
@

Documents ·for the ·PWB/UNIX

Time-Sharing System

Edition 1.0

T. A. Dolotta
R. C. Haight
E. M. Piskorik

Editors

October I 9 77

The enclosed PWB/UNIX documentation is supplied
in accordance with the Software Agreement you
have with the Western Electric Company.

Bet! Telephone Laboratories, Incorporated

UNIX is a Trademark of Bell Laboratories.

The enclosed documents were set on a Graphic Systems, Inc.
phototypesetter driven by the TROFF formatting program.
Their text was prepared using the ED text editor.

Documents for the PWB/UNIX Time-Sharing System

Annotated Table of Contents

Each item carries the date of ics latesJ revision~ m~st items also give the number of their last page.

G. General:

G.I PWBIUNIX-Overview and Synopsis Qf Facilities (6177)
T. A. Dolotta and R. C. Haight (p. 18)
Summarizes the salient features of Programmer's Workbench/UNIX. a program development
and text processing facility.

G.2 The UNIX Time-Sharing System (7174)
D. M. Ritchie and K. Thompson (p. 16)
Reprinted from .Comm. ACM. Good overview of UNIX, but written long ago.

G.3 The UNIX Time-sharing System-A Retrospective (1177)
D. M. Ritchie (p. 14)
A more recent discussion.

G.4 PWBIUNIX Papers,/fom the Second Intern. Conf. on SQ/tware Engineering (10176)
T. A. Dolotta et al. (p. 25)
Reprinted from that conference's proceedings. Four papers that describe various aspects of
PWBIUNIX.

B. Basic User Information:

8.0 PWBIUNIX User's Manual-Edition 1.0 (5177)
T. A. Oolotta, R. C. Haight. and E. M. Piskorik, eds.
Describes alt commands. subroutines, and system calls. Furnished as a separate volume.
Available on-line.

8.1 PWBIUNIX Documentation Roadmap (5177)
J. R. Mashey (p. 7)
A terse. up-to-date outline of useful documents and information sources. Available on-line.

8.2 PWBIUNIX Beginner's Course (12/77)
M. E. Pearlman and S. H. Strauss
An outline with view graphs.

B.3 A Tutorial /nrroduction to the UNIX Text Editor (10174)
B. W. Kernighan (p. IO)
Expectedly elementary, but very useful for beginners.

8.4 Advanced Editing on UNIX (8176)
8. W. Kernighan (p. 16)
Meant to help secretaries, typists, and programmers make effective use of UNIX facilities for
preparing and editing text.

8.5 PWBIUNIX Shell Tutorial (9171)
J. R. Mashey (p. 25)
Describes the PWB/UNIX command interpreter.

B.6 UNIX.for Beginners (10/74)
8. W. Kernighan (p. 14)
A slightly dated tutorial.

8.7 UNIX Programming (10/75)
B. W. Kernighan and 0. M. Ritchie (p. 17)
Introduction to programming on UNIX. The emphasis is on how to write programs that
interface with the operating system. Does not cover material in A New Input/Output Pa,·kage
(item B.10 below).

October 19 77

B.8 C R~ferem:e Manual (5/77)
D. M. Ritchie (p. 32)
Terse. but complete.

- 2 -

8.9 Programming in C-A Tutorial (5175)
· B. W. Kernighan (p. 27)
Should be read before tackling the C Re./~rence Manual (item B.8 above).

B. l 0 A New Input-Output Package (7 /77)
D. M. Ritchie (p. 6)
Should be used for all new c programs.

B.11 A General-Purpose Subroutine Library for PWBJUNIX (7177)
A. L. Glasser (p. 7)
Complements A New input/Output Package (item B.10 above).

B.12 Guide to IBM Remote Job Entry for PWBIUNIX Users (9177).
A. L. Sabsevitz (p. 7)
Describes the RJE facility between a PWB/UNlX system and~ IBM System/370.

B.13 SCCSIPWB User's Manual (11177)
L. E. Bonanni an.d A. L. Glasser (p. 22)
Describes the Programmer's Workbench Source Code Control System.

T. Text Processing, Formatting, and Typesetting:

T. I NROFF/TROFF User's Manual (5/77)
J. F. Ossanna (p. 34)
NROFF and TROFF are text processors. NROFF f orma~ text for a variety of typewriter-like
terminals. TROFF formats text for a Graphic Systems, Inc. phototypesetter.

T.2 PWBIMM-Programmer's Workbench Memorandum Macros (10177)
D. W. Smith and J. R. Mashey (p. 56)
User's guide and reference manual for PWB/MM. a general·purpose package of text
formatting macros for use with NROFF and TROFF.

