=,

UNIX oystem \//3a6

Release i
USERS GUIDE

<|||Mh»
-

UNIX® System V/386
Release 3.2
User's Guide

O l

Prentice Hall, Englewood Cliffs, New Jersey 07632

Library of Congress Catalog Card Number: 88-62533

Editorial/production supervision: Karen Skrable Fortgang
Manufacturing buyer: Mary Ann Gloriande

© 1989 by AT&T. All rights reserved.
Published by Prentice-Hall, Inc.

A Division of Simon & Schuster
Englewood Cliffs, New Jersey 07632

All rights reserved. No part of this book may be
reproduced, in any form or by any means,
without permission in writing from the publisher.

NOTICE

The information in this document is subject to change without notice.
AT&T assumes no responsibility for any errors that may appear in

this document.

Intel is a registered trademark of Intel Corporation.

MS-DOS and XENIX are registered trademarks of Microsoft Corporauon

UNIX is a registered trademark of AT&T.

The publisher offers discounts on this book when ordered
in bulk quantities. For more information, write or call:

Special Sales

Prentice-Hall, Inc.

College Technical and Reference Division
Englewood Cliffs, NJ 07632

(201) 592-2498

Printed in the United States of America

10 9 87 635 4321

ISBN 0-13-9448L9-1

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto

Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Simon & Schuster Asia Pte. Ltd., Singapore

Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

Table of Contents

Preface
Preface
Notational Conventions

XV
xviii

Part 1: UNIX System Overview

What Is the UNIX System?
What the UNIX System Does

How the UNIX System Works 1-3

Basics for UNIX System Users

Getting Started 2-1

The Terminal 2-2

Obtaining a Login Name 2-13

Establishing Contact with the UNIX System 2-14
2-22

Part 2: UNIX System Tutorials

Using the File System

Introduction 3-1

How the File System is Structured 3-2

TABLE OF CONTENTS iii

Table of Contents

Your Place in the File System 3-4
Organizing a Directory 3-15
Accessing and Manipulating Files 3-30
Printing Files 3-72
4 Overview of the Tutorials
Introduction 4-1
Text Editing 4-2
The Shell 4-7
Communicating Electronically 4-12
Programming in the System 4-13

5 Line Editor Tutorial (ed)

Introducing the Line Editor 5-1
Suggestions for Using this Tutorial 5-2
Getting Started 5-3
Exercise 1 5-14
General Format of ed Commands 5-15
Line Addressing 5-16
Exercise 2 5-30
Displaying Text in a File 5-31
Creating Text 5-34
Exercise 3 5-42
Deleting Text 4 5-44
Substituting Text 5-49
Exercise 4 5-58
Special Characters 5-60
Exercise 5 5-71
Moving Text 5-73
Exercise 6 5-84
Other Useful Commands and Information 5-85
Exercise 7 5-95
Answers to Exercises 5-96

iv USER’S GUIDE

Table of Contents

Screen Editor Tutorial (vi)

Introduction 6-1
Getting Started 6-4
Creating a File 6-7
Editing Text: the Command Mode 6-10
Quitting vi 6-19
Exercise 1 6-22
Moving the Cursor Around the Screen 6-23
Positioning the Cursor in Undisplayed Text 6-40
Exercise 2 6-52
Creating Text 6-54
Exercise 3 6-59
Deleting Text 6-60
Exercise 4 6-67
Modifying Text 6-68
Cutting And Pasting Text Electronically 6-76
Exercise 5 6-80
Special Commands 6-81
Using Line Editing Commands in vi 6-84
Quitting vi 6-90
Special Options For vi 6-93
Exercise 6 6-96
Answers To Exercises 6-97
Shell Tutorial

Introduction 7-1
Shell Command Language 7-2
Command Language Exercises 7-35
Shell Programming 7-36
Modifying Your Login Environment 7-90
Shell Programming Exercises 7-97
Answers To Exercises 7-99

TABLE OF CONTENTS vV

Table of Contents

C-shell Tutorial

Introduction 8-1
9 Communication Tutorial
Introduction 9-1
Exchanging Messages 9-2
mail 9-3
mailx 9-16
mailx Overview 9-17
Command Line Options 9-19
How to Send Messages: the Tilde Escapes 9-20
How to Manage Incoming Mail 9-32
The .mailrc File 9-42
Transferring Files 9-47
Networking 9-67
Appendices, Glossary, Index
A Summary of the File System
The UNIX System Files A1
UNIX System Directories A-4
B Summary of UNIX System
Commands
Basic UNIX System Commands B-1

vi USER’S GUIDE

Table of Contents

Quick Reference to ed Commands
ed Quick Reference C-1

Quick Reference to vi Commands
vi Quick Reference D-1

Summary of Shell Command
Language
. Summary of Shell Command Language E-1

Setting upon the Terminal

Setting the TERM Variable F-1
Example F-4
Windowing F-6
Glossary G-1
Index

Index I-1

TABLE OF CONTENTS vii

List of Figures

Figure 1-1:
Figure 1-2:
Figure 1-3:
Figure 1-4:
Figure 1-5:
Figure 2-1:
Figure 2-2:
Figure 2-3:
Figure 2-4:
Figure 2-5:
Figure 3-1:
Figure 3-2:
Figure 3-3:
Figure 3-4:
Figure 3-5:
Figure 3-6:
Figure 3-7:

Model of the UNIX System

Functional View of the Kernel

The Hierarchical Structure of the File System
Example of a File System

Execution of a UNIX System Command

A Video Display Terminal and a Printing Terminal
Keyboard Layout of a Teletype 5410 Terminal
UNIX System Typing Conventions

Data Phone Set, Modem, and Acoustic Coupler
Troubleshooting Problems When Logging In*

A Sample File System

Directory of Home Directories

Summary of the pwd Command

Full Path Name of the /userl/starship Directory
Relative Path Name of the draft Directory
Relative Path Name from starship to outline

Example Path Names

LIST OF FIGURES

2-15
2-22
3-3
3-5
3-7
3-9
3-11
3-12
3-13

List of Figures

Figure 3-8:
Figure 3-9:

Figure 3-10:
Figure 3-11:
Figure 3-12:
Figure 3-13:
Figure 3-14:
Figure 3-15:
Figure 3-16:
Figure 3-17:
Figure 3-18:
Figure 3-19:
Figure 3-20:
Figure 3-21:
Figure 3-22:
Figure 3-23:
Figure 3-24:
Figure 3-25:
Figure 3-26:
Figure 3-27:
Figure 3-28:
Figure 3-29:

Summary of the mkdir Command

Description of Output Produced by the 1s -1 Com-

mand

Summary of the Is Command
Summary of the ed Command
Summary of the rmdir Command
Basic Commands for Using Files
Summary of the cat Command
Summary of the more Command
Summary of Commands to Use with pg
Summary of the pg Command
Summary of the cp Command
Summary of the copy Command
Summary of the mv Command
Summary of the rm Command
Summary of the we¢ Command
Summary of the chmod Command
Summary of the diff Command
Summary of the grep Command
Summary of the sort Command
Summary of the pr Command

Print Commands and Their Functions

Summary of the lIp Command

3-16

3-23
3-24
3-27
3-29
3-31
3-35
3-38
3-39
3-42
3-45
3-49
3-52
3-53
3-56
3-63
3-66
3-68
3-71
3-75
3-76
3-91

Figure 4-1:
Figure 5-1:
Figure 5-2:
Figure 5-3:
Figure 5-4:
Figure 5-5:
Figure 5-6:
Figure 5-7:
Figure 5-8:
Figure 5-9:
Figure 6-1:
Figure 6-2:
Figure 6-3:
Figure 6-4:
Figure 6-5:
Figure 6-6:
Figure 6-7:
Figure 6-8:
Figure 6-9:
Figure 6-10:
Figure 6-11:
Figure 6-12:

Comparison of Line and Screen Editors (ed and vi)
Summary of ed Editor Commands
Summary of Line Addressing
Sample Addresses for Displaying Text
Summary of Commands for Displaying Text
Summary of Commands for Creating Text
Summary of Commands for Deleting Text
Summary of Special Characters
Summary of ed Commands for Moving Text
Summary of Other Useful Commands)
Displaying a File with a vi Window
Summary of Commands for the vi Editor
Summary of vi Motion Commands (Sheet 1 of 4)
Summary of vi Motion Commands (Sheet 2 of 4)
Summary of vi Motion Commands (Sheet 3 of 4)
Summary of vi Motion Commands (Sheet 4 of 4)
Summary of Additional vi Motion Commands
Summary of vi Commands for Creating Text
Summary of Delete Commands
Summary of vi Commands for Changing Text
Summary of the Yank Command

Summary of vi Commands for Cutting and Pasting
Text

LIST OF FIGURES

List of Figures

4-6
5-13
5-29
5-32
5-33
5-41
5-48
5-70
5-83
5-04

6-2
6-21
6-36
6-37
6-38
6-39
6-51
6-58
6-66
6-75
6-77

6-79

List of Figures

Figure 6-13:

Summary of Special Commands

Figure 6-14: Summary of Line Editor Commands

Figure 6-15:
Figure 6-16:
Figure 7-1:

Figure 7-2:
Figure 7-3:
Figure 7-4:
Figure 7-5:
Figure 7-6:
Figure 7-7:
Figure 7-8:
Figure 7-9:
Figure 7-10:
Figure 7-11:
Figure 7-12:
Figure 7-13:
Figure 7-14:
Figure 7-15:
Figure 7-16:
Figure 7-17:
Figure 7-18:

Summary of the Quit Commands
Summary of Special Options for vi

Characters with Special Meanings in the Shell
Language

Summary of Metacharacters

Summary of the spell Command

Summary of the cut Command

Sumiary of the date Command

Summary of the batch Command

Summary of the at Command

Summary of the ps Command

Summary of the kill Command
Summary of the nohup Command
Summary of the dl Shell Program
Summary of the bbday Command
Summary of the whoson Command
Summary of the get.num Shell Program
Summary of the show.param Shell Program
Summary of the mknum Shell Program
Summary of the num.please Shell Program

Summary of the t Shell Program

6-83
6-89
6-92
6-95

7-3

7-9
7-18
7-22
7-24
7-27
7-30
7-32
7-33
7-34
7-40
7-44
7-45
7-47
7-50
7-55
7-55

7-57

Figure 7-19:
Figure 7-20:
Figure 7-21:
Figure 7-22:
Figure 7-23:
Figure 7-24:
Figure 7-25:
Figure 7-26:
Figure 7-27:
Figure 7-28:
Figure 7-29:
Figure 7-30:
Figure 7-31:
Figure 7-32:
Figure 9-1:

Figure 9-2:
Figure 9-3:
Figure 9-4:

Figure 9-5:
Figure 9-6:
Figure 9-7:

Summary of the log.time Shell Program
Format of a Here Document

Summary of the gbday Command

Summary of the ch.text Command

Format of the for Loop Construct

Summary of mv.file Shell Program

Format of the while Loop Construct

Format of the if...then Conditional Construct
Format of the if...then...else Conditional Construct
Summary of the search Shell Program
Summary of the mv.ex Shell Program

The case...esac Conditional Construct
Summary of the set.term Shell Program

Summary of the tail Command

Summary of Sending Messages with the mail Com-

mand

Summary of the uname Command
Summary of the uuname Command

Summary of Reading Messages with the mail Com-

mand

Sample .mailrc File
Summary of the uucp Command

Summary of the uuto Command

LIST OF FIGURES

List of Figures

7-59
7-61
7-62
7-64
7-66
7-69
7-70
7-73
7-75
7-76
7-80
7-81
7-84
7-92

9-8
9-11

9-11

9-15
9-43
9-57
9-62

xiii

List of Figures

Figure 9-8: Summary of the uustat Command

Figure 9-9: Summary of the uupick Command

Figure 9-10: Summary of the ct Command

Figure 9-11: Command Strings for Use with cu (Sheet 1 of 2)
Figure 9-12: Command Strings for Use with cu (Sheet 2 of 2)
Figure 9-13: Summary of the cu Command

Figure 9-14: Summary of the uux Command

Figure A-1: Directory Tree from root

xiv USER’S GUIDE

9-63
9-66
9-69
9-72
9-73
9-75
9-77

Preface

The material in this guide is organized into two major parts: an overview
of the UNIX operating system and a set of tutorials on the main tools avail-
able on the UNIX system. A brief description of each part follows. The last
section of this Preface, "Notation Conventions, " describes the typographical
notation with which all the chapters of this Guide conform. You may want to
refer back to this section from time to time as you read the Guide.

System Overview

This part consists of Chapters 1-3, which introduce you to the basic prin-
ciples of the UNIX operating system. Each chapter builds on information
presented in preceding chapters, so it is important to read them in sequence.

B Chapter 1, "What is the UNIX System?", provides an overview of the
operating system.

B Chapter 2, "Basics for UNIX System Users," discusses the general
rules and guidelines for using the UNIX system. It covers topics related
to using your terminal, obtaining a system account, and establishing
contact with the UNIX system.

B Chapter 3, "Using the File System," offers a working perspective of
the file system. It introduces commands for building your own direc-
tory structure, accessing and manipulating the subdirectories and files
you organize within it, and examining the contents of other directories
in the system for which you have access permission.

UNIX System Tutorials

The second part of the Guide consists of tutorials on the following topics:
the ed text editor, the vi text editor, the shell command language and pro-
gramming language, and electronic communication tools. For a thorough
understanding of the material, we recommend that you work through the
examples and exercises as you read each tutorial. The tutorials assume you
understand the concepts introduced in Chapters 1-3.

PREFACE xv

Preface

B Chapter 4, "UNIX System Capabilities," introduces the four chapters
of tutorials in the second half of the Guide. It highlights UNIX system
capabilities such as command execution, text editing, electronic com-
munication, programming, and aids to software development.

B Chapter 5, "Line Editor Tutorial (ed)," teaches you to how to use the
ed text editor to create and modify text on a video display terminal or
paper printing terminal.

B Chapter 6, "Screen Editor Tutorial (vi)," teaches you how to use the
visual text editor, vi, to create and modify text on a video display ter-
minal.

vi, the visual editor, is based on software developed by The University
NOTE| of California, Berkeley, California; Computer Science Division, Depart-
ment of Electrical Engineering and Computer Science, and such software
I is owned and licensed by the Regents of the University of California.

B Chapter 7, "Shell Tutorial,” teaches you to how to use the shell, both
as a command interpreter and as a programming language used to
create shell programs.

B Chapter 8, "Communication Tutorial," teaches you how to send mes-
sages and files to users of both your UNIX system and other UNIX sys-
tems.

Reference Information

Six appendices and a glossary of UNIX system terms are also provided for
reference.

B Appendix A, "Summary of the File System, " illustrates how informa-
tion is stored in the UNIX operating system.

B Appendix B, "Summary of UNIX System Commands," describes, in
alphabetical order, each UNIX system command discussed in the Guide.

Preface

B Appendix C, "Quick Reference to ed Commands, " is a quick refer-
ence for the line editor, ed. (For details, see Chapter 5, "Line Editor
Tutorial.”) The commands are organized by topic, as they are covered
in Chapter 5.

B Appendix D, "Quick Reference to vi Commands," is a reference for
the full screen editor, vi, discussed in Chapter 6, "Screen Editor
Tutorial (vi).» Commands are organized by topic, as covered in
Chapter 6.

B Appendix E, "Summary of Shell Command Language, " is a summary
of the shell command language, notation, and programming constructs,
as discussed in Chapter 7, "Shell Tutorial."

B Appendix F, "Setting Up the Terminal," explains how to configure
your terminal for use with the UNIX system, and create multiple win-
dows on the screens of terminals with windowing capability.

B The Glossary defines terms pertaining to the UNIX system used in this
book.

PREFACE xvii

Notation Conventions

The following notation conventions are used throughout this Guide.

bold User input, such as commands, options and argu-
ments to commands, variables, and the names of
directories and files, appear in bold.

italic Names of variables to which values must be
assigned (such as password) appear in italic.

constant width UNIX system output, such as prompt signs and
responses to commands, appear in constant
width.

<> Input that does not appear on the screen when

typed, such as passwords, tabs, or RETURN,
appear between angle brackets.

<"char> Control characters are shown between angle
brackets because they do not appear on the screen
when typed. The circumflex () represents the
control key (usually labeled CTRL). To type a
control character, hold down the control key
while you type the character specified by char.
For example, the notation < d> means to hold
down the control key while pressing the D key;
the letter D will not appear on the screen.

[] Command options and arguments that are
optional, such as [-msCj], are enclosed in square
brackets.

i The vertical bar separates optional arguments
from which you may choose one. For example,
when a command line has the following format:

command [argl | arg2]

You may use either argl or arg2 when you issue
the command.

xvili USER’S GUIDE

Notation Conventions

command(number)

Ellipses after an argument mean that more than
one argument may be used on a single command
line.

Arrows on the screen (shown in examples in
Chapter 6) represent the cursor.

A command name followed by a number in
parentheses refers to the part of a UNIX system
reference manual that documents that command.
(There are three reference manuals: the User’s
Reference Manual, Programmer’s Reference Manual,
and System Administrator’s Reference Manual.) For
example, the notation cat(1) refers to the page in
section 1 (of the User’s Reference Manual) that
documents the cat command.

In sample commands the $ sign is used as the shell command prompt.
This is not true for all systems. Whichever symbol your system uses, keep in
mind that prompts are produced by the system; although a prompt is some-
times shown at the beginning of a command line as it would appear on your
screen, you are not meant to type it. (The $ sign is also used to reference the
value of positional parameters and named variables; see Chapter 7 for details.)

In all chapters, full and partial screens are used to display examples of
how your terminal screen will look when you interact with the UNIX system.
These examples show how to use the UNIX system editors, write short pro-
grams, and execute commands. The input (characters typed by you) and out-
put (characters printed by the UNIX system) are shown in these screens in
accordance with the conventions listed above. All examples apply regardless
of the type of terminal you use.

The commands discussed in each section of a chapter are reviewed at the
end of that section. A summary of vi commands is found in Appendix D,
where they are listed by topic. At the end of some sections, exercises are also
provided so you can experiment with the commands. The answers to all the
exercises in a chapter are at the end of that chapter.

The text in the User’s Guide was prepared with the UNIX system text editors
NOTE| described in the Guide and formatted with the DOCUMENTER’S WORK-
BENCH Software: troff, tbl, pic, and mm macros.

PREFACE xix

What Is the UNIX System?

What the UNIX System Does 1-1
How the UNIX System Works 1-3
The Kernel 1-5
The File System 1-7
m Ordinary Files 1-7
s Directories 1-8
m Special Files 1-8
The Shell 1-10
Commands 1-11
@ What Commands Do 1-11
m How to Execute Commands 1-12

s How Commands Are Executed

1-14

What the UNIX System Does

The UNIX Operating System is a set of programs (or software) that con-
trols the computer, acts as the link between you and the computer, and pro-
vides tools to help you do your work. It is designed to provide an uncompli-
cated, efficient, and flexible computing environment. Specifically, the UNIX
System offers the following advantages:

B a general purpose system for performing a wide variety of jobs or
applications

M an interactive environment that allows you to communicate directly
with the computer and receive immediate responses to your requests
and messages

B a multi-user environment that allows you to share the computer’s
resources with other users without sacrificing productivity

This technique is called timesharing. The UNIX System interacts
between users on a rotating basis so quickly that it appears to be
interacting with all users simultaneously.

B a multi-tasking environment that enables you to execute more than
one program simultaneously.

The organization of the UNIX System is based on four major components:

the kernel The kernel is a program that constitutes the nucleus of
the operating system; it coordinates the functioning of
the computer’s internals (such as allocating system
resources). The kernel works invisibly; you need
never be aware of it while doing your work.

the file system The file system provides a method of handling data
that makes it easy to store and access information.

the shell The shell is a program that serves as the command
interpreter. It acts as a liaison between you and the
kernel, interpreting and executing your commands.
Because it reads input from you and sends you mes-
sages, it is described as interactive.

WHAT IS THE UNIX SYSTEM? 1-1

What the UNIX System Does

commands

1-2 USER’S GUIDE

Commands are the names of programs that you
request the computer to execute. Packages of pro-
grams are called tools. The UNIX System provides
tools for jobs such as creating and changing text, writ-
ing programs and developing software tools, and
exchanging information with others via the computer.

How the UNIX System Works

Figure 1-1 is a model of the UNIX System. Each circle represents one of
the major components of the UNIX System: the kernel, the shell, and user
programs or commands. The arrows suggest the shell’s role as the medium
through which you and the kernel communicate. The remainder of this
chapter describes each of these components, along with another component of
the UNIX System, the file system.

WHAT IS THE UNIX SYSTEM? 1-3

How the UNIX System Works

User Programs

Programming
Environment

Shell
Electronic Text
Communication Processing

Kernel
/ ~ \

Addilional
information
Utility M A
Programs anagemen

Figure 1-1: Model of the UNIX System

1-4 USER’S GUIDE

How the UNIX System Works

The Kernel

The nucleus of the UNIX System is called the kernel. The kernel controls
access to the computer, manages the computer’s memory, maintains the file
system, and allocates the computer’s resources among users. Figure 1-2 is a
functional view of the kernel.

WHAT IS THE UNIX SYSTEM? 1-5

How the UNIX System Works

Kernel

Allocates
system
resources

Manages
memory

Maintains
file system

Controls
access to
computer

Figure 1-2: Functional View of the Kernel

1-6 USER’S GUIDE

How the UNIX System Works

The File System

The file system is the cornerstone of the UNIX Operating System. It pro-
vides a logical method of organizing, retrieving, and managing information.
The structure of the file system is hierarchical; if you could see it, it might
look like an organization chart or an inverted tree (Figure 1-3).

O = Directories
I:] = Ordinary Files
v = Special Files

Figure 1-3: The Hierarchical Structure of the File System

The file is the basic unit of the UNIX System, and it can be any one of
three types: an ordinary file, a directory, or a special file. (See Chapter 3,
" Using the File System.")

Ordinary Files

An ordinary file is a collection of characters that is treated as a unit by the
system. Ordinary files are used to store any information you want to save.
They may contain text for letters or reports, code for the programs you write,
or commands to run your programs. Once you have created a file, you can

WHAT IS THE UNIX SYSTEM? 1.7

How the UNIX System Works

add material to it, delete material from it, or remove it entirely when it is no
longer needed.

Directories

A directory is a super-file that contains a group of related files. For exam-
ple, a directory called sales may hold files containing monthly sales figures
called jan, feb, mar, and so on. You can create directories, add or remove
files from them, or remove directories themselves at any time.

Your home directory is a directory assigned to you by the system when
you receive a recognized login. You have control over this directory; no one
else can read or write files in it without your explicit permission, and you
determine its structure.

The UNIX System also maintains several directories for its own use. The
structure of these directories is much the same on all UNIX Systems. These
directories, which include /unix (the kernel) and several important system
directories, are located directly under the root directory in the file hierarchy.
The root directory (designated by /) is the source of the UNIX file structure;
all directories and files are arranged hierarchically under it.

Special Files

Special files constitute the most unusual feature of the file system. A spe-
cial file represents a physical device such as a terminal, disk drive, magnetic
tape drive, or communication link. The system reads and writes to special
files in the same way it does to ordinary files. However, the system’s read
and write requests do not activate the normal file access mechanism; instead,
they activate the device handler associated with the file.

Some operating systems require you to define the type of file you have
and to use it in a specified way. In those cases, you must consider how the
files are stored since they might be sequential, random-access, or binary files.
To the UNIX System, however, all files are alike. This makes the UNIX Sys-
tem file structure easy to use. For example, you need not specify memory
requirements for your files since the system automatically does this for you.
Or if you or a program you write needs to access a certain device, such as a
printer, you specify the device just as you would another one of your files. In
the UNIX System, there is only one interface for all input from you and out-
put to you; this simplifies your interaction with the system.

1-8 USER’S GUIDE

How the UNIX System Works

Figure 1-4 shows an example of a typical file system. Notice that the root
directory contains the kernel (/unix) and several important system directories.

unix bin

(root)

dev etc lib tmp usr

date

cat

v W W
news mail

O = Directories
D = Ordinary Files
v = Special Files

Figure 1-4: Example of a File System

/bin
/dev

[etc
/lib
/tmp
jusr

contains many executable programs and utilities

contains special files that represent peripheral devices such as
the console, the line printer, user terminals, and disks

contains programs and data files for system administration
contains libraries for programs and languages
contains temporary files that can be created by any user

contains other directories, including mail, which contain files
for storing electronic mail, and news, which contains files for
storing newsworthy items.

WHAT IS THE UNIX SYSTEM? 1.9

How the UNIX System Works

In summary, the directories and files you create comprise the portion of
the file system that you control. Other parts of the file system are provided
and maintained by the operating system, such as /bin, /dev, /etc, /lib, /tmp
and /usr, and have much the same structure on all UNIX Systems.

You will learn more about the file system in other chapters. Chapter 3
shows how to organize a file system directory structure, and access and mani-
pulate files. Chapter 4 gives an overview of UNIX System capabilities. The
effective use of these capabilities depends on your familiarity with the file sys-
tem and your ability to access information stored within it. Chapters 5 and 6
are tutorials designed to teach you how to create and edit files.

The Shell

The shell is a unique command interpreter that allows you to communi-
cate with the operating system. The shell reads the commands you enter and
interprets them as requests to execute other programs, access files, or provide
output. The shell is also a powerful programming language, not unlike the C
programming language, that provides conditional execution and control flow
features. The model of a UNIX System in Figure 1-1 shows the two-way flow
of communication between you and the computer via the shell.

In addition, this version of UNIX supports the C-shell, a command inter-
preter with a C-like syntax. Like the standard shell, the C-shell is an interface
between you and the UNIX commands and programs.

Chapter 4 describes the shell’s capabilities. Chapter 7 is a tutorial that
teaches you to write simple shell programs called shell scripts and custom
tailor your environment. Chapter 8 describes the C-shell and provides exam-
ples for customizing your C-shell environment, as well as writing C-shell
scripts. ‘

1-10 USER’S GUIDE

How the UNIX System Works

Commands

A program is a set of instructions to the computer. Programs that can be
executed by the computer without need for translation are called executable
programs or commands. As a typical user of the UNIX System, you have
many standard programs and tools available to you. If you use the UNIX Sys-
tem to write programs and develop software, you can also draw on system
calls, subroutines, and other tools. Of course, any programs you write your-
self will be at your disposal, too.

This book introduces you to many of the UNIX System programs and
tools that you will use on a regular basis. If you need additional information
on these or other standard programs, refer to the User’s/System Administrator’s
Reference Manual. For information on tools and routines related to program-
ming and software development, consult the Programmer’s Reference Manual.
The Documentation Roadmap describes and explains how to order all UNIX
System documents from AT&T.

What Commands Do

The outer circle of the UNIX System model in Figure 1-1 organizes the
system programs and tools into functional categories. These functions include

text processing The system provides programs such as
line and screen editors for creating and
changing text, a spelling checker for locat-
ing spelling errors, and optional text for-
matters for producing high-quality paper
copies that are suitable for publication.

information management The system provides many programs that
allow you to create, organize, and remove
files and directories.

electronic communication Several programs, such as mail, enable
you to transmit information to other users
and to other UNIX Systems.

software development Several UNIX System programs establish
a friendly programming environment by

WHAT IS THE UNIX SYSTEM? 1-11

How the UNIX System Works

providing UNIX-to-programming-language
interfaces and by supplying numerous
utility programs.

additional utilities ' The system also offers capabilities for gen-
erating graphics and performing calcula-
tions.

How to Execute Commands

To make your requests comprehensible to the UNIX System, you must
present each command in the correct format, or command line syntax. This
syntax defines the order in which you enter the components of a command
line. Just as you must put the subject of a sentence before the verb in an
English sentence, so must you put the parts of a command line in the order
required by the command line syntax. Otherwise, the UNIX System shell will
not be able to interpret your request. Here is an example of the syntax of a
UNIX System command line:

command option(s) argument(s)<CR>

On every UNIX System command line, you must type at least two com-
ponents: a command name and the <RETURN> key. (The notation <CR> is
used as an instruction to press the <RETURN> key throughout this Guide.) A
command line may also contain either options or arguments, or both. What
are commands, options, and arguments?

B A command is the name of the program you want to run.
B An option modifies how the command runs.

B An argument specifies data on which the command is to operate (usu-
ally the name of a directory or file).

In command lines that include options and/or arguments, the component
words are separated by at least one blank space. (You can insert a blank by
pressing the space bar.) If an argument name contains a blank, enclose that
name in double quotation marks. For example, if you want the argument to
your command to be sample 1, you must type it as "sample 1*. If you for-
get the double quotation marks, the shell will interpret sample and 1 as two
separate arguments.

1-12 USER’S GUIDE

How the UNIX System Works

Some commands allow you to specify multiple options and/or arguments
on a command line. Consider the following command line:

command
arguments

options

'

NN
we -1 -w filel file2 file3

In this example, wc is the name of the command and -1 and -w are two
options that have been specified. (The UNIX System usually allows you to
group options such as these to read -lw if you prefer.) In addition, three files
(file1, file2, and file3) are specified as arguments. Although most options can
be grouped together, arguments cannot.

The following examples show the proper sequence and spacing in com-
mand line syntax:

Incorrect Correct
wecfile we file
we-lIfile wc -1 file
we -1 w file wce -lw file
or
we -1 -w file
wec filelfile2 we filel file2

Remember, regardless of the number of components, you must end every
command line by pressing the <RETURN> key.

WHAT IS THE UNIX SYSTEM? 1-13

How the UNIX System Works

How Commands Are Executed

Figure 1-5 shows the flow of control when the UNIX System executes a
command.

YOUR
REQUEST

INPUT
outpur | (COMMAND

AT LANGUA
ATV — mrsnggsssEm pnocnm?{vnoanm

DIRECTORY
SEARCH

EXECUTION RETRIEVAL
, W

EXECUTABLE
PROGRAMS

Figure 1-5: Execution of a UNIX System Command

To execute a command, enter a command line when a prompt (such as a
$ sign) appears on your screen. The shell considers your command as input,
searches through one or more directories to retrieve the program you speci-
fied, and conveys your request, along with the program requested, to the ker-
nel. The kernel then follows the instructions in the program and executes the
command you requested. After the program has finished running, the shell
signals that it is ready for your next command by printing another prompt.

This chapter has described some basic principles of the UNIX Operating
System. The following chapters will help you apply these principles accord-
ing to your computing needs.

1-14 USER’S GUIDE

Basics for UNIX System Users

Getting Started 2-1
The Terminal 2-2
Required Terminal Settings 2-3
Keyboard Characteristics 2-4
Typing Conventions 2-6
#s The Command Prompt 2-7
s Correcting Typing Errors 2-8
m Using Special Characters as Literal Characters 2-10
s Typing Speed 2-10
m Stopping a Command 2-11
m Using Control Characters 2-11
Obtaining a Login Name 2-13

Establishing Contact with the

UNIX System 2-14
Login Procedure 2-16
Password 2-16
Possible Problems when Logging In 2-20
Simple Commands 2-23

Logging Off 2-24

Getting Started

This chapter acquaints you with the general rules and guidelines for work-
ing on the UNIX System. Specifically, it lists the required terminal settings
and explains how to use the keyboard, obtain a login, log on to and off of the
system, and enter simple commands.

To establish contact with the UNIX System, you need

B a terminal

B a login name (a name by which the UNIX System identifies you as one
of its authorized users)

B a password that verifies your identity

B instructions for dialing in and accessing the UNIX System if your ter-
minal is not directly connected or hard-wired to the computer

BASICS FOR UNIX SYSTEM USERS 2-1

The Terminal

A terminal is an input/output device: you use it to enter requests to the
UNIX System, and the system uses it to send its responses to you. There are
two basic types of terminals: video display terminals and printing terminals
(see Figure 2-1).

TELETYPE
MODEL 5410

Figure 2-1: A Video Display Terminal and a Printing Terminal

The video display terminal shows input and output on a display screen; the
printing terminal, on continuously fed paper. In most respects, this difference
has no effect on the user’s actions or the system’s responses. Instructions
throughout this book that refer to the terminal screen apply in the same way
to the paper in a printing terminal, unless otherwise noted.

The Terminal

Required Terminal Settings

Regardless of the type of terminal you use, you must configure it properly
to communicate with the UNIX System. If you have not set terminal options
before, you might feel more comfortable seeking help from someone who has.

How you configure a terminal depends on the type of terminal you are
using. Some terminals are configured with switches; others are configured
directly from the keyboard by using a set of function keys. To determine how
to configure your terminal, consult the owner’s manual provided by the
manufacturer.

The following is a list of configuration checks you should perform on any
terminal before trying to log in on the UNIX System:

1. Turn on the power.

2. Set the terminal to ON-LINE or REMOTE operation. This setting
ensures the terminal is under the direct control of the computer.

3. Set the terminal to FULL DUPLEX mode. This mode ensures two-
way communication (input/output) between you and the UNIX Sys-
tem.

4. If your terminal is not directly connected or hard-wired to the com-
puter, make sure the acoustic coupler or data phone set you are using
is set to the FULL DUPLEX mode.

5. Set character generation to LOWERCASE. If your terminal generates
only uppercase letters, the UNIX System will accommodate it by
printing everything in uppercase letters.

Set the terminal to NO PARITY.

7. Set the baud rate. This is the speed at which the computer communi-
cates with the terminal, measured in characters per second. (For
example, a terminal set at a baud rate of 4800 sends and receives
480 characters per second.) Depending on the computer and the ter-
minal, baud rates between 300 and 19200 are available. Some com-
puters may be capable of processing characters at higher speeds.

BASICS FOR UNIX SYSTEM USERS 2-3

The Terminal

Keyboard Characteristics

There is no standard layout for terminal keyboards. However, all terminal
keyboards share a standard set of 128 characters called the ASCII character
set. (ASCII is an acronym for American Standard Code for Information Inter-
change.) While the keys are labeled with characters that are meaningful to
you (such as the letters of the alphabet), each one is also associated with an
ASCII code that is meaningful to the computer.

The keyboard layout on a typical ASCII terminal is basically the same as a
typewriter’s, with a few additional keys for functions such as interrupting
tasks. Figure 2-2 shows an example of a keyboard on an ASCII terminal.

2-4 USER’S GUIDE

The Terminal

” " (2] 1 9 (13 ” "

Line
rEz0

hife 2 x < v L] L] [] ’ I thitr L) 2 3

Figure 2-2: Keyboard Layout of a Teletype 5410 Terminal

BASICS FOR UNIX SYSTEM USERS 2-5

The Terminal

The keys correspond to the following:
B the letters of the English alphabet (both uppercase and lowercase)
B the numerals (0 through 9)

B a variety of symbols (including ' @# $ % & ()—-+=~"{}[]
\i;"'<>,?))

B specially defined words (such as <RETURN> and <BREAK>) and
abbreviations (such as for delete, <CTRL> for control, and
<ESC> for escape) .

While terminal and typewriter keyboards both have alphanumeric keys,
terminal keyboards also have keys designed for use with a computer. These
keys are labeled with characters or symbols that remind the user of their func-
tions. However, their placement may vary from terminal to terminal because
there is no standard keyboard layout.

Typing Conventions

To interact effectively with the UNIX System, you should be familiar with
its typing conventions. The UNIX System requires that you enter commands
in lowercase letters (unless the command includes an uppercase letter). Other
conventions enable you to perform tasks, such as erasing letters or deleting
lines, simply by pressing one key or entering a specific combination of charac-
ters. Characters associated with tasks in this way are known as special char-
acters. Figure 2-3 lists the conventions based on special characters. Detailed
explanations of them are provided on the next few pages.

2-6 USER’S GUIDE

Key(s) Meaning

$ System’s command prompt (your cue to issue a command).

#* Erases a character.

@ Erases or kills an entire line.

<BREAK> Stops execution of a program or command.

 Deletes or kills the current command line.

<ESC> When used with another character, performs a specific function
(called an escape sequence).
When used in an editing session with the vi editor, ends the text
input mode and returns you to the command mode.

<CR> Press the <RETURN> key. This ends a line of typing and puts
the cursor on a new line.

<d>t Stops input to the system or logs off.

<h> Backspaces for terminals without a backspace key.

<i> Tabs horizontally for terminals without a tab key.

<'s> Temporarily stops output from printing on the screen.

<Aq> Makes the output resume printing on the screen after it has been
stopped by the < s> command.

Nonprinting characters are shown in angle brackets (< >).

Characters preceded by a circumflex (°) are called control characters and are pronounced
control-letter. To type a control character, hold down the <CTRL> key and press the

The Terminal

specified letter.

Figure 2-3: UNIX System Typing Conventions

The Command Prompt

The standard UNIX System command prompt is the dollar sign ($). When
the prompt appears on your terminal screen, the UNIX System is waiting for
instructions from you. The appropriate response to the prompt is to issue a
command and press the RETURN key.

BASICS FOR UNIX SYSTEM USERS 2-7

The Terminal

The $ sign is the default value for the command prompt. Chapter 7
explains how to change it if you would prefer another character or character
string as your command prompt.

Correcting Typing Errors

There are two keys you can use to delete text so that you can correct typ-
ing errors. The @ (at) sign key kills the current line and the # (pound) sign
key erases the last character typed. These keys are available by default to per-
form these functions. However, if you want to use other keys, you can reas-
sign the erase and kill functions. (For instructions, see "Reassigning the
Delete Functions" later in this section and "Setting Terminal Options" in
Chapter 7.)

Deleting the Current Line: the @ Sign

The @ sign key kills the current line. When you press it, an @ sign is
added to the end of the line, and the cursor moves to the next line. The line
containing the error is not erased from the screen but is ignored.

The @ sign key works only on the current line; be sure to press it before
you press the RETURN key if you want to kill a line. In the following exam-
ple, a misspelled command is typed on a command line, and the command is
cancelled with the @ sign:

whooo@
who<CR>
Deleting the Last Characters Typed: the # Sign Key

The # sign key deletes the character(s) last typed on the current line.
When you type a # sign, the cursor backs up over the last character and lets
you retype it, thus effectively erasing it. This is an easy way to correct a typ-
ing error.

You can delete as many characters as you like as long as you type a
corresponding number of # signs. For example, in the following command
line, two characters are deleted by typing two # signs:

dattw##e<CR>
The UNIX System interprets this as the date command, typed correctly.

2-8 USER’S GUIDE

The Terminal

The BACKSPACE Key

Many people prefer to use the BACKSPACE key for the erase function
instead of the # sign key. When you press the BACKSPACE key, the cursor
backs up over your errors, erasing them as it goes. It does not print anything,
unlike the # sign key, which prints a # sign on your screen between an error
and a correction. When you have finished correcting an error with the BACK-
SPACE key, the line of text on the screen looks as though it was typed per-
fectly.

The # sign and BACKSPACE keys are equally effective at deleting charac-
ters, but using the BACKSPACE key gives you better visual information about
what you are doing.

Some terminals may not recognize the # sign key as a delete character.
NOTE

Reassigning the Delete Functions

As stated earlier, you can change the keys that kill lines and erase charac-
ters. If you want to change these keys for a single working session, you can
issue a command to the shell to reassign them; the delete functions will revert
to the default keys (# and @) as soon as you log off. If you want to use other
keys regularly, you must specify the reassignment in a file called .profile.
Instructions for making both temporary and permanent key reassignments,
along with a description of the .profile, are given in Chapter 7.

There are three points to keep in mind if you reassign the delete functions
to non-default keys. First, the UNIX System allows only one key at a time to
perform a delete function. When you reassign a function to a non-default key,
you also take that function away from the default key. For example, if you
reassign the erase function from the # sign key to the BACKSPACE key, you
will no longer be able to use the # sign key to erase characters.

Secondly, such reassignments are inherited by any other UNIX System
program that allows you to perform the function you have reassigned. For
example, the interactive text editor called ed (described in Chapter 5) allows
you to delete text with the same key you use to correct errors on a shell com-
mand line (as described in this section). Therefore, if you reassign the erase
function to the BACKSPACE key, you will have to use the BACKSPACE key
to erase characters while working in the ed editor, as well. The # sign key
will no longer work.

BASICS FOR UNIX SYSTEM USERS 2.9

The Terminal

Finally, keep in mind that any reassignments you have specified in your
Jprofile do not become effective until after you log in. Therefore, if you make
an error while typing your login name or password, you must use the # sign
key to correct it.

