

System V Interface Definition

System V
Interface Definition

Issue 2

Volume I

--
An-T

ISBN 0-932764-10-X

Library of Congress Catalog Card No. 85-063224

Select Code No. 320-011

Copyright © 1986 AT&T. All Rights Reserved.

No part of this publication may be reproduced or transmitted in any form or by any means -
graphic, electronic, electrical, mechanical, or chemical, including photocopying, recording in
any medium, taping, by any computer or information storage and retrieval systems, etc.,
without prior permission in writing from AT&T.

IMPORTANT NOTE TO USERS
While every effort has been made to ensure the accuracy of all information in this document,
AT&T assumes no liability to any party for any loss or damage caused by errors or omissions
or by statements of any kind in the System V Interface Definition, its updates, supplements, or
special editions, whether such errors are omissions or statements resulting from negligence,
accident, or any other cause. AT&T further assumes no liability arising out of the application
or use of any product or system described herein; nor any liability for incidental or consequen­
tial damages arising from the use of this document. AT&T disclaims all warranties regarding
the information contained herein, whether expressed, implied or statutory, including implied
warranties of merchantability or fitness for a particular purpose.

AT&T makes no representation that the interconnection of products in the manner described
herein will not infringe on existing or future patent rights, nor do the descriptions contained
herein imply the granting of license to make, use or sell equipment constructed in accordance
with this description.

AT&T reserves the right to make changes without further notice to any products herein to
improve reliability, function, or design.

This document was set on an AUTOLOGIC, Inc. APS-S phototypesetter driven by the troff

formatter operating on UNIX System V on an AT&T 3820 computer.

* UNIX is a trademark of AT&T.
AP5-S is a trademark of AUTOLOGIC, Inc ••

How to Order

To order copies of the System V Interface Definition by phone, you may call:

(800) 432·6600 (Inside U.S.A.)
(800) 255·1242 (Inside Canada)
(317) 352·8557 (Outside U.S.A. & Canada)

You must use a major credit card for orders made by phone.

To order copies of the System V Interface Definition by mail, write to:

AT &T Customer Information Center (CIC)
Attn: Customer Service Representative
P.O. Box 19901
Indianapolis, IN 46219
U.s.A.

Be sure to include the address the books should be shipped to and a check or
money order made payable to AT&T.

Please identify the books you want to order by Select Code. Select Codes for the
System V Interface Definition are:

320·011
320·012
307·127

Volume I
Volume II
All Volumes

System V Interface Definition Page v

Preface

Part I A General Introduction to the
System V Interface Definition

Chapter 1 General Introduction
Chapter 2 Future Directions

Part II Base System Definition

Chapter 3 Introduction
Chapter 4 Definitions
Chapter 5 Environment
Chapter 6 OS Service Routines
Chapter 7 General Library Routines

Part III Kernel Extension Definition

Chapter 8 Introduction
Chapter 9 Definitions
Chapter 10 Environment
Chapter 11 OS Service Routines

Appendix Changes from Issue 1

Base System Definition
Kernel Extension Differences

Indexes Volume I

General Index
Function Index

System V Interface Definition

Table of
Contents

Page

ix

3
9

19
25
33
57

151

249
251
257
261

298
303

307
317

Page vii

Preface

The System V Interface Definition specifies an operating system environment that
allows users to create applications software that is independent of any particular
computer hardware. The System V Interface Definition applies to computers that
range from personal computers to mainframes. Applications that conform to this
specification will allow users to take advantage of changes in technology and to
choose the computer that best meets their needs from among many manufacturers
while retaining a common computing environment.

The System V Interface Definition specifies the operating system components avail­
able to both end-users and application-programs. The functionality of components
is defined, but the implementation is not. The System V Interface Definition
specifies the source-code interfaces of each operating system component as well as
the run-time behavior seen by an application-program or an end-user. The
emphasis is on defining a common computing environment for application-programs
and end-users; not on the internals of the operating system, such as the scheduler
or memory manager.

An application-program using only components defined in the System V Interface
Definition will be compatible with and portable to any computer that supports the
System V Interface. While the source-code may have to be re-compiled to move
an application-program to a new computer system that supports the System V
Interface, the presence and behavior of the operating system components as defined
by the System V Interface Definition would be assured.

The System V Interface Definition is organized into a Base System Definition plus
a series of Extension Definitions. The Base System Definition specifies the com­
ponents that all System V operating systems must provide. The Extensions to the
Base System are not required to be present in a System V operating system, but
when a component is present it must conform to the specified functionality. The
System V Interface Definition lets end-users and application-developers identify the
features and functions available to them on any System V operating system.

System V Interface Definition Page ix

Part I

A General Introduction to the
System V Interface Definition

1.1 AUDIENCE AND PURPOSE

Chapter 1
General Introduction

The System V Interface Definition (SVID) is intended for use by anyone who must
understand the operating system components that are consistent across all System
V environments. As such, its primary audience is the application-developer build­
ing C language application-programs whose source-code must be portable from one
System V environment to another. A system builder should also view these
volumes as a necessary condition for supporting a System V environment that will
host such applications.

This publication is intended to serve the following major purposes:

• To serve as a single reference source for the definition of the external interfaces
to services that are provided by all System V environments. These services are
designated as the Base System. This includes source-code interfaces and run­
time behavior as seen by an application-program. It does not include the
details of how the operating system implements these functions.

• To define all additional services (such as networking and data management) at
an equivalent external interface level and to group these services into Extensions
to the Base System.

• To serve as a complete definition of System V external interfaces, so that appli­
cation source-code that conforms to these interfaces and is compiled in an
environment that conforms to these interfaces, will execute as defined in a Sys­
tem Venvironment. It is assumed that source-code is recompiled for the proper
target hardware. The basic objective is to facilitate the writing of application­
program source-code that is directly portable across all System V implementa­
tions. Facilities outside of the Base System would require that the appropriate
Extension be installed on the target environment.

1.2 STRUCTURE AND CONTENT

1.2.1 Partitioning into Base System and Extensions

The System V Interface Definition partitions System V components into a Base
System and Extensions to that Base System. This does not change the definition of
System V. It is instead a recognition that the entire functionality of System V
may be unnecessary in certain environments, especially on small hardware
configurations. It also recognizes that different computing environments require
some functions that others do not.

General Introduction Page 3

The Base System functionality has been structured to provide a minimal, stand­
alone run-time environment for application-programs originally written in a high­
level language, such as C. In this environment, the end-user is not expected to
interact directly with the traditional System V shell and commands. An example
of such a system would be a dedicated-use system. That is, a system devoted to a
single application, such as a vertically-integrated application package for managing
a legal office, To execute, many applications programs will require only the com­
ponents in the Base System. Other applications will need one or more Extensions.

The Extensions to this Base System have been structured to provide a growth path
in natural functional increments that leads to a full System V configuration. The
division between Base and Extensions will allow system builders to create machines
tailored for different purposes and markets, in an orderly fashion. Thus, a small
business/professional computer system designed for novice single-users might
include only the Base System and the Basic Utilities Extension. A system for
advanced business/professional users might add to this the Advanced Utilities
Extension. A system designed for high-level language software development would
include the Base System, the Kernel Extension and the Basic Utilities, Advanced
Utilities, and Software Development Extensions. Although the Extensions are not
meant to specify the physical packaging of System V for a particular product, it is
expected that the Extensions will lead to a fairly consistent packaging scheme.

This partitioning allows an application to be built using a basic set of components
that are consistent across all System V implementations. This basic set is the Base
System. Where necessary, an application developer can choose to use components
from an Extension and require the run-time environment to support that Extension
in addition to the Base System.

Facilities or side effects that are not explicitly stated in the SVID are not
guaranteed, and should not be used by applications that require portability.

1.2.2 Conforming Systems

All conforming systems must support the source code interfaces and runtime
behavior of the components of the Base System. A system may conform to none or
some Extensions. All the components of an Extension must be present for a system
to meet the requirements of the Extension. This does not preclude a system from
including only a few components from some Extension, but the system would not
then be said to have the Extension. Some Extensions require that other Extensions
be present on a system, for example, the Advanced Utilities Extension requires the
Basic Utilities Extension.

This issue of the System V Interface Definition corresponds to functionality in
AT&T System V Release 1.0 and System V Release 2.0. An implementation of
System V may conform to the System V Release 1.0 functionality or the System V
Release 2.0 functionality. All System V Release 2.0 enhancements to System V
Release 1.0 are identified as such in the SVID.

Page 4 General Introduction

1.2.3 Organization of Technical Information

For ease of use, the SVID has been divided into several Volumes containing the
following Extensions:

Volume 1. Base System

Kernel Extension

Volume 2. Basic Utilities Extension

Advanced Utilities Extension

Software Development Extension

Administered System Extension

Terminal Interface Extension

Additional Volumes will define any further Extensions to System V.

The SVID defines the source-code interface and the run-time behavior of the com­
ponents that make up the Base System and each Extension. Components include,
for example, operating system service routines, general library routines, system
data files, special device files, and end-user utilities (commands).

When referred to individually, components will be identified by a suffix of the form
(XX_YYY) where xx identifies the Base System or the Extension that the component
is in and YYY identifies the type of the component. For example, components
defined in the Operating System Service Routines section of the Base System will
be identified by (BA_OS), components defined in General Library Routines of the
Base System will be identified by (BA_LIB), and components defined in the Operat­
ing System Service Routines section of the Kernel Extension will be identified by
(KE_OS). Possible types are OS, LIB, CMD (commands or utilities) and ENV

(environment) .

The definition of the Base System includes an overview followed by chapters that
provide detailed definitions of each component in the Base System. Similarly, the
definition of each Extension includes an overview followed by chapters that provide
detailed definitions of each component in the Extension.

Pages containing the detailed component definitions are labeled with the name of
the component being defined. Some utilities and routines are described with other
related utilities or routines, and therefore do not have detailed definition pages of
their own.

An alphabetical index is provided in each Volume listing all components defined in
that Volume. The index points to the detailed definition pages on which a com­
ponent is to be found; the header for these pages may not contain the name of the
component being sought. For example, in Volume I, the entry for the function
c a 11 0 c points to the MALLOC(BA_ OS) pages, because the function c a 110 c is
defined with the function ma110c on pages labeled MALLOC(BA_OS).

General Introduction Page 5

Each component definition follows the same structure. The sections are listed
below; not all the following sections may be present in each description. If present,
however, they will be in the given order. Sections entitled EXAMPLE, APPLICATION

USAGE, and USAGE are not considered part of the formal definition of a com­
ponent.

• NAME - name of component

• SYNOPSIS - summary of source-code or user-level interface

• DESCRIPTION - interface and runtime behavior

• RETURN VALUE - value returned by the function

• ERRORS - possible error conditions

• FILES - names of files used

• APPLICATION USAGE or USAGE - guidance on use

• EXAMPLE - example

• SEE ALSO - list of related components

• FUTURE DIRECTIONS - planned enhancements

• LEVEL - see MECHANISM FOR EVOLUTION below

In general, components that are utilities do not have a RETURN VALUE section.
Except as noted in the detailed definition for a particular utility, utilities return a
zero exit code for success, and non-zero for failure.

The component definitions are similar in format to AT & T System V manual pages,
but have been extended or modified as follows:

• All machine-specific or implementation-specific information has been removed.
All implementation-specific constants have been replaced by symbolic names,
which are defined in a separate section [see Implementation-specific constants in
Volume I: Part II - Base System Definition: Chapter 4 - Definitions)' When
these symbolic names are used they always appear in curly brackets, e.g.,
{PROC_MAX}. The symbolic names correspond to those defined by the
November 1985 draft of the IEEE PlOO3 Standard to be in a < 1 imi ts. h>
header file; however, in this document, they are not meant to be read as sym­
bolic constants defined in header files.

• A section entitled FUTURE DIRECTIONS has been added to selected component
definitions. This section indicates how a component will evolve. The informa­
tion ranges from specific changes in functionality to more general indications of
proposed development.

• A section entitled APPLICATION USAGE or USAGE has been added to guide
application developers on· the expected or recommended usage of certain com­
ponents. Detailed definitions of operating system services and library routines
have an APPLICATION USAGE paragraph while utilities have a USAGE para­
graph.

Page 6 General Introduction

While operating system services and library routines are only used by programs,
utilities may be used by programs, by end-users or by system administrators.
The USAGE paragraph indicates which of these three is appropriate for a partic­
ular utility (this is not meant to be prescriptive, but rather to give guidance).
The following terms are used in the USAGE paragraph: application-program,
end-user, system-administrator, or general. The term general indicates that
the utility might be used by all three: application-programs, end-users and
system-administrators.

• A section entitled LEVEL defines each component's commitment level:

Level-l components will remain in the SVID and can be modified only in
upwardly compatible ways. Any change in its definition will preserve the previ­
ous source-code interface and run-time behavior in order to ensure that the
component remains upwardly-compatible.

Level-l components will remain unchanged for at least three years following
entry into level-2, after which time the component may be modified in a non­
upwardly compatible way or may be dropped from the SVID. Level-2 com­
ponents are labeled with the starting date of this three-year period.

1.3 MECHANISM FOR EVOLUTION

The SVID will be reissued as necessary to reflect developments in the System V
Interface. In conjunction with these updates, the following changes may be made
to the definitions:

• Level-l components may be moved to level-2. The date of their entry into
level-2 will be the date of the reissue of the SVID in which the change is made.

• Level-l components will not move from one Extension into another Extension.

• Components may move from existing Extensions into the Base System. Com­
ponents will not move from the Base System into an Extension.

• New Extensions may be introduced with completely new functionality.

1.4 C LANGUAGE DEFINITION

Source-code interfaces described in the SVID are for the C language.

The following two references define the C language for System V Release 1.0 and
System V Release 2.0 respectively:

• UNIX'IM System V Programming Guide, Issue 1, February 1982.

• UNIX'IM System V Programming Guide, Issue 2, April 1984.

General Introduction Page 7

2.1 NETWORK SERVICES EXTENSION

Chapter 2
Future Directions

The Network Services Extension will provide advanced standard interfaces to sup­
port networking applications. It is divided into three functional areas. The Open
Systems Networking Interfaces section describes a protocol-independent application
interface to transport services based on the Open Systems Interconnection (OSl)
Reference Model [IS 7498]. The Streams I/O Interfaces section describes the
operating system service routines that provide direct access to protocol modules
implemented using the streams framework. The Shared Resource Environment sec­
tion describes new capabilities for sharing and administering resources among
interconnected machines.

2.2 OPERATING SYSTEM STANDARDS

The IEEE PI003 working group is currently pursuing a draft standard for a portable
operating system interface. The System V Interface Definition is consistent with
the trial-use standard (November 1985), with several minor exceptions. Full con­
formance to the IEEE standard will be strongly considered after its formal approval.

2.3 C LANGUAGE STANDARDIZATION

AT & T is committed to support the standardization of the C language being pur­
sued by ANSI X3Jll, in which its representatives take a leading role. Full confor­
mance to the ANSI standard will be strongly considered after formal approval.

2.4 FLOATING POINT STANDARDS

The IEEE P7S4 Standard for Binary Floating Point Arithmetic will be supported by
System V. The existing library routines that deal with floating point numbers, and
which are likely to change in order to support the IEEE P7S4 Standard, belong to
the following classes:

• routines that do arithmetic operations;

• routines that do input/output;

• routines that manipulate floating point numbers.

However, these changes are hardware dependent and will appear only on the
machines whose underlying floating point data representation and exception han­
dling mechanisms are those specified by the IEEE P7S4 Standard.

General Introduction Page 9

2.S GRAPHICS EXTENSION

This Extension will track current industry efforts to define standards for graphics
functions. One area under active consideration is the Graphical Kernel Subsystem
(GKS).

2.6 TERMINAL INTERFACE EXTENSION

The current Terminal Interface Extension consists of the facilities provided by the
curseslterminfo package to allow application programs to perform terminal­
handling functions in a way that is independent of the type of terminal actually in
use. This Extension will be enhanced to support applications on both character and
bit-mapped terminals and to provide capabilities for handling windows, menus,
icons, etc. which can be accessed by a keyboard or other input device, such as a
mouse. Applications written in this environment will have a uniform and easily
used human interface. In addition, applications which rely on curses/terminfo will
be compatible with the new environment.

2.7 INTERNATIONALIZATION

Where necessary, modifications will be made, in an upwardly compatible way, to
existing System V components to support internationalization. In addition, new
components will be added to support features not currently available in System V.
These will include tools that will allow national supplements to be added to an
implementation of System V.

National supplements would be small packages that contained the necessary sup­
plementary information, such as messages, databases, documentation, and device­
drivers that, when installed, would allow an implementation of System V to process
different national languages and support hardware (i.e., terminals, printers) and
local conventions found in different countries. System builders would be able to
create national supplements using the tools provided in System V.

More than one national supplement could be installed on a system at a time,
resulting in a system with multiple language capabilities; however, national supple­
ments are envisioned as self-contained, not requiring or depending on other
installed national supplements.

Facilities that System V will provide to support internationalization and the
development of national supplements are:

• Messages and text from the kernel, utilities, and application programs will be
separated to enable support for national languages.

• Local conventions, or environments, will be supported transparently, depending
on the language selected by the user. Among the conventions to be supported
are date and time formats, collating sequences, and numeric representations.

• Supplementary code-sets will be supported to allow use of multiple code-sets,
and consequently character symbols, in addition to the ASCII code-set.

Page 10 General Introduction

• Sixteen-bit code-sets will be supported. This will allow languages of Far
Eastern countries (i.e., Japan, Republic of China, Korea, the People's Republic
of China, etc.) to be used .

• Language selection will be provided at the user-level to allow users of different
languages to use the same system at the same time in their respective
languages.

Message Handling.
In the future, System V will support a facility to produce messages and text in
national languages. In conjunction with the Error Handling Standards defined in
Volume I: Part II - Base System Definition: Chapter 7 - General Library Rou­
tines, messages and text from the kernel, utilities, and applications would be stored
separately. In addition, a set of administrative utilities would be provided to allow
the creation of new messages and strings, as well as modification to existing ones.

Local Conventions.
Local conventions define the common forms and rules used to communicate infor­
mation. The aim of internationalization is to provide System V applications and
utilities with the capability to interact with the end-user according to these local­
conventions. At the same time, applications and utilities must be portable and
easily adapted to other conventions (i.e., they must be shielded from any particular
set of conventions). Existing utilities and interfaces will be modified to support
both implicit and explicit invocation of these conventions, with the following areas
targeted for support:

Collating Sequence: The capability to define one or more collating sequences for a
specific code-set will be provided. Utilities providing sorted output or requiring
sorted input will be modified to allow invocation of different collating sequences.
In addition, tools will be provided to support defining of specific collating
sequences.

Character Classification: The capability to define, on a language-by-language
basis, character classes will be provided. The CTYPE(BA_LlB) library will be
enhanced to provide character classification in local languages. Where possible,
this capability will be provided through the existing classification routines. In addi­
tion, new routines will be provided to support new capabilities (i.e., returning an
indication of which code-set a particular character comes from).

Date and Time Format: The capability to enter and display date and time in the
local language and according to local formats will be provided. This applies to all
utilities or services that operate with date/time specifications.

Numeric Representation: The capability to define the rules for numeric editing
{such as decimal delimiter} will be provided.

Currency Representation: The capability to specify rules and formats for editing
local currency will be provided.

General Introduction Page 11

8th-bit Cleanup.
To support code-sets in addition to ASCII, all 8-bits of a byte will be used for char­
acter encoding. For example, some existing routines or utilities reject characters
with octal values greater than 177. Future releases will eliminate this and simi­
lar problems.

Code-Set and Character Support.
There are essentially two representations that make up the code-set:

the external code-set and the internal code-set.

The external code-set are those code-sets generated by input/output devices (i.e.,
terminals, printers, etc.). The most notable example is the seven-bit ASCII t code­
set produced by most terminals and printers connected to System V today.

The internal code-set is a transformation of the external code-set according to the
rules presented in this section, and is used to represent bytes throughout the rest of
System V. Normally, no part of System V, except a device-driver, will see the
external code-set; however, in many cases, the external and internal encodings will
be the same with only minor exceptions.

The device-driver has the sole responsibility of mapping an external code-set
to an internal code-set and vice-versa.

The following sections describe a template for transforming externally coded char­
acters into internally coded characters, methods of designating a particular code-set
to be used, and methods of designating a particular language to be used.

A Code-Set Template is a template for transforming externally coded characters
into internally coded characters accessible by the System V operating system, utili­
ties, and applications. The internal coding method discussed here is based on the
ISO 2022-1982 standard for code t:xtension techniques, which suggests the following
two techniques for shifting between code-sets:

• Single-shift

• Locking-shift

The single-shift is a single byte used to announce a temporary shift to another
code-set. The byte, or bytes, immediately following the single-shift code are inter­
preted as part of a new code-set. Subsequent characters are interpreted as belong­
ing to the primary code-set.

I. ASCII, as it is used here, is defined as the seven-bit code-set used for information interchange in the
United States. It does not refer to the extended eight-bit ASCII code-set, sometimes known as ASCII-8,
or local derivatives of the seven-bit ASCII code-set used in parts of Europe.

Page 12 General Introduction

The ISO standard defines two single-shift characters:

1. SS2, or single-shift two, and

2. SS3, or single-shift three.

The SS2 character is represented by hexadecimal 8e, while the SS3 character is
represented by hexadecimal 8 f .

The locking-shift technique is used to temporarily shift-in and shift-out of code­
sets. It consists of a pair of character sequences that allow a new code-set to be
used for more than one character. While in the context of a locking-shift
sequence, all characters, with the exception of single-shifted characters, are
assumed to belong to the new code-set.

Because of the context sensitivity of the locking-shift sequence, this method is not
recommended for use in System V. Therefore, the use of the single-shift sequence
is recommended to reduce the context sensitivity to as little as possible.

In addition to using the single-shifts to distinguish characters, the eighth-bit will
also be used to distinguish between the primary code-set and characters in one of
the three supplementary code-sets. By using the combination of eighth-bit and
single-shift characters, the internal coding method specifies a template for allowing
four code-sets to coexist simultaneously: one primary code-set and three supple­
mentary code-sets, with the two of the latter denoted by a single-shift character.
The representations for these internal code-sets are shown below:

Code-Set

Set 0 (Primary code-set)

Set 1 (Supplementary code-set #1)

Set 2 (Supplementary code-set #2)

Set 3 (Supplementary code-set #3)

Internal Representation

OXXXXXXX

1XXXXXXX
- or-

1XXXXXXX 1XXXXXXX

552 1XXXXXXX
- or-

552 1XXXXXXX 1XXXXXXX

553 1XXXXXXX
- or-

553 1XXXXXXX 1XXXXXXX

Designation of the exact value of the four code-sets is performed through a code­
set designation and is discussed in the following section.

A Code-Set Designation will be dynamic and accessible/modifiable at the operat­
ing system, utility and application levels to satisfy the specific needs for supporting
multiple code-sets. It will also reside at the file level, so files with different code-set
designations can exist on the same machine. That is, one file may be encoded with
one set of code-sets while another file is encoded with another set of code-sets.

General Introduction Page 13

Specifically, it is desirable for code-set designation to meet the following require­
ments:

1. Code-set designations should be supported at the file level. Each file would
contain its own set of code-set designation values.

2. At file creation time, all files would be designated with a system-wide default
value.

3. Code-set designations could be changed dynamically.

4. The code-set designation value should contain information about:

• The width of a character in the code-set,

• The specific code-set designated (e.g., DIS 8859/12, JIS 62263, etc'),

5. Code-set designation information should be transferrable with the file con­
tents across networks.

In addition to the code-set designation, a language-designation would offer the
ability to designate which of several languages should be used for producing sys­
tems messages and for establishing an overall profile of the user's environment.
One method under consideration for this type of designation is to use one or more
exported environment-variables. For example, a LANGUAGE variable would be
used to denote the language (e.g., French, German, Italian, Japanese, English,
etc.). This variable would also be used as an index to user profile information to
determine which local conventions to use. The variable could be assigned at initia­
tion of the login session and could also be changed at any time. In this way,
language-designation is performed at user-level and controls the language of all
system messages and text coming out of the operating system, utilities and applica­
tions, as well as particular national conventions.

Handling Non-standard Code-Sets. There are several code-sets in the world that
the code-set template described here cannot support. The problem centers around
the use of the eighth-bit to distinguish between characters in different code-sets.
Specifically, these code-sets are as follows:

• The shifted-JIS code-set used in Japan,

• The packed Hangul code-set used in Korea,

• The Big 5 code-set used in the Republic of China (Taiwan),

• The Chinese Code for Data Communications also used in the Republic of
China.

2. DIS 8859/1 Latin Language no. 1 is the newly~adopted ISO standard code-set, supporting most of the
Western European characters. It is an 8-bit code-set that contains us ASCII as a subset:

3. JIS 6126 is a ISO standard code-set for supporting the Japanese language. It is a 16-bit code-set that
contains both hiragana and katakana alphabets, as well as about 7000 of the kanji ideograms.

Page 14 General Introduction

Present plans are to provide limited support for these code-sets. Limited support
means that files containing these code-sets could be stored on System V machines.
No other support is currently planned; this implies that the mechanism for process­
ing these files would have to be built into applications.

Character Support. In some applications it will be necessary to manipulate the
variable-width characters coming from the supplementary code-sets. Although
some application developers may choose to develop their own facilities for support­
ing this, System V will provide a generic facility for manipulating internally coded
eight-bit bytes to a data type that can represent characters in a consistent manner.
Initially, a new data type will be defined in the C programming language to sup­
port up to 16-bits of information. In addition, routines that use this new data type
will be provided to allow application-developers to perform operations on them.

General Introduction Page 15

Part II

Base System Definition

Chapter 3
Introduction

The Base System is intended to support a minimal run-time environment for exe­
cutable applications. The Base System defines a basic set of System V components
needed by applications-programs. This basic set would be supported by any con­
forming system. It defines each component's source-code interface and run-time
behavior, but does not specify its implementation. Source-code interfaces described
are for the C language. While only the run-time behavior of these components is
supported by the Base System, the source-code interfaces to these components are
defined because an objective of the SVID is to facilitate application-program
source-code portability across all System V implementations. It is assumed that an
application-program targeted to run on a system that provides only the Base Sys­
tem (a run-time environment) would be compiled on a system supporting software
development.

No end-user level utilities (commands) are defined in the Base System. Executable
application-programs designed for maximum portability are expected to use library
routines rather than System Vend-user level utilities. For example, an
application-program written in C would use the CHOWN(BA_OS) routine to change
the owner of a file rather than using the CHOWN(AU_CMD) user-level utility. This
does not say that an application-program running in a target environment that sup­
ports only the Base System cannot execute another program. Using the
SYSTEM(BA_OS) routine, an application can execute another program or applica­
tion.

It should be noted that some Extensions may add features to components defined in
the Base System. These additional features that are supported in an extended
environment are described with the Extension in a section titled EFFECTS(XX_ENV).

See, for example, EFFECTS(KE_ENV) in Volume I: Part III - Kernel Extension
Definition: Chapter 10 - Environment.

Definitions for the Base System are given in the next chapter, Chapter 4 -
Definitions. Because the Base System is a prerequisite for any Extension, these
definitions also apply to the Extensions. Chapter 5 - Environment describes the
Base System Environment, including error conditions, environmental variables,
directory tree structure, data files and special device files that must be present on a
Base System. Chapter 6 - OS Service Routines defines operating system service
routines that provide applications access to basic system resources (e.g., allocating
dynamic storage) and Chapter 7 - General Library Routines defines general pur­
pose library routines (e.g., string handling routines). The remainder of this intro­
duction gives an overview of the contents of Chapter 6 - OS Service Routines and
Chapter 7 - General Library Routines.

Base System Definition Page 19

3.1 OPERATING SYSTEM SERVICE ROUTINES

Table 3-1 lists the Operating System Service Routines whose run-time behavior
must be supported by any implementation of the Base System.

TABLE 3-1. Base System: OS Service Routines

abort ABORT(BA_OS) getuid GETUID(BA_ OS)
access ACCESS(BA_ OS) ioctl 10CTL(BA_OS)
alarm ALARM(BA_ OS) kill KILL(BA_OS)
calloc MALLOC(BA _OS) link LlNK(BA OS)
chdir CHDIR(BA_OS) lockftt LOCKF(BA_OS)
chmod CHMOD(BA_ OS) mallinfot MALLOC(BA_OS)
chown CHOWN(BA_OS) malloc MALLOC(BA OS)
clearerr FERROR(BA_ OS) malloptt MALLOC(BA=OS)
dup DUP(BA_OS) mknod MKNOD(BA_ OS)
exit EXIT(BA _OS) pause PAUSE(BA_OS)
fclose FCLOSE(B,A_OS) pc lose POPEN(BA_OS)
fcntl FCNTL(BA_ OS) pipe PIPE(BA_OS)
fdopen FOPEN(BA_OS) popen POPEN(BA_OS)
feof FERROR(BA _OS) realloc MALLOC(BA_ OS)
ferror FERROR(BA_ OS) rewind FSEEK(BA_OS)
fflush FCLOSE(BA_OS) setgid SETUID(BA_ OS)
fileno FERROR(BA_ OS) setpgrp SETPGRP(BA _OS)
fopen FOPEN(BA_ OS) setuid SETUID(BA _OS)
fread FREAD(BA_ OS) signal SIGNAL(BA _OS)
free MALLOC(BA _OS) sleep SLEEP(BA_OS)
freopen FOPEN(BA_ OS) stat STAT(BA_OS)
fseek FSEEK(BA_OS) stime STIME(BA_OS)
fstat STAT(BA_OS) system SYSTEM(BA_OS)
ftell FSEEK(BA_OS) time TIME(BA _OS)
fwrite FREAD(BA_ OS) times TIMES(BA_OS)
getcwd GETCWD(BA_ OS) ulimit ULlMIT(BA_ OS)
getegid GETUID(BA_ OS) umask UMASK(BA _OS)
geteuid GETUID(BA_OS) uname UNAME(BA_ OS)
getgid GETUID(BA_ OS) unlink UNLlNK(BA_OS)
getpgrp GETPID(BA_ OS) us tat USTAT(BA_OS)
getpid GETPID(BA_OS) utime UTIME(BA_ OS)
getppid GETPID(BA _OS) wait WAIT(BA_OS)

close CLOSE(BA_OS) fork FORK(BA_OS)
creat CREAT(BA_OS) lseek LSEEK(BA_OS)
execl EXEC(BA _OS) mount MOUNT(BA_OS)
execle EXEC(BA_OS) open OPEN(BA_OS)
execlp EXEC(BA_OS) read READ(BA_OS)
execv EXEC(BA_OS) umount UMOUNT(BA_ OS)
execve EXEC(BA_OS) write WRITE(BA_OS)
execvp EXEC(BA_OS)

exit - EXIT(BA_OS) sync SYNC(BA _OS)

Page 20 Base System Definition

The operating system service routines provide access to and control over system
resources such as memory, files, process execution. Some System V routines that
provide operating system services are not supported by the Base System. An
application-program that used any of these would require an extended environ­
ment. See, for example, Part III - Kernel Extension.

All the routines in Table 3-1, except those marked with t or tt, are common to
System V Release 1.0 and System V Release 2.0. Those marked with t first
appeared in System V Release 2.0. The function lockf, marked with tt, is a
post System V Release 2.0 component.

Table 3-1 is shown as three sets of routines, which reflect recommended usage by
application-programs.

The first set of routines (from abort to wa i t) should fulfill the needs of most
a pplica tion -programs.

The second set of routines (from close to write) should be used by
application-programs only when some special need requires it. For example,
application-programs, when possible, should use the routine system rather than
the routines fork and exec because it is easier to use and supplies more func­
tionality. The corresponding Standard Input/Output, stdio routines [see stdlo­
routines in Chapter 4 - Definitions] should be used instead of the routines
close, creat, lseek, open, read, write (e.g., the stdio routine
fopen should be used rather than the routine open).

The third set of routines (exit and sync), although they are defined as part
of the basic set of routines- supported by any System V operating system, are not
expected to be used by application-programs. These routines are used by other
components of the Base System.

Base System Definition Page 21

3.2 GENERAL LIBRARY ROUTINES

Table 3-2 lists the basic set of General Library Routines that are likely to be used
by application-programs.

TABLE 3-2. Base System: General Library Routines

abs ABS(BA_LlB) jO BESSEL(BA_LlB)
acos TRIG(BA_LlB) j 1 BESSEL(BA_LlB)
asin TRIG(BA _LIB) jn BESSEL(BA _LIB)
atan2 TRIG(BA_LlB) ldexp FREXP(BA_LlB)
atan TRIG(BA_LlB) log10 EXP(BA_LlB)
ceil FLOOR(BA_LIB) log EXP(BA_LlB)
cos TRIG(BA_LlB) matherr MATHERR{BA_LlB)
cosh SINH(BA_ LIB) modf FREXP(BA_LlB)
erf ERF(BA_LlB) pow EXP(BA _LIB)
erfc ERF(BA_LlB) sin TRIG(BA _LIB)
exp EXP(BA_LlB) sinh SINH(BA_LlB)
fabs FLOOR(BA_LlB) sqrt EXP(BA _LIB)
floor FLOOR(BA_LlB) tan TRIG(BA_LlB)
fmod FLOOR(BA_LlB) tanh SINH(BA_LlB)
frexp FREXP(BA_LIB) yO BESSEL(BA_LIB)
gamma GAMMA(BA_LlB) y1 BESSEL(BA_LlB)
hypot HYPOT(BA_LlB) yn BESSEL(BA_LlB)

tolower CONV(BA_LlB) memccpy MEMORY(BA_LlB)
_toupper CONV(BA_LlB) memchr MEMORY(BA_LlB)
advance REGEXP(BA_LlB) memcmp MEMORY(BA_LlB)
asctime CTIME(BA_LlB) memcpy MEMORY(BA_ LIB)
atof STRTOD(BA_LlB) memset MEMORY(BA_LIB)
atoi STRTOL(BA_LlB) setkey# CRYPT(BA_LlB)
atol STRTOL(BA_LlB) step REGEXP(BA_LlB)
compile REGEXP(BA_LIB) strcat STRING(BA_LlB)
crypt# CRYPT(BA_LlB) strchr STRING(BA _LIB)
ctime CTIME(BA_ LIB) strcmp STRING(BA_ LIB)
encrypt# CRYPT(BA_LlB) strcpy STRING(BA_LlB)
gmtime CTIME(BA_LlB) strcspn STRING(BA_LlB)
isalnum CTYPE(BA _LIB) strlen STRING(BA_ LIB)
isalpha CTYPE(BA_LlB) strncat STRING(BA_LlB)
isascii CTYPE(BA_LIB) strncmp STRING(BA_LIB)
iscntrl CTYPE(BA_LlB) strncpy STRING(BA_LlB)
isdigit CTYPE(BA_LlB) strpbrk STRING(BA_LlB)
isgraph CTYPE(BA_LlB) strrchr STRING(BA _LIB)
islower CTYPE(BA_LlB) strspn STRING(BA_LIB)
isprint CTYPE(BA_LlB) strtodt STRTOD(BA_LlB)
ispunct CTYPE(BA_LIB) strtok STRING(BA_LIB)
isspace CTYPE(BA_LlB) strtol STRTOL(BA_LIB)
isupper CTYPE(BA_LlB) toascii CONV(BA_LlB)
isxdigi t CTYPE(BA_LlB) tolower CONV(BA_LlB)
local time CTIME(BA_LlB) toupper CONV(BA _LIB)

tzset CTIME(BA_LlB)

Page 22 Base System Definition

bsearch BSEARCH(BA_LlB) perror* PERROR(BA_LIB)
clock CLOCK(BA_LlB) printf PRINTF(BA_L1B)
ctermid CTERMID(BA_LIB) putc PUTC(BA _LIB)
drand48 DRAND48(BA_L1B) putchar PUTC(BA_L1B)
erand48 DRAND48(BA_L1B) putenvt PUTENV(BA_L1B)
fqetc GETC(BA_LIB) puts PUTS(BA_L1B)
fqets GETS(BA_L1B) putw PUTC(BA_L1B)
fprintf PRINTF(BA_LIB) qsort aSORT(BA_L1B)
fscanf SCANF(BA_L1B) rand RAND(BA _LIB)
fputc PUTC(BA_L1B) scanf SCANF(BA_L1B)
fputs PUTS(BA_L1B) seed48 DRAND48(BA_L1B)
ftw FTW(BA_ LIB) setbuf SETBUF(BA_L1B)
qetc GETC(BA_L1B) setjmp SET JMP(BA _LIB)
qetchar GETC(BA_LIB) setvbuft SETBUF(BA_L1B)
qetenv GETENV(BA_L1B) sprintf PRINTF(BA_LIB)
qetopt GETOPT(BA _LIB) srand48 DRAND48(BA_L1B)
qets GETS(BA_L1B) srand RAND(BA_ LIB)
qetw GETC(BA_L1B) sscanf SCANF(BA_L1B)
qsiqnal* SSIGNAL(BA_LlB) ssiqnal* SSIGNAL(BA_LlB)
hcreate HSEARCH(BA_L1B) swab SWABCBA_LIB)
hd est r oy HSEARCHCBA_LIB) tdelete TSEARCH(BA_LlB)
hsearch HSEARCHCBA _LIB) tempnam TMPNAMCBA_LIB)
isatty TTYNAMECBA_L1B) tfindt TSEARCH(BA_ LIB)
jrand48 DRAND48CBA_L1B) tmpfile TMPFILE(BA_L1B)
lconq48 DRAND48CBA_LIB) tmpnam TMPNAMCBA_L1B)
lfindt LSEARCHCBA_LIB) tsearch TSEARCH(BA_L1B)
lonqjmp SET JMP(BA_LIB) ttyname TTYNAME(BA_L1B)
lrand48 DRAND48CBA_LlB) twalk TSEARCH(BA_L1B)
lsearch LSEARCH(BA_LIB) unqetc UNGETC(BA_L1B)
mktemp MKTEMPCBA_L1B) vfprintft VPRINTF(BA_L1B)
mrand48 DRAND48(BA_L1B) vprintft VPRINTF(BA_LlB)
nrand48 DRAND48(BA_L1B) vsprintft VPRINTF(BA_L1B)

The general library routines perform a wide range of useful functions including:
mathematical functions shown in the first part of Table 3-2; string and character
handling routines shown in the second part of Table 3-2; I/O routines, search rou­
tines, sorting routines and others shown in the third part of Table 3-2.

The run-time behavior of these routines, as defined in the SVID, must be sup­
ported by any System V operating system. The libraries themselves are not
required to be present on a system that consists only of the Base System. While
the Base System is required to support the execution of application-programs that
use these routines, the Software Development Extension [see Volume II: Part V -
Software Development Extension Definition] is required to support the compilation
of those application-programs.

Routines marked with t are in System V Release 2.0 only, while all others are in
both System V Release 1.0 and System V Release 2.0. Routines marked with *
are level-2, as defined in Chapter 1 - General Introduction. Routines marked with
are optional and may not be present on all conforming systems.

Base System Definition Page 23

Base System Definition

Chapter 4
Definitions

Page 25

ASCII character set
Tables 3-1 and 3-2 are maps of the ASCII character set, giving octal and hexade­
cimal equivalents of each character. Although the ASCII code does not use the
eighth-bit in an octet, this bit should not be used for other purposes because codes
for other languages may need to use it (see section on INTERNATIONALIZATION in
Chapter 2 Future Directions).

000 nul 001 soh 002 stx 003 etx 004 eot 005 enq 006 ack 007 bel
010 bs 011 ht 012 nl 013 vt 014 np 015 cr 016 so 017 si
020 dIe 021 dc1 022 dc2 023 dc3 024 dc4 025 nak 026 syn 027 etb
030 can 031 em 032 sub 033 esc 034 fs 035 gs 036 rs 037 us
040 sp 041 042" 043 # 044 $ 045 % 046 & 047'
050 (051 052 * 053 + 054 055 056 057 /
060 0 061 062 2 063 3 064 4 065 5 066 6 067 7
070 8
100 @
110 H

120 P
130 X
140 '
150 h
160 p
170 x

00 nul
08 bs
10 dle
18 can
20 sp
28 (
30 0
38 8
40 @
48 H

50 P
58 X
60 '
68 h
70 p

78 x

Page 26

071 9
101 A
111 I
121 Q

131 y

141 a
151 i
161 q
171 y

072
102 B

112 J
122 R

132 Z
142 b
152 j
162 r
172 z

073
103 C
113 K
123 S
133 [
143 c
153 k
163 s
173

074 <

104 D
114 L

124 T
134 \
144 d
154 I
164 t
174

075
105 E
115 M
125 U
135]
145 e
155 In

165 u
175

076 >

106 F
116 N
126 V
136 "-
146 f
156 n
166 v
176 -

TABLE 3-1. Octal map of ASCII character set.

01 soh
09 ht
11 dc1
19 em
21
29
31
39 9
41 A

49 I
51 Q

59 Y
61 a
69 i
71 q
79 y

02 stx
Oa nl
12 dc2
1a sub
22 "
2a *
32 2
3a
42 B
4a J
52 R
Sa Z
62 b

6a j
72 r
7a z

03 etx
Ob vt
13 dc3
1b esc
23 #
2b +

33 3
3b
43 C
4b K
53 S

5b [
63 c
6b k
73 s
7b

04 eot
Oc np
14 dc4
1c fs
24 $

2c
34 4
3c <

44 D

4c L

54 T
5c \
64 d
6c I
74 t
7c

05 enq
Od cr
15 nak
1d gs
25 %
2d
35 5
3d
45 E
4d M
55 U
5d]
65 e
6d m
75 u
7d

06 ack
Oe so
16 syn
1e rs
26 &
2e
36 6
3e >

46 F

4e N

56 V
5e "-
66 f
6e n
76 v

7e -

TABLE 3-2. Hexadecimal map of ASCII character set.

077 ?
107 G
117 0
127 W
137
147 g
157 0

167 w
177 del

07 bel
Of si
17 etb
1f us
27 '
2f /
37 7
3f ?
47 G
4f 0
57 W
Sf
67 g
6f 0

77 w
7f del

Base System Definition

directory
Directories organize files into a hierarchical system of files where directories are
the nodes in the hierarchy. A directory is a file that catalogues the list of files,
including directories (sub-directories), that are directly beneath it in the hierarchy.
Entries in a directory file are called links. A link associates a file identifier with a
file name. By convention, a directory contains at least two links, . (dot} and •.
(dot-dot). The link called dot refers to the directory itself while dot-dot refers to
its parent-directory. The root-directory, which is the top-most node of the hierar­
chy, has itself as its parent-directory. The path-name of the root directory is /
and the parent-directory of the root-directory is /.

effective-user-ID and effective-group-ID
An active process has an effective-user-ID and an effective-group-ID that are used
to determine file access permissions (see below). The effective-user-ID and
etfective-group-ID are equal to the process's real-user-ID and real-group-ID respec­
tively, unless the process or one of its ancestors evolved from a file that had the
set-user-ID bit or set-group-ID bit set [see EXEC(BA_OS»). In addition, they can be
reset with the SETUID(BA_OS) and SETGID(BA_OS) routines, respectively.

environmental variables
When a process begins, an array of strings called the environment is made avail­
able by the EXEC(BA_OS) routine [see also SYSTEM(BA_OS»). By convention, these
strings have the form v a ria b 1 e = val u e, for example,
PATH=: /bin: /usr/bin. These environmental variables provide a way to
make information about an end-user's environment available to programs [see
ENVVAR(BA _ ENV»).

file access permissions
Read, write, and execute/search permIssIons [see CHMOD(BA_OS») on a file are
granted to a process if one or more of the following are true:

• The effective-user-ID of the process is super-user.

• The effective-user-ID of the process matches the user-ID of the owner of the file
and the appropriate access bit of the owner portion of the file mode is set.

• The effective-user-ID of the process does not match the user-ID of the owner of
the file and the etfective-group-ID of the process matches the group of the file
and the appropriate access bit of the group portion of the file mode is set.

• The effective-user-ID of the process does not match the user-ID of the owner of
the file and the effective-group-ID of the process does not match the group-ID
of the file and the appropriate access bit of the other portion of the file mode is
set.

Otherwise, the corresponding permissions are denied.

Base System Definition Page 27

file-descriptor
A file-descriptor is a small integer used to identify a file for the purposes of doing
110. The value of a file-descriptor is from 0 to {OPEN_MAX}-1. An open file­
descriptor is obtained from a call to the CREAT(BA_OS), DUP(BA_OS),

FCNTL(BA_OS), OPEN(BA_OS), or PIPE(BA_OS) routine. A process may have no more
than {OPEN_MAX} file-descriptors open simultaneously.

A file-descriptor has associated with it information used in performing 110 on the
file: a file pointer that marks the current position within the file where 110 will
begin; file status and access modes (e.g., read, write, read/write) [see
OPEN(BA_OS)]; and close-on-exec flag [see FCNTL(BA_OS)]. Multiple file-descriptors
may identify the same file. The file-descriptor is used as an argument by such rou­
tines as the READ(BA_OS), WRITE(BA_OS), lOCTL(BA_OS), and CLOSE(BA_OS) rou­
tines.

file-name
Strings consisting of 1 to {NAME_MAX} characters may be used to name an ordi­
nary file, a special file or a directory. {NAME_MAX} must be at least 14. These
characters may be selected from the set of all character values excluding the char­
acters "null" and "slash" (/).

Note that it is generally unwise to use *, ?, I, [, or] as part of file-names
because of the special meaning attached to these characters for file-name expansion
by the command interpreter [see SYSTEM(BA_OS)]. Other characters to avoid are
the hyphen, blank, tab, < , >, backslash, single and double quotes, accent grave,
vertical bar, caret, curly braces, and parentheses. It is also advisable to avoid the
use of non-printing characters in file names.

Implementation-specific constants
In detailed definitions of components, it is sometimes necessary to refer to constants
that are implementation-specific, but which are not necessarily expected to be
accessible to an application-program. Many of these constants describe boundary­
conditions and system-limits.

In the SVID, for readability, these constants are replaced with symbolic names.
These names always appear enclosed in curly brackets to distinguish them from
symbolic names of other implementation-specific constants that are accessible to
application-programs by header files. These names are not necessarily accessible to
an application-program through a header file, although they may be defined in the
documentation for a particular system.

In general, a portable application program should not refer to these constants in its
code. For example, an application-program would not be expected to test the
length of an argument list given to an EXEC(BS_OS) routine to determine if it was
greater than {ARO_MAX}.

Page 28 Base System Definition

The following lists the implementation-specific constants that may be used in Sys­
tem V component definitions:

Name
{ARG_MAX}
{CHAR_BIT}
{CHAR_MAX}
{CHILD _MAX}
{CLK_TCK}
{FCHR_MAX}
{INT_MAX}
{LINK_MAX}
{LOCK_MAX}
{LONG_BIT}
{LONG_MAX}
{MAX DOUBLE}
{MAX_CHAR}
{NAME_MAX}
{OPEN_MAX}
{PASS_MAX}
{PATH_MAX}
{PID_MAX}
{PIPE_BUF}
{PIPE_MAX}
{PROC_MAX}
{SHRT_MAX}
{STD_BLK}
{SYS_NMLN}
{SYS_OPEN}
{TMP_MAX}
{UID_MAX}
{USI_MAX}
{WORD_BIT}
{CHAR_MIN}
{INT_MIN}
{LONG_MIN}
{SHRT_MIN}

Description
max. length of argument to ex e c
number of bits in a char
max. integer value of a char
max. number of processes per user-ID
number of clock ticks per second
max. size of a file in bytes
max. decimal value of an in t
max. number of links to a single file
max. number of entries in system lock table
number of bits in along
max. decimal value of a long
max. decimal value of a doub 1 e
max. size of character input buffer
max. number of characters in a file-name
max. number of files a process can have open
max. number of significant characters in a password
max. number of characters in a path-name
max. value for a process-ID
max. number bytes atomic in write to a pipe
max. number of bytes written to a pipe in a write
max. number of simultaneous processes, system wide
max. decimal value of a short
number of bytes in a physical I/O block
number of characters in string returned by uname
max. number of files open on system
max. number of unique names generated by tmpnam
max. value for a user-ID or group-ID
max. decimal value of an uns igned
number of bits in a word or int
min. integer value of a char
min. decimal value of an in t
min. decimal value of a long
min. decimal value of a short

parent-proceSS-ID
The parent-process-ID of a process is the process-ID of its creator. A new process
is created by a currently active-process [see FORK(BA_OS)1.

Base System Definition Page 29

path-name and path-prefix
In a C program, a path-name is a null-terminated character-string starting with an
optional slash (f), followed by zero or more directory-names separated by slashes,
optionally followed by a file-name. A null string is undefined and may be con­
sidered an error.

More precisely, a path-name is a null-terminated character-string as follows:

<path name>: :=<file name>l<path prefix><file name>l/l. I ..
<path-prefix>::=<rtprefix>l/<rtprefix>lempty­
<rtpr;fix>::=<dirname>/l<rtprefix><dirname>1

where < f i 1 e _ name> is a string of 1 to {NAME_MAX} significant characters
other than slash and null, and <dirname> is a string of 1 to {NAME_MAX}
significant characters (other than slash and null) that names a directory. The
result of names not produced by the grammar are undefined.

If a path-name begins with a slash, the path search begins at the root-directory.
Otherwise, the search begins from the current-working~directory.

A slash by itself names the root-directory. The meanings of • and .• are
defined under directory.

process-group-ID
Each active-process is a member of a process-group. The process-group is uniquely
identified by a positive-integer, called the process-group-ID, which is the process-ID
of the group-leader (see below). This grouping permits the signaling of related
processes [see KILL(BA_OS»).

process-group-Ieader
A process group leader is any process whose process-group-ID is the same as its
process-IDe Any process may detach itself from its current process-group and
become a new process-group-Ieader by calling the SETPGRP(BA_OS) routine. A
process inherits the process-group-ID of the process that created it [see
FORK(BA_OS) and EXEC(BA_OS)].

proceSS-ID
Each active-process in the system is uniquely identified by a positive-integer called
a process-IDe The range of this iD is from 0 to {PID_MAX}. By convention,
process-ID 0 and 1 are reserved for special system-processes.

real-user-ID and real-group-ID
Each user allowed on the system is identified by a positive-integer called a real­
user-IDe Each user is also a member of a group. The group is identified by a
positive-integer called the real-group-ID.

An active-process has a real-user-ID and real-group-ID that are set to the real­
user-ID and real-group-ID, respectively, of the user responsible for the creation of
the process. They can be reset with the SETUID(BA_OS) and SETGID(BA_OS) rou­
tines, respectively.

Page 30 Base System Definition

root-directory and current-worklng-dlrectory
Each process has associated with it a concept of a root-directory and a current­
working-directory for the purpose of resolving path searches. The root-directory of
a process need not be the root-directory of the root file system.

special-processes
All special-processes are system-processes (e.g., a" system's process-scheduler). At
least process-IDs 0 and 1 are reserved for special-processes.

stdlo-routlnes
A set of routines described as Standard I/O (stdio) routines constitute an efficient,
user-level I/O buffering scheme. The complete set of Standard I/O, stdio routines
is shown below [see also the definition of stdlo-stream below 1. Detailed component
definitions of each can be found in either Chapter S, the system service (BA_OS)

routines or Chapter 6, the general library (BA_LlB) routines.

(BA_OS) elearerr, felose,
fflush, fopen,

fdopen, feof,
fread, freopen,

fwrite, popen, pelose, rewind.

ferror,
fseek,

fileno,
ftell,

(BA_LIB) etermid, fgete, fgets, fprintf, fpute, fputs,
fseanf, getehar, gets, getw, printf, pute, putehar,
puts, putw, seanf, setbuf, setvbuf, tempnam,
tmpnam, ungete, vprintf. vfprintf. vsprintf.

The Standard I/O routines and constants are declared in the <stdio. h> header
file and need no further declaration. The following functions are implemented as
macros and must not be redeclared: gete, getehar, pute, putehar,
ferror, feof, elearerr, and fileno. The macros gete and pute
handle characters quickly. The macros getehar and putehar, and the
higher-level routines fgete, fgets, fprintf, fputc, fputs, fread,
fscanf, fwrite, gets, getw, printf, puts, putw, and scanf
all use or act as if they use gete and pu te; they can be freely intermixed.

The < s td i 0 • h> header file also defines three symbolic constants used by the
stdio routines:

The defined constant NULL designates a nonexistent null pointer.

The integer constant EOF is returned upon end;.of-file or error by most integer
functions that deal with streams (see the individual component definitions for
details).

The integer constant BUFSIZ specifies the size of the stdio buffers used by
the particular implementation.

Any application-program that uses the stdio routines must include the
< stdio . h> header file.

Base System Definition Page 31

stdio-stream
A file with associated stdio buffering is called a stream. A stream is a pointer to a
type FILE defined by the <stdio. h> header file. The FOPEN(BA_OS) routine
creates certain descriptive data for a stream and returns a pointer that identifies
the stream in all further transactions with other stdio routines.

