffer header

completion of block I/O
inb read a byte from a 8

inl read a 32 bit word from a 32

allocate and initialize a basic LOCK _ ALLOC(D3DK)
allocate and initialize a pollhead phalloc(D3DK)
allocate and initialize a private rmallocmap(D3DK)
allocate and initialize a................................... RW _ ALLOC(D3DK)
allocate and initialize a sleep SLEEP _ ALLOC(D3DK)
allocate and initialize a..................................... SV _ ALLOC(D3DK)
allocate space from a private space rmalloc(D3DK)
allocate space from a private space rmalloc_wait(D3DK)
allocate space from kernel free kmem _alloc(D3DK)
allocate virtual address space for bp _ mapin(D3DK)
allocated DMA buffer descriptor dma_free_buf(D3X)
allocated DMA command block dma _free _ cb(D3X)
allocated /call a function when an esbbcall(D3DK)
allocated kernel memory kmem jree(D3DK)
allocated transaction id mps jree _ tid(D3DK)
allocates a message buffer mps ~et_ msgbuf(D3DK)
allocates transaction ids mps_get_tid(D3DK)
allocb allocate a message block allocb(D3DK)
allow a queue to be serviced enableok(D3DK)
ASSERT verify assertion ASSERT(D3DK)
assertion .. ASSERT(D3DK)
available at the receiving agent
............ ... mps _ AMPreceive _ frag(D3DK)
available bufcall call ... bufcall(D3DK)
available SLEEP LOCKA VAIL
... SLEEP_LOCKA V AlL(D3DK)
band bcanput test for ... bcanput(D3DK)
band bcanputnext test for flow.................... bcanputnext(D3DK)
band flushband flush .. flushband(D3DK)
band of the queue strqget strqget(D3DK)
band of the queue strqset .. strqset(D3DK)
basic lock LOCK _ ALLOC LOCK _ ALLOC(D3DK)
basic lock .. LOCK(D3DK)
basic lock LOCK _ DEALLOC LOCK_ DEALLOC(D3DK)
basic lock TRYLOCK(D3DK)
basic lock UNLOCK(D3DK)
bcanput test for flow control in bcanput(D3DK)
bcanputnext test for flow control.................. bcanputnext(D3DK)
bcopy copy data between address bcopy(D3DK)
becomes available bufcall .. bufcall(D3DK)
best transfer mode for DMA command
... ... dma _get _ best_ mode(D3X)
biodone release buffer after block biodone(D3DK)
bioerror manipulate error field bioerror(D3DK)
biowait suspend processes pending biowait(D3DK)
bit I/O port .. inb(D3DK)
bit I/O port ... inI(D3DK)

OOI/OKI Reference Manual

Permuted Index

pool mps Jree _ msgbuf puts a

bufcall call a function when a
when an externally-supplied
clrbuf erase the contents of a

data from a user buffer to a driver
data from a driver buffer to a user

free a previously allocated DMA
dma_get_buf allocate a DMA

dma bufDMA
frees a list of data

returns a pointer to a list of data

block using an externally-supplied
geteblk get an empty

buffer/ mps_mk_bgrant construct a
manipulate error field within a

freerbuf free a raw
retrieve error number from a

getrbuf get a raw
mpsJ;et_msgbuf allocates a message

copies user data from the message
copies user data from the message

ngeteblk get an empty
allocate virtual address space for

virtual address space for
buffer / mps _ mk _ breject construct a
repinsb read bytes from I/O port to
read 32 bit words from I/O port to
read 16 bit words from I/O port to
that corresponds to an outstanding

a buffer grant in response to a
a buffer reject in response to a

/ solicited data in fragments when

copyin copy data from a user
copyout copy data from a driver

repoutsb write bytes from
repoutsd write 32 bit words from
repoutsw write 16 bit words from

brelse return a
drv usecwait

inb read a
/ send a control message with a one

outb write a
clear memory for a given number of

4

buffer back into the free memory
... mps_free_msgbuf(D3DK)

buffer becomes available ... bufcall(D3DK)
buffer can be allocated / a function esbbca1l(D3DK)
buffer .. clrbuf(D3DK)
buffer copyin copy .. copyin(D3DK)
buffer copyout copy ... copyout(D3DK)
buffer descriptor dma_free_buf dma_free_buf(D3X)
buffer descriptor ... dma J;et_ buf(D3X)
buffer descriptor structure dma _ buf(D4X)
buffer descriptors mps _free _ dmabuf
... mps _free _ dmabuf(D3DK)
buffer descriptors mps_get_dmabuf
.. mpsJ;et_dmabuf(D3DK)
buffer esballoc allocate a message esballoc(D3DK)
buffer ... geteblk(D3DK)
buffer grant in response to a mps_mk_bgrant(D3DK)
buffer header bioerror ... bioerror(D3DK)
buffer header ... freerbuf(D3DK)
buffer header geterror .. geterror(D3DK)
buffer header getrbuf(D3DK)
buffer .. mpsJ;et_msgbuf(D3DK)
buffer mpsJ;et_soldata mpsJ;et_soldata(D3DK)
buffer mps _get_ unsoldata mps J;et_ unsoldata(D3DK)
buffer of the specified size ngeteblk(D3DK)
buffer page list bp _ mapin bp _ mapin(D3DK)
buffer page list / deallocate bp _ mapout(D3DK)
buffer reject in response to a mps_mk_breject(D3DK)
buffer ... repinsb(D3DK)
buffer repinsd ... repinsd(D3DK)
buffer repinsw ... repinsw(D3DK)
buffer request / solicited data mps _ AMPreceive(D3DK)
buffer request /construct mps_mk_bgrant(D3DK)
buffer request Iconstruct mps_mk_breject(D3DK)
buffer space is not available at/
... mps _ AMPreceive _ frag(D3DK)
buffer to a driver buffer .. copyin(D3DK)
buffer to a user buffer ... copyout(D3DK)
buffer to an I/O port ... repoutsb(D3DK)
buffer to an I/O port ... repoutsd(D3DK)
buffer to an I/O port .. repoutsw(D3DK)
buffer to the system's free list brelse(D3DK)
busy-wait for specified interval drv _ usecwait(D3DK)
byte from a 8 bit I/O port .. inb(D3DK)
byte parameter to a queue putnextctl(D3DK)
byte to an 8 bit I/O port ... outb(D3DK)
bytes bzero ... bzero(D3DK)

OOI/OKI Reference Manual

Permuted Index

dma _get_ cb allocate a DMA
dma cbDMA

best transfer mode for DMA
biowait suspend processes pending

msgpullup
linkb

a driver message on the system
response to a buffer Imps _ mk _ bgrant

response to al mps_mk_breject
be sent mps _ mk_ brdcst

initiate a solicited I mps _ mk_sol
message to bel mpsJnk_unsolrply

to be sent mps _ mk_ unsol
clrbuf erase the

ioctl
band bcanputnext test for flow

canputnext test for flow
bcanput test for flow

whether a message is a priority
putctl send a

putnextctl send a
parameter to al putnextctll send a

parameter to al putctll send a
drY hztousec

device number etoimajor
device number itoemajor

drY usectohz
address pptophys

pages (round down) btop
pages (round up) btopr

bytes ptob
address vtop

buffer mps _get _ soldata

by uio(D4DK) structure ureadc
copyb

copymsg
in the kernel bcopy
user buffer copyout
driver buffer copyin

uiomove
copyreq STREAMS transparent ioctl

6

command block .. dma _get_ cb(D3X)
command block structure ... dma _ cb(D4X)
command I determine dma Jjet_ best_ mode(D3X)
completion of block I/O .. biowait(D3DK)
concatenate bytes in a message msgpullup(D3DK)
concatenate two message blocks linkb(D3DK)
console print display ... print(D2DK)
construct a buffer grant in mps _ mk_ bgrant(D3DK)
construct a buffer reject in mps_mk_breject(D3DK)
constructs a broadcast message to
... mps_mk_brdcst(D3DK)
constructs a message to be sent to
... mps_rnk_solrply(D3DK)
constructs a message to be sent to mps_mk_sol(D3DK)
constructs a unsolicited reply mps _ mk_ unsolrply(D3DK)
constructs an unsolicited message mps _ mk_ unsol(D3DK)
contents of a buffer .. clrbuf(D3DK)
control a character device ioctl(D2DK)
control in a specified priority bcanputnext(D3DK)
control in a stream canputnext(D3DK)
control in specified priority band bcanput(D3DK)
control message pcmsg test pcmsg(D3DK)
control message to a queue .. putctl(D3DK)
control message to a queue putnextctl(D3DK)
control message with a one byte putnextctl(D3DK)
control message with a one-byte putctl(D3DK)
convert clock ticks to microseconds drY _ hztousec(D3DK)
convert external to internal major etoimajor(D3DK)
convert internal to external major itoemajor(D3DK)
convert microseconds to clock ticks drv _ usectohz(D3DK)
convert page pointer to physical pptophys(D3DK)
convert size in bytes to size in btop(D3DK)
convert size in bytes to size in btopr(D3DK)
convert size in pages to size in ptob(D3DK)
convert virtual address to physical vtop(D3DK)
copies user data from the message
... mps_get_soldata(D3DK)
copies user data from the message
... mps _get_ unsoldata(D3DK)
copy a character to space described ureadc(D3DK)
copy a message block copyb(D3DK)
copy a message copymsg(D3DK)
copy data between address locations bcopy(D3DK)
copy data from a driver buffer to a copyout(D3DK)
copy data from a user buffer to a........................... copyin(D3DK)
copy data using uio(D4DK) structure uiomove(D3DK)
copy request structure ... copyreq(D4DK)

DOI/OKI Reference Manual

Permuted Index

intro introduction to kernel
specified number of clock ticks

specified number of clock/ delay
ureadc copy a character to space

/ return a character from space
a previously allocated DMA buffer

dma_get_buf allocate a DMA buffer
dma _ buf DMA buffer

frees a list of data buffer
a pointer to a list of data buffer

for certain board types in the
DMA command dma---zet_best_mode

privileged drv -priv

start initialize a
close relinquish access to a

init initialize a
intr process a

ioctl control a character
virtual mapping for memory-mapped

convert external to internal major
numbers makedevice make

8

getemajor get external major
geteminor get external minor

getrnajor get internal major
getrninor get internal minor

convert internal to external major
open gain access to a

read read data from a
size return size of logical block

write write data to a
send a message in the opposite

qprocsoff
requests on a DMA/ dma _disable

system console print
the system cmn _err

free a previously allocated
dma---zet_buf allocate a

dma buf
of hardware requests on a
of hardware requests on a
free a previously allocated

dma _get_ cb allocate a
dma cb

#define's ... intro(D5DK)
delay delay process execution for a.......................... delay(D3DK)
delay process execution for a..................................... delay(D3DK)
described by uio(D4DK) structure ureadc(D3DK)
described by uio(D4DK) structure uwritec(D3DK)
descriptor dma _free _ buf free dma _free _ buf(D3X)
descriptor ... dma_get_buf(D3X)
descriptor structure ... dma _ buf(04X)
descriptors mps _free _ dmabuf mps _free _ dmabuf(D3DK)
descriptors mps ---zet _ dmabuf returns
.. mps ---zet_ dmabuf(D3DK)
designated slot / checks ics _ agent_ cmp(D3DK)
determine best transfer mode for
.. dma---zet_best_mode(D3X)
determine whether credentials are drv -priv(D3DK)
devflag driver flags ... devflag(DlD)
device at system start-up .. start(D2DK)
device ... close(D2DK)
device .. init(D2DK)
device interrupt .. intr(D2DK)
device .. ioctl(D2DK)
device mmap check ... mmap(D2DK)
device number etoimajor etoimajor(D3DK)
device number from major and minor
.. makedevice(D3DK)
device number ... getemajor(D3DK)
device number .. geteminor(D3DK)
device number ... ,. getrnajor(D3DK)
device number .. getrninor(D3DK)
device number itoemajor itoemajor(D3DK)
device ... open(D2DK)
device .. read(D2DK)
device ... size(D2DK)
device .. write(D2DK)
direction in a stream qreply qreply(D3DK)
disable put and service routines qprocsoff(D3DK)
disable recognition of hardware dma _ disable(D3X)
display a driver message on the print(D2DK)
display an error message or panic crnn _ err(D3DK)
DMA buffer descriptor dma_free_buf dma_free_buf(D3X)
DMA buffer descriptor dma ---zet _ buf(D3X)
DMA buffer descriptor structure dma _ buf(D4X)
DMA channel/disable recognition dma _ disable(D3X)
DMA channel/enable recognition dma _ enable(D3X)
DMA command block dma _free _ cb dma _free _ cb(D3X)
DMA command block ... dma _get_ cb(D3X)
DMA command block structure dma _ cb(04X)

OOI/OKI Reference Manual

Permuted Index

dupb
dupmsg

geteblk get an
ngeteblk get an

qprocson
requests on a DMAI dma _enable

serviced
I for transmission and sets up table

character driver chpoll poll
intro introduction to driver

clrbuf

bioerror manipulate
cmn _err display an

geterror retrieve
errnos

using an externally-supplied I
externally-supplied buffer can bel

internal major device number
inform polling processes that an

specified length of time itimeout
processor, after al dtimeout

clock ticks delay delay process
getemajor get

itoemajor convert internal to
geteminor get

number etoimajor convert
esbbcall call a function when an

I allocate a message block using an
ics hostid returns the host id

bioerror manipulate error
queue qsize

devflag driver
priority band bcanputnext test for

canputnext test for
band bcanput test for

priority band flushband
flushq

specified priority band

10

I receives solicited data in

freeb
freemsg

dupb duplicate a message block dupb(D3DK)
duplicate a message block ... dupb(D3DK)
duplicate a message .. dupmsg(D3DK)
dupmsg duplicate a message dupmsg(D3DK)
empty buffer ... geteblk(D3DK)
empty buffer of the specified size ngeteblk(D3DK)
enable put and service routines qprocson(D3DK)
enable recognition of hardware dma _ enable(D3X)
enableok allow a queue to be enableok(D3DK)
entries for reception of reply I
.. mps _ AMPsend Jsvp(D3DK)
entry point for a non-STREAMS chpoll(D2DK)
entry point routines ... intro(D2DK)
erase the contents of a buffer clrbuf(D3DK)
errnos error numbers ... errnos(D5DK)
error field within a buffer header bioerror(D3DK)
error message or panic the system cmn _ err(D3DK)
error number from a buffer header geterror(D3DK)
error numbers errnos(D5DK)
esballoc allocate a message block esballoc(D3DK)
esbbcall call a function when an esbbcall(D3DK)
etoimajor convert external to etoimajor(D3DK)
event has occurred pollwakeup pollwakeup(D3DK)
execute a function after a itimeout(D3DK)
execute a function on a specified dtimeout(D3DK)
execution for a specified number of delay(D3DK)
external major device number getemajor(D3DK)
external major device number itoemajor(D3DK)
external minor device number geteminor(D3DK)
external to internal major device etoimajor(D3DK)
externally-supplied buffer can bel esbbcall(D3DK)
externally-supplied buffer esballoc(D3DK)
field of the HOST ID record in thisl ics _ hostid(D3DK)
field within a buffer header bioerror(D3DK)
find the number of messages on a qsize(D3DK)
flags .. devflag(DlD)
flow control in a specified bcanputnext(D3DK)
flow control in a stream canputnext(D3DK)
flow control in specified priority bcanput(D3DK)
flush messages in a specified flushband(D3DK)
flush messages on a queue .. flushq(D3DK)
flushband flush messages in a flushband(D3DK)
flushq flush messages on a queue flushq(D3DK)
fragments when buffer space is notl
... mps _ AMPreceive Jrag(D3DK)
free a message block ... freeb(D3DK)
free a message ... freemsg(D3DK)

OOI/OKI Reference Manual

Permuted Index

error field within a buffer
freerbuf free a raw buffer

retrieve error number from a buffer
getrbuf get a raw buffer

query whether a sleep lock is

in thisl ics_hostid returns the
I returns the host id field of the

board types in the designated slot
interconnect register of the board I

field of the HOST ID record inl
specified number of interconnectl

register of the board in thel
specified register of the board inl

this I ics _ hostid returns the host
kvtoppid get physical page

phystoppid get physical page
registers from a given cardslot

a previously allocated transaction
the host id field of the HOST

mps _get_tid allocates transaction
port

information
event has occurred pollwakeup

of the queue strqget get
of the queue strqset change

drv _getparm retrieve kernel state
drv _setparm set kernel state

info STREAMS driver and module
STREAMS driver and module

qinit STREAMS queue
LOCK ALLOC allocate and

start-up start
init

phalloc allocate and
managementl rmallocmap allocate and

RW ALLOC allocate and
SLEEP ALLOC allocate and

variable SV ALLOC allocate and
software request dma _ swstart

I constructs a message to be sent to
I constructs a message to be sent to

bit I/O port
insq

LOCK DEALLOC deallocate an

12

header bioerror manipulate bioerror(D3DK)
header ... freerbuf(D3DK)
header geterror geterror(D3DK)
header getrbuf(D3DK)
held by the caller SLEEP _ LOCKOWNED
.. SLEEP _ LOCKOWNED(D3DK)
host id field of the HOST ID record ics _ hostid(D3DK)
HOST ID record in this board'sl ics_hostid(D3DK)
ics _ agent_ cmp checks for certain ics _ agent_ cmp(D3DK)
ics _find Jec reads the ... ics _find(D3DK)
ics _ hostid returns the host id ics _ hostid(D3DK)
icsJdwr reads or writes a icsJdwr(D3DK)
ics Jead reads the interconnect ics _ read(D3DK)
ics _write writes a value into the ics _ write(D3DK)
id field of the HOST ID record in ics _ hostid(D3DK)
ID for kernel virtual address kvtoppid(D3DK)
ID for physical address phystoppid(D3DK)
ID Inumber of interconnect space icsJdwr(D3DK)
id mps _free_tid frees mps _free _ tid(D3DK)
ID record in this board'sl Ireturns ics_hostid(D3DK)
ids .. mps _get_ tid(D3DK)
inb read a byte from a 8 bit 1/0 inb(D3DK)
info STREAMS driver and module info(DlDK)
inform polling processes that an pollwakeup(D3DK)
information about a queue or band strqget(D3DK)
information about a queue or band strqset(D3DK)
information ... drv _getparm(D3DK)
information ... drv _setparm(D3DK)
information ... info(DlDK)
information structure module _info module _info(D4DK)
init initialize a device ... init(D2DK)
initialization structure qinit(D4DK)
initialize a basic lock LOCK _ ALLOC(D3DK)
initialize a device at system start(D2DK)
initialize a device .. init(D2DK)
initialize a pollhead structure phalloc(D3DK)
initialize a private space rmallocmap(D3DK)
initialize a read/write lock RW _ ALLOC(D3DK)
initialize a sleep lock SLEEP _ ALLOC(D3DK)
initialize a synchronization SV _ ALLOC(D3DK)
initiate a DMA operation via dma_swstart(D3X)
initiate a solicited data reply mps_mk_solrply(D3DK)
initiate a solicited data transfer mps_mk_sol(D3DK)
inl read a 32 bit word from a 32 inl(D3DK)
insert a message into a queue insq(D3DK)
insq insert a message into a queue insq(D3DK)
instance of a basic lock LOCK _ DEALLOC(D3DK)

OOI/OKI Reference Manual

Permuted Index

dma J'ageio break up an
physiock validate and issue raw

uio scatter/gather
strategy perform block

iovec data storage structure for

copyreq STREAMS transparent
copyresp STREAMS transparent

iocblk STREAMS
I/O using uio(D4DK)
physiock validate and

specified length of time
external major device number

between address locations in the
intro introduction to
intro introduction to

kmem_alloc allocate space from
allocate and clear space from

kmem jree free previously allocated
drY _getparm retrieve

drY _ setparm set
intro introduction to

kvtoppid get physical page ID for
kernel free memory

kernel memory
space from kernel free memory

kernel virtual address
max return the

mps~etJeplyJen get data
processor, after a specified
a function after a specified

min return the
linkblk STREAMS multiplexor

blocks
structure

address space for buffer page
address space for buffer page

a buffer to the system's free
mps _free _ dmabuf frees a

/ returns a pointer to a
bcopy copy data between address

RW_RDLOCK acquire a read/write
try to acquire a read/write

14

I/O request into manageable units dmaJ'ageio(D3DK)
I/O request .. physiock(D3DK)
I/O request structure ... uio(D4DK)
I/O .. strategy(D2DK)
I/O using uio(D4DK) ... iovec(D4DK)
iocblk STREAMS ioctl structure iocblk(D4DK)
ioctl control a character device ioctl(D2DK)
ioctl copy request structure copyreq(D4DK)
ioctl copy response structure copyresp(D4DK)
ioctl structure .. iocblk(D4DK)
iovec data storage structure for iovec(D4DK)
issue raw I/O request ... physiock(D3DK)
itimeout execute a function after a....................... itimeout(D3DK)
itoemajor convert internal to itoemajor(D3DK)
kernel bcopy copy data ... bcopy(D3DK)
kernel data structures ... intro(D4DK)
kernel #define's .. intro(DSDK)
kernel free memory .. kmem _ alloc(D3DK)
kernel free memory kmem _ zalloc kmem _ zalloc(D3DK)
kernel memory .. kmem_free(D3DK)
kernel state information drY _getparm(D3DK)
kernel state information drY _ setparm(D3DK)
kernel utility routines .. intro(D3DK)
kernel virtual address ... kvtoppid(D3DK)
kmem_alloc allocate space from kmem_alloc(D3DK)
kmem_free free previously allocated kmem_free(D3DK)
kmem _ zalloc allocate and clear kmem _ zalloc(D3DK)
kvtoppid get physical page ID for kvtoppid(D3DK)
larger of two integers ... max(D3DK)
length for a solicited reply mps ~etJeply _len(D3DK)
length of time / on a specified dtimeout(D3DK)
length of time itimeout execute itimeout(D3DK)
lesser of two integers min(D3DK)
link structure ... linkblk(D4DK)
linkb concatenate two message linkb(D3DK)
linkblk STREAMS multiplexor link linkblk(D4DK)
list bp _ mapin allocate virtual........................... bp _ mapin(D3DK)
list bp _ mapout deallocate virtual.................. bp _ mapout(D3DK)
list brelse return .. brelse(D3DK)
list of data buffer descriptors mps _free _ dmabuf(D3DK)
list of data buffer descriptors mps~et_dmabuf(D3DK)
locations in the kernel ... bcopy(D3DK)
LOCK acquire a basic lock .. LOCK(D3DK)
lock in read mode ... RW _ RDLOCK(D3DK)
lock in read mode RW TRYRDLOCK
... RW _ TRYRDLOCK(D3DK)

OOI/OKI Reference Manual

Permuted Index

mmap check virtual
physmap obtain virtual address

physmap jree free virtual address
integers

bzero clear
allocate space from kernel free

free previously allocated kernel
and clear space from kernel free
puts a buffer back into the free

mmap check virtual mapping for
adjrnsg trim bytes from a

putbq place a
allocb allocate a

copyb copy a
dupb duplicate a

freeb free a
rmvb remove a

message unlinkb remove a
rnsgb STREAMS

esballoc allocate a
linkb concatenate two

mps ~et_ rnsgbuf allocates a
copies user data from the
copies user data from the

copymsg copy a
test whether a message is a data

dupmsg duplicate a
free Jtn STREAMS driver's

freemsg free a
getq get the next

rmvq remove a
Imps_rnsg_isreq macros used to decode

in a stream qreply send a
insq insert a

datamsg test whether a
message pcmsg test whether a

used to decode message handler
return number of bytes of data in a

msgpullup concatenate bytes in a
putq put a

print display a driver
cmn _ err display an error

a message is a priority control
canput test for room in a

rmvb remove a message block from a
putct1 send a control

16

mapping for memory-mapped device mmap(D2DK)
mapping for physical addresses physmap(D3DK)
mapping for physical addresses physmap _ free(D3DK)
max return the larger of two .. max(D3DK)
memory for a given number of bytes bzero(D3DK)
memory kmem _ alloc kmem _ alloc(D3DK)
memory kmem jree .. kmem _ free(D3DK)
memory kmem _ zalloc allocate kmem _ zalloc(D3DK)
memory pool mps _free _ msgbuf mps _free _ rnsgbuf(D3DK)
memory-mapped device .. mmap(D2DK)
message adjrnsg(D3DK)
message at the head of a queue putbq(D3DK)
message block ... allocb(D3DK)
message block .. copyb(D3DK)
message block .. dupb(D3DK)
message block .. freeb(D3DK)
message block from a message rmvb(D3DK)
message block from the head of a......................... unlinkb(D3DK)
message block structure .. msgb(D4DK)
message block using ani .. esballoc(D3DK)
message blocks ... linkb(D3DK)
message buffer .. mps _get_ rnsgbuf(D3DK)
message buffer mps~et_soldata mps_get_soldata(D3DK)
message buffer mps ~et_ unsoldata
... mps _get_ unsoldata(D3DK)
message .. copyrnsg(D3DK)
message datarnsg ... datarnsg(D3DK)
message . .. duprnsg(D3DK)
message free routine structure free _ rtn(D4DK)
message .. freernsg(D3DK)
message from a queue ... getq(D3DK)
message from a queue ... rmvq(D3DK)
message handler message mps _ rnsg(D3DK)
message in the opposite direction qreply(D3DK)
message into a queue : ... insq(D3DK)
message is a data message datamsg(D3DK)
message is a priority control................................ pcrnsg(D3DK)
message Imps_rnsg_isreq macros mps_msg(D3DK)
message msgdsize .. msgdsize(D3DK)
message ... msgpullup(D3DK)
message on a queue ... putq(D3DK)
message on the system console print(D2DK)
message or panic the system cmn _ err(D3DK)
message pcmsg test whether pcmsg(D3DK)
message queue .. canput(D3DK)
message ... rmvb(D3DK)
message to a queue putct1(D3DK)

OOI/OKI Reference Manual

Permuted Index

solicited data in fragments whenl

messages that are not part of any I
data that is not part of any I

received request that is part of al

messages for transmission and setsl

opened channel

data buffer descriptors

into the free memory pool

allocated transaction id
a list of data buffer descriptors

buffer

for a solicited reply

from the message buffer

ids
from the message buffer

grant in response to a buffer I

broadcast message to be sent
reject in response to a buffer I

be sent to initiate a solicited I
to be sent to initiate a solicited I

unsolicited message to be sent
unsolicited reply message to bel

mps _ msg_getrnsgtyp,1
Imps_msgJ;etmsgtyp,

Imps _ msgJ;etbrlen, mps _ msg_getreqid,
mps _ msg: mps _ msg_getsrcmid,

Imps _ msg_getbrlen,

mps _ msgJ;etmsgtyp'/ mps _ msg:
Imps _ msgJ;etreqid, mps _ msgJ;etlsnid,

18

mps _ AMPreceive _ frag receives
... "','" mps _ AMPreceive _ frag(D3DK)
mps_AMPsend sends unsolicited mps_AMPsend(D3DK)
mps _ AMPsend _data sends solicited
.. mps _ AMPsend _ data(D3DK)
mps _ AMPsend Jeply replies to a
... mps _ AMPsend _reply(D3DK)
mps _ AMPsend JSVP queues request
.. mps_AMPsend_rsvp(D3DK)
mps _close_chan closes a previously
.. mps _close _ chan(D3DK)
mps _free _ dmabuf frees a list of
... mps _free _ dmabuf(D3DK)
mps _free _ msgbuf puts a buffer back
... mps _free _ msgbuf(D3DK)
mps_free_tid frees a previously mps_free_tid(D3DK)
mps_get_dmabuf returns a pointer to
.. mpsJ;et_dmabuf(D3DK)
mps J;et _ msgbuf allocates a message
... mps_get_msgbuf(D3DK)
mpsJ;etJeply_len get data length
... mps J;et_reply Jen(D3DK)
mpsJ;et_soldata copies user data
... mpsJ;et_soldata(D3DK)
mps J;et _tid allocates transaction mps J;et _ tid(D3DK)
mps J;et _ unsoldata copies user data
... mps J;et_ unsoldata(D3DK)
mps_mk_bgrant construct a buffer
.. mps _ mk_ bgrant(D3DK)
mps_mk_brdcst constructs a mps_mk_brdcst(D3DK)
mps _ mk _ breject construct a buffer
.. mps_mk_breject(D3DK)
mps_mk_sol constructs a message to mps_mk_sol(D3DK)
mps_mk_solrply constructs a message
... mps _ mk _ solrply(D3DK)
mps _ mk _ unsol constructs an mps _ mk _ unsol(D3DK)
mps _ mk _ unsolrply constructs a
... mps _ mk _ unsolrply(D3DK)
mps _ msg: mps _ msgJ;etsrcmid, mps _ msg(D3DK)
mps _ msg_getbrlen, mps _ msg_getreqid,/
.. mps _ msg(D3DK)
mps _ msgJ;etlsnid,/ ... mps _ msg(D3DK)
mps_msgJ;etrnsgtyp,/ ... mps_msg(D3DK)
mps _ msg_getreqid, mps _ msg_getlsnid,1
.. mps _ msg(D3DK)
mps _ msg_getsrcmid, .. mps _ msg(D3DK)
mps _ msgJ;etsrcpid'/ ... mps _ msg(D3DK)

OOIIOKI Reference Manual

Permuted Index

request dma _swsetup program a DMA
it I stop software-initiated DMA

dma swstart initiate a DMA
qreply send a message in the

stroptions stream head
partner queue

port
32 bit I/O port

I data that corresponds to an
16 bit I/O port

kvtoppid get physical
phystoppid get physical

virtual address space for buffer
virtual address space for buffer

getnextpg get next
pptophys convert

convert size in bytes to size in
convert size in bytes to size in

ptob convert size in
crnn _err display an error message or

a control message with a one-byte
a control message with a one byte

to a received request that is

unsolicited messages that are not

I sends solicited data that is not

OTHERQ get pointer to queue's
priority control message

unbufcall cancel a
biowait suspend processes

strategy
pollhead structure

phystoppid get physical page ID for
pptophys convert page pointer to

vtop convert virtual address to
obtain virtual address mapping for

free virtual address mapping for
address kvtoppid get

address phystoppid get
request

mapping for physical addresses
mapping for physical addresses

physical address
queue putbq

20

operation for a subsequent software dma _swsetup(D3X)
operation on a channel and release dma _stop(D3X)
operation via software request dma _swstart(D3X)
opposite direction in a stream qreply(D3DK)
option structure stroptions(D4DK)
OTHERQ get pointer to queue's OTHERQ(D3DK)
outb write a byte to an 8 bit 1/0 outb(D3DK)
out! write a 32 bit long word to a outl(D3DK)
outstanding buffer request mps _ AMPreceive(D3DK)
outw write a 16 bit short word to a outw(D3DK)
page ID for kernel virtual address kvtoppid(D3DK)
page ID for physical address phystoppid(D3DK)
page list bp _ mapin allocate bp _ mapin(D3DK)
page list bp _ mapout deallocate bp _ mapout(D3DK)
page pointer ... getnextpg(D3DK)
page pointer to physical address pptophys(D3DK)
pages (round down) btop .. btop(D3DK)
pages (round up) btopr .. btopr(D3DK)
pages to size in bytes ptob(D3DK)
panic the system crnn _ err(D3DK)
parameter to a queue putct!l send putctl(D3DK)
parameter to a queue Isend putnextctl(D3DK)
part of a request-response I I replies
... mps _ AMPsend Jeply(D3DK)
part of any request-response I Isends
.. mps _ AMPsend(D3DK)
part of any request-responsel
.. mps _ AMPsend _ data(D3DK)
partner queue ... OTHERQ(D3DK)
pcmsg test whether a message is a pcmsg(D3DK)
pending bufcall request unbufcall(D3DK)
pending completion of block I/O biowait(D3DK)
perform block I/O ... strategy(D2DK)
phalloc allocate and initialize a phalloc(D3DK)
phfree free a pollhead structure phfree(D3DK)
physical address phystoppid(D3DK)
physical address .. pptophys(D3DK)
physical address ... vtop(D3DK)
physical addresses physmap physmap(D3DK)
physical addresses physmap _free physmap _free(D3DK)
physical page ID for kernel virtual.. kvtoppid(D3DK)
physical page ID for physical phystoppid(D3DK)
physiock validate and issue raw I/O physiock(D3DK)
physmap obtain virtual address physmap(D3DK)
physmap _free free virtual address physmap _free(D3DK)
phystoppid get physical page ID for phystoppid(D3DK)
place a message at the head of a putbq(D3DK)

