

ATs.T

UNIX® SYSTEM V/386
RELEASE4
MULTIBUS® Reference Manual

·::::\ ..

'''\~:::t::. ::·

UNIX Software Operation

Copyright 1990, 1989, 1988, 1987, 1986, 1985, 1984 AT&T
All Rights Reserved
Printed in USA

Published by Prentice-Hall, Inc.
A Division of Simon & Schuster
Englewood Cliffs, New Jersey 07632

No part of this publication may be reproduced or transmitted in any form or by any means-graphic,
electronic, electrical, mechanical, or chemical, including photocopying, recording in any medium, tap­
ing, by any computer or information storage and retrieval systems, etc., without prior permissions in
writing from AT&T.

ACKNOWLEDGEMENT

Portions of this book have been provided by Intel Corporation.

IMPORT ANT NOTE TO USERS

While every effort has been made to ensure the accuracy of all information in this document, AT & T
assumes no liability to any party for any loss or damage caused by errors or omissions or by state­
ments of any kind in this document, its updates, supplements, or special editions, whether such er­
rors are omissions or statements resulting from negligence, accident, or any other cause. AT&T furth­
er assumes no liability arising out of the application or use of any product or system described
herein; nor any liability for incidental or consequential damages arising from the use of this docu­
ment. AT&T disclaims all warranties regarding the information contained herein, whether expressed,
implied or statutory, including implied warranties of merchantability or fitness for a particular purpose.
AT&T makes no representation that the interconnection of products in the manner described herein
will not infringe on existing or future patent rights, nor do the descriptions contained herein imply the
granting or license to make, use or sell equipment constructed in accordance with this description.

AT&T reserves the right to make changes without further notice to any products herein to improve
reliability, function, or design.

TRADEMARKS

UNIX is a registered trademark of AT&T.
intel, iRMK, iRMX, iSBC, iSBX, MULTIBUS, and OpenNET are registered
trademarks of Intel Corporation.

10 9 8 7 6 5 4 3 2 1

ISBN 0-13-957481-6

UNIX
PRESS

A Prentice Hall Title

P R E N T C E H A L L

ORDERING INFORMATION

UNIX® SYSTEM V, RELEASE 4 DOCUMENTATION

To order single copies of UNIX® SYSTEM V, Release 4 documentation,
please call (201) 767-5937.

ATTENTION DOCUMENTATION MANAGERS AND TRAINING DIRECTORS:
For bulk purchases in excess of 30 copies please write to:
Corporate Sales
Prentice Hall
Englewood Cliffs, N.J. 07632
Or call: (201) 592-2498

ATTENTION GOVERNMENT CUSTOMERS: For GSA and other pricing
information please call (201) 767-5994.

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto
Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo
Simon & Schuster Asia Pte. Ltd., Singapore
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

AT&T UNIX® System V Release 4
General Use and System Administration

*UNIX® System V/386 Release 4 PC-Interface Administrator's Guide
*UNIX® System V/386 Release 4 Network User's and Administrator's Guide
*UNIX® System V/386 Release 4 Product Overview and Master Index
*UNIX® System V/386 Release 4 System Administrator's Reference Manual
*UNIX® System V/386 Release 4 User's Reference Manual
*UNIX® System V/386 Release 4 MULTIBUS® Reference Manual
*UNIX® System V/386 Release 4 MULTIBUS® Installation and Configuration Guide
*UNIX® System V/386 Release 4 Mouse Driver Administrator's Guide
*UNIX® System V/386 Release 4 Transport Application Interface Guide

UNIX® System V Release 4 User's Guide
UNIX® System V Release 4 System Administrator's Guide

General Programmer's Series

*UNIX® System V/386 Release 4 Programmer's Reference Manual
*UNIX® System V/386 Release 4 Programmer's Guide: SCSI Driver Interface
UNIX® System V Release 4 Programmer's Guide: ANSI C and Programming Support Tools
UNIX® System V Release 4 Programmer's Guide: Character User Interface (FMLI and ETI)
UNIX® System V Release 4 Programmer's Guide: Networking Interfaces
UNIX® System V Release 4 Programmer's Guide: POSIX Conformance
UNIX® System V Release 4 Programmer's Guide: Support Services and Application

Packaging Tools

System Programmer's Series

*UNIX® System V/386 Release 4 Device Driver Interface/Driver-Kernel Interface (DDl/DKI)
Reference Manual

*UNIX® System V/386 Release 4 Integrated Software Development Guide
UNIX® System V Release 4 Programmer's Guide: STREAMS

Migration Series

UNIX® System V Release 4 ANSI C Transition Guide
UNIX® System V Release 4 BSD/XENIX® Compatibility Guide

*UNIX® System V/386 Release 4 Migration Guide

Graphics Series

UNIX® System V Release 4 OPEN LOOKT" Graphical User Interface Programmer's Reference
Manual

UNIX® System V Release 4 OPEN LOOKT" Graphical User Interface User's Guide
UNIX® System V Release 4 Programmer's Guide: XWIN™ Graphical Windowing System Xlib­

C Language Interface
UNIX® System V Release 4 Programmer's Guide: OPEN LOOKT" Graphical User Interface
UNIX® System V Release 4 Programmer's Guide: Xll/NeWS® Graphical Windowing System

NeWS
UNIX® System V Release 4 Programmer's Guide: Xll/NeWS® Graphical Windowing System

Server Guide
UNIX® System V Release 4 Programmer's Guide: XI I/NeWS® Graphical Windowing System

tNt Technical Reference Manual
UNIX® System V Release 4 Programmer's Guide: Xll/NeWS® Graphical Windowing System

XVIEW™
UNIX® System V Release 4 Programmer's Guide: XWIN™ Graphical Windowing System

Addenda: Technical Papers
UNIX® System V Release 4 Programmer's Guide: XWIN™ Graphical Windowing System

The X Toolkit _

*386 specific titles II
Available from Prentice Hall -

1

2

3

4

5

6

Contents

Permuted Index

Manual Overview
Manual Overview

MULTIBUS Commands
MULTIBUS I and MULTIBUS II Commands

Functions And Libraries
Interconnect-Space Application Interface

Intel's System V/386 File Formats
Intel's System V/386 File Formats

Device Information
Disk And Tape Device Drivers

Device Drivers
Device Drivers

Table of Contents

1-1

2-1

3-1

4-1

5-1

6-1

Table of Contents

7

8

ii

System Maintenance Commands
Maintenance Commands

Static Bad Block Handling
Overview
Architecture

Appendix A
Window Interface

Appendix B
Information Unique to MULTIBUS Systems

Appendix C
Related Publications

7-1

8-1

8-2

MULTIBUS Reference Manual

Figures and Tables

Figure 1: An Example of Windows Displayed on the SYP 520
Figure 2: Basic Menu Selections
Figure 3: Expanded Menu Selections

Table of Contents

2
4
7

iii

Permuted Index

device driver i224a iSBC
device driver i224atp iSBC

controller device driver i410 iSBC
driver i530 iSBC

device driver i214 iSBCR
device driver i214tp iSBC

Data Link driver for iNA961 Release
i8251 console terminal/iSBXT

driver i354 iSBX
device driver i258 iSBC

device driver i258tp iSBC
i546 iSBC

module formats download loads
formats download loads 8086

/icsslot, icsgetrec utilities to
d258 i82258
ckperms set

cpout copy out file
script device driver ates

driver iasy
controller script device driver

on the communication/ ccibind
/reads interconnect registers of the

in the interconnect space of a
into interconnect registers of the
bootserver starts a MULTIBUS II

boot service daemon
sgib install MULTIBUS

bps
processor I initbp initializes the

driver
board and returns the values in the

interface device driver
communications/ ccisrvinfo

subchannel on the communications/
a line on the communication/

with a subchannel on a line on the/
program on the communications/

information on the communications/
the communications controller

communications controller
program on to the communications/

on the communications controller
on the communications controller

line to a new host on the/
from a line on the communications/

i354 iSBX 354 dual

Permuted Index

186/224A peripheral controller disk i224a(1M)
186/224A peripheral controller tape i224atp(1M)
186/410 serial communications ... i4(1M)
186/530 Ethernet controller device i530(1M)
214 peripheral controller disk .. i2(1M)
214 peripheral controller tape .. i2(1M)
3.0 edlina External ... edlina(lM)
351 driver ... i825(1M)
354 dual channel serial-port device i354(1M)
386/258 peripheral controller ... i258(1M)
386/258 peripheral controller tape i258tp(1M)
546 multi-port serial controller .. i546(1M)
8086 absolute library and object download(lM)
absolute library and object module download(lM)
access MULTIBUS II interconnect/ icsrd(lM)
ADMA device driver .. d258(1M)
and/or verify permissions on files ckperms(lM)
archives to multiple volumes .. cpout(lM)
asynchronous terminal controller atcs(lM)
asynchronous (terminal) device ... iasy(lM)
ates asynchronous terminal atcs(lM)
binds a line discipline to a line ccibind(lM)
board and returns the values in the/ ics read(lM)
board /finds a specific record ics_flnd_rec(lM)
board ics write writes ... ics write(lM)
boot servi~e daemon .. boot~er(lM)
bootserver starts a MULTIBUS II bootserver(lM)
bootstrap loaders .. sgib(lM)
Bootstrap Parameter String driver bps(lM)
bootstrap parameter string on the initbp(lM)
bps Bootstrap Parameter String .. bps(lM)
buffer /registers of the ... ics_read(lM)
cci communications controller .. cci(lM)
CO server information on the ccisrvinfo(lM)
cciattach Creates a connection to a cciattach(lM)
ccibind binds a line discipline to ccibind(lM)
ccidetach disassociates this host ccidetach(lM)
ccifree frees a line discipline ccifree(l M)
ccildinfo line discipline .. ccildinfo(lM)
ccildlist line discipline list on ccildlist(l M)
ccilinfo line information on the ccilinfo(lM)
cciload load a line discipline ... cciload(lM)
ccisrvinfo CCI server information ccisrvinfo(lM)
ccisubinfo subchannel information ccisubinfo(lM)
cciswitch switch a subchannel on a cciswitch(lM)
cciunbind unbinds a line discipline cciunbind(lM)
channel serial-port device driver i354(1M)

1

Permuted Index

permissions on files
rte MULTIBUS

a line discipline to a line on the
a connection to a subchannel on the

with a subchannel on a line on the
a line discipline program on the

/line discipline information on the
/line discipline list on the

ccilinfo line information on the
a line discipline program on to the

/CCI server information on the
/subchannel information on the
I on a line to a new host on the

line discipline from a line on the
driver i410 iSBC 186/410 serial

device driver cci
a line to a new host on the

file format
config MULTIBUS II

communications/ cciattach Creates a

console
i8251

rci debug
a subchannel on the communications

to a line on the communication
on a line on the communications
program on the communications

information on the communications
list on the communications

information on the communications
program on to the communications
information on the communications
information on the communications

to a new host on the communications
from a line on the communications

i258 iSBC 386/258 peripheral
iSBC 186/410 serial communications

i530 iSBC 186/530 Ethernet
i214 iSBCR 214 peripheral

2

i224a iSBC 186/224A peripheral
on an ethemet node9s ethemet
resets and reloads the ethemet
i546 iSBC 546 multi-port serial

cci communications
ates asynchronous tetminal
i214tp iSBC 214 peripheral

ckperms set and/ or verify .. ckperms(lM)
clock driver .. rtc(lM)
communication controller /binds ccibind(lM)
communications controller /Creates cciattach(lM)
communications controller /host ccidetach(lM)
communications controller /frees ccifree(lM)
communications controller .. ccildinfo(lM)
communications controller ccildlist(lM)
communications controller .. ccilinfo(lM)
communications controller /load cciload(lM)
communications controller .. ccisrvinfo(lM)
communications controller ccisubinfo(lM)
communications controller ... cciswitch(lM)
communications controller /a cciunbind(lM)
communications controller device ... i4(1M)
communications controller interface cci(lM)
communications controller /switches ttyswitch(lM)
config MULTIBUS II configuration config(lM)
configuration file format .. config(lM)
connection to a subchannel on the cciattach(lM)
console console port device driver console(lM)
console port device driver .. console(lM)
console terminal/iSBXT 351 driver i825(1M)
console/rd protocol driver ... rci(lM)
controller /Creates a connection to cciattach(lM)
controller /binds a line discipline ccibind(lM)
controller /host with a subchannel ccidetach(lM)
controller I frees a line discipline ccifree(lM)
controller /line discipline .. ccildinfo(lM)
controller /line discipline .. ccildlist(lM)
controller ccilinfo line ... ccilinfo(lM)
controller /load a line discipline cciload(lM)
controller ccisrvinfo CCI server ccisrvinfo(lM)
controller ccisubinfo subchannel ccisubinfo(lM)
controller /a subchannel on a line cciswitch(lM)
controller /a line discipline cciunbind(lM)
controller device driver ... i258(1M)
controller device driver i410 ... i4(1M)
controller device driver i530(1M)
controller disk device driver .. i2(1M)
controller disk device driver .. i224a(1M)
controller /provides information enetinfo(lM)
controller enetload .. enetload(lM)
controller .. i546(1M)
controller interface device driver ... cci(lM)
controller script device driver .. atcs(lM)
controller tape device driver .. i2(1M)

MULTIBUS Reference Manual

i224atp iSBC 186/224A peripheral
i258tp iSBC 386/258 peripheral

to a new host on the communications
mpscnv

volumes cpout
multiple volumes

subchannel on the/ cciattach

starts a MULTIBUS II boot service
3.0 edlina External

message delivery
rci

optionally write the manufacturer's
sets target for front panel message

terminal controller script
communications controller interface

console console port
d258 i82258 ADMA

dmaDMA
214 peripheral controller disk

iSBC 214 peripheral controller tape
186/224A peripheral controller disk
186/224A peripheral controller tape
iSBC 386/258 peripheral controller
386/258 peripheral controller tape
iSBX 354 dual channel serial-port
serial communications controller
iSBC 186/530 Ethernet controller

iasy asynchronous (terminal)
ics Interconnect Space

mpcMPC
mps Message Passing Space

V /386 OSI Transport Service (ots)
fddd MULTIBUS flexible disk

hddd MULTIBUS hard disk
tdd MULTIBUS tape

subchannel on a line on/ ccidetach
cciunbind unbinds a line

communications/ ccildinfo line
communications/ ccildlist line

ccifree frees a line
communications/ cciload load a line
communication/ ccibind binds a line

iSBCR 214 peripheral controller
iSBC 186/224A peripheral controller

fddd MULTIBUS flexible
hddd MULTIBUS hard

Permuted Index

Permuted Index

controller tape device driver ... i224atp(IM)
controller tape device driver ... i258tp(IM)
controller /switches a line .. ttyswitch(IM)
Convert transport code ... mpscnv(IM)
copy out file archives to multiple cpout(IM)
cpout copy out file archives to .. cpout(IM)
Creates a connection to a .. cciattach(IM)
d258 i82258 ADMA device driver d258(1M)
daemon bootserver .. bootserver(IM)
Data Link driver for iNA961 Release edlina(IM)
dbon sets target for front panel dbon(IM)
debug console/rd protocol driver rd(IM)
defect list mdl read and ... mdl(IM)
delivery dbon ... dbon(IM)
device driver ates asynchronous atcs(lM)
device driver cci cci(IM)
device driver console(IM)
device driver d258(1M)
device driver ... dma(IM)
device driver i214 iSBCR ... i2(1M)
device driver i214tp .. i2(1M)
device driver i224a iSBC .. i224a(IM)
device driver i224atp iSBC ... i224atp(1M)
device driver i258 .. i258(1M)
device driver i258tp iSBC ... i258tp(IM)
device driver i354 .. i354(1M)
device driver i410 iSBC 186/410 .. i4(1M)
device driver i530 .. i530(1M)
device driver .. iasy(IM)
device driver ics(IM)
device driver ... mpc(IM)
device driver ... mps(IM)
device driver ots System .. ots(IM)
device drivers .. fddd(IM)
device drivers ... hddd(IM)
device drivers ... tdd(IM)
disassociates this host with a ccidetach(IM)
discipline from a line on the/ cciunbind(IM)
discipline information on the ccildinfo(IM)
discipline list on the ... ccildlist(IM)
discipline program on the/ .. ccifree(IM)
discipline program on to the ... cciload(IM)
discipline to a line on the .. ccibind(IM)
disk device driver i214 ... i2(1M)
disk device driver i224a ... i224a(IM)
disk device drivers .. fddd(IM)
disk device drivers ... hddd(IM)

3

Permuted Index

ramd MULTIBUS RAM
hdformat low level hard

dma

library and object module formats
terminal controller script device
bps Bootstrap Parameter String

controller interface device
console console port device
d258 i82258 ADMA device

dma DMA device
edlina External Data Link

peripheral controller disk device
peripheral controller tape device
peripheral controller disk device
peripheral controller tape device

peripheral controller device
peripheral controller tape device

354 dual channel serial-port device
communications controller device

186/530 Ethernet controller device
i8251 console terminal/iSBXT 351

iasy asynchronous (terminal) device
ics Interconnect Space device

mpc MPC device
mps Message Passing Space device

OSI Transport Service (ots) device
ramd MULTIBUS RAM disk

rci debug console/rci protocol
rte MULTIBUS clock

fddd MULTIBUS flexible disk device
hddd MULTIBUS hard disk device

tdd MULTIBUS tape device
driver i354 iSBX 354

for iNA961 Release 3.0
ethemet node9s ethernet/

ethemet controller
i530 iSBC 186/530

information on an ethernet node9s
enetload resets and reloads the

enetinfo provides information on an
iNA961 Release 3.0 edlina

drivers
cpout copy out

config MULTIBUS II configuration
set and/ or verify permissions on

interconnect space of/ ics _find _rec

4

disk driver ... ramd(lM)
disk formatter .. hdformat(lM)
DMA device driver ... dma(lM)
dma DMA device driver .. dma(lM)
download loads 8086 absolute download(lM)
driver ates asynchronous ... atcs(lM)
driver ... bps(lM)
driver cci communications ... cci(lM)
driver .. console(lM)
driver ... d258(1M)
driver ... dma(lM)
driver for iNA961 Release 3.0 .. edlina(lM)
driver i214 iSBCR 214 ... i2(1M)
driver i214tp iSBC 214 .. i2(1M)
driver i224a iSBC 186/224A .. i224a(1M)
driver i224atp iSBC 186/224A i224atp(1M)
driver i258 iSBC 386/258 ... i258(1M)
driver i258tp iSBC 386/258 ... i258tp(1M)
driver i354 iSBX ... i354(1M)
driver i410 iSBC 186/410 serial .. i4(1M)
driver i530 iSBC ... i530(1M)
driver .. i825(1M)
driver .. iasy(lM)
driver ... ics(lM)
driver .. mpc(lM)
driver .. rnps(lM)
driver ots System V /386 .. ots(lM)
driver .. ramd(lM)
driver ... rci(lM)
driver ... rtc(lM)
drivers ... fddd(lM)
drivers .. hddd(lM)
drivers .. tdd(lM)
dual channel serial-port device .. i354(1M)
edlina External Data Link driver edlina(lM)
enetinfo provides information on an enetinfo(lM)
enetload resets and reloads the enetload(lM)
Ethernet controller device driver i530(1M)
ethemet controller /provides enetinfo(lM)
ethemet controller .. enetload(lM)
ethemet node9s ethernet controller enetinfo(lM)
External Data Link driver for ... edlina(lM)
fddd MULTIBUS flexible disk device fddd(lM)
file archives to multiple volumes cpout(lM)
file format ... config(lM)
files ckperms .. ckperms(lM)
finds a specific record in the ics _find _rec(lM)

MULTIBUS Reference Manual

fddd MULTIBUS
MULTIBUS II configuration file

absolute library and object module
hdformat low level hard disk
the communications/ ccifree

dbon sets target for
string on the processor in the
reset resets the processor in a

hddd MULTIBUS
hdformat low level

drivers
formatter

a subchannel on a line to a new
ttyswitch switches a line to a new
the/ ccidetach disassociates this

controller disk device driver
controller tape device driver
controller disk device driver
controller tape device driver

controller device driver
controller tape device driver

serial-port device driver
communications controller device/

controller device driver
controller

d258
driver
driver
driver

record in the interconnect space/
MULTIBUS II/ icsrd, icswr, icsslot,

utilities to access MULTIBUS II/
registers of the board and returns/
access MULTIBUS II/ icsrd, icswr,

to access MULTIBUS II/ icsrd,
registers of the board

bootserver starts a MULTIBUS
config MULTIBUS

utilities to access MULTIBUS
External Data Link driver for
ethernet/ enetinfo provides

ccildinfo line discipline
controller ccilinfo line

controller ccisrvinfo CO server
controller ccisubinfo subchannel

parameter string on the processor/
string on the processor in/ initbp

Permuted Index

Permuted Index

flexible disk device drivers ... fddd(lM)
format config .. config(lM)
formats download loads 8086 download(lM)
formatter ... hdformat(lM)
frees a line discipline program on ccifree(lM)
front panel message delivery ... dbon(lM)
given slot /the bootstrap parameter initbp(lM)
given slot reset(lM)
hard disk device drivers ... hddd(lM)
hard disk formatter ... hdformat(lM)
hddd MULTIBUS hard disk device hddd(lM)
hdformat low level hard disk hdformat(lM)
host on the communications/ /switch cciswitch(lM)
host on the communications/ ttyswitch(lM)
host with a subchannel on a line on ccidetach(lM)
i214 iSBCR 214 peripheral ... i2(1M)
i214tp iSBC 214 peripheral .. i2(1M)
i224a iSBC 186/224A peripheral i224a(1M)
i224atp iSBC 186/224A peripheral i224atp(1M)
i258 iSBC 386/258 peripheral ... i258(1M)
i258tp iSBC 386/258 peripheral i258tp(1M)
i354 iSBX 354 dual channel ... i354(1M)
i410 iSBC 186/410 serial .. i4(1M)
i530 iSBC 186/530 Ethernet .. i530(1M)
i546 iSBC 546 multi-port serial ... i546(1M)
i82258 ADMA device driver ... d258(1M)
i8251 console terminal/iSBXT 351 i825(1M)
iasy asynchronous (terminal) device iasy(lM)
ics Interconnect Space device .. ics(lM)
ics_find_rec finds a specific ics_find_rec(lM)
icsgetrec utilities to access ... icsrd(lM)
icsrd, icswr, icsslot, icsgetrec .. icsrd(lM)
ics_read reads interconnect ... ics_read(lM)
icsslot, icsgetrec utilities to .. icsrd(lM)
icswr, icsslot, icsgetrec utilities ... icsrd(lM)
ics _write writes into interconnect ics _ write(lM)
II boot service daemon .. bootserver(lM)
II configuration file format .. config(lM)
II interconnect space /icsgetrec icsrd(lM)
iNA961 Release 3.0 edlina ... edlina(lM)
information on an ethernet node9s enetinfo(lM)
information on the communications/ ccildinfo(lM)
information on the communications ccilinfo(lM)
information on the communications ccisrvinfo(lM)
information on the communications ccisubinfo(lM)
initbp initializes the bootstrap .. initbp(lM)
initializes the bootstrap parameter initbp(lM)

