Documents for
UNIX

VOLUME |

T. A. Dolotta
S. B. Olsson
A. G. Petruccelli

Editors

January 1981

Not for use or disclosure outside the
Bell System except under written agreement

Laboratory 4517
Bell Telephone Laboratories, Incorperated
Murray Hill, NJ 07974

Copyright © 1981 Bell Telephone Laboratories, Inc.

UNIX is a trademark of Bell Telephone Laberatories, Inc.

These documents were set on an AUTOLOGIC,
Inc. APS-5 phototypesetter driven by the TROFF
Jormatter operating under the UNIX system.

Documents for UNIX 1

ANNOTATED
TABLE OF CONTENTS

NOTES: All the documents included here are supplements to the UNIX User's Manual (see G.1
below); the reader’s attention is also drawn to documents G.2, G.3, and G.4.

Each document listed in Sections A through F below applies to UNIX Release 4.0, unless
otherwise indicated after its title.

The number of pages in each document is given after the name(s) of its author(s).

VOLUME 1
A. OVERVIEWS

1. Overview and Synopsis
1. UNIX— Overview and Synopsis of Facilities
T. A. Dolotta, R. C. Haight, and A. G. Petruccelli (p. 17)
A concise outline of the features and facilities of UNIX.

2. The UNIX Time-Sharing System
1. The UNIx Time-Sharing System
D. M. Ritchie and K. Thompson (p. 16)
The original, prize-winning UNIX paper, reprinted from G.5 below.

B. GETTING STARTED

1. Road Map
1. UNIXx Documentation Road Map
G. A. Snyder and J. R. Mashey (p. 8)
A structured list of UNIX documents and information sources.
w# A local section should be added to this document at each installation.

2. Editors
1. A Tutorial Introduction to the UNIXx Text Editor
B. W. Kernighan (p. 11)
An easy way to get started with.the text editor.
2. Advanced Editing on UNIX
B. W. Kernighan (p. 16)
A guide to the more advanced features of the text editor.
3. SED—A Non-Interactive Text Editor
L. E. McMahon (p. 10)
A variant of the text editor for stream editing.

3. UNIX for Beginners
1. UNIX for Beginners (Second Edition)
B. W. Kernighan (p. 13)
An introduction to some of the basic uses of UNIX.

4. Shell
1. UNIx Shell Tutorial
G. A. Snyder and J. R. Mashey (p. 36+ii)
An introduction to the various uses and facilities of the UNIX com-
mand language interpreter, with many examples.
2. An Introduction to the UNIx Shell
S. R. Bourne (p. 24)
Description of the UNIX command language interpreter.

January 1981

2 Documents for UNIX

C. DOCUMENT PREPARATION

1. NROFF/TROFF
1. A TROFF Tutorial
B. W. Kernighan (p. 14)
A beginner’s guide to phototypesetting with TROFF.
2. NROFF/TROFF User's Manual
J. F. Ossanna (p. 37)
Reference manual for the UNIX text formatters.

2. Macros for NROFF/TROFF
1. MM— Memorandum Macros
D. W. Smith and J. R. Mashey (p. 69+iv)
Reference manual for MM, the standard BTL text-formatting macros.
2. Typing Documents with MM
'D. W. Smith and E. M. Piskorik (p. 16)
A fold-out card that summarizes the MM macros; furnished separately.
3. A Macro Package for View Graphs and Slides
T. A. Dolotta and D. W. Smith (p. 23)

A guide to making visual aids with TROFF.

3. TBL and EQN
1. TBL—A Program to Format Tables
M. E. Lesk (p. 18) '
An NROFF/TROFF preprocessor that permits easy formatting of tabular
matter.
2. Typesetting Mathematics— User’s Guide (Second Edition)
B. W. Kernighan and L. L. Cherry (p. 11)
Manual for the EQN and NEQN preprocessors for TROFF and NROFF,
respectively; these preprocessors allow one to specify, in an easy-to-
learn language, how to typeset complex mathematical expressions.
3. A System for Typesetting Mathematics
B. W. Kernighan and L. L. Cherry (p. 8)
A revision of the original EQN paper (CACM 18, March 1975), describ-
ing the principles behind the design of its input language and internal
structure. '

D. PROGRAMMING

1. C and LINT
1. The C Programming Language— Reference Manual
D. M. Ritchie (p. 31)
Official statement of the syntax and semantics of C; supplemented by
G.9 below.
2. A Guide to the C Library for UNIX Users
C. D. Perez (p. 20)
An explanation of how to use the C library.
3. LINT, a C Program Checker
S. C. Johnson (p. 11)
A program that checks C code for syntax errors, type violations, porta-
bility problems, and a variety of potential errors.

January 1981

Documents for UNIX 3

2. FORTRAN, RATFOR, and EFL
1. A Portable FORTRAN 77 Compiler
S. I. Feldman and P. J. Weinberger (p. 19)
The FORTRAN 77 language and its interfaces with the operating sys-
tem.
2. RATFOR— A Preprocessor for a Rational FORTRAN
B. W. Kernighan (p. 12)
A preprocessor that endows FORTRAN with C-like control structures
and input format.
3. The Programming Language EFL
S. I. Feldman (p. 36)
A general-purpose computer language intended to encourage portable
programming, while making use of the good features and facilities of
FORTRAN.

3. UNIX Programming
1. UNIx Programming (Second Edition)
B. W. Kernighan and D. M. Ritchie (p. 22)
A guide to writing programs that interface to the UNIX operating sys-
tem, either directly or through the Standard 1I/O Library.

4. MAKE
1. MAKE—A Program for Maintaining Computer Programs
S. 1. Feldman (p. 9) '
A tool for automating the recompilation of large programs.
2. An Augmented Version of MAKE
E. G. Bradford (p. 16)
A discussion of how to use MAKE to its fullest advantage.

5. Debuggers
1. SpB— A Symbolic Debugger
H. P. Katseff (p. 9)
A debugger that allows one to examine the “‘core image’’ of an aborted
program.
2. A Tutorial Introduction to ADB
J. F. Maranzano and S. R. Bourne (p. 27)
A guide to debugging crashed systems and programs; ADB is used
mostly by system programmers.

January 1981

4 Documents for UNIX

VOLUME 2

E. SUPPORTING TOOLS AND LANGUAGES

1. LEX and YACC
1. LExX—A Lexical Analyzer Generator
M. E. Lesk and E. Schmidt (p. 19)
A program that generates recognizers of sets of regular expressions;
cach regular expression can be followed by arbitrary C code that is exe-
cuted when the regular expression is found.
2. YAcc—Yet Another Compiler-Compiler
S. C. Johnson (p. 33)
A converter from a BNF specification of a language and semantic
actions written in C into a compiler for that language.

2. M4 Macro Processor
1. The M4 Macro Processor
B. W. Kernighan and D. M. Ritchie (p. 6)
A macro processor, also useful as a front end for languages such as C
and RATFOR.

3. AWK
1. AWK—A Pattern Scanning and Processing Language (Second Edition)
A. V. Aho, B. W. Kernighan, and P. J. Weinberger (p. 8)
A language that makes it easy to specify many data selection and
transformation operations.

4. SCCS
1. Source Code Control System User’s Guide
L. E. Bonanni and C. A. Salemi (p. 27)
A package for controlling access and changes to (possibly multiple ver-
sions of) source programs and text files.
2. Function and Use of an SccCS Interface Program
L. E. Bonanni and A. Guyton (p. 3)
A discussion of how to control concurrent updates to SCCS files.

5. Calculators
1. BC—An Arbitrary Precision Desk-Calculator Language
L. L. Cherry and R. Morris (p. 14)
A front end for DC (see below) that provides infix notation, flow con-
trol, and built-in functions.
2. DC—An Interactive Desk Calculator
R. Morris and L. L. Cherry (p. 8)
An interactive desk calculator program that implements arbitrary-
precision integer arithmetic.

6. Graphics
1. UNIX Graphics Overview
A. R. Feuer (p. 7)
An introduction to the UNIX graphics facility.
2. A Tutorial Introduction to the Graphics Editor
A. R. Feuer (p. 17) _
A guide to making graphs, drawings, and pictures on Tektronix series
4010 terminals.

January 1981

Documents for UNIX 5

3. ST1AT—A Tool for Analyzing Data
A. R. Feuer and A. Guyton (p. 20)
A collection of programs that can be interconnected via the shell to
analyze statistical data and display the results in graphical form.
4. Administrative Information for the UNIX Graphics Package
R. L. Chen, D. E. Pinkston, and A. Guyton (p. 6)
A reference guide for administrators of UNIX graphics facilities.

7. RIJE and Networking
1. UNIX Remote Job Entry User's Guide
A, L. Sabsevitz and K. A. Kelleman (p. 7)
A guide to submitting jobs to an IBM system via the UNIX Remote Job
Entry (RJE) facility.
2. UNIX Remote Job Entry Administrator’s Guide
M. I. Fitton (p. 20)
A guide to sefting up RJE on both UNIX and IBM systems, and to
trouble-shooting when things go wrong.
3. Release 1.0 of the UNIx Virtual Protocol Machine (UNIX 3.0)
P. F. Long and C. Mee, 11l (p. 7)
A description of the first version of VPM; good background reading.
4. Release 2.0 of the UNIX Virtual Protocol Machine (UNIX 3.0)
P. F. Long and C. Mee, IIT (p. 20)
A newer release of VPM; supports bit-oriented, full-duplex protocols.

8. Uucp .
1. A Dial-up Network of UNIx Systems
D. A. Nowitz and M. E. Lesk (p. 10)
Description of the design of a dial-up UNIX network called UUCP and
used for transmission and distribution of programs and text files.
2. Uucr Implementation Description
D. A. Nowitz (p. 15)
A detailed description of UUCP for use by administrators of UNIX
systems.

9. Printer Spooler
1. The Implementation of the LP Spooling System
J. R. Kliegman (p. 13)
Explanation of how the LP spooler works and how it can be used as a
general-purpose spooler, as well as a line-printer spooler.
2. LP Administrator’s Guide
J. R. Kliegman (p. 12)
A guide for those who oversee the operation of LP spoolers.

F. ADMINISTRATION, MAINTENANCE, AND IMPLEMENTATION

1. Operations and FsCK
1. UNIx Operations Manual
A. G. Petruccelli (p. 24+ii)
Duties of a UNIX operator.
2. FSCK—The UNIx File System Check Program
T. J. Kowalski (p. 20)
A guide to checking and fixing UNIX file systems.

January 1981

6 Documents for UNIX

2. Accounting and System Activity
1. The UNIXx Accounting System
H. S. McCreary and A. G. Petruccelli (p. 19)
A guide to the use and management of the UNIX accounting system.
2. The UNIx System Activity Package
T. W. Pao (p. 8)
A package that reports on processor utilization, terminal activity, disk
and tape 1/O, swapping, system calls, etc.

3. Stand-Alone 1/0
1. A Stand-Alone Input/Output Library
S. R. Eisen (p. 11)
A guide to the stand-alone library and the stand-alone shell (SASH).
4. ETP

1. The UNIx Equipment Test Package: Operational Procedures (UNIX 3.0)
A. L. Chellis and T. J. Kowalski (p. 24)
The Equipment Test Package, a collection of UNIX hardware exercisers.

5. UNIX Internals
1. UNIXx Implementation
K. Thompson (p. 10)
An explanation of how UNIX works; reprinted from G.5 below.
2. The UNIx I/O System
D. M. Ritchie (p. 7)
Guide for writers of UNIX device drivers.
3. UNIXx on the PppP-11/23 and 11/34 Computers (UNIX 3.0)
T. J. Kowalski (p. 7)
Description of what had to be done to UNIX to make it run on the
PDP-11/23 and the PDP-11/34.
4. UNIx Assembler Reference Manual
D. M. Ritchie (p. 12)
Describes the UNIX PDP-11 assembler; a tool of last resort.

6. C Internals
1. A Tour Through the Portable C Compiler
S. C. Johnson (p. 25) »
A description of how the portable C compiler works.
2. A Tour Through the UNIX C Compiler
D. M. Ritchie (p. 15)
A description of how the PDP-11 C compiler works.

7. Security
1. On the Security of UNIX
D. M. Ritchie (p. 3)
Hints on how to break UNIX and how to prevent it.
2. Password Security—A Case History
R. Morris and K. Thompson (p. 6)
The story of how the bad guys used to be able to break the password
algorithm and why they can’t now, at least not so easily.

January 1981

Documents for UNIX 7

G. RECOMMENDED READING (not included)

1.

10.

UNIx User’s Manual—Release 3.0
T. A. Dolotta, S. B. Olsson, and A. G. Petruccelli (eds.)
Bell Laboratories (June 1980).
The basic document for every UNIX user.
UNIx Reference Guide
J. C. White (compiler) and P. V. Guidi (ed.)
Bell Laboratories (April 1981).
A pocket-size summary of UNIX commands, macro packages, etc.
Setting up UNIX
R. C. Haight, M. J. Petrella, and L. A. Wehr
Bell Laboratories.
Procedures for installing UNIX; must reading for anyone who wants to
configure and/or generate a UNIX system. (Because this document changes
with each release of UNIX, it is not included here; it is distributed with each
copy of the UNIX system itself.)
Administrative Advice for UNIX
R. C. Haight
Bell Laboratories.
Hints for getting UNIX up, getting it going, and keeping it going, plus some
information about hardware; must reading for UNIX system administrators.
(This document is distributed just like G.3 above.)
The Bell System Technical Journal
Vol. 57, No. 6, Part 2 (July-August 1978).
Special issue devoted to UNIX.
Using a Command Language as the Primary Programming Tool
T. A. Dolotta and J. R. Mashey
In: Beech, D. (ed.), Command Language Directions (Proc. Second IFIP Working
Conf. on Command Languages). Amsterdam: North Holland (1980), pp. 35-55.
A discussion of how to get the most out of the UNIX shell.
The UNIX Programming Environment
B. W. Kernighan and J. R. Mashey
COMPUTER, Vol. 14, No. 4, pp. 12-24 (April 1981); an earlier version of this
paper was published in Software— Practice & Experience, Vol. 9, No. 1, pp. 1-15
(Jan. 1979).
A discussion of what’s good about UNIX.

. Software Tools

B. W. Kernighan and P. J. Plauger
Reading, MA: Addison-Wesley (1976).
A textbook for building good software tools similar to those available in
UNIX.
The C Programming Language
B. W. Kernighan and D. M. Ritchie v
Englewood Cliffs, NJ: Prentice-Hall (1978).
The basic book for every C programmer; contains a tutorial and many
examples.
Experiences with the UNIX Time-sharing System
J. Lions
Software— Practice & Experience, Vol. 9, No. 9, pp. 701-709 (September 1979).
An enjoyable article that tells why they like UNIX in New South Wales.

January 1981

8 Documents for UNIX

11. The Evolution of the UNIX Time-sharing System
D. M. Ritchie '
Proc. Symposium on Language Design and Programming Methodology, Sydney, Aus-
tralia (September 1979).
Ten years later, one of the creators of UNIX looks back.
12. The Source Code Control System
M. J. Rochkind
IEEE Trans. Software Eng., Vol. SE-1, No. 4, pp. 364-370 (December 1975).
The motivation for, and the underlying design of, SCCS.

January 1981

UNIX
A.1.1

UNIX—Overview and Synopsis of Facilities

T. A. Dolotta
R. C. Haight
A. G. Petruccelli

Bell Laboratories
Murray Hill, New Jersey 07974

OVERVIEW

1. UNIX TIME-SHARING SYSTEM

The UNIXY Time-Sharing System is a general-purpose, multi-user, interactive operating system
specifically engineered to make the designer’s, programmer’s, and documenter’s computing
environment simple, efficient, flexible, and productive. UNIX contains features such as:

A hierarchical file system.

A flexible, easy-to-use command language (can be ‘‘tailored’’ to meet specific user nceds).
Ability to execute sequential, asynchronous, and background processes.

A powerful context editor.

Very flexible document preparation and text processing systems.

A high-level programming language conducive to structured programming (C).

Other languages, including FORTRAN 77, EFL, and variants of SNOBOL and BASIC.
Symbolic debugging systems.

A variety of system programming tools (i.e., lexical analyzers, compiler-compilers, etc.).
Sophisticated ‘‘desk-calculator’ packages.

Inter-machine communication by both hard-wired and dial-up facilities.

A system designed to help control changes to source code and files of text (SCCS).

A graphical plotting package.

Currently, UNIX runs on the Western Electric Co. 3B-20; Digital Equipment Corporation’s
(DEC) PDP-11/23, /34, /45, /70, VAX-11/780, and VAX-11/750; and IBM System/370 and
equivalent. The cost per user-hour of UNIX is significantly lower than that of most other
interactive computer systems; UNIX typically runs unattended.

The UNIX file system consists of a highly-uniforrh set of directories and files arranged in a
tree-like hierarchical structure. Some of its features are:

e Simple and consistent naming conventions; names can be absolute, or relative to any direc-
tory in the file system hierarchy.

e Mountable and de-mountable file systems and volumes.

o File linking across directories.

e Automatic file space allocation and de-allocation that is invisible to users.

e A complete set of flexible directory and file protection modes, allowing all combinations of
read, write, and execute access, independently for the owner of each file or directory, for a
group of users (e.g., all members of a prOJect) and for all other users; protection modes can
be set dynamically.

o Facilities for creating, accessing, moving, and processing files, directories, or sets of these in
a simple, uniform, and natural way.

e Each physical 1/0 device, from interactive terminals to main memory, is treated like a file,
allowing uniform file and device I/0.

t UNIX is a trademark of Bell Laboratorics.

2.

4.

Overview and Synopsis of Facilities

UNIX COMMAND LANGUAGE

Unlike other interactive command languages, the UNIX shell is a full programming language.
The shell provides variables, conditional and iterative constructs, and a user environment that
can be tailored to an individual’s or group’s needs. Any user can to create new commands sim-
ply by writing shell scripts.

DOCUMENT PREPARATION AND TEXT PROCESSING

In a software development project of any appreciable size, the production of usable, accurate
documentation may well consume more effort than the production of the software itself.
Several years of experience with many projects that use UNIX have shown that document
preparation should not be separated from software development, and that the combination of a
flexible operating system, a powerful command language, and good text processing facilities
permit quick and convenient production of many kinds of documentation that might be other-
wise unobtainable, impractical, or very expensive. ’

In UNIX, one also obtains a very useful ‘“‘word processing’ system—an editing system, text for-
matting systems, a typesetting system, and spelling and typographical error-detection facilities.
The document preparation and text processing facilities of UNIX include commands that
automatically control pagination, style of paragraphs, line justification, hyphenation, multi-
column pages, footnote placement, generation of marginal revision bars, generation of tables of
contents, etc., for specialized documents such as program run books, or for general documents
such as letters, memoranda, legal briefs, etc. There are also excellent facilities for formatting
and typesetting complex tables and equations. This document was produced in its entirety by
these facilities.

REMOTE JOB ENTRY

The RIJE facility provides for the submission and retrieval of jobs from an IBM host system
(e.g., a System/360 or System/370 computer using HASP, ASP, JES?2, or JES3). To the host sys-
tem, RJE appears to be a System/360 work station.

At the request of a UNIX user, RJE gathers the job control statements and source code from
files created and stored on UNIX, sends them to the host IBM system and, subsequently,
retrieves from the host the resulting output, either placing it in a convenient UNIX file for later
perusal, or using that output as the standard input to a specified shell procedure. Automatic
notification of the output’s arrival is also available.

SOURCE CODE CONTROL SYSTEM

The UNIX Source Code Control System (SCCS) is an integrated set of commands designed to -
help software development projects control changes to source code and to files of text (e.g.,
manuals). It provides facilities for storing, updating, and retrieving, by version number or
date, all versions of source code modules or of documents, and for recording who made each
software change, when it was made, and why. SCCS is designed to solve most of the source
code and documentation control problems that software development projects encounter when
customer support, system testing, and development are all proceeding simultaneously. Some of
the main characteristics of SCCS are: '

o The exact source code or text, as it existed at any point of development or maintenance, can
be recreated at any later time.

o All releases and versions of a source code module or document are stored together, so the
common code or text is stored only once.

e Releases in production or system test status can be protected from unauthorized changes.

e Enough identifying information can be automatically inserted into source code modules to
enable one to identify the exact version and release of any such module, given only the
corresponding load module or its memory dump.

Overview and Synopsis of Facilities 3

SOFTWARE, FACILITIES, AND DOCUMENTATION

Often-used UNIX commands are listed below. Every command, including all its options, is
issued as a single line, unless specifically described below as being ‘‘interactive.”” Interactive
programs can be made to run from a prepared ‘‘script’ simply by redirecting their input. All
commands are fully described in the UNIX User’'s Manual (see Section 6.1 below). Commands
for which additional manuals and tutorials are provided are marked with [m] and [t], respec-
tively. All indicated manuals and tutorials are listed in Section 6.2 below.

File processing commands that go from standard input to standard output are called “‘filters”
and are marked with [f]. The “‘pipe’’ facility of the shell may be used to connect filters directly
to the input or output of other filters and programs thus creating a “*pipeline.”

Almost all of UNIX is written in C. UNIX is totally self-supporting: it contains all the software
that is needed to generate it, maintain it, and modify it. Source code is included except as
noted below.

1. BASIC SOFTWARE

Included are the operating system with utilities, an assembler, and a compiler for the program-
ming language C—enough software to regenerate, maintain, and modify UNIX itself, and to
write and run new applications. Due to hardware constraints, not all the commands listed
below will work on all the supported hardware configurations.

1.1. Operating System

H UNIX [m] This is the basic resident code, also known as the kernel, on which every-
thing else depends. It executes the system calls, maintains the file system,
and manages the system’s resources; it contains device drivers, 1/0 buffers,
and other system information. A general description of UNIX design philo-
sophy and system facilities appeared in the Comnunications of the ACM. A
more extensive survey is in the Bell System Technical Journal for July-
August 1978, Further capabilities include:

e Automatically-supported reentrant code.

e Separation of instruction and data spaces (machine dependent).

o Timer-interrupt sampling and interprocess monitoring for debugging and
measurement.

B Devices [m] All 1/0 is logically synchronous. Normazlly, automatic buffering by the sys-
tem makes the physical record structure invisible and exploits the
hardware’s ability to do overlapped 1/0. Unbuffered physical record I/0 is
available for unusual applications. Software drivers are provided for many
devices; others can be easily written.

1.2. User Access Control
MW LOGIN Signs on a new user:

e Adapts to characteristics of terminal.

e Verifies password and establishes user’s individual and group (project)
identity.

o Establishes working directory.

e Publishes message of the day.

e Announces presence of mail.

e Lists unseen news items.

e Executes an optional user-specified profile.

e Starts command interpreter (shell) or other user-specified program.

B PASSWD Changes a password:

o User can change own password.
e Passwords are kept encrypted for security.

B SU

l NEWGRP

H STTY

B TABS

Overview and Synopsis of Facilities

Assume the permissions and privileges of another user or root (super-user)
provided that the proper password is supplied.

Changes working group (project ID). This provides access with protection
for groups of related users.

Sets up options for optimal control of a terminal. In so far as they are
deducible from the input, these options are set automatically by LOGIN:

e Speed.

e Parity.

e Mapping of upper-case characters to lower case.

e Carriage-return plus line-feed versus new-line.

o Interpretation of tab characters.

e Delays for tab, new-line, and carriage-return characters.
o Raw versus edited input.

Sets terminal’s tab stops. Knows several *‘standard’’ formats.

1.3. Manipulation of Files and Directories

B ED [m,t]

W SED [f,m]
W CAT If]

B PR [f]

B SPLIT
B CSPLIT
H SUM
B DD [f}

B CP

H LN
B MV

Interactive line-oriented context editor. Random access to all lines of a file.
It can:

e Find lines by number or pattern (regular expressions). Patterns can
include: specified characters, ‘‘don’t care’’ characters, choices among
characters, (specified numbers of) repetitions of these constructs, begin-
ning of line, end of line.

Add, delete, change, copy, or move lines.

Permute contents of a line.

Replace one or more instances of a pattern within a line.

Combine or split lines.

Combine or split files.

Do any of above operations on every line (in a given range) that
matches a pattern.

e Escape to the shell (UNIX command langvage) during editing.

A stream (one-pass) editor with facilities similar to those of ED.

Concatenates one or more files onto standard output. Mostly used for
unadorned printing, for inserting data into a **pipe,’” and for buffering out-
put that comes in dribs and drabs.

Prints files with title, date, and page number on every page:

e Multi-column output.
e Parallel column merge of several files.

Splits a large file into more manageable pieces.
Like SPLIT, with the splitting controlled by context.
Computes the check sum of a file.

Physical file format translator, for exchanging data with non-UNIX systems,
especially 0S/360, VS1, MVS, etc.

Copies one file to another or many files to a directory. Works on any file
regardless of its contents.

Links another name (alias) to an existing file.

Moves one or more files. Usually used for renaming files or directories.

Overview and Synopsis of Facilities 5

B RM

B CHMOD

@ CHOWN
B MKDIR
B RMDIR
W CD

B FIND

@ CPIO [f]

B SCCS [m]

Removes one or more files. If any names are linked to the file, only the
name being removed goes away.

Changes access permissions on a file(s). Executable by the owner of thc
file(s), or by the super-user.

Changes owner of a file(s).

Makes one or more new directories.
Removes one or more (empty) directories.
Changes working (i.e., current) directory.

Searches the directory hierarchy for, and performs specified commands on,
every file that meets given criteria:

File name matches a given pattern.
Modified date in given range.

Date of last use in given range.

Given permissions.

Given owner.

Given special file characteristics.

Any logical combination of the above.
Any directory can be the starting ‘“‘node.”

Copies a sub-tree of the file system (directories, links, and all) to another
place in the file system. Can also copy a sub-tree onto a tape, and later
recreate it from tape. Often used with the FIND command.

SCCS (Source Code Control System) is a collections of UNIX commands
(some interactive) for controlling changes to files of text (typically the
source code of programs or the text of documents). It provides facilities
for:

e Storing, updating, and retrieving any version of any source or text file.

e Controlling updating privileges.

o Identifying both source and object (or load) modules by version
number,

e Recording who made each change, when it was made, and why.

1.4. Execution of Programs

B SH [f,m.t]

The shell, or command language interpreter, understands a set of con-
structs that constitute a full programming language; it allows a user or a
command procedure to:

o Supply arguments to and run any executable program.

e Redirect standard input, standard output, and standard error files.

e Pipes: simultaneous execution with output of one process connected to
the input of another.

- o Compose compound commands usmg

-if ... then .., else, . S
case switches,
while loops,
Jor loops over lists,
break, continue, and exit,
: parentheses for grouping.
. Imtlatc background processes.
e Perform shell procedures (i.e., command scripts with substitutable argu-
ments).
o Construct argument lists from all file names matching specified patterns.
e Take user-specified action on traps and interrupts.

1.5.

Status Inquiries

TEST

EXPR

ECHO

SLEEP

WAIT

NOHUP
NICE
KILL
CRON

TEE [f]

HELP

LS

FILE

DATE

DF

DU

B TTY

Overview and Synopsis of Facilities

e Specify a search path for finding commands.

o Upon login, automatically create a user-specifiable environment.
o Optionally announce presence of mail as it arrives.

e Provide variables and parameters with default settings.

Tests argument values in shell conditional constructs:

e String comparison.
o File nature and accessibility.
e Boolean combinations of the above.

String computations for calculating command arguments:

e Integer arithmetic
e Pattern matching
o Like TEST above, EXPR can be used for conditional side-effect.

Prints its arguments on the standard output. Useful for diagnostics or
prompts in shell procedures, or for inserting data into a “‘pipe.”

Restricted shell; restricts a user to a subset of UNIX commands. The sys-
tem administrator may construct different levels of restriction.

Suspends execution for a specified time.

Waits for termination of a specific or all processes that are running in the
background. :

Runs a command immune to interruption from ‘‘hanging up’’ the terminal.
Runs a command at low (or high) priority.

Terminates named process(es).

Performs actions at specified times:

e Actions are arbitrary shell procedures or executable programs.
e Times are conjunctions of month, day of month, day of week, hour, and
minute. Ranges are specifiable for each.

Passes data between processes (like a *‘pipe’’), but also diverts copies into
one or more files.

Explains error messages from certain other programs.

Lists the names of one, several, or all files in one or more directories:

e Alphabetic or chronological sorting, up or down.
e Optional information: size, owner, group, date last modified, date last
accessed, permissions.

Tries to determine what kind of information is in a file by consulting the
file system index and by reading the file itself.

Print current date and time. Has considerable knowledge of calendrical and
horologic peculiarities; can be used to set UNIX’s idea of date and time.
(As yet, cannot cope with Daylight Saving Time in the Southern Hemi-
sphere.)

Reports amount of free space in file system.
Prints a summary of total space occupied by all files in a hierarchy.

Prints the “‘name’ of your terminal (i.e., the name of the port to which
your terminal is connected).

Overview and Synopsis of Facilities 7

1.6.

1.7.

B WHO

B ACCTCOM [f]

0 PWD

B RIESTAT

B WHAT

Tells who is logged onto the system:

e Lists logged-in users, their ports, and time they logged in.
o Optional history of all logins and logouts.
e Tells you who you are logged in as.

Reports on active processes:

e Lists your own or everybody’s processes.

e Tells what commands are being executed at the moment.

e Optional status information: state and scheduling information, priority,
attached terminal, what the process is waiting for, its size, etc.

Reports a chronological history of all process that have terminated. Infor-
mation includes:

e User and system times and sizes.

o Start and end real times.

o Owner and terminal line associated with process.
e System exit status.

Prints name of your working (i.e., current) directory.

Reports on the status of the Remote Job Entry (RJE) interface(s) to an
IBM host.

Prints informational lines found in files usually inserted by SCCS.

Inter-User Communication

B MAIL

B NEWS
B CALENDAR

B WRITE

B WALL
B MESG

Mails a message to one or more users. Also used to read and dispose of
incoming mail. The presence of mail is announced by LOGIN.

Prints out current general information and announcement files.
An automatic reminder service.

Establishes direct, interactive terminal-to-terminal communication with
another user.

Broadcasts a message to all users who are logged in.

Inhibits or permits receipt of messages from WRITE and WALL.

Inter-Machine Communication

B UUCP (m)
B SEND [m]
B FSEND

B FGET

B Ccu

mCT

H VPM [m]

Bl BX.25

Sends files back and forth between UNIX machines.
Collects files together to be sent as a *‘job”” to an IBM host.
Sends files to the HONEYWELL 6000.

Retrieves files from the HONEYWELL 6000.

Dials a phone number and attempts to make an interactive connection with
another machine.

Dials the phone number of a modem that is attached to a terminal, and
spawns a LOGIN process to that terminal.

A software package for implementing communications protocols. It con-
sists of a protocol script interpreter that runs in a front-end microprocessor,
allowing a variety of different protocols to be implemented with the same
hardware.

A superset of the international X.25 communications protocol; it is imple-
mented using VPM.

Overview and Synopsis of Facilities

1.8. Program Development Package

A kit of fundamental programming tools. Some of these are used as integral parts of the
higher-level languages described in Section 2 below.

B AR

W Libraries [m]

B ADB [i]

W oD [f]

N SDB [m]
B LD

B NM

B SIZE
B STRIP

B PROF

Maintains library archives, especially useful with LD. Combines several
files into one for housekeeping efficiency:

e Creates new archive.

e Updates archive by date.
e Replaces or deletes files.
e Prints table of contents.

o Retrieves from archive.

Basic run-time libraries. They are used freely by all system software:

Number conversions.

Time conversions.

Mathematical functions: sin, cos, log, exp, atan, sqrt, gamma.
Buffered character-by-character I1/0.

Random number generator.

An elaborate library for formatted 1/0.

Password encryption.

Interactive debugger:

e Postmortem dumping.
e Examination of arbitrary files, with no limit on size.
e Interactive breakpoint debugging; the debugger is a separate process.
e Symbolic reference to local and global variables.
e Stack trace for C programs.
e Output formats:
1-, 2-, or 4-byte integers in octal decimal, or hex
single and double floating point
character and string
disassembled machine instructions
e Patching.
e Searching for integer, character, or floating patterns.
e Handles separated instruction and data space.

Dumps any file:

e Output options include: octal or decimal by words, octal by bytes, ASCII,
operation codes, hexadecimal, or any combination thereof.
¢ Range of dumping is controllable.

Symbolic debugger for C and F77 programs.

Linkage editor. Combines relocatable object files. Inserts required routines
from specified libraries; resulting code:

e Can be made sharable, ; . : e
e Can be made to have separate instruction and data spaces. :

Prints the namelist (symbol table) of an object program. Provides control
over the style and order of names that are printed. :

Reports the main memory requirements of one or more object files.

Removes the relocation and symbol table information from an object file to
save file space.

Constructs a profile of time spent in each routine from data gathered by
time-sampling the execution of a program; gives subroutine call frequencies
and average times for C programs.

Overview and Synopsis of Facilities A 9

B MAKE [m]

1.9. Utilities
B CXREF

A SORT [f]

H UNIQ [f]

B TR [f]

B DIFF [f]

B/ COMM [f]

W CMP
H GREP [f]

B8 WC [f]

B TIME

Controls creation of large programs. Uses a control file specifying source
file dependencies to make new version; uses time last changed to deduce
minimum amount of work necessary. Knows about SCCS, CC, YACC, LEX,
etc. .

Makes cross-reference listings of a set of C source files. The listing con-
tains all symbols in each file separately or, optionally, in combination. An
asterisk appears before a symbol’s declaration.

Merges and/or sorts ASCII files line-by-line:

e In ascending or descending order.

o Lexicographically or on numeric key.

e On multiple keys located by delimiters or by position.

o Can fold upper-case characters together with lower-case into dictionary
order.

Deletes successive duplicate lines in a file:

o Prints lines that were originally unique, duplicated, or both.
e Can give redundancy count for each line.

Does character translation according to an arbitrary code:

e Can ‘“‘squeeze out’ repetitions of selected characters.
o Can delete selected characters.

Reports line changes, additions, and deletions necessary to bring two files
into agreement; can produce an editor script to convert one file into
another.

Identifies common lines in two sorted files. Output in up to 3 columns
shows lines present in first file only, present in second file only, and/or
present in both.

Compares two files and reports disagreeing bytes.

Prints all lines in one or more files that match a pattern of the kind used by
ED (the editor):

e Can print all lines that fail to match.
e Can print count of *‘hits.”’

Counts lines and ‘‘words™ (strings separated by blanks or tab characters) in
a file.

Runs a command and reports timing information about it.

2. PROGRAMMING LANGUAGES

2.1. The Programming Language C

B CC [m,]

Compiles and/or link-edits programs in the C language. The UNIX operat-
ing system, almost all of its subsystems, and C itself are written in C:

e General-purpose language designed for structured programming.
e Data types:

— Character.

— Short.

— Integer.

— Long integer.

— Floating-point.

— Double.

— Pointers to all types.

10 Overview and Synopsis of Facilities

— Functions returning all types.
— Arrays of any type.
— Structures containing various types.

e Provides machine-independent control of all machine facilities, includ-
ing to-memory operations and pointer arithmetic.

e Macro-preprocessor for parameterized code and for the inclusion of
other files.

e All procedures recursive, with paramsters passed by value.

o Run-time library gives access to all system facilities.

W PCC (m] Portable version of CC for a varicty of computers.
| CB [f) C beautifier: gives a C program that well-groomed, structured, indented
look.

2.2. FORTRAN
B F77 [m] A full compiler for ANSI Standard FORTRAN 77:

e Compatible with C and supporting tools at object level.

e Optional source compatibility with FORTRAN 66.

e Free format source.

e Optional subscript-range checking, detection of uninitialized variables.

e All widths of arithmetic: 2- and 4-byte integer; 4- and 8-byte real; 8-
and 16-byte complex. :

B RATFOR [m] Ratfor adds rational control structure a la C to FORTRAN:

Compound statements.

If-else, do, for, while, repeat-until, break, next statements.
Symbolic constants.

File insertion.

Free format source

Translation of relationals like >, > =, etc.

Produces genuine FORTRAN to carry away.

May be used with F77.

B EFL [m] Compiles a program written in the EFL Language into clean FORTRAN on
the standard output. It provides the C-like control constructs of RATFOR.

2.3. Other Algorithmic Languages

B AWK [m] Pattern scanning and processing language. Searches input for patterns, and
performs actions on each line of input that satisfies the pattern:

e Patterns include regular expressions, arithmetic and lexicographic condi-
tions, boolean combinations and ranges of these.

Data treated as string or numeric as appropriate.

Can break input into fields; fields are variables.

Variables and arrays (with non-numeric subscripts).

Full set of arithmetic operators and control flow.

Multiple output streams to files and pipes.

QOutput can be formatted as desired.

Multi-line capabilities.

W BS An interactive interpreter, containing features of both BASIC and SNOBOL4:

e Statements include:
— for/while ... next
— goto
—if...else ... fi
— trace
— symbolic dump

Overview and Synopsis of Facilities 11

2.4.

o All numeric calculations in double precision.

e Recursive function defining and calling.

e Built-in functions include log, exp, sin, cos, atan, ceil, floor, sqrt, abs,
rand.

String operations include regular expression pattern matching.

L J
e Very general 1/O (including pipes to commands) is provided.
® DC [m] Interactive programmable desk calculator. Has named storage locations, as

well as conventional stack for holding integers and programs:

Arbitrary-precision decimal arithmetic.
Appropriate treatment of decimal fractions.
Arbitrary input and output radices, in particular binary, octal, decimal,
and hexadecimal.
Postfix (‘*Reverse Polish’’) operators:
+ — =/
remainder, power, square root
load, store, duplicate, clear
print, enter program text, execute

B BC [m] A C-like interactive interface to the desk calculator DC:

All the capabilities of DC with a high-level syntax.

Arrays and recursive functions.

Immediate evaluation of expressions and evaluation of functions upon
call.

Arbitrary-precision elementary functions: exp, sin, cos, atan.

e Goto-less programming.

W SNO An interpreter very similar to SNOBOL 3, its limitations are:

e Function definitions are static.
o Pattern matches are always anchored.
e No built-in functions.

Macro-Processors and Compiler-Compilers
W M4 [fm] A general-purpose macro-processor:

e Stream-oriented, recognizes macros anywhere in text.
e Integer arithmetic,

e String and substring capabilities.

e Condition testing, file manipulation, arguments.

B YACC [m] An LALR(1)-based compiler-writing system. During execution of resulting
parsers, arbitrary C functions can be called to do code gencration or take
semantic actions:

e BNF syntax specifications.
e Precedence relations.
e Accepts formally ambiguous grammars with non-BNF resolution rules.

W LEX (m] LEX helps write programs whose control flow is directed by instances of
regular expressions in the input stream. It is well suited for editor-script
type transformations and for segmenting input in preparation for a parsing
routine.

12

3. TEXT PROCESSING

3.1. Formatters

Overview and Synopsis of Facilities

High-level formatting macros have been developed to ease the preparation of documents with
NROFF and TROFF, as well as to exploit their more complex formatting capabilities.

B NROFF [f,m,t] Advanced formatter for terminals. Capable of many elaborate feats:

Justification of either or both margins.

Automatic hyphenation.

Generalized page headers and footers, automatic page numbering, with
even-odd page differentiation capability, etc.

Hanging indents and one-line indents.

Absolute and relative parameter settings.

Optional legal-style numbering of output lines.

Nested or chained input files.

Complete page format control, keyed to dynamically-planted *‘traps™ at
specified lines.

Several separately-definable formatting environments (e.g., one for reg-
ular text, one for footnotes, and one for *‘floating’’ tables and displays).
Macros with substitutable arguments.

Conditional execution of macros.

Conditional insertion or deletion of text.

String variables that can be invoked in mid-line.

Computation and printing of numerical quantities.

String-width computations for unusually-difficult layout problems.
Positions and distances expressible in inches, centimeters, ems, ens, line
spaces, points, picas, machine units, and arithmetic combinations
thereof.

Dynamic (relative or absolute) positioning.

Horizontal and vertical line drawing.

Multi-column output on terminals capable of reverse line-feed, or
through the postprocessor COL.

B TROFF [f,m:] This formatter gencrates output on a phototypesetter. It provides facilities
that are upward-compatible with NROFF, but with the following additions:

Vocabulary of several 102-character fonts (any 4 simultaneously) in 15
different point sizes.

Character-width and string-width computations for unusually difficult
layout problems.

Overstrikes and built-up brackets.

Dynamic (relative or absolute) point size selection, globally or at the
character level.

Terminal output for rough sampling of the product.

i This entire document was typeset by TROFF, assisted by MM, TBL, and EQN. =

M EQN [f.m] A mathematical preprocessor for TROFF. Translates in-line or displayed
formulae from a very easy-to-type form into detailed typesetting instruc-
tions. For example:

sigma sup 2 = 1 over N sum from j=1 to N (x subj — x bar) sup 2

produces:

21 % 2
a-=—2(x;—X)
N &Y
Automatic calculation of point size changes for subscripts, superscripts,
Full vocabulary of Greek letters, such as +, II, 1,
Automatic calculation of the size of large brackets.

Overview and Synopsis of Facilities 13

B NEQN [fm]

B MM [m]

B MV [m]

B TBL [f.m]

B CW [f]

e Vertical *‘piling”’ of formulae for matrices, conditional alternatives, etc.
o Integrals, sums, etc., with arbitrarily complex limits.
e Diacriticals: dots, double dots, hats, bars, etc.

Formulae can appear within tables to be formatted by TBL (see below).’

A mathematical preprocessor for NROFF with the same facilities as EQN,
except for the limitations imposed by the graphic capabilities of the termi-
nal being used. Prepares formulae for display on various Diablo-
mechanism terminals, etc.

A standardized manuscript layout macro package for wuse with
NROFF/TROFF. Provides a flexible, user-oriented interface to these two
formatters; designed to be:

o Robust in face of user errors.

e Adaptable to a wide range of output styles.

o Can be extended by users familiar with the formatter.
e Compatible with both NROFF and TROFF.

Some of its features are:

Page numbers and draft dates.

Cover sheets and title pages.
Automatically-numbered or “‘lettered’” headings.
Automatically-numbered or ““lettered’” lists.
Automatically-numbered figure and table captions.
Automatically-numbered and positioned footnotes.
Single- or double-column text.

Paragraphing, displays, and indentation.
Automatic table of contents.

® ® ¢ o & @& 0 0

A TROFF macro package that makes it easy to typeset professional-looking
projection foils and slides.

A preprocessor for NROFF that translates simple descriptions of table lay-
outs and contents into detailed formatting instructions:

e Computes appropriate column widths.

e Handles left- and right-justified columns, centered columns, and
decimal-point aligned columns.

e Places column titles; spans these titles, as appropriate.

For example:

Composition of Foods
" Percent by Weight
Food . Carbo-
Protein | Fat hydrate
Apples 4 .5 13.0
Halibut '18.4 5.2
Lima beans || 7.5 8 | 220
Milk 33 4.0 5.0
Mushrooms 3.5 4 6.0
Rye bread 9.0 .6 52.7

A preprocessor for TROFF that prepares text to be displayed in a special
‘‘constant-width’’ typeface; this typeface is very useful for printing exam-
ples of computer output in, e.g., programming manuals.

14

Overview and Synopsis of Facilities

3.2. Other Text Processing Tools

@ SPELL [f]

B PTX

B GRAPH [f]

B TPLOT [f]

W 300, 450 1]

M HP [f]
W COoL (f]

@ Graphics [m.,t]

Finds spelling errors By looking up all uncommon words from a document
in a large spelling list. Knows about prefixes and suffixes and can cope with
such rotten spellings as *‘roted.”

Generates a permuted index, like the one in the UNIX User's Manual.

Given the coordinates of the points to be plotted, draws the corresponding
graph; has many options for scaling, axes, grids, labeling, etc.

Makes the output of GRAPH suitable for plotting on a Diablo-mechanism
terminal.

Exploits the hardware facilities of GSI 300, DASI 450, and other Diablo-
mechanism terminals:

o Implements reverse line-feeds and forward and reverse fractional-line
motions.

e Allows any combination of 10- or 12-pitch printing with 6 or 8
lines/inch spacing.

e Approximates Greek letters and other special characters by overstriking
in plot mode.

Like 300, but for the Hewlett-Packard 2640 family of terminals.

Reformats files with reverse line-feeds so that they can be correctly printed
on terminals that cannot reverse line-feed.

Graphics is the name of a collection of commands for manipulating and
plotting statistical and graphical data on a Tektronix series 4010 terminal or
a Hewlett-Packard 7221A Graphics Plotter. Its facilities include:

e A sophisticated graphical editor.

Pie and bar chart generators.

Built-in mathematical functions such as powers, roots, logarithms, and
slope and intercept generation.

e Histograms.

» Additive sequence, prime number, and random sequence generators.

e Table of contents generators.

4., SYSTEM ADMINISTRATION

4.1. Normal Day-to-Day Administration and Maintenance

B MOUNT

@ UMOUNT

B MKFS
B MKNOD

B VOLCOPY

B FSCK [m]

Attaches a device containing a file system to the tree of directories. Pro-
tects against nonsense arrangements.

Removes the file system contained on a device from the tree of directories.
Protects against removing a busy device.

Makes a new file system on a device.

Makes a file system entry for a special file. Special files are physical dev-
ices, virtual devices, physical memory, etc.

File system backup/recovery system for disk/disk or disk/tape. Protective
labeling of disks and tapes is included.

Used to check the consistency of file systems and directories and make
interactive repairs:

e Print statistics; number of files, space used, free space.
e Report duplicate use of space.
e Retrieve lost space.

Overview and Synopsis of Facilities 15

4.2.

4.3.

e Report inaccessible files.
e Check consistency of directories.
e Rcorganize free disk space for maximum operating efficiency.

B SYNC Forces all outstanding 1/0 on the system to completion. Used to shut down
the system gracefully.

B CONFIG Tailors device-dependent system code to a specific hardware configuration.
As distributed, UNIX can be brought up directly on any supported computer
equipped with an acceptable tape drive and disk, sufficient amount of main
memory, a console terminal, and a clock.

B CRASH Prints out tables and structures in the operating system. May be used on a
running system, but more useful for examining operating system core
dumps after a *‘crash.”

System Monitoring Facilities

B Accounting [m]
The process accounting package covers connect time accounting, command
usage, command frequency, disk utilization, and line usage. All of these
are summarized by user and by command on a daily, monthly, and fiscal
basis. The system lends itself to local needs and modification.

® Error Logging The UNIX operating system incorporates continuous hardware error detec-
tion and reporting.

W Equipment Test Package [m]
The Equipment Test Package (ETP—available on a separate tape) is a use-
ful addition to a hardware supplier’s diagnostic software. It is essentially a
UNIX-based hardware exerciser and verifier.

B System Activity Report [m]
The System Activity Report (SAR) package is a body of programs for sam-
pling the behavior of the operating system. The sampling consists of
several time counters, I/O activity counters, context-switching counters,
system-call counters, and file-access counters. Reports can be generated on
a daily basis, or as desired.

W Profiler The Profiler is another group of commands for studying the activity of the
operating system. It reports the percentage of time that the operating sys-
tem spends on user tasks, on system functions, and in being idle.

Installation, Administration, and Operation

W Installation [m] The Senting up UNIX document contains the procedures and advice for the
first-time installation and for the periodic upgrading of the operating sys-
tem.

8 Administration (m]
The Administrative Advice for UNLX document describes various problems
that can occasionally arise during normal operation, and suggests possible
solutions. Included are tips on data-set options, specifications for photo-
typesetter fonts and chemicals, for system tuning, security, troubleshooting,
as well as other useful information.

W Operation [m] The UNIX Operations Manual contains a description of console operations,
step-by-step operator functions, and operating system error messages and
their meanings.

16 Overview and Synopsis of Facilities

5. DEMONSTRATION AND TRAINING PROGRAMS

Unless otherwise indicated, source code for the following interactive programs is not included:

@ Quiz Tests your knowledge of Shakespeare, presidents, capitals, etc. Source code
included.

N B A blackjack dealer.

H MOO A fascinating number-guessing game, rather like Mastermind®.

B CAL Prints a calendar of specified month or year between A.D. 1 and 9999.

Source code included.

B UNITS Converts quantities between different scales of measurement. Knows hun-
dreds of wunits; for example, how many kilometers/second (or
furlongs/fortnight) is a parsec/megayear? Source code included.

W TTT A traditional 3X3 tic-tac-toe program that learns. It never makes the same
mistake twice, unless you make it forget what it has learned.

B BACK The game of Backgammon.

B HANGMAN Children’s *‘guess the word” game.

B WUMP Thrilling hunt for the mighty wumpus in a dangerous cave.

6. USER DOCUMENTATION
6.1. UNIX User’'s Manual
B MAN [m] On-line and hard-copy versions are provided. The manual contains:

e A system overview,

o Commands.

e System calls.

e Subroutines in the C, math, standard I/0O, and specialized libraries.
e File formats for most files known to the system software.

e ctc.

6.2. Documents For UNIX

This two-volume collection contains documents that supplement the information in the UNLX
User’'s Manual. 1t contains:

B OVERVIEWS

o UNIX—Overview and Synopsis of Facilities
o The UNIX Time-Sharing System

B GETTING STARTED

o UNIX Documentation Road Map

e A Tutorial Introduction to the UNIX Text Editor
e Advanced Editing on UNIX

SED— A Non-Interactive Text Editor

UNIX for Beginners (Second Edition)

UNIX Shell Tutorial

An Introduction to the UNIX Shell

B DOCUMENT PREPARATION

A TROFF Tutorial

NROFF/TROFF User’s Manual

MM —Memorandum Macros

Typing Documents with MM

A Macro Package for View Graphs and Slides
TBL— A Program to Format Tables

Overview and Synopsis of Facilities

e Typesetting Mathematics—User’s Guide (Second Edition)
e A System for Typesetting Mathematics

8 PROGRAMMING

The C Programming Language —Reference Manual
A Guide to the C Library for UNIX Users

LINT, a C Program Checker

A Portable FORTRAN 77 Compiler

RATFOR — A Preprocessor for a Rational FORTRAN
e The Programming Language EFL

o UNIX Programming (Second Edition)

e MAKE—A Program for Maintaining Computer Programs
e An Augmented Version of MAKE

e SDB— A Symbolic Debugger

o A Tutorial Introduction to ADB

B SUPPORTING TOOLS AND LANGUAGES

LEX— A Lexical Analyzer Generator

YACC—Yet Another Compiler-Compiler

The M4 Macro Processor

AWK — A Pattern Scanning and Processing Language (Second Edition)
Source Code Control System User’s Guide

Function and Use of an SCCS Interface Program

BC— An Arbitrary Precision Desk-Calculator Language
DC—An Interactive Desk Calculator

UNIX Graphics Overview

A Tutorial Introduction to the Graphics Editor

STAT—A Tool for Analyzing Data

Administrative Information for the UNIX Graphics Package
UNIX Remote Job Entry User’s Guide

UNIX Remote Job Entry Administrator’s Guide

Release 1.0 of the UNIX Virtual Protocol Machine

Release 2.0 of the UNIX Virtual Protocol Machine

A Dial-up Network of UNIX Systems

UUCP Implementation Description

The Implementation of the LP Spooling System

LP Administrator’s Guide

B ADMINISTRATION, MAINTENANCE, AND IMPLEMENTATION

UNIX Operations Manual

FSCK—The UNIX File System Check Program
The UNIX Accounting System

The UNIX System Activity Package

A Stand-Alone Input/Output Library

The UNIX Equipment Test Package: Operational Procedures
UNIX Implementation

The UNIX I/O System .

UNIX on the PDP-11/23 and 11/34 Computers
UNIX Assembler Reference Manual

A Tour Through the Portable C Compiler

A Tour Through the UNIX C Compiler

On the Security of UNIX

Password Security—A Case History

January 1981

UNIX
A.2.1

The UNIX Time-Sharing System*

D. M. Ritchie
K. Thompson

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

UNIXT is a general-purpose, multi-user, interactive operating system for
the larger Digital Equipment Corporation PDP-1] and the Interdata 8/32 com-
puters. It offers a number of features seldom found even in larger operating
systems, including

® A hicrarchical file system incorporating demountable volumes,
Compatible file, device, and inter-process 1/0,

[]

e The ability to initiate asynchronous processes,

e System command language selectable on a per-user basis,
®

Over 100 subsystems including a dozen languages,
e High degrec of portability.

This paper discusses the nature and implementation of the file system and of
the user command interface.

I. INTRODUCTION

There have been four versions of the UNIX time-sharing system. The earliest (circa
1969-70) ran on the Digital Equipment Corporation PDP-7 and -9 computers. The second ver-
sion ran on the unprotected PDP-11/20 computer. The third incorporated multiprogramming
and ran on the PDP-11/34, /40, /45, /60, and /70 computers; it is the one described in the pre-
viously publishcd version of this paper, and is also the most widely used today. This paper
describes only the fourth, current system that runs on the PDP-11/70 and the Interdata 8/32
computers. In fact, the differences among the various systems is rather small; most of the revi-
sions made to the originally published version of this paper, aside from those concerned with
style, had to do with details of the implementation of the file system.

Since PDP-11 UNIX became operational in February, 1971, over 600 installations have
been put into service. Most of them are engaged in applications such as computer science edu-
cation, the preparation and formatting of documents and other textual material, the collection
and processing of trouble data from various switching machines within the Bell System, and
recording and checking telephone service orders. QOur own installation is used mainly for
research in operating systems, languages, computer networks, and other topics in computer sci-
ence, and also for document preparation.

* Copyright 1974, Association for Computing Machinery, Inc., reprinted by permission. This is a revised
version of an article that appeared in Communications of the ACM, 17, No. 7 (July 1974), pp. 365-375. That
article was a revised version of a paper presented at the Fourth ACM Symposium on Operating Systems
Principles, IBM Thomas J. Watson Research Center, Yorktown Heights, New York, October 15-17, 1973.

+ UNIX is a trademark of Bell Laboratories.

2 The UNIX Time-Sharing System

Perhaps the most important achievement of UNIX is to demonstrate that a powerful
operating system for interactive use need not be expensive either in equipment or in human
effort: it can run on hardware costing as little as $40,000, and less than two man-years were
spent on the main system software. We hope, however, that users find that the most important
characteristics of the system are its simplicity, elegance, and ease of use.

Besides the operating system proper, some major programs available under UNIX are

C compiler

Text editor based on QED!

Assembler, linking loader, symbolic debugger

Phototypesetting and equation setting programs?:3

Dozens of languages including Fortran 77, Basic, Snobol, APL, Algol 68, M6,
TMG, Pascal

There is a host of maintenance, utility, recreation and novelty programs, all written locally.
The UNIX user community, which numbers in the thousands, has contributed many more pro-
grams and languages. It is worth noting that the system is totally self-supporting. All UNIX
software is maintained on the system; likewise, this paper and all other documents in this issue
were generated and formatted by the UNIX editor and text formatting programs.

II. HARDWARE AND SOFTWARE ENVIRONMENT |

The PDP-11/70 on which the Research UNIX system is installed is a 16-bit word (8-bit
byte) computer with 768K bytes of core memory; the system kernel occupies 90K bytes about
equally divided between code and data tables. This system, however, includes a very large
number of device drivers and enjoys a generous allotment of space for 1/O buffers and system
tables; a minimal system capable of running the software mentioned above can require as little
as 96K bytes of core altogether. There are even larger installations; see the description of the
PWB/UNIX systems,% 3 for example. There are also much smaller, though somewhat restricted,
versions of the system.6

Our own PDP-11 has two 200-Mb moving-head disks for file system storage and swapping.
There are 20 variable-speed communications interfaces attached to 300- and 1,200-baud data
sets, and an additional 12 communication lines hard-wired to 9,600-baud terminals and satellite
computers. There arc also several 2,400- and 4,800-baud synchronous communication inter-
faces used for machine-to-machine file transfer. Finally, there is a variety of miscellaneous
devices including nine-track magnetic tape, a line printer, a voice synthesizer, a photo-
typesetter, a digital switching network, and a chess machine.

The preponderance of UNIX software is written in the abovementioned C language.’
Early versions of the operating system. were written in assembly language, but during the sum-
mer of 1973, it was rewritten in C. The size of the new system was about one-third greater
than that of the old. Since the new system not only became much easier to understand and to
modify but also included many functional improvements, including multiprogramming and the
ability to share reentrant code among several user programs, we consider this increase in size
quite acceptable.

I11. THE FILE SYSTEM

The most important role of the system is to provide a file system. From the point of view
of the user, there are three kinds of files: ordinary disk files, directories, and special files.

3.1 Ordinary files

A file contains whatever information the user places on it, for example, symbolic or
binary (object) programs. No particular structuring is expected by the system. A file of text
consists simply of a string of characters, with lines demarcated by the new-line character.
Binary programs are sequences of words as they will appear in core memory when the program
starts executing. A few user programs manipulate files with more structure; for example, the

The UNIX Time-Sharing System 3

assembler generates, and the loader expects, an object file in a particular format. However, the
structure of files is controlled by the programs that use them, not by the system.

3.2 Directories

Directories provide the mapping between the names of files and the files themselves, and
thus induce a structure on the file system as a whole. Each user has a directory of his own
files; he may also create subdirectories to contain groups of files conveniently treated together.
A directory behaves exactly like an ordinary file except that it cannot be written on by
unprivileged programs, so that the system controls the contents of directories. However, any-
one with appropriate permission may read a directory just like any other file.

The system maintains several directories for its own use. One of these is the root direc-
tory. All files in the system can be found by tracing a path through a chain of directories until
the desired file is reached. The starting point for such searches is often the root. Other system
directories contain all the programs provided for general use; that is, all the commands. As will
be seen, however, it is by no means necessary that a program reside in one of these directories
for it to be executed.

Files are named by sequences of 14 or fewer characters. When the name of a file is
specified to the system, it may be in the form of a path name, which is a sequence of directory
names separated by slashes, *“/”’, and ending in a file name. If the sequence begins with a
slash, the search begins in the root directory. The name /alpha/beta/gamma causes the sys-
tem to scarch the root for directory alpha, then to search alpha for beta, finally to find gamma
in beta. gamma may be an ordinary file, a directory, or a special file. As a limiting case, the
name *‘/" refers to the root itself.

A path name not starting with **/*’ causes the system to begin the search in the user’s
current directory. Thus, the name alpha/beta specifies the file named beta in subdirectory
alpha of the current directory. The simplest kind of name, for example, alpha, refers to a file
that itself is found in the current directory. As another limiting case, the null file name refers
to the current directory.

The same non-directory file may appear in several directories under possibly different
names. This feature is called linking; a directory entry for a file is sometimes called a link. The
UNIX system differs from other systems in which linking is permitted in that all links to a file
have equal status. That is, a file does not exist within a particular directory; the directory entry
for a file consists merely of its name and a pointer to the information actually describing the
file. Thus a file exists independently of any directory entry, although in practice a file is made
to disappear along with the last link to it.

Each directory always has at least two entries. The name *“.”’ in each directory refers to
the directory itself. Thus a program may read the current directory under the name *‘.”’
without knowing its complete path name. The name ‘‘..’" by convention refers to the parent
of the directory in which it appears, that is, to the directory in which it was created.

The directory structure is constrained to have the form of a rooted tree. Except for the
special entries ““ .’ and ‘“..”’, each directory must appear as an entry in exactly one other
directory, which is its parent. The reason for this is to simplify the writing of programs that
visit subtrees of the directory structure, and more important, to avoid the separation of portions
of the hierarchy. If arbitrary links to directories were permitted, it would be quite difficult to
detect when the last connection from the root to a directory was severed.

3.3 Special files

Special files constitute the most unusual feature of the UNIX file system. Each supported
I/O device is associated with at least one such file. Special files are read and written just like
ordinary disk files, but requests to read or write result in activation of the associated device.
An entry for each special file resides in directory /dev, although a link may be made to one of
these files just as it may to an ordinary file. Thus, for example, to write on a magnetic tape one

4 The UNIX Time-Sharing System

may write on the file /dev/mt. Special files exist for each communication line, each disk, each
tape drive, and for physical main memory. Of course, the active disks and the memory special
file are protected from indiscriminate access.

There is a threefold advantage in treating 1/O devices this way: file and device 1/O are as
similar as possible; file and device names have the same syntax and meaning, so that a program
expecting a file name as a parameter can be passed a device name; finally, special files are sub-
ject to the same protection mechanism as regular files.

3.4 Removable file systems

Although the root of the file system is always stored on the same device, it is not neces-
sary that the entire file system hierarchy reside on this device. There is a mount system
request with two arguments: the name of an existing ordinary file, and the name of a special file
whose associated storage volume (e.g., a disk pack) should have the structure of an indepen-
dent file system containing its own directory hierarchy. The effect of mount is to cause refer-
ences to the herctofore ordinary file to refer instead to the root directory of the file system on
the removable volume. In effect, mount replaces a leaf of the hierarchy tree (the ordinary file)
by a whole new subtree (the hierarchy stored on the removable volume). After the mount,
there is virtually no distinction between files on the removable volume and those in the per-
manent file system. In our installation, for example, the root directory resides on a small parti-
tion of one of our disk drives, while the other drive, which contains the user’s files, is mounted
by the system initialization sequence. A mountable file system is generated by writing on its
corresponding special file. A utility program is avajlable to create an empty file system, or one
may simply copy an existing file system. '

There is only one exception to the rule of identical treatment of files on different devices:
no link may exist between one file system hierarchy and another. This restriction is enforced
so as to avoid the elaborate bookkeeping that would otherwise be required to assure removal of
the links whenever the removable volume is dismounted.

3.5 Protection

Although the access control scheme is quite simple, it has some unusual features. Each
user of the system is assigned a unique user identification number. When a file is created, it is
marked with the user ID of its owner. Also given for new files is a set of ten protection bits.
Nine of these specify independently read, write, and execute permission for the owner of the
file, for other members of his group, and for all remaining users.

If the tenth bit is on, the system will temporarily change the user identification (hereafter,
user ID) of the current user to that of the creator of the file whenever the file is executed as a
program. This change in user ID is effective only during the execution of the program that calls
for it. The set-user-1D feature provides for privileged programs that may use files inaccessible
to other users. For cxample, a program may keep an accounting file that should neither be read
nor changed except by the program itself. If the set-user-ID bit is on for the program, it may
access the file although this access might be forbidden to other programs invoked by the given
program’s user. Since the actual user ID of the invoker of any program is always available, set-
user-1D programs may take any measures desired to satisfy themselves as to their invoker’s
credentials, This mechanism is used to allow users to execute the carefully written commands
that call privileged system entries. For example, there is a system entry invokable only by the
“super-user’’ (below) that creates an empty directory. As indicated above, directories are
‘expected to have entries for **."" and *“..”". The command which creates a directory is owned
by the super-user and has the set-user-ID bit set. After it checks its invoker's authorization to
create the specified directory, it creates it and makes the entries for **.”" and **.."".

Because anyone may sect the set-user-ID bit on one of his own files, this mechanism is
generally available without administrative intervention. For example, this protection scheme
easily solves the MOO accounting problem posed by ‘‘Aleph-null.”’$

The UNIX Time-Sharing System 5

The system recognizes one particular user 1D (that of the ‘“‘super-user’’) as exempt from
the usual constraints on file access; thus (for example), programs may be written to dump and
reload the file systern without unwanted interference from the protection system.