Most stdio routines manipulate either a stream created by the function fopen or
one of three streams that are associated with three files that are expected to be
open in the Base System [see TERMI0(BA_ENV)1. These three streams are declared
in the < stdio . h> header file:

stdin the standard input file.
stdout the standard output file.
s t d err the standard error file.

Output streams, with the exception of the standard error stream stderr, are by
default buffered if the output refers to a file and line-buffered if the output refers
to a terminal. The standard error output stream stderr is by default
unbuffered. When an output stream is unbuffered, information is queued for writ­
ing on the destination file or terminal as soon as written; when it is buffered, many
characters are saved up and written as a block. When it is line-buffered, each line
of output is queued for writing on the destination terminal as soon as the line is
completed (that is, as soon as a new-line character is written or terminal input is
requested). The SETBUF(BA_LlB) routines may be used to change the stream's
buffering strategy.

super-user
A process is recognized as a super-user process and is granted special privileges if
its effective-user-ID is O.

tty-group-ID
Each active-process can be a member of a terminal-group that shares a control ter­
minal [see DEVTTY(BA_ENV)] and is identified by a positive-integer called the tty­
group-ID. This grouping is used to terminate a group of related processes upon
termination of one of the processes in the group [see EXIT(BA_OS) and
SIGNAL(BA_ OS) 1.

Page 32 Base System Definition

Base System Definition

Chapter 5
Environment

Page 33

DEVCON(BA _ ENV)

NAME

console - system console interface

SYNOPSIS

/dev/console

DESCRIPTION

/dev/console is a generic name given to the system console. It is usu­
ally linked to a particular machine-dependent special file, and provides a
basic I/O interface to the system console through the termio interface [see
TERMIO(BA _ENV)].

SEE ALSO
TERMIO(BA_ENV).

LEVEL

Levell.

Page 34 Base System Definition

NAME

null - the null file

SYNOPSIS
/dev/null

DESCRIPTION
Data written on a null special file are discarded.

DEVNUL(BA_ENV)

Read operations from a null special file always return 0 bytes.

Output of a command is written to the special file / d e v / null when the
command is executed for its side effects and not for its output.

LEVEL
Levell.

Base System Definition Page 35

DEVTTY(BA_ENV)

NAME

tty - controlling terminal interface

SYNOPSIS

/dev/tty

DESCRIPTION

The file / d e v / tty is, in each process, a synonym for the control-terminal
associated with the process group of that process, if any. It is useful for pro­
grams that wish to be sure of writing messages on the terminal no matter
how output has been redirected [see SYSTEM(BA_OS)1. It can also be used for
programs that demand the name of a file for output when typed output is
desired and as an alternative to identifying what terminal is currently in use.

APPLICATION USAGE
Normally, application programs should not need to use this file interface.
The standard input, standard output and standard error files should be used
instead. These file are accessed through the stdin, stdout and
stderr stdio interfaces [see stdlo-stream in Chapter 4 - Definitions].

SEE ALSO
TERMIO(BA_ENV).

LEVEL

Levell.

Page 36 Base System Definition

ERRNO(BA _ENV)

NAME

errors - error code and condition definitions

SYNOPSIS

#include <errno.h>

extern int errno;

DESCRIPTION

The numerical value represented by the symbolic name of an error condition
is assigned to the external variable errno for errors that occur when exe­
cuting a system service routine or general library routine.

The component definitions given in Chapter 6 - OS Service Routines and
Chapter 7 - General Library Routines, list possible error conditions for each
routine and the meaning of the error in that context. The order in which
possible errors are listed is not significant and does not imply precedence.
The value of errno should be checked only after an error has been indi­
cated; that is, when the return value of the component indicates an error, and
the component definition specifies that errno will be set. The errno
value 0 is reserved; no error condition will be equal to zero. An application
that checks the value of errno must include the <errno. h> header
file.

Additional error conditions may be defined by Extensions to the Base System
or by particular implementations.

The following list describes the general meaning of each error:

E 2 BIG Argument list too long
An argument list longer than {ARG_MAX} bytes was presented to
a member of the EXEC(BA_OS) family of routines.

EACCES Permission denied
An attempt was made to access a file in a way forbidden by the
protection system.

EAGAIN Resource temporarily unavailable, try again later,
For example, the FORK(BA_OS) routine failed because the system's
process table is full.

EBADF Bad file number
Either a file-descriptor refers to no open file, or a read (respec­
tively, write) request was made to a file that is open only for writ­
ing (respectively, reading).

EBUSY Device or resource busy
An attempt was made to mount a device that was already
mounted or an attempt was made to dismount a device on which
there is an active file (open file, current directory, mounted-on
file, active text segment). It will also occur if an attempt is made
to enable accounting when it is already enabled. The device or
resource is currently unavailable.

Base System Definition Page 37

EC H I L D No child processes
The WAIT(BA_OS) routine was executed by a process that had no
existing or unwaited-for child processes.

EDEADLK Deadlock avoided

EDOM

The request would have caused a deadlock; the situation was
detected and avoided.

Math argument
The argument of a function in the math package is out of the
domain of the function.

EEXI ST File exists
An existing file was mentioned in an inappropriate context (e.g., a
call to the LlNK(BA_OS) routine).

EFAULT Bad address
The system encountered a hardware fault in attempting to use an
argument of a routine. For example, errno potentially may be
set to EFAULT any time a routine that takes a pointer argument
is passed an invalid- address, if the system can detect the condi­
tion. Because systems will differ in their ability to reliably detect
a bad address, on some implementations passing a bad address to
a routine will result in undefined behavior.

EFBIG File too large
The size of a file exceeded the maximum file size, {FCHR_MAX}
[see ULlMIT(BA_OS»).

E I NTR Interrupted system service
An asynchronous signal (such as interrupt or quit), which the
user has elected to catch, occurred during a system service rou­
tine. If execution is resumed after processing the signal, it will
appear as if the interrupted routine returned this error condition.

EINVAL Invalid argument
Some invalid argument (e.g., dismounting a non-mounted device;
mentioning an undefined signal in a call to the SIGNAL(BA_OS) or
KILL(BA_OS) routine). Also set by math routines.

E I 0 110 error
Some physical I/O error has occurred. This error may, in some
cases, occur on a call following the one to which it actually
applies.

EISDIR Is a directory
An attempt was made to write on a directory.

EMFILE Too many open files in a process

Page 38

No process may have more than {OPEN_MAX} file descriptors
open at a time.

Base System Definition

ERRNO(BA_ENV)

EMLINK Too many links
An attempt to make more than the maximum number of links~
{LINK_MAX}~ to a file.

ENFILE Too many open files in the system
The system file table is full {i.e.~ {SYS _OPEN} files are open~ and
temporarily no more opens can be accepted).

ENODEV No such device
An attempt was made to apply an inappropriate operation to a
device (e.g.~ read a write-only device).

ENOENT No such file or directory
A file name is specified and the file should exist but doesn~t~ or
one of the directories in a path-name does not exist.

ENOEXEC Exec format error
A request is made to execute a file which~ although it has the
appropriate permissions~ does not start with a valid format.

ENOLCK No locks available
There are no more locks available. The system lock table is full.

ENOMEM Not enough space
During execution of an EXEC(BA_OS) routine~ a program asks for
more space than the system is able to supply. This is not a tem­
porary condition; the maximum space size is a system parameter.
The error may also occur if the arrangement of text~ data, and
stack segments requires too many segmentation registers, or if
there is not enough swap space during execution of the
FORK(BA_OS) routine.

ENOSPC No space left on device
While writing an ordinary file or creating a directory entry, there
is no free space left on the device.

ENOTBLK Block device required
A non-block file was mentioned where a block device was
required (e.g., in a call to the MOUNT(BA_OS) routine}.

ENOTDIR Not a directory
A non-directory was specified where a directory is required (e.g.
in a path-prefix or as an argument to the CHDIR(BA_OS) routine}.

ENOTTY Not a character device
A call was made to the IOCTL(BA_OS) routine specifying a file that
is not a special character device.

ENXIO No such device or address
110 on a special file refers to a subdevice which does not exist, or
exists beyond the limits of the device. It may also occur when,
for example, a tape drive is not on-line or no disk pack is loaded
on a drive.

Base System Definition Page 39

ERRNO(BA_ENV)

EPERM No permission match
Typically this error indicates an attempt to modify a file in some
way forbidden except to its owner or super-user. It is also
returned for attempts by ordinary users to do things allowed only
to the super-user.

E PIP E Broken pipe
A write on a pipe for which there is no process to read the data.
This condition normally generates a signal; the error is returned if
the signal is ignored.

E RANG E Result too large
The value of a function in the math package is not representable
within machine precision.

EROFS Read-only file system
An attempt to modify a file or directory was made on a device
mounted read-only.

ESP I P E Illegal seek
A call to the LSEEK(BA_OS) routine was issued to a pipe.

ESRCH No such process
No process can be found corresponding to that specified by pi d
in the KILL(BA_OS) or PTRACE(KE_OS) routine.

ETXTBSY Text file busy
An attempt was made to execute a pure-procedure program that
is currently open for writing. Also an attempt to open for writing
a pure-procedure program that is being executed.

EXDEV Cross-device link
A link to a file on another device was attempted.

APPLICATION USAGE

Because a few routines may not have an error return value, an application
may set errno to zero, call the routine, and then check errno again to
see if an error has occurred.

LEVEL

Levell.

Page 40 Base System Definition

ENVVARCBA_ENV)

NAME
envvar - environmental variables

DESCRIPTION
When a process begins execution, the EXEC(BA_OS) routines make available
an array of strings called the environment [see also SYSTEM(BA_OS)]. By
convention, these strings have the form variable=value, for example,
PATH=/bin/usr/bin. These environmental variables provide a way to
make information about an end-user's environment available to programs.
The following environmental variables can be used by applications and are
expected to be set in the target run-time environment.

Variable Use

HOME Full path-name of the user's home-directory, the user's initial­
working-directory [see PASSWD(BA_ENV)].

PATH Colon-separated ordered list of path-names that determine the
search sequence used in locating files [see SYSTEM(BA_OS»).

TERM The kind of terminal for which output is prepared. This informa­
tion is used by applications that may exploit special capabilities of
the terminal.

TZ Time-zone information. TZ must be a three-letter, local time­
zone abbreviation, followed by a number (an optional minus sign,
for time-zones east of Greenwich, followed by a series of digits)
that is the difference in hours between this time-zone and
Greenwich Mean Time. This may be followed by an optional
three-letter daylight local time-zone. For example, EST5EDT
for Eastern Standard, Eastern Daylight Savings Time.

Other variables might be set in a particular environment but are not required
to be included in the Base System.

SEE ALSO
EXEC(BA_OS), SYSTEM(BA_OS), FILSYS(BA_ENV).

FUTURE DIRECTIONS
The number in T Z will be defined as an optional minus sign followed by two
hour digits and two minute digits, hhmm, in order to represent fractional
time-zones.

LEVEL
Levell.

Base System Definition Page 41

FILSYS(BA_ENV)

NAME

file system - directory tree structure

DESCRIPTION

Directory Tree Structure
Below is a diagram of the minimal directory tree structure expected to be on
any System V operating system.

/

I
bin dev etc tmp usr

bin tmp

The following guidelines apply to the contents of these directories:

• /bin, /dev, letc, and /tmp are primarily for the use of the sys­
tem. Most applications should never create files in any of these direc­
tories, though they may read and execute them. Applications, as well as
the system, can use /usr/bin and lusr/tmp.

• Ibin holds executable system commands (utilities), if any.

• /dev holds special device files.

• letc holds system data files, such as /etc/passwd.

• Itmp holds temporary files created by utilities in /bin and by other
system processes.

• lusr Ibin holds (user-level) executable application and system com­
mands.

• lusr Itmp holds temporary files created by applications and the system.

Some Extensions to the Base System will have additional requirements on the
tree structure when the Extension is installed on a system. Directory tree
requirements specific to an Extension will be identified when the Extension is
defined in detail.

System Data Files

The Base System Definition specifies only these system-resident data files:

letc/passwd
/etc/profile

Page 42 Base System Definition

FILSYS(BA _ ENV)

The /etc/passwd and /etc/profile files are owned by the system
and are readable but not writable by ordinary users.

The format and contents of /etc/passwd are defined on
PASSWD(BA_ENV). This is a generally useful file, readable by applications,
that makes available to application programs some basic information about
end-users on a system. It has one entry for each user. Minimally, each
user's entry contains a string that is the name by which the user is known on
the system, a numerical user-ID, and the home-directory or initial-working­
directory of the user.

Conventionally, the information in this file is used during the initialization of
the environment for a particular user. However, the / etc / pas s wd file is
also useful as a standardly formatted database of information about users,
which can be used independently of the mechanisms that maintain the data
file.

The / etc / pro f i 1 e file may contain a string assignment of the PAT H
and TZ variables defined in ENVVAR(BA_ENV).

FUTURE DIRECTIONS
The following directory structure and guidelines are proposed for applications
("add-ons") that are to be installed on a system:

/usr

I
bin etc lib opt tmp

x y

• /usr/etc would hold data and log files for commands in /usr/bin.

• /usr/lib would hold any executable files for commands in
/usr/bin.

• /usr/opt would hold sub-directories for each add-on to hold data files
private to the add-on (e.g., add-on x)

• / u s r / 0 p t / x would hold files and! or directories private to add -on x,
/ u s r / 0 p t / y would hold files and! or directories private to add -on y.

LEVEL
Levell.

Base System Definition Page 43

PASSWD(BA _ ENV)

NAME

passwd - password file

SYNOPSIS

/etc/passwd

DESCRIPTION

The file /etc/passwd contains the following information for each user:

name
encrypted password (may be empty)
numerical user-ID
numerical group-ID (may be empty)
free field
initial-working-directory
program to use as command interpreter (may be empty)

This ASCII file resides in directory / etc. It has general read permission
and can be used, for example, to map numerical user-IDs to names.

Each field within each user's entry is separated from the next by a colon.
Fields 2, 4, and 7 may be empty. However, if they are not empty, they must
be used for their stated purpose. Field 5 is a free field that is
implementation-specific. Fields beyond 7 are also free but may be standard­
ized in the future. Each user's entry is separated from the next by a new­
line.

The name is a character string that identifies a user. Its composition should
follow the same rules used for file-names.

By convention, the last element in the path-name of the initial-working­
directory is typically name.

SEE ALSO
CRYPT(BA_LlB).

LEVEL
Levell.

Page 44 Base System Definition

TERMIO(BA _ENV)

NAME

termio - general terminal interface

SYNOPSIS

#include <termio.h>

ioctl(fildes, request, arg)
struct termio *arg;

ioctl(fildes, request, arg)
int arg;

DESCRIPTION

System V supports a general interface for asynchronous communications
ports that is hardware-independent. The remainder of this section discusses
the common features of this interface.

When a terminal file is opened, it normally causes the process to wait until a
connection is established. Typically, these files are opened by the system ini­
tialization process and become the standard input, standard output, and
standard error files [see stdlo-stream in Chapter 4 - Definitions). The very
first terminal file opened by the process-group-leader but not already associ­
ated with a process-group becomes the control-terminal for that process­
group. The control-terminal plays a special role in handling quit and inter­
rupt signals [see below 1. The control-terminal is inherited by a new process
during a FORK(BA_OS) or EXEC(BA_OS) operation. A process can break this
association by changing its process-group with the SETPGRP(BA_OS) routine.

A terminal associated with one of these files ordinarily operates in full-duplex
mode. This means characters may be typed at any time, even while output is
occurring. Characters are only lost when the system's character input buffers
become completely full, or when an input line exceeds {MAX_CHAR}, the
maximum allowable number of input characters. When the input limit is
reached, all the saved characters may be thrown away without notice.

Normally, terminal input is processed in units of lines. A line is delimited by
the new-line (ASCII LF) character, end-of-file (ASCII EOT) character, or
end-of-line character. This means that a program attempting to read will be
suspended until an entire line has been typed. Also, no matter how many
characters may be requested in a read, at most one line will be returned. It
is not, however, necessary to read a whole line at once; any number of char­
acters may be requested in a read, even one, without losing information.

Some characters have special meaning when input. For example, during
input, erase and kill processing is normally done. The ERASE character
erases the last character typed, except that it will not erase beyond the begin­
ning of the line. Typically, the default ERASE character is the character #.
The KILL character kills (deletes) the entire input line, and optionally out­
puts a new-line character. Typically, the default KILL character is the char­
acter @. Both characters operate on a key-stroke basis independently of any
backspacing or tabbing.

Base System Definition Page 45

TERMIO(BA _ENV)

Special Characters.
Some characters have special functions on input. These functions and their
typical default character values are summarized below:

INTR

QUIT

ERASE

KILL

EOF

NL

EOL

STOP

START

Page 46

(Typically, rubout or ASCII DEL) generates an interrupt signal,
which is sent to all processes with the associated control-terminal.
Normally, each such process is forced to terminate, but arrange­
ments may be made either to ignore the signal or to receive a trap
to an agreed-upon location [see SIGNAL(BA_OS)1.

(Typically, control-\. or Ascn FS) generates a quit signal. Its
treatment is identical to the interrupt signal except that, unless a
receiving process has made other arrangements, it will not only be
terminated but the abnormal termination routines will be exe­
cuted.

(Typically, the character #) erases the preceding character. It
will not erase beyond the start of a line, as delimited by an EOF,
EOL or NL character.

(Typically, the character @) deletes the entire line, as delimited
by an EOF, EOL or NL character.

(Typically, control-d or ASCII EOT) may be used to generate an
EOF, from a terminal. When received, all the characters waiting
to be read are immediately passed to the program, without wait­
ing for a new.;.line, and the EOF is discarded. Thus, if there are
no characters waiting, which is to say the EOF occurred at the
beginning of a line, zero characters will be passed back, which is
the standard end-of-file indication.

(ASCII LF) is. the normal line delimiter. It can not be changed or
escaped.

(Typically, ASCII NUL) is an additional line delimiter, like NL. It
is not normally used.

(Typically, control-s or ASCII DC3) is used to temporarily
suspend output. It is useful with CRT terminals to prevent output
from disappearing before it can be read. While output is
suspended, STOP characters are ignored and not read.

(Typically, control-q or ASCII DCt) is used to resume output
suspended by a STOP character. While output is not suspended,
START characters are ignored and not read. The START ISTOP
characters can not be changed or escaped.

Base System Definition

MIN

TIME

TERMIO(BA_ENV)

Used to control terminal 110 during raw mode (ICANON off)
processing [see the MIN/TIME Interaction section below]'

Used to control terminal 110 during raw mode (ICANON off)
processing [see the MIN/TIME Interaction section below]'

The ERASE, KILL, and EOF characters may be entered literally, and their
special meaning escaped, by preceding them with the escape character \. In
this case, no special function is performed. Also the escape character is not
read as input.

When one or more characters are written, they are transmitted to the termi­
nal as soon as previously-written characters have finished typing. Input char­
acters are echoed by putting them in the output queue as they arrive. If a
process produces characters more rapidly than they can be typed, it will be
suspended when its output queue exceeds some limit. When the queue has
drained down to some threshold, the program is resumed.

When a modem disconnect is detected, a halig-up signal, SIGHUP, is sent
to all processes that have this terminal as the control-terminal. Unless other
arrangements have been made, this signal causes the processes to terminate.
If the hang-up signal is ignored, any subsequent read returns with an end-of­
file indication. Thus, programs that read a terminal and test for end-of-file
can terminate appropriately when hung up on.

10CTL(BA _OS) Requests.
Several IOCTL(BA_OS) requests apply to ternHnal files and use the structure
termio which is defined by the <ter~io. h> header file.

The primary IOCTL(BA_OS) requests to a terminal have the form:

ioctl(fildes, request, arg)
struct termio *arg;

The requests using this form are:

TCGETA Get the parameters associated with the terminal and store in the
structure termio referenced by argo

TCSETA Set the parameters associated with the terminal from the struc­
ture termio referenced by argo The change is immediate.

TCSETAW Wait for the output to drain before setting the new parameters.
This form should be used when changing parameters that will
affect output.

TCSETAF Wait for the output to drain, then flush the input queue and set
the new parameters.

Base System Definition Page 47

TERMIO(BA _ ENV)

AdditionaIIOCTL(BA_OS) requests to a terminal have the form:

ioctl(fildes, request, arg)
int arg;

The requests using this form are:

TCSBRK Wait for the output to drain.
If arg is 0, then send a break (zero bits for 0.25 seconds).

TCXONC Start/stop control.
If arg is 0, suspend output; if 1, restart suspended output.

TCFLSH Flush queues
If a rg is 0, flush the input queue; if 1, flush the output queue;
if 2, flush both the input and output queues.

The structure termio includes the following members:

unsigned short c iflag; 1* input modes *1
unsigned short c_oflag; 1* output modes *1
unsigned short c_cflag; 1* control modes *1
unsigned short c_lflag; 1* local modes *1
char c line; 1* line-discipline -
unsigned char c cc [NCC] ; 1* control chars *1 -

The special control-characters are defined by the array c cc. The sym­
bolic name NCC is the size of the control-character array and is also defined
by the <termio. h> header file. The relative positions, subscript names
and typical default values for each entry are as follows:

0 VINTR ASCII DEL
VQUIT ASCII FS

2 VERASE #
3 VKILL @

4 VEOF ASCII EOT
4 VMIN
5 VEOL ASCII NUL
5 VTIME
6 reserved
7 reserved

Input Modes.
The following values for the field c _ if lag define the basic terminal input
control:

IGNBRK Ignore break condition.
If IGNBRK is set, the break condition (a character framing
error with data all zeros) is ignored, that is, not put on the input
queue and therefore not read by any process. Otherwise, see
BRKINT.

Page 48 Base System Definition

*1

TERMIO(BA _ENV)

BRKINT Signal interrupt on break.
If BRKINT is set, the break condition will generate an interrupt
signal and flush both the input and output queues.

IGNPAR Ignore characters with parity errors.
If IGNPAR is set, characters with other framing and parity
errors are ignored.

PARMRK Mark parity errors.
If P ARMRK is set, a character with a framing or parity error
which is not ignored is read as the three-character sequence:
o 377, 0, x, where 0 3 77, 0 is a two-character flag preceding
each sequence and X is the data of the character received in
error. To avoid ambiguity in this case, if ISTRIP is not set, a
valid character of 0 3 7 7 is read as 0 3 7 7, 0 3 7 7.

If PARMRK is not set, a framing or parity error which is not
ignored is read as the character ASCII NUL (ASCII code 0) .

INPCK Enable input parity check.
If INPCK is set, input parity checking is enabled.

If INPCK is not set, input parity checking is disabled allowing
output parity generation without input parity errors.

ISTRIP Strip character.
If IS TR I P is set, valid input characters are first stripped to 7-
bits, otherwise all 8-bits are processed.

INLCR Map NL to ASCII CR on input.
If INLCR is set, a received NL character is translated into a
ASCII CR character.

I G NCR Ignore ASCII CR.
If IGNCR is set, a received ASCII CR character is ignored (not
read).

ICRNL Map ASCII CR to NL on input.
If ICRNL is set, a received ASCII CR character is translated into
a NL character.

IUCLC Map upper-case to lower-case on input.
If IUCLC is set, a received upper-case alphabetic character is
translated into lower-case.

IXON Enable start/stop output control.
If IXON is set, start/stop output control is enabled. A received
STOP character will suspend output and a received START char­
acter will restart output. All start/stop characters are ignored
and not read.

Base System Definition Page 49

TERMIO(BA _ ENV)

IXANY Enable any character to restart output.
If IXANY is set, 'any input character, will restart output which
has been suspended.

IXOFF Enable start/stop input control.
If IXOFF is set, the system will transmit START/STOP charac­
ters when the input queue is nearly empty/full.

The initial input control value is all bits clear.

Output Modes.
The following values for the field c _ 0 f 1 a g define the system treatment of
output:

OPOST Postprocess output.
If OPOST is set, output characters are post-processed as indi­
cated by the remaining flags; otherwise characters are transmitted
without change.

OLCUC Map lower case to upper on output.
If OLCUC is set, a lower-case alphabetic character is transmitted
as the corresponding upper-case character. This function is often
used in conjunction with IUCLC.

ONLCR Map NL to ASCII CR-NL on output.
If ONLCR is set, the NL character is transmitted as the ASCII
CR-NL character pair.

OCRNL Map ASCII CR to NL on output.
If OCRNL is set, the ASCII CR character is transmitted as the NL
character.

ONOCR No ASCII CR output at column O.
If ONOCR is set, no ASCII CR character is transmitted when at
column 0 (first position).

ONLRET NL performs ASCII CR function.
If ONLRET is set, the NL character is assumed to do the
carriage-return function; the column pointer will be set to 0 and
the delays specified for ASCII CR will be used. Otherwise the NL
character is assumed to do just the line-feed function; the column
pointer will remain unchanged. The column pointer is also set to
o if the ASCII CR character is actually transmitted.

OFILL Use fill-characters for delay.
If OFILL is set, fill-characters will be transmitted for delay
instead of a timed delay. This is useful for high baud-rate termi­
nals that need only a minimal delay.

OF DEL Fill is ASCII DEL, else ASCII NUL.
If OFDEL is set, the fill-character is ASCII DEL, otherwise ASCII
NUL.

Page 50 Base System Definition

TERMIO(BA _ENV)

The delay-bits specify how long transmission stops to allow for mechanical or
other movement when certain characters are sent to the terminal. In all
cases a value of 0 indicates no delay.

The actual delays depend on line-speed and system-load.

NLDLY New-line delay lasts about 0.10 seconds.
If ONLRET is set, the carriage-return delays are used instead of
the new-line delays.

If OFILL is set, two fill-characters will be transmitted.

Select new-line delays:
NLO New-Line character type 0
NL 1 New-Line character type 1

CRDLY Carriage-return delay type 1 is dependent on the current column
position, type 2 is about 0.10 seconds, and type 3 is about 0.15
seconds.

If OFILL is set, delay type 1 transmits two fill-characters, and
type 2, four fill-characters.

Select carriage-return delays:
CRO Carriage-return delay type 0
CR 1 Carriage-return delay type 1
CR2 Carriage-return delay type 2
CR3 Carriage-return delay type 3

TABDLY Horizontal-tab delay type 1 is dependent on the current column
position, type 2 is about 0.10 seconds, and type 3 specifies that
tabs are to be expanded into spaces.

If OFILL is set, two fill-characters will be transmitted for any
delay.

Select horizontal-tab delays:
TABO Horizontal-tab delay type 0
TAB 1 Horizontal-tab delay type 1
TAB2 Horizontal-tab delay type 2
TAB 3 Expand tabs to spaces.

BSDLY Backspace delay lasts about 0.05 seconds.

If OFILL is set, one fill-character will be transmitted.

Select backspace delays:
BS 0 Backspace delay type 0
BS 1 Backspace delay type 1

VTDLY Vertical-tab delay lasts about 2.0 seconds.

Select vertical-tab delays:
VTO Vertical-tab delay type 0
VT 1 Vertical-tab delay type 1

Base System Definition Page 51

TERMIO(BA _ENV)

FFDLY Form-feed delay lasts about 2.0 seconds.

Select form-feed delays:
FFO Form-feed delay type 0
FF 1 Form-feed delay type 1

The initial output control value is all bits clear.

Control Modes.
The following values for the field c _ c f 1 a g define the hardware control of
the terminal:

CBAUD Specify the baud-rate.
The zero baud-rate, BO, is used to hang up the connection. If
BOis specified, the data-terminal-ready signal will not be
asserted. Normally, this will disconnect the line. For any partic­
ular hardware, unsupported speed changes are ignored.

Select baud rate:
BO Hang up
B50 50 baud
B75 75 baud
B110 110 baud
B134 134.5 baud
B150 150 baud
B200 200 baud
B300 300 baud
B600 600 baud
B1200 1200 baud
B1800 1800 baud
B2400 2400 baud
B4800 4800 baud
B9600 9600 baud
B19200 19200 baud
B38400 38400 baud

C S I Z E Specify the character size in bits for both transmission and recep­
tion. This size does not include the parity-bit, if any.

Select character size:
CS5 5-bits
CS6 6-bits
CS7 7-bits
CS8 8-bits

CSTOPB Send two stop-bits, else one.
If CSTOPB is set, two stop-bits are used, otherwise one stop-bit.
For example, at 110 baud, two stop-bits are normally used.

CREAD Enable receiver.

Page 52

If CREAD is set, the receiver is enabled. Otherwise no charac­
ters will be received.

Base System Definition

TERMIO(BA_ENV)

PARENB Enable parity.
If PARENB is set, parity generation and detection is enabled and
a parity-bit is added to each character.

PARODD Specify odd parity, else even.
If parity is enabled, the PARODD flag specifies odd parity if set,
otherwise even parity is used.

HUPCL Hang up on last close.
If HUPCL is set, the modem control lines fo the port will be
lowered when the last process with the line open closes it or ter­
minates. That· is, the data-terminal-ready signal will not be
asserted.

C LOCAL Local line, else dial-up.
If CLOCAL is set, the line is assumed to be a local, direct con­
nection with no modem control. Otherwise modem control is
assumed.

Under normal circumstances, an OPEN(BA_OS) operation will wait
for the modem connection to complete. However, if the ° NDELAY flag is set, or CLOCAL is set, the OPEN(BA_OS)

operation will return immediately without waiting for the connec­
tion. For those files on which the connection has not been esta­
blished, or has been lost, and for which CLOCAL is not set, both
READ(BA_OS) and WRITE(BA_OS) operations will return a zero
character count. For the REAO(BA_OS) operation, this is
equivalent to an end-of-file condition. The initial hardware con­
trol value after the OPEN(BA_OS) operation is implementation­
dependent.

Local Modes and Line Discipline.
The field c Iflag of the structure termio is used by the line-discipline
to control te~minal functions. The basic line-discipline, cline set to 0,
provides the following:

I S I G Enable signals.
If ISIG is set, each input character is checked against the spe­
cial control characters INTR and QUIT. If an input character
matches one of these control characters, the function associated
with that character is performed. If IS IG is not set, no check­
ing is done. Thus these special input functions are possible only if
I ~ I ~ is set. These functions may be disabled individually by
changing the value of the control character to an unlikely or
impossible value (e.g., 0377).

I CANON Canonic~l input (ERASE and KILL proce'lsing).
If I CANON is set, canonical processing is enabled. This enables
the ERASE and KILL edit functions, and the assembly of input
characters into lines delimited by the EOF, EOL or NL characters.
If ICANON is not set, read requests are satisfied directly from

Base System Definition Page 53

TERMIO(BA _ENV)

the input queue. A read will not be satisfied until at least MIN
characters have been received or the time-out value TIME has
expired between characters [see the MIN/TIME Interaction section
below 1. This allows fast bursts of input to be read efficiently
while still allowing single character input. The MIN and TIME
values are stored in the position for the EOF and EOL characters,
respectively. The time-value is expressed in units of 0.10 seconds.

XCASE Canonical upper/lower presentation.

ECHO

If both XCASE and ICANON are set, an upper-case letter is
input by preceding it with the character \, and is output pre­
ceded by the character \. In this mode, the following escape
sequences are generated on output and accepted on input:

for: use:
\'
\1
\"

\(
\)

\ \\

For example, A is input as \a, \n as \ \n, and \N as
\\\n.

Enable echo.
If ECHO is set, characters are echoed back to the terminal as
received.

When ICANON is set, the following echo functions are possible:

ECHOE Echo the ERASE character as ASCII BS-SP-BS.
If both ECHOE and ECHO are set, the ERASE character is
echoed as ASCII BS-SP-BS, which will clear the last character
from a CRT screen.

If ECHOE is set but ECHO is not set, the ERASE character is
echoed as ASCII SP-BS.

ECHOK Echo the NL character after the KILL character.
If ECHOK is set, the NL character will be echoed after the KILL
character to emphasize that the line will be deleted. Note that an
escape character preceding the ERASE character or the KILL
character removes any special function.

ECHONL Echo the NL character.

Page 54

If E C H 0 N L is set, the NL character will be echoed even if
ECHO is not set. This is useful for terminals set to local-echo
{also called half-duplex>. Unless escaped, the EOF character is
not echoed. Because ASCII EOT is the default EOF character, this
prevents terminals that respond to ASCII EOT from hanging up.

Base System Definition

TERMIO(BA_ENV)

NOFLSH Disable flush after interrupt or quit.
If NOFLSH is set, the normal flush of the input and output
queues associated with the quit and interrupt characters will not
be done.

The initial line-discipline control value is all bits clear.

MIN/TIME Interaction.

MIN represents the minimum number of characters that should be received
when the read is satisfied (i.e., the characters are returned to the user).
TIME is a timer of 0.10 second granularity used to time-out bursty and
short-term data transmissions. The four possible values for MIN and TIME
and their interactions follow:

1. MIN> 0, TIME> o. In this case, TIME serves as an inter-character
timer activated after the first character is received, and reset upon
receipt of each character. MIN and TIME interact as follows:

As soon as one character is received the inter-character timer is
started.

If MIN characters are received before the inter-character timer
expires the read is satisfied.

If the timer expires before MIN characters are received the charac­
ters received to that point are returned to the user.

A READ(BA_OS) operation will sleep until the MIN and TIME mechan­
isms are activated by the receipt of the first character; thus, at least one
character must be returned.

2. MIN> 0, TIME= o. In this case, because TIME = 0, the timer plays no
role and only MIN is significant. A READ(BA_OS) operation is not
satisfied until MIN characters are received.

3. MIN = 0, TIME> O. In this case, because MIN= 0, TIME no longer
serves as an inter-character timer, but now serves as a read timer that
is activated as soon as the READ(BA_OS) operation is processed (in
canon). A READ(BA_OS) operation is satisfied as soon as a single char­
acter is received or the timer expires, in which case, the READ(BA_OS)

operation will not return any characters.

4. MIN= 0, TIME = o. In this case, return is immediate. If characters are
present, they will be returned to the user.

SEE ALSO

FORK(BA_OS), IOCTL(BA_OS), SETPGRP(BA_OS), SIGNAL(BA_OS).

LEVEL

Levell.

Base System Definition Page 55

Base System Definition

Chapter 6
OS Service Routines

Page 57

ABORT(BA_ OS)

NAME

abort - generate an abnormal process termination

SYNOPSIS

int abort ()

DESCRIPTION

The function abort first closes all open files if possible, then causes a sig­
nal to be sent to the process. This invokes abnormal process termination rou­
tines, such as a core dump, which are implementation dependent.

APPLICATION USAGE
The signal sent by abort should not be caught or ignored by applications.

SEE ALSO
EXIT(BA _OS), SIGNAL(BA _OS).

FUTURE DIRECTIONS

The function abort will send the SIGABRT signal rather than the
S I G I OT signal.

LEVEL

Levell.

Page 58 Base System Definition

ACCESS(BA _OS)

NAME

access - determine accessibility of a file

SYNOPSIS

int access(path, amode)
char *path;
int amode;

DESCRIPTION

The function a c c e s s checks the named file for accessibility according to
the bit-pattern contained in amode, using the real-user-ID in place of the
effective-user-ID, and the real-group-ID or equivalent in place of the
effective-group-ID.

The argument path points to a path-name naming the file.

The bit-pattern contained in amode is constructed as follows:

04 read
02 write
o 1 execute (search)
o 0 check existence of file

Thus, the argument amode should be the sum of the values of the access
modes to be checked.

The owner of a file has permission checked with respect to the owner read,
write, and execute mode bits. Members of the file's group other than the
owner have permissions checked with respect to the group mode bits, and all
others have permissions checked with respect to the other mode bits.

RETURN VALUE

If the requested access is permitted, the function a c c e s s will return 0;
otherwise, it will return -1 and err n 0 will indicate the error.

ERRORS

Under the following conditions, the function a c c e s s will fail and will set
errno to:

ENOTDIR if a component of the path-prefix is not a directory.

ENOENT if the named file does not exist.

EACCES if a component of the path-prefix denies search permission, or if
the permission bits of the file mode do not permit the requested
access.

EROFS if write access is requested for a file on a read-only file system.

ETXTBSY if write access is requested for a pure procedure (shared text) file
that is being executed.

Base System Definition Page 59

ACCESS(BA_ OS)

SEE ALSO
CHMOD(BA_OS), STAT(BA_OS).

FUTURE DIRECTIONS

EINVAL will be returned in errno if the argument amode is invalid.

The <uni std. h> header file will define the following symbolic constants
for the argument amode to the function access:

Name
R OK
W OK
X OK
F OK

LEVEL
Levell.

Page 60

Description
test for read permission.
test for write permission.
test for execute permission.
test for existence of file.

Base System Definition

NAME

alarm - set a process alarm clock

SYNOPSIS
unsigned alarm(sec)
unsigned sec;

DESCRIPTION
The function alarm instructs the alarm clock of the calling-process to send
the signal S IGALRM to the calling-process after the number of real time
seconds specified by sec have elapsed [see SIGNAL(BA _ OS)1.

Alarm requests are not stacked; successive calls reset the alarm clock of the
calling-process.

If sec is 0 t any previously made alarm request is canceled.

The FORK(BA_OS) routine sets the alarm clock of a new process to o. A
process created by the EXEC(BA_OS) family of routines inherits the time left
on the old processts alarm clock.

RETURN VALUE

If successfult the function a 1 a rm will return the amount of time previously
remaining in the alarm clock of the calling-process.

SEE ALSO
EXEC(BA_OS)t FORK(BA_OS)t PAUSE(BA_OS)t SIGNAL(BA_OS).

LEVEL

Levell.

Base System Definition Page 61

CHDIR(BA _OS)

NAME

chdir - change working directory

SYNOPSIS
int chdir(path)
char *path;

DESCRIPTION
The function chdir causes the named directory to become the current
working directory and the starting point for path-searches for path-names not
beginning with / ;

The argument path points to the path-name of a directory.

RETURN VALUE
If successful, the function chdir will return 0; otherwise, it will return
-1, the current-working-directory will be. unchanged and errno will indi­
ca te the error.

ERRORS
Under the following conditions, the function chdir will fail and will set
errno to:

ENOTDIR if a component of the path-name is not a directory.

ENOENT if the named directory does not exist.

EACCES if any component of the path-name denies search permission.

LEVEL
Levell.

Page 62 Base System Definition

CHMOD(BA_OS)

NAME

chmod - change mode of file

SYNOPSIS
int chmod(path, mode)
char *path;
int mode;

DESCRIPTION
The function chmod sets the access permission portion of the named file's
mode according to the bit-pattern contained in the argument mode.

The argument pa th points to a path-name naming a file.

Access permission bits are interpreted as follows; the value of the argument
mode should be the sum of the values of the desired permissions:

04000 Set user-ID on execution.
02000 Set group-ID on execution.
o 1 000 Reserved.
00400 Read by owner.
00200 Write by owner.
00100 Execute (search if a directory) by owner.
o 0040 Read by group.
00020 Write by group.
o 0 0 1 0 Execute (search) by group.
o 0 0 04 Read by others (i.e., anyone else).
00002 Write by others.
o 0 0 0 1 Execute (search) by others.

The effective-user-ID of the process must match the owner of the file or be
super-user to change the mode of a file.

If the effective-user-ID of the process is not super-user and the effective­
group-ID of the process does not match the group-ID of the file, mode bit
02000 (set group-ID on execution) is cleared. This prevents an ordinary
user from making itself an effective member of a group to which it does not
belong. Similarly, the CHOWN(BA_OS) routine clears the set-user-ID and set­
group-ID bits when invoked by other than the super-user.

RETURN VALUE

If successful, the function chmod will return 0; otherwise, it will return
-1, the file mode will be unchanged and errno will indicate the error.

Base System Definition Page 63

CHMOD(BA _OS)

ERRORS

Under the following conditions, the function chmod will fail and will set
errno to:

ENOTDIR if a component of the path-prefix is not a directory.

ENOENT if the named file does not exist.

EACCES if a component of the path-prefix denies search permission.

EPERM if the effective-user-ID does not match the owner of the file and
the effective-user-ID is not super-user.

EROFS if the named file resides on a read-only file system.

SEE ALSO
CHOWN(BA_OS), MKNOD(BA_OS).

FUTURE DIRECTIONS

Symbolic constants defining the access permission bits will be added to the
< s y s / s tat. h> header file and should be used to construct mo de.

Enforcement-mode file and record-locking will be added:

LEVEL

If the mode bit 02000 (set group-ID on execution) is set and the mode
bit 0 1 000 (execute or search by group) is not set, enforcement-mode
file and record-locking will exist on an ordinary-file. This may affect
future calls to OPEN(BA_OS), CREAT(BA_OS), READ(BA_OS) and
WRITE(BA_OS) routines on this file.

Level 1.

Page 64 Base System Definition

CHOWN(BA _OS)

NAME

chown - change owner and group of a file

SYNOPSIS

int chown(path, owner, group)
char *path;
int owner, group;

DESCRIPTION

The function chown sets the owner-ID and group-ID of the named file to
the numeric values contained in owner and group, respectively.

The argument pa th points to a path-name naming a file.

Only processes with effective-user-ID equal to the file-owner or super-user
may change the ownership of a file.

If the function chown is invoked successfully by other than the super-user,
the set-user-ID and set-group-ID bits of the file mode, 04000 and 02000
respectively, will be cleared. (This prevents ordinary users from making
themselves effectively other users or members of a group to which they don't
belong.)

RETURN VALUE
If successful, the function chown will return 0; otherwise, it will return
-1, the owner and group of the named file will remain unchanged and
errno will indicate the error.

ERRORS

Under the following conditions, the function chown will fail and will set
errno to:

ENOTDIR if a component of the path-prefix is not a directory.

ENOENT if the named file does not exist.

EACCES if a component of the path-prefix denies search permission.

EPERM if the effective-user-ID does not match the owner of the file and
the effective-user-ID is not super-user.

EROFS if the named file resides on a read-only file system.

SEE ALSO
CHMOD(BA _OS).

LEVEL

Levell.

Base System Definition Page 65

CLOSE(BA _OS)

NAME

close - close a file-descriptor

SYNOPSIS

int close(fildes)
int fildes;

DESCRIPTION

The function close closes the file-descriptor indicated by fildes.

The argument f i 1 des is an open file-descriptor [see file-descriptor in
Chapter 4 - Definitions).

All outstanding record-locks on the file indicated by f i 1 des that are
owned by the calling-process are removed.

RETURN VALUE

If successful, the function c los e will return 0; otherwise, it will return
-1 and errno will indicate the error.

ERRORS

Under the following conditions, the function c los e will fail and will set
errno to:

EBADF if fildes is not a valid open file-descriptor.

APPLICATION USAGE

Normally, applications should use the stdio routines to open, close, read and
write files. Thus, an application that had used the FOPEN(BA_OS) stdio rou­
tine to open a file would use the corresponding FCLOSE(BA_OS) stdio routine
rather than the CLOSE(BA_OS) routine.

The record and file locking features are an update that followed System V
Release 1.0 and System V Release 2.0.

SEE ALSO

CREAT(BA_OS), DUP(BA_OS), EXEC(BA_OS), FCNTL(BA_OS), OPEN(BA_OS),

PIPE(BA_OS).

LEVEL

Levell.

Page 66 Base System Definition

CREAT(BA _OS)

NAME

creat - create a new file or rewrite an existing one

SYNOPSIS

int creat(path, mode)
char *path;
int mode;

DESCRIPTION

The function c rea t creates a new ordinary file or prepares to rewrite an
existing file named by the path-name pointed to by path.

If the file exists, the length is truncated to 0, the mode and owner are
unchanged, and the file is open for writing [see ° WRONL Y in
OPEN(BA_OS»). If the file does not exist, the file's owner-ID is set to the
effective-user-ID of the process; the group-ID of the file is set to the
effective-group-ID of the process; and the access permission bits [see
CHMOD(BA_OS») of the file mode are set to the value of the argument mode
modified as follows:

The corresponding bits are ANDed with the complement of the process'
file mode creation mask [see UMASK(BA_OS)1. Thus, the function
c rea t clears each bit in the file mode whose corresponding bit in the file
mode creation mask is set.

If successful, the function c rea t will return the file-descriptor and the file
will be open for writing. A new file may be created with a mode that for­
bids writing. Even if the argument mode forbids writing, the function
crea t opens the file for writing.

The call crea t (pa th, mode) is equivalent to the following [see
OPEN(BA _OS»):

open(path, O_WRONLY I O_CREAT I O_TRUNC, mode)

The file-pointer is set to the beginning of the file. The file-descriptor is set to
remain open across calls to the EXEC(BA_OS) routines [see FCNTL(BA_OS»).

No process may have more than {OPEN_MAX} files open simultaneously.

RETURN VALUE
If successful, the function c rea t will return a non-negative integer, namely
the file-descriptor; otherwise, it will return -1 and e rrno will indicate the
error.

Base System Definition Page 67

CREAT(BA _OS)

ERRORS

Under the following conditions, the function ere a t will fail and will set
errno to:

ENOTDIR if a component of the path-prefix is not a directory.

ENOENT if a component of the path-name should exist but does not.

EACCES if a component of the path-prefix denies search permission, or if
the file does not exist and the directory in which the file is to be
created does not permit writing, or if the file exists and write per­
mission is denied.

EROFS if the named file resides or would reside on a read-only file sys­
tem.

ETXTBSY if the file is a pure procedure (shared text) file that is being exe­
cuted.

E ISO I R if the named file is an existing directory.

EMFILE if {OPEN_MAX} file-descriptors are currently open in the calling­
process.

ENOSPC if the directory to contain the file cannot be extended.

ENFILE if the system file table is full.

APPLICATION USAGE

Normally, applications should use the stdio routines to open, close, read and
write files. In this case, the FOPEN(BA_OS) stdio routine should be used
rather than the CREAT(BA_OS) routine.

SEE ALSO

CHMOD(BA_OS), CLOSE(BA_OS), DUP(BA_OS), FCNTL(BA_OS), LSEEK(BA_OS),

OPEN(BA_OS), READ(BA_OS), UMASK(BA_OS), WRITE(BA_OS).

FUTURE DIRECTIONS

Symbolic constants defining the access permission bits will be defined by the
<sys/stat. h> header file and should be used to construct mode.

Enforcement-mode file and record locking features will be added:

The function crea t will set errno to EAGAIN if the file exists,
enforcement-mode file and record-locking is set and there are outstanding
record-locks on the file [see CHMOD(BA_OS»).

LEVEL

Levell.

Page 68 Base System Definition

NAME

dup - duplicate an open file-descriptor

SYNOPSIS

int dup(fildes)
int fildes;

DESCRIPTION

The function dup returns a new file-descriptor having the following in com­
mon with the original:

Same open file (or pipe).

Same file-pointer (i.e., both file-descriptors share one file-pointer).

Same access mode (read, write or read/write).

The argument f i Ide s is an open file-descriptor [see file-descriptor in
Chapter 4 - Definitions].

The new file-descriptor is set to remain open across calls to the EXEC(BA_OS)

routines [see FCNTL(BA_OS)].

The file-descriptor returned is the lowest one available.

RETURN VALUE

If successful, the function dup will return a non-negative integer, namely
the file-descriptor; otherwise, it will return -1 and errno will indicate the
error.

ERRORS

Under the following conditions, the function dup will fail and will set
errno to:

EBADF if f i Ide s is not a valid open file-descriptor.

EMFILE if {OPEN_MAX} file-descriptors are currently open in the calling­
process.

SEE ALSO

CREAT(BA_OS), CLOSE(BA_OS), EXEC(BA_OS), FCNTL(BA_OS), OPEN(BA_OS),

PIPE(BA_OS).

LEVEL

Levell.

Base System Definition Page 69

NAME

execl, execv, execle, execve, execlp, execvp - execute a file

SYNOPSIS
int execl (path, argO, arg 1, ... argn, (char *) 0)
char *path, *argO, *arg 1 , *argn;

int execv(path, argv)
char *path, *argv[];

int execle(path, argO, arg1, ... argn, (char *)0, envp)
char *path, *argO, *arg1, ... *argn, *envp[];

int execve(path, argv, envp)
char *path, *argv[], *envp[];

int execlp (file, argO, arg 1, ... argn, (char *) 0)
char *file, *argO, *arg 1, ... *argn;

int execvp(file, argv)
char *file, *argv[];

DESCRIPTION
All forms of the function ex e c transform the calling-process into a new
process. The new process is constructed from an ordinary, executable file
called the new-process-jiJe. This file consists of a header, a text segment,
and a data segment. There can be no return from a successful exec
because the calling-process image is overlaid by the new process image.

When a C program is executed, it is called as follows:

main(argc, argv, envp)
int argc;
char **argv, **envp;

where argc is the argument count, argv is an array of character pointers
to the arguments themselves and envp is an array of character pointers to
null-terminated strings that constitute the environment for the new process.
The argument argc is conventionally at least one and the initial member of
the array points to a string containing the name of the file.

The argument pa th points to a path-name that identifies the new-process­
file. For execlp and execvp, the argument file points to the new­
process-file. The path-prefix for this file is obtained by a search of the direc­
tories passed as the environment line PATH= [see ENVVAR(BA_ENV) and
SYSTEM(BA_ as»).

The arguments argO, arg 1, ... argn are pointers to null-terminated
character strings. These strings constitute the argument list available to the
new process. By convention, at least argO must be present and point to a
string that is the same as f i 1 e or pa th (or its last component).

Page 70 Base System Definition

The argument argv is an array of character pointers to null-terminated
strings. These strings constitute the argument list available to the new pro­
cess. By convention, argv [0] must point to a string that is the same as
file or path (or its last component), and argv is terminated by a null
pointer.

The argument envp is an array of character pointers to null-terminated
strings. These strings constitute the environment for the new process, and
envp is terminated by a null-pointer. For execl and execv, a pointer
to the environment of the calling-process is made available in the global cell:

extern char **environ;

and it is used to pass the environment of the calling-process to the new pro­
cess.

The file-descriptors open in the calling-process remain open in the new pro­
cess, except for those whose close-an-exec flag is set [see FCNTL(BA_OS»).

For those file-descriptors that remain open, the file-pointer is unchanged.

Signals set to the default action (SIG DFL) in the calling-process will be
set to the default action in the new -process. Signals set to be ignored
(S IG IGN) by the calling-process will be ignored by the new process. Sig­
nals set to be caught by the calling-process will be set to the default action in
the new process [see SIGNAL(BA_OS»).

If the set-user-ID-on-execution mode bit of the new-process-file is set, the
exec sets the effective-user-ID of the new process to the owner-ID of the
new-process-file [see CHMOD(BA_OS)]. Similarly, if the set-group-ID mode bit
of the new-process-file is set, the effective-group-ID of the new process is set
to the group-ID of the new-process-file. The real-user-ID and real-group-ID
of the new process remain the same as those of the calling-process. The
effective-user-ID and group-ID of the new process are saved for use by the
SETUID(BA_OS) routine.

The new process also inherits at least the following attributes from the
calling-process:

process-ID
parent-process-10
process-group-10
tty-group-ID [see EXIT(BA_OS) and SIGNAL(BA_OS)]

time left until an alarm clock signal [see ALARM(BA_OS)]

current-working-directory
root-directory
file mode creation mask [see UMASK(BA_OS)]

file size limit [see ULlMIT(BA_OS)]

utime, stime, cutime, and cstime [see TIMES(BA_OS)]

(file-locks [see FCNTL(BA_OS) and LOCKF(BA_OS)])

Base System Definition Page 71

RETURN VALUE

If the exe C returns to the calling-processt an error has occurred; the
ex e C will return -1 and err n 0 will indicate the error.

ERRORS

Under the following conditionst the exec will return to the calling-process
and will set errno to:

ENOENT if one or more components of the path-name of the new-process­
file do not exist.

ENOTDIR if a component of the path-prefix of the new-process-file is not a
directory.

EACCES if a directory in the new-process-filets path-prefix denies search
permissiont or if the new-process-file is not an ordinary file [see
MKNOD(BA_OS)]t or if the new-process-filets mode denies execu­
tion permission.

ENOEXEC if the exec is not an exec1p or exeCvpt arid the new­
process-file has the appropriate access permission but is not a
valid executable object.

ETXTBSY if the new-process-file is a pure procedure (shared text) file that
is currently open for writing by some process.

ENOMEM if the new process image requires more memory than is allowed
by the hardware or system-imposed maximum.

E 2 BIG if the number of bytes in the new process imagets argument list
exceeds the system-imposed limit of {ARG_MAX} bytes.

EFAULT if the new-process-file image is corrupted.

APPLICATION USAGE

Two interfaces for these functions are available. The list (I) versions:
exec1 t exec1e and exec1pt are useful when a known file with known
arguments is being called. The arguments are the character-strings that are
the file-name and the arguments. The variable (v) versions: execvt
execve and exeCvpt are useful when the number of arguments is unk­
nown in advance. The arguments are a file-name and a vector of strings con­
taining the arguments.