5

Permuted Index

sgib
and returns the/ ics read reads

ics write writes into
ics

utilities to access MULTIBUS II
I finds a specific record in the
cci communications controller

disk device driver i224a
tape device driver i224atp

controller device driver i410
device driver i530

device driver i214tp
device driver i258

tape device driver i258tp
controller i546

disk device driver i214
device driver i354

hdformat low
download loads 8086 absolute

communications/ cciunbind unbinds a
communications/ ccildinfo
communications/ ccildlist

communications/ ccifree frees a
communications/ cciload load a
communication/ ccibind binds a

communications controller ccilinfo
binds a line discipline to a

I this host with a subchannel on a
/unbinds a line discipline from a

cciswitch switch a subchannel on a
ttyswitch switches a
edlina External Data

write the manufacturer's defect

6

ccildlist line discipline
to the communications/ cciload

sgib install MULTIBUS bootstrap
object module formats download

hdformat
mdl read and optionally write the

manufacturer's defect list
dbon sets target for front panel

mps
8086 absolute library and object

mpc

driver

install MULTIBUS bootstrap loaders sgib(lM)
interconnect registers of the board ics _read(lM)
interconnect registers of the board ics_write(lM)
Interconnect Space device driver ics(lM)
interconnect space /icsgetrec ... icsrd(lM)
interconnect space of a board ics_find_rec(lM)
interface device driver .. cci(lM)
iSBC 186/224A peripheral controller i224a(1M)
iSBC 186/224A peripheral controller i224atp(1M)
iSBC 186/410 serial communications i4(1M)
iSBC 186/530 Ethernet controller i530(1M)
iSBC 214 peripheral controller tape i2(1M)
iSBC 386/258 peripheral controller i258(1M)
iSBC 386/258 peripheral controller i258tp(1M)
iSBC 546 multi-port serial ... i546(1M)
iSBCR 214 peripheral controller ... i2(1M)
iSBX 354 dual channel serial-port i354(1M)
level hard disk formatter hdformat(lM)
library and object module formats download(lM)
line discipline from a line on the cciunbind(lM)
line discipline information on the ccildinfo(lM)
line discipline list on the ccildlist(lM)
line discipline program on the ccifree(lM)
line discipline program on to the cciload(lM)
line discipline to a line on the ccibind(lM)
line information on the .. ccilinfo(lM)
line on the communication/ ccibind ccibind(lM)
line on the communications/ ccidetach(lM)
line on the communications/ cciunbind(lM)
line to a new host on the/ ... cciswitch(lM)
line to a new host on the/ ... ttyswitch(lM)
Link driver for iNA961 Release 3.0 edlina(lM)
list mdl read and optionally .. mdl(lM)
list on the communications/ .. ccildlist(lM)
load a line discipline program on cciload(lM)
loaders sgib(lM)
loads 8086 absolute library and download(lM)
low level hard disk formatter hdformat(lM)
manufacturer's defect list .. mdl(lM)
mdl read and optionally write the mdl(lM)
message delivery .. dbon(lM)
Message Passing Space device driver mps(lM)
module formats download loads download(lM)
MPC device driver ... mpc(lM)
mpc MPC device driver .. mpc(lM)
mps Message Passing Space device mps(lM)
mpscnv Convert transport code mpscnv(lM)

MULTIBUS Reference Manual

sgib install
rte

drivers fddd
hddd

bootserver starts a
format config

/icsgetrec utilities to access
ramd

tdd
cpout copy out file archives to

i546 !SBC 546
I provides information on an ethernet

loads 8C»J6 absolute library and
defect list mdl read and
driver ots System V /386

System V /386 OSI Transport Service
Service (ots) device driver
dbon sets target for front

bps Bootstrap
initbp initializes the bootstrap

mps Message
i258 iSBC 386/258

driver i214 ISBCR 214
driver i224a !SBC 186/224A

driver i214tp !SBC 214
driver i224atp iSBC 186/224A

driver i258tp iSBC 386/258
ckperms set and/ or verify

console console
reset resets the

bootstrap parameter string on the
ccifree frees a line discipline
cciload load a line discipline

rci debug console/rd
node9s ethernet/ enetinfo

ramd MULTIBUS

driver
manufacturer's defect list mdl

board and returns the/ ics read
a/ ics _find _rec finds a ~c

the/ ics_read reads interconnect
ics write writes into interconnect

- Data Link driver for iNA961
enetload resets and

given slot
controller enetload

Permuted Index

Permuted Index

MULTIBUS bootstrap loaders .. sgib(lM)
MULTIBUS clock driver .. rtc(lM)
MULTIBUS flexible disk device fddd(lM)
MULTIBUS hard disk device drivers hddd(lM)
MULTIBUS II boot service daemon bootserver(lM)
MULTIBUS II configuration file config(lM)
MULTIBUS II interconnect space icsrd(lM)
MULTIBUS RAM disk driver .. ramd(lM)
MULTIBUS tape device drivers .. tdd(lM)
multiple volumes ... cpout(lM)
multi-port serial controller .. i546(1M)
node9s ethernet controller ... enetinfo(lM)
object module formats download download(lM)
optionally write the manufacturer's mdl(lM)
OSI Transport Service (ots) device ots(lM)
(ots) device driver ots ... ots(lM)
ots System V /386 OSI Transport ... ots(lM)
panel message delivery ... dbon(lM)
Parameter String driver .. bps(lM)
parameter string on the processor I initbp(lM)
Passing Space device driver ... mps(lM)
peripheral controller device driver i258(1M)
peripheral controller disk device ... i2(1M)
peripheral controller disk device i224a(1M)
peripheral controller tape device ... i2(1M)
peripheral controller tape device i224atp(1M)
peripheral controller tape device i258tp(1M)
permissions on files .. ckperms(lM)
port device driver ... console(lM)
processor in a given slot .. reset(lM)
processor in the given slot /the initbp(lM)
program on the communications/ ccifree(lM)
program on to the communications/ cciload(lM)
protocol driver ... rci(lM)
provides information on an ethernet enetinfo(lM)
RAM disk driver .. ramd(lM)
ramd MULTIBUS RAM disk driver ramd(lM)
rci debug console/rd protocol ... rci(lM)
read and optionally write the ... mdl(lM)
reads interconnect registers of the ics _read(lM)
record in the interconnect space of ics_find_rec(lM)
registers of the board and returns ics _read(lM)
registers of the board .. ics _ write(lM)
Release 3.0 edlina External .. edlina(lM)
reloads the ethernet controller enetload(lM)
reset resets the processor in a ... reset(lM)
resets and reloads the ethernet enetload(lM)

7

Permuted Index

slot reset
/registers of the board and

asynchronous terminal controller
device driver i410 iSBC 186/410

i546 iSBC 546 multi-port
i354 iSBX 354 dual channel

communications/ ccisrvinfo ca
starts a MULTIBUS II boot

ots System V /386 OSI Transport
files ckperms

delivery dbon
loaders

on the processor in the given
resets the processor in a given

ics Interconnect
mps Message Passing

to access MULTIBUS II interconnect
specific record in the interconnect

space of a/ ics _find _rec finds a
daemon bootserver

bps Bootstrap Parameter
/initializes the bootstrap parameter

communications/ cdsubinfo
I disassociates this host with a

on the/ cciswitch switch a
cdattach Creates a connection to a

new host on the/ cciswitch
the communications/ ttyswitch

(ots) device driver ots
iSBC 214 peripheral controller

iSBC 186/224A peripheral controller
iSBC 386/258 peripheral controller

tdd MULTIBUS
delivery dbon sets

8

driver ates asynchronous
iasy asynchronous

i8251 console
mpscnv Convert

driver ots System V /386 OSI
host on the communications/

line on the/ cdunbind
icsrd, icswr, icsslot, icsgetrec

device driver ots. System
of the board and returns the

ckperms set and/ or

resets the processor in a given .. reset(lM)
returns the values in the buffer ics _read(lM)
rte MULTIBUS clock driver .. rtc(lM)
script device driver ates ... atcs(lM)
serial communications controller ... i4(1M)
serial controller ... i546(1M)
serial-port device driver .. i354(1M)
server information on the ccisrvinfo(lM)
service daemon bootserver bootserver(lM)
Service (ots) device driver .. ots(lM)
set and/or verify permissions on ckperms(lM)
sets target for front panel message dbon(lM)
sgib install MULTIBUS bootstrap sgib(lM)
slot /bootstrap parameter string initbp(lM)
slot reset ... reset(lM)
Space device driver ... ics(lM)
Space device driver .. mps(lM)
space /icsslot, icsgetrec utilities icsrd(lM)
space of a board /finds a ics_find_rec(lM)
specific record in the interconnect ics_find_rec(lM)
starts a MULTIBUS II boot service bootserver(lM)
String driver ... bps(lM)
string on the processor in the/ initbp(lM)
subchannel information on the ccisubinfo(lM)
subchannel on a line on the/ ccidetach(lM)
subchannel on a line to a new host cciswitch(lM)
subchannel on the communications/ cciattach(lM)
switch a subchannel on a line to a cciswitch(lM)
switches a line to a new host on ttyswitch(lM)
System V /386 OSI Transport Service ots(lM)
tape device driver i214tp ... i2(1M)
tape device driver i224atp ... i224atp(1M)
tape device driver i258tp ... i258tp(1M)
tape device drivers tdd(lM)
target for front panel message ... dbon(lM)
tdd MULTIBUS tape device drivers tdd(lM)
terminal controller script device .. atcs(lM)
(terminal) device driver ... iasy(lM)
terminal/iSBXT 351 driver ... i825(1M)
transport code .. mpscnv(lM)
Transport Service (ots) device .. ots(lM)
ttyswitch switches a line to a new ttyswitch(lM)
unbinds a line discipline from a cciunbind(lM)
utilities to access MULTIBUS II/ icsrd(lM)
V /386 OSI Transport Service (ots) ots(lM)
values in the buffer /registers ics_read(lM)
verify permissions on files .. ckperms(lM)

MULTIBUS Reference Manual

copy out file archives to multiple
list mdl read and optionally

of the board ics _write

Permuted Index

Permuted Index

volumes cpout ... cpout(lM)
write the manufacturer's defect ... mdl(lM)
writes into interconnect registers ics_write(lM)

9

1 Manual Overview

Manual Overview
Organization
Notational Conventions

Table of Contents

1-1
1-2
1-2

Manual Overview

This manual lists and describes commands and device drivers Intel® Corpora­
tion has added to the System V /386 operating system for MULTIBUS support.
These commands and drivers have been added to support the Intel installation
procedures for over-install and add-on products, to make system administration
simpler, and to interface with Intel devices.

This manual is designed to supplement the UNIX® System V /386 Release 4.0
Programmer's Reference Manual, and the UNIX System V /386 Release 4.0
User's/System Administrators Reference Manual.

This manual is divided into eight chapters and three appendices:

Chapter 1. Introduction
Provides a manual overview, explains the organization, and
describes notational conventions.

Chapter 2. Commands
Alphabetically lists System V /386 MULTIBUS commands.

Chapter 3. Functions and Libraries
Lists System V /386 MULTIBUS functions and libraries.

Chapter 4. File Formats
Lists System V /386 MULTIBUS file formats.

Chapter 5. Device Information
Provides information for System V /386 MULTIBUS devices.

Chapter 6. Device Drivers
Alphabetically lists System V /386 MULTIBUS device drivers.

Chapter 7. System Maintenance Commands
Alphabetically lists Intel's System V /386 system maintenance
commands.

Chapter 8. Static Bad Block Handling
Describes those routines that compensate for the unusable blocks
of a hard disk drive.

Appendix A.
iSXMT 279 Window Interface

Manual Overview 1·1

Manual Overview

Appendix B.
Information Unique to MULTIBUS Systems

Appendix C.
Related Publications

Organization

All entries are based on a format common to other UNIX reference manuals.
Not every section appears for every command.

• The NAME section gives the name(s) of the entry and briefly states its
purpose.

• The SYNOPSIS section summarizes the use of the command.

• The DESCRIPTION section describes the way the program works.

• The EXAMPLES section gives examples of usage, where appropriate.

• The FILES section lists files that are built into or affected by the com­
mand.

• The NOTES section provides additional information regarding the use of
the command.

• The SEE ALSO section provides a list of other relevant commands.

Notational Conventions

The following notational conventions are used throughout this manual:

input

output

1-2

User input, such as commands, options, and arguments to com­
mands, variables, and names of directories and files, appear in
bold. In user-entry instructions, Enter wd: means type the
characters wd, then press <RETURN>.

System output, such as prompt signs and responses to com­
mands, appear in constant width type.

MULTIBUS Reference Manual

Manual Overview

variable Names of variables to which values must be assigned (such as
filename) appear in italic.

command (#) or (# ireO
Refers to a command, library call, or system call. The numbers
follow the convention of the AT&T manuals. A command name
followed by(#) refers to a command in the AT&T manual set,
or(# iref) refers to other references that are in this manual.

Manual Overview 1-3

2 MULTIBUS Commands

MULTIBUS I and MULTIBUS II Commands 2-1

Table of Contents

MULTIBUS I and MULTIBUS II Commands

This chapter lists Intel's System V /386 commands for MULTIBUS I and
MULTIBUS II. They are:

• ckperms

• cpout

• hdformat

• mdl

• sgib

Commands that apply only to MULTIBUS II are:

• bootserver • ccisrvinfo

• cciattach • ccisubinfo

• ccibind • cciswitch

• ccidetach • cciunbind

• ccifree • download

• ccildinfo • enetinfo

• ccildlist • enetload

• ccilnf o • mpscnv

• cciloaq • ttyswitch

MULTIBUS Commands 2-1

ckperms(1M) ckperms(1M)

NAME
ckperms - set and/or verify permissions on files

SYNOPSIS
ckperms [-i idlist] [-c] [-9] [-v] [-Cl
[-S] [-t flist] [-n pathname [-l logffle]
perms.filename

DESCRIPTION

FILES

The ckperms utility reads system file information from a product definition file,
also called a perms file. The capabilities of ckperms vary depending on which
options are specified.

-i Processes only those files whose package identifier matches the list of
idnames specified in idlist. The idlist is a list of idnames separated by
commas with no spaces.

-c Specifies that the checksums are to be verified. The checksum field of a
block special or character special file represents the major and minor
numbers, and is verified even when the -c option is not specified.

-9 Prints to standard output a list of pathnames being processed. Files not
included in this list of pathnames are: block special files, character special
files, directory files, empty files, and pipe files.

-v Prints to standard output a list of all pathnames being processed.
-c Changes the characteristics of files in the system to match the

specifications in the database, access and ownership permissions are set,
and type)e9 files, directories, special files, and links are created.

-s Strips specified files.
-t Processes files whose file type matches those specified in flist. The entries

in flist consist of file types separated by commas with no spaces.
-n Provides a pathname to be added at the beginning of all relative path­

names in the database. If this option is not specified, all relative path­
names start at the current working directory.

-1 Logs the characteristics of the files after the files have been processed.

/sbin/ckperms

NOTES
Exit Codes

0 Returned on successful completion
1 Returned if there are errors in the database
2 Returned in case of errors in command line syntax
3 Returned in case of mismatches between the database and the file processed

10/89 Page 1

cpout(1M) cpout(1M)

NAME
cpout - copy out file archives to multiple volumes

SYNOPSIS
cpout[-a] [-c] [-Bl [-v] [-V] [-kl
[-C bufsize] [-M message] nblks specfile

DESCRIPTION

FILES

The cpout program reads the standard input to obtain a list of pathnames and
then copies those files into the file specified in specfi"/e. The output is written in
cpio format. The output medium is assumed to be nblks blocks in size, where a
block is 512 bytes if the -k option is not specified, and 1024 bytes if the -k option
is specified. When cpout finishes writing the number of blocks specified in
nblks, it prints the message:

Insert Volwne t: <RETURN> to continue, s <RETURN> to skip

To continue, replace the medium and press <RETURN>. Typing
s <RETURN> causes cpout to skip to the next volume of the
output medium. Each volume becomes an independent cpio archive.
The above message also appears as a prompt before beginning to write the
first volume of the output medium.

The options are:

-a Resets access time of input files after they have been copied.
-c Writes header information in ASCII format for portability.

(Always use this option when the origin and destination machines are
different types.)

-B Blocks output 5,120 bytes per record (meaningful only with data directed
to a character special device.)

-v Prints a list of file names as they are processed.
-V Special verbose mode. This option causes a dot to be printed for each

file seen.
-k Sets the block size to 1024 bytes. Default is 512 bytes.
-C Causes the input/output to be blocked bufsize bytes per record.

bufsize must be a positive integer. The default buffer size
is 512 bytes when the -c and -B options are not specified.
The -c option is meaningful only with data directed to or from
a character special file (for example, /dev/rmt/cOsO).

-M Used to define a message to be displayed when the end of an output medium
is reached. Data inconsistencies are introduced when the end of the
physical medium is reached. Thus, if this message appears, it
indicates that data corruption may have occurred.

/sbin/cpout

NOTES

10/89

Upon completion, the cpout command writes the number of output volumes pro­
cessed to stderr.

Page 1

cpout(1M) cpout(1M)

Page 2

The specfile argument cannot be an ordinary file. Normally, specfile will be the
pathname of a special device file such as a tape drive or a floppy disk drive. This
must be specified as the raw device.

Reaching the end of the physical medium before nblks blocks are written is not
allowed and results in inconsistent data written to the output medium. There­
fore, the value of nblks must always be less than the actual number of blocks that
the output medium can contain.

10/89

hdformat (1 M) hdformat (1 M)

NAME
hdformat - low level hard disk formatter.

SYNOPSIS
hdformat [-c cylinders] [-d bytes/sector]
[-f heads] [-s sectors/track] [-i interleave] character-device

DESCRIPTION

FILES

The hdformat command is a low level disk format program. It formats the drive
specified by character-device with instructions to the disk driver to map the
manufacturer's defect list. hdformat formats slice zero of the drive and should
be used after a valid manufacturer's defect list has been installed on the drive
(see ndl(lireO>.

This operation destroys the contents of the specified disk.

Specify character-device as a device file from the /dev directory.

Command line options are:

-c The number of cylinders the drive contains
-d The bytes per sector or density of the drive
-f The number of fixed heads the drive contains
-s Sectors per track of the drive
-i The interleave of the drive

/sbin/hdformat

SEE ALSO
ndl(liref),ndl(liref)

10/89 Page 1

mdl(1M) mdl(1M)

NAME
mil - read and optionally write the manufacturer's defect list.

SYNOPSIS
mil [-N -A] -c cylinders -d bytes/sector
- f heads -s sectors/track [-b] character-device

DESCRIPTION

NOTES

FILES

10/89

The mil utility, without a -A or -N flag, attempts to read and display the
manufacturer's defect list from the disk specified by character-device. If the defect
list is empty, mil asks the user to add any bad tracks from the printed copy of
the list obtained with the drive, or reported by the system. mil writes this infor­
mation to the defect list.

This utility may be invoked at any time to view or optionally update the defect
list. However, the new or updated defect list becomes effective only after hdfor­
mat is executed.

Specify character-device as a device file from the /dev directory. Return values are
0 for successful completion and non-zero for failure. Command line options are
as follows:

-N Write a new defect list over one that has become corrupted.
-A Append new information to the defect list.
-c The number of cylinders the drive contains.
-d The bytes per sector or density of the drive.
- f The ammount of fixed heads the drive contains.
- s Sectors per track of the drive.
-b Do the operation in batch mode. The format of the output to stdout is the

format of the input to stdin.

The user can add to the bad track list. Then, at the next hdformat, these addi­
tional bad tracks will be hardware mapped to alternates rather than software
mapped, thus reducing system overhead.

/sbin/mil
/sbin/hdformat

Page 1

sglb(1M) sglb(1M)

NAME
sgib - install MULTIBUS bootstrap loaders

SYNOPSIS
sgib [-B? -D ?-F? -T ?-R]
[-d granularity] [- i interleave]
[-f fheads] [-o offset] [-r rheads]
[-c cyl] [-s sec] [-Mjilename)
[-N filename] device_name

DESCRIPTION

FILES

NOTES

10/89

sgib installs the system boot block and boot strap images on either hard disk or
tape devices, as specified by the device_name parameter, for MULTIBUS I and
MULTIBUS II systems. Bootloaders for both MSA (MULTIBUS II System Archi­
tecture) and non-MSA are installed if device_ name specifies a hard disk. The
defaults are for a 140 megabyte Maxtor hard disk drive. The default bootloader
image for the non-MSA portion is /etc/boot, and the default image for the MSA
bootloader is I etc/ dsboot.

The options are:

-B Produce a file suitable for use by the MULTIBUS II bootserver.
-D Produce a file suitable for use on a hard disk. This is the default.
-F Produce a file suitable for use on a floppy disk.
-T Produce a file suitable for use on a boot tape.
- R Real mode boot flag.
- d granularity

Specify the number of bytes per sector.
- i interleave

-f fheads
-o offset

Specify the format interleave factor.
Specify the number of fixed heads.
Specify the offset in sectors to the start of the root file system.

-r rheads Specify the number of removable heads on the drive. This is nor­
mally 0 for hard disks.

-c cyl Specify the number of cylinders. This should include cylinders which
are reserved for manufacture's defect lists, and system diagnostics.

- s sec Specify the number of sectors per track.
- M filename Specify the name of the MSA boot file.
-N filename Specify the name of the non-MSA boot file.

/sbin/sgib
/etc/boot
/etc/dsboot
/etc/tsboot
/etc/bsboot

sgib should be used on the raw device.

Page 1

sgib(1M) sgib(1M)

DIAGNOSTICS
0 is returned upon successful completion. Exit status of 1 is returned in the event
of errors.

SEE ALSO
ivlab{4)

Page 2 10/89

bootserver (1 M) bootserver (1 M)

NAME
bootserver - starts a MULTIBUS II boot service daemon

SYNOPSIS
bootserver [-c configffle] (-1 logfile] [-x loglevel]

DESCRIPTION

FILES

bootserver starts a booting service for MULTIBUS II. Once invoked,
bootserver disconnects itself from the invoking terminal and process, opens its
MULTIBUS II Transport listening port (0x500), and listens for booting and
configuration requests from other processor hosts on MULTIBUS II. The informa­
tion given for the requests is specified in the configuration file. Refer to the
MULTIBUSR II System Architecture Bootstrap Specification for exact details.
Command line options are:

-c configfile
The specified file is used as the configuration file. If no configuration
file is specified, the bootserver asks the bps(7iref) driver for the name
of the configuration file specified by the parameter BL_config_file.
If that fails, the /etc/default/bootserver/config file is used.
Refer to config(4iref) for the format of the configuration file. The
configuration file is reread if it is modified after the bootserver is
started.

-1 logfi'le Activity information is written to the specified logfi'le. Logging infor­
mation is written as text lines that begin with a date/time stamp fol­
lowed by the message. No effort is made to restrict the size of the
logfi'le. If no logfi'le parameter is given, the activity information will be
written to standard output. ·

-x loglevel Controls the amount of information written to the logfi'le. The loglevel
can be one of the following decimal values:
0 = error logging only
1 =error and connect information (default)
2 = level 1 plus very detailed communication information

If loglevel 1 is specified, information on what is being requested from the boot
server and who is requesting it is reported. If no -x parameter is specified, error
and connection information is written to the logfile (as if loglevel 1 had been
specified).

/etc/default/bootserver/config
SEE ALSO

NOTES

10/89

config(4iref)

Parameters that are duplicated in a host configuration line and in the global
configuration line are duplicated in the boot parameter string that is returned to
the host.

Page 1

cclattach (1 M) cclattach (1 M)

NAME
cciattach - Creates a connection to a subchannel on the communications con­
troller.

SYNOPSIS
/usr/lib/cci/cciattach [-p portid] slot-ID line-number sub-channel

DESCRIPTION

FILES

cciattach associates a subchannel on a previously bound line with this host on
the communications controller. This program sends a CCI_Attach message to the
CCI server. If at the time the CCI_Attach message is received by the CCI server
and the subchannel is already attached by another host, the response will be
delayed until the other host relinquishes control of the subchannel and control
eventually comes back to this host. When the response arrives, a MULTIBUS II
Transport portlD will be returned for the subchannel. The issuing host may now
send line discipline specific messages to the line discipline program directed at
the subchannel using this port ID. This host remains the active host on the sub­
channel until it gives up control either by using the ccidetach(liref) command
or the cciswitch(liref) command.

