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Introduction to this Guide

This document provides information to developers on the use of the
STREAMS mechanism at user and kernel levels.

STREAMS was first incorporated in UNIX System V Release 3.1 to aug­
ment the existing character input/output (I/O) mechanism and to support
development of communication services. The STREAMS Programmer's Guide
includes detailed information, with various examples, on the development
methods and design philosophy of all aspects of STREAMS.

This guide is organized into two parts. Part 1, Applications Programming,
describes the development of user level applications. Part 2, Module and
Driver Programming, describes the STREAMS kernel facilities for development
of modules and drivers. Although chapter numbers are consecutive, the two
parts are independent. Working knowledge of the STREAMS Primer is
assumed.

Notational Conventions

The following notational conventions are used throughout this Guide:

bold User input, such as commands, options to com­
mands, and the names of directories and files,
appear in bold.

italic Names of variables to which values must be
assigned (such as filename) appear in italic.

command(number) A command name followed by a number in
parentheses refers to the part of a UNIX System
reference manual that documents that command.
(There are two reference manuals: the
User's/System Administrator's Reference Manual
and the Programmer's Reference Manual.) For
example, the notation cat(l) refers to the page in
section 1 (of the User's/System Administrator's
Reference Manual) that documents the cat com­
mand.

constant width UNIX System output, such as prompt signs and
responses to commands, and program examples
appear in constant width.
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STREAMS Overview

This section reviews the STREAMS mechanism. STREAMS is a general,
flexible facility and a set of tools for development of UNIX System communi­
cation services. It supports the implementation of services ranging from com­
plete networking protocol suites to individual device drivers. STREAMS
defines standard interfaces for character input/output (I/O) within the kernel,
and between the kernel and the rest of the UNIX System. The associated
mechanism is simple and open-ended. It consists of a set of system calls, ker­
nel resources, and kernel routines.

The standard interface and mechanism enable modular, portable develop­
ment and easy integration of higher performance network services and their
components. STREAMS provides a framework; it does not impose any
specific network architecture. The STREAMS user interface is upwardly com­
patible with the character I/O user interface, and both user interfaces are
available in UNIX System V Release 3.1 and subsequent releases.

A Stream is a full-duplex processing and data transfer path between a
STREAMS driver in kernel space and a process in user space (see Figure 1).
In the kernel, a Stream is constructed by linking a stream head, a driver and
zero or more modules between the stream head and driver. The Stream head
is the end of the Stream closest to the user process. Throughout this guide,
the word II STREAMS II will refer to the mechanism and the word II Stream II

will refer to the path between a user and a driver.

A STREAMS driver may be a device driver that provides the services of
an external I/O device, or a software driver, commonly referred to as a
pseudo-device driver, that performs functions internal to a Stream. The
Stream head provides the interface between the Stream and user processes.
Its principal function is to process STREAMS-related user system calls.

Data is passed between a driver and the Stream head in messages. Mes­
sages that are passed from the Stream head toward the driver are said to
travel downstream. Similarly, messages passed in the other direction travel
upstream. The Stream head transfers data between the data space of a user
process and STREAMS kernel data space. Data to be sent to a driver from a
user process are packaged into STREAMS messages and passed downstream.
When a message containing data arrives at the Stream head from downstream,
the message is processed by the Stream head, which copies the data into user
buffers.
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Stream
Head

Module

Driver

Figure 1: Basic Stream

STREAMS Overview

!downstream

(optional)

f upstream

External
Interface

Within a Stream, messages are distinguished by a type indicator. Certain
message types sent upstream may cause the Stream head to perform specific
actions, such as sending a signal to a user process. Other message types are
intended to carry information within a Stream and are not directly seen by a
user process.
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STREAMS Overview

One or more kernel-resident modules may be inserted into a Stream
between the Stream head and driver to perform intermediate processing of
data as it passes between the Stream head and driver. STREAMS modules are
dynamically interconnected in a Stream by a user process. No kernel pro­
gramming, assembly, or link editing is required to create the interconnection.
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Development Facilities

General and STREAMS-specific system calls provide the user-level facili­
ties required to implement application programs. This system call interface is
upwardly compatible with the character I/O facilities. The open system call
will recognize a STREAMS file and create a Stream to the specified driver. A
user process can receive and send data on STREAMS files using read and
write in the same manner as with character files. The ioctl system call
enables users to perform functions specific to a particular device and a set of
generic STREAMS ioell commands [see streamio(7)] support a variety of func­
tions for accessing and controlling Streams. A close will dismantle a Stream.

In addition to the generic ioctl commands, there are STREAMS-specific
system calls to support unique STREAMS facilities. The poll system call
enables a user to poll multiple Streams for various events. The putmsg and
getmsg system calls enable users to send and receive STREAMS messages,
and are suitable for interacting with STREAMS modules and drivers through a
service interface.

STREAMS provides kernel facilities and utilities to support development
of modules and drivers. The Stream head handles most system calls so that
the related processing does not have to be incorporated in a module and
driver. The configuration mechanism allows modules and drivers to be incor­
porated into the system.

Examples are used throughout both parts of this document to highlight
the most important and common capabilities of STREAMS. The descriptions
are not meant to be exhaustive. For simplicity, the examples reference fic­
tional drivers and modules.

Appendix C provides the reference for STREAMS kernel utilities.
STREAMS system calls are specified in Section 2 of the Programmer's Reference
Mal,ual. STREAMS utilities are specified in Section 1M of the User's/System
Administrator's Reference Manual. STREAMS-specific ioctl calls are specified
in streamio(7) of the User's/System Administrator's Reference Manual. The
modules and drivers available are described in Section 7 of the User's/System
Administrator's Reference Manual.
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Introduction to Part 1

Part 1 of the guide, Application Programming, provides detailed informa­
tion, with various examples, on the user interface to STREAMS facilities. It is
intended for application programmers writing to the STREAMS system call
interface. Working knowledge of UNIX System user programming, data com­
munication facilities, and the STREAMS Primer is assumed. The organization
of Part 1 is as follows:

• Chapter 1, Basic Operations, describes the basic operations available
for constructing, using, and dismantling Streams. These operations are
performed using open, close, read, write, and ioct!.

• Chapter 2, Advanced Operations, presents advanced facilities provided
by STREAMS, including: poll, a user level I/O polling facility; asyn­
chronous I/O processing support; and a new facility for sampling
drivers for available resources.

• Chapter 3, Multiplexed Streams, describes the construction of sophisti­
cated, multiplexed Stream configurations.

• Chapter 4, Message Handling, describes how users can process
STREAMS messages using putmsg and getmsg in the context of a ser­
vice interface example.
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A Simple Stream
This chapter describes the basic set of operations for manipulating

STREAMS entities.

A STREAMS driver is similar to a character I/O driver in that it has one
or more nodes associated with it in the file system, and it is accessed using the
open system call. Typically, each file system node corresponds to a separate
minor device for that driver. Opening different minor devices of a driver will
cause separate Streams to be connected between a user process and the driver.
The file descriptor returned by the open call is used for further access to the
Stream. If the same minor device is opened more than once, only one Stream
will be created; the first open call will create the Stream, and subsequent open
calls will return a file descriptor that references that Stream. Each process that
opens the same minor device will share the same Stream to the device driver.

Once a device is opened, a user process can send data to the device using
the write system call and receive data from the device using the read system
call. Access to STREAMS drivers using read and write is compatible with the
character I/O mechanism.

The close system call will dose a device and dismantle the associated
Stream.

The following example shows how a simple Stream is used. In the exam­
ple, the user program interacts with a generic communications device that pro­
vides point-to-point data transfer between two computers. Data written to the
device is transmitted over the communications line, and data arriving on the
line can be retrieved by reading it from the device.
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A Simple Stream

#include <fc:ntl.h>

maine )
{

char buf[ 1024];
int fd, count;

if «fd = open("/dev/ccmn01", O~» < 0)
pen:or("open failed");
exit(1) ;

while «count = read(fd, blf, 1024» > 0) {
if (write(fd, buf, count) 1= oount) {

perror( "write failed");
break;

}

exit(O) ;

In the example, /dev/commOl identifies a minor device of the communi­
cations device driver. When this fue is opened, the system recognizes the
device as a STREAMS device and connects a Stream to the driver. Figure 1-1
shows the state of the Stream following the call to open.
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A Simple Stream

____IdS!!:. ~pace
Kernel Space

Figure 1-1: Stream to Communications Driver

This example illustrates a user reading data from the communications
device and then writing the input back out to the same device. In short, this
program echoes all input back over the communications line. The example
assumes that a user is sending data from the other side of the communications
line. The program reads up to 1024 bytes at a time, and then writes the
number of bytes just read.

The read call returns the available data, which may contain fewer than
1024 bytes. If no data is currently available at the Stream head, the read call
blocks until data arrives.

Similarly, the write call attempts to send count bytes to /dev/commOl.
However, STREAMS implements a flow control mechanism that prevents a
user from flooding a device driver with data, thereby exhausting system
resources. If the Stream exerts flow control on the user, the write call blocks
until the flow control has been relaxed. The call will not return until it has
sent count bytes to the device. exit [see exit(2)] is called to terminate the user
process. This system call also doses all open files, thereby dismantling the
Stream in this example.
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Inserting Modules

An advantage of STREAMS over the existing character I/O mechanism
stems from the ability to insert various modules into a Stream to process and
manipulate data that passes between a user process and the driver. The fol­
lowing example extends the previous communications device echoing example
by inserting a module in the Stream to change the case of certain alphabetic
characters. The case converter module is passed an input string and an output
string by the user. Any incoming data (from the driver) is inspected for
instances of characters in the module's input string and the alphabetic case of
all matching characters is changed. Similar actions are taken for outgoing data
using the output string. The necessary declarations for this program are
shown below:

#i.nclude <string.h>
#include <fOltl.h>
#include <stropts.h>

/*

* These defines 1lOl1d typically be
* found in a header file for the roodule
*/

#define OOTPUT_~ 1
#define INPU'l'_S'mIN3 2

main( )

{

char buf[ 1024];
int fd, count;
st:ruet strioctl strioctl;

The first step is to establish a Stream to the communications driver and
insert the case converter module. The following sequence of system calls
accomplishes this:
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Inserting Modules

if «fd = open("/dev/ocmn01". O_RIMR» < 0)
perror( "open failed");
exit( 1);

if (ioctl(fd. I_PUSH. "case_canvert:er") < 0)
perrar( "ioct1 I_PUSH failed");
exit(2) ;

The LPUSH ioctl call directs the Stream head to insert the case converter
module between the driver and the Stream head, creating the Stream shown
in Figure 1-2. As with any driver, this module resides in the kernel and must
have been configured into the system before it was booted. LPUSH is one of
several generic STREAMS ioctl commands that enable a user to access and
control individual Streams [see streamio(7»).
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Inserting Modules

------ -----
Stream

Head

Case
Converter

I

I

Communications
Driver

____~s!!.~pace

Kernel Space

Figure 1-2: Case Converter Module

An important difference between STREAMS drivers and modules is illus­
trated here. Drivers are accessed through a node or nodes in the file system
and may be opened just like any other device. Modules, on the other hand,
do not occupy a file system node. Instead, they are identified through a
separate naming convention and are inserted into a Stream using LPUSH.
The name of a module is defined by the module developer and is typically
included on the manual page describing the module. (Manual pages describ­
ing STREAMS drivers and modules are found in section 7 of the User's /System
Administrator's Reference Manual.)

Modules are pushed onto a Stream and removed from a Stream in Last­
In-First-Out (LIFO) order. Therefore, if a second module was pushed onto
this Stream, it would be inserted between the Stream head and the case con­
verter module.
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Module and Driver Control

The next step in this example is to pass the input string and output string
to the case converter module. This can be accomplished by issuing ioctl calls
to the case converter module as follows:

/* set inplt conversion string */
strioctl.ic_O'Id = INPl1l'_5'IimG; /* cx:mnand type */
strioctl.ic_tim:Jut = 0; /* default timeout (15 sec) */
strioctl. ic_dp = 1l.ABCDEFGHLJ'1l;

strioctl.ic_len = strlen(strioctl.ic_dp);

if (ioctl(fd, I_S'IR, &strioctl) < 0)
perror( "ioctl I_S'IR failed");
exi.t(3) ;

/* set output conversion stri.rxJ */
strioctl.ic_O'Id = Cl7l'Pl1l'_5'IimG;/* cx:mnand type */
strioctl.ic_dp = "abodefghij";
strioctl.ic_len = strlen(strioctl.ic_dp);

if (ioctl(fd, I_S'IR, &strioctl) < 0)
perrar( "ioctl I_S'IR failed");
exi.t(4) ;

ioctl requests are issued to STREAMS drivers and modules indirectly,
using the LSTR ioctl call [see streamio(7)]. The argument to LSTR must be a
pointer to a strioctl structure, which specifies the request to be made to a
module or driver. This structure is defined in <stropts.h> and has the fol­
lowing format:
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Module and Driver Control

st:ruct strioctl {
int ic_Old;
int ic_tinout;
int icJen;
char *ic_dp;

}

/* ioctl request */
/* ACKINAK timeout */
/* leng1:h of data argument */
/* ptr to data argument */

where ic_cmd identifies the command intended for a module or driver,
ic_timout specifies the number of seconds an LSTR request should wait for
an acknowledgment before timing out, ic_Ien is the number of bytes of data
to accompany the request, and ic-dp points to that data.

LSTR is intercepted by the Stream head, which packages it into a mes­
sage, using information contained in the strioctl structure, and sends the mes­
sage downstream. The request will be processed by the module or driver
closest to the Stream head that understands the command specified by
ic_cmd. The ioctl call will block up to ic_timout seconds, waiting for the tar­
get module or driver to respond with either a positive or negative ack­
nowledgment message. If an acknowledgment is not received in ic_timout
seconds, the ioctl call will fail.

LSTR is actually a nested request; the Stream head intercepts LSTR and
then sends the driver or module request (as specified in the strioctl structure)
downstream. Any module that does not understand the command in ic_cmd
will pass the message further downstream. Eventually, the request will reach
the target module or driver, where it is processed and acknowledged. If no
module or driver understands the command, a negative acknowledgment will
be generated, and the ioctl call will fail.

In the example, two separate commands are sent to the case converter
module. The first contains the conversion string for input data, and the
second contains the conversion string for output data. The ic_cmd field is set
to indicate whether the command is setting the input or output conversion
string. For each command, the value of ic_timout is set to zero, which speci­
fies the system default timeout value of 15 seconds. Also, a data argument
that contains the conversion string accompanies each command. The ic-dp
field points to the beginning of each string, and ic-len is set to the length of
the string.
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Module and Driver Control

Only one LSTR request can be active on a STREAM at one time.
Further requests will block until the active LSTR request is ack­
nowledged and the system call completes.

The strioctl structure is also used to retrieve the resultsJ if anyJ of an
LSTR request. If data is returned by the target module or driverJ ie_dp must
point to a buffer large enough to hold that dataJ and ie_len will be set on
return to indicate the amount of data returned.

The remainder of this example is identical to the previous example:

while «ocunt = read(fd, buf, 1024)) > 0) {
if (write(fd, buf, ocunt) 1= ocunt) {

perror( "write failed");
break;

}

exit(O) ;

The case converter module will convert the specified input characters to
lower case and the corresponding output characters to upper case. Notice that
the case conversion processing was realized with no change to the communi­
cations driver.

As with the previous exampleJ the exit system call will dismantle the
Stream before terminating the process. The case converter module will be
removed from the Stream automatically when it is closed. AlternativelYJ
modules may be removed from a Stream using the LJ'QP ioctl call described
in streamio(7). This call removes the topmost module on the Stream and
enables a user process to alter the configuration of a Stream dynamically by
pushing and popping modules as needed.
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Module and Driver Control

A few of the important ioctl requests supported by STREAMS have been
discussed. Several other requests are available to support operations such as
determining if a given module exists on the Stream, or flushing the data on a
Stream. These requests are described fully in streamio(7).
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Advanced Input/Output Facilities
The traditional input/output facilities-open, close, read, write, and

ioctl-have been discussed, but STREAMS supports new user capabilities that
will be described in the remaining chapters of this guide. This chapter
describes a facility that enables a user process to poll multiple Streams simul­
taneously for various events. Also discussed is a signaling feature that sup­
ports asynchronous I/O processing. Finally, this chapter presents a new
mechanism, called clone open, for finding available minor devices.
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Input/Output Polling

The poll [see poll(2)] system call provides users with a mechanism for
monitoring input and output on a set of file descriptors that reference open
Streams. It identifies those Streams over which a user can send or receive
data. For each Stream of interest, users can specify one or more events about
which they should be notified. These events include the following:

POLLIN Input data is available on the Stream associated with the
given file descriptor.

POLLPRI A priority message is available on the Stream associated with
the given file descriptor. Priority messages are described in
the section of Chapter 4 entitled .. Accessing the Datagram
Provider."

POLLOUT The Stream associated with the given file is writable. That is,
the Stream has relieved the flow control that would prevent a
user from sending data over that Stream.

poll will examine each file descriptor for the requested events and, on
return, will indicate which events have occurred for each file descriptor. If no
event has occurred on any polled file descriptor, poll blocks until a requested
event or timeout occurs. The specific arguments to poll are the following:

• an array of file descriptors and events to be polled

• the number of file descriptors to be polled

• the number of milliseconds poll should wait for an event if no events
are pending (-1 specifies wait forever)

The following example shows the use of poll. Two separate minor dev­
ices of the communications driver presented earlier are opened, thereby estab­
lishing two separate Streams to the driver. Each Stream is polled for incom­
ing data. If data arrives on either Stream, it is read and then written back to
the other Stream. This program extends the previous echoing example by
sending echoed data over a separate communications line (minor device). The
steps needed to establish each Stream are as follows:
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Input/Output Polling

#include <fc:::ntl.h>
#include <poll.h>

#define NK>LL 2

main( )
{

/* number of file descriptors to poll */

/* file descriptor */
/* requested events */
/* retuxned events */

struet pollfd pollfds[NK>LL];
char b1f[ 1024];
int count, i;

if «pollfds[O).fd = open("/dev/oc:mn01", O_RIHtIO_NDELAY» < 0)
perror( "open failed for /dev/cxmn01");
exit( 1);

if «pollfds[1).fd = open("/dev/cxmn02", O_~IO_NDELAY» < 0)
perror( "open failed for /dev/cxmn02");
exit(2) ;

The variable pOllfds is declared as an array of pollfd structures, where
this structure is defined in <poll.h> and has the following format:

st:ruct p:>l1fd {
int fd;
short events;
short revents;

}

For each entry in the array, fd specifies the file descriptor to be polled and
events is a bitmask that contains the bitwise inclusive OR of events to be
polled on that file descriptor. On return, the revents bitmask will indicate
which of the requested events has occurred.
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Input/Output Polling

The example opens two separate minor devices of the communications
driver and initializes the pollfds entry for each. The remainder of the example
uses poll to process incoming data as follows:

/* set events to poll for inOClllin3 data */
pollfds[O] .events = POLLIN;
pollfds[ 1] •events = POLLIN;

while (1) {

/* poll and use -1 timeout (infinite) */
if (poll(pollfds, NiOLL, -1) < 0) {

pen:or( "poll failed");
exi.t(3) ;

for (i = 0; i < NPOLL; i++) {
switch (pollfds(i] .revents)

default:
pen:or( "error event");
exi.t(4) ;

case 0:
break;

/* default error case */

/* no events */

case POLLIN:

/* eclx> i.ncx:minq data on "other" Stream */
while ({oount = read(pollfds(i] .fd, buf, 1024» > 0)

/*

* the write loses data if flow control
* prevents the transmit at this time.
*/
if (write«i=O? pollfds[1] .fd: pollfds[O] .fd),

buf, ocunt) 1= ocunt)

fprintf(stderr,"writer lost data\n");
break;
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Input/Output Polling

The user specifies the polled events by setting the events field of the
pollfd structure to POLLIN. This requested event directs poll to notify the
user of any incoming data on each Stream. The bulk of the example is an
infinite loop, where each iteration will poll both Streams for incoming data.

The second argument to poll specifies the number of entries in the pOllfds
array (two in this example). The third argument is a timeout value indicating
the number of milliseconds poll should wait for an event if none has
occurred. On a system where millisecond accuracy is not available, timeout is
rounded up to the nearest legal value available on that system. Here, the
value of timeout is -1, specifying that poll should block indefinitely until a
requested event occurs or until the call is interrupted.

If poll succeeds, the program looks at each entry in pOllfds. If revents is
set to 0, no event has occurred on that file descriptor. If revents is set to POL­
LIN, incoming data is available. In this case, all available data is read from
the polled minor device and written to the other minor device.

If revents is set to a value other than 0 or POLLIN, an error event must
have occurred on that Stream, because the only requested event was POLLIN.
The following error events are defined for poll. These events may not be
polled for by the user, but will be reported in revents whenever they occur.
As such, they are only valid in the revents bitmask:

POLLERR A fatal error has occurred in some module or driver on the
Stream associated with the specified file descriptor. Further
system calls will fail.

POLLHUP A hangup condition exists on the Stream associated with the
specified file descriptor.

POLLNVAL The specified file descriptor is not associated with an open
Stream.

The example attempts to process incoming data as quickly as possible.
However, when writing data to a Stream, the write call may block if the
Stream is exerting flow control. To prevent the process from blocking, the
minor devices of the communications driver were opened with the
O-NDELAY flag set. If flow control is exerted and O-NDELAY is set, write
will not be able to send all the data. This can occur if the communications
driver is unable to keep up with the user's rate of data transmission. If the
Stream becomes full, the number of bytes write sends will be less than the
requested count. For simplicity, the example ignores the data if the Stream
becomes full, and a warning is printed to stderr.
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This program will continue until an error occurs on a Stream, or until the
process is interrupted.
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Asynchronous Input/Output

The poll system call described above enables a user to monitor multiple
Streams in a synchronous fashion. The poll call normally blocks until an
event occurs on any of the polled file descriptors. In some applications, how­
ever, it is desirable to process incoming data asynchronously. For example, an
application may wish to do some local processing and be interrupted when a
pending event occurs. Some time-critical applications cannot afford to block,
but must have immediate indication of success or failure.

A new facility is available for use with STREAMS that enables a user pro­
cess to request a signal when a given event occurs on a Stream. When used
with poll, this facility enables applications to asynchronously monitor a set of
file descriptors for events.

The I_SETSIG ioctl call [see streamio(7)] is used to request that a SIG­
POLL signal be sent to a user process when a specific event occurs. Listed
below are the events for which an application may be signaled:

S-INPUT Data has arrived at the Stream head, and no data existed at
the Stream head when it arrived.

S-HIPRI A priority STREAMS message has arrived at the Stream
head.

S_OUTPUT The Stream is no longer full and can accept output. That
is, the Stream has relieved the flow control that would
prevent a user from sending data over that Stream.

S-MSG A special STREAMS signal message that contains a SIG­
POLL signal has reached the front of the Stream head
input queue. This message may be sent by modules or
drivers to generate immediate notification of data or events
to follow.

The polling example could be written to process input from each com­
munications driver minor device by issuing LSETSIG to request a signal for
the S-INPUT event on each Stream. The signal catching routine could then
call poll to determine on which Stream the event occurred. The default action
for SIGPOLL is to terminate the process. Therefore, the user process must
catch the signal using signal [see signal(2)]. SIGPOLL will only be sent to
processes that request the signal using LSETSIG.
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Clone Open
In the earlier examples, each user process connected a Stream to a driver

by opening a particular minor device of that driver. Often, however, a user
process wants to connect a new Stream to a driver regardless of which minor
device is used to access the driver.

In the past, this typically forced the user process to poll the various minor
device nodes of the driver for an available minor device. To alleviate this
task, a facility called done open is supported for STREA~S drivers. If a
STREAMS driver is implemented as a cloneable device, a single node in the
file system may be opened to access any unused minor device. This special
node guarantees that the user will be allocated a separate Stream to the driver
on every open call. Each Stream will be associated with an unused minor
device, so the total number of Streams that may be connected to a cloneable
driver is limited by the number of minor devices configured for that driver.

The clone device may be useful, for example, in a networking environ­
ment where a protocol pseudo-device driver requires each user to open a
separate Stream over which it will establish communication. Typically, the
users would not care which minor device they used to establish a Stream to
the driver. Instead, the clone device can find an available minor device for
each user and establish a unique Stream to the driver. Chapter 3 describes
this type of transport protocol driver.

2·8

A user program has no control over whether a given driver supports the
clone open. The decision to implement a STREAMS driver as a cIoneable
device is made by the designers of the device driver.
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Multiplexer Configurations

In the earlier chapters, Streams were described as linear connections of
modules, where each invocation of a module is connected to, at most, one
upstream module and one downstream module. While this configuration is
suitable for many applications, others require the ability to multiplex Streams
in a variety of configurations. Typical examples are terminal window facilities
and intemetworking protocols (which might route data over several subnet­
works).

An example of a multiplexer is one that multiplexes data from several
upper Streams over a single lower Stream, as shown in Figure 3-1. An upper
Stream is one that is upstream from a multiplexer, and a lower Stream is one
that is downstream from a multiplexer. A terminal windowing facility might
be implemented in this fashion, where each upper Stream is associated with a
separate window.

MUX

Figure 3-1: Many-to-One Multiplexer

A second type of multiplexer might route data from a single upper Stream
to one of several lower Streams, as shown in Figure 3-2. An intemetworking
protocol could take this form, where each lower Stream links the protocol to a
different physical network.
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MUX

Figure 3-2: One-to-Many Multiplexer

A third type of multiplexer might route data from one of many upper
Streams to one of many lower Streams, as shown in Figure 3-3.

MUX

Figure 3-3: Many-to-Many Multiplexer
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A STREAMS mechanism is available that supports the multiplexing of
Streams through special pseudo-device drivers. Using a linking facility, users
can dynamically build, maintain, and dismantle each of the above multiplexed
Stream configurations. In fact, these configurations can be further combined
to form complex, multilevel, multiplexed Stream configurations.

The remainder of this chapter describes multiplexed Stream configurations
in the context of an example (see Figure 3-4). In this example, an intemet­
working protocol pseudo-device driver (IP) is used to route data from a single
upper Stream to one of two lower Streams. This driver supports two
STREAMS connections beneath it to two distinct sub-networks. One sub­
network supports the IEEE 802.3 standard for the CSMA/CD medium access
method. The second sub-network supports the IEEE 802.4 standard for the
token-passing bus medium access method.

The example also presents a transport protocol pseudo-device driver (TP)
that multiplexes multiple virtual circuits (upper Streams) over a single Stream
to the IP pseudo-device driver.
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Figure 3-4 shows the multiplexing configuration to be created. This confi­
guration will enable users to access the services of the transport protocol. To
free users from the need to know about the underlying protocol structure, a
user-level daemon process will build and maintain the multiplexing configura­
tion. Users can then access the transport protocol directly by opening the TP
driver device node.

TP
Driver

IP
Driver

802.4
Driver

Figure 3-4: Protocol Multiplexer
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Building a Multiplexer

The following example shows how this daemon process sets up the proto­
col multiplexer. The necessary declarations and initialization for the daemon
program are as follows:

#include <fcntl.h>
#include <stropts.h>

main( )

{

int fd_802_4,
fd_802_3,
fd_ip,
fd_tp;

/*
* daem:m-ize this process
*/

switch (fork( »
ease 0:

break;
ease -1:

perror( "fork failed");
exi.t(2) ;

default:
exi.t(O) ;

}

setpgrp( );

This multilevel, multiplexed Stream configuration will be built from the
bottom up. Therefore, the example begins by constructing the IP multiplexer.
This multiplexing pseudo-device driver is treated like any other software
driver. It owns a node in the UNIX file system and is opened just like any
other STREAMS device driver.

The first step is to open the multiplexing driver and the 802.4 driver,
creating separate Streams above each driver as shown in Figure 3-5. The
Stream to the 802.4 driver may now be connected below the multiplexing IP
driver using the LLINK ioctl call.
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____l.:!~e!?eace

Kernel Space

802.4
Driver

Figure 3-5: Before Link

IP
Driver

The sequence of instructions to this point is:

if «fd_802_4 =open(1l/devI802_4", O_RDm» < 0)
perror( "open of /devI802_4 failed");
exit( 1);

if «fd_ip = open( "/dev/ip", O_RDm» < 0)
perror( "open of /dev/ip failed");
exit(2) ;

/* now link 802.4 to underside of IP */

if (ioctl(fd_ip, I_LINK, fd_802_4) < 0)
perror( "I_LINK ioctl failed");
exit(3) ;
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LLINK takes two file descriptors as arguments. The first file descriptor,
fd_ip, must reference the Stream connected to the multiplexing driver, and the
second file descriptor, fd_802_4, must reference the Stream to be connected
below the multiplexer. Figure 3-6 shows the state of these Streams following
the LLINK call. The complete Stream to the 802.4 driver has been connected
below the IP driver, including the Stream head. The Stream head of the 802.4
driver will be used by the IP driver to manage the multiplexer.

___________y ':!!!..e! §eace

Kemel Space

IP
Driver

802.4
Driver

Figure 3-6: IP Multiplexer After First Link

LLINK will return an integer value, called a mux 10, which is used by
the multiplexing driver to identify the Stream just connected below it. This
mux 10 is ignored in the example, but may be useful for dismantling a multi­
plexer or routing data through the multiplexer. Its significance is discussed
later.