OOI/OKI Reference Manual

Permuted Index

determine whether credentials are
put call a put

intr
number of clock ticks delay delay

proc Jef obtain a reference to a
proc_signal send a signal to a

proc _ unref release a reference to a
SV _SIGNAL wake up one

buffer after block I/O and wakeup
block I/O biowait suspend

SV _BROADCAST wake up all
occurred pollwakeup inform polling

/ execute a function on a specified
spl block/allow interrupts on a

process for signaling
process
process

subsequent hardware/ dmaJ>rog
subsequent software/ dma_swsetup

in bytes
putq

qprocsoff disable
qprocson enable

put call a
preceding queue

of a queue
queue

a one-byte parameter to a queue
queue

to a queue
with a one byte parameter to a/

memory pool mps _free _ msgbuf
routine to be run

structure
routines
routines

opposite direction in a stream
on a queue

available SLEEP LOCKA VAIL

by the caller SLEEP _ LOCKOWNED

canput test for room in a message
flushq flush messages on a

noenable prevent a

22

privileged drv J>riv ... drv J>riv(D3DK)
procedure ... put(D3DK)
process a device interrupt .. intr(D2DK)
process execution for a specified delay(D3DK)
process for signaling ... procJef(D3DK)
process ... proc_signal(D3DK)
process proc _ unref(D3DK)
process sleeping on a/ SV _SIGNAL(D3DK)
processes biodone release biodone(D3DK)
processes pending completion of biowait(D3DK)
processes sleeping on a/ SV _ BROADCAST(D3DK)
processes that an event has pollwakeup(D3DK)
processor, after a specified length/ dtimeout(D3DK)
processor ... spl(D3DK)
proc Jef obtain a reference to a.......... proc Jef(D3DK)
proc_signal send a signal to a proc_signal(D3DK)
proc_unref release a reference to a proc_unref(D3DK)
program a DMA operation for a dma J>rog(D3X)
program a DMA operation for a dma _swsetup(D3X)
ptob convert size in pages to size ptob(D3DK)
put a message on a queue .. putq(D3DK)
put and service routines qprocsoff(D3DK)
put and service routines qprocson(D3DK)
put call a put procedure ... put(D3DK)
put procedure ... put(D3DK)
put receive messages from the put(D2DK)
putbq place a message at the head putbq(D3DK)
putctl send a control message to a putctl(D3DK)
putctll send a control message with putctl(D3DK)
putnext send a message to the next putnext(D3DK)
putnextctl send a control message putnextctl(D3DK)
putnextctll send a control message putnextctl(D3DK)
putq put a message on a queue putq(D3DK)
puts a buffer back into the free mps _free _ msgbuf(D3DK)
qenable schedule a queue's service qenable(D3DK)
qinit STREAMS queue initialization qinit(D4DK)
qprocsoff disable put and service qprocsoff(D3DK)
qprocson enable put and service qprocson(D3DK)
qreply send a message in the qreply(D3DK)
qsize find the number of messages qsize(D3DK)
query whether a sleep lock is
... SLEEP_LOCKA V AIL(D3DK)
query whether a sleep lock is held
.. SLEEP _ LOCKOWNED(D3DK)
queue .. canput(D3DK)
queue ... flushq(D3DK)
queue from being scheduled noenable(D3DK)

OOI/OKI Reference Manual

Permuted Index

RW _ TRYRDLOCK try to acquire a
RW _ TRYWRLOCK try to acquire a

RW _ WRLOCK acquire a
RW ALLOC allocate and initialize a

deallocate an instance of a
RW UNLOCK release a

register of the board in/ ics _find
queue put

mps _ AMPsend Jeply replies to a

fragments when/ mps _ AMPreceive _ frag
corresponds to ani mps _ AMPreceive

space is not available at the

/ and sets up table entries for
a DMA channel dma disable disable

a DMA channel dma enable enable
/the host id field of the HOST ID

signaling proc Jef obtain a
proc _ unref release a

/ Jec reads the interconnect
ics read reads the interconnect

/writes a value into the specified
/number of interconnect space

mps_mk_breject construct a buffer
UNLOCK

RW UNLOCK
proc_unref

SLEEP UNLOCK
wakeup processes biodone

DMA operation on a channel and
close

message rmvb
head of a message unlinkb

rmvq
buffer

port to buffer
port to buffer

is part of a/ mps _ AMPsend Jeply

24

/ constructs a unsolicited
up table entries for reception of

get data length for a solicited
sent to initiate a solicited data

an I/O port

read/write lock in read mode RW _ TRYRDLOCK(D3DK)
read/write lock in write mode
.. RW _ TRYWRLOCK(D3DK)
read/write lock in write mode RW _ WRLOCK(D3DK)
read/write lock .. RW _ ALLOC(D3DK)
read/write lock RW _ DEALLOC RW _ DEALLOC(D3DK)
read/write lock .. RW _ UNLOCK(D3DK)
Jec reads the interconnect ics _ find(D3DK)
receive messages from the preceding put(D2DK)
received request that is part of a/
... mps _ AMPsend _ reply(D3DK)
receives solicited data in mps _ AMPreceive jrag(D3DK)
receives solicited data that mps _ AMPreceive(D3DK)
receiving agent /when buffer
... mps _ AMPreceive _ frag(D3DK)
reception of reply messages mps _ AMPsend Jsvp(D3DK)
recognition of hardware requests on dma _ disable(D3X)
recognition of hardware requests on dma _ enable(D3X)
record in this board's interconnect/ ics_hostid(D3DK)
reference to a process for proc Jef(D3DK)
reference to a process proc _ unref(D3DK)
register of the board in the/ ics_find(D3DK)
register of the board in the/ icsJead(D3DK)
register of the board in the/ ics _ write(D3DK)
registers from a given cardslot ID ics_rdwr(D3DK)
reject in response to a buffer/ mps_mk_breject(D3DK)
release a basic lock ... UNLOCK(D3DK)
release a read/write lock RW _ UNLOCK(D3DK)
release a reference to a process proc _ unref(D3DK)
release a sleep lock SLEEP _ UNLOCK(D3DK)
release buffer after block I/O and biodone(D3DK)
release it /stop software-initiated dma_stop(D3X)
relinquish access to a device close(D2DK)
remove a message block from a................................. rmvb(D3DK)
remove a message block from the unlinkb(D3DK)
remove a message from a queue rmvq(D3DK)
repinsb read bytes from I/O port to repinsb(D3DK)
repinsd read 32 bit words from I/O repinsd(D3DK)
repinsw read 16 bit words from I/O repinsw(D3DK)
replies to a received request that
... mps _ AMPsend Jeply(D3DK)
reply message to be sent mps _ mk _ unsolrply(D3DK)
reply messages / and sets mps _ AMPsend Jsvp(D3DK)
reply mps ~etJeply Jen mps ~et Jeply Jen(D3DK)
reply / constructs a message to be
..... .. mps _ mk _ solrply(D3DK)
repoutsb write bytes from buffer to repoutsb(D3DK)

OOI/OKI Reference Manual

Permuted Index

size in bytes to size in pages
STREAMS driver's message free

qenable schedule a queue's service
introduction to driver entry point

introduction to kernel utility
intro introduction to DMA utility
qprocsoff disable put and service
qprocson enable put and service

mps _ AMPcancel cancels an ongoing
a queue's service routine to be

read/write lock
of a read/write lock

in read mode

read/write lock in read mode

read/write lock in write mode

in write mode

type
structure uio

to be run qenable
noenable prevent a queue from being

putctl
putnextctl

byte parameter to a/ putnextctll
one-byte parameter to a/ putctll

direction in a stream qreply
putnext

proc _signal
part of any / mps _ AMPsend _data

not part of any / mps _ AMPsend

a broadcast message to be
an unsolicited message to be

a unsolicited reply message to be

reply / constructs a message to be
/ constructs a message to be

srv
qenable schedule a queue's

qprocsoff disable put and

26

(round up) btopr convert ... btopr(D3DK)
routine structure free _ rtn free Jtn(D4DK)
routine to be run ... qenable(D3DK)
routines intro ... intro(D2DK)
routines intro ... intro(D3DK)
routines ... intro(D3X)
routines qprocsoff(D3DK)
routines .. qprocson(D3DK)
rsvp transaction .. mps _ AMPcancel(D3DK)
run qenable schedule , qenable(D3DK)
RW _ ALLOC allocate and initialize a........... RW _ ALLOC(D3DK)
RW _ DEALLOC deallocate an instance
... RW _ DEALLOC(D3DK)
RW _ RDLOCK acquire a read/write lock
... RW _ RDLOCK(D3DK)
RW _ TRYRDLOCK try to acquire a
... RW _ TRYRDLOCK(D3DK)
RW _ TRYWRLOCK try to acquire a
.. RW _ TRYWRLOCK(D3DK)

RW _UNLOCK release a read/write lock
... RW _ UNLOCK(D3DK)
RW _ WRLOCK acquire a read/write lock
.. RW _ WRLOCK(D3DK)
SAMESTR test if next queue is same SAMESTR(D3DK)
scatter/gather II 0 request ... uio(D4DK)
schedule a queue's service routine qenable(D3DK)
scheduled ... noenable(D3DK)
send a control message to a queue putctl(D3DK)
send a control message to a queue putnextct1(D3DK)
send a control message with a one putnextctl(D3DK)
send a control message with a.................................. putctl(D3DK)
send a message in the opposite qreply(D3DK)
send a message to the next queue putnext(D3DK)
send a signal to a process proc_signal(D3DK)
sends solicited data that is not
.. mps _ AMPsend _ data(D3DK)
sends unsolicited messages that are
.. mps _ AMPsend(D3DK)
sent mps_mk_brdcst constructs mps_mk_brdcst(D3DK)
sent mps _ mk _ unsol constructs mps _ mk _ unsol(D3DK)
sent mps _ mk _ unsolrply constructs
... mps _ mk _ unsolrply(D3DK)
sent to initiate a solicited data mps _ mk_solrply(D3DK)
sent to initiate a solicited datal mps_mk_sol(D3DK)
service queued messages ... srv(D2DK)
service routine to be run ... qenable(D3DK)
service routines qprocsoff(D3DK)

OOI/OKI Reference Manual

Permuted Index

sleep lock

board types in the designated
of the board in the specified
of the board in the specified
of the board in the specified

a DMA operation for a subsequent
initiate a DMA operation via

a channel andl dma_stop stop
mps _ AMPreceive _frag receives

a message to be sent to initiate a
ani mps _ AMPreceive receives

a message to be sent to initiate a
get data length for a

ureadc copy a character to
uwritec return a character from

bp _ mapin allocate virtual address
I deallocate virtual address

management map rmalloc allocate
managementl rmalloc _wait allocate

kmem alloc allocate
kmem zalloc allocate and clear

record in this board's interconnect
management map rmfree free

I data in fragments when buffer

allocate space from a private
allocate and initialize a private

allocate space from a private

rmfree free space into a private
rmfreemap free a private

I a specified number of interconnect
drv _ usecwait busy-wait for

on a specified processor, after a
itimeout execute a function after a

delay delay process execution for a
space I icsJdwr reads or writes a

28

SLEEP_LOCK _ SIG acquire a sleep lock
... SLEEP_LOCK _ SIG(D3DK)
SLEEP _ TRYLOCK try to acquire a
.. SLEEP _ TRYLOCK(D3DK)
SLEEP _UNLOCK release a sleep lock
... SLEEP _ UNLOCK(D3DK)
slot Ichecks for certain ics_agent_cmp(D3DK)
slot Ithe interconnect register icsJind(D3DK)
slot Ithe interconnect register icsJead(D3DK)
slot linto the specified register ics _ write(D3DK)
software request Iprogram dma_swsetup(D3X)
software request dma_swstart dma_swstart(D3X)
software-initiated DMA operation on dma_stop(D3X)
solicited data in fragments whenl
... mps _ AMPreceive _ frag(D3DK)
solicited data reply I constructs mps _ mk _solrply(D3DK)
solicited data that corresponds to
.. mps _ AMPreceive(D3DK)
solicited data that is not part of
.. mps _ AMPsend _ data(D3DK)
solicited data transfer I constructs mps _ mk _sol(D3DK)
solicited reply mps ~etJeply }en
... mps ~et_reply }en(D3DK)
space described by uio(D4DK)1 ureadc(D3DK)
space described by uio(D4DK)1 uwritec(D3DK)
space for buffer page list bp _ mapin(D3DK)
space for buffer page list bp _ mapout(D3DK)
space from a private space rmalloc(D3DK)
space from a private space rmalloc_wait(D3DK)
space from kernel free memory kmem _ alloc(D3DK)
space from kernel free memory kmem _ zalloc(D3DK)
space Ihost id field of the HOST ID ics _ hostid(D3DK)
space into a private space ... rmfree(D3DK)
space is not available at thel
... mps _ AMPreceive _frag(D3DK)
space management map rmalloc rmalloc(D3DK)
space management map rmallocmap rmallocmap(D3DK)
space management map rmalloc _wait
.. rmalloc _ wait(D3DK)
space management map .. rmfree(D3DK)
space management map rmfreemap(D3DK)
space registers from a givenl ics Jdwr(D3DK)
specified interval... drv _ usecwait(D3DK)
specified length of time lfunction dtimeout(D3DK)
specified length of time itimeout(D3DK)
specified number of clock ticks delay(D3DK)
specified number of interconnect ics Jdwr(D3DK)

OOI/OKI Reference Manual

Permuted Index

driver's message free routine
iocblk STREAMS ioctl

linkblk STREAMS multiplexor link
driver and module information
msgb STREAMS message block

allocate and initialize a pollhead
phfree free a pollhead

qinit STREAMS queue initialization
queue STREAMS queue

driver and module declaration
stroptions stream head option
uio scatter/gather I/O request

uiomove copy data using uio(D4DK)
to space described by uio(D4DK)

from space described by uio(D4DK)
intro introduction to kernel data
intro introduction to DMA data

strlog
/program a DMA operation for a
/program a DMA operation for a
completion of block I/O biowait

synchronization variable
sleeping on a synchronization/

of a synchronization variable

sleeping on a synchronization/
variable

synchronization variable
SV ALLOC allocate and initialize a

/wake up all processes sleeping on a
/ deallocate an instance of a

wake up one process sleeping on a

SV _WAIT sleep on a
SV_WAIT_SIG sleep on a

an error message or panic the
display a driver message on the

halt shut down the driver when the
start initialize a device at

brelse return a buffer to the
reply/ /for transmission and sets up

specified priority / bcanputnext
canputnext

priority band bcanput
canput

SAMESTR

30

structure free Jtn STREAMS free Jtn(D4DK)
structure .. iocblk(D4DK)
structure ... linkblk(D4DK)
structure module_info STREAMS module _ info(D4DK)
structure ... msgb(D4DK)
structure phalloc ... phalloc(D3DK)
structure .. phfree(D3DK)
structure ... qinit(D4DK)
structure .. queue(D4DK)
structure streamtab STREAMS streamtab(D4DK)
structure ... stroptions(D4DK)
structure uio(D4DK)
structure uiomove(D3DK)
structure ureadc copy a character ureadc(D3DK)
structure fretum a character uwritec(D3DK)
structures ... intro(D4DK)
structures .. intro(D4X)
submit messages to the log driver strlog(D3DK)
subsequent hardware request dma J>rog(D3X)
subsequent software request dma _swsetup(D3X)
suspend processes pending biowait(D3DK)
SV _ ALLOC allocate and initialize a.............. SV _ ALLOC(D3DK)
SV _BROADCAST wake up all processes
... SV _BROADCAST(D3DK)
SV DEALLOC deallocate an instance
... SV _ DEALLOC(D3DK)
SV _SIGNAL wake up one process SV _SIGNAL(D3DK)
SV _WAIT sleep on a synchronization SV _ W AIT(D3DK)
SV_WAIT_SIG sleep on a SV_WAIT_SIG(D3DK)
synchronization variable SV _ ALLOC(D3DK)
synchronization variable SV _ BROADCAST(D3DK)
synchronization variable SV _ DEALLOC(D3DK)
synchronization variable SV _SIGNAL
... SV _SIGNAL(D3DK)
synchronization variable SV _ W AIT(D3DK)
synchronization variable SV _WAIT _ SIG(D3DK)
system cmn _err display.. cmn _ err(D3DK)
system console print .. print(D2DK)
system shuts down .. halt(D2DK)
system start-up .. start(D2DK)
system's free list ... brelse(D3DK)
table entries for reception of mps _ AMPsend Jsvp(D3DK)
test for flow control in a................................. bcanputnext(D3DK)
test for flow control in a stream canputnext(D3DK)
test for flow control in specified bcanput(D3DK)
test for room in a message queue canput(D3DK)
test if next queue is same type SAMESTR(D3DK)

OOI/OKI Reference Manual

Permuted Index.

request
in bytes to size in pages (round

described by uio(D4DK) structure
copy data from a driver buffer to a

copyin copy data from a
mps~et_soldata copies

mps ~et_ unsoldata copies

esballoc allocate a message block
data storage structure for I/O

uiomove copy data
intro introduction to kernel
intro introduction to DMA

space described by uio(D4DK)/
physiock

of the board in/ ics _write writes a
and initialize a synchronization

sleeping on a synchronization
an instance of a synchronization

sleeping on a synchronization
SV _WArT sleep on a synchronization

sleep on a synchronization
ASSERT

initiate a DMA operation
get physical page ID for kernel

physical addresses physmap obtain
physical! physmap _free free

page list bp _ mapin allocate
page list bp _ mapout deallocate

vtop convert
device mmap check

physical address
synchronization/ SV _BROADCAST

synchronization variable SV _SIGNAL
release buffer after block I/O and

datamsg test
control message pcmsg test
SLEEP_LOCKA V AIL query

caller SLEEP _ LOCKOWNED query

32

drv -priv determine
bioerror manipulate error field

unsolicited reply message to be
... mps _ mk _ unsolrply(D3DK)
untimeout cancel previous timeout untimeout(D3DK)
up) btopr convert size .. btopr(D3DK)
ureadc copy a character to space ureadc(D3DK)
user buffer copyout .. copyout(D3DK)
user buffer to a driver buffer copyin(D3DK)
user data from the message buffer
... mps~et_soldata(D3DK)
user data from the message buffer
... mps ~et_ unsoldata(D3DK)
using an externally-supplied buffer esballoc(D3DK)
using uio(D4DK) iovec ... iovec(D4DK)
using uio(D4DK) structure uiomove(D3DK)
utility routines .. intro(D3DK)
utility routines ... intro(D3X)
uwritec return a character from uwritec(D3DK)
validate and issue raw I/O request physiock(D3DK)
value into the specified register ics _ write(D3DK)
variable SV _ ALLOC allocate SV _ ALLOC(D3DK)
variable /wake up all processes SV _ BROADCAST(D3DK)
variable SV _ DEALLOC deallocate SV _ DEALLOC(D3DK)
variable /wake up one process SV _SIGNAL(D3DK)
variable ... SV _ WAIT(D3DK)
variable SV_WAIT_SIG SV_WAIT_SIG(D3DK)
verify assertion .. , ASSERT(D3DK)
via software request dma _swstart dma _swstart(D3X)
virtual address kvtoppid kvtoppid(D3DK)
virtual address mapping for physmap(D3DK)
virtual address mapping for physmap _ free(D3DK)
virtual address space for buffer bp _ mapin(D3DK)
virtual address space for buffer bp _ mapout(D3DK)
virtual address to physical address vtop(D3DK)
virtual mapping for memory-mapped mmap(D2DK)
vtop convert virtual address to vtop(D3DK)
wake up all processes sleeping on a
... SV _ BROADCAST(D3DK)
wake up one process sleeping on a SV _ SIGNAL(D3DK)
wakeup processes biodone biodone(D3DK)
whether a message is a data message datamsg(D3DK)
whether a message is a priority pcmsg(D3DK)
whether a sleep lock is available
... SLEEP_LOCKA V AIL(D3DK)
whether a sleep lock is held by the
.. SLEEP _ LOCKOWNED(D3DK)
whether credentials are privileged dry -priv(D3DK)
within a buffer header .. bioerror(D3DK)

OOI/OKI Reference Manual

devflag (01 0) 001 devflag (010)

NAME
devf1ag - driver flags

SYNOPSIS
#include <sys/conf.h>

int prefixdevflag = 0;

DESCRIPTION
Every driver must define a global integer containing a bitmask of flags that indi­
cate its characteristics to the system. The valid flags that may be set are:

D_DMA The driver does DMA (Direct Memory Access).

D_TAPE The driver controls a tape device (mount read-only).

D_NOBRKUP The driver understands the B_PAGEIO flag in the buffer header (the
I/O job is not broken up along page boundaries into multiple jobs
by the kernel).

D_MP The driver is multithreaded (it handles its own locking and serializa­
tion).

If no flags are set for the driver, then prefixdevf1ag should be set to O.

SEE ALSO
Integrated Software Development Guide

3/91 Page 1

prefix (01 OK) OOI/OKI prefix (01DK)

NAME
prefix - driver prefix

SYNOPSIS
int prefixclose () ;
int prefixopen () ;

DESCRIPTION
Every driver must define a unique prefix, whose maximum length is
implementation-defined. The prefix is usually specified in a configuration file.
Driver entry points names are created by concatenating the driver prefix with the
name for the entry point. This enables driver entry points to be identified by
configuration software and decreases the possibility of global symbol collisions in
the kernel.

SEE ALSO
devflag(DlD), info(DlD), chpoll(D2DK), close(D2DK), halt(D2D),
init(D2D), intr(D2D), ioctl(D2DK), mmap(D2DK), open(D2DK), print(D2DK),
put(D2DK), read(D2DK), size(D2DK), srv(D2DK), start(D2DK),
strategy(D2DK), wri te(D2DK)

EXAMPLE

3/91

An ETHERNET driver might use a driver prefix of "en." It would define the fol­
lowing entry points: enclose, eninit, enintr, enopen, enwput, enrsrv, and
enwsrv. It would also define the data symbols endevflag and eninfo.

Page 1

chpoll (D2DK) DDI/DKI chpoll (D2DK)

NAME
chpoll - poll entry point for a non-STREAMS character driver

SYNOPSIS
#include <sys/poll.h>

int prefixchpoll (dev_t dev, short events, int anyyet, short *reventsp,
struct pollhead **phppl;

ARGUMENTS
dev The device number for the device to be polled.

events

anyyet

reventsp

phpp

Mask (bit-wise OR) indicating the events being polled. Valid events
are:

POLLIN

POLLOUT
POLLPRI
POLLHUP
POLLERR
POLLRDNORM
POLLWRNORM

POLLRDBAND
POLLWRBAND

Data are available to be read (either normal or out­
of-band).
Data may be written without blocking.
High priority data are available to be read.
A device hangup.
A device error.
Normal data are available to be read.
Normal data may be written without blocking (same
as POLLOUT).
Out-of-band data are available to be read.
Out-of-band data may be written without blocking.

A flag that indicates whether the driver should return a pointer to its
pollhead structure to the caller.

A pointer to a bitmask of the returned events satisfied.

A pointer to a pointer to a pollhead structure (defined in
sys/poll.h.)

DESCRIPTION

3/91

The chpoll entry point indicates whether certain I/O events have occurred on a
given device. It must be provided by any non-STREAMS character device driver
that wishes to support polling [see poll(2)].

A driver that supports polling must provide a pollhead structure for each minor
device supported by the driver. The driver must use phalloc(D3DK) to allocate
the pollhead structure. It can be freed later, if necessary, with phfree(D3DK).
The definition of the pollhead structure is not included in the DDI/DKI, and can
change across releases. It should be treated as a "black box" by the driver; none
of its fields may be referenced. Drivers should not depend on the size of the
pollhead structure.

The driver must implement the polling discipline itself. Each time the driver
detects a pollable event, it should call pollwakeup(D3DK), passing to it the event
that occurred and the address of the pollhead structure associated with the
device. Note that pollwakeup should be called with only one event at a time.

Page 1

close(020K) OOI/OKI close(020K)

NAME
close - relinquish access to a device

SYNOPSIS [Block and Character]
#include <sys/types.h>
#include <sys/file.h>
#include <sys/errno.h>
#include <sys/open.h>
#include <sys/cred.h>
#include <sys/ddi.h>

int prejixclose (dev_t dev, int flag, int otyp, cred_t *erp) i

ARGUMENTS
dev Device number.

flag File status flag. Possible flag values and their definitions can be found
in open(D2DK).

otyp Parameter supplied so that the driver can determine how many times
a device was opened and for what reasons. The values are mutually
exclusive.

OTYP _BLK Close was through block interface for the device.

OTYP_CHR Close was through the raw/character interface for the
device.

OTYP_LYR Close a layered device. This flag is used when one
driver calls another driver's close routine.

erp Pointer to the user credential structure.

SYNOPSIS [STREAMS]
#include <sys/types.h>
#include <sys/stream.h>
#include <sys/file.h>
#include <sys/errno.h>
#include <sys/cred.h>
#include <sys/ddi.h>

int prejixclose (queue_t *q, int flag, cred_t *erp) i

ARGUMENTS
q Pointer to queue used to reference the read side of the driver.

File status flag. flag

erp Pointer to the user credential structure.

DESCRIPTION

3/91

The close routine ends the connection between the user process and the device,
and prepares the device (hardware and software) so that it is ready to be opened
again.

For OTYP_BLK and OTYP_CHR, a device may be opened simultaneously by multiple
processes and the driver open routine is called for each open, but the kernel will
only call the close routine when the last process using the device issues a
close(2) system call or exits.

Page 1

close (020K) OOI/OKI close (020K)

RETURN VALUE
The close routine should return 0 for success, or the appropriate error number.
Refer to errnos(D5DK) for a list of DDI/DKI error numbers. Return errors
rarely occur, but if a failure is detected, the driver should still close the device
and then decide whether the severity of the problem warrants displaying a mes­
sage on the console.

SEE ALSO

3/91

open(D2DK), drv""priv(D3DK), qprocsoff(D3DK), unbufcal1(D3DK),
untimeout(D3DK), queue(D4DK), errnos(D5DK)

Page 3

init(D2D) DDI init(D2D)

NAME
init - initialize a device

SYNOPSIS
void prefixinit();

DESCRIPTION

NOTES

init and start(D2DK) routines are used to initialize drivers and the devices
they control. init routines are executed during system initialization, and can be
used in drivers that do not require system services to be initialized. start rou­
tines are executed after system services are enabled.

init routines can perform functions such as:
allocating memory for private buffering schemes
mapping a device into virtual address space
initializing hardware (for example, system generation or resetting the
board)

Functions that may result in the caller sleeping, or that require user context, such
as SV_WAIT(D3DK), may not be called. Any function that provides a flag to
prevent it from sleeping must be called such that the function does not sleep.
Also, init routines are executed before interrupts are enabled.

The following kernel functions can be called from the driver's init routine:
ASSERT drv_usectohz physmap
bcopy drv_usecwait physmap_free
btop/btopr etoimajor repinsb/repinsl/
bzero getemajor repinsw
cmD_err geteminor repoutsb/repoutsl/
dIna_disable getmajor repoutsw
dIna_enable getminor rmalloc
dma_free_buf inh/inl/inw rmallocmap
dIna_free_cb itoemajor rmfreemap
dma_get_best_mode ~_alloc rmfree
dma~et_buf kmem_free RWLOCK_ALLOC
dma_get_cb ~_zalloc SLEEP_ALLOC
dma-prog LOCK_ALLOC SV_ALLOC
dma_stop makedevice vtop
dma_swsetup max/min
dma_swstart outb/outl/outw
drv~etpa~ phalloc
drv_hztousec phfree

This entry point is optional.

RETURN VALUE
None.

SEE ALSO
start(D2DK)

3/91 Page 1

intr(D2D) DDI intr(D2D)

NOTES,

In addition, the functions of an intr routine are device dependent. You should
know the exact chip set that produces the interrupt for your device. You need to
know the exact bit patterns of the device's control and status register and how
data is transmitted into and out of your computer. These specifics differ for
every device you access.

The intr routine for an intelligent controller that does not use individual inter­
rupt vectors for each subdevice must access the completion queue to determine
which subdevice generated the interrupt. It must also update the status informa­
tion, setl clear flags, setl clear error indicators, and so forth to complete the han­
dling of a job. The code should also be able to handle a spurious completion
interrupt identified by an empty completion queue. When the routine finishes, it
should advance the unload pointer to the next entry in the completion queue.

If the driver called biowait{D3DK) or SV_WAIT{D3DK) to await the completion of
an operation, the intr routine must call biodone(D3DK) or SV_SIGNAL(D3DK) to
signal the process to resume.

The interrupt routine runs at the processor level associated with the interrupt
level for the given device. Lower priority interrupts are deferred while the inter­
rupt routine is active. Certain processor levels can block different interrupts. See
spl(D3D) for more information.

This entry point is only required for those drivers that interface to hardware that
interrupts the host computer. It is not used with software drivers.

The intr routine must never:

use functions that sleep

drop the interrupt priority level below the level at which the interrupt
routine was entered

call any function or routine that requires user context (that is, if it accesses
or alters information associated with the running process)

uiamove(D3DK), ureadc(D3DK), and uwritec(D3DK) cannot be used in
an interrupt routine when the uio_segflg member of the uio{D4DK)
structure is set to UIO_USERSPACE (indicating a transfer between user and
kernel space).

RETURN VALUE
None.

SEE ALSO
biodone(D3DK), spl(D3D), SV_SIGNAL{D3DK)

Page 2 3/91

ioetl (020K) OOI/OKI ioetl (020K)

An attempt should be made to keep the values for driver-specific I/O control
commands distinct from others in the system. Each driver's 1/ 0 control com­
mands are unique, but it is possible for user-level code to access a driver with an
I/O control command that is intended for another driver, which can have serious
results.

A common method to assign I/O control command values that are less apt to be
duplicated is to compose the commands from some component unique to the
driver (such as a module name or ID), and a counter, as in:

#define PREFIX ('h'«l61'd'«8)
#define COMMANDl (PREFIXll)
#define COMMAND2 (PREFIX I 2)
#define COMMAND3 (PREFIX I 3)

RETURN VALUE
The ioctl routine should return a on success, or the appropriate error number
on failure. The system call will usually return a on success or -Ion failure.
However, the driver can choose to have the system call return a different value
on success by passing the value through the rvalp pointer.

SEE ALSO
open(D2DK), copyin(D3DK), copyout(D3DK), drv-priv(D3DK), errnos(D5DK)

Page 2 3/91

mmap(020K) OOI/OKI mmap(020K)

SEE ALSO
kvtoppid(D3DK), phystoppid(D3D)

mmap(2)

Page 2 3/91

open (020K) OOI/OKI open (020K)

ARGUMENTS
q

[STREAMS]
Pointer to the queue used to reference the read side of the driver.

devp

oflag

sflag

erp

Pointer to a device number. For modules, devp always points to the
device number associated with the driver at the end (tail) of the
stream.

Open flags. Valid values are the same as those listed above.

STREAMS flag. Values are mutually exclusive and are given as fol­
lows:

CLONEOPEN Indicates a clone open (see below). If the driver supports
cloning, it must assign and return a device number of an
unused device by changing the value of the device
number to which devp points.

MODOPEN Indicates that an open routine is being called for a
module, not a driver. This is useful in detecting
configuration errors and in determining how the driver is
being used, since STREAMS drivers can also be
configured as STREAMS modules.

o Indicates a driver is being opened directly, without clon­
ing.

Pointer to the user credential structure.

DESCRIPTION

Page 2

The driver's open routine is called to prepare a device for further access. It is
called by the kernel during an open(2) or a mount(2) of the device special file.
For non-STREAMS drivers, it can also be called from another (layered) driver.
The STREAMS module open routine is called by the kernel during an I_PUSH
ioctl(2) or an autopush-style open [see autopush(lM)].

The open routine could perform any of the following general functions, depend­
ing on the type of device and the service provided:

enable interrupts
allocate buffers or other resources needed to use the device
lock an unsharable device
notify the device of the open
change the device number if this is a clone open

The open routine should verify that the minor number component of devp is
valid, that the type of access requested by otyp and oflag is appropriate for the
device, and, if required, check permissions using the user credentials pointed to
byerp [see drv-priv(D3DK)].

Cloning is the process of the driver selecting an unused device for the user. It
eliminates the need to poll many devices when looking for an unused one. Both
STREAMS and Non-STREAMS drivers may implement cloning behavior by
changing the device number pointed to by devp. A driver may designate certain
minor devices as special clone entry points into the driver. When these are
opened, the driver searches for an unused device and returns the new device
number by changing the value of the device number to which devp points. Both

3/91

print (020K) OOI/OKI

NAME
print - display a driver message on the system console

SYNOPSIS
#include <sys/types.h>
#include <sys/errno.h>

int prejixprint (dev_t dev, char *str);

ARGUMENTS
dev Device number.

print (020K)

str Pointer to a NULL-terminated character string describing the problem.

DESCRIPTION

NOTES

The print routine is called indirectly by the kernel for the block device when the
kernel has detected an exceptional condition (such as out of space) in the device.
The driver should print the message on the console along with any driver-specific
information. To display the message on the console, the driver should use the
=_err(D3DK) function.

This entry point is optional.

The driver should not try to interpret the text string passed to it.

The driver's print routine should not call any functions that sleep.

RETURN VALUE
Ignored.