Command line options are:

-p n Set the MULTIBUS II Transport source Portid to n instead of the default
value Oxlff. This value is also used in the default_portid field of the
CCI_ Attach message.

The host can receive a response to the CCI_Attach message as a result of another
host sending a cciswitch(liref) or a ccidetach(liref) command to the CCI
server. In this case, the CCI_Attach response will indicate this fact and will con­
tain the host ID of the previous host. The response also contains the line discip­
line specific information returned from the line discipline program and the status
of the session on the subchannel from the previous host.
The host issuing this command must have previously issued CCI_Bind message
using the ccibind(liref) command to register itself as a potential user of the line.
Otherwise an error will be returned from the CCI server.
The line-number can range from 0 to (MAX_LINES ? 1), where MAX_LINES is
returned in the ccisrvinfo(liref) command. The subchannel can range from 0 to
(MAX SUBCHANNELS ? 1), where MAX SUBCHANNELS is returned in the
ccibi.lid(liref) command. The communications controller hosting the CCI server
is selected by specifying its MULTIBUS II iPSB slot-ID.

/usr/lib/cci/cciattach
SEE ALSO

10/89

ccisrvinfo(liref), ccildlist(liref), ccilinfo(liref),
ccisubinfo(liref), ccildinfo(liref), ccifree(liref),
cciunbind(liref), cciload(liref), ccidetach(liref),
cciswi tch(liref), cci(7iref)

Page 1

cclblnd(1M) cclblnd (1 M)

NAME
ccibind - binds a line discipline to a line on the communication controller.

SYNOPSIS
/usr/lib/cci/ccibind [-p portid] slot-ID line-number line-discipline-ID

DESCRIPTION

FILES

ccibind associates a line with a previously loaded line discipline program on the
communications controller. The line could be either a physical serial communica­
tions line on the controller or it could be used to associate with a job on the con­
troller. The interpretation of the line is left to the line discipline program on the
controller. In addition, this host is registered as a potential user of the line. This
program sends a CCI_ Bind message to the CCI server. The response to this com­
mand will contain the maximum subchannels supported on this line by the line
discipline and this will be displayed by the command on the issuing host. The
host issuing this command must have previously issued a CCI_ Create message
using the cciload(liref) command to set up the line discipline on the controller.
Otherwise an error will be returned from the CCI server.

Command line options are:

-p n Set the MULTIBUS II Transport source Portid to n instead of the default
value Oxlff.

A host can bind a line to a line-discipline-ID only once. The first CCI_ Bind mes­
sage issued for the line causes a job to be created for the line. Subsequent
CCI_ Bind messages from other hosts for the same line and line-discipline-ID will
cause these hosts to be added to the set of potential users of the line. If one of
these messages contains a line-discipline-ID that is different from the line­
discipline-ID bound to the line, an error response will be returned by the CCI
server.
The line-discipline-ID specified is associated with a line discipline image on the
controller. The line-discipline-ID can range from 0 to 255. The line-number can
range from 0 to MAX_ LINES - 1, where MAX_ LINES is returned in the
ccisrvinfo(liref) command. The communications controller hosting the CCI
server is selected by specifying its MULTIBUS II iPSB slot-ID.

/usr/lib/cci/ccibind

SEE ALSO

10/89

ccisrvinfo(liref), ccildlist(liref), ccilinfo(liref),
ccisubinfo(liref), ccildinfo(liref), ccifree(liref),
cciunbind(liref), cciload(liref), cciattach(liref),
ccidetach(liref), cciswitch(liref), cci(7iref)

Page 1

ccldetach (1 M) ccldetach (1 M)

NAME
ccidetach - disassociates this host with a subchannel on a line on
the communications controller.

SYNOPSIS
/usr/lib/cci/ccidetach [-p portid) slot-ID line-number subchannel

DESCRIPTION

FILES

ccidetach cancels the association set up between a subchannel and a host on the
communications controller. The host must have sent a CCl_Attach message for
the subchannel using the cciattach(liref) command. This program sends a
CCI_ Detach message to the CCI server.

Command line options are:

-p n Set the MULTIBUS II Transport source Portid to n instead of the default
value Ox1ff.

If there are other hosts queued at the subchannel, the first host on the queue is
made active on the subchannel.
The line-number can range from 0 to MAX_LINES - 1, where MAX_LINES is
returned in the ccisrvinfo(1iref) command. The subchannel can range from 0
to MAX SUBCHANNELS - 1, where MAX SUBCHANNELS is returned in the
ccibind(1ire0 command. The communicatfuns controller is selected by specify­
ing its MULTIBUS II iPSB slot-ID.

/usr/lib/cci/ccidetach
SEE ALSO

10/89

ccisrvinfo(1iref), ccildlist(lireO, ccilinfo(lireO,
ccisubinfo(1iref), ccildinfo(liref), ccifree(1iref),
cciunbind(1ire0, cciload(1ire0, cciattach(liref),
cciswi tch(l ireO, cci(7iref)

Page 1

I

I

cclfree (1 M) cclfree (1 M)

NAME
ccifree - frees a line discipline program on the communications controller.

SYNOPSIS
/usr/lib/cci/ccifree [-p portid] slot-ID line-discipline-ID

DESCRIPTION

FILES

ccifree frees the memory used by a line discipline program which was previ­
ously downloaded to the communications controller using the cciload(liref)
command. This command must be issued only after the host has unbound all the
lines bound to the line discipline on the controller using the cciunbind(liref)
commands. This program sends a CCI_Free message to the CCI server on the
controller.

Command line options are:

-p n Set the MULTIBUS II Transport source Portid to n instead of the default
value Oxlff.

The CCI server will only release the memory used for the line discipline program
when all hosts that have issued CCI_ Create messages for the script have issued
corresponding CCI_ Free messages.
The host can issue a CCI_Free message any time after it has issued a CCI_Create
message. If it is used before the host receives a response to the CCI_ Create mes­
sage, it will be used to cancel the previously issued CCI_ Create message. In this
case, there will be an error response to the CCI_ Create message followed by the
response to the CCI _Free message.
The line-discipline-ID specified is associated with a line discipline on the CCI
server. The line-discipline-ID can range from 0 to 255. The communications con­
troller hosting the CCI server is selected by specifying its MULTIBUS II iPSB slot­
ID.

/usr/lib/cci/ccifree

SEE ALSO

10/89

ccisrvinfo(liref), ccildlist(liref), ccilinfo(liref),
ccisubinfo(liref), ccildinfo(liref), ccibind(liref),
cciunbind(liref), cciload(liref), cciattach(liref),
ccidetach(liref), cciswitch(liref), cci(7iref)

Page 1

cclldlnfo (1 M) cclldinfo(1M)

NAME
ccildinfo - line discipline information on the communications controller.

SYNOPSIS
/usr/lib/ccildinfo [-p portid] slot-ID line-discipline-ID

DESCRIPTION

FILES

ccildinfo displays information about a line discipline on the communications
controller. The program displays the state of the line discipline on the controller.
The state can be either not present, being downloaded or present. The number of
hosts that have issued CCI_ Create messages is displayed along with their host
IDs. The program also displays the number of lines bound to this line discipline
along with the line numbers that are bound to this line discipline.

Command line options are:

-p n Set the MULTIBUS II Transport source Portid to n instead of the default
value Oxlff.

The program sends a CCI_Get_Line_Discipline_Info message to the CCI server
and prints the information obtained in the reply from the server. The line discip­
line is specified using its line-discipline-ID on the CCI server. This value can range
from 0 to 255. The communications controller hosting the CCI server is selected
by specifying the MULTIBUS II iPSB slot-ID.

/usr/lib/cci/ccildinfo

SEE ALSO

10/89

ccisrvinfo(liref), ccildlist(liref), ccilinfo(liref),
ccisubinfo(liref), cciload(liref), ccibind(liref),
cciunbind(liref), ccifree(liref), cciattach(liref),
ccidetach(liref), cciswitch(liref)

Page 1

ccildllst (1 M) ccildllst (1 M)

NAME
ccildlist - line discipline list on the communications controller.

SYNOPSIS
/usr/lib/cci/ccildlist [-p portid] slot-ID

DESCRIPTION

FILES

ccildlist displays the line discipline IDs of the line disciplines resident on the
communications controller.

Command line options are:

-p n Set the MULTIBUS II Transport source Portid to n instead of the default
value Oxlff.

The program sends a CCI_Get_Line_Discipline_List message to the CCI server
and prints the information obtained in the reply from the server. The program
displays the number of line disciplines resident and their line Discipline IDs. The
communications controller hosting the CCI server is selected by specifying its
MULTIBUS II iPSB slot-ID.

/usr/lib/cci/ccildlist

SEE ALSO

10/89

ccisrvinfo(lireO, ccildinfo(lireO, ccilinfo(lireO,
ccisubinfo(lireO, cciload(lireO, ccibind(lireO,
cciunbind(lireO, ccifree(liref), cciattach(lireO,
ccidetach(l iref), cciswi tch(lireO

Page 1

ccillnfo (1 M) cclllnfo (1 M)

NAME
ccilinfo - line information on the communications controller

SYNOPSIS
/usr/lib/cci/ccilinfo [-p portid] slot-ID line-number

DESCRIPTION

FILES

ccilinfo displays information about a line on the communications controller.
The program displays the state of the line on the controller. The state can be
either bound or not bound to a line discipline. If the line is bound to a line dis­
cipline, the line discipline ID of the line discipline is displayed. The number of
hosts that have issued CCI_Bind messages is displayed along with their host IDs.
The program also displays the maximum number of subchannels supported on
this line by the line discipline.

Command line options are:

-p n Set the MULTIBUS II Transport source Portid to n instead of the default
value Oxlff.

The program sends a CCI_ Get_ Line _Info message to the CCI server and prints
the information obtained in the reply from the server. The line is specified using
its line-number on the CCI server. The lines are numbered starting from 0. The
communications controller hosting the CCI server is selected by specifying its
MULTIBUS II iPSB slot-ID.

/usr/lib/cci/ccilinfo
SEE ALSO

10/89

ccisrvinfo(liref), ccildlist(liref), ccildinfo(liref),
ccisubinfo(liref), cciload(liref), ccibind(liref),
cciunbind(liref), ccifree(liref), cciattach(liref),
ccidetach(liref), cciswitch(liref)

Page 1

cclload (1M) cclload (1 M)

NAME
cciload - load a line discipline program on to the communications controller.

SYNOPSIS
/usr/lib/cci/cciload [-p portid] [-v] slot-ID

line-discipline-ID line-discipline-filename

DESCRIPTION

FILES

cciload reads a line discipline program file and sends it to the CCI server on the
communications controller. The line discipline program is sent to the CCI server
only if the line discipline is not present on the controller. The program obtains
this information in the reply to the CCI_ Create message sent to the CCI server.
The state of the line discipline on the controller can be obtained using the
ccildlist(liref) or the ccildinfo(liref) commands.

Command line options are:

-p n Set the MULTIBUS II transport source port-id to n instead of the default
value Oxlff.

-v Verbose. Normally, the line discipline is loaded silently. This option will
print trace information while the line discipline is being loaded.

The program first issues a CCI_ Create message and checks the status of the reply
from the CCI Server. If the status indicates that the line discipline already exists
on the communications controller, a message is printed to that effect and the pro­
gram exits. If the status indicates that the line discipline does not exist, the pro­
gram will read the specified line discipline file and send it to the controller by
issuing CCI_ Download messages. If an error occurs while downloading the line
discipline, the program will issue a CCI_Free message to the CCI server and exit.
The line-discipline-ID specified is associated with line discipline image on the CCI
server. The line-discipline-ID can range from 0 to 255. The communications con­
troller hosting the CCI server is selected by specifying its MULTIBUS II iPSB
slot-ID. The line discipline file must be in OMF86 format. Only Load-Time­
Locatable (LTL) or Position-Independent-Code (PIC) OMF86 formats are sup­
ported. Overlays are not supported.

/usr/lib/cci/cciload

SEE ALSO

10/89

ccisrvinfo(liref), ccildlist(liref), ccilinfo(liref),
ccisubinfo(liref), ccildinfo(liref), ccibind(liref),
cciunbind(liref), ccif ree(liref), cciat tach(l iref),
ccidetach(liref), cciswi tch(liref)

Page 1

cclsrvlnfo{1M) cclsrvlnfo{1M)

NAME
ccis:rvinfo - CCI server information on the communications controller.

SYNOPSIS
/usr/lib/cci/ccis:rvinfo [-p portid) slot-ID

DESCRIPTION

FILES

ccis:rvinfo displays the maximum number of physical serial lines available on
the communications controller and the version number of the CCI server running
on the controller.

Command line options are:

-p n Set the MULTIBUS II Transport source Portid to n instead of the default
value Oxlff.

The program sends a CCI_ Get_ Server _Info message to the CCI server and prints
the information obtained in the reply from the server. The communications con­
troller hosting the CCI server is selected by specifying its MULTIBUS II iPSB
slot-ID.

/usr/lib/cci/ccis:rvinfo
SEE ALSO

10/89

ccildlist(liref), ccildinfo(liref), ccilinfo(liref),
ccisubinfo(liref), cciload(liref), ccibind(liref),
cciunbind(liref), ccifree(liref), cciattach(liref),
ccidetach(liref), cciswitch(liref)

Page 1

cclsublnfo (1 M) cclsublnfo (1 M)

NAME
ccisubinfo - subchannel information on the communications controller.

SYNOPSIS
/usr/lib/cci/ccisubinfo [-p portid] slot-ID line-number sub-channel

DESCRIPTION

FILES

ccisubinfo displays information about the subchannel on a line on the commun­
ications controller. The program displays the state of the subchannel on the con­
troller. The state can be either attached, or not attached to a host. If the sub­
channel is attached to a host, the host ID of the active host is displayed. The
number of hosts that are queued on the subchannel (i.e., the number of hosts
other than the active host that have issued a CCI Attach or a CCI Switch mes­
sage) is displayed along with their host IDs. The program also -displays the
MULTIBUS II Transport Port ID assigned to the subchannel, for sending line dis­
cipline specific messages, if the subchannel is attached to a host.

Command line options are:

-p n Set the MULTIBUS II transport source port-id to n instead of the default
value Oxlff.

The program sends a CCI_ Get_ Subchannel_lnfo message to the CCI server and
prints the information obtained in the reply from the server. The line is specified
using its line-number on the controller. The lines are numbered starting from 0.
The subchannel is specified by its number. The subchannels are numbered start­
ing from 0. The communications controller hosting the CCI server is selected by
specifying its MULTIBUS II iPSB slot-ID.

/usr/lib/cci/ccisubinfo
SEE ALSO

10/89

ccisrvinfo(liref), ccildlist(liref), ccildinfo(liref),
ccilinfo(liref), cciload(liref), ccibind(liref),
cciunbind(liref), ccifree (liref), cciattach(liref),
ccidetach(liref), cciswi tch(liref)

Page 1

cclswltch (1 M) cclswltch (1 M)

NAME
cciswitch - switch a subchannel on a line to a new host on the communications
controller.

SYNOPSIS
/usr/lib/cci/cciswitch [-p portid] slot-ID line-number sub-channel new-host-ID

DESCRIPTION

FILES

cciswitch causes the issuing host to temporarily relinquish control of a subchan­
nel on the communications controller to another host. This program sends a
CCI_Switch message to the CCI server. If at the time the CCI_ Switch message is
received by the server and the subchannel is already attached by the specified
new host, the response for the CCI_Switch message will be delayed until the
other host relinquishes control of the subchannel and control eventually comes
back to this host. Otherwise an error response is returned immediately.

Command line options are:

-p n Set the MULTIBUS II Transport source Portid to n instead of the default
value Oxlff.

When this host gets control of the subchannel, the response will contain:
the host ID of the previous host
the line discipline specific information (returned from the line
discipline program running on the line)
the status of the session on the subchannel from the previous host
The host issuing this command must have previously issued a CCI_Attach mes­
sage (using the cciattach(liref) command) to be the active host on the subchan­
nel. Otherwise an error will be returned from the CCI server.
The line-number can range from 0 to MAX_LINES - 1, where MAX_LINES is
returned in the ccisrvinfo(liref) command. The sub-channel can range from 0
to MAX SUBCHANNELS - 1, where MAX SUBCHANNELS is returned in the
ccibind(liref) command. The new-host-ID-is specified using its MULTIBUS II
iPSB slot-ID. The communications controller hosting the CCI server is selected by
specifying its MULTIBUS II iPSB slot-ID.

/usr/lib/cci/cciswitch
SEE ALSO

10/89

ccisrvinfo(liref), ccildlist(liref), ccilinfo(liref),
ccisubinfo(liref), ccildinfo(liref), ccifree(liref),
cciunbind(liref), cciload(liref), ccidetach(liref),
cciattach(liref)

Page 1

cclunblnd (1 M) eel unbind (1 M)

NAME
cciunbind - unbinds a line discipline from a line on the communications con­
troller.

SYNOPSIS
/usr/lib/cci/cciunbind [-p portidJ slot-ID line-number

DESCRIPTION

FILES

cciunbind deletes the association established between a line, a line discipline and
this host by an earlier ccibind (liref) command. The program sends a
CCI_ Unbind message to the CCI server.

This command must be issued only after all the subchannels on the line attached
to this host have been detached. Otherwise an error will be returned from the
CCI server.

Command line options are:

-p n Set the MULTIBUS II Transport source Portid to n instead of the default
value Oxlff.

Only the last CCI_Unbind message issued for the line causes the job running on
the line to be deleted. The other CCI_ Unbind messages from other hosts for the
same line will cause these hosts to be removed from the set of potential users of
the line.
The line-number can range from 0 to MAX_ LINES - 1, where MAX_ LINES is
returned in the ccisrvinfo(liref) command. The communications controller
hosting the CCI server is selected by specifying its MULTIBUS II iPSB slot-ID.

/usr/lib/cci/cciunbind

SEE ALSO

10/89

ccisrvinfo(liref), ccildlist(liref), ccilinfo(liref),
ccisubinfo(liref), ccildinfo(liref), ccifree(l iref),
ccibind(liref), cciload(liref), cciattach(liref),
ccidetach(liref), cciswitch(liref)

Page 1

download (1 M) download(1M)

NAME
download - loads 8086 absolute library and object module formats

SYNOPSIS
/usr/lib/cci/download [-b buffer size] [-t time delay]
[-p portid] [-lrv] file-name slot-ID

DESCRIPTION

FILES

download loads Absolute OMF86 and LIB86 format files onto a target board hav­
ing the Download Protocol Routine resident in firmware (such as the iSBCR
186/410 and the iSBC 186/530). An executable memory image of the file is con­
structed in the local memory of the target. After loading, control on the target is
transferred to the start address specified within the file (unless the -1 option is
specified).

The program opens and reads the specified file and interprets the OMF. The
image is transferred to the target using MULTIBUS II Transport.

Command line options are:

-bn Set the temporary buffer size to n bytes instead of the default 32,000 bytes.
-tn Set the number of milliseconds to wait between transport messages used

to transfer the image to the target. The default is 10.
-pn Set the MULTIBUS II Transport portlD for this host to n instead of the

default 36864.
-1 Load only. Loads the specified file onto the target, but does not transfer

control or begin execution.
-r Reset. Performs a local reset to the target board before loading begins.
-v Verbose. Normally, download does its work silently. This option causes

each module name to be printed as it is loaded.
The file must be in Absolute OMF86 or LIB86 format. Overlays are not sup­
ported. The target board is selected by specifying its MULTIBUS II iPSB slot-ID.

/usr/lib/cci/download
/etc/default/download contains the default time delay

SEE ALSO

10/89

For a definition of the Download Protocol Routine required in firmware (to work
with download), see one of the following manuals.

iSBCR 186/410 Hardware Reference Manual
iSBCR 186/530 Hardware Reference Manual

Page 1

enetlnfo (1 M) enetlnfo (1 M)

NAME
enetinfo - provides information on an ethernet node's ethernet controller

SYNOPSIS
/usr/sbin/enetinfo [-al [-bl [-el [-hl
[-il [-11 [-nl [-tl [-rl

DESCRIPTION

10/89

The enetinfo utility displays information concerning the ethernet transport
drivers installed on the local node. The utility will return an error if the driver is
not installed or if the system is not booted on a networked kernel.

If no option is specified, enetinfo displays the 12-character Ethernet address.

Command line options are:

-a
-b

-e
-h
-i
-1
-n
-t

-r

Returns all information generated by the other command line options.
Returns the number of ethernet controller boards configured in the sys­
tem.
Returns the 12-character Ethernet address (default display).
Displays a help message.
Returns the MULTIBUS II slot number used by the controller board
Returns the base board address used to load iNA 961 to the board.
Returns the maximum number of virtual circuits (VCs) supported.
Returns the type of board providing ethernet services (for example,
186/530).
Returns the iNA 961 version resident on the board.

Page 1

enetload { 1 M) enetload (1 M)

NAME
enetload - resets and reloads the ethernet controller

SYNOPSIS
/usr/sbin/enetload [-v version] [-b bus_type]

DESCRIPTION

FILES

The enetload utility resets and reloads the Ethernet controller. If enetload is
invoked without any options, the system displays a dynamic menu of available
iNA 961 downloadable files (based on input records from the file
/etc/ina961. data). The user then selects the iNA 961 file to be downloaded.

enetload changes the network environment to use the specified version of iNA
961. Both the current operating environment and the default environment
invoked at system startup are updated.

enetload performs the following functions:

1. Terminates all existing virtual circuits (VCs).

2. Resets the Ethernet controller.

3. Downloads the requested version of iNA 961 to the Ethernet controller.

Command line options are:

-v version Specifies the version number of the iNA 961 file to be downloaded.
This file is located in the /etc directory and must have the following
format:

ina961.version
-b bus_type

Specifies the type of system being used. Only MULTIBUS II (iSBC
186/530) is supported, so bus_type must be MB2.

/etc/ina961.data

SEE ALSO
enetinfo(liref), i530(7iref), edlina(7iref)

10/89 Page 1

mpscnv(1M) mpscnv(1M)

NAME
npscnv - Convert transport code

DESCRIPTION

10/89

The npscnv utility reads C source code presented on its standard input looking
for identifiers associated with Multibus II Interconnect Space or Message Passing
Space access. These identifiers are replaced with their equivalents, as described in
the System V/386 Device Driver Interface specification, as the file is copied to the
standard output.

This utility is intended as a migration aide for porting System V /386 Release 3.2
device drivers to Release 4.0 and will not be provided in the next release.

The following lists the old identifiers and their equivalents for System V.4.

