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Iintroduction to this Guide

This document provides information to developers on the use of the
STREAMS mechanism at user and kernel levels.

STREAMS was first incorporated in UNIX System V Release 3.1 to aug-
ment the existing character input/output (I/O) mechanism and to support
development of communication services. The STREAMS Programmer’s Guide
includes detailed information, with various examples, on the development
methods and design philosophy of all aspects of STREAMS.

This guide is organized into two parts. Part 1, Applications Programming,
describes the development of user level applications. Part 2, Module and
Driver Programming, describes the STREAMS kernel facilities for development
of modules and drivers. Although chapter numbers are consecutive, the two
parts are independent. Working knowledge of the STREAMS Primer is
assumed.

Notational Conventions

The following notational conventions are used throughout this Guide:

bold User input, such as commands, options to com-
mands, and the names of directories and files,
appear in bold.

italic Names of variables to which values must be
assigned (such as filename) appear in italic.

command(number) A command name followed by a number in
parentheses refers to the part of a UNIX System
reference manual that documents that command.
(There are two reference manuals: the
User's /System Administrator’s Reference Manual
and the Programmer’s Reference Manual.) For
example, the notation cat(1) refers to the page in
section 1 (of the User’s/System Administrator’s
Reference Manual) that documents the cat com-
mand.

constant width UNIX System output, such as prompt signs and
responses to commands, and program examples
appear in constant width.
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STREAMS Overview

This section reviews the STREAMS mechanism. STREAMS is a general,
flexible facility and a set of tools for development of UNIX System communi-
cation services. It supports the implementation of services ranging from com-
plete networking protocol suites to individual device drivers. STREAMS
defines standard interfaces for character input/output (I/O) within the kernel,
and between the kernel and the rest of the UNIX System. The associated
mechanism is simple and open-ended. It consists of a set of system calls, ker-
nel resources, and kernel routines.

The standard interface and mechanism enable modular, portable develop-
ment and easy integration of higher performance network services and their
components. STREAMS provides a framework; it does not impose any
specific network architecture. The STREAMS user interface is upwardly com-
patible with the character 1/0 user interface, and both user interfaces are
available in UNIX System V Release 3.1 and subsequent releases.

A Stream is a full-duplex processing and data transfer path between a
STREAMS driver in kernel space and a process in user space (see Figure 1).
In the kernel, a Stream is constructed by linking a stream head, a driver and
zero or more modules between the stream head and driver. The Stream head
is the end of the Stream closest to the user process. Throughout this guide,
the word "STREAMS" will refer to the mechanism and the word *Stream"
will refer to the path between a user and a driver.

A STREAMS driver may be a device driver that provides the services of
an external 1/0O device, or a software driver, commonly referred to as a
pseudo-device driver, that performs functions internal to a Stream. The
Stream head provides the interface between the Stream and user processes.
Its principal function is to process STREAMS-related user system calls.

Data is passed between a driver and the Stream head in messages. Mes-
sages that are passed from the Stream head toward the driver are said to
travel downstream. Similarly, messages passed in the other direction travel
upstream. The Stream head transfers data between the data space of a user
process and STREAMS kernel data space. Data to be sent to a driver from a
user process are packaged into STREAMS messages and passed downstream.
When a message containing data arrives at the Stream head from downstream,
the message is processed by the Stream head, which copies the data into user
buffers.
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STREAMS Overview

User SPace

- - - - e - -

~ “Kernel Space

Stream
Head

1 downstream

Module (optional)

Driver

T upstream

External
Interface

Figure 1: Basic Stream

Within a Stream, messages are distinguished by a type indicator. Certain
message types sent upstream may cause the Stream head to perform specific
actions, such as sending a signal to a user process. Other message types are
intended to carry information within a Stream and are not directly seen by a
user process.
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STREAMS Overview

One or more kernel-resident modules may be inserted into a Stream
between the Stream head and driver to perform intermediate processing of
data as it passes between the Stream head and driver. STREAMS modules are
dynamically interconnected in a Stream by a user process. No kernel pro-
gramming, assembly, or link editing is required to create the interconnection.

xiv STREAMS PROGRAMMER'’S GUIDE



Development Facilities

General and STREAMS-specific system calls provide the user-level facili-
ties required to implement application programs. This system call interface is
upwardly compatible with the character 1/0O facilities. The open system call
will recognize a STREAMS file and create a Stream to the specified driver. A
user process can receive and send data on STREAMS files using read and
write in the same manner as with character files. The ioctl system call
enables users to perform functions specific to a particular device and a set of
generic STREAMS ioctl commands [see streamio(7)] support a variety of func-
tions for accessing and controlling Streams. A close will dismantle a Stream.

In addition to the generic ioctl commands, there are STREAMS-specific
system calls to support unique STREAMS facilities. The poll system call
enables a user to poll multiple Streams for various events. The putmsg and
getmsg system calls enable users to send and receive STREAMS messages,
and are suitable for interacting with STREAMS modules and drivers through a
service interface.

STREAMS provides kernel facilities and utilities to support development
of modules and drivers. The Stream head handles most system calls so that
the related processing does not have to be incorporated in a module and
driver. The configuration mechanism allows modules and drivers to be incor-
porated into the system.

Examples are used throughout both parts of this document to highlight
the most important and common capabilities of STREAMS. The descriptions
are not meant to be exhaustive. For simplicity, the examples reference fic-
tional drivers and modules.

Appendix C provides the reference for STREAMS kernel utilities.
STREAMS system calls are specified in Section 2 of the Programmer’s Reference
Manual. STREAMS utilities are specified in Section 1M of the User’s/System
Administrator’s Reference Manual. STREAMS-specific ioctl calls are specified
in streamio(7) of the User's/System Administrator’s Reference Manual. The
modules and drivers available are described in Section 7 of the User’s/System
Administrator’s Reference Manual.

PREFACE xv






Introduction to Part 1

Part 1 of the guide, Application Programming, provides detailed informa-
tion, with various examples, on the user interface to STREAMS facilities. It is
intended for application programmers writing to the STREAMS system call
interface. Working knowledge of UNIX System user programming, data com-
munication facilities, and the STREAMS Primer is assumed. The organization
of Part 1 is as follows:

B Chapter 1, Basic Operations, describes the basic operations available
for constructing, using, and dismantling Streams. These operations are
performed using open, close, read, write, and ioctl.

M Chapter 2, Advanced Operations, presents advanced facilities provided
by STREAMS, including: poll, a user level I/O polling facility; asyn-
chronous I/O processing support; and a new facility for sampling
drivers for available resources.

B Chapter 3, Multiplexed Streams, describes the construction of sophisti-
cated, multiplexed Stream configurations.

B Chapter 4, Message Handling, describes how users can process
STREAMS messages using putmsg and getmsg in the context of a ser-
vice interface example.
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A Simple Stream

This chapter describes the basic set of operations for manipulating
STREAMS entities.

A STREAMS driver is similar to a character I/O driver in that it has one
or more nodes associated with it in the file system, and it is accessed using the
open system call. Typically, each file system node corresponds to a separate
minor device for that driver. Opening different minor devices of a driver will
cause separate Streams to be connected between a user process and the driver.
The file descriptor returned by the open call is used for further access to the
Stream. If the same minor device is opened more than once, only one Stream
will be created; the first open call will create the Stream, and subsequent open
calls will return a file descriptor that references that Stream. Each process that
opens the same minor device will share the same Stream to the device driver.

Once a device is opened, a user process can send data to the device using
the write system call and receive data from the device using the read system
call. Access to STREAMS drivers using read and write is compatible with the
character I/O mechanism.

The close system call will close a device and dismantle the associated
Stream.

The following example shows how a simple Stream is used. In the exam-
ple, the user program interacts with a generic communications device that pro-
vides point-to-point data transfer between two computers. Data written to the
device is transmitted over the communications line, and data arriving on the
line can be retrieved by reading it from the device.
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A Simple Stream

@uﬂe <fentl.h>

main( )

{
char buf[1024];
int fd, cout;

if ((fd = open("/dev/cam01*, O_RIMR)) < 0) {
perror("open failed");
exit(1);

}

while ((count = read(fd, buf, 1024)) > 0) {
if (write(fd, buf, count) != coumt) {
perror(“write failed");
break;
}

}
exit(0);

-

In the example, /dev/comm01 identifies a minor device of the communi-
cations device driver. When this file is opened, the system recognizes the
device as a STREAMS device and connects a Stream to the driver. Figure 1-1
shows the state of the Stream following the call to open.
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A Simple Stream

________ __--;____ ___ _User Space
Stream Kernel Space
Head
Communications
Driver

Figure 1-1: Stream to Communications Driver

This example illustrates a user reading data from the communications
device and then writing the input back out to the same device. In short, this
program echoes all input back over the communications line. The example
assumes that a user is sending data from the other side of the communications
line. The program reads up to 1024 bytes at a time, and then writes the
number of bytes just read.

The read call returns the available data, which may contain fewer than
1024 bytes. If no data is currently available at the Stream head, the read call
blocks until data arrives.

Similarly, the write call attempts to send count bytes to /dev/commol.
However, STREAMS implements a flow control mechanism that prevents a
user from flooding a device driver with data, thereby exhausting system
resources. If the Stream exerts flow control on the user, the write call blocks
until the flow control has been relaxed. The call will not return until it has
sent count bytes to the device. exit [see exit(2)] is called to terminate the user
process. This system call also closes all open files, thereby dismantling the
Stream in this example.
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Inserting Modules

An advantage of STREAMS over the existing character I/O mechanism
stems from the ability to insert various modules into a Stream to process and
manipulate data that passes between a user process and the driver. The fol-
lowing example extends the previous communications device echoing example
by inserting a module in the Stream to change the case of certain alphabetic
characters. The case converter module is passed an input string and an output
string by the user. Any incoming data (from the driver) is inspected for
instances of characters in the module’s input string and the alphabetic case of
all matching characters is changed. Similar actions are taken for outgoing data
using the output string. The necessary declarations for this program are
shown below:

C&uﬂe <string.h>

#include <fentl.h>
#include <stxopts.h>

/l-
* These defines would typically be
* found in a header file for the module
*/

#define OUTPUT STRING 1

#define INPUT STRING 2

main( )
{
char buf[1024];
int fd, count;
struct strioctl strioctl;

J

The first step is to establish a Stream to the communications driver and
insert the case converter module. The following sequence of system calls
accomplishes this:
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Inserting Modules

C(fd = open("/dev/cam0 1", O_RDWR)) < 0) {

perror("open failed");
exit(1);
}
if (ioctl(fd, I _PUSH, "case converter") < 0) {

perror(“ioctl I_PUSH failed");
exit(2);

The I_PUSH ioctl call directs the Stream head to insert the case converter
module between the driver and the Stream head, creating the Stream shown
in Figure 1-2. As with any driver, this module resides in the kernel and must
have been configured into the system before it was booted. L_PUSH is one of
several generic STREAMS ioctl commands that enable a user to access and
control individual Streams [see streamio(7)].
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Inserting Modules

Stream Kernel Space

Case
Converter

P

Communications
Driver

Figure 1-2: Case Converter Module

An important difference between STREAMS drivers and modules is illus-
trated here. Drivers are accessed through a node or nodes in the file system
and may be opened just like any other device. Modules, on the other hand,
do not occupy a file system node. Instead, they are identified through a
separate naming convention and are inserted into a Stream using [_PUSH.
The name of a module is defined by the module developer and is typically
included on the manual page describing the module. (Manual pages describ-
ing STREAMS drivers and modules are found in section 7 of the User’s/System
Administrator's Reference Manual.)

