

©1988 AT&T
All Rights Reserved
Printed in USA

NOTICE
The information in this document is subject to change without notice. AT&T
assumes no responsibility for any errors that may appear in this document.

CrystalWriter is a registered trademark of SyntactiCS Corporation.
UNIX is a registered trademark of AT&T.

i

1

2

Table of Contents

Introduction
Introduction

The Interpreter
Pseudo Keys
What Does FMLI Do?
Keywords
What is a Form?
What is a Menu?
Additional Objects
Frame-to-Frame Navigation

i-1

1-1
1-3
1-8

1-11
1-14
1-18
1-21

The Definition Language
Prerequisites 2-1
Variables 2-2
Built-in Variables 2-4
Syntax 2-5
Forms 2-7
Menus 2-18
Text Objects 2-24
Built-in Functions 2-30
Co-processing 2-33
The Uses of regex 2-37
Fmlcut(l) and Fmlgrep(l) 2-42
Shell vs. run 2-44

TABLE OF CONTENTS

Table of Contents

3

4

Invoking Fmli
Introduction
The Initialization File
Modifying Command Keywords
Adding Path Aliases
Terminal Independence

Fmli Manual Pages
FMLI Manual Pages

ii FMLI PROGRAMMER'S GUIDE

3-1
3-2

3-10
3-11
3-12

4-1

•
I Introduction

Introduction
What this Document Covers
Prerequisite Knowledge
How to Use this Document

INTRODUCTION

i-1
i-1
i-1
i-1

Introduction

What this Document Covers
The purpose of this document is to explain:

• The capabilities of the Form and Menu Language Interpreter (FMLI)

• The syntax of the Form and Menu Language

• How the Interpreter interfaces with the UNIX system.

Prerequisite Knowledge
Before attempting to use FMLI, you should be familiar with the following:

• UNIX System V Operating System

• Shell scripts and programming

• UNIX system documentation conventions

• The Release Notes.

How to Use this Document
This document is written for the application developer who already knows

about the UNIX system and shell programming. Thus, its purpose is to fami­
liarize the developer with the capabilities of the Interpreter from the user's
point of view, and then to explain the definition language and its syntax. We
strongly suggest that you read this guide from front to back, at least the first
time. Also, there may have been some changes to the software since the writ­
ing of this guide. Check the Release Notes for software changes before writing
any important code.

First, we explain each type of object that can be defined in an application
and then the application user's options when dealing with that object. The
user's options are given for two reasons: so the developer can minimize the
actions the user must take, and so that the developed application can be docu­
mented.

INTRODUCTION i·1

Introduction

Second, we explain the method of writing object descriptions, mostly by
tables and examples, and cover topics related to the UNIX system. At the end
of the document are the manual pages for the built-in functions.

i·2 FMLI PROGRAMMER'S GUIDE

1 The Interpreter

Pseudo Keys

What Does FMLI Do?
Object Architecture
Screen Layout
Object Operation

Keywords
User Keywords
Developer Keywords

What is a Form?
Multipage Forms
Navigation Keys
Default SLKs

What is a Menu?
Single and Multiselect Menus
Navigation Keys
Default SLKs

Additional Objects
Text Objects

1-1

1-3
1-3
1-3
1-6

1-8
1-8
1-9

1-11
1-11
1-11
1-13

1-14
1-15
1-15
1-17

1-18
1-18

THE INTERPRETER

The Interpreter ---------------------

Choices Menu
Screen-Labeled Keys
Help

Frame-to-Frame Navigation

ii FMLI PROGRAMMER'S GUIDE

1-19
1-20
1-20

1-21

Pseudo Keys
The existence of a "pseudo keyboard" with a variety of special keys is

assumed in this document. It is unlikely that any terminal has all of the refer­
enced keys. The following figure shows each of the keys discussed in this
document as well as "alternate keystrokes" that will produce the same result.
The A, or caret, symbol represents the CONTROL key.

THE INTERPRETER 1·1

PseudoKe,s ---

ALTERNATE KEYSTROKES FOR PSEUDO KEYS
Pseudo key Keystroke
SCREEN LABELED KEYS Afl...AfB
COMMAND LINE

A
z

DOWN-ARROW Ad

UP-ARROW
A
u

RIGHT-ARROW
A
r

LEFT-ARROW Al
A

TAB i
BACKTAB

A
t

HOME Afb

HOME-DOWN Afe
BEG Ab

END
A
e

PREVPAGE
A
v

NEXTPAGE
A
w

BACKSPACE Ah

SPACEBAR ~pace

DEL x A
DELETE-CHARACTER x A
DELETE-LINE k A
CLEAR AY
CLEAR-LINE AY
CLEAR-EOL fy
RESET

Afr
A

NEXT n A
PREY AP
PAGE-UP v
PAGE-DOWN

A
w A

SCROLL-UP fu
SCROLL-DOWN Afd
INSERT -CHAR

A
a

INSERT -LINE
A
0

MARK Afm

1·2 FMLI PROGRAMMER'S GUIDE

What Does FMLI Do?
The Form and Menu Language Interpreter (FMLI) is a developer tool. It

recognizes a high-level "shell-like" language for defining forms, menus, and
other types of frames, as well as screen-labeled keys (SLKs), a message line, a
command line, and a banner. The Interpreter handles the details of frame
creation, placement, navigation between frames, and processing the use of
forms and menus.

Each form or menu description is stored in an ASCII file containing state­
ments recognized by the Interpreter. Before the menu or form is displayed, the
Interpreter breaks down the definition file and generates the appropriate func­
tion calls to initialize and manipulate the defined object.

There are three things you will need to know to use this tool:

• Object Architecture: which is how FMLI views the UNIX system

• How the various objects work: navigation, commands, and messages

• How to define objects: the structure and syntax of the language.

The rest of this section will deal with the first two items. The third item is
covered in the chapter titled "The Definition Language."

Object Architecture
An object in FMLI is defined as a form, menu, or text frame, and the items

those frames contain. When you define a form or menu, you are creating an
object. The user, in such a system, needs no knowledge of UNIX system files
and directories, only of objects. It is the FMLI developer's job to define
objects, and operations that may be performed on those objects.

Screen Layout
FMLI will work on any asynchronous terminal that:

• displays 80 characters across

• has at least 22 simultaneously visible lines

THE INTERPRETER 1·3

What Do •• FMLI Do?

• has a proper terminfo entry in the host computer.

BANNER LINE

r1 My Root Menu I
Menu Item 1

Menu Item 2

> Sample Form 1

rl 3 Sample Multipage Form r--
This is field one: FMLI

Scroll Box --
This is field two: A /

V --

Page 2 of 5 A_
V

" Scroll Indicator
for Multiline

Scrollable Form Fields

WORK AREA

MESSAGE LINE

COMMAND LINE

FI I F2 j F3 1 F4 1 F5 J F6 I F7 1 F8

1·4 FMLI PROGRAMMER'S GUIDE

What Do •• FMLI Do?

The screen is divided into five regions which are:

Banner Line Displays a one-line banner at the top line of the screen.

Work Area

Frame

Message Line

The banner line is specified in the initialization file. For
more information on the banner line, "working" indica­
tor, and defining your own indicators, see "The Initializa­
tion File" in this guide, and the indicator(lF) manual
page.

The work area is the section of the screen where "frames"
are displayed. This area starts on line 2 of the screen and
stops on the third line from the bottom of the terminal.

A frame is an independently scrollable region of the
screen surrounded by a border. FMLI allows you to define
three types of frames; menus, forms, and text frames. The
frame specified when FMLI is invoked is opened first.
Several frames may be opened simultaneously on the
display. Only one frame is the "active frame." The active
frame is shown "on top" of any other frames, and its title
is highlighted. The active frame may cover parts of inac­
tive frames.

Each frame that displays three or more lines of infor­
mation will contain a "scroll box" along its right frame
border. A scroll box will house both an "up" indicator C)
and a "down" indicator (v). If present, the "up" or
"down" indicator signals there is more information before
or after the current frame, respectively. For example, the
"up" indicator will appear when page two of a multiple
page form is displayed.

Scroll indicators are also provided along the lower
right frame border when a "multiple line scrollable form
field" is active. FMLI forms are introduced later in this
chapter.

The second line from the bottom of the terminal is the
message line. This line is for displaying messages to the
user. It is also used for one-line error and help messages.
By default, the message will stay on the screen until the
next key is pressed.

THE INTERPRETER 1·5

What Does FMLI Do?

Command Line The command line is one line from the bottom of the ter­
minal. The user can access this line by striking ICtruliJ at
which time the --> prompt appears. The user can type
any command sUPforUed by the Interpreter or defined by
the application. If Ctr EI is pressed while the user is in the
Commands Menu, the command that is currently
highlighted in that menu will appear on the command
line after the prompt.

Screen-label keys (SLKs)
The bottom line of the display is reserved for the
screen-labeled keys. Eight keys are displayed and associ­
ated with the eight function keys on many keyboards.
There are alternate keystrokes defined if the user's key­
board does not have function keys. Each SLK has a
default label and function assigned to it, depending on the
type of frame active at the moment. There are two sets of
SLKs. The first set qm be renamed or disabled. The
second set can be redefined. The code controls which set
is displayed at any given time. SLKs are provided to
allow the user to easily perform the functions assigned to
the SLKs.

If a terminal does support hardware function keys, FMLI will use the last
line of the screen to paint function key labels. The developer should be
aware of this since the size of the work area will be decreased by one line to
make room for these labels.

Object Operation
An object operation is a function that can be performed on an object.

Object operations can be regular UNIX system commands, which the Inter­
preter passes to the shell for execution, but more often are either function calls
built into the Interpreter, or keywords that the Interpreter handles.

1·6 FMLI PROGRAMMER'S GUIDE

What Does FMLI Do?

The following example is a line of FMLI Definition Language code. It
contains both a built-in function call and a keyword. The action to take when
a selection is made from a menu is being described.

action='set -1 MYVAR="he11o" 'OPEN MENU Menu.l'I!YfIIEID.U

In this example, OPEN is recognized as a keyword. Keywords are often
present outside of backquotes. A keyword is an Interpreter command that
forces an object operation to occur. In this example, the operation is OPEN
and the type of object to open is a MENU. The name of the menu to open is
Menu.mymenu. This example uses both the "MENU" type cast and the
FMLI naming convention for menus (e.g., Menu."'). It is only necessary to use
one, but you may use both. For more about the FMLI naming convention, see
the introduction to Chapter 3, "Invoking FMLI."

THE INTERPRETER 1-7

Keywords
The following list of keywords is broken into two groups. The first group

appears to the user in the Command Menu. The second group is primarily for
the developer, but can be executed by the user from the command line. Note
that some of these commands map directly to default SLKs.

User Keywords

cancel

cleanup

exit

frm-mgmt

goto

help

next-frm

prev-frm

refresh

unix

update

Cancels the current command or activity. Closes an object
without executing the "done" descriptor.

Closes all objects whose lifetime is shorter than per­
manent.

Closes all objects and exits the Interpreter.

Takes a maximum of two arguments; a keyword opera­
tion, and a frame number if the operation is move or
reshape. If no arguments are given, the frame­
management menu appears, and the user can select an
operation which will be performed on the current frame.

Makes another object current. The golo keyword takes as
its only argument the number of a frame or the full path
name of the object's definition file. Users should only be
told about the frame number argument.

Invoke the action specified in the help descriptor defined
for the current object.

Moves to the next frame.

Moves to the previous frame.

Redraws the terminal screen.

Brings up the UNIX system shell in full screen mode.

1-8 FMLI PROGRAMMER'S GUIDE

Keywords

Optionally takes two arguments, the first of which is a
frame number or full path name. The second argument is
a "true" or "false" that determines if the frame will be
made current once the update is done. If the second argu­
ment is not given, FALSE is the default. Update forces
the object's definition file to be re-read regardless of the
presence or value of the reread descriptor. If there are
differences between what is read and what is on the
screen, the object will be re-drawn. Update will not re­
read the title of an object.

The Boolean value returned by an FMLI command or keyword is special.
It is FALSE if either the string "false" or a non-zero integer is returned,
TRUE if 0 or any other string is returned. Boolean arguments to a com­
mand or keyword follow standard format.

Developer Keywords

open

close

Opens an object. open takes two arguments. The first
argument is used as a "cast," to indicate the type of
object that is to be opened. The second argument is the
path name of the object's definition file. For example:

OPEN EORM $~/myfonn

Additional arguments may be added to this command.
The Interpreter will pass these arguments to the opened
object as described in the section "Variables."

Closes all objects whose frame numbers appear as argu­
ments, except those which are immortal (which means
they can't be dosed).

THE INTERPRETER 1-9

Keywords

cmd-menu Opens the Command Menu object.

nop Does nothing. This is useful for specifying no operation
for descriptors of type KEYWORD.

prevpage Pages backward one page in the active object, if that
object understands paging.

nextpage Pages forward one page in the active object, if that object
understands paging.

choices Causes the Interpreter to check for an rmenu or choicemsg
descriptor in the current field descriptor and execute it. If
none exists, a message to that affect is printed.

checkworld This routine is initiated by the SIGALRM signal. It causes
FMLI to evaluate the reread descriptor for all objects on
the screen. When the checkworld command is executed,
the message line is cleared. If the user is reading the mes­
sage when this happens they may not know why.

done

mark

reset

togslk

1-10

Causes the Interpreter to execute the done descriptor (if it
exists) in an object.

Marks or unmarks the current item in a multiselect menu.

Resets the current field to its default value (its value when
the object was opened).

Causes the Interpreter to display the set of SLKs that is
not currently being displayed. It is a toggle between the
two sets.

The maximum number of arguments that may be given in an FMU com­
mand is 25. Since an open command takes at least 2 arguments (the com­
mand is I, the object name is I), the maximum number of commands that
can be passed to an opened object is 23. Remember, however, that once in
the object you can only access the first 10 arguments (ARGO-ARG9).

FMLI PROGRAMMER'S GUIDE

What is a Form?
A form is a method for displaying and prompting for information in a

frame. The form is made up of fields which are a combination of a prompt
(the name of the field) and an area to enter the value of the field. A form has
a title that appears on the top border, and a number to the left of the title that
identifies the frame. As the user navigates from frame to frame, FMLI keeps a
list of the identifying numbers of each frame visited. It is important to under­
stand that the numbers have nothing to do with order. If you have five frames
on the screen and you delete frame 2, the next frame you create will be
assigned the number 2 because 2 is the next available number.

To the user, a form on the screen looks pretty much like a
fill-in-the-blanks questionnaire. A form is a frame, and may be navigated
from and to with the standard frame-to-frame navigation keys defined in the
section "Frame-to-Frame Navigation."

Multipage Forms
If the form is multipage, the first page is the one that appears when the

form is initially opened. Users have no way of knowing that there are more
pages to the form unless you tell them. You may either put a message on the
message line, or put the message in the form. To put a message in a form,
equate the name descriptor to the desired message, define the page on which
it should appear, but don't define an input area for that field.

