
-
::. ATs.Y

~-

.§>

! UNIKSystem V/386
! Rel88S8 3.2

:
•- ATaT

UNIX® System V/386
Release 3.2
Network Programmer's Guide

• Prentice Hall, Englewood Cliffs, New Jersey 07632

Library of Congress Catalog Card Number: 88-62525

EditoriaUproduction supervision: Karen Skrable Fortgang
Manufacturing buyer: Mary Ann Gloriande

II<D 1989 by AT&T. All righ~rved.
- Published by Prentice-Hall. Inc.=- A Division of Simon & Schuster

Englewood Cliffs. New Jersey 07632

All rights reserved. No pan of this book may be
reproduced. in any form or by any means.
without permission in writing from the publisher.

NonCE
The information in this document is subject to change without notice.
AT&T assumes no responsibility for any errors that may appear in
this document.

ETHERNET is a trademark of Xerox Corporation.
Intel is a registered trademark of Intel Corporation.
UNIX is a registered trademark of AT&T.
Xerox is a registered trademark of Xerox Corporation.

The publisher offers discounts on this book when ordered
in bulk quantities. For more information. write or caIl:

Special Sales
Prentice-HaIl, Inc.
CoIlege Technical and Reference Division
Englewood Cliffs. NJ 07632
(201) 592-2498

Printed in the United States of America

10 9 8 7 6 5 4 3 2 I

ISBN 0-13-944935-3

Prentice-Hall International (UK) Limited. London
Prentice-Hall of Australia Ply. Limited. Sydney
Prentice-Hall Canada Inc.• Toronto
Prentice-Hall Hispanoamericana, S.A.• Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan. Inc .• Tokyo
Simon & Schuster Asia Pte. Ltd.• Singapore
Editora Prentice-Hall do Brasil. Ltda.• Rio de Janeiro

1

2

3

4

Table of Contents

Introduction to the Guide
Introduction to the Guide

Overview of the- Transport
Interface

Introduction
Modes of Service
State Transitions

Connection-mode Service
Introduction
Local Management
Connection Establishment
Data Transfer
Connection Release

Connectionless-mode Service
Introduction
Local Management
Data Transfer
Datagram Errors

1-1

2-1
2-3

2-11

3-1
3-2

3-10
3-19
3-24

4-1
4-2
4-5
4-8

TABLE OF CONTENTS III

Table of Contents -------------------

5

6

A

B

c

A ReadJWrite Interface
Introduction
write
read
Close

Advanced Topics
Introduction
Asynchronous Execution Mode
Advanced Programming Example

Appendix A: State Transitions
Appendix A: State Transitions

Appendix B: Protocol
Independence

Appendix B: Guidelines for Protocol

Appendix C: Examples
Appendix C: Examples

Glossary
Glossary

Index
Index

5-1
5-3
5-4
5-5

6-1
6-2
6-3

A-1

B-1

C-1

G-1

1-1

iv NETWORK PROGRAMMER'S GUIDE

List of Figures

Figure 1-1: OSI Reference Model 1-1

Figure 2·1: Transport Interface 2-1

Figure 2·2: Channel Between User and Provider 2-4

Figure 2-3: Local Management Routines 2-6

Figure 2·4: Transport Connection 2-6

Figure 2·5: Connection Establishment Routines 2-7

Figure 2·6: Connection-Mode Data Transfer Routines 2-8

Figure 2·7: Connection Release Routines 2-9

Figure 2·8: Connectionless-Mode Data Transfer Routines 2-10

Figure 3·1: Listening and Responding Transport Endpoints 3-18

Figure A·1: Transport Interface States A-1

Figure A·2: Transport Interface Outgoing Events A-3

Figure A·3: Transport Interface Incoming Events A-4

Figure A-4: Common Local Management State Table A-6

Figure A·5: Connectionless-Mode State Table A-7

Figure A-6: Connection-Mode State Table A-8

LIST OF FIGURES v

1 Introduction to the Guide

Introduction to the Guide
Background
Document Organization
Notational Conventions

1-1
1-1
1-3
1-4

Introduction to the Guide
This document provides detailed information, with various examples, on

the UNIX System Transport Interface. This guide is intended for programmers
who require the services defmed by this interface. Working knowledge of
UNIX System programming and data communication concepts is assumed. In
particular, working knowledge of the Reference Model of Open Systems Inter­
connection (OSI) is required.

Background
To place the Transport Interface in perspective, a discussion of the OSI

Reference Model is flI'St presented. The Reference Model partitions network­
ing functions into seven layers, as depicted in Figure 1-1.

Layer 7

Layer 6

Layer 5

Layer 4

Layer 3

Layer 2

Layer 1

application

presentation

session

transport

network

data link

physical

Figure 1-1: OSI Reference Model

Layer 1 The physical layer is responsible for the transmission of raw data
over a communication medium.

Layer 2 The data link layer provides the exchange of data between net­
work layer entities. It detects and corrects any errors that may
occur in the physical layer transmission.

INTRODUCTION TO THE GUIDE 1-1

Introduction to the Guide

Layer 3 The network layer manages the operation of the network. In
particular, it is responsible for the routing and management of
data exchange between transport layer entities within the net­
work.

Layer 4 The transport layer provides transparent data transfer services
between session layer entities by relieving them from concerns of
how reliable and cost-effective transfer of data is achieved.

Layer 5 The session layer provides the services needed by presentation
layer entities that enable them to organize and sYnchronize their
dialogue and manage their data exchange.

Layer 6 The presentation layer manages the representation of information
that application layer entities either communicate or reference in
their communication.

Layer 7 The application layer serves as the window between correspond­
ing application processes that are exchanging information.

A basic principle of the Reference Model is that each layer provides ser­
vices needed by the next higher layer in a way that frees the upper layer from
concern about how these services are provided. This approach simplifies the
design of each particular layer.

Industry standards either have been or are being defined at each layer of
the Reference Model. Two standards are defined at each layer: one that speci­
fies an interface to the services of the layer, and one that defines the protocol
by which services are provided. A service interface standard at any layer frees
users of the service from details of how that layer's protocol is implemented,
or even which protocol is used to provide the service.

The transport layer is important because it is the lowest layer in the Refer­
ence Model that provides the basic service of reliable, end-to-end data transfer
needed by applications and higher layer protocols. In doing so, this layer
hides the topology and characteristics of the underlying network from its
users. More important, however, the transport layer defines a set of services
common to layers of many contemporary protocol suites, including the Inter­
national Standards Organization (ISO) protocols, the Transmission Control
Protocol and Internet Protocol (TCPlIP) of the ARPANET, Xerox Network
Systems (XNS), and the Systems Network Architecture (SNA).

1-2 NETWORK PROGRAMMER'S GUIDE

Introduction to the Guide

A transport service interface, then, could enable applications and higher
layer protocols to be implemented without knowledge of the underlying pro­
tocol suite. That is a principle goal of the UNIX System Transport Interface.
Also, because an inherent characteristic of the transport layer is that it hides
details of the physical medium being used, the Transport Interface offers both
protocol and medium independence to networking applications and higher
layer protocols.

The UNIX System Transport Interface was modeled after the industry
standard ISO Transport Service Definition (ISO 8072). As such, it is intended
for those applications and protocols that require transport services. It is not
intended to provide a generic networking interface for all UNIX System appli­
cations, but is a first step in providing networking services with UNIX System
V/386. Because the Transport Interface provides reliable data transfer, and
because its services are common to several protocol suites, many networking
applications will find these services useful.

The Transport Interface is implemented as a user library using the
STREAMS input/output (I/O) mechanism. Therefore, many services available
to STREAMS applications are also available to users of the Transport Inter­
face. These services will be highlighted throughout this guide. The STREAMS
Primer and STREAMS Programmer's Guide contain more detailed information
on STREAMS for the interested reader.

Document Organization
This guide is organized as follows:

• Chapter 2, "Overview of the Transport Interface," summarizes the
basic set of services available to Transport Interface users and presents
the background information needed for the remainder of the guide.

• Chapter 3, "Connection-Mode Service, fI describes the services associ­
ated with connection-based (or virtual circuit) communication.

• Chapter 4, II Connectionless-Mode Service, n describes the services
associated with connectionless (or datagram) communication.

• Chapter 5, II A Read/Write Interface," describes how users can use the
services of read [see read(2)] and write [see write(2)] to communicate
over transport connection.

INTRODUCTION TO THE GUIDE 1·3

Introduction to the Guide

• Chapter 6, II Advanced Topics, II discusses important concepts that are
not covered in earlier chapters. These include asynchronous event han­
dling and processing of multiple, simultaneous connect requests.

• Appendix A, II State Transitions, II defines the allowable state transi­
tions associated with the Transport Interface.

• Appendix B, II Guidelines for Protocol Independence, II establishes
necessary guidelines for developing software that may run without
change over any transport protocol developed for the Transport Inter­
face.

• Appendix C, II Examples, II presents the full listing of each program­
ming example used throughout the guide.

• The Glossary defines Transport Interface terms and acronYms used in
this guide.

This guide describes the more important and common facilities of the
Transport Interface and is not meant to be exhaustive. Section 3N of the
Programmer's Reference Manual contains a complete description of each Tran­
sport Interface routine.

Notational Conventions

The following notational conventions are used throughout this Guide:

bold

italic

command(number)

User input, such as commands, options to com­
mands, and the names of directories and files,
appear in bold.

Names of variables to which values must be
assigned (such as filename) appear in italic.

A command name followed by a number in
parentheses refers to the part of a UNIX system
reference manual that documents that command.
(There are two reference manuals: the
User's/System Administrator's Reference Manual
and the Programmer's Reference Manual.) For
example, the notation cat(l) refers to the page in
section 1 (of the User's/System Administrator's
Reference Manual) that documents the cat
command.

1-4 NETWORK PROGRAMMER'S GUIDE

constant width

Introduction to the Guide

UNIX System output, such as prompt signs and
responses to commands, and program examples
appear in constant wid~

INTRODUCTION TO THE GUIDE 1·5

2 Overview of the Transport Inter­
face

Introduction

Modes of Service
Connection-Mode Service

• Local Management
• Connection Establishment
• Data Transfer
• Connection Release

Connectionless-Mode Service

State Transitions

2-1

2-3
2-3
2-3
2-6
2-8
2-9

2-10

2-11

Introduction
This chapter presents a high-level overview of the services of the Trans­

port Interface, which supports the transfer of data between two user processes.
Figure 2-1 illustrates the Transport Interface.

...... Transport Interface

e events
ndications

transport
user

•
ice

uests

t ·...... ·f
servic
and i

I

transport
provider

serv
req

Figure 2-1: Transport Interface

The transport provider is the entity that provides the services of the
Transport Interface, and the transport user is the entity that requires these ser­
vices. An example of a transport provider is the ISO transport protocol, while
a transport user may be a networking application or session layer protocol.

The transport user accesses the services of the transport provider by issu­
ing the appropriate service requests. One example is a request to transfer data
over a connection. Similarly, the transport provider notifies the user of vari­
ous events, such as the arrival of data on a connection.

OVERVIEW OF THE TRANSPORT INTERFACE 2·1

Introduction

The Network Services Library of UNIX System V/386 includes a set of
functions that support the services of the Transport Interface for user
processes [see intro(3)]. These functions enable a user to initiate requests to
the provider and process incoming events. Programs using the Transport
Interface can link the appropriate routines as follows:

cc prog.c -lnsLs

2·2 NETWORK PROGRAMMER'S GUIDE

Modes of Service
Two modes of service, connection-mode and connectionless-mode, are

provided by the Transport Interface. Connection-mode is circuit-oriented and
enables data to be transmitted over an established connection in a reliable,
sequenced manner. It also provides an identification mechanism that avoids
the overhead of address resolution and transmission during the data transfer
phase. This service is attractive for applications that require relatively long­
lived, datastream-oriented interactions.

Connectionless-mode, in contrast, is message-oriented and supports data
transfer in self-contained units with no logical relationship required among
multiple units. This service requires only a preexisting association between
the peer users involved, which determines the characteristics of the data to be
transmitted. All the information required to deliver a unit of data (for exam­
ple, the destination address) is presented to the transport provider, together
with the data to be transmitted, in one service access (which need not relate to
any other service access). Each unit of data transmitted is entirely self­
contained. Connectionless-mode service is attractive for applications that:

• involve short-term request/response interactions

• exhibit a high level of redundancy

• are dynamically reconfigurable

• do not require guaranteed in-sequence delivery of data

Connection-Mode Service
The connection-mode transport service is characterized by four phases:

local management, connection establishment, data transfer, and connection
release.

Local Management
The local management phase defines local operations between a transport

user and a transport provider. For example, a user must establish a channel of
communication with the transport provider, as illustrated in Figure 2-2. Each
channel between a transport user and transport provider is a unique endpoint
of communication, and will be called the transport endpoint. The Lopen
routine enables a user to choose a particular transport provider that will sup­
ply the connection-mode services, and establishes the transport endpoint.

OVERVIEW OF THE TRANSPORT INTERFACE 2-3

Modes of Service

. Transport Interface

~ transport endpoint

transport
user

I

..........
,

transport
provider

Figure 2-2: Channel Between User and Provider

Another necessary local function for each user is to establish an identity
with the transport provider. Each user is identified by a transport address.
More accurately, a transport address is associated with each transport end­
point, and one user process may manage several transport endpoints. In
connection-mode service, one user requests a connection to another user by
specifying that user's address. The structure of a transport address is defined
by the address space of the transport provider. An address may be as simple
as a random character string (for example, "file-server"), or as complex as an
encoded bit pattern that specifies all information needed to route data through
a network. Each transport provider defines its own mechanism or identifying
users. Addresses may be assigned to each transport endpoint by Lbind.

In addition to Lopen and Lbind, several routines are available to sup­
port local operations. Figure 2-3 summarizes all local management routines of
the Transport Interface.

2-4 NETWORK PROGRAMMER'S GUIDE

Modes of Service

Command Description

Lalloc Allocates Transport Interface data structures [see
t-'llloc(3N)].

Lbind Binds a transport address to a transport endpoint [see
t_bind(3N)].

Lclose Closes a transport endpoint [see t_close(3N)].

Lerror Prints a Transport Interface error message [see
t_error(3N)].

Lfree Frees structures allocated using Lalloc [see t_free(3N)].

Lgetinfo Returns a set of parameters associated with a particular
transport provider [see t.-getinfo(3N)].

Lgetstate Returns the state of a transport endpoint [see
t.-getstate(3N)].

Llook Returns the current event on a transport endpoint [see
t-look(3N)].

Lopen Establishes a transport endpoint connected to a chosen
transport provider [see t_open(3N)].

Loptmgntt Negotiates protocol-specific options with the transport
provider [see t_optmgmt(3N)].