Whichever keys you use, remember that they work only on the current
line. Be sure to correct your errors before pressing the RETURN key at the
end of a line.

Using Special Characters as Literal Characters

What happens if you want to use a special character with literal meaning
as a unit of text? Since the UNIX System’s default behavior is to interpret
special characters as commands, you must tell the system to ignore or escape
from a character’s special meaning whenever you want to use it as a literal
character. The backslash (\) enables you to do this. Type a \ before any spe-
cial character that you want to have treated as it appears. By doing this you
essentially tell the system to ignore this character’s special meaning and treat
it as a literal unit of text.

For example, suppose you want to add the following sentence to a file:
Only one # appears on this sheet of music.

To prevent the UNIX System from interpreting the # sign as a request to
delete a character, enter a \ in front of the # sign. If you do not, the system
will erase the space after the word one and print your sentence as follows:

Only one appears on this sheet of music.
To avoid this, type your sentence as follows:

Only one \# appears on this sheet of music.

Typing Speed

After the prompt appears on your terminal screen, you can type as fast as
you want, even when the UNIX System is executing a command or respond-
ing to one. Since your input and the system’s output appear on the screen
simultaneously, the printout on your screen will appear garbled. However,
while this may be inconvenient for you, it does not interfere with the UNIX
System’s work because the UNIX System has read-ahead capability. This
capability allows the system to handle input and output separately. The sys-
tem takes and stores input (your next request) while it sends output (its
response to your last request) to the screen. '

2-10 USER’S GUIDE

The Terminal

Stopping a Command

If you want to stop the execution of a command, simply press the BREAK
or DELETE key. The UNIX System will stop the program and print a prompt
on the screen. This is its signal that it has stopped the last command from
running and is ready for your next command.

Using Control Characters

Locate the control key on your terminal keyboard. It may be labeled
CONTROL or CTRL and is probably to the left of the A key or below the
Z key. The control key is used in combination with other characters to per-
form physical controlling actions on lines of typing. Commands entered in
this way are called control characters. Some control characters perform mun-
dane tasks such as backspacing and tabbing. Others define commands that
are specific to the UNIX System. For example, CONTROL-s temporarily halts
output that is being printed on a terminal screen.

To type a control character, hold down the control key and press the
appropriate alphabetic key. Most control characters do not appear on the
screen when typed and therefore are shown between angle brackets (see
"Notational Conventions" in the Preface). The control key is represented by
a circumflex () before the letter. Thus, for example, < s> designates the
CONTROL-s character.

The two functions for which control characters are most often used are to
control the printing of output on the screen and to log off the system. To
prevent information from rolling off the screen on a video display terminal,
type < s>; the printing will stop. When you are ready to read more output,
type < q> and the printing will resume.

To log off the UNIX System, type < d>.

BASICS FOR UNIX SYSTEM USERS 2-11

The Terminal

In addition, the UNIX System uses control characters to provide capabili-
ties that some terminals fail to make available through function-specific keys.
If your keyboard does not have a BACKSPACE key, you can use the < h>
key instead. You can also set tabs without a TAB key by typing <'i> if your
terminal is set properly. (Refer to the section entitled "Possible Problems
When Logging In" for information on how to set the TAB key.)

Now that you have configured the terminal and inspected the keyboard,
one step remains before you can establish communication with the UNIX Sys-
tem: you must obtain a login name.

2-12 USER’S GUIDE

Obtaining a Login Name

A login name is the name by which the UNIX System verifies that you are
an authorized user of the system when you request access to it. It is so called
because you must enter it every time you want to log in. (The expression log-
ging in is derived from the fact that the system maintains a log for each user,
in which it records the type and amount of system resources being used.)

To obtain a login name, set up a UNIX System account through your sys-
tem administrator. There are few rules governing your choice of a login
name. Typically, it is three to eight characters long. It can contain any com-
bination of lowercase alphanumeric characters, as long as it starts with a letter.
It cannot contain any symbols.

However, your login name will probably be determined by local practices.
The users of your system may all use their initials, last names, or nicknames
as their login names. Here are a few examples of legal login names: starship,
mary2, and jmrs.

BASICS FOR UNIX SYSTEM USERS 2-13

Establishing Contact with the UNIX Sys-
tem

Typically, you will be using either a terminal that is wired directly to a
computer or a terminal that communicates with a computer over a telephone
line.

This section describes a typical procedure for logging in, but it may not
NOTE| apply to your system. There are many ways to log in on a UNIX System
over a telephone line. Security precautions on your system may require that
| you use a special telephone number or other security code. For instructions
on logging in on your UNIX System from outside your computer installation
site, see your system administrator.

Turn on your terminal. If it is directly connected, the login: prompt will
immediately appear in the upper left-hand corner of the screen.

If you are going to communicate with the computer over a telephone line,
you must now establish a connection. The following procedure is an example
of a method you might use to do this. (For the procedure required by your
system, see your system administrator.)

1. Dial the telephone number that connects you to the UNIX System.
You will hear one of the following:

O A busy signal. This means that either the circuits are busy or the
line is in use. Hang up and dial again.

O Continuous ringing and no answer. This usually means that
there is trouble with the telephone line or that the system is inop-
erable because of mechanical failure or electronic problems. Hang
up and dial again later.

O A high-pitched tone. This means that the system is accessible.

2. When you hear the high-pitched tone, place the handset of the phone
in the acoustic coupler or momentarily press the appropriate button on
the data phone set (see the owner’s manual for the appropriate equip-
ment). Then replace the handset in the cradle (see Figure 2-4).

3. After a few seconds, the login: prompt will appear in the upper left
hand corner of the screen.

2-14 USER’S GUIDE

Establishing Contact with the UNIX System

4. A series of meaningless characters may appear on your screen. This
means that the telephone number you called serves more than one
baud rate; the UNIX System is trying to communicate with your ter-
minal, but is using the wrong speed. Press the BREAK or RETURN
key; this signals the system to try another speed. If the UNIX System
does not display the login: prompt within a few seconds, press the
BREAK or RETURN key again.

AT&T Data Phone

Ne=EL
€ ©\

4. AT&T Acoustic
Coupler

7"!

AT&T Dataphone II
Modem

Figure 2-4: Data Phone Set, Modem, and Acoustic Coupler

BASICS FOR UNIX SYSTEM USERS 2-15

Establishing Contact with the UNIX System

Login Procedure

When the login: prompt appears, type your login name and press the
RETURN key. For example, if your login name is starship, your login line
will look like the following:

login: starship<CR>

Remember to type in lowercase letters. If you use uppercase from the time

NOTE| you log in, the UNIX System will expect and respond in uppercase
exclusively until the next time you log in. It will accept and run many com-
I mands typed in uppercase but will not allow you to edit files.
Password

Next, the system prompts you for your password. Type your password
and press the RETURN key. For security reasons, the UNIX System does not
print (or echo) your password on the screen.

2-16 USER’S GUIDE

Establishing Contact with the UNIX System

If both your login name and password are acceptable to the UNIX System,
the system may print the message of the day and/or current news items and
then the default command prompt ($). (The message of the day might include
a schedule for system maintenance, and news items might include an
announcement of a new system tool.) When you have logged in, your screen
will look similar to the following:

login: starship<CR>
password:

UNIX System

$

If you make a typing mistake when logging in, the UNIX System prints
the message login incorrect on your screen. Then, it gives you a second
chance to log in by printing another login: prompt.

login: ttarship<CR>
password:

login incorrect
login:

BASICS FOR UNIX SYSTEM USERS 2-17

Establishing Contact with the UNIX System

The login procedure may also fail if the communication link between your
terminal and the UNIX System has been dropped. If this happens, you must
reestablish contact with the computer (specifically, with the data switch that
links your terminal to the computer) before trying to log in again. Since pro-
cedures for doing this vary from site to site, ask your system administrator to
give you exact instructions for getting a connection on the data switch.

If you have never logged in on the UNIX System, your login procedure
may differ from the one just described. This is because some system adminis-
trators follow the optional security procedure of assigning temporary pass-
words to new users when they set up their accounts. If you have a temporary
password, the system will force you to choose a new password before it
allows you to log in.

By forcing you to choose a password for your exclusive use, this extra step
helps to ensure a system’s security. Protection of system resources and your
personal files depends on your keeping your password private.

The actual procedure you follow will be determined by the administrative
procedures at your computer installation site. However, it will probably be
similar to the following example of a first-time login procedure:

1. You establish contact; the UNIX System displays the login: prompt.
Type your login name and press the RETURN key.

2. The UNIX System prints the password prompt. Type your temporary
password and press the RETURN key.

3. The system tells you your temporary password has expired and you
must select a new one.

4. The system asks you to type your old password again. Type your
temporary password.

5. The system prompts you to type your new password. Type the pass-
word you have chosen.
Passwords must meet the following requirements:

O Each password must have at least six characters. Only the first
eight characters are significant.

O Each password must contain at least two alphabetic characters
and at least one numeric or special character. Alphabetic charac-
ters can be uppercase or lowercase letters.

2-18 VUSER’S GUIDE

Establishing Contact with the UNIX System

NOTE

O Each password must differ from your login name and any reverse
or circular shift of that login name. For comparison purposes, an
uppercase letter and its corresponding lowercase letter are
equivalent.

O A new password must differ from the old by at least three char-
acters. For comparison purposes, an uppercase letter and its
corresponding lowercase letter are equivalent.

Examples of valid passwords are: mar84ch, JonathOn, and BRAV3S.

The UNIX System you are using may have different requirements to con-
sider when choosing a password. Ask your system administrator for
details.

For verification, the system asks you to re-enter your new password.
Type your new password again.

If you do not re-enter the new password exactly as typed the first
time, the system tells you the passwords do not match and asks you
to try the procedure again. On some systems, however, the communi-
cation link may be dropped if you do not re-enter the password
exactly as typed the first time. If this happens, you must return to
step 1 and begin the login procedure again. When the passwords
match, the system displays the prompt.

The following screen summarizes this procedure (steps 1 through 6) for
first-time UNIX System users.

BASICS FOR UNIX SYSTEM USERS 2-19

Establishing Contact with the UNIX System

password: <CR>
Choose a new one.
01d password: <CR>
New password: <CR>

$

N

l/ogin: starship <CR>

Your password has expired.

Re-enter new password: <CR>

Possible Problems when Logging In

A terminal usually behaves predictably when you have configured it prop-
erly. Sometimes, however, it may act peculiarly. For example, the carriage
return may not work properly.

Some problems can be corrected simply by logging off the system and
logging in again. If logging in a second time does not remedy the problem,
you should first check the following and try logging in once again:

the keyboard

the data phone set
or modem

the switches

2-20 VUSER’S GUIDE

Keys labeled CAPS, NUM, SCROLL, and so on
should not be enabled (put into the locked posi-
tion). You can usually disable these keys simply
by pressing them.

If your terminal is connected to the computer
via telephone lines, verify that the baud rate and
duplex settings are correctly specified.

Some terminals have several switches that must
be set to be compatible with the UNIX System. If
this is the case with the terminal you are using,
make sure they are set properly.

Establishing Contact with the UNIX System

Refer to the section "Required Terminal Settings" in this chapter if you
need information to verify the terminal configuration. If you need additional
information about the keyboard, terminal, data phone, or modem, check the
owner’s manuals for the appropriate equipment.

Figure 2-5 presents a list of procedures you can follow to detect, diagnose,
and correct some problems you may experience when logging in. If you need
further help, contact your system administrator.

BASICS FOR UNIX SYSTEM USERS 2-21

Problemt

Possible Cause

Action/Remedy

Meaningless characters

Input/output appears in
UPPER CASE letters

Input appears in UPPER
CASE, output in lower case

Input is printed twice

Tab key does not work prop-
erly

Communication link cannot
be established although high
pitched tone is heard when
dialing in

Communication link (terminal
to UNIX System) is repeat-
edly dropped

UNIX System at wrong speed

Terminal configuration
includes UPPER CASE setting

Key labeled CAPS (or CAPS
LOCK) is enabled

Terminal is set to HALF
DUPLEX mode

Tabs are not set correctly

Terminal is set to LOCAL or
OFF-LINE mode

Bad telephone line or bad
communications port

Press RETURN or BREAK key

Log off and set character gen-
eration to lower case

Press CAPS or CAPS LOCK
key to disable setting

Change setting to FULL
DUPLEX mode

Type stty -tabs}

Set terminal to ON-LINE
mode try logging in again

Call system administrator

Numerous problems can occur if your terminal is not configured properly. To eliminate

these possibilities before attempting to log in, perform the configuration checks listed
under "Required Terminal Settings. "

1T Some problems may be specific to your terminal, data phone set, or modem. Check the
owner’s manual for the appropriate equipment if suggested actions do not remedy the

problem.

Typing stty -tabs corrects the tab setting only for your current computing session. To
yping stty g only for y puting
ensure a correct tab setting for all sessions, add the line stty -tabs to your .profile (see

Chapter 7).

Figure 2-5: Troubleshooting Problems When Logging In*

2-22 USER’S GUIDE

Simple Commands

When the prompt appears on your screen, the UNIX System has recog-
nized you as an authorized user and is waiting for you to request a program
by entering a command.

For example, try running the date command. After the prompt, type the
command and press the RETURN key. The UNIX System accesses a program
called date, executes it, and prints its results on the screen, as shown below.

$ date<CR>
Wed Oct 15 09:49:44 EDT 1986
$

As you can see, the date command prints the date and time, using the 24-
hour clock.

Now type the who command and press the RETURN key. Your screen
will look something like this:

$ who<CR>

starship tty00 Oct 12 8:53
mary2 tty02 oct 12 8:56
acct123 tty05 oct 12 8:54
Jmrs tty06 Oct 12 8:56

$

BASICS FOR UNIX SYSTEM USERS 2-23

The who command lists the login names of everyone currently working on
your system. The tty designations refer to the special files that correspond to
each user’s terminal. The date and time at which each user logged in are also
shown.

Logging Off

When you have completed a session with the UNIX System, type < d>
after the prompt. (Remember that control characters such as < d> are typed
by holding down the control key and pressing the appropriate alphabetic key.
Because they are nonprinting characters, they do not appear on your screen.)
After several seconds, the UNIX System will display the login: prompt again.

$ <'d>

login:
This shows that you have logged off successfully and the system is ready for
someone else to log in.

Always log off the UNIX System by typing < d> before you turn off the
NOTE} terminal or hang up the telephone. If you do not, you may not be actually
logged off the system.

The exit command also allows you to log off but is not used by most
users. It may be convenient if you want to include a command to log off
within a shell program. (For details, see the "Special Commands" section of
the sh(1) page in the User’s/System Administrator’s Reference Manual.)

2-24 USER'’S GUIDE

Using the File System

Introduction 3-1
How the File System is Structured 3-2
Your Place in the File System 34
Your Home Directory 3-4
Your Current Directory 3-6
Path Names 3-7

m Full Path Names 3-7

m Relative Path Names 3-10

m Naming Directories and Files 3-14
Organizing a Directory 3-15
Creating Directories: the mkdir Command 3-15
Listing the Contents of a Directory: the ls

Command 3-17

m Frequently Used Is Options 3-19
Changing Your Current Directory: the cd

Command 3-25
Removing Directories: the rmdir Command 3-27
Accessing and Manipulating Files 3-30
Basic Commands 3-30

m Displaying a File’s Contents: the cat, more, pg,

and pr Commands 3-32

Using the File System

m Making a Duplicate Copy of a File: the ¢cp

Command 3-43
» Copying a Group of Files: the copy Command 3-45
u Frequently Used copy Options 3-47
m Moving and Renaming a File: the mv Command 3-50
® Removing a File: the rm Command 3-52
m Counting Lines, Words, and Characters in a File:
the we Command 3-54
m Protecting Your Files: the chmod Command 3-56
Advanced Commands 3-64
m Identifying Differences Between Files: the diff
Command 3-64
m Searching a File for a Pattern: the grep
Command 3-66
m Sorting and Merging Files: the sort Command 3-68
Printing Files 3-72
Print Partially Formatted Contents of a File: the pr
Command 3-72
The LP Print Service 3-76
m Requesting a Paper Copy of a File: the lp
Command 3-77
m Select a Print Destination 3-78
m Special Printing Modes 3-78
m Page Size and Pitch Settings 3-78
m Pages and Copies to be Printed 3-80
m Queue Priority 3-81
u Pre-Printed Forms 3-82
m Character Sets and Print Wheels 3-82
m Content Type 3-83
m No File Breaks between Files 3-84
m Banner-Page Options 3-84
m Messages from the Print Service 3-84
w Changing a Request 3-85
m Canceling a Request 3-86
m Getting Printer Status and Information: lpstat 3-86
m Enabling and Disabling a Printer 3-88
@ Summary 3-90

Introduction

To use the UNIX file system effectively you must be familiar with its
structure, know something about your relationship to this structure, and
understand how the relationship changes as you move around within it.
This chapter prepares you to use this file system.

The first two sections (" How the File System is Structured" and *Your
Place in the File System ") offer a working perspective of the file system.
The rest of the chapter introduces UNIX System commands that allow you to
build your own directory structure, access and manipulate the subdirectories
and files you organize within it, and examine the contents of other directories
in the system for which you have access permission.

Each command is discussed in a separate subsection. Tables at the end of
these subsections summarize the features of each command so that you can
later review a command’s syntax and capabilities quickly. Many of the com-
mands presented in this section have additional, sophisticated uses.

These, however, are left for more experienced users and are described in other
UNIX System documentation. All the commands presented here are basic to
using the file system efficiently and easily. Try using each command as you
read about it.

USING THE FILE SYSTEM 3-1

How the File System is Structured

The file system is made up of a set of ordinary files, special files, and
directories. These components provide a way to organize, retrieve, and
manage information electronically. Chapter 1 introduced the properties of
directories and files; this section will review them briefly before discussing
how to use them.

B An ordinary file is a collection of characters stored on a disk. It may
contain text for a report or code for a program.

B A special file represents a physical device, such as a terminal or disk.

B A directory is a collection of files and other directories (sometimes
called subdirectories). Use directories to group files together on the
basis of any criteria you choose. For example, you might create a direc-
tory for each product that your company sells or for each of your
student’s records.

The set of all the directories and files is organized into a tree shaped struc-
ture. Figure 3-1 shows a sample file structure with a directory called root (/)
as its source. By moving down the branches extending from root, you can
reach several other major system directories. By branching down from these,
you can, in turn, reach all the directories and files in the file system.

In this hierarchy, files and directories that are subordinate to a directory
have what is called a parent/child relationship. This type of relationship is
possible for many layers of files and directories. In fact, there is no limit to
the number of files and directories you may create in any directory that you
own. Neither is there a limit to the number of layers of directories that you
may create. Thus, you have the capability to organize your files in a variety
of ways, as shown in Figure 3-1.

3-2 USER’S GUIDE

How the File System is Structured

unix

WWW .

D = Ordinary Files
v = Special Files

= Directories

Figure 3-1: A Sample File System

USING THE FILE SYSTEM 33

Your Place in the File System

Whenever you interact with the UNIX System, you do so from a location
in its file system structure. The UNIX System automatically places you at a
specific point in its file systemy every time you log in. From that point, you
can move through the hierarchy to work in any of your directories and files
and to access those belonging to others that you have permission to use.

The following sections describe your position in the file system structure
and how this position changes as you move through the file system.

Your Home Directory

When you successfully complete the login procedure, the UNIX System
places you at a specific point in its file system structure called your login or
home directory. The login name assigned to you when your UNIX System
account was set up is usually the name of this home directory. Every user
with an authorized login name has a unique home directory in the file system.

The UNIX System is able to keep track of all these home directories by
maintaining one or more system directories that organize them. For example,
the home directories of the login names starship, mary2, and jmrs are con-
tained in a system directory called userl. Figure 3-2 shows the position of a
system directory such as userl in relation to the other important UNIX System
directories discussed in Chapter 1.

3-4 USER’S GUIDE

unix @

Your Place in the File System

date

cat

O = Directories
[J = Ordinary Files

v = Special Files

- = Branch

Figure 3-2: Directory of Home Directories

tty01

letters

outline table

USING THE FILE SYSTEM 35

Your Place in the File System

Within your home directory, you can create files and additional directories
(called subdirectories) in which to group them. You can move and delete your
files and directories, and you can control access to them. You have full
responsibility for everything you create in your home directory because you
own it. Your home directory is a vantage point from which to view all the
files and directories it holds, and the rest of the file system, all the way up to
root.

Your Current Directory

As long as you continue to work in your home directory, it is considered
your current working directory. If you move to another directory, that direc-
tory becomes your new current directory.

The pwd command (short for print working directory) prints the name of
the directory in which you are now working. For example, if your login name
is starship and you execute the pwd command in response to the first prompt
after logging in, the UNIX System responds as follows:

$ pwd<CR>
/user1/starship
$

The system response gives you both the name of the directory in which
you are working (starship) and the location of that directory in the file sys-
tem. The path name /user1/starship tells you that the root directory (shown
by the leading / in the line) contains the directory userl which, in turn, con-
tains the directory starship. (All other slashes in the path name other than
root are used to separate the names of directories and files, and to show the
position of each directory relative to root.) A directory name that shows the
directory’s location in this way is called a full or complete directory name or
path name. In the next few pages we will analyze and trace this path name
so you can start to move around in the file system.

3-6 USER’S GUIDE

Your Place in the File System

Remember, you can determine your position in the file system at any time
simply by issuing the pwd command. This is especially helpful if you want to
read or copy a file and the UNIX System tells you the file you are trying to
access does not exist. You may be surprised to find you are in a different
directory than you thought.

Figure 3-3 provides a summary of the syntax and capabilities of the pwd
command.

Command Recap

pwd - prints full name of working directory

command options arguments
pwd none none
Description: pwd prints the full path name of the directory in

which you are currently working.

Figure 3-3: Summary of the pwd Command

Path Names

Every file and directory in the UNIX System is identified by a unique path
name. The path name shows the location of the file or directory and provides
directions for reaching it. Knowing how to follow the directions given by a
path name is your key to moving around the file system successfully. The
first step in learning about these directions is to learn about the two types of
path names: full and relative.

Full Path Names

A full path name (sometimes called an absolute path name) gives direc-
tions that start in the root directory and lead you down through a unique
sequence of directories to a particular directory or file. You can use a full path
name to reach any file or directory in the UNIX System in which you are
working.

USING THE FILE SYSTEM 3-7

Your Place in the File System

Because a full path name always starts at the root of the file system, its
leading character is always a / (slash). The final name in a full path name
can be either a file name or a directory name. All other names in the path
must be directories.

To understand how a full path name is constructed and how it directs
you, consider the following example. Suppose you are working in the star-
ship directory, located in /userl. You issue the pwd command and the sys-
tem responds by printing the full path name of your working directory:
/user/starship. Analyze the elements of this path name using the following
diagram and key.

system
directory home
root directory
delimiter
Vuserlistarship

/ (leading)

I

the slash that appears as the first character in the path name
is the root of the file system

userl = system directory one level below root in the hierarchy to
which root points or branches

/ (subsequent) = the next slash separates or delimits the directory names userl
and starship

starship = current working directory

3-8 USER’S GUIDE

Your Place in the File System

Now follow the bold lines in Figure 3-4 to trace the full path to
/userl/starship.

console ttyC0 tty01
date cat

(O = Directories
[= Ordinary Files
V = Special Files

list

outline table d joh display list

Figure 3-4: Full Path Name of the /userl/starship Directory

USING THE FILE SYSTEM 3-9

Your Place in the File System

Relative Path Names

A relative path name gives directions that start in your current working
directory and lead you up or down through a series of directories to a particu-
lar file or directory. By moving down from your current directory, you can
access files and directories you own. By moving up from your current direc-
tory, you pass through layers of parent directories to the grandparent of all
system directories, root. From there you can move anywhere in the file sys-
tem.

A relative path name begins with one of the following: a directory or file
name; a . (pronounced dot), which is a shorthand notation for your current
directory; or a .. (pronounced dot dot), which is a shorthand notation for the
directory immediately above your current directory in the file system hierar-
chy. The directory represented by .. (dot dot) is called the parent directory of .
(your current directory).

For example, say you are in the directory starship in the sample system
and starship contains directories named draft, letters, and bin and a file
named mbox. The relative path name to any of these is simply its name, such
as draft or mbox. Figure 3-5 traces the relative path from starship to draft.

3-10 USER’S GUIDE

Your Place in the File System

outline table

ficnl :
play list

O = Directories

D = Ordinary Files

Figure 3-5: Relative Path Name of the draft Directory

The draft directory belonging to starship contains the files outline and
table. The relative path name from starship to the file outline is

draft/outline.

Figure 3-6 traces this relative path. Notice that the slash in this path
name separates the directory named draft from the file named outline. Here,
the slash is a delimiter showing that outline is subordinate to draft; that is,

outline is a child of its parent, draft.

USING THE FILE SYSTEM 3-11

Your Place in the File System

-
outline : table sanders johnson display list
N]

O = Directories
[] = Ordinary Files

Figure 3-6: Relative Path Name from starship to outline

So far, the discussion of relative path names has covered how to specify
names of files and directories that belong to, or are children of, your current
directory. You now know how to move down the system hierarchy level by
level until you reach your destination. However, you can also ascend the lev-
els in the system structure or ascend and subsequently descend into other files
and directories.

To ascend to the parent of your current directory, you can use the .. nota-
tion. This means that if you are in the directory named draft in the sample
file system, .. is the path name to starship, and ../.. is the path name to
starship’s parent directory, userl.

3-12 USER’S GUIDE

Your Place in the File System

From draft, you can also trace a path to the directory sanders by using
the path name ../letters/sanders. The .. brings you up to starship. Then the
names letters and sanders take you down through the letters directory to the

sanders directory.

Keep in mind that you can always use a full path name in place of a rela-

tive one.

Figure 3-7 shows some examples of full and relative path names.

Path Name

Meaning

/
/bin

/userl/starship/bin/tools

bin/tools

tools

full path name of the root directory

full path name of the bin directory (contains
most executable programs and utilities)

full path name of the tools directory belonging
to the bin directory that belongs to the starship
directory belonging to userl that belongs to
root

relative path name to the directory tools in the
directory bin

If the current directory is /, then the UNIX Sys-
tem searches for /bin/tools. However, if the
current directory is starship, then the system
searches the full path
/Juserl/starship/bin/tools.

relative path name of the directory tools in the
current directory.

Figure 3-7: Example Path Names

You may need some practice before you can use path names such as these
to move around the file system with confidence. However, this is to be
expected when learning a new concept.

USING THE FILE SYSTEM 3-13

Your Place in the File System

Naming Directories and Files

You can give your directories and files any names you want, as long as
you observe the following rules:

B The name of a directory or file can be from one to fourteen characters
long.

M All characters other than / are legal.
B Some characters are best avoided, such as a <SPACE>, <TAB>,
<BACKSPACE>, and the following:
?@#S$ &*()'[I\N}) ;<>
If you use a blank or tab in a directory or file name, you must enclose
the name in quotation marks on the command line.
B Avoid using a +, - or. as the first character in a file name.

B Uppercase and lowercase characters are distinct to the UNIX System.
For example, the system considers a directory or file named draft to be
different from one named DRAFT.

The following are examples of legal directory or file names:

memo MEMO section2 ref:list
file.d chap3+4 item1-10 outline

The rest of this chapter introduces UNIX System commands that enable
you to examine the file system.

3-14 USER’S GUIDE

Organizing a Directory

This section introduces four UNIX System commands that enable you to
organize and use a directory structure: mkdir, 1s, ¢d, and rmdir.

mkdir enables you to make new directories and subdirec-
tories within your current directory

Is lists the names of all the subdirectories and files in a
directory

cd enables you to change your location in the file system

from one directory to another

rmdir enables you to remove an empty directory

These commands can be used with either full or relative path names.
Two of the commands, 1s and cd, can also be used without a path name.
Each command is described more fully in the four sections that follow.

Creating Directories: the mkdir Command

It is recommended that you create subdirectories in your home directory
according to a logical and meaningful scheme that will facilitate the retrieval
of information from your files. If you put all files pertaining to one subject
together in a directory, you will know where to find them later.

To create a directory, use the mkdir command (short for make directory).
Simply enter the command name, followed by the name you are giving your
new directory or file. For example, in the sample file system, the owner of the
draft subdirectory created draft by issuing the following command from the
home directory (/userl/starship):

$ mkdir draft <CR>
$

The second prompt shows that the command has succeeded; the subdirectory
draft has been created.

USING THE FILE SYSTEM 3-15

Organizing a Directory

Still in the home directory, this user created other subdirectories, such as
letters and bin, in the same way.

$ mkdir letters<CR>
$ mkdir bin<CR>
$

The user could have created all three subdirectories (draft, letters, and bin)
simultaneously by listing them all on a single command line.

$ mkdir draft letters bin<CR>
$

You can also move to a subdirectory you created and build additional sub-
directories within it. When you build directories or create files, you can name
them anything you want as long as you follow the guidelines listed earlier
under "Naming Directories and Files."

Figure 3-8 summarizes the syntax and capabilities of the mkdir command.

Command Recap

mkdir - makes a new directory

command options arguments
mkdir none directoryname(s)
Description: mkdir creates a new directory (subdirectory).
Remarks: The system returns a prompt ($ by default) if the

directory is successfully created.

Figure 3-8: Summary of the mkdir Command

3-16 USER’S GUIDE

Organizing a Directory

Listing the Contents of a Directory: the Is
Command

All directories in the file system have information about the files and
directories they contain, such as name, size, and the date last modified. You
can obtain this information about the contents of your current directory and
other system directories by executing the 1s command (short for list).

The 1s command lists the names of all files and subdirectories in a speci-
fied directory. If you do not specify a directory, Is lists the names of files and
directories in your current directory. To understand how the 1s command
works, consider the sample file system (Figure 3-2) once again.

Say you are logged in to the UNIX System and you run the pwd com-
mand. The system responds with the path name /userl/starship. To display
the names of files and directories in this current directory, you then type ls
and press the <RETURN> key. After this sequence, your terminal will read

s/pm:l<CR> \

$/user1/starship
$ Is<CR>

bin

draft

letters

list

mbox

_)
As you can see, the system responds by listing, in alphabetical order, the
names of files and directories in the current directory starship. (If the first

character of any of the file or directory names had been a number or an
uppercase letter, it would have been printed first.)

USING THE FILE SYSTEM 3-17

Organizing a Directory

To print the names of files and subdirectories in a directory other than
your current directory without moving from your current directory, you must
specify the name of that directory as follows:

Is pathname<CR>

The directory name can be either the full or relative path name of the desired
directory. For example, you can list the contents of draft while you are work-
ing in starship by entering Is draft and pressing the <RETURN> key. Your

screen will look like the following:

$ 1s draft<CR>
outline

table

$

Here, draft is a relative path name from a parent (starship) to a child (draft)
directory.

You can also use a relative path name to print the contents of a parent
directory when you are located in a child directory. The .. (dot dot) notation
provides an easy way to do this. For example, the following command line
specifies the relative path name from starship to userl:

$1s ..<CR>
s

mary2
starship

$

3-18 USER’S GUIDE

Organizing a Directory

You can get the same results by using the full path name from root to userl.
If you type Is /userl and press the <RETURN> key, the system will respond
by printing the same list.

Similarly, you can list the contents of any system directory that you have
permission to access by executing the 1s command with a full or relative path
name.

The 1s command is useful if you have a long list of files and you are try-
ing to determine whether one of them exists in your current directory. For
example, if you are in the directory draft and you want to determine if the
files named outline and notes are there, use the Is command as follows:

$ Is outline notes<CR>
outline

notes not found

$

The system acknowledges the existence of outline by printing its name and
says that the file notes is not found.

The 1s command does not print the contents of a file. If you want to see
what a file contains, use the cat, more, pg, or pr command. These commands
are described in " Accessing and Manipulating Files," later in this chapter.

Frequently Used 1s Options

The 1s command also accepts options that cause specific attributes of a file
or subdirectory to be listed. There are more than a dozen available options
for the 1s commands. Of these, -a and -1 will probably be most valuable in
your basic use of the UNIX System. Refer to the Is(1) page in the
User’s/System Administrator’s Reference Manual for details about other options.

Listing All Files

Some important file names in your home directory, such as .profile (pro-
nounced dot-profile), begin with a period. (As you can see from this example,
when a period is used as the first character of a file name, it is pronounced

USING THE FILE SYSTEM 3-19

Organizing a Directory

dot.) When a file name begins with a dot, it is not included in the list of files
reported by the Is command. If you want the 1s to include these files, use the
-a option on the command line.

For example, to list all the files in your current directory (starship),
including those that begin with a . (dot), type Is -a and press the <RETURN>
key:

(s—a<CR>

.profile
bin
draft
letters
list
mbox

_ Y,
Listing Contents in Short Format

The -C and -F options for the Is command are frequently used. Together,
these options list a directory’s subdirectories and files in columns, and identify
executable files with an * and directories with a /. Thus, you can list all files

in your working directory starship by executing the command line shown
here:

$ 1s -CF<CR>

binv/ letters/ mbox
draft/ list*

$

3-20 USER’S GUIDE

Organizing a Directory

This version of the UNIX System includes the lc (short for list in

NOTE| columns) command. Like Is, lc accepts pathname arguments and recog-

nizes several options. When used with no options, lc¢ produces output

| that is identical to the output produced by Is -C. For more information
about lc and a list of available options, see the Is(1) entry in the

User’s /System Administrator’s Reference Manual.

Listing Contents in Long Format

Probably the most informative Is option is -1, which displays the contents
of a directory in long format, giving mode, number of links, owner, group,
size in bytes, and time of last modification for each file. For example, say you
run the 1s -1 command while in the starship directory:

CI<CR>

total 30

drwxxr-xr-x 3 starship project 96 Oct 27 08:16 bin
drwxr—xr-x 2 starship project 64 Nov 1 14:19 draft
drwxr-xr-x 2 starship project 80 Nov 8 08:41 letters
-TwWX—————— 2 starship project 12301 Nov 2 10:15 1list
-Tw——————— 1 starship project 40 Oct 27 10:00 mbox

$

The first line of output (total 30) shows the amount of disk space used,
measured in blocks. Each of the rest of the lines comprises a report on a
directory or file in starship. The first character in each line (4, —, b, or c) tells
you the type of file.

d = directory

— = ordinary disk file

b = block special file

¢ = character special file

USING THE FILE SYSTEM 3-21

Organizing a Directory

Using this key to interpret the previous screen, you can see that the starship
directory contains three directories and two ordinary disk files.

The next several characters, which are either letters or hyphens, identify
who has permission to read and use the file or directory. (Permissions are
discussed in the description of the chmod command under " Accessing and
Manipulating Files" later in this chapter.)

The following number is the link count. For a file, this equals the number
of users linked to that file. For a directory, this number shows the number of
directories immediately under it plus two (for the directory itself and its parent
directory).

Next, the login name of the file’s owner appears (here it is starship), fol-
lowed by the group name of the file or directory (project).

The following number shows the length of the file or directory entry
measured in units of information (or memory) called bytes. The month, day,
and time that the file was last modified is given next. Finally, the last column
shows the name of the directory or file.

Figure 3-9 identifies each column in the rows of output from the
Is -1 command.

3-22 USER’S GUIDE

Organizing a Directory

number of owner

blocks used name
number group
of links name

name

' ' '

total 30
rwxr-xr-x 3 starship project 96 Oct 27 08:16 bin
File rwxr-xr-x 2 starship project 64 Nov 1 14:19 draft
type rwxr-xr-x 2 starship project 80 Nov 8 08:41 letters
WXeooonn 2 starship project 12301 Nov 2 10:15 list
W--oooe- 1 starship project 40 Oct 27 10:00 mbox

N, o

time/date last

permissions modified

Figure 3-9: Description of Output Produced by the 1s -1 Command

Figure 3-10 summarizes the syntax and capabilities of the 1s command
and two available options.

USING THE FILE SYSTEM 3-23

Organizing a Directory

Command Recap

Is - lists the contents of a directory

command options arguments
Is -a, -1, and others* directoryname(s)
Description: Is lists the names of the files and subdirectories in

the specified directories. If no directory name is
given as an argument, the contents of your work-
ing directory are listed.

Options: -a lists all entries, including those beginning
with . (dot)
-1 lists contents of a directory in long format,
furnishing mode, permissions, size in
« bytes, and time of last modification
Remarks: If you want to read the contents of a file, use the

cat or more command.

The lc command is similar to this command,
except lc lists a directory’s contents in multiple
columns by default.

* See the Is(1) page in the User's/System Administrator’s Reference Manual for all available
options and an explanation of their capabilities.

Figure 3-10: Summary of the s Command

3-24 USER’S GUIDE

Organizing a Directory

Changing Your Current Directory: the cd
Command

When you first log in on the UNIX System, you are placed in your home
directory. As long as you do work in it, it is also your current working direc-
tory. However, by using the ¢d command (short for change directory), you
can work in other directories as well. To use this command, enter cd, fol-
lowed by a path name to the directory to which you want to move:

cd pathname_of_newdirectory<CR>

Any valid path name (full or relative) can be used as an argument to the ¢d
command. If you do not specify a path name, the command will move you to
your home directory. Once you have moved to a new directory, it becomes
your current directory.

For example, to move from the starship directory to its child directory
draft (in the sample file system), type c¢d draft and press the <RETURN>
key. (Here draft is the relative path name to the desired directory.) When
you get a prompt, verify your new location by typing pwd and pressing the
<RETURN> key. Your terminal screen will look like the following:

$ cd draft<CR>

$ pwd<CR>

/user 1/starship/draft
$

Now that you are in the draft directory, you can create subdirectories in it by
using the mkdir command and new files by using the ed and vi editors. (See
Chapters 5 and 6 for tutorials on the ed and vi commands, respectively.)

USING THE FILE SYSTEM 3-25

Organizing a Directory

It is not necessary to be in the draft directory to access files within it. You
can access a file in any directory by specifying a full path name for it. For
example, to cat the sanders file in the letters directory
(/userl/starship/letters) while you are in the draft directory
(/userl/starship/draft), specify the full path name of sanders on the com-
mand line:

cat /userl/starship/letters/sanders<CR>
You may also use full path names with the cd command. For example, to

move to the letters directory from the draft directory, specify
/userl/starship/letters on the command line as follows:

cd /userl/starship/letters<CR>
Also, because letters and draft are both children of starship, you can use
the relative path name ../letters with the cd command. The .. notation

moves you to the directory starship, and the rest of the path name moves you
to letters.

Figure 3-11 summarizes the syntax and capabilities of the ¢d command.

3-26 USER’S GUIDE

Organizing a Directory

Command Recap

cd - changes your working directory

command options arguments
cod none directoryname
Description: cd changes your position in the file system from the

current directory to the directory specified. If no
directory name is given as an argument, the c¢d com-
mand places you in your home directory.

Remarks: When the shell places you in a specified directory,
the prompt ($ by default) is returned to you. To
access a directory that is not in your working direc-
tory, you must use the full or relative path name in
place of a simple directory name.

Figure 3-11: Summary of the ed Command

Removing Directories: the rmdir Command
If you no longer need a directory, you can remove it with the rmdir com-
mand (short for remove a directory). The standard syntax for this command is
rmdir directoryname(s)<CR>
You can specify more than one directory name on the command line.

The rmdir command will not remove a directory if you are not the owner
of it or if the directory is not empty. If you want to remove a file in another
user’s directory, the owner must give you write permission for the parent
directory of the file you want to remove.

USING THE FILE SYSTEM 3-27

Organizing a Directory

If you try to remove a directory that still contains subdirectories and files
(that is, it is not empty), the rmdir command prints the message directoryname
not empty. You must remove all subdirectories and files; only then will the
command succeed.

For example, say you have a directory called memos that contains one
subdirectory, tech, and two files, june.30 and july.31. (Create this directory in
your home directory now so you can see how the rmdir command works.) If
you try to remove the directory memos (by issuing the rmdir command from
your home directory), the command responds as follows:

$ rmdir memos<CR>
rmdir: memos not empty
$

To remove the directory memos, you must first remove its contents: the sub-
directory tech and the files june.30 and july.31. You can remove the tech
subdirectory by executing the rmdir command. For instructions on removing
files, see " Accessing and Manipulating Files" later in this chapter.

Once you have removed the contents of the memos directory, memos
itself can be removed. First, however, you must move to its parent directory
(your home directory). The rmdir command will not work if you are still in
the directory you want to remove. From your home directory, type

rmdir memos<CR>

If memos is empty, the command will remove it and return a prompt.