If possiblet applications should use the SYSTEM(BA_OS) routinet which is
easier to use and supplies more functionst rather than the FORK(BA_OS) and
EXEC(BA_OS) routines.

SEE ALSO

ALARM(BA_OS)t EXIT(BA_OS)t FORK(BA_OS)t SIGNAL(BA_OS)t TIMES(BA_.oS)t
ULlMIT(BA_OS)t UMASK(BA_OS).

LEVEL

Levell.

Page 72 Base System Definition

EXEC(BA _OS)

NAME

exit, _exit - terminate process

SYNOPSIS
void exit(status)

int status;

void exit(status) -
int status;

DESCRIPTION

The function exit may cause cleanup actions before the process exits [see
FCLOSE(BA_OS»). The function exi t does not. The functions exit and
_ exi t terminate the calling-process with the following consequences:

All of the file-descriptors open in the calling-process are closed.

If the parent-process of the calling-process is executing a WAIT(BA_OS)
routine, it is notified of the calling-process's termination and the low-order
eight bits (i.e., bits 0377) of s ta tus are made available to it. If the
parent is not waiting, the child's status will be made available to it when
the parent subsequently executes the WAIT(BA_OS) routine.

If the parent-process of the calling-process is not executing a WAIT(BA_OS)

routine, the calling-process is transformed into a zombie-process. A
zombie-process is an inactive process that has no process space allocated
to it, and it will be deleted at some later time when its parent executes
the WAIT(BA_OS) routine.

Terminating a process by exiting does not terminate its children. The
parent-process-ID of all of the calling-process's existing child-processes
and zombie-processes is set to the process-ID of a special system-process.
That is, these processes are inherited by a special system-process.

If the calling-process is a process-group-Ieader, and is associated with a
controlling-terminal [see TERMIO(BA_ENV»), the SIGHUP signal is sent to
each process that has a process-group-ID and tty-group-ID equal to that
of the calling-process.

RETURN VALUE

Neither the function exit nor the function exit will return a value.

APPLICATION USAGE

Normally applications should use exit rather than exit.

SEE ALSO

SIGNAL(BA_OS), WAIT(BA_OS).

LEVEL

Levell.

Base System Definition Page 73

NAME

fclose, mush - close or flush a stream

SYNOPSIS

#include <stdio.h>

int fclose(stream)
FILE *stream;

int fflush(stream)
FILE *stream;

DESCRIPTION

The function fclose causes any buffered data for the named stream to
be written out, and the stream to be closed.

The function f c los e is performed automatically for all open files upon
calling the EXIT(BA_OS) routine.

The function f flu s h causes any buffered data for the named s t ream to
be written to that file. The stream remains open.

RETURN VALUE

The functions f c los e and f flu s h will return 0 for success, and EO F
if any error (such as trying to write to a file that has not been opened for
writing) was detected.

SEE ALSO

CLOSE(BA_OS), EXIT(BA_OS), FOPEN(BA_OS), SETBUF(BA_LlB).

LEVEL

Levell.

Page 74 Base System Definition

FCNTL(BA_OS)

NAME

fcntl - file control

SYNOPSIS

#inc1ude <fcnt1.h>

int fcnt1(fi1des, cmd, arg)
int fildes, cmd;

DESCRIPTION

The function fcnt1 provides for control over open files.

The argument f i 1 des is an open file-descriptor [see file-descriptor in
Chapter 4 - Definitions].

The data type and value of a r g are specific to the type of command
specified by cmd. The symbolic names for commands and file status flags
are defined by the < f c n t 1 . h> header file.

The commands available are:

F DUPFD Return a new file-descriptor as follows:

Lowest numbered available file-descriptor greater than or
equal to the argument argo

Same open file (or pipe) as the original file.

Same file-pointer as the original file (i.e., both file­
descriptors share one file-pointer).

Same access-mode (read, write or read/write) [see
ACCESS(BA _OS)].

Same file status flags [see OPEN(BA_OS}].

The close-on-exec flag associated with the new file­
descriptor is set to remain open across calls to the
EXEC(BA_OS) routines.

F GETFD Get the close-on-exec flag associated with the file-descriptor
f i 1 des. If the low-order bit is 0 the file will remain open
across calls to the EXEC(BA_OS) routines; otherwise, the file will
be closed upon execution of any EXEC(BA_OS) routines.

F SETFD Set the close-on-exec flag associated with f i 1de s to the
low-order bit of arg (0 or 1 as above).

F GETFL Get file status flags:
O_RDONLY, O_WRONLY, O_RDWR, O_NDELAY,

° APPEND
[s~e OPEN(BA_OS}1.

F SETFL Set file status flags to argo Only the flags ° NDELAY and
O_APPEND may be set with fcntl.

Base System Definition Page 75

The following commands are used for file-locking and record-locking (see also
APPLICATION USAGE below). Locks may be placed on an entire file or seg­
ments of a file.

F GETLK Get the first lock which blocks the lock description given by the
variable of type struct flock (see below) pointed to by
argo The information retrieved overwrites the information
passed to f c n t 1 in the structure flo c k. If no lock is
found that would prevent this lock from being created, then the
structure is passed back unchanged except for the lock type
which will be set to F UNLCK.

NOTE: This command was added to fcntl following Sys­
tem V Release 1.0 and System V Release 2.0, and cannot be
expected to be available in those releases.

F SETLK Set or clear a file segment lock according to the variable of
type struct f lock (see below) pointed to by argo
F SETLK is used to establish read (F RDLCK) and write
(i WRLCK) locks, as well as remove -either type of lock
(F - UNLCK). F RDLCK, F WRLCK, and F UNLCK are
defined by the < i c n t 1 . h> header file. If a read or write
lock cannot be set, f cn t 1 will return immediately with an
error value of - 1 .

NOTE: This command was added to fcntl following Sys­
tem V Release 1.0 and System V Release 2.0, and cannot be
expected to be available in those releases.

F SETLKW This command is the same as F SETLK except that if a read
- or write lock is blocked by othe~ locks, the process will sleep

until the segment is free to be locked.

NOTE: This command was added to fcntl following Sys­
tem V Release 1.0 and System V Release 2.0, and cannot be
expected to be available in those releases.

The structure flock defined by the <fcntl. h> header file describes a
lock. It describes the type (1 type), starting offset (1 whence), relative
offset (I_start), size (I_I-en), and process-ID (l_ptd):

short 1 type; 1* F RDLCK, F WRLCK, F UNLCK *1 - -short 1 whence; 1* flag for starting offset *1 -
long 1 - start; 1* relative offset in bytes *1
long 1 len; 1* if 0 then until EOF *1
short l_pid; 1* returned with F GETLK *1 -

When a read-lock has been set on a segment of a file, other processes may
also set read-locks on that segment or a portion of it. A read-lock prevents
any other process from setting a write-lock on any portion of the protected
area. The file-descriptor on which a read-lock is being placed must have
been opened with read-access.

Page 76 Base System Definition

A write-lock prevents any other process from setting a read-lock or a write­
lock on any portion of the protected area. Only one write-lock and no read­
locks may exist for a given segment of a file at a given time. The .file­
descriptor on which a write-lock is being placed must have been opened with
write-access.

The value of 1 whence is 0, 1 or 2 to indicate that the relative offset,
1 s tar t bytes' will be measured from the start of the file, current position
or-end of the file, respectively. The value of 1 len is the number of con­
secutive bytes to be locked. The process-ID 1 -pid field is only used with
F _ GETLK to return the value for a blocking-lock.

Locks may start and extend beyond the current end of a file, but may not be
negative relative to the beginning of the file. A lock may be set to always
extend to the end of file by setting lIe n to zero (0). If such a lock also
has 1 _ s tar t set to zero (0), the whole file will be locked.

Changing or unlocking a segment from the middle of a larger locked segment
leaves two smaller segments locked at each end of the originally locked seg­
ment. Locking a segment that is already locked by the calling-process causes
the old lock type to be removed and the new lock type to take effect. All
locks associated with a file for a given process are removed when a file­
descriptor for that file is closed by that process or the process holding that
file-descriptor terminates. Locks are not inherited by a child-process after
executing the FORK(BA_OS) routine.

RETURN VALUE
If successful, the function f cn t 1 will return a value that depends on cmd
as follows:

F DUPFD a new file-descriptor.

F GETFD a value of flag (only the low-order bit is defined).

F SETFD a value other than -1.

F GETFL a value of file flags.

F SETFL a value other than -1.

F GETLK a value other than -1.

F SETLK a value other than -1.

F SETLKW a value other than -1.

If unsuccessful, the function f c n t 1 will return - 1 and err n 0 will indi­
cate the error.

Base System Definition Page 77

ERRORS

Under the following conditions, the function f c n t 1 will fail and will set
errno to:

EBADF if fi1des is not a valid open file-descriptor.

EMFILE if cmd is F _DUPFD and {OPEN_MAX} file-descriptors are
currently open in the calling-process.

EINVAL if cmd is F DUPFD and arg is negative or greater than or
equal to {OPEN_MAX}.

EINVAL if cmd is F GETLK, F SETLK or F SETLKWand arg or
the data it points to is not ;alid. -

EACCES if cmd is F SETLK the type of lock (1 type) is a read-lock
(F RDLCK) or write-lock (F WRLCK) and the segment of a file
to be locked is already write-locked by another process or the type
is a write-lock and the segment of a file to be locked is already
read-locked or write-locked by another process.

ENOLCK if cmd is F SETLK or F SETLKW, the type of lock is a
read-lock or write-lock and there are no more file-locks available
(too many segments are locked).

EDEADLK if cmd is F SETLKW, the lock is blocked by some lock from
another process and putting the calling-process to sleep, waiting
for that lock to become free, would cause a deadlock.

APPLICATION USAGE

Because in the future the variable errno will be set to EAGAIN rather
than EACCES when a section of a file is already locked by another process,
portable application programs should expect and test for either value, for
example:

f1k->1_type = F_RDLCK;
if (fcnt1(fd, F_SETLK, f1k) == -1)

if «errno == EACCES) I I (errno == EAGAIN»
1*
* section locked by another process,
* check for either EAGAIN or EACCES
* due to different implementations
*1

else if •..
1*
* check for other errors
*1

The features of f cn t 1 that deal with file and record locking are an update
that followed System V Release 1.0 and System V Release 2.0.

Page 78 Base System Definition

SEE ALSO

CLOSE(BA_OS), EXEC(BA_OS), OPEN(BA_OS), LOCKF(BA_OS).

FUTURE DIRECTIONS

The error condition which currently sets errno to EACCES will instead
set errno to EAGAIN [see also APPLICATION USAGE above).

Enforcement-mode file-locking and record locking will be added:

If enforcement-mode file and record-locking is set and there are outstand­
ing record-locks on the file, this may affect future calls to READ(BA_OS)

and WRITE(BA_OS) routines on the file [see CHMOD(BA_OS»).

LEVEL

Levell.

Base System Definition Page 79

NAME

ferror, feof, clearerr, file no - stream status inquiries

SYNOPSIS

#include <stdio.h>

int ferror(stream)
FILE *stream;

int feof(stream)
FILE *stream;

void clearerr(stream)
FILE *stream;

int fileno(stream)
FILE *stream;

DESCRIPTION

The function f error determines if an 110 error has occurred when reading
from or writing to the named stream.

The function f eof determines if EOF has been detected when reading the
named stream.

The function clearerr resets both the error and EOF indicator to false
on the named stream. The EOF indicator is reset when the file pointer
associated with stream is repositioned, e.g., by the FSEEK(BA_OS) or
REWIND(BA_OS) routines, or can be reset with clearerr.

The function f i 1 eno gets the integer file-descriptor associated with the
named stream [see OPEN(BA_OS)].

RETURN VALUE

The function ferror will return non-zero when an I/O error has previously
occurred reading from or writing to the named stream; otherwise, the
function fer r 0 r will return zero.

The function f eof will return non-zero when EOF has previously been
detected reading the named input stream; otherwise, the function feof
will return zero.

The function f i 1 eno will return the integer file-descriptor number associ­
ated with the named stream.

APPLICATION USAGE

All of these functions are implemented as macros; they cannot be declared or
redeclared.

The function f i 1 eno returns a file-descriptor that can be used with non­
stdio routines, such as WRITE(BA_OS) and LSEEK(BA_OS) routines, to manipu­
late the associated file, but these routines are not recommended for use by
application-programs.

Page 80 Base System Definition

SEE ALSO
OPEN(BA_OS), FOPEN(BA_OS).

LEVEL
Levell.

Base System Definition

FERROR(BA_ OS)

Page 81

NAME

fopen, freopen, fdopen - open a stream

SYNOPSIS
#include <stdio.h>

FILE *fopen{path, type)
char *path, *type;

FILE *freopen{path, type, stream)
char *path, *type;
FILE *stream;

FILE *fdopen{fildes, type)
int fildes;
char *type;

DESCRIPTION

The function f open opens the file named by path and associates a
stream with it [see stream in Chapter 4 - Definitions)' The function
fopen returns a pointer to the FILE structure associated with the stream.

The function freopen substitutes the named file in place of the open
stream. The original stream is closed, regardless of whether the open
ultimately succeeds. The function freopen returns a pointer to the
FILE structure associated with stream.

The function freopen is typically used to attach the preopened streams
associated with stdin, stdout and stderr to other files. The stan­
dard error output stream stderr is by default unbuffered but use of the
function freopen will cause it to become buffered or line-buffered.

The argument path points to a character-string that names the file to be
opened.

The argument type is a character-string having one of the following
values:

r open for reading.

w truncate or create for writing.

a append; open for writing at the end of the file, or create for writ-
ing.

r + open for update (reading and writing).

w+ truncate or create for update.

a + append; open or create for update (appending) to the end of the
file.

Page 82 Base System Definition

When a file is opened for update, both input and output may be done on the
resulting stream. However, output may not be directly followed by input
without an intervening call to the FSEEK(BA_OS) or REWIND(BA_OS) routine,
and input may not be directly followed by output without an intervening call
to the FSEEK(BA_OS) or REWIND(BA_OS) routine or an input operation which
encounters end-of-file.

When a file is opened for append (i.e., when type is a or a+) it is impos­
sible to overwrite information already in the file. The FSEEK(BA_OS) routine
may be used to reposition the file-pointer to any position in the file, but when
output is written to the file, the current file-pointer is disregarded. All output
is written at the end of the file. For example, if two separate processes open
the same file for append, each process may write to the file without overwrit­
ing output being written by the other, and the output from the two processes
would be interleaved in the file.

The function fdopen associates a stream with a file-descriptor,
fildes. The type of stream given to fdopen must agree with the
mode of the already open file. File-descriptors are obtained from the routines
which open files but do not return pointers to a FILE structure stream.
Streams are necessary input for many of the stdio routines.

RETURN VALUE

The functions fopen and freopen return a NULL pointer if path
cannot be accessed or if type is invalid or if the file cannot be opened.

The function fdopen will return a NULL pointer if fildes is not an
open file-descriptor or if type is invalid or if the file cannot be opened.

The function fopen or the function fdopen may also fail if there are no
free stdio streams.

ERRORS

When the file cannot be opened, the function fop e n or the function
freopen will fail and will set errno to:

ENOTDIR if a component of the path-prefix in path is not a directory.

ENOENT if the named file does not exist or a component of the path-name
should exist but does not.

EACCES if a component of the path-prefix denies search permission or
type permission is denied for the named file.

EISDIR if the named file is a directory and type is write or read/write.

EROFS if the named file resides on a read-only file system and type is
write or read/write.

ETXTBSY if the file is a pure procedure (shared text) file that is being exe­
cuted and type is write or read/write.

EINTR if a signal was caught during the open operation.

Base System Definition Page 83

FOPEN(BA _OS)

SEE ALSO

CREAT(BA_OS), DUP(BA_OS), OPEN(BA_OS), PIPE(BA_OS), FCLOSE(BA_OS),

FSEEK(BA _OS).

LEVEL

Levell.

Page 84 Base System Definition

NAME

fork - create a new process

SYNOPSIS

int fork ()

DESCRIPTION

The function fork creates a new process. The new process {child-process}
is a copy of the calling-process {parent-process}. This means the child­
process inherits the following attributes from the parent-process:

environment
close-on-exec flag [see EXEC(BA_OS)]

signal-handling settings {Le., SIG DFL, SIG IGN, address}
set-user-ID mode bit - -
set-group-ID mode bit
process-group-ID
tty-group-ID [see EXIT(BA_OS) and SIGNAL(BA_OS)]

current -working-directory
root-directory
file mode creation mask [see UMASK(BA_OS)]

file size· limit [see ULlMIT(BA_OS)]

Additional attributes associated with an Extension to the Base System may
be inherited from the parent-process [see, for example, Part III - Kernel
Extension Definition].

The child-process differs from the parent-process as follows:

The child-process has a unique process-ID

The child-process has a different parent-process-ID {i.e., the process-ID of
the parent-process}.

The child-process has its own copy of the parent's file-descriptors. Each
of the child-process's file-descriptors shares a common file-pointer with the
corresponding file-descriptor of the parent-process.

The child-process's utime, stime, cutime, and cstime are set
to 0 . The time left until an alarm clock signal is reset to o.

(File-locks set by the parent-process are not inherited by the child-process
[see FCNTL(BA_OS) or LOCKF(BA_OS)]).

RETURN VALUE

If successful, the function fork will return 0 to the child-process and will
return the process-ID of the child-process to the parent-process; otherwise, it
will return -1 to the parent-process, no child-process will be created and
errno will indicate the error.

Base System Definition Page 85

ERRORS

Under the following conditions, the function fork will fail and will set
errno to:

EAGAIN if the system-imposed limit on the total number of processes
under execution system-wide {PROC_MAX} or by a single user-ID
{CHILD_MAX} would be exceeded.

ENOMEM if the process requires more space than the system is able to sup­
ply.

APPLICATION USAGE

The function fork creates a new process that is a copy of the calling­
process and both processes will run as system resources become available.
Because the goal is typically to create a new process that is different from the
parent-process (i.e., the goal is to start a new program running) often the
child-process immediately calls an EXEC(BA_OS) routine to transform itself
and start the new program.

If possible, applications should use the SYSTEM(BA_OS) routine, which is
easier to use and supplies more functions, rather than the FORK(BA_OS) and
EXEC(BA_ as) routines.

SEE ALSO

ALARM(BA_OS), EXEC(BA_OS), FCNTL(BA_OS), LOCKF(BA_OS), SIGNAL(BA_OS),

TIMES(BA_OS), ULlMIT(BA_OS), UMASK(BA_OS), WAIT(BA_OS).

LEVEL

Levell.

Page 86 Base System Definition

NAME

fread, fwrite - buffered input/output

SYNOPSIS

#include <stdio.h>

int fread(ptr, size, nitems, stream)
char *ptr;
int size, nitems;
FILE *stream;

int fwrite(ptr, size, nitems, stream)
char *ptr;
int size, nitems;
FILE *stream;

DESCRIPTION

The function fread reads into an array pointed to by ptr up to
ni tems items of data from the named input stream, where an item of
data is a sequence of bytes (not necessarily terminated by a null byte) of
length s i z e. The function f rea d stops appending bytes if an end-of-file
or error condition is encountered while reading stream, or if ni tems
items have been read. The function fread increments the data-pointer in
stream to point to the byte following the last byte read if there is one [see
FSEEK(BA_OS)1. The function fread does not change the contents of
stream.

The function fwri te appends to the named output stream at most
ni tems items of data from the array pointed to by ptr. The function
fwri te stops appending when it has appended ni tems items of data or
if an error condition is encountered on stream. The function fwri te
does not change the contents of the array pointed to by ptr. The function
fwri te increments the data-pointer in stream by the number of bytes
written.

RETURN VALUE
If successful, both the function fread and the function fwri te will
return the number of items read or written. If size or nitems is non­
positive, no characters will be read or written and both fread and
fwri te will return O.

APPLICATION USAGE

The argument size is typically sizeof (*ptr), where the C operator
s i z e 0 f gives the length of an item pointed to by p t r . If p t r points to
a data type other than char it should be cast into a pointer to char.

The FERROR(BA_ OS) or FEOF(BA_ OS) routines must be used to distinguish
between an error condition and an end-of-file condition.

Base System Defiriition Page 87

FREAD(BA _OS)

SEE ALSO
FERROR(BA_OS), FOPEN(BA_OS), FSEEK(BA_OS), GETC(BA_LlB), GETS(BA_LlB),

PRINTF(BA_LlB), PUTC(BA_LlB), PUTS(BA_LlB), READ(BA_OS), SCANF(BA __ LlB).

WRITE(BA_OS),

FUTURE DIRECTIONS
The type of the argument size to the functions fread and fwri te
will be declared through the typedef facility in a header file as
size t.

LEVEL
Levell.

Page 88 Base System Definition

NAME
fseek, rewind, ftell - reposition a file-pointer in a stream

SYNOPSIS
#include <stdio.h>

int fseek(stream, offset, whence)
FILE *stream;
long offset;
int whence;

void rewind(stream)
FILE *stream;

long ftell(stream)
FILE *stream;

DESCRIPTION
The function f see k sets the position of the next input or output operation
on the stream. The new position is at the signed distance offset bytes
from the beginning, from the current position, or from the end of the file,
according as whence has the value 0, 1, or 2.

The call rewind (stream) is equivalent to the following:

fseek(stream,OL,O)

except that the function rewind returns no value.

The functions f seek and rewind undo any effects of the
UNGETC(BA_LlB) routine. After fseek or rewind, the next operation on
a file opened for update may be either input or output.

The function fte 11 returns the offset of the current byte relative to the
beginning of the file associated with the named stream. The offset is
always measured in bytes.

RETURN VALUE
The function f see k will return non-zero for improper seeks; otherwise, the
function f see k will return zero. An improper seek is, for example, an
fseek on a file that has not been opened via the FOPEN(BA_OS) routine; on
a device incapable of seeking, such as a terminal; or on a stream opened via
the POPEN(BA_OS) routine.

SEE ALSO
LSEEK(BA_OS), FOPEN(BA_OS), POPEN(BA_OS), UNGETC{BA_LlB).

FUTURE DIRECTIONS
Symbolic constants for the values of whence will be defined by the
<unistd. h> header file [see LSEEK(BA_OS)1.

LEVEL
Levell.

Base System Definition Page 89

NAME

getcwd - get path-name of current working directory

SYNOPSIS

char *getcwd(buf, size)
char *buf;
int size;

DESCRIPTION

The function getcwd returns a pointer to the current directory path-name.
The value of s i z e must be at least two greater than the length of the
path-name to be returned.

RETURN VALUE

If s i z e is not large enough or if an error occurs in a lower-level function,
the function getcwd will return NULL and errno will indicate the
error.

ERRORS

Under the following conditions, the function getcwd will fail and will set
errno to:

EINVAL if size is zero

ERANGE if size not large enough to hold the path-name.

LEVEL

Level 1.

Page 90 Base System Definition

GETPID(BA _OS)

NAME

getpid, getpgrp, getppid - get process-ID, process-group-ID, and parent­
process-ID

SYNOPSIS
int getpid ()

int getpgrp ()

int getppid ()

DESCRIPTION

The function getpid returns the process-ID of the calling-process.

The function getpgrp returns the process-group-ID of the calling-process.

The function getppid returns the parent-process-ID of the calling-process.

SEE ALSO
EXEC(BA_OS), FORK(BA_OS), SETPGRP(BA_OS), SIGNAL(BA_OS).

LEVEL

Levell.

Base System Definition Page 91

GETUID(BA _OS)

NAME
getuid, geteuid, getgid, getegid - get real-user-ID, effective-user-ID, real­
group-ID, and effective-group-IDs

SYNOPSIS
unsigned short getuid()

unsigned short geteuid()

unsigned short getgid()

unsigned short getegid()

DESCRIPTION
The function getuid returns the real-user-ID of the calling-process.

The function geteuid returns the effective-user-ID of the calling-process.

The function getgid returns the real-group-ID of the calling-process.

The function getegid returns the effective-group-ID of the calling­
process.

SEE ALSO
SETUID(BA_ OS).

LEVEL
Levell.

Page 92 Base System Definition

IOCTL(BA _OS)

NAME

ioctl - control device

SYNOPSIS

int ioctl(fildes, request, arg)
int fildes, request;

DESCR,PTION

The function i 0 c t I performs a variety of control functions on devices.
This call passes the request to a device-driver to perform device-specific con­
trol functions.

NOTE: This control is not frequently used and the basic input/output opera­
tions are performed by the READ(BA_OS) and WRITE(BA_OS) routines.

The argument f i Ide s is an open file-descriptor that refers to a device.

The argument request selects the control function to be performed and
will depend on the device being addressed.

The argument arg represents additional information that is needed by this
specific device to perform the requested function. The data type of arg
depends upon the particular control request, but it is either an integer or a
pointer to a device-specific data structure.

In addition to device-specific functions, there are generic functions that are
provided by more than one device-driver, for example, the general terminal
interface [see TERMIO(BA_ENV)].

RETURN VALUE

If successful, the function ioctl will return a value that depends upon the
device control function, but must be an integer value; otherwise, it will return
-1 and errno will indicate the error.

ERRORS

Under the following conditions, the function ioctl will fail and will set
errno to:

EBADF if f i Ide s is not a valid open file-descriptor.

ENOTTY if fildes is not associated with a device-driver that accepts
control functions.

EINTR if a signal was caught during the ioctl operation.

The function i 0 c t I will also fail if the device-driver detects an error. In
this case, the error is passed through ioctl without change to the caller.
A particular device-driver might not have all of the following error cases.

Base System Definition Page 93

Under the following conditions, requests to standard device-drivers may fail
and errno will be set to:

EINVAL if request or arg are not valid for this device.

E 10 if some physical 110 error has occurred.

ENXIO if request and arg are valid for this device-driver, but the
service requested can not be performed on this particular sub­
device.

SEE ALSO
The specific device reference documents and generic devices such as the gen­
eral terminal interface [see TERMIO(BA_ENV)1.

LEVEL
Levell.

Page 94 Base System Definition

KILL(BA _OS)

NAME

kill - send a signal to a process or a group of processes

SYNOPSIS

#include <signal.h>
int kill(pid, sig)
int pid, sig;

DESCRIPTION

The function k i 11 sends a signal to a process or a group of processes.

The signal that is to be sent is specified by the argument s i g and is either
one from the list given in SIGNAL(BA_OS)t or o. If sig is 0 (the null sig­
nal) t error checking is performed but no signal is actually sent. This can be
used to check the validity of pid.

The process or group of processes to which the signal is to be sent is specified
by the argument pid. The argument pid specifies the processes to
receive the signal as follows:

If pi d is greater than 0 t S i g will be sent to the process whose
process-ID is equal to pid.

If pi d is 0 t S i g will be sent to all processes t excluding special system
processes t whose process-group-ID is equal to the process-group-ID of the
sender.

If pi d is negative but not -1 t s i g will be sent to all processes whose
process-group-ID is equal to the absolute value of pid.

If pi d is -1 t s i g will be sent to all processest excluding special
system-processes.

Of the processes specified by pid t only those where the real-user-ID or
effective-user-ID of the sending-process matches the real-user-ID or effective­
user-ID of the receiving-process will be sent the signal t unless the effective­
user-ID of the sending-process is super-user.

RETURN VALUE

If successfult the function k iII will return 0; otherwiset it will return
-1 t no signal will be sent and errno will indicate the error.

ERRORS

Under the following conditions t the function k iII will fail and will set
errno to:

EINVAL if sig is not a valid signal number or if sig is SIGKILL
and pid is a special system-process.

ESRCH if no process corresponding to pid can be found.

EPERM if the user-ID of the sending-process is not super-usert and its
real-user-ID (or effective-user-ID) does not match either the real­
user-ID or effective-user-ID of the receiving-process.

Base System Definition Page 95

SEE ALSO
GETPID(BA _OS), SETPGRP(BA _OS), SIGNAL(BA _OS).

FUTURE DIRECTIONS
EPERM will be returned in errno if sig is SIGKILL and pid is a
special system-process.

LEVEL
Levell.

Page 96 Base System Definition

NAME

link - link to a file

SYNOPSIS

int link(path1, path2)
char *path1, *path2;

DESCRIPTION

The function link creates a new link (directory entry) for the existing file.

The argument path 1 points to a path-name naming an existing file.

The argument pa th2 points to a path-name naming the new directory
entry to be created.

RETURN VALUE

If successful, the function link will return 0; otherwise, it will return
-1, no link will be created and errno will indicate the error.

ERRORS

Under the following conditions, the function 1 ink will fail and will set
errno to:

ENOTDIR if a component of either path-prefix is not a directory.

ENOENT if a component of either path-name should exist but does not.

EACCES if a component of either path-prefix denies search permission, or
if the requested link requires writing in a directory with a mode
that denies write permission.

EEXIST if the link named by path2 exists.

EPERM if the file named by path 1 is a directory and the effective­
user-ID is not super-user.

EXDEV if the link named by pa th2 and the file named by pa th 1 are
on different logical devices (file-systems) and the implementation
does not permit cross-device links.

EROFS if the requested link requires writing in a directory on a read-only
file-system.

EMLINK if the maximum number of links to a single file, {LINK_MAX},
would be exceeded.

ENOSPC if the directory to contain the link cannot be extended.

SEE ALSO
UNLlNK(BA _OS).

LEVEL

Levell.

Base System Definition Page 97

LOCKF(BA _OS)

NAME

lockf - record locking on files

SYNOPSIS

#include <unistd.h>

int lockf(fildes, function, size)
int fildes, function;
long size;

DESCRIPTION

NOTE: The function lockf first became available following System V
Release 1.0 and System V Release 2.0.

The function lockf will allow sections of a file to be locked. Calls to the
function lockf from other processes which attempt to lock the locked file
section will either return an error value or be put to sleep until the resource
becomes unlocked. All the locks for a process are removed when the process
terminates [see FCNTL(BA_OS) for more information about record-locking].

The argument f i 1 des is an open file-descriptor. The file-descriptor must
have been opened with write-only permission (0 WRONLY) or with
read/write permission (0 RDWR) in order to establish a lock with this func­
tion call [see OPEN(BA_OS»).

The argument function is a control value which specifies the action to be
taken. The permissible values for function are defined by the
<unistd. h> header file as follows:

#define F ULOCK 0 /* unlock locked sections *1 -#define F LOCK /* lock a section */ -
/* for exclusive use */

#define F TLOCK 2 /* test and lock a section */ -
/* for exclusive use */

#define F TEST 3 /* test section for locks */ -
/* by other processes *1

F TEST detects if a lock by another process is present on the specified sec­
tion; F LOCK and F TLOCK both lock a section of a file if the section is
available; F ULOCK removes locks from a section of the file. All other
values of fu~ction are reserved for future extensions and will result in an
error return if they are not implemented.

The argument s i z e is the number of contiguous bytes to be locked or
unlocked. The resource to be locked or unlocked starts at the current offset
in the file and extends forward for a positive size or backward for a negative
size (the preceding bytes up to but not including the current offset>. If
s i z e is 0, the section from the current offset through the largest file offset
{FCHR_MAX} is locked (i.e., from the current offset through the present or
any future end-of-file). An area need not be allocated to the file in order to
be locked as such locks may exist past the end-of-file.

Page 98 Base System Definition

LOCKF(BA_OS)

The sections locked with F LOCK or F TLOCK may, in whole or in part,
contain or be contained by a previously locked section for the same process.
When this occurs, or if adjacent locked sections would occur, the sections are
combined into a single locked section. If the request requires that a new ele­
ment be added to the table of active locks and this table is already full, an
error is returned, and the new section is not locked.

F LOCK and F TLOCK requests differ only by the action taken if the
resource is not aviilable. F LOCK will cause the calling-process to sleep
until the resource is available. - F TLOCK will cause the function to return
a -1 and set err n 0 to E ACe E S if the section is already locked by
another process.

F _ ULOCK requests may release (wholly or in part) one or more locked sec­
tions controlled by the process. Locked sections will be unlocked starting at
the point of the file offset through s i z e bytes or to the end of file if s i z e
is o. When all of a locked section is not released (i.e., the beginning or end
of the area to be unlocked falls within a locked section) the remaining por­
tions of that section are still locked by the process. For example, releasing a
center portion of a locked section will leave the portions of the section before
and after it locked and requires an additional element in the table of active
locks. If this table is full, an EDEADLK error is returned in errno and
the requested section is not released.

A potential for deadlock occurs if a process controlling a locked resource is
put to sleep by accessing another process's locked resource. Thus calls to the
function lockf or the FCNTL(BA_OS) routine scan for a deadlock prior to
sleeping on a locked resource. An error return is made if sleeping on the
locked resource would cause a deadlock.

Sleeping on a resource is interrupted with any signal. The ALARM(BA_OS)
routine may be used to provide a timeout facility in applications requiring it.

RETURN VALUE

If successful, the function lockf will return 0; otherwise, it will return
-1 and errno will indicate the error.

ERRORS

The function lockf will fail and will set errno to:

EBADF if f i Ide s is not a valid open file-descriptor.

EACCES if function is F TLOCK or F TEST and the section is
already locked by another process. -

EDEADLK if function is F LOCK and a deadlock would occur; also if
function is FLOCK, F TLOCK or F ULOCK and there
are not enough e~tries in the system lock table to honor the
request.

Base System Definition Page 99

APPLICATION USAGE

Because in the future the variable errno will be set to EAGAIN rather
than EACCES when a section of a file is already locked by another process,
portable application programs should expect and test for either value, for
example:

if (lockf(fd, F_TLOCK, siz) == -1)
if «errno == EAGAIN) I I (errno == EACCES»

/*
* section locked by another process
* check for either EAGAIN or EACCES
* due to different implementations
*/

else if ...
/*
* check for other errors
*/

File-locking and record-locking should not be used in combination with the
FOPEN(BA_OS), FREAD(BA_OS), FWRITE(BA_OS), etc. stdio routines. Instead,
the more primitive, non-buffered routines (e.g., the OPEN(BA_ OS) routine}
should be used. Unexpected results may occur in processes that do buffering
in the user address space. The process may later read/write data which
is/was locked. The stdio routines are the most common source of unexpected
buffering.

SEE ALSO
CHMOD(BA_OS), CLOSE(BA_OS), CREAT(BA_OS), FCNTL(BA_OS), OPEN(BA_OS),

READ(BA_OS), WRITE(BA_OS).

FUTURE DIRECTIONS
The error condition which currently sets errno to EACCES will instead
set errno to EAGAIN [see also APPLICATION USAGE above1.

Enforcement-mode file and record locking will be added:

Sections of a file will be locked with advisory-mode or enforcement-mode
locks depending on the mode of the file [see CHMOD(BA_OS)]

LEVEL

Levell.

Page 100 Base System Definition

LSEEK(BA _OS)

NAME

Iseek - move read/write file-pointer

SYNOPSIS

long lseek(fildes, offset, whence)
int fildes;
long offset;
int whence;

DESCRIPTION

The function lseek sets the file-pointer associated with fildes as fol­
lows:

If whence is 0, the function lseek will set the file-pointer equal to
offset bytes.

If whence is 1, the function lseek will set the file-pointer equal to
its current location plus offset.

If whence is 2, the function lseek will set the file-pointer equal to
the length of the file plus 0 f f set.

If successful, the function lseek returns the resulting pointer location, as
measured in bytes from the beginning of the file. The function 1 see k
modifies the file-pointer and does not affect the physical device.

The argument fildes is an open file-descriptor [see file-descriptor in
Chapter 4 - Definitions1.

RETURN VALUE

If successful, the function 1 see k will return a file-pointer value; otherwise,
it will return -1, the file-pointer will remain unchanged and errno will
indicate the error.

ERRORS

Under the following conditions, the function 1 see k will fail and will set
errno to:

EBADF if f i Ide s is not an open file-descriptor.

ESPIPE if fildes is associated with a pipe or FIFO.

EINVAL if whence is not 0, 1, or 2.

The significance of the file-pointer associated with a device incapable of seek­
ing, such as a terminal, is undefined.

APPLICATION USAGE

Normally, applications should use the stdio routines to open, close, read,
write and manipulate files. Thus, an application that had used the
FOPEN(BA_OS) stdio routine to open a file would use the FSEEK(BA_OS) stdio
routine rather than the function 1 see k.

Base System Definition Page 101

LSEEK(BA _OS)

The function 1 see k allows the file-pointer to be set beyond the existing
data in the file. If data are later written at this point, subsequent reads in
the gap between the previous end of data and the newly written data will
return bytes of value 0 until data are written into the gap.

SEE ALSO

CREAT(BA_OS), DUP(BA_OS), FCNTL(BA_OS), OPEN(BA_OS).

FUTURE DIRECTIONS

The < un is t d • h> header file will define the following symbolic constants
for the argument whence to the seek and lseek functions:

Name
SEEK SET
SEEK CUR
SEEK END

LEVEL

Levell.

Page 102

Description
set file-pointer to 0 f f set.
set file-pointer to current plus offset;
set file-pointer to EO F plus 0 f f set.

Base System Definition

MALLOC(BA_OS)

NAME
malloc, free, realloc, calloc, mallopt, mallinfo - fast main memory allocator

SYNOPSIS
#inc1ude <ma11oc.h>

char *ma11oc(size)
unsigned size;

void free(ptr)
char *ptr;

char *rea11oc(ptr, size)
char *ptr;
unsigned size;

char *ca11oc(ne1em, e1size)
unsigned ne1em, e1size;

int ma11opt(cmd, value)
int cmd, value;

struct ma11info ma11info()

DESCRIPTION
The function ma 11 0 c and the function f r e e provide a simple general­
purpose memory allocation package.

The function ma 11 0 c returns a pointer to a block of at least s i z e bytes
suitably aligned for any use.

The argument to the function f r e e is a pointer to a block previously allo­
cated by the function ma11oc; after the function free is performed this
space is made available for further allocation.

Undefined results will occur if the space assigned by the function ma 11 0 c
is overrun or if an invalid value for ptr is passed to the function free.

The function rea 110 c changes the size of the block pointed to by p t r to
s i z e bytes and returns a pointer to the (possibly moved) block. The con­
tents will be unchanged up to the lesser of the new and old sizes.

The function ca110c allocates space for an array of ne 1em elements of
size e 1 s i z e. The space is initialized to zeros.

Available in System V Release 2.0, the function ma110pt plus the func­
tion ma 11 in f 0 allow tuning the allocation algorithm at execution time.

The function ma110pt initiates a mechanism that can be used to allocate
small blocks of memory quickly. Using this scheme, a large-group (called a
holding-block) of these small-blocks is allocated at one time. Then, each
time a program requests a small amount of memory from mal10c a
pointer to one of the pre-allocated small-blocks is returned. Different
holding-blocks are created for different sizes of small-blocks and are created
when needed.

Base System Definition Page 103

The function ma 11 opt allows the programmer to set three parameters to
maximize efficient small-block allocation for a particular application. the
three parameters are:

The value of s i z e below which requests to ma 11 0 c will be filled
using the special small-block algorithm. Initially, this value, which will be
called max/ast, is zero, which means that the small-block option is not
normally in use by ma11oc.

The number of small-blocks in a holding-block. If holding-blocks have
many more small-blocks than the program is using, space will be wasted.
If holding-blocks are too small, have too few small-blocks in each, perfor­
mance gain is lost.

The grain of small-block sizes. This value determines what range of
small-block sizes will be considered to be the same size. This influences
the number of separate holding-blocks allocated. For example, if grain
were 16-bytes, all small-blocks of 16-bytes or less would belong to one
holding-block and blocks from 17-bytes to 32-bytes would belong to
another holding-block. Thus, if grain is too small space may be wasted
because many holding-blocks may be created.

The values for the argument cmd to the function ma 11 opt are:

M MXFAST

M NLBLKS

M GRAIN

M KEEP

Set max/ast to value. The algorithm allocates all blocks
below the size of max/ast in large-groups and then doles
them out very quickly. The default value for max/ast is o.
Set numlblks to value. The above mentioned large­
groups each contain numlblks blocks. The value for
numlblks must be greater than 1. The default value for
numlblks is 1 00.

Set grain to value. The sizes of all blocks smaller than
max/ast are considered to be rounded up to the nearest
mUltiple of grain. The value for grain must be greater than
o. The default value for grain is the smallest number of
bytes which will allow alignment of any data type. The
val u e will be rounded up to a multiple of the default
when grain is set.

Preserve data in a freed-block until the next call to the
function ma11oc, rea11oc, or ca11oc. This option
is provided only for compatibility with the older version of
the function ma 11 0 c and is not recommended.

These cmd values are defined by the < ma 11 0 c • h> header file.

The function ma110pt may be called repeatedly, but the parameters may
not be changed after the first small-block is allocated from a holding-block.
If ma 11 opt is called again after the first small-block is allocated using the
small-block algorithm, it will return an error.

Page 104 Base System Definition

MALLOC(BA_ OS)

The function ma 11 in f ° can be used during a program development to
determine the best settings of these parameters for a particular application.
The function ma 11 in f 0 must not be called until after some storage has
been allocated using the function ma 11 ° c. The function ma 11 in f ° pro­
vides information describing space usage. It returns the structure mal­
linfo, which includes the following members:

int arena;
int ordblks;
int smblks;
int hblkhd;
int hblks;
int usmblks;
int fsmblks;

1* total space in arena *1
1* number of ordinary-blocks *1
1* number of small-blocks *1
1* space in holding-block overhead *1
1* number of holding-blocks *1
1* space in small-blocks in use *1
1* space in free small-blocks *1

int uordblks; 1* space in ordinary-blocks in use *1
int fordblks; 1* space in free ordinary-blocks *1
int keepcost; 1* space penalty for keep option *1

The structuremall in f ° is defined by the < ma 11 ° c . h> header file.

RETURN VALUE

Each of the allocation functions malloc, realloc, and calloc
returns a pointer to space suitably aligned (after possible pointer coercion)
for storage of any type of object.

The functions malloc, realloc, and calloc return a NULL
pointer if nbytes is 0 or if there is not enough available memory. When
the function realloc returns NULL, the block pointed to by ptr is left
intact.

If the function ma 110pt is called after any allocation from a holding-block
or if the arguments c md or va 1 u e are invalid, the function ma 11 0 p t
will return a non-zero value; otherwise, it will return O.

APPLICATION USAGE

The functions mallopt and mallinfo and the <malloc. h> header
file first appeared in System V Release 2.0.

In System V Release 2.0, the developer can control whether the contents of
the freed space are destroyed or left undisturbed (see the function ma 1-
lopt above). In System V Release 1.0, the contents are left undisturbed.

Allocation time increases when many objects have been allocated and not
freed. The additional System V Release 2.0 routines provide some flexibility
in dealing with this.

LEVEL

Levell.

Base System Definition Page 105

MKNOD(BA_OS)

NAME

mknod - make a directory. or a special or ordinary-file

SYNOPSIS

int mknod(path, mode, dev)
char *path;
int mode, dev;

DESCRIPTION
The function mknod creates a new file named by the path-name pointed to
by the argument path.

The mode of the new file is initialized from the argument mode. Where
the value of mode is interpreted as follows:

o 1 7 0 0 0 0 file type; one of the following:

0010000 FIFO-special
o 0 2 0 0 0 0 character-special
o 0 4 0 0 0 0 directory
0060000 block-special
0100000 or 0000000 ordinary-file

o 0 040 0 0 set user-ID on execution

0002000 set group-ID on execution

o 0 0 1 0 0 0 (reserved)

o 0 0 0 777 access permissions; constructed from the following:

o 0 0 040 0 read by owner
0000200 write by owner
o 0 0 0 1 0 0 execute (search on directory) by owner
0000070 read. write. execute (search) by group
0000007 read. write. execute (search) by others

The owner-ID of the file is set to the effective-user-ID of the process. The
group-ID of the file is set to the effective-group-ID of the process.

Values of mode other than those above are undefined and should not be
used. The owner. group and other permission bits of mode are modified by
the process's file mode creation mask: the function mknod clears each bit
whose corresponding bit in the process's file mode creation mask is set [see
UMASK(BA_ OS)].

If the argument mode indicates a block-special or character-special file. the
argument dev is a configuration-dependent specification of a character or
block 110 device. The value of dev is obtained from the st dev field of
the stat structure [see STAT(BA_OS»). If mode does not indicate a
block-special or character-special device. dev is ignored.

The function mknod may be invoked only by the super-user for file types
other than FIFO-special.

Page 106 Base System Definition

MKNOD(BA _OS)

RETURN VALUE

If successful, the function mknod will return 0; otherwise, it will return
- 1, the new file will not be created and err n 0 will indicate the error.

ERRORS

Under the following conditions, the function mknod will fail and will set
errno to:

EPERM if the effective-user-ID of the process is not super-user and the file
type is not FIFO-special.

ENOTDIR if a component of the path-prefix is not a directory.

ENOENT if a component of the path-prefix does not exist.

EACCES if a component of the path-prefix denies search permission and
the effective-user-ID of the process is not super-user.

EROFS if the directory in which the file is to be created is located on a
read-only file system.

EEXIST if the named file exists.

ENOSPC if the directory to contain the new file cannot be extended.

SEE ALSO

CHMOD(BA _OS), EXEC(BA _OS), ST AT(BA _OS), UMASK(BA_ OS).

LEVEL

Levell.

Base System Definition Page 107

NAME

mount - mount a file system

SYNOPSIS

int mount(spec, dir, rwflag)
char *spec, *dir;
int rwflag;

DESCRIPTION
The function mount requests that a removable file system contained on the
block-special file identified by the argument spec be mounted on the direc­
tory identified by the argument d i r.

The arguments s pe c and d i r are pointers to path-names.

When the function moun t succeeds, references to the file named by d i r
will refer to the root-directory on the mounted file system.

The low-order bit of the argument rwflag is used to control write permis­
sion on the mounted file system; if the bit is set to 1, writing is forbidden;
otherwise, writing is permitted according to individual file accessibility.

The function mount may be invoked only by the super-user.

RETURN VALUE

If successful, the function moun t will return 0; otherwise, it will return
-1 and errno will indicate the error.

ERRORS

Under the following conditions, the function mount will fail and will set
errno to:

EPERM if the effective-user-ID is not super-user.

ENOENT if any of the named files does not exist.

ENOTDIR if a component of a path-prefix is not a directory.

ENOTBLK if the device identified by spec is not block-special.

ENXIO if the device identified by spec does not exist.

ENOTDIR if dir is not a directory.

EBUSY if dir is currently mounted on, is someone's current working
directory, or is otherwise busy.

EBUSY if the device identified by spec is currently mounted.

EBUSY if there are no more mount-table entries.

APPLICATION USAGE
The function mount is not recommended for use by application-programs.

SEE ALSO
UMOUNT(BA _OS).

Page 108 Base System Definition

FUTURE DIRECTIONS
The external variable errno will be set to EAGAIN rather than EBUSY
when the system mount-table is full.

Additional optional arguments will be added to the mount function. New
bit-patterns will be added to the set of possible values of the argument
rwflag. Some of these patterns will be used to indicate if an optional
argument is present.

LEVEL
Levell.

Base System Definition Page 109

OPEN(BA_OS)

NAME

open - open for reading or writing

SYNOPSIS

#include <fcntl.h>

int open(path, of lag , mode)
char *path;
int of lag , mode;

DESCRIPTION

The function open opens a file-descriptor for the named file.

The argument pa th points to a path-name naming a file.

The function open sets the file status flags according to the value of the
argument 0 f lag. Symbolic names of flags are defined by the
<fcntl. h> header file. The values of of lag are constructed by ORing
flags from the following list (only one of the first three flags below may be
used):

o RDONLY Open for reading only.

o WRONL Y Open for writing only.

o RDWR Open for reading and writing.

o NDELAY This flag may. affect subsequent reads and writes [see
READ(BA_OS) and WRITE(BA_OS)1.

When opening a FIFO with 0 RDONLYor 0 WRONLY set:

If 0 NDELAY is set:

An open for reading-only will return without delay. An
open for writing-only will return an error if no process
currently has the file open for reading.

If 0 NDELAY is clear:

An open for reading-only will block until a process opens
the file for writing. An open for writing-only will block
until a process opens the file for reading.

When opening a file associated with a communication line:

If 0 NDELAY is set:

The open will return without waiting for carrier.

If 0 NDELAY is clear:

The open will block until carrier is present.

o APPEND If set, the file-pointer will be set to the end of the file prior to
each write.

Page llO Base System Definition

° CREAT If the file exists, this flag has no effect. Otherwise, the file is
created, the owner-ID of the file is set to the effective-user-ID
of the process, the group-ID of the file is set to the effective­
group-ID of the process, and the access permission bits [see
CHMOD(BA_OS)] of the file mode are set to the value of mode
modified as follows [see CREAT(BA_OS)]:

° TRUNC

° EXCL

The corresponding bits are ANDed with the complement of the
process's file mode creation mask [see UMASK(BA_OS»). Thus,
the function open clears each bit in the file mode whose
corresponding bit in the file mode creation mask is set.

If the file exists, its length is truncated to 0 and the mode and
owner are unchanged.

If ° EXCL and ° CREAT are set, the function open will
fail if the file exists. -

The file pointer used to mark the current position within the file is set to the
beginning of the file.

The new file-descriptor is the lowest-numbered file-descriptor available and is
set to remain open across calls to the EXEC(BA_OS) routines [see
FCNTL(BA_OS»).

RETURN VALUE

If successful, the function open will return an open file-descriptor; other­
wise, it will return -1 and errno will indicate the error.

ERRORS

Under the following conditions, the function open will fail and will set
errno to:

ENOTDIR if a component of the path-prefix is not a directory.

ENOENT if ° CREAT is not set and the named file does not exist, or a
compOnent of the path-name should exist but does not.

EACCES if a component of the path-prefix denies search permission; or if
the file does not exist and the directory that would contain the file
does not permit writing.

EACCES if the of lag permission is denied for the named file.

E I S D I R if the named file is a directory and the 0 f 1 a g permission is
write or read/write.

EROFS if the named file resides on a read-only file system and the
of 1 a g permission is write or read/write.

EMFILE if {OPEN_MAX} file-descriptors are currently open in this process.

Base System Definition Page III

OPEN(BA _OS)

ENXIO if the named file is a character-special or block-special file and
the device associated with this special file does not exist; or if
o NDELAY is set, the named file is a FIFO, 0 WRONLY is set
an-d no process has the file open for reading. -

ETXTBSY if the file is a pure procedure (shared text) file that is being exe-
cuted and 0 f 1 a g specifies write or read/write permission.

EEXIST if 0_ CREAT and 0 _EXCL are set, and the named file exists.

EINTR if a signal was caught during the open operation.

ENFILE if the system file table is full, {SYS_OPEN} files are open in the
system.

ENOSPC if the directory to contain the file cannot be extended, the file
does not exist, and 0 _ CREAT is specified.

APPLICATION USAGE

Normally, applications should use the stdio routines to open, close, read and
write files. Thus, applications should use the FOPEN(BA_OS) stdio routine
rather than using the OPEN(BA_OS) routine.

SEE ALSO

CLOSE(BA_OS), CREAT(BA_OS), DUP(BA_OS), FCNTL(BA_OS), LSEEK(BA __ OS),

READ(BA_ OS), WRITE(BA _OS).

FUTURE DIRECTIONS

Enforcement-mode file and record-locking features will be added:

The function open will set errno to EAGAIN if the file exists,
enforcement-mode file and record-locking is set and there are outstanding
record-locks on the file [see CHMOD(BA_OS)1.

LEVEL

Levell.

Page 112 Base System Definition

PAUSE(BA_OS)

NAME

pause - suspend process until signal

SYNOPSIS
int pause ()

DESCRIPTION

The function pause suspends the calling-process until it receives a signal.
The signal must be one that is not currently set to be ignored by the calling­
process.

RETURN VALUE

If the signal causes termination of the calling-process, the function pa us e
will not return. In case of error, the function pa use will return -1 and
errno will be set to EINTR.

ERRORS
Under the following conditions, the function pause will fail and will set
errno to:

E I NTR if the signal is caught by the calling-process and control is
returned from the signal-catching function, the calling-process
resumes execution from the point of suspension.

SEE ALSO
ALARM(BA_OS), KILL(BA_OS), SIGNAL(BA_OS), WAIT(BA_OS).

LEVEL

Levell.

Base System Definition Page 113

PIPE(BA _OS)

NAME

pipe - create an interprocess channel

SYNOPSIS

int pipe(fildes)
int fildes[2];

DESCRIPTION

The function pipe creates an 110 mechanism called a pipe and returns two
file-descriptors, f i 1 des [0] and f i 1 des [1]. The file associated with
f i 1 des [0] is opened for reading, the file associated with f i 1 des [1] is
opened for writing, and the 0 _NDELAY flag is cleared.

Up to {PIPE_MAX} bytes of data are buffered by the pipe before the writing­
process is blocked. A read-only file-descriptor fildes [0] accesses the
data written to f i 1 des [1] on a first-in-first-out, FIFO, basis.

RETURN VALUE

If successful, the function pip e will return 0; otherwise, it will return -1
and errno will indicate the error.