Lsync Synchronizes a transport endpoint with the transport
provider [see L ..sync(3N)].

Lunbind Unbinds a transport address from a transport endpoint
[see t_unbind(3N)].

Figure 2-3: Local Management Routines

OVERVIEW OF THE TRANSPORT INTERFACE 2·5

Modes of Service

Connection Establishment
The connection establishment phase enables two users to create a connec­

tion/ or virtual circuit, between them, as demonstrated in Figure 2-4.

ransport Interface

ansportConnection

user 1 user 2

......... T

Trr
t

transport provider

Figure 2-4: Transport Connection

This phase is illustrated by a client/server relationship between two trans­
port users. One user, the server, typically advertises some service to a group
of users, and then listens for requests from those users. As each client
requires the service, it attempts to connect itself to the server using the
server's advertised transport address. The Lconned routine initiates the con­
nect request. One argument to Lconned, the transport address, identifies the
server the client wishes to access. The server is notified of each incoming
request using Llisten, and may call Laccept to accept the client's request for
access to the service. If the request is accepted, the transport connection is
established.

2-6 NETWORK PROGRAMMER'S GUIDE

Modes of Service

Figure 2-5 summarizes all routines available for establishing a transport
connection.

Command Description

Laccept Accepts a request for a transport connection [see
t-'lccept(3N)].

Lconnect Establishes a connection with the transport user at a
specified destination [see t_connect(3N)].

Llisten Retrieves an indication of a connect request from
another transport user [see LJisten(3N)].

Lrcvconnect Completes connection establishment if Lconnect was
called in asynchronous mode (see Chapter 6) [see
t_rcvconnect(3N)].

Figure 2-5: Connection Establishment Routines

OVERVIEW OF THE TRANSPORT INTERFACE 2·7

Modes of Service

Data Transfer
The data transfer phase enables users to transfer data in both directions

over an established connection. Two routines, L-snd and Lrcv., send and
receive data over this connection. All data sent by a user is guaranteed to be
delivered to the user on the other end of the connection in the order in which
it was sent. Figure 2-6 summarizes the connection-mode data transfer rou­
tines.

Command Description

Lrcv Retrieves data that has arrived over a transport connec-
tion [see t_rcv(3N»).

Lsnd Sends data over an established transport connection
[see t-snd(3N»).

Figure 2-6: Connection-Mode Data Transfer Routines

2·8 NETWORK PROGRAMMER'S GUIDE

Modes of Service

Connection Release
The connection release phase provides a mechanism for breaking an esta­

blished connection. When you decide that the conversation should terminate,
you can request that the provider release the transport connection. Two types
of connection release are supported by the Transport Interface. The first is an
abortive release, which directs the transport provider to release the connection
immediately. Any previously sent data that has not yet reached the other
transport user may be discarded by the transport provider. The Lsnddis rou­
tine initiates this abortive disconnect, and Lrcvdis processes the incoming
indication of an abortive disconnect.

All transport providers must support the abortive release procedure. In
addition, some transport providers may also support an orderly release facility
that enables users to terminate communication gracefully with no data loss.
The functions Lsndrel and Lrcvrel support this capability. Figure 2-7 sum­
marizes the connection release routines.

Command Description

L.rcvdis Retums an indication of an aborted connection, includ-
ing a reason code and user data [see t_rcvdis(3N»).

L.rcvrel Returns an indication that the remote user has
requested an orderly release of a connection [see
L..rcvrel(3N»).

Lsnddis Aborts a connection or rejects a connect request [see
t-snddis(3N»).

Lsndrel Requests the orderly release of a connection [see
t-sndrel(3N»).

Figure 2-7: Connection Release Routines

OVERVIEW OF THE TRANSPORT INTERFACE 2·9

Modes of Service

Connectionless-Mode Service
The connectionless-mode transport service is characterized by two phases:

local management and data transfer. The local management phase defines the
same local operations described above for the connection-mode service.

The data transfer phase enables a user to transfer data units (sometimes
called datagrams) to the specified peer user. Each data unit must be accom­
panied by the transport address of the destination user. Two routines,
Lsndudata and Lrcvudata, support this message-based data transfer facility.
Figure 2-8 summarizes all routines associated with connectionless-mode data
transfer.

Command Description

Lrcvudata Retrieves a message sent by another transport user [see
t_rcvudata(3N)].

Lrcvuderr Retrieves error information associated with a previously
sent message [see t_rcvuderr(3N)].

Lsndudata Sends a message to the specified destination user [see
t-sndudata(3N)].

Figure 2-8: Connectionless-Mode Data Transfer Routines

2·10 NETWORK PROGRAMMER'S GUIDE

State Transitions
The Transport Interface has two components:

• the library routines that provide the transport services to users

• the state transition rules that define the sequence in which the trans­
port routines may be invoked

The state transition rules are presented in Appendix A of this guide in the
form of state tables. The state tables define the legal sequence of library calls
based on state information and the handling of events. These events include
user-generated library calls, as well as provider-generated event indications.

Any user of the Transport Interface must completely understand all pos­
sible state transitions before writing software using the interface.

OVERVIEW OF THE TRANSPORT INTERFACE 2-11

3 Connection-mode Service

Introduction

Local Management
The Client
The Server

Connection Establishment
The Client
Event Handling
The Server

Data Transfer
The Client
The Server

Connection Release
The Server
The Client

3-1

3-2
3-3
3-6

3-10
3-10
3-12
3-13

3-19
3-20
3-21

3-24
3-25
3-26

Introduction

This chapter describes the connection-mode service of the Transport Inter­
face. As discussed in the previous chapter, the connection-mode service can
be illustrated using a client/server example. The important concepts of
connection-mode service will be presented using two programming examples.
The examples are related in that the first illustrates how a client establishes a
connection to a server and then communicates with the server. The second
example shows the server's side of the interaction. All examples discussed in
this guide are presented in their entirety in Appendix C.

In the examples, the client establishes a connection with a server process.
The server then transfers a file to the client. The client, in tum, receives the
data from the server and writes it to its standard output file.

CONNECTION-MODE SERVICE 3-1

Local Management
Before the client and server can establish a transport connection, each

must ftrSt establish a local channel (the transport endpoint) to the transport
provider using Lopen, and establish its identity (or address) using Lbind.

The set of services supported by the Transport Interface may not be
implemented by all transport protocols. Each transport provider has a set of
characteristics associated with it that determine the services it offers and the
limitations associated with those services. This information is returned to the
user by Lopen, and consists of the following:

addr maximum size of a transport address

options maximum bytes of protocol-specific options that may be
passed between the transport user and transport provider

tsdu maximum message size that may be transmitted in either
connection-mode or connectionless-mode

etsdu

connect

discon

servtype

maximum expedited data message size that may be sent
over a transport connection

maximum number of bytes of user data that may be
passed between users during connection establishment

maximum bytes of user data that may be passed between
users during the abortive release of a connection

the type of service supported by the transport provider

The three service types defined by the Transport Interface are:

T_COTS The transport provider supports connection-mode service
but does not provide the optional orderly release facility.

T_COTS_ORD The transport provider supports connection-mode service
with the optional orderly release facility.

The transport provider supports connectionless-mode ser­
vice.

Only one such service can be associated with the transport provider identified
by Lopen.

3-2 NETWORK PROGRAMMER'S GUIDE

Local Management

Lopen returns the default provider characteristics associated with a tran­
sport endpoint. However, some characteristics may change after an end­
point has been opened. This will occur if the characteristics are associ­
ated with negotiated options (described later in this chapter). For exam­
ple, if the support of expedited data transfer is a negotiated option, the
value of this characteristic may change. Lgetinfo may be called to
retrieve the current characteristics of a transport endpoint.

Once a user establishes a transport endpoint with the chosen transport
provider, it must establish its identity. As mentioned earlier, Lbind accom­
plishes this by binding a transport address to the transport endpoint. In addi­
tion, for servers, this routine informs the transport provider that the endpoint
will be used to listen for incoming connect requests, also called connect indi­
cations.

An optional facility, Loptmgmt [see t_optmgmt(3N)], is also available
during the local management phase. It enables a user to negotiate the values
of protocol options with the transport provider. Each transport protocol is
expected to define its own set of negotiable protocol options, which may
include such information as Quality-of-Service parameters. Because of the
protocol-specific nature of options, only applications written for a particular
protocol environment are expected to use this facility.

The Client
The local management requirements of the example client and server are

used to discuss details of these facilities. The following are the definitions
needed by the client program, followed by its necessary local management
steps.

CONNECTION·MODE SERVICE 3·3

Local Management

#i.nclude <stdio.h>
#i.nclude <tiuser.h>
#include <fcntl.h>

#define SRV_AIXR

main()

{

/* server' s well Jax:Jwn address */

int fd;
int nbytes;
int flags = 0;
char J::uf[1024];
struct t_call *sndcall;
extem int t_en:DO;

if «(fd = t_open("/dev/tivc", O_Ram, NULL» < 0)
t_errar(Itt_open failed");
exi.t(1);

if (t_bind(fd, NtlIL, NULL) < 0)
t_errar(nt_bind failed");
exi.t(2) ;

The first argument to Lopen is the path name of a file system node that
identifies the transport protocol that will supply the transport service. In this
example, /dev/live is a STREAMS clone device node that identifies a generic,
connection-based transport protocol [see clone(7)]. The clone device finds an
available minor device of the transport provider for the user. It is opened for
both reading and writing, as specified by the O-RDWR open flag. The third
argument may be used to return the service characteristics of the transport
provider to the user. This information is useful when writing protocol­
independent software (discussed in Appendix B). For simplicity, the client and
server in this example ignore this information and assume the transport pro­
vider has the following characteristics:

3·4 NETWORK PROGRAMMER'S GUIDE

Local Management

• The transport address is an integer value that uniquely identifies each
user.

• The transport provider supports the T_COTS_ORD service type, and
the example will use the orderly release facility to release the connec­
tion.

• User data may not be passed between users during either connection
establishment or abortive release.

• The transport provider does not support protocol-specific options.

Because these characteristics are not needed by the user, NULL is specified in
the third argument to Lopen. If the user needed a service other than
T_COTS_ORD, another transport provider would be opened. An example of
the T_CLTS service invocation is presented in Chapter 4.

The return value of Lopen is an identifier for the transport endpoint that
will be used by all subsequent Transport Interface function calls. This identif­
ier is actually a file descriptor obtained by opening the transport protocol file
[see open(2»). The significance of this fact is highlighted in Chapter 5.

After the transport endpoint is created, the client calls Lbind to assign an
address to the endpoint. The first argument identifies the transport endpoint.
The second argument describes the address the user would like to bind to the
endpoint, and the third argument is set on return from Lbind to specify the
address that the provider bound.

The address associated with a server's transport endpoint is important
because that is the address used by all clients to access the server. However,
the typical client does not care what its own address is, because no other pro­
cess will try to access it. That is the case in this example, where the second
and third arguments to Lbind are set to NULL. A NULL second argument
will direct the transport provider to choose an address for the user. A NULL
third argument indicates that the user does not care what address was
assigned to the endpoint.

If either Lopen or Lbind fail, the program will call Lerror [see
t_error(3N») to print an appropriate error message to stderr. If any Transport
Interface routine fails, the global integer Lerrno will be assigned an appropri­
ate transport error value. A set of such error values has been defined (in
<tiuser.h» for the Transport Interface, and Lerror will print an error mes­
sage corresponding to the value in Lermo. This routine is analogous to per­
ror [see perror(3C»), which prints an error message based on the value of
errno. If the error associated with a transport function is a system error,

CONNECTION-MODE SERVICE 3-5

Local Management

Lermo will be set to TSYSERR and ermo will be set to the appropriate
value.

The Server
The server in this example must take similar local management steps

before communication can begin. The server must establish a transport end­
point through which it will listen for connect indications. The necessary
definitions and local management steps are shown below:

#include <tiuser.h>
#include <st:z:opts .h>
#include <fcnt1.h>
#include <stdio.h>
#include <signal.h>

#define DI~ -1
#define SRV.J\IDR 1 /* server's ~ll-koown address */

/* cxmnecti.on established here */

maine)
{

int listen_fd; /* listening transport eMpoint */

struct t_b:in:i *b:in:i;
st:ruet t_call *call;

if «listen_fd = t_open("/dev/tivc", O_RIl'm., NUIL» < 0)
t_error(nt_open failed for listelLfd");
ex:it(1);

/*
* By assuming that the address is an integer value,
* this program may mt run over aIXJt:her protocol.
*/

3-6 NETWORK PROGRAMMER'S GUIDE

Local Management

continued

if «bind = (st:ruct t_bind *)t_alloc(listeILfd, T_BIND, T_ALL» == NULL)
t_error("t_alloc of t_bind structure failed");
exit(2) ;

bind->qlen = 1;
bind->addr•len = sizeof(int) ;
*(int *)bind->addr.buf =SRV_AI:DR;

if (t_bind(listeILfd, bind, bind) < 0) {
t_error(Itt_bind failed for listen_fd");
exit(3) ;

/*
* was the correct address b:Jund?
*/
if (*(int *)bind->addr.buf 1= SRV_AIJ:R) {

fprintf (stderr, nt_bind bound WJ:CI1lI] addresso);
exit(4) ;

As with the client, the first step is to call Lopen to establish a transport
endpoint with the desired transport provider. This endpoint, listen_fd, will be
used to listen for connect indications. Next, the server must bind its well­
known address to the endpoint. This address is used by each client to access
the server. The second argument to Lbind requests that a particular address
be bound to the transport endpoint. This argument points to a Lbind struc­
ture with the following format:

CONNECTION-MODE SERVICE 3-7

Local Management

struct t_bind {
struct netbuf addr;
unsigned qlen;

}

where addr describes the address to be bound, and qlen indicates the max­
imum outstanding connect indications that may arrive at this endpoint. All
Transport Interface structure and constant definitions are found in <tiuser.h>.

The address is specified using a netbuf structure that contains the follow­
ing members:

struct netbuf {
unsigned int maxlen;
unsigned int len;
char *buf;

}

where but points to a buffer containing the data, len specifies the bytes of data
in the buffer, and maxlen indicates the maximum bytes the buffer can hold
(and need only be set when data is returned to the user by a Transport Inter­
face routine). For the Lbind structure, the data pointed to by but identifies a
transport address. It is expected that the structure of addresses will vary
among each protocol implementation under the Transport Interface. The net­
buf structure is intended to support any such structure.