T.3 Typing Documents with PWBIMM (10177)
0. W. Smith and E. M. Piskorik (p. 16)
A fanfold card that fits into a pocket(book).

T.4 PWBIMM Tutorial (12/77)
N. W. Smith
Introduction to PWB/UNIX text processing.

T.5 Tbl-A Pr-0gram to Format Tables (9177)
M. E. Lesk (p. 17)
Preprocessor for TROFF or NROFF that makes even very complex tables easy to specify.

T.6 A TROFF Tutorial (8176)
B. W. Kernighan (p. 13)
Introduction to the most basic use of TROFF (and, by implication. NROFF).

T.7 Typesetting Mathematics-User's Guide (Second Edition) (6176)
B. W. Kernighan and L. L. Cherry (p. I 1)
Describes the EQN and NEQN preprocessors for TROFF and NROFF, respectively. They allow
one to typeset complex formulae, equations, arrays, etc., both in-line and displayed. _.

T.8 New Graphic Symbols .for EQN and NEQN (9176)
C. Scrocca (p. 8)
Defines a set of special characters frequently used in technical documents. Shows how to
use them and discusses what is involved in making a special char;:lcter in NROFF and TROFF.

• 3 -

T.9 PWB/UNIX View Graph and Slide Macros (12177)
T. A. Dolotta and D. W. Smith
Greatly eases the task of making transparencies with TROFF.

A. Additi.onal Facilities:

A.1 Be-An Arbitrary Precision Desk Calculator Language (5175)
L. L. Cherry and R. Morris (p. 14)
A language and a compiler for doing arbitrary-precision arithmetic.

A.2 De-An Interactive Desk Calculator (5175)
R. Morris and L. L. Cherry (p. 8}
Interactive desk calculator program that does arbitrary-precision integer arithmetic.

A.3 YACC-Yet Another Compiler Compiler (5175)
S. C. Johnson (p. 30)
Generates parsers from context-free language specifications.

A.4 LEX-Lexical Analyzer Generator (4177)
M. E. Lesk and E. Schmidt (p. 13)
LEX" helps write programs whose control flow is directed by instances of regular expressions
in the input stream.

A.5 RATFOR-A Preprocessor for a Rational Fortran (1/77)
B. W. Kernighan (p. 12)
IF-ELSE. WHILE, and other useful control structures.

A.6 The M4 Macro Processor (4/77)
B. W. Kernighan and 0. M. Ritchie (p. 6)
A general-purpose macro language; can be used as a preprocessor for RATFOR, C, etc.

A.7 Make-A Program.for Maintaining Computer Programs (4177)
S. I. Feldman (p. 9)
Make provides a simple mechanism for maintaining up-to-date versions of programs that
result from many operations on a number of files.

I. Internals, Operations, and Administration:

l.1 Setting Up PWBIUNIX (9177)
R. C. Haight, W. 0. Roome, and L. A. Wehr (p. 16)
Procedures used to install PWB/UNIX on the PDP-11/45 or 170 and the steps necessary to
regenerate all of the PWB/UNIX programs.

I.2 Administrative Advice.for PWBIUNIX (10177)
R. C. Haight (p. 8)
Hints for approaching operational serenity.

1.3 PWB/UNIX Operations Manual (9177)
M. E. Pearlman (p. 36)
Describes the daHy routfne at the console. Text (but not pictures) available on-line.

1.4 Repairing Damaged PWBIUNIX File Systems (11177)
P. D. Wandzilak
Comes in handy after a power failure, etc.

1.5 PWBIUNIX RJE Administrator's Guide (12/77)
A. L. Sabsevitz
What to do when it breaks.

October 1977

1.6 The UNIX 110 System (6/74)
D. M. Ritchie (p. 9)

- 4 -

Describes how to write device drivers for UNIX.

1.7 .On the Security Qf UNIX (6174)
D. M. Ritchie (p. 4)
A short. but enlightening, discussion.

1.8 UNIX Assembler Reference Manual (6173)
D. M. Ritchie (p. 12)
As a last resort ...

1.9 PWBIUNIX Manua/. Page Macros (8177)
E. M. Piskorik (p. 7)
Tells how to make PWBIUNIX User's Manual pages.

R. Recommended Reading-not Included:

R.l Software Tools
B. W. Kernighan and P. J. Plauger (p. 338)
Addison-Wesley. Reading. MA; 1976.