Release 3.2 Identifier Release 4.0 Identifier

AMP cancel nps AMPcancel
AMPreceive nps - AMP receive
AMPreceive_frag nps:=AMPreceive_frag
AMP send nps_AMPsend
AMPsend data rrps_AMPsend_data
AMPsend:=reply nps_AMPsend_reply
AMPsend_rsvp nps_AMPsend_rsvp
BLKPRIO MPS BLKPRIO
BOARD SPECIFIC REC ICS BOARD

SPECIFIC REC
CLKPRIO MPS CLKPRIO
EOT TYPE ICS-EOT TYPE
FP PORT MPS FP PORT
HI ICS HI
HIB MPS HIB
HOST ID TYPE ICS HOST ID TYPE
rcaistDatain ICS-BistDatain
ICBistDataOut ICS-BistDataOut
ICBistMasterStatus ICS BistMasterStatus
ICBistSlaveStatus ICS-BistSlaveStatus
ICBistSupportLevel ICS=BistSupportLevel
ICBistTestID ICS BistTestID
ICClassID ICS ClassID
ICGeneralControl ICS-GeneralControl
ICGeneralStatus ICS GeneralStatus
ICHardwareTestRev ICS HardwareTestRev
ICNMIEnable ICS-NMIEnable
ICProductCode ICS ProductCode
ICProgramTableindex ICS_ProgramTableindex
ICVendorIDH ICS VendorIDH
ICVendorIDL ICS VendorIDL
IC DEBUG MASK ICS DEBUG MASK - - - -IC DEBUG NMI ICS DEBUG NMI - - - -IC_ENABLE_NMI res ENABLE NMI - -
IC PARITY MASK ICS PARITY MASK - -

Page 1

mpscnv(1M) mpscnv(1M)

IC PARITY OFFSET ICS_PARITY_OFFSET - -IC_SWNMI_MASK ICS _SWNMI _MASK
IC SW NMI ICS SW NMI
LO ICS LO
LOB MPS=LOB
MAXMSGSZ MPS_ MAXMSGSZ
MAX REG res MAX REG
MAJCSLOT ICS-MAX-SLOT
MB2-TPDT MPS-MB2-TPDT
MG BGDC MPS MG BGDC
MG BGLI MPS_MG_BGLI
MG BGLL MPS_MG_BGLL
MG BGOVHD MPS MG BGOVHD
MG-BGRANT MPS-MG-BGRANT
MG BJLI MPS MG BJLI
MG BJOVHD MPS MG BJOVHD
MG BRDCST MPS MG BRDCST
MG BRDP MPS MG BRDP
MG BREJ MPS MG BREJ
MG_BREQ MPS=MG=BREQ
MG BRLI MPS_MG_BRLI
MG BRML MPS MG BRML
MG-BROVHD MPS - MG-BROVHD
MG BRPI MPS__MG_BRPI
MG BRSP MPS MG BRSP
MG BRTC MPS_MG_BRTC
MG BRTI MPS MG BRTI
MG BRUD MPS MG BRUD
MG DA MPS_MG_DA
MG DFBIND MPS MG DFBIND
MG DONE MPS-MG-DONE
MG-DUTYlC MPS-MG-DUTYlC
MG-DUTY2C MPS=MG=DUTY2C
MG ESOL MPS MG ESOL
MG Ml' MPS_MG_Ml'
MG NFDP MPS_MG_NFDP
MG NFFL MPS MG NFFL
MG-NFOVHD MPS= MG= NFOVHD
MG NFPI MPS_MG_NFPI
MG NFSP MPS MG NFSP
MG NFTC MPS-MGNFTC
MG NFTI MPS_MG_NFTI
MG_REQ MPS_MG_REQ
MG RES MPS_MG_RES
MG RI MPS_MG_RI
MG_RQMF MPS MG RQMF
MG_RQNF MPS=MG=RQNF
MG_RQSF MPS__MG_RQSF
MG_RQXF MPS_MG_RQXF

Page 2 10/89

mpscnv(1M) mpscnv(1M)

MG RRMSK MPS MG RRMSK
MG RRTMSK MPS MG RRTMSK
MG RSCN MPS MG RSCN
MG RSET MPS MG RSET
MG-RSNE MPS MG RSNE
MG SA MPS MG SA
MG TERR MPS MG TERR
MG UM>P MPS-MG-UMDP
MG UM:>VHD MPS MG UM:>VHD
MG UMP! MPS MG UMP!
MG UMSP MPS MG UMSP
MG UMl'C MPS MG tJMl'C
MG tJMl'I MPS_MG_tJMl'I
MG UMJD MPS MG UMUD
MG UNSOL MPS MG UNSOL
MY SLOT ID !CS MY SLOT ID
NRMPRIO- MPS-NRMPRIO-
PARITY_CONTROL_TYPE !CS PARITY - -CONTROL TYPE
PC16 CONFIG OFFSET !CS PC16 - - - -CONFIG OFFSET
PC16 STATUS OFFSET !CS PC16 - - STATuS OFFSET
PSB CONTROL TYPE !CS PSB - - CONTROL TYPE
PSB SLOT ID REG !CS PSB - - - SLOT ID REG
READ !CS !CS READ !CS
SLOT ID OFFSET !CS-SLOT-ID OFFSET - - -
SRLPRIO MPS_SRLPRIO
WRITE !CS !CS WRITE !CS
agent_cnp ics=:agent=:c:np
buf count nps_buf_count
close_chan nps close chan
cpunum ics = cpunuiii ()
datbuf t nps_datbuf_t
db_join dma_buf_join
dbuf_breakup dma_buf_breakup
fetch db nps_fetch_db
fetch !lb nps_fetch_nb
findj)ort nps _find _port
find_transaction nps_find_transaction
free_dbuf nps_free_dmabuf
free nbuf nps _free_ nbuf
free_ msgbuf nps_free_msgbuf
free tid nps_free_tid
get_dbuf nps _get_ dmabuf
get_nbuf nps_get_nbuf
get_msgbuf nps_get_msgbuf

10/89 Page 3

mpscnv(1M)

Page 4

get soldata
get-tid
get-unsoldata
handle err
init diiiacb
lhid-
mk •ant
mk-brdcst
mk-breject
mk-nt>2socid
mk-nt>2soctohid
mk-nt>2soctopid
mk-snf
mk::::so1
mk solrply
mk-unsol
mk-unsolrply
npC copyright
npc::::send
npc_start
msg coop
mag-dispatch
msg::9etbrlen
msg: getdstmid
mag:::9etdstpid
msg: getfraglen
msg~getlsnid
mag getmsgtyp
mag:::9etprotid
msg getreqid
msg~getrid
msg~getsranid
msg::::getsrcpid
msg gettransctl
msg::::gettrnsid
msg getudp
msg-iscancel
msg-iscoopletion
mag-iseot
mag-iserror
msg~sreq
msg_proc
mag que
msg-setbglen
msg::::setbrlen
msg setcancel
msg-setduty
msg-setrid
mag setsrcpid

nps_get_soldata
nps get tid
nps :::9et ::::unsoldata
nps_handle_err
inpc init dmacb
nps lhid()
nps - mk !':>grant
nps ::::mk::::brdcst
nps mk breject
nps - mk - nt>2socid
nps::::mk::::nt>2soctohid
nps_mk_nt>2soctopid
nps mk snf
nps-mk-sol
nps - mk - solrply
nps-mk-unsol
nps-mk-unsolrply
i,npC c0pyri9ht
inpc-send
inpc-start
nps msg carp
nps-msg-dispatch
nps-mag~getbrlen
nps ::::msg::::getdstmid
nps_mag_getdstpid
nps mag getfraglen
nps-mag-getlsnid
nps msg getmsgtyp
nps::::msg::::getprotid
nps msg getreqid
nps - mag-getrid
nps-mag-getsrcmid
nps::::msg::::getsrcpid
nps msg gettransctl
nps-msg-gettrnsid
nps-mag-getudp
nps-mag-iscancel
nps-msg-iscoopletion
nps - mag -iseot
nps-msg-iserror
nps:::: mag:::: isreq
nps _ msg_proc
nps mag que
nps:::: mag:::: setbglen
nps mag setbrlen
nps-msg-setcancel
nps - msg - setduty
nps-msg-setrid
nps::::mag::::setsrcpid

mpscnv(1M)

10/89

mpscnv{1M)

msq showms9
msgbuf t
myslotid
open chan
request id
set_rid
setup clmabufs
sic cb
slot t
soc Cb
sol=:deque
sol que
transportcopyright

SEE ALSO

nps msq showmsg
nps - msgbuf t
ics =: myslotid ()
nps open chan
nps - requestid < >
nps-set rid
inpC setup clmabufs
inpc-sic cb
ics slot-t
inpC soc-cb
inpc-sol-deque
inpc-sol-que
npS _Copyright

mpscnv{1M)

System V/386 Device Driver Interface/Driver-Kernel Interface Reference Manual

10/89 Page 5

ttyswltch (1 M) ttyswitch (1 M)

NAME
ttyswitch - switches a line to a new host on the communications controller

SYNOPSIS
/sbin/ttyswitch new_host_id

DESCRIPTION

FILES

10/89

ttyswitch causes the issuing host to temporarily relinquish control of a line on
the communications controller to another host. This program sends a message to
the ates server. If at the time the message is received by the server, and the new
host has not also enabled the line, an error response is returned immediately.

Command line options are:

new host ID
- - The host to which control is switched. Specify this option by using

its MULTIBUS II iPSB slot-ID.

/sbin/ttyswitch

Page 1

I

1·

I

3 Functions And Libraries

Interconnect-Space Application Interface 3-1

Table of Contents

Interconnect-Space Application Interface

This chapter lists the functions that make up the Interconnect-Space Application
Interface. This interface is defined in the following routines:

• ics find rec

• ics read

• ics write

The functions take a file descriptor as the first argument. The file descriptor is
obtained by opening the special device /dev/ics with the system call open.
The routines are synchronous and return on completion of the request.

The interconnect space of any board on the MULTIBUS II backplane can be
accessed from a System V /386 application using these functions. Accessing a
board's interconnect space is useful for system maintenance and administrative
functions.

Functions And Libraries 3-1

ics _find_rec(1 M) lcs _find _rec (1 M)

NAME
ics_find_rec - finds a specific record in the interconnect space of a board

SYNOPSIS
register ics_find_rec <fd, slot, recordid)
int fd; unsigned short slot; unsigned char recordid; int register;

DESCRIPTION

FILES

10/89

This function is used to find a specific record in the interconnect space of a board.
slot is the slot number of the board whose interconnect space is searched for a
record with the record ID recordid. If such a record is found, its starting register
number is returned. If the interconnect space register can not be found in the
specified slot, a -2 is returned. Otherwise, -1 is returned.

/usr/lib/librrt>2.a

Page 1

ics _read (1 M) lcs _read (1 M)

NAME
ics read - reads interconnect registers of the board and returns the values in
the buffer

SYNOPSIS
ret = ics_read <fd, slot, register, buf, count); int fd; unsigned short slot;
unsigned short register; char *buf; int count; int ret;

DESCRIPTION

FILES

10/89

ics_read reads the interconnect registers of the board in the designated slot and
returns the values in the buffer pointed to by buf. count number of registers are
read starting from register.

If there is no board in the designated slot, or, if the register number specified does
not exist in the interconnect space of the board, the read value is undefined.
Thus, to determine if a board is present in a slot, the vendor ID registers in the
interconnect space should be used. Zero (0) in the vendor ID register is defined
to indicate the absence of a board.

/usr/lib/libll'b2.a

Page 1

ics_write(1M) lcs _write (1 M)

NAME
ics_write - writes into interconnect registers of the board

SYNOPSIS
ret = ics_write <fd, slot, register, buf, count); int fd; unsigned short slot;
unsigned short register; char *buf; int count; int ret;

DESCRIPTION

FILES

10/89

This function will write into interconnect registers of the board in slot number
slot. count registers starting from register number register of the board are writ­
ten from the values provided in the buffer pointed to by buf.

If there is no board in the designated slot, or, if the register number specified does
not exist in the interconnect space of the board, the results are undefined.

Be careful when using ics_write. With ics_write, an applications program
can reset any board on the bus, possibly resulting in a loss of data.

/usr/lib/librnb2.a

Page 1

I

4 Intel's System V/386 File Formats

Intel's System V/386 File Formats 4-1

Table of Contents

Intel's System V/386 File Formats

This chapter lists Intel's System V /386 file formats. This chapter applies only to
MULTIBUS II.

• config

Intel's System V/386 File Formats 4-1

conflg(1M) conflg(1M)

NAME
config- MULTIBUS II configuration file format

DESCRIPTION

10/89

config is the bootserver's configuration file which gives the boot parameter
string for hosts on MULTIBUS II and also specifies the load image that is
returned by the bootserver(liref).

Information for each host is grouped into a server part and a client part with the
server part enclosed in square brackets ([]). Each of the two parts consists of
"parameter /value" pairs that are separated by semicolons (;). Each
parameter /value pair is made up of an alpha-numeric parameter name, an equal
sign (=), and a value. These separate parts can be separated by white space
which may be spaces, tabs, or end-of-lines (newlines). Comments can be inserted
in white space as a hash mark (#) followed by the textual comment and ter­
minated by an end-of-line.

Each entry is for a host specified by the parameter BL_host_ID in the server part
of the entry. There is one special host entry that has the host number of GLO­
BAL. The GLOBAL entry has parameters that apply to all of the hosts. The
parameter BL_second_stage specifies the filename of the default second stage
bootloader for the host. If there is no default second stage bootloader specified,
the bootloader specified in the GLOBAL host entry is given. If no GLOBAL
second stage bootloader is specified in the configuration file, a default file is
chosen by the bootserver. The boot parameter string given to a host is made up
of the client part of that host's entry appended with the GLOBAL entry.

Replacement strings are parameter values that start with a dollar sign ($) and
are followed by the name of a parameter that appears in the client portion of the
GLOBAL entry. The dollar sign and the parameter are textually replaced with
the value of the GLOBAL entry. This allows parameterized host entry
specification.

The format of the file is:

<configfile> :• <globalconfig> { <hostconfig>} ...
<globalconfig> := <ws> "[" <serverpart> <ws> "]"

<consumerpart>
<hostconfig> := <ws> "[" <serverpart> <ws> "]"

<consumerpart>
<serverpart> :=<parameter> { <ws> ";"<parameter> ... }
<consumerpart> :=<parameter> { <ws> ";" <parameter>

<parameter> :=- <ws> <parametername> <ws> "="
<parametervalue>

<parametername> := <lto31alphanumericsor >
<parametervalue> := <ws> <element> { <ws> <element> ... }
<element> := <string> I <nunt>er> I <substitution> I

<quote> I <backslash>
<string> :• <nonsyntaxcharacters>
<nunt>er> :• <decimaldigits> ["T"] I <hexdigits> "H"

I <octaldigits> "Q" I <binarydigits> "Y"
<substitution> :• "$" <parametername>

Page 1

conflg(1M) config(1M)

NOTES

FILES

<quote> := """ <string> """ I '"" <string> '""
<backslash> :• "\" <anycharacter>
<ws> : = <whitespace>
<whitespace> :• <blank> I <tab> I <carriaqereturn>

<linefeed> I <comnent>
<comnent> := "I" <characters> <linefeed>
Details on MULTIBUS II configuration are available in the MULTIBUSR II System
Architecture Bootstrap Specification.

Here is a sample config file. Notice that the client part of the GLOBAL entry con­
tains both parameters that are to be passed to each host in the boot parameter
string and parameters that are used in replacement strings in the later host
entries. There are host entries for two processor hosts that load a computing
image; hosts 2 and 3 load and run the System V /386 operating system.

t t
t

MBII System Sanple Configuration File

[BL HOST id ... GU>BAL];
- PCI host = 0;

unii hostl = 2;
unix-host2 = 3;

t PCI Host
[BL host id= $PCI host];

- BL QI Master = $unix hostl;
BL-target file = /stand/pci258;
BL=nxie =-p;

t Unix Host 11
[BL Host id= $unix hostl;BL Method= Quasi];

- BL_target_file = /stand/unix;

t Unix Host 12
[BL Host id .. $unix host2;BL Method= Quasi];

- BL_tarqet_file = /stand/unix;

If the stand partition exists, any user-supplied configuration files must reside on
the stand partition.
Parameter names are not case sensitive.
Parameter values are case sensitive based on context.
System V /386 filenames are case sensitive.

/stand/config
SEE ALSO

bootserver(liref)

Page 2 10/89

I~

I

I'

5 Device Information

Disk And Tape Device Drivers 5-1

Table of Contents

lj

Disk And Tape Device Drivers

This chapter lists information about System V /386 device drivers for
MULTIBUS-based devices. The following types of device drivers are available
on MULTIBUS-based systems:

• flexible disk device drivers

• hard disk device drivers

• tape device drivers

Device Information 5-1

fddd(1M) fddd(1M)

NAME
fdcld- MULTIBUS flexible disk device drivers

DESCRIPTION

10/89

There are three MULTIBUS flexible disk device drivers:

i214
i224a
i258

Flexible disk drivers provide access to diskettes as block and character devices.
Diskettes must be formatted before use (see format(l)). Both 5.25-inch and 3.50-
inch formats are supported.

Flexible disk device file names are listed in the /dev directory. Each filename
corresponds to a specific major device number, minor device number pair. The
minor device number specifies the drive number, the format of the disk, and the
partition number. The format of flexible disk device names is:

/dev/ {r}dsk/£{0,1} {5h,Sd9,Sd8,Sd4,5dl6,5q,3h} t

rdsk selects the raw device interface
dsk selects the block device interface
O or 1
Sh
5d9

selects the drive to be accessed: fO selects drive 0, fl selects drive 1.
indicates 5.25: high density (1.2Mbytes) diskette format
indicates 5.25: double density, 9 sectors per track (360 Kbytes) diskette for­
mat

5d8 indicates 5.25: double density, 8 sectors per track (320 Kbytes) diskette for­
mat flexible disk device drivers

Sd4 indicates 5.25: double density, 4 sectors per track (360 Kbytes) diskette for-
mat

5d16 indicates 5.25: double density, 16 sectors per track (320 Kbytes) diskette
format

3h indicates 3.50: high density (1.44Mbytes) diskette format t indicates that
the entire diskette will be accessed.

Besides the file naming convention just described, some of the diskette formats
have alias names that correlate to previous releases. The following lists the
aliases for the formats that have them:

format alias

Sh q15d
5d8 d8d
5d9 d9d

For example, the device file /dev/rdsk/fOqlSdt is equivalent to the device file
/dev/rdsk/fOSht.
Following is a list of the supported ioctl() calls provided by MULTIBUS flexible
disk device drivers.
Get Parameters (V GETPARMS)

This command gets configuration parameters for the current device
and partition, and returns them to the user in the cmdarg structure.
The disk_parms structure is defined in /usr/include/sys/vtoc.h.

Page 1

fddd(1M) fddd(1M)

Format Track (V FORMAD

Page 2

This command causes the specified track to be formatted. The format
structure is defined in /usr/include/sys/vtoc.h.

10/89

hddd(1M} hddd(1M}

NAME
hddd - MULTIBUS hard disk device drivers

DESCRIPTION

10/89

There are three MULTIBUS hard disk device drivers:

i214
i224a
i258

These drivers all require some similar disk information and all support the same
set of ioctlO calls.

Hard disk device drivers require the Volume Label, Physical Description Informa­
tion (pdinfo), and Volume Table of Contents (vtoc) information to access a given
hard disk drive. To allow disks to be interchangeable, the information is stored
on the disk itself. All of this information is placed on the device during system
installation.

Volume Label The driver reads the volume label to determine disk characteris­
tics and to locate the pd.info. The volume label is read when
the driver first opens a device. For data structure definitions,
see ivlab in the file /usr/include/sys/ivlab.h.

pd.info The pd.info contains additional device characteristics, and
pointers to the vtoc and alternate table. pd.info is read when
the driver first opens a device. For data structure definitions,
see pd.info in the file /usr/include/sys/vtoc.h.

vtoc The vtoc contains the partition information required by the
driver to access the hard disk drive. vtoc is read when the
driver first opens a device. For data structure definitions, see
vtoc in the file /usr/include/sys/vtoc.h.

SW alt inf This is the software bad block handling table. It is in the file
/usr/include/sys/alttbl.h.

mil Manufacturer's Defect List. This is the defective track list read
from the hard disk drive. It is in the file
/usr/include/sys/bbh.h.

Following is a list of the supported ioctl() calls provided by MULTIBUS hard
disk device drivers.

Get Parameters (V GETPARMS)
This command gets configuration parameters for the current
device and partition, and returns them to the user in the cmdarq
structure. The disk _parms structure is defined in
/usr/include/sys/vtoc.h.

Fo:cmat Track (V FORMAn
This command causes the specified track to be formatted. The
format structure is defined in /usr/ include/ sys/vtoc. h.

Page 1

1~

hddd(1M) hddd(1M)

Page 2

Configure Driver (V CONFIG)
This rommand reconfigures the drive with the values passed in
the confiq structure defined in /usr/include/sys/vtoc.h.

Configure Driver (V REMOUN1)
This command changes the device state flags so when the next
open is issued for the device, configuration information is read
from the disk and the driver's internal tables are reinitialized to
reflect the new configuration. No partition other than zero can
be open, and the user id must be zero to execute this command.

Load Volume Label (V L V LAB)
This command loads the driver's internal volume label with the
data in the cm::larg structure. No partitions other than zero can
be open. The user id must be superuser. The structure is
defined in /usr/include/ivlab.h.

Upload Volume Label (V U VLAB)
This command loads the user's cm::larq structure with data
from the driver's internal volume label. The structure is defined
in /usr/include/sys/ivlab. h.

Read Volume Label (V R VLAB)
This command loads the driver's internal volume label with the
data from the hard disk. This command can only be used on
partition zero, by user id zero, and the disk must contain a
valid volume label. Refer to /usr/include/sys/ivlab.h for
the starting byte offset of the volume label.

Write Volume Label (V W VLAB)
This command writes the driver's internal volume label to the
volume label in the hard disk. This command can only be used
on partition zero, by user id zero, and the disk must have a
properly formatted track zero.

Load Defect Info (V L MDL)
This command adds the data in the cm::larg structure to the
driver's internal defect list. Only partition zero may be open,
and the command may be used only by user id zero.

Upload Defect Info (V U MDL)
This command returns one entry from the driver's internal
defect list to the user's cm::larq structure.

Read Defect List (V R MDL)
This command loads the driver's internal defect list with the
data from the hard disk. The driver must have a valid volume
label in its tables. The disk must have a valid defect list on the
next to last cylander for an Sf-506 interface, or on the third
from last cylander for an ESDI interface.

Write Defect List (V W MDL)
This c:Ommand writes the driver's internal defect list to the
appropriate area of the hard disk. After the write is complete,
the internal defect list is cleared to zero. Only partition zero

10/89

hddd(1M)

SEE ALSO

hddd(1M)

may be open, and the command may be used only by user id
zero. The driver must have a valid volume label in its tables.

i214(7ire0, i224a(7ire0, i258(7ire0

10/89 Page 3

i
11

I

tdd(1M) tdd(1M)

NAME
tdd- MULTIBUS tape device drivers

DESCRIPTION

FILES

The formats for tape files are:

/dev/rmt/cOsOn no rewind on close, no retension on open
dev/rmt/cOsO rewind on close, no retension on open

These files refer to the QIC-24/QIC-02 basic cartridge tape streamer. Only raw
character interface files are provided.

A standard tape consists of several 512-byte records, terminated by an end-of-file
(EOF). To the extent possible, the system treats the tape like any other file. As in
other raw devices, seeks are ignored. An EOF is returned as a zero-length read,
with the tape positioned after the EOF so that the next read will return the next
record.

A tape opened for reading or writing is assumed to be positioned as desired;
that is, reading or writing occurs at the current position. It is possible to read
and write multifile tapes by using the non-rewinding tape file.

When a rewind-on-close file (cOsO) is closed, the tape is rewound. Also, if the file
was opened for writing and data was written, a double EOF (a double tape mark)
is written when the file is closed.

When a no-rewind-on-close file that was opened for writing is closed, if data was
written, one EOF is written and the tape is positioned after the EOF. When a
no-rewind-on-close file is closed after being opened for read-only, the tape is
positioned after the EOF following the just-read data.

The following ioctls are supported:

T RETENSION retension the tape

T RWD rewind the tape to Beginning of Tape (BOT)

T LOAD

T UNLOAD

T ERASE

T WRFILEM
T_RST

T SFF

rewind the tape to BOT

rewind the tape to BOT

erase the tape and leave it at BOT

write an EOF (tape mark)

reset the tape device

skip forward arg files

When a T_RWD, T_RETENSION, T_LOAD, or T_UNLOAD ioctl is requested after a
write operation, a double EOF (double tape mark) is written before the ioctl is
executed.