3.6 1/0 calls

The system calls to do I/O are designed to eliminate the differences between the various
devices and styles of access. There is no distinction between ‘‘random’’ and ‘‘sequential’’ 1/0,
nor is any logical record size imposed by the system. The size of an ordinary file is determined
by the number of bytes written on it; no predetermination of the size of a file is necessary or
possible.

To illustrate the essentials of I/O, some of the basic calls are summarized below in an
anonymous language that will indicate the required parameters without getting into the underly-
ing complexities. Each call to the system may potentially result in an error return, which for
simplicity is not represented in the calling sequence.

To read or write a file assumed to exist already, it must be opened by the following call:
filep = open (name, flag)

where name indicates the name of the file. An arbitrary path name may be given. The flag
argument indicates whether the file is to be read, written, or ‘“‘updated,’” that is, read and writ-
ten simultaneously.

The returned value filep is called a file descriptor. It is a small integer used to identify the
file in subsequent calls to read, write, or otherwise manipulate the file.

To create a new file or completely rewrite an old one, there is a ereate system call that
creates the given file if it does not exist, or truncates it to zero length if it does exist; create
also opens the new file for writing and, like open, returns a file descriptor.

The file system maintains no locks visible to the user, nor is there any restriction on the
number of users who may have a file open for reading or writing. Although it is possible for
the contents of a file to become scrambled when two users write on it simultaneously, in prac-
tice difficulties do not arise. We take the view that locks are neither necessary nor sufficient, in
our environment, to prevent interference between users of the same file. They are unnecessary
because we are not faced with large, single-file data bases maintained by independent processes.
They are insufficient because locks in the ordinary sense, whereby one user is prevented from
writing on a file that another user is reading, cannot prevent confusion when, for example, both
users are editing a file with an editor that makes a copy of the file being edited.

There are, however, sufficient internal interlocks to maintain the logical consistency of the
file system when two users engage simultaneously in activities such as writing on the same file,
creating files in the same directory, or deleting each other’s open files.

Except as indicated below, reading and writing are sequential. This means that if a partic-
ular byte in the file was the last byte written (or read), the next 1/O call implicitly refers to the
immediately following byte. For each open file there is a pointer, maintained inside the system,
that indicates the next byte to be read or written. If n bytes are read or written, the pointer
advances by n bytes.

Once a file is open, the following calls may be used:

n = read (filep, buffer, count)

n = write (filep, buffer, count)

Up to count bytes are transmitted between the file specified by filep and the byte array specified
by buffer. The returned value n is the number of bytes actually transmitted. In the write case,
n is the same as count except under exceptional conditions, such as 1/O errors or end of physi-
cal medium on special files; in a read, however, n may without error be less than count. If the
read pointer is so near the end of the file that reading count characters would cause reading
beyond the end, only sufficient bytes are transmitted to reach the end of the file; also,

6 The UNIX Time-Sharing System

typewriter-like terminals never return more than one line of input. When a read call returns
with n equal to zero, the end of the file has been reached. For disk files this occurs when the
read pointer becomes equal to the current size of the file. It is possible to generate an end-of-
file from a terminal by use of an escape sequence that depends on the device used.

Bytes written affect only those parts of a file implied by the position of the write pointer
and the count; no other part of the file is changed. If the last byte lies beyond the end of the
file, the file is made to grow as needed.

To do random (direct-access) I/O it is only necessary to move the read or write pointer to
the appropriate location in the file.
location = lseek (filep, offset, base)

The pointer associated with filep is moved to a position offset bytes from the beginning of the
file, from the current position bf the pointer, or from the end of the file, depending on base.
offset may be negative. For some devices (e.g., paper tape and terminals) seek calls are
ignored. The actual offset from the beginning of the file to which the pointer was moved is
returned in location.

There are several additional system entries having to do with I/O and with the file system
that will not be discussed. For example: close a file, get the status of a file, change the protec-
tion mode or the owner of a file, create a directory, make a link to an existing file, delete a file.

IV. IMPLEMENTATION OF THE FILE SYSTEM

As mentioned in Section 3.2 above, a directory entry contains only a name for the associ-
ated file and a pointer to the file itself. This pointer is an integer called the i-number (for index
number) of the file. When the file is accessed, its i-number is used as an index into a system
table (the i-list) stored in a known part of the device on which the directory resides. The entry
found thereby (the file’s i-node) contains the description of the file:

o the user and group-1D of its owner

its protection bits

the physical disk or tape addresses for the file contents
its size

time of creation, last use, and last modification

the number of links to the file, that is, the number of times it appears in a directory
e a code indicating whether the file is a directory, an ordinary file, or a special file.

The purpose of an open or create system call is to turn the path name given by the user into an
i-number by searching the explicitly or implicitly named directories. Once a file is open, its
device, i-number, and read/write pointer are stored in a system table indexed by the file
descriptor returned by the open or create. Thus, during a subsequent call to read or write the
file, the descriptor may be easily related to the information necessary to access the file.

When a new file is created, an i-node is allocated for it and a directory entry is made that
contains the name of the file and the i-node number. Making a link to an existing file involves
creating a directory entry with the new name, copying the i-number from the original file entry,
and incrementing the link-count field of the i-node. Removing (deleting) a file is done by
decrementing the link-count of the i-node specified by its directory entry and erasing the direc-
tory entry. If the link-count drops t0.0, any disk blocks in the file are freed and the i-node is
de-allocated. ' ' ’ ' '

The space on all disks that contain a file system is divided into a number of 512-byte
blocks logically addressed from O up to a limit that depends on the device. There is space in
the i-node of each file for 13 device addresses. For nonspecial files, the first 10 device
addresses point at the first 10 blocks of the file. If the file is larger than 10 blocks, the 11 dev-
ice address points to an indirect block containing up to 128 addresses of additional blocks in the

The UNIX Time-Sharing System 7

file. Still larger files use the twelfth device address of the i-node to point to a double-indirect
block naming 128 indirect blocks, each pointing to 128 blocks of the file. If required, the thir-
teenth device address is a triple-indirect block, Thus files may conceptually grow to
[(10+128+1282+128%)X512] bytes. Once opened, bytes numbered below 5,120 can be read
with a single disk access; bytes in the range 5,120 to 70,656 require two accesses; bytes in the
range 70,656 to 8,459,264 require three accesses; bytes from there to the largest file
(1,082,201,088) require four accesses. In practice, a device cache mechanism (see below)
proves effective in climinating most of the indirect fetches.

The foregoing discussion applies to ordinary files. When an I/O request is made to a file
whose i-node indicates that it is special, the last 12 device address words are immaterial, and
the first specifies an internal device name, which is interpreted as a pair of numbers represent-
ing, respectively, a device type and subdevice number. The device typc indicates which system
routine will deal with 1/O on that device; the subdevice number selects, for example, a disk
drive attached to a particular controller or one of several similar terminal interfaces.

In this environment, the implementation of the mount system call (Section 3.4) is quite
straightforward. mount maintains a system table whose argument is the i-number and device
name of the ordinary file specified during the mount, and whose corresponding value is the
device name of the indicated special file. This table is searched for each i-number/device pair
that turns up while a path name is being scanned during an epen or create; if a match is found,
the i-number is replaced by the i-number of the root directory and the device name is replaced
by the table value.

To the user, both reading and writing of files appear to be synchronous and unbuffered.
That is, immediately after return from a read call the data are available; conversely, after a
write the user’s workspace may be reused. In fact, the system maintains a rather complicated
buffering mechanism that reduces greatly the number of 1/O operations required to access a
file. Suppose a write call is made specifying transmission of a single byte. The system will
search its buffers to see whether the affected disk block currently resides in main memory; if
not, it will be read in from the device. Then the affected byte is replaced in the buffer and an
entry is made in a list of blocks to be written. The return from the write call may then take
place, although the actual I/O may not be completed until a later time. Conversely, if a single
byte is read, the system determines whether the secondary storage block in which the byte is
located is already in one of the system’s buffers; if so, the byte can be returned immediately. If
not, the block is read into a buffer and the byte picked out.

The system recognizes when a program has made accesses to sequential blocks of a file,
and asynchronously pre-reads the next block. This significantly reduces the running time of
most programs while adding little to system overhead.

A program that reads or writes files in units of 512 bytes has an advantage over a program
that reads or writes a single byte at a time, but the gain is not immense; it comes mainly from
the avoidance of system overhead. If a program is used rarely or does no great volume of I/0O,
it may quite reasonably read and write in units as small as it wishes.

The notion of the i-list is an unusual feature of UNIX. In practice, this method of organ-
izing the file system has proved quite reliable and easy to deal with. To the system itself, one
of its strengths is the fact that each file has a short, unambiguous name related in a simple way
to the protection, addressing, and other information needed to access the file. It also permits a
quite simple and rapid algorithm for checking the consistency of a file system, for example,
verification that the portions of each device containing useful information and those free to be
allocated are disjoint and together exhaust the space on the device. This algorithm is indepen-
dent of the directory hierarchy, because it need only scan the linearly organized i-list. At the
same time the notion of the i-list induces certain peculiarities not found in other file system
‘organizations. For example, there is the question of who is to be charged for the space a file
occupies, because all directory entries for a file have equal status. Charging the owner of a file
is unfair in general, for one user may create a file, another may link to it, and the first user may
delete the file. The first user is still the owner of the file, but it should be charged to the

8 The UNIX Time-Sharing System

second user. The simplest reasonably fair algorithm seems to be to spread the charges equally
among users who have links to a file. Many installations avoid the issue by not charging any
fees at all.

V. PROCESSES AND IMAGES

An image is a computer execution environment. It includes a memory image, general
register values, status of open files, current directory and the like. An image is the current
state of a pseudo-computer.

A process is the execution of an image. While the processor is executing on behalf of a
process, the image must reside in main memory; during the execution of other processes it
remains in main memory unless the appearance of an active, higher-priority process forces it to
be swapped out to the disk.

The user-memory part of an image is divided into three logical segments. The program
text segment begins at location O in the virtual address space. During execution, this segment
is write-protected and a single copy of it is shared among all processes executing the same pro-
gram. At the first hardware protection byte boundary above the program text segment in the
virtual address space begins a non-shared, writable data segment, the size of which may be
extended by a system call. Starting at the highest address in the virtual address space is a stack
segment, which automatically grows downward as the stack pointer fluctuates.

5.1 Processes
Except while the system is bootstrapping itself into operation, a new process can come
into existence only by use of the fork system call:
processid = fork ()

When fork is executed, the process splits into two independently executing processes. The two
processes have independent copies of the original memory image, and share all open files. The
new processes differ only in that one is considered the parent process: in the parent, the
returned processid actually identifies the child process and is never 0, while in the child, the
returned value is always 0.

Because the values returned by fork in the parent and child process are distinguishable,
cach process may determine whether it is the parent or child.

5.2 Pipes
Processes may communicate with related processes using the same system read and write
calls that are used for file-system 1/O. The call:
filep = pipe ()

returns a file descriptor filep and creates an inter-process channel called a pipe. This channel,
like other open files, is passed from parent to child process in the image by the fork call. A
read using a pipe file descriptor waits until another process writes using the file descriptor for
the same pipe. At this point, data are passed between the images of the two processes. Neither
process need know that a pipe, rather than an ordinary file, is involved.

Although inter-process communication via pipes’is a quite' valuablé tool (see Section 6.2),
it is not a completely general mechanism, because the pipe must be set up by a common ances-
tor of the processes involved. :

5.3 Execution of programs
Another major system primitive is invoked by

execute (file, arg,, arg,, ... ,arg,)

which requests the system to read in and execute the program named by file, passing it string

The UNIX Time-Sharing System 9

arguments arg,, arg,y, ..., arg,. All the code and data in the process invoking execute is
replaced from the file, but open files, current directory, and inter-process relationships are
unaltered. Only if the call fails, for example because file could not be found or because its
execute-permission bit was not set, does a return take place from the execute primitive;. it
resembles a “‘jump’ machine instruction rather than a subroutine call.

5.4 Process synchronization
Another process control system call:

processid = wait (status)

causes its caller to suspend execution until one of its children has completed execution. Then
wait returns the processid of the terminated process. An error return is taken if the calling
process has no descendants. Certain status from the child process is also available.

5.5 Termination
Lastly:
exit (status)

terminates a process, destroys its image, closes its open files, and generally obliterates it. The
parent is notified through the wait primitive, and status is made available to it. Processes may
also terminatc as a result of various illegal actions or user-generated signals (Section VII
below).

V1. THE SHELL

For most users, communication with the system is carried on with the aid of a program
called the shell. The shell is a command-line interpreter: it reads lines typed by the user and
interprets them as requests Lo execute other programs. (The shell is described fully elsewhere,?
5o this section will discuss only the theory of its operation.) In simplest form, a command line
consists of the command name followed by arguments to the command, all separated by spaces:

command arg, arg, ... arg

The shell splits up the command name and the arguments into separate strings. Then a file
with namc command is sought; command may be a path name including the *‘/*’ character to
specify any file in the system. If command is found, it is brought into memory and executed.
The arguments collected by the shell are accessible to the command. When the command is
finished, the shell resumes its own execution, and indicates its readiness to accept another com-
mand by typing a prompt character.

If file command cannot be found, the shell generally prefixes a string such as /bin/ to
command and attempts again to find the file. Directory /bin contains commands intended to
be generally used. (The sequence of directories to be searched may be changed by user
request.)

6.1 Standard 1/0

The discussion of 1/O in Section III above seems to imply that every file used by a pro-
gram must be opened or created by the program in order to get a file descriptor for the file.
Programs executed by the shell, however, start off with three open files with file descriptors 0,
1, and 2. As such a program begins execution, file 1 is open for writing, and is best understood
as the standard output file. Except under circumstances indicated below, this file is the user’s
terminal. Thus programs that wish to write informative information ordinarily use file descrip-
tor 1. Conversely, file 0 starts off open for reading, and programs that wish to read messages
typed by the user read this file.

The shell is able to change the standard assignments of these file descriptors from the
user’s terminal printer and keyboard. If one of the arguments to a command is prefixed by

10 The UNIX Time-Sharing System

(13

>, file descriptor 1 will, for the duration of the command, refer to the file named after the
**>"". For example: \

Is

ordinarily lists, on the typewriter, the names of the files in the current directory. The com-
mand:

Is >there

creates a file called there and places the listing there. Thus the argument >there means ‘‘place
output on there.”” On the other hand:

ed

ordinarily enters the editor, which takes requests from thc user via his keyboard. The com-
mand

ed <script

interprets script as a file of editor commands; thus <script means *‘‘take input from script.”

Although the file name following *‘<<* or *‘>>"" appears to be an argument to the com-
mand, in fact it is interpreted completely by the shell and is not passed to the command at all.
Thus no special coding to handle I/O redirection is needed within each command; the com-
mand need merely use the standard file descriptors 0 and 1 where appropriate.

File descriptor 2 is, like file 1, ordinarily associated with the terminal output stream.
When an output-diversion request with **>"" is specified, file 2 remains attached to the termi-
nal, so that commands may produce diagnostic messages that do not silently end up in the out-
put file.

6.2 Filters

An extension of the standard I/O notion is used to direct output from one command to
the input of another. A sequence of commands separated by vertical bars causes the shell to
execute all the commands simultaneously and to arrange that the standard output of each com-
mand be delivered to the standard input of the next command in the sequence. Thus in the
command line:

Is | pr —2 1 opr

Is lists the names of the files in the current directory; its output is passed to pr, which paginates
its input with dated headings. (The argument ‘=2’ requests double-column output.) Likewise,
the output from pr is input to opr; this command spools its input onto a file for off-line print-
ing.

This procedure could have been carried out more clumsily by:

Is >templ
pr —2 <templ >temp2
opr <temp2

followed by removal of the temporary files. In the absence of the ability to redirect output and
input, a still clumsier method would have been to require the Is command to accept user
requests to paginate its output, to print in multi-column format, and to arrange that its output
be delivered off-line. Actually it would be surprising, and in fact unwise for efficiency reasons,
to expect authors of commands such as Is to provide such a wide variety of output options.

" A program such as pr which copies its standard input to its standard output (with process-
ing) is called a filter. Some filters that we have found useful perform character transliteration,
selection of lines according to a pattern, sorting of the input, and encryption and decryption.

The UNIX Time-Sharing System 11

6.3 Command separators; multitasking

Another feature provided by the shell is relatively straightforward. Commands need not
be on different lines; instead they may be separated by semicolons:

Is; ed
will first list the contents of the current directory, then enter the editor.

A rclated feature is more interesting. If a command is followed by ‘‘&,’’ the shell will not
wait for the command to finish before prompting again; instead, it is ready immediately to
accept a new command. For example:

as source >output &

causes source to be assembled, with diagnostic output going to output; no matter how long the
assembly takes, the shell returns immediately. When the shell does not wait for the completion
of a command, the identification number of the process running that command is printed. This
identification may be used to wait for the completion of the command or to terminate it. The
“&" may be used several times in a line:

as source >output & Is >files &

does both the assembly and the listing in the background. In these examples, an output file
other than the terminal was provided; if this had not becn done, the outputs of the various
commands would have been intermingled.

The shell also allows parentheses in the above operations. For example:
(date; Is) >x &

writes the current date and time followed by a list of the current directory onto the file x. The
shell also returns immediately for another request.

6.4 The shell as a command; command files

The shell is itself a command, and may be called recursively. Suppose file tryout contains
the lines:

as source
mv a.out testprog
testprog

The mv command causes the filc a.out to be renamed testprog. a.out is the (binary) output of
the asscmbler, ready to be executed. Thus if the three lines above were typed on the keyboard,
source would be assembled, the resulting program renamed testprog, and testprog executed.
When the lines are in tryout, the command:

sh <tryout

would cause the shell sh to execute the commands sequentially.

The shell has further capabilities, including the ability to substitute parameters and to con-
struct argument lists from a specified subset of the file names in a directory. It also provides
general conditional and looping constructions.

6.5 Implementdtion of the shell

The outline of the operation of the shell can now be understood. Most of the time, the
shell is waiting for the user to type a command. When the new-line character ending the line is
typed, the shell’s read call returns. The shell analyzes the command line, putting the argu-
ments in a form appropriate for execute. Then fork is called. The child process, whose code of
course is still that of the shell, attempts to perform an execute with the appropriate arguments.
If successful, this will bring in and start execution of the program whose name was given.
Meanwhile, the other process resulting from the fork, which is the parent process, waits for the

12 The UNIX Time-Sharing System

child process to die. When this happens, the shell knows the command is finished, so it types
its prompt and reads the keyboard to obtain another command.

Given this framework, the implementation of background processes is trivial; whenever a
command line contains ‘‘&," the shell merely refrains from waiting for the process that it
created to executc the command.

Happily, all of this mechanism meshes very nicely with the notion of standard input and
output files. When a process is created by the fork primitive, it inherits not only the memory
image of its parent but also all the files currently open in its parent, including those with file
descriptors 0, 1, and 2. The shell, of course, uses these files to read command lines and to
write its prompts and diagnostics, and in the ordinary case its children—the command
programs—inherit them automatically. When an argument with ‘<" or ““>"" is given, how-
ever, the offspring process, just before it performs execute, makes the standard I/O file descrip-
tor (0 or 1, respectively) refer to the named file. This is easy because, by agreement, the smal-
lest unused file descriptor is assigned when a new file is opened (or created); it is only neces-
sary to close file 0 (or 1) and open the named file. Because the process in which the command
program runs simply terminates when it is through, the association between a file specified after
<< or “>"" and file descriptor 0 or 1 is ended automatically when the process dies. There-
fore the shell need not know the actual names of the files that are its own standard input and
output, because it need never reopen them.

Filters are straightforward extensions of standard 1/O redirection with pipes used instead
of files.

In ordinary circumstances, the main loop of the shell never terminates. (The main loop
includes the branch of the return from fork belonging to the parent process; that is, the branch
that does a wait, then reads another command line.) The one thing that causes the shell to ter-
minate is discovering an end-of-file condition on its input file. Thus, when the shell is exe-
cuted as a command with a given input file, as in:

sh <comfile

the commands in comfile will be executed until the end of comfile is reached; then the instance
of the shell invoked by sh will terminate. Because this shell process is the child of another
instance of the shell, the wait executed in the latter will return, and another command may
then be processed.

6.6 Initialization

The instances of the shell to which users type commands are themselves children of
another process. The last step in the initialization of the system is the creation of a single pro-
cess and the invocation (via execute) of a program called init. The role of imit is to create one
process for each terminal channel. The various subinstances of init open the appropriate termi-
nals for input and output on files 0, 1, and 2, waiting, if necessary, for carrier to be established
on dial-up lines. Then a message is typed out requesting that the user log in. When the user
types a name or other identification, the appropriate instance of init wakes up, receives the
log-in line, and reads a password file. If the user’s name is found, and if he is able to supply
the correct password, init changes to the user’s default current directory, sets the process’s user
ID to that of the person logging in, and performs an execute of the shell. At this point, the
shell is ready to receive commands and the logging-in protocol is complete.

Meanwhile, the mainstream path of imit (the parent of all the subinstances of itself that
will later become shells) does a wait. If one of the child processes terminates, either because a
shell found an end of file or because a user typed an incorrect name or password, this path of
init simply recreates the defunct process, which in turn reopens the appropriate input and out-
put files and types another log-in message. Thus a user may log out simply by typing the end-
of-file sequence to the shell.

The UNIX Time-Sharing System 13

6.7 Other programs as shell

The shell as described above is designed to allow users full access to the facilities of the
system, because it will invoke the execution of any program with appropriate protection mode.
Sometimes, however, a different interface to the system is desirable, and this feature is easily
arranged for.

Recall that after a user has successfully logged in by supplying 2 name and password, init
ordinarily invokes the shell to interpret command lines. The user’s entry in the password file
may contain the name of a program to be invoked after log-in instead of the shell. This pro-
gram is free to interpret the user’s messages in any way it wishes.

For example, the password file entries for users of a secretarial editing system might
specify that the editor ed is to be used instead of the shell. Thus when users of the editing sys-
tem log in, they are inside the editor and can begin work immediately; also, they can be
prevented from invoking programs not intended for their use. In practice, it has proved desir-
able to allow a temporary escape from the editor to execute the formatting program and other
utilities.

Several of the games (e.g., chess, blackjack, 3D tic-tac-toe) available on the system illus-
trate a much more severely restricted environment. For each of these, an entry exists in the
password file specifying that the appropriate game-playing program is to be invoked instead of
the shell. People who log in as a player of one of these games find themselves limited to the
game and unable to investigate the (presumably more interesting) offerings of the UNIX system
as a whole.

VII. TRAPS

The PDP-11 hardware detects a number of program faults, such as references to non-
existent memory, unimplemented instructions, and odd addresses used where an even address
is required. Such faults cause the processor to trap to a system routine. Unless other arrange-
ments have been made, an illegal action causes the system to terminate the process and to write
its image on file core in the current directory. A debugger can be used to determine the state
of the program at the time of the fault.

Programs that are looping, that produce unwanted output, or about which the user has
second thoughts may be halted by the use of the interrupt signal, which is generated by typing
the ‘‘delete’ character. Unless special action has been taken, this signal simply causes the pro-
gram to cease execution without producing a core file. There is also a quit signal used to lorce
an image file to be produced. Thus programs that loop unexpectedly may be halted and the
remains inspected without prearrangement.

The hardware-generated faults and the interrupt and quit signals can, by request, be either
ignored or caught by a process. For example, the shell ignores quits to prevent a quit from log-
ging the user out. The editor catches interrupts and returns to its command level. This is use-
ful for stopping long printouts without losing work in progress (the editor manipulates a copy of
the file it is editing). In systems without floating-point hardware, unimplemented instructions
are caught and floating-point instructions are interpreted.

VIII. PERSPECTIVE

Perhaps paradoxically, the success of the UNIX system is largely due to the fact that it was
not designed to meect any predefined objectives. The first version was written when one of us
(Thompson), dissatisfied with the available computer facilities, discovered a little-used PDP-7
and set out to create a more hospitable environment. This (essentially personal) effort was
sufficiently successful to gain the interest of the other author and several colleagues, and later
to justify the acquisition of the PDP-11/20, specifically to support a text editing and formatting
systcm. When in turn the 11/20 was outgrown, the system had proved useful enough to per-
suade management to invest in the PDP-11/45, and later in the PDP-11/70 and Interdata 8/32
machines, upon which it developed to its present form. QOur goals throughout the effort, when

14 The UNIX Time-Sharing System

articulated at all, have always been to build a comfortable relationship with the machine and to
explore ideas and inventions in operating systems and other software. We have not been faced
with the need to satisfy someone else’s requirements, and for this freedom we are grateful.

Three considerations that influenced the design of UNIX are visible in retrospect.

First: because we are programmers, we naturally designed the system to make it easy to
write, test, and run programs. The most important expression of our desire for programming
convenience was that the system was arranged for interactive use, even though the original ver-
sion only supported one user. We believe that a properly designed interactive system is much
more productive and satisfying to use than a ‘‘batch” system. Moreover, such a system is
rather easily adaptable to noninteractive use, while the converse is not true.

Second: there have always been fairly severe size constraints on the system and its
software. Given the partially antagonistic desires for reasonable efficiency and expressive
power, the size constraint has encouraged not only economy, but also a certain elegance of
design. This may be a thinly disguised version of the ‘‘salvation through suffering’’ philosophy,
but in our case it worked.

Third: nearly from the start, the system was able to, and did, maintain itself. This fact is
more important than it might seem. If designers of a system are forced to use that system,
they quickly become aware of its functional and superficial deficiencies and are strongly
motivated to correct them before it is too late. Because all source programs were always avail-
able and easily modified on-line, we were willing to revise and rewrite the system and its
software when new ideas were invented, discovered, or suggested by others.

The aspects of UNIX discussed in this paper exhibit clearly at least the first two of these
design considerations. The interface to the file system, for example, is extremely convenient
from a programming standpoint. The lowest possible interface level is designed to eliminate
distinctions between the various devices and files and between direct and sequential access. No
large ‘‘access method™ routines are required to insulate the programmer from the system calls;
in fact, all user programs either call the system directly or use a small library program, less than
a page long, that buffers a number of characters and reads or writes them all at once.

‘Another important aspect of programming convenience is that there are no ‘‘control
blocks’” with a complicated structure partially maintained by and depended on by the file system
or other system calls. Generally speaking, the contents of a program’s address space are the
property of the program, and we have tried to avoid placing restrictions on the data structures
within that address space.

Given the requirement that all programs should be usable with any file or device as input
or output, it is also desirable to push device-dependent considerations into the operating system
itself. The only alternatives seem to be to load, with all programs, routines for dealing with
each device, which is expensive in space, or to depend on some means of dynamically linking
to the routine appropriate to each device when it is actually needed, which is expensive either
in overhead or in hardware.

Likewise, the process-control scheme and the command interface have proved both con-
venient and efficient. Because the shell operates as an ordinary, swappable user program, it
consumes no ‘‘wired-down’’ space in the system proper, and it may be made as powerful as
desired at little cost. In particular, given the framework in which the shell executes as a process
that spawns other processes to perform commands, the notions of 1/O redirection, background
processes, command files, and user-selectable system interfaces all become essentially trivial to
implement.

Influences

The success of UNIX lies not so much in new inventions but rather in the full exploitation
of a carefully selected set of fertile ideas, and especially in showing that they can be keys to the
implementation of a small yet powerful operating system.

The UNIX Time-Sharing System 15

The fork operation, essentially as we implemented it, was present in the GENIE time-
sharing system.!® On a number of points we were influenced by Multics, which suggested the
particular form of the 1/O system calls!! and both the name of the shell and its general func-
tions. The notion that the shell should create a process for each command was also suggested
to us by the early design of Multics, although in that system it was later dropped for cfficiency
reasons. A similar scheme is used by TENEX.!2

IX. STATISTICS

The following numbers are presented to suggest the scale of the Research UNIX opera-
tion. Those of our users not involved in document preparation tend to use the system for pro-
gram development, especially language work. There are few important ‘‘applications’ pro-
grams.

Overall, we have today:

125 user population
33 maximum simultancous users
1,630 directories
28,300 files

301,700 512-byte secondary storage blocks used

There is a “*background” process that runs at the lowest possible priority; it is used to soak up
any idle CPU time. It has been used to produce a million-digit approximation to the constant e,
and other semi-infinite problems. Not counting this background work, we average daily:

13,500 commands
9.6 CPU hours
230 connect hours

62 different users
240 log-ins

X. ACKNOWLEDGEMENTS

The contributors to UNIX are, in the traditional but here especially apposite phrase, too
numerous to mention. Certainly, collective salutes are due to our colleagues in the Computing
Science Research Center. R. H. Canaday contributed much to the basic design of the file sys-
tem. We are particularly appreciative of the inventiveness, thoughtful criticism, and constant
support of R. Morris, M. D. Mcllroy, and J. F. Ossanna.

REFERENCES

[1] L. P. Deutsch and B. W. Lampson. An online editor, CACM 10(12):793-99,803
(December 1967).

[2] B. W. Kernighan and L. L. Cherry. A System for Typesetting Mathematics, CACM
18(3):151-57 (March 1975).

[3] B. W. Kernighan, M. E. Lesk, and J. F. Ossanna. UNIX Time-Sharing System: Document
Preparation, Bell Sys. Tech. J. 5§7(6):2115-35 (July-August 1978, Part 2).

[4] T. A. Dolotta and J. R. Mashey. An Introduction to the Programmer’s Workbench, Proc.
2nd Int. Conf. on Software Engineering, pp. 164-68 (October 13-15, 1976).

[S] T. A. Dolotta, R. C. Haight, and J. R. Mashey. UNIX Time-Sharing System: The
Programmer’s Workbench, Bell Sys. Tech. J. 57(6):2177-2200 (July-August 1978, Part 2).

16

(6]
(7]
(8]
[9]
[10]
[11]

[12]

The UNIX Time-Sharing System

H. Lycklama. UNIX Time-Sharing System: UNIX on a Microprocessor, Bell Sys. Tech. J.
57(6):2087-2101 (July-August 1978, Part 2).

B. W. Kernighan and D. M. Ritchic. The C Programming Language , Prentice-Hall, Engle-
wood Cliffs, New Jersey (1978).

Aleph-null. Computer Recreations, Software Practice & Experience 1(2):210-4 (April-June
1971).

S. R. Bourne. UNIX Time-Sharing System: The UNIX Shell, Bell Sys. Tech. J.
57(6):1971-90 (July-August 1978, Part 2).

L. P. Deutsch and B. W. Lampson. SDS 930 Time-Sharing System Preliminary Reference
Manual, Doc. 30.10.10, Project GENIE, Univ. Cal. at Berkeley (April 1965).

R.). Feiertag and E. I. Organick. The Multics Input-Output System, Proc. Third Sympo-
sium on Operating Systems Principles , pp. 35-41 (October 18-20, 1971).

D. G. Bobrow, J. D. Burchfiel, D. L. Murphy, and R. 8. Tomlinson. TENEX, a Paged
Time Sharing System for the PDP-10, CACM 15(3):135-43 (March 1972).

January 1981

UNIX
B.1.1

UNIX Documentation Road Map

G. A. Snyder
J. R. Mashey

Bell Laboratorics
Murray Hill, New Jersey 07974

1. INTRODUCTION

A great deal of documentation exists for the UNIX{ time-sharing system. New users are often
overcome by the volume and distributed nature of the documentation. This ““road map”’
attempts to be a terse, up-to-date outline of important documents and information sources.

tz= The information in this document applies only to UNIX Release 4.0.
1.1 Things to Do

See a local UNIX *‘system administrator’” to obtain a ‘“‘login name’ and get other appropriate
system information. See also Section 12 below.

1.2 Notation Used in This Road Map (B.1.1) ee

{N} — Section N in this road map.
ee — Item required for cveryone.
e — Item recommended for most users.

All other items are optional and depend on specific interests. If the name of a document men-
tioned here is followed by a number such as ‘‘(A.1.1),” then that document can be found in
Documents for UNIX. Examine Section G of the Annotated Table of Contents in that volume for
additional sources of information.

Entries in Section n of the UNIX User's Manual are referred to by name(n).
1.3 List of Following Sections ee

{2} BASIC INFORMATION

{3} BASIC TEXT PROCESSING AND DOCUMENT PREPARATION
{4} SPECIALIZED TEXT PROCESSING

{5} ADVANCED TEXT PROCESSING

{6} COMMAND LANGUAGE (SHELL) PROGRAMMING
{7} FILE MANIPULATION

{8} C PROGRAMMING

{9} NUMERICAL COMPUTATION

{10} SOURCE CODE CONTROL SYSTEM

{11} INTER-SYSTEM COMMUNICATION

{12} LOCAL INFORMATION

1.4 Prerequisite Structure of Following Sections ee

/N N/
{4} {5} {8,10,11}

+ UNIX is a trademark of Bell Laboratories.

2 UNIX Documentation Road Map

Each section contains a list of relevant documents and a list of pertinent manual entries; some
sections also contain a list of suggested things to do.

Only the manual entries for the most frequently used commands are listed here; other relevant
entries may be found by consulting the Table of Contents and the Permuted Index of the UNIX
User’s Manual {2.1}; it is also wise to periodically scan Section 1 of that manual—you will often
discover new uses for commands.

2. BASIC INFORMATION

You won’t be able to do much until you have learned most of the material in {2.1}, {2.2}, and
{2.3}. You must know how to log into the system, make your terminal work correctly, enter
and edit files, and perform basic operations on directories and files. Get the UNIX Programming
Starter Package from your local Computer Information Service Library.

2.1 UNIX User’s Manual ee

— Read Introduction and How to Get Started.

-— Read the intro entry in each section.

— Look through Section 1 to become familiar with command names.

— Get into the habit of using the Table of Contents and the Permuted Index.

Section 1 will be especially needed for reference use.

2.2 UNIX for Beginners (Second Edition) (B.3.1) ee

2.3 A Tutorial Introduction to the UNIX Text Editor (B.2.1) ee

2.4 Advanced Editing on UNIX (B.2.2) e

2.5 The Bell System Technical Journal, Vol. 57, No. 6, Part 2 @

Contains several articles on UNIX. In particular, the first paper gives a good overview of UNIX.
2.6 Things to Do

— Do all the exercises found in {2.2} and {2.3}, and maybe {2.4}.

— If you want some sequence of commands to be executed each time you log in, create a file
named .profile in your login directory.! A sample .profile can be found in profile(5).

— Files in directory /usr/mews contain recent information on various topics. To print all the
news items that have been added since you last looked, type:

news
2.7 Manual Entries

The following commands are described in Section 1 of the UNIX User's Manual and are used
for creating, editing, moving (i.e., renaming), and removing files:

cat(1) concatenate and print files (no pagination).

cd(1) change working (current) directory.

chmod(1) change the mode of a file.

cp(l). .. copy (¢p), move (mv) or lmk (In) ﬁlcs

ed(1) - edit a file. - _,‘ ,

Is(t)y list a directory; file names beglnmng with . are not listed unlcss,h;t_h'cy;—a
flag is used.

mkdir(1) make a (new) directory.

1. The directory you are in when you log into the system.

UNIX Documentation Road Map 3

pr(1) print files (paginated listings).

pwd(1) print working directory.

rm(1) remove (delete) file(s); rmdir removes the named directories, which must
be empty. ’

The following help you communicate with other users, make proper use of different kinds of
terminals, and print manual entries on-line:

login(1) sign on,

mail(1) send mail to other users or inspect mail from them.

man(1) print entries of UNIX User’s Manual.

mesg(1) permit or deny messages to your terminal.

news(1) print news items: news —n prints a list of recent items.

passwd(1) change your login password.

stty(1) set terminal options; i.e., inform the system about the hardware characteris-
tics of your terminal.

tabs(1) set tab stops on your terminal.

term(7) a list of commonly-used terminals.

who(1) print list of currently logged-in users.

write(1) communicate with another (logged-in) user.

Several useful status commands also exist:

date(1) print time and date.
du(l) summarize disk usage.
ps(1) report active process status.

3. BASIC TEXT PROCESSING AND DOCUMENT PREPARATION

You should read this section if you want to use existing text processing tools to write letters,
memoranda, manuals, etc. Get the UNIX Text Editing and Phototypesetting Starter Package from
your local Computer Information Service Library.

3.1 MM—Memorandum Macros (C.2.1) ee

This is a reference manualthat can be moderately heavy going for a beginner. Try out some of
the examples and stick close to the default options.

3.2 Typing Documents with MM (C.2.2) oo

A handy fold-out.

3.3 A TROFF Tutorial (C.1.1) @

An introduction to formatting text with the phototypesetter.
3.4 NROFF/TROFF User’s Manual (C.1.2) e

Describes the text formatting language in great detail; look at the SUMMARY AND INDEX, but
don’t try to digest the whole manual on first reading.

3.5 Manual Entries

N

mm(1) print a document using the memorandum macros. : .

troff (1) typeset or format (nroff) text files; read this to become familiar with
5 options. _
spell(1) identify possible spelling errors.

To obtain some special functions (e.g., reverse paper motion, subscripts. superscripts), you
must either indicate the terminal type to nroff’ or post-process nroff output through one of the
following:

4 UNIX Documentation Road Map

col(1) process text for terminals lacking physical reverse vertical motion, such as
the Texas Instruments 700 series, Model 43 TELETYPE®, etc.

greek(1) handle special functions for many terminals, such as DASI 300, Tektronix
4014, Diablo 1620, Hewlett-Packard 2645, etc.

tc(1) simulate phototypesetter output on a Tektronix 4014 terminal.

4. SPECIALIZED TEXT PROCESSING

The tools listed here are of a more specialized nature than those in {3}.
4.1 TBL—A Program to Format Tables (C.3.1) @

Great help in formatting tabular data (see also thl(1)).

4.2 Typesetting Mathematics—User’s Guide (Second Edition) (C.3.2) e

Read this if you need to produce mathematical equations. It describes the use of the equation-
setting command egn(1). :

4.3 A Macro Package for View Graphs and Slides (C.2.3)
Tells how to prepare typeset visuals.

4.4 UNIX Graphbics Overview (E.6.1)

Describes the Graphics sub-system of UNIX.

4.5 Manual Entries

cw(l1) use a special constant-width ‘“‘example’” font.

diffmk(1) mark changes between versions of a file, using output of 4iff(1) to produce
““revision bars’’ in the right margin.

eqn(1) preprocessor for mathematical equations.

eqnchar(7) special character definitions for egn(1).
graphics(1G) get into the graphics sub-system.

mmt(1) typeset documents, view graphs, and slides.
thl(1) preprocessor for tabular data.

5. ADVANCED TEXT PROCESSING

You should read this section if you need to design your own package of formatting macros or
perform other actions beyond the capabilities of existing tools; {3} is a prerequisite, and fami-
liarity with {4} is very helpful, as is an experienced advisor.

5.1 NROFF/TROFF User's Manual (C.1.2) ee
Look at this in detail and try modifying the examples. Read A TROFF Tutorial {3.3}.
5.2 Things to Do

It is fairly easy to use the text formatters for simple purposes. A typical application is that of
writing simple macros that print standard headings in order to eliminate repetitive keying of
such headings. It is extremely difficult to set up general-purpose macro packages for use by
large numbers of people. Don’t re-invent what you can borrow from an existing package (such
as MM—see {3.1} and {3.2}).

5.3 Manual Entries
All entries mentioned in {3.5} and {4.5}.

UNIX Documentation Road Map 5

6. COMMAND LANGUAGE (SHELL) PROGRAMMING

The shell provides a powerful programming language for combining existing commands. This
section should be especially useful to those who want to automate manual procedures and build
data bases.

6.1 The UNIX Time-Sharing System (A.1.2) ee@
6.2 UNIX Shell Tutorial (B.4.1) ee®

6.3 An Introduction to the UNIX Shell (B.4.2)
6.4 Things to Do

If you want to create your own library of commands, for example /usr/gas/bin, set the PATH
parameter in your .profile so that your own library is searched when a command is invoked.
For example:

PATH=:$HOME/bin:/bin:/usr/bin
The HOME parameter is described in sh(1).
6.5 Manual Entries

Read sh(1l) first; the following entries give further details on commands that are most fre-
quently used within command language programs:

echo(l) echo arguments (typically to terminal).

env(l) set environment for command execution.

expr(l) evaluate an algebraic expression; includes some string operations.
line(1) read a line from the standard input.

nohup(1) run a command immune to communications line hang-up.

sh(1) shell (command interpreter and programming language).

test(1) evaluate a logical expression.

7. FILE MANIPULATION

In addition to the basic commands of {2}, many UNIX commands exist to perform various
kinds of file manipulation. Small data bases can often be managed quite simply by combining
text processing {5}, shell programming {6}, and the commands listed below in {7.3}.

7.1 SED—A Non-Interactive Text Editor (B.2.3)
7.2 AWK—A Pattern Scanning and Processing Language (E.3.1)
7.3 Manual Entries

The starred (*) items below are especially useful for dealing with “‘fielded data,”” i.e., data
where each line is a sequence of delimited fields. The following are used to search or edit files
in a single pass:

awk(1)* perform actions on lines matching specified patterns.

grep(1) search a file for a pattern; more powerful and specialized versions include
egrep and fgrep.

sed(1)* stream editor.

tr(1) transliterate (substitute or delete specified characters).

The following compare files in different ways:

cmp(1) cornpare‘ﬁles (byte by byte).
comm(1) print lines common to and/or different in two files.
diff(1) differential file comparator (minimal editing for conversion).

6 UNIX Documentation Road Map

The following combine files and/or split them apart:

ar(1) archiver and library maintainer.

cpio(1) general file copying and archiving,.

cut(1)* cut out selected fields of each line of a file.

join(1) join two relations specified by the lines of two files.
paste(1)* merge lines from several files.

split(1) split file into chunks of specified size.

The following interrogate files and print information about them:

file(1) determine file type (best guess).
od(1) octal dump (and other kinds also).
sum(1) sum and count blocks in a file.
we(l) word (and line and character) count.

Miscellaneous commands:

find(1) search directory structure for specified kinds of files.
sort(1)* sort or merge files.

tail(1) print the last part of a file.

tee(1) copy single input to several output files.

uniq(1)* report repeated lines in a file, or obtain unique ones.

8. C PROGRAMMING
Try to use existing tools first, before writing C programs at all.

8.1 The C Programming Language

A book written by B. W. Kernighan and D. M. Ritchie; published by Prentice Hall (1978). It
contains comprehensive text and includes a tutorial and a reference manual. Read the tutorial;
try the examples. Check for updates to the reference manual {8.2} from time to time.

8.2 The C Programming Language—Reference Manual (D.1.1) se
8.3 UNIX Programming (D.3.1) @

8.4 A Guide to the C Library for UNIX Users (D.1.2) o

8.5 SDB—A Symbolic Debugger (D.5.1)

8.6 YACC—Yet Another Compiler- Compiler (E.1.2)

8.7 LEX—A Lexical Analyzer Generator (E.1.1)

8.8 LINT, a C Program Checker (D.1.3)

8.9 MAKE—A Program for Maintaining Computer Programs (D.4.1)
8.10 An Augmented Version of MAKE (D.4.2)

8.11 Things to Do

Read {8.1} and do some of the exercises. A good way to become familiar with C is to look at
the source code of existing programs, especially ones whose functions are well known to you.
Much code can be found in directory /usr/src. In particular, the directory emd contains the
source for most of the commands. Also, investigate directory /usr/include.

8.12 Manual Entries

ar(1) archive and library maintainer.
cc(1) compile C programs.
1d(1) link edit object files; you must know about some of its flags.

UNIX Documentation Road Map

lex(1) generate lexical analyzers.

lint(1) verify C programs.

lorder(1) find ordering relation for an object library.

make(1) automate program (re)generation procedures,

nm(1) print name (i.e., symbol) list.

prof(1) display profile data; used for program optimization.

ps(1) report active process status.

sdb(1) debug C and F77 programs symbolically on the VAX 11/780.
strip(1) remove symbols and relocation bits from executable files.
time(1) time a command.

yace(1) parser generator.

9. NUMERICAL COMPUTATION

9.1 DC—An Interactive Desk Calculator (E.5.2)

9.2 BC—An Arbitrary Precision Desk-Calculator Language (E.5.1)
9.3 AWK—A Pattern Scanning and Processing Language (E.3.1)
9.4 A Portable FORTRAN 77 Compiler (D.2.1)

9.5 RATFOR—A Preprocessor for 2 Rational FORTRAN (D.2.2)
9.6 SDB—A Symbolic Debugger (D.5.1)

9.7 Manual Entries

awk(1) perform actions on lines matching specified patterns.

be(l) an interactive language, acts as front end for de(1).

bs(1) a compiler/interpreter for modest-sized programs.

dc(l) a desk calculator.

£77(1) a FORTRAN compiler.

ratfor(1) a rational FORTRAN dialect.

sdb(1) debug C and F77 programs symbolically on the VAX 11/780.

10. SOURCE CODE CONTROL SYSTEM
10.1 Source Code Control System User’s Guide (E.4.1) @
10.2 Manual Entries

admin(1) create and administer SCCS files.

cde(1) change the delta commentary of an SCCS file.

comb(1) combine deltas of an SCCS file.

delta(1) create a new version or delta of a file under SCCS control.
get(1) get a particular version of an SCCS file, usually for editing.
help(1) print helpful error messages and information about a command.
prs(1) print delta information of an SCCS file in a specified format.
rmdel(1) remove a delta.

sact(1) print current SCCS file editing activity.

sccsdiff(1) print the different lines between two deltas of an SCCS file.
unget(1) undo the version control mechanism created by a ger for editing.
val(1) validate an SCCS file. '

what(1) print out embedded information lines placed in a file by SCCS.

8 UNIX Documentation Road Map

11. INTER-SYSTEM COMMUNICATION

11.1 A Dial-up Network of UNIX Systems (E.8.1) @
11.2 UNIX Remote Job Entry User’s Guide (E.7.1) @
11.3 Manuasal Entries

The following commands (most of which are site-dependent) are useful in communicating with
other systems:

cu(1C) call another system.

dpr(1C) print files off-line at a specified destination.

fget(1C) retrieve files from the HONEYWELL 6000.

fsend(1C) send files to the HONEYWELL 6000.

geat(1C) send phototypesetter output to the HONEYWELL 6000.
send(1C) send files to an IBM host for execution using Remote Job Entry.
uucp(1C) copy files from one UNIX system to another.

uux(1C) execute command(s) on another UNIX system.

12. LOCAL INFORMATION
t# This section should be provided by each individual UNIX installation.

January 1981

UNIX
B.2.1

A Tutorial Introduction to the UNIX Text Editor

Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Almost all text input on the UNIXT operating system is done with the text-editor ed.
This memorandum is a tutorial guide to help beginners get started with text editing.

Although it does not cover everything, it does discuss enough for most users’ day-
to-day needs. This includes printing, appending, changing, deleting, moving and insert-
ing entire lines of text; reading and writing files; context searching and line addressing;
the substitute command; the global commands; and the use of special characters for

advanced editing.

Introduction

Ed is a “‘text editor’’, that is, an interactive
program for creating and modifying “‘text”’,
using directions provided by a user at a terminal.
The text is often a document like this one, or a
program or perhaps data for a program.

This introduction is meant to simplify learn-
ing ed. The recommended way to learn ed is to
read this document, simultaneously using ed to
follow the examples, then to read the description
in Section 1 of the UNIX User’s Manual, all the
while experimenting with ed. (Solicitation of
advice from experienced users is also useful.)

Do the exercises! They cover material not
completely discussed in the actual text. An
appendix summarizes the commands.

Disclaimer

This is an introduction and a tutorial. For
this reason, no attempt is made to cover more
than a part of the facilities that ed offers
(although this fraction includes the most useful
and frequently used parts). When you have
mastered the Tutorial, try Advanced Editing on
UNiX. Also, there is not enough space to explain
basic UNIX procedures. We will assume that you
know how to log on to UNIX, and that you have
at least a vague understanding of what a file is.
For more on that, read UNIX for Beginners.

t UNIX is a trademark of Bell Laboratories.

You must also know what character to type
as the end-of-line on your particular terminal.
This character is the RETURN key on most ter-
minals. Throughout, we will refer to this charac-
ter, whatever it is, as RETURN.

Getting Started

We’ll assume that you have logged in to your
system and it has just printed the prompt charac-
ter, usually either a § or a %. The easiest way to
get ed is to type

ed (followed by a return)

You are now ready to go — ed is waiting for you
to tell it what to do.

Creating Text — The Append Command ““a”

As)\}bur first problem, suppose you want to
create some text starting from scratch. Perhaps
you are typing the very first draft of a paper;
clearly it will have to start somewhere, and
undergo modifications later. This section will
show how to get some text in, just to get started.
Later we'll talk about how to change it.

When ed is first started, it is rather like work-
ing with a blank piece of paper — there is no
text or information present. This must be sup-
plied by the person using ed; it is usually done
by typing in the text, or by reading it into ed
from a file. We will start by typing in some text,
and return shortly to how to read files.

First a bit of terminology. In ed jargon, the
text being worked on is said to be “‘kept in a
buffer.”” Think of the buffer as a work space, if
you like, or simply as the information that you
are going to be editing. In effect the buffer is
like the piece of paper, on which we will write
things, then change some of them, and finally
file the whole thing away for another day.

The user tells ed what to do to his text by
typing instructions called ‘‘commands.” Most
commands consist of a single letter, which must
be typed in lower case. Each command is typed
on a separate line. (Sometimes the command is
preceded by information about what line or lines
of text are to be affected — we will discuss these
shortly.) Ed makes no response to most com-
mands — there is no prompting or typing of
messages like ‘‘ready’. (This silence is preferred
by experienced users, but sometimes a hangup
for beginners.)

The first command is append, written as the
letter

all by itself. It means “‘append (or add) text
lines to the buffer, as I type them in.”” Append-
ing is rather like writing fresh material on a piece
of paper.

So to cnter lines of text into the buffer, just
type an a followed by a RETURN, followed by
the lines of text you want, like this:

a

Now is the time

for all good men

to come to the aid of their party.

.

The only way to stop appending is to type a
line that contains only a period. The *“.”" is used
to tell ed that you have finished appending.
(Even experienced users forget that terminating
. sometimes. If ed seems to be ignoring you,
type an extra line with just *.” on it. You may
then find you've added some garbage lines to
your text, which you'll have to take out later.)

After the append command has been done,
the buffer will contain the three lines

Now is the time
for all good men .
to come to the aid of their party.

The “‘a’ and *“.” aren’t there, because they are
not text.

To add more text to what you already have,
just issue another a command, and continue typ-
ing.

Editor Tutorial

Error Messages — “?*

If at any time you make an error in the com-
mands you type to ed, it will tell you by typing

?

This is about as cryptic as it can be, but with
practice, you can usually figure out how you
goofed. In some versions of ed, you can get a
brief explanation of the error by typing

h

Writing Text out as a File — The Write Com-
mand ‘‘w”

It's likely that you’ll want to save your text
for later use. To write out the contents of the
buffer onto a file, use the write command

w

followed by the file name you want to write on.
This will copy the buffer’s contents onto the
specified file (destroying any previous informa-
tion on the file). To save the text on a file
named junk, for example, type

w junk
Leave a space between w and the file name. Ed

will respond by printing the number of characters
it wrote out. In this case, ed would respond with

68

(Remember that blanks and the return character
at the end of each line are included in the char-
acter count.) Writing a file just makes a copy of
the text — the buffer’s contents are not dis-
turbed, so you can go on adding lines to it. This
is an important point. Ed at all times works on a
copy of a file, not the file itself. No change in
the contents of a file takes place until you give a
w command. (Writing out the text onto a file
from time to time as it is being created is a good
idea, since if the system crashes or if you make
some horrible mistake, you will lose all the text
in the buffer but any text that was written onto a
file is relatively safe.)

Leaving ed — The Quit Command ‘“‘q”’

To terminate a session with ed, first save
your text by writing it onto a file using the w
command, and then type the quit command

q

The system will respond with the prompt charac-
ter ($ or %). At this point your buffer vanishes,
with all its text, which is why you want to write it
out before quitting.*

¢ Actually, ed will print ? if you try to quit without
writing. At that point, write if you want; if not, another q
will get you out regardless.

Editor Tutorial

Exercise 1: .
Enter ed and create some text using

a
dext ...

Write it out using w, Then leave ed with the q
command, and print the file, to see that every-
thing worked. (To print a file, say

pr file_name
or
cat file_name

in response to the prompt character. Try both.)

Reading Text From a File — The Edit Com-
mand ““e”

A common way to get text into the buffer is
to read it from a file in the file system, This is
what you do to edit text that you saved with the
w command in a previous scssion. The edir
command e fetches the entire contents of a file
into the buffer. So if you had saved the three
lines ‘‘Now is the time’’, etc., with a w com-
mand in an earlier session, the ed command

¢ junk

would fetch the entire contents of the file junk
into the buffer, and respond

68

which is the number of characters in junk. If
anything was already in the buffer, it is deleted first.

If you use the e command to read a file into
the buffer, then you need not use a file name
after a subsequent w command; ed remembers
the last file name used in an e command, and w
will write on this file. Thus a good way to
operate is

ed

¢ file

[editing session]
w

q

This way, you can simply say w from time to
time, and be secure in the knowledge that if you
got the file name right at the beginning, you are
writing into the proper file each time.

You can find out at any time what file name
ed is remembering by typing the file command f.
In this example, if you typed

f
ed would reply
junk

Reading Text From a File — The Read Com-
mand *‘r”’

Somctimes you want to read a file into the
buffer without destroying anything that is already
there. This is done by the read command r.
The command

r junk

will read the file junk into the buffer; it adds it
to the end of whatever is already in the buffer.
So if you do a read after an edit:

e junk
r junk

the buffer will contain two copies of the text (six
lines).

Now is the time
for all good men
to come to the aid of their party.
Now is the time
for all good men
to come to the aid of their party.

Like the w and e commands, r prints the number
of characters read in, after the reading operation
is complete.

Generally speaking, r is much less used than
e.

Exercise 2:

Experiment with the e command — try read-
ing and printing various files. You may get an
error ’name, where name is the name of a file;
this means that the filc doesn’t exist, typically
because you spelled the file name wrong, or
perhaps that you are not allowed to read or write
it. Try alternately reading and appending to see
that they work similarly. Verify that

ed file_name
is exactly equivalent to

ed
e file_name

What does
f file_name
do?

Printing the Contents of the Buffer — The
Print Command *“‘p”’

To print or list the contents of the buffer (or
parts of it) on the terminal, use the print com-
mand

P

The way this is done is as follows. Specify the
lines where you want printing to begin and where

you want it to end, separated by a comma, and
followed by the letter p. Thus to print the first
two lines of the buffer, for example, (that is,
lines 1 through 2) say

1,2p (starting line=1, ending line=2 p)
Ed will respond with

Now is the time
for all good men

Suppose you want to print all the lines in the
buffer. You could use 1,3p as above if you knew
there were exactly 3 lines in the buffer. But in
general, you don’t know how many there are, so
what do you usc for the ending line number?
Ed provides a shorthand symbol for *‘line
number of last line in buffer’” — the dollar sign
$. Use it this way:

1$p

This will print all the lines in the buffer (line 1
to last line); 1,$p can be abbreviated ,p. If you
want to stop the printing before it is finished,
push the DEL or Delete key; ed will type

?
and wait for the next command.

To print the last line of the buffer, you could
use

3.5
but ed lets you abbreviate this to
$p
You can print any single line by typing the line
number followed by a p. Thus
Ip
produces the response
Now is the time

which is the first line of the buffer.

In fact, ed lets you abbreviate even further:
you can print any single line by typing just the
line number — no need to type the letter p. So
if you say

s
ed will print the last line of the buffer.
You can also use $ in combinations like
$—-1.%p

which prints the last two lines of the buffer.
This helps when you want to sec how far you got

in typing.

Editor Tutorial

Exercise 3:

As before, create some text using the a com-
mand and experiment with the p command. You
will find, for example, that you can’t print line 0
or a line beyond the end of the buffer, and that
attempts to print a buffer in reverse order by say-
ing

3,Ip

don’t work.

The Current Line — ““Dot”’ or *“.”

Suppose your buffer still contains the six
lines as above, that you have just typed

1,3p
and ed has printed the three lines for you. Try
typing just

p (no line numbers)
This will print

to come to the aid of their party.

which is the third line of the buffer. In fact it is
the last (most recent) line that you have done
anything with. (You just printed it!) You can
repeat this p command without line numbers,
and it will continue to print line 3.

The reason is that ed maintains a record of
the last line that you did anything to (in this
case, line 3, which you just printed) so that it
can be used instead of an explicit line number.
This most recent line is referred to by the short-
hand symbol

(pronounced ‘“‘dot’’).

Dot is a line number in the same way that $ is; it
means exactly “‘the current line’’, or loosely,
*“‘the line you most recently did something to.”
You can use it in several ways — one possibility
is to say

-3p

This will print all the lines from (including) the
current line to the end of the buffer. In our
cxample these are lines 3 through 6.

Some commands change the value of dot,
while others do not. The p command sets dot to
the number of the last line printed; the last com-
mand will set both . and $ to 6.

Dot is most useful when used in combina-
tions like this one:
41 (or equivalently, .+1p)

This means “‘print the next line”’ and is a handy
way to step slowly through a buffer. You can
also say

Editor Tutorial

—1 (or .—1p)

which means *‘print the line before the current
line.”” This enables you to go backwards if you
wish. Another useful one is something like

.—3,.—1p
which prints the previous three lines.

Don’t forget that all of these change the
value of dot. You can find out what dot is at any
time by typing

Ed will respond by printing the value of dot.

Let’s summarize some things about the p
command and dot. Essentially p can be preceded
by 0, 1, or 2 line numbers. If there is no line
number given, it prints the ‘‘current line’’, the
line that dot refers to. If there is one line
number given (with or without the letter p), it
prints that line (and dot is set there); and if
there are two line numbers, it prints all the lines
in that range (and sets dot to the last line

printed.) If two line numbers are specified the

first can't be bigger than the second (see Exer-
cise 2.)

Typing a single return will cause printing of
the next line — it’s equivalent to .+1p. Try it.
Try typing a —; you will find that it’s equivalent
to .—1p.

Deleting Lines — The Delete Command *“d”’

Suppose you want to get rid of the three
extra lines in the buffer. This is done by the
delete command

d

Except that d deletes lines instead of printing
them, its action is similar to that of p. The lines
to be deleted are specified for @ exactly as they
are for p:

starting line, ending line d
Thus the command
4,8d

deletes lines 4 through the end. There are now
three lines left, as you can check by using

1,%p

And notice that $ now is line 3! Dot is set to the
next line after the last line deleted, unless the
last line deleted is the last line in the buffer. In
that case, dot is set to §.

Exercise 4:
Experiment with a, e, r, w, p and d until you

.are sure that you know what they do, and until

you understand how dot, $, and line numbers
are used.

If you are adventurous, try using line
numbers with a, r and w as well. You will find
that a will append lines after the line number
that you specify (rather than after dot); that r
reads a file in after the line number you specify
{not necessarily at the end of the buffer); and
that w will write out exactly the lines you specify,
not necessarily the whole buffer. These varia-
tions are somectimes handy. For instance you
can insert a file at the beginning of a buffer by
saying

Or file_name

and you can enter lines at the beginning of the
buffer by saying

0a

Lol text ...

Notice that .w is very different from

.

w

Modifying Text — The Substitute Command

[l
S

We are now ready to try one of the most
important of all commands — the substitute
command

s

This is the command that is used to change indi-
vidual words or letters within a line or group of
lines. It is what you use, for example, for
correcting spelling mistakes and typing errors.

Suppose that, because of a typing error, line
1 says

Now is th time

namely, the e has been left off the the. You can
use s to fix this up as follows:

1s/th/the/

This says: ““in line 1, substitute for the characters
th the characters the.”’ To verify that it works (ed
will not print the result automatically) say

P
and get
Now is the time

which is what you wanted. Notice that dot must
have been set to the line where the substitution

took place, since the p command printed that
line. Dot is always set this way with the s com-
mand.

The general way to use the substitute com-
mand is

starting-line, ending-line s[change this/to this/

Whatever string of characters is between the first
pair of slashes is replaced by whatever is between
the second pair, in all the lines between starting-
line and ending-line. Only the first occurrence on
each line is changed, however. If you want to
change every occurrence, see Exercise 5. The
rules for line numbers are the same as those for
p. except that dot is set to the last line changed.
(But there is a trap for the unwary: if no substi-
tution took place, dot is mot changed. This
causes an error ? as a warning.)

Thus you can say

1,8s/speling/spelling/

and correct the first spelling mistake on cach line
in the text. (This is useful for people who are
consistent misspellers!)

If no line numbers arc given, the s command
assumes we mean ‘‘make the substitution on line
dot’’, so it changes things only on the current
line. This leads to the very common sequence

s/something/something else/p

which makes some correction on the current
line, and then prints it, to make sure it worked
out right. If it didn’t, you can try again. (Notice
that there is a p on the same line as the s com-
mand. With few exceptions, p can follow any
command; no other multi-command lines are
legal.)

It's also legal to say

s/...//

which means ‘‘change the first string of charac-
ters to ‘‘nothing”, i.e., remove them. This is
useful for deleting extra words in a line or
removing cxtra letters from words. For instance,
if you had

Nowxx is the time
you can say

s/xx/[p
to get

Now is the time

Notice that // (two adjacent slashes) means *‘no
characters’, not a blank. There is a difference!
(See below for another meaning of //.)

Editor Tutorial

Exercise 5:

Experiment with the substitute command.
See what happens if you substitute for some
word on a line with several occurrences of that
word. For example, do this:

a
the other side of the coin

s/the/on the/p
You will get
on the other side of the coin

A substitute command changes only the first
occurrence of the first string. You can change all
occurrences by adding a g (for *‘global’") to the s
command, like this:

s/.../.../gp

Try other characters instead of slashes to delimit
the two sets of characters in the s command —
anything should work except blanks or tabs.

(If you get funny results using any of the
characters

s [» \ &

read the section on “‘Special Characters”’.)

Context Searching — /... /”

With the substitute command mastered, you
can move on to another highly important idea of
ed — context searching.

Suppose you have the original three line text
in the buffer:

Now is the time
for all good men
to come to the aid of their party.

Suppose you want to find the line that contains
their so you can change it to the. Now with only
three lines in the buffer, it's pretty easy to keep
track of what line the word their is on. But if the
buffer contained several hundred lines, and
you’d been making changes, deleting and rear-
ranging lines, and so on, you would no longer
really know what this linc number would be.
Context searching is simply a method of specify-
ing the desired line, regardless of what its
number is, by specifying some context on it.

The way to say ‘‘search for a line that con-
tains this particular string of characters’ is to
type

[string of characters we want to find/
For example, the ed command

/their/

Editor Tutorial

is a context search which is sufficient to find the
desired line — it will locate the next occurrence
of the characters between slashes (‘‘their’). It
also scts dot to that line and prints the line for
verification:

to come to the aid of their party.

*“‘Next occurrence’ means that ed starts looking
for the string at line .+1, searches to the end of
the buffer, then continues at line 1 and searches
to line dot. (That is, the search *‘wraps around”
from § to 1.) It scans all the lines in the buffer
until it either finds the desired line or gets back
to dot again. If the given string of characters
can’t be found in any line, ed types the error
message

?

