

* Trademark of AT&T.

AT8&T

VOLUME 3

SYSTEM ADMINISTRATION
FACILITIES

UNIX*
programmer's manual

CBS COLLEGE PUBLISHING'S
UNIX SYSTEM LIBRARY

* Trademark of AT&T.

ATlaT

VOLUME 3

SYSTEM ADMINISTRATION
FACILITIES

UNIX*
programmer's manual

CBS COLLEGE PUBLISHING'S
UNIX SYSTEM LIBRARY

Steven V. Earhart: Editor

HOLT, RINEHART AND WINSTON
. New York Chicago San Francisco Philadelphia

Montreal Toronto London Sydney Tokyo
Mexico City Rio de Janeiro Madrid

IMPORTANT NOTE TO USERS

While every effort has been made to ensure the accuracy of all information in this document, AT&T assumes
no liability to any party for any loss or damage caused by errors or omissions or statements of any kind in the
UNIX* Programmer's Manual, its updates, supplements, or special editions, whether such errors are
omissions or statements resulting from negligence, accident, or any other cause. AT&T further assumes no
liability arising out of the application or use of any product or system described herein; nor any liability for
incidental or consequential damages arising from the use of this document. AT&T disclaims all warranties
regarding the information contained herein, whether expressed, implied or statutory, including implied
warranties of merchantability or fitness for a particular purpose.

AT&T reserves the right to make changes without further notice to any products herein to improve
reliability, function or design.

This document was set on an AUTOLOGIC, Inc. APS-5 phototypesetter driven by the TROFF formatter
operating under the UNIX system on an AT&T 3B20 computer.

* Trademark of AT&T.

Copyright© 1986 AT&T
All rights reserved.
Address correspondence to:
383 Madison Avenue
New York, NY 10017

No part of this pUblication may be reproduced, transmitted or used in any form or by an means -- graphic,
electronic, mechanical or chemical, including photocopying, recording in any medium, taping, by any
computer or information storage and retrieval systems, etc. without prior permission in writing from
AT&T.

Library of Congress Cataloging-in-Publication Data

UNIX programmer's manual.

At head of title: AT&T
Includes index.
Contents: v. 1. Commands and utilities - v. 2.

System calls and library routines - v. 3. System
administration facilities.

1. UNIX (Computer operating system) I. Earhart,
Steven V. II. American Telephone and Telegraph Company.
QA76.76.063U548 1986 005.4'3 86-311

Select Code 320 ... 033
ISBN 0-03-009313-9

Printed in the United States of America

Published simultaneously in Canada

678 090 987654321

CBS COLLEGE PUBLISHING
Holt, Rinehart and Winston
The Dryden Press
Saunders College Publishing

PREFACE

The UNIX Programmer's Manual describes most of features of UNIX System
V. It does not provide a general overview of the UNIX system nor details of
the implementation of the system.

Not all commands, features, or facilities described in this series are available in
every UNIX system implementation. For specific questions on a machine
implementation of the UNIX system, consult your system administrator.

The UNIX Programmer's Manual is available in several volumes. The first
three volumes consist of the following:

• Volume 1 contains the Commands and Utilities (sections 1 and 6).

• Volume 2 contains the System Calls and Library Routines (sections 2, 3,
4, and 5).

• Volume 3 contains the System Administration Facilities (sections 1 M, 7,
and 8).

UNIX Programmer's Manual System Administration Facilities-i

TRADEMARKS

UNIX, TELETYPE, and DOCUMENTER'S WORKBENCH are trademarks of AT&T.

DEC, V AX, PDP, and MASSBUS are trademarks of Digital Equipment Corporation.

HP is a trademark of Hewlett-Packard, Inc.

TEKTRONIX is a registered trademark of Tektronix, Inc.

ii-System Administration Facilities UNIX Programmer's Manual

INTRODUCTION

The UNIX Programmer's Manual-Volume 3: System Administration Facili­
ties is divided into three sections:

1 M -System Administration Commands and Applications Programs

7-Special Files

8-System Maintenance Procedures

Section 1M (System Administration Commands and Applications Programs)
contains system maintenance programs, such as !sck(lM), crash (lM), etc.,
which generally reside in the directory etc. These entries contain a sub-class
designation of "1M" for cross-referencing reasons.

Section 7 (Special Files) discusses the characteristics of each system file that
actually refers to an input/output device. Only files in general use are covered
and this section should not be considered complete.

Section 8 (System Maintenance Procedures) discusses facility descriptions,
remote job entry, etc.

Each section consists of a number of independent entries of a page or so each.
The name of the entry appears in the upper corners of its page(s). Entries
within each section are alphabetized, with the exception of the introductory
entry that begins each section. Some entries may describe several routines,
commands, etc. In such cases, the entry appears only once, under its "major"
name.

All entries use a common format, not all of whose parts always appear:

The NAME part gives the name(s) of the entry and briefly states its
purpose.

The SYNOPSIS part summarizes the use of the program described. A
few conventions are used:

Boldface strings are literals and are typed just as they appear.

UNIX Programmer's Manual System Administration Facilities-iii

Italic strings usually represent substitutable' argument prototypes and
program names found elsewhere in the UNIX Programmer's Manual.

Square brackets [) around an argument prototype indicate that the
argument is optional. When an argument prototype is given as "name"
or "file", it always refers to a file name .

. Ellipses ••• are used to show that the previous argument prototype may
be repeated.

A final convention is used by the commands themselves. An argument
beginning with minus -, plus +, or equal sign - is often taken to be a
flag argument, even if it appears in a position where a file name could
appear. Files that begin with -, +, or - should therefore be avoided.

The DESCRIPI10N part discusses the subject.

The EXAMPLE(S> part provides example(s) of usage.

The FILES part shows the file names that are built into the program.

The DIAGNOSTICS part discusses the diagnostic indications that may be pro­
duced. Messages that are self-explanatory are not listed.

The BUGS section describes known deficiencies that exist on some implementa­
tions.

The SEE ALSO section suggests related utilities or information to consult.

The WARNINGS part describes potential pitfalls.

A table of contents and a permuted index precede Section 1M. The table of
contents lists each major entry with a brief description and the page number
that the entry begins on. The permuted index is used by searching the middle
column for a key word or phrase. The right column contains the name of the
utility along with the section number. The left column of the permuted index
contains additional useful information about the utility or command.

iv-System Administration Facilities UNIX Programmer's Manual

Throughout this volume references to sections 2, 3, 4, and 5 can be found in
the UNIX Programmer's Manual-Volume 2: System Calls and Library Rou­
tines. References to sections 1 and 6 will be found in the UNIX Programmer's
Manu'll-Volume 1: Commands and Utilities.

UNIX Programmer's Manual System Administration Facilities-v

TABLE OF CONTENTS

1M. System Administration Commands and Applications Programs
intro-introduction to system maintenance commands • • • • • • • • • • 1
accept-allow/prevent LP requests • • • • • • • • • • • • • • • • • • 3
acct-overview of accounting and miscellaneous accounting commands. • • 4
acctcms-command summary from per-process accounting records •••• 6
acctcon-connect-time accounting • • • • • • • • • • • • • • • • • • 8
acctmerg-merge or add total accounting files •••••••• •• 10
acctprc-process accounting • • • • • • • • • • • • • • •• •• 11
acctsh-shell procedures for accounting • • • • • • • • • •• •• 13
bcopy-interactive block copy •••••••.••••••• •• 16
bdblk-print, initialize, update or recover bad sector information • • • 17
brc-system initialization shell scripts • • • • • • • 19
checkall-faster file system checking procedure • • 20
chroot-change root directory for a command • • • • 22
clri-clear i-node • • • • • • • • • • • • • • • 23
config-configure a UNIX system • • • • • • . • 24
cpset-install object files in binary directories • • • • 29
crash-examine system images • • • • • • • • • 31
cron-clock daemon. • • • • • • • • • • • • • • 36
dcopy-copy file systems for optimal access time •• 37
devnm-device name • • • • • • • • • . • • • • • 38
df-report number of free disk blocks • • • • • • • • 39
diskusg-generate disk accounting data by user ID •• 40
errdead-extract error records from dump • • • • 42
errdemon-error-Iogging daemon . • • • • • • • • 43
errpt-process a report of logged errors ••••• • • 44
errstop-terminate the error-logging daemon • • • 46
ff-list file names and statistics for a file system • • • • • • 47
filesave-daily/weekly UNIX system file system backup •• 49
finc-fast incremental backup •••.•••••••• • • 50
frec-recover files from a backup tape • • • • • • • • • • 51
fsck-file system consistency check and interactive repair •• 52
fsdb-file system debugger • • • • • • • • • • • • • • • • 56
fuser-identify processes using a file or file structure • • • • 60
fwtmp-manipulate connect accounting records • • • • • • 62 _
getty-set terminal type, modes, speed, and line discipline •• 64
init-process control initialization • • • • • • 67
install-install commands • • • • • • • • • • • • • • • • 71
killall-kill all active processes • • • • • • • • • • • • • • • 73
link-exercise link and unlink system calls • • • • • • • • • • 74
Ipadmin-configure the LP spooling system. • • • • • . • • • • 75
lpsched-start/stop the LP request scheduler and move requests • • • 79
mkfs-construct a file system • • • • • • • • 80
mknod-build special file ••••••• • • 83
mount-mount and dismount file system • • 84
mvdir-move a directory • • • • • • • • • • 85
ncheck-generate names from i-numbers • • • 86
profiler-operating system profiler • • • 87
pwck-password/group file checkers • • • 88
runacct-run daily accounting • • 89
sadp-disk access profiler •• 92
sar-system activity report package •• 93
setmnt-establish mount table • • 96
shutdown-terminate all processing • • • 97
swap-swap administrative interface • • • 98

UNIX Programmer's Manual System Administration Facilities-vii

sysdef-system definition. • 99
tic-terminfo compiler • • • • • • • • • • • 100
uuclean-uucp spool directory clean-up • • • • • • • • • • 101
uusub-monitor uucp network • • • • • • • • • • 103
volcopy-copy file systems with label checking • • • • • • • 105
wall-write to all users • • • • • 107
whodo-who is doing what •••••••• • 108

7. Special Files
intro-introduction to special files ••• • •
acu-Automatic Call Unit (ACU) interface
err-error-Iogging interface • • • • • • •
mem-core memory •••••
null-the null file • • • • •
prf-operating system profiler
sxt-pseudo-device driver • • • •
termio-general terminal interface
trace-event-tracing driver •••
tty-controlling terminal interface

8. System Maintenance Procedures
intro-introduction to system maintenance procedures •
mk-how to remake the system and Commands ••
rje-RJE (Remote Job Entry) to IBM •••••••

• 109
.110
• 112
• 113
.114
• 115
• 116
.119
• 130
.132

• 133
.134
.137

viii-System Administration Facilities UNIX Programmer's Manual

PERMUTED INDEX

LP r~uests.
sadp: disk

copy file systems for optimal
acetcon2: connect-time

acetprcl, acetprc2: process
turnacet: shell procedures for

I accton, acctwtmp: overview of
accounting and miscellaneous

diskusg - generate disk
acetmerg: merge or add total

summary from per-process
wtmpfix: manipulate connect

runacct: run daily'
per-process accounting7

connect-tiIJ.le accounting.
accountmg. acctcon 1

acctwtmp: overview of)
overview of! acctdisk,

accounting files.
acctdisk, acctdusg,

accounting.
acctprcl,

acctdisk, acetdusg
i

aceton
i killal : kill al

sa I, sa;' sadc: system
(AcU) interface.

acu, dn: Automatic Call Unit
acetmerg: merge or

swap: swap
aceept, reject:

maintenance commands and
interface. acu, dn:

UNIX system file system
finc: fast incremental

frec: recover files from a
linitialize, u~ate or recover

system imtializationl brc,

update or recover bad sectorl
cpset: install object files in

bcopy: interactive
df: report number of free disk

system initialization shelll
mknod:

aeu, dn: Automatic
link and unlink system

lastlogin, monacct, nulladm,l
I dfsck: file system consistency

checking procedure.
grpck: passworalgroup file
checkaIl: faster file system

copy file systems with label
for a command.

monacct, nulladm,l chargefee,
uuclean: uucp spool directory

cln:
cron ;.

change root directory for a
per-processl acetcms:

and miscellaneous accounting

UNIX Programmer's Manual

accept, reject: allow/prevent •• acceRt(1M)
access profiler. •••••• sadp(IM)
access time. dcopy:. • • dcopy(1 M)
accounting. acetconl, acetcon(IM)
accounting. •••• • • • acetprc(1M)
accounting. Istartup, ••• acetsh(1M)
accounting and miscellaneousl • acet (1 M)
accounting commands. lof ••• acet(1M)
accounting data by user ID. diskusg(1M)
accounting files. ••••••• acetmerg(1M)
accounting records. I command • acetcms {I M)
accounting records. fwtmp, •• fwtmp(1 M)
accounting. ••••••••• runacet (1 M)
acetcms: command summary from acetcms (1 M)
acetcon 1, acetcon2: • • • • • • acctcon (1 M)
acetcon2: connect-time •• acetcon(1 M)
acetdisk, acetdusg, aceton, • • • acet (1 M)
acetdusg, aceton, acetwtmp: •• acet (1 M)
acctmerg: merge or add total •• acetm~rg(IM)
aceton, acetwtmp: overview ofl acet(1M)
acetprcl, acetprc2: process. acetprc(1M)
acctprc2: process accounting. acetprc(IM)
acetwtmp: overview off acetUM)
active processes. ••••••• killall (1 M)
activity report package. •••• sar(1M)
aeu..z.. dn: Automatic Call Unit acu(7)
(AcU) interface. • • • •• acu(7)
add total accounting files. ••• acctmerg(1 M)
administrative interface. • • • • swap(1M)
allow/prevent LP requests. • •• aceep.t(1M)
application programs. Isystem intro(1M)
Automatic Calf Unit (ACU) • • acu (7)
backup. Idaily/weekly filesave(IM)
backup. • • • • • • • • • •• finc(IM)
backup tape. • • • • • • • • • frec(I M)
bad sector information on disk! bdblk(1M)
bcheckrc, rc, ~werfail: •••• brc (I M)
bcopy: interactive block copy. bcopy(1M)
bdblk - print, initialize, •• bdblk(1M)
binary directories. •••••• cpset(IM)

tl:t~p~· . : : : : : .. mrM)1 M)
brci bcheckrc, re, powerfail: •• brc(IM)
bui d_~ial file. •••• mknod(IM)
Call Unit (ACU) interface. acu(7)
calls. link, unlink: exercise • • • link(IM)
chargefee1 ~kpacctt dodisk~. acetsh (1 M)
check ana mteractIve repaIr. •• fsck(I M)
checkall: faster file system • • • checkall (1 M)
checkers. pwck, • pwck(1 M),
checking procedure. • • • • • • checkall (1 M)
checking. volcopy,labelit:. volcop:y(1M)
chroot: change root directory • • chroot {I M)
ckpacet, dodlSk, lastlogin, acctsh(IM)
clean-up. ••••••• uuclean (1 M)
clear i-node. • • clri(IM)
clock daemon. cron (1 M)
clri: clear i-node. • clri(IM)
command. chroot: ••• chroot (1 M)
command summary from . acctcms (1 M)
commands. lof accounting acet(IM)

System Administration Facilities-ix

Ito system maintenance
install: install

how to remake the system and
tic: terminfo

system.
config:

system. Ipadmin:
fwtmp, wtmpfix: manipulate

acctcon 1, acctcon2:
fsck, dfsck: file system

mkfs:
init, telinit: process

interface. tty:
bcopy: interactive block

access time. dcopy:
checking. volcopy,labelit:

mem, kmem:
binary directories.

cron - clock
errdemon: error-logging

terminate the error-logging
runacct: run

system/ filesave, tapesave:
- generate disk accounting

optimal access time.
fsdb: file system

sysdef: system
devnm:

blocks.
check and interactive/ fsck,
install object files in binary

uuclean: uucp spool
chroot: change root

mvdir: move a
type, modes, speed, and line

sadp:
ID. diskusg - generate

df: report number of free
bad sector information on

accounting data by user ID.
mount, umount: mount and

interface. acu,
nulladm,l chargefee, ckpacct,

whodo: who is
sxt: pseudo-device

trace: event-tracing
extract error records from

rje: RJE (Remote Job

from dump.
daemon.

errdead: extract
errdemon:

errstop: terminate the
err:

process a report of logged
logged errors.

error-logging daemon.
setmnt:

trace:
crash:

x-System Administration Facilities

commands and application/ intro(1M)
commands. ••••••• install (1 M)
commands. mk: •••• • mk(S)
compiler. ••••••• tic(1M)
config: config'Ure a UNIX • config(1M)
configure a UNIX system. config(lM)
configure the L~ spooling Ipadmin (1 M)
connect accountmg recoras. fwtmp(lM)
connect-time accounting. • • • • acctcon (1 M)
consistency check and/ fsck (1 M)
construct a file system. • mkfs (1 M)
control initialization. init (1 M)
controlling terminal • tty (7)
copy. •••••••••••• bCopy (1 M)
copy file systems for optimal dcopy(IM)
copy file systems with label . VOlCOf'Y,(1 M)
core memory. •••••••• mem 7)
cpset: install object files in •. cpset 1M)
crash: examine system images. • crash (1 M)
cron - clock daemon. cron(1M)
daemon. • • • • • • cron (1 M)
daemon. • • • • • • • • • • • errdemon (1 M)
daemon. errstop: ••••••• errstop(1M)
daily accounting. • • • • •• runacct (1 M)
daily/weekly UNIX system file • filesave(1M)
data by user ID. diskusg •.•• diskusg(1M)
dcopy: copy file systems for dcopyUM)
debug~er. •••••••• fsdlHIM)
defimtIon. •••••••••• sysdef(1 M)
device name. • • • • • •• devnm (1 M)
devnm: device name. ••• devnm (1 M)
df: re~rt number of free disk df(1M)
dfsck: file system consistency fsck(IM)
directories. cpset: • • • •• cpset (1 M)
directory clean-up. •••••• uuclean(1M)
directory for a command. chroot (1 M)
directory. •••••• mvdir (1 M)
discipline. /set terminal getty(IM)
disk access profiler. • • • • • • sadp(1M)
disk accounting data by user disK~sg(1M)
disk blocks. ••••••••• df(1 M)
disk packs. /update or recover • bdblk(1M)
diskUsg - generate disk •••• diskusg(1M)
dismount file system. •••• mount (1 M)
dn: Automatic Call Unit (ACU) acu(7)
dodisk, lastlogin, monacct, acctsh (1 M)
doing what. •••••• whodo(1M)
driver. sxt(7)
driver. ••• trace (7)
dump.errdead: errdead (1 M)
Entry) to IBM. • • • • •• rje(S)
err: error-logging interface. • err (7)
errdead: extract error records errdead(IM)
errdemon: error-logging •• errdemon (1 M)
error records from··dump. errdead(IM)
error-logging daemon. • errdemon(IM)
error-logging daemon. • errstop(1M)
error-logging interface. err (7)
errors. errpt: • • • •• • • errpt (1 M)
errpt: process a report of errpt (1 M)
errstop: terminate the • errstop(1 M)
estabhsh mount table. • • setmnt(1M)
event-tracing driver. •• • • trace(7)
examine system images. crash (1 M)

UNIX Programmer's Manual

system calls. link, unlink:
dump. errdead:

finc:
procedure. checkall:

statistIcs for a file system.
pwck, grpck: passwordl group

mknOd: build special
a file system. ff: list

null: the null
/identify processes using a

processes using a file or
daily/weekly UNIX system
procedure. checkall: faster

and interactive/ fsck, dfsck:
fsdb:

names and statistics for a
mkfs: construct a

umount: mount and dismount
access time. dcopy: copy

volcopy, labelit: copy
merge or add total accounting

frec: recover
cpset: install object

intro: intrOduction to special
daily/weekly UNIX system filet

backup tape.
df: report number of

frec: recover files
errdead: extract error records

ncheck: generate names
acctcms: command summary

consistency check andl

using a file or filet
connect accounting records.

by user ID. diskusg -
ncheck:

modes, speed, and line/
checkers. pwck,

rje: RJE (Remote Job Entry) to
disk accounting data by user

file or filet fuser:
crash: examine system

finc: fast
initialization.

init, telinit: process control
/rc, powerfail: system

bad sector/ bdblk - print,
clri: clear

install:

directories. cpset:
bCopy:

system consisten~ check and
dn: Automatic Call Unit (ACU)

err: error-logging
swap: swap administrative

termio: general terminal
tty: controlling terminal

files.
maintenance commands and/

maintenance procedures.
intro:

exercise link and unlink •• link(IM)
extract error records from errdead (1 M)
fast incremental backup. •• finc(IM)
faster file system checIQng • checkall (1 M)
ff: list file names and ••• ff(t M)
file checkers. • • • • • •• pwck(IM)
file. • • • • • • • • • • . mknod (I M)
file names and statistics for •• ff(t M)
file. • • • • • • • • • •• null (7)
file or file structure. • • •• fuser (1 M)
file structure. /identify •• fuser(IM)
file system backup. /tapesave: • filesave(IM)
file system checking • • • • • • checkall (1 M)
file system consistency check fsck(lM)
file system debugger. ••••• fsdb(IM)
file system. ff: Itst file • ff(t M)
file system. ••••• • • mkfs (1 M)
file system. mount, •• mount (I M)
file systems for optimal •• dcopy(IM)
file systems with label/ volcopy(IM)
files. acctmerg: • • •• •• acctm~rg(IM)
files from a backup tape. frec(IM)
files in binary directOrIes. cpset (1 M)
files. •••••••••• intro(7)
filesave, tapesave: • • • • • • • filesave(IM)
finc: fast incremental backup. finc(IM)
frec: recover files from a • • frec(I M)
free disk blocks. ••• df(lM)
from a backup tape. •• • • frec(IM)
from dump. ••••• errdead (I M)
from i-numbers. • •••••• ncheck(IM)
from per-process accounting/ acctcms (1 M)
fsck, dfsck: file system • • • fsck(tM)
fsdb: file system debugger.. fsdb{tM)
fuser: identify processes •••• fuser(IM)
fwtmp, wtmpfix: manipulate •• fwtmp{t M)
generate disk accounting data • diskusg{tM)
generate names from i-numbers. nchecIC(tM)
getty: set terminal type, •••• getty (1 M)
fBPM~: p~s~w~r~/ ~r~u~ ~le. ~~(f){t M)
ID. diskusg - generate • diskusg(IM)
identify processes using a fuser{t M)
images. ••••••• crash (1 M)
incremental backup. • • •• finc{tM)
init! telinit: process control • • • init~lM~
initIalization. • • • • • •• init 1 M
initialization shell scripts.. brc 1 M
initialize, update or recover •• bdblk(IM)
i-node. ••••••••• clri{tM)
install commands. • • • • • • • install (I M)
install: install commands. install (1 M)
install object files in binary. cpset (1 M)
interactive block copy. • • bCopy{tM)
interactive repair. lfile. fscIC{lM)
interface. acu, •••••••• acu(7)
interface. ••••• err (7)
interface. swap(lM)
interface. • • termio(7)
interface. •••••••• tty (7)
intro: introduction to special •• introl7)
intro: introduction to system intro 1 M)
intro: introduction to system intro 8)
introduction to special files. intro 7)

UNIX Programmer'S Manual System Administration Facilities-xi

maintenance commandsl intro:
maintenancel intro:

ncheck:generate names from
killall:

processes.
mem,

copy file systems with
with laber checking. volco,Py,

chargefee, ckpacct, dodlsk:
type, modes, speed, ana

link unlink: exercise
and unlink system calls.

for a file system. ff:
errpt: process a report of

Ilpshut, Ipmove: start/stop the
accept, reject: allow/prevent

Ipadmin: configure the
spooling system.

requestl Ipsched, lpshut
start/stop tlie LP request!

LP request schedulerl Ipsched,
intro: introduction to system
intro: introduction' to system

records. fwtmp, wtmpfix:

mem, kmem: core
files. acctmer..8:
and commands.

getty: set terminal type,
/ ckpacct, dodisk, lastlogm,

uusub:
system. mount; umount:

setmnt: establish
dismount file system.

mvdir:
the LP request scheduler and

i-numbers.
uusub: monitor uucp

null: the

/ dodisk, lastlogin, monacct,
directories. cpset: install

prf:
Iprfdc, prfsnap, prfpr:

dcopy: copy file systems for
/acct(fusg, accton, acctwtmp:

sadc: system activity re~rt
bad sector information on (fisk

. pwck, grpck:
acctcms: command summary from

brc, bcheckrc, rc,
Ilastlogin, monacct, nulladm,

/monacct, nulladm, prctmp,
profiler.

operatingl prftd, prfstat
prfsnap, prfpr: operating!