If the value of qlen is greater than 0, the transport endpoint may be used
to listen for connect indications. In such cases, Lbind directs the transport
provider to immediately begin queueing connect indications destined for the
bound address. Furthermore, the value of qlen indicates the maximum out­
standing connect indications the server wishes to process. The server must
respond to each connect indication, either accepting or rejecting the request
for connection. An outstanding connect indication is one to which the server
has not yet responded. Often, a server will fully process a single connect indi­
cation and respond to it before receiving the next indication. In this case, a
value of 1 is appropriate for qlen. However, some servers may wish to
retrieve several connect indications before responding to any of them. In such
cases, qlen indicates the maximum number of such outstanding indications the
server will process. An example of a server that manages multiple outstand­
ing connect indications is presented in Chapter 6.

3·8 NETWORK PROGRAMMER'S GUIDE

Local Management

Lalloe is called to allocate the Lbind structure needed by Lbind.
Lalloe takes three arguments. The first is a file descriptor that references a
transport endpoint. This is used to access the characteristics of the transport
provider [see t_open(3N»). The second argument identifies the appropriate
Transport Interface structure to be allocated. The third argument specifies
which, if any, netbuf buffers should be allocated for that structure. T-ALL
specifies that all netbuf buffers associated with the structure should be allo­
cated, and will cause the addr buffer to be allocated in this example. The size
of this buffer is determined from the transport provider characteristic that
defines the maximum address size. The maxlen field of this netbuf structure
will be set to the size of the newly allocated buffer by Lalloe. The use of
Lalloe will help ensure the compatibility of user programs with future
releases of the Transport Interface.

The server in this example will process connect indications one at a time,
so qlen is set to one. The address information is then assigned to the newly
allocated Lbind structure. This Lbind structure will be used to pass infor­
mation to Lbind in the second argument, and also will be used to return
information to the user in the third argument.

On return, the Lbind structure will contain the address that was bound
to the transport endpoint. If the provider could not bind the requested
address, perhaps because it had been bound to another transport endpoint, it
will choose another appropriate address.

Each transport provider will manage its address space differently. Some
transport providers may allow a single transport address to be bound to
several transport endpoints, while others may require a unique address
per endpoint. The Transport Interface supports either choice. Based on
its address management rules, a provider will determine if it can bind the
requested address. If not, it will choose another valid address from its
address space and bind it to the transport endpoint.

The server must check the bound address to ensure that it is the one previ­
ously advertised to clients. Otherwise, the clients will be unable to reach the
server.

If Lbind succeeds, the provider will begin queueing connect indications.
The next phase of communication, connection establishment, is entered.

CONNECTION-MODE SERVICE 3-9

Connection Establishment

The connection establishment procedures highlight the distinction
between clients and servers. The Transport Interface imposes a different set of
procedures in this phase for each type of transport user. The client initiates
the connection establishment procedure by requesting a connection to a partic­
ular server using Lconnect. The server is then notified of the client's request
by calling Llisten. The server may either accept or reject the client's request.
It will call Laccept to establish the connection, or call Lsnddis to reject the
request. The client will be notified of the server's decision when Lconnect
completes.

The Transport Interface supports two facilities during connection establish­
ment that may not be supported by all transport providers. The first is the
ability to transfer data between the client and server when establishing the
connection. The client may send data to the server when it requests a connec­
tion. This data will be passed to the server by Llisten. Similarly, the server
can send data to the client when it accepts or rejects the connection. The con­
nect characteristic returned by Lopen determines how much data, if any, two
users may transfer during connect establishment.

The second optional service supported by the Transport Interface during
connection establishment is the negotiation of protocol options. The client
may specify protocol options that it would like the remote user and/or tran­
sport provider to use. The Transport Interface supports both local and remote
option negotiation. As discussed earlier, option negotiation is inherently a
protocol-specific function. Use of this facility is discouraged if protocol­
independent software is a goal (see Appendix B).

The Client
Continuing with the client/server example, the steps needed by the client

to establish a connection are shown next:

3·10 NETWORK PROGRAMMER'S GUIDE

Connection Establishment

/*
* By assuming that the address is an :integer value,
* this program may not :run over another protocol.
*/
if «SIXlca1l = (struct t_call *)t_alloc(fd, T_CALL, T_ADIR» == NULL)

t_errar("t_alloc failed");
exit(3) ;

}

sndcall->addr•len =sizeof(int) ;

*(int *)sMcall->addr.buf = SRV_AIl:R;

if (t3x:mnect(fd, sndcall, NULL) < 0) {
t_en::or("t_oannect failed for fd");
exit(4) ;

The Leonned call establishes the connection with the server. The first argu­
ment to Leonned identifies the transport endpoint through which the con­
nection is established, and the second argument identifies the destination
server. This argument is a pointer to a Leall structure, which has the follow­
ing format:

struct t_cal.l {
struct netbuf addr;
struct netbuf opt;
struct netbuf udata;
int sequence;

}

addr identifies the address of the server, opt may be used to specify protocol­
specific options that the client would like to associate with the connection, and
udata identifies user data that may be sent with the connect request to the
server. The sequence field has no meaning for Leonned.

CONNECTION-MODE SERVICE 3-11

Connection Establishment

LaUoe is called above to allocate the LeaU structure dynamically. Once
allocated, the appropriate values are assigned. In this example, no options or
user data are associated with the Leonned call, but the server's address must
be set. The third argument to LaUoe is set to T-.ADDR to indicate that an
appropriate netbuf buffer should be allocated for the address. The server's
address is then assigned to buf, and len is set accordingly.

The third argument to Leonned can be used to return information about
the newly established connection to the user, and may retrieve any user data
sent by the server in its response to the connect request. It is set to NULL by
the client here to indicate that this information is not needed. The connection
will be established on successful return of Leonned. If the server rejects the
connect request, Leanned will fail and set Lerma to TLOOK.

Event Handling
The TLOOK error has special significance in the Transport Interface.

Some Transport Interface routines may be interrupted by an unexpected asyn­
chronous transport event on the given transport endpoint, and TLOOK noti­
fies the user that an event has occurred. As such, TLOOK does not indicate
an error with a Transport Interface routine, but the normal processing of that
routine will not be performed because of the pending event. The events
defined by the Transport Interface are listed here:

T_LISTEN A request for a connection, called a connect indication,
has arrived at the transport endpoint.

T_CONNECT The confmnation of a previously sent connect request,
called a connect confirmation, has arrived at the tran­
sport endpoint. The confmnation is generated when a
server accepts a connect request.

T_DATA User data has arrived at the transport endpoint.

T-EXDATA Expedited user data has arrived at the transport end­
point. (Expedited data will be discussed later in this
chapter.)

T_DISCONNECT A notification that the connection was aborted or that
the server rejected a connect request, called a discon­
nect indication, has arrived at the transport endpoint.

3·12 NETWORK PROGRAMMER'S GUIDE

Connection Establishment

A request for the orderly release of a connection,
called an orderly release indication, has arrived at the
transport endpoint.

The notification of an error in a previously sent
datagram, called a unitdata error indication, has
arrived at the transport endpoint (see Chapter 4).

As described in the state tables of Appendix A, it is possible in some
states to receive one of several aSYnchronous events. The Uook [see
t-look(3N)] routine enables a user to determine what event has occurred if a
TLOOK error is returned. The user can then process that event accordingly.
In the example, if a connect request is rejected, the event passed to the client
will be a disconnect indication. The client will exit if its request is rejected.

The Server
Returning to the example, when the client calls Lconnect, a connect indi­

cation will be generated on the server's listening transport endpoint. The
steps required by the server to process the event are presented below. For
each client, the server accepts the connect request and spawns a server process
to manage the connection.

CONNECTION-MODE SERVICE 3-13

Connection Establishment

if «call = (struct t_call *)t_a11oc(listen_fd, T_CALL, T_ALL» == NOLL)
t_en:or("t_a11oc of t_call structure failed");
exi.t(S) ;

while (1) {

if (t_listen(listen_fd, call) < 0) {
t_en:or(nt_listen failed for listen_fd");
exi.t(6) ;

if «oc:mILfd = accept_call(lisu!JLfd, call» 1=D~)
:tUILserver(listen_fd) ;

The server will loop forever, processing each connect indication. First, the
server calls Uisten to retrieve the next connect indication. When one arrives,
the server calls aeeepLeall to accept the connect request. aeeepLeall accepts
the connection on an alternate transport endpoint (as discussed below) and
returns the value of that endpoint. cOn1Lfd is a global variable that identifies
the transport endpoint where the connection is established. Because the con­
nection is accepted on an alternate endpoint, the server may continue listening
for connect indications on the endpoint that was bound for listening. If the
call is accepted without error, run-server will spawn a process to manage the
connection.

The server allocates a Leall structure to be used by Llisten. The third
argument to Lalloe, T-ALL, specifies that all necessary buffers should be
allocated for retrieving the caller's address, options, and user data. As men­
tioned earlier, the transport provider in this example does not support the
transfer of user data during connection establishment, and also does not sup­
port any protocol options. Therefore, Lalloc will not allocate buffers for the
user data and options. It must, however, allocate a buffer large enough to
store the address of the caller. Lalloe determines the buffer size from the
addr characteristic returned by Lopen. The maxlen field of each netbuf struc­
ture will be set to the size of the newly allocated buffer by Lalloe. (maxlen is
ofor the user data and options buffers.)

3-14 NETWORK PROGRAMMER'S GUIDE

Connection Establishment

Using the Leall structure, the server calls Uisten to retrieve the next
connect indication. If one is currently available, it is returned to the server
immediately. Otherwise, LUsten will block until a connect indication arrives.

The Transport Interface supports an asynchronous mode for such rou­
tines that will prevent a process from blocking. This feature is discussed
in Chapter 6.

When a connect indication arrives, the server calls aeeepLeall to accept
the client's request, as follows:

CONNECTION-MODE SERVICE 3-15

Connection Establishment

accept_call(listelLfd, call)
int listel'Lfd;
struct t_call *call;
{

int resfd;

if «resfd = t_open("Idev/tivc", O_RDlR, NULL) < 0)
t_er.tOr("t_open for respand.i.Dq fd failed");
exit(7) ;

if (t_bind(resfd, NULL, NULL) < 0) {
t_er.tOr(tIt_bind for respording fd failed");
exit(8) ;

if (t_accept(listen_fd, resfd, call) < 0) {

if (t_ernlO = TUXlC) { 1* lIUSt be a disoannect *1
if (t_rcvd:i.s(listen_fd, NULL) < 0) {

t_er.tOr("t_:rcvdi.s failed for listen_fd");
exit(9) ;

}

if (t_close(resfd) < 0) {

t_en'Or(tIt_close failed for responding fd");
exit(10);

}

1* go back up and listen for other calls *1
return(D:ISCamEX:'l') ;

}

t_en'Or("t_accept failed");
exit(11);

}

retm:n(resfd) ;

aeeepLeall takes two arguments. listen-fd identifies the transport endpoint
where the connect indication arrived, and call is a pointer to a Leall structure
that contains all information associated with the connect indication. The
server will first establish another transport endpoint by opening the clone
device node of the transport provider and binding an address. As with the
client, a NULL value is passed to Lbind to specify that the user does not care

3·16 NETWORK PROGRAMMER'S GUIDE

Connection Establishment

what address is bound by the provider. The newly established transport end­
point, resfd, is used to accept the client's connect request.

The first two arguments of Laeeept specify the listening transport end­
point and the endpoint where the connection will be accepted, respectively. A
connection may be accepted on the listening endpoint. However, this would
prevent other clients from accessing the server for the duration of that connec­
tion.

The third argument of Laeeept points to the LeaH structure associated
with the connect indication. This structure should contain the address of the
calling user and the sequence number returned by Uisten. The value of
sequence has particular significance if the server manages multiple outstanding
connect indications. Chapter 6 presents such an example. Also, the Leall
structure should identify protocol options the user would like to specify and
user data that may be passed to the client. Because the transport provider in
this example does not support protocol options or the transfer of user data
during connection establishment, the LeaH structure returned by LUsten
may be passed without change to Laeeept.

For simplicity in the example, the server will exit if either the Lopen or
Lbind call fails. exit(2) will close the transport endpoint associated with
listen_fd, causing the transport provider to pass a disconnect indication to the
client that requested the connection. This disconnect indication notifies the
client that the connection was not established; Leonnect will fail, setting
Lerrno to TLOOK.

Laeeept may fail if an asynchronous event has occurred on the listening
transport endpoint before the connection is accepted, and Lermo will be set
to TLOOK. The state transition table in Appendix A shows that the only
event that may occur in this state with only one outstanding connect indica­
tion is a disconnect indication. This event may occur if the client decides to
undo the connect request it had previously initiated. If a disconnect indication
arrives, the server must retrieve the disconnect indication using Lrevdis.
This routine takes a pointer to a Ldiseon structure as an argument, which is
used to retrieve information associated with a disconnect indication. In this
example, however, the server does not care to retrieve this information, so it
sets the argument to NULL. After receiving the disconnect indication,
aeeepLeall closes the responding transport endpoint and returns DISCON­
NECT, which informs the server that the connection was disconnected by the
client. The server then listens for further connect indications.

CONNECTION-MODE SERVICE 3-17

Connection Establishment -------------------

Figure 3-1 illustrates how the server establishes connections.

client

respondingw.-_....~
endpoint

server

.. Transport Interface

_____________-t----+--- transport
connection

transport provider

Figure 3-1: Listening and Responding Transport Endpoints

The transport connection is established on the newly created responding end­
point, and the listening endpoint is freed to retrieve further connect indica­
tions.

3-18 NETWORK PROGRAMMER'S GUIDE

Data Transfer

Once the connection has been established, both the client and server may
begin transferring data over the connection using Lsnd and LJcv. In fact,
the Transport Interface does not differentiate the client from the server from
this point on. Either user may send and receive data, or release the connec­
tion. The Transport Interface guarantees reliable, sequenced delivery of data
over an existing connection.

Two classes of data may be transferred over a transport connection: nor­
mal and expedited. Expedited data is typically associated with information of
an urgent nature. The exact semantics of expedited data are subject to the
interpretations of the transport provider. Furthermore, all transport protocols
do not support the notion of an expedited data class [see t_open(3N»).

All transport protocols support the transfer of data in byte stream mode,
where IIbyte stream II implies no concept of message boundaries on data that
is transferred over a connection. However, some transport protocols support
the preservation of message boundaries over a transport connection. This ser­
vice is supported by the Transport Interface, but protocol-independent
software must not rely on its existence.

The message interface for data transfer is supported by a special flag of
Lsnd and LJcv called T-MORE. The messages, called Transport Service
Data Units (TSDU), may be transferred between two transport users as distinct
units. The maximum size of a TSDU is a characteristic of the underlYing tran­
sport protocol. This information is available to the user from Lopen and
Lgetinfo. Because the maximum TSDU size can be large (possibly unlim­
ited), the Transport Interface enables a user to transmit a message in multiple
units.