Modules are pushed onto a Stream and removed from a Stream in Last-
In-First-Out (LIFO) order. Therefore, if a second module was pushed onto
this Stream, it would be inserted between the Stream head and the case con-
verter module.
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Module and Driver Control

The next step in this example is to pass the input string and output string
to the case converter module. This can be accomplished by issuing ioctl calls

to the case converter module as follows:

//*set input conversion string */

strioctl.ic_dp = “ABCDEFGHLI";
strioctl.ic len = strlen(strioctl.ic dp);

if (ioctl(fd, I_STR, &strioctl) < 0) {
perror(“ioctl I STR failed");
exit(3);

}

/* set output conversion string */

strioctl.ic dp = "abcdefghij;
strioctl.ic_len = strlen(strioctl.ic dp);

if (ioctl(fd, I_STR, &strioctl) < 0) {
perror(“*ioctl I_STR failed“);
exit(4);

strioctl.ic ond = INPUT STRING; /* cammand type */
strioctl.ic_timout = 0; /* default timecut (15 sec) */

strioctl.ic_amd = OUTPUT_STRING;/* cammand type */

ioctl requests are issued to STREAMS drivers and modules indirectly,

using the I_STR ioctl call [see streamio(7)]. The argument to L_STR must be a

pointer to a strioctl structure, which specifies the request to be made to a
module or driver. This structure is defined in <stropts.h> and has the fol-

lowing format:

BASIC OPERATIONS
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Module and Driver Control

struct strioctl {
int ic camd; /* ioctl request */
int ic timout; /* ACK/NAK timecut */
int dic len; /% length of data argument */
char *ic dp; /% ptr to data argument */
}

where ic_cmd identifies the command intended for a module or driver,
ic_timout specifies the number of seconds an L_STR request should wait for
an acknowledgment before timing out, ic_len is the number of bytes of data
to accompany the request, and ic_dp points to that data.

L_STR is intercepted by the Stream head, which packages it into a mes-
sage, using information contained in the strioctl structure, and sends the mes-
sage downstream. The request will be processed by the module or driver
closest to the Stream head that understands the command specified by
ic_cmd. The ioctl call will block up to ic_timout seconds, waiting for the tar-
get module or driver to respond with either a positive or negative ack-
nowledgment message. If an acknowledgment is not received in ic_timout
seconds, the ioctl call will fail.

I_STR is actually a nested request; the Stream head intercepts _STR and
then sends the driver or module request (as specified in the strioctl structure)
downstream. Any module that does not understand the command in ic_cmd
will pass the message further downstream. Eventually, the request will reach
the target module or driver, where it is processed and acknowledged. If no
module or driver understands the command, a negative acknowledgment will
be generated, and the ioctl call will fail.

In the example, two separate commands are sent to the case converter
module. The first contains the conversion string for input data, and the
second contains the conversion string for output data. The ic—cmd field is set
to indicate whether the command is setting the input or output conversion
string. For each command, the value of ic_timout is set to zero, which speci-
fies the system default timeout value of 15 seconds. Also, a data argument
that contains the conversion string accompanies each command. The ic_dp
field points to the beginning of each string, and ic_len is set to the length of
the string.
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Module and Driver Control

Only one L_STR request can be active on a STREAM at one time.
NOTE| Further requests will block until the active L_STR request is ack-
nowledged and the system call completes.

The strioctl structure is also used to retrieve the results, if any, of an
L_STR request. If data is returned by the target module or driver, ic_dp must
point to a buffer large enough to hold that data, and ic_len will be set on
return to indicate the amount of data returned.

The remainder of this example is identical to the previous example:

-

while ((count = read(fd, buf, 1024)) > 0) {
if (write(fd, buf, count) 1= count) {
perror("write failed");
break;

The case converter module will convert the specified input characters to
lower case and the corresponding output characters to upper case. Notice that
the case conversion processing was realized with no change to the communi-
cations driver.

As with the previous example, the exit system call will dismantle the
Stream before terminating the process. The case converter module will be
removed from the Stream automatically when it is closed. Alternatively,
modules may be removed from a Stream using the I _POP ijoctl call described
in streamio(7). This call removes the topmost module on the Stream and
enables a user process to alter the configuration of a Stream dynamically by
pushing and popping modules as needed.
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Module and Driver Control

A few of the important ioctl requests supported by STREAMS have been
discussed. Several other requests are available to support operations such as
determining if a given module exists on the Stream, or flushing the data on a
Stream. These requests are described fully in streamio(7).
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Advanced Input/Output Facilities

The traditional input/output facilities—open, close, read, write, and
ioctl—have been discussed, but STREAMS supports new user capabilities that
will be described in the remaining chapters of this guide. This chapter
describes a facility that enables a user process to poll multiple Streams simul-
taneously for various events. Also discussed is a signaling feature that sup-
ports asynchronous 1/0O processing. Finally, this chapter presents a new
mechanism, called clone open, for finding available minor devices.
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Input/Output Polling

The poll [see poll(2)] system call provides users with a mechanism for
monitoring input and output on a set of file descriptors that reference open
Streams. It identifies those Streams over which a user can send or receive
data. For each Stream of interest, users can specify one or more events about
which they should be notified. These events include the following:

POLLIN Input data is available on the Stream associated with the
given file descriptor.

POLLPRI A priority message is available on the Stream associated with
the given file descriptor. Priority messages are described in
the section of Chapter 4 entitled " Accessing the Datagram
Provider.*

POLLOUT The Stream associated with the given file is writable. That is,
the Stream has relieved the flow control that would prevent a
user from sending data over that Stream.

poll will examine each file descriptor for the requested events and, on
return, will indicate which events have occurred for each file descriptor. If no
event has occurred on any polled file descriptor, poll blocks until a requested
event or timeout occurs. The specific arguments to poll are the following:

B an array of file descriptors and events to be polled
B the number of file descriptors to be polled

B the number of milliseconds poll should wait for an event if no events
are pending (-1 specifies wait forever)

The following example shows the use of poll. Two separate minor dev-
ices of the communications driver presented earlier are opened, thereby estab-
lishing two separate Streams to the driver. Each Stream is polled for incom-
ing data. If data arrives on either Stream, it is read and then written back to
the other Stream. This program extends the previous echoing example by
sending echoed data over a separate communications line (minor device). The
steps needed to establish each Stream are as follows:
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Input/Output Polling

@ude <fentl.h>

#include <poll.h>
#define NPOLL 2 /% munber of file descriptors to poll */

main( )

{
struct pollfd pollfds[NPOLL];
char buf[1024];
int count, i;

if ((pollfds[0).fd = open(“/dev/cam01", O_RDWR|O NDELAY)) < 0) {
pexrror(“open failed for /dev/comm01");
exit(1);

}

if ((pollfds(1]).fd = open("/dev/comm02", O RDWR|O NDELAY)) < 0) {
perror(“open failed for /dev/camm02");
exit(2);

}

N

The variable pollfds is declared as an array of pollfd structures, where
this structure is defined in <poll.Lh> and has the following format:

struct pollfd {
int f4; /* file descriptor */
short events; /* requested events */
short revents; /* returned events */
}

For each entry in the array, fd specifies the file descriptor to be polled and
events is a bitmask that contains the bitwise inclusive OR of events to be
polled on that file descriptor. On return, the revents bitmask will indicate
which of the requested events has occurred.
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Input/Output Polling

The example opens two separate minor devices of the communications
driver and initializes the pollfds entry for each. The remainder of the example
uses poll to process incoming data as follows:

/* set events to poll for incoming data */
pollfds[0].events = POLLIN;
pollfds[1]).events = POLLIN;

while (1) {
/* poll and use -1 timeout (infinite) */
if (poll(pollfds, NPOLL, -1) < 0) {
perror(“poll failed");
exit(3);

}
for (i = 0; i < NPOLL; i++) {
switch (pollfds([i].revents) {

default: /* default error case */
perxor(“"error event®);
exit(4);

case 0: /* no events */
break;

case POLLIN:
/* echo incaming data an "other® Stream */
while ((count = read(pollfds[i}.fd, buf, 1024)) > 0)
/«l
* the write loses data if flow control
* prevents the transmit at this time.
*/
if (write((i==0? pollfds[1).fd: pollfds[0].fd),
buf, count) != count)
fprintf (stderr,"writer lost data\n");
break;
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Input/Output Polling

The user specifies the polled events by setting the events field of the
pollfd structure to POLLIN. This requested event directs poll to notify the
user of any incoming data on each Stream. The bulk of the example is an
infinite loop, where each iteration will poll both Streams for incoming data.

The second argument to poll specifies the number of entries in the pollfds
array (two in this example). The third argument is a timeout value indicating
the number of milliseconds poll should wait for an event if none has
occurred. On a system where millisecond accuracy is not available, timeout is
rounded up to the nearest legal value available on that system. Here, the
value of timeout is -1, specifying that poll should block indefinitely until a
requested event occurs or until the call is interrupted.

If poll succeeds, the program looks at each entry in polifds. If revents is
set to 0, no event has occurred on that file descriptor. If revents is set to POL-
LIN, incoming data is available. In this case, all available data is read from
the polled minor device and written to the other minor device.

If revents is set to a value other than 0 or POLLIN, an error event must
have occurred on that Stream, because the only requested event was POLLIN.
The following error events are defined for poll. These events may not be
polled for by the user, but will be reported in revents whenever they occur.
As such, they are only valid in the revents bitmask:

POLLERR A fatal error has occurred in some module or driver on the
Stream associated with the specified file descriptor. Further
system calls will fail.

POLLHUP A hangup condition exists on the Stream associated with the
specified file descriptor.

POLLNVAL The specified file descriptor is not associated with an open
Stream.

The example attempts to process incoming data as quickly as possible.
However, when writing data to a Stream, the write call may block if the
Stream is exerting flow control. To prevent the process from blocking, the
minor devices of the communications driver were opened with the
O_NDELAY flag set. If flow control is exerted and O_NDELAY is set, write
will not be able to send all the data. This can occur if the communications
driver is unable to keep up with the user’s rate of data transmission. If the
Stream becomes full, the number of bytes write sends will be less than the
requested count. For simplicity, the example ignores the data if the Stream
becomes full, and a warning is printed to stderr.
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This program will continue until an error occurs on a Stream, or until the
process is interrupted.
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Asynchronous Input/Output

The poll system call described above enables a user to monitor multiple
Streams in a synchronous fashion. The poll call normally blocks until an
event occurs on any of the polled file descriptors. In some applications, how-
ever, it is desirable to process incoming data asynchronously. For example, an
application may wish to do some local processing and be interrupted when a
pending event occurs. Some time-critical applications cannot afford to block,
but must have immediate indication of success or failure.