Iprfstat, prfdc, prfsnap,
systeml prftd, prfstat, prfdc,

prfpr: operating/ prftd,
recover bad sector! bdblk -

errors. errpt:

introduction to system. • • intro(I M)
introduction to system • intro(S)
i-numbers. • • • • • • • • ncheck(IM)
kill all active processes. killall (1 M)
killall: kill all active • • • • killall (1 M)
kmem: core memory. ••• mem(7)
label checking. Ilabelit: •• volcopy(IM)
labelit: copy file systems • • • • volcopy(IM)
lastlo..8in1 monacct, nulladm,/ acctsh (1 M)
line diSCIpline. Iset terminal gettf(IM)
link and unlink system calls. link 1 M)
link, unlink: exercise link link 1 M)
list file names and statistics •• fr(I M)
logged errors. •••••••• errpt (1 M)
LP request scheduler and movel lpsched (I M)
LP requests. • • • • • • • • • accept (I M)
LP sJX?Oling system. • • • • • • Ipadmin (1 M)
Ipadmin: configure the LP . • . Ipadmin (1 M)
lpmove: start/stop the LP IPSChed!IMl
lpsched, lpshut, Ipmove: •• lpsched 1 M
lpshut, lpmove: start/stop the lpsched 1M
maintenance commands andl intro(IM)
maintenance procedures. • • • • intrO(S~
manipulate connect accounting fwtm~ 1M)
mem, kmem: core memory. • • • mem 7
memory. •••••••••• mem 7
merge or add total accounting • acctmerg (I M)
mk:how to remake the system mk(S)
mkfs: construct a file system. • • mkfs (1 M)
mknod: build special file. •• mknod (I M)
modes, speed and linel •••• getty (I M)
monacct, nuliadm, prctmp'/ acctsh (1 M)
monitor uucp network. • • • • • uusub(I M)
mount and dismount file •• mount (1 M)
mount table. • • • • • • • . • setmnt (I M)
mount, umount: mount and mount (I M)
move a directory. • • • •• mvdir (I M)
move requests. Istart/stop. Ipsched(IM)
mvdir: move a directory. • • • • mvdir(I M)
ncheck: generate names from ncheck(IM)
network. • • • • • • • •••• uusub(IM)
null file. • • • . • • . •• null (7)
null: the null file. • • • •• null (7)
nulladm, prctmp, prdaily,/ acctsh (1 M)
object files in bmary ••••. cpset(IM)
operating system profiler. prf(7)
operating system profiler. • profiler(IM)
optimal access time. • • •• i:lcopy(IM)
overview of accounting andl acct (1 M)
package. sa 1, sa2, •••• sar (I M)
packs. lutxlate or recover. bdblk(IM)
password/group file checkers. pwck(IM)
per-process accountingl •••• acctcms(IM)
powerfail: systeml •••• brc(IM)
prctmp, prdaily, prtacct'/ ••• acctsh (I M)
prdaily, prtacct, runacct,/ acctsh(IM)
prf: operating system •• prf(7)
prfdc, prfsnap, prfpr: prOfilerll M)
prftd, prfstatt prfdc, • • • profiler 1 Mj
pr(pr: operatmg system! • profiler 1M
prfSnap, prfpr: operating profiier 1 M
prfstat, prfdc, prTsnap, • profiler 1 M
print, inItialize, update or bdblk(IM)
process a report 01 logged errpt (1 M)

xii-System Administration Facilities UNIX Programmer's Manual

acctprc~, !lcctprcf:
Imt tehmt:

killall: kill alI active
structure. fuser: identify
shutdown: terminate all

prf: operating system
prfpr: oJ>C!rating system

sadp: disk access
/nulladm, prctmp, prdaily,

sxt:
file checkers.

initialization/ brc, bcheckrc,
from per-process accounting

errdead: extract error
manipulate connect accounting

/ - print, initialize, update or
tape. frec:

requests. accept,
commands. mk: how to

rje: RJE
check and interactive

blocks. df:
errpt: process a

sa2, sadc: system activit)'
/lpmove: start/stop the LP

reject: allow/prevent LP
LP request scheduler and move

rje:
IBM.

chroot: change
runacct:

/prctmp, prdaily, prtacct,
actiVity report package.

report package. sa I,
package. sa I, sa2,

/start/stop the LP request
system initialization shell

packs. /update or recover bad

shutacct, startup, turnacct:
system initialization

/prdaily, prtacct, runacct,
processing.

/set terminal type, modes,
uuc1ean: uucp

Ipadmin: configure the LP
lpsched, lpsliut, lpmove:

/prtacct, runacct, shutacct1 ff: list file names ana
processes using a file or file

accounting/ acctcms: command
swap:

interface.

setmnt: establish mount
recover files from a backup

system file system/ filesave,
initializ~tion. initi

termlo: genera
tty: controlling

and line/ getty: set

UNIX Programmer's Manual

process accounting. • • acctprc(1M)
process control/ ••••• init {I M)
processes. •••••••• killall (I M)
processes using a file or file fuser(1 M)
processing. • • • • • • shutdown (1 M)
profiler. • • • • • • • • • prf(7)
profiler. /prfdc, prfsnap, profiler(1M)
profiler. • • • • • • • • • • • sadp(1M)
prtacct, runacct, shutacct,/. acctsh (1 M)
pseudo-device driver. ••• sxt(7)
pwck, grp'ck: password/group •• pwck(1M)
rc, powerfail: system ••• brc(1M)
records. /command summary acctcms(IM)
records from dump. • • • • • • errdead (1M)
records. fwtmp, wtmpfix: ••• fwtmp'(1 M)
recover bad sector information/ bdblJ.C(1M)
recover files from a backup • frec(1M)
reject: allow/prevent LP • • . • accep,t(1M)
remake the system and •• mk(S)
(Remote Job Entry) to IBM. tje(S)
repair. /system consistency • fsck(1M)
report number of free disk • • • df(1 M)
report of logged errors. •• errpt(1M)
report package. sa I, ••• sarU M)
request scheduler and move/ • • lpsched (1 M)
requests. accept?: ••••••• accept (1 M)
re<fl1ests. /start stol' the • • • • Ipsclied(1M)
RJE (Remote Job Entry) to IBM. rje(S)
rje: RJE (Remote Job Entry) to rle(S)
root directory for a command. chroot (I M)
run daily accounting. ••• runacct (I M)
runacct: run daily accounting. runacct(1M)
runacct, shutacct, startup,! • • • acctsh (1 M)
sal, sa2, sadc: system • • • sar!IMj
sa2, sadc: system activity. sar 1M
sadc: system activity report • sar 1M
sadp: disk access profiler. ••• sadp(1M)
scheduler and move r~uests. lpsclled (1 M)
scripts. /rc, powerfail: • • • orc(1M)
sector information on disk ••• bdblk(1M)
setmnt: establish mount table. • setmnt(1M)
shell procedures fort /runacct, • acctsh(1M)
shell scripts. /rc, powerfail: •• brc(1M)
shutacct, startup, turnacct:/ •• acctsh (1 M)
shutdown: termmate all •• shutdown (1 M)
speed, and line discipline. • getty(1M)
spool directory clean-up. •• uuclean (1 M)
spooling system. ••••••• Ipadmin (I M)
start/stop the LP r~uest/ Ipsched(IM)
startup, turnacct: shell/ • • acctsh (I M)
statistics for a file system. ••• fr(1 M)
structure. fuser: identify • • fuser(1M)
summary from per-process. acctcms(1M)
swap administrative interface. • swap(IM)
swap: swap administrative. swa~(1 M)
sxt: pseudo-device driver. sxt{7)
sysdef: system definition. sysdef(IM)
table. • • • • • • • • • • • • setmnt(1M)
tape. frec: • • • • • • • • • • frec(1M)
tap'e~ave: daily/weekiI' UNIX • filesave(1M)
teIimt: process contro ••• init (I M)
terminal interface. •••••• termio(7)
terminal interface. •••• tty (7)
terminal type, modes, speed, getty (1 M)

System Administration Facilities-xiii

shutdown:
daemon. errstop:

tic:
interface.

systems for optimal access
acctmerg: merge or add

interface.
/runacctt shutacctt startuPt

getty: set terminal
file system. mountt

acut dn: Automatic Call
unlink system calls. link:
unlink: exercise link ana
bdblk - printt initializet
disk accounting data by

wall: write to all
fuser: identify processes

clean-up.
uusub: monitor

uuclean:

systems with label checking.

whodo:

wall:
accounting records. fwtmpt

terminate all processing. • • • • shutdown (I M)
terminate the error-logging • errsto~(1M)
terminfo compiler. •• tic(IM)
t~rmio: general ter!llinal termio(7)
tic: termmfo compIler. • •••• tic(IM)
time. dcopy: copy file . •• dcopy(1 M)
total accounting files. ••••• acctmerg(1 M)
trace: event-tracing driver. . . . trace (7)
tty: controlling terminal •••• tty(7)
turnacct: shell procedures for / acctsh (1 M)
typet modeSt speedt and line/ •• getty(IM)
umount: mount and dismount • • mount (1 M)
Unit (ACU) interface. • ••• acu(7)
unlink: exercise link and • • • • link (I M)
unlink system calls. linkt ••• link (1 M)
update or recover bad sector/ •• bdblk(IM)
user ID. diskusg - generate .• diskusg(IM)
users. • • • • • • • • •• walI(lM)
using a file or filet •••••• fuserO M)
uuclean: uucp spool directory uuclean (1 M)
uucp networK. •••••• •• uusub(lM)
uucp spool directory clean-up. uuclean (I M)
uusub: monitor uucp network. • uusub(IM)
volcopYt labelit: copy file •• volcopy(1M)
wall: write to all users. •• wall (I M)
who is doing what. .••• whodo(1M)
whodo: who is doing what. whodoO M)
write to all users. • • • • • . • walI(lM)
wtmpfix: manipulate connect • • fwtmp(1 M)

xiv-System Administration Facilities UNIX Programmer's Manual

INTRO(lM) INTRO(lM)

NAME
intro - introduction to system maintenance commands and appli­
cation programs

DESCRIPTION
This section describes, in alphabetical order, commands that are
used chiefly for system maintenance and administration purposes.
The commands in this section should be used along with those
listed in Sections 1 and 6 of the UNIX Programmer's Manual­
Volume 1: Commands and Utilities and Sections 2, 3, 4, and 5 of
the UNIX Programmer's Manual-Volume 2: System Calls and
Library Routines. References to other manual entries not of the
form name (I M), name (7) or name (8) refer to entries of the
above volumes.

COMMAND SYNTAX
Unless otherwise noted, commands described in this section accept
options and other arguments according to the following syntax:

name [option(s)] [cmdarg(s)]
where:

name

option

noargletter

argletter

optarg

cmdarg

The name of an executable file.

- noargletter(s) or,
- argletter < >optarg
where < > is optional white space.

A single letter representing an option without an
argument.

A single letter representing an option requiring an
argument.

Argument (character string) satisfying preceding
argletter.

Path name (or other command argument) not
beginning with - or, - by itself indicating the
standard input.

UNIX Programmer's Manual System Administration Facilities-l

INTRO(IM) INTRO(IM)

SEE ALSO
getopt(I) in the UNIX Programmer's Manual-Volume 1: Com­
mands and Utilities.
getopt(3C) in the UNIX Programmer's Manual-Volume 2: Sys­
tem Calls and Library Routines.

DIAGNOSTICS

BUGS

Upon termination, each command returns two bytes of status, one
supplied by the system and giving the cause for termination, and
(in the case of "normal" termination) one supplied by the program
(see wait (2) and exit (2». The former byte is 0 for normal termi­
nation; the latter is customarily 0 for successful execution and
non-zero to indicate troubles such as erroneous parameters, bad or
inaccessible data, or other inability to cope with the task at hand.
It is called variously "exit code", "exit status", or "return code",
and is described only where special conventions are involved.

Regretfully, many commands do not adhere to'the aforementioned
syntax.

2-System Administration Facilities UNIX Programmer's Manual

ACCEPT (1M) ACCEPT (1M)

NAME
accept, reject - allow/prevent LP requests

SYNOPSIS
/usrllib/accept destinations
/usrllib/reject [-r[reason]] destinations

DESCRIPTION

FILES

Accept allows lp (1) to accept requests for the named destinations.
A destination can be either a printer or a class of printers. Use
lpstat (1) to find the status of destinations.

Reject prevents Ip(1) from accepting requests for the named desti­
nations. A destination can be either a printer or a class of
printers. Use lpstat (1) to find the status of destinations. The fol­
lowing option is useful with reject.

-r[reason] Associates a reason with preventing lp from accept­
ing requests. This reason applies to all printers
mentioned up to the next -r option. Reason is
reported by lp when users direct requests to the
named destinations and by Ipstat(1). If the -r
option is not present or the -r option is given
without a reason, then a default reason will be used.

/usr/spoollip/.

SEE ALSO
Ipadmin(lM),lpsched(lM).
enable(l), Ip(1) , Ipstat(1) in the UNIX Programmer's Manual­
Volume 1: Commands and Utilities.

UNIX Programmer's Manual System Administration Facilities-3

ACCT(lM) ACCT(lM)

NAME
acctdisk, acctdusg, accton, acctwtmp - overview of accounting and
miscellaneous accounting commands

SYNOPSIS
/usr /lib/ acct/ acetdisk

/usr/lib/acet/acctdusg [-u file] [-p file]

/usr/lib/acet/acetoD [file]

/usr/lib/acct/acctwtmp "reason"

DESCRIPTION
Accounting software is structured as a set of tools (consisting of
both C programs and shell procedures) that can be used to build
accounting systems. Acctsh (I M) describes the set of shell pro­
cedures built on top of the C programs.

Connect time accounting is handled by various programs that write
records into /etc/utmp, as described in utmp (4). The programs
described in acctcon (I M) convert this file into session and charg­
ing records, which are then summarized by acctmerg(IM).

Process accounting is performed by the UNIX syst'em kernel.
Upon termination of a process, one record per process is written to
a file (normally /usr/adm/pacct). The programs in acctprc(IM)
summarize this data for charging purposes; acctcms (I M) is used
to summarize command usage. Current process data may be
examined using acctcom (0.
Process accounting and connect time accounting (or any account­
ing records in the format described in acct (4» can be merged and
summarized into total accounting records by acctmerg (see tacet
format in acct(4». Prtacct (see acctsh (I M» is used to format
any or all accounting records.

Acctdisk reads lines that contain user ID, login name, and number
of disk blocks and converts them to total accounting records that
can be merged with other accounting records.

Acctdusg reads its standard input (usually from find / -priDt).
and computes disk resource consumption (including indirect
blocks) by login. If -u is given, records consisting of those file
names for which acctdusg charges no one are placed in file (a
potential source for finding users trying to avoid disk charges). If
-p is given, file is the name of the password file. This option is
not needed if the password file is / etc/passwd.

4-System Administration Facilities UNIX Programmer's Manual

ACCT(lM) ACCT(lM)

FILES

Accton alone turns process accounting off. If file is given, it must
be the name of an existing file, to which the kernel appends pro­
cess accounting records (see acct(2) and acct (4».

Acctwtmp writes a utmp (4) record to its standard output. The
record contains the current time and a string of characters that
describe the reason. A record type of ACCOUNTING is assigned
(see utmp (4». Reason must be a string of 11 or less characters,
numbers, $, or spaces. For example, the following are suggestions
for use in reboot and shutdown procedures, respectively:

acctwtmp 'uname' > > I etc/wtmp
acctwtmp "file save" > > letc/wtmp

letc/passwd
lusr/lib/acct

used for login name to user ID conversions
holds all accounting commands listed in
sub-class 1M of this manual

lusr/adm/pacct current process accounting file
I etc/wtmp login/logoff history file

SEE ALSO
acctcms (1 M) , acctcon (1 M), acctmerg (1 M) , acctprc (1 M) ,
acctsh (1 M), diskusg (1 M), fwtmp (1 M), runacct (1 M) .
acctcom(1) in the UNIX Programmer's Manual-Volume 1:
Commands and Utilities.
acct(2) , acct(4) , utmp(4) in the UNIX Programmer's Manual­
Volume 2: System Calls and Library Routines.

UNIX Programmer's Manual System Administration Facilities-5

ACCTCMS(lM) ACCTCMS(lM)

NAME
acctcms - command summary from per-process accounting
records

SYNOPSIS
lusrllib/acct/acctcms [options] files

DESCRIPTION
Acctcms reads one or more files, normally in the form described in
acct (4). It adds all records for processes that executed
identically-named commands, sorts them, and writes them to the
standard output, normally using an internal summary format. The
options are:

-a Print output in ASCII rather than in the internal summary
format. The output includes command name, number of
times executed, total kcore-minutes, total CPU minutes,
total real minutes, mean size (in K), mean CPU minutes
per invocation, "hog factor", characters transferred, and
blocks read and written, as in acctcom (1). Output is nor­
mally sorted by total kcore-minutes.

-c Sort by total CPU time, rather than total kcore-minutes.
-j Combine all commands invoked only once under

"* * * other" .
-0 Sort by number of command invocations.
-s Any file names encountered hereafter are already in inter-

nal summary format.
-t Process all records as total accounting records. The

default internal summary format splits each field into
prime and non-prime time parts. This option combines
the prime and non-prime time parts into a single field that
is the total of both, and provides upward compatibility.
with old (i.e., UNIX System V) style acctcms internal
summary format records.

The following options may be used only with the -a option.

-p Output a prime-time-only command summary.

-0 Output a non-prime (offshift) time only command sum-
mary.

When -p and -0 are used together, a combination prime and
non-prime time report is produced. All the output summaries will
be total usage except number of times executed, CPU minutes,
and real minutes which will be split into prime and non-prime.

6-System Administration Facilities UNIX Programmer's Manual

ACCTCMS(IM) ACCTCMS(lM)

A typical sequence for performing daily command accounting and
for maintaining a running total is:

acctcms file ... >today
cp total previoustotal
acctcms -s today previoustotal > total
acctcms -a -s today

SEE ALSO

BUGS

acct (1 M) , acctcon (1 M) , acctmerg (1 M) , acctprc(1 M) ,
acctsh (1 M), fwtmp (1 M), runacct (1 M) .
acctcom(1) in the UNIX Programmer's Manual-Volume 1:
Commands and Utilities.
acct(2) , acct(4) , utmp(4) in the UNIX Programmer's Manual­
Volume 2: System Calls and Library Routines.

Unpredictable output results if -t is used on new style internal
summary format files, or if it is not used with old style internal
summary format files.

UNIX Programmer's Manual System Administration Facilities-7

ACCTCON(lM) ACCTCON(lM)

NAME
acctcon 1, acctcon2 - connect-time accounting

SYNOPSIS
lusrlIib/acct/acctconl [options]

lusrlIib/acct/acctcon2

DESCRIPTION
Acctconl converts a sequence of loginllogoff records read from its
standard input to a sequence of records, one per login session. Its
input should normally be redirected from letc/wtmp. Its output is
ASCII, giving device, user ID, login name, prime connect time
(seconds), non-prime connect time (seconds), session starting time
(numeric), and starting date and time. The options are:

-p Print input only, showing line name, login name, and time
(in both numeric and date/time formats).

-t Acctconl maintains a list of lines on which users are
logged in. When it reaches the end of its input, it emits a
session record for each line that still appears to be active.
It normally assumes that its input is a current file, so that
it uses the current time as the ending time for each ses­
sion still in progress. The -t flag causes it to use,
instead, the last time found in its input, thus assuring rea­
sonable and repeatable numbers for non-current files.

-I file File is created to contain a summary of line usage show­
ing line name, number of minutes used, percentage of
total elapsed time used, number of sessions charged,
number of logins, and number of logoffs. This file helps
track line usage, identify bad lines, and find software and
hardware oddities. Hang-up, termination of login (1) and
termination of the login shell each generate logoff records,
so that the number of logoffs is often three to four times
the number of sessions. See init(1M) and utmp(4).

-0 file File is filled with an overall record for the accounting
period, giving starting time, ending time, number of
reboots, and number of date changes.

Acctcon2 expects as input a sequence of login session records and
converts them into total accounting records (see tacct format in
acct(4».

8-System Administration Facilities UNIX Programmer's Manual

ACCTCON(lM) ACCTCON(lM)

EXAMPLES

FILES

These commands are typically used as shown below. The file ctmp
is created only for the use of acctprc(1M) commands:

acctconl -t -llineuse -0 reboots <wtmp I sort +In +2 >ctmp
acctcon2 < ctmp I acctmerg > ctacct

/etc/wtmp

SEE ALSO

BUGS

acct (1 M) , acctcms (1 M), acctmerg (1 M) , acctprc (1 M) ,
acctsh(1M), fwtmp(1M), init(1M), runacct(1M).
acctcom(l), login (1) in the UNIX Programmer's Manual­
Volume 1: Commands and Utilities.
acct(2) , acct(4) , utmp(4) in the UNIX Programmer's Manual­
Volume 2: System Calls and Library Routines.

The line usage report is confused by date changes. Use wtmpfix
(see fwtmp (1 M» to correct this situation.

UNIX Programmer's Manual System Administration Facilities-9

ACCTMERG(lM) ACCTMERG(lM)

NAME
acctmerg - merge or add total accounting files

SYNOPSIS
/usrllib/aect/aectmerg [options] [file] ...

DESCRIPTION
Acctmerg reads its standard input and up to nine additional files,
all in the taeet format (see acct (4» or an ASCII version thereof.
It merges these inputs by adding records whose keys (normally
user ID and name) are identical, and expects the inputs to be
sorted on those keys. Options are:

-a Produce output in ASCII version of taeet.
-i Input files are in· ASCII version of taeet.
-p Print input with no processing.
-t Produce a single record that totals all input.
-u Summarize by user ID, rather than user ID and name.
-v Produce output in verbose ASCII format, with more precise

notation for floating point numbers.

EXAMPLES
Th~ following sequence is useful for making "repairs" to any file
kept in this format:

SEE ALSO

acctmerg -v < file 1 > file2
edit jile2 as desired ...

acctmerg -i < file2 > file 1

acct (1 M), acctcms (1 M), acctcon (1 M), acctprc(1 M), acctsh (1 M) ,
fwtmp(lM), runacct(lM).
acctcom(I) in the UNIX Programmer's Manual-Volume 1:
Commands and Utilities.
acct(2) , acct(4) , utmp(4) in the UNix Programmer's Manual­
Volume 2: System Calls and Library Routines.

lO--System Administration Facilities UNIX Programmer's Manual

ACCTPRC(lM) ACCTPRC(lM)

NAME
acctprc I, acctprc2 - process accounting

SYNOPSIS
lusrIHb/acct/acctprcl [chop]

lusrIHb/acct/acctprc2

DESCRIPTION

FILES

Aeetpre1 reads input in the form described by aeet(4), adds login
names corresponding to user IDs, then writes for each process an
ASCII line giving user ID, login name, prime CPU time (tics) ,
non-prime CPU time (tics), and mean memory size (in memory
segment units). If chop is given, it is expected to contain a list of
login sessions, in the form described in aeeteon (1 M), sorted by
user ID and login name. If this file is not supplied, it obtains login
names from the password file. The information in chop helps it
distinguish among different login names that share the same user
ID.

Aeetpre2 reads records in the form written by aeetprcl, summar­
izes them by user ID and name, then writes the sorted summaries
to the standard output as total accounting records.

These commands are typically used as shown below:

acctprcl ctmp </usr/adm/pacct I acctprc2 >ptacct

/etc/passwd

SEE ALSO

BUGS

acct (I M), acctcms (I M) , acctcon (I M) , acctmerg (I M) ,
acctsh(lM), cron(IM), fwtmp(lM), runacct(IM).
acctcom(1) in the UNIX Programmer's Manual-Volume 1:
Commands and Utilities.
acct(2) , acct(4) , utmp(4) in the UNIX Programmer's Manual­
Volume 2: System Calls and Library Routines.

Although it is possible to distinguish among login names that share
user IDs for commands run normally, it is difficult to do this for
those commands run from eron (1 M), for example. More precise
conversion can be done by faking login sessions on the console via
the aeetwtmp program in aeet (1 M) .

UNIX Programmer's Manual System Administration Facilities-II

ACCTPRC(lM) ACCTPRC(lM)

CAVEAT
A memory segment of the mean memory size is a unit of measure
for the number of bytes in a logical memory segment on a particu­
lar processor.

12-System Administration Facilities UNIX Programmer's Manual

ACCTSH(IM) ACCTSH(IM)

NAME
chargefee, ckpacct, dodisk, lastlogin, monacct, nulladm, prctmp,
prdaily, prtacct, runacct, shutacct, startup, turnacct - shell pro­
cedures for accounting

SYNOPSIS
/usrllib/acct/chargefee login-name number

/usrllib/acct/ckpacct [blocks]

/usrllib/acct/dodisk [-0] [files .. .1
/usr IIib/acct/lastlogin

/usrllib/acct/monacct number

/usr IIib/acct/nuUadm file

/usrllib/acct/prctmp

/usr IIib/acct/prdaily [-11 [-c] [mmdd]

/usrllib/acct/prtacct file ["heading"]

/usrllib/acct/runacct [mmdd] [mmdd state]

/usrllib/acct/shutacct ["reason"]

/usrllib/acct/startup

/usrllib/acct/turnacct on I off I switch

DESCRIPTION
Chargefee can be invoked to charge a number of units to login­
name. A record is written to /usr/adm/fee, to be merged with
other accounting records during the night.

Ckpacct should be initiated via cron(IM). It periodically checks
the size of /usr/adm/pacct. If the size exceeds blocks, 1000 by
default, turnacct will be invoked with argument switch. If the
number of free disk blocks in the /usr file system falls below 500,
ckpacct will automatically turn off the collection of process
accounting records via the off argument to turnacct. When at
least this number of blocks is restored, the accounting will be
activated again. This feature is sensitive to the frequency at which
ckpacct is executed, usually by cron.

Dodisk should be invoked by cron to perform the disk accounting
functions. By default, it will do disk accounting on the special files
in /etc/checklist. If the -0 flag is used, it will do a slower version
of disk accounting by login directory. Files specify the one or
more filesystem names where disk accounting will be done. If files

UNIX Programmer's Manual System Administration Facilities-13

ACCTSH(lM) ACCTSH(lM)

are used, disk accountIng will be done on these filesystems only. If
the -0 flag is used, files should be mount points of mounted
filesystem. If omitted, they should be the special file names of
mountable filesystems.

Lastlogin is invoked by runacct to update
/usr/adm/acct/sum/Ioginlog, which shows the last date on which
each person logged in.

M onacct should be invoked once each month or each accounting
period. Number indicates which month or period it is. If number
is not given, it defaults to the current month (01-12) . This
default is useful if monacct is to executed via cron (I M) on the
first day of each month. Monacct creates summary files in
/usr/adm/acct/fiscal and restarts summary files in
/usr /adm/acct/sum.

Nulladm creates file with mode 664 and insures that owner and
group are adm. It is called by various accounting shell procedures.