R.2 The UNIX Command Language
K. Thompson
In S11uctured Programming-l1Tfotech State qf the Art Report. Infotech International Limited,
Nicholson House, Maidenhead. Berkshire, England~ 1976~ pp. 375-84.

rlrtnlvlr 1077

PWB/UNIX Documentation Roadmap

J. R. Mashey

Bell Laboratories
Piscataway, New Jersey 08854

1. INTRODUCTION

A great deal of documentation exists for PWB/UNIX. It has different formats, is contributed by many
different people, and is modified frequently. New users are often overcome by the volume and distri
buted nature of the documentation. This "roadmap" attempts to be a terse, up-to-date outline of cru
cial documents and information sources.

Numerous people have contributed comments and information for this "roadmap," in order to make it
as helpful as possible for PWB/UNIX users. However, many of these comments are accurate only with regard
to PWBIUNIX and may well be totally inapplicable to other versions of UNIX.

1.1 Things to Do

See a local PWB/UNIX system administrator to obtain a "login name" and get other appropriate system
information.

1.2 Notation Used in this Roadmap

{NJ Section N in this "roadmap."
++ - item required for everyone.
+ - item recommended for most users.

All other items are optional and depend on specific interest (a list of relevant documents appears in the
Table of Contents of Documents for the PWBIUNIX Time-Sharing System).

Items in Section N of the PWBIUNIX User's Manual are referred to by name(N).

1.3 Prerequisite Structure of Following Sections

2. BASIC INFORMATION

{2}
I

I I I I I I
{3} {6} {7} {9} {IO} {11}
I\ \I

{4} {5} {8}

Don't do anything else until you have learned most of this section. You must know how to log onto
the system, make your terminal work correctly, enter and edit files, and perform basic operations on
directories and files.

2.1 PWB/UNIX Usel\"s Manual ++
• Read Introduction and How to Get Started.
• Look through Section I to become familiar with command names.
• Note the existence of the Table of Contents and of the Permuted Index.

Section I will be especially needed for reference use.

2.2 UNIX for Beginners + +
2.3 A Tutorial Introduction to the UNIX Text Editor + +

B.

- 2 -

2.4 Advanced Editin& on UNIX +
2.S PWB Papers from the Second International Conference on Software Enaineerin1 +
Gives an overview of the Programmer's Workbench.

2.6 Thin1s to Do

• Do all the exercises found in {2.2} and (2.3}, and maybe {2.4).
• Create a file named ".mail" in your login directory,• so that other people (such as system adminis

trators) can send you mail. This can be done by:
,,

cp /dev/null .mail

• If you want some sequence of commands to be executed each time you log in, create a file named
".profile" in your login directory containing the commands you want executed. For more informa·
tion, see Initialization in sh(l).

• Files in directory "/usr/news" contain recent information on various topics. To see what has been
updated recently, type:

ls -It /usr/news

and then print any files that look interesting. Other useful actions include:

mail -f /usr/news/ .mail gives recent history from primary system mailbox.
cat /usr/news/helpers gives contacts and telephone numbers for counselin~ file

restorals, trouble reporting, and other services.
nroff -mm /usr/news/roadmap prints current copy of this "roadmap."
cat /usr/news/terminals gives recommendations on selection of computer terminals.

2. 7 Manual Pages to Be Studied

The following commands are described in Section I of the PwBIUNIX User's Manua' and are used for
creating, editing, moving (i.e., renaming), and removing files:

cat (I) concatenate and print files (no pagination).
chdir(I) change working (current) directory; a.le.a. cd(I).
cp(I) make a <:opy of an existing file.
ed(l) text editor. ·
ls(I) list a directory; file names beginning with "." are not listed unless the "-a"

flag is used.
mkdir(I) make a (new) directory.
mv(I) move (rename) file.
pr(I) print files (paginated listings).
rm (I) remove (delete) file(s).
rmdir(I) remove directory(ies).

The following help you communicate with other users, make proper use of different kinds of terminals,
and print manual pages on-line:

login (I) sign on.
mail (I) send mail to other users; inspect mail from them, or contents of the system

man(I)
stty(I)

tabs(I)
terminals(VII)
who(I)
write(!)

mailbox.
print pages of PWBIUNIX User's Manual.
set terminal options; i.e., inform the system about the hardware characteristics
of your terminal. ·
set tab stops on your terminal.
gives descriptions of commonly-used terminals.
print list of users currently logged in.
communicate with another (logged in) user.

• The directory you are in right after logging into the system.

- 3 -

3. BASIC TEXT PROCESSING AND DOCUMENT PREPARATION

You should read this section if you want to use existing text processing tools to write letters,
memoranda, manuals. etc.

3.1 P\VBIMM-Procrammer's Workbench Memorandum Macros + +
This is a reference manual, and can be moderately heavy going for a beginner. Try out some of the
examples. and stick close to the default options.