Navigation Keys
Within the form, the user has the use of the following navigation keys.

See the table at the beginning of this document for a list of alternate
keystrokes if your terminal doesn't have these keys .

• DOWN-ARROW (d) moves the cursor down to the next field. If you
are on the last field, the cursor wraps around to the top field. If you are
in a multipage form, the cursor goes to the top field on the next page of
the form, if there is one. If you are on the last field of the last page of
a form, the wrap is to the first field of the first page.

THE INTERPRETER 1-11

What is a Form?

• UP-ARROW (u) moves the cursor up to the previous field. If you are
on the top field, the cursor wraps around to the bottom field. If you are
on a multipage form, the cursor wraps to the bottom field of the previ­
ous page of the form, if there is one. If you are on the first field of the
first page of a form, the wrap is to the last field of the last page.

• RIGHT -ARROW (r) non-destructively moves the cursor right one
character within a field. It does not wrap to the next field.

• LEFT-ARROW (1) non-destructively moves the cursor left one charac­
ter within a field. It does not wrap to the previous field.

• TAB (i) moves the cursor to the next field in the form. The wrap­
around feature works as it does with DOWN-ARROW.

• BACKTAB (t) moves the cursor to the previous field in the form. The
wrap-around feature works as it does with UP-ARROW.

• HOME (fb) moves the cursor to the first character of the current field.

• HOME-DOWN (fe) moves the cursor to the last character of the
current field.

• BEG (b) moves the cursor to the first character of the first field of the
current page of a form.

• END (e) moves the cursor to the first character of the last field of the
current page of a form.

• PREVPAGE or PAGE-UP (v) moves the cursor back one page on a
multipage form if it can. It then performs a BEG.

• NEXTPAGE or PAGE-DOWN (w) moves the cursor forward one page
on a multipage form if it can. It then performs a BEG.

• BACKSPACE (h) moves the cursor to the left, deleting the character
there.

• SPACEBAR (space) replaces the current character with a space and
moves the cursor one character to the right.

• DEL,DELETE-CHARACTER (x) deletes the character under the cursor
and closes the gap.

• DELETE-LINE (k) deletes the current line of a field and closes the
gap. In a single line field, it performs the same as CLEAR-LINE.

1-12 FMLI PROGRAMMER'S GUIDE

What is a Form?

• RESET (fr) resets a field to its default value.

• CLEAR-EOL (fy) clears the line from the current cursor position to the
end of the line.

• CLEAR, CLEAR-LINE (y) clears the current line of the current field.

When you are editing a form, you are in the "overtype" mode. When you
begin typing at the first character of a field, the field is automatically cleared.
SPACEBAR, if it is the first character typed, thus appears to be clearing out
the field. It is, in fact, making the space character the first character of the
field, which may lead to confusion if you fail to document it.

Default SLKs
Below is a list of the default SLK keys presented with a form.

Form Default SLKs
Key Command
Fl HELP
F2 CHOICES/MARK
F3 SA VE/CONT /ENTER
F4 PREV-FRM
F5 NEXT-FRM
F6 CANCEL
F7 CMD-MENU
F8 CHG-KEYS

Function key 8 will default to CHG-KEYS if any of SLKs 9 through 15 are
defined. For more details on SLKs, see the section titled "Additional
Objects. "

THE INTERPRETER 1·13

What is a Menu?
A menu in FMLI is a method for displaying a list of selections in a frame,

determining the user's selection, and taking actions based on the selection.
The menu appears as a list of items, in a left justified column, in a frame. The
number of items in the menu determines the number and height of each
column. If there are too many items for the menu to fit on the screen, the
menu will be scrollable. If either of the scroll icons C for up and v for down)
appears on the border of the object, the corresponding scroll key is valid.
Wrapping is supported from the top to the bottom, and vice versa, in a single
column menu. Wrapping is also supported from the bottom of a column to
the top of the next column going to the right, and vice versa, in a mul­
ticolumn menu.

The top border of the frame has a programmer-defined name for the
menu, and in the upper left is a frame number, assigned in the same manner,
and used for the same purpose, as the frame number in a form (see "What is
a Form?").

As the user navigates within the menu, a highlight bar shows the current
item. The highlight bar is present when the cursor is used for navigating. If a
character search is being done, only the characters searched are highlighted.
On the left side of the bar, a > mark is al~o provided, in case the terminal
cannot do reverse video highlighting. Navigation between frames is described
in "Frame-to-Frame Navigation."

The user has two options for moving the marker to an item in a menu.
The user may use the navigation keys described below, or select an item by
typing its name. The user does not have to type the full name, nor worry
about uppercase and lowercase. As each key is typed, the highlight bar
moves to the first item in the menu that matches the total string typed so far.
If the user types the letter "p," for example, the marker will move to the first
item in the list that starts with the letter "p" or "P." If the user then types
"r," the marker will move to the first item that starts with the letters "pr",
again, irrespective of case. If the user types a letter that cannot be matched,
the terminal bell will sound, or the screen will flash, depending on the termi­
nal capability. An error message showing the string the letters have matched
so far plus the unmatchable character will be printed on the message line.
Once the marker has moved to an item, it may be selected by striking the
IEnterl key. The selector bar will wrap around when it reaches the end of the
menu, regardless to whether the user is moving the bar up or down.

1·14 FMLI PROGRAMMER'S GUIDE

What is a Menu?

If the user starts to type an item name, and the marker moves, and the
user then changes his/her mind about what to select, the user must use
one of the navigation keys before trying to use partial matching again.

Single and Multiselect Menus
For a single select menu, the user simply navigates the marker to the item

to be selected and strikes a carriage return {take care to specify how this key is
named in your user documentation}. For a multiselect menu, the user navi­
gates to an item to be selected and strikes the MARK SLK (function key 2) or
strikes the corresponding key sequence defined in the Pseudo Key Table.
Then, when the user navigates to other items, a '" marker will stay beside the
marked item. If you strike MARK SLK while on an item that is already
marked, that item becomes unmarked. Carriage return then selects all of the
marked items.

In a multiselect menu, the carriage return does not select the item the
marker is currently on, unless the user has marked it with the MARK
SLK. This is contradictory to the way a single select menu works, and
the only way the user can tell he/she is in a multiselect menu is by the
appearance of the MARK SLK. Since many users might miss this subtle
difference, it would be wise to inform them of a multiselect menu with a
message on screen.

Navigation Keys
The following keys are used for navigation within a menu.

• DOWN-ARROW (d) moves the marker down one item, wrapping to
the top of the next column when it reaches the bottom. If there is only
one column, or the user is on the last column, the wrap is to the top of
the first column.

• UP-ARROW (u) moves the marker up one item, wrapping to the bot­
tom of the previous column when it reaches the top of the current one.
When the marker is on the first item in the menu, the wrap is to the
last item in the last column.

THE INTERPRETER 1·15

What is a Menu?

• RIGHT-ARROW (r) moves the marker down one item on a single
column menu, right one item on a multicolumn menu. RIGHT ARROW
does not wrap.

• LEFT-ARROW (1) moves the marker up one item on a single column
menu, and left one item on a multicolumn menu. LEFT-ARROW does
not wrap.

• BACKSPACE (h) is the same as LEFT-ARROW.

• SPACEBAR (space) is the same as RIGHT-ARROW.

• NEXT (n) is the same as DOWN-ARROW.

• PREY (p) is the same as UP-ARROW.

• HOME (fb) moves the marker to the first item currently visible on the
menu.

• HOME-DOWN (Ie) moves the marker to the last item currently visi­
ble on the menu.

• PAGE-DOWN (w) moves the marker to the first item on the next
page full of items and displays that page. If the page being paged to
has fewer than 10 lines, the terminal will ring (or flash), and the page
will not be displayed. The arrow keys must be used to see these items.

• PAGE-UP (v) moves the marker to the first item in the previous page
full of items and displays that page. If the page being paged to has
fewer than 10 lines, the terminal will ring (or flash), and the page will
not be displayed. The arrow keys must be used to see these items.

• BEG (b) moves the marker to the first item in the menu whether it is
currently visible or not, and displays the first page.

• END (e) moves the marker to the last item in the menu whether it is
currently visible or not, and displays the last page.

• SCROLL-DOWN (fd) rolls the contents of the menu frame down one
line.

• SCROLL-UP (iu) rolls the contents of the menu frame up one line.

1·16 FMLI PROGRAMMER'S GUIDE

-------------------- What is a Menu?

Default SLKs
By default, the user sees the following SLKs displayed while in a menu.

MENU DEFAULT SLKs
Key Menu Multiselect
Fl HELP HELP
F2 CHOICES MARK
F3 SAVE CONT/ENTER
F4 PREV-FRM PREV-FRM
F5 NEXT-FRM NEXT-FRM
F6 CANCEL CANCEL
F7 CMD-MENU CMD-MENU
F8 CHG-KEYS CHG-KEYS

Function key 8 will default to CHG-KEYS if any of SLKs 9 through 15 are
defined. For more details on SLKs, see the section titled "Additional
Objects. "

THE INTERPRETER 1-17

/

Additional Objects

Text Objects
Text objects are primarily used to display information to the user. Typi­

cally, the help descriptor is defined as opening a text object. While the user is
in a text object, the following navigation keys are in effect.

• UP-ARROW (u) moves the cursor up one line.

• DOWN-ARROW (d) moves the cursor down one line.

• SCROLL-DOWN (id) rolls the text down one line.

• SCROLL-UP (iu) rolls the text up one line.

• PAGE-DOWN (w) presents the next frame full of text preserving two
lines from the current frame.

• PAGE-UP (v) presents the previous frame full of text preserving two
lines from the current frame.

• BEG (b) presents the first frame full of text.

• END (e) presents the last frame full of text.

If either of the scroll icons (A for up and v for down) appears on the
lower right border of the object, the corresponding scroll key is valid. The
Interpreter turns this capability on automatically if all of the text will not fit in
the frame. In addition, any of the editing keys that can be used in a form can
be used in a text object if the "edit" descriptor evaluates to TRUE.

1·18 FMLI PROGRAMMER'S GUIDE

--------------------- Additional ObJects

The default SLKs presented to the user while in a text object are:

TEXT OBJECT DEFAULT SLKs
Key Command
Fl HELP
F2 PREVPAGE
F3 NEXTPAGE
F4 PREV-FRM
F5 NEXT-FRM
F6 CANCEL
F7 CMD-MENU
F8 blank

If any of SLKs 9 through 15 are defined, SLK 8 will be CHG-KEYS.

Though they don't appear to do anything special, text objects are still con­
sidered to be frames, and can be navigated to and from as described in
"Frame-to-Frame Navigation."

Choices Menu
The CHOICES SLK maps to the choices command which is also available

to the user. If the developer has defined a Choices Menu for a form field,
executing this command will bring up that menu.

A Choices Menu is created for the user by defining the rmenu descriptor
for a field. There are two valid methods of defining the rmenu descriptor. The
first is to equate rmenu to an OPEN command. For example:

:rmenu=OPEN MENU Menu.choices

where Menu.choices is a standard menu.

The second method is to equate rmenu to a list of choices enclosed in
braces. The Interpreter will handle this list in one of two ways. If there are
three or fewer items in the list, the user will use the CHOICES SLK to toggle
through the list, a different choice appearing in the input field each time the
SLK is pressed. If there are more than three items, the Interpreter will create a
"shortterm" menu, which means that it closes as soon as the user navigates
away from it. Only the CANCEL and HELP SLKs appear in this menu, and
the HELP SLK applies to the form the user is in, not the Choices Menu.

THE INTERPRETER 1·19

Additional Objects

The choice made by the user from a Choices Menu is automatically
entered into the field to which the Choices Menu applies. Since Choices
Menus are standard menus, they can be navigated to and from, but users
should be warned that if they navigate from a Choices Menu, it disappears
immediately.

Screen-Labeled Keys
The screen-labeled keys are provided to allow the user an easy means of

performing actions that are done often. The Interpreter will provide these keys
on the last line of the screen, with a label if the key has an action assigned to
it. The user may strike an alternate keystroke (£1-8) if the terminal has no
function keys. The user will see the same result from striking one of these
keys as by selecting that command from the Command Menu (though not all
SLK commands appear in the user's Command Menu and vice versa), or strik­
ing IQ!D iii and the command keyword.

CHG-KEYS will appear on SLKs 8 and 16 if the developer has defined
any of the keys 9 through 15. This SLK is effectively a toggle between the
two sets of SLKs.

Help
The user is presented with a SLK named HELP while in forms, menus,

and text objects. Selecting HELP will bring up a frame defined by the
developer. The user mayor may not be able to navigate in the help frame,
depending on the description set for it by the developer. Typically, the HELP
frame is a developer-defined text object.

Help can also be provided to the user through the use of the CHOICES
SLK or command when the user is in a form. The Choices Menu that a
developer can define has already been discussed. The developer also has the
option of defining a message to be printed when the user executes this com­
mand. Either with the Choices Menu or separately, the choicemsg deSCriptor
can supply information on the message line. If the developer has not defined
either, the message There are no choices available is printed on the mes­
sage line when this command is executed.

1·20 FMLI PROGRAMMER'S GUIDE

Frame-to-Frame Navigation

Navigation between frames is comprised of simple moves and command
actions that change the active frame. The following list defines the ways that a
user can move between frames. Navigation to the UNIX system is also dis­
cussed.

• The PREV-FRM and NEXT-FRM SLKs will cause the cursor to jump
from frame to frame. The frame jumped to becomes the current frame
on the screen, and the frame jumped from becomes inactive. FMLI
keeps a list of each frame that has been the current frame. PREV-FRM
will jump to the frame number listed before the current one. NEXT­
FRM jumps to the frame listed after the current one. Wrap around
from the first frame listed to the last, and vice versa, occurs when these
keys are used.

• Selecting FRM-MGMT from the Command Menu will bring up a
Choices Menu that includes the item LIST. Selecting LIST will bring up
another Choices Menu listing all opened objects. Using standard menu
navigation keys, select an object and strike the carriage return. The
Choices Menus disappear and the selected object becomes current.
CANCEL will remove the Choices Menus and leave the user where
they started.

• The CLEANUP command will close all frames not defined as "immor­
tal," which means it cannot be closed. The last object opened that is
defined as "immortal" will become the current object.

• TAB and BACKTAB will work just like NEXT-FRM and PREV-FRM,
respectively, unless you are in a form, in which case these keys apply
to that form's fields (see "What is a Form?").

• The goto command may be executed with a frame number as an argu­
ment. That frame becomes current, with the cursor on the item it was
on when that frame was last active. Though this command will take a
full path name argument when a developer is using it, users should
only be told about frame numbers as arguments.

• The user may strike IQ!ilIiJ followed by a frame number. The action is
the same as the goto command from the user's point of view.

THE INTERPRETER 1·21

Frame-to-Frame Navigation

• Opening an object will always cause navigation to that object.

• Closing an object will cause navigation to the frame that was active
before the frame being closed was opened.