Prctmp can be used to print the session record file (normally
/usr/adm/acct/nite/ctmp created by acctconl (see acctcon(IM».

Prdaily is invoked by runacct to format a report of the previous
day's accounting data. The report resides in
/usr/adm/acct/sum/rprtmmdd where mmdd is the month and day
of the report. The current daily accounting reports may be printed
by typing prdaily. Previous days' accounting reports can be
printed by using the mmdd option and specifying the exact report
date desired. The -I flag prints a report of exceptional usage by
login id for the specifed date. Previous daily reports are cleaned
up and therefore inaccessible after each invocation of monacct.
The -c flag prints a report of exceptional resource usage by com­
mand, and may be used on current day's accounting data only.

Prtacct can be used to format and print any total accounting
(tacct) file.

Runacct performs the accumulation of connect, process, fee, and
disk accounting on a daily basis. It also creates summaries of
command usage. For more information, see runacct(I M).

Shutacct should be invoked during a system shutdown (usually in
/etc/shutdown) to turn process accounting off and append a "rea­
son" record to Jetc/wtmp.

Startup should be called by /etc/rc to turn the accounting on
whenever the system is brought up.

14-System Administration Facilities UNIX Programmer's Manual

ACCTSH(lM) ACCTSH(lM)

FILES

Turnacct is an interface to accton (see acct (1 M» to turn process
accounting on or oft". The switch argument turns accounting off,
moves the current lusr/adm/pacct to the next free name in
lusr/adm/pacctincr (where incr is a number starting with 1 and
incrementing by one for each additional pacct file), then turns
accounting back on again. This procedure is called by ckpacct
and thus can be taken care of by the cron and used to keep pacct
to a reasonable size.

lusr/adm/fee
lusr I adm/pacct
lusr I adm/pacct.

accumulator for fees
current file for per-process accounting
used if pacet gets large and during
execution of daily accounting procedure

I etc/wtmp login/logoff summary
lusr/lib/acct/ptelus.awk contains the limits for exceptional

usage by login id
lusr/lib/acct/ptecms.awk contains the limits for exceptional

lusr I adml acct/nite
lusr/lib/acct

lusr/adm/acct/sum

usage by command name
working directory
holds all accounting commands listed in

. sub-class 1 M of this manual
summary directory, should be saved

SEE ALSO
acct (1 M), acetcms (1 M), acctcon (1 M), acetmerg (1 M),
acctprc (1 M), cron (1 M), diskusg (1 M), fwtmp(1 M), runacct (1 M) .
acctcom(l) in the UNIX Programmer's Manual-Volume 1:
Commands and Utilities.
acct(2) , acct(4) , utmp(4) in the UNIX Programmer's Manual­
Volume 2: System Calls and Library Routines.

UNIX Programmer's Manual System Administration Facilities-IS

BCOPY(lM) BCOPY(IM)

NAME
bcopy - interactive block copy

SYNOPSIS
/etclbcopy

DESCRIPTION
Bcopy dates from a time when neither the UNIX system file nor
the disk drives were as reliable as they are now. Bcopy copies
from and to files starting at arbitrary block (512-byte) boundaries.

The following questions are asked:

to: (you name the file or device to be copied to).
offset: (you provide the starting "to" block number).
from: (you name the file or device to be copied from).
offset: (you provide the starting "from" block number).
count: (you reply with the number of blocks to be

copied).

After count is exhausted, the from question is repeated (giving you
a chance to concatenate blocks at the to+offset+count location).
If you answer from with a carriage return, everything starts over.

Two consecutive carriage returns terminate bcopy.

SEE ALSO
cpio(I) , dd(I) in the UNIX Programmer's Manual-Volume 1:
Commands and Utilities.

16-System Administration Facilities UNIX Programmer's Manual

BDBLK(IM) BDBLK(IM)

NAME
bdblk - print, initialize, update or recover bad sector information
on disk packs

SYNOPSIS
/etclbdblk option unit [sector ... 1

DESCRIPTION
Bdblk can be used to print, initialize, update or recover the bad
block information stored on disk that is used by the disk drivers to
implement bad sector replacement.

The bad sector information on 3B20 computer is located in the last
sector of the first cylinder of the disk pack.

Replacement sectors are allocated starting with the first sector
before the bad sector information and working backwards toward
the beginning of the disk. A maximum of 126 bad sectors are sup­
ported. The position of the bad sector in the bad sector table
determines which replacement sector it corresponds to.

The bad sector information structure is as follows:

struct badblk {
int bb_magic; /. bad block information magic # ./
int bb_count; /. number of bad sectors in table ./
daddr bb_blkno11261; /. sector number of bad sector ./

};

Bdblk is invoked by giving an option and the unit number of the
disk drive number. The option is specified by one of the following
letters:

p It reads the bad sector information from the specified
unit and prints out the bad sector information.

It verifies the format of the specified unit and initial­
izes the bad sector information on disk.

u It verifies the format of the specified unit and updates
the bad sector information on disk.

r It maybe invoked by giving a list of bad sectors. It
will then write the supplied information onto the disk.
This option should only be used to restore known bad
sector information which was destroyed.

UNIX Programmer's Manual System Administration Facilities-17

BDBLK(lM) BDBLK(lM)

WARNINGS
After having changed the bad sector information on disk, the disk
should be put out of service to insure the system bad block infor­
mation table for that unit is current.

I8-System Administration Facilities UNIX Programmer's Manual

BRC(lM) BRC(lM)

NAME
brc, bcheckrc, rc, powerfail - system initialization shell scripts

SYNOPSIS
letclbrc

I etclbcheckrc

letc/rc

I etc/powerfail

DESCRIPTION
Except for power/ail, these shell procedures are executed via
entries in letc/inittab by init(IM) when the system is changed out
of SINGLE USER mode. Power/ail is executed whenever a system
power failure is detected.

The brc procedure clears the mounted file system table,
letc/mnttab (see mnttab (4», and loads any programmable micro­
processors with their appropriate scripts.

The bcheckrc procedure performs all the necessary consistency
checks to prepare the system to change into multi-user mode. It
will prompt to set the system date and to check the file systems
with /sck (I M).

The rc procedure starts all system daemons before the terminal
lines are enabled for multi-user mode. In addition, file systems are
mounted and accounting, error logging, system activity logging and
the Remote Job Entry (RJE) system are activated in this pro­
cedure.

The power/ail procedure is invoked when the system detects a
power failure condition. Its chief duty is to reload any programm­
able micro-processors with their appropriate scripts, if suitable. It
also logs the fact that a power failure occurred.

These shell procedures, in particular rc may be used for several
run-level states. The who(I) command may be used to get the
run-level information.

SEE ALSO
fsck(IM), init(IM), shutdown(IM).
who(I) in the UNIX Programmer's Manual-Volume 1: Com­
mandsand Utilities.
inittab(4) , mnttab(4) in the UNIX Programmer's Manual­
Volume 2: System Calls and Library Routines.

UNIX Programmer's Manual System Administration Facilities-19

CHECKALL(lM) CHECKALL(lM)

NAME
checkall - faster file system checking procedure

SYNOPSIS
I etcl checkaH

DESCRIPTION
The checkall procedure is a prototype and must be modified to suit
local conditions. The following will serve as an example:

check the root file system by itself
fsck Idev/dsk/OsO

dual fsck of drives 0 and 1
dfsck Idev/rdsklOs1123451 - Idev/rdsk/lsl

In the above example (where Idev/rdsk/lsl is 320K blocks and
Idev/rdsk/Os1123451 are each 65K or less), a previous sequential
fsck took 19 minutes. The checkall procedure takes 11 minutes.

Dfsck is a program that permits an operator to interact with two
fsck(1M) programs at once. To aid in this, dfsck will print the
file system name for each message to the operator. When answer­
ing a question from dfsck, the operator must prefix the response
with a 1 or a 2 (indicating that the answer refers to the first or
second file system group).

Due to the file system load balancing required for dual checking,
the dfsck command should always be executed through the check­
all shell procedure.

In a practical sense, the file systems are divided as follows:

dfsck file_systems _on_drive _0 - file_systems _on_drive _.1
dfsck file _systems _on _drive _2 - file _systems _on_drive_3

A three-drive system can be handled by this more concrete exam­
ple (assumes two large file systems per drive):

dfsck Idev/dskl3s1 Idev/dsklOs[14] -- Idev/dsklls[14] Idev/dskl3s4

Note that the first file system on drive 3 is first in the filesystemsl
list and is last in the filesystems2 list assuring that references to
that drive will not overlap at execution time.

20-System Administration Facilities UNIX Programmer's Manual

CHECKALL(lM) CHECKALL(lM)

WARNINGS
1. Do not use dfsck to check the root file system.

2. On a check that requires a scratch file (see -t above), be care­
ful not to use the same temporary file for the two groups (this
is sure to scramble the file systems).

3. The dfsck procedure is useful only if the system is set up for
multiple physical 110 buffers.

SEE ALSO
fsck(lM).

UNIX Programmer's Manual System Administration Facilities-21

CHROOT(lM) CHROOT(lM)

NAME
chroot - change root directory for a command

SYNOPSIS
letc/chroot newroot command

DESCRIPTION
The given command is executed relative to the new root. The
meaning of any initial slashes (/) in path names is changed for a
command and any of its children to newroot. Furthermore, the
initial working directory is newroot.

Notice that:

chroot newroot command > x

will create the file x relative to the original root, not the new one.

This command is restricted to the super-user.

The new root path name is always relative to the current root:
even if a chroot is currently in effect, the newroot argument is
relative to the current root of the running process.

SEE ALSO

BUGS

chdir(2) in the UNIX Programmer's Manual-Volume 2: System
Calls and Library Routines.

One should exercise extreme caution when referencing special files
in the new root file system.

22-System Administration Facilities UNIX Programmer's Manual

CLRI(IM) CLRI(IM)

NAME
clri - clear i-node

SYNOPSIS
/ete/elri file-system i-number ...

DESCRIPTION
Clri writes zeros on the 64 bytes occupied by the i-node numbered
i-number. File-system must be a special file name referring to a
device containing a file system. After clri is executed, any blocks·
in the affected file will show up as "missing" in an !sck(IM) of
the file-system. This command should only be used in emergen­
cies and extreme care should be exercised.

Read and write permission is required on the specified file-system
device. The i-node becomes allocatable.

The primary purpose of this routine is to remove a file which for
some reason appears in no directory. If it is used to zap an i-node
which does appear in a directory, care should be taken to track
down the entry and remove it. Otherwise, when the i-node is real­
located to some new file, the old entry will still point to that file.
At that point removing the old entry will destroy the new file. The
new entry will again point to an unallocated i-node, so the whole
cycle is likely to be repeated again and again.

SEE ALSO

BUGS

fsck(IM), fsdb(IM), ncheck(IM).
fs(4) in the UNIX Programmer's Manual-Volume 2: System
Calls and Library Routines.

If the file is open, clri is likely to be ineffective.

UNIX Programmer's Manual System Administration Facilities-23

CON FIG (1M) CON FIG (1M)

NAME
con fig - configure a UNIX system

SYNOPSIS
/etc/config [-n] [-t] [-I file] [-c file] [-m file]
dfile

DESCRIPTION
Config is a program that takes a description of a UNIX system and
g5nerates two files. One file provides information regarding the
interface between the hardware and device handlers. The other
file is a C program defining the configuration tables for the various
devices on the system.

The -n option produces a non-separated I and low.s core image
for some computers (this is for small systems, i.e., PDP11/23 and
11/34).

The -I option specifies the name of the hardware interface file;
low.s is the default name on some small computers; univec.c is the
default name on most larger computers.

The -c option specifies the name of the configuration table file;
conl.c is the default name.

The -m option specifies the name of the file that contains all the
information regarding supported devices; /etc/master is the default
name. This file is supplied with the UNIX system and should not
be modified unless the user fully understands its construction.

The -t option requests a short table of major device numbers for
character and block type devices. This can facilitate the creation
of special files.

The user must supply dfile; it must contain device information for
the user's system. This file is divided into two parts. The first
part contains physical device specifications. The second part con­
tains system-dependent information. Any line with an asterisk (.)
in column 1 is a comment.

In the following, all configurations are assumed to have the follow­
ing devices:

one DLll (for the system console)
one KWII-L line clock or KWII-P programmable clock

with standard interrupt vectors and addresses. These two devices
must not be specified in dfile. Note that the UNIX operating sys­
tem needs only one clock, but can handle both types.

24-System Administration Facilities UNIX Programmer's Manual

CONFIG(IM) CONFIG(lM)

First Part of dfile
Each line contains up to six fields, delimited by blanks and/or tabs
in the following format:

devname vector address bus number nexus

where devname is the name of the device (as it appears in the
fete/master device table), vector is the interrupt vector location
(octal) , address is the device address (octal) , bus is the bus
request level (4 through 7), number is the number (decimal) of
devices associated with the corresponding controller, and nexus is
the nexus number of the UNIBUS ad.apter (VAX-11/780 only)
associated with this device. Number is optional, and if omitted, a
default value which is the maximum value for that controller is
used. Nexus is optional, and if omitted, a default value appropri­
ate for each machine type will be used. If nexus is specified, then
number must be specified as well.

There are certain drivers that may be provided with the system,
that are actually pseudo-device drivers; that is, there is no real
hardware associated with the driver. Drivers of this type are
identified on their respective manual entries. When these devices
are specified in the description file, the interrupt vector, device
address, and bus request level must all be zero.

If the device is a VAX -11 massbus adapter, then vector is the
adapter nexus number, and address must be zero.

Second Part of dfile
The second part contains three different types of lines. Note that
all specifications of this part are required, although their order is
arbitrary.

1. Root/pipe/dump device specification

Three lines of three fields each:

root devname minor
pipe devname minor
dump devname minor

where minor is the minor device number (in octal).

UNIX Programmer's Manual System Administration Facilities-25

CON FIG (1M) CONFIG(lM)

2. Swap device specification

One line that contains five fields as follows:

swap devname minor swplo nswap

where swplo is the lowest disk block (decimal) in the swap area
and nswap is the number of disk blocks (decimal) in the swap
area.

3. Parameter specification

Several lines of two fields each as follows (number is decimal):

buffers
sabufs
i-nodes
files
mounts
coremap
swapmap
calls
procs
maxproc
texts
clists
hashbuf
physbuf
x2Slinks
x2Sbufs
x2Smap
x2Sbytes
iblocks
power
mesg
sema
shmem
maus

EXAMPLE

number
number
number
number
number
number
number
number
number
number
number
number
number
number
number
number
number
number
number
o or 1
o or I
o or 1
o or 1
o or 1

(zero on the VAX-II)

(PDP-II only)

(PDP-ll only)

(VAX-ll only)
(PDP-ll only)

To configure a PDP-1l/70 system with the following devices:
one RP06 disk drive controller with 6 drives
one DHll asynchronous multiplexer with 16 lines (default number)
one DMll modem control with 16 lines (for the DHI 1)
one DHII asynchronous multiplexer with 8 lines
one DMII modem control with 8 lines (for the DHI 1)

26-System Administration Facilities UNIX Programmer's Manual

CONFIG(lM) CON FIG (1M)

one LP11 line printer
one TU16 tape drive controller with 2 drives
one DLll asynchronous interface

Note that the UNIX system only supports DH11 units that require
corresponding DM11 units. It is wise to specify them in DH-DM
pairs to facilitate understanding the configuration. Note also that,
in the preceding case, the DL11 that is specified is in addition to
the DL11 that was part of the initial system. We must also specify
the following parameter information:

root device is an RP06 (drive 0, section 0)
pipe device is an RP06 (drive 0, section 0)
swap device is an RP06 (drive 1, section 4),

with a swplo of 6000 and an nswap of 2000
dump device is a TU16 (drive 0)
number of buffers is 35
number of system addressable buffers is 12
number of processes is 150
maximum number of processes per user ID is 25
number of mounts is 8
number of i-nodes is 120
number of files is 120
number of calls is 30
number of texts is 35
number of character buffers is 150
number of coremap entries is 50
number of swapmap entries is 50
power fail recovery is to be included
messages are to be included
semaphores are to be included
one pseudo device driver for the Operating System Profiler

The actual system configuration would be specified as follows:
rp06 254 776700 5 6
dh11 320 760020 5
dm11 300 770500 4
dh11 330 760060 5 8
dmll 304 770510 4 8
Ip11 200 775514 5
tu16 224 772440 5 2
dill 350 775610 5
pd 0 0 0
root rp06 0

UNIX Programmer's Manual System Administration Facilities-27

CON FIG (1M) CONFIG(IM)

FILES

pipe rp06 0
swap rp06 14 6000 2000
dump tu16 0
• Comments may be inserted in this manner
buffers 35
sabufs 12
procs 150
maxproc 25
mounts 8
i-nodes 120
files 120
calls 30
texts 35
clists 150
coremap 50
swapmap 50
power 1
msg 1
serna 1

/ etc/master
low.s
univec.c

default input master device table
default output hardware interface file for PDP-II
default output hardware interface file for the
VAX-ll

conf.c default output configuration table file

SEE ALSO
sysdef(1 M) .
master(4) in the UNIX Programmer's Manual-Volume 2: Sys­
tem Calls and Library Routines.

DIAGNOSTICS

BUGS

Diagnostics are routed to the standard output and are self­
explanatory.

The -t option does not know about devices that have aliases. For
example, a TE16 (an alias for a TUI6) will show up as a TUI6;
however, the major device numbers are always correct.

28-System Administration Facilities UNIX Programmer's Manual

CPSET(lM) CPSET(lM)

NAME
cpset - install object files in binary directories

SYNOPSIS
cpset [-0) object directory [mode owner group]

DESCRIPTION
Cpset is used to install the specified object file in the given direc­
tory. The mode, owner, and group, of the destination file may be
specified on the command line. If this data is omitted, two results
are possible:

If the user of cpset has administrative permissions (that is,
the user's numerical ID is less than 100), the following
defaults are provided:

mode - 0755

owner - bin

group - bin

If the user is not an administrator, the default, owner, and
group of the destination file will be that of the invoker.

An optional argument of -0 will force cpset to move object to
OLDobject in the destination directory before installing the new
object.

For example:

cpset echo Ibin 0755 bin bin

cpset echo Ibin

cpset echo Ibinl echo

All the examples above have the same effect (assuming the user is
an administrator). The file echo will be copied into /bin and will
be given 0755, bin, bin as the mode, owner, and group, respec­
tively.

Cpset utilizes the file /usr/src/destinations to determine the final
destination of a file. The locations file contains pairs of path
names separated by spaces or tabs. The first name is the "official"
destination (for example: /bin/echo). The second name is the
new destination. For example, if echo is moved from /bin to
/usr/bin, the entry in /usr/src/destinations would be:

Ibin/echo lusr/bin/echo

UNIX Programmer's Manual System Administration Facilities-29

CPSET(lM) CPSET(lM)

When the actual installation happens, cpset verifies that the "old"
path name does not exist. If a file exists at that location, cpset
issues a warning and continues. This file does not exist on a distri­
bution tape; it is used by sites to track local command movement.
The procedures used to build the source will be responsible for
defining the "official" locations of the source.

Cross Generation
The environment variable ROOT will be used to locate the destina­
tion file (in the form $ROOT/usr/src/destinations). This is neces­
sary in the cases where cross generation is being done on a produc­
tion system.

SEE ALSO
instalI(lM), mk(S).
make(1) in the UNIX Programmer's Manual-Volume 1: Com­
mands and Utilities.

30-System Administration Facilities UNIX Programmer's Manual

CRASH (1M) CRASH (1M)

NAME
crash - examine system images

SYNOPSIS
/etc/crash [system] [namelist]

DESCRIPTION
Crash is an interactive utility for examining an operating system
core image. It has facilities for interpreting and formatting the
various control structures in the system and certain miscellaneous
functions that are useful when perusing a dump.

The arguments to crash are the file name where the system image
can be found and a name list file to be used for symbol values.

The default values are /dev/mem and /unix; hence, crash with no
arguments can be used to examine an active system. If a system
image file is given, it is assumed to be a system core dump and the
default process is set to be that of the process running at the time
of the crash. This is determined by a value stored in a fixed loca­
tion by the dump mechanism.

COMMANDS
Input to crash is typically of the form:

command [options] [structures to be printed].
When allowed, options will modify the format of the printout. If
no specific structure elements are specified, all valid entries will be
used. As an example, proc - 12 15 3 would print process table
slots 12, 15, and 3 in a long format, while proc would print the
entire process table in standard format.

In general, those commands that perform I/O with addresses
assume hexadecimal on 32-bit machines and octal on 16-bit
machines.

The current repertory consists of:

user [list of process table entries]
Aliases: uarea, u_area, u.
Print the user structure of the named process as deter­
mined by the information contained in the process table
entry. If no entry number is given, the information from
the last executing process will be printed. Swapped
processes produce an error message.

trace -r [list of process table entries]
Aliases: t -r.
Generate a .kernel stack trace of the current process. The

UNIX Programmer's Manual System Administration Facilities-31

CRASH (1M) CRASH (1M)

trace begins at the saved stack frame pointer in kfp. If no
entry number is given, the information from the last exe­
cuting process will be printed.

kfp [stack frame pointer]
Aliases: r5, fp.
Print the program's idea of the start of the current stack
frame (set initially from a fixed location in the dump) if
no argument is given, or set the frame pointer to the sup­
plied value.

stack [list of process table entries]
Aliases: stk, s, kernel, k.
Format a dump of the kernel stack of a process. The
addresses shown are virtual system data addresses rather
than true physical locations. If no entry number is given,
the information from the last executing process· will be
printed.

proc [-[r]] [list of process table entries]
Aliases: ps, p.
Format the process table. The -r option causes only
runnable processes to be printed. The - alone generates
a longer listing.

pcb [list of process table entries]
Print the process control block of the current process. If
no entry number is given, the information from the last
executing process will be printed.

inode [-] [list of i-node table entries]
Aliases: ino, i.
Format the i-node table. The - option will also print the
i-node data block addresses.

file [list of file table entries]
Aliases: files, f.
Format the file table.

Ick
Aliases: I
Print the active and sleep record lock tables; also verify
the correctness of the record locking linked lists.

32-System Administration Facilities UNIX Programmer's Manual

CRASH (1M) CRASH(lM)

mount [list of mount table entries]
Aliases: mnt, m.
Format the mount table.

text [list of text table entries]
Aliases: txt, x.
Format the text table.

tty [type] [-] [list of tty entries]
Aliases: term

stat

var

Print the tty structures. The type argument determines
which structure will be used (such as tn83, tn74, or tn4 on
the 3B20 computers). No default type is provided. How­
ever, once specified, the last type is remembered. The
option prints the stty (1) parameters for the given line.

Print certain statistics found in the dump. These include
the panic string (if a panic occurred), time of crash, sys­
tem name, and the registers saved in low memory by the
dump mechanism.

Aliases: tunables, tunable, tune, v.
Print the tunable system parameters.

buf [list of buffer headers]
Aliases: hdr, bufhdr.
Format the system buffer headers.

buffer [format] [list of buffers]
Alias: b.
Print the data in a system buffer according to format. If
format is omitted, the previous format is used. Valid for­
mats include decimal, octal, hex, character, byte, directory,
i-node, and write. The last creates a file in the current
directory (see FILES) containing the buffer data.

callout Aliases: calls, call, c, timeout, time, tout.
Print all entries in the callout table.

region [region table number I region table address]
Prints region table. Region table address must be of the
form Ox

preg [proc slot number]
Prints data about a process's pregions.

UNIX Programmer's Manual System Administration Facilities-33

CRASH (1M) CRASH (1M)

map [list of map names]
Format the named system map structures.

om [list of symbols]
Print symbol value and type as found in the name list file.

ts [list of text addresses]
Find the closest text symbols to the given addresses.

ds [list of data addresses]
Find the closest data symbols to the given addresses.

od [symbol name or address] [count] [format]
Aliases: dump, rd.
Dump count data values starting at the symbol value or
address given according to format. Allowable formats are
octal, loogoct, decimal, loogdec, character, hex, or byte.

semalog [n)
Alias: slog.
Print the log of semaphore activity. It is printed in chrono­
logical order. The optional numeric argument is used to
request the n most recent entries. If the argument is
omitted, the entire log is printed.

Escape to shell.

q Exit from crash.

? Print synopsis of commands.

ALIASES
There are built-in aliases for many of the formats as well as those
listed for the commands. Some of them are:

byte b.
character char, c.
decimal dec, e.
directory direct, dir, d.
hexadecimal hexadec, hex, h, x.
i-node ino ,i.
longdec Id, D.
longoct 10, O.
octal oct, o.
write w.

34-System Administration Facilities UNIX Programmer's Manual

CRASH(lM) CRASH (1M)

FILES
/usr/include/sys/ •. h header files for table and structure info
/dev/mem default system image file
/unix default namelist file
buf.# files created containing buffer data

SEE ALSO
mount(lM).

BUGS

nm(1), ps(1), sh(I), stty(I) in the UNIX Programmer's
Manual-Volume 1: Commands and Utilities.

Most flags are abbreviated and will have little meaning to the
uninitiated user. A source listing of the system header files at hand
would be most useful while using crash.

Stack tracing of the current process on a running system and procs
running at the time of a crash do not work.

UNIX Programmer's Manual System Administration Facilities-35

CRON(lM) CRON(lM)

NAME
cron - clock daemon

SYNOPSIS
/etc/croD

DESCRIPTION

FILES

Cron executes commands at specified dates and times. Regularly
scheduled commands can be specified according to instructions
found in crontab files; users can submit their own crontab file via
the crontab command. Commands which are to be executed only
once may be submitted via the at command. Since cron never
exits, it should only be executed once. This is best done by run­
ning cron from the initialization process through the file /etc/rc.

Cron only examines crontab files and at command files during pro­
cess initialization and when a file changes. This reduces the over­
head of checking for new or changed files at regularly scheduled
intervals.