ERRORS

Under the following conditions, the function pipe will fail and will set
errno to:

EMFILE if (OPEN_MAX}-1 or more file-descriptors are currently open for
this process.

ENFILE if more than {SYS_OPEN} files would be open in the system.

SEE ALSO

READ(BA _OS), WRITE(BA _aS),

LEVEL

Level 1.

Page 114 Base System Definition

POPEN(BA _OS)

NAME

popen, pclose - initiate pipe to/from a process

SYNOPSIS

#inc1ude <stdio.h>

FILE *popen(command, type)
char *command, *type;

int pc10se(stream)

FILE *stream;

DESCRIPTION

The function popen creates a pipe between the calling program and the
command to be executed.

The arguments to popen are pointers to null-terminated strings containing,
respectively, a command line [see SYSTEM(BA_OS)] and an I/O mode, either
r for reading or w for writing.

The function popen returns a stream pointer such that one can write to the
standard input of the command, if the I/O mode is w by writing to the file
stream; and one can read from the standard output of the command, if the
I/O mode is r by reading from the file stream.

A stream opened by the function popen should be closed by the function
pc10se, which waits for the associated process to terminate and returns the
exit status of the command.

Because open files are shared, a type r command may be used as an input
filter and a type w command as an output filter.

RETURN VALUE

If files or processes cannot be created or if the command cannot be exe­
cuted, the function popen will return a NULL pointer.

If stream is not associated with a popened command, the function
pc los e will return -1.

APPLICATION USAGE

The FSEEK(BA_OS) routine should not be used with a stream opened by the
function pop en.

SEE ALSO
FCLOSE(BA_OS), FOPEN(BA_OS), PIPE(BA_OS), SYSTEM(BA_OS), WAIT(BA_OS).

LEVEL

Level 1.

Base System Definition Page 115

REAO(BA _OS)

NAME

read - read from file

SYNOPSIS
int read(fildes, buf, nbyte)
int fildes;
char *buf;
unsigned nbyte;

DESCRIPTION

The function read attempts to read nbyte bytes from the file associated
with f i 1 des into the buffer pointed to by bu f .

The argument f i 1 des is an open file-descriptor [see file-descriptor in
Chapter 4 - Definitions].

On devices capable of seeking, the read starts at a position in the file given
by the file-pointer associated with f i 1 des. Upon return from the function
read, the file-pointer is incremented by the number of bytes actually read.

Devices that are incapable of seeking, such as terminals, always read from
the current position. The value of a file-pointer associated with such a file is
undefined.

If successful, the function rea d will return the number of bytes read and
placed in the buffer; this number may be less than nbyt e if the file is asso­
ciated with a communication line [see IOCTL(BA_OS) and TERMIO(BA_ENV»), or
if the number of bytes left in the file is less than nbyte bytes or if the file
is a pipe or a special file. When an end-of-file has been reached, the function
read will return o.
When attempting to read from an empty pipe (or FIFO):

If the pipe is no longer open for writing, 0 will be returned indicating
end-of-file.

If ° _NDELAY is clear, the read will block until data is written to the
file or the file is no longer open for writing.

When attempting to read a file associated with a character-special file that
has no data currently available:

If 0_ NDELAY is clear, the read will block until data becomes available.

The function read reads data previously written to a file. If any portion of
an ordinary-file prior to the end-of-file has not been written, the function
read returns bytes with value o. For example, the LSEEK(BA_OS) routine
allows the file-pointer to be set beyond the end of existing data in the file. If
data are later written at this point, subsequent reads in the gap between the
previous end of data and newly written data will return bytes with value 0
until data are written into the gap.

Page 116 Base System Definition

REAO(BA_ OS)

RETURN VALUE

If successful, the function read will return a non-negative integer indicat­
ing the number of bytes actually read; otherwise, it will return -1 and
errno will indicate the error.

ERRORS

The function read will fail and will set errno to:

E BAD F if f i 1 des is not a valid file-descriptor open for reading.

EINTR if a signal was caught during the read operation.

E I 0 if a physical I/O error has occurred.

ENXIO if the device associated with the file-descriptor is a block-special
or character-special file and the value of the file-pointer is out of
range.

APPLICATION USAGE

Normally, applications should use the stdio routines to open, close, read and
write files. Thus, an application that used the FOPEN(BA_OS) stdio routine to
open a file should use the FREAD(BA_OS) stdio routine rather than the
READ(BA_OS) routine to read it.

SEE ALSO

CREAT(BA_OS), DUP(BA_OS), FCNTL(BA_OS), 10CTL(BA_OS), OPEN(BA_OS),

POPEN(BA _OS).

FUTURE DIRECTIONS

When no data are present at the time of the read, the function read on a
pipe, FIFO, or tty-line with the ° NDELAY flag set will return -1, rather
than 0, and errno will be set to- EAGAIN.

Enforcement-mode file and record-locking will be added:

When attempting to read from an ordinary-file with enforcement-mode
file and record-locking set [see CHMOD(BA_OS)], and the segment of the
file to be read has a blocking write-lock (i.e., a write-lock owned by
another process):

If 0_ NDELAY is set, the function read will return -1 and errno
will be set to EAGAIN.

If 0_ NDELAY is clear, the function read will sleep until the blocking
write-lock is removed.

The function read will fail and will set errno to:

EAGAIN if enforcement-mode file-locking and record-locking was set,
0_ NDELAY was set, and there was a blocking write-lock.

ENOLCK if the system record-lock table was full, so the read could not
go to sleep until the blocking write-lock was removed.

Base System Definition Page 117

LEVEL

Levell.

Page 118 Base System Definition

NAME

setpgrp - set process-group-ID

SYNOPSIS
int setpgrp ()

DESCRIPTION
The function setpgrp sets the process-group-ID of the calling-process to
the process-ID of the calling process and returns the new process-group-ID.

RETURN VALUE
If successful, the function setpgrp will return the new process-group-ID.

SEE ALSO
EXEC(BA_OS), FORK(BA_OS), GETPID(BA_OS), KILL(BA_OS), SIGNAL(BA_OS).

LEVEL

Levell.

Base System Definition Page 119

SETUID(BA _OS)

NAME

setuid, setgid - set user-ID and group-IDs

SYNOPSIS
int setuid(uid)
int uid;

int setgid(gid)
int gid;

DESCRIPTION

The function setuid is used to set the real-user-ID and effective-user-ID
of the calling-process.

If the effective-user-ID of the calling-process is super-user, the real-user-ID
and effective-user-ID are set to uid.

If the effective-user-ID of the calling-process is not super-user, but its real­
user-ID is equal to uid, the effective-user-ID is set to uid.

If the effective-user-ID of the calling-process is not super-user, but the saved
set-user-ID from an EXEC(BA_OS) routine is equal to uid, the effective­
user-ID is set to uid.

The function setgid is used to set the real-group-ID and effective-group­
ID of the calling-process.

If the effective-user-ID of the calling-process is super-user, the real-group-ID
and effective-group-ID are set to gid.

If the effective-user-ID of the calling-process is not super-user, but its real­
group-ID is equal to gid, the effective-group-ID is set to gid.

RETURN VALUE
If successful, the function set u i d will return 0; otherwise, it will return
-1 and errno will indicate the error.

If successful, the function set g i d will return 0; otherwise, it will return
-1 and errno will indicate the error.

ERRORS
The function setuid will fail and will set errno to:

EPERM if the real-user-ID of the calling-process is not equal to uid and
its effective-user-ID is not super-user.

EINVAL if uid is out of range.

The function set g i d will fail and will set err n 0 to:

EPERM if the real-group-ID of the calling-process is not equal to gid
and its effective-user-ID is not super-user.

EINVAL if gid is out of range.

Page 120 Base System Definition

SEE ALSO

EXEC(BA_OS), GETUID(BA_OS).

LEVEL

Levell.

Base System Definition

SETUID(BA _OS)

Page 121

SIGNAL(BA _OS)

NAME

signal - specify what to do upon receipt of a signal

SYNOPSIS

#include <signal.h>

int (*signal (sig, func» ()
int sig;
int (*func) () ;

DESCRIPTION

The function signal allows the calling-process to choose one of three ways
in which it is possible to handle the receipt of a specific signal.

The argument s i g specifies the signal and the argument fun c specifies
the choice. The argument s i g can be assigned anyone of the following
signals except SIGKILL:

SIGHUP hangup

SIGINT interrupt

SIGQUIT quit*

SIGILL illegal instruction (not reset when caught) *

SIGTRAP trace trap (not reset when caught)*

SIGFPE floating point exception*

SIGKILL kill (cannot be caught or ignored)

SIGSYS bad argument to routine*

SIGPIPE write on a pipe with no one to read it

SIGALRM alarm clock

SIGTERM software termination signal

5 I GUS R 1 user-defined signal 1

5 I GUS R 2 user-defined signal 2

For portability, application-programs should use or catch only the signals
listed above; other signals are hardware and implementation-dependent and
may have very different meanings or results across systems (For example, the
System V signals SIGEMT, SIGBUS, SIGSEGV, and SIGIOT are
implementation-dependent and are not listed above). Specific implementa­
tions may have other implementation-dependent signals.

• The default action for these signals is an abnormal process termination. See SIG _ DFL.

Page 122 Base System Definition

SIGNAL(BA _OS)

The argument func is assigned one of three values: SIG _DFL,
S IG IGN, or an address of a signal-catching function. The following
actio~s are prescribed by these values:

SIG DFL Terminate process upon receipt of a signal.

Upon receipt of the signal s i g, the receiving process is to be
terminated with all of the consequences outlined in
EXIT(BA_OS). In addition, if sig is one of the signals marked
with an asterisk above, implementation-dependent abnormal
process termination routines, such as a core dump, may be
invoked.

S I GIG N Ignore signal.

address

The signal s i g is to be ignored.

NOTE: The signal SIGKILL cannot be ignored.

Catch signal.

Upon receipt of the signal s i g, the receiving process is to exe­
cute the signal-catching function pointed to by func. The
signal number s i g will be passed as the only argument to the
signal-catching function. Additional arguments may be passed
to the signal-catching function for hardware-generated signals.
Before entering the signal-catching function, the value of
func for the caught signal will be set to SIG DFL unless
the signal is SIGILL, or SIGTRAP. -

The function signal will not catch an invalid function argu­
ment, func, and results are undefined when an attempt is
made to execute the function at the bad address.

Upon return from the signal-catching function, the receiving
process will resume execution at the point at which it was inter­
rupted, except for implementation defined signals where this
may not be true.

When a signal to be caught occurs during a non-atomic opera­
tion such as a call to a REAO(BA_OS), WRITE(BA_OS),
OPEN(BA_OS), or IOCTL(BA_OS) routine on a slow device (such
as a terminal); or occurs during a PAUSE(BA_OS) routine; or
occurs during a WAIT(BA_OS) routine that does not return
immediately, the signal-catching function will be executed and
then the interrupted routine may return a -1 to the calling­
process with errno set to EINTR.

NOTE: The signal SIGKILL cannot be caught.

A call to the function signal cancels a pending signal sig except for a
pending SIGKILL signal.

Base System Definition Page 123

SIGNAL(BA _OS)

RETURN VALUE
If successful, the function signa 1 will return the previous value of the
argument func for the specified signal sig; otherwise, it will return
(int (*) () } -1 and errno will indicate the error.

ERRORS

The function signal will fail and will set errno to:

EINVAL if sig is an illegal signal number or SIGKILL.

APPLICATION USAGE

Signals may be sent by the system to an application-program (user-level pro­
cess) or signals may be sent by one user-level process to another using the
KILL(BA_ OS) routine. An application-program can catch signals and specify
the action to be taken using the SIGNAL(BA_OS) routine. The signals that a
portable application-program may send are: SIGKILL, SIGTERM,
SIGUSR 1, and SIGUSR2.

For portability, application-programs should use only the symbolic names of
signals rather than their values and use only the set of signals defined here.
Specific implementations may have additional signals.

SEE ALSO
KILL(BA_OS), PAUSE(BA_OS), WAIT(BA_OS), SET JMP(BA_LlB).

FUTURE DIRECTIONS
SIGABRT will be added to the < signal. h> header file [see
ABORT(BA _OS)].

A macro SIG ERR will be defined by the <signal. h> header file to
represent the return value (i n t (*) ()) -1 of the function sign a 1 in
case of error.

The end-user level utility KILL(BU _ CMD) will be changed to use symbolic sig­
nal names rather than numbers.

In keeping with the proposed ANSI X3Jll standard, the argument func will
be declared as type pointer to a function returning void.

The following functions will be added to enhance the signal facility: s i g­
set, sighold, sigrelse, sigignore and sigpause. These
functions will give a calling-process control over the disposition of a specified
signal that follows a signal that has been caught. When a signal has been
caught, the system will hold (defer) a .succeeding signal of the type specified
should it occur. Similarly, processes will be able to establish critical regions
of code where an incoming-signal is deferred so the critical region can be
executed without losing the signal. Finally, a calling process will be able to
suspend if a specified signal has not yet occurred.

LEVEL

Levell.

Page 124 Base System Definition

SLEEP(BA_OS)

NAME

sleep - suspend execution for interval

SYNOPSIS
unsigned sleep(seconds)
unsigned seconds;

DESCRIPTION

The function s lee p suspends the current-process from execution for the
number of seconds specified by the argument seconds. The actual
suspension-time may be less than that requested for two reasons: (1) Because
scheduled wakeups occur at fixed 1-second intervals (on the second, accord­
ing to an internal clock) and (2) because any signal caught will terminate the
s 1 e ep following execution of that signal-catching routine. Also, the
suspension-time may be longer than requested by an arbitrary amount due to
the scheduling of other activity in the system.

The function s lee p sets an alarm signal and pauses until it (or some other
signal) occurs. The previous state of the alarm signal is saved and restored.
The calling-process may have set up an alarm signal before calling the func­
tion s lee p. If the argument sec 0 n d s exceeds the time until such an
alarm signal would occur, the process sleeps only until the alarm signal would
have occurred. The alarm signal-catching routine of the calling-process is
executed just before the function sleep returns. But if the suspension­
time is less than the time till such alarm, the prior alarm time remains
unchanged.

RETURN VALUE

If successful, the function sleep will return the unslept amount (the
requested time minus the time actually slept) in case the caller had an alarm
set to go off earlier than the end of the requested suspension-time or prema­
ture arousal due to another caught signal; otherwise, the function s lee p
will return 0 .

SEE ALSO
ALARM(BA_OS), PAUSE(BA_OS), SIGNAL(BA_OS).

LEVEL

Level 1.

Base System Definition Page 125

STAT(BA _OS)

NAME

stat, fstat - get file status

SYNOPSIS

#include <sys/types.h>
#include <sys/stat.h>

int stat(path, buf)
char *path;
struct stat *buf;

int fstat(fildes, buf)
int fildes;
struct stat *buf;

DESCRIPTION

The function s ta t obtains information about the named file.

The argument path points to a path-name naming a file. Neither read,
write, nor execute permission of the named file is required, but all directories
listed in the path-name leading to the file must be searchable.

Similarly, the function f s ta t obtains information about an open file asso­
ciated with the file-descriptor fildes [see file-descriptor in Chapter 4 -
Definitions] .

The argument buf is a pointer to a structure s ta t into which informa­
tion is placed concerning the file.

The contents of the structure s ta t pointed to by buf include the follow-
ing members:

ushort st mode; 1* file mode *1 -
ino t st ino; 1* i-node number *1 - -
dev t st dev; 1* file-system identifier *1 - -
dev t st_rdev; 1* device identifier, only *1 -

1* for character-special *1
1* or block-special files *1

short st nlink; 1* number of links *1 -
ushort st uid; 1* file owner user-ID *1
ushort st_gid; 1* file group user-ID *1
off t st size; 1* file size in bytes *1 - -
time t st atime; 1* time data last accessed *1 - -
time t st mtime; 1* time data last modified *1 - -
time t st ctime; 1* time file status last *1 - -

1* changed, in seconds since *1
1* 00:00:00 GMT 1 Jan 70 *1

Page 126 Base System Definition

STAT(BA _OS)

st mode This field is the mode of the file as described in the
MKNOD(BA_ OS) routine.

s t i no This field uniquely identifies the file in a given file-system. The
pair of fields st inc and st dev uniquely identifies
ordinary-files. - -

s t de v This field uniquely identifies the file-system that contains the
file. The value of the field may be used as input to the
USTAT(BA_OS) routine to determine more information about this
file-system. No other significance is associated with this value.

st rdev This field should not be used by application-programs. The
field is valid only for block-special or character-special files and
only has significance on the system where the file was
configured.

s t nl ink This field should not be used by application-programs.

s t s i z e For ordinary-files, this field is the address of the end of the file.
For pipes or FIFOs, this field is the count of the data currently
in the file. For block-special or character-special files, this field
is not defined.

st atime This field is the time when file-data was last accessed. The
CREAT(BA_OS), LOCKF(BA_OS), MKNOD(BA_OS), PIPE(BA_OS),
UTIME(BA_OS), and READ(BA_OS) routines change this field.

st mtime This field is the time when file-data was last modified. The
CREAT(BA_OS), MKNOD(BA_OS), PIPE(BA_OS), UTIME(BA_OS),
and WRITE(BA_OS) routines change this field.

st ctime This field is the time when file status was last changed. The
CHMOD(BA_OS), CHOWN(BA_OS), CREAT(BA_OS), LlNK(BA_OS),
MKNOD(BA_OS), PIPE(BA_OS), UNLINK(BA_OS), UTIME(BA_OS),
and WRITE(BA_OS) routines change this field.

The types ushort, ino t, time t, dev _ t, and off tare
defined by the < s y s / t yp e ; . h> header-file.

RETURN VALUE
If successful, both the function s tat and the function f s tat will return
o. Otherwise, both the function s tat and the function f s tat will
return -1 and errno will indicate the error.

Base System Definition Page 127

STAT(BA _OS)

ERRORS
Under the following conditions, the function s ta t will fail and will set
errno to:

ENOTDIR if a component of the path-prefix is not a directory.

ENOENT if the named file does not exist.

EACCES if a component of the path-prefix denies search permission.

Under the following conditions, the function fstat will fail and will set
errno to:

EBADF if the argument fildes is not a valid open file-descriptor.

SEE ALSO
CHMOD(BA_OS), CHOWN(BA_OS), CREAT(BA_OS), L1NK(BA_OS), MKNOD(BA_OS),

PIPE(BA_OS), READ(BA_OS), TIME(BA_OS), UNLlNK(BA_OS), UTIME(BA_OS),

WRITE(BA _OS).

LEVEL
Levell.

Page 128 Base System Definition

NAME

stime - set time

SYNOPSIS
int stime(tp)
long *tp;

DESCRIPTION

STIME(BA _OS)

The function stime sets the system time and date. The argument tp
points to the value of time as measured in seconds from 00:00:00 GMT Janu­
ary 1, 1970.

RETURN VALUE

If successful, the function stime will return 0; otherwise, it will return
-1 and errno will indicate the error.

ERRORS
Under the following conditions, the function stime will fail and will set
errno to:

EPERM if the effective-user-ID of the calling-process is not super-user.

SEE ALSO

TIME(BA_OS).

LEVEL

Levell.

Base System Definition Page 129

SYNC(BA _OS)

NAME

sync - update super-block

SYNOPSIS
void sync ()

DESCRIPTION

The function sync causes all information in transient memory that updates
a file-system to be written out to the file-system. This includes modified
super-blocks, modified i-nodes, and delayed block 110.

The function sync should be used by programs which examine a file­
system.

The writing, although scheduled, is not necessarily complete upon return
from the function sync.

APP~ICATION USAGE
The function sync is not recommended for use by application-programs.

LEVEL
Levell.

Page 130 Base System Definition

SYSTEM(BA_OS)

NAME

system - issue a command

SYNOPSIS
#include <stdio.h>

int system(string)
char *string;

DESCRIPTION

The function system causes the argument string to be given as input
to a command interpreter and execution process. That is, the argument
string is interpreted as a command, and then the command is executed.

Commands
A blank is a tab or a space.

A word is a sequence of characters excluding blanks.

A parameter name is a sequence of letters, digits, or underscores beginning
with a letter or underscore. A parameter is a parameter name, a digit, or
any of the characters ?, $, or I.

A simple-command is a sequence of non-blank words separated by blanks.
The first word specifies the path-name or file-name of the command to be
executed. Except as specified below, the remaining words are passed as argu­
ments to the invoked command. The command name is passed as argument
o [see EXEC(BA_OS)]. The value of a simple-command is its exit status if it
terminates normally, or (octal) 200 +status if it terminates abnormally [see
WAIT(BA _OS) 1.

A pipeline is a sequence of two or more simple-commands separated by the
character :. The standard output of each simple-command (except the last
simple-command in the sequence) is connected by a PIPE(BA_OS) routine to
the standard input of the next simple-command. Each simple-command is
run as a separate process; the command execution process waits for the last
simple-command to terminate. The exit status of a pipeline is the exit status
of the last command.

A command is either a simple-command or a list enclosed in parentheses:
(list). Unless otherwise stated, the value returned by a command is that of
the last simple-command executed in the command.

A list is a command or a pipeline or a sequence of commands and pipelines
separated by the characters ; or & or the character-pairs && or : I. Of
these, the characters ; and &, which have equal precedence, have a pre­
cedence lower than that of the character-pairs & & and : I, which have
equal precedence. A list may optionally be terminated by the characters
or &.

A series of commands and/or pipelines separated by the character j are
executed sequentially, while commands and pipelines terminated by the char­
acter & are executed asynchronously.

Base System Definition Page 131

SYSTEM(BA_ OS)

The character-pairs && or I I cause the command or pipeline following it
to be executed only if the preceding pipeline returns a zero (non-zero) exit
status. An arbitrarily long sequence of new-lines may appear in a list,
instead of the character ;, to delimit commands.

Comments
A word beginning with the character # causes that word and all the follow­
ing characters up to a new-line to be ignored.

Command Substitution
The standard output from a command bracketed by grave-accents (the char­
acter ,) may be used as part or all of a word; trailing new-lines are
removed.

Parameter Substitution
The character $ is used to introduce substitutable keyword-parameters.

$ {parameter} The value, if any, of the parameter is substituted. The
braces are required only when parameter is followed by a
letter, digit, or underscore that is not to be interpreted as
part of its name.

Keyword-parameters (also known as variables) may be assigned values by
writing:

parameter-name - value

The following parameters are automatically set:

Parameter
?

$

1

Description
The decimal value returned by the last synchronously exe­
cuted command in this call to system.
The process-number of this process.
The process-number of the last background command
invoked in this call to s y s t e m.

The following parameters are used by the command execution process:

Parameter
HOME

PATH

Description
The initial working (home) directory, initially set from the
6th-field 'in the /etc/passwd file [see
PASSWD(BA_ENV)].

The search path for commands (see Execution below).

Blank Interpretation
After parameter and command substitution, the results of substitution are
scanned for internal field separator characters (space, tab and new-line) and
split into distinct arguments where such characters are found. Explicit null
arguments (n" or ") are retained. Implicit null arguments (those result­
ing from parameters that have no values) are removed.

Page 132 Base System Definition

SYSTEM(BA_ OS)

File Name Generation
Following substitution, each word in the command is scanned for the charac­
ters *, ?, and [. If one of these characters appears the word is regarded
as a pattern. The word is replaced with alphabetically sorted file names that
match the pattern. If no file name is found that matches the pattern, the
word is left unchanged. The character . at the start of a file name or
immediately following the character /, as well as the character / itself,
must be matched explicitly.

Parameter Description

Quoting

*
?

[...]
Matches any string, including the null string.
Matches any single character.
Matches anyone of the enclosed characters.
A pair of characters separated by the character - matches
any character lexically between the pair, inclusive. If the
first character following the opening [is the character I
any character not enclosed is matched.

The following characters have special meaning and cause termination of a
word unless enclosed in quotation marks as explained below:

; & () I < > new-line space tab

A character may be quoted (i.e., made to stand for itself) by preceding it
with the character \. The character-pair \new-line is ignored. All charac­
ters enclosed between a pair of single quote marks (, '), except a single
quote, are quoted. Inside double quote marks (""), parameter and com­
mand substitution occurs and the character \ quotes the characters \, *,
", and $.

Input/Output
Before a command is executed, its input and output may be redirected using
a special notation. The following may appear anywhere in a simple­
command, or may precede or follow a command and are not passed on to the
invoked command; substitution occurs before word or digit is used:

Notation Description
<word Use file word as standard input (file-descriptor 0).
> word Use file word as standard output (file-descriptor 1). If the

file does not exist it is created; otherwise, it is truncated to
zero length.

> > word Use file word as standard output. If the file exists, output is
appended to it (by first seeking to the end-of-file); other­
wise, the file is created.

< &digit Use the file associated with file-descriptor digit as standard
input. Similarly for the standard output using > &digit.

< & - The standard input is closed. Similarly for the standard
output using > & -.

Base System Definition Page 133

SYSTEM(BA _OS)

If a digit precedes any of the above, the digit specifies the file-descriptor to
be associated with the file (instead of the default 0 or 1). For example:

••• 2>& 1

associates file descriptor 2 with the file currently associated with file descrip­
tor 1.

The order in which redirections are specified is significant. Redirections are
evaluated left-to-right. For example:

••• 1 >xxx 2>& 1

first associates file-descriptor 1 with file xxx. It associates file-descriptor 2
with the file associated with file-descriptor 1 (i.e., xxx). If the order of
redirections were reversed, file-descriptor 2 would be associated with the ter­
minal (assuming file-descriptor 1 had been) and file-descriptor 1 would be
associated with file xxx.

If a command is followed by the character & the default standard input for
the command is the empty file / d e v / n u 11. Otherwise, the environment
for the execution of a command contains the file-descriptors of the invoking
process as modified by input/output specifications.

Environment
The environment [see EXEC(BA_OS)] is a list of parameter name-value pairs
passed to an executed program in the same way as a normal argument list.
On invocation, the environment is scanned and a parameter is created for
each name found, giving it the corresponding value.

The environment for any simple-command may be augmented by prefixing it
with one or more assignments to parameters. For example:

TERM=450 cmd;

Signals
The SIGINT and SIGQUIT signals for an invoked command are ignored
if the command is followed by the character &; otherwise signals have the
values inherited by the command execution process from its parent.

Execution
The above substitutions are carried out each time a command is executed. A
new process is created and an attempt is made to execute the command via
the EXEC(BA _OS) routines.

The parameter PATH defines the search path for the directory containing
the command. The character : separates path-names. The default path is
: /bin: /usr/bin (specifying the current directory, /bin, and
/usr/bin, in that order>. NOTE: The current directory is specified by a
null path-name, which can appear immediately after the equal sign or
between the colon delimiters anywhere else in the path-list. If the command
name contains the character / the search path is not used. Otherwise, each
directory in the path is searched for an executable file.

Page 134 Base System Definition

SYSTEM(BA _OS)

Conventionally, the function system has been implemented with the
Bourne shell, SH(BU_CMD) [see Volume II: Part II - Basic Utilities Extension
Definition: Chapter 5 - Commands and Utilities]. The current definition of
the function system is not intended to preclude that or its implementation
by another command interpreter that provides the minimum functionality
described here. Of course, any implementation may provide a superset of the
functionality described.

RETURN VALUE

FILES

If successful, the function system will return the exit status of the last
simple-command executed. Errors, such as syntax errors, cause a non-zero
return value and execution of the command is abandoned.

/dev/null

APPLICATION USAGE

If possible, applications should use the the function system, which is
easier to use and supplies more functions, rather than the FORK(BA_OS) and
EXEC(BA_OS) routines.

SEE ALSO

DUP(BA_OS), EXEC(BA_OS), FORK(BA_OS), PIPE(BA_OS), SIGNAL(BA_OS),

ULlMIT(BA_OS), UMASK(BA_OS), WAIT(BA_OS).

LEVEL

Levell.

Base System Definition Page 135

NAME

time - get time

SYNOPSIS

long time«long *) 0)

long time(tloc)
long *tloc;

DESCRIPTION

The function time returns the value of time in seconds since 00:00:00
GMT, January 1, 1970.

As long as the argument t 10 c is not a null-pointer, the return value is also
stored in the location to which the argument tloc points.

The actions of the function time are undefined if the argument tloc
points to an invalid address.

RETURN VALUE
If successful, the function time will return the value of time; otherwise, it
will return - 1 .

SEE ALSO

STIME(BA_OS).

LEVEL
Levell.

Page 136 Base System Definition

TIMES(BA _OS)

NAME

times - get process and child-process elapsed times

SYNOPSIS
#include <sys/types.h>
#include <sys/times.h>

long times(buffer)
struct tms *buffer;

DESCRIPTION
The function times fills the structure pointed to by the argument
buff er with time-accounting information. The action of the function
time is undefined if the argument buffer points to an illegal address.

The following are the contents of the structure tms, which is defined by the
<sys/times. h> header file to include:

time t
time t
time t
time t

tms_utime;
tms_stime;
tms_cutime;
tms_cstime;

This information comes from the calling-process and each of its terminated
child-processes for which it has executed a WAIT(BA_OS) routine. All times
are defined in units of lI{CLK_TCK}'s of a second.

The value of tms utime is the CPU time used while executing instruc­
tions in the user-space of the calling-process.

The value of tms stime is the CPU time used by the system on behalf of
the calling-process. -

The value of tms cutime is the sum of the tms utime and
tms _ cu time of the-child-processes.

The value of tms cstime is the sum of the tms stime and
tms _ cst ime of the -child-processes.

The type tim e _ t is defined by the < s y s / t Y pes . h> header file.

RETURN VALUE
If successful, the function times will return the elapsed real time, in units
of lI{CLK_TCK}'s of a second, since an arbitrary point in the past (e.g., sys­
tem start-up time). This point does not change from one invocation of the
function times to another. When the function times fails, it will return
-1.

SEE ALSO
EXEC(BA_OS), FORK(BA_OS), TIME(BA_OS), WAIT(BA_OS).

LEVEL
Level I.

Base System Definition Page 137

ULlMIT(BA _OS)

NAME

ulimit - get and set user limits

SYNOPSIS

long ulimit(cmd, newlimit)
int cmd;
long newlimit;

DESCRIPTION

The function u 1 i mit provides for control over process limits.

Values available for the argument cmd are:

Get the file size limit of the process. The limit is in units of 512-
byte blocks and is inherited by child-processes. Files of any size
can be read.

2 Set the file size limit of the process equal to newl imi t. Any
process may decrease this limit, but only a process with an
effective-user-ID of super-user may increase the limit.

RETURN VALUE

If successful, the function ul imi t will return a non-negative value; other­
wise, it will return -1, the limit will be unchanged and errno will indi­
cate the error.

ERRORS

Under the following conditions, the function ul imi t will fail and will set
errno to:

EPERM if a process with an effective-user-ID other than super-user
attempts to increase its file size limit.

SEE ALSO

~\yRITE(BA_OS).

LEVEL

Levell.

Page 138 Base System Definition

NAME

umask - set and get file creation mask

SYNOPSIS
int umask(cmask)

int cmask;

DESCRIPTION

UMASK(BA _OS)

The function umask sets the process's file mode creation mask [see
CREAT(BA_OS)] equal to the argument cmask and returns the previous
value of the mask. Only the owner, group, other permission bits of the argu­
ment cmask and the file mode creation mask are used.

RETURN VALUE
If successful, the function uma s k will return the previous value of the file
mode creation mask.

SEE ALSO
CHMOD(BA_OS), CREAT(BA_OS), MKNOD(BA_OS), OPEN(BA_OS).

LEVEL

Levell.

Base System Definition Page 139

UMOUNT(BA _OS)

NAME

umount - unmount a file system

SYNOPSIS

int umount(spec)
char *spec;

DESCRIPTION

The function umoun t requests that a previously mounted file system con­
tained on the block-special device identified by the argument spec be
unmounted.

The argument s p e c is a pointer to a path-name. After unmounting the
file-system, the directory upon which the file-system was mounted reverts to
its ordinary interpretation.

The function umoun t may be invoked only by the super-user.

RETURN VALUE

If successful, the function umoun t will return 0; otherwise, it will return
-1 and errno will indicate the error.

ERRORS

Under the following conditions, the function umount will fail and will set
errno to:

EPERM if the process's effective-user-ID is not super-user.

ENXIO if the device identified by spec does not exist.

ENOTDIR if a component of the path-prefix is not a directory.

ENOENT if the named file does not exist.

ENOTBLK if the device identified by spec is not block-special.

EINVAL if the device identified by spec is not mounted.

EBUSY if a file on the device identified by spec is busy.

APPLICATION USAGE

The function umoun t is not recommended for use by application-programs.

SEE ALSO

MOUNT(BA _OS).

LEVEL

Levell.

Page 140 Base System Definition

UNAME(BA_OS)

NAME

uname - get name of current operating system

SYNOPSIS
#include <sys/utsname.h>

int uname(name)
struct utsname *name;

DESCRIPTION
The function uname stores information identifying the current operating
system in the structure pointed to by the argument name.

The function uname uses the structure defined by the
<sys/utsname. h> header file whose members include:

char
char
char
char
char

sysname [{SYS NMLN}] ;
nodename [{SYS NMLN}] ;
release [{SYS NMLN}] ;
version[{SYS -NMLN}] ;
machine [{SYS=NMLN}] ;

The function uname returns a null-terminated character string naming the
current operating system in the character array sysname.

Similarly, the character array nodename contains the name that the sys­
tem is known by on a communications network.

The members release and version further identify the operating sys­
tem.

The member machine contains a standard name that identifies the
hardware that the operating system is running on.

RETURN VALUE
If successful, the function uname will return a non-negative value; other­
wise, it will return -1 and errno will indicate the error.

LEVEL
Levell.

Base System Definition Page 141

UNLlNK(BA _OS)

NAME

unlink - remove directory entry

SYNOPSIS

int unlink(path)
char *path;

DESCRIPTION

The function unl ink removes the directory entry named by the path-name
pointed to by the argument path. When all links to a file have been
removed and no process has the file open, the space occupied by the file is
freed and the file ceases to exist. If one or more processes have the file open
when the last link is removed, space occupied by the file is not released until
all references to the file have been closed.

RETURN VALUE

If successful, the function unl ink will return 0; otherwise, it will return
-1 and errno will indicate the error.

ERRORS

Under the following conditions, the function unl ink will fail and will set
errno to:

ENOTDIR if a component of the path prefix is not a directory.

ENOENT if the named file does not exist.

EACCES if a component of the path-prefix denies search permission.

EACCES if the directory containing the link to be removed denies write
permission.

EPERM if the named file is a directory and the effective-user-ID of the
process is not super-user.

EBUSY if the entry to be unlinked is the mount point for a mounted file
system.

ETXTBSY if the entry to be unlinked is the last link to a pure procedure
(shared text) file that is being executed.

EROFS if the directory entry to be unlinked is part of a read-only file sys­
tem.

SEE ALSO
CLOSE(BA_OS), LlNK(BA_OS), OPEN(BA_OS).

LEVEL

Levell.

Page 142 Base System Definition

NAME

ustat - get file system statistics

SYNOPSIS
#include <sys/types.h>
#include <ustat.h>

int ustat(dev, buf)
int dev;
struct ustat *buf;

DESCRIPTION

The function ustat returns information about a mounted file system.

The argument dev is a device number identifying a device containing a
mounted file-system. The value of dev is obtained from the field s t dev
of the structure stat [see STAT(BA_Os)l -

The argument bu f is a pointer to a us tat structure that includes the fol­
lowing elements:

daddr t f tfree; 1* total free blocks *1 - -ino t f tinode; 1* number of free i-nodes *1 - -
char f fname[6]; 1* file-system name or null *1 -char f fpack[6]; 1* - file-system pack or null *1

The last two fields, f fname and f fpack may not have significant
information on all systeriis, and, in that case, will contain the null character.

RETURN VALUE

If successful, the function usta t will return 0; otherwise, it will return
-1 and errno will indicate the error.

ERRORS

Under the following conditions, the function ustat will fail and will set
errno to:

EINVAL if dev is not the device number of a device containing a
mounted file-system.

SEE ALSO

STAT(BA_ OS).

LEVEL
Level 1.

Base System Definition Page 143

UTIME(BA_OS)

NAME

utime - set file access and modification times

SYNOPSIS

#include <sys/types.h>

int utime(path, times)
char *path;
struct utimbuf *times;

DESCRIPTION

The function u time sets the access and modification times of the named
file.

The argument path points to a path-name naming a file.

If the argument times is NULL, the access and modification times of the
file are set to the current time. A process must be the owner of the file or
have write permission to use the function utime in this manner.

If the argument times is not NULL, times is interpreted as a pointer
to a structure utimbuf (see below) and the access and modification times
are set to the values contained in the designated structure. Only the owner
of the file or the super-user may use the function u time .this way.

The times in the structure utimbuf are measured in seconds since
00:00:00 GMT Jan. 1, 1970.

The structure utimbuf must be defined as:

struct utimbuf {

} ;

time t actime; 1* access time *1
time_t modtime; 1* modification time *1

The function u time will also cause the time of the last file status change
(st ctime) to be updated [see STAT(BA OS)]. The type time t is
defined by the < sys/type s . h> header fik. -

RETURN VALUE

If successful, the function uti m e will return 0; otherwise, it will return
-1 and errno will indicate the error.

ERRORS
Under the following conditions, the function uti m e will fail and will set
errno to:

ENOENT if the named file does not exist.

ENOTDIR if a component of the path-prefix is not a directory.

EACCES if a component of the path-prefix denies search permission.

EPERM if the effective-user-ID is not super-user and not the owner of the
file and the argument times is not NULL.

Page 144 Base System Definition

UTIME(BA_OS)

EACCES if the effective-user-ID is not super-user and not the owner of the
file and the argument times is NULL and write access is
denied.

EROFS if the file-system containing the file is mounted read-only.

APPLICATION USAGE

The structure utimbuf must be declared by the application-program. The
declaration is shown above.

SEE ALSO
STAT(BA_ OS).

LEVEL
Levell.

Base System Definition Page 145

WAIT(BA _OS)

NAME

wait - wait for child-process to stop or terminate

SYNOPSIS

int wait(stat_loc)
int *stat_loc;

int waite (int *)0)

DESCRIPTION

The function wa i t suspends the calling-process until one of the immediate
children terminates. If a child-process terminated prior to the call on the
function wai t, return is immediate.

If the argument stat 10c (taken as an integer) is non-zero, 16-bits of
information called status- are stored in the low-order 16-bits of the location
pointed to by stat 10c. The status can be used to differentiate between
stopped and terminated child-processes and if the child-process terminated,
status identifies the cause of termination and passes useful information to the
parent. This is accomplished in the following manner:

If the child-process terminated due to a call to the EXIT(BA_OS) routine,
the low-order 8-bits of status will be zero and the next 8-bits will contain
the low-order 8-bits of the argument that the child-process passed to the
EXIT(BA_OS) routine.

If the child-process terminated due to a signal, the low-order 7-bits (i.e.,
bits 177) will contain the number of the signal that caused the termina­
tion. In addition, if abnormal process termination routines [see
SIGNAL(BA_OS)] were successfully completed then the low-order eighth-bit
(i.e., bit 200) will be set. The next 8-bits of status will be zero.

If a parent process terminates without waiting for its child-processes to ter­
minate, a special system process inherits the child-processes [see
EXIT(BA_OS)].

The function wa i t will fail and its actions are undefined if the argument
s tat _ 10 c points to an illegal address.

RETURN VALUE

If the function wa it returns due to the receipt of a signal, it will return
-1 to the calling-process and will set errno to EINTR.

If the function wa i t returns due to a terminated child-process, it will
return the process-ID of the child-process to the calling-process; otherwise, it
will return immediately with a value of -1 and errno will indicate the
error.

ERRORS

The function wai t will fail and will set errno to:

ECHILD if the calling-process has no existing unwaited-for child-processes.

Page 146 Base System Definition

WAIT(BA _OS)

SEE ALSO

EXEC(BA_OS)~ EXIT(BA_OS), FORK(BA_OS), PAUSE(BA_OS), SIGNAL(BA_OS).

LEVEL
Levell.

Base System Definition Page 147

WRITE(BA_ OS)

NAME

write - write on a file

SYNOPSIS

int write(fildes, buf, nbyte)
int fildes;
char *buf;
unsigned nbyte;

DESCRIPTION

The function wri te attempts to write nbyte bytes from the buffer
pointed to by the argument buf to the file associated with the argument
fildes.

The argument f i 1 des is an open file-descriptor [see file-descriptor in
Chapter 4 - Definitions].

On devices capable of seeking, the actual writing of data proceeds from the
position in the file indicated by the file-pointer associated with the argument
fildes. Upon returning from the function write, the file-pointer is
incremented by the number of bytes actually written.

On devices incapable of seeking, such as a terminal, writing always takes
place starting at the current position. The value of a file-pointer associated
with such a device is undefined [see OPEN(BA_ OS)].

If the 0 APPEND flag of the file status flags is set, the file-pointer will be
set to the -end of the file prior to each wr i te operation.

If a write requests that more bytes be written than there is room for (e.g.,
beyond the user process's file size limit [see ULlMIT(BA_OS)] or the physical
end of a medium), only as many bytes as there is room for will be written.
For example, suppose there is space for 20 bytes more in a file before reach­
ing a limit. A wri te of 512-bytes will return 20-bytes. The next write
of a non-zero number of bytes will give a failure return (except as noted for
pipes and FIFOs below).

If a wri te to a pipe (or FIFO) of {PIPE_BUF} bytes or less is requested
and less than nbyt e s bytes of free space is available in the pipe, one of
the following will occur:

If the 0 NDELAY flag is clear, the process will block until at least
nbytes of space is available in the pipe and then the write will take
place, or

If the 0 _NDELAY flag is set, the process will not block and the function
wr i t e will return o.

A wri te request of greater than {PIPE_BUF} bytes to a pipe (or FIFO)
will behave differently.

Page 148 Base System Definition

WRITECBA_OS)

If a write to a pipe (or FIFO) of more than {PIPE_BUF} bytes is
requested, one of the following will occur:

If the 0 NDELAY flag is clear, the process will block if the pipe is full.
As space-becomes available in the pipe, the data from the wr it e
request will be written piecemeal - in multiple smaller amounts until the
request is fulfilled. Thus, data from a wr i t e request of more than
{PIPE_BUF} bytes may be interleaved on arbitrary byte boundaries with
data written by other processes.

If the 0 NDELAY flag is set and the pipe is full, the process will not
block and-the function wr i t e will return O.

If the 0 NDELAY flag is set and the pipe is not full, the process will not
block and as much data as will currently fit in the pipe will be written
and the function wr i t e will return the number of bytes written. In this
case, only part of the data are written, but what data are written will not
be interleaved with data from other processes.

In contrast to write requests of more than {PIPE_BUF} bytes, data from a
wr i te request of {PIPE_BUF} bytes or less will never be interleaved in the
pipe with data from other processes.

RETURN VALUE

If successful, the function wr i t e will return the number of bytes actually
written; otherwise, it will return -1, the file-pointer will remain unchanged
and errno will indicate the error.

ERRORS

Under the following conditions, the function wri te will fail and will set
errno to:

EBADF if f i Ide s is not a valid file descriptor open for writing.

EPIPE and SIGPIPE signal if an attempt is made to write to a pipe that
is not open for reading by any process.

EFBIG if an attempt was made to write a file that exceeds the process's
file size limit or the system's maximum file size [see
ULlMIT(BA _OS) 1.

EINTR if a signal was caught during the write operation.

ENOSPC if there is no free space remaining on the device containing the
file.

E I 0 if a physical 110 error has occurred.

ENXIO if the device associated with the file-descriptor is a block-special
or character-special file and the file-pointer value is out of range.

Base System Definition Page 149

WRITE(BA_ OS)

APPLICATION USAGE

Normally, applications should use the stdio routines to open, close, read and
write files. Thus, if an application had used the FOPEN(BA_OS) stdio routine
to open a file, it would use the FWRITE(BA_OS) stdio routine rather than the
WRITE(BA_OS) routine to write it.

Because they are not atomic, write requests of nbytes greater than
{PIPE_BUF} bytes to a pipe (or FIFO) should only be used when just two
cooperating processes, one reader and one writer, are using a pipe.

SEE ALSO
CREAT(BA_OS), OUP(BA_OS), LSEEK(BA_OS), OPEN(BA_OS), PIPE(BA_OS),

ULlMIT(BA _OS).

FUTURE DIRECTIONS
Enforcement-mode file and record-locking will be added:

A wr i t e to an ordinary-file will be blocked if enforcement-mode file
and record-locking is set, and there is a record-lock owned by another
process on the segment of the file to be written.

If 0 NDELAY is not set, the write will sleep until the blocking
record-lock is removed.

Under the following conditions, the function write will fail and will set
errno to:

EAGAIN if enforcement-mode file-locking and record-locking was set,
0_ NDELAY was set and there was a blocking record-lock.

EDEADLK if the wr i te was going to sleep and cause a deadlock situa­
tion to occur.

ENOLCK if the system record-lock table was full, so the write could
not go to sleep until the blocking record-lock was removed.

LEVEL
Levell.

Page 150 Base System Definition

Base System Definition

Chapter 7
General Library Routines

Page 151

ABS(BA_LlB)

NAME

abs - return integer absolute value

SYNOPSIS

int abseil
int i;

DESCRIPTION

The function abs returns the absolute value of its integer operand.

APPLICATION USAGE

In two-complement representation, the absolute value of the negative integer
with largest magnitude {INT_MIN} is undefined. Some implementations may
catch this as an error but others may ignore it.

SEE ALSO
FLOOR(BA_LlB).

LEVEL

Levell.

Page 152 Base System Definition

BESSEL(BA _LIB)

NAME
jO, j 1, jn, yO, y 1, yn - Bessel functions

SYNOPSIS
#include <math.h>

double jO(x)
double X;

double j1(x)
double X;

double jn(n, x)
int n;
double X;

double yO(x)
double X;

double y1(x)
double X;

double yn(n, x)
int n;
double X;

DESCRIPTION
The functions j 0 and j 1 return Bessel functions of X of the first kind of
orders 0 and 1 respectively.

The function j n returns the Bessel function of X of the first kind of order
n.

The functions yO and y 1 return Bessel functions of X of the second kind
of orders 0 and 1 respectively.

The function yn returns the Bessel function of X of the second kind of
order n.

For the functions yO, y 1 and yn, the argument X must be positive.

RETURN VALUE
Non-positive arguments cause yO, y1 and yn to return the value -HUGE
and to set errno to EDOM. In addition, a message indicating argument
DOMAIN error is printed on the standard error output.

Arguments too large in magnitude cause the functions j 0, j 1, yO and
y 1 to return zero and to set errno to ERANGE. In addition, a message
indicating TLOSS error is printed on the standard error output [see
MATHERR(BA_LIB)].

APPLICATION USAGE
These error-handling procedures may be changed with the MATHERR(BA_LlB)

routine.

Base System Definition Page 153

BESSEL(BA _LIB)

SEE ALSO
MATHERR(BA_LlB).

LEVEL
Levell.

Page 154 Base System Definition

BSEARCH(BA _LIB)

NAME

bsearch - binary search on a sorted table

SYNOPSIS

char *bsearch(key, base, nel, width, compar)
char *key;
char *base;
unsigned nel, width;
int (*compar) () ;

DESCRIPTION

The function bsearch is a binary search routine. It returns a pointer into
a table indicating where a datum may be found. The table must be previ­
ously sorted in increasing order according to a user-provided comparison
function, compar [see aSORT(BA_OS)].

The argument key points to a datum instance to be sought in the table.

The argument base points to the element at the base of the table.

The argument ne 1 is the number of elements in the table.

The argument wid th is the size of an element in bytes.

The argument compar is the name of the comparison function, which is
called with two arguments of type char that point to the elements being
compared. The compar function must return an integer less than, equal to
or greater than zero, as the first argument is to be considered less than, equal
to or greater than the second.

RETURN VALUE

A NULL pointer is returned if the key cannot be found in the table.

APPLICATION USAGE

The pointers to the key and the element at the base of the table, key and
ba s e, should be of type pointer-to-element and cast to type pointer-to­
character.

The comparison function need not compare every byte, so arbitrary data may
be contained in the elements in addition to the values being compared.

Although declared as type pointer-to-character, the value returned should be
cast into type pointer-to-element.

EXAMPLE

The following example searches a table containing pointers to nodes consist­
ing of a string and its length. The table is ordered alphabetically on the
string in the node pointed to by each entry.

Base System Definition Page 155

BSEARCH(BA _LIB)

This code fragment reads in strings; it either finds the corresponding node
and prints out the string and its length or it prints an error message.

#include <stdio.h>
#include <search.h>

#define TABSIZE 1000

struct node {
char *string;
int length;

1* these are in the table *1

} ;
struct node table[TABSIZE); 1* table to be searched *1

struct node *node_ptr, node;
int node_comparee); 1* routine to compare 2 nodes *1
char str_space(20); 1* space to read string into *1

*1

node. string = str_space;
while (scanf(""s", node.string) 1= EOF) {

node_ptr - (struct node *)bsearch«char *)(&node),
(char *)table, TABSIZE,
sizeof(struct node), node_compare);

if (node_ptr 1- NULL) {
(void)printf("string z "20s, length = "d\n",

node_ptr->string, node_ptr->length);
else {

(void) printf("not found: "s\n", node.string);

This routine compares two nodes based on an
alphabetical ordering of the string field.

int node_compare(node1, node2)
struct node *node1, *node2;
{

return strcmp(node1->string, node2->string);

SEE ALSO
HSEARCH(BA_LlB), LSEARCH(BA_LIB), QSORT(BA_LlB), TSEARCH(BA_LlB).

LEVEL

Levell.

Page 156 Base System Definition

NAME

clock - report CPU time used

SYNOPSIS
long clock ()

DESCRIPTION

CLOCK(BA _LIB)

The function c I 0 c k returns the amount of CPU time Gn microseconds}
used since the first call to the function clock. The time reported is the
sum of the user and system times of the calling-process and its terminated
child-processes for which it has executed the WAIT(BA_OS) or SYSTEM(BA_OS)

routine.

APPLICATION USAGE
The value returned by clock is defined in microseconds for compatibility
with systems that have CPU clocks with much higher resolution.

SEE ALSO

TIMES(BA_OS), WAIT(BA_OS), SYSTEM(BA_OS).

LEVEL

Levell.

Base System Definition Page 157

NAME

toupper, tolower, _toupper, _tolower, toascii - translate characters

SYNOPSIS

#include <ctype.h>

int toupper(c)
int c;

int tolower(c)
int c;

int toupper(c)
int c;

int tolower(c)
int c;

int toascii(c)
int c;

DESCRIPTION
The functions toupper and tolower have as domain the range of the
GETC(BA_LlB) routine: the integers from -1 through 255. If the argument
of toupper represents a lower-case letter, the result is the corresponding
upper-case letter. If the argument of tolower represents an upper-case
letter, the result is the corresponding lower-case letter. All other arguments
in the domain are returned unchanged.

The macros toupper, tolower, and toascii are defined by
the <ctype: h> header file. The macros toupper and tolower
accomplish the same thing as toupper and tolower bu"t have res­
tricted domains and are faster. The macro toupper requires a lower­
case letter as its argument; its result is the corresponding upper-case letter.
The macro tolower requires an upper-case letter as its argument; its
result is the corresponding lower-case letter. Arguments outside the domain
cause undefined results.

The macro toascii yields its argument with all bits turned off that are
not part of a standard ASCII character; it is intended for compatibility with
other systems.

SEE ALSO
CTYPE(BA_LlB), GETC(BA_LIB).

LEVEL

Levell.

Page 158 Base System Definition

CRVPT(BA _LIB)

NAME

crypt, setkey, encrypt - generate string encoding

SYNOPSIS
char *crypt(key, salt)
char *key, *salt;

void setkey(key)
char *key;

void encrypt(block, edflag)
char *block;
int edflag;

DESCRIPTION

The function crypt is a string-encoding function.

The argument key is a string to be encoded. The argument salt is a
two-character string chosen from the set [a-zA-Z 0-9 .]; this string is
used to perturb the encoding algorithm, after which the string that key
points to is used as the key to repeatedly encode a constant string. The
returned value points to the encoded string. The first two characters are the
salt itself.

The functions setkeyand encrypt provide (rather primitive) access to
the encoding algorithm. The argument to the entry setkey is a character
array of length 64 containing only the characters with numerical value 0
and 1. If this string is divided into groups of 8, the low-order bit in each
group is ignored; this gives a 56-bit key. This is the key that will be used
with the above mentioned algorithm to encode the string block with the
function encrypt.

The argument to the entry encrypt is a character array of length 64 con­
taining only the characters with numerical value 0 and 1. The argument
array is modified in place to a similar array representing the bits of the argu­
ment after having been subjected to the encoding algorithm using the key set
by setkey.

If the argument edflag is zero, the argument is encoded.

APPLICATION USAGE
The return value of the function crypt points to static data that are
overwritten by each call.

LEVEL

Levell.