The user can invoke the UNIX system from the Command Menu or the
command line. The FMLI screen will clear, and the user is in a full screen
UNIX system shell. When exiting the UNIX system, a prompt message appears
requesting that the user strike carriage return to continue. The FMLI screen
returns in the same condition it was before the command was issued.

We have now covered the features of FMLI from the user's point of view.
The next chapter describes the language used by the Interpreter to define
these objects and their options.

1-22 FMLI PROGRAMMER'S GUIDE

2 The Definition Language

Prerequisites

Variables

Built-in Variables

Syntax
Quoting Mechanisms
Use of Backquoted Expressions
File Redirection

Forms

Menus

Text Objects

Built-in Functions
Co-processing Commands

2-1

2-2

2-4

2-5
2-5
2-6
2-6

2-7

2-18

2-24

2-30
2-32

THE DEFINITION LANGUAGE

The Definition Language -----------------

Co-processing

The Uses of regex
Field Validation
Generating Dynamic Objects
A Case Statement

Fmlcut(1) and Fmlgrep(1)

Shell vs. run
shell
run

ii FMLI PROGRAMMER'S GUIDE

2-33

2-37
2-38
2-39
2-40

2-42

2-44
2-44
2-45

Prerequisites
To use the definition language, you need to be familiar with the follow­

ing:

• Definition of terms, such as menu and form

• Environment variables

• UNIX system quoting mechanisms

• Command functions.

The menus, forms, and other objects are generated through the use of a
definition language. This language determines how a particular object should
appear and how it should be manipulated. The definition file is a simple
ASCII file containing descriptors. Descriptors are the basic building blocks of
the Definition Language. A descriptor defines a particular attribute that can
be customized by the developer. Each of the objects that can be defined in
FMLI has its own set of descriptors. Summary tables of the descriptors for
each object including value type, default value, and the time at which the
descriptor default is evaluated are given in the sections explaining each object.
Examples of descriptions for each type of object are included.

THE DEFINITION LANGUAGE 2·1

Variables
Within a menu, text, or form object, certain characters have special mean­

ings. These meanings are consistent with the special characters in the UNIX
system shell with some additional functionality. If you are familiar with the
UNIX system shell, then you know there is an "environment" which holds
variables and their values. FMLI has two environments that are used for dif­
ferent purposes and have different capabilities.

The set command can set variables in a file using the -I option. Refer­
ences to these variables follow this syntax:

${(filename)VARIABLE}

where file name is a full path name and VARIABLE is the file variable name.

When a variable is expanded that does not specifically reference a file, two
environments are searched. The environments are as follows:

local environment

UNIX system environment

This environment is specific to the current
FMLI process. This is similar to an unex-
ported shell variable.

The UNIX system environment is the stan­
dard UNIX system environment.

Whenever "environment" is referenced in this text, these environments are
searched in the order listed.

Variables are denoted by a dollar sign ($) followed by a string. The string
must be in one of the following formats:

$variable Look for variable in the environment and
expand to the value of that variable.

${ variable:-default} Look for variable in the environment and if
it is found, expand to its value. If it is not
found, expand to "default."

2·2 FMLI PROGRAMMER'S GUIDE

$ { (filename)varia ble }

Variable.

Look for a line of the format
"variable=value" in the file "filename." If
such a line is found, expand to "value."

$ {(filename)variable:-default} Same as above, except if variable is not
found anywhere, expand to "default."

Note that file name and default may be variables, such as

${($HCMEI.variables)NAME:-$LOGNAME}.

THE DEFINITION LANGUAGE 2·3

Built-in Variables
Menu, text, and form objects may reference certain variables that have

special meaning to the definition language. These variables should only be
referenced, not set, within an object definition. The special variables are as
follows:

$ARGn

$NR

$TEXT

$Fn

$Fol1lLChoice

$SELECTED

$LININFO

$MAILCHECK

$RET

This variable expands to the nth argument passed to the
corresponding form, menu, or text object.

This variable expands to the number of items in the menu
object.

This variable expands to value of the text descriptor
within a text object.

This variable expands to the current value of the nth field.

This variable expands to the last choice made from a
Choices Menu.

This variable expands to TRUE if the current item in a
multiselect menu has been marked.

This variable expands to null if the current menu item
doesn't have a lin info descriptor defined. Otherwise, it
expands to the value of the lin info descriptor.

Determines the amount of time before a SIGALRM alarm
automatically occurs. The minimum value for $MAIL­
CHECK is 120 seconds. The default is 300 seconds.

This variable expands to the exit value of the last execut­
able run by the Interpreter.

2·4 FMLI PROGRAMMER'S GUIDE

Syntax
Anything the Interpreter doesn't understand is ignored. This is widely

encompassing. For example, a line of garbage will be ignored but so will the
" selected" descriptor if a menu is single select (because "selected" has no
meaning in that context). The convention of starting a comment line with the
character "#" will therefore work with FMLI, except when it is nested inside
quotes or backquotes. When creating a new form, menu, or text object, all
quotes and backquotes must match. Quoting mismatches may cause the
object to never appear, appear incorrectly, or in some circumstances cause
fmli to core dump.

Quoting Mechanisms
If you want the special meanings of characters disabled in a string, FMLI

supports a quoting mechanism similar to the UNIX system shell. Each quot­
ing mechanism has different functions, as defined below.

• Backslash (\): A backslash causes the next single character to be taken
literally.

• Single quotes (' '): Any string inside of single quotes is taken literally
and as a unit. All special meanings are turned off within the quotes.

• Double quotes (" "): Double quotes group the text between them as a
unit, but still allow variable expansion and the use of backquotes. Car­
riage returns inside double quotes are enforced.

• Backquotes (' ') Any command or series of commands may be enclosed
in backquotes with the result that the backquoted expression expands
to the output of the commands. The only character with special mean­
ings in the output of the commands is NEWLINE. Commands may be
UNIX system executables or FMLI built-in functions.

THE DEFINITION LANGUAGE 2-5

Syntax

Backquotes cannot be nested (except as provided for in regex), but several
commands may appear inside a single backquoted expression, separated by
one of the following delimiters:

• semicolon (;) - Commands separated by a semicolon are executed
sequentially.

• pipe (I) - When commands are separated by a pipe symbol, the out­
put of the first command becomes the input to the second.

• AND (&&) - The meaning of command 1 && command2 is run com­
mandl and if it succeeds, then run command2.

• OR (II) - The meaning of command 1 II command2 is run command 1
and if it fails, run command2.

Use of Backquoted Expressions
In addition to placing backquoted expressions on descriptor lines, you can

use backquoted expressions anywhere in a menu, text or form object. If a
backquoted expression starts a line, it is expanded when the object is read. In
this way, you can generate an entire object dynamically at run time. Thus, if
a backquoted expression produces output to the message line, the expression
will appear before the object being parsed is posted. For an example of a
menu generated this way, see the regex(lF) manual page at the end of this
document and "The Us~s of regex" at the end of this chapter.

File Redirection
The input of a command may be redirected from a file by using " < file. "

Similarly, the output of a command may be sent to a file by using" > file,"
as in shell programming. The Interpreter does not support the shell constructs
» and 2>, which append text to a file and redirect stderr, respectively.

2-6 FMLI PROGRAMMER'S GUIDE

Forms
A form object is described by a series of descriptors. The first group per­

tains to the whole object. The second group pertains to one field of the object.
This group may be repeated for additional fields. A third, optional, group that
may also be repeated is the Screen-Label Key (SLK) definitions. These will be
presented in the section "The Initialization File" in Chapter 3. Their usage is
consistent throughout FMLI.

A form object is generally arranged like this:

Descriptors that pertain to whole object (title, positioning, etc.)

Descriptors that pertain to the fields of the form object (name, default
value, positioning, etc.)

Descriptors disabling or redefining SLKs

The programmer can define:

• the title of the form

• the screen position of the form

• the number of fields on the form

• the name of each field

• whether or not the field contains an initial value to display

• the starting position and length of each field

• whether the input is valid for each field

• whether the form is multipage or not

• new labels and functions for the SLKs.

THE DEFINITION LANGUAGE 2·7

Forms

The two tables that follow are a list of the descriptors, their default values,
and at what time the default values are evaluated. The first group pertains to
the entire form, and thus may only appear once in a form definition file. The
second group may be reused as necessary to create additional fields.

FORM DESCRIPTORS

DESCRIPTORS DEFAULT IF TYPE DEFAULT
NOT DEFINED EVALUATION TIME

form "Form. II string When form object is opened

help NONE keyword When user asks for help

lifetime "longterm" string When form object is opened

done NONE keyword When user selects SAVE

init TRUE boolean When form object is opened

begrow "any" position When form object is opened

begcol "any" position When form object is opened

close NONE keyword When form object is closed

reread FALSE boolean When SIGALRM occurs

altslks FALSE boolean When form object is opened

Next are the descriptors that can occur once for each field in a form object.

2-8 FMLI PROGRAMMER'S GUIDE

Forms

FORM FIELD DESCRIPTORS

DESCRIPTORS DEFAULT IF TYPE DEFAULT
NOT DEFINED EVALUATION TIME

name NONE string When form object is opened

frow -1 * integer When form object is opened

fcol -1 * integer When form object is opened

nrow -1 * integer When form object is opened

ncol -1 * integer When form object is opened

rows 1 integer When form object is opened

page 1 integer When form object is opened

columns -1 * integer When form object is opened

fieldmsg NONE string When field is navigated to

value NONE string When form object is opened

rmenu NONE keyword When form object is opened

valid TRUE boolean When value is changed

invalidmsg "Input is not valid n string When value is changed

noecho FALSE boolean When form object is opened

menuonly FALSE boolean When form object is opened

show TRUE boolean When form object is opened

scroll FALSE boolean When form object is opened

wrap FALSE boolean When form object is opened

choicemsg NONE string When choices command is run

inactive FALSE boolean When form object is opened

• A negative value for this descriptor will cause the field being described not
to appear in the form.

If the integer value assigned to a descriptor that determines the offset of
an object or any of its components is greater than the boundaries of the
screen work area, the object will not be posted. The descriptors begrow
and begcol are the exceptions to this. They default to II any. II

THE DEFINITION LANGUAGE 2·9

Forms

Following is a brief explanation of each descriptor and how it is used.

form This is the title of the form object. The maximum length is
74 characters. If it exceeds this, it will be truncated to 74
characters.

help

lifetime

If the user asks for help while in this form, this command
will be run.

This determines when this form will be removed from the
screen. Acceptable values and when they allow an object
to close are:

- shortterm when another object becomes current
- longterm when CLOSE or CLEANUP is issued
- permanent when a CLOSE is issued
- immortal cannot be closed

done When the user selects the SA VB SLK, this descriptor's
value is executed. If this descriptor is not defined, the
form is simply closed.

init If it's value evaluates to FALSE, then the form will not be
posted.

begrow, begcol These descriptors determine the offset of the top left
comer of the object (begrow=O, begcol=O is the upper left
comer of the FMU Work Area). These descriptors are of
the type "position," which means that in addition to
integral values, the following are acceptable:

center will be centered
current will overlap current frame
distinct will not overlap current object (if possible)
any positioned with least amount of total overlap

The values presented above can be assigned to begrow or
begcol independently to force a restriction on the row or
column only. If integral values are supplied and either
begrow or begcol are outside the screen boundary, a default
value of "any" will be given to the erroneous descriptor.

2-10 FMLI PROGRAMMER'S GUIDE

close

reread

altslks

Forms

This is expanded and executed when the user selects
CANCEL.

If the descriptor's expanded value is TRUE, the form will
be updated by rereading it's description file. A SIGALRM
alarm occurs every $MAILCHECK seconds (see the sec­
tion Built-in Variables). When it occurs, all objects whose
reread descriptor evaluates to TRUE will be updated. The
"title" descriptor is not re-read. Execution of reread
causes the message line to clear.

If this descriptor appears, or expands to TRUE, SLKs 9
through 16 are displayed when the object is initially
opened. If the descriptor does not appear, or evaluates to
FALSE, SLKs 1 through 8 are displayed.

Here are the descriptors that can occur once for each field in a form. If
you define more than one, only the last one will be used.

name This keyword begins the description of a new field in the
form object. The field name is used to tell the user what
piece of information is wanted in a certain field. It can
also be used to put a message in a form.

nrow, ncol Take integer arguments. They position the name in the
frame. If the value is negative, the name will not be
posted. If the integer is too large (the position is off the
screen), the entire form is not displayed.

value This is the default value for the input field.

frow, fcol These position the input field in the frame. If either value
is negative, then the input field will not be displayed.

rows, columns The maximum size of the input field. Generally, they
describe the length and width of the region in which the
users can type.

page Denotes which page of a form this field will be on. The
description may evaluate to an integer, or the strings " ... "
or "all," which place the field on all pages of the form.
By default, all fields will appear on one page (Le., page =
1).

THE DEFINITION LANGUAGE 2·11

Forms

choicemsg

rmenu

valid

Defines a message to be put on the message line when the
user selects CHOICES.

This is used to specify a list of choices, delimited by
spaces, for a particular input field. There are two formats
that are acceptable. The first is a list of choices, separated
by spaces, enclosed in braces. The spaces after the open­
ing brace and before the closing one are mandatory.

nnenu={ item1 item2 item3 ••• itemn }.

The line rmenu={} is illegal syntactically and will cause a
core dump. The minimum requirement is rmenu={ "" }.
If this list has three or fewer items, the user toggles
through the items by striking the CHOICES SLK. Four or
more items will appear in a Choices Menu. The user's
selection is automatically placed in the local variable
ForIILChoice, the value of which is inserted into the
active field when the Choices Menu closes.

The second acceptable format is an open command.
The descriptor evaluates to opening a menu, and the user
selects from that menu. The action associated with each
choice in that menu must set the local variable
FOrIILChoice. That value is inserted into the active field
when the menu closes. If there are four or more choices,
a menu will be presented and the item selected from the
menu will be placed in the field. You can force a Choices
Menu by the line rmenu=OPEN MENU menuname.

There must be at least one active field in a form. If
you open a form with only one field defined, and that
field cannot be posted because rows or columns is negative
or 0, £ntli will core dump.

If this evaluates to FALSE, the current value input by the
user is invalid. Checking the validity of the field is often
done by evaluating a backquoted expression. The built-in
function regex is often used for field validation. Validation
is performed when a field is "visited" (navigated to by the
user). As a warning, fields that are never visited will not
be validated.

2-12 FMLI PROGRAMMER'S GUIDE

invalidmsg

noecho

menuonly

show

scroll

wrap

inactive

fieldmsg

Forms

For example, a user visits a frame with five fields.
The first two fields are visited and the last three are not.
Therefore, only the first two fields will be validated when
the user leaves the frame.

FMLI does not validate all of the fields before saving
it. Thus it is possible for an illegal value to sneak in (e.g.,
the initial contents of a field are set by a variable that gets
corrupted). FMLI validates the current field whenever its
value changes. It also validates the current field when a
save operation is performed. If necessary, one can vali­
date all fields as part of the done descriptor, which is
always evaluated when the SAVE key is pressed.