A new facility is available for use with STREAMS that enables a user pro-
cess to request a signal when a given event occurs on a Stream. When used
with poll, this facility enables applications to asynchronously monitor a set of
file descriptors for events.

The I_SETSIG ioctl call [see streamio(7)] is used to request that a SIG-
POLL signal be sent to a user process when a specific event occurs. Listed
below are the events for which an application may be signaled:

S_INPUT Data has arrived at the Stream head, and no data existed at
the Stream head when it arrived.

S_HIPRI A priority STREAMS message has arrived at the Stream
head.

S_OUTPUT The Stream is no longer full and can accept output. That
is, the Stream has relieved the flow control that would
prevent a user from sending data over that Stream.

S_MSG A special STREAMS signal message that contains a SIG-
POLL signal has reached the front of the Stream head
input queue. This message may be sent by modules or
drivers to generate immediate notification of data or events
to follow.

The polling example could be written to process input from each com-
munications driver minor device by issuing L_SETSIG to request a signal for
the S_INPUT event on each Stream. The signal catching routine could then
call poll to determine on which Stream the event occurred. The default action
for SIGPOLL is to terminate the process. Therefore, the user process must
catch the signal using signal [see signal(2)]. SIGPOLL will only be sent to
processes that request the signal using L_SETSIG.
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Clone Open

In the earlier examples, each user process connected a Stream to a driver
by opening a particular minor device of that driver. Often, however, a user
process wants to connect a new Stream to a driver regardless of which minor
device is used to access the driver.

In the past, this typically forced the user process to poll the various minor
device nodes of the driver for an available minor device. To alleviate this
task, a facility called clone open is supported for STREAMS drivers. If a
STREAMS driver is implemented as a cloneable device, a single node in the
file system may be opened to access any unused minor device. This special
node guarantees that the user will be allocated a separate Stream to the driver
on every open call. Each Stream will be associated with an unused minor
device, so the total number of Streams that may be connected to a cloneable
driver is limited by the number of minor devices configured for that driver.

The clone device may be useful, for example, in a networking environ-
ment where a protocol pseudo-device driver requires each user to open a
separate Stream over which it will establish communication. Typically, the
users would not care which minor device they used to establish a Stream to
the driver. Instead, the clone device can find an available minor device for
each user and establish a unique Stream to the driver. Chapter 3 describes
this type of transport protocol driver,

A user program has no control over whether a given driver supports the
NOTE| clone open. The decision to implement a STREAMS driver as a cloneable
device is made by the designers of the device driver.
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Multiplexer Configurations

In the earlier chapters, Streams were described as linear connections of
modules, where each invocation of a module is connected to, at most, one
upstream module and one downstream module. While this configuration is
suitable for many applications, others require the ability to multiplex Streams
in a variety of configurations. Typical examples are terminal window facilities
and internetworking protocols (which might route data over several subnet-
works).

An example of a multiplexer is one that multiplexes data from several
upper Streams over a single lower Stream, as shown in Figure 3-1. An upper
Stream is one that is upstream from a multiplexer, and a lower Stream is one
that is downstream from a multiplexer. A terminal windowing facility might
be implemented in this fashion, where each upper Stream is associated with a
separate window.

MUX

Figure 3-1: Many-to-One Multiplexer

A second type of multiplexer might route data from a single upper Stream
to one of several lower Streams, as shown in Figure 3-2. An internetworking
protocol could take this form, where each lower Stream links the protocol to a
different physical network.
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MUX

Figure 3-2: One-to-Many Multiplexer

A third type of multiplexer might route data from one of many upper
Streams to one of many lower Streams, as shown in Figure 3-3.

MUX

Figure 3-3: Many-to-Many Multiplexer
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A STREAMS mechanism is available that supports the multiplexing of
Streams through special pseudo-device drivers. Using a linking facility, users
can dynamically build, maintain, and dismantle each of the above multiplexed
Stream configurations. In fact, these configurations can be further combined
to form complex, multilevel, multiplexed Stream configurations.

The remainder of this chapter describes multiplexed Stream configurations
in the context of an example (see Figure 3-4). In this example, an internet-
working protocol pseudo-device driver (IP) is used to route data from a single
upper Stream to one of two lower Streams. This driver supports two
STREAMS connections beneath it to two distinct sub-networks. One sub-
network supports the IEEE 802.3 standard for the CSMA/CD medium access
method. The second sub-network supports the IEEE 802.4 standard for the
token-passing bus medium access method.

The example also presents a transport protocol pseudo-device driver (TP)
that multiplexes multiple virtual circuits (upper Streams) over a single Stream
to the IP pseudo-device driver.
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Figure 3-4 shows the multiplexing configuration to be created. This confi-
guration will enable users to access the services of the transport protocol. To
free users from the need to know about the underlying protocol structure, a
user-level daemon process will build and maintain the multiplexing configura-
tion. Users can then access the transport protocol directly by opening the TP

driver device node.

Driver

i

IP
Driver

1

T

802.4
Driver

802.3
Driver

Figure 3-4: Protocol Multiplexer
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Building a Multiplexer

The following example shows how this daemon process sets up the proto-
col multiplexer. The necessary declarations and initialization for the daemon

program are as follows:

@ﬂe <fentl.h>

#include <stropts.h>

main( )
{
int £4 802 4,
fd 802 3,
fd ip,
£d tp;

/*

*/
switch (fork()) {
case 0:
break;
case ~1:

exit(2);
default:
exit(0);
}
setpgrp( )3

N

+* daemon-ize this process

perror(“"fork failed");

/

This multilevel, multiplexed Stream configuration will be built from the
bottom up. Therefore, the example begins by constructing the IP multiplexer.
This multiplexing pseudo-device driver is treated like any other software
driver. It owns a node in the UNIX file system and is opened just like any

other STREAMS device driver.

The first step is to open the multiplexing driver and the 802.4 driver,
creating separate Streams above each driver as shown in Figure 3-5. The
Stream to the 802.4 driver may now be connected below the multiplexing IP

driver using the L_LINK ioctl call.
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Kernel Space

802.4
Driver

IP
Driver

Figure 3-5: Before Link

The sequence of instructions to this point is:

exit(1);

}

exit(2);
}

exit(3);
}

\_

/if ((£4_802 4 = open("/dev/802 4"

pexror(“open of /dev/802 4 failed");

if ((£d_ip = open("/dev/ip", O RIWR)) < 0) {
pexror("open of /dev/ip failedv);

/* now link 802.4 to underside of IP */

if (ioctl(fd ip, I LINK, fd 802 4) < 0) {
perror(“I_LINK ioctl failed");

» O RDWR)) < 0) {
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L_LINK takes two file descriptors as arguments. The first file descriptor,
fd—ip, must reference the Stream connected to the multiplexing driver, and the
second file descriptor, fd_802_4, must reference the Stream to be connected
below the multiplexer. Figure 3-6 shows the state of these Streams following
the L_LINK call. The complete Stream to the 802.4 driver has been connected
below the IP driver, including the Stream head. The Stream head of the 802.4
driver will be used by the IP driver to manage the multiplexer.

Kernel Space

IP
Driver

]

802.4
Driver

Figure 3-6: IP Multiplexer After First Link

L_LINK will return an integer value, called a mux ID, which is used by
the multiplexing driver to identify the Stream just connected below it. This
mux ID is ignored in the example, but may be useful for dismantling a multi-
plexer or routing data through the multiplexer. Its significance is discussed
later.

The following sequence of system calls is used to continue building the
internetworking multiplexer (IP):
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/if((fd_802_3 = open("/dev/802_3", O_RDWR)) < 0) { \

perror("open of /dev/802 3 failed");
exit(4);

}

if (ioctl(fd ip, I LINK, £d 802 3) < 0) {
perror("I_LINK ioctl failed");
exit(S);

}

- /

All links below the IP driver have now been established, giving the confi-

guration in Figure 3-7.

Controlling S

Kernel Space

Stream
P
Driver
802.4 802.3
Driver Driver

Figure 3-7: IP Multiplexer
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The Stream above the multiplexing driver used to establish the lower con-
nections is the controlling Stream and has special significance when disman-
tling the multiplexing configuration, as will be illustrated later in this chapter.
The Stream referenced by fd_ip is the controlling Stream for the IP multi-
plexer.

The order in which the Streams in the multiplexing configuration are
NOTE| opened is unimportant. If, however, it is necessary to have intermediate
modules in the Stream between the IP driver and media drivers, these
modules must be added to the Streams associated with the media drivers
(using L_PUSH) before the media drivers are attached below the multi-
plexer.

The number of Streams that can be linked to a multiplexer is restricted by
the design of the particular multiplexer. The manual page describing each
driver (typically found in section 7 of the User’s/System Administrator’s Refer-
ence Manual) should describe such restrictions. However, only one L_LINK
operation is allowed for each lower Stream; a single Stream cannot be linked
below two multiplexers simultaneously.

Continuing with the example, the IP driver will now be linked below the
transport protocol (TP) multiplexing driver. As seen earlier in Figure 3-4, only
one link will be supported below the transport driver. This link is formed by
the following sequence of system calls:

/if ((£d_tp = open("/dev/tp", O_RDWR)) < 0} {

perror(“open of /dev/tp failed");
exit(6);
}

if (ioctl(fd tp, I_LINK, £d ip) < 0) {
perror("I_LINK ioctl failed");
exit(7);

/
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Building a Multiplexer

The multilevel multiplexing configuration shown in Figure 3-8 has now

been created.

Controlling S

Kernel Space

Stream
TP
Driver
IP
Driver
802.4 802.3
Driver Driver

Figure 3-8: TP Multiplexer

Because the controlling Stream of the IP multiplexer has been linked
below the TP multiplexer, the controlling Stream for the new multilevel multi-
plexer configuration is the Stream above the TP multiplexer.

At this point the file descriptors associated with the lower drivers can be
closed without affecting the operation of the multiplexer. Closing these file
descriptors may be necessary when building large multiplexers so that many
devices can be linked together without exceeding the UNIX System limit on
the number of simultaneously open files per process. If these file descriptors
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are not closed, all subsequent read, write, ioctl, poll, getmsg, and putmsg
system calls issued to them will fail. That is because I_LINK associates the
Stream head of each linked Stream with the multiplexer, so the user may not
access that Stream directly for the duration of the link.

The following sequence of system calls will complete the multiplexing
daemon example:

Kclose (£d_802 4);

close(fd 802 _3);
close(fd ip);

/* Hold multiplexer open forever */
pause();

Figure 3-4 shows the complete picture of the multilevel protocol multi-
plexer. The transport driver is designed to support several, simultaneous vir-
tual circuits, where these virtual circuits map one-to-one to Streams opened to
the transport driver. These Streams will be multiplexed over the single
Stream connected to the IP multiplexer. The mechanism for establishing mul-
tiple Streams above the transport multiplexer is actually a by-product of the
way in which Streams are created between a user process and a driver. By
opening different minor devices of a STREAMS driver, separate Streams will
be connected to that driver. Of course, the driver must be designed with the
intelligence to route data from the single lower Stream to the appropriate
upper Stream.