The following sequence of system calls is used to continue building the
intemetworking multiplexer (IP):
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if «fd_802_3 = open(t1/devI802_3", O_m::tlR» < 0)
perrar("open of /devI802_3 failed");
exi.t(4) ;

if (ioctl(fd_ip, I_LINK, fd_802_3) < 0)
pe:rrar( t1I_LINIC ioctl failed");
exi.t(S) ;

All links below the IP driver have now been established, giving the confi­
guration in Figure 3-7.

~
aemon

User Seace
-r----------~;~~Space--------r-----

ControllinJ
Stream

•

IP
Driver

Figure 3-7: IP Multiplexer

802.4
Driver

802.3
Driver
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The Stream above the multiplexing driver used to establish the lower con­
nections is the controlling Stream and has special significance when disman­
tling the multiplexing configuration, as will be illustrated later in this chapter.
The Stream referenced by fd_ip is the controlling Stream for the IP multi­
plexer.

The order in which the Streams in the multiplexing configuration are
opened is unimportant. If, however, it is necessary to have intermediate
modules in the Stream between the IP driver and media drivers, these
modules must be added to the Streams associated with the media drivers
(using LPUSH) before the media drivers are attached below the multi-
plexer.

The number of Streams that can be linked to a multiplexer is restricted by
the design of the particular multiplexer. The manual page describing each
driver (typically found in section 7 of the User's jSystem Administrator's Refer­
ence Manual) should describe such restrictions. However, only one LLINK
operation is allowed for each lower Stream; a single Stream cannot be linked
below two multiplexers simultaneously.

Continuing with the example, the IP driver will now be linked below the
transport protocol (TP) multiplexing driver. As seen earlier in Figure 3-4, only
one link will be supported below the transport driver. This link is formed by
the following sequence of system calls:

if «fd_tp =open( "/dev/tp", O_RI:MR)) < 0)
perror( "open of /dev/tp failed");
exit(6) ;

if (ioctl(fd_tp, I_LINK, fd_ip) < 0)
pen:ar( "I_LINK ioctl failed");
exit(7) ;
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Building a Multiplexer

The multilevel multiplexing configuration shown in Figure 3-8 has now
been created.

___________T ll~e!?eace
Kernel Space

ControllinJ
Stream ,.....----....-----_.

TP
Driver

IP
Driver

Figure 3-8: TP Multiplexer

802.4
Driver

802.3
Driver

Because the controlling Stream of the IP multiplexer has been linked
below the TP multiplexer, the controlling Stream for the new multilevel multi­
plexer configuration is the Stream above the TP multiplexer.

At this point the file descriptors associated with the lower drivers can be
closed without affecting the operation of the multiplexer. Closing these file
descriptors may be necessary when building large multiplexers so that many
devices can be linked together without exceeding the UNIX System limit on
the number of simultaneously open files per process. If these file descriptors
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are not closed, all subsequent read, write, ioctl, poll, getmsg, and putmsg
system calls issued to them will fail. That is because LLINK associates the
Stream head of each linked Stream with the multiplexer, so the user may not
access that Stream directly for the duration of the link.

The following sequence of system calls will complete the multiplexing
daemon example:

close (fd_802_4) ;
close(fd_802_3 ) ;
close(fd_ip) ;

/* Hold l'II.l1tiplexer open forever */
pause( );

Figure 3-4 shows the complete picture of the multilevel protocol multi­
plexer. The transport driver is designed to support several, simultaneous vir­
tual circuits, where these virtual circuits map one-to-one to Streams opened to
the transport driver. These Streams will be multiplexed over the single
Stream connected to the IP multiplexer. The mechanism for establishing mul­
tiple Streams above the transport multiplexer is actually a by-product of the
way in which Streams are created between a user process and a driver. By
opening different minor devices of a STREAMS driver, separate Streams will
be connected to that driver. Of course, the driver must be designed with the
intelligence to route data from the single lower Stream to the appropriate
upper Stream.

Notice in Figure 3-4 that the daemon process maintains the multiplexed
Stream configuration through an open Stream (the controlling Stream) to the
transport driver. Meanwhile, other users can access the services of the tran­
sport protocol by opening new Streams to the transport driver; they are freed
from the need for any unnecessary knowledge of the underlying protocol con­
figurations and sub-networks that support the transport service.
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Multilevel, multiplexing configurations, such as the one presented in the
above example, should be assembled from the bottom up. That is because
STREAMS does not allow ioctl requests (including LLINK) to be passed
through higher multiplexing drivers to reach the desired multiplexer; they
must be sent directly to the intended driver. For example, once the IP driver
is linked under the TP driver, ioctl requests cannot be sent to the IP driver
through the TP driver.
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Dismantling a Multiplexer

Streams connected to a multiplexing driver from above with open can be
dismantled by closing each Stream with close. In the protocol multiplexer,
these Streams correspond to the virtual circuit Streams above the TP multi­
plexer. The mechanism for dismantling Streams that have been linked below
a multiplexing driver is less obvious and is described below in detail.

The LUNLINK ioctl call is used to disconnect each multiplexer link
below a multiplexing driver individually. This command takes the following
form:

ioctl(fd, I_UNLINK, mux_id);

where fd is a file descriptor associated with a Stream connected to the multi­
plexing driver from above, and mux_id is the identifier that was returned by
LLINK when a driver was linked below the multiplexer. Each lower driver
may be disconnected individually in this way, or a special mux_id value of -1
may be used to disconnect all drivers from the multiplexer simultaneously.

In the multiplexing daemon program presented earlier, the multiplexer is
never explicitly dismantled. That is because all links associated with a multi­
plexing driver are automatically dismantled when the controlling Stream asso­
ciated with that multiplexer is closed. Because the controlling Stream is open
to a driver, only the final call of close for that Stream will close it. In this
case, the daemon is the only process that has opened the controlling Stream,
so the multiplexing configuration will be dismantled when the daemon exits.

For the automatic dismantling mechanism to work in the multilevel, mul­
tiplexed Stream configuration, the controlling Stream for each multiplexer at
each level must be linked under the next higher level multiplexer. In the
example, the controlling Stream for the IP driver was linked under the TP
driver. This resulted in a single controlling Stream for the full multilevel con­
figuration. Because the multiplexing program relied on closing the controlling
Stream to dismantle the multiplexed Stream configuration instead of using
explicit LUNLINK calls, the mux 10 values returned by LLINK could be
ignored.

An important side effect of automatic dismantling on close is that it is not
possible for a process to build a multiplexing configuration and then exit.
That is because exit [see exit(2)] will close all files associated with the process,
including -the controlling Stream. To keep the configuration intact, the process
must exist for the life of that multiplexer. That is the motivation for imple­
menting the example as a daemon process.
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Routing Data Through a Multiplexer

As demonstrated, STREAMS has provided a mechanism for building mul­
tiplexed Stream configurations. However, the criteria on which a multiplexer
routes data is driver-dependent. For example, the protocol multiplexer shown
in the last example might use address information found in a protocol header
to determine over which sub-network a given packet should be routed. It is
the multiplexing driver's responsibility to define its routing criteria.

One routing option available to the multiplexer is to use the mux 10 value
to determine to which Stream data should be routed. (Remember that each
multiplexer link is associated with a mux 10.) LLINK passes the mux 10
value to the driver and returns this value to the user. The driver can therefore
specify that the mux ID value must accompany data routed through it. For
example, if a multiplexer routed data from a single upper Stream to one of
several lower Streams (as did the IP driver), the multiplexer could require the
user to insert the mux ID of the desired lower Stream into the frrst four bytes
of each message passed to it. The driver could then match the mux ID in
each message with the mux ID of each lower Stream and route the data
accordingly.
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Service Interface Messages
A STREAMS message format has been defined to simplify the design of

service interfaces. Also, two new system calls, getmsg and putmsg, are avail­
able for sending these messages downstream and receiving messages that are
available at the Stream head. This chapter describes these system calls in the
context of a service interface example. First, a brief overview of STREAMS
service interfaces is presented.

Service Interfaces
A principal advantage of the STREAMS mechanism is its modularity.

From user level, kernel-resident modules can be dynamically interconnected to
implement any reasonable processing sequence. This modularity reflects the
layering characteristics of contemporary network architectures.

One benefit of modularity is the ability to interchange modules of like
function. For example, two distinct transport protocols, implemented as
STREAMS modules, may provide a common set of services. An application or
higher layer protocol that requires those services can use either module. This
ability to substitute modules enables user programs and higher-level protocols
to be independent of the underlying protocols and physical communication
media.

Each STREAMS module provides a set of processing functions, or services,
and an interface to those services. The service interface of a module defines
the interaction between that module and any neighboring modules, and there­
fore is a necessary component for providing module substitution. By creating
a well-defined service interface, applications and STREAMS modules can
interact with any module that supports that interface. Figure 4-1 demonstrates
this.
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Service Interface Messages

_y!er Space

Kernel Space

Application
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ISO
Transport
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Lower Layer
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Service Interface

Application
A
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TCP
Transport

Protocol

Lower Layer
Protocol
Suite A

Figure 4-1: Protocol Substitution

By defming a service interface through which, applications interact with a
transport protocol, it is possible to substitute a different protocol below that
service interface in a manner completely transparent to the application. In
this example, the same application can run over the Transmission Control Pro­
tocol (TCP) and the ISO transport protocol. Of course, the service interface
must define a set of services common to both protocols.

The three components of any service interface are the service user, the
service provider, and the service interface itself, as seen in Figure 4-2.
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Service Interface Messages

Service Interface
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Figure 4-2: Service Interface

Typically, a user makes a request of a service provider using some weIl­
defined service primitive. Responses and event indications are also passed
from the provider to the user using service primitives. The service interface is
defined as the set of primitives that define a service and the allowable state
transitions that result as these primitives are passed between the user and pro­
vider.
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The Message Interface
A message format has been defined to simplify the design of service inter­

faces using STREAMS. Each service interface primitive is a distinct STREAMS
message that has two parts: a control part and a data part. The control part
contains information that identifies the priQ'\itive and includes all necessary
parameters. The data part contains user data associated with that primitive.

An example of a service interface primitive is a transport protocol connect
request. This primitive requests the transport protocol service provider to
establish a connection with another transport user. The parameters associated
with this primitive may include a destination protocol address and specific
protocol options to be associated with that connection. Some transport proto­
cols also allow a user to send data with the connect request. A STREAMS
message would be used to define this primitive. The control part would iden­
tify the primitive as a connect request and would include the protocol address
and options. The data part would contain the associated user data.

STREAMS enables modules to create these messages and pass them to
neighbor modules. However, the read and write system calls are not suffi­
cient to enable a user process to generate and receive such messages. First,
read and write are byte-stream oriented, with no concept of message boun­
daries. To support service interfaces, the message boundary of each service
primitive must be preserved so that the beginning and end of each primitive
can be located. Also, read and write offer only one buffer to the user for
transmitting and receiving STREAMS messages. If control information and
data were placed in a single buffer, the user would have to parse the contents
of the buffer to separate the data from the control information.

Two new STREAMS system calls are available that enable user processes
to create STREAMS messages and send them to neighboring kernel modules
and drivers or receive the contents of such messages from kernel modules and
drivers. These system calls preserve message boundaries and provide separate
buffers for the control and data parts of a message.

The putmsg system call enables a user to create STREAMS messages and
send them downstream. The user supplies the contents of the control and
data parts of the message in two separate buffers. Likewise, the getmsg sys­
tem call retrieves such messages from a Stream and places the contents into
two user buffers.

4-4 STREAMS PROGRAMMER'S GUIDE



/* maxirmnn buffer length */
/* length of data */
/* pointer to buffer */

The Message Interface

The syntax of putmsg is as follows:

int putmsg (fd, ctlptr, dataptr, flags)
int fd;
struct strbuf *ctlptr;
struct strbuf *dataptr;
int flags;

td identifies the Stream to which the message will be passed, ctlptr and
dataptr identify the control and data parts of the message, and flags may be
used to specify that a priority message should be sent.

The strbuf structure is used to describe the control and data parts of a
message and has the following format:

struct strbuf {
int maxlen;
int len;
char *buf;

}

but points to a buffer containing the data and len specifies the number of
bytes of data in the buffer. maxlen specifies the maximum number of bytes
the given buffer can hold and is only meaningful when retrieving information
into the buffer using getmsg.

The getmsg system call retrieves messages available at the Stream head
and has the following syntax:

int getmsg (fd, ctlptr, dataptr, flags)
int fd;
struct strbuf *ctlptr;
struct strbuf *dataptr;
int *flags;

The arguments to getmsg are the same as those for putmsg.

The remainder of this chapter presents an example that demonstrates how
putmsg and getmsg may be used to interact with the service interface of a
simple datagram protocol provider. A potential provider of such a service
might be the IEEE 802.2 Logical Link Control Protocol Type 1. The example
implements a user-level library that would free the user from knowledge of
the underlying STREAMS system calls. The Transport Interface of the
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Network Services library in UNIX System Release 3.1 provides a similar func­
tion for transport layer services. The example here illustrates how a service
interface might be defined, and is not an example of a complete IEEE 802.2
service interface.
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Datagram Service Interface Example

The example datagram service interface library presented below includes
four functions that enable a user to do the following:

• establish a Stream to the service provider and bind a protocol address
to the Stream

• send a datagram to a remote user

• receive a datagram from a remote user

• close the Stream connected to the provider

First, the structure and constant definitions required by the library are
shown. These typically will reside in a header file associated with the service
interface.

/*
* Primitives initiated by the service user.
*/

#define BINILRm 1 /* bini request */
#define tlNrIDATJLRm 2 /* unitdata request */

/*
* Primitives initiated by the service provider.
*/

#define (J.{-'O< 3 /* bini ac1crxJwledgment */

#define EaO_1lCK 4 /* enor ac1crxJwledgment */

#define tlNl'IDATA_IND 5 /* unitdata indication */

/*
* ':the followiD;J structure definitions define the format of the

* c:ontrol~ of the service interface message of the above

* primi.tives.
*/

struet bini_J:eCI {
kDJ PRII-Ltype;
lorY:J BINILaddr;

};

/* bini request */
/* always BIND_Rm */
/* addr to bini */
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continued

stxuct unitdata_req {
lClI¥] PRDLtype;
lClI¥] msT_addr;

} ;

} ;

stxuct eaor_ack {
lClI¥] PIIDLtype;
lang UNDLeaor;

} ;

sb:uct unitdata_ind {
1ar¥J PRDLtype;
long SRC_addr;

} ;

/* unitdata request */

/* always UNI'lllP.TA_Rm */
/* destination addr */

/* positive ac:knc74lledgment */
/* always CJ!:.jCK */

/* eaor acknowledgment */
/* always mROR_ACC */
/* UNIX error code */

/* unitdata indication */

/* always UNI'lDtaA_IND */

/* sc::urc:e addr */

type;
bind_req;
unitdata_req;
ok_ack;
en'O%'_ack;
unitdata_:iDi;

/* union of all primitives */
union primitives {

lClI¥]
struct bind_req
struct unitdata_req
struct ok_ack
struct eaor_ack
struct unitdata_ind

} ;

/* header files needed by libraxy */
#include <stropts.h>
#include <stdio.h>
#include <en:no.h>

Five primitives have been defined. The first two represent requests from
the service user to the service provider. These are:

BIND-REQ This request asks the provider to bind a specified protocol
address. It requires an acknowledgment from the pro­
vider to verify that the contents of the request were syn­
tactically correct.
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UNITDATA-REQ
This request asks the provider to send a datagram to the
specified destination address. It does not require an ack­
nowledgment from the provider.

The three other primitives represent acknowledgments of requests, or indi­
cations of incoming events, and are passed from the service provider to the
service user. These are:

OK-ACK This primitive informs the user that a previous bind
request was received successfully by the service provider.

ERROR-ACK This primitive informs the user that a non-fatal error was
found in the previous bind request. It indicates that no
action was taken with the primitive that caused the error.

UNITDATA-IND
This primitive indicates that a datagram destined for the
user has arrived.

The structures defined above describe the contents of the control part of
each service interface message passed between the service user and service
provider. The first field of each control part defines the type of primitive
being passed.

Accessing the Datagram Provider
The first routine presented below, inter_open, opens the protocol driver

device file specified by path and binds the protocol address contained in addr
so that it may receive datagrams. On success, the routine returns the file
descriptor associated with the open Stream; on failure, it returns -1 and sets
errno to indicate the appropriate UNIX System error value.
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inter_open(path, oflags, addr)

char *path;
{

int fd;
struet bincLreq binLreq;
struet strbuf ctlb.1f;
union primitives rcM:A1f;
st:ruct error_ack *error_ack;
int flags;

if «fd = open(path, oflags) ) < 0)
retum(-1);

/* seOO biIxl request msg dawn stream */

biIld_req.PRIM_type = BmIU~m;

biIld_req.BnnLaddr = addr;
ctlbuf•len = sizeof(struet biIld_req);
ctlbuf.buf = (char *)&biIld_req;

if (p.rt:msq( fd, &.ctlb.1f, NULL, 0) < 0)
close(fd) ;
retum(-1);

After opening the protocol driver, inter_open packages a bind request
message to send downstream. putmsg is called to send the request to the ser­
vice provider. The bind request message contains a control part that holds a
bind_req structure, but it has no data part. ctlbuf is a structure of type strbuf
and it is initialized with the primitive type and address. Notice that the max­
len field of ctlbuf is not set before calling putmsg. That is because putmsg
ignores this field. The dataptr argument to putmsg is set to NULL to indicate
that the message contains no data part. Also, the flags argument is 0, which
specifies that the message is not a priority message.

After inter_open sends the bind request, it must wait for an acknowledg­
ment from the service provider, as follows:
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/* wait far ack of request */

ct:lb1f.maxlen = sizeof(unian primitives);
ct:lb1f . len = 0;
ct:lb1f.buf = (char * )&rcvbuf;
flags :: RS_HIPRI;

if (gebnsg(fd, &ctlbuf, NULL, &flaqs) < 0) {
close(fd) ;
retum(-1);

/* did we get enough to determine type */
if (ctlbuf •len < sizeof (1OD.:J» {

close(fd);
en:no = EPIDro;
retum(-1) ;

/* switch an type (first 1OD.:J in rcvb1f) */
switch(rcvbuf •type) {

default:
enno = EPRCflO;
close(fd) ;
retum(-1);

case ~_ICK:

retum(fd);

case mRCiLICK:
if (ctl1::lUf.len < sizeof(struct error_ack»

ernx:> = EPIOlO;
close(fd);
retum(-1);

}

error_ack = (struet error_ack *)&rcvb1f;

enno = error_ack->UNDLerror;
close(fd) ;
retum(-1);
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getmsg is called to retrieve the acknowledgment of the bind request. The
acknowledgment message consists of a control part that contains either an
ouck or error-'lck structure, and no data part.

The acknowledgment primitives are defined as priority messages. Two
classes of messages can arrive at the Stream head: priority and normal. Nor­
mal messages are queued in a first-in-first-out manner at the Stream head,
while priority messages are placed at the front of the Stream head queue. The
STREAMS mechanism allows only one priority message per Stream at the
Stream head at one time; any further priority messages are discarded until the
first message is processed. Priority messages are particularly suitable for ack­
nowledging service requests when the acknowledgment should be placed
ahead of any other messages at the Stream head.

These messages are not intended to support the expedited data capabilities
of many communication protocols, as evidenced by the one-at-a-time restric­
tion just described.

Before calling getmsg, this routine must initialize the strbuf structure for
the control part. but should point to a buffer large enough to hold the
expected control part, and maxlen must be set to indicate the maximum
number of bytes this buffer can hold.

Because neither acknowledgment primitive contains a data part, the
dataptr argument to getmsg is set to NULL. The flags argument points to an
integer containing the value RS-HIPRI. This flag indicates that getmsg
should wait for a STREAMS priority message before returning and is set
because the acknowledgment primitives are priority messages. Even if a nor­
mal message is available, getmsg will block until a priority message arrives.

On return from getmsg, the len field is checked to ensure that the control
part of the retrieved message is an appropriate size. The example then checks
the primitive type and takes appropriate actions. An aLACK indicates a
successful bind operation, and inter_open returns the file descriptor of the
open Stream. An ERROR-ACK indicates a bind failure, and ermo is set to
identify the problem with the request.
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Closing the Service
The next routine in the datagram service library is inter_close, which

closes the Stream to the service provider.

c1ose(fd);

The routine simply closes the given file descriptor. This will cause the
protocol driver to free any resources associated with that Stream. For exam­
ple, the driver may unbind the protocol address that had previously been
bound to that Stream, thereby freeing that address for use by some other ser­
vice user.

Sending a Datagram
The third routine, inter-snd, passes a datagram to the service provider for

transmission to the user at the address specified in addr. The data to be
transmitted is contained in the buffer pointed to by but and contains len bytes.
On successful completion, this routine returns the number of bytes of data
passed to the service provider; on failure, it returns -1 and sets ermo to an
appropriate UNIX System error value.
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inter_srn(fd, buf, len, addr)
char *buf;
long addr;
{

sb:uct strbuf ct1buf;
sb:uct strbuf databuf;
sb:uct unitdata_req unitdata_req;

unitdata_req. PRDLtype = tlNI'I'I:WrA_Rm;
unitdata_req.msr_addr = addr;
ct1buf.len = sizeof(sb:uct unitdata_req);
ctlbuf.b1f = (char *)&.unitdata_req;
databuf.len = len;
databuf.b1f =buff

if (prtmsq(fd, &.ct1buf, &databuf, 0) < 0)
ret:urn(-1) ;

retw:n( len) ;

In this example, the datagram request primitive is packaged with both a
control part and a data part. The control part contains a unitdata_req structure
that identifies the primitive type and the destination address of the datagram.
The data to be transmitted is placed in the data part of the request message.

Unlike the bind request, the datagram request primitive requires no ack­
nowledgment from the service provider. In the example, this choice was
made to minimize the overhead during data transfer. Since datagram services
are inherently unreliable, this is a valid design choice. If the putmsg call
succeeds, this routine assumes all is well and returns the number of bytes
passed to the service provider.
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Receiving a Datagram
The final routine in this example, inter_rev, retrieves the next available

datagram. but points to a buffer where the data should be stored, len indicates
the size of that buffer, and addr points to a long integer where the source
address of the datagram will be placed. On successful completion, inter_rev
returns the number of bytes in the retrieved datagram; on failure, it returns -1
and sets the appropriate UNIX System error value.

inter_rcv(fd, b1f, len, addr)

char *b1f;
long *addr;
{

st::ruet st:rtJuf ct:l.lJuf;

st::ruet st:rbuf databuf;
st::ruet unitdata_i.Jxl unitdata_ini;
int retval;
int flags;

ct:.ll:uf.maxlen = sizeof(st:ruet unitdata_ini);
ct:.ll:uf •len = 0;
ct:.ll:uf.but' = (char * )&un:itdata_ini;
databut' .maxlen = len;
databut' •len = 0;
databuf.b1f = b1f;
flags = 0;

if « retva1 = qetmsg(fd, &.ct:l.lJuf, &.databuf, &flags» < 0)
retum(-1);

if (unitdata_iIxl.PRDLtype 1= UNrltlATA_:mD)

ern'1O =EPI01t);
return( -1) ;

}
if (retval) {

enno = EIO;
return(-1) ;

}

*addr = unitdata_iIxl.SRC~;

return(databuf •len) ;
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getmsg is called to retrieve the datagram indication primitive, where that
primitive contains both a control and data part. The control part consists of a
unitdattLind structure that identifies the primitive type and the source address
of the datagram sender. The data part contains the data itself.

In ellbuf, buf must point to a buffer where the control information will be
stored, and maxlen must be set to indicate the maximum size of that buffer.
Similar initialization is done for databuf.

The flags argument to getmsg is set to zero, indicating that the next mes­
sage should be retrieved from the Stream head, regardless of its priority.
Datagrams will arrive in normal priority messages. If no message currently
exists at the Stream head, getmsg will block until a message arrives.

The user's control and data buffers should be large enough to hold any
incoming datagram. If both buffers are large enough, getmsg will process the
datagram indication and return 0, indicating that a full message was retrieved
successfully. However, if either buffer is not large enough, getmsg will only
retrieve the part of the message that fits into each user buffer. The remainder
of the message is saved for subsequent retrieval, and a positive, non-zero
value is returned to the user. A return value of MORECTL indicates that
more control information is waiting for retrieval. A return value of MORE­
DATA indicates that more data is waiting for retrieval. A return value of
MORECTUMOREDATA indicates that data from both parts of the message
remain. In the example, if the user buffers are not large enough (that is,
getmsg returns a positive, non-zero value), the function will set ermo to EIO
and fail.

The type of the primitive returned by getmsg is checked to make sure it is
a datagram indication. The source address is then set and the number of
bytes of data in the datagram is returned.

The above example presents a simplified service interface. The state tran­
sition rules for such an interface were not presented for the sake of brevity.
The intent was to show typical uses of the putmsg and getmsg system calls.
See putmsg(2) and getmsg(2) for further details.
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Part 2 of this guide, Module and Driver Programming, describes the use of
STREAMS kernel facilities for developing and installing modules and drivers.
It is intended for system programmers with knowledge of UNIX System kernel
programming, device driver development, and networking and other data
communication facilities. Knowledge of the STREAMS Primer and the Driver
Design Guide is assumed.

STREAMS provides module and driver developers with integral functions,
a set of utility routines, and facilities that expedite design and implementation.
The principle development facilities are listed below:

• Message storage management-to maintain STREAMS' own memory
resources for message storage

• Flow control-to conserve STREAMS memory and processing
resources

• Scheduling-to control the execution of service procedures

• Multiplexing-to switch data among multiple Streams

• Error and trace loggers-for debugging and administrative use

Part 2 is organized as follows:

• Chapter 5, Streams Mechanism, reviews the operation of STREAMS
and describes how a Stream is constructed and dismantled.

• Chapter 6, Modules, describes the basic STREAMS data structures and
the organization of a module.

• Chapter 7, Messages, introduces message blocks, read and write sys­
tem calls, and the message storage pool.

• Chapter 8, Message Queues and Service Procedures, discusses put and
service procedures, message queueing, and basic flow control.

• Chapter 9, Drivers, describes STREAMS driver organization and
discusses typical driver processing.

• Chapter 10, Complete Driver, provides a full implementation of a
driver and describes the clone mechanism.



Introduction to Part 2

• Chapter 11, Multiplexing, describes the multiplexing facility.

• Chapter 12, Service Interface, discusses service interfaces within a
Stream and at the Stream/user boundary.

• Chapter 13, Advanced Topics, contains advanced topics including sig­
nals and Stream head options.

• Appendix A, Kernel Structures, summarizes kernel structures used by
modules and drivers.

• Appendix B, Message Types, describes STREAMS message types.

• Appendix C, Utilities, specifies the STREAMS kernel utility routines.

• Appendix D, Design Guidelines, summarizes module and driver design
guidelines.

• Appendix E, Configuring, describes how modules and drivers are con­
figured into the UNIX System, tunable parameters and STREAMS sys­
tem error messages.

• The Glossary defines terms unique to STREAMS.
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Overview

A Stream implements a connection within the kernel between a driver in
kernel space and a process in user space. It provides a general character
input/output (I/O) interface for user processes which is upwardly compatible
with the interface of the preexisting character I/O facilities. A Stream is
analogous to a shell pipeline except that data flow and processing are bidirec­
tional to support concurrent input and output.

The components that form a Stream are the Stream head, driver, and
optional modules (see Figure 1 in the Preface). A Stream is initially con­
structed as the result of a user process open system call referencing a
STREAMS file. The call causes a kernel resident driver to be connected with a
Stream head to form a Stream. Subsequent ioctl calls select kernel resident
modules and cause them to be inserted in the Stream. A module represents
intermediate processing on messages flowing between the Stream head and
driver. A module can function as, for example, a communication protocol,
line discipline, or data filter. STREAMS allows a user to connect a module
with any other module. The user determines the module connection
sequences that result in useful configurations.

A process can send and receive characters on a Stream using write and
read, as on character files. When user data enters the Stream head or external
data enters the driver, the data is placed into messages for transmission on the
Stream. All data passed on a Stream is carried in messages, each having a
defined message type identifying the message contents. Internal control and
status information is transmitted among modules or between the Stream and
user process as messages of certain types interleaved on the Stream. Modules
and drivers can send certain message types to the Stream head to cause the
generation of signals or errors to be received by the user process.

A module is comprised of two identical sets of data structures called
QUEUEs. One QUEUE is for upstream processing and the other is for down­
stream processing. The processing performed by the two QUEUEs is gen­
erally independent so that a Stream operates in a full-duplex manner. The
interface between modules is uniform and simple. Messages flow from
module to module. A message from one module is passed to the single entry
point of its neighboring module.
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The last dose system call dismantles the Stream and closes the file,
semantically identical to character I/O drivers.

STREAMS supports implementation of user-level applications with exten­
sions to the above general system calls and STREAMS specific system calls:
putmsg, getmsg, poll, and a set of STREAMS generic ioell functions.
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Stream Construction
STREAMS constructs a Stream as a linked list of kernel resident data

structures. In a STREAMS file, the inode points to the Stream header struc­
ture. The header is used by STREAMS kernel routines to perform operations
on this Stream generally related to system calls. Figure 5-1 depicts the down­
stream (write) portion of a Stream (see Chapter 3 of the Primer) connected to
the header. There is one header per Stream. From the header onward, a
Stream is constructed of QUEUEs. The upstream (read) portion of the Stream
(not shown in Figure 5-1) parallels the downstream portion in the opposite
direction and terminates at the Stream header structure.

inode Stream
header

QUEUE
H

QUEUE
PI

QUEUE
P2

QUEUE
D

Figure 5-1: Downstream Stream Construction

At the same relative location in each QUEUE is the address of the entry
point, a procedure to be executed on any message received by that QUEUE.
The procedure for QUEUE H, at one end of the Stream, is the STREAMS­
provided Stream head routine. QUEUE H is the downstream half of the
Stream head. The procedure for QUEUE D, at the other end, is the driver
routine. QUEUE D is the downstream half of the Stream end. PI and P2 are
pushable modules, each containing their own unique procedures. That is, all
STREAMS components are of similar organization.