This string is printed on the message line when the input
for this field is invalid.

If this does not evaluate to FALSE, then when the user
types in this field, what the user types will not be echoed
on the input field (often used for passwords).

If this descriptor is set to TRUE, then the only acceptable
input for this field is one of the choices in rmenu.

If this evaluates to FALSE, then the field will not be
shown. Note that if the field is not shown, it still counts
as a field for the purpose of expanding the variable $Fn.

If this is not set to FALSE, then the input field can be
scrolled. This means that the input field can be as long as
the entry the user types.

If this evaluates to FALSE, then the cursor will not
automatically wrap to the next input line when the user is
typing an entry in this input field.

If this descriptor evaluates to TRUE, the item is displayed
in the form, but cannot be navigated to. The default is
TRUE if the descriptor is there but not defined. If the
descriptor is not there, the field will be active.

This string will appear on the message line when this field
is navigated to.

THE DEFINITION LANGUAGE 2·13

Forms

A feature of the Interpreter is the ability to expand the value of any
descriptor. Typically, the name descriptor in a form object would be a literal
string. However, you can let the name field be a calculated value. For exam­
ple, suppose you want the value of a field to be the value of an environment
variable called $MYNAME. It is legal to say value=$MYNAME. When the form
object is read, the value of that field will be the expansion of the variable
MYNAME. In fact, each time any field value changes in this form, the vari-
able will be re-expanded. .

In some cases, this approach may cause inefficiency. Consequently, two
"casts" are provided to control this; const and vary. If these directives are
used, they must appear after the equal sign (=) on the descriptor line. For
example,

value=oonst $MYNAME

would define value as whatever the variable MYNAME expanded to when the
object is opened. The value will never be expanded again as long as the object
remains opened, even if a reread is issued. The update command will always
cause re-expansion.

If the directive const appears, the field will only be expanded once. If the
directive vary appears, then the descriptor will be re-evaluated each time the
object changes. This is useful for descriptors that are normally evaluated only
once, such as name.

The use of const can make a form, menu, or text operation more efficient,
especially when the value of a descriptor is a backquoted expression which
calls UNIX system commands.

The const keyword should be used with caution because the assumption
here is that this descriptor value is always constant and never needs to be re­
evaluated.

On the next page is an example of a simple form. If we call it Form.simp,
the user could open this form by any action that evaluates to:

0Pm EaW Fonn. sinp

The system reads the ASCII file, constructs an internal representation of how
the form will appear to the user, expands the value descriptors for each field,
and displays the resulting form.

2·14 FMLI PROGR4MMER'S GUI.,E

Forms

2 A Simple Form Object

~--------------------~ss ____________________ _

City State ____ Zip ____ _

"",M'U" [lullll __

This is the Description Language code used to generate this form, fol­
lowed by an explanation of what the user could and could not do in this form.

fonn="A S:imple FonD Cbject"
done='set -1 NAME="$F1" -1 ADt'R="$F2" -1 CITY="$F3" -1 STATE="$F4" -1 ZIP="$F5"'

narDI'a= "Namell

nrow=1
nool=1
frow=1
fcol=6
:rows=1
co1umns=20
valid='regex -v "$F1" 'A[A-Za-z,.]+$"
value=oanst "$NAME"

name="Address"
nrow=2
nool=1
frow=2
fcol=9
:rows=1
co1umns=28
value=oanst "$AmE"

name="City"
nrow=3

THE DEFINITION LANGUAGE 2-15

Forma

ncol=1
f:row=3
fool=6
rows=1
oolumns= 14
value=canst "$Cr.l'f"
rmenu=OP!N M!H1 $Ml/PA'lHIMeml.city "$STATEn

name="State"
n:row=3
ncol=21
f:row=3
fool=27
rows=1
oolumns=2
value=OCIlSt n$STATEn

rmenu={ NY NJ cr CA IL ME ~ }
1IIE!IlIlall.y=true

name="Zip"
n:row=3
nco1=31
f:row=3
f001=35
rows=1
001umns=5
value=canst "$ZJP"
valid='regex -V n$F5" '[O-9]{5}"

The descriptor form gives the form a name other than the default "Form."
The descriptor done tells the Interpreter what to do when the user selects the
SAVE SLK; set the environment variable NAME to the current value of field
I, set ADDR to the value of field 2, etc. These values would then appear in
the form by default the next time this form is opened.

2-16 FMLI PROGRAMMER'S GUIDE

Forms

Next, the descriptors that can be used repeatedly define five fields where
data will be input. The first field here puts up the string "Name" in row 1,
column 1 of the form, with an input field starting on the same row at column
6. The input field is 1 row high and 20 columns long. It has a default value of
whatever is stored in the environment variable $NAME. The validity of the
input to this field is checked using the built-in function regex. The expression
makes sure that the name is all letters, spaces and commas.

The other fields; Address, City, State, and Zip, are all defined in the same
manner, but of these, only Zip has a validation description. The validation for
zip code makes sure that the user enters exactly five digits.

The City field gives an example of a command style rmenu. Menu.city
could list possible city choices pertaining to the current state. Menu.city would
make use of the argument $STATE which is passed to it. The action descrip­
tor for each choice would set FOl'IlLChoice and close the menu.

The state field gives another example of the rmenu. In this case, if the
user asks for CHOICES, a Choices Menu will display which will give the
available two-letter state codes. Because the menuonly descriptor is given,
only these choices are legal.

The user may edit the form using various editing keys described in the
first part of this document. Suppose the user changes the value of the NAME
field. When the user strikes RETURN or TAB to exit the NAME field, the
valid descriptor is expanded. In order to expand this, the system runs the
internal command regex and attempts to match the value of the NAME field
against the pattern" A [A-Za-z,.]+$" -- in other words, one or more letters,
commas, periods, or spaces. (See the regex(1F) built-in function manual page.}

Assuming the user has entered valid information in all the fields, the user
may strike the SA VB SLK. This causes the done descriptor to be evaluated,
and again a backquoted expression is encountered, containing the internal
command SET. This command sets 5 variables in the user's environment to
the values of each of the 5 fields. It then closes the form.

THE DEFINITION LANGUAGE 2·17

Menus
A menu object has a series of descriptors that pertain to the whole object

followed by a series of descriptors that will pertain to each item in the menu
or each Screen-Label Key. The menu description is arranged like this.

Descriptors that pertain to whole object (title, positioning, etc.)

Descriptors that pertain to menu object lines (name, description, action, etc.)

Descriptors that pertain to Screen-Label Keys (name, button number, action,
etc.)

The programmer has control of the following options in a menu:

• single or multiselection menu

• opening the menu with specific items already selected

• placement of the menu on the screen

• the lifetime of the menu

• whether or not to show a specific choice

• the action to take for each item

• the action to take when the menu is dosed.

The following table shows the descriptors used to describe a menu.

2·18 FMLI PROGRAMMER'S GUIDE

Menus

MENU DESCRIPTORS

DESCRIPTOR DEFAULT IF TYPE DEFAULT
NOT DEFINED EVALUATION TIME

menu "Menu" string When menu object is opened

multiselect FALSE boolean When menu object is opened

help NONE keyword When user asks for help

lifetime "longterm" string When menu object is opened

init TRUE boolean When menu object is opened

begrow "any" position When menu object is opened

begcol "any" position When menu object is opened

close NONE keyword When menu object is closed for any reason

reread FALSE boolean When timer goes off

done NONE keyword Upon RETURN in a multiselect menu

altslks FALSE boolean When object is opened

Next are the fields that can occur once for each item in a menu. The set
of descriptors describing each item must start with the "name" descriptor.

MENU ITEM DESCRIPTORS

DESCRIPTOR DEFAULT IF TYPE DEFAULT
NOT DEFINED EVALUATION TIME

name NONE string When menu object is opened

description NONE string When menu object is opened

action NONE keyword When this line or button is selected

lininfo NONE string When this line is selected

show TRUE boolean When menu object is opened

selected FALSE boolean When menu is opened.

itemmsg NONE string When item is navi~ated to

THE DEFINITION LANGUAGE 2·19

Menus

Following is a brief description of each descriptor and how it is used.

menu This is the title of the menu object. It will be truncated to
45 characters.

multiselect

help

lifetime

init

Tells the Interpreter that this is a multiselect menu. SLK 2
will map to the MARK command, and the "action"
descriptor is ignored for all selections.

If the user asks for help within this menu object, this com­
mand will be run (see Definitions).

This determines when this menu object will be removed.
The acceptable values are:

shortterm - closes whenever another object becomes the
current object

longterm - closes when the user issues a CLEANUP or
CLOSE command

permanent - closes whenever the user issues a CLOSE
command

immortal - cannot be closed

If this expands to FALSE, the menu object will not be
opened; otherwise it will.

begrow, begcol These descriptors describe the position of the menu
object's top left comer. Values can be one of the follow­
ing:

center - menu will be centered

current - as close to the current frame's position as possi­
ble

distinct - as far from the current frame's position as possi­
ble

any - system chooses a position to minimize overlap

integer - an absolute position. Causes frame to appear in
same position.

If begrow and begcol force the menu to display off the
screen, they will default to "any."

2-20 FMLI PROGRAMMER'S GUIDE

dose

reread

done

altslks

Menus

This is expanded when the user closes or cancels the
menu.

When the SIGALRM alarm occurs, the reread description
is expanded. If it expands to TRUE, the menu will be
reread.

Evaluated when the user strikes carriage return in a
multi-select menu. Ignored in a single select menu.

If the item's expanded value is not FALSE, SLKs 9
through 16 are displayed when the object is initially
opened. The default, if the descriptor is not used, is
FALSE, which displays SLKs 1 through 8.

Here are the descriptors that can occur once for each item in a menu.

name The string that will appear in the menu.

description This will be the part of the line displayed but not
highlighted when the user is on this line.

action

lininfo

show

selected

The value is a string, equivalent to a command that could
be typed on the command line. Multiple backquoted
expressions are allowed, as they are with any descriptor,
but the final value of this descriptor must be a single key­
word expression. This descriptor is ignored if the menu is
multiselect.

When the user selects this menu item, this descriptor's
string value will be put into the local environment vari­
able LININFO. If it is not defined, LININFO will be null.
Also, when the getitems function is executed, if this string
is defined, its value will be substituted for the item's
"name" string.

This determines whether this menu item should be
displayed. It will not be displayed if the value is FALSE.

This descriptor determines whether a menu item should
default to selected (TRUE) or nonselected (FALSE) when
the menu is opened. The default is FALSE.

THE DEFINITION LANGUAGE 2-21

Menus

itemmsg This string is displayed on the message line when this
item is navigated to.

In addition, SLKs may be defined in a menu description file.

A menu object usually starts with the line menu=title. The default value
for title is "Menu." In order to create a menu, you would use a series of
descriptors, which are the building blocks of the definition language. Each
descriptor defines a particular alternative or function of the menu. Descriptors
are in the format descriptar=value. When grouped together, these descrip­
tors determine how the object will appear to the user and how it can be
manipulated. Following is a simple menu description file.

menu.=Qffice of $UDlAME

name=ot:her_users
actian=OPl!N MEHJ $MmBJE:TS1Menu. users

name=services
actian=OPl!N MEHJ $MmBJE:TSIMenu.serve

name=tlNDLsystem
actian=unix

2·22 FMLI PROGRAMMER'S GUIDE

Menus

Here is how a simple menu description file would be displayed to the user.

1 Office of Joe
>other_users
services
UNDLsystem

_ _ l1li Ipt.".IMIi 'I""MIMI' [141"" __

When the user selects one of these items, the corresponding action is exe­
cuted. In this example menu, you are using three types of descriptors to gen­
erate the title, menu item names, and the action to take when an item is
selected. Single-instance descriptions within a menu definition are used to
generate attributes that refer to the entire menu, in this case, the title of the
menu is defined with:

menu="Office of $u:x;NAME"

Note that the environment variable LOGNAME is expanded by the Interpreter
and included as part of the definition string.

Multi-instance descriptors are used to generate attributes for each item on
a menu; in this case, name and action describing each of the three items in the
menu.

In a menu, if the combined length of the name and description of an item
is greater than 76 characters, the next item defined will not be posted.

THE DEFINITION LANGUAGE 2·23

Text Objects
A text object has a series of descriptors that pertain to the whole object

followed by a series of descriptors that will pertain to the Screen-Label Keys.
A text object description is generally arranged like this:

Descriptors that pertain to whole object (title, text, positioning, etc.)

Descriptors that pertain to Screen-Label Keys (name, button number,
action, etc.)

A text object usually starts with the line title=title. The default value
for title is Text object. Following is a table of descriptors, default values,
and default evaluation times.

2·24 FMLI PROGRAMMER'S GUIDE

Text Objects

TEXT OBJECT DESCRIPTORS

DESCRIPTORS DEFAULT IF TYPE DEFAULT
NOT DEFINED EVALUATION TIME

title "Text" string When text object is opened

text 1111 string When text object is opened

edit FALSE boolean When text object is opened

wrap TRUE boolean When text object is opened

rows 10 integer When text object is opened

columns 30 integer When text object is opened

help NONE keyword When user asks for help

lifetime "longterm" string When text object is opened

done NONE keyword When the object is closed

init TRUE boolean When text object is opened

begrow "any" position When text object is opened

begcol "any" position When text object is opened

close NONE keyword When text object is opened

reread FALSE boolean When text object is opened

altslks FALSE boolean When text object is opened

Following is a brief description of each descriptor and how it is used.

title This is the title of the text object. It will be truncated to
75 characters.

help If the user asks for help on this text object, this command
will be run.

THE DEFINITION LANGUAGE 2-25

Text Objects

lifetime This determines when this object will be removed from
the screen. Acceptable values and when they allow an
object to close are:

- shortterm when another object becomes current
- longterm when CLOSE or CLEANUP is issued
- permanent when a CLOSE is issued
- immortal cannot be closed

done When the user selects CANCEL, this descriptor is
evaluated. If it expands to FALSE, the text object stays
open; otherwise the object is closed.

init If its value evaluates to FALSE, then the object will not be
posted.

begrow, begcol These descriptors determine the offset of the top left
comer of the object (begrow=O, begcol=O is the upper left
comer of the FMLI Work Area). In addition to integral
values, the following are acceptable:

close

reread

altslks

center - will be centered
current - will overlap current frame
distinct- will not overlap current object (if possible)
any - positioned with least amount of total overlap

The values presented above can be assigned to begrow or
begcol independently to force a restriction on the row or
column only. If integral values are supplied and either
begrow or begcol is outside the screen boundary, a default
value of "any" will be given to the erroneous descriptor.

This is expanded and executed if the user selects CAN­
CEL.

When the SIGALRM alarm occurs, if this descriptor evalu­
ates to TRUE, the text object will be reread and redrawn.

