

©1988 AT&T
All Rights Reserved
Printed in USA

NOTICE
The information in this document is subject to change without notice. AT&T
assumes no responsibility for any errors that may appear in this document.

Intel is a registered trademark of Intel Corporation.
MS-DOS and XENIX are registered trademarks of Microsoft Corporation.
UNIX is a registered trademark of AT&T.

ADaT

UNIX® System V /386
Release 3.2
Software Development Set
Release Notes

Copyright © 1988 AT&T
All Rights Reserved

NOTICE

The information in this document is subject to change without notice.
AT&T assumes no responsibility for any errors that may appear in
this document.

Intel is a registered trademark of the Intel Corporation.

MS-DOS and Xenix are registered trademarks of Microsoft Corporation.

UNIX is a registered trademark of AT&T.

CONTENTS

Introduction
Overview
Conventions Used in This Document

Contents of the Release

Software Overview
CSDS

The C Programming Language Development Tools
Advanced Programming Tools and Utilities

Extended Terminal Interface

Software Features
ctype(3C)
ctime(3C)
cftime(4)
Dynamic Tables
Referencing a Shared Library from Within a Shared Library
The #hide and #export Directives
Checking Shared Library Versions with chkshlib(l)
Proposed Standard for C

Installation Notes
Space Dependencies
Version Control
V erifica tion

Software Notes

Compatibility
The Compiler and cc
cpp
Changes in C Library Functions
Environment Variables
The mkshlib Command

Future Directions

Documentation

TABLE OF CONTENTS

1
1
2

3

8
8
8

10
15

16
16
16
17
17
17
18
18
18

20
20
20
20

21

23
23
24
24
25
25

26

27

CONTENTS---------------------------------------

Appendix A: DOCUMENTATION UPDATES

Appendix B: INSTALLATION DISKETTE FILES

ii UNIX SYSTEM V /386 RELEASE 3.2

A-I

B-1

UNIX SYSTEM V /386
RELEASE 3.2

SOFTWARE DEVELOPMENT SET
RELEASE NOTES

Introduction

Overview
These Release Notes contain information about the Software Development

Set (SDS) package. The SDS package is useful to programmers who:

• Want to develop C language programs

• Do extensive programming in the C language

• Want to enhance the efficiency of a C program written in a UNIX sys­
tem environment

• Need tools to do advanced programming and symbolic debugging

• Want to work with shared libraries

• Work in an environment where it is necessary to track and maintain
versions of files and programs

• Want to optimize and streamline development of interactive, character­
oriented, C application programs.

The Software Development Set runs on a computer running AT&T 386 UNIX
System V /386 Release 3.2.

SOFTWARE DEVELOPMENT SET RELEASE NOTES 1

Introduction --------------------------

The SDS software package is made up of two parts as follows:

• C Software Development Set (CSDS)

• Extended Terminal Interface (ETI).

Conventions Used in This Document
In these Release Notes, certain typesetting conventions are followed when

command names, command line format, files, and directory names are
described. There are also conventions for displays of terminal input and out­
put.

• You must type words that are in bold font exactly as they appear.
Also, commands, filenames, and directory names appear in bold.

• Words in italics are variables; you substitute the appropriate values.
These values may be filenames or they may be data values.

• CRT or terminal output and examples of source code are presented in
constant-width font.

• In output and source code examples, a backslash (\) at the end of a line
indicates that the line wraps around without a break.

• A command name followed by a number, for example, prof(l), refers
you to that command's manual page, where the number refers to the
section of the manual. These manual pages appear in the AT&T UNIX
System V /386 Release 3.2 Programmer's Reference Manual unless other­
wise noted.

2 UNIX SYSTEM V /386 RELEASE 3.2

Contents of the Release

The Software Development Set (SDS) comes in one set of five diskettes
(four diskettes for CSDS and one diskette for ETI), the contents of which are
displayed in the following table.

Table 1: SDS Utilities

Directory Files

/bin ar cprs lorder
as dis make
cc dump mkshlib

(CSDS) chkshlib gencc nm
conv ld size
convert list strip

/etc install

(CSDS)

/lib basicblk crtn.o libx.a
cm4defs libc.a mcrtO.o
comp libc_s.a mcrt1.o

(CSDS) cpp libld.a optim
crtO.o libm.a pcrtl.o
crtl.o libPW.a pcrtO.o

/usr / add-on/include chartam.h pbf.h temp.h
form.h print.h track.h

(ETI)
kcodes.h subcurses.h wind.h
menu.h tam.h
message.h tamwin.h

/usr / add-on/include /sys font.h mouse.h window.h
(ETI) iohw.h signal.h

SOFTWARE DEVELOPMENT SET RELEASE NOTES 3

Contents of the Release --------------------

Table 1: SDS Utilities (Continued)

Directory Files

/usr/bin admin delta sact
cb get sccsdiff
cdc lex sdb
cflow lint tsort
comb lprof unget

(CSDS) cscope m4 val
ctc prof vc
ctcr prs what
ctrace regcmp yacc
cxref rmdel

/usr/bin captoinfo infocmp tic
(ETI) tput

4 UNIX SYSTEM V /386 RELEASE 3.2

--------------------- Contents of the Release

Table 1: SDS Utilities (Continued)

Directory Files

jusrjinclude a.out.h malloc.h sgtty.h
aouthdr.h math.h signal.h
ar.h memory.h stand.h
assert.h mnttab.h stdio.h
core.h mon.h storclass.h
ctype.h nan.h string.h
dial.h nlist.h stropts.h
dirent.h nsaddr.h strselect.h
errno.h nserve.h syms.h