This similarity results in the uniform manner of navigating in either direc­
tion on a Stream: messages move from one end to the other, from QUEUE to
the next linked QUEUE, executing the procedure specified in the QUEUE.

Figure 5-2 shows the data structures forming each QUEUE: queue_t,
qinit, module-info, and module-stat. queue-t contains various modifiable
values for this QUEUE, generally used by STREAMS. qinit contains a pointer
to the processing procedures, module-info contains limit values and
module-Stat is used for statistics. The two QUEUEs in a module will gen­
erally each contain a different set of these structures. The contents of these
structures are described in following chapters.
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Figure 5-2: QUEUE Data Structures

Figure 5-1 shows QUEUE linkage in one direction while Figure 5-2 shows
two neighboring modules with links (solid vertical arrows) in both directions.
When a module is pushed onto a Stream, STREAMS creates two QUEUEs and
links each QUEUE in the module to its neighboring QUEUE in the upstream
and downstream direction. The linkage allows each QUEUE to locate its next
neighbor. The next relation is implemented between queue_ts in adjacent
modules by the q_next pointer. Within a module, each queue_t locates its
mate (see dotted arrows in Figure 5-2) by use of STREAMS macros, since
there is no pointer between the two queue-ts. The existence of the Stream
head and driver is known to the QUEUE procedures only as destinations
towards which messages are sent.
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*st_rdinit; /* defines read aumE */
*st_wrinit; /* defines write OOEUE */
*st_IIIDCrini.t; /* for multiplex:i.DJ drivers only */
*st_IIIlXWinit; /* for multiplex:i.DJ drivers only */

Opening a Stream

When a file is opened [see open(2)], a STREAMS file is recognized by a
non-null value in the d-str field of the associated cdevsw entry. d---str points
to a streamtab structure:

st:roct streamtab {
st:ruct qinit
st:ruct qinit
st:ruct qinit
struct qinit

};

streamtab defines a module or driver and points to the read and write
qinit structures for the driver.

If this open call is the initial file open, a Stream is created. First, the sin­
gle header structure and the Stream head (see Figure 5-1) queue-t structure
pair are allocated. Their contents are initialized with predetermined values
including, as noted above (see QUEUE H), the Stream head processing rou­
tines.

Then, a queue_t structure pair is allocated for the driver. The queue_t
contents are zero unless specifically initialized (see Chapter 8). A single, com­
mon qinit structure pair is shared among all the Streams opened from the
same cdevsw entry, as is the associated module-info and module-stat struc­
tures (see Figure 5-2).

Next, the q_next values are set so that the Stream head write queue_t
points to the driver write queue-t, and the driver read queue_t points to the
Stream head read queue-t. The q_next values at the ends of the Stream are
set to NULL. Finally, the driver open procedure (located via qinit) is called.

If this open is not the initial open of this Stream, the only actions per­
formed are to call the driver open and the open procedures of all pushable
modules on the Stream.
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As part of constructing a Stream, a module can be added with an ioctl
LPUSH [see streamio(7)] system call (push). The push inserts a module
beneath the Stream head. Because of the similarity of STREAMS components,
the push operation is similar to the driver open. First, the address of the qinit
structure for the module is obtained via an fmodsw entry.

fmodsw is an array, analogous to cdevsw. Each fmodsw entry
corresponds to a unique module and contains the name of the module (used
by LPUSH and certain other STREAMS ioctls) and a pointer to the module's
streamtab. Next, STREAMS allocates queue_to structures and initializes their
contents as in the driver open, above. As with the driver, the read and write
qinit structures are shared among all the modules opened from this fmodsw
entry (see Figure 5-2).

Then, q_next values are set and modified so that the module is interposed
between the Stream head and the driver or module previously connected to
the head. Finally, the module open procedure (located via qinit) is called.
Unlike open, no other module or driver open procedure is called.

Each push of a module is independent, even in the same Stream. If the
same module is pushed more than once onto a Stream, there will be multiple
occurrences of that module in the Stream. The total number of pushable
modules that may be contained on anyone Stream is limited by the kernel
parameter NSTRPUSH (see Appendix E).

An ioctl LPOP [see streamio(7)] system call (pop) removes the module
immediately below the Stream head. The pop calls the module close pro­
cedure. On return from the module dose, any messages left on the module's
message queues are freed (deallocated). Then, STREAMS connects the Stream
head to the component previously below the popped module and deallocates
the module's two queue_t structures. LPOP enables a user process to
dynamically alter the configuration of a Stream by pushing and popping
modules as required. For example, a module may be removed or a new one
inserted below a module. In the latter case, the original module is popped
and pushed back after the new module has been pushed.

An !-POP cannot be used on a driver.
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The last close system call to a STREAMS file dismantles the Stream. Dis­
mantling consists of popping any modules on the Stream, closing the driver
and closing the file. Before a module is popped by close, it may delay to
allow any messages on the write message queue of the module to be drained
by module processing. If O-NDELAY [see open(2)] is clear, close will wait up
to 15 seconds for each module to drain. If O.-NDELAY is set, the pop is per­
formed immediately. close will also wait for the driver's write queue to drain.
Messages can remain queued, for example, if flow control (see Chapter 6 in
the Primer) is inhibiting execution of the write QUEUE. When all modules are
popped and any wait for the driver to drain is completed, the driver close rou­
tine is called. On return from the driver close, any messages left on the
driver's message queues are freed, and the queue_l and header structures are
deallocated.

STREAMS frees only the messages contained on a message queue. Any
messages used intemally by the driver or module must be freed by the
driver or module close procedure.

Finally, the file is closed.
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Module Declarations
A module and driver will contain, as a minimum, declarations of the fol­

lowing form:

#iJlclude nsys/types.hn /* required in all roodules and drivers */
#include nsyslstream.hn /* required in all Jl'Odules and drivers */
#i.nclude nsys/param.hn

static struct IOOdule_info nninfo = { 0, "m:xin
, 0, INFPSZ, 0, 0 };

static struct module_info wninfo = { 0, nm:xi", 0, INFPSZ, 0, 0 };
static int JD:ldopen{ ), 1ICdrput( ), nr.dwpJ.t( ), m:xiclose( );

static struct qinit rinit = {
1IIXb:plt, NULL, UDdopen, m:xiclose, NOLL, &l:minfo, NULL
} ;
static struct qinit winit = {
nxxiwprt., NULL, NULL, NULL, NOLL, &'wminfo, NULL
};
struct st:reamtab m:xii.nfo = { &rinit, &.winit, NULL, NULL };

The contents of these declarations are constructed for the null module
example in this section. This module performs no processing; its only purpose
is to show linkage of a module into the system. The descriptions in this sec­
tion are general to all STREAMS modules and drivers unless they specifically
reference the example.

The declarations shown are: the header set; the read and write QUEUE
(rminfo and wminfo) module-info structures (see Figure 5-2); the module
open, read-put, write-put and close procedures; the read and write (rinit and
winit) qinit structures; and the streamtab structure.

The minimum header set for modules and drivers is types.h and
stream.h. param.h contains definitions for NULL and other values for
STREAMS modules and drivers as shown in the section titled .. Accessible
Symbols and Functions ll in Appendix D.
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Configuring a STREAMS module or driver (see Appendix E) does not
require any procedures to be externally accessible, only streamtab. The
streamtab structure name must be the prefIX used in configuring, appended
with "info."

As described in the previous chapter, streamtab contains qinit values for the
read and write QUEUEs, pointing to a module-info and an optional
module-stat structure. The two required structures, shown in Figure 5-2, are
these:

stroct qinit {
int (*qiJUtp)( ); /* put procedure */
int (*qi_srvp)( ); /* service procedure */
int (*qi_qopen)( ); /* called on each open ar a push */
int (*qi_qclose)( ); /* called em last close ar a pop */
int (*qi_qadmin)( ); /* reserved far future use */
stroct nx:xiule_info *qi_minfo; /* information structure */
st:ruct m:xiule_stat *qi_mstat; 1* statistics structure - optional *1

} ;

};

usOOrt
char
short
short
short
usOOrt

mi_idnum;
*mi_idname;
mi_minpsz;
mi._IDaXpSz;
mi_hiwat;
mi_lowat;

1* IOOdule ID number *1
1* m:xiule name */
1* min packet size accepted, far developer use *1
1* max packet size accepted, for developer use *1
1* hi-water mark, for flow oonb:ol *1
1* lo-water mark, for flow control */

qinit contains the QUEUE procedures. All modules and drivers with the
same streamtab (Le., the same fmodsw or cdevsw entry) point to the same
upstream and downstream qinit structure(s). The structure is meant to be
software read-only, as any changes to it affect all occurrences of that module
in all Streams. Pointers to the open and close procedures must be contained
in the read qinit. These fields are ignored in the write side. The example has
no service procedure on the read or write side.

module-info contains identification and limit values. All modules and
drivers with the same streamtab point to the same upstream and downstream
module-info structure(s). As with qinit, this structure is intended to be
software read-only. However, the four limit values are copied to queue-t
(see Chapter 8) where they are modifiable. In the example, the flow control
high- and low-water marks (see Chapter 9) are zero, since there are no service
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procedures, and messages are not queued in the module.

Three names are associated with a module: the character string in
fmodsw, obtained from the name of the /etc/conf/modules directory used to
configure the module (see Appendix E); the prefix for streamtab, used in con­
figuring the module; and the module name field in the module-info struc­
ture. This field is a hook for future expansion and is not currently used.
However, it is recommended that it be the same as the module name. The
module name value used in the LPUSH or other STREAMS ioell commands
is contained in fmodsw. Each module ID and module name should be unique
in the system. The module ID is currently used only in logging and tracing
(see Chapter 6 in the Primer). For the example in this chapter, the module ID
is zero.

Minimum and maximum packet size are intended to limit the total
number of characters contained in all (if any) of the M-DATA blocks in each
message passed to this QUEUE. These limits are advisory except for the
Stream head. For certain system calls that write to a Stream, the Stream head
will observe the packet sizes set in the write QUEUE of the module immedi­
ately below it. Otherwise, the use of packet size is developer-dependent. In
the example, INFPSZ indicates unlimited size on the read (input) side.

module-stat is optional, intended for future use. Currently, there is no
STREAMS support for statistical information gathering. The structure is
described in Appendix A.
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Module Procedures
The null module procedures are as follows:

static int ncdopen(q, dev, flag, sflag)
queue_t *q; /* pointer to read queue */

dev_t dev; /* majorlminor device number -- zem for IIDdules */

int flag; /* file open flags -- zem for IIDdules */
int sflag; /* stream open flags */

/* retun1 suocess */
retun1 0;

static int ncdwput(q, mp)/* write pIt procedure */
queue_t *q; /* pointer to the write queue */

~llLt *nip; /* message pointer */

Pltnext(q, mp); /* pass message through */

static int m::dqnt(q, mp)/* read PIt procedure */
queue_t *q; /* pointer to the read queue */

mbllLt *lIp; /* message pointer */

prt:next(q, mp); /* pass message through */

static int m:xiclose(q, flag)
queue_t *q; /* pointer to the read queue */
int flag; /* file open flags - zem for modules */

The form and arguments of these four procedures are the same in all
modules at'd all drivers. Modules and drivers can be used in multiple Streams
and their procedures must be re-entrant.
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modopen illustrates the open call arguments and return value. The argu­
ments are the read queue pointer (q), the major/minor device number (dev in
drivers only), the file open flags (flag is defined in sys/file.h), and the Stream
open flag (s/lag). For a module, the values of flag and dev are always zero.
The Stream open flag can take on the following values:

MODOPEN normal module open

o normal driver open (see Chapter 9)

CLONEOPEN done driver open (see Chapter 10)

The return value from open is >= 0 for success and OPENFAIL for error.
The open procedure is called on the first LPUSH and on all subsequent open
calls to the same Stream. During a push, a return value of OPENFAIL causes
the LPUSH to fail and the module to be removed from the Stream. If
OPENFAIL is returned by a module during an open call, the open fails, but
the Stream remains intact. For example, it can be returned by a
module/driver that only wishes to be opened by a super-user:

if (I suser( » return OPENFAIL;

In the example, modopen simply returns successfully. modrput and modwput
illustrate the common interface to put procedures. The arguments are the read
or write queue_t pointer, as appropriate, and the message pointer. The put
procedure in the appropriate side of the QUEUE is called when a message is
passed from upstream or downstream. The put procedure has no return
value. In the example, no message processing is performed. All messages are
forwarded using the putnext macro (see Appendix C). putnext calls the put
procedure of the next QUEUE in the proper direction.

The dose procedure is only called on an LPOP or on the last close call of
the Stream (see the last two sections of Chapter 5). The arguments are the
read queue-t pointer and the file open flags as in modopen. For a module,
the value of flag is always zero. There is no return value. In the example,
modclose does nothing.
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As discussed in Chapter 7 of the Primer, user context is not generally
available to STREAMS module procedures and drivers. The exception is dur­
ing execution of the open and dose routines. Driver and module open and
dose routines have user context and may access the U-al'ea structure (defined
in user.h, see II Accessible SYmbols and Functions" in Appendix D). These
routines are allowed to sleep, but must always return to the caller. That is, if
they sleep, it must be at priority <= PZERO, or with PCATCH set in the sleep
priority. A process that is sleeping at priority> PZERO and is sent a signal
via kill never returns from the sleep call. Instead, the system call is aborted.V STREAMS driver and module put procedures and service procedures have

no user context. They cannot access the u-area structure of a process and
must not sleep.
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Message Format

*b_next; /* next message ari queue */
*bJJrev;/* previous IOOssage an queue */
*b_oont;/* next message block of message */
*b_qrt:r;/* first unread byte in blffer */
*b_wpt:r;/* first unwritten byte in blffer */
*b_datap;/* data block */

msgb

msgb

msgb

char

char

datab

Messages are the means of communication within a Stream. A message
contains data or information identified by one of 18 message types (see
Appendix B). Messages may be generated by a driver, a module, or the
Stream head. The contents of certain message types can be transferred
between a process and a Stream by use of system calls. STREAMS maintains
its own pools for allocation of message storage.

All messages are composed of one or more message blocks. A message
block is a linked triplet, two structures, and a variable-length buffer block.
The structures are msgb (mblLt), the message block, and datab (dbILt), the
data block:

struet msgb {

struct
struct
struct
unsigned
unsigned
struct

struet datab {

struct
unsigned
unsigned
unsigned
unsigned
unsigned

datab

char

char

char

char

char

*db_freep;/* used intenla1ly */
*db_base;/* first byte of blffer * */
*db_lim;/* last byte+1 of blffer */
db_ref;/* count of messages point:ing to this block */
db_type;/* message type */
db_class;/* used intenla1ly */

mblLt is used to link messages on a message queue, link the blocks in a
message, and manage the reading and writing of the associated buffer. b_rptr
and b_wptr are used to locate the data currently contained in the buffer. As
shown in Figure 7-1, mblLt points to the data block of the triplet. The data
block contains the message type, buffer limits, and control variables.
STREAMS allocates message buffer blocks of varying sizes (see below).
db_base and db-lim are the fixed beginning and end (+1) of the buffer.
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A message consists of one or more linked message blocks. Multiple mes­
sage blocks in a message can occur, for example, because of buffer size limita­
tions, or as the result of processing that expands the message. When a mes­
sage is composed of multiple message blocks, the type associated with the first
message block determines the message type, regardless of the types of the
attached message blocks.

I

t

Message
2

data
block
(type)

I

t

b-Ilext
- - - - - - - - - - - - ->

mblk-t - - - - 1>:pr;v- - - - - -

mblLt

mblLt

\............--' \
\

\

\

b-Ilext

Message
1

mblk-t

data
block

data
block
(type)

mblLt

mblLt

\.......--_..... \

\

\

I
I
I
I
I
I

queue I<----header

Figure 7-1: Message Form and Unkage
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A message may occur singly, as when it is processed by a put procedure,
or it may be linked on the message queue in a QUEUE, generally waiting to
be processed by the service procedure. Message 1, as shown in Figure 7-1,
links to message 2. In the first message on a queue, b_prev points back to the
header in the QUEUE. The last b_next points to the tail.

Note that a data block in message 1 is shared between message 1 and
another message. Multiple message blocks can point to the same data block
to conserve storage and to avoid copying overhead. For example, the same
data block, with associated buffer, may be referenced in two messages, from
separate modules that implement separate protocol levels. (Figure 7-1 illus­
trates the concept, but data blocks would not typically be shared by messages
on the same queue.) The buffer can be retransmitted, if required by errors or
timeouts, from either protocol level without replicating the data. Data block
sharing is accomplished by means of a utility routine (see dupmsg in Appen­
dix C). STREAMS maintains a count of the message blocks sharing a data
block in the db_ref field.

STREAMS provides utility routines and macros, specified in Appendix C,
to assist in managing messages and message queues, and to assist in other
areas of module and driver development. A utility should always be used
when operating on a message queue or accessing the message storage pool.

Message Generation and Reception
As discussed in the "Message Types n section in Chapter 4 of the Primer,

most message types can be generated by modules and drivers. A few are
reserved for the Stream head. The most commonly used types are M-DATA,
MJROTO, and MJCPROTO. These, and certain other message types, can
also be passed between a process and the topmost module in a Stream, with
the same message boundary alignment maintained on both sides of the kernel.
This allows a user process to function, to some degree, as a module above the
Stream and maintain a service interface (see Chapter 12). MJROTO and
M-PCPROTO messages are intended to carry service interface information
among modules, drivers, and user processes. Some message types can only be
used within a Stream and cannot be sent or received from user level.

As discussed previously, modules and drivers do not interact directly with
any system calls except open and close. The Stream head handles all mes­
sage translation and passing. Message transfer between process and Stream
head can occur in different forms. For example, M-DATA, M-PROTO, or
M-PCPROTO messages can be transferred in their direct form by getmsg and
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putmsg system calls (see Chapter 12). Alternatively, a write causes one or
more M-DATA messages to be created from the data buffer supplied in the
call. M-DATA messages received from downstream at the Stream head will
be consumed by read and copied into the user buffer. As another example,
M-SIG causes the Stream head to send a signal to a process (see Chapter 13).

Any module or driver can send any message type in either direction on a
Stream. However, based on their intended use in STREAMS and their treat­
ment by the Stream head, certain message types can be categorized as
upstream, downstream or bidirectional. M-DATA, MJROTO, or
MJCPROTO messages, for example, can be sent in both directions. Other
message types are intended to be sent upstream to be processed only by the
Stream head. Downstream messages are silently discarded if received by the
Stream head.
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The module shown below, crmod, is an asymmetric filter. On the write
side, newline is converted to carriage return followed by newline. On the
read side, no conversion is done. The declarations are essentially the same as
the null module of the preceding chapter:

/* Simple filter - converts newline -> carriage retmn, newline */

#include "sys/types.h"
#include "sys/param.h"
#include "sys/stream.h"

static st:tuet m::xiule_info minfo ::: { 0, "CDECd", 0, INFPSZ, 0, 0 };

static int mX!open(), no:kplt(), 1lXXiwpIt(), m:xlclose();
static struet qinit rinit ::: {

nodrput, NOLL, modopen, ncdclose, NOLL, &minfo, NULL
} ;
static st:ruct qinit winit ::: {

m:XlwpIt, NULL, NULL, NULL, NULL, &minfo, NULL
};
struct streamtab crmdinfo ::: { &rinit, &.winit, NULL, NULL };

Note that, in contrast to the null module example, a single module-info
structure is shared by the read and write sides. A config file to configure
crmod is shown in Appendix E.

modopen, modrput, and modclose, are the same as in the null module of the
preceding chapter.
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bappend Subroutine
The module makes use of a subroutine, bappend, which appends a charac­

ter to a message block:

/*
* Apperxl a character to a message block.
* If (*bpp) is :null, it will allocate a new block
* Returns 0 when the message block is full, 1 otherwise
*/

#define K>DBLKSZ 128

static bappend(bpp, ch)

mbllLt **bpp;
int ch;

/* size of message blocks */

if (bp = *bpp) {

if (bp->b_wptt >= bp->b_datap->db_lim)
return 0;

} else if « *bpp =bp =a11oc:b(KDBUCSZ, BPRI_MED» = NULL)

return 1;
*bp->b_wptt++ = ch;

retum 1;

The bappend subroutine receives a pointer to a message block pointer and
a character as arguments. If a message block is supplied (*bpp 1= NULL),
bappend checks if there is room for more data in the block. If not, it fails. If
there is no message block, a block of at least MODBLKSZ is allocated through
allocb, described below.

7·6 STREAMS PROGRAMMER'S GUIDE



Filter Module Declarations

If the allocb fails, bappend returns success, silently discarding the charac­
ter. This mayor may not be acceptable. For TTY-type devices, it is generally
accepted. If the original message block is not full or the allocb is successful,
bappend stores the character in the block.
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The allocb utility (see Appendix C) is used to allocate message storage

from the STREAMS pool. Its declaration is:

mblk_t *allocb(buffersize, priority).

allocb will return a message block containing a buffer of at least the size
requested, providing there is a buffer available at the message pool priority
specified, or it will return NULL on failure. Three levels of message pool
priority can be specified (see Appendix C). Priority generally does not affect
allocb until the pool approaches depletion. In this case, for the same internal
level of pool resources, allocb will fail low priority requests while granting
higher priority requests. This allows module and driver developers to use
STREAMS memory resources to their best advantage and for the common
good of the system. Message pool priority does not affect subsequent han­
dling of the message by STREAMS. BPRLHI is intended for special situa­
tions. This transmission of urgent messages relates to time-sensitive events,
conditions that could result in loss of state, loss of data, or inability to recover.
BPRLMED might be used, for example, when requesting an M-DATA buffer
for holding input, and BPRLLO might be used for an output buffer (presum­
ing the output data can wait in user space). The Stream head uses BPRLLO
to allocate messages to contain output from a process (e.g., by write or
putmsg). Note that allocb will always return a message of type M-DATA.
The type may then be changed if required. b_rptr and b_wptr are set to
db_base (see mblLt and dblLt).

allocb may return a buffer larger than the size requested. In bappend, if
the message block contents were intended to be limited to MODBLKSZ, a
check would have to be inserted.

If allocb indicates buffers are not available, the bufcall utility can be used
to defer processing in the module or the driver until a buffer becomes avail­
able (bufcall is described in Chapter 13).
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The modwput function processes all the message blocks in any down­
stream data (type M-DATA) messages.

/* Write side pIt procedure */
static m:xiwpJt(q, IIp}

qu.eue_t *q;
mbllLt *up;

{

switch (mp->b_datap->db_type)

default:
prtnext(q, mp); /* Don't do these, pass them alanq */
break;

case M_IWrA: {

register mbllLt *bp;

struet mblk_t *mp =NULL, *nbp =NULL;

for (bp = IIp; bp 1= NULL; bp = bp->b_oont)
while (bp->b_~ < bp->b_wptr) {

if (*bp->b_rptr == '\Il')

if (lbapperKi(&nbp, '\r'»
goto newblk;

if (lbapperKi(&nbp, *bp->b_~»

goto newblk;

bp->b_rpt:r++ ;
oontinue;

newblk:
if (tm;l == NULL)

mp = nbp;

else linkb(nmp, nbp); /* link message block to tail of map */

nbp = NULL;

if (mp == NULL)
map = nbp;

else linkb(nmp, nbp};

freemsq(mp); /* deallocate message */
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continued

if (rmrp)

pltnext(q, mp);
break;

}

}

}

Data messages are scanned and filtered. modwput copies the original mes­
sage into a new block(s), modifying as it copies. nbp points to the current
new message block. nmp points to the new message being formed as multiple
M-DATA message blocks. The outer forO loop goes through each message
block of the original message. The inner whileO loop goes through each byte.
bappend is used to add characters to the current or new block. If bappend fails,
the current new block is full. If nmp is NULL, nmp is pointed at the new
block. If nmp is non-NULL, the new block is linked to the end of nmp by use
of the linkb utility.

At the end of the loops, the final new block is linked to nmp. The original
message (all message blocks) is returned to the pool by freemsg. If a new
message exists, it is sent downstream.
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The queue_t Structure

Service procedures, message queues and priority, and basic flow control
are all intertwined in STREAMS. A QUEUE will generally not use its message
queue if there is no service procedure in the QUEUE. The function of a ser­
vice procedure is to process messages on its queue. Message priority and flow
control are associated with message queues.

The operation of a QUEUE revolves around the queue_t structure:

struct queue {
struct qinit *~qinfo; /* procedures an:! limits far queue */
struct msgb *~first; /* head of message queue far this QUEIJE */
struct msgb *~last; /* tail of message queue far this QUEIJE */
struct queue *~next; /* next aJmE in Stream*/

struct queue *~link; /* link to next QUEIJE on S'mEAMS scheduling queue */
caddr_t CL.,Ptr; /* to private data strocture */

usb:>rt ~count; /* weighted count of characters on message queue */
usb:>rt ~flaq; /* cmm: state */
short ~m:inpsz; /* min packet size accepted by this cmm: */

short ~maxpsz; /* max packet size accepted by this cmm: */
ushort ~hiwat; /* message queue high-water mark, far flow control */
ushort ~lCMat; /* message queue low-water mark, far flow control */

As described previously, two of these structures form a module. When a
queue_t pair is allocated, their contents are zero unless specifically initialized.
The following fields are initialized by STREAMS:

• q-'linjo - from streamtab

• q-minpsz, q_maxpsz, q-hiwat, q_lowat - from module-info

Copying values from module-info allows them to be changed in the
queue_t without modifying the template (e.g., streamtab and module-info)
values.

q_count is used in flow control calculations and is the weighed sum of
the sizes of the buffer blocks currently on the message queue. The actual
number of bytes in the buffer is not used. This is done to encourage the use
of the smallest buffer that will hold the data intended to be placed in the
buffer.
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Service Procedures

Put procedures are generally required in pushable modules. Service pro­
cedures are optional. The general processing flow when both procedures are
present is as follows: A message is received by the put procedure in a
QUEUE, where some processing may be performed on the message. The put
procedure transfers the message to the service procedure by use of the putq
utility. putq places the message on the tail (see q_Iast in queue_t) of the
message queue. Then, putq will generally schedule (using q_Iink in queue_t)
the QUEUE for execution by the STREAMS scheduler following all other
QUEUEs currently scheduled. After some indeterminate delay (intended to be
short), the scheduler calls the service procedure. The service procedure gets
the first message (q_tirst) from the message queue with the getq utility. The
service procedure processes the message and passes it to the put procedure of
the next QUEUE with putnext. The service procedure gets the next message
and processes it. This FIFO processing continues until the queue is empty or
flow control blocks further processing. The service procedure returns to caller.Y A service routine must never sleep and it has no user context. It must

always return to its caller.

If no processing is required in the put procedure, the procedure does not
have to be explicitly declared. Rather, putq can be placed in the qinit struc­
ture declaration for the appropriate QUEUE side, to queue the message for the
service procedure, e.g.,

static struct qinit winit = { putq, modwsrv, };

More typically, put procedures will, as a minimum, process priority messages
(see below) to avoid queueing them.

The key attribute of a service procedure in the STREAMS architecture is
delayed processing. When a service procedure is used in a module, the
module developer is implying that there are other, more time-sensitive activi­
ties to be performed elsewhere in this Stream, in other Streams, or in the sys­
tem in general. The presence of a service procedure is mandatory if the flow
control mechanism is to be utilized by the QUEUE.
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The delay for STREAMS to call a service procedure will vary with imple­
mentation and system activity. However, once the service procedure is
scheduled, it is guaranteed to be called before user-level activity is resumed.

See also the section titled "Put and Service Procedures" in Chapter 5 of
the Primer.
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Message Queues and Message Priority

Figure 8-1 depicts a message queue linked by b_next and b_prev pointers.
As discussed in the Primer, message queues grow when the STREAMS
scheduler is delayed from calling a service procedure because of system
activity, or when the procedure is blocked by flow control. When it is called
by the scheduler, the service procedure processes enqueued messages in FIFO
order. However, certain conditions require that the associated message (e.g.,
an M-ERROR) reach its Stream destination as rapidly as possible. STREAMS
does this by assigning all message types to one of the two levels of message
queueing priority-priority and ordinary. As shown in Figure 8-1, when a
message is queued, the putq utility places priority messages at the head of the
message queue in a FIFO order of queueing.

QUEUE Message queue

I
I

Tail

,.'Ordinary
Messages

" ,'.. Priority ..,.
, Messages ,
I I

Head

queue
header.............