If the item's expanded value is TRUE, SLKs 9 through 16
are displayed when the object is initially opened. If this
descriptor is not defined, or expands to FALSE, SLKs 1
through 8 are displayed.

2-2& FMLI PROGRAMMER'S GUIDE

Text Objects

rows, columns These should be set to the number of rows high and
columns wide you want the frame to be.

text This descriptor should evaluate to the text you want to
display.

edit If this descriptor evaluates to TRUE, then the user can
modify the text. Otherwise, the text is read only.

wrap If this descriptor is set to anything except FALSE, the text
will be wrapped to fit the available space when it is read
in.

In addition, the descriptors for SLKs may be included in the text object
description. They do not vary from their use in other objects.

Here is a simple description file for a text object.

ti tle=n'l'bis is very s:inpl.e"
oolumns=40
lifeti.me=l.co]tenn
wrap=true

text=''We the people, in order to fonn a nr::Jre perfect I.nlian, establish
justice, insure daDestic tranquillity, provide far the CCI'IIIDl defense,
pra!Dte the general welfare and secure the blessiIlqs of liberty, to
oorselves and oor posterity,
do ordain and establish this ooostituticn far
the United States of America."

THE DEFINITION LANGUAGE 2-27

Text Objects

The object would look like this:

1 This is very simple
we the people, :in order to fam a m::xre
perfect union, establish
justice, insure dcmestic t:ralxIUillity,
provide for the CXIIIICII. defense,
praIDt:e the general welfare and secure
the blessmas of liberty, to
ourselves and cur posterity,
do orda:in and establish this
0ClIlSti. t:utial for
the anted States of America.

_ _ _ 'Ua'.,811 ""IM"" .,1111 __

Notice that even though the text is wrapped at 40 columns, the original new­
line characters are preserved.

A more interesting way to do this would be:

title=nTbis is less simplen
lifetime=lalgtenn

2·28 FMLI PROGRAMMER'S GUIDE

Text Objects

This example illustrates the use of arguments that may be passed to menu,
text, or form objects. You don't have to write a separate text object for each
file that is to be displayed. Instead you pass $ARGl to the object when you
open it. For example, if this object were opened by a line in a menu that
looked like this:

action=OPEN TEn' ~/Text.standard help1

$ARGl would expand to "helpl", that file would be read by the built-in
function read/ile, and all of the text would become the value of the "text"
descriptor, which would then be displayed in a text frame as wide as the long­
est line of text in the file helpl. For more on how this happens, see the section
Variables and the read/ile manual page.

THE DEFINITION LANGUAGE 2-29

Built-in Functions
Using the backquotes will allow FMLI to recognize built-in commands as

part of an object definition or as part of an action definition. Built-in func­
tions are handled internally by the Interpreter and invoke no process when
executed.

When a backquoted expression produces output, this output is considered
part of the descriptor. Care must be taken that this does not produce an illegal
value on the descriptor line. For instance if MYV AR is set to "hello," then:

action=' echo $MYVAR 'OPEN MENU ~

will be equivalent to:

action=helloOPEN MENU ~

This will produce an illegal descriptor value since helloOPEN' is not a known
keyword.

Below is a list of the FMLI built-in functions. There are manual pages for
each at the end of this document.

echo

indicator

message

pathconv

readfile, longline

The echo command outputs its operands.

The indicator command allows you to control the
"working" indicator and bell, and allows you to
define your own indicators on the banner line.

The message command outputs its operands to the
Interpreter message line. The bell can also be con­
trolled. To force a message to be "permanent," use
the message option -p, which will display the message
until another one is displayed. When that message
clears, the "permanent" message will reappear. To
clear a "permanent" message, use the -p option and a
null string.

The pathconv command converts an alias to a full
path name; It can also produce a shortened version
suitable for use as a form title.

The readfile command reads the file passed as its
argument and writes it to standard output. After a call
to readfile, a call to longline will return the length
(including carriage return) of the longest line in the

2·30 FMLI PROGRAMMER'S GUIDE

regex

run

set,unset

shell

getitems

reinit

setcolor

getfrm

fmkut

fmlgrep

Built-in Functions

previously read file. The longline command can also
take a file name argument, in which case it will return
the length of the longest line in that file.

The regex command performs regular expression
matching on its string input (utilizing regex(3X».

The run command is used to invoke an executable in
full screen mode.

These commands set and unset environment variables
either in the UNIX system environment or in files.

The shell command is used to run a command using
the UNIX system shell. This is useful for performing
tasks that are not provided by the language (for exam­
ple, the UNIX system test command or sed(l».

The getitems command takes as its only argument a
delimiter string. It returns a list of the currently
selected items, separated by the delimiter supplied.

The reinit command takes as an argument the name of
an initialization me. It is used to make changes to the
FMLI while staying in the current application.

The setcolor command allows you to redefine an exist­
ing color, or define new colors if your terminal allows
more than the eight colors already defined in FMLI.

The getfrm command returns the current frame
number. It takes no arguments.

The fmlcut(lF) command is used to cut out selected
fields of each line of a file.

The fmlgrep(lF) command is used to search a file for a
certain pattern.

For more information about how these commands are used, see the section
"Syntax."

THE DEFINITION LANGUAGE 2-31

Bullt·in Functions

Co-processing Commands
Five other built-ins allow an object or several objects (that is, form, menu,

or text) to communicate to an external process through a pipe. The Interpreter
would send strings to the external process and interpret the process's output
accordingly. This capability is referred to as "co-processing," and the built-in
functions are as follows:

cocreate

cosend

cocheck

coreceive

codestroy

Initializes communication to a process using named pipes.

Sends strings from the Interpreter to the process. The-n
option performs a "no wait" condition that sends text,
but doesn't block for a response.

Checks the incoming pipe for information. Returns TRUE
or FALSE.

Performs a "no wait" read on the pipe. Takes a process
10 as an argument.

Terminates this communication

2·32 FMLI PROGRAMMER'S GUIDE

Co-processing
In addition to the built-in commands, the Interpreter can execute UNIX

system programs and UNIX system shell commands via constructs in the Form
and Menu Definition Language. Both built-ins and UNIX system commands
are specified using the backquoting mechanism described earlier in this sec­
tion. If a command is recognized as a built-in command, it is executed by the
Interpreter (i.e., no process invocation is necessary); otherwise, it is passed to
the shell for execution.

The restriction here is that these commands do not require any "interac­
tion" with the user. In other words, these commands run to completion
without user confirmation, or prompting. If an application wishes to execute a
UNIX system program that does require some sort of interaction during its
execution, the Interpreter provides two mechanisms:

• The Interpreter could "suspend"· the frames that are displayed and
execute the process in full screen. The built-in function run supports
this capability. For example, the expression

'run my_"WOrd...,processor'

would instruct the Interpreter to clear the screen and execute the word
processing application in full screen. Once the user exits from the word
processor, the Interpreter will resume where it left off, restoring the
screen to its presuspended state.

• The second alternative is a more "integrated" one. It allows a process
to communicate with the user via an object (menu, text, form). To sup­
port this capability, the Interpreter provides a feature called co­
processing. A co-process does not have direct access to the terminal
screen. It communicates with the Interpreter. The Interpreter then
posts the messages in the object that contains the co-processing descrip­
tors.

The co-processing feature is made up of five built-in commands: cocreate,
cosend, cocheck, coreceive, and codestroy, which support inter-process com­
munication.

The cocreate command is responsible for initializing the process and set­
ting up pipes between the Interpreter and the co-process. The codestroy com­
mand is responsible for cleaning up when the communication has been com­
pleted. The built-in cos end is used to send information to the co-process via
the pipe and block for some response by the co-process. The -n option to

THE DEFINITION LANGUAGE 2·33

Co-processing

cosend performs a "no wait" condition. This means that cosend will send
information to the co-process but will not block for a response. The cocheck
command will check the "incoming" pipe for information. The coreceive
command will perform a "no-wait" read on the pipe. The purpose of these
built-in functions is to provide a flexible means of "interaction" between the
Interpreter and a co-process; to be responsive to asynchronous activity.

It is important to note that information passed to the Interpreter from a
co-process is treated as text only. Commands (for example, OPEN, CLOSE,
UPDATE) will not be recognized by the Interpreter.

To illustrate the use of enhanced co-processing, consider a UNIX system
program that wishes to "talk" to the user as it executes (interactive program).
The following is a sample menu which displays the item "talk." When
selected, the operation specified by the "action" descriptor will post an
"interactive" form as defined by Form.talk.

actian=OPl!N FCRoI Fcmn. talk

In the object "Form.talk" shown below:

• The close descriptor will be responsible for destroying the communica­
tion.

• The reread descriptor will check the pipe and "reread" the object
definition if there is information pending.

• The backquoted expression will create the co-process when the form is
opened (while the descriptors are being parsed, before the form is
posted).

• Field 1 will be an "inactive field" used simply to display text received
from the co-process.

2-34 FMLI PROGRAMMER'S GUIDE

Co-processing

• Field 2 will be an i. active" field which will get information from the
user and send it to the co-process (cosend). This is done via the
"valid" descriptor which is evaluated when a field value changes .

• A SLK is defined to "abort" the co-process at any time. This is done
by forcing a close operation (as usual, the descriptor close is evaluated
when an object is closed).

fonn="Talking' ••• "
close=' codestroy M!PRX'
reread=' oocheck M!PRX'

'cocreate -i M!PRX $MYS'lUFFlbinltalk'

nane=""
frcw=O
foo1=O
:tOiIIS=5
oolumns=20
:inactive
value=" , coreceive M!PRX'"

name=""
frcw=5
foo1=O
:tOIiJS=1
oolumns=20
valid='cosend -n M!PRX "$F2""lRlJE

name=abort
blttan=8
act:i.on='message "Camunication stopped ••• "'close

THE DEFINITION LANGUAGE 2-35

Co-processing

The following code segment illustrates how an interactive co-process (in this
case talk) may be structured:

respanse"'''noth:i..nq"
while :
do

echo "I received $response."
vsig
read response
if ["$respanse" -eq "goodbye"
then

break
fi

The supplied executable vsig is used to send a signal telling the Inter­
preter that information is pending. This interrupt causes reread to execute.
The vsig executable is documented in the vsig(lF) manual page. For more
information about co-processing, see the coproc(lF) manual page.

2-3& FMLI PROGRAMMER'S GUIDE

The Uses of regex
The regex command is an FMLI built-in that is useful in a variety of situa­

tions. It takes as input a stream of text and compares each line of text against
one or more "patterns." These" patterns" represent regular expressions that
are provided as arguments to the regex command line. A "template" must
appear after each pattern on the command line (exceptions to this rule will be
discussed later). A "template" is a string that is written to stdout if the
corresponding pattern is matched. The regex command will always write the
template of the first pattern which is matched.

Consider the following example:

'cat /etc/passwd I regex 'cat' 'dog' 'open' 'close' 'up' 'down"

This regex statement contains three pattern/template combinations which will
be compared against each line of text in the file "/etc/passwd." The patterns
are "cat," "open," and "up." For every line of text that matches one of
these patterns, regex will write the appropriate template to stdout. The tem­
plates are "dog," "close," and "down," respectively.

The regex command also provides nine "registers" to save "pieces" of a
pattern for use in the template.

'cat /etc/passwd I regex 'A (J[a-zA-Z]*)$O:, '$mO"

The variables "$0" and "$mO" denote regex "register" references in the pat­
tern and template, respectively. This statement tells regex to match any line
in /etc/passwd that begins with a "J" and contains only alphabetic characters.
The portion of the pattern which is surrounded by parentheses is then placed
in register O. The contents of register 0 are then referenced in the template
(via $mO). Though only one register is used in this example, regex statements
can contain up to 9 register references. The purpose of this statement is to
write only the first field of the matched pattern (delimited by ":") to stdout.

Before proceeding, it is important to note that information can be passed
to/from UNIX system executables and FMLI built-in commands. Try creating
a menu item with the following action line:

actian='date I message'nap

Redirecting statements to the message line via the message built-in is a useful
debugging aid.

THE DEFINITION LANGUAGE 2-37

The Uses of regex

The n NOP II keyword means do nothing (no operation). It is used because
the terminal will beep if a keyword is not present.

Field Validation
The most popular use of regex is for form field validation. As stated pre­

viously, if a pattern is matched by regex, regex will write the corresponding
template to stdout. The regex command will also return the value TRUE
which, for FMLI built-ins, is analogous to a UNIX system command that exits
with status O. If no pattern is matched, regex will not write to stdout and will
return FALSE. For FMLI built-ins, "FALSE" is equivalent to a UNIX system
command that exits with a non-zero exit status, for example, the following
form field validation function (Le., value descriptor definition).

valid='regex -v "$F1" '''[a-zA-ZO-9]*$''

The "-v" option tells regex to use the argument that follows (rather than
stdin) as input. Note that this regex statement contains a single pattern
without a template. In regex, a template is optional if only one pattern exists.
The last pattern in a series of pattern/template pairs is also optional.

The regex command will return TRUE if the current value of field 1 consists
entirely of alphanumeric characters and will return FALSE otherwise. Since
no template exists, regex will NOT write to stdout.

2·38 FMLI PROGRAMMER'S GUIDE

The Uses of regex

Generating Dynamic Objects

One of the most powerful uses of regex is for generating objects dynami­
cally. Consider the problem of designing a menu that displays the contents of
a UNIX system directory. If a user selects a file from the menu, FMLI should
display the contents of the file in a text frame. For simplicity, assume the
directory contains only ASCII files.

'Is "$ARG1" I regex. "'(.*)$0$' ,
name="$mO"
actian=oPEN 'l'ElIT Text. display "$mO'",

When the menu is first initialized, FMLI will run Is(1) on the passed argument
to retrieve the names of all files residing under "$ARG1." The output of Is is
then passed to the FMLI built-in regex. Since the single regex pattern
matches every line of input, regex will return the template for every file in the
directory. The result is a series of template expansions that generate an FMLI
menu definition. Notice that the name of the file (referenced by "$mO") is
passed as an argument to Text.display.

In FMLI, backquoted expressions that appear by themselves (rather than
as part of a descriptor value) are evaluated when the object is first initial­
ized.

An object need not be entirely dynamic nor entirely static. Parts of an object
may be generated via backquoted expressions, and parts may be generated
using conventional means.

THE DEFINITION LANGUAGE 2·39

The Usas of regax

A Case Statement

If the -e option is present, regex will evaluate the template of the
matched pattern before passing it to stdout.

For example, consider the following menu item definition:

name="Say hello"
actial='echo 0 I regex '0' "message hello" 'nop

This definition will not produce the message "hello" when the menu item is
selected. The regex command will simply pass the template string as is to
stdout. On the other hand, the definition

name="Say hello"
action=' echo 0 I regex -e '0' "message hello' , 'nop

will produce the desired result.