Notice in Figure 3-4 that the daemon process maintains the multiplexed
Stream configuration through an open Stream (the controlling Stream) to the
transport driver. Meanwhile, other users can access the services of the tran-
sport protocol by opening new Streams to the transport driver; they are freed
from the need for any unnecessary knowledge of the underlying protocol con-
figurations and sub-networks that support the transport service.
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Multilevel, multiplexing configurations, such as the one presented in the
above example, should be assembled from the bottom up. That is because
STREAMS does not allow ioctl requests (including L_LINK) to be passed
through higher multiplexing drivers to reach the desired multiplexer; they
must be sent directly to the intended driver. For example, once the IP driver
is linked under the TP driver, ioctl requests cannot be sent to the IP driver
through the TP driver.
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Dismantling a Multiplexer

Streams connected to a multiplexing driver from above with open can be
dismantled by closing each Stream with close. In the protocol multiplexer,
these Streams correspond to the virtual circuit Streams above the TP multi-
plexer. The mechanism for dismantling Streams that have been linked below
a multiplexing driver is less obvious and is described below in detail.

The L_UNLINK ioctl call is used to disconnect each multiplexer link
below a multiplexing driver individually. This command takes the following
form:

ioctl(fd, I_UNLINK, mux id);

where fd is a file descriptor associated with a Stream connected to the multi-
plexing driver from above, and mux_id is the identifier that was returned by
L_LINK when a driver was linked below the multiplexer. Each lower driver
may be disconnected individually in this way, or a special mux_id value of -1
may be used to disconnect all drivers from the multiplexer simultaneously.

In the multiplexing daemon program presented earlier, the multiplexer is
never explicitly dismantled. That is because all links associated with a multi-
plexing driver are automatically dismantled when the controlling Stream asso-
ciated with that multiplexer is closed. Because the controlling Stream is open
to a driver, only the final call of close for that Stream will close it. In this
case, the daemon is the only process that has opened the controlling Stream,
so the multiplexing configuration will be dismantled when the daemon exits.

For the automatic dismantling mechanism to work in the multilevel, mul-
tiplexed Stream configuration, the controlling Stream for each multiplexer at
each level must be linked under the next higher level multiplexer. In the
example, the controlling Stream for the IP driver was linked under the TP
driver. This resulted in a single controlling Stream for the full multilevel con-
figuration. Because the multiplexing program relied on closing the controlling
Stream to dismantle the multiplexed Stream configuration instead of using
explicit L_UNLINK calls, the mux ID values returned by L_LINK could be
ignored.

An important side effect of automatic dismantling on close is that it is not
possible for a process to build a multiplexing configuration and then exit.
That is because exit [see exi#(2)] will close all files associated with the process,
including the controlling Stream. To keep the configuration intact, the process
must exist for the life of that multiplexer. That is the motivation for imple-
menting the example as a daemon process.
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Routing Data Through a Multiplexer

As demonstrated, STREAMS has provided a mechanism for building mul-
tiplexed Stream configurations. However, the criteria on which a multiplexer
routes data is driver-dependent. For example, the protocol multiplexer shown
in the last example might use address information found in a protocol header
to determine over which sub-network a given packet should be routed. It is
the multiplexing driver’s responsibility to define its routing criteria.

One routing option available to the multiplexer is to use the mux ID value
to determine to which Stream data should be routed. (Remember that each
multiplexer link is associated with a mux ID.) L_LINK passes the mux ID
value to the driver and returns this value to the user. The driver can therefore
specify that the mux ID value must accompany data routed through it. For
example, if a multiplexer routed data from a single upper Stream to one of
several lower Streams (as did the IP driver), the multiplexer could require the
user to insert the mux ID of the desired lower Stream into the first four bytes
of each message passed to it. The driver could then match the mux ID in
each message with the mux ID of each lower Stream and route the data
accordingly.

3-14 STREAMS PROGRAMMER’S GUIDE



Service Interface Messages 4-1
Service Interfaces 4-1
The Message Interface 4-4
Datagram Service Interface

Example 4-7
Accessing the Datagram Provider 4-9
Closing the Service 4-13
Sending a Datagram 4-13
Receiving a Datagram 4-15






Service Interface Messages

A STREAMS message format has been defined to simplify the design of
service interfaces. Also, two new system calls, getmsg and putmsg, are avail-
able for sending these messages downstream and receiving messages that are
available at the Stream head. This chapter describes these system calls in the
context of a service interface example. First, a brief overview of STREAMS
service interfaces is presented.

Service Interfaces

A principal advantage of the STREAMS mechanism is its modularity.
From user level, kernel-resident modules can be dynamically interconnected to
implement any reasonable processing sequence. This modularity reflects the
layering characteristics of contemporary network architectures.

One benefit of modularity is the ability to interchange modules of like
function. For example, two distinct transport protocols, implemented as
STREAMS modules, may provide a common set of services. An application or
higher layer protocol that requires those services can use either module. This
ability to substitute modules enables user programs and higher-level protocols
to be independent of the underlying protocols and physical communication
media.

Each STREAMS module provides a set of processing functions, or services,
and an interface to those services. The service interface of a module defines
the interaction between that module and any neighboring modules, and there-
fore is a necessary component for providing module substitution. By creating
a well-defined service interface, applications and STREAMS modules can
interact with any module that supports that interface. Figure 4-1 demonstrates
this.
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Service Interface Messages

Application Application
A A

..................................................................................

TCP ISO
Transport Transport
Protocol Protocol
Lower Layer Lower Layer
Protocol Protocol
Suite A Suite B

Figure 4-1: Protocol Substitution

By defining a service interface through which applications interact with a
transport protocol, it is possible to substitute a different protocol below that
service interface in a manner completely transparent to the application. In
this example, the same application can run over the Transmission Control Pro-
tocol (TCP) and the ISO transport protocol. Of course, the service interface
must define a set of services common to both protocols.

The three components of any service interface are the service user, the
service provider, and the service interface itself, as seen in Figure 4-2.
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Service Interface Messages

Service
User
Request Q
Primitives
* Service Interface
Response and
Event Primitives
4
Service
Provider

Figure 4-2: Service Interface

Typically, a user makes a request of a service provider using some well-
defined service primitive. Responses and event indications are also passed
from the provider to the user using service primitives. The service interface is
defined as the set of primitives that define a service and the allowable state
transitions that result as these primitives are passed between the user and pro-
vider.
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The Message Interface

A message format has been defined to simplify the design of service inter-
faces using STREAMS. Each service interface primitive is a distinct STREAMS
message that has two parts: a control part and a data part. The control part
contains information that identifies the primitive and includes all necessary
parameters. The data part contains user data associated with that primitive.

An example of a service interface primitive is a transport protocol connect
request. This primitive requests the transport protocol service provider to
establish a connection with another transport user. The parameters associated
with this primitive may include a destination protocol address and specific
protocol options to be associated with that connection. Some transport proto-
cols also allow a user to send data with the connect request. A STREAMS
message would be used to define this primitive. The control part would iden-
tify the primitive as a connect request and would include the protocol address
and options. The data part would contain the associated user data.

STREAMS enables modules to create these messages and pass them to
neighbor modules. However, the read and write system calls are not suffi-
cient to enable a user process to generate and receive such messages. First,
read and write are byte-stream oriented, with no concept of message boun-
daries. To support service interfaces, the message boundary of each service
primitive must be preserved so that the beginning and end of each primitive
can be located. Also, read and write offer only one buffer to the user for
transmitting and receiving STREAMS messages. If control information and
data were placed in a single buffer, the user would have to parse the contents
of the buffer to separate the data from the control information.

Two new STREAMS system calls are available that enable user processes
to create STREAMS messages and send them to neighboring kernel modules
and drivers or receive the contents of such messages from kernel modules and
drivers. These system calls preserve message boundaries and provide separate
buffers for the control and data parts of a message.

The putmsg system call enables a user to create STREAMS messages and
send them downstream. The user supplies the contents of the control and
data parts of the message in two separate buffers. Likewise, the getmsg sys-
tem call retrieves such messages from a Stream and places the contents into
two user buffers.
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The Message Interface

The syntax of putmsg is as follows:

int putmsg (fd, ctlptr, dataptr, flags)
int £d;

struct strbuf *ctlptr;

struct strbuf *dataptr;

int flags;

fd identifies the Stream to which the message will be passed, ctlptr and
dataptr identify the control and data parts of the message, and flags may be
used to specify that a priority message should be sent.

The strbuf structure is used to describe the control and data parts of a
message and has the following format:

struct strbuf {
int maxlen; /* maximum buffer length */
int len; /* length of data */
char *buf; /* pointer to buffer */

buf points to a buffer containing the data and len specifies the number of
bytes of data in the buffer. maxlen specifies the maximum number of bytes
the given buffer can hold and is only meaningful when retrieving information
into the buffer using getmsg.

The getmsg system call retrieves messages available at the Stream head
and has the following syntax:

int getmsg (fd, ctlptr, dataptr, flags)
int £4;

struct stxrbuf *ctlptr;

struct strbuf *dataptr;

int *flags;

The arguments to getmsg are the same as those for putmsg.

The remainder of this chapter presents an example that demonstrates how
putmsg and getmsg may be used to interact with the service interface of a
simple datagram protocol provider. A potential provider of such a service
might be the IEEE 802.2 Logical Link Control Protocol Type 1. The example
implements a user-level library that would free the user from knowledge of
the underlying STREAMS system calls. The Transport Interface of the
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Network Services Library in UNIX System Release 3.1 provides a similar func-
tion for transport layer services. The example here illustrates how a service
interface might be defined, and is not an example of a complete IEEE 802.2
service interface.
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Datagram Service Interface Example
The example datagram service interface library presented below includes
four functions that enable a user to do the following:

B establish a Stream to the service provider and bind a protocol address
to the Stream

B send a datagram to a remote user

B receive a datagram from a remote user

B close the Stream connected to the provider

First, the structure and constant definitions required by the library are

shown. These typically will reside in a header file associated with the service
interface.

Vad
* Primitives initiated by the service user.
*/

#define BIND REQ 1 /% bind request */

#define UNITDATA RBQ@ 2 /* unitdata request */

Vi d

* Primitives initiated by the service provider.

*/
#define OK ACK 3 /* bind acknowledgment */
#define ERROR ACK 4 /* error acknowledgment */

#define UNITDATA IND 5 /* unitdata indication */

Vi

* The following stxucture definitions define the format of the
* control part of the service interface message of the above
* primitives.