Figure 8-1: Message Queue Priority

Priority messages are not subject to flow control. When they are queued
by putq, the associated QUEUE is always scheduled (in the same manner as
any QUEUE; following all other QUEUEs currently scheduled). When the ser­
vice procedure is called by the scheduler, the procedure uses getq to retrieve
the frrst message on queue, which will be a priority message, if present. Ser­
vice procedures must be implemented to act on priority messages immediately
(see next section). The above mechanisms-priority message queueing,
absence of flow control and immediate processing by a procedure-result in
rapid transport of priority messages between the originating and destination
components in the Stream.
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The priority level for each message type is shown in Appendix B. Mes­
sage queue management utilities are provided for use in service procedures
(see Appendix C).
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Flow Control

The elements of flow control are discussed in Chapter 6 of the Primer.
Flow control is only used in a service procedure. Module and driver coding
should observe the following guidelines for message priority. Priority mes­
sages, determined by the type of the first block in the message,

(bp->b_datap->db_type > QPCTL),

are not subject to flow control. They should be processed immediately and
forwarded, as appropriate.

For ordinary messages, flow control must be tested before any processing
is performed. The canput utility determines if the forward path from the
QUEUE is blocked by flow control. The manner in which STREAMS deter­
mines flow control status for modules and drivers is described under II Driver
Flow Control II in Chapter 9.

This is the general processing for flow control: Retrieve the message at
the head of the queue with getq. Determine if the type is priority and not to
be processed here. If both are true, pass the message to the put procedure of
the following QUEUE with putnext. If the type is ordinary, use canput to
determine if messages can be sent onward. If canput indicates messages
should not be forwarded, put the message back on the queue with putbq and
return from the procedure. In all other cases, process the message.

The canonical representation of this processing within a service procedure
is as follows:

while (getq I= NULL)
if (priority message I I c:anpxt)

process message
put:next

else
putbq
return
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A service procedure must process all messages on its queue unless flow
control prevents this.

When an ordinary message is enqueued by putq, putq will cause the ser­
vice procedure to be scheduled only if the queue was previously empty. If
there are messages on the queue, putq presumes the service procedure is
blocked by flow control and the procedure will be automatically rescheduled
by STREAMS when the block is removed. If the service procedure cannot
complete processing as a result of conditions other than flow control (e.g., no
buffers), it must assure it will return later (e.g., by use of bufcall, see Chapter
13) or it must discard all messages on queue. If this is not done, STREAMS
will never schedule the service procedure to be run unless the QUEUE's put
procedure queues a priority message with putq.

putbq replaces messages at the beginning of the appropriate section of the
message queue in accordance with their message type priority (see Figure 8-1).
This might not be the same position at which the message was retrieved by
the preceding getq. A subsequent getq might return a different message.
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The filter module example of Chapter 7 is modified to have a service pro­
cedure, as shown below. The declarations from the example in Chapter 7 are
unchanged except for the following lines (changes are shown in bold):

#include nsys/stropts.h n

static st:ruct ltOdule_info minto = {
0, nps-crmodn, 0, INFPSZ, 512,128

} ;
static int m:XIopen( ), m:xirpu.t( ), m:ldwput( ), modwsrvO, m::xklose( );

static struct qinit winit = {
1OOdwplt, modwsrv, NUIL, NUIL, NULL, &minfo, NULL

} ;

stropts.h is generally intended for user level. However, it includes defini­
tions of flush message options common to user level, modules and drivers.
module-info now includes the flow control high- and low-water marks (512
and 128) for the write QUEUE. (Even though the same module-info is used
on the read QUEUE side, the read side has no service procedure so flow con­
trol is not used.) qinit now contains the service procedure pointer. modopen,
modclose, and modrput (read side put procedure) are unchanged from Chapters
6 and 7. The bappend subroutine is also unchanged from Chapter 7.

Procedures

The write side put procedures and the beginning of the service procedure
are shown next:
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static int m:ldwput(q, mp)

qllewLt *q;
register mblk_t *top;

{

if (mp->b_dataJ:r>db_type > QPC1'L && mp->b_datap->db_type 1= M_FWSH)
p.rt:next(q, mp);

else
p1tq(q, mp); /* Put it an the queue */

static int m:xlwsrv(q) queue_t *q;
mblk_t *top;

while «mp = qet:q(q) 1= NULL) {
switch (mp->b_dataJ:r>db_type)

default:
/* always p.1mext priority IOOSsages */
if (mp->b_dataJ:r>db_type > QPC1'L II canplt(q-~next»

putnext(q, ltP);

continue;
}

else {
putbq(q, mp);

retm:n;

case M_FLUSH:

if (*mp->b_rptr &. FLUSHW)

flushq(q, FLUSHDATA);
p.1mext(q, mp);
contirme;

ps_crmod performs a similar function to crmod of the previous chapter, but
it uses a service routine.
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modwput, the write put procedure, switches on the message type. Priority
messages that are not type M-FLUSH are putnext to avoid scheduling. The
others are queued for the service procedure. An MJLUSH message is a
request to remove all messages on one or both QUEUEs. It can be processed
in the put or service procedure.

modwsrv is the write service procedure. It takes a single argument, a
pointer to the write queue-t. modwsrv processes only one priority message,
MJLUSH. All other priority messages are passed through. Actually, no
other priority messages should reach modwsrv. The check is included to show
the canonical form when priority messages are queued by the put procedure.

For an MJLUSH message, modwsrv checks the first data byte. If
FLUSHW (defined in stropts.h) is set in the byte, the write queue is flushed
by use of flushq. flushq takes two arguments, the queue pointer and a flag.
The flag indicates what should be flushed, data messages (FLUSHDATA) or
everything (FLUSHALL). In this case, data includes M-DATA, M-PROTO,
and M-PCPROTO messages. The choice of what types of messages to flush
is module-specific. As a general rule, FLUSHDATA should be used.

Ordinary messages will be returned to the queue if

canput(q->~next)

returns false, indicating the downstream path is blocked.

In the remaining part of modwsrv, M-DATA messages are processed simi­
larly to the previous example:
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case ~Da\TA: {

mblk_t *nbp = NULL;
mblk_t *next;

if (lcanpIt(q-~next»

p.rt:bq(q, mp);

return;
}

/* Filter data, appe:ndi..n:J to queue */
for (; mp 1= NULL; mp = next) {

while (mp->b_xptr < mp->b_wptr)

if (*mp->b_xptr = '\n')

if (Ibappend(&nbp, '\r l »
goto p.1Sh;

if (lbappend(&nbp, *mp->b_xptr»
goto p.1Sh;

mp->b_rptr++ ;

oantinue;

plSh:
prt:next(q, nbp);

nbp = NULL;
if (1canp1t(q-~next» {

if (mp->b_rptr >= a;>->b_wptr)

next = mp->b_oant;

freeb(mp);

mp--next;
}
if (mp)

putl:lq(q, mp);
return;

}

next = mp->b_oant;

freeb(mp);

}

if (nbp)

put:next(q, nbp);
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The differences in M-DATA processing between this and the previous
example relate to the manner in which the new messages are forwarded and
flow control. For the purpose of demonstrating alternative means of process­
ing messages, this version creates individual new messages rather than a sin­
gle message containing multiple message blocks. When a new message block
is full, it is immediately forwarded with putnext rather than being linked into
a single, large message (as was done in the previous exampl~). This alterna­
tive may not be desirable because message boundaries will be altered and
because of the additional overhead of handling and scheduling multiple mes­
sages.

When the filter processing is performed (following push), flow control is
checked (canput) after, rather than before, each new message is forwarded.
This is done because there is no provision to hold the new message until the
QUEUE becomes unblocked. If the downstream path is blocked, the remain­
ing part of the original message is returned to the queue. Otherwise, process­
ing continues.

Another difference between the two examples is that each message block
of the original message is returned to the pool with freeb when its processing
is completed.
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Overview of Drivers

This chapter describes the organization of a STREAMS driver and
discusses some of the processing typically required in drivers. Certain ele­
ments of driver flow control are discussed. Procedures for handling user
ioctls, common to modules and drivers, are described.

As discussed under II Stream Construction II in Chapter 5, driver and
module organization are very similar. The call interfaces to all the driver pro­
cedures are identical to module interfaces and driver procedures must be re­
entrant. As described under II Environment" in Chapter 6, the driver put and
service procedures have no user environment and cannot sleep. Other than
with open and close, a driver interfaces with a user process by messages, and
indirectly, through flow control.

There are two significant differences between modules and drivers. First,
a device driver must also be accessible from an interrupt as well as from the
Stream, and second, a driver can have multiple Streams connected to it. Mul­
tiple connections occur when more than one minor device uses the same
driver and in the case of multiplexers (see Chapter 11). However, these par­
ticular differences are not recognized by the STREAMS mechanism: They are
handled by developer-provided code included in the driver procedures.

Figure 9-1 shows multiple Streams (corresponding to minor devices) to a
common driver. This depiction of two Stre~ms connected to a single driver
(also used in the Primer) is somewhat misleading. These are really two dis­
tinct Streams opened from the same cdevsw (Le., same major device). Conse­
quently, they have the same streamtab and the same driver procedures.
Modules opened from the same fmodsw might be depicted similarly if they
had any reason to be cognizant, as do drivers, of common resources or alter­
nate occurrences.

Multiple occurrences (minor devices) of the same driver are handled dur­
ing the initial open for each device. Typically, the queue_t address is stored
in a driver-private structure indexed by the minor device number. The struc­
ture is typically pointed at by q_ptr (see Chapter 8). When the messages are
received by the QUEUE, the calls to the driver put and service procedures
pass the address of the queue_t, allowing the procedures to determine the
associated device.
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In addition to these differences, a driver is always at the end of a Stream.
As a result, drivers must include standard processing for certain message types
that a module might simply be able to pass to the next component.

major/devO
inode

Stream
Head

Module(s)

major/devl
inode

Stream
Head

Module(s)

Port
o

Figure 9-1: Device Driver Streams
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Driver Flow Control

The same utilities (described in Chapter 8) and mechanisms used for
module flow control are used by drivers. However, they are typically used in
a different manner in drivers, because a driver generally does not have a ser­
vice procedure. The developer sets flow control values (mi-hiwat and
mi_lowat) in the write side module-info structure, which STREAMS will
copy into q-hiwat and q_lowat in the queue_t structure of the QUEUE. A
device driver typically has no write service procedure, but does maintain a
write message queue. When a message is passed to the driver write side put
procedure, the procedure will determine if device output is in progress. In the
event output is busy, the put procedure cannot immediately send the message
and calls the putq utility (see Appendix C) to queue the message. (Note that
the driver might have elected to queue the message in all cases.) putq recog­
nizes the absence of a service procedure and does not schedule the QUEUE.

When the message is queued, putq increments the value of q_count
(approximately the enqueued character count, see the beginning of Chapter 8)
by the size of the message and compares the result against the driver's write
high-water limit (q-hiwat) value. If the count exceeds q-hiwat, putq will set
the internal FULL (see the section titled "Flow Control" in Chapter 6 of the
Primer) indicator for the driver write QUEUE. This will cause messages from
upstream to be halted (canput returns FALSE) until the write queue count
reaches q_lowat. The driver messages waiting to be output are dequeued by
the driver output interrupt routine with getq, which decrements the count. If
the resulting count is below q_lowat, getq will back-enable any upstream
QUEUE that had been blocked. The above STREAMS processing also applies
to modules on both write and read sides of the Stream.

Device drivers typically discard input when unable to send it to a user
process. However, STREAMS allows flow control to be used on the driver
read side, possibly to handle temporary upstream blocks. This is described in
Chapter 13 in the section titled II Advanced Flow Control. "

To some extent, a driver or module can control when its upstream
transmission will become blocked. Control is available through the
M-SETOPTS message (see Chapter 13 and Appendix B) to modify the Stream
head read side flow control limits.
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The example below shows how a simple interrupt-per-character line
printer driver could be written. The driver is unidirectional and has no read
side processing. It demonstrates some differences between module and driver
programming, including the following:

Open handling A driver is passed a minor device number or is asked to
select one (see next chapter).

Flush handling A driver must loop M-FLUSH messages back upstream.

loctl handling A driver must nak ioctl messages it does not understand.
This is discussed under "Driver and Module loctls II ,

below.

Write side flow control is also illustrated as described above.

Driver Declarations

The driver declarations are as follows:

/* Simple line printer driver. */

#include Itsys/types.h"
#include llsyslparam.h"
#include Itsys/sysmacr:os.h"
#ifclef u3b2
#include "sys/psW.h" /* required for user.h */

#include "sys/pcb.h" /* required for user.h */

#endi.f
#include "sys/stream.hlt

#include "sys/stmpts.h"
#include "sys/dir.h" /* required far user.h */
#include "sys/signal.hlt /* required far user.h */
#include "sysluser•hit
#include "sys/erxno.h"

static struct m:xh1le_info minfo = {
0, Itlp", 0, INFPSZ, 150, 50

};
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continued

static int 1popen( ), 1pc1ose( ), 1pwput( );

static stroot qinit rinit :::: {
NULL, NULL, 1popen, 1pc1ose, NULL, &minfo, NULL

} ;
static stroot qinit winit :::: {

1pwput, NULL, NULL, NULL, NULL, &minfo, NULL
} ;
struct streamtab 1pinfo :::: { &rinit, &winit, NULL, NULL };

#define SEl'_OPI'IONS «'1'«8)11)/* really nust be in a .h file *1

1*
* This is a private data structure, one per minor device number.
*1

sb:uct 1p {
short flags; 1* flags -- see below *1
mblk_t *msg; 1* current message bein] outplt *1
qu.eue_t *qptI:; 1* back pointer to write queue *1

};
1* Flags bits *1
#define BUSY 1 * device is running and interrupt is pemi.D;J *1

extern stroot 1p 1p_1p[]; 1* per device 1p structure array *1
extern int 1p_cot; 1* number of valid minor devices *1

As noted for modules in Chapter 6, configuring a STREAMS driver does
not require the driver procedures to be externally accessible; only streamtab
must be. All STREAMS driver procedures would typically be declared
static.

streamtab must be defined as II prefixinfo II , where prefix is the value of
the prefix specified in the config file for this driver. The values in name and
1D fields in the module-info should be unique in the system. The name field
is a hook for future expansion and is not currently used. The 1D is currently
used only in logging and tracing (see Chapter 6 in the Primer). For the exam­
ple in this chapter, the 1D is zero.
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There is no read side put or service procedure. The flow control limits for
use on the write side are 50 and 150 characters. The private Ip structure is
indexed by the minor device number and contains these elements:

flags A set of flags. Only one bit is used: BUSY indicates that output is
active and a device interrupt is pending.

msg A pointer to the current message being output.

qptr A back pointer to the write queue. This is needed to find the write
queue during interrupt processing.

Driver Open

The driver open, Ipopen, has the same interface as the module open:

static int Ip:>pen(q, dev, flag, sflag)
queue_t *q /* read queue */
{

struct Ip *lp;

/* Check if nan-driver open */
if (sflag)

retmn OPmFAIL;

/* Dev is majar/minor */

dev = JIIin3r(dev) ;
if (dev >= Ip_Q'lt)

retmn OPmFAIL;

/* Check if open already. eurt:r is assigned below */
if (q->qJ)tr) {

u.u_en:or = EBUSY; /* only 1 user of the printer at a time */
retmn OPmFAIL;

Ip = &J.p_lp[dev];
lp->qptr =WR(q);
q->ct.,pt:r = (char *) Ip;
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WR(q)-><t..,pt::r = (char *) Ip;
retmn dev;

The Stream flag, sflag, must have the value 0, indicating a normal driver
open. dev holds both the major and minor device numbers for this port.
After checking sflag, the open flag, Ipopen extracts the minor device from dev,
using the minor() macro defined in sysmacros.h.

The use of major devices, minor devices, and the minor() macro may be
machine-dependent.

The minor device number selects a printer and must be less than Ip_cnt.

The next check, if (q-~)••• , determines if this printer is already
open. In this case, EBUSY is returned to avoid merging print-outs from multi­
ple users. q_ptr is a driver/module private data pointer. It can be used by
the driver for any purpose and is initialized to zero by STREAMS. In this
example, the driver sets the value of q_ptr, in both the read and write
queue-t structures, to point to a private data structure for the minor device,
Ip-lp[dev].

WR is one of three QUEUE pointer macros. As discussed in the section
titled II Stream Construction II in Chapter 5, there are no physical pointers
between QUEUEs, and these macros (see Appendix C) generate the pointer.
WR(q) generates the write pointer from the read pointer, RD(q) generates the
read pointer from the write pointer, and OTHER(q) generates the mate
pointer from either.
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Driver Processing Procedures
This example only has a write put procedure:

static int lpwprt:(q, mp}
queue_t *q; /* write queue */
register mbllLt *up; /* message }X)inter */
{

register sb:uct lp *lp;
int s;

lp = (sb:uct lp *)q->qJ:Jtr;

switch (mp->b_datap->db_type) {
default:

freemsq(mp} ;
break;

case M_FLUSH:

/* canonical flush haDilin] */
if (*mp->b_rptr 5. FLUSHW) {

flushq(q, FI1JSHDI\TA};

s = spl5( );
/* also flush lp->msg since it is logically
* at the head of the write queue */
if (lp->msg) {

freemsq( lp->msq) ;
lp->msg = NULL;

}

splx(s} ;

if (*mp->b_rptr 5. FWSHR) {

flushq(RD(q}, FWSHDATA};
*mp->b_rptr 5.::: -FLUSHW;

qreply(q, mp};
} else

freemsg(mp} ;
break;

case M_ICXTL:
case M_Dta'A:

Pltq(q, mp);
s ::: sp15( };
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Driver Processing Procedures

continued

if (I (lp->flags &. BUSY»
lpout(lp) ;

splx(s) ;

Driver Flush Handling

The write put procedure, Ipwput, illustrates driver MJLUSH handling;
note that all drivers are expected to incorporate this flush handling. If
FLUSHW is set, the write message queue is flushed, and also (for this exam­
ple) the leading message (lp->msg). splS is used to protect the critical code,
assuming the device interrupts at levelS. If FLUSHR is set, the read queue is
flushed, the FLUSHW bit is cleared, and the message is sent upstream using
qreply. If FLUSHR is not set, the message is discarded.

The Stream head always performs the following actions on flush requests
received on the read side from downstream. If FLUSHR is set, messages wait­
ing to be sent to user space are flushed. If FLUSHW is set, the Stream head
clears the FLUSHR bit and sends the M-FLUSH message downstream. In
this manner, a single M-FLUSH message sent from the driver can reach all
QUEUEs in a Stream. A module must send two M-FLUSH messages to have
the same affect.

lpwput enqueues M-DATA and M-IOCTL (see the section titled IIDriver
and Module loctls II in later text) messages and, if the device is not busy, starts
output by calling lpout. Messages types that are not recognized are discarded.
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Driver Interrupt

Ipintr is the driver interrupt routine:

/* Device interrupt routine. */

Ipintr(dev)
int dev; /* minor device IlUIli:ler of Ip */
{

register struct Ip *Ip;

Ip = &lp_Ip[dev];
if (I (1p->f1ags &. BUSY» {

printf (nIp: unexpected interrupto);

retuxn;
}

lp->flags &.= -BJSY;
lpout(lp);

/* Start outplt to device - used by pIt procedure and driver */

lpout(lp)
register stxuct lp *Ip;
{

register mbJJLt *bp;
queue_t *q;

q = lp->qptr;
loop:

if «bp = Ip->msq) = NULL) {
if «bp = getq(q» = NULL)

return;
if (bp->b_datap->db_type = M_IOCTL)

lpdoioctl(lp, bp);
goto loop;

}

Ip->msq = bpi
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Driver Processing Procedures

continued

if (bp->b_J:Ptt >= bp->b_wptr)

bp =Ip->msg->b_oant;
Ip->msg->b_OOl1t = NULL;
freeb(lp->msg) ;
Ip->msg = bp;
goto loop;

Ipcntchar( Ip, *bp->b_rptr++);

Ip->flags 1= BUSY;

lpout simply takes a character from the queue and sends it to the printer.
The processing is logically similar to the service procedure in Chapter 8. For
convenience, the message currently being output is stored in Ip->msg.

Two mythical routines need to be supplied:

lpoutchar send a character to the printer and interrupt when complete

Ipsetopt set the printer interface options
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Drivers and modules interface with iodl(2) system calls through mes­
sages. Almost all STREAMS generic iodls [see streamio(7)] go no further than
the Stream head. The capability to send an ioctl downstream, similar to the
iodl of character device drivers, is provided by the LSTR iodl. The Stream
head processes an LSTR by constructing an M-IOCTL message (see Appen­
dix B) from data provided in the call and sends that message downstream.

The user process that issued the LSTR is blocked until a module or driver
responds with either an M-IOCACK (ack) or M-IOCNAK (nak) message, or
until the request n times out II after a user-specified interval. The STREAMS
module or driver that generates an ack can also return information to the pro­
cess. If the Stream head does not receive one of these messages in the speci­
fied time, the iodl call fails.

. A module that receives an unrecognized M-IOCTL message should pass
it on unchanged. A driver that receives an unrecognized M-IOCTL should
nak it.

lpout traps M-IOCTL messages and calls lpdoioctl to process them:

lpdoioctl(lp, np)

struet: lp *lp;

mblJLt *np;

{

struct iocblk *icx:p;
queue_t *q;

q = lp->qptr;

/* 1st block cx:mtains iocblk stmcbJre */
icx:p = (struct iocblk *)mp->b_rptr';

switch (iocp->ioc_ald) {
case SET_OPl'ICNS:

/* Q:Junt slxlu1d be exactly one short I S worth */

if (iocp->ioc_OOOJ'lt 1= sizeof(sb::xrt»
goto ioc:nak;
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continued

/* Act11al data is in 2nd message block */
Ipsetopt(lp, *(sbxt *)mp->b_oont->b_rptr);

/* ACK the ioctl */
mp->b_datap->db_type =M_Ic:x::Jl.CK;
iocp->ioC:U::Qmt = 0;
qreply(q, q:»;
break;

default:
ioc:nak:

/* NAK the ioctl */
mp->b_datap->db_type =M_IOCNAK;
qreply(q, mp);

Ipdoioctl illustrates M-IOCTL processing: The first part also applies to
modules. An M-IOCTL message contains a struct iocblk in its first block. The
first block is followed by zero or more M-DATA blocks. The optional
M-DATA blocks typically contain any user-supplied data.

The form of an iocblk is as follows:

struct iocblk {

} ;

int
ushort
ushort
uint
uint
int
int

ioc_cml;
ioc_uid;
ioc-.¢d;
ioc_id;
ioc_count;
ioc_error;
ioc_rval;

/* ioctl 0CllIIla1'd type */
/* effective uid of user */
/* effective gid of user */
/* ioctl id */
/* count of bytes in data field */
/* en:or code */
/* return value */
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ioc_cmd contains the command supplied by the user. In this example,
only one command is recognized, SET_OPTIONS. ioc_count contains the
number of user-supplied data bytes. For this example, it must equal the size
of a short (two bytes). The user data is sent directly to the printer interface
using lpsetopt. Next, the M-IOCTL message is changed to type M-IOCACK
and the ioc_count field is set to zero to indicate that no data is to be returned
to the user. Finally, the message is sent upstream using qreply. If ioc_count
was left non-zero, the Stream head would copy that many bytes from the 2nd
- Nth message blocks into the user buffer.

If the M-IOCTL message is not understood or in error for any reason, the
driver must set the type to M-IOCNAK and send the message upstream. No
data can be sent to a user in this case. The Stream head will cause the ioctl
call to fail with the error number EINVAL. The driver has the option of set­
ting ioe_error to an alternate error number if desired.

9-14

iDe_error can be set to a non-zero value by both M-IOCACK and
M-JOCNAK. This will cause that value to be returned as an error number
to the process that sent the LSTR ioctl.
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The driver close clears any message being output. Any messages left on
the message queue will be automatically removed by STREAMS.

static int Ipclose(q)
queue_t *q; 1* read queue *1
{

struct Ip *lp;
int s;

Ip = (st:roct: Ip *) q->cL,ptr;
1* Free mes~, queue is autauatically flushed by S'lm'.AMS *1
s = splS( );

if (lp->msg) {
freeasg(lp->msg) ;
Ip->msg =NULL;

}

splx(s) ;
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Cloning

The clone mechanism has been developed as a convenience. It allows a
user to open a driver without specifying the minor device. When a Stream is
opened, a flag indicating a clone open is tested by the driver open routine. If
the flag is set, the driver returns an unused minor device number. The clone
driver [see clone(7)] is a system-dependent STREAMS·pseudo-driver.

Knowledge of clone driver implementation is not required to use it. A
description is presented here for completeness and to assist developers who
must implement their own clone driver. A cloneable device has a device
number in which the major number corresponds to the clone driver and the
minor number corresponds to the target driver. When an open(2) system call
is made to the associated (STREAMS) fIle, open causes a new Stream to be
opened to the clone driver and the open procedure in clone to be called with
dev set to clone/target. The clone open procedure uses mi.nor(dev) to locate
the cdevsw entry of the target driver. Then, clone modifies the contents of
the newly created Stream queue-ts to those of the target driver and calls the
target driver open procedure with the Stream flag set to CLONEOPEN. The
target driver open responds to the CLONEOPEN by returning an unused
minor device number. When the clone open receives the returned target
driver minor device number, it allocates a new inode (which has no name in
the file system) and associates the minor device number with the inode.
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Loop-Around Driver

The loop-around driver is a pseudo-driver that loops data from one open
Stream to another open Stream. The user processes see the associated files as
a full duplex pipe. The Streams are not physically linked. The driver is a
simple multiplexer (see n~xt chapter), which passes messages from one
Stream's write QUEUE to the other Stream's read QUEUE.

To create a pipe, a process opens two Streams, obtains the minor device
number associated with one of the returned file descriptors, and sends the
device number in an LSTR ioctl to the other Stream. For each open, the
driver open places the passed queue-.t pointer in a driver interconnection
table, indexed by the device number. When the driver later receives the
LSTR as an M-IOCTL message, it uses the device number to locate the other
Stream's interconnection table entry and stores the appropriate queue-.t
pointers in both of the Streams' interconnection table entries.

Subsequently, when messages other than M-IOCTL or M-FLUSH are
received by the driver on either Stream's write side, the messages are switched
to the read QUEUE following the driver on the other Stream's read side. The
resultant logical connection is shown in Figure 10-1. Flow control between
the two Streams must be handled by special code since STREAMS will not
automatically propagate flow control information between two Streams that
are not physically interconnected.
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Loop-Around Driver

Module(s)

Figure 10-1: Loop-Around Streams

The declarations for the driver are:

1*
* Ulop-around driver
*1

#include "sys/types.h"
#include "sys/param.h"
#:include "sys/sysmacros .h"
#ifdef u3b2
#include "sys/psw.h"
#il'Iclude "sys/pcb.h"
#endif
#include "sys/stream.h"
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continued

#include "sys/stropts.h"
#include "sys/dir.h"
#include "sys/signal.h"
#include "sys/user.h".
#include "sys/errno.h"

static struct IIOdule_info minfo ={
0, "loop", 0, lNFPSZ, 512, 128

};

static int loopopen( ), loopclose( ), 1c:xJpwplt( ), loopwsrv( ), looprsrv( );

static struct qinit rinit = {
NULL, looprsrv, loopopen, loopclose, NULL, &min£o, NULL

};

static struct qinit winit = {
loopwput, loopwsrv, NULL, NULL, NULL, &min£o, NOLL

};

struct streamtab loopinfo = { &rinit, &.winit, NULL, NULL };

struct loop {
queue_t *qptr; /* back pointer to write queue */
queue_t *oqpb:'; /* pointer to carmected read queue */

} ;

/* should be in a .h file */

extern struct loop loop_loop[ ];
extern int loop_c:nt;

A config file to configure the loop driver is shown in Appendix E. The
loop structure contains the interconnection information for a pair of Streams.
loop_loop is indexed by the minor device number. When a Stream is opened
to the driver, the address of the corresponding loop_loop element is placed in
q_ptr (private data structure pointer) of the read and write side queue_ts.
Since STREAMS clears q_ptr when the queue_t is allocated, a NULL value of
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q_ptr indicates an initial open. loop-loop is used to verify that this Stream is
connected to another open Stream.

The open procedure includes canonical clone processing which enables a
single file system node to yield a new minor devicejinode each time the
driver is opened:

static int l.oop::Jpen(q, dey, flag, sflag)
queue_t *q;

{
sb:uct loop *loop;

/*
* If~, pick a minor device number to use.
* otherwise, check the minor device raDJe.
*/
if (sflag = cram:>PEN) {

for (dev = 0; dev < loop_cnt; dev++)
if (loop_loop[dev].qptr = NULL)

break;

}

else
dev = m:in::>r(dev) ;

if (dev >= loop_Cl'lt)
rebJrn OPEH?AIL; /* default = ElmO */

/* setup data structures */

if (q->qJJtr) /* already open */
return dev;

loop = &1oop_lcop[dev];
WR(q)->qJJtr = (char *) loop;
q->qJJtr = (char *) loop;
l.oop->qptr = WR(q) ;

/*
* '!he rebJrn value is the minor device.
* For~ case, this will be used for
* newly allocated ilxxie
*/

return dev;
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In loopopen, sflag can be CLONEOPEN, indicating that the driver should
pick a minor device (Le., the user does not care which minor device is used).
In this case, the driver scans its private loop-loop data structure to find an
unused minor device number. If sflag has not been set to CLONEOPEN, the
passed-in minor device is used.

The return value is the minor device number. In the CLONEOPEN case,
this value will be used by the done driver for the newly allocated inode and
will then be passed to the user.