3-28 USER’S GUIDE

Organizing a Directory

Figure 3-12 summarizes the syntax and capabilities of the rmdir com-
mand.

Command Recap

rmdir — removes a directory

command options arguments
rmdir none directoryname(s)
Description: rmdir removes specified directories if they do not

contain files and/or subdirectories.

Remarks: If the directory is empty, it is removed and the
system returns a prompt. If the directory contains
files or subdirectories, the command returns the
message, rmdir: directoryname not empty.

Figure 3-12: Summary of the rmdir Command

USING THE FILE SYSTEM 3-29

Accessing and Manipulating Files

This section introduces several UNIX System commands that access and
manipulate files in the file system structure. Information in this section is
organized into two parts: basic and advanced. The part devoted to basic com-
mands is fundamental to using the file system; the advanced commands offer
more sophisticated information processing techniques for working with files.

Basic Commands

This section discusses UNIX System commands that are necessary for
accessing and using the files in the directory structure. Figure 3-13 lists these
commands.

3-30 USER’S GUIDE

Accessing and Manipulating Files

Command Function
cat prints the contents of a specified file on
a terminal
more prints the contents of a specified file on
a terminal, one screenful at a time
P8 prints the contents of a specified file on
a terminal in chunks or pages
pr prints a partially formatted version of a
specified file on the terminal
Ip requests a paper copy of a file from a
line printer
cp makes a duplicate copy of an existing
file
copy copies groups of files (including direc-
tories and subdirectories) to another
directory
mv moves and renames a file
rm removes a file
we reports the number of lines, words, and
characters in a file
chmod changes permission modes for a file (or
a directory)

Figure 3-13: Basic Commands for Using Files

USING THE FILE SYSTEM 3-31

Accessing and Manipulating Files

Each command is discussed in detail and summarized in a table that you
can easily reference later. These tables will allow you to review the syntax
and capabilities of these commands at a glance.

Displaying a File’s Contents: the cat, more, pg, and pr
Commands

The UNIX System provides four commands for displaying and printing
the contents of a file or files: cat, more, pg, and pr. The cat command (short
for concatenate) displays the contents of the file(s) specified. This output is
displayed on your terminal screen unless you tell cat to direct it to another file
or a new command.

The more command displays the contents of a file on the terminal, one
screenful at a time. While the cat command causes the entire file to scroll
quickly on the screen, more causes the scrolling to pause at the end of each
screenful, until you instruct more to display the next screenful. This feature is
helpful if you think the file you wish to view is larger than one screenful.

The pg command is particularly useful when you want to read the con-
tents of a long file because it displays the text of a file in pages a screenful at
a time. Unlike more, pg lets you scroll through the file backward, as well as
forward. The pr command formats specified files and displays them on your
terminal or, if you request, directs the formatted output to a printer. See the
section "Printing Files" in this chapter for more information on using the pr
command.

The following sections describe how to use the cat, more, pg, and pr com-
mands.

Concatenate and Print Contents of a File: the cat Command

The cat command displays the contents of a file or files. For example, say
you are located in the directory letters (in the sample file system) and you
want to display the contents of the file johnson. Type the command line
shown on the screen, and you will receive the following output:

3-32 USER’S GUIDE

Accessing and Manipulating Files

(atiohnson<CR>

March 5, 1986

Mr. Ron Johnson
Layton Printing
52 Hudson Street
New Yark, N.Y.

Dear Mr. Johnsan:

I enjoyed speaking with you this morning
about your campany's plans to autcmate
your business.

Enclosed please find

the material you requested

about ABSC's line of computers

and office autamation software.

If I can be of further assistance to you,
please don't hesitate to call.

Yours txuly,

John Howe
$

-

To display the contents of two (or more) files, simply type the names of
the files you want to see on the command line. For example, to display the
contents of the files johnson and sanders, type

$ cat johnson sanders<CR>

The cat command reads johnson and sanders and displays their contents in
that order on your terminal.

USING THE FILE SYSTEM 3-33

Accessing and Manipulating Files

$ cat johnson sanders<CR>
March 5, 1986

Mr. Ron Johmson
Layton Printing
52 Hudson Street
New York, N.Y.
Dear Mr. Jomson:

I enjoyed speaking with you this morning

Yours truly,

John Howe

March 5, 1986

Mrs. D.L. Sanders
Sanders Research, Inc.
43 Nassau Street
Princeton, N.J.

Dear Mrs. Sanders:

My colleagues and I have been following, with great interest,

Sincerely,

Johm Howe

3-34 USER’S GUIDE

Accessing and Manipulating Files

To direct the output of the cat command to another file or to a new com-
mand, see the sections in Chapter 7 that discuss input and output redirection.

Figure 3-14 summarizes the syntax and capabilities of the cat command.

Command Recap

cat — concatenates and prints a file’s contents

command options arguments
cat available* filename(s)
Description: The cat command reads the name of each file speci-

fied on the command line and displays its contents.

Remarks: If a specified file exists and is readable, its contents
are displayed on the terminal screen; otherwise, the
message cat: cannot open filename appears on the
screen,

To display the contents of a directory, use the s
command.

* See the cat(1) page in the User’s/System Administrator’s Reference Manual for all

available options and an explanation of their capabilities.

Figure 3-14: Summary of the cat Command

Display Contents of a File: the more Command

The more command lets you examine the contents of a file or group of
files, one screenful at a time. At the end of each screenful, more tells you
what percentage of the file you have viewed so far and awaits your instruction
to continue viewing the file or to quit more. In general, more has the follow-
ing form:

more filename(s) <CR>

USING THE FILE SYSTEM 3-35

Accessing and Manipulating Files

For example, suppose you are located in the letters directory (in the sam-
ple file system). If you wish to display the contents of the file johnson, type
the command line shown on the screen and you will receive the following
output:

Ce johnson<CR>

March 5, 1986

Mr. Ron Jolmson
Layton Printing
52 Hudscn Street
New York, N.Y.

Dear Mr. Jalnson:

I enjoyed speaking with you this morning
about your company's plans to autcmate
your business.

Enclosed please find

the material you requested

about ABSC's line of computers

and office automation software.

If I can be of further assistance to you,
please don't hesitate to call.

Yours truly,

John Howe
$

N

The first screenful of johnson is displayed on your screen. In this exam-
ple, johnson is a small file, so the text fits on one screen. If johnson had con-
tained enough text to fill two screens, more would have prompted you to con-
tinue or quit, by displaying a prompt at the end of the first screenful, as
shown in the following example:

3-36 USER’S GUIDE

Accessing and Manipulating Files

Core johnson<CR>

March 5, 1986

Mr. Ron Johmson
Layton Printing
52 Hudson Street
New York, N.Y.

Dear Mr. Johmsan:

I enjoyed speaking with you this morning
about your campany's plans to automate
your business.

Enclosed please find

the material you requested

about ABSC's line of computers

and office autamation software.

If I can be of further assistance to you,
please dan't hesitate to call.

Yours truly,

Johm Howe

--More--(50%)

At this more prompt, you could choose either to view the remainder of
johnson or to quit more. To view the next screenful of the file, press the
SPACEBAR key. To view the file one line at a time, press <CR>. To quit
more and return to the system prompt, type q.

Figure 3-15 summarizes the syntax and capabilities of the more command.

USING THE FILE SYSTEM 3-37

Accessing and Manipulating Files

Command Recap

more — prints a file’s contents, one screenful at a time

command options arguments
more available* filename(s)
Description: The more command reads the name of each file
specified on the command line and displays its con-
tents, one screenful at a time.
Remarks: If a specified file exists and is readable, its contents

are displayed on the terminal screen. If the file
exists, but you do not have read permission for it,
the message more: Permission denied appears on
the screen. If the file does not exist, the message
more: no such file or directory appears on the
screen.

To display the contents of a directory, use the 1s or
lc command.

*

See the more(1) page in the User's/System Administrator’s Reference Manual for

all available options and an explanation of their capabilities.

Figure 3-15: Summary of the more Command

Paging Through the Contents of a File: the pg Command

The pg command (short for page) allows you to examine the contents of
a file or files, page by page, on a terminal. The pg command displays the text

of a file in pages (chunks) followed by a colon prompt (:), a signal that the

program is waiting for your instructions. Possible instructions you can then
issue include requests for the command to continue displaying the file’s con-
tents a page at a time or a request that the command search through the file(s)

to locate a specific character pattern. Figure 3-16 summarizes some of the
available instructions.

3-38 USER’S GUIDE

Accessing and Manipulating Files

Command* Function

h help; displays list of available pgt commands

qorQ quits pg mode

<CR> displays next page of text

1 displays next line of text

dor’d displays additional half page of text

.or 1 redisplays current page of text

f skips next page of text and displays following one

n begins displaying next file you specified
on command line

P displays previous file specified on command line

$ displays last page of text in file currently displayed

/pattern searches forward in file for specified character pat-
tern

?pattern searches backward in file for specified character
pattern

Most commands can be typed with a number preceding them. For example,
+1 (display next page), -1 (display previous page), or 1 (display first page of
text).

T See the User's/System Administrator's Reference Manual for a detailed explanation
of all available pg commands.

Figure 3-16: Summary of Commands to Use with pg

Like more, the pg command is useful when you want to read a long file
or a series of files because the program pauses after displaying each page,
allowing you time to examine it. The size of the page displayed depends on
the terminal. For example, on a terminal capable of displaying twenty-
four lines, one page is defined as twenty-three lines of text and a line

USING THE FILE SYSTEM 3-39

Accessing and Manipulating Files

containing a colon. However, if a file is less than twenty-three lines long, its
page size will be the number of lines in the file plus one (for the colon).

To look at the contents of a file with pg, use the following command line
format:

pg filename(s)<CR>

For example, to display the contents of the file outline in the sample file
system, type

pg outline<CR>

The first page of the file will appear on the screen. Because the file has more
lines in it than can be displayed on one page, a colon appears at the bottom of
the screen. This is a reminder to you that there is more of the file to be seen.
When you are ready to read more, press the <RETURN> key, and pg will
print the next page of the file.

The following screen summarizes our discussion of the pg command this

far:
(goutﬁne<CR>

After you analyze the subject for your
report, you must consider organizing and
arranging the material you want to use in
writing it.

An cutline is an effective method of

is a type of blueprint or skeleton,

a framework for you the builder-writer
of the report; in a sense it is a recipe
:<CR>

N /

3-40 USER’S GUIDE

Accessing and Manipulating Files

After you press the <RETURN> key, pg will resume printing the file’s con-
tents on the screen:

Cmﬁinsﬂxemmsofﬂze \

to use them.

Your outline need not be elaborate or
overly detailed; it is simply a guide you
may consult as you write, to be varied,
if need be, when additional important
ideas are suggested in the actual writing.

_ /

Notice the line at the bottom of the screen containing the string (EOF):.
This expression (EOF) means you have reached the end of the file. The colon
prompt is a cue for you to issue another command.

When you have finished examining the file, press the <RETURN> key; a
prompt will appear on your terminal. (Typing q or Q and pressing the
<RETURN> key also gives you a prompt.) Or you can use one of the other
available commands, depending on your needs. In addition, there are a
number of options that can be specified on the pg command line (see the
pg(1) page in the User’s/System Administrator’s Reference Manual).

Proper execution of the pg command depends on specifying the type of
terminal you are using because the pg program was designed to be flexible
enough to run on many different terminals; how it is executed differs from ter-
minal to terminal. By specifying one type, you are telling this command

B how many lines to print

B how many columns to print

USING THE FILE SYSTEM 3-41

Accessing and Manipulating Files

B how to clear the screen

B how to highlight prompt signs or other words

B how to erase the current line

To specify a terminal type, assign the code for your terminal to the TERM

variable in your .profile file. (For more information about TERM and .profile,
see Chapter 7; for instructions on setting the TERM variable, see Appendix F.)

Figure 3-17 summarizes the syntax and capabilities of the pg command.

Command Recap

pg - displays a file’s contents in chunks or pages

command options arguments
Pg available* filename(s)
Description: The pg command displays the contents of the

specified file(s) in pages.

Remarks: After displaying a page of text, the pg command
awaits instructions from you to do one of the fol-
lowing: continue to display text, search for a pat-
tern of characters, or exit the pg mode. In addi-
tion, a number of options are available. For exam-
ple, you can display a section of a file, beginning
at a specific line or at a line containing a certain
sequence or pattern. You can also opt to go back
and review text that has already been displayed.

* See the pg(1) page in the User's/System Administrator’s Reference Manual for all

available options and an explanation of their capabilities.

Figure 3-17: Summary of the pg Command

3-42 USER’S GUIDE

Accessing and Manipulating Files

Making a Duplicate Copy of a File: the cp Command

When using the UNIX System, you may want to make a copy of a file.
For example, you might want to revise a file while leaving the original version
intact. The cp command (short for copy) copies the complete contents of one
file into another. The ¢p command also allows you to copy one or more files
from one directory into another while leaving the original file or files in place.

To copy the file named outline to a file named new.outline in the sample
directory, simply type cp outline new.outline and press the <RETURN>
key. The system returns the prompt when the copy is made. To verify the
existence of the new file, you can type Is and press the <RETURN> key.

This command lists the names of all files and directories in the current direc-
tory, in this case draft. The following screen summarizes these activities:

$ cp outline new.outline<CR>
$ 1s<CR>

new.outline

outline

table

$

The UNIX System does not allow you to have two files with the same
name in a directory. In this case, because there was no file called
new.outline when the cp command was issued, the system created a new file
with that name. However, if a file called new.outline had already existed, it
would have been replaced by a copy of the file outline; the previous version
of new.outline would have been deleted.

If you had tried to copy the file outline to another file named outline in
the same directory, the system would have told you the file names were
identical and returned the prompt to you. If you had then listed the contents
of the directory to determine exactly how many copies of outline existed, you
would have received the following output on your screen:

USING THE FILE SYSTEM 343

Accessing and Manipulating Files

$ cp outline outline<CR>

cp: cutline and cutline are identical
$ Is<CR>

outline

table

$

The UNIX System does allow you to have two files with the same name
as long as they are in different directories. For example, the system would let
you copy the file outline from the draft directory to another file named out-
line in the letters directory. If you were in the draft directory, you could use
any one of four command lines. In the following two command lines, you
specify the name of the new file you are creating by making a copy:

B cp outline /userl/starship/letters/outline<CR> (full path name
specified)

B cp outline ../letters/outline<CR> (relative path name specified)

However, the cp command does not require that you specify the name of
the new file. If you do not include a name for it on the command line, cp
gives your new file the same name as the original one, by default. Therefore,
you could also use either of these command lines:

W cp outline /userl/starship/letters<CR> (full path name specified)

B cp outline ../letters<CR> (relative path name specified)

In any of these four cases, cp will make a copy of the outline file in the
letters directory and call it outline, too.

Of course, if you want to give your new file a different name, you must
specify it. For example, to copy the file outline in the draft directory to a file
named outline.vers2 in the letters directory, you can use either of the follow-
ing command lines:

3-44 USER’S GUIDE

Accessing and Manipulating Files

B cp outline /userl/starship/letters/outline.vers2<CR> (full path
name)

B cp outline ../letters/outline.vers2<CR> (relative path name)

When assigning new names, keep in mind the conventions for naming direc-
tories and files described in *Naming Directories and Files" in this chapter.

Figure 3-18 summarizes the syntax and capabilities of the cp command.

Command Recap
cp - makes a copy of a file

command options arguments
filel file2
cp none file(s) directory
Description: cp allows you to make a copy of filel and call it file2

leaving filel intact or to copy one or more files into a
different directory.

Remarks: When you are copying filel to file2 and a file called
file2 already exists, the cp command overwrites the first
version of file2 with a copy of filel and calls it file2.
The first version of file2 is deleted.

You cannot copy directories with the cp command.

Figure 3-18: Summary of the cp Command

Copying a Group of Files: the copy Command

The copy command lets you copy groups of files to another directory,
while leaving the original (source) files intact. To copy a group of files from
your current directory to another directory, follow this format:

copy source destination <CR>

USING THE FILE SYSTEM 3-45

Accessing and Manipulating Files

You can use full or relative path names for the source and destination
arguments. The source argument can consist of a single file name, or a combi-
nation of file names and directory names. If source is a single file name, copy
behaves like cp. If files or subdirectories do not exist at the destination, copy
creates them with the same modes as the source.

The copy command lets you easily reorganize your directories without
having to copy individual files from one directory to another. For example,
suppose you are in the /userl/starship directory. This directory contains the
subdirectories draft and letters. You can use the copy command to copy the
contents of draft into letters. The following sample screen shows your input
and the system’s output:

$ copy draft letters<CR>

$ lc letters<CR>

jolmson new.outline ocutline
sanders table

$

The files in the /userl/starship/draft directory (new.outline, outline,
and table) have been copied into /userl/starship/letters. Note that there is
no “‘draft” subdirectory under letters. The copy command duplicated the
contents of draft into letters, without copying the actual “draft” directory
name.

If you want these files to be in a subdirectory called draft under the
/Juserl/starship/letters directory, add ““draft” to the destination path, as
shown in the following example:

3-46 VUSER’S GUIDE

Accessing and Manipulating Files

$ copy draft letters/draft<CR>
$ 1c letters<CR>
draft johnson sanders

The new draft subdirectory appears among the contents of letters. Now, if
you list the contents of letters, you will see a new subdirectory called draft
that has the same contents as /userl/starship/draft:

$ lc letters/draft<CR>
new.outline outline table
$

Frequently Used copy Options

The copy command accepts several options that let you copy files and
directories in many ways. This section describes four frequently used copy
options. You can use these options together or separately to customize a
specific copy session.

Copying Files and Directories Interactively

By default, the copy program copies the specified source files quickly to
their destination, returning you to the system prompt when it has finished
duplicating the files. However, suppose you wish to copy most (but not all)
of the files in source to another directory. In this case, you would like to see
the name of each source file before it is copied, so that you can decide
whether to copy it to destination. To copy files in this interactive manner, use
the -a option. With the -a option, you can reply y (yes) or n (no) each time
copy asks you whether it should copy a specific file.

USING THE FILE SYSTEM 3-47

Accessing and Manipulating Files

For example, suppose you are working in the /userl/starship directory
and wish to copy the contents of the letters subdirectory, except for the file
sanders, to the draft subdirectory. To do this, type the copy command as it
appears in the following example:

$ copy -a letters draft <CR>
copy file sanders? n <CR>
copy file johnson? y <CR>

$

For each file in source, copy asks you whether you wish to put a copy in desti-
nation. Only the files you answer y to are copied. In this example, copy
copied johnson, but not sanders, into the draft directory.

Maintaining Original File Settings

When copy duplicates a file, it sets the owner and group IDs of the copy
in destination to that of the user who invoked copy. The owner and group of
files in source remain intact. If you want a copied file to have the same owner
and group IDs as its source file, use the -0 option. This option is helpful when
you are reorganizing your directories and wish to maintain original file statis-
tics.

Similarly, copy automatically sets the modification time of each file it
copies to the time of the copy. If you want the copied files to have the same
modification time as their corresponding source files, use the -m option. Like
the -o option, -m is convenient when you wish to reorganize your directories,
while maintaining previous modification times.

Copying Directories Recursively

By default, copy duplicates only files (not subdirectories) even when
source contains subdirectories. If you want copy to duplicate subdirectories
and their contents, as well as just files, you must specify a recursive copy pro-
cess. A recursive copy process duplicates all files and subdirectories in source
to destination, creating subdirectories at the destination as they are needed,

3-48 USER’S GUIDE

Accessing and Manipulating Files

and maintaining the same directory hierarchy as in source. To recursively
copy the contents of source to destination, use the -r option with the following

syntax:

copy -r source destination <CR>

Figure 3-19 summarizes the syntax and capabilities of the copy com-

mand.
Command Recap
copy — copies groups of files
command options arguments
copy -a, -1, and others* source, destination
Description: copy copies the files and/or subdirectories speci-
fied in source to destination. If no source argument
is given, the contents of your working directory are
copied to destination.
Options: -a Asks the user before attempting a copy.
-r Examines every subdirectory it encounters
in source, copying each subdirectory and its
contents to destination. By default, copy
duplicates only the files in source.
Remarks: If you want to list the contents of a directory, use
the 1s or 1¢ command.

*

See the copy(1) page in the User’s/System Administrator’s Reference Manual for all available

options and an explanation of their capabilities.

Figure 3-19: Summary of the copy Command

USING THE FILE SYSTEM 3-49

Accessing and Manipulating Files

Moving and Renaming a File: the mv Command

The mv command (short for move) allows you to rename a file in the
same directory or to move a file from one directory to another. If you move a
file to a different directory, the file can be renamed or it can retain its original
name.

To rename a file within a directory, follow this format:
mv filel file2<CR>

The mv command changes a file’s name from filel to file2 and deletes
filel. Remember that the names filel and file2 can be any valid names,
including path names.

For example, if you are in the directory draft in the sample file system
and you would like to rename the file table to new.table, simply type
mv table new.table and press the <RETURN> key. If the command exe-
cutes successfully, you will receive a prompt. To verify that the file new.table
exists, you can list the contents of the directory by typing Is and pressing the
<RETURN> key. The screen shows your input and the system’s output as
follows:

$ mv table new.table<CR>
$ 1s<CR>

new.table

outline

$

You can also move a file from one directory to another, keeping the same
name or changing it to a different one. To move the file without changing its
name, use the following command line:

mv file(s) directory<CR>

The file and directory names can be any valid names, including path names.

3-50 USER'’S GUIDE

Accessing and Manipulating Files

For example, say you want to move the file table from the current direc-
tory named draft (whose full path name is /userl/starship/draft) to a file
with the same name in the directory letters (whose relative path name from
draft is ../letters and whose full path name is /userl/starship/letters), you
can use any one of several command lines, including the following:

mv table /userl/starship/letters<CR>

mv table /userl/starship/letters/table<CR>

mv table ../letters<CR>

mv table ../letters/table<CR>

mv /userl/starship/draft/table /userl/starship/letters/table<CR>

Now suppose you want to rename the file table as table2 when moving it
to the directory letters. Use any of these command lines:

mv table /userl/starship/letters/table2<CR>
mv table ../letters/table2<CR>

mv /userl/starship/draft/table2 /userl/starship/letters/table2<CR>

You can verify that the command worked by using the Is command to list the
contents of the directory.

Figure 3-20 summarizes the syntax and capabilities of the mv command.

USING THE FILE SYSTEM 3-51

Accessing and Manipulating Files

Command Recap

mv - moves or renames files

command options arguments

filel file2
mv none file(s) directory

Description: mv allows you to change the name of a file or
to move a file(s) into another directory.

Remarks: When you are moving filel to file2, if a file
called file2 already exists, the mv command
overwrites the first version of file2 with filel
and renames it file2. The first version of file2 is
deleted.

Figure 3-20: Summary of the mv Command

Removing a File: the rm Command

When you no longer need a file, you can remove it from your directory by
executing the rm command (short for remove). The basic format for this com-

mand is
rm file(s)<CR>

You can remove more than one file at a time by specifying those files you
want to delete on the command line with a space separating each filename:

rm filel file2 file3<CR>

The system does not save a copy of a file it removes; once you have executed

this command, your file is removed permanently.

3-52 USER’S GUIDE

Accessing and Manipulating Files

After you have issued the rm command, you can verify its successful exe-
cution by running the Is command. Because Is lists the files in your directory,
you'll immediately be able to see whether or not rm has executed successfully.

For example, suppose you have a directory that contains two files, outline
and table. You can remove both files by issuing the rm command once. If

rm is executed successfully, your directory will be empty. Verify this by run-
ning the 1s command:

$ rm outline table <CR>
$ls
$

The prompt shows that outline and table were removed.

Figure 3-21 summarizes the syntax and capabilities of the rm command.

Command Recap

rm — removes a file

command options arguments
rm available* file(s)
Description: rm allows you to remove one or more files.
Remarks: Files specified as arguments to the rm com-

mand are removed permanently.

* See the rm(1) page in the User’s/System Administrator's Reference Manual for all

available options and an explanation of their capabilities.

Figure 3-21: Summary of the rm Command

USING THE FILE SYSTEM 3-53

Accessing and Manipulating Files

Counting Lines, Words, and Characters in a File: the wc
Command

The wc command (short for word count) reports the number of lines,
words, and characters there are in the file(s) named on the command line. If
you name more than one file, the wc program counts the number of lines,
words, and characters in each specified file and then totals the counts. In
addition, you can direct the we program to give you only a line, a word, or a
character count by using the -1, -w, or ~c options, respectively.

To determine the number of lines, words, and characters in a file, use the
following format on the command line:

wc filel<CR>

The system responds with a line in the following format:
I w ¢ filel

where

B [represents the number of lines in filel.

B w represents the number of words in filel.

B ¢ represents the number of characters in filel.

For example, to count the lines, words, and characters in the file johnson
(located in the current directory, letters), type the following command line:

$ wc johnson<CR>
24 66 406 johnson
$

The system response means that the file johnson has 24 lines, 66 words, and
406 characters.

To count the lines, words, and characters in more than one file, use the
following format:

wec filel file2<CR>

3-54 USER’S GUIDE

Accessing and Manipulating Files

The system responds in the following format:

l w c filel
l w c file2
) w c total

Line, word, and character counts for filel and file2 are displayed on separate
lines and the combined counts appear on the last line beside the word total.

For example, ask the wc program to count the lines, words, and characters
in the files johnson and sanders in the current directory.

$ wc johnson sanders<CR>

24 66 406 johmson
28 92 559 sanders
52 158 965 total

The first line reports that the johnson file has 24 lines, 66 words, and 406
characters. The second line reports 28 lines, 92 words, and 559 characters in
the sanders file. The last line shows that these two files together have a total
of 52 lines, 158 words, and 965 characters.

To get only a line, a word, or a character count, select the appropriate
command line format from the following lines:

wc -1 file1<CR> (line count)
we -w filel<CR> (word count)
wc -c¢ filel<CR> (character count)

For example, if you use the -1 option, the system reports only the number
of lines in sanders:

$ wec -1 sanders<CR>
28 sanders
$

USING THE FILE SYSTEM 3-55

Accessing and Manipulating Files

If the -w or ~-c option had been specified instead, the command would
have reported the number of words or characters, respectively, in the file.

Figure 3-22 summarizes the syntax and capabilities of the wc command.

Command Recap

wc - counts lines, words, and characters in a file

command options arguments
wC -1, -w, -¢ file(s)
Description: wc counts lines, words, and characters in the speci-

fied file(s), keeping a total count of all tallies when
more than one file is specified.

Options -1 counts the number of lines in the specified
file(s)
-w counts the number of words in the specified
file(s)
-c¢ counts the number of characters in the
specified file(s)
Remarks: When a file name is specified in the command line,

it is printed with the count(s) requested.

Figure 3-22: Summary of the we Command

Protecting Your Files: the chmod Command

The chmod command (short for change mode) allows you to decide who
can read, write, and use your files and who cannot. Because the UNIX
Operating System is a multi-user system, you usually do not work alone in
the file system. System users can follow path names to various directories
and read and use files belonging to one another, as long as they have permis-
sion to do so.

3-56 USER’S GUIDE

Accessing and Manipulating Files

If you own a file, you can decide who has the right to read it, write in it
(make changes to it), or, if it is a program, execute it. You can also restrict
permissions for directories with the chmod command. When you grant exe-
cute permission for a directory, you allow the specified users to ¢d to it and
list its contents with the 1s command.

To assign these permissions, use the following three symbols:
r allows system users to read a file or to copy its contents
w allows system users to write changes into a file (or a copy of it)

x allows system users to run an executable file

To specify the users to whom you are granting (or denying) these permis-
sions, use the following three symbols:

u you, the owner of your files and directories (u is short for user)

g members of the group to which you belong (the group could con-
sist of team members working on a project, members of a depart-
ment, or a group arbitrarily designated by the person who set up
your UNIX System account)

o all other system users

When you create a file or a directory, the system automatically grants or
denies permissions to you, members of your group, and other system users.
You can alter this automatic action by modifying your environment (see
Chapter 7 for details). Moreover, regardless of how the permissions are
granted when a file is created, as the owner of the file or directory, you
always have the option of changing them. For example, you may want to
keep certain files private and reserve them for your exclusive use. You may
want to grant permissions to read and write changes into a file to members of
your group and all other system users as well. Or you may share a program
with members of your group by granting them permission to execute it.

How to Determine Existing Permissions

You can determine what permissions are currently in effect on a file or a
directory by using the command that produces a long listing of a directory’s
contents: 1s -1. For example, typing Is -1 and pressing the <RETURN> key
while in the directory named starship/bin in the sample file system produces
the following output:

USING THE FILE SYSTEM 3-57

Accessing and Manipulating Files

$ 1s -1<CR>

total 35

-rwxr-xr-x 1 starship project 9346 Nov 1 08:06 display
-rw-r——r-- 1 starship project 6428 Dec 2 10:24 1list
drwx--x--x 2 starship project 32 Nov 8 15:32 tools
$

Permissions for the display and list files and the tools directory are
shown on the left of the screen under the line total 35, and appear in this
format:

-rwxr-xr-x (for the display file)
-rw-r-—r—— (for the list file))
drwx--x——- (for the tools directory)

After the initial character, which describes the file type (for example,
a - (dash) symbolizes a regular file and a 4, a directory), the other nine char-
acters that set the permissions comprise three sets of three characters. The
first set refers to permissions for the owner, the second set, to permissions for
group members, and the last set, to permissions for all other system users.
Within each set of characters, the r, w, and x show the permissions currently
granted to each category. If a dash appears instead of an r, w, or x, permis-
sion to read, write, or execute is denied.

The following diagram summarizes this breakdown for the file named
display:

3-58 USER’S GUIDE

Accessing and Manipulating Files

user group others

P e b
TWXY—Xr-xX

"\ Permission to write to
the file denied to

read group and others

write
execute

As you can see, the owner has r, w, and x permissions, and members of the
group and other system users have r and x permissions.

There are two exceptions to this notation system. Occasionally, the letter
s or the letter 1 may appear in the permissions line, instead of an r, wor x.
The letter s (short for set user ID or set group ID) represents a special type of
permission to execute a file. It appears where you normally see an x (or -)
for the user or group (the first and second sets of permissions). From a user’s
point of view, it is equivalent to an x in the same position; it implies that exe-
cute permission exists. It is significant only for programmers and
system administrators. (See the Operations/System Administration Guide for
details about setting the user or group ID.)

The letter 1 is the symbol for lock enabling. It does not mean that the file
has been locked. It simply means that the function of locking is enabled, or
possible, for this file. The file may or may not be locked; that cannot be
determined by the presence or absence of the letter 1.

USING THE FILE SYSTEM 3-59

Accessing and Manipulating Files

How to Change Existing Permissions
After you have determined what permissions are in effect, you can change
them by executing the chmod command in the following format:

chmod who-+permission file(s)<CR>
or
chmod who=permission file(s)<CR>

The following list defines each component of this command line:

chmod name of the program
who one of three user groups (u, g, or o)
u = user
§ = group
o = others
+ or - instruction that grants (+) or denies (-) permission

permission any combination of three authorizations (r, w, and x)
r =read
W = write
X = execute

file(s) file or directory name(s) listed; assumed to be branches
from your current directory, unless you use full path-
names

The chmod command will not work if you type a space(s) between who, the
NOTE| instruction that gives (+) or denies (-) permission, and permission.

The following examples show a few possible ways to use the chmod com-
mand. As the owner of display, you can read, write, and run this executable
file. You can protect the file against being accidentally changed by denying
yourself write (w) permission. To do this, type the command line

chmod u-w display<CR>

3-60 USER’S GUIDE

Accessing and Manipulating Files

After receiving the prompt, type Is -1 and press the <RETURN> key to verify
that this permission has been changed, as shown in the following screen:

/

$ chmod u-w display<CR>

$ Is -1<CR>

total 35

-r-xr-xr-x 1 starship project 9346 Nov 1 08:06 display
-xw-r--r-- 1 starship project 6428 Dec 2 10:24 1list
drwe——x--x 2 starship project 32 Nov 8 15:32 tools
$

As you can see, you no longer have permission to write changes into the file.
You will not be able to change this file until you restore write permission for
yourself.

Now consider another example. Notice that permission to write into the
file display has been denied to members of your group and other system
users. However, they do have read permission. This means they can copy
the file into their own directories and then make changes to it. To prevent all
system users from copying this file, you can deny them read permission by

typing
chmod go-r display<CR>
The g and o stand for group members and all other system users, respectively,

and the -r denies them permission to read or copy the file. Check the results
with the Is -1 command:

USING THE FILE SYSTEM 3-61

Accessing and Manipulating Files

cnod go-r display<CR>

$ Is -1<CR>

total 35

-rwx-—x--x 1 starship project 9346 Nov 1 08:06 display
-rw-r——r—- 1 starship project 6428 Dec 2 10:24 1list
drwx——x-—x 2 starship project 32 Nov 8 15:32 tools
$

A Note on Permissions and Directories

You can use the chmod command to grant or deny permission for direc-
tories as well as files. Simply specify a directory name instead of a file name
on the command line.

However, consider the impact on various system users of changing per-
missions for directories. For example, say you grant read permission for a
directory to yourself (u), members of your group (g), and other system users
(0). Every user who has access to the system will be able to read the names
of the files contained in that directory by running the Is -1 command. Simi-
larly, granting write permission allows the designated users to create new files
in the directory and remove existing ones. Granting permission to execute the
directory allows designated users to move to that directory (and make it their
current directory) by using the cd command.

An Alternative Method

There are two methods by which the chmod command can be executed.
The method described above, in which symbols such as r, w, and x are used
to specify permissions, is called the symbolic method.

An alternative method is the octal method. Its format requires you to
specify permissions using three octal numbers, ranging from 0 to 7. (The octal
number system is different from the decimal system that we typically use on a
day-to-day basis.) To learn how to use the octal method, see the chmod(1)
page in the User’s/System Administrator's Reference Manual.

3-62 USER’S GUIDE

Accessing and Manipulating Files

Figure 3-23 summarizes the syntax and capabilities of the chmod com-
mand.

Command Recap

chmod - changes permission modes for files and directories

command instruction arguments
chmod who + - permission filename(s)
directoryname(s)
Description: chmod gives (+) or removes (-) permission to

read, write, and execute files for three
categories of system users: user (you), group
(members of your group), and other (all other
users able to access the system on which you
are working).

Remarks: The instruction set can be represented in either
octal or symbolic terms.

Figure 3-23: Summary of the chmod Command

USING THE FILE SYSTEM 3-63

Accessing and Manipulating Files

Advanced Commands

Use of the commands already introduced will increase your familiarity
with the file system. As this familiarity increases, so might your need for
more sophisticated information processing techniques when working with
files. This section introduces the following three commands that provide just
that:

diff finds differences between two files
grep searches for a pattern in a file
sort sorts and merges files

For additional information about these commands refer to the User’s/System
Administrator’s Reference Manual.

identifying Differences Between Files: the diff Command

The diff command locates and reports all differences between two files
and tells you how to change the first file so that it is a duplicate of the second.
The basic format for the command is

diff filel file2<CR>

If filel and file2 are identical, the system returns a prompt to you. If they are
not, the diff command instructs you on how to change the first file so it
matches the second by using ed (line editor) commands. (See Chapter 5 for
details about the line editor.) The UNIX System flags lines in filel (to be
changed) with the < (less than) symbol and lines in file2 (the model text) with
the > (greater than) symbol.

For example, say you execute the diff command to identify the differences
between the files johnson and mcdonough. The mcdonough file contains the
same letter that is in the johnson file, with appropriate changes for a different
recipient. The diff command will identify those changes as follows:

3-64 USER’S GUIDE

Accessing and Manipulating Files

< Mr. Ron Jolmson

< Layton Printing

< 52 Hudson Street

< New York, N.Y.

> Mr. J.J. McDanough
> U Press

> 37 Chico Place

> Springfield, N.J.
99

< Dear Mr. Johnson:

N /

The first line of output from diff is
3,6¢3,6

This means that if you want johnson to match mecdonough, you must change
(c) lines 3 through 6 in johnson to lines 3 through 6 in mcdonough. The diff
command then displays both sets of lines.

If you make these changes (using a text editor such as ed or vi), the john-
son file will be identical to the sanders file. Remember, the diff command
identifies differences between specified files. If you want to make an identical
copy of a file, use the cp command.

Figure 3-24 summarizes the syntax and capabilities of the diff command.

USING THE FILE SYSTEM 3-65

Accessing and Manipulating Files

Command Recap

~ diff — finds differences between two files

command options arguments
diff available* filel file2
Description: The diff command reports what lines are dif-

ferent in two files and what you must do to
make the first file identical to the second.

Remarks: Instructions on how to change a file to bring it
into agreement with another file are line editor
(ed) commands: a (append), ¢ (change), and d
(delete). Numbers given with a, ¢, or d show
the lines to be modified. Also used are the
symbols < (showing a line from the first file)
and > (showing a line from the second file).

* See the diff(1) page in the User’s/System Administrator's Reference Manual for all

available options and an explanation of their capabilities.

Figure 3-24: Summary of the diff Command

Searching a File for a Pattern: the grep Command

You can instruct the UNIX System to search through a file for a specific
word, phrase, or group of characters by executing the grep command (short
for globally search for a regular expression and print). Put simply, a regular
expression is any pattern of characters (a word, a phrase, or an equation) that
you specify.

3-66 USER’S GUIDE

Accessing and Manipulating Files

The basic format for the command line is

grep pattern file(s)<CR>

For example, to locate any lines that contain the word automation in the
file johnson, type

grep automation johnson<CR>
The system responds with

$ grep automation johnson<CR>
and office autcmation software.
$

The output consists of all the lines in the file johnson that contain the pattern
for which you were searching (automation).

If the pattern contains multiple words or any character that conveys spe-
cial meaning to the UNIX System (such as §, |, *, ?, and so on), the entire pat-
tern must be enclosed in single quotes. (For an explanation of the special
meaning for these and other characters see "Metacharacters® in Chapter 7.)
For example, say you want to locate the lines containing the pattern office
automation. Your command line and the system’s response will read:

$ grep ‘office automation’ johnson<CR>
and office automation software.
$

But what if you cannot recall which letter contained a reference to office
automation? Was it your letter to Mr. Johnson or the one to Mrs. Sanders?
Type the following command line to find out:

$ grep ‘office automation’ johnson sanders<CR>
jomson:and office automation software.
$

The output tells you that the pattern office automation is found once in the
johnson file.

In addition to the grep command, the UNIX System provides variations of
it called egrep and fgrep, along with several options that enhance the search-
ing powers of the command. See the grep(1), egrep(1), and fgrep(1) pages in
the User’s /System Administrator’s Reference Manual for further information
about these commands.

USING THE FILE SYSTEM 3-67

Accessing and Manipulating Files

Figure 3-25 summarizes the syntax and capabilities of the grep command.

Command Recap

grep — searches a file for a pattern

command options arguments
grep available* pattern file(s)
Description: The grep command searches through specified

file(s) for lines containing a pattern and then
prints the lines on which it finds the pattern. If
you specify more than one file, the name of the
file in which the pattern is found is also
reported.

Remarks: If the pattern you give contains multiple words
or special characters, enclose the pattern in sin-
gle quotes on the command line.

* See the grep(1) page in the User’s/System Administrator's Reference Manual for all
available options and an explanation of their capabilities.

Figure 3-25: Summary of the grep Command

Sorting and Merging Files: the sort Command

The UNIX System provides an efficient tool called sort for sorting and
merging files. The format for the command line is

sort file(s)<CR>

This command causes lines in the specified files to be sorted and merged in
the following order:

B Lines beginning with numbers are sorted by digit and listed before
lines beginning with letters.

3-68 USER’S GUIDE

Accessing and Manipulating Files

B Lines beginning with uppercase letters are listed before lines beginning
with lowercase letters.

B Lines beginning with symbols, such as *, %, or @, are sorted on the
basis of the symbol’s ASCII representation.

For example, let’s say you have two files, groupl and group2, each con-
taining a list of names. You want to sort each list alphabetically and then
combine the two lists into one. First, display the contents of the files by exe-
cuting the cat command on each:

cgroupl<CR>

Smith, Allyn
Jones, Barbara
Cook, Karen
Mocre, Peter
Wolf, Robert

$ cat group2<CR>
Frank, M. Jay
Nelson, James
West, Doma
Hill, Charles
Morgan, Kristine

_ .
(Instead of printing these two files individually, you could have requested

both files on the same command line. If you had typed cat groupl group2
and pressed the <RETURN> key, the output would have been the same.)