Optional: the functions crypt, setkey and encrypt may not be
present in all implementations of the Base System.

Base System Definition Page 159

CTERMID(BA _LIB)

NAME

ctermid - generate file name for terminal

SYNOPSIS

#include <stdio.h>

char *ctermid(s)
char *s;

DESCRIPTION

The function ctermid generates the path-name of the controlling terminal
for the current process and stores it in a string.

If the argument s is a NULL pointer, the string is stored in an internal
static area which will be overwritten at the next call to ctermid. The
address of the static area is returned. Otherwise, s is assumed to point to a
character array of at least L ctermid elements; the path name is placed
in this array and the value of-s is returned. The constant L ctermid is
defined by the < s t d i 0 • h> header file. -

APPLICATION USAGE

The difference between the TTYNAME(BA_LlB) routine and the function
ctermid is that the TTYNAME(BA_LlB) routine must be passed a file­
descriptor and returns the name of the terminal associated with that file­
descriptor, while the function ctermid returns a string (e.g.,
I d ev I t ty) that will refer to the terminal if used as a file-name. Thus the
TTYNAME(BA_LlB) routine is useful only if the process already has at least one
file open to a terminal.

SEE ALSO

TTYNAME(BA_LlB).

LEVEL

Levell.

Page 160 Base System Definition

CTIME(BA _LIB)

NAME
ctime, local time, gmtime, asctime, tzset - convert date and time to string

SYNOPSIS
#include <time.h>

char *ctime(clock)
long *clock;

struct tm *localtime(clock)
long *clock;

struct tm *gmtime(clock)
long *clock;

char *asctime(tm)
struct tm *tm;

extern long timezone;

extern int daylight;

extern char *tzname[2];

void tzset ()

DESCRIPTION
The function ctime converts a long integer, pointed to by clock,
representing the time in seconds since 00:00:00 GMT, January 1, 1970 [see
TIME(BA_OS)] and returns a pointer to a 26-character string in the following
form:

Sun Sep 16 01:03:52 1973

All the fields have constant width.

The functions local time and gmtime return pointers to the structure
tm, described below:

The function local time corrects for the time-zone and possible
Daylight Savings Time.

The function gmtime converts directly to Greenwich Mean Time
(GMT), which is the time the system uses.

The function asctime converts a tm structure to a 26-character string,
as shown in the above example, and returns a pointer to the string.

Base System Definition Page 161

CTIME(BA _LIB)

Declarations of all the functions, the external variables and the tm structure
are in the < time. h> header file. The structure tm includes the following
members:

int tm sec; 1* number of seconds past *1 -
1* the minute (0-59) *1

int tm min; 1* number of minutes past *1 -
1* the hour (0-59) *1

int tm hour; 1* current hour (0-23) *1 -int tm mday; 1* day of month (1-31) *1 -
int tm mon; 1* month of year (0-11) *1 -
int tm year; 1* current year -1900 *1 -
int tm wday; 1* day of week (Sunday=O) *1 -
int tm yday; 1* - day of year (0-365) *1
int tm isdst; 1* - daylight savings time flag *1

The value of tm _ i s d s t is non-zero if Daylight Savings Time is in effect.

The external long variable time zone contains the difference, in
seconds, between GMT and local standard time (in EST, time zone is
5*60*60); the external variable daylight is non-zero only if the stan­
dard USA Daylight Savings Time conversion should be applied. The pro­
gram compensates for the peculiarities of this conversion in 1974 and 1975; if
necessary, a table for these years can be extended.

If an environment variable named TZ is present, asctime uses the con­
tents of the variable to override the default time-zone. The value of T Z

must be a three-letter time-zone name, followed by an optional minus sign
(for zones east of Greenwich) and a series of digits representing the
difference between local time and Greenwich Mean Time in hours; this is fol­
lowed by an optional three-letter name for a daylight time-zone. For exam­
ple, the setting for New Jersey would be EST5EDT. The effects of setting
TZ are thus to change the values of the external variables timezone and
daylight. In addition, the time-zone names contained in the external
variable

char *tzname[2] = { "EST", "EDT" };

are set from the environment variable T Z. The function t z set sets these
external variables from TZ; the function tzset is called by asctime
and may also be called explicitly by the user.

APPLICATION USAGE

The return values point to static data whose content is overwritten by each
call.

Page 162 Base System Definition

SEE ALSO
TIME(BA_OS), GETENV(BA_LlB).

FUTURE DIRECTIONS

The argument clock to the functions ctime, localtime and
gmtime will be defined by the <sys/types. h> header file as pointer
to time t.

The number in TZ will be defined as an optional minus sign followed by two
hour-digits and two minute-digits, hhmm, to represent fractional time-zones.

LEVEL
Levell.

Base System Definition Page 163

NAME
isalpha, isupper, islower, isdigit, isxdigit, isalnum, isspace, ispunct, isprint,
isgraph, iscntrl, isascii - classify characters

SYNOPSIS
#include <ctype.h>

int isalpha(c)
int c;

int isupper(c)
int c;

int islower(c)
int c;

int isdigit(c)
int c;

int isxdigit(c)
int c;

int isalnum(c)
int c;

int isspace(c)
int c;

int ispunct(c)
int c;

int isprint(c)
int c;

int isgraph(c)
int c;

int iscntrl(c)
int c;

int isascii(c)
int c;

DESCRIPTION
These macros, which are defined by the <ctype. h> header file, classify
character-coded integer values. Each is a predicate returning non-zero for
true, zero for false. The function i sa sci i is defined on all integer values;
the rest are defined only where is a sci i is true and on the single non­
ASCII value EOF, which is defined by the <stdio. h> header file and
represents end-of -file.

isalpha

isupper

islower

isdigit

Page 164

c is a letter.

c is an upper-case letter.

c is a lower-case letter.

c is a digit [0-9].

Base System Definition

isxdigit

isalnum

isspace

ispunct

isprint

isgraph

iscntrl

isascii

RETURN VALUE

CTVPE(BA _LIB)

c is a hexadecimal digit [0-9], [A-F] or [a-f].

c is an alphanumeric (letter or digit).

c is a space, tab, carriage-return, new-line, vertical-tab or
form-feed.

c is a punctuation mark (neither control nor alpha-numeric
nor space).

c is a printing character, ASCII code 040 (space) through
0176 (tilde).

c is a printing character, like isprint except false for
space.

c is a delete character (0177) or an ordinary control­
character (less than 0 4 0) .

c is an ASCII character, code between 0 and 0 1 7 7
inclusive.

If the argument to any of these macros is not in the domain of the function,
the result is undefined.

SEE ALSO

FOPEN(BA_OS), ASCII character set in Chapter 4 - Definitions.

LEVEL
Levell.

Base System Definition Page 165

DRAND48(BA_ LIB)

NAME

drand48, erand48, lrand48, nrand48, mrand48, jrand48, srand48, seed48,
loong48 - generate uniformly distributed pseudo-random numbers

SYNOPSIS
double drand48()

double erand48(xsubi)
unsigned short xsubi[3];

long lrand48()

long nrand48(xsubi)
unsigned short xsubi[3];

long mrand48()

long jrand48(xsubi)
unsigned short xsubi[3];

void srand48(seedval)
long seedval;

unsigned short *seed48(seed16v)
unsigned short seed16v[3];

void lcong48(param)
unsigned short param[7];

DESCRIPTION
This family of functions generates pseudo-random numbers using the well­
known linear congruential algorithm and 48-bit integer arithmetic.

Functions drand48 and erand48 return non-negative double-precision
floating-point values uniformly distributed over the interval [0.0,1.0).

Functions lrand48 and nrand48 return non-negative long integers uni­
formly distributed over the interval [0,231).

Functions mrand48 and jrand48 return signed long integers uniformly
distributed over the interval [_231 ,231).

Functions srand48, seed48 and lcong48 are initialization entry
points, one of which should be invoked before either drand48, lrand48
or mrand48 is called. (Although it is not recommended practice, constant
default initializer values will be supplied automatically if drand48,
lrand48 or mrand48 is called without a prior call to an initialization
entry point.> Functions erand48, nrand48 and jrand48 do not
require an initialization entry point to be called first.

Page 166 Base System Definition

DRAND48(BA _LIB)

All the routines work by generating a sequence of 48-bit integer values, Xi,
according to the linear congruential formula:

X n+l- (aX n +c) modm n ~O

The parameter m - 248; hence 48-bit integer arithmetic is performed.
Unless lcong48 has been invoked, the multiplier value a and the addend
value C are given by:

a == 5DEECE66D 16 273673163155 8
C == B 16- 138

The value returned by any of the functions drand48, erand48,
lrand48, nrand48, mrand48 or jrand48 is computed by first
generating the next 48-bit Xi in the sequence. Then the appropriate number
of bits, according to the type of data item to be returned, are copied from the
high-order {leftmost} bits of Xi and transformed into the returned value.

The functions drand48, lrand48 and mrand48 store the last 48-bit
Xi generated in an internal buffer; that is why they must be initialized prior
to being invoked. The functions erand48, nrand48 and j rand48
require the calling program to provide storage for the successive Xi values in
the array specified as an argument when the functions are invoked. That is
why these routines do not have to be initialized; the calling program merely
has to place the desired initial value of Xi into the array and pass it as an
argument. By using different arguments, functions erand48, nrand48
and jrand48 allow separate modules of a large program to generate
several independent streams of pseudo-random numbers. In other words, the
sequence of numbers in each stream will not depend upon how many times
the routines have been called to generate numbers for the other streams.

The initializer function srand48 sets the high-order 32-bits of Xi to the
{LONG_BIT} bits contained in its argument. The low-order 16-bits of Xi are
set to the arbitrary value 330E16.

The initializer function seed48 sets the value of Xi to the 48-bit value
specified in the argument array. In addition, the previous value of Xi is
copied into a 48-bit internal buffer, used only by seed48, and a pointer to
this buffer is the value returned by seed48.

The initialization function lcong48 allows the user to specify the initial
Xi, the multiplier value a and the addend value c. Argument array ele­
ments pa r am [0 - 2] specify X;, pa r am [3 - 5] specify the multiplier a,
and pa r am [6] specifies the 16-bit addend c. After 1 c ong 48 has been
called, a subsequent call to either srand48 or seed48 will restore the
standard multiplier and addend values, a and c, specified on the previous
page.

Base System Definition Page 167

DRAND48{BA_LlB)

APPLICATION USAGE

The pointer returned by seed48, which can just be ignored if not needed,
is useful if a program is to be restarted from a given point at some future
time. Use the pointer to get at and store the last Xi value and then use this

SEE ALSO
RAND(BA_LlB).

LEVEL
Levell.

Page 168 Base System Definition

NAME

erft erfc - error function and complementary error function

SYNOPSIS
#include <math.h>

double erf(x)
double X;

double erfc(x)
double x;

DESCRIPTION

ERF(BA_LIB)

The function e r f returns the error function of X t defined as follows:
x

..1.... fe- t2dt
.J;o

APPLICATION USAGE

The function erfc is provided because of the extreme loss of relative accu­
racy if e r f (x) is called for large x and the result subtracted from 1. O.

SEE ALSO
EXP(BA_LlB).

LEVEL

Levell.

Base System Definition Page 169

NAME

exp, log, logl0, pow, sqrt - exponential, logarithm, power, square root func­
tions

SYNOPSIS

#inc1ude <math.h>

double exp(x)
double x;

double 10g(x)
double X;

double 10g10(x)
double X;

double pow(x, y)
double x, y;

double sqrt(x)
double x;

DESCRIPTION

The function exp returns eX.

The function log returns the natural logarithm of x. The value of X

must be positive.

The function log 1 0 returns the logarithm base ten of x. The value of x
must be positive.

The functions pow returns x Y• If x is zero, y must be positive. If x is
negative, y must be an integer.

The function sqrt returns the non-negative square root of x. The value
of x may not be negative.

RETURN VALUE
The function exp returns HUGE when the correct value would overflow or
o when the correct value would underflow and sets errno to ERANGE.

The functions log and log 10 return -HUGE and set errno to
EDOM when x is non-positive. A message indicating DOMAIN error (or
SING error when x is 0) is printed on the standard error output.

The function pow returns 0 and sets errno to EDOM when x is 0 and
y is non-positive, or when x is negative and y is not an integer. In these
cases a message indicating DOMAIN error is printed on the standard error
output. When the correct value for pow would overflow or underflow, pow
returns ±HUGE or 0 respectively and sets errno to ERANGE.

The function sqrt returns 0 and sets errno to EDOM when x is nega­
tive. A message indicating DOMAIN error is printed on the standard error
output.

Page 170 Base System Definition

APPLICATION USAGE

These error-handling procedures may be changed with the MATHERR(BA_LlB)

routine.

SEE ALSO

HYPOT(BA_LlB), MATHERR(BA_LlB), SINH(BA_LlB).

FUTURE DIRECTIONS

A macro HUGE VAL will be defined by the <rna th. h> header file. This
macro will call a-function which will either return +00 on a system support­
ing the IEEE P7S4 standard or +{MAXDOUBLE} on a system that does not
support the IEEE P7S4 standard.

The function exp will return HUGE VAL when the correct value
overflows.

The functions log and log 1 0 will return -HUGE _ VAL when x is not
positive.

The function sqrt will return -0 when the value of x is -0.

The return value of pow will be negative HUG E _ VAL when an illegal com­
bination of input arguments is passed to pow.

LEVEL

Level 1.

Base System Definition Page 171

NAME

floor, ceil, fmod, fabs - floor, ceiling, remainder, absolute value functions

SYNOPSIS
#include <math.h>

double floor(x)
double X;

double ceil(x)
double X;

double fmod(x, y)
double X, y;

double fabs(x)
double X;

DESCRIPTION

The function floor returns the largest integer (as a double-precision
number> not greater than x.

The function c e i I returns the smallest integer not less than x.

The function fmod returns the floating-point remainder of the division of X

by y, zero if y is zero or if x/y would overflow. Otherwise the number is
f with the same sign as x, such that x-iy+f for some integer i, and
Ifl<lyl·
The function fa b s returns the absolute value of x, i.e., 1 X I.

SEE ALSO
ABS(BA _LIB).

FUTURE DIRECTIONS

The function fmod will return X if y is zero or if x/y would overflow.

LEVEL
Levell.

Page 172 Base System Definition

FREXP(BA _LIB)

NAME

frexp, ldexp, modf - manipulate parts of floating-point numbers

SYNOPSIS
double frexp(value, eptr)
double value;
int *eptr;

double ldexp(value, exp)
double value;
int exp;

double modf(value, iptr)
double value, *iptr;

DESCRIPTION

Every non-zero number can be written uniquely as x*2n
, where the mantissa

(fraction) x is in the range 0.5 ~ I x I < 1.0 and the exponent n is an integer.
The function frexp returns the mantissa of a double value and
stores the exponent indirectly in the location pointed to by eptr. If
value is 0, both results returned by frexp are o.
The function ldexp returns the quantity value*2exP

•

The function modf returns the fractional part of value and stores the
integral part indirectly in the location pointed to by iptr. Both the frac­
tional and integer parts have the same sign as val u e.

RETURN VALUE

If ldexp would cause overflow, ±HUGE is returned (according to the sign
of value) and errno is set to ERANGE.

If ldexp would cause underflow, 0 is returned and errno is set to
ERANGE.

FUTURE DIRECTIONS

A macro HUGE VAL will be defined by the <math. h> header file This
macro will call a -function which will either return +00 on a system support­
ing the IEEE P754 standard or +{MAXDOUBLE} on a system that does not
support the IEEE P754 standard.

The return value of ldexp will be ±HUGE VAL (according to the sign of
va 1 ue) in case of overflow. -

LEVEL

Level 1.

Base System Definition Page 173

NAME

ftw - walk a file tree

SYNOPSIS

#include <ftw.h>

int ftw(path, fn, param)
char *path;
int (*fn) () ;
int param;

DESCRIPTION

The function f t w recursively descends the directory hierarchy rooted in
path. For each object in the hierarchy, the function ftw calls a user­
defined function f n passing it three arguments. The first argument passed
is a character pointer to a null-terminated string containing the name of the
object. The second argument passed to fn is a pointer to a s ta t struc­
ture [see STAT(BA_OS)] containing information about the object, and the third
argument passed is an integer ft.ag. Possible values of the ft.ag, defined by the
<ftw. h> header file, are FTW F for a file, FTW D for a directory,
FTW DNR for a directory that cannot be read and FTW NS for an object
for which s ta t could not successfully be executed. -If the integer is
FTW DNR, descendants of that directory will not be processed. If the
integer is FTW _ NS, the contents of the s ta t structure are undefined.

The function f t w visits a directory before visiting any of its descendants.

The function ftw uses one file-descriptor for each level in the tree. The
argument param limits the number of file-descriptors so used. The argu­
ment param should be in the range of 1 to {OPEN_MAX}. The function
ftw will run more quickly if param is at least as large as the number of
levels in the tree.

RETURN VALUE

The tree traversal continues until the tree is exhausted, an invocation of f n
returns a nonzero value or some error is detected within f t w (such as an
I/O error). If the tree is exhausted, the function f t w returns o. If the
function fn returns a non-zero value, the function ftw stops its tree
traversal and returns whatever value was returned by the function fn.

If the function ftw encounters an error other than EACCES (see
FTW DNR and FTW NS above), it returns -1 and errno is set to the
type 'Of error. The external variable errno may contain the error values
that are possible when a directory is opened [see OPEN(BA_OS)] or when the
STAT(BA_OS) routine is executed on a directory or file.

APPLICATION USAGE

Because the function ftw is recursive, it is possible for it to terminate with
a memory fault when applied to very deep file structures.

Page 174 Base System Definition

SEE ALSO
STAT(BA_OS), MALLOC(BA_OS).

LEVEL
Levell.

Base System Definition

FTW(BA _LIB)

Page 175

GAMMA(BA _LIB)

NAME

gamma - log gamma function

SYNOPSIS

#include <math.h>

double gamma(x)
double X;

extern int signgam;

DESCRIPTION

The function g a mm a returns In (I r (x) I), where r (x) is defined as:
00

J e-ttX-ldt
o

The sign of r(x) is returned in the external integer signgam. The argu-
ment x may not be a non-positive integer.

The following C program fragment might be used to calculate r:
if «y = gamma(x» > LN_MAXDOUBLE)

error () ;
y = signgam * exp(y);

RETURN VALUE

For non-positive integer arguments HUGE is returned, and errno is set to
EDOM. A message indicating SING error is printed on the standard error
output [see MATHERR(BA_LlB)].

If the correct value would overflow, gamma returns HUGE and sets
errno to ERANGE.

APPLICATION USAGE

These error-handling procedures may be changed with the MATHERR(BA_LlB)

routine.

SEE ALSO

EXP(BA_LlB), MATHERR(BA_LlB).

FUTURE DIRECTIONS

A macro HUGE _ VAL will be defined by the <math. h> header file. This
macro will call a function which will either return +00 on a system support­
ing the IEEE P7S4 standard or +{MAXDOUBLE} on a system that does not
support the IEEE P7S4 standard.

If the correct value overflows, gamma will return HUGE VAL.

LEVEL

Levell.

Page 176 Base System Definition

GETC(BA_LIB)

NAME

getc, getchar, fgetc, getw - get character or word from a stream

SYNOPSIS
#include <stdio.h>

int getc(stream)
FILE *stream;

int getchar ()

int fgetc(stream)
FILE *stream;

int getw(stream)
FILE *stream;

DESCRIPTION
The function get c returns the next character (i.e., byte) from the named
input stream as an integer. It also moves the file pointer, if defined,
ahead one character in stream. The macro getchar is defined as
getc (stdin). Both getc and getchar are macros.

The function fgetc behaves like getc but is a function rather than a
macro. The function fgetc runs more slowly than getc but it takes less
space per invocation and its name can be passed as an argument to a func­
tion.

The function getw returns the next word (i.e., integer) from the named
input stream. The function getw increments the associated file pointer,
if defined, to point to the next word. The size of a word is the size of an
integer and varies from machine to machine. The function get w assumes
no special alignment in the file.

RETURN VALUE

These functions return the constant EOF at end-of-file or upon an error.
Because EOF is a valid integer, the FERROR(BA_OS) routine should be used
to detect get w errors.

APPLICATION USAGE

If the integer value returned by getc, getchar or fgetc is stored
into a character variable and then compared against the integer constant
EOF, the comparison may never succeed because sign-extension of a charac­
ter on widening to integer is machine-dependent.

Because of possible differences in word length and byte ordering, files written
using pu tw are machine-dependent and may not be read using getw on a
different processor.

Because it is implemented as a macro, get c treats incorrectly a s t ream
argument with side effects. In particular, getc (*f + +) does not work
sensibly. The function fgetc should be used instead.

Base System Definition Page 177

GETC(BA _LIB)

SEE ALSO
FCLOSE(BA_OS), FERROR(BA_OS), FOPEN(BA_OS), FREAD(BA_OS),

GETS(BA_LlB), PUTC(BA_LlB), SCANF(BA_LIB).

LEVEL
Levell.

Page 178 Base System Definition

NAME

getenv - return value for environment name

SYNOPSIS

char *getenv(name)
char *name;

DESCRIPTION

GETENV(BA _LIB)

The function getenv searches the environment list for a string of the form
name = value and returns a pointer to the value in the current
environment if such a string is present. Otherwise a NULL pointer is
returned.

SEE ALSO
EXEC(BA_OS), SYSTEM(BA_OS), PUTENV(BA_LlB).

LEVEL

Level 1.

Base System Definition Page 179

GETOPT(BA _LIB)

NAME

getopt - get option letter from argument vector

SYNOPSIS
int getopt(argc, argv, optstring)
int argc;
char *argv[], *optstring;

extern char *optarg;
extern int optind, opterr;

DESCRIPTION

The function getopt is a command-line parser. It returns the next option
letter in argv that matches a letter in optstring.

The function getopt places in optind the argv index of the next
argument to be processed. The external variable optind is initialized to
1 before the first call to the function get 0 pt.

The argument optstring is a string of recognized option letters; if a
letter is followed by a colon, the option is expected to have an argument that
mayor may not be separated from it by white space.

The variable optarg is set to point to the start of the option argument on
return from getopt.

When all options have been processed (i.e., up to the first non-option argu­
ment), the function getopt returns EOF. The special option -- may be
used to delimit the end of the options; EOF will be returned and -- will be
skipped.

RETURN VALUE

The function get 0 p t prints an error message on s t d err and returns a
question-mark (?) when it encounters an option letter not included in opt­
string. Setting opterr to a 0 will disable this error message.

Page 180 Base System Definition

GETOPT(BA _LIB)

EXAMPLE
The following code fragment shows how one might process the arguments for a com­
mand that can take the mutually exclusive options a and b and the options f and 0,

both of which require arguments:

main (argc, argv)
int argc;
char *argv [);
{

int c;
int bflg, aflg, errflg;
char *ifile;
char *ofile;
extern char *optarg;
extern int optind;

while «c = getopt(argc, argv, "abf:o:"» 1= EOF)
swi tch (c) {
case 'a': if (bflg)

errflg++;
else

aflg++;
break;

case 'b': if (aflg)
errflg++;

else
bproc ();

break;
case ' f' : ifile = optarg;

break;
case ; 0' : ofile = optarg;

break;
case '?': errflg++;

if (errflg) {
fprintf(stderr, "usage: ... H);
exit(2);

for (; optind < argc; optind++)
if (access(argv[optind), 4»

FUTURE DIRECTIONS
The function getopt will be enhanced to enforce all rules of the System V
Command Syntax Standard (see below). All new System V commands will
conform to the command syntax standard described here. Existing com­
mands will migrate toward the new standard if they do not already meet it.
Applications whose user-interface is command-like may want to be consistent
with the syntax standard.

Base System Definition Page 181

GETOPT(BA _LIB)

The following rules comprise the System V standard for command-line syn-
tax:

RULE 1:

RULE 2:

RULE 3:

RULE 4:

RULE 5:

RULE 6:

RULE 7:

RULE 8:

RULE 9:

RULE 10:

RULE 11:

RULE 12:

RULE 13:

Command names must be between two and nine characters.

Command names must include lower-case letters and digits only.

Option names must be a single character in length.

All options must be delimited by the - character.

Options with no arguments may be grouped behind one delimiter.

The first option-argument following an option must be preceded
by white space.

Option arguments cannot be optional.

Groups of option arguments following an option must be
separated by commas or separated by white space and quoted.

All options must precede operands on the command line.

The characters -- may be used to delimit the end of the
options.

The order of options relative to one another should not matter.

The order of operands may matter and position-related interpreta­
tions should be determined on a command-specific basis.

The - character preceded and followed by white space should be
used only to mean standard input.

The function getopt is the command-line parser that will enforce the
rules of this command syntax standard.

LEVEL
Levell.

Page 182 Base System Definition

GETS(BA _LIB)

NAME

gets, fgets - get a string from a stream

SYNOPSIS
#include <stdio.h>

char *gets(s)
char *s;

char *fgets(s, n, stream)
char *s;
int n;
FILE *stream;

DESCRIPTION

The function gets reads characters from the standard input stream,
stdin, into the array pointed to by s until a new-line character is read or
an end-of-file condition is encountered. The new-line character is discarded
and the string is terminated with a null character.

The function fgets reads characters from the stream into the array
pointed to by s until n-1 characters are read or a new-line character is
read and transferred to s or an end-of-file condition is encountered. The
string is then terminated with a null character.

RETURN VALUE
If end-of-file is encountered and no characters have been read, no characters
are transferred to s and a NULL pointer is returned. If a read error
occurs, such as trying to use these functions on a file that has not been
opened for reading, a NULL pointer is returned. Otherwise s is returned.

APPLICATION USAGE
Reading too long a line through gets may cause gets to fail. The use of
f get s is recommended.

SEE ALSO
FERROR(BA_OS), FOPEN(BA_OS), FREAD(BA_OS), GETC(BA_LlB),

SCANF(BA_LlB).

LEVEL

Levell.

Base System Definition Page 183

HSEARCH(BA _LIB)

NAME

hsearch, hcreate, hdestroy - manage hash search tables

SYNOPSIS

#include <search.h>

ENTRY *hsearch(item, action)
ENTRY item;
ACTION action;

int hcreate(nel)
unsigned nel;

void hdestroy(

DESCRIPTION

The function hsearch is a hash-table search routine. It returns a pointer
into a hash table indicating the location at which an entry can be found. The
comparison function used by hsearch is the function strcmp [see
STRING(BA _LIB)].

The argument item is a structure of type ENTRY (defined by the
< search. h> header file) containing two character pointers: item. key
pointing to the comparison key and item. da ta pointing to any other data
to be associated with that key. (Pointers to types other than char should
be cast to pointer-to-character.)

The argument action is a member of an enumeration type ACTION,
defined by the < sea r c h . h> header file, indicating the disposition of the
entry if it cannot be found in the table.

ENTER indicates that the item should be inserted in the table at an
appropriate point. Given a duplicate of an existing item, the new item is not
entered, and hsearch returns a pointer to the existing item.

FIND indicates that no entry should be made. Unsuccessful resolution is
indicated by the return of a NULL pointer.

The function hcrea te allocates sufficient space for the table and must be
called before h sea r chis used. The value of n e 1 is an estimate of the
maximum number of entries that the table will contain. This number may be
adjusted upward by the algorithm in order to obtain certain mathematically
favorable circumstances.

The function hde~troy destroys the search table and may be followed by
another call to hcrea teo

RETURN VALUE

The function hsearch returns a NULL pointer if either the action is
FIND and the item could not be found or the action is ENTER and the
table is full.

The function hcrea te returns 0 if it cannot allocate sufficient space for
the table.

Page 184 Base System Definition

HSEARCH(BA _LIB)

APPLICATION USAGE

The functions hsearch and hcreate use the MALLOC(BA_OS) routine
to allocate space.

EXAMPLE

The example reads in strings followed by two numbers and stores them in a
hash table. It then reads in strings and finds the entry in the table and prints
it.

#include <stdio.h>
#include <search.h>

struct info { /* these are in the table */
int age, room; /* apart from the key. */

} ;
#define NUM_EMPL 5000 /* # of elements in the table */

main()
{

/* space for strings */
char string_space[NUM_EMPL*20);
/* space for employee info */
struct info info_space[NUM_EMPL);
/* next avail space for strings *1
char *str_ptr • string_space;
1* next avail space for info *1
struct info *info_ptr = info_space;
ENTRY item, *found_item, *hsearch();
char name to find[30); 1* name to look for in table *1
int i = 0;

1* create table *1
(void) hcreate(NUM_EMPL);
while (scanf("%s%d%d", str_ptr, &info_ptr->age,

&info_ptr->room) I- EOF && i++ < NUM_EMPL)
1* put info in structure, and structure in item *1
item. key = str_ptr;
item.data = (char *)info_ptr;
str_ptr += strlen(str_ptr) + 1;
info_ptr++;
1* put item into table *1
(void) hsearch(item, ENTER);

1* access table */
item.key = name_to_find;
while (scanf ("%s", item. key) 1 = EOF) {

if «found_item. hsearch(item, FIND» 1= NULL) {
1* if item is in the table *1
(void) printf("found %s, age = %d, room = %d\n",

found_item->key,
«struct info *)found_item->data)->age,
«struct info *)found_item->data)->room);

else {
(void) printf("no such employee %s\n",

name_to_find)

Base System Definition Page 185

HSEARCH(BA _LIB)

SEE ALSO
MALLOC(BA_OS), BSEARCH(BA_LlB), LSEARCH(BA_LlB), STRING(BA_LlB),

TSEARCH(BA_LlB).

FUTURE DIRECTIONS
The restriction of having only one hash search table active at any given time
will be removed.

LEVEL
Levell.

Page 186 Base System Definition

HVPOT(BA _LIB)

NAME

hypot - Euclidean distance function

SYNOPSIS

#include <math.h>

double hypot(x, y)
double x, y;

DESCRIPTION

The function hypot returns sqrt (x * x + Y * y), taking precau­
tions against unwarranted overflows.

RETURN VALUE

When the correct value would overflow, hypot returns HUGE and sets
errno to ERANGE.

These error-handling procedures may be changed with the function defined
by the MATHERR(BA_LlB) routine.

SEE ALSO

MATHERR(BA_LlB).

FUTURE DIRECTIONS

A macro HUGE VAL will be defined by the <math. h> header file. This
macro will call a-function which will either return +00 on a system support­
ing the IEEE P754 standard or +{MAXDOUBLE} on a system that does not
support the IEEE P754 standard.

The function hypot will return HUGE VAL when the correct value
overflows.

LEVEL

Levell.

Base System Definition Page 187

LSEARCH(BA_LlB)

NAME

lsearch, lfind - linear search and update

SYNOPSIS

#include <search.h>

char *lsearch(key, base, nelp, width, compar)
char *key;
char *base;
unsigned *nelp;
unsigned width;
int (*compar) () ;

char *lfind(key, base, nelp, width, compar)
char *key;
char *base;
unsigned *nelp;
unsigned width;
int (*compar) () ;

DESCRIPTION

The function 1 sea r chis a linear search routine. It returns a pointer into a
table indicating where a datum may be found. If the datum does not occur,
it is added at the end of the table. The value of key points to the datum to
be sought in the table. The value of ba s e points to the first element in the
table. The value of ne Ip points to an integer containing the current
number of elements in the table. The value of width is the size of an ele­
ment in bytes. The variable pointed to by n e 1 p is incremented if the
datum is added to the table. The value of compar is the name of the com­
parison function which the user must supply (strcmp, for example). It is
called with two arguments that point to the elements being compared. The
function must return zero if the elements are equal and non-zero otherwise.

The function 1 find is the same as 1 sea r c h except that if the datum is
not found, it is not added to the table. Instead, a NULL pointer is returned.

RETURN VALUE

If the searched for datum is found, both the functions lsearch and
1 fin d return a pointer to it. Otherwise, the function 1 fin d returns
NULL and the function lsearch returns a pointer to the newly added ele­
ment.

APPLICATION USAGE

The function 1 find was added to System V in System V Release 2.0.

The pointers to the key and the element at the base of the table should be of
type pointer-to-element and cast to type pointer-to-character.

The comparison function need not compare every byte, so arbitrary data may
be contained in the elements in addition to the values being compared.

Page 188 Base System Definition

LSEARCH(BA _LIB)

Although declared as type pointer-to-character, the value returned should be
cast into type pointer-to-element.

Space for the table must be managed by the application-program. Undefined
results can occur if there is not enough room in the table to add a new item.

EXAMPLE
This fragment will read in ~ TAB S I Z E strings of length ~ E LSI Z E and
store them in a table, eliminating duplicates.

#include <stdio.h>
#include <search.h>

#define TABSIZE 50
#define ELSIZE 120

char line[ELSIZE], tab[TABSIZE][ELSIZE], *lsearch();
unsigned nel = 0;
int strcmp () ;

while (fgets(line, ELSIZE, stdin) 1= NULL &&
nel < TABSIZE)

(void) lsearch(line, (char *)tab, &nel,
ELSIZE, strcmp);

SEE ALSO
BSEARCH(BA_LlB), HSEARCH(BA_LIB), TSEARCH(BA_LlB).

FUTURE DIRECTIONS
A NULL pointer will be returned by the function lsearch with errno
set appropriately, if there is not enough room in the table to add a new item.

LEVEL
Levell.

Base System· Definition Page 189

MATHERR(BA_LlB)

NAME

matherr - error-handling function

SYNOPSIS
#include <math.h>

int matherr(x)
struct exception *x;

DESCRIPTION

The function matherr is invoked by math library routines when errors are
detected. Users may define their own procedures for handling errors, by
including a function named matherr in their programs. The function
ma therr must be of the form described above. When an error occurs, a
pointer to the exception structure x will be passed to the user-supplied
rna therr function. This structure, which is defined by the <math. h>
header file, includes the following members:

int type;
char *name;
double arg1, arg2, retval;

The element type is an integer describing the type of error that has
occurred from the following list defined by the <math. h> header file:

DOMAIN argument domain error.
SING argument singUlarity.
OVERFLOW overflow range error.
UNDERFLOW underflow range error.
TLOS S total loss of significance.
PLOSS partial loss of significance.

The element name points to a string containing the name of the routine
that incurred the error. The elements arg 1 and arg2 are the first and
second arguments with which the routine was invoked.

The element retval is set to the default value that will be returned by the
routine unless the user's matherr function sets it to a different value.

If the user's matherr function returns non-zero, no error message will be
printed, and errno will not be set.

If the function matherr is not supplied by the user, the default error­
handling procedures, described with the math library routines involved, will
be invoked upon error. These procedures are also summarized in the table
below. In every case, errno is set to EDOM or ERANGE and the pro­
gram continues.

Page 190 Base System Definition

MATHERR(BA _LIB)

ERRORS

DEFAULT ERROR HANDUNG PROCEDURFS

Types of Errors

type DOMAIN SING OVERFLOW UNDERFLOW

errno EDOM EDOM ERANGE ERANGE

BESSEL: - - - -
yO, y1, yn (arq "" MI)-H - - -
EXP: - - H 0

LOG, LOG 10:

(arq < 0) M,-H - - -
(arq .. 0) - M,-H - -

POW: - - ±H 0
neg •• non-int M,O - - -

o •• non-pos

SORT: M,O - - -
GAMMA: - M,H H -
HYPOT: - - H -
SINH: - - ±H -
COSH: - - H -
SIN, COS, TAN: - - - -
ASIN, ACOS, ATAN2: M,O - - -

ABBREVIATIONS

As much as possible of the value is returned.
M Message is printed (EDOM error).

H HOGE is returned.
-H -HOGE is returned.

±H HOGE or -HOGE is returned.

o 0 is returned.

EXAMPLE
#include <math.h>

int matherr(x)
register struct exception *x;
{

switch (x->type) {
case DOMAIN:

TLOSS

ERANGE

M,O

-
-
-
-
-
-

-
-
-
-
-

M,O

-

/* change sqrt to return sqrt(-arg1), not 0 */
if (I strcmp (x->name, "sqrt"» {

x->retval = sqrt(-x->arg1);

PLOSS

ERANGE .
-
-
-
-
-
-

-
-
-
-
-.
-

return (0); /* print message and set errno */

case SING:

/* SING or other DOMAIN errs, print message and abort */
fprintf(stderr, "domain error in %s\n", x->name);
abort ();

case PLOSS:

/* print detailed error message */
fprintf(stderr, "loss of significance in %s(%g)

x->name,
return (1);

x->arg1, x->retval);
/* take no other action */

%g\n" ,

return (0); /* all other errors, execute default procedure */

Base System Definition Page 191

MATHERR(BA _LIB)

FUTURE DIRECTIONS

The math functions which return HUGE or ±HUGE on overflow will return
HUGE _ VAL or ± HUGE _ VAL respectively.

LEVEL

Levell.

Page 192 Base System Definition

MEMORY(BA _LIB)

NAME

memccpy, memchr, memcmp, memcpy, memset - memory operations

SYNOPSIS
#include <memory.h>

char *memccpy(s1, s2, c, n)
char *s1, *s2;
int c, n;

char *memchr(s, c, n)
char *s;
int c, n;

int memcmp(s1, s2, n)
char *s1, *s2;
int n;

char *memcpy(s1, s2, n)
char *s1, *s2;
int n;

char *memset(s, c, n)
char *s;
int c, n;

DESCRIPTION
These functions operate as efficiently as possible on memory areas (arrays of
characters bounded by a count, not terminated by a null character). They do
not check for the overflow of any receiving memory area.

The function memccpy copies characters from memory area s2 into s 1,
stopping after the first occurrence of character c has been copied or after n
characters have been copied, whichever comes first. It returns a pointer to
the character after the copy of c in s 1, or a NULL pointer if c was not
found in the first n characters of s 2.

The function memchr returns a pointer to the first occurrence of character
c in the first n characters of memory area s, or a NULL pointer if c does
not occur.

The function memcmp compares its arguments, looking at the first n char­
acters only. It returns an integer less than, equal to or greater than 0,
according as s 1 is lexicographically less than, equal to or greater than s 2.

The function memcpy copies n characters from memory area s 2 to s 1.
It returns s 1 .

The function memset sets the first n characters in memory area s to the
value of character c. It returns s.

Base System Definition Page 193

MEMORY(BA_LlB)

APPLICATION USAGE

All these functions are defined by the <memory. h> header file.

The function memcmp uses native character comparison. The sign of the
value returned when one of the characters has its high-order bit set is
implementation-dependent.

Character movement is performed differently in different implementations.
Thus overlapping moves may be unpredictable.

SEE ALSO

STRING(BA_LlB).

FUTURE DIRECTIONS

The declarations in the <memory. h> header file will be moved to the
<string. h> header file.

LEVEL

Levell.

Page 194 Base System Definition

NAME

mktemp - make a unique file name

SYNOPSIS
char *mktemp(template}
char *template;

DESCRIPTION

MKTEMP(BA _LIB)

The function mktemp replaces the contents of the string pointed to by
template by a unique file name and returns template. The string in
templa te should look like a file name with six trailing Xs; mktemp will
replace the xs with a letter and the current process-ID. The letter will be
chosen so that the resulting name does not duplicate an existing file.

RETURN VALUE
The function mktemp returns the pointer template. If a unique name
cannot be created, template will point to a null string.

SEE ALSO
GETPID(BA_OS), TMPFILE(BA_LlB), TMPNAM(BA_LlB).

FUTURE DIRECTIONS
A NULL pointer will be returned if a unique name cannot be created.

LEVEL

Levell.

Base System Definition Page 195

PERROR(BA _LIB)

NAME

perror - system error messages

SYNOPSIS

void perror(s)
char *s;

extern int errno;

extern char *sys_errlist[1;

extern int sys_nerr;

DESCRIPTION

The function perror produces a message on the standard error output
describing the last error encountered during a call to a function.

The string pointed to by the argument s is printed first, then a colon and a
blank, then the message and a new-line. To be of most use, the argument
string should include the name of the program that incurred the error.

The error number is taken from the external variable errno, which is set
when errors occur but not cleared when successful calls are made.

If given a null-string, the function perror prints only the message and a
new-line.

The array of message strings s y s err 1 i s t is provided to make messages
consistent. The variable errno can be used as an index in this array to get
the message string without the new-line. The external variable sys nerr
is the largest message number provided for in the array; it should be checked
because new error codes may be added to the system before they are added
to the array.

FUTURE DIRECTIONS

New error handling routines will be added to support the System V Error
Message Standard as a tool for application-developers to use. The System V
Error Message Standard is designed to apply to: firmware/diagnostics, the
operating system, networks, System V commands, languages and, when
appropriate, applications. All new System V error messages will follow the
standard, and existing error messages will be modified over time. The stan­
dard System V error message as seen by the end-user may have up to five
informational elements:

Element
LABEL
SEVERITY

PROBLEM

ACTION
TAG

Description
source of the error.
one of at least 4 severity codes.
description of the problem.
error-recovery action.
unique error message identifier.

Each element is described in more detail below.

Page 196 Base System Definition

PERROR(BA _LIB)

The standard specifies the information that is important in error recovery. It
does not specify the format in which the information is delivered. For exam­
ple, if a system had a graphical user interface, the LABEL might be presented
as an icon. An operating system error message meeting the standard infor­
mation requirements is shown below. Here, OS is the LABEL, HALT is the
SEVERITY, Timeout Table Overflow is the PROBLEM, See Administration Manual is
the ACTION, and OS-l36 is the TAG.

OS: HALT: Timeout Table Overflow.
TO FIX: See Administration Manual. OS-136

The standard allows systematic omission of one or more elements in specific
environments that do not need them for successful error recovery. For exam­
ple, while operating system errors need all five elements, a firmware error
message can omit the ACTION because an expert service person is typically
the user of this message and the ACTION may be too long to store in
firmware. Software that obviously puts the user in a special environment
(e.g., a spread-sheet program) where the user will only see errors from that
environment may omit the LABEL. Because a primary use of the TAG is for
reporting or to point to on-line documentation, it may be omitted when
appropriate (e.g., when there is no on-line documentation).

LABEL This element of the message identifies the error source (e.g., as,
UUCP, application-program-name, etc.) and could double as a
pointer to documentation.

SEVERITY This element of the message indicates the consequences of the
error for the user. Four levels of severity (which can be expanded
by system builders who want additional distinctions) are outlined
below.

HALT

ERROR

signifies that the processor, as, application, or data­
base is corrupted and that processing should be
stopped immediately to rectify the problem. This
severity signifies an emergency.

signifies that a condition that may soon interfere with
resource use has occurred. This severity alerts the
user that some corrective action is needed.

WARNING signifies an aberrant condition (e.g., stray hardware
interrupt, free file space is low) that should be moni­
tored, but requires no immediate action.

INFO simply provides some information about a user request
or about the state of the system (e.g., a printer taken
off-line).

PROBLEM This element of the message clearly describes the error condition.
In much of today's software, this element is the only one provided
in the message.

Base System Definition Page 197

PERROR(BA _LIB)

ACTION

TAG

LEVEL

This element of the message describes the first step to be taken in
the error-recovery process. For OS errors, this section of the mes­
sage might be one of five standard strings: See Hardware Vendor,
See Software Vendor, See Administrator Procedure, See Operator Pro­
cedure, or See Manual. These strings should be clearly identified as
action to be taken (e.g., by preceding them with the prefix: TO
FIX:).

This is a unique identifier for the message, used both internally
and to obtain online documentation for the message on those sys­
tems that have capacity to store such information.

Level 2: January 1, 1985.

Page 198 Base System Definition

PRINTF(BA _LIB)

NAME

printf, fprintf, sprintf - print formatted output

SYNOPSIS

#include <stdio.h>

int printf (format [, arg] ...)
char *format;

int fprintf (stream, format [, arg] •..)
FILE *stream;
char *format;

int sprintf (s, format [, arg] •..)
char *s, *format;

DESCRIPTION

The function printf places output on the standard output stream
stdout.

The function fprintf places output on the named output stream.

The function s pr in t f places output, followed by the null character (\. 0)
in consecutive bytes starting at * s. It is the user's responsibility to ensure
that enough storage is available. Each function returns the number of char­
acters transmitted (not including the \. 0 in the case of s p r in t f) or a
negative value if an output error was encountered.

Each of these functions converts, formats and prints its args under control
of the forma t. The forma t is a character-string that contains three
types of objects defined below:

1. plain-characters that are simply copied to the output stream;

2. escape-sequences that represent non-graphic characters; and

3. conversion-specifications.

The following escape-sequences produce the associated action on display dev­
ices capable of the action:

\. b Backspace.
Moves the printing position to one character before the current
position, unless the current position is the start of a line.

\.f Form Feed.
Moves the printing position to the initial printing position of the
next logical page.

Base System Definition Page 199

PRINTF(BA_LlB)

\n New line.
Moves the printing position to the start of the next line.

\ r Carriage return.
Moves the printing position to the start of the current line.

\ t Horizontal tab.
Moves the printing position to the next implementation-defined
horizontal tab position on the current line.

\ v Vertical tab.
Moves the printing position to the start of the next
implementation-defined vertical tab position.

Each conversion specification is introduced by the character %. After the
character %, the following appear in sequence:

Zero or more flags, which modify the meaning of the conversion
specification.

An optional string of decimal digits to specify a minimum field width.
If the converted value has fewer characters than the field width, it
will be padded on the left (or right, if the left-adjustment flag (-),
described below, has been given) to the field width.

A precision that gives the minimum number of digits to appear for
the d, 0, U, x, or X conversions (the field is padded with lead­
ing zeros), the number of digits to appear after the decimal point for
the e and f conversions, the maximum number of significant digits
for the g conversion; or the maximum number of characters to be
printed from a string in s conversion. The precision takes the form
of a period (.) followed by a decimal digit string; a null digit string
is treated as zero.

An optional 1 (ell) to specify that a following d, 0, U, x or
X conversion character applies to a long integer arg. An 1 before
any other conversion character is ignored.

A conversion character (see below) that indicates the type of conver­
sion to be applied.

A field width or precision may be indicated by an asterisk (*) instead of a
digit string. In this case, an integer arg supplies the field width or preci­
sion. The arg that is actually converted is not fetched until the conversion
letter is seen, so the args specifying field width or precision must appear
before the arg (if any) to be converted.

Page 200 Base System Definition

PRINTF(BA_LlB)

The flag characters and their meanings are:

The result of the conversion will be left-justified within the field.

+ The result of a signed conversion will always begin with a sign (+
or -).

blank If the first character of a signed conversion is not a sign, a blank
will be prepended to the result. This means that if the blank and
+ flags both appear, the blank flag will be ignored.

The value is to be converted to an alternate form. For c, d, S

and u conversions, the flag has no effect. For 0 conversion, it
increases the precision to force the first digit of the result to be a
zero. For x or X conversion, a non-zero result will have 0 x or
OX prepended to it. For e, E, t, g and G conversions, the
result will always contain a decimal point, even if no digits follow
the point (normally, a decimal point appears in the result of these
conversions only if a digit follows it). For g and G conversions,
trailing zeroes will not be removed from the result as they nor­
mallyare.

Each conversion character results in fetching zero or more a r gs. The
results are undefined if there are insufficient args for the format. If the
format is exhausted while args remain, the excess args are ignored.

The conversion characters and their meanings are:

d,o,u,x,x The integer arg is converted to signed decimal (d), unsigned
octal (0), unsigned decimal (u) or unsigned hexadecimal notation
(x and x) . The x conversion uses the letters abc d e t and the
X conversion uses the letters ABCDEF. The precision com­
ponent of arg specifies the minimum number of digits to
appear. If the value being converted can be represented in fewer
digits than the specified minimum, it will be expanded with lead­
ing zeroes. The default precision is 1. The result of converting
a zero value with a precision of 0 is a null string.

t The float or double arg is converted to decimal notation in the
style [-] ddd • ddd, where the number of digits after the
decimal point is equal to the precision specification. If the preci­
sion is omitted from a r g, six digits are output; if the precision
is explicitly 0, no decimal point appears.

e,E The float or double arg is ~onverted to the style
[-] d . ddde ± dd, where there is one digit before the decimal
point and the number of digits after it is equal to the precision.
When the precision is missing, six digits are produced; if the pre­
cision is 0, no decimal point appears. The E conversion charac­
ter will produce a number with E instead of e introducing the
exponent.

Base System Definition Page 201

PRINTF(BA_LlB)

The exponent always contains at least two digits. However, if the
value to be printed is greater than or equal to 1 E + 1 00, addi­
tional exponent digits will be printed as necessary.

g,G The float or double arg is printed in style f or e (or in style
E in the case of a G conversion character), with the precision
specifying the number of significant digits. The style used
depends on the value converted: style e will be used only if the
exponent resulting from the conversion is less than -4 or greater
than the precision. Trailing zeroes are removed from the result.
A decimal point appears only if it is followed by a digit.

c The character a r g is printed.

s The a r g is taken to be a string (character pointer) and charac­
ters from the string are printed until a null character (\. 0) is
encountered or the number of characters indicated by the preci­
sion specification of arg is reached. If the precision is omitted
from arg, it is taken to be infinite, so all characters up to the
first null character are printed. A NULL value for arg will
yield undefined results.

% Print a %; no argument is converted.

If the character after the % is not a valid conversion character, the results of
the conversion are undefined.

In no case does a non-existent or small field width cause trunc~tion of a field;
if the result of a conversion is wider than the field width, the field is simply
expanded to contain the conversion result. Characters generated by
printf and fprintf are printed as if the PUTC(BA_LlB) routine had
been called.

RETURN VALUE

The functions printf, fprintf, and sprintf return the number of
characters transmitted, or return -1 if an error was encountered.

EXAMPLE

To print a date and time in the form Sunday, July 3, 10: 02,
where weekday and month are pointers to null-terminated strings:

printf("%s, %s %d, %d:%.2d",
weekday, month, day, hour, min);

To print 7r to 5 decimal places:

printf("pi - %.5f", 4 * atan(1.0»;

Page 202 Base System Definition

PRINTF(BA_LIB)

SEE ALSO
PUTC(BA_LlB), SCANF(BA_LlB), FOPEN(BA_OS).

FUTURE DIRECTIONS
The function printf will make available character string representations
for 00 and "not a number" (NaN: a symbolic entity encoded in floating point
format) to support the IEEE P754 standard.

LEVEL
Levell.

Base System Definition Page 203

PUTC(BA _LIB)

NAME

putc, putchar, fputc, putw - put character or word on a stream

SYNOPSIS

#include <stdio.h>

int putc(c, stream)
int c;
FILE *stream;

int putchar(c)
int c;

int fputc(c, stream)
int c;
FILE *stream;

int putw(w, stream)
int w;
FILE *stream;

DESCRIPTION

The function putc writes the character c onto the output stream at
the position where the file-pointer, if defined, is pointing.

The function pu t c ha r (c) is defined as follows:

putc(c, stdout)

Both putc and putchar are macros.

The function fputc behaves like putc, but is a function rather than a
macro. The function fpu tc runs more slowly than pu tc but it takes less
space per invocation and its name can be passed as an argument to a func­
tion.

The function pu tw writes the word (i.e., integer) w to the output
stream (where the file-pointer, if defined, is pointing). The size of a word
is the size of an integer and varies from machine to machine. The function
pu tw neither assumes nor causes special alignment in the file.

RETURN VALUE

On success, putc, fputc, and putchar each return the value they
have written. On failure, they return the constant EOF. This will occur if
the file stream is not open for writing or if the output file cannot be
grown. The function putw returns non-zero when an error has occurred;
otherwise the function returns 0 .

Page 204 Base System Definition

PUTC(BA _LIB)

APPLICATION USAGE

Because it is implemented as a macro t put c incorrectly treats the argument
stream when it has side-effects. In particular t the following call may not
work as expected:

pu t c (c, * f + +) ;

The function f pu t c should be used instead.

Because of possible differences in word length and byte ordering t files written
using the function put ware machine-dependent t and may not be read on a
different processor using the function getw [see GETC(BA_LlB)1.

SEE ALSO
FCLOSE(BA_OS)t FERROR(BA_OS)t FOPEN(BA_OS)t FREAD(BA_OS)t

PRINTF(BA_LlB)t PUTS(BA_LlB)t SETBUF(BA_LlB).

LEVEL

Levell.

Base System Definition Page 205

PUTENV(BA _LIB)

NAME

putenv - change or add value to environment

SYNOPSIS

int putenv(string)
char *string;

DESCRIPTION

The argument string points to a string of the the following form:

name value

The function putenv makes the value of the environment variable name
equal to value by altering an existing variable or creating a new one. In
either case, the string pointed to by string becomes part of the environ­
ment, so altering the string will change the environment. The space used by
string is no longer used once a new string-defining name is passed to the
function putenv.

RETURN VALUE

The function putenv returns non-zero if it was unable to obtain enough
space for an expanded environment, otherwise zero.

APPLICATION USAGE

The function putenv was added to System V in System V Release 2.0.

The function putenv manipulates the environment pointed to by
environ, and can be used in conjunction with getenv. However,
envp, the third argument to main, is not changed [see EXEC(BA_OS)1.