SEE ALSO
CIDn_err(D3DK)

3/91 Page 1

put (D2DK) DDI/DKI(STREAMS) put(D2DK)

Page 2

}

if (*mp->b_rptr & FLUSHR) {
flushband(RD(q), FLUSHDATA, *(mp->b_rptr + 1»;
qreply(q, mp);

else {
freemsg(mp) ;

else {
if (*mp->b_rptr & FLUSHW) {

flushq(q, FLUSHDATA);
*mp->b_rptr &= -FLUSHW;

if (*mp->b_rptr & FLUSHR) {
flushq(RD(q), FLUSHDATA);
qreply(q, mp);

else {
freemsg (mp) ;

The canonical flushing algorithm for module write put routines is as follows:

1* the write queue *1

if (*mp->b_rptr & FLUSHBAND) { 1* if module recognizes bands *1
if (*mp->b_rptr & FLUSHW)

flushband(q, FLUSHDATA, *(mp->b_rptr + 1»;
if (*mp->b_rptr & FLUSHR)

flushband(RD(q), FLUSHDATA, *(mp->b_rptr + 1»;
else {

if (*rnp->b_rptr & FLUSHW)
flushq(q, FLUSHDATA);

if (*mp->b_rptr & FLUSHR)
flushq(RD(q), FLUSHDATA);

if (!SAMESTR(q» {

}

switch (*mp->b_rptr & FLUSHRW) {
case FLUSHR:

*mp->b_rptr = (*mp->b_rptr & -FLUSHR) I FLUSHW;
break;

case FLUSHW:
*mp->b_rptr
break;

(*mp->b_rptr & -FLUSHW) I FLUSHR;

putnext(q, mp);

3/91

read (020K) OOI/OKI read (020K)

NAME
read - read data from a device

SYNOPSIS
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/uio.h>
#include <sys/cred.h>

int prefixread(dev_t dev, uio_t *uiop, cred_t *crp>;

ARGUMENTS
dev Device number.

uiop

crp

Pointer to the uio(D4DK) structure that describes where the data is to
be stored in user space.

Pointer to the user credential structure for the I/O transaction.

DESCRIPTION

NOTES

The driver read routine is called during the read(2) system call. The read rou­
tine is responsible for transferring data from the device to the user data area. The
pointer to the user credentials, crp, is available so the driver can check to see if
the user can read privileged information, if the driver provides access to any.
The uio structure provides the information necessary to determine how much
. data should be transferred. The uiamove(D3DK) function provides a convenient
way to copy data using the uio structure.

Block drivers that provide a character interface can use physiock(D3DK) to per­
form the data transfer with the driver's strategy(D2DK) routine.

This interface is optional.

The read routine has user context and can sleep.

RETURN VALUE
The read routine should return 0 for success, or the appropriate error number.

SEE ALSO

3/91

strategy(D2DK), write(D2DK), drv-priv(D3DK), physiock(D3DK),
uiomove(D3DK), ureadc(D3DK), uio(D4DK), errnos(D5DK)

Page 1

srv(D2DK) DDI/DKI(STREAMS) srv(D2DK)

NAME
srv - service queued messages

SYNOPSIS
#include <sys/types.h>
#include <sys/stream.h>
#include <sys/stropts.h>
int prefixrsrv(queue_t *q); 1* read side *1
int pr~xwsrv(queue_t *q); 1* write side *1

ARGUMENTS
q Pointer to the queue.

DESCRIPTION

3/91

'The service routine may be included in a STREAMS module or driver for a
number of reasons. It provides greater control over the flow of messages in a
stream by allowing the module or driver to reorder messages, defer the process­
ing of some messages, or fragment and reassemble messages. Service routines
also provide a way to recover from resource allocation failures.

A message is first passed to a module's or driver's put(D2DK) routine, which
mayor may not process it. 'The put routine can place the message on the queue
for processing by the service routine.

Once a message has been enqueued, the STREAMS scheduler calls the service
routine at some later time. Drivers and modules should not depend on the order
in which service procedures are run. 'This is an implementation-dependent
characteristic. In particular, applications should not rely on service procedures
running before returning to user-level processing.

Every STREAMS queue [see queue(D4DK)] has limit values it uses to implement
flow control. Tunable high and low water marks are checked to stop and restart
the flow of message processing. Flow control limits apply only between two
adjacent queues with service routines. Flow control occurs by service routines
following certain rules before passing messages along. By convention, high prior­
ity messages are not affected by flow control.

STREAMS messages can be defined to have up to 256 different priorities to sup­
port some networking protocol requirements for multiple bands of data flow. At
a minimum, a stream must distinguish between normal (priority band zero) mes­
sages and high priority messages (such as M_IOCACK). High priority messages are
always placed at the head of the queue, after any other high priority messages
already enqueued. Next are messages from all included priority bands, which are
enqueued in decreasing order of priority. Each priority band has its own flow
control limits. By convention, if a band is flow-controlled, all lower priority
bands are also stopped.

Once a service routine is called by the STREAMS scheduler it must process all
messages on its queue, until either the queue is empty, the stream is flow­
controlled, or an allocation error occurs. Typically, the service routine will switch
on the message type, which is contained in 1IQ;)->b_datap->db_type, taking dif­
ferent actions depending on the message type. 'The framework for the canonical
service procedure algorithm is as follows:

Page 1

srv(D2DK) DDI/DKI(STREAMS) srv(D2DK)

put routines can interrupt and run concurrently with service routines.

Only one copy of a queue's service routine will run at a time.

Drivers and modules should not call service routines directly. qenable(D3DK)
should be used to schedule service routines to run.

Drivers should free any messages they do not recognize.

Modules should pass on any messages they do not recognize.

Drivers should fail any unrecognized M_IOCTL messages by converting them into
M_IOCNAK messages and sending them upstream.

Modules should pass on any unrecognized M_IOCTL messages.

Service routines should never put high priority messages back on their queues.

RETURN VALUE
Ignored.

SEE ALSO

3/91

STREAMS Programmer's Guide
put(D2DK), bcanputnext(D3DK), bufcall(D3DK), canputnext(D3DK),
getq(D3DK), pcmsg(D3DK), putbq(D3DK), putnext(D3DK), putq(D3DK),
qenable(D3DK), timeout(D3DK), datab(D4DK), msgb(D4DK), qinit(D4DK),
queue(D4DK)

Page 3

strategy (020K) OOI/OKI strategy (020K)

NAME
strategy - perform block I/O

SYNOPSIS
#include <sys/types.h>
#include <sys/buf.h>

int prefixstrategy(struct buf *bp);
ARGUMENTS

bp Pointer to the buffer header.

DESCRIPTION

3/91

The strategy routine is called by the kernel to read and write blocks of data on
the block device. strategy may also be called directly or indirectly (via a call to
the kernel function physiock(D3DK)), to support the raw character interface of a
block device from read(D2DK), write(D2DK) or ioctl(D2DK). The strategy
routine's responsibility is to set up and initiate the data transfer.

Generally, the first validation test performed by the strategy routine is to see if
the I/O is within the bounds of the device. If the starting block number, given
by bp->b_blkno, is less than 0 or greater than the number of blocks on the
device, bioerror(D3DK) should be used to set the buffer error number to ENXIO,
the buffer should be marked done by calling biodone(D3DK), and the driver
should return. If bp->b_blkno is equal to the number of blocks on the device
and the operation is a write, indicated by the absence of the B_READ flag in bp­
>b_flags (! (bp->b_flags & B_READ»), then the same action should be taken.
However, if the operation is a read and bp->b_blkno is equal to the number of
blocks on the device, then the driver should set bp->b_resid equal to bp­
>b_bcount, mark the buffer done by calling biodone, and return. This will cause
the read to return O.

Once the I/O request has been validated, the strategy routine will queue the
request. If there is not already a transfer under way, the I/O is started. Then the
strategy routine returns. When the I/O is complete, the driver will call
biodone to free the buffer and notify anyone who has called biowait(D3DK) to
wait for the I/ 0 to finish.

There are two kinds of I/O requests passed to strategy routines: normal block
I/O requests and paged-I/O requests. Normal block I/O requests are identified
by the absence of the B_PAGEIO flag in bp->b_flags. Here, the starting virtual
address of the data transfer will be found in bp->b_un.b_addr. Paged-I/O
requests are identified by the presence of the B_PAGEIO flag in bp->b_flags.
These will not occur unless the driver has set the D_NOBRKUP flag [see
devflag(DID)]. The driver has several ways to perform a paged-I/O request.

If the driver wants to use virtual addresses, it can call bp_mapin(D3DK) to get a
virtually contiguous mapping for the pages. If the driver wants to use physical
addresses, it can also use bp_mapin, but only transfer one page at a time. The
physical address can be obtained by calling vtop(D3D) for each page in the vir­
tual range. The size of a page can be determined by calling ptob(D3DK). How­
ever, a more efficient way to use physical addresses is to use getnextpg(D3DK)
and pptophys(D3D) for each page in the page list.

Page 1

write (D2DK) DDI/DKI write (D2DK)

NAME
write - write data to a device

SYNOPSIS
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/uio.h>
#include <sys/cred.h>

int prejixwrite(dev_t dev, uio_t *uiop, cred_t *erp);

ARGUMENTS
dev Device number.

uiop Pointer to the uio(D4DK) structure that describes where the data is to
be fetched from user space.

erp Pointer to the user credential structure for the I/O transaction.

DESCRIPTION

NOTES

The driver write routine is called during the write(2) system call. The write
routine is responsible for transferring data from the user data area to the device.
The pointer to the user credentials, erp, is available so the driver can check to see
if the user can write privileged information, if the driver provides access to any.
The uio structure provides the information necessary to determine how much
data should be transferred. The uiomove(D3DK) function provides a convenient
way to copy data using the uio structure.

Block drivers that provide a character interface can use physiock(D3DK) to per­
form the data transfer with the driver's strategy(D2DK) routine.

The write operation is intended to be synchronous from the caller's perspective.
Minimally, the driver write routine should not return until the caller's buffer is
no longer needed. For drivers that care about returning errors, the data should
be committed to the device. For others, the data might only be copied to local
staging buffers. Then the data will be committed to the device asynchronous to
the user's request, losing the ability to return an error with the associated request.

This interface is optional.

The write routine has user context and can sleep.

RETURN VALUE
The write routine should return a for success, or the appropriate error number.

SEE ALSO

3/91

read(D2DK), strategy(D2DK), drv -pri v(D3DK), pbysiock(D3DK),
uiomove(D3DK), uwri tec(D3DK), uio(D4DK), errnos(D5DK)

Page 1

adjmsg (D3DK) DDI/DKI(STREAMS) adjmsg (D3DK)

NAME
adjmsg - trim bytes from a message

SYNOPSIS
#include <sys/stream.h>

int adjmsg(mblk_t *mp, intlen);

ARGUMENTS
mp Pointer to the message to be trimmed.

len The number of bytes to be removed.

DESCRIPTION
adjmsg removes bytes from a message. I len I (the absolute value of len) specifies
how many bytes are to be removed. If len is greater than 0, bytes are removed
from the head of the message. If len is less than 0, bytes are removed from the
tail. adjmsg fails if I len I is greater than the number of bytes in mp. If len spans
more than one message block in the message, the messages blocks must be the
same type, or else adjmsg will fail.

RETURN VALUE

LEVEL

NOTES

If the message can be trimmed successfully, 1 is returned. Otherwise, 0 is
returned.

Base or Interrupt.

Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across
calls to this function.

If len is greater than the amount of data in a single message block, that message
block is not freed. Rather, it is left linked in the message, and its read and write
pointers are set equal to each other, indicating no data present in the block.

SEE ALSO
msgb(D4DK)

3/91 Page 1

allocb (D3DK) DDI/DKI(STREAMS) allocb (D3DK)

SEE ALSO
Programmer's Guide: STREAMS

bufcall(D3DK), esballoc(D3DK), esbbcall(D3DK), freeb(D3DK), msgb(D4DK)

EXAMPLE

Page 2

Given a pointer to a queue (q) and an error number (err), the send_error routine
sends an M_ERROR type message to the stream head.

If a message cannot be allocated, 0 is returned, indicating an allocation failure
(line 7). Otherwise, the message type is set to M_ERROR (line 8). Line 9 incre­
ments the write pointer (bp->b_wptr) by the size (one byte) of the data in the
message.

A message must be sent up the read side of the stream to arrive at the stream
head. To determine whether q points to a read queue or a write queue, the q­
>~flag member is tested to see if QREADR is set (line 10). If it is not set, q points
to a write queue, and on line 11 the RD(D3DK) function is used to find the
corresponding read queue. In line 12, the putnext(D3DK) function is used to
send the message upstream. Then send_error returns 1 indicating success.

1 send_error(q, err)
2 queue_t *q;
3 uchar_t err;
4 {
5

6
7
8

9
10

11
12

13
14

if «bp = a11ocb(l, BPRI_HI» == NULL)
return(O);

bp->b_datap->db_type = ILERROR;

*bp->b_wptr++ = err;
if (!(q-~flag & QREADR»

q = lU)(q);

putnext (q, bp);
retuxn(l);

3/91

bcanput (D3DK) DDI/DKI(STREAMS} bcanput (D3DK)

NAME
bcanput - test for flow control in specified priority band

SYNOPSIS
#include <sys/types.h>
#include <sys/stream.h>

int bcanput(queue_t *q,uchar_t pri);

ARGUMENTS
q Pointer to the message queue.

pri Message priority.

DESCRIPTION
bcanput tests if there is room for a message in priority band pri of the queue
pointed to by q. The queue must have a service procedure.

If pri is 0, the bcanput call is equivalent to a call to canput.

It is possible because of race conditions to test for room using bcanput and get
an indication that there is room for a message, and then have the queue fill up
before subsequently enqueuing the message, causing a violation of flow control.
This is not a problem, since the violation of flow control in this case is bounded.

RETURN VALUE

LEVEL

NOTES

bcanput returns 1 if a message of priority pri can be placed on the queue. ° is
returned if a message of priority pri cannot be enqueued because of flow control
within the priority band.

Base or Interrupt.

Does not sleep.

The driver is responsible for both testing a queue with bcanput and refraining
from placing a message on the queue if bcanput fails.

The caller cannot have the stream frozen [see freezestr(D3DK)] when calling
this function.

Driver-defined basic locks, read/write locks, and sleep locks may be held across
calls to this function.

The q argument may not reference ~next (for example, an argument of q­
>~next is erroneous on a multiprocessor and is disallowed by the DDI/DKl).
bcanputnext (q) is provided as a multiprocessor-safe equivalent to the common
call bcanput(q->~next), which is no longer allowed [see bcanputnext(D3DK)].

SEE ALSO

3/91

bcanputnext(D3DK), canput(D3DK), canputnext(D3DK), putbq(D3DK),
putnext(D3DK)

Page 1

bcanputnext (D3DK) DDI/DKI(STREAMS) bcanputnext (D3DK)

SEE ALSO

Page 2

bcanput(D3DK), canput(D3DK), canputnext(D3DK), putbq(D3DK),
putnext(D3DK)

3/91

bcopy(030K) OOI/OKI bcopy(030K)

1 #define RAMtIIBLK 1000 1* number of blocks in the RAM disk *1
2 #define RAMDBSIZ NBPSCTR 1* bytes per block *1
3 char ramdblks[RAMIlNBLKI [RAMDBSIZ); 1* blocks forDliIlg RAM disk *1

4

5 if (bp->b3lags " B_RElID)
6 1*
7 * reed request - copy data from RAM disk to system buffer

8 *1
9 bcopy(ramdblks [bp->b_blknol. bp->b_un.b_sddr. bp->b_bcount);

10
11 else (

12 1*
13 * write request - copy data from system buffer to RAM disk

14 *1
15 ooopy(bp->b_un.b_sddr. ramdblks [bp->b_blknol. bp->b_ooount);

16

Page 2 3/91

biodone (030K) OOI/OKI biodone(030K)

Page 2

1 #define RAMDNBLK 1000 1* NUmber of blocks in RAM disk *1
2 #define RAMDBSIZ 512 1* NUmber of bytes per block *1
3 char ramdb1ks[RAMDNBLK] [RAMDBSIZ]; 1* Array containing RAM disk *1

4 ramdstrategy(bp)
5 register struct buf *bp;
6 {
7 register daddr_t blkno = bp->b_blkno;

8 if «blkno < 0) I I (blkno >= RAMDNBLK»
9 if «blkno == RAMDNBLK) && (bp->b_flags & B_READ» {

10 bp->b_resid = bp->b_bcount; 1* nothing read *1
11 else {
12 bioerror(bp, ENXIO);
13
14
15
16

biodone (bp) ;
return;

3/91

biowait (030K) OOI/OKI biowait (030K)

NAME
biowait - suspend processes pending completion of block I/O

SYNOPSIS
#include <sys/types.h>
#include <sys/buf.h>

int biowait(buf_t *bp);

ARGUMENTS
bp Pointer to the buffer header structure.

DESCRIPTION
The biowait function suspends process execution during block I/O. Block
drivers that have allocated their own buffers with geteblk(D3DK),
getrbuf(D3DK), or ngeteblk(D3DK) can use biowait to suspend the current
process execution while waiting for a read or write request to complete.

Drivers using biowait must use biodone(D3DK) in their I/O completion
handlers to signal biowai t when the 1/ 0 transfer is complete.

RETURN VALUE

LEVEL

NOTES

If an error occurred during the I/O transfer, the error number is returned. Oth­
erwise, on success, 0 is returned.

Base Only.

Can sleep.

Driver-defined basic locks and read/write locks may not be held across calls to
this function.

Driver defined sleep locks may be held across calls to this function.

SEE ALSO

3/91

intr(D2D), strategy(D2DK), biodone(D3DK), geteblk(D3DK),
getrbuf(D3DK), ngeteblk(D3DK), buf(D4DK)

Page 1

bp _ mapout (030K) OOI/OKI bp _ mapout (030K)

NAME
bp_mapout - deallocate virtual address space for buffer page list

SYNOPSIS
#include <sys/types.h>
#include <sys/buf.h>

void bp_mapout(struct buf *bp);

ARGUMENTS
bp Pointer to the buffer header structure.

DESCRIPTION
This function deallocates the system virtual address space associated with a buffer
header page list. The virtual address space must have been allocated by a previ­
ous call to bp_mapin(D3DK). Drivers should not reference any virtual addresses
in the mapped range after bp_mapout has been called.

RETURN VALUE
None.

LEVEL
Base or Interrupt.

NOTES
Driver-defined basic locks, read/write locks, and sleep locks may be held across
calls to this function.

SEE ALSO
bp_mapin(D3DK), buf(D4DK)

3/91 Page 1

btop(030K) OOI/OKI btop(030K)

NAME
btop - convert size in bytes to size in pages (round down)

SYNOPSIS
#include <sys/types.h>
#include <sys/ddi.h>

ulong_t btop (ulong_t numbytes);

ARGUMENTS
numbytes Size in bytes to convert to equivalent size in pages.

DESCRIPTION
btop returns the number of pages that are contained in the specified number of
bytes, with downward rounding if the byte count is not a page multiple.

For example, if the page size is 2048, then btop(4096} and btop(4097} both
return 2, and btop(4095} returns 1.

btop(O} returns O.

RETURN VALUE

LEVEL

NOTES

The return value is the number of pages. There are no invalid input values, and
therefore no error return values.

Base or Interrupt.

Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across
calls to this function.

SEE ALSO
btopr(D3DK), ptob(D3DK)

3/91 Page 1

bufcall (D3DK) DDI/DKI(STREAMS) bufcall (D3DK)

NAME
bufcall - call a function when a buffer becomes available

SYNOPSIS
#include <sys/types.h>
#include <sys/stream.h>

toid_t bufcall (uint_t size, int pri, void (*June) (), long arg};
ARGUMENTS

size Number of bytes in the buffer to be allocated (from the failed
allocb(D3DK) request).

pri Priority of the allocb allocation request (BPRI_LO, BPRI_MED, or BPRI_HI).

June Function or driver routine to be called when a buffer becomes available.
arg Argument to the function to be called when a buffer becomes available.

DESCRIPTION
bufcall serves as a timeout call of indeterminate length. When a buffer alloca­
tion request fails, bufcall can be used to schedule the routine, June, to be called
with the argument, arg, when a buffer of at least size bytes becomes available.

When June runs, all interrupts from STREAMS devices will be blocked on the pro­
cessor on which it is running. June will have no user context and may not call
any function that sleeps.

RETURN VALUE

LEVEL

NOTES

If successful, bufcall returns a non-zero value that identifies the scheduling
request. This non-zero identifier may be passed to unbufcall(D3DK) to cancel
the request. If any failure occurs, bufcall returns O.

Base or Interrupt.

Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across
calls to this function.

Even when June is called, allocb can still fail if another module or driver had
allocated the memory before June was able to call allocb.

SEE ALSO
allocb(D3DK), esballoc(D3DK), esbbcall(D3DK), itimeout(D3DK),
unbufcall(D3DK)

EXAMPLE

3/91

The purpose of this service routine [see srv(D2DK)] is to add a header to all
M_DATA messages. We assume only !LDATA messages are added to its queue.
Service routines must process all messages on their queues before returning, or
arrange to be rescheduled.

While there are messages to be processed (line 21), we check to see if we can send
the message on in the stream. If not, we put the message back on the queue (line
23) and return. The STREAMS flow control mechanism will re-enable us later
when messages can be sent. If canputnext(D3DK) succeeded, we try to allocate

Page 1

bufcall (D3DK) DDI/DKI(STREAMS)

3/91

34

35
36
37

38
39

40
41
42

43
44

45

46
47
48
49

50 modcall(q)

modp->m_type = TIMEOUT;
else {
modp->m_type = BUFCALL;

UNLOCK (modp->m_Iock, pI);
return;

hp = (stJ:Uct hdr *)bp->b_wptr;
hp->h_size = msgdsize(mp);
hp->h_versian = 1;
bp->b_wptr += sizeof(stJ:Uct hdr);
bp->b_datap->db_type = M_PROTO;
bp->b_cant = mp;
putnext (q, bp);

51 queue_t *q;

52
53 stJ:Uct mod *modp;
54 pl_t pI;

55 modp = (stJ:Uct mod *)q->'l-Ptr;
56 pI = LOCK(modp->m_Iock, plstr);
57 modp->m_type = 0;
58 UNLOCK (modp->m_Iock, pI);
59 qenable(q);
60

bufcall (D3DK)

Page 3

can put (D3DK) DDIIDKI(STREAMS) can put (D3DK)

NAME
canput - test for room in a message queue

SYNOPSIS
#include <sys/stream.h>

int canput(queue_t *q);

ARGUMENTS
q Pointer to the message queue.

DESCRIPTION
canput tests if there is room for a message in the queue pointed to by q. The
queue must have a service procedure.

It is possible because of race conditions to test for room using canput and get an
indication that there is room for a message, and then have the queue fill up
before subsequently enqueuing the message, causing a violation of flow control.
This is not a problem, since the violation of flow control in this case is bounded.

RETURN VALUE

LEVEL

NOTES

canput returns 1 if a message can be placed on the queue. 0 is returned if a mes­
sage cannot be enqueued because of flow control.

Base or Interrupt.

Does not sleep.

The driver is responsible for both testing a queue with canput and refraining
from placing a message on the queue if canput fails.

The caller cannot have the stream frozen [see freezestr(D3DK)] when calling
this function.

Driver-defined basic locks, read/write locks, and sleep locks may be held across
calls to this function.

The q argument may not reference CLnext (for example, an argument of q­
>CLnext is erroneous on a multiprocessor and is disallowed by the DDI/DKI).
can,putnext (q) is provided as a multiprocessor-safe equivalent to the common
call canput(q->CLnext), which is no longer allowed [see canputnext(D3DK)].

SEE ALSO

3/91

bcanput(D3DK), bcanputnext(D3DK), canputnext(D3DK), putbq(D3DK),
putnext(D3DK)

Page 1

clrbuf(030K) OOI/OKI clrbuf(030K)

NAME
clrbuf - erase the contents of a buffer

SYNOPSIS
#include <sys/types.h>
#include <sys/buf.h>

void clrbuf(buf_t *bp);
ARGUMENTS

bp Pointer to the buffer header structure.

DESCRIPTION
The clrbuf function zeros a buffer and sets the b_resid member of the
buf(D4DK) structure to o. Zeros are placed in the buffer starting at the address
specified by b_un. b_addr for a length of b_bcount bytes.

If the buffer has the B_PAGEIO flag set in the b_flags field, then clrbuf should
not be called until the proper virtual space has been allocated by a call to
bp_mapin(D3DK).

RETURN VALUE
None.

LEVEL

NOTES

Base or Interrupt.

Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across
calls to this function.

SEE ALSO
bp_mapin(D3DK), buf(D4DK)

3/91 Page 1

cmn_err(D3DK) DDI/DKI cmn_err(D3DK)

DESCRIPTION
cnm_err displays a specified message on the console and/or stores it in the ker­
nel buffer putbuf. Cl1lIl_err can also panic the system.

At times, a driver may encounter error conditions requiring the attention of a sys­
tem console monitor. These conditions may mean halting the system; however,
this must be done with caution. Except during the debugging stage, or in the
case of a serious, unrecoverable error, a driver should never stop the system.

The Cl1lIl_err function with the CE_CONT argument can be used by driver
developers as a driver code debugging tool. However, using Cl1lIl_err in this
capacity can change system timing characteristics.

RETURN VALUE
None.

LEVEL

NOTES

Base or Interrupt.

Does not sleep.

If level is CE_PANIC, then driver defined basic locks, read/write locks, and sleep
locks may not be held across calls to this function. For other levels, locks may be
held.

SEE ALSO
print (D2DK)

crash(lM) in the System Administrator's Reference Manual

printf(3S) in the Programmer's Reference Manual

EXAMPLE

Page 2

The Cl1lIl_err function can record tracing and debugging information only in the
putbuf buffer (lines 12 and 13) or display problems with a device only on the
system console (lines 17 and 18).

1 struct device 1* device registers layout *1

2 int status; 1* device status word *1
3 };

4 extern struct device xx_dev[]; 1* physical device registers *1
5 extern int xx_cnt; 1* number of physical devices *1

6 int
7 xxopen(dev_t *devp, int flag, int otyp, cred_t *crp)
8 (
9 register struct device *dp;

10 dp = xx_dev[getminor(*devp)]; 1* get dev registers *1
11 #ifdef DEBUG 1* in debugging mode, log function call *1
12 CIIlll_err(CE_NOTE,"!xxopen function call, dev = Ox'YoX", *devp);
13 CIIlll_err(CE_CONT,"! flag = Ox%x", flag);
14 #endif

15 1* display device power failure on system console *1

3/91

copyb(030K) OOIlOKI(STREAMS) copyb(030K)

NAME
copyb - copy a message block

SYNOPSIS
#include <sys/stream.h>

mblk_t *copyb(mblk_t *bp);

ARGUMENTS
bp Pointer to the message block from which data are copied.

DESCRIPTION
copyb allocates a new message block, and copies into it the data from the block
pointed to by bp. The new block will be at least as large as the block being
copied. The b_rptr and b_wptr members of the message block pointed to by bp
are used to determine how many bytes to copy.

RETURN VALUE

LEVEL

NOTES

If successful, copyb returns a pointer to the newly allocated message block con­
taining the copied data. Otherwise, it returns a NULL pointer.

Base or Interrupt.

Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across
calls to this function.

SEE ALSO
allocb(D3DK), copymsg(D3DK), IIISgb(D4DK)

EXAMPLE

3/91

This example illustrates how copyb can be used during message retransmission.
If there are no messages to retransmit, we return (line 21). Otherwise, we lock
the retransmission list (line 23). For each retransmission record in the list, we test
to see if either the message has already been retransmitted, or if the downstream
queue is full (by calling canputnext(D3DK) on line 26). If either is true, we skip
the current retransmission record and continue searching the list. Otherwise, we
use copyb(D3DK) to copy a header message block (line 30), and dupmsg(D3DK)
to duplicate the data to be retransmitted (line 32).

If either operation fails, we clean up and break out of the loop. Otherwise, we
update the new header block with the correct destination address (line 37), link
the message to be retransmitted to it (line 38), mark the retransmission record as
having sent the message (line 39), unlock the retransmission list (line 40), and
send the message downstream (line 41). Then we go back and lock the list again
and start searching for more messages to retransmit.

This continues until we are either at the end of the retransmission list, or unable
to send a message because of allocation failure. With the list still locked, we clear
all the flags for sent messages (lines 44 and 45). Finally, we unlock the list lock
and reschedule a timeout at the next valid interval (line 47) and return. Since
we are using itimeout(D3DK), retransmit will run at the specified processor

Page 1

copyin (D3DK) DDI/DKI copyin (D3DK)

NAME
copyin - copy data from a user buffer to a driver buffer

SYNOPSIS
#include <sys/types.h>

int copyin (caddr_t userbuf caddr_t driverbuf size_t count);

ARGUMENTS
userbuf User source address from which copy is made.

Driver destination address to which copy is made.

Number of bytes to copy.

driverbuf

count

DESCRIPTION
copyin copies count bytes of data from the user virtual address specified by user­
buf to the kernel virtual address specified by driverbuf The driver must ensure
that adequate space is allocated for the destination address.

copyin chooses the best algorithm based on address alignment and number of
bytes to copy. Although the source and destination addresses are not required to
be word aligned, word aligned addresses may result in a more efficient copy.

RETURN VALUE

LEVEL

NOTES

If the copy is successful, 0 is returned. Otherwise, -1 is returned to indicate that
the specified user address range is not valid.

Base Only.

May sleep.

Drivers usually convert a return value of -1 into an EFAULT error.

Driver-defined basic locks and read/write locks may not be held across calls to
this function.

Driver-defined sleep locks may be held across calls to this function.

When holding sleep locks across calls to this function, drivers must be careful to
avoid creating a deadlock. During the data transfer, page fault resolution might
result in another I/O to the same device. For example, this could occur if the
driver controls the disk drive used as the swap device.

The driver destination buffer must be completely within the kernel address space,
or the system can panic.

SEE ALSO
bcopy(D3DK), copyout(D3DK), uiOlllove(D3DK), ureadc(D3DK), uwritec(D3DK)

EXAMPLE

3/91

A driver ioctl(D2DK) routine (line 5) can be used to get or set device attributes
or registers. If the specified command is JaCSETREGS (line 9), the driver copies
user data to the device registers (line 11). If the user address is invalid, an error
code is returned.

Page 1

copymsg (D3DK) DDI/DKI(STREAMS) copymsg (D3DK)

NAME
copymsg - copy a message

SYNOPSIS
#include <sys/stream.h>

mblk_t *copymsg(mblk_t *mp>;

ARGUMENTS
mp Pointer to the message to be copied.

DESCRIPTION
copymsg forms a new message by allocating new message blocks, copies the con­
tents of the message referred to by mp (using the copyb(D3DK) function), and
returns a pointer to the new message.

RETURN VALUE

LEVEL

NOTES

If successful, copymsg returns a pointer to the new message. Otherwise, it
returns a NULL pointer.

Base or Interrupt.

Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across
calls to this function.

SEE ALSO
allocb(D3DK), copyb(D3DK), IIISgb(D4DK)

EXAMPLE

3/91

The routine lctouc converts all the lower case ASCII characters in the message to
upper case. If the reference count is greater than one (line 8), then the message is
shared, and must be copied before changing the contents of the data buffer. If
the call to copymsg fails (line 9), we return NULL (line 10). Otherwise, we free the
original message (line 11). If the reference count was equal to one, the message
can be modified. For each character (line 16) in each message block (line 15), if it
is a lower case letter, we convert it to an upper case letter (line 18). When done,
we return a pointer to the converted message (line 21).

1 mhlk_t *lctouc(mp)

2 mblk_t *mp;

3 {

4 mblk_t *crop;

5 mblk_t *tmp;

6 uchar_t *cp;

7

8 if (mp->b_datap->dtLref > 1)

9 if «crop = copymsg(mp» == NULL)

10 return(NtJLL) ;

11 freemsg(mp) ;

12) else {

13 crop = mp;

14

Page 1

copyout (030K) OOI/OKI copyout(030K)

NAME
copyout - copy data from a driver buffer to a user buffer

SYNOPSIS
#include <sys/types.h>

int copyout (caddr_t driverbuf, caddr_t userbuf, size_t count) ;

ARGUMENTS
driverbuj Driver source address from which copy is made.

User destination address to which copy is made.

Number of bytes to copy.

userbuj

count

DESCRIPTION
copyout copies count bytes of data from the kernel virtual address specified by
driverbuj to the user virtual address specified by userbuf

copyout chooses the best algorithm based on address alignment and number of
bytes to copy. Although the source and destination addresses are not required to
be word aligned, word aligned addresses may result in a more efficient copy.

RETURN VALUE

LEVEL

NOTES

If the copy is successful, a is returned. Otherwise, -1 is returned to indicate that
the specified user address range is not valid.

Base Only.

May sleep.

Drivers usually convert a return value of -1 into an EFAULT error.

Driver-defined basic locks and read/write locks may not be held across calls to
this function.

Driver-defined sleep locks may be held across calls to this function.

When holding sleep locks across calls to this function, drivers must be careful to
avoid creating a deadlock. During the data transfer, page fault resolution might
result in another I/O to the same device. For example, this could occur if the
driver controls the disk drive used as the swap device.

The driver source buffer must be completely within the kernel address space, or
the system can panic.