(CSDS)
fatal.h poll.h sys.s
fcntl.h prof.h termio.h
filehdr.h pwd.h time.h
ftw.h regexp.h tp_defs.h
grp.h reloc.h ttysrv.h
ieeefp.h rje.h unistd.h
Idfcn.h scnhdr.h ustat.h
limits.h sd.h utmp.h
linenum.h search.h values.h
macros.h setjmp.h varargs.h

jusrjinclude curses.h menu.h tiuser.h

(ETI)
eti.h panel.h unctrl.h
form.h term.h

SOFTWARE DEVELOPMENT SET RELEASE NOTES 5

Contents of the Release ---------------------

Table 1: SDS Utilities (Continued)

Directory Files

jusrjlib basicblk liby.a llib-port
dag lint! llib-port.1n
flip lint2 lpfx
libcrypt.a llib-lc nmf

(CSDS) libg.a llib-lc.ln xcpp
libl.a llib-Im xpass
libmalloc.a llib-Im.ln yaccpar
libprof.a llib-Imalloc.l

jusrjlib libcrypt.a llib-lcurses llib-Imenu.ln
libform.a llib-lcurses.a llib-Ipanel
libmenu.a llib-lcurses.ln llib-Ipanel.ln

(ETI)
libpanel.a llib-lform llib-ltam
libtam.a llib-lform.ln llib-ltam.ln
libtermcap.a llib-Imenu tamhelp
libtermlib.a

jusr jlib j ctrace runtime.c
(CSDS)

jusr jlib jhelp ad co prs
bd de rc

(CSDS)
cb default un
cm ge ut
cmds he vc

jusr jlib jhelp jlib help help2

6 UNIX SYSTEM V /386 RELEASE 3.2

-------------------- Contents of the Release

Table 1: SOS Utilities (Continued)

Directory Files

/usr/lib/lex ncform nrform
(CSDS)

/usr /lib /libp
libc.a libm.a libmalloc.a
libx.a

(CSDS)

/usr/lib/tabset 3101 std vt100
(ETI) beehive teleray xeroxl720

/usr/options csoftw.name
(CSDS)

/usr/options graphi.name terminf.name
(BTl)

/usr /src/lib / eti/ demo formO.c form2.c menu1.c
(ETI) forml.c menuO.c

SOFTWARE DEVELOPMENT SET RELEASE NOTES 7

Software Overview

The SDS package has two major parts: the C software development set
(CSDS) and the extended terminal interface (ETI). CSDS can be used for
developing, debugging, and improving the efficiency of C language programs.
ETI is a set of libraries that promotes fast development of screen management
applications. These two parts of the SDS package are discussed in the follow­
ing subsections.

CSDS
CSDS is a collection of tools and utilities that aid you in:

• Developing C language programs

• Advanced programming, symbolic debugging, and improving C
language program efficiency.

• Keeping a history of source code files by recording changes made to
these files along with comments on each version.

The C Programming Language Development Tools
The main C programming language development tool is the compiler, and

is called by the command CC. The other programming development tools dis­
cussed in this section are the C preprocessor, optimizer, assembler, link editor,
tools for manipulating object files, and libraries.

C Compiler
The C compiler supports the C language as specified in The C Program­

ming Language. The significant extensions to the language include the follow­
ing:

• Arbitrary length names for variables and function names

• Structure assignments and arguments

• Functions returning structure values

• Enumerated data types

• Multiple external variable declarations

8 UNIX SYSTEM V /386 RELEASE 3.2

------------------------ Software Overview

• Assembly language escapes from C

• Insertion of arbitrary strings into object modules (useful for version con­
trol)

• Floating point support in conformance with the Standard for Binary
Floating-Point Arithmetic, ANSI/IEEE Std 754-1985

• Data type void

• Additional preprocessor directives.

ccCommand
The cc command, the major command of CSDS, calls the C compiler. The

cc command also controls the other phases of compilation, and, unless pro­
grammers use options to specify otherwise, cc automatically calls the C
preprocessor, assembler, and link editor phases. The command options have
many uses, such as suppressing the assembler or link editor or invoking the
optimizer. The cc command also passes some options to these other pro­
grams.

The cc command accepts files containing C source code as input. The
result of the compilation process is an executable module named a.out that
reflects the contents of the source files and any referenced library routines.
The cc command also accepts source files that contain assembly language code
as input and passes these files directly to the assembler.

C Preprocessor
The C preprocessor [cpp(l)] is automatically called whenever the cc com­

mand is given C source input. The preprocessor performs file inclusion and
macro substitution.

OptimizeI'
The optimizer, an optional component in the compilation process,

improves the efficiency of compiler-generated assembly language code. The
optimizer reduces the space requirements and speeds the execution time of the
resulting object code.

Assembler and Assembly Language
The assembler [as(l)] is available for developing applications that require

close interaction with hardware, such as those needed to handle input/output
devices and interrupts. The assembler converts assembly language code into a
relocatable object module composed of machine code and symbolic informa­
tion. This component provides assembly language programmers access to
predefined macros using the UNIX operating system m4 macro processor.

SOFTWARE DEVELOPMENT SET RELEASE NOTES 9

Software Overview ------------------------

Link Editor
The link editor [ld(l)] combines relocatable object modules and libraries to

produce either an absolute, executable load module or a relocatable object file
for use in further link edits. Executable load modules are in the Common
Object File Format (COFF). The link editor performs relocation, resolves
external references, and incorporates symbolic debugging information into its
output file. It searches libraries to resolve all external references and only
loads library routines that define an unresolved external reference.

Tools for Manipulating Object Files
CSDS provides a variety of commands used to read and manipulate object

files. Here is a list of some utilities with brief descriptions of their use:

ar

cprs

dis

dump

lorder

nm

size

strip

Libraries

Groups files into a single, portable archive file commonly used
as a library

Compresses object files by removing duplicate structure and
union symbolic information

Disassembles object files to allow assembly level debugging

Prints selected parts of the named object files

Generates an ordered listing of object files for efficient library
link editing

Prints the symbolic information in an object file

Reports the number of bytes of text, initialized data, and unini­
tialized data (and their sum) included in an object module

Reduces file storage overhead by removing symbolic information
from an object file.