Now sort and merge the contents of the two files by executing the sort
command. The output of the sort program will be printed on the terminal
screen unless you specify otherwise.

USING THE FILE SYSTEM 3-69

Accessing and Manipulating Files

(art groupl group2<CR>

Cook, Karen
Frank, M. Jay
Hill, Charles
Jones, Barbara
Mocre, Peter
Morgan, Kristine
Nelsan, James
Smith, Allyn
West, Dama
Wolf, Robert

$ /
In addition to combining simple lists as in the example, the sort command
can rearrange lines and parts of lines (called fields) according to a number of
other specifications you designate on the command line. The possible specifi-
cations are complex and beyond the scope of this text. Refer to the

User's /System Administrator’s Reference Manual for a full description of avail-
able options.

Figure 3-26 summarizes the syntax and capabilities of the sort command.

3-70 USER’S GUIDE

Accessing and Manipulating Files

Command Recap

sort — sorts and merges files

command options arguments
sort available* file(s)
Description: The sort command sorts and merges lines from

a file or files you specify and displays its output
on your terminal screen.

Remarks: If no options are specified on the command
line, lines are sorted and merged in the order
defined by the ASCII representations of the
characters in the lines.

* See the sort(1) page in the User's/System Administrator's Reference Manual for all

available options and an explanation of their capabilities.

Figure 3-26: Summary of the sort Command

USING THE FILE SYSTEM 3-71

Printing Files

This section introduces the pr command, which prepares files to be
printed and the lp command, which prints files.

Print Partially Formatted Contents of a File:
the pr Command

The pr command prepares files for printing. It supplies titles and head-
ings, paginates, and prints a file, in any of various page lengths and widths,
on your terminal screen.

You have the option of requesting that the command print its output on
another device, such as a line printer (read the discussion of the lp command
in this section). You can also direct the output of pr to a different file (see the
sections on input and output redirection in Chapter 7).

If you choose not to specify any of the available options, the pr command
produces output in a single column that contains 66 lines per page and is pre-
ceded by a short heading. The heading consists of five lines: two blank lines;
a line containing the date, time, file name, and page number; and two more
blank lines. The formatted file is followed by five blank lines.

The pr command is often used together with the Ip command to provide a
paper copy of text as it was entered into a file. (See the section on the lp
command for details.) However, you can also use the pr command to format
and print the contents of a file on your terminal. For example, to review the
contents of the file johnson in the sample file system, type

$ pr johnson<CR>

The following screen gives an example of output from this command:

3-72 USER'’S GUIDE

$ pr johnson<CR>

Mar 5 15:43 1986 jolmson Page 1

March 5, 1986

Mr. Ron Johnsan
Layton Printing
52 Hudson Street
New York, N.Y.

Dear Mr. Jolnson:

I enjoyed speaking with you this morming
about your company's plans to autamate
your business.

Enclosed please f£ind

the material you requested

about ABSC's line of computers

and office autcmation software.

If I can be of further assistance to you,
please don't hesitate to call.

Yours truly,

Joln Howe

$

USING THE FILE SYSTEM

Printing Files

3-73

Printing Files

The ellipses after the last line in the file represent the remaining lines (all
blank in this case) that pr formatted into the output (so that each page con-
tains a total of sixty-six lines). If you are working on a video display terminal,
which allows you to view twenty-four lines at a time, the entire sixty-six lines
of the formatted file will be printed rapidly without pause. This means that
the first forty-two lines will roll off the top of your screen, making it impossi-
ble for you to read them unless you have the ability to roll back a screen or
two. However, if the file you are examining is particularly long, even this
ability may not be sufficient to allow you to read the file.

In such cases, type <'s> to interrupt the flow of printing on your screen.
When you are ready to continue, type < g> to resume printing.

Figure 3-27 summarizes the syntax and capabilities of the pr command.

3-74 USER’S GUIDE

Printing Files

Command Recap

pr - prints formatted contents of a file

command options arguments
pr available* filename(s)
Description: The pr command prints a copy of a file(s) on

your terminal screen unless you specify other-
wise. It prints the text of the file(s) on sixty-six
line pages and places five blank lines at the
bottom of each page and a five-line heading at
the top of each page. The heading includes
two blank lines; a line containing the date,
time, file name, and page number; and two
additional blank lines.

Remarks: If a specified file exists, its contents are format-
ted and displayed; if not, the message pr:
can't open filename is printed.

The pr command is often used with the lp
command to produce a paper copy of a file. It
can also be used to review a file on a video
display terminal. To stop and restart the print-
ing of a file on a terminal, type < s> and

< @>, respectively.

* Gee the pr(1) page in the User's/System Administrator's Reference Manual for all

available options and an explanation of their capabilities.

Figure 3-27: Summary of the pr Command

USING THE FILE SYSTEM 3-75

Printing Files

The LP Print Service

You can perform various printing tasks by using a set of UNIX System
software tools called the LP print service. You can make requests for print
jobs, change or cancel those requests, enable and disable printers, and obtain
information about the printers available to you by using five commands asso-
ciated with the LP print service: lp, cancel, lpstat, enable, and disable. This
section explains how to use these commands to accomplish such tasks.

The function of each print service command is shown in Figure 3-28.

Command Function

Ip requests a paper copy of a file
from a printer

cancel cancels a request for a
paper copy of a file

Ipstat displays information on the screen
about the current status of the LP
print service

enable activates the printer(s) specified
so jobs that are requested through
the lp command can be printed

disable deactivates the printer(s) specified
so jobs that are requested through
the Ip command can no longer

be printed

Figure 3-28: Print Commands and Their Functions

3-76 USER’S GUIDE

Printing Files

The enable and disable commands are not always available to users.
NOTE| The system administrator will decide whether to make these commands
available to all users.

Requesting a Paper Copy of a File: the lp Command

Some terminals have built-in printers that allow you to get paper copies of
files. If you have such a terminal, you can get a paper copy of your file sim-
ply by turning on the printer and executing the cat or pr command.

If you are using a video display terminal, however, you will need a printer
to obtain a paper copy of a file. The lp command (originally named for "line
printer") allows you to request a print job from a printer. To request a simple
print job, enter the command line

Ip filename<CR>

where filename is the name of the file you want to have printed. For example,
to request that the file johnson be printed, type

Ip johnson<CR>

The system will respond with the name (or type) of the printer on which the
file is being printed and an identification (ID) number for your request:

$ 1p johnson<CR>
request id is laser-6885 (1 file)
$

This system response shows that your job will be printed on a printer
named "laser” (the default printer for this system), has a request ID number
of laser-6885, and consists of one file.

Options to Ip

The options available with the Ip command allow you to request the fol-
lowing for your print job: a specific printer or class of printers (referred to
here as "print destination"); special print modes (such as landscape or por-
trait); page size and pitch settings; which pages are to be printed and the
number of copies to be made; queue priority; forms (instead of blank paper);
character sets and print wheels; content type; continuous printing of files
(without breaks between separate files); banner-page options; and messages
from the Ip command. This section explains how to take advantage of these
options,

USING THE FILE SYSTEM 3-77

Printing Files

Select a Print Destination

The term "print destination" refers to any device that your system
administrator has defined to be a printer (such as "bif2") or class of printers
(such as "bif"). The -d dest (short for destination) option on the command
line causes your file to be printed at the destination specified in the dest argu-
ment, as long as a printer is available and capable of meeting your specifica-
tions for the job. In the following example, a request is made to have a file
called memo printed on printer3:

$ lp -d printer3 memo<CR>

Special Printing Modes

The final appearance of the document you are printing depends not only
on its content, but also on certain other features that affect the composition of
the page. For example, you might want to print your document on one side
of the paper or on both sides. You might want your memo to be marked
"draft" or to appear as the final, official version. Or, if you have a chart that
will not fit on a page in the usual "portrait" mode, you may want to print it
sideways on the page in "landscape” mode. The number of these special
printing modes that are available to you depends on the available printer(s).

To request special printing modes for your print job, include the -y option
on the command line as follows: ‘

$ 1p -y list_of_modes filename<CR>

Each item in the list of modes must be a one-word name; it can be any combi-
nation of letters and numbers.

The printer will accept your request if all the modes you requested in the
list are known by the "filter" being used as an interface between your print
request and the printer. To find out which filters are available on your system
and which -y options are allowed, check with your system administrator.

Page Size and Pitch Settings

Page size consists of two measurements: length and width. Pitch settings
are specifications for the number of lines per inch (vertical measurement) and
the number of characters per inch (horizontal measurement). When a file is
printed, these dimensions may be determined in one of the following four
ways:

3-78 USER’S GUIDE

Printing Files

B by the printer’s default dimensions
B by the default dimensions established by your system administrator

B by the dimensions provided with a particular form which you have
selected

M by your specification for that particular job

To request your own specification for a print job, use the -o option to lp,
and specify the desired sizes in "scaled decimal numbers.* The term "scaled
decimal number" refers to a non-negative number used to indicate a unit of
size. (The type of unit is shown by a "trailing" letter attached to the
number.) Three types of scaled decimal numbers are discussed for the LP
print service: numbers that show sizes in centimeters (marked with a trailing
wcn); numbers that show sizes in inches (marked with a trailing "i"); and
numbers that show sizes in units appropriate to use (without a trailing letter),
such as lines, columns, lines per inch, or characters per inch. The following
command line shows how to request a print job with your own specifications
for page size and pitch settings (specifications are shown in sdn or scaled
decimal numbers):

$ Ip -o "length=sdn width=sdn lpi=sdn cpi=sdn" filename<CR>

For example, to request pages that are 8-1/2 inches long and 6-1/4 inches
wide, type the following command line:

$ 1p -o length=??? -0 width=??<CR>

where ?7? represents the correct scaled decimal numbers for the printer
you are using.

If you do not specify the page dimensions for your print request, are not
using a form for which those dimensions are defined, and are not using a
printer for which those dimensions have been defined by an administrator,
your job will be printed according to the default dimensions for the type of
printer you are using. These default dimensions are listed in a database called
Terminfo; your system administrator is responsible for maintaining this data-
base and can give you details about it.

USING THE FILE SYSTEM 3-79

Printing Files

For example, if you are using an AT&T Model 455 printer, the default
dimensions for the printer will be as follows:

Page length: 66 lines

Page width: 132 columns

Line pitch: 6 lines per inch

Character pitch: 12 characters per inch

If, however, you are using an AT&T Model 470 printer, the default dimen-
sions will be slightly different:

Page length: 66 lines

Page width: 80 columns

Line pitch: 6 lines per inch

Character pitch: 10 characters per inch

Pages and Copies to be Printed

Some filters allow you to specify a list of pages to be printed so that you
need not print an entire file to obtain a subset of it. Perhaps you want to
proofread a section you have edited, give an excerpt of a file to someone, or
print the portion of a file that remains unprinted after a print job has been
interrupted. With the proper filter, you can limit the printing of a file to a
subset of pages by using the -P option of the Ip command.

For example, suppose you have a thirty-page business report in a file
called july.sales. Your boss wants to include a copy of the summary and a
few of the charts from your report in a package of materials she’s putting
together for a new director in your division. Because the charts and summary
appear on a total of five pages, you don’t want to print a copy of the entire
thirty-page report. Fortunately, your printer has a filter that allows you to
specify a list of pages to be printed. You request only pages 4-6 (for the
charts) and 28-29 (for the summary):

$ lp -P 4-6,28,29 july.sales<CR>
If you do not have any filters or if your filters do not accept a list of pages

to print, any requests you make with the -P option will be rejected and you
will be notified of the failure.

Printing Files

Your system administrator installs and maintains filters for your system.
NOTE| Check with your administrator to find out if filters are available and
whether they will accept the -P option and lists of pages to be printed.

By specifying a list of pages with -P, you can request that printing be
started in the middle of a file and that certain pages be skipped. You can
present your list of pages in any order; the pages will be printed in order of
ascending page number. Also, the LP print system will drop any duplicate
requests for pages so that only one copy of each page will be printed.

If you do not include the -P option on the command line, the entire file
will be printed.

If you want to have more than one copy made, you can request a multiple
printing by issuing the -n (for "number") option. For example, to have four
copies made, enter a command line such as the following;:

Ip -n 4 filename<CR>

When you do not use this option, only one copy is made by default.

Queue Priority

As you and other users send requests for print jobs to the printers on your
system, your requests are arranged in a queue that determines the order of
printing. Highest priority is given to requests that have been assigned level 0
priority; lowest priority is given to requests with a level of 39. Whether your
job is assigned high or low priority depends on several factors.

First, the default value for job priority on your system is 20, unless your
system administrator has defined it otherwise. Every job you submit to a
printer will be given this medium-level priority. If your administrator has
redefined the default priority level so that it is now, for example, 10, all jobs
that you send to the printer will be given this higher priority.

You can change this priority level, however, by requesting a level other
than default; to do so, use the -q option of the Ip command. For example, if
you need a memo printed immediately, you can send it to the front of the
queue by assigning it the highest priority: 0.

$ lp -q 0 urgent.memo

USING THE FILE SYSTEM 3-81

Printing Files

Note that the system administrator can limit the priority level that you can
use. If your administrator has limited the priority level available to you and
you request a priority higher than that, the priority level will remain, by
default, at the level set by the administrator. Check with your system
administrator to find out what the default priority level is and whether there
is a limit on the priority level you can request.

Pre-Printed Forms

Pre-printed forms, such as payroll checks, are often used by companies
that need to issue a variety of specialized documents. To accommodate users
who have this need, the LP print service is capable of printing your files on
pre-printed forms. It gives you the option of assigning a form to each print
request you make.

To request a particular form, include the -f option on the command line,
followed by the name of the form. In this example, a request is being made
to have a file called april.payroll printed on a type of form called paycheck
on a printer called printer4:

$ lp -d printer4 -f paycheck april.payroll<CR>

The LP print service will assume that you want your job to be printed on
the form specified by the printer listed. If the printer you have listed is not
capable of handling this form, it will be rejected. To allow your request to
print on any printer on which the form is mounted, include the -d option, fol-
lowed by the argument any. Your command line would be entered as fol-
lows:

$ 1p -d any -f form_name filename<CR>
The LP print service will then send your request to any printer that is capable
of printing the type of form required for your job.

Character Sets and Print Wheels

The Ip command allows you to select a character set or print wheel with
which your job will be printed. To do so, include the -S option on the com-
mand line as follows:

$ 1p -S character_set filename<CR>

3-82 USER’S GUIDE

Printing Files

If you have no preference and if you haven’t chosen a form that defines a par-
ticular character set or print-wheel, you can skip this option.

Content Type

To print a file, a printer must be capable of correctly interpreting its con-
tents. Different printers have different capabilities in this sense; not every
printer is able to print every type of content. You can make sure that the LP
print service assigns your request to a printer capable of printing it by using
the -T option of the 1Ip command.

The -T option allows you to specify the type of printer that can interpret
the content of your file. For example, suppose you want to print a file con-
taining your monthly report for July (july.report) and you know that the
AT&T Model 455 printer can interpret its contents. You also know that there
is more than one 455 printer in your system, but you don’t know the names
of any of them. The -T option lets you request any Model 455 printer
without specifying one by name as follows:

$ 1p -T 455 july.report<CR>
Your file will be forwarded to the first available Model 455 for printing.

What happens if there are no Model 455 printers? The answer depends
on whether or not your system supports any filters. A filter is a program that
converts data from one format to another; in this case, the filter converts data
from the format in which it was typed in the file to a format which can be
"read" by a printer. If there are no printers that can handle the content type
of your file and your system supports filters, your print request will be sent to
a filter. The contents of the file will be converted, by the filter, to a content
type that the printer can handle. If, however, there are no printers that can
handle the content type of your file and there is no filter that will convert the
file, your print request will be rejected.

Filters make it possible to have files printed by a variety of printers.
There may be situations, however, in which the content type is a critical factor
of the job. In such a case, you do not want to have a file printed unless it can
be printed with the original content type. If your system supports filters and
you do not want your print request to be sent to one, specify the -r option
after the -T option of the Ip command as follows:

$ 1p -T 455 -r july.report<CR>

USING THE FILE SYSTEM 3-83

Note that with the -r option, if your print request cannot be handled by any
printer on your system (because of content type), your print request will be
rejected.

Filters are installed and maintained on your LP print service by your system
NOTE| administrator. Ask your administrator for a list of content types available to
your system.

No File Breaks between Files

Your print request may consist of more than one file. By default, the LP
print service will assume that you want each file to be printed separately. If
you want the set of files to be printed continuously, without having each file
begin on a new page, specify the -0 option with nofilebreak as follows:

$ lp -o nofilebreak filenames<CR>

Banner-Page Options

The LP print service automatically prints a title page (known here as a
"banner" page) with every job printed. If you do not want a banner page
printed with your job, include the -o option with nobanner as follows:

$ 1p -o nobanner filename<CR>

Your system administrator can turn off this option for particular printers. If
your administrator has done so, any request you make for such a printer will
be rejected.

Messages from the Print Service

The LP print service does not automatically notify you when your job has
been printed. To make sure you will be notified, list the -w option on the lp
command line as follows:

$ lp -w filename<CR>

The print service will display a message on your terminal screen to let you
know when your files have been printed. If you are not logged in when the
message is ready to be sent, the message will be sent to you via electronic
mail instead.

3-84 USER’S GUIDE

Printing Files

If you want to be notified through electronic mail that your files have
been printed, include the -m option on your command line as follows:

$ lp -m filename<CR>

Changing a Request

Suppose you have just noticed that when submitting a request to the print
service a little while ago, you forgot to request a longer than usual page
length for the job, as you had originally planned to do. Don’t worry; it may
not be too late to change your print request! As long as the job has not actu-
ally been printed, you may submit changes to your original request. Simply
execute the Ip command again, this time including the -i option, followed by
the ID number assigned to your request. The -i option signals your intent to
change the previous request to the printer.

For example, suppose your original request was for a page length of 50, a
width of 70, no banner, and 3 copies:

$ lp -o "length=50,width=70,nobanner" -n 3 july.report<CR>
request id is printer2-23

When you later remembered to request a longer page, you reissued the com-
mand as follows:

$ lp -i printer2-23 -o "length=60,width=70,nobanner" <CR>

Notice that although there were two options in the original command line (-0
and -n), only one of them (-0) is included in the change request. A change
request should specify only those options from the original command line for
which you want new values.

However, as this example also demonstrates, when changing the values in
a -0 option, you must not only request additional arguments or request dif-
ferent arguments in place of existing ones, but you must also repeat those
arguments that you want to preserve. (This requirement also applies to the -y
option.) Look again at the command lines in the the preceding example.
Notice that three arguments are given for the -o option: "length," "width,"
and "nobanner." Although only one argument to -0 is being changed (from
"length=50" to "length=60"), all three arguments are listed in the change
request. Repeating the "width" and "nobanner" arguments is necessary;
they are not otherwise preserved from the original command line.

USING THE FILE SYSTEM 3-85

Canceling a Request

To cancel a request to a printer, type the cancel command and specify the
request ID number. For example, to cancel the printing of the file letters
(request ID laser-6885), type

$ cancel laser-6885<CR>

Note that you can only cancel your own requests.

Getting Printer Status and Information: Ipstat

At some time after issuing a request for a print job, you may want to find
out whether it is proceeding properly or if problems have arisen. You can
check the status of all print requests by executing the lpstat command. When
issued alone, without any options, this command will tell you the status of all
requests you have made to the LP print service.

If you do not want to know about all print requests, you can specify a
subset of requests by listing the request ID numbers for those jobs on the
command line. (Whenever a print request is issued, a request ID number for
it is displayed on the screen.)

$ lpstat "laser-6885, printer-227" <CR>

In this example, you are asking for the status of two print requests with the ID
numbers "laser-6885" and "printer-227."

In addition, by using various options, you can request the following types
of information from lpstat:

B the status of local printers

B a list of available pre-printed forms

B a list of available character sets and print wheels
B a list of available printers

The rest of this section contains instructions for getting these types of informa-
tion by issuing the options of the lpstat command.

3-86 USER’S GUIDE

Printing Files

What is the Status of the Printers?

First, if you do not already know, you may want to find out the names of
the printers in your system. Which printers are available to you depends on
your UNIX System facility. Ask your system administrator for the names of
available line printers, or type the following command line:

$ lpstat -p all<CR>

A list of printers will be displayed, showing which printers are enabled and
which are disabled, as follows:

printer phil 1 enabled since Aug 22 16:00. available.
printer phil 3 disabled since Aug 26 22:00. available.

If you already have the names of the printers on your system, you can get
a status report on one or more of them by listing the appropriate names in
place of the argument all in the preceding example:

$ lpstat -p phil_1,phil_3<CR>

More detailed status reports can be obtained by adding the -1 option to
the Ipstat command line as follows:

$ lpstat -p phil_1,phil_3 -1<CR>

For each printer you have specified, a status report will be displayed. Each
report will include the following: the printer type, the types of forms
mounted on it, acceptable content types, the names of users allowed to use
the printer, the default dimensions for page size and character pitch, and so
on.

The system administrator may restrict access to certain printers. If you are
not allowed access to a printer, the phrase not available will appear.

What Forms are Available?
To find out which pre-printed forms are available on your system, issue
the lpstat command with the -f option and the argument all as follows:

$ Ipstat -f all

The command prints a list of all the forms that your system recognizes and
can handle. Forms that are mounted on printers in your system are identified
as follows:

form payroll check is available to you, mounted on phil 4

USING THE FILE SYSTEM 3-87

Printing Files

Forms that are recognized and can be handled by your system but are not
mounted on printers are listed as follows:
form payroll check is available to you

The system administrator may restrict access to certain forms. If you are not
allowed access to a form, the phrase is not available to you will appear.

If you want to know whether specific forms are available on your system,
list them after the —f option in place of the argument all, as in the following
example:

$ lpstat -f bill_1,bill_2

If you want detailed information about any or all the available forms, use
the -1 option with lpstat -f as follows:

$ lpstat -f all -1
A description of each form, including page length, page width, number of
pages, ribbon color, and so on, will be displayed.

Which Character Sets or Print Wheels are Available?

First, you may want to find out which character sets and /or print wheels
are available on your LP print system. Issue the Ipstat command with the
-S option and the argument all as follows:

$ Ipstat -S all<CR>

A list of all character sets and print wheels that can be used on printers in
your system will be displayed. If you want to check on whether one or more
specific character sets or print wheels are available, list it on the command line
in place of the argument all:

$ lIpstat -S "charset_1 wheel 3" <CR>

Enabling and Disabling a Printer

Whether or not you, as a computer user, are able to issue the commands to
NOTE| enable and disable printers depends on your system administrator. Because
these functions are administrative, it is left to the discretion of the system
I administrator to decide whether or not to make the enable and disable
commands available to users.

3-88 USER’S GUIDE

Printing Files

Before a printer is able to start printing files requested through the lp
command, it must be activated. You can activate a printer by issuing the
enable command with one argument: a list of printers.

$ enable printerl printer2 printer3<CR>

You can verify that you have enabled a printer by requesting a status
report for it (see "What is the Status of the Printers?" above).

If you do not want a printer to continue taking print requests, you must
deactivate it by issuing the disable command.

$ disable printerl<CR>
The printer will stop printing the current job and save it to complete later.

There are other ways to have your current job handled, however. You
may have the current job completed immediately, before the printer is dis-
abled, by using the -W option. On the other hand, you may not care whether
or not it is completed at all (either immediately or later). If so, specify the
-c option; any requests that are currently being printed will be cancelled and
thrown out as the printer is disabled. The -W and -c options are mutually
exclusive.

Finally, when you disable a printer, it is a good idea to record the reason
for your action so that other users may understand why a particular printer is
unavailable. To record your reason, add the -r option, followed by a reason,
to the command line. Be sure to enclose the words that make up your reason
in double quotes so that they will be treated as a single argument:

$ disable -r "disabling for reconfiguration" printer42b<CR>

The reason you provide will be displayed by the lpstat command when a user
requests a status report on that printer. (If you do not supply a reason, lpstat
will provide a default reason.)

USING THE FILE SYSTEM 3-89

Summary

Figure 3-29 summarizes the syntax and capabilities of the lp command.

Command Recap

Ip requests a paper copy of a file from a printer

command options arguments

Ip (as listed) file(s)

Options: -d dest

-y mode

-0 option

Description: The lp command requests that specified files be printed by
a printer, thus providing paper copies of the contents.

Allows you to choose dest as the printer or class
of printers to produce the paper copy. You do
not have to use this option if the administrator
has set a default destination or if you have set
the LPDEST environment variable.

Requests special printing modes, such as por-
trait or landscape. (This option requires a spe-
cial filter; check with your system administrator
to find out whether your system has an
appropriate filter.)

Defines page dimensions: length and width,
number of lines per inch, and number of char-
acters per inch (-0 performs other tasks, too;
see Ip(1) in the User’s /System Administrator's
Reference Manual).

Printing Files

Command Recap

lp requests a paper copy of a file from a printer

command options arguments
1p (as listed) file(s)

-P pages Specifies subset of pages to be printed. (This
option requires a special filter; check with your
system administrator to find out whether your
system has an appropriate filter.)

-n copies Specifies number of copies to be made.

-f form Specifies pre-printed form on which files are to
be printed.

-S char_set Specifies character set or print wheel to be
used.

=T type Specifies content type of print request.

-w Notifies you by screen message when print job
is complete.

-m Notifies you by mail when print job is com-

plete. ?-i req_id?T{ Allows you to change a
print request already issued (but not yet
printed).

-q level Allows you to specify a priority level for your
job request.

Remarks: You can cancel a request to the printer by typing cancel
and the request ID given to you by the system when
the request was acknowledged.

Check with your system administrator for information
on additional and/or different commands for printers
that may be available at your location.

Figure 3-29: Summary of the lp Command

USING THE FILE SYSTEM 3-91

Overview of the Tutorials

introduction 4-1
Text Editing 4-2
What is a Text Editor? 4-2
How Does a Text Editor Work? 4-2

m Text Editing Buffers 4-3

m Modes of Operation 4-4
Line Editor 4-4
Screen Editor 4-5
The Shell 4-7
Customizing Your Computing Environment 4-7
Programming in the Shell 4-9
Communicating Electronically 4-12

Programming in the System 413

introduction

This chapter serves as a transition between the overview that comprises
the first three chapters and the tutorials in the following four chapters.
Specifically, it provides an overview of the subjects covered in these tutorials:
text editing, working in both the standard shell and the C-shell, and commun-
icating electronically. Text editing is covered in Chapter 5, "Line Editor
Tutorial," and Chapter 6, *Screen Editor Tutorial." How to work and pro-
gram in the standard shell is taught in Chapter 7, *Shell Tutorial," and
Chapter 8, "C-Shell Tutorial," illustrates how to work and program in the C-
shell. Finally, methods of electronic communication are covered in Chapter 9,
" Communication Tutorial.”

OVERVIEW OF THE TUTORIALS 4-1

Text Editing

Using the file system is a way of life in a UNIX System environment.
This section will teach you how to create and modify files with a software tool
called a text editor. The section begins by explaining what a text editor is and
how it works. Then it introduces two types of text editors supported on the
UNIX System: the line editor, ed, and the screen editor, vi (short for visual
editor). A comparison of the two editors is also included. For detailed infor-
mation about ed and vi, see Chapters 5 and 6.

What is a Text Editor?

Whenever you revise a letter, memo, or report, you must perform one or
more of the following tasks: insert new or additional material, delete
unneeded material, transpose material (sometimes called cutting and pasting),
and, finally, prepare a clean, corrected copy. Text editors perform these tasks
at your direction, making writing and revising text much easier and quicker
than if done by hand.

The UNIX System text editors, like the UNIX System shell, are interactive
programs; they accept your commands and then perform the requested func-
tions. From the shell’s point of view, the editors are executable programs.

A major difference between a text editor and the shell, however, is the set
of commands that each recognizes. All the commands introduced up to this
point belong to the shell’s command set. A text editor has its own distinct set
of commands that allow you to create, move, add, and delete text in files, as
well as acquire text from other files.

How Does a Text Editor Work?

To understand how a text editor works, you need to understand the
environment created when you use an editing program and the modes of
operation understood by a text editor.

4-2 USER’S GUIDE

Text Editing -

Text Editing Buffers

When you use a text editor to create a new file or modify an existing one,
you first ask the shell to put the editor in control of your computing session.
As soon as the editor takes over, it allocates a temporary work space called
the editing buffer; any information that you enter while editing a file is stored
in this buffer where you can modify it.

Because the buffer is a temporary work space, any text you enter and any
changes you make to it are also temporary. The buffer and its contents will
exist only as long as you are editing. If you want to save the file, you must
tell the text editor to write the contents of the buffer into a file. The file is
then stored in the computer’s memory. If you do not, the buffer’s contents
will disappear when you leave the editing program. To prevent this from
happening, the text editors send you a reminder to write your file if you
attempt to end an editing session without doing so.

If you have made a critical mistake or are unhappy with the edited ver-
NOTE[sion, you can choose to leave the editor without writing the file. By
doing so, you leave the original file intact; the edited copy disappears.

Regardless of whether you are creating a new file or updating an existing
one, the text in the buffer is organized into lines. A line of text is simply a
series of characters that appears horizontally across the screen and is ended
when you press the <RETURN> key. Occasionally, files may contain a line
of text that is too long to fit on the terminal screen. Some terminals automati-
cally display the continuation of the line on the next row of the screen; others
do not.

OVERVIEW OF THE TUTORIALS 4-3

Text Editing

Modes of Operation

Text editors are capable of understanding two modes of operation: com-
mand mode and text input mode. When you begin an editing session, you
will be placed automatically in command mode. In this mode you can move
around in a file, search for patterns in it, or change existing text. However,
you cannot create text while you are in command mode. To do this, you must
be in text input mode. While you are in this mode, any characters you type
are placed in the buffer as part of your text file. When you have finished
entering text and want to run editing commands again, you must return to
command mode.

Because a typical editing session involves moving back and forth between
these two modes, you may sometimes forget which mode you are working in.
You may try to enter text while in command mode or a command while in
input mode. This is something even experienced users do from time to time.
It will not take long to recognize your mistake and determine the solution
after you complete the tutorials in Chapters 5 and 6.

Line Editor

The line editor, accessed by the ed command, is a fast, versatile program
for preparing text files. It is called a line editor because it manipulates text on
a line-by-line basis. This means you must specify, by line number, the line
containing the text you want to change. Then ed prints the line on the screen
where you can modify it.

This text editor provides commands with which you can change lines,
print lines, read and write files, and enter text. In addition, you can invoke
the line editor from a shell program; something you cannot do with the screen
editor. (See Chapter 7 for information on basic shell programming tech-
niques.)

The line editor (ed) works well on video display terminals and paper
printing terminals. It will also accommodate you if you are using a slow-
speed telephone line. (The visual editor, vi, can be used only on video
display terminals.) Refer to Chapter 5, "Line Editor Tutorial," for instructions
on how to use ed. Also see Appendix C for a summary of line editor com-
mands.

4-4 USER’S GUIDE

Text Editing

Screen Editor

The screen editor, accessed by the vi command, is a display-oriented,
interactive software tool. It allows you to view the file you are editing a page
at a time. This editor works most efficiently when used on a video display
terminal operating at 1200 or higher baud.

For the most part, you modify a file (by adding, deleting, or changing text)
by positioning the cursor at the point on the screen where the modification is
to be made and then making the change. The screen editor immediately
displays the results of your editing; you can see the change you made in the
context of the surrounding text. Because of this feature, the screen editor is
considered more sophisticated than the line editor.

Furthermore, the screen editor offers a choice of commands. For example,
a number of screen editor commands allow you to move the cursor around a
file. Other commands scroll the file up or down on the screen. Still other
commands allow you to change existing text or to create new text. In addition
to its own set of commands, the screen editor can access line editor com-
mands.

The trade-off for the screen editor’s speed, visual appeal, efficiency, and
power is the heavy demand it places on the computer’s processing time.
Every time you make a change, no matter how simple, vi must update the
screen. Refer to Chapter 6, "Screen Editor Tutorial,* for instructions on how
to use vi. Appendix D contains a summary of screen editor commands, and
Figure 4-1 compares the features of the line editor (ed) and the screen editor
(vi).

OVERVIEW OF THE TUTORIALS 4-5

Text Editing

mands you must learn
to use ed.

Feature Line Editor (ed) Screen Editor (vi)

Recommended Video display or Video display.

terminal type paper-printing.

Speed Accommodates high- Works best via high-
and low-speed data speed data transmission
transmission lines. lines (1200+ baud).

Versatility Can be specified to Must be used interac-
run from shell scripts tively during editing ses-
as well as used during sions.
editing sessions.

Sophistication Changes text quickly. Changes text easily.
Uses comparatively However, can make
small amounts of pro- heavy demands on com-
cessing time. puter resources.

Power Provides a full set of Provides its own editing
editing commands. commands and recog-
Standard UNIX Sys- nizes line editor com-
tem text editor. mands as well.

Advantages There are fewer com- vi allows you to see the

effects of your editing in
the context of a page of
text, immediately.
(When you use the ed
editor, making changes
and viewing the results
are separate steps.)

Figure 4-1: Comparison of Line and Screen Editors (ed and vi)

4-6 USER’S GUIDE

The Shell

Every time you log in to the UNIX System, you start communicating with
the shell and continue to do so until you log off the system. However, while
you are using a text editor, your interaction with the shell is suspended; it
resumes as soon as you stop using the editor.

The shell is much like other programs, except that instead of performing
one job, as cat or Is does, it is central to your interactions with the UNIX Sys-
tem. The shell’s primary function is to act as a command interpreter between
you and the computer system. As an interpreter, the shell translates your
requests into language the computer understands, calls requested programs
into memory, and executes them.

This section introduces methods of using the shell that enhance your abil-
ity to use system features. In addition to using it to run a single program, you
may also use the shell to

B interpret the name of a file or a directory you enter in an abbreviated
way using a type of shell shorthand

B redirect the flow of input and output of the programs you run

B execute multiple programs simultaneously or in a pipeline format

B tailor your computing environment to meet your individual needs

In addition to being the command language interpreter, the shell is a pro-

gramming language. For detailed information on how to use the shell as a
command interpreter and a programming language, refer to Chapter 7.

Customizing Your Computing Environment

This section deals with another control provided by the shell: your
environment. When you log in to the UNIX System, the shell automatically
sets up a computing environment for you. The default environment set up by
the shell includes these variables:

HOME your login directory
LOGNAME your login name

OVERVIEW OF THE TUTORIALS 4-7

The Shell

PATH route the shell takes to search for executable files or com-
mands (typically PATH=:/bin:/usr/bin)

The PATH variable tells the shell where to look for the executable pro-
gram invoked by a command. Therefore, it is used every time you issue a
command. If you have executable programs in more than one directory, you
will want all of them to be searched by the shell to make sure every command
can be found.

You can use the default environment supplied by your system or you can
tailor an environment to meet your needs. If you choose to modify any part
of your environment, you can use either of two methods to do so. If you
want to change a part of your environment only for the duration of your
current computing session, specify your changes in a command line (see
Chapter 7 for details). However, if you want to use a different environment
(not the default environment) regularly, you can specify your changes in a file
that will set up the desired environment for you automatically every time you
log in. This file must be called .profile and must be located in your home
directory.

The .profile typically performs some or all of the following tasks: checks
for mail; sets data parameters, terminal settings, and tab stops; assigns a char-
acter or character string as your login prompt; and assigns the erase and kill
functions to keys. You can define as few or as many tasks as you want in
your .profile. You can also change parts of it at any time. For instructions on
modifying a .profile, see "Modifying Your Login Environment" in Chapter 7.

Now check to see whether or not you have a .profile. If you are not
already in your home directory, cd to it. Then examine your .profile by issu-
ing this command:

cat .profile

If you have a .profile, its contents will appear on your screen. If you do not
have a .profile you can create one with a text editor, such as ed or vi. (See
*Modifying Your Login Environment" in Chapter 7 for instructions.)

4-8 USER’S GUIDE

The Shell

Programming in the Shell

The shell is not only the command language interpreter but also a com-
mand level programming language. This means that instead of always using
the shell strictly as a liaison between you and the computer, you can also pro-
gram it to repeat sequences of instructions automatically. To do this, you
must create executable files containing lists of commands. These files are
called shell procedures or shell scripts. Once you have a shell script for a par-
ticular task, you can simply request that the shell read and execute the con-
tents of the script whenever you want to perform that task.

Like other programming languages, the shell provides such features as
variables, control structures, subroutines, and parameter passing. These
features enable you to create your own tools by linking together system com-
mands.

For example, you can combine three UNIX System programs (the date,
who, and wc commands) into a simple shell script called users that tells you
the current date and time, and how many users are working on your system.
If you use the vi editor (described in Chapter 6) to create your script, you can
follow this procedure. First, create the file users with the editor by typing

vi users<CR>

The editor will draw a blank page on your screen and wait for you to enter
text.

OVERVIEW OF THE TUTORIALS 4-9

The Shell

. h

trlrtittrtrtll

"{sers“ [New file] /

Enter the three UNIX System commands on one line:

date; who | we -1
Then write and quit the file:
wq

Make users executable by adding execute permission with the chmod com-
mand:

chmod ug+x users<CR>

Now try running your new command. The following screen shows the kind
of output you will get:

4-10 USER’S GUIDE

The Shell

/

$ users<CR>

Sat Mar 1 16:40:12 EST 1986
4

$

-

The output tells you that four users were logged in on the system when
you typed the command at 16:40 on Saturday, March 1, 1986.

For step-by-step instructions on writing shell scripts and information
about more sophisticated shell programming techniques, see Chapter 7, "Shell
Tutorial. *

OVERVIEW OF THE TUTORIALS 4-11

Communicating Electronically

As a UNIX System user, you can send messages or transmit information
stored in files to other users who work on your system or another UNIX Sys-
tem. To do so, you must be logged in on a UNIX System that is capable of
communicating with the UNIX System to which you want to send informa-
tion. The command you use to send information depends on what you are
sending. This guide introduces you to these communication programs:

mail

mailx

uucp

uuto/uupick

uux

This command allows you to send messages or files to
other UNIX System users, using their login names as
addresses. It also allows you to receive messages sent by
other users. mail holds messages and lets the recipients
read them at their convenience.

This command is a sophisticated, more powerful version of
mail. It offers a number of options for managing the elec-
tronic mail you send and receive.

This command is used to send files from one UNIX System
to another. (Its name is an acronym for UNIX to UNIX
System copy.) You can use uucp to send a file to a direc-
tory you specify on a remote computer. When the file has
been transferred, the owner of the directory is notified of
its arrival by mail.

These commands are used to send and retrieve files. You
can use the uuto command to send a file(s) to a public
directory; when it is available, the recipient is notified by
mail that the file(s) has arrived. The recipient then can use
the uupick command to copy the file(s) from the public
directory to a directory of choice.

This command lets you execute commands on a remote
computer. It gathers files from various computers, executes
the specified command on these files, and sends the stan-
dard output to a file on the specified computer.

Chapter 9 offers tutorials on each of these commands.

4-12 USER’S GUIDE

Programming in the System

The UNIX System provides a powerful and convenient environment for
programming and software development, using the C programming language,
FORTRAN-77, BASIC, Pascal, and COBOL. As well, the UNIX System pro-
vides some sophisticated tools designed to make software development easier
and to provide a systematic approach to programming.

For information on available UNIX System programming languages, see
the Product Overview or Documentation Roadmap.