Write Put Procedure

Since the messages are switched to the read QUEUE following the other
Stream's read side, the driver needs a put procedure only on its write side:

static int loopolPlt (q, mp)

queue_t *q;
mblk_t *1rp;
.{

register stroot loop *loop;

loop = (struct loop *)q-><L,Ptr;

switch (mp->b_datap->db_type)
case M_IOCTL: {

st:ruct iocblk *iocp;
int error;

iocp = (stroot iocblk *)mp->b_rptr;
switch (iocp->iocUmi) {
case IOOP_SE1': {

int to; /* other minor device */
/*

* sanity check. ioc_OOUIlt oontains the aJ1X)UJ1t of

* user supplied data which IlDlSt equal the size of an int.
*/

if (iocp->ioc_OOUIlt 1= sizeof(int»
error = EINVAL;
got:o iocnak;

10-6 STREAMS PROGRAMMER'S GUIDE



Loop-Around Driver

continued

/* fetch other dev fran 2nd message block */

/*
* r-tlre sanity checks. '!he m:in:lr nust be in range, open already.

* Also, this device am the other one must be disoormected.
*/

if (to >= lOOP_Cr1t II to < 0 II Iloop_loop[to] .qptr) {
erzor = ENXIO;

goto ioc:nak;

if (loop->oqptr II loop_loop[to] .oqptr) {

erzor =E8USY;
9Oto ioc:nak;

/*

* Cross-oormect streams via the loop stroctures
*/

loop->oqptr = RD(loop_loop[to) .qptr);
loop_loop[to).oqptr = RD(q);

/*

* Rebn:n successful ioctl. set icc_count
* to zero, since there is retw:n no data.
*/

mp->b_datap->db_type = ~Icx::ACK;

iocp->ioc_OOImt = 0;
qreply(q, mp);
break;

default:
erzor = EINVAL;

iocnak:
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continued

/*
* Bad ioct1. settin;J iocu~nor causes the
* ioct1 call to return that particular enno.
* By default, ioct1 will return EINVAL an failure
*/

mp->b_datap->db_type = M_IOCNAK;
iocp->ioc_erJ:Or = erJ:Or; /* set returned enno */
qrep1y(q, mp);

}

break;

loopwput shows another use of an LISTR ioctl call (see the section titled
II Driver and Module loctls" in Chapter 9). The driver supports a LOOP_SET
value of ioc_cmd in the iocblk of the M-IOCTL message. LOOP_SET
instructs the driver to connect the current open Stream to the Stream indicated
in the message. The second block of the IM-IOCTL message holds an
integer that specifies the minor device number of the Stream to connect to.

The driver performs several sanity checks: Does the second block have
the proper amount of data? Is the "toll device in range? Is the "to" device
open? Is the current Stream disconnected? Is the "to" Stream disconnected?

If everything checks out, the read queue-t pointers for the two Streams
are stored in the respective oqptr fields. This cross-connects the two Streams
indirectly, via loop_loop.

Canonical flush handling is incorporated in the put procedure:
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case M_FUJSH:

if (*mp->b_rptr &. FLUSHW)

flushq(q, 0);
if (*mp->b_rptr &. FUlSHR) {

flushq(RD(q), 0);
*mp->b_rptr &.= -FLUSHW;

qreply(q, mp);
} else

freemsq(mp) ;

break;
default:

/*
* If this stream isn't cannect:ed, send an M_I:lUO upstream.
*/

if (loqp->oqptr == NULL) {

putctl1(RD(q)-><t...next, M_~, amO);
freemsq(mp) ;

break;
}

putq(q, mp);

Finally, loopwput enqueues all other messages (e.g., M-DATA or MJROTO)
for processing by its service procedure. A check is made to see if the Stream
is connected. If not, an M-ERROR is sent upstream to the Stream head (see
below).

putetll and putetl (see below) are utilities that allocate a non-data (i.e.,
not M-DATA, MJROTO, or MJCPROTO) type message; place one byte in
the message (for putetlI) and call the put procedure of the specified QUEUE
(see Appendix C).
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Stream Head Messages

Certain message types (see Appendix B) can be sent upstream by drivers
and modules to the Stream head where they are translated into actions detect­
able by user process(es). The messages may also modify the state of the
Stream head:

M-ERROR Causes the Stream head to lock up. Message transmis­
sion between Stream and user processes is terminated.
All subsequent system calls except close and poll will
fail. Also causes an M-FLUSH clearing all message
queues to be sent downstream by the Stream head.

M-HANGUP Terminates input from a user process to the Stream. All
subsequent system calls that would send messages
downstream will fail. Once the Stream head read mes­
sage queue is empty, EOF is returned on reads. Can
also result in SIGHUP signal to the process group.

M-SIG/M-PCSIGCauses a specified signal to be sent to a process (see
Chapter 13).

Service Procedures

Service procedures are required on both the write and read sides for pur­
poses of flow control:
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static int loopwsrv(q)

register queue_t *q;

{

nbllLt *n'p;
register st:ruct loop *loop;

loop = (st:ruct loop *)q-~;

while «mp =getq(q») 1= NULL) {

/*
* Check if we can pIt: the message up the other stream read queue
*/

if (mp->b_datap->db_type <= QFCTL && lcanp1t(loop->oqptr->~next»)

prtbq(q, mp); /* read side is blocked */
break;

/* send IOOSsage */

putnext(loop->oqpt:r, mp); /* To queue follCMi.nq other stream read queue *

static int looprsxv(q)
queue_t *q;

/* Enter only when Itback-enabledlt by flow control */

st:ruct loop *loop;

loop = (struct loop *)q-~;
if (loop->oqptr == NULL)

ret:un1;

/* manually enable write service procedure */

qenable (WR( loop->oqptr) ) ;
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The write service procedure, loopwsro, takes on the canonical form (see
Chapter 8) with a difference. The QUEUE being written to is not down­
stream, but upstream (found via oqptr) on the other Stream.

In this case, there is no read side put procedure so the read service pro­
cedure, looprsro, is not scheduled by an associated put procedure, as has been
done previously. looprsro is scheduled only by being back-enabled when its
upstream becomes unstuck from flow control blockage. The purpose of the
procedure is to re-enable the writer (loopwsro) by using oqptr to find the
related queue-t. loopwsro cannot be directly back-enabled by STREAMS
because there is no direct queue-t linkage between the two Streams. Note
that no message ever gets queued to the read service procedure. Messages are
kept on the write side so that flow control can propagate up to the Stream
head. There is a defensive check to see if the cross-connect has broken. qen­
able schedules the write side of the other Stream.
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Close
loopclose breaks the connection between the Streams.

static int loopclose(q)
queue_t *q;

{

register struet loop *loop;

loop = (struet loop *)q->qj)tr;
loop->qptr: = NULL;

/*
* If we are carmected to another stream, break the

* linkage, and send a hangup message.
* '!he hangup message causes the stream head to fail writes,
* allcM the queued data to be read eatpletely, and then
* return EDF on subsequent reads.
*/

if (loop->oqptr) {
«struet loop *)loop->cqptr->qj)tr)->qptr = NULL;
«struet loop *)loop->cqptr->qj)tr)->oqptr = NULL;
putctl( loop->cqptr->cLnext, M_lWGJP);
loop->oqptr = NULL;

loopclose sends an M-HANGUP message (see above) up the connected
Stream to the Stream head.

This driver can be implemented much more cleanly by actually linking
the q_next pointers of the queue-t pairs of the two Streams.
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Multiplexing Configurations

This chapter describes how STREAMS multiplexing configurations are
created and discusses multiplexing drivers. A STREAMS multiplexer is a
pseudo-driver with multiple Streams connected to it. The primary function of
the driver is to switch messages among the connected Streams. Multiplexer
configurations are created from user level by system calls. Chapter 6 of the
Primer contains the required introduction to STREAMS multiplexing.

STREAMS-related system calls are used to set up the II plumbing, II or
Stream interconnections, for multiplexing pseudo-drivers. The subset of these
calls that allows a user to connect (and disconnect) Streams below a pseudo­
driver is referred to as the multiplexing facility. This type of connection will
be referred to as a I-to-M, or lower, multiplexer configuration (see Figure 6-2
in the Primer). This configuration must always contain a multiplexing
pseudo-driver, which is recognized by STREAMS as having special charac­
teristics.

Multiple Streams can be connected above a driver by use of open calls.
This was done for the loop-around driver of the previous chapter and for the
driver-handling, multiple minor devices in Chapter 9. There is no difference
between the connections to these drivers, only the functions performed by the
driver are different. In the multiplexing case, the driver routes data between
multiple Streams. In the device driver case, the driver routes data between
user processes and associated physical ports. Multiplexing with Streams con­
nected above will be referred to as an N-to-l, or upper, multiplexer (see Fig­
ure 6-1 in the Primer). STREAMS does not provide any facilities beyond open
and close to connect or disconnect upper Streams for multiplexing purposes.

From the driver's perspective, upper and lower configurations differ only
in the way they are initially connected to the driver. The implementation
requirements are the same: route the data and handle flow control. All multi­
plexer drivers require special developer-provided software to perform the mul­
tiplexing data routing and to handle flow control. STREAMS does not directly
support flow control among multiple Streams.

M-to-N multiplexing configurations are implemented by using both of the
above mechanisms in a driver. Complex multiplexing trees can be created by
cascading multiplexing Streams below one another.
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*st_niiDi.t; /* defines read aJEUE */
*st_wrinit; /* defines write GVEUE */
*st_nuxrini.t; /* for ImJItiplex:iD:J drivers only */
*st_ImDtWinit; /* for ImJItiplex:iD:J drivers only */

Multiplexing Configurations

As discussed in Chapter 9, the multiple Streams that represent minor dev­
ices are actually distinct Streams in which the driver keeps track of each
Stream attached to it. The Streams are not really connected to their common
driver. The same is true for STREAMS multiplexers of any configuration.
The multiplexed Streams are distinct and the driver must be implemented to
do most of the work. As stated above, the only difference between configura­
tions is the manner of connecting and disconnecting. Only lower connections
have use of the multiplexing facility.

Connecting Lower Streams
A lower multiplexer is connected as follows: The initial open to a multi­

plexing driver creates a Stream, as in any other driver. As usual, open uses
the first two streamtab structure entries (see the section titled "Opening a
Stream," in Chapter 5) to create the driver QUEUEs. At this point, the only
distinguishing characteristic of this Stream are non-NULL entries in the
streamtab st_mux[rw]init (mux) fields:

s'b:uct streamtab {
struct qinit
struct qinit
struct qinit
struct qinit

} ;

These fields are ignored by the open (see the rightmost Stream in Figure
11-1). Any other Stream subsequently opened to this driver will have the
same streamtab and thereby the same mux fields.

Next, another file is opened to create a (soon to be) lower Stream. The
driver for the lower Stream is typically a device driver (see the leftmost
Stream in Figure 11-1). This Stream has no distinguishing characteristics. It
can include any driver compatible with the multiplexer. Any modules
required on the lower Stream must be pushed onto it now.

Next, this lower Stream is connected below the multiplexing driver with
an LLINK ioell call [see streamio(7)]. As shown in Figure 5-1, all Stream
components are constructed in a similar manner. The Stream head points to
the stream-head-routines as its procedures (known via its queue_t). An
LLINK to the upper Stream, referencing the lower Stream, causes STREAMS
to modify the contents of the Stream head in the lower Stream. The pointers
to the stream-head-routines, and other values, in the Stream head are replaced
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with those contained in the mux fields of the multiplexing driver's streamtab.
Changing the stream-head-routines on the lower Stream means that all subse­
quent messages sent upstream by the lower Stream's driver will, ultimately, be
passed to the put procedure designated in st_muxrinit, the multiplexing driver.
The LLINK also establishes this upper Stream as the control Stream for this
lower Stream. STREAMS remembers the relationship between these two
Streams until the upper Stream is closed, or the lower Stream is unlinked.

Finally, the Stream head sends to the multiplexing driver an M-IOCTL
message with ioc_cmd set to LLINK (see discussions of the iocblk structure
in Chapter 9 and Appendix A). The M-DATA part of the M-IOCTL contains
a linkblk structure:

sb:uct linkblk {
queue_t *l_qtop;
queue_t *l_qbot;
int l_:imex;

};

/* lowest level write queue of upper stream */

/* highest level write queue of lower stream */
/* syst:enH.mique index for lower stream. */

The multiplexing driver stores information from the linkblk in private storage
and returns an M-IOCACK message (ack). i_index is returned to the process
requesting the LLINK. This value can be used later by the process to discon­
nect this Stream, as described below. linkblk contents are further discussed
below.

An LLINK is required for each lower Stream connected to the driver.
Additional upper Streams can be connected to the multiplexing driver by open
calls. Any message type can be sent from a lower Stream to user process(es)
along any of the upper Streams. The upper Stream(s) provides the only inter­
face between the user process(es) and the multiplexer.

Note that no direct data structure linkage is established for the linked
Streams. The q_next pointers of the lower Stream still appear to connect with
a Stream head. Messages flowing upstream from a lower driver (a device
driver or another multiplexer) will enter the multiplexing driver (Le., Stream
head) put procedure with i_qbot as the queue_t value. The multiplexing
driver has to route the messages to the appropriate upper (or lower) Stream.
Similarly, a message coming downstream from user space on the control, or
any other, upper Stream has to be processed and routed, if required, by the
driver.
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Also note that the lower Stream (see the headers and file descriptors in
Figure 11-2) is no longer accessible from user space. This causes all system
calls to the lower Stream to return EINVAL, with the exception of close. This
is why all modules have to be in place before the lower Stream is linked to
the multiplexing driver. As a general rule, the lower Stream file should be
closed after it is linked (see following section). This does not disturb the mul­
tiplexing configuration.

Finally, note that the absence of direct linkage between the upper and
lower Streams means that STREAMS flow control has to be handled by spe­
cial code in the multiplexing driver. The flow control mechanism cannot see
across the driver.

In general, multiplexing drivers should be implemented so that new
Streams can be dYnamically connected to, and existing Streams disconnected
from, the driver without interfering with its ongoing operation. The number
of Streams that can be connected to a multiplexer is developer-dependent.
However, there is a system limit, NMUXLINK (see Appendix E), to the
number of Streams that can be linked in the system.

Disconnecting Lower Streams

Dismantling a lower multiplexer is accomplished by disconnecting (unlink­
ing) the lower Streams. Unlinking can be initiated in three ways: an
LUNLINK ioell referencing a specific Stream, an LUNLINK indicating all
lower Streams, or the last close (i.e., causes the associated file to be closed) of
the control Stream. As in the link, an unlink sends a linkblk structure to the
driver in an M-IOCTL message. The LUNLINK call, which unlinks a single
Stream, uses the I_index value returned in the LLINK to specify the lower
Stream to be unlinked. The latter two calls must designate a file correspond­
ing to a control Stream which causes all the lower Streams that were previ­
ously linked by this control Stream to be unlinked. However, the driver sees
a series of individual unlinks.

If the file descriptor for a lower Stream was previously closed, a subse­
quent unlink will automatically close the Stream. Otherwise, the lower
Stream must be closed by close following the unlink. STREAMS will
automatically dismantle all cascaded multiplexers (below other multiplexing
Streams) if their controlling Stream is closed. An LUNLINK will leave lower,
cascaded multiplexing Streams intact unless the Stream file descriptor was
previously closed.
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This section describes an example of multiplexer construction and .usage.
A multiplexing configuration similar to the Internet of Figure 6-2 in the Primer
is discussed. Figure 11-1 shows the Streams before their connection to create
the multiplexing configuration of Figure 11-2. Multiple upper and lower
Streams interface to the multiplexer driver. The user processes of Figure 11-2
are not shown in Figure 11-1.

r---------------------------------------------------,
I Setup and Supervisory Process I
I I

I =Jt='
L -------:I:de~~----~d~-d~.-:--I-~~ei~~-i-~~

Stream Head

QUEU~ Pro A

Net 1
Module

Ethernet
Driver

Stream Head

QUEU~ Pro B

Net 2
Module

LAPB
Driver

Stream Head

QUEU~ Pro C

802.2
Driver

Stream Head

QUEU~ Pair

Stream Head

QUEU~ Pair

Figure 11-1: Internet Multiplexer Before Connecting

The Ethernet, LAPB, and IEEE 802.2 device drivers terminate links to other
nodes. IP (Internet Protocol) is a multiplexer driver. IP switches datagrams
among the various nodes or sends them upstream to a user(s) in the system.
The Net modules would typically provide a convergence function which
matches the IP and device driver interface.
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Figure 11-1 depicts only a portion of the full, larger Stream. As shown in
the dotted rectangle above the IP multiplexer, there generally would be an
upper TCP multiplexer, additional modules and, possibly, additional multi­
plexers in the Stream. Multiplexers could also be cascaded below the IP
driver if the device drivers were replaced by multiplexer drivers.

r---------------------------, U
I Setup and Supervisory I P ser
I Process I rocesses
I IL ~ 6 _

.........V........
: fds
...... i'\ 1\ .1\ .

........VV.V .
~ Upper
: Multiplexer or
: Module

QUEU¥ Pair

Internet Protocol
Multiplexer Driver

Figure 11-2: Internet Multiplexer After Connecting
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Streams A, B, and C are opened by the process, and modules are pushed
as needed. Two upper Streams are opened to the IP multiplexer. The right­
most Stream represents multiple Streams, each connected to a process using
the network. The Stream second from the right provides a direct path to the
multiplexer for supervisory functions. It is the control Stream, leading to a
process which sets up and supervises this configuration. It is always directly
connected to the IP driver. Although not shown, modules can be pushed on
the control Stream.

After the Streams are opened, the supervisory process typically transfers
routing information to the IP drivers (and any other multiplexers above the
IP), and initializes the links. As each link becomes operational, its Stream is
connected below the IP driver. If a more complex multiplexing configuration
is required, the IP multiplexer Stream with all its connected links can be con­
nected below another multiplexer driver.

As shown in Figure 11-2, the file descriptors for the lower device driver
Streams are left dangling. The primary purpose in creating these Streams was
to provide parts for the multiplexer. Those not used for control and not
required for error recovery (by reconnecting them through an LUNLINK
ioctl) have no further function. As stated above, these lower Streams can be
closed to free the file descriptor without any effect on the multiplexer. A
setup process installing a configuration containing a large number of drivers
should do this to avoid running out of file descriptors.
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This section contains an example of a multiplexing driver that implements
an N-to-l configuration, similar to that of Figure 6-3 in the Primer. This con­
figuration might be used for terminal windows, where each transmission to or
from the terminal identifies the window. This resembles a typical device
driver, with two differences: the device handling functions are performed by
a separate driver, connected as a lower Stream, and the device information
(Le., relevant user process) is contained in the input data rather than in an
interrupt call.

Each upper Stream is connected by an open, identical to the driver of
Chapter 9. A single lower Stream is opened and then it is linked by use of
the multiplexing facility. This lower Stream might connect to the TTY driver.
The implementation of this example is a foundation for an M-to-N multi­
plexer.

As in the loop-around driver, flow control requires the use of standard
and special code, since physical connectivity among the Streams is broken at
the driver. Different approaches are used for flow control on the lower
Stream, for messages coming upstream from the device driver, and on the
upper Streams, for messages coming downstream from the user processes.

The multiplexer declarations are:
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#include "sys/types.h"
#include "sys/param.h"
#include "sys/sysmacros .h"
#include "sys/stream.htt

#:include "sys/stropts .h"
#:include "sys/en:no.h"

static int nuxopen( ), IlDJXClose( ), 1lUX1lWpJt( ), nuxlwszv( ), 1IIJXlzput( );

static struct m::xh1le_info info =
0, "JIlux", 0, INFPSZ, 512, 128

} ;
static struct qinit urinit = { /* upper read */

NULL, NULL, 1IDJXDPE!r'l, IlDJXClose, NULL, &.info, NULL
};
static struct qinit uwinit = { /* upper write */

muxuwpJt, NULL, NULL, NULL, NULL, &.info, NULL
} ;
static struct qinit lrinit = { /* lower read */

DUX1rplt, NULL, NULL, NULL, NULL, &.info, NULL

};
static struct qinit lwinit = { /* lower write */

NULL, IlIlXlwsrv, NULL, NULL, NULL, &.info, NULL
} ;

struct streamtab lIUXinfo = { &urinit, &uwinit, &lrinit, &1winit };

st:ruct mux {
queue_t *qpb:"; /* back pointer to read queue */

} ;

extern struct IDJX UlDLmux[ ];

extern int lDJX_alt;

/* linked lower queue */
/* set if error of hcm:Jup an lower stream */
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The four streamtab entries correspond to the upper read, upper write,
lower read, and lower write qinit structures. The multiplexing qinit struc­
tures replace those in each (in this case there is only one) lower Stream head
after the LLINK has completed successfully. In a multiplexing configuration,
the processing performed by the multiplexing driver can be partitioned
between the upper and lower QUEUEs. There must be an upper Stream write
put procedure and a lower Stream read put procedure. In general, only upper
write side and lower read side procedures are used. Application specific flow
control requirements might modify this. If the QUEUE procedures of the
opposite upperflower QUEUE are not needed, the QUEUE can be skipped
over and the message put to the following QUEUE.

In the example, the upper read side procedures are not used. The lower
Stream read QUEUE put procedure transfers the message directly to the read
QUEUE upstream from the multiplexer. There is no lower write put pro­
cedure because the upper write put procedure directly feeds the lower write
service procedure, as described below.

The driver uses a private data structure, mux. mux_mux[dev] points back
to the opened upper read QUEUE. This is used to route messages coming
upstream from the driver to the appropriate upper QUEUE. It is also used to
find a free minor device for a CLONEOPEN driver open case.

The upper QUEUE open contains the canonical driver open code:
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static int muxopen(q, dev, flag, sflag}
queue_t *q;

{

struct lmlX *muX;

if (sflag == CIam::>PEN) {
for (dev = 0; dev < mDLcnt; dev++)

if (IDlDLlIDJX[dev).qptr == O)

break;

}

else
dev = minor(dev};

if (dev >= IIIIJX_ c:nt )
retum OPENFAIL;

IIIIJX = &ImDLIIUlX[dev] ;

IIIIJX->qptr = q;
q->cL,ptr = (char *) nux;
WR(q) ->qJ)tr = (char *) IIIIJX;

return dev;

muxopen checks for a clone or ordinary open call. It loads q_ptr to point
at the mux_mux[] structure.

The core multiplexer processing is the following: downstream data writ­
ten to an upper Stream is queued on the corresponding upper write message
queue. This allows flow control to propagate towards the Stream head for
each upper Stream. However, there is no service procedure on the upper
write side. All M-DATA messages from all the upper message queues are
ultimately dequeued by the service procedure on the lower (linked) write side.
The upper write Streams are serviced in a round-robin fashion by the lower
write service procedure. A lower write service procedure, rather than a write
put procedure, is used so that flow control, coming up from the driver below,
may be handled.
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On the lower read side, data coming up the lower Stream is passed to the
lower read put procedure. The procedure routes the data to an upper Stream
based on the first byte of the message. This byte holds the minor device
number of an upper Stream. The put procedure handles flow control by test­
ing the upper Stream at the first upper read QUEUE beyond the driver. That
is, the put procedure treats the Stream component above the driver as the next
QUEUE.

Multiplexer Routines

Figure 11-3: Example Multiplexer Configuration

This is shown in Figure 11-3. Multiplexer Routines are all the above pro­
cedures. Ul and U2 are queue-t pairs, each including a write queue-t
pointed at by an l--'ltop in a linkblk (see beginning of this chapter). L is the
queue_t pair which contains the write queue_t pointed at by l_qbot. Nt and
N2 are the modules (or Stream head or another multiplexing driver) seen by L
when read side messages are sent upstream.

Upper Write Put Procedure
The upper QUEUE write put procedure, muxuwput, traps ioctls, in particu­

lar LLINK and LUNLINK:
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static int ItD.JXUWPUt(q, mp)

queue_t *q;
mbllLt *mp;

int s;
struct nux '*mux;

uux = (struct nux *)q->qpt:r;
swit:e:h (mp->b_datap->db_type)
case M_ICC1'L: {

struct iocbllc *iocp;
struct linkblk *linkp;

/*
* Icx::tl. Only channel 0 can do ioctls. 'lWo

* calls are reoogni.zed: LINK, and UNLINK
*/

if (nux 1= l1lIJJLIIDJX)

goto ioc:nak;

iocp = (struct iocblk *) mp->b_rptr;
switch (iocp->ioc_cm:i) {
case I_LINK:

/*

* Link. '!he data contains a linkblk structure
* Remember the bottan queue in muxbot.
*/

if (IIUXbot 1= NULL)

goto ioc:nak;
linkp = (struct linkblk *) mp->b_oont->b_rptr;
muxbat = linkp->l_qbot;

lIII.JXerr =0;
mp->b_datap->db_type = M_Ioc.ACK;
iocp->ioc_aJUnt = 0;
qreply(q, mp);
break;

case I_UNLINK:
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continued

/*

* Unlink. '!he data contains a linkblk structure.
* Should not fail an unlink. Null out muxbot.
*/

linkp = (struct linkblk *) ap->b_cont->b_rp'tr;

DUXbot = NULL;
mp->b_datap->db_type = l1....:ICCAC<;
iocp->ioc_CCJUnt = 0;
qrep1y(q, mp);
break;

default:
ioc:nak:

/* fail ioctl */

mp->b_datap->db_type =M_:ICOW<;
qrep1y(q, mp);

break;

First, there is a check to enforce that the Stream associated with minor
device 0 will be the single, controlling Stream. loctls are only accepted on this
Stream. As described previously, a controlling Stream is the one that issues
the LLINK. Having a single control Stream is a recommended practice.
LLINK and LUNLINK include a linkblk structure, described previously,
containing:

l_qtop The upper write QUEUE from which the ioctl is coming. It
should always equal q.
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I-lJbot The new lower write QUEUE. It is the former Stream head write
QUEUE. It is of most interest since that is where the multiplexer
gets and puts its data.

I_index A unique (system-wide) identifier for the link. It can be used for
routing, or during selective unlinks, as described above. Since
the example only supports a single link, I_index is not used.

For LLINK, l_qbot is saved in muxbot and an ack is generated. From this
point on, until an LUNLINK occurs, data from upper queues will be routed
through muxbot. Note that when an LLINK is received the lower Stream has
already been connected. This allows the driver to send messages downstream
to perform any initialization functions. Returning an M-IOCNAK message
(nak) in response to an LLINK will cause the lower Stream to be discon­
nected.

The LUNLINK handling code nulls out muxbot and generates an ack. A
nak should not be returned to an LUNLINK. The Stream head assures that
the lower Stream is connected to a multiplexer before sending an LUNLINK
M-IOCTL.

muxuwput handles M-FLUSH messages as a normal driver would:

case M_FLUSH:

if (*JIp->b_rptr & FLUSHW)

flus1xl(q, FLUSHDATA);
if ('*np->b_rptr & FUJSHR) {

flus1xl(RD(q), F'UJSliDM'A);

*JIp->b_rptr &= -FLUSHW;
qreply(q, np);

} else
freensq(mp) ;

break;
case M_DATA:

/*
* Data. If 'We have no l:x>ttcm queue --> fail
* Othel:wi.se, queue the data, am invoke the lower
* service procedure.
*/

if (IIDJXerr II ImlXbot == NULL)

goto bad;
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continued

prtq(q, mp); /* place message on upper write message queue */
qenable(muxbot); /* lower service write procedure */
break;

default:
bad:

/*
* send an en:or message upstream.
*/

mp->b_datap->db_type =M_mRCR;
mp->b_qrtr =mp->b_wptr =mp->b_datap->db_base;
*mp->b_wpt:x'++ = EINVAL;
qreply(q, mp);

M-DATA messages are not placed on the lower write message queue.
They are queued on the upper write message queue. putq recognizes the
absence of the upper service procedure and does not schedule the QUEUE.
Then, the lower service procedure, muxlwsrv is scheduled with qenable (see
Appendix C) to start output. This is similar to starting output on a device
driver. Note that muxuwput cannot access muxlwsrv (the lower QUEUE write
service procedure, contained in muxbot) by the conventional STREAMS calls,
putq or putnext (to a muxlwput). Both calls require that a message be passed,
but the messages remain on the upper Stream.

Lower QUEUE Write Service Procedure

The lower (linked) queue write service procedure muxlwsrv, is scheduled
directly from the upper service procedures. It is also scheduled from the
lower Stream, by being back-enabled when the lower Stream becomes
unblocked from downstream flow control.
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static int ltUXlwsrv(q)

register queue_t *q;
{

register mblJLt *mp, *bp;
register queue_t *nq;

/*
* While lower stream is not blocked, find an upper queue to
* service (get_next_q) and send one message fran it downstream.
*/

while (canput(q->ct...next))
!Xl = get_next_q( );
if (!Xl = NULL)

break;
• . .: getq(!Xl);
,*
* PrepeOO the O\..~Lq message with a s:in:]le byte header

* that indicates the minor device number it cane fran.
*/
if «bp = allocb( 1, BPRI_MID» = NULL) {

printf("mux: allocb failed (size 1)\n") ;

freemsg(mp) ;
oantinue;

}

*bp->b_wptr++ = (struct mux *)!Xl"">ct.,ptr - mlDLmux;
bp->b_oont = DIp;
prt:next(q, bp);

muxlwsrv takes data from the upper queues and puts it out through mux­
bot. The algorithm used is simple round robin. While we can put to
muxbot->CLnext, we select an upper QUEUE (via get_next--'1) and move a
message from it to muxbot. Each message is prefixed by a one-byte header
that indicates which upper Stream it came from.
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Finding messages on upper write queues is handled by get_next_q:

/*

* Round-robin schedulin].
* Return next upper queue that needs servicin].
* Returns NULL when no more w:::>rk needs to be dane.
*/

static queue_t *
get_next_q( )
{

static int next;
int i, start;
register queue_t *q;

start = next;
far (i =next; i < DUX__cnt; i++)

if (q = mlDLDUX[i] .qptr)

q=WR(q);
if (q->CLfirst)

next = i+1;
return q;

far (i =0; i < start; i++)
if (q = mux_DUX[i] .qptr)

q=WR(q);
if (q->ct.-first)

next =i+1;
return q;

return NULL;
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get_next_q searches the upper queues in a round-robin fashion looking for
the first one containing a message. It returns the queue_t pointer or NULL if
there is no work to do.