CSDS comes with libraries for object files, access to system calls,
input/output, string manipulation, mathematical functions, and memory allo­
cation.

Advanced Programming Tools and Utilities
The CSDS package contains an extensive set of tools useful for advanced

application programming, debugging, improving the efficiency of your pro­
grams, and aiding you in keeping track of the different versions of your pro­
grams.

10 UNIX SYSTEM V /386 RELEASE 3.2

------------------------ Software Overview

Pro~ramming and Debugging Utilities
The programming utilities are specialized utilities helpful in the design

and development of application programs and systems. The following list
gives a short description of the major programming utilities.

cxre£ is a C cross-reference listing generator.

ctrace is a statement-by-statement execution trace facility.

cflow produces a graph of program dependencies.

lint detects faulty and non-portable code.

cb is a C code beautifier

regcmp compiles regular expressions

mkshlib(l) makes a shared library. Shared libraries is a feature of UNIX
System V Release 3.0, and beyond, that allow several a.out
files to simultaneously use the same object code.

chkshlib(l) checks a shared library.

sdb(l) a symbolic debugger used to examine C language executable
files and core files and to provide a controlled environment
for their execution. When testing C language programs sym­
bolically, breakpoints can be set at executable lines of the
source code. These breakpoints force the program to pause
at the specified point so that an inspection can be made of
the current state of the program.

make(l)

lex(l)

yacc(l)

a tool that helps you build and maintain up-to-date versions
of programs. make simplifies the job of keeping track of
which files depend on other files, recently modified files,
files that need recompiling after changes, and the sequence
of operations needed to make a new version of a program.

a tool that generates programs to be used in simple lexical
analysis of text. The lex tool reads a file containing specifi­
cations of strings to be matched and associated C code.
Whenever the lexical analyzer produced by lex matches a
specified string in its input, it executes the associated C code.

a tool (Yet Another Compiler-Compiler) that accepts both an
LALR(l) grammar specification and associated C code frag­
ments that represent actions to be taken when a found

SOFTWARE DEVELOPMENT SET RELEASE NOTES 11

Software Overview ------------------------

grammar rule is reduced, and then produces a parser.

All of these utilities are described in the AT&T UNIX System V /386 Release
3.2 Programmer's Guide and the UNIX System V /386 Release 3.2 Programmer's
Reference Manual.

Productivity Utilities
The CSDS package has three utilities that can help an experienced pro­

grammer enhance the efficiency of a C program written in a UNIX operating
system environment. These utilities are a browser called cscope and two pro­
filers, lprof and prof.

A browser is an interactive program that helps you examine source files
by searching for functions, function calls, macros, and variables that you
specify. When it finds them, the browser puts you into an editor at the speci­
fied location. Thus, instead of thumbing through a stack of printouts to learn
code or locate a bug, you can specify a function or text string and let the
browser find it. Then you have the option of examining that portion of code
or editing it. Whether you want to familiarize yourself with a program or edit
a source file, a browser can help you accomplish your task without your read­
ing the code line by line.

The browser in CSDS, designed for use with C code, is called cscope.
Programmers responsible for writing programs or maintaining existing pro­
grams will be able to edit their source code more efficiently with cscope. It is
especially helpful for a programmer working on someone else's code.

A profiler is a tool that performs dynamic analysis or analysis of a pro­
gram at run time; it accomplishes this in two phases. First, the profiler collects
data about the code while a program is being executed. Then it displays this
data in a readily accessible format. The pro filer lprof provides line-by-line
frequency profiling, reporting how many times each line of source code is exe­
cuted. To obtain a more representative sample of program performance, you
can run a program profiled with lprof more than once and then merge the
data from the multiple runs. This information can be useful in every stage of
software development: designing, prototyping, coding, testing, debugging,
and maintenance.

The pro filer lprof can also be used to determine which lines of source
code are executed and how much of the code is exercised. These types of out­
put can be obtained by using the -x option and the -s option, respectively.
These options are convenient for programmers who are interested only in

12 UNIX SYSTEM V /386 RELEASE 3.2

------------------------ Software Overview

execution coverage and who do not need the additional information that lprof
normally provides. For example, if you are developing a test suite and want
to find out how much code is actually tested by your test suite, run lprof with
either the -x or -8 option, depending on the level of detail you want.

Another eSDS profiler you may find useful is prof. The prof profiler
reports the amount of time spent in various parts of a program during execu­
tion. The use of prof is not required for using lprof, but by using these pro­
filers together you can increase the efficiency of lprof. The prof profiler
allows you to identify the most time-consuming parts of a program. By run­
ning lprof on only those parts of code, you can avoid generating uninforma­
tive output while targeting sections of code that need pruning. It is therefore
recommended that you use prof and lprof together.

To use these utilities, you must know how to use eSDS in the UNIX sys­
tem environment. These utilities do not modify code for you; they enable you
to find parts of code that deserve further work on your part. For programmers
who have not compiled e code or used eSDS before, the basics are covered in
the AT&T UNIX System V /386 Release 3.2 Programmer's Guide.

Source Code Control Utilities
A subset of the eSDS utilities, sometimes called the source code control

system (SeeS), is specifically designed for source code control. These utilities
can be used to record all enhancements and changes to files, along with com­
ments on each version, thus maintaining a history of the changes made. The
major sees functions include:

• Retrieving any recorded version of a file with comments

• Storing a new version of a file

• Comparing two versions of an sees file.

sees takes custody of a file, and, when changes are made, identifies and
stores them in the file with the original source code and/or documentation.
As other changes are made, they too are identified and retained in the file.
Each separate set of changes is called a delta. History data can be stored with
each version: why the changes were made, who made them, when they were
made, etc.

Retrieval of the original or any set of changes is possible. Any version of
the file as it develops can be reconstructed for inspection or additional modifi­
cation.