For information on the general topic of programming in the UNIX System
environment, see the Programmer’s Guide, which provides tutorials on the fol-
lowing five tools:

SCCS Source Code Control System

make a program that maintains programs

lex a program that generates programs for simple lexical tasks
yacc a program that generates parser programs

OVERVIEW OF THE TUTORIALS 4-13

Line Editor Tutorial (ed)

introducing the Line Editor 5-1
Suggestions for Using this Tutorial 5-2
Getting Started 5-3
How to Enter ed 5-3
How to Create Text 5-4
How to Display Text 5-5
How to Delete a Line of Text 5-7
How to Move Up or Down in the File 5-9
How to Save the Buffer Contents in a File 5-10
How to Quit the Editor 5-11
Exercise 1 5-14
General Format of ed Commands 5-15
Line Addressing 5-16
Numerical Addresses 5-16
Symbolic Addresses 5-17

@ Symbolic Address of the Current Line 5-17

@ Symbolic Address of the Last Line 5-18

m Symbolic Address of the Set of All Lines 5-19

Line Editor Tutorial {ed)

= Symbolic Address of the Current Line through

the Last Line 5-20
m Relative Addresses: Adding or Subtracting Lines
from the Current Line 5-20
m Character String Addresses 5-22
m Specifying a Range of Lines , 5-25
m Specifying a Global Search 5-27
Exercise 2 5-30
Displaying Text in a File 5-31
Displaying Text Alone: the p Command 5-31
Displaying Text with Line Addresses: the n
Command 5-32
Creating Text 5-34
Appending Text: the a Command 5-34
Inserting Text: the i Command 5-37
Changing Text: the ¢ Command 5-39
Exercise 3 5-42
Deleting Text 5-44
Deleting Lines: the d Command 5-44
Undoing the Previous Command: the u Command 5-45
How to Delete in Text Input Mode 5-47
m Escaping the Delete Function 5-47

Substituting Text 5-49

Line Editor Tutorial (ed)

Substituting on the Current Line 5-50
Substituting on One Line 5-51
Substituting on a Range of Lines 5-52
Global Substitution 5-54
Exercise 4 5-58
Special Characters 5-60
Exercise 5 5-71
Moving Text 5-73
Move Lines of Text 5-73
Copy Lines of Text 5-76
Joining Contiguous Lines 5-79
Write Lines of Text to a File 5-80
Problems 5-81
Read in the Contents of a File 5-82
Exercise 6 5-84
Other Useful Commands and

Information 5-85
Help Commands 5-85
Display Nonprinting Characters 5-88
The Current File Name 5-89
Escape to the Shell 5-91
Recovering From System Interrupts 5-92

Conclusion

5-93

Line Editor Tutorial (ed)

Exercise 7 5-95
Answers to Exercises 5-96
Exercise 1 5-96
Exercise 2 5-98
Exercise 3 5-101
Exercise 4 5-104
Exercise 5 5-107
Exercise 6 5-110
Exercise 7 5-113

Introducing the Line Editor

This chapter is a tutorial on the line editor, ed. ed is versatile and
requires little computer time to perform editing tasks. It can be used on any
type of terminal. The examples of command lines and system responses in
this chapter will apply to your terminal, whether it is a video display terminal
or a paper printing terminal. The ed commands can be typed in at your ter-
minal or they can be used in a shell program (see Chapter 7, " Shell
Tutorial").

ed is a line editor; during editing sessions it is always pointing at a single
line in the file called the current line. When you access an existing file, ed
makes the last line the current line so you can start appending text easily.
Unless you specify the number of a different line or range of lines, ed will
perform each command you issue on the current line. In addition to letting
you change, delete, or add text on one or more lines, ed allows you to add
text from another file to the buffer.

During an editing session with ed, you are altering the contents of a file in
a temporary buffer, where you work until you have finished creating or
correcting your text. When you edit an existing file, a copy of that file is
placed in the buffer and your changes are made to this copy. The changes
have no effect on the original file until you instruct ed to move the contents of
the buffer into the file by using the write command.

After you have read through this tutorial and tried the examples and exer-
cises, you will have a good working knowledge of ed. The following basics
are included:

B entering the line editor ed, creating text, writing the text to a file, and
quitting ed

addressing particular lines of the file and displaying lines of text
deleting text
substituting new text for old text

using special characters as shortcuts in search and substitute patterns

moving text around in the file, as well as other useful commands and
information

LINE EDITOR TUTORIAL (ed) 5-1

Suggestions for Using this Tutorial

The commands discussed in each section are reviewed at the end of that
section. A summary of all ed commands introduced in this chapter is found
in Appendix C, where they are listed by topic.

At the end of some sections, exercises are given so you can experiment
with the commands. The answers to all exercises are at the end of this
chapter.

The notational conventions used in this chapter are those used throughout
this Guide. They are described in the Preface.

5-2 USER’S GUIDE

Getting Started

The best way to learn ed is to log in to the UNIX System and try the
examples as you read this tutorial. Do the exercises; do not be afraid to exper-
iment. As you experiment and try out ed commands, you will learn a fast and
versatile method of text editing.

In this section you will learn the commands used to

M enter ed

append text

move up or down in the file to display a line of text
delete a line of text

write the buffer to a file

quit ed

How to Enter ed

To enter the line editor, type ed and a file name:
ed filename<CR>
Choose a name that reflects the contents of the file. If you are creating a
new file, the system responds with a question mark and the file name:

$ ed new-file<CR>
new-file

If you edit an existing file, ed responds with the number of characters in the
file:

$ ed old-file<CR>
235

LINE EDITOR TUTORIAL (ed) 5-3

Getting Started

How to Create Text

The editor receives two types of input from your terminal: editing com-
mands and text. To avoid confusing them, ed recognizes two modes of edit-
ing work: command mode and text input mode. When you work in com-
mand mode, any characters you type are interpreted as commands. In input
mode, any characters you type are interpreted as text to be added to a file.

Whenever you enter ed, you are put into command mode. To create text
in your file, change to input mode by typing a (for append) on a line by itself
and pressing the <RETURN> key:

a<CR>

Now you are in input mode; any characters you type from this point will be
added to your file as text. Be sure to type a on a line by itself; if you do not,
the editor will not execute your command.

After you have finished entering text, type a period on a line by itself.
This takes you out of text input mode and returns you to command mode.
Now you can give ed other commands.

The following example shows how to enter ed, create text in a new file
called try-me, and quit text input mode with a period:

Ctry-me<CR>

? try-me

a<CR>

This is the first line of text.<CR>
This is the second line,<CR>
and this is the third line.<CR>
<CR>

5-4 USER’S GUIDE

Getting Started

Notice that ed does not give a response to the period; it just waits for a
new command. If ed does not respond to a command, you may have forgot-
ten to type a period after entering text and may still be in text input mode.
Type a period and press the <RETURN> key at the beginning of a line to
return to command mode. Now you can execute editing commands. For
example, if you have added some unwanted characters or lines to your text,
you can delete them once you have returned to command mode.

How to Display Text

To display a line of a file, type p (for print) on a line by itself. The p
command prints the current line, that is, the last line on which you worked.
Continue with the previous example. You have just typed a period to exit
input mode. Now type the p command to see the current line:

Cdtry-me<CR>

? txyme

a<CR>

This is the first line of text.<CR>
This is the second line,<CR>
and this is the third line.<CR>
<CR>

p<CR>

and this is the third line.

/

You can print any line of text by specifying its line number (also known
as the address of the line). The address of the first line is 1; of the second, 2;
and so on. For example, to print the second line in the file try-me, type

2p<CR>
This is the second line,

LINE EDITOR TUTORIAL (ed) 5-5

Getting Started

You can also use line addresses to print a span of lines by specifying the
addresses of the first and last lines of the section you want to see, separated
by a comma. For example, to print the first three lines of a file, type

1,3p<CR>

You can even print the whole file this way. For example, you can display
a twenty-line file by typing 1,20p. If you do not know the address of the last
line in your file, you can substitute a $, the ed symbol for the address of the
last line. (These conventions are discussed in detail in the section "Line
Addressing. ")

1,$p<CR>

This is the first line of text.
This is a secand line,

and this is the third line.

If you forget to quit text input mode with a period, you will add text that
you do not want. Try to make this mistake. Add another line of text to your
try-me file, and then try the p command without quitting text input mode.
Then quit text input mode and print the entire file:

5-6 USER’S GUIDE

and this is the third line.
a<CR>

This is the fourth line.<CR>
p<CR>

<CR>

1,5p<CR>

This is the first line of text.
This is the second line,
and this is the third line.
This is the fourth line.

P

Getting Started

/

What did you get? The next section will explain how to delete the unwanted

line.

How to Delete a Line of Text

To delete text, you must be in the command mode of ed. Typing d
deletes the current line. Try this command on the last example to remove the
unwanted line containing p. Display the current line (p command), delete it
(d command), and display the remaining lines in the file (p command). Your

screen should look like this:

LINE EDITOR TUTORIAL (ed)

5-7

Getting Started

P

d<CR>

1,$p<CR>

This is the first line of text.
This is a second line,

and this is the third line.

(is the fourth line. /

ed does not send you any messages to confirm that you have deleted text.
The only way you can verify that the d command has succeeded is by printing
the contents of your file with the p command. To receive verification of your
deletion, you can put the d and p commands together on one command line.
If you repeat the previous example with this command, your screen should
look like this:

p<CR>

p

dp<CR>

This is the fourth line.

Getting Started

How to Move Up or Down in the File

To display the line below the current line, press the <RETURN> key
while in command mode. If there is no line below the current line, ed
responds with a ? and continues to treat the last line of the file as the current
line. To display the line above the current line, press the minus key (-).

The following screen provides examples of how both of these commands
are used:

(o N

This is the fourth line.
-<CR>

and this is the third line.
-<CR>

This is a second line,

-<CR>

This is the first line of text.
<CR>

This is a second line,

<CR>

\\ij:iﬁsiSEMauﬁxdlﬁw. —’////

Notice that by typing ~<CR> or <CR>, you can display a line of text without
typing the p command. These commands are also line addresses. Whenever
you type a line address and do not follow it with a command, ed assumes that
you want to see the line you have specified. Experiment with these com-
mands: create some text, delete a line, and display your file.

LINE EDITOR TUTORIAL (ed) 5-9

Getting Started

How to Save the Buffer Contents in a File

As we discussed earlier, during an editing session, the system holds your
text in a temporary storage area called a buffer. When you have finished edit-
ing, you can save your work by writing it from the temporary buffer to a per-
manent file in the computer’s memory. By writing to a file, you are simply
putting a copy of the contents of the buffer into the file. The text in the buffer
is not disturbed, and you can make further changes to it.

It is a good idea to write the buffer text into your file frequently. If an inter-
NOTE| rupt occurs (such as an accidental loss of power to your terminal), you may
lose the material in the buffer, but you will not lose the copy written to

I your file.

To write your text to a file, enter the w command. You do not need to
specify a file name; simply type w and press the <RETURN> key. If you
have just created new text, ed creates a file for it with the name you specified
when you entered the editor. If you have edited an existing file, the w com-
mand writes the contents of the buffer to that file by default.

If you prefer, you can specify a new name for your file as an argument on
the w command line. Be careful not to use the name of a file that already
exists unless you want to replace its contents with the contents of the current
buffer. ed will not warn you about an existing file; it will simply overwrite
that file with your buffer contents.

For example, if you decide you would prefer the try-me file to be called
stuff, you can rename it:

§-10 USER’S GUIDE

Getting Started

Cdtry-me<CR>

? try-me

a<CR>

This is the first line of text.<CR>
This is the second line,<CR>
and this is the third line.<CR>

w stuff <CR>
85

Notice the last line of the screen. This is the number of characters in your
text. When the editor reports the number of characters in this way, the write
.command has succeeded.

How to Quit the Editor

When you have completed editing your text, write it from the buffer into a
file with the w command. Then leave the editor and return to the shell by

typing q (for quit):

w<CR>
85
q<CR>

LINE EDITOR TUTORIAL (ed) 5-11

Getting Started

The system responds with a shell prompt. At this point, the editing buffer
vanishes. If you have not executed the write command, your text in the
buffer has also vanished. If you did not make any changes to the text during
your editing session, no harm is done. However, if you did make changes,
you could lose your work in this way. Therefore, if you type q after changing
the file without writing it, ed warns you with a ?. You then have a chance to
write and quit:

If, instead of writing, you insist on typing q a second time, ed assumes
you do not want to write the buffer’s contents to your file and returns you to
the shell. Your file is left unchanged and the contents of the buffer are wiped
out.

You now know the basic commands needed to create and edit a file using
ed. Figure 5-1 summarizes these commands.

§-12 USER’S GUIDE

Getting Started

Command Function
ed file enters ed to edit file
a appends text after the current line
quits text input mode and returns to ed com-
mand mode
P prints text on your terminal
d deletes text
<CR> displays the next line in the buffer (literally,

carriage return)

+ displays the next line in the buffer

- displays the previous line in the buffer
writes the contents of the buffer to the file

q quits ed and returns to the shell

Figure 5-1: Summary of ed Editor Commands

LINE EDITOR TUTORIAL (ed) 5-13

Exercise 1

Answers for all the exercises in this chapter are found at the end of the

chapter. However, they are not necessarily the only possible correct answers.
Any method that enables you to perform a task specified in an exercise is
correct, even if it does not match the answer given.

1-1.

1-3.

Enter ed with a file named junk. Create a line of text containing
Hello World, write it to the file, and quit ed.

Now use ed to create a file called stuff. Create a line of text contain-
ing two words, Goodbye world, write this text to the file, and quit ed.

Enter ed again with the file named junk. What was the editor’s
response? Was the character count for it the same as the character
count reported by the w command in Exercise 1-1?

Display the contents of the file. Is that your file junk?

How can you return to the shell? Try q without writing the file. Why
do you think the editor allowed you to quit without writing to the
buffer?

Enter ed with the file junk. Add a line:
Wendy’s horse came through the window.

Since you did not specify a line address, where do you think the line
was added to the buffer? Display the contents of the buffer. Try quit-
ting the buffer without writing to the file. Try writing the buffer to a
different file called stuff. Notice that ed does not warn you that a file
called stuff already exists. You have erased the contents of stuff and
replaced them with new text.

5-14 USER’S GUIDE

General Format of ed Commands

ed commands have a simple and regular format:
[address1[,address2]jcommand[argument]<CR>

The brackets around address1, address2, and argument show that these are
optional. The brackets are not part of the command line.

address1,address2
The addresses give the position of lines in the buffer.
Address1 through address2 gives you a range of lines that
will be affected by the command. If address2 is omitted,
the command will affect only the line specified by
address1.

command The command is one character and tells the editor what
task to perform.

argument The arguments to a command are those parts of the text
that will be modified, a file name, or another line
address.

This format will become clearer to you when you begin to experiment
with the ed commands.

LINE EDITOR TUTORIAL (ed) 5-15

Line Addressing

A line address is a character or group of characters that identifies a line of
text. Before ed can execute commands that add, delete, move, or change text,
it must know the line address of the affected text. Type the line address
before the command:

[address1),[address2]command <CR>
Both address1 and address2 are optional. Specify address1 alone to request
action on a single line of text; specify both address1 and address2 to request a

span of lines. If you do not specify any address, ed assumes that the line
address is the current line.

The most common ways to specify a line address in ed are

B by entering line numbers (assuming that the lines of the files are con-
secutively numbered from 1 to n, beginning with the first line of the
file)

M Dby entering special symbols for the current line, last line, or a span of
lines

B by adding or subtracting lines from the current line

B by searching for a character string or word on the desired line

You can access one line or a span of lines, or make a global search for all

lines containing a specified character string. (A character string is a set of suc-
cessive characters, such as a word.)

Numerical Addresses

ed gives a numerical address to each line in the buffer. The first line of
the buffer is 1, the second line is 2, and so on, for each line in the buffer.
Any line can be accessed by ed with its line address number. To see how line
numbers address a line, enter ed with the file try-me and type a number:

5-16 USER’S GUIDE

Line Addressing

$ ed try-me<CR>

110

1<CR>

This is the first line of text.
3<CR>

and this is the third line.

Remember that p is the default command for a line address specified
without a command. Because you gave a line address, ed assumes you want
that line displayed on your terminal.

Numerical line addresses frequently change in the course of an editing
session. Later in this chapter you will create lines, delete lines, or move a line
to a different position. This will change the line address numbers of some
lines. The number of a specific line is always the current position of that line
in the editing buffer. For example, if you add five lines of text between line 5
and 6, line 6 becomes line 11. If you delete line 5, line 6 becomes line 5.

Symbolic Addresses

Symbolic Address of the Current Line

The current line is the line most recently acted on by any ed command. If
you have just entered ed with an existing file, the current line is the last line
of the buffer. The symbol for the address of the current line is a period.
Therefore, you can display the current line simply by typing a period (.) and
pressing the <RETURN> key.

Try this command in the file try-me:

LINE EDITOR TUTORIAL (ed) 5-17

Line Addressing

$ ed try-me<CR>

110

<CR>

This is the fourth line.

The . is the address. Because a command is not specified after the period, ed
executes the default command p and displays the line found at this address.

To get the line number of the current line, type the following command:
=<CR>

ed responds with the line number. For example, in the try-me file, the
current line is 4:

<CR>
This is the fourth line.
=<CR>

4

Symbolic Address of the Last Line

The symbolic address for the last line of a file is the $ sign. To verify that
the $ sign accesses the last line, access the try-me file with ed and specify this
address on a line by itself. (Keep in mind that when you first access a file,
your current line is always the last line of the file.)

5-18 USER’S GUIDE

Line Addressing

$ ed try-me<CR>

110

<CR>

This is the fourth line.
$<CR>

This is the fourth line.

Remember that the $ address within ed is not the same as the $ prompt from
the shell.

Symbolic Address of the Set of All Lines

When used as an address, a comma (,) refers to all the lines of a file, from
the first through the last line. It is an abbreviated form of the string men-
tioned earlier that represents all lines in a file, 1,$. Try this shortcut to print
the contents of try-me:

P<CR>

This is the first line of text.
This is the secand line,

and this is the third line.
This is the fourth line.

LINE EDITOR TUTORIAL (ed) 5-19

Line Addressing

Symbolic Address of the Current Line through the Last
Line

The semicolon (;) represents a set of lines, beginning with the current line
and ending with the last line of a file. It is equivalent to the symbolic address
.$. Try it with the file try-me:

2p<CR>

This is the second line,
;p<CR>

This is the second line,
and this is the third line.
This is the fourth line.

Relative Addresses: Adding or Subtracting Lines from the
Current Line

You may often want to address lines with respect to the current line. You
can do this by adding or subtracting a number of lines from the current line
with a plus (+) or a minus (-) sign. Addresses derived in this way are called
relative addresses. To experiment with relative line addresses, add several
more lines to your file try-me, as shown in the following screen. Also, write
the buffer contents to the file so your additions will be saved:

5-20 USER’S GUIDE

Line Addressing

Ctry—me<CR>

110

<CR>
This is the fourth line.
a<CR>
five<CR>
six<CR>
seven<CR>
eight<CR>
nine<CR>
ten<CR>
<CR>
w<CR>
140

Now try adding and subtracting line numbers from the current line:

4<CR>

This is the fourth line.
+3<CR>

seven

-5<CR>

This is a second line,

What happens if you ask for a line address that is greater than the last line, or
if you try to subtract a number greater than the current line number?

LINE EDITOR TUTORIAL (ed) 5-21

Line Addressing

- < A

five
-6<CR>
?
=<CR>
5
+7<CR>
?

. /

Notice that the current line remains at line 5 of the buffer. The current line
changes only if you give ed a correct address. The ? response means there is
an error. "Other Useful Commands and Information, " at the end of this
chapter, explains how to get a help message that describes the error.

Character String Addresses

You can search forward or backward in the file for a line containing a par-
ticular character string. To do so, specify a string preceded by a delimiter.

Delimiters mark the boundaries of character strings; they tell ed where a
string starts and ends. The most common delimiter is / (slash) used in the
following format:

/pattern

When you specify a pattern preceded by a / (slash), ed begins at the current
line and searches forward (down through subsequent lines in the buffer) for
the next line containing the pattern. When the search reaches the last line of
the buffer, ed wraps around to the beginning of the file and continues its
search from line 1 to the line where you began the search.

The following rectangle represents the editing buffer. The path of the
arrows shows the search initiated by a / :

5-22 VUSER’S GUIDE

Line Addressing

-
|
|
t

. o

first line

current line

last line

R L LT e,

r
[}
|
]
L d

Another useful delimiter is 2. If you specify a pattern preceded by a ?,
(?pattern), ed begins at the current line and searches backward (up through
previous lines in the buffer) for the next line containing the pattern. If the
search reaches the first line of the file, it will wrap around and continue
searching upward from the last line of the file to the line where you began the
search.

The following rectangle represents the editing buffer. The path of the
arrows shows the search initiated by a ? :

r==-1
| 1

]

: first line

'

1

1

i current line
]

]

]

]

0

]

: |__last line

i

Lewad

LINE EDITOR TUTORIAL (ed) 5-23

Line Addressing

Experiment with these two methods of requesting address searches on the
file try-me. What happens if ed does not find the specified character string?

Cry-me<CR> \

140

<CR>

ten

first<CR>

This is the first line of text.
/fourth<CR>

This is the fourth line.
/junk<CR>

?

N /

In this example, ed found the specified strings first and fourth. Then,
because no command was given with the address, it executed the p command
by default, displaying the lines it had found. When ed cannot find a spec1f1ed
string (such as junk), it responds with a ? .

You can also use the / (slash) to search for multiple occurrences of a pat-
tern without typing it more than once. First, specify the pattern by typing
/pattern, as usual. After ed has printed the first occurrence, it waits for
another command. Type / and press the <RETURN> key; ed will continue
to search forward through the file for the last pattern specified. Try this com-
mand by searching for the word line in the file try-me:

5-24 USER’S GUIDE

Line Addressing

(=)

This is the first line of text.
/line<CR>

This is the second line,
/<CR>

and this is the third line.
/<CR>

This is the fourth line.
/<CR>

This is the first line of text.

/

Notice that after ed has found all occurrences of the pattern between the
line where you requested a search and the end of the file, it wraps around to
the beginning of the file and continues searching.

Specifying a Range of Lines

There are two ways to request a group of lines. You can specify a range
of lines, such as address1 through address2, or you can specify a global search
for all lines containing a specified pattern,

The simplest way to specify a range of lines is to use the line numbers of
the first and last lines of the range, separated by a comma. Place this address
before the command. For example, if you want to display lines 2 through 7 of
the editing buffer, give addressl as 2 and address2 as 7 in the following format:

2,7p<CR>
Try this on the file try-me:

LINE EDITOR TUTORIAL (ed) 5-25

Line Addressing

//:;;:;R>

This is the second line,
and this is the third line.
This is the fourth line.
five

six

seven

Did you try typing 2,7 without the p? What happened? If you do not add
the p command, ed prints only address2, the last line of the range of
addresses.

Relative line addresses can also be used to request a range of lines. Be
sure that address1 precedes address2 in the buffer. Relative addresses are cal-
culated from the current line, as the following example shows:

/

4<CR>

This is the fourth line
-2,+3p<CR>

This is the second line,
and this is the third line.
This is the fourth line.
five

six

_ /

5-26 USER’S GUIDE

Line Addressing

Specifying a Global Search

There are two commands that do not follow the general format of ed
commands: g and v. These are global search commands that specify
addresses with a character string (pattern). The g command searches for all
lines containing the string pattern and performs the command on those lines.
The v command searches for all lines that do not contain the pattern and per-
forms the command on those lines.

The general format for these commands is

g/pattern/command<CR>
v/pattern/command<CR>

Try these commands by using them to search for the word line in try-me:

g/line/p<CR>

This is the first line of text.
This is the second line,

and this is the third line.
This is the fourth line

@/;de

five
six
seven
eight
nine
ten

-

LINE EDITOR TUTORIAL (ed) 5-27

Line Addressing

Notice the function of the v command: it finds all the lines that do not
contain the word specified in the command line (line).

Once again, the default command for the lines addressed by g or v is p;
you do not need to include a p as the last delimiter on your command line.

g/line<CR>

This is the first line of text.
This is the second line,

and this is the third line.
This is the fourth line

However, if you are giving line addresses to be used by other ed commands,
you need to include beginning and ending delimiters. You can use any of the
methods discussed in this section to specify line addresses for ed commands.
Figure 5-2 summarizes the symbols and commands available for addressing
lines.

5-28 USER’S GUIDE

Line Addressing

Address Description
n the number of a line in the buffer
. the current line (the line most recently acted on by an ed
command)
= the command used to request the line number of the
current line
$ the last line of the file
, the set of lines from line 1 through the last line
; the set of lines from the current line through the last line
+n the line that is located # lines after the current line
-n the line that is located n lines before the current line
Jabc the command used to search forward in the buffer for the
first line that contains the pattern abc
?abc the command used to search backward in the buffer for
the first line that contains the pattern abc
g/abc the set of all lines that contain the pattern abc
v/abc the set of all lines that do not contain the pattern abc

Figure 5-2: Summary of Line Addressing

LINE EDITOR TUTORIAL (ed) 5-29

Exercise 2

2-1.

2-2,

2-4.
2-5.
2-6.

2-7.

Create a file called towns with the following lines:

My kind of town is

Chicago

Like being no where at all in
Toledo

I lost those little town blues in
New York

I lost my heart in

San Francisco

I lost $$ in

Las Vegas

Display line 3.

If you specify a range of lines with the relative address -2,+3p, what
lines are displayed ?

What is the current line number? Display the current line.
What does the last line say?
What line is displayed by the following request for a search?

2town<CR>
After ed responds, type this command alone on a line:
?<CR>

What happened?

Search for all lines that contain the pattern *in." Then search for all
lines that do not contain the pattern "in."

5-30 USER’S GUIDE

Displaying Text in a File

ed provides two commands for displaying lines of text in the editing
buffer: p and n.

Displaying Text Alone: the p Command
You have already used the p command in several examples. You are
probably now familiar with its general format:
[address1,address2]p<CR>

p does not take arguments. However, it can be combined with a substitution
command line. This will be discussed later in this chapter.

Experiment with the line addresses shown in Figure 5-3 on a file in your
home directory. Try the p command with each address and see if ed responds
as described in the figure.

LINE EDITOR TUTORIAL (ed) 5-31

Displaying Text in a File

Specify this Address Check for this Response
1,$p<CR> ed should display the entire file on
your screen.
-5p<CR> ed should move backward five lines

from the current line and display the
line found there.

+2p<CR> ed should move forward two lines from
the current line and display the line
found there.

1,/x/p<CR> ed displays the set of lines from line
one through the first line after the
current line that contains the character
x. It is important to enclose the letter x
between slashes so that ed can distin-
guish between the search pattern
address (x) and the ed command (p).

Figure 5-3: Sample Addresses for Displaying Text

Displaying Text with Line Addresses: the n
Command

The n command displays text and precedes each line with its numerical
line address. It is helpful when you are deleting, creating, or changing lines.
The general command line format for n is the same as that for p:

[address1,address2ln<CR>

Like p, n does not take arguments, but it can be combined with the substitute
command.

5-32 USER’S GUIDE

Displaying Text in a File

Try running n on the try-me file:

Gry-me<CR>

140

1,$n<CR>

1 This is the first line of text.
This is the second line,
and this is the third line.
This is the fourth line.
five

six

seven

eight

nine

__ /

Figure 5-4 summarizes the ed commands for displaying text.

=2 W OO dWN

Command Function
p displays specified lines of text in the editing buffer on
your screen
n displays specified lines of text in the editing buffer with
their numerical line addresses on your screen

Figure 5-4: Summary of Commands for Displaying Text

LINE EDITOR TUTORIAL (ed) 5-33

Creating Text

ed has three basic commands for creating new lines of text:
a append text
i insert text

¢ change text

Appending Text: the a Command

The append command, a, allows you to add text AFTER the current line
or a specified address in the file. You have already used this command in the
"Getting Started" section of this chapter. The general format for the append
command line is

[address1Ja<CR>

Specifying an address is optional. The default value of address1 is the current
line.

In previous exercises, you used this command with the default address.
Now try using different line numbers for address1. In the following example,
a new file called new-file is created. In the first append command line, the
default address is the current line. In the second append command line, line 1
is specified as address1. The lines are displayed with n so that you can see
their numerical line addresses. Remember, the append mode is ended by typ-
ing a period (.) on a line by itself.

5-34 USER’S GUIDE

Creating Text

cew-ﬁle<CR>

1
2
3

1

b wN

-

new—file

a<CR>

Create some lines
of text in

this file.

<CR>

1,$n<CR>

1la<CR>

This will be line 2<CR>
This will be line 3<CR>
<CR>

1,$n<CR>

Create some lines
of text in
this file.

Create some lines
This will be line 2
This will be line 3
of text in

this file.

Notice that after you append the two new lines, the line that was origi-
nally line 2 (of text in) becomes line 4.

You can take shortcuts to places in the file where you want to append text
by combining the append command with symbolic addresses. The following
three command lines allow you to move through and add to the text quickly
in this way:

.a<CR> appends text after the current line
$a<CR> appends text after the last line of the file
0a<CR> appends text before the first line of the file (at a symbolic

address called line 0)

LINE EDITOR TUTORIAL {(ed) 5-35

Creating Text

To try using these addresses, create a one-line file called lines and type
the examples shown in the following screens. (The examples appear in
separate screens for easy reference only; it is not necessary to access the lines
file three times to try each append symbol. You can access lines once and try
all three consecutively.)

$ ed lines<CR>

?lines

a<CR>

This is the current line.<CR>

<CR>

P<CR>

This is the current line,

.a<CR>

This line is after the current line.<CR>
<CR>

-1,.p<CR>

This is the current line.

This line is after the current line.

$a<CR>

This is the last line now.<CR>
<CR>

$<CR>

This is the last line now.

5-36 USER’S GUIDE

Creating Text

This is the first line now.<CR>
This is the second line now.<CR>
The line numbers change<CR>
as lines are added.<CR>

<CR>

1,4n<CR>

1 This is the first line now.
2 This is the secand line now.
3 The line mmbers change

4

Because the append command creates text after a specified address, the
last example refers to the line before line 1 as the line after line 0. To avoid
such circuitous references, use another command provided by the editor: the
insert command, i.

Inserting Text: the i Command

The insert command (i), allows you to add text BEFORE a specified line in
the editing buffer. The general command line format for i is the same as that
for a:

[address1]i<CR>

As with the append command, you can insert one or more lines of text. To
quit input mode, you must type a period (.) alone on a line.

Create a file called insert in which you can try the insert command (i):

LINE EDITOR TUTORIAL (ed) 5-37

Creating Text

CinserkClb

?insert
a<CR>
Line 1<CR>
Line 2<CR>
Line 3<CR>
Line 4<CR>
<CR>
w<CR>

69

Now insert one line of text above line 2 and another above line 1. Use the n
command to display all the lines in the buffer:

2i<CR>

This is the new line 2.<CR>
<CR>
1,$n<CR>
1 Line 1
2 This is the new line 2.
3 Line 2
4 Line 3
5 Line 4
1i<CR>
This is the beginning.<CR>
<CR>
1,$n<CR>
1 In the begimming
2 Line 1
3 Now this is line 2
4 Line 2
5 Line 3
6\ Line 4

5-38 USER’S GUIDE

Creating Text

Experiment with the insert command by combining it with symbolic line
addresses as follows:

B .i<CR>
B $i<CR>

Changing Text: the ¢c Command

The change text command (c) erases all specified lines and allows you to
create one or more lines of text in their place. Because ¢ can erase a range of
lines, the general format for the command line includes two addresses:

[address1,address2]c<CR>

The change command puts you in text input mode. To leave input mode,
type a period alone on a line.

Address] is the first and address2 is the last of the range of lines to be
replaced by new text. To erase one line of text, specify only address1. If no
address is specified, ed assumes the current line is the line to be changed.

Now create a file called change in which you can try this command.
After entering the text shown in the screen, change lines one through four by
typing 1,4¢:

LINE EDITOR TUTORIAL (ed) 5-39

Creating Text

CIKCR>

line 1

line 2

line 3

line 4

5 line 5

1,4c<CR>

Change line 1<CR>

and lines 2 through 4<CR>
.<CR>

1,$n<CR>

1 change line 1

2 and lines 2 through 4
3 line 5

o wN o

Now experiment with ¢ and try to change the current line:

line 5

c<CR>

This is the new line 5.
<CR>

<CR>

This is the new line 5.

If you are not sure whether you have left text input mode, it is a good
idea to type another period. If the current line is displayed, you know you are
in the command mode of ed.

5-40 USER’S GUIDE

Creating Text

Figure 5-5 summarizes the ed commands for creating text.

Command Function

a appends text after the specified line in the buffer

uie

inserts text before the specified line in the buffer
c changes the text on the specified line(s) to new text

. quits text input mode and returns to ed command mode

Figure 5-5: Summary of Commands for Creating Text

LINE EDITOR TUTORIAL (ed) 5-41

Exercise 3

3-1. Create a new file called ex3. Instead of using the append command to
create new text in the empty buffer, try the insert command. What
happens?

3-2. Enter ed with the file towns. What is the current line?

Insert above the third line:

Illinois<CR>

Insert above the current line:

or<CR>
Naperville<CR>

Insert before the last line:

hotels in<CR>

Display the text in the buffer preceded by line numbers.

3-3. In the file towns, display lines 1 through 5 and replace lines 2
through 5 with:

London<CR>
Display lines 1 through 3.

3-4. After you have completed exercise 3-3, what is the current line?

Find the line of text containing:
Toledo

Replace
Toledo

with

Peoria

Display the current line.

5-42 USER’S GUIDE

Exercise 3

3-5 With one command line search for and replace:
New York
with:
Iron City

LINE EDITOR TUTORIAL (ed) 5-43

Deleting Text

This section discusses two types of commands for deleting text in ed. One
type is to be used when you are working in command mode: d deletes a line
and u undoes the last command. The other type of command is to be used in
text input mode: # (the pound sign) deletes a character and @ (the at sign)
kills a line. The delete keys that are used in input mode are the same keys
you use to delete text that you enter after a shell prompt. They are described
in detail in "Correcting Typing Errors® in Chapter 2.

Deleting Lines: the d Command

You have already deleted lines of text with the delete command (d) in the
"Getting Started " section of this chapter.

The general format for the d command line is
[address1,address2]d<CR>

You can delete a range of lines (address1 through address2), or you can delete
one line only (address1). If no address is specified, ed deletes the current line.

The next example displays lines one through five and then deletes lines
two through four:

gcm \

1 1 horse

2 2 chickens

3 3 ham tacos

4 4 cans of mustard
S 5 bails of hay
2,4d<CR>

1,$n<CR>

1 1 horse

z\ 5 bails of hay /

5-44 USER’S GUIDE

Deleting Text

How can you delete only the last line of a file? Using a symbolic line
address makes this easy:

$d<CR>

How can you delete the current line? One of the most common errors in
ed is forgetting to type a period to leave text input mode. When this happens,
unwanted text may be added to the buffer. In the next example, a line con-
taining a print command (1,$p) is accidentally added to the text before the
user leaves input mode. Because this line was the last one added to the text,
it becomes the current line. The symbolic address . is used to delete it.

Last line of text<CR>
1,$p<CR>

<CR>

p<CR>

1,%$p

.d<CR>

p<CR>

Last line of text. A////

Before experimenting with the delete command, you may first want to
learn about the undo command, u.

Undoing the Previous Command: the u
Command
The u command (short for undo) nullifies the last command and restores

any text changed or deleted by that command. It takes no addresses or argu-
ments. The format is

u<CR>

LINE EDITOR TUTORIAL (ed) 5-45

Deleting Text

One purpose for which the u command is useful is to restore text you
have mistakenly deleted. If you delete all the lines in a file and then type p,
ed will respond with a ? since there are no more lines in the file. Use the u
command to restore them:

1,5p<CR>

This is the first line.
This is the middle line.
This is the last line.
1,$d<CR>

p<CR>

?

u<CR>

p<CR>

This is the last line.

Now experiment with u: use it to undo the append command:

This is the only line of text
a<CR>

Add this line<CR>

<CR>

1,$p<CR>

This is the only line of text
Add this line

u<CR>

1,$p<CR>

This is the only line of text

'5.46 USER'S GUIDE

Deleting Text

u cannot be used to undo the write command (w) or the quit command
NOTE| (q). However, u can undo an undo command (u).

How to Delete in Text Input Mode

While in text input mode, you can correct the current line of input with
the same keys you use to correct a shell command line. By default, there are
two keys available to correct text. The @ sign key kills the current line. The
sign key backs up over one character on the current line so you can retype
it, thus effectively erasing the original character. (See "Correcting Typing
Errors® in Chapter 2 for details.)

As mentioned in Chapter 2, you can reassign the line kill and character
erase functions to other keys if you prefer. (See "Modifying Your Login
Environment*® in Chapter 7 for instructions.) If you have reassigned these
functions, you must use the keys you chose while working in ed; the default
keys (@ and #) will no longer work.

Escaping the Delete Function

You may want to include an @ sign or a # sign as a character of text. To
avoid having these characters interpreted as delete commands, you must pre-
cede them with a \ (backslash), as shown in the following example:

a<CR>

leave San Francisco \@ 20:15 on flight \#347 <CR>
<CR>

pP<CR>

leave San Francisco @ 20:15 cn flight #347

LINE EDITOR TUTORIAL (ed) 5-47

Deleting Text

Figure 5-6 summarizes the ed commands and shell commands for deleting
text in ed.

Command Function

In command mode:

<d> deletes one or more lines of text
<u> undoes the previous command
<@> deletes the current command line

In text input mode:

<@> deletes the current line
<#> or
<BACKSPACE> deletes the last character typed in

Figure 5-6: Summary of Commands for Deleting Text

5-48 USER’S GUIDE

Substituting Text

You can modify text with the substitute command. This command
replaces the first occurrence of a string of characters with new text. The gen-
eral command line format is

[address1,address2]s/old_text /new_text /[command]<CR>

Each component of the command line is described below:

address1,address2

s
/old_text

/new_text

/command

The range of lines being addressed by s. The address can
be one line (address1), a range of lines (address1 through
address2), or a global search address. If no address is
given, ed makes the substitution on the current line.

The substitute command.

The argument specifying the text to be replaced. It is usu-
ally delimited by slashes but can be delimited by other
characters such as a ? or a period. It consists of the words
or characters to be replaced. The command replaces the
first occurrence of these characters that it finds in the text.

The argument specifying the text to replace old_text. It is
delimited by slashes or the same delimiters used to specify
the old_text. It consists of the words or characters that are
to replace the old_text.

Any one of the following four commands:

LINE EDITOR TUTORIAL (ed) 5-49

Substituting Text

g Changes all occurrences of old_text on the specified lines.

1 Displays the last line of substituted text, including non-
printing characters. (See the last section of this chapter,
" Other Useful Commands and Information. ")

n Displays the last line of the substituted text preceded by
its numerical line address.

p Displays the last line of substituted text.

Substituting on the Current Line

The simplest example of the substitute command is making a change to
the current line. You do not need to give a line address for the current line,
as shown in the following example:

s/old_text/new_text/<CR>
The next example contains a typing error. While the line that contains it

is still the current line, you make a substitution to correct it. The old text is
the ai of airor and the new text is er:

a<CR>

In the beginning, I made an airor.
<CR>

p<CR>

In the beginning, I made an airor.
s/ai/er<CR>

Notice that ed gives no response to the substitute command. To verify
that the command has succeeded in this case, you either have to display the
line with p or n, or include p or n as part of the substitute command line. In
the following example, n is used to verify that the word file has been substi-
tuted for the word toad:

5-50 VUSER’S GUIDE

Substituting Text

P<CR>

This is a test toad
s/toad/file/n<CR>

1 This is a test file

However, ed allows you one shortcut: it prints the results of the command
automatically if you omit the last delimiter after the new_text argument:

P<CR>

This is a test file
s/file/frog<CR>
This is a test frog

Substituting on One Line

To substitute text on a line that is not the current line, include an address
in the command line as follows:

[address1]s/old__text/new_text/<CR>

LINE EDITOR TUTORIAL (ed) 5-51

Substituting Text

For example, in the following screen the command line includes an
address for the line to be changed (line 1) because the current line is line 3:

1,/3p<CR>

This is a pest toad
testing testing
came in toad
<CR>

came in toad
1s/pest/test<CR>
This is a test toad

~

_/

As you can see, ed printed the new line automatically after the change was

made because the last delimiter was omitted.

Substituting on a Range of Lines

You can make a substitution on a range of lines by specifying the first

address (address1) through the last address (address2):
[addressl,address2]s fold_text/new_text/<CR>

If ed does not find the pattern to be replaced on a line, no changes are made

to that line.

In the following example, all the lines in the file are addressed for the
substitute command; however, only the lines that contain the string es (the

old_text argument) are changed:

Substituting Text

1,/$p<CR>

This is a test toad
testing testing

come in toad

testing 1, 2, 3
1,9s/es/ES/n<CR>

4 tEsting 1, 2, 3

-

When you specify a range of lines and include p or n at the end of the substi-
tute line, only the last line changed is printed.