*/
struct bind req { /% bind request */
long PRIM type; /* always BIND REQ */
long BIND addr; /% addr to bind */
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struct unitdata ind {
long PRIM type;
long SRC addr;

|

/% union of all primitives

union primitives {
long
struct bind req
struct unitdata req
struct ok _ack
struct error_ack
struct unitdata ind

|8

#include <stropts.h>
#include <stdio.h>
#include <exrrno.h>

/* unitdata request */
/* always UNITDATA REQ */
/* destination addr */

/* positive acknowledgment */
/* always OK ACK */

/* error acknowledgment */
/* always ERROR ACK */
/* UNIX error code */

/* unitdata indication */
/* always UNITDATA IND */
/* source addr */

*/

type;

bind req;
unitdata req;
ok_ack;
error,_ack;
unitdata ind;

/* header files needed by library */

continued

Five primitives have been defined. The first two represent requests from
the service user to the service provider. These are:

BIND_REQ

This request asks the provider to bind a specified protocol

address. It requires an acknowledgment from the pro-
vider to verify that the contents of the request were syn-
tactically correct.
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UNITDATA_REQ
This request asks the provider to send a datagram to the
specified destination address. It does not require an ack-
nowledgment from the provider.

The three other primitives represent acknowledgments of requests, or indi-
cations of incoming events, and are passed from the service provider to the
service user. These are:

OK_ACK This primitive informs the user that a previous bind
request was received successfully by the service provider.

ERROR_ACK This primitive informs the user that a non-fatal error was
found in the previous bind request. It indicates that no
action was taken with the primitive that caused the error.

UNITDATA_IND

This primitive indicates that a datagram destined for the
user has arrived.

The structures defined above describe the contents of the control part of
each service interface message passed between the service user and service
provider. The first field of each control part defines the type of primitive
being passed.

Accessing the Datagram Provider

The first routine presented below, inter_open, opens the protocol driver
device file specified by path and binds the protocol address contained in addr
so that it may receive datagrams. On success, the routine returns the file
descriptor associated with the open Stream; on failure, it returns -1 and sets
errno to indicate the appropriate UNIX System error value.

MESSAGE HANDLING 4-9



Datagram Service Interface Example

in/ter_open(path, oflags, addr)

char *path;
{
int fd;
struct bind req bind req;
struct strbuf ctlbuf;
union primitives rcvbuf;
struct error_ack *error_ack;
int flags;
if ((fd = open(path, oflags)) < 0)
return(-1);

/% send bind request msg down stream */

bind req.PRIM type = BIND REQ;

bind req.BIND addr = addr;
ctlbuf.len = sizeof (struct bind req);
ctlbuf.buf = (char *)&bind req;

if (putmsg(fd, &ctlbuf, NULL, 0) < 0) {
close(£fd);
return(-1);

}

o /

After opening the protocol driver, inter_open packages a bind request
message to send downstream. putmsg is called to send the request to the ser-
vice provider. The bind request message contains a control part that holds a
bind_req structure, but it has no data part. ctlbuf is a structure of type strbuf
and it is initialized with the primitive type and address. Notice that the max-
len field of ctlbuf is not set before calling putmsg. That is because putmsg
ignores this field. The dataptr argument to putmsg is set to NULL to indicate
that the message contains no data part. Also, the flags argument is 0, which
specifies that the message is not a priority message.

After inter_open sends the bind request, it must wait for an acknowledg-
ment from the service provider, as follows:

4-10 STREAMS PROGRAMMER’S GUIDE



Datagram Service Interface Example

/* wait for ack of request */

ctlbuf .maxlen = sizeof(union primitives);
ctlbuf.len = 0;

ctlbuf.buf = (char *)&rcvbuf;

flags = RS _HIPRI;

if (getmsg(fd, &ctlbuf, NULL, &flags) < 0) {
close(£fd);
return(-1);

}

/* did we get encugh to determine type */
if (ctlbuf.len < sizeof(long)) {
close(£d);
errno = EPROTO;
return(-1);
}

/* switch on type (first long in revbuf) */
switch(revbuf.type) {
default:
errno = EPROTO;
close(fd);
return(-1);

case OK _ACK:
return(£fd) ;

case ERROR ACK:

if (ctlbuf.len < sizeof(struct error ack)) {
ermo = EPROIO;
close(fd);
return(-1);

}

errcr_ack = (struct exrror_ack *)&xcvibuf;

errno = error._ack—>UNIX error;

close(£fd);

retwrn(-1);
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getmsg is called to retrieve the acknowledgment of the bind request. The
acknowledgment message consists of a control part that contains either an
ok_ack or error_ack structure, and no data part.

The acknowledgment primitives are defined as priority messages. Two
classes of messages can arrive at the Stream head: priority and normal. Nor-
mal messages are queued in a first-in-first-out manner at the Stream head,
while priority messages are placed at the front of the Stream head queue. The
STREAMS mechanism allows only one priority message per Stream at the
Stream head at one time; any further priority messages are discarded until the
first message is processed. Priority messages are particularly suitable for ack-
nowledging service requests when the acknowledgment should be placed
ahead of any other messages at the Stream head.

These messages are not intended to support the expedited data capabilities
NOTE| of many communication protocols, as evidenced by the one-at-a-time restric-
tion just described.

Before calling getmsg, this routine must initialize the strbuf structure for
the control part. buf should point to a buffer large enough to hold the
expected control part, and maxlen must be set to indicate the maximum
number of bytes this buffer can hold.

Because neither acknowledgment primitive contains a data part, the
dataptr argument to getmsg is set to NULL. The flags argument points to an
integer containing the value RS_HIPRI. This flag indicates that getmsg
should wait for a STREAMS priority message before returning and is set
because the acknowledgment primitives are priority messages. Even if a nor-
mal message is available, getmsg will block until a priority message arrives.

On return from getmsg, the len field is checked to ensure that the control
part of the retrieved message is an appropriate size. The example then checks
the primitive type and takes appropriate actions. An OK_ACK indicates a
successful bind operation, and inter_open returns the file descriptor of the
open Stream. An ERROR_ACK indicates a bind failure, and errno is set to
identify the problem with the request.
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Closing the Service

The next routine in the datagram service library is inter_close, which
closes the Stream to the service provider.

inter_close(fd)
{

close(fd);
}

The routine simply closes the given file descriptor. This will cause the
protocol driver to free any resources associated with that Stream. For exam-
ple, the driver may unbind the protocol address that had previously been
bound to that Stream, thereby freeing that address for use by some other ser-
vice user.

Sending a Datagram

The third routine, inter_snd, passes a datagram to the service provider for
transmission to the user at the address specified in addr. The data to be
transmitted is contained in the buffer pointed to by buf and contains len bytes.
On successful completion, this routine returns the number of bytes of data
passed to the service provider; on failure, it returns -1 and sets errno to an
appropriate UNIX System error value.
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and(fd, buf, len, addr)

char *buf;
long addr;

{

\_

struct strbuf ctlbuf;
struct strbuf databuf;
struct unitdata_req wnitdata req;

unitdata req.PRIM type = UNITDATA REQ;
unitdata req.DEST addr = addr;
ctlbuf.len = sgizeof (struct unitdata req);
ctlbuf.buf = (char *)Sunitdata req;
databuf.len = len;

databuf .buf = buf;

if (putmsg(fd, Sctlbuf, &databuf, 0) < 0)
return(-1);

return{len);

/

In this example, the datagram request primitive is packaged with both a
control part and a data part. The control part contains a unitdata_req structure
that identifies the primitive type and the destination address of the datagram.
The data to be transmitted is placed in the data part of the request message.

Unlike the bind request, the datagram request primitive requires no ack-
nowledgment from the service provider. In the example, this choice was
made to minimize the overhead during data transfer. Since datagram services
are inherently unreliable, this is a valid design choice. If the putmsg call
succeeds, this routine assumes all is well and returns the number of bytes
passed to the service provider.
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Receiving a Datagram

The final routine in this example, inter_rcv, retrieves the next available
datagram. buf points to a buffer where the data should be stored, len indicates
the size of that buffer, and addr points to a long integer where the source
address of the datagram will be placed. On successful completion, inter_rcv
returns the number of bytes in the retrieved datagram; on failure, it returns -1
and sets the appropriate UNIX System error value.

Q_rcv(fd, buf, len, addr)

char *buf;
long *addr;
{
struct stxbuf ctlbuf;
struct stxbuf databuf;
struct unitdata ind unitdata ind;
int retval;
int f£lags;
ctlbuf.maxlen = sizeof(struct unitdata ind);
ctlbuf.len = 0;
ctlbuf.buf = (char *)Sunitdata ind;
databuf .maxlen = len;
databuf.len = 0;
databuf .buf = buf;
flags = 0;

if ((retval = getmsg(fd, &ctlbuf, &databuf, &flags)) < 0)
return(-1);

if (unitdata ind.PRIM type != UNITDATA IND) {
exrrno = EPROTO;
return(-1);

}
if (retval) {
errno = EIO;
return(-1);
}
*addr = unitdata ind.SRC addr;
return(databuf.len);
}
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getmsg is called to retrieve the datagram indication primitive, where that
primitive contains both a control and data part. The control part consists of a
unitdata_ind structure that identifies the primitive type and the source address
of the datagram sender. The data part contains the data itself.

In ctlbuf, buf must point to a buffer where the control information will be
stored, and maxlen must be set to indicate the maximum size of that buffer.
Similar initialization is done for databuf.

The flags argument to getmsg is set to zero, indicating that the next mes-
sage should be retrieved from the Stream head, regardless of its priority.
Datagrams will arrive in normal priority messages. If no message currently
exists at the Stream head, getmsg will block until a message arrives.

The user’s control and data buffers should be large enough to hold any
incoming datagram. If both buffers are large enough, getmsg will process the
datagram indication and return 0, indicating that a full message was retrieved
successfully. However, if either buffer is not large enough, getmsg will only
retrieve the part of the message that fits into each user buffer. The remainder
of the message is saved for subsequent retrieval, and a positive, non-zero
value is returned to the user. A return value of MORECTL indicates that
more control information is waiting for retrieval. A return value of MORE-
DATA indicates that more data is waiting for retrieval. A return value of
MORECTLIMOREDATA indicates that data from both parts of the message
remain. In the example, if the user buffers are not large enough (that is,
getmsg returns a positive, non-zero value), the function will set errno to EIO
and fail.

The type of the primitive returned by getmsg is checked to make sure it is
a datagram indication. The source address is then set and the number of
bytes of data in the datagram is returned.

The above example presents a simplified service interface. The state tran-
sition rules for such an interface were not presented for the sake of brevity.
The intent was to show typical uses of the putmsg and getmsg system calls.
See putmsg(2) and getmsg(2) for further details.
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Part 2 of this guide, Module and Driver Programming, describes the use of
STREAMS kernel facilities for developing and installing modules and drivers.
It is intended for system programmers with knowledge of UNIX System kernel
programming, device driver development, and networking and other data
communication facilities. Knowledge of the STREAMS Primer and the Driver
Design Guide is assumed.

STREAMS provides module and driver developers with integral functions,
a set of utility routines, and facilities that expedite design and implementation.
The principle development facilities are listed below:

B Message storage management—to maintain STREAMS’ own memory
resources for message storage

B Flow control—to conserve STREAMS memory and processing
resources

B Scheduling—to control the execution of service procedures
B Multiplexing—to switch data among multiple Streams

B Error and trace loggers—for debugging and administrative use

Part 2 is organized as follows:

B Chapter 5, Streams Mechanism, reviews the operation of STREAMS
and describes how a Stream is constructed and dismantled.

B Chapter 6, Modules, describes the basic STREAMS data structures and
the organization of a module.