To send a message in multiple units over a transport connection, the user
must set the T-MORE flag on every Lsnd call except the last. This flag indi­
cates that the user will send more data associated with the message in a sub­
sequent call to Lsnd. The last message unit should be transmitted with
T-MORE turned off to indicate that this is the end of the TSDU.

Similarly, a TSDU may be passed to the user on the receiving side in mul­
tiple units. Again, if LJcv returns with the T-MORE flag set, the user should
continue calling LJcv to retrieve the remainder of the message. The last unit
in the message will be indicated by a call to LJcv that does not set T-MORE.

CONNECTION-MODE SERVICE 3·19

Data Transfer

The T-MORE flag implies nothing about how the data may be packaged
below the Transport Interface. Furthermore, it implies nothing about how
the data may be delivered to the remote user. Each transport protocol,
and each implementation of that protocol, may package and deliver the
data differently.

For example, if a user sends a complete message in a single call
to Lsnd, there is no guarantee that the transport provider will deliver the
data in a single unit to the remote transport user. Similarly, a TSDU
transmitted in two message units may be delivered in a single unit to the
remote transport user. The message boundaries may only be preserved by
noting the value of the T-MORE flag on Lsnd and Lrcv. This will
guarantee that the receiving user will see a message with the same con­
tents and message boundaries as was sent by the remote user.

The Client
Continuing with the client/server example, the server will transfer a log

file to the client over the transport connection. The client receives this data
and writes it to its standard output file. A byte stream interface is used by the
client and server, where message boundaries (that is, the T-MORE flag) are
ignored. The client receives data using the following instructions:

while «nbytes = t_rcV'(fd, buf, 1024, &flaqs» 1= -1) {
if (fwrite(buf, 1, nbytes, stdcut) < 0) {

fprintf (st:deJ:r, "fwrite failedo);
exit(S) ;

The client continuously calls Lrcv to process incoming data. If no data is
currently available, Lrcv blocks until data arrives. Lrcv will retrieve the
available data up to 1024 bytes, which is the size of the client's input buffer,
and will return the number of bytes that were received. The client then writes
this data to standard output and continues. The data transfer phase will

3·20 NETWORK PROGRAMMER'S GUIDE

Data Transfer

complete when t-rcv fails. t-rcv will fail if an orderly release indication or
disconnect indication arrives, as will be discussed later in this chapter. If the
£Write call [see fwrite(3S)] fails for any reason, the client will exit, thereby
closing the transport endpoint. If the transport endpoint is closed (either by
exit or Lc1ose) when it is in the data transfer phase, the connection will be
aborted and the remote user will receive a disconnect indication.

The Server
Looking now at the other side of the connection, the server manages its

data transfer by spawning a child process to send the data to the client. The
parent process then loops back to listen for further connect indications.
rUlLServer is called by the server to spawn this child process as follows:

cx:nmrelease()
{

/* OOlU'Lfd is global because needed here */
if (t_look(cCl'ULfd) = T_DI&:XHm:T) {

fprintf (st:derr , "cxmnecti.on al:IOrtedo);
exit(12);

}

/* else orderly release indication - noxmal exit */
exit(O) ;

rml_server(listeILfd)
int listel'Lfd;
{

int nbytes;

FILE *1cg:fp;
char buf[1024];

switch (fark(»

/* file pointer to leg file */

case -1:
perror("fark failed");
exit(20) ;

default: /* parent */

/* close cann_fd and then go up and listen again */
if (t_close(cann_fd) < 0) {

t_er:tor(lit_close failed far cann_fd");
exit(21);

CONNECTION-MODE SERVICE 3-21

Data Transfer

continued

retun1;

case 0: /* child */

/* close listerLfd and do service */
if (t_close(listerLfd) < 0) {

t_error(nt_close failed for listerLfdn);
exi.t(22) ;

}

if «logfp = fopen("logfile", "r"» = NULL)

penor("cannot open logfile");
exi.t(23) ;

signal (SIGPOLL, oormrelease);
if (ioctl(o::mrLfd, I_SEl'SIG, S_INPUl') < 0)

penor("ioctl I_SEn'SIG failed");
exi.t(24) ;

}

if (t_look(oOlULfd) 1= 0) { /* was disconnect already there? */
fprintf (stderr, lit_look retur:ned unexpected evento);
exi.t(25) ;

while «nbytes = fread(buf, 1, 1024, logfp» > 0)
if (t_snd(oCmILfd, buf, nbytes, 0) < 0)

t_error("t_snd failed");
exi.t(26) ;

After the fork, the parent process will return to the main processing loop and
listen for further connect indications. Meanwhile, the child process will
manage the newly established transport connection. If the fork call fails, exit
will close the transport endpoint associated with liste1Lfd. This action will
cause a disconnect indication to be passed to the client, and the client's
Lconnect call will fail.

3·22 NETWORK PROGRAMMER'S GUIDE

Data Transfer

The server process reads 1024 bytes of the log file at a time and sends
that data to the client using Lsnd. buf points to the start of the data buffer,
and nbytes specifies the number of bytes to be transmitted. The fourth argu­
ment is used to specify optional flags. Two flags are currently supported:
T-EXPEDITED may be set to indicate that the data is expedited, and
T-MORE may be set to define message boundaries when transmitting mes­
sages over a connection. Neither flag is set by the server in this example.

If the user begins to flood the transport provider with data, the provider
may exert back pressure to provide flow control. In such cases, Lsnd will
block until the flow control is relieved, and will then resume its operation.
Lsnd will not complete until nbyte bytes have been passed to the transport
provider.

The Lsnd routine does not look for a disconnect indication (signifYing
that the connection was broken) before passing data to the provider. Also,
because the data traffic is flowing in one direction, the user will never look for
incoming events. If, for some reason, the connection is aborted, the user
should be notified because data may be lost. One option available to the user
is to use Llook to check for incoming events before each Lsnd call. A more
efficient solution is the one presented in the example. The STREAMS
LSETSIG iodl enables a user to request a signal when a given event occurs
[see streamio(7) and signal(2)]. The STREAMS event of concern here is
S-INPUT, which will cause a signal to be sent to the user if any input arrives
on the Stream referenced by conn_fd. If a disconnect indication arrives, the
signal catching routine (connrelease) will print an appropriate error message
and then exit.

If the data traffic flowed in both directions in this example, the user would
not have to monitor the connection for disconnects. If the client alternated
Lsnd and Lrcv calls, it could rely on Lrcv to recognize an incoming discon­
nect indication.

CONNECTION-MODE SERVICE 3-23

Connection Release
At any pOint during data transfer, either user may release the transport

connection and end the conversation. As mentioned earlier, two forms of
connection release are supported by the Transport Interface. The first, abor­
tive release, breaks a connection immediately and may result in the loss of
any data that has not yet reached the destination user. Lsnddis may be
called by either user to generate an abortive release. Also, the transport pro­
vider may abort a connection if a problem occurs below the Transport Inter­
face. Lsnddis enables a user to send data to the remote user when aborting
a connection. Although the abortive release is supported by all transport pro­
viders, the ability to send data when aborting a connection is not.

When the remote user is notified of the aborted connection, Lrcvdis must
be called to retrieve the disconnect indication. This call will return a reason
code that indicates why the connection was aborted, and will return any user
data that may have accompanied the disconnect indication (if the abortive
release was initiated by the remote user). This reason code is specific to the
underlYing transport protocol, and should not be interpreted by protocol­
independent software.

The second form of connection release is orderly release, which gracefully
terminates a connection and guarantees that no data will be lost. All transport
providers must support the abortive release procedure, but orderly release is
an optional facility that is not supported by all transport protocols.

3-24 NETWORK PROGRAMMER'S GUIDE

Connection Release

The Server
The client/server example in this chapter assumes that the transport pro­

vider does support the orderly release of a connection. When all the data has
been transferred by the server, the connection may be released as follows:

if (t_smrel(c:x:mLfd) < 0) {
t_error("t_smrel failed");
exit(27) ;

}

pause(); /* until orderly release :in:ii.cation arrives */

The orderly release procedure consists of two steps by each user. The first
user to complete data transfer may initiate a release using Lsndrel, as illus­
trated in the example. This routine informs the client that no more data will
be sent by the server. When the client receives such an indication, it may
continue sending data back to the server if desired. When all data has been
transferred, however, the client must also call Lsndrel to indicate that it is
ready to release the connection. The connection will be released only after
both users have requested an orderly release and received the corresponding
indication from the other user.

In this example, data is transferred in one direction from the server to the
client, so the server does not expect to receive data from the client after it has
initiated the release procedure. Thus, the server simply calls pause [see
pause(2)] after initiating the release. Eventually, the remote user will respond
with its orderly release request, and the indication will generate a signal that
will be caught by connrelease. Remember that the server earlier issued an
LSETSIG iodl call to generate a signal on any incoming event. Since the
only possible Transport Interface events that can occur in this situation are a
disconnect indication or orderly release indication, connrelease will terminate
normally when the orderly release indication arrives. The exit call in
connrelease will close the transport endpoint, thereby freeing the bound

CONNECTION-MODE SERVICE 3·25

Connection Release

address for use by another user. If a user process wants to close a transport
endpoint without exiting, it may call Lclose.

The Client
The client's view of connection release is similar to that of the server. As

mentioned earlier, the client continues to process incoming data until Lrcv
fails. If the server releases the connection (using either Lsnddis or Lsndrel),
Lrcv will fail and set Lermo to TLOOK. The client then processes the con­
nection release as follows:

if «t_eaDO = TI£lCI() 50&. (t_look(fd) = T-'IR~EL» {
if (t_rcvrel(fd) < 0) {

t_en:a:r(nt_rcvrel failed");
exi.t(6) ;

}

if (t_sndrel(fd) < 0) {
t_error("t_sndrel failed");
exi.t(7) ;

}

exi.t(O) ;
}

t_error(nt_rev failed");
exi.t(8) ;

Under normal circumstances, the client terminates the transfer of data by cal­
ling Lsndrel to initiate the connection release. When the orderly release
indication arrives at the client's side of the connection, the client checks to
make sure the expected orderly release indication has arrived. If so, it
proceeds with the release procedures by calling Lrcvrel to process the indica­
tion and Lsndrel to inform the server that it is also ready to release the con­
nection. At this point the client exits, thereby closing its transport endpoint.

3·26 NETWORK PROGRAMMER'S GUIDE

Connection Release

Because all transport providers do not support the orderly release facility
just described, users may have to use the abortive release facility provided by
L-snddis and Lrcvdis. However, steps must be taken by each user to
prevent any loss of data. For example, a special byte pattern may be inserted
in the data stream to indicate the end of a conversation. Many mechanisms
are possible for preventing data loss. Each application and high-level protocol
must choose an appropriate mechanism given the target protocol environment
and requirements.

CONNECTION-MODE SERVICE 3-27

4 Connectionless-mode Service

Introduction

Local Management

Data Transfer

Datagram Errors

4-1

4-2

4-5

4-8

Introduction
This chapter describes the connectionless-mode service of the Transport

Interface. Connectionless-mode service is appropriate for short-term
request/response interactions, such as transaction processing applications.
Data are transferred in self-contained units with no logical relationship
required among multiple units.

The connectionless-mode services will be described using a transaction
server as an example. This server waits for incoming transaction queries, and
processes and responds to each query.

CONNECTIONLESS·MODE SERVICE 4·1

Local Management
Just as with connection-mode service, the transport users must perform

appropriate local management steps before data can be transferred. A user
must choose the appropriate connectionless service provider using Lopen and
establish its identity using Lbind.

Loptmgmt may be used to negotiate protocol options that may be associ­
ated with the transfer of each data unit. As with the connection-mode service,
each transport provider specifies the options, if any, that it supports. Option
negotiation is therefore a protocol-specific activity.

In the example, the definitions and local management calls needed by the
transaction server are as follows:

#include <stdio.h>
#mclude <faltl.h>
#include <tiuser.h>

#define SRV_AI:Dl 2

main()

{

int fd;
int flags;

st:ruct t_bind *bind;
st:ruct t_unitdata *ud;
st:ruct t_uderr *udeJ:r;

/* server's well-known address */

if «fd = t_open("/dev/tidg", O_RIltm, NOLL» < 0)
t_error("unable to open /devlprovider");
exit(1);

4·2 NETWORK PROGRAMMER'S GUIDE

Local Management

continued

if «bind = (st:roct t_bin:i *)t_alloc(fd, T_BIND, T_ADIR» == NULL)
t_enor{ "t_alloc of t_bind structure failed");
exi.t(2) ;

bind->addr •len = sizeof(int) ;
*(int *)bind->addr.buf = SRV_ADDR;
bind->qlen = 0;

if (t_bind(fd, bind, bind) < 0)

t_enor(nt_bind failed");
exi.t(3) ;

/*
* is the J::omd address correct?
*/

if (*(int *)bind->addr.buf 1= SRV_ADIR) {
fprintf (st:derr, "t_bind bound wrong addresSO);
exi.t(4) ;

The local management steps should look familiar by now. The server
establishes a transport endpoint with the desired transport provider using
Lopen. Each provider has an associated service type, so the user may choose
a particular service by opening the appropriate transport provider file. This
connectionless-mode server ignores the characteristics of the provider returned
by Lopen in the same way as the users in the connection-mode example, set­
ting the third argument to NULL. For simplicity, the transaction server
assumes the transport provider has the following characteristics:

CONNECTIONLESS·MODE SERVICE 4·3

Local Management

• The transport address is an integer value that uniquely identifies each
user.

• The transport provider supports the T_CLTS service type (connection­
less transport service, or datagram).

• The transport provider does not support any protocol-specific options.

The connectionless server also binds a transport address to the endpoint
so that potential clients may identify and access the server. A Lbind struc­
ture is allocated using Lalloc, and the but and len fields of the address are set
accordingly.

One important difference between the connection-mode server and this
connectionless-mode server is that the qlen field of the Lbind structure has
no meaning for connectionless-mode service. That is because all users are
capable of receiving datagrams once they have bound an address. The Trans­
port Interface defmes an inherent client/server relationship between two users
while establishing a transport connection in the connection-mode service.
However, no such relationship exists in the connectionless-mode service. It is
the context of this example, not the Transport Interface, that defmes one user
as a server and another as a client.

Because the address of the server is known by all potential clients, the
server checks the bound address returned by Lbind to ensure it is correct.

4-4 NETWORK PROGRAMMER'S GUIDE

Data Transfer
Once a user has bound an address to the transport endpoint, datagrams

may be sent or received over that endpoint. Each outgoing message is accom­
panied by the address of the destination user. In addition, the Transport
Interface enables a user to specify protocol options that should be associated
with the transfer of the data unit (for example, transit delay). As discussed
earlier, each transport provider defines the set of options, if any, that may
accompany a datagram. When the datagram is passed to the destination user,
the associated protocol options may be returned as well.