SEE ALSO
bcopy(D3DK}, copyin(D3DK}, uiamove(D3DK}, ureadc(D3DK}, uwritec(D3DK}

EXAMPLE

3/91

A driver ioct1(D2DK} routine (line 5) can be used to get or set device attributes
or registers. If the specified command is XJCGETREGS (line 9), the driver copies
the current device register values to a user data area (line 11). If the user address
is invalid, an error code is returned.

Page 1

datamsg (D3DK) DDI/DKI(STREAMS) datamsg (D3DK)

NAME
datamsg - test whether a message is a data message

SYNOPSIS
#include <sys/types.h>
#include <sys/stream.h>
#include <sys/ddi.h>

int datamsg(uchar_t type);
ARGUMENTS

type The type of message to be tested. The db_type field of the datab
structure contains the message type. This field may be accessed
through the message block using Il\P->b_datap->db_type.

DESCRIPTION
The datamsg function tests the type of message to determine if it is a data mes­
sage type (M_DATA, M_DELAY, M_PROTO, or M_PCPROTO).

RETURN VALUE

LEVEL

NOTES

datamsg returns 1 if the message is a data message and 0 if the message is any
other type.

Base or Interrupt.

Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across
calls to this function.

SEE ALSO
allocb(D3DK), datab(D4DK), msgb(D4DK), m.essages(DSDK)

EXAMPLE

3/91

The put (D2DK) routine enqueues all data messages for handling by the
srv(D2DK) (service) routine. All non-data messages are handled in the put rou­
tine.

1 XXXPUt(q,~)

2 queue_t *q;
3 mblk_t ~;
4 {

5 if (datamsg(~->b_datap->db_type»

6 putq(q, ~);

7 return;
8
9 switch (~->b_datap->db_type)

10 case M_FLUSH:

11
12

Page 1

dma _pageio (030) 001 dma _pageio (030)

NAME
dma-Pageio - break up an I/O request into manageable units

SYNOPSIS
#include <sys/buf.h>,

void dma--P8-geio(void (*strat) (), buf_t *bp>;

ARGUMENTS
strat Address of the strategy(D2DK) routine to call to complete the I/O

transfer.
bp Pointer to the buffer header structure.

DESCRIPTION
dma.-.l)ageio breaks up a data transfer request from physiock(D3DK) into units
of contiguous memory. This function enhances the capabilities of the direct
memory access controller (DMAC).

RETURN VALUE
None.

LEVEL

NOTES

Base Only.

Can sleep.

Driver-defined basic locks and read/write locks may not be held across calls to
this function.

Driver defined sleep locks may be held across calls to this function.

When the transfer completes, any allocated buffers are freed.

The interrupt priority level is not maintained across calls to dma.-.l)ageio.

SEE ALSO
read(D2DK),'strategy(D2DK), write(D2DK), physiock(D3DK), buf(D4DK)

EXAMPLE

3/91

The following example shows how dma--pageio is used when reading or writing
disk data. The driver's read(D2DK) and write(D2DK) entry points use phy­
siock to check the validity of the I/O and perform the data transfer. The
strategy(D2DK) routine passed to physiock just calls dma.-.l)ageio to perform
the data transfer one page at a time.

Page 1

dry _getparm (D3DK) DDI/DKI drv_getparm (D3DK)

NAME
drv _getparm - retrieve kernel state information

SYNOPSIS
#include <sys/types.h>
#include <sys/ddi.h>

int drv_getparm(ulong_t parm, ulong_t *valuey};

ARGUMENTS

3/91

parm The kernel parameter to be obtained. Possible values are:

valuey

LBOLT Read the number of clock ticks since the last system
reboot. The difference between the values returned from
successive calls to retrieve this parameter provides an
indication of the elapsed time between the calls in units
of clock ticks. The length of a clock tick can vary across
different implementations, and therefore drivers should
not include any hard-coded assumptions about the length
of a tick. The drY _hztousec(D3DK) and
drv_usectohz(D3DK) functions can be used, as neces­
sary, to convert between clock ticks and microseconds
(implementation independent units).

UPROCP Retrieve a pointer to the process structure for the current
process. The value returned in *value y is of type
(proc_t *) and the only valid use of the value is as an
argument to vtop(D3D). Since this value is associated
with the current process, the caller must have process
context (that is, must be at base level) when attempting
to retrieve this value. Also, this value should only be
used in the context of the process in which it was
retrieved.

UCRED Retrieve a pointer to the credential structure describing
the current user credentials for the current process. The
value returned in *value y is of type (cred_t *) and the
only valid use of the value is as an argument to
drv-priv(D3DK). Since this value is associated with the
current process, the caller must have process context (Le.
must be at base level) when attempting to retrieve this
value. Also, this value should only be used in the con­
text of the process in which it was retrieved.

TIME Read the time in seconds. This is the same time value
that is returned by the time(2) system call. The value is
defined as the time in seconds since 00:00:00 GMT,
January 1, 1970. This definition presupposes that the
administrator has set the correc~ system date and time.

A pointer to the data space into which the value of the parameter is to
be copied.

Page 1

dry _ hztousec (030K) OOI/OKI dry _ hztousec (030K)

NAME
drv _hztousec - convert clock ticks to microseconds

SYNOPSIS
#include <sys/types.h>
#include <sys/ddi.h>

clock_t drv_hztousec (clock_t ticks>;

ARGUMENTS
ticks The number of clock ticks to convert to equivalent microseconds.

DESCRIPTION
drv_hztousec converts the length of time expressed by ticks, which is in units of
clock ticks, into units of microseconds.

Several functions either take time values expressed in clock ticks as arguments
[itim.eout(D3DK), delay(D3DK)] or return time values expressed in clock ticks
[drv.-Q'etparm(D3DK)]. The length of a clock tick can vary across different imple­
mentations, and therefore drivers should not include any hard-coded assumptions
about the length of a tick. drv_hztousec and the complementary function
drv_usectohz(D3DK) can be used, as necessary, to convert between clock ticks
and microseconds.

RETURN VALUE

LEVEL

NOTES

The number of microseconds equivalent to the ticks argument. No error value is
returned. If the microsecond equivalent to ticks is too large to be represented as a
clock_t, then the maximum clock_t value will be returned.

Base or Interrupt.

Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across
calls to this function.

The time value returned by drv _getparm with an LBOLT argument will fre­
quently be too large to represent in microseconds as a clock_to When using
drv_getparm together with drv_hztousec to time operations, drivers can help
avoid overflow by converting the difference between return values from succes­
sive calls to drv_getparm instead of trying to convert the return values them­
selves.

SEE ALSO

3/91

delay(D3DK), drv_getparm(D3DK), drv_usectohz(D3DK), dtim.eout(D3D),
i timeout(D3DK)

Page 1

dry _ setparm (030K) OOI/OKI drY _ setparm (030K)

NAME
drv_setparm - set kernel state information

SYNOPSIS
#include <sys/types.h>
#include <sys/ddi.h>

int drv_setparm{ulon9_t parm, ulon9_t value);

ARGUMENTS
parm The kernel parameter to be updated. Possible values are:

SYSCANC Add value to the count of the number of characters received
from a terminal device after the characters have been processed
to remove special characters such as break or backspace.

SYSMINT Add value to the count of the number of modem interrupts
received.

SYSOUTC Add value to the count of the number of characters output to a
terminal device.

SYSRAWC Add value to the count of the number of characters received
from a terminal device, before canonical processing has
occurred.

SYSRINT Add value to the count of the number of interrupts generated
by data ready to be received from a terminal device.

SYSXINT Add value to the count of the number of interrupts generated
by data ready to be transmitted to a terminal device.

value The value to be added to the parameter.

DESCRIPTION
drv_setparm verifies that parm corresponds to a kernel parameter that may be
modified. If the value of parm corresponds to a parameter that may not be
modified, -1 is returned. Otherwise, the parameter is incremented by value.

No checking is performed to determine the validity of value. It is the driver's
responsibility to guarantee the correctness of value.

RETURN VALUE

LEVEL

NOTES

If the function is successful, a is returned. Otherwise, -1 is returned to indicate
that parm specified an invalid parameter.

Base or Interrupt.

Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across
calls to this function.

SEE ALSO
drv --getparm(D3DK)

3/91 Page 1

drY _ usecwait (D3DK) DDI/DKI drY _ usecwait (D3DK)

NAME
drv _usecwai t - busy-wait for specified interval

SYNOPSIS
#include <sys/types.h>
#include <sys/ddi.h>

void drv_usecwait (clock_t microsecs);

ARGUMENTS
microsecs The number of microseconds to busy-wait.

DESCRIPTION
drv usecwait causes the caller to busy-wait for at least the number of
microseconds specified by microsecs. The amount of time spent busy-waiting may
be greater than the time specified by microsecs but will not be less.
drv_usecwait should only be used to wait for short periods of time (less than a
clock tick) or when it is necessary to wait without sleeping (for example, at inter­
rupt level). When the desired delay is at least as long as clock tick and it is possi­
ble to sleep, the delay(D3DK) function should be used instead since it will not
waste processor time busy-waiting as drv_usecwait does.

Because excessive busy-waiting is wasteful the driver should only make calls to
drv_usecwait as needed, and only for as much time as needed. drv_usecwait
does not raise the interrupt priority level; if the driver wishes to block interrupts
for the duration of the wait, it is the driver's responsibility to set the priority level
before the call and restore it to its original value afterward.

RETURN VALUE
None.

LEVEL

NOTES

Base or Interrupt.

Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across
calls to this function.

Busy-waiting can increase the preemption latency experienced by high priority
processes. Since short and bounded preemption latency can be critical in a real
time environment, drivers intended for use in such an environment should not
use this interface or should limit the length of the wait to an appropriately short
length of time.

SEE ALSO

3/91

delay(D3DK), drv_hztousec(D3DK), drv_usectohz(D3DK), itimeout(D3DK),
untimeout(D3DK)

Page 1

dtimeout (030) 001 dtimeout (030)

Otherwise, jn is deferred until some time in the near future.

If dtimeout is called holding a lock that is contended for by jn, the caller must
hold the lock at a processor level greater than the base processor level.

A ticks argument of 0 has the same effect as a ticks argument of 1. Both will
result in an approximate wait of between 0 and 1 tick (possibly longer).

SEE ALSO
itimeout(D3DK), LOCK_ALLOC(D3DK), untimeout(D3DK)

Page 2 3/91

dupb(D3DK) DDI/DKI(STREAMS) dupb(D3DK)

Driver-defined basic locks, read/write locks, and sleep locks may be held across
calls to this function.

SEE ALSO
copyb(D3DK), dupmsg(D3DK), datab(D4DK), msgb(D4DK)

Page 2 3/91

enableok (D3DK) DDIIDKI(STREAMS) enableok (D3DK)

NAME
enableok - allow a queue to be serviced

SYNOPSIS
#include <sys/stream.h>
#include <sys/ddi.h>

void enableok(queue_t *q);

ARGUMENTS
q Pointer to the queue.

DESCRIPTION
The enableok function allows the service routine of the queue pointed to by q to
be rescheduled for service. It cancels the effect of a previous use of the
noenable(D3DK) function on q.

RETURN VALUE
None.

LEVEL

NOTES

Base or Interrupt.

Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across
calls to this function.

The caller cannot have the stream frozen [see freezestr(D3DK)] when calling
this function.

SEE ALSO
srv(D2DK), noenable(D3DK), qenable(D3DK), queue(D4DK)

EXAMPLE

3/91

The qrestart routine uses two STREAMS functions to re-enable a queue that has
been disabled. The enableok function removes the restriction that prevented the
queue from being scheduled when a message was enqueued. Then, if there are
messages on the queue, it is scheduled by calling qenable(D3DK).
1 void
2 qrestart(q)
3 register queue_t *q;
4 (
5
6

7

8

enableok(q) ;
if (q->~first)

qenable (q) ;

Page 1

esbbcall (D3DK) DDI/DKI(STREAMS) esbbcall (D3DK)

NAME
esbbcall - call a function when an externally-supplied buffer can be allocated

SYNOPSIS
#include <sys/types.h>
#include <sys/stream.h>

toid_t esbbcall (int pri, void (*june) (), long arg);

ARGUMENTS
pri Priority of the eSballoc(D3DK) allocation request (BPRI_LO,

BPRI_MED, or BPRI_HI.)

june Function to be called when a buffer becomes available.

arg Argument to the function to be called when a buffer becomes avail­
able.

DESCRIPTION
esbbcall, like bufcall(D3DK), serves as a timeout call of indeterminate length.
If esballoc(D3DK) is unable to allocate a message block header and a data block
header to go with its externally supplied data buffer, esbbcall can be used to
schedule the routine june, to be called with the argument arg when memory
becomes available.

When june runs, all interrupts from STREAMS devices will be blocked on the pro­
cessor on which it is running. june will have no user context and may not call
any function that sleeps.

RETURN VALUE

LEVEL

NOTES

If successful, esbbcall returns a non-zero value that identifies the scheduling
request. This non-zero identifier may be passed to unbufcall(D3DK) to cancel
the request. If any failure occurs, esbbcall returns O.

Base or Interrupt.

Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across
calls to this function.

Even when june is called, esballoc can still fail if another module or driver had
allocated the memory before june was able to call allocb.

SEE ALSO

3/91

allocb(D3DK), bufcall(D3DK), esballoc(D3DK), itimeout(D3DK),
unbufcall(D3DK)

Page 1

flushband (D3DK) DDI/DKI(STREAMS) flushband (D3DK)

NAME
flushband - flush messages in a specified priority band

SYNOPSIS
#include <sys/types.h>
#include <sys/stream.h>

void flushband(queue_t *q, uchar_t pri, int flag> ;

ARGUMENTS
q Pointer to the queue.

pri Priority band of messages to be flushed.

flag Determines messages to flush. Valid flag values are:

FLUSHDATA Flush only data messages (types M_DATA, M_DELAY,
M_PROTO, and M_PCPROTO).

FLUSHALL Flush all messages.

DESCRIPTION
The flushband function flushes messages associated with the priority band
specified by pri. If pri is 0, only normal and high priority messages are flushed.
Otherwise, messages are flushed from the band pri according to the value of flag.

RETURN VALUE
None.

LEVEL

NOTES

Base or Interrupt.

Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across
calls to this function.

The caller cannot have the stream frozen [see freezestr(D3DK)] when calling
this function.

SEE ALSO
put(D2DK), flushq(D3DK), queue(D4DK)

EXAMPLE
See put(D2DK) for an example of flushband.

3/91 Page 1

freeb(D3DK) DDI/DKI(STREAMS) freeb(D3DK)

NAME
freeb - free a message block

SYNOPSIS
#include <sys/stream.h>

void freeb(mblk_t *bp>;

ARGUMENTS
bp Pointer to the message block to be deallocated.

DESCRIPTION
freeb deallocates a message block. If the reference count of the db_ref member
of the data.b(D4DK) structure is greater than 1, freeb decrements the count and
returns. Otherwise, if db_ref equals 1, it deallocates the message block and the
corresponding data block and buffer.

If the data buffer to be freed was allocated with esballoc(D3DK), the driver is
notified that the attached data buffer needs to be freed by calling the free-routine
[see free_rtn(D4DK)] associated with the data buffer. Once this is accom­
plished, freeb releases the STREAMS resources associated with the buffer.

RETURN VALUE
None.

LEVEL

NOTES

Base or Interrupt.

Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across
calls to this function.

SEE ALSO
allocb(D3DK), dupb(D3DK), esballoc(D3DK), data.b(D4DK), free_rtn(D4DK),
msgb(D4DK)

EXAMPLE
See copyb(D3DK) for an example of freeb.

3/91 Page 1

I

freerbuf (030K) OOI/OKI

NAME
freerbuf - free a raw buffer header

SYNOPSIS
#include <sys/buf.h>
#include <sys/ddi.h>

void freerbuf(buf_t *bp);
ARGUMENTS

freerbuf (030K)

bp Pointer to a previously allocated buffer header structure.

DESCRIPTION
freerbuf frees a raw buffer header previously allocated by getrbuf(D3DK). It
may not be used on a buffer header obtained through any other interface. It is
typically called from a driver's iodone handler, specified in the b_iodone field of
the buf(D4DK) structure.

RETURN VALUE
None.

LEVEL

NOTES

Base or Interrupt.

Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across
caIls to this function.

SEE ALSO
biodone(D3DK), biowait(D3DK), getrbuf(D3DK), buf(D4DK)

3/91 Page 1

geteblk (D3DK) DDI/DKI geteblk(D3DK)

NAME
geteblk - get an empty buffer

SYNOPSIS
#include <sys/types.h>
#include <sys/buf.h>

buf_t *geteblk();

DESCRIPTION
geteblk retrieves a buffer [see buf(D4DK)] from the buffer cache and returns a
pointer to the buffer header. If a buffer is not available, geteblk sleeps until one
is available.

When the driver strategy(D2DK) routine receives a buffer header from the ker­
nel, all the necessary members are already initialized. However, when a driver
allocates buffers for its own use, it must set up some of the members before cal­
ling its strategy routine.

The following list describes the state of these members when the buffer header is
received from geteblk:

b_flags is set to indicate the transfer is from the user's buffer to the ker­
nel. The driver must set the B_READ flag if the transfer is from the
kernel to the user's buffer.

b_edev is set to NODEV and must be initialized by the driver.

b_bcount is set to 1024.

b_un.b_addr is set to the buffer's virtual address.

b_blkno is not initialized by geteblk, and must be initialized by the driver

Typically, block drivers do not allocate buffers. The buffer is allocated by the
kernel, and the associated buffer header is used as an argument to the driver
strategy routine. However, to implement some special features, such as
ioctl(D2DK) commands that perform I/O, the driver may need its own buffer
space. The driver can get the buffer space from the system by using geteblk or
ngeteblk(D3DK). Or the driver can choose to use its own memory for the buffer
and only allocate a buffer header with getrbuf(D3DK).

RETURN VALUE
A pointer to the buffer header structure is returned.

LEVEL
Base Only.

NOTES
Can sleep.

Driver-defined basic locks and read/write locks may not be held across calls to
this function. '

Driver-defined sleep locks may be held across calls to this function.

3/91 Page 1

getemajor (D3DK) DDI/DKI getemajor (D3DK)

NAME
getemajor - get external major device number

SYNOPSIS
#include <sys/types.h>
#include <sys/ddi.h>

major_t getemajor(dev_t dev)i
ARGUMENTS

dev External device number.

DESCRIPTION
getemajor returns the external major number given a device number, dev. Exter­
nal major numbers are visible to the user. Internal major numbers are only visi­
ble in the kernel. Since the range of major numbers may be large and sparsely
populated, the kernel keeps a mapping between external and internal major
numbers to save space.

All driver entry points are passed device numbers using external major numbers.

Usually, a driver with more than one external major number will have only one
internal major number. However, some system implementations map one-to-one
between external and internal major numbers. Here, the internal major number is
the same as the external major number and the driver may have more than one
internal major number.

RETURN VALUE

LEVEL

NOTES

The external major number.

Base or Interrupt.

Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across
calls to this function.

SEE ALSO

3/91

etoimajor(D3DK), geteminor(D3DK), getmajor(D3DK), getminor(D3DK),
makedevice(D3DK)

Page 1

geterror (030K) OOI/OKI

NAME
get error - retrieve error number from a buffer header

SYNOPSIS
#include <sys/buf.h>

int geterror(struct buf *bp)i
ARGUMENTS

bp
DESCRIPTION

Pointer to the buffer header.

geterror (030K)

get error is called to retrieve the error number from the error field of a buffer
header (buf(D4DK) structure).

RETURN VALUE

LEVEL

NOTES

An error number indicating the error condition of the I/O request is returned. If
the I/O request completed successfully, 0 is returned.

Base or Interrupt.

Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across
calls to this function.

SEE ALSO
buf(D4DK), errnos(D5DK)

3/91 Page 1

getminor(D3DK) DDI/DKI getminor(D3DK)

NAME
getminor - get internal minor device number

SYNOPSIS
#include <sys/types.h>
#include <sys/ddi.h>

minor_t getminor(dev_t dev);

ARGUMENTS
dev Device number.

DESCRIPTION
The getminor function extracts the internal minor number from a device number.
See getemajor(D3DK) for an explanation of external and internal major numbers.

RETURN VALUE

LEVEL

NOTES

The internal minor number.

Base or Interrupt.

No validity checking is performed. If dev is invalid, an invalid number is
returned.

Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across
calls to this function.

SEE ALSO

3/91

etoimajor(D3DK), getemajor(D3DK), geteminor(D3DK), getmajor(D3DK),
makedevice(D3DK)

Page 1

getq(D3DK) DDI/DKI(STREAMS) getq(D3DK)

NAME
getq - get the next message from a queue

SYNOPSIS
#include <sys/stream.h>

mblk_t *getq(queue_t *q);

ARGUMENTS
q Pointer to the queue from which the message is to be retrieved.

DESCRIPTION
getq is used by service [see srv(D2DK)] routines to retrieve queued messages. It
gets the next available message from the top of the queue pointed to by q. getq
handles flow control, restarting I/O that was blocked as needed.

RETURN VALUE

LEVEL

NOTES

If there is a message to retrieve, getq returns a pointer to it. If no message is
queued, getq returns a NULL pointer.

Base or Interrupt.

Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across
calls to this function.

The caller cannot have the stream frozen [see freezestr(D3DK)] when calling
this function.

SEE ALSO
srv(D2DK), bcanput(D3DK), canput(D3DK), putbq(D3DK), putq(D3DK),
qenable(D3DK), rmvq(D3DK)

EXAMPLE
See srv(D2DK) for an example of getq.

3/91 Page 1

getrbuf (030K) OOI/OKI getrbuf (030K)

LEVEL

NOTES

Base only ifflag is set to KM_SLEEP. Base or interrupt ifflag is set to KM_NOSLEEP.

May sleep if flag is set to KM_SLEEP.

Driver-defined basic locks and read/write locks may be held across calls to this
function if flag is KM_NOSLEEP, but may not be held if flag is KlCSLEEP.

Driver-defined sleep locks may be held across calls to this function regardless of
the value of flag.

SEE ALSO
biodone(D3DK), biowait(D3DK), freerbuf(D3DK), buf(D4DK)

Page 2 3/91

inl (030) 001 inl(030)

NAME
inl - read a 32 bit word from a 32 bit I/O port

SYNOPSIS
#include <sys/types.h>

ulong_t inl (int port) ;

ARGUMENTS
port A valid 32 bit I/O port.

DESCRIPTION
This function provides a C language interface to the machine instruction that
reads a 32 bit word from a 32 bit I/O port using the I/O address space, instead
of the memory address space.

RETURN VALUE

LEVEL

NOTES

Returns the value of the 32 bit word read from the I/O port.

Base or Interrupt.

Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across
calls to this function.

This function may not be meaningful on all implementations because some imple­
mentations may not support I/O-mapped I/O.

SEE ALSO

3/91

Programmer's Reference Manual
Integrated Software Development Guide
inb(D3D), inw(D3D), outb(D3D), outl(D3D), outw(D3D), repinsb(D3D),
repinsd(D3D), repinsw(D3D), repoutsb(D3D), repoutsd(D3D), repoutsw(D3D)

Page 1

insq(030K) OOIlOKI(STREAMS) insq(030K)

Page 2

message (line 13), we free the entire message using freemsg(D3DK). Otherwise,
for every M_PROTO message block in the message, we strip the M_PROTO block off
using unlinkb(D3DK) (line 17) and free the message block using freeb(D3DK).
When the header has been stripped, the data portion of the message is inserted
back into the queue where it was originally found (line 21). Finally, when we are
done searching the queue, we unfreeze the stream (line 26).

1 void
2 striproto(q)
3 queue_t *q;
4 {
5 register mblk_t *amp, *tDq;l, *rap;

6 pl_t pI;

7 pI = freezestr(q);
8 mp = q->~first;
9 while (mp) {

10 amp = mp->b_next;
11 if (mp->b_datap-xib_type == lLPROTO)
12 rmvq(q, mp);

13 if (msgdsize(mp) == 0)
14 freemsg(mp);
15 } else {
16 while (mp->b_datap-xib_type == ICPROTO)

17 nmp = unlinkb(mp);
18 freeb(mp) ;

19 DIP = nmp;
20
21
22
23
24

25
mp = amp;

26 unfreezestr(q, pI);
27

insq(q, ent>, mp);

3/91

itimeout (D3DK) DDI/DKI itimeout (D3DK)

NAME
itiIneout - execute a function after a specified length of time

SYNOPSIS
#include <sys/types.h>

toid_t itimeout(void (*fn) (), void *arg, long ticks, pl_t pO;

ARGUMENTS
fn Function to execute when the time increment expires.

Argument to the function. arg

ticks

pI

Number of clock ticks to wait before the function is called.

The interrupt priority level at which the function will be called. pI
must specify a priority level greater than or equal to pltimeout; thus,
plbase cannot be used. See LOCK_ALLOC(D3DK) for a list of values for
pl.

DESCRIPTION
itiIneout causes the function specified by fn to be called after the time interval
specified by ticks, at the interrupt priority level specified by pl. arg will be passed
as the only argument to function fn. The itimeout call returns immediately
without waiting for the specified function to execute.

The length of time before the function is called is not guaranteed to be exactly
equal to the requested time, but will be at least ticks-l clock ticks in length. The
function specified by fn must neither sleep nor reference process context.

RETURN VALUE

LEVEL

NOTES

3/91

If the function specified by fn is successfully scheduled, itimeout returns a non­
zero identifier that can be passed to untimeout to cancel the request. If the func­
tion could not be scheduled, itimeout returns a value of o.

Base or Interrupt.

Does not sleep.

Driver defined basic locks, read/write locks, and sleep locks may be held across
calls to this function.

Drivers should be careful to cancel any pending timeout functions that access
data structures before these structures are de-initialized or deallocated.

After the time interval has expired, fn only runs if the processor is at base level.
Otherwise, fn is deferred until some time in the near future.

If itimeout is called holding a lock that is contended for by jn, the caller must
hold the lock at a processor level greater than the base processor level.

A ticks argument of 0 has the same effect as a ticks argument of 1. Both will
result in an approximate wait of between 0 and 1 tick (possibly longer).

Page 1

Itoemajor (D3DK) DDI/DKI itoemajor (D3DK)

NAME
itoemajor - convert internal to external major device number

SYNOPSIS
#include <sys/types.h>
#include <sys/ddi.h>

major_t itoemajor(major_t imaj, major_t prevemaj);
ARGUMENTS

imaj Internal major number.

prevemaj Most recently obtained external major number (or NODEV, if this is the
first time the function has been called).

DESCRIPTION
itoemajor converts the internal major number to the external major number.
The external-to-internal major number mapping can be many-to-one, and so any
internal major number may correspond to more than one external major number.
By repeatedly invoking this function and passing the most recent external major
number obtained, the driver can obtain all possible external major number values.
See getemajor(D3DK) for an explanation of external and internal major numbers.

RETURN VALUE

LEVEL

NOTES

External major number, or NODEV, if all have been searched.

Base or Interrupt.

Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across
calls to this function.

SEE ALSO

3/91

etoimajor(D3DK), getemajor(D3DK), geteminor(D3DK), getmajor(D3DK),
getminor(D3DK), makedevice(D3DK)

Page 1

kmem Jree (030K) OOI/OKI kmem_free(030K)

NAME
km.em_free - free previously allocated kernel memory

SYNOPSIS
#include <sys/types.h>
#include <sys/kmem.h>

void km.em_free (void *addr, size_t size);

ARGUMENTS
addr Address of the allocated memory to be returned. addr must specify

the same address that was returned by the corresponding call to
km.em_alloc(D3DK) or km.em_zalloc(D3DK) which allocated the
memory.

size Number of bytes to free. The size parameter must specify the same
number of bytes as was allocated by the corresponding call to
km.em_alloc or kmeIlLzalloc.

DESCRIPTION
km.em_free returns size bytes of previously allocated kernel memory. The addr
and size arguments must specify exactly one complete area of memory that was
allocated by a call to km.em_alloc or km.em_zalloc (that is, the memory cannot be
freed piecemeal).

RETURN VALUE
None.

LEVEL

NOTES

Base or Interrupt.

Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across
calls to this function.

SEE ALSO
km.em_alloc(D3DK), km.em_zalloc(D3DK)

3/91 Page 1

kvtoppid (D3DK) DDI/DKI kvtoppid (D3DK)

NAME
kvtoppid - get physical page ID for kernel virtual address

SYNOPSIS
#include <sys/types.h>
#include <sys/v.mparam.h>

ppid_t kvtoppid{caddr_t addr);
ARGUMENTS

addr The kernel virtual address for which the physical page ID is to be
returned.

DESCRIPTION
This routine can be used to obtain a physical page ID suitable to be used as the
return value of the driver's mmap(D2DK) entry point. kvtoppid returns the phy­
sical page ID corresponding to the virtual address addr.
A physical page ID is a machine-specific token that uniquely identifies a page of
physical memory in the system (either system memory or device memory.) No
assumptions should be made about the format of a physical page ID.

RETURN VALUE

LEVEL

NOTES

If addr is valid, the corresponding physical page ID is returned. Otherwise,
NOPAGE is returned.

Base or interrupt.

Does not sleep.

Driver defined basic locks, read/write locks, and sleep locks may be held across
calls to this function.

SEE ALSO
mmap(D2DK), intro(D3DK), phystoppid(D3D)

3/91 Page 1

LOCK (D3DK) DDI/DKI LOCK (D3DK)

NAME
LOCK - acquire a basic lock

SYNOPSIS
#include <sys/types.h>
#include <sys/ksynch.h>

pl_t LOCK(lock_t *lockp, pl_t pI>;

ARGUMENTS
lockp Pointer to the basic lock to be acquired.

pI The interrupt priority level to be set while the lock is held by the
caller. Because some implementations require that interrupts that
might attempt to acquire the lock be blocked on the processor on
which the lock is held, portable drivers must specify a pI value that is
sufficient to block out any interrupt handler that might attempt to
acquire this lock. See the description of the min yl argument to
LOCK_ALLOC(D3DK) for additional discussion and a list of the valid
values for pl. Implementations which do not require that the interrupt
priority level be raised during lock acquisition may choose to ignore
this argument.

DESCRIPTION
LOCK sets the interrupt priority level in accordance with the value specified by pI
(if required by the implementation) and acquires the lock specified by lockp. If
the lock is not immediately available, the caller will wait until the lock is avail­
able. It is implementation defined whether the caller will block during the wait.
Some implementations may cause the caller to spin for the duration of the wait,
while on others the caller may block at some point.

RETURN VALUE

LEVEL

NOTES

Upon acquiring the lock, LOCK returns the previous interrupt priority level
(plbase - plhi).

Base or Interrupt.

Basic locks are not recursive. A call to LOCK attempting to acquire a lock that is
currently held by the calling context will result in deadlock.

Calls to LOCK should honor the ordering defined by the lock hierarchy [see
LOCK_ALLOC(D3DK)] in order to avoid deadlock.

Driver defined sleep locks may be held across calls to this function.

Driver defined basic locks and read/write locks may be held across calls to this
function subject to the hierarchy and recursion restrictions described above.

When called from interrupt level, the pI argument must not specify a priority
level below the level at which the interrupt handler is running.

SEE ALSO
LOCK_ALLOC(D3DK), LOCK_DEALLOC(D3DK), TRYLOCK(D3DK), UNLOCK(D3DK)

3/91 Page 1

LOCK _ ALLOC (D3DK) DDI/DKI LOCK _ ALLOC (D3DK)

lkinfop

flag

Page 2

The ordering of pldisk and plstr relative to each other is not
defined.

Setting a given priority level will block interrupts associated with that
level as well as any levels that are defined to be less than or equal to
the specified level. In order to be portable a driver should not acquire
locks at different priority levels where the relative order of those prior­
ity levels is not defined above.

The min yl argument should specify a priority level that would be
sufficient to block out any interrupt handler that might attempt to
acquire this lock. In addition, potential deadlock problems involving
multiple locks should be considered when defining the min yl value.
For example, if the normal order of acquisition of locks A and B (as
defined by the lock hierarchy) is to acquire A first and then B, lock B
should never be acquired at a priority level less than the min yl for
lock A. Therefore, the min yl for lock B should be greater than or
equal to the min yl for lock A.

Note that the specification of minyl with a LOCK_ALLOC call does not
actually cause any interrupts to be blocked upon lock acquisition, it
simply asserts that subsequent LOCK calls to acquire this lock will pass
in a priority level at least as great as min yl.

Pointer to a lkinfo(D4DK) structure. The lk_naDIe member of the
lkinfo structure points to a character string defining a name that will
be associated with the lock for the purpose of statistics gathering. The
name should begin with the driver prefix and should be unique to the
lock or group of locks for which the driver wishes to collect a
uniquely identifiable set of statistics (Le. if a given name is shared by a
group of locks, the statistics of individual locks within the group will
not be uniquely identifiable). There are no flags defined within the
lk_flags member of the lkinfo structure for use with LOCK_ALLOC.