For a more realistic example, consider the UNIX system based program
is-he_there. This program takes as its only argument the name of a person to
be searched for in a data base. The program is-he_there will return 0 if the
person exists and 1 if the person does not exist in the data base. Given this
introduction, consider the following done descriptor definition. The descriptor
done is specific to an FMLI form and is evaluated when a user attempts to
SAVE a form.

dcne='message "Ia:>ldng for \"$F1\"";
is_he_there;
regex -e -v "$REI'''
'0' "message "Found \"$F1\"";

set -1 KEY(lIJ[):::"OPEN EURM Fonn.foundhim \"$F1\""
, ,

'1' "message "Sarzy, can not find \"$F1\"";
set -1 KEY(lIJ[):::"N;)P"

, ,

'$I<EYCM:l

2·40 FMLI PROGRAMMER'S GUIDE

The Uses of regex

Since the done descriptor expects a keyword value, the local variable KEYCMD
is used to construct the keyword command string. The keyword command
"NOP" simply means do nothing. The variable RET is an FMLI variable that
expands to the exit status of the most recently executed UNIX system process.
Notice that nested double quotes are "escaped" using the character "\", a
convention that is consistent with the UNIX system shell language.

THE DEFINITION LANGUAGE 2-41

Fmlcut(1) and Fmlgrep(1)

As mentioned previously, FMLI provides a set of built-in functions that
are available to an application developer. These function provide capabilities
such as regular expression matching (regex), variable setting/unsetting (set,
unset), and message line output (message). Two built-ins which are quite use­
ful, primarily in form processing, are fmlcut and fmlgrep.

The built-in fmlcut will retrieve selected fields from a file. The fm1grep
built-in will search a file for a given pattern. FMLI developers who are also
UNIX shell programmers should be quite familiar with both of these com­
mands.

Consider the following FMLI form definition that displays selected entries
from the file jetc/passwd. When the form is first initialized, fm1grep will
retrieve the entry for login-id "$ARGl" from /etc/passwd. The variable
"ARGl" refers to the first argument passed to the form. The output of
fmlgrep is then piped to the FMLI built-in set.

The value of each form field is determined by "cutting" the contents of
variable tmpvar accordingly. The -f option to fmlcut specifies the field
number, the -d option specifies the delimiter character.

2·42

The string "const" is provided with each field value to indicate that all
defaults are "constant." That is, they need only be evaluated when the
form is initialized. "Const" should not be used if a field's default value
may vary. For example, "const" should not be used if a field value
depends on the current value of another field (e.g., value="$Fl").

FMLI PROGRAMMER'S GUIDE

'fmlgrep "$ARG1" letc/passwd I set -1 tmpvar'

name=" login id"
nrow=1
ncol=1
rows=1
oolUl1U'lS=20
frow=1
fool=10
value=cxmst "'echo $tmpvar I fmlcut -f1 -d:'"

name="passwd"
nrow=2
ncol=1
rows=1
oolUl1U'lS=20
frow=2
fool=10
value=cxmst "'echo $tmpvar I fmlcut -f2 -d:'"

name="user id"
nrow=3
ncol=1
rows=1
oolUl1U'lS=20
frow=3
fool=10
value=cxmst ", echo $tmpvar I fmlcut -f3 -d:'"

name="group id"
nrow=4
ncol=1
rows=1
oolUl1U'lS=20
frow=4
fool=10
value=cxmst "'echo $tmpvar I fmlcut -f4 -d.:'"

Fmlcut(1) and Fmlgrep(1)

THE DEFINITION LANGUAGE 2·43

Shell vs. run
When FMLI encounters a command within backquotes, it will first deter­

mine whether or not it is a known built-in command. If it is, FMLI will exe­
cute the command internally (without creating a new UNIX system process).
If the command is not a built-in, FMLI will generate a new process to execute
the command.

Consider the following:

actian='date I message'nap

In this example date is not an FMLI built-in command yet message is. FMLI
will generate a new process to execute the UNIX system command date(l)
and pass its output to the FMLI built-in message.

The following is a description of two FMLI built-in commands (shell and
run) that do invoke UNIX system processes.

shell
The shell built-in command will execute a UNIX system command

without clearing the screen. It takes as its only argument the string to be
passed to the UNIX system shell for execution. This command is used pri­
marily to create "in-line" UNIX system shell scripts. Since FMLI is not a full
implementation of the UNIX system shell, the shell built-in allows developers
to take full advantage of the UNIX system shell language from within the con­
text of the FMLI language.

For example, consider the following menu item definition:

name="Do saneth:ing"
action='message "About to execute a shell script";

shell "
if [-d "$ARG1"]
then

echo "It is a directory";
else

echo "It is not a directory";
fi

" I message 'nap

2·44 FMLI PROGRAMMER'S GUIDE

Shell VS. run

Notice that the output of the shell built-in is piped to the FMLI message
built-in.

run
The run built-in allows one to execute a UNIX system command in full

screen. This is useful for executing UNIX system commands/applications
which are "interactive." When the run command is encountered FMLI will
clear the screen, suspending the "frames" that are posted, and executed the
UNIX system command/application in full screen. Once the UNIX system
command has terminated, the "frames" will be restored as they were before
the command was executed. Note however that stdin, stdout, and stderr are
not modified by the run command, thus, no information can be piped to/from
run.

The following is a menu item definition that contains the run built-in:

name="Etlit Il'!Y .profile"
actian='message "AOOut to edit your .profile

nm vi .profile;
message "Re'tu:rniDJ to EMLI'" nop

II. ,

The command string to the run command should not be surrounded by
quotes.

If one wishes to use the UNIX system shell as an "intermediary," consider
the following:

actian='nm sh -c "vi .profile"'nop

where sh is the UNIX system shell command. The -c option to sh tells the
UNIX system shell to execute the command string which follows. This is use­
ful for trapping any UNIX system shell messages that may be produced such
as illegal command strings, unknown commands, etc ..

THE DEFINITION LANGUAGE 2-45

3 Invoking FMLI

Introduction 3-1

The Initialization File 3-2
The Introductory Object 3-2
The Banner 3-4
Color Attributes 3-5
Screen-Label Keys 3-8

Modifying Command Keywords 3-10

Adding Path Aliases 3-11

Terminal Independence 3-12

INVOKING FMLI

Introduction
The executable file £ntH requires at least one argument, the initial object to

open. Subsequent interactions are driven by this initial object. Optionally,
you may provide the names of an initialization file, a commands file, and an
alias file. The initialization file provides specific global instructions that allow
for customization of the application, such as screen colors and default SLKs.
The commands file allows the definition of commands specific to that applica­
tion. The alias file allows you to define short, easy to use, aliases for long
path names to devices and files.

The generalized command for invoking the Interpreter is:

fmli [-I <initialization file>] [-c <commands file>] [-a <alias file>] <file> [<file> ...]

where <file> is the full path name of the file describing the object to be opened initially, and
must follow the naming convention Menu.xxx for a menu, Form.xxx for a form, and Text.xxx for a
text file, where xxx is any string that conforms to UNIX system naming conventions. The descrip­
tor lifetime will be ignored for all frames opened by argument to fmli. These frames have a life­
time of "immortal n by default.

S FMLI does not use the EOF marker to determine when to exit an applica­
tion, it uses the exit command. Thus, it is strongly advised that input to
FMLI or FMLI applications not be from a pipe (I), a redirected file (<),
or a here document («).

INVOKING FMLI 3-1

The Initialization File
One of the arguments you may give when invoking fmli is the name of

an initialization file. In the initialization file, an application developer is able
to specify the following:

• A short-term introductory object displaying the application name

• A banner, its position, and other objects on the banner line

• Color attributes for all objects

• Screen-label keys (SLKs) and their layout.

Each is described in detail below.

The Introductory Object
This object is displayed briefly when the application starts, and is then

cleared from the screen and replaced by the frame(s) you specify as the initial
object(s). The introductory object is specified by using four of the descriptors
normally used to define a text object. Those descriptors are shown in the table
below. Note that when not specified in the initialization file, title and text
default to NULL. If both title and text descriptors are missing from the initial­
ization file, no introductory object is displayed.

INTRODUCTORY OBJECT DESCRIPTORS

DESCRIPTOR DEFAULT IF TYPE DEFAULT
NOT DEFINED EVALUATION TIME

title .. II string At initialization time
text II " string At initialization time
rows 10 position At initialization time
columns 50 position At initialization time

This is a subset of the complete list of descriptors for text objects, and more
about each of these descriptors can be found in the section "Text Objects. "
Please note, however, that the defaults for "rows" and "columns" shown
above only apply in the initialization file. The color of the introductory object

3-2 FMLI PROGRAMMER'S GUIDE

The Initialization File

is controlled by the descriptors described under the section "Color Attri­
butes. "

The syntax for this object is simple and can be seen in the following
example:

title=''WELCCJiIE '10"
text="~ Application
Copyright (c) 1988
~ Software, Inc.
All rights reserved."
zows=5
co1umns=25

Backquoted expressions, containing calls to functions built-in to the Inter­
preter, may also be used, as in this line

text=" \ readfile myintrotext \ "

which will cause the text file myintrotext to be read and passed to the text
descriptor as the argument. More about quoted and backquoted expressions is
explained in the section titled "Syntax."

INVOKING FMLI 3·3

The Initialization File ---------------------

The Banner
The application can display a banner on the banner line if you include at

least the first of the following descriptors.

BANNER DESCRIPTORS

DESCRIPTOR DEFAULT IF TYPE DEFAULT
NOT DEFINED EVALUATION TIME

banner NONE string When init file is read
bancol "center" position When init file is read
working "Working" string When init file is read

See the description of begrow in the section "Forms" in this guide for an
explanation of the type "position."

The following lines, in an initialization file, would give you a banner with
the program name and the date on the banner (top) line of the screen starting
in the 30th column.

banner="M'llPRCGRAM - 'date'"
bancol=30

The working indicator appears right justified on the banner line. Taking
care that other items on the banner do not run into this area is the responsi­
bility of the developer. Changing the working indicator, to BUSY for exam­
ple, is done by defining the "working" descriptor in your initialization file:

working="EUSY"

To disable the working indicator entirely:

worki:ng=""

You may also put an application specific indicator on the banner line by using
the built-in function indicator, which is documented in the FMLI built-in func­
tion manual pages.

3·4 FMLI PROGRAMMER'S GUIDE

The Initialization File

Color Attributes
The color for text on the banner line is controlled by the descriptor

banneLtext. If this descriptor is not set, the default is white text on a back­
ground that is the same color as the background for the rest of the screen.

banner_ text=yellow

would make all text on the banner line yellow, and the background would be
whatever you set it to for the rest of the screen. The defined color descriptors
for both text and background are:

• black

• blue

• green

• cyan

• red

• magenta

• yellow

• white.

You may redefine these descriptors, or add new ones, with the setcolor built-in
function, which is documented in the manual pages.

The following language descriptors are used to specify color attributes for
various screen entities. If the terminal does not support color, these descrip­
tors are ignored.

screen

banner_text

window_text

Color of the screen (screen background).

Defines the color of all text on the banner line.
The background for this text is defined by screen.
Failing to define banner_text will cause the banner
text to default to white.

Color of the text in a frame (text foreground). The
text background color will be the screen back­
ground color (see the screen descriptor).

INVOKING FMLI 3-5

The Initializ.tlon File

active_border Color of the frame borders when a frame is
current (border foreground). This will enforce the
"solid line" look of the borders. The border back­
ground color will be the screen background color.

Note that some color devices may reverse a color
request. For example, bigl1light_bar=red and
bigl1light_bar_text=green may be displayed as
"red on green" rather than "green on red." If this
is the case, set bigl1light_bar-green and
bigl1light_bar_text=red to produce the proper
color combination.

inactive_border Color of the frame borders when a frame is non­
current (border foreground). Once again the border
background color will be the screen background
color.

active_titlE!-text Color of the title text when a frame is current (title
foreground).

active_title_bar The title background color when a frame is current
(title bacJ.<ground).

inactive_title_text Color of the title text when a frame is non-current
(title foreground).

inactive_title_bar The title background color when a frame is non-
current (title background).

highlighLbar Color of the menu selector bar (bar background).

highlighLbaLtext Color of the bar text (bar foreground).

slLtext Color of the screen-label key text.

slLbar Color of the screen-label keys (background for
sILtext).

All of these descriptors are of type STRING and accept the color values
given in the discussion of the banner line. .

3-6 FMLI PROGRAMMER'S GUIDE

The Initialization File

Due to the nature of curses(3X), colors must be set in pairs. This means
you must set both the foreground and background for an area of the screen,
otherwise it will default to monochrome.

If you set the foreground and background to the same color you will not
be able to see the text.

The built-in function setcolor allows you to define your own colors, if the ter­
minal is capable of it. If you want to write machine independent code that
uses the setcolor capability, use the "or" operator in your backquoted expres­
sion. For example:

screen='setoolor blue 100 24 300 II echo blue'

will set the screen to the default blue if the new one can't be defined. Of
course, if this terminal can't display color, the Interpreter automatically
defaults to monochrome. The color descriptors are allowed only in the initial­
ization file. They will be ignored in other files.

If you reinitialize the FMLI application with a new background color, text
in the banner line will be shifted one character to the right. To avoid this
problem, force the banner to be reevaluated by including the banner descrip­
tors in the new initialization file.

INVOKING FMLI 3·7

The Initialization File

Screen-Label Keys
Screen-Label Keys (SLKs) appear at the bottom of the Interpreter screen

and provide easy access to a number of widely used functions. They are
analogous to a set of menu items that are always displayed and can be
selected at any time. There are 8 SLKs that map directly to the 8 function
keys that appear on a majority of terminals (alternative escape sequences are
listed in the Pseudo Keys Table.)

By default, the Interpreter provides 2 levels of SLKs. There are 8 SLKs
that appear at the first level and an alternate set of 8 SLKs that appear at the
second level. The Interpreter has only defined the first set for each object
type. These defaults were given in the first part of this document. If you
define SLKs 9 through 15 in the second set, the eighth and sixteenth SLKs
default to CHG-KEYS, which serves simply as a toggle to flip-flop between
levels.

SLKs 1 through 7 in the first set can be disabled, but not redefined. SLKs
8 through 16 may be redefined. However, if you define SLK 8 or 16, the user
looses the ability to toggle between the two sets of SLKs. Redefining the
SLKs can be done in the initialization file, in which case they become the
defaults. They may also be defined in form, menu, and text files, in which
case they override the defaults while that object is active.

The developer can define which set of SLKs first appears when the object
is opened by setting the single instance descriptor altslks. If this descriptor
evaluates to TRUE, SLKs 9 through 16 will be displayed when the object is
first opened. altslks can appear in form, menu, and text descriptions.

The following is a list of multi-instance descriptors that can be used to
redefine the Screen-Label Keys (SLKs).

name

action

button

Name that is displayed on the SLK. Must be 8 or fewer
characters. Defining the name as a null string (name="")
will disable the SLK.

Operation to perform when the particular SLK is selected.

The value of this descriptor is the number of the function
key (1 through 16) to which the SLK refers.