A potential error is to call the function pu tenv with a pointer to an
automatic variable as the argument and to then exit the calling function
while string is still part of the environment.

SEE ALSO
EXEC(BA_OS), MALLOC(BA_OS), GETENV(BA_LIB).

LEVEL
Levell.

Page 206 Base System Definition

PUTS(BA _LIB)

NAME

puts, fputs - put a string on a stream

SYNOPSIS
#include <stdio.h>

int puts(s)
char *s;

int fputs(s, stream)
char *s;
FILE *stream;

DESCRIPTION
The function puts writes the null-terminated string pointed to by s, fol­
lowed by a new-line character, to the standard output stream stdou t.

The function fputs writes the null-terminated string pointed to by s to
the named output stream.

Neither function writes the terminating null character.

RETURN VALUE

On success, both routines return the number of characters written.

Both functions return EOF on error. This will happen if the routines try to
write on a file that has not been opened for writing.

APPLICATION USAGE

The function puts appends a new-line character while f pu t s does not.

SEE ALSO

FERROR(BA_OS), FOPEN(BA_OS), FREAD(BA_OS), PRINTF(BA_LIB),

PUTC(BA_LlB).

LEVEL

Levell.

Base System Definition Page 207

QSORT(BA _LIB)

NAME

qsort - quicker sort

SYNOPSIS

void qsort(base, nel, width, compar)
char *base;
unsigned nel, width;
int (*compar) () ;

DESCRIPTION

The function qsort is a general-sorting algorithm. It sorts a table of data
in place.

The argument ba s e points to the element at the base of the table.

The argument ne 1 is the number of elements in the table.

The argument wid this the size of an element in bytes.

The argument compar is the name of the user-supplied comparison func­
tion, which is called with two arguments that point to the elements being
compared. The comparison function must return an integer less than, equal
to or greater than zero, according as the first argument is to be considered is
less than, equal to or greater than the second.

APPLICATION USAGE
The pointer to the base the table should be of type pointer-to-element, and
cast to type pointer-to-character.

The comparison function need not compare every byte, so arbitrary data may
be contained in the elements in addition to the values being compared.

The relative order in the output of two items which compare as equal is
unpredictable.

SEE ALSO

BSEARCH(BA_LlB), LSEARCH(BA_LlB), STRING(BA_LlB).

LEVEL

Levell.

Page 208 Base System Definition

RAND(BA _LIB)

NAME

rand, srand - simple random-number generator

SYNOPSIS
int rand(

void srand(seed)
unsigned int seed;

DESCRIPTION

The function rand uses a multiplicative congruential random-number gen­
erator with period 232 that returns successive pseudo-random numbers in the
range from 0 to 3 2 7 67.

The function srand uses the argument seed as a seed for a new
sequence of pseudo-random numbers to be returned by subsequent calls to
the function rand. If the function srand is then called with the same
seed value, the sequence. of pseudo-random numbers will be repeated. If the
function rand is called before any calls to the function srand have been
made, the same sequence will be generated as when the function srand is
first called with a seed value of 1.

APPLICATION USAGE

The DRAND48(BA_LIB) routine provides a much more elaborate random­
number generator.

The following functions define the semantics of the functions rand and
srand.

static unsigned long int next = 1;
int rand ()
{

next = next * 1103515245 + 12345;
return «unsigned int) (next/65536) % 32768);

}

void srand(seed)
unsigned int seed;
{

next = seed;
}

Specifying the semantics makes it possible to reproduce the behavior of pro­
grams that use pseudo-random sequences. This facilitates the testing of port­
able applications in different implementations.

SEE ALSO
DRAND48(BA_LlB).

LEVEL

Levell.

Base System Definition Page 209

REGEXP(BA_LlB)

NAME

regexp - regular-expression compile and match routines

SYNOPSIS
#def ine INIT declarations
#define GETC () getc code
#def ine PEEK () peekc code
#define UNGETC () ungetc code
#define RETURN (ptr) return code
#define ERROR (val) error code

#include <regexp.h>

char *compile(instring, expbuf, endbuf, eof)
char *instring, *expbuf, *endbuf;
int eof;

int step(stririg, expbuf)
char *string, *endbuf;

advance(string, expbuf)
char *string, *expbuf;

extern char *loc1, *loc2, *locs;

DESCRIPTION
These functions are general-purpose regular-expression matching routines to
be used in programs that perform regular-expression matching. These func­
tions are defined by the <regexp. h> header file.

The functions step and advance do pattern matching given a character
string and a compiled regular-expression as input.

The function compile takes as input a regular-expression as defined below
and produces a compiled expression that can be used with step or
advance.

A regular-expression, re, specifies a set of character strings. A member of
this set of strings is said to be matched by the reo Some characters have spe­
cial meaning when used in an re; other characters stand for themselves.

The regular-expressions available for use with the function regexp are
constructed as follows:

Expression

c

\c

$

Page 210

Meaning

the character c where c is not a special character.

the character c where c is any character, except a digit in
the range 1-9.

the beginning of the line being compared.

the end of the line being compared.

Base System Definition

[s]

["s]

rx

r\ {m, n\}

\ (r\)

REGEXP(BA _LIB)

any character in the input.

any character in the set s, where s is a sequence of charac­
ters and/or a range of characters, e.g., [c-c].

any character not in the set s, where s is defined as above.

zero or more successive occurrences of the regular­
expression r. The longest match is chosen.

the occurrence of regular-expression r followed by the
occurrence of regular-expression x. (Concatenation)

any number of m through n successive occurrences of the
regular-expression r. The regular-expression r\ {m\}
matches exactly m occurrences r\ {m, \} matches at least
m occurrences.

the regular-expression r. When \n (where n is a number
greater than zero) appears in a constructed regular­
expression, it stands for the regular-expression x where x is
the nth regular-expression enclosed in \ (and \) strings
that appeared earlier in the constructed regular-expression.
For example, \ (r\) x\ (y\) z\2 is the concatenation of
regular-expressions rxyzy.

Characters that have special meaning except when they appear within square
brackets, [], or are preceded by \ are: ., *, [, \. Other special char­
acters, such as $ have special meaning in more restricted contexts.

The character " at the beginning of an expression permits a successful
match only immediately after a new-line, and the character $ at the end of
an expression requires a trailing new-line.

Two characters have special meaning only when used within square brackets.
The character - denotes a range, [c-c], unless it is just after the open
bracket or before the closing bracket, [-c] or [c-] in which case it has
no special meaning. When used within brackets, the character "has the
meaning complement of if it immediately follows the open bracket, [" c] ,
elsewhere between brackets, [c"], it stands for the ordinary character ".

The special meaning of the \ operator can be escaped only by preceding it
with another \, e.g. \ \.

Base System Definition Page 211

REGEXP(BA_LlB)

Programs must have the following five macros declared before the
#include <regexp. h> statement. These macros are used by the
compile routine. The macros GETC, PEEKC, and UNGETC operate on
the regular-expression given as input to compi 1 e.

GETC () This macro returns the value of the next character in the
regular-expression pattern. Successive calls to GETC ()
should return successive characters of the regular­
expression.

PEEKC () This macro returns the next character in the regular­
expression. Immediately successive calls to PEEKC ()
should return the same character, which should also be
the next character returned by GETC ().

UNGETC () This macro causes the argument c to be returned by the
next call to GETC () and PEEKC (). No more than
one character of pushback is ever needed and this charac­
ter is guaranteed to be the last character read by
GETC (). The value of the macro UNGETC (c) is
always ignored.

RETURN (ptr) This macro is used on normal exit of the compile rou­
tine. The value of the argument pt r is a pointer to the
character after the last character of the compiled
regular-expression. This is useful to programs which have
memory allocation to manage.

ERROR(val) This macro is the abnormal return from the compile
routine. The argument val is an error number [see
ERRORS below for meanings]. This call should never
return.

The syntax of the compi 1 e routine is as follows:

compile(instring, expbuf, endbuf, eof)

The first parameter instring is never used explicitly by the compile
routine but is useful for programs that pass down different pointers to input
characters. It is sometimes used in the I NIT declaration (see below). Pro­
grams which call functions to input characters or have characters in an exter­
nal array can pass down a value of « char*) 0) for this parameter.

The next parameter expbuf is a character pointer. It points to the place
where the compiled regular-expression will be placed.

The parameter endbuf is one more than the highest address where the
compiled regular-expression may be placed. If the compiled expression can­
not fit in (endbuf-expbuf) bytes, a call to ERROR (so) is made.

The parameter eof is the character which marks the end of the regular­
expression. For example, reI.

Page 212 Base System Definition

REGEXP(BA_LlB)

Each program that includes the <regexp. h> header file must have a
#define statement for INIT. It is used for dependent declarations and
initializations. Most often it is used to set a register variable to point to the
beginning of the regular-expression so that this register variable can be used
in the declarations for GETC (), PEEKC (), and UNGETC (). Other­
wise it can be used to declare external variables that might be used by
GETC (), PEEKC () and UNGETC (). See EXAMPLES below.

The first parameter to the s t e p function is a pointer to a string of charac­
ters to be checked for a match. This string should be null terminated.

The second parameter, expbuf, is the compiled regular-expression which
was obtained by a call to the function c omp i 1 e.

The function step returns non-zero if some sub-string of string
matches the regular-expression in expbuf and zero if there is no match.
If there is a match, two external character pointers are set as a side effect to
the call to step. The variable 10c 1 points to the first character that
matched the regular-expression; the variable 10c2 points to the character
after the last character that matches the regular-expression. Thus if the
regular-expression matches the entire input string, 10c 1 will point to the
first character of s t ring and 10 c 2 will point to the null at the end of
string.

The function advance returns non-zero if the initial substring of
string matches the regular-expression in expbuf. If there is a match
an external character pointer, 10c2, is set as a side effect. The variable
10c2 points to the next character in string after the last character that
matched.

When advance encounters a * or \ { \} sequence in the regular­
expression, it will advance its pointer to the string to be matched as far as
possible and will recursively call itself trying to match the rest of the string to
the rest of the regular-expression. As long as there is no match, advance
will back up along the string until it finds a match or reaches the point in the
string that initially matched the * or \ { \ }. It is sometimes desirable to
stop this backing up before the inital point in the string is reached. If the
external character pointer 10 c s is equal to the point in the string at some­
time during the backing up process, advance will break out of the loop
tha~ backs up and will return zero.

The external variables circf, sed, and nbra are reserved.

Base System Definition Page 213

REGEXP(BA_LlB)

RETURN VALUE

The function compile uses the macro RETURN on success and the
macro ERROR on failure, see above. The functions step and advance
return non-zero on a successful match and zero if there is no match.

ERRORS

11 range endpoint too large.

16 bad number.

25 \ digit out of range.

36 illegal or missing delimiter.

41 no remembered search string.

42 \(\) imbalance.

43 too many \ (.

44 more than 2 numbers given in \{ \ }.

45 } expected after \.

46 first number exceeds second in \{ \}.

49 [] imbalance.

50 regular-expression overflow.

EXAMPLES

The following is an example of how the regular-expression macros and calls
might be defined by an application program:

#define INIT register char *sp = instring;
#define GETC () (*sp++)
#define PEEKC() (*sp)
#define UNGETC(c) (--sp)
#define RETURN(C)
#define ERROR(C)

#include <regexp.h>

return;
regerr()

(void) compile(*argv, expbuf, &expbuf[ESIZE],'\O');

LEVEL

Levell.

Page 214

if (step(linebuf, expbuf»
succeed() ;

Base System Definition

NAME

scanf, fscanf, sscanf - convert formatted input

SYNOPSIS
#include <stdio.h>

int scanf (format [, pointer] ...)
char *format;

int fscanf (stream, format [, pointer] ...))
FILE *stream;
char *format;

int sscanf (s, format [, pointer] ...)
char *s, *format;

DESCRIPTION
The function scanf reads from the standard input stream stdin.

The function fscanf reads from the named input stream.

The function s s can f reads from the character string s.

Each function reads characters, interprets them according to a format and
stores the results in its arguments. Each expects, as arguments, a control
string format described below and a set of pointer arguments indicat­
ing where the converted input should be stored.

The control string usually contains conversion specifications, which are used
to direct interpretation of input sequences. The control string may contain:

1. White-space characters (blanks, tabs, new-lines, or form-feeds) which,
except in two cases described below, cause input to be read up to the
next non-white-space character.

2. An ordinary character (not %), which must match the next character
of the input stream.

3. Conversion specifications, consisting of the character %, an optional
assignment suppressing the character *, a decimal digit. string that
specifies an optional numerical maximum field width, an optional letter
1 (ell) or h indicating the size of the receiving variable, and a conver­
sion code.

A conversion specification directs the conversion of the next input field; the
result is placed in the variable pointed to by the corresponding argument
unless assignment suppression was indicated by the character *. The
suppression of assignment provides a way of describing an input field which is
to be skipped. An input field is defined as a string of non-space characters; it
extends to the next inappropriate character or until the maximum field
width, if one is specified, is exhausted. For all descriptors except the charac­
ter [and the character c, white space leading an input field is ignored.

Base System Definition Page 215

SCANF(BA _LIB)

The conversion code indicates the interpretation of the input field; the
corresponding pointer argument must usually be of a restricted type. For a
suppressed field, no pointer argument is given. The following conversion
codes are legal:

%

d

u

o

x

e,f,g

s

c

Page 216

a single % is expected in the input at this point; no assignment is
done.

a decimal integer is expected; the corresponding argument should
be an integer pointer.

an unsigned decimal integer is expected; the corresponding argu­
ment should be an unsigned integer pointer.

an octal integer is expected; the corresponding argument should
be an integer pointer.

a hexadecimal integer is expected; the corresponding argument
should be an integer pointer.

a floating point number is expected; the next field is converted
accordingly and stored through the corresponding argument,
which should be a pointer to a f loa t. The input format for
floating point numbers is an optionally signed string of digits, pos­
sibly containing a decimal point; followed by an optional exponent
field consisting of an E or an e, followed by an optionally signed
integer.

a character string is expected; the corresponding argument should
be a character pointer pointing to an array of characters large
enough to accept the string and a terminating \ 0, which will be
added automatically. The input field is terminated by a white­
space character.

a character is expected; the corresponding argument should be a
character pointer. The normal skip over white space is suppressed
in this case; to read the next non-space character, use % 1 s. If a
field width is given, the corresponding argument should refer to a
character array; the indicated number of characters is read.

indicates string data and the normal skip over leading white space
is suppressed. The left bracket is followed by a set of characters
called the scanset and a right bracket; the input field is the maxi­
mal sequence of input characters consisting entirely of characters
in the scanset. The circumflex ("), when it appears as the first
character in the scanset, serves as a complement operator and
redefines the scan set as the set of all characters not contained in
the remainder of the scanset string.

Base System Definition

There are some conventions used in· the construction of the scan­
set. A range of characters may be represented by the construct
first-last, thus [0123456789] may be expressed [0-9].
Using this convention, first must be lexically less than or equal to
last, or else the dash will stand for itself. The character - will
also stand for itself whenever it is the first or the last character in
the scanset. To include the right square bracket as an element of
the scanset, it must appear as the first character (possibly pre­
ceded by a circumflex) of the scanset and in this case it will not
be syntactically interpreted as the closing bracket. The
corresponding argument must point to a character array large
enough to hold the data field and the terminating \ 0 which will
be added automatically. At least one character must match for
this conversion to be considered successful.

If an invalid conversion character follows the %, the results of the operation
may not be predictable.

The conversion characters d, u, 0, and x may be preceded by 1 or h to
indicate that a pointer to long or to short rather than to int is in the
argument list. Similarly, the conversion characters e, f, and g may be
preceded by 1 to indicate that a pointer to double rather than to
f 1 oa t is in the argument list. The 1 or h modifier is ignored for other
conversion characters.

The scanf conversion terminates at end of file, at the end of the control
string or when an input character conflicts with the control string. In the
latter case, the offending character is left unread in the input stream.

RETURN VALUE
These routines return the number of successfully matched and assigned input
items; this number can be zero in the event of an early conflict between an
input character and the control string. If the input ends before the first
conflict or conversion, EOF is returned.

APPLICATION USAGE
Trailing white space (including a new-line) is left unread unless matched in
the control string.

The success of literal matches and suppressed assignments is not directly
determina ble.

Base System Definition Page 217

EXAMPLE

The call to the function s can f:

int i, n; float X; char name[50];
n = scanf("%d%f%s", &i, &x, name);

with the input line:

25 54.32E-1 thompson

will assign to n the value 3, to i the value 25, to x the value 5.432,
and name will contain thompson\O.

The call to the function s can f :

int i; float X; char name[50];
(void) scanf("%2d%f%*d %[0-9]", &i, &x, name);

with the input line:

56789 0123 56a72

will assign 56 to i, 789. 0 to x, skip 0 1 2 3, and place the string
56\0 in name. The next call to getchar [see GETC(BA_LlB)] will return
a.

SEE ALSO

GETC(BA_LlB), PRINTF(BA_LlB), STRTOD(BA_LlB), STRTOL(BA_LlB).

FUTURE DIRECTIONS

The function s canf will make available character string representations
for 00 and "not a number" (NaN: a symbolic entity encoded in floating point
format) to support the IEEE P754 standard.

LEVEL

Level 1.

Page 218 Base System Definition

SETBUF(BA_LlB)

NAME

setbuf, setvbuf - assign buffering to a stream

SYNOPSIS

#include <stdio.h>

void setbuf(stream, buf)
FILE *stream;
char *buf;

int setvbuf(stream, buf, type, size)
FILE *stream;
char *buf;
int type, size;

DESCRIPTION

The function setbuf may be used after a stream has been opened but
before it is read or written. It causes the array pointed to by buf to be
used instead of an automatically allocated buffer. If buf is the NULL
pointer input/output will be completely unbuffered.

A constant BUFSIZ, defined by the <stdio. h> header file, tells how
big an array is needed:

char buf [BUFSIZ] ;

The function setvbuf may be used after stream has been opened but
before it is read or written. The value of type determines how stream
will be buffered. Legal values for type, defined by the <stdio .h>
header file, are:

IOFBF causes input/output to be fully buffered.

IOLBF causes output to be line buffered; the buffer will be flushed when
a new-line is written, the buffer is full, or input is requested.

IONBF causes input/output to be completely unbuffered.

If buf is not the NULL pointer, the array it points to will be used for
buffering instead of an automatically allocated buffer. The value of size
specifies the size of the buffer to be used. The constant BUFSIZ in the
<stdio. h> header file is suggested as a good buffer size. If input/output
is un buffered, b u f and s i z e are ignored.

By default, output to a terminal is line buffered and all other input/output is
fully buffered, except the standard error stream stderr, which is normally
not buffered.

RETURN VALUE
If an illegal value for type or size is provided, setvbuf returns a
non-zero value. Otherwise, the value returned will be zero.

Base System Definition Page 219

SETBUF(BA_LlB)

APPLICATION USAGE

The function setvbuf was added to System V in System V Release 2.0.

A common source of error is allocating buffer space as an automatic variable
in a code blockt and then failing to close the stream in the same block.

SEE ALSO

FOPEN(BA_OS)t MALLOC(BA_OS)t GETC(BA_LIB)t PUTC(BA_LIB).

LEVEL

Levell.

Page 220 Base System Definition

SET JMP(BA _LIB)

NAME

setjmp, longjmp - non-local goto

SYNOPSIS

#include <setjmp.h>

int setjmp(env)
jmp_buf env;

void longjmp(env, val)
jmp_buf env;
int val;

DESCRIPTION

These functions are useful for dealing with errors and interrupts encountered
in a low-level subroutine of a program.

The function setjmp saves its stack environment in env (whose type,
jmp buf, is defined by the <setjmp. h> header file) for later use by
the f.;inction longjmp. The function setjmp returns the value O.

The function longjmp restores the environment saved by the last call to
the function set j mp with the corresponding argument en v.

After the function long j mp is completed, program execution continues as
if the corresponding call to the function set j mp (the caller of which must
not itself have returned in the interim) had just returned the value val.
All accessible data have values as of the time the function longjmp was
called.

RETURN VALUE

When the function set j mp has been called by the calling-process, it
returns O.

The function long j mp does not return from where it was called, but
rather, program execution continues as if the previous call to the function
setjmp returned with a return value of val. That is, when the function
set j mp returns as a result of the function long j mp being called, the
function setjmp returns val. However, the function longjmp cannot
cause the function set j mp to return the value O. If the function
longjmp is invoked with a val of 0, the function setjmp will return
1.

APPLICATION USAGE

If the function longjmp is called even though the argument env was
never primed by a call to the function set j mp, or when the last such call
was in a function which has since returned, the behavior is undefined.

If the call to the function longjmp is in a different function from the
corresponding call to the function set j mp, register variables may have
unpredictable values.

Base System Definition Page 221

SET JMP(BA _LIB)

SEE ALSO
SIGNAL(BA_ OS).

LEVEL
Levell.

Page 222 Base System Definition

SINH(BA _LIB)

NAME
sinh, cosh, tanh - hyperbolic functions

SYNOPSIS
#include <math.h>

double sinh(x)
double X;

double cosh(x)
double X;

double tanh(x)
double X;

DESCRIPTION

The functions sinh, cosh, and tanh return, respectively, the hyper­
bolic sine, cosine and tangent of their argument.

RETURN VALUE
The functions sinh and cos h return HUG E, and sinh may return
-HUGE for negative X, when the correct value would overflow and set
errno to ERANGE.

APPLICATION USAGE
These error-handling procedures may be changed with the MATHERR(BA_LlB)
routine.

SEE ALSO
MATHERR(BA_LlB).

FUTURE DIRECTIONS

A macro HUGE VAL will be defined by the <math.h> header file. This
macro will call a-function which will either return +00 on a system support­
ing the IEEE P754 standard or +{MAXDOUBLE} on a system that does not
support the IEEE P754 standard.

The functions sinh and cosh will return HUGE VAL (sinh will
return -HUGE _ VAL for negative n) when the correct value overflows.

LEVEL
Levell.

Base System Definition Page 223

SSIGNAL(BA_LlB)

NAME

ssignal, gsignal - software signals

SYNOPSIS

#include <signal.h>

int (*ssignal (sig, action» ()
int sig, (*action) () ;

int gsignal(sig)
int sig;

DESCRIPTION

The functions ssignal and gsignal implement a software facility
similar to the SIGNAL(BA_OS) routine. This facility is made available to pro­
grams for their own purposes.

Software signals available to programs are listed in SIGNAL(BA_OS).

A call to the function s signa 1 associates a procedure, act i on, with
the software signal s i g; the software signal, s i g, is raised by a call to the
function gsignal. Raising a software signal causes the action established
for that signal to be taken.

The first argument, sig, to the function ssignal, is a signal number in
the range 1-1 5 for which an action is to be established. The second argu­
ment, action, defines the action; it is either the name of a (user-defined)
function action or one of the manifest constants SIG DFL (default) or
SIG IGN (ignore). The function ssignal returns the action previously
established for that signal type; if no action has been established or the signal
is illegal, the function ssignal returns SIG _DFL.

The function gsignal raises the signal identified by its argument, sig:

Page 224

If the function action has been established for the argument
sig, then that action is reset to SIG DFL and the function
act i on is entered with argument s i g. The function g signa 1
returns the value returned to it by the function action.

If the action for the argument s i g is S I GIG N, the function
g signa 1 returns the value 1 and takes no other action.

If the action for the argument s i g is S I G D F L, the function
g sign a 1 returns the value 0 and takes no othe"i- action.

If the argument s i g has an illegal value or no action was ever
specified for the argument s i g, the function g s i g n a 1 returns the
value 0 and takes no other action.

Base System Definition

SEE ALSO
SIGNAL(BA_OS).

LEVEL
Level 2, December 1, 1985

Base System Definition

SSIGNAL(BA _LIB)

Page 225

STRING(BA_ LIB)

NAME

strcat, strncat, strcmp, strncmp, strcpy, strncpy, strien, strchr, strrchr,
strpbrk, strspn, strcspn, strtok - string operations

SYNOPSIS
#include <string.h>

char *strcat(s1, s2)
char *s1, *s2;

char *strncat(s1, s2, n)
char *s1, *s2;
int n;

int strcmp(s1, s2)
char *s1, *s2;

int strncmp(s1, s2, n)
char *s1, *s2;
int n;

char *strcpy(s1, s2)
char *s1, *s2;

char *strncpy(s1,
char *s1, *s2;
int n;

int strlen(s)
char *s;

char *strchr(s, c)
char *s;
int c;

s2,

char *strrchr(s, c)
char *s;
int c;

char *strpbrk(s1, s2)
char *s1, *s2;

int strspn(s1, s2)
char *s1, *s2;

int strcspn(s1, s2)
char *s1, *s2;

char *strtok(s1, s2)
char *s1, *s2;

DESCRIPTION

n)

The arguments s 1, s 2 and s point to strings (arrays of characters ter­
minated by a null character). The functions strcat, strncat,
strcpy, strncpy and strtok all alter s 1. These functions do not
check for overflow of the array pointed to by s 1.

Page 226 Base System Definition

STRING(BA_LIB)

The function strca t appends a copy of string s 2 to the end of string
s 1.

The function strncat appends at most n characters. Each returns a
pointer to the null-terminated result.

The function strcmp compares its arguments and returns an integer less
than, equal to or greater than 0, according as s 1 is lexicographically less
than, equal to or greater than s 2.

The function strncmp makes the same comparison but looks at at most n
characters.

The function s t r c py copies string s 2 to s 1, stopping after the null
character has been copied.

The functions strncpy copies exactly n characters, truncating s2 or
adding null characters to s 1 if necessary. The result will not be null­
terminated if the length of s 2 is n or more. Each function returns s 1.

The function strlen returns the number of characters in s, not including
the terminating null character.

The function strchr or the function strrchr returns a pointer to the
first (last) occurrence of character c in string s, or a NULL pointer if c
does not occur in the string. The null character terminating a string is con­
sidered to be part of the string.

The function strpbrk returns a pointer to the first occurrence in string
s 1 of any character from string s 2, or a NULL pointer if no character
from s 2 exists in s 1.

The function strspn or the function strcspn returns the length of the
initial segment of string s 1 which consists entirely of characters from (not
from) string s 2.

The function strtok considers the string s 1 to consist of a sequence of
zero or more text tokens separated by spans of one or more characters from
the separator string s 2. The first call (with pointer s 1 specified) returns a
pointer to the first character of the first token, and will have written a null
character into s 1 immediately following the returned token. The function
keeps track of its position in the string between separate calls, so that subse­
quent calls (which must be made with the first argument a NULL pointer)
will work through the string s 1 immediately following that token. In this
way subsequent calls will work through the string s 1, returning a pointer to
the first character of each subsequent token. A null character will have been
written into s 1 by strtok immediately following the token. The separa­
tor string s 2 may be different from call to call. When no token remains in
s 1, a NULL pointer is returned.

Base System Definition Page 227

STRING(BA _LIB)

APPLICATION USAGE

All these functions are declared by the < s t r i n 9 . h> header file.

Both strcmp and strncmp use native character comparison. The sign
of the value returned when one of the characters has its high-order bit set is
implementation-dependent.

Character movement is performed differently in different implementations.
Thus overlapping moves may yield surprises.

SEE ALSO
MEMORY(BA _LIB).

FUTURE DIRECTIONS
The type of argument n to strncat, strncmp and strncpy and
the type of value returned by s t r 1 en will be declared through the
typedef facility in a header file as size _ t.

LEVEL
Levell.

Page 228 Base System Definition

STRTOD(BA _LIB)

NAME

strtod, atof - convert string to double-precision number

SYNOPSIS
double strtod(str, ptr)
char *str, **ptr;

double atof(str)
char *str;

DESCRIPTION
The function strtod returns as a double-precision floating-point number
the value represented by the character string pointed to by s t r. The string
is scanned up to the first unrecognized character.

The function strtod recognizes an optional string of white-space charac­
ters [as defined by isspace in CTYPE(BA_LlB»), then an optional sign, then
a string of digits optionally containing a decimal point, then an optional e or
E followed by an optional sign, followed by an integer.

If the value of ptr is not « char * *) 0), a pointer to the character
terminating the scan is returned in the location pointed to by ptr. If no
number can be formed, *ptr is set to str, and 0 is returned.

The function call at 0 f (s t r) is equivalent to:

strtod(str, (char **)0)

RETURN VALUE

If the correct value would cause overflow, ± HUGE is returned {according to
the sign of the value} and errno is set to ERANGE.

If the correct value would cause underflow, zero is returned and errno is
set to ERANGE.

APPLICATION USAGE

The function strtod was added to System V in System V Release 2.0.

SEE ALSO
CTYPE(BA_LlB), SCANF(BA_LlB), STRTOL(BA_LlB).

FUTURE DIRECTIONS
A macro HUGE. VAL will be defined by the <math.h> header file. This
macro will call a -function which will either return +00 on a system that sup­
ports the IEEE P7S4 standard or +{MAXDOUBLE} on a system that does not
support the IEEE P7S4 standard.

If the correct value overflows, ±HUGE VAL will be returned {according to
the sign of the value}.

LEVEL
Levell.

Base System Definition Page 229

STRTOL(BA _LIB)

NAME

strtol, atol, atoi - convert string to integer

SYNOPSIS

long strtol(str, ptr, base)
char *str, **ptr;
int base;

long atol(str)
char *str;

int atoi(str)
char *str;

DESCRIPTION

The function strtol returns as a long integer the value represented by the
character string pointed to by str. The string is scanned up to the first
character inconsistent with the base. Leading white-space characters [as
defined by isspace in CTYPE(BA_LlB)] are ignored.

If the value of ptr is not « char * *) 0), a pointer· to the character
terminating the scan is returned in the location pointed to by ptr. If no
integer can be formed, that location is set to str and zero is returned.

If ba s e is positive (and not greater than 36), it is used 'as the base for
conversion. After an optional leading sign, leading zeros are ignored and 0 x
or ox is ignored if base is 16.

If ba s e is zero, the string itself determines the base in the following way:
After an optional leading sign a leading zero indicates octal conversion and a
leading 0 x or 0 X hexadecimal conversion. Otherwise, decimal conversion
is used.

Truncation from long to int can, of course, take place upon assignment
or by an explicit cast.

The function call a tol (str) is equivalent to:

strtol(str, (char **)0,10)

The function call at 0 i (s t r) is equivalent to:

(int)strtol(str, (char **)0, 10)

RETURN VALUE
If the argument ptr is a null-pointer, the function strtol will return
the value of the string s t r as a long integer.

If the argument ptr is not NULL, the function strtol will return the
value of the string str as a long integer, and a pointer to the character ter­
minating the scan will be returned in the location pointed to by ptr.

If no integer can be formed, that location is set to the argument s t rand
the function s t r t 0 1 returns O.

Page 230 Base System Definition

APPLICATION USAGE

Overflow conditions are ignored.

SEE ALSO
CTYPE(BA_LIB), SCANF(BA_LlB), STRTOD(BA_LlB).

FUTURE DIRECTIONS

Error handling will be added to the function s t r to 1.

LEVEL

Levell.

Base System Definition

STRTOL(BA_LlB)

Page 231

NAME

swab - swap bytes

SYNOPSIS
void swab(from, to, nbytes)
char *from, *to;
int nbytes;

DESCRIPTION
The function swab copies nbytes bytes pointed toby from to the
array pointed to by to, exchanging adjacent even and odd bytes. It is use­
ful for carrying binary data between machines with different low-order/high­
order byte arrangements.

The argument nbytes should be even and non-negative. If the argument
nbytes is odd and positive, the function swab uses nbytes-1 instead.
If the argument nbytes is negative, the function swab does nothing.

LEVEL
Levell.

Page 232 Base System Definition

TMPFILE(BA _LIB)

NAME

tmpfile - create a temporary file

SYNOPSIS

#include <stdio.h>

FILE *tmpfile ()

DESCRIPTION

The function tmpf i 1 e creates a temporary file using a name generated by
the TMPNAM(BA_LlB) library routine, and returns a corresponding pointer to
the FILE structure associated with the stream [see stdlo-stream in Chapter
4 - Definitions]. The temporary file will automatically be deleted when the
process that opened it terminates or the temporary file is closed. The tem­
porary file is opened for update (w+) [see FOPEN(BA_OS)].

RETURN VALUE

If the temporary file cannot be opened, an error message is written and a
NULL pointer is returned.

SEE ALSO

CREAT(BA_OS), UNLlNK(BA_OS), FOPEN(BA_OS), MKTEMP(BA_LlB),

TMPNAM(BA_LlB).

LEVEL

Levell.

Base System Definition Page 233

TMPNAM(BA _LIB)

NAME

tmpnam, tempnam - create a name for a temporary file

SYNOPSIS

#include <stdio.h>

char *tmpnam(s)
char *s;

char *tempnam(dir, pfx)
char *dir, *pfx;

DESCRIPTION
These functions generate file-names that can safely be used for a temporary
file.

The function tmpnam always generates a file-name using the path-prefix
defined by the <stdio. h> header file as P tmpdir. If the argument
s is NULL, the function tmpnam leaves its re~ult in an internal static area
and returns a pointer to that area. The next call to the function tmpnam
will destroy the contents of the area. If the argument s is not NULL, it is
assumed to be the address of an array of at least L tmpnam bytes, where
L_ tmpnam is a constant defined by the <stdi-o. h> header file; the
function tmpnam places its result in that array and returns s.

The function tempnam allows the user to control the choice of a directory.
If defined in the user's environment, the value of the environmental variable
TMPDIR is used as the name of the desired temporary file directory. The
argument d i r points to the name of the directory in which the file is to be
created. If the argument dir is NULL or points to a string that is not a
name for an appropriate directory, the path-prefix defined by the
< stdio. h> header file as P tmpdir is used. If that directory is not
accessible, the directory /tmp;ill be used as a last resort.

The function tempnam uses the MALLOC(BA_OS) routine to get space for
the constructed file-name, and returns a pointer to this area. Thus, any
pointer value returned from the function tempnam may serve as an argu­
ment to the function free defined in MALLOC(BA_OS). If the function
tempnam cannot return the expected result for any reason, for example, the
MALLOC(BA_OS routine failed or none of the above-mentioned attempts to
find an appropriate directory was successful, a NULL pointer will be
returned.

APPLICATION USAGE

Many applications prefer their temporary-files to have certain favorite initial
letter sequences in their names. Use the pfx argument for this. This argu­
ment may be NULL or point to a string of up to five characters to be used
as the first few characters of the temporary-file name.

Page 234 Base System Definition

TMPNAM(BA _LIB)

The functions tmpnam and tempnam generate a different file-name each
time they are called.

Files created using these functions and either the FOPEN(BA_OS) routine or
the CREAT(BA_OS) routine are temporary only in the sense that they reside in
a directory intended for temporary use, and their names are unique. It is the
user's responsibility to use the UNLlNK(BA_ OS) routine to remove the file when
its use is ended.

If called more than (TMP _MAX} times in a single process, these functions will
start recycling previously used names.

Between the time a file-name is created and the file is opened, it is possible
for some other process to create a file with the same name. This can never
happen if that other process is using these functions or mktemp, and the
file-names are chosen so as to render duplication by other means unlikely.

SEE ALSO
CREAT(BA_OS), UNLlNK(BA_OS), FOPEN(BA_OS), MALLOC(BA_OS),

MKTEMP(BA _LIB), TMPFILE(BA _LIB).

LEVEL
Levell.

Base System Definition Page 235

TRIG(BA _LIB)

NAME

sin, cos, tan, asin, acos, atan, atan2 - trigonometric functions

SYNOPSIS

#include <math.h>

double sin(x)
double X;

double cos (x)
double x· ,
double tan(x)
double X;

double asin(x)
double x;

double acos(x)
double x· ,
double atan(x)
double X;

double atan2(y, x)
double y, x;

DESCRIPTION

The functions sin, cos and tan return respectively the sine, cosine and
tangent of their argument, x, measured in radians.

The function a sin returns the arcsine of the argument X in the range
-1f'/2 to 1f'/2.

The function a cos returns the arccosine of the argument X in the range
o to 1f'.

The function a tan returns the arctangent of the argument x in the range
-1f'/2 to 1f'/2.

The function atan2 returns the arctangent of y/x in the range -1f' to 1f',

using the signs of both arguments to determine the quadrant of the return
value.

RETURN VALUE

Both s in and cos lose accuracy when their argument is far from zero.
For arguments sufficiently large, these functions return zero when there
would otherwise be a complete loss of significance. In this case a message
indicating TLOSS error is printed on the standard error output [see
MATHERR{BA_LlB»). For less extreme arguments causing partial loss of
significance, a PLOS S error is generated but no message is printed. In both
cases, errno is set to ERANGE.

Page 236 Base System Definition

TRIG(BA _LIB)

If the magnitude of the argument of asin or acos is greater than one, or
if both arguments of a tan2 are zero, zero is returned and errno is set
to EDOM. In addition, a message indicating DOMAIN error is printed on
the standard error output.

APPLICATION USAGE

These error-handling procedures may be changed with the MATHERR(BA_LlB)

routine.

SEE ALSO
MATHERR(BA_LlB).

LEVEL

Levell.

Base System Definition Page 237

TSEARCH(BA_LlB)

NAME

tsearch, Hind, tdelete, twalk - manage binary search trees

SYNOPSIS'

#include <search.h>

char *tsearc~(key, rootp, compar)
char *key;
char **rootp;
int (*compar) () ;

char *tfind(key, rootp, compar)
char *key;
char **rootp;
int (*compar) () ;

char *tdelete(key, rootp, compar)
char *key;
char **rootp;
int (*compar) () ;

void twalk(root, action)
char *root;
void (*action) () ;

DESCRIPTION
The functions tsearch, tfind, tdelete, and twalk manipulate
binary search trees. All comparisons are done with a user-supplied function,
compar. The comparison function is called with two arguments, the
pointers to the elements being compared. It returns an integer less than,
equal to or greater than 0, according to whether the first argument is to be
considered less than, equal to or greater than the second argument. The
comparison function need not compare every byte, so arbitrary data may be
contained in the elements in addition to the values being compared.

The function tsearch is used to build and access the tree. The value of
key is a pointer to a datum to be accessed or stored. If there is a datum in
the tree equal to *key (the value pointed to by key), a pointer to this
found datum is returned. Otherwise, *key is inserted, and a pointer to it
returned. Only pointers are copied, so the calling routine must store the
data. The value of rootp points to a variable that points to the root of the
tree. A NULL value for the variable pointed to by rootp denotes an
empty tree; in this case, the variable will be set to point to the datum which
will be at the root of the new tree.

Like t sea r c h, t fin d will search for a datum in the tree, returning a
pointer to it if found. However, if it is not found, tf ind will return a
NULL pointer. The arguments for tfind are the same as for tsearch.

The function tdelete deletes a node from a binary search tree. The
arguments are the same as for tsearch. The variable pointed to by
rootp will be changed if the deleted node was the root of the tree.

Page 238 Base System Definition

TSEARCH(BA_LIB)

The function twalk traverses a binary search tree. The value of root is
the root of the tree to be traversed. (Any node in a tree may be used as the
root for a walk below that node,) The value of action is the name of a
user-defined routine to be invoked at each node. This routine is, in turn,
called with three arguments.

The first argument is the address of the node being visited.

The second argument is a value from an enumeration data type, VISIT
defined by the <search.h> header file. The values preorder, pos­
torder, endorder, indicate whether this is the first, second or third
time that the node has been visited (during a depth-first, left-to-right traver­
sal of the tree), or the value leaf indicates that the node is a leaf.

The third argument is an integer that identifies the level of the node in the
tree, with the root being level zero.

RETURN VALUE

A NULL pointer is returned by tsearch if there is not enough space
available to create a new node.

A NULL pointer is returned by tsearch, tfind and tdelete if
rootp is NULL on entry.

If the datum is found, both tsearch and tfind return a pointer to it.
If not, tfind returns NULL, and tsearch returns a pointer to the
inserted item. The function tdelete returns a pointer to the parent of
the deleted node, or a NULL pointer if the node is not found.

APPLICATION USAGE

The function tf ind was added to System V in System V Release 2.0.

The pointers to the key and the root of the tree should be of type pointer-to­
element, and cast to type pointer-to-character. Similarly, although declared
as type pointer-to-character, the value returned should be cast into type
pointer-to-element.

The root argument to twalk is one level of indirection less than the
rootp arguments to tsearch and tdelete.

There are two nomenclatures used to refer to the order in which tree nodes
are visited. The function tsearch uses preorder, postorder and endorder
to respectively refer to visiting a node before any of its children, after its left
child and before its right, and after both its children. The alternate nomen­
clature uses preorder, inorder and postorder to refer to the same visits, which
could result in some confusion over the meaning of postorder.

If the calling function alters the pointer to the root, results are unpredictable.

Base System Definition Page 239

TSEARCH(BA _LIB)

EXAMPLE

The following code reads in strings and stores structures containing a pointer
to each string and a count of its length. It then walks the tree, printing out
the stored strings and their lengths in alphabetical order.

#include <search.h>
#include <stdio.h>

struct node { 1* pointers to these are stored in the tree *1
char *strinq;
int lenqth;

} ;
char strinq_space[10000); 1* space to store strinqs *1
struct node nodes[SOO); 1* nodes to store *1
struct node *root = NULL; 1* this points to the root *1

main()
{

char *strptr = strinq_space;
struct node *nodeptr = nodes;
void print_node(), twalk();
int i = 0, node_compare();

while (qets(strptr) 1= NULL && i++ < sizeof(nodes [0]) {
1* set node *1
nodeptr->strinq = strptr;
nodeptr->lenqth = strlen(strptr);
1* put node into the tree *1
(void) tsearch«char *)nodeptr, &root, node_compare);
1* adjust pointers, to not overwrite tree *1
strptr += nodeptr->lenqth + 1;
nodeptr++;

twalk(root, print node);

1* This routine compares two nodes, based on an *1
1* alphabetical orderinq of the strinq field. *1
int node_compare (node1 , node2)
struct node *node1, *node2;
{

return strcmp(node1->strinq, node2->strinq);

1* This routine prints out a node, the *1
1* first time twalk encounters it. *1
void print_node(node, order, level)
struct node **node;
VISIT order;
int level;

if (order == preorder I I order == leaf) {
(void) printf("strinq = %20s, lenqth

(*node)->strinq, (*node)->lenqth);
%d\.n" ,

Page 240 Base System Definition

TSEARCH(BA _LIB)

SEE ALSO
BSEARCH(BA_LIB), HSEARCH(BA_LlB), LSEARCH(BA_LlB).

LEVEL
Level 1.

Base System Definition Page 241

TTYNAME(BA _LIB)

NAME

ttyname, isatty - find name of a terminal

SYNOPSIS

char *ttyname(fildes)
int fildes;

int isatty(fildes)
int fildes;

DESCRIPTION

The function ttyname returns a pointer to a string containing the null­
terminated path name of the terminal device associated with file descriptor
fildes.

The function isatty returns 1 if the argument fildes is associated
with a terminal device, 0 otherwise.

RETURN VALUE

The function ttyname returns a null-pointer if the argument fildes
does not describe a terminal device.

APPLICATION USAGE

The return value points to static data whose content is overwritten by each
call.

LEVEL

Levell.

Page 242 Base System Definition

UNGETC(BA_LlB)

NAME

ungetc - push character back into input stream

SYNOPSIS
#include <stdio.h>

int ungetc(c, stream)
int c;

FILE *stream;

DESCRIPTION

The function ungetc inserts the character c into the buffer associated
with an input stream. That character, c, will be returned by the next
call to the GETC(BA_LlB) routine on that stream. The function ungetc
returns c, and leaves the file corresponding to stream unchanged.

One character of push back is guaranteed, provided something has already
been read from the stream and the stream is actually buffered.

If the argument c equals EOF, the function ungetc does nothing to the
buffer and returns EOF.

The FSEEK(BA_OS) routine erases all memory of inserted characters.

RETURN VALUE

If successful, the function ungetc returns c; the function ungetc
returns EOF if it cannot insert the character.

SEE ALSO
FSEEK(BA_OS), GETC(BA_LlB), SETBUF(BA_LlB).

LEVEL

Level 1.

Base System Definition Page 243

VP.RINTF(BA _LIB)

NAME

vprintf, vfprintf, vsprintf - print formatted output of a varargs argument list

SYNOPSIS

#include <stdio.h>
#include <varargs.h>

int vprintf(format, ap)
char *format;
va_list ap;

int vfprintf(stream, format, ap)
FILE *stream;
char *format;
va_list ap;

int vsprintf(s, format, ap)
char *s, *format;
va_list ap;

DESCRIPTION

The functions vprintf, vfprintf, and vsprintf are the same as
printf, fprintf, and sprintf respectively, except that instead of
being called with a variable number of arguments, they are called with an
argument list as defined by the < v a r a r g s • h> header file.

The < va r a r g s . h> header file defines the type val i stand a set of
macros for advancing through a list of arguments whoi'e number and types
may vary. The argument ap to the vprint family of library routines is
of type va list. This argument is used with the <varargs. h>
header file macros va start, va arg and va end. The EXAMPLE

section below shows thei; use with v p;; in t f . -

The macro va _ ali s t is used as the parameter list in a function definition
as in the function called err 0 r in the example below. The macro
va d c 1 is the declaration for va ali stand should not be followed by a
semicolon. The macro va start (ap), where ap is of type
va 1 i st, must be called before any attempt to traverse and access the list
of arguments. Calls to va arg (ap, a type) traverse the argument
list. Each execution of va ;'rg expands to an expression with the value of
the next argument in the list ap. The argument a type is the type that
the returned argument is expected to be. The va end (ap) macro must
be executed when all desired arguments have been accessed. (The argument
list in ap can be traversed again if va start is called again after
va end.) In the example below, va arg is executed first to return the
function_name passed to error and it"1s called again to retrieve the format
passed to error. The remaining error arguments, arg1, arg2, ""
are given to vfprintf in the argument ap.

Page 244 Base System Definition

VPRINTF(BA_LlB)

APPLICATION USAGE

The functions vprintf. vfprintf and vsprintf were added to
System V in System V Release 2.0.

EXAMPLE

The following demonstrates how vfprintf could be used to write an error
routine:

#include <stdio.h>
#include <varargs.h>

1*
* error should be called like

error(function_name. format, arg1, arg2 ..•);

void error(va_alist)
va_del

va list ap;
char *fmt;

va_liItart(ap);
1* printout name of function causing error *1
(void) fprintf(stderr, "ERR in %s:
fmt = va arg(ap, char *);
I- print-out remainder of message *1
(void) vfprintf(stderr, fmt, ap);
va_end(ap) ;
(void) abort();

SEE ALSO
PRINTF(BA_LlB).

LEVEL

Levell.

Base System Definition Page 245

Part III

Kernel Extension Definition

Chapter 8
Introduction

While the Base System is intended to support a run-time environment for execut­
able applications, the Kernel Extension provides additional operating system ser­
vices that will not be required by many application-programs but which are needed
for some environments.

The Kernel Extension provides operating system services to support process
accounting tools, software development tools, and applications or tools that require
more sophisticated inter-process communication than is provided by the Base Sys­
tem.

Definitions for the Kernel Extension are given in the next chapter, Chapter 8 -
Definitions. Chapter 9 - Environment describes the Kernel Extension Environment
including additional behavior of Base System components when the Kernel Exten­
sion is present on a system [see EFFECTS(KE_ENV)]. Chapter 10 - OS Service Rou­
tines has the component definitions of the operating system services in the Kernel
Extension.

The following operating system services constitute the System V Kernel Extension.
An application-program that uses any of these components would require the target
run-time environment to support the Kernel Extension in addition to the Base Sys­
tem.

TABLE 8-1. Kernel Extension: OS Service Routines

acct ACCT(KE_OS) ptrace PTRACE(KE _OS)

chroot CHROOT(KE _OS) semctl SEMCTL(KE _OS)

msgctl MSGCTL(KE_OS) semget SEMGET(KE _OS)

msgget MSGGET(KE _OS) semop SEMOP(KE_OS)

msgrcv MSGOP(KE _OS) shmctl# SHMCTL(KE _OS)

msgsnd MSGOP(KE_ OS) shmget# SHMGET(KE _OS)

nice NICE(KE _OS) shmat# SHMOP(KE_OS)

plock PLOCK(KE_OS) shmdt# SHMOP(KE_OS)

profil PROFIL(KE_OS)

The run-time behavior of these routines, which is supported by the Kernel Exten­
sion, and the source-code interface to the routines are defined in Chapter 10 - OS
Service Routines.

Optional. These routines are hardware-dependent and will only appear on machines with the
appropriate hardware.

Kernel Extension Definition Page 249

Kernel Extension Definition

Chapter 9
Definitions

Page 251

ipc-permissions
The Kernel Extension includes three mechanisms for inter-process communication
Opc): messages, semaphores, and shared-memory. All of these use a common
structure type, i p c - per m, to pass information used in determining permission to
perform an ipc operation.

The ipc _perm structure is defined by the < ipc . h> header file and includes
the following members:

ushort cuid; 1* creator user id *1
ushort cgid; 1* creator group id *1
ushort uid; 1* user id *1
ushort gid; 1* group id *1
ushort mode; 1* r/w permission *1

The following symbolic constants are also defined by the < ipc . h> header file:

Name Description

I PC CREAT create entry if key does not exist

IPC EXCL fail if key exists

IPC NOWAIT error if request must wait

IPC PRIVATE private key

IPC RMID

IPC SET

IPC STAT

remove identifier

set options

get options

message-queue-identifier
A message queue identifier msqid is a unique positive integer created by a call
to the MSGGET(KE_OS) routine. Each msqid has a message queue and a data
structure associated with it. The data structure is referred to as msqid_ ds and
contains the following members:

struct ipc perm msg_ perm; 1* operation perms *1 -
ushort msg_qnum; 1* no. of messages on q *1
ushort msg_qbytes; 1* max no. of bytes on q *1
ushort msg lspid; 1* pid, last msgsnd call *1 -
ushort msg_ lrpid; 1* pid, last msgrcv call *1
time t msg_ stime; 1* last msgsnd time *1 -
time t msg_ rtime; 1* last msgrcv time *1 -
time t msg ctime; 1* last change time *1 - -

1* time in secs since *1
1* 00:00:00 GMT 1 Jan 70 *1

Page 252 Kernel Extension Definition

msg_perm is an ipc _perm structure [see ipc-permlsslons] that specifies
the message-operation permission.

msg_qnum is the number of messages currently on the queue.

msg _ qbytes is the maximum number of bytes allowed on the queue.

msg _1 spid is the process-ID of the last process that performed a msg snd
operation.

msg _lrpid is the process-ID of the last process that performed a msgrcv
operation.

msg_stime is the time of the last msgsnd operation.

msg _ rt ime is the time of the last msgrcvoperation.

msg _ ctime is the time of the last msgct1 operation that changed a
member of the above structure.

message-operation-permissions
In the MSGOP(KE_OS) and MSGCTL(KE_OS) routines, the permission required for an
operation is determined by the bit-pattern in msg perm. mode, where the type
of permission needed is interpreted as follows: -

00400
00200
00040
00020
00004
00002

Read by user
W ri te by user
Read by group
Write by group
Read by others
Write by others

The Read and Write permissions on a msqid are granted to a process if one or
more of the following are true:

• The effective-user-ID of the process is super-user.

• The effective-user-ID of the process matches msg perm. cuid or
msg perm. uid in the data structure associated with- msqid and the
appropriate bit of the user portion (0600) of msg _perm. mode is set.

• The effective-user-ID of the process does not match msg prm. cuid or
msg _perm. uid, and the effective-group-ID of the process matches
msg perm. cgid or msg perm. gid, and the appropriate bit of the
group portion (0060) of msg-_perm.mode is set.

• The effective-user-ID of the process does not match msg perm. cuid or
msg perm. uid, and the effective-group-ID of the proce;s does not match
msg - perm. cgid or msg perm. gid, and the appropriate bit of the
other-portion (0006) of msg ~perm. mode is set.

Otherwise, the corresponding permissions are denied.

Kernel Extension Definition Page 253

semaphore-identifier
A semaphore-identifier
SEMGET(KE_OS) routine.
ture associated with it.

s emid is a unique positive integer created by a
Each semid has a set of semaphores and a data struc-

The data structure is semid _ ds and contains the following members:

struct ipc
ushort
time t -
time t -

sem nsems

semval

sempid

semnent

semzent

Page 254

perm sem perm; 1* operation perms *1 - -sem nsems; 1* count of sems in set *1 -sem otime; 1* last operation time *1 -
sem ctime; 1* - last change time *1

1* time in secs since *1
1* 00:00:00 GMT 1 Jan 70 *1

is an ipe perm structure that specifies the semaphore­
opera tion -permission [see Ipc-permlsslons].

is a value that is equal to the number of semaphores in the set.
Each semaphore in the set is referenced by a positive integer
referred to as a sern num. The value of sem num runs
sequentially from 0 -to the value of sem ~sems-1.
sem otime is the time of the last semop operation, and
sem= etime is the time of the last semetl operation that
changed a member of the above structure.