SOFTWARE DEVELOPMENT SET RELEASE NOTES 13

Software Overview -----------------------

Here is a list of sees commands.

get

unget

delta

admin

prs

sad

help

rmdel

Retrieves versions of sees files.

Undoes the effect of a get -e prior to the file being delta'd.

Applies deltas (changes) to sees files and creates new ver­
sions.

Initializes sees files, manipulates their descriptive text, and
controls delta creation rights.

Prints portions of an sees file in user-specified format.

Prints information about files that are currently out for edit.

Gives explanations of error messages.

Removes a delta from an sees file. Allows removal of del­
tas created by mistake.

cdc Changes the commentary associated with a delta.

what Searches any UNIX operating system file(s) for all
occurrences of a special pattern and prints out what follows
that pattern. Useful in finding identifying information
inserted by the get command.

sccsdiff Shows differences between any two versions of an sees
file.

comb Combines consecutive deltas into one to reduce the size of
an sees file.

val Validates an sees file.

vc Is a filter that may be used for version control.

For instructions on how to use sees and detailed descriptions of sees com­
mands, see the "Source Code Control System" chapter in the AT&T UNIX
System V /386 Release 3.2 Programmer's Guide.

14 UNIX SYSTEM V /386 RELEASE 3.2

------------------------ Software Overview

Extended Terminal Interface
ETI is a set of libraries that promote fast development of screen manage­

ment applications. The ETI libraries are a software tool that enable you to
incorporate screen management and data entry capabilities into your pro­
grams. ETI contains the following libraries:

• Curses/Terminfo Low Level Function Library: This library consists of
routines for writing character-oriented screen management applications
independent of the terminal type. Basic routines are provided for writ­
ing to a screen, reading from a screen and building windows.
Advanced features are used to change screen attributes, draw line
graphics and work with more than one terminal. A major new feature
is the incorporation of color. You can specify both the background
color for each character and the color of the character itself.

• High-Level Function Libraries: The high level function libraries are built
on top of curses. They consist of functions that create, manipulate, and
display panels, forms, and menus.

- Panels: A panel is a rectangular area containing a curses window
that may be displayed in whole or in part on the terminal. Panels
provide a depth relationship between curses windows. Panels
which are logically below other panels are properly obscured.

- Forms: A form is a multi-page display that contains a set of fields.
These fields may be used for data entry, labels, or messages. You
can customize the look and behavior of a form or field. The rich
set of form commands includes the following: inter-field and intra­
field navigation, field editing, data entry, and validation.

- Menus: A menu is a display presenting a collection of items. The
end-user can select one or more items and this information is avail­
able to the application. You can customize the look and behavior
of a menu. Menu commands are provided for item navigation,
menu scrolling, and item matching.

• Terminal Access Method (TAM) Transition Library: The TAM Transition
Library enables character mode applications developed for the UNIX
PC using TAM to run on other processor/terminal configurations. The
library maps TAM calls to curses routines.

SOFTWARE DEVELOPMENT SET RELEASE NOTES 15

Software Features

The CSDS package supports character classification and conversion and
international date and time formats. The ctype(3C), ctime(3C) and c£lime(4)
routines have been modified as described in the following subsections. Also,
the dynamic tables of the CSDS components comp (compiler) and as (assem­
bler) are described. Other CSDS features discussed in the following subsec­
tions include referencing a shared library from within a shared library, the
#hide and #export directives, checking shared library versions with
chkshlib(l), and a proposed C language standard.

ctype(3C)
The classification of characters (what constitutes alphabetic, printable,

uppercase or lowercase) varies from language to language. The ctype(3C)
library routines that are used to classify character-coded integer values have
been enhanced to recognize other code sets or classifications. Among these is
the routine setchrclass(3C), which is a new routine used to initialize the char­
acter classification and conversion table. It is invoked at program startup and
can be invoked directly from users' programs. This means the character set
specific table can change dynamically.

ctime(3C)
The ctime(3C) routines allow the user to manipulate date and time for­

mats. Several new library functions (c£lime, ascftime, and an enhanced tzset)
have been added to ctime(3C). These routines support the following features:

• The ability to specify fractional time zones

• The ability to specify start and end dates and times of alternate time
zones

• The ability to specify time and date formats with new format field
descriptors

• The ability to specify native language translations of month and week­
day names.

16 UNIX SYSTEM V /386 RELEASE 3.2

----------------------- Software Features

cftime(4)
The cftime(4) manual page describes how to create language specific files.

These files contain detailed information such as full and abbreviated month
names, full and abbreviated weekday names, and default local time and date
formats.

For more information on how to use these features, see ctime(3C),
ctype(3C), cftime(4), and environ(S) in the AT&T UNIX System V /386 Release
3.2 Programmer's Reference Manual.

Dynamic Tables
Though the C language tends to encourage small functions and source

files, some existing applications contained very large source files that failed to
compile under previous issues of CSDS because of the fixed size of some
tables in the compilation system. In this issue, the tables in the compiler and
the assembler are allocated dynamically.

In the compiler, successful compilation is no longer constrained by the
number of symbols, the number of cases in a switch, the number of arguments
to a function, etc., except as limited by the amount of memory on your
machine. Similarly, the assembler's constraint on the number of symbols has
been removed.

Referencing a Shared Library from Within a
Shared Library

At times you might need to allow one shared library to directly reference
routines in another shared library. One way to do this is with imported sym­
bols. Another way is to reference routines in one shared library from another
shared library; use the keyword noload, with the #objects directive in the
shared library specification file. When the #objects noload directive is used,
the mkshlib command will search the libraries listed for unresolved refer­
ences. You will want to use this feature only when you cannot import sym­
bols explicitly.

SOFTWARE DEVELOPMENT SET RELEASE NOTES 17

Software Features ----------------------

The #hide and #export Directives
Two directives, #hide and #export, can be used in the library specifica­

tion file to control the visibility of external symbols.