B Chapter 7, Messages, introduces message blocks, read and write sys-
tem calls, and the message storage pool.

B Chapter 8, Message Queues and Service Procedures, discusses put and
service procedures, message queueing, and basic flow control.

B Chapter 9, Drivers, describes STREAMS driver organization and
discusses typical driver processing.

B Chapter 10, Complete Driver, provides a full implementation of a
driver and describes the clone mechanism.
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B Chapter 11, Multiplexing, describes the multiplexing facility.

B Chapter 12, Service Interface, discusses service interfaces within a
Stream and at the Stream/user boundary.

B Chapter 13, Advanced Topics, contains advanced topics including sig-
nals and Stream head options.

B Appendix A, Kernel Structures, summarizes kernel structures used by
modules and drivers.

B Appendix B, Message Types, describes STREAMS message types.
B Appendix C, Utilities, specifies the STREAMS kernel utility routines.

B Appendix D, Design Guidelines, summarizes module and driver design
guidelines.

B Appendix E, Configuring, describes how modules and drivers are con-
figured into the UNIX System, tunable parameters and STREAMS sys-
tem error messages.

B The Glossary defines terms unique to STREAMS.
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Overview

A Stream implements a connection within the kernel between a driver in
kernel space and a process in user space. It provides a general character
input/output (I/0) interface for user processes which is upwardly compatible
with the interface of the preexisting character 1/O facilities. A Stream is
analogous to a shell pipeline except that data flow and processing are bidirec-
tional to support concurrent input and output.

The components that form a Stream are the Stream head, driver, and
optional modules (see Figure 1 in the Preface). A Stream is initially con-
structed as the result of a user process open system call referencing a
STREAMS file. The call causes a kernel resident driver to be connected with a
Stream head to form a Stream. Subsequent ioctl calls select kernel resident
modules and cause them to be inserted in the Stream. A module represents
intermediate processing on messages flowing between the Stream head and
driver. A module can function as, for example, a communication protocol,
line discipline, or data filter. STREAMS allows a user to connect a module
with any other module. The user determines the module connection
sequences that result in useful configurations.

A process can send and receive characters on a Stream using write and
read, as on character files. When user data enters the Stream head or external
data enters the driver, the data is placed into messages for transmission on the
Stream. All data passed on a Stream is carried in messages, each having a
defined message type identifying the message contents. Internal control and
status information is transmitted among modules or between the Stream and
user process as messages of certain types interleaved on the Stream. Modules
and drivers can send certain message types to the Stream head to cause the
generation of signals or errors to be received by the user process.

A module is comprised of two identical sets of data structures called
QUEUEs. One QUEUE is for upstream processing and the other is for down-
stream processing. The processing performed by the two QUEUEs is gen-
erally independent so that a Stream operates in a full-duplex manner. The
interface between modules is uniform and simple. Messages flow from
module to module. A message from one module is passed to the single entry
point of its neighboring module.
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The last close system call dismantles the Stream and closes the file,
semantically identical to character I/O drivers.

STREAMS supports implementation of user-level applications with exten-
sions to the above general system calls and STREAMS specific system calls:
putmsg, getmsg, poll, and a set of STREAMS generic ioctl functions.
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STREAMS constructs a Stream as a linked list of kernel resident data
structures. In a STREAMS file, the inode points to the Stream header struc-
ture. The header is used by STREAMS kernel routines to perform operations
on this Stream generally related to system calls. Figure 5-1 depicts the down-
stream (write) portion of a Stream (see Chapter 3 of the Primer) connected to
the header. There is one header per Stream. From the header onward, a
Stream is constructed of QUEUEs. The upstream (read) portion of the Stream
(not shown in Figure 5-1) parallels the downstream portion in the opposite
direction and terminates at the Stream header structure.

—> inode }—>! Stream| ] QUEUE QUEUE QUEUE QUEUE
! header H P1 > P2

Figure 5-1: Downstream Stream Construction

At the same relative location in each QUEUE is the address of the entry
point, a procedure to be executed on any message received by that QUEUE.
The procedure for QUEUE H, at one end of the Stream, is the STREAMS-
provided Stream head routine. QUEUE H is the downstream half of the
Stream head. The procedure for QUEUE D, at the other end, is the driver
routine. QUEUE D is the downstream half of the Stream end. P1 and P2 are
pushable modules, each containing their own unique procedures. That is, all
STREAMS components are of similar organization.

This similarity results in the uniform manner of navigating in either direc-
tion on a Stream: messages move from one end to the other, from QUEUE to
the next linked QUEUE, executing the procedure specified in the QUEUE.

Figure 5-2 shows the data structures forming each QUEUE: queue_t,
qinit, module_info, and module_stat. queue_t contains various modifiable
values for this QUEUE, generally used by STREAMS. qinit contains a pointer
to the processing procedures, module_info contains limit values and
module_stat is used for statistics. The two QUEUEs in a module will gen-
erally each contain a different set of these structures. The contents of these
structures are described in following chapters.
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module
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queue_t queue_t
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Figure 5-2: QUEUE Data Structures

Figure 5-1 shows QUEUE linkage in one direction while Figure 5-2 shows
two neighboring modules with links (solid vertical arrows) in both directions.
When a module is pushed onto a Stream, STREAMS creates two QUEUEs and
links each QUEUE in the module to its neighboring QUEUE in the upstream
and downstream direction. The linkage allows each QUEUE to locate its next
neighbor. The next relation is implemented between queue_ts in adjacent
modules by the g_next pointer. Within a module, each queue_t locates its
mate (see dotted arrows in Figure 5-2) by use of STREAMS macros, since
there is no pointer between the two queue_ts. The existence of the Stream
head and driver is known to the QUEUE procedures only as destinations
towards which messages are sent.
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When a file is opened [see open(2)], a STREAMS file is recognized by a
non-null value in the d_str field of the associated cdevsw entry. d_str points
to a streamtab structure:

struct streamtab {
struct qinit  *st rdinit; /* defines read GUEUE */
struct qinit  *st_wrinit; /* defines write QUEUE */
struct ginit *gt_mpainit; /* for miltiplexing drivers only */
struct qinit #st_mowinit; /* for miltiplexing drivers only */
|H

streamtab defines a module or driver and points to the read and write
qinit structures for the driver.

If this open call is the initial file open, a Stream is created. First, the sin-
gle header structure and the Stream head (see Figure 5-1) queue_t structure
pair are allocated. Their contents are initialized with predetermined values
including, as noted above (see QUEUE H), the Stream head processing rou-
tines.

Then, a queue_t structure pair is allocated for the driver. The queue_t
contents are zero unless specifically initialized (see Chapter 8). A single, com-
mon qinit structure pair is shared among all the Streams opened from the
same cdevsw entry, as is the associated module_info and module_stat struc-
tures (see Figure 5-2).

Next, the g_next values are set so that the Stream head write queue_t
points to the driver write queue_t, and the driver read queue_t points to the
Stream head read queue—t. The g_next values at the ends of the Stream are
set to NULL. Finally, the driver open procedure (located via qinit) is called.

If this open is not the initial open of this Stream, the only actions per-
formed are to call the driver open and the open procedures of all pushable
modules on the Stream.
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As part of constructing a Stream, a module can be added with an ioctl
L_PUSH [see streamio(7)] system call (push). The push inserts a module
beneath the Stream head. Because of the similarity of STREAMS components,
the push operation is similar to the driver open. First, the address of the qinit
structure for the module is obtained via an fmodsw entry.

fmodsw is an array, analogous to cdevsw. Each fmodsw entry
corresponds to a unique module and contains the name of the module (used
by L PUSH and certain other STREAMS ioctls) and a pointer to the module’s
streamtab. Next, STREAMS allocates queue_t structures and initializes their
contents as in the driver open, above. As with the driver, the read and write
qinit structures are shared among all the modules opened from this fmodsw
entry (see Figure 5-2).

Then, g_next values are set and modified so that the module is interposed
between the Stream head and the driver or module previously connected to
the head. Finally, the module open procedure (located via qinit) is called.
Unlike open, no other module or driver open procedure is called.

Each push of a module is independent, even in the same Stream. If the
same module is pushed more than once onto a Stream, there will be multiple
occurrences of that module in the Stream. The total number of pushable
modules that may be contained on any one Stream is limited by the kernel
parameter NSTRPUSH (see Appendix E).

An ioctl L_POP [see streamio(7)] system call (pop) removes the module
immediately below the Stream head. The pop calls the module close pro-
cedure. On return from the module close, any messages left on the module’s
message queues are freed (deallocated). Then, STREAMS connects the Stream
head to the component previously below the popped module and deallocates
the module’s two queue_t structures. I_POP enables a user process to
dynamically alter the configuration of a Stream by pushing and popping
modules as required. For example, a module may be removed or a new one
inserted below a module. In the latter case, the original module is popped
and pushed back after the new module has been pushed.

An I_POP cannot be used on a driver.
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The last close system call to a STREAMS file dismantles the Stream. Dis-
mantling consists of popping any modules on the Stream, closing the driver
and closing the file. Before a module is popped by close, it may delay to
allow any messages on the write message queue of the module to be drained
by module processing. If O_NDELAY [see open(2)] is clear, close will wait up
to 15 seconds for each module to drain. If O_NDELAY is set, the pop is per-
formed immediately. close will also wait for the driver’s write queue to drain.
Messages can remain queued, for example, if flow control (see Chapter 6 in
the Primer) is inhibiting execution of the write QUEUE. When all modules are
popped and any wait for the driver to drain is completed, the driver close rou-
tine is called. On return from the driver close, any messages left on the
driver’s message queues are freed, and the queue_t and header structures are
deallocated.

STREAMS frees only the messages contained on a message queue. Any
NOTE| messages used internally by the driver or module must be freed by the
driver or module close procedure.

Finally, the file is closed.
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Module Declarations

A module and driver will contain, as a minimum, declarations of the fol-
lowing form:

Qﬁe ngys/types.h" /* required in all modules and drivers */

#include “sys/stream.h” /* required in all modules and drivers */
#include “sys/param.h”

static struct module_info rminfo = { 0, "mod", 0, INFPSZ, 0, 0}
static struct module_info wminfo = { 0, "mod", 0, INFPSZ, 0, 01};
static int modopen( ), modrput( ), modwput( ), modclose( );

static struct ginit rinit = {

modrput, NULL, modopen, modclose, NULL, Srminfo, NULL

|H

static struct ginit winit = {

modwput, NULL, NULL, NULL, NULL, Swminfo, NULL

}s

struct streamtab modinfo = { &rinit, &winit, NULL, NULL };

/

The contents of these declarations are constructed for the null module
example in this section. This module performs no processing; its only purpose
is to show linkage of a module into the system. The descriptions in this sec-
tion are general to all STREAMS modules and drivers unless they specifically
reference the example.

The declarations shown are: the header set; the read and write QUEUE
(rminfo and wminfo) module_info structures (see Figure 5-2); the module
open, read-put, write-put and close procedures; the read and write (rinit and
winit) qinit structures; and the streamtab structure.