3.l Typin1 Documents with PWB/MM + +
A handy ford-out.

3.3 NROFF /TROFF User's Manual +
Describes the text formatting language in great detail; look at the REQUEST SUMMARY, but don't try to
digest the whole manual on first reading.

3.4 Documentation Tools and Techniques +
This overview of UNIX text processing methods is one of the papers from the Second International
Conference on Software Engineering. (See {2.5} above).

3.5 Manual Pages to Be Studied

mm(I) makes it easy to specify standard options to nroff(.!).
nrotf(I) read to see formatter option flags.
spell (I) identifies possible spelling errors.
tmac.name(VII) list of text-formatting macro packages.
typO(I) identifies possible typographical errors.

To obtain some special functions (e.g., reverse paper motion, subscripts, superscripts), you must either
indicate the terminal type to nroff or post-process nroff output through one of the following:

450(1) newer Diablo printer terminals, such as the DASI450, DIABLO 1620, XEROX 1700,
etc.

col(I) terminals lacking physical reverse motion, such as the Texas Instrument 700

~i{I)
hp(I)

series.
older Diablo printer terminals, such as the GSI300, DASI300, OTC300, etc.
Hewlett-Packard 2640 terminals (HP2640A, HP2640B, HP2644A, HP2645A, etc.).

4. SPECIALIZED TEXT PROCESSING

The tools listed in this section are of a more specialized nature than those in {3}.

4.1 TBL-A Proeram to Format Tables +
Great help in formatting tabular data (see tb/(I)).

4.2 Typesettin1 Mathematics-User's Guide (2nd. Edition) +
Read this if you need to produce mathematical equations. It describes the use of the equation setting
commands eqn(I) and neqn(I).

4.3 A TROFF Tutorial

An introduction to formatting text with the phototypesetter.

4.4 Manual Pa1es to Be Studied

ditfmark(I) marks changes between versions of a file, using output of di.1/(1) to produce
"revision bars" in the right margin.

eqn(I) preprocessor for mathematical equations (phototypesetter).
neqn (I) preprocessor for mathematical equations (terminals).
tbl(I) preprocessor for tabular data.
troff (I) formatter for phototypesetter.

- 4 -

S. ADVANCED TEXT PROCESSING

You should read this section if you need to design your own package of formatting macros or perform
other actions beyond the capabilities of existing tools; {3} is a prerequisite, and familiarity with {4} is
very helpfl.Jl, as is an experienced advisor. It takes a great deal of effort to write a good package of
macros for general use. Don't reinvent what you can borrow from an existing package (such as
PWBIMM).

S.l NROFF/TROFF User's Manual++

Look at this in detail and tiy modifying the examples. If you are going to use the phototypesetter, do
the same for A TROFF Tutorial ({4.3} above).

S.2 Th.inp to Do

It is fairly easy to use the text formatters for simple purposes. A typical application is that of writing
simple macros that print standard headings in order to eliminate repetitive keying of such headings. It
is extremely difficult to set up general-purpose macro packages for use by large numbers of people. If
passible, try to use an existing package or modify one as needed. Look at existing packages first-see
tmac.name(VlI).

5.3 Manual Pages to Be Studied

All pages mentioned in {3} and {4}.

6. COMMAND LANGUAGE (SHELL) PROGRAMMING

The Shell provides a powerful programming language for combining existing commands. This section
should be especially useful to those who want to automate manual procedures and build data bases.

6.1 The UNIX Time-Sharing System++

6.2 PWB/UNIX Shell Tutorial + +
6.3 Thinp to Do

If you want to create your own library of commands, create a ".path" file in your login directory, as
described in sh(I).

6.4 Manual Pages to Be Studied

Read sh(I) first; the fallowing pages give further details on commands that are most frequently used
within command language programs:

echo(!)
equals(!)
exit(!)
expr(I)
fd2(1)
if(I)
next(I)
nohup(I)
onintr(I)
pump(I)
sh(I)
shift(!)
switch(!)
while(!)

echo arguments (typically to terminal).
Shell assignment command (for variables).
terminate command file.
evaluate an algebraic expression.
redirect diagnostic output.
conditional command.
read command input from named file.
run a command immune to communications line hang-up.
handle interrupts in Shell files.
Shell data transfer command.
Shell (command interpreter).
adjust Shell arguments.
Shell multi·way branch command.
Shell iteration command.

-s -

1. nLE MANIPULATION

In addition to the basic commands of (2}, many UNIX commands exist to perform various kinds of file
manipulation. Small data bases can often be managed quite simply, by combining text processing (from
(S}}, command language programming {6}, and commands listed below in (7.21.