/dev/rmt/cOsOn
/dev/rmt/cOsO

SEE ALSO
i214tp(7iref), i224atp(7iref), i258tp(7iref)

10/89 Page 1

6 Device Drivers

Device Drivers 6-1

Table of Contents

Device Drivers

This chapter lists System V /386 device drivers for MULTIBUS-based devices.
The following drivers support both MULTIBUS I and MULTIBUS II systems:

• console

• iasy

• rarrd

• rte

The following drivers support MULTIBUS I systems:

• i214

• i214tp

• i546

• i8251

The following drivers support MULTIBUS II systems:

•ates • i258tp

• bpg • i354

• cci • i410

• d258 • i530

• dma. • ics

• edlina • mpc

• i224a • mps

• i224atp • ots

• i258 • rci

Device Drivers 6-1

console(1M} console (1 M}

NAME
console - console port device driver

DESCRIPTION

FILES

The console device driver provides an interface to the device driver controlling
the physical port assigned as the console port (for example, the i354 device
driver). Operations performed to the console are redirected by the console device
driver to the device driver controlling the physical device for interpretation and
handling.

Following is a list of device drivers that can control physical ports in MULTIBUS
systems. The console driver provides an interface to one of these device drivers:

i354
i8251
rci

If you are writing a device driver in order for it to become the console, it must
call consregister with the following parameters:

void consregister(ci,co,dev)
int (*ci)();
int (*co)();
dev_t dev;

The co and ci fields contain pointers to the routines which handle the output and
input operations, respectively, for the kernel (debug console). The co_deo field
contains the major-minor number value for the device driver controlling the
I dev I console. These fields are set automatically if the i354, i8251,or rci devices
are used as the console. See the System V /386 Device Driver Interface Specification
for information on writing a device driver.

I etc/ conf/ cf. d/I!'device mdevice entries
I etc/ conf/ sdevice. d/ console sdevice entries
/etc/conf/pack.d/console/Driver.o console device driver object module
/usr/include/sys/conf .h console driver specific definitions

SEE ALSO

10/89

ioct1(3), i354(7iref), i8251(7iref), iasy(7iref),
rci(7iref), termio(7) System V/386 Device Driver Interface/Driver-Kernel Interface
Reference Manual

Page 1

!
I

'l

lasy(1M) lasy(1M}

NAME
iasy - asynchronous (terminal) device driver

DESCRIPTION

FILES

The iasy driver handles the interface between MULTIBUS terminal device
drivers and applications as described by the termi.o(7) specification.

To configure the iasy driver, modify the following variables in the
/etc/conf/pack.d/iasy/space.c file:

iasy_num Contains the number of terminal devices to be supported by the sys­
tem. This number must correspond to the size of the iasy_tty and
iasy hw arrays.

The iasy driver also supports the termi.o(7) ioctls for use by applications.

/usr/ include/ sys/ iasy. h definitions for data structures
I etc/conf/pack. d/ iasy I space. c configuration information

SEE ALSO
termi.0(7), atcs(7iref), i354(7iref), i546(7iref), i8251(7iref) ics(7iref)

10/89 Page 1

ramd(1M) ramd(1M)

NAME
ram::!.- MULTIBUS RAM disk driver

DESCRIPTION

10/89

The RAM disk driver provides block device access to system memory. It can be
used to set up a RAM-based file system. The memory for the RAM disk is
mapped from system memory. The *roving: RAM disk is built in sysseg out of
user memory. Memory is defined by a structure that gives the starting address
and size of the memory to be managed. The structure is called ram:iinfo and is
defined in the file /usr/include/sys/ram:i.h. The format of the structure is:

struct ramd_info {

};

ulong ramd size;
ulong ramd= flag;
dev t ramd_maj;
dev-t ramd_min;
ulong ramd_state
caddr _ t ramd _paddr;

Flag definitions:

#define RAMD STATIC
#define RAMO-RUNTIME
#define RAMD-LOAD

!* Size of disk in bytes ,. I
/* State flags; see defs below .. I
/* Major device for load ,. I
/* Minor device for load ,. I
/* Runtime state ,. I
/* Kernel virtual address ,. I

OxOl
Ox02
Ox04

/* RAM Disk statically allocated ,. I
/* Runtime definable RAM Disk ,. I
/* Auto fill RAM disk at init ,. I

If the RAMD_RUNTIME flag is chosen, the interface to the RAM disk driver func­
tions is through four ioctl calls. A utility must be written that uses them to
allocate and free up space. The ioctl calls are:

RAMD IOC GET INFO
RAMD-IOC-R ALLOC
RAMD-IOC-R-FREE
RAMD-IOC-LOAD

returns size, flags, and base
defines a roving ram disk
frees a roving ram disk
loads a ramd partition

The ioclt calls use the ram:i info structure, described above. The ioctl calls are
defined in the file /usr/include/sys/ram:i.h. The following is a list of error
conditions that may be returned.

No Device or Address [ENXIO]
If the device specified is unknown, this message is printed.

Not Enough Core [ENOMEM]
If the ram disk cannot be set up as specified, the memory is not avail­
able and this message is printed.

Invalid Argument [EINVAL]
This message is printed if a bad ioctl request is specified or the ram
disk size specified is zero.

Page 1

ramd(1M) ramd(1M)

NOTES

FILES

Page 2

When configuring RAM disks, make sure the size of the RAM disk is specified in
bytes and not blocks. Also, the RAM disk size and starting address must be a
multiple of 4Kb (which is the page size).

/usr/include/sys/rand.h
/etc/conf/pack.d/rand/space.c

Driver specific definitions
Driver specific configuration

10/89

rtc(1M) rtc(1M)

NAME
rte - MULTIBUS clock driver

DESCRIPTION

10/89

The rte driver provides a multiplexed interface to the iSBC 546 clock on MUL­
TIBUS I systems and the CSM clock on MULTIBUS II systems. It conforms to the
AT386 real time clock interface thus providing a consistent interface to the System
V /386 kernel.

The interaction is based on a client/server model. The i546 and esroc:lk drivers
are the servers that handle the read/write clock functions; the clock driver is the
client which converts the server clock formats to standard real time format and
provides the kernel and user application external interfaces. The esm:::lk driver
supports both the CSMOOl and CSM002 boards.

The kernel interface to the rte driver functions is through two routines that get
and set the time using an address to a structure called rte_t. The two requests
are elkget and elkput. These routines fail and return a -1 if any hardware error
occurs while reading or writing the rte. The structure is defined in the file
/usr/inelude/sys/rte.h. The format of the structure is:

struct rte t {
unsigned char rte_ sec;
unsigned char rte asec;
unsigned char rte - min;
unsigned char rte - amin;
unsigned char rte -hr;
unsigned char rte - ahr;
unsigned char rte - dow;
unsigned char rte= dom;
unsigned char rte_ mon;
unsigned char rte yr;
unsigned char rte statusa;
unsigned char rtc=statusb;
unsigned char rte statusc;
unsigned char rtc=statusd;

!* second of minute, 0-59 *I
!* second alarm *I
!* minute of hour, 0-59 .. I
!* minute alarm •I
!*hour of the day, 1-23 •I
!* hour alarm •I
!*day of the week, 1-7 •I
!*day of the month, 1-31 •I
!*month of the year, 1-12 •I
!* year of the century, 0-99 •I
!* status register A *I
/* status register B •I
!* status register c •I
/* status register D *I };

The user application interface to the rte driver functions is through two ioctl
functions that are the same as the A T386 clock ioctl functions. The two
requests are RTCRTIME and RTCSTIME. They get and set the time using an
address to the same structure called rte t shown above. The ioctls are
defined in the file /usr/inelude/sys/rte.h.

The following is a list of error conditions that may be returned.

I/O Error [EIO]
This error is printed if the driver gets an error while trying to read
the real-time clock chip.

Permission Denied [EACCESS]
This message is printed if the user trying to access the clock device
(to set the time) is not the superuser. The message is also printed if
the clock could not be set.

Page 1

rtc{1M) rtc{1M)

Invalid Argument [EINVAL]
This message is printed if one of the fields used to set the time is out­
side the prescribed limits.

FILES
/usr/include/sys/clockcal.h
/usr/include/sys/rtc.h

SEE ALSO
rtc(7), i546(7iref)

Page 2

Driver specific definitions
Real time clock specific definitions

10/89

1214(1M) 1214(1M)

NAME
i214 - iSBCR 214 peripheral controller disk device driver

DESCRIPTION
The i214 device driver provides an interface to peripheral devices controlled by
an Intel iSBC 214 peripheral controller board or an iSBC 221 peripheral controller
board. These devices can be hard disk drives and floppy drives. (For cartridge
tape support, see i214tp(7iref)) ST506-interface hard disk drives are supported.
This driver supports up to four hard disk drives and four floppy drives (360
KByte capacity).

The interface to the i214 driver is the standard System V /386 block device inter­
face.

CONFIGURATION
Configuration of the i214 driver is defined by the following data structures:

minor table
board table
drive table
partition table

These tables are in the file /etc/conf/pack.d/i214/space.c . Users can
change the entries the minor table and board table to configure the driver.
Changing the contents of the drive and partition tables is not recommended.

The configuration for the i214tp(7iref) driver is handled by the same data struc­
tures as the i214 driver. The i214 driver must be configured into the system in
order to use the i214tp(7iref) driver.

Minor Table

10/89

The minor table maps a logical device's minor number to a partition on a physi­
cal device. A physical device consists of a specific unit on a board. For more
information on minor number assignments, see i214minor in the file
/etc/conf/pack.d/i214/space.c.

Page 1

1214(1M) 1214(1M)

Minor
Table Unit Board
0 -15 WiniO 0
16 - 31 Winil 0
32 - 47 Wini2 0
48 - 63 Wini3 0

64 - 78 FloppyO 0
79 - 93 Floppyl 0

94 -108 Floppy2 0
109 -123 Floppy3 0

124,125 TapeO 0
126,127 Tapel 0

128 -143 WiniO 1
144 -159 Winil 1
160 -175 Wini2 1
176 - 191 Wini3 1

192 - 206 FloppyO 1
207 - 221 Floppyl 1
222 - 236 Floppy2 1
237 - 251 Floppy3 1

252,253 TapeO 1
254,255 T~el 1

Board Table

Page 2

The board table is an array of structures containing the information required to
access each board in the system, and each unit on the board. The minor number
from the minor table indicates a board in the board table. To configure the
i214 driver, find the i214cfg structure in the file
/etc/conf/pack.d/i214/space.c. There are three configurable values in each
entry of this structure:

c wau wakeup address
c-devcod devices
c-level interrupt level

These values begin the first line of of each entry, in the format:

c_wua, i214TYPE, FLPYTYPE, TAPETYPE, c_level

Note that there is more information in each structure entry, but it is not
configurable. If you are putting a new entry into the board table, use the wakeup
address (c_wua) and interrupt level (c_level) that were set in hardware when
the board is installed. If either of these two values is wrong, the driver will not
be able to find the board.

10/89

1214(1M) 1214(1M)

The device (c devcod) literals, i214TYPE, FLPYTYPE, and TAPETYPE, are defined
earlier in the i214/space.c file to correspond to devices listed in the
/usr/include/sys/i214 .h file. The list of devices in the i214 .h file contains
all valid devices for the i214 driver.

You can change the FLPYTYPE literal definition from DEVSFLPY (low-density 5.25:
diskette drive) to DEV8FLPY (high-density 5.25: diskette drive) if the board is an
i221 board. Otherwise, do not change the definitions of the c_devcod literals.

The remainder of each entry in the board table is a list of pointers to the drive
table for each device connected to the board. Do not modify this list. If you are
adding a board, copy the list from an old board entry to the new entry.

The drive table and partition table contain lists of the possible configurations for
the driver. If you are configuring the driver, do not modify the contents of either
the drive table or the partition table.

Hard Disk Information
This device driver requires certain information about a disk drive in order to
access the drive. This information is stored on the disks themselves. Hard Disk
Device Drivers (Siref) discusses the disk drive information that this and other disk
device drivers need. Also, certain ioctl() calls are supported by all MULTIBUS
disk device drivers. These calls are listed in the hard disk device drivers (5iref)
man page.

Flexible Disk Information

FILES

There is a device file in the /dev directory for each type of valid flexible disk
drive. The device filenames follow a naming convention that is discussed in the
flexible disk device drivers(5iref) man page.

/usr/include/sys/i214.h
/etc/conf/pack.d/i214/space.c

SEE ALSO

10/89

Flexible disk device drivers (Sire[) Hard disk device drivers (Sire[> i224a(7iref),
i258(7iref)

Page 3

1214tp(1M) 1214tp(1M)

NAME
i214tp - iSBC 214 peripheral controller tape device driver

DESCRIPTION
The i214tp device driver provides an interface to tape devices controlled by an
iSBC 214 peripheral controller board. The driver supports 1/4-inch QIC-02 car­
tridge magnetic tape only.

The configuration for the i214tp driver is handled by the same data structures as
the i214 driver. The i214 driver must be configured into the system in order to
configure the i214tp driver.

There is a device file in the /dev directory for each type of valid tape drive. The
device filenames follow a naming convention that is discussed in the tape device
drivers(Siref) man page.

SEE ALSO
drivers(Siref), i214(7iref)

10/89 Page 1

1546(1M) 1546(1M)

NAME
i546 - iSBC 546 multi-port serial controller

DESCRIPTION

FILES

The i546 device driver provides a termio interface to the iSBC 546 or iSBC 549
serial controller card on MULTIBUS I. Because of compatible hardware inter­
faces, it also interfaces with the iSBC 547 and iSBC 548.

The i54 6 driver is configured by information in structures initialized in the
space. c file. The maximum number of 546 boards (including 547, 548, and 549
boards) that will be initialized is set by the variable NUM546 (default is 2). The
MULTIBUS I memory address, I/0 port, and interrupt level of each board are
specified in an array of i546cfg structures. The structure is defined as follows:

struct i546cfg {
long c _addr;
int c_port;
int c level;
} -

r board's physical address .. I
r board's interrupt address .. I r board's interrupt level .. I

c_addr gives the MULTIBUS I physical address of the first byte of the board's
memory region. c_port specifies the MULTIBUS I I/0 port that interrupts the
board. c_level specifies the interrupt level with which the board will interrupt
the CPU. Refer to the iSBCR 546/547/548 High Performance Terminal Controll.ers
Hardware Reference Manual for default settings.

/etc/conf/pack.d/i546/Driver.o
/usr/include/sys/i546.h
/usr/include/sys/clockcal.h
/etc/conf/cf.d/u:device
/etc/conf/sdevice.d/i546
/etc/conf/pack.d/i546/space.c

i54 6 driver object module
i54 6 specific definitions
clock/ calendar definitions
mdevice entries
sdevice entries
i54 6 specific declarations
and initializations

SEE ALSO
ioctl(3), te%:lllio(7)

10/89 Page 1

i8251 (1M) 18251 (1M)

NAME
i8251 - console terminal/iSBXT 351 driver

DESCRIPTION

FILES

The i8251 device driver, together with the iasy(7iref) driver, provides a termio
interface to the serial port of an iSBC 386/xx or an iSBX 351 module attached to
an iSBC 386/xx board. It also provides kernel debug port services via the
console(7iref) interface.

Configure the i8251 device driver using the sdevice (4) file format.

/etc/conf/pack.d/i8251/Driver.o
/usr/include/sys/i8251.h
/etc/conf/cf.d/rrdevice
/etc/conf/sdevice.d/i8251
/etc/conf/pack.d/i8251/space.c

i8251 driver object module
i8251 specific definitions
mdevice entries
sdevice entries
i8251 specific declarations
and initializations

SEE ALSO
sdevice(4), iasy(7iref), console(7iref)

10/89 Page 1

atcs{1M) atcs{1M)

NAME
ates - asynchronous terminal controller script device driver

DESCRIPTION

FILES

The ates device driver, together with the iasy(7iref) driver, provides a termio
interface to terminal controller scripts running on serial port controller boards
within MULTIBUS II systems. The ates device driver provides functions which
implement the asynchronous terminal protocol.

The ates device driver uses the MULTIBUS II transport message passing
mechanism to communicate with servers running on serial controller &oards (the
iSBC 186/410 Serial Communications Controller board, for example) in the MUL­
TIBUS II system.

The ates device driver relies upon the cci device driver to set up communica­
tion paths to a server running on a serial controller board. Once the cci device
driver has set up a channel for an ates line, the ates device driver may use that
channel to communicate with a server controlling a port on the serial controller
board.

The /etc/conf/pack.d/ats/space.c file contains the ates info structure.
This structure holds information that maps slots and ports to -minor numbers.
This information specifies which ATCS lines in a system should be configured for
System V /386 Release 4.0.

The atcs_info structure contains the following information:

slot The board on which an ates server may be running.
fmin The first ATCS minor number to be allocated.

lmin The last ATCS minor number to be allocated.

port The first hardware port to be allocated.

Users enter appropriate values into the fields, and in this manner map ranges of
minor number onto physical boards and ports.

The mapping of slot/port to minor number can also be specified with the boot
parameter string (BPS). If there is ates information in the BPS, the system does
not check to see if there is information in the ates info structure of the space. c
file. -

/etc/conf/cf.d/mdevice
/etc/conf/sdevice.d/atcs
/etc/conf/pack.d/atcs/Driver.o
/etc/conf/pack.d/atcs/space.c
/usr/include/sys/atcs.h
/usr/include/sys/atcmrp.h

mdevice entries
sdevice entries
ates device driver object module
ates specific declarations and initialization
ates specific definitions
ates message passing protocol definitions

SEE ALSO
cci(7iref), iasy(7iref), tennio(7), cci(7iref), bps(7iref)

10/89 Page 1

bps(1M) bps(1M)

NAME
bps - Bootstrap Parameter String driver

DESCRIPTION
The bps driver provides an interface to the bootstrap parameter string (BPS) for
the kernel, MULTIBUS II device drivers, and applications. When the operating
system is loaded on a host, it uses the BPS to configure the system. For UNIX,
the individual device drivers configure their tables and devices based on the
information in the BPS.

The BPS consists of several entries of the form parameter=value that are
separated by semicolons. The parameter must be unique within a parameter
string for a particular host, so multiple entries can be specified by similar parame­
ter names that can be matched with wildcards. The value can have multiple
configuration parameters of the form confiq:value that are separated by commas.
For example, the BPS entry for an asynchronous 1/0 device at host id 5 that is
assigned to minor numbers 23 through 30 is a ASYNC=hid: 5, port: 0-
7, minor: 23-30;

CONFIGURATION
The bps driver configuration file contains the following configurable variables:

bps use native
- - When this flag is set to 1, the bps driver uses the default BPS left in

RAM by the MULTIBUS II Systems Architecture (MSA) firmware BPS
manager. The BPS contains parameters from ROM, operator inter­
vention, and the bootserver configuration file.

bps tokenized value
- In R1.0 of the MSA firmware, the BPS manager splits the value of the

parameter into tokens. When this flag is set to 1, the bps driver
parses through the value of the parameter.

bps_testing
When this variable is set to 1, it lets an application use the BPSINIT
command of the ioctl function, which allows specification of a
bootstrap parameter string.

bps ram addr
- - This is the physical address in memory where the MSA firmware BPS

manager stores the bootstrap parameter string. This value is used by
the bps driver in conjunction with bps_testing to access the BPS in
systems which do not have the updated second-stage bootstrap
loader.

BPS DRIVER KERNEL INTERFACE

10/89

The following routines define the bps driver Kernel Interface. The routines are
synchronous and return on completion of the request. They assume that the
character string is null-terminated. All routines return a 0 if successfully com­
pleted and a -1 or error number if there is a failure. Errors are listed later in this
section.

bps_open
e_code = bps_open();

The bps_open function ensures that the bps driver is initialized correctly. This

Page 1

bps(1M) bps(1M)

Page 2

routine must be called by all device drivers which access the bps. It eliminates
any dependency on the order in which the kernel calls the driver init routines.

bps init
e_c'Ode = bps_init(string_p);
char string_p;

The bps_init function allows the caller to specify an alternate BPS. The bps
driver assumes that the string is null-terminated, well-formed, and conforms to
the syntax of the Bootstrap Parameter String. After this call returns, the bps
driver uses this string to retrieve parameters or values.

bps get val
e_c'Ode;; bps_get_val(string_p, vbuf_len, valbuf_p);
char string_p;
int vbuf len;
char valbuf _p;

The bps_get_val function retrieves the value of the parameter pointed to by
string_p and returns it in the buffer pointed to by valbuf_p. vbuf_len is the
length of the buffer, so the contents of the buffer are valid only if the length of
the returned character string is less than vbuf _ len.

bps_get_wcval
e_code = bps_get_wcval(string_p, state_p, vbuf_len, valbuf_p);
char string_p;
int state _p;
int vbuf len;
char valbuf _p;

The bps _get_ wcval function retrieves the value of the parameter pointed to by
string_p and returns the value in the buffer pointed to by valbuf_p. vbuf_len
is the length of the buffer, so the contents of the buffer are valid only if the length
of the returned character string is less than vbuf _ len.

Simplistic wildcards are supported. The wildcard characters and "?" must
always be the last character of the parameter name and the parameter name must
have at least one other character besides the wildcard character. The "?" will
match one character of the parameter name, while the "*" will match a sequence
of characters. For example, the wildcards "async?" or "asy*" can be used to
retrieve the following parameters:

asyncl = major:4,minor:0-5,protocol:atcs;
async2 = major:4,minor:7-11,protocol:atcs;

Prior to the first call to bps _get_ wcval, the value pointed to by state _p should
be initialized to 0, and in subsequent calls to bps_get_wcval it should not be
modified. The bps driver uses state _p as an index of successfully matched
parameters.

10/89

I

!,

bps(1M) bps(1M)

bps get opt
e_cOde -. bps_get_opt (valbufy, state2y, stringy, config_code,
value_len, valuey);
char valbuf y;
int state2y;
char stringy;
int config code;
int value_Ien;
char valuey;

The bps_get_opt function retrieves the value of the keywords pointed to by the
string stringy and returns the value in the buffer pointed to by value y.
value_len is the length of the buffer, so the contents of the buffer are valid only
if the length of the returned character string is less than value_ len. valbuf y is
the value to scan and is the output of a prior call to either bps _get_ val or
bps_get_wcval. The value pointed to by state2y should be initialized to 0,
and in subsequent invocations.

bps get socket
e_cO<ie ;; bps_get_socket(valuey, porty, hostidy);
char valuey;
int porty;
int hostidy;

The bps _get_ socket function returns the host id and port id as long integers
from the character string pointed to by value y. This character string is the out­
put from a previous call to bps _get_ val, bps _get_ wcval, or bps _get_ opt.

bps_get_range
e_code = bps_get_range(valuey, lo_rangey, hi_rangey);
char valuey ;
int lo_rangey; int hi_rangey;

The bps _get_ range function returns the lower and upper bounds of a range as
long integers from the character string pointed to by value y. This character
string is the output from a previous call to bps_get_val, bps_get_wcval, or
bps _get_ opt.

bps_get_integer
e_code = bps_get_integer(valuey, inty)
char valuey;
int inty;

The bps _get_ integer function returns the value of the character string pointed
to by valuey as a long integer. The character string is the output from a previ­
ous call to bps get val, bps get wcval, or bps get opt. Overflow conditions
are ignored. - - - - - -

BPS DRIVER LIBRARY INTERFACE

10/89

The following routines define the bps driver Library Interface. The routines are
synchronous and return on completion of the request. They assume that the
character string is null-terminated. All routines return a 0 if successfully

Page 3

bps(1M} bps(1M)

completed and a -1 or error number if there is a failure. Errors are listed later in
this section.

bpscpm
e_code = bpsopen();

The bpsopen function opens the bps device driver. It must be called by all appli­
cations which need access to the bps.

bpsclose
e_code = bpsclose();

The bpsclose function closes the bps device driver. It must be called by all
applications when they have finished accessing the bps.

bpsinit
e_code = bps_init(Newbps);
char Newbps;

The bpsinit function allows the application to specify an alternate BPS for use.
This function is provided for testing purposes only, so it will work if the BPS is
configured for testing. The bps driver assumes that the string is null-terminated,
well-formed, and conforms to the syntax of the Bootstrap Parameter String. After
this call returns, the bps driver uses this string for references when retrieving
parameters or values. The following functions have the same syntax as in the
Kernel Interface: bps get val, bps get wcval, bps get opt,
bps_get_integer, bps_get_range:-and bps_get:=socket. - -

SUPPORTED FEATURES

Page 4

The bps driver supports the following ioctl () calls for use by applications:

BPSINIT This command requires that the bps driver be configured with the
bps_ testing flag enabled and that the caller's id is zero. If the argu­
ment addr is NULL, the bps driver reinitializes its internal data struc­
tures with the BPS in RAM. If the argument addr is a pointer to
structure bps ioctl, the bps driver reinitializes its internal data
structures with the BPS pointed to by bps_ ioctl ->string_p. The
bps driver assumes that the string is well-formed and conforms to
the syntax specification of the BPS.