/usr/lib/cron
/usr/lib/cron/log
/usr/spool/cron

main cron directory
accounting information
spool area

SEE ALSO
at(I), crontab(l), sh(I) in the UNIX Programmer's Manual­
Volume 1: Commands and Utilities.

DIAGNOSTICS
A history of all actions taken by cron are recorded in
/usr /Iib/ croD/Iog.

36-System Administration Facilities UNIX Programmer's Manual

DCOPY(lM) DCOPY(lM)

NAME
dcopy - copy file systems for optimal access time

SYNOPSIS
/etc/dcopy [-sX] [-an] [-d] [-v] [-ffsize[:isize11 inputfs
outputfs

DESCRIPTION
Dcopy copies file system inputfs to outputfs. Inputfs is the exist­
ing file system; outputfs is an appropriately sized file system, to
hold the reorganized result. For best results inputfs should be the
raw device and outputfs should be the block device. Dcopy should
be run on unmounted file systems (in the case of the root file sys­
tem, copy to a new pack). With no arguments, dcopy copies files
from inputfs compressing directories by removing vacant entries,
and spacing consecutive blocks in a file by the optimal rotational
gap. The possible options are

-sX supply device information for creating an optimal
organization of blocks in a file. The forms of X are the
same as the ~s option of fsck (1 M).

-an place the files not accessed in n days after the free
blocks of the destination file system (default for n is 7).
If no n is specified then no movement occurs.

-d leave order of directory entries as is (default is to move
sub-directories to the beginning of directories).

-v currently reports how many files were processed, and
how big the source and destination freelists are.

-f/size[:isize]
specify the outpuifs file system and inode list sizes (in
blocks) . If· the option (or :isize) is not given, the
values from the inputfs are used.

Dcopy catches interrupts and quits and reports on its progress. To
terminate dcopy send a quit signal, and dcopy will no longer catch
interrupts or quits.

SEE ALSO
fsck(lM), mkfs(lM).
ps(1) in the UNIX Programmer's Manual-Volume 1: Commands
and Utilities.

UNIX Programmer's Manual System Administration Facilities-37

DEVNM(lM) DEVNM(lM)

NAME
devnm - device name

SYNOPSIS
letc/demm [names]

DESCRIPTION
Devnm identifies the special file associated with the mounted file
system where the argument name resides. (As a special case, both
the block device name and the swap device name are printed for
the argument name I if swapping is done on the same disk section
as the root file system.) Argument names must be full path
names.

This command is most commonly used by letc/rc (see brc(IM»
to construct a mount table entry for the root device.

EXAMPLE

FILES

The command:
letc/devnm lusr

produces
dsklOs 1 lusr

if lusr is mounted on Idev/dsk/Osl.

Idev/dskl*
letc/mnttab

SEE ALSO
brc(lM), setmnt(lM).

38-System Administration Facilities UNIX Programmer's Manual

DF(lM) DF(lM)

NAME
df - report number of free disk blocks

SYNOPSIS
df [-t] [-f] [file-systems]

DESCRIPTION

FILES

Df prints out the number of free blocks and free i-nodes available
for on-line file systems by examining the counts kept in the super­
blocks; file-systems may be specified either by device name (e.g.,
Idev/dsk/Ost) or by mounted directory name (e.g., lusr). If the
file-systems argument is unspecified, the free space on all of the
mounted file systems is printed.

The -t flag causes the total allocated block figures to be reported
as well.

If the -f flag is given, only an actual count of the blocks in the
free list is made (free i-nodes are not reported). With this option,
dJwill report on raw devices.

Idev/dsk/*
letc/mnttab

SEE ALSO
f8(4) , mnttab(4) in the UNIX Programmer's Manual-Volume 2:
System Calls and Library Routines.

UNIX Programmer's Manual System Administration Facilities-39

DISKUSG(IM) DISKUSG (1M)

NAME
diskusg - generate disk accounting data by user ID

SYNOPSIS
diskusg [options] [files]

DESCRIPTION
Diskusg generates intermediate disk accounting information from
data in files, or the standard input if omitted. Diskusg output
lines on the standard output, one per user, in the following format:

where

uid -

login -

#blocks -

uid login #blocks

the numerical user ID of the user.

the login name of the user; and

the total number of disk blocks allocated to this user.

Diskusg normally reads only the i-nodes of file systems for disk
accounting. In this case, files are the special filenames of these
devices.

Diskusg recognizes the following options:

-s

-v

-ifnmlist

-pfile

-ufile

the input data is already in diskusg output format.
Diskusg combines all lines for a single user into a
single line.

verbose. Print a list on standard error of all files
that are charged to no one.

ignore the data on those file systems whose file sys­
tem name is in fnmlist. Fnmlist is a list of file sys­
tem names separated by commas or enclose within
quotes. Diskusg compares each name in this list
with the file system name stored in the volume ID.

use file as the name of the password file to generate
login names. /etc/passwd is used by default.

write records to file of files that are charged to no
one. Records consist of the special file name, the i­
node number, and the user ID.

40-System Administration Facilities UNIX Programmer's Manual

DISKUSG(lM) DISKUSG(lM)

The output of diskusg is normally the input to
acctdisk (see acct (1M» which generates total
accounting records that can be merged with other
accounting records. Diskusg is normally run in
dodisk (see acctsh (1 M».

EXAMPLES

FILES

The following will generate daily disk accounting information:

for i in Idev/rpOO Idev/rpOl Idev/rplO Idev/rpl1; do
diskusg $i > dtmp. 'basename $i' &

done
wait
diskusg -s dtmp. * I sort +On + 1 I acctdisk > disktacct

I etc/passwd used for user ID to login name conversions

SEE ALSO
acct(lM), acctsh(lM).
acct (4) in the UNIX Programmer's M anual-Volume 2: System
Calls and Library Routines.

UNIX Programmer's Manual System Administration Facilities-41

ERRDEAD(lM) ERRDEAD(lM)

NAME
errdead - extract error records from dump

SYNOPSIS
letc/errdead dumpfile [namelist]

DESCRIPTION

FILES

When hardware errors are detected by the system, an error record
that contains information pertinent to the error is generated. If
the error-logging daemon errdemon (I M) is not active or if the
system crashes before the record can be placed in the error file, the
error information is held by the system in a local buffer. Errdead
examines a system dump (or memory), extracts such error records,
and passes them to errpt (I M) for analysis.

The dumpfile specifies the file (or memory) that is to be examined.
The system namelist is specified by name list ; if not given, lunix is
used.

lunix
lusr Ibinl errpt
lusr/tmpl errXXXXXX

system namelist
analysis program
temporary file

DIAGNOSTICS
Diagnostics may come from either errdead or errpt. In either
case, they are intended to be self-explanatory.

SEE ALSO
errdemon (1 M), errpt (1 M) .

42-System Administration Facilities UNIX Programmer's Manual

ERRDEMON(lM) ERRDEMON(lM)

NAME
errdemon - error-logging daemon

SYNOPSIS
/usrlIib/errdemon [file]

DESCRIPTION

FILES

The error logging daemon errdemon collects error records from
the operating system by reading the special file /del/error and
places them in file. If file is not specified when the daemon is
activated, /usr/adm/errfile is used. Note that file is created if it
does not exist; otherwise, error records are appended to it, so that
no previous error data is lost. No analysis of the error records is
done by errdemon; that responsibility is left to errpt(1M). The
error-logging daemon is terminated by sending it a software kill
signal (see kill(l». Only the super-user may start the daemon,
and only one daemon may be active at any time.

I dev I error source of error records
lusr/adm/errfile repository for error records

DIAGNOSTICS
The diagnostics produced by errdemon are intended to be self­
explanatory.

SEE ALSO
errpt (1 M), errstop (1 M), err (7) .
kilH}) in the UNIX Programmer's Manual-Volume 1: Com­
mands and Utilities.

UNIX Programmer's Manual System Administration Facilities-43

ERRPT(lM) ERRPT(lM)

NAME
errpt - process a report of logged errors

SYNOPSIS
errpt [options] [files]

DESCRIPTION
Errpt processes data collected by the error logging mechanism
{errdemon (1 M» and generates a report of that data. The default
report is a summary of all errors posted in the files named.
Options apply to all files and are described below. If no files are
specified, errpt attempts to use lusr/adm/errfi.le as file.

A summary report notes the options that may limit its complete­
ness, records the time stamped on the earliest and latest errors
encountered, and gives the total number of errors of one or more
types. Each device summary contains the total number of
unrecovered errors, recovered errors, errors unable to be logged,
I/O operations on the device, and miscellaneous activities that
occurred on the device. The number of times that errpt has
difficulty reading input data is included as read errors.

Any detailed report contains, in addition to specific error informa­
tion, all instances of the error logging process being started and
stopped, and any time changes {via date (1» that took place dur­
ing the interval being processed. A summary of each error type
included in the report is appended to a detailed report.

A report may be limited to certain records in the following ways:

-s date Ignore all records posted earlier than date,
where date has the form mmddhhmmyy, con­
sistent in meaning with the date (1) command.

-e date

-a

Ignore all records posted later than date, whose
form is as described above.

Produce a detailed report that includes all error
types.

-d devlist A detailed report is limited to data about dev­
ices given in devlist, where devlist can be one of
two forms: it list of device identifiers separated
from one another by a comma, or a list of dev­
ice identifiers enclosed in double quotes and
separated from one another by a comma and/or
more spaces. Errpt is familiar with the com­
mon form of identifiers. For the 3B20 computer

44-System Administration Facilities UNIX Programmer's Manual

ERRPT(lM) ERRPT(lM)

-p n

-f

FILES
lusr I adml errfile

the devices for which errors are logged are DFC,
lOP, and MT. For Digital Equipment Corpora­
tion machines, the (block) devices for which
errors are logged are RP03, RP04, RP05, RP06,
RP07, RS03, RS04, TSll, TUIO, TU16, TU78,
RK05, RK06, RK07, RM05, RM80, and RFll.
Additional identifiers are iot and mem which
include detailed reports of stray-interrupt and
memory-parity type errors, respectively.

Limit the size of a detailed report to n pages.

In a detailed report, limit the reporting of block
device errors to unrecovered errors.

default error file

SEE ALSO
errdead (1 M), errdemon (1 M) .
date(1) in the UNIX Programmer's Manual-Volume 1: Com­
mands and Utilities.
errfile(4) in the UNIX Programmer's Manual- Volume 2: System
Calls and Library Routines.

UNIX Programmer's Manual System Administration Facilities-45

ERRSTOP(IM) ERRSTOP(IM)

NAME
errstop - terminate the error';logging daemon

SYNOPSIS
I etcl errstop [namelist]

DESCRIPTION

FILES

The error-logging daemon errdemon (I M) is terminated by using
errstop. This is accomplished by executiing ps (1) to determine
the daemon's identity and then sending it a software kill signal
(see signal (2)); lunix is used· as the system namelist if none is
specified. Only the super-user may use errstop.

lunix default system namelist

DIAGNOSTICS
The diagnostics produced by errstop are intended to be self­
explanatory.

SEE ALSO
errdemon (1 M).
ps(I) in the UNIX Programmer's Manual-Volume 1: Commands
and Utilities.
kill(2), signaI(2) in the UNIX Programmer's Manual-Volume 2:
System Calls and Library Routines.

46-System Administration Facilities UNIX Programmer's Manual

FF(lM) FF(lM)

NAME
ff - list file names and statistics for a file system

SYNOPSIS
/ete/ff [options] special

DESCRIPTION
FI reads the i-list and directories of the special file, assuming it to
be a file system, saving i-node data for files which match the selec­
tion criteria. Output consists of the path name for each saved i­
node, plus any other file information requested using the print
options below. Output fields are positional. The output is pro­
duced in i-node order; fields are separated by tabs. The default
line produced by II is:

path-name i-number

With all options enabled, output fields would be:

path-name i-number size uid

The argument n in the option descriptions that follow is used as a
decimal integer (optionally signed), where +n means more than n,
-n means less than n, and n means exactly n. A day is defined
as a 24 hour period.

-I

-I

-p prefix

-s

-u

-an

-mn

-en

-nfile

Do not print the i-node number after each path
name.

Generate a supplementary list of all path names for
multiply linked files.

The specified prefix will be added to each gen­
erated path name. The default is •

Print the file size, in bytes, after each path name.

Print the owner's login name after each path name.

Select if the i-node has been accessed in n days.

Select if the i-node has been modified in n days.

Select if the i-node has been changed in n days.

Select if the i-node has been modified more recently
than the argument file.

-i i-node-list Generate names for only those i-nodes specified in
i-node-list.

UNIX Programmer's Manual System Administration Facilities-47

FF(1M) FF(1M)

EXAMPLES
To generate a list of the names of all files on a specified file sys­
tem:

ff -I I dev I diskroot

To produce an index of files and i-numbers which are on a file sys­
tem and have been modified in the last 24 hours:

ff -m -1 Idev/diskusr. > /log/incbackup/usr/tuesday

To obtain the path names for i-nodes 451 and 76 on a specified file
system:

ff -i 451,76 Idev/rdsk/Os7

SEE ALSO

BUGS

finc(IM), find(l), frec(IM), ncheck(IM).

Only a single path name out of any possible ones will be generated
for a multiply linked i-node, unless the -I option is specified.
When -I is specified, no selection criteria apply to the names gen­
erated. All possible names for every linked file on the file system
will be included in the output.

On very large file systems, memory may run out before II does.

48-System Administration Facilities UNIX Programmer's Manual

FILESAVE(lM) FILESAVE(lM)

NAME
filesave, tapesave - daily/weekly UNIX system file system backup

SYNOPSIS
letc/filesave. ?
I etc/tapesave

DESCRIPTION
These shell scripts are provided as models. They are designed to
provide a simple, interactive operator environment for file backup.
Filesave.? is for daily disk-to-disk backup and tapesave is for
weekly disk-to-tape.

The suffix .? can be used to name another system where two (or
more) machines share disk drives (or tape drives) and one or the
other of the systems is used to perform backup on both.

SEE ALSO
shutdown (1 M), volcopy (1 M).

UNIX Programmer's Manual System Administration Facilities-49

I

FINC(1M) FINC(1M)

NAME
finc - fast incremental backup

SYNOPSIS
fine [selection-criteria] file-system raw-tape

DESCRIPTION
Finc selectively copies the input file-system to the output raw-tape
. The cautious will want to mount the input file-system read-only
to insure an accurate backup, although acceptable results can be
obtained in read-write mode. The tape must be previously labelled
by labelit (see volcopy (I M». The selection is controlled by the
selection-criteria, accepting only those i-nodes/files for whom the
conditions are true.

It is recommended that production of a finc tape be preceded by
the ff command, and the output of ff be saved as an index of the
tape's contents. Files on a finc tape may be recovered with the
frec command.

The argument n in the selection-criteria which follow is used as a
decimal integer (optionally signed), where +n means more than n,
-n means less than n, and n means exactly n. A day is defined as
a 24 hours.

-a n

-mn

-en

-nfile

EXAMPLES

True if the file has been accessed in n days.

True if the file has been modified in n days.

True if the i-node has been changed in n days.

True for any file which has been modified more
recently than the argument file.

To write a tape consisting of all files from file-system lusr modified
in the last 48 hours:

finc -m -2 /dev/rdiskusr /dev/rmt/Om

SEE ALSO
ff(IM), frec(IM), volcopy(IM).
cpio(I) in the UNIX Programmer's Manual-Volume 1: Com­
mands and Utilities.

50-System Administration Facilities UNIX Programmer's Manual

FREC(lM) FREC(lM)

NAME
frec - recover files from a backup tape

SYNOPSIS
jete/free [-p path] [-f reqfile] raw-tape i-number:name •••

DESCRIPTION
Free recovers files from the specified raw-tape backup tape written
by voleopy(1M) or jine(1M), given their i-numbers. The data for
each recovery request will be written into the file given by name.

The -p option allows you to specify a default prefixing path
different from your current working directory. This will be
prefixed to any names that are not fully qualified, i.e., that do not
begin with / or.l. If any directories are missing in the paths of
recovery names they will be created.

-p path Specifies a prefixing path to be used to fully
qualify any names that do not start with / or .I.

-f reqfile Specifies a file which contains recovery requests.
The format is i-number:newname, one per line.

EXAMPLES
To recover a file, i-number 1216 when backed-up, into a file
named junk in your current working directory:

frec Idev/rmt/Om 1216:junk

To recover files with i-numbers 14156, 1232, and 3141 into files
/usrlsre/emd/a, /usr/sre/emdlb and /usr/joe/a.e:

frec -p lusrlsrc/cmd Idev/rmt/Om 14156:a 1232:b
3141 :/usr/joe/a.c

SEE ALSO

BUGS

ff(IM), finc(IM), volcopy(IM).
cpio(1) in the UNIX Programmer's Manual-Volume 1: Com­
mands and Utilities.

While paving a path (i.e., creating the intermediate directories
contained in a path name) free can only recover i-node fields for
those directories contained on the tape and requested for recovery.

UNIX Programmer's Manual System Administration Facilities-51

I

FSCK(lM) FSCK(IM)

NAME
fsck, dfsck - file system consistency check and interactive repair

SYNOPSIS
letc/fsck [-y] [-n] [-sX] [-SX] [-t file] [-q] [-n] [-f)
[file-systems]

letc/dfsck [optionsl] filsysl ..• - [options2] filsys2 ...

DESCRIPTION
Fsck

Fsck audits and interactively repairs inconsistent conditions for
UNIX system files. If the file system is consistent then the number
of files, number of blocks used, and number of blocks free are
reported. If the file system is inconsistent the operator is prompted
for concurrence before each correction is attempted. It should be
noted that most corrective actions will result in some loss of data.
The amount and severity of data lost may be determined from the
diagnostic output. The default action for each consistency correc­
tion is to wait for the operator to respond yes or no. If the opera­
tor does not have write permission fsck will default to a -n
action.

Fsck has more consistency checks than its predecessors check,
dcheck, fcheck, and icheck combined.

The following options are interpreted by fsck.

-y Assume a yes response to all questions asked by fsck.

-n Assume a no response to all questions asked by fsck; do not
open the file system for writing.

-sX Ignore the actual free list and (unconditionally) reconstruct
a new one by rewriting the super-block of the file system.
The file system should be unmounted while this is done; if
this is not possible, care should be taken that the system is
qUiescent and that it is rebooted immediately afterwards.
This precaution is necessary so that the old, bad, in-core
copy of the superblock will not continue to be used, or writ­
ten on the file system.

The -sX option allows for creating an optimal free-list
organization. The following forms of X are supported for
the following devices:

52-System Administration Facilities UNIX Programmer's Manual

FSCK(IM) FSCK(IM)

-s3 (RP03)
-s4 (RP04, RP05, RP06)
-sBlocks-per-cylinder:Blocks-to-skip (for anything else)

If X is not given, the values used when the file system was
created are used. If these values were not specified, then
the value 400:7 is used.

-8X Conditionally reconstruct the free list. This option is like
-sX above except that the free list is rebuilt only if there
were no discrepancies discovered in the file system. Using
-8 will force a no response to all questions asked by fsck.
This option is useful for forcing free list reorganization on
uncontaminated file systems.

-t If fsck cannot obtain enough memory to keep its tables, it
uses a scratch file. If the -t option is specified, the file
named in the next argument is used as the scratch file, if
needed. Without the -t flag, fsck will prompt the operator
for the name of the scratch file. The file chosen should not
be on the file system being checked, and if it is not a special
file or did not already exist, it is removed when fsck com­
pletes.

-q Quiet fsck. Do not print size-check messages in Phase I.
Un referenced fifos will silently be removed. If fsck requires
it, counts in the superblock will be automatically fixed and
the free list salvaged.

- D Directories are checked for bad blocks. Useful after system
crashes.

-f Fast check. Check block and sizes (Phase 1) and check the
free list (Phase 5) . The free list will be reconstructed
(Phase 6) if it is necessary.

If no file-systems are specified, fsck will read a list of default file
systems from the file letc/checklist.

Inconsistencies checked are as follows:
I. Blocks claimed by more than one i-node or the free

list.
2. Blocks claimed by an i-node or the free list outside

the range of the file system.
3. Incorrect link counts.
4. Size checks:

UNIX Programmer's Manual System Administration Facilities-53

FSCK(lM) FSCK(lM)

Incorrect number of blocks.
Directory size not 16-byte aligned.

5. Bad i-node format.
6. Blocks not accounted for anywhere.
7. Directory checks:

File pointing to unallocated i-node.
I -node number out of range.

8. Super Block checks:
More than 65536 i-nodes.
More blocks for i-nodes than there are in
the file system.

9. Bad free block list format.
10. Total free block and/or free i-node count incorrect.

Orphaned files and directories {allocated but unreferenced} are,
with the operator's concurrence, reconnected by placing them in
the lost +found directory, if the files are nonempty. The user will
be notified if the file or directory is empty or not. If it is empty,
fsck will silently remove them. Fsck will force the reconnection of
non empty directories. The name assigned is the i-node number.
The only restriction is that the directory lost +found must preexist
in the root of the file system being checked and must have empty
slots in which entries can be made. This is accomplished by mak­
ing lost +found, copying a number of files to the directory, and
then removing them {before fsck is executed}.

Checking the raw device is almost always faster and should be
used with everything but the root file system.

Dfsck
Dfsck allows two file system checks on two different drives simul­
taneously. options1 and options2 are used to pass options to fsck
for the two sets of file systems. A - is the separator between the
file system groups.

The dfsck program permits an operator to interact with two
fsck (1 M) programs at once. To aid in this, dfsck will print the
file system name for each message to the operator. When answer­
ing a question from dfsck, the operator must prefix the response
with a 1 or a 2 (indicating that the answer refers to the first or
second file system group).

Do not use dfsck. to check the root file system.

54-System Administration Facilities UNIX Programmer's Manual

FSCK(lM) FSCK(lM)

FILES
/ etc/checklist

/ etc/ checkall

contains default list of file systems to
check.
optimizing dfsck shell file.

SEE ALSO

BUGS

checkall (1 M), clri (1 M), ncheck (1 M) .
checklist(4), fs(4) in the UNIX Programmer's Manual-Volume 2:
System Calls and Library Routines.

I -node numbers for • and •• in each directory should be checked
for validity.

DIAGNOSTICS
The diagnostics produced by fsck are intended to be self­
explanatory.

UNIX Programmer's Manual System Administration Facilities-55

FSDB(IM) FSDB(IM)

NAME
fsdb - file system debugger

SYNOPSIS
letc/fsdb special [-]

DESCRIPTION
Fsdb can be used to patch up a damaged file system after a crash.
It has conversions to translate block and i-numbers into their
corresponding disk addresses. Also included are mnemonic offsets
to access different parts of an i-node. These greatly simplify the
process of correcting control block entries or descending the file
system tree.

Fsdb contains several error-checking routines to verify i-node and
block addresses. These can be disabled if necessary by invoking
fsdb with the optional - argument or by the use of the 0 symbol.
(Fsdb reads the i-size and f-size entries from the superblock of the
file system as the basis for these checks.)

Numbers are considered decimal by default. Octal numbers must
be prefixed with a zero. During any assignment operation,
numbers are checked for a possible truncation error due to a size
mismatch between source and destination.

Fsdb reads a block at a time and will therefore work with raw as
well as block I/O. A buffer management routine is used to retain
commonly used blocks of data in order to reduce the number of
read system calls. All assignment operations result in an immedi­
ate write-through of the corresponding block.

The symbols recognized by fsdb are:
absolute address
i convert from i-numberto i-node address
b convert to block address
d directory slot offset
+ , - address arithmetic
q quit
> , < save, restore an address
= numerical assignment
= + incremental assignment
= - decremental assignment
= " character string assignment
o error checking flip flop
p general print facilities

56-System Administration Facilities UNIX Programmer's Manual

FSDB(lM)

f
B
W
D

file print facility
byte mode
word mode
double word mode
esca pe to shell

FSDB(IM)

The print facilities generate a formatted output in various styles.
The current address is normalized to an appropriate boundary
before printing begins. It advances with the printing and is left at
the address of the last item printed. The output can be terminated
at any time by typing the delete character. If a number follows
the p symbol, that many entries are printed. A check is made to
detect block boundary overflows since logically sequential blocks
are generally not physically sequential. If a count of zero is used,
all entries to the end of the current block are printed. The print
options available are:

d
o
e
c
b

print as i-nodes
print as directories
print as octal words
print as decimal words
print as characters
print as octal bytes

The f symbol is used to print data blocks associated with the
current i-node. If followed by a number, that block of the file is
printed. (Blocks are numbered from zero.) The desired print
option letter follows the block number, if present, or the f symbol.
This print facility works for small as well as large files. It checks
for special devices and that the block pointers used to find the data
are not zero.

Dots, tabs, and spaces may be used as function delimiters but are
not necessary. A line with just a new-line character will increment
the current address by the size of the data type last printed. That
is, the address is set to the next byte, word, double word, directory
entry or i-node, allowing the user to step through a region of a file
system. Information is printed in a format appropriate to the data
type. Bytes, words and double words are displayed with the octal
address followed by the value in octal and decimal. A.B or .D is
appended to the address for byte and double word values, respec­
tively. Directories are printed as a directory slot offset followed by
the decimal i-number and the character representation of the entry
name. I-nodes are printed with labeled fields describing each ele­
ment.

UNIX Programmer's Manual System Administration Facilities-57

FSDB(lM) FSDB(lM)

The following mnemonics are used for i-node examination and
refer to the current working i-node:

md mode
In link count

EXAMPLES
386i

In=4

In=+l

fc

2i.fd

d5i.fc

uid
gid
sz
a#
at
mt
maj
min

512B.pOo

2i.aOb.d7=3

d7.nm="name"

a2b.pOd

user ID number
group ID number
file size
data block numbers (0 - 12)
access time
modification time
major device number
minor device number

prints i-number 386 in an i-node format. This
now becomes the current working i-node.

changes the link count for the working i-node to
4.

increments the link count by 1.

prints, in ASCII, block zero of the file associated
with the working i-node.

prints the first 32 directory entries for the root
i-node of this file system.

changes the current i-node to that associated
with the 5th directory entry (numbered from
zero) found from the above command. The first
logical block of the file is then printed in ASCII.

prints the superblock of this file system in octal.

changes the i-number for the seventh directory
slot in the root directory to 3. This example
also shows how several operations can be com­
bined on one command line.

changes the name field in the directory slot to
the given string. Quotes are optional when used
with nm if the first character is alphabetic.

prints the third block of the current i-node as
directory entries.