Lower Read Put Procedure

The lower (linked) queue read put procedure is:

static int nmclrput(q, np)

queue_t *q;
mblJLt *lIP;
{

queue_t *uq;

mblJLt *b_cant;
int deY;

switch(mp->b_datap->db_type)

case M_FUJSH:

/*
* Flush queues. N:lTE: sense of tests is reversed
* since we are actin:} like a IIstream head"

*/

if (*mp->b_zptt &. FI1JSHR)

flushq(q, 0);
if (*np->b_zptt &. FLUSHW) {

*np->b_zptt &.= -FI1JSHR;

qreply(q, mp);
} else

freemsg(mp) ;
break;

case M_ERRJR:

case M_HAN3UP:
muxerr = 1;
freemsq(mp) ;
break;
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/*

* Route message. First byte indicates
* device to BeDi to. No flow' oontrol.

*
* Extract and delete device nUll'ber. If the leadi.ng" block is
* IlOW' empty and uore blocks follow, strip the leading block.
* The stream head interprets a lead:iD] zero-length block
* as an mF regardless of what follows (sigh).
*/

dev = *mp->b_rptr++;
if (mp->b_xptr = mp->b_wptr && (b_oont = mp->b_oont»

freeb(JXP) ;
JXP = b_oont;

/* sanity check. Device IIIlSt be in~ */

if (dev < 0 II dev >= ItWLcnt)

freemsg(mp) ;

break;

/*

* If upper stream is open and not backed up,
* BeDi the message there, otheJ:w.ise discard it.
*/

uq = JIlUX_JlUX(dev] .QPtr;
if (uq J= NULL && canp1t(uq-~next»

p.rt:next(uq, mp);

else
freemsg(mp) ;

break;
default:

freemsg(mp) ;
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muxlrput receives messages from the linked Stream. In this case, it is act­
ing as a Stream head. It handles MJLUSH messages. Note the code is
reversed from that of a driver, handling MJLUSH messages from upstream.

muxlrput also handles M-ERROR and M-HANGUP messages. If one is
received, it locks up the upper Streams.

M-DATA messages are routed by looking at the first data byte of the
message. This byte contains the minor device of the upper Stream. If remov­
ing this byte causes the leading block to be empty and more blocks follow, the
block is discarded. This is done because the Stream head interprets a leading
zero-length block as an EOF [see read(2)]. Several sanity checks are made:
Does the message have at least one byte? Is the device in range? Is the upper
Stream open? Is the upper Stream not full?

This mux does not do end-to-end flow control. It is merely a router (like
the Department of Defense's IP protocol). If everything checks out, the mes­
sage is put to the proper upper QUEUE. Otherwise, the message is silently
discarded.

The upper Stream close routine simply clears the mux entry so this queue
will no longer be found by get_next-tlueue:

/*
* Upper queue close
*/

static int Jl'UXC1ose(q)

queue_t *q;

{

«struet IIIJX *)q->qJltr)->qptr = NULL;
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Definition

STREAMS provides the means to implement a service interface between
any two components in a Stream, and between a user process and the top­
most module in the Stream. A service interface is defined at the boundary
between a service user and a service provider (see Figure 4-2). A service
interface is a set of primitives and the rules for the allowable sequences of
primitives across the boundary. These rules are typically represented by a
state machine. In STREAMS, the service user and provider are implemented
in a module, driver, or user process. The primitives are carried bidirectionally
between a service user and provider in M-PROTO and M-PCPROTO (gener­
ically, PROTO) messages. M-PCPROTO is the priority version of
M-PROTO.

Message Usage

As described in Appendix B, PROTO messages can be multiblock, with
the second through last blocks of type M-DATA. The first block in a PROTO
message contains the control part of the primitive in a form agreed upon by
the user and provider and the block is not intended to carry protocol headers.
(Although its use is not recommended, upstream PROTO messages can have
multiple PROTO blocks at the start of the message. getmsg will compact the
blocks into a single control part when sending to a user process.) The
M-DATA block(s) contains any data part associated with the primitive. The
data part may be processed in a module that receives it, or it may be sent to
the next Stream component, along with any data generated by the module.
The contents of PROTO messages and their allowable sequences are deter­
mined by the service interface specification.

PROTO messages can be sent bidirectionally (up and downstream) on a
Stream and bidirectionally between a Stream and a user process. putmsg and
getmsg system calls are analogous, respectively, to write and read except that
the former allow both data and control parts to be (separately) passed, and
they observe message boundary alignment across the user-Stream boundary.
putmsg and getmsg separately copy the control part (MJROTO or
MJCPROTO block) and data part (M-DATA blocks) between the Stream
and user process.
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An MJCPROTO message is normally used to acknowledge MJROTO
messages and not to carry protocol expedited data. MJCPROTO insures
that the acknowledgment reaches the service user before any other message.
If the service user is a user process, the Stream head will only store a single
MJCPROTO message, and discard subsequent MJCPROTO messages until
the first one is read with getmsg.

The following rules pertain to service interfaces:

• Modules and drivers that support a service interface must act upon all
PROTO messages and not pass them through.

• Modules may be inserted between a service user and a service pro­
vider to manipulate the data part as it passes between them. However,
these modules may not alter the contents of the control part (PROTO
block, first message block) nor alter the boundaries of the control or

· data parts. That is, the message blocks comprising the data part may
be changed, but the message may not be split into separate messages
nor combined with other messages.

In addition, modules and drivers must observe the rule that priority messages
are not subject to flow control and forward them accordingly (see the begin­
ning of modwsrv in Chapter 8). Priority messages also bypass flow control at
the user-Stream boundary [see putmsg(2)].
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The example below is part of a module which illustrates the concept of a
service interface. The module implements a simple datagram interface and
mirrors the example in Chapter 4. .

Declarations

The service interface primitives are defined in the declarations:

#include "sys/types .h"
#include "sys/param.h"
#include "sys/stream.h"
#include "sys/en:no.h"

/*
* Primitives initiated by the seJ:Vi.ce user:
*/

#define BINILRm 1 /* bini request */

#define UNI'lDATA_Rm 2 /* unitdata request */

/*
* Primitives initiated by the seJ:Vi.ce provider:

*/

#define OK-"1::1< 3 /* bini acknowledgnelt */
#define ~rlOlLACK 4 /* error acknowledgment */
#define UNI'lDATA_nID 5 /* unitdata indication */

/*
* The following structures define the fcmna.t of the
* stream message block of the above primitives.
*/

struet bini_req { /* bini request */
lang PRIl'Ltype; /* always BmILRm */
lang BINILaddr; /* addr to bini */

} ;
struct unitdata_req { /* unitdata request */

lang PRDLtype; /* always UNI'IDATA_Rm */
lang msI'_addr; /* dest addr */

};

struct ok_ack {
lang PRDLtype;

} ;

/* ok acknowledgment */

/* always OK-"CK */
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continued

struct error_ack {
leD] PRDLtype;
leD] UNDLerror;

/* erz:or acknowledgment */
/* always E1~lULICK */
/* UNIX error code */

} ;
struct unitdata_ind { /* unitdata indication */

leD] PRIM_type; /* always UNI'lDATA_IND */

leD] SRC_addr; /* source addr */

} ;
union primitives {

leD] type;
struct biJld_req
struct unitdata_req
struet ok_ack
struet error_ack
struet unitdata_ind

/* union of all primitives */

bm:Lreq;
unitdata_req;
ok_ack;
error_ack;
unitdata_ind;

} ;
struct dgproto {

sb:»:t state;
leD] addr;

/* structure per minor device */
/* current provider state */
/* net address */

} ;
/* PJ:ovider states */

#define IDLE 0
#define B:IOND 1

In general, the MJROTO or MJCPROTO block is described by a data
structure containing the service interface information. In this example, union
primitives is that structure.

Two commands are recognized by the module:

BIND.-REQ Give this Stream a protocol address, that is, give it a
name on the network. After a BIND.-REQ is com­
pleted, datagrams from other senders will find their
way through the network to this particular Stream.
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UNITDATA-REQ Send a datagram to the specified address.

Three messages are generated:

OICACK

ERROlLACK

UNITDATA-IND

A positive acknowledgment (ack) of BIND-REQ.

A negative acknowledgment of BIND-REQ.

A datagram from the network has been received. (This
code is not shown.)

The ack of a BIND-REQ informs the user that the request was syntacti­
cally correct (or incorrect if ERROlLACK). The receipt of a BIND-REQ is
acknowledged with an M-PCPROTO to insure that the acknowledgment
reaches the user before any other message. For example, a UNITDATA-IND
could come through before the bind has completed, and the user would get
confused.

The driver uses a per-minor device data structure, dgproto, which contains
the following:

state current state of the Stream (endpoint) IDLE or BOUND

addr network address that has been bound to this Stream

It is assumed (though not shown) that the module open procedure sets the
write queue q_ptr to point at one of these structures.

Service Interface Procedure
The write put procedure is:

static int p:rot:awpIt(q, mp)

queue_t *q;

nbllLt *mp;
{

union primitives *proto;

struct dgproto *dgproto;

int eD:;

dgprot:o = (struct dgprot.o *) q->qp:r;
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continued

switch (mp->b_datap->db_type) {

default:
/* dan't understand it */
mp->b_datap->db_type = M_m:moR;
mp->b_rptr =mp->b_wptr =mp->b_datap->db_base;
*mp->b_wptr++ = EPR:1ro;
qreply(q, np);
break;

case M_FLUSH:
/* standaJ:d flush handlinq goes here ••• */
break;

case M_PRD'1O:
/* Protocol message -> user request */

switch (proto->type) {

default:
mp->b_datap->db_type =M_ERROR;
mp->b_rptr = mp->b_wptr = mp->b_datap->db_base;

'*q)->b_wptr++ = EPROm;
qreply(q, mp);

return;

case BINILRm:
if (dgproto->state 1= IDLE)

err = EINVAL;
goto error_aclt;

}

if (mp->b_wptr - mp->b_rptr 1= sizeof(struct binLreq» {

err = EINVAL;
goto error_aclt;

}

if (err = chkaddr(proto->binLreq.BINILaddr»
goto error_aclt;

dgprot:o->state =B:XlND;
dgprot:o->addr = proto->bincLreq.BINILaddr;
mp->b_datap->db_type = M_FCPROlO;
proto->type = CIC_ACK;
mp->b_wptr = mp->b_rptr + sizeof(struct ok_aclt);
qrep].y(q, mp);

break;
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continued

enor'_ack:
mp->b_datap->db_type = M_PCPRCY.l'O;

proto->type = ERROILACK;

proto->en'Or_ack.UNIX_enor' = en';

mp->b_wptr =mp->b_%J'b: + sizeof{struet en'Or_ack);
qreply(q, mp);

break;

case UNrmATld~m:

if (dgproto->state 1= JUlND)

goto bad;
if (mp->b_wptr - mp->b_%J'b: 1= sizeof(struct unitdata_req»

goto bad;
if (en' = chkaddr(proto->unitdata_req.msT_addr»

goto bad;
if (mp->b_OOIlt) {

pltq(q, mp->b_oant);

/* start device or mux outplt ••• */

break;
bad:

freemsq(mp) ;

break;

The write put procedure switches on the message type. The only types
accepted are MJLUSH and M-PROTO. For MJLUSH messages, the driver
will perform the canonical flush handling (not shown). For MJROTO mes­
sages, the driver assumes the message block contains a union primitive and
switches on the type field. Two types are understood: BIND-REQ and
UNITDATA-REQ.
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For a BIND-REQ, the current state is checked; it must be IDLE. Next, the
message size is checked. If it is the correct size, the passed-in address is veri­
fied for legality by calling chkaddr. H everything checks, the incoming mes­
sage is converted into an OLACK and sent upstream. If there was any error,
the incoming message is converted into an ERROR.-ACK and sent upstream.

For UNITDATA-REQ, the state is also checked; it must be BOUND. As
above, the message size and destination address are checked. If there is any
error, the message is simply discarded. (This action may seem rash, but it is
in accordance with the interface specification, which is not shown. Another
specification might call for the generation of a UNITDATA......ERROR indica­
tion.) If all is well, the data part of the message, if it exists, is put on the
queue, and the lower half of the driver is started.

If the write put procedure receives a message type that it does not under­
stand, either a bad b_datap->db_type or bad proto->type, the message is
converted into an M-ERROR message and sent upstream.

Another piece of code not shown is the generation of UNITDATA-IND
messages. This would normally occur in the device interrupt if this is a
hardware driver (like STARLAN) or in the lower read put procedure if this is
a multiplexer. The algorithm is simple: The data part of the message is
prepended by an MJROTO message block that contains a unitdata_ind
structure and sent upstream.
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Recovering From No Buffers

The bufcall utility (see Appendix C) is used to recover from an allocb
failure. The call syntax is as follows:

bufcall (size, pri, func, arg);
int size, pri, (*func)();
long arg;

bufcall will call (·tunc)(arg) when a buffer of size bytes at pri priority is
available. When tunc is called, it has no user context and must return without
sleeping. Also, because of interrupt processing, there is no guarantee that
when tunc is called, a buffer will actually be available (someone else may steal
it). bufcall returns 1 on success, indicating that the request has been success­
fully recorded, or 0 on failure. On a failure return, the requested function will
never be called.y Care must be taken to avoid deadlock when holding resources while

waiting for bufcall to call (·func)(arg). bufcall should be used spar­
ingly.
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Recovering From No Buffers

Two examples are provided. Example one is a device receive interrupt
handler:

#include "ays/types .h"
#include "ays/param.h"
#include "ays/stream.h"

dev_rintr(dev)
{

/* process ino::m:iD} uessage ••• */

/* allocate new bJffer for device */
dev_re_load(dev) ;

}

/*
* Reload device with a new receive buffer
*/

dev_re_load(dev)
{

if ((bp = alloc:b(DE.VBLI<SZ, BPRI_MED» = NULL) {

printf("dev: al10cb failure (size 'fd)\n", DE.'VBU<SZ);
/*
* A11ocation failed. Use bJfcall to
* schedule a call to ourself.
*/

(void) bJfcall(DEVBUCSZ, BPRI_MED, dev_re_load, dev);
return;

/* pass bJffer to device ••• */
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dev_rintr is called when the device has posted a receive interrupt. The code
retrieves the data from the device (not shown). dev-Tintr must then give the
device another buffer to fill by a call to dev_re-load, which calls allocb with
the appropriate buffer size (DEVBLKSZ, definition not shown) and priority. If
allocb fails, dev_re-load uses bufcall to call itself when STREAMS determines
a buffer of the appropriate size and priority is available.

Since bufcall may fail, there is still a chance that the device may hang.
A better strategy, in the event bufcall fails, would be to discard the
current input message and resubmit that buffer to the device. Losing
input data is generally better than hanging.

The second example is a write service procedure, mOd_wsrv, which needs
to prepend each output message with a header (similar to the multiplexer
example of Chapter 11). mod_wsrv illustrates a case for potential deadlock:
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static int IDxLwsrv(q)
queue_t *q;

{

int qenable();
mblk_t *mp, *bp;

while (mp ::: getq(q»

/* check far priority messages and canput ••• */

/*

* Allocate a header to prepe:rxl to the message. If
* the all.ocb fails, use blfcall to reschedule ourself.
*/
if «bp ::: all.ocb(JDSZ, BPRI_Mm» :::::: NOLL) {

if (lbufca11(~, BPRI_Mm, qenable, q»
/*

* The bufcall request has failed. Discard
* the message and keep runnin1 to avoid 1laD3iD1.
*/

freemsq(mp) ;
continue;

}

/*

* Put the message back and exit, we will be re-enabled later

*/
p1't:bq(q, mp);
retm:n;

/* process message •..• */

However, if allocb fails, mod_wsro wants to recover without loss of data
ands calls bufcall. In this case, the routine passed to bufcall is qenable (see
below and Appendix C). When a buffer is available (of size HDR5Z, defini­
tion not shown), the service procedure will be automatically re-enabled.
Before exiting, the current message is put back on the queue. This example
deals with bufcall failure by discarding the current message and continuing in
the service procedure loop.
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Streams provides mechanisms to alter the normal queue scheduling pro­
cess. putq will not schedule a QUEUE if noenable(q) had been previously
called for this QUEUE. noenable instructs putq to queue the message when
called by this QUEUE, but not to schedule the service procedure. noenable
does not prevent the QUEUE from being scheduled by a flow control back­
enable. The inverse of noenable is enableok(q).

An example of this is driver upstream flow control. Although device
drivers typically discard input when unable to send it to a user process,
STREAMS allows driver read side flow control, possibly for handling tem­
porary upstream blocks. This is done through a driver read service procedure
which is disabled during the driver open with noenable. If the driver input
interrupt routine determines messages can be sent upstream (from canput), it
sends the message with putnext. Otherwise, it calls putq to queue the mes­
sage. The message waits on the message queue (possibly with queue length
checked when new messages are enqueued by the interrupt routine) until the
upstream QUEUE becomes unblocked. When the blockage abates, STREAMS
back-enables the driver read service procedure. The service procedure sends
the messages upstream using getq and canput, as in Chapter 8. This is simi­
lar to looprsrv in Chapter 10 where the service procedure is present only for
flow control.

qenable, another flow control utility, allows a module or driver to cause
one of its QUEUEs, or another module's QUEUEs, to be scheduled. In addi­
tion to the usage shown in Chapters 10 and II, qenable might be used when
a module or driver wants to delay message processing for some reason. An
example of this is a buffer module that gathers messages in its message queue
and forwards them as a single, larger message. This module uses noenable to
inhibit its service procedure and queues messages with its put procedure until
a certain byte count or "in queue" time has been reached. When either of
these conditions is met, the put procedure calls qenable to cause its service
procedure to run.

Another example is a communication line discipline module that imple­
ments end-to-end (Le., to a remote system) flow control. Outbound data is
held on the write side message queue until the read side receives a transmit
window from the remote end of the network. Then, the read side schedules
the write side service procedure to run.
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STREAMS allows modules and drivers to cause a signal to be sent to user

process(es) through an M-SIG or M-PCSIG message (see Appendix B) sent
upstream. MJCSIG is a priority version of M-SIG. For both messages, the
frrst byte of the message specifies the signal for the Stream head to generate.
If the signal is not SIGPOLL [see signal(2) and sigset(2)], then the signal is sent
to the process group associated with the Stream (see below). If the signal is
SIGPOLL, the signal is only sent to processes that have registered for the sig­
nal by using the LSETSIG ioell [also see streamio(7)] call.

A process group is associated with a Stream during the open of the driver
or module. If u.u_ttyp is NULL prior to the driver or module open call, the
Stream head checks u.u_ttyp after the driver or module open call returns. If
u.u_ttyp is non-zero, it is assumed to point to a short that holds the process
group ID for signaling. The process group and indirect TTY (IdevIUy) inode
are recorded in the Stream head.

If the driver or module wants to have a process group associated with the
Stream, it should include code of the following form in its open procedure:

pp = u.U....J%OCP;
pdp = •••

/* p:Jinter to process structure */
/* private data p:Jinter */

if (pp->pJ)id = pp->p....P91=P
&&. u.u_ttyp = NOLL
&&. pdp->pgrp = 0) {

/* pnx:ess group leader */
/* with no oontrolliIq TlY */
/* and this stream is unassigned */

/* assign oontroll.inq TlY */

u.u_ttyp = &pdp->pgrp;

pdp->pgrp = PP->P....P91=P;
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A private data structure containing a short pgrp element is required.

M-SIG can be used by modules or drivers that wish to insert an explicit
inband signal into a message stream. For example, an M-SIG message can be
sent to the user process immediately before a particular service interface mes­
sage to gain the immediate attention of the user process. When the M-SIG
reaches the head of the Stream head read message queue, a signal will be
generated and the M-SIG message will be removed. This leaves the service
interface message as the next message to be processed by the user. Use of
M-SIG would typically be defined as part of the service interface of the driver
or module.
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Control of Stream Head Processing
The M-SETOPTS message (see Appendix B) allows a driver or module to

exercise control over certain Stream head processing. An M-SETOPTS can be
sent upstream at any time. The Stream head responds to the message by
altering the processing associated with certain system calls. The options to be
modified are specified by the contents of the stroptions structure (see Appen­
dix B) contained in the message.

Six Stream head characteristics can be modified. As described in Appen­
dix B, four correspond to fields contained in queue_t (minfmax packet sizes
and high-flow-water marks). The other two are discussed here.

Read Options

The value for read options (so_readopt) corresponds to the three modes a
user can set via the LSRDOPT ioctl (see streamio) call:

byte-stream (RNORM)
The read(2) call completes when the byte count is satisfi~d,

the Stream head read queue becomes empty, or a zero-length
message is encountered. In the last case, the zero-length mes­
sage is put back on the queue. A subsequent read will return
obytes.

message non-discard (RMSGN)
The read call completes when the byte count is satisfied or at
a message boundary, whichever comes first. Any data
remaining in the message is put back on the Stream head read
queue.

message discard (RMSGD)
The read call completes when the byte count is satisfied or at
a message boundary. Any data remaining in the message is
discarded.

Byte-stream mode approximately models pipe data transfer. Message
non-discard mode approximately models a TTY in canonical mode.
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Write Offset

The value for write offset (so_wroff) is a hook to allow more efficient data
handling. It works as follows: In every data message generated by a write(2)
system call and in the first M-DATA block of the data portion of every mes­
sage generated by a putmsg(2) call, the Stream head will leave so_wroff bytes
of space at the beginning of the message block. Expressed as a C language
construct:

bp->b_rptr = bp->b_datap->db_base +write offset.

The write offset value must be smaller than the maximum STREAMS message
size, STRMSGSZ (see the section titled "Tunable Parameters" in Appendix E).
In certain cases (e.g., if a buffer large enough to hold the offset+data is not
currently available), the write offset might not be included in the block. To be
general, modules and drivers should not assume that the offset exists in a
message, but should always check the message.

The intended use of write offset is to leave room for a module or a driver
to place a protocol header before user data in the message rather than by allo­
cating and prepending a separate message. This feature is not general and its
use is discouraged. A more general technique is to put protocol header infor­
mation in a separate message block and link the user data to it.
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Appendix A: Kernel Structures

This appendix summarizes previously described kernel structures com­
monly encountered in STREAMS module and driver development.

STREAMS kernel structures are contained in <sys/stream.h> and
<sys/ strstat.h>.

These and other STREAMS structures (shown in bold) contained in both
parts of this guide will remain fixed in subsequent releases of UNIX Sys­
tem V, subject to the following: The offset of all defined elements in each
structure will not change. However, the size of the structure 'may be
increased to add new elements.

/* defines read QUEUE */

/* defines write QUEUE */

/* for multiplexing drivers only */
/* for multiplexing drivers only */

streamtab
As discussed in Chapter 5, this structure defines a module or driver:

struct streamtab {
struct qinit *st_rdinit;
struct qinit *st_wrinit;
struct qinit *st_muxrinit;
struct qinit *st_muxwinit;

} ;
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QUEUE Structures
Two sets of QUEUE structures form a module. The structures, discussed

in Chapters 5 and 8, are queue_t, qinit, module-info and, optionally,
module-stat:

struct queue {
struct qinit *~qinfo; /* procedures and limits for queue */
struct msgb *~first; /* head of message queue for this QUEUE */
struct msgb *~last; /* tail of message queue for this QUEUE */
struct queue *~next; /* next QUEUE in Stream*/
struct queue *~link; /* link to next QUEUE on STREAMS scheduling queue */
caddr_t Cl.J)tr; /* to private data structure */
ushort ~count; /* weighted count of characters on message queue */
ushort ~flag; /* QUEUE state */
short ~minpsz; /* min packet size accepted by this QUEUE */
short ~maxpsz; /* max packet size accepted by this QUEUE */
ushort ~hiwat; /* message queue high water mark, for flow control */
ushort ~lowat; /* message queue low water mark, for flow control */

};
typedef struct queue queue_t;

When a queue_t pair is allocated, their contents are zero unless specifi-
cally initialized. The following fields are initialized:

• q_qinfo - from streamtab.sL[rd/wr]init (or SLmux[rw]init)

• q-rninpsz, q-rnaxpsz, q-hiwat, q-lowat - from module-info

• q_ptr - optionally, by the driver/module open routine

struct qinit {
int (*qiJlUtp) ( ) ; /* put procedure */
int (*qi_srvp) (); /* service procedure */
int (*qi_qopen) ( ) ; /* called on each open or a push */
int (*qi_qclose) ( ) ; /* called on last close or a pop */
int (*qi_qadmin) (); /* reserved. for future use */
struct lOOdule_info *qi_minfo; /* information structure */
struct lOOdule_stat *qi_mstat; /* statistics structure - optional */

};
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};

ushort
char
short
short
short
ushort

mi_idnW1l;
*mi_idname ;
mi_minpsz;
mi_maxp5z;
mi_hiwat;
mi_lowat;

Appendix A: Kernel Structures

1* module m number *1
1* module name *1
1* min packet size accepted, for developer use *1
1* max packet size accepted, for developer use *1
1* hi-water mark, for flow control *1
1* lo-water mark, for flOl!7 control *1

struct module_stat {
long msJ)Cl1t;
long IDS_sent;
long IDS_ocnt;
long IDS_cent;
long ms_aent;
char *wucptr;
short IDS_xsize;
} ;

1* count of calls to put proc */
1* count of calls to service proc */
1* count of calls to open proc *1
1* count of calls to close proc *1
1* count of calls to admin proc */
/* pointer to private statistics *1
/* length of private statistics buffer *1

Note that in the event these counts are calculated by modules or drivers,
the counts will be cumulative over all occurrences of modules with the same
fmodsw entry and drivers with the same cdevsw entry.
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Message Structures
As described in Chapter 7, a message is composed of a linked list of tri­

ples, consisting of two structures and a data buffer:

struct
struct
struct
struct
unsigned
unsigned
struct

msqb {
msgb
msgb
msgb
char
char
datab

*b_next;
*bJlrev;
*b_cont;
*b_rptr;
*b_wptr;
*b_datap;

/* next message on queue */
/* previous message on queue */
/* next message block of message */
/* first unread data byte in buffer */

/* first unwritten data byte in buffer */

/* data block */
};
typedef struct msgb mblk_t;

struct datab {
struct datab *db_freep;
unsigned char *db_base;
unsigned char *db_1im;
unsigned char db_ref;
unsigned char db_type;
unsigned char db_class;

} ;
typedef struct datab dblk_t;

iocblk

/* used internally */
/* first byte of buffer * */
/* last byte+1 of buffer */
/* count of messages p:>inting to this block */
/* message type */
/* used internally */

As described in Chapter 9 and Appendix B, this is contained in an
M-IOCTL message block:

struct iocblk {

} ;

int
ushort
ushort
uint
uint
int
int

ioc_cmi;
ioc_uid;
iOC-9id;
ioc_id;
ioc_count;
ioc_error;
ioc~l;

/* ioct1 ccmoand type */
/* effective uid of user */
/* effective gid of user */
/* ioctl id */
/* count of bytes in data field */
/* error code */
/* return value */
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linkblk
As described in Chapter 11, this is used in lower multiplexer drivers:

struct linkblk {
queue_t *l_qtop; /* lowest level write queue of upper stream */
queue_t *l_qbot; /* highest level write queue of lower stream */
int I_index; /* system-unique index for lower stream. */

} ;
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Appendix B: Message Types

Eighteen STREAMS message types are defined. The message types differ
in their intended purposes, their treatment at the Stream head, and in their
message queueing priority (see Chapter 8).

STREAMS does not prevent a module or driver from generating any mes­
sage type and sending it in any direction on the Stream. However, esta­
blished processing and direction rules should be observed. Stream head pro­
cessing according to message type is fixed, although certain parameters can be
altered.

The message types are described below, classified according to their mes­
sage queueing priority. Ordinary messages are described first, with priority
messages following. In certain cases, two message types may perform similar
functions, differing in priority. Message construction is described in Chapter
7. The use of the word module will generally imply II module or driver. II
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These message types are subject to flow control. These are referred to as
non-priority messages when received at user level.

M-DATA Intended to contain ordinary data. Messages allocated by
the aUocb routine (see Appendix B) are type M-DATA by
default. M-DATA messages are generally sent bidirection­
ally on a Stream and their contents can be passed between
a process and the Stream head. In the getmsg and putmsg
system calls, the contents of M-DATA message blocks are
referred to as the data part. Messages composed of multi­
ple message blocks will typically have M-DATA as the
message type for all message blocks following the first.

M-PROTO Intended to contain internal control information and associ­
ated data. The message format is one MJROTO message
block followed by zero or more M..-DATA message blocks
as shown below: The semantics of the M-DATA and
MJROTO message block are determined by the
STREAMS module that receives the message.