Otherwise it prints the line it found.

You can do both the search for the desired
line and a substitution all at once, like this:

/their/s/their/the/p
which will yield
to come to the aid of the party.

There were three parts to that last command:
context scarch for the desired line, make the
substitution, print the line.

The expression /their/ is a context search
expression. In their simplest form, all context
scarch expressions are like this — a string of
characters surrounded by slashes. Context
searches are interchangeable with line numbers,
50 they can be used by themselves to find and
print a desired line, or as line numbers for some
other command, like s. They were used both
ways in the examples above.

Suppose the buffer contains the three familiar
lines

Now is the time
for all good men
to come to the aid of their party.

Then the ed line numbers

/Now/+1
/good/
/party/—1

arc all context search expressions, and they all
refer to the samec line (line 2).” To make a
change in line 2, you could say

/Now/+1s/good/bad/
or
/good/s/good/bad/

or

/party/ —1s/good/bad/

The choice is dictated only by convenience. You
could print all three lines by, for instance

[Now/,[party/p
or
/Now/,/Now/+2p

or by any number of similar combinations. The
first one of these might be better if you don’t
know how many lines are involved. (Of course,
if there were only three lines in the buffer, you’d
use

1,$p
but not if there were several hundred.)

The basic rule is: a context search expression
is the same as a line number, so it can be used
wherever a line number is needed.

Exercise 6:

Experiment with context searching. Try a
body of text with several occurrences of the
same string of characters, and scan through it
using the same context search.

Try using context scarches as line numbers
for the substitute, print and delete commands.
(They can also be used with r, w, and a.)

Try context searching using ?text? instead
of /text/. This scans lines in the buffer in
reverse order rather than normal. This is some-
times useful if you go too far while looking for
some string of characters — it’s an easy way to
back up.

(If you get funny results with any of the
characters

.8 [e\ &
read the section on “*Special Characters”’.)

Ed provides a shorthand for repeating a con-
text search for the same string. For example,
the ed line number

/string/

will find the next occurrence of string. It often
happens that this is not the desired line, so the
search must be repeated. This can be done by
typing merely

/1

This shorthand stands for ‘‘the most recently
used context search expression.” It can also be
used as the first string of the substitute com-
mand, as in

/stringl/s//string2/

which will find the next occurrcnce of stringl

and replace it by string2. This can save a lot of.

typing. Similarly
77

means ‘‘scan backwards for the same expres-
sion.”

Change and Insert — The ‘¢’ and “i”” Com-
mands

This section discusses the change command
c

which is used to change or replace a group of
one or more lines, and the insert command

i
which is used for inserting a group of one or
more lines.

““Change’’, written as
c

is used to replace a number of lines with
different lines, which are typed in at the termi-
nal. For example, to change lines .+1 through $
to something else, type

.+1,%¢c
... type the lines of text you want here . . .

The lines you type between the ¢ command and
the . will take the place of the original lines
between start line and end line. This is most
useful in replacing a line or several lines which
have errors in them.

If only one line is specified in the ¢ com-
mand, then just that line is replaced. (You can
type in as many replacement lines as you like.)
Notice the use of . to end the input — this
works just like the . in the append command
and must appear by itself on a new line. If no
line number is given, line dot is replaced. The
value of dot is set to the last line you typed in.

“Insert’ is similar to append — for instance

/string/i
... type the lines to be inserted here ...

will insert the given text before the next line that
contains “‘string’’. The text between i and . is
inserted before the specified line. If no line
number is specified dot is used. Dot is set to the
last line inserted.

Editor Tutorial

Exercise 7:

“Change’ is rather like a combination of
delete followed by insert. Experiment to verify
that

start, end d
i
Lo lext .

is almost the same as

start, end ¢
..o lext ..

.

These are not precisely the same if line $ gets
deleted. Check this out. What is dot?

Experiment with a and i, to see that they are
similar, but not the same. You will observe that

line-number a
..o text ...

appends after the given line, while

line-number 1
. lext ..

.

inserts before it. Observe that if no line number
is given, i inserts before line dot, while a
appends after line dot.

Moving Text Around — The **m’’ Command

The move command m is used for cutting
and pasting — it lets you move a group of lines
from one place to another in the buffer. Sup-
pose you want to put the first three lines of the
buffer at the end instead. You could do it by
saying:

1,3w temp
$r temp
1,3d

(Do you see why?) but you can do it a lot easier
with the m command:

1,3m$
The general case is
start line, end line m after this line

Notice that there is a third line to be specified —
the place where the moved stuff gets put. Of
course the lines to be moved can be specified by
context scarches; if you had

Editor Tutorial

First paragraph

end of first paragraph.
Second paragraph

end of second paragraph.
you could reverse the two paragraphs like this:
/Second/,/end of second/m/First/—1

Notice the —1: the moved text goes afier the
line mentioned. Dot is set to the last line
moved.

The Global Commands ‘‘g”’ and *‘v”’

The global command g is used to execute one
or more ed commands on all those lines in the
buffer that match some specified string. For
example

g/peling/p

prints all lines that contain peling. More use-
fully,

g/peling/s//pelling/gp

makes the substitution everywhere on the line,
then prints each corrected line. Compare this to

1,8s/peling/pelling/gp

which only prints the last line substituted.
Another subtle difference is that the g command
does not give a ? if peling is not found where
the s command will.

There may be several commands (including
a, ¢, i, r, w, but not g); in that case, every line
except the last must end with a backslash \:

g/xxx/.—1s/abc/def/\
.+2s/ghi/jkl/\
.—2,.p

makes changes in the lines before and after each
line that contains xxx, then prints all three lines.

The v command is the same as g, except that
the commands are executed on every line that
does not match the string following v:

v/ /d

deletes every line that does not contain a blank.

Special Characters

You may have noticed that things just don’t
work right when you used some characters like .,
+, §, and others in context searches and the sub-
stitute command. The reason is rather complex,
although the cure is simple. Basically, ed treats
these characters as special, with special mean-
ings. For instance, in a context search or the first
string of the substitute command only, . means

‘“any character,”” not a period, so

/x.y/

means ‘‘a line with an x, any character, and a
y,”” not just ‘‘a line with an x, a period, and a
y.”’ A complete list of the special characters that
can cause trouble is the following:

- s [« \

Warning . The backslash character \ is special to
ed. For safety’s sake, avoid it where possible. If
you have to use one of the special characters in a
substitute command, you can turn off its magic
meaning temporarily by preceding it with the
backslash. Thus

s/\\\.\»/backslash dot star/

will change \.# into **backslash dot star’’.

Here is a hurried synopsis of the other special
characters. First, the circumflex " signifies the
beginning of a line. Thus

/" string/
finds string only if it is at the beginning of a
line: it will find

string
but not
the string ...

The dollar-sign $ is just the opposite of the
circumflex; it means the end of a line:
/string$/

will only find an occurrence of string that is at
the end of some line. This implies, of course,
that

/" string$/

will find only a line that contains just string, and
/”8/

finds a line containing exactly one character.

The character ., as we mentioned above,
matches anything;

/x.y/
matches any of

x+y
Xy
Xy
x.y

This is useful in conjunction with =, which is a
repetition character; as is a shorthand for “‘any
number of a’s,”” so .» matches any number of
anythings. This is used like this:

10

s/.s/stuff/
which changes an entire line, or

YR NV

which deletes all characters in the line up to and
including the last comma. (Since .+ finds the
longest possible match, this goes up to the last
comma.)

[is used with } to form ‘‘character classes’”;
for example,

/[0123456789]/

matches any single digit — any one of the char-
acters inside the braces will cause a match. This
can be abbreviated to [0—9].

Finally, the & is another shorthand character
— it is used only on the right-hand part of a sub-
stitute command where it means ‘‘whatever was
matched on the left-hand side’’. It is used to
save typing. Suppose the current line contained

Now is the time

and you wanted to put parentheses around it.
You could just retype the line, but this is tedi-
ous. Or you could say

s/”/(/
s/$/)/

using your knowledge of ~ and $. But the easi-
est way uses the &:

s/.+/(&)/

This says ‘‘match the whole line, and replace it
by itself surrounded by parentheses.”” The & can
be used several times in a line; consider using

s/.e/&7 &"/
to produce

Now is the time? Now is the time!!

You don’t have to match the whole line, of

course: if the buffer contains

the end of the world
you could type

/world/s//& is at hand/
to produce

the end of the world is at hand

Observe this expression carefully, for it illus-
trates how to take advantage of ed to save typ-
ing. The string /world/ found the desired line;
the shorthand // found the same word in the
line; and the & saves you from typing it again.

The & is a special character only within the
replacement text of a substitute command, and

Editor Tutorial

has no special meaning elsewhere. You can turn
off the special meaning of & by preceding it with
a\:

s/ampersand \&/

will convert the word ‘‘ampersand” into the
literal symbol & in the current line.

Summary of Commands and Line Numbers

The general form of ed commands is the
command name, perhaps preceded by one or two
line numbers, and, in the case of e, r, and w,
followed by a file name. Only one command is
allowed per line, but a p command may follow
any other command (except for e, r, w and q).

a: Append, that is, add lines to the buffer (at line
dot, unless a different line is specified). Append-
ing continues until . is typed on a new line. Dot
is set to the last line appended.

¢: Change the specified lines to the new text
which follows. The new lines are terminated by
a ., as with a. If no lines are specified, replace
line dot. Dot is set to last line changed.

d: Delete the lines specified. If none are
specified, delete line dot. Dot is set to the first
undeleted line, unless § is deleted, in which case
dot is set to §.

e: Edit new file. Any previous contents of the
buffer are thrown away, so issue a w beforehand.

f. Print remembered file name, If a name fol-
lows f the remembered name will be set to it.

g: The command
g/---/commands

will execute the commands on those lines that
contain ---, which can be any context search
expression,

i: Insert lines before specified line (or dot) until
a . is typed on a new line. Dot is set to last line
inserted.

m: Move lines specified to after the line named
after m. Dot is set to the last line moved.

p: Print specified lines. If none specified, print
line dot. A single line number is equivalent to
line-number p. A single return prints .+1, the
next line.

q: Quit ed. Wipes out all text in buffer if you
give it twice in a row without first giving a w
command.

r: Read a file into buffer (at end unless specified
clsewhere.) Dot is set to last line read.

8: The command

s/stringl /string2/

Editor Tutorial

substitutes the characters stringl into string2 in
the specified lines. If no lines are specified,
make the substitution in line dot. Dot is set to
last line in which a substitution took place, which
means that if no substitution took place, dot is
not changed. s changes only the first occurrence
of stringl on a line; to change all of them, type
a g after the final slash.

v: The command

v/---/commands
exccutes commands on those lines that do not
contain ===

w: Write out buffer onto a file. Dot is not
changed.

.=: Print value of dot. (= by itself prints the
value of §.)

!: The line
!command-line

causes command-line to be exccuted as a UNIX
command.

[/: Context search. Search for next line
which contains this string of characters. Print it.
Dot is set to the line where string was found.
Search starts at .+1, wraps around from § to 1,
and continues to dot, if necessary.

?-----?7: Context search in reverse direction.
Start scarch at .—1, scan to 1, wrap around to §.

January 1981

11

UNIX
B.2.2

Advanced Editing on UNIX

Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This paper is meant to help secretaries, typists and programmers to make effective
use of the UNIX? facilities for preparing and editing text. It provides explanations and

examples of

e special characters, line addressing and global commands in the editor ed;

e commands for ‘“‘cut and paste’* operations on files and parts of files, including the
my, ¢p, ¢cat and rm commands, and the r, w, m and t commands of the editor;

e editing scripts and editor-based programs like grep and sed.

Although the treatment is aimed at non-programmers, new UNIX users with any back-
ground should find helpful hints on how to get their jobs done more easily.

1. INTRODUCTION

Although UNIX provides remarkably
effective tools for text editing, that by itself is no
guarantee that everyone will automatically make
the most effective use of them. In particular,
people who are not computer specialists — typ-
ists, secretaries, casual users — often use the
system less effectively than they might.

This document is intended as a sequel to A4
Tutorial Introduction to the UNIX Text Editor [1],
providing explanations and examples of how to
edit with less effort. (You should also be fami-
liar with the material in UNIX For Beginners
[2].) Further information on all commands dis-
cussed here can be found in the UNIX User's
Manual [3].

Examples are based on observations of
users and the difficulties they encounter. Topics
covered include special characters in searches
and substitute commands, line addressing, the
global commands, and line moving and copying.
There are also brief discussions of effective use
of related tools, like those for file manipulation,
and those based on ed, like grep and sed.

A word of caution. There is only one way
to learn to use something, and that is to use it.
Reading a description is no substitute for trying

t UNIX is a trademark of Bell Laboratories.

something. A paper like this one should give
you ideas about what to try, but until you actu-
ally try something, you will not learn it.

2. SPECIAL CHARACTERS

The editor ed is the primary interface to
the system for many people, so it is worthwhile
to know how to get the most out of ed for the
least effort.

The next few sections will discuss
shortcuts and labor-saving devices. Not all of
these will be instantly useful to any one person,
of course, but a few will be, and the others
should give you ideas to store away for future
use. And as always, until you try these things,
they will remain theoretical knowledge, not
something you have confidence in.

The List Command ‘I’

ed provides two commands for printing the
contents of the lines you're editing. Most people
are familiar with p, in combinations like

1,$p
to print all the lines you're editing, or
s/abc/def/p

to change ‘abc’ to ‘def’ on the current line. Less

familiar is the list command | (the letter “I*),

which gives slightly more information than p. In-

particular, 1 makes visible characters that are
normally invisible, such as tabs and backspaces.
If you list a line that contains some of these, 1
will print cach tab as > and each backspace as
<. This makes it much easier to correct the sort
of typing mistake that inserts extra spaces adja-
cent to tabs, or inserts a backspace followed by a
space.

The 1 command also ‘folds’ long lines for
printing — any line that exceeds 72 characters is
printed on multiple lines; each printed line
except the last is terminated by a backslash \, so
you can tell it was folded. This is useful for
printing long lines on short terminals.

Occasionally the I command will print in a
line a string of numbers preceded by a backslash,
such as \07 or \16. These combinations are used
to make visible characters that normally don't
print, like form feed or vertical tab or bell. Each
such combination is a single character. When
you see such characters, be wary — they may
have surprising meanings when printed on some
terminals. Often their presence means that your
finger slipped while you were typing; you almost
never want them.

The Substitute Command ‘s’

Most of the next few sections will be taken
up with a discussion of the substitute command
s. Since this is the command for changing the
contents of individual lines, it probably has the
most complexity of any ed command, and the
most potential for effective use.

As the simplest place to begin, recall the
meaning of a trailing g after a substitute com-
mand. With

s/this/that/
and
s/this/that/g

the first one replaces the first ‘this’ on the line
with ‘that’. If there is more than one ‘this’ on
the line, the second form with the trailing g
changes all of them.

Either form of the s command ¢an be fol-
lowed by p or 1 to ‘print’ or ‘list’ (as described in
the previous section) the contents of the line:

s/this/that/p
s/thig/that/1
s/this/that/gp
s/this/that/gl

are all legal, and mean slightly different things.
Make sure you know what the differences are.

Advanced Editing

Of course, any s command can be pre-
ceded by one or two ‘line numbers’ to specify
that the substitution is to take place on a group
of lines. Thus

1,8s/mispell/misspell/

changes the first occurrence of ‘mispell’ to
‘misspell’ on every line of the file. But

1,%s/mispell/misspell/g

changes every occurrence in every line (and this
is more likely to be what you wanted in this par-
ticular case).

You should also notice that if you add a p
or 1 to the end of any of these substitute com-
mands, only the last line that got changed will be
printed, not all the lines. We will talk later about
how to print all the lines that were modified.

The Undo Command ‘u’

Occasionally, you will make a substitution
in a line, only to realize too late that it was a
ghastly mistake. The ‘undo’ command u lets
you ‘undo’ the last command, so that the last
line that was substituted can be restored to its
previous state by typing the command

u

The Metacharacter ‘.’

As you have undoubtedly noticed when
you use ed, certain characters have unexpected
meanings when they occur in the left side of a
substitute command, or in a search for a particu-
lar line. In the next several sections, we will talk
about thesc special characters, which are often
called ‘metacharacters’.

The first onc is the period *.’. On the left
side of a substitute command, or in a search with
‘/...[°. ", stands for any single character. Thus
the search

/xy/

finds any line where ‘x* and ‘y’ occur separated
by a single character, as in

x+y
xX—y
xay
XY

and so on. (We will use p to stand for a space
whenever we need to make it visible.)

.y

Since ‘." matches a single character, that
gives you a way to deal with funny characters
printed by . Suppose you have a line that, when
printed with the I command, appears as

Advanced Editing

th\07is

and you want to get rid of the \07 (which
represents the bell character, by the way).

The most obvious solution is to try

s/\07//

but this will fail. (Try it.) The brute force solu-
tion, which most people would now take, is to
re-type the entire line. This is guaranteed, and is
actually quite a reasonable tactic if the line in
question isn’t too big, but for a very long line,
re-typing is a bore. This is wherc the metachar-
acter . comes in handy. Since ‘\07’ really
represents a single character, if we say

s/th.is /this/

the job is done. The ‘.’ matches the mysterious
character between the ‘h’ and the ‘i’, whatever it
is.

Bear in mind that since ‘." maiches any
single character, the command

s//s]

converts the first character on a line into a *,’,
which very often is not what you intended.

As is true of many characters in ed, the *.
has several meanings, depending on its context.
This line shows all three:

s/././

The first '.” is a line number, the number of the
line we arec editing, which is called ‘line dot’.
(We will discuss line dot more in Section 3.)
The second *.’ is a metacharacter that malchcs
any single charactcr on that line. The third *." i
the only one that really is an honest llteral
period. On the right side of a substitution, .’ is
not special. If you apply this command to the
line

Now is the time.
the result will be
.ow is the time,

which is probably not what you intended.

The Backslash ¢\’

Since a period means ‘any character’, the
question naturally arises of what to do when you
really want a period. For example, how do you
convert the line

Now is the time.
into
Now is the time?
The backslash *\’ does the job. A backslash

turns off any special meaning that the next char-
acter might have; in particular, ‘\.” converts the
‘.’ from a ‘match anything’ into a period, so you
can use it to replace the period in

Now is the time.
like this:

s/\.J?/

The pair of characters ‘\." is considered by ed to
be a single real period.

The backslash can also be used when
searching for lines that contain a special charac-
ter. Suppose you are looking for a line that con-
tains

.PP

The scarch
/.PP/

isn’t adequate, for it will find a line like
THE APPLICATION OF ...

[}

because the ‘.
say

matches the letter ‘A’. But if you

/\.PP/
you will find only lines that contain *.PP".

The backslash can also be used to turn off
special meanings for characters other than ‘..
For example, consider finding a line that con-
tains a backslash. The search

N

won’t work, because the *\’ isn’t a literal *\’, but
instead means that the second ‘/° no longer
delimits the search. But by preceding a backslash
with another one, you can search for a literal
backslash. Thus

A\Y)

does work. Similarly, you can search for a for-
ward slash */° with

N/

The backslash turns off the meaning of the
immediately following */° so that it doesn’t ter-
minate the /... / construction prematurely.

As an exercise, before reading further,
find two substitute commands each of which will
convert the line

\x\\y
into the line

\x\y

Here are several solutions; verify that each
works as advertised.

s/\\\.//
s/X./x/
s/.y/y/

A couple of miscellaneous notes about
backslashes and special characters. First, you
can use any character to delimit the pieces of an
s command: there is nothing sacred about
slashes. (But you must use slashes for context
searching.) For instance, in a line that contains
a lot of slashes already, like

//exec [/sys.fort.go // etc. ...

you could use a colon as the delimiter — to
delete all the slashes, type

s:/ug

Second, if # and @ are your character
erase and line kill characters, you have to type
\# and \@; this is true whether you’re talking to
ed or any other program.

When you are adding text with a or i or c,
backslash is not special, and you should only put
in one backslash for each one you really want.

The Dollar Sign ‘§’

The next metacharacter, the ‘$’, stands for
‘the end of the line’. As its most obvious use,
supposc you have the line

Now is the

and you wish to add the word ‘time’ to the end.
Use the § like this:

s/$/otime/
to get
Now is the time

Notice that a space is needed before ‘time’ in the
substitute command, or you will get

Now is thetime

As another example, replace the second
comma in the following line with a period
without altering the first:

Now is the time, for all good men,
The command needed is
s/,$/./

The § sign here provides context to make specific
which ¢comma we mean. Without it, of course,
the s command would operate on the first
comma to produce :

Now is the time. for all good men,

As another example, to convert

Advanced Editing

Now is the time.
into
Now is the time?

as we did earlier, we can use

s/.8/?/

Like “.’, the ‘$’ has multiple meanings
depending on context. In the line

$s/$/%/

the first ‘S’ refers to the last line of the file, the
second refers to the end of that line, and the
third is a literal dollar sign, to be added to that
line.

The Circumflex "’

The circumflex (or hat or caret) *"* stands
for the beginning of the line. For example, sup-
pose you are looking for a line that begins with
‘the’. If you simply say

/the/

you will in all likelihood find several lines that
contain ‘the’ in the middle before arriving at the
one you want. But with

/" the/
you narrow the context, and thus arrive at the
desired one more easily.

The other use of *"’ is of course to enable
you to insert something at the beginning of a
line:

s/" [o/
places a space at the beginning of the current
line.

Metacharacters can be combined. To
search for a line that contains only the characters

.PP
you can use the command

/" \.PP$/

The Star ‘#
Suppose you have a linc that looks like

_ this:

text X y lext

where text stands for lots of text, and there are
some indcterminate number of spaces between
the x and the y. Suppose the job is to replace all
the spaces between x and y by a single space.
The line is too long to retype, and there are too
many spaces to count. What now?

Advanced Editing

This is where the metacharacter ‘#” comes
in handy. A character followed by a star stands
for as many consecutive occurrences of that
character as possible. To refer to all the spaces
at once, say

s/xo*y/xoy/

The construction ‘g*’ means ‘as many spaces as
possible’. Thus ‘xp*y’ means ‘an x, as many
spaces as possible, then a y’.

The star can be used with any character,
not just space. If the original example was
instead

then all ‘—’ signs can be replaced by a single
space with the command

s/x—*y/xoy/
Finally, suppose that the line was
tex! Xoeeeoous sy text

Can you see what trap lies in wait for the
unwary? If you blindly type
s/x.»y/xay/

what will happen? The answer, naturally, is that
it depends. If there are no other x’s or y's on
the line, then everything works, but it’s blind
luck, not good management. Remember that .’
matches any single character? Then ‘%’ matches
as many single characters as possible, and unless
you're careful, it can eat up a lot more of the
line than you expected. If the line was, for
example, like this:

text X text X.ieeveuans y tlext 'y text
then saying

s/xy/xay/

will take everything from the first ‘x’ to the last
‘y’, which, in this example, is undoubtedly more
than you wanted.

The solution, of course, is to turn off the
special meaning of .” with \.”:

s/x\-*y/xoy/

Now everything works, for *\.#’ means ‘as many
periods as possible’.

There are times when the pattern ‘" is
exactly what you want. For example, to change

Now is the time for all good men ...
into
Now is the time.

use ‘.*' to eat up everything after the ‘for’:

s/ofor.x/./

There are a couple of additional pitfalls
associated with ‘+’ that you should be aware of.
Most notable is the fact that ‘as many as possi-
ble’ means zero or more. The fact that zero is a
legitimate possibility is sometimes rather surpris-
ing. For example, if our line contained

lext Xy lext X y lext

and we said

s/xo*y/xay/

the first ‘xy’ matches this pattern, for it consists
of an ‘x’, zero spaces, and a 'y’. The result is
that the substitute acts on the first ‘xy’, and does
not touch the later one that actually contains
some intervening spaces.

The way around this, if it matters, is to
specify a pattern like

/xoo*y/

which says ‘an x, a space, then as many more
spaces as possible, then a y’, in other words, onec
or more spaces,

The other startling behavior of ‘»’ is again
related to the fact that zero is a legitimate
number of occurrences of something followed by
a star. The command

s/x+/y/g
when applied to the line
abcdef

produces

yaybycydyeyfy

which is almost certainly not what was intended.
The reason for this behavior is that zero is a
legal number of matches, and there are no x's at
the beginning of the line (so that gets converted
into a ‘y’), nor between the ‘a’ and the ‘b’ (so
that gets converted into a ‘y’), nor ... and so
on. Make sure you really want zero matches; if
not, in this case write

s/xx*/y/g

‘xx*’ is one or more x's,

The Brackets ‘[]’

Suppose that you want to delete any
numbers that appear at the beginning of all lines
of a file. You might first think of trying a series
of commands like

1,85/ 1w//

1,8s/" 2+//
1,8s/73+//

and so on, but this is clearly going to take for-
ever if the numbers are at all long. Unless you
want to repeat the commands over and over until
finally all numbers are gone, you must get all the
digits on one pass. This is the purpose of the
brackets [and].

The construction
[0123456789]

matches any single digit — the whole thing is
called a ‘character class’. With a character class,
the job is easy. The pattern ‘[0123456789]»
matches zero or more digits (an entire number),
80

1,85/ [0123456789]+//

deletes all digits from the beginning of all lines.

Any characters can appear within a charac-
ter class, and just to confuse the issue there are
essentially no special characters inside the brack-
ets; even the backslash doesn’t have a special
meaning. To search for special characters, for
example, you can say

JINS™ 11/

Within [...], the ‘[’ is not special. To geta ‘]’
into a character class, make it the first character.

It’'s a nuisance to have to spell out the
digits, so you can abbreviate them as [0—9];
similarly, [a—z] stands for the lower case letters,
and [A—Z] for upper case.

As a final frill on character classes, you can
specify a class that means ‘none of the following
characters’. This is done by beginning the class
with a ¢7 "

("0-9]

stands for ‘any character except a digit’. Thus
you might find the first line that doesn’t begin
with a tab or space by a search like

/" [” (space)(tab)]/

Within a character class, the circumflex has
a special meaning only if it occurs at the begin-
ning. Just to convince yourself, verify that

/177

finds a line that doesn’t begin with a circumflex.

The Ampersand ‘&’

The ampersand ‘&’ is used primarily to
save typing. Suppose you have the line

Now is the time
and you want to make it

Now is the best time

Advanced Editing

Of course you can always say
s/the/the best/

but it seems silly to have to repeat the ‘the’.
The ‘&’ is used to eliminate the repetition. On
the right side of a substitute, the ampersand
means ‘whatever was just matched’, so you can
say

s/the/& best/

and the ‘&’ will stand for ‘the’. Of course this
isn’t much of a saving if the thing matched is
just ‘the’, but if it is something truly long or
awful, or if it is something like ‘.’ which
matches a lot of text, you can save some tedious
typing. There is also much less chance of mak-
ing a typing error in the replacement text. For
example, to parenthesize a line, regardless of its
length,

s/*/(&)/
The ampersand can occur more than once
on the right side:
s/the/& best and & worst/
makes
Now is the best and the worst time
and
s/w/&7 &/
converts the original line into
Now is the time? Now is the time!!
To get a literal ampersand, naturally the
backslash is used to turn off the special meaning:
s/ampersand/\&/

converts the word into the symbol. Notice that
‘&’ is not special on the left side of a substitute,
only on the right side.

Substituting New-lines

ed provides a facility for splitting a single
line into two or more shorter lines by ‘substitut-
ing in a new-line’. As the simplest example,
suppose a line has gotten unmanageably long
because of editing (or merely because it was
unwisely typed). If it looks like

text Xy lext

you can break it between the ‘x’ and the 'y’ like
this:

s/xy/x\

y/

This is actually a single command, although it is
typed on two lines. Bearing in mind that ‘\’

Advanced Editing

turns off special meanings, it seems relatively
intuitive that a ‘\’ at the end of a line would
make the new-line there no longer special.

You can in fact make a single line into
several lines with this same mechanism. As a
large example, consider underlining the word
‘very’ in a long line by splitting ‘very’ onto a
separate line, and preceding it by thec nroff for-
matting command ‘.ul’.

text a very big text
The command

s/overyo/\
aul\

very\

/

converts the line into four shorter lines, preced-
ing the word ‘very’ by the line “.ul’, and elim-
inating the spaces around the ‘very’, all at the
same time.

When a new-line is substituted in, dot is
left pointing at the last line created.

Joining Lines
Lines may also be joined together, but this

is done with the j command instead of s. Given
the lines

Now is
othe time

and supposing that dot is set to the first of them,
then the command

]
Joins them together. No blanks are added, which

is why we carefully showed a blank at the begin-
ning of the second line.

All by itself, a j command joins line dot to
line dot+1, but any contiguous set of lines can
be joined. Just specify the starting and ending
line numbers. For example,

1.$ip

joins all the lines into one big onc and prints it.
(More on line numbers in Section 3.)

Rearranging a Line with \(... \)

(This section should be skipped on first
reading.) Recall that ‘&’ is a shorthand that
stands for whatever was matched by the left side
of an s command. In much the same way you
can capture separate pieces of what was matched;
the only difference is that you have to specify on
the left side just what pieces you’'re intcrested in.

Suppose, for instance, that you have a file
of lines that consist of names in the form

Smith, A. B.
Jones, C.

and so on, and you want the initials to precede
the name, as in

A. B. Smith
C. Jones

It is possible to do this with a series of editing
commands, but it is tedious and error-prone. (It
is instructive to figure out how it is done,
though.)

The alternative is to ‘tag’ the pieces of the
pattern (in this case, the last name, and the ini-
tials), and then rearrange the pieces. On the left
side of a substitution, if part of the pattern is
enclosed between \(and \), whatever matched
that part is remembered, and available for use on
the right side. On the right side, the symbol \1’
refers to whatever maiched the first \(...\) pair,
‘\2’ to the second \(...\), and so on.

The command
1,8s/"\([" 1), o\ () A20N1

although hard to read, does the job. The first
\(...\) matches the last name, which is any
string up to the comma; this is referred to on the
right side with ‘\1’. The second \(...\) is what-
ever follows the comma and any spaces, and is
referred to as "\2".

Of course, with any editing sequence this
complicated, it’s foolhardy to simply run it and
hope. The global commands g and v discussed
in section 4 provide a way for you to print
cxactly those lines which were affected by the
substitute command, and thus verify that it did
what you wanted in all cases.

3. LINE ADDRESSING IN THE EDITOR

The next general area we will discuss is
that of line addressing in ed, that is, how you
specify what lines are to be affected by editing
commands. We have already used constructions
like

1,8s/x/y/

to specify a change on all lines. And most users
are long since familiar with using a single new-
line (or return) to print the next line, and with

Jthing/

to find a line that contains ‘thing’. Less familiar,
surprisingly enough, is the use of

?thing?
to scan backwards for the previous occurrence of

‘thing’. This is especially handy when you real-
ize that the thing you want to operate on is back

up the page from where you are currently edit-

ing.

The slash and question mark are the only
characters you can use to delimit a context
search, though you can use essentially any char-
acter in a substitute command.

Address Arithmetic

The next step is to combine the line
numbers like *.’, ‘8§, ¢/.../" and ‘?...7" with
‘+’and *—’. Thus

$-1
is 2 command to print the next to last line of the
current file (that is, one line before line ‘$’).
For example, to recall how far you got in a previ-
ous editing session,

$—5,%p

prints the last six lines. (Be sure you understand
why it's six, not five.) If there aren't six, of
course, you'll get an error message.

As another example,
.—3,.+3p

prints from three lines before where you are now
(at line dot) to three lines after, thus giving you
a bit of context. By the way, the ‘+’ can be
omitted:

.—3,.3p
is absolutely identical in meaning.

Another area in which you can save typing
effort in specifying lines is to use ‘—" and *+’ as
line numbers by themselves.

by itself is a command to move back up one line
in the file. In fact, you can string several minus
signs together to move back up that many lines:

moves up three lines, as does ‘“—3’. Thus
—3,+3p
is also identical to the examples above.

)

Since ‘—’ is shorter than ‘.—1’, construc-
tions like

-,.8/bad/good/
are useful. This changes ‘bad’ to ‘good’ on the
previous line and on the current line.

‘4’ and ‘—’ can be used in combination
with searches using ‘/.../' and *?...?°, and with
‘$’. The search -

/thing/——

Advanced Editing

finds the line containing ‘thing’, and positions
you two lines before it.

Repeated Searches
Suppose you ask for the search

/horrible thing/

and when the line is printed you discover that it
isn't the horrible thing that you wanted, so it is
necessary to repeat the scarch again. You don’t
have to re-type the search, for the construction

/1

is a shorthand for ‘the previous thing that was
scarched for’, whatever it was. This can be
repeated as many times as necessary. You can
also go backwards:

77

searches for the same thing, but in the reverse
direction.

Not only can you repeat the search, but
you can usc ‘//* as the left side of a substitute
command, to mean ‘the most recent pattern’.

/horrible thing/
... ed prints line with ‘horrible thing' . ..

s//good/p
To go backwards and change a line, say

?7s//good/

Of course, you can still use the ‘&’ on the right
hand side of a substitute to stand for whatever
got matched:

/1s//&n&[p

finds the next occurrence of whatever you
searched for last, replaces it by two copies of
itsclf, then prints the line just to verify that it
worked.

Default Line Numbers and the Value of Dot

One of the most effective ways to speed up
your editing is always to know what lines will be
affected by a command if you don’t specify the
lines it is to act on, and on what line you will be
positioned (i.e., the value of dot) when a com-
mand finishes. If you can edit without specifying
unnecessary line numbers, you can save a lot of
typing. :
As the most obvious cxample, if you issue
a search command like

/thing/

you are left pointing at the next line that con-
tains ‘thing’. Then no address is required with
commands like s to make a substitution on that
line, or p to print it, or 1 to list it, or d to delete

Advanced Editing

it, or a to append text after it, or ¢ to change it,
or i to insert text before it.

What happens if there was no ‘thing’?
Then you are left right where you were — dot is
unchanged. This is also true if you were sitting
on the only ‘thing’ when you issued the com-
mand. The same rules hold for searches that use
*?...7"; the only difference is the direction in
which you search.

The delete command d leaves dot pointing
at the line that followed the last deleted line.
When line ‘$’ gets deleted, however, dot points
at the new line ‘$°.

The line-changing commands a, ¢ and i by
default all affect the current line — if you give
no line number with them, a appends text after
the current line, ¢ changes the current line, and i
inserts text before the current line.

a, ¢, and i behave identically in one
respect — when you stop appending, changing or
inserting, dot points at the last line entered.
This is exactly what you want for typing and edit-
ing on the fly. For example, you can say

a

oo text ol

... botch ... (minor error)
s/botch/correct/ (fix botched line)
a

... more text ...

without specifying any line number for the sub-
stitute command or for the second append com-
mand. Or you can say

a
Latext .,

... horrible botch ..,
c (replace entire line)
... fixed up line ...

(major error)

You should experiment to determine what
happens if you add no lines with a, ¢ or i.

The r command will read a file into the
text being edited, either at the end if you give no
address, or after the specified line if you do. In
cither case, dot points at the last line read in.
Remember that you can even say Or to read a
file in at the beginning of the text. (You can
also say 0a or 1i to start adding text at the begin-
ning.)

The w command writes out the entire file.
If you precede the command by one linc
number, that line is written, while if you precede
it by two line numbers, that range of lines is
written. The w command does not change dot;
the current line remains the same, regardless of

what lines are written. This is true even if you
say something like

/"\.AB/./"\.AE/w abstract

which involves a context search.

Since the w command is so easy to use,
you should save what you are editing regularly as
you go along just in case the system crashes, or
in case you do something foolish, like clobbering
what you're editing.

The least intuitive behavior, in a sense, is
that of the s command. The rule is simple —
you are left sitting on the last line that got
changed. If there were no changes, then dot is
unchanged.

To illustrate, supposc that there are three
lines in the buffer, and you arc sitting on the
middle one:

x1
x2
x3

Then the command

—,+s/x/y/p

prints the third line, which is the last one
changed. But if the three lines had been

x1

y2

y3
and the same command had been issued while
dot pointed at the second line, then the result
would be to change and print only the first line,
and that is where dot would be set.

Semicolon *;*

Searches with ‘/.../" and ‘?...7" start at
the current line and move forward or backward
respectively until they either find the pattern or
get back to the current line. Sometimes this is
not what is wanted. Suppose, for example, that
the buffer contains lines like this:

ab
be

Starting at line 1, one would expect that the
command

/a/[b/p

prints all the lines from the ‘ab’ to the ‘bc’
inclusive. Actually this is not what happens.
Both searches (for ‘a’ and for ‘b’) start from the
same point, and thus they both find the line that

10

contains ‘ab’. The result is to print a single line,
Worse, if there had been a line with a ‘b’ in‘it
before the ‘ab’ line, then the print command
would be in error, since the second line number
would be less than the first, and it is illegal to try
to print lines in reverse order.

This is because the comma scparator for
line numbers doesn’t set dot as each address is
processed; each search starts from the same
place. In ed, the semicolon *;’ can be used just
like comma, with the single difference that use
of a semicolon forces dot to be set at that point
as the line numbers are being evaluated. In
effect, the semicolon ‘moves’ dot. Thus in our

example above, the command

/a//b/p

prints the range of lines from ‘ab’ to ‘bc’,
because after the ‘a’ is found, dot is set to that
line, and then ‘b’ is searched for, starting beyond
that line.

This property is most often useful in a
very simple situation. Suppose you want to find
the second occurrence of ‘thing’. You could say

/thing/
1/

but this prints the first occurrence as well as the
second, and is a nuisance when you know very
well that it is only the second one you're
interested in. The solution is to say

/thing/;//

This says to find the first occurrence of ‘thing’,
set dot to that line, then find the second and
print only that.

Closely related is searching for the second
previous occurrence of something, as in

7something?;??
Printing the third or fourth or ... in either direc-
tion is left as an exercise.

Finally, bear in mind that if you want to
find the first occurrence of something in a file,
starting at an arbitrary place within the file, it is
not sufficient to say

1;/thing/

because this fails if ‘thing’ occurs on line 1. But
it 1s possible to say

0:/thing/

(one of the few places where 0 is a legal line
number), for this starts the search at line 1.

Advanced Editing

Interrupting the Editor

As a final note on what dot gets set to, you
should be aware that if you hit the interrupt or
delete or rubout or break key while ed is doing a
command, things are put back together again and
your state is restored as much as possible to what
it was before the command began. Naturally,
somc changes are irrevocable — if you are read-
ing or writing a file or making substitutions or
deleting lines, these will be stopped in some
clean but unpredictable state in the middle
(which is why it is not usually wise to stop
them). Dot may or may not be changed.

Printing is more clear cut. Dot is not
changed until the printing is done. Thus if you
print until you see an interesting line, then hit
delete, you are not sitting on that line or even
near it. Dot is left where it was when the p com-
mand was started.

4. GLOBAL COMMANDS

The global commands g and v are used to
perform one or more editing commands on all
lines that either contain (g) or don’t contain (v)
a specified pattern.

As the simplest example, the command
g/UNIX/p

prints all lines that contain the word ‘UNIX’.
The pattern that goes between the slashes can be
anything that could be used in a line search or in
a substitute command; exactly the same rules
and limitations apply.

As another example, then,

g/"\./p

prints all the formatting commands in a file
(lines that begin with *.").

The v command is identical to g, except
that it operates on those line that do not contain
an occurrence of the pattern. (Don't look too
hard for mnemonic significance to the letter
‘v’.) So

v/"\./p

prints all the lines that don’t begin with *.” — the
actual text lines.

The command that follows. g or v can .be
anything: ; ’
g/"\./d
deletes all lines that begin with *.’, and
g/"$/d
deletes all empty lines.

Probably the most useful command thét
can follow a global is the substitute command,

Advanced Editing

for this can be used to make a change and print
each affected line for verification. For example,
we could change the word ‘Unix’ to ‘UNIX’
everywhere, and verify that it really worked, with

g/Unix/s//UNIX/gp

Notice that we used ‘//’ in the substitute com-
mand to mean ‘the previous pattern’, in this
case, ‘Unix’. The p command is done on every
line that matches the pattern, not just those on
which a substitution took place.

The global command operates by making
two passes over the file. On the first pass, all
lines that match the pattern are marked. On the
second pass, cach marked line in turn is exam-
ined, dot is set to that line, and the command
exccuted. This means that it is possible for the
command that follows a g or v to use addresses,
set dot, and so on, quite freely.

g/~ \.PP/+

prints the line that follows each *.PP’ command
(the signal for a new paragraph in some format-
ting packages). Remember that ‘+’ means ‘one
line past dot’. And

g/topic/? " \.SH?1

searches for each line that contains ‘topic’, scans
backwards until it finds a line that begins ‘.SH’
(a section heading) and prints the line that fol-
lows that, thus showing the section headings
under which ‘topic’ is mentioned. Finally,

g/"\-EQ/+./"\.EN/—p

prints all the lines that lie between lines begin-
ning with *.EQ’ and ‘.EN’ formatting commands.

The g and v commands can also be pre-
ceded by line numbers, in which case the lines
searched are only those in the range specified.

Multi-line Global Commands

It is possible to do more than one com-
mand under the control of a global command,
although the syntax for expressing the operation
is not especially natural or pleasant. As an
example, suppose the task is to change ‘x’ to 'y’
and ‘a’ to ‘b’ on all lines that contain ‘thing’.
Then

g/thing/s/x/y/\
s/a/b/

is sufficient. The ‘\’ signals the g command that

the set of commands continues on the next line;
it terminates on the first line that does not end
with \". (As a minor blemish, you can’t use a
substitute command to insert a new-line within a
g command.)

11

You should watch out for this problem:
the command

g/x/s//y/\

s/a/b/
does not work as you expect. The remembered
pattern is the last pattern that was actually exe-
cuted, so sometimes it will be 'x’ (as expected),
and sometimes it will be ‘a’ (not expected). You
must spell it out, like this:

g/x/s/x/y/\
s/a/b/

It is also possible to cxecute a, ¢ and i
commands under a global command; as with
other multi-line constructions, all that is needed
is to add a ‘\’ at the end of each line except the
last. Thus to add a “.nf’ and ‘.sp’ command
before each ‘.EQ’ line, type

g/"\.EQ/I\
.nf\
.Sp

There is no need for a final line containing a *."
to terminate the i command, unless there are
further commands being done under the global.
On the other hand, it does no harm to put it in
either.

5. CUT AND PASTE WITH UNIX COM-
MANDS

One cditing area in which non-
programmers seem not very confident is in what
might be called ‘cut and paste’ operations —
changing the name of a file, making a copy of a
file somewhere else, moving a few lines from
one place to another in a file, inserting one file in
the middle of another, splitting a file into pieces,
and splicing two or more files together.

Yet most of these operations are actually
quite easy, if you keep your wits about you and
go cautiously. The next several scctions talk
about cut and paste. We will begin with the
UNIX commands for moving entire files around,
then discuss ed commands for operating on
pieces of files.

Changing the Name of a File

You have a file named ‘memo’ and you
want it to be called ‘paper’ instecad. How is it
done?

The UNIX program that renames files is
called mv (for ‘move’); it ‘moves’ the file from
one name to another, like this:

mv memo paper

That’s all there is to it: mv from the old name to
the new name.

12

mv old_name new_name

Warning: if there is already a file around with the
new name, its present contents will be silently
clobbered by the information from the other file.
The one exception is that you can’t move a file
to itself —

mv X X

is illegal.

Making a Copy of a File

Sometimes what you want is a copy of a
file — an entirely fresh version. This might be
because you want to work on a file, and yet save
a copy in case something gets fouled up, or just
because you’re paranoid.

In any case, the way to do it is with the ¢p
command. (¢p stands for ‘copy’; the UNIX sys-
tem is big on short command names, which are
appreciated by heavy users, but somectimes a
strain for novices.) Supposec you have a file
called ‘good’ and you want to save a copy before
you make some dramatic editing changes.
Choose a name — ‘save_good’ might be accept-
able — then type

cp good save_good

This copies ‘good’ onto ‘save_good’, and you
now have two identical copies of the file ‘good’.
(If ‘save_good’ previously contained something,
it gets overwritten.)

Now if you decide at some time that you
want to get back to the original state of ‘good’,
you can say

mv save_good good

(if you’re not interested in ‘save_good’ any
more), or

cp save_good good
if you still want to retain a safe copy.

In summary, mv just renames a file; cp
makes a duplicate copy. Both of them clobber
the ‘target’ file if it already exists, so you had
better be surc that’s what you want to do before
you do it.

Removing a File

If you decide you are really done with a
file forever, you can remove it with the rm com-
mand:

rm save_good

throws away (irrevocably) the file called
‘save_good’.

Advanced Editing

Putting Two or More Files Together

The next step is the familiar one of collect-
ing two or more files into one big one. This will
be needed, for example, when the author of a
paper decides that several sections need to be
combined into one. There are several ways to do
it, of which the cleanest, once you get used to it,
is a program called cat. (Not all UNIX programs
have two-letter names.) e¢at is short for ‘con-
catenate’, which is exactly what we want to do.

Suppose the job is to combine the files
‘file1” and ‘file2’ into a single file called ‘big_file’,
If you say

cat file

the contents of ‘file’ will get printed on your ter-
minal. If you say

cat filel file2

the contents of ‘filel’ and then the contents of
‘file2’ will both be printed on your terminal, in
that order. So cat combines the files, all right,
but it’s not much help to print them on the ter-
minal — we want them in ‘big_file'.

Fortunately, there is 2 way. You can tell
the system that instead of printing on your ter-
minal, you want the same information put in a
file. The way to do it is to add to the command
line the character > and the name of the file
where you want the output to go. Then you can
say

cat filel file2 >big file

and the job is done. (As with cp and mv, you're
putting something into ‘big file’, and anything
that was already there is destroyed.)

This ability to ‘capture’ the output of a
program is one of the most useful aspects of the
UNIX system. Fortunately it’s not limited to the
cat program — you can use it with any program
that prints on your terminal. We'll see some
more uses for it in a moment.

Naturally, you can combine several files,
not just two:

cat filel file2 file3 ...

collects a whole bunch.

>big_file

Question: is there any difference between
cp good save_good

and
cat good >save_good

Answer: for most purposes, no. You might rea-
sonably ask why there are two programs in that
case, since cat is obviously all you need. The
answer is that ¢p will do some other things as

Advanced Editing

well, which you can investigate for yourself by
reading the manual. For now we’ll stick to sim-
ple usages.

Adding Something to the End of a File

Sometimes you want to add one file to the
end of another. We have enough building blocks
now that you can do it; in fact before reading
further it would be valuable if you figured out
how. To be specific, how would you use cp, mv
and/or cat to add the file ‘goodl’ to the end of
the file ‘good’?

You could try

cat good goodl >temp
mv temp good

which is probably most direct. You should also
understand why

cat good goodl >good

doesn’t work. (Don’t practice with a good
‘good’!)

The easy way is to use a variant of >,
called >>. In fact, >> is identical to >
except that instead of clobbering the old file, it
simply tacks stuff on at the end. Thus you could
say

cat goodl >>good

and ‘good!’ is added to the end of ‘good’. (And
if ‘good’ didn't exist, this makes a copy of
‘goodl’ called ‘good’.)

6. CUT AND PASTE WITH THE EDITOR

Now we move on to manipulating pieces
of files — individual lines or groups of lines.
This is another area where new users seem
unsure of themselves.

File Names

The first step is to ensure that you know
the ed commands for reading and writing files.
Of course you can’t go very far without knowing
r and w. Equally useful, but less well known, is
the ‘edit’ command e. Within ed, the command

e new_file

says ‘I want to edit a new file called new_file,
without leaving the editor.” The e command dis-
cards whatever you're currently working on and
starts over on new_file. It’s exactly the same as
if you had quit with the q command, then re-
entered ed with a new file name, except that if
you have a pattern remembered, then a com-
mand like // will still work.

If you enter ed with the command

13

ed file

ed remembers the name of the file, and any sub-
sequent e, r or w commands that don’t contain a
file name will refer to this remembered file.
Thus

ed filel

... (cditing) ...

w (writes back in filel)

e file2 (edit new file, without leaving editor)
... (editing on file2) ...

w (writes back on file2)

(and so on) does a series of edits on various files
without ever leaving ed and without typing the
name of any file more than once. (As an aside, -

" if you examine the sequence of commands here,

you can see why many UNIX systems use e as a
synonym for ed.)

You can find out the remembered file
name at any time with the f command; just type
f without a file name. You can also change the
name of the remembered file name with f; a use-
ful sequence is

ed precious
f junk
... (editing) ...

which gets a copy of a precious file, then uses f
to guarantee that a careless w command won't
clobber the original.

Inserting One File into Another

Suppose you have a file called ‘memo’,
and you want the file called ‘table’ to be inserted
just after the reference to Table 1. That is, in
‘memo’ somewhere is a line that says

Table 1 shows that ...

and the data contained in ‘table’ has to go there,
probably so it will be formatted properly by nroff
or troff. Now what?

This one is easy. Edit ‘memo’, find ‘Table
1’, and add the file ‘table’ right there:

¢d memo

/Table 1/

Table | shows that ... [response from ed]
.r table

The critical line is the last one. As we said ear-
lier, the r command reads a file; here you asked
for it to be read in right after line dot. An r
command without any address adds lines at the
end, so it is the same as $r.

14

Writing out Part of a File

The other side of the coin is writing out
part of the document you're editing. For exam-
ple, maybe you want to split out into a scparate
file that table from the previous example, so it
can be formatted and tested scparately. Suppose
that in the file being edited we have

TS
... [lots of stuff]
.TE

which is the way a table is set up for the tbl pro-
gram. To isolate the table in a separate file
called ‘table’, first find the start of the table (the
*.TS’ line), then write out the interesting part:

/”\.TS/
TS [ed prints the line it found]
«/"\.TE/w table

and the job is done. If you are confident, you
can do it all at once with

/" \.TS/;/"\.TE/w table

The point is that the w command can write
out a group of lines, instead of the whole file. In
fact, you can write out a single line if you like;
just give one line number instead of two. For
example, if you have just typed a horribly com-
plicated line and you know that it (or something
like it) is going to be needed later, then save it
— don’t re-type it. In the editor, say

a
... lots of stuff ...
... horrible line ...
W temp

a
... more stuff ...
.T temp

a
... more stuff ...

.

This last example is worth studying, to be sure
you appreciate what’s going on.

Moving Lines Around

Supposc you want to move a paragraph
from its present position in a paper to the end.
How would you do it? As a concrete example,
suppose each paragraph in the paper begins with
the formatting command ‘,PP’. Think about it
and write down the details before reading on.

The brute force way (not necessarily bad)
is to write the paragraph onto a temporary file,
delete it from its current position, then read in
the temporary file at the end. Assuming that

Advanced Editing

you are sitting on the ‘.PP’ command that begins
the paragraph, this is the sequence of commands:

o/ \.PP/—w temp

o,//_d
$r temp

That is, from where you are now (*.") until one
line before the next “.PP’ (*/"\.PP/—") write
onto ‘temp’. Then delete the same lines.
Finally, read ‘temp’ at the end.

As we said, that’s the brute force way.
The casier way (often) is to use the move com-
mand m that ed provides — it lets you do the
whole set of operations at one crack, without any
temporary file.

The m command is like many other ed
commands in that it takes up to two line
numbers in front that tell what lines are to be
affected. It is also followed by a line number that
tells where the lines are to go. Thus

linel, line2 m line3

says to move all the lines between ‘linel’ and
‘line2’ after ‘line3’. Naturally, any of ‘linel’
etc., can be patterns between slashes, $ signs, or
other ways to specify lines.

Suppose again that you’re sitting at the
first line of the paragraph. Then you can say

o/ \.PP/—m$
That’s all.

As another example of a frequent opera-
tion, you can reverse the order of two adjacent
lines by moving the first one to after the second.
Suppose -that you are positioned at the first.
Then

m-+

does it. It says to move line dot to after one line
after line dot. If you are positioned on the
second line,

m——
does the interchange.

As you can see, the m command is more
succinct and direct than writing, deleting and re-

‘reading. When is brute force better anyway?

This is a matter of personal taste — do what you
have most confidence in. The main difficulty
with the m command is that if you use patterns
to specify both the lines you are moving and the
target, you have to take care that you specify
them properly, or you may well not move the
lines you thought you did. The result of a
botched m command can be a ghastly mess.
Doing the job a step at a time makes it easier for
you to verify at each step that you accomplished
what you wanted to. It's also a good idea to

Advanced Editing

issue a w command before doing anything com-
plicated; then if you goof, it’s easy to back up to
where you were.

Marks

ed provides a facility for marking a line
with a particular name so you can later reference
it by name regardless of its actual line number.
This can be handy for moving lines, and for
keeping track of them as they move. The mark
command is k; the command

kx

marks the current line with the name ‘x’. If a
line number precedes the k, that line is marked.
(The mark name must be a single lower case
letter.) Now you can refer to the marked line
with the address

¢

X

Marks are most uscful for moving things
around. Find the first line of the block to be
moved, and mark it with ‘a. Then find the last
line and mark it with ‘6. Now position yourself
at the place where the stuff is to go and say

‘a,’bm.

Bear in mind that only one line can have a
particular mark name associated with it at any
given time.

Copying Lines

We mentioned earlier the idea of saving a
line that was hard to type or used often, so as to
cut down on typing time. Of course this could

be more than one line; then the saving is =~

presumably even greater.

ed provides another command, called t
(for ‘transfer’) for making a copy of a group of
one or more lines at any point. This is often
easier than writing and reading.

The t command is identical to the m com-
mand, cxcept that instead of moving lines it sim-
ply duplicates them at the place you named.
Thus

1,5t$

duplicates the entire contents that you are edit-
ing. A more common use for t is for creating a
series of lines that differ only slightly. For
example, you can say

15

a
...... X (long line)
t. (make a copy)
s/x/y/ (change it a bit)
t. (make third copy)
s/y/z/ (change it a bit)
and so on.

The Temporary Escape ‘!’

Sometimes it is convenient to be able to
temporarily escape from the editor to do some
other UNIX command, perhaps one of the file
copy or move commands discussed in section 5,
without leaving the editor. The ‘escape’ com-
mand ! provides a way to do this. If you say

tany UNIX command

your current editing state is suspended, and the
UNIX command you asked for is executed.
When the command finishes, ed will signal you
by printing another !; at that point you can
resume editing.

You can really do any UNIX command,
including another ed. (This is quite common, in
fact.) In this case, you can even do another !.

7. SUPPORTING TOOLS

There are several tools and techniques that
go along with the editor, all of which are rela-
tively easy once you know how ed works,
because they are all based on the editor. In this
section we will give some fairly cursory examples
of these tools, more to indicate their existence
than to provide a complete tutorial. More infor-
mation on each can be found in [3].

Grep

Somectimes you want to find all
occurrences of some word or pattern in a set of
files, to edit them or perhaps just to verify their
presence or absence. It may be possible to edit
each file separately and look for the pattern of
interest, but if there are many files this can get
very tedious, and if the files are really big, it may
be impossible because of limits in ed.

The program grep was invented to get
around these limitations. The search patterns
that we have described in the paper are often
called ‘regular expressions’, and ‘grep’ stands for

g/re/p

That describes exactly what grep does — it prints
every line in a set of files that contains a particu-
lar pattern. Thus

16

grep ‘thing’ filel file2 file3 ...

finds ‘thing’ wherever it occurs in any of the files
‘filel’, ‘file2’, etc. grep also indicates the file in
which the line was found, so you can later edit it
if you like.

The pattern represented by ‘thing’ can be
any pattern you can use in the editor, since grep
and ed use exactly the same mechanism for pat-
tern searching. It is wisest always to enclose the
pattern in the single quotes ’...’ if it contains
any non-alphabetic characters, since many such
characters also mean something special to the
UNIX command interpreter (the ‘shell’). If you
don’t quote them, the command interpreter will
try to interpret them before grep gets a chance.

There is also a way to find lines that don’t
contain a pattern:

grep —v ‘thing’ filel file2 ...

finds all lines that don’t contain *thing’. The —v
must occur in the position shown. Given grep
and grep —v, it is possible to do things like
selecting all lines that contain some combination
of patterns. For example, to get all lines that
contain ‘x’ but not ‘y”:

grep x file ... | grep —v y

(The notation | is a ‘pipe’, which causes the out-
put of the first command to be used as input to
the second command; see [2].)

Editing Scripts

If a fairly complicated set of editing opera-
tions is to be done on a whole set of files, the
easiest thing to do is to make up a ‘script’, i.e., a
file that contains the operations you want to per-
form, then apply this script to each file in turn.

For example, suppose you want to change
every ‘Unix’ to ‘UNIX' and every ‘Gens’ to
‘GCOS’ in a large number of files. Then put into
the file ‘script’ the lines

g/Unix/s//UNIX/g
g/Gceos/s//GCOS/g
w

q
Now you can say

ed filel <script
ed file2 <script

This causes ed to take its commands from the
prepared script. Notice that the whole job has to
be planned in advance. ST

And of course by using the UNIX com-
mand interpreter, you can cycle through a set of
files automatically, with varying degrees of ease.

Advanced Editing

Sed

sed (‘stream editor’) is a version of the
editor with restricted capabilities but which is
capable of processing unlimited amounts of
input. Basically sed copies its input to its output,
applying one or more editing commands to each
line of input.

As an example, suppose that we want to
do the ‘Unix’ to ‘UNIX’ part of the example
given above, but without rewriting the files.
Then the command

sed ’s/Unix/UNIX/g filel file2 ...

applies the command ‘s/Unix/UNIX/g’ to all
lines from ‘filel’, ‘file2’, etc., and copies all lines
to the output. The advantage of using sed in
such a case is that it can be used with input too
large for ed to handle. All the output can be col-
lected in one place, either in a file or perhaps
piped into another program.

If the editing transformation is so compli-
cated that more than one editing command is
needed, commands can be supplied from a file,
or on the command line, with a slightly more
complex syntax. To take commands from a file,
for example,

sed —f cmdfile input_files ...

sed has further capabilities, including con-

~.ditional testing and branching, which we cannot

g0 into here.

Acknowledgement

I am grateful to Ted Dolotta for his careful
reading and valuable suggestions.

References

[1] Brian W. Kernighan. A Tutorial Introduc-
tion to the UNIX Text Editor, Bell Labora-
tories.

[2] Brian W. Kernighan. UNIX For Beginners,
Bell Laboratories.

[31 T. A. Dolotta, S. B. Olsson, and A. G.
Petruccelli (eds.). UNIX User’s
Manual —Release 3.0, Bell Laboratories
(June 1980).

January 1981

UNIX
B.2.3

SED— A Non-Interactive Text Editor

Lee E. McMahon

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Sed is a non-interactive context editor that runs on the UNIXY operating
system. Sed is designed to be especially useful in three cases:

1) To edit files too large for comfortable interactive editing.

2) To edit any sizc file when the sequence of editing commands is too
complicated to be comfortably typed in interactive mode.

3) To perform multiple ‘global’ editing functions efficiently in one pass
through the input.

This memorandum constitutes a manual for users of sed.

INTRODUCTION
Sed is a non-interactive context editor designed to be especially useful in three cases:
1) To edit files too large for comfortable interactive editing.

2) To edit any size file when the sequence of editing commands is too complicated to
be comfortably typed in interactive mode.

3) To perform multiple ‘global’ editing functions efficiently in one pass through the
input.
Because only a few lines of the input reside in memory at one time, and no temporary files are
used, the effective size of file that can be edited is limited only by the requirement that the
input and output fit simultaneously into available secondary storage.

Complicated editing scripts can be created separately and given to sed as a command file. For
complex edits, this saves considerable typing, and its attendant errors. Sed running from a
command file is much more efficient than any interactive editor known to the author, even if
that editor can be driven by a pre-written script.

The principal loss of functions compared to an interactive editor are lack of relative addressing
(because of the line-at-a-time operation), and lack of immediate verification that a command
has done what was intended.

Sed is a lineal descendant of the UNIX editor, ed. Because of the differences between interac-
tive and non-interactive operation, considerable changes have been made between ed and sed;
even confirmed users of ed will frequently be surprised (and probably chagrined), if they rashly
use sed without reading Sections 2 and 3 of this document. The most striking family resem-
blance between the two editors is in the class of patterns (‘regular expressions’) they recognize;
the code for matching patterns is copied almost verbatim from the code for ed, and the descrip-
tion of regular expressions in Section 2 is copied almost verbatim from the UNIX Programmer's
Manual [1]. (Both code and description were written by Dennis M. Ritchie.)

t UNIX is a trademark of Bell Laboratories.

2 SED

1. OVERALL OPERATION

Sed by default copics the standard input to the standard output, perhaps performing one or
more ediling commands on each linc before writing it to the output. This behavior may be
modified by flags on the command line; see Section 1.1 below.

The general format of an editing command is:
[address],address2][function][arguments]

One or both addresses may be omitted; the format of addresses is given in Section 2. Any
number of blanks or tabs may separate the addresses from the function. The function must be
present; the available commands are discussed in Section 3. The arguments may be required or
optional, according to which function is given; again, they are discussed in Section 3 under each
individual function.

Tab characters and spaces at the beginning of lines are ignored.

1.1. Command-line Flags
Three flags are recognized on the command line:

—n tells sed not to copy all lines, but only those specified by p functions or p flags after s
functions (see Section 3.3);

—e tells sed to take the next argument as an editing command;

—f tells sed to take the next argument as a file name; the file should contain editing
commands, one to a line.

1.2. Order of Application of Editing Commands

Before any editing is done (in fact, before any input file is even opened), all the editing com-
mands are compiled into a form which will be moderately efficient during the execution phase
(when the commands are actually applied to lines of the input file). The commands are com-
piled in the order in which they are encountered; this is generally the order in which they will
be attempted at execution time. The commands are applied one at a time; the input to each
command is the output of all preceding commands.

The default linear order of application of editing commands can be changed by the flow-of-
control commands, f and b (see Section 3). Even when the order of application is changed by
these commands, it is still true that the input line to any command is the output of any previ-
ously applied command.

1.3. Pattern-space

The range of pattern matches is called the pattern space. Ordinarily, the pattern space is one
line of the input text, but more than one line can be read into the pattern space by using the N
command (Section 3.6.).

1.4. Examples

Examples are scattered throughout the text. Except where otherwise noted, the examples all
assume the following input text:

In Xanadu did Kubla Khan

A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless to man
Down to a sunless sea.

(In no case is the output of the sed commands to be considered an improvement on Coleridge.)

SED 3

Example:
The command
2q
will quit after copying the first two lines of the input. The output will be:

In Xanadu did Kubla Khan
A stately pleasure dome decree:

2. ADDRESSES: SELECTING LINES FOR EDITING

Lines in the input file(s) to which editing commands are to be applied can be selected by
addresses. Addresses may be either line numbers or context addresses.

The application of a group of commands can be controlled by one address (or address-pair) by
grouping the commands with curly braces (‘[]’—see Section 3.6.).

2.1. Line-number Addresses

A line number is a decimal integer. As each line is read from the input, a line-number counter
is incremented; a line-number address matches (selects) the input line which causes the inter-
nal counter to equal the address line-number. The counter runs cumulatively through multiple
input files; it is not reset when a new input file is opened.

As a special case, the character § matches the last line of the last input file.

2.2. Context Addresses

A context address is a pattern (‘regular expression’) enclosed in slashes (‘/’). The regular
expressions recognized by sed are constructed as follows: '

1) An ordinary character (not one of those discussed below) is a regular expression,
and matches that character.