BPSGETPV The argument is a pointer to structure bps_ioctl. It returns a char­
acter string at the location pointed to by bps_ioctl->valbuf_p,
which is the value of the parameter pointed to by bps_ ioctl­
>string_p.

BPSGE'IWCPV
The argument is a pointer to structure bps_ ioctl. It returns a char­
acter string at the location pointed to by bps_ioctl->valbuf_p,
which is the value of the wildcard parameter pointed to by
bps_ioctl->string_p.

BPSGETOPTS
The argument is a pointer to structure bps_ioctl. It returns an
integer value at the location pointed to by bps_ ioctl­
>config_ code, which is an index in the list of names pointed by

10/89

bps(1M) bps(1M)

l:lps_ioctl->string_p. It also returns a character string pointed to
by l:lps_ioctl->value_p, which is the value of the name.
l:lps_ioctl->valbuf_p is the pointer to the character string; it is the
value of a parameter name retrieved by either BPSGETPV or
BPSGE~PV.

BPSGETINTEGER
This command converts a character string to an integer. The argu­
ment is a pointer to structure bps_ioctl. It returns an integer (at
the location pointed to by bps_ioctl->lo_return_p) for the charac­
ter string pointed to by bps_ioctl->value_p.

BPSGETSOCKET
This command returns the host id and port id components. The
argument is a pointer to structure bps_ ioctl. It returns integer
values (at the location pointed to by bps_ioctl->lo_return_p and
l:lps_ioctl->hi_return_p) for the character string pointed to by
l:lps_ioctl->value_p.

BPSGETRANGE
This command returns the lower and upper bounds of a range. The
argument is a pointer to structure bps_ ioctl. It returns integer
values (at the location pointed to by bps_ioctl->lo_return_p and
l:lps_ioctl->hi_return_p) for the character string pointed to by
l:lps_ioctl->value_p.

EXAMPLES

10/89

An example of how to use the bps routines is as follows:

if ! (bpsopen ()) {
BPSstatel = 0;
while ! (bps get wcval("ASYNC", &BPSstatel, BPSvalbuflen,

&BPSvalbufl) { - -
BPSstate2 = 0;
while ! (bps get ~t(&BPSvalbuf, &BPSstate2,
"hid :minor :iiiinor", &ConfigCode, &ValPntrLen, &ValPntr))

switch (COnfigCode) {
1)

2)
3)

if !(bps get integer(ValPntr, &ThisHID))
deijrintf("illegal HID valueO);

break;

Page 5

bps{1M) bps(1M)

The next example illustrates the format of the BPS for the mapping of host/port
to minor numbers shown in the following table.

Host id

6

6

6

7

ASYNCl=hid:6,port:3,minor:5;
ASYNC2=hid:6,port:4,minor:6;
ASYNC3=hid:6,port:S,minor:7;
ASYNC4=hid:7,port:O,minor:8;

Port

3

4

5

0

Minor
Number

5

6

7

8

If the driver can pack values, then ranges could be specified in the above map­
pings as follows:

ASYNCl=hid:6,port:3-5,minor:S-7; ASYNC2=hid:7,port:O,minor:8;

ERROR CODES

FILES

Possible error codes are as follows:

EFAULT
EINVAL

EPERM
EBUSY

ENOMEM
EN OD EV

A memory address used in an ioctl is not a valid data address.
An invalid ioctl request is attempted or the parameters to the
ioctl request are inconsistent.
BPSINIT ioctl request is attempted with non-zero user id.
BPSINIT ioctl request is attempted while another BPSINIT is in
progress or the bps is configured with the bps_ testing flag dis­
abled.
The bps could not allocate enough memory to copy user parameters.
An ioctl request is made prior to the bps driver initializing its inter­
nal state.

/usr/include/sys/bps .h Definitions for data structures.
I etc/ conf/pack. d/bps/ space. cBPS driver configuration file.

SEE ALSO
MULTIBUS II System Architecture Bootstrap Specification

Page 6 10/89

ccl(1M) ccl(1M)

NAME
eei - communications controller interface device driver

DESCRIPTION

FILES

The eei device driver provides an interface to servers on serial port controller
boards within a MULTIBUS II system. These servers manage the use of the serial
ports on the controller boards.

The eei device driver functions encapsulate the Communications Controller
Interface (CCI) protocol for use by device drivers within the system which imple­
ment a terminal controller interface. The MULTIBUS II Transport message pass­
ing mechanism is used by the eei device driver to communicate with a CCI
server running on a serial controller board.

A terminal controller interface driver such as the ates device driver relies on the
eei driver to provide management of serial ports on a serial controller board.
The eei driver handles the communication between the client host and the CCI
server for serial port connection, dissolution, and switching. The ates driver
may request to attach, detach, or switch from, a channel to a serial port. These
requests are made via the eei device driver.

/ete/eonf/cf.d/'lt'device
/etc/conf/sdeviee.d/cci
/ete/eonf/pack.d/eci/Driver.o
/usr/inelude/sys/cci.h
/usr/inelude/sys/ccinp.h

mdevice entries
sdevice entries
cci device driver object module
cci specific definitions
eci message passing protocol definitions

SEE ALSO
ioctl(3), ates(7iref), termio(7)

10/89 Page 1

d258(1M) d258(1M)

NAME
d258 - i82258 ADMA device driver

DESCRIPTION

FILES

The d258 driver handles the internal low level interface between the dma(7iref)
interface and the actual OMA hardware of a MULTIBUS II board.

To configure the d258 driver, modify the following variables in the
/etc/conf/pack.d/d258/space.c file:

d258 _base The base 1/0 port address for the i82258 chip.

d258 _gmr The bit mask to be loaded into the mode register of the
i82258 chip. Do not modify this variable.

d258_gbr

d258_gdr

d258 sbx base

d258 sbx sw - - -
chanO _swconf
chan1 _swconf

The maximum number of contiguous bus cycles to be
used for OMA. A zero is used to indicate unlimited
length transfers are permitted.

The number of bus cycles to wait between OMA bursts.

The base address for OMA to/from the iSBX module.

A flag indicating that dma has been configured
For iSBX channel 0.

For iSBX channel 1.

There are no ioctls for the d258 driver. The d258 driver is used to support the
OMA interface required by the System V /386 Device Driver Interface
specification, which is used in turn to implement other drivers which do have
ioctl interfaces.

I etc/ conf/pack. d/ d258/ space. c Configuration information
SEE ALSO

dma(7iref)
SystemV/386 Device Driver Interface/Driver-Kernel Interface Reference Manual

NOTES
DMA to or from iSBX connectors is not yet supported.

10/89 Page 1

I·

dma(1M) dma(1M)

NAME
dma - OMA device driver

DESCRIPTION
The dma driver implements the internal OMA interface for device drivers as
described in the SystemV/386 Device Driver Interface/Driver-Kernel Interface Reference
Manual.
There are no configurable variables for the dma driver.

There are no ioctls for the dma driver. The dma driver is used to support the
OMA interface required by the System V/386 Device Driver Interface specification,
which is used in turn to implement other drivers that have ioctl interfaces.

SEE ALSO
i258(7iref)
SystemV/386 Device Driver Interface/Driver-Kernel Interface Reference Manual

10/89 Page 1

edllna{1M) edllna{1M)

NAME
edlina - External Data Link driver for iNA961Release3.0.

DESCRIPTION

FILES

The edlina driver provides a STREAMS interface that integrates with the System
V /38/J TCP /IP protocol stack. The edlina driver is the end of the streams queue
pair providing the interface to the underlying External Data Link CEDL) offered
by iNA961 Release 3.0. The Link Level Interface is provided by the edlina
driver by transmitting and receiving Data Link packets using the communication
interface provided by the i530 driver.

Configuration and tunable parameters for the edlina driver are defined in
/etc/conf/pack.d/edlina/space.c. In order to change the driver
configuration, this file must be edited and the kernel regenerated. These parame­
ters are described below:

N_BOARDS Number of 186/530 boards in the system. The default is 1.

EDL_Mll_

BtiFS_POSTED

Maximum number of buffers posted for.

receiving data. The default is 16.

/etc/conf/pack.d/edlina/space.c
/etc/conf/pack.d/edlina/Driver.o
/etc/conf/node.d/edlina
/etc/conf/sdevice.d/edlina
/usr/include/sys/edlina.h
/etc/strcf

edlina driver configuration file
edlina driver object file
edlina driver device node definition
edlina driver system device entry
edlina driver user data structures
TCP /IP configuration file

SEE ALSO
i530(7iref)

NOTES

10/89

The following line will need to be added to the boot function in the I etc/ strcf
file to configure TCP /IP to use the edlina driver:

cenet ip /dev/edlina emd 0

There should be only one cenet (or senet) executable line in this file.

Page 1

1224a(1M) 1224a(1M)

NAME
i224a - iSBC 186/224A peripheral controller disk device driver

DESCRIPTION
The i224a device driver provides an interface to peripheral devices controlled by
a Peripheral Controller Interface (PCI) running on an Intel iSBC 186/224A peri­
pheral controller board. These devices can only be hard disk drives and floppy
drives. (For cartridge tape support, see i224atp(7iref).) ST506-interface hard
disk drives are supported. This driver supports up to four hard disk drives and
four floppy drives (360 KByte capacity). The driver supports one or two con­
troller boards, with two boards as the default configuration. For more informa­
tion on the PCI Interface, see the iSBCR 186/224A Peripheral Controller Board User's
Guide.

The interface to the i224a driver is the standard System V /386 block and charac­
ter device interface.

CONFIGURATION
The configuration for the i224a driver is handled by the following data struc­
tures: the minor table, the board table, the drive table, and the partition table.
Users can change the entries the minor table and board table to configure the
driver. Changing the contents of the drive and partition tables is not recom­
mended.

The configuration for the i224atp(7iref) driver is handled by the same data struc­
tures as the i224a driver. The i224a driver must be configured into the system
in order to configure the i224atp(7iref) driver.

Minor Table
The minor table maps a logical device's minor number to a partition on a physi­
cal device. A physical device consists of a specific unit on a board. The follow­
ing table shows how the minor numbers are mapped onto the list of possible
boards and units. For more information on minor number assignments, see
i224aminor in the file /etc/conf/pack.d/i224a/space.c.

Board Table
The board table is an array of structures containing the information required to
access each board in the system. A board is selected by the board index in the
minor table. Each entry in this table contains the information required to com­
municate with the board, and a pointer to the drive table for each device con­
nected to the board. See i224acfg in the file /usr/ include/ sys/ i224a. h.

The drive table and partition table contain lists of the possible
configurations for the driver. If you are configuring the driver, do not modify
the contents of either the drive table or the partition table.

Hard Disk Information

10/89

This device driver requires certain information about a disk drive in order to
access the drive. This information is stored on the disks themselves. hard disk
device drivers(Siref) discusses the disk drive information that this and other
disk device drivers need. Also, certain ioctl() calls are supported by all MUL­
TIBUS disk device drivers. These calls are listed in the hard disk device
drivers(Siref) man page.

Page 1

1224a(1M) 1224a(1M)

Minor
Table Unit Board
0 -15 WiniO 0
16 - 31 Winil 0
32- 47 Wini2 0
48- 63 Wini3 0

64 - 78 FloppyO 0
79 - 93 Floppyl 0

94 -108 Floppy2 0
109 -123 Floppy3 0

124,125 TapeO 0
126,127 Tapel 0

128 -143 WiniO 1
144 -159 Winil 1
160 -175 Wini2 1
176 - 191 Wini3 1

192 - 206 FloppyO 1
207 - 221 Floppyl 1
222- 236 Floppy2 1
237 - 251 Floppy3 1

252,253 TapeO 1
254,255 T~el 1

Flexible Disk Information

FILES

There is a device file in the /dev directory for each type of valid flexible disk
drive. The device filenames follow a naming convention that is discussed in the
flexible disk device drivers(5iref) man page.

/usr/include/sys/i224a.h
/etc/conf/pack.d/i224a/space.c

SEE ALSO

Page 2

flexible disk device drivers(5rref)
hard disk device drivers(5iref)
i214(7rref), i224atp(7iref), i258(7iref)
iSBCR 186/224A Peripheral Controller Board User's Guide

10/89

I'
I

1224atp (1 M) 1224atp(1M)

NAME
i224atp - iSBC 186/224A peripheral controller tape device driver

DESCRIPTION

FILES

The i224atp device driver provides an interface to tape devices controlled by the
PCI running on an iSBC 186/224A peripheral controller board. The driver sup­
ports 1/4-inch QIC-02 cartridge magnetic tape only.

The configuration for the i224atp driver is handled by the same data structures
as the i224a driver. The i224a driver must be configured into the system in
order to configure the i224atp driver.

Tape device filenames follow a naming convention that is discussed in the tape
device drivers(Siref) man page.

/etc/cinf/pack.d/i224a/space.c
/usr/include/sys/i224a.h

SEE ALSO
tape device drivers(Siref), i224a(7iref)

10/89 Page 1

1258(1M) i258(1M)

NAME
i258 - iSBC 386/258 peripheral controller device driver

DESCRIPTION
The i258 device driver provides an interface to hard disk and flexible disk dev­
ices controlled by the Peripheral Controller Interface (PCI) running on an Intel
iSBC 386/258 peripheral controller board. (For cartridge tape support, see
i258tp(7iref).) The iSBC 386/258 board supports the SCSI device interface.

This driver supports up to four hard disk drives and two diskette drives on one
controller board. The driver supports one or two controller boards, with two
boards as the default configuration.

The interface to the i258 driver is the standard System V /386 block and charac­
ter device interface.

CONFIGURATION
The i258 driver communicates with the PCI, which in tum communicates with
SCSI devices. The PCI and SCSI interfaces address devices differently. When
configuring the driver, use the PCI unit addressing scheme to address devices; the
PCI translates addresses received from the driver to the proper SCSI addresses.
For information on this address translation, see the How To Use The Peripheral
Controller Interface (PCI) Server.

Configuration for the i258 driver is handled by the following data structures: the
minor table, the board table, the drive table, and the partition table.

Minor Table
The minor table maps a logical device's minor number to a partition on a physi­
cal device. A physical device consists of a specific unit on a board. The unit
numbers in the i258 minor table are the PCI unit numbers for the specified
devices. The table on the next page shows how the minor numbers are mapped
onto the list of possible boards, devices, and PCI units. For more information on
minor number assignments, see i258minor in the file
/etc/conf/pack.d/i258/space.c.

Board Table

10/89

The board table is an array of structures containing the information required to
access each board in the system. A board is selected by the board index in the
minor table. Each entry in this table contains the information required to com­
municate with the board, and a pointer to the drive table for each device con­
nected to the board. See i258cfg in the file /usr/include/sys/i258 .h.

The drive table and partition table contain lists of the default
configurations for devices controlled by the driver. When configuring the i258
driver, you may want to add devices with different characteristics than the
default devices.

The following steps provide an overview of the procedure you must follow to
add a new device:

Add an entry into the drive table for the new device type. The drive table is in
the file /etc/conf/pack. d/i258/space. c. Hard disks drives are defined in the
structure i258cdrt i258d00 [], diskette drives in the structure i258cdrt
i258f00 [], and tape drives in the structure i258cdrt i258t00 [] . Add an entry

Page 1

1:

I
I

1258(1M) 1258(1M)

Page 2

to the partition table for each partition on the new device type. The partition
table is in the file /etc/conf/paclc.d/i258/space.c. Partitions for diskette
drives are defined in the structure i258cdrt i258Pf0 []. Partitions for tape
drives are not configurable. Partition information for hard disks is determined at
runtime from the volume table of contents (vtoc) on the drive. (See
/usr/include/sys/vtoc.h for information on the vtoc.) Put an entry into the
minor table for each partition of the new device. You may use the minor
numbers listed as unsupported in the previous table, or replace a device currently
in the minor table if you will no longer be using that device. Use the mknod(lM)
command to create a node in the /dev directory. Follow the naming conventions
for the various device types listed in the hard disk drive devices(5iref),
flexible disk drive devices(5iref), and tape drive devices(5iref) man
pages. Be sure that the minor number you use in the mknod(lM) command is the
same as the minor number in the minor table for the desired partition.

Minor PCI
Table Device Unit Board
0 -15 WiniO 2 0
16 - 31 Winil 3 0
32 - 47 Wini2 4 0
48-63 Wini3 5 0

64 - 78 FloppyO 0 0
79 - 93 Floppyl 1 0

94 -108 unsupported 0
109 -123 unsupported 0

124,125 TapeO 6 0
126,127 unsupported 0

128 -143 WiniO 1
144 -159 Winil 1
160 -175 Wini2 1
176 -191 Wini3 1

192 - 206 FloppyO 1
207 - 221 Floppyl 1
222 - 236 unsupported 1
237 - 251 unsupported 1

252,253 TapeO 1
254,255 uns~rted 1

An example later in this driver description details the above procedure.
The partition table is in the i258part structure in the file
/etc/conf/pack.d/i258/space.c.
The configuration for the i258tp(7iref) driver is handled by the same data struc­
tures as the i258 driver. The i258 driver must be configured into the system in
order to configure the i258tp(7iref) driver.

10/89

1258(1M) 1258(1M)

This device driver requires certain information about a disk drive in order to
access the drive. This information is stored on the disks themselves. hard disk
device drivers(Siref) discusses the disk drive information that this and other
disk device drivers need. Also, certain ioctl() calls are supported by all MUL­
TIBUS disk device drivers. These calls are listed in the hard disk device
drivers(5iref) man page.
There is a device file in the /dev directory for each type of valid flexible disk
drive. The device filenames follow a naming convention that is discussed in the
flexible disk devicedrivers(5iref) man page.

EXAMPLE

FILES

10/89

Here is an example of adding a 3.5-inch diskette drive as unit 0 on board 0 to the
i258 driver configuration.

1. Add the following to the i258cdrt i258f00 [] structure in the
I etc/ conf/pack. d/ i258/ space. c file:

/"' 3.5 inch -1.44 Mbyte capacity FD3_7958BR_135TPI */
80, 2, 18, 512, 1258FLP(3, 0, 0, 9), 0, i258Pf0 /"' [8] .,. I

2. Add the following to the i258cdrt i258Pf0 [] structure in the
/etc/conf/pack.d/i258/space.c file:

/"' 3.5 inch 1.44 Mbyte capacity Hds-2 Cyls-80 Secs-18 Bytes-512 *I
O,V VOMASK, 0, 2880, /"' [40] Whole disk*/
O,V=VOMASK, 36, 2844, /"' [41] Skip track/cylander 0 *I
0, 0, 0, 0, /"' [42] Future use* I
0, 0, 0, 0, /"' [43] Future use* I
0, 0, 0, 0, /"' [44] Future use *I

3. Add the following to the i258minor structure in the
I etc/ conf/pack. d/ i258/ space. c file:

/"' Board 0 - Floppy 0 *I
i258MINOR(0,0,8,40)
i258MINOR(0,0,8,41)

/"' [94] 1.44 Mbytes - f03ht *I
/"' [95] 1.44 Mbytes - f03hu *I

4. Use the following commands to create the device nodes for the new
diskette drive in the proper device directories:

/etc/mknod /dev/dsk/f03ht b 0 94
/etc/mknod /dev/dsk/f03hu b 0 95
/etc/mknod /dev/rdsk/f03ht c 0 94
/etc/mknod /dev/rdsk/f03hu c 0 95

/usr/include/sys/i258.h
/etc/conf/pack.d/i258/space.c

Page 3

I
:~

1258(1M) 1258(1M)

SEE ALSO

NOTES

Page 4

flexible disk device drivers(Siref) hard disk device drivers(Siref)
i224a(7iref), i214(7iref), i258tp(7iref)

The i258 driver only supports two diskette drives and one tape drive. The i258
driver only supports one tape drive.

10/89

1258tp(1M) l258tp(1M)

NAME
i258tp - iSBC 386/258 peripheral controller tape device driver

DESCRIPTION
The i258tp device driver provides an interface to tape devices controlled by the
PCI running on an iSBC 386/258 peripheral controller board. The iSBC 386/258
board supports the SCSI device interface for tapes.

The configuration for the i258tp driver is handled by the same data structures as
the i258 driver. The i258 driver must be configured into the system in order to
configure the i258tp driver.

Tape characteristics are defined in the i258cdrt i258t00 [] structure in the
file /etc/conf/pack.d/i258/space.c. The device filenames follow a naming
convention that is discussed in the tape device drivers(Siref) man page. The
device nodes created in /dev/rmt must match the entries in the minor table in
the file /usr/include/sys/i258.h.

SEE ALSO
tape device drivers(Siref), i258(7iref)

10/89 Page 1

1354(1M) 1354(1M)

NAME
i354 - iSBX 354 dual channel serial-port device driver

DESCRIPTION

FILES

The i354 device driver, together with the iasy(7iref) driver, provides a termio
interface to the iSBX 354 dual channel serial controller board on MULTIBUS II
systems. The board contains the Intel 82530 Serial Communications Controller
providing two serial channels to the local processor on which the board is
mounted.

The i354 device driver contains support for the console device (as per
console(7iref)). The i354 will automatically be configured into the data struc­
ture conssw (this data structure is used by console(7iref)).

/etc/conf/cf.d/rrdevice
/etc/conf/sdevice.d/i354
/etc/conf/pack.d/i354/Driver.o
/usr/include/sys/i354.h
/usr/include/sys/i82530.h
/etc/conf/pack.d/i354/space.c

mdevice entries
sdevice entries
i354 device driver object module
i354 specific definitions
i82530 sec specific definitions
i354 specific declarations and

SEE ALSO
console(7iref), iasy(7iref), termio(7)

10/89 Page 1

l410(1M) 1410(1M)

NAME
i410 - iSBC 186/410 serial communications controller device driver

DESCRIPTION

FILES

The i410 device driver performs recognition and initialization of iSBC 186/410
serial communications controller boards at system boot-up.

At boot time, the number of iSBC 186/410 serial communications controller I
boards present in the MULTIBUS II system is determined. If any are present, 1
they are examined to determine if they are booting properly. Information I

describing the state of any iSBC 186/410 serial communications controller boards
in the system is displayed on the console at boot-time.

/etc/conf/cf.d/rrdevice
/etc/conf/sdevice.d/i410
/etc/conf/pack.d/i410/Driver.o
/usr/include/sys/ics.h
/etc/conf/pack.d/i410/space.c

mdevice entries
sdevice entries
i410 device driver object module
interconnect space definitions
410 specific declarations and
initialization

SEE ALSO
atcs(7iref), cci(7iref)

10/89 Page 1

1530(1M) 1530(1M)

NAME
i530 - iSBC 186/530 Ethernet controller device driver

DESCRIPTION

10/89

The i530 driver provides a STREAMS interface to the iSBC 186/530 Ethernet con­
troller board. Applications access the driver through the UNIX Transport Inter­
face (also know as the Transport Layer Interface or TLI). The TLI NSL library
enables users to bind an address to an endpoint, listen for connect requests,
accept connect requests, send and receive data, and so on.