The lkinfop pointer is recorded in a statistics buffer along with the lock
statistics when the driver is compiled with the DEBUG and _MPSTATS
compilation options defined. A given lkinfo structure may be shared
among multiple basic locks and read/write locks but a lkinfo struc­
ture may not be shared between a basic lock and a sleep lock. The
caller must ensure that the lk_flags and lk-Pa,d members of the
lkinfo structure are zeroed out before passing it to LOCK_ALLOC.

Specifies whether the caller is willing to sleep waiting for memory. If
flag is set to KlCSLEEP, the caller will sleep if necessary until sufficient
memory is available. If flag is set to KM_NOSLEEP, the caller will not
sleep, but LOCK_ALLOC will return NULL if sufficient memory is not
immediately available. Under the _MPSTATS compilation option, if
KM_NOSLEEP is specified and sufficient memory can be immediately
allocated for the lock itself but not for an accompanying statistics
buffer, LOCK_ALLOC will return a pointer to the allocated lock but indi­
vidual statistics will not be collected for the lock.

3/91

LOCK_OEALLOC(030K) OOI/OKI LOCK_OEALLOC(030K)

NAME
LOCK_DEALLOC - deallocate an instance of a basic lock

SYNOPSIS
#include <sys/types.h>
#include <sys/ksynch.h>

void LOCK_DEALLOC(lock_t *lockp);

ARGUMENTS
lockp Pointer to the basic lock to be deallocated.

DESCRIPTION
LOCK_DEALLOC deallocates the basic lock specified by lockp.

RETURN VALUE
None.

LEVEL
Base or Interrupt.

NOTES
Does not sleep.

Attempting to deallocate a lock that is currently locked or is being waited for is
an error and will result in undefined behavior.

Driver defined basic locks (other than the one being deallocated), read/write
locks, and sleep locks may be held across calls to this function.

SEE ALSO
LOCK(D3DK), LOCK_ALLOC(D3DK), TRYLOCK(D3DK), UNLOCK(D3DK)

3/91 Page 1

makedevice (D3DK)

Page 2

14
15

16
17

18
19

20
21

22
23
24

DDI/DKI

if (! lNUSE (minnum))

break;

if (minnum >= XXXMAXMIN) (

UNLOCK (xxxminiock. pi);
return (ENXIO) ;

else (

SETINUSE (minnum) ;

UNLOCK (xxxminiock. pi);

makedevice (D3DK)

*devp = makedevice(getemajor(*devp). minnum);

3/91

min{030K) OOI/OKI

NAME
min - return the lesser of two integers

SYNOPSIS
#include <sys/ddi.h>

int min(int intl, int int2};

ARGUMENTS
intl, int2 The integers to be compared.

DESCRIPTION

min{030K)

min compares two integers and returns the lesser of the two. If the intl and int2
arguments are not of the specified type the results are undefined.

Also, this interface may be implemented in a way that causes the arguments to be
evaluated multiple times, so callers should beware of side effects.

RETURN VALUE

LEVEL

NOTES

The lesser of the two integers.

Base or Interrupt.

Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across
calls to this function.

SEE ALSO
max(D3DK)

3/91 Page 1

msgpullup (D3DK) DDI/DKI(STREAMS)

NAME
msgpullup - concatenate bytes in a message

SYNOPSIS
#include <sys/stream.h>

mblk_t *msgpullup(mblk_t *mp, int len);

ARGUMENTS

msgpullup (D3DK)

mp Pointer to the message whose blocks are to be concatenated.

len Number of bytes to concatenate.

DESCRIPTION
msgpullup concatenates and aligns the first len data bytes of the message pointed
to by mp, copying the data into a new message. The original message is unal­
tered. If len equals -1, all data are concatenated. If len bytes of the same mes­
sage type cannot be found, msgpullup fails and returns NULL.

RETURN VALUE

LEVEL

On success, a pointer to the new message is returned; on failure, NULL is
returned.

Base or Interrupt

NOTES
Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across
calls to this function.

SEE ALSO
allocb(D3DK), msgb(D4DK)

3/91 Page 1

ngeteblk(D3DK) DDI/DKI ngeteblk (D3DK)

Driver-defined sleep locks may be held across calls to this function.

Buffers allocated via ngeteblk must be freed using either brelse(D3DK) or
biodone(D3DK).

SEE ALSO
biodone(D3DK), biowait(D3DK), brelse(D3DK), geteblk(D3DK), buf(D4DK)

Page 2 3/91

OTHERQ{D3DK) DDl/DKI{ STREAMS) OTHERQ (D3DK)

NAME
OTHERQ - get pointer to queue's partner queue

SYNOPSIS
#include <sys/stream.h>
#include <sys/ddi.h>

queue_t *OTHERQ(queue_t *q);

ARGUMENTS
q Pointer to the queue.

DESCRIPTION
The OTHERQ function returns a pointer to the other of the two queue structures
that make up an instance of a STREAMS module or driver. If q points to the
read queue the write queue will be returned, and vice versa.

RETURN VALUE

LEVEL

NOTES

OTHERQ returns a pointer to a queue's partner.

Base or Interrupt.

Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across
calls to this function.

SEE ALSO
RD(D3DK), WR(D3DK)

EXAMPLE

3/91

This routine sets the minimum packet size, the maximum packet size, the high
water mark, and the low water mark for the read and write queues of a given
module or driver. It is passed either one of the queues. This could be used if a
module or driver wished to update its queue parameters dynamically.

1 void
2 set_~ams(queue_t *q, long min, long max, ulon9_t hi, ulon9_t 10)
3
4 register pl_t pI;

5 pI = freezestr(q);
6 (void) strqset(q, QMINPSZ, 0, min);
7 (void) strqset(q, QMAXPSZ, 0, max);

8 (void) strqset(q, QHIWAT, 0, hi);
9 (void) strqset(q, QLOWAT, 0, 10);

10 (void) strqset(OTHERQ(q), QMINPSZ, 0, min);
11 (void) strqset(OTHERQ(q), QMAXPsz, 0, max);
12 (void) strqset(OTHERQ(q), QHIWAT, 0, hi);
13 (void) strqset(OTHERQ(q), QLOWAT, 0, 10);
14 unfreezestr(q, pI);
15

Page 1

outl(D3D) DDI outl(D3D)

NAME
outl - write a 32 bit long word to a 32 bit I/O port

SYNOPSIS
#include <sys/types.h>

void outl (int port, ulong_t data);

ARGUMENTS
port A valid 32 bit I/O port.

data The 32 bit value to be written to the port.

DESCRIPTION
This function provides a C language interface to the machine instruction that
writes a 32 bit long word to a 32 bit I/O port using the I/O address space,
instead of the memory address space.

RETURN VALUE
None.

LEVEL

NOTES

Base or Interrupt.

Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across
calls to this function.

This function may not be meaningful on all implementations because some imple­
mentations may not support I/O-mapped I/O.

SEE ALSO

3/91

Programmer's Reference Manual

Integrated Software Development Guide

inb(D3D), inl(D3D), inw(D3D), outb(D3D), outw(D3D), repinsb(D3D),
repinsd(D3D), repinsw(D3D), repoutsb(D3D), repoutsd(D3D), repoutsw(D3D)

Page 1

pcmsg(D3DK) DDI/DKI(STREAMS) pcmsg (D3DK)

NAME
pcmsg - test whether a message is a priority control message

SYNOPSIS
#include <sys/types.h>
#include <sys/stream.h>
#include <sys/ddi.h>

int pcmsg(uchar_t type);

ARGUMENTS
type The type of message to be tested.

DESCRIPTION
The pcmsg function tests the type of message to determine if it is a priority con­
trol message (also known as a high priority message.) The db_type field of the
datab(D4DK) structure contains the message type. This field may be accessed
through the message block using nq:>->b_datap->db_type.

RETURN VALUE

LEVEL

NOTES

pcmsg returns 1 if the message is a priority control message and 0 if the message
is any other type.

Base or Interrupt.

Does not sleep.

Driver defined basic locks, read/write locks, and sleep locks may be held across
calls to this function.

SEE ALSO
allocb(D3DK), datab(D4DK), msgb(D4DK), messages(DSDK)

EXAMPLE

3/91

The service routine processes messages on the queue. If the message is a high
priority message, or if it is a normal message and the stream is not flow­
controlled, the message is processed and passed along in the stream. Otherwise,
the message is placed back on the head of the queue and the service routine
returns.

1 xxxerv(q)
2 queue_t *q;
3
4

5
6
7
8
9

10
11
12
13
14

while «mp = getq(q» != NULL) (
if (pcmsg(mp->b_datap->db_type) II canputnext (q» (

1* process message */
putnext(q, mp);

} elee (
putbq(q, mp);
return;

Page 1

phfree (D3DK) DDI/DKI phfree (D3DK)

NAME
phfree - free a pollhead structure

SYNOPSIS
#include <sys/poll.h>
#include <sys/kmem.h>

void phfree(struct pollhead *php);

ARGUMENTS
php Pointer to the pollhead structure to be freed. The structure pointed

to by php must have been previously allocated by a call to
phalloc(D3DK).

DESCRIPTION
phfree frees the pollhead structure specified by php.

RETURN VALUE
None.

LEVEL

NOTES

Base or Interrupt.

Does not sleep.

Driver defined basic locks, read/write locks, and sleep locks may be held across
calls to this function.

DDI/DKI conforming drivers may only use pollhead structures which have been
allocated and initialized using phalloc. Use of pollhead structures which have
been obtained by any other means is prohibited.

SEE ALSO
chpoll(D2DK), phalloc(D3DK)

3/91 Page 1

physiock (030K) OOI/OKI physiock (030K)

RETURN VALUE

LEVEL

NOTES

physiock returns 0 if the result is successful, or the appropriate error number on
failure. If a partial transfer occurs, the uio structure is updated to indicate the
amount not transferred and an error is returned. physiock returns the ENXIO
error if an attempt is made to read beyond the end of the device. If a read is per­
formed at the end of the device, 0 is returned. ENXIO is also returned if an
attempt is made to write at or beyond the end of a the device. EFAULT is
returned if user memory is not valid. EAGAIN is returned if physiock could not
lock pages for DMA.

Base Only.

Can sleep.

Driver-defined basic locks and read/write locks may not be held across calls to
this function.

Driver-defined sleep locks may be held across calls to this function.

Some device drivers need nblocks to be arbitrarily large (for example, for tapes
whose sizes are unknown). In this case, nblocks should be no larger than (222)_l.

SEE ALSO
ioctl(D2DK), read(D2DK), strategy(D2DK), write(D2DK), dma-P8.geio(D3D),
buf(D4DK), uio(D4DK)

EXAMPLE
See dma-pageio(D3D) for an example of physiock.

Page 2 3/91

physmap _free (030) 001 physmap _free (030)

NAME
physmap_free - free virtual address mapping for physical addresses

SYNOPSIS
#include <sys/types.h>
#include <sys/kmem.h>

void physmap_free(caddr_t vaddr, ulong_t nbytes, uint_t flags};

ARGUMENTS
vaddr Virtual address for which the mapping will be released.

nbytes

flags

Number of bytes in the mapping.

For future use (must be set to 0.)

DESCRIPTION
physmap_free releases a mapping allocated by a previous call to physmap. The
nbytes argument must be identical to that given to physmap. Currently, no flags
are supported and the flags argument must be set to zero. Generally,
physmap_free will never be called, since drivers usually keep the mapping for­
ever, but it is provided if a driver wants to dynamically allocate and free map­
pings.

RETURN VALUE
None.

LEVEL

NOTES

Base or Interrupt.

Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across
calls to this function.

SEE ALSO
physmap(D3D)

3/91 Page 1

pollwakeup (D3DK) DDI/DKI pollwakeup (D3DK)

NAME
pollwakeup - inform polling processes that an event has occurred

SYNOPSIS
#include <sys/poll.h>

void pollwakeup(struct pollhead *php, short event);

ARGUMENTS
php

event
DESCRIPTION

Pointer to a pollhead structure.

Event to notify the process about.

The pollwakeup function provides non-STREAMS character drivers with a way
to notify processes polling for the occurrence of an event. pollwakeup should be
called from the driver for each occurrence of an event. Events are described in
chpol1 (D2DK).

The pollhead structure will usually be associated with the driver's private data
structure for the particular minor device where the event has occurred.

RETURN
None.

LEVEL

NOTES

Base or Interrupt.

Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across
calls to this function.

pollwakeup should only be called with one event at a time.

SEE ALSO
chpoll(D2DK)

poll(2) in the Programmer's Reference Manual

3/91 Page 1

procJef(030K) OOI/OKI proc Jef (030K)

NAME
proc_ref - obtain a reference to a process for signaling

SYNOPSIS
void *proc_ref();

DESCRIPTION
A non-STREAMS character driver can call proc_ref to obtain a reference to the
process in whose context it is running. The value returned can be used in subse­
quent calls to proc_signal(D3DK) to post a signal to the process. The return
value should not be used in any other way (i.e. the driver should not attempt to
interpret its meaning.)

RETURN VALUE

LEVEL

NOTES

An identifier that can be used in calls to proc_signal and proc_unref(D3DK).

Base only.

Processes can exit even though they are referenced by drivers. In this event,
reuse of the identifier will be deferred until all driver references are given up.

There must be a matching call to proc_unref for every call to proc_ref, when
the driver no longer needs to reference the process. This is typically done as part
of close(D2DK) processing.

Requires user context.

Does not sleep.

Driver defined basic locks, read/write locks, and sleep locks may be held across
calls to this function.

SEE ALSO
proc_signal(D3DK), proc_unref(D3DK)

3/91 Page 1

proc _ unref (030K) OOI/OKI proc unref(030K)

NAME
proc_unref - release a reference to a process

SYNOPSIS
void proc_unref (void *preJ>;

ARGUMENTS
pre! Identifier obtained by a previous call to proc_ref(D3DK).

DESCRIPTION
The proc_unref function can be used to release a reference to a process
identified by the parameter pref There must be a matching call to proc_unref
for every previous call to proc_ref(D3DK).

RETURN VALUE
None.

LEVEL

NOTES

Base or Interrupt.

Processes can exit even though they are referenced by drivers. In this event,
reuse of pre! will be deferred until all driver references are given up.

Does not sleep.

Driver defined basic locks, read/write locks, and sleep locks may be held across
calls to this function.

SEE ALSO
proc_ref(D3DK), proc_signal(D3DK)

3/91 Page 1

put (D3DK) DDI/DKI(STREAMS) put(D3DK)

NAME
put - call a put procedure

SYNOPSIS
#include <sys/stream.h>

void put (queue_t *q, mblk_t *mp);

ARGUMENTS
q Pointer to a message queue.

mp Pointer to the message block being passed.

DESCRIPTION
put calls the put procedure (put(D2DK) entry point) for the queue specified by q,
passing it the arguments q and mp. It is typically used by a driver or module to
call its own put procedure so that the proper accounting is done in the stream.

RETURN VALUE

LEVEL

NOTES

None.

Base or Interrupt.

Does not sleep.

The caller cannot have the stream frozen [see freezestr(D3DK)] when calling
this function.

Driver defined basic locks, read/write locks, and sleep locks may not be held
across calls to this function.

DDI/DKI conforming drivers and modules are no longer permitted to call put
procedures directly, but must call through the appropriate STREAMS utility
function-for example, put (D3DK), putnext(D3DK), putctl(D3DK),
putnextctl(D3DK), qreply(D3DK). put (q, :q;» is provided as a DDI/DKI­
conforming equivalent to a direct call to a put procedure, which is no longer
allowed.

SEE ALSO

3/91

put(D2DK), putctl(D3DK), putctll(D3DK), putnext(D3DK),
putnextctl(D3DK), putnextct11(D3DK), qreply(D3DK)

Page 1

putctl (D3DK) DDI/DKI(STREAMS) putctl (D3DK)

NAME
putctl - send a control message to a queue

SYNOPSIS
#include <sys/stream.h>

int putctl(queue_t *~ int~pe);

ARGUMENTS
q Pointer to the queue to which the message is to be sent.

Message type (must be control). ~pe

DESCRIPTION
putctl tests the type argument to make sure a data type has not been specified,
and then attempts to allocate a message block. putctl fails if type is M_DATA,
M_PROTO, or M_PCPROTO, or if a message block cannot be allocated. If successful,
putctl calls the put(D2DK) routine of the queue pointed to by q, passing it the
allocated message.

RETURN VALUE

LEVEL

NOTES

On success, 1 is returned. Otherwise, if type is a data type, or if a message block
cannot be allocated, 0 is returned.

Base or Interrupt.

Does not sleep.

The caller cannot have the stream frozen [see freezestr(D3DK)] when calling
this function.

Driver-defined basic locks, read/write locks, and sleep locks may not be held
across calls to this function.

The q argument to putctl and putnextctl(D3DK) may not reference <Lnext
(e.g. an argument of q-><Lnext is erroneous on a multiprocessor and is disal­
lowed by the DDI/DKI). putnextctl (q, type) is provided as a
multiprocessor-safe equivalent to the common call putctl (q-><Lnext, type),
which is no longer allowed.

SEE ALSO
put(D2DK), put(D3DK), putctll(D3DK), putnextctl(D3DK),
putnextctl1(D3DK)

EXAMPLE

3/91

The pass_ctl routine is used to pass control messages to one's own queue.
M_BREAK messages are handled with putctl (line 9). putctll (line 11) is used
for ~DELAY messages, so that param can be used to specify the length of the
delay. If an invalid message type is detected, pass_ctl returns 0, indicating
failure (line 13).

1 int
2 pass_ctl (wrq, type, param)

3
4

5

queue_t *wrq;

uchar_t type;
uchar_t param;

Page 1

putctl1 (D3DK) DDI/DKI(STREAMS) putctl1 (D3DK)

NAME
putctll - send a control message with a one-byte parameter to a queue

SYNOPSIS
#include <sys/stream.h>

int putctll (queue_t *q, int type, int param);

ARGUMENTS
q Pointer to the queue to which the message is to be sent.

Message type (must be control). type
param One-byte parameter.

DESCRIPTION
putctll, like putctl(D3DK), tests the type argument to make sure a data type
has not been specified, and attempts to allocate a message block. The param
parameter can be used, for example, to specify the signal number when an
M_PCSIG message is being sent. putctll fails if type is M_DATA, M_PROTO, or
M_PCPROTO, or if a message block cannot be allocated. If successful, putctll calls
the put(D2DK) routine of the queue pointed to by q, passing it the allocated mes­
sage.

RETURN VALUE

LEVEL

NOTES

On success, 1 is returned. Otherwise, if type is a data type, or if a message block
cannot be allocated, 0 is returned.

Base or Interrupt.

Does not sleep.

The caller cannot have the stream frozen [see freezestr(D3DK)] when calling
this function.

Driver-defined basic locks, read/write locks, and sleep locks may not be held
across calls to this function.

The q argument to putctll and putnextctll(D3DK) may not reference ~next
(e.g. an argument of q->~next is erroneous on a multiprocessor and is disal­
lowed by the DDI/DKI). putnextctll(q, type, param) is provided as a
multiprocessor-safe equivalent to the common call putctll (q->~next, type,
param) , which is no longer allowed.

SEE ALSO
put(D2DK), put(D3DK), putctl(D3DK), putnextctl(D3DK),
putnextctl1(D3DK)

EXAMPLE
See putctl(D3DK) for an example of putctll.

3/91 Page 1

putnextctl (D3DK) DDI/DKI(STREAMS) putnextctl (D3DK)

NAME
putnextctl - send a control message to a queue

SYNOPSIS
#include <sys/stream.h>

int putnextctl(queue_t *~ int type) ;
ARGUMENTS

q Pointer to the queue from which the message is to be sent.

Message type (must be control type). type
DESCRIPTION

putnextctl tests the type argument to make sure a data type has not been
specified, and then attempts to allocate a message block. putnextctl fails if type
is M_DATA, M_PROTO, or M_PCPROTO, or if a message block cannot be allocated. If
successful, putnextctl calls the put(D2DK) procedure of the queue pointed to
by q->q_next, passing it the allocated message.

RETURN VALUE

LEVEL

NOTES

Upon successful completion, putnextctl returns 1. If type is a data type, or if a
message block cannot be allocated, ° is returned.

Base or Interrupt.

Does not sleep.

The caller cannot have the stream frozen [see freezestr(D3DK)] when calling
this function.

Driver defined basic locks, read/write locks, and sleep locks may not be held
across calls to this function.

The q argument to putctl(D3DK) and putnextctl may not reference CLnext
(for example, an argument of q->CLnext is erroneous on a multiprocessor and is
disallowed by the DDI/DKl). putnextctl (q, type) is provided as a
multiprocessor-safe equivalent to the common call putctl(q->CLnext, type),
which is no longer allowed.

SEE ALSO
put(D2DK), put(D3DK), putctl(D3DK), putctll(D3DK), putnextctll(D3DK)

EXAMPLE

3/91

The send_ctl routine is used to pass control messages downstream. M_BREAK
messages are handled with putnextctl (line 9). putnextctll (line 11) is used
for M_DELAY messages, so that param can be used to specify the length of the
delay. If an invalid message type is detected, send_ctl returns 0, indicating
failure (line 13).

1 int
2 sencLctl(wrq, type, param)
3 queue_t *wrq;

4

5
6

uchar_t type;

uchar_t param;

Page 1

putnextctl1 (D3DK) DDI/DKI(STREAMS) putnextctl1 (D3DK)

NAME
putnextctll- send a control message with a one byte parameter to a queue

SYNOPSIS
#include <sys/stream.h>

int putnextctll (queue_t *q, int type, int param);

ARGUMENTS
q Pointer to the queue from which the message is to be sent.

Message type (must be control type). type

param One byte parameter.

DESCRIPTION
putnextctll tests the type argument to make sure a data type has not been
specified, and then attempts to allocate a message block. putnextctll fails if
type is M_DATA, M_PROTO, or M_PCPROTO, or if a message block cannot be allocated.
If successful, putnextctl calls the put(D2DK) procedure of the queue pointed to
by q->q_ next, passing it the allocated message with the one byte parameter
specified by paramo

RETURN VALUE

LEVEL

NOTES

Upon successful completion, putnextctll returns 1. If type is a data type, or if a
message block cannot be allocated, a is returned.

Base or Interrupt.

Does not sleep.

The caller cannot have the stream frozen [see freezestr(D3DK)] when calling
this function.

Driver defined basic locks, read/write locks, and sleep locks may not be held
across calls to this function.

The q argument to putctll(D3DK) and putnextct11 may not reference ~next
(for example, an argument of q->~next is erroneous on a multiprocessor and is
disallowed by the DDI/DKI). putnextctll (q, type, param) is provided as a
multiprocessor-safe equivalent to the common call putctll (q->~next, type,
param) , which is no longer allowed.

SEE ALSO
put(D2DK), put(D3DK), putctl(D3DK), putctll(D3DK), putnextctl(D3DK)

EXAMPLE
See putnextctl(D3DK) for an example of putnextctll.

3/91 Page 1

qenable(D3DK} DDI/DKI(STREAMS}

NAME
qenable - schedule a queue's service routine to be run

SYNOPSIS
#include <sys/stream.h>

void qenable(queue_t *q};

ARGUMENTS
q Pointer to the queue.

DESCRIPTION

qenable (D3DK)

qenable puts the queue pointed to by q on the linked list of those whose service
routines are ready to be called by the STREAMS scheduler. qenable works
regardless of whether the service routine has been disabled by a previous call to
nOenable(D3DK).

RETURN VALUE
None.

LEVEL

NOTES

Base or Interrupt.

Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across
calls to this function.

The caller cannot have the stream frozen [see freezestr(D3DK)] when calling
this function.

SEE ALSO
srv(D2DK), enableok(D3DK), noenable(D3DK), queue(D4DK)

EXAMPLE
See enableok(D3DK) for an example of the qenable.

3/91 Page 1

qprocson(D3DK) DDI/DKI(STREAMS) qprocson (D3DK)

NAME
qprocson - enable put and service routines

SYNOPSIS
#include <sys/stream.h>

void qprocson(queue_t *rq);

ARGUMENTS
rq Pointer to a read queue.

DESCRIPTION
qprocson enables the put and service routines of the driver or module whose
read queue is pointed to by rq. Prior to the call to qprocson, the put and service
routines of a newly pushed module or newly opened driver are disabled. For the
module, messages flow around it as if it were not present in the stream.

qprocson must be called by the first open of a module or driver after allocation
and initialization of any resources on which the put and service routines depend.

RETURN VALUE

LEVEL

NOTES

None.

Base Level Only.

May sleep.

The caller cannot have the stream frozen [see freezestr(D3DK)] when calling
this function.

Driver defined basic locks and read/write locks may not be held across calls to
this function.

Driver defined sleep locks may be held across calls to this function.

SEE ALSO
open(D2DK), put(D2DK), srv(D2DK), qprocsoff(D3DK)

3/91 Page 1

qsize(D3DK} DDI/DKI(STREAMS} qsize(D3DK}

NAME
qsize - find the number of messages on a queue

SYNOPSIS
#include <sys/stream.h>

int qsize(queue_t *q);

ARGUMENTS
q Pointer to the queue to be evaluated.

DESCRIPTION
qsize evaluates the queue pointed to by q and returns the number of messages it
contains.

RETURN VALUE

LEVEL

NOTES

If there are no message on the queue, qsize returns o. Otherwise, it returns the
number of messages on the queue.

Base or Interrupt.

Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across
calls to this function.

The caller cannot have the stream frozen [see freezestr(D3DK)] when calling
this function.

SEE ALSO
msgb(D4DK), queue(D4DK)

3/91 Page 1

repinsb (D3D) DDI repinsb (D3D)

NAME
repinsb - read bytes from 1/ 0 port to buffer

SYNOPSIS
#include <sys/types.h>

void repinsb{int port, uchar_t *addr, int cnt);

ARGUMENTS
port A valid 8 bit 1/ 0 port.

addr The address of the buffer where data is stored after cnt reads of the
I/O port.

cnt The number of bytes to be read from the I/O port.

DESCRIPTION
This function provides a C language interface to the machine instructions that
read a string of bytes from an 8 bit I/O port using the I/O address space, instead
of the memory address space. The data from cnt reads of the I/O port is stored
in the data buffer pointed to by addr. The data buffer should be at least cnt bytes
in length.

RETURN VALUE
None.

LEVEL

NOTES

Base or Interrupt.

Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across
calls to this function.

This function may not be meaningful on all implementations because some imple­
mentations may not support I/O-mapped I/O.

SEE ALSO

3/91

Programmer's Reference Manual

Integrated Software Development Guide

inb(D3D), inl(D3D), inw(D3D), outb(D3D), outl(D3D), outw(D3D),
repinsd(D3D), repinsw(D3D), repoutsb(D3D), repoutsd(D3D), repoutsw(D3D)

Page 1

repinsw{D3D) 001 repinsw{D3D)

NAME
repinsw - read 16 bit words from I/O port to buffer

SYNOPSIS
#include <sys/types.h>

void repinsw(int port, ushort_t *addr, int cnt) i

ARGUMENTS
port A valid 16 bit I/O port.

addr The address of the buffer where data is stored after cnt reads of the
I/O port.

cnt The number of 16 bit words to be read from the I/O port.

DESCRIPTION
This function provides a C language interface to the machine instructions that
read a string of 16 bit short words from a 16 bit I/O port using the I/O address
space, instead of the memory address space. The data from cnt reads of the I/O
port is stored in the data buffer pointed to by addr. The data buffer should be at
least cnt 16 bit words in length.

RETURN VALUE
None.

LEVEL

NOTES

Base or Interrupt.

Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across
calls to this function.

This function may not be meaningful on all implementations because some imple­
mentations may not support I/O-mapped I/O.

SEE ALSO

3/91

Programmer's Reference Manual

Integrated Software Development Guide

inb(D3D), inl(D3D), inw(D3D), outb(D3D), outl(D3D), outw(D3D),
repinsb(D3D), repinsd(D3D), repoutsb(D3D), repoutsd(D3D), repoutsw(D3D)

Page 1

repoutsd (030) 001 repoutsd (030)

NAME
repoutsd - write 32 bit words from buffer to an I/O port

SYNOPSIS
#include <sys/types.h>

void repoutsd(int port, ulong_t *addr, int cnt);

ARGUMENTS
port A valid 32 bit I/O port.

addr The address of the buffer from which cnt 32 bit words are written to
the I/O port.

cnt The number of 32 bit words to be written to the I/O port.

DESCRIPTION
This function provides a C language interface to the machine instructions that
write a string of 32 bit long words to a 32 bit I/O port using the I/O address
space, instead of the memory address space. cnt 32 bit words starting at the
address pointed to by addr are written to the I/O port in cnt write operations.
The buffer should be at least cnt 32 bit words in length.

RETURN VALUE
None.

LEVEL

NOTES

Base or Interrupt.

Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across
calls to this function.

This function may not be meaningful on all implementations because some imple­
mentations may not support I/O-mapped I/O.

SEE ALSO

3/91

Programmer's Reference Manual

Integrated Software Development Guide

inb(D3D), inl(D3D), inw(D3D), outb(D3D), outl(D3D), outw(D3D),
repinsb(D3D), repinsd(D3D), repinsw(D3D), repoutsb(D3D), repoutsw(D3D)

Page 1

rmalloc (D3DK) DDI/DKI rmalloc (D3DK)

NAME
rmalloc - allocate space from a private space management map

SYNOPSIS
#include <sys/types.h>
#include <sys/map.h>
#include <sys/ddi.h>

ulong_t rmalloc (struct map *mp, size_t size);

ARGUMENTS
mp Pointer to the map from which space is to be allocated.

size Number of units of space to allocate.

DESCRIPTION
rmalloc allocates space from the private space management map pointed to by
mp. The map must have been allocated by a call to rmallocmap(D3DK) and the
space managed by the map must have been added using rmfree(D3DK) prior to
the first call to rmalloc for the map.

size specifies the amount of space to allocate and is in arbitrary units. The driver
using the map places whatever semantics on the units are appropriate for the
type of space being managed. For example, units may be byte addresses, pages
of memory, or blocks on a device.

The system allocates space from the memory map on a first-fit basis and coalesces
adjacent space fragments when space is returned to the map by rmfree.

RETURN VALUE

LEVEL

NOTES

Upon successful completion, rmalloc returns the base of the allocated space. If
size units cannot be allocated, a is returned.

Base or Interrupt.

Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across
calls to this function.

SEE ALSO
rmalloc_wait(D3DK), rmallocmap(D3DK), rmfree(D3DK), rmfreemap(D3DK)

3/91 Page 1

rmalloc _wait (D3DK) DDI/DKI rmalloc _wait (D3DK)

NAME
rmalloc_wait - allocate space from a private space management map

SYNOPSIS
#include <sys/types.h>
#include <sys/map.h>

ulong_t rmalloc_wait (st:t1lct map *mp, size_t size);

ARGUMENTS
mp Pointer to map to resource map.

size Number of units to allocate.

DESCRIPTION
rmalloc_wait allocates space from a private map previously allocated using
rmallocmap(D3DK). rmalloc_wait is identical to rmalloc(D3DK), except that a
caller to rmalloc_wait will sleep (uninterruptible by signals), if necessary, until
space becomes available.

Space allocated using rmalloc_wai t may be returned to the map using
rmfree(D3DK).

RETURN VALUE

LEVEL

NOTES

rmalloc_wait returns the base of the allocated space.

Base Level Only.

May sleep.

Driver defined basic locks and read/write locks may not be held across calls to
this function.

Driver defined sleep locks may be held across calls to this function, but the driver
writer must be cautious to avoid deadlock between the process holding the lock
and trying to acquire the resource and another process holding the resource and
trying to acquire the lock.

SEE ALSO
rmalloc(D3DK), rmallocmap(D3DK), rmfree(D3DK), rmfreemap(D3DK)

3/91 Page 1

rmfreemap (D3DK) DDI/DKI rmfreemap (D3DK)

NAME
rmfreemap - free a private space management map

SYNOPSIS
#include <sys/map.h>

void rmfreemap(struct map *mp);

ARGUMENTS
mp Pointer to the map to be freed. The map structure array pointed to by

mp must have been previously allocated by a call to
rma.llocmap(D3DK).

DESCRIPTION
rmfreemap frees the map pointed to by mp.

RETURN VALUE
None.

LEVEL

NOTES

Base or Interrupt.

Does not sleep.

Driver defined basic locks, read/write locks, and sleep locks may be held across
calls to this function.

DDI/DKl conforming drivers may only use map structures which have been allo­
cated and initialized using rmallocmap. Use of map structures which have been
obtained by any other means is prohibited.

Before freeing the map, the caller must ensure that nobody is using space
managed by the map, and that nobody is waiting for space in the map.

SEE ALSO
rma.lloc(D3DK), rma.lloc_wait(D3DK), rma.llocmap(D3DK), rmfree(D3DK)

3/91 Page 1

rmvq(D3DK) DDI/DKI(STREAMS) rmvq(D3DK)

NAME
rmvq - remove a message from a queue

SYNOPSIS
#include <sys/stream.h>
void r.mvq(queue_t *q,mblk_t *mp> ;

ARGUMENTS
q Pointer to the queue containing the message to be removed.