2) A circumflex ‘”’ at the beginning of a regular expression matches the null character
at the beginning of a line.

3) A dollar-sign ‘$’ at the end of a regular expression matches the null character at the
end of a line. ,

4) The characters ‘\n” match an embedded new-line character, but not the new-line at
the end of the pattern space.

5) A period ‘.’ matches any character except the terminal new-line of the pattern space.

6) A regular expression followed by an asterisk ‘*’ matches any number (including 0)
of adjacent occurrences of the regular expression it follows.

7) A string of characters in square brackets ‘[]’ matches any character in the string, and
no others. If, however, the first character of the string is circumflex ‘"’, the
regular expression matches any character except the characters in the string and
the terminal new-line of the pattern space.

8) A concatenation of regular expressions is a regular expression which matches the
concatenation of strings matched by the components of the regular expression.

9) A regular expression between the sequences “\(" and ‘\)’ is identical in effect to the
. unadorned regular expression, but has side-effects which are described under
the s command below and specification 10) immediately below. '

10) The expression ‘\d’ means the same string of characters matched by an exprcssnon
enclosed in “\(’ and ‘\)’ earlier in the same pattern. Here d is a single digit; the
string specified is that beginning with the dth occurrence of ‘\(’ counting from
the left. For example, the expression ‘ “\(.#\)\1’ matches a line beglnnmg w1th
two repeated occurrences of the same string.

11) The null regular expression standing alone (e.g., ‘//’) is equivalent to the last regu-
lar expression compiled.

4 SED

To use one of the special characters (" $. # []\ /) as a literal (to match an occurrence of itself
in the input), precede the special character by a backslash *\.

For a context address to ‘match’ the input requires that.the whole pattern within the address
match some portion of the pattern space.

2.3. Number of Addresses

The commands in the next section can have 0, 1, or 2 addresses. Under each command the
maximum number of allowed addresses is given. For a command to have more addresses than
the maximum allowed is considered an error.

If a command has no addresses, it is applied to every line in the input.
If a command has one address, it is applied to all lines which match that address.

If a command has two addresses, it is applied to the first line which matches the first address,
and to all subsequent lines until (and including) the first subsequent line which matches the
second address. Then an attempt is made on subsequent lines to again match the first address,
and the process is repeated.

Two addresses are separated by a comma.

Examples:
/an/ matches lines 1, 3, 4 in our sample text
/an.xan/ matches line 1
/" an/ matches no lines
/./ matches all lines
N/ matches line §
/r#an/ matches lines 1, 3, 4 (number = zero!)

A(an\).x\1/ matches line |

3. FUNCTIONS

All functions are named by a single character. In the following summary, the maximum
number of allowable addresses is given enclosed in parentheses, then the single character func-
tion name, possible arguments enclosed in angles (< >), an expanded English translation of
the single-character name, and finally a description of what each function does. The angles
around the arguments are not part of the argument, and should not be typed in actual editing
commands.

3.1. Whole-line Oriented Functions
(2)d — delete lines

The d function deletes from the file (does not write to the output) all those
lines matched by its address(es).

It also has the side effect that no further commands are attempted on the
corpse of a deleted line; as soon as the 4 function is executed, a new line is
read from the input, and the list of editing commands is re-started from the
beginning on the new line.

(2)n — next line

The n function reads the next line from the input, replacing the current line.
The current line is written to the output if it should be. The list of editing
commands is continued following the n command.

(Da\

<text> — append lines

The a function causes the argument <text> to be written to the output after

SED

(1)i\

(2)c\

the line matched by its address. The a command is inherently multi-line; a
must appear at the end of a line, and <text> may contain any number of
lines. To preserve the one-command-to-a-line fiction, the interior new-lines
must be hidden by a backslash character (‘\') immediately preceding the new-
line. The <text> argument is terminated by the first unhidden new-line (the
first one not immediatcly preceded by backslash).

Once an a function is successfully executed, <text> will be written to the out-
put.regardless of what later commands do to the line which triggered it; that
line may be deleted entirely; <text> will still be written to the output.

The <text> is not scanned for address matches, and no editing commands are
attempted on it. It does not causc any change in the line-number counter.

<text> — insert lines

The i function behaves identically to the a function, except that <text> is
written to the output before the matched line. All other comments about the a
function apply to the i function as well.

<text> — change lines

The ¢ function dcletes the lines selected by its address(es), and replaces them
with the lines in <text>. Like a and i, ¢ must be followed by a new-line hid-
den by a backslash; and interior new lines in <(text> must be hidden by
backslashes.

The ¢ command may have two addresses, and therefore select a range of lines.
If it does, all the lines in the range are deleted, but only one copy of <text> is
written to the output, not one copy per line deleted. As with g and i, <text>
is not scanned for address matches, and no editing commands are attempted on
it. It does not change the line-number counter.

After a linc has been deleted by a ¢ function, no further commands are
attempted on the corpse.

If text is appended after a line by a or r functions, and the line is subsequently
changed, the text inserted by the ¢ function will be placed before the text of the
a or r functions. (The r function is described in Section 3.4.)

Note: Within the text put in the output by these functions, leading blanks and tabs will disap-
pear, as always in sed commands. To get leading blanks and tabs into the output, precede the
first desired blank or tab by a backslash; the backslash will not appear in the output.

Example:

The list of editing commands:

n

a\
XXXX
d

applied to our standard input, produces:

In Xanadu did Kubla Khan
XXXX .
Where Alph, the sacred river, ran
XXXX

Down to a sunless sea.

SED

In this particular case, the same effect would be produced by either of the two following com-

mand lists:
n n
N\ c\
XXXX XXXX
d

3.2. Substitute Function

One very important function changes parts of lines selected by a context search within the line.

(2)s<pattern> <replacement > <flags> — substitute

The s function replaces part of a line (selected by <pattern>) with <replace-
ment>. It can best bé read:

Substitute for <pattern>, <replacement>

The < pattern> argument contains a pattern, exactly like the patterns in
addresses (see Section 2.2 above). The only difference between <<pattern>>
and a context address is that the context address must be delimited by slash
(*/’) characters; <pattern>> may be delimited by any character other than space
or new-line.

By default, only the first string matched by <pattern> is replaced, but see the
g flag below.

The <replacement>> argument begins immediately after the second delimiting
character of <pattern>, and must be followed immediately by another instance
of the delimiting character. (Thus there are exactly three instances of the
delimiting character.)

The <replacement> is not a pattern, and the characters which are special in
patterns do not have special meaning in <replacement>. Instead, other char-
acters are special:

& is replaced by the string matched by <pattern>

\d (where d is a single digit) is replaced by the dth substring matched
by parts of <pattern> enclosed in ‘\(’ and ‘\)’. If nested sub-
strings occur in <pattern>-, the dth is determined by counting
opening delimiters (“\(’).

As in patterns, special characters may be made literal by
preceding them with backslash (*\').

The <flags> argument may contain the following flags:

g — substitute <replacement> for all (non-overlapping) instances of
<pattern> in the line. After a successful substitution, the
scan for the next instance of <Cpattern> begins just after the
end of the inserted characters; characters put into the line from
<replacement>> are not rescanned.

p — print the line if a successful replacement was done. The p flag
causes the line to be written to the output if and only if a sub-
stitution was actually made by the s function. Notice that if
several s functions, each followed by a p flag, successfully sub-
stitute in the same input line, multiple copies of the line will be
written to the output: one for each successful substitution.

SED 7

w <filename> — write the line to a file if a successful replacement

‘ was done. The w flag causes lines which are actually substi-
tuted by the s function to be written to a file named by
<filename>>. If <filename> exists before sed is run, it is
overwritten; if not, it is created.

A single space must separate w and <filename>.

The possibilities of multiple, somewhat different copics of one
input line being written are the same as for p.

A maximum of 10 different file names may be mentioned after
w flags and w functions (see below), combined.

Examples:

The following command, applied to our standard input,
s/to/by/w changes

produces, on the standard output:

In Xanadu did Kubla Khan

A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless by man
Down by a sunless sea.

and, on the file ‘changes’:

Through caverns measureless by man
Down by a sunless sea.

If the no-copy option is in effect, the command:
s/[.,;7:1/*P&~/gp
produces:

A stately pleasure dome decreexP:«
Where Alph#P « the sacred river«P,» ran
Down 10 a sunless seasP.+

Finally, to illustrate the effect of the g flag, the command:
/X/s/an/AN/p
produces (assuming no-copy mode):
In XANadu did Kubla Khan
and the command:
/X/s/an/AN/gp
produces:
In XANadu did Kubla KhAN

3.3, Input-output Function‘s
(2)p — print

The print function writes the addressed lines to the standard output file. They
are written at the time the p function is encountered, regardless of what
succeeding editing commands may do to the lines.

(2)w <filename> — write on <filename>

The write function writes the addressed lines to the file named by <filename>.
If the file previously existed, it is overwritten; if not, it is created. The lines

8 SED

are written exactly as they exist when the write function is encountered for
each line, regardless of what subsequent editing commands may do to them.

Exactly one space must separate the w and <filename>.

A maximum of ten different files may be mentioned in write functions and w
flags after s functions, combined.

()r <filename> — read the contents of a file

The read function reads the contents of <filename>>, and appends them after
the line matched by the address. The file is read and appended regardless of
what subsequent editing commands do to the line which matched its address.
If r and a functions are executed on the same line, the text from the a func-
tions and the » functions is written to the output in the order that the functions
are executed.

Exactly one space must separate the r and <filename>. If a file mentioned by
a r function cannot be opened, it is considered a null file, not an error, and no
diagnostic is given.

NOTE: Since there is a limit to the number of files that can be opened simultaneously, care
should be taken that no more than ten files be mentioned in w functions or flags; that number
is reduced by one if any » functions are present. (Only one read file is open at one time.)

Examples:
Assume that the file ‘notel” has the following contents:

Note: Kubla Khan (more properly Kublai Khan; 1216-1294) was the grandson
and most eminent successor of Genghiz (Chingiz) Khan, and founder of the
Mongol dynasty in China.

Then the following command:
/Kubla/T notel
produces:
In Xanadu did Kubla Khan
Note: Kubla Khan (more properly Kublai Khan; 1216-1294) was the grandson
and most eminent successor of Genghiz (Chingiz) Khan, and founder of the
Mongol dynasty in China.
A stately pleasure dome decree:
Where Alph, the sacred river, ran

Through caverns measureless to man
Down to a sunless sea.

3.4. Multiple Input-line Functions

Three functions, all spelled with capital letters, deal specially with pattern spaces containing
embedded new-lines; they are intended principally to provide pattern matches across lines in
the input.

(2)N — Next line

The next input line is appended to the current line in the pattern space; the two
input lines are’ separated by an embedded new-line. Pattern matches may
extend across the embedded new- lmc(s)

(2)D — Delete first part of the pauern space -

Delete up to and including the first new- lme character in the current pattern
space. If the pattern space becomes empty (the only new-line was the terminal

SED 9

new-line), read another line from the input. In any case, begin the list of edit-
ing commands again from its beginning.

(2)P — Print first part of the pattern space
Print up to and including the first new-line in the pattern space.
The P and D functions are equivalent to their lower-case counterparts if there are no embedded

new-lines in the pattern space.

3.5. Hold and Get Functions
Four functions save and retrieve part of the input for possible later use.
(2)h — hold pattern space
The h functions copies the contents of the pattern space into a hold area (des-
troying the previous contents of the hold area).
(2)H — Hold pattern space

The H function appends the contents of the pattern space to the contents of the
hold area; the former and new contents are separated by a new-line.

(2)g — get contents of hold area

The g function copies the contents of the hold area into the pattern space (des-
troying the previous contents -of the pattern space).

(2)G — Get contents of hold area

The G function appends the contents of the hold area to the contents of the
pattern space; the former and new contents are separated by a new-line.
(2)x — exchange

The exchange command interchanges the contents of the pattern space and the
hold area.

Example:
The commands
1h
1s/ did.x//
1x
G
s/A\n/ :/
applied to our standard example, produce:
In Xanadu did Kubla Khan :In Xanadu
A statcly pleasure dome decree: :In Xanadu
Where Alph, the sacred river, ran :In Xanadu

Through caverns measureless to man :In Xanadu
Down to a sunless sea. :In Xanadu

3.6. Flow-of-control Functions

These functions do no editing on the input lines, but control the application of functions to the
lines sclected by the address part.

(2)! — Don’t.

The Don’t command causes the next command (written on the same line), to

10

f -

SED

be applied to all and only those input lines not selected by the address part.
Grouping

The grouping command ‘{’ causes the next set of commands to be applied (or
not applied) as a block to the input lines sclected by the addresses of the group-
ing command. The first of the commands under control of the grouping may
appear on the same line as the ‘{’ or on the next line.

The group of commands is terminated by a matching ‘}’ standing on a line by
itself.

Groups can be nested.

(0):<label> — place a label

The label function marks a place in the list of editing commands which may be
referred to by b and ¢ functions. The <label> may be any sequence of cight
or fewer characters; if two different colon functions have identical labels, a
compile time diagnostic will be generated, and no execution attempted.

(2)b<label> — branch to label

The branch function causes the sequence of editing commands being applied to
the current input line to be restarted immediately after the place where a colon
function with the same <label> was encountered. If no colon function with
the same label can be found after all the editing commands have been com-
piled, a compile time diagnostic is produced, and no execution is attempted.

A b function with no <label> is taken to be a branch to the end of the list of
editing commands; whatever should be done with the current input line is
done, and another input line is read; the list of editing commands is restarted
from the beginning on the new line.

(2)t<<label> — test substitutions

The ¢ function tests whether any successful substitutions have been made on
the current input line; if so, it branches to <label>; if not, it does nothing.
The flag which indicates that a successful substitution has been executed is
reset by:

1) reading a new input line, or
2) executing a t function.

3.7. Miscellaneous Functions

(1)= — equals

The = function writes to the standard output the line number of the line
matched by its address.

(1)q — quit

REFERENCE

The g function causes the current line to be written to the output (if it should
be), any appended or read text to be written, and execution to be terminated.

(1] UNIX Programmer’s Manual, Bell Laboratories, 1978.

January 1981

 UNIX
B.3.1

UNIX for Beginners (Second Edition)

Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This paper is meant to help new users get started on the UNIXt opcrating system.

It includes:

® basics needed for day-to-day use of the system — typing commands, correcting
typing mistakes, logging in and out, mail, inter-terminal communication, the file
system, printing files, redirecting I/O, pipes, and the shell.

e document preparation — a brief discussion of the major formatting programs and
macro packages, hints on preparing documents, and capsule descriptions of some

supporting software.

® UNIX programming — using the editor, programming the shell, programming in C,

other languages and tools.

® pointers to additional sources of information about UNIX.

INTRODUCTION

From the user’s point of view, the UNIX
operating system is easy to learn and use, and
presents few of the usual impediments to getting
the job dome. It is hard, however, for the
beginner to know where to start, and how to
make the best use of the facilities available. The
purpose of this introduction is to help new users
get used to the main ideas of the UNIX system
and start making effective use of it quickly.

You should have a couple of other docu-
ments with you for easy reference as you read
this one. The most important is UNIX User’s
Manual; it’s often casier to tell you to read about
something in the manual than to repeat its con-
tents here. The other useful document is A
Tutorial Introduction to the UNIX Text Editor,
which will tell you how to use the editor to get
text — programs, data, documents — into the
computer. :

A word of warning: the UNIX system has
become quite popular, and there are several
major variants in widespread use. Of course
details also change with time. So although the
basic structure of UNIX and how to use it is com-
mon to all versions, there will certainly be a few

+ UNIX is a trademark of Bell Laboratories.

things which are different on your system from
what is described here. We have tried to minim-
ize the problem, but be aware of it. In cases of
doubt, this paper describes Version 7 UNIX.

This paper has four main sections:

1. Getting Started: How to log in, how to type,
what to do about mistakes in typing, how to
log out. Some of this is dependent on which
system you log into (phone numbers, for
example) and what terminal you use, so this
section must necessarily be supplemented by
local information.

2. Day-to-day Use: Things you need every day
to use the system effectively: generally use-
ful commands; the file system.

3. Document Preparation: Preparing manu-
scripts is one of the most common uses for
UNIX systems. This section contains advice,
but not extensive instructions on any of the
formatting tools.

4. Writing Programs: UNIX is an excellent sys-
tem for developing programs. This section
talks about some of the tools, but again is
not a tutorial in any of the programming
languages provided by the system.

I. GETTING STARTED

Logging In

You must have a UNIX login name, which
you can get from whoever administers your sys-
tem. You also need to know the phone number,
unless your system uses permanently connected
terminals. The UNIX system is capable of deal-
ing with a wide variety of terminals: Terminet
300s; Execuport, TI and similar portables; video
(CRT) terminals like the HP 2640, etc.; high-
priced graphics terminals like the Tektronix
4014; plotting terminals like those from GSI and
DASI; and even the venerable Teletype in its
various forms. But note: UNIX is strongly
oriented towards devices with lower case. If your
terminal produces only upper case (e.g., model
33 Teletype, some video and portable terminals),
life will be so difficult that you should look for
another terminal.

Be sure to set the switches appropriately on
your device. Switches that might need to be
adjusted include the speed, upper/lower case
mode, full duplex, even parity, and any others
that local wisdom advises. Establish a connec-
tion using whatever magic is needed for your ter-
minal; this may involve dialing a telephone call
or merely flipping a switch. In either case, UNIX
should type ‘‘login:’" at you. If it types garbage,
you may be at the wrong speed; check the
switches. If that fails, push the ‘‘break” or
“interrupt’’ key a few times, slowly, If that fails
to produce a login message, consult a guru.

When you get a login: message, type your
login name in lower case. Follow it by a
RETURN; the system will not do anything until
you type a RETURN. If a password is required,
you will be asked for it, and (if possible) printing
will be turned off while you type it. Don’t forget
RETURN.

The culmination of your login efforts is a
‘“‘prompt character,” a single character that indi-
cates that the system is ready to accept com-
mands from you. The prompt character is usu-
ally a dollar sign $ or a percent sign %. (You
may also get a message of the day just before the
prompt character, or a notification that you have
mail.)

Typing Commands

Once you’ve seen the prompt character, you
can type commands, which are requests that the
system do something. Try typing

date

followed by RETURN. You should get back
something like

UNIX for Beginners

Mon Jan 16 14:17:10 EST 1978

Don’t forget the RETURN after the command, or
nothing will happen. If you think you’re being
ignored, type a RETURN; something should hap-
pen. RETURN won’t be mentioned again, but
don’t forget it — it has to be there at the end of
each line.

Another command you might try is who,
which tells you everyone who is currently logged
in;

who

gives something like

mb tty01 Jan 16 09:11
ski tty05 Jam 16 09:33
gam ttyll Jan 16 13:07

The time is when the user logged in; “‘ttyxx”’ is
the system’s idea of what terminal the user is on.

If you make a mistake typing the command
name, and refer to a non-existent command, you
will be told. For example, if you type

whom
you will be told
whom: not found

Of course, if you inadvertently type the name of
some other command, it will run, with more or
less mysterious results.

Strange Terminal Behavior

Sometimes you can get into a state where
your terminal acts strangely. For example, each
letter may be typed twice, or the RETURN may
not cause a line-feed or a return to the left mar-
gin. You can often fix this by logging out and
logging back in. Or you can read the description
of the command stty in Section 1 of the UNIX
User's Manual. To get intelligent treatment of
tab characters (which are much used in UNIX) if
your terminal doesn’t have tabs, type

stty —tabs

and the system will convert each tab into the
right number of blanks for you. If your terminal
does have computer-settablc tabs, the command
tabs will set the stops correctly for you.

Mistakes in Typing

If you make a typing mistake, and see it
before RETURN has been typed, there are two
ways to recover. The sharp-character # erases
the last character typed; in fact successive uses of
erase characters back to the beginning of the
line (but not beyond). So if you type badly, you
can correct as you go:’

UNIX for Beginners

dd# atteffe

is the same as date.

The at-sign (@ erases all of the characters
typed so far on the current input line, so if the
line is irretricvably fouled up, type an @ and
start the line over.

What if you must enter a sharp or at-sign as
part of the text? If you precede cither # or @
by a backslash \, it loses its erase meaning. So
to enter a sharp or at-sign in something, type \#
or \@. The system will always echo a new-line
at you after your at-sign, even if preceded by a
backslash. Don’t worry — the at-sign has been
recorded.

To erase a backslash, you have to type two
sharps or two at-signs, as in \##. The backslash
is used extensively in UNIX to indicate that the
following character is in some way special.

Read-ahead

UNIX has full read-ahead, which means that
you can type as fast as you want, whenever you
want, even when some command is typing at
you. If you type during output, your input char-
acters will appear intermixed with the output
characters, but they will be stored away and
interpreted in the correct order. So you can type
several commands one after another without
waiting for the first to finish or even begin.

Stopping a Program

You can stop most programs by typing the
character ‘‘DEL” (perhaps called ‘‘delete’” or
“‘rubout™ on your terminal). The “interrupt’ or
“‘break’ key found on most terminals can also
be used. In a few programs, like the text editor,
DEL stops whatever the program is doing but
leaves you in that program. Hanging up the
phone will stop most programs.

Logging Out

The ecasiest way to log out is to hang up the
phone. You can also type

login
and let someone else use the terminal you were
on. It is usually not sufficient just to turn off the
terminal. Most UNIX systems do not use a

time-out mechanism, so you’ll be there forever
unless you hang up.

Mail

When you log in, you may sometimes get
the message

You have mail.

UNIX provides a postal system so you can com-
municate with other users of the system. To
read your mail, type the command

mail

Your mail will be printed, one message at a time,
most recent message first. After each message,
mail waits for you to say what to do with it. The
two basic responses are d, which deletes the mes-
sage, and RETURN, which does not (so it will
still be there the next time you read your mail-
box). Other rcsponses are described in the
manual. (Earlier versions of mail do not process
one message at a time, but are otherwise simi-
lar.)

How do you send mail to someone else?
Suppose it is to go to ‘‘joe’’ (assuming “‘joe’’ is
someone’s login name). The easiest way is this:

mail joe

now type in the text of the letter

on as many lines as you like ..

After the last line of the letter

type the character ‘‘control-d”,

that is, hold down '‘control’' and type

a letter "'d".

And that’s it. The ‘‘control-d’’ sequence, often
called “EOF” for end-of-file, is used throughout
the system to mark the end of input from a ter-
minal, so you might as well get used to it.

For practice, send mail to yourself. (This
isn’t as strange as it might sound — mail to one-
self is a handy reminder mechanism.)

There are other ways to send mail — you
can send a previously prepared letter, and you
can mail to a number of people all at once. For
morc details see mail(1). (The notation mail(1)
means the command mail in Section | of the
UNIX User's Manual.)

Writing to other users

At some point, out of the blue will come a
message like

Message from joe tty07 ...

accompanied by a startling beep. It means that
Joe wants to talk to you, but unless you take
explicit action you won't be able to talk back. To
respond, type the command

write . joe

This establishes a two-way communication path.
Now whatever Joe types on his terminal will
appear on yours and vice versa. The path is
slow, rather like talking to the moon. (If you are
in the middle of something, you have to get to a
state where you can type a command. Normally,
whatever program you are running has to

terminate or be terminated. If you’re editing,
you can escape temporarily from the editor —
read the editor tutorial.)

A protocol is needed to keep what you type
from pgetting garbled up with what Joe types.
Typically it’s like this:

Joe types write smith and waits.

Smith types write joe and waits.

Joe now types his message (as many lines
as he likes). When he’s ready for a
reply, he signals it by typing (o), which
stands for ‘“‘over’.

Now Smith types a reply, also terminated
by (o).

This cycle repeats until someone gets
tired; he then signals his intent to quit
with (o0), for “‘over and out’.

To terminate the conversation, each side
must type a ‘“‘control-d” character alone
on a line. (‘‘Delete’ also works.) When
the other person types his ‘‘control-d”,
you will get the message EOF on your
terminal.

If you write to someone who isn’t logged in,
or who doesn’t want to be disturbed, you’ll be
told. If the target is logged in but doesn’t answer
after a decent interval, simply type *‘control-d™.

On-line Manual

The UNIX User’'s Manual is typically kept
on-line. If you get stuck on something, and
can’t find an expert to assist you, you can print
on your terminal some manual section that
might help. This is also useful for getting the
most up-to-date information on a command. To
print a manual section, type ‘‘man command-
name’’, Thus to read up on the who command,
type

man who
and, of course,

man man

tells all about the man command.

Computer Aided Instruction

Your UNIX systemn may have available a pro-
gram called learn, which provides computer
aided instruction on the file system and basic
commands, the editor, document preparation,
and even C programming. Try typing the com-
mand

learn

If learn exists on your system, it will tell you
what to do from there.

UNIX for Beginners

II. DAY-TO-DAY USE

Creating Files — The Editor

If you have to type a paper or a letter or a
program, how do you get the information stored
in the machine? Most of these tasks are done
with the UNIX “‘text editor’” ed. Sincec ed is
thoroughly documented in ed(1) and explained
in A Tutorial Introduction to the UNIX Text Editor,
we won't spend any time here describing how to
use it. All we want it for right now is to make
some files. (A file is just a collection of informa-
tion stored in the machine, a simplistic but ade-
quate definition.)

To create a file called junk with some text in
it, do the following:

ed junk (invokes the text editor)

a (command to ‘‘ed’’ to add text)
now type in

whatever text you want ...

. (signals the end of adding text)

The ““.”” that signals the end of adding text must
be at the beginning of a line by itself. Don’t for-
get it, for until it is typed, no other ed com-
mands will be recognized — everything you type
will be treated as text to be added.

At this point you can do various editing
operations on the text you typed in, such as
correcting spelling mistakes, rearranging para-
graphs and the like. Finally, you must write the
information you have typed into a file with the
editor command w:

w

ed will respond with the number of characters it
wrote into the file junk.

Until the w command, nothing is stored per-
manently, so if you hang up and go home the
information is lost.* But after w the information
is there permanently; you can re-access it any
time by typing

ed junk
Type a q command to quit the editor. (If you try

to quit without writing, ed will print a ? to rem-
ind you. A second q gets you out regardless.)

Now create a second file called temp in the
same manner. You should now have two files,
junk and temp.

* This is not strictly true — if you hang up while editing,
the data you were working on is saved in a file called
ed.hup, which you can continue with at your next session.

UNIX for Beginners

What files are out there?

The Is (for “list’’) command lists the names
(not contents) of any of the files that UNIX
knows about. If you type

Is
the response will be

junk
temp

which are indeed the two files just created. The
names are sorted into alphabetical order
automatically, but other variations are possible.
For example, the command

Is —t

causes the files to be listed in the order in which
they were last changed, most recent first. The
—1 option gives a ‘“‘long’’ listing:

Is —1
will produce something like

—rw—rw—rw— 1 bwk 41 Jul 22 2:56 junk
—rw—rw—rw— 1 bwk 78 Jul 22 2:57 temp

The date and time are of the last change to the
file. The 41 and 78 are the number of characters
(which should agree with the numbers you got
from ed). bwk is the owner of the file, that is,
the person who created it. The —rw—rw—rw—
tells who has permission to read and write the
file, in this case everyone.

Options can be combined: Is —It gives the
same thing as Is —1, but sorted into time order.
You can also name the files you're interested in,
and Is will list the information about them only.
More details can be found in Is(1).

The use of optional arguments that begin
with a minus sign, like —t and —1It, is a com-
mon convention for UNIX programs. In general,
if a program accepts such optional arguments,
they precede any file name arguments. It is also
vital that you separate the various arguments
with spaces: Is—1 is not the same as Is —1.

Printing Files

Now that you’ve got a file of text, how do
you print it so people can look at it? There are a
host of programs that do that, probably more
than are needed.

One simple thing is to use the editor, since
printing is often donec just before making
changes anyway. You can say

ed junk
1,%p

ed will reply with the count of the characters in
junk and then print all the lines in the file.

After you learn how to usc the cditor, you can
be selective about the parts you print.

There are times when it’s not feasible to usc
the editor for printing. For example, there is a
limit on how big a file ed can handle (several
thousand lines). Secondly, it will only print one
file at a time, and somectimes you want to print
several, one after another. So here are a couple
of alternatives.

First is cat, the simplest of all the printing
programs. cat simply prints on the terminal the
contents of all the files named in a list. Thus

cat junk
prints one file, and .
cat junk temp

prints two. The files are simply concatenated
(hence the name ‘‘cat’’) onto the terminal.

pr produces formatted printouts of files. As
with cat, pr prints all the files named in a list.
The difference is that it produces headings with
date, time, page number and file name at the top
of each page, and extra lines to skip over the
fold in the paper. Thus,

pr junk temp

will print junk neatly, then skip to the top of a
new page and print temp neatly.

pr can also produce multi-column output:
pr —3 junk

prints junk in 3-column format. You can use
any reasonable number in place of **3”" and pr
will do its best. pr has other capabilities as well;
see pr(l).

It should be noted that pr is not a format-
ting program in the sense of shuffling lines
around and justifying margins. The true for-
matters are nroff and troff, which we will get to
in the section on document preparation.

There are also programs that print files on a
high-speed printer. Look in your manual under
opr and lpr. Which to use depends on what
equipment is attached to your machine.

Shufling Files About

Now that you have some files in the file sys-
tem and some experience in printing them, you
can try bigger things. For example, you can
move a file from one place to another (which
amounts to giving it a new name), like this:

mv junk precious

This means that what used to be “junk’ is now
**precious’’. If you do an Is command now, you
will get

precious
temp

Beware that if you move a file to another one
that already exists, the already existing contents
are lost forever.

If you want to make a copy of a file (that is,
to have two versions of something), you can use
the cp command:

cp precious templ

makes a duplicate copy of precious in templ.

Finally, when you get tired of creating and
moving files, there is a command to remove files
from the file system, called rm.

rm temp templ

will remove both of the files named.

You will get a warning message if one of the
named files wasn’t there, but otherwise rm, like
most UNIX commands, does its work silently.
There is no prompting or chatter, and error mes-
sages are occasionally curt. This terseness is
sometimes disconcerting to newcomers, but
experienced users find it desirable.

What’s in a File Name

So far we have used file names without ever
saying what’s a legal name, s0 it’s time for a
couple of rules. First, file names are limited to
14 characters, which is enough to be descriptive.
Second, although you can use almost any charac-
ter in a file name, common sense says you
should stick to ones that are visible, and that you
should probably avoid characters that might be
used with other meanings. We have already
scen, for example, that in the Is command,
Is —t means to list in time order. So if you had
a file whose name was —t, you would have a
tough time listing it by name. Besides the minus
sign, there are other characters which have spe-
cial meaning. To avoid pitfalls, you would do
well to use only letters, numbers and the period
until you're familiar with the situation.

On to some more positive suggestions. Sup-
pose you're typing a large document like a book.
Logically this divides into many small pieces, like
chapters and perhaps sections. Physically it must
be divided too, for ed will not handle really big
files. Thus you should type the document as a
number of files. You might have a separate file
for each chapter, called

chapl
chap2
etc. ...

Or, if each chapter were broken into several files,
you might have

UNIX for Beginners

chapl.1
chapl.2
chapl.3

chap2.1
chap2.2

You can now tell at a glance where a particular
file fits into the whole.

There are advantages to a systematic naming
convention which are not obvious to the novice
UNIX user. What if you wanted to print the
whole book? You could say

pr chapl.1 chapl.2 chapl.3 ...

but you would get tired pretty fast, and would
probably even make mistakes. Fortunately,
there is a shortcut. You can say

pr chaps

The # means *‘anything at all,”” so this translates
into “‘print all files whose names begin with
chap”’, listed in alphabetical order.

This shorthand notation is not a property of
the pr command, by the way. It is system-wide,
a service of the program that interprets com-
mands (the ‘‘shell,”” sh(1)). Using that fact,
you can see how to list the names of the files in
the book:

Is chaps
produces

chapl.1
chapl.2
chapl.3

The is not limited to the last position in a file
name — it can be anywherc and can occur
several times. Thus

rm sjunks stemp=

removes all files that contain junk or temp as
any part of their name. As a special case, » by
itself matches every file name, so

pre _
prints all your files (alphabetical order), and
rm s

removes all files. (You had better be very sure
that’s what you wanted to say!)

The » is not the only pattern-matching
feature available. Suppose you want to print
only chapters 1 through 4 and 9. Then you can
say

UNIX for Beginners

pr chap[12349]s

The [...] means to match any of the characters
inside the brackets. A range of consecutive
letters or digits can be abbreviated, so you can
also do this with

pr chap[1—49]«

Letters can also be used within brackets: [a—z]
matches any character in the range a through z.

The ? pattern matches any single character,
S0

Is ?

lists all files which have single-character names,
and

Is —1 chap?.1

lists information about the first file of each
chapter (chapl.1, chap2.1, etc.).

Of these nicetics, # is certainly the most use-
ful, and you should get used to it. The others
are frills, but worth knowing.

If you should ever have to turn off the spe-
cial meaning of ®, ?, etc., enclose the entire
argument in single quotes, as in

Is "2’

We'll see some more examples of this shortly.

What’s in a File Name, Continued

When you first made that file called junk,
how did the system know that there wasn’t
another junk somewhere else, especially since
the person in the next office is also reading this
tutorial? The answer is that generally each user
has a private directory, which contains only the
files that belong to him. When you log in, you
are “‘in”’ your directory. Unless you take special
action, when you create a new file, it is made in
the directory that you are currently in; this is
most often your own directory, and thus the file
is unreclated to any other file of the same name
that might exist in someone else’s directory.

The set of all files is organized into a (usu-
ally big) tree, with your files located several
branches into the tree. It is possible for you to
“walk’ around this tree, and to find any file in
the system, by starting at the root of the tree and
walking along the proper set of branches. Con-
versely, you can start where you are and walk
toward the root.

Let’s try the latter first. The basic tools is
the command pwd (‘‘print working directory™),
which prints the name of the directory you are
currently in.

Although the details will vary according to
the system you are on, if you give the command
pwd, it will print something like

/usr/your_name

This says that you are currently in the directory
your-name, which is in turn in the directory
/usr, which is in turn in the root directory called
by convention just /. (Even if it’s not called
/usr on your system, you will get something
analogous. Make the corresponding changes and
read on.)

If you now type
Is /usr/your_name

you should get exactly the same list of file names
as you get from a plain Is: with no arguments, Is
lists the contents of the current directory; given
the name of a directory, it lists the contents of
that directory.

Next, try
Is /usr

This should print a long series of names, among
which is your own login name your-name. On
many systems, usr is a directory that contains
the directories of all the normal users of the sys-
tem, like you.

The next step is to try
Is /

You should get a response something like this
(although again the details may be different):

bin

dev

etc

lib

tmp

usr

This is a collection of the basic directories of files
that the system knows about; we are at the root
of the tree.

Now try
cat /usr/your_name/junk

(if junk is still around in your directory). The
name

/usr/your_name/junk

is called the path-name of the file that you nor-
mally think of as *“‘junk”. ‘‘Path-name’” has an
obvious meaning: it represents the full name of
the path you have to follow from the root
through the tree of directories to get to a particu-
lar file. It is a universal rule in the UNIX system
that anywhere you can use an ordinary file name,
you can use a path-name.

Here is a picture that may make this clearer:
(root)

/1\

bin etc usr dev tmp

/1N /I\/ ‘\/I\ /1N

adam eve mary

T /N junk

junk temp

Notice that Mary’s junk is unrelated to Eve’s,

This isn’t too exciting if all the files of
interest are in your own directory, but if you
work with someone else or on several projects
concurrently, it becomes handy indeed. For
example, your friends can print your book by
saying

pr /usr/your_name/chaps

Similarly, you can find out what files your neigh-
bor has by saying

Is /usr/neighbor_name
or make your own copy of one of his files by

cp /usr/your_neighbor/his_file your_file

If your neighbor doesn’t want you poking
around in his files, or vice versa, privacy can be
arranged. Each file and directory has read-write-
execute permissions for the owner, a group, and
everyone else, which can be set to control access.
Sce Is(1) and chmod(!) for details. As a matter
of observed fact, most users most of the time
find openness of more benefit than privacy.

As a final experiment with path-names, try
Is /bin /usr/bin

Do some of the names look familiar? When you
run a program, by typing its name after the
prompt character, the system simply looks for a
file of that name. It normally looks first in your
directory (where it typically doesn’t find it), then
in /bin and finally in /usr/bin. There is nothing
magic about commands like cat or Is, except that
they have been collected into a couple of places
to be easy to find and administer.

What if you work regularly with someone
¢lse on common information in his directory?
You could just log in as your friend each time
you want to, but you can also say ‘I want to
work on his files instead of my own’. This is
done by changing the directory that you are
currently in:

cd /usr/your_friend

UNIX for Beginners

Now when you use a file name in something like
cat or pr, it refers to the file in your friend’s
directory. Changing directories doesn’t affect
any permissions associated with a file — if you
couldn’t access a file from your own directory,
changing to another directory won’t alter that
fact. Of course, if you forget what directory
you're in, type

pwd
to find out.

It is usually convenient to arrange your own
files so that all the files related to one thing are
in a directory separate from other projects. For
example, when you write your book, you might
want to keep all the text in a directory called
book. So make one with

mkdir book
then go to it with
cd book

then start typing chapters. The book is now
found in (presumably)

/usr/your_name/book
To remove the directory book, type

rm book /e
rmdir book

The first command removes all files from the
directory; the second removes the empty direc-
tory.

You can go up one level in the tree of files
by saying
cd ..

YO

..”" is the name of the parent of whatever direc-
tory you are currently in. For completeness, *‘.”
is an alternate name for the directory you are in.

Using Files instead of the Terminal

Most of the commands we have seen so far
produce output on the terminal; some, like the
editor, also take their input from the terminal, It
is universal in UNIX systems that the terminal
can be replaced by a file for either or both of
input and output. As one example,

Is

makes a list of files on your terminal. But if you
say

Is >file_list

a list of your files will be placed in the file
file_list (which will be created if it doesn’t
already exist, or overwritten if it does). The
symbol > means ‘‘put the output on the

UNIX for Beginners

following file, rather than on the terminal.”
Nothing is produced on the terminal. As
another example, you could combine several files
into one by capturing the output of cat in a file:

cat f1 f2 f3 >temp

The symbol >>> operates very much like >
does, except that it means ‘‘add to the end of.”
That is,

cat f1 f2 f3 >>temp

means to concatenate f1, f2 and f3 to the end of
whatever is already in temp, instead of overwrit-
ing the existing contents. As with >, if temp
doesn’t exist, it will be created for you.

In a similar way, the symbol <C means to
take the input for a program from the following
file, instead of from the terminal. Thus, you
could make up a script of commonly used editing
commands and put them into a file called script.
Then you can run the script on a file by saying

ed file <<script

As another example, you can use ed to prepare a
letter in file let, then send it to several people
with

mail adam eve mary joe <let

Pipes

One of the novel contributions of the UNIX
system is the idea of a pipe. A pipe is simply a
way to connect the output of one program to the
input of another program, so the two run as a
sequence of processes — a pipeline.

For example,
prfgh

will print the files f, g, and h, beginning each on
a new page. Supposc you want them run
together instead. You could say

cat f g h >temp
pr <temp
rm temp

but this is more work than necessary. Clearly
what we want is to take the output of cat and

connect it to the input of pr. So let us use a.

pipe:
cat f g h | pr _
The vertical bar | means to take the output from

cat, which would normally have gone to the ter-
minal, and put it into pr to be neatly formatted.

There are many other examples of pipes.
For example,

Is | pr —3

prints a list of your files in three columns. The
program wc counts the number of lines, words
and characters in its input, and as we saw carlier,
whe prints a list of currently-logged on people,
one per line. Thus

who | we

tells how many people are logged on. And of
course

Is | we

counts your files.

Any program that reads from the terminal
can read from a pipe instead; any program that
writes on the terminal can drive a pipe. You can
have as many elements in a pipeline as you wish.

Many UNIX programs are written so that
they will take their input from one or more files
if file arguments are given; if no arguments arc
given they will read from the terminal, and thus
can be used in pipelines. pr is one example:

pr 3abec

prints files a, b and ¢ in order in three columns.
But in

catabc|pr—3

pr prints the information coming down the pipe-
line, still in three columns.

The Shell

We have already mentioned once or twice
the mysterious ‘“‘shell,”” which is in fact sh(1).
The shell is the program that interprets what you
type as commands and arguments. It also looks
after translating *, etc., into lists of file names,
and <, >, and | into changes of input and out-
put streams.

The shell has other capabilities too. For
example, you can run two programs with one
command line by separating the commands with
a semicolon; the shell recognizes the semicolon
and breaks the line into two commands. Thus

date; who

does both commands before returning with a
prompt character.

You can also have more than one program
running simultaneously if you wish. For exam-
ple, if you are doing something time-consuming,
like the editor script of an earlier section, and
you don’t want to wait around for the results
before starting something else, you can say

ed file <script &

10

The ampersand at the end of a command line
says ‘‘start this command running, then take
further commands from the terminal immedi-
ately,”” that is, don’t wait for it to complete.
Thus the script will begin, but you can do some-
thing else at the same time. Of course, to keep
the output from interfering with what you’re
doing on the terminal, it would be better to say

ed file <script >script.out &

which saves the output lines in a file called
script.out.

When you initiate a command with &, the
system replies with a number called the process
number, which identifies the command in case
you later want to stop it. If you do, you can say

kill process_number

If you forget the process number, the command
ps will tell you about everything you have run-
ning. (If you are desperate, kill 0 will kill all
your processes.) And il you're curious about
other people, ps a will tell you about all pro-
grams that are currently running.

You can say
(command_1; command_2; command_3) &

to start three commands in the background, or
you can start a background pipeline with

command_1 | command_2 &

Just as you can tell the editor or some simi-
lar program to take its input from a file instead
of from the terminal, you can tell the shell to
read a file to get commands. (Why not? The
shell, after all, is just a program, albeit a clever
one.) For instance, suppose you want to sct tabs
on your terminal, and find out the date and
who’s on the system every time you log in.
Then you can put the three necessary commands
(tabs, date, who) into a file, let's call it startup,
and then run it with

sh startup

This says to run the shell with the file startup as
input. The effect is as if you had typed the con-
tents of startup on the terminal.

If this is to be a regular thing, you can elim-
inate the need to type sh: simply type, once only,
the command

chmod +x startup
and thereafter you need only say

startup

UNIX for Beginners

to run the sequence of commands. The
chmod(1) command marks the file executable;
the shell recognizes this and runs it as a
sequence of commands.

If you want startup to run automatically
every time you log in, create a file in your login
directory called .profile, and place in it the line
startup. When the shell first gains control when
you log in, it looks for the .profile file and does
whatever commands it finds in it. We’'ll get back
to the shell in the section on programming.

III. DOCUMENT PREPARATION

UNIX systems are used extensively for docu-
ment preparation. There are two major format-
ting programs, that is, programs that produce a
text with justified right margins, automatic page
numbering and titling, automatic hyphenation,
and the like. nroff is designed to produce output
on terminals and line-printers. troff (pro-
nounced ‘‘tee-roff’’) instead drives a photo-
typesetter, which produces very high quality out-
put on photographic paper. This paper was for-
matted with troff.

Formatting Packages

The basic idea of nroff and troff is that the
text to be formatted contains within it ‘““format-
ting commands’’ that indicate in detail how the
formatted text is to look. For example, there
might be commands that specify how long lines
are, whether to use single or double spacing, and
what running titles to use on each page.

Because nroff and troff are relatively hard to
learn to use effectively, several ‘‘packages’” of
canned formatting requests are available to let
you specify paragraphs, running titles, footnotes,
multi-column output, and so on, with little effort
and without having to learn nroff and troff.
These packages take a modest effort to learn, but
the rewards for using them are so great that it is
time well spent.

In this section, we will provide a hasty look
at the ‘“‘manuscript’ package known as —ms.
Formatting requests typically consist of a period
and two upper-case letters, such as .TL, which is
used to introduce a title, or .PP to begin a new
paragraph.

A document is typed so it looks something
like this:

UNIX for Beginners

.TL

title of document
AU

author name

.SH

section heading

.PP

paragraph ...

.PP

another paragraph ...
SH

another section beading
.PP

etc.

The lines that begin with a period are the for-
matting requests. For example, .PP calls for
starting a new paragraph. The precise meaning
of .PP depends on what output device is being
used (typesetter or terminal. for instance), and
on what publication the document will appear in.
For example, —ms normally assumes that a
paragraph is preceded by a space (one line in
nroff, % line in troff), and the first word is
indented. These rules can be changed if you
like, but they are changed by changing the
interpretation of .PP, not by re-typing the docu-
ment.

To actually produce a document in standard
format using —ms, use the command

troff —ms files ...
for the typesetter, and
nroff —ms files ...

for a terminal. The —ms argument tells troff
and nroff to use the manuscript package of for-
matting requests.

There are several similar packages; check
with a local expert to determine which ones are
in common usc on your machine.

Supporting Tools

In addition to the basic formatters, there is a
host of supporting programs that help with docu-
ment preparation. The list in the next few para-
graphs is far from complete, so browse through
the manual and check with people around you
for other possibilities.

eqn and neqn let you integrate mathematics
into the text of a document, in an easy-to-learn
language that closely resembles the way you
would speak it aloud. For example, the egn
input

sum from i=0 to n x sub i "=" pi over 2

produces the output

S = T
253

11

The program tbl provides an analogous ser-
vice for preparing tabular material; it does all the
computations necessary to align complicated
columns with elements of varying widths.

spell and typo detect possible spelling mis-
takes in a document. spell works by comparing
the words in your document to a dictionary,
printing those that are not in the dictionary. It
knows enough about English spelling to detect
plurals and the like, so it does a very good job.
typo looks for words which are ‘‘unusual”, and
prints those. Spelling mistakes tend to be more
unusual, and thus show up early when the most
unusual words are printed first.

grep looks through a set of files for lines
that contain a particular text pattern (rather like
the editor’s context search does, but on a bunch
of files). For example,

grep ‘ing$’ chaps

will find all lines that end with the letters ing in
the files chaps. (It is almost always a good prac-
tice to put single quotes around the pattern
you're searching for, in case it contains charac-
ters like = or § that have a special meaning to the
shell.) grep is often useful for finding out in
which of a set of files the misspelled words
detected by spell are actually located.

diff prints a list of the differences between
two files, so you can compare two versions of
something automatically (which certainly beats
proofreading by hand).

we counts the words, lines and characters in
a set of files. tr translates characters into other
characters; for example it will convert upper to
lower case and vice versa. This translates upper
into lower:

tr A—Z a—z <input >output

sort sorts files in a variety of ways; cref
makes cross-references; ptx makes a permuted
index (keyword-in-context listing). sed provides
many of the editing facilities of ed, but can apply
them to arbitrarily long inputs. awk provides the
ability to do both pattern matching and numeric
computations, and to conveniently process fields
within lines. These programs are for more
advanced users, and they are not limited to
document preparation. Put them on your list of
things to learn about.

Most of these programs are either indepen-
dently documented (like eqn and tbl), or arc
sufficiently simple that the description in the
UNIX User’s Manual is adequate explanation.

12

Hints for Preparing Documents

Most documents go through several versions
(always more than you expected) before they are
finally finished. Accordingly, you should do
whatever possible to make the job of changing
them easy.

First, when you do the purely mechanical
operations of typing, type so that subsequent
editing will be easy. Start cach sentence on a
new line. Make lines short, and break lines at
natural places, such as after commas and semi-
colons, rather than randomly. Since most people
change documents by rewriting phrases and
adding, deleting and rearranging sentences, these
precautions simplify any editing you have to do
later.

Keep the individual files of a document
down to modest size, perhaps ten to fifteen
thousand characters. Larger files edit more
slowly, and of course if you make a dumb mis-
take it's better to have clobbered a small file
than a big onc. Split into files at natural boun-
daries in the document, for the same reasons
that you start each sentence on a new line.

The second aspect of making change easy is
to not commit yourself to formatting details too
early. One of the advantages of formatting pack-
ages like —ms is that they permit you to delay
decisions to the last possible moment. Indeed,
until a document is printed, it is not even
decided whether it will be typeset or put on a line
printer,

As a rule of thumb, for all but the most
trivial jobs, you should type a document in terms
of a set of requests like .PP, and then define
them appropriately, either by using onc of the
canned packages (the better way) or by defining
your own nroff and troff commands. As long as
you have entered the text in some systematic
way, it can always be cleaned up and re-
formatted by a judicious combination of editing
commands and request definitions.

IV. PROGRAMMING

There will be no attempt made to teach any
of the programming languages available but a
few words of advice are in order. One of the
reasons why the UNIX system is a productive
programming environment is that there is
already a rich set of tools available, and facilities
like pipes, 1/O redirection, and the capabilities of
the shell often make it possible to do a job by
pasting -together programs that already exist
instead of writing from scratch.

UNILX for Beginners

The Shell

The pipe mechanism lets you fabricate quite
complicated operations out of sparc parts that
already exist. For example, the first draft of the
spell program was (roughly)

cat ... collect the files

| tr ... put each word on a new line
| tr ... delete punctuation, etc.

| sort into dictionary order

| wniq discard duplicates
| comm print words in text
but not in dictionary

More pieces have been added subsequently, but
this goes a long way for such a small effort.

The editor can be made to do things that
would normally require special programs on
other systems. For example, to list the first and
last lines of each of a set of files, such as a book,
you could laboriously type

ed
e chapl.l
1p
Sp
e chapl.2

But you can do the job much more easily. One
way is to type

Is chaps >temp

to get the list of file names into a file. Then edit
this file to make the necessary series of editing
commands (using the global commands of ed),
and write it into script. Now the command

ed <script

will produce the same output as the laborious
hand typing. Alternately (and more easily), you
can use the fact that the shell will perform loops,
repeating a set of commands over and over again
for a set of arguments:

for i in chaps
do

ed Si <<script
done

This sets the shell variable i to each file name in
turn, then does the command. You can type this
command at the terminal, or put it in a file for
later execution.

Programming the Shell

An option often overlooked by newcomers is
that the shell is itself a programming language,
with variables, control flow (if-else, while, for,

UNIX for Beginners

case), subroutines, and interrupt handling. Since
there are many building-block programs, you ¢an
somectimes avoid writing a new program merely
by piecing together some of the building blocks
with shell command files.

We will not go into any details here; exam-
ples and rules can be found in the UNILX Shell
Tutorial, by G. A. Snyder and J. R. Mashey.

Programming in C

If you are undertaking anything substantial,
C is the only reasonable choice of programming
language: everything in the UNIX system is tuned
to it. The system itself is written in C, as are
most of the programs that run on it. It is an
easy language to use once you get started. C is
introduced and fully described in The C Program-
ming Language by B. W. Kernighan and D. M.
Ritchie (Prentice-Hall, 1978); several sections
describe the system interfaces, that is, how you
do 1/O and similar functions. Read UNIX Pro-
gramming for more complicated things.

Most input and output in C is best handled
with the standard 1/O library, which provides a
set of I/O functions that exist in compatible
form on most machines that have C compilers.
In general, it’s wisest to confine the system
interactions in a program to the facilities pro-
vided by this library.

C programs that don’t depend too much on
special features of UNIX (such as pipes) can be
moved to other computers that have C com-
pilers. The list of such machines grows daily; in
addition to the original PDP-11, it currently
includes at least Honeywell 6000, IBM 370, Inter-
data 8/32, Data General Nova and Eclipse,
HP 2100, Harris /7, VAX 11/780, SEL 86, and
Zilog Z80. Calls to the standard I/O library will
work on all of these machines.

There are a number of supporting programs
that go with C. lint checks C programs for
potential portability problems, and detects errors
such as mismatched argument types and unini-
tialized variables.

For larger programs (anything whose source
is on more than one file) make allows you to
specify the dependencies among the source files
and the processing steps needed to make a new
version; it then checks the times that the pieces
were last changed and does the minimal amount
of recompiling to create a consistent updated ver-
sion.

The debugger adb is useful for digging
through the dead bodies of C programs, but is
rather hard to learn to use effectively. The most
effective debugging tool is still careful thought,
coupled with judiciously placed print statements.

13

The C compiler provides a limited instru-
mentation service, so you can find out where
programs spend their time and what parts are
worth optimizing. Compile the routines with the
—p option; after the test run, use prof to print
an exccution profile. The command time will
give you the gross run-time statistics of a pro-
gram, but they are not super accurate or repro-
ducible.

Other Languages

If you have to use Fortran, there are two
possibilities. You might consider Ratfor, which
gives you the decent control structures and free-
form input that characterize C, yet lets you write
code that is still portable to other environments.
Bear in mind that UNIX Fortran tends to produce
large and relatively slow-running programs.
Furthermore, supporting software like adb, prof,
etc., are all virtually useless with Fortran pro-
grams. There may also be a Fortran 77 compiler
on your system. If so, this is a viable alternative
to Ratfor, and has the non-trivial advantage that
it is compatible with C and related programs.
(The Ratfor processor and C tools can be used
with Fortran 77 too.)

If your application requires you to translate a
language into a set of actions or another
language, you are in effect building a compiler,
though probably a small one. In that case, you
should be using the yacc compiler-compiler,
which helps you develop a compiler quickly. The
lex lexical analyzer generator does the same job
for the simpler languages that can be expressed
as regular expressions. It can be used by itself,
or as a front end to recognize inputs for a
yacc-based program. Both yacc and lex require
some sophistication to use, but the initial effort
of learning them can be repaid many times over
in programs that are easy to change later on.

Most UNIX systems also make available
other languages, such as Algol 68, APL, Basic,
Lisp, Pascal, and Snobol. Whether these are
useful depends largely on the local environment:
if someone cares about the language and has
worked on it, it may be in good shape. If not,
the odds are strong that it will be more trouble
than it’s worth.

V. ADDITIONAL READING |

See the UNIX Documentation Road Map by
G. A. Snyder and J. R. Mashey for additional
reading suggestions.

January 1981

UNIX
B.4.1

UNIX Shell Tutorial

G. A. Snyder
J. R. Mashey

Bell Laboratories
Murray Hill, New Jersey 07974

1. INTRODUCTION

In any programming project, some effort is used to build the end product. The remainder is
consumed in building the supporting tools and procedures used to manage and maintain that
end product. The second effort can far exceed the first, especially in larger projects. A good
command language can be an invaluable tool in such situations. If it is a flexible programming
language, it can be used to solve many internal support problems without requiring compilable
programs to be written, debugged, and maintained; its most important advantage is the ability
to get the job done now. For a perspective on the motivations for using a command language
in this way, see [1,4,5,6].

When users log into a UNIXT system, they communicate with an instance of the shell that reads
commands typed at the terminal and arranges for their execution. Thus, the shell’s most
important function is to provide a good interface for human beings. In addition, a sequence of
commands may be preserved for repeated use by saving it in a file, called a shell procedure, a
command file, or a runcom, according to local preference.

Some UNIX users need little knowledge of the shell to do their work; others make heavy use of
its programming features. This tutorial may be read in several different ways, depending on the
reader’s interests. A brief discussion of the UNIX environment is found in §2. The discussion
in §3 covers aspects of the shell that are important for everyone, while all of §4 and most of §5
are mainly of interest to those who write shell procedures. A group of annotated shell pro-
cedure examples is given in §6. Finally, a brief discussion of efficiency is offered in §7; this is
found in its proper place (at the end), and is intended for those who write especially time-
consuming shell procedures.

Complete beginners should not be reading this tutorial, but should work their way through
other available tutorials first. See [14] for an appropriate plan of study. All the commands men-
tioned below are described in Section 1 of the UNIX User's Manual [7], while system calls are
described in Section 2 and subroutines in Section 3 thereof; references of the form name(N)
point to entry name in Section N of that manual.

2. OVERVIEW OF THE UNIX ENVIRONMENT

Full understanding of what follows depends on familiarity with UNIX; [13] is useful for that,
and it would be helpful to read [8] and at least one of [9,10]. For completeness, a short over-
view of the most relevant concepts is given below.

2.1 File System

The UNIX file system’s overall structure is that of a rooted tree composed of directories and
-other files. A simple file name is a sequence of characters other than a slash (/). A path name
is a sequence of directory names followed by a simple file name, each separated from the previ-
ous one by a /. If a path name begins with a /, the search for the file begins at the root of the
entire tree; otherwise, it begins at the user’s current directory (also known as the working direc-
tory). The first kind of name is often called a full (or absolute) path name because it is invariant

+ UNIX is a trademark of Bell Laboratories.

2 UNIX Shell Tutorial

with regard to the user’s current directory. The latter is often called a relative path name,
because it specifies a path relative to the current directory. The user may change the current
directory at any time by using the ¢d command. In most cases, a file name and its correspond-
ing path name may be used interchangeably. Some sample names are:

/ absolute path name of the root directory of the entire file structure.
/bin directory containing most of the frequently used public commands.

/a1/tf/jtb/bin a full path name typical of multi-person programming projects. This
one happens to be a private directory of commands belonging to per-
son jtb in project tf; a1 is the name of a file system.

bin/x a relative path name; it names file x in subdirectory bin of the
current directory. If the current directory is /, it names /bin/x. If,
on the other hand, the current directory is /7a1/tf/3jtb, it names
/atl/tf/jtb/bins/x.

memox name of a file in the current directory.

The UNIX file system provides special shorthand notations for the current directory and the
parent directory of the current directory:

. is the generic name of the current directory; ./memox names the same file as
memox if such a file exists in the current directory.
.o is the generic name of the parent directory of the current directory; if you type:
cd

then the parent directory of your current working directory will become your new
current directory.

2.2 UNIX Processes
t# Beginners should skip this section on first reading.

An image is a computer execution environment, including contents of memory, register values,
name of the current directory, status of open files, information recorded at login time, and vari-
ous other items. A process is the execution of an image; most UNIX commands execute as
separate processes. One process may spawn another using the fork system call, which dupli-
cates the image of the original (parent) process. The new (child) process continues to execute
the same program as the parent. The two images are identical, except that each program can
determine whether it is executing as parent or child. Each program may continue execution of
the image or may abandon it by issuing an exec system call, thus initiating execution of
another program. In any case, each process is free to proceed in parallel with the other,
although the parent most commonly issues a wait system call to suspend execution until a
child terminates (exits).

Figure 1 illustrates these ideas. Program A is executing (as process 1) and wishes to run
program B. It forks and spawns a child (process 2) that continues to run program A. The child
abandons A4 by execing B, while the parent goes to sleep until the chlld exits.

A child inherits its parcnt s open files. This mechanism pcrmlts processes to share common
input streams in various ways. In particular, an open file possesses a pointer that indicates a
position in the file and is modified by various operations on the file; read and write system
calls copy a requested number of bytes from and to a file, beginning at the position given by
the current value of the pointer. As a side effect, the pointer is incremented by the number of
bytes transferred, yielding the effect of sequential I/O; 1seek can be used to obtain random-
access 1/0; it sets the pointer to an absolute position within the file, or to a position offset
either from the end of the file or from the current pointer position.

UNIX Shell Tutorial 3

PROGRAM FORK WAIT
A]
pROC ! e . I P G G EE e e e e = e W W
€58 PARENT | -D——
(ASLEEP) :

PROCESS 2 PROGRAM A EXEC PROGRAM B |

CHILD]]

EXIT
Figure 1

When a process terminates, it can set an eight-bit exit status (see $? in §3.4.4) that is available
to its parent. This code is usually used to indicate success (zero) or failure (non-zero).

Signals indicate the occurrence of events that may have some impact on a process. A signal
may be sent to a process by another process, from the terminal, or by UNIX itself. A child pro-
cess inherits its parent’s signals. For most signals, a process can arrange to be terminated on
receipt of a signal, to ignore it completely, or to carch it and take appropriate action, as
described in §4.4.11. For example, an INTERRUPT signal may be sent by depressing an
appropriate key (del, break, or rubout). The action taken depends on the requirements of the
specific program being executed:

e The shell invokes most commands in such a way that they immediately die when an
interrupt is received. For example, the pr (print) command normally dies, allowing the
user to terminate unwanted output.

e The shell itself ignores interrupts when reading from the terminal, because it should con-
tinue execution even when the user terminates a command like prx.

e The editor ed chooses to catch interrupts so that it can halt its current action (especially
printing) without allowing itself to be terminated.

3. SHELL BASICS

The shell (i.e., the sh command) implements the command language visible to most UNIX
users. It reads input from a terminal or a file and arranges for the execution of the requested
commands. It is a program written in the C language [11]; it is not part of the operating sys-
tem, but is an ordinary user program. The discussion below is adapted from [2,3,7,12].

3.1 Commands

A simple command is a sequence of non-blank arguments separated by blanks or tabs. The first
argument (numbered zero) usually specifies the name of the command to be executed; any
remaining arguments, with a few exceptions, are passed as arguments to that command. A
command may be as simple as:

who

which prints the login names of users who are currently logged into the system. The following
line requests the pr command to print files a, b, and ¢:

pPr a b ¢

4 UNIX Shell Tutorial

If the first argument of a command names a file that is executable' and is actually a compiled
program, the shell (as parent) spawns a new (child) process that immediately executes that pro-
gram. If the file is marked as being executable, but is not a compiled program, it is assumed to
be a shell procedure, i.e., a file of ordinary text containing shell command lines, as well as pos-
sibly lines meant to be read by other programs. In this case, the shell spawns another instance
of itself (a sub-shell) to read the file and execute the commands included in it. The shell
forks to do this, but no exec call is made. The following command requests that the on-line
UNIX User's Manual [7] entries that describe the who and pr commands be printed on the ter-
minal:

man who pr

(Incidentally, the man command itself is actually implemented as a shell procedure.) From the
user’s viewpoint, compiled programs and shell procedures are invoked in exactly the same way.
The shell determines which implementation has been used, rather than requiring the user to do
so. This preserves the uniformity of invocation and the ease of changing the choice of imple-
mentation for a given command. The actions of the shell in executing any of these commands
are illustrated in Figure 1 above.

3.2 How the Shell Finds Commands

The shell normally searches for commands in a way that permits them to be found in three dis-
tinct locations in the file structure. The shell first attempts to find the command (as given on
the command line) in the current directory; if this fails, it prepends the string /bin to the
name, and, finally, /7usr/bin. The effect is to search, in order, the current directory, then
the directory /bin, and finally, /usr/bin. For example, the pr and man commands are
actually the files /bin/pr and /usr/bin/man, respectively. A more complex path name
may be given, either to locate a file relative to the user’s current directory, or to access a com-
mand via an absolute path name. If a command name as given begins witha /, ./, or ../
(e.g., /bin/sort or . ./cmd), the prepending is nor performed. Instead, a single attempt is
made to execute the command as given.

This mechanism gives the user a convenient way to execute public commands and commands
in or near the current directory, as well as the ability to execute any accessible command
regardless of its location in the file structure. Because the current directory is usually searched
first, anyone can possess a private version of a public command without affecting other users.
Similarly, the creation of a new public command will not affect a user who already has a private
command with the same name. The particular sequence of directories searched may be
changed by resetting the PATH variable, as described in §3.4.2.

3.3 Generation of Argument Lists

Command arguments are very often file names. A list of file names can be automatically gen-
erated as arguments on a command line, by specifying a pattern that the shell matches against
the file names in a directory.