TLI applications normally call the t_open() function as the first step in initializa­
tion of transport endpoints. Alternatively, the n_connect() or n_accept() SV­
OpenNET NSI library calls may be used to perform this initialization. A success­
ful t _open call returns a file descriptor that references a STREAMS path to the
transport provider, and typically, an allocated endpoint structure. The first argu­
ment to t_open is a path name that identifies the agent that will provide the tran­
sport service.

As a transport provider, the i530 driver maintains a table of endpoint structures
indexed by minor number. Elements of this table may be allocated and used
exclusively or may be shared by TLI applications. Applications target the i530
driver in one of two ways. First, the application may supply the device node
I dev I iso-tp4 as the t _open path name. This action routes the call through the
clone driver. The clone driver finds an available i530 minor number and the
associated virtual circuit endpoint structure for the application to use. Alterna­
tively, the application may access the driver directly by supplying the t _open
pathname /dev/tp4-xx where xx represents a digit from the set 01 through the
maximum configured endpoints plus one (31 by default). This way, applications
can target specific endpoints and share them with other applications, if desired.
Though available as a transport endpoint, the path name assigned to minor dev­
ice 0 (/dev/tp4-00) is typically reserved for driver administration and control,
and should NOT be used by normal TLI applications.

Some TLI commands, such as t _bind() and t _connect(), target a local or remote
endpoint via a "driver-ready" transport address. The address on the listener side
of a connection must be externally known and typically is obtained by the TLI
application from a name server. This name server translates a name of a tran­
sport service endpoint into a binary format usable by the driver. The transport
address used by the i530 driver (via the iNA 960 Network Layer) is a 15 byte
address containing the NSAP (network service access point) which includes the
ethernet address of the ethernet controller and the TSAP (transport service access
point) selector for the endpoint in the following form:

OB 49 00 01 XX XX XX XX XX XX FE 00 02 YY YY

where XX ... XX represents the ethernet address of the controller (e.g.
OOAA00029CB9) and YY YY represents the TSAP selector (a two byte number that
defines the point of access to a client process) for the endpoint. The ethernet
address for the iSBC 186/530 controller in a system is obtained by executing the
enetinfo utility.

Page 1

1530 (1M) 1530(1M)

Configuration and tunable parameters for the i530 driver are defined in
/etc/conf/pack.d/i530/space.c. In order to change the driver configuration,
this file must be edited and the kernel regenerated. These parameters are
described below:

N ENET Number of 186/530 boards in the system. The default is 1.
NVC Maximum number of exclusive device opens. The default is 31.
N ENDPOINTS
- Maximum number of endpoints that the i530 driver supports. The

default is 31. The maximum is 101.
DATA BUF LEN

- - Buffer size for receiving incoming messages. The default is 4096
bytes.

MAX_BUFS_ Maximum number of buffers posted for POSTED receiving data. The
default is 1.

MAXCOPYSIZ
Message size below which the data is copied into a new streams
buffer. For messages below this size, a new streams buffer of that
size is allocated. This is for beeter utilization of the various streams
sizes. The default is 128 bytes.

MAX DATA RO
- - Maximum number of send data requests that can be serviced by the

stream. The default is 1.
SH HIWAT When the total number of characters in all the messages that are

queued exceeds SH_HIWAT, messages from upstream are halted.
SH_LOWAT When the total number of characters in all the messages that are

queued is below SH_LOWAT, messages from upstream are enabled.

EXAMPLE

FILES

The following commands can be used to setup the i530 driver as a network
listener for RFS.

nlsadmin -i iso-tp4
nlsadmin -a 105 -c /usr/net/servers/rfs/rfsetup -y "RFS server" iso-tp4
nlsadmin -1 "49000100AA00029CB9FE000200AO" iso-tp4
nlsadmin -s iso-tp4

This example assumes that the ethernet address for the iSBC 186/530 Ethernet
controller is OOAA00029CB9.

/etc/conf/pack.d/i530/space.c i530 driver configuration file
/etc/conf/pack.d/i530/Driver.o i530 driver object file
/etc/conf/node .d/i530 i530 driver device node definition
I etc/ conf/ sdevice. d/ i530 i530 driver system device entry
/usr/ include/ sys/ enetuser. h i530 driver user data structures

SEE ALSO
enetinfo(l iref)

Page 2 10/89

lcs(1M) lcs(1M)

NAME
ics - Interconnect Space device driver

DESCRIPTION

10/89

The ics driver handles the interface between MULTIBUS II device drivers or
applications and MULTIBUS II Interconnect Space as implemented by the MPC
component.

To configure the ics driver, modify the following variables in the
I etc/ conf/pack. d/ ics/ space. c file:

ics_hi_addr The 1/0 port address for selecting the high-order eight bits of the
interconnect address.

ics low addr
- - The 1/0 port address for selecting the low-order eight bits of the

interconnect address.
ics data addr

- - The 1/0 port address for data to be read or written to the intercon-
nect register.

ics _ cpu _ cfglist
A list of all board types on which UNIX may be running in the sys­
tem. This list must be terminated with a NULL pointer.

ics bdev A table listing root, swap, pipe, and dump devices for each possible
UNIX processor in the system.

ics _max_ numcpu
The maximum number of UNIX processor boards permitted in a sys­
tem. This must correspond to the number of entries in the ics _ bdev
table.

Following is a list of the supported ioctl() calls provided by the ics driver:
Read Interconnect Space(ICS READ ICS)

This command reads Interconnect Space. It takes a pointer to a
struct ics_rdwr_args and does the Interconnect Space read opera­
tion encoded therein.

Write Interconnect Space(ICS WRITE ICS)
This command writes Interconnect Space. It takes a pointer to a
struct ics rdwr args and does the Interconnect Space write
operation encoded therein.

Find Interconnect Space Record(ICS FIND REC)
This command finds a specific Interconnect Space record. It takes a
pointer to a struct ics_frec_args and does the Interconnect Space
find record operation encoded therein.

Get Current Slot ID(ICS MY SLOflD)
This command-returns the slot ID of the current slot. It takes a
pointer to an unsigned char which is set to the Interconnect Space
slot id of the caller.

Get Current CPU Nunt>er(ICS MY CPUNUM)
This command returns the CPU number of the current UNIX proces­
sor. It takes a pointer to an unsigned char which is set to the Inter­
connect Space CPU number of the caller. The CPU number is an
identifier for this particular processor.

Page 1

ics(1M) lcs(1M)

FILES

Get Current CPU Nuni:>er(ICS MY CPUNUM)
This command returns the CPU number of the current UNIX proces­
sor. It takes a pointer to an unsigned char which is set to the Inter­
connect Space CPU number of the caller. The CPU number is an
identifier for this particular processor.

The following is a list of error conditions that may be returned:
EFAULT A memory address used in an ioctl was not a valid data address.
EINVAL An Interconnect space address used in an ioctl was not valid, or an

invalid ioctl request was attempted.

/usr/ include/ sys/ ics. h definitions for data structures
I etc/ conf/pack. d/ ics/ space. c configuration information

SEE ALSO
MULTIBUSR II Interconnect Interface Specification
System V/386 Device Driver Interface/Driver-Kernel Interface Reference Manual

NOTES
Specifying ics _hi_ addr:ics _low_ addr gives the address of the interconnect register.

Page 2 10/89

i'

mpc(1M) mpc(1M)

NAME
npc - MPC device driver

DESCRIPTION

FILES

The npc driver handles the internal low level interface between the ics(7iref) and
nps(7iref) interface and the actual message passing coprocessor (MPO hardware
of a MULTIBUS II CPU board.

To configure the npc driver, modify the following variables in the
I etc/conf/pack. d/npc/ space. c file:

impc _base Contains the base 1/0 port address for the MPC chip.
impc Js _enabled

Contains a flag indicating whether or not the MPC fail-safe mechan­
ism should be used. It is strongly recommended that the fail-safe
mechanism be enabled.

There are no ioctls for the npc driver. The npc driver is used to support the
internal interface required by the nps(7iref) driver.

I etc/conf/pack. d/npc/ space. c configuration information
SEE ALSO

ics(7iref), nps(7iref) nps(7iref)

10/89 Page 1

mps(1M) mps(1M)

NAME
nps - Message Passing Space device driver

DESCRIPTION

FILES

The nps driver handles the interface between MULTIBUS II device drivers or
applications and MULTIBUS II message passing space as implemented by the
MPC component.

To configure the nps driver, modify the following variables in the
/etc/conf/pack.d/nps/space.c file:

mps _max _tran
The maximum number of outstanding transactions to be allowed.
This number must correspond to the number of entries in the
nps _ tinfo and nps _ t _ids arrays declared in the space. c file.

mps _max _port
The maximum number of open ports to be allowed. This number
must correspond to the number of entries in the nps_port_defs and
nps _port_ ids arrays declared in the space . c file.

The nps driver does not support any ioctl calls for use by applications. Instead,
it supports the Message Passing interface required by the System V /386 Device
Driver Interface specification, which is used by other device drivers.

I etc/ conf/pack. d/nps/ space. c configuration information

SEE ALSO

10/89

MULTIBUS II Message Passing Coprocessor External Product Specification MPS User's
Manual
System V/386 Device Driver Interface/Driver-Kernel Interface Reference Manual
ots(liref>

Page 1

ots(1M) ots(1M)

NAME
ots - System V /386 OSI Transport Service (ots) device driver

DESCRIPTION

10/89

The ots driver is a STREAMS device driver that allows applications executing on
separate MULTIBUS II processors to establish connections and exchange data
messages with one another. ots can also be used between applications on the
same processor. Applications access the driver through the UNIX Transport
Interface (also known as the Transport Layer Interface or TLI). Both virtual cir­
cuit (VC) and datagram services are provided by ots. The ots driver only sup­
ports message exchange between processors in the same MULTIBUS II system.

TLI applications normally call the t_open() function as the first step in initializa­
tion of transport endpoints. Alternatively, the n_connect() or n_accept() SV­
OpenNET NSI library calls may be used to perform this initialization. A success­
ful t _open call returns a file descriptor that references a STREAMS path to the
transport provider and typically, an allocated end point structure. The first argu­
ment to t _open is a path name that identifies the agent that will provide the tran­
sport service.

As a transport provider, the ots driver maintains a table of endpoint structures
indexed by minor number. Elements of this table may be allocated and used
exclusively or may be shared by TLI applications. Applications target the ots
driver in one of two ways. First, the application may supply the device nodes
/dev/ots-vc or /dev/ots-dg as the t_open path name. This action routes the
call through the clone device driver. The clone driver finds an available ots
minor number and associated endpoint structure for the application to use.
When /dev/ots-vc is selected, the driver allocates a virtual circuit endpoint.
Access to the driver through /dev/ots-dg causes the allocation of a datagram
endpoint. Alternatively, the application may access the driver directly by supply­
ing the t_open path name /dev/ots-xx where xx represents a digit from the set
01 through the maximum number of configured endpoints plus one (31 by
default). This way, applications can target specific endpoints and share them
with other applications, if desired. Though available as a transport endpoint, the
path name assigned to minor device 0 (/dev/ots-00) is typically reserved for
driver administration and control and should NOT be used by normal TLI appli­
cations (This is in contrast to the path name used by the Ethernet driver-­
/ dev / iso-tp4).

Some TLI commands, such as t_bind() and t_connect(), target a local or remote
endpoint via a ,.driver-ready: transport address. The address on the listener side
of a connection must be externally known and typically is obtained by the TLI
application from a name server. This name server translates a name of a tran­
sport service endpoint into a binary format usable by the driver. The transport
address expected by ots is a MULTIBUS II socket. The binary format of the
socket is a double word consisting of the host ID in the high-order word and port
ID in the low-order word. The host ID identifies the processor on which the tran­
sport endpoint resides. The port ID identifies the transport service executing on
that processor. Port ID's utilized by the ots driver range in value between Ox300
and Ox4FF. The following table defines those ports within this range that target
well-known services, are available for use by custom TLI applications and are
reserved for exclusive use by ots.

Page 1

ots(1M) ots(1M)

Page 2

Port ID Descri_Eion
Ox300 System V /386 general listener service
Ox301 System V /386 terminal login service

Ox302 to Ox3FF User-defined well-know ports
Ox400 SV-OpenNET NF A Server
Ox401 SV-OpenNET NFA Consumer
Ox402 SV-OpenNET Virtual Terminal Server
Ox403 SV-OpenNET Virtual Terminal Consumer

Ox404 to Ox41F Reserved for future SV-OpenNET services
Ox420 to Ox4FF Reserved b..Y_ SV-ots driver

By convention, the host ID is typically set to the processor's slot number within
the MULTIBUS II backplane. The ots driver uses the host ID to distinguish local
from remote addresses. If the host ID portion of a socket is the same as the
processor's slot ID, the referenced address is assumed local. When the driver
receives a connection request that targets a local listening endpoint, it routes the
request back up the listening stream. This action generates no bus activity. Thus,
the ots driver may be used for message exchange between TLI applications exe­
cuting on the same processor.

The ots driver recognizes the following protocol options which the transport user
may retrieve, verify, or modify via t_optmgmt():

OPT COTS Connection-Oriented Transport Service (i.e. virtual circuit service).
This option can NOT be modified by a TLI application. The service
is automatically assigned when the device /dev/ots-vc is opened.
VC service on an endpoint is indicated if bit 1 is set in the option
field.

OPT EXP Expedited message delivery service. This is selected by setting bit 2
in the option field.

OPT ORD Orderly disconnect or release on a virtual circuit. This is selected by
setting bit 3 in the option field.

OPT CLTS Connectionless Transport Service (i.e. datagram service). This option
cannot be modified by a TLI application. The service is automatically
assigned when the device /dev/ots-dg is opened. Datagram service
on an endpoint is indicated if bit 4 is set in the option field.

The option field is a double word and can contain any logical combination of the
above bit fields. These macros are defined in the header file
/usr/include/sys/otsuser.h.

Configuration and tunable parameters for the ots driver are defined in
I etc/ conf/pack. d/ ots/ space. c. In order to change the driver configuration,
this file must be edited and the kernel regenerated. These parameters are
described below:

NVC Maximum number of Virtual Circuits endpoints supported by the
ots driver. The default is 25. With this default, virtual circuit end­
points can be accessed directly via the device nodes /dev/ots-01
through /dev/ots-25.

10/89

ots(1M) ots(1M)

10/89

NDG Maximum number of Datagram endpoints that the ots driver sup­
ports. The default is 5. Assuming default values for NVC and NDG,
datagram endpoints can be accessed directly via the device nodes
/dev/ots-26 and /dev/ots-30.

MAX PEND Maximum number of concurrent connection indications the ots
driver will accept on a listening endpoint. The default is 5.

TSDU_SIZE A value greater than zero specifies the maximum size of a transport
service data unit (TSOU or a message); a value of zero specifies that
the ots driver will not support the concept of a TSOU. The default
value is 64 Kbytes. The largest value which may be configured is 16
Megabytes.

ETSDU SIZE
A value greater than zero specifies the maximum size of an expedited
transport service data unit (ETSDU); a value of zero specifies that the
transport provider does not support the concept of an ETSDU. The
default value is 0 bytes. The largest value which may be configured
is 4096 byt~s:

CDATA SIZE I
- A value greater than zero specifies the maximum amount of data that

may be associated with the connection establishment functions. The
default is 64 bytes. The largest value which may be configured is 512
bytes.

DDATA SIZE
Maximum amount of data that may be associated with disconnect
requests. The default is 64 bytes. The largest value which may be
configured is 512 bytes.

DATAGRAM SIZE
- The maximum size of a datagram that may be sent by the transport

user. The default and the largest value which may be configured is
4096 bytes.

OT! RD HIWAT
- - When the total number of characters in all the messages queued at

the driver's upstream queue exceeds OTI_RD_HIWAT (1024 bytes by
default), the driver will stop receiving messages from remote end­
points.

OT! RD LOWAT
- - When the total number of characters in all the messages queued falls

below OTI_RD_LOWAT (512 bytes by default), the driver will again
start receiving messages.

OT! WR HIWAT
- - When the total number of characters in all the messages queued at

the driver's downstream queue exceeds OTI_RD_HIWAT (1024 bytes by
default) STREAMS blocks messages directed downstream.

Page 3

ots(1M) ots(1M)

OTI WR LOWAT
- - When the total number of characters in all the messages queued falls

below OTI_RO_LOWAT (512 bytes by default), STREAMS enables any
downstream queue that had been blocked.

U VCDEFAULTS
- This subset of driver options is applied to every newly initialized VC

endpoint. Options are defined by bit fields in the file
/usr/include/sys/otsuser.h.

U DGOEFAULTS
- This subset of driver options is applied to every newly initialized

datagram endpoint. Options are defined by bit fields in the file
/usr/include/sys/otsuser.h.

If the total number of configured endpoints (NVC + NDG) is increased, device
nodes for the additional endpoints should be created. This is done automatically
by adding entries to the /etc/conf/node.d/ots.

Under heavy loads, the ots driver is potentially an intensive user of System
V /386 Transport-Kernel Interface resources. Depending on the use of the ots
driver, more space may need to be allocated for specific Transport-Kernel Inter­
face tables and other data structures. Table sizes for the Transport-Kernel Inter­
face module are defined as /etc/conf/pack.d/Jl'PC/space.c in the
configuration file. The following parameters should be increased two times (2X)
the number of endpoints configured in /etc/conf/pack.d/ots/space.c.

Parameter Description

MAX PORT Maximum number of open ports
MAX-TRAN Maximum number of outstanding transactions

EXAMPLE

FILES

Page 4

The following commands can be used to setup ots as a network listener for RFS.

nlsadmin -i ots-vc
nlsadmin -a 105 -c /usr/net/servers/rfs/rfsetup -y "RFS server"
nlsadmin -1 "\x00030500" ots-vc

This example assumes the MULTIBUS II processor on which the listener is being
setup is located in slot 5 of the MULTIBUS II backplane. Thus, the host ID is
Ox0005. Because the port id assigned, the general listener service is Ox0300 and
the socket address for this particular service is the double-word, Ox00050300.
However, because the address is stored by the name server listener service (nls)
as a character string, the socket's words, and the bytes within these words must
be swapped.

/etc/conf/pack.d/ots/space.c
/etc/conf/pack.d/ots/Driver.o
/etc/conf/node.d/ots
/etc/conf/sdevice.d/ots
/usr/include/sys/otsuser.h

ots driver configuration file
ots driver object file
ots driver device node definition file
ots driver system device entry
ots driver user data structures

10/89

rcl(1M) rcl(1M)

NAME
rci - debug console/rd protocol driver

DESCRIPTION

FILES

The rci driver, together with the iasy(7iref) driver, provides a debug console
interface to allow kernel 1/0 on a device running an rci server. An example of
a suitable rci server runs on the iSBC 258 disk controller when an iSBX 279 is
attached.

If an rci server is running the kernel debug console, a suitable ATCS server must
be running on the same host. The ATCS server provides a termio interface for
/dev/console via the iasy(7iref) and atcs(7iref) drivers. A line from the ATCS
server, corresponding to the current CPU number, will automatically be
configured into the conssw data structure used by console(7iref).

/etc/conf/cf .d./nr:Jevice System configuration file
I etc/ conf/ sdevice. d./ rci rci configuration file
/usr/include/sys/rcinp.h Protocol specific definitions

SEE ALSO
termio(7), atcs(7iref), console(7iref), iasy(7iref)

10/89 Page 1

7 System Maintenance Commands

Maintenance Commands 7-1

Table of Contents

Maintenance Commands

This chapter lists Intel's System V /386 system maintenance commands. This
chapter applies only to MULTIBUS II.

·• dbon

• icsrd,icswr,icsslot,icsgetrec

• initbp

• reset

System Maintenance Commands 7-1

dbon(1M) dbon(1M)

NAME
dbon - sets target for front panel message delivery

SYNOPSIS
/usr/lbin/clbon [slot_ID)

DESCRIPTION

FILES

The clbon command instructs the Central Services Module (CSM) where future
Front Panel Interrupt Messages are to be sent. This is used for determining
which processor will break into the kernel debugger when the Front Panel Inter­
rupt is issued.

Setting the CSM to interrupt one's own processor is as follows. In order to
instruct the CSM to interrupt the processor you are using, execute dbon with no
arguments. The current slot number is determined automatically, and given to
the CSM as destination of future front panel interrupt messages.

Setting the CSM to interrupt another processor is as follows. In order to instruct
the CSM to interrupt another processor, dbon is executed with the slot number of
the desired processor as the argument. Valid slot numbers are 0 through 21.

/usr/lbin/clbon
/sbin/icswr
/sbin/icsrd
/sbin/icsslot

SEE ALSO
icswr(8iref), icsrd(8iref), icsslot(8iref) icsrd(8iref), icswr(8iref),
icsslot(8iref)

NOTES
This program is only effective on sytems with a CSM/001.

10/89 Page 1

icsrd (1M) icsrd (1 M)

NAME
icsrd, icswr, icsslot, icsgetrec - utilities to access MULTIBUS II inter­
connect space

SYNOPSIS
/sbin/icsrd [-h -s -di slot_ID register count
I sbin/ icswr slot _ID register count value
/sbin/icsslot
/sbin/icsgetrec [-hi slot_number record_type

DESCRIPTION

10/89

The ics utilities provide a command level interface to MULTIBUS II Interconnect
Space. These commands are not intended to provide a user interface; they are
simply a base set of access functions upon which shell scripts may be easily writ­
ten.

The command icsrd is used to read Interconnect Registers. The arguments to
icsrd are a slot number, a starting register number, and a count of registers to be
read. All arguments are assumed to be decimal (valid slot numbers are 0 through
21). Output consists of one line for each register, displayed on stdout. Each line
consists of the following components:

00:002 (002H) - 67 (43H) [CJ

The first two fields, separated by a colon, are the slot and register numbers. The
third field is the register number, reprinted in hexadecimal notation. The fourth,
fifth, and sixth fields are all representations of the value in the register. In order,
they are: decimal, hex, and ASCII. The ASCII field is only printed if it is a print­
able ASCII character.

The options -h, -s and -d override the default output shown above. These
options are mutually exclusive. The -h option outputs hex values. The -d
option outputs decimal values. The -s option outputs the values as a string. For
example,

icsrd -s 1 2 10

will print out the board-id of the board in slot 1 (such as the iSBC 186/410).

The command icswr is used to write Interconnect Space Registers. The argu­
ments to icswr are a slot number, a starting register number, a count, and a
value. All arguments are assumed to be in decimal. There is no output.

The command icsslot returns the slot number of the processor it was executed
on. By using icsslot, the user can determine which processor they are using.
This command also provides shell scripts a way of finding out which slot they are
being run on.

Finding a specific record in the interconnect space of a board:

The command icsgetrec returns the starting register number of the specified
record type. The arguments to icsgetrec are a slot number and a record type.
If such a record is found, its starting register number is returned. If the intercon­
nect register cannot be found in the specified slot, a - 2 is returned. For all other

Page 1

icsrd(1M) icsrd(1M)

FILES

errors, a -1 is returned. All arguments are assumed to be decimal (valid slot
numbers are 0 through 21 and valid record types are 0 through 255). Output is
in decimal format, unless the - h option is used to specify a hexadecimal value.

For example, if you wanted the starting register number of the Firmware Com­
munications Record (record type 15) of a serial board in slot 6, you would use the
following command:

icsgetrec 6 15

/sbin/icswr
/sbin/icsrd
/sbin/icsslot
/sbin/icsgetrec

SEE ALSO

NOTES

Page 2

dbon(8ire0, reset(8ire0

The user interface of these commands is not easy to use. These utilities are
intended as building blocks for shell scripts to manage interconnect space regis­
ters. Also, care should be taken when using icswr; with it any board on the bus
can be reset, resulting in loss of data.