Pointer to the message to remove. mp

DESCRIPTION
rmvq removes a message from a queue. A message can be removed from any­
where in a queue. To prevent modules and drivers from having to deal with the
internals of message linkage on a queue, either r.mvq or getq(D3DK) should be
used to remove a message from a queue.

RETURN VALUE
None.

LEVEL

NOTES

Base or Interrupt.

Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across
calls to this function.

The caller must have the stream frozen [see freezestr(D3DK)] when calling this
function.

mp must point to an existing message in the queue pointed to by q, or a system
panic will occur.

SEE ALSO
freezestr(D3DK), getq(D3DK), insq(D3DK), unfreezestr(D3DK)

EXAMPLE
See insq(D3DK) for an example of rmvq.

3/91 Page 1

RW _ ALLoe (D3DK) DDI/DKI RW _ ALLoe (D3DK)

lkinfop

flag

Page 2

The ordering of pldisk and plstr relative to each other is not
defined.

Setting a given priority level will block interrupts associated with that
level as well as any levels that are defined to be less than or equal to
the specified level. In order to be portable a driver should not acquire
locks at different priority levels where the relative order of those prior­
ity levels is not defined above.

The min yl argument should specify a priority level that would be
sufficient to block out any interrupt handler that might attempt to
acquire this lock. In addition, potential deadlock problems involving
multiple locks should be considered when defining the min yl value.
For example, if the normal order of acquisition of locks A and B (as
defined by the lock hierarchy) is to acquire A first and then B, lock B
should never be acquired at a priority level less than the min yl for
lock A. Therefore, the min yl for lock B should be greater than or
equal to the min yl for lock A.

Note that the specification of minyl with a RW_ALLOC call does not
actually cause any interrupts to be blocked upon lock acquisition, it
simply asserts that subsequent RW_RDLOCK/RW_WRLOCK calls to acquire
this lock will pass in a priority level at least as great as min yl.

Pointer to a lkinfo(D4DK) structure. The lk_name member of the
lkinfo structure points to a character string defining a name that will
be associated with the lock for the purpose of statistics gathering. The
name should begin with the driver prefix and should be unique to the
lock or group of locks for which the driver wishes to collect a
uniquely identifiable set of statistics (i.e. if a given name is shared by a
group of locks, the statistics of individual locks within the group will
not be uniquely identifiable). There are no flags defined within the
lk_flags member of the lkinfo structure for use with RW_ALLOC.

The lkinfop pointer is recorded in a statistics buffer along with the lock
statistics when the driver is compiled with the DEBUG and _MPSTATS
compilation options defined. A given lkinfo structure may be shared
among multiple read/write locks and basic locks but a lkinfo struc­
ture may not be shared between a read/write lock and a sleep lock.
The caller must ensure that the lk_flags and lk-pad members of the
lkinfo structure are zeroed out before passing it to RW_ALLOC.

Specifies whether the caller is willing to sleep waiting for memory. If
flag is set to KM_SLEEP, the caller will sleep if necessary until sufficient
memory is available. If flag is set to KM_NOSLEEP, the caller will not
sleep, but RW_ALLOC will return NULL if sufficient memory is not
immediately available. Under the _MPSTATS compilation option, if
KM_NOSLEEP is specified and sufficient memory can be immediately
allocated for the lock itself but not for an accompanying statistics
buffer, RW_ALLOC will return a pointer to the allocated lock but indivi­
dual statistics will not be collected for the lock.

3/91

RW _ DEALLOC (D3DK) DDI/DKI RW _ DEALLOC (D3DK)

NAME
RW_DEALLOC - deallocate an instance of a read/write lock

SYNOPSIS
#include <sys/types.h>
#include <sys/ksynch.h>

void RW_DEALLOC(rwlock_t *lockp);

ARGUMENTS
lockp Pointer to the read/write lock to be deallocated.

DESCRIPTION
RW_DEALLOC deallocates the read/write lock specified by lockp.

RETURN VALUE
None.

LEVEL
Base or Interrupt.

NOTES
Does not sleep.

Attempting to deallocate a lock that is currently locked or is being waited for is
an error and will result in undefined behavior.

Driver defined locks, read/write locks (other than the one being deallocated), and
sleep locks may be held across calls to this function.

SEE ALSO

3/91

RW_ALLOC(D3DK), RW_RDLOCK(D3DK), RW_TRYRDLOCK(D3DK),
RW_TRYWRLOCK(D3DK), RW_UNLOCK(D3DK), RW_WRLOCK(D3DK)

Page 1

RW _ RDLOCK (D3DK) DDI/DKI RW _ RDLOCK (D3DK)

SEE ALSO

Page 2

RW_ALLOC(D3DK), RW_DEALLOC(D3DK), RW_TRYRDLOCK(D3DK),
RW_TRYWRLOCK(D3DK), RW_UNLOCK(D3DK), RW_WRLOCK(D3DK)

3/91

RW JRYWRlOCK (D3DK) DDI/DKI RW _ TRYWRlOCK (D3DK)

NAME
RW_TRYWRLOCK - try to acquire a read/write lock in write mode

SYNOPSIS
#include <sys/types.h>
#include <sys/ksynch.h>

pl_t RW_TRYWRLOCK(rwlock_t *lockp, pl_t pI>;

ARGUMENTS
lockp

pI

Pointer to the read/write lock to be acquired.

The interrupt priority level to be set while the lock is held by the
caller. Because some implementations require that interrupts that
might attempt to acquire the lock be blocked on the processor on
which the lock is held, portable drivers must specify a pI value that is
sufficient to block out any interrupt handler that might attempt to
acquire this lock. See the description of the min yl argument to
RW_ALLOC(D3DK) for additional discussion and a list of the valid
values for pl. Implementations which do not require that the interrupt
priority level be raised during lock acquisition may choose to ignore
this argument.

DESCRIPTION
If the lock specified by lockp is immediately available in write mode (no context is
holding the lock in read mode or write mode), RW_TRYWRLOCK sets the interrupt
priority level in accordance with the value specified by pI (if required by the
implementation) and acquires the lock in write mode. If the lock is not immedi­
ately available in write mode, the function returns without acquiring the lock.

RETURN VALUE

LEVEL

NOTES

If the lock is acquired, RW_TRYWRLOCK returns the previous interrupt priority level
(plbase - plhi). If the lock is not acquired the value invpl is returned.

Base or Interrupt.

Does not sleep.

RW_TRYWRLOCK may be used to acquire a lock in a different order from the order
defined by the lock hierarchy.

Driver defined basic locks, read/write locks, and sleep locks may be held across
calls to this function.

When called from interrupt level, the pI argument must not specify a priority
level below the level at which the interrupt handler is running.

SEE ALSO

3/91

RW_ALLOC(D3DK), RW_DEALLOC(D3DK), RW_RDLOCK(D3DK),
RW_TRYRDLOCK(D3DK), RW_UNLOCK(D3DK), RW_WRLOCK(D3DK)

Page 1

RW _ WRLOCK (D3DK) DDI/DKI RW _ WRLOCK (D3DK)

NAME
RW_WRLOCK - acquire a read/write lock in write mode

SYNOPSIS
#include <sys/types.h>
#include <sys/ksynch.h>

pl_t RW_WRLOCK(rwlock_t

ARGUMENTS
Iockp Pointer to the read/write lock to be acquired.

pI The interrupt priority level to be set while the lock is held by the
caller. Because some implementations require that interrupts that
might attempt to acquire the lock be blocked on the processor on
which the lock is held, portable drivers must specify a pI value that is
sufficient to block out any interrupt handler that might attempt to
acquire this lock. See the description of the min yl argument to
RW_ALLOC(D3DK) for additional discussion and a list of the valid
values for pI. Implementations which do not require that the interrupt
priority level be raised during lock acquisition may choose to ignore
this argument.

DESCRIPTION
RW_WRLOCK sets the interrupt priority level in accordance with the value specified
by pI (if required by the implementation) and acquires the lock specified by Iockp
in write mode. If the lock cannot be acquired immediately in write mode, the
caller will wait until the lock is available in write mode. (A read/write lock is
available in write mode when the lock is not held by any context). It is imple­
mentation defined whether the caller will block during the wait. Some imple­
mentations may cause the caller to spin for the duration of the wait, while on
others the caller may block at some point.

RETURN VALUE

LEVEL

NOTES

3/91

Upon acquiring the lock, RW_WRLOCK returns the previous interrupt priority level
(plbase - plhi).

Base or Interrupt.

Read/write locks are not recursive. A call to LOCK attempting to acquire a lock
that is currently held by the calling context may result in deadlock.

Calls to RW_WRLOCK should honor the ordering defined by the lock hierarchy [see
RW_ALLOC(D3DK)] in order to avoid deadlock.

Driver defined sleep locks may be held across calls to this function.

Driver defined basic locks and read/write locks may be held across calls to this
function subject to the hierarchy and recursion restrictions described above.

When called from interrupt level, the pI argument must not specify a priority
level below the level at which the interrupt handler is running.

Page 1

SAMESTR (D3DK) DDI/DKI(STREAMS) SAMESTR (D3DK)

NAME
SAMESTR - test if next queue is same type

SYNOPSIS
#include <sys/stream.h>

int SAMESTR(queue_t *q);

ARGUMENTS
q Pointer to the queue.

DESCRIPTION
The SAMESTR function is used to see if the next queue in a stream (if it exists) is
the same type as the current queue (that is, both are read queues or both are
write queues). This can be used to determine the point in a STREAMS-based
pipe where a read queue is linked to a write queue.

RETURN VALUE

LEVEL

NOTES

SAMESTR returns 1 if the next queue is the same type as the current queue. It
returns 0 if the next queue does not exist or if it is not the same type.

Base or Interrupt.

Does not sleep.

The caller cannot have the stream frozen [see freezestr(D3DK)] when calling
this function.

Driver-defined basic locks, read/write locks, and sleep locks may be held across
calls to this function.

The argument q may not reference ~next (for example, an argument of q­
>~next is erroneous on a multiprocessor and is disallowed by the DDI/DKl).

SEE ALSO
OTHERQ(D3DK)

EXAMPLE
See the put(D2DK) manual page for an example of SAMESTR.

3/91 Page 1

SLEEP _ALLOC(030K) OOI/OKI SLEEP_ALLOC(030K)

LEVEL

NOTES
Base only if flag is set to KM_SLEEP. Base or interrupt if flag is set to !QCNOSLEEP.

May sleep if flag is set to !QCSLEEP.

Driver defined basic locks and read/write locks may be held across calls to this
function if flag is KM_NOSLEEP but may not be held if flag is KM_SLEEP.

Driver defined sleep locks may be held across calls to this function regardless of
the value of flag.

SEE ALSO

Page 2

SLEEP_DEALLOC{D3DK), SLEEP _LOCK{D3DK), SLEEP _LOCK_SIG(D3DK),
SLEEP _LOCKAVAIL(D3DK), SLEEP _LOCKOWNED(D3DK), SLEEP_TRYLOCK{D3DK),
SLEEP _UNLOCK{D3DK), lkinfo(D4DK)

3/91

SLEEP_LOCK(D3DK) DDI/DKI SLEEP_LOCK (D3DK)

NAME
SLEEP_LOCK - acquire a sleep lock

SYNOPSIS
#include <sys/ksynch.h>

void SLEEP_LOCK(sleep_t *lockp, int priority) i

ARGUMENTS
lockp Pointer to the sleep lock to be acquired.

priority A hint to the the scheduling policy as to the relative priority the caller
wishes to be assigned while running in the kernel after waking up.
The valid values for this argument are as follows:

pridisk
prinet
pritty
pritape
prihi
primed
prilo

Priority appropriate for disk driver.
Priority appropriate for network driver.
Priority appropriate for terminal driver.
Priority appropriate for tape driver.
High priority.
Medium priority.
Low priority.

Drivers may use these values to request a priority appropriate to a
given type of device or to request a priority that is high, medium or
low relative to other activities within the kernel.

It is also permissible to specify positive or negative offsets from the
values defined above. Positive offsets result in more favorable prior­
ity. The maximum allowable offset in all cases is 3 (e.g. pridisk+3
and pridisk-3 are valid values but pridisk+4 and pridisk-4 are
not valid). Offsets can be useful in defining the relative importance of
different locks or resources that may be held by a given driver. In
general, a higher relative priority should be used when the caller is at­
tempting to acquire a highly contended lock or resource, or when the
caller is already holding one or more locks or kernel resources upon
entry to SLEEP_LOCK.

The exact semantic of the priority argument is specific to the schedul­
ing class of the caller, and some scheduling classes may choose to ig­
nore the argument for the purposes of assigning a scheduling priority.

DESCRIPTION
SLEEP_LOCK acquires the sleep lock specified by lockp. If the lock is not immedi­
ately available, the caller is put to sleep (the caller's execution is suspended and
other processes may be scheduled) until the lock becomes available to the caller,
at which point the caller wakes up and returns with the lock held.

The caller will not be interrupted by signals while sleeping inside SLEEP_LOCK.

RETURN VALUE
None.

3/91 Page 1

SLEEP _ LOCKAVAIL (D3DK) DDI/DKI SLEEP _ LOCKAVAIL (D3DK)

NAME
SLEEP_LOCKAVAIL - query whether a sleep lock is available

SYNOPSIS
#include <sys/types.h>
#include <sys/ksynch.h>

bool_t SLEEP_LOCKAVAIL(sleep_t *lockp);

ARGUMENTS
lockp Pointer to the sleep lock to be queried.

DESCRIPTION
SLEEP_LOCKAVAIL returns an indication of whether the sleep lock specified by
lockp is currently available.

The state of the lock may change and the value returned may no longer be valid
by the time the caller sees it. The caller is expected to understand that this is
"stale data" and is either using it as a heuristic or has arranged for the return
value to be meaningful by other means.

RETURN VALUE

LEVEL

NOTES

SLEEP_LOCKAVAIL returns TRUE (a non-zero value) if the lock was available or
FALSE (zero) if the lock was not available.

Base or Interrupt.

Does not sleep.

Driver defined basic locks, read/write locks, and sleep locks may be held across
calls to this function.

SEE ALSO

3/91

SLEEP _ALLOC(D3DK), SLEEP _DEALLOC(D3DK), SLEEP _LOCK(D3DK),
SLEEP_LOCK_SIG(D3DK), SLEEP_LOCKOWNED(D3DK), SLEEP_TRYLOCK(D3DK),
SLEEP_UNLOCK(D3DK)

Page 1

SLEEP_LOCK _ SIG (D3DK) DDI/DKI SLEEP_LOCK _ SIG (D3DK)

NAME
SLEEP _LOCK_SIG - acquire a sleep lock

SYNOPSIS
#include <sys/types.h>
#include <sys/ksynch.h>

bool_t

ARGUMENTS
lockp Pointer to the sleep lock to be acquired.

priority A hint to the the scheduling policy as to the relative priority the caller
wishes to be assigned while running in the kernel after waking up.
The valid values for this argument are as follows:

pridisk Priority appropriate for disk driver.
prinet Priority appropriate for network driver.
pritty Priority appropriate for terminal driver.
pritape Priority appropriate for tape driver.
prihi High priority.
primed Medium priority.
prilo Low priority.

Drivers may use these values to request a priority appropriate to a
given type of device or to request a priority that is high, medium or
low relative to other activities within the kernel.

It is also permissible to specify positive or negative offsets from the
values defined above. Positive offsets result in more favorable prior­
ity. The maximum allowable offset in all cases is 3 (e.g. pridisk+3
and pridisk-3 are valid values but pridisk+4 and pridisk-4 are
not valid). Offsets can be useful in defining the relative importance of
different locks or resources that may be held by a given driver. In
general, a higher relative priority should be used when the caller is at­
tempting to acquire a highly contended lock or resource, or when the
caller is already holding one or more locks or kernel resources upon
entry to SLEEP _LOCK_SIG.

The exact semantic of the priority argument is specific to the schedul­
ing class of the caller, and some scheduling classes may choose to ig­
nore the argument for the purposes of assigning a scheduling priority.

DESCRIPTION

3/91

SLEEP_LOCK_SIG acquires the sleep lock specified by lockp. If the lock is not
immediately available, the caller is put to sleep (the caller's execution is
suspended and other processes may be scheduled) until the lock becomes avail­
able to the caller, at which point the caller wakes up and returns with the lock
held.

SLEEP_LOCK_SIG may be interrupted by a signal, in which case it may return
early without acquiring the lock.

Page 1

SLEEP _ TRYLOCK (D3DK) DDI/DKI SLEEP_TRYLOCK(D3DK)

NAME
SLEEP _TRYLOCK - try to acquire a sleep lock

SYNOPSIS
#include <sys/types.h>
#include <sys/ksynch.h>

bool_t SLEEP_TRYLOCK(sleep_t *lockp);

ARGUMENTS
lockp Pointer to the sleep lock to be acquired.

DESCRIPTION
If the lock specified by lockp is immediately available (can be acquired without
sleeping) SLEEP_TRYLOCK acquires the lock. If the lock is not immediately avail­
able, the function returns without acquiring the lock.

RETURN VALUE

LEVEL

NOTES

SLEEP_TRYLOCK returns TRUE (a non-zero value) if the lock is successfully
acquired or FALSE (zero) if the lock is not acquired.

Base Level Only.

Does not sleep.

Driver defined basic locks, read/write locks, and sleep locks may be held across
calls to this function.

SEE ALSO

3/91

SLEEP _ALLOC(D3DK), SLEEP _DEALLOC(D3DK), SLEEP _LOCK(D3DK),
SLEEP _LOCK_SIG(D3DK), SLEEP _LOCKAVAIL(D3DK), SLEEP_LOCKOWNED(D3DK),
SLEEP _UNLOCK(D3DK)

Page 1

spl (030) 001 spl(030)

NAME
spl - block/allow interrupts on a processor

SYNOPSIS
pl_t spIbase () i
pl_t spItimeout()i
pl_t spIdisk() i
pl_t splstr(} i
pl_t splhi () i

pl_t spIx(pl_t oldlevel) i

ARGUMENTS
oldlevel Last set priority value (only spIx has an input argument).

DESCRIPTION
The spl functions block or allow servicing of interrupts on the processor on
which the function is called. Hardware devices are assigned to interrupt priority
levels depending on the type of device. Each spl function which blocks inter­
rupts is associated with some machine dependent interrupt priority level and will
prevent interrupts occurring at or below this priority level from being serviced on
the processor on which the spl function is called.

On a multiprocessor system, interrupts may be serviced by more than one proces­
sor and, therefore, use of a spl function alone is not sufficient to prevent inter­
rupt code from executing and manipulating driver data structures during a criti­
cal section. Drivers that must prevent execution of interrupt-level code in order
to protect the integrity of their data should use basic locks or read/write locks for
this purpose [see LOCK_ALLOC(D3DK) or RW_ALLOC(D3DK)].

The spl functions include the following:

spIbase
spItimeout
spldisk
splstr
spIhi

Block no interrupts.
Block functions scheduled by itimeout and dtimeout.
Block disk device interrupts.
Block STREAMS interrupts.
Block all interrupts.

Calling a given spl function will block interrupts specified for that function as
well as interrupts at equal and lower levels. The notion of low vs. high levels
assumes a defined order of priority levels. The following partial order is defined:

spIbase <= spItimeout <= spIdisk,splstr <= spIhi

The ordering of spIdisk and splstr relative to each other is not defined.

RETURN VALUE

NOTES

3/91

All spl functions return the previous priority level.

All spl functions do not sleep.

Driver defined basic locks and read/write locks may be held across calls to these
functions, but the spl call must not cause the priority level to be lowered below
the level associated with the lock.

Page 1

strlog (D3DK) DDI/DKI(STREAMS) strlog (D3DK)

NAME
strlog - submit messages to the log driver

SYNOPSIS
#include <sys/types.h>
#include <sys/stream.h>
#include <sys/strlog.h>
#include <sys/log.h>

int strlog(short mid, short sid, char level, ushort_t flags,
char *fmt, ... /* args */) i

ARGUMENTS
mid Identification number of the module or driver submitting the message.

sid Identification number for a particular minor device.

level Tracing level for selective screening of low priority messages.

flags Bitmask of flags indicating message purpose. Valid flags are:

SL_ERROR Message is for error logger.
SL_TRACE Message is for tracing.
SL_CONSOLE Message is for console logger.
SL_NOTIFY If SL_ERROR is also set, mail copy of message to

system administrator.
SL_FATAL Modifier indicating error is fatal.
SL_WARN Modifier indicating error is a warning.
SL_NOTE Modifier indicating error is a notice.

fmt printf(3S) style format string. %s, 'Yoe, 'Yog, and 'YoG formats are not
allowed.

args Zero or more arguments to printf (maximum of NLOGARGS, currently
three).

DESCRIPTION
strlog submits formatted messages to the log(7) driver. The messages can be
retrieved with the getmsg(2) system call. The flags argument specifies the type of
the message and where it is to be sent. strace(lM) receives messages from the
log driver and sends them to the standard output. strerr(lM) receives error
messages from the log driver and appends them to a file called
/var/adm/streams/error.mm-dd, where mm-dd identifies the date of the error
message.

RETURN VALUE

LEVEL

NOTES

3/91

strlog returns 0 if the message is not seen by all the readers, 1 otherwise.

Base or Interrupt.

Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across
calls to this function.

Page 1

strqget (D3DK) DDl/DKI(STREAMS) strqget (D3DK)

NAME
strqget - get information about a queue or band of the queue

SYNOPSIS
#include <sys/types.h>
#include <sys/stream.h>

int strqget (queue_t *q, qfields_t what, uchar_t pri, long *valp);

ARGUMENTS
q Pointer to the queue.

what

pri

valp

The field of the queue about which to return information. Valid
values are:

QHIWAT High water mark of the specified priority band.

QLOWAT Low water mark of the specified priority band.

QMAXPSZ Maximum packet size of the specified priority band.

QMINPSZ Minimum packet size of the specified priority band.

QCOUNT

QFIRST

QLAST

QFLAG

Number of bytes of data in messages in the specified prior­
ity band.

Pointer to the first message in the specified priority band.

Pointer to the last message in the specified priority band.

Flags for the specified priority band [see queue(D4DK)].

Priority band of the queue about which to obtain information.

Pointer to the memory location where the value is to be stored.

DESCRIPTION
strqget gives drivers and modules a way to get information about a queue or a
particular priority band of a queue without directly accessing STREAMS data
structures.

RETURN VALUE

LEVEL

NOTES

On success, 0 is returned. An error number is returned on failure. The actual
value of the requested field is returned through the reference parameter, valp.

Base or Interrupt.

Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across
calls to this function.

The caller must have the stream frozen [see freezestr(D3DK)] when calling this
function.

SEE ALSO
freezestr(D3DK), strqset(D3DK), unfreezestr(D3DK), queue(D4DK)

3/91 Page 1

SV _ ALLoe (D3DK) DDI/DKI SV _ ALLoe (D3DK)

NAME
SV _ALLOC - allocate and initialize a synchronization variable

SYNOPSIS
#include <sys/kmem.h>
#include <sys/ksynch.h>

sv_t *SV_ALLOC(int flag);

ARGUMENTS
flag Specifies whether the caller is willing to sleep waiting for memory. If

flag is set to K~CSLEEP, the caller will sleep if necessary until sufficient
memory is available. If flag is set to KM_NOSLEEP, the caller will not
sleep, but SV_ALLOC will return NULL if sufficient memory is not
immediately available.

DESCRIPTION
SV_ALLOC dynamically allocates and initializes an instance of a synchronization
variable.

RETURN VALUE

LEVEL

NOTES

Upon successful completion, SV_ALLOC returns a pointer to the newly allocated
synchronization variable. If KM_NOSLEEP is specified and sufficient memory is not
immediately available, SV_ALLOC returns a NULL pointer.

Base only ifflag is set to nLSLEEP. Base or interrupt ifflag is set to KM_NOSLEEP.

May sleep if flag is set to KM_SLEEP.

Driver defined basic locks and read/write locks may be held across calls to this
function ifflag is KM_NOSLEEP but may not be held ifflag is K~CSLEEP.

Driver defined sleep locks may be held across calls to this function regardless of
the value of flag.

SEE ALSO

3/91

SV_BROADCAST(D3DK), SV_DEALLOC(D3DK), SV_SIGNAL(D3DK), SV_WAIT(D3DK),
SV _WAIT_SIG(D3DK)

Page 1

SV_OEALLOC(030K) OOI/OKI SV_OEALLOC(030K)

NAME
SV _DEALLOC - deallocate an instance of a synchronization variable

SYNOPSIS
#include <sys/ksynch.h>

void SV_DEALLOC{sv_t *svp);
ARGUMENTS

lockp Pointer to the synchronization variable to be deallocated.

DESCRIPTION
SV_DEALLOC deallocates the synchronization variable specified by svp.

RETURN VALUE
None.

LEVEL
Base or Interrupt.

NOTES
Does not sleep.

Driver defined basic locks, read/write locks, and sleep locks may be held across
calls to this function.

SEE ALSO

3/91

SV_ALLOc(D3DK), SV_BROADCAST(D3DK), SV_SIGNAL(D3DK), SV_WAIT(D3DK),
SV _WAIT_SIG(D3DK)

Page 1

OOI/OKI

NAME
SV _WAIT - sleep on a synchronization variable

SYNOPSIS
#include <sys/types.h>
#include <sys/ksynch.h>

void SV_WAIT(sv_t *svp, int priority, lock_t *lkp);

ARGUMENTS
svp
priority

Pointer to the synchronization variable on which to sleep.

A hint to the the scheduling policy as to the relative priority the caller
wishes to be assigned while running in the kernel after waking up.
The valid values for this argument are as follows:

pridisk
prinet
pritty
pritape
prihi
primed
prilo

Priority appropriate for disk driver.
Priority appropriate for network driver.
Priority appropriate for terminal driver.
Priority appropriate for tape driver.
High priority.
Medium priority.
Low priority.

Drivers may use these values to request a priority appropriate to a
given type of device or to request a priority that is high, medium or
low relative to other activities within the kernel.

It is also permissible to specify positive or negative offsets from the
values defined above. Positive offsets result in more favorable prior­
ity. The maximum allowable offset in all cases is 3 (e.g. pridisk+3
and pridisk-3 are valid values but pridisk+4 and pridisk-4 are
not valid). Offsets can be useful in defining the relative importance of
different locks or resources that may be held by a given driver. In
general, a higher relative priority should be used when the caller is
sleeping waiting for a highly contended kernel resource, or when the
caller is already holding one or more locks or kernel resources upon
entry to SV_WAIT.

The exact semantic of the priority argument is specific to the schedul­
ing class of the caller, and some scheduling classes may choose to ig­
nore the argument for the purposes of assigning a scheduling priority.

lkp Pointer to a basic lock which must be locked when SV_WAIT is called.
The basic lock is released when the calling process goes to sleep, as
described below.

DESCRIPTION

3/91

SV_WAIT causes the calling process to go to sleep (the caller's execution is
suspended and other processes may be scheduled) waiting for a call to
SV_SIGNAL(D3DK) or SV_BROADCAST(D3DK) for the synchronization variable
specified by svp.

Page 1

OOI/OKI

NAME
SV_WAIT_SIG - sleep on a synchronization variable

SYNOPSIS
#include <sys/types.h>
#include <sys/ksynch.h>

bool_t SV_WAIT_SIG(sv_t *svp, int priority,lock_t *lkp>;

ARGUMENTS
svp
priority

Pointer to the synchronization variable on which to sleep.

A hint to the the scheduling policy as to the relative priority the caller
wishes to be assigned while running in the kernel after waking up.
The valid values for this argument are as follows:

pridisk
prinet
pritty
pritape
prihi
primed
prilo

Priority appropriate for disk driver.
Priority appropriate for network driver.
Priority appropriate for terminal driver.
Priority appropriate for tape driver.
High priority.
Medium priority.
Low priority.

Drivers may use these values to request a priority appropriate to a
given type of device or to request a priority that is high, medium or
low relative to other activities within the kernel.

It is also permissible to specify positive or negative offsets from the
values defined above. Positive offsets result in more favorable prior­
ity. The maximum allowable offset in all cases is 3 (e.g. pridisk+3
and pridisk-3 are valid values but pridisk+4 and pridisk-4 are
not valid). Offsets can be useful in defining the relative importance of
different locks or resources that may be held by a given driver. In
general, a higher relative priority should be used when the caller is
sleeping waiting for a highly contended kernel resource, or when the
caller is already holding one or more locks or kernel resources upon
entry to SV _WAIT_SIG.

The exact semantic of the priority argument is specific to the schedul­
ing class of the caller, and some scheduling classes may choose to ig­
nore the argument for the purposes of assigning a scheduling priority.

lkp Pointer to a basic lock which must be locked when SV_WAIT_SIG is
called. The basic lock is released when the calling process goes to
sleep, as described below.

DESCRIPTION

3/91

SV_WAIT_SIG causes the calling process to go to sleep (the caller's execution is
suspended and other processes may be scheduled) waiting for a call to
SV_SIGNAL(D3DK) or SV_BROADCAST(D3DK) for the synchronization variable
specified by svp.

Page 1

TRYLOCK (030K) OOI/OKI TRYLOCK (030K)

NAME
TRYLOCK - try to acquire a basic lock

SYNOPSIS
#include <sys/types.h>
#include <sys/ksynch.h>

pl_t TRYLOCK(lock_t *lockp, pl_t pO;
ARGUMENTS

lockp Pointer to the basic lock to be acquired.

pl The interrupt priority level to be set while the lock is held by the
caller. Because some implementations require that interrupts that
might attempt to acquire the lock be blocked on the processor on
which the lock is held, portable drivers must specify a pl value that is
sufficient to block out any interrupt handler that might attempt to
acquire this lock. See the description of the min yl argument to
LOCK_ALLOC(D3DK) for additional discussion and a list of the valid
values for pI. Implementations which do not require that the interrupt
priority level be raised during lock acquisition may choose to ignore
this argument.

DESCRIPTION
If the lock specified by lockp is immediately available (can be acquired without
waiting) TRYLOCK sets the interrupt priority level in accordance with the value
specified by pl (if required by the implementation) and acquires the lock. If the
lock is not immediately available, the function returns without acquiring the lock.

RETURN VALUE

LEVEL

NOTES

If the lock is acquired, TRYLOCK returns the previous interrupt priority level
(plbase - plhi). If the lock is not acquired the value invpl is returned.

Base or Interrupt.

Does not sleep.

TRYLOCK may be used to acquire a lock in a different order from the order
defined by the lock hierarchy.

Driver defined basic locks, read/write locks, and sleep locks may be held across
calls to this function.

When called from interrupt level, the pl argument must not specify a priority
level below the level at which the interrupt handler is running.

SEE ALSO
LOCK(D3DK), LOCK_ALLOC(D3DK), LOCK_DEALLOC(D3DK), ONLOCK(D3DK)

3/91 Page 1

uiomove (D3DK) DDI/DKI uiomove (D3DK)

If addr specifies an address in user space, or if the value of uio_segflg is not
consistent with the type of address space described by the uio structure, the sys­
tem can panic.

SEE ALSO

Page 2

bcopy(D3DK), copyin(D3DK), copyout(D3DK), ureadc(D3DK), uwritec(D3DK),
iovec(D4DK), uio(D4DK)

3/91

unbufcall (D3DK)

Page 2

15
16
17

18
19

20

qprocsoff (q);

modp->DLtype = 0;

DDI/DKI(STREAMS) unbufcall (D3DK)

3/91

unlinkb (D3DK) DDI/DKI(STREAMS)

NAME
unlinkb - remove a message block from the head of a message

SYNOPSIS
#include <sys/stream.h>

mblk_t *unlinkb(mblk_t *mp};

ARGUMENTS
mp

DESCRIPTION

Pointer to the message.

unlinkb (D3DK)

unlinkb removes the first message block from the message pointed to by mp.
The removed message block is not freed. It is the caller's responsibility to free it.

RETURN VALUE

LEVEL

NOTES

unlinkb returns a pointer to the remainder of the message after the first message
block has been removed. If there is only one message block in the message, NULL
is returned.

Base or Interrupt.

Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across
calls to this function.

SEE ALSO
linkb(D3DK)

EXAMPLE

3/91

The routine expects to get passed an M_PROTO T_DATA_IND message. It will
remove and free the M_PROTO header and return the remaining M_DATA portion of
the message.
1 mblk_t *
2 makedata{mp)

3 mblk_t *mp;

4 {

5 mblk_t *nmp;

6 nmp = unlinkb{mp);

7 freeb{mp) ;

8 return{nmp) ;

9 }

Page 1

untimeout (030K) OOI/OKI untimeout (030K)

NAME
untimeout - cancel previous timeout request

SYNOPSIS
#include <sys/types.h>

void untimeout(toid_t id);

ARGUMENTS
id Identifier returned from a previous call to dtimeout(D3D) or

itimeout(D3DK).

DESCRIPTION
untimeout cancels a pending timeout request. If the untimeout is called while
the function is running, then untimeout will not return until the function has
completed. The function that runs as a result of a call to dtimeout or itirneout
cannot use untirneout to cancel itself.

RETURN VALUE
None.