To display all the lines in which text was changed, use the n or p com-
mand with the address 1,$:

1,$n<CR>

1 This is a tESt toad
2 tESting testing

3 came in toad

4 tESting 1, 2, 3

Notice that only the first occurrence of es (on line 2) has been changed.
To change every occurrence of a pattern, use the g command, described in the
next section.

LINE EDITOR TUTORIAL (ed) 5-53

Substituting Text

Global Substitution

One of the most versatile tools in ed is global substitution. By placing the
g command after the last delimiter on the substitute command line, you can
change every occurrence of a pattern on the specified lines. Try changing
every occurrence of the string es in the last example. If you are following
along, doing the examples as you read this, remember you can use u to undo
the last substitute command.

/

u<CR>

1,$p<CR>

This is a test toad
testing, testing
came in toad
testing 1, 2, 3
1,9s/es/ES /g<CR>
1,5p<CR>

This is a tBSt toad
tESting tESting

came in toad

N /

Another method is to use a global search pattern as an address instead of
the range of lines specified by 1,$:

5-54 USER’S GUIDE

Substituting Text

1,/$p<CR>

This is a test toad
testing testing

came in toad

testing 1, 2, 3
g/test/s/es/ES/g<CR>
1,8p<CR>

This is a tESt toad
tESting tESting

came in toad

Qﬁmuz,s /

If the global search pattern is unique and matches the argument old_text (text
to be replaced), you can use an ed shortcut: specify the pattern once as the
global search address and do not repeat it as an old_text argument. ed will
remember the pattern from the search address and use it again as the pattern
to be replaced:

g/old_text/s//new_text/g<CR>

Whenever you use this shortcut, be sure to include two slashes (//) after
NOTE| thes.

LINE EDITOR TUTORIAL (ed) 5-55

Substituting Text

/b

This is a test toad
testing testing
care in toad
testing 1, 2, 3
g/es/s//ES/g<CR>
1,$p<CR>

This is a tESt toad
tESting tESting

care in toad

tESting 1, 2, 3 /

Experiment with other search pattern addresses:

/pattern<CR>
Ppattern<CR>
v/pattern<CR>

See what they do when combined with the substitute command. In the fol-
lowing example, the v/pattern search format is used to locate lines that do not
contain the pattern testing. Then the substitute command (s) is used to
replace the existing pattern (in) with a new pattern (out) on those lines:

v/testing/s/in/out<CR>
This is a test toad
came out toad

Substituting Text

Note that the line This is a test toad was also printed, even though no
substitution was made on it. When the last delimiter is omitted, all lines

found with the search address are printed, regardless of whether or not substi-
tutions have been made on them.

Now search for lines that do contain the pattern testing with the g com-
mand:

g/testing/s//jumping<CR>
 mping testi
Jumping 1, 2, 3

Notice that this command makes substitutions only for the first occurrence of
the pattern (testing) in each line. Once again, the lines are displayed on your
terminal because the last delimiter has been omitted.

LINE EDITOR TUTORIAL (ed) 5-57

Exercise 4

4-1. In your file towns change town to city on all lines but the line with
little town on it.
The file should read:
My kind of city is
London
Like being no where at all in
Peoria
I lost those little town blues in
Iron City
I lost my heart in
San Francisco
I lost $$ in

hotels in
Las Vegas

4-2, Try using ? as a delimiter. Change the current line
Las Vegas
to
Toledo

Because you are changing the whole line, you can also do this by
using the change command, c.

4-3. Try searching backward in the file for the word
lost
and substitute
found

using the ? as the delimiter. Did it work?

5-58 USER’S GUIDE

Exercise 4

4-4. Search forward in the file for
no
and substitute
NO
for it. What happens if you try to use ? as a delimiter?

Experiment with the various command combinations available for address-
ing a range of lines and doing global searches.

What happens if you try to substitute something for the $$? Try to sub-
stitute Big $ for $ on line 9 of your file. Type:

9s/$/Big $<CR>
What happened?

LINE EDITOR TUTORIAL (ed) 5-59

Special Characters

If you try to substitute the $ sign in the line

I lost my $ in Las Vegas

you will find that instead of replacing the $, the new text is placed at the end
of the line. The $ is a special character in ed that is symbolic for the end of

the line.

ed has several special characters that give you a shorthand for search pat-
terns and substitution patterns. The characters act as wild cards. If you have
tried to type in any of these characters, the result was probably different than
what you had expected.

The special characters are as follows:

[]
[

matches any one character

matches zero or more occurrences of the preceding charac-
ter

matches zero or more occurrences of any character follow-
ing the period

matches the beginning of the line
matches the end of the line

takes away the special meaning of the special character
that follows

repeats the old text to be replaced in the new text of the
replacement pattern

matches the first occurrence of a character in the brackets

matches the first occurrence of a character that is not in the
brackets

5-60 USER’S GUIDE

Special Characters

In the following example, ed searches for any three-character sequence
ending in the pattern at:

(]de

rat

cat

turtle

cow

goat
g/.at<CR>
rat

cat

goat

-

Notice that the word goat is included because the string oat matches the
string .at.

The #* (asterisk) represents zero or more occurrences of a specified charac-
ter in a search or substitute pattern. This can be useful in deleting repeated
occurrences of a character that have been inserted by mistake. For example,
suppose you hold down the "r" key too long while typing the word broke.
You can use the * to delete every unnecessary "r" with one substitution com-
mand:

p<CR>
brrroke

s/br* /br<CR>
broke

LINE EDITOR TUTORIAL (ed) 5-61

Special Characters

Notice that the substitution pattern includes the b before the first r. If
the b were not included in the search pattern, the * would interpret it during
the search as a zero occurrence of r, make the substitution on it, and quit.
(Remember, only the first occurrence of a pattern is changed in a substitution
unless you request a global search with g.) The following screen shows how
the substitution would be made if you did not specify both the b and the r
before the *:

pP<CR>
brrroke
s/r*/r<CR>
rhrrroke

If you combine the period and the #, the combination will match all char-
acters. With this combination, you can replace all characters in the last part of
a line:

p<CR>

Toads are slimy, cold creatures
s/are.*/are wonderful and warm<CR>
Toads are wonderful and warm

5.62 USER'’S GUIDE

Special Characters

The .* can also replace all characters between two patterns:

p<CR>

Toads are slimy, cold creatures
s/are.*cre/are wonderful and warm cre<CR>
Toads are wonderful and warm creatures

If you want to insert a word at the beginning of a line, use the ~ (circum-
flex) for the old text to be substituted. This is very helpful when you want to
insert the same pattern in the front of several lines. The next example places
the word all at the beginning of each line:

1,/$p<CR>

creatures great and small
things wise and wonderful
things bright and beautiful
1,$s/'/all /<CR>

1,$p<CR>

all creatures great and small
all things wise and wonderful
all things bright and beautiful

_ /

The $ sign is useful for adding characters at the end of a line or a range of
lines:

LINE EDITOR TUTORIAL (ed) 5-63

Special Characters

@R>

I love

I need

I use

The IRS wants my
1,$s/$/ money.<CR>
1,$p<CR>

I love money.

I need money.

I use money.

In these examples, you must remember to put a space after the word all
or before the word money because ed adds the specified characters to the very
beginning or the very end of the sentence. If you forget to leave a space
before the word meney, your file will look like this:

1,$5/%/money/<CR>
1,$p<CR>

The $ sign also provides a handy way to add punctuation to the end of a line:

5-64 USER’S GUIDE

Special Characters

@R>

I love money

I need money

I use money

The IRS wants my money
1,98/$/./<CR>
1,$p/<CR>

I love money.

I need momey.

I use money.

The IRS wants my money.

/

Because . is not matching a character (old text), but replacing a character
(new text), it does not have a special meaning. To change a period in the
middle of a line, you must take away the special meaning of the period in the
old text. To do this, simply precede the period with a \ (backslash). This is
how you take away the special meaning of some special characters that you
want to treat as normal text characters in search or substitute arguments. For
example, the following screen shows how to take away the special meaning of
the period:

p<CR>

Way to go. Wow!
8/\./1<CR>

Way to go! Wowl

LINE EDITOR TUTORIAL (ed) 5-65

Special Characters

The same method can be used with the backslash character itself. If you
want to treat a \ as a normal text character, be sure to precede it with a \. For
example, if you want to replace the \ symbol with the word backslash, use
the substitute command line shown in the following screen:

1,2p<CR>

This chapter explains
how to use the \.
s/\\/backslash<CR>

how to use the backslash.

If you want to add text without changing the rest of the line, the & pro-
vides a useful shortcut. The & (ampersand) repeats the old text in the replace-
ment pattern so that you do not have to type the pattern twice. For example:

P<CR>

The neanderthal skeletal remains
s/thal/& man’s/<CR>

P<CR>

The neanderthal man's skeletal remains

ed automatically remembers the last string of characters in a search pat-
tern or the old text in a substitution. However, you must prompt ed to repeat
the replacement characters in a substitution with the % sign. The % sign
allows you to make the same substitution on multiple lines without requesting
a global substitution. For example, to change the word money to the word
gold, repeat the last substitution from line 1 on line 3, but not on line 4:

5-66 USER’S GUIDE

Special Characters

/

1,$n<CR>
1 I love money
2 I need food
3 I use mmey
4 The IRS wants my money
1s/money/gold<CR>
I love gold
3s//%<CR>
I use gold
1,$n<CR>
1 I love gold
2 I need food
3 I use gold
4 The IRS wants my money

ed automatically remembers the word money (the old text to be replaced)
so that string does not have to be repeated between the first two delimiters.
The % sign tells ed to use the last replacement pattern, gold.

ed tries to match the first occurrence of one of the characters enclosed in
brackets and substitute the specified old text with new text. The brackets can
be at any position in the pattern to be replaced.

In the following example, ed changes the first occurrence of the numbers
6, 7, 8 or 9 to 4 on each line in which it finds one of those numbers:

LINE EDITOR TUTORIAL (ed) 5-67

Special Characters

1,(p<CR>

Manday 33,000
Tuesday 75,000
Wednesday 88,000
Thursday 62,000
1,$s/[6789)/4<CR>

Monday 33,000
Tuesday 45,000
Wednesday 48,000
Thursday 42,000

The next example deletes the Mr or Ms from a list of names:

([KCR>

Mr Arthur Middleton
Mr Matt Lewis

Ms Ama Kelley

Ms M. L. Hodel
1,$s/M[rs] //<CR>
1,$p<CR>

Arthur Middleton
Matt Lewis

Ama Kelley

M. L. Hodel

o

If a ~ (circumflex) is the first character in brackets, ed interprets it as an
instruction to match characters that are not within the brackets. However, if
the circumflex is in any other position within the brackets, ed interprets it
literally, as a circumflex:

Special Characters

@lb

grade A OCamputer Science
grade B Robot Design

grade A Boolean Algebra
grade D Jogging

grade C Tennis

1,$s/grade [AB]/grade A<CR>

1,$p<CR>

grade A Computer Science
grade B Robot Design
grade A Boolean Algebra
grade A Jogying

grade A

J
Whenever you use special characters as wild cards in the text to be

changed, remember to use a unique pattern of characters. In the above exam-
ple, if you had used only

1,$s/[AB]/A<CR>
you would have changed the g in the word grade to A. Try it.

Experiment with these special characters. Find out what happens (or does
not happen) if you use them in different combinations.

Figure 5-7 summarizes the special characters for search or substitute pat-
terns.

LINE EDITOR TUTORIAL (ed} 5-69

Special Characters

Command

Function

%
[]
[]

matches any one character in a search or substitute pat-
tern

matches zero or more occurrences of the preceding char-
acter in a search or substitute pattern

matches zero or more occurrences of any characters fol-
lowing the period

matches the beginning of the line in the substitute pat-
tern to be replaced or in a search pattern

matches the end of the line in the substitute pattern to be
replaced

takes away the special meaning of the special character
that follows in the substitute or search pattern

repeats the old text to be replaced in the new text
replacement pattern

matches the last replacement pattern
matches the first occurrence of a character in the brackets

matches the first occurrence of a character that is not in
the brackets

Figure 5-7: Summary of Special Characters

5-70 USER’S GUIDE

Exercise 5

5-1.

5-2.

5-3.

Create a file that contains the following lines of text:

A Computer Science
D Jogging
C Tennis

What happens if you try this command line:
1,$s/[AB]/A/<CR>

Undo the above command. How can you make the C and D unique?
(Hint: they are at the beginning of the line, in the position shown by
the .) Do not be afraid to experiment!

Insert the following line above line 2:
These are not really my grades.

Using brackets and the ~ character, create a search pattern that you
can use to locate the line you inserted. There are several ways to
address a line. When you edit text, use the way that is quickest and
easiest for you.

Add the following lines to your file:
I love money
I need money
The IRS wants my money
Now use one command to change them to:
I's my money

It's my money
The IRS wants my money

LINE EDITOR TUTORIAL (ed) 5-71

Exercise 5

5-4.

Using two command lines, do the following: change the word on the
first line from money to gold, and change the last two lines from
money to gold without using the words money or gold themselves.

How can you change the line
1020231020

to
10202031020

without repeating the old digits in the replacement pattern?

Create a line of text containing the following characters:
* \N&% "

Substitute a letter for each character. Do you need to use a backslash
for every substitution?

5-72 USER’S GUIDE

Moving Text

You have now learned to address lines, create and delete text, and make
substitutions. ed has one more set of versatile and important commands. You
can move, copy, or join lines of text in the editing buffer. You can also read
in text from a file that is not in the editing buffer or write lines of the file in
the buffer to another file in the current directory. The commands that move
text are

m moves lines of text

t copies lines of text

j joins contiguous lines of text
w writes lines of text to a file

r reads in the contents of a file

Move Lines of Text
The m command allows you to move blocks of text to another place in the
file. The general format is
[address1,address2)m[address3]<CR>

The components of this command line include

address1,address2
The range of lines to be moved. If only one line is moved,
only address1 is given. If no address is given, the current line
is moved.

m The move command.

address3 The new location of the lines to be moved. Note that the new
lines will follow address3.

LINE EDITOR TUTORIAL (ed) 5-73

Moving Text

Try the following example to see how the command works. Create a file
that contains these three lines of text:

I want to move this line.
I want the first line
below this line.

Type
1m3<CR>

ed will move line 1 below line 3.

I want to move this line.

I want the first line
below this line.
I want to move this line.

The next screen shows how this will appear on your terminal:

(]KCR>

I want to move this line.
I want the first line
below this line.
1m3<CR>

1,$p<CR>

I want the first line
below this line.

I want to move this line.

.

If you want to move a paragraph of text, have address1 and address2
define the range of lines of the paragraph.

5-74 USER’S GUIDE

Moving Text

In the following example, a block of text (lines 8 through 12) is moved
below line 65. Notice the n command that prints the line numbers of the file:

QCR>

8 This is line 8.

9 It is the begimning of a
10 very short paragraph.

11 This paragraph ends

12 on this line.
64,65n<CR>

64 Move the block of text
65 below this line.
8,12m65<CR>

59,65n<CR>

59 Move the block of text
60 below this line.

61 This is line 8.

62 It is the begimning of a
63 very short paragraph.

64 This paragraph ends

(on this line. /

How can you move lines above the first line of the file? Try the following
command:

3,4m0<CR>

When address3 is 0, the lines are placed at the beginning of the file.

LINE EDITOR TUTORIAL (ed) 5-75

Moving Text

Copy Lines of Text
The copy command, t (short for transfer), acts like the m command except

that the block of text is not deleted at the original address of the line. A copy
of that block of text is placed after a specified line of text.

§5-76 USER’S GUIDE

Moving Text

The general format of the t command also looks like the m command:
[address1,address2)t{address3]<CR>
address1,address2
The range of lines to be copied. If only one line is copied,

only address1 is given. If no address is given, the current line
is copied.

t The copy command.
address3 The new location of the lines to be copied. Note that the new
lines will follow address3.

The next example shows how to copy three lines of text below the last
line:
Safety procedures:

If there is a fire in the building:
Close the door of the room to seal off the fire

Break glass of nearest alarm.
Pull lever.
Locate and use fire extinguisher.

A chemical fire in the lab requires that you:

Break glass of nearest alarm
Pull lever
—» [ocate and use fire extinguisher

LINE EDITOR TUTORIAL (ed) 5-77

Moving Text

The commands and ed’s responses to them are displayed in the next
screen. Again, the n command displays the line numbers:

5,8n<CR>

) Close the door of the room, to seal off the fire.
6 Break glass of nearest alarm,

7 Pull lever.

8 Locate and use fire extinguisher,

30n<CR>

30 A chemical fire in the lab requires that you:
6,8t30<CR>

30,$n<CR>

30 A chemical fire in the lab requires that you:
31 Break glass of nearest alarm

32 Pull lever

33 Locate and use fire extinguisher

6,8n<CR>

6 Break glass of nearest alarm

7 Pull lever

8 Locate and use fire extinguisher

The text in lines 6 through 8 remains in place. A copy of those three lines
is placed after line 50.

Experiment with m and t on one of your files.

5-78 USER’S GUIDE

Moving Text

Joining Contiguous Lines

The j command (short for join) joins the current line with the following
line. The general format is

[address1,address1]j<CR>

The next example shows how to join several lines together. An easy way
of doing this is to display the lines you want to join using p or n:

//:;:;R>

Now is the time to join
the team.
p<CR>
the team.
1p<CR>
Now is the time to join
j<CR>
p<CR>

Now is the time to jointhe team. /

Notice that there is no space between the last word (join) and the first
word of the next line (the). You must place a space between them by using
the s command.

LINE EDITOR TUTORIAL (ed) 5-79

Moving Text

Write Lines of Text to a File

The w command (short for write) writes text from the buffer into a file.
The general format is

[address1,address2]w [filename]<CR>
address1,address2
The range of lines to be placed in another file. If you do not

use addressl or address2, the entire file is written into a new
file.

w The write command.

filename The name of the new file that contains a copy of the block of
text.

In the following example, the body of a letter is saved in a file called
memo so that it can be sent to other people:

QCR> \

1 March 17, 1986

2 Dear Kelly,

3 There will be a meeting in the
4 green roam at 4:30 P.M. today.
5 Refreshments will be served.
3,6w memo<CR> '

87

The w command places a copy of lines three through six into a new file
called memo. ed responds with the number of characters in the new file.

Moving Text

The w command overwrites pre-existing files; it erases the current file and
puts the new block of text in the file without warning you. If, in our example,
a file called memo had existed before we wrote our new file to that name, the
original file would have been erased.

In "Other Useful Commands and Information, " later in this chapter, you
will learn how to execute shell commands from ed. Then you can list the file
names in the directory to make sure that you are not overwriting a file.

Another potential problem is that you cannot write other lines to the file
memo. If you try to add lines 13 through 16, the existing lines (3 through 6)
will be erased and the file will contain only the new lines (13 through 16).

LINE EDITOR TUTORIAL (ed) 5-81

Moving Text

Read in the Contents of a File

The r command (short for read) appends text from a file to a buffer. The
general format for the r command is

[address1]r filename<CR>

address1 The location where the new text will be placed. Note that the
new text will follow address1. If address1 is not given, the file is

added to the end of the buffer.

r The read command.

filename The name of the file to be copied into the editing buffer.

Using the example from the w command, the next screen shows a file

being edited and new text being read into it:

gcm

3r memo<CR>
87
3,$n<CR>

W N

/"G\U’Ihw

March 17, 1986

Dear Michael,
Are you free later today?
Hope to see you there.

Are you free later today?
There is a meeting in the
green roam at 4:30 P.M. today.
Refreshments will be served.

Hope to see you there.

\

/

ed responds to the read command with the number of characters in the file

being added to the buffer (in the memo file).

5-82 USER’S GUIDE

Moving Text

It is a good idea to display new or changed lines of text to be sure that
they are correct.

Figure 5-8 summarizes the ed commands for moving text.

Command Function
m moves lines of text
t copies lines of text
j joins contiguous lines
w writes text into a new file
r reads in text from another file

Figure 5-8: Summary of ed Commands for Moving Text

LINE EDITOR TUTORIAL (ed) 5-83

Exercise 6

6-1.

6-2.

There are two ways to copy lines of text in a buffer: by issuing the t
command or by using the w and r commands to first write text to a
file and then read the file into a buffer.

Writing to a file and then reading the file into a buffer is a longer pro-
cess. Can you think of an example where this method would be more
practical?

What commands can you use to copy lines 10 through 17 of the exer
file into the exer6 file at line 7?

Lines 33 through 46 give an example that you want placed after line
3, not after line 32. What command performs this task?

Say you are on line 10 of a file and you want to join lines 13 and 14.
What commands can you issue to do this?

5-84 USER’S GUIDE

Other Useful Commands and Informa-
tion

There are four other commands and a special file that will be useful to
you during editing sessions:

horH accesses the help commands, which provide error messages
1 displays characters that are not normally displayed
f displays the current file name

! temporarily escapes ed to execute a shell command

ed.hup saves a copy of the ed buffer when a system interrupt occurs

Help Commands

You may have noticed when you were editing a file that ed responds to
some of your commands with a ?. The ? is a diagnostic message issued by
ed when it has found an error. The help commands give you a short message
to explain the reason for the most recent diagnostic.

There are two help commands:

h Displays a short error message that explains the reason for the most
recent ?.

H Places ed in help mode so that a short error message is displayed
every time the ? appears. (To cancel this request, type H.)

If you try to quit ed without writing the changes in the buffer to a file,
you will get a ?. Do this now. When the ? appears, type h:

LINE EDITOR TUTORIAL (ed) 5-85

Other Useful Commands and Information

The ? is also displayed when you specify a new file name on the ed com-
mand line. Give ed a new file name. When the ? appears, type h to find out
what the error message means:

ed newfile<CR>

? newfile

h<CR>

camnot open input file

This message means one of two things: either there is no file called newfile
or there is such a file but ed is not allowed to read it.

As explained earlier, the H command responds to the ? and then turns on
the help mode of ed so that ed gives you a diagnostic explanation every time
the ? is subsequently displayed. To turn off help mode, type H again. The
next screen shows H being used to turn on help mode. Sample error mes-
sages are also displayed in response to some common mistakes:

Other Useful Commands and Information

Cwﬁle<CR>

e newfile<CR>
newtile

H<CR>

cannot open input file
/hello<CR>

?

illegal suffix
1,22p<CR>

?

line ocut of range
a<CR>

I am appending this line to the buffer.
<CR>

s/$ tea party<CR>

?

illegal or missing delimiter
$s/$/ tea party<CR>
?

unknown oommand
H<CR>

q<CR>

?

h<CR>

warning: expecting 'w'

You may have encountered the following error messages during previous edit-
ing sessions:

illegal suffix
ed cannot find an occurrence of the search pattern hello because the
buffer is empty.

line out of range

ed cannot print any lines because the buffer is empty or the line speci-
fied is not in the buffer.

LINE EDITOR TUTORIAL (ed) 5-87

Other Useful Commands and Information

A line of text is appended to the buffer to show you some error messages
associated with the s command:

illegal or missing delimiter
The delimiter between the old text to be replaced and the new text is
missing.

unknown command
address1 was not typed in before the comma; ed does not recognize ,$.

Help mode is then turned off, and h is used to determine the meaning of
the last ? . While you are learning ed, you may want to leave help mode
turned on. If so, use the H command. However, once you become adept at
using ed, you will only need to see error messages occasionally. Then you
can use the h command.

Display Nonprinting Characters

If you are typing a tab character, the terminal will normally display up to
eight spaces (covering the space up to the next tab setting). (Your tab setting
may be more or less than eight spaces. See Chapter 7, "Shell Tutorial,” on
settings using stty.)

If you want to see how many tabs you have inserted into your text, use
the 1 (list) command. The general format for the 1 command is the same as
for n and p:

[address1,address2]l<CR>

The components of this command line are

address1,address2
The range of lines to be displayed. If no address is
given, the current line will be displayed. If only
address1 is given, only that line will be displayed.

1 The command that displays the nonprinting characters
along with the text.

5-88 USER’S GUIDE

Other Useful Commands and Information

The 1 command denotes tabs with a > (greater than) character. To type
control characters, hold down the CONTROL key and press the appropriate
alphabetic key. The key that sounds the bell is <'g> (CTRL-g). Itis
displayed as \07 which is the octal representation (the computer’s code) for
< g>.

Type in two lines of text that contain a <'g> (CTRL-g) and a tab. Then
use the 1 command to display the lines of text on your screen:

(o N

Add a <"g> (CTRL-g) to this line.<CR>
Add a <tab> (tab) to this line.<CR>
.<CR>

1,21<CR>

Add a \07 (CIRL-g) to this line.<CR>

C> (tab) to this line.<CR> j

Did the bell sound when you typed < g>?

The Current File Name

In a long editing session, you may forget the file name. The f command
will remind you which file is currently in the buffer. Or, you may want to
preserve the original file that you entered into the editing buffer and write the
contents of the buffer to a new file. In a long editing session, you may forget
and accidentally overwrite the original file with the customary w and q com-
mand sequence. You can prevent this by telling the editor to associate the
contents of the buffer with a new file name while you are in the middle of the
editing session. This is done with the f command and a new file name.

* The format for displaying the current file name is f alone on a line:
f<CR>

To see how f works, enter ed with a file. For example, if your file is called
oldfile, ed will respond as shown in the following screen:

LINE EDITOR TUTORIAL (ed) 5-89

Other Useful Commands and Information

ed oldfile<CR>
323

f<CR>

oldfile

To associate the contents of the editing buffer with a new file name use
this general format:

f newfile<CR>

If no file name is specified with the write command, ed remembers the
file name given at the beginning of the editing session and writes to that file.
If you do not want to overwrite the original file, you must either use a new
file name with the write command or change the current file name using the f
command followed by the new file name. Because you can use f at any point
in an editing session, you can change the file name immediately. You can
then continue with the editing session without worrying about overwriting the
original file.

The next screen shows the commands for entering the editor with oldfile
and then changing its name to newfile. A line of text is added to the buffer
and then the w and q commands are issued:

Other Useful Commands and Information

/

ed oldfile<CR>
323

f<CR>

oldfile

f newfile<CR>
newfile

a<CR>

Add a line of text.<CR>
<CR>

w<CR>

343

q<CR> /

Once you have returned to the shell, you can list your files and verify the
existence of the new file, newfile. newfile should contain a copy of the con-
tents of oldfile plus the new line of text.

Escape to the Shell

How can you make sure you are not overwriting an existing file when you
write the contents of the editor to a new file name? You need to return to the
shell to list your files. The ! allows you to temporarily return to the shell, exe-
cute a shell command, and then return to the current line of the editor.

The general format for the escape sequence is

Ishell command line<CR>
shell response to the command line
!

When you type the ! as the first character on a line, the shell command
must follow on that same line. The program’s response to your command will
appear as the command is running. When the command has finished execut-
ing, the ! will be appear alone on a line. This means that that you are back
in the editor at the current line.

LINE EDITOR TUTORIAL (ed) 5-91

Other Useful Commands and Information

For example, if you want to return to the shell to find out the correct date,
type ! and the shell command date:

,,C.b

This is the current line

! date<CR>

Tue Apr 1 14:24:22 EST 1986
1

pP<CR>
This is the current line.

o

The screen first displays the current line. Then the command is given to tem-
porarily leave the editor and display the date. After the date is displayed, you
are returned to the current line of the editor.

If you want to execute more than one command on the shell command
line, see the discussion on ; in the section called "Special Characters" in
Chapter 7.

Recovering From System Interrupts

What happens if you are creating text in ed and there is an interrupt to
the system, you are accidentally hung up on the system, or your terminal is
unplugged? When an interrupt occurs, the UNIX System tries to save the con-
tents of the editing buffer in a special file named ed.hup. Later you can
retrieve your text from this file in one of two ways. First, you can use a shell
command to move ed.hup to another file name, such as the name the file had
while you were editing it (before the interrupt). Second, you can enter ed and
use the f command to rename the contents of the buffer. An example of the
second method is shown in the following screen:

5.92 USER’S GUIDE

Other Useful Commands and Information

ed ed.hup<CR>
928

f myfile<CR>
myfile

If you use the second method to recover the contents of the buffer, be sure to
remove the ed.hup file afterward.

Conclusion

You now are familiar with many useful commands in ed. The commands
that were not discussed in this tutorial, such as G, P, Q and the use of () and
{ }, are discussed on the ed(1) page of the User’s/System Administrator's Refer-
ence Manual. You can experiment with these commands and try them to see
what tasks they perform.

Figure 5-9 summarizes the functions of the commands introduced in this
section.

LINE EDITOR TUTORIAL (ed) 5-93

Other Useful Commands and Information

Command Function

h Displays a short error message for the preceding
diagnostic ?.

H Turns on help mode. An error message will be
given with each diagnostic ?. The second H turns
off help mode.

1 Displays nonprinting characters in the text.

f Displays the current file name.

f newfile | Changes the current file name associated with the
editing buffer to newfile.
lemd Temporarily escapes to the shell to execute a shell
command cmd.
ed.hup Saves the editing bulffer if the terminal is hung up
before a write command.

Figure 5-9: Summary of Other Useful Commands

5-94 USER’S GUIDE

Exercise 7

7-1.

7-2.

Create a new file called newfilel. Access ed and change the file’s
name to currentl. Then create some text and write and quit ed. Run
the Is command to verify that there is not a file called newfilel in
your directory. If you type the shell command ls, you will see that
the directory does not contain a file called newfilel.

Create a file called filel. Append some lines of text to the file. Leave
append mode but do not write the file. Turn off your terminal. Then
turn on your terminal and log in again. Issue the Is command in the
shell. Is there a new file called ed.hup? Place ed.hup in ed. How
can you change the current file name to file1? Display the contents of
the file. Are the lines the same lines you created before you turned
off your terminal?

While you are in ed, temporarily escape to the shell and send a mail
message to yourself.

LINE EDITOR TUTORIAL (ed) 5-95

Answers to Exercises

Exercise 1

1-1.

(diunk<CR>

? junk
a<CR>

Hello world.<CR>
<CR>

w<CR>

12

q<CR>

$

1-2.

$ ed junk<CR>

12

1,9p<CR>

Hello world.<CR>
q<CR>

$

Answers to Exercises

The system did not respond with the warning question mark because you

did not make any changes to the buffer.

1-3.

$/edjunk<CR>

12
a<CR>

<CR>

1,$p<CR>

Hello world.

Wendy's horse came through the window.
q<CR>

?

w stuff<CR>

60

q<CR>

$

Wendy’s horse came through the window.<CR>

LINE EDITOR TUTORIAL (ed)

5-97

Answers to Exercises

Exercise 2
2-1.

-~

$ ed towns<CR>

? towns

a<CR>

My kind of town is<CR>
Chicago<CR>

Like being no where at all in<CR>
Toledo<CR>

I lost those little town blues in<CR>
New York<CR>

I lost my heart in<CR>

San Francisco<CR>

I lost $$ in<CR>

Las Vegas<CR>

<CR>

w<CR>

164

3<CR>
Like being no where at all in

Answers to Exercises

2-3.

(—l—?qKClb

My kind of town is

Chicago

Like being no where at all in
Toledo

I lost those little town blues in

erk

2-4,

=<CR>
6
6<CR>
New York

LINE EDITOR TUTORIAL (ed) 5-99

Answers to Exercises

2-5.

$<CR>
Las Vegas

2-6.

town<CR>

I lost those little town blues in
?<CR>

My kind of town is

5-100 USER’S GUIDE

Answers to Exercises

2-7.

/

g/in<CR>

My kind of town is

Like being no where at all in

I lost those little town blues in
I lost my heart in

I lost $$ in

v/in<CR>
Chicago
Toledo

New York

San Francisco

Las Vegas

Exercise 3
3-1.

$ ed ex3<CR>
Pex3

i<CR>

?

q<CR>

LINE EDITOR TUTORIAL (ed) 5-101

Answers to Exercises

The ? after the i means there is an error in the command. There is no
current line before which text can be inserted.

3-2.

-

$ ed towns<CR>
164
.n<CR>
10 Las Vegas
3i<CR>
Ilinois<CR>
<CR>
Jdi<CR>
or<CR>
Naperville<CR>
<CR>
$i<CR>
hotels in<CR>
1,$n<CR>
1 my kind of town is
2 Chicago
3 or
4 Naperville
5 Illinois
6
7
8

Like being no where at all in
Toledo
I lost those little town blues in
9 New York
10 I lost my heart in
11 San Francisco
12 I lost $$ in
13 hotels in
14 Llas Vegas

5-102 USER’S GUIDE

3-3.

1,5n<CR>

1 My kind of town is
2 Chicago

3 or

4 Naperville

5 Illinois
2,5¢<CR>
London<CR>

<CR>

1,3n<CR>

1 My kind of town is
2 London

3 Like being no where at all

.<CR>

Like being no where at all
/Tol<CR>

Toledo

c<CR>

Peoria<CR>

<CR>

<CR>

Pecoria

Answers to Exercises

LINE EDITOR TUTORIAL (ed)

5-103

Answers to Exercises

3-5.

<CR>

/New Y/c<CR>
Iron City<CR>
<CR>

<CR>

Iron City

Your search string need not be the entire word or line. It only needs to be
unique.

Exercise 4
4-1.

Ge town/s/town/city<CR>

v

My kind of city is

London

Like being no where at all in
Pecria

Ircn City

I lost my heart in

San Francisco

I lost $$ in

hotels in

Las Vegas /

5-104 USER’S GUIDE

Answers to Exercises
The line

I lost those little town blues in
was not printed because it was NOT addressed by the v command.

4-2,

<CR>

Las Vegas
s?Las Vegas?Toledo<CR>
Toledo

?lost?s??found<CR>
I found $$ in

LINE EDITOR TUTORIAL (ed) 5-105

Answers to Exercises

4-4.

/no?s?2?NO<CR>

?

/no/s//NO<CR>

Like being NO where at all in

You cannot mix delimiters such as / and ? in a command line.
The substitution command on line 9 produced this output:
I found $$ inBig $

It did not work correctly because the $ sign is a special character in ed.

5-106 USER’S GUIDE

Exercise 5
5-1.

/

$ ed filel1<CR>
? filel
a<CR>

D Jogging<CR>

C Tennis<CR>
<CR>

1,$s/[AB]/A/<CR>
1,$p<CR>

A Cooputer Science
A Jogging

A Temis

u<CR>

A Computer Science<CR>

1,$s/ [AB]/A<CR>
1,8p<CR>
A Coamputer Science
A Jogging
A Temis

LINE EDITOR TUTORIAL (ed)

Answers to Exercises

5-107

Answers to Exercises

5-2.

These are not really my grades.<CR>
1,$p<CR>

A Conputer Science

These are not really my grades.

A Temnis

A Jogging

/' A]<CR>

These are not really my grades
?°[T]<CR>

These are not really my grades

5-3.

1,$p<CR>

I love money

I need money

The IRS wants my money

g/ 1/s/L*m /I¥s my m<CR>
It's my money

It's my money

5-108 USER’S GUIDE

Answers to Exercises

/s/money/gold<CR>
It's my gold
2,$s//%<CR>

The IRS wants my gold

5-4.

§/10202/&0<CR>
10202031020

5-5.

* . \& % *<CR>
.<CR>
s/*/a<CR>
a.\N&% A~ *
s/*/b<CR>
a.\&%*Db

LINE EDITOR TUTORIAL (ed) 5-109

Answers to Exercises

Because there were no preceding characters, * substituted for itself.

/

8/ \./c<CR>
ac\&%*b
s/ \\/d<CR>
acd&%*b
8/&/e<CR>
acde%*Db
s/%/f<CR>
acdef*b

The & and % are only special characters in the replacement text.

s/ \ /g<CR>
acdefgb

Exercise 6
6-1. Any time you have lines of text that you may want to have repeated
several times, it may be easier to write those lines to a file and read in

the file at those points in the text.

If you want to copy the lines into another file you must write them to
a file and then read that file into the buffer containing the other file.

5-110 USER’S GUIDE

Answers to Exercises

6er<CR>

725

10,17 w temp<CR>
210

q<CR>

ed exer6<CR>

305

7r temp<CR>

210

_

The file temp can be called any file name.

6-2.

33,46m3<CR>

LINE EDITOR TUTORIAL (ed}) 5-111

Answers to Exercises

6-3.

=<CR>

10

13p<CR>

This is line 13.

j<CR>

P<CR>

This is line 13.and line 4.

Remember that .= gives you the current line.

5-112 USER’S GUIDE

Answers to Exercises

Exercise 7
7-1.

$ ed newfilel<CR>

? newfile1

f currentl<CR>

current

a<CR>

This is a line of text<CR>
Will it go into newfile1<CR>
or into currentl<CR>
<CR>

w<CR>

66

g<CR>

$ 1s<CR>

bin

currenti

ed filel<CR>

? file1

a<CR>

I am adding text to this file.<CR>
Will it show up in ed.hup?<CR>
<CR>

LINE EDITOR TUTORIAL (ed) 5-113

Answers to Exercises
Turn off your terminal.

Log in again.

~

ed ed.hup<CR>

58

f filel<CR>

file1

1,$p<CR>

I am adding text to this file.
Will it show up in ed.hup?

/

7-3.

\

$ ed filel<CR>

58

{ mail mylogin<CR>

You will get mail when<CR>
you are done editing!<CR>
<CR>

/_

5-114 USER’S GUIDE

Screen Editor Tutorial (vi)

Introduction 6-1
Suggestions for Reading this Tutorial 6-3
Getting Started 6-4
Setting the Terminal Configuration 6-4
Changing Your Environment 6-5
Setting the Automatic <RETURN 6-6
Creating a File 6-7
How to Create Text: the Append Mode 6-8
How to Leave Append Mode 6-9
Editing Text: the Command Mode 6-10
How to Move the Cursor 6-10
Moving the Cursor to the Right or Left 6-12
How to Delete Text 6-15
How to Add Text 6-17
Quitting vi 6-19
Exercise 1 6-22

Screen Editor Tutorial (vi)

Moving the Cursor Around the

Screen 6-23
Positioning the Cursor on a Character 6-23
m Moving the Cursor to the Beginning or End of a
Line 6-24
m Searching for a Character on a Line 6-25
Line Positioning 6-27
® The Minus Sign Motion Command 6-27
m The Plus Sign Motion Command 6-27
Word Positioning 6-28
Positioning the Cursor by Sentences 6-32
Positioning the Cursor by Paragraphs 6-33
Positioning in the Window 6-34

Positioning the Cursor in

Undisplayed Text 6-40
Scrolling the Text - _ 6-40
@ The CTRL-f Command 6-40

8 The CTRL-d Command 6-41

w The CTRL-b Command 6-42

8 The CTRL-u Command 6-43
Go to a Specified Line 6-43
Line Numbers 6-44
Searching for a Pattern of Characters: the / and ?

Commands 6-45
Exercise 2 6-52
Creating Text 6-54
Appending Text 6-54
Inserting Text 6-54

Opening a Line for Text 6-56

Screen Editor Tutorial (vi)

Exercise 3 6-59
Deleting Text 6-60
Undoing Entered Text in Text Input Mode 6-60
Undo the Last Command 6-61
Delete Commands in Command Mode 6-62
m Deleting Words 6-62
m Deleting Paragraphs 6-64
m Deleting Lines 6-64
® Deleting Text After the Cursor 6-65
Exercise 4 6-67
Modifying Text 6-68
Replacing Text 6-68
Substituting Text 6-69
Changing Text 6-70
Cutting And Pasting Text
Electronically 6-76
Moving Text 6-76
Fixing Transposed Letters 6-76
Copying Text 6-77
Copying or Moving Text Using Registers 6-78

Exercise 5

6-80

Screen Editor Tutorial (vi)

Special Commands 6-81
Repeating the Last Command 6-81
Joining Two Lines 6-82
Clearing and Redrawing the Window 6-82
Changing Lowercase to Uppercase and Vice Versa 6-83
Using Line Editing Commands invi 684
Temporarily Returning to the Shell: the :sh and :!