Checking Shared Library Versions with
chkshlib(1)

The chkshlib(l) command allows you to compare versions of shared
libraries to see if they are compatible. This command accepts various combi­
nations of executable files, target shared libraries, and host shared libraries as
input and tells you if the library versions are compatible, or if the specified
executable could have been built by or can run with the specified host or tar­
get shared library.

For more information about shared libraries, see the chapter on shared
libraries in the AT&T UNIX System V /386 Release 3.2 Programmer's Guide. The
AT&T UNIX System V /386 Release 3.2 Programmer's Reference Manual contains
more information about chkshlib(l) and mkshlib(l).

Proposed Standard for C
As these Release Notes were published, no official standard for the C pro­

gramming language existed. The language accepted by AT&T C compilers fol­
lows the definition given in The C Programming Language by B. Kernighan and
D. Ritchie (Prentice-Hall, 1978). The CSDS package also supports the follow­
ing extensions .

• Flexnames

This extension allows variable and function name tokens to be distinct
to at least the first 100 characters (rather than the first 8 characters).

• Structure assignments and return values

This extension allows variables of the same structure type to be
assigned to one another. The return value of functions can also be a
structure.

18 UNIX SYSTEM V /386 RELEASE 3.2

------------------------ Software Features

• Enumeration types

• Multiple external variable declarations

This extension makes it possible to have the declaration

int i;

in multiple source files. All these multiple references resolve to the
same address at link edit time.

Currently the X31I11 task force of the American National Standards Insti­
tute (ANSI) is defining a standard for the C language (Draft Proposed Ameri­
can National Standard for Information Systems - Programming Language C,
October 1986). The standard proposed by ANSI will allow most current legal
C programs to be compiled without any changes. Nevertheless, to ease the
possible transition process to the standard, the AT&T C compiler included
with CSDS warns about the use of some constructs that may not be legal in
the future or may cause portability problems. The following are examples of
such constructs.

• Declarations, such as,

int i;
static int i;

produce the warning message

warning: i previously declared extern, becomes static.

• Structure definitions missing semicolons, such as
struct x {

int i
}

produce the warning message

warning: syntax requires; at end of structlunion decl

SOFTWARE DEVELOPMENT SET RELEASE NOTES 19

Installation Notes

The following text describes the space dependencies and version control as
it relates to the installation of the 50S package. For complete installation pro­
cedures, see the Operations/System Administration Guide.

Space Dependencies
The 50S package is installed using the installpkg(l) command. The

installpkg(l) command checks to determine that sufficient free space is avail­
able in the root and jusr file systems. You need approximately 7,900 blocks
(512-byte blocks) of memory to install the 50S package.

Version Control
The C software development set portion of the 50S package uses a per

file method of version control. If the file being installed already exists on the
system and has a release number greater than the file belonging to the pack­
age being installed, the existing file will not be overwritten. Files without
valid release information are assumed to be older than those belonging to the
package being installed.

Verification
After installing 50S, verify the correct 50S version (4.1.5) by using cc -V.

20 UNIX SYSTEM V /386 RELEASE 3.2

Software Notes
This section offers some tips on using the SDS package and some software

tips that enhance the usability of the package.

1. Functions of type float or double need to be declared in scope whether
or not their return values are being used.

2. Elements of type char will be sign extended. For zero extension,
unsigned char must be used.

3. If you are compiling your programs with the -g option enabled so that
you can do debugging, it is advisable NOT to use the -0 option as
well. In some cases, the two options invoked jointly will produce
multiply defined labels. In addition, you should not use -0 when
compiling -ql because this in turn turns on the -g flag.

4. The default response to the invalid operation, divide by zero, and
overflow exceptions is to take a trap. This behavior may be altered by
using the fpsetmask(3) function.

5. When an Intel 80287 co-processor is installed, use of denormalized
floating point numbers results in a core dump. The problem is that the
80287 chip does not normalize a denormal number when it is loaded
and produces an invalid operation exception when a denormal number
is stored to memory. If such problems are encountered, one work­
around is to enable the denormalized operand exception and provide a
signal handler which normalizes a denormal number. This signal
handler must also recognize any other enabled traps (signals).

6. Without an Intel 80287 or 80387 coprocessor installed, the floating
point emulator incorrectly returns 0 rather than NaN for any operation
on NaN.

7. The IEEE 754 standard for floating point (IEEE Standard for binary
Floating-Point Arithmetic, ANSI/IEEE Std. 754-1985) allows several
different methods for detecting overflow. As a result, you should not
rely on a particular implementation to signal overflow for a particular
operation.

8. Floating point comparisons where one operand is an NaN always
result in an invalid operation exception. This is because the Intel
80287 lacks an instruction to make this comparison without getting the
exception.

SOFTWARE DEVELOPMENT SET RELEASE NOTES 21

Software Notes ------------------------

9. dis(l) and sdb(l) do not recognize the Intel 80387 specific instructions.

10. pipe(2) - The documentation states that the maximum number of
bytes in a pipe (PIPE-MAX) is defined to be 5120. The system sets
PIPE_MAX to 10240.

11. ioct1(2) - The V _ADDBAD command (notifies the device drivers of
bad sectors) in ioct1(2) updates only the table currently in memory and
does not update the table on the hard disk. Therefore, all the changes
made using ioct1(2) with V _ADDBAD will be lost when the system is
rebooted. Also, if an assigned alternate sector goes bad, there is no
way to recover.

12. ioct1(2) - The V_GETPARMS command in ioct1(2) returns the
incorrect number of sectors for a 360KB device. The number of sectors
reported is 1440; however, the correct value is 720.