The minimum header set for modules and drivers is types.h and
stream.h. param.h contains definitions for NULL and other values for
STREAMS modules and drivers as shown in the section titled " Accessible
Symbols and Functions" in Appendix D.
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Configuring a STREAMS module or driver (see Appendix E) does not

NOTE|  require any procedures to be externally accessible, only streamtab. The
streamtab structure name must be the prefix used in configuring, appended
with "info."

As described in the previous chapter, streamtab contains qinit values for the

read and write QUEUEs, pointing to a module_info and an optional

module_stat structure. The two required structures, shown in Figure 5-2, are
these:

struct ginit {
int (*qi_putp)(); /* put procedure */
int (*qi srvp)(); /* service procedure */
int (*qi _qopen)( ); /% called on each open or a push */
int (*qi_gclose)( ); /* called on last close or a pop */
int (*qi_gadmin)( ); /* reserved for future use */
struct module_info *gi_minfo; /* information structure */
struct module_stat *qi_mstat; /* statistics structure - opticnal */

b

struct module info {

mi_idmum; /* module ID mumber */

*mi_idname; /¥ module name */

mi_minpsz; /* min packet size accepted, for developer use */
mi_maxpsz; /* max packet size accepted, for developer use */
mi_hiwat; /* hi-water mark, for flow control */

mi_lowat; /* lo~water mark, for flow control */

piiReg

}s

ginit contains the QUEUE procedures. All modules and drivers with the
same streamtab (i.e., the same fmodsw or cdevsw entry) point to the same
upstream and downstream qinit structure(s). The structure is meant to be
software read-only, as any changes to it affect all occurrences of that module
in all Streams. Pointers to the open and close procedures must be contained
in the read qinit. These fields are ignored in the write side. The example has
no service procedure on the read or write side.

module_info contains identification and limit values. All modules and
drivers with the same streamtab point to the same upstream and downstream
module_info structure(s). As with qinit, this structure is intended to be
software read-only. However, the four limit values are copied to queue_t
(see Chapter 8) where they are modifiable. In the example, the flow control
high- and low-water marks (see Chapter 9) are zero, since there are no service
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procedures, and messages are not queued in the module.

Three names are associated with a module: the character string in
fmodsw, obtained from the name of the /etc/conf/modules directory used to
configure the module (see Appendix E); the prefix for streamtab, used in con-
figuring the module; and the module name field in the module_info struc-
ture. This field is a hook for future expansion and is not currently used.
However, it is recommended that it be the same as the module name. The
module name value used in the L_PUSH or other STREAMS ioctl commands
is contained in fmodsw. Each module ID and module name should be unique
in the system. The module ID is currently used only in logging and tracing
(see Chapter 6 in the Primer). For the example in this chapter, the module ID
is zero.

Minimum and maximum packet size are intended to limit the total
number of characters contained in all (if any) of the M_DATA blocks in each
message passed to this QUEUE. These limits are advisory except for the
Stream head. For certain system calls that write to a Stream, the Stream head
will observe the packet sizes set in the write QUEUE of the module immedi-
ately below it. Otherwise, the use of packet size is developer-dependent. In
the example, INFPSZ indicates unlimited size on the read (input) side,

module_stat is optional, intended for future use. Currently, there is no
STREAMS support for statistical information gathering. The structure is
described in Appendix A.
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The null module procedures are as follows:

static int modopen(q, dev, flag, sflag)

queue t *q; /* pointer to read queue */

dev t dev; /* major/minor device number -- zero for modules */
int flag; /* file open flags -- zero for modules */

int sflag; /* stream open flags */

/* return success */
return 0;
}

static int modwput(q, mp)/* write put procedure */
» t *q; /* pointer to the write queue */
mblk t *mp; /* message pointer */
{
patmext(q, mp); /* pass message through */
}

static int modrput(q, mp)/* read put procedure */
queue t *q; /* pointer to the read queue */
mblk t mp; /* message pointer */
{
putnext(q, mp); /* pass message through */
}
static int modclose(q, flag)
queue t *q; /* pointer to the read queue */
int flag; /* file cpen flags - zero for modules */

The form and arguments of these four procedures are the same in all
modules and all drivers. Modules and drivers can be used in multiple Streams
and their procedures must be re-entrant.
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modopen illustrates the open call arguments and return value. The argu-
ments are the read queue pointer (g), the major/minor device number (dev in
drivers only), the file open flags (flag is defined in sys/file.h), and the Stream
open flag (sflag). For a module, the values of flag and dev are always zero.
The Stream open flag can take on the following values:

MODOPEN - normal module open
0 normal driver open (see Chapter 9)
CLONEOPEN clone driver open (see Chapter 10)

The return value from open is >= 0 for success and OPENFAIL for error.
The open procedure is called on the first L PUSH and on all subsequent open
calls to the same Stream. During a push, a return value of OPENFAIL causes
the I_PUSH to fail and the module to be removed from the Stream. If
OPENFAIL is returned by a module during an open call, the open fails, but
the Stream remains intact. For example, it can be returned by a
module/driver that only wishes to be opened by a super-user:

if (l!suser( )) return OPENFAIL;

In the example, modopen simply returns successfully. modrput and modwput
illustrate the common interface to put procedures. The arguments are the read
or write queue_t pointer, as appropriate, and the message pointer. The put
procedure in the appropriate side of the QUEUE is called when a message is
passed from upstream or downstream. The put procedure has no return
value. In the example, no message processing is performed. All messages are
forwarded using the putnext macro (see Appendix C). putnext calls the put
procedure of the next QUEUE in the proper direction.

The close procedure is only called on an L_POP or on the last close call of
the Stream (see the last two sections of Chapter 5). The arguments are the
read queue_t pointer and the file open flags as in modopen. For a module,
the value of flag is always zero. There is no return value. In the example,
modclose does nothing,.
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Module and Driver Environment

As discussed in Chapter 7 of the Primer, user context is not generally
available to STREAMS module procedures and drivers. The exception is dur-
ing execution of the open and close routines. Driver and module open and
close routines have user context and may access the u_area structure (defined
in user.h, see " Accessible Symbols and Functions" in Appendix D). These
routines are allowed to sleep, but must always return to the caller. That is, if
they sleep, it must be at priority <= PZERO, or with PCATCH set in the sleep
priority. A process that is sleeping at priority > PZERO and is sent a signal
via kill never returns from the sleep call. Instead, the system call is aborted.

STREAMS driver and module put procedures and service procedures have
no user context. They cannot access the u__area structure of a process and
must not sleep.
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Message Format

Messages are the means of communication within a Stream. A message
contains data or information identified by one of 18 message types (see
Appendix B). Messages may be generated by a driver, a module, or the
Stream head. The contents of certain message types can be transferred
between a process and a Stream by use of system calls. STREAMS maintains
its own pools for allocation of message storage.

All messages are composed of one or more message blocks. A message
block is a linked triplet, two structures, and a variable-length buffer block.
The structures are msgb (mblk_t), the message block, and datab (dblk_t), the
data block:

struct msgb { )
struct msgb *b next;/* next message on queue */
struct msgb *b prev;/* previous message on queue */
struct msgb *b_cont;/* next message block of message */
unsigned char *b rptr;/* first unread byte in buffer */
unsigned char *b wptr;/* first unwritten byte in buffer */
struct datab *b datap;/* data block */

b
typedef struct msgb mblk t;

stxuct datab {

struct datab *db freep;/* used intermally */

unsigned char +db base;/* first byte of buffer * */

unsigned char *db lim;/* last byte+1 of buffer */

unsigned char db_ref;/* count of messages pointing to this block */
unsigned char db type;/* message type */

unsigned char db class;/* used internally */

}s
typedef struct datab dblk t;

mblk_t is used to link messages on a message queue, link the blocks in a
message, and manage the reading and writing of the associated buffer. b_rptr
and b_wptr are used to locate the data currently contained in the buffer. As
shown in Figure 7-1, mblk_t points to the data block of the triplet. The data
block contains the message type, buffer limits, and control variables.
STREAMS allocates message buffer blocks of varying sizes (see below).
db_base and db_lim are the fixed beginning and end (+1) of the buffer.
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A message consists of one or more linked message blocks. Multiple mes-
sage blocks in a message can occur, for example, because of buffer size limita-
tions, or as the result of processing that expands the message. When a mes-
sage is composed of multiple message blocks, the type associated with the first
message block determines the message type, regardless of the types of the
attached message blocks.

' ]
: Message : Message
! 1 ! 2
' ]

'

queue : b_next T e .. b-next __ -
<= = - - 4 i et R
header : mblk_t b_prev : mblk_t b_prev
' —datap '
: data :
: b—cont W piock !
; (type) !
' '
t | mblk_t buffer | ! mblk_t buffer
'
—dat.
: datap :
'
! b_cont data b_datap : l
: block i
' '
] 1
| | mblk_t buffer | | |mblk_t
] '\ ! [\
1 ]
| H \\ : H \\
t w \, w \\
N\

Figure 7-1: Message Form and Linkage
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A message may occur singly, as when it is processed by a put procedure,
or it may be linked on the message queue in a QUEUE, generally waiting to
be processed by the service procedure. Message 1, as shown in Figure 7-1,
links to message 2. In the first message on a queue, b_prev points back to the
header in the QUEUE. The last b_next points to the tail.

Note that a data block in message 1 is shared between message 1 and
another message. Multiple message blocks can point to the same data block
to conserve storage and to avoid copying overhead. For example, the same
data block, with associated buffer, may be referenced in two messages, from
separate modules that implement separate protocol levels. (Figure 7-1 illus-
trates the concept, but data blocks would not typically be shared by messages
on the same queue.) The buffer can be retransmitted, if required by errors or
timeouts, from either protocol level without replicating the data. Data block
sharing is accomplished by means of a utility routine (see dupmsg in Appen-
dix C). STREAMS maintains a count of the message blocks sharing a data
block in the db_ref field.

STREAMS provides utility routines and macros, specified in Appendix C,
to assist in managing messages and message queues, and to assist in other
areas of module and driver development. A utility should always be used
when operating on a message queue or accessing the message storage pool.

Message Generation and Reception

As discussed in the "Message Types® section in Chapter 4 of the Primer,
most message types can be generated by modules and drivers. A few are
reserved for the Stream head. The most commonly used types are M_DATA,
M_PROTO, and M_PCPROTO. These, and certain other message types, can
also be passed between a process and the topmost module in a Stream, with
the same message boundary alignment maintained on both sides of the kernel.
This allows a user process to function, to some degree, as a module above the
Stream and maintain a service interface (see Chapter 12). M_PROTO and
M_PCPROTO messages are intended to carry service interface information
among modules, drivers, and user processes. Some message types can only be
used within a Stream and cannot be sent or received from user level.

As discussed previously, modules and drivers do not interact directly with
any system calls except open and close. The Stream head handles all mes-
sage translation and passing. Message transfer between process and Stream
head can occur in different forms. For example, M_DATA, M_PROTO, or
M_PCPROTO messages can be transferred in their direct form by getmsg and
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putmsg system calls (see Chapter 12). Alternatively, a write causes one or
more M_DATA messages to be created from the data buffer supplied in the
call. M_DATA messages received from downstream at the Stream head will
be consumed by read and copied into the user buffer. As another example,
M_SIG causes the Stream head to send a signal to a process (see Chapter 13).