The following sequence of calls illustrates the data transfer phase of the
connectionless-mode server:

if «ud = (struct t_unitdata *)t_alloc(fd, T_UNrlDATA, T_ALL» = NULL)
t_error("t_alloc of t_unitdata st:rucbJre failed");
exi.t(S) ;

if «uderr = (struct t_uden" *)t_alloc(fd, T_tmmRCR, T_ALL» == NULL)
t_error("t_alloc of t_uderr structure failed");
exi.t(6) ;

while (1) {

if (t_rcvudata(fd, ud, &flag's) < 0)

if (t_enD:> = '1'UXJ{) {

/*
* Eo:or on previoosly sent datagram
*/

if (t_rcvuderr(fd, uderr) < 0)

exi.t(7) ;

fprintf (stderr, "bad datagram, error = %do,
uderr->error) ;

ocnt:inue;

CONNECTIONLESS-MODE SERVICE 4-5

Data Transfer

continued

t_en'Or("t_rcvudata failed");
exit(8) ;

/*
* Qumy() processes the request and places the
* response in OO->udata.buf, sett:iJlq ud->udata.len
*/

~(OO);

if (t_sndudata(fd, 00, 0) < 0) {
t_en'Or("t_sndudata failed");
exit(9);

~()

{

/* Merely a stub for simplicity */

The server must fust allocate a Lunitdata structure for storing datagrams,
which has the following format:

struct t_unitdata {
struct netbuf addr;
struct netbuf opt;
struct netbuf udata;

}

addr holds the source address of incoming datagrams and the destination
address of outgoing datagrams, opt identifies any protocol options associated
with the transfer of the datagram, and udata holds the data itself. The addr,
opt, and udata fields must all be allocated with buffers that are large enough

4-6 NETWORK PROGRAMMER'S GUIDE

Data Transfer

to hold any possible incoming values. As described in the previous chapter,
the T-ALL argument to Lalloe will ensure this and will set the maxlen field
of each netbuf structure accordingly. Because the provider does not support
protocol options in this example, no options buffer will be allocated, and max­
len will be set to zero in the netbuf structure for options. A Luderr structure
is also allocated by the server for processing any datagram errors, as will be
discussed later in this chapter.

The transaction server loops forever, receiving queries, processing the
queries, and responding to the clients. It first calls Lrevudata to receive the
next query. Lrcvudata will retrieve the next available incoming datagram. If
none is currently available, Lrevudata will block, waiting for a datagram to
arrive. The second argument of Lrevudata identifies the Lunitdata structure
where the datagram should be stored.

The third argument, flags, must point to an integer variable and may be
set to T-MORE on return from Lrevudata to indicate that the user's udata
buffer was not large enough to store the full datagram. In this case, subse­
quent calls to Lrevudata will retrieve the remainder of the datagram.
Because Lalloe allocates a udata buffer large enough to store the maximum
datagram size, the transaction server does not have to check the value of flags.

If a datagram is received successfully, the transaction server calls the query
routine to process the request. This routine will store the response in the
structure pointed to by ud, and will set ud->udata.len to indicate the number
of bytes in the response. The source address returned by Lrevudata in
ud->addr will be used as the destination address by Lsndudata.

When the response is ready, Lsndudata is called to return the response
to the client. The Transport Interface prevents a user from flooding the trans­
port provider with datagrams using the same flow control mechanism
described for the connection-mode service. In such cases, Lsndudata will
block until the flow control is relieved, and will then resume its operation.

CONNECTIONLESS·MODE SERVICE 4·7

Datagram Errors
If the transport provider cannot process a datagram that was passed to it

by Lsndudata, it will return a unit data error event, T_UDERR, to the user.
This event includes the destination address and options associated with the
datagram, plus a protocol-specific error value that describes what may be
wrong with the datagram. The reason a datagram could not be processed is
protocol-specific. One reason may be that the transport provider could not
interpret the destination address or options. Each transport protocol is
expected to specify all reasons for which it is unable to process a datagram.

The unit data error indication is not necessarily intended to indicate success
or failure in delivering the datagram to the specified destination. The trans­
port protocol decides how the indication will be used. Remember, the con­
nectionless service does not guarantee reliable delivery of data.

The transaction server will be notified of this error event when it attempts
to receive another datagram. In this case, Lrcvudata will fail, setting Lerrna
to TLOOK. If TLOOK is set, the only possible event is T_UDERR, so the
server calls Lrcvuderr to retrieve the event. The second argument to
Lrcvuderr is the Luderr structure that was allocated earlier. This structure
is filled in by Lrcvuderr and has the following format:

struct t_uderr {
struct netbuf addr;
struct netbuf opt;
long error;

}

where addr and opt identify the destination address and protocol options as
specified in the bad datagram, and error is a protocol-specific error code that
indicates why the provider could not process the datagram. The transaction
server prints the error code and then continues by entering the processing
loop again.

4-8 NETWORK PROGRAMMER'S GUIDE

5 A Read/Write Interface

Introduction

write

read

Close

5-1

5-3

5-4

5-5

Introduction

A user may wish to establish a transport connection and then exec [see
exec(2)] an existing user program such as cat [see cat{l)] to process the data as
it arrives over the connection. However, existing programs use read and
write for their I/O needs. The Transport Interface does not directly support a
read/write interface to a transport provider, but one is available with UNIX
System V/386. This interface enables a user to issue read and write calls
over a transport connection that is in the data transfer phase. This chapter
describes the read/write interface to the connection-mode service of the
Transport Interface. This interface is not available with the connectionless­
mode service.

The read/write interface is presented using the client example of Chapter
3 with some minor modifications. The clients are identical until the data
transfer phase is reached. At that point, this client will use the read/write
interface and cat to process incoming data. cat can be run without change
over the transport connection. Only the differences between this client and
that of the example in Chapter 3 are shown below.

#i11clude <stropts .h>

/*
* same local management and oonnectic:n
* establishment steps.
*/

if (ioctl(fd, I_PUSH, "tirdwr") < 0) {
perror("I_PUSH of tirdwr failed");
exit(S) ;

close(O) ;
dup(fd);
execl("lbinIcat", "/bin/cat", 0);
pen:or("execl of /bin/cat failed");
exi.t(6) ;

A READ/WRITE INTERFACE 5-1

Introduction

The client invokes the read/write interface by pushing the tirdwr [see
tirdwr(7)] module onto the Stream associated with the transport endpoint
where the connection was established [see LPUSH in streamio(7)]. This
module converts the Transport Interface above the transport provider into a
pure read/write interface. With the module in place, the client calls close
[see close(2)] and dup [see dup(2)] to establish the transport endpoint as its
standard input fIle, and uses /bin/cat to process the input. Because the
transport endpoint identifier is a file descriptor, the facility for duping the
endpoint is available to users.

Because the Transport Interface has been implemented using STREAMS,
the facilities of this character I/O mechanism can be used to provide
enhanced user services. By pushing the tirdwr module above the transport
provider, the user's interface is effectively changed. The semantics of read
and write must be followed, and message boundaries will not be preserved.

The tirdwr module may only be pushed onto a Stream when the transport
endpoint is in the data transfer phase. Once the module is pushed, the
user may not call any Transport Interface routines. If a Transport Interface
routine is invoked, tirdwr will generate a fatal protocol error, EPROTO,
on that Stream, rendering it unusable. Furthermore, if the user pops the
tirdwr module off the Stream [see LPOP in streamio(7)], the transport
connection will be aborted.

The exact semantics of write, read, and close using tirdwr are described
below. To summarize, tirdwr enables a user to send and receive data over a
transport connection using read and write. This module will translate all
Transport Interface indications into the appropriate actions. The connection
can be released with the close system call.

5-2 NETWORK PROGRAMMER'S GUIDE

write
The user may transmit data over the transport connection using write.

The tirdwr module will pass data through to the transport provider. How­
ever, if a user attempts to send a zero-length data packet, which the
STREAMS mechanism allows, tirdwr will discard the message. If for some
reason the transport connection is aborted (for example the remote user aborts
the connection using Lsnddis), a STREAMS hangup condition will be gen­
erated on that Stream, and further write calls will fail and set erma to ENXIO.
The user can still retrieve any available data after a hangup, however.

A READ/WRITE INTERFACE 5-3

read

read may be used to retrieve data that has arrived over the transport con­
nection. The tirdwr module will pass data through to the user from the trans­
port provider. However, any other event or indication passed to the user from
the provider will be processed by tirdwr as follows:

• read cannot process expedited data because it cannot distinguish
expedited data from normal data for the user. If an expedited data
indication is received, tirdwr will generate a fatal protocol error,
EPROTO, on that Stream. This error will cause further system calls to
fail. You must therefore be aware that you should not communicate
with a process that is sending expedited data.

• If an abortive disconnect indication is received, tirdwr will discard the
indication and generate a STREAMS hangup condition on that Stream.
Subsequent read calls will retrieve any remaining data, and then read
will return zero for all further calls (indicating end-of-file).

• If an orderly release indication is received, tirdwr will discard the indi­
cation and deliver a zero-length STREAMS message to the user. As
described in read, this notifies the user of end-of-file by returning 0 to
the user.

• If any other Transport Interface indication is received, tirdwr will gen­
erate a fatal protocol error, EPROTO, on that Stream. This will cause
further system calls to fail. If a user pushes tirdwr onto a Stream after
the connection has been established, such indications will not be gen­
erated.

5-4 NETWORK PROGRAMMER'S GUIDE

Close
With tirdwr on a Stream, the user can send and receive data over a trans­

port connection for the duration of that connection. Either user may terminate
the connection by closing the file descriptor associated with the transport end­
point or by popping the tirdwr module off the Stream. In either case, tirdwr
will take the following actions:

• If an orderly release indication had previously been received by
tirdwr, an orderly release request will be passed to the transport pro­
vider to complete the orderly release of the connection. The remote
user, who initiated the orderly release procedure, will receive the
expected indication when data transfer completes.

• If a disconnect indication had previously been received by tirdwr, no
special action is taken.

• If neither an orderly release indication nor disconnect indication had
previously been received by tirdwr, a disconnect request will be passed
to the transport provider to abortively release the connection.

• If an error had previously occurred on the Stream and a disconnect
indication has not been received by tirdwr, a disconnect request will be
passed to the transport provider.

A process may not initiate an orderly release after tirdwr is pushed onto a
Stream, but tirdwr will handle an orderly release properly if it is initiated by
the user on the other side of a transport connection. If the client in this
chapter is communicating with the server program in Chapter 3, that server
will terminate the transfer of data with an orderly release request. The server
then waits for the corresponding indication from the client. At that point, the
client exits and the transport endpoint is closed. As explained in the first bul­
let item above, when the file descriptor is closed, tirdwr will initiate the
orderly release request from the client's side of the connection. This will gen­
erate the indication that the server is expecting, and the connection will be
released properly.

A READ/WRITE INTERFACE 5·5

6 Advanced Topics

Introduction 6-1

Asynchronous Execution Mode 6-2

Advanced Programming Example 6-3

Introduction

This chapter presents important concepts of the Transport Interface that
have not been covered in the previous chapters. First, an optional non­
blocking (asynchronous) mode for some library calls is described. Then, an
advanced programming example is presented that defines a server that sup­
ports multiple outstanding connect indications and operates in an event-driven
manner.

ADVANCED TOPICS 6-1

Asynchronous Execution Mode
Many Transport Interface library routines may block waiting for an incom­

ing event or the relaxation of flow control. However, some time-critical appli­
cations should not block for any reason. Similarly, an application may wish
to do local processing while waiting for some asynchronous Transport Inter­
face event.

Support for asynchronous processing of Transport Interface events is
available to applications using a combination of the STREAMS asynchronous
features and the non-blocking mode of the Transport Interface library rou­
tines. Earlier examples in this guide have illustrated the use of the STREAMS
poll system call and the LSETSIG ioctl command for processing events in an
asynchronous manner.

In addition, each Transport Interface routine that may block waiting for
some event can be run in a special non-blocking mode. For example, Llisten
will normally block, waiting for a connect indication. However, a server can
periodically poll a transport endpoint for existing connect indications by cal­
ling Llisten in the non-blocking (or asynchronous) mode. The asynchronous
mode is enabled by setting O-NDELAY on the file descriptor. This can be set
as a flag on Lopen, or by calling fentl [see fcntl(2)] before calling the Tran­
sport Interface routine. fentl can be used to enable or disable this mode at
any time. All programming examples illustrated throughout this guide use the
default, synchronous mode of processing.

O-NDELAY affects each Transport Interface routine in a different
manner. To determine the exact semantics of O-NDELAY for a particular
routine, see the appropriate pages in Section 3N of the Programmer's Reference
Manual.

6·2 NETWORK PROGRAMMER'S GUIDE

Advanced Programming Example

The following example demonstrates two important concepts. The first is
a server's ability to manage multiple outstanding connect indications. The
second is an illustration of the ability to write event-driven software using the
Transport Interface and the STREAMS system call interface.

The server example in Chapter 3 is capable of supporting only one out­
standing connect indication, but the Transport Interface supports the ability to
manage multiple outstanding connect indications. One reason a server might
wish to receive several, simultaneous connect indications is to impose a prior­
ity scheme on each client. A server may retrieve several connect indications,
and then accept them in an order based on a priority associated with each
client. A second reason for handling several outstanding connect indications
is that the single-threaded scheme has some limitations. Depending on the
implementation of the transport provider, it is possible that while the server is
processing the current connect indication, other clients will find it busy. If,
however, multiple connect indications can be processed simultaneously, the
server will be found to be busy only if the maximum allowed number of
clients attempt to call the server simultaneously.

The server example is event-driven: the process polls a transport endpoint
for incoming Transport Interface events and then takes the appropriate actions
for the current event. The example demonstrates the ability to poll multiple
transport endpoints for incoming events.

The definitions and local management functions needed by this example
are similar to those of the server example in Chapter 3.