LEVEL

NOTES

Base or Interrupt, with the following exception: The untimeout can only be per­
formed from interrupt levels less than, or equal to, the level specified when the
function was scheduled.

Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may not be held
across calls to this function if these locks are contended by the function being
canceled.

SEE ALSO
delay(D3DK), dtimeout(D3D), itimeout(D3DK), unbufcall(D3DK)

EXAMPLE
See unbufcall(D3DK) for an example of untimeout.

3/91 Page 1

uwritec (030K) OOI/OKI uwritec (030K)

NAME
uwritee - return a character from space described by uio(D4DK) structure

SYNOPSIS
#inelude <sys/uio.h>

int uwritee (uio_t *uiop);

ARGUMENTS
uiop Pointer to the uio structure.

DESCRIPTION
uwri tee copies a character from the space described by the uio structure pointed
to by uiop and returns the character to the caller.

The uio_segflg member of the uio structure specifies the type of space from
which the copy is made. If uio_segflg is set to UIO_SYSSPACE the character is
copied from a kernel address. If uio_segflg is set to UIO_USERSPACE the char­
acter is copied from a user address.

If the character is successfully copied, uwri tee updates the appropriate members
of the uio and iovee(D4DK) structures to reflect the copy (uio_offset and
iov_base are incremented and uio_resid and iov_len are decremented) and
returns the character to the caller.

RETURN VALUE

LEVEL

NOTES

If successful, uwritee returns the character. -1 is returned if the space described
by the uio structure is empty or there is an error.

Base only if uio_segflg is set to UIO_USERSPACE. Base or interrupt if
uio_segflg is set to UIO_SYSSPACE.

May sleep if uio_segflg is set to UIO_USERSPACE.

Driver-defined basic locks and read/write locks may be held across calls to this
function if uio_segflg is UIO_SYSSPACE but may not be held if uio_segflg is
UIO_USERSPACE.

Driver-defined sleep locks may be held across calls to this function regardless of
the value of uio_segflg.

When holding locks across calls to this function, drivers must be careful to avoid
creating a deadlock. During the data transfer, page fault resolution might result
in another I/O to the same device. For example, this could occur if the driver
controls the disk drive used as the swap device.

SEE ALSO
uiamove(D3DK), ureade(D3DK), iovee(D4DK), uio(D4DK)

3/91 Page 1

WR(D3DK) DDI/DKI(STREAMS) WR(D3DK)

NAME
WR - get a pointer to the write queue

SYNOPSIS
#include <sys/stream.h>
#include <sys/ddi.h>

queue_t *WR(queue_t *q};

ARGUMENTS
q Pointer to the queue whose write queue is to be returned.

DESCRIPTION
The WR function accepts a queue pointer as an argument and returns a pointer to
the write queue of the same module.

RETURN VALUE

LEVEL

NOTES

The pointer to the write queue.

Base or Interrupt.

Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across
calls to this function.

SEE ALSO
OTHERQ(D3DK), RD(D3DK)

EXAMPLE

3/91

In a STREAMS open(D2DK) routine, the driver or module is passed a pointer to
the read queue. The driver or module can store a pointer to a private data struc­
ture in the <L.Ptr field of both the read and write queues if it needs to identify
the data structures from its put(D2DK) or srv(D2DK) routines.

1 extern struct xxx_dev[];

2 xxxopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *crp}
3 {

3 q-><L.Ptr = (caddr_t}&xxx_dev[getminor(*devp)];
4 WR(q}-><L.Ptr = (caddr_t}&xxx_dev[getminor(*devp)];

5

Page 1

dma _disable (D3X) DDI dma _disable (D3X)

NAME
dma_disable - disable recognition of hardware requests on a DMA channel

SYNOPSIS
#include <sys/dma.h>

void dma_disable(int chan);

ARGUMENTS
chan Channel to be disabled.

DESCRIPTION
dma_disable disables recognition of hardware requests on the DMA channel
chan. The channel is then released and made available for other use.

RETURN VALUE
None.

LEVEL

NOTES

Base or Interrupt.

Does not sleep.

The caller must ensure that it is acting on behalf of the channel owner, and that it
makes sense to release the channel.

The caller must ensure that the channel is in use for hardware-initiated DMA
transfers and not software-initiated transfers.

SEE ALSO
dma_enable(D3X), dma-prog(D3X), dma_cb(D4X)

3/91 Page 1

dma_free_buf(D3X) 001 dma _free _ buf (D3X)

NAME
dma_free_buf - free a previously allocated DMA buffer descriptor

SYNOPSIS
#include <sys/dma.h>

void dma_free_buf (struct dma_buf *drnabufptr);

ARGUMENTS
drnabufptr Address of the allocated DMA buffer descriptor to be returned.

DESCRIPTION
dma_free_buf frees a DMA buffer descriptor. The drnabufptr argument must
specify the address of a DMA buffer descriptor previously allocated by
dma_get_buf(D3X).

RETURN VALUE
None.

LEVEL
Base or Interrupt.

NOTES
Does not sleep.

SEE ALSO
dma_get_buf(D3X), dma_buf(D4X)

3/91 Page 1

dma _get_but (D3X) 001 dma _get_but (D3X)

NAME
dma_get_buf - allocate a DMA buffer descriptor

SYNOPSIS
#include <sys/types.h>
#include <sys/dma.h>

struct dma_buf *dma_get_buf (uchar_t mode) i

ARGUMENTS
mode Specifies whether the caller is willing to sleep waiting for memory. If

mode is set to DMA_SLEEP, the caller will sleep if necessary until the
memory for a dma_buf is available. If mode is set to DMA_NOSLEEP, the
caller will not sleep, but dma_get_buf will return NULL if memory for
a dma_buf is not immediately available.

DESCRIPTION
dma_get_buf allocates memory for a DMA command block structure [see
dma_buf(D4X)], zeroes it out, and returns a pointer to the structure.

RETURN VALUE

LEVEL

NOTES

dma_get_buf returns a pointer to the allocated DMA control block. If
DMA_NOSLEEP is specified and memory for a dma_buf is not immediately avail­
able, dma_get_buf returns a NULL pointer.

Base only if mode is set to DMA_SLEEP. Base or Interrupt if mode is set to
DMA_NOSLEEP.

Can sleep if mode is set to DMA_SLEEP.

SEE ALSO
dma_free_buf(D3X), dma_buf(D4X)

3/91 Page 1

dma _get_ cb (D3X) 001

NAME
dma_get_cb - allocate a DMA command block

SYNOPSIS
#include <sys/types.h>
#include <sys/dma.h>

struct dma_cb *dma_get_cb(uchar_t mode);

ARGUMENTS
mode Specifies whether the caller is willing to sleep waiting for memory. If

mode is set to DMA_SLEEP, the caller will sleep if necessary until the
memory for a dma_cb is available. If mode is set to DMA_NOSLEEP, the
caller will not sleep, but dma_get_cb will return NULL if memory for a
dma_cb is not immediately available.

DESCRIPTION
dma_get_cb allocates memory for a DMA command block structure [see
dma_cb(D4X)l, zeroes it out, and returns a pointer to the structure.

RETURN VALUE

LEVEL

NOTES

dma_get_cb returns a pointer to the allocated DMA control block. If
DMA_NOSLEEP is specified and memory for a dma_cb is not immediately available,
dma_get_cb returns a NULL pointer.

Base only if mode is set to DMA_SLEEP. Base or Interrupt if mode is set to
DMA_NOSLEEP.

Can sleep if mode is set to DMA_SLEEP.

SEE ALSO
dma_free_cb(D3X), dma3b(D4X)

3/91 Page 1

dma_stop(D3X) DDI dma_stop(D3X)

NAME
dIna_stop - stop software-initiated DMA operation on a channel and release it

SYNOPSIS
#include <sys/dIna.h>

void dma_stop (int chan);

ARGUMENTS
chan Channel on which DMA operation is to be stopped.

DESCRIPTION
dIna_stop stops a software-initiated DMA operation in progress on the channel
chan. The channel is then released and made available for other use.

RETURN VALUE
None.

LEVEL

NOTES

Base or Interrupt.

Does not sleep.

The caller must ensure that it is acting on behalf of the channel owner, and that it
makes sense to release the channel.

The caller must ensure that the channel is currently in use for software-initiated
DMA transfers rather than hardware-initiated transfers.

SEE ALSO
dIna_swsetup(D3X), dma_swstart(D3X), dma_cb(D4X)

3/91 Page 1

dma _ swsetup (D3X) DDI dma _ swsetup (D3X)

NAME
dma_swsetup - program a DMA operation for a subsequent software request

SYNOPSIS
#include <sys/types.h>
#include <sys/dma.h>

int dma_swsetup{struct dma_cb *dmacbptr, int chan, uchar_t mode);

ARGUMENTS
dmacbptr Pointer to the DMA command block specifying the DMA operation.

chan DMA channel over which the operation is to take place.

mode Specifies whether the caller is willing to sleep waiting to allocate
desired DMA channel. If mode is set to DMA_SLEEP, the caller will
sleep if necessary until the requested channel becomes available for its
use. If mode is set to DMA_NOSLEEP, the caller will not sleep, but
dma_~~_E!_t:.!lP will return FALSE if the requested DMA channel is not
immediately available.

DESCRIPTION
dma_swsetup programs the DMA channel chan for the operation specified by the
DMA command block whose address is given by dmacbptr. Note that
dma_swsetup does not initiate the DMA transfer. Instead, the transfer will be ini­
tiated by a subsequent request initiated via software by dma_swstart(D3X).

If dma_swsetup programs the operation successfully, it then calls the procedure
specified by the proc field of the dma_cb(D4X) structure. It passes as an argu­
ment the value in the procparms field. If proc is set to NULL, then no routine is
called.

To program the operation, dma_swsetup requires exclusive use of the specified
DMA channel. The caller may specify, via the mode argument, whether
dma_swsetup should sleep waiting for a busy channel to become available. If the
specified channel is in use and mode is set to DMA_SLEEP, then dma_swsetup will
sleep until the channel becomes aVi1ilable for its use. Otherwise, if DMA,...NOSLEEP
is specified and the requested channel is not immediately available, dma_swsetup
will not program the channel, but will simply return a value of FALSE.

RETURN VALUE

LEVEL

NOTES

dma_swsetup returns the value TRUE on success and returns the value FALSE oth­
erwise.

Base only if either (1) mode is set to DMA_SLEEP or (2) the routine specified by the
proc field of the dma_cb structure sleeps. Base or Interrupt otherwise.

Can sleep if mode is set to DMA_SLEEP or if the routine specified by the proc field
of the dma_cb structure sleeps.

SEE ALSO
dma_swstart(D3X), dma_stop(D3X), dma_cb(D4X)

3/91 Page 1

buf(040K) OOI/OKI buf(040K)

NAME
buf - block I/O data transfer structure

SYNOPSIS
#include <sys/types.h>
#include <sys/page.h>
#include <sys/proc.h>
#include <sys/buf.h>

DESCRIPTION
The buf structure is the basic data structure for block I/O transfers. Each block
I/O transfer has an associated buffer header. The header contains all the buffer
control and status information. For drivers, the buffer header pointer is the sole
argument to a block driver strategy(D2DK) routine. Do not depend on the size
of the buf structure when writing a driver.

It is important to note that a buffer header may be linked in multiple lists. simul­
taneously. Because of this, most of the members in the buffer header cannot be
changed by the driver, even when the buffer header is in one of the drivers' work
lists.

Buffer headers may be used by the system to describe a portion of the kernel data
space for I/O for block drivers. Buffer headers are also used by the system for
physical I/O for block drivers. In this case, the buffer describes a portion of user
data space that is locked into memory [see physiock(D3DK)].

Block drivers often chain block requests so that overall throughput for the device
is maximized. The av _forw and the av _back members of the buf structure can
serve as link pointers for chaining block requests.

STRUCTURE MEMBERS

3/91

int b_flags; 1* Buffer status *1
struct buf *b_forw; 1* Kernel/driver list link *1
struct buf *b_back; 1* Kernel/driver list link *1
struct buf *av_forw; 1* Driver work list link *1
struct buf *av_back; 1* Driver work list link *1
uint_t b_bcount; 1* # of b¥tes to transfer *1
union {

caddr_t b_addr; 1* Buffer's virtual address *1
} b_un;
daddr_t b_blkno; 1* Block number on device *1
uint_t b_resid; 1* # of b¥tes not transferred *1
clock_t b_start; 1* Request start time *1
struct proc *b-proc; 1* Process structure address *1
long b_bufsize; 1* Size of allocated buffer *1
int (*b_iodonel (); 1* Function called by biodone *1
dev_t b_edev; 1* Expanded dev field *1
void *b-private; 1* For driver's use *1

The members of the buffer header available to test or set by a driver are
described below:

Page 1

buf(040K) OOI/OKI buf(040K)

NOTES

b_resid indicates the number of bytes not transferred because of an error. The
driver may change this member.

b_start holds the time the I/O request was started. It is provided for the
driver's use in calculating response time and is set by the driver. Its type,
clock_t, is an integral type upon which direct integer calculations can be per­
formed. It represents clock ticks.

b-proc contains the process structure address for the process requesting an
unbuffered (direct) data transfer to or from a user data area (this member is set to
NULL when the transfer is buffered). The process table entry is used to perform
proper virtual to physical address translation of the b_un.b_addr member [see
vtop(D3D)]. The driver may not change this member.

b_bufsize contains the size in bytes of the allocated buffer. The driver may not
change this member unless the driver acquired the buffer with getrbuf.

(*b_iodone) identifies a specific driver routine to be called by the system when
the I/O is complete. If one is specified, the biodone(D3DK) routine does not
return the buffer to the system. The driver may change this member.

b_edev contains the external device number of the device.

b-pri vate is a private field for use by the driver. The system does not interpret
it. The driver is free to use it in whatever manner it chooses. For example, the
driver could use it as part of a disk block sorting algorithm.

Buffers are a shared resource within the kernel. Drivers should only read or
write the members listed in this section in accordance with the rules given above.
Drivers that attempt to use undocumented members of the buf structure risk cor­
rupting data in the kernel and on the device.

DDI/DKI conforming drivers may only use buffer headers that have been allo­
cated using geteblk, ngeteblk or getrbuf, or have been passed to the driver
strategy routine.

SEE ALSO

3/91

strategy(D2DK), biodone(D3DK), bioerror(D3DK), biowait(D3DK),
brelse(D3DK), clrbuf(D3DK), freerbuf(D3DK), geteblk(D3DK),
geterror(D3DK), getrbuf(D3DK), ngeteblk(D3DK), physiock(D3DK),
iovec(D4DK), uio(D4DK)

Page 3

copyreq (D4DK) DDI/DKI(STREAMS) copyreq (D4DK)

SEE ALSO
Programmer's Guide: STREAMS

datab(D4DK), msgb(D4DK), copyresp(D4DK), iocblk(D4DK), messages(DSDK)

Page 2 3/91

datab (D4DK) DDIIDKI(STREAMS} datab (D4DK)

NAME
datab - STREAMS data block structure

SYNOPSIS
#include <sys/types.h>
#include <sys/stream.h>

DESCRIPTION
The datab structure describes the data of a STREAMS message. The actual data
contained in a STREAMS message is stored in a data buffer pointed to by this
structure. A message block structure [msgb(D4DK)] includes a field that points to
a datab structure.

A data block can have more than one message block pointing to it at one time, so
the db_ref member keeps track of a data block's references, preventing it from
being deallocated until all message blocks are finished with it.

STRUCTURE MEMBERS

NOTES

uchar_t *db_base; /* first byte of buffer */
uchar_t *db_lim; /* last byte (+1) of buffer */
uchar_t db_ref; /* # of message pointers to this data */
uchar_t db_type; /* message type */

The db_base field points to the beginning of the data buffer. Drivers and
modules should not change this field.

The db_lim field points to one byte past the end of the data buffer. Drivers and
modules should not change this field.

The db_ref field contains a count of the number of message blocks sharing the
data buffer. If it is greater than I, drivers and modules should not change the
contents of the data buffer. Drivers and modules should not change this field.

The db_type field contains the message type associated with the data buffer.
This field can be changed by the driver. However, if the db_ref field is greater
than I, this field should not be changed.

The datab structure is defined as type dblk_t.

SEE ALSO
Programmer's Guide: STREAMS

free_rtn(D4DK), msgb(D4DK), messages(DSDK)

3/91 Page 1

iocblk(D4DK) DDI/DKI(STREAMS) iocblk(D4DK)

NAME
iocblk - STREAMS ioctl structure

SYNOPSIS
#include <sys/stream.h>

DESCRIPTION
The iocblk structure describes a user's ioctl(2) request. It is used in M_IOCTL,
M_IOCACK, and M_IOCNAK messages. Modules and drivers usually convert
M_IOCTL messages into M_IOCACK or M_IOCNAK messages by changing the type
and updating the relevant fields in the iocblk structure. When processing a
transparent ioctl, the iocblk structure is usually overlaid with a
copyreq(D4DK) structure. The stream head guarantees that the message is large
enough to contain either structure.

STRUCTURE MEMBERS

NOTES

3/91

int
cred_t
uint _t
uint _t
int
int

ioc_cmd;
*ioc_cr;
ioc_id;
ioc_count;
ioc _error;
ioc_rval;

/* ioctl command */
/* user credentials */
/* ioctl 1D */
/* number of bytes of data */
/* error code for M_1OCACK or M_1OCNAK */
/* return value for M_1OCACK */

The ioc_cmd field is the ioctl command request specified by the user.

The ioc_cr field contains a pointer to the user credentials.

The ioc_id field is the ioctl ID, used to uniquely identify the ioctl request in
the stream.

The ioc_count field specifies the amount of user data contained in the M_IOCTL
message. User data will appear in M_DATA message blocks linked to the M_IOCTL
message block. If ioc_count is set to the special value TRANSPARENT, then the
ioctl request is "transparent." This means that the user did not use the I_STR
format of STREAMS ioctls and the module or driver will have to obtain any
user data with M_COPYIN messages, and change any user data with M_COPYOUT
messages. In this case, the M_DATA message block linked to the M_IOCTL message
block contains the value of the arg parameter in the ioctl system call. For an
M_IOCACK message, the ioc_count field specifies the amount of data to copy
back to the user's buffer.

The ioc_error field can be used to set an error for either an M_IOCACK or an
M_IOCNAK message.

The ioc_rval field can be used to set the return value in an M_IOCACK message.
This will be returned to the user as the return value for the ioctl system call
that generated the request.

Data cannot be copied to the user's buffer with an M_IOCACK message if the
ioctl is transparent.

Page 1

iovec(D4DK) DDI/DKI iovec (D4DK)

NAME
iovee - data storage structure for I/O using uio(D4DK)

SYNOPSIS
#inelude <sys/types.h>
#inelude <sys/uio.h>

DESCRIPTION
An iovee structure describes a data storage area for transfer in a uio structure.
Conceptually, it may be thought of as a base address and length specification.

STRUCTURE MEMBERS

NOTES

caddr_t iov_base; 1* base address of the data storage area *1
int iov_len; 1* size of the data storage area in bytes *1

The driver may only set iovee structure members to initialize them for a data
transfer for which the driver created the iovee structure. The driver must not
otherwise change iovee structure members. However, drivers may read them.
The iovee structure members available to the driver are:

iov_base contains the address for a range of memory to or from which data are
transferred.

iov_Ien contains the number of bytes of data to be transferred to or from the
range of memory starting at iov_base.

A separate interface does not currently exist for allocating iovee(D4DK) struc­
tures when the driver needs to create them itself. Therefore, the driver may
either use lanem_zalloc(D3DK) to allocate them, or allocate them statically.

SEE ALSO
physioek(D3DK), uiomove(D3DK), ureade(D3DK), uwritee(D3DK), uio(D4DK)

3/91 Page 1

module Jnfo (D4DK) DDI/DKI(STREAMS) module Jnfo (D4DK)

NAME
module_info - STREAMS driver and module information structure

SYNOPSIS
#include <sys/types.h>
#include <sys/conf.h>
#include <sys/stream.h>

DESCRIPTION
When a module or driver is declared, several identification and limit values can
be set. These values are stored in the module_info structure. These values are
used to initialize the module's or driver's queues when they are created.

After the initial declaration, the module_info structure is intended to be read­
only. However, the flow control limits (mi_hiwat and mi_lowat) and the packet
size limits (mi_minpsz and mi_IDaXpsz) are copied to the queue(D4DK) structure,
where they may be modified.

STRUCTURE MEMBERS

NOTES

3/91

ushort_t mi_idnum; 1* module ID number *1
char *mi_idname; 1* module name *1
long mi_minpsz; 1* miniIIIUIII packet size *1
long mi_maxpsz; 1* maximum packet size *1
ulong_t mi_hiwat; 1* high water mark *1
ulong_t mi_lowat; 1* low water mark *1

The mi_idnum field is a unique identifier for the driver or module that distin­
guishes the driver or module from the other drivers and modules in the system.

The mi_idname field points to the driver or module name. The constant
FMNAMESZ limits the length of the name, not including the terminating NULL. It is
currently set to eight characters.

The mi_minpsz field is the default minimum packet size for the driver or module
queues. This is an advisory limit specifying the smallest message that can be
accepted by the driver or module.

The mi_IDaXpsz field is the default maximum packet size for the driver or module
queues. This is an advisory limit specifying the largest message that can be
accepted by the driver or module.

The mi_hiwat field is the default high water mark for the driver or module
queues. This specifies the number of bytes of data contained in messages on the
queue such that the queue is considered full and hence flow-controlled.

The mi_lowat field is the default low water mark for the driver or module
queues. This specifies the number of bytes of data contained in messages on the
queue such that the queue is no longer flow-controlled.

There may be one module_info structure per read and write queue, or the driver
or module may use the same module_info structure for both the read and write
queues.

Page 1

msgb(D4DK) DDI/DKI(STREAMS) msgb(D4DK)

NAME
msgb - STREAMS message block structure

SYNOPSIS
#include <sys/types.h>
#include <sys/stream.h>

DESCRIPTION
A STREAMS message is made up of one or more message blocks, referenced by a
pointer to a msgb structure. When a message is on a queue, all fields are read­
only to drivers and modules.

STRUCTURE MEMBERS

NOTES

struct msgb *b_next; /* next message on queue */
struct msgb *b-prev; /* previous message on queue */
struct msgb *b_cont; /* next block in message */
uchar_t *b_rptr; /* 1st unread data byte of buffer */
uchar_t *b_wptr; /* 1st unwritten data byte of buffer */
struct datab *b_datap; /* pointer to data block */
uchar_t b_band; /* message priority */
ushort_t b_flag; /* used by stream head */

The b_next and b-prev pointers are used to link messages together on a
queue(D4DK). These fields can be used by drivers and modules to create linked
lists of messages.

The b_cont pointer links message blocks together when a message is composed
of more than one block. Drivers and modules can use this field to create complex
messages from single message blocks.

The b_rptr and b_wptr pointers describe the valid data region in the associated
data buffer. The b_rptr field points to the first unread byte in the buffer and the
b_wptr field points to the next byte to be written in the buffer.

The b_datap field points to the data block [see datab(D4DK)] associated with the
message block. This field should never be changed by modules or drivers.

The b_band field contains the priority band associated with the message. Normal
priority messages and high priority messages have b_band set to zero. High
priority messages are high priority by virtue of their message type. This field can
be used to alter the queueing priority of the message. The higher the priority
band, the closer to the head of the queue the message is placed.

The b_flag field contains a bitmask of flags that can be set to alter the way the
stream head will process the message. Valid flags are:

MSGMARK The last byte in the message is "marked." This condition is
testable from user level via the I_ATMARK ioctl(2).

The msgb structure is defined as type mblk_t.

SEE ALSO

3/91

Programmer's Guide: STREAMS
allocb(D3DK), esballoc(D3DK), freeb(D3DK), datab(D4DK),
free_rtn(D4DK), messages(DSDK)

Page 1

queue (D4DK) DDI/DKI(STREAMS) queue (D4DK)

NAME
queue - STREAMS queue structure

SYNOPSIS
#include <sys/types.h>
#include <sys/stream.h>

DESCRIPTION
A instance of a STREAMS driver or module consists of two queue structures, one
for upstream (read-side) processing and one for downstream (write-side) process­
ing. This structure is the major building block of a stream. It contains pointers
to the processing procedures, pointers to the next queue in the stream, flow con­
trol parameters, and a list of messages to be processed.

STRUCTURE MEMBERS

3/91

struct qinit *~qinfo; /* module or driver entry points */
struct IIISgb *~first; /* first message in queue */
struct IIISgb *~last; /* last message in queue */
struct queue *~next; /* next queue in stream * /
void *CLPtr; /* pointer to private data structure */
ulong_t ~count; /* approximate size of message queue */
ulong_t ~flag; /* status of queue */
long ~minpsz; /* smallest packet accepted by QUEUE */
long ~maxpsz; /* largest packet accepted by QUEUE */
ulong_t ~hiwat; /* high water mark */
ulong_t ~lowat; /* low water mark * /

The ~qinfo field contains a pointer to the qinit(D4DK) structure specifying the
processing routines and default values for the queue. This field should not be
changed by drivers or modules.

The ~first field points to the first message on the queue, or is NULL if the
queue is empty. This field should not be changed by drivers or modules.

The ~last field points to the last message on the queue, or is NULL if the queue
is empty. This field should not be changed by drivers or modules.

The ~next field points to the next queue in the stream. This field should not be
changed by drivers or modules.

The ~tr field is a private field for use by drivers and modules. It provides a
way to associate the driver's per-minor data structure with the queue.

The ~count field contains the number of bytes in messages on the queue in
priority band o. This includes normal messages and high priority messages.

The ~flag field contains a bitmask of flags that indicate different queue charac­
teristics. No flags may be set or cleared by drivers or modules. However, the
following flags may be tested:

QREADR The queue is the read queue. Absence of this flag implies a write
queue.

Page 1

streamtab{D4DK) DDI/DKI{ STREAMS) streamtab (D4DK)

NAME
streamtab - STREAMS driver and module declaration structure

SYNOPSIS
#include <sys/stream.h>

DESCRIPTION
Each STREAMS driver or module must have a streamtab structure. The stream­
tab structure must be named prejixinfo, where prejix is the driver prefix.

The streamtab structure is made up of pointers to qinit structures for both the
read and write queue portions of each module or driver. (Multiplexing drivers
require both upper and lower qinit structures.) The qinit structure contains
the entry points through which the module or driver routines are called.

STRUCTURE MEMBERS
struct qinit *st_rdinit; /* read queue */
struct qinit *st_wrinit; /* write queue */
struct qinit *st_=init; /* lower read queue*/
struct qinit *st_1lIUXWinit; /* lower write queue*/

The st_rdinit field contains a pointer to the read-side qinit structure. For a
multiplexing driver, this is the qinit structure for the upper read side.

The st_wrinit field contains a pointer to the write-side qinit structure. For a
multiplexing driver, this is the qinit structure for the upper write side.

The st_muxrinit field contains a pointer to the lower read-side qinit structure
for multiplexing drivers. For modules and non-multiplexing drivers, this field
should be set to NULL.

The st_IlIIlxwinit field contains a pointer to the lower write-side qinit structure
for multiplexing drivers. For modules and non-multiplexing drivers, this field
should be set to NULL.

SEE ALSO
qinit(D4DK)

3/91 Page 1

stroptions (D4DK) DDI/DKI(STREAMS) stroptions (D4DK)

Page 2

SO_TOSTOP

SO_TONSTOP

SO_BAND

Stop processes on background writes to this stream.

Don't stop processes on background writes to this stream.

The water marks changes affect the priority band specified by
the so_band field.

The so_readopt field specifies options for the stream head that alter the way it
handles read(2) calls. This field is a bitmask whose flags are grouped in sets.
Within a set, the flags are mutually exclusive. The first set of flags determines
how data messages are treated when they are read:

RNORM Normal (byte stream) mode. read returns the lesser of the
number of bytes asked for and the number of bytes available.
Messages with partially read data are placed back on the head
of the stream head read queue. This is the default behavior.

RMSGD Message discard mode. read returns the lesser of the number
of bytes asked for and the number of bytes in the first message
on the stream head read queue. Messages with partially read
data are freed.

RMSGN Message non-discard mode. read returns the lesser of the
number of bytes asked for and the number of bytes in the first
message on the stream head read queue. Messages with par­
tially read data are placed back on the head of the stream head
read queue.

The second set of flags determines how protocol messages (IoCPROTO and
M_PCPROTO) are treated during a read:

RPROTNORM Normal mode. read fails with the error code EBADMSG if there
is a protocol message at the front of the stream head read
queue. This is the default behavior.

RPROTDIS

RPROTDAT

Protocol discard mode. read discards the M_PROTO or
M_PCPROTO portions of the message and return any M_DATA por­
tions that may be present. M_PASSFP messages are also freed in
this mode.

Protocol data mode. read treats the M_PROTO or M_PCPROTO
portions of the message as if they were normal data (that is,
they are delivered to the user.)

The so_wroff field specifies a byte offset to be included in the first message
block of every M_DATA message created by a write(2) and the first M_DATA mes­
sage block created by each call to putmsg(2).

The so_minpsz field specifies the minimum packet size for the stream head read
queue.

The sO_IDaXpsz field specifies the maximum packet size for the stream head read
queue.

The so_hiwat field specifies the high water mark for the stream head read queue.

3/91

uio(D4DK) DDI/DKI uio(D4DK)

NAME
uio - scatter/gather I/O request structure

SYNOPSIS
#include <sys/types.h>
#include <sys/file.h>
#include <sys/uio.h>

DESCRIPTION
The uio structure describes an I/O request that can be broken up into different
data storage areas (scatter/gather I/O). A request is a list of iovec(D4DK) struc­
tures (base/length pairs) indicating where in user space or kernel space the data
are to be read/written.

The contents of the uio structure passed to the driver through the entry points in
section D2 should not be changed directly by the driver. The uiomove(D3DK),
ureadc(D3DK), and uwritec(D3DK) functions take care of maintaining the the
uio structure. A block driver may also use the physiock(D3DK) function to per­
form unbuffered I/O. physiock also takes care of maintaining the uio structure.

A driver that creates its own uio structures for a data transfer is responsible for
zeroing it prior to initializing members accessible to the driver. The driver must
not change the uio structure afterwards; the functions take care of maintaining
the uio structure.

STRUCTURE MEMBERS

3/91

iovec_t *uio_iov; /* Pointer to the start of the iovec */
/* array for the uio structure */

int uio_iovcnt; /* The number of iovecs in the array */
off_t uio_offset; /* Offset into file where data are */

/* transferred from or to */

short uio_segflg; /* Identifies the type of I/O transfer */

short uio_fmode; /* File mode flags */
int uio_resid; /* Residual count */

The driver may only set uio structure members to initialize them for a data
transfer for which the driver created the uio structure. The driver must not oth­
erwise change uio structure members. However, drivers may read them. The
uio structure members available for the driver to test or set are described below:

uio_iov contains a pointer to the iovec array for the uio structure. If the driver
creates a uio structure for a data transfer, an associated iovec array must also be
created by the driver.

uio_iovcnt contains the number of elements in the iovec array for the uio
structure.

uio_offset contains the starting logical byte address on the device where the
data transfer is to occur. Applicability of this field to the the driver is device­
dependent. It applies to randomly accessed devices, but may not apply to all
sequentially accessed devices.

Page 1

001 dma _but (D4X)

NAME
dma_buf - DMA buffer descriptor structure

SYNOPSIS
#include <sys/types.h>
#include <sys/dma.h>

DESCRIPTION
The DMA buffer descriptor structure is used to specify the data to be transferred
by a DMA operation. Each DMA operation is controlled by a DMA command
block [see dma_cb(D4X)] structure that includes pointers to two dma_buf struc­
tures.

Each dma_buf structure provides the physical address and size of a data block
involved in a DMA transfer. Scatter/gather operations involving multiple data
blocks may be implemented by linking together multiple dma_bufs in a singly­
linked list. Each dma_buf includes both the virtual and physical address of the
next DMA buffer descriptor in the list.

DMA buffer descriptor structures should only be allocated via
dma_get_buf(D3X). Although drivers may access the members listed below, they
should not make any assumptions about the size of the structure or the contents
of other fields in the structure.

STRUCTURE MEMBERS

3/91

ushort_t
paddr_t
paddr_t
struct dna_buf
ushort_t

count;
address;
physical;
*next_buf;
count_hi;

/* size of block*/
/* physical address of data block */
/* physical address of next dna_buf */
/* next buffer descriptor */
/* for big blocks */

The members of the dma_buf structure are:

count specifies the low-order 16 bits of the size of the data block in bytes.

address specifies the physical address of the data block.

physical specifies the physical address of the next dma_buf in a linked list of
DMA buffers descriptors. It should be NULL if the buffer descriptor is the last
one in the list. Note that a DMA buffer descriptor allocated by dma_get_buf will
be zeroed out initially, thus no explicit initialization is required for this field if a
value of NULL is desired.

next_buf specifies the virtual address of the next dma_buf in a linked list of
DMA buffer descriptors. It should be NULL if the buffer descriptor is the last one
in the list. Note that a DMA buffer descriptor allocated by dma_get_buf will be
zeroed out initially, thus no explicit initialization is required for this field if a
value of NULL is desired.

count_hi specifies the high-order 16 bits of the size of the data block in bytes.
Since a dma_buf allocated by dmaset_buf is initially zeroed out, no explicit ini­
tialization is required for this field if the size of the data block may be specified
by a ushort_t.