Most characters in such a pattern match themselves, but there are also special meta-characters
that may be included in a pattern. These special characters are: #, which matches any string
including the null string; ?, which matches any ome character; any sequence of characters
enclosed within square brackets? ([...]), which matches any one of the enclosed characters;
and any sequence of characters preceded by a | and enclosed within [...], which matches

1. As indicated by an appropriate sct of permission bits associated with that file.

2. Be warned that square brackets are also used below for another purpose: in descriptions of commands, they indicate
that the enclosed argument is optional. Sce also §5.1 below.

UNIX Shell Tutorial 5

any one character other than one of the enclosed characters. Inside square brackets, a pair of
characters separated by a - includes in the set all characters lexically within the inclusive range
of that pair, so that [a-de] is equivalent to [abcdel.

For example, # matches all file names in the current directory, *temp+ matches all file names
containing temp, [a-fls matches all file names that begin with a through £, [10-9]
matches all single-character names other than the digits, and « . c matches all file names ending
in .c, while /a1/t£/bin/? matches all single-character file names found in /a1/t£/bin.
This capability saves much typing and, more importantly, makes it possible to organize informa-
tion in large collections of small files that are named in disciplined ways.

Pattern-matching has some restrictions. If the first character of a file name is a period (.), it
can be matched only by an argument that literally begins with a period. If a pattern does not
match any file names, then the pattern itself is returned as the result of the match, for exam-
ple: :

echo ».c¢
will print:
*,.C
if the current directory contains no files ending in . c.

Directory names should not contain the characters #, ?, [, or], because this may cause
infinite recursion during pattern matching attempts.>

3.4 Shell Variables

The shell has several mechanisms for creating variables. A variable is a name representing a
string value. Certain variables are usually referred to as parameters; these are the variables
which are normally set only on a command line; there are positional parameters (§3.4.1) and key-
word parameters (§4.1). Other variables are simply names to which the user or the shell itself
may assign string values.

3.4.1 Positional Parameters. When a shell procedure is invoked, the shell implicitly creates
positional parameters: the argument in position zero on the command line (the name of the shell
procedure itself) is called $0, the first argument is called $1, and so on. The shift com-
mand (§4.3) may be used to access arguments in positions numbered higher than nine.

One can explicitly force values into these positional parameters by using the set command:

set abc def ghi

assigns the string abc to the first positional parameter ($1), def to the second ($2), and ghi
to the third ($3); it also unsets $4, $5, etc., even if they were previously set. $0 may not be
assigned a value in this way—it always refers to the name of the shell procedure, or, in the
login shell, to the name of the shell.

3.4.2 User-defined Variables. The shell also recognizes alphanumeric variables to which
string values may be assigned. Positional parameters may not appear on the left-hand side of
an assignment statement; they can only be set as described above. A simple assignment is of
the form:

name=string

3. This is a bug that may be fixed in the future.

6 UNIX Shell Tutorial

Thereafter, $name will yield the value string. A name is a sequence of letters, digits, and
underscores that begins with a letter or an underscore. Note that no spaces surround the = in
an assignment statement.

More than one assignment may appear in an assignment statement, but beware: the shell per-
Jorms the assignments from right to lefi; the following command line results in the variable a
acquiring the value abe:

a=$b b=abec

The following are examples of simple assignments. Double quotes around the right-hand side
allow blanks, tabs, semi-colons, and new-lines to be included in string, while also allowing vari-
able substitution (also known as parameter substitution) to occur; that is, references to positional
parameters and other variable names that are prefaced by $ are replaced by the corresponding
values, if any; single quotes inhibit variable substitution:

MAIL=/usr/mail/gas
var="echo $1 $2 $3 $4"
stars=sx*##*
asterisks=‘$stars’

The variable var has as its value the string consisting of the values of the first four positional
parameters, separated by blanks. No quotes are needed around the string of asterisks being
assigned to stars because pattern matching (expansion of #, ?, [...]) does not apply in this
context. Note that the value of $asterisks is the literal string $stars, not the string
%%+ %, because the single quotes inhibit substitution.

In assignments, blanks are not reinterpreted after variable substitution, so that the following
example results in $£irst and $second having the same value:

first=’'a string with embedded blanks”’
second=8$first

In accessing the value of a variable, one may enclose the variable’s name (or the digit designat-
ing the positional parameter) in braces {} to delimit the variable name from any following
string.* In particular, if the character immediately following the name is a letter, digit, or
underscore (digit only for positional parameters), then the braces are required:

a=‘This is a string’
echo "${alent test"”

The following variables are used by the shell. Some of them are set by the shell, and all of
them can be set and reset by the user:

HOME is initialized by the 1ogin program to the name of the user’s login directory, i.c.,
the directory that becomes the current directory upon completion of a login; ed
without arguments uses $HOME as the directory to switch to. Using this variable
helps one to keep full path names out of shell procedures. This is a big help when
the path name of your login directory is changed (e.g., to balance disk loads).

MAIL is the path name of a file where your mail is deposited. If MAIL is set, then the
shell checks to see if anything has been added to the file it names and announces
the arrival of new mail every time you return to command level (e.g., by leaving
the editor). MAIL must be set by the user. (The presence of mail in the standard
mail file is also announced at login, regardless of whether MAIL is set.)

4. Scc §4.4.7 and § 5.7 for other meanings of braces in the shell.

UNIX Shell Tutorial 7

PATH is the variable that specifies where the shell is to look when it is searching for
commands. Its value is an ordered list of directory path names separated by
colons. A null character anywhere in that list represents the current directory.
The shell initializes PATH to the list : /bin: /usx/bin where, by convention, a
null character appears in front of the first colon. Thus if you wish to search your
current directory last, rather than first, you would type:

PATH=/bin:/usr/bin::

where the two colons together represent a colon followed by a null followed by a
colon, thus naming the current directory. A user often has a personal directory of
commands (say, $HOME/bin) and causes it to be searched before the /bin and
/usr/bin directories by using:

PATH=:$SHOME/bin;:/bin:/usr/bin

The setting of PATH to other than the default value is normally done in a user’s
.profile file (§3.9.2).

CDPATH is the variable that specifies where the shell is to look when searching for the
argument of the cd command whenever that argument is not null and does not
begin with /, ./, or ../ (see cd(1), §2.1, and §4.5). The value of CDPATH is
an ordered list of directory path names separated by colons. A null character any-
where in that list represents the current directory. By convention, if the list
begins with a colon, a null character is assumed to precede that colon. Initially,
CDPATH is unset, resulting in only the current directory being searched. Thus if
you wish the ¢d command to first search your current directory and then your
home directory, you would type:

CDPATH=: SHOME

The setting of CDPATH to other than the default value is normally done in a
user’s .profile file (§3.9.2).

Note that if the ed command changes to a directory that is not a descendent of
the current directory, it writes the full name of the new directory on the diagnos-
tic output(§3.6.1, §3.6.2).

PS1 is the variable that specifies what string is to be used as the primary prompt string.
If the shell is interactive, it prompts with the value of PS1 when it expects input.
The default value of PS1is “‘$ * (a $ followed by a blank).

P52 is the variable that specifies the secondary prompt string. If the shell expects
more input when it encounters a new-line in its input, it will prompt with the
value of PS2. The default value of PS21is ““> ' (a > followed by a blank).

IFS is the variable that specifies which characters are internal field separators. These
are the characters the shell uses during blank interpretation. (If you want to parse
some delimiter-separated data easily, you can set IFS to include that delimiter.)
The shell initially sets IFS to include the blank, tab, and new-line characters.

3.4.3 Command Substitution. Any command line can be placed within grave accents
(*...") to capture the output of the command. This concept is known as command substitution.
The command or commands enclosed between grave accents are first executed by the shell and
then their output replaces the whole expression, grave accents and all. This feature is often
combined with shell variables:

today="date*

assigns the string representing the current date to the variable today (e.g.,
Tue Nov 27 16:01:09 EST 1979). :

8 UNIX Shell Tutorial

users=‘who | wc -1°

saves the number of logged-in users in the variable users. Any command that writes to the
standard output can be enclosed in grave accents. Grave accents (§3.5) may be nested; the
inside sets must be escaped with \. For example:

logmsg="‘echo Your login directory is \‘pwd*"®

Shell variables can also be given values indirectly by using the read command. The read
command takes a line from the standard input (usually your terminal) and assigns consecutive
words on that line to any variables named:

read first init last
will take an input line of the form:
G. A. Snyder

and have the same effect as if you had typed:
first=G, init=A. last=Snyder

The read command assigns any excess ‘‘words’” to the last variable.

3.4.4 Predefined Special Variables.

t# Beginners should skip this section on first reading.

Several variables have special meanings; the following are set only by the shell:

$# records the number of positional arguments passed to the shell, not counting the
name of the shell procedure itself; $# thus yields the number of the highest-
numbered positional parameter that is set. Thus, sh x a b ¢ sets $# to 3. One of
its primary uses is in checking for the presence of the required number of arguments:

if test $# -1t 2
then

echo ‘two or more args required’; exit
fi

$7 is the exit status (also referred to as return code, exit code, or value) of the last com-
mand executed. Its value is a decimal string. Most UNIX commands return 0 to
indicate successful completion. The shell itself returns the current value of $? as its
exit status.

3 is the process number of the current process; because process numbers are unique
among all existing processes, this string of up to five digits is often used to generate
unique names for temporary files. UNIX provides no mechanism for the automatic
creation and deletion of temporary files: a file exists until it is explicitly removed.
Temporary files are generally undesirable objects: the UNIX pipe mechanism is far
superior for many applications. However, the need for uniquely-named temporary
files does occasionally occur. The following example also illustrates the recom-
mended practice of creating temporary files in a directory used only for that purpose:

temp=$SHOME/temp/$$ # use current process number

1s > S$temp # to form unique temp file
commands, some of which use $temp, go here

rm S$temp # clean up at end

$1- is the process number of the last process run in the background (using &—see §4.4).
Again, this is a string of up to five digits.

- $- is a string consisting of names of execution flags (§3.9.3, §4.7) currently turned on in
the shell; $- might have the value xv if you are tracing your output.

UNIX Shell Tutorial 9

3.5 Quoting Mechanisms

Many characters have a special meaning to the shell which is sometimes necessary to conceal.
Single quotes (’ *) and double quotes (" ") surrounding a string, or backslash (\) before a sin-
gle character, provide this function in somewhat different ways. (Grave accents (* *) are some-
times called back quotes, but are used only for command substitution (§3.4.3) in the shell and
do not hide special meanings of any characters.)

Within single quotes, all characters (except ‘ itself) are taken literally, with any special mean-
ing removed. Thus:

stuff=‘echo $7 $»; 1ls » | wc’

results only in the string echo $? $#; 1s # | wc being assigned to the variable stuff, but
not in any other commands being executed.

Within double quotes, the special meaning of certain characters does persist, while all other
characters are taken literally. The characters that retain their special meaning are $, *, and "
itself. Thus, within double quotes, variables are expanded and command substitution takes
place; however, any commands in a command substitution are not affected by double quotes
outside of the grave accents, so that characters such as # retain their special meaning.

To hide the special meaning of $, *, and " within double quotes, you can precede these char-
acters with a backslash (\). Outside of double quotes, preceding a character with \ is
equivalent to placing single quotes around that character. A \ followed by a new-line causes
that new-line to be ignored, thus allowing continuation of long command lines.

3.6 Redirection of Input and Output

In general, most commands neither know nor care whether their input (output) is coming from
(going to) a terminal or a file. Thus, a command can be used conveniently either at a terminal
or in a pipeline (see §3.7). A few commands vary their actions depending on the nature of
their input or output, either for efficiency’s sake, or to avoid useless actions (such as attempting
random-access I/O on a terminal).

3.6.1 Standard Input and Standard Output. When a command begins execution, it usually
expects that three files are already open: a standard input, a standard output, and a diagnostic
(error) output. A number called a file descriptor is associated with each of these files; by conven-
tion, file descriptor 0 is associated with standard input, file descriptor 1 with standard output,
and file descriptor 2 with diagnostic output. A child process normally inherits these files from
its parent; all three files are initially connected to the terminal (0 to the keyboard, 1 and 2 to
the printer or screen). The shell permits them to be redirected elsewhere before control is
passed to an invoked command.” An argument to the shell of the form < file or > file opens the
specified file as the standard input or output, respectively (in the case of output, destroying the
previous contents of file, if any). An argument of the form >> file directs the standard output
to the end of file, thus providing a way to append data to it without destroying its existing con-
tents. In either of the two output cases, the shell creates file if it does not already exist (thus
> output alone on a line creates a zero-length file). The following appends to file 1og the
list of users who are currently logged on: '

who »> log

Such redirection arguments are only subject to variable and command substitution; neither
blank interpretation nor pattern matching of file names occurs after these substitutions. Thus:

echo ‘this is a test’ » %*.ggg
and:

cat < ?

10 UNIX Shell Tutorial

will produce, respectively, a one-line file named =.ggg (a rather disastrous name for a file)
and an error message (unless you have a file named ?, which is also nor a wise choice for a file
name—see end of §3.3).

3.6.2 Diagnostic and Other Outputs. Diagnostic output from UNIX commands is tradition-
ally directed to the file associated with file descriptor 2. (There is often a need for an error
output file that is different from standard output so that error messages do not get lost down
pipelines—see §3.7.) One can redirect this error output to a file by immediately prepending the
number of the file descriptor (i.e., 2 in this case) to either output redirection symbol (> or
>>). The following line will append error messages from the cc command to file ERRORS:

cc testfile.c 2>> ERRORS

Note that the file descriptor number must be prepended to the redirection symbol without any
intervening blanks or tabs; otherwise, the number will be passed as an argument to the com-
mand.

This method may be generalized to allow one to redirect output associated with any of the first
ten file descriptors (numbered 0-9) so that, for instance, if emd puts output on file descriptor
9, the following line will capture that output in file savedata:

cmd 9> savedata

A command often generates standard output and error output, and might even have some other
output, perhaps a data file. In this case, one can redirect independently all the different out-
puts. Suppose that cmd directs its standard output to file descriptor 1, its error output to file
descriptor 2, and builds a data file on file descriptor 9. The following would direct each of
these three outputs to a different file:

cmd » standazrd 2> error 9> data
Other forms of input/output redirection are described in §4.4.8, §4.4.9, and §5.6.
3.7 Command Lines and Pipelines

A sequence of one or more commands separated by | (or *) make up a pipeline. In a pipeline
consisting of more than one command, each command is run as a separate process connected to
its neighbor(s) by pipes, i.e., the owrput of each command (except the last one) becomes the
input of the next command in line. A filter is a command that reads its standard input,
transforms it in some way, then writes it as its standard output. A pipeline normally consists of
a series of filters. Although the processes in a pipeline are permitted to execute in parallel,
they are synchronized to the extent that each program needs to read the output of its predeces-
sor. Many commands operate on individual lines of text, reading a line, processing it, writing it
out, and looping back for more input. Some must read larger amounts of data before producing
output; sort is an example of the extreme case that requires all input to be read before any
output is produced.

The following is an example of a typical pipeline: nrof £ is a text formatter whose output may
contain reverse line motions; col converts these motions to a form that can be printed on a
terminal lacking reverse-motion capability; greek is used to adapt the output to a specific ter-
minal, here specified by -Thp. The flag -cm indicates one of the commonly used formatting
options, and text is the name of the file to be formatted:

nroff -cm text ! col | greek -Thp ') !
3.8 Examples

The following examples illustrate the variety of effects that can be obtained by combining a few
commands in the ways described above. It may be helpful to try these examples at a terminal:

UNIX Shell Tutorial 11

e who '
Print (on the terminal) the list of logged-in users.

e who »> log
Append the list of logged-in users to the end of file 1og.

e who | we -1

Print the number of logged-in users. (The argument to wc is minus ell.)

e who | pr

Print a paginated list of logged-in users.

e who | sort

Print an alphabetized list of logged-in users.

e who | grep pw
Print the list of logged-in users whose login names contain the string pw.

e who | grep pw | sort | pr
Print an alphabetized, paginated list of logged-in users whose login names contain the
string pw.

e { date; who | we =-1; } »>> log
Append (to file 1og) the current date followed by the count of logged-in users (see
§4.4.7 for the meaning of { ...} in this context).

e who | sed s/ .#//* | sort | uniq -4

Print only the login names of all users who are logged in more than once,

The who command does not by itself provide options to yield all these results—they are
obtained by combining who with other commands. Note that who just serves as the data
source in these examples. As an exercise, replace who i by < /etc/passwd in the above
examples to see how a file can be used as a data source in the same way. Notice that redirec-
tion arguments may appear anywhere on the command line.

3.9 Changing the State of the Shell and the .profile File

The state of a given instance of the shell includes the values of positional parameters (§3.4.1),
user-defined variables (§3.4.2), environment variables (§4.1), modes of execution (§4.7), and
the current working directory.

The state of a shell may be altered in various ways. These include the ¢d command, several
flags that can be set by the user, and a file in one’s login directory called .profile that is
treated specially by the shell.

3.9.1 ¢d. The cd command changes the current directory to the one specified as its argu-
ment. This can (and should) be used to change to a convenient place in the directory struc-
ture; cd is often combined with () to cause a sub-shell to change to a different directory and
execute a group of commands without affecting the original shell. The first sequence below
extracts the component files of the archive file /a1/tf/q.a and places them in whatever
directory is the current one; the second places them in directory 7a1/t¢£:

ar x /al/tf/q.a)
(cd 7a1/tf; ar x q.a)

3.9.2 The .profile File. When you log in, the shell is invoked to read your commands.
First, however, the shell checks to see if a file named /ete/profile exists on your UNIX
system, and if it does, commands are read from it; /etc/profile is used by system
administrators to set up variables needed by all users. Type:

cat /etc/profile

12 UNIX Shell Tutorial

to see what your system administrator has already done for you. After this, the shell proceeds
to see if you have a file named .profile in your login directory. If so, commands are read
and executed from it. For a sample .profile, see profile(5). Finally, the shell is ready to
read commands from your standard input—usually the terminal.

3.9.3 Execution Flags: set. The set command provides the capability of altering several
aspects of the behavior of the shell by setting certain shell flags. In particular, the x and v flags
may be useful from the terminal. Flags may be set by typing, for example:

set -xv
(to turn on flags x and v). The same flags may be turned off by typing:

set +xv
These two flags have the following meaning:

-v Input lines are printed as they are read by the shell. This flag is particularly useful for
isolating syntax errors. The commands on each input line are executed after that
input line is printed.

-x Commands and their arguments are printed as they are executed. (Shell control com-
mands, such as for, while, etc., are not printed, however.) Note that —-x causes a
trace of only those commands that are actually executed, whereas -v prints each line
of input until a syntax error is detected.

The set command is also used to set these and other flags within shell procedures (see §4.7).

4. USING THE SHELL AS A COMMAND: SHELL PROCEDURES
4.1 A Command’s Environment

All the variables (with their associated values) that are known to a command at the beginning
of execution of that command constitute its environment. This environment includes variables
that the command inherits from its parent process and variables specified as keyword parameters
on the command line that invokes the command.

The variables that a shell passes to its child processes are those that have been named as argu-
ments to the export command. The export command places the named variables in the
environments of both the shell and all its future child processes.

Keyword parameters are variable-value pairs that appear in the form of assignments, normally
before the procedure name on a command line (but see also -k flag in §4.7). Such variables
are placed in the environment of the procedure being invoked. For example:

key_command
echo $a $b

is a simple procedure that echoes the values of two variables; if it is invoked as:
a=key1 bz=key2 key_command

then the output is:
key1 key2

A procedure’s keyword parameters are not included in the argument count $# (§3.4.4).

A pracedure may access the value of any variable in its environment; however, if changes are
‘made to the value of a variable, these changes are not reflected in the environment—they are
local to the procedure in question. In order for these changes to be placed in the environment
that the procedure passes to its child processes, the variable must be named as an argument to
the export command within that procedure (but see §4.2 below). To obtain a list of variables
that have been made expoxrtable from the current shell, type:

UNIX Shell Tutorial 13

export

(You will also get a list of variables that have been made readonly—see §4.5 below.) To get
a list of name-value pairs in the current environment, type:

env
4.2 Invoking the Shell
The shell is an ordinary command and may be invoked in the same way as other commands:

shproc[arg...] A new instance of the shell is explicitly invoked to read proc.
Arguments, if any, can be manipulated as described in §4.3.

sh -v proc [arg...] This is equivalent to putting set -v at the beginning of proc.
Similarly for the x, e, u, and n flags (§3.9.3, §4.7).

proc larg ...] If proc is marked executable, and is not a compiled, executable pro-
gram, the effect is similar to that of sh proc [args ... 1. An
advantage of this form is that proc may be found by the search pro-
cedure described in §3.2 and §3.4.2. Also, variables that have been
exported in the shell will still be exported from proc when this
form is used (because the shell only forks to read commands
from proc). Thus any changes made within proc to the values of
exported variables will be passed on to subsequent commands
invoked from within proc.

There are several shell invocation flags that are sometimes useful for more advanced shell pro-
gramming. They are described in §5.8.

4.3 Passing Arguments to the Shell; shift

When a command line is scanned, any character sequence of the form $n is replaced by the nth
argument to the shell, counting the name of the shell procedure itself as $0. This notation
permits direct reference to the procedure name and to as many as nine positional parameters
(§3.4.1). Additional arguments can be processed using the shift command or by using a
for loop (§4.4.4).

The shift command shifts arguments to the left; i.e., the value of $1 is thrown away, $2
replaces $1, $3 replaces $2, etc.; the highest-numbered positional parameter becomes unset.
(%0 is mever shifted.) The command shift n is a shorthand notation for n consecutive
shifts; shift 0 does nothing. For example, consider the shell procedure ripple below:
echo writes its arguments to the standard output; while is discussed in §4.4.3 (it is a looping
command); lines that begin with # are comments.

ripple command
while test $# 1= 0
do

echo $1 $2 $3 $4 $5 36 $7 $8 $9
shift
done

If the procedure were invoked by:
ripple a b ¢
it would print:

ab e
b ¢
c

14 UNIX Shell Tutorial

The notation $# causes substitution of all positional parameters except $0. Thus, the echo
line in the ripple example above could be written more compactly as:

echo $»

These two echo commands are not equivalent: the first prints at most nine positional parame-
ters; the second prints all of the current positional parameters. The $+ notation is more con-
cise and less error-prone. One obvious application is in passing an arbitrary number of argu-
ments to a command such as the nrof £ text formatter:

nroff -h -rwi120 -T450 -cm $#*

It is important to understand the sequence of actions used by the shell in scanning command
lines and substituting arguments. The shell first reads input up to a new-line or semicolon, and
then parses that much of the input. Variables are replaced by their values and then command
substitution (via grave accents) is attempted. 1/O redirection arguments are detected, acted
upon, and deleted from the command line. Next the shell scans the resulting command line
for internal field separators, that is, for any characters specified by IFS to break the command
line into distinct arguments; explicit null arguments (specified by "" or * *) are retained, while
implicit null arguments resulting from evaluation of variables that are null or not set are
removed. Then file name generation occurs, with all meta-characters being expanded. The
resulting command line is executed by the shell.

Sometimes, one builds command lines inside a shell procedure. In this case, one might want to
have the shell rescan the command line after all the initial substitutions and expansions are
done. The special command eval is available for this purpose; eval takes a command line as
its argument and simply rescans the line, performing any variable or command substitutions
that are specified. Consider the following (simplified) situation:

command=who

output=’ | we -1°

eval $command $output

This segment of code results in the pipeline who | we -1 being executed.

The output of eval cannot be redirected; uses of eval can, however, be nested.
4.4 Control Commands

The shell provides several flow-of-control commands that are useful in creating shell pro-
cedures. To explain them, we first need a few definitions.

A simple command is as defined in §3.1. I/O redirection arguments can appear in a simple com-
mand line and are passed to the shell, not to the command.

A command is a simple command or any of the shell control commands described below. A
pipeline is a sequence of one or more commands separated by i. (For historical reasons, " is a
synonym for ! in this context.) The standard output of each command but the last in a pipe-
line is connected (by a pipe(2)) to the standard input of the next command. Each command in
a pipeline is run separately; the shell waits for the last command to finish. The exit status of a
pipeline is non-zero if the exit status of either the first or last process in the pipeline is non-
zero. (This is a bit weird, and may be changed in the future.)

A command list is a sequence of one or more pipelines separated by ;, &, &&, or | 1!, and

optionally terminated by ; or &. A semicolon (;) causes sequential execution of the previous
pipeline (i.e., the shell waits for the pipeline to finish before reading the next pipeline), while &
causes asynchronous execution of the preceding pipeline; both sequential and asynchronous
execution are thus allowed. An asynchronous pipeline continues execution until it terminates
voluntarily, or until its processes are killed. In the first example below, the shell executes
who, waits for it to terminate, then executes date and waits for it to terminate; in the second
example, the shell invokes both commands in order, but does not wait for either one to finish.

UNIX Shell Tutorial 15

Figure 2 shows the actions of the shell involved in executing these two command lists;

who »log; date
who »log& dateb

SH FORK WAIT FORK WAIT
| r- ——————— - - F. ————————— -
(ASLEEP) (ASLEEP) :
23 EXEC WHO i EXEC DATE
! WHO | DATE |
EXIT EXIT
SH FORK FORK (FREE TO DO OTHER COMMANDS)
| 1
DATE
EXEC |
3 DATE |
EXIT
WHO
EXEC |
2 WHO |
EXIT
Figure 2

More typical uses of & include off-line printing, background compilation, and generation of jobs
to be sent to other computers. For example, if you type:

nohup cc prog.cé

you may continue working while the C compiler runs in the background. A command line end-
ing with & is immune to interrupts and quits, but it is wise to make it immune to hang-ups as
well. The nohup command is used for this purpose. Without nohup, if you hang up while
cc in the above example is still executing, cc will be killed and your output will disappear.

t# The & operator should be used with restraint, especially on heavily-loaded systems. Other users
will not consider you a good citizen if you start up a large number of simultaneous, asynchronous
processes without a compelling reason for doing so.

The && and || operators, which are of equal precedence (but lower than & and 1), cause con-

ditional execution of pipelines. In cmd1 || emd2, emd 1 is executed and its exit status exam-

ined. Only if emd1 fails (i.e., has a non-zero exit status) is cmd2 executed. This is thus a

more terse notation for: ‘

if cmd

tegt $7? I= 0
then

cmd2
fi

See writemail in §6 for an example of use of i 1.

16 UNIX Shell Tutorial

The && operator yields the complementary test: in cmd1 && cmd2, the second command is
executed only if the first succeeds (has a zero exit status). In the sequence below, each com-
mand is executed in order until one fails:

cmd1 &6 cmd2 && cmd3 && ... && cmdn

A simple command in a pipeline may be replaced by a command list enclosed in either
parentheses or braces. The output of all the commands so enclosed is combined into one
stream that becomes the input to the next command in the pipeline. The following line prints
two separate documents in a way similar to that shown in a previous example (§3.7):

{ nroff -cm text1; nroff -cm text2; } | ecol | greek -Thp
See §4.4.7 for further details on command grouping.
All of the following commands are formally described in sh(1).

4.4.1 Structured Conditional: if. The shell provides an if command. The simplest form
of the i f command is:

if command list
then command list
fi

The command list following if is executed and if the last command in the list has a zero exit
status, then the command list that follows then is executed; f£i indicates the end of the if
command.

In order to cause an alternative set of commands to be executed in the case where the command
list following if has a non-zero exit status, one may add an else-clause to the form given
above. This results in the following structure:

if command list
then command list
else command list
fi

Multiple tests can be achieved in an if command by using the elif clause. For example:

if test -f "$1" # is $1 a file?

then pr $1

elif test -4 "$1" # else, is $1 a directory?
then (cd $1; pr =)

else echo $1 is neither a file nor a directory
fi

The above example is executed as follows: if the value of the first positional parameter is a file
name, then print that file; if not, then check to see if it is the name of a directory. If so,
change to that directory and print all the files there. Otherwise, echo the error message.

The if command may be nested (but be sure to end each one with a £i). The new-lines in
the above examples of i f may be replaced by semicolons.

The exit status of the if command is the exit status of the last command executed in any
then clause or else clause. If no such command was executed, if returns a zero exit status.

4.4.2 Multi-way Branch: case. A multiple way branch is provided by the case command.
'The basic format of case is:

UNIX Shell Tutorial 17

case Sstring in
pattern) command list; ;

pattern) command list; ;
esac

The shell tries to match string against each pattern in turn, using the same pattern-matching
conventions as in file-name generation (§3.3). If a match is found, the command list following
the matched pattern is executed; the ; ; serves as a break out of the case and is required after
each command list except the last. Note that only one pattern is ever matched, and that
matches are attempted in order, so that if « is the first pattern in as case, no other patterns
will ever be looked at.

More than one pattern may be associated with a given command list by specifying alternate pat-
terns separated by i. For example:

case §i in

%.C) cc $i
HE]
#.hi«.sh) # do nothing
1
*) echo "$i of unknown type"

..
'
esac

In the above example, no action is taken for the second set of patterns because the null com-
mand is specified; « is used as a default pattern, because it matches any word.

The exit status of case is the exit status of the last command executed in the case com-
mand. If no commands were executed, then case has a zero exit status.

4.4.3 Conditional Looping: while and until. A while command has the general
form:

while command list
do

command list
done

The commands in the first command list are executed, and if the exit status of the last command
in that list is zero, then the commands in the second list are executed. This sequence is
repeated as long as the exit status of the first command list is zero. A loop can be executed as
long as the first command list returns a non-zero exit status by replacing while with until.

Any new-line in the above example may be replaced by a semicolon. The exit status of a
while (until) command is the exit status of the last command executed in the second com-
mand list. If no such command is executed, while (until) has exit status zero.

4.4.4 Looping over a List: for. Often, one wishes to perform some set of operations for
each in a set of files, or execute some command once for each of several arguments. The for
command can be used to accomplish this. The for command has the format:

for variable in word list
do
. command list

done
where word list is a list of strings separated by blanks. The commands in the command list are
executed once for each word in word list. Variable takes on as its value each word from word
list, in turn; word list is fixed after it is evaluated the first time. For example, the following for
loop will cause each of the C source files xec.c, cmd.c, and word. c in the current direc-
tory to be dif fed with a file of the same name in the directory /usr/src/cmd/sh:

18 UNIX Shell Tutorial

for cfile in xec cmd word
do diff $cfile.c /usr/src/cmd/sh/$cfile.c
done

One can omit the **in word list”” part of a for command; this will cause the current set of
positional parameters to be used in place of word list. This is very convenient when one wishes
to write a command that performs the same set of commands for each of an unknown number
of arguments. See null in §6 for an example of this feature.

4.4.5 Loop Control: break and continue. The break command can be used to ter-
minate execution of a while, until, or a for loop; continue requests the execution of
the next iteration of the loop. These commands are effective only when they appear between
do and done.

The break command terminates execution of the smallest (i.e., innermost) enclosing loop,
causing execution to resume after the nearest following unmatched done. Exit from n levels is
obtained by break n.

The continue command causes execution to resume at the nearest enclosing while,
until, or for, i.e., the one that begins the innermost loop containing the continue; one
can also specify an argument n to continue and execution will resume at the nth enclosing
loop: '
This procedure is interactive; ‘break’ and ‘continue’
commands are used to allow the user to control data entry.
while true
do echo "Please enter data”
read response
case "$Sresponse" in
"done") break # no more data

HE)
") continue
1S
*)
process the data here
HE)
esac
done

4.4.6 End-of-file and exit. When the shell reaches the end-of-file, it terminates execution,
returning to its parent the exit status of the last command executed prior to the end-of-file.
The exit command simply reads to the end-of-file and returns, setting the exit status to the
value of its argument, if any. Thus, a procedure can be terminated ‘““normally’’ by using
exit 0.

4.4.7 Command Grouping: Parentheses and Braces. There are two methods for grouping
commands in the shell. As mentioned in §3.9.1, parentheses () cause the shell to spawn a
sub-shell that reads the enclosed commands. Both the right and left parentheses are recognized
wherever they appear in a command line—they can appear as literal parentheses only by being
quoted. For example, if you type garble(stuff) the shell interprets this as four separate
words: garble, (, stuff,and).

This sub-shell capability is useful if one wishes to perform some operations without affecting
the values of variables in the current shell, or to temporarily change directory and execute
some commands in the new directory without having to explicitly return to the current direc-
tory. The current environment is passed to the sub-shell and variables that are exported in
the current shell are also exported in the sub-shell. Thus:

current=‘pwd'; cd /usr/docs/sh_tut;
nohup mm -Tlp sc¢_? | lprd cd $current

UNIX Shell Tutorial 19

and:
(ecd /usr/docs/sh_tut; nohup mm -Tlp sc_? | lpré&)

accomplish the same result: a copy of this tutorial is printed on the line printer; however, the
second example automatically puts you back in your original working directory. In the second
example above, blanks or new-lines surrounding the parentheses are allowed but not necessary.
The shell will prompt with $PS2 if a) is expected. See also the example in §3.9.1.

Braces {} may also be used to group commands together.” Both the left and the right brace are
recognized only if they appear as the first (unquoted) word of a command. The opening brace
{ may be followed by a new-line (in which case the shell will prompt for more input). Unlike
in the case of parentheses, no sub-shell is spawned for braces; the enclosed commands are sim-
ply read by the shell. The braces are convenient when you wish to use the (sequential) output
of several commands as input to one command; see the last example in §4.4 above.

The exit status of a set of commands grouped by either parentheses or braces is the exit status
of the last enclosed executed command.

4.4.8 Input/Output Redirection and Control Commands. The shell normally does not
Jork when it recognizes the control commands (other than parentheses) described above. How-
ever, each command in a pipeline is run as a separate process in order to direct input (output)
to (from) each command. Also, when redirection of input/output is specified explicitly for a
control command, a separate process is spawned to execute that command. Thus, when if,
while, until, case, or for is used in a pipeline consisting of more than one command,
the shell forks and a sub-shell runs the control command. This has certain implications; the
most noticeable one is that any changes made to variables within the control command are not
effective once that control command finishes (similar to the effect of using parentheses to group
commands). The control commands run slightly slower when redirection is specified.

t# Beginners should skip to Section 4.5 on first reading.

4.4.9 In-line Input Documents. Upon seeing a command line of the form:

command << eofstring

where eofstring is any arbitrary string, the shell will take the subsequent lines as the standard
input of command until a line is read consisting only of eqfstring (possibly preceded by one or
more tab characters). By appending a minus (-) to <<, leading tab characters are deleted from
each line of the input document before the shell passes the line to command.

The shell creates a temporary file containing the input document and performs variable and
command substitution (§3.4.3) on its contents before passing it to the command. Pattern
matching on file names is performed on the arguments of command lines in command substitu-
tions. In order to prohibit all substitutions, one may quote any character of eofstring:$

command << \eofstring

The in-line input document feature is especially useful for small amounts of input data (e.g., an
editor “‘script’’), where it is more convenient to place the data in the shell procedure than to
keep it in a separate file. For instance, one could type:

5. See §3.4.2 and §5.7 for other meanings of braces in the shell.
6. Typically, eofstring consists of a single character; ! is often used for this purpose.

20 UNIX Shell Tutorial

cat <«<<- xyz
This message will be printed on the
terminal with leading tabs removed.
XyZ

This in-line input document feature is most useful in shell procedures. See edfind,

edlast, and mmt in §6. Note that in-line input documents may nor appear within grave
7

accents.

4.4.10 Transfer to Another File and Back: the Dot (.) Command. A command line of
the form:

. proc

causes the shell to read commands from proc without spawning a new process. Changes made
to variables in proc are in effect after the dor command finishes. This is thus a good way to
gather a number of shell variable initializations into one file. Note that an exit command in a
file executed in this manner will cause an exit from your current shell; if you are at login level,
you will be logged out.

4.4.11 Interrupt Handling: trap. As noted in §2.2, a program may choose to catch an
interrupt from the terminal, ignore it completely, or be terminated by it. Shell procedures can
use the trap command to obtain the same effects.

trap arg signal-list

is the form of the trap command, where arg is a string to be interpreted as a command list
and signal-list consists of one or more signal numbers (as described in signal(2)). The com-
mands in arg are scanned at least once, when the shell first encounters the trap command.
Because of this, it is usually wise to use single rather than double quotes to surround these
commands. The former inhibit immediate command and variable substitution; this becomes
important, for instance, when one wishes to remove temporary files and the names of those
files have not yet been determined when the trap command is first read by the shell. The fol-
lowing procedure will print the name of the current directory on the file errdirect when it
is interrupted, thus giving the user information as to how much of the job was done:

trap ‘echo ‘pwd‘' »errdirect’ 2 3 15
for i in /bin /usr/bin /usr/gas/bin
do
cd $i
commands to be executed in directory $i here
done

while the same procedure with double (rather than single) quotes
(trap "echo ‘pwd* »errdirect” 2 3 15) will, instead, print the name of the directory
from which the procedure was executed.

Signal 11 (SEGMENTATION VIOLATION) may never be trapped, because the shell itself
needs to catch it to deal with memory allocation. Zero is not a UNIX signal, but is effectively
interpreted by the trap command as a signal generated by exiting from a shell (either via an
exit command, or by “falling through’’ the end of a procedure). If arg is not specified, then
the action taken upon receipt of any of the signals in signal-list is reset to the default system
action. If arg is an explicit null string (*° or ""), then the signals in signal-list are ignored by
the shell.

7. This is a implementation bug that should (and may) be fixed eventually.

UNIX Shell Tutorial 21

The most frequent use of trap is to assure removal of temporary files upon termination of a
procedure. The second example of §3.4.4 would be written more typically as follows:

temp=$HOME/temp/$$
trap ‘rm $temp; trap 0; exit’ 0 1 2 3 15
1s > Stemp

commands, some of which use $temp, go here

In this example, whenever signals 1 (HANGUP), 2 (INTERRUPT), 3 (QUIT), or 15
(SOFTWARE TERMINATION) are received by the shell procedure, or whenever the shell pro-
cedure is about to exit, the commands enclosed between the single quotes will be executed.
The exit command must be included, or else the shell continues reading commands where it
left off when the signal was received. The trap 0 turns off the original trap on exits from the
shell, so that the exit command does not reactivate the execution of the trap commands.

Sometimes it is useful to take advantage of the fact that the shell continues reading commands
after executing the trap commands. The following procedure takes each directory in the current
directory, changes to it, prompts with its name, and executes commands typed at the terminal
until an end-of-file (control-d) or an interrupt is received. An end-of-file causes the read
command to return a non-zero exit status, thus terminating the while loop and restarting the
cycle for the next directory; the entire procedure is terminated if interrupted when waiting for
input, but during the execution of a command, an interrupt terminates only that command:

dir=‘pwd*
for i in =
do if test -4 dir/si
then cd dir/si
while echo "$i:"
trap exit 2
read x
do trap : 2 # ignore interrupts
eval $x
done
fi
done

Several traps may be in effect at the same time; if multiple signals are received simultane-
ously, they are serviced in ascending order. To check what traps are currently set, type:

trap

It is important to understand some things about the way in which the shell implements the
trap command in order not to be surprised. When a signal (other than 11) is received by the
shell, it is passed on to whatever child processes are currently executing. When those (syn-
chronous) processes terminate, normally or abnormally, the shell then polls any traps that hap-
pen to be set and executes the appropriate trap commands. This process is straightforward,
except in the case of traps set at the command (outermost, or login) level; in this case, it is
possible that no child process is running, so the shell waits for the termination of the first pro-
cess spawned after the signal is received before it polls the traps.

For internal commands, the shell normally polls traps on completion of the command; an
exception to this rule is made for the read command, for which traps are serviced immedi-
ately, so that read can be interrupted while waiting for input.

4.5 Special Shell Commands

There are several special commands that are internal to the shell (some of which have already
been mentioned). These commands should be used in preference to other UNIX commands
whenever possible, because they are, in general, faster and more efficient. The shell does not
fork to execute these commands, so no additional processes are spawned; the trade-off for this
efficiency is that redirection of input/output is not allowed for most of these special commands.

22

UNIX Shell Tworial

Several of the special commands have already been described in §4.4 because they affect the
flow of control. They are break, continue, exit, dot (.), and trap. The set com-
mand described in §3.4.1 and §3.9.3 is also a special command. Descriptions of the remaining
special commands are given here:

cdarg

exec arg...

newgrparg ...

read var...

readonlyvar...

test

tinmes

umask nnn

ulimitn

waitn

The null command; this command does nothing; the exit status is zero
(true). Beware: any arguments to the null command are parsed for
syntactic correctness; when in doubt, quote such arguments. Parame-
ter substitution takes place, just as in other commands.

Make arg the current directory. If arg does not begin with /, ./, or
../, ¢d uses the CDPATH shell variable (§3.4.2) to locate a parent
directory that contains the directory arg. If arg is not a directory, or
the user is not authorized to access it, a non-zero exit status is
returned. Specifying cd with no arg is equivalent to typing
cd $HOME.

If arg is a command, then the shell executes it without forking. No
new process is created. Input/output redirection arguments are allowed
on the command line. If only input/output redirection arguments
appear, then the input/output of the shell itself is modified accordingly.
See merge in §6 for an example of this use of exec.

The newgrp(1) command is executed, replacing the shell; newgrp in
turn spawns a new shell; see newgrp(1). Beware: Only variables in the
environment will be known in the shell that is spawned by the newgrp
command. Any variables that were exported will no longer be
marked as such.

One line (up to a new-line) is read from standard input and the first
word is assigned to the first variable, the second word to the second
variable, and so on. All left-over words are assigned to the last vari-
able. The exit status of read is zero unless an end-of-file is read.

The specified variables are made readonly so that no subsequent
assignments may be made to them. If no arguments are given, a list of
all readonly and of all exported variables is given.

A conditional expression is evaluated. More details are given in §5.1
below.

The accumulated user and system times for processes run from the
current shell are printed.

The user file creation mask is set to nnn; see umask(2) for details. If
nnn is omitted, then the current value of the mask is printed.

This command imposes a limit of n blocks on the size of files written
by the shell and its child processes (files of any size may be read). If n
is omitted, the current value of this limit is printed. The default value
for n varies from on installation to another.

The shell waits for the child process whose process number is n to ter-
minate; the exit status of the wait command is that of the process
waited on. If nis omitted or is not a child of the current shell, then all
currently active processes are waited for and the return code of the
wait command is zero.

UNIX Shell Tutorial 23

4.6 Creation and Organi;atiou of Shell Procedures

A shell procedure can be created in two simple steps: first, one builds an ordinary text file; then
one changes its mode to make it executable, thus permitting it to be invoked by proc args, rather
than by sh proc args. The second step may be omitted for a procedure to be used once or twice
and then discarded, but is recommended for longer-lived ones. Here is the entire input needed
to set up a simple procedure (the executable part of draft in §6):

ed
a
nroff -rC3 -T450-12 -cm $=

w draft

q
chmod +x draft

It may then be invoked as draft £ile1 file2. Note that shell procedures must always be
at least readable, so that the shell itself can read commands from the file.

If draft were thus created in a directory whose name appears in the user’s PATH variable, the
user could change working directories and still invoke the draft command.

Shell procedures may be created dynamically. A procedure may generate a file of commands,
invoke another instance of the shell to execute that file, and then remove it. An alternate
approach is that of using the dot command (.) to make the current shell read commands from
the new file, allowing use of existing shell variables and avoiding the spawning of an additional
process for another shell.

Many users prefer to write shell procedures instead of C programs. First, it is easy to create
and maintain a shell procedure because it is only a file of ordinary text. Second, it has no
corresponding object program that must be generated and maintained. Third, it is easy to
create a procedure on the fly, use it a few times, and then remove it. Finally, because shell
procedures are usually short in length, written in a high-level programming language, and kept
only in their source-language form, they are generally easy to find, understand, and modify.

By convention, directories that contain only commands and/or shell procedures are usually
named bin. Most groups of users sharing common interests have one or more bin directories
set up to hold common procedures. Some users have their PATH variable list several such
directories. Although you can have a number of such directories, it is unwise to go
overboard—it may become difficult to keep track of your environment, and efficiency may
suffer (§7.3).

4.7 More about Execution Flags
There are several execution flags available in the shell that can be useful in shell procedures:

-e The shell will exit immediately if any command that it executes exits with a non-zero
exit status.

-u When this flag is set, the shell treats the use of an unset variable as an error. This
flag can be used to perform a global check on variables.

-t The shell exits after reading and executing the commands on the remainder of the
current input line.

-n This is a don’t execute flag. On occasion, one may want to check a procedure for syn-
tax errors, but not to execute the commands in the procedure. Writing set -nv at
the beginning of the file will accomplish this.

-k All arguments of the form variable=value are treated as keyword parameters. When
this flag is not set, only such arguments that appear before the command name are
treated as keyword parameters.

24 UNIX Shell Tutorial

5. MISCELLANEOUS SUPPORTING COMMANDS AND FEATURES

Shell procedures can make use of any UNIX command. The commands described in this sec-
tion are either used especially frequently in shell procedures, or are explicitly designed for such
use. More detailed descriptions of each of these commands can be found in Section 1 of the
UNIX User's Manual [7].

5.1 Conditional Evaluation: test

The test command evaluates the expression specified by its arguments and, if the expression
is true, returns a zero exit status; otherwise, a non-zero (false) exit status is returned; test
also returns a non-zero exit status if it has no arguments. Often it is convenient to use the
test command as the first command in the command list following an if or a while. Shell
variables used in test expressions should be enclosed in double quotes if there is any chance
of their being null or not set.

On some UNIX systems, the square brackets ([1) may be used as an alias for test; e.g.,
[expression 1 has the same effect as test expression.

The following is a partial list of the primaries that can be used to construct a conditional expres-
sion:

-x file true if the named file exists and is readable by the user.

-w file true if the named file exists and is writable by the user.

-x file true if the named file exists and is executable by the user.
-8 file true if the named file exists and has a size greater than zero.
-4 file true if the named file exists and is a directory.

~f file true if the named file exists and is an ordinary file.

-p file true if the named file exists and is a named pipe (fifo).

-z s/ true if the length of string s/ is zero.

-n sl true if the length of the string s/ is non-zero.

-t fildes true if the open file whose file descriptor number is fildes is associated with a
terminal device. If fildes is not specified, file descriptor 1 is used by default.

sl =52 true if strings sI and s2 are identical.
sl 1= 52 true if strings s/ and 52 are not identical.
sl true if sI is not the null string.

nl —eq n2 true if the integers nl and n2 are algebraically equal; other algebraic comparis-
ons are indicated by -ne, -gt, -ge, -1t, and -1le.

These primaries may be combined with the following operators:

1 unary negation operator.

-a binary logical and operator. . ‘ 4
-0 ‘ binary logical or operator; it has lower précedence than -a. -)
(expr) parentheses for grouping; they must be escaped to remove their significance to

the shell; in the absence of parentheses, evaluation proceeds from left to right.

Note that all primaries, operators, file names, etc., are separate arguments to test.

UNIX Shell Tutorial 25

5.2 Reading a Line: line

The 1ine command takes one line from standard input and prints it on standard output. This
is useful when you need to read a line from a file, or capture the line in a variable. The func-
tions of line and of the read command that is internal to the shell differ in that
input/output redirection is possible only with 1ine. If the user does not require input/output
redirection, read is faster and more efficient. An example of a usage of line for which
read would not suffice is:

firstline=‘line < somefile’
5.3 Simple Output: echo

The echo command, invoked as echo [arg ...] copies its arguments to the standard output,
each followed by a single space, except for the last argument, which is normally followed by a
new-line; often, it is used to prompt the user for input, to issue diagnostics in shell procedures,.
or to add a few lines to an output stream in the middle of a pipeline. Another use is to verify
the argument list generation process before issuing a command that does something drastic.
The command 1s is often replaced by echo #, because the latter is faster and prints fewer
lines of output.

The echo command recognizes several escape sequences. A \n yields a new-line character; a
\c removes the new-line from the end of the echoed line. The following prompts the user,
allowing one to type on the same line as the prompt:

echo ‘enter name:\c’
read name

The echo command also recognizes octal escape sequences for all characters, whether printable
or not: echo "\007" typed at a terminal will cause the bell on that terminal to ring.

5.4 Expression Evaluation: expr

The expr command provides arithmetic and logical operations on integers and some pattern
matching facilities on its arguments. It evaluates a single expression and writes the result on
the standard output; expr can be used inside grave accents to set a variable. Typical examples
are:

increment $a

a=‘expr $a + 1°

put third through last characters of
$1 into substring

gsubstring=‘expr "$1" : ‘..\(.*\)""®

obtain length of $1

c=‘expr "$1" : ‘.+‘*

The most common uses of expr are in counting iterations of a loop and in using its pattern
matching capability to pick apart strings; see expr(1) for more details.

5.5 trueand false

The true and false commands perform the obvious functions of exiting with zero and
non-zero exit status, respectively. The true command is often used to implement an uncon-
ditional loop. '

5.6 Input/Output Redirection Using File Descriptors.
v Beginners should skip this section on first reading.

Above (§3.6.2), we mentioned that a command occasionally directs output to some file associ-
ated with a file descriptor other than 1 or 2. In languages such as C, one can associate output
with any file descriptor by using the write(2) system call. The shell provides its own mechan-
ism for creating an output file associated with a particular file descriptor. By typing:

26 UNIX Shell Tutorial

Jdl>&/d2

where fd! and fd2 are valid file descriptors, one can direct output that would normally be associ-
ated with file descriptor fd! onto the file associated with fd2. The default value for fd1 and fd2
is 1. 1If, at execution time, no file is associated with fd2, then the redirection is void. The
most common use of this mechanism is that of directing standard error output to the same file
as standard output. This is accomplished by typing:

command 2>8&1

If one wanted to redirect both standard output and standard error output to the same file, one
would type:

command 1> file 2>81

The order here is significant: first, file descriptor 1 is associated with file; then file descriptor 2 is
associated with the same file as is currently associated with file descriptor 1. If the order of the
redirections were reversed, standard error output would go to the terminal, and standard output
would go to file, because at the time of the error output redirection, file descriptor 1 still would
have been associated with the terminal.

This mechanism can also be generalized to the redirection of standard input. One could type:
fda<&fdb

to cause both file descriptors fda and fdb to be associated with the same input file; if fda or fdb
is not specified, file descriptor 0 is assumed. Such input redirection is useful for commands
that use two or more input sources. Another use of this notation is for sequential reading and
processing of a file; see merge in §6 for an example of use of this feature.

5.7 Conditional Substitution

Normally, the shell replaces occurrences of $variable by the string value assigned to variable, if
any. However, there exists a special notation to allow conditional substitution, dependent upon
whether the variable is set and/or not null. By definition, a variable is ser if it has ever been
assigned a value. The value of a variable can be the null string, which may be assigned to a
variable in any one of the following ways:

A=

bcd=""

Ef g=ll
SEE tr onn

The first three of these examples assign the null string to each of the corresponding shell vari-
ables. The last example sets the first and second positional parameters to the null string, and
unsets all other positional parameters.

The following conditional expressions depend upon whether a variable is set and not null (note
that, in these expressions, variable refers to either a digit or a variable name and the meaning of
braces differs from that described in §3.4.2 and §4.4.7):

$ {variable : -string} If variable is set and is non-null, then substitute the value $variable in
place of this expression. Otherwise, replace the expression with string.
Note that the value of variable is not changed by the evaluation of this
expression. ‘ :

$ {variable ; =string} If variable is set and is non-null, then substitute the value $variable in
place of this expression; otherwise, set variable to string, and then sub-
stitute the value $variable in place of this expression. Positional
parameters may not be assigned values in this fashion.

UNIX Shell Tutorial 27

s {variable : ?string} 1f variable is set and is non-null, then substitute the value of variable

for the expression; otherwise, print a message of the form:
variable: string

and exit from the current shell. (If the shell is the login shell, it is
not exited.) If string is omitted in this form, then the message:

variable: parameter null or not set

is printed instead.

$ {variable : +string} If variable is set and is non-null, then substitute string for this expres-

These

sion, otherwise, substitute the null string. Note that the value of vari-
able is not altered by the evaluation of this expression. :

expressions may also be used without the colon (:), in which case the shell does nor

check whether variable is null or not; it only checks whether variable has ever been set.

The two examples below illustrate the use of this facility:

1.

If PATH has ever been set and is not null, then keep its current value; otherwise, set it
to the string :/bin:/usr/bin. Note that one needs an explicit assignment to set
PATH in this form:

PATH=${PATH:-':/bin:/usr/bin’}

If HOME is set and is not null, then change directory to it, otherwise set it to the given
value and change directory to it; note that HOME is automatically assigned a value in this
case:

¢d ${HOME:='/usr/gas’}

5.8 Invocation Flags

There

are four flags that may be specified on the command line invoking the shell; these flags

may not be turned on via the set command:

-i

If this flag is specified, or if the shell’s input and output are both attached to a termi-
nal, the shell is interactive. In such a shell, INTERRUPT (signal 2) is caught and
ignored, while QUIT (signal 3) and SOFTWARE TERMINATION (signal 15) are
ignored.

If this flag is specified or if no input/output redirection arguments are given, the shell
reads commands from standard input. Shell output is written to file descriptor 2.
The shell you get upon logging into the system effectively has the —s flag turned on.

When this flag is turned on, the shell reads commands from the first string following
the flag. Remaining arguments are ignored. Double quotes should be used to
enclose a multi-word string, in order to allow for variable substitution.

When this flag is specified on invocation, then the restricted shell is invoked. This is a
version of the shell in which certain actions are disallowed. In particular, the cd
command produces an error message, and the user cannot set PATH. See sh(1) for a
more detailed description. ’

28 UNIX Shell Tutorial

6. EXAMPLES OF SHELL PROCEDURES

t@& Some examples in this section are quite difficult for beginners. For ease of reference, the exam-
ples are arranged alphabetically by name, rather than by degree of difficulty.

copypairs:
usage: copypairs file1 file2 ...
copy file1 to file2, file3 to file4, ...
while test "$2" 1= ""
do
cp $1 82
shift; shift
done
if test "$1" = ""
then echo "$0: odd number of arguments”
fi

Note: This procedure illustrates the use of a while loop to process a list of positional parame-
ters that are somehow related to one another. Here a while loop is much better than a
for loop, because you can adjust the positional parameters via shift to handle related

arguments.
copyto:
usage: copyto dir file ..,
#+ copy argument files to ‘dir’, making sure that at least
two arguments exist and that ‘dir’ is a directory
if test $# -1t 2
then echo "80: usage: copyto directory file ..."
elif test | -4 $1
then echo "$0: $1 is not a directory";
else dir=$1; shift
for eachfile
do
cp $Seachfile $dir
done
fi

Note: This procedure uses an if command with two tests in order to screen out improper
usage. The for loop at the end of the procedure loops over all of the arguments to
copyto but the first; the original $ 1 is shifted off.

distinct:
¥ usage: distinct
reads standard input and reports list of alphanumeric strings
that differ only in case, giving lower-case form of each

tr -cs ‘[A-2]1[a-2]1[0-9]1" “[\012«]1’ | gort -u !
tr ‘[A-2]1’ ’‘[a-2])’ | sort | uniq -4

Note: This procedure is an example of the kind of process that is created by the left-to-right
construction of a long pipeline. It may not be immediately obvious how this works.
(You may wish to consult (1), sort(1), and unig(1) if you are completely unfamiliar
with these commands.) The tr translates all characters except letters and digits into
new-line characters, and then squeezes out repeated new-line characters. This leaves
¢ach string (in this case, any contiguous sequence of letters and digits) on a separate
line. The sort command sorts the lines and emits only one line from any sequence of
one or more repeated lines. The next tr converts everything to lower case, so that
identifiers differing only in case become identical. The output is sorted again to bring
such duplicates together. The uniq -4 prints (once) only those lines that occur more
than once, yielding the desired list.

UNIX Shell Tutonu: 29

draft:

#
#
#

The process of building such a pipeline uses the fact that pipes and files can usually be
interchanged; the two lines below are equivalent, assuming that sufficient disk space is
available:

cmd1 | emd2 | cmd3
¢md1 » templ; < templ cmd2 > temp2; < temp2 cmd3; rm templ12]

Starting with a file of test data on the standard input and working from left to right, each
command is executed taking its input from the previous. file and putting its output in the
next file. The final output is then examined to make sure that it contains the expected
result. The goal is to create a series of transformations that will convert the input to the
desired output. As an exercise, try to mimic distinct with such a step-by-step pro-
cess, using a file of test data containing:

ABC:DEF/DEF
ABC1 ABC
Abc abce

Although pipelines can give a concise notation for complex processes, exercise some res-
traint, lest you succumb to the ““one-line syndrome’ sometimes found among users of
especially concise languages. This syndrome often yields incomprehensible code.

usage: draft file(s)
prints the draft (-rC3) of a document on a DASI 450
terminal in 12-pitch using memorandum macros (MM).

nroff -rC3 -T450-12 -cm $+

Note: Users often write this kind of procedure for convenience in dealing with commands that
require the use of many distinct flags that cannot be given default values that are reason-
able for all (or even most) users.

edfind:

usage: edfind file arg

find the last occurrence in ‘file’ of a line whose

beginning matches ‘arg’, then print 3 lines (the one
before, the line itself, and the one after)

ed - $1 <«

H

?h$27;-,4+p

!

Note: This procedure illustrates the practice of using editor (ed) in-line input scripts into
which the shell can substitute the values of variables. It is a good idea to turn on the H
option of ed when embedding an ed script in a shell procedure (see ed(1)).

edlast:

usage: edlast file
prints the last line of file, then deletes that line
ed - $1 <<-\eof # no variable substitutions in "ed" script
H .
$p
$d
w) P
q
eof

echo Done.

30 UNIX Shell Tutorial

Note: This procedure contains an in-line input document or script (see §4.4.9); it also illus-
trates the cffect of inhibiting substitution by escaping a character in the eofstring (here,
eof) of the input redirection. If this had not been done, $p and $4 would have been
treated as shell variables.

fsplit:
usage: fgplit filel1 file2
#+ read standard input and divide it into three parts:
append any line containing at least one letter
to file1, any line containing at least one digit
but no letters to file2, and throw the rest away

total=0 lost=0
while read next

do
total=""‘expr $total + 1'"
case "$next" in
e[A-Za-2]a)
echo "Snext" >> $1 ;;
«[0-9]«)
echo "$next" >> $2 ;;
*)
lost="‘expr $lost + 1*"
esac
done

echo "$total lines read, $lost thrown away"

Note: In this procedure, each iteration of the while loop reads a line from the input and
analyzes it. The loop terminates only when read encounters an end-of-file.

ta Don’t use the shell to read a line at a time unless you must—it can be grotesquely slow (§7.2.1).

initvars:
#+ usage: . initvars
use carriage return to indicate "no change"”

echo "initializations? \¢"
read response
if test "Sresponse" = y
then echo "PS1=\¢"; read temp
PS1=8${temp:-3$PS1}
echo "PS2=\¢"; read temp
Ps2=${temp:-$PS2}
echo "PATH=\c"; read temp
PATH=${temp:-$PATH!}
echo "TERM=\c"; read temp
TERM=$ {temp:-$TERM!}
fi

Note: This procedure would be invoked by a user at the terminal, or as part of a . profile
file. The assignments are effective even when the procedure is finished, because the dot
command is used to invoke it. To better understand the dot command, invoke init-
vars as indicated above and check the values of PS1, PS2, PATH, and TERM; then
make initvars exccutable, type initvars, assigning different values to the three
variables, and check again the values of these three shell variables after initvars ter-
minates. It is assumed that PS1, PS2, PATH, and TERM have been exported,
presumably by your . profile (§3.9.2, §4.1). .

UNIX Shell Tutorial 31

merge:
usage: merge srcl src2 [dest]
#+ merge two files, every other line,
the first argument starts off the merge,
#+ excess lines of the longer file are appended to
the end of the resultant file
exec 4<$1 5<$2
dest=%${3-%1.m} # default destination file is named $1.m
while true
do
alternate reading from the files;
’‘more’ represents the file descriptor
of the longer file
line <&4 »>$dest || { more=5; break ;!
line <&5 >>$dest |! { more=4; break ;}
done

delete the last line of destination

file, because it is blank.
ed -~ $dest <<\eof

H
$4
w
q
eof
while line <«<&S$Smore »>> $dest
do :; done # read the remainder of the longer

file - the body of the ‘while’ loop
does nothing; the work of the loop
is done in the command list following
‘while’

Note: This procedure illustrates a technique for reading sequential lines from a file or files
without creating any sub-shells to do so. When the file descriptor is used to access a file,
the effect is that of opening the file and moving a file pointer along until the end of the
file is read. If the input redirections used src1 and sre2 explicitly rather than the

associated file descriptors, this procedure would never terminate, because the first line of
each file would be read over and over again.

mkfiles:
usage: mkfiles pref [quantity]
£ makes ‘quantity’ (default = 5) files, named pref1l, pref2,
quantity=${2-51}
i=1
while test "$i" -le "$quantity”
do
> $18i
i=""expr $i + 1"
done

Note: This procedure uses input/output redirection to create zero-length files. The expr com-
mand is used for counting iterations of the while loop. Compare this procedure with
procedure null below.

32 UNIX Shell Tutorial

mmt:

if test "$#" = 0; then cat <<\|
Usage: "mmt [options] files" where "options" are:

-a =» output to terminal

-e => preprocess input with eqn
-t => preprocess input with tbl
-Tst =» output to STARE

~-T4014 => output to Tektronix 4014
-Tvp => output to Versatec printer

- => use instead of "files" when mmt used inside a pipeline,.
Other options as required by TROFF and the MM macros.
1

exit 1
fi .
PATH='/bin:/usr/bin’; 0=’'-g’; o=‘igcat -ph’;
Assumes typesetter is accessed via gcat(1)
If typesetter is on-line, use 0='’; o="'"

while test -n "$1" -a | -r "$1"
do case "$1" in

-a) Oo=’-a’; o=’" 33

-Tst) Oo='-g"; o=’lgcat -st’;;
Above line for STARE only

-T4014) O=’=t’; o="{tc’;;

-Tvp) ='-t’; o='lvpr -t’;;

-e) e=x‘eqgn’;;

-t) £='tbl’;;

-) break;;

*) a="%a $1";;

esac
shift

done
if test -z "$1"; then echo ‘mmt: no input file’; exit 1; fi
if test "$0" = ‘-g°; then x="-f§$1"; fi
d-ns*n
if test "$4" = ‘=" then ghift; x=’’; a=’"; fi
if test -n "S$f"; then f£="tbhl $»i"; a=""; fi
if test -n "Se"

then if test -n "S$f"

then e=‘eqni’
else e="eqn $*i"; d=*"*
fi

fi

eval "S$f Se troff $O -cm $a $d $o $x"; exit O

Note: This is a slightly simplified version of an actual UNIX command (although this is not the
version included in UNIX Release 4.0). It uses many of the features available in the
shell; if you can follow through it without getting lost, you have a good understanding of
shell programming. Pay particular attention to the process of building a command line
from shell variables and then using eval to execute it.

null:
usage: null file
create each of the named files as an empty file
for eachfile
do
> $eachfile
done

Mlote: This procedure uses the fact that output redirection creates the (empty) output file if that
file does not already exist. Compare this procedure with procedure mkfiles above.