ADVANCED TOPICS 6·3

Advanced Programming Example

#include <tiuser.h>
#include <fcntl.h>
#include <stdio.h>
#include <poll.h>
#include <stropts.h>
#include <signal.h>

#define NOM_FrS

#define MAJLCXRLnID 4
#define SRV_AIXR 1 /* server's 'Ile1I-kJ1c7,m address */

int eXI1'uLfd; /* server cxmnecti.an here */
struet t_ca1l *ca1ls[NtJLEDS] [MAJLCXULnID] ;/* ooIds cxnmect indications */
extern int t_ernx>;

maine)
(

struet pollfd pollfds[NtILEDS];
struet t_bind *bind;
int i;

/*

* Only openi..DJ and b:iD:lin.:J one transport endp::rlnt,
* but ncre could be supported
*/

if «pollfds[O] .fd = t_open("/dev/tivc", O_RIMR, NULL» < 0) {
t_error(Itt_open failed");
exi.t(1);

if «bind = (struet t_bind *)t_alloc(pollfds[O] .fd, T_BIND, T_ALL» == NULL) {
t_error("t_alIoc of t_bind structure failed");
exi.t(2) ;

}

bind->qlen = MAJLCX:ULnID;
bind->addr . len = sizeof(int) ;
*(int *)bind->addr.blf = SRV_ADI:R;

6·4 NETWORK PROGRAMMER'S GUIDE

Advanced Programming Example

continued

if (t_bind(pollfds[O] .fd, bind, bind) < 0)
t_erJ:Or(tit_bind failedn);

exit(3) ;

/*
* was the oorrect address bound?
*/
if (*(int *)b:ind->addr.buf 1= SRV_AaR) {

fprintf (st:de%r, nt_bind bound wmng addresso);
exit(4) ;

The fIle descriptor returned by Lopen is stored in a pollfd structure [see
poll(2)] that will be used to poll the transport endpoint for incoming data.
Notice that only one transport endpoint is established in this example. How­
ever, the remainder of the example is written to manage multiple transport
endpoints. Several endpoints could be supported with minor changes to the
above code.

An important aspect of this server is that it sets qlen to a value greater
than 1 for Lbind. This indicates that the server is willing to handle multiple
outstanding connect indications. Remember that the earlier examples single­
threaded the connect indications and responses. The server would accept the
current connect indication before retrieving additional connect indications.
This example, however, can retrieve up to MAX-CONN-IND connect indica­
tions at one time before responding to any of them. The transport provider
may negotiate the value of qlen downward if it cannot support
MAX-CONN-IND outstanding connect indications.

Once the server has bound its address and is ready to process incoming
connect requests, it does the following:

ADVANCED TOPICS 6-5

Advanced Programming Example

pollfds[O].events = POLLIN;

while (1) {

if (poll(pollfds, IDLEDS, -1) < 0)
pen:or("poll failed");
exit(S);

for (i = 0; i < NUM_EDS; i++)

switch (pollfds[i] .revents) {

default:
perror("poll retumed error event");
exit(6) ;

ease 0:
cxmtinue;

ease roLLIN:

do_eveJ1t(i, pollfds(i] .fd);
service_oann_ind(i, pollfds(i] .fd);

The events field of the pollfd structure is set to POLLIN, which will notify the
server of any incoming Transport Interface events. The server then enters an
infinite loop, in which it will poll the transport endpoint(s) for events, and
then process those events as they occur.

The poll call will block indefinitely, waiting for an incoming event. On
return, each entry (corresponding to each transport endpoint) is checked for an
existing event. If revents is set to 0, no event has occurred on that endpoint.
In this case, the server continues to the next transport endpoint. If revents is
set to POLLIN, an event does exist on the endpoint. In this case, do_event is
called to process the event. If revents contains any other value, an error must
have occurred on the transport endpoint and the server will exit.

6-6 NETWORK PROGRAMMER'S GUIDE

Advanced Programming Example

For each iteration of the loop, if any event is found on the transport end­
point, service-.conIL.ind is called to process any outstanding connect indica­
tions. However, if another connect indication is pending, service-.conIL.ind
will save the current connect indication and respond to it later. This routine
will be explained shortly.

If an incoming event is discovered, the following routine is called to pro­
cess it:

switch (t_look(fd» {

default:
fprintf (stderr, lit_look returned an unexpected evento);
exi.t(7) ;

case T_EImOR:

fprintf(stderr,"t_look retmned T_~ eve:nto);
exi.t(8) ;

case -1:
t_en:ar(nt_look failed");
exi.t(9) ;

case 0:
/* since POILIN returned, this sb:::Juld not happen */
fprintf (stderr, nt_look returned no evento);
exit(10);

case T_LIS'l'EN:

/*
* find free element in calls array
*/

for (i =0; i < MroUXRLnID; i++)
if (calls[slot](i] == NULL)

break;

if «calls(slot] (i] = (stxuct t_call *)t_alloc(fd, T_CALL, T_ALL» = NULL)
t_en:ar("t_alloc of t_call strucbJre failed");
ex::it(11);

if (t_listen(fd, calls[slot] [i]) < 0)
t_en:ar("t.J.isten failed");

ADVANCED TOPICS 6-7

Advanced Programming Example

continued

axit(12);
}

break;

caseT_D~:

disocm = (struct t_disoon *)t_alloc(fd, T_DIS, T_ALL);

if (t_rcvdis(fd, disoon) < 0) {

t_en:or("t_rcvdis failed");
axit(13);

}

/*
* fim call ind in array and delete it
*/

for (i = 0; i < MAJLCQ~Lnm; i++) {
if (disocm->sequence = calls[slot][i]->sequence)

t_free(calls[slot)[i), T_CALL);
calls(slot)[i) =NOLL;

}

t_free(disocm, T_DIS);
break;

This routine takes a number, slot, and a file descriptor, fd, as arguments. slot
is used as an index into the global array calls. This array contains an entry for
each polled transport endpoint, where each entry consists of an array of LcaH
structures that hold incoming connect indications for that transport endpoint.
The value of slot is used to identify the transport endpoint of interest.

do_event calls Llook to determine the Transport Interface event that has
occurred on the transport endpoint referenced by fd. If a connect indication
(T_LISTEN event) or disconnect indication (T_DISCONNECT event) has
arrived, the event is processed. Otherwise, the server prints an appropriate
error message and exits.

6-8 NETWORK PROGRAMMER'S GUIDE

Advanced Programming Example

For connect indications, do_event scans the array of outstanding connect
indications looking for the fIrst free entry. A Lcall structure is then allocated
for that entry, and the connect indication is retrieved using Llisten. There
must always be at least one free entry in the connect indication array because
the array is large enough to hold the maximum number of outstanding con­
nect indications as negotiated by Lbind. The processing of the connect indi­
cation is deferred until later.

If a disconnect indication arrives, it must correspond to a previously
received connect indication. This scenario arises if a client attempts to undo a
previous connect request. In this case, do_event allocates a Ldiscon struc­
ture to retrieve the relevant disconnect information. This structure has the fol­
lowing members:

struct t_disoon {
struct netbuf udata;
int reason;
int sequence;

}

where udata identifies any user data that might have been sent with the
disconnect indication, reason contains a protocol-specifIc disconnect reason
code, and sequence identifIes the outstanding connect indication that matches
this disconnect indication.

Next, Lrcvdis is called to retrieve the disconnect indication. The array of
connect indications for slot is then scanned for one that contains a sequence
number that matches the sequence number in the disconnect indication. When
the connect indication is found, it is freed and the corresponding entry is set
to NULL.

As mentioned earlier, if any event is found on a transport endpoint,
service-colUl-ind is called to process all currently outstanding connect indi­
cations associated with that endpoint as follows:

ADVANCED TOPICS 6·9

Advanced Programming Example

int i;

far (i =0; i < MAJU::X:ULIND; i++)
if (ca1ls[slot][i] == NULL)

continue;

if «ocmn_fd =t_ope!1("/dev/tivcn , O_RDHR, NULL» < 0)

t_errar(nopen failed");
ex:it(14);

}

if (t_b:ind(ocmn_fd, NULL, NULL) < 0)

t_errar(nt_bind failedn);
ex:it(15);

if (t_accept(fd, ocmn_fd, calls[slot][i]) < 0) {

if (t_en:JX) = TUXJC) {

t_close(cxmn_fd) ;
rebnn;

}

t_errar(nt_accept failedn);
ex:it(16);

}
t_free(cal.ls[slot] [i], T_CALL);

calls[slot][i) = NULL;

nm_server(fd) ;

For the given slot (the transport endpoint), the array of outstanding connect
indications is scanned. For each indication, the server will open a responding
transport endpoint, bind an address to the endpoint, and then accept the con­
nection on that endpoint. If another event (connect indication or disconnect
indication) arrives before the current indication is accepted, Laccept will fail
and set Lerma to TLOOK.

6-10 NETWORK PROGRAMMER'S GUIDE

Advanced Programming Example

The user cannot accept an outstanding connect indication if any pending
connect indication events or disconnect indication events exist on that
transport endpoint.

If this error occurs, the responding transport endpoint is closed and
service-colUl-ind will return immediately (saving the current connect indica­
tion for later processing). This causes the server's main processing loop to be
entered, and the new event will be discovered by the next call to poll. In this
way, multiple connect indications may be queued by the user.

Eventually, all events will be processed, and service-conIL.ind will be
able to accept each connect indication in tum. Once the connection has been
established, the ruD-Server routine used by the server in Chapter 3 is called
to manage the data transfer.

ADVANCED TOPICS 6-11

A Appendix A: State Transitions

Appendix A: State Transitions A-1
Transport Interface States A-1
Outgoing Events A-2
Incoming Events A-4
Transport User Actions A-5
State Tables A-5

Appendix A: State Transitions

The tables in this appendix describe all state transitions associated with
the Transport Interface. First, however, the states and events will be
described.

Transport Interface States
Figure A-I defines the states used to describe the Transport Interface state

transitions.

State Descriotion Service Twe
T_UNINIT uninitialized - initial and T_COTS,

final state of interface T_COTS_ORD,T_CLTS
T_UNBND initialized but not bound T_COTS,

T_COTS_ORD,T_CLTS
T-IDLE no connection established T_COTS,

T_COTS_ORD,T_CLTS
T_OUTCON outgoing connection T_COTS,T_COTS_ORD

pending for client
T-INCON incoming connection T_COTS,T_COTS_ORD

pending for server
T_DATAXFER data transfer T_COTS,T_COTS_ORD
T_OUTREL outgoing orderly release T_COTS_ORD

(waiting for orderly
release indication)

T-INREL incoming orderly release T_COTS_ORD
(waiting to send orderly
release request)

Figure A-I: Transport Interface States

APPENDIX A: STATE TRANSITIONS A·1

Appendix A: State Transitions

Outgoing Events
The outgoing events described in Figure A-2 correspond to the return of

the specified transport routines, where these routines send a request or
response to the transport provider.

In the figure, some events (such as aeeeptN) are distinguished by the con­
text in which they occur. The context is based on the values of the following
variables:

Dent count of outstanding connect indications

fd fIle descriptor of the current transport endpoint

resfd fIle descriptor of the transport endpoint where a connection
will be accepted

A-2 NETWORK PROGRAMMER'S GUIDE

Appendix A: State Transitions

Event Description Service Type
opened successful return of Lopen T_COTS,

T_COTS_ORD,T_CLTS

bind successful return of Lbind T_COTS,
T_COTS_ORD,T_CLTS

optmgmt successful return of Loptmgmt T_COTS,
T_COTS_ORD,T_CLTS

unbind successful return of Lunbind T_COTS,
T_COTS_ORD,T_CLTS

closed successful return of Lclose T_COTS,
T_COTS_ORD,T_CLTS

connect! successful return of Leonned in syn- T_COTS, T_COTS_ORD
chronous mode

connect2 TNODATA error on Lconned in asYn- T_COTS,T_COTS_ORD
chronous mode, or TLOOK error due to
a disconnect indication arriving on the
transport endpoint

accept! successful return of Laeeept with Dent T_COTS,T_COTS_ORD
== 1, fd == resfd

accept2 successful return of Laccept with Dent T_COTS, T_COTS_ORD
== 1, fd != resfd

accept3 successful return of Laceept with Dent T_COTS, T_COTS_ORD
>!

snd successful return of t-snd T_COTS,T_COTS_ORD
snddisl successful return of t-snddis with Dent T_COTS,T_COTS_ORD

<= 1
snddis2 successful return of t-snddis with Dent T_COTS,T_COTS_ORD

>1
sndrel successful return of t-sndrel T_COTS_ORD
sndudata successful return of t-sndudata T_CLTS

Figure A-2: Transport Interface Outgoing Events

APPENDIX A: STATE TRANSITIONS A·3

Appendix A: State Transitions

Incoming Events
The incoming events correspond to the successful return of the specified

routines, where these routines retrieve data or event information from the
transport provider. The only incoming event not associated directly with the
return of a routine is pass-conn, which occurs when a user transfers a connec­
tion to another transport endpoint. This event occurs on the endpoint that is
being passed the connection, despite the fact that no Transport Interface rou­
tine is issued on that endpoint. pass-conn is included in the state tables to
describe the behavior when a user accepts a connection on another transport
endpoint.

In Figure A-3, the revdis events are distinguished by the context in which
they occur. The context is based on the value of oent, which is the count of
outstanding connect indications on the transport endpoint.

Incoming
Event Description Service Twe

listen successful return of Uisten T_COTS,T_COTS_ORD
rcvconnect successful return of Lrcvconned T_COTS,T_COTS_ORD
rcv successful return of Lrcv T_COTS,T_COTS_ORD
rcvdisl successful return of Lrcvdis T_COTS, T_COTS_ORD

with oent <= 0
rcvdis2 successful return of Lrcvdis T_COTS,T_COTS_ORD

with oent == 1
rcvdis3 successful return of Lrcvdis T_COTS,T_COTS_ORD

with oent > 1
rcvrel successful return of Lrcvrel T_COTS_ORD

rcvudata successful return of Lrcvudata T_CLTS
rcvuderr successful return of Lrcvuderr T_CLTS
pass-conn receive a passed connection T_COTS,T_COTS_ORD

Figure A-3: Transport Interface Incoming Events

A-4 NETWORK PROGRAMMER'S GUIDE

Appendix A: State Transitions

Transport User Actions
In the state tables that follow, some state transitions are accompanied by a

list of actions the transport user must take. These actions are represented by
the notation [n], where n is the number of the specific action as described
below:

[1] Set the count of outstanding connect indications to zero.

[2] Increment the count of outstanding connect indications.

[3] Decrement the count of outstanding connect indications.

[4] Pass a connection to another transport endpoint as indicated in
t-ilccept.

State Tables
The following tables describe the Transport Interface state transitions.

Given a current state and an event, the transition to the next state is shown,
as well as any actions that must be taken by the transport user (indicated by
[n]). The state is that of the transport provider as seen by the transport user.

The contents of each box represent the next state, given the current state
(column) and the current incoming or outgoing event (row). An empty box
represents a state/event combination that is invalid. Along with the next
state, each box may include an action list (as specified in the previous section).
The transport user must take the specific actions in the order specified in the
state table.

The following should be understood when studying the state tables:

• The Ldose routine is referenced in the state tables (see closed event in
Figure A-2), but may be called from any state to close a transport end­
point. If Ldose is called when a transport address is bound to an end­
point, the address will be unbound. Also, if Ldose is called when the
transport connection is still active, the connection will be aborted.