58-System Administration Facilities UNIX Programmer's Manual

FSDB(1M)

SEE ALSO
fsck(lM).

FSDB(lM)

dir(4) , fs(4) in the UNIX Programmer's Manual-Volume 2:
System Calls and Library Routines.

UNIX Programmer's Manual System Administration Facilities-59

FUSER(JM) FUSER(lM)

NAME
fuser - identify processes using a file or file structure

SYNOPSIS
/ etc/fuser [- ku] files [-] [[- ku] files]

DESCRIPTION
Fuser lists the process IDs of the processes using the files specified
as arguments. For block special devices, all processes using any
file on that device are listed. The process ID is followed by c, p or
r if the process is using the file as its current directory, the parent
of its current directory (only when in use by the system), or its
root directory, respectively. If the -u option is specified, the login
name, in parentheses, also follows the process ID. In addition, if
the - k option is specified, the SIGKILL signal is sent to each pro­
cess. Only the super-user can terminate another user's process
(see kill (2». Options may be respecified between groups of files.
The new set of options replaces the old set, with a lone dash can­
celing any options currently in force.

The process IDs are printed as a single line on the standard output,
separated by spaces and terminated with a single new line. All
other output is written on standard error.

EXAMPLES

FILES

fuser -ku /dev/dsk/ls?
will terminate all processes that are preventing disk drive
one from being unmounted if typed by the super-user, list­
ing the process ID and login name of each as it is killed.

fuser -u / etc/ passwd
will list process IDs and login names of processes that have
the password file open.

fuser -ku /dev/dsk/ls? -u /etc/passwd
will do both of the above examples in a single command
line.

/unix
/dev/kmem
/dev/mem

for namelist
for system image
also for system image

60-System Administration Facilities UNIX Programmer's Manual

FUSER(lM)

SEE ALSO
mount(lM).

FUSER(lM)

ps(1) in the UNIX Programmer's Manual- Volume 1: Commands
and Utilities.
kill(2), signa1(2) in the UNIX Programmer's Manual-Volume 2:
System Calls and Library Routines.

UNIX Programmer's Manual System Administration Facilities-61

FWTMP(lM) FWTMP(lM)

NAME
fwtmp, wtmpfix - manipulate connect accounting records

SYNOPSIS
/usrlIib/acct/fwtmp [-ic]
/usr IIib/acct/wtmpfix [files]

DESCRIPTION
Fwtmp

Fwtmp reads from the standard input and writes to the standard
output, converting binary records of the type found in wtmp to for­
matted ASCII records. The ASCII version is useful to enable edit­
ing, via ed(I), bad records or general purpose maintenance of the
file.

The argument -ic is used to denote that input is in ASCII form,
and output is to be written in binary form.

Wtmpfix

FILES

Wtmpfix examines the standard input or named files in wtmp for­
mat, corrects the time/date stamps to make the entries consistent,
and writes to the standard output. A - can be used in place of
files to indicate the standard input. If time/date corrections are
not performed, acctconl will fault when it encounters certain
date-change records.

Each time the date is set, a pair of date change records are written
to /etc/wtmp. The first record is the old date denoted by the
string old time placed in the line field and the flag OLD_TIME
placed in the type field of the < utmp.h> structure. The second
record specifies the new date and is denoted by the string new time
placed in the line field and the flag NEW_TIME placed in the type
field. Wtmpfix uses these records to synchronize all time stamps
in the file.

In addition to correcting time/date stamps, wtmpfix will check the
validity of the name field to ensure that it consists solely of
alphanumeric characters or spaces. If it encounters a name that is
considered invalid, it will change the login name to INVALID and
write a diagnostic to the standard error. In this way, wtmpfix
reduces the chance that acctconl will fail when processing connect
accounting records.

/etc/wtmp
/usr linclude/utmp.h

62-System Administration Facilities UNIX Programmer's Manual

FWTMP(lM) FWTMP(lM)

SEE ALSO
acct (1 M) , acctcms (1 M) , acctcon (1 M), acctmerg (1 M),
acctprc (1 M), acctsh (1 M), runacct (1 M) .
acctcom(I), ed(I) in the UNIX Programmer's Manual-Volume 1:
Commands and Utilities.
acct(2) , acct(4) , utmp(4) in the UNIX Programmer's Manual­
Volume 2: System Calls and Library Routines.

UNIX Programmer's Manual System Administration Facilities-63

GETTY(IM) GETTY (1M)

NAME
getty - set terminal type, modes, speed, and line discipline

SYNOPSIS
letc/getty [-h] [-t timeout] line [speed [type [linedisc
]]]

I etcl getty - c file

DESCRIPTION
Getty is a program that is invoked by init (1 M) . It is the second
process in the series, (init-getty-Iogin-shell) that ultimately con­
nects a user with the UNIX system. Initially getty prints the login
message field for the entry it is using from letc/gettydefs. Getty
reads the user's login name and invokes the login (1) command
with the user's name as argument. While reading the name, getty
attempts to adapt the system to the speed and type of terminal
being used.

Line is the name of a tty line in Idev to which getty is to attach
itself. Getty uses this string as the name of a file in the Idev direc­
tory to open for reading and writing. Unless getty is invoked with
the -h flag, getty will force a hangup on the line by setting the
speed to zero before setting the speed to the default or specified
speed. The -t flag plus timeout in seconds, specifies that getty
should exit if the open on the line succeeds and no one types any­
thing in the specified number of seconds. The optional second
argument, speed, is a label to a speed and tty definition in the file
letc/gettydefs. This definition tells getty at what speed to initially
run, what the login message should look like, what the initial tty
settings are, and what speed to try next should the user indicate
that the speed is inappropriate (by typing a <break> character).
The default speed is 300 baud. The optional third argument, type,
is a character string describing to getty what type of terminal is
connected to the line in question. Getty understands the following
types:

none
vt61
vt100
hp45
cl00

default
DEC vt61
DEC vt100
Hewlett-Packard 45
Concept 100

The default terminal is none; i.e., any crt or normal terminal unk­
nown to the system. Also, for terminal type to have any meaning,
the virtual terminal handlers must be compiled into the operating

64-System Administration Facilities UNIX Programmer's Manual

GETTY (1M) GETTY (1M)

FILES

system. They are available, but not compiled in the default condi­
tion. The optional fourth argument, linedise, is a character string
describing which line discipline to use in communicating with the
terminal. Again the hooks for line disciplines are available in the
operating system but there is only one presently available, the
default line discipline, LDISCO.

When given no optional arguments, getty sets the speed of the
interface to 300 baud, specifies that raw mode is to be used
(awaken on every character), that echo is to be suppressed, either
parity allowed, new-line characters will be converted to carriage
return-line feed, and tab expansion performed on the standard out­
put. It types the login message before reading the user's name a
character at a time. If a null character (or framing error) is
received, it is assumed to be the result of the user pushing the
"break" key. This will cause getty to attempt the next speed in
the series. The series that getty tries is determined by what it
finds in /etc/gettydefs.

The user's name is terminated by a new-line or carriage-return
character. The latter results in the system being set to treat car­
riage returns appropriately (see ioetl (2».

The user's name is scanned to see if it contains any lower-case
alphabetic characters; if not, and if the name is non-empty, the
system is told to map any future upper-case characters into the
corresponding lower-case characters.

Finally, login is called with the user's name as an argument.
Additional arguments may be typed after the login name. These
are passed to login, which will place them in the environment (see
login (I».
A check option is provided. When getty is invoked with the -c
option and file, it scans the file as if it were scanning
/etc/gettydefs and prints out the results to the standard output. If
there are any unrecognized modes or improperly constructed
entries, it reports these. If the entries are correct, it prints out the
values of the various flags. See ioet[(2) to interpret the values.
Note that some values are added to the flags automatically.

/ etc/ gettydefs
/etc/issue

UNIX Programmer's Manual System Administration Facilities-65

GETTY(IM) GETTY(lM)

SEE ALSO

BUGS

init(IM), tty(7).
ct(IC), login(I) in the UNIX Programmer's Manual-Volume 1:
Commands and Utilities.
ioctI(2), gettydefs(4), inittab(4) in the UNIX Programmer's
Manual-Volume 2: System Calls and Library Routines.

While getty does understand simple single character quoting con­
ventions, it is not possible to quote the special control characters
that getty uses to determine when the end of the line has been
reached, which protocol is being used, and what the erase charac­
ter is. Therefore it is not possible to login via getty and type a #,
@, /, !, ~ backspace, AU, AD, or & as part of your login name or
arguments. They will always be interpreted as having their special
meaning as described above.

66-System Administration Facilities UNIX Programmer's Manual

INIT(tM) INIT(lM)

NAME
init, telinit - process control initialization

SYNOPSIS
letc/init [0123456SsQq]

letc/telinit [0123456sSQqabc]

DESCRIPTION
Init

[nit is a general process spawner. Its primary role is to create
processes from a script stored in the file letc/inittab (see init­
tab (4». This file usually has init spawn getty's on each line that
a user may log in on. It also controls autonomous processes
required by any particular system.

[nit considers the system to be in a run-level at any given time. A
run-level can be viewed as a software configuration of the system
where each configuration allows only a selected group of processes
to exist. The processes spawned by init for each of these run­
levels is defined in the inittab file. [nit can be in one of eight
run-levels, 0 -6 and S or s. The run-level is changed by having a
privileged user run letc/init (which is linked to letc/telinit). This
user-spawned in it sends appropriate signals to the orginal init
spawned by the operating system when the system was rebooted,
telling it which run-level to change to.

[nit is invoked inside the UNIX system as the last step in the boot
procedure. The first thing init does is to look for letc/inittab and
see if there is an entry of the type initdefault (see inittab (4». If
there is, init uses the run-level specified in that entry as the initial
run-level to enter. If this entry is not in inittab or inittab is not
found, init requests that the user enter a run-level from the virtual
system console, Idev/syscon. If an S (s) is entered, init goes into
the SINGLE USER level. This is the only run-level that doesn't
require the existence of a properly formatted inittab file. If
letc/inittab doesn't exist, then by default the only legal run-level
that init can enter is the SINGLE USER level. In the SINGLE
USER level the virtual console terminal Idev/syscon is opened for
reading and writing and the command Ibin/su is invoked immedi­
ately. To exit from the SINGLE USER run-level one of two
options can be elected. First, if the shell is terminated (via an
end-of-file), init will reprompt for a new run-level. Second, the
init or telinit command can signal init and force it to change the
run-level of the system.

UNIX Programmer's Manual System Administration Facilities-67

INIT(lM) INIT(lM)

When attempting to boot the system, failure of init to prompt for a
new run-level may be due to the fact that the device Idev/syscon
is linked to a device other than the physical system teletype
(/dev/systty). If this occurs, init can be forced to relink
Idev Isyscon by typing a delete on the system teletype which is col­
located with the processor.

When init prompts for the new run-level, the operator may enter
only one of the digits 0 through 6 or the letters S or s. If S is
entered init operates as previously described in SINGLE USER
mode with the additional result that Idev/syscon is linked to the
user's terminal line, thus making it the virtual system console. A
message is generated on the physical console, Idev/systty, saying
where the virtual terminal has been relocated.

When init comes up initially and whenever it switches out of SIN­
GLE USER state to normal run states, it sets the ioetl (2) states of
the virtual console, Idev/syscon, to those modes saved in the file
letc/ioctl.syscon. This file is written by init whenever SINGLE
USER mode is entered. If this file does not exist when init wants
to read it, a warning is printed and default settings are assumed.

If a 0 through 6 is entered init enters the corresponding run-level.
Any other input will be rejected and the user will be re-prompted.
If this is the first time init has entered a run-level other than SIN­
GLE USER, init first scans inittab for special entries of the type
boot and bootwait. These entries are performed, providing the
run-level entered matches that of the entry before any normal pro­
cessing of inittab takes place. In this way any special initialization
of the operating system, such as mounting file systems, can take
place before users are allowed onto the system. The inittab file is
scanned to find all entries that are to be processed for that run­
level.

Run-level 2 is usually defined by the user to contain all of the ter­
minal processes and daemons that are spawned in the multi-user
environment.

In a multi-user environment, the inittab file is usually set up so
that init will create a process for each terminal on the system.

For terminal processes, ultimately the shell will terminate because
of an end-of-file either typed explicitly or generated as the result of
hanging up. When init receives a child death signal, telling it that
a process it spawned has died, it records the fact and the reason it
died in letc/utmp and letc/wtmp if it exists (see who (1». A

68-System Administration Facilities UNIX Programmer's Manual

INIT(lM) INIT(lM)

history of the processes spawned is kept in /etc/wtmp if such a file
exists.

To spawn each process in the inittab file, init reads each entry and
for each entry which should be respawned, it forks a child process.
After it has spawned all of the processes specified by the inittab
file, init waits for one of its descendant processes to die, a power­
fail signal, or until init is signaled by init or telinit to change the
system's run-level. When one of the above three conditions
occurs, init re-examines the inittab file. New entries can be added
to the inittab file at any time; however, init still waits for one of
the above three conditions to occur. To provide for an instantane­
ous response the init Q or init q command can wake init to re­
examine the inittab file.

If in it receives a powerfail signal (SIGPWR) and is not in SINGLE
USER mode, it scans inittab for special powerfail entries. These
entries are invoked (if the run-levels permit) before any further
processing takes place. In this way init can perform various
cleanup and recording functions whenever the operating system
experiences a power failure.

When init is requested to change run-levels (via telinit), init sends
the warning signal (SIGTERM) to all processes that are undefined
in the target run-level. Init waits 20 seconds before forcibly ter­
minating these processes via the kill signal (SIGKILL).

Telinit
Telinit, which is linked to letclinit, is used to direct the actions of
init. It takes a one-character argument and signals init via the kill
system call to perform the appropriate action. The following argu­
ments serve as directives to init.

0-6

a,b,c

s,S

tells init to place the system in one of the run­
levels 0-6.

tells init to process only those /etc/inittab file
entries having the a, b or c run-level set.

tells init to re-examine the /etc/inittab file.

tells init to enter the single user environment.
When this level change is effected, the virtual
system teletype, /dev/syscon, 'is changed to the
terminal from which the command was exe­
cuted.

UNIX Programmer's Manual System Administration Facilities--69

INIT(lM) INIT(lM)

FILES

Telinit can only .be run by someone who is super-user or a member
of group sys.

/etc/inittab
/etc/utmp
/etc/wtmp
/ etc/ioctl.syscon
/dev/syscon
/dev/systty

SEE ALSO
getty(IM).
10gin(I), sh(I), who(1) in the UNIX Programmer's Manual­
Volume 1: Commands and Utilities.
1011(2), inittab(4), utmp(4) in the UNIX Programmer's Manual­
Volume 2: System Calls and Library Routines.

DIAGNOSTICS
If init finds that it is continuously respawning an entry from
letc/inittab more than 10 times in 2 minutes, it will assume that
there is an error in the command string, and generate an error
message on the system console, and refuse to respawn this entry
until either 5 minutes has elapsed or it receives a signal from a
user init (telinit). This prevents init from eating up system
resources when someone makes a typographical error in the inittab
file or a program is removed that is referenced in the inittab.

70-System Administration Facilities UNIX Programmer's Manual

INSTALL (1M) INSTALL (1M)

NAME
install - install commands

SYNOPSIS
/etc/install [-c dira] [-f dirb] [-j) [-n dirc] [-0] [-s] file
[dirx .. .1

DESCRIPTION
Install is a command most commonly used in "makefiles" (see
make (1» to install a file (updated target file) in a specific place
within a file system. Each file is installed by copying it into the
appropriate directory, thereby retaining the mode and owner of the
original command. The program prints messages telling the user
exactly what files it is replacing or creating and where they are
going.

If no options or directories (dirx ...) are given, install will search
a set of default directories (lbin, /usrlbin, /etc, /lib, and /usr/lib,
in that order) for a file with the same name as file. When the first
occurrence is found, install issues a message saying that it is
overwriting that file with file, and proceeds to do so. If the file is
not found, the program states this and exits without further action.

If one or more directories (dirx .. .) are specified after file, those
directories will be searched before the directories specified in the
default list.

The meanings of the options are:

-c dira Installs a new command (file) in the direc­
tory specified by dira, only if it is not
found. If it is found, install issues a mes­
sage saying that the file already exists, and
exits without overwriting. it. May be used
alone or with the -s option.

-f dirb Forces file to be installed in given direc­
tory, whether or not one already exists. If
the file being installed does not already
exist, the mode and owner of the new file
will be set to 755 and bin, respectively. If
the file already exists, the mode and owner
will be that of the already existing file.
May be used alone or with the -0 or -s
options.

UNIX Programmer's Manual System Administration Facilities-71

INSTALL (1M)

-i

-n dire

-0

-s

SEE ALSO
mk(8).

INSTALL (1M)

Ignores default directory list, searching
only through the given directories (dirx
.. .). May be used alone or with any other
options other than -c and -f.

lf file is not found in any of the searched
directories, it is put in the directory
specified in dire. The mode and owner of
the new file will be set to 755 and bin,
respectively. May be used alone or with
any other options other than -c and -f.

lf file is found, this option saves the
"found" file by copying it to OLDfile in the
directory in which it was found. This
option is useful when installing a normally
text busy file such as Ibin/sh or /etc/getty,
where the existing file cannot be removed.
May be used alone or with any other
options other than -c.

Suppresses printing of messages other. than
error messages. May be used alone or with
any other options.

make(I) in the UNIX Programmer's Manual-Volume 1: Com­
mands and Utilities.

72-System Administration Facilities UNIX Programmer's Manual

KILLALL (1 M) KILLALL (l M)

NAME
killall - kill all active processes

SYNOPSIS
/etc/killall [signal]

DESCRIPTION

FILES

Killall is a procedure used by /etc/shutdown to kill all active
processes not directly related to the shutdown procedure.

Killall is chiefly used to terminate all processes with open files so
that the mounted file systems will be unbusied and can be
unmounted.

Killall sends signal (see kitHl» to all remaining processes not
belonging to the above group of exclusions. If no signal is
specified, a default of 9 is used.

/etc/shutdown

SEE ALSO
fuser (l M), shutdown (l M).
kill(1), ps (1) in the UNIX Programmer's M anual-Volume 1:
Commands and Utilities.
signal(2) in the UNIX Programmer's Manual- Volume 2: System
Calls and Library Routines.

UNIX Programmer's Manual System Administration Facilities-73

LINK(IM) LINK(IM)

NAME
link, unlink - exercise link and unlink system calls

SYNOPSIS
letclIink filel file2
letc/unfink file

DESCRIPTION
Link and unlink perform their respective system calls on their
arguments, abandoning all error checking. These commands may
only be executed by the super-user, who Ot is hoped) knows what
he or she is doing.

SEE ALSO
rm(I) in the UNIX Programmer's Manual-Volume 1: Com­
mands and Utilities.
link(2), unlink(2) in the UNIX Programmer's Manual-Volume 2:
System Calls and Library Routines.

74-System Administration Facilities UNIX Programmer's Manual

LPADMIN(lM) LPADMIN(lM)

NAME
Ipadmin - configure the LP spooling system

SYNOPSIS
lusr /Iib/lpadmin -p printer [options]
lusr/lib/lpadmin -xdest
lusr /Iib/lpadmin -d[dest1

DESCRIPTION
Lpadmin configures LP spooling systems to describe printers,
classes and devices. It is used to add and remove destinations,
change membership in classes, change devices for printers, change
printer interface programs and to change the system default desti­
nation. Lpadmin may not be used when the LP scheduler,
Ipsched (1 M), is running, except where noted below.

Exactly one of the -p, -d or -x options must be present for
every legal invocation of Ipadmin.

-d[dest] makes dest, an existing destination, the new system
default destination. If dest is not supplied, then
there is no system default destination. This option
may be used when Ipsched(1M) is running. No
other options are allowed with -d.

-xdest removes destination dest from the LP system. If
dest is a printer and is the only member of a class,
then the class will be deleted, too. No other options
are allowed with -x.

-pprinter names a printer to which all of the options below
refer. If printer does not exist then it will be
created.

The following options are only useful with -p and may appear in
any order. For ease of discussion, the printer will be referred to as
P below.

-cclass

-eprinter

-b

inserts printer P into the specified class. Class will
be created if it does not already exist.

copies an existing printer's interface program to be
the new interface program for P.

indicates that the device associated with P is
hardwired. This option is assumed when creating a
new printer unless the -I option is supplied.

UNIX Programmer's Manual System Administration Facilities-75

LPADMIN(IM) LPADMIN(IM)

-iinterface establishes a new interface program for P. Interface
is the path name of the new program.

-I indicates .that the device associated with P is a login
terminal. The LP scheduler, Ipsched (1 M), disables
all login terminals automatically each time it is
started. Before re-enabling P, its current device
should be established using Ipadmin.

-mmodel selects a model interface program for P. Model is
one of the model interface names supplied with the
LP software (see Models below).

-rclass removes printer P from the specified class. If P is
the last member of the class, then the class will be
removed.

-vdevice associates a new device with printer P. Device is the
path name of a file that is writable by the LP
administrator, Ip. Note that there is nothing to stop
an administrator from associating the same device
with more than one printer. If only the -p and -v
options are supplied, then Ipadmin may be used
while the scheduler is running.

Restrictions.
When creating a new printer, the -v option and one of the -e,
-i or -m options must be supplied. Only one of the -e, -i or
-m options may be supplied. The -h and -I keyletters are
mutually exclusive. Printer and class names may be no longer
than 14 characters and must consist entirely of the characters A-Z,
a-z, 0-9 and (underscore).

Models.
Model printer interface programs are supplied with the LP
software. They are shell procedures which interface between
Ipsched (] M) and devices. All models reside in the directory
lusrlspool/lp/model and may be used as is with Ipadmin -m.
Models should have 644 permission if owned by lp & bin, or 664
permission if owned by bin & bin. Alternatively, LP administra­
tors may modify copies of models and then use Ipadmin -i to
associate them with printers. The following list describes the
models and lists the options which they may be given on the Ip
command line using the -0 keyletter:

76-System Administration Facilities UNIX Programmer's Manual

LPADMIN (1M) LPADMIN(1M)

dumb interface for a line printer without special functions and
protocol. Form feeds are assumed. This is a good model
to copy and modify for printers which do not have models.

1640 DIABLO 1640 terminal running at 1200 baud, using
XON/XOFF protocol. Options:

-12 12-pitch (IO-pitch is the default)
-f do not use the 450 (1) filter. The output has been

pre-processed by either 450 (1) or the nroff (J)
450 driving table.

bp Hewlett-Packard 2631A line printer at 2400 baud.

prx

EXAMPLES
1.

Options:

-c compressed print
-e expanded print

Printronix P300 or P600 printer using XON/XOFF proto­
col at 1200 baud.

Assuming there is an existing Hewlett-Packard 2631A line
printer named hp2, it will use the bp model interface after the
command: .

/usr/lib/lpadmin -php2 -mhp

2. To obtain compressed print on hp2, use the command:

lp -dhp2 -o-c files

3. A DIABLO 1640 printer called stI can be added to the LP
configuration with the command:

/usr/lib/lpadmin -pstl -v/dev/tty20 -m1640

4. An nroff (J) document may be printed on stI in any of the
following ways:

nroff -T450 files I lp -dstl -of
nroff -T450-12 files I lp -dstl -of
nroff -T37 files I col I lp -dstl

5. The following command prints the password file on stI in 12-
pitch:

lp -dstl -012 /etc/passwd

NOTE: the -12 option to the 1640 model should never be
used in conjunction with nroff(1) .

UNIX Programmer's Manual System Administration Facilities-77

LPADMIN(lM) LPADMIN(lM)

FILES
lusrlspool/lp/*

SEE ALSO
accept(l~), Ipsched(l~).
enable(t), lp(t), Ipstat(1) , nroff(1) in the UNIX Programmer's
Manual-Volume 1: Commands and Utilities.

78-System Administration Facilities UNIX Programmer's Manual

LPSCHED (1 M) LPSCHED (1 M)

NAME
lpsched, lpshut, lpmove - start/stop the LP request scheduler and
move requests

SYNOPSIS
lusrlIib/Jpsched
lusr IIib/Jpshut
lusr/liblIpmove requests dest
lusrlIib/Jpmove destl dest2

DESCRIPTION

FILES

Lpsched schedules requests taken by fp (1) for printing on line
printers.

Lpshut shuts down the line printer scheduler. All printers that are
printing at the time fpshut is invoked will stop printing. Requests
that were printing at the time a printer was shut down will be
reprinted in their entirety after fpsched is started again. All LP
commands perform their functions even when fpsched is not run­
ning.

Lpmove moves requests that were queued by fp(1) between LP
destinations. This command may be used only when fpsched is not
running.

The first form of the command moves the named requests to the
LP destination, dest. Requests are request ids as returned by
fp (0. The second form moves all requests for destination destl to
destination dest2. As a side effect, fp (J) will reject requests for
dest1.

Note that fpmove never checks the acceptance status (see
accept (1 M» for the new destination when moving requests.

/usr/spool/lp/*

SEE ALSO
accept (1 M), Ipadmin (1 M) .
enable(l), Ip(l), Ipstat(1) in the UNIX Programmer's Manuaf­
Vofume 1: Commands and Utilities.