Page 1

001

NAME
dma_cb - DMA command block structure

SYNOPSIS
#include <sys/types.h>
#include <sys/dma.h>

DESCRIPTION
The DMA command block structure is used to control a DMA operation. Each
DMA operation requested by a driver is controlled by a command block structure
whose fields specify the operation to occur.

A number of fields of the DMA control block come in pairs: one for the requestor
and one for the target. The requestor is the hardware device that is requesting
the DMA operation, while the target is the target of the operation. The typical
case is one in which the requestor is an I/O device and the target is memory.

DMA command block structures should only be allocated via dma--.get_cb(D3X).
Although drivers may access the structure members listed below, they should not
make any assumptions about the size of the structure or the contents of other
fields in the structure.

STRUCTURE MEMBERS

3/91

struct dIna_buf *targbufs; /* list of target data buffers */
struct dIna_buf *reqrbufs; /* list of requestor data buffers */
uchar_t com:nand; /* Read/write/Translate/Verify */
uchar_t targ_type; 1* Memory/IO * /
uchar_t reqr_type; /* Memory/IO */
uchar_t targ_step; /* Inc/Dec/Hold */
uchar_t reqr_step; 1* Inc/Dec/Hold */
uchar_t trans_type; /* Single/Demand/Block/Cascade */
uchar_t targ-Path; /* 8/16/32 */
ucbar_t reqr-Path; /* 8/16/32 */
uchar_t cycles; /* 1 or 2 */
uchar_t bufprocess; /* Single/Chain/Auto-Init *1
char *procparam; /* parameter buffer for appl call *1
int (*proc) (); /* address of application call routines */

The members of the dma_cb structure are:

targbufs is a pointer to a list of DMA buffer structures [see dma_buf(D4X)] that
describes the target of the DMA operation.

reqrbufs is a pointer to a list of DMA buffer structures [see dma_buf(D4X)] that
describes the requestor of the DMA operation.

command specifies the command for the DMA operation. It may be one of the fol­
lowing:

DMA_CMD_READ Specifies a DMA read from the target to the requestor.

Specifies a DMA write from the requestor to the target.

Page 1

001

SEE ALSO

3/91

dma._free_cb(D3X), dma.--get_best_mode(D3X), dma.--get_cb(D3X),
dma.""'prog(D3X), dma._swsetup(D3X), dma._swstart(D3X), dma._buf(D4X)

Page 3

errnos (050K) OOI/OKI errnos (050K)

NAME
errnos - error numbers

SYNOPSIS
#include <sys/errno.h>

DESCRIPTION

3/91

The following is a list of the error codes that drivers may return from their entry
points, or include in STREAMS messages (for example, M_ERROR messages).

EACCES Permission denied. An attempt was made to access a file in a
way forbidden by its file access permissions.

EADDRINUSE

EADDRNOTAVAIL

EAFNOSUPPORT

EAGAIN

EALREADY

EBUSY

ECONNABORTED

ECONNREFUSED

ECONNRESET

EDESTADDRREQ

EFAULT

EHOSTDOWN

EHOSTUNREACH

EINPROGRESS

EINTR

EINVAL

EIO

EISCONN

The address requested is already in use.

The address requested cannot be assigned.

The address family specified is not installed or supported on
the host.

Temporary resource allocation failure; try again later. Drivers
can return this error when resource allocation fails, for exam­
ple, kmeIn_alloc(D3DK) or allocb(D3DK).

The operation requested is already being performed.

Device is busy. This can be used for devices that require
exclusive access.

A received connect request was aborted when the peer closed
its endpoint.

The connection was refused.

The connection was reset by the peer entity.

The requested operation required a destination address but
none was supplied.

Bad address. Drivers should return this error whenever a call
to copyin(D3DK) or copyout(D3DK) fails.

Host is down.

No route to host.

The operation requested is now in progress.

Interrupted operation. Drivers can return this error whenever
an interruptible operation is interrupted by receipt of an asyn­
chronous signal.

Invalid argument. Drivers can return this error for operations
that have invalid parameters specified.

An I/O error has occurred. Drivers can return this error
when an input or output request has failed.

The endpoint is already connected.

Page 1

messages (050K) OOI/OKI messages (050K)

NAME
messages - STREAMS messages

SYNOPSIS
#include <sys/stream.h>

DESCRIPTION

3/91

The following is a list of the STREAMS messages types that can be used by
drivers and modules.

M_DATA

M_PROTO

M_BREAK

M_SIG

M_DELAY

M_CTL

M_IOCTL

M_SETOPTS

M_IOCACK

I>LHANGUP

I>LCOPYIN

Data message.

Protocol control message.

Control message used to generate a line break.

Control message used to send a signal to processes.

Control message used to generate a real-time delay.

Control message used between neighboring modules and
drivers.

Control message used to indicate a user ioctl(2) request.

Control message used to set stream head options.

High priority control message used to indicate success of an
ioctl request.

High priority control message used to indicate failure of an
ioctl request.

High priority protocol control message.

High priority control message used to send a signal to
processes.

High priority control message used to indicate the occurrence of
a read(2) when there are no data on the stream head read
queue.

High priority control message used to indicate that queues
should be flushed.

High priority control message used to indicate that output
should be stopped immediately.

High priority control message used to indicate that output can
be restarted.

High priority control message used to indicate that the device
has been disconnected.

High priority control message used to indicate that the stream
has incurred a fatal error.

High priority control message used during transparent ioctl
processing to copy data from the user to a STREAMS message.

Page 1

signals (050K) OOI/OKI signals (050K)

NAME
signals - signal numbers

SYNOPSIS
#include <sys/signal.h>

DESCRIPTION

NOTES

There are two ways to send a signal to a process. The first, proc_signal(D3DK),
can be used by non-STREAMS drivers. The second, by using an !LSIG or
M_PCSIG message, can be used by STREAMS drivers and modules. The following
is a list of the signals that drivers may send to processes.

SIGHOP The device has been disconnected.

SIGINT

SIGQUIT

SIGWINCH

SIGURG

SIGPOLL

SIGTSTP

The interrupt character has been received.

The quit character has been received.

The window size has changed.

Urgent data are available.

A pollable event has occurred.

Interactive stop of the process.

The signal SIGTSTP cannot be generated with proc_signal. It is only valid
when generated from a stream.

SEE ALSO
proc_ref(D3DK), proc_signal(D3DK), proc_unref(D3DK)

3/91 Page 1

Appendix A: Migration from Release 3.2 to Release 4 Multi-Processor

• Replaced. The BCl routine has been removed from the DDI/DKI. The
DDI/DKl provides a new interface that provides a similar function.

• Obsolete interface. The BCl routine has been removed from the
DDI/DKI. The DDI/DKl does not provide a new interface; the interface
itself is obsolete. For instance, the DDI/DKI does not support clist-based
drivers; thus any routines dealing with clists have been removed from the
DDI/DKI.

Again, please note that this table is a guide for programmers attempting to con­
vert old driver source from BCl to DDI/DKI.

Table A-1: 3.2 to Release 4 Multi-Processor Migration

BCl

adjmsg
aIIocb

backq
bcopy
brelse
btoc
bufcall
bzero
canon
canput

copyb
copyin

copymsg

Comments

No change
No change; for memory-mapped I/O, use
esbaIIoc
Obsolete interface.
No change
No change
Replaced
No change; don't use with esbaIIoc
Word alignment no longer required
Obsolete interface.
New restrictions; use canputnext (q) instead
of canput (q->~next); stream cannot be
frozen; use bcanput to test specific priority
band
No change
New restrictions; cannot hold locks if level is
CE_PANIC

No change
New restrictions; cannot hold basic locks or
read/write locks
No change

Release 4
Multi-Processor

DDI/DKI
adjmsg
aIIocb

bcopy
brelse
btop,btopr
bufcall
bzero

canput

copyb
copyin or
uiomove
copymsg

A-2 OOI/OKI Reference Manual

Appendix A: Migration from Release 3.2 to Release 4 Multi-Processor

Table A-1: 3.2 to Release 4 Multi-Processor Migration (continued)

getq
inb
ind
insq

BCI

inw
iodone
iomove
iowait

kseg
linkb
longjmp
major
makedev
malloc
mapinit
mapwant
max
mfree
min
minor
msgdsize
noenable

OTHERQ

outb
outd
outw
physck

Comments

read/write locks; use ngeteblk or getrbuf for
alternate buffer sizes
New restrictions; stream cannot be frozen
No change
Renamed only
New restrictions; stream must be frozen
No change
Renamed only
Replaced
Renamed and new restrictions; cannot hold
basic locks or read/write locks
Obsolete interface.
No change
Obsolete interface.
Renamed; macro reimplemented as function
Renamed; macro reimplemented as function
Renamed only
Replaced
Replaced
No change
Renamed only
No change
Renamed; macro reimplemented as function
No change
Macro reimplemented as function and new res­
trictions; stream cannot be frozen
Macro reimplemented as function
No change
Renamed only
No change
Replaced; functionality included in physiock

Release 4
Multi-Processor

DDI/DKI

getq
inb
inl
insq
inw
biodone
uiamove
biowait

getmajor
makedevice
rmalloc
rmallocmap
rmalloc_wait
max
rmfree
min
getminor
msgdsize
noenable

OTHERQ

outb
out 1
outw
physiock

A-4 OOI/OKI Reference Manual

Appendix A: Migration from Release 3.2 to Release 4 Multi-Processor

Table A-1: 3.2 to Release 4 Multi-Processor Migration (continued)

rmvb
rmvq

BCI

signal
sleep
spl

splx
sptalloc

sptfree
strlog
subyte

suser
suword

testb
timeout
ttclose
ttin
ttinit
ttiocom
ttioctl
ttopen
ttout
ttread"
ttrstrt
tttimeo

Comments

No change
New restrictions; stream must be frozen
Obsolete interface.
Replaced
Replaced; splO, spll, sp14, splS, sp16,
sp17 functions eliminated; splbase,
spltimeout, spldisk added
No change
Obsolete interface.

Obsolete interface.
No change
Replaced

Replaced
Replaced

Obsolete interface.
Replaced
Obsolete interface.
Obsolete interface.
Obsolete interface.
Obsolete interface.
Obsolete interface.
Obsolete interface.
Obsolete interface.
Obsolete interface.
Obsolete interface.
Obsolete interface.

Release 4
Mu1ti-Processor

DDI/DKI
rmvb
rmvq

splx
lanem_alloc or
physmap

laneIILfree
strlog
copyout,
uiomove, or
ureadc
drv..l)riv
copyout,
uiomove, or
ureadc

itimeout

A-6 OOI/OKI Reference Manual

Appendix B: Migration from Release 4 to Release 4 Multi-Processor

convert old driver source from Release 4 to Release 4 Multi-Processor. All rou­
tines in the Release 4 DDI/DKI, regardless of their status in the Release 4
Multi-Processor DDI/DKI, are provided in System V Release 4 Multi-Processor
for Intel Processors for compatibility.

Table B-1: Release 4 to Release 4 Multi-Processor Migration

Release 4
DDI/DKI

beanput

biowait

eanput

ehpoll

eopyin

eopyout

delay

dma-I)ageio

enableok

flushband

flushq

B-2

Release 4
Comments Multi-Processor

DDI/DKI
New restrictions; use beanputnext (q, beanput
pri) instead of beanput (q->~next,
pri); stream cannot be frozen

New restrictions; cannot hold basic locks or biowait
read/write locks
New restrictions; cannot hold basic locks or bp_mapin
read/write locks
New restrictions; use eanputnext (q) eanput
instead of eanput (q->~next); stream
cannot be frozen
New restrictions; size of pollhead struc- ehpoll
ture is not guaranteed; may not call any
function that sleeps
New restrictions; cannot hold locks if level CIllIl_err
is CE_PANIC

New restrictions; cannot hold basic locks or eopyin
read/write locks
New restrictions; cannot hold basic locks or eopyout
read/write locks
New restrictions; cannot hold basic locks or delay
read/write locks
New restrictions; cannot hold basic locks or dma-I)ageio
read/write locks
New restrictions; stream cannot be frozen enableok

New restrictions; stream cannot be frozen flushband

New restrictions; stream cannot be frozen flushq

OOI/OKI Reference Manual

Appendix B: Migration from Release 4 to Release 4 Multi·Processor

Table B·1: Release 4 to Release 4 Multi·Processor Migration (continued)

Release 4
DDI/DKI

putnext

putq

qenable
qreply

qsize

RD

rminit
rmsetwant
rmvq

SAMESTR

sleep
spl

strqget

strqset

timeout
uiomove

unbufcall

untimeout

B·4

Comments

New restrictions; cannot hold locks; stream
cannot be frozen
New restrictions; stream cannot be frozen
New restrictions; stream cannot be frozen
New restrictions; cannot hold locks; stream
cannot be frozen
New restrictions; stream cannot be frozen
Extended. Accepts both read and write
queue pointers
Replaced
Replaced
New restrictions; stream must be frozen
New restrictions; argument cannot refer­
ence ~next; stream cannot be frozen
Replaced
Replaced; splO, spll, spl4, spl5,
spl6, spl7 functions eliminated;
splbase, spltimeout, spldisk added
New restrictions; stream must be frozen
New restrictions; stream must be frozen
Replaced
New restrictions; cannot hold basic locks or
read/write locks if uio _segflg is
UIO_USERSPACE

Interface changed and new restrictions;
argument type changed from int to
toid_t; cannot hold locks
Interface changed and new restrictions;
argument type changed from int to
toid_t; cannot hold locks

Release 4
Multi-Processor

DDI/DKI
putnext

putq

qenable
qreply

qsize

RD

rmallocmap
rmalloc_wait
rmvq

SAMESTR

strqget

strqset

itimeout
uiomove

unbufcall

untimeout

OOI/OKI Reference Manual

Appendix 8: Migration from Release 4 to Release 4 Multi-Processor

Table 8-2: Additions to the OOI/OKI in Release 4 Multi-Processor (continued)

Routine Section Description
RW_DEALLOC D3DK deallocate an instance of a read/write lock
RW_RDLOCK D3DK acquire a read/write lock in read mode
RW_TRYRDLOCK D3DK try to acquire a read/write lock in read mode
RW_TRYWRLOCK D3DK try to acquire a read/write lock in write mode
RW_UNLOCK D3DK release a read/write lock
RW_WRLOCK D3DK acquire a read/write lock in write mode
SLEEP_ALLOC D3DK allocate and initialize a sleep lock
SLEEP_DEALLOC D3DK deallocate an instance of a sleep lock
SLEEP_LOCK D3DK acquire a sleep lock
SLEEP_LOCKAVAIL D3DK query whether a sleep lock is available
SLEEP_LOCKOWNED D3DK query whether a sleep lock is held by the caller
SLEEP_LOCK_SIG D3DK acquire a sleep lock
SLEEP_TRYLOCK D3DK try to acquire a sleep lock
SLEEP_UNLOCK D3DK release a sleep lock
SV_ALLOC D3DK allocate and initialize a synchronization vari-

able
SV_BROADCAST D3DK wake up all processes sleeping on a synchroni-

zation variable
SV_DEALLOC D3DK deallocate an instance of a synchronization

variable
SV_SIGNAL D3DK wake up one process sleeping on a synchroni-

zation variable
SV_WAIT D3DK sleep on a synchronization variable
SV_WAIT_SIG D3DK sleep on a synchronization variable
TRYLOCK D3DK try to acquire a basic lock
UNLOCK D3DK release a basic lock
bcanputnext D3DK test for flow control in a specified priority band
bioerror D3DK manipulate error field within a buffer header
canputnext D3DK test for flow control in a stream
dtim.eout D3DK execute a function on a specified processor,

8-6 OOI/OKI Reference Manual

DDI(Multibus II)

NAME
ics_find _rec - reads the interconnect register of the board in the specified
slot.

SYNOPSIS
#include <sys/ics.h>
int ics_find_rec (slot, recordid)
unsigned short slot;
unsigned char recordid;

ARGUMENTS
slot
recordid

DESCRIPTION

the slot number of the board that will be searched
the record ID of the searched-for record

ics Jind Jec finds a specific record in the interconnect space of a board.

RETURN VALUE
If the searched-for record is found, its starting register number is returned. Oth­
erwise, -1 is returned.

LEVEL
Base or Interrupt

SEE ALSO
ics_read(D3D),ics_write(D3D)

3/91 Page 1

icsJdwr(D3D) DDI(Multibus II) ics rdwr(D3D)

NAME
ics_rdwr - reads or writes a specified number of interconnect space registers
from a given cardslot ID

SYNOPSIS
#include <sys/ics.h>
void ics_rdwr (cmd, addr)
int cmd;
struct ics_rw_struct *addr;

ARGUMENTS
cmd Either ICS_READ_ICS or ICS_WRITE_ICS.
addr A pointer to the description of the buffers to be used for the transfer.

DESCRIPTION
The ics_rdwr routine reads or writes a specified number of interconnect space
registers from a given cardslot ID.

In both interconnect space and in memory, addr is a pointer to the description of
the buffers to be used for the transfer. addr contains fields for length and
addresses.

RETURN VALUE
None

LEVEL
Base or Interrupt

SEE ALSO
ics_read(D3D), ics_wri te(D3D)

3/91 Page 1

ics _write (D3D) DDI(Multibus II) ics _write (D3D)

NAME
ics_write - writes a value into the specified register of the board in the
specified slot.

SYNOPSIS
#include <sys/ics.h>
int ics_wri te (slot, register, value)
unsigned short slot;
unsigned short register;
unsigned char value;

ARGUMENTS
slot
register
value

DESCRIPTION

The slot id of the board.
The register number of the board's interconnect space record.
The value to be written into the specified register

ics_write writes value into register number register of the .board in slot number
slot. If no board is in the designated slot, the results are undefined.

RETURN VALUE
If the write is successful, 0 is returned. If the register number specified does not
exist in the interconnect space of the board, EINVAL is returned.

LEVEL
Base or Interrupt

SEE ALSO
ics_read(D3D), ics_rdwr(D3D)

3/91 Page 1

mps _ AMPreceive _frag (D3D) DDI(Multibus II) mps _ AMPreceive _frag (D3D)

NAME
mps_AMPreceive_frag - receives solicited data in fragments when buffer space
is not available at the receiving agent

SYNOPSIS
#include <sys/mps.h>
long mps_AMPreceive_frag(chan, mbp, socid, tid, ibuf>
long chan;
mps_msgbuf_t *mbp;
mb2socid_t socid;
unsigned char tid;
struct dma_buf *ibuf;

ARGUMENTS
chan
mbp
socid
tid

Channel number received from a previous mps_opeD_chan.
Points to a message buffer.
Identifies socket id of the socket which initiated the transaction.
Identifies the transaction corresponding to this mps_AMPreceive_frag. It
is obtained from the request message.

ibuf Specifies the data buffer to receive incoming data. Indication of comple­
tion of transfer is sent to intr via a message.

DESCRIPTION
mps_AMPreceive_frag is used when an agent sending solicited data requests
buffer space that is not available at the receiving agent. After the Buffer Reject
message is sent, the receiving agent can use mps_AMPreceive_frag to receive the
solicited data in fragments depending on the available buffer space in the receiv­
ing agent. See the Multibus II Transport Protocol Specification and Designer's Guide
for additional information.

The mps_AMPreceive_frag routine queues up the message to initiate the
transfer, sets up table entries to receive data messages, and returns immediately.
This routine is asynchronous in operation.

Applications must ensure that mps_AMPreceive_frag is repeatedly used the
correct number of times with the correct fragment buffer length to transfer an
entire request.

RETURN VALUE

LEVEL

If no error is detected, 0 (zero) is returned. When an error is detected, -1 is
returned.

Base or Interrupt

SEE ALSO
mps_open_chan(D3D)

3/91 Page 1

mps _ AMPsend JSvP (D3D) DDI(Multibus II) mps _ AMPsend JSvP (D3D)

NAME
nps_AMPsend_rsvp - queues request messages for transmission and sets up table
entries for reply messages

SYNOPSIS
#include <sys/nps.h>
long II1Ps_AMPsend_rsvp{chan, omsg, obuf, ibuf>
long chan;
nps_msgbuf_t *omsg;
struct dma_buf *obuf, *ibuf;

ARGUMENTS
chan Channel number received from a previous nps_open_ chan.
omsg Points to a message buffer containing message to be sent.
obuf Specifies a data buffer for data to be sent.
ibuf Specifies a data buffer to receive replies.

DESCRIPTION
nps_AMPsend_rsvp queues up request messages for transmission and sets up
table entries for reception of reply messages when they arrive. This routine is
asynchronous in operation.

When obuf is NULL, the request message is assumed to be an unsolicited mes­
sage. In this case nps_mk_unsol (with a non-zero tid obtained by a call to
nps-.Qet_tid) should be used to build the message in omsg. When obuf is not
NULL, request message is assumed to be a solicited message and obuf points to
the data. In this case nps_mk_unsol (with a non-zero tid obtained by a call to
nps-.Qet_tid) should be used to build the message in omsg.

When obuf is not NULL, the request message is assumed to be a solicited message
and obuf points to the solicited data. In this case, nps_mk_sol (with a non-zero
tid obtained by a call to II1Ps-.Qet_tid) should be used to build the message in
omsg. If ibuf is NULL, the reply message is expected to be an unsolicited mes­
sage.

RETURN VALUE
nps_AMPsend_rsvp returns 0 (zero) if no error is detected; otherwise, -1 is
returned.

LEVEL
Base or Interrupt

SEE ALSO

3/91

nps_open3han(D3D), nps_mk_sol(D3D), nps_mk_unsol(D3D),
nps-.Qet_tid(D3D)

Page 1

mps _ AMPsend Jeply (030) OOI(Multibus II) mps _ AMPsend Jeply (030)

NAME
mps_AMPsend_reply - replies to a received request that is part of a request­
response transaction

SYNOPSIS
#include <sys/mps.h>
long mps_AMPsend_reply(chan, omsg, obuj)
long chan;
mps_msgbuf_t *omsg;
struct dma_buf *obu£;

ARGUMENTS
chan Channel number received from a previous mps_open_chan.
omsg Points to a message buffer containing the message to be sent. The

message in omsg should be constructed using mps_mk_solrply or
mps_mk_UIlsolrply (depending on whether abuf is NULL or not)
with the EOT flag set appropriately.

abuf Points to a data buffer containing data to be sent. When abuf is
NULL, the reply message is assumed to be an unsolicited message.
When abuf is not NULL, the reply message is assumed to be a soli­
cited message. A completion indication is sent via a message to the
appropriate intr routine.

DESCRIPTION
mps_AMPsend_reply is used to send a reply in response to a received request
that is part of a request-response transaction. The mps_AMPsend_reply routine is
asynchronous in operation. mps_AMPsend_reply returns immediately, queuing
up to send the reply. Be sure to use the tid from the corresponding received
request.

mps_AMPsend_reply can be used to send a reply as a number of solicited frag­
ments. The message buffer in the last reply fragment should have the EOT flag
set to 1.

RETURN VALUE
If no error is detected, 0 (zero) is returned; otherwise -1 is returned.

LEVEL
Base or Interrupt

SEE ALSO
mps_mk_solrply(D3D), mps_mk_UIlsolrply(D3D), mps_open_chan(D3D)

3/91 Page 1

mps _close_chan (D3D) DDl(Multibus II)

NAME
mps_close_chan - closes a previously opened channel

SYNOPSIS
#include <sys/mps.h>
long mps_close_chan (chan)
long chan;

ARGUMENTS
chan

DESCRIPTION

Specifies the channel to be closed.

This routine is used to close a previously opened channel. To close a channel a
device driver must identify the channel.

The mps_close_chan routine is synchronous in operation. mps_close_chan fails
if a transaction is in progress on the specified channel.

RETURN VALUE

LEVEL

When mps_close_chan succeeds it returns 0 (zero). When mps_close_chan
fails, it returns -1 and the channel is not closed.

Base or Interrupt

SEE ALSO
mps_opeILchan(D3D)

3/91 Page 1

DDI(Multibus II) mps Jree _ msgbuf (030)

NAME
mps_free_msgbuf - puts a buffer back into the free memory pool

SYNOPSIS
#include <sys/mps.h>
void mps_free_msgbuf (mbp)
mps_msgbuf_t *mbp;

ARGUMENTS
mbp the message buffer to be returned to the free memory pool.

DESCRIPTION
In this function, mbp points to a message buffer. The buffer is put back in the
free memory pool. Note that mps_free_msgbuf accepts a pointer to a single
message buffer, not a list of message buffers to be freed.

RETURN VALUE
None

LEVEL
Base or Interrupt

SEE ALSO
IIils-9'et_msgbuf(D3D)

3/91 Page 1

mps _get _ dmabuf (D3D) DDI(Multibus II)

NAME
mps~et_dmabuf - returns a pointer to a list of data buffer descriptors.

SYNOPSIS
#include <sys/mps.h>
struct dIna_buf *mps_get_dmabuf (count, flag)
unsigned int
int flag;

count;

ARGUMENTS
count

flag

the number of dma buffer descriptors required.

determines whether the routine sleeps while waiting for resources.
Valid values are DMA_SLEEP or DMA_NOSLEEP.

DESCRIPTION
The mps_get_dmabuf function returns a pointer to a linked list of (count number
of) data buffer descriptors. The list is terminated by NULL in the db_next field of
the data buffer.

RETURN VALUE

LEVEL

If count number of data buffer descriptors cannot be allocated, and flag =
DMA.....NOSLEEP, a NULL descriptor is returned. Otherwise, if flag = DMA_SLEEP, the
routine blocks until count data buffer descriptors can be allocated.

Base or Interrupt with DMA _ NOSLEEP

SEE ALSO
mps_free_dmabuf(D3D)

3/91 Page 1

mps _get_reply Jen (D3D) DDI(Multibus II)

NAME
IIQ;>s--get_reply_len - get data length for a solicited reply.

SYNOPSIS
#include <sys/IIQ;>s.h>
long IIQ;>s--get_reply_len(socid, tid)
mb2socid_t socid;
unsigned char tid;

ARGUMENTS
socid

tid

The source socid for the solicited reply

the transaction id of the solicited reply

DESCRIPTION
This function should be invoked when an rsvp completes with an unsolicited
message, instead of with a a solicited message; that is, when the flags field of the
final message buffer is MPS _ MG _ UNSOL. In this case, the IIQ;>s--get_reply _len
function returns the length of the data for the solicited reply associated with the
rsvp when it is called after the transaction completes.

RETURN VALUE

LEVEL

3/91

A successful operation returns the length of the data. If an error occurs, a is
returned as the data length.

Base or Interrupt

Page 1

DDI(Multibus II)

NAME
mps~et_tid - allocates transaction ids.

SYNOPSIS
#include <sys/mps.h>
unsigned char mps_get_tid(chan)
long chan;

ARGUMENTS

mps_get_tid (030)

chan a channel number obtained from a previous call to mps_open_chan.

DESCRIPTION
The mps_get_tid function is used by users of the message handler to allocate
transaction ids.

RETURN VALUE

LEVEL

If no free transaction ids are available for the associated port id, or when chan is
an invalid channel number, 0 (zero) is returned; otherwise the allocated transac­
tion id is returned.

Base or Interrupt

SEE ALSO
mps_open_chan(D3D), mps_free_tid(D3D)

3/91 Page 1

mps _ mk _ bgrant (030) DDI(Multibus II) mps _ mk_ bgrant (030)

NAME
mps_mk_bgrant - construct a buffer grant in response to a buffer request.

SYNOPSIS
#include <sys/mps.h>
void mps_mk_bgrant (mbp I dsocid I lid I count)
mps_msgbuf_t mbp;
mb2socid_t dscocid;
unsigned char lid;
unsigned long count;

ARGUMENTS
mbp

dsocid

lid

count

DESCRIPTION

pointer to message buffer

32-bit destination socket id (host id:port id)

liaison id

number of bytes to transfer

The mps_mk_bgrant function is used to construct a buffer grant in response to a
buffer request. Arguments to this function are not checked for valid values.

RETURN VALUE
None

LEVEL
Base or Interrupt

SEE ALSO
mps_mk_unsolrply(D3D)

3/91 Page 1

mps _ mk _ breject (030) DDI(Multibus II) mps _ mk _ breject (030)

NAME
mps_mk_breject - construct a buffer reject in response to a buffer request.

SYNOPSIS
#include <sys/mps.h>
void mps_mk_brej ect (mbp , dsocid, lid)
mps_msgbuf_t mbp;
mb2socid_t dscocid;
unsigned char lid;

ARGUMENTS
mbp

dsocid

lid

DESCRIPTION

pointer to message buffer

32-bit destination socket id (host id:port id)

liaison id

The mps_mk_brej ect function is used to construct a buffer reject in response to a
buffer request. Arguments to this function are not checked for valid values.

RETURN VALUE
None

LEVEL
Base or Interrupt

3/91 Page 1

mps _ mk _ solrply (D3D) DDI(Multibus II) mps _ mk _ solrply (D3D)

NAME
IIils_mk_solrply - constructs a message to be sent to initiate a solicited data
reply.

SYNOPSIS
#include <SYS/IIilS.h>
void IIils_mk_solrply(mbp, dsocid, tid, dptr, count, eotflag)
IIils_msgbuf_t
mb2socid_t
unsigned char
unsigned char
unsigned long
unsigned char

mbp;
dscocid;
tid;
*dptr;
count;
eotflag;

ARGUMENTS
mbp pointer to message buffer

32-bit destination socket id (host id:port id)

8-bit transaction id

pointer to user data to be sent with the message

dsocid

tid

dptr

count

eotflag

number of bytes of user data to be sent with the message (Max 16)

1 to indicate end of transaction; otherwise, 0 (zero)

DESCRIPTION
The II\Ps_mk_solrply function takes a pointer to a message buffer and constructs
a message to be sent to initiate a solicited data reply. The message is constructed
using values supplied as arguments. Arguments to this function are not checked
for valid values.

RETURN VALUE
None

LEVEL
Base or Interrupt

SEE ALSO
IIils_mk_unsolrply(D3D)

3/91 Page 1

mps _ mk_ unsolrply (D3D) DDl(Multibus II) mps _ mk _ unsolrply (D3D)

NAME
Ili>S_mk_unsolrply - constructs a unsolicited reply message to be sent.

SYNOPSIS
#include <sys/Ili>s.h>
void Ili>s_mk_unsolrply(mbp, dsocid, tid, dptr, count)
mps_msgbuf_t mhp;
mb2socid_t dscocid;
unsigned char
unsigned char
unsigned long

tid;
*dptr;
count;

ARGUMENTS
mbp pointer to message buffer

32-bit destination socket id (host id:port id)

8-bit transaction id

pointer to user data to be sent with the message

dsocid

tid

dptr

count number of bytes of user data to be sent with the message (Max 20)

DESCRIPTION
The Ili>S_mk_unsolrply function takes a pointer to a message buffer and con­
structs a unsolicited reply message to be sent. The message is constructed using
values supplied as arguments. Arguments to this function are not checked for
valid values.

RETURN VALUE
None

LEVEL
Base or Interrupt

SEE ALSO
Ili>s_mk_solrply(D3D)

3/91 Page 1

RETURN VALUE
Listed above.

LEVEL
Base or Interrupt

Page 2

DDI(Multibus II)

3/91

UNI~ SYSTEM V RELEASE 4

DEviCE DRiVER INTERfACE I
DRiVER---KERNEL INTERfACE

REFERENCE MANUAL
-----0-----

Intel Processors
-----0-----

The reference manual set for UNIX<I!> System V Release 4 for Intel Processors
is the definitive source for complete and detailed specifications for all System V
interfaces. Newly reorganized, this edition makes finding the manual page you need
easy and fast.

The new organization groups manual pages in the way most users need to use them:

• The User's Reference Manual! System Administrator's Reference Manual
describes all user and admi.nistrator commands in the UNIX system, including
new multiprocessing commands.

• The Programmer's Reference Manual:Operating System API describes UNIX
system calls and C language library functions, including new multiprocessing
interfaces.

• The System Files and Devices Reference Manual describes file formats, special
files (devices), and miscellaneous system facilities.

• The Device Driver Interface/Driver-Kernel Interface Reference Manual describes
functions used by device driver software. Editions of this manual are available
for both uniprocessor and multiprocessor versions of the operating system.

• The Product Overview and Master Index provides an overview of the system
and comprehensive indices for the documentation set.

Use Background Color to Locate
Your Document Title:

COLOR
CODE DOCUMENT TYPE

O-~~-~~~------O

.. GENERAL DOCUMENTS

.. USER'S GUIDES

ADMINISTRATOR'S GUIDES

ISBN 0-13-879529-0

UNIX
PRESS

A Prentice Hall Title

o PROGRAMMER'S GUIDES

.. REFERENCE MANUALS

90000>

9 7801 5290