• If a transport user issues a routine out of sequence, the transport pro­
vider will recognize this and the routine will fail, setting Lerrno to
TOUTSTATE. The state will not change.

APPENDIX A: STATE TRANSITIONS A·5

Appendix A: State Transitions

• If any other transport error occurs, the state will not change unless
explicitly stated on the manual page for that routine. The exception to
this is a TLOOK or TNODATA error on Lconnect, as described in Fig­
ure A-2. The state tables assume correct use of the Transport Interface.

• The support routines Lgetinfo, Lgetstate, Lalloc, Lfree, Lsync,
Llook, and Lerror are excluded from the state tables because they do
not affect the state.

A separate table is shown for common local management steps, data
transfer in connectionless-mode, and connection-establishment/connection­
release/data-transfer in connection-mode.

~ T_UNINIT T_UNBND T-IDLE
event

opened T_UNBND

bind T-IDLE [1]

optmgmt T-IDLE

unbind T_UNBND

closed T_UNINIT

Figure A-4: Common Local Management State Table

A·6 NETWORK PROGRAMMER'S GUIDE

Appendix A: State Transitions

~ T-IDLE
event

sndudata T-IDLE

rcvudata T-IDLE

rcvuderr T-IDLE

Figure A-5: Connectionless-Mode State Table

APPENDIX A: STATE TRANSITIONS A-7

Appendix A: State Transitions

~ T-IDLE LOUTCON T-INCON T_DATAXFER T_OUTREL T-INREL
event

connect1 T_DATAXFER

connect2 LOUTCON

rcvconnect T_DATAXFER

listen T-INCON(2) T-INCON (2)

accept! T-DATAXFER(3)

accept2 T-IDLE (3J(4)

accept3 T-INCON [3l(4)

snd T-DATAXFER T-INREL

rev LDATAXFER LOUTREL

snddisl T-IDLE T-IDLE(3) T-IDLE T-IDLE T-IDLE

snddis2 T-INCON (3)

rcvdisl T-IDLE T-IDLE T-IDLE T-IDLE

rcvdis2 T-IDLE(3)

rcvdis3 T-INCON (3)

sndrel LOUTREL T-IDLE

rcvrel T-INREL T-IDLE

pass-conn T_DATAXFER

Figure A-6: Connection-Mode State Table

A·8 NETWORK PROGRAMMER'S GUIDE

B Appendix B: Protocol Indepen­
dence

Appendix B: Guidelines for
Protocol B-1

Appendix B: Guidelines for Protocol

By defining a set of services common to many transport protocols, the
Transport Interface offers protocol independence for user software. However,
all transport protocols do not support all the services supported by the Trans­
port Interface. If software must be run in a variety of protocol environments,
only the common services should be accessed. The following guidelines
highlight services that may not be common to all transport protocols.

• In the connection-mode service, the concept of a transport service data
unit (TSDU) may not be supported by all transport providers. The user
should make no assumptions about the preservation of logical data
boundaries across a connection. If messages must be transferred over a
connection, a protocol should be implemented above the Transport
Interface to support message boundaries.

• Protocol- and implementation-specific service limits are returned by
the Lopen and Lgetinfo routines. These limits are useful when allo­
cating buffers to store protocol-specific transport addresses and options.
It is the responsibility of the user to access these limits and then adhere
to the limits throughout the communication process.

• User data should not be transmitted with connect requests or discon­
nect requests [see t_connect(3N) and t--5nddis(3N)]. Not all transport
protocols support this capability.

• The buffers in the LeaH structure used for Llisten must be large
enough to hold any information passed by the client during connection
establishment. The server should use the T-ALL argument to Lalloe,
which will determine the maximum buffer sizes needed to store the
address, options, and user data for the current transport provider.

• The user program should not look at or change options that are associ­
ated with any Transport Interface routine. These options are specific to
the underlying transport protocol. The user should choose not to pass
options with Leonned or Lsndudata. In such cases, the transport
provider will use default values. Also, a server should use the options
returned by Llisten when accepting a connection.

• Protocol-specific addressing issues should be hidden from the user
program. A client should not specify any protocol address on Lbind,
but instead should allow the transport provider to assign an appropriate
address to the transport endpoint. Similarly, a server should retrieve its
address for Lbind in such a way that it does not require knowledge of

APPENDIX B: PROTOCOL INDEPENDENCE B·1

Independence

the transport provider's address space. Such addresses should not be
hard-coded into a program. A name server mechanism could be useful
in this scenario, but the details for providing such a service are outside
the scope of the Transport Interface.

• The reason codes associated with L-rcvdis are protocol-dependent.
The user should not interpret this information if protocol independence
is a concern.

• The error codes associated with L-rcvuderr are protocol-dependent.
The user should not interpret this information if protocol independence
is a concern.

• The names of devices should not be hard-coded into programs,
because the device node identifies a particular transport provider and is
not protocol-independent.

• The optional orderly release facility of the connection-mode service
(provided by Lsndrel and L-rcvrel) should not be used by programs
targeted for multiple protocol environments. This facility is not sup­
ported by all connection-based transport protocols. In particular, its use
will prevent programs from successfully communicating with ISO open
systems.

B-2 NETWORK PROGRAMMER'S GUIDE

C Appendix C: Examples

Appendix C: Examples
Connection-Mode Client
Connection-Mode Server
Connectionless-Mode Transaction Server
Read/Write Client
Event-Driven Server

C-1
C-1
C-3
C-8

C-11
C-13

Appendix C: Examples

The examples presented throughout this guide are shown in entirety in
this appendix.

Connection-Mode Client

The following code represents the connection-mode client program
described in Chapter 3. This client establishes a transport connection with a
server, and then receives data from the server and writes it to its standard out­
put. The connection is released using the orderly release facility of the Tran­
sport Interface. This client will communicate with each of the connection­
mode servers presented in the guide.

#include <stdio.h>
#include <tiuser.11>
#include <fc::ntl.h>

/* server I s well-known address */

main()

{

int fd;
int nbytes;
int flags = 0;
char tuf[1024];
st:%Uct t_call *sndca1l;
extent int t_ermo;

if «fd = t_open(n/dev/tivcn
t O_RDiR t NULL» < 0)

t_error(nt_open failed");
exi.t(1);

if (t_biJld(fd t NULL t NULL) < 0)

t_error("tJrlM failed ll
);

exi.t(2) ;

/*
* By assuming that the address is an :inteqer value.
* this program may mt run over another protocol.

APPENDIX C: EXAMPLES C-1

Appendix C: Examples

continued

*/

if «sndcall = (struct t_ca1l *)t_alloc(fd, T_CALL, T_AIJ:R» = NULL) {
t_ex%Or("t_alloc failed");
exit(3) ;

}

sndcall->addr.len = sizeof(int);
*(int *)sndcall->addr.b1f =SRV_AIJ:R;

if (t_carmect(fd, sndcall, NULL) < 0) {

t_ex%Or("t_oormect failed for fd");
exit(4);

while «nbytes = t_%'CV(fd, b1f, 1024, &flag's» 1= -1) {
if (fwrite(buf, 1, nbytes, stdcut) < 0) {

fprintf (stderr, "£write failedO);
exit(S) ;

if «t_errno == TIOO<) &&. (t_look(fd) == T_omREL»
if (t_rcvrel(fd) < 0) {

t_error("t_rcvrel failed");
exit(6) ;

}

if (t_sndrel(fd) < 0) {
t_error("t_sndrel failed");
exit(7) ;

}

exit(O) ;

}

t_error(nt_%'CV failed");
exit(8) ;

C-2 NETWORK PROGRAMMER'S GUIDE

Appendix C: Examples

Connection-Mode Server
The following code represents the connection-mode server program

described in Chapter 3. This server establishes a transport connection with a
client, and then transfers a log file to the client on the other side of the con­
nection. The connection is released using the orderly release facility of the
Transport Interface. The connection-mode client presented earlier will com­
municate with this server.

#i.nclude <tiuser.h>
#include <stropts.h>
#include <faltl.h>
#include <stdio.h>
#include <signal.h>

#define~-1

#define SRV_ADr.R 1 /* server's well-known address */

int OOnILfd; /* oannect:ion established here */
extern int t_errIlO;

main()

{

int listeI'Lfd; /* li.sten:in:J transp:n:1: erx3point */
stru.et t_bini *bini;
stru.et t_call *call;

if «listeILfd = t_open("/dev/tivc", O_RIMR, NULL») < 0)
t_en:or(nt_open failed for listeILfd");
exi.t(1) ;

/*
* By assumi.D:] that the address is an integer value,
* this program may not run over another protocol.
*/
if «bind = (stru.et t_bind *)t_alloc(listeILfd, T_BIND, T_ALL» == NULL)

t_en:or("t_alloc of t_bind sttucture failed");
exi.t(2) ;

}

bind->qlen = 1;
bind->addr •len = sizeof(int) ;

APPENDIX C: EXAMPLES C·3

Appendix C: Examples

continued

*(int *)bind->addr.bl1f = SRV'_AlDR;

if (t_bind(listeJ'Lfd, bind, bind) < 0) {

t_eD:Or(nt_bind failed for listeJ'Lfdn);
exi.t(3) ;

/*
* was the correct address lx:m1d?

*/
if (*(int *)bind->addr.bl1f 1= SRV'_AlDR) {

fprintf(stderr, nt_bind bound wrong addressO);
exi.t(4) ;

if «call = (struct t_call *)t_alloc(listeJ'Lfd, T_CALL, T_ALL» == NOLL) {

t_eD:Or("t_alloc of t_call structu:re failed");
exi.t(S) ;

while (1) {
if (t_listen(listen_fd, call) < 0) {

t_eD:Or(nt_listen failed for listen_fd");
exi.t(6) ;

if «cxmn_fd = accept_call(listen_fd, call» 1= D:rsc:xRm:T)
nm_server(lister'Lfd) ;

accept_call (listen_fd, call)
int liste1'Lfd;
struct t_call *call;
{

int resfd;

if «resfd =t_open("/dev/tivc", O_Rmm, NULL» < 0) {
t_eD:Or(lit_open for resp:niin:] fd failed");
exi.t(7) ;

C-4 NETWORK PROGRAMMER'S GUIDE

Appendix C: Examples

continued

if (t_bind(:resfd, NULL, NUIL) < 0) {
t_en:or(nt_bind for respondi.nq fd failed II);

exit(8) ;

if (t_accept(listerLfd, resfd, call) < 0) {

if (t_ernlO == TIDJK) { /* 1lIJSt be a disocmnect */
if (t_rcvdis(listerLfd, NUIL) < 0) {

t_en:or("t_rcvdis failed for listerLfd");
exit(9) ;

}
if (t_close(resfd) < 0) {

t_en:or(lit_close failed for respondi.nq fd");
exit(10);

}

/* go back up and listen for other calls */
return(DI~) ;

}

t_en:or(lit_accept failed");
exit(11);

}

:retmn(resfd) ;

cormrelease()
{

/* cx:mrLfd is global because needed here */
if (t_1ook(oamLfd) = T_D~) {

fprintf (stderr, "oarmection al::lOrt:edD);
exit(12) ;

/* else orderly release indication - normal exit */
exit(O);

t:UILserver(listen_fd)
int listerLfd;
{

int nbytes;
FILE *logfp; /* file pointer to log file */

APPENDIX C: EXAMPLES C·5

Appendix C: Examples

continued

char b1f[1024];

switch (fork(»

case -1:
perrar("fork failed");
exit(20);

. default: /* parent */

/* close eXmJLfd and then go up and listen again */
if (t_close(C:XmJLfd) < 0) {

t_errot'(nt_close failed for ocmn_fd");
exit(21) ;

}

retm1l;

case 0: /* child */

/* close listerLfd and do service */
if (t_close(listeJ'Lfd) < O} {

t_errot'(nt_close failed for listen_fd");
exit(22) ;

}

if «logfp = fopen("logfile" , "r"» = NOLL)

pen:or("cannot open logfile"};
exit(23) ;

signal(SIGPOU., oannrelease);
if (ioctl{oc:mlLfd, I_SETSIG, S_INPU1') < 0) {

pen:or("ioctl I_SEl'SIG failed");
exit(24) ;

}

if (t_look(oC:mJLfd) 1= 0) { /* was disoannect already there? */
fprintf (stderr, nt_look reblmed unexpected evento);
exit(25) ;

wle «nbytes = fread(buf, 1, 1024, logfp» > 0)
if (t_snd(oamLfd, buf, nbytes, 0) < 0) {

t_errot'(tit_and failed");
exit(26);

C·6 NETWORK PROGRAMMER'S GUIDE

Appendix C: Examples

continued

if (t_sndrel(cxIllILfd) < 0) {
t_errar(IIt_sndrel failed");
exi.t(27) ;

}
pause(); /* until orderly release indication arrives */

APPENDIX C: EXAMPLES C·7

Appendix C: Examples

Connectionless-Mode Transaction Server
The following code represents the connectionless-mode transaction server

program described in Chapter 4. This server waits for incoming datagram
queries and then processes each query and sends a response.

#include <stdio.h>
#include <fa1tl.h>
#include <tiuser.h>

#define SRV_AOCR 2

maine)
{

int fd;
int flags;
st:ruet t_bind *bind;
st:ruet t_unitdata *ud;
st:ruet t_uderr *uderr;
extern int t_errno;

/* server's well-known address */

if «fd = t_open("/dev/tidq", o_mm., NULL» < 0)
t_entJr("unable to open /dev/provider");
exit(1);

if «bind = (st:ruet t_bind *)t_alloc(fd, T_BIND, T_AOCR» = NOLL)
t_entJr("t_alloc of t_mm structure failed");
exit(2) ;

}

bind->addr.len = sizeof(int);
*(int *)bind->addr.buf = SRV~;
bind->qlen = 0;

if (t_bind(fd, bind, bind) < 0)
t_en:or(nt_bind failed");
exit(3) ;

/*
* is the bound address correct?
*/

C·8 NETWORK PROGRAMMER'S GUIDE

Appendix C: Examples

continued

if (*(int *)biD:i->addr.buf 1= SRV-,alR) (
fprintf (stderr , nt_bind bamd wm:l'-.:J addresso);
exi.t(4) ;

if «ud = (sb:uct t_unitdata *)t_alloc(fd, T_UNrmATA, T_ALL» == NULL) (

t_ec:or("t_alloc of t_unitdata structure failed");
exi.t(5) ;

}

if «uderr = (sb:uct t_uderr *)t_alloc(fd, T_UDmROR, T_ALL» = NOLL) (

t_ec:or("t_alloc of t_uderr structure failed");
exit(6) ;

while (1) {

if (t_rcwdata(fd, ud, &flaqa) < 0) {

if (t_er.rno = TUXIC) {

/*

* Ern:xr an previously sent datagram
*/

if (t_rcvuderr(fd, ude:rr) < 0) (

t_erJ:Or("t_rcvuderr failed");
exi.t(7) ;

}

fprintf(stderr, "bad datagram, error = "do,
ude:rr->errar) ;

continue;
}
t_error("t_rcwdata failed");
exi.t(8) ;

/*
* Quer:y() processes the request and places the
* response in ud->udata.buf, settin} ud->udata.len
*/

qu.ery(ud) ;

if (t_sndudata(fd, ud, 0) < 0) (
t_error("t_sndudata failed");
exit(9) ;

APPENDIX C: EXAMPLES C-g

Appendix C: Examples

quez:y()

{

/* Merely a stub for simplicity */

C·10 NETWORK PROGRAMMER'S GUIDE

continued

Appendix C: Examples

Read/Write Client
The following code represents the connection-mode read/write client pro­

gram described in Chapter 5. This client establishes a transport connection
with a server, and then uses cat to retrieve the data sent by the server and
write it to its standard output. This client will communicate with each of the
connection-mode servers presented in the guide.