UNIX Programmer's Manual System Administration Facilities-79

MKFS(lM) MKFS(lM)

NAME
mkfs - construct a file system

SYNOPSIS
lete/mkfs special blocks[:i-nodes1 [gap blocks/cyI1
lete/mkfs special proto [gap blocks/cyI1

DESCRIPTION
'Mkfs constructs a file system by writing on the special file accord­
ing to the directions found in the remainder of the command line.
The command waits 10 seconds before starting to construct the file
system. If the second argument is given as a string of digits, mkfs
builds a file system with a single empty directory on it. The size of
the file system is the value of blocks interpreted as a decimal
number. This is the number of physical disk blocks the file system
will occupy. The boot program is left uninitialized. If the optional
number of i-nodes is not given, the default is the number of logical
blocks divided by 4.

If the second argument is a file name that can be opened, mkfs
assumes it to be a prototype file proto, and will take its directions
from that file. The prototype file contains tokens separated by
spaces or new-lines. The first token is the name of a file to be
copied onto block zero as the bootstrap program. The second
token is a number specifying the size of the created file system in
physical disk blocks. Typically it will be the number of blocks on
the device, perhaps diminished by space for swapping. The next
token is the number of i-nodes in the file system. The maximum
number of i-nodes configurable is 65500. The next set of tokens
comprise the specification for the root file. File specifications con­
sist of tokens giving the mode, the user ID, the group ID, and the
initial contents of the file. The syntax of the contents field depends
on the mode.

The mode token for a file is a 6-character string. The first charac­
ter specifies the type of the file. (The characters -bed specify
regular, block special, character special and directory files respec­
tively.) The second character of the type is either u or - to
specify set-user-id mode or not. The third is g or - for the set­
group-id mode. The rest of the mode is a 3 digit octal number
giving the owner, group, and other read, write, execute permissions
(see chmod(I».

Two decimal number tokens come after the mode; they specify the
user and group IDs of the owner of the file.

SO-System Administration Facilities UNIX Programmer's Manual

MKFS(IM) MKFS(IM)

If the file is a regular file, the next token is a path name whence
the contents and size are copied. If the file is a block or character
special file, two decimal number tokens follow which give the
major and minor device numbers. If the file is a directory, mkfs
makes the entries. and 00 and then reads a list of names and
(recursively) files specifications for the entries in the directory.
The scan is terminated with the token $.

A sample prototype specification follows:

Istandl diskboot
4872 110
d--7773 1
usr d--777 3 1

sh ---755 3 1 Ibin/sh
ken d--755 6 1

$
bO b--644 3 1 0 0
cO c--644 3 1 0 0
$

$

In both command syntaxes, the rotational gap and the number of
blocks/cyl can be specified. The following values are recom­
mended:

Device Gap Size Blks/Cyl
RLOll02 7 40
RP03 5 200
RP04/05/06 7 418
RP07 7 400
RM03 7 160
RM05 7 608
RM80 9 434
3B20 computer MHD 7 608
default 7 400

The default will be used if the supplied gap and blockslcyl are
considered illegal values or if a short argument count occurs.

UNIX Programmer's Manual System Administration Facilities-81

MKFS(lM) MKFS(lM)

SEE ALSO

BUGS

chmod(I) in the UNIX Programmer's Manual-Volume 1: Com­
mands and Utilities.
dir(4), fs(4) in the UNIX Programmer's Manual-Volume 2:
System Calls and Library Routines.

If a prototype is used, it is not possible to initialize a file larger
than 64K bytes, nor is there a way to specify links.

82-System Administration Facilities UNIX Programmer's Manual

MKNOD(lM) MKNOD(lM)

NAME
mknod - build special file

SYNOPSIS
letc/mknod name c I b major minor
I etc/mknod name p

DESCRIPTION
Mknod makes a directory entry and corresponding i-node for a
special file. The first argument is the name of the entry. In the
first case, the second is b if the special file is block-type (disks,
tape) or c if it is character-type (other devices). The last two
arguments are numbers specifying the major device type and the
minor device (e.g., unit, drive, or line number), which may be
either decimal or octal.

The assignment of major device numbers is specific to each system.
They have to be dug out of the system source file conf.c.

Mknodcan also be used to create fifo's (a.k.a named pipes)
(second case in SYNOPSIS above).

SEE ALSO
mknod(2) in the UNIX Programmer's Manual-Volume 2: Sys­
tem Calls and Library Routines.

UNIX Programmer's Manual System Administration Facilities-83

MOUNT(lM) MOUNT(lM)

NAME
mount, umount - mount and dismount file system

SYNOPSIS
/etc/mount [special directory [-r]]

/etc/umount special

DESCRIPTION

FILES

Mount announces to the system that a removable file system is
present on the device special. The directory must exist already; it
becomes the name of the root of the newly mounted file system.

These commands maintain a table of mounted devices. If invoked
with no arguments, mount prints the table.

The optional last argument indicates that the file is to be mounted
read-only. Physically write-protected and magnetic tape file sys­
tems must be mounted in this way or errors will occur when access
times are updated, whether or not any explicit write is attempted.

Umount announces to the system that the removable file system
previously mounted on device special is to be removed.

letc/mnttab mount table

SEE ALSO
setmnt(lM).
mount (2) , mnttab(4) in the UNIX Programmer's Manual­
Volume 2: System Calls and Library Routines.

DIAGNOSTICS

BUGS

Mount issues a warning if the file system to be mounted is
currently mounted under another name.

Umount complains if the special file is not mounted or if it is busy.
The file system is busy if it contains an open file or some user's
working directory.

Some degree of validation is done on the file system; however, it is
generally unwise to mount garbage file systems.

84-System Administration Facilities UNIX Programmer's Manual

MVDIR(lM)

NAME
mvdir - move a directory

SYNOPSIS
/etc/mvdir dirname name

DESCRIPTION

MVDIR(lM)

Mvdir moves directories within a file system. Dirname must be a
directory; name must not exist. Neither name may be a sub-set of
the other (/x/y cannot be moved to /x/y/z, nor vice versa).

Only super-user can use mvdir.

SEE ALSO
mkdir(1) in the UNIX Programmer's Manual-Volume 1: Com­
mands and Utilities.

UNIX Programmer's Manual System Administration Facilities-85

NCHECK(IM) NCHECK(IM)

NAME
ncheck - generate names from i-numbers

SYNOPSIS
letc/ncbeck [-i numbers] [-a] [-s] [file-system]

DESCRIPTION
Ncheck with no argument generates a path-name vs. i-number list
of all files on a set of default file systems. Names of directory files
are followed by I.. The -i option reduces the report to only those
files whose i-numbers follow. The -a option allows printing of the
names. and .. , which are ordinarily suppressed. The -s option
reduces the report to special files and files with set-user-ID mode;
it is intended to discover concealed violations of security policy.

A file system may be specified.

The report is in no useful order, and probably should be sorted.

SEE ALSO
fsck(IM).
sort (I) in the UNIX Programmer's Manual-Volume 1: Com­
mands and Utilities.

DIAGNOSTICS
When the file system structure is improper, ?? denotes the
"parent" of a parentless file and a path-name beginning with ...
denotes a loop.

86-System Administration Facilities UNIX Programmer's Manual

PROFILER(1M) PROFILER (1M)

NAME
prfld, prfstat, prfdc, prfsnap, prfpr - operating system profiler

SYNOPSIS
/etc/prfld [namelist]
/etc/prfstat on
/etc/prfstat off
/etc/prfdc file [period [off_hour]]
/etc/prfsnap file
/etc/prfpr file [cutoff [namelist]]

DESCRIPTION

FILES

Prfld, prfstat, prfde, prfsnap, and prfpr form a system of pro­
grams to facilitate an activity study of the UNIX operating system.

Prfld is used to initialize the recording mechanism in the system.
It generates a table containing the starting address of each system
subroutine as extracted from name list .

Prfstat is used to enable or disable the sampling mechanism.
Profiler overhead is less than 1 % as calculated for 500 text
addresses. Prfstat will also reveal the number of text addresses
being measured.

Prfde and prfsnap perform the data collection function of the
profiler by copying the current value of all the text address
counters to a file where the data can be analyzed. Prfde will store
the counters into file every period minutes and will turn off at
off_hour (valid values for off_hour are 0-24). Prfsnap collects
data at the time of invocation only, appending the counter values
to file.

Prfpr formats the data collected by prfde or prfsnap. Each text
address is converted to the nearest text symbol (as found in namel­
ist) and is printed if the percent activity for that range is greater
than cutoff.

/dev/prf
/unix

interface to profile data and text addresses
default for namelist file

SEE ALSO
prf(7).

UNIX Programmer's Manual System Administration Facilities-87

PWCK(lM) PWCK(lM)

NAME
pwck, grpck - password/group file checkers

SYNOPSIS
/etc/pwck [file]
/ etc/ grpck [file]

DESCRIPTION

FILES

Pwck scans the password file and notes any inconsistencies. The
checks include validation of the number of fields, login name, user
ID, group ID, and whether the login directory and optional pro­
gram name exist. The default password file is /etc/passwd.

Grpck verifies all entries in the group file. This verification
includes a check of the number of fields, group name, group ID,
and whether all login names appear in the password file. The
default group file is /etc/group.

/etc/group
/etc/passwd

SEE ALSO
group (4) , passwd(4) in the UNIX Programmer's Manual­
Volume 2: System Calls and Library Routines.

DIAGNOSTICS
Group entries in /etc/group with no login names are flagged.

88-System Administration Facilities UNIX Programmer's Manual

RUNACCT(IM) RUNACCT(IM)

NAME
runacct - run daily accounting

SYNOPSIS
lusrlIib/acct/runacct [mmdd [state]]

DESCRIPTION
Runacct is the main daily accounting shell procedure. It is nor­
mally initiated via cron (I M). Runacct processes connect, fee,
disk, and process accounting files. It also prepares summary files
for prdaily or billing purposes.

Runacct takes care not to damage active accounting files or sum­
mary files in the event of errors. It records its progress by writing
descriptive diagnostic messages into active. When an error is
detected, a message is written to Idev/console, mail (see rnai/(I»
is sent to root and adm, and runacct terminates. Runacct -uses a
series of lock files to protect against re-invocation. The files lock
and lockl are used to prevent simultaneous invocation, and last­
date is used to prevent more than one invocation per day.

Runacct breaks its processing into separate, restartable states
using statefile to remember the last state completed. It accom­
plishes this by writing the state name into statefile. Runacct then
looks in statefile to see what it has done and to determine what to
process next. States are executed in the following order:

SETUP

WTMPFIX

CONNECTl

CONNECT2

PROC~

MERGE

FEES

UNIX Programmer's Manual

Move active accounting files into working
files.

Verify integrity of wtmp file, correcting
da te changes if necessary.

Produce connect session records in ctmp.h
format.

Convert ctmp.h records into tacct.h for­
mat.

Convert process accounting records into
tacct.h format.

Merge the connect and process account­
ing records.

Convert output of chargefee into tacct.h
format and merge with connect and pro­
cess accounting records.

System Administration Facilities-89

RUNACCT(lM) RUNACCT(lM)

DISK Merge disk accounting records with con­
nect, process, and fee accounting records.

MERGETACcr Merge the daily total accounting records
in daytacct with the summary total
accounting records in
lusr ladm/acct/sum/tacct.

eMS Produce command summaries.

USEREXIT Any installation-dependent accounting
programs can be included here.

CLEANUP Cleanup temporary files and exit.

To restart runacct after a failure, first check the active file for
diagnostics, then fix up any corrupted data files such as
pacct or wtmp. The lock files and lastdate file must be removed
before runacct can be restarted. The argument mmdd is neces­
sary if runacct is being restarted, and specifies the month and day
for which runacct will rerun the accounting. Entry point for pro­
cessing is based on the contents of statefile; to override this,
include the desired state on the command line to designate where
processing should begin.

EXAMPLES

FILES

To start runacct.
nohup runacct 2> lusr/adm/acct/nite/fd210g &

To restart runacct.
nohup runacct 0601 2> > lusr/adm/acct/nite/fd210g &

To restart runacct at a specific state.
nohup runacct 0601
lusr/adm/acct/nite/fd210g &

letc/wtmp
lusr/adm/pacct*
lusr I srcl cmdl acctl tacct.h
lusrlsrc/cmd/acct/ctmp.h
lusr I adml acctl nitel active
lusr I adml acct/nitel da ytacct
lusr I adml acctl nitellock
lusr/adm/acct/nitellockl
lusr I adml acct/nite/lastdate
I usr I adml acctl ni tel sta tefile
lusr I adml acct/nitel ptacct* .mmdd

MERGE 2»

90-System Administration Facilities UNIX Programmer's Manual

RUNACCT(lM) RUNACCT(1M)

SEE ALSO

BUGS

acct (1 M) , acctcms (1 M) , acctcon (1 M) , acctmerg (1 M) ,
acctprc(1 M), acctsh (1 M), cron (1 M), fwtmp(1 M).
acctcom(1) , maiI(l) in the UNIX Programmer's Manual­
Volume 1: Commands and Utilities.
acct(2) , acct(4) , utmp(4) in the UNIX Programmer's Manual­
Volume 2: System Calls and Library Routines.

Normally it is not a good idea to restart runacct in the SETUP
state. Run SETUP manually and restart via:

runacct mmdd WTMPFIX

If runacct failed in the PROCESS state, remove the last ptacet file
because it will not be complete.

UNIX Programmer's Manual System Administration Facilities-91

SADP(lM) SADP(IM)

NAME
sadp - disk access profiler

SYNOPSIS
sadp [-th] [-d device[-drive]] s [n]

DESCRIPTION
Sadp reports disk access location and seek distance, in tabular or
histogram form. It samples disk activity once every second during
an interval of s seconds. This is done repeatedly if n is specified.
Cylinder usage and disk distance are recorded in units of 8
cylinders.

Valid values of device are rp06, rm05, and disk. Drive specifies
the disk drives and it may be:

or

a drive number in the range supported by device,
two numbers separated by a minus (indicating an inclusive
range),

a list of drive numbers separated by commas.

Up to 8 disk drives may be reported. The -d option may be omit­
ted, if only one device is present.

The -t flag causes the data to be reported in tabular form. The
-h flag produces a histogram on the printer of the data. Default
is -to

EXAMPLE

FILES

The command:

sadp -d rp06 -0 900 4

will generate 4 tabular reports, each describing cylinder usage and
seek distance of rp06 disk drive 0 during a I5-minute interval.

Idev/kmem

92-System Administration Facilities UNIX Programmer's Manual

SAR(IM) SAR(lM)

NAME
sa 1, sa2, sadc - system activity report package

SYNOPSIS
lusr IIib/sa/sadc [t n] [ofile]

lusr/lib/sa/sal [t n]

lusr/lib/sa/sa2 [-ubdycwaqvwprA] [-s time] [-e time] [-i
sec]

DESCRIPTION
System activity data can be accessed at the special request of a
user [see sar (1)] and automatically on a routine basis as described
here. The operating system contains a number of counters that
are incremented as various system actions occur. These include
CPU utilization counters, buffer usage counters, disk and tape 1/0
activity counters, TTY device activity counters, switching and
system-call counters, file-access counters, queue activity counters,
and counters for interprocess communications.

Sadc and shell procedures, sal and sa2, are used to sample, save,
and process this data.

Sadc, the data collector, samples system data n times every t
seconds and writes in binary format to ofile or to standard output.
If t and n are omitted, a special record is written. This facility is
used at system boot time to mark the time at which the counters
restart from zero. The letc/rc entry:

su sys -c "/usr/lib/sa/sadc lusr/adm/sa/sa'date +%d'"

writes the special record to the daily data file to mark the system
restart.

The shell script sal, a variant of sadc, is used to collect and store
data in binary file lusr/adm/sa/sadd where dd is the current day.
The arguments t and n cause records to be written n times at an
interval of t seconds, or once if omitted. The
lusr Ispool/cron/crontabs/sys entries [see cron (1 M)]:

o • • • 0,6 lusr/lib/sa/sal
o 8-17 • • 1-5 lusr/lib/sa/sa1 1200 3
o 18-7 •• 1-5 lusr/lib/sa/sa1

UNIX Programmer's Manual System Administration Facilities-93

SAR(IM) SAR(IM) ,

FILES

will produce records every 20 minutes during working hours and
hourly otherwise.

The shell script sa2, a variant of sar (1), writes a daily report in
file lusr/adm/sa/sardd. The options are explained in sar(I). The
lusrlspool/cron/crontabs/sys entry:

5 18 * * 1-5 lusr/lib/sa/sa2 -s 8:00 -e 18:01 -i 3600 -A

will report important activities hourly during the working day.

The structure of the binary daily data file is:

struct sa {

struct sysinfo si;

struct minfo mi;

int szinode;

int szfile;

int szproc;

int szlckf;

int szlckr;

int mszinode;

int mszfile;

int mszproc;

int mszlckf;

int mszlckr;

long inodeovf;

long fileovf;

long procovf;

time_t ts;

int apstate;

I. see lusr/include/sys/sysinfo.h .1
I. defined in lusr/include/sys/sysinfo.h .1

I. current size of inode table *1

I. current size of file table .1

I. current size of proc table .1
I. current size of file record header table .1

I. current size of file record lock table .1
I. size of inode table .1

1* size of file table ·1

I. size of proc table ·1
1* maximum size of file record header table .1

I. maximum size of file record lock table .1

I. cumulative overflows of inode table ·1
I. cumulative overflows of file table ·1

I. cumulative overflows of proc table ·1
I. time stamp ·1

long devio[NDEVS][4]; I. device unit information *1

1* cumulative 110 requests *1 #de6neIO_OPS 0
#define 10 _BCNT

#define 10_ACT

#define IO_RESP

};

lusr I adml sal sadd
lusr I adml sal sardd
Itmpl sa.adrft

2

3

1* cumulative blocks transferred *1

1* cumulative drive busy time in ticks *1

1* cumul. I/O resp time in ticks since boot *1

daily data file
daily report file
address file

94-System Administration Facilities UNIX Programmer's Manual

SAR(1M)

SEE ALSO
cron(lM).

SAR(lM)

sag(1G), sar(1), timex(1) in the UNIX Programmer's Manual­
Volume 1: Commands and Utilities.

UNIX Programmer's Manual System Administration Facilities-95

SETMNT(lM) SETMNT(lM)

NAME
setmnt - establish mount table

SYNOPSIS
/ etc/ setmnt

. DESCRIPTION

FILES

Setmnt creates the /etc/mnttab table (see mnttab(4», which is
needed for both the mount (1 M) and umount commands. Setmnt
reads standard input and creates a mnttab entry for each line.
Input lines have the format:

filesys node

where filesys is the name of the file system's special file (e.g.,
"dsk/?s?") and node is the root name of that file system. Thus
filesys and node become the first two strings in the mnttab (4)
entry.

letc/mnttab

SEE ALSO
mount(lM).

BUGS

mnttab(4) in the UNIX Programmer's Manual-Volume 2: Sys­
tem Calls and Library Routines.

Evil things will happen if filesys or node are longer than 32 char­
acters.
Setmnt silently enforces an upper limit on the maximum number
of mnttab entries.

96-System Administration Facilities UNIX Programmer's Manual

SHUTDOWN (1M) SHUTDOWN (1M)

NAME
shutdown - terminate all processing

SYNOPSIS
/etc/shutdown

DESCRIPTION
Shutdown is part of the UNIX system operation procedures. Its
primary function is to terminate all currently running processes in
an orderly and cautious manner. The procedure is designed to
interact with the operator (i.e., the person who invoked shutdown).
Shutdown may instruct the operator to perform some specific
tasks, or to supply certain responses before execution can resume.
Shutdown goes through the following steps:

All users logged on the system are notified to log off the system
by a broadcasted message. The operator may display his/her
own message at this time. Otherwise, the standard file-save
message is displayed.

If the operator wishes to run the file-save procedure, shutdown
unmounts all file systems.

All file systems' super blocks are updated before the system is
to be stopped (see sync (1». This must be done before re­
booting the system, to insure file system integrity. The most
common error diagnostic that will occur is device busy. This
diagnostic happens when a particular file system could not be
unmounted.

SEE ALSO
mount(lM).
sync (1) in the UNIX Programmer's Manual-Volume 1: Com­
mands and Utilities.

UNIX Programmer's Manual System Administration Facilities-97

SWAP(lM) SWAP(lM)

NAME
swap - swap administrative interface

SYNOPSIS
/etc/swap -a swapdev swaplow swaplen
/etc/swap -d swapdev swaplow
/etc/swap -I

DESCRIPTION
Swap provides a method of adding, deleting, and monitoring the
system swap areas used by the memory manager. Tlte following
options are recognized:

-a Add the specified swap area. Swapdev is the name of block
special device, e.g., /dev/dsk/lsO. Swap/ow is the offset in
512-byte blocks into the device where the swap area should
begin. Swap/en is the length of the swap area in 512-byte
blocks. This option can only be used by the super-user.
Swap areas are normally added by the system start-up rou­
tine /etc/rc when going into multiuser mode.

-d Delete the specified swap area. Swapdev is the name of
block special device, e.g., /dev/dsk/lsO. Swap/ow is the
offset in 512-byte blocks into the device where the swap area
should begin. Using this option marks the swap area as
"being deleted." The system will not allocate any new blocks
from the area, and will try to free swap blocks from it. The
area will remain in use until all blocks from it are freed.
This option can only be used by the super-user.

-I List the status of all the swap areas. The output has four
columns:

WARNINGS

DEV The swapdev special file for the swap area if one can
be found in the Idev/dsk or Idev directories, and its
major/minor device number in decimal.

LOW The swap/ow value for the area in 512-byte blocks.

LEN The swap/en value for the area in 512-byte blocks.

FREE The number of free 512-byte blocks in the area. If
the swap area is being deleted, this column wilJ be
marked Hndel).

No check is done to see if a swap area being added overlaps with
an existing swap area or file system.

98-System Administration Facilities UNIX Programmer's Manual

SYSDEF(lM) SYSDEF(lM)

NAME
sysdef - system definition

SYNOPSIS
/etc/sysdef [opsys [master]]

DESCRIPTION

FILES

Sysdef analyzes the named operating system file and extracts
configuration information. This includes all hardware devices as
well as system devices and all tunable parameters.

The output of sysdef can usually be used directly by conjig(1M)
to regenerate the appropriate configuration files.

/unix
/etc/master

default operating system file
default table for hardware specifications

SEE ALSO

BUGS

config (1 M) .
master(4) in the UNIX Programmer's Manual-Volume 2: Sys­
tem Calls and Library Routines.

For devices that have interrupt vectors but are not interrupt­
driven, the output of sysdef cannot be used for config. Because
information regarding config aliases is not preserved by the sys­
tem, device names returned might not be accurate.

UNIX Programmer's Manual System Administration Facilities-99

TIC(lM) TIC(lM)

NAME
tic - terminfo compiler

SYNOPSIS
tic [-v[n]] file ...

DESCRIPTION

FILES

Tic translates terminfo files. from the source format into the com­
piled format. The results are placed in the directory
lusr IIib/terminfo.

The -v (verbose) option causes tic to output trace information
showing its progress. If the optional integer is appended, the level
of verbosity can be increased.

Tic compiles all terminfo descriptions in the given files. When a
use - field is discovered, tic searches first the current file, then the
master file, which is ".Iterminfo.src".

If the environment variable TERMINFO is set, the results are
placed there instead of lusr IIib/terminfo.

Some limitations: total compiled entries cannot exceed 4096 bytes.
The name field cannot-exceed 128 bytes.

lusr/lib/terminfo/* 1* compiled terminal capability data base

SEE ALSO

BUGS

curses (3X), terminfo(4) in the UNIX Programmer's Manual­
Volume 2: System Calls and Library Routines.

Instead of searching ./terminfo.src, it should check for an existing
compiled entry.

100-System Administration Facilities UNIX Programmer's Manual

UUCLEAN(IM) UUCLEAN(IM)

NAME
uuclean - uucp spool directory clean-up

SYNOPSIS
/usr/lib/uucp/uucleao [options]

DESCRIPTION
Uuclean will scan the spool directory for files with the specified
prefix and delete all those which are older than the specified
number of hours. .

The following options are available.

-ddirectory Clean directory instead of the spool directory. If
directory is not a valid spool directory it cannot con­
tain "work files" i.e., files whose names start with
"C. ". These files have special meaning to uucleao per­
taining to uucp job statistics.

-ppre Scan for files with pre as the file prefix. Up to 10
-p arguments may be specified. A -p without any
pre following will cause all files older than the
specified time to be deleted.

-otime Files whose age is more than time hours will be
deleted if the prefix test is satisfied. (default time is
72 hours)

-wfile The default action for uuclean is to remove files
which are older than a specified time (see -0

option). The -w option is used to find those files
older than time hours, however, the files are not
deleted. If the argument file is present the warning
is placed in file, otherwise, the warnings will go to
the standard output.

-ssys Only files destined for system sys are examined. Up
to 10 -s arguments may be specified.

-mfile The -m option sends mail to the owner of the file
when it is deleted. If a file is specified then an entry
is placed in file.

This program is typically started by cron (I M) .

UNIX Programmer's Manual System Administration Facilities-IOI

UUCLEAN(lM) UUCLEAN(lM)

FILES
lusr/lib/uucp directory with commands used by uuclean inter­

nally
lusrlspool/uucp spool directory

SEE ALSO
cron(IM).
uucp(IC) , uux(IC) in the UNIX Programmer's Manual­
Volume 1: Commands and Utilities.

l02-System Administration Facilities UNIX Programmer's Manual

UUSUB(lM) UUSUB(lM)

NAME
uusub - monitor uucp network

SYNOPSIS
/usr/Jib/uucp/uusub [options]

DESCRIPTION
Uusub(J M) defines a uucp subnetwork and monitors the connec­
tion and traffic among the members of the subnetwork. The fol­
lowing options are available:

-asys Add sys to the subnetwork.
-,.dsys Dt?lete sys from the subnetwork.
-I Report the statistics on connections.
-r Report the statistics on traffic amount.
-f Flush the connection statistics.
-uhr Gather the traffic statistics over the past hr hours.
-csys Exercise the connection to the system sys. If sys is

specified as aU, then exercise the connection to all the
systems in the subnetwork.