UNIX Shell Tutorial 33

phone:
usage: phone initials
prints the phone number(s) of person with given initials
echo ‘inits ext home’
grep "“$1" <<\
abc 1234 999-2345
def 2234 583-2245
ghi 3342 988-1010
Xyz 4567 555-1234

Note: This procedure is an example of using an in-line input document or script to maintain a
small data base.

writemail:
usage: writemail message user
if user is logged in, write message on terminal;
otherwise, mail it to user
echo "$1" | { write "$2" || mail "s2" ;}

Note: This procedure illustrates command grouping. The message specified by $1 is piped to
the write command and, if write fails, to the mail command.

7. EFFECTIVE AND EFFICIENT SHELL PROGRAMMING
7.1 Overall Approach

This section outlines strategies for writing efficient shell procedures, i.e., ones that do not waste
resources unreasonably in accomplishing their purposes. In the authors’ opinion, the primary
reason for choosing the shell procedure as the implementation method is to achieve a desired
result at a minimum Auman cost. Emphasis should always be placed on simplicity, clarity, and
readability, but efficiency can also be gained through awareness of a few design strategies. In
many cases, an effective redesign of an existing procedure improves its efficiency by reducing
its size, and often increases its comprehensibility. In any case, one should not worry about
optimizing shell procedures unless they are intolerably slow or are known to consume a lot of
resources.

The same kind of iteration cycle should be applied to shell procedures as to other programs:
write code, measure it, and optimize only the few important parts. The user should become
familiar with the time command, which can be used to measure both entire procedures and
parts thereof. Its use is strongly reccommended; human intuition is notoriously unreliable when
used to estimate timings of programs, even when the style of programming is a familiar one.
Each timing test should be run several times, because the results are easily disturbed by, for
instance, variations in system load.

7.2 Approximate Measures of Resource Consumption

7.2.1 Number of Processes Generated. When large numbers of short commands are exe-
cuted, the actual execution time of the commands may well be dominated by the overhead of
creating processes. The procedures that incur significant amounts of such overhead are those
that perform much looping and those that generate command sequences to be interpreted by
another shell.

If you are worried about efficiency, it is important to know which commands are currently built
into the shell, and which are not. Here is the alphabetical list of those that are built-in:

34 UNIX Shell Tutorial

break case cd continue eval exec
exit export for ' if newgrp read
readonly set shift test times trap
ulimit umask until wait while

: {...}

(...) executes as a child process, i.e., the shell does a fork, but no exec. Any command not
in the above list requires both fork and exec.

The user should always have at least a vague idea of the number of processes generated by a
shell procedure. In the bulk of observed procedures, the number of processes spawned (not
necessarily simultaneously) can be described by:

processes = k*n + ¢

where k and ¢ are constants, and » is the number of procedure arguments, the number of lines
in some input file, the number of entries in some directory, or some other obvious quantity.
Efficiency improvements are most commonly gained by reducing the value of k, sometimes to
zero. Any procedure whose complexity measure includes n? terms or higher powers of n is
likely to be intolerably expensive.

As an example, here is an analysis of procedure £split of §6. For each iteration of the loop,
there is one expr plus either an echo or another expr. One additional echo is executed at
the end. If n is the number of lines of input, the number of processes is 2*n + 1. On the
other hand, the number of processes in the following (equivalent) procedure is 12, regardless
of the number of lines of input:

faster fsplit

trap ‘rm temp$$; trap 0; exit” 0 1 2 3 15

start1=0 start2=0

b=’[A-Za-z]"’

cat > temps # read standard input into temp file
save original lengths of $1, $2

if test -s "$1"; then starti=‘wec -1 « $1%; fi

if test -5 "$2"; then start2=‘wc -1 < $2°; fi

grep "$b" temp$$ >> $1 # lines with letters onto $1

grep -v "$b" temp$$ | grep ‘[(0-9]1’ >> $2
lines with only numbers onto $2

total=""wec -1 < temps'"

end1="‘wec -1 < $1*"

end2="‘wc -1 < $2*'"

lost="‘expr $total - \($end1 - S$start1 \) - \($end2 - sSstart2 \)'"

echo "$total lines read, $lost thrown away"

This version is often ten times faster than £split, and it is even faster for larger input files.

Some types of procedures should not be written using the shell. For example, if one or more
processes are generated for each character in some file, it is a good indication that the pro-
cedure should be rewritten in C.

ta Shell procedures should not be used to scan or build files a character at a time.

7.2.2 Number of Data Bytes Accessed. It is worthwhile considering any action that
reduces the number of bytes read or written. This may be important for those procedures
whose time is spent passing data around among a few processes, rather than in creating large
numbers of short processes. Some filters shrink their output, others usually increase it. It
always .pays to put the shrinkers first when the order is irrelevant. Which of the following is
likely to be faster?

sort file | grep pattern

grep pattern file | sort

UNIX Shell Tutorial 35

7.2.3 Directory Searches. Directory searching can consume a great deal of time, especially
in those applications that utilize deep directory structures and long path names. Judicious use
of c¢d can help shorten long path names and thus reduce the number of directory searches
needed. As an exercise, try the following commands (on a fairly quiet system):®

time sh -¢ ‘1s -1 /usr/bin/« >/dev/null’
time sh -¢ ‘cd /usr/bin; 1ls -1 * »/dev/null’

7.3 Efficient Organization

7.3.1 Directory-Search Order and the PATH Variable. The PATH variable is a convenient
mechanism for allowing organization and sharing of procedures. However, it must be used in a
sensible fashion, or the result may be a great increase in system overhead that occurs in a sub-
tle, but avoidable, way.

The process of finding a command involves reading every directory included'in every path
name that precedes the needed path name in the current PATH variable. As an example, con-
sider the effect of invoking nroff (i.e.,, /usr/bin/nroff) when $PATH is
;/bin;: /usr/bin. The sequence of directories read is: ., /, /bin, /, /usr, and
/usr/bin, i.e., a total of six directories. A long path list assigned to PATH can increase this
number significantly.

The vast majority of command executions are of commands found in /bin and, to a somewhat
lesser extent, in /usr/bin. Careless PATH setup may lead to a great deal of unnecessary
searching. The following four examples are ordered from worst to best (but only with respect
to the efficiency of command searches):

:/al1/tf/jtb/bin: /usr/1bin:/bin:/usr/bin
:/bin:/a1/tf/jtb/bin:/usr/lbin:/usr/bin
:/bin:/usr/bin:/7al1/t£/jtb/bin:/usr/1bin
/bin::/usr/bin:/al1/tf/jtb/bin:/usr/1bin

The first one above should be avoided. The others are acceptable, the choice among them is
dictated by the rate of change in the set of commands kept in /bin and /usxr/bin.

A procedure that is expensive because it invokes many short-lived commands may often be
speeded up by setting the PATH variable inside the procedure such that the fewest possible
directories are searched in an optimum order; the mmt example in §6 does this.

7.3.2 Good Ways to Set up Directories. It is wise to avoid directories that are larger than
necessary. You should be aware of several magic sizes. A directory that contains entries for up
to 30 files (plus the required . and ..) fits in a single disk block and can be searched very
efficiently. One that has up to 286 entries is still a small file; anything larger is usually a disaster
when used as a working directory. It is especially important to keep login directories small,
preferably one block at most. Note that, as a rule, directories never shrink.

ACKNOWLEDGEMENTS

The UNIX shell was initially written by S. R. Bourne [2,3]. Its design is based, in part, on the
original UNIX shell [15] and on the PWB/UNIX shell [12], some features having been taken
from both. Similarities also exist with the command interpreters of the Cambridge Multiple
Access System and of the MIT Compatible Time-Sharing System. T. E. Fritz and several other
colleagues provided helpful comments during the writing of this tutorial; T. A. Dolotta, in addi-
tion, provided a great deal of editorial assistance.

8. You may have to do some reading in the UNIX User’s Manual [7] to understand exactly what is going on in these
examples.

36 UNIX Shell Tutorial
REFERENCES

[1] Bianchi, M. H., and Wood, J. L. A User's Viewpoint on the Programmer’s Workbench. Proc.
Second Int. Conf. on Software Engineering, pp. 193-99 (Oct. 13-15, 1976).

[2] Bourne, S. R. The UNIX Shell. The Bell System Technical Journal, Vol. 57, No. 6, Part 2, pp.
1971-90 (July-Aug. 1978).

[3] Bourne, S. R. An Introduction to the UNIX Shell. Bell Laboratories (1979).

[4] Dolotta, T. A., Haight, R. C., and Mashey, J. R. The Programmer’s Workbench. The Bell System
Technical Journal, Vol. 57, No. 6, Part 2, pp. 2177-200 (July-Aug. 1978).

{5] Dolotta, T. A., and Mashcy, J. R. An Introduction to the Programmer’s Workbench. Proc. Second
Int. Conf. on Software Engineering, pp. 164-68 (Oct. 13-15, 1976).

[6] Dolotta, T. A., and Mashey, J. R. Using a Command Language as the Primary Programming Tool.
In: Beech, D. (ed.), Command Language Directions (Proc. of the Second IFIP Working Conf. on
Command Languages), pp. 35-55. Amsterdam: North Holland (1980).

[7] Dolotta, T. A, Olsson, S. B., and Petruccelli, A. G., eds. UNLY User’s Manual —Release 3.0. Bell
Laboratories (June 1980).

[8] Kernighan, B. W., and Mashey, J. R. The UNIX Programming Environment. COMPUTER,

191

[10]
(11

[12]
[13]

[14]

[15]

Vol. 14, No. 4, pp. 12-24 (April 1981); an earlier version of this paper was published in
Software— Practice & Experience, Vol. 9, No. 1, pp. 1-15 (Jan. 1979).

Kernighan, B. W., and Plauger, P. J. Software Tools. Proc. First Nai. Conf. on Saoftware Engineer-
ing, pp. 8-13 (Sept. 11-12, 1975).

Kernighan, B. W., and Plauger, P. J. Software Tools. Reading, MA: Addison-Wesley (1976).

Kernighan, B. W., and Ritchie, D. M. The C Programming Language. Englewood Cliffs, NI:
Prentice-Hall (1978).

Mashey, J. R. PWB/UNIX Shell Tutorial. Bell Laboratories (1977).

Ritchie, D. M., and Thompson, K. The UNIX Time-Sharing System. The Bell System Technical
Journal, Vol. 57, No. 6, Part 2, pp. 1905-29 (July-Aug. 1978).

Snyder, G. A., and Mashey, J. R. UNIX Documentation Road Map. Bell Laboratories (January
1981).

Thorﬁpson, K. The UNIX Command Language. In: Structured Programming— Infotech State of the
Art Report, pp. 375-84. Infotech International Limited, Nicholson House, Maidenhead, Berkshire,
England (1976).

January 1981

CONTENTS

1. INTRODUCTION e e e e e

2. OVERVIEW OF THE UNIX ENVIRONMENT
2.1 File System 1
2.2 UNIX Processes 2

3. SHELL BASICS e e e e e e
3.1 Commands 3
3.2 How the Shell Finds Commands 4
3.3 Generation of Argument Lists 4
3.4 Shell Variables 5
3.4.1 Positional Parameters. 5
3.4.2 User-defined Variables, 5
3.43 Command Substitution. 7
3.4.4 Predefined Special Variables. 8
3.5 Quoting Mechanisms 9
3.6 Redirection of Input and Qutput 9
3.6.1 Standard Input and Standard Qutput. 9
3.6.2 Diagnostic and Other Outputs. 10
3.7 Command Lines and Pipelines 10
3.8 Examples 10
3.9 Changing the State of the Shell and the .profile File 11
39.1 cd4. 11
3.9.2 The .profile File. 11
3.9.3 Execution Flags: set. 12

4. USING THE SHELL AS A COMMAND: SHELL PROCEDURES
4.1 A Command’s Environment 12
4.2 Invoking the Shell 13
4.3 Passing Arguments to the Shell; shift 13
4.4 Control Commands 14
4.4.1 Structured Conditional: if. 16
4.4.2 Multi-way Branch: case. 16
4.43 Conditional Looping: while and until. 17
4.4.4 Looping over a List: for. 17
4.45 Loop Control: break and continue. 18
4,46 End-of-file and exit. 18
4.47 Command Grouping: Parentheses and Braces. 18
4.4.8 Input/Output Redirection and Control Commands. 19
4.49 In-line Input Documents. 19
4.4.10 Transfer to Another File and Back: the Dot (.) Command. 20
4.4.11 Interrupt Handling: trap. 20
4.5 Special Shell Commands 21
4.6 Creation and Organization of Shell Procedures 23
4.7 More about Execution Flags 23

5. MISCELLANEOUS SUPPORTING COMMANDS AND FEATURES
5.1 Conditional Evaluation: test 24
5.2 Reading a Line: 1ine 25
5.3 Simple Output: echo 25
5.4 Expression Evaluation: expr 25
5.5 trueand false 25
5.6 Input/Output Redirection Using File Descriptors. 25

5.7 Conditional Substitution 26
5.8 Invocation Flags 27

6. EXAMPLES OF SHELL PROCEDURES e e e e e e e 28
copypairs: 28
copyto: 28
distinct: 28
draft: 29
edfind: 29
edlast: 29
fsplit: 30
initvars: 30
merge: 31
mkfiles: 31
mmt: 32
null: 32
phone: 33
writemail: 33

7. EFFECTIVE AND EFFICIENT SHELL PROGRAMMING 33
7.1 Overall Approach 33
7.2 Approximate Measures of Resource Consumption 33
7.2.1 Number of Processes Generated. 33
7.2.2 Number of Data Bytes Accessed. 34
7.2.3 Directory Searches. 35
7.3 Efficient Organization 35
7.3.1 Directory-Search Order and the PATH Variable. 35
7.3.2 Good Ways to Set up Directories. 35

ACKNOWLEDGEMENTS oo e s e s 35
REFERENCES 0 o e e s, 36

-1 -

UNIX
B.4.2

An Introduction to the UNIX Shell

S. R. Bourne

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

The shell is a command programming language that provides an interface to the
UNIXT operating system. Its features include control-flow primitives, parameter
passing, variables and string substitution. Constructs such as while, if then else,
case and for are available. Two-way communication is possible between the
shell and commands. String-valued parameters, typically file names or flags,
may be passed to a command. A return code is set by commands that may be
used to determine control-flow, and the standard output from a command may
be used as shell input.

The shell can modify the environment in which commands run. Input and out-
put can be redirected to files, and processes that communicate through ‘pipes’
can be invoked. Commands are found by searching directories in the file sys-
tem in a sequence that can be defined by the user. Commands can be read
either from the terminal or from a file, which allows command procedures to be
stored for later use.

1.0 INTRODUCTION

The shell is both a command language and a programming language that provides an interface
to the UNIX operating system. This memorandum describes, with examples, the UNIX shell.
The first section covers most of the everyday requirements of terminal users. Some familiarity
with UNIX is an advantage when reading this section; see, for example, UNIX for Beginners.!
Section 2 describes those features of the shell primarily intended for use within shell pro-
cedures. These include the control-flow primitives and string-valued variables provided by the
shell. A knowledge of a programming language would be a help when reading this section.
The last section describes the more advanced features of the shell. References of the form
““see pipe (2)”’ are to a section of the UNLX User’s Manual.?

1.1 Simple Commands

Simple commands consist of one or more words separated by blanks. The first word is the
name of the command to be executed; any remaining words are passed as arguments to the
command. For example,

who
is a command that prints the names of users logged in. The command
Is —1

prints a list of files in the current directory. The argument —/ tells Is to print status informa-
tion, size and the creation date for each file.

t UNIX is a trademark of Bell Laboratories.

2 Shell

1.2 Background Commands

To execute a command the shell normally creates a new process and waits for it to finish. A
command may be run without waiting for it to finish. For example,

cc pgm.c &

calls the C compiler to compile the file pgm.c. The trailing & is an operator that instructs the
shell not to wait for the command to finish. To help keep track of such a process the shell
reports its process number following its creation. A list of currently active processes may be
obtained using the ps command.

1.3 Input/Output Redirection

Most commands produce output on the standard output that is initially connected to the termi-
nal. This output may be sent to a file by writing, for example,

Is —1 >file

The notation >file is interpreted by the shell and is not passed as an argument to Is. If file does
not exist then the shell creates it; otherwise the original contents of file are replaced with the
output from /s. Output may be appended to a file using the notation

Is —1 >>file

In this case file is also created if it does not already exist.

The standard input of a command may be taken from a file instead of the terminal by writing,
for example,

we <file

The command wc reads its standard input (in this case redirected from file) and prints the
number of characters, words and lines found. If only the number of lines is required then

we —1 <file

could be used.

1.4 Pipelines and Filters

The standard output of one command may be connected to the standard input of another by
writing the ‘pipe’ operator, indicated by |, as in,

Is —1 | wc
Two commands connected in this way constitute a pipeline and the overall effect is the same as
Is —1 >file; wc <file

except that no file is used. Instead the two processes are connected by a pipe (see pipe (2)) and
are run in parallel. Pipes are unidirectional and synchronization is achieved by halting wc when
there is nothing to read and halting Is when the pipe is full.

A filter is a2 command that reads its standard input, transforms it in some way, and prints the
result as output. One such filter, grep, selects from its input those lines that contain some
specified string. For example,

Is | grep old

prints those lines, if any, of the output from /s that contain the string old. Another useful filter
is sort. For example,

who | sort

will print an alphabetically sorted list of logged in users.

Shell 3

A pipeline may consist of more than two commands, for example,
Is | grep old | we —1

prints the number of file names in the current directory containing the string old.

1.5 File Name Generation
Many commands accept arguments which are file names. For example,

1s —1 main.c

prints information relating to the file main.c.
The shell provides a mechanism for generating a list of file names that match a pattern. For
example,

Is —1 *.¢

generates, as arguments to /s, all file names in the current directory that end in .c. The charac-
ter * is a pattern that will match any string including the null string. In general patterns are
specified as follows.

* Matches any string of characters including the null string.
? Matches any single character.

[...] Matches any one of the characters enclosed. A pair of characters separated by a
minus will match any character lexically between the pair.

For example,
[a—z]*

matches all names in the current directory beginning with one of the letters a through z.
Jusr/fred/test/?

matches all names in the directory /usr/fred/test that consist of a single character. If no file
name is found that matches the pattern then the pattern is passed, unchanged, as an argument.
This mechanism is useful both to save typing and to select names according to some pattern. It
may also be used to find files. For example,

echo /usr/fred/*/core

finds and prints the names of all core files in sub-directories of /usr/fred. (echo is a standard
UNIX command that prints its arguments, separated by blanks.) This last feature can be expen-
sive, requiring a scan of all sub-directories of /usr/fred.

There is one exception to the general rules given for patterns. The character *.” at the start of a
file name must be explicitly matched.

echo =
will therefore echo all file names in the current directory not beginning with *.”.
echo .*

will echo all those file names that begin with ‘.”. This avoids inadvertent matching of the
names ‘." and ‘..’, which mean ‘the current directory’ and ‘the parent directory’, respectively.
(Notice that Is suppresses information for the files *.” and ‘..’ .)

1.6 Quoting

Characters that have a special meaning to the shell, such as << > % ? | &, are called metachar-
acters. A complete list of metacharacters is given in appendix B. Any character preceded by a
\ is quoted and loses its special meaning, if any. The \ is elided so that:

4 Shell

echo \?
will echo a single ?, and
echo \\

will echo a single \. To allow long strings to be continued over more than one line the
sequence \new-line is ignored. The \ is convenient for quoting single characters. When more
than one character needs quoting the above mechanism is clumsy and error prone. A string of
characters may be quoted by enclosing the string between single quotes. For example,

echo xx“*%%*"xx
will echo
XX¥RREXX

The quoted string may not contain a single quote but may contain new-lines, which are
preserved. This quoting mechanism is the most simple and is recommended for casual use. A
third quoting mechanism using double quotes is also available that prevents interpretation of
some but not all metacharacters. Discussion of the details is deferred to section 3.4.

1.7 Prompting
When the shell is used from a terminal it will issue a prompt before reading a command. By
default this prompt is ‘$ *. It may be changed by saying, for example,

PS1=yesdear

that sets the prompt to be the string yesdear. If a new-line is typed and further input is needed
then the shell will issue the prompt ‘> '. Sometimes this can be caused by mistyping a quote
mark. If it is unexpected then an interrupt (DEL) will return the shell to read another com-
mand. This prompt may be changed by saying, for example,

PS2=more

1.8 The Shell and login

Following login (1) the shell is called to read and execute commands typed at the terminal. If
the user’s login directory contains the file .profile then it is assumed to contain commands and
is read by the shell before reading any commands from the terminal.

1.9 Summary

) Is
Print the names of files in the current directory.

o Is >file
Put the output from I into file.

o Is | we—l
Print the number of files in the current directory.

° Is | grep old
* Print those file names containing the string old.

@ s | grepold | we -l
Print the number of files whose name contains the string old.

e ccpgm.c&
Run cc in the background.

Shell S

2.0 SHELL PROCEDURES »
The shell may be used to read and execute commands contained in a file. For example,

sh file [args ...]

calls the shell to read commands from file. Such a file is called a command procedure or shell
procedure. Arguments may be supplied with the call and are referred to in file using the posi-
tional parameters $1, $2, For example, if the file wg contains

who | grep $1
then

sh wg fred
is equivalent to

who | grep fred

UNIX files have three independent attributes, read, write and execute. The UNIX command
chmod (1) may be used to make a file executable. For example,

chmod +x wg

will ensure that the file wg has execute status. Following this, the command
wg fred

is equivalent to
sh wg fred

This allows shell procedures and programs to be used interchangeably. In either case a new
process is created to run the command.

As well as providing names for the positional parameters, the number of positional parameters
in the call is available as $# . The name of the file being executed is available as $0.

A special shell parameter $% is used to substitute for all positional parameters except $0. A
typical use of this is to provide some default arguments, as in

nroff =T450 —cm $=

which simply prepends some arguments to those already given.

2.1 Control Flow—for

A frequent use of shell procedures is to loop through the arguments ($1, $2, ...) executing
commands once for each argument. An example of such a procedure is fel that searches the file
/usr/lib/telnos that contains lines of the form

fred mh0123
bert mh0789

The text of tel is

for i
do grep $i /usr/lib/telnos; done

The command
tel fred

prints those lines in /usr/lib/telnos that contain the string fred.

6 Shell

tel fred bert

prints those lines containing fred followed by those for bert.
The for loop notation is recognized by the shell and has the general form
for name in wl w2 ...

do command-list
done

A command-list is a sequence of one or more simple commands separated or terminated by a
new-line or semicolon. Furthermore, reserved words like do and done are only recognized fol-
lowing a new-line or semicolon. name is a shell variable that is set to the words wl w2 ... in
turn each time the command-list following do is executed. If in wl w2 ... is omitted then the
loop is executed once for each positional parameter; that is, in §* is assumed.

Another example of the use of the for loop is the create command whose text is
for i do >$i; done

The command
create alpha beta

ensures that two empty files alpha and beta exist and are empty. The notation >file may be
used on its own to create or clear the contents of a file. Notice also that a semicolon (or new-
line) is required before done.

2.2 Control Flow—case
A multiple way branch is provided for by the case notation. For example,
case $# in
1) cat >>%1 ;;
2) cat >>82 <$1 ;;

*) echo “usage: append [from] to”™ ;;
esac

is an append command. When called with one argument as
append file
$# is the string / and the standard input is copied onto the end of file using the cat command.
append filel file2
appends the contents of filel onto file2. If the number of arguments supplied to append is other
than 1 or 2 then a message is printed indicating proper usage.
The general form of the case command is
case word in
pattern) command-list ;;

esac

The shell attempts to match word with each pattern, in the order in which the patterns appear.
If a match is found the associated command-list is executed and execution of the case is com-
plete. Since # is the pattern that matches any string it can be used for the default case.

A word of caution: no check is made to ensure that only one pattern matches the case argu-
ment. The first match found defines the set of commands to be executed. In the example
below the commands following the second * will never be executed.

Shell 7

case $# in
*) s
*)...;;
esac

Another example of the use of the case construction is to distinguish between different forms
of an argument. The following example is a fragment of a cc command.

for i
do case $i in
—[ocs]) cee 3
—=*) echo “unknown flag $i” ;;
*.c) /lib/cO $i...;;
*) echo “unexpected argument $i” ;;
esac
done

To allow the same commands to be associated with more than one pattern the case command
provides for alternative patterns separated by a | . For example,

case $i in

—xl—y)
esac

is equivalent to
case $i in
—[xyD) ves
esac

The usual quoting conventions apply so that
case $i in
\?)

will match the character ?.

2.3 Here Documents
The shell procedure tel in section 2.1 uses the file /usr/lib/telnos to supply the data for grep.
An alternative is to include this data within the shell procedure as a here document, as in

fori
do grep $i <<!

fred mh0123
bert mh0789
!
- done ‘ ‘ .
In this example the shell takes the lines between <<<! and ! as the standard input for grep.'f‘

The string ! is arbitrary, the document being terminated by a line that consists of the string fol-
lowing <<<.

Parameters are substituted in the document before it is made available to grep as illustrated by
the following procedure called edg..

8 Shell

ed $3 <<%
8/81/s//%2/g
w

%
The call

edg stringl string2 file
is then equivalent to the command

ed file <<%
g/stringl/s//string2/g

w

%

and changes all occurrences of stringl in file to string2. Substitution can be prevented using \ to
quote the special character § as in

ed §3 <<+
1.\$s/81/82/g
w

+

(This version of edg is equivalent to the first except that ed will print a ? if there are no
occurrences of the string $1.) Substitution within a here document may be prevented entirely
by quoting the terminating string, for example,

grep $i <<\#

#
The document is presented without modification to grep. If parameter substitution is not
required in a here document this latter form is more efficient.

2.4 Shell Variables

The shell provides string-valued variables. Variable names begin with a letter and consist of
letters, digits and underscores. Variables may be given values by writing, for example,

user=fred box =mO000 acct=mh0000

which assigns values to the variables user, box and acct. A variable may be set to the null
string by saying, for example,

null=
The value of a variable is substituted by preceding its name with $; for example,
echo $user

will echo fred.

Variables may be used interactively to provide abbreviations for frequently used strings. For
example, B ' ‘ . ' o

b=/usr/fred/bin
mv pgm $b

will move the file pgm from the current directory to the directory /usr/fred/bin. A more gen-
eral notation is available for parameter (or variable) substitution, as in

echo ${user}

which is equivalent to:

Shell

echo $user

and is used when the parameter name is followed by a letter or digit. For example,

tmp=/tmp/ps
ps a >${tmpla

will direct the output of ps to the file /tmp/psa, whereas,

ps a >$tmpa

would cause the value of the variable tmpa to be substituted.

Except for $? the following are set initially by the shell. $? is set after executing each com-

mand.
$?

$#

s_

The exit status (return code) of the last command executed as a decimal string.
Most commands return a zero exit status if they complete successfully, otherwise
a non-zero exit status is returned. Testing the value of return codes is dealt with
later under if and while commands.

The number of positional parameters (in decimal). Used, for example, in the
append command to check the number of parameters.

The process number of this shell (in decimal). Since process numbers are
unique among all existing processes, this string is frequently used to generate
unique temporary file names. For example,

ps a >/tmp/ps$%

rm /tmp/ps$$

The process number of the last process run in the background (in decimal).
The current shell flags, such as —x and —v.

Some variables have a special meaning to the shell and should be avoided for general use.

$MAIL

$HOME

SPATH

When used interactively the shell looks at the file specified by this variable
before it issues a prompt. If the specified file has been modified since it was last
looked at the shell prints the message you have mail before prompting for the
next command. This variable is typically set in the file .profile, in the user’s
login directory. For example,

MAIL=/usr/mail/fred

The default argument for the cd command. The current directory is used to
resolve file name references that do not begin with a /, and is changed using the
c¢d command. For example,

cd /usr/fred/bin
makes the current directory /usr/fred/bin .
cat wn

will print on the terminal the file wn in this directory. The command ¢d with no
argument is equivalent to

cd SHOME

This variable is also typically set in the the user’s login profile.

A list of directories that contain commands (the search path). Each time a com-
mand is executed by the shell a list of directories is searched for an executable

10 Shell

file. If SPATH is not set then the current directory, /bin, and /usr/bin are
searched by default. Otherwise $PATH consists of directory names separated by
¢. For example,

PATH=:/usr/fred/bin:/bin:/usr/bin

specifies that the current directory (the null string before the first :),
/usr/fred/bin, /bin and /usr/bin are to be searched in that order. In this way
individual users can have their own ‘private’ commands that are accessible
independently of the current directory. If the command name contains a / then
this directory search is not used; a single attempt is made to execute the com-
mand.

$PS1 The primary shell prompt string, by default, “$ °.

$PS2 The shell prompt when further input is needed, by default, ‘> °.

$IFS The set of characters used by blank interpretation (see section 3.4),

2.5 The test Command
The test command, although not part of the shell, is intended for use by shell programs. For
example,

test —f file

returns zero exit status if file exists and non-zero exit status otherwise. In general rest evaluates
a predicate and returns the result as its exit status. Some of the more frequently used test argu-
ments are given here, see test (1) for a complete specification.

test s true if the argument s is not the null string
test —f file true if file exists
test —r file true if file is readable

test —w file true if file is writable
test —d file true if file is a directory

2.6 Control Flow— while

The actions. of the for loop and the case branch are determined by data available to the shell.
A while or until loop and an if then else branch are also provided whose actions are deter-
mined by the exit status returned by commands. A while loop has the general form

while command-list,
do command-list,
done

The value tested by the while command is the exit status of the last simple command following
while. Each time round the loop command-list, is executed; if a zero exit status is returned
then command-list, is executed; otherwise, the loop terminates. For example,

while test §1
do...

shift
done

is equivalent to

fori
do...
done

shift is a shell command that renames the positional parameters $2, $3, ... as $1, §2, ... and
loses $1.

Shell 11

Another kind of use for the while/until loop is to wait until some external event occurs and
then run some commands. In an until loop the termination condition is reversed. For exam-
ple,

until test —f file

do sleep 300; done
commands

will loop until file exists. Each time round the loop it waits for 5 minutes before trying again.
(Presumably another process will eventually create the file.)

2.7 Control Flow—if
Also available is a general conditional branch of the form,
if command-list
then command-list
else command-list
fi
that tests the value returned by the last simple command following if.
The if command may be used in conjunction with the fest command to test for the existence of
a file as in

if test —f file
then process file

clse do something else
fi

An example of the use of if, case and for constructions is given in section 2.10,
A multiple test if command of the form

if ...

then ...

else if ...
then .
else if o..
fi

fi

may be written using an extension of the if notation as,

if ...

then ...

elif -

then -

elif ves

fi

The following example is the touch command which changes the ‘last modified’ time for a list
of files. The command may be used in conjunction with make (1) to force recompilation of a
list of files.

12 Shell

flag=
fori
do case §i in
—c) flag=N ;;
*) if test —f $i
then In $i junk$$; rm junk$$
elif test $flag
then echo file \"$i\" does not exist
else >8i
fi
esac
done

The —¢ flag is used in this command to force subsequent files to be created if they do not
already exist. Otherwise, if the file does not exist, an error message is printed. The shell vari-
able flag is set to some non-null string if the —c argument is encountered. The commands

In...;rm...

make a link to the file and then remove it thus causing the last modified date to be updated.
The sequence

if commandl1
then command2
fi

may be written
commandl && command2
Conversely,
commandl || command2
executes command2 only if commandl fails. In each case the value returned is that of the last

simple command executed.

2.8 Command Grouping
Commands may be grouped in two ways,

{ command-list ; }
and

(command-list)

In the first command-list is simply executed. The second form executes command-list as a
separate process. For example,

(cd x; rm junk)
executes rm junk in the directory x without changing the current directory of the invoking shell.
The commands

cd x; rm junk

have the same effect but leave the invoking shell in the directory x.

Shell 13

2.9 Debugging Shell Procedures

The shell provides two tracing mechanisms to help when debugging shell procedures. The first
is invoked within the procedure as

set —v

(v for verbose) and causes lines of the procedure to be printed as they are read. It is useful to
help isolate syntax errors. It may be invoked without modifying the procedure by saying

sh —v proc...

where proc is the name of the shell procedure. This flag may be used in conjunction with the
—n flag which prevents execution of subsequent commands. (Note that saying set —n at a ter-
minal will render the terminal useless until an end-of-file is typed.)

The command
set —x

will produce an execution trace. Following parameter substitution each command is printed as
it is executed. (Try these at the terminal to see what effect they have.) Both flags may be
turned off by saying

set —

and the current setting of the shell flags is available as $—.

2.10 The man Command

The following is the man command which is used to print entries from the UNIX manual. It is
called, for example, as:

man sh
man —t ed
man 2 fork

The first prints the manual entry for sh; because no section of the manual is specified, all sec-
tions of the manual are searched and the entry is found in Section 1. The second example
typesets (—t option) the manual entry for ed. The last prints the fork manual entry from Sec-
tion 2.

14 Shell

cd /usr/man .
: “colon is the comment command”
: “default is nroff ($N), section 1 (8s)”
N=ns=1
for i
do case $i in
[1—9]*) s=8i;;
—t) N=t;
—n) N=n ;
—x%) echo unknown flag \"$i1\" ;;
*) if test —f man$s/$i.$s
then ${N}roff man0/${N}aa man$s/$i.$s
else : “look through all manual sections”
found=no
forjin123456789
do if test —f man$;j/$i.$j
then man §j $i
found=yes
fi
done
case $found in
no) echo “$i: manual page not found”
esac

esac
done

Figure 1. A version of the man command

3.0 KEYWORD PARAMETERS

Shell variables may be given values by assignment or when a shell procedure is invoked. An
argument to a shell procedure of the form name=value that precedes the command name
causes value to be assigned to name before execution of the procedure begins. The value of
name in the invoking shell is not affected. For example,

user=fred command

will execute command with user set to fred. The —k flag causes arguments of the form
name=value to be interpreted in this way anywhere in the argument list. Such names are some-
times called keyword parameters. If any arguments remain they are available as positional
parameters $1, $2,

The set command may also be used to set positional parameters from within a procedure. For
example,
set — *

will set $1 to the first file name in the current directory, $2 to the next, and so on. Note that
the first argument, —, ensures correct treatment when the first file name begins with a —.

3.1 Parameter Transmission

When a shell procedure is invoked both positional and keyword parameters may be supplied
with the call. Keyword parameters are also made available implicitly to a shell procedure by
specifying in advance that such parameters are to be exported. For example,

Shell 15

export user box

marks the variables user and box for export. When a shell procedure is invoked copies are
made of all exportable variables for use within the invoked procedure. Modification of such
variables within the procedure does not affect the values in the invoking shell. It is generally
true of a shell procedure that it may not modify the state of its caller without explicit request
on the part of the caller. (Shared file descriptors are an exception to this rule.)

Names whose value is intended to remain constant may be declared readonly. The form of this
command is the same as that of the export command,

readonly name ...

Subsequent attempts to set readonly variables are illegal.

3.2 Parameter Substitution

If a shell parameter is not set then the null string is substituted for it. For example, if the vari-
able d is not set

echo $d

or
echo ${d}

will echo nothing. A default string may be given as in
echo ${d—.}

which will echo the value of the variable d if it is set and °." otherwise. The default string is
evaluated using the usual quoting conventions so that

echo ${d—"*"}
will echo # if the variable d is not set. Similarly
echo ${d—51}

will echo the value of d if it is set and the value (if any) of $1 otherwise. A variable may be
assigned a default value using the notation

echo ${d=.}
which substitutes the same string as
echo ${d—.}

and if d were not previously set then it will be set to the string ‘.”. (The notation ${...=...}
is not available for positional parameters.)

If there is no sensible default then the notation
echo ${d?message}

will echo the value of the variable d if it has one, otherwise message is printed by the shell and
execution of the shell procedure is abandoned. If message is absent then a standard message is
printed. A shell procedure that requires some parameters to be set might start as follows.

: ${user?} ${acct?} ${bin?}

Colon (:) is a command that is built in to the shell and does nothing once its arguments have
been evaluated. If any of the variables user, acct or bin are not set then the shell will abandon
execution of the procedure. ‘

16 Shell

3.3 Command Substitution

The standard output from a command can be substituted in a similar way to parameters. The
command pwd prints on its standard output the name of the current directory. For example, if
the current directory is /usr/fred/bin then the command

="pwd"
is equivalent to
d=/usr/fred/bin

The entire string between grave accents (*...") is taken as the command to be executed and is
replaced with the output from the command. The command is written using the usual quoting
conventions except that a * must be escaped using a \. For example,

Is “echo "$1"°
is equivalent to
1s §1

Command substitution occurs in all contexts where parameter substitution occurs (including
here documents) and the treatment of the resulting text is the same in both cases. This
mechanism allows string processing commands to be used within shell procedures. An example
of such a command is basename which removes a specified suffix from a string. For example,

basename main.c .c
will print the string main. Its use is illustrated by the following fragment from a ¢c command.

case $A in
*.c) B="basename $A .c’

esac

that sets B to the part of $A with the suffix .c stripped.
Here are some composite examples.
e foriin ls—t";do...
The variable i is set to the names of files in time order, most recent first.

e set “date”; echo $6 $2 §3, $4
will print, e.g., 1977 Nov 1, 23:59:59

3.4 Evaluation and Quoting

The shell is a macro processor that provides parameter substitution, command substitution and
file name generation for the arguments to commands. This section discusses the order in which
these evaluations occur and the effects of the various quoting mechanisms.

Commands are parsed initially according to the grammar given in appendix A. Before a com-
mand is executed the following substitutions occur.

® parameter substitution, e.g. Suser
e command substitution, e.g. “pwd”
Only one evaluation occurs so that if, for example, the value of the variable X is the
" string $y then
echo $X

will echo $y.

Shell

17

blank interpretation

Following the above substitutions the resulting characters are broken into non-blank
words (blank interpretation). For this purpose ‘blanks’ are the characters of the
string $IFS. By default, this string consists of blank, tab and new-line. The null
string is not regarded as a word unless it is quoted. For example,

-

echo ~
will pass on the null string as the first argument to echo, whereas

echo $null
will call echo with no arguments if the variable null is not set or set to the null
string.
file name generation

Each word is then scanned for the file pattern characters #, ? and [...] and an
alphabetical list of file names is generated to replace the word. Each such file name
is a separate argument.

The evaluations just described also occur in the list of words associated with a for loop. Only
substitution occurs in the word used for a case branch. '

As well as the quoting mechanisms described earlier using \ and °..." a third quoting mechan-
ism is provided using double quotes. Within double quotes parameter and command substitu-
tion occurs but file name generation and the interpretation of blanks does not. The following
characters have a special meaning within double quotes and may be quoted using \.

$ parameter substitution
N command substitution
ends the quoted string
\ quotes the special characters $ ~ "\

For example,

echo "$x"

will pass the value of the variable x as a single argument to echo. Similarly,

echo "$%"

will pass the positional parameters as a single argument and is equivalent to

echo "$1 $2..."

The notation $(@ is the same as $* except when it is quoted.

echo "$@"

will pass the positional parameters, unevaluated, to echo and is equivalent to

echo "$1" "$2" ...

The following table gives, for each quoting mechanism, the shell metacharacters that are

evaluated.

18 Shell

~ metacharacter

\ $ * : " ‘
- n n n n n t
B y n n t n n
" y y n y t n

t terminator

y interpreted

n not interpreted

Figure 2. Quoting mechanisms

In cases where more than one evaluation of a string is required the built-in command eval may
be used. For example, if the variable X has the value §y, and if y has the value pgr then

eval echo $X
will echo the string pgr.

In general the eval command evaluates its arguments (as do all commands) and treats the result
as input to the shell. The input is read and the resulting command(s) executed. For example,

wg="eval wholgrep”
$wg fred

is equivalent to
who I grep fred

In this example, eval is required since there is no interpretation of metacharacters, such as 1,
following substitution.

3.5 Error Handling

The treatment of errors detected by the shell depends on the type of error and on whether the
shell is being used interactively. An interactive shell is one whose input and output are con-
nected to a terminal (as determined by grty (2)). A shell invoked with the —i flag is also
interactive.

Execution of a command (see also 3.7) may fail for any of the following reasons.

¢ Input/output redirection may fail. For example, if a file does not exist or cannot be
created.

™ The command itself does not exist or cannot be executed.

® The command terminates abnormally, for example, with a "bus error" or "memory fault".
See Figure 2 below for a complete list of UNIX signals.

¢ The command terminates normally but returns a non-zero exit status.

In all of these cases the shell will go on to execute the next command. Except for the last case
an error message will be printed by the shell. All remaining errors cause the shell to exit from
a command procedure. An interactive shell will return to read another command from the ter-
minal. Such errors include the following.

e Syntax errors. e.g.,if ... then ... done

o A signal such as interrupt. The shell waits for the current command, if any, to finish exe-
cution and then either exits or returns to the terminal.

) Failure of any of the built-in commands such as cd.
The shell flag —e causes the shell to terminate if any error is detected.

Shell 19

1 hangup

2 interrupt -

3+ quit

4* illegal instruction

5* trace trap

6* 10T instruction

7* EMT instruction

8* floating point exception

9 kill (cannot be caught or ignored)
10* bus error

11* segmentation violation

12* bad argument to system call

13 write on a pipe with no one to read it
14 alarm clock

15 software termination (from kill (1))

Figure 3. UNIX signals

Those signals marked with an asterisk produce a core dump if not caught. However, the shell
itself ignores quit which is the only external signal that can cause a dump. The signals in this
list of potential interest to shell programs are 1, 2, 3, 14 and 15,

3.6 Fault Handling

Shell procedures normally terminate when an interrupt is received from the terminal. The trap
command is used if some cleaning up is required, such as removing temporary files. For exam-
ple,

trap “rm /tmp/ps$$; exit” 2

sets a trap for signal 2 (terminal interrupt), and if this signal is received will execute the com-
mands

rm /tmp/ps$$; exit

exit is another built-in command that terminates execution of a shell procedure. The exit is
required; otherwise, after the trap has been taken, the shell will resume executing the pro-
cedure at the place where it was interrupted.

UNIX signals can be handled in one of three ways. They can be ignored, in which case the sig-
nal is never sent to the process. They can be caught, in which case the process must decide
what action to take when the signal is received. Lastly, they can be left to cause termination of
the process without it having to take any further action. If a signal is being ignored on entry to
the shell procedure, for example, by invoking it in the background (see 3.7) then trap com-
mands (and the signal) are ignored.

The use of trap is illustrated by this modified version of the rouch command (Figure 4). The
cleanup action is to remove the file junk$$.

20 Shell

flag=
trap “rm —f junk$$; exit" 123 15
for i
do case $i in
—c) flag=N;;
*) if test —f $i
then In $i junk$$; rm junk$$
elif test $flag
then echo file \"$i\" does not exist
else >8i
fi
esac
done

Figure 4. The touch command

The trap command appears before the creation of the temporary file; otherwise it would be pos-
sible for the process to die without removing the file.

Since there is no signal 0 in UNIX it is used by the shell to indicate the commands to be exe-
cuted on exit from the shell procedure.

A procedure may, itself, elect to ignore signals by specifying the null string as the argument to
trap. The following fragment is taken from the nohup command.

trap " 12315

which causes hangup, interrupt, quit and kill to be ignored both by the procedure and by invoked
commands.

Traps may be reset by saying
trap 2 3

which resets the traps for signals 2 and 3 to their default values. A list of the current values of
traps may be obtained by writing

trap

The procedure scan (Figure 5) is an example of the use of trap where there is no exit in the
trap command. scan takes each directory in the current directory, prompts with its name, and
then executes commands typed at the terminal until an end of file or an interrupt is received.
Interrupts are ignored while executing the requested commands but cause termination when
scan is waiting for input.

d="pwd"
foriin %
do if test —d $d/$i
then cd $d/$i
while echo "$i:"

trap exit 2
read x
do trap : 2; eval $x; done
fi
done

Figure 5. The scan command

read x is a built-in command that reads one line from the standard input and places the result in
the variable x. It returns a non-zero exit status if either an end-of-file is read or an interrupt is
received.

Shell 21

3.7 Command Execution

To run a command (other than a built-in) the shell first creates a new process using the system
call fork. The execution environment for the command includes input, output and the states of
signals, and is established in the child process before the command is executed. The built-in
command exec is used in the rare cases when no fork is required and simply replaces the shell
with a new command. For example, a simple version of the nohup command looks like

trap " 12315
exec $*

The trap turns off the signals specified so that they are ignored by subsequently created com-
mands and exec replaces the shell by the command specified.

Most forms of input/output redirection have already been described. In the following word is
only subject to parameter and command substitution. No file name generation or blank
interpretation takes place so that, for example,

echo... >*.c
will write its output into a file whose name is *.c. Input/output specifications are evaluated left
to right as they appear in the command.

> word The standard output (file descriptor 1) is sent to the file word which is created if it
does not already exist.

>> word The standard output is sent to file word. If the file exists then output is appended
(by seeking to the end); otherwise the file is created.

< word The standard input (file descriptor 0) is taken from the file word.

<< word The standard input is taken from the lines of shell input that follow up to but not
including a line consisting only of word. If word is quoted then no interpretation
of the document occurs. If word is not quoted then parameter and command sub-
stitution occur and \ is used to quote the characters \ $ ~ and the first character of
word. In the latter case \new-line is ignored (c.f. quoted strings).

>& digit The file descriptor digit is duplicated using the system call dup (2) and the result is
used as the standard output.

<& digit The standard input is duplicated from file descriptor digir.
<&— The standard input is closed.
>&— The standard output is closed.

Any of the above may be preceded by a digit in which case the file descriptor created is that
specified by the digit instead of the default 0 or 1. For example,

ves 2>file

runs a command with message output (file descriptor 2) directed to file.
eee 2>&1

runs a command with its standard output and message output merged. (Strictly speaking file
descriptor 2 is created by duplicating file descriptor 1 but the effect is usually to merge the two
streams.) '

The environment for a command run in the background such as
list ¢ | lpr &

is modified in two ways. Firstly, the default standard input for such a command is the empty
file /dev/null, This prevents two processes (the shell and the command), which are running
in parallel, from trying to read the same input. Chaos would ensue if this were not the case.
For example,

22 Shell

ed file &

would allow both the editor and the shell to read from the same input at the same time.

The other modification to the environment of a background command is to turn off the QUIT
and INTERRUPT signals so that they are ignored by the command. This allows these signals
to be used at the terminal without causing background commands to terminate. For this reason
the UNIX convention for a signal is that if it is set to 1 (ignored) then it is never changed even
for a short time. Note that the shell command trap has no effect for an ignored signal.

3.8 Invoking the Shell

The following flags are interpreted by the shell when it is invoked. If the first character of
argument zero is a minus, then commands are read from the file .profile.

—c string If the —c flag is present then commands are read from string.

=S If the —s flag is present or if no arguments remain then commands are read from
the standard input. Shell output is written to file descriptor 2.

—i If the —i flag is present or if the shell input and output are attached to a terminal (as
told by grty) then this shell is interactive. In this case TERMINATE is ignored (so
that kill 0 does not kill an interactive shell) and INTERRUPT is caught and ignored
(so that wait is interruptable). In all cases QUIT is ignored by the shell.

Acknowledgements

The design of the shell is based in part on the original UNIX shell? and the PWB/UNIX shell, 4
some features having been taken from both. Similarities also exist with the command inter-
preters of the Cambridge Multiple Access SystemS and of CTSS.®

I would like to thank Dennis Ritchie and John Mashey for many discussions during the design
of the shell. I am also grateful to the members of the Computing Science Research Center and
to Joe Maranzano for their comments on drafts of this document.

References
[1] B. W. Kernighan, UNIX for Beginners, Bell Laboratories (1978).

[2] T. A. Dolotta, S. B. Olsson, and A. G. Petruccelli (eds.), UNIX User’s Manual —Release
3.0, Bell Laboratories (June 1980).

(3] K. Thompson, “The UNIX Command Language,”’ Structured Programming— Infotech State
of the Art Report, pp. 375-384, Infotech International Ltd., Nicholson House, Mainden
head, Berkshire, England (March 1975).

[4] J. R. Mashey, PWB/UNIX Shell Tutorial, Bell Laboratories (September 1977).

[S] D. F. Hartley (ed.), The Cambridge Multiple Access System—Users Reference Manual,
University Mathematical Laboratory, Cambridge, England (1968).

[61 P. A. Crisman (ed.), The Compatible Time-Sharing System, M.1.T. Press, Cambridge, Mass.
(1965).

Shell

Appendix A—Grammar

item:

word

input-output
name = value

simple-command: item

command:

pipeline:

andor:

command-list:

input-output:

file:

case-part:

pattern:

else-part:

empty:
word:
name:

digit:

simple-command item

simple-command

(command-list)

{ command-list }

for name do command-list done

for name in word ... do command-list done
while command-list do command-list done
until command-list do command-list done
case word in case-part ... esac

if command-list then command-list else-part fi

command _
pipeline | command

pipeline
andor && pipeline
andor || pipeline

andor

command-list ;
command-list &
command-list ; andor
command-list & andor

> file
< file
>> word
<< word

word

& digit

& J—

pattern) command-list ;;

word
pattern | word

elif command-list then command-list else-part '
else command-list
empty

a sequence of non-blank characters

a sequence of letters, digits or underscores starting with a letter

0123456789

23

24

Appendix B—Meta-characters and Reserved Words
a) syntactic

I pipe symbol

&& ‘andf’ symbol

I ‘orf” symbol

; command separator
33 case delimiter
& background commands

() command grouping

< input redirection

<< input from a here document
> output creation

>> output append

b) patterns
* match any character(s) including none
? match any single character
[...] match any of the enclosed characters

¢) substitution
${...}substitute shell variable

-

.. " substitute command output

d) quoting
\ quote the next character
*...7 quote the enclosed characters except for ~

"..." quote the enclosed characters except for $ ~ \ "

e) reserved words

if then else elif fi
case in esac
for while until do done

{}

January 1981

Shell

A TROFF Tutorial

Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Troff is a text-formatting program for driving a phototypesetter on the UNIXt and
GCOS operating systems to produce high-quality printed text; this paper is an example
of troff output.

The phototypesetter itself normally runs with four fonts, containing roman, italic
and bold letters (as on this page), a full Greck alphabet, and a substantia! number of
special characters and mathematical symbols. Characters can be printed in a range of
sizes, and placed anywhere on the page.

Troff allows the user full control over fonts, sizes, and character positions, as well as
the usual features of a formatter—right-margin justification, automatic hyphenation,
page titling and numbering, and so on. It also provides macros, arithmetic variables
and operations, and conditional testing, for more complicated formatting tasks.

This document is an introduction to the most basic use of troff. It presents just
cnough information to enable the user to do simple formatting tasks such as making
view graphs, and to make incremental changes to existing packages of troffl macros. In
most respects, the UNIX formatter mroff is identical to troff, so this document also

UNIX
C.1.1

serves as a tutorial on nroff.

1. Introduction

Troff [1] is a text-formatting program for
phototypesetting high-quality, printed output on
the UNIX and GCOS operating systems. This
document is an example of troff output.

The single most important rule of using troff
is not to use it directly, but through some
intermediary. In many ways, troff resembles an
assembly language—a remarkably powerful and
flexible one—but nonetheless such that many
operations must be specified at a level of detail
and in a form that is too hard for most people to
use effectively.

For two special applications, there are pro-
grams that provide an interface to troff for the
- majority of users. Eqn [2] provides an ecasy to
learn language for typesetting mathematics; the
eqn user need know no troff whatsoever to
typesct mathematics. Tbl [3] provides the same
convenience for producing tables of arbitrary
complexity.

t UNIX is a trademark of Bell Laboratories.

For producing straight text (which may well
contain mathematics or tables), there are a
number of ““macro packages’’ that definc format-
ting rules and operations for specific styles of
documents, and reduce the amount of direct
contact with troff. In particular, the *‘ms” [4]
and MM [5] packages for Bell Labs internal
memoranda and external papers provide most of
the facilities needed for a wide range of docu-
ment preparation. There are also packages for
view graphs and for other special applications.
Typically you will find these packages casier to
usc than troff once you get beyond the most
trivial operations; you should always consider
them first.

In the few cases where existing packages
don’t do the whole job, the solution is not to
write an entirely new set of troff instructions
from scratch, but to make small changes to adapt
packages that already exist.

In accordance with this philosophy of letting

someone else do the work, the part of troff

described here is only a small part of the whole,
although it tries to concentrate on the more use-
ful parts. In any case, there is no attempt to be
complete. Rather, the emphasis is on showing
how to do simple things, and how to make incre-
mental changes to what already exists. The con-
tents of the remaining sections are:

2. Point Sizes and Line Spacing
Fonts and Special Characters
Indents and Line Lengths
Tabs

Strings
Introduction to Macros
Titles, Pages, and Numbering
10. Number Registers and Arithmetic
11. Macros with Arguments
12. Conditionals
13. Environments
14. Diversions
Appendix: Typesetter Character Set

The troff described here is the C-language
version running on UNIX, as documented in [1].

To use troff you have to prepare not only the
actual text you want printed, but some informa-
tion that tells how you want it printed. For troff
the text and the formatting information are often
intertwined quite intimately. Most troff com-
mands (sometimes referred to as requests) are
placed on a line separate from the text itself,
beginning with a period (one command per line).
For example,

Some text.
.ps 14
Some more text.

will change the “‘point size’’, that is, the size of
the letters being printed, to ‘‘14-point’’ (one
point is 1/72 inch) like this:

Some text. SOME more text.

QOccasionally, though, something special
occurs in the middle of a line—to produce
Area = 7r?
you have to type

Area = \(*p\fI\fR\\s8\u2\d\s0

(which we will explain shortly). The backslash
character. \ is used to introduce troff commands
and special characters within a line of text.

3
4
5.
6. Local Motions: Drawing Lines and Characters
7
8
9

TROFF Tutorial

2. Point Sizes and Line Spacing

As mentioned above, the command .ps sets
the point size. One point is 1/72 inch, so 6-point
characters are at most 1/12 inch high, and 36-
point characters are ' inch. There are 15 point
sizes, listed below:

6 point: Pack my box with five dozen liquor jugs.

7 point: Pack my box with five dozen liquor jugs.

8 point: Pack my box with five dozen liquor jugs.

9 point: Pack my box with five dozen liquor jugs.
10 point: Pack my box with five dozen liquor
11 point: Pack my box with five dozen
12 point: Pack my box with five dozen

14 point: Pack my box with five
16 point 18 point 20 point

2224 28 36

If the number after .ps is not one of these
legal sizes, it is rounded up to the next valid
value, with a2 maximum of 36. If no number fol-
lows .ps, troff reverts to the previous size, what-
ever it was. Troff begins with point size 10,
which is usually fine. This document is in 9-
point.

The point size can also be changed in the
middle of a line or even a word with the in-line
command \s. To produce

UNIX runs on a VAX-11/780

type
\s8UNIX\s10 runs on a \s8 VAX—\s1011/780

As above, \s should be followed by a legal point
size, except that \sO causcs the size to revert to
its previous value. Notice that \s1011 can be
understood correctly as “‘size 10, followed by an
117, if the size is legal, but not otherwise. Be
cautious with similar constructions.

Relative size changes are also legal and use-
ful:

\s —2UNIX\s +2

temporarily decreases the size, whatever it is, by
two points, then restores it. Reclative size
changes have the advantage that the size
difference is independent of the starting size of
the document. The amount of the relative
change is restricted to a single digit.

The other parameter that determines what
the type looks like is the spacing between lines,
which is set independently of the point size.
Vertical spacing is measured from the bottom of
onc line to the bottom of the next. The com-
mand to control vertical spacing is .vs. For run-
ning text, it is usually best to set the vertical

TROFF Tutorial

spacing about 20% bigger than the character size.
For example, so far in this document, we have
used *“9 on 11°’, that is,

.ps 9
.vs 11p

If we changed to

.ps 9
.vs 9p

the running text would look like this. After a
few lines, you will agree it looks a little cramped.
The right vertical spacing is partly a matter of
taste, depending on how much text you want to
st}ueezc into a given space, and partly a matter
of traditional printing style. By default, troff
uses 10 on 12.

Point size and vertical spacing
make a substantial difference in the

amount of text per square inch.
This is 12 on 14.

Point size and vertical spacing make a substantial difference in the
amount of text per square inch. For example, 10 on 12 uses about twice
as much space as 7 on 8. This is 6 on 7, which is even smaller. It packs a
lot more words per ling, but you can go blind trying to read it.

When used without arguments, .ps and .vs
revert to the previous size and vertical spacing
respectively.

The command .sp is used to get extra vertical
space. Unadorned, it gives you one extra blank
line (one .vs, whatever that has been set to).
Typically, that’s more or less than you want, so
3p can be followed by information about how
much space you want:

.Sp 2i

means ‘‘two inches of vertical space’’.
.Sp 2p

means ‘‘two points of vertical space’; and
.S5p 2

means ‘‘two vertical spaces’’—two of whatever
.vs is set to (this can also be made explicit with
.8p 2v); troff also understands decimal fractions
in most places, s0

.5p 1.51

is a space of 1.5 inches. These same scale fac-
tors can be used after .vs to define line spacing,
and in fact after most commands that deal with
physical dimensions.

It should be noted that all size numbers are
converted internally to ‘‘machine units’’, which
are 1/432 inch (1/6 point). For most purposes,
this is enough resolution that you don’t have to
worry about the accuracy of the representation.
The situation is not quite so good vertically,
where resolution is 1/144 inch (% point).

3. Fonts and Special Characters

Troff and the typesetter allow four different
fonts at any one time. Normally three fonts
(Times roman, italic, and bold) and one collec-
tion of special characters are permanently
mounted:

abedefghijkimnopqrstuvwxyz 0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ
abedefghijklmnopgrstuvwxyz 0123456789
ABCDEFGHIIKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz 0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ

The Greek, mathematical, and other symbols on
the special font are listed in the Appendix.

Troff prints in roman unless told otherwise.
To switch into bold, use the .ft command

ftB
and for italics,
Kig!

To return to roman, use .ft R; to return to the
previous font, whatever it was, use either .ft P or
just .ft. The ‘*underline’’ command

ul

causes the next input line to print in italics. .ul
can be followed by a count to indicate that more
than one line is to be italicized.

Fonts can also be changed within a line or
word with the in-line command \f:

boldface text
is produced by
\fBbold\fIface\fR text

If you want to do this so the previous font,
whatever it was, is left undisturbed (a good prac-
tice), insert extra \fP commands, like this:

\fBbold\fP\fIface\fP\fR text\fP

Because only the immediately previous font is
remembered, you have to restore the previous
font after each change or you can lose it. The
same is true of .ps and .vs when used without an
argument.

There are other fonts available besides the
standard set, although you can still use only four
at any given time. The command .fp tells troff
what fonts are physically mounted on the
typesetter:

fp3H

says that the Helvetica font is mounted on posi-
tion 3. (For a complete list of fonts and what
they look like, see the troff manual.) Appropri-
ate fp commands should appear at the beginning

of your document if you do not use the stan-
dard fonts. :

It is possible to make a document relatively
independent of the actual fonts used to print it
by using font numbers instead of names; for
example, \f3 and .ft 3 mean ‘‘whatever font is
mounted at position 3", and thus work for any
setting. Normal settings are roman font on 1,
italic on 2, bold on 3, and special on 4.

There is also a way to get *‘synthetic” bold
fonts by overstriking letters with a slight offset.
Look at the .bd command in [1].

Special characters have four-character names
beginning with \(, and they may be inserted any-
where. For example,

Y+ % =%
is produced by
\(14 + \(12 = \(34

In particular, Greck letters are all of the form
\(*?, where ? is an upper- or lower-case Roman
letter reminiscent of the Greek. Thus to get

S(aXB) — oo
in bare troff we have to type
\(*S(\(*a\(mu\(*b) \(—> \(if
That line is unscrambled as follows:

\(*S

(

\(*a
\(mu
\(*b

)
\(—>
\(if

A complete list of these special names is given in
the Appendix.

8 | =X~ wM

In eqn [2] the same effect can be achieved
with the input

SIGMA (alpha times beta) —> inf

which is less concise, but clearer to the unini-
tiated.

Notice that each four-character name is a sin-
gle character as far as troff is concerned—the
‘‘translate’’ command

.tr \(mi\(em
is perfectly clear, meaning
Cr——
that is, to translate — into —.

Some characters are automatically translated
into others: grave and acute accents

TROFF Tutorial

(apostrophes) become open and close single
quotes ' ’; the combination of ‘“..." is generally
preferable to the double quotes "...". Similarly,
a typed minus sign — becomes a hyphen -. To
print an explicit — sign, use \—. To get a
backslash printed, use \e.

4. Indents and Line Lengths

Troff starts with a line length of 6.5 inches,
too wide for 8% X1l inch paper. To reset the
line length, use the .l command, as in

1 6i

As with .sp, the actual length can be specified in
several ways; inches are probably the most intui-
tive.

The maximum line length provided by the
typesctter is 7.5 inches, by the way. To use the
full width, you will have to reset the default phy-
sical left margin (‘‘page offset’’), which is nor-
mally slightly less than one inch from the left
edge of the paper. This is done by the .po com-
mand.

.po 0
sets the offset as far to the left as it will go.

The indent command .in causes the left mar-
gin to be indented by some specified amount
from the page offset. If we use .in to move the
left margin in, and .Il to move the right margin
to the left, we can make offset blocks of text:

.in 0.3i
I —0.3i
... text to be set as a block ...
J+0.3i
.Ain —0.3i

will create a block that looks like this:

Pater noster qui est in caelis
sanctificetur nomen tuum; adveniat
regnum tuum; fiat voluntas tua, sicut in
caelo, et in terra. ... Amen.

Notice the use of “‘+’ and ““—"" to specify the
amount of change. These change the previous
setting by the specified amount, rather than just
overriding it. The distinction is quite important:
I +1i makes lines one inch longer; .11 1i makes
them one inch long.

With .in, .l and .po, the previous value is
used if no argument is specified.

To indent a single line, use the ‘‘temporary
indent” command .ti. For example, all para-
graphs in this memo effectively begin with the
command

Oti 3

TROFF Tutorial

Three of what? The default unit for .ti, as for
most horizontally oriented commands (., .in,
.po), is ems; an em is roughly the width of the
letter ““m’’ in the current point size. (Precisely,
a em in size p is p points.) Although inches arc
usually clearer than ems to people who don’'t set
type for a living, ems have a place: they are a
measure of size that is proportional to the
current point size. If you want to make text that
keeps its proportions regardless of point size, you
should use ems for all dimensions. Ems can be
specified as scale factors directly, as in .ti 2.5m.

Lines can also be indented negatively if the
indent is already positive:

i —0.3i

causes the next line to be moved back three
tenths of an inch. Thus to make a decorative
initial capital, we indent the whole paragraph,
then move the letter “‘P*" back with a .i com-
mand:

ater noster qui est in caelis
Psanctiﬁcctur nomen tuum; adveniat

regnum tuum; fiat voluntas tua,
sicut in caelo, et in terra. ... Amen.

Of course, there is also some trickery to make
the “P”’ bigger (just a **\s36P\s0""), and to move
it down from its normal position (see Section 6
on local motions).