10/89

lnltbp(1M) lnitbp{1M)

NAME
initbp - initializes the bootstrap parameter string on the processor in the given
slot

SYNOPSIS
/usr/lbin/initbp [-vi slot-ID

DESCRIPTION

FILES

The initbp command initializes the bootstrap parameter string on a processor to
a NULL string. This places the processor into a state similar to that which exists
after a cold reset. All bootstrap parameters from all sources (the configuration
file or those supplied from the operator interface) are deleted.

The initbp command resets the processor in the specified slot after the initializa­
tion of the bootstrap parameter string is complete. Command line options are:

-v Display diagnostic information.

/usr/lbin/initbp
/usr/lbin/reset

SEE ALSO

NOTES

10/89

ics(8iref), dbon(8iref), reset(Biref)

For additional information on the initialization of MULTIBUS II processor
boards, see the MULTIBUSR II Initialization and Diagnostics Specification. Also note
that any processor can be reset when using initbp, resulting in a loss of data.

Page 1

~I

reset(1M} reset(1M}

NAME
reset - resets the processor in a given slot

SYNOPSIS
/usr/lbin/reset [-b] [-v] [-m -n -i index] slot-ID

DESCRIPTION

FILES

The reset command issues a local reset to the processor in a given slot of the
bus through interconnect space. This allows the operator to shut down one of
the processors in a system and reboot it, without being required to shut the entire
system down. Valid slot numbers are 0 through 20. Command line options are:

-b The BIST complete bit in the BIST master status register is not set. Default
is set to the bit.

-v Verbose. Diagnostic information is displayed during execution of the
reset command.

-m The contents of the program table index register (PTIR) are updated to
invoke the debug monitor. This is the same as specifying - i 248.

-n The contents of the PTIR are left unchanged. This allows the user to
sequence through the entries in the program table.

- i Set the value of the program table index register (PTIR) to index. The
default is 0.

/usr/lbin/reset
SEE ALSO

NOTES

10/89

ics(Siref), dbon(Siref), initbp(Siref)

For additional information on the values of the program table index register
(PTIR), see the MULTIBUSR II Initialization and Diagnostics Specification. Also note
that when using the reset command, any processor can be reset; resulting in a
loss of data.

Page 1

8 Static Bad Block Handling

Overview

Architecture
Overview

Disk Partitions
Manufacturer's Defect List
Surrogate Block Pool
Software Remapping
Alternate Tracking
Sector Slipping

Table of Contents

8-1

8-2
8-2
8-2
8-2
8-3
8-3
8-3
8-4

Overview

This chapter describes the Bad Block Handler software module for Intel's Sys­
tem V /'386 Operating System. This chapter also includes information needed in
creating drivers for MULTIBUS based systems.

The Bad Block Handler (BBH) is a set of routines that compensates for the unus­
able sectors (blocks) of a hard disk drive. Each bad block of a disk is remapped
so that all references to the bad block are transparently diverted to a known
usable block. This transparent redirection causes the disk to appear to be
flawless even though it may contain several unusable blocks.

Static Bad Block Handling 8-1

Architecture

Overview

The BBH compensates for the unusable blocks of a hard disk by transparently
substituting a usable block for each bad block. This transparent redirection is
actually performed by the controller hardware not the BBH software. Instead,
the BBH manages the remapping process by telling the controller which usable
block is to be substituted for each bad block on the disk.

Static bad blocks are remapped during the format phase of disk initialization. A
list of static bad blocks is generated either from the Manufacturer's Defect List
(see Appendix C) or from the user. As the disk is being formatted, each track
containing a bad block is formatted using one of the remapping methods sup­
ported by the controller hardware. All future references to the bad block are
redirected to the substitute block. BBH related structures and definitions are
located in the file /usr/include/sys/bbh.h.

Disk Partitions

Each physical disk drive in the system must provide support for the Bad Block
Handler. The BBH requires a few reserved sections of the media. Each disk
drive must provide the following reserved sections:

Manufacturer's Defect List

The Manufacturer's Defect List (MDL) is a reserved portion of the disk that con­
tains a list of the known bad blocks on the disk. The list includes static bad
blocks and any dynamic bad blocks that have been remapped since the disk was
last initialized. In most cases, the defect list is written on the disk prior to initial­
ization. If the Manufacturer's Defect List is not written on the disk, a defect list
will be created during the initialization procedure (see Appendix C for addi­
tional information).

8-2 MULTIBUS Reference Manual

Architecture

Surrogate Block Pool

In order to remap a bad block to a known usable block, a portion of the disk
must be set aside to form a pool of surrogate blocks. The various remapping
methods allocate surrogate blocks using different methods and therefore require
different pools of surrogate blocks. A disk driver that supports more than one
remapping method requires more than one surrogate block pool. Each pool of
surrogate blocks is used exclusively by the disk driver and not by any other
component of the BBH. Following are three remapping methods.

Software Remapping

This remapping method uses a pool of individual blocks that are allocated one
at a time. A software table is used to map the bad blocks to their surrogate
blocks. The table is scanned during each 1/0 request with a match resulting in
the referenced block being substituted with the previously assigned surrogate.
Since the use of Software Remapping invalidates some of the functional require­
ments of the BBH, it is not intended to be used as a primary remapping
method. However, it should be supported by all disk drivers, as a last resort, so
the disk remains usable.

Alternate Tracking

This remapping method uses a pool of surrogate (alternate) tracks. Each track
containing one or more bad blocks is remapped to one of the alternate tracks.
The entire track, not just the blocks that are bad, is remapped. The remapping
is performed by the controller hardware and is transparent to the disk driver
software.

Static Bad Block Handling 8-3

Architecture

Sector Slipping

This remapping method requires that a certain number of blocks on each track
is reserved for surrogate blocks. When a bad block is remapped, one of the
reserved blocks within the same track is used as the surrogate. The number of
bad blocks on a single track can not be greater than the number of reserved
blocks within that track.

MULTIBUS Reference Manual

A Appendix A

Window Interface
Windows, What are they?

• Using The Mouse
• Basic Menu
• Expanded Menu

Table of Contents

A-1
A-1
A-3
A-3
A-7

I~

Window Interface

The iSBX 279 provides the user of the System 520 with:

• A windowed environment

• A mouse to manipulate the windows

• A PC style keyboard for entering data

The following sections describe what the windows are and how to manipulate
them with the mouse.

Windows, What are they?

The windows provided by the 279 are ways of viewing many operations simul­
taneously on one screen. They can be thought of as many terminals contained
in one; each window representing a terminal. For example, the SYP 520 initial­
izes with three windows: one for console input, one for displaying kernel mes­
sages and for using the debugger, and one for displaying messages from the
Master Test Handler (MTH) (see Figure A-1). What would have required three
terminals to view now requires one.

The windows can be manipulated with the mouse (moved, resized, and relay­
ered) so that all or some of the windows can be viewed at once.

Appendix A A-1

I

I

i

Window Interface

Figure A-1: An Example of Windows Displayed on the SYP 520

A-2

Menu Selection Area
(anyplace outside of windows)

Welcome to the AT&T 386 UNIX System
System name: unix

Console Login:

Console
Window

SOM
Window

Top of MTH Window

Bottom of MTH Window

MULTIBUS Reference Manual

Window Interface

Using The Mouse
The mouse can be used to move, resize, and relayer the windows. It can also be
used to determine which window the keyboard will function with. All of these
actions are provided in one of two pop-up menus, basic or expanded.

The basic menu appears before the System V /386 operating system is installed
or initialized. Once installed, the operating system invokes the expanded menu
during the boot up procedure. The expanded menu offers more options and
provides a fast method of selecting windows (just point at the desired window
and press any of the mouse buttons).

To select an option from either pop-up menu, do the following:

1. Move the mouse so that the pointer is outside any window.

2. Press and hold any one of the mouse buttons. The menu will appear on
the screen.

3. Move the mouse up or down to select an option. Each option is
highlighted as the pointer passes over it.

4. Release the mouse button when the desired option is selected.

r:::l The mouse cannot be used to select anything inside of a window (a file for y instance).

Basic Menu
This section explains how to use the selections provided by the basic menu.

The basic menu is shown in Figure A-2. This menu appears before the System
V /386 operating system is installed or initialized. Once installed, the operating
system invokes the expanded menu (explained later).

Appendix A A-3

I

-!

Window Interface

Figure A-2: Basic Menu Selections

Intel ~tern Menu
Pop
Push
Pan

Move
Resize

Keyboard Focus
Pop/Focus

Pop /Focus/Resize
Exit

Pop:

This causes the selected window to appear on top of all other windows. The
keyboard may not be "attached" to the window that has been popped. Use the
Keyboard Focus selection to attach the keyboard to the popped window.

1. Select Pop from the menu with the mouse. The pointer will change to an
up arrow.

2. Place the pointer within the desired window and press any of the mouse
buttons.

3. The window selected will appear on top of all other windows.

Push:

This causes the selected window to be placed behind all other windows.

1. Select Push from the menu with the mouse. The pointer will change to a
down arrow.

2. Place the pointer within the desired window and press any of the mouse
buttons.

A-4 MULTIBUS Reference Manual

Window Interface

3. The window selected will be placed behind all other windows.

Pan:

This allows the contents of a window to be moved. This selection is useful for
viewing the contents of a window that has been reduced in size.

1. Select Pan from the menu with the mouse. The pointer will appear as a
square with four arrows pointing out from each side of the square.

2. Place the pointer within the desired window. Press and hold down any
of the mouse buttons.

3. Moving the mouse will cause the contents of the window to move.

4. Release the mouse button when the desired contents are displayed.

Move:

This allows a window to be moved around the screen.

1. Select Move from the menu with the mouse. The pointer will appear as
two crossed (up/ down left/right) bidirectional arrows.

2. Position the pointer within the desired window. Press and hold down
any of the mouse buttons.

3. Moving the mouse will cause the entire window to move.

4. Release the mouse button when the window is in the desired location.

Resize:

This selection causes the size of the window to be changed.

1. Select Resize from the menu with the mouse. The pointer will appear as
two crossed bidirectional arrows, slightly tilted.

2. Position the pointer within the desired window. The pointer should be
near one of the four comers of the window. The comer selected will be
the part of the window that moves. Press and hold down any of the
mouse buttons.

Appendix A A-5

Window Interface

3. Move the mouse. This causes the size of the window to change.

4. Release the mouse button when the window is at the desired size.

Window contents are not rescaled when the window is resized. The max­
imum size of a window is either the size of the bitmap in which it is drawn or
the size of the screen.

Keyboard Focus:

This selection allows keyboard input to be directed to a window.

1. Select Keyboard Focus from the menu with the mouse. The pointer will
appear as a shaded box.

2. Position the pointer within the desired window and press any of the
mouse buttons.

3. Keyboard input is now directed to the selected window.

Pop/Focus:

This causes the selected window to appear on top of all the other windows. It
also "attaches" the keyboard to the selected window. This is the same as using
Pop followed by Keyboard Focus.

1. Select Pop/Focus from the menu with the mouse. The pointer will
appear as a shaded five sided figure.

2. Position the pointer within the desired window and press any of the
mouse buttons.

3. The window selected will appear on top of all other windows. Keyboard
input will also be directed to the selected window.

Pop/Focus/Resize:

This causes the selected window to appear on the top of the other windows,
have the keyboard "attached" to it, and expand in size (to full width and
approximately three-quarter height).

A-6 MULTIBUS Reference Manual

Window Interface

1. Select Pop/Focus/Resize from the menu with the mouse. The pointer
will appear as an up arrow enclosed by four triangles.

2. Position the pointer within the desired window and press any of the
mouse buttons.

3. The window selected will:

• appear on top of all the other windows

• have the keyboard "attached" to it

• expand in size

Exit:

Use this selection to leave the menu list without effecting the windows.

Expanded Menu
This section explains how to use the selections provided by the expanded menu
(See Figure A-3). This menu is invoked by the System V /386 operating (see the
iSBXT 279 Display Subsystem Installation Guide).

Figure A-3: Expanded Menu Selections

Window 0_£erations
Pan

Attach Keyboard
Pop to Foreground

Push to Background
Pop and Set Focus

Move Window
Resize Window

Expand Window
Reduce Window

Map Window

Appendix A A-7

Window Interface

Pan:

This allows the contents of a window to be moved. This selection is useful for
viewing the contents of a window that has been reduced in size.

1. Select Pan from the menu with the mouse. The pointer will appear as a
square with four arrows pointing out from each side of the square.

2. Place the pointer within the desired window. Press and hold down any
of the mouse buttons.

3. Moving the mouse will cause the contents of the window to move.

4. Release the mouse button when the desired contents are displayed.

Attach Keyboard:
This selection allows keyboard input to be directed to a window.

1. Select Attach Keyboard from the menu with the mouse. The pointer
will appear as a shaded box.

2. Position the pointer within the desired window and press any of the
mouse buttons.

3. Keyboard input will also be directed to the selected window.

Pop To Foreground:

This causes the selected window to appear on top of all other windows. The
keyboard may not be "attached " to the window that has been popped. Use the
Attach Keyboard selection to attach the keyboard to the popped window.

1. Select Pop To Foreground from the menu with the mouse. The pointer
will change to an up arrow.

2. Place the pointer within the desired window and press any of the mouse
buttons.

3. The window selected will appear on top off all other windows.

A-8 MULTIBUS Reference Manual

11

Window Interface

Push To Background:

This causes the selected window to be placed behind all other windows.

1. Select Push To Background from the menu with the mouse. The pointer
will change to a down arrow.

2. Place the pointer within the desired window and press any of the mouse
buttons.

3. The window selected will be placed behind all other windows.

Pop and Set Focus:

This causes the selected window to appear on top of all the other windows. It
also "attaches" the keyboard to the selected window. A quick way of doing this
is to position the pointer within the desired window and pressing any of the
mouse buttons.

1. Select Pop and Set Focus from the menu with the mouse. The pointer
will appear as a shaded five sided figure.

2. Position the pointer within the desired window and press any of the
mouse buttons.

3. The window selected will appear on top of all other windows. Keyboard
input will also be directed to the selected window.

Move Window:

This allows a window to be moved around the screen.

1. Select Move Window from the menu with the mouse. The pointer will
appear as two crossed (up/down left/right) bidirectional arrows.

2. Position the pointer within the desired window. Press and hold down
any of the mouse buttons.

3. Moving the mouse will cause the entire window to move.

4. Release the mouse button when the window is in the desired location.

Appendix A A-9

.I

Window Interface

Resize Window:

This selection causes the size of the window to be changed.

1. Select Resize Window from the menu with the mouse. The pointer will
appear as two crossed bidirectional arrows, slightly tilted.

2. Position the pointer within the desired window. The pointer should be
near one of the four comers of the window. The comer selected will be
the part of the window that moves. Press and hold down any of the
mouse buttons.

3. Move the mouse. This causes the size of the window to change.

4. Release the mouse button when the window is at the desired size.

Window contents are not rescaled when the window is resized. The max­
imum size of a window is either the size of the bitmap in which it is drawn or
the size of the screen.

Expand Window:

This causes the selected window to appear on the top of the other windows,
have the keyboard "attached" to it, and expand in size (to full width and
approximately three-quarter height).

1. Select Expand Window from the menu with the mouse. The pointer will
appear as an up arrow enclosed by four triangles.

2. Position the pointer within the desired window and press any of the
mouse buttons.

3. The window selected will:

• appear on top of all the other windows

• have the keyboard "attached" to it

• expand in size

A-10 MULTIBUS Reference Manual

'~
I

Window Interface

Reduce Window:

This selection allows you to shrink the size of a window quickly and move it
out of the way of other windows.

Select Reduce Window from the menu with the mouse. The pointer will appear
as a shaded square with an unshaded middle.

1. Position the pointer within the desired window next to one of the four
corners. Press and hold down any one of the mouse buttons.

2. Move the mouse. The window will shrink at a very fast rate.

3. Release the mouse button when the window reaches the desired size and
position on the screen.

Map Window:

This selection allows a function key (Fl - FlO) to be assigned to each window.
When the function key is pressed (ALT - Fx) the corresponding window will
appear on top of the other windows and keyboard input will be directed to the
window.

1. Select Map Window from the menu with the mouse. The pointer will
appear as rectangle inside a grid.

2. Position the pointer within the desired window and press any one of the
mouse buttons.

3. The pointer will change to the one shown to the lower right.

4. On the keyboard, hold down the ALT key and press the function key you
want assigned to the window.

5. To use the function keys to select a window, hold down the ALT key and
press the corresponding function key. The window assigned to that key
will appear on top of the other windows and the keyboard will be
attached to it.

Appendix A A-11

Window Interface

~ See the iSBX? 279 Display Subsystem Installation Guide.

y
Ii
I

I

A-12 MULTIBUS Reference Manual

8 Appendix B

Information Unique to MULTIBUS Systems s-1
Volume Label: ivlab Structure B-1
Manufacturer's Defect List: MDL Structure B-3

Table of Contents

I

~

Information Unique to MULTIBUS Systems

This appendix provides information needed in creating block device drivers for
Intel systems. The ivlab (volume label) structure and MDL (Manufacturer's
Defect List) are both described in this appendix.

Volume Label: ivlab Structure

This volume label is required to be on any block device which is to be used as
the boot device in a system using Intel standard bootstrap loaders. This
includes the standard monitor PROMs in the System 320 or 520. Other
bootstrap loaders will have other requirements of the volume label. Some of the
fields are defined for use with the Intel RMXR II operating system and are not
used by System V /386.

struct

} ;

char
char
char
ushort
ushort
ushort
ushort
us ho rt
us ho rt
ushort
ushort
us ho rt
us ho rt
ushort
ushort
char
char
us ho rt
char

Appendix B

ivlab {
v_name [10];
v_flags;
v_fdriver;
v_gran;
v_size_l;
v_size_h;
v_maxfnode;
v_stfnode_l;
v_stfnode_h;
v_szfnode;
v_rfnode;
v_devgran;
v_intl;
v_trskew;
v_sysid;
v_sysname[12];
v_dspecial[8];
v fsdelta:
v_freespace[4];

I* volume name, blank padded */
I* flags byte--see below */
/* file-driver number */
I* volume-gran (bytes) */
/* size (bytes) of volume (low) */
I* size (bytes) of volume (high) */
I* max fnode number, 0 in UNIX */
I* start of fnodes, 2 in UNIX, low */
I* start of hnodes, 2 in UNIX, high*/
I* size of fnode, 32 in UNIX */
I* root fnode, 2 in UNIX */
I* sector size (bytes) */
I* interleave; 0==> unknown */
I* track skew; 0==> none */
/*OS id for OS that formatted vol.*/
I* OS name, blank filled */
I* device-special info */
/* start of root file system */
I* free space for future use */

B-1

I

~1

Information Unique to MULTIBUS Systems

v name

v_flags

This is the name of the volume ASCII, right blank-filled.

These flags describe some of the characteristics of the physical
device. These characteristics are used by the PROM-based
bootstrap loader.

The definition of this byte is defined by:

#define VF_AUTO OxOl /* l~>byte is valid */
#define VF _DENSITY Ox02 /* 0 FM, l=MFM *I
#define VF SIDES Ox04 /* !=double-sided */
#define VF MINI Ox08 /* 0=8, 1=5.25 */
#define VF NOT FLOPPY OxlO /* O=flop track 0 is 128SD l=not floppy */

v_jdriver This field is the ID number of the file driver for this volume.
This is primarily used by the RMX Operating Systems, and is
simply set to UNIX_FD, to be different from RMX.

fdef ine UNIX FD 6 /* UNIX file-driver number */

v_gran Volume granularity in bytes per sector. This is a logical granu­
larity, primarily used by RMX. In System V /386, this is always
set to 1024.

v _size _l, v _size_ h

v_maxfnode

Low and high order bytes of volume size expressed in bytes.
Not used by System V /386.

This field is the maximum ordinal number of an fnode in RMX.
An fnode is the RMX equivalent to an inode. Set to 0, not used
by System V /386.

v _stfnode _l, v _stfnode _ h

v_szfnode

v_stfnode

v_devgran

B-2

Low and high order bytes of start of fnodes in RMX. Set to 2,
not used by System V /386.

Size of an fnode, in bytes. Set to size of an inode: 32.

Start of fnodes. Set to root inode: 2.

Device granularity, in bytes per sector. Physical device granu­
larity, determined when device was formatted.

MULTIBUS Reference Manual

v intl

v trskew

v_sysid

v_sysname

v_dspecial

dr nalt

v_fsdelta

v _freespace

Information Unique to MULTIBUS Systems

Physical device interleave. When set to 0, indicates unknown.
Not used in System V /386.

Track skew. When set to 0, indicates unknown. Not used is
System V /386.

ID of operating system that formatted volume. Set to Ox0040 for
System V /386.

Name of operating system that formatted volume. Set to *Sys­
tem V: for System V /386. Twelve ASCII characters, right
blank-filled.

Eight bytes that contain device-specific information in the form
of a driver table entry. The format of the data is defined by the
driver include file (usr/ include/ sys/ i214. h) and is limited to
8 bytes. The format is controller dependent.

This field changes to a density flag if the volume label is on a
floppy device. dr _ nalt set to 0 indicates a single-density, FM­
format floppy, and dr _nalt set to 1 indicates a double-density,
MFM-format floppy.

The absolute physical sector number of the start of the root file
system.

Four bytes of unused space.

Manufacturer's Defect List: MDL Structure

The MDL is for disk drives using the ST506 interface that are supported by the
MULTIBUS II 186/224A or the MULTIBUS 214 or 221 controllers, for example.

The ST506 MDL is written in the next to the last cylinder on four different
tracks using a bytes/sector value of 128, 256, 512, and 1024. The track assign­
ments within the cylinder are as follows:

128 bytes/sec Last track in cylinder
256 bytes/sec Last track - 1
512 bytes/sec Last track - 2
1024 bytes/sec Last track - 3

Appendix B B-3

Information Unique to MULTIBUS Systems

Each track contains four copies of the MDL starting at the beginning of the track
and spaced every 2K-bytes (i.e., the byte offset within the track of each copy is
OK-bytes, 2K-bytes, 4K-bytes, and SK-bytes).

fdefine BBH506MAXDFCTS 255 /* max t of ST506 defects *I
struct st506mdl { /* ST506 MDL *I

struct st506hdr header;
struct st506defect defects [BBH506MAXDFCTS];
} ;

struct st506hdr
unsigned short
unsigned short
} ;

struct st506defect
unsigned short
unsigned char
unsigned char
} ;

B-4

/* ST506 header information */
bb_valid;
bb_num;

/* ST506 individual defect info */
be_cyl;
be_surface;
be_ reserved;

MULTIBUS Reference Manual

I,

C Appendix C

Related Publications C-1

Table of Contents

Related Publications

The publications listed below provide additional information about the System
V /386 operating system.

The C Programmer's Handbook, Bell Labs/M. I. Bolsky
The UNIX System User's Handbook, Bell Labs/M. I. Bolsky
The Vi User's Handbook, Bell Labs/M. I. Bolsky
UNIX System Software Readings, AT&T UNIX PACIFIC
UNIX System Readings and Applications, Volume I, Bell Labs
UNIX System Readings and Applications, Volume II, Bell Labs
UNIX System V/386 Release 4.0 Manual Set, AT&T (published by Prentice Hall)

Intel System How To Use The Peripheral Controller Interface (PCI) Server
Intel System V /386 MULTIBUS Installation and Configuration
Intel System V /386 MULTIBUS II Transport-Application Interface User's Guide
MULTIBUS II Transport Protocol Specification and Designer's Guide
System V /386 Device Driver Interface/Driver-Kernel Interface Reference Manual

MULTIBUS II Interconnect Interface Specification
MULTIBUS II Message Passing Coprocessor External Specification
MULTIBUS II MPC User's Guide

Appendix C C-1

·I

I

I

!

1~
I