The meanings of the connections report are:

sys #call #ok time #dev #login #nack #other

where sys is the remote system name, #call is the number of
times the 19cal system tries to call sys since the last flush was
done, and #ok is the number of successful connections, time is the
latest successful connect time, #dev is the number of unsuccessful
connections because of no available device (e.g., ACU), #login is
the number of unsuccessful connections because of login failure,
#nack is the number of unsuccessful connections because of no
response (e.g. line busy, system down), and #other is the number
of unsuccessful connections because of other reasons.

The meanings of the traffic statistics are:

sfile sbyte rfile rbyte

where sfile is the number of files sent and sbyte is the number of
bytes sent over the period of time indicated in the latest uusub
command with the -uhr option. Similarly, rfile and rbyte are the
numbers of files and bytes received.

UNIX Programmerl's Manual System Administration Facilities-103

UUSUB(lM) UUSUB(lM)

The command:

uusub -c all -u 24

is typically started by cron(IM) once a day.

FILES
lusrlspool/uucp/SYSLOG system log file
lusr/lib/uucp/L_sub connection statistics
lusr/lib/uucp/R_sub traffic statistics

SEE ALSO
uucp(IC), uustat(IC) in the UNIX Programmer's Manual­
Volume 1: Commands and Utilities.

l04-System Administration Facilities UNIX Programmer's Manual

VOLCOPY(IM) VOLCOPY(IM)

NAME
volcopy, labelit - copy file systems with label checking

SYNOPSIS
/etc/volcopy [options] fsname speciall volnamel special2 vol­
name2

/etclIabelit special [fsname volume [-n]]

DESCRIPTION
Volcopy makes a literal copy of the file system using a blocksize
matched to the device. Options are:

-a invoke a verification sequence requiring a positive
operator response instead of the standard 10-
second delay before the copy is made

-s (default) invoke the DEL if wrong verification
sequence.

Other options are used only with tapes:
-bpidensity bits-per-inch G.e., 800/1600/6250),
-feetsize size of reel in feet (i.e., 1200/2400),
-reelnum beginning reel number for a restarted copy,
-buf use double buffered 110.

The program requests length and density information if it is not
given on the command line or is not recorded on an input tape
label. If the file system is too large to fit on one reel, volcopy will .
prompt for additional reels. Labels of all reels are checked. Tapes
may be mounted alternately on two or more drives. If volcopy is
interrupted, it will ask if the user wants to quit or wants a shell.
In the latter case, the user can perform other operations (e.g.,:
labelit) and return to volcopy by exiting the new shell.

The fsname argument represents the mounted name (e.g.,: root,
ul, etc.) of the filsystem being copied.

The special should be the physical disk section or tape (e.g.,:
/dev/rdsk/ls5, /dev/rmt/Om, etc.).

The volname is the physical volume name (e.g.,: pk3, t0122, etc.)
and should match the external label sticker. Such label names are
limited to six or fewer characters. Volnamemay be - to use the
existing volume name.

Speciall and volname} are the device and volume from which the
copy of the file system is being extracted. Special2 and volname2
are the target device and volume.

UNIX Programmer's Manual System Administration Facilities-lOS

VOLCOPY(lM) VOLCOPY(lM)

FILES

Fsname and volname are recorded in the last 12 characters of the
superblock (char fsoame[61, volname[61;).

Labelit can be used to provide initial labels for unmounted disk or
tape file systems. With the optional arguments omitted, labelit
prints current label values. The -0 option provides for initial
labeling of new tapes only (this destroys previous contents).

/ etc/log/filesave.log a record of file systems/volumes copied

SEE ALSO

BUGS

sh(I) in the UNIX Programmer's Manual-Volume 1: Commands
and Utilities.
fs(4) in the UNIX Programmer's Manual-Volume 2: System
Calls and Library Routines.

Only device names beginning Idev/rmtl are treated as tapes.

106-System Administration Facilities UNIX Programmer's Manual

WALL(lM) WALL(lM)

NAME
wall - write to all users

SYNOPSIS
/etc/wall

DESCRIPTION

FILES

Wall reads its standard input until an end-of-file. It then sends
this message to all currently logged-in users preceded by: _

Broadcast Message from 000

It is used to warn all users, typically prior to shutting down the
system.

The sender must be super-user to override any protections the
users may have invoked (see mesg(1».

/dev/tty·

SEE ALSO
mesg(l), write(1) in the UNIX Programmer's Manual-Volume 1:
Commands and Utilities.

DIAGNOSTICS
"Cannot send to ... " when the open on a user's tty file fails.

UNIX Programmer's Manual System Administration Facilities-l07

WHODO(IM)

NAME
whodo - who is doing what

SYNOPSIS
letc/whodo

DESCRIPTION

WHODO(IM)

Whodo produces merged, reformatted, and dated output from the
who (1) and ps (1) commands.

FILES
etc/passwd

SEE ALSO
ps(I), who(I) in the UNIX Programmer's Manual-Volume 1:
Commands and Utilities.

lOS-System Administration Facilities UNIX Programmer's Manual

INTRO(7) INTRO(7)

NAME
intro - introduction to special files

DESCRIPTION

BUGS

This section describes various special files that refer to specific
hardware peripherals and UNIX system device drivers. The names
of the entries are generally derived from names for the hardware,
as opposed to the names of the special files themselves. Charac­
teristics of both the hardware device and the corresponding UNIX
system device driver are discussed where applicable.

Tape device file names are in the following format:

I dev I {r}mtl (c#d)#(hmU In}

where r indicates a raw device, c#d indicates the controller
number (which is optionally specified by the system administra­
tor), # is the device number, hmI indicates the density (h (high)
for 6250 bpi, m (medium) for 1600 bpi, and I (low density) for
800 bpi}, and 0 indicates no rewind on close. (e.g., Idev/mt/2mn)

Disk device file names are in the following format:

I dev I{r}dskl (r) (c#d)#s#

where r indicates a raw interface to the disk, the second r indicates
that this disk is on a remote system, the c#d indicates the con­
troller number (which is optionally specified by the system
administrator), and #s# indicates the drive and section numbers,
respectively.

While the names of the entries generally refer to vendor hardware
names, in certain cases these names are seemingly arbitrary for
various historical reasons.

UNIX Programmer's Manual System Administration Facilities-l09

ACU(7) ACU(7)

NAME
acu, dn - Automatic Call Unit (ACU) interface

DESCRIPTION
The ACU drivers support close (2) , open (2) , and write(2) system
calls. In addition, the tn8 driver on the 3B20 computer supports
an ioetl system call. The acu? and do? files are write-only. The
write system call sends the telephone number to be dialed to the
ACU. The permissible codes are:

0-9

• or :
or;

dial 0-9
dial­
dial #

e or <
wor =

4-second delay for second dial tone
end-of-number

f
wait for secondary dial tone
flash off hook for 1 second

The entire telephone number must be presented in a single write
system call.

The ioetl system call (tn8 only) is invoked as follows:

#inc1ude < sys/ acu.h >
int fildes, cmd;
struct acutab *acutp;
ioctl (fildes, cmd, acutp);

Aeutab is a table specifying the connections between ACU minor
devices and communication lines:

struct acutab {
int minor;
int unit;
int port;
int line;

} acutab[NACU1;

The NACU parameter is a constant from aeu.h that specifies the
number of lines the TN8 ACUs can dial out on.

The ioetl emds are:

ACUSDEV-Specify a connection between an ACU minor device
and a telephone line. This command makes an entry in
aeutab, the table that specifies associations between ACU
minor devices and dial-out lines. Before the ACUs can be
used, and after any ACU reconfiguration, this table must

110-System Administration Facilities UNIX Programmer's Manual

ACU(7) ACU(7)

be sent to the ACU peripheral controller via the ACUS­
TART command.

ACUSTART-Connect ACU minor devices to telephone lines. This
command informs the ACU peripheral controller of the
connections set up by the ACUSDEV command and
enables it.

SEE ALSO

FILES

close (2) , ioct1(2), open (2), write(2) in the UNIX Programmer's
Manual-Volume 2: System Calls and Library Routines.

/dev/acu?
/devltn8
/dev/dn?

(3B20 computer only)
(3B20 computer only)
(DEC only)

UNIX Programmer's Manual System Administration Facilities-Ill

ERR (7) ERR(7)

NAME
err - error-logging interface

DESCRIPTION

FILES

Minor device 0 of the err driver is the interface between a process
and the system's error-record collection routines. The driver may
be opened only for reading by a single process with super-user per­
missions. Each read causes an entire error record to be retrieved;
the record is truncated if the read request is for less than the
record's length.

/dev/error special file

SEE ALSO
errdemon (I M) .

1I2-System Administration Facilities UNIX Programmer's Manual

MEM(7) MEM(7)

NAME
mem, kmem - core memory

DESCRIPTION

FILES

BUGS

Mem is a special file that is an image of the core memory of the
computer. It may be used, for example, to examine, and even to
patch the system.

Byte addresses in mem are interpreted as memory addresses.
References to non-existent locations cause errors to be returned.

Examining and patching device registers is likely to lead to unex­
pected results when read-only or write-only bits are present.

The file kmem is the same as mem except that kernel virtual
memory rather than physical memory is accessed.

On the PDP-II, the 110 page begins at location 0160000 of kmem
and per-process data for the current process begins at 0140000.

Idev/mem
Idev/kmem

On the PDP-II, memory files are accessed one byte at a time, an
inappropriate method for some device registers.

UNIX Programmer's Manual System Administration Facilities-113

NULL (7) NULL (7)

NAME
null - the null file

DESCRIPTION
Data written on a null special file is discarded.

Reads from a null special file always return 0 bytes.

FILES
/dev/null

114-System Administration Facilities UNIX Programmer's Manual

PRF(7) PRF(7)

NAME
prf - operating system profiler

DESCRIPTION

FILES

The file prf provides access to activity information in the operating
system. Writing the file loads the measurement facility with text
addresses to be monitored. Reading the file returns these
addresses and a set of counters indicative of activity between adja­
cent text addresses.

The recording mechanism is driven by the system clock and sam­
ples the program counter at line frequency. Samples that catch
the operating system are matched against the stored text addresses
and increment corresponding counters for later processing.

The file prf is a pseudo-device with no associated hardware.

Idev/prf

SEE ALSO
config (I M), profiler (I M) .

UNIX Programmer's Manual System Administration Facilities-l 15

SXT(7) SXT(7)

NAME
sxt - pseudo-device driver

DESCRIPTION
Sxt is a pseudo-device driver that interposes a discipline between
the standard tty line disciplines and a real device driver. The
standard disciplines manipulate virtual tty structures (channels)
declared by the sxt driver. Sxt acts as a discipline manipulating a
real tty structure declared by a real device driver. The sxt driver
is currently only used by the shl (0 command.

Virtual ttys are named by inodes in the subdirectory Idev/sxt and
are allocated in groups of up to eight. To allocate a group, a pro­
gram should exclusively open a file with a name of the form
Idev/sxt/??O (channel 0) and then execute a SXTIOCLINK ioetl
call to initiate the multiplexing.

Only one channel, the controlling channel, can receive input from
the keyboard at a time; others attempting to read will be blocked.

There are two groups of ioetl(2) commands supported by sxt.
The first group contains the standard ioetl commands described in
termio (7), with the addition of the following:

TIOCEXCL Set exclusive use mode: no further opens are
permitted until the file has been closed.

TIOCNXCL Reset exclusive use mode: further opens are
once again permitted.

The second group are directives to sxt itself. Some of these may
only be executed on channel O.

SXTIOCLINK

116-System Administration Facilities

Allocate a channel group
and multiplex the virtual
ttys onto the real tty. The
argument is the number of
channels to allocate. This
command may only be exe­
cuted on channel o. Possible
errors include:

EINV AL The argument is out of
range.

ENOTTY The command was not
issued from a real tty.

UNIX Programmer's Manual

SXT(7) SXT(7)

SXTIOCSWTCH

SXTIOCWF

SXTIOCUBLK

SXTIOCSTAT

SXTIOCTRACE

UNIX Programmer's Manual

ENXIO linesw is not configured
with sxt.

EBUSY An SXTIOCLINK com­
mand has already been
issued for this real tty.

ENOMEM
There is no system
memory available for allo­
cating the virtual tty
structures.

EBADF Channel 0 was not opened
before this call.

Set the controlling channel. Possible
errors include:

EINVAL An invalid channel
number was given.

EPERM The command was not
executed from channel o.

Cause a channel to wait until it is the
controlling channel. This command
will return the error, EINVAL, if an
invalid channel number is given.

Turn off the loblk control flag in the
virtual tty of the indicated channel.
The error EINV AL will be returned if
an invalid number or channel 0 is
given.

Get the status (blocked on input or
output) of each channel and store in
the sxtblock structure referenced by
the argument. The error EFAULT
will be returned if the structure can­
not be written.

Enable tracing. Tracing information
is written to Idevlosm on the 3B20
computer or to the console on the
VAX. This command has no effect if
tracing is not configured.

System Administration Facilities-I 17

SXT(7) SXT(7)

FILES

SXTIOCNOTRACE Disable tracing. This command has
no effect if tracing is not configured.

Idev/sxt/??[O-7]
lusr/include/sys/sxt.h

Virtual tty devices
Driver specific definitions.

SEE ALSO
termio(7).
shl(I) , stty(l) in the UNIX Programmer's Manual-Volume 1:
Commands and Utilities.
ioctI(2), open(2) in the UNIX Programmer's Manual-Volume 2:
System Calls and Library Routines.

118-System Administration Facilities UNIX Programmer's Manual

TERMIO(7) TERMIO(7)

NAME
termio - general terminal interface

DESCRIPTION
All of the asynchronous communications ports use the same gen­
eral interface, no matter what hardware is involved. The
remainder of this section discusses the common features of this
interface.

When a terminal file is opened, it normally causes the process to
wait until a connection is established. In practice, users' programs
seldom open these files; they are opened by getty and become a
user's standard input, output, and error files. The very first termi­
nal file opened by the process group leader of a terminal file not
already associated with a process group becomes the control termi­
nal for that process group. The control terminal plays a special
role in handling quit and interrupt signals, as discussed below.
The control terminal is inherited by a child process during a
fork (2). A process can break this association by changing its pro­
cess group using setpgrp (2).

A terminal associated with one of these files ordinarily operates in
full-duplex mode. Characters may be typed at any time, even
while output is occurring, and are only lost when the system's
character input buffers become completely full, which is rare, or
when the user has accumulated the maximum allowed number of
input characters that have not yet been read by some program.
Currently, this limit is 256 characters. When the input limit is
reached, all the saved characters are thrown away without notice.

Normally, terminal input is processed in units of lines. A line is
delimited by a new-line (ASCII LF) character, an end-of-file
(ASCII EOT) character, or an end-of-line character. This means
that a program attempting to read will be suspended until an
entire line has been typed. Also, no matter how many characters
are requested in the read call, at most one line will be returned. It
is not, however, necessary to read a whole line at once; any
number of characters may be requested in a read, even one,
without losing information.

During input, erase and kill processing is normally done. By
default, the character # erases the last character typed, except
that it will not erase beyond the beginning of the line. By default,
the character @ kills (deletes) the entire input line, and optionally
outputs a new-line character. Both these characters operate on a

UNIX Programmer's Manual System Administration Facilities-119

TERMIO(7) TERMIO(7)

key-stroke basis, independently of any backspacing or tabbing that
may have been done. Both the erase and kill characters may be
entered literally by preceding them with the escape character (\).
In this case the escape character is not read. The erase and kill
characters may be changed.

Certain characters have special functions on input. These func­
tions and their default character values are summarized as follows:

INTR (Rubout or ASCII DEL) generates an interrupt signal
which is sent to all processes with the associated control
terminal. Normally, each such process is forced to ter­
minate, but arrangements may be made either to ignore
the signal or to receive a trap to an agreed-upon loca­
tion; see signa[(2).

QUIT (Control-lor ASCII FS) generates a quit signal. Its
treatment is identical to the interrupt signal except that,
unless a receiving process has made other arrangements,
it will not only be terminated but a core image file
(called core) will be created in the current working
directory.

SWTCH (Control-z or ASCII SUB) is used by the job control
facility, shl, to change the current layer to the control
layer.

ERASE (#) erases the preceding character. It will not erase
beyond the start of a line, as delimited by a NL, EOF, or
EOL character.

KILL (@) deletes the entire line, as delimited by a NL, EOF,
or EOL character.

EOF (Control-d or ASCII EOT) may be used to generate an
end-of-file from a terminal. When received, all the
characters waiting to be read are immediately passed to
the program, without waiting for a new-line, and the
EOF is discarded. Thus, if there are no characters wait­
ing, which is to say the EOF occurred at the beginning
of a line, zero characters will be passed back, which is
the standard end-of-file indication.

NL (ASCII LF) is the normal line delimiter. It can not be
changed or escaped.

EOL (ASCII NUL) is an additional line delimiter, like NL. It
is not normally used.

120-System Administration Facilities UNIX Programmer's Manual

TERMIO(7) TERMIO(7)

STOP (Control-s or ASCII DC3) can be used to temporarily
suspend output. It is useful with CRT terminals to
prevent output from disappearing before it can be read.
While output is suspended, STOP characters are ignored
and not read.

START (Control-q or ASCII OCt) is used to resume output
which has been suspended by a STOP character. While
output is not suspended, START characters are ignored
and not read. The start/stop characters can not be
changed or escaped.

The character values for INTR, QUIT, SWTCH, ERASE, KILL,
EOF, and EOL may be changed to suit individual tastes. The
ERASE, KILL, and EOF characters may be escaped by a preceding
\ character, in which case no special function is done.

When the carrier signal from the data-set drops, a hang-up signal
is sent to all processes that have this terminal as the control termi­
nal. Unless other arrangements have been made, this signal causes
the processes to terminate. If the hang-up signal is ignored, any
subsequent read returns with an end-of-file indication. Thus, pro­
grams that read a terminal and test for end-of-file can terminate
appropriately when hung up on.

When one or more characters are written, they are transmitted to
the terminal as soon as previously-written characters have finished
typing. Input characters are echoed by putting them in the output
queue as they arrive. If a process produces characters more
rapidly than they can be typed, it will be suspended when its out­
put queue exceeds some limit. When the queue has drained down
to some threshold, the program is resumed.

Several ioctl (2) system calls apply to terminal files. The primary
calls use the following structure, defined in <termio.h>:

#define NCC 8
struct termio {

unsigned short
unsigned short
unsigned short
unsigned short
char
unsigned char

};

UNIX Programmer's Manual

cjflag;
c_oflag;
c_cflag;
cJflag;
cline;
c=cc[Ncc1;

/* input modes */
/* output modes */
/* control modes */
/ * local modes * /
/* line discipline */
/ * control chars * /

System Administration Facilities-121

TERMIO(7) TERMIO(7)

The special control characters are defined by the array c _cc. The
relative positions and initial values for each function are as follows:

o VINTR DEL
1 VQUIT FS
2 VERASE #
3 VKILL @

4 VEOF EOT
5 VEOL NUL
6 reserved
7 SWTCH

The c Jflag field describes the basic terminal input control:

IGNBRK 0000001 Ignore break condition.
BRKINT 0000002 Signal interrupt·on break.
IGNPAR 0000004 Ignore characters with parity errors.
PARMRK 0000010 Mark parity errors.
INPCK 0000020 E~able input parity check.
ISTRIP 0000040 Strip character.
INLCR 0000100 Map NL to CR on input.
IGNCR 0000200 Ignore CR.
ICRNL 0000400 Map CR to NL on input.
IUCLC 0001000 Map upper-case to lower-case on input.
IXON 0002000 Enable start/stop output control.
IXANY 0004000 Enable any character to restart output.
IXOFF 0010000 Enable start/stop input control.

If IGNBRK is set, the break condition (a character framing error
with data all zeros) is ignored, that is, not put on the input queue
and therefore not read by any process. Otherwise if BRKINT is
set, the break condition will generate an interrupt signal and flush
both the input and output queues. If IGNPAR is set, characters
with other framing and parity errors are ignored.

If PARMRK is set, a character with a framing or parity error
which is not ignored is read as the three-character sequence:
0377, 0, X, where X is the data of the character received in error.
To avoid ambiguity in this case, if ISTRIP is not set, a valid char­
acter of 0377 is read as 0377, 0377. If PARMRK is not set, a
framing or parity error which is not ignored is read as the charac­
ter NUL (0).

If INPCK is set, input parity checking is enabled. If INPCK is not
set, input parity checking is disabled. This allows output parity
generation without input parity errors.

I22-System Administration Facilities UNIX Programmer's Manual

TERMIO(7) TERMIO(7)

If ISTRIP is set, valid input characters are first stripped to 7 -bits,
otherwise all 8-bits are processed.

If INLCR is set, a received NL character is translated into a CR
character. If IGNCR is set, a received CR character is ignored
(not read). Otherwise if ICRNL is set, a received CR character is
translated into a NL character.

If IUCLC is set, a received upper-case alphabetic characters
translated into the corresponding lower-case character.

If IXON is set, start/stop output control is enabled. A received
STOP character will suspend output and a received START charac­
ter will restart output. All start/stop characters are ignored and
not read. If IXANY is set, any input character, will restart output
which has been suspended.

If IXOFF is set, the system will transmit START/STOP characters
when the input queue is nearly empty/full.

The initial input control value is all-bits-clear.

The C _oflag field specifies the system treatment of output:

OPOST 0000001 Postprocess output.
OLCUC 0000002 Map lower case to upper on output.
ONLCR 0000004 Map NL to CR-NL on output.
OCRNL 0000010 Map CR to NL on output.
ONOCR 0000020 No CR output at column O.
ONLRET 0000040 NL performs CR function.
OFILL 0000100 Use fill characters for delay.
OFDEL 0000200 Fill is DEL, else NUL.
NLDLY 0000400 Select new-line delays:
NLO 0
NLI 0000400
CRDLY 0003000 Select carriage-return delays:
CRO 0
CRI 0001000
CR2 0002000
CR3 0003000
TABDLY 0014000 Select horizontal-tab delays:
TABO 0
TABI 0004000
TAB2 0010000
TAB3 0014000 Expand tabs to spaces.
BSDLY 0020000 Select backspace delays:

UNIX Programmer's Manual System Administration Facilities-123

TERMIO(7)

BSO
BSI
VTDLY
VTO
VTI
FFDLY
FFO
FFI

o
0020000
0040000 Select vertical-tab delays:
o
0040000
0100000 Select form-feed delays:
o
0100000

TERMIO(7)

If OPOST is set, output characters are post-processed as indicated
by the remaining flags, otherwise characters are transmitted
without change.

If OLCUC is set, a lower-case alphabetic character is transmitted
as the corresponding upper-case character. This function is often
used in conjunction with IUCLC.

If ONLCR is set, the NL character is transmitted as the CR-NL
character pair. If OCRNL is set, the CR character is transmitted
as the NL character. If ONOCR is set, no CR character is
transmitted when at column 0 (first position). If ONLRET is set,
the NL character is assumed to do the carriage-return function;
the column pointer will be set to 0 and the delays specified for CR
will be used. Otherwise the NL character is assumed to do just the
line-feed function; the column pointer will remain unchanged. The
column pointer is also set to 0 if the CR character is actually
transmitted.

The delay bits specify how long transmission stops to allow for
mechanical or other movement when certain characters are sent to
the terminal. In all cases a value of 0 indicates no delay. If
OFILL is set, fill characters will be transmitted for delay instead of
a timed delay. This is useful for high baud rate terminals which
need only a minimal delay. If OFDEL is set, the fill character is
DEL, otherwise NUL.

If a form-feed or vertical-tab delay is specified, it lasts for about 2
seconds.

New-line delay lasts about 0.10 seconds. If ONLRET is set, the
carriage-return delays are used instead of the new-line delays. If
OFILL is set, two fill characters will be transmitted.

124-System Administration Facilities UNIX Programmer's Manual

TERMIO(7) TERMIO(7)

Carriage-return delay type 1 is dependent on the current column
position, type 2 is about 0.10 seconds, and type 3 is about 0.15
seconds. If OFILL is set, delay type 1 transmits two fill characters,
and type 2, four fill characters.

Horizontal-tab delay type 1 is dependent on the current column
position. Type 2 is about 0.10 seconds. Type 3 specifies that tabs
are to be expanded into spaces. If OFILL is set, two fill characters
will be transmitted for any delay.

Backspace delay lasts about 0.05 seconds. If OFILL is set, one fill
character will be transmitted.

The actual delays depend on line speed and system load.

The initial output control value is all bits clear.

The c _cflag field describes the hardware control of the terminal:

CBAUD 0000017 Baud rate:
BO 0 Hang up
B50 0000001 50 baud
B75 0000002 75 baud
B110 0000003 110 baud
B134 0000004 134.5 baud
B150 0000005 150 baud
B200 0000006 200 baud
B300 0000007 300 baud
B600 0000010 600 baud
B1200 0000011 1200 baud
B1800 0000012 1800 baud
B2400 0000013 2400 baud
B4800 0000014 4800 baud
B9600 0000015 9600 baud
EXTA 0000016 External A
EXTB 0000017 External B
CSIZE 0000060 Character size:
CS5 0 5 bits
CS6 0000020 6 bits
CS7 0000040 7 bits
CS8 0000060 8 bits
CSTOPB 0000100 Send two stop bits, else one.
CREAD 0000200 Enable receiver.
PARENB 0000400 Parity enable.
PARODD 0001000 Odd parity, else even.
HUPCL 0002000 Hang up on last close.