5. Tabs

Tabs (the ASCIH ‘‘horizontal tab’’ character)
can be used to produce output in columns, or to
set the horizontal position of output. Typically
tabs are used only in unfilled text. Tab stops are
set by default every half inch from the current
indent, but can be changed by the .ta command.
To set stops every inch, for example,

.ta 1i 2i 3i 4i 5i 6i

Unfortunately the stops are left-justified only
(as on a typewriter), so lining up columns of
right-justified numbers can be painful. If you
have many numbers, or if you need more com-
plicated table layout, don’t use troff directly; use
the tbl program described in [3].

For a handful of numeric columns, you can
do it this way: Precede every number by enough
blanks to make it linc up when typed.

.nf
.ta 11 2i 3i

ltab 21w 3
40 rab SO rab 60
700 tab 800 tab 900
fi

Then change each leading blank into the string
\0. This is a character that does not print, but
that has the same width as a digit. When
printed, this will produce

1 2 3
40 50 60
700 800 900

It is also possible to fill up tabbed-over space
with a character other than a blank by setting the
‘“‘tab replacement character’’ with the .tc com-
mand:

.ta 1.51 2.51
e \(ru (\(ruis ")
Name tab Age tab

produces:

Name Age

To reset the tab rcplacement character to a
blank, use .tc without argument. (Lines can also
be drawn with the \l command; see Section 6.)

Troff also provides a very general mechanism
called *‘fields” for setting up complicated
columns (it is used by thl). We will not go into
it in this paper.

6. Local Motions: Drawing Lines and Char-
acters

Remember “Area = xr2”" and the big “P”
in the Paternoster. How are they done? Troff
provides a host of commands for placing charac-
ters of any size at any place. You can use them
to draw special characters or to tune your output
for a particular appearance. Most of these com-
mands are straightforward, but messy to read
and tough to type correctly.

If you won’t use eqnm, subscripts and super-
scripts are most easily done with the half-line
local motions \u and \d. To go back up the page
half a point-size, insert a \u at the desired place;
to go down, insert a \d. (\u and \d should always
be used in pairs, as explained below.) Thus

Area = \(*pr\u2\d
produces:
Area = rrz

To make the ‘2" smaller, bracket it with
\s—2...\s0. Since \u and \d refer to the current
point size, be sure to put them either both inside
or both outside the size changes, or you will get
an unbalanced vertical motion.

Sometimes the space given by \u and \d isn’t
the right amount. The \v command can be used
to request an arbitrary amount of vertical
motion. The in-line command

\v’(amount)’

causes motion up or down the page by the
amount specified in *‘(amount)”’. For example,
to move the “‘P’’ down, we used

.in +0.6i (move paragraph in)
Jl —0.31 (shorten lines)
.1 —0.3i (move P back)

\v"2\s36P\sO\v’'—2’ater noster qui est
in caelis ...

A minus sign causes upward motion, while no
sign or a plus sign means down the page. Thus
\v'—2’ causes an upward vertical motion of two
line spaces.

There are many other ways to specify the
amount of motion:

\v’0.1{

\v’3p’

\v'—0.5m’
and so on are all legal. Notice that the scale
specifier i or p or m goes inside the quotes. Any
character can be used in place of the quotes; this
is also true of all other troff commands described
in this section.

Since troff does not take within-the-line vert-
ical motions into account when figuring out
where it is on the page, output lines can have
unexpected positions if the left and right ends
aren’t at the same vertical position. Thus \v,
like \u and \d, should always balance upward
vertical motion in a line with the same amount
in the downward direction.

Arbitrary horizontal motions are also avail-
able: \h is quite analogous to \v, except that the
default scale factor is ems instead of line spaces.
As an example,

\h’—0.11

causes a backwards motion of a tenth of an inch.
As a practical matter, consider printing the
mathematical symbol ““>>"", The default spac-
ing is too wide, so eqn replaces this by

>\h'—0.3m">

to produce >>.

Frequently \h is used with the *“‘width func-
tion’ \w to generate motions equal to the width
of some character string. The construction

\w'thing’
is a number equal to the width of *‘thing” in
machine units (1/432 inch). All troff computa-
tions are ultimately done in these units. To
move horizontally the width of an “‘x’, we can
say

TROFF Tutorial

\hAw'x’'u’
As we mentioned above, the default scale factor
for all horizontal dimensions is m, ems, so here
we must have the u for machine units, or the
motion produced will be far too large. Troff is
quite happy with the nested quotes, by the way,
so long as you don’t leave any out.

As a live example of this kind of construc-
tion, all of the command names in the text, like
.sp, were done by overstriking with a slight
offset. The commands to print .sp are

.sp\h’—\w’.sp'u\h"2u’".sp

That is, put out ““.sp’’, move left by the width of
“.sp’", move right 2 units, and print *‘.sp’” again.
(Of course there is a way to avoid typing that
much input for each command name, which we
will discuss in Section 11.)

There are also several special-purpose troff
commands for local motion. In Section 5, we
have already seen \0, which is an unpaddable
white space of the same width as a digit.
‘‘Unpaddable’”’ means that it will never be
widened or split across a line by line justification
and filling. There is also \(blank), which is an
unpaddable character the width of a space, \},
which is half that width, \", which is one quar-
ter of the width of a space, and \&, which has
zero width; this last one may be used, for exam-
ple, to “‘protect’’ from troff a line of text that

[YSRT)

begins with a **.”’,
The command \o, used like

\o’set of characters’

causes (up to 9) characters to be overstruck, cen-
tered on the widest. This is nice for accents, as
in:

syst\o"e\ "me t\o"c¢\ "\o"e\""phonique
which makes:
systeme telephonique

The accents are \™ and \°, or \(ga and \(aa;
remember that each' is just one character to troff.

You can make your own overstrikes with
another special convention, \z, the zero-motion
command; \zx suppresses the normal horizontal
motion after printing the single character x, so
another character can be laid on top of it.
Although sizes can be changed within \o, it
centers the characters on the widest, and there
can be no horizontal or vertical motions, so \z
may be the only way to get what you want:

1

TROFF Tutorial

is produced by

.Sp 2
\sB\Z\(sq\s14\z\(5q\s22\z\(5q\s 36\ (sq
The sp is needed to leave room for the result.

As another example, an extra-heavy semi-
colon that looks like

- . . -
y instead of ; or ,

can be constructed with a big comma and a big
period above it:

\s +6\z,\v'—0.25m".\v'0.25m"\s0

**0.25m”’ is an empirical constant.

A more ornate overstrike is given by the
bracketing function \b, which piles up characters
vertically, centered on the current baseline.
Thus we can get big brackets, constructing them
with piled-up smaller pieces:

(]

by typing in only this:
.Sp

ABAUN I\ (b’ \bAI(F" x \bA(re\(rf” \b\(rt\(rk\(rb’

Troff also provides a convenient facility for
drawing horizontal and vertical lines of arbitrary
length with arbitrary characters. \I'li’ draws a
line one inch long, like this: .
The length can be followed by the character to
use if the _ isn't appropriate; \10.5i.” draws a
half-inch line of dots: The construc-
tion \L is entirely analogous, except that it draws
a vertical line instead of horizontal.

7. Strings

Obviously if a paper contains a large number
of occurrences of an acute accent over a letter
“e”, typing \o"e\" for ecach e would be a great
nuisance.

Fortunately, troff provides a way in which
you can store an arbitrary collection of text in a
“‘string”’, and thereafter use the string name as a
shorthand for its contents. Strings are one of
several troff mechanisms whose judicious use
lets you type a document with less effort and
organize it so that extensive format changes can
be made with few editing changes.

A reference to a string is replaced by what-
ever text the string was defined as. Strings are
defined with the command .ds. The line:

.ds ¢ \o"e\""

defines the string ¢ to have the value \o"e\"".

String names may be cither one or two char-
acters long, and are referred to by \ex for one
character names or \s(xy for two character
names. Thus to get telephone, given the
definition of the string ¢ as above, we can say
t\=el\wephone.

If a string must begin with blanks, define it
as

.ds xx " text

The double quote signals the beginning of the
definition. There is no trailing quote; the end of
the line terminates the string.

A string may actually be several lines long; if
troff encounters a \ at the end of any line, it is
thrown away and the next line added to the
current one. So you can make a long string sim-
ply by ending each line but the last with a
backslash:

.ds xx this \
is a very \
long string

Strings may be defined in terms of other
strings, or even in terms of themselves; we will
discuss some of these possibilities later.

8. Introduction to Macros

Before we can go much further in troff, we
need to learn a bit about the macro facility. In
its simplest form, a macro is just a shorthand
notation quite similar to a string. Suppose we
want every paragraph to start in exactly the same
way—with a space and a temporary indent of two
ems:

.Sp
.1 +2m

Then to save typing, we would like to collapse
these into one shorthand line, a troff ‘‘com-
mand”’ like

.PP

that would be treated by troff exactly as

Sp
.ti +2m

.PP is called a macro. The way we tell troff what
PP means is to define it with the .de command:

.de PP ‘ B

Sp
A1 +2m

The first line names the macro (we used “.PP"
for ‘‘paragraph’, and upper case so it wouldn’t
conflict with any name that troffl might already
know about). The last line *‘..”" marks the end

of the definition. In between is the text, which

is simply inserted whenever troff sees the ‘‘com-

mand’’ or macro call
.PP

A macro can contain any mixture of text and
formatting commands.

The definition of .PP has to precede its first
use; undefined macros are simply ignored.
Names are restricted to one or two characters.

Using macros for commonly occurring
sequences of commands is critically important.
Not only does it save typing, but it makes later
changes much casier. Suppose we decide that
the paragraph indent is too small, the vertical
space is much too big, and roman font should be
forced. Instead of changing the whole docu-
ment, we need only change the definition of .PP
to something like

.de PP \" paragraph macro
Sp 2p

JAi +3m

ftR

and the change takes effect everywhere we used
.PP.

\" is a troff command that causes the rest of
the line to be ignored. We use it here to add
comments to the macro definition (a wisc idea
once definitions get complicated).

As another example of macros, consider
these two which start and end a block of offset,
unfilled text, like most of the examples in this

paper:

.de BS \" start indented block
Sp

.nf

.in +0.31

.de BE \" end indented block
.Sp

fi

.in —0.3i

X

Now we can surround text like

Copy to

John Doe
Richard Roberts
Stanley Smith

by the commands .BS and .BE, and it will come
out as it did above. Notice that we indented by
in +0.3i instead of .in 0.3i. This way we can
nest our uses of .BS and .BE to get blocks within
blocks.

TROFF Tutorial

If later on we decide that the indent should
be 0.5i, then it is only necessary to change the
definitions of .BS and .BE, not the whole paper.

9. Titles, Pages, and Numbering

This is an area where things get tougher,
becausc nothing is done for you automatically.
Of necessity, some of this section is a cookbook,
to be copied literally until you get some experi-
ence.

Suppose you want a title at the top of each
page, saying simply:

left top center top right top

It would be nice if one could just say:

.he 7left top’center top‘right top’
.fo “1eft bottom’center bottom’right bottom’

to get headers and footers automatically on every
page (as was possible in an older system called
roff). Alas, this doesn’t work in troff, a serious
hardship for the novice. Instead you have to do
a lot of specification.

You have to say what the actual title is
(easy); when to print it (easy enough); and what
to do at and around the title line (harder). Tak-
ing these in reverse order, first we define a
macro .NP (for ‘‘new page’’) to process titles
and the like at the end of one page and the
beginning of the next:

.de NP

Ibp

‘sp 0.5i

.tl “left top’center top’right top’
‘sp 0.3i

To make surc we're at the top of a page, we
issue a ‘“‘begin page'” command ‘bp, which
causes a skip to top-of-page (we’ll explain the *
shortly). Then we space down half an inch, print
the title (the use of .tl should be self explana-
tory; later we will discuss parameterizing the
titles), space another 0.3 inches, and we’re done.

To ask for .NP at the bottom of each page,
we have to say something like “‘when the text is
within an inch of the bottom of the page, start
the processing for a new page’”. This is done
with a “‘when’’ command .wh:

.wh —1i NP

(No *““.”" is used before NP; this is simply the
name of a macro, not a macro call.) The minus
sign means ‘‘measure up from the bottom of the
page™’, so **—1i"" means ‘‘one inch from the bot-
tom’’. ’

TROFF Tutorial

The .wh command appears in the input out-
side the definition of .NP; typically the input
would be

.de NP

.wh —1i NP

Now what happens? As text is actually being
output, troff keeps track of its vertical position
on the page, and after a line is printed within
one inch from the bottom, the .NP macro is
activated. (In the jargon, the .wh command sets
a ftrap at the specified place, which is *‘sprung™
when that point is passed.) NP causes a skip to
the top of the next page (that’s what the bp was
for), then prints the title with the appropriate
margins.

Why ‘bp and ‘sp instead of .bp and .sp? The
answer is that .sp and .bp, like several other
commands, cause a break to take place. That is,
all the input text collected but not yet printed is
flushed out as soon as possible, and the next
input line is guaranteed to start a new line of
output. If we had used .sp or .bp in the .NP
macro, this would cause a break in the middle of
the current output line when a new page is
started. The effect would be to print the left-
over part of that line at the top of the page, fol-
lowed by the next input line on a new output
line. This is not what we want. Using / instead
of . for a command tells troff that no break is to
take place—the output line currently being filled
should nor be forced out before the space or new

page.
The list of commands that cause a break is
short and natural:

bp Jbr oce i .nf sp olin i

All others cause no break, regardless of whether
you use a . or a *. If you really need a break, add
a .br command at the appropriate place.

One other thing to beware of—if you're
changing fonts or point sizes a lot, you may find
that if you cross a page boundary in an unex-
pected font or size, your titles come out in that
size and font instead of what you intended.
Furthermore, the length of a title is independent
of the current line length, so titles will come out
at the default length of 6.5 inches unless you
change it, which is done with the .It command.

There are several ways to fix the problems of
point sizes and fonts in titles. For the simplest
applications, we can change NP to set the proper
size and font for the title, then restore the previ-
ous values, like this:

.de NP

/bp

‘sp 0.5i

ftR \" set title font to roman
.ps 10 \" and size to 10 point
Jdt 6i \" and length to 6 inches
.tl left’centerright’

.ps \" revert to previous size
tP \" and to previous font
‘sp 0.31

This version of .NP does nor work if the
fields in the .l command contain size or font
changes. To cope with that requires troff’s
“environment’’ mechanism, which we will dis-
cuss in Section 13.

To get a footer at the bottom of a page, you
can modify NP so it does some processing
before the ‘bp command, or split the job into a
footer macro invoked at the bottom margin and
a header macro invoked at the top of the page.
These variations are left as exercises.

Qutput page numbers are computed automat-
ically as each page is produced (starting at 1),
but no numbers are printed unless you ask for
them explicitly. To get page numbers printed,
include the character % in the .tl line at the posi-
tion where you want the number to appear. For
example

- 9% —*

centers the page number inside hyphens. You
can set the page number at any time with either
.bp n, which immediately starts a new page num-
bered n, or with .pnn, which sets the page
number for the next page but doesn’t cause a
skip to the new page. Again, .bp +n sets the
page number to n more than its current value;
.bp means .bp +1.

10. Number Registers and Arithmetic

Troff has a facility for doing arithmetic, and
for defining and using variables with numeric
values, called number registers. Number regis-
ters, like strings and macros, can be useful in
setting up a document so it is easy to change
later. And of course they serve for any sort of
arithmetic computation.

Like strings, number registers have one or
two character names. They are set by the .nr
command, and arc referenced anywhere by \nx
(one character name) or \n(xy (two character
name).

There are quite a few pre-defined number
registers maintained by troff, among them % for
the current page number; nl for the current

10

vertical position on the page; dy, mo and yr for
the current day, month and year; and .s and .f
for the current size and font. (The font is a
number from 1 to 4.) Any of these can be used
in computations like any other register, but
some, like .s and .f, cannot be changed with .nor.

As an example of the usc of number regis-
ters, in the “ms” macro package [4], most
significant parameters are defined in terms of the
values of a handful of number registers. These
include the point size for text, the vertical spac-
ing, and the line and title lengths. To set the
point size and vertical spacing for the following
paragraphs, for example, a user may say

.nr PS 9
.nr VS 11

The paragraph macro .PP is defined (roughly) as
follows:

.de PP

.ps \\n(PS \" reset size
.vs \\n(VSp \" spacing
ftR \" font

.sp 0.5v \" half a line
.ti +3m

This sets the font to Roman and the point size
and line spacing to whatever values are stored in
the number registers PS and VS.

Why are there two backslashes? This is the
eternal problem of how to quote a quote. When
troff originally reads the macro definition, it
peels off one backslash to see what’s coming
next. To ensure that another is left in the
definition when the macro is used, we have to
put in two backslashes in the definition. If only
one backslash is used, point size and vertical
spacing will be frozen at the time the macro is
defined, not when it is used.

Protecting by an extra layer of backslashes is
only needed for \m, \», \$ (which we haven't
come to yet), and \ itself. Things like \s, \f, \h,
\v, and so on do not need an extra backslash,
since they are converted by troff to an internal
code immediately upon being seen.

Arithmetic expressions can appear anywhere
that a number is expected. As a trivial example,

.nr PS\\n(PS—2

decrements PS by 2. Expressions can use the
arithmetic operators +, —, %, /, % (mod), the
relational operators >, >=, <, <=, =, and
= (not equal), and parentheses.

Although the arithmetic we have done so far
has been straightforward, -more complicated
things are somewhat tricky. First, number regis-
ters hold only integers. Troff arithmetic uses

TROFF Tutorial

truncating integer division, just like Fortran.
Second, in the absence of parentheses, evalua-
tion is done left-to-right without any operator
precedence (including relational operators).
Thus 7#+—4+3/13 becomes ““—1"".

Number registers can occur anywhere in an
cxpression, and so can scale indicators like p, i,
m, and so on (but no spaces). Although integer
division causes truncation, each number and its
scale indicator is converted to machine units
(1/432 inch) before any arithmetic is done, so
11/2u evaluates to 0.5i correctly.

The scale indicator u often has to appear
when you wouldn’t expect it—in particular, when
arithmetic is being done in a context that implies
horizontal or vertical dimensions. For example,

A17/2i

would seem obvious enough—3% inches. Sorry. -
Remember that the default units for horizontal
parameters like Al are ems. That’s really *‘7
ems /2 inches”, and when translated into
machine units, it becomes zero. How about

117i/2

Sorry, still no good—the “2” is ‘2 ems’, so
**7i/2"" is small, even if not zero. You must use

A17i/2u

So again, a safe rule is to attach a scale indicator
to every number, even constants.

For arithmetic done within a .nr command,
there is no implication of horizontal or vertical
dimension, so the default units are “*units’’, and
7i/2 and 7i/2u mean the same thing. Thus

.ar 1l 7i/2
I \\n(llu

does just what you want, so long as you don’t
forget the u on the .1l command.

11. Macros with Arguments

The next step is to define macros that can
change from one use to the next according to
parameters supplied as arguments. To make this
work, we need two things: first, when we define
the macro, we have to indicate that some parts
of it will be provided as arguments when the
macro is called. Then when the macro is called
we have to provide actual arguments to be
plugged into the definition.

Let us illustrate by defining a macro SM that
will print its argument two points smaller than
the surrounding text. That is, the macro call

.SM TROFF
will produce TROFF.

TROFF Tutorial

The definition of SM is

de SM
\s—2\\$1\s+2

Within a macro definition, the symbol \\$n
refers to the nth argument that the macro was
called with. Thus \\$1 is the string to be placed
in a smaller point size when SM is called.

As a slightly more complicated version, the
following definition of .SM permits optional
second and third arguments that will be printed
in the normal size:

de SM
\E3As = 2\\51\s + 2\\$2

Arguments not provided when the macro is
called are treated as empty, so

.SM TROFF),
produces TROFF), while
.SM TROFF). (

produces (TROFF). It is convenient to reverse
the order of arguments because trailing punctua-
tion is much more common than leading.

By the way, the number of arguments that a
macro was called with is available in number
register .§.

The following macro .BD is the one used to
make the ‘‘bold roman’ we have been using for
troff command names in text. It combines hor-
izontal motions, width computations, and argu-
ment rearrangement:

.de BD
NGNS IR AW A\E 1 'u + 2u\\$ 1\ fP\\§2

The \h and \w commands need no extra
backslash, as we discussed above. The \& is
there in case the argument begins with a period.

Two backslashes are needed with the \\$n
commands, though, to protect one of them when
the macro is being defined. Perhaps a second
example will make this clearer. Consider a
macro called SH which produces section head-
ings rather like those in this paper, with the scc-
tions numbered automatically, and the title in
bold in a smaller size. The use is

SH "Section title ..."

(If the argument to a macro is to contain blanks,
then it must be surrounded by double quotes,
unlike a string, where only one leading quote is
permitted.)

11

Here is the definition of the .SH macro:

.nrSH O
.de SH
.sp 0.3i
ftB

.nr SH \\n(SH+1 \" increment number

\" initialize section number

ps \\n(PS—1 \" decrease PS
\n(SH. \\$! \" number. title
.ps \\n(PS \" restore PS
.sp 0.3i

fLR

..

The section number is kept in number register
SH, which is incremented each time just before it
is used. (A number register may have the same
name as a macro without conflict but a string
may not.)

We used \\n(SH instead of \n(SH and
\Wn(PS instead of \n(PS. If we had used \n(SH,
we would get the value of the register at the time
the macro was defined, not at the time it was
used. If that’s what you want, fine, but not here.
Similarly, by using \\n(PS, we get the point size
at the time the macro is called.

As an example that does not involve
numbers, recall our NP macro which had a

.l ‘left’center’right’

We could make these into parameters by using
instead

S ANR(LTAN®(CTA\\»(RT’

so the title comes from three strings called LT,
CT and RT. If these are empty, then the title
will be a blank line. Normally CT would be set
to something like

.ds CT — % —

to give just the page number between hyphens,
but a user could supply private definitions for
any of the strings.

12. Conditionals

Suppose we want the SH macro to leave two
extra inches of space just before Section 1, but
nowhere else. The cleanest way to do that is to
test inside the SH macro whether the section
number is 1, and add some space if it is. The .if
command provides the conditional test that we
can add just before the heading line is output:

JAf\\n(SH=1 .sp 2i \" Scetion 1 only

The condition after the .if can be any arith-
metic or logical expression. If the condition is
logically true, or arithmetically greater than zero,
the rest of the line is treated as if it were
text—here a command. If the condition is false,

12

or zero or negative, the rest of the line is
skipped.

It is possible to do more than one command
if a condition is true. Suppose secveral operations
are to be done before Section 1. One possibility
is to define a macro Sl and invoke it if we are
about to do Section 1 (as determined by an .if).

.de S1
... processing for Section 1 ...

:;le SH
Af\n(SH=1 S1

An alternate way is to use the extended form
of the .if, like this:

Af \\n(SH=1 \{... processing
for Section 1 ...\}

The braces \{ and \} must occur in the positions
shown or you will get unexpected extra lines in
your output. Troff also provides an ‘“‘if-else”
construction, which we will not go into here.

A condition can be negated by preceding it
with !; we get the same effect as above (but less
clearly) by using

.if \\n(SH>1 .Sl

There are a handful of other conditions that
can be tested with .if. For example, is the
current page even or odd?

.f ¢ .tl “even page title”
.if o .tl “odd page title”

gives facing pages different titles when used
inside an appropriate new page macro.

Two other conditions are t and n, which tell
you whether the formatter is troff or nroff.

Jif t troff stuff ...
.f n nroff stuff ...

Finally, string comparisons may be made in
an .if:

.if ‘stringl’string2’ stuff

does ‘“‘stuff” if stringl is the same as string2.
The character separating the strings can be any-
thing reasonable that is not contained in either
string. The strings themselves can reference
strings with \, arguments with \$, and so on.

13. Environments

As we mentioned, there is a potential prob-
lem when going across a page boundary: parame-
ters like size and font for a page title may well be

TROFF Tutorial

different from those in effect in the text when
the page boundary occurs. Troff provides a very
general way to deal with this and similar situa-
tions. There are threc “‘environments’’, each of
which has independently settable versions of
many of the parameters associated with process-
ing, including size, font, line and title lengths,
fill/no-fill mode, tab stops, and even partially
collected lines. Thus the titling problem may be
readily solved by processing the main text in one
environment and titles in a separate one with its
own suitable parameters.

The command .ev n shifts to environment n;
n must be 0, 1 or 2. The command .ev with no
argument returns to the previous environment.
Environment names are maintained in a stack,
so calls for different environments may be nested
and unwound consistently.

Suppose we say that the main text is pro-
cessed in environment 0, which is where troff
begins by default. Then we can modify the new
page macro .NP to process titles in environment
1 like this:

.de NP
v 1 \" shift to new environment
At 6i \" set parameters here
ft R
.ps 10
... any other processing ...
.ev \" return to previous environment

One can also initialize an environment’s parame-
ters outside the .NP macro, but the version
shown keeps all the processing in one place and
is thus easier to understand and change.

14. Diversions

There are numerous occasions in page layout
when it is necessary to store some text for a
period of time without actually printing it. Foot-
notes are the most obvious example: the text of
the footnote usually appears in the input well
before the place on the page where it is to be
printed is reached. In fact, the place where it is
output normally depends on how big it is, which
implies that there must be a way to process the
footnote at least enough to decide its size
without printing it.

Troff provides a mechanism called a diver-
sion for doing this processing. Any part of the
output may be diverted into a2 macro instead of
being printed, and then at some convenient time
the macro may be put back into the input.

"The command .di xy begins a diversion—all
subsequent output is collected into the macro xy
until the command .di with no arguments is
encountered. This terminates the diversion.

TROFF Tutorial

The processed text is available at any time
thereafter, simply by giving thé command

XY

The vertical size of the last finished diversion is
contained in the built-in number register dn.

As a simple example, suppose we want to
implement a ‘‘keep-release’ operation, so that
text between the commands KS and .KE will
not be split across a page boundary (as for a
figure or table). Clearly, when a .KS is encoun-
tered, we have 1o begin diverting the output so
we can find out how big it is. Then when a KE
is seen, we decide whether the diverted text will
fit on the current page, and print it either there if
it fits, or at the top of the next page if it doesn’t.
So:

.de KS \"start keep

br \" start fresh line
vl \" collect in new environment
fi \" make it filled text

di XX \" collect in XX

e

.de KE \" end keep

.br \" get last partial line

.di \" end diversion
Af\\n(dn>=\\n(.t .bp \".bp if doesn't fit
.nf \" bring it back in no-fill

XX \" text

.ev \" return to normal environment

Recall that number register nl is the current
position on the output page. Since output was
being diverted, this remains at its value when the
diversion started; dn is the amount of text in the
diversion; .t (another built-in register) is the dis-
tance to the next trap, which we assume is at the
bottom margin of the page. If the diversion is
large enough to go past the trap, the .if is
satisfied, and a .bp is issued. In either case, the
diverted output is then brought back with XX. It
is essential to bring it back in no-fill mode so
troff will do no further processing on it.

This is not the most general keep-release,
nor is it robust in the face of all conceivable
inputs, but it would require more space than we
have herc to write it in full generality. This sec-
tion is not intended to teach everything about
diversions, but to sketch out enough that you
can read existing macro packages with some
comprehension.

Acknowledgements

1 am deeply indebted to J. F. Ossanna, the
author of troff, for his repeated patient explana-
tions of fine points, and for his continuing wil-
lingness to adapt troff to make other uses easicr,

13

1 am also grateful to Jim Blinn, Ted Dolotta,
Doug Mcllroy, Mike Lesk, and Joel Sturman for
helpful comments on this paper.

References

[1] J. F. Ossanna. NROFF/TROFF User's Manual,
Bell Laboratories.

[2] B. W. Kernighan and L. L. Cherry. .4 System
Jor Typeserting Mathematics— User's Guide
(Second Edition), Bell Laboratories.

{31 M. E. Lesk. TBL—A Program to Format
Tables, Bell Laboratories.

[4] M. E. Lesk. Typing Documents on UNIX, Bell
Laboratories.

[51J. R. Mashey and D. W. Smith.
MM— Memorandum Macros, Bell Labora-
tories.

14 TROFF Tutorial

Appendix: Typesetter Character Set

The following characters exist in roman, italic, and bold; they are entered as themselves:

ABCDEFGHI JKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz
1234567890 '
'8%&()=1011+*;:,./2?

The following characters also exist in roman, italic, and bold; to get the one on the left, type the one-,
two-, or four-character name on the right (in what follows, the symbol ~ is the acute accent or apostrophe
on most keyboards, while * is the other—or grave—accent; — is the minus sign on the keyboard):

ff \(ff fi \(f1 f \(fl fi \(Fi
i \(Fl - \(ru Ya \(14 % \(34
14 \(12 — \(em © \(co ° \(de
t \(dg - \- ¢ \(et ® \(rg
® \(bu - - : - ’ B

’ \(fm m| \(sq (in bold, \(sq prints as)

The following characters appear only on the special font:

e T\ -\ BN

+ \(p! - \(mi X \(mu = \(di

= \(eq = \(== = \(== < \x=

#* \(!= + \(+— - \(no g \(sl

~ \(ap = \(7= o \(pt v oo \(gr

- \(—> - \(=- 1 \(ua l \(da

) \(is) \(pd oo \(f Vo \Gsr

C \(sb > \(sp U \(cu N \(ca

c \(ib 2 \p € \(mo @ \(es

§ \(sc ¥ \(dd «t \(lh wr \(rh

(\(lt] \(rt [\(lc] \(rc

l \(Ib) \(rb L \(If J \(rf

{ \(lk b \(rk | \(bv * \(**

l \(br | \(or O \(c @ \(bs

5 \(ts
The special-font (‘‘math’’) characters named \(pl, \(mi, \(**, \(sl, and \(eq (i.e., +, —, », /, and =) are
not the same as the *‘current-font”’ characters named +,\—, *, /, and = (ie, +, —, %, /, and =).

The following characters are also found only on the special font; they are entered as themselves (but
remember to escape with a \ the # and @ if these are your ‘“‘erasc’ and “‘kill”’ characters):

-

$ @ " i} < > -
The following pairs of input names are synonyms for each other:
" \(ga \" \(aa _ \ul — \(hy

All Greek letters are also on the special font: all the lower-case letters (including the terminal sigma s
from the list above) and some upper-case letters (T', A, ®, A, Z, 11, Z, T, &, ¥, and Q); the remaining
upper-case Greek letters are ‘‘faked’” by using the corresponding upper-case Roman letters; precede the
Roman letter by \(* to get the corresponding Greek letter (for example, \(*a prints as a):

~abgdezyhiklmncoprstufxqw
afBydein0 i xApuviéiomporvodxvyow

ABGDEZYHIKLMNCOPRSTUFXQW
ABTAEZHO® I KAMNEZONPZTT®XVYQ

January 1981

UNIX
C.1.2

NROFF/TROFF User’s Manual
Joseph F. Ossanna

Bell Laboratories
Murray Hill, New Jersey 07974

Introduction

NROFF and TROFF are text processors under the UNIX1 Time-Sharing System [1] that format text for
typewriter-like terminals and for a phototypesetter, respectively. They accept lines of text interspersed
with lines of format control information and format the text into a printable, paginated document hav-
ing a user-designed style. NROFF and TROFF offer unusual freedom in document styling, including:
arbitrary style headers and footers; arbitrary style footnotes; multiple automatic sequence numbering for
paragraphs, sections, etc; multiple column output; dynamic font and point-size control; arbitrary hor-
izontal and vertical local motions at any point; and a family of automatic overstriking, bracket construc-
tion, and line drawing functions.

NROFF and TROFF are highly compatible with each other and it is almost always possible to prepare
input acceptable to both. Conditional input is provided that enables the user to embed input expressly
destined for either program. NROFF can prepare output directly for a variety of terminal types and is
capable of utilizing the full resolution of each terminal.

Usage
The general form of invoking NROFF (or TROFF) at UNIX command level is:

nroff options files or
trofl options files

where options represents any of a number of option arguments and files represents the list of files con-
taining the document to be formatted. An argument consisting of a single minus (—) is taken to be a
file name corresponding to the standard input. If no file names are given input is taken from the stan-
dard input. The options, which may appear in any order so long as they appear before the files, are:

Option Effect
—olist Print only pages whose page numbers appear in list, which consists of comma-separated
numbers and number ranges. A number range has the form N—M and means pages N
through M, a initial —N means from the beginning to page N; and a final N— means
from N to the end. ‘

—nN Number first generated page N.

—sN Stop every N pages. NROFF will halt prior to every IV pages (default N=1) to allow
paper loading or changing, and will resume upon receipt of a new-line. TROFF will stop
the phototypesetter every N pages, produce a trailer to allow changing cassettes, and
will resume after the phototypesetter START button is pressed. See §1.2 of the Adden-
dum for additional details.

—mname Prepends the macro file /usr/lib/tmac.name to the input files.

—raN The number register whose (one-character) name is a is set to V.
—i Read standard input after the input files are exhausted.
—-q Invoke the simultaneous input-output mode of the rd request.

+ UNIX is a trademark of Bell Laboratories.

NROFF/TROFF User’s Manual
October 11, 1976

NROFF Only

—Tname Specifies the name of the output terminal type. Currently defined names are 37 for the
(default) TELETYPE® Model 37, tn300 for the GE TermiNet 300 (or any terminal
without half-line capabilities), 300 for the DASI 300, 300s for the DASI 300s, and 450
for the DASI 450; 300-12, 300s-12, and 450-12, respectively, are used to print in 12-
pitch (12 characters per inch) on the three DASI terminals.

—e Produce equally-spaced words in adjusted lines, using full terminal resolution.
TROFF Only
—t Direct output to the standard output instead of the phototypesetter.
—f Refrain from feeding out paper and stopping phototypesetter at the end of the run.
—w Wait until phototypesetter is available, if currently busy.
—b TROFF will report whether the phototypesetter is busy or available. No text processing
is done.
—a Send a printable (ASCII) approximation of the results to the standard output.
—pN Print all characters in point size N while retaining all prescribed spacings and motions,

to reduce phototypesetter elapsed time.

—-g Prepare output for the Murray Hill Computation Center phototypesetter and direct it to
the standard output.

w See §1 of the Addendum for additional and modified command-line options.

Each option is invoked as a separate argument; for example:
nroff —04,8—10 —T300—12 —mabc filel file2

requests formatting of pages 4, 8, 9, and 10 of the document contained in files named filel and file2,
specifies the output terminal as a DASI 300 in 12-pitch, and invokes the macro package abc.

Various pre- and postprocessors are available for use with NROFF and TROFF. These include the equa-
tion preprocessors NEQN and EQN [2] (for NROFF and TROFF respectively), the table-construction
preprocessor TBL [3], and the constant-width preprocessor CW [1]. A reverse-line postprocessor COL
[1] is available for multiple-column NROFF output on terminals without reverse-line ability; COL
expects the TELETYPE Model 37 escape sequences that NROFF produces by default. 4014 [1] is a
TELETYPE Model 37-simulator postprocessor for printing NROFF output on a Tektronix 4014, TC [1] is
phototypesetter-simulator postprocessor for TROFF that produces an approximation of phototypesetter
output on a Tektronix 4014. For example, in:

tbl files | eqn | troff —t options | tc

the first | indicates the piping of TBL’s output to EQN’s input; the second the piping of EQN's output to
TROFF’s input; and the third indicates the piping of TROFF’s output to TC. GCAT [1] can be used to
send TROFF (—g) output to the Murray Hill Computation Center.

The remainder of this manual consists of: a Summary and Index; a Reference Manual keyed to the
Index; a set of Tutorial Examples (sec also [4]); and an Addendum.

Joseph F. Ossanna

References

[1] T. A. Dolotta, S. B. Olsson, and A. G. Petruccelli (eds.). UNIX User’s Manual—Release 3.0, June 1980, Bell
. Laboratories.

[2] B. W. Kernighan and L. L. Cherry. Typesetting Mathematics—User’s Guide (Second Edition), Bell Laboratories.

[3] M. E. Lesk. TBL—A Program to Format Tables, Bell Laboratorics.

[4] B. W. Kernighan. 4 TROFF Tutorial, Bell Laboratories.

NROFF/TROFF User’s Manual
October 11, 1976

SUMMARY AND INDEX
Request Initial If No
Form Value* Argument Notes§ Explanation
1. General Explanation

2. Font and Character Size Control

pstN 10 point previous E Point size; also \st N.t

.ss N 12/36em ignored E Space-character size set to N/36em.¥

CeSFNM off - P Constant character space (width) mode (font F).¥

bd FN off - P Embolden font F by N—1 units.t

bdSFN off - P Embolden Special Font when current font is F.t

ft F Roman previous E Change to font F = x, xx, or 1-4. Also \fx, \f(xx, \fN.
fpNF R,I.LB,S ignored - Font named F mounted on physical position 1<N=<4.,
3. Page Control

plEN 11in 1lin] Page length.

bp =N N=] - Bi,v Eject current page; next page number V.

pn tN N=1 ignored - Next page number V.

.po =N 0; 26/27in previous v Page offset.

.ne N - N=1V D,v Need N vertical space (¥ = vertical spacing).

.mk R none internal D Mark current vertical place in register R.

at £N none internal D,v Return (upward only) to marked vertical place.

4. Text Filling, Adjusting, and Centering

br - - B Break.

fi fill - B.E Fill output lines.

.nf fill - B,E No filling or adjusting of output lines.

.ad ¢ adj,both adjust E Adjust output lines with mode c.

.na adjust - E No output line adjusting.

.ce N off N=1 B,E Center following N input text lines.

§. Vertical Spacing

.vs N 1/6in;12pts previous E.p Vertical base line spacing (V).

s N N=1 previous E Output N—1 Vs after each text output line.
Sp N - N=1V B,v Space vertical distance N in either direction.
SY N - N=1V v Save vertical distance N.

.08 - - - Output saved vertical distance.

.ns space - - D Turn no-space mode on.

TS - - D Restore spacing; turn no-space mode off.

6. Line Length and Indenting

JJl £N 6.5in previous E,m Line length.

.in =N N=0 previous B.E,m Indent.

At N - ignored B.E,m Temporary indent.

7. Macros, Strings, Diversion, and Position Traps

dexxyy - JV= - Define or redefine macro xx; end at call of yy.
.Amxxy - yy=.. - Append to a macro.

.ds xx string - ignored - Define a string xx containing string.

A8 xx String - ignored - Append string to string xx.

* Values separated by **;>” are for NROFF and TROFF respectively.

Notes are explained at the end of this Summary and Index,

t No cffect in NROFF.

$ The use of ** " as control character (instead of *“.”") suppresses the break function.

-3-

NROFF/TROFF User’s Manual

October 11, 1976

Explanation

Remove request, macro, or string.

Rename request, macro, or string xx to yy.
Divert output to macro xx.

Divert and append to xx.

Set location trap; negative is w.r.t. page bottom.
Change trap location.

Set a diversion trap.

Set an input-line count trap.

End macro is xx.

Define and set number register R; auto-increment by M.
Assign format to register R (¢=1, i, I, a, A).
Remove register R.

Tab settings; left type, unless r=R(right), C(centered).
Tab repetition character.

Leader repetition character.

Set field delimiter @ and pad character b.

Set escape character.

Turn off escape character mechanism.

Ligature mode on if N>0.

Underline (italicize in TROFF) N input lines.
Continuous underline in NROFF; like ul in TROFF.
Underline font set to F (to be switched to by ul).
Set control character to c.

Set no-break control character to c.

Request Initial If No

Form Value Argument Notes
JFm XX - ignored -
TR XX Yy - ignored -
.di xx - end D
.da xx - end D
wh Nxx - - v
.ch xx N - - v
Jdt N xx - off D,v
Jt NV xx - off E
.em xx none none -

8. Number Registers

MrRtNM - u
.af Re arabic - -
Jr R - - -

9. Tabs, Leaders, and Fields

.ta Nt ... 0.8; 0.5in none E,m
.tc ¢ none none E
Jde ¢ . none E
feab off off .
10. Input and Output Conventions and Character Translations
.ec ¢ \ \ -
€0 on - -
dg N -;on on -
al N off N=1 E
cu N off N=1 E
uf F Italic Italic -
.C ¢ E
<2) E
.tr abcd.... none - (0]

Translate a to b, etc. on output.

11. Local Horizontal and Vertical Motions, and the Width Function
12. Overstrike, Bracket, Line-drawing, and Zero-width Functions

13. Hyphenation.

.nh no hyphen. -
hy N no hyphen.
Jhec \%

hw wordl ...

14. Three Part Titles.

.tl “left “center right”
Pcc %

\%

hyphenate

''mmm

ignored

off -
previous E,m

15. Output Line Numbering.

am *xNMSI
.nn N -

off E
N=] . E

No hyphenation.

Hyphenate; N = mode.
Hyphenation indicator character .
Exception words.

Three part title.
Page number character.
Length of title.

Number mode on or off, set parameters.
Do not number next N lines.

NROFF/TROFF User’s Manual
October 11, 1976

Request Initial If No ,
Form Value Argument Notes Explanation

16. Conditional Acceptance of Input

.if ¢ anything - - If condition ¢ true, accept anything as input,
for multi-line use \{anything\}.

.if !¢ anything - - If condition ¢ false, accept anything.
.if N anything - u If expression N > 0, accept anything.
-if !N anything - u If expression N =< 0, accept anything.
[if “stringl “string?” anything - If stringl identical to string2, accept anything.
Jif ! stringl “string? " anything - If stringl not identical to string2, accept anything.
.ie ¢ anything - u If portion of if-else; all above forms (like if).
.el anything - - Else portion of if-else.
17. Environment Switching.
ev N N=0 previous - Environment switched (push down).
18. Insertions from the Standard Input
.rd prompt - prompt=BEL - Read insertion.
.ex - - - Exit from NROFF/TROFF.
19. Input/Output File Switching
.80 filename - - Switch source file (push down).
.nX filename end-of-file - Next file.
.pi program - - Pipe output to program (NROFF only).
20. Miscellaneous
.mcc N - off E,m Set margin character ¢ and separation V.
.tm string - new-line - Print string on terminal (UNIX standard message output).
g yy - Y= - Ignore till call of yy.
pmt - all - Print macro names and sizes;
if 7 present, print only total of sizes.
Al - - B Flush output buffer.

21. Output and Error Messages

Notes:
B Request normally causes a break.
D Mode or relevant parameters associated with current diversion level,
E Relevant parameters are a part of the current environment.
O Must stay in effect until logical output.
P Mode must be still or again in effect at the time of physical output.

v,p,m,u Default scale indicator; if not specified, scale indicators are ignored.

Alphabetical Request and Section Number Cross Reference

ab * c2 10 de 7 ev 17 hw 13 lg 10 nf 4 pc 14 rm 7 sv § ul 10
ad 4 ¢ 10 di 7 ex 18 hy 13 n 6 nh 13 pi 19 tm 7 ta 9 vs 5
af 8 ce 4 ds 7 fc 9 ic 16 Is 5 nm15 pl 3 r 8 c 9 wh 7
am 7 ¢h 7 dt 7 i 4 if i6 It 14 nn 15 pm 20 s 5 i 6 v *
as 7 co * ec 10 i 20 ig 20 mc 20 nr 8 pn 3 rn 3 tt 14

“bd 2 cs 2 el 16 fp 2 in 6 mk 3 ns S po 3 so 19 tm 20

bp 3 cu 10 em 7 ft 2 it 7 na 4 nx 19 ps 2 sp S tr 10

br 4 da 7 eo 10 hc 13 Ile 9 ne 3 os 5 rd 18 ss 2

uf 10

* This request is described in §2.1 of the Addendum.

NROFF/TROFF User’s Manual
October 11, 1976

Escape Sequences for Characters, Indicators, and Functions

Section
Reference

10.1
10.1
2.1
2.1
2.1
7
11.1
11.1
1.1
11.1
4.1
10.6
10.7
7.3
13
2.1
7.1
9.1
12.3
4.2
11.1
2.2
11.1
11.3
12.4
12.4

12.1
4.1
11.1
2.3
9.1
11.1
11.1
11.2
5.2
12.2
16
16
10.7

Escape
Sequence

\\

\e

\

\

_

\.
\(space)
\0

\|

\"

\&

\!

\I

\$N

\%

\(xx

\sx, \#(xx
\a
\babec...”
\c

\d

\x, \f(xx \fV
\h'N’
\kx
\I'Ne”
\L'N¢~
\nx,\n(xx
\oabc...”
\p

\r
\sN,\stN
\t

\u

\W N’

\Ww string”
\x N’

\zc

\i

\}
\(new-line)

\X

Meaning

\ (to prevent or delay the interpretation of \)
Printable version of the current escape character.

" (acute accent); equivalent to \(aa

" (grave accent); equivalent to \(ga

— Minus sign in the current font

Period (dot) (see de)

Unpaddable space-size space character

Digit width space

1/6 em narrow space character (zero width in NROFF)
1/12 em half-narrow space character (zero width in NROFF)
Non-printing, zero width character

Transparent line indicator

Beginning of comment

Interpolate argument 1 <N=<9

Default optional hyphenation character

Character named xx

Interpolate string x or xx

Non-interpreted leader character

Bracket building function

Interrupt text processing

Forward (down) 1/2 em vertical motion (1/2 line in NROFF)
Change to font named x or xx, or position N

Local horizontal motion; move right N (negative left)
Mark horizontal input place in register x

Horizontal line drawing function (optionally with ¢)
Vertical line drawing function (optionally with c)
Interpolate number register x or xx

Overstrike characters a, b, c, ...

Break and spread output line

Reverse 1 em vertical motion (reverse line in NROFF)
Point-size change function

Non-interpreted horizontal tab

Reverse (up) 1/2em vertical motion (1/2 line in NROFF)
Local vertical motion; move down N (negative up)
Interpolate width of string

Extra line-space function (negative before, positive afier)
Print ¢ with zero width (without spacing)

Begin conditional input

End conditional input

Concealed (ignored) new-line

X, any character not listed above

The escape sequences \\, \-, \", \$, \#, \a, \n, \t, and \(new-line) are interpreted in copy mode (§7.2).

w# See §3 of the Addendum for additional escape sequences.

NROFF/TROFF User’s Manual
October 11, 1976

Predefined General Number Registers

Section
Reference

3
11.2

7.4

7.4

11.3
15
4.1
11.2
11.2

Register
Name

%
ct
dl
dn
dw
dy
hp
In
mo
nl
sh
st

yr

Description

Current page number.

Character type (set by width function).

Width (maximum) of last completed diversion.

Height (vertical size) of last completed diversion.

Current day of the week (1-7).

Current day of the month (1-31).

Current horizontal place on input line.

Qutput line number.

Current month (1-12).

Vertical position of last printed text basc-line.

Depth of string below base line (generated by width function).
Height of string above base line (generated by width function).
Last two digits of current year.

Predefined Read-Only Number Registers

Section
Reference

7.3
11.1
11.1

5.2

7.4

g
[

...
P m A NNwWLAAR S

7.4

ta- See §4 of the Addendum for additional predefined number registers.

Register
Name

3
A
.H
.T
Vv

¢
.d
f

h

5y o
.z

Description

Number of arguments available at the current macro level.
Set to 1 in TROFF, if —a option used; always 1 in NROFF.
Available horizontal resolution in basic units.

Set to 1 in NROFF, if —T option used; always 0 in TROFF.
Available vertical resolution in basic units.

Post-line extra line-space most recently utilized using \x N,
Number of lines read from current input file.

Current vertical place in current diversion; equal to nl, if no diversion.
Current font as physical quadrant (1-4).

Text base-line high-water mark on current page or diversion.
Current indent.

Current line length.

Length of text portion on previous output line.

Current page offset.

Current page length.

Current point size.

Distance to the next trap.

Equal to 1 in fill mode and 0 in no-fill mode.

Current vertical line spacing.

Width of previous character.

Reserved version-dependent register.

- Reserved version-dependent register.

Name of current diversion.

NROFF/TROFF User’s Manual
October 11, 1976

REFERENCE MANUAL

1. General Explanation

1.1. Form of input. Input consists of text lines, which are destined to be printed, interspersed with control
lines, which set parameters or otherwise control subsequent processing. Control lines begin with a con-
trol character—normally . (period) or " (acute accent)—followed by a one or two character name that
specifies a basic request or the substitution of a user-defined macro in place of the control line. The
control character = suppresses the break function—the forced output of a partially filled line—caused by
certain requests. The control character may be separated from the request/macro name by white space
(spaces and/or tabs) for esthetic reasons. Names must be followed by either space or new-line. Con-
trol lines with unrecognized names are ignored.

Various special functions may be introduced anywhere in the input by means of an escape character,
normally \. For example, the function \nR causes the interpolation of the contents of the number regis-
ter R in place of the function; here R is either a single character name as in \nx, or left-parenthesis-
introduced, two-character name as in \n(xx.

1.2. Formatter and device resolution. For historical reasons, TROFF internally uses 432 units/inch, and
has a horizontal resolution of 1/432 inch and a vertical resolution of 1/144 inch. NROFF internally uses
240 units/inch, corresponding to the least common multiple of the horizontal and vertical resolutions of
various current typewriter-like output devices. TROFF rounds horizontal/vertical numerical parameter
input to its internal horizontal/vertical resolution. NROFF similarly rounds numerical input to the
actual resolution of the output device indicated by the —T option (default TELETYPE Model 37).

1.3. Numerical parameter input. Both NROFF and TROFF accept numerical input with the appended scale
indicators shown in the following table, where S is the current type size in points, V is the current verti-
cal line spacing in basic units, and C is a nominal character width in basic units.

Scale Number of basic units
Indicator Meaning TROFF NROFF
i Inch 432 240
¢ Centimeter 432X50/127 | 240X50/127
P Pica = 1/6 inch 72 240/6
m Em = S points 6XS C
n En = Em/2 IXS C, same as Em
p Point = 1/72inch | 6 240/72
u Basic unit 1 1
v Vertical line space | V Vv
none Default, see below

In NROFF, both the em and the en are taken to be equal to the C, which is output-device dependent;
common values are 1/10 and 1/12 inch. Actual character widths in NROFF need not be all the same
and constructed characters such as —> (—) are often extra wide. The default scaling is ems for the
horizontally-oriented requests and functions 11, in, ti, ta, It, po, me, \h, and \l; Vs for the vertically-
oriented requests and functions pl, wh, ch, dt, sp, sv, ne, rt, \v, \x, and \L; p for the vs request; and
u for the requests nr, if, and ie. All other requests ignore any scale indicators. When a number regis-
ter containing an already appropriately scaled number is interpolated to provide numerical input, the
unit scale indicator u may need to be appended to prevent an additional inappropriate default scaling.
The number, N, may be specified in decimal-fraction form but the parameter finally stored is rounded
to an integer number of basic units.

NROFF/TROFF User’s Manual
October 11, 1976

The absolute position indicator | may be prepended to a number N to generate the distance to the vertical
or horizontal place N. For vertically-oriented requests and functions, |V becomes the distance in basic
units from the current vertical place on the page or in a diversion (§7.4) to the the vertical place N. For
all other requests and functions, |V becomes the distance from the current horizontal place on the inpur
line to the horizontal place N. For example,

.sp 13.2¢
will space in the required direction to 3.2 centimeters from the top of the page.

1.4. Numerical expressions. Wherever numerical input is expected an expression involving parentheses,
the arithmetic operators +, —, /, », % (mod), and the logical operators <, >, <=, >=, = (or =),
& (and), : (or) may be used. Except where controlled by parentheses, evaluation of expressions is
left-to-right; there is no operator precedence. In the case of certain requests, an initial + or — is
stripped and interpreted as an increment or decrement indicator respectively. In the presence of default
scaling, the desired scale indicator must be attached to every number in an expression for which the
desired and default scaling differ. For example, if the number register x contains 2 and the current
point size is 10, then

Al (4.25iH\nxP+3)/2u
will set the line length to 1/2 the sum of 4.25 inches + 2 picas + 30 points.

1.5. Notation. Numerical parameters are indicated in this manual in two ways. =N means that the
argument may take the forms N, +N, or —N and that the corresponding effect is to set the affected
parameter to NV, to increment it by N, or to decrement it by N respectively. Plain N means that an ini-
tial algebraic sign is not an increment indicator, but merely the sign of N. Generally, unreasonable
numerical input is either ignored or truncated to a reasonable value. For example, most requests
expect to set parameters to non-negative values; exceptions are sp, wh, ch, nr, and if. The requests
ps, ft, po, vs, Is, 11, in, and It restore the previous parameter value in the absence of an argument.

Single character arguments are indicated by single lower case letters and one/two character arguments
arc indicated by a pair of lower case letters. Character string arguments are indicated by multi-character
mnémonics.

2. Font and Character Size Control

2.1. Character set. The TROFF character set consists of the so-called Commercizal IT character set plus a

" Special Mathematical Font character set—each having 102 characters. These character sets are shown
in the attached Table I. All ASCH graphic characters are included, with some on the Special Font. With
three exceptions, these ASCII characters are input as themselves, and non-ASCII characters are input in
the form \(xx where xx is a two-character name given in the attached Table II. The three ASCII excep-
tions are mapped as follows:

ASCII Input Printed by TROFF
Character Name Character Name
’ acute accent : close quote
grave accent ¢ open quote
- minus - hyphen

The characters ', ', and — may be input by \. \', and \— respectively or by their names (Table II).
The ASCH characters @, #, ", , , <, >, \, {, }, ~, ", and _ exist only on the Special Font and are
printed as a l-em space if that font is not mounted. (ASCII control characters are discussed in §10.1.)

NROFF understands the entire TROFF character set, but can in general print only ASCII characters,
additional characters as may be available on the output device, such characters as may be able to be
constructed by overstriking or other combination, and those that can reasonably be mapped into other
printable characters. The exact behavior is determined by a driving table prepared for each device. The
characters , , and _ print as themselves.

NROFF/TROFF User’s Manual
October 11, 1976

2.2. Fonts. The default mounted fonts are Times Roman (R), Times Italic (I), Times Bold (B), and
the Special Mathematical Font (S) on physical typesetter positions 1, 2, 3, and 4 respectively. These
fonts are used in this document. The current font, initially Roman, may be changed (among the
mounted fonts) by use of the ft request, or by imbedding at any desired point either \fx, \f(xx, or \fV
where x and xx are the name of a mounted font and N is a numerical font position. It is not necessary
to change to the Special Font; characters on that font are automatically handled. A request for a named
but not-mounted font is ignored. TROFF can be informed that any particular font is mounted by use of
the fp request. The list of known fonts is installation dependent. In the subsequent discussion of
font-related requests, F represents either a one/two-character font name or the numerical font position,
1-4. The current font is available (as numerical position) in the read-only number register .f.

NROFF understands font control and normally underlines Italic characters (see §10.5).

2.3. Character size. Available character point sizes are 6, 7, 8, 9, 10, 11, 12, 14, 16, 18, 20, 22, 24, 28,
and 36. This is a range of 1/12 inch to 1/2 inch. The ps request is used to change or restore the point
size. Alternatively, the point size may be changed between any two characters by imbedding a \sN at
the desired point to set the size to N, or a \s N (1<N=<9) to increment/decrement the size by N; \s0
restores the previous size. Requested point size values that are between two valid sizes yield the larger
of the two. The current size is available in the .s register. NROFF ignores type size control.

Request Initial If No
Form Value Argument Notes* Explanation

.ps =N 10 point previous E Point size set to +N. Alternatively, imbed \sN or
\s+N. Any positive size value may be requested; if
invalid, the next larger valid size will result, with a max-
imum of 36. A paired sequence +N,—N will work
because the previous requested value is also remem-
bered. Ignored in NROFF,

.SS N 12/36em ignored E Space-character size is set to N/36ems. This size is the
minimum word spacing in adjusted text. Ignored in
NROFF.

esFNM off - p Constant character space (width) mode is set on for font
F (if mounted); the width of every character will be
taken to be N/36 ems. If M is absent, the em is that of
the character’s point size; if M is given, the em is M-
points. All affected characters are centered in this space,
including those with an actual width larger than this
space. Special Font characters occurring while the
current font is F are also so treated. If NV is absent, the
mode is turned off. The mode must be still or again in
effect when the characters are physically printed. lgnored
in NROFF.

bd FN off - P The characters in font F will be artificially emboldened by
printing each one twice, separated by N—1 basic units. A
reasonable value for N is 3 when the character size is in
the vicinity of 10 points. If N is missing the embolden -
mode is turned off. The column heads above were
printed with .bd I 3. The mode must be still or again in
effect when the characters are physically printed. See
§2.2 of the Addendum for the effect of bd in NROFF.

MbASFN off - P The characters in the Special Font will be emboldened
' : o ' ‘whenever the current font is F. This manual was printed

* Notes are explained at the end of the Summary and Index above.

- 10 -

NROFF/TROFF User’s Manual

October 11, 1976

ft F Roman

fpNF RIBS

3. Page control

previous

ignored

with .bdSB3. The mode must be still or again in effect
when the characters are physically printed.

Font changed to F. Alternatively, imbed \fF. The font
name P is reserved to mean the previous font, ‘

Font position. This is a statement that a font named F is
mounted on position N (1-4). It is a fatal error if F is
not known. The phototypesetter has four fonts physically
mounted. Each font consists of a film strip which can be
mounted on a numbered quadrant of a wheel. The
default mounting sequence assumed by TROFF is R, I, B,
and S on positions 1, 2, 3 and 4.

Top and bottom margins are not automatically provided; it is conventional to define two macros and to
set traps for them at vertical positions 0 (top) and —N (N from the bottom). See §7 and Tutorial
Examples §T2. A pseudo-page transition onto the first page occurs either when the first break occurs or
when the first non-diverted text processing occurs. Arrangements for a trap to occur at the top of the
first page must be completed before this transition. In the following, references to the current diversion
(§7.4) mean that the mechanism being described works during both ordinary and diverted output (the

former considered as the top diversion level).

The usable page width on the phototypesetter is about 7.54 inches, beginning about 1/27 inch from the
left edge of the 8 inch wide, continuous roll paper. The physical limitations on NROFF output are
output-device dependent.

Request Initial
Form Value

.pl =N 11in

If No
Argument

11in

ignored

.po =N 0; 26/27int previous

.ne N -

N=1V

Notes Explanation

v

%
B*,v

D,v

Page length set to + N. The internal limitation is about
75 inches in TROFF and about 136 inches in NROFF.
The current page length is available in the .p register.

Begin page. The current page is ejected and a new page
is begun. If =N is given, the new page number will be
+N. Also see request ns.

Page number. The next page (when it occurs) will have
the page number =N. A pn must occur before the ini-
tial pseudo-page transition to affect the page number of
the first page. The current page number is in the %
register.

Page offset. The current left margin is set to £ N. The
TROFF initial value provides about 1 inch of paper mar-
gin including the physical typesetter margin of 1/27 inch.
In TROFF the maximum (line-length)+ (page-offset) is
about 7.54 inches. See §6. The current page offset is
available in the .o register.

Need N vertical space. If the distance, D, to the next
trap position (see §7.5) is less than N, a forward vertical
space of size D occurs, which will spring the trap. If
there are no remaining traps on the page, D is the dis-
tance to the bottom of the page. If D <V, another line
could still be output and spring the trap. In a diversion,

* The use of ** " as control character (instead of **.”’) suppresses the break function.
are for NROFF and TROFF respectively.

t Values separated by

Y L]
.

- 11 -

NROFF/TROFF User’s Manual
October 11, 1976

D is the distance to the diversion trap, if any, or is very
large.

.mk R none internal D Mark the current vertical place in an internal register
(both associated with the current diversion level), or in
register R, if given. See rt request.

at N none internal D,v Return upward only to a marked vertical place in the
current diversion. If £ N (w.r.t. current place) is given,
the place is £ N from the top of the page or diversion or,
if N is absent, to a place marked by a previous mk. Note
that the sp request (§5.3) may be used in all cases
instead of rt by spacing to the absolute place stored in a
explicit register; e.g., using the sequence .mk R ..
.sp\nRu. °

4. Text Filling, Adjusting, and Centering

4.1. Filling and adjusting. Normally, words are collected from input text lines and assembled into a out-
put text line until some word doesn’t fit. An attempt is then made the hyphenate the word in effort to
assemble a part of it into the output line. The spaces between the words on the output line are then
increased to spread out the line to the current line length minus any current indent. A word is any string
of characters delimited by the space character or the beginning/end of the input line. Any adjacent pair
of words that must be kept together (neither split across output lines nor spread apart in the adjustment
process) can be tied together by separating them with the unpaddable space character **\ *’ (backslash-
space). The adjusted word spacings are uniform in TROFF and the minimum interword spacing can be
controlled with the ss request (§2). In NROFF, they are normally nonuniform because of quantization
to character-size spaces; however, the command-line option —e causes uniform spacing with full output
device resolution. Filling, adjustment, and hyphenation (§13) can all be prevented or controlled. The
text length on the last line output is available in the .n register, and text base-line position on the page
for this line is in the nl register. The text base-line high-water mark (lowest place) on the current page
is in the .h register.

An input text line ending with ., ?, or ! is taken to be the end of a semtence, and an additional space
character is automatically provided during filling. Multiple inter-word space characters found in the
input are retained, except for trailing spaces; initial spaces also cause a break.

When filling is in effect, a \p may be imbedded or attached to a word to cause a break at the end of the
word and have the resulting output line spread out to fill the current line length.

A text input line that happens to begin with a control character can be made to not look like a control
line by prefacing it with the non-printing, zero-width filler character \&. Still another way is to specify
output translation of some convenient character into the control character using tr (§10.5).

4.2. Interrupted text. The copying of a input line in no-fill (i.e., non-fill) mode can be interrupted by ter-
minating the partial line with a \c. The next encountered input text line will be considered to be a con-
tinuation of the same iine of input text. Similarly, a word within filled text may be interrupted by ter-
minating the word (and line) with \¢; the next encountered text will be taken as a continuation of the
interrupted word. If the intervening control lines cause a break, any partial line will be forced out along
with any partial word.

Request Initial If No '

Form Value Argument Notes Explanation .)

.br - - B Break. Thc“ﬁlling of the line currently being collected is
stopped and the line is output without adjustment. Text
lines beginning with space characters and empty text
lines (blank lines) also cause a break.

fi fill on - B,E Fill subsequent output lines. The register .u is 1in fill

mode and 0 in no-fill mode.

-12 -

NROFF/TROFF User’s Manual
October 11, 1976

.nf fill on - - B,E No-fill. Subsequent output lines are neither filled nor
adjusted. Input text lines are copied directly to output
lines without regard for the current line length.

.ad ¢ adj,both adjust E Line adjustment is begun. If fill mode is not on, adjust-
ment will be deferred until fill mode is back on. If the
type indicator ¢ is present, the adjustment type is
changed as shown in the following table.

Indicator Adjust Type
1 adjust left margin only
r adjust right margin only
c center
born adjust both margins
absent unchanged

See §2.2 of the Addendum for additional details.

.na adjust - E No-adjust. Adjustment is turned off; the right margin
will be ragged. The adjustment type for ad is not
changed. Output line filling still occurs if fill mode is on.

.ce N off =1 B.E Center the next N input text lines within the current
(line-length minus indent). If N=0, any residual count
is cleared. A break occurs after each of the N input
lines. If the input line is too long, it will be left adjusted.