13. The Graphics Programming Utilities (GPU) has been renamed
extended terminal interface (ETI).

14. A new function, gethz(), is added to libc that gets the HZ value from
the environment.

15. The -s option is added to the symbolic debugger (sdb). The system
will not catch the trap specified by the -s option. For example, if you
specified sdb -s2, it will not trap on error number 2.

16. The -Zp[11214] option is added to cc. This option packs structure
members in memory. Normally, structure members are aligned as fol­
lows: items of type char are byte-aligned, items of type short are
aligned on 2-byte boundaries, and all other types of structure members
are word-aligned. Specifying an option to -Zp will force alignment on
the given byte boundary. If no option is used with -Zp, structure
members will be packed on I-byte boundaries. The alignment may be
altered with the #pragma pack preprocessor directive.

17. The -x option is added to convert. This is required to convert a Xenix
archive. Using this option will convert the general archive structure
but leave archive members unmodified.

22 UNIX SYSTEM V /386 RELEASE 3.2

Compatibility

This section describes the changes made in this issue of the SOS package
that may have an effect on the compatibility of your programs.

The Compiler and cc
The following compatibility notes concern changes made to the CSOS cc

command or the compiler, comp, in this issue of the SOS. These notes apply
only if you are porting C programs compiled on an AT&T compilation system
(release number less than 4.1) for a different machine.

• The -B and -t options have been removed from the cc command. Pre­
vious releases printed a warning message that these options would
disappear.

• The handling of aggregate initialization has been changed to conform to
the definition given by Kernighan and Ritchie. Initialization where all
braces are specified or where only the outermost braces are specified
continues to work as before.

• cc and comp can no longer take the address of a label.

The following illegal C code will no longer compile:

f (){
int i;

lab:
i = (int) &lab;

}

• Bad structure code, such as the following, is disallowed:

taking the address of the return value of
a function which returns a structure:

pst = &(stcall(»;

using a function return value as an L-value:

stcall() = *pst;

taking the address of a structure assignment:

pst = &(st1=st2);

SOFTWARE DEVELOPMENT SET RELEASE NOTES 23

Compatibility -------------------------

cpp
The following change was made to cpp in this issue of the SDS .

• A missing or invalid macro name in ifdef, ifndef, undef, or
define is now a fatal error.

For example:

#ifdef 202
#undef
#undef 1abc

Changes in C Library Functions
The following list describes changes made to functions in the C library in

this issue of the SDS.

ctime(3C) An a.out compiled with previous versions of the ctime func­
tions when used with some new legal TZ values will give
unexpected results.

ctime(3C) ctime now defaults to GMT if TZ is not set.

In previous releases it defaulted to EST.

fgets(3S) A call to fgets on a write-only file returns NULL. In earlier
releases, fgets always returned the address of the buffer passed
to it.

fread(3S), fwrite(3S)

The fread and fwrite functions return zero when size is zero
or huge.

In an earlier release, these two functions always returned
nitems. size and count are multiplied to give the number of
bytes to be transferred. If the result is larger than the remain­
ing bytes of the file or is not representable within the precision
of an integer, fewer items will be read than requested and the
number of items actually read will be returned.

24 UNIX SYSTEM V /386 RELEASE 3.2

------------------------ Compatibility

scanf(3S) Calls to scanf now return EOF on end-of-file. In an earlier
release, scanf erroneously returned zero.

Environment Variables
The variables CFTIME, CHRCLASS, and LANGUAGE are environment

variables in CSDS. Setting them may cause C library functions to change
their behavior. Also, the TZ environment variable may be interpreted dif­
ferently. The following table lists the library functions affected by these vari­
ables.

Function

ctime
isalnum
isalpha
iscntrl
isdigit
isgraph
islower
isprint
ispunct
isupper
localtime
tolower
toupper

Environment Variables
TZ

CHRCLASS
CHRCLASS
CHRCLASS
CHRCLASS
CHRCLASS
CHRCLASS
CHRCLASS
CHRCLASS
CHRCLASS

TZ
CHRCLASS
CHRCLASS

The mkshlib Command
Uninitialized external variables (common symbols) are illegal in a shared

library. Previously, the use of common symbols was discouraged by both the
documentation and a mkshlib warning message. This warning message is
now a fatal error.

SOFTWARE DEVELOPMENT SET RELEASE NOTES 25

Future Directions

This section describes areas of the SDS product that are likely to change in
future releases.

1. It is likely that some of the functions defined in libPW will be
removed in a future release of this product. If you have any code that
relies on libPW, AT&T recommends that you reimplement it using
existing functions in the standard C library or that you retain copies of
the libPW functions that you need.

2. The list(l) command will be removed in a future release of this pro­
duct.

3. AT&T expects, in a future release of the SDS, to support the ANSI
Standard for the C language once the standard is accepted. That stan­
dard introduces the keywords const, signed, and volatile. Program­
mers should therefore avoid using these words as identifiers in pro-'
grams.

4. A major feature of the extended terminal interface (ETI) is the ability
to turn on and off any of several video attributes, such as bold, dim,
blinking, underlining, reverse video, and others. Future enhancements
of ETI will include additional video attributes that enable your pro­
grams to use the color capabilities of a wide range of terminals.

5. In keeping with AT&T's ongoing internationalization of the UNIX sys­
tem, future users will be able to use ETI with keyboards using foreign
language character sets, such as Kanga.

26 UNIX SYSTEM V /386 RELEASE 3.2

Documentation

Essential documentation is provided with the SDS software package when
purchased. Additional sets of the Software Development documentation (of
which these Release Notes are a part) are available and can be ordered. See
the Product Overview/Documentation Roadmap for more details. The Pro­
duct Overview/Documentation Roadmap can be ordered separately by using
the 9-digit number 999-300-527.

SOFTWARE DEVELOPMENT SET RELEASE NOTES 27

Documentation Updates

The following change pages reflect last minute changes to the UNIX
System V /386 Release 3.2 documentation. These change pages should be
inserted into the Programmer's Reference Manual.