UNIX Programmer's Manual System Administration Facilities-125

TERMIO(7) TERMIO(7)

CLOCAL
LOBLK

0004000 Local line, else dial-up.
0010000 Block layer output.

The CBAUD bits specify the baud rate. The zero baud rate, BO, is
used to hang up the connection. If BO is specified, the data­
terminal-ready signal will not be asserted. Normally, this will
disconnect the line. For any particular hardware, impossible speed
changes are ignored.

The CSIZE bits specify the character size in bits for both transmis­
sion and reception. This size does not include the parity bit, if
any. If CSTOPB is set, two stop bits are used, otherwise one stop
bit. For example, at 110 baud, two stops bits are required.

If PARENB is set, parity generation and detection is enabled and a
parity bit is added to each character. If parity is enabled, the
PARODD flag specifies odd parity if set, otherwise even parity is
used .

. If CREAD is set, the receiver is enabled. Otherwise no characters
will be received.

If HUPCL is set, the line will be disconnected when the last pro­
cess with the line open closes it or terminates. That is, the data­
terminal-ready signal will not be asserted.

If CLOCAL is set, the line is assumed to be a local, direct connec­
tion with no modem control. Otherwise modem control is
assumed.

If LOBLK is set, the output of a job control layer will be blocked
when it is not the current layer. Otherwise the output generated
by that layer will be multiplexed onto the current layer.

The initial hardware control value after open is B300, CS8,
CREAD, HUPCL.

The c Jflag field of the argument structure is used by the line dis­
cipline to control terminal functions. The basic line discipline (0)
provides the following:

ISIG 0000001 Enable signals.
ICANON 0000002 Canonical input (erase and kill processing).
XCASE 0000004 Canonical upper/lower presentation.
ECHO 0000010 Enable echo.
ECHOE 0000020 Echo erase character as BS-SP-BS.
ECHOK 0000040 Echo NL after kill character.
ECHONL 0000100 Echo NL.

126-System Administration Facilities UNIX Programmer's Manual

TERMIO(7) TERMIO(7)

NOFLSH 0000200 Disable flush after interrupt or quit.

If ISIG is set, each input character is checked against the special
control characters INTR, SWTCH, and QUIT. If an input charac­
ter matches one of these control characters, the function associated
with that character is performed. If ISIG is not set, no checking is
done. Thus these special input functions are possible only if ISIG
is set. These functions may be disabled individually by changing
the value of the control character to an unlikely or impossible
value (e.g., 0377).

If ICANON is set, canonical processing is enabled. This enables
the erase and kill edit functions, and the assembly of input charac­
ters into lines delimited by NL, EOF, and EOL. If ICANON is not
set, read requests are satisfied directly from the input queue. A
read will not be satisfied until at least MIN characters have been
received or the timeout value TIME has expired between charac­
ters. This allows fast bursts of input to be read efficiently while
still allowing single character input. The MIN and TIME values
are stored in the position for the EOF and EOL characters, respec­
tively. The time value represents tenths of seconds.

If XCASE is set, and if ICANON is set, an upper-case letter is
accepted on input by preceding it with a \ character, and is output
preceded by a \ character. In this mode, the following escape
sequences are generated on output and accepted on input:

for: use:
\,
\!
\"

{ \(
} \)
\ \\

For example, A is input as \a, \n as \\n, and \N as \\\n.

If ECHO is set, characters are echoed as received.

When ICANON is set, the following echo functions are possible. If
ECHO and ECHOE are set, the erase character is echoed as ASCII
BS SP BS, which will clear the last character from a CRT screen.
If ECHOE is set and ECHO is not set, the erase character is echoed
as ASCII SP BS. If ECHOK is set, the NL character will be echoed
after the kill character to emphasize that the line will be deleted.
Note that an escape character preceding the erase or kill character

UNIX Programmer's Manual System Administration Facilities-127

TERMIO(7) TERMIO(7)

removes any special function. If ECHONL is set, the NL character .
will be echoed even if ECHO is not set. This is useful for terminals
set to local echo (so-called half duplex). Unless escaped, the EOF
character is not echoed. Because EOT is the default EOF charac­
ter, this prevents terminals that respond to EOT from hanging up.

If NOFLSH is set, the normal flush of the input and output queues
associated with the quit, switch, and interrupt characters will not
be done.

The initial line-discipline control value is all bits clear.

The primary ioctl (2) system calls have the form:

ioctl (fildes, command, arg)
struct termio *arg;

The commands using this form are:

TCGETA Get the parameters associated with the ter­
minal and store in the termio structure
referenced by argo

TCSETA Set the parameters associated with the ter­
minal from the structure referenced by argo
The change is immediate.

TCSETA W Wait for the output to drain before setting
the new parameters. This form should be
used when changing parameters that will
affect output.

TCSETAF Wait for the output to drain, then flush the
input queue and set the new parameters.

Additional ioctl (2) calls have the form:

ioctl (fildes, command, arg)
int arg;

The commands using this form are:

TCSBRK Wait for the output to drain. If arg is 0,
then send a break (zero bits for 0.25
seconds).

TCXONC Start/stop control. If arg is 0, suspend out­
put; if 1, restart suspended output:

128-System Administration Facilities UNIX Programmer's Manual

TERMIO(7) TERMIO(7)

TCFLSH

FILES
/dev/tty·

If arg is 0, flush the input queue; if 1, flush
the output queue; if 2, flush both the input
and output queues.

SEE ALSO
stty(l) in the UNIX Programmer's Manual-Volume 1: Com­
mands and Utilities.
fork (2) , ioctl (2), setpgrp(2), signal (2) in the UNIX Programmer's
Manual-Volume 2: System Calls and Library Routines.

UNIX Programmer's Manual System Administration Facilities-129

TRACE (7) TRACE (7)

NAME
trace - event-tracing driver

DESCRIPTION
Trace is a special file that allows event records generated within
the UNIX system kernel to be passed to a user program so that the
activity of a driver or other system ,routines can be monitored for
debugging purposes.

An event record is generated from within a kernel driver or system
routine by invoking the trsave function:

trsave (dev, chno, buf, cnt)
char dev, chno, .buf, cnt;

Dev is a minor device number of the trace driver; ehno is an
integer between 0 and 15 inclusive that identifies the data stream
(channel) to which the record belongs; buf is a buffer containing
the data for an event; and ent is the number of bytes in bUf. Calls
to trsave will result in data being placed on a queue, provided that
some user program has opened the trace minor device dev and has
enabled channel ehno. Event records consisting of a time stamp (4
bytes), the channel number (1 byte), the count (1 byte), and the
event data (ent bytes) are stored on a queue until a system-defined
maximum (TRQMAX) is reached; an event record is discarded if
there is not sufficient room on the queue for the entire record. The
queue is emptied by a user program reading the trace driver.
Each read returns an integral number of event records; the read
count must, therefore, be at least equal to ent plus six.

The trace driver supports open, c!ose(2J, ioet[(2J, and read (2J,
system calls. The iDetl system call is invoked as follows:

#include <sys/vpm.h>
int fildes, cmd, arg;
ioctl (fildes, cmd, arg);

The values for the emd argument are:

VPMSETC-Enable trace channels. This command enables each
channel indicated by a 1 in the bit mask found in argo
The low-order bit (bit 0) corresponds to channel zero, the
next bit (bit 1) corresponds to channell, etc.

VPMGETC-Get enabled channels. This command returns in arg a
bit mask containing a 1 for each channel that is currently
enabled.

130-System Administration Facilities UNIX Programmer's Manual

TRACE (7) TRACE (7)

VPMCLRC-Disable channels. This command disables the chan­
nels indicated by a 1 in the bit mask found in arg.

SEE ALSO
close (2) , ioctl(2), open (2) , read(2) in the UNIX Programmer's
Manual-Volume 2: System Calls and Library Routines.

UNIX Programmer's Manual System Administration Facilities-131

TTY(7) TTY(7)

NAME
tty - controlling terminal interface

DESCRIPTION

FILES

The file /dev/tty is, in each process, a synonym for the control ter­
minal associated with the process group of that process, if any. It
is useful for programs or shell sequences that wish to be sure of
writing messages on the terminal no matter how output has been
redirected. It can also be used for programs that demand the
name of a file for output, when typed output is desired and it is
tiresome to find out what terminal is currently in use.

/dev/tty
/dev/tty·

132-System Administration Facilities UNIX Programmer's Manual

INTRO(S)

NAME
intro - introduction to system maintenance procedures

DESCRIPTION

INTRO(S)

This section outlines certain procedures that will be of interest to
those charged with the task of system maintenance.

UNIX Programmer's Manual System Administration Facilities-133

MK(S) MK(S)

NAME
mk - how to remake the system and commands

DESCRIPTION
All source for the UNIX system is in a source tree distributed in
the directory lusrlsrc. This includes source for the operating sys ..
tern, libraries, commands, miscellaneous files necessary to the run­
ning system, and procedures to create everything from this source.

The top level consists of the directories cmd, Db, uts, head, and
stand as well as commands to remake each of these "directories".
These commands are named :mk, which remakes everything, and
:mkdir where dir is the directory to be recreated. Each recreation
command will make all or part of the piece, over which it has con­
trol. The command :mk will run each of these commands and
thus recreate the whole system.

The lib directory contains libraries used when loading user pro-'
grams. The largest and most important of these is the C library.
All libraries are in sub-directories and are created by a makefile or
runcom. A run com is a shell command procedure used specifically
to remake a piece of the system. :mklib will rebuild the libraries
that are given as arguments. The argument \. will cause it to
remake all libraries.

The head directory contains the header files, usually found in
lusr linclude on the running system. :mkhead will install those
header files that are given as arguments. The argument \. will
cause it to install all header files.

The uts directory contains the source for the UNIX operating sys­
tem. :mkuts (no arguments) invokes a series of makefiles that will
recreate the operating system.

The stand directory contains stand-alone commands and boot pro­
grams. :mkstand will rebuild and install th~se programs.

The cmd directory contains files and directories. :mkcmd
transforms source into a command based upon its suffix (.1, .y, .c,
.s, .sh), or its makefile (see make (1) or runcom. A directory is
assumed to have a makefile or a runcom that will take care of
creating everything associated with that directory and its sub­
directories. Makefiles and runcoms are named command.mk and
command .rc respectively.

The command :mkcmd will recreate commands based upon a
makefile or runcom if one of them exists; alternatively commands

134-System' Administration Facilities UNIX Programmer's Manual

MK(8) MK(8)

are recreated in a standard way based on the suffix of the source
file. All commands requiring more than one file of source are
grouped in sub-directories, and must have a makefile or a runcom.
C programs (.c)· are compiled by the C compiler and loaded
stripped with shared text. Assembly language programs (.s) are
assembled with /usr/include/sys.s which contains the system call
definitions. Yacc programs (.y) and lex programs (,0 are pro­
cessed by yacc (1) and lex (1) respectively, before C compilation.
Shell programs (.sh) are copied to create the command. Each of
these operations leaves a command in .!cmd which is then installed
by using /etc/install.

The arguments to :mkcmd are either command names or subsys­
tem names. The subsystems distributed with the UNIX system
are: acct, graf, rje, sees, and text. Prefacing the :mkcmd instruc­
tion with an assignment to the shell variable SARGS will cause the
indicated components of the subsystem to be rebuilt. The entire
sees subsystem can be rebuilt by:

11~srlsrc/:mkcmd sccs

while ~ile delta component of sees can be rebuilt by:

ARGS== "delta " lusrlsrc/:mkcmd sccs

The log command, which is a part of the stat package, which is
itself a part of the graf package, can be rebuilt by:

ARGS=="stat log" lusrlsrc/:mkcmd graf

The argument \. will cause all commands and subsystems to be
rebuilt.

Makefiles, both in .!emd and in sub-directories, have a standard
format. In particular :mkcmd depends on there being entries for
install and clobber. Install should cause everything over which
the makefile has jurisdiction to be made and installed by
/ etc/install. Clobber should cause a complete cleanup of all
unnecessary files resulting from the previous invocation.

Most of the runcoms in .!cmd (as opposed to sub-directories)
relate in particular to a need for separated instruction and data (I
and D) space.

In the past, dependency on the C library routine ctime (3C) was
also important. Ctime had to be modified for all systems located
outside of the eastern time zone, and all commands that referenced
it had to be recompiled. Ctime has been rewritten to check the

UNIX Programmer's Manual System Administration Facilities-135

MK(8) MK(8)

environment (see environ (5)) for the time zone. This results in
time zone conversions possible on a per-process basis. The file
/etc/profile sets the initial environment for each user, and /etc/rc
sets it for certain system daemons. These two programs are the
only ones which must be modified outside of the eastern time zone.

An effort has been made to separate the creation of a command
from source, and its installation on the running system. The com­
mand /etc/install is used by :mkcmd and most makefiles to install
commands in the proper place on the running system. The use of
install allows maximum flexibility in the administration of the sys­
tem. Install makes very few assumptions about where a command
is located, who owns it, and what modes are in effect. All assump­
tions may be overridden on invocation of the command, or more
permanently by redefining a few variables in install. The object is
to install a new version of a command in the same place, with the
same attributes as the prior version.

In addition, the use of a separate command to perform installation
allows for the creation of test systems in other than standard
places, easy movement of commands to balance load, and indepen­
dent maintenance of makefiles. The minimization of makefiles in
most cases, and the site independence of the others should greatly
reduce the necessary maintenance, and allow makefiles to be con­
sidered part of the standard source.

SEE ALSO
install (1 M) .
lex (I) , make(I), yacc(l) in the UNIX Programmer's Manual­
Volume 1: Commands and Utilities.
ctime(3C) , environ (5) in the UNIX Programmer's Manual­
Volume 2: System Calls and Library Routines.

136-System Administration Facilities UNIX Programmer's Manual

RJE(S) RJE(S)

NAME
rje - RJE (Remote Job Entry) to IBM

SYNOPSIS
lusr Irje/rjeinit
lusr Irje/rjebaJt

DESCRIPTION
RJE is the communal name for a collection of programs and a file
organization that allows a UNIX system, equipped with the
appropriate hardware and associated Virtual Protocol Machine
(VPM) software, to communicate with IBM's Job Entry Subsys­
tems by mimicking an IBM 360 remote work station.

Implementation.
RJE is initiated by the command rjeinit and is terminated grace­
fully by the command rjehalt. While active, RJE runs in the
background and requires no human supervision. It quietly
transmits, to the IBM system, jobs that have been queued by the
send (1 e) command, and operator requests that have been entered
by the rjestat (1 e) command. It receives, from the IBM system,
print and punch data sets and message output. It enters the data
sets into the proper UNIX system directory and notifies the
appropriate user of their arrival. It stores the message output in
the file resp and makes these messages available for public inspec­
tion, so that rjestat (1e), in particular, may extract responses.

Unless otherwise specified, all files and commands described below
reside in directory lusr/rje (first exceptions: send and rjestat).

There are two sources of data to be transmitted by RJE from the
UNIX system to an IBM System/370. In both cases, the data is
organized as files in the lusr/rje/squeue directory. The first are
files named co- which are created by the enquiry command
rjestat (1 e). The second source, containing the bulk of the data,
are files named rd- or sq- which have been created by send(1e)
and queued by the program rjeqer. On completion of processing
send invokes rjeqer. Rjeqer and rjestatlC inform the program
rjexmit that a file has been queued via the file joblog. Upon suc­
cessful transmission of the data to the IBM machine, rjexmit
removes the queued file. As files are transmitted and received, the
program rjedisp writes an entry containing the date, time, file
name, logname, and number of records in the file acctlog, if it
exists. This file can be used for local logging or accounting infor­
mation, but is not used elsewhere by RJE. The use of this

UNIX Programmer's Manual System Administration Facilities-137

RJE(8) RJE(8)

information is up to the RJE administrator.

Each time rjeinit is invoked, the joblog file is truncated and
recreated from the contents of the /usr/rje/squeue directory. Dur­
ing this time, rjeinit prevents simultaneous updating of the joblog
file.

Output from the IBM system is classified as either a print data set,
a punch data set, or message output. Print output is converted to
an ASCII text file with standard tabs. Form feeds are suppressed,
but the last line of each page is distinguished by the presence of an
extraneous trailing space. .Punch output is converted to pnch (4)
format. This classification and both conversions occur as the out­
put is received. Files are moved or copied into the appropriate
user's directory and assigned the name prnt. or pncb., respectively,
or placed into user directories under user-specified names, or used
as input to programs to be automatically executed, as specified by
the user. This process is driven by the "usr== ... " specification. RJE
retains ownership of these files and permits read-only access to
them. Message output is digested by RJE immediately and is not
retained. '

A record is maintained for each job that passes through RJE.
Identifying information is extracted contextually from files
transmitted to and received from the IBM system.

Status messages are returned from IBM in response to enquiries
entered by users. All messages received by RJE are appended to
the resp file. The resp file is automatically truncated when it
reaches 70,000 bytes. Each enquiry is preceded and followed by
an identification card image of the form "$UX <process id>".
The IBM system will echo this back as an illegal command. The
appearance of process ids in the response stream permits responses
to be passed on to the proper users.

While it is active, RJE occupies at least the three process slots that
are appropriated by rjeinit. These slots are used to run rjexmit,
the transmitter, rjerecv, the receiver, and rjedisp, the dispatcher.
These three processes are connected by pipes. The function of
each is as follows:

rjexmit Cycles repetitively, looking for data to transmit to the IBM
system. After transmission, rjexmit passes an event notice
to rjedisp. If rjexmit encounters a stop file, (created by
rjehalt) , it exits normally. In the case of error termina­
tion, rjexmit reboots RJE by executing rjeinit.

138-System Administration Facilities UNIX Programmer's Manual

RJE(S) RJE(S)

rjerecv Cycles repetitively, looking for data returning from the
IBM machine. Upon receipt of data, rjerecv notifies either
rjexmit or rjedisp of the event (transfer information is
sometimes passed to rjexmit). Rjerecv exits normally at
the first appropriate moment when it encounters the file
stop, or exits reluctantly when it encounters a run of
errors.

rjedisp Follows up event notices by directing output files, updating
records, and notifying users. Rjedisp references the sys­
tem files /etc/passwd and /etc/utmp to correlate user
names, numeric ids, and terminals. Termination of
rjerecv causes rjedisp to exit also.

Rjeinit has the capability of dialing any remote IBM system with
the proper hardware and software configuration.

Most RJE files and directories are protected from unauthorized
tampering. The exception is the spool directory. It is used by
send (1 C) to create temporary files in the correct file system.
Rjeqer and rjestat (1 C), the user's interfaces to RJE, operate in
setuid mode to contribute the necessary permission modes.

Administration
Some minimal oversight of each RJE subsystem is required. The
RJE mailbox should be inspected and cleaned out periodically.
The job directory should also be checked. The only files placed
there are output files whose destination file systems are out of
space. Users should be given a short period of time (say, a day or
two), and then these files should be removed.

The configuration table /usr/rje/lines is accessed by all com­
ponents of RJE. Each line of the table (maximum of S) defines an
RJE connection. Its seven columns may be labeled host, system,
directory, prefix, device, peripherals and parameters. These
columns are described as follows:

host

system

The name of a remote IBM computer (e.g., A B C). This
string can be up to 5 characters.

The nodename of a UNIX system. This name should be
the same as the nodename from uname (1).

UNIX Programmer's Manual System Administration Facilities-139

RJE(S) RJE(S)

directory

prefix

device

This is the directory name of the servicing RJE subsystem
(e.g., lusr Irjet) .

This is the string prefixed (redundantly) to several crucial
files and programs in directory (e.g., rjel, rje2, rje3).

This is the name of the controlling VPM device, with Idev I
excised.

peripherals
This field contains information on the logical devices
(readers, printers, punches) used by RJE. Each subfield is
separated by:, and is described as follows:

(I) Number of logical readers.
(2) Number of logical printers.
(3) Number of logical punches.

Note: the number of peripherals specified for an RJE sub­
system must agree with the number of peripherals which
have been described on the remote machine for that line.

parameters
This field contains information on the type of connection
to make. Each subfield is separated by:. Any or all fields
may be omitted; however, the fields are positional. All but
trailing delimiters must be present. For example, in

1200:512:::9-555-1212
subfields 3 and 4 are missing, but the delimiters are
presenL Each subfield is defined as follows:

(1) space
This subfield specifies the amount of space (8) in
blocks that RJE tries to maintain on file systems it
touches. The default is 0 blocks. Send will not
submit jobs, and rjeinit issues a warning when less
than 1.5S blocks are available; rjerecv stops
accepting output from the host when the capacity
falls to S blocks; RJE becomes dormant, until con­
ditions improve. If the space on the file system
specified by the user on the 44usr-" card would be
depleted to a point below S, the file will be put in

140-System Administration Facilities UNIX Programmer's Manual

RJE(S)

(2) size

RJE(S)

the job subdirectory of the connection's home
directory, rather than in the place that the user
requested.

This subfield specifies the size in blocks of the
largest file that can be accepted from the host
without truncation taking place. The default is no
truncation.

(3) badjobs
This subfield specifies what to do with undeliver­
able returning jobs. If an· output file is undeliver­
able for any reason other than file system space
limitations (e.g., missing or invalid "usr-" card)
and this subfield contains the letter y, the output
will be retained in the job subdirectory of the
home directory, and login rje is notified. If this
subfield contains an n or has any other value,
undeliverable output will be discarded. The
default is n.

(4) console
This subfield specifies the status of the interactive
status terminal for this line. If the subfield con­
tains an i, all console status facilities are inhibited
(e.g., rjestat (1 C) will not behave like a status ter­
minal} . In all cases, the normal non-interactive
uses of rjestat (1 C) will continue to function. The
default is y.

(5) dial-up
This subfield contains a telephone number to be
used to call a host machine. The telephone
number may contain the digits 0 through 9 and
the character - which denotes a pause. If the
telephone number is not present, no dialing is
attempted and a leased line is assumed.

(6) transmission block size
This subfield specifies the size (in bytes) of
transmission blocks to be sent to the IBM host for
a particular rje subsystem. The maximum permit­
ted block size is 512. The default is 512.

Sign-on is controlled by the existence of a signon file in the home

UNIX Programmer's· Manual System Administration Facilities-141

RJE(S) RJE(S)

directory. If this file is present, its contents are sent as a sign-on
message to the host system. If this file does not exist, a blank card
is sent. Sign-off is controlled in the same way, except that the
signofl' file is sent by rjehalt if it exists. If the signofl' file does not
exist, a "I*signofl''' card is sent. These files should be ASCII text
and no more than 80 characters.

Send (I C) and rjestat (I C) select an available connection by index­
ing on the host field of the configuration table. RJE programs
index on the prefix field. A subordinate directory, sque, exists in
lusr Irje for use by rjedisp and shqer programs. This directory
holds those output files that have been designated as standard
input to some executable file. This designation is done via the
"usr= .•• " specification. Rjedisp places the output files here and
updates the file log to specify the order of execution, arguments to
be passed, etc. Shqer executes the appropriate files.

All RJE programs are shared text; therefore, if more than one RJE
is to be run on a given UNIX system, simply link (via In) RJE2
program names to RJE names in lusr.

SEE ALSO
mk(8).
cp(I), rjestat(IC), send (I C) , uname(I) in the UNIX
Programmer's Manual Volume 1: Commands and Utilities.
pnch(4) in the UNIX Programmer's Manual Volume 2: System
Calls and Library Routines.

DIAGNOSTICS
Rjeinit provides brief error messages describing obstacles encoun­
tered while bringing up RJE. They can best be understood in the
context of the RJE source code. The most frequently occurring one
is "cannot open /dev/vpm?". This may occur if the VPM script
has not been started, or if another process already has the VPM
device open.

Once RJE has been started, users should assist in monitoring its
performance, and should notify operations personnel of any per­
ceived need for remedial action. Rjestat (I C) will aid in diagnos­
ing the current state of RJE. It can detect, with some reliability,
when the far end of the communications line has gone dead, and
will report in this case that the host computer is not responding to
RJE.

142-System Administration Facilities UNIX Programmer's Manual

] VOLUME 1
1. Commands and Utilities

I VOLUME 3
1M. System Administration Commands
and Applications Programs

] VOLUME 2
2. System Calls

] VOLUME 2
3. Library Routines

] VOLUME 2
3C. C and Assembler Library Routines

] VOLUME 2
3S. Standard I/O Library Routines

] VOLUME 2
3M. Mathematical Library Routines

] VOLUME 2
3X. Miscellaneous Routines

] VOLUME 2
3F. FORTRAN Library Routines

] VOLUME 2
4. File Formats

] VOLUME 2
5. Miscellaneous Facilities

] VOLUME1
6. Ga[Tles

I VOLUME 3
7. Special Files

I VOLUME 3
8. System Maintenance Procedures

Other Volumes
of the

UNIX* Programmer's Manual

Volume1
Commands and Utilities, contains the
manual pages for the commands and
applications programs that can be invoked
directly by the user or by command language
procedures. Manual pages describe the
purpose and use of the UNIX system
commands, warn of potential problems, give
examples, and tell where to find related
information.

Volume 2
System Calls and Library Routines,
describes the programming features of the
UNIX system. Included are the descriptions
of system calls, subroutines, libraries, file
formats, macro packages, and character set
tables.

Volume 4
Documentation Preparation, describes and
explains the commands and macros needed
to input and format a document. It provides
examples of advanced UNIX system editing
commands and the stream editor (sed), a
non-interactive content editor. Also
described are the text processors used to
format text, nrott and trott, and the
preprocessors, tbl and eqn used to prepare
tables and typeset mathematics.

VolumeS
Languages and Support Tools, describes
languages and software tools that aid the
UNIX system user. There is detailed
information on the uses of the following
languages and programming support tools:
Fortran and C programming languages,
make. SCCS. M4 Macro Processor, awk,
Link Editor, Common Object File Format.
Arbitrary Precision Desk CalculatO'r
Language. Interactive Desk Calculator,
Lexical Analyzer Generator, yacc, RJE, and
UUCP.

Select Code 320-033
ISBN 0-03-009313-9

	000001
	000002
	000003
	000004
	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	00013
	00014
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	xBack