The MJROTO message block will typically contain
implementation-dependent control information.
MJROTO messages are generally sent bidirectionally on a
Stream, and their contents can be passed between a process
and the Stream head. The contents of the first message
block of an MJROTO message is generally referred to as
the control part, and the contents of any following
M-DATA message blocks are referred to as the data part.
In the getmsg and putmsg system calls, the control and
data parts are passed separately. These calls refer to
MJROTO messages as non-priority messages.

Note that, although its use is not recommended, the format
of MJROTO and MJCPROTO (generically PROTO)
messages sent upstream to the Stream head allows multiple
PROTO blocks at the beginning of the message. getmsg
will compact the blocks into a single control part when
passing them to the user process.
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MJROTO
or ~

MJCPROTO

~

M-DATA I-

~

M-DATA ~

control
info.

Figure B-1: MJROTO and M-PCPROTO Message Structure

M-IOCTL Generated by the Stream head in response to an LSTR
and certain other ioctl system calls [see streamio(7)]. When
one of these ioctls is received from a user process, the
Stream head uses values from the process and supplied in
the call to create an M-IOCTL message containing them,
and sends the message downstream. M-IOCTL messages
are intended to perform the general ioctl functions of char­
acter device drivers.

The user values are supplied in a structure of the following
form, provided as an argument to the ioctl call [see LSTR
in streamio(7)]:

struct. strioctl
{

};

int ic_emi;
int ic_timout;
int iC_Ien;
char *ic_dp;

/* downstream request */
/* ACKINAK timeout */
/* leng'th of data axg */
/* ptr to data axg */

where ic_cmd is the request (or command) defined by a
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downstream module or driver, iC-limout is the time the
Stream head will wait for acknowledgment to the
M-IOCTL message before timing out, ic-ilp is a pointer to
an optional data argument. On input, ic-len contains the
length of the data argument passed in and, on return from
the call, it contains the length of the data, if any, being
returned to the user.

The form of an M-.IOCTL message is one M-.IOCTL mes­
sage block linked to zero or more M-DATA message
blocks. STREAMS constructs an M-.IOCTL message block
by placing an iocblk structure in its data buffer:

st:ruct iocblk
{

};

int We_am;
ushort ioc_uid;
ushort ioc..,gid;
uint ioc_id;
uint ioc_count;
int We_error;
int ioc_rval;

/* ioctl cx:mnand type */
/* effective user m number */

/* effective group m number */
/* ioctl identifier */
/* byte count for ioctl data */
/* error code */
/* retuxn value */

The iocblk structure is defined in <sys/stream.h>.
ioc_cmd corresponds to ic_cmd. ioc_uid and ioc_gid are
the effective user and group IDs for the user sending the
ioctl and can be tested to determine if the user issuing the
ioctl call is authorized to do so. ioc_count is the number of
data bytes, if any, contained in the message and
corresponds to ic-len.

ioc-id is an identifier generated internally and is used to
match each M-.IOCTL message sent downstream with a
response which must be sent upstream to the Stream head.
The response is contained in an M-.IOCACK (positive ack­
nowledgment) or an M-.IOCNAK (negative acknowledg­
ment) message. Both these message types have the same
format as an M-lOCTL message and contain an iocblk
structure in the frrst block with optional data blocks follow­
ing. If one of these messages reaches the Stream head
with an identifier which does not match that of the
currently outstanding M-.IOCTL message, the response
message is discarded. A common means of assuring that
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the correct identifier is returned is for the replying module
to convert the M-IOCTL message type into the appropri­
ate response type and set ioc_count to 0 if no data is
returned. Then, the qreply utility (see Appendix C) is
used to send the response to the Stream head.

ioc_error holds any return error condition set by a down­
stream module. If this value is non-zero, it is returned to
the user in errno. Note that both an M-IOCNAK and an
M-IOCACK may return an error. ioc_TVal holds any
M-IOCACK return value set by a responding module.

If a user supplies data to be sent downstream, the Stream
head copies the data, pointed to by ic-dp in the strioctl
structure, into M_DATA message blocks and links the
blocks to the initial M-IOCTL message block. ioc_count is
copied from ic-len. If there is no data, ioc_count is zero.

If a module wants to send data to a user process as part of
its response, it must construct an M-IOCACK message
that contains the data. The first message block of this
message contains the iocblk data structure, with any data
stored in one or more M-DATA message blocks linked to
the first message block. The module must set ioc_count to
the number of data bytes sent. On completion of the call,
this number is passed to the user in ic_Ien. Data associ­
ated with an M-IOCNAK message is not returned to the
user process and is discarded by the Stream head.

The first module or a driver that understands the request
contained in the M-IOCTL acts on it and generally returns
an M-IOCACK message. Intermediate modules that do
not recognize a particular request must pass it on. If a
driver does not recognize the request, or the receiving
module can not acknowledge it, an M-IOCNAK message
must be returned.

The Stream head waits for the response message and
returns any information contained in an M-IOCACK to
the user. The Stream head will "time out" if no response
is received in ic_timeout interval.
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M-CTL

M-BREAK

Generated by modules that wish to send information to a
particular module or type of module. M-CTL messages
are typically used for intermodule communication, as when
adjacent STREAMS protocol modules negotiate the terms
of their interface. An M-CTL message cannot be gen­
erated by a user-level process and is always discarded if
passed to the Stream head.

Sent to a driver to request that BREAK be transmitted on
whatever media the driver is controlling.

The message format is not defined by STREAMS and its
use is developer-dependent. This message may be con­
sidered a special case of an M-CTL message. An
M-BREAK message cannot be generated by a user-level
process and is always discarded if passed to the Stream
head.

M-DELAY Sent to a media driver to request a real-time delay on out­
put. The data buffer associated with this message type is
expected to contain an integer to indicate the number of
machine ticks of delay desired. M-DELAY messages are
typically used to prevent transmitted data from exceeding
the buffering capacity of slower terminals.

The message format is not defined by STREAMS and its
use is developer-dependent. Not all media drivers may
understand this message. This message may be considered
a special case of an M-CTL message. An M-DELAY mes­
sage cannot be generated by a user-level process and is
always discarded if passed to the Stream head.

M-.PASSFP This is used by STREAMS to pass a file pointer from the
Stream head at one end of a Stream pipe to the Stream
head at the other end of the same Stream pipe. (A Stream
pipe is a Stream that is terminated at both ends by a
Stream head; one end of the Stream can always find the
other by following the q_next pointers in the Stream. The
means by which such a structure is created is not described
in this document.)

The message is generated as a result of an LSENDFD ioell
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[see streamio(7)] issued by a process to the sending Stream
head. STREAMS places the M..-PASSFP message directly
on the destination Stream head's read queue to be
retrieved by an LRECVFD ioctl [see streamio(7)]. The
message is placed without passing it through the Stream
(Le., it is not seen by any modules or drivers in the
Stream). This message type should never be present on
any queue except the read queue of a Stream head. Con­
sequently, modules and drivers do not need to recognize
this message type, and it can be ignored by module and
driver developers.

M-SETOPTS Alters some characteristics of the Stream head. It is gen­
erated by any downstream module and is interpreted by
the Stream head. The data buffer of the message has the
following structure:

st:ruct stropt.i.ons
{

};

short so_flags;
short so_readopt;
usOOrt so_wroff;
short so_minpsz;
short so_maxpsz;
usOOrt scLhiwat;
usOOrt so_lowat;

/* options to set */
/* read option */
/* write offset */
/* minimum read packet size */
/* maximum read packet size */
/* read queue high-water mark */
/* read queue 1cM-water mark */

where so-flags specifies which options are to be altered,
and can be any combination of the following:

D SO-ALL- Update all options according to the
values specified in the remaining fields of the strop­
tions structure.

D SO-READOPT- Set the read mode [see read(2)] to
RNORM (byte stream), RMSGD (message discard),
or RMSGN (message non-discard) as specified by
the value of so_readopt.

D SO_WROFF- Direct the Stream head to insert an
offset specified by so_wroff into the first message
block of all M-DATA messages created as a result
of a write system call. The same offset is inserted
into the first M-DATA message block, if any, of all
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messages created by a putmsg system call. The
default offset is zero.

The offset must be less than the maximum message
buffer size (system-dependent). Under certain cir­
cumstances, a write offset may not be inserted. A
module or driver must test that b_rptr in the
mblLt structure is greater than db_base in the
dblLt structure to determine that an offset has
been inserted in the first message block.

o SO-MINPSZ-Change the minimum packet size
value associated with the Stream head read queue to
so_minpsz (see q_minpsz in the queue_t structure, in
Appendix A). This value is advisory for the module
immediately below the Stream head. It is intended
to limit the size of M-DATA messages that the
module should put to the Stream head. There is no
intended minimum size for other message types.
The default value in the Stream head is O.

o SO-MAXPSZ-Change the maximum packet size
value associated with the Stream head read queue to
so_maxpsz (see q_maxpsz in the queue_t structure, in
Appendix A). This value is advisory for the module
immediately below the Stream head. It is intended
to limit the size of M-DATA messages that the
module should put to the Stream head. There is no
intended maximum size for other message types.
The default value in the Stream head is INFPSZ, the
maximum STREAMS allows.

o SO.JUWAT- Change the flow control high-water
mark on the Stream head read queue to the value
specified in so-hiwat.

o SO_LOWAT- Change the flow control low-water
mark (see q-minpsz in the queue_t structure,
Appendix A) on the Stream head read queue to the
value specified in so_lowat.
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Sent upstream by modules or drivers to post a signal to a
process. When the message reaches the Stream head, the
first data byte of the message is transformed into a signal,
as defined in <sys/signal.h>, to the process(es) according
to the following.

If the signal is not SIGPOLL and the Stream containing the
sending module or driver is a controlling TTY, the signal is
sent to the associated process group. A Stream becomes
the controlling TTY for its process group if, on open, a
module or driver sets u.u_ttyp to point to a (short) .. pro­
cess group value."

If the signal is SIGPOLL, it will be sent only to those
processes that have explicitly registered to receive the sig­
nal [see LSETSIG in streamio(7)].
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Priority messages are not subject to flow control.

M-PCPROTO This message type has the same format and characteristics
as the MJROTO message type, except for priority and
the following additional attributes.

When an MJCPROTO message is placed on a queue, its
service procedure is always enabled. The Stream head will
allow only one MJCPROTO message to be placed in its
read queue at a time. If an MJCPROTO message is
already in the queue when another arrives, the second
message is silently discarded and its message blocks freed.

This message type is intended to allow data and control
information to be sent outside the normal flow control con­
straints.

The getmsg(2) and putmsg(2) system calls refer to
MJCPROTO messages as priority messages.

M-ERROR This message type is sent upstream by modules or drivers
to report some downstream error condition. When the
message reaches the Stream head, the Stream is marked so
that all subsequent system calls issued to the Stream,
excluding close and poll, will fail with errno set to the first
data byte of the message. POLLERR is set if the Stream is
being polled [see poll(2»). All processes sleeping on a sys·
tem call to the Stream are awakened. An MJLUSH mes­
sage with an FLUSHRW argument is sent downstream.

M-HANGUP This message type is sent upstream by a driver to report
that it can no longer send data upstream. As example, this
might be due to an error, or to a remote line connection
being dropped. When the message reaches the Stream
head, the Stream is marked so that all subsequent write
and putmsg system calls issued to the Stream will fail and
return an ENXIO error. Those ioctls that cause messages
to be sent downstream are also failed. POLLHUP is set if
the Stream is being polled [see poll(2»).
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M-IOCNAK

M-FLUSH

Priority Messages

However, subsequent read or getmsg calls to the Stream
will not generate an error. These calls will return any mes­
sages (according to their function) that were on, or in tran­
sit to, the Stream head read queue before the
M-HANGUP message was received. When all such mes­
sages have been read, read will return 0, and getmsg will
set each of its two length fields to O.

This message also causes a SIGHUP signal to be sent to
the process group, if the device is a controlling TTY (see
M-SIG).

This message type signals the positive acknowledgment of
a previous M-IOCTL message. The message may contain
information sent by the receiving module or driver. The
Stream head returns the information to the user if there is
a corresponding outstanding M-IOCTL request. The for­
mat and use of this message type is described further
under M-IOCTL.

This message type signals the negative acknowledgment
(failure) of a previous M-IOCTL message. When the
Stream head receives an M-IOCNAK, the outstanding
ioctl request, if any, will fail. The format and usage of this
message type is described further under M-IOCTL.

This message type requests all modules and drivers that
receive it to flush their message queues (discard all mes­
sages in those queues) as indicated in the message. An
MJLUSH can originate at the Stream head, or in any
module or driver. The first byte of the message contains
flags that specify one of the following actions:

o FLUSHR: Flush the read queue of the module.

o FLUSHW: Flush the write queue of the module.

o FLUSHRW: Flush both the read and the write
queue of the module.

Each module passes this message to its neighbor after
flushing its appropriate queue(s) until the message reaches
one of the ends of the Stream.
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Drivers are expected to include the following processing for
MJLUSH messages. When an MJLUSH message is
sent downstream through the write queues in a Stream, the
driver at the Stream end discards it if the message action
indicates that the read queues in the Stream are not to be
flushed (only FLUSHW set). If the message indicates that
the read queues are to be flushed, the driver sets the
M-FLUSH message flag to FLUSHR, and sends the mes­
sage up the Stream's read queues. When a flush message
is sent up a Stream's read side, the Stream head checks to
see if the write side of the Stream is to be flushed. If only
FLUSHR is set, the Stream head discards the message.
However, if the write side of the Stream is to be flushed,
the Stream head sets the M-FLUSH flag to FLUSHW and
sends the message down the Stream's write side. All
modules that enqueue messages must identify and process this
message type.

This message type has the same format and characteristics
as the M-SIG message type except for priority.

M-START and M-STOP
These messages request devices to start or stop their out­
put. They are intended to produce momentary pauses in a
device's output, not to tum devices on or off.

The message format is not defined by STREAMS and its
use is developer-dependent. These messages may be con­
sidered special cases of an M-CTL message. These mes­
sages cannot be generated by a user-level process and each
is always discarded if passed to the Stream head.
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Appendix C: Utilities

This appendix specifies the set of utilities that STREAMS provides to assist
development of modules and drivers. There are over 30 utility routines and
macros.

The general purpose of the utilities is to perform functions that are com­
monly used in modules and drivers. However, some utilities also provide the
required interrupt environment. A utility must always be used when operat­
ing on a message queue and when accessing the buffer pool.

The utilities are contained in either the system source file io/stream.c or,
if they are macros, in <sys/stream.h>.

The utilities contained in this appendix represent an interface that will be
maintained in subsequent versions of UNIX System V. Other than these
utilities (also see the section titled II Accessible Symbols and Functions II

in Appendix D), functions contained in the STREAMS kernel code may
change between versions.

All structure definitions are contained in Appendix A unless otherwise indi­
cated. All routine references are found in this appendix unless otherwise indi­
cated. The following definitions are used:

Blocked A queue that cannot be enabled due to flow control (see
the section titled "Flow Control n in Chapter 6 of the Pri­
mer).

Enable To schedule a queue.

Free De-allocate a STREAMS storage.

Message block (bp)
A triplet consisting of an mblLt structure, a dblLt
structure, and a data buffer. It is referenced by its
mblLt structure (see Chapter 7).

Message (mp) One or more linked message blocks. A message is refer­
enced by its first message block.

Message queue Zero or more linked messages associated with a queue
(queue_t structure).
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Queue (q)

Schedule

A queue-t structure. This is generally the same as
QUEUE in the rest of this document (e.g., see the defini­
tions for enable and schedule). When it appears with
"message" in certain utility description lines, it means
"message queue".

Place a queue on the internal linked list of queues which
will subsequently have their service procedure called by
the STREAMS scheduler.

The word module will generally mean "module and/or driver ". The phrase
"next/following module" will generally refer to a module, driver, or Stream
head. Message queueing priority (see Chapter 8 and Appendix B) can be ordi­
nary or Priority (to avoid "priority priority").
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The utilities are described below. A summary table is contained at the
end of this appendix.

adjmsg - trim bytes in a message

int adjmsg(mp, len)
mblLt *mp;
int len;

adjmsg trims bytes from either the head or tail of the message specified by
mp. If len is greater than zero, it removes len bytes from the beginning of mp.
If len is less than zero, it removes (-)len bytes from the end of mp. If len is
zero, adjmsg does nothing. adjmsg only trims bytes across message blocks of
the same type. It will fail if mp points to a message containing fewer than len
bytes of similar type at the message position indicated. adjmsg returns 1 on
success and 0 on failure.

alloch - allocate a message block

mblLt *allocb(size, pri)
int size, pri;

allocb returns a pointer to a message block of type M-DATA, in which the
data buffer contains at least size bytes. pri indicates the priority of the alloca­
tion request and can have the values BPRLLO, BPRLMED, or BPRLHI (see
the section titled "Buffer Allocation Priority If in this appendix). If a block can
not be allocated as requested, allocb returns a NULL pointer.

backq - get pointer to the queue behind a given queue

queue_t *backq(q)
queue_t *q;

backq returns a pointer to the queue behind a given queue. That is, it returns
a pointer to the queue whose q_next (see queue_t structure) pointer is q. If no
such queue exists (as when q is at a Stream end), backq returns NULL.
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bufeall - recover from failure of alloeb

int bufcall(size, pri, £Unc, arg)
int (*func)O;
int size, pri;
long arg;

bufcall is provided to assist in the event of a block allocation failure. If allocb
returns NULL, indicating a message block is not currently available, bufcall
may be invoked.

bufcall arranges for (*tunc)(arg) to be called when a buffer of size bytes at pri
priority (see the section titled II Buffer Allocation Priority ") is available. When
tunc is called, it has no user context. It cannot reference the u-area and must
return without sleeping. bufcall does not guarantee that the desired buffer
will be available when tunc is called since interrupt processing may acquire it.

bufcall returns 1 on success, indicating that the request has been successfully
recorded, or 0 on failure. On a failure return, func will never be called. A
failure indicates a (temporary) inability to allocate required internal data struc­
tures.

eanput - test for room in a queue

int canput(q)
queue-t *q;

canput determines if there is room left in a message queue. If q does not
have a service procedure, canput will search further in the same direction in
the Stream until it finds a queue containing a service procedure (this is the
first queue on which the passed message can actually be enqueued). If such a
queue cannot be found, the search terminates on the queue at the end of the
Stream. canput tests the queue found by the search. If the message queue in
this queue is not full (see the section titled n Flow Control II in Chapter 6 of
the Primer), canput returns 1. This return indicates that a message can be put
to queue q. If the message queue is full, canput returns O. In this case, the
caller is generally referred to as blocked.
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copyb - copy a message block

mblk.-t *copyb(bp)
mblk.-t *bp;

copyb copies the contents of the message block pointed to by bp into a newly
allocated message block of at least the same size. copyb allocates a new block
by calling allocb with pri set to BPRLMED (see the section titled II Buffer
Allocation Priority"). All data between the b_rptr and b_wptr pointers of a
message block are copied to the new block, and these pointers in the new
block are given the same offset values they had in the original message block.
On successful completion, copyb returns a pointer to the new message block
containing the copied data. Otherwise, it returns a NULL pointer.

copymsg - copy a message

mblk.-t *copymsg(mp)
mblk.-t *mp;

copymsg uses copyb to copy the message blocks contained in the message
pointed to by mp to newly allocated message blocks, and links the new mes­
sage blocks to form the new message. On successful completion, copymsg
returns a pointer to the new message. Otherwise, it returns a NULL pointer.

datamsg - test whether message is a data message

#define datamsg(mp) ...

The datamsg macro returns TRUE if mp (declared as mblk_t *mp) points to a
data type message. In this case, types M-DATA, M-PROTO, or
MJCPROTO (see Appendix B). If mp points to any other message type,
datamsg returns FALSE.

dupb - duplicate a message block descriptor

mblk.-t *dupb(bp)
mblk.-t *bp;

dupb duplicates the message block descriptor (mblk....t structure) pointed to
by bp by copying it into a newly allocated message block descriptor. A
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message block is formed with the new message block descriptor pointing to
the same data block as the original descriptor. The reference count in the data
block descriptor (dblLt structure) is incremented. dupb does not copy the
data buffer, only the message block descriptor.

On successful completion, dupb returns a pointer to the new message block.
If dupb cannot allocate a new message block descriptor, it returns NULL.

This routine allows message blocks that exist on different queues to reference
the same data block. In general, if the contents of a message block with a
reference count greater than 1 are to be modified, copyb should be used to
create a new message block and only the new message block should be modi­
fied. This insures that other references to the original message block are not
invalidated by unwanted changes.

dupmsg - duplicate a message

mblLt *dupmsg(mp)
mblLt *mpi

dupmsg calls dupb to duplicate the message pointed to by mp, by copying all
individual message block descriptors, and then linking the new message
blocks to form the new message. dupmsg does not copy data buffers, only
message block descriptors. On successful completion, dupmsg returns a
pointer to the new message. Otherwise, it returns NULL.

enableok - re-allow a queue to be scheduled for service

#define enableok(q) ...

The enableok macro cancels the effect of an earlier noenable on the same
queue q (declared as queue_t *q). It allows a queue to be scheduled for ser­
vice that had previously been excluded from queue service by a call to noen­
able.

flushq - flush a queue

int flushq(q, flag)
queue_t *qi
int flag;

flushq removes messages from the message queue in queue q and frees them,
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using freemsg. If flag is set to FLUSHDATA, then flushq discards all
M-DATA, M-PROTO, and MJCPROTO messages (see datamsg), but leaves
all other messages on the queue. If flag is set to FLUSHALL, all messages are
removed from the message queue and freed. FLUSHALL and FLUSHDATA
are defined in <sys/stream.h>.

If a queue behind q is blocked, flushq may enable the blocked queue, as
described in putq.

freeb - free a message block

int freeb(bp)
mblLt *bPi

freeb will free (deallocate) the message block descriptor pointed to by bp, and
will free the corresponding data block if the reference count (see dupb) in the
data block descriptor (dblLt structure) is equal to 1. If the reference count is
greater than 1, freeb will not free the data block, but will decrement the refer­
ence count.

freemsg - free all message blocks in a message

int freemsg(mp)
mblLt *mpi

freemsg uses freeb to free all message blocks and their corresponding data
blocks for the message pointed to by mp.

getq - get a message from a queue

mblLt *getq(q)
queue_t *q;

getq gets the next available message from the queue pointed to by q. getq
returns a pointer to the message and removes that message from the queue. If
no message is queued, getq returns NULL.

getq and certain other utility routines affect flow control in the Stream as fol­
lows: If getq returns NULL, the queue is internally marked so that the next
time a message is placed on it, it will be scheduled for service (enabled, see
qenable). Also, if the data in the enqueued messages in the queue drops
below the low-water mark, q_lowat, and a queue behind the current queue
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had previously attempted to.place a message in the queue and failed (i.e., was
blocked, see canput), then the queue behind the current queue is scheduled for
service (see the section titled II Flow Control" in Chapter 6 of the Primer).

insq - put a message at a specific place in a queue

int insq(q, emp, nmp)
queue-.t *qi
mblLt *emp, *nmpi

insq places the message pointed to by nmp in the message queue contained in
the queue pointed to by q immediately before the already enqueued message
pointed to by emp. If emp is NULL, the message is placed at the end of the
queue. If emp is non-NULL, it must point to a message that exists on the
queue q, or a system panic could result.

Note that the message is placed where indicated, without consideration of
message queueing priority. The queue will be scheduled in accordance with
the rules described in putq for ordinary priority messages.

linkb - concatenate two messages into one

int linkb(mpl, mp2)
mblLt *mp1i
mblLt *mp2i

linkb puts the message pointed to by mp2 at the tail of the message pointed
to by mpl.

msgdsize - get the number of data bytes in a message

int msgdsize(mp)
mblLt *mpi

msgdsize returns the number of bytes of data in the message pointed to by
mp. Only bytes included in data blocks of type M-DATA are included in the
total.

e-e STREAMS PROGRAMMER'S GUIDE



Utility Descriptions

noenable - prevent a queue from being scheduled

#define noenable(q) ....

The noenable macro prevents the queue q (declared as queue_t *q) from
being scheduled for service by putq or putbq when these routines enqueue an
ordinary priority message, or by insq when it enqueues any message. noen­
able does not prevent the scheduling of queues when a Priority message is
enqueued, unless it is enqueued by insq.

OTHERQ - get pointer to the mate queue

#define OTHERQ(q) ...

The OTHERQ macro returns a pointer to the mate queue of q (declared as
queue_t *q). If q is the read queue for the module, it returns a pointer to the
module's write queue. If q is the write queue for the module, it returns a
pointer to the read queue.

pUllupmsg - concatenate bytes in a message

int *pullupmsg(mp, len)
mblLt *mp;
int len;

pullupmsg concatenates and aligns the first len data bytes of the passed mes­
sage into a single, contiguous message block. Proper alignment is hardware­
dependent. To perform its function, pullupmsg allocates a new message
block by calling allocb with pri set to BPRLMED (see the section titled
II Buffer Allocation Priority II). pullupmsg only concatenates across message
blocks of similar type. It will fail if mp points to a message of less than len
bytes of similar type. A len value of -1 requests a pUll-Up of all the like-type
blocks in the beginning of the message pointed to by mp.

At completion of concatenation, pullupmsg replaces mp with a pointer to the
new message block, so that mp still points to the same message block at the
end of the operation. However, the contents of the message block may have
been altered. On success, pUllupmsg returns 1. On failure, it returns O.
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putbq - return a message to the beginning of a queue

int putbq(q, bp)
queue_t *q;
mblLt *bp

putbq puts the message pointed to by bp at the beginning of the queue
pointed to by q, in a position in accordance with the message's type. Priority
messages are placed at the head of the queue, and ordinary messages are
placed after all Priority messages, but before all other ordinary messages. The
queue will be scheduled in accordance with the same rules described in putq.
This utility is typically used to replace a message on a queue from which it
was just removed.

putctl - put a control message

int putctl(q, type)
queue_t *q;
int type;

putctl creates a control (not data, see datamsg above) message of type type,
and calls the put procedure in the queue pointed to by q, with a pointer to the
created message as an argument. putctl allocates new blocks by calling allocb
with pri set to BPRLHI (see the section titled II Buffer Allocation Priority II).
On successful completion, putctl returns 1. It returns 0 if it cannot allocate a
message block, or if type M-DATA, M-PROTO, or M-PCPROTO was speci­
fied.

putctll - put a control message with a one-byte parameter

int putctl1(q, type, p)
queue_t *q;
int type;
int p;

putctl1 creates a control (not data, see datamsg) message of type type with a
one-byte parameter p, and calls the put procedure in the queue pointed to by
q, with a pointer to the created message as an argument. putctl1 allocates
new blocks by calling allocb with pri set to BPRLHI (see the section titled
II Buffer Allocation Priority II). On successful completion, putctl1 returns 1. It
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returns 0 if it cannot allocate a message block, or if type M-DATA,
MJROTO, or M-PCPROTO was specified.

putnext - put a message to the next queue

#define putnext(q, mp) ...

The putnext macro calls the put procedure of the next queue in a Stream, and
passes it a message pointer as an argument. The parameters must be declared
as queue_t *q and mblk_t *Top. q is the calling queue (not the next queue)
and mp is the message to be passed. putnext is the typical means of passing
messages to the next queue in a Stream.

putq - put a message on a queue

int putq(q, bp)
queue_t *qi
mblLt *bPi

putq puts the message pointed to by bp on the message queue contained in
the queue pointed to by q and enables that queue. putq queues messages
appropriately by type (Le., message queueing priority, see Chapter 8).

putq will always enable the queue when a Priority message is queued. putq
will enable the queue when an ordinary message is queued if the following
condition is set, and enabling is not inhibited by noenable: The condition is
set if the module has just been pushed [see LPUSH in streamio(7)], or if no
message was queued on the last getq call, and no message has been queued
since.

putq is intended to be used from the put procedure in the same queue in
which the message will be queued. A module should not call putq directly to
pass messages to a neighboring module. putq may be used as the qi_putpO
put procedure value in either or both of a module's qinit structures. This
effectively bypasses any put procedure processing and uses only the module's
service procedure(s).
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qenable - enable a queue
int qenable(q) queue-t *qi

int putq(q, bp)
queue_t *qi
mblLt *bPi

qenable places the queue pointed to by q on the linked list of queues that are
ready to be called by the STREAMS scheduler (see the definition for
II Schedule II above, and the section titled II Put and Service Procedures II in
Chapter 5 of the Primer).

qreply - send a message on a stream in the reverse direction

int qreply(q, bp)
queue_t *qi
mblLt *bPi

qreply sends the message pointed to by bp up (or down) the Stream in the
reverse direction from the queue pointed to by q. This is done by locating the
partner of q (see OTHERQ) and then calling the put procedure of that queue's
neighbor (as in putnext). qreply is typically used to send back a response
(M-IOCACK or M-IOCNAK message) to an M-IOCTL message (see Appen­
dix B).

qsize - find the number of messages on a queue

int qsize(q)
queue-t *qi

qsize returns the number of messages present in queue q. If there are no
messages on the queue, qsize returns O.

RD - get pointer to the read queue

#define RD(q) ...