#include <stdio.h>
#include <tiuser.h>
#i.nclude <fcntl.h>
#include <stropts.h>

#define SRV_ADDR

maine)
{

/* server's 1IIIell-known address */

int fd;
int nbytes;

int flags = 0;
char buf[1024];
struct t_call *sndcall;
extern int t_enno;

if «fd = t_open(n/dev/tivclt
, O_RDolR, NULL» < 0) {

t_error(Itt_open failedIt) ;
exi.t(1);

if (t_bind(fd, NULL, NULL) < 0)
t_en:or(Itt_bind failed lt

);

exi.t(2) ;

/*

* By assuming that the address is an inte<Jer value,
* this pmgram may oot run over another protocol.
*/

if «SIXicall :: (struct t_call *)t_a1loc(fd, T_CALL, T_ADDR» :::: NULL)
t_enar(Itt_alloc failed lt

);

exi.t(3) ;

APPENDIX C: EXAMPLES C·11

Appendix C: Examples

sndcall->addr•len =si.zeof(int) ;

*(int *)sndcall->addr.b1f = SfW_ArJI:Et;

if (t_oormect(fd, smcan, NULL) < 0) {
t_eX%Or("t_ocnnect failed for fd");
exit(4) ;

if (i.octl.(fd, I_POSH, "t:iJ:dwr") < 0) {

perror("I_POSH of tirdwr failed");
exit(S);

close(O) ;
dup(fd) ;

execl("lbinIcat", "/bin/cat", 0);

perror("execl of /bin/cat failed");
exit(6) ;

C·12 NETWORK PROGRAMMER'S GUIDE

continued

Appendix C: Examples

Event-Driven Server
The following code represents the connection-mode server program

described in Chapter 6. This server manages multiple connect indications in
an event-driven manner. Either connection-mode client presented earlier will
communicate with this server.

#include <tiuser.h>
#inc1ude <faltl.h>
#include <stdio.h>
#include <poll.h>
#inc1ude <sb:opts.h>
#inc1ude <signal.h>

#define NtI'LFDS
#define MAX_cam_DID 4
#define SEN_Af1CB 1 /* server's well-known address */

int oOIlrLfd; /* server oonnecti.on here */

struct t_call *calls[NtJltLEm][MAJLCXHLnID);/* oolds cxmnect indications */
extern int t_errno;

maine)
{

struct pollfd pollfds[lOLFDS];
struet t_bind *bind;
int i;

/*
* Only opening and biDi:iIq one transport erdpoint,
* but m.xe could be supported

*/
if «pollfds[O).fd = t_open(ll/dev/tivc", O_RIMa, NULL» < 0)

t_en:or(ltt_open failed");
exi.t(1);

if «b:in1 = (struet t_b:in1 *)t_alloc(pollfds[O] .fd, T_BIND, T_ALL» == NULL)
t_en:or(ltt_alloc of t_bind st:ruc:bJre failed");
exi.t(2) ;

}

bind->qlen = MAX_cam_DID;
bind->addr•len = sizeof(int) ;

APPENDIX C: EXAMPLES C·13

Appendix C: Examples -------------------

continued

*(int *)bind->addr.buf = SRV_AlXR;

if (t_bi.nd(pollfds[O] .fd, bini, bind) < 0)
t_er%OX'(nt_bind failed");
exit(3) ;

/*
* was the oorrect address bouIxl?
*/
if (*(int *)bind->addr.buf 1= SRV_AIDl) {

fprintf (stderr , nt_bind bouIxl W1':OD3 addreSSO);
exit(4) ;

pollfds[0] •events =R:JLL'm;

while (1) {

if (poll{pollfds, tDLFtS, -1) < 0)
perror("poll failed");
exit(S) ;

for (i = 0; i < NtJ'LIDS; i++)

switch (pollfds[i]. revents)

default:
per.ror("poll ret:uD1ed eno:r event");
exit(6);

case 0:
cxmtinue;

case IOLLIN:
dcLevent(i, pollfds[i] .fd) ;
servi.ce_CX:ll1rLind(i, pollfds[i] .fd);

C·14 NETWORK PROGRAMMER'S GUIDE

Appendix C: Examples

continued

default:
fprintf (stden", tIt_look retumed an unexpected. evento);
exit(7) ;

case T_ERRCR:
fprintf (stden", lit_look retw:ned T_mR:R evento);
exit(8);

case -1:
t_error(nt_look failed");
exit(9) ;

case 0:
/* since POLLIN returned, this sholld :not happen */
fprintf (stden","t_look retm:ned no evento);
exit(10);

case T_LISTJ!N:

/*
* fiDd free elen:ent in calls array
*/

for (i =0; i < MA)LCXHLDm; i++)
if (calls[slot] [i] = NOLL)

break;

if «calls[slot][i] = (struct t_call *)t_alloc(fd, T_CALL, T_ALL» == NULL)
{

t_en'Or("t_alloc of t_call st:ru.cture failed");
exit(11);

if (t_listen(fd, calls[slot][i]) < 0) {
t_en'Or(lit_listen failed");
exit(12);

APPENDIX C: EXAMPLES C·15

Appendix C: Examples

break;

caseT_DI~:

discon = (struct t_discan *)t_alloc(fd, T_DIS, T_ALL);

if (t_rcvdis(fd, discan) < 0) {
t_error("t_rcvdis failed");
exit(13) ;

}

/*
* fim call im in array and delete it
*/

for (i =0; i < MA]UXNtLnID; i++) {
if (disoon->sequ.ence = calls[slot] [i]->sequence)

t_free(ca11s[slot][i], T_CALL);
ca11s[slot] [i] = NULL;

}

t_free(discan, T_DIS);
break;

sE!ZViaLcxlmLim(slot, fd)
{

int i;

for (i =0; i < MA]UXRCnID; i++)
if (calls[slot] [i] == NULL)

oontinue;

if «CXmILfd = t_open("/dev/tivc", O_IU:MR, NULL» < 0) {
t_error("open failed");
exit(14);

}

if (t_bind(cxmJLfd, NULL, NULL) < 0) {
t_error(lit_bind failed");
exit(15);

if (t_accept(fd, 001ULfd, calls[slot][i]) < 0) {
if (t_en:no = 'lUXIC) {

C·16 NETWORK PROGRAMMER'S GUIDE

continued

Appendix C: Examples

continued

t_close(CCD'ULfd) ;
re'bml;

}

t_Eln:'Or(lit_accept failed");
exit(16);

}
t_free(calls[slot] [i] t T_CALL);
calls[slotHi] ::: NULL;

carmrelease()
{

1* cxmILfd is global because needed here *1
if (t_look(exJl11'Lfd) = T_~) {

fprintf (stderr t "cannectian alx1rtedo);
exit(12);

1* else orderly release indication - DJDDa1 exit *1
exit(O) ;

}

ruILServer(listen_fd)
int listen_fd;
{

int nbytes;
FILE *1ogfp; 1* file pointer to 1cq file *1
char buf[1024];

switch (fork(»

case -1:
pern:xr("fork failed");
exit(20) ;

default: 1* parent *1

1* close cxmn_fd and then go up and listen again *1

APPENDIX C: EXAMPLES C·17

Appendix C: Examples

continued

if (t_close(CXJrDLfd) < 0) {
t.-error(lit_close failed for c:xmrLfd");
exi.t(21) ;

rebnn;

case 0: /* child */

/* close listeILfd am do service */
if (t_close(listelLfd) < 0) {

t_errot"(lit_close failed for listeILfd");
exi.t(22) ;

}

if «logfp =fopen("logfile tt , ttrtt » = NUIL) {

pen:or("camxrt: open logfilett);
exi.t(23) ;

signa.l(SIGEOIL, ocmnrelease);
if (ioctl(CCD'DLfd, I_SE:l'SIG, S_INPUT) < 0) {

perror("ioct1 I_SE:l'SIG failed");
exi.t(24) ;

}

if (t.-1ook(ccmn_fd) 1= 0) {/* was disc:xmnect already there? */
fprintf(stderr, lit_look returned unexpected evento);
exi.t(25) ;

while «nbytes = fread(blf, 1, 1024, logfp» > 0)
if (t_snd(ccmn_fd, buf, nbytes, 0) < 0) {

t_errot"(lit_and failed");
exit(26) ;

if (t.-sndrel(<Xmn_fd) < 0) {
t_errot"("t_sndrel failed");
exit(27) ;

}

pause(); /* until orderly release iJxti.catian axri.ves */

e-18 NETWORK PROGRAMMER'S GUIDE

Glossary
The following terms apply to the Transport Interface:

Abortive release An abrupt termination of a transport connection,
which may result in the loss of data.

Asynchronous execution
The mode of execution in which Transport Interface
routines will never block while waiting for specific
asynchronous events to occur, but instead will return
immediately if the event is not pending.

Client The transport user in connection-mode that initiates
the establishment of a transport connection.

Connection establishment
The phase in connection-mode that enables two trans­
port users to create a transport connection between
them.

Connection-mode A circuit-oriented mode of transfer in which data is
passed from one user to another over an established
connection in a reliable, sequenced manner.

Connectionless-mode
A mode of transfer in which data is passed from one
user to another in self-contained units with no logical
relationship required among multiple units.

Connection release
The phase in connection-mode that terminates a pre­
viously established transport connection between two
users.

Datagram

Data transfer

Expedited data

A unit of data transferred between two users of the
connectionless-mode service.

The phase in connection-mode or connectionless­
mode that supports the transfer of data between two
transport users.

Data that is considered urgent. The specific semantics
of expedited data are defined by the transport protocol
that provides the transport service.

GLOSSARY G·1

Glossary

Expedited transport service data unit
The amount of expedited user data, the identity of
which is preserved from one end of a transport con­
nection to the other (that is, an expedited message).

Local management

Orderly release

Peer user

Server

Service indication

The phase in either connection-mode or
connectionless-mode in which a transport user estab­
lishes a transport endpoint and binds a transport
address to the endpoint. Functions in this phase per­
form local operations and require no transport layer
traffic over the network.

A procedure for gracefully terminating a transport
connection with no loss of data.

The user with whom a given user is communicating
above the Transport Interface.

The transport user in connection-mode that offers ser­
vices to other users (clients) and enables these clients
to establish a transport connection to it.

The notification of a pending event generated by the
provider to a user of a particular service.

Service primitive The unit of information passed across a service inter­
face that contains either a service request or service
indication.

Service request A request for some action generated by a user to the
provider of a particular service.

Synchronous execution
The mode of execution in which Transport Interface
routines may block while waiting for specific asyn­
chronous events to occur.

Transport address
The identifier used to differentiate and locate specific
transport endpoints in a network.

G-2 NETWORK PROGRAMMER'S GUIDE

Glossary

Transport connection
The communication circuit that is established between
two transport users in connection-mode.

Transport endpoint
The local communication channel between a transport
user and a transport provider.

Transport Interface
The library routines and state transition rules that sup­
port the services of a transport protocol.

Transport provider
The transport protocol that provides the services of
the Transport Interface.

Transport service data unit
The amount of user data whose identity is preserved
from one end of a transport connection to the other
(that is, a message).

Transport user The user-level application or protocol that accesses the
services of the Transport Interface.

Virtual circuit A transport connection established in connection­
mode.

The following acronyms are used throughout this guide:

CLTS Connectionless Transport Service

COTS Connection Oriented Transport Service

ETSDU Expedited Transport Service Data Unit

TSDU Transport Service Data Unit

GLOSSARY G·3

Index

Advanced Programming Example ...
6-3

Appendix A: State Transitions ...
A-1

Appendix B: Guidelines for Proto­
col ... B-1

Appendix C: Examples ... C-1
Asynchronous Execution Mode ...

6-2
Background ... 1-1
Client 3-3, 3-10, 3-20, 3-26
Close 5-5
Connection Establishment ... 2-6,

3-10
Connection Release ... 2-9, 3-24
Connection-Mode Client C-1
Connection-Mode Server C-3
Connection-Mode Service 2-3
Connectionless-Mode Service ...

2-10
Connectionless-Mode Transaction

Server C-8
Data Transfer ... 2-8, 3-19, 4-5
Datagram Errors ... 4-8
Document Organization ... 1-3
Event Handling ... 3-12
Event-Driven Server ... C-13
Glossary ... G-1
Incoming Events ... A-4
Index ... 1-1
Introduction to the Guide ... 1-1
Local Management ... 2-3, 3-2, 4-2
Modes of Service ... 2-3
Notational Conventions ... 1-4
Outgoing Events ... A-2
read ... 5-4
Read/Write Client ... C-11
Server ... 3-6, f33-13, 3-21, 3-25
State Tables ... A-5

State Transitions ... 2-11
Transport Interface States ... A-1
Transport User Actions ... A-5
write ... 5-3

INDEX 1·1

• UNIX System VI386 Release 3.2 Utilities Release Notes ATilT

• UNIX System V/386 Release 3.2 Streams Primer ATilT

• UNIX System VI386 Release 3.2 Users Guide ATilT

• UNIX System V/386 Release 3.2 Programmers Reference Manual ATilT

• UNIX System V/386 Release 3.2 Streams Programmer's Guide AT&T

• UNIX System V/386 Release 3.2 Network Programmer's Guide AT&T

• UNIX System VI386 Release 3.2 Programmers Guide Vol. I ATilT

• UNIX System VI386 Release 3.2 Programmer's Guide Vol. II ATIlT

• UNIX System V/386 Release 3.2 System Administrator's Guide AT&T

• UNIX System V/386 Release 3.2 System Administrators Reference
Manual AT&T

PIIEIITICE IIALI.. Ell". • •• '*" N.". D783I

ISBN 0-13-944935-3