Commands 6-84
Writing Text to a New File: the :w Command 6-85
Finding the Line Number 6-86
Deleting the Rest of the Buffer 6-87
Adding a File to the Buffer 6-87
Making Global Changes 6-88
Quitting vi 6-90
Special Options For vi 6-93
Recovering a File Lost by an Interrupt 6-93
Editing Multiple Files 6-93
Viewing a File 6-94
Exercise 6 6-96
Answers To Exercises 6-97
Exercise 1 6-97
Exercise 2 6-98
Exercise 3 6-100
Exercise 4 6-101
Exercise 5 6-102
Exercise 6 6-102

Introduction

This chapter is a tutorial on the screen editor, vi (short for visual editor).
The vi editor is a powerful and sophisticated tool for creating and editing files.
It is designed for use with a video display terminal that is used as a window
through which you can view the text of a file. A few simple commands allow
you to make changes to the text that are quickly reflected on the screen.

The vi editor displays from one to many lines of text. It allows you to
move the cursor to any point on the screen or in the file (by specifying places
such as the beginning or end of a word, line, sentence, paragraph, or file) and
create, change, or delete text from that point. You can also use some line edi-
tor commands, such as the powerful global commands that allow you to
change multiple occurrences of the same character string by issuing one com-
mand. To move through the file, you can scroll the text forward or backward,
revealing the lines below or above the current window, as shown in
Figure 6-1.

Not all terminals have text scrolling capability; whether or not you can
NOTE[take advantage of vi's scrolling feature depends on what type of terminal
you have.

SCREEN EDITOR TUTORIAL (vi) 6-1

Introduction

TEXT FILE
You are in the screen editor.

This part of the file is above
the display window. You can
place it on the screen by
scrolling backward.

(

This part of the file
is in the display window.

You can edit it.

.

This part of the file is below
the display window. You can
place it on the screen by
scrolling forward.

Figure 6-1: Displaying a File with a vi Window

introduction

There are more than 100 commands in vi. This chapter covers the basic
commands that will enable you to use vi simply but effectively. Specifically,
it explains how to do the following tasks:

B change your shell environment to set your terminal configuration and
an automatic carriage return

set up your terminal so that vi is accessible

enter vi, create text, delete mistakes, write the text to a file, and quit
move text within a file

electronically cut and paste text

use special commands and shortcuts

use line editing commands available within vi

temporarily escape to the shell to execute shell commands

recover a file lost by an interruption to an editing session

edit several files in the same session

Suggestions for Reading this Tutorial

As you read this tutorial, keep in mind the notational conventions
described in the Preface. In the screens in this chapter, arrows are used to
show the position of the cursor.

The commands discussed in each section are reviewed at the end of the
section. A summary of vi commands is found in Appendix D, where they are
listed by topic. At the end of some sections, exercises are given so you can
experiment. The answers to all the exercises are at the end of this chapter.
The best way to learn vi is by doing the examples and exercises as you read
the tutorial. Log in on the UNIX System when you are ready to read this
chapter.

SCREEN EDITOR TUTORIAL (vi) 6-3

Getting Started

The UNIX System is flexible; it can run on many types of computers and
can be accessed from many kinds of terminals. However, because it is inter-
nally structured to be able to operate in so many ways, it needs to know what
kind of hardware is being used in a given situation.

In addition, the UNIX System offers various optional features for using
your terminal that you may or may not want to incorporate into your comput-
ing session routine. Your choice of these options, together with your
hardware specifications, comprise your login environment. Once you have set
up your login environment, the shell implements these specifications and
options automatically every time you log in.

This section describes two parts of the login environment: setting the ter-
minal configuration, which is essential for using vi properly, and setting the
wrapmargin, or automatic (carriage) <RETURN>, which is optional.

Setting the Terminal Configuration

Before you enter vi, you must set your terminal configuration. This sim-
ply means that you tell the UNIX System what type of terminal you are using.
This is necessary because the software for the vi editor is executed differently
on different terminals.

Each type of terminal has several code names that are recognized by the
UNIX System. Appendix F, "Setting Up the Terminal,” tells you how to find
a recognized name for your terminal. Keep in mind that many computer ins-
tallations add terminal types to the list of terminals supported by default in
your UNIX System. It is a good idea to check with your local system adminis-
trator for the most up-to-date list of available terminal types.

To set your terminal configuration, type

TERM=terminal _name<CR>
export TERM<CR>
tput init<CR>

The first line puts a value (a terminal type) in a variable called TERM. The
second line exports this value; it conveys the value to all UNIX System pro-
grams whose execution depends on the type of terminal being used.

6-4 USER'S GUIDE

Getting Started

The tput command on the third line initializes (sets up) the software in
your terminal so that it functions properly with the UNIX System. It is essen-
tial to run the tput init command when you are setting your terminal confi-
guration because terminal functions such as tab settings will not work prop-
erly unless you do.

For example, if your terminal is a Teletype 5425 this is how your com-
mands will appear on the screen:

$ TERM=5425<CR>
$ export TERM<CR>
$ tput init<CR>

Do not experiment by entering names for terminal types other than your
terminal. This might confuse the UNIX System, and you may have to log off,
hang up, or get help from your system administrator to restore your login
environment.

Changing Your Environment

If you are going to use vi regularly, you should change your login
environment permanently so you do not have to configure your terminal each
time you log in. Your login environment is controlled by a file in your home
directory called .profile.

If you specify the setting for your terminal configuration in your .profile,
your terminal will be configured automatically every time you log in. You can
do this by adding the three lines shown in the last screen (the TERM assign-
ment, export command, and tput command) to your .profile. (For detailed
instructions, see Chapter 7.)

SCREEN EDITOR TUTORIAL (vi)} 6-5

Getting Started

Setting the Automatic <RETURN

To set an automatic <RETURN> you must know how to create a file. If
NOTE| you are familiar with another text editor, such as ed, follow the instructions
in this section. If you do not know how to use an editor but would like to
I have an automatic <RETURN> setting, skip this section for now and return
to it when you have learned the basic skills taught in this chapter.

If you want the <RETURN> key to be entered automatically, create a file
called .exrc in your home directory. You can use the .exrc file to contain
options that control the vi editing environment.

To create a .exrc file, enter an editor with that file name. Then type in
one line of text: a specification for the wrapmargin (automatic carriage return)
option. The format for this option specification is

wm=n<CR>

n represents the number of characters from the righthand side of the screen
where you want an automatic carriage return to occur. For example, say you
want a carriage return at twenty characters from the righthand side of the
screen. Type

wm=2_0<CR>

Finally, write the buffer contents to the file and quit the editor (see "Text
Editing Buffers” in Chapter 4). The next time you log in, this file will give
you the wrapmargin feature as you enter text in a file.

To check your settings for the terminal and wrapmargin when you are in
vi, enter the command

set<CR>

vi will report the terminal type and the wrapmargin, as well as any other
options you may have specified. You can also use the :set command to create
or change the wrapmargin option. Try experimenting with it.

6-6 USER’S GUIDE

Creating a File

First, enter the editor by typing vi and the name of the file you want to
create or edit:

vi filename<CR>

For example, say you want to create a file called stuff. When you type the vi
command with the file name stuff, vi clears the screen and displays a window
in which you can enter and edit text:

zzzzzzzzz|\

Qﬁfn [New file] /

The __ (underscore) on the top line shows the cursor waiting for you to
enter a command there. (On video display terminals, the cursor may be a
blinking underscore or a reverse color block.) Every other line is marked with
a ~ (tilde), the symbol for an empty line.

If, before entering vi, you have forgotten to set your terminal configura-
tion or have set it to the wrong type of terminal, you will see an error mes-
sage instead:

SCREEN EDITOR TUTORIAL (vi) 6-7

Creating a File

$/vistuff<CR>

terminal_name: wkmown terminal type

{Using open mode]
"stuff” [New file]

-

You cannot set the terminal configuration while you are in the editor; you
must be in the shell. Leave the editor by typing

: g<CR>

Then set the correct terminal configuration.

How to Create Text: the Append Mode
If you have successfully entered vi, you are in command mode and vi is
waiting for your commands. How do you create text?

B Press the A key (<a>) to enter the append mode of vi. (Do not press
the <RETURN> key.) You can now add text to the file. (An A is not
printed on the screen.)

B Type in some text.
B To begin a new line, press the <RETURN> key.
If you have specified the wrapmargin option in a .exrc file, you will get

a new line whenever you get an automatic <RETURN> (see "Setting
the Automatic <RETURN>*).

Creating a File

How to Leave Append Mode

When you finish creating text, press the <ESC> key to leave append
mode and return to command mode. Then you can edit any text you have
created or write the text in the buffer to a file:

<a>Create some text<CR>
in the screen editor<CR>
and return to<CR>
command mode.<ESC>

If you press the <ESC> key and a bell sounds, you are already in com-
mand mode. The text in the file is not affected by this, even if you press the
<ESC> key several times.

SCREEN EDITOR TUTORIAL (vi) 6-9

Editing Text: the Command Mode

To edit an existing file, you must be able to add, change, and delete text.
However, before you can perform those tasks, you must be able to move to
the part of the file you want to edit. vi offers an array of commands for mov-
ing from page to page, between lines, and between specified points inside a
line. These commands, along with commands for deleting and adding text,
are introduced in this section.

How to Move the Cursor

To edit your text, you need to move the cursor to the point on the screen
where you will begin the correction. This is easily done with four keys that
are grouped together on the keyboard: h, j, k, and 1.

<h> moves the cursor one character to the left
<j> moves the cursor down one line

<k> moves the cursor up one line

<I> moves the cursor one character to the right

The <j> and <k> commands maintain the column position of the cursor. For
example, if the cursor is on the seventh character from the left, when you type
<j> or <k> it goes to the seventh character on the new line. If there is no
seventh character on the new line, the cursor moves to the last character on
the line.

Many people who use vi find it helpful to mark these four keys with
arrows showing the direction in which each key moves the cursor.

6-10 USER’S GUIDE

Editing Text: the Command Mode

e) O = 3 R R 5

Lech

[t
L]
Cerd |— I Ciel Loex [] .

{

|

1

L Line
|

Some terminals have special cursor control keys that are marked with
NOTE| arrows. Use them in the same way you use the <h>, <j>, <k>, and
<I> commands.

Watch the cursor on the screen while you press the <h>, <j>, <k>, and
<1> keys. Instead of pressing a motion command key a number of times to
move the cursor a corresponding number of spaces or lines, you can precede
the command with the desired number. For example, to move two spaces to
the right, press <1> twice or enter <21>. To move up four lines, press <k>
four times or enter <4k>. If you cannot go any farther in the direction you
have requested, vi will sound a bell.

SCREEN EDITOR TUTORIAL (vi) 6-11

Editing Text: the Command Mode

Now experiment with the <j> and <k> motion commands. First, move
the cursor up seven lines. Type

<7k>

The cursor will move up seven lines above the current line. If there are less
than seven lines above the current line, a bell will sound and the cursor will
remain on the current line.

Now move the cursor down thirty-five lines. Type
<35j>

vi will clear and redraw the screen. The cursor will be on the thirty-fifth line
below the current line, appearing in the middle of the new window. If there
are less than thirty-five lines below the current line, the bell will sound and
the cursor will remain on the current line. Watch what happens when you
type the next command:

<35k>
Like most vi commands, the <h>, <j>, <k>, and <1> motion commands
are silent; they do not appear on the screen as you enter them. The only time
you should see characters on the screen is when you are in append mode and
are adding text to your file. If the motion command letters appear on the

screen, you are still in append mode. Press the <ESC> key to return to com-
mand mode and try the commands again.

Moving the Cursor to the Right or Left

In addition to the motion command keys <h> and <1>, the space bar and
the <BACKSPACE> key can be used to move the cursor right or left to a
character on the current line.

<space bar> moves the cursor one character to the right
<nspace bar> moves the cursor n characters to the right
<BACKSPACE> moves the cursor one character to the left
<nBACKSPACE> moves the cursor n characters to the left

6-12 USER’S GUIDE

Editing Text: the Command Mode

Try typing in a number before the command key. Notice that the cursor
moves the specified number of characters to the left or right. In the example
below, the cursor movement is shown by the arrows.

To move the cursor quickly to the right or left, prefix a number to the
command. For example, suppose you want to create four columns on your
screen. After you've finished typing the headings for the first three columns,
you notice a typing mistake:

Column 1 Column 2 colum

<ESC>

You want to correct your mistake before continuing. Exit insert mode and
return to command mode by pressing the <ESC> key; the cursor will move to
the n. Then use the <h> command to move back five spaces:

SCREEN EDITOR TUTORIAL (vi) 6-13

Editing Text: the Command Mode

~

Colurmn 1 Colum 2 column
<5h>
Colum 1 Colum 2 colurm

<x><i>C<ESC> /

Erase the c by typing <x>. Then change to insert mode (<i>) and enter a C,
followed by the <ESC> key. Use the <1> motion command to return to your
earlier position:

Colum 1 Colum 2 Colum \

<SI>

Colum 1 Colum 2 Colum

Again, you can specify a multiple space movement by typing a number before
pressing the space bar or <BACKSPACE> key. The cursor will move the
number of characters you request to the left or right.

6-14 USER’S GUIDE

Editing Text: the Command Mode

How to Delete Text

If you want to delete a character, move the cursor to that character and
press <x>. Watch the screen as you do so; the character will disappear and
the line will readjust to the change. To erase three characters in a row, press
<x> three times. In the following example, the arrows under the letters show
the positions of the cursor.

<X> deletes one character

<nx> deletes n characters, where n is the number of charac-
ters you want to delete

Hello wurld! \

<xX>

Hello wrld!

_ /

Now try preceding <x> with the number of characters you want to delete.
For example, delete the second occurrence of the word deep from the text
shown in the following screen. Put the cursor on the first letter of the string
you want to delete, and delete five characters (for the four letters of deep plus
an extra space):

SCREEN EDITOR TUTORIAL (vi) 6-15

Editing Text: the Command Mode

Tamorrow the Loch Ness monster
shall slither forth fram
the deep dark deep depths of the lake.

_

<5x>

Tomorrow the Loch Ness monster
shall slither forth fram
the deep dark depths of the lake.

-

Notice that vi adjusts the text so that no gap appears in place of the
deleted string. If, as in this case, the string you want to delete happens to be
a word, you can also use the vi command for deleting a word. This command
is described later in the section "Word Positioning."

<5x>

S

6-16 USER’S GUIDE

Editing Text: the Command Mode

How to Add Text

There are two basic commands for adding text: the insert (<i>) and
append (<a>) commands. To add text with the insert command at a point in
your file that is visible on the screen, move the cursor to that point by using
<h>, <j>, <k>, and <I>. Then press <i> and start entering text. As you
type, the new text will appear on the screen to the left of the character on
which you put the cursor. That character and all characters to the right of the
cursor will move right to make room for your new text. The vi editor will
continue to accept the characters you type until you press the <ESC> key. If
necessary, the original characters will even wrap around onto the next line:

~

Hello Wrldl

T

<i>o

Hello World!

t_
v

SCREEN EDITOR TUTORIAL (vi) 6-17

Editing Text: the Command Mode

You can use the append command in the same way. The only difference
is that the new text will appear to the right of the character on which you put
the cursor.

Later in this tutorial you will learn how to move around on the screen or
scroll through a file to add or delete characters, words, or lines.

6-18 USER’S GUIDE

Quitting vi

When you have finished entering text, you will want to write the buffer
contents to a file and return to the shell. To do this, hold down the <SHIFT>
key and press Z twice (<ZZ>). The editor remembers the file name you
specified with the vi command at the beginning of the editing session and
moves the buffer text to the file of that name. A notice at the bottom of the
screen gives the file name and the number of lines and characters in the file.
Then the shell gives you a prompt:

Chis is a test file.<CR>

I am adding text to<CR>

a temporary buffer and<CR>

now it is perfect. <CR>

I want to write this file,<CR>

and return to the shell.<ESC><ZZ>

~

~
~

~

ustuff" [New file] 7 lines, 151 characters
$

o

SCREEN EDITOR TUTORIAL (vi) 6-19

Quitting vi

You can also use the :w and :q line editor commands for writing and quit-
ting a file. (Line editor commands begin with a colon and appear on the bot-
tom line of the screen.) The :w command writes the buffer to a file. The :q
command leaves the editor and returns you to the shell. You can type these
commands separately or combine them into the single command :wq. It is
easier to combine them:

<a>This is a test file.<CR>

I am adding text to<CR>

a temporary buffer and<CR>
now it is perfect.<CR>

I want to write this file, <CR>
and return to the shell.<ESC>

L1l

:wq<CR>

6-20 USER’S GUIDE

Quitting vi

Figure 6-2 summarizes the basic commands you need to enter and use vi.

Command

Function

TERM=terminal _name
export TERM

tput init

vi filename
<a>
<h>
<j>
<k>
<I>
<x>
<CR>
<ESC>

W
q
wq
<ZZ>

sets the terminal configuration

initializes the terminal as defined by terminal_name
enters the vi editor to edit the file called filename
adds text after the cursor

moves one character to the left

moves down one line

moves up one line

moves one character to the right

deletes a character

enters a carriage return

leaves append mode and returns to vi
command mode

writes to a file
quits vi
writes to a file and quits vi

writes to a file and quits vi

Figure 6-2: Summary of Commands for the vi Editor

SCREEN EDITOR TUTORIAL (vi) 6-21

Exercise 1

Answers to the exercises are given at the end of this chapter. However,
keep in mind that there is often more than one way to perform a task in vi. If
your method works, it is correct.

As you give commands in the following exercises, watch the screen to see
how it changes or how the cursor moves.

1-1. If you have not logged in yet, do so now. Then set your terminal
configuration.
1-2. Enter vi and append the following five lines of text to a new file

called exerl.

This is an exercise!
Up, down,

left, right,

build your terminal’s
muscles bit by bit

1-3. Move the cursor to the first line of the file and the seventh character
from the right. Notice that as you move up the file, the cursor moves
in to the last letter of the file, but it does not move out to the last
letter of the next line.

1-4. Delete the seventh and eighth characters from the right.
1-5. Move the cursor to the last character on the last line of text.

1-6. Append the following new line of text:

and byte by byte
1-7. Write the buffer to a file and quit vi.

1-8. Re-enter vi and append two more lines of text to the file exerl.
What does the notice at the bottom of the screen say once you have
re-entered vi to edit exer1?

6-22 USER’S GUIDE

Moving the Cursor Around the Screen

Until now you have been moving the cursor with the <h>, <j>, <k>,
<l>, <BACKSPACE> key, and space bar. There are several other commands
that can help you move the cursor quickly around the screen. This section
explains how to position the cursor in the following ways:

B by characters on a line
M by lines
B by text objects

O words

0O sentences

O paragraphs

B in the window

There are also commands that position the cursor within parts of the vi edit-
ing buffer that are not visible on the screen. These commands will be dis-
cussed in the next section, "Positioning the Cursor in Undisplayed Text."

To follow this section of the tutorial, you should enter vi with a file that
contains at least forty lines. If you do not have a file of that length, create
one now. Remember that to execute the commands described here, you must
be in vi command mode. Press the <ESC> key to make sure that you are in
command mode rather than append mode.

Positioning the Cursor on a Character

There are three ways to position the cursor on a character in a line:
B by moving the cursor right or left to a character
B by specifying the character at either end of the line

B by searching for a character on a line

The first method was discussed earlier in this chapter under "Moving the Cur-
sor to the Right or Left." The following sections describe the other two
methods.

SCREEN EDITOR TUTORIAL (vi) 6-23

Moving the Cursor Around the Screen

Moving the Cursor to the Beginning or End of a Line

The second method of positioning the cursor on a line is by using one of
three commands that put the cursor on the first or last character of a line.

<$> puts the cursor on the last character of a line

<0> (zero) puts the cursor on the first character of a line

<> puts the cursor on the first nonblank character of a
line

The following examples show the movement of the cursor produced by

each of these three commands:

Go to the erd of the linel!

T

<$>

Go to the erd of the linel

t

/

6-24 USER'’S GUIDE

Moving the Cursor Around the Screen

6‘:& beginning of the linel \
<0>

Go to the begimming of the line!
Cthe first character

of the line
that is not blank!

T

< >
Go to the first character
of the line

that is not blankl!

T

/

/

Searching for a Character on a Line

The third way to position the cursor on a line is to search for a specific
character on the current line. If the character is not found on the current line,
a bell sounds and the cursor does not move. (There is also a command that

SCREEN EDITOR TUTORIAL (vi) 6-25

Moving the Cursor Around the Screen

searches a file for patterns. This is discussed in "Searching for a Pattern of
Characters.") There are six commands you can use to search within a line:
<f>, <F>, <t>, <T>, <n>, and <N>. You must specify a character after all
of them except the <n> and <N> commands.

<fx>
<Fx>

<tx>

<Tx>

<n>

<N>

Moves the cursor to the right to the specified character x.
Moves the cursor to the left to the specified character x.

Moves the cursor right to the character just before the specified
character x.

Moves the cursor left to the character just after the specified char-
acter x.

Continues to search in the same direction for the character speci-
fied in the last command. The n remembers the character and
seeks out the next occurrence of that character on the current line.

Continues to search in the opposite direction for the character
specified in the last command. The N remembers the character
and seeks out the previous occurrence of that character on the
current line.

For example, in the following screen vi searches to the right for the first
occurrence of the letter A on the current line:

axwardtotheletterncmthis line.

<fA>

Go forward to the letter A on this line.

N

t

Try the search commands on one of your files.

6-26 USER’S GUIDE

Moving the Cursor Around the Screen

Line Positioning

Besides the <j> and <k> commands that you have already used, the
<+>, <->, and <CR> commands can be used to move the cursor to other
lines.

The Minus Sign Motion Command

The <-> command moves the cursor up a line, positioning it at the first
nonblank character on the line. To move more than one line at a time,
specify the number of lines you want to move before the <-> command. For
example, to move the cursor up thirteen lines, type

<13->

The cursor will move up thirteen lines. If some of those lines are above the
current window, the window will scroll up to reveal them. This is a rapid
way to move quickly up a file.

Now try to move up 100 lines. Type
<100->

What happened to the window? If there are less then 100 lines above the
current line a bell will sound, telling you that you have made a mistake, and
the cursor will remain on the current line.

The Plus Sign Motion Command

The <+> or the <CR> command moves the cursor down a line. Specify
the number of lines you want to move before the <+> command. For exam-
ple, to move the cursor down nine lines, type

<9+>

The cursor will move down nine lines. If some of those lines are below the
current screen, the window will scroll down to reveal them.

Now try to do the same thing by pressing the <RETURN> key. Were the
results the same as when you pressed the <+> key?

SCREEN EDITOR TUTORIAL (vi) 6-27

Moving the Cursor Around the Screen

Word Positioning

The vi editor considers a word to be a string of characters that can include
letters, numbers, or underscores (). There are six word positioning com-
mands: <w>, , <e>, <W>, , and <E>. The lowercase commands
(<w>, , and <e>) treat any character other than a letter, digit, or under-
score as a delimiter, signifying the beginning or end of a word. Punctuation
before or after a blank is considered a word. The beginning or end of a line is
also a delimiter.

The uppercase commands (<W>, , and <E>) treat punctuation as
part of the word; words are delimited by blanks and newlines only.

The following is a summary of the word positioning commands:

<w> Moves the cursor forward to the first character in the next word.
You may press <w> as many times as you want to reach the
word you want.

<nw> Moves the cursor forward n number of words to the first character
of that word. The end of the line does not stop the movement of
the cursor; instead, the cursor wraps around and continues count-

ing words from the beginning of the next line.

The <w> oammand
leaps word by word through the
file. Move fram THIS word forward

1

<6bw>

six words to THIS woxd.

-

6-28 USER’S GUIDE

Moving the Cursor Around the Screen

Cn& camand

leaps word by word through the
file. Move from THIS word forward
six words to THIS word.

<W> Ignores all punctuation and moves the cursor forward to the word
after the next blank.

<e> Moves the cursor forward in the line to the last character in the
next word.

Go forward cne word to the end of
the next word in this line

T

<e>

SCREEN EDITOR TUTORIAL (vi) 6-29

Moving the Cursor Arocund the Screen

Go forward ane word to the end of
the next word in this line

Go to the end of the third word after the current word.

T

<3e>

T

Go to the end of the third word after the current woxd.

N N N

6-30 USER’S GUIDE

<E>

<nb>

Moving the Cursor Around the Screen

Moves the cursor forward in the line, delimiting words only by
blanks.

Moves the cursor backward in the line to the first character of the
previous word.

Moves the cursor backward n number of words to the first charac-
ter of the nth word. The command does not stop at the
beginning of a line but moves to the end of the line above and
continues moving backward.

Moves the cursor backward in the line, delimiting words only by
blank spaces and newlines. It treats all other punctuation as
letters of a word.

Leap backward word by word through
the file. Go back four words fram here.

t

<4b>

the file. Go back four words from here.

I

SCREEN EDITOR TUTORIAL (vi) 6-31

Moving the Cursor Around the Screen

Positioning the Cursor by Sentences

The vi editor also recognizes sentences. In vi a sentence ends in
!, ., or?. If these delimiters appear in the middle of a line, they must be
followed by two blanks for vi to recognize them. You should get used to the
vi convention of recognizing two blanks after a period as the end of a sen-
tence because it is often useful to be able to operate on a sentence as a unit.

You can move the cursor from sentence to sentence in the file with the
<(> (open parenthesis) and <)> (close parenthesis) commands.

< (> moves the cursor to the beginning of the current sentence

< n(> moves the cursor to the beginning of the nth sentence above the
current sentence

<) > moves the cursor to the beginning of the next sentence
< n) > moves the cursor to the beginning of the nth sentence below the

current sentence

~ The example in the following screens shows how the open parenthesis
moves the cursor around the screen:

Suddenly we spotted whales in the \

distance. Daniel was the first to see them,

T

<(>

- /

6-32 USER’S GUIDE

Moving the Cursor Around the Screen

distance. Daniel was the first to see them.

T

Now repeat the command, preceding it with a number. For example, type

<3(> (or)
<5)>

Did the cursor move the correct number of sentences?

Positioning the Cursor by Paragraphs

Paragraphs are recognized by vi if they begin after a blank line. If you
want to be able to move the cursor to the beginning of a paragraph (or later in
this tutorial, to delete or change a whole paragraph), then make sure each
paragraph ends in a blank line.

<{> moves the cursor to the beginning of the current para-
graph, which is delimited by a blank line above it

<n{> moves the cursor to the beginning of the nth paragraph
above the current paragraph

<}> moves the cursor to the beginning of the next paragraph

<n}> moves the cursor to the nth paragraph below the current
line

SCREEN EDITOR TUTORIAL (vi) 6-33

Moving the Cursor Around the Screen

The following two screens show how the cursor can be moved to the

beginning of another paragraph:

Suddenly, we spotted whales in the
distance. Daniel was the first to see them.

1

<}>

-

“Hey look! Here came the whales!” he cried excitedly.

Suddenly, we spotted whales in the

distance. Daniel was the first to see them.
pm—

N

"Hey lock! Here come the whales!™ he cried excitedly.

N

Positioning in the Window

The vi editor also provides three commands that help you position your-
self in the window. Try out each command. Be sure to type them in upper-

case.

6-34 USER’S GUIDE

<H>
<M>

<L>

moves the cursor to the first line on the screen
moves the cursor to the middle line on the screen

moves the cursor to the last line on the screen

This part of the file is
above the display window.

e

Type <H> (HOME) to move the cursor here.

\

Iype <M> (MIDDLE) to move the cursor here.

Type <L> (LAST line on screen) to move
the cursor here.

J

This part of the file is
below the display window.

Moving the Cursor Around the Screen

Figures 6-3 through 6-6 summarize the vi commands for moving the cur-
sor by positioning it on a character, line, word, sentence, paragraph, or posi-
tion on the screen. (Additional vi commands for moving the cursor are sum-
marized in Figure 6-7, later in the chapter.)

SCREEN EDITOR TUTORIAL (vi)

6-35

Moving the Cursor Arcund the Screen

Positioning on a Character

<h>
<I>
<BACKSPACE>
<space bar>

<fx>

<Fx>

<tx>

<Tx>

<n>

<N>

Moves the cursor one character to the left.
Moves the cursor one character to the right.
Moves the cursor one character to the left.
Moves the cursor one character to the right.

Moves the cursor to the right to the specified
character x.

Moves the cursor to the left to the specified
character x.

Moves the cursor to the right to the character
just before the specified character x.

Moves the cursor to the left to the character just
after the specified character x.

Continues searching in the same direction on
the line for the last character requested with
<f>, <F>, <t>, or <T>. The n remembers
the character and finds the next occurrence of it
on the current line.

Continue searching in opposite direction on the
line for the last character requested with <f>,
<F>, <t>, or <T>. The N remembers the
character and finds the next occurrence of it on
the current line.

Figure 6-3: Summary of vi Motion Commands (Sheet 1 of 4)

6-36 USER’S GUIDE

Moving the Cursor Around the Screen

Positioning on a Line

<k> Moves the cursor up one line to the same column
in the previous line (if a character exists in that
column).

<j> Moves the cursor down one line to the same
column in the next line (if a character exists in that
column).

<=> Moves the cursor up one line to the beginning of
the previous line.

<+> Moves the cursor down one line to the beginning of
the next line.

<CR> Moves the cursor down one line to the beginning of
the next line.

Figure 6-4: Summary of vi Motion Commands (Sheet 2 of 4)

SCREEN EDITOR TUTORIAL (vi) 6-37

Moving the Cursor Around the Screen

Positioning on a Word

<w>

<W>

<e>

<E>

Moves the cursor forward to the first character in
the next word.

Ignores all punctuation and moves the cursor for-
ward to the next word delimited only by blanks.

Moves the cursor backward one word to the first
character of that word.

Ignores all punctuation and moves the cursor back-
ward one word, delimited only by blanks.

Moves the cursor to the end of the current word.

Moves the cursor to the last character of a word
before the next blank space or end of the line.

Figure 6-5: Summary of vi Motion Commands (Sheet 3 of 4)

Moving the Cursor Around the Screen

Positioning on a Sentence

<(> Moves the cursor to the beginning of the current
sentence.

<)> Moves the cursor to the beginning of the next sen-
tence.

Positioning on a Paragraph

<{> Moves the cursor to the beginning of the current
paragraph.

<}> Moves the cursor to the beginning of the next para-
graph.

Positioning in the Window

<H> Moves the cursor to the first line on the screen (the
home position).

<M> Moves the cursor to the middle line on the screen.

<L> Moves the cursor to the last line on the screen.

Figure 6-6: Summary of vi Motion Commands (Sheet 4 of 4)

SCREEN EDITOR TUTORIAL (vi) 6-39

Positioning the Cursor in Undisplayed
Text

How do you move the cursor to text that is not shown in the current edit-
ing window? One option is to use the <nj> or <nk> command. However, if
you are editing a large file, you need to move quickly and accurately to
another place in the file. This section covers those commands that can help
you move around within the file in the following ways:

B by scrolling forward or backward in the file
B by going to a specified line in the file
B by searching for a pattern in the file

Scrolling the Text

Four commands allow you to scroll the text of a file. The < f> (CTRL-f)
and < d> (CTRL-d) commands scroll the screen forward. The <'b> (CTRL-
b) and < u> (CTRL-u) commands scroll the screen backward.

The CTRL-f Command

The <'f> (CTRL-f) command scrolls the text forward one full window of
text below the current window. vi clears the screen and redraws the window.
The three lines that were at the bottom of the current window are placed at
the top of the new window. If there are not enough lines left in the file to fill
the window, the screen displays a ~ (tilde) to show that there are empty
lines.

6-40 USER’S GUIDE

Positioning the Cursor in Undisplayed Text

vi clears and redraws the screen as follows:

These last three lines of the current
window become the first two lines of
the new window.

\- J

This part of the file
is below the display
window.

You can scroll forward
to place this text in the

display window.
- \Z)

The CTRL-d Command

The < d> (CTRL-d) command scrolls down a half screen to reveal text
below the window. When you type < d>, the text appears to be rolled up at
the top and unrolled at the bottom. This allows the lines below the screen to
appear on the screen, while the lines at the top of the screen disappear. If
there are not enough lines in the file, a bell will sound.

SCREEN EDITOR TUTORIAL (vi) 6-41

Positioning the Cursor in Undisplayed Text

The CTRL-b Command

The <'b> (CTRL-b) command scrolls the screen back a full window to
reveal the text above the current window. vi clears the screen and redraws the
window with the text that is above the current screen. Unlike the < f> com-
mand, < b> does not leave any reference lines from the previous window. If
there are not enough lines above the current window to fill a full new win-
dow, a bell will sound and the current window will remain on the screen.

{This part of the file KQ

is above the display
window.

You can scroll backward
to place this text in the
display window.

Any text in this display window y
will be placed below the current
window.

The current window clears and is re-
drawn with the text above the window.

Now try scrolling backward. Type
<'b>

vi clears the screen and draws a new screen.

6-42 USER’S GUIDE

Positioning the Cursor in Undisplayed Text

e N

This part of the file
is above the display window.

You can scroll backward
to place this text in the
display window.

Any text in this display window
will be placed below the current
window.
The current window clears and is
redrawn with the text above the
window.

Any text that was in the display window is placed below the current window.

The CTRL-u Command

The < u> (CTRL-u) command scrolls up a half screen of text to reveal the
lines just above the window. The lines at the bottom of the window are
erased. Now scroll down in the text, moving the portion below the screen
into the window. Type

<u>
When the cursor reaches the top of the file, a bell sounds to notify you that
the file cannot scroll further.

Go to a Specified Line

The <G> command positions the cursor on a specified line in the win-
dow; if that line is not currently on the screen, <G> clears the screen and
redraws the window around it. If you do not specify a line, <G> goes to the
last line of the file.

SCREEN EDITOR TUTORIAL (vi) 6-43

Positioning the Cursor in Undisplayed Text

<G> goes to the last line of the file

<nG> goes to the nth line of the file

Line Numbers

Each line of the file has a line number corresponding to its position in the
buffer. To get the number of a particular line, position the cursor on it and
type <'g>. The < g> command gives you a status notice at the bottom of
the screen which tells you

B the name of the file
if the file has been modified
the line number on which the cursor rests

the total number of lines in the buffer

the percentage of the total lines in the buffer represented by the
current line

@ine is the 35th line of the buffer. \

The cursor is on this line.

T

<Ag>

There are several more lines in the
buffer.

Qlast line of the buffer is line 116. /

6-44 USER’S GUIDE

Positioning the Cursor in Undisplayed Text

C‘sline is the 35th line of the buffer.

The cursor is on this line.

There are several more lines in the
buffer.
The last line of the buffer is line 116.

"file.name" [modified] line 36 of 116 -~34%—- j

Searching for a Pattern of Characters: the |
and ? Commands

The fastest way to reach a specific place in your text is by using one of the
search commands: /, ?, <n>, or <N>. These commands allow you to search
forward or backward in the buffer for the next occurrence of a specified char-
acter pattern. The / and ? commands are not silent; they appear as you type
them, along with the search pattern, on the bottom of the screen. The <n>
and <N> commands, which allow you to repeat the requests you made for a
search with a / or ? command, are silent.

The /, followed by a pattern (/pattern), searches forward in the buffer for
the next occurrence of the characters in pattern and puts the cursor on the first
of those characters. For example, the command line

/Hello world<CR>

finds the next occurrence in the buffer of the words Hello world and puts the
cursor under the H.

The ?, followed by a pattern (?pattern), searches backward in the buffer for
the first occurrence of the characters in pattern and puts the cursor on the first
of those characters. For example, the command line

?data set design<CR>

SCREEN EDITOR TUTORIAL (vi) 6-45

Positioning the Cursor in Undisplayed Text

finds the last occurrence in the buffer (before your current position) of the
words data set design and puts the cursor under the d in data.

These search commands do not wrap around the end of a line while
searching for two words. For example, say you are searching for the words
Hello world. If Hello is at the end of one line and world is at the beginning
of the next, the search command will not find that occurrence of Hello World.

However, the search commands do wrap around the end or the beginning
of the buffer to continue a search. For example, if you are near the end of the
buffer and the pattern for which you are searching (with the /pattern com-
mand) is at the top of the buffer, the command will find the pattern.

The <n> and <N> commands allow you to continue searches you have
requested with /pattern or ?pattern without retyping them.

<n> repeats the last search command

<N> repeats the last search command in the opposite direction

For example, say you want to search backward in the file for the three-letter
pattern the. Initiate the search with ?the and continue it with <n>. The fol-
lowing screens offer a step-by-step illustration of how the <n> searches back-
ward through the file and finds four occurrences of the character string the:

-

y, we spotted whales in the
distance. Daniel was the first to see them.

"Hey look! Here come the whales!" he cried excitedly.

?the

6-46 USER’S GUIDE

Positioning the Cursor in Undisplayed Text

Suddenly, we spotted whales in the

distance. Daniel was the first to see them.

P

"Hey look! Here came the whales!” he cried excitedly.

|
o

(1

~

Suddenly, we spotted whales in the
distance. Daniel was the first to see them.

*Hey loock! Here came the whales!® he cried excitedly.

T

<n>

SCREEN EDITOR TUTORIAL (vi)

6-47

Positioning the Cursor in Undisplayed Text

Suddenly, we spotted whales in the
distance. Daniel was the first to see them.

T

2

“Hey look! Here came the whales!" he cried excitedly.

Suddenly, we spotted whales in the
distance. Daniel was the first to see them.

T

<n>

"Hey lock! Here come the whales!" he cried excitedly.

6-48 USER’S GUIDE

Positioning the Cursor in Undisplayed Text

Suddenly, we spotted whales in the
digtance. Daniel was the first to see them.

1

3)

"Hey look! Here come the whales!" he cried excitedly.

Suddenly, we spotted whales in the
distance. Daniel was the first to see them.

1

<n>
P
“Hey look! Here come the whales!" he cried excitedly.

NN

SCREEN EDITOR TUTORIAL (vi) 6-49

Positioning the Cursor in Undisplayed Text

Suddenly, we spotted whales in the \

4
distance. Daniel was the first to see them.
P
"Hey look| Here came the whales!®" he cried excitedly.

N

The / and ? search commands do not allow you to specify particular
occurrences of a pattern with numbers. You cannot, for example, request the
third occurrence (after your current position) of a pattern.

Figure 6-7 summarizes the vi commands for moving the cursor by scrol-
ling the text, specifying a line number, and searching for a pattern.

6-50 USER’S GUIDE

Positioning the Cursor in Undisplayed Text

Scrolling

<f> scrolls the screen forward a full window, revealing the
window of text below the current window

<d> scrolls the screen down a half window, revealing lines
below the current window

 scrolls the screen back a full window, revealing the
window of text above the current window

< u> scrolls the screen up a half window, revealing the lines
of text above the current window

Positioning on a Numbered Line

<1G> | goes to the first line of the file

<G> goes to the last line of the file

<'g> | gives the line number and file status

Searching for a Pattern

/pattern | searches forward in the buffer for the next occurrence
of pattern and positions the cursor on the first character
of pattern

?pattern | searches backward in the buffer for the first occurrence
of pattern and positions the cursor under the first char-
acter of pattern

<n> repeats the last search command

<N> repeats the search command in the opposite direction

Figure 6-7: Summary of Additional vi Motion Commands

SCREEN EDITOR TUTORIAL (vi) 6-51

Exercise 2

2-1.

4

3

48
49

50

_

2-2,

2-3.

2-4.
2-5.

Create a file called exer2. Type a number on each line, numbering
the lines from 1 to 50. Your file should look similar to the following:

Use each of the scroll commands, noticing how many lines scroll
through the window. Try the following:
<f>

<u>
< d>
Go to the end of the file. Append the following line of text:
123456789 123456789
What number does the command <7h> place the cursor on? What
number does the command <3I> place the cursor on?
Try the command <$> and the command <0> (number zero).

Go to the first character on the line that is not a blank. Move to the
first character in the next word. Move back to the first character of
the word to the left. Move to the end of the word.

USER’S GUIDE

Exercise 2

2-6.

2-7.

Go to the first line of the file. Try the commands that place the cursor
in the middle of the window, on the last line of the window, and on
the first line of the window.

Search for the number 8. Find the next occurrence of the number 8.
Find 48.

SCREEN EDITOR TUTORIAL (vi) 6-53

Creating Text

There are three basic commands for creating text:

<a> appends text

<i> inserts text

<o0> opens a new line on which text can be entered

After you finish creating text with any one of these commands, you can
return to the command mode of vi by pressing the <ESC> key.

Appending Text

<a> appends text after the cursor

<A> appends text at the end of the current line

You have already experimented with the <a> command in the "Creating
a File" section. Make a new file named junk2. Append some text using the

<a> command. To return to command mode of vi, press the <ESC> key.
Then compare the <a> command to the <A> command.