AT&T UNIX SYSTEM V /386
RELEASE 3.2

PROGRAMMER'S REFERENCE MANUAL
UPDATES

This update involves the following actions:

1. ACTION: Replace RMDIR(2) pages 1 and 2 with the new pages.

2. ACTION: Replace SEMGET(2) pages 1 and 2 with the new pages.

3. ACTION: Replace UNLINK(2) pages 1 and 2 with the new pages.

Documentation Updates A-1

RMDIR(2) (C Software Development Set) RMDIR(2)

NAME
rmdir - remove a directory

SYNOPSIS
int rmdir (path)
char *pathi

DESCRIPTION
rmdir removes the directory named by the path name pointed to by path.
The directory must not have any entries other than "." and " .. ".

The named directory is removed unless one or more of the following is true:

[EINVAL]

[EINVAL]

[EEXIST]

[ENOTDIR]

[ENOENT]

[EACCES]

[EACCES]

[EBUSY]

[EROFS]

[EFAULT]

[EIO]

[ENOLINK]

[EMULTIHOP]

The current directory may not be removed.

The "." entry of a directory may not be removed.

The directory contains entries other than those for
" II

A component of the path prefix is not a directory.

The named directory does not exist.

and

Search permission is denied for a component of the path
prefix.

Write permission is denied on the directory containing the
directory to be removed.

The directory to be removed is the mount point for a
mounted file system.

The directory entry to be removed is part of a read-only file
system.

Path points outside the process's allocated address space.

An I/0 error occurred while accessing the file system.

Path points to a remote machine, and the link to that
machine is no longer active.

Components of path require hopping to multiple remote
machines.

In addition, a directory will not be removed when all of the following is
true:

the parent directory has the sticky bit set
the parent directory is not owned by the user
the target directory is not owned by the user
the target directory is not writable by the user
the user is not super-user

- 1 -

RMDIR(2)

SEE ALSO
mkdir(2).

(C Software Development Set) RMDIR(2)

rmdir(l), rm(l), and mkdir(l) in the User's/System Administrator's Reference
Manual.

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a value of
-1 is returned and errno is set to indicate the error.

- 2 -

SEMGET(2) (C Software Development Set) SEMGET(2)

NAME
semget - get set of semaphores

SYNOPSIS
#include <sysjtypes.h>
#include <sysjipc.h>
#include <sysjsem.h>

int semget (key, nsems, semflg)
key_t key;
int nsems, semflg;

DESCRIPTION
The semget system call returns the semaphore identifier associated with key.

A semaphore identifier and associated data structure and set containing
nsems semaphores [see intro(2)] are created for key if one of the following is
true:

Key is equal to IPCJRIVATE.

Key does not already have a semaphore identifier associated with it,
and (semflg & IPC_CREAT) is "true".

Upon creation, the data structure associated with the new semaphore iden­
tifier is initialized as follows:

SeD'L-perm.cuid, seD'L-perm.uid, seD'L-perm.cgid, and
seD'L-perm.gid are set equal to the effective user ID and effective
group ID, respectively, of the calling process.

The low-order 9 bits of seD'L-perm.mode are set equal to the low­
order 9 bits of semflg.

SeJJL.nsems is set equal to the value of nsems.

SeD'L-otime is set equal to 0 and seD'L-ctime is set equal to the
current time.

The data structure associated with each semaphore in the set is not initial­
ized. The function semet! with the command setval or setall can be used to
initialize each semaphore.

The semget system call fails if one or more of the following is true:

[EINVAL]

[EACCES]

[EINVAL]

[ENOENT]

Nsems is either less than or equal to zero or greater than
the system-imposed limit.

A semaphore identifier exists for key, but operation permis­
sion [see intro(2)] as specified by the low-order 9 bits of
semflg would not be granted.

A semaphore identifier exists for key, but the number of
semaphores in the set associated with it is less than nsems,
and nsems is not equal to zero.

A semaphore identifier does not exist for key, and (semflg &
IPC_CREAT) is "false".

- 1 -

SEMGET(2)

[ENOSPC]

[EEXISTj

SEE ALSO

(C Software Development Set) SEMGET(2)

A semaphore identifier is to be created, but the system­
imposed limit on the maximum number of allowed sema­
phore identifiers system wide would be exceeded.

A semaphore identifier exists for key, but [(semflg &
IPC_CREAT) and (semflg & IPC_EXCL)] are "true".

intro(2), semctl(2), semop(2).

DIAGNOSTICS
Upon successful completion, a non-negative integer, namely a semaphore
identifier, is returned. Otherwise, a value of -1 is returned, and errno is set
to indicate the error.

- 2 -

UNLINK(2) (C Software Development Set) UNLINK(2)

NAME
unlink - remove directory entry

SYNOPSIS
int unlink (path)
char *path;

DESCRIPTION
unlink removes the directory entry named by the path name pointed to by
path.

The named file is unlinked unless one or more of the following is true:

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] The named file does not exist.

[EACCES] Search permission is denied for a component of the path
prefix.

[EACCES] Write permission is denied on the directory containing the
link to be removed.

[EPERM] The named file is a directory and the effective user ID of
the process is not super-user.

[EBUSY] The entry to be unlinked is the mount point for a mounted
file system.

[ETXTBSY] The entry to be unlinked is the last link to a pure pro­
cedure (shared text) file that is being executed.

[EROFS] The directory entry to be unlinked is part of a read-only file
system.

[EFAULT] Path points outside the process's allocated address space.

[EINTR] A signal was caught during the unlink system call.

[ENOLINK] Path points to a remote machine and the link to that
machine is no longer active.

[EMULTIHOP] Components of path require hopping to multiple remote
machines.