Any module or driver can send any message type in either direction on a
Stream. However, based on their intended use in STREAMS and their treat-
ment by the Stream head, certain message types can be categorized as
upstream, downstream or bidirectional. M_DATA, M_PROTO, or
M_PCPROTO messages, for example, can be sent in both directions. Other
message types are intended to be sent upstream to be processed only by the
Stream head. Downstream messages are silently discarded if received by the
Stream head.
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The module shown below, crmod, is an asymmetric filter. On the write
side, newline is converted to carriage return followed by newline. On the
read side, no conversion is done. The declarations are essentially the same as
the null module of the preceding chapter:

Cmple filter - converts newline -> carriage return, newline */

#include "sys/types.h"
#include "sys/param.h”
#include "sys/stream.h

static struct module info minfo = { 0, "cxmod“, 0, INFPSZ, 0, 0 };

static int modopen(), modrput(), modwput(), modclose();
static struct ginit rinit = {
modrput, NULL, modopen, modclose, NULL, &minfo, NULL
};
static struct ginit winit = {
modwput, NULL, NULL, NULL, NULL, &minfo, NULL
}s
struct streamtab cxmdinfo = { &rinit, &winit, NULL, NULL };

Note that, in contrast to the null module example, a single module_info
structure is shared by the read and write sides. A config file to configure
crmod is shown in Appendix E.

modopen, modrput, and modclose, are the same as in the null module of the
preceding chapter.
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bappend Subroutine

The module makes use of a subroutine, bappend, which appends a charac-
ter to a message block:

4

* Apperd a character to a message block.

* If (*bpp) is mill, it will allocate a new block

* Returns 0 when the message block is full, 1 ctherwise
*/

#define MODBIKSZ 128 /* size of message blocks */

static bappend(bpp, ch)
mblk t **bpp;
int ch;
{
nblk_t *bp;

if (bp = *bpp) {
if (bp~>b wptr >= bp->b_datap->db lim)
return 0;
} else if ((*bpp = bp = allocb(MODELKSZ, BFRI_MED)) == NULL)
return 1;
*bp->b_wptr++ = ch;
return 1;

The bappend subroutine receives a pointer to a message block pointer and
a character as arguments. If a message block is supplied (*bpp 1= NULL),
bappend checks if there is room for more data in the block. If not, it fails. If

there is no message block, a block of at least MODBLKSZ is allocated through
allocb, described below.
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If the allocb fails, bappend returns success, silently discarding the charac-
ter. This may or may not be acceptable. For TTY-type devices, it is generally
accepted. If the original message block is not full or the allocb is successful,
bappend stores the character in the block.
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The allocb utility (see Appendix C) is used to allocate message storage
from the STREAMS pool. Its declaration is:

mblk_t *allocb(buffersize, priority).

allocb will return a message block containing a buffer of at least the size
requested, providing there is a buffer available at the message pool priority
specified, or it will return NULL on failure. Three levels of message pool
priority can be specified (see Appendix C). Priority generally does not affect
allocb until the pool approaches depletion. In this case, for the same internal
level of pool resources, allocb will fail low priority requests while granting
higher priority requests. This allows module and driver developers to use
STREAMS memory resources to their best advantage and for the common
good of the system. Message pool priority does not affect subsequent han-
dling of the message by STREAMS. BPRI_HI is intended for special situa-
tions. This transmission of urgent messages relates to time-sensitive events,
conditions that could result in loss of state, loss of data, or inability to recover.
BPRL_MED might be used, for example, when requesting an M_DATA buffer
for holding input, and BPRL_LO might be used for an output buffer (presum-
ing the output data can wait in user space). The Stream head uses BPRIL_LO
to allocate messages to contain output from a process (e.g., by write or
putmsg). Note that allocb will always return a message of type M_DATA.
The type may then be changed if required. b_rptr and b_wptr are set to
db_base (see mblk_t and dblk_t).

allocb may return a buffer larger than the size requested. In bappend, if
the message block contents were intended to be limited to MODBLKSZ, a
check would have to be inserted.

If allocb indicates buffers are not available, the bufeall utility can be used
to defer processing in the module or the driver until a buffer becomes avail-
able (bufcall is described in Chapter 13).
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The modwput function processes all the message blocks in any down-
stream data (type M_DATA) messages.

/% Write side put procedure */
static modwput(q, mp)

 t *q;
mblk t *mp;
{
switch (mp->b_datap—>db _type) {
default:
patnext(q, mp); /* Don't do these, pass them along */
hreak;

case M DATA: {
register mblk t *bp;
struct mblk t *mmp = NULL, *nbp = NULL;
for (bp = mp; bp != NULL; bp = bp—>b_cont) {
while (bp->b rptr < bp->b wptr) {
if (*bp—>b rptx == '\n')
if (lbappend(&nbp, '\r'))
goto newblk;
if (lbappend(énbp, *bp->b rptr))
goto newblk;
bp->b_rptr++;
ocontinue;
newblk:
if (rmp == NULL)
mmp = nbp;
else linkb(rmp, nbp); /* link message block to tail of rmp */
nbp = NULL;

}
if (rmp == NULL)
mp = nbp;
else linkb(rmp, nbp);
freemsg(mp); /* deallocate message */
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continued

if (nmp)
putnext(q, rmp);
break;

Data messages are scanned and filtered. modwput copies the original mes-
sage into a new block(s), modifying as it copies. nbp points to the current
new message block. nmp points to the new message being formed as multiple
M_DATA message blocks. The outer for() loop goes through each message
block of the original message. The inner while() loop goes through each byte.
bappend is used to add characters to the current or new block. If bappend fails,
the current new block is full. If nmp is NULL, nmp is pointed at the new
block. If nmp is non-NULL, the new block is linked to the end of nmp by use
of the linkb utility.

At the end of the loops, the final new block is linked to nmp. The original
message (all message blocks) is returned to the pool by freemsg. If a new
message exists, it is sent downstream.
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The queue_t Structure

Service procedures, message queues and priority, and basic flow control
are all intertwined in STREAMS. A QUEUE will generally not use its message
queue if there is no service procedure in the QUEUE. The function of a ser-
vice procedure is to process messages on its queue. Message priority and flow
control are associated with message queues.

The operation of a QUEUE revolves around the queue_t structure:

struct queve {
struct ginit *q ginfo; /* procedures and limits for queue */
struct msgb *q first; /* head of message queue for this QUEIE */
struct msgb *q last; /* tail of message queue for this GUEUE */
struct queue *q next; /* next QUEUE in Stream*/
struct queue *q link; /* link to next QUEUE on STREAMS scheduling queue */

caddr_t q_ptr; /* to private data structure */

ushort q count; /* weighted count of characters cn message queue */
ushort q flag; /* QUEUE state */

short q minpsz; /* min packet size accepted by this QUEUE */

short q maxpsz; /* max packet size accepted by this QUEUE */

ushort q hiwat; /* message queue high-water mark, for flow cantrol */
ushort q lowat; /* message queue low-water mark, for flow control */

}
typedef struct queue queue t;

As described previously, two of these structures form a module. When a
queue_t pair is allocated, their contents are zero unless specifically initialized.
The following fields are initialized by STREAMS:

B g_ginfo - from streamtab
B g_minpsz, _maxpsz, q_hiwat, q_lowat - from module_info

Copying values from module_info allows them to be changed in the
queue_t without modifying the template (e.g., streamtab and module_info)
values.

g—count is used in flow control calculations and is the weighed sum of
the sizes of the buffer blocks currently on the message queue. The actual
number of bytes in the buffer is not used. This is done to encourage the use
of the smallest buffer that will hold the data intended to be placed in the
buffer.

MESSAGE QUEUES and SERVICE PROCEDURES 8-1



Service Procedures

Put procedures are generally required in pushable modules. Service pro-
cedures are optional. The general processing flow when both procedures are
present is as follows: A message is received by the put procedure in a
QUEUE, where some processing may be performed on the message. The put
procedure transfers the message to the service procedure by use of the putq
utility. putq places the message on the tail (see g_last in queue_t) of the
message queue. Then, putq will generally schedule (using g_link in queue_t)
the QUEUE for execution by the STREAMS scheduler following all other
QUEUEs currently scheduled. After some indeterminate delay (intended to be
short), the scheduler calls the service procedure. The service procedure gets
the first message (9—first) from the message queue with the getq utility. The
service procedure processes the message and passes it to the put procedure of
the next QUEUE with putnext. The service procedure gets the next message
and processes it. This FIFO processing continues until the queue is empty or
flow control blocks further processing. The service procedure returns to caller.

A service routine must never sleep and it has no user context. It must
always return to its caller.

If no processing is required in the put procedure, the procedure does not
have to be explicitly declared. Rather, putq can be placed in the ginit struc-
ture declaration for the appropriate QUEUE side, to queue the message for the
service procedure, e.g.,

static struct qinit winit = { putq, modwsrv, ...... }s

More typically, put procedures will, as a minimum, process priority messages
(see below) to avoid queueing them.

The key attribute of a service procedure in the STREAMS architecture is
delayed processing. When a service procedure is used in a module, the
module developer is implying that there are other, more time-sensitive activi-
ties to be performed elsewhere in this Stream, in other Streams, or in the sys-
tem in general. The presence of a service procedure is mandatory if the flow
control mechanism is to be utilized by the QUEUE.
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The delay for STREAMS to call a service procedure will vary with imple-
mentation and system activity. However, once the service procedure is
scheduled, it is guaranteed to be called before user-level activity is resumed.

See also the section titled "Put and Service Procedures" in Chapter 5 of
the Primer.
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Message Queues and Message Priority

Figure 8-1 depicts a message queue linked by b_next and b_prev pointers.
As discussed in the Primer, message queues grow when the STREAMS
scheduler is delayed from calling a service procedure because of system
activity, or when the procedure is blocked by flow control. When it is called
by the scheduler, the service procedure processes enqueued messages in FIFO
order. However, certain conditions require that the associated message (e.g.,
an M_ERROR) reach its Stream destination as rapidly as possible. STREAMS
does this by assigning all message types to one of the two levels of message
queueing priority—priority and ordinary. As shown in Figure 8-1, when a
message is queued, the putq utility places priority messages at the head of the
message queue in a FIFO order of queueing.

QUEUE Message queue
o |
header |
1 Priority Ordinary o
' Messages : Messages :
Head Tail

Figure 8-1: Message Queue Priority

Priority messages are not subject to flow control. When they are queued
by putq, the associated QUEUE is always scheduled (in the same manner as
any QUEUE; following all other QUEUEs currently scheduled). When the ser-
vice procedure is called by the scheduler, the procedure uses getq to retrieve
the first message on queue, which will be a priority message, if present. Ser-
vice procedures must be implemented to act on priority messages immediately
(see next section). The above mechanisms—priority message queueing,
absence of flow control and immediate processing by a procedure—result in
rapid transport of priority messages between the originating and destination
components in the Stream.
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The priority level for each message type is shown in Appendix B. Mes-
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