3-8 FMLI PROGRAMMER'S GUIDE

--------------------- The Initialization File

show If its value expands to FALSE, then the SLK will not
appear.

slLlayout Describes the layout of the screen-labeled keys on the
screen. Two groupings are supported; "4-4" and "3-2-
3." The default, if this descriptor is not used, is ,. 3-2-3".

The following is an example of how an application developer could use an
initialization file to disable F7 (CMD-MENU) and define F9 (the first SLK in
set 2) as the EXIT key:

narDe!!=""
blttan=7
show=trIle (this line is opticmal.)
name=nExitn

bltton=9
action=exit
show=trIle (this line is opticmal.)

The SLKs must be the last thing defined in any descriptor file.

INVOKING FMLI 3·9

Modifying Command Keywords
Keywords can be added to the Command Menu or disabled. This is done

by creating a command file and supplying it as an argument when fmli is
invoked. There is an absolute maximum of 64 command keywords. The for­
mat for adding or disabling is as follows:

name=<atd name>
actian=<action to take>
help=<keyword operation>

To add a new command, for example,

name="date"
action= \ date I message \ tDP
help=OPEN TEn' $MYOB.J1!l:TS1Text.datehelp

will allow a user to have a date command that puts the date on the message
line.

To disable an existing command, for example, frm-mgmt,

name="fnn ngmt"
action=WP

To change the "default" help for an FMLI command,

name="fnn~"

help=OPEN TEn' ~1Text.fnnhelp

It is important to remember that the exit command is the only way to exit
an FMLI application. Thus, if you disable the exit command, you must
make sure that somewhere in your application code there is a menu item
with the action descriptor defined as the exit command. Otherwise, the user
will be stuck in your application with no way to exit.

The contents of the command file will be reflected in the Command Menu.
One should avoid keywords that are a partial match of another keyword such
as II cr II which is a partial match of II create. II

3-10 FMLI PROGRAMMER'S GUIDE

Adding Path Aliases
The developer can define a path alias to simplify references to objects or

devices with lengthy path names. Whenever a path name is referenced that
does not begin with a "j" or a "$" the Interpreter will check the alias file.
For example,

MYTEX.T=$lD1E/myfiles/mytext

would allow the developer to refer to the text file Text.file in the directory
$HOMEjmyfilesjmytext as MYTEXT jText.file.

The alias may also contain the name of the file or device, for example,

~1=$lDfEI'n'!Yfiles~.file

but file names assigned to an alias must conform to the same naming conven­
tion as file names on the invocation line.

More than one possible path may be assigned to a single alias by separat­
ing each path with a colon (:). For example,

MYFILES=$lDfEI'n'!Yfiles: /usrlspool/UUcppllblic

would search $HOMEjmyfiles first, and if the file is not found, search
jusrjspooljuucppublic whenever the alias MYFILES is used. This is similar to
the way $PATH is searched in the UNIX system. The alias file is specified to
the Interpreter with the -a option during invocation.

INVOKING FMLI 3-11

Terminal Independence
FMLI uses the UNIX system terminfo data base to determine the

terminal's capabilities. The default path to this database is /usr/lib/terminfo
if the environment variable $TERMINFO is not set. New terminals not
described in this database can be added to the terminfo under the proper
sub-directory named by the first character in the terminal's name. For exam­
ple, the 5425 terminal description would be in $TERMINFOj5j5425.

In your .profile, after TERM is set, you should execute a tput init com­
mand to initialize curses.

In some cases, if an stty sane is done, stty tab3 would be necessary to
ensure a sane screen. (Borders of OBJECTS may be distorted.) This happens
on the color console.

3-12 FMLI PROGRAMMER'S GUIDE

4 FMLI Manual Pages

FMLI Manual Pages 4-1

FMLI MANUAL PAGES i

FMLI Manual Pages
The following are the manual pages for the FMLI built-in functions and

executables. The functions included are:

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

chkuser

coproc

echo

fmlcut

fmlgrep

getfrm

getitems

indicator

message

pathconv

readfile, longline

regex

reinit

reset

run

set, unset

setcolor

shell

vsig

The chkuser command is not a built-in command of FMLI. But it is used
as an executable for the system administration application for UNIX Sys­
tem V /386 Release 3.2.

FMLI MANUAL PAGES 4-1

CHKUSER(lA) CHKUSER(lA)

NAME
chkuser - run program for privileged users

SYNOPSIS
chkuser [-u] [-c command 1

DESCRIPTION
The chkuser command is a "setuid-to-root" program that will pass root
privileges down through the exec system call. This allows users to issue
commands that might take root permissions only.

The -u option will validate the user and set the return code to zero if the
user has administrative access or to one if the user is not a privileged user.
See example 1.

The -c option uses the exec system call to invoke the underlying software
that will actually perform the administrative function. The command to
exec is checked against the list of legal commands. The command and its
arguments to .chkuser have to be enclosed in double quotes. See example
2.

NOTE: The chkuser command is not a built-in command of FMLI. But it is
used as an executable for the System Administration application for UNIX
System V j386 Release 3.2.

EXAMPLES
(1) action=OPEN 'jusrjvmsysjadminj.chkuser -ul regex

"0$' "$VMSYSjOBJECTSjmailsetjMenu.mail"
'.*' "$VMSYSjOBJECTSjmailsetjTextjmalpriv'"

(2) jusrjvmsysjadminj.chkuser -c "command ARG1 ARG2"

SEE ALSO
jusr jvmsysj admsets jbase-adm

- 1 -

COPROC(lF) (Form and Menu Language Interpreter Utilities) COPROC(lF)

NAME
coproc: cocreate, cosend, cocheck, coreceive, codestroy - communicate to a
process

SYNOPSIS
cocreate [-r rpath] [-w wpath] [-i id] [-R refname]

[-8 senlLstring]
[-e expecLstring] command

c08end [-n] id string

cocheck id

coreceive id

codestroy [-R refname] id

DESCRIPTION
The cocreate command initializes communication to a process using named
pipes. This means that the process will expect strings on its input and send
information on its output.

The cosend command works two ways. With the -n option, cosend does not
wait for a response. The process should use vsig to force the strings into
the pipe and then signal that it wishes to send. This causes a reread to
occur in the current frame. The vsig executable is supplied on the FMLI
disk, and is described in detail on the vsig(lF) manual page in chapter 4 of
the FMLI Programmer's Guide.
The cocheck command should be called from a reread descriptor. The
default value of one of the fields in the form should include the coreceive.
Without the -n option, send.....string and expect.....string are used to tell when
input and output are completed on the pipe. In other words, the Interpreter
during a cosend will output all the strings given as arguments followed by
send.....string, to say that it is through giving information. Then it will read
all the output from the process until it sees the expect.....string. By default,
the Interpreter will send no send.....string and expect no expect.....string (it will
expect only one line of output from the process). Read the warning below
if you use cosend without the -n option.

The codestroy command should usually be given the -R option, since you
may have more than one process with the same name, and you do not want
to kill the wrong one. It keeps track of the number of refnames you have
assigned, and when the last one is killed, kills the process (id) for you.

The id is used to refer to the process. If none is specified, the name of the
process is used.

Refname is a "local" name for a process. This is useful when multiple
objects reference the same process (Le., when multiple objects perform a
cocreate on the same process). Thus, when a codes troy operation is per­
formed you will usually want to destroy only the local reference to the pro­
cess rather than the entire pipe.

The rpath tells cocreate what file to use to read information from. The
wpath tells cocreate what file to use to write information to. These files are

- 1 -

COPROC(lF) (Form and Menu Language Interpreter Utilities) COPROC(lF)

usually used for processes that naturally write to a certain pipe or for hav­
ing one process talk to many different Interpreters. If rpath and wpath are
not specified, paths will be picked in $HOME/tmp.

Command should be a program followed by its arguments.

Here is some advice for writing these programs. If this program is to be
written in "C", make sure to flush output after writing to the pipe (a good
way to check this is to run cat I prog I cat from shell). As of this writing,
aWk(l) and sed(l) can not be used because they do not flush after lines of
output. Shell scripts are well-mannered, but slow. "C" is recommended.
If possible, use the default send.......string, rpath and wpath. In most cases, the
expect.......string will have to be specified. (Note: the expect.......string need only
be the initial part of the line, and there must be a new-line at the end of the
output). Id's are usually used when the same process is used with different
options and different meanings.

Codestroy will usually work best in "close=" lines in menus and forms.
the "close=" is guaranteed to be evaluated when a window is closed.

EXAMPLE

WARNING

ini t='cocreate -i BIGPROCESS initialize'
close='codestroy BIGPROCESS'

reread='cocheck BIGPROCESS'

name='cosend -n BIGPROCESS field l'

name="Receive field"
inactive=TRUE
value='coreceive BIGPROCESS'

If cosend is used without the -n option, a coprocess that does not answer
will cause the Interpreter to permanently hang.

SEE ALSO
awk(l), cat(l), sed(l).

- 2 -

ECHO(lF) (Form and Menu Language Interpreter Utilities)

NAME
echo - put string on virtual output

SYNOPSIS
echo [string] . ..

DESCRIPTION

ECHO(lF)

If no argument is given, echo looks to stdin for input. Echo directs each
string it is passed to stdout. It is often used in conditional execution or for
passing a string to another command.

EXAMPLES
Validate Field 1 as integer:

valid='echo "$F1" I regex "'[0-9]+$"

Write information to stdout when a form is done:

done='echo "$LOGNAME is on-line" I message'

SEE ALSO
echo(l).

- 1 -

FMLCUT(lF) (Form and Menu Language Interpreter Utilities) FMLCUT(lF)

NAME
fmlcut - fmlcut out selected fields of each line of a file

SYNOPSIS
fmlcut -clist [file ...]
fmlcut -flist [-dchar] [-8] [file ...]

DESCRIPTION
Use fmlcut to fmlcut out columns from a table or fields from each line of a
file; in data base parlance, it implements the projection of a relation. The
fields as specified by list can be fixed length, i.e., character positions as on a
punched card (-c option) or the length can vary from line to line and be
marked with a field delimiter character like tab (-f option). fmlcut can be
used as a filter; if no files are given, the standard input is used. In addition,
a file name of "_" explicitly refers to standard input.

The meanings of the options are:

list A comma-separated list of integer field numbers (in increasing
order), with optional - to indicate ranges [e.g., 1,4,7; 1-3,8; -5,10
(short for 1-5,10); or 3- (short for third through last field)].

-clist The list following -c (no space) specifies character positions (e.g.,
-c1-72 would pass the first 72 characters of each line).

-flist The list following -f is a list of fields assumed to be separated in
the file by a delimiter character (see -d); e.g., -fl,7 copies the first
and seventh field only. Lines with no field delimiters will be
passed through intact (useful for table subheadings), unless -8 is
specified.

-dchar The character following -d is the field delimiter (-f option only).

-8

Default is tab. Space or other characters with special meaning to
the shell must be quoted.

Suppresses lines with no delimiter characters in case of -f option.
Unless specified, lines with no delimiters will be passed through
untouched.

Either the -c or -f option must be specified.

EXAMPLES
fmlcut -d: -£1,5 /etc/passwd

'who am i I fmlcut -£1 -d" " ,

DIAGNOSTICS

mapping of user IDs to names

to get the current login name.

The following error messages may be displayed on the FMLI message line:

ERROR: line too long A line can have no more than 1023 characters or
fields, or there is no new-line character.

ERROR: bad list for c / f option
Missing -c or -f option or incorrectly specified list.
No error occurs if a line has fewer fields than the list
calls for.

- 1 -

FMLCUT(lF) (Form and Menu Language Interpreter Utilities)

ERROR: no fields The list is empty.

ERROR: no delimiter Missing char on -d option.

ERROR: cannot handle multiple adjacent backspaces

FMLCUT(lF)

Adjacent backspaces cannot be processed correctly.

WARNING: cannot open <[ilename>

SEE ALSO
fmlgrep(lF).

Either filename cannot be read or does not exist. If
multiple file names are present, processing continues.

- 2 -

FMLGREP(lF) (Form and Menu Language Interpreter Utilities) FMLGREP(lF)

NAME
fmlgrep - search a file for a pattern

SYNOPSIS
fmlgrep [options] limited regular expression [file ... J

DESCRIPTION
The fmlgrep command searches files for a pattern and prints all lines that
contain that pattern. The fmlgrep command uses limited regular expressions
(expressions that have string values that use a subset of the possible
alphanumeric and special characters) like those used with ed(1) to match the
patterns. It uses a compact non-deterministic algorithm.

Be careful not to use FMLI special characters (e.g., $, " " ") in the limited
regular expression. It is safest to enclose the entire limited regular expression
in single quotes ' ... ' .

If no files are specified, fmlgrep assumes standard input. Normally, each
line found is copied to standard output. The file name is printed before
each line found if there is more than one input file.

Command line options are:

-b Precede each line by the block number on which it was found. This
can be useful in locating block numbers by context (first block is 0).

-c Print only a count of the lines that contain the pattern.
-i Ignore upper flower case distinction during comparisons.
-b Prevents the name of the file containing the matching line from being

appended to that line. Used when searching multiple files.
-I Print the names of files with matching lines once, separated by new­

lines. Does not repeat the names of files when the pattern is found
more than once.

-n Precede each line by its line number in the file (flrst line is 1).
-s Suppress error messages about nonexistent or unreadable files.
-v Print all lines except those that contain the pattern.

SEE ALSO
fmlcut(1F).

DIAGNOSTICS

BUGS

Return value is TRUE if any matches are found, FALSE if otherwise.

lines are limited to BUFSIZ characters; longer lines are truncated. BUFSIZ is
defined in /usr/indude/stdio.h.

If there is a line with embedded nulls, fmlgrep will only match up to the
first null; if it matches, it will print the entire line.

- 1 -

GETFRM(lF) (Form and Menu Language Interpreter Utilities)

NAME
getfnn - returns the current frame number

SYNOPSIS
getfrm

DESCRIPTION

GETFRM(lF)

The getfrm command takes no arguments. It returns the current frame
number.

EXAMPLE
action=OPEN TEXT stdtext 'getfrm'

The action here is to open the text object "stdtext," passing the current
frame number to that text object as its ARGl.

- 1 -

GETITEMS(lF) (Form and Menu Language Interpreter Utilities) GETITEMS(lF)

NAME
getitems - returns a list of the currently marked menu items.

SYNOPSIS
getitems [delimiter-string]

DESCRIPTION
The getitems command takes a delimiter string as its only argument. It
returns a list of the names (or linin/o, if it is defined) of the currently
marked menu items, delimited by the argument string. If no argument is
given, the default delimiter is NEWLINE.

EXAMPLE
This code defines a menu:

Menu=nExample"
multiselect=TRUE
done='getitems ":"

name="Item 1"

message'

action='message "You selected item 1'"

name="Item 2"
lininfo="This is item 2"
action='message "You selected item 2'"

name=nItem 3"
action='message "You selected item 3'"

If all three items in this menu were marked, when he RETURN key is
pressed the following string will appear on the message line:

Item 1:This is item 2:Item 3

Note that since linin/o is defined for item 2, its value is substituted for the
name.