5. Vertical Spacing

5.1. Base-line spacing. The vertical spacing (V) between the base-lines of successive output lines can be
set using the vs request with a resolution of 1/144inch=1/2 point in TROFF, and to the output device
resolution in NROFF. ¥V must be large enough to accommodate the character sizes on the affected out-
put lines. For the common type sizes (9-12 points), usual typesetting practice is to set ¥ to 2 points
greater than the point size; TROFF default is 10-point type on a 12-point spacing (as in this document).
The current V is available in the .v register. Multiple-¥ line separation (e.g. double spacing) may be
requested with Is.

5.2. Extra line-space. If a word contains a vertically tall construct requiring the output line containing it
to have extra vertical space before and/or after it, the extra-line-space function \x N~ can be imbedded
in or attached to that word. In this and other functions having a pair of delimiters around their parame-
ter (here), the delimiter choice is arbitrary, except that it can’t look like the continuation of a number
expression for N. If N is negative, the output line containing the word will be preceded by N extra
vertical space; if N is positive, the output line containing the word will be followed by N extra vertical
space. If successive requests for extra space apply to the same line, the maximum values are used.
The most recently utilized post-line extra line-space is available in the .a register.

5.3. Blocks of vertical space. A block of vertical space is ordinarily requested using sp, which honors the
no-space mode and which does not space past a trap. A contiguous block of vertical space may be
reserved using sv.

Request Initial If No

Form Value Argument Notes Explanation

.v§sN 1/6in;12pts previous E,p Set vertical base-line spacing size V. Transient extra
' vertical space available with \x N (see above).

JAs N N=1 previous E - Line spacing set to *=N. N—1 Vs (blank lines) arc

appended to each output text line. Appended blank lines
are omitted, if the text or previous appended blank line
reached a trap position.

-13-

NROFF/TROFF User's Manual
October 11, 1976

Sp N - N=1V B,v Space vertically in either direction. If N is negative, the
" motion is backward (upward) and is limited to the dis-
tance to the top of the page. Forward (downward)
motion is truncated to the distance to the nearest trap. If
the no-space mode is on, no spacing occurs (sec ns and
rs below).

SY N - N=1V v Save a contiguous vertical block of size N. If the dis-
tance to the next trap is greater than N, N vertical space
is output. No-space mode has no effect. If this distance
is less than NV, no vertical space is immediately output,
but NV is remembered for later output (see 0s). Subse-
quent sv requests will overwrite any still remembered N.

.08 - - - Output saved vertical space. No-space mode has no
effect. Used to finally output a block of vertical space
requested by an earlier sv request.

IS space - D No-space mode turned on. When on, the no-space mode
inhibits sp requests and bp requests without a next page
number. The no-space mode is turned off when a line of
output occurs, or with rs.

TS space - D Restore spacing. The no-space mode is turned off.
Blank text line - B Causes a break and outputs a blank line exactly like sp 1.
6. Line Length and Indenting

The maximum line length for fill mode may be set with Il. The indent may be set with in; an indent
appiicable to only the next output line may be set with ti. The line length includes indent space but not
page offset space. The line-length minus the indent is the basis for centering with ce. The effect of 11,
in, or ti is delayed, if a partially collected line exists, until after that line is output. In fill mode the
length of text on an output line is less than or equal to the line length minus the indent. The current
line length and indent are available in registers .1 and .i respectively. The length of three-part titles pro-
duced by tl (see §14) is independently set by It.

Request Initial If No

Form Value Argument Notes Explanation

JJI N 6.5in previous E,m Line length is set to £N. In TROFF the maximum
(line-length) + (page-offset) is about 7.54 inches.

Jn =N N=0 previous B,E,m Indent is set to +N. The indent is prepended to each
output line.

.ti =N - ignored B,E,m Temporary indent. The next output text line will be

indented a distance *N with respect to the current
indent. The resulting total indent may not be negative.
The current indent is not changed.

7. Macros, Strings, Diversion, and Position Traps

7.1. Macros and strings. A macro is a named set of arbitrary lines that may be invoked by name or with
a trap. A string is a named string of characters, not including a new-line character, that may be interpo-
lated by name at any point. Request, macro, and string names share the same name list. Macro and
string names may be one or two characters long and may usurp previously defined request, macro, or
string names. Any of these entities may be renamed with rn or removed with rm. Macros are created
by de and di, and appended to by am and da; di and da cause normal output to be stored in a macro.
Strings are created by ds and appended to by as. A macro is invoked in the same way as a request; a
control line beginning .xx will interpolate the contents of macro xx. The remainder of the line may
contain up to nine arguments. The strings x and xx are interpolated at any desired point with \#x and
*(xx respectively. String references and macro invocations may be nested.

-14 -

NROFF/TROFF User’s Manual
October 11, 1976

7.2. Copy mode input interpretation. During the definition and extension of strings and macros (not by
diversion) the input is read in copy mode. The input is copied without interpretation except that:

o The contents of number registers indicated by \n are interpolated.

« Strings indicated by \# are interpolated.

¢ Arguments indicated by \$ are interpolated.

o Concealed new-lines indicated by \(new-line) are eliminated.

e Comments indicated by \" are eliminated.

o \t and \a are interpreted as ASCII horizontal tab and SOH respectively (§9).
« \\ is interpreted as \.

o \. is interpreted as ““."".

These interpretations can be suppressed by prepending a \. For example, since \\ maps into a \, \\n
will copy as \n which will be interpreted as a number register indicator when the macro or string is
reread.

7.3. Arguments. When a macro is invoked by name, the remainder of the line is taken to contain up to
nine arguments. The argument separator is the space character, and arguments may be surrounded by
double-quotes to permit imbedded space characters. Pairs of double-quotes may be imbedded in
double-quoted arguments to represent a single double-quote. If the desired arguments won’t fit on a
line, a concealed new-line may be used to continue on the next line.

When a macro is invoked the input level is pushed down and any arguments available at the previous
level become unavailable until the macro is completely read and the previous level is restored. A
macro’s own arguments can be interpolated at any point within the macro with \$N, which interpolates
the Nth argument (1=<N=<9). If an invoked argument doesn’t exist, a null string results. For exam-
ple, the macro xx may be defined by

.de xx \"begin definition
Today is \\$1 the \\$2.
.- \"end definition

and called by
.xx Monday 14th
to produce the text
Today is Monday the 14th.

Note that the \$ was concealed in the definition with a prepended \. The number of currently available
arguments is in the .$ register.

No arguments are available at the top (non-macro) level in this implementation. Because string
referencing is implemented as a input-level push down, no arguments are available from within a string.
No arguments are available within a trap-invoked macro.

Arguments are copied in copy mode onto a stack where they are available for reference. The mechan-
ism does not allow an argument to contain a direct reference to a long string (interpolated at copy time)
and it is advisable to conceal string references (with an extra \) to delay interpolation until argument
reference time.

7.4. Diversions. Processed output may be diverted into a macro for purposes such as footnote processing
(see Tutorial §T5) or determining the horizontal and vertical size of some text for conditional changing
of pages or columns. A single diversion trap may be set at a specified vertical position. The number
registers dn and dl respectively contain the vertical and horizontal size of the most recently ended
diversion. Processed text that is diverted into a macro retains the vertical size of each of its lines when

"reread in no-fill mode regardless of the current V. Constant-spaced (es) or emboldened (bd) text that is
diverted can be reread correctly only if these modes are again or still in effect at reread time. One way
to do this is to imbed in the diversion the appropriate ¢s or bd requests with the transparent mechanism
described in §10.6.

.15 -

NROFF/TROFF User's Manual
October 11, 1976

Diversions may be nested and certain parameters and registers are associated with the current diversion
level (the top non-diversion level may be thought of as the Oth diversion level). These are the diver-
sion trap and associated macro, no-space mode, the internally-saved marked place (see mk and rt), the
current vertical place (.d register), the current high-water text base-line (.h register), and the current
diversion name (.z register).

7.5. Traps. Three types of trap mechanisms are available—page traps, a diversion trap, and an input-
line-count trap. Macro-invocation traps may be planted using wh at any page position including the top.
This trap position may be changed using ch. Trap positions at or below the bottom of the page have no
effect unless or until moved to within the page or rendered effective by an increase in page length.
Two traps may be planted at the same position only by first planting them at different positions and
then moving one of the traps; the first planted trap will conceal the second unless and until the first one
is moved (see Tutorial Examples §T5). If the first one is moved back, it again conceals the second
trap. The macro associated with a page trap is automatically invoked when a line of text is output
whose vertical size reaches or sweeps past the trap position. Reaching the bottom of a page springs the
top-of-page trap, if any, provided there is a next page. The distance to the next trap position is avail-
able in the .t register; if there are no traps between the current position and the bottom of the page, the
distance returned is the distance to the page bottom.

A macro-invocation trap effective in the current diversion may be planted using dt. The .t register
works in a diversion; if there is no subsequent trap a large distance is returned. For a description of
input-line-count traps, see it below.

Request Initial If No
Form Value Argument Notes Explanation

dexxyy - = - Define or redefine the macro xx. The contents of the
macro begin on the next input line. Input lines are
copied in copy mode until the definition is terminated by a
line beginning with .yy, whereupon the macro yy is
called. In the absence of py, the definition is terminated
by a line beginning with **..”’. A macro may contain de
requests provided the terminating macros differ or the
contained definition terminator is concealed; ¢“.."" can be
concealed as ‘“‘\\..”” which will copy as ‘\..”” and be

L33 b a4

reread as “*.."".
.amxxyy - yy=.. - Append to macro (append version of de).

.ds xx string - ignored - Define a string xx containing string. Any initial double-
quote in string is stripped off to permit initial blanks.

A8 XX String

ignored - Append string to string xx (append version of ds).

Fm xx - ignored - Remove request, macro, or string. The name xx is
removed from the name list and any related storage
space is freed. Subsequent references will have no effect.

JRXXYY - ignored - Rename request, macro, or string xx to yy. If yy exists, it
is first removed.

di xx - end . D Divert output to macro xx. Normal text processing
' occurs during diversion except that page offsetting is not

done. The diversion ends when the request di or da is

encountered without an argument; extraneous requests

of this type should not appear when nested diversions are

being used. '
.da xx - end D Divert, appending to xx (append version of di).
.wh Nxx - - ' v Install a trap to invoke xx at page position N; a negative N

will be interpreted with respect to the page bottom. Any

- 16 -

NROFF/TROFF User’s Manual
October 11, 1976

chxx N - - v
Jdt N xx - off D,v
Jt N xx - off E
.em xx none none -

8. Number Registers

macro previously planted at N is replaced by xx. A zero
N refers to the top of a page. In the absence of xx, the
first found trap at N, if any, is removed.

Change the trap position for macro xx to be N. In the
absence of N, the trap, if any, is removed.

Install a diversion trap at position NN in the current diver-
sion to invoke macro xx. Another dt will redefine the
diversion trap. If no arguments are given, the diversion
trap is removed.

Set an input-line-count trap to invoke the macro xx after
N lines of text input have been read (control or request
lines don’t count). The text may be in-line text or text
interpolated by in-line or trap-invoked macros.

The macro xx will be invoked when all input has ended.
The effect is the same as if the contents of xx had been
at the end of the last file processed.

A variety of parameters are available to the user as predefined, named number registers (see Summary
and Index, page 7). In addition, the user may define his own named registers. Register names are one
or two characters long and do not conflict with request, macro, or string names. Except for certain
predefined read-only registers, a number register can be read, written, automatically incremented or
decremented, and interpolated into the input in a variety of formats. One common use of user-defined
registers is to automatically number sections, paragraphs, lines, etc. A number register may be used
any time numerical input is expected or desired and may be used in numerical expressions (§1.4).

Number registers are created and modified using nr, which specifies the name, numerical value, and
the auto-increment size. Registers are also modified, if accessed with an auto-incrementing sequence.
If the registers x and xx both contain N and have the auto-increment size M, the following access

sequences have the effect shown:

Effect on Value
Sequence Register Interpolated
\nx none N
\n{xx none N
\n+x x incremented by M N+M
\n—x x decremented by M N—M
\n+(xx |xxincremented by M N+M
\n—(xx | xx decremented by M N—M

When interpolated, a number register is converted to decimal (default), decimal with leading zeros,
lower-case Roman, upper-case Roman, lower-case sequential alphabetic, or upper-case sequential alpha-

betic according to the format specified by af.

Request Initial If No

Form Value Argument Notes
.NnrR+tNM - u

.af R¢ arabic - -

Explanation

The number register R is assigned the value /N with
respect to the previous value, if any. The increment for
auto-incrementing is set to M.

Assign format ¢ to register R. The available formats are:

.17 -

NROFF/TROFF User's Manual
October 11, 1976

Numbering
Format Sequence

1 0,1,2,3,4,5,...

001 | 000,001,002,003,004,005,...

i 0,1,ii,1ii,iv,v,...
I 0,LILIILIV,V,...
a 0,a,b,c,...,z,aa,ab,...,zz,aaa,...
A 0,A,B,C,...,Z,AA,AB,....ZZ AAA,...

An arabic format having N digits specifies a field width of
N digits (example 2 above). The read-only registers and
the width function (§11.2) are always arabic.

.IT R - ignored Remove register R. If many registers are being created
dynamically, it may become necessary to remove no
longer used registers to recapture internal storage space
for newer registers.

9. Tabs, Leaders, and Fields

9.1. Tabs and leaders. The ASCII horizontal tab character and the ASCII SOH (hereafter known as the
leader character) can both be used to generate either horizontal motion or a string of repeated charac-
ters. The length of the generated entity is governed by internal tab stops specifiable with ta. The
default difference is that tabs generate motion and leaders generate a string of periods; tc and lc offer
the choice of repeated character or motion. There are three types of internal tab stops—left adjusting,
right adjusting, and centering. In the following table: D is the distance from the current position on the
input line (where a tab or leader was found) to the next tab stop; next-string consists of the input charac-
ters following the tab (or leader) up to the next tab (or leader) or end of line; and W is the width of
next-string.

Tab Length of motion or Location of

type repeated characters next-string

Left D Following D

Right D—w Right adjusted within D
Centered D—W/2 Centered on right end of D

The length of generated motion is allowed to be negative, but that of a repeated character string cannot
be. Repeated character strings contain an integer number of characters, and any residual distance is
prepended as motion. Tabs or leaders found after the last tab stop are ignored, but may be used as
next-string terminators.

Tabs and leaders are not interpreted in copy mode. \t and \a always generate a non-interpreted tab and
leader respectively, and are equivalent to actual tabs and leaders in copy mode.

9.2. Fields. A field is contained between a pair of field delimiter characters, and consists of sub-strings
separated by padding indicator characters. The field length is the distance on the inpur line from the
position where the field begins to the next tab stop. The difference between the total length of all the
sub-strings and the field length is incorporated as horizontal padding space that is divided among the
indicated padding places. The incorporated padding is allowed to be negative. For example, if the field
delimiter is # and the padding indicator is °, # xxx"right # specifies a right-adjusted string with the
string xxx centered in the remaining space. ‘

- 18 -

NROFF/TROFF User’s Manual
October 11, 1976

Request Initial If No

Form Value Argument Notes Explanation

.ta NVt ... 8n; 0.5in none E,m Set tab stops and types. =R, right adjusting; t=C,
centering; ¢ absent, left adjusting. TROFF tab stops are
preset every 0.5in.; NROFF every 8 nominal character
widths. The stop values are separated by spaces, and a
value preceded by + is treated as an increment to the
previous stop value.

Jtgcc none none E The tab repetition character becomes ¢, or is removed
specifying motion.

Jdee . none E The leader repetition character becomes ¢, or is removed
specifying motion.

fcab off off - The field delimiter is set to a; the padding indicator is set

to the space character or to b, if given. In the absence of
arguments the field mechanism is turned off.

10. Input and OQutput Conventions and Character Translations

10.1. Input character translations. Ways of typing in the graphic character set were discussed in §2.1.
The ASCII control characters SOH (§9.1), horizontal tab (§9.1), and backspace (§10.3) are discussed
elsewhere; the new-line delimits input lines. In addition, STX, ETX, ENQ, ACK, BEL, SO, SI, and ESC
may be used as delimiters or translated into a graphic with tr (§10.5); TROFF normally passes none of
these characters to its output (but it passes all 8 if invoked with the —a command-line option); NROFF
passes the last 4, with their effect depending on the output device used. All others are ignored.

The escape character \ introduces escape sequences—causes the following character to mean another
character, or to indicate some function. A complete list of such sequences is given in the Summary
and Index on page 6. \ should not be confused with the ASCII control character ESC of the same name.
The escape character \ can be input with the sequence \\. The escape character can be changed with
ec, and all that has been said about the default \ becomes true for the new escape character. \e can be
used to print whatever the current escape character is. If necessary or convenient, the escape mechan-
ism may be turned off with eo, and restored with ec.

Request Initial If No

Form Value Argument Notes Explanation

ec ¢ \ \ - Set escape character to \, or to ¢, if given.
.0 on - - Turn escape mechanism off.

10.2. Ligatures. Five ligatures are available in the current TROFF character set: fi, fl, ff, ffi, and M.
They may be input (even in NROFF) by \(fi, \(fl, \(ff, \(Fi, and \(FI respectively. The ligature mode
is normally on in TROFF, and automatically invokes ligatures during input.

Request Initial If No
Form Value Argument Notes Explanation
Jdg N off; on on - Ligature mode is turned on if N is absent or non-zero,

and turned off if N=0. If N=2, only the two-character
ligatures are automatically invoked. Ligature mode is
inhibited for request, macro, string, register, or file
names, and in copy mode. No effect in NROFF.

. 10.3. Backspacing, underlining, overstriking, etc. Unless in copy mode, the ASCII backspace character is
replaced by a backward horizontal motion having the width of the space character. Underlining as a
form of line-drawing is discussed in §12.4. A generalized overstriking function is described in §12.1.

NROFF automatically underlines characters in the underline font specifiable with uf (normally Times
Italic on font position 2—see §2.2). In addition to ft and \fF, the underline font is selected by ul and
cu. Underlining is restricted to an output-device-dependent subset of reasonable characters.

-19.

NROFF/TROFF User’s Manual
October 11, 1976

Request Initial If No
Form Value Argument Notes' Explanation

alN off N=1] E Underline in NROFF (italicize in TROFF) the next N
input text lines. Actually, switch to underline font, saving
the current font for later restoration; other font changes
within the span of a ul will take effect, but the restora-
tion will undo the last change. Output generated by tl
(§14) is affected by the font change, but does not decre-
ment N. If N>1, there is the risk that a trap interpo-
lated macro may provide text lines within the span;
environment switching can prevent this.

cu N off N=1 E A vanant of ul that causes every character to be under-
lined in NROFF. Identical to ul in TROFF.

uf F Italic Ttalic - Underline font set to F. In NROFF, F may not be on
position 1 (initially Times Roman).

10.4. Control characters. Both the control character . and the no-break control character =~ may be
changed, if desired. Such a change must be compatible with the design of any macros used in the span
of the change, and particularly of any trap-invoked macros.

Request Initial If No

Form Value Argument Notes Explanation

£ C . . E The basic control character is set to ¢, or reset to **.”".
<2c) i E The no-break control character is set to ¢, or reset to ** "

10.5. Output translation. One character can be made a stand-in for another character using tr. All text
processing (e.g., character comparisons) takes place with the input (stand-in) character which appears to
have the width of the final character. The graphic translation occurs at the moment of output (includ-
ing diversion).

Request Initial If No
Form Value Argument Notes Explanation
.tr abcd.... none - (0] Translate a into b, ¢ into d, etc. If an odd number of

characters is given, the last one will be mapped into the
space character. To be consistent, a particular translation
must stay in effect from input to ourput time.

10.6. Transparent throughput. An input line beginning with a \! is read in copy mode and transparently
output (without the initial \!); the text processor is otherwise unaware of the line’s presence. This
mechanism may be used to pass control information to a post-processor or to imbed control lines in a
macro created by a diversion.

10.7. Comments and concealed new-lines. An uncomfortably long input line that must stay one line (e.g.,
a string definition, or no-filled text) can be split into many physical lines by ending all but the last one
with the escape \. The sequence \(new-line) is .always ignored—except in a comment. Comments may
be imbedded at the end of any line by prefacing them with \". The new-line at the end of a comment
cannot be concealed. A line beginning with \" will appear as a blank line and behave like .sp 1; a com-
ment can be on a line by itself by beginning the line with .\".

11. Local Horizontal and Vertical Motions, and the Width Function

11.1. Local Motions. The functions \v'N” and \h'N" can be used for local vertical and horizontal motion
respectively. The distance N may be negative; the positive directions are rightward and downward. A
local motion is one contained within a line. To avoid unexpected vertical dislocations, it is necessary
that the net vertical local motion within a word in filled text and otherwise within a line balance to zero.
The above and certain other escape sequences providing local motion are summarized in the following
table.

- 20 -

NROFF/TROFF User's Manual
October 11, 1976

Vertical Effect in Horizontal Effect in
Local Motion TROFF NROFF Local Motion TROFF NROFF
\W'N’ Move distance N \b'N~ Move distance N
\(space) | Unpaddable space-size space
\u . % em up 1 line up \0 Digit-size space
\d 14 em down | ' line down
\r 1 em up 1 line up \l 1/6 em space | ignored
\" 1/12 em space | ignored

As an example, E2 could be generated by the sequence E\s—2\v —0.4m 2\v 0.4m \s+2; it should be
noted in this example that the 0.4 em vertical motions are at the smaller size.

11.2. Width Function. The width function \w string” generates the numerical width of string (in basic
units). Size and font changes may be safely imbedded in string, and will not affect the current environ-
ment. For example, .ti —\w 1. ‘u could be used to temporarily indent leftward a distance equal to the
size of the string 1. .

The width function also sets three number registers. The registers st and sb are set respectively to the
highest and lowest extent of string relative to the baseline; then, for example, the total height of the
string is \n(stu—\n(sbu. In TROFF the number register ct is set to a value between 0 and 3: 0 means
that all of the characters in string were short lower case characters without descenders (like ¢); 1 means
that at least one character has a descender (like y); 2 means that at least one character is tall (like H);
and 3 means that both tall characters and characters with descenders are present.

11.3. Mark horizontal place. The escape sequence \kx will cause the current horizontal position in the
input line to be stored in register x. As an example, the construction \kxword\h |\nxu+2u word will
embolden word by backing up to almost its beginning and overprinting it, resulting in word.

12, Overstrike, Bracket, Line-drawing, and Zero-width Functions

12.1. Overstriking. Automatically centered overstriking of up to nine characters is provided by the over-
strike function \o string”. The characters in string are overprinted with centers aligned; the total width is
that of the widest character. string should nor contain local vertical motion. As examples, \o e\ pro-
duces e, and \o \(mo\(sl produces £.

12.2. Zero-width characters. The function \zc will output ¢ without spacing over it, and can be used to
produce left-aligned overstruck combinations. As examples, \z\(ci\(pl will produce @, and
\(br\z\(rn\(ul\(br will produce the smallest possible constructed box 0.

12.3. Large Brackets. The Special Mathematical Font contains a number of bracket construction pieces
(U J4 4 L)1) that can be combined into various bracket styles. The function \b string” may be used
to pile up vertically the characters in string (the first character on top and the last at the bottom); the
characters are vertically separated by 1 em and the total pile is centered 1/2em above the current base-

line (% linc in NROFF). For cxample, \b \(I\(If ‘E\[\b \(re\(rf \x" —0.5m"\x'0.5m" produces [E]

12.4. Line drawing. The function \1 'Nc~ will draw a string of repeated c's towards the right for a dis-
tance N. (\l is \(lower case L). If c looks like a continuation of an expression for N, it may insulated
from N with a \&. If ¢ is not specified, the _ (baseline rule) is used (underline character in NROFF). If
N is negative, a backward horizontal motion of size /V is made before drawing the string. Any space
resulting from N/(size of ¢) having a remainder is put at the beginning (left end) of the string. In the
case of characters that are designed to be connected such as baseline-rule _, underrule _, and root-
en , the remainder space is covered by over-lapping. If NV is less than the width of ¢, a single ¢ is cen-
. tered on a distance N. As an example, a macro to underscore a string can be written

.de us)
\\$1\ 170\ (ul

.

21 -

NROFF/TROFF User’s Manual
October 11, 1976

or one to draw a box around a string

.de bx
\(br\IN\SIN\(br\ 17 [O\(rn "\ 17| O\(ul’

such that
.us "underlined words"
and

.bx "words in a box"

yield underlined words and [words in a box].

The function \L" N¢~ will draw a vertical line consisting of the (optional) character ¢ stacked vertically
apart 1em (1 line in NROFF), with the first two characters overlapped, if necessary, to form a continu-
ous line. The default character is the box rule | (\(br); the other suitable character is the bold vertical |
(\(bv). The line is begun without any initial motion rélative to the current base line. A positive N
specifies a line drawn downward and a negative N specifies a line drawn upward. After the line is drawn
no compensating motions are made; the instantaneous baseline is at the end of the line.

The horizontal and vertical line drawing functions may be used in combination to produce large boxes.
The zero-width box-rule and the Y%-em wide underrule were designed to form corners when using 1-em
vertical spacings. For example the macro

.de eb

.sp —1 \"compensate for next automatic base-line spacing

-nf . _\"avoid possibly overflowing word buffer

\b"—.5n"\L \\mau—1"\1"\\n(.lu+1n\(ul \L = \\nau+1"\I'|0u—.8n\(ul" \"draw box
fi

will draw a box around some text whose beginning vertical place was saved in number register a (e.g.,

using .mk a) as done for this paragraph.

13. Hyphenation.

The automatic hyphenation may be switched off and on. When switched on with hy, several variants
may be set. A hyphenation indicator character may be imbedded in a word to specify desired hyphena-
tion points, or may be prepended to suppress hyphenation. In addition, the user may specify a small
exception word list.

Only words that consist of a central alphabetic string surrounded by (usually null) non-alphabetic
strings are considered candidates for automatic hyphenation. Words that were input containing hyphens
(minus), em-dashes (\(em), or hyphenation indicator characters—such as mother-in-law—are always
subject to splitting after those characters, whether or not automatic hyphenation is on or off.

Request Initial If No

Form Value Argument Notes Explanation

.nh no hyphen. - E Automatic hyphenation is turned off.

by N off N=0 on,N=1 E Automatic hyphenation is turned on for N=1, or off for
N=0. If N=2, last lines (ones that will cause a trap)
are not hyphenated. For N=4 and 8, the last and first
two characters respectively of a word are not split off.
These values are additive; i.e., N=14 will invoke all
three restrictions.

he e \% \% E Hyphenation indicator character is set to ¢ or to the
default \%. The indicator does not appear in the output.

hw wordl ... ignored - Specify hyphenation points in words with imbedded

minus signs. Versions of a word with terminal s are

-22-

NROFF/TROFF User’s Manual
October 11, 1976

implied; i.e., dig—it implies dig—its. This list is exam-
ined initially and after each suffix stripping. The space
available is small—about 128 characters.

14. Three Part Titles.

The titling function tl provides for automatic placement of three fields at the left, center, and right of a
line with a title-length specifiable with It. tI may be used anywhere, and is independent of the normal
text collecting process. A common use is in header and footer macros.

Request Initial If No
Form Value Argument Notes Explanation

.tl “left center right” - - The strings left, center, and right are respectively left-
adjusted, centered, and right-adjusted in the current
title-length. Any of the strings may be empty, and over-
lapping is permitted. If the page-number character (ini-
tially %) is found within any of the fields it is replaced by
the current page number having the format assigned to
register %. Any character may be used as the string del-
imiter. ‘

.pcc % off - The page number character is set to ¢, or removed. The
page-number register remains %.

Jt =N 6.5in previous E,m Length of title set to = N. The line-length and the title-
length are independent. Indents do not apply to titles;
page-offsets do.

15. Output Line Numbering.

Automatic sequence numbering of output lines may be requested with nm. When in effect, a

three-digit, arabic number plus a digit-space is prepended to output text lines. The text lines are
3 thus offset by four digit-spaces, and otherwise retain their line length; a reduction in line length

may be desired to keep the right margin aligned with an earlier margin. Blank lines, other vertical

spaces, and lines generated by tl are not numbered. Numbering can be temporarily suspended with
6 nn, or with an .nm followed by a later .am +0. In addition, a line number indent /, and the

number-text separation § may be specified in digit-spaces. Further, it can be specified that only

those line numbers that are multiples of some number M are to be printed (the others will appear
9 as blank number fields).

Request Initial If No
Form Value Argument Notes Explanation

.am tNMSI off E Line number mode. If £N is given, line numbering is
turned on, and the next output line numbered is num-
bered *N. Default values are M=1, S=1, and [=0.
Parameters corresponding to missing arguments are
unaffected; a non-numeric argument is considered miss-
ing. In the absence of all arguments, numbering is
turned off; the next line number is preserved for possible
further use in number register In.

.nn N - N=1 E The next N text output lines are not numbered.

As an example, the paragraph portions of this section are numbered with M=3: .nm 1 3 was

placed at the beginning; .nm was placed at the end of the first paragraph; and .am +0 was placed
12 in front of this paragraph; and .nm finally placed at the end. Line lengths were also changed (by

\w'0000'u) to keep the right side aligned. Another example is .nm +5 5 x 3 which turns on

numbering with the line number of the next line to be S greater than the last numbered line, with
15 M= 5, with spacing S untouched, and with the indent I set to 3.

-23-

NROFF/TROFF User’s Manual
October 11, 1976

16. Conditional Acceptance of Input

In the following, ¢ is a one-character, built-in condition name, ! signifies not, N is a numerical expres-
sion, string]l and string? are strings delimited by any non-blank, non-numeric character not in the
strings, and anyrhing represents what is conditionally accepted.

Request Initial If No

Form Value Argument Notes Explanation

.if ¢ anything - - If condition ¢ true, accept anything as input; in multi-line
case use \{anything\}.

Jif !c anything - - If condition ¢ false, accept anything.

.if N anything - u If expression N > 0, accept anything.

Af !N anything - u If expression N < 0, accept anything.

Af “stringl “string2” anything - If stringl identical to string2, accept anything.

.if ! stringl “string2” anything - If stringl not identical to string2, accept anything.

.ie ¢ anything - u If portion of if-else; all above forms (like if).

.l anything - - Else portion of if-else.

The built-in condition names are:

Condition
Name True If
o Current page number is odd
e Current page number is even
t Formatter is TROFF
n Formatter is NROFF

If the condition c is true, or if the number N is greater than zero, or if the strings compare identically
(including motions and character size and font), anything is accepted as input. If a ! precedes the condi-
tion, number, or string comparison, the sense of the acceptance is reversed.

Any spaces between the condition and the beginning of anything are skipped over. The anything can be
either a single input line (text, macro, or whatever) or a number of input lines. In the multi-line case,
the first line must begin with a left delimiter \{ and the last line must end with a right delimiter \}.

The request ie (if-else) is identical to if except that the acceptance state is remembered. A subsequent
and matching el (else) request then uses the reverse sense of that state. ie - el pairs may be nested.

Some examples are:
.if e .tl 'Even Page %
which outputs a title if the page number is even; and

e \n%>1\{\
“sp 0.5i

.tl "Page %
“sp(1.2i \}

.el .sp [2.5i

which treats page 1 differently from other pages.
17. Environment Switching.

A number of the parameters that control the text processing are gathered together into an environment,
which can be switched by the user. The environment parameters are those associated with requests
noting E in their Nores column; in addition, partially collected lines and words are in the environment.
Everything else is global; examples are page-oriented parameters, diversion-oriented parameters,

=24 -

NROFF/TROFF User’s Manual
October 11, 1976

number registers, and macro and string definitions. All environments are initialized with default
parameter values.

Regquest Initial If No
Form Value Argument Notes Explanation
.ev N N=0 previous - Environment switched to environment 0=N=<2. Switch-

ing is done in push-down fashion so that restoring a pre-
vious environment must be done with .ev rather than
specific reference.

18. Insertions from the Standard Input

The input can be temporarily switched to the system standard input with rd, which will switch back
when rwo new-lines in a row are found (the extra blank line is not used). This mechanism is intended
for insertions in form-letter-like documentation. On UNIX, the standard input can be the user’s key-
board, a pipe, or a file. :

Request Initial If No
Form Value Argument Notes Explanation
.rd prompt - prompt=BEL - Read insertion from the standard input until two new-

lines in a row are found. If the standard input is the
user’s keyboard, prompt (or a BEL) is written onto the
user’s terminal. rd behaves like a macro, and arguments
may be placed after prompr.

.ex - - - Exit from NROFF/TROFF. Text processing is terminated
exactly as if all input had ended.

If insertions are to be taken from the terminal keyboard while output is being printed on the terminal,
the command-line option —q will turn off the echoing of keyboard input and prompt only with BEL.
The regular input and insertion input cannot simultaneously come from the standard input.

As an example, multiple copies of a form letter may be prepared by entering the insertions for all the
copies in one file to be used as the standard input, and causing the file containing the letter to reinvoke
itself using nx (§19); the process would ultimately be ended by an ex in the insertion file.

19. Input/Output File Switching

Request Initial If No
Form Value Argument Notes Explanation
.80 filename - - Switch source file. The top input (file reading) level is

switched to filename. When the new file ends, input is
again taken from the original file; so’s may be nested.
See §2.2 of the Addendum for additional details.

.NX filename end-of-file - Next file is filename. The current file is considered
ended, and the input is immediately switched to filename.

.pi program - - Pipe output to program (NROFF only). This request
progr p prog
must occur before any printing occurs. No arguments are
transmitted to program.

20. Miscellaneous

Request Initial If No
Form Value Argument Notes Explanation
.mccN - off E,m Specifies that a margin character ¢ appear a distance N to

the right of the right margin after each non-empty text
line (except those produced by tl). If the output line is
too-long (as can happen in no-fill mode) the character
will be appended to the line. If N is not given, the

-25-

NROFF/TROFF User’s Manual
October 11, 1976

~previous NV is used; the initial N is 0.2 inches in NROFF
and 1 em in TROFF. The margin character used with this
paragraph was a 12-point box-rule,

new-line - After skipping initial blanks, string (rest of the line) is
read in copy mode and written on the user’s terminal.

.tm string

dg yy - Y= - Ignore input lines. ig behaves exactly like de (§7) except
that the input is discarded. The input is read in copy
mode, and any auto-incremented registers will be
affected.

pm1? - all - Print macros. The names and sizes of all of the defined
macros and strings are printed on the user’s terminal; if ¢
is given, only the total of the sizes is printed. The sizes
is given in blocks of 128 characters.

.l - - B Flush output buffer. Used in interactive debugging to
force output.

21. Output and Error Messages.

The output from tm, pm, and the prompt from rd, as well as various error messages are written onto
UNIX’s standard message output. The latter is different from the srandard output, where NROFF format-
ted output goes. By default, both are written onto the user’s terminal, but they can be independently
redirected.

Various error conditions may occur during the operation of NROFF and TROFF. Certain less serious
errors having only local impact do not cause processing to terminate. Two examples are word overflow,
caused by a word that is too large to fit into the word buffer (in fill mode), and line overflow, caused by
an output line that grew too large to fit in the line buffer; in both cases, a message is printed, the
offending excess is discarded, and the affected word or line is marked at the point of truncation with a *
in NROFF and a -~ in TROFF. The philosophy is to continue processing, if possible, on the grounds
that output useful for debugging may be produced. If a serious error occurs, processing terminates, and
an appropriate message is printed. Examples are the inability to create, read, or write files, and the
exceeding of certain internal limits that make future output unlikely to be useful.

-26 -

NROFF/TROFF User’s Manual
October 11, 1976

TUTORIAL EXAMPLES

T1. Introduction

Although NROFF and TROFF have by design a
syntax reminiscent of earlier text processors*
with the intent of easing their use, it is almost
always necessary to prepare at least a small set of
macro definitions to describe most documents.
Such common formatting needs as page margins
and footnotes are deliberately not built into
NROFF and TROFF. Instead, the macro and
string definition, number register, diversion,
environment switching, page-position trap, and
conditional input mechanisms provide the basis
for user-defined implementations.

The examples to be discussed are intended to be
useful and somewhat realistic, but won’t neces-
sarily cover all relevant contingencies. Explicit
numerical parameters are used in the examples to
make them easier to read and to illustrate typical
values. In many cases, number registers would
really be used to reduce the number of places
where numerical information is kept, and to con-
centrate conditional parameter initialization like
that which depends on whether TROFF or NROFF
is being used.

T2. Page Margins

As discussed in §3, header and footer macros are
usually defined to describe the top and bottom
page margin areas respectively. A trap is planted
at page position 0 for the header, and at — N (N
from the page bottom) for the footer. The sim-
plest such definitions might be

.de hd \"define header
‘sp li

. \"end definition
.de fo \"define footer
bp

. \"end definition
.wh 0 hd

.wh —1ifo

which provide blank 1 inch top and bottom mar-
_gins. The header will occur on the first page,
only if the definition and trap exist prior to the

* For example: P. A. Crisman, Ed, The Compatible Time-
Sharing System, MIT Press, 1965, Section AH9.01
(Description of RUNOFF program on MIT's CTSS system).

initial pseudo-page transition (§3). In fill mode,
the output line that springs the footer trap was
typically forced out because some part or whole
word didn't fit on it. If anything in the footer
and header that follows causes a break, that word
or part word will be forced out. In this and other
examples, requests like bp and sp that normally
cause breaks are invoked using the no-break con-
trol character to avoid this. When the
header/footer design contains material requiring
independent text processing, the environment
may be switched, avoiding most interaction with
the running text.

A more realistic example would be

.de hd \"header
Aft .t \(rn \(rn~ \"troff cut mark
G \\n% > 1 \{\

spl0.5i—1 \"tl base at 0.5i

41 "= % =" \"centered page number
.ps \"restore size

gt \"restore font

.vs \} \"restore vs

“spl1.0i \"space to 1.0i

.ns \"turn on no-space mode
.de fo \"*footer

.ps 10 \"set footer/header size
JtR \"set font

.vs 12p \"set base-line spacing

A \\n%=1\{\

“sp \\n(.pu—0.5i—1 \"tl base 0.5i up
41 = % =" \} \"first page number
bp

.wh 0 hd

.wh —1i fo

which sets the size, font, and base-line spacing
for the header/footer material, and ultimately
restores them. The material in this case is a page
number at the bottom of the first page and at the
top of the remaining pages. If TROFF is used, a
cut mark is drawn in the form of root-en’s at each
margin. The sp’s refer to absolute positions to
avoid dependence on the base-line spacing.
Another reason for this in the footer is that the
footer is invoked by printing a line whose vertical
spacing swept past the trap position by possibly as

-27.

NROFF/TROFF User’s Manual
October 11, 1976

much as the base-line spacing. The no-space
mode is turned on at the end of hd to render
ineffective accidental occurrences of sp at the top
of the running text.

The above method of restoring size, font, etc.
presupposes that such requests (that set previous
value) are not used in the running text. A better
scheme is save and restore both the current and
previous values as shown for size in the follow-
ing:

.de fo

.nr s1 \\n(.s \"current size

.ps

.nrs2\\n(.s \"previous size

. e \"rest of footer

.de hd

. - \"header stuff

.ps \\n(s2 \"restore previous size

.ps \\n(sl \"restore current size

Page numbers may be printed in the bottom mar-
gin by a separate macro triggered during the
footer’s page ejection:

.de bn)
tT— 9 =7

\"bottom number
\"centered page number

.wh —0.5i—1v bn \"tI base 0.5i up

T3. Paragraphs and Headings

The housekeeping associated with starting a new
paragraph should be collected in a paragraph
macro that, for example, does the desired
preparagraph spacing, forces the correct font,
size, base-line spacing, and indent, checks that
enough space remains for more than one line, and
requests a temporary indent.

.de pg \"paragraph
.br \"break
ftR \"force font,
.ps 10 \"size,

.vs 12p \"spacing,
.in 0 \"and indent
.sp 0.4 \"prespace

.ne 1+\\n(.Vu \"want more than 1 line
WA 0.2i \"temp indent

The first break in pg will force out any previous
partial lines, and must occur before the vs. The
forcing of font, etc. is partly a defense against
prior error and partly to permit things like sec-
tion heading macros to set parameters only once.

The prespacing parameter is suitable for TROFF;
a larger space, at least as big as the output device
vertical resolution, would be more suitable in
NROFF. The choice of remaining space to test
for in the ne is the smallest amount greater than
one line (the .V is the available vertical resolu-
tion).

A macro to automatically number section head-
ings might look like:

.de s¢ \"section

. - \"force font, etc.

.sp 0.4 \"prespace

.ne 2.4+\\n(.Vu \"want 2.4+ lines
i

\\n+S.

nrSo1 \'init 8

The usage is .sc¢, followed by the section heading
text, followed by .pg. The ne test value includes
one line of heading, 0.4 line in the following pg,
and one line of the paragraph text. A word con-
sisting of the next section number and a period is
produced to begin the heading line. The format
of the number may be set by af (§8).

Another common form is the labeled, indented
paragraph, where the label protrudes left into the
indent space.

.de lp \"labeled paragraph
Pg

.in 0.5i \"paragraph indent
.ta 0.2i 0.5i \'label, paragraph

i 0

\t\\$1\t\c \"flow into paragraph

The intended usage is ‘‘.1p label’’; label will
begin at 0.2inch, and cannot exceed a length of
0.3inch without intruding into the paragraph.
The label could be right adjusted against 0.4inch
by setting the tabs instead with .ta 0.4iR 0.5i.
The last line of Ip ends with \¢ so that it will
become a part of the first line of the text that fol-
lows.

T4. Multiple Column Output

The production of multiple column pages
requires the footer macro to decide whether it
was invoked by other than the last column, so
that it will begin a new column rather than pro-
duce the bottom margin. The header can initial-
ize a column register that the footer will incre-
ment and test. The following is arranged for two
columns, but is easily modified for more.

=28 -

NROFF/TROFF User’s Manual
October 11, 1976

.de hd \"header

.nrcl01 \"init column count
.mk \"mark top of text

.de fo \"footer

de \\n+ (cl<<2 \{\

.po +3.4i \"next column; 3.1+0.3

oIt \"back to mark

.ns \} \"no-space mode

el \{\

.po \\nMu \"restore left margin
o \}

b 3016

.nr M \\n(.0
Typically a portion of the top of the first page
contains full width text; the request for the nar-
rower line length, as well as another .mk would
be made where the two column output was to
begin.

\"column width
\"save left margin

T5. Footnote Processing

The footnote mechanism to be described is used
by imbedding the footnotes in the input text at
the point of reference, demarcated by an initial
.fn and a terminal .ef:

.fn
Footnote text and control lines...
.ef

In the following, footnotes are processed in a
separate environment and diverted for later
printing in the space immediately prior to the
bottom margin. There is provision for the case
where the last collected footnote doesn’t com-
pletely fit in the available space.

.de hd \"header

.nrx01 \"init footnote count
.ary 0—\\nb \"current footer place
.ch fo —\\nbu \"reset footer trap

Lf \\n(dn .fz \"leftover footnote

e

.de fo *footer

.nrdn 0 \"zero last diversion size
A4 \\nx \{\

ev1 \"expand footnotes in evl
.nf \"retain vertical size

FN \"footnotes

rm FN \"delete it

4f "\\n(.z"'fy" .di \"end overflow diversion
arx0 \"disable fx

ev \} \"pop environment
bp
.de fx \"process footnote overflow

JAf \\nx .di fy \"divert overflow

.de fn \"start footnote

.da FN \"divert (append) footnote
evl \"in envirenment 1

.if \\n+x=1 .fs \"if first, include separator
Ai \"fill mode

.de ef \"end footnote

br \"finish output

.nr z\\n(.v \"save spacing
ey \"pop ev
di \"end diversion

.nry —\\n(dn \"new footer position,

JdF\\nx=1 .nr y —(\\n(.v—\\nz) \
\"uncertainty correction

.ch fo \\nyu \"y is negative

Aif (\\n(nl+1v)>(\\n(.p+\\ny) \

.ch fo \\n(nlu+1v \"it didn’t fit

.de fs \"separator

\l 1i \"1 inch rule

br

de fz \"get leftover footnote
In

.nf \"retain vertical size
fy \"where fx put it

ef

.arb 1.0i \"bottom margin size

.wh 0 hd \"header trap

.wh 12i fo \"footer trap, temp position
.wh —\\nbu fx \"fx at footer position

.ch fo —\\nbu \"conceal fx with fo

The header hd initializes a footnote count regis-
ter x, and sets both the current footer trap posi-
tion register y and the footer trap itself to a nom-
inal position specified in register b. In addition,
if the register dn indicates a leftover footnote, fz
is invoked to reprocess it. The footnote start
macro fn begins a diversion (append) in environ-
ment 1, and increments the count x; if the count
is one, the footnote separator fs is interpolated.
The separator is kept in a separate macro to per-
mit user redefinition. The footnote end macro ef
restores the previous environment and ends the
diversion after saving the spacing size in register
z; y is then decremented by the size of the

-29.

NROFF/TROFF User’s Manual
October 11, 1976

footnote, available in dn; then on the first foot-
note, y is further decremented by the difference
in vertical base-line spacings of the two environ-
ments, to prevent the late triggering the footer
trap from causing the last line of the combined
footnotes to overflow. The footer trap is then set
to the lower (on the page) of y or the current
page position (ml) plus one line, to allow for
printing the reference line. If indicated by x, the
footer fo rereads the footnotes from FN in no-fill
mode in environment 1, and deletes FN. If the
footnotes were too large to fit, the macro fx will
be trap-invoked to redivert the overflow into fy,
and the register dn will later indicate to the
header whether fy is empty. Both fo and fx are
planted in the nominal footer trap position in an
order that causes fx to be concealed unless the fo
trap is moved. The footer then terminates the
overflow diversion, if necessary, and zeros x to
disable fx, because the uncertainty correction
together with a not-too-late triggering of the
footer can result in the footnote rereading finish-
ing before reaching the fx trap.

A good exercise for the student is to combine
the multiple-column and footnote mechanisms.

Té6. The Last Page

After the last input file has ended, NROFF and
TROFF invoke the end macro (§7), if any, and
when it finishes, eject the remainder of the page.
During the eject, any traps encountered are pro-
cessed normally. At the end of this last page,
processing terminates unless a partial line, word,
or partial word remains. If it is desired that
another page be started, the end-macro

.de en \"end-macro
)c
bp

+em en

will deposit a null partial word, and effect
another last page.

-30-

NROFF/TROFF User’s Manual
October 11, 1976

Table 1

Font Style Examples

The following font examples are printed in 12-point, with a vertical spacing of 14-point, and with non-
alphanumeric characters separated by % em space. The original Special Mathematical Font was specially
prepared for Bell Laboratories by Wang Laboratories, Inc., of Hudson, New Hampshire. The Times
Roman, Italic, and Bold are among the many standard fonts available.

Times Roman

abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ

1234567890
'$R&() T+ —., /=111l
o0 —-_unuGAfHM -t ¢eo

Times Italic

abcdefghijklmnopgrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
1234567890
1$B&() "*+— ../, =2]]l

o —-_ULUfififHiffi"] ¢e®®

Times Bold

abedefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ

1234567890
1$%& ()°*+—.,/:;="1[ll
oM —-_U%YuRAAMMOT ¢O®O

Special Mathematical Font

"N/ <>{lf@t—=+

afBydbelfnOickApvEompostvoxvdow

FTrAGAEIIZT® V¥ Q C
Z<=~=t o [[X+2UNCDC 20

val
§V-Jocg €t w®IO(NJ{H LN

-31-

NROFF/TROFF User’s Manual
October 11, 1976

Table II

Input Naming Conventions for , , and —
and for Non-ASCII Special Characters

Non-ASCII characters and minus on the standard fonts.

Input Character Input Character

Char Name Name Char Name Name
> close quote i \& fi
¢ open quote i \(fi fi
— \(em 3/4 Em dash ff \(ff ff
- = hyphen or fi \(Fi ffh
- \(hy hyphen i \(Fl fi

- \- current font minus ° \(de degree

e \(bu bullet T \(dg dagger

O \(sq square ’ \(fm foot mark
— \(ru rule ¢ \(ct centsign
YW \(14 1/4 ® \(rg registered
Bo\(12 172 © \(co copyright

% \(34 3/4

Non-ASCII characters and , , _, +, —, =, and * on the special font.

The ASCII characters @, #, ", , , <, >, \, {, }, *, ", and _ exist only on the special font and are
printed as a 1-em space if that font is not mounted. The following characters exist only on the special
font.except for the upper case Greek letter names followed by t which are mapped into upper case
English letters in whatever font is mounted on font position one (default Times Roman). The special
math plus, minus, and equals are provided to insulate the appearance of equations from the choice of
standard fonts.

Input Character Input Character

Char Name Name Char Name Name

+ \(pl math plus « \(*k kappa

— \(mi math minus A \(* lambda

= \(eq math equals g \(*m mu

* \(** math star » \(*n nu

§ \(sc section £ \(*¢ «xi

" \(aa acute accent o \(*o omicron

\(ga grave accent = \(*p pi

_ \(ul underrule p \(*r rho

/ \(sl - slash (matching backslash) g \(*s sigma

a \(*a alpha s \(ts terminal sigma

B \(*b beta T \(*t tau

¥y \(*g gamma v \(*u upsilon

5 \(*d delta ¢ \(*f phi

e \(*e¢ epsilon x \(*x chi

¢ \(*z zeta v \(*q psi

7 \(*y eta o \(*w _omega

6 \(*h theta A \(*A Alphat

¢ \(* ota B \(*B Betat

-32-

NROFF/TROFF User’s Manual
October 11, 1976

Char

K O HAB=RSAMMTEHOMZI RO INDDE =

MBR—! A8 UNUNDICH +X——T] %11 HKIAN

Input
Name
\(*G
\(*D
\(*E
\(*Z
\(*Y
\(*H
\(*1
\(*K
\(*L
\(*M
\(*N
\(*C
\(*O
\(*P
\(*R
\(*S
\(*T
\(*U
\(*F
\(*X
\(*Q
\(*W
\(sr
\(rn
\(>=
\(<=
\(==
\("=
\(ap
\(!=
\(—>
\(<—
\(ua
\(da
\(mu
\(di
\(+—
\(cu
\(ca
\(sb
\(sp
\(ib
\(ip
\Gif
\(pd
\(gr
\(no
\(is
\(pt
\(es

\(mo

Character
Name

Gamma

Delta

Epsilont

Zetat

Etat

Theta

Iotat

Kappat
Lambda

Mut

Nut

Xi

Omicront

Pi

Rhot

Sigma

Taut

Upsilon

Phi

Chit

Psi

Omega

square root

root en extender
> =

<=

identically equal
approx =
approximates
not equal

right arrow

left arrow

up arrow

down arrow
multiply

divide
plus-minus

cup (union)
cap (intersection)
subset of
superset of
improper subset
improper superset
infinity

partial derivative
gradient

not

integral sign
proportional to
empty set
member of

Char

e = O - @1 § - —

—_——

- 133 -

Input Character

Name Name

\(br box vertical rule

\(dd double dagger

\(rh right hand

\(lh left hand

\(bs Bell System logo

\(or or

\(ci circle

\(It left top of big curly bracket

\(Ib left bottom

\(rt right top

\(rb right bot

\(Ik left center of big curly bracket

\(rk right center of big curly bracket

\(bv bold vertical

\(If left floor (left bottom of big
square bracket)

\(rf right floor (right bottom)

\(lc left ceiling (left top)

\(rc right ceiling (right top)

NROFF/TROFF User’s Manual

January 1981

Addendum to the
NROFF/TROFF User’s Manual

e This addendum supercedes all previous addenda to this manual.

1. Command-Line Options

1.1 New options

—cname

—kname

—uN

Use the compacted version of macro package name, if it exists. If it does not,
NROFF/TROFF will try the equivalent —mname option. The —c option should
be used in preference to the —m, because it makes NROFF/TROFF execute
significantly faster.

Produce a compacted macro package from this invocation of NROFF/TROFF.
The compacted output is produced in files d.name and t.name. This option has
no effect if a co request is not used in the NROFF/TROFF input. See Section 5
below.

(NROFF only.) Use output tabs during horizontal spacing to speed up output as
well as to reduce output byte count. Device tabs settings are assumed to be
every 8 nominal character widths, as are the settings of input (logical) tabs.

(NROFF only.) Set the emboldening factor (number of character overstrikes in
NROFF) for the third font position (bold) to be N (zero if N is missing); see
the bd request in Section 2.2 below and the .b number register in Section 4
below. Note that it is not possible to turn off the emboldening in NROFF if the
output device used is such that the overstriking is done locally by that device
(e.g., DASI 300s).

Suppress formatted output. Only diagnostics and messages from tm requests
will occur.

1.2 Modified options

—Tname

—sN

There are additional defined device names for NROFF:

2631 for the Hewlett-Packard 2631 printer in regular mode
2631-c for the Hewlett-Packard 2631 printer in compressed mode
2631-e for the Hewlett-Packard 2631 printer in expanded mode
382 for the Anderson Jacobson 832 terminal

4000a for the Trendata 4000A terminal

832 for the DCT832 terminal

X for printers equipped with the TX print train

1p for (generic) printers that can underline and tab

The X driving table includes special escape sequences for EBCDIC character
codes that may be used by NROFF postprocessors.

In TROFF, the —T option may be used to specify the output device. The
default TROFF output device (which is also the only device supported at the
moment) is the Wang Laboratories’ C/A/T phototypesetter. Other devices may
be supported via this mechanism in future releases of TROFF.

As well as stopping the output every N pages, this option also causes the ASCII
BEL character to be sent to the terminal when stopping between pages. In
TROFF, the message “‘page stop’’ is printed on the diagnostic output (normally,
the terminal).

.34 -

NROFF/TROFF User’s Manual
January 1981

2.

Requests

2.1 New requests

.ab text

v

Prints text on the diagnostic output (normally, the terminal) and terminates
without further processing. If text is missing, the message ‘‘User Abort" is
printed. This request does not cause a break. The output buffer is flushed.

If the —kname command-line option was given, compact the current state of
NROFF/TROFF. If the —kname option was not used, co has no effect. See
Section 5 below.

.! ¢md args The UNIX command ¢md is executed and its output is interpolated at this point.

The standard input for ond is closed.

2.2 Modified requests

.ad ¢

.bd F N

.so file

The adjustment type indicator ¢ may now also be a number obtained from the .j
register; see Section 4 below.

The emboldening request bd (q.v.) now also works in NROFF and causes over-
printing of characters in the bold font. The default setting is .bd 3 3, specifying
that characters on the font in position 3 (normally bold) are to be overstruck 3
times (i.e., printed in place a total of 4 times). The —u command-line option
may be used to change the emboldening factor (i.e., the second argument of
bd); see Section 1.1 above. This request may affect the contents of the number
register .b; see Section 4 below. Note that it is not possible to turn off the
emboldening in NROFF if the output device used is such that the overstriking is
done locally by that device (e.g., DASI 300s).

The contents of file will be interpolated at the point the so request is encoun-
tered. Previously, if an so was encountered inside a macro, the interpolation
was delayed until the input level returned to the file level (i.e., at least until the
end of the macro).

New Escape Sequences

\gx\g(xx

\jx,\j (o

Return the format of register x or xx; return nothing if x (xx) has not yet been
referenced. Can be saved and used later as the second argument of the af
request (q.v.) to restore the previous format of a register.

Mark in register x or xx the current horizontal position on the output line; see
also the \k register described in §11.3 of this manual.

New Predefined Number Registers

.F
L

Read-only. The value is a string that is the name of the current input file.

Read-only. Contains the current line-spacing parameter, i.e., the value of the
argument of the most recent s request.

Read-only. Contains the value 1 if the current page is being printed, and 0 oth-
erwise, e.g., if the current page does not appear in the —o option list.

Count of number registers that remain available for use.

Emboldening factor of the current font (NROFF and TROFF); see the —u
option in Section 1.1 above and the bd request in Section 2.2 above.

Read-only. Indicates the current adjustment mode and type. Can be saved and
used later as the argument to the ad request (q.v.) to restore a previous adjust-
ment mode.

-35-

NROFF/TROFF User’s Manual
January 1981

C.

Read-only. Contains the horizontal size of the text portion (nor including the
size of the current indent, if any) of the current, partially-collected outpur line,
if any, in the current environment.

Provides general register access to the input line-number in the current input
file. Contains the same value as the read-only .c register.

5. Compacted Macros

. 5.1 User information. The time required by NROFF/TROFF to read in a macro package may be
greatly lessened by using a pre-processed or compacted version of that package. The compacted
version of a macro package is completely equivalent to the non-compacted version, except that
a compacted macro package can not be read in by the so request.

A compacted version of a macro package is obtained by the —cname command-line option,
while the —mname option obtains the uncompacted version; see Section 1.1 above. Because
—cname reverts to —mname if the named macro package has not been compacted, one should
normally use —c rather than —m.

5.2 Building a compacted macro package. If one has a macro package and wishes to make a
compacted version of it, the following steps should be followed:

1.

Separate the compactable part from the non-compactable part:

Only the following can be compacted: macro, string, and diversion definitions; number
register definitions and values; environment settings; and trap settings. For example, the
following are not compactable: end macro (em) requests and any commands that may
interact with command-line settings (e.g., references, in the MM macro package, to the
number register P, which can be set from the command line).

All the non-compactable material must be placed at the end of the macro package, with a
co request separating the compactable from non-compactable parts:

_Compactable part

.co
Non-compactable part

The co request indicates to NROFF/TROFF when to compact its internal state.
Produce compacted files:

Once compactable and non-compactable segments have been set up as above,
NROFF/TROFF may be run with the —kname option to build the compacted files; sce
Section 1.1 above.

For example, if the macro file produced by Step 1 above is called macs, then the follow-
ing may be used to build the compacted files:

nroff —kmacs macs or
troff —kmacs macs

Each of these commands causes NROFF/TROFF to create two files in the current direc-
tory, d.macs and t.macs.

Install compacted files:

The two compacted files produced in Step 2 must be installed into the system macro
library (/usr/lib/macros) with appropriate names: prepend emp.n. to files produced by
NROFF, and cmp.t. to files produced by TROFF:

- 36 -

NROFF/TROFF User’s Manual
January 1981

¢p d.macs /usr/lib/macros/cmp.n.d.macs
cp t.macs /usr/lib/macros/cmp.n.t.macs

will install the two files produced by compacting macs with NROFF.
4. Install non-compactable segment:

The non-compactable segment from the original macro package must also be installed on
the system as:

/usr/lib/macros/ucmp.[nt].name
where n of [nt] indicates the NROFF version, while t indicates the TROFF version.
The non-compactable segment must be produced ‘“‘by hand,’ e.g., by using the editor:

ed macs
/"\.co$/+1,$w /usr/lib/macros/ucmp.n.macs

would create the (NROFF) non-compactable segment. Note that the non-compactable
segment must exist even if it is empty (i.e., if the entire macro package is compactable).

Thus, once the macro package macs is compacted by both NROFF and TROFF, and the
resulting files installed, the directory /usr/lib/macros will contain the following six files:

cmp.[nt].d.macs
cmp.[nt].t.macs
ucmp.[nt].macs

where the first t applies to the macros as compacted by TROFF, while n indicates the
NROFF macros. (The d and the second t in the above names stand for *‘data’ and
“text,”” respectively.)

5.3 Warnings. A compacted macro package depends heavily on the particular version of
NROFF/TROFF that produced it. This means that each package needs to be compacted
separately by both NROFF and TROFF. It also means that all compacted macro packages must
be recompacted whenever a new version of NROFF or TROFF is installed.

If NROFF/TROFF discovers that a macro package was produced by a different version of
NROFF/TROFF than that attempting to read it, the —c option is abandoned and the correspond-
ing —m option is attempted instead.

Should NROFF/TROFF actually read a compacted package that was produced by a different ver-
sion of NROFF/TROFF (e.g., because the version number of NROFF/TROFF was not updated,
but the code was changed), very peculiar behavior will resulit.

Finally, note that the existence of a compacted macro package in no way precludes the installa-
tion of the same package in non-compacted form, as explained on page 1 of this manual.
6. Other Important Changes

1. NROFF/TROFF can accept several —m/—c options on the command line, causing all
macro packages thus named to be read in turn.

2. The conditionally accepted part of an ie or if request is now completely ignored if the test
fails, rather than being read in copy mode.

3. The cu request has been improved to provide up to about three lines of continuously
underlined text; the underlining is not lost when cu is used inside a diversion.

- 37 -

UNIX
C.2.1

MM —Memorandum Macros

D. W. Smith
J. R. Mashey
E. C. Pariser (January 1980 Revision)
N. W. Smith (June 1980 Revision)

Bell Laboratories
Piscataway, New Jersey 08854

1. INTRODUCTION
1.1 Purpose

This memorandum is the user’s guide and reference manual for the Memorandum Macros (MM), a
general-purpose package of text formatting macros for use with the UNIXY text formatters nroff and

troff.

The purpose of MM is to provide a unified, consistent, and flexible tool for producing many common
types of documents. Although the UNIX time-sharing system provides other macro packages for vari-
ous specialized formats, MM has become the standard, general-purpose macro package for most docu-
ments.

MM can be used to produce:

Letters

Reports

Technical Memoranda
Released Papers
Manuals

e Books.

The uses of MM range from single-page letters to documents of several hundred pages in length, such
as user guides, design proposals, etc.

1.2 Conventions

Each section of this memorandum explains a single facility of MM. In general, the earlier a section
occurs, the more necessary it is for most users. Some of the later sections can be completely ignored if
MM defaults are acceptable. Likewise, each section progresses from normal-case to special-case facili-
tiecs. We recommend reading a section in detail only until there is enough information to obtain the
desired format, then skimming the rest of it, because some details may be of use to just a few people.

Numbers enclosed in curly brackets ({}) refer to section numbers within this document. For example,
this is {1.2}.
Sections that require knowledge of the formatters {1.4} have a bullet (o) at the end of their headings.

In the synopses of macro calls, square brackets ([]) surrounding an argument indicate that it is
optional. Ellipses (...) show that the preceding argument may appear more than once.

A reference of the form name(N) points to page name in section N of the UNIX User’s Manual "'

The examples of output in this manual are as produced by froff; nroff output would, of course, look
somewhat different (Appendix C shows both nroff and troff outputs for a simple letter). In those cases
in which the behavior of the two formatters is truly different, the nroff action is described first, with the
troff action following in parentheses. For example:

t UNIX is a trademark of Bell Laboratories.

D) Memorandum Macros

The title is underlined (italic).
means that the title is underlined in nroff and italic in troff.
1.3 Overall Structure of a Document

The input for a document that is to be formatted with MM possesses four major segments, any of which
may be omitted; if present, they must occur in the following order:

e Parameter-setting— This segment sets the general style and appearance of a document. The user can
control page width, margin justification, numbering styles for headings and lists, page headers and
footers {9}, and many other properties of the document. Also, the user can add macros or redefine
existing ones. This segment can be omitted entirely if one is satisfied with default values; it pro-
duces no actual output, but only performs the setup for the rest of the document.

e Beginning— This segment includes those items that occur only once, at the beginning of a document,
e.g., title, author’s name, date. :

e Body— This segment is the actual text of the document. It may be as small as a single paragraph, or
as large as hundreds of pages. It may have a hierarchy of headings up to seven levels deep {4}.
Headings are automatically numbered (if desired) and can be saved to generate the table of con-
tents. Five additional levels of subordination are provided by a set of list macros for automatic
numbering, alphabetic sequencing, and ‘“marking’ of list items {5]. The body may also contain
various types of displays, tables, figures, r