A semaphore is a data structure containing the following
members:

ushort semval; 1* semaphore value *1
short sempid; 1* pid of last operation *1
ushort semncnt; 1* no. awaiting semval > eval *1
ushort semzcnt; 1* no. awaiting semval = 0 *1

is a non-negative integer.

is equal to the process-ID of the last process that performed a
semaphore operation on this semaphore.

is a count of the number of processes that are currently
suspended awaiting this semaphore's semval to become greater
than its current value.

is a count of the number of processes that are currently
suspended awaiting this semaphore's semval to become zero.

Kernel Extension Definition

semaphore-operatlon-permlsslons
In the SEMOP(KE_OS) and SEMCTL(KE_OS) routines, the permission required for an
operation is determined by the bit-pattern in s em perm. mode, where the type
of permission needed is interpreted as follows: -

00400
00200
00040
00020
00004
00002

Read by user
Alter by user
Read by group
Alter by group
Read by others
Alter by others

The Read and Alter permissions on a semid are granted to a process if one or
more of the following are true:

• The effective-user-ID of the process is super-user.

• The eff ective-user-ID of the process ma tches s em _ per m • cui d or
sem perm. uid in the data structure associated with semid and the
appropriate bit of the user portion (0600) of sem_perm. mode is set.

• The effective-user-ID of the process does not match sem_perm. cll.id or
sem_perm. uid, and the effective-group-ID of the process matches
sem perm. cgid or sem perm. gid, and the appropriate bit of the
group portion (0060) of sem-_perm.mode is set.

• The effective-user-ID of the process does not match sem perm. cuid or
sem_perm. uid, and the effective-group-ID of the proce;s does not match
sem perm. cgid or sem perm. gid, and the appropriate bit of the
other-portion (0006) of sem=perm.mode is set.

Otherwise, the corresponding permissions are denied.

shared-memory-identifler
A shared-memory-identifier shmid is a unique positive integer created by a
SHMGET(KE_OS) routine. Each shmid has associated with it a segment of
memory (referred to as a shared memory segment) and a data structure.

The data structure is referred to as s hm i d d s and contains the following
members:

struct ipc perm shm _perm; /* operation perms */

int shm _segsz; /* size of segment */
ushort shm cpid; /* pid, creator */ -
ushort shm lpid; /* pid, last operation */ -
short shm nattch; /* no. of current attaches */ -
time t shm atime; /* last attach time */ - -
time t shm dtime; /* last detach time */ -
time t shm ctime; /* last change time */ - -

/* times in secs since */

/* 00:00:00 GMT 1 Jan 70 */

Kernel Extension Definition Page 255

shm_perm

shm_cpid

is an ipc perm structure that specifies the shared-memory­
operation pe;mission [see Ipc-permissions].

specifies the size of the shared-memory-segment.

is the process-ID of the process that created the shared-memory­
identifier.

is the process-ID of the last process that performed a
SHMOP(KE_OS) routine.

shm nattch is the number of processes that currently have this ~egment

attached.

shm atime is the time of the last shmat operation.

shm dtime is the time of the last shmdt operation.

shm ctime is the time of the last shmctl operation that changed one of
the members of the above structure.

shared-memory-operation-permlssions
In the SHMOP(KE_OS) and SHMCTL(KE_OS) routines, the permission required for an
operation is determined by the bit-pattern in shm perm. mode, where the type
of permission needed is interpreted as follows: -

00400
00200
00040
00020
00004
00002

Read by user
Write by user
Read by group
Write by group
Read by others
W rite by others

The Read and Write permissions on a shmid are granted to a process if one or
more of the following are true:

• The effective-user-ID of the process is super-user.

• The effective-user-ID of the process matches shm perm. cuid or
s em perm. uid in the data structure associated with - shmid and the
appropriate bit of the user portion (0600) of shm _perm. mode is set.

• The effective-user-ID of the process does not match shm perm. cuid or
sem perm. uid, and the effective-group-ID of the -process matches
shm - perm. cgid or sem perm. gid, and the appropriate bit of the
group portion (0060) of shm-_perm.mode is set.

• The effective-user-ID of the process does not match shm perm. cuid or
sem_perm. uid, and the effective-group-ID of the process does not match
shm perm. cgid or sem perm. gid, and the appropriate bit of the
other-portion (0006) of shm=perm.mode is set.

Otherwise, the corresponding permissions are denied.

Page 256 Kernel Extension Definition

Kernel Extension Definition

Chapter 10
Environment

Page 257

EFFECTS(KE_ENV)

NAME

effects - effects of the Kernel Extension on the Base System.

DESCRIPTION
Some of the Base System V operating system services are affected by the
additional services in this extension. The effects are listed below for each
routine:

EXEC(BA_OS)

The AFORK flag in the ac flag field of the accounting record is
turned off, and the ac com-m field is reset by executing an exec
routine [see ACCT(KE_OS)l.

Any process, data, or text locks are removed and not inherited by the
new prOCess [see PLOCK(KE_OS»).

Profiling is disabled for the new process [see PROFIL(KE_OS)1.

The shared-memory-segments attached to the calling-process will not
be attached to the new process [see SHMOP(KE_OS)1.

The new process also inherits the following additional attributes from
the calling-process:

nice value [see NICE(KE_OS»);

s emad j values [see SEMOP(KE_OS»);

trace flag [see request 0 in PTRACE(KE_OS)1.

EXIT(BA _OS)

Page 258

An accounting record is written on the accounting file if the system's
accounting routine is enabled [see ACCT(KE_OS»).

If the process has a process-lock, text-lock, or data-lock, the lock is
removed [see PLOCK(KE_OS)1.

Each attached shared-memory-segment is detached and the value of
shm na ttch in the data structure associated with its shared­
memory-identifier is decremented by 1.

For each semaphore for which the calling-process has set a semadj
value [see SEMOP(KE_OS»), that semadj value is added to the sem­
val of the specified semaphore.

Kernel Extension Definition

EFFECTS(KE _ ENV)

FORK(BA_OS)

The AFORK flag is turned on when the function fork is executed.

The child-process inherits the following additional attributes from the
parent-process:

The ace omm contents of the accounting record [see
ACCT(KE_ OS)];

nice value [see NICE(KE_OS)];

profiling on/off status [see PROFIL(KE_OS)];

all attached shared-memory-segments Lsee SHMOP(KE_OS)].

The child-process differs from the parent-process in the following addi­
tional ways:

LEVEL

Levell.

All semadj values are cleared [see SEMOP(KE_OS)1.

Process-locks, text-locks, and data-locks are not inherited by the
child-process [see PLOCK(KE_OS)1.

Kernel Extension Definition Page 259

ERRNO(KE _ENV)

NAME

error - error codes and condition definitions

SYNOPSIS

#include <errno.h>

extern int errno;

DESCRIPTION
In addition to the values defined in the Base System for the external variable
errno [see ERRNO(BA_ENV)], two additional error conditions are defined in
the Kernel Extension:

ENOMSG No message of desired type.
An attempt was made to receive a message of a type that does
not exist on the specified message queue.

E I DRM Identifier removed.

LEVEL

Levell.

Page 260

This error is returned to processes that resume execution because
of the removal of an identifier [see MSGCTL(KE_OS),

SEMCTL(KE_OS), and SHMCTL(KE_OS)].

Kernel Extension Definition

Kernel Extension Definition

Chapter 11
OS Service Routines

Page 261

ACCT(KE_OS)

NAME

acct - enable or disable process accounting

SYNOPSIS

int acct(path)
char *path;

DESCRIPTION

The function acct is used to enable or disable the system process account­
ing routine. If the routine is enabled, for each process that terminates, an
accounting record will be written on an accounting file. Termination can be
caused by one of two things: an exit call or a signal [see EXIT(BA_OS) and
SIGNAL(BA_OS)]. The eft'ective-user-ID of the calling-process must be super­
user to use this function.

The variable path points to a path-name naming the accounting file. The
format of an accounting file produced as a result of calling the acct func­
tion has records in the format defined by the structure acct in
<sys/acct. h> which defines the following data-type:

comp_t /* floating point - 13-bit fraction, */
/* 3-bit exponent */

and defines the following members in the structure acct:

char ac_flag; /* accounting flag */
char ac stat; /* exit status */ -
ushort ac_uid; /* accounting user-ID */
ushort ac_gid; /* accounting group-ID */
dev t ac_tty; /* control typewriter */ -time t ac btime; /* beginning time */ - -comp t ac utime; /* user-time in CLKTCKs */ - -
comp t ac stime; /* system-time in CLKTCKs - -comp t ac etime; /* elapsed-time in CLKTCKs - -
comp t ac mem; /* memory usage */ - -
comp t ac io; /* chars transferred */ - -comp t ac rw; /* blocks read or written - -
char ac comm[8] ; /* command name */ -

and defines the following symbolic names:

AFORK
ASU
ACCTF

/* has executed fork, but no exec */
/* used super-user privileges */
/* record type: 00 = acct */

*/
*/

*/

The AFORK flag is set in ac_flag when the FORK(BA_OS) routine is exe­
cuted and reset when an EXEC(BA_OS) routine is executed. The ac _ comm
field is inherited from the parent process when a child process is created with
the FORK(BA_OS) routine and is reset when the EXEC(BA_OS) routine is exe­
cuted. The variable a c mem is a cumulative record of memory usage and
is incremented each time the system charges the process with a clock tick.

Page 262 Kernel Extension Definition

ACCT(KE_ OS)

The accounting routine is enabled if pa th is non-zero and no errors occur
during the call. It is disabled if path is 0 and no errors occur during the
call.

RETURN VALUE

If successful, the function ace t returns 0; otherwise, it returns -1 and
errno will indicate the error.

ERRORS
The function ace t will fail if one or more of the following are true:

EPERM The effective user of the calling-process is not super-user.

EBUSY An attempt is being made to enable accounting when it is already
enabled.

ENOTDIR A component of the path-prefix is not a directory.

ENOENT One or more components of the accounting file path-name do not
exist.

EACCES The file named by path is not an ordinary file.

EROFS The named file resides on a read-only file system.

SEE ALSO
EXIT(BA_OS), SIGNAL(BA_OS).

LEVEL
Levell.

Kernel Extension Definition Page 263

CHROOT(KE_OS)

NAME

chroot - change root directory

SYNOPSIS

int chroot(path)
char *path;

DESCRIPTION

The function chroot causes the named directory to become the root direc­
tory, the starting point for path searches for path-names beginning with
the character I. The user's working directory is unaffected by the function
chroot.

The argument path points to a path-name naming a directory.

The effective-user-ID of the process must be super-user to change the root
directory.

The •• entry in the root directory is interpreted to mean the root directory
itself. Thus, •• cannot be used to access files outside the sub-tree rooted at
the root-directory.

RETURN VALUE

If successful, the function chroot returns 0; otherwise, it returns -1
and errno will indicate the error.

ERRORS

The function chroot will fail and the root directory will remain
unchanged if one or more of the following are true:

ENOTDIR Any component of the path-name is not a directory.

ENOENT The named directory does not exist.

EPERM The effective-user-ID is not super-user.

SEE ALSO
CHDIR(BA _OS).

LEVEL

Levell.

Page 264 Kernel Extension Definition

MSGCTL(KE_OS)

NAME

msgctl - message-control-operations

SYNOPSIS

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgctl(msqid, cmd, buf)
int msqid, cmd;
struct msqid_ds *buf;

DESCRIPTION

The function m s 9 c t 1 provides a variety of message-control-operations as
specified by cmd. The following values for cmd and the message-control­
operations they specify are available:

IPC STAT

IPC SET

IPC RMID

RETURN VALUE

Place the current value of each member of the data struc­
ture associated with m s q i d into the structure pointed to
by buf. The contents of this structure are defined in
Chapter 9 - Definitions.

Set the value of the following members of the data structure
associated with msqid to the corresponding value found
in the structure pointed to by buf:

msg_perm.uid
msg_perm.gid
msg_perm.mode 1* only low 9-bits *1
msg_qbytes

This cmd can only be executed by a process that has an
effective-user-ID equal to either that of super-user or to the
value of msg perm. cuid or msg perm. uid in the
data structure-associated with msqid. Only super-user
can raise the value of msg_qbytes.

Remove the message-queue-identifier specified by msqid
from the system and destroy the message-queue and data
structure associated with it. This cmd can only be exe­
cuted by a process that has an effective-user-ID equal to
either that of super-user or to the value of
msg perm. cuid or msg perm. uid in the data
structure associated with msqi-d.

If successful, the function m s 9 c t 1 returns 0; otherwise, it returns - 1
and errno will indicate the error.

Kernel Extension Definition Page 265

MSGCTL(KE _OS)

ERRORS
The function msgctl will fail if one or more of the following are true:

EINVAL The value of msqid is not a valid message-queue-identifier; or
the value of cmd is not a valid command.

EACCES The argument cmd is equal to IPC STAT and the calling­
process does not have read permission [see mesage-operation­
permissions in Chapter 9 - Definitions].

EPERM The argument cmd is equal to IPC RMID or IPC SET and
the effective-user-ID of the calling-process is not equal-to that of
super-user and it is not equal to the value of msg perm. cuid
or msg _perm. uid in the data structure associated with
msqid.

EPERM The argument cmd is equal to IPC_SET, an attempt is being
made to increase to the value of msg _ qbytes, and the
effective-user-ID of the calling-process is not equal to that of
super-user.

SEE ALSO
MSGGET(KE_OS), MSGOP(KE_OS).

LEVEL
Levell.

Page 266 Kernel Extension Definition

MSGGET(KE_ OS)

NAME

msgget - get message-queue

SYNOPSIS
#inc1ude <sys/types.h>
#inc1ude <sys/ipc.h>
#inc1ude <sys/msg.h>

int msgget(key, msgf1g)
key_t key;
int msgf1g;

DESCRIPTION

The function msgget returns the message-queue-identifier associated with
the argument key.

A message-queue-identifier and associated message-queue and data structure
[see Chapter 9 - Definitions] are created for the argument key if one of
the following are true:

if the argument key is equaJ to IPC PRIVATE.

if the argument key does not already have a message-queue­
identifier associated with it, and (msgf1g&.IPC_CREAT) is true.

Upon creation, the data structure associated with the new message-queue­
identifier is initialized as follows:

msg perm. cuid and msg perm. uid are set equal to the
effect1ve-user-ID of the calling-process;

msg perm. cgid, and msg perm. gid are set equal to the
effect1ve-group-ID of the calling-p~ocess;

The low-order 9-bits of msg perm. mode are set equal to the
low-order 9-bits of msgf 19; -

msg_qnum, msg_1spid, msg 1rpid, msg_stime, and
msg _ rtime are set equal to 0;

msg _ ctime is set equal to the current-time;

msg _ qbytes is set equal to the system-limit.

RETURN VALUE
If successful, the function msgget returns a non-negative integer, namely a
message-queue-identifier; otherwise, it returns -1 and errno will indicate
the error.

Kernel Extension Definition Page 267

MSGGET(KE_ OS)

ERRORS
The function msgget will fail if one or more of the following are true:

EACCES A message-queue-identifier exists for the argument key, but
operation permission [see Chapter 9 - Definitions] as specified by
the low-order 9-bits of m s 9 fIg would not be granted.

ENOENT A message-queue-identifier does not exist for the argument key
and (msgflg& IPC _ CREAT) is "false".

ENOSPC A message-queue-identifier is to be created but the system­
imposed limit on the maximum number of allowed message­
queue-identifiers system-wide would be exceeded.

EEXIST A message-queue-identifier exists for the argument key but
«msgflg&IPC_CREAT)&&(msgflg&IPC_EXCL» ~

"true".

SEE ALSO
MSGCTL(KE_OS), MSGOP(KE_OS).

LEVEL
Levell.

Page 268 Kernel Extension Definition

MSGOP(KE _OS)

NAME

msgop - message operations

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgsnd(msqid, msgp, msgsz, msgflg)
int msqid;
struct mymsg *msgp;
int msgsz, msgflg;

int msgrcv(msqid, msgp, msgsz, msgtyp, msgflg)
int msqid;
struct mymsg *msgp;
int msgsz;
long msgtyp;
int msgflg;

DESCRIPTION
The function msgsnd is used to send a message to the queue associated
with the message queue identifier specified by msqid.

The argument msgp points to a user-defined buffer that must contain first a
field of type long integer that will specify the type of the message, and then a
data portion that will hold the text of the message. The structure below is an
example of what this user-defined buffer might look like.

struct mymsg {
long mtype; / * message type */
char mtext [] ; / * message text */

The structure member mtype is a positive integer that can be used by the
receiving process for message selection (see msgrcv below).

The structure member mtext is any text of length msgsz bytes. The
argument msgsz can range from 0 to a system-imposed maximum.

The argument m s g fIg specifies the action to be taken if one or more of
the following are true:

The number of bytes already on the queue is equal to
msg _ qbytes [see Chapter 9 - Definitions]'

The total number of messages on all queues system-wide is equal to
the system-imposed limit.

Kernel Extension Definition Page 269

MSGOP(KE _OS)

These actions are as follows:

If (msgf1g&.IPC NOWAIT) is "true", the message will not be
sent and the calling-process will return immediately.

If (msgf1g&' IPC NOWAIT) is "false", the calling-process will
suspend execution until one of the following occurs:

The condition responsible for the suspension no longer exists, in which
case the message is sent.

The message-queue-identifier msqid is removed from the system
[see MSGCTL(KE_OS)J. When this occurs, errno is set equal to
E I DRM and a value of -1 is returned.

The calling-process receives a signal that is to be caught. In this
case the message is not sent and the calling-process resumes execution
in the manner prescribed in the SIGNAL(BA_OS) routine.

Upon successful completion, the following actions are taken with respect to
the data structure associated with msqid [see Chapter 9 - Definitions].

msg_qnum is incremented by 1.

msg _1 spid is set equal to the process-ID of the calling-process.

msg_stime is set equal to the current time.

The function msgrcv reads a message from the queue associated with the
message queue identifier specified by msqid and places it in the user­
defined buffer pointed to by msgp. The buffer must contain a message type
field followed by the area for the message text (see the structure myms 9
above).

The structure member mtype is the received message's type as specified by
the sending process.

The structure member m t ext is the text of the message.

The argument msgsz specifies the size in bytes of mtext. The received
message is truncated to msgsz "bytes" if it is larger than msgsz and
(msgf1g&.MSG NO ERROR) is "true". The truncated part of the message
is lost and no indication of the truncation is given to the calling-process.

The symbolic name MSG_NOERROR is defined by the <sys/msg.h>
header file.

Page 270 Kernel Extension Definition

MSGOP(KE_OS)

The argument msgtyp specifies the type of message requested as follows:

If msgtyp is equal to 0, the first message on the queue is
received.

If msgtyp is greater than 0, the first message of type msgtyp
is received.

If msgtyp is less than 0, the first message of the lowest type
that is less than or equal to the absolute value of msgtyp is
received.

The argument m s g fIg specifies the action to be taken if a message of the
desired type is not on the queue. These are as follows:

If (msgflg&IPC NOWAIT) is "true", the calling-process will
return immediately with a return value of -1 and errno set to
ENOMSG.

If (msgflg&IPC NOWAIT) is "false", the calling-process will
suspend execution until one of the following occurs:

A message of the desired type is placed on the queue.

The message queue identifier msqid is removed from the system.
When this occurs, errno is set equal to EIDRM and a value of
-1 is returned.

The calling-process receives a signal that is to be caught. In this
case a message is not received and the calling-process resumes execu­
tion in the manner prescribed in SIGNAL(BA_OS).

Upon successful completion, the following actions are taken with respect to
the data structure associated with msqid.

msg _ qnum is decremented by 1.

msg _lrpid is set equal to the process-ID of the calling-process.

m s g _ r tim e is set equal to the current time.

RETURN VALUE

If successful, the function msgsnd returns a value of 0.

If successful, the function msgrcv returns a value equal to the number of
bytes actually placed into the buffer mtext.

Otherwise, the function msgsnd and the function msgrcv return -1
and errno will indicate the error.

Kernel Extension Definition Page 271

MSGOP(KE_OS)

ERRORS

The function msgsnd will fail and no message will be sent if one or more
of the following are true:

EINVAL The value of msqid is not a valid message-queue-identifier; or
the value of m t yp e is less than 1; or the value of m s 9 s z is
less than 0 or greater than the system-imposed limit.

EACCE S Operation permission is denied to the calling-process.

EAGAIN The message cannot be sent for one of the reasons cited above
and (msgf 19 & IPC _ NOWAIT) is "true".

EINTR The function msgsnd was interrupted by a signal.

EIDRM The message-queue-identifier msgid has been removed from
the system.

The function msgrcv will fail and no message will be received if one or
more of the following are true:

EINVAL The value of msqid is not a valid message-queue-identifier; or
the value of m s 9 s z is less than 0 .

EACCES Operation permission is denied to the calling-process.

EINTR The function msgrcv was interrupted by a signal.

EIDRM The message-queue-identifier msqid has been removed from
the system.

E2BIG The value of mtext is greater than msgsz and
(msgf1g&MSG NOERROR) is "false".

ENOMSG The queue does not contain a message of the desired type and
(msgtyp& IPC _NOWAIT) is "true".

SEE ALSO

MSGCTL(KE_OS), MSGGET(KE_OS), SIGNAL(BA_OS).

LEVEL

Levell.

Page 272 Kernel Extension Definition

NICE(KE_OS)

NAME

nice - change priority of a process

SYNOPSIS
int nice(incr)
int incr;

DESCRIPTION

The function nice adds the value of incr to the nice-value of the
calling-process. A process's nice-value is a positive number for which a more
positive value results in lower CPU priority. .

The system imposes an implementation-specific, maximum process-nice-value
of 2 * {N ZERO} -1 and a minimum process-nice-value of O. If adding
incr to the process's current nice-value would cause the result to be above
or below these limits, the process's nice-value will be set to the corresponding
limit.

RETURN VALUE

If successful, the function nice returns the process's new nice-value minus
{NZERO}.

ERRORS

EPERM The function nice will fail and not change the process's nice­
value if incrisnegativeor greater than 2*{NZERO} and
the effective-user-ID of the calling-process is not super-user.

SEE ALSO
EXEC(BA_ OS).

LEVEL

Levell.

Kernel Extension Definition Page 273

PLOCK(KE_OS)

NAME

plock - lock process, text, or data in memory

SYNOPSIS

#include <sys/lock.h>

int plock(op)
int op;

DESCRIPTION

The function plock allows the calling-process to lock its text segment (text
lock), its data segment (data lock), or both its text and data segments (pro­
cess lock) into memory. Locked segments are immune to all routine swap­
ping. The function pI 0 c k also allows these segments to be unlocked. The
effective-user-ID of the calling-process must be super-user to use this call.
The argument op specifies the following, which are defined by the
< s y s / 10 c k • h> header file:

PROCLOCK lock text and data segments into memory (process lock)

TXT LOCK lock text segment into memory {text lock}

DATLOCK lock data segment into memory (data lock)

UNLOCK remove locks

RETURN VALUE

If successful, the function plock returns 0 to the calling-process; other­
wise, it returns -1 and errno will indicate the error.

ERRORS

The function plock will fail and not perform the requested operation if
one or more of the following are true:

EPERM The effective-user-ID of the calling-process is not super-user.

EINVAL The argument op is equal to PROCLOCK and a process-lock, a
text-lock, or a data-lock already exists on the calling-process.

EINVAL The argument op is equal to TXTLOCK and a text-lock, or a
process-lock already exists on the calling-process.

EINVAL The argument op is equal to DATLOCK and a data-lock, or a
process-lock already exists on the calling-process.

EINVAL The argument op is equal to UNLOCK and no type of lock
exists on the calling-process.

APPLICATION USAGE

The function plock should not be used by most applications. Only pro­
grams that must have the type of real-time control it provides should use it.

Page 274 Kernel Extension Definition

SEE ALSO

EXEC(BA_OS)t EXIT(BA_OS)t FORK(BA_OS).

LEVEL
Levell.

Kernel Extension Definition

PLOCK(KE_OS)

Page 275

PROFIL(KE _OS)

NAME

profil - execution time profile

SYNOPSIS

void profil(buff, bufsiz, offset, scale)
char *buff;
int bufsiz, offset, scale;

DESCRIPTION
The argument buff points to an area of memory whose length (in bytes) is
given by bufsiz. After the call to profil, the user's program counter
(pc) is examined each clock tick ({CLK_TCK} times per second); offset is
subtracted from it, and the result multiplied by sea 1 e. If the resulting
number corresponds to an entry inside buff, that entry is incremented. An
"entry" is defined as a series of bytes with length s i z eof (short).

The scale is interpreted as an unsigned, fixed-point fraction with binary point
at the left: 0 1 77777 (octal) gives a I-I mapping of pc's to words in
b u f f ; 0 7 7 7 7 7 (octal) maps each pair of instruction words together.
02 (octal) maps all instructions onto the beginning of buff (producing a
non-interrupting core clock).

Profiling is turned off by giving a sea 1 e of 0 or 1 . It is rendered
ineffective by giving a bufsiz of o. Profiling is turned off when an
EXEC(BA_OS) routine is executed, but remains on in both child and parent
after a call to the FORK(BA_OS) routine. Profiling will be turned off if an
update in buff would cause a memory fault.

RETURN VALUE

Not defined.

APPLICATION USAGE
The function profil would normally be used by an application program
only during development of a program to analyze the program's performance.

LEVEL
Levell.

Page 276 Kernel Extension Definition

PTRACE(KE_ OS)

NAME

ptrace - process trace

SYNOPSIS
int ptrace(request, pid, addr, data)
int request, pid, data;

DESCRIPTION

The function ptrace provides a means by which a parent-process may
control the execution of a child-process. Its primary use is for the implemen­
tation of breakpoint debugging. The child-process behaves normally until it
encounters a signal [see SIGNAL(BA_OS)] at which time it enters a stopped
state and its parent is notified via the WAIT(BA_OS) routine. When the child
is in the stopped state, its parent can examine and modify its core-image
using ptrace. Also, the parent can cause the child either to terminate or
continue, with the possibility of ignoring the signal that caused it to stop.

The data type of the argument addr depends upon the particular
request given to ptrace.

The argument request determines the precise action to be taken by
p t rae e and is one of the following:

o this request must be issued by the child-process if it is to be
traced by its parent. It turns on the child's trace flag that stipu­
lates that the child should be left in a stopped state upon receipt
of a signal rather than the state specified by func [see
SIGNAL(BA_OS)1. The pid, addr, and data arguments are
ignored, and a return value is not defined for this request. Pecu­
liar results will ensue if the parent does not expect to trace the
child.

The remainder of the requests can only be used by the parent-process. For
each, pi d is the process-ID of the child. The child must be in a stopped
state before these requests are made.

1, 2

3

With these requests, the word at location addr in the address
space of the child-process is returned to the parent-process. If
instruction (I) . and data (D) space are separated, request 1
returns a word from I-space, and request 2 returns a word from
D-space. If I-space and D-space are not separated either request
1 or request 2 may be used with equal results. The data
argument is ignored. These two requests will fail if addr is not
the start address of a word, in which case a value of -1 is
returned to the parent-process and the parent's errno is set to
EIO.

With this request, the word at location addr in the child's
user-area in the system's address space is returned to the parent­
process.

Kernel Extension Definition Page 277

PTRACE(KE_ OS)

4, 5

The argument data is ignored. This request will fail if addr
is not the start address of a word or is outside the user-area, in
which case a value of -1 is returned to the parent-process and
the parent's errno is set to EIO.

With these requests, the value given by the data argument is
written into the address space of the child at location addr. If
I-space and D-space are separated, request 4 writes a word into
I-space, and request 5 writes a word into D-space. If I-space
and D-space are not separated, either request 4 or request 5
may be used with equal results. Upon successful completion, the
value written into the address space of the child is returned to the
parent.

These two requests will fail if addr is a location in a pure pro­
cedure space and another process is executing in that space, or
addr is not the start address of a word. Upon failure a value of
-1 is returned to the parent-process and the parent's e r rno is
set to EIO.

6 With this request, a few entries in the child's user-area can be
written.

The argument data gives the value that is to be written and
addr is the location of the entry. Entries that can be written
are implementation-specific but might include general registers
portions of the processor-status-word.

7 This request causes the child to resume execution. If the data
argument is 0, all pending signals including the one that caused
the child to stop are canceled before it resumes execution.

If the argument data is a valid signal number, the child
resumes execution as if it had incurred that signal, and any other
pending signals are canceled. The addr argument must be
equal to 1 for this request. Upon successful completion, the
value of data is returned to the parent. This request will fail if
da ta is not 0 or a valid signal number, in which case a value of
-1 is returned to the parent-process and the parent's errno is
set to EIO.

S This request causes the child to terminate with the same conse­
quences as the EXIT(BA_OS) routine.

9 This request is implementation-dependent but if operative, it is
used to request single-stepping through the instructions of the
child.

To forestall possible fraud, the function ptrace inhibits the set-user-ID
facility on subsequent EXEC(BA_OS) routines. If a traced process calls and
EXEC(BA_OS) routine, it will stop before executing the first instruction of the
new image showing signal SIGTRAP.

Page 278 Kernel Extension Definition

PTRACE(KE_ OS)

RETURN VALUE
Upon failure, the function ptrace returns -1. Return values on success­
ful completion are specific to the request type (see above).

ERRORS

In general, the function ptrace will fail if one or more of the following
are true:

EIO The value of request is an illegal number. See the summary
for each request type above.

ESRCH The argument pid identifies a child that does not exist or has
not executed a ptrace with request O.

APPLICATION USAGE
The function ptrace should not be used by application-programs. It is
only used by software debugging programs and it is hardware-dependent.

When the function ptrace is used to read a word from the address space
of the child-process, request 1, 2 or 3, the data read and returned by
p t rae e could have the value -1. In this case, a return value of -1
would not indicate an error.

SEE ALSO
EXEC(BA_OS), SIGNAL(BA_OS), WAIT(BA_OS).

LEVEL
Levell.

Kernel Extension Definition Page 279

SEMCTL(KE _OS)

NAME

semctl - semaphore-control-operations

SYNOPSIS
#include <sys/types.h>
#inciude <sys/ipc.h>
#include <sys/sem.h>

int semctl(semid, semnum, cmd, arg)
int semid, cmd;
int semnum;
union semun {

int val;
struct semid_ds *buf;
ushort *array; } arg;

DESCRIPTION

The function semctl provides a variety of semaphore-control-operations as
specified by cmd.

The following semaphore-control-operations as specified by cmd are exe­
cuted with respect to the semaphore specified by semid and semnum.
The level of permission required for each operation is shown with each com­
mand [see semaphore-operation-permissions in Chapter 9 - Definitions).
The symbolic names for the values of cmd are defined by the
< sys / s em. h> header file.

GETVAL

SETVAL

GETPID

GETNCNT

GETZCNT

Page 280

Return the value of semval [see Chapter 9 -
Definitions] .
Requires read permission.

Set the value of semval to arg. val.
When this cmd is successfully executed, the s emad j
value corresponding to the specified semaphore in all
processes is cleared.
Requires alter permission.

Return the value of sempid.
Requires read permission.

Return the value of semncnt.
Requires read permission.

Return the value of semzcnt.
Requires read permission.

Kernel Extension Definition

SEMCTL(KE_OS)

The following cmds operate on each semval in the set of semaphores.

GETALL

SETALL

Return semvals and place into the array pointed to by
arg.array.
Requires read permission.

Set semvals according to the array pointed to by
arg. array. When this cmd is successfully executed,
the s emad j values corresponding to each specified sema­
phore in all processes are cleared.
Requires alter permission.

The following cmds are also available:

IPC STAT

IPC SET

IPC RMID

RETURN VALUE

Place the current value of each member of the data struc­
ture associated with semid into the structure pointed to
by arg. buf. The contents of this structure are defined
in Chapter 9 - Definitions.
Requires read permission.

Set the value of the following members of the data structure
associated with semid to the corresponding value found
in the structure pointed to by arg. buf:

sem_perm.uid
sem_perm.gid
sem_perm.mode 1* only low 9-bits *1

This cmd can only be executed by a process that has an
effective-user-ID equal to either that of super-user or to the
value of sem perm. cuid or sem perm. uid in the
data structure associated with semid.-

Remove the semaphore-identifier specified by semid from
the system and destroy the set of semaphores and data
structure associated with it. This cmd can only be exe­
cuted by a process that has an effective-user-ID equal to
either that of super-user or to the value of
sem perm. cuid or sem perm. uid in the data
structure associated with semi-d.

If successful, the value semctl returns depends on cmd as follows:

GETVAL the value of semval.
GETPID the value of sempid.
GETNCNT the value of semncnt.
GETZCNT the value of semzcnt.
All others a value of o.
Otherwise, s hm c t 1 returns -1 and err no indicates the error.

Kernel Extension Definition Page 281

SEMCTL(KE _OS)

ERRORS
The function semetl will fail if one or more of the following are true:

EINVAL The value of semid is not a valid semaphore-identifier; or the
value of semnum is less than 0 or greater than sem nsems;
or the value of emd is not a valid command. -

EACCES Operation permission is denied to the calling-process [see Chapter
9 - Definitions]'

ERANGE The argument emd is equal to SETVAL or SETALL and the
value to which semval is to be set is greater than the system
imposed maximum.

EPERM The argument emd is equal to IPC RMID or IPC SET and
the effective-user-ID of the calling-pro~ess is not equal-to that of
super-user and it is not equal to the value of sem perm. euid
or sem_perm. uid in the data structure issociated with
semid.

SEE ALSO
SEMGET(KE_OS). SEMOP(KE_OS).

LEVEL
Levell.

Page 282 Kernel Extension Definition

SEMGET(KE _OS)

NAME

semget - get set of semaphores

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>
int semget(key, nsems, semflg)
key_t key;
int nsems, semflg;

DESCRIPTION

The function semget returns the semaphore-identifier associated with
key.

A semaphore-identifier with its associated s emid ds data structure and
its associated set of nsems semaphores [see Chapter 9 - Definitions] are
created for key if one of the following are true:

The argument key is equal to IPC PRIVATE.

The argument key does not already have a semaphore-identifier
associated with it, and (semflg&IPC_CREAT) is "true".

Upon creation, the s emid ds data structure associated with the new
semaphore-identifier is initialized as follows:

In the operation-permissions structure, sem perm. cuid and
sem_perm.uid are set equal to the eft'ective-user-ID of the
calling-process; while s em perm. cg id and s em perm. gid
are set equal to the eft'ective-group-ID of the ca1ling-proce~s.

The low-order 9-bits of sem perm. mode are set equal to the
low-order 9-bits of s emf 1 g. -

The variable sem_nsems is set equal to the value of nsems.

The variable sem otime is set equal to 0 and sem ctime is
set equal to the current time.

The data structure associated with each semaphore in the set is not
initialized. The function semctl with the command SETVAL or
SETALL can be used to initialize each semaphore.

RETURN VALUE
If successful, the function semget returns a non-negative integer, namely a
semaphore-identifier; otherwise, it returns -1 and errno will indicate the
error.

Kernel Extension Definition Page 283

SEMGET(KE_ OS)

ERRORS
The function semget will fail if one or more of the following are true:

EACCES A semaphore-identifier exists for key, but operation permission
as specified by the low-order 9-bits of s emf 19 would not be
granted.

EINVAL The value of nsems is either less than or equal to 0 or greater
than the system-imposed limit, or a semaphore-identifier exists for
the argument key, but the number of semaphores in the set
associated with it is less than nsems and nsems is not equal
to O.

ENOENT A semaphore-identifier does not exist for the argument key and
(semf 19&. IPC _ CREAT) is "false".

ENOSPC A semaphore identifier is to be created but the system-imposed
limit on the maximum number of allowed semaphores system
wide would be exceeded.

EEXIST A semaphore-identifier exists for the argument key but
«semf1g&.IPC CREAT)&.&.(semf1g&.IPC EXCL» ~
"true". - -

SEE ALSO
SEMCTL(KE_OS), SEMOP(KE_OS).

LEVEL
Levell.

Page 284 Kernel Extension Definition

SEMOPCKE_OS)

NAME

semop - semaphore operations

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semop(semid, sops, nsops)
int semid;
struct sembuf *sops;
unsigned nsops;

DESCRIPTION

The function s emop is used to automatically perform an user-defined array
of semaphore operations on the set of semaphores associated with the sema­
phore identifier specified by the argument s emid.

The argument sops is a pointer to a user-defined array of semaphore­
operation structures.

The argument nsops is the number of such structures in the array.

Each structure, s embuf, includes the following members:

short sem_num;
short sem_op;
short sem_flg;

1* semaphore number *1
1* semaphore operation *1
1* operation flags *1

Each semaphore operation specified by s em _ op is performed on the
corresponding semaphore specified by semid and sem_num.

The variable s em _ op specifies one of three semaphore operations:

1. If s em op is a negative integer and the calling-process has alter per­
mission, 'One of the following will occur:

• If s emva I is greater than or equal to the absolute value of
sem op, the absolute value of sem op is subtracted from sem­
val~ Also, if (sem flg&SEM UNDO) is "true", the absolute
value of s em op is added to the calling-process's s emad j value
for the specified semaphore [see EXIT(BA_OS) in EFFECTS(BA_ENV) in
Chapter 10 - Environment]. The symbolic name SEM UNDO is
defined by the < s y sIs em. h> header file. -

• If s emva I is less than the absolute value of s em _ op and
(sem f 19& IPC CREAT) is "true", semop will return
immediately. -

• If semval is less than the absolute value of sem op and
(sem flg&IPC CREAT) is "false", semop will i~crement
the ;emncnt associated with the specified semaphore and
suspend execution of the calling-process until one of the following
conditions occur:

Kernel Extension Definition Page 285

SEMOPCKE_OS)

The value of semval becomes greater than or equal to the
absolute value of sem op. When this occurs, the value of
semncnt associated With the specified semaphore is decre­
mented, the absolute value of s em op is subtracted from
semval and, if (sem flg&. SEM- UNDO) is "true", the
absolute value of s em ;p is added -to the calling-process's
semadj value for the specified semaphore.

The semid for which the calling-process is awaiting action is
removed from the system [see SEMCTL(KE_OS)l. When this
occurs, errno is set equal to EIDRM, and a value of -1 is
returned.

The calling-process receives a signal that is to be caught. When
this occurs, the value of s emncn t associated with the specified
semaphore is decremented, and the calling-process resumes exe­
cution in the manner prescribed in the routines defined in
SIGNAL(BA _OS).

2. If s em op is a positive integer and the calling-process has alter per­
mission, -the value of sem op is added to semval and, if
(sem f 19 &. SEM UNDO) is- "true", the value of sem op is sub­
tracted- from the ealling-process's semadj value for the specified
semaphore.

3. If s em op is 0 and the calling-process has read permission, one of
the following will occur:

Page 286

• If semval is 0, the function semop will return immediately.

• If semval is not equal to 0 and (sem flg&.IPC CREAT)
is "true", the function s emop will return immediately. -

• If semval is not equal to 0 and (sem flg&'IPC CREAT)
is "false", the function semop will increme~t the semz-cnt asso­
ciated with the specified semaphore and suspend execution of the
calling-process until one of the following occurs:

The value of semval becomes 0, at which time the value of
semzcnt associated with the specified semaphore is decre­
mented.

The semid for which the calling-process is awaiting action is
removed from the system. When this occurs, errno is set
equal to EIDRM, and a value of -1 is returned.

The calling-process receives a signal that is to be caught. When
this occurs, the value of semzcnt associated with the specified
semaphore is decremented, and the calling-process resumes exe­
cution in the manner prescribed in the routines defined in
SIGNAL(BA_OS).

Kernel Extension Definition

SEMOP(KE_OS)

RETURN VALUE

If successful, the function semop returns 0; otherwise, it returns -1 and
errno will indicate the error.

ERRORS

The function semop will fail if one or more of the following are true for
any of the semaphore operations specified by sops:

E I NV AL The value of s em i d is not a valid semaphore-identifier; or the
number of individual semaphores for which the calling-process
requests a S EM _ UNDO would exceed the limit.

EFBIG The value of sem num is less than 0 or greater than or equal
to the number of semaphores in the set associated with s emid.

E2BIG The value of nsops is greater than the system-imposed max­
imum.

EACCES Operation permission is denied to the calling-process [see Chapter
9 - Definitions].

EAGAIN The operation would result in suspension of the calling-process
but (sem_flg&'IPC_ CREAT) is "true".

ENOSPC The limit on the number of individual processes requesting a
SEM UNDO would be exceeded.

ERANGE An operation would cause a semval to overflow the system­
imposed limit, or an operation would cause a semadj value to
overflow the system-imposed limit.

EINTR The function semop was interrupted by a signal.

EIDRM The semaphore identifier semid has been removed from the
system.

Upon successful completion, the value of sempid for each semaphore
specified in the array pointed to by sops is set equal to the process-ID of
the calling-process.

SEE ALSO

EXEC(BA_OS), EXIT(BA_OS), FORK(BA_OS), SEMCTL(KE_OS), SEMGET(KE_OS).

LEVEL

Levell.

Kernel Extension Definition Page 287

SHMCTL(KE _OS)

NAME

shmctl - shared-memory-control-operations

SYNOPSIS

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int shmctl(shmid, cmd, buf)
int shmid, cmd;
struct shmid_ds *buf;

DESCRIPTION

The function shmctl provides a variety of shared-memory-control­
operations as specified by cmd. The following values for cmd are avail­
able:

IPC STAT

IPC SET

IPC RMID

RETURN VALUE

Place the current value of each member of the data struc­
ture associated with shmid into the structure pointed to
by buf. The contents of this structure are defined in
Chapter 9 - Definitions.

Set the value of the following members of the data structure
associated with s hm i d to the corresponding value found
in the structure pointed to by buf:

shm_perm.uid
shm_perm.gid
shm_perm.mode 1* only low 9-bits *1

This cmd can only be executed by a process that has an
effective-user-ID equal to either that of super-user or to the
value of shm perm. cuid or shm perm. uid in the
data structure associated with shmid.-

Remove the shared memory identifier specified by shmid
from the system and destroy the shared memory segment
and data structure associated with it. This cmd can only
be executed by a process that has an effective-user-ID equal
to either that of super-user or to the value of
shm perm. cuid or shm perm. uid in the data
structure associated with shmid.

If successful, the function s hm c t 1 returns 0; otherwise, it returns -1
and errno will indicate the error.

Page 288 Kernel Extension Definition

SHMCTL(KE _OS)

ERRORS

The function shmctl will fail if one or more of the following are true:

EINVAL The value of shmid is not a valid shared-memory-identifier; or
the value of cmd is not a valid command.

EACCES The argument cmd is equal to IPC STAT and the calling­
process does not have read permission [see shared-memory­
operation-permissions in Chapter 9 - Definitions)'

EPERM The argument cmd is equal to IPC RMID or IPC SET and
the effective-user-ID of the calling-process is not equal-to that of
super user and it is not equal to the value of shm perm. cuid
or shm _perm. uid in the data structure associated with
shmid.

APPLICATION USAGE

The functions shmctl, shmget, and shmat and shmdt are
hardware-dependent and may not be present on all systems. The shared
memory routines should not be used by applications except when extreme
performance considerations require them.

SEE ALSO

SHMGET(KE_ OS), SHMOP(KE_ OS).

LEVEL

Levell.

Optional: The function shmctl may not be present in all implementations
of the Kernel Extension.

Kernel Extension Definition Page 289

SHMGET(KE_ OS)

NAME

shmget - get shared-memory-segment

SYNOPSIS

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int shmget(key, size, shmflg)
key_t key;
int size, shmflg;

DESCRIPTION

The function shmget returns the shared memory identifier associated with
key.

A shared-memory-identifier and associated data structure and shared­
memory-segment of at least s i z e bytes [see Chapter 9 - Definitions] are
created for key if one of the following are true:

The argument key is equal to IPC PRIVATE.

The argument key does not already have a shared-memory-identifier
associated with it and (shmflg&IPC_CREAT) is "true".

Upon creation, the data structure associated with the new shared-memory­
identifier is initialized as follows:

The value of shm perm. cuid and shm perm. uid are set
equal to the effective-user-ID of the calling-process.

The value of shm perm. cgid and shm perm. gid are set
equal to the effective-group-ID of the calling-process.

The low-order 9-bits of shm perm. mode are set equal to the
low-order 9-bits of s hm f 1 9 . -

The argument s hm _ s e 9 s z is set equal to the value of s i z e.

The value of shm _lpid,
shm dtime are set equal to

shm_nattch,
O.

shm_atime, and

The value of s hm _ c tim e is set equal to the current time.

RETURN VALUE
If successful, the function shmget returns a non-negative integer, namely a
shared-memory-identifier; otherwise, it returns -1 and errno will indicate
the error.

Page 290 Kernel Extension Definition

SHMGET(KE _OS)

ERRORS

The function shmget will fail if one or more of the following are true:

E I NV AL The value of s i z e is less than the system-imposed minimum or
greater than the system-imposed maximum, or a shared-memory­
identifier exists for the argument key but the size of the seg­
ment associated with it is less than s i z e and s i z e is not
equal to O.

EACCES A shared-memory-identifier exists for key but operation permis­
sion as specified by the low-order 9-bits of shmf 19 would not
be granted.

ENOENT A shared-memory-identifier does not exist for the argument key
and (shmflg&IPC_CREAT) is "false".

ENOS PC A shared memory identifier is to be created but the system­
imposed limit on the maximum number of allowed shared
memory identifiers system wide would be exceeded.

ENOMEM A shared memory identifier and associated shared memory seg­
ment are to be created but the amount of available physical
memory is not sufficient to fill the request.

EEXI ST A shared-memory-identifier exists for the argument key but
«shmf1g&IPC CREAT)&&(shmf1g&IPC EXCL» ~
"true". - -

APPLICATION USAGE

The functions shmct1, shmget and shma t and shmd tare
hardware-dependent and may not be present on all systems. The shared
memory routines should not be used by applications except when extreme
performance considerations require them.

SEE ALSO
SHMCTL(KE_OS), SHMOP(KE_OS).

LEVEL
Levell.

Optional: The function shmget may not be present in all implementations
of the Kernel Extension.

Kernel Extension Definition Page 291

SHMOP(KE_ OS)

NAME

shmop - shared-memory-operations

SYNOPSIS

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

char *shmat(shmid, shmaddr, shmflg)
int shmid;
char *shmaddr
int shmflg;

int shmdt(shmaddr)
char *shmaddr

DESCRIPTION
The function s hma t attaches the shared-memory-segment associated with
the shared-memory-identifier specified by shmid to the data segment of the
calling-process. The segment is attached at the address specified by one of
the following criteria:

If shmaddr is equal to Ot the segment is attached at the first available
address as selected by the system.

If shmaddr is not equal to 0 and (shmf 19 &. SHM RND) is "true"t the
segment is attached at the address given by
(shmaddr- (shmaddr % SHMLBA)). The character % is the C
language modulos operator.

If shmaddr is not equal to 0 and (shmflg&.SHM_RND) is "false'\
the segment is attached at the address given by shmaddr.

The segment is attached for reading if (shmflg&SHM RDONLY) is
"true" and the calling-process has read permission; otherwiset if it is not true
and the calling-process has read and write permissiont the segment is
attached for reading and writing.

The function shmdt detaches from the calling-process's data segment the
shared memory segment located at the address specified by shmaddr.

The following symbolic names are defined by the < s y sis hm • h> header
file:

N arne Description
SHMLBA segment low boundary address multiple
SHM RDONLY attach read-only {else read-write}
SHM RND round attach address to SHMLBA

Page 292 Kernel Extension Definition

SHMOP(KE_OS)

RETURN VALUE

If successful, the function s hma t will return the data segment start address
of the attached shared-memory-segment. If successful, the function s hmd t
will return a value of O. Otherwise, the function s hma t and the function
shmdt will return -1 and errno will indicate the error.

ERRORS

The function shma t will fail and not attach the shared-memory-segment if
one or more of the following are true:

EACCES Operation permission is denied to the calling-process [see Chapter
9 - Definitions]'

ENOMEM The available data space is not large enough to accommodate the
shared memory segment.

EINVAL The value of shmid is not a valid shared-memory-identifier; or
the value of shmaddr is not equal to 0 and the value of
(shmaddr- (shmaddr " SHMLBA» is an illegal-address;
or the value of shmaddr is not equal to 0,
(shmf 19& SHM RND) is "false" and the value of shmaddr
is an illegal-address.

EMFILE The number of shared-memory-segments attached to the calling-
process would exceed the system-imposed limit.

The function ehmd t will fail and not detach the shared-memory-segment if
the following is true:

EINVAL shmaddr is not the data segment start address of a shared­
memory-segment.

APPLICATION USAGE

The functions shmctl, shmget, shmat, and shmdt are hardware
dependent and may not be present on all systems. The shared memory rou­
tines should not be used by applications except when extreme performance
considerations require tpem.

SEE ALSO

EXEC(BA_OS), EXIT(BA_OS), FORK(BA_OS), SHMCTL(KE_OS), SHMGET(KE_OS).

LEVEL

Levell.

Optional: the functions s hma t and s hmd t may not be present in all
implementations of the Kernel Extension.

Kernel Extension Definition Page 293

Appendix

Changes from Issue 1

Appendix
Changes from Issue 1

Only substantive changes from Issue 1 to Issue 2 of the System V Interface
Definition are described here. Changes that did not alter meaning, for example
when text was changed or added for clarity, are not listed below.

Changes in the organization or general changes in the content of the SVID are
described first. Summaries of changes in the detailed component definitions follow.

Changes from Issue 1 Page 297

12.1 BASE SYSTEM DIFFERENCES

Organization. The information in the definition of the Base System is ordered
somewhat differently in Issue 2. For example, error conditions, environmental vari­
ables, data files, directory tree structure, and special device files appear together in
Chapter 5 - Environment, in Issue 2. Signals appear in the definition of the func­
tion SIGNAL(BA_OS) in Chapter 6 - Operating System Service Routines.

Omissions. Section 2.6 on Header Files in Issue I has been omitted. Issue 1
specified that the header files were not expected to be present on an implementa­
tion of the Base System. However, the presence of the header file Section was
misinterpreted by many to mean that these files were part of the Base System. In
Issue 2, all necessary information about a header file appears in the detailed
definitions of those routines that use the header file.

Appendix 1.6 in Issue 1, Comparison to the 1984 lusrlgroup Standard, was not
carried over to Issue 2 because the work of the lusrlgroup committee has been
subsumed by the IEEE PI003 working group.

The routines regcmp and regex were mistakenly included in Issue 1. Issue 2
removed and replaced these routines with the routines defined in REGEXP(BA_LlB).

The names of three external variables, errno, sys errlist and
sys nerr, mistakenly appeared in the list of library routine -names in Section
2.5 of Issue 1. They have been removed from the corresponding table in Issue 2.

Future Directions. Issue 2 made some additions to Chapter 2 - Future Directions;
these are not detailed in this summary.

The paragraphs below identify specific changes to detailed component definitions:

Definitions.

special-processes

Environment.

ERRORS(BA_ENV).

FILSYS(BA_ENV).

Page 298

Issue 1 specified that process-IDs 0 and 1 were reserved
for special-processes. To allow implementations to reserve
more 10 numbers for special-processes, Issue 2 specifies that
at least these two IDs are reserved.

Issue 2 additionally specifies that no error condition will
have the value zero.

In Issue 2 the EFAULT error condition, when an address is
outside the address space of a process, is not required from
all systems [see ERRNO(BA_ENV»).

Issue 2 additionally specifies that errno should not be
checked unless an error is indicated by a routine.

Issue 1 incorrectly specified that all the environmental vari­
ables required to be set in the Base System environment
were defined by the / etc / pro f i 1 e file. Issue 2
specifies that the / etc / pro f i 1 e file may define the

Changes from Issue 1

TERMIO(BA _ ENV).

OS Service Routines.

CREAT(BA _OS).

EXIT(BA _OS).

FCNTL(BA _OS).

Changes from Issue 1

variables PATH and T Z.

Issue 2 removed the description of an encrypted password
from the definition of the / etc / pa s s wd file.

Issue 1 incorrectly listed the commands TCGETA and
TCSETA as TCGETS and TCSETS in the definition of
TERMIO(DEV). Issue 2 lists them as TCGETA and
TCSETA in TERMIO(BA_ENV).

Issue 2 eliminated the APPLICATION USAGE section.

Issue 1 identified the access permission bit 01000 as "save
text image after execution"; Issue 2 identifies it as
"reserved" .

Issue 1 read "if chown is invoked by other than the
super-user, the set-user-ID and the set-group-ID bits of the
file mode will be cleared." Issue 2 clarifies that chown
must be successfully invoked by other than super-user for
this to occur.

Issue 1 mistakenly stated that corresponding access­
permission bits of the file mode were ANDed with the
process's file-mode creation mask. Issue 2 correctly specifies
that corresponding access-permission bits of the file mode
are ANDed with the complement of the process's file-mode
creation mask.