- 1 -

INDICATOR(lF) (Form and Menu Language Interpreter Utilities) INDICATOR(lF)

NAME
indicator - display application specific alarms and/or the "working" indica­
tor

SYNOPSIS
indicator [-c column] [-1 length] [-0] [-w] [-b [n]] "[string]" ...

DESCRIPTION
The -c option dictates what column of the banner line to start the indicator
string on. Column is an integer from 0 to 79. If the -c option is not used,
the default is O.

The -1 option limits the length of the indicator. If the string is longer than
length, it will be truncated. Length is an integer from 1 to 80. If -1 is not
used, the default is the entire string.

The -0 option causes indicator to "tee" its output to stdout.

The -w option turns on the "working" indicator.

The -b option rings the terminal bell n times, where n is an integer from 1
to 10. The default value is 1. If the terminal has no bell, the screen is
flashed instead, if possible.

If the indicator command is being used solely for the bell or working indica­
tor control, remember to give it a null string argument unless input is being
piped to it. The string should always be the last argument given. The indi­
cator is not automatically cleared.

EXAMPLES
When the value entered in the field is wrong, ring the bell three times and
put up an indicator saying WRONG in column 1.

invalidmsq='indicator -b 3 -c 1 "WRONG'"

To clear the indicator after telling the user the entry is wrong:

invalidmsq='indicator -b 9 -c 1 "WRONG";
indicator -c 1 " ",

- 1 -

MESSAGE(lF) (Form and Menu Language Interpreter Utilities) MESSAGE(lF)

NAME
message - puts its arguments on message line

SYNOPSIS
message [-t] [-p] [-0] [-b [n]] "[string]"

DESCRIPTION
The message command puts its string arguments out onto the message line.
If there is no string, the stdin input to message will be used. If the -t flag is
set, the message is output in temporary form (it will be removed after the
next key is pressed). This is the default argument. If the -p flag is set, the
message is output in permanent form. This argument is used for prompts, it
will stay up until the next message is put up. The -0 flag forces message to
"tee" its message to stdout. The-b [numl,where num is an integer from 1
to 10, rings the terminal bell n times. The default value is 1. If the terminal
has no bell, the screen is flashed instead, if possible.

If the message command is being used solely for the bell or working indica­
tor control, remember to give it a l1ull string argument unless input is being
piped to it. The string should always be the last argument.

EXAMPLES
When the value entered in the field is wrong, ring the bell 3 times and then
put up the invalid field message "Try again!"

invalidmsg='message -b 3 ""'Try again I

Put out a message to tell the user what is being done:

done='message hello has been set in your
environment'

- 1 -

PATHCONV(lF) (Form and Menu Language Interpreter Utilities) PATHCONV(lF)

NAME
pathconv - search Interpreter criteria for filename

SYNOPSIS
pathconv [-v alias] [-f] [-t]

DESCRIPTION
The pathconv command is used to convert an alias to its pathname. It takes
the alias as a string from stdin. The -v option allows the alias to be embed­
ded in the command string. The -t option implies that pathconv should
expand the alias in a format suitable for display as a frame title. This for­
mat is a shortened version of the full pathname, created by deleting com­
ponents of the path from the middle of the string until it is under 42 charac­
ters in length, and then inserting " ... II between the remaining pieces. The
-f option means return the full path (this is the default).

EXAMPLES
Here is a menu that is titled using pathconv:

menu='pathconv -t -v $ARG1'

This will result in the same thing:

Menu='echo $ARG1 I pathconv -t'

SEE ALSO
echo(lF).

- 1 -

READFILE(lF) (Form and Menu Language Interpreter Utilities)

NAME
readfile, longline - reads file and gets longest line

SYNOPSIS
readfile file

longline [file]

DESCRIPTION

READFILE(lF)

The read file command reads the file named in its argument. No translation
of new-lines is done. It keeps track of the longest line it reads and if there
is a subsequent call to longline, the length of that line, including the newline
character, is returned. The longline command can be given an argument
instead, in which case it will calculate its longest line.

EXAMPLES
Here is a typical use of readfile and longline in a text object:

DIAGNOSTICS

text='''readfile myfile'"
columns ='longl ine'

If the file does not exist, readfile will return FALSE (i.e., the expression will
have an error return).

SEE ALSO
cat(l).

- 1 -

REGEX(lF) (Form and Menu Language Interpreter Utilities) REGEX(lF)

NAME
regex - match patterns against a striIlg

SYNOPSIS
regex [-e] [pattern template] ... pattern [template]

regex [-e] -v "string" [pattern template] ... pattern [template]

DESCRIPTION
The regex command takes a string (from stdin, or supplied with -v) and a
list of pattern/template pairs, and runs regex(3X) on the string versus each
of the patterns untit there is a match. When a match occurs, it writes the
corresponding template to stdout and returns TRUE. The last (or only) pat­
tern does not need a template. If that is the pattern that matches the string,
the function simply returns TRUE. If no match is found, regex returns
FALSE.

The -e option teUs the function to evaluate the corresponding template and
write the result to stdout.
The patterns are regular expressions of the form described in regex(3X). In
most cases the pattern should be enclosed in single quotes to tum off spe­
cial meanings of characters.

The template may contain the strings $mO through $m9, which will be
expanded to the part of the pattern enclosed in (...)$0 through (...)$9
constructs (see examples below). Note that if you use this feature, you must
be sure to enclose the template in single quotes so that the Interpreter
doesn't expand the $mO through $m9 variables at parse time. This feature
gives regex much of the power of cut(l), paste(l), and grep(l), and some of
the capabilities of sed(l). If there is no template, the default is
"mOm1$m2$m3$m4$m5$m6$m7$m8$m9". Note that only the final
pattern may lack a template.

EXAMPLES
To "cut" the 4th through 8th letters out of a string:

'regex -v "my string is nice" 1/'.{3}(.{S})$O'
'$mO "

In a form, for validating input as an integer:

valid='regex -v "$FS" "'[0-9]+$"

In a form, to translate an environment variable which contains one of the
numbers 1, 2, 3, 4, 5 to the letters a, b, c, d, e:

value='regex -v "$VAR 1" 1 a 2 b 3 c 4 d 5 e
, . *' , Error"

Note the use of the pattern ' .• ' to mean "anything else" .

In the example below, all three lines constitute a single backquoted E;!xpres­
sion. This expression, by itself, could be put in a menu descriptor me.
Since backquoted expressions are expanded as they are parsed, and output
from a backquoted expression (the cat command, in this example) becomes

- 1 -

REGEX(lF) (Form and Menu Language Interpreter Utilities) REGEX(lF)

part of the descriptor file being parsed, this expression would read
/etc/passwd and make a virtual menu of all the login ids on the system.

'cat /etc/passwd I regex 'A([A:]*)$O.*$'
name=$mO
action='message "$mO is a user"'"

DIAGNOSTICS
If none of the patterns match, regex returns FALSE, otherwise TRUE.

WARNING
Patterns and templates must often be enclosed in single quotes to tum off
the special meanings of characters. Especially if you use the $mO through
$m9 variables in the template, since the Interpreter will expand the vari­
ables (usually to "") before regex even sees them.

SEE ALSO

BUGS

cut(l), grep(l), paste(l), sed(1) in the User jSystem Administrator's Reference
Manual.
regcmp(3) in the Programmer's Reference Manual.

The regular expressions accepted by regcmp differ slightly from other utili­
ties (i.e., sed, grep, awk, ed, etc.).

Regex with the -e option forces subsequent commands to be ignored. In
other words if a backquoted statement appears as

'regex -e .•. ; command 1; command2'

commandl and command2 would never be executed. However, dividing the
expression into two

'regex -e •.. "command 1; command2'

would yield the desired result.

- 2 -

REINIT(lF) (Form and Menu Language Interpreter Utilities) REINIT(lF)

NAME
reinit - runs an initialization file

SYNOPSIS
reinit fIlename

DESCRIPTION
The reinit command takes an initialization filename as its only argument.
The Interpreter will parse and execute this fue, and then continue running
the current application. Typically used to change the defaults set by the ini­
tialization file that was named when fmli was invoked.

The reinit command does not re-display the introductory object or change
the screen label keys layout.

- 1 -

RESET(lF) (Form and Menu Language Interpreter Utilities)

NAME
reset - reset the current form field to its default values

SYNOPSIS
reset

DESCRIPTION

RESET(lF)

The reset command resets a field in a form to its default value; i.e., the
value displayed when the form was first opened.

- 1 -

RUN(lF) (Form and Menu Language Interpreter Utilities) RUN(lF)

NAME
run - run an executable

SYNOPSIS
run [-8] [-e) [-n] [-t title] program

DESCRIPTION
The run command runs a program, using the PATH variable to find it. The
-8 option means "silent", implying that the screen will not have to be
repainted when this is done,. The -e option means to prompt the user
before returning to the Interpreter only if there is an error condition (by
default the user is always prompted). The -n means never prompt the user
(useful for programs like vi which the user must do some specific action to
exit in the first place). The -i option gives the name this process will have
in the pop-up menu generated by the [rm-list command. This option
implies the ability to suspfmd the UNIX system process and return to the
FMU application.

EXAMPLE
Here is a menu that uses run:

menu="Edit special System files"

name="Password file"
action='run -e vi /etc/passwd'

name=nGroup file"
action='run -e vi /etc/group'

name="My .profile"
action='run -n vi SHOME/. profile'

- 1 -

SET(lF) (Form and Menu Language Interpreter Utilities) SET(lF)

NAME
set, unset - set and unset environment variables in core or in files

SYNOPSIS
set -<1 I ffilename I e variable=value>

unset -<1 I ffilename variable> . . .

DESCRIPTION
The set command can be used to set variables in the environment or add
variables to environment-like files. The unset command removes these vari­
ables. There are two built-in environments; a local one, and the UNIX sys­
tem environment which passes variables between processes. These environ­
ments are accessed by the -1 and -e options, respectively. When expanding
variables, the Interpreter checks the local environment first, and then the
UNIX system environment. If you use a file name with the -£ option, you
must include that file name when you are expanding variables [e.g.,
$ {(filename)VARIABLE}].

If a variable name is given without equating it to a value, set expects the
value to be on stdin.

EXAMPLE
Storing a selection made in a menu:

name=Se1ection 2
action='set -1 SELECTION=2'c1ose

WARNING
Note that at least one of the allowed switches must be used.

Note that a switch must be used for each variable being set/unset.

Note that there is no space between the -f option and the filename.

UNIX environment variables (those set using the -e) can only be set for the
current fmli process and the processes it calls.

When using the -£ option, unless the file name is unique to the process,
other users of the Interpreter on the same machine will be able to expand
these variables.

SEE ALSO
env(l), sh(l).

- 1 -

SETCOLOR(lF) (Form and Menu Language Interpreter Utilities) SETCOLOR(lF)

NAME
setcolor - redefine or create a color

SYNOPSIS
setcolor color re<LJ.evel greeILJ.evel blue--1evel

DESCRIPTION
The setcolor command takes four arguments; a string naming the color, and
three integers defining the intensity of the red, green, and blue components
of the color, respectively. If you are redefining an existing color, you must
use its current name (default colors are: black, blue, green, cyan, red,
magenta, yellow, and white). Intensities must be in the range of 0 to 1000.
The function returns the color's name string.

EXAMPLE
'setcolor blue 100 24 300'

- 1 -

SHELL(lF} (Form and Menu Language Interpreter Utilities) SHELL(lF}

NAME
shell - run a command using shell

SYNOPSIS
shell command [command] ...

DESCRIPTION
The shell command takes each of its arguments and puts them together
separated by a space and passes this command to your shell ($SHELL if set,
otherwise /bin/sh).

EXAMPLES
Since the Interpreter does not support background processing, the shell
built-in could be used instead.

'shell "build prog &''''

The shell's built-in test can be useful. This will test to see if field2 of a form
is a file.

valid='shell test -f $F2'

WARNING
The arguments will be concatenated using spaces, which mayor may not do
what is expected. The variables set in local environments will not be
expanded by the shell because "local" means local to the current process.

SEE ALSO
sh(l), test(l).

- 1 -

VSIG(lF) (Form and Menu Language Interpreter Utilities) VSIG(lF)

NAME
vsig - synchronize a co-process with the controlling FMLI object by flushing
all output from the co-process into the pipe and sending a signal to FMLI.

SYNOPSIS
vsig

DESCRIPTION
The vsig executable sends a SIGUSR2 signal to the controlling FMLI pro­
cess. This signal/alarm causes FMLI to execute the developer keyword
checkworld, which causes all posted objects with a "reread" descriptor
evaluating to TRUE to be reread.

EXAMPLES
The following is a segment of a shell program:

echo "Sending this string to an FMLI process"
vsig

The vsig command will flush the output buffer before it sends the SIGUSR2
signal to make sure the string is actually in the pipe created by the cocreate
built-in.

SEE ALSO
coproc(lF), signal(2).

- 1 -

I Index

Index 1-1

INDEX I

Index

A

Adding Path Aliases ... 3-11
Additional Objects ... 1-18

B

Banner ... 3-4
Built-in Functions ... 2-30
Built-in Variables ... 2-4

c

Case Statement ... 2-40
Choices Menu ... 1-19
Co-processing ... 2-33
Co-processing Commands ... 2-32
Color Attributes ... 3-5

D

Default SLKs ... 1-13
Default SLKs ... 1-17
Developer Keywords ... 1-9

F

Field Validation ... 2-38
File Redirection ... 2-6
Fmlcut(1) and Fmlgrep(1) ... 2-42
FMLI Manual Pages ... 4-1
Forms ... 2-7
Frame-to-Frame Navigation ... 1-21

G

Generating Dynamic Objects ... 2-39

H

Help ... 1-20
How to Use this Document i-1

I

Initialization File ... 3-2
Introductory Object ... 3-2

K

Keywords ... 1-8

M

Menus ... 2-18
Modifying Command Keywords ...

3-10
Multipage Forms ... 1-11

N

Navigation Keys ... 1-11
Navigation Keys ... 1-15

o

Object Architecture ... 1-3
Object Operation ... 1-6

p

Prerequisite Knowledge i-1
Prerequisites ... 2-1
Pseudo Keys ... 1-1

INDEX 1-1

Index

Q

Quoting Mechanisms ... 2-5

s

Screen Layout ... 1-3
Screen-Label Keys ... 3-8
Screen-Labeled Keys ... 1-20
Shell vs. run ... 2-44
Single and Multiselect Menus ...

1-15
Syntax ... 2-5

T

Terminal Independence ... 3-12
Text Objects ... 1-18
Text Objects ... 2-24

u

Use of Backquoted Expressions ...
2-6

User Keywords ... 1-8
Uses of regex ... 2-37

v

Variables ... 2-2

w

What Does FMU Do? ... 1-3
What is a Form? ... 1-11
What is a Menu? ... 1-14
What this Document Covers i-I

1-2 FMLI PROGRAMMER'S GUIDE