Inserting Text

<i> inserts text before the cursor

<I> inserts text at the beginning of the current line before the first
character that is not a blank

To return to the command mode of vi, press the <ESC> key.

In the following examples you can compare the append and insert com-
mands. The arrows show the position of the cursor, where new text will be
added:

6-54 USER’S GUIDE

Creating Text

Append three spaces AFTER the H of Here \

<a>

Append three spaces AFTER the H of H ere.

t

<ESC>

/

Insert three spaces BEFORE the H of Here. \

<i>.

Insert three spaces BEFORE the H of Here.

T

<ESC>

_ /

Notice that in both cases, the user has left text input mode by pressing the
<ESC> key.

SCREEN EDITOR TUTORIAL (vi) 6-55

Creating Text

Opening a Line for Text

<o0> Creates text from the beginning of a new line below the current
line. You can issue this command from any point in the current
line. '

<O> Creates text from the beginning of a new line above the current
line. This command can also be issued from any position in the
current line.

The open command creates an opening directly above or below the
current line and puts you into text input mode. For example, in the following
screens, the <O> command opens a line above the current line, and the <o>
command opens a line below the current line. In both cases, the cursor waits
for you to enter text at the beginning of the new line:

Create text ABOVE the current line. \

<0O>

[blank line]
Create text ABOVE the current line.

_

6-56 USER’S GUIDE

Creating Text

Now create text BELOW the cuwrrent line. \

<0>

Now create text BELOW the current line.
[blank line)

\ Y,

Figure 6-8 summarizes the commands for creating and adding text with
the vi editor.

SCREEN EDITOR TUTORIAL (vi) 6-57

Creating Text

Command Function

<a> appends text after the cursor

<A> appends text at the end of the current line

<i> inserts text in front of the cursor

<I> inserts text before the first character on
the current line that is not a blank

<o> opens up a new line for text input below
the current line

<O> opens up a new line for text input above
the current line

<ESC> returns vi to command mode from any of

the above text input modes

Figure 6-8: Summary of vi Commands for Creating Text

6-58 USER’S GUIDE

Exercise 3

3-1.
3-2.

3-3.

3-4.

3-6.

3-7.

3-8.

Create a text file called exer3.

Insert the following four lines of text:

Append text

Insert text

a computer’s

job is boring.

Add the following line of text above the last line:

financial statement and

Using a text insert command, add the following line of text above the
third line:

Delete text

Add the following line of text below the current line:

byte of the budget

Using an append command, add the following line of text below the
last line:

But, it is an exciting machine.

Move to the first line and add the word some before the word text.

Now practice using each of the six commands for creating text.

Leave vi and go on to the next section to find out how to delete any
mistakes you made in creating text.

SCREEN EDITOR TUTORIAL (vi) 6-59

Deleting Text

You can delete text with various commands in command mode and undo
the entry of small amounts of text in text input mode. In addition, you can
entirely undo the effects of your most recent command.

Undoing Entered Text in Text Input Mode

To delete a character when in text input mode, use the <BACKSPACE>
key.

<BACKSPACE> deletes the current character (the character shown by
the cursor)

The <BACKSPACE> key backs up the cursor in text input mode and
deletes each character that the cursor backs across. However, the deleted
characters are not erased from the screen until you type over them or press
the <ESC> key to return to command mode.

In the following example, the arrows represent the cursor:

-)

<BACKSPACE> <BACKSPACE>

Mary had a litttl
<ESC>

e
N /

6-60 USER’S GUIDE

Deleting Text

Notice that the characters are not erased from the screen until you press the
<ESC> key.

There are two other keys that delete text in text input mode. Although
you may not use them often, you should be aware that they are available. To
remove the special meanings of these keys so that they can be typed as text,
see the section on special commands.

<'w> undoes th entry of the current word

<@> deletes all text entered on current line since text input mode was
entered

When you type < w>, the cursor backs up over the word last typed and
waits on the first character. It does not literally erase the word until you press
the <ESC> key or enter new characters over the old ones. The <@> sign
behaves in a similar manner except that it removes all text you have typed on
the current line since you last entered input mode.

Undo the Last Command

Before you experiment with the delete commands, you should try the u
command. This command undoes the last command you issued.

<u> undoes the last command

<U> restores the current line to its state before you changed it

If you delete lines by mistake, type <u>; your lines will reappear on the
screen. If you type the wrong command, type <u> and it will be nullified.
The <U> command will nullify all changes made to the current line as long
as the cursor has not been moved from it.

If you type <u> twice in a row, the second command will undo the first;
your undo will be undone! For example, say you delete a line by mistake and
restore it by typing <u>. Typing <u> a second time will delete the line
again. Knowing this command can save you a lot of trouble.

SCREEN EDITOR TUTORIAL (vi) 6-61

Deleting Text

Delete Commands in Command Mode

You know that you can precede a command by a number. Many of the
commands in vi, such as the delete and change commands, also allow you to
enter a cursor movement command after another command. The cursor
movement command can specify a text object such as a word, line, sentence,
or paragraph. The general format of a vi command is

[number][command]text_object

The brackets around some components of the command format show that
those components are optional.

All delete commands issued in command mode immediately remove
unwanted text from the screen and redraw the affected part of the screen.

The delete command follows the general format of a vi command:

[number]dtext_object

Deleting Words

You can delete a word or part of a word with the <dw> command. Move
the cursor to the first character to be deleted and type <dw>. The character
under the cursor and all subsequent characters in that word will be erased:

the deep dark depths of the lake.

1

<2dw>

6-62 USER’S GUIDE

Deleting Text

the depths of the lake.

The <dw> command deletes one word or punctuation mark and the
space(s) that follow it. You can delete several words or marks at once by
specifying a number before the command. For example, to delete three words
and two commas, type <5dw>:

the deep, deep, dark depths of the lake

1

<5dw>

SCREEN EDITOR TUTORIAL (vi) 6-63

Deleting Text

the depths of the lake

Deleting Paragraphs

To delete paragraphs, use the following commands:
<d{> or <d}>
Observe what happens to your file. Remember, you can restore the deleted

text with <u>.

Deleting Lines

To delete a line, type <dd>. To delete multiple lines, specify a number
before the command. For example, typing

<10dd>

will erase ten lines. If you delete more than a few lines, vi will display this
notice on the bottom of the screen:

10 lines deleted

If there are less than ten lines below the current line in the file, a bell will
sound and no lines will be deleted.

6-64 USER'’S GUIDE

Deleting Text

Deleting Text After the Cursor

To delete all text on a line after the cursor, put the cursor on the first char-
acter to be deleted and type

<D> or <d$>
Neither of these commands allows you to specify a number of lines; they can

be used only on the current line.

Figure 6-9 summarizes the vi commands for deleting text.

SCREEN EDITOR TUTORIAL (vi) 6-65

Deleting Text

Command Function
For INSERT Mode:
<BACKSPACE> deletes the current character
<h> deletes the current character
<W> deletes the current word
<@> deletes the current line of new text or
deletes all new text on the current line
For COMMAND Mode:
<u> undoes the last command
<U> restores the current line to its previous state
<x> deletes the current character
<ndx> deletes n number of text objects of type x
<dw> deletes the word at the cursor through the
next space or to the next punctuation mark
<dW> deletes the word and punctuation at the
cursor through the next space
<dd> deletes the current line
<D> deletes the pbrtion of the line to the right
of the cursor
<d)> deletes the current sentence
<d}> deletes the current paragraph

Figure 6-9: Summary of Delete Commands

Exercise 4

4-1.

4-2,

4-3.

4-4,

Create a file called exer4 and put the following four lines of text in it:
When in the course of human events
there are many repetitive, boring

chores, then one ought to get a
robot to perform those chores.

Move the cursor to line two and append to the end of that line:
tedious and unsavory

Delete the word unsavory while you are in append mode.

Delete the word boring while you are in command mode.

What is another way you could have deleted the word boring?

Insert at the beginning of line four:

congenial and computerized
Delete the line.

How can you delete the contents of the line without removing the line
itself?

Delete all the lines with one command.

Leave the screen editor and remove the empty file from your direc-
tory.

SCREEN EDITOR TUTORIAL (vi) 6-67

Modifying Text

The delete commands and text input commands provide one way for you
to modify text. Another way you can change text is by using a command that
lets you delete and create text simultaneously. There are three basic change
commands: <r>, <s8>, and <c¢>.

Replacing Text

<r> Replaces the current character (the character shown by the cursor).
This command does not initiate text input mode, and so does not
need to be followed by pressing the <ESC> key.

<nr> Replaces n characters with the same letter. This command
automatically terminates after the nth character is replaced. It
does not need to be followed by pressing the <ESC> key.

<R> Replaces only those characters typed over until the <ESC> com-
mand is given. If the end of the line is reached, this command
will append the input as new text.

The <r> command replaces the current character with the next character
that is typed in. For example, suppose you want to change the word acts to
ants in the following sentence:

The circus has many acts.
Place the cursor under the c of acts and type
<r>n
The sentence becomes
The circus has many ants.
To change many to 7777, place the cursor under the m of many and type
<&r7>

The <r> command changes the four letters of many to four occurrences of the
number seven:

The circus has 7777 ants.

Modifying Text

Substituting Text

The substitute command replaces characters and then allows you to insert
additional text from that point until you press the <ESC> key.

<s> Deletes the character shown by the cursor and appends text. End
the text input mode by pressing the <ESC> key.

<ns> Deletes n characters and appends text. End the text input mode
by pressing the <ESC> key.

<S> Replaces all characters in the line.

When you enter the <s> command, the last character in the string of
characters to be replaced is overwritten by a $ sign. The characters are not
erased from the screen until you type over them, or leave text input mode by
pressing the <ESC> key.

Notice that you cannot use an argument with either <r> or <s>. Did you
try?

Suppose you want to substitute the word million for the word hundred in
the sentence My salary is one hundred dollars. Put the cursor under the h
of hundred and type <7s>. Notice where the $ sign appears:

My salary is ane hundred dollars.

1

<7s>

Then type million:

SCREEN EDITOR TUTORIAL (vi) 6-69

Modifying Text

My salary is one hundre$ dollars.

T

million

My salary is one million dollars.

T

Changing Text

The substitute command replaces characters. The change command
replaces text objects and then continues to append text from that point until
you press the <ESC> key. To end the change command, press the <ESC>
key.

The change command can take an argument. You can replace a character,
word, or an entire line with new text. '

<ncx> Replaces n number of text objects of type x, such as sentences
(shown by <)>) and paragraphs (shown by <}>).

6-70 USER’S GUIDE

Modifying Text

<CW>

<HCW>
<cc>

<nce>

<C>

<nC>

Replaces a word or the remaining characters in a word with
new text. The vi editor prints a $ sign to show the last char-
acter to be changed.

Replaces n words.
Replaces all the characters in the line.

Replaces all characters in the current line and up to n lines of
text.

Replaces the remaining characters in the line, from the cursor
to the end of the line.

Replaces the remaining characters from the cursor in the
current line and replaces all the lines following the current
line up to # lines.

The change commands <cw> and <C> use a $ sign to mark the last
letter to be replaced. Notice how this works in the following example:

They are now due to arrive an Tuesday.

1

<CwW>

SCREEN EDITOR TUTORIAL (vi) 6-71

Modifying Text

Caremduetoan‘ivemmesdas. \

Wednesday<ESC>

They are now due to arrive cn Wednesday.

T

Notice that the new word (Wednesday) has more letters than the word it
replaced (Tuesday). Once you have executed the change command you are in
text input mode and can enter as much text as you want. The buffer will
accept text until you press the <ESC> key.

The <C> command, when used to change the remaining text on a line,
works in the same way. When you enter the command it uses a $ sign to
mark the end of the text that will be deleted, puts you in text input mode, and
waits for you to type new text over the old. The following screens offer an
example of the <C> command:

6-72 USER’S GUIDE

Modifying Text

This is line 1.

1

<C>
This is line 3.
This is line 4.

Ch, I must have the wrong number.

This is line 1.

T

This is line 2.<ESC>
This is line 3.
This is line 4.

Ch, I must have the wrong number$

This is line 1.
This is line 2.
This is line 3.
This is line 4.

S N N

SCREEN EDITOR TUTORIAL (vi) 6-73

Modifying Text

Now try combining arguments. For example, type
<c{>

Because you know the undo command, do not hesitate to experiment with dif-
ferent arguments or to precede the command with a number. You must press
the <ESC> key before using the <u> command, since <¢> places you in text
input mode.

Compare <S> and <cc>. The two commands should produce the same
results.

Figure 6-10 summarizes the vi commands for changing text.

6-74 USER’S GUIDE

Modifying Text

Command Function
<r> Replaces the current character.
<R> Replaces only those characters typed over with
new characters until the <ESC> key is pressed.
<s> Deletes the character the cursor is on and
appends text. End the append mode by press-
ing the <ESC> key.
<S> Replaces all the characters in the line.
<cc> Replaces all the characters in the line.
<nex> Replaces n number of text objects of type x,
such as sentences (shown by <)>) and para-
graphs (shown by <}>).
<cw> Replaces a word or the remaining characters in
a word with new text.
<C> Replaces the remaining characters in the line,
from the cursor to the end of the line.

Figure 6-10: Summary of vi Commands for Changing Text

SCREEN EDITOR TUTORIAL (vi)

6-75

Cutting And Pasting Text Electronically

vi provides a set of commands that cut and paste text in a file. Another
set of commands copies a portion of text and places it in another section of a
file.

Moving Text

You can move text from one place to another in the vi buffer by deleting
the lines and then placing them at the required point. The last text that was
deleted is stored in a temporary buffer. If you move the cursor to that part of
the file where you want the deleted lines to be placed and press <p>, the
deleted lines will be added below the current line.

<p> places the contents of the temporary buffer after the cursor

A partial sentence that was deleted by the <D> command can be placed
in the middle of another line. Position the cursor in the space between the
two words, then press <p>. The partial line is placed after the cursor.

Characters deleted by <nx> also go into a temporary buffer. Any text
object that was just deleted can be placed somewhere else in the text with
<p>.

The <p> command should be used right after a delete command since the
temporary buffer only stores the results of one command at a time. The <p>
command is also used to copy text placed in the temporary buffer by the yank
command. The yank command (<y>) is discussed in *Copying Text."

Fixing Transposed Letters

A quick way to fix transposed letters is to combine the <x> and the <p>
commands as <xp>. <x> deletes the letter. <p> places it after next charac-
ter.

Notice the error in the next line;

A line of tetx

6-76 USER’S GUIDE

Cutting And Pasting Text Electronically
This error can be changed quickly by placing the cursor under the t in tx and
pressing the <x> and <p> keys, in that order. The result is

A line of text

Try this. Make a typing error in your file and use the <xp> command to
correct it. Why does this command work?

Copying Text

You can yank (copy) one or more lines of text into a temporary buffer and
then put a copy of that text anywhere in the file. To put the text in a new
position type <p>; the text will appear on the next line.

The yank command follows the general format of a vi command:
[number]y[text_object]

Yanking lines of text does not delete them from their original position in the
file. If you want the same text to appear in more than one place, this pro-
vides a convenient way to avoid typing the same text several times. However,
if you do not want the same text in multiple places, be sure to delete the origi-
nal text after you have put the text into its new position.

Figure 6-11 summarizes the ways you can use the yank command.

Command Function
<nyx> yanks n number of text objects of type x (such
as sentences and paragraphs)
<yw> yanks a copy of a word
<yy> yanks a copy of the current line
<nyy> yanks #n lines
<y)> yanks all text up to the end of a sentence
<y}> yanks all text up to the end of the paragraph

Figure 6-11: Summary of the Yank Command

SCREEN EDITOR TUTORIAL (vi) 6-77

Cutting And Pasting Text Electronically
Notice that this command allows you to specify the number of text objects to
be yanked.

Try the following command lines and see what happens on your screen.
(Remember, you can always undo your last command.) Type

<Syw>
Move the cursor to another spot. Type

<p>

Now try yanking a paragraph <y}> and placing it after the current paragraph.
Then move to the end of the file <G> and place that same paragraph at the
end of the file.

Copying or Moving Text Using Registers

Moving or copying several sections of text to a different part of the file is
tedious work. vi provides a shortcut for this: named registers in which you
can store text until you want to move it. To store text you can either yank or
delete the text you wish to store.

Using registers is useful if a piece of text must appear in many places in
the file. The extracted text stays in the specified register until you either end
the editing session, or yank or delete another section of text to that register.

The general format of the command is
[number][" xJcommand([text_object]

The x is the name of the register and can be any single letter. It must be pre-
ceded by a double quotation mark. For example, place the cursor at the
beginning of a line. Type

<3"ayy>
Type in more text and then go to the end of the file. Type
<"ap>

Did the lines you saved in register a appear at the end of the file?

6-78 USER’S GUIDE

Cutting And Pasting Text Electronically

Figure 6-12 summarizes the cut and paste commands.

Command Function

<p> places the contents of the temporary buffer con-
taining the text obtained from the most recent
delete or yank command into the text after the

cursor

<yy> yanks a line of text and places it into a tem-
porary buffer

<nyx> yanks a copy of n number of text objects of

type x and places them in a temporary buffer

<"xyn> places a copy of a text object of type n in the
register named by the letter x

<"xp> places the contents of the register x after the
cursor

Figure 6-12: Summary of vi Commands for Cutting and Pasting Text

SCREEN EDITOR TUTORIAL (vi) 6-79

Exercise 5

5-1. Enter vi with the file called exer2 that you created in Exercise 2.

Go to line eight and change its contents to END OF FILE

5-2. Yank the first eight lines of the file and place them in register z. Put
the contents of register z after the last line of the file.

5-3. Go to line eight and change its contents to eight is great.

5-4. Go to the last line of the file. Substitute EXERCISE for FILE Replace
OF with TO.

6-80 USER’S GUIDE

Special Commands

Here are some special commands that you will find useful:

<> repeats the last command

<J> joins two lines together

<> clears the screen and redraws it

<~> changes lowercase to uppercase and vice versa

Repeating the Last Command

The . (period) repeats the last command to create, delete, or change text in
the file. It is often used with the search command.

For example, suppose you forget to capitalize the S in United States.
However, you do not want to capitalize the s in chemical states. One way
to correct this problem is by searching for the word states. The first time
you find it in the expression United States, you can change the s to S. Then
continue your search. When you find another occurrence, you can simply
type a period; vi will remember your last command and repeat the substitu-
tion of s for S.

Experiment with this command. For example, if you try to add a period at
the end of a sentence while in command mode, the last text change will sud-
denly appear on the screen. Watch the screen to see how the text is affected.

SCREEN EDITOR TUTORIAL (vi) 6-81

Special Commands

Joining Two Lines

The <J> command joins lines. To enter this command, place the cursor
on the current line, and press the <SHIFT> and j keys simultaneously. The
current line is joined with the following line.

For example, suppose you have the following two lines of text:

Dear Mr.
Smith:

To join these two lines into one, place the cursor under any character in the
first line and type

<J>
You will immediately see the following on your screen:

Dear Mr. Smith:

Notice that vi automatically places a space between the last word on the first
line and the first word on the second line.

Clearing and Redrawing the Window

If another UNIX System user sends you a message using the write com-
mand while you are editing with vi, the message will appear in your current
window, over part of the text you are editing. To restore your text after you
have read the message, you must be in command mode. (If you are in text
input mode, press the <ESC> key to return to command mode.) Then type
< I> (CTRL-]). vi will erase the message and redraw the window exactly as it
appeared before the message arrived.

6-82 USER’S GUIDE

Special Commands

Changing Lowercase to Uppercase and Vice
Versa

A quick way to change any lowercase letter to uppercase, or vice versa, is
by putting the cursor on the letter to be changed and typing a <~> (tilde).
For example, to change the letter a to A, press ~. You can change several

letters by typing ~ several times, but you cannot precede the command with
a number to change several letters with one command.

Figure 6-13 summarizes the special commands.

Command Function
<> repeats the last command
<J> joins the line below the current line with the current line
<I> clears and redraws the current window
<~> changes lowercase to uppercase or vice versa

Figure 6-13: Summary of Special Commands

SCREEN EDITOR TUTORIAL (vi) 6-83

Using Line Editing Commands in vi

The vi editor has access to many of the commands provided by a line edi-
tor called ex. (For a complete list of ex commands see the ex(1) page in the
User’s /System Administrator’s Reference Manual.) This section discusses some of
the most commonly used commands.

The ex commands are very similar to the ed commands discussed in
Chapter 5. If you are familiar with ed, you may want to experiment on a test
file to see how many ed commands also work in vi.

Line editor commands begin with a : (colon). After the colon is typed, the
cursor will drop to the bottom of the screen and display the colon. The
remainder of the command will also appear at the bottom of the screen as you

type it.

Temporarily Returning to the Shell: the :sh
and :! Commands

When you enter vi, the contents of the buffer fill your screen, making it
impossible to issue any shell commands. However, you may want to do so.
For example, you may want to get information from another file to incor-
porate into your current text. You could get that information by running one
of the shell commands that display the text of a file on your screen, such as
the cat or pg command. However, quitting and re-entering the editor is time
consuming and tedious. vi offers two methods of leaving the editor tem-
porarily so that you can issue shell commands (and even edit other files)
without having to write your buffer and quit: the :f command and the :sh
command.

The :! command allows you to escape the editor and run a shell command
on a single command line. From the command mode of vi, type :!. These
characters will be printed at the bottom of your screen. Type a shell com-
mand immediately after the I. The shell will run your command, give you
output, and print the message [Hit return to contimue). When you press
the <RETURN> key, vi will refresh the screen and the cursor will reappear
exactly where you left it.

6-84 USER’S GUIDE

Using Line Editing Commands in vi

The ex command :sh allows you to do the same thing but behaves dif-
ferently on the screen. From the command mode of vi, type :sh and press the
<RETURN> key. A shell command prompt will appear on the next line.
Type your command(s) after the prompt as you would normally do while
working in the shell. When you are ready to return to vi, type < d> or exit;
your screen will be refreshed with your buffer contents, and the cursor will
appear where you left it.

Even changing directories while you are temporarily in the shell will not
prevent you from returning to the vi buffer where you were editing your file
when you type exit or < d>.

Writing Text to a New File: the :w Command

The :w command (short for write) allows you to create a file by copying
lines of text from the file you are currently editing into a file that you specify.
To create your new file, you must specify a line or range of lines (with their
line numbers) with the name of the new file on the command line. You can
write as many lines as you like. The general format is

:line_number|,line_numberlw filename

For example, to write the third line of the buffer to a line named three,
type
:3w three<CR>

vi reports the successful creation of your new file with the following informa-
tion:

"three" [New file] 1 line, 20 characters
To write your current line to a file, you can use a . (period) as the line
address:
:zw junk<CR>

A new file called junk will be created. It will contain only the current line in
the vi buffer.

SCREEN EDITOR TUTORIAL (vi) 6-85

Using Line Editing Commands in vi

You can also write a whole section of the buffer to a new file by specify-
ing a range of lines. For example, to write lines 23 through 37 to a file, type
the following:

:23,37w newfile<CR>

Finding the Line Number

To determine the line number of a line, move the cursor to it and type :
(colon). The colon will appear at the bottom of the screen. Type .= after it,
and press the <RETURN> key:

If you want to know the mmber
of this line, type :=<CR>

As soon as you press the <RETURN> key, your command line will disappear
from the bottom line and be replaced by the number of your current line in
the buffer:

6-86 USER’S GUIDE

Using Line Editing Commands in vi

If you want to know the mumber
of this line, type in :.=<CR>

You can move the cursor to any line in the buffer by typing : and the line
number. The command line

n<CR>

means to go to the nth line of the buffer.

Deleting the Rest of the Buffer

One of the easiest ways to delete all the lines between the current line
and the end of the buffer is by using the line editor command d with the spe-
cial symbols for the current and last lines:

+,3d<CR>

The . represents the current line; the $ sign, the last line.

Adding a File to the Buffer

To add text from a file below a specific line in the editing buffer, use the :r
command (short for read.) For example, to put the contents of a file called
data into your current file, place the cursor on the line above the location
where you want it to appear. Type

ax data<CR>

SCREEN EDITOR TUTORIAL (vi) 6-87

Using Line Editing Commands in vi

You may also specify the line number instead of moving the cursor. For
example, to insert the file data below line 56 of the buffer, type

:56r data<CR>

Do not be afraid to experiment; you can use the <u> command to undo ex
commands, too.

Making Global Changes

One of the most powerful commands in ex is the global command. The
global command is described here to help those users who are familiar with
the line editor. Even if you are not familiar with a line editor, you may want
to try the command on a test file.

For example, say you have several pages of text about the DNA molecule
in which you refer to its structure as a "helix." Now you want to change
every occurrence of the word "helix" to "double helix.” The ex editor’s glo-
bal command allows you to do this with one command line. First, you need
to understand a series of commands:

:g/pattern/command<CR>

For each line containing pattern, ex executes command. For exam-
ple, type :g/helix<CR>. The line editor will print all lines that
contain the pattern helix.

:s/pattern /new_words/<CR>
For each line containing pattern, ex substitutes new_words for the
first occurrence of pattern.

:s/pattern/new_words /g<CR>
If you add the letter g after the last delimiter of this command

line, ex changes every occurrence of pattern on the current line to
new_words. If you do not, ex changes only the first occurrence.

:g/helix/s//double helix/g<CR>

For each line containing helix, ex substitutes double helix for every
occurrence of helix. The delimiters after the s do not need to have

6-88 USER’S GUIDE

Using Line Editing Commands in vi

helix typed in again. The command remembers the word from the
delimiters after the global command g. This is a powerful com-
mand. For a more detailed explanation of global and substitution
commands, see Chapter 5.

Figure 6-14 summarizes the line editor commands available in vi.

Command Function

: specifies that the commands that follow are
line editor commands

:sh<CR> temporarily returns you to the shell to per-
form shell commands

<'d> escapes the temporary shell and returns
you to the current window of vi to con-
tinue editing

:n<CR> goes to the nth line of the buffer
x,yw data<CR> writes lines from the number x through the
number y into a new file (data)
$<CR> goes to the last line of the buffer
+,3d<CR> deletes all the lines in the buffer from the
current line to the last line
ir shell.file<CR> inserts the contents of shell.file after the

current line of the buffer

:s/text /new_words/<CR> |replaces the first instance of the characters
text on the current line with new_words

:s/text /new_words /g<CR> |replaces every occurrence of text on the
current line with new_words

:g/text /s [/new_words /g<CR>|replaces every occurrence of text in the file
with new_words

Figure 6-14: Summary of Line Editor Commands

SCREEN EDITOR TUTORIAL (vi) 6-89

Quitting vi

There are five basic command sequences to quit the vi editor. Commands
that are preceded by a colon (:) are line editor commands.

<ZZ> or :wq<CR> Writes the contents of the vi buffer to the UNIX file
currently being edited and quits vi.

:w filename<CR> Writes the temporary buffer to a new file named
:q<CR> filename and quits vi.

w! filename<CR> Overwrites an existing file called filename with the
:q<CR> contents of the buffer and quits vi.

:q!<CR> Quits vi without writing the buffer to a file and dis-

cards all changes made to the buffer.

:q<CR> Quits vi without writing the buffer to a UNIX file.
This works only if you have made no changes to
the buffer; otherwise, vi will warn you that you
must either save the buffer or use the :q!<CR>
command to terminate.

The <ZZ> command and :wq command sequence both write the contents
of the buffer to a file, quit vi, and return you to the shell. You have tried the
<ZZ> command. Now try to exit vi with :wq. vi remembers the name of
the file currently being edited, so you do not have to specify it when you
want to write the buffer’s contents back into the file. Type

:wq<CR>

The system responds in the same way it does for the <ZZ> command. It tells
you the name of the file and reports the number of lines and characters in the
file.

What must you do to give the file a different name? For example, sup-
pose you want to write to a new file called junk. Type

:w junk<CR>

6-80 VUSER’S GUIDE

Quitting vi
After you write to the new file, leave vi. Type
:q<CR>
If you try to write to an existing file, you will receive a warning. For

example, if you try to write to a file called johnson, the system will respond
with

"johnson" File exists - use "w! jolmson" to overwrite

If you want to replace the contents of the existing file with the contents of the
buffer, use the :w! command to overwrite johnson:

:w! johnson<CR>
Your new file will overwrite the existing one.

If you edit a file called memo, make some changes to it, and then decide
you don’t want to keep the changes, or if you accidentally press a key that
gives vi a command you cannot undo, leave vi without writing to the file.

Type
:q!<CR>

SCREEN EDITOR TUTORIAL (vi) 6-91

Quitting vi

Figure 6-15 summarizes the quit commands.

:w filename<CR>
:q<CR>

:w! filename<CR>
:q<CR>

:q!<CR>

:q<CR>

Command Function
<ZZ> writes the file and quits vi
:wq<CR> writes the file and quits vi

writes the editing buffer to filename and quits vi
overwrites the existing file with the contents of the
editing buffer and quits vi.

quits vi without writing the buffer to a file

quits vi without writing the buffer to a file

Figure 6-15: Summary of the Quit Commands

6-92 USER’S GUIDE

Special Options For vi

The vi command has some special options. It allows you to
B recover a file lost by an interrupt to the UNIX System
B place several files in the editing buffer and edit each in sequence

B view a file at your own pace by using the vi cursor positioning com-
mands

Recovering a File Lost by an Interrupt

If there is a system interrupt or disconnect, the system will exit the vi
command without writing the text in the buffer back to its file. However, the
UNIX System will store a copy of the buffer for you. When you log back in to
the UNIX System, you will be able to restore the file with the -r option for
the vi command. Type

vi -1 filename<CR>

The changes you made to filename before the interrupt occurred are now in
the vi buffer. You can continue editing the file, or you can write the file and
quit vi. The vi editor will remember the file name and write to that file.

Editing Multiple Files
If you want to edit more than one file in the same editing session, issue
the vi command and specify each file name. Type
vi filel file2<CR>

vi responds by telling you how many files you are going to edit. For exam-
ple:

2 files to edit

SCREEN EDITOR TUTORIAL (vi) 6-93

Special Options For vi

After you have edited the first file, write your changes (in the buffer) to
the file (filel). Type

w<CR>

The system response to the :w <CR> command will be a message at the bot-
tom of the screen giving the name of the file and the number of lines and
characters in that file. Then you can bring the next file into the editing buffer
by using the :n command. Type

n<CR>

The system responds by printing a notice at the bottom of the screen, telling
you the name of the next file to be edited and the number of characters and
lines in that file.

Select two of the files in your current directory. Then enter vi and place
the two files in the editing buffer at the same time. Notice the system
responses to your commands at the bottom of the screen.

Viewing a File

It is often convenient to be able to inspect a file by using vi's powerful
search and scroll capabilities. However, you might want to protect yourself
against accidentally changing a file during an editing session. The read-only
option prevents you from writing in a file. To avoid accidental changes, you
can set this option by invoking the editor as view rather than vi.

Figure 6-16 summarizes the special options for vi.

6-94 USER’S GUIDE

Special Options For vi

Option

Function

vi filel file2 file3<CR>

:w<CR>
n<CR>

vi -r filel<CR>

enters filel, file2, and file3 into the vi
buffer to be edited

writes the current file and calls the next
file into the buffer

restores the changes made to filel

Figure 6-16: Summary of Special Options for vi

SCREEN EDITOR TUTORIAL (vi)

Exercise 6

6-1. Try to restore a file lost by an interrupt.
Enter vi and create some text in a file called exer6. Turn off your ter-

minal without writing to a file or leaving vi. Turn your terminal back
on and log in again. Then try to get back into vi and edit exer6.

6-2. Place exerl and exer2 in the vi buffer to be edited. Write exerl and
call in the next file in the buffer, exer2.

Write exer2 to a file called junk.

Quit vi.

6-3. Try out the following command:
vi exer*<CR>

What happens? Try to quit all the files as quickly as possible.

6-4. Look at exer4 in read-only mode.
Scroll forward.
Scroll down.
Scroll backward.
Scroll up.

Quit and return to the shell.

6-86 USER’S GUIDE

Answers To Exercises

There is often more than one way to perform a task in vi. Any method
that works is correct. The following are suggested ways of doing the exer-
cises.

Exercise 1

1-1. Ask your system administrator for your terminal’s system name. Type

TERM=terminal_name<CR>

1-2. Enter the vi command for a file called exerl:
vi exerl<CR>

Then use the append command (<a>) to enter the following text in
your file:

This is an exercisel<CR>
Up, down<CR>

left, right,<CR>

build your terminal’s<CR>
muscles bit by bit<ESC>

1-3. Use the <k> and <h> commands.
1-4. Use the <x> command.
1-5. Use the <j> and <l> commands.

SCREEN EDITOR TUTORIAL (vi) 6-97

Answers To Exercises

1-6. Enter vi and use the append command (<a>) to enter the following
text:

and byte by byte<ESC>

Then use <j> and <I> to move to the last line and character of the
file. Use the <a> command again to add text. You can create a new
line by pressing the <RETURN> key. To leave text input mode, press
the <ESC> key.

1-7. Type

<ZZ>
1-8. Type

vi exerl<CR>
Notice the system response:

"exer1" 7 lines, 102 characters

Exercise 2

2-1. Type
vi exer2<CR>
<a>1<CR>
2<CR>
3<CR>

48<CR>
49<CR>
50<ESC>

Answers To Exercises

2-3.

2-4.

2-5.

2-6.

2-7.

Type

<f>

<u>
<d>

Notice the line numbers as the screen changes.

Type

<G>

<0>

123456789 123456789<ESC>
<7h>

<31>

Typing <7h> puts the cursor

on the 2 in the second set of numbers.
Typing <31> puts the cursor

on the 5 in the

second set of numbers.

$ = end of line
0 = first character in the line

Type

Type

Type

<>
<W>

<e>

<1G>
<M>
<L>
<H>

<n>
/48

SCREEN EDITOR TUTORIAL (vi) 6-99

Answers To Exercises

Exercise 3

3-1. Type

vi exer3<CR>
3-2. Type

<a> Append text <CR>

Insert text<CR>

a computer's <CR>

job is boring.<ESC>
3-3. Type

<O>

financial statement and<ESC>
3-4. Type

<3G>
<i>Delete text<CR><ESC>

The text in your file now reads as follows:

Append text

Insert text

Delete text

a camputer's

financial statement and

job is boring.

3-5. The current line is a computer's. To create a line of text below that
line, use the <0> command.

3-6. The current line is byte of the budget.
<G> puts you on the bottom line.
<A> lets you begin appending at the end of the line.
<CR> creates the new line.
Add the sentence: But, it is an exciting machine.
<ESC> leaves append mode.

6-100 USER’S GUIDE

Answers To Exercises

3-7.

Type
<1G>
Jtext
<i>some<space bar><ESC>

<ZZ> will write the buffer to exer3 and return you to the shell.

Exercise 4

4-1.

Type
vi exer4<CR>
<a> When in the course of human events<CR>
there are many repetitive, boring<CR>
chores, then one ought to get a<CR>
robot to perform those chores.<ESC>

Type
<2G>
<A> tedious and unsavory<BACKSPACE><CR>
<ESC>

Press <h> until you get to the b in boring. Then type
<dw>. (You can also use <6x>.)

You are at the second line. Type
<2j>
<I> congenial and computerized<ESC>
<dd>

To delete the line and leave it blank, type
<0> (zero moves the cursor to the beginning of the line)

<D>

<H>
<3dd>

Write and quit vi:

<ZZ>

SCREEN EDITOR TUTORIAL (vi) 6-101

Answers To Exercises

Remove the file:

rm exerd<CR>

Exercise 5

5-1. Type
vi exer2<CR>
<8G>
<cc> END OF FILE <ESC>

5-2. Type
<1G>
<8"zyy>
<G>
<"zp>

5-3. Type
<8G>
<cc> 8 is great<ESC>

5-4. Type
<G>
<2w>
<cw>
EXERCISE<ESC>
<2b>
<CW>
TO<ESC>

Exercise 6

6-1. Type
vi exer6<CR>
<a> (append several lines of text)
<ESC>

Turn off the terminal.

6-102 USER’S GUIDE

Answers To Exercises

6-2.

6-4.

Turn on the terminal.

Log in on your UNIX System. Type
vi -r exer6<CR>
:wq<CR>

Type
vi exerl exer2<CR>
:w<CR>
n<CR>

:w junk<CR>
<ZZ>

Type
vi exer*<CR>

Response:
8 files to edit (vi calls all files with names that begin with exer.)

<ZZ>
<ZZ>

Type
view exer4d<CR>
<f>
<"d>

<u>
:q<CR>

SCREEN EDITOR TUTORIAL (vi) 6-103

Shell Tutorial

Introduction 7-1
Shell Command Language 7-2
Metacharacters 7-4
m The Metacharacter That Matches All Characters:
the Asterisk (*) 7-4
m The Metacharacter That Matches One Character:
the Question Mark (?) 7-6
m Using the * or ? to Correct Typing Errors 7-7
a The Metacharacters That Match One of a Set:
Brackets ([]) 7-8
Special Characters 7-9
m Running a Command in Background: the
Ampersand (&) 7-10
a Executing Commands Sequentially: the
Semicolon (;) 7-11
m Turning Off Special Meanings: the Backslash (\) 7-11
m Turning Off Special Meanings: Quotes 7-12
m Using Quotes to Turn Off the Meaning of a Space 7-12
Input and Output Redirection 7-13
m Redirecting Input: the < Sign 7-14
m Redirecting Output to a File: the > Sign 7-14
m Appending Output to an Existing File: the >>
Symbol 7-16
m Useful Applications of Output Redirection 717
a Combining Background Mode and Output
Redirection 7-19
Redirecting Output to a Command: the Pipe (1) 7-19
= A Pipeline Using the cut and date Commands 7-20

Shell Tutorial

m Substituting Output for an Argument 7-25
Executing and Terminating Processes 7-25
® Running Commands at a Later Time With the
batch and at Commands 7-25
® Obtaining the Status of Running Processes 7-31
® Terminating Active Processes 7-32
m Using the nohup Command 7-33
Command Language Exercises 7-35
Shell Programming 7-36
Shell Programs 7-37
a Creating a Simple Shell Program 7-37
m Executing a Shell Program 7-38
@ Creating a bin Directory for Executable Files 7-39
m Warnings about Naming Shell Programs 7-40
Variables 7-41
m Positional Parameters 7-41
m Special Parameters 7-46
® Named Variables 7-50
m Assigning a Value to a Variable 7-52
Shell Programming Constructs 7-59
s Comments 7-60
® The here Document 7-60
m Using ed in a Shell Program 7-62
& Return Codes 7-65
= Looping 7-66
m The Shell’s Garbage Can: /dev/null 7-72
m Conditional Constructs 7-72
® Unconditional Control Statements: the break and
continue Commands 7-84
Debugging Programs 7-86

Modifying Your Login Environment 7.9

Shell Tutorial
Adding Commands to Your .profile 7-90
Setting Terminal Options 7-91
Creating an rje Directory 7-93
Using Shell Variables 7-93
Shell Programming Exercises 7-97
Answers To Exercises 7-99
Command Language Exercises 7-99

Shell Programming Exercises 7-100

Introduction

This chapter describes how to use the UNIX System shell to do routine
tasks. For example, it shows you how to use the shell to manage your files, to
manipulate file contents, and to group commands together to make programs
the shell can execute for you.

The chapter has two major sections. The first section, "Shell Command
Language," covers in detail using the shell as a command interpreter. It tells
you how to use shell commands and characters with special meanings to
manage files, redirect standard input and output, and execute and terminate
processes. The second section, "Shell Programming,” covers in detail using
the shell as a programming language. It tells you how to create, execute, and
debug programs made up of commands, variables, and programming con-
structs like loops and case statements. Finally, it tells you how to modify your
login environment.

The chapter offers many examples. You should log in to your UNIX Sys-
tem and recreate the examples as you read the text. As in the other examples
in this guide, different type (bold, italic, and constant width) is used to dis-
tinguish your input from the UNIX System'’s output. See "Notational Con-
ventions” in the Preface for details.

In addition to the examples, there are exercises at the end of both the
"Shell Command Language" and “Shell Programming" sections. The exer-
cises can help you better understand the topics discussed. The answers to the
exercises are at the end of the chapter.

Your UNIX System might not have all commands referenced in this
NOTE| chapter. If you cannot access a command, check with your system
administrator.

If you want an overview of