A file will not be unlinked when all of the following is true:

the parent directory has the sticky bit set
the file is not writable by the user
the user does not own the parent directory
the user does not own the file
the user is not super-user

When all links to a file have been removed and no process has the file
open, the space occupied by the file is freed and the file ceases to exist. If
one or more processes have the file open when the last link is removed, the
removal is postponed until all references to the file have been closed.

SEE ALSO
close(2), link(2), open(2).

rm(l) in the User's/System Administrator's Reference Manual.

- 1 -

UNLINK(2) (C Software Development Set) UNLINK(2)

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a value of
-1 is returned and errno is set to indicate the error.

- 2 -

Appendix B: Installation Diskette Files

Appendix B: Installation Diskette Files B-1
C Software Development Set Utility Package, Contents of 4 Diskettes B-1

TABLE OF CONTENTS

Appendix B: Installation Diskette Files

C Software Development Set Utility Package,
Contents of 4 Diskettes

Size
Files
Name
Install
Remove
bin
bin/ar
bin/cc
bin/gencc
bin/as
bin/ld
bin/cprs
bin/conv
bin/dis
bin/dump
bin/list
bin/lorder
bin/mkshlib
bin/chkshlib
bin/nm
bin/size
bin/strip
bin/convert
bin/make
lib
lib /libld.a
lib/comp
lib/cpp
lib/optim
lib / cm4defs
lib/libPW.a
lib/crtO.o
lib/crtl.o

lib/crtn.o
lib/mcrtO.o
lib/mcrt1.o
lib /pcrt1.o
lib/libc.a
lib/libm.a
lib/libx.a
lib /libc-s.a
lib /basicblk
lib/pcrtO.o
etc
etc/install
usr
usr/bin
usr /bin/ cflow
usr/bin/ctrace
usr/bin/ctcr
usr/bin/ctc
usr /bin/ cxref
usr/bin/lex
usr /bin flint
usr /bin/lprof
usr/bin/m4
usr /bin/prof
usr/bin/regcmp
usr /bin/ admin
usr/bin/cdc
usr /bin/ comb
usr /bin/ delta
usr/bin/get
usr /bin/prs
usr /bin/rmdel
usr/bin/sact

Installation DiskeHe Files B-1

Appendix B: Installation Diskette Files --------------

usr jbinjunget
usr jbinjval
usrjbinjve
usrjbinjwhat
usrjbinjseesdiff
usrjbinjsdb
usrjbinjyaee
usr jbin j tsort
usrjbinjeb
usr jbinj esc ope
usrjlib
usr jlib jlibp
usr jlib jlibp jlibe.a
usr jlib jlibp jlibm.a
usr jlib jlibp jlibmalloc.a
usr jlib jlibp jlibx.a
usr jlib j ctraee
usr jlib j ctraeejruntime.e
usr jlib jliberypLi.a
usr jlib jllib-Ie
usr jlib jlibg.a
usr jlib jlibl.a
usr jlib jlibmalloc.a
usr jlib jllib-lmalloc.l
usr jlib jliby.a
usr jli b j dag
usr jlib jlpfx
usr jlib jhelp
usr jlib jhelp jlib
usr jlib jhelp jlib jhelp2
usr jlib jhelp jlib jhelp
usr jlib jhelp j ad
usr jlib jhelp jbd
usr jlib jhelp j eb
usr jlib jhelp j em
usr jlib jhelp j emds
usr jlib jhelp j co
usr jlib jhelp j de
usr jlib jhelp j default
usr jlib jhelp j ge

B-2

usr jlib jhelp jhe
usr jlib jhelp j prs
usr jlib jhelp jre
usr jlib jhelp jun
usrjlibjhelpjut
usr jlib jhelp jve
usrjlibjnmf
usrjlibjflip
usr jlib jxpass
usrjlibjxepp
usr jlib jllib-port
usr jlib jllib-lc.ln
usr jlib jllib-lm
usr jlib jllib-port.ln
usr jlib jyaeepar
usr jlib jllib-lm.ln
usr jlib jlex
usr jlib jlexj ncform
usrjlibjlexjnrform
usrjlibjlintl
usr jlib jlint2
usr jlib jbasieblk
usr jlib jlibprof.a
usrjinclude
usr jinclude j a.out.h
usr jinclude j aouthdr.h
usrjincludejar.h
usr jinclude j assert.h
usrjincludejeore.h
usr jinclude j ctype.h
usr jinclude j dial.h
usr jindude j dirent.h
usr jinclude j errno.h
usrjincludejfatal.h
usrjincludejfcntl.h
usr jinclude jfilehdr.h
usrjincludejftw.h
usr jindude j grp.h
usr jinclude jieeefp.h
usr jinclude jldfcn.h

-------------- Appendix B: Installation Diskette Files

usr jinclude jlimits.h
usrjincludejlinenum.h
usrjincludejmacros.h
usrjincludejmalloc.h
usr jincludejmath.h
usrjincludejmemory.h
usr jinclude jmnttab.h
usr jinclude jmon.h
usr jincludejnan.h
usrjincludejnlist.h
usr jinclude jnsaddr.h
usr jincludejnserve.h
usrjincludejpoll.h
usrjincludejprof.h
usr jinclude jpwd.h
usrjincludejregexp.h
usr jinclude jreloc.h
usrjincludejrje.h
usr jinclude j scnhdr.h
usr jinclude j sd.h
usr jinclude j search.h
usr jinclude j setjmp.h
usr jinclude j sgtty.h
usr jinclude j signal.h
usr jinclude j stand.h
usr jincludej stdio.h
usr jinclude j storclass.h
usr jinclude j string.h
usr jinclude j stropts.h
usr jinclude jstrselect.h
usr jinclude jsyms.h
usr jinclude j sys.s
usr jincludejtermio.h
usrjincludejtime.h
usr jincludejtp_defs.h
usr jinclude j unistd.h
usr jinclude justat.h
usr jincludejutmp.h
usrjincludejvalues.h
usr jinclude jvarargs.h

Installation Diskette Files B-3