Issue 2 specifies that termination of a process by exiting
does not terminate its children.

Issue 1 mistakenly stated that the SIGHUP signal is sent
to each member of a process-group if the calling-process is
a process-group-Ieader. Issue 2 specifies that the calling­
process must also be associated with a control terminal.

Issue 2 notes tha t the function f c n t 1 commands
F GETLK, F SETLK and F SETLKW are post-System
V -Release 2.0 features. -

Issue 2 clarifies when a read-lock or a write-lock can be set
on a file with existing locks.

Issue 1 incorrectly specified the 1 s y sid element in the
f lock structure. It was removed in Issue 2.

Issue 1 incorrectly specified that the EDEADLK error con­
dition would occur when the fcntl command was
F SETLK and putting the process to sleep would cause a
d~dlock. Issue 2 correctly specifies that the command in
this case is F SETLKW.

Page 299

FOPEN(BA _OS).

GETCWD(BA _OS).

LSEEK(BA_OS).

Page 300

In Issue It the error condition EAGAIN should have been
EACCES. This was changed in Issue 2 and the migration
to EAGAIN is shown in FUTURE DIRECTIONS.

Issue 2 recommends that applications test for errno
equal to either EAGAIN or EACCES.

Issue 2 additionally specifies that the functions f open and
freopen will fail if the argument type is invalid or the
file cannot be opened; the function f dopen will fail if the
argument type is invalid or the argument fildes is
not an open file-descriptor; fopen and freopen will
fail if there are no free stdio streams available.

Issue 1 specified that if the argument path could not be
accessed by the functions fopen and freopent

errno could contain any of the values listed for the func­
tion open. Issue 2 further specifies which of these
errno values are possible.

Issue 1 specified a side-effect if the function were called
with a null pointer. Issue 2 removed this side-effect from
the definition.

Issue 2 additionally specifies that the data type of the argu­
ment arg is either an integer or a pointer to a device­
specific data structure.

Issue 1 misspelled the F ULOCK value of the argument
function as F _ UNLOCK in one place.

Issue 1 incorrectly specified that the error condition
EDEADLK would occur if the argument cmd was
F LOCK or F TLOCK and a deadlock would occur. Issue
2 correctly specifies that the argument cmd was FLOCK
and a deadlock would occur. -

In Issue It the error condition EAGAIN should have been
EACCES. This was changed in Issue 2 and the migration
to EAGAIN is shown in FUTURE DIRECTIONS.

Issue 2 recommends that applications test for errno
equal to either EAGAIN or EACCES.

Issue 2 removed the reference to the S I G S Y S signal on
the error condition EINVAL.

Issue 1 incorrectly specified that the argument val u e to
the function mallopt must be greater than 0 when the
argument command is equal to M NLBLKS. Issue 2
correctly specifies that val u e must be greater than 1.

Changes from Issue 1

MOUNT(BA _OS).

OPEN(BA_OS).

READ(BA_OS).

SETUID(BA _OS).

SYSTEM(BA_OS).

WRITE(BA _OS).

Changes from Issue 1

Issue 2 additionally specifies that the function rna 11 i nf 0

must not be called until after some storage has been allo­
cated using the function rna 110 c. Issue 2 additionally
specifies that the functions rna 110 c, C a 11 0 C and
realloc will fail if nbyte is O.

Issue 1 identified the access permission bit 0 1 0 0 0 as "save
text image after execution"; Issue 2 identifies it as
"reserved". For the error condition EACCES, Issue 2 addi­
tionally specifies that the effective-user-ID of the process is
not super-user.

Issue 2 adds a new FUTURE DIRECTIONS section.

Issue 1 mistakenly stated that corresponding access­
permission bits of the file mode were ANDed with the
process's file-mode creation mask. Issue 2 correctly specifies
that corresponding access-permission bits of the file mode
are ANDed with the complement of the process's file-mode
creation mask.

Issue 2 additionally specifies that the new file-descriptor
returned is the lowest numbered file-descriptor available.

Issue 2 added the error conditions EIO and ENXIO
which were mistakenly omitted in Issue 1.

Issue 2 additionally specifies that reading from a section of
a file to which no data were written will read bytes with
value zero into the buffer.

Issue 2 removed references to the saved set-group-ID
because this is not a feature in System V Release 1.0 or
Release 2.0.

Issue 2 removed references to positional parameters. Issue
2 also removed the paragraph on "here" documents, < < [-
] word, which was incorrectly included in Issue 1.

Issue 1 read "As long as the argument t 1 0 c is not zero,
the return value is also stored in the location to which the
argument t 1 0 c points." Issue 2 reads "As long as the
argument tloc is not a null pointer, the return value is
also stored in the location to which the argument t 1 0 c
points."

Issue 2 specifies in more detail the run-time behavior when
writing to a pipe, particularly atomic and partial writes.

Issue 2 added the error conditions EIO and ENXIO,
which were mistakenly omitted in Issue 1.

Page 301

UTIME(BA_ OS). Issue 2 clarifies that the utimebuf structure must be
defined by the user.

Issue 2 removed all references in the Base System to a
child-process stopping as a result of being traced because
this functionality applies to the Kernel Extension.

General Library Routines.

CRYPT(BA_LIB).

CTIME(BA_LIB).

GAMMA(BA_LIB).

HSEARCH(BA_LlB).

PERROR(BA _LIB).

PRINTF(BA_LIB).

Page 302

Issue 2 made the functions crypt, setkey and
encrypt optional because U.S. State Department regula­
tions may restrict the export of these routines. If present on
an implementation, each routine's source-code interface and
run-time behavior is expected to conform to the definition.

Issue 2 removed the include statement for the
<sys/types. h> header file, which was mistakenly
included in the SYNOPSIS section.

The RETURN VALUE section in Issue 1 read "log and
log 1 0 will return HUGE". Issue 2 corrected this to read
"log and log 1 0 will return - HUGE".

The FUTURE DIRECTIONS section in Issue 1 read "log and
log 1 0 will return -HUGE VAL when n is not positive"
and "sqrt will return - 0 ~hen the value of n is - 0".
Issue 2 corrected this to read "log and log 10 will return
-HUGE VAL when x is not positive" and "sqrt will
return : 0 when the value of x is - 0".

Issue 1 specified that if the value of the argument depth
were zero or negative, the effect was the same as if the
value were 1. Issue 2 specifies that the value of depth
should be in the range of 1 to {OPEN_MAX}.

The RETURN VALUE paragraph in Issue 1 read "For non­
negative integer arguments, HUGE is returned". Issue 2
corrected this to read "For non-positive integer arguments,
HUGE is returned".

Issue 2 removed the second paragraph of the APPLICATION
USAGE section because it applies to developing an
application-program using HSEARCH(BA_LlB), and it does not
apply to an executable program that uses HSEARCH(BA_LlB).

Issue 2 additionally specifies the behavior of the function
when the argument is a null string.

Issue 2 additionally specifies escape sequences that may be
used in the forma t argument.

Issue 2 removed the conversion character i because it is
not available in System V Release 1.0 or Release 2.0.

Changes from Issue 1

PUTENV(BA_LlB).

SCANF(BA_LlB).

STRING(BA_LlB).

UNGETC(BA_ LIB)

Issue 2 specifies the return value of the function putw;
Issue 1 did not.

Issue 1 failed to specify that this routine first became avail­
able with System V Release 2.0.

Issue 2 removed the conversion characters i and n
because they are not available in System V Release 1.0 or
System V Release 2.0.

Issue 2 specifies that the function strtok will write a
null character into the string s 1 immediately following a
matched token.

Issue 2 removed the word "optional" from the first sentence
of the APPLICATION USAGE section.

The special case for stdin that appeared in Issue 1 was
removed from the definition in Issue 2.

12.2 KERNEL EXTENSION DIFFERENCES

Definitions.

s em structure

EFFECTS(KE_ENV)

ACCT(KE_OS).

OS Service Routines.

Issue 1 incorrectly included two elements, semnwai t and
semzwai t, in the structure sem; Issue 2 removed them.

Issue 2 added effects on EXEC(BA_OS) and FORK(BA_OS)
routines that were mistakenly omitted in Issue 1.

Issue 2 specifies additional values of errno for the Kernel
Extension that were omitted in Issue 1.

Issue 1 incorrectly specified the type of the element
ac etime of the structure acct as time t; Issue 2
specifies its type as comp _ t. -

Issue 2 specifies the values of the fields a c f 1 a g and
ac comm that result from a call to an EXEC(BA OS) rou-
tine-or the FORK(BA _OS) routine. -

MSGCTL(KE_OS). Issue 2 specifies that read permission is needed for the
IPC STAT command.

NICE(KE_OS). Issue 2 replaced the constant 39 with the expression
2 * (NZERO}-1 to indicate that this is an implementation­
specific constant.

PTRACE(KE_OS). Issue 1 specified the type of the argument addr as into

Issue 2 specifies that the type of the argument addr is
dependent upon the value of the argument request.

SEMCTL(KE_OS). Issue 2 specifies the permission level needed for semctl
operations.

Changes from Issue 1 Page 303

SEMOP(KE _OS).

SHMCTL(KE _OS).

Page 304

Issue 1 incorrectly specified the type of the argument
sops as struct sembuf **; Issue 2 specifies the
type as struct sembuf *.

Issue 1 incorrectly specifies the type of the argument
nsops as int; Issue 2 specifies the type as unsigned.

Issue 2 specifies the permission level needed for sem_ op
operations.

Issue 1 incorrectly specified the successful return value of
the function. Issue 2 specifies that the function will return
o on success. Issue 2 removed the first paragraph of the
RETURN VALUE section.

Issue 1 incorrectly included the commands SHM LOCK

and SHM UNLOCK. Issue 2 removed these and the two
error conditions that referenced them.

Issue 2 specifies that read permission is needed for the
IPC STAT command.

Issue 1 omitted from the description of the EPERM error
condition that the effective-user-ID was not equal to
shm_perm. cuid; Issue 2 added this.

Changes from Issue 1

Indexes

/bin 42,134
/dev 42, 106, 127, 143
/dev/console 34
/dev/null 35, 134-135
/dev/tty 36, 160
/etc 10-12, 14, 42,44, 100, 197
/etc/passwd 42-44, 132, 299
letc/profile 43, 298
Itmp 42,234
lusr/bin 42-43, 134
lusr/etc 43
lusr/group 298
lusr/group Standard 298
lusr/lib 43
lusr/opt 43
lusr/tmp 42
512-byte blocks, units 138
8th-bit usage 12

A

abnormal process termination routines 123
absolute value functions 152, 172
access

modes 27-28, 59, 63-64, 67-68, 75, III
permission bits 27,59,63-64,67-68,

Ill, 299, 301
pure procedure 59
to a file 19, 21, 27-28, 36-37, 59-60,

63-64,67-68,83, Ill, 144-145, 264
access time 127, 144-145
accounting 38, 249, 258, 262-263
accounting file 38, 258,262-263
accounting record 258, 262
accounting routine 258, 262-263
acct 249, 258, 262-263, 303
active-process 29-30, 32
activity, system 125
add-ons 43
address space 100, 277-279, 298
Advanced Utilities Extension 4, 19
alarm clock

requests 61, 125
reset 61
signal 61, 72, 86, 99, 113, 125

allocated space 103, 105, 184-185, 220
allocation algorithm, memory 103
alter permission 255, 280-281, 285-286
ANSI X3Jl1 9, 124
append to a file 75,82-83, 87, 110, 134,

System V Interface Definition

General Index
148, 207, 226

arccosine 236
arcsine 236
arctangent 236
argument, invalid (see EINV AU
ASCII 10, 12, 14, 26, 44-46, 49-50, 54-

55, 158, 164-165
ASCII BS-SP-BS 54
ASCII character set 26, 49-50, 54, 165
ASCII CR 49-50
ASCII CR-NL 50
ASCII DCl 46
ASCII DC3 46
ASCII DEL 46, 50
ASCII EOT 45-46, 54
ASCII FS 46
ASCII LF 45-46
ASCII NUL 46, 49-50
ASCII SP-BS 54
ASCII, code 26,49, 165
ASCII, file 44, 164
ASCII, table 26
asynchronous communications 45
AU 19
audience 3

B

backspace 46, 51, 199
Base System Definition 17-256
Base System

directory tree structure 19, 42, 298
environmental variables 19, 298-299
error conditions 19, 37, 260, 298
header files 32, 298
operating system services 5, 19-21,57-

150, 249, 258
special device files 5, 19, 298
system-resident data files 42

Base System V 3-4, 6, 11, 19, 21, 23-24,
249, 258

Basic Utilities Extension 4, 124, 135
baud rate 52
bessel functions 22-23, 153
Big 5 code-set 14
binary floating point arithmetic 9
binary point 9, 232, 276
binary search routine 155
binary search tree 238-239
Bourne shell 135

Page 307

break condition 48-49
BRKINT 48-49
BU 124,135
buffered data 74, 100, 114, 269, 301
BUFSIZ 219
byte ordering 177, 205

c

C language 3-4, 7, 9, 15, 19, 292
operator sizeof 87
program 30, 70, 176
standardization 9

canonical processing 54
catch a signal 38, 122-124

premature arousal 125
change root directory 249, 264
character conversion 158, 230
character framing error 48-49
character special device 10, 40, 106
character support 12, 15
child-process 29, 38, 77, 85-86, 137-138,

146-147, 157, 259, 262, 277, 279, 302
stopped state 277
terminated 77, 137, 146, 157
unwaited-for 38

CHILD_MAX 29, 86
CLK_TCK 29, 137, 276
CLOCAL 53
clock ticks 29, 262, 276
clock, report cpu time used 157
close 20-21, 28, 53, 58,66, 68-69, 74, 79,

100-101,112,117,142,150,220
close-on-exec flag 28, 71, 75
CMD 5, 19, 124, 135
code-set

designation 13-14
internal 12-13
JIS 6226 14
template 12

code-sets 10-15, 26
command

execution process 28, 131-132, 134-135
file name 75, 135, 280
interpreter (see command execution

process)
name 131
substitution 132-133, 135

command file, execution 134
command syntax standard 181-182
command-line 115, 182

parser 180, 182
syntax 182

Page 308

commands 4-5, 19, 28, 35, 42-43
communication line 110, 116
communications network 141
conforming systems 3-4, 9, 19, 24
console, system console interface 34
control characters, terminal 46, 49, 53
control modes, terminal 47, 52
control-terminal 32, 36, 45, 299
convert a string 161,201,215-216, 229-

230
convert formatted input 215-216
convert time 161-162
core dump 58, 123
cpu time used 137, 157
CREAD 52
create a new process 29-30, 61, 85-86, 135
create interprocess channel, pipe 114
create temporary file 42, 233-235
cross-device links 40, 97
CRT device 46, 54
crt screen 54
crypt 22,44, 159, 302
CSTOPB 52
ctermid, generate terminal file name 160
current working directory 31, 62, 90, 108
curses/terminfo package 10

D

.D-space 277-278
data files, system-resident 42
data segment 39, 70, 255, 274, 288, 292-

293
lock 258, 274

DATLOCK 274
daylight savings time 41, 162
deadlock 38, 78, 99, 299
decimal conversion 201, 215, 230
delay-bits 51
device

block special 39, 106
character special 10, 40, 106
number identifying 143

device-driver 10, 12, 40, 93-94
device-specific functions 93
devices 5, 10, 12, 19, 37-40, 42, 89, 93-94,

97,101,106,108, 112, 116-117, 123,
140, 143, 148-149, 199,242,298

DEVTTY 32
directory

create 39,68, 97, 107, 112, 234-235
current working 62, 90, 108
defined 27, 28

System V Interface Definition

descend hierarchy 174
initial working 132
read 174
read-only file system 107, 142
root 27,30-31,108,174,264
search permission 68, 72, 97, III
writing 39, 68, 97, 111

directory-entry 27, 39, 97, 142, 264
directory-entry, create 39, 97
directory-entry, dot 27
directory-entry, dot-dot 27
directory-entry, link 97, 142
directory-entry, remove 142
directory tree structure 19, 42, 298
duplicate file-descriptor 69

E

E2BIG 37, 72, 272, 287
EACCES 37, 59,62,64-65, 68, 72, 78-79,

83,97, 99-100, 107, Ill, 128, 142,
144-145, 174,263, 266, 268, 272,
282, 284, 287, 289, 291, 293, 300-301

EAGAIN 37,78-79, 86, 100, 109, 117,
272, 287, 300

EBADF 37,66,69,78,93,99,101,117,
128, 149

EBUSY 37, 108-109, 140, 142, 263
ECHILD 38, 146
ECHO 54-55
ECHOK 54
ECHONL 54
EDEADLK 38, 78, 99, 299, 300
EDOM 38,153,170,176,190,237
EEXIST 38,97, 107, 112, 268, 284, 291
EFAULT 38,72,298
EFBIG 38, 149, 287
effective group id 27, 63
effective user id 63, 263
EFFECTS 19, 249, 285
EINTR 38, 83, 93, 112-113, 117, 123,

146, 149, 272,287
EINVAL 38,60,78,90,94-95,101,120,

124, 140, 143,266,272,274,282,
284,287,289,291,293,300

EIO 38,94, 117, 149,277-279, 301
EISDIR 38, 68, 83, III
EM FILE 38,68-69, 78, Ill, 114,293
EMLINK 39, 97
empty file, /dev/null 134
encoding algorithm 159
encryped password 299
end-of-file 45-47, 53, 83, 87, 98, 116, 134,

System V Interface Definition

164, 177, 183
ENFILE 39,68, 112, 114
enforcement-mode file and record locking

64, 68, , 79100, 112, 117, 150
ENODEV 39
ENOENT 39, 59,62,64-65,67, 72, 83,

97, 107-108, 111, 128, 140, 142, 144,
263-264, 268, 284, 291

ENOEXEC 39, 72
ENOLCK 39, 78
ENOMEM 39,72,86,291,293
ENOSPC 39,68,97, 107, 112, 149,268,

284, 287, 291
ENOTBLK 39,108,140
ENOTDIR 39, 59, 62, 64-65, 67, 72, 83,

97, 107-108, 111, 128, 140, 142, 144,
263-264

ENOTTY 39, 93
entry mount point, mounted file system

142
environmental variables 19, 27, 41, 162,

206, 234, 298-299
altering string environment 206

ENVVAR, environmental variables 27,
43, 70

ENXIO 39,94, 108, 112, 117,140,149,
301

EOF 46-47,54-55,74,80,102,164,177,
180,204,207,217,243

EOF character 46-47, 54-55
EOF end-of-file condition 74, 80, 102,

17~ 18~ 20~ 207, 217,243
EOF indicator 80
EOL character 46, 54
EPERM 40,64-65,95-97, 107-108, 120,

129, 138, 140, 142, 144,263-264,
266, 273-274, 282, 289, 304

EPIPE 40, 149
ERANGE 40,90,153,170,173,176,

187, 190,223,229,236,282,287
ERASE character 45-47, 54
erase character 45-47, 54, 243
EROFS 40, 59, 64-65, 68, 83, 97, 107,

Ill, 142, 145, 263
errno header file 37
errno, error-number external variable 37-

40, 196, 260, 298, 300, 303
error conditions 6, 19, 37-40, 260, 298,

300-302, 304
Error Handling Standards 11
error message standard 196
error messages 11, 153, 156, 170, 176,

180, 190, 196-198, 233, 236-237

Page 309

standard error output 32, 36, 45, 82,
153, 170, 176, 196,219,236-237

error recovery 197
error, last error encountered 87, 196
error-handling procedures 153, 171, 176,

187, 190, 223, 237
escape character 46-47, 54-55
ESPIPE 40, 101
ESRCH 40, 95, 279
ETXTBSY 40, 59, 68, 72, 83, 112, 142
Euclidean distance function 187
evolution of the SVID, mechanism for 6-7
exception handling mechanisms, IEEE 9
EXDEV 40,97
executable file 19, 43, 70, 135
execute mode 59
execute/search permission 27
execution time 103, 221, 276
execution time profile 276
exit status 115, 131-132, 135
exiting a process 6, 20-21, 32, 58, 72-74,

115, 123, 131-132, 135, 146-147, 206,
212, 258, 262-263, 275, 278, 285,
287, 293, 299

external variable 37, 109, 162, 174, 180,
196, 213, 260, 298

F

FCHR_MAX 29, 38, 98
FIFO 101, 110, 112, 114, 116-117, 127,

148-150
fildes 66, 69, 75, 78, 83, 93, 98-99, 101,

114,116-117, 126, 128, 148-149,242,
300

file
access 19,21,27-28,36-37,59-60,

63-64,67-68, 83, Ill, 144-145,264
access time 144-145
apPend mode 75, 82-83, 110, 134, 148
block special 32, 39, 106, 138
change group 65
change mode 63
change owner 19, 63, 65
character special 28, 39
close 28,58,66,68, 101, 112, 117, 150
close-on-exec flag 71, 75, 85
create new 39,67,97, 106-107, 110-

112, 114-115, 134,233,299
create new link 97
device 5, 19,38-40,42,89,97, 101,

106, 112, 116-117, 140, 148-149,242,
298

Page 310

directory 26-28, 30-31, 39, 62, 68, 72,
90,97, 107-108, 111-112, 132, 142,
174, 234-235, 264

end of 77,82-83, 89,99, 102, 110,
116, 127, 148, 21 7, 244

execute 19, 35, 39,42, 59, 68, 70, 77,
84,112,115,126,142,174

execute permission 39, 59, 112, 126
fifo special 112
file descriptor 28, 38, 134, 149, 242
file pointer 28, 83, 116-117, 148-149,

177, 204
file pointer inherited 71, 110-111
file pointer initialization 67
file pointer reposition 80, 89, 101
flags 28, 53, 75, 77, 110-111, 114, 148,

174
group 27, 36, 59, 63,65,67, 106, Ill,

139
last access time 127
link 27,29, 34, 38-40,97, 127, 142
locks 66,68, 76-79, 85, 98-100, 299
maximum size 38, 149
mode 27-28, 45, 59, 63-65, 67-68, 72,

83, 106, Ill, 115, 127, 139,299,301
mode creation mask 106, Ill, 139,

299,301
mode permission bits 59, 64, 67-68,

106, Ill, 139
modification time 144
file name 6, 27-28, 30, 34, 36, 39,44,

48, 70, 75, 82, 110, 133, 135, 160,
195, 233-235, 242, 270, 280, 285, 292

open a 82-84, 11 0-112, 114-115, 300-
301

ordinary 28, 39-40, 43, 63, 65, 67, 70,
72, 263

owner 19, 27, 40, 59, 63-65, 67, 106,
Ill, 139, 144-145

permissions 27, 39, 44, 59, 63-64, 67-
68, 72, 83, 106, 108, 111-112, 126,
139, 144, 280

pipe 75, 114, 116, 127
pure procedure shared text file 59, 68,

72,84, 112, 142
read-only 40, 59, 64-65, 68, 83, 107,

III, 142, 145, 263
reading 35, 53, 112, 114-117, 177,

183, 301
remove 66, 76-77, 98, 142, 235, 299,

302
rewrite 67
set status flags 75, 110

System V Interface Definition

size limit 138, 148-149
status 28, 75, 110, 126-127, 144, 148
status flags 28, 75, 110, 148
stream 32, 74, 80, 82-83, 89, 115, 177,

204, 217, 219,233, 243, 300
truncate 67, Ill, 134
unlink 127, 142,235
update 66, 78, 82-83,89, 144, 233
writing 32, 36-37, 39, 67-68, 72, 74,

82, 108, 111, 114-115, 148-149, 204,
207

file access permissions 27, 59, 63-64, 67-
68, 111, 144

file descriptor 28, 39, 134, 149, 242
open 39, 69, 75, 78, 83, 93, 98-99,

101,114,116-117,126,128,148-149,
242, 300

file descriptors, maximum open 39
file system

entry mount point 142
mount 108, 140, 142-143
read-only 40, 59, 64-65, 68, 84, 107,

111, 142, 263
unmount 140

file table 39, 68, 112, 184
file-descriptor 28, 37,66-69, 71, 75-78, 80,

83,93, 98-99, 101, 110-111, 114,
116-117,126,128,148,160,174,
300-301

file-descriptor, duplicate 69
file-descriptor, get a new open 69, 110-

112, 114
file-descriptor-l 134
file-descriptor-2 134
file-name 28-30,44, 72, 131, 160,234-235
file-name expansion 28
fill-characters 50-51
fixed-point fraction 276
floating point 9,122,166,172-173,201,

203, 216, 218, 229
standards 9,203, 218

fractional time-zones 41, 163
fraud 278
full-duplex mode 45
function address, catch signal 123
F_SETLK 76-78,299
F_SETLKW 76-78,299
F _TLOCK 98-99, 300
F _ULOCK 98-99, 300

G

general terminal interface 45, 93-94

System V Interface Definition

generate distributed pseudo-random
numbers 166

get character 31, 177, 183
get option letter 180
getopt 22, 180-182
GKS 10
goto, non-local 221
Graphical Kernel Subsystem (GKS) 10
Graphics Extension 10
Greenwich Mean Time 41, 162
group id 27,29-30, 32,63,65, 67. 71,

106, Ill, 120,253,255-256
group id, effective 63

H

hang-up signal 47
hash-table search routine 184
header files 298
header files 6, 298
hexadecimal conversion 201, 230
hexadecimal equivalents 26
hierarchical file system 26
holding-block 103-105
HOME 41,132
Horizontal-tab 51
HUGE 170-171,173,176,187,192,223,

229,302
HUGE_VAL 171,173,176,187,192,

223, 229, 302
human interface 10
HUPCL 53
hyperbolic functions 223

I-space 277-278
ICANON 47, 53-54
icons 10, 197
ICRNL 49
IEEE PI003 working group 6,9, 298
IEEE P754 9, 171, 173, 176, 187, 203,

218,223, 229'
IGNBRK 48
IGNCR 49
IGNPAR 49
implementation-specific constants 6, 28-29,

303
initial-working-directory 41, 43-44, 132
INLCR 49
INPCK 49
input filter 115
input modes 48, 54, 115

Page 311

input parity checking 49
input queue 47-50, 54-55
input/output 9, 12,21,87,93, 133-134,

219
input/output devices 12
inter-process communication 249, 252
internal clock 125
internal code-set 12-13
internal field separator 133
internationalization 10-15, 26
interrupt characters 55
interrupt signal 38,45-46,49,99, 123,

272,287
interval functions 125, 166
INT_MIN 29, 152
IPC, interprocess communication 252
ipc-permissions 252-254, 256
IPC_CREAT 252, 268, 284-287, 291
IPC_EXCL 252, 268, 284, 291
IPC_NOWAIT 252,272
IPC_RMID 252, 265-266, 281-282, 288-

289
IS 7498, OSI reference model 9
ISIG 53
ISO standards 12-14
ISTRIP 49
IUCLC 49-50
IXANY 50
IXOFF 50
IXON 49

JIS 6226 code-set 14

J

K

KE (see Kernel Extension)
Kernel Extension (KE) 4-5, 10, 19,21,

40, 85, 249-293, 302-303
keyword-parameters 132
kill, end-user level utility 124

L

language designation 14
LANGUAGE variable 14
level-I, definition of 7
level-2 components 198, 225, 304
level-2, definition of 7
LIB 5,11,22-23,31-32,44,74,88-89,

124, 151-245, 298, 302-303
line-buffered 32, 82

Page 312

line-discipline 53, 55
line-speed 51- 52
linear search routine 188
links

file 27,29,34, 38-40, 97, 127, 142
maximum number 39, 97

local conventions, internationalization lO­
Il, 14

lock text segment into memory 274
lock

file and record 66,68,76-78,98-100,
299

read 76
write 76

locking-shift technique, internationalization
13

login 14

M

mask, file creation 106, Ill, 139, 299,
301

math routines 22-23
MAXDOUBLE 29,171,173,176,187,

223, 229
MAX_CHAR 29,45
memory allocation algorithm 103
memory allocation package 103
memory data lock 274
message operation permissions 252
message queue 252-253, 260, 269-272
message selection 269
message-queue-identifier 252, 265-270,

272
MIN/TIME Interaction 47, 54-55
minimal runtime environment 19
modem connection 53
modem disconnect 47
mounted file-system 140, 142-143, 145
mouse 10

N

NaN 203,218
national languages 10-11, 14
national supplements 10
native character comparison 194, 227
natural logarithm 170
Network Services Extension 9
networking 3,9,14,141, 196
networking applications 9, 196
:lew process image 70, 72, 278
new-line character 32, 45-46, 51, 132-133,

System V Interface Definition

183, 207, 211
new-process-file 70-72
nice value 273
NL 46, 49-50, 54-55
non-local goto 221
non-standard code-sets 14
NULL 83,90, 105, 115, 144-145, 155,

160,179,183-184,188-189,193,195,
202, 219, 227, 230, 233-234, 238-239

null character 28,30, 133, 135, 143, 183,
193, 199, 202, 207, 213, 226-227,
230, 234, 303

null file 30,35, 71, 83, 115, 144-145, 183,
233-234

null pointer 71, 83, 105, 115, 144, 155,
160, 179, 183-184, 188-189, 193, 195,
202, 213, 219, 227,230, 233-234,
238-239, 242, 300-301

null special file 35

OCRNL 50
OFDEL 50
OLCUC 50
ONLCR 50
ONLRET 50-51
ONOCR 50

o

open file-descriptor 28, 37, 66-69, 71, 75-
78,80,83,93,98-99, 101, 110-111,
114, 116-117, 126, 128, 148, 160,
174,300

open files 28-29, 32, 37-39, 45, 53, 58,
66-68, 72, 74-75, 77, 82-83, 89, 101,
110-112, 114-115, 117, 126, 142,
149-150, 160, 174, 183, 204, 207,
233, 235, 300-301

open stream 9, 32, 74, 80, 82-83, 89, 115,
204, 219,233,300

Open Systems Networking Interfaces 9
operating system services 5-7,9, 19-21,

57-150,249,258,298
operation permission 252-253, 255-256,

268, 272, 280, 282-284, 287, 291,
293, 304

OPOST 50
ordinary file 28, 39-40, 43, 63, 65, 67, 70,

72,263
OSI, Open Systems Interconnection refer­

ence model 9
output control value 52
owner 19,27,40,59,63-65,67,71, 106,

Ill, 139, 144-145

System V Interface Definition

owner, change 19, 63, 65
owner-group-other permission bits 59, 106,

139
O_APPEND, file status flag 110, 148
O_EXCL 111-112
O_NDELA Y, file status flag 53, 75, 110,

112, 114, 117
O_RDONLY, file status flag 75,110
O_RDWR, file status flag 75,98, 110
O_WRONLY, file status flag 67,75,98,

110,112

p

parameter name 131-132, 134
PARENB 53
parent-process 29, 85-86, 91, 135, 146,

259, 262, 277-278
parent-process-id 29
parity generation 49, 53
PARODD 53
partitioning, System V 3-4
passwd, password file 44
PASSWD, password file 41,43, 132
PATH 27,29,41,43, 70, 132, 135,298
path name 30, 82, 134, 160, 242
path prefix 30
path search 30-31, 41, 70, 132, 135, 264
path searches, starting point 264
pending signals 123, 278
permission bits, owner group other 59,

106, 139
permissions

alter 255, 280-281, 285-286
execute 39, 59-60, 112, 126, 280
read 27,44, 59-60, 126, 253, 255-256,

266, 280-281, 286, 289, 292, 303-304
search 59, 62, 64-65, 68, 72, 83, 97,

107, Ill, 128, 142, 144
set 27,63,67, 106, 108, Ill, 139, 144,

283
write 27, 59-60, 68,97, 108, 111-112,

126, 142, 144, 253, 256, 292
pid, process-id 29-30,76-77,95-96,277,

279
PID_MAX 29-30
pipe 20,28-29,40,66,69,75,84, 101,

114-117,122,127-128,131,135,
148-150, 302

pipe
close 69
create 28,66,69,84,114-115,127-

128, 150

Page 313

open 28,66, 69, 75, 84, 114, 149-150
pipeline 131-132
PLOSS 190, 236
portability 4, 19
positional parameters 301
primary code-set 12-13
print formatted output 199, 244
process image, new 70, 72, 278
process scheduling priority 273
process table 37, 99
process text segment, text lock 274
process

accounting 249, 262
address space 100, 278, 298
attributes inherited 71, 85, 258
child 29, 38, 86, 262, 277
create a new 29-30,61, 85-86, 135
elapsed time 137
exit 32, 73, 115, 123, 131, 146, 262,

299
file-size limit 138, 148-149
locks 76-78,98-100, 258, 274
parent 135, 146, 262, 278
set alarm clock 61
set file size limit 138
space 86, 100, 142, 148, 278, 298
suspend 47, 113, 124, 254
termination 32, 46-47, 53, 58, 71, 73,

77,98, 115, 122-123, 131, 146, 233,
262,299

trace 277
transformed into new process 70

process-group 27, 30, 32, 36, 45, 63, 67,
71,91, 95, 106, 111, 119, 139, 253,
255-256, 299

process-group-id 27, 30, 32,63,67, 71,
106, Ill, 253, 255-256

process-group-Ieader 30,45, 299
process-id 27, 29-32, 63, 65, 67, 71, 76-77,

85-86,91,95, 106-107, 111, 119, 138,
140, 142, 146, 195,253-256,264-265,
273, 277-278, 281, 287-288, 298, 301

process-ID 0 30-32, 67, 85, 298
process-ID 1 30-31, 298, 301
processes, special 30, 32,45, 112, 146,

180
profiling 14, 249, 258, 276
program development 15, 105, 276, 302
program execution 39, 221
pseudo-random number generation 166-

167, 209
pure procedure space 278
pure procedure, access 59

Page 314

put character 31, 48, 204, 207

Q

qsort, quicker sort 208

R

radians, measured 236
read permission 27, 44, 59-60, 126, 253,

255-256, 266, 280-281, 286, 289, 292,
303-304

read-locks 76-78, 299
read-only file descriptor 75, 110, 114, 292
read-only file system 40, 59, 64-65, 68, 84,

97, 107, 111, 142, 145, 263
reading, file 6, 27-28, 35, 37,42,44, 53,

59,66,68,76,101-102, 112, 114-117,
126,138,150,174,177,183,205,
299, 301

reading, file open for 21, 28, 37, 53, 66,
68, 82, 100-101, 110, 112, 114, 117,
123, 149-150, 183,219

real-group-id 30
real-user-id 30
record-locking 64,66, 68, 76, 78-79, 98,

100, 112, 117, 150
redirection 134
regular-expression matching 210-214
remove directory entry 142
root-directory 27, 30-31, 108, 264
root-directory, change 264
run-time behavior of System V components

3-7, 19-21,23-24,249,301
run-time environment 4, 19, 41, 249

s

scanset 216-217
scheduled wakeups 125
search path 30-31,41, 70, 132, 135, 264
search permission 59, 62, 64-65, 68, 72,

83,97, 107, Ill, 128, 142, 144
search routine, hash-table 184
search routine, linear 188
search routines 23
search sorted table 155
semaphore 252, 254, 258, 280-281, 283-

287
identifier 254, 284-285, 287
operations 252, 254, 280, 285, 287
operations array 285
operations permissions 252, 280

System V Interface Definition

set file status flags 75, 110, 148
set system time 11, 38, 129
set-user id 27,63,65, 120, 278, 299
shared-memory

applications 289, 291, 293
identifier 255-256, 258, 288-293
segment 255-256, 258, 288, 290-293
segments detached 292
segment 255, 288, 291-293

shared-memory 252, 288-293
shared-memory identifier 288-293
shared-memory segment, address 292-293
shared-memory segment, size 291
shared resource environment 9
shell 4, 135
SIGALRM 61, 122
SIGFPE 122
SIGHUP 47, 122, 299
SIGILL 122-123
SIGINT 122, 134
SIGKILL 95-96, 122-124
signal

abort 58, 124
alarm 61, 72, 86, 99, 113, 125
default action 71, 122, 224
ignore 40,46-47, 58, 71, 113, 123,

135, 224, 277
interrupt 38, 45-46, 49, 99, 123, 272,

287
kill 30, 38, 95, 113, 119, 124
quit 38, 45-46
receipt 122-123, 146, 277
sending 58,61,95, 124

signal handling 45, 122
signal number, illegal 124
signal-catching function 113, 123, 125
signals 20, 30, 32, 38, 40, 45-47, 49, 52-

53,56, 58, 61, 71-73, 83, 86, 91, 93,
95-96,99,112-113,117,119,122-
125, 134, 146-147, 149,222,224-225,
262-263, 272, 277-279, 286-287,
298-300

SIGPIPE 122, 149
SIGQUIT 122, 134
SIGSYS 122, 300
SIGTERM 122, 124
SIGTRAP 122-123, 278
SIGUSR 1 122, 124
SIGUSR2 122, 124
SIG_DFL 71, 123,224
SIG_IGN 71, 123,224
simple-command 131, 133-135
SING, math argument singularity error

System V Interface Definition

170, 176, 190
small-block memory allocation 104
Software Development Extension 4, 24
software signal 122, 224
source-code interfaces 4-7, 19, 21, 24, 249,

302
special device files 5, 19, 40, 42, 112, 298
special file 5, 19, 28, 34-35, 40, 42, 45, 48,

112, 116, 177, 204, 298
special file, /dev/null 35
special system processes 31, 146
SS2 character 13
SS3 character 13
standard error 11, 32, 36, 45, 82, 153,

170,176,196-198,219,236-237
standard error, stream stderr 32, 82, 219
Standard 110 routines 31
standard input 32, 36, 45, 115, 131, 133-

134, 182-183,215
Standard Input/Output 21
standard output 32, 36, 45, 82, 115, 131-

134, 153, 170, 176, 196, 199, ').07,
219,236-237

START/STOP 46, 49, 50
start/stop output control 49
stderr 32, 36, 82, 180, 219
stdin 32, 36, 82, 177, 183, 215, 303
stdio 21, 31-32, 36, 66, 68, 80, 83, 100-

101,112, 117, 150, 160, 164,219,
234, 300

stdio stream 32, 74, 80, 82-83, 87, 89,
115, 167, 177, 183, 199,204-205,
207, 215, 217, 219-220, 233, 243, 300

close 74, 220
open 9, 32, 74, 80, 82-83, 89, 115,

204,219,233,300
reposition file pointer 80, 89

stdio, header file 31-32, 160, 164, 219,
234

stdio, routines 21,31-32, 66, 68, 80, 83,
100-10 1, 112, 1 17, 150

stdio, stream definition 32
stdout 32, 36, 82, 199, 207
stopped state, child 277
streams I/O interfaces for networking 9
string manipUlation routines 23
string operations 23, 226
super-user 27, 32, 40, 63-65, 95, 97, 106-

108, 120, 129, 138, 140, 142, 144-
145, 253, 255-256, 262-266, 273-274,
281-282,288-289,299,301

suspend a process 47, 124,254
suspend execution 125, 285-286

Page 315

swap bytes 232
System V command syntax standard 181
System V error message standard 196
System V implementations 3-4, 19, 122
System V Interface Definition 3-4, 7, 9,

19, 23, 28, 297
System V Interface Definition, partitions

3
System V Programming Guide 7
System V Release 1.0 4, 7, 21, 24, 66, 76,

78,98, 105, 301, 303
System V Release 2.0 4, 7, 21, 24, 66, 76,

78, 98, 103, 105, 188, 206, 220, 229,
239, 245, 301, 303

T

target environment 3, 19,41, 249
TCGETA 47,299
TCGETS 299
TCSETA 47, 299
TCSETS 299
temporary file, create name 233-235
temporary files 42, 233-235
TERM 41
TERM, environment variable 41
Terminal Interface Extension 10
terminal

device 10, 12, 89, 94, 101, 116, 123,
148,242

file 32, 36,45,47, 89, 116, 134, 160,
242

find name of 242
functions 10, 89, 93, 123, 160, 242
generate file name 160
group 32, 36
input 10, 32, 45, 47-48
input control 48

terminal-handling functions, internationali­
zation 10

terminate a process 32,46-47, 53, 71, 73,
77,98, 115, 122-123, 131, 146, 233,
262, 299

termio, general terminal interface 45, 93-
94

text locks 258, 274
time zone, default 162
time, current 144, 283, 290
time, get time 136-137, 168
time-accounting information 137
time-zone 41, 162-163
timezone variable 162
trace a process 122, 277

Page 316

translate characters 49, 158
tree structure 19, 42, 298
tree traversal 174, 239
trigonometric functions 236
truncate 67, 82, III, 134, 227, 270
tty-group-id 32
TZ 41,43, 162-163, 298

u

ulimit, get 138
unistd header file 60, 89, 98, 102
unmount a file system 140
unwaited-for child processes 38
update a file 66, 78, 82-83, 89, 144, 233
update super-block 130
user id, effective 63
user id, set 30, 63, 253, 255-256, 289
user limits 138, 148
utilities 4-7, 10-12, 14, 19,42, 135

V

valid executable object 72
vertical-tab 51, 165
vertical-tab delay 51

w

walk file tree 174
white-space 180, 182, 215-217, 229-230
windows 10
working directory 62, 90, 108, 132, 264

change 62
initial 132

write permission 27, 59-60,68,97, 108,
111-112, 126, 142, 144, 253,256, 292

write-lock 76-78, 299
writing, file open for 37,40,67, 72, 74,

82, 110, 114, 148-149, 204, 207

System V Interface Definition

A

abort function 20-21,58, 124
abs function 22, 152, 172
access function 20, 59-60
acct function 249, 258, 262-263, 303
acos function 22, 236-237
advance function 22, 210, 213-214
alarm function 20, 61, 72, 86, 99, 113,

122, 125
asctime function 22, 161-162
asin function 22, 236-237
atan function 22, 236
atan2 function 22, 236-237
atof function 22, 229
atoi function 22, 230
atol function 22, 230

B

bsearch function 22, 155, 186, 189,208,
241

c

calloc function 5, 20, 103-105, 301
ceil function 22, 172
chdir function 20, 39, 62, 264
chmod function 20, 27, 60, 63-65, 67-68,

71, 100, 107, Ill, 127-128, 139,299
chown function 19-20,63-65, 127-128,

299
chroot function 249, 264
c1earerr function 20, 31, 80
clock function 22, 157
close function 20-21, 28, 66, 68-69, 74, 79,

100-101, 112,117,142,150
compile function 210, 213-214
cony routines 22-23, 158
cos function 22, 236
cosh function 22, 223
creat function 20, 28, 66, 67-69, 84, 100,

102, 111-112, 117, 127-128, 139, 150,
233, 235, 299

crypt function 22, 44, 159, 302
ctermid function 22, 31, 160
ctime function 22-23, 127, 144, 161, 163,

253-254, 283, 290, 302
ctype routines II, 22, 158, 164, 229-231

System V Interface Definition

Function Index
D

drand48 function 22-23, 166-167, 209
dup function 20, 28, 66,68-69, 84, 102,

112,117,135,150

E

encrypt function 22, 159, 299, 302
erand48 function 22, 166-167
erf function 22, 169
erfc function 22, 169
execl function 20, 70-72
execle function 20, 70-72
execlp function 20, 70-72
execv function 20, 70-72
execve function 20, 70-72
execvp function 20, 70-72
exit function 20-21, 32, 58, 72, 73, 74,

123, 146-147, 258, 262-263, 275, 278,
285,287, 293, 299

exp function 22-23,169,170,171,1173,
176, 302

F

fabs function 22, 172
fclose function 20,31,66,73-74,84, 115,

178, 205
fcntl function 20, 28, 66-69, 71, 75-78,

85-86,98-100,102,110-112,117,
299-300

fdopen function 20, 31, 82-83, 300
feof function 20, 31, 80, 87
ferror function 20, 31, 80, 87-88, 177-178,

183, 205, 207
fHush function 20, 31, 74
fgetc function 22, 31, 177
fgets function 22, 31, 183
fileno function 20, 31, 80
floor function 22, 152, 172
fmod function 22, 172
fopen function 20-21, 31-32, 66, 68, 74,

81,82,83,,88-89,100-101,112,115,
117, 150, 165, 178, 183, 203, 205,
207, 220, 233, 235, 300

fork function 20-21,29-30, 37, 39, 45, 55,
61, 72, 77,85-86,91, 119, 135, 137,
147, 259, 262, 275-276, 287, 293, 303

Page 317

fprintf function 22, 31, 199,202,244
fputc function 22,31,204-205
fputs function 22, 31, 207
fread function 20, 31,87-88, 100, 117,

178, 183,205,207
free function 20, 103, 234
freopen function 20, 31, 82-83, 300
frexp function 22, 173
fscanf function 22, 31, 215
fseek function 20, 31, 80, 83-84, 87-89,

101, 115, 243
fstat function 20, 126-128
ftell function 20, 31, 89
ftw function 22, 174, 302
fwrite function 20, 31,87-88, 100, 150

G

gamma function 22, 176,302
getc function 22,31,88, 158, 177, 183,

205, 218, 220, 243
getchar function 22, 31, 177,218
getcwd function 20, 90, 300
getegid function 20, 92
getenv function 22, 163, 179, 206
geteuid function 20, 92
getgid function 20, 92
getopt function 22, 180-182
getpgrp function 20, 91
getpid function 20, 91, 96, 119, 195, 280-

281
getppid function 20, 91
gets function 22,31,88,177-178,183
getuid function 20, 92, 121
getw function 22, 31, 177, 205
gmtime function 22, 161, 163
gsignal function 22, 224

H

hcreate function 22, 184-185
hdestroy function 22, 184
hsearch function 22, 156, 184-185, 189,

241, 302
hypot function 22, 171, 187

ioctl function 20, 28, 39, 47-48, 55, 93,
116-117, 123, 300

isalnum function 22, 164-165
isalpha function 22, 164
isascii function 22, 164-165

Page 318

isatty function 22, 242
iscntrl function 22, 164-165
isdigit function 22, 164
isgraph function 22, 164-165
islower function 22, 164
isprint function 22, 164-165
ispunct function 22, 164-165
isspace function 22, 164-165, 229-230
isupper function 22, 164
isxdigit function 22, 164-165

jO function 22, 153
jl function 22, 153
jn function 22, 153

J

jrand48 function 22, 166-167

K

kill function 20, 30, 38, 40, 45-47, 54,95,
113, 119, 122, 124

L

Icong48 function 22, 166-167
ldexp function 22, 2173
lfind function 22, 188
link function 20, 27, 29, 34, 38-40, 97,

127-128, 142
localtime function 22, 161, 163
lockf function 20-21, 79, 85-86, 98-99,

127, 300
log function 22, 43, 170-171, 176, 302
log 10 function 22, 170-171, 302
longjmp function 22, 221
Irand48 function 22, 166-167
lsearch function 22, 156, 186, 188-189,

208,241
lseek function 20-21,40,68,80,89, lOl-

102, 112, 116, 150, 300

M

mallinfo function 20, 103, 105, 301
malloc function 5,20,103-105,175,185-

186, 206, 220, 234-235, 300, 301
mallopt function 20, 103-105, 300
matherr function 22, 153-154, 171, 176,

187, 190, 223, 236-237
memccpy function 22, 193
memchr function 22, 193
memcmp function 22, 193-194

System V Interface Definition

memcpy function 22, 193
memset function 22, 193
mknod function 20,64, 72, 106-107, 127-

128, 139, 301
mktemp function 22, 195, 233, 235
modf function 22, 173
mount function 20, 37-40, 108-109, 140,

142-143, 145, 301
mrand48 function 22, 166-167
msgctl function 249, 253, 260, 265-266,

268,272,303
msgget function 249, 252, 266, 267, 268,

272
msgrcv function 249, 253, 269-272
msgsnd function 249, 253, 269, 271-272

N

nice function 249, 273, 303
nrand48 function 22, 166-167

o

open function 20-21, 28, 53, 66-69, 75, 79,
80-81,83,98-102, 110-112, 117, 123,
139, 142, 148-150, 160, 174,219,
233, 235, 301-302

p

pause function 20,61, 113, 123-125, 147
pclose function 20, 31, 115
perror function 22, 196, 302
pipe function 20, 28-29, 40, 66, 69, 75, 84,

101, 114-117, 122, 127-128, 131, 135,
148-150, 302

plock function 249, 258, 274
popen function 20, 31, 89, 115, 117
pow function 22, 170-171
printf function 22-23, 31, 88, 153, 156,

165, 170, 176, 180, 185, 190, 196,
199-203, 205, 207, 218, 236-237, 240,
244-245, 302

profil function 14, 249, 258, 276
ptrace function 40,249,277-279, 303
putc function 22, 31, 88, 178, 202, 203,

204, 205, 207, 220, 303
putchar function 22,31,204
putenv function 22, 179, 206, 303
puts function 22, 31, 88, 98-99, 204-205,

207
putw function 22,31, 177,204-205, 303

System V Interface Definition

Q

qsort function 22, 155-156, 208

R

rand function 22-23, 168, 209
read function 47, 54, 80, 87, 101-102, 114,

115,116,117,123,183,205,215,
219,270, 279

realloc function 20, 103-105, 301
rewind function 20, 31, 80, 83, 89

s

scanf function 22-23, 31, 88, 178, 183,
203,215,217-218,229,231,303

seed48 function 22, 166-168
semctl function 249, 254-255, 260, 280-

284, 286-287, 303
semget function 249, 254, 282, 283, 284,

287
semop function 249, 254-255, 258, 282,

284, 285, 286, 287, 304
setbuffunction 22-23,31-32,74,205,219,

243
setgid function 20, 27, 30, 120
setjmp function 22, 124, 221
setkey function 22, 159, 302
setpgrp function 20, 30, 45, 55, 91, 96,

119
setuid function 20, 27, 30, 71, 92, 120,

301
setvbuf function 23, 31, 219-220
shmat function 249,256, 289, 291, 292,

293
shmctl function 249, 256, 260, 281, 288-

289, 291, 293, 304
shmdt function 249, 256, 289, 291, 292,

293
shmget function 249, 255, 289, 290, 291,

293
signal function 20, 30, 32, 38, 40, 45-47,

49, 52-53, 55, 58, 61, 71-73, 84, 86,
91,93,95-96,99, 112-113, 117, 119,
122-125, 13~ 146-147, 149, 222,
224-225, 262-263, 272, 277-279,
286-287, 298-300

sin function 23, 236
sinh function 22-23, 171, 223
sleep function 20, 55, 76, 78, 98-99, 125,

300
sprintf function 23, 199, 202, 244

Page 319

sqrt function 23, 170-171, 187, 302
srand function 23, 209
srand48 function 23, 166-167
sscanf function 23, 215
ssignal function
ssignal function 22-23, 224
stat function 20, 126-128, 144, 146, 174
step function 22,210, 213-214
stime function 20, 129, 136-137, 253
strcat function 23, 226-227
strchr function 23, 226-227
strcmp function 23, 184, 188,226-228
strcpy function 23, 226-227
strcspn function 23, 226-227
strlen function 23, 226-228
strncat function 23, 226-228
strncmp function 23, 226-228
strncpy function 23, 226-228
strpbrk function 23, 226-227
strrchr function 23, 226-227
strspn function 23, 226-227
strtod function 22, 218,229, 231
strtok function 23, 226-227, 303
strtol function 22, 218, 229, 230, 231
swab function 23, 232
sync function 20-21, 130
system function 19-21, 72, 131-135

T

tan 23, 236
tanh function 23, 223
tdelete function 23, 238-239
tempnam function 23, 31, 234-235
tfind function 23, 238-239
time function 20, 128, 129, 136-137, 161-

163,
times function 20, 137, 157, 235
tmpfile function 23, 195, 233, 235
tmpnam function 23, 29, 31, 195, 233,

234,235
toascii function 23, 158
tolower function 22-23, 158
toupper function 22-23, 158
trig routines 22-23, 236-237
tsearch function 23, 156, 186, 189,238-

239
ttyname function 22-23, 160, 242
twalk function 23, 238-239
tzset function 23, 161-162

u

Page 320

ulimit function 20, 38, 72, 86, 135, 138,
148-150

umask function 20, 68, 72, 86, 106-107,
111, l35, 139

umount function 20, 108, 140
uname function 20, 29, 141
ungetc function 23, 31, 89,212-213,243,

303
unlink function 20, 97, 127-128, 142, 233,

235
ustat function 20, 127, 143
uti me function 20, 127-128, 137, 144, 302

v

vfprintf function 23, 31, 244-245
vprintf function 23, 31, 244-245
vsprintf function 23, 31, 244-245

w

wait function 20-21, 38, 73, 86, 113, 115,
123-124, 131, 135, 137, 146-147, 157,
277, 279, 302

write function 20-21, 27-29,68, 74, 80,
101, 110-112, 115, 123, 127, 148-150,
303

yO function 23, 153
yl function 23, 153
yn function 23, 153

y

_exit function 6, 20-21, 32, 58, 72, 73, 74,
115, 123, 131-132, 135, 146-147, 206,
212, 258, 262-263, 275, 278, 285,
287, 293, 299

_tolower function 22-23, 158
_toupper function 22-23, 158

System V Interface Definition