The RD macro accepts a write queue pointer, q (declared as queue_t *q), as
an argument and returns a pointer to the read queue for the same module.
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rmvb - remove a message block from a message

mblLt *rmvb(mp, bp)
mblLt *mpi
mblLt *bPi

rmvb removes the message block pointed to by bp from the message pointed
to by mp and then restores the.linkage of the message blocks remaining in the
message. rmvb does not free the removed message block. rmvb returns a
pointer to the head of the resulting message. If bp is not contained in mp,
rmvb returns a -1. If there are no message blocks in the resulting message,
rmvb returns a NULL pointer.

rmvq - remove a message from a queue

int rmvq(q, mp)
queue_t *qi
mblLt *mpi

rmvq removes the message pointed to by mp from the message queue in the
queue pointed to by q and then restores the linkage of the messages remaining
on the queue. If mp does not point to a message that is present on the queue
q, a system panic could result.

splstr - set processor level

int splstrO

splstr increases the system processor level to block interrupts at a level
appropriate for STREAMS modules when those modules are executing critical
portions of their code. splstr returns the processor level at the time of its
invocation. Module developers are expected to use the standard kernel func­
tion splx(s), where 5 is the integer value returned by splstr, to restore the pro­
cessor level to its previous value after the critical portions of code are passed.
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strlog - submit messages for logging

int strlog(mid, sid, level, flags, fmt, argI, ...)
short mid, sid;
char level;
ushort flags;
char *fmt;
unsigned argI;

strlog submits messages containing specified information to the log driver.
Required definitions are contained in <sys/strlog.h> and <sys/log.h>. mid
is the STREAMS module ID number for the module or driver submitting the
log message. sid is an internal sub-ID number usually used to identify a par­
ticular minor device of a driver. level is a tracing level that allows selective
screening of messages from the tracer. flags are any combination of
SLERROR (the message is for the error logger), SLTRACE (the message is
for the tracer), SLFATAL (advisory notification of a fatal error), and
SLNOTIFY (request that a copy of the message be mailed to the system
administrator). Imt is a printf{3S) style format string, except that %s, %e, %E,
%g, and %G conversion specifications are not handled. Up to NLOGARGS
numeric or character arguments can be provided. [See Chapter 6 of the Primer
and log(7).]

testb - check for an available buffer

int testb(size, pri)
int size, pri;

testb checks for the availability of a message buffer of size size at priority pri
(see the section titled II Buffer Allocation Priority II) without actually retrieving
the buffer. testb returns 1 if the buffer is available and 0 if no buffer is avail­
able. A successful return value from testb does not guarantee that a subse­
quent allocb call will succeed (e.g., in the case of an interrupt routine taking
buffers).

unlinkb - remove a message block from the head of a message

mblLt *unlinkb(mp)
mblLt *mp;
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unlinkb removes the first message block pointed to by mp and returns a
pointer to the head of the resulting message. unlinkb returns a NULL pointer
if there are no more message blocks in the message.

WR - get pointer to the write queue

#define WR(q) ...

The WR macro accepts a read queue pointer, q (declared as queue_t *q), as an
argument and returns a pointer to the write queue for the same module.
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STREAMS buffers are normally allocated with allocb, described above.
An associated set of allocation priorities has been established, which are also
used in other utility routines:

BPRLLO Low priority. At this priority, allocb may fail even though the
requested buffer size is available. This priority is used by the
Stream head write routine to hold data associated with user
calls.

BPRLMED Medium priority. This priority is typically used for normal
data and control block allocation. As above, allocb may fail at
this priority even though a buffer of the requested size is avail­
able. However, for a given block size, an BPRLLO allocb call
will fail before a BPRLMED allocb call.

BPRLHI High priority. This priority is typically used only for critical
control message allocations. Calls to allocb will succeed if a
buffer of the appropriate size is available. Developers should
exercise restraint in use of BPRLHI allocation requests.

The values BPRLLO, BPRLMED, and BPRLHI are defined in
<sys/stream.h>.

STREAMS does not guarantee successful buffer allocation-any set of
resources can be exhausted under the right conditions. The bufcall function
will help modules recover from buffer allocation failures, but it does not
guarantee that the resources will ever be available. Developers should be
aware of this when implementing modules.
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ROUTINE

adjmsg
allocb
backq
bufcall
canput
copyb
copymsg
datamsg
dupb
dupmsg
enableok
flushq
freeb
freemsg
getq
insq
linkb
msgdsize
noenable
OTHERQ
pullupmsg
putbq
putdl
putdll
putnext
putq
qenable
qreply
qsize
RD
rmvb
rmvq
splstr
strlog
testb
unlinkb
WR

DESCRIPTION

trim bytes in a message
allocate a message block
get pointer to the queue behind a given queue
recover from failure of allocb
test for room in a queue
copy a message block
copy a message
test whether message is a data message
duplicate a message block descriptor
duplicate a message
re-allow a queue to be scheduled for service
flush a queue
free a message block
free all message blocks in a message
get a message from a queue
put a message at a specific place in a queue
concatenate two messages into one
get the number of data bytes in a message
prevent a queue from being scheduled
get pointer to the mate queue
concatenate bytes in a message
return a message to the beginning of a queue
put a control message
put a control message with a one-byte parameter
put a message to the next queue
put a message on a queue
enable a queue
send a message on a stream in the reverse direction
find the number of messages on a queue
get pointer to the read queue
remove a message block from a message
remove a message from a queue
set processor level
submit messages for logging
check for an available buffer
remove a message block from the head of a message
get pointer to the write queue
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Appendix D: Design Guidelines

This appendix summarizes STREAMS module and driver design guide­
lines and rules presented in previous chapters. Additional rules that develop­
ers must observe are included. Where appropriate, the section of this docu­
ment containing detailed information is named. The end of the appendix
contains a brief description of error and trace logging facilities.

Unless otherwise noted, II module II implies II modules and drivers. II

General Rules
The following are general rules that developers should follow when writ­

ing modules.

1. Modules cannot access information in the U-al'ea of a process.
Modules are not associated with any process, and therefore, have no
concept of process or user context.

The capability to pass U-area information upstream using messages
has been provided where required. This can be done in M-JOCTL
handling (see Chapter 9 and Appendix B). A module can send error
codes upstream in an M-JOCACK or M-JOCNAK message, where
they will be placed in u_error by the Stream head. Return values may
also be sent upstream in a M-JOCACK message and will be placed in
u_roal1. Information can also be passed to the U-area via a
M-ERROR message (see Chapter 10 and Appendix B). The Stream
head will recognize this message type and inform the next system call
that an error has occurred downstream by setting u_error. Note that
in both instances, the downstream module cannot access the U-area,
but it informs the Stream head to do so.

2. In general, modules should not require the data in an M-DATA mes­
sage to follow a particular format, such as a specific alignment. This
makes it easier to arbitrarily push modules on top of each other in a
sensible fashion. Not following this rule may limit module re­
usability (the ability to use the module in multiple applications).

3. Every module must process an MJLUSH message according to the
value of the argument passed in the message (see Chapters 8 and 9,
and Appendix B).
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4. A module should not change the contents of a data block whose refer­
ence count is greater than 1 (see dupmsg in Appendix C) because other
modules that have references to the block may not want the data
changed. To avoid problems, it is recomPlended that the module
copy the data to a new block and then change the new one.

S. Modules should only manipulate message queues and manage buffers
with the routines provided for those purpose (see Appendix C).

6. Filter modules pushed between a service user and a service provider
(see Chapter 12) may not alter the contents of the MJROTO or
MJCPROTO block in messages. The contents of the data blocks
may be manipulated, but the message boundaries must be preserved.

System Calls
These rules pertain to module and drivers as noted.

1. open and close routines may sleep, but the sleep must return to the
routine in the event of a signal. That is, if they sleep, they must be at
priority <= PZERO or with PCATCH set in the sleep priority.

2. The open routine must return >= zero on success or OPENFAIL if it
fails. This ensures that a failure will be reported to the user process.
ermo may be set on failure. However, if the open routine returns
OPENFAIL and errno is not set, STREAMS will automatically set errno
to ENXIO.

3. If a module or driver recognizes and acts on an M-IOCTL message, it
must reply by sending a M-IOCACK message upstream. A unique ID
is associated with each M-IOCTL, and the M-IOCACK or
M-IOCNAK message must contain the ID of the M-IOCTL it is ack­
nowledging.

4. A module (not a driver) must pass on any M-IOCTL message it does
not recognize (see Appendix B). If an unrecognized M-IOCTL
reaches a driver, the driver must reply by sending a M-IOCNAK mes­
sage upstream.
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Data Structures
Only the contents of q_ptr, q_minpsz, q_maxpsz, q-hiwat, and q_lowat in

a queue_t structure may be altered. The latter four quantities are set when
the module or driver is opened, but may be modified subsequently.

As described in Appendix E, every module and driver is configured with
the address of a streamtab structure (see Chapter 5). For a driver, a pointer to
its streamtab is included in cdevsw. For a module, a pointer to its streamtab
is included in fmodsw.

Header Files
The following header files are generally required in modules and drivers:

types.h contains type definitions used in the STREAMS header files

stream.h contains required structure and constant definitions

stropts.h primarily for users, but contains definitions of the arguments
to the MJLUSH message type also required by modules

One or more of the header files described below may also be included
(also see the following section). No standard UNIX System header files
should be included except as described in the following section. The intent is
to prevent attempts to access data that cannot or should not be accessed.

errno.h defines various system error conditions and is needed if
errors are to be returned upstream to the user

sysmacros.h contains miscellaneous system macro definitions

param.h

signal.h

file.h

defines various system parameters, particularly the value of
the PCATCH sleep flag

defines the system signal values and should be used if sig­
nals are to be processed or sent upstream

defines the file open flags and is needed if O-.NDELAY is
interpreted
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Accessible Symbols and Functions

The following lists the only symbols and functions that modules or drivers
may refer to (in addition to those defined by STREAMS), if hardware and
UNIX System release independence is to be maintained. Use of symbols not
listed here is unsupported.

• user.h (from open/close procedures only)

struct proc *u-procp process structure pointer
short *u-ttyp TTY group ID pointer
char u-error system call error number
ushort u-uid effective user ID
ushort u-gjd effective group ID
ushort U-lUid real user ID
ushort UJgjd real group ID

• proc.h (from open/close procedures only)

short p_pid process ID
short p_pgrp process group ID

• functions accessible from open/close procedures only

fig = sleep(chan, pri) sleep until wakeup
delay(ticks) delay for a specified time

• universally accessible functions

bcopy(from, to, nbytes) copy data quickly
bzero(buffer, nbytes) zero data quickly
t = max(a, b) return max of args
t = minea, b) return min of args
mem=malloc(mp, size) allocate memory space
mfree(mp, size, i) deallocate memory space
mapinit(mp, mapsize) initialize map structure
addr = vtop(vaddr, NULL) translate from virtual to physical address
printf(format, ) print message
cmn-err(level, ) print message and optional panic
s = spInO set priority level
id = timeout(func, arg, ticks) schedule event
untimeout(id) cancel event
wakeup(chan) wake up sleeper
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• sysmacros.h
t = major(dev)
t = minor(dev)

• systm.h
time_t lbolt
time_t time

• param.h
PZERO
PCATCH
HZ
NULL

• types.h
dev_t
time-t

Appendix D: Design Guidelines

return major device
return minor device

clock ticks since boot in HZ
seconds since epoch

zero sleep priority
catch signal sleep flag
clock ticks per second
o

combined major/minor device
time counter

All data elements are software read-only except:

u-error - may be set on a failure return of open
u-ttyp - may be set in open to create a controlling TTY

Rules for Put and Service Procedures
To ensure proper data flow between modules, the following rules should

be observed in put and service procedures. The following rules pertain to put
procedures.

1. A put procedure must not sleep.

2. Each QUEUE must define a put procedure in its qinit (see Appendix
A) structure for passing messages between modules.

3. A put procedure must use the putq (see Appendix C) utility to
enqueue a message on its own message queue. This is necessary to
ensure that the various fields of the queue-t structure are maintained
consistently.

4. When passing messages to a neighbor module, a module may not call
putq directly, but must call its neighbor's put procedure (see putnext
in Appendix C). Note that this rule is distinct from the one above it.
The previous rule states that a module must call putq to place
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messages on its own message queue, whereas this rule states that a
module must not call putq directly to place messages on a neighbor's
queue.

However, the q_qinfo structure that points to a module's put pro­
cedure may point to putq (Le. putq is used as the put procedure for
that module). When a module calls a neighbor's put procedure that is
defined in this manner, it will be calling putq indirectly. If any
module uses putq as its put procedure in this manner, the module
must define a service procedure. Otherwise, no messages will ever be
sent to the next module. Also, because putq does not process
MJLUSH messages, any module that uses putq as its put procedure
must define a service procedure to process MJLUSH messages.

5. The put procedure of a QUEUE with no service procedure must call
the put procedure of the next QUEUE directly if a message is to be
passed to that QUEUE. If flow control is desired, a service procedure
must be provided.

Service procedures must observe the following rules:

1. A service procedure must not sleep.

2. The service procedure must use getq to remove a message from its
message queue so that the flow control mechanism is maintained.

3. The service procedure should process all messages on its message
queue. The only exception is if the Stream ahead is blocked (Le., can­
put fails, see Appendix C). Adherence to this rule is the only guaran­
tee that STREAMS will enable (schedule for execution) the service
procedure when necessary, and that the flow control mechanism will
not fail.

If a service procedure exits for any other reason (e.g., buffer allocation
failure), it must take explicit steps to assure it will be re-enabled.

4. The service procedure must follow the steps below for each message
that it processes. STREAMS flow control relies on strict adherence to
these steps.

Step 1: Remove the next message from the message queue using getq.
It is possible that the service procedure could be called when
no messages exist on the queue, so the service procedure
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Step 2:

Step 3:

Step 4:
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should never assume that there is a message on its message
queue. If there is no message, return.

If all the following conditions are met:

o canput fails and

o the message type is not a priority type (see Appendix B)
and

o the message is to be put on the next QUEUE.

then, continue at Step 3. Otherwise, continue at Step 4.

The message must be replaced on the head of the message
queue from which it was removed using putbq (see Appendix
C). Following this, the service procedure is exited. The ser­
vice procedure should not be re-enabled at this point. It will
be automatically back-enabled by flow control.

If all the conditions of Step 2 are not met, the message should
not be returned to the queue. It should be processed as
necessary. Then, return to Step 1.

Error and Trace Logging
STREAMS error and trace loggers are provided for debugging and for

administering modules and driver. Chapter 6 of the STREAMS Primer contains
a description of this facility which consists of log, strace, strclean, strerr, and
the strlog function described in Appendix C.
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Appendix E: Configuring

This appendix contains information about configuring STREAMS modules
and drivers into UNIX System V/386 Release 3.2 on your computer. The
information is incremental and presumes the reader is familiar with the confi­
guration mechanism, which may vary on different processors. An example of
how to configure a driver and a module is included.

This appendix also includes a list of STREAMS system tunable parameters
and system error messages.

Configuring STREAMS Modules and Drivers
Each character device that is configured into a UNIX System results in an

entry being placed in the kernel cdevsw table. Entries for STREAMS drivers
are also placed in this table. However, because system calls to STREAMS
drivers must be processed by the STREAMS routines, the configuration
mechanism distinguishes between STREAMS drivers and character device
drivers in their associated cdevsw entries.

The distinction is contained in the d-str field which was added to the
cdevsw structure for this purpose. d-str provides the appropriate single entry
point for all system calls on STREAMS files, as shown below:

extern struct cdevsw {

struct streamtab *d_str;
} cdevsw[ ];

The configuration mechanism forms the d-str entry name by appending the
string "info" to the STREAMS driver prefix. The "info" entry is a pointer to
a streamtab structure (see Appendix A) that contains pointers to the qinit
structures for the read and write QUEUEs of the driver. The driver must con­
tain the external definition:

struct streamtab pre!ixinfo = { •••

If the d-str entry contains a non-NULL pointer, the operating system will
recognize the device as a STREAMS driver and will call the appropriate
STREAMS routine. If the entry is NULL, a character I/O device cdevsw
interface is used. Note that only streamtab must be externally defined in
STREAMS drivers and modules. streamtab is used to identify the appropriate
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open, close, put, service, and administration routines. These driver/module
routines should generally be declared static.

The configuration mechanism supports various combinations of block,
character, STREAMS devices, and STREAMS modules (see below). For exam­
ple, it is possible to identify a device as a block and STREAMS device, and
entries will be inserted in the appropriate system switch tables. A device can­
not be both a character and STREAMS device.

When a STREAMS module is configured, an fmodsw table entry is gen­
erated by the configuration mechanism. fmodsw contains the following:

#define ENNAMESZ 8

extenl struct fmodsw {

char f_name[mNAMESZ+1];

struct streamtab *f_str;
} fmodsw( ];

{_name is the name of the module used in STREAMS-related ioctl calls.
{-str is similar to the d-str entry in the cdevsw table. It is a pointer to a
streamtab structure which contains pointers to the qinit structures for the
read and write QUEUEs of this STREAMS module (as in STREAMS drivers).
The module must contain the external definition:

struct streamtab pre{ixinfo = {

Configuration Mechanism

STREAMS modules and drivers are configured into the system by the fol­
lowing (see the Operations/System Administrator's Guide for further details):

1. Use ideheek command to determine if the driver is already installed,
and to verify that the interrupt vector, I/O address, or other selectable
parameter is in fact available for use.

2. Prepare Master, System, Driver.o (mandatory) and Spaee.c, Node,
Init, Re, Shutdown (optional), and use idinstall command to install
them.

3. Use idtune command to add tunable parameters to mtune or stune
files.
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ID tools are in /ete/eonf/bin.

To specify a STREAMS device driver, its Master file should contain both
an S and a c in the characteristics field (the third field).

A STREAM module that is not a device driver requires an S in the
characteristics field in its Master file, but should not include a c as a dev­
ice driver does.

Any combination of block, STREAMS drivers, and STREAMS module
may be specified. However, it is illegal to specify a STREAMS device or
module with a character device.

Configuration Examples
This section contains examples of configuring the following STREAMS

driver and module:

loop the STREAMS loop-around software driver of Chapter 10

crowd the conversion module of Chapter 7

To configure the STREAMS software (pseudo-device) driver, loop, the fol­
lowing three files are necessary:

Master File

loop Sioc loop 0 0 1 1 -1

1. System File

loop y 1 0 0 0 0 0 0 0

2. Spaee.e

#define NLP 2
struct loop loop_loop[NLP];
int loop_CIlt = NLP;
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To configure the STREAMS module crmod, the following two files are
necessary:

Master File

1. System File

y

Sio

o

o

o

o

o

1

o

1

o

-1

o o

To configure crmod and loop into a new kernel, run idinstall.

To move or append driver component files to files in the /etc/conf direc­
tory, run the idbuild command.

Tunable Parameters
Certain system parameters referenced by STREAMS are configurable

when building a new operating system (see the Operations/System
Administrator's Guide for further details). This can be done by including the
appropriate entry in the kernel master file. II queues" refers to queue_t struc­
tures. These parameters are:

NQUEUE Total number of queues that may be allocated at one time
by the system. Queues are allocated in pairs. Each
STREAMS driver, Stream head, and pushable module
requires a pair of queues. A minimal Stream contains 4
queues (two for the Stream head, two for the driver).

NSTREAM Total number of Streams that may be open at one time in
a system.

NBLK4096 Total number of 4096-byte data blocks available for
STREAMS operations. The pool of data blocks is a
system-wide resource, so enough blocks must be config­
ured to satisfy all Streams.

NBLK2048 Total number of 2048-byte data blocks available for
STREAMS operations.
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.NBLKI024 Total number of 1024-byte data blocks available for
STREAMS operations.

NBLK512 Total number of 512-byte data blocks available for
STREAMS operations.

NBLK256 Total number of 256-byte data blocks available for
STREAMS operations.

NBLK128 Total number of 128-byte data blocks available for
STREAMS operations.

NBLK64 Total number of 64-byte data blocks available for
STREAMS operations.

NBLK16 Total number of 16-byte data blocks available for
STREAMS operations.

NBLK4 Total number of 4-byte data blocks available for STREAMS
operations.

NMUXLINK Total number of Streams in the system that can be linked
as lower Streams to multiplexer drivers [by an LLINK
ioctl, see streamio(7)].

NSTREVENT Initial number of internal event cells available in the sys­
tem to support bufcall (see Appendix C) and poll [see
poll(2)] calls.

MAXSEPGCNT The number of additional pages of memory that can be
dynamically allocated for event cells. If this value is 0,
only the allocation defined by NSTREVENT is available for
use. If the value is not 0 and if the kernel runs out of
event cells, it will under some circumstances attempt to
allocate an extra page of memory from which new event
cells can be created. MAXSEPGCNT places a limit on the
number of pages that can be allocated for this purpose.
Once a page has been allocated for event cells, however, it
cannot be recovered later for use elsewhere.

NSTRPUSH Maximum number of modules that may be pushed onto a
single Stream.

STRMSGSZ Maximum bytes of information that a single system call
can pass to a Stream to be placed into the data part of a
message (in M-DATA blocks). Any write exceeding
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STRCTLSZ

STRLOFRAC

STRMEDFRAC

this size will be broken into multiple messages. A putmsg
with a data part exceeding this size will fail.

Maximum bytes of information that a single system call
can pass to a Stream to be placed into the control part of a
message (in an MJROTO or M-PCPROTO block). A
putmsg with a control part exceeding this size will fail.

The percentage of data blocks of a given class at which low
priority block allocation requests are automatically failed.
For example, if STRLOFRAC is 80 and there are forty-eight
256-byte blocks, a low priority allocation request will fail
when more than thirty-eight 256-byte blocks are already
allocated. This value is used to prevent deadlock situations
in which a low priority activity might starve out more
important functions. For example, if STRLOFRAC is 80
and there are 100 blocks of 256 bytes, then when more
than 80 of such blocks are allocated, any low priority allo­
cation request will fail. This value must be in the range
o <= STRLOFRAC <= STRMEDFRAC.

The percentage of data blocks of a given class at which
medium priority block allocation requests are automatically
failed.

System Error Messages
Messages are reported to the console as a result of various error conditions

detected by STREAMS. These messages and the action to be taken on their
occurrence are described below. In certain cases, a tunable parameter (see
previous section) may have to be changed.

stropen: out of streams
A Stream head data structure could not be allocated during the open
of a STREAMS device. If this occurs repeatedly, increase
NSTREAM.

stropen: out of queues
A pair of queues could not be allocated for the Stream head during
the open of a driver. If this occurs repeatedly, increase NQUEUE.
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KERNEL: allocq: out of queues
A pair of queues could not be allocated for a pushable module
(LPUSH ioctl) or driver (open). If this occurs repeatedly, increase
NQUEUE.

strinit: can not allocate stream data blocks
During system initialization, the system was unable to allocate
enough memory for the STREAMS data blocks. The system must be
rebuilt with fewer data blocks specified.

KERNEL: strinit: odd value configured for v.v-Ilqueue
KERNEL: strinit: was qcnt, set to nqcnt

During system initialization, the total number of queues allocated,
qcnt, was not a multiple of 2. The system resets this to an appropri­
ate value, nqcnt.

WARNING: bufcall: could not allocate stream event
A call to bufcall has failed because all Stream event cells have been
allocated. If this occurs repeatedly, increase NSTREVENT.

KERNEL: sealloc: not enough memory for page allocation
An attempt to dynamically allocate a page of Stream event cells
failed. If this occurs repeatedly, decrease MAXSEPGCNT.

KERNEL: munlink: could not perform ioctl, closing anyway
A linked multiplexer could not be unlinked when the controlling
Stream for that link was closed. The linked Stream will be unlinked
and the controlling Stream will be closed anyway.
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Back-enable

Blocked

Clone device

Close procedure

Control stream

Downstream

Device driver

Driver

Enable

Flow control

Lower Stream

To enable (by STREAMS) a preceding blocked
QUEUE when STREAMS determines that a succeed­
ing QUEUE has reached its low-water mark.

A QUEUE that cannot be enabled due to flow control.

A STREAMS device that returns an unused minor
device when initially opened, rather than requiring
the minor device to be specified in the open(2) call.

The module routine that is called when a module is
popped from a Stream and the driver routine that is
called when a driver is closed.

In a multiplexer, the upper Stream on which a previous
LLINK ioctl [to the associated file, see streamio(7)]
caused a lower Stream to be connected to the multi­
plexer driver at the end of the upper Stream.

The direction from Stream head towards driver.

The end of the Stream closest to an external interface.
The principle functions of a device driver are handling
an associated physical device and transforming data
and information between the external interface and
Stream.

A module that forms the Stream end. It can be a dev­
ice driver or a pseudo-device driver. In STREAMS, a
driver is physically identical to a module (i.e., com­
posed of two QUEUEs), but has additional attributes
in a Stream and in the UNIX system.

Schedule a QUEUE.

The STREAMS mechanism that regulates the flow of
messages within a Stream and the flow from user
space into a Stream.

A Stream connected below a multiplexer pseudo-device
driver, by means of an LLINK ioctl. The far end of a
lower Stream terminates at a device driver or another
multiplexer driver.
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Message

Message block

Message queue

Message type

Module

Multiplexer

One or more linked message blocks. A message is
referenced by its first message block and its type is
defined by the message type of that block.

Carries data or information, as identified by its mes­
sage type, in a Stream. A message block is a triplet
consisting of a data buffer and associated control
structures, an mblLt structure, and a dblLt struc­
ture.

A linked list of zero or more messages connected to a
QUEUE.

A defined set of values identifying the contents of a
message block and message.

A pair of QUEUEs. In general, module implies a
pushable module.

A STREAMS mechanism that allows messages to be
routed among multiple Streams in the kernel. A mul­
tiplexer includes at least one multiplexing pseudo­
device driver connected to one or more upper Streams
and one or more lower Streams.

Pop

Open procedure The routine in each STREAMS driver and module
called by STREAMS on each open(2) system call
made on the Stream. A module's open procedure is
also called when the module is pushed.

A STREAMS ioctl [see streamio(7)] that causes the
pushable module immediately below the Stream head to
be removed (popped) from a Stream [modules can
also be popped as the result of a close(2)].

Pseudo-device driver
A software driver, not directly associated with a physi­
cal device, that performs functions internal to a Stream
such as a multiplexer or log driver.

Push A STREAMS ioctl [see streamio(7)] that causes a push­
able module to be inserted (pushed) in a Stream
immediately below the Stream head.
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Pushable module A module interposed (pushed) between the Stream
head and driver. Pushable modules perform inter­
mediate transforinations on messages flowing between
the Stream head and driver. A driver is a non­
pushable module and a Stream head includes a non­
pushable module.

Put procedure The routine in a QUEUE which receives messages
from the preceding QUEUE. It is the single entry
point into a QUEUE from a preceding QUEUE. The
procedure may perform processing on the message
and will then generally either queue the message for
subsequent processing by this QUEUE's service pro­
cedure, or will pass the message to the put procedure
of the following QUEUE.

QUEUE A STREAMS defined set of C-Ianguage structures. A
module is composed of a read (upstream) QUEUE and
a write (downstream) QUEUE. A QUEUE will typi­
cally contain a put and service procedure, a message
queue, and private data. The read QUEUE (d. read
queue) in a module will also contain the open pro­
cedure and close procedure for the module.

The primary structure is the queue_t structure, occa­
sionally used as a synonym for a QUEUE.

Read queue The message queue in a module or driver containing
messages moving upstream. Associated with a read(2)
system call and input from a driver.

Schedule Place a QUEUE on the intemallist of QUEUEs which
will subsequently have their service procedure called
by the STREAMS scheduler.

Service interface A set of primitives that define a service at the boun­
dary between a service user and a service provider and
the rules (typically represented by a state machine) for
allowable sequences of the primitives across the boun­
dary. At a Stream/user boundary, the primitives are
typically contained in the control part of a message;
within a Stream, in MJROTO or M-PCPROTO
message blocks.
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Service procedure The routine in a QUEUE which receives messages
queued for it by the put procedure of the QUEUE. The
procedure is called by the STREAMS scheduler. It
may perform processing on the message and will gen­
erally pass the message to the put procedure of the fol­
lowing QUEUE.

Service provider In a service interface, the entity (typically a module or
driver) that responds to request primitives from the
service user with response and event primitives.

Service user In a service interface, the entity that generates request
primitives for the service provider and consumes
response and event primitives.

Stream The kernel aggregate created by connecting STREAMS
components, resulting from an application of the
STREAMS mechanism. The primary components are
the Stream head, the driver, and zero or more pushable
modules between the Stream head and driver.

Stream end The end of the Stream furthest from the user process,
containing a driver.

Stream head The end of the Stream closest to the user process. It
provides the interface between the Stream and the
user process.

STREAMS A kernel mechanism that supports development of
network services and data communication drivers. It
defines interface standards for character input/output
within the kernel, and between the kernel and user
level. The STREAMS mechanism comprises integral
functions, utility routines, kernel facilities, and a set of
structures.

Upper stream A Stream terminating above a multiplexer pseudo­
device driver. The far end of an upper Stream ori­
ginates at the Stream head or another multiplexer
driver.

Upstream The direction from driver towards Stream head.
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Water marks

Write queue

Glossary

Limit values used in flow control. Each QUEUE has a
high-water mark and a low-water mark. The high­
water mark value indicates the upper limit related to
the number of characters contained on the message
queue of a QUEUE. When the enqueued characters in
a QUEUE reach its high-water mark, STREAMS
causes another QUEUE that attempts to send a mes­
sage to this QUEUE to become blocked. When the
characters in this QUEUE are reduced to the low­
water mark value, the other QUEUE will be
unblocked by STREAMS.

The message queue in a module or driver containing
messages moving downstream; associated with a
write(2) system call and output from a user process.
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