7.1 Things to Do

This .. roadmap" notes only the most frequently used commands. It is wise to scan Section I of the
PWBJUNIX User's Manual periodically-you will often discover new uses for commands.

7.1 Manual Pa1es to Be Studied

The foil owing are used to search or edit files in a single pass:

grep(I) search a file for a pattern; more powerful and specialized versions include

sed(I)
tr(l)

egrep(I), fgrep(I), and rgrep(I).
stream editor.
transliterate (substitute or delete specified characters).

The following compare files in different ways:

cmp(l) compare files (byte by byte).
comm(I) print lines common to two files, or lines that appear in only one of the two files.
di.ff(!) differential file comparator (minimal editing for conversion).

The following combine files and/or split them apart:

ar(l) archiver and library maintainer.
cpio(I) general file copying and archiving.
csplit(l) split file by context.
split(I) split file into chunks of specified size.

These commands interrogate files and print information about them:

file{I) determine file type (best guess).
od(I) octal dump (and other kinds also).
wc(l) word (and line) count.

Miscellaneous commands:

find(l)
gath(I)
help(I)
reform(I)
son(I)
tee(I)
uniq(I)

8. C PROGRAMMING

search directory structure for specified kinds of files.
gather real and virtual files; alias for send(I).
ask for help about a specific error message.
reformat "tabbed" files (often used to truncate lines).
sort or merge files.
copy single input to several output files.
report repeated lines in a file, or obtain unique ones.

Try to use existing tools first, before writing C programs at all.

8.1 Pr011ammin1 in C-A Tutorial ++
Read; try the examples.

8.2 C Reference Manual + +
Terse but complete reference manual.

8.3 A New Input-Output Pack.age +
Describes a new 110 package that is superseding many of the existing routines; write any new code
using this package.

8.4 UNIX Procrammin1 +
8.5 YACC-Yet Another Compiler Compiler

8.6 LEX-Lexical Analyzer Generator
.

. - 6 -

8. 7 Make-A Procram for Maintainin1 Computer Proarams

8.8 Thinp to Do

The best way to learn c is to look at the source code of existing pr~ especially ones whose func
tions are well known to you. Much code can be found in directory "/sys/soUrce0 • In particular, direc
tories "sl .. and "s2" contain the source for most of the commands. Also, investigate directory
"/usr/include".

8.9 Manual Pases to Be Studied

adb(I)
cc(I) .

cdb(I)
ld(I)
lex(l)
make(!)
nm(I)
prof(I)
regcmp(I)
strip(I)
time(!)
yacc(I)

c debugger, more powerful (but more complex) than the older cdb(I).
C compiler.
C debugger (for post-mortem core dumps and other debugging).
loader (you must know about some of its flap).
generate lexical analyzers.
automate program regeneration procedures.
print name (i.e., symbol) list.
display profile data (used for program optimization).
compile regular expression.
remove symbols and relocation bits from executable file.
time a command.
parser generator.

9. IBM REMOTE JOB ENTRY (RJE)

This section is for those who use pWBJUNIX to submit jobs to remote computers.

9.1 Guide to IBM Remote Job Entry for PWB/UNIX Users+

9.2 Manual Pages to Be Studied

bfs(I) big file scanner (scans RJE output).
csplit(I) split file by context (often used to split RJE output).
fspec(V) format specification in text files.
reform(!) reformat files (often used to convert source programs from non-uNIX systems).
rjestat (1) RJE status and enquiries.
send (I) submit RJE job.

10. SOURCE CODE CONTROL SYSTEM (SCCS>

Secs can be used to maintain, control, and identify files of text as they are modified and updated. Its
most common use is for maintaining source programs, as well as for keeping track of successive ver
sions of various documents; in combination with d;ffmark(I), this allows one to automatically generate
.. revision bars" in successive edicions of such documents.

10.1 SCCS/PWB User's Manual++

10.2 Manual Pages to Be Studied

Of the following. get(I), delta(I), and prt(I) are most frequently used.

admin(l) administer secs files (including creation thereoO.
chghist (I) change the history entry of an secs delta.
comb(I) combine sccs deltas.
delta(I) make an secs delta (a permanent record of editing changes).
get (I) get a version of an secs file.
prt (I) print SCCS file.

- 7 -

rmdel(I)
sccsdiff (I)
what(I)

remove a delta from an sccs file.
get the differences between two sccs deltas.
find and print secs identifications in files.

11. NUMERICAL COMPUTATION

11.1 DC-An Interactive Desk Calculator

11.2 BC-An Arbitrary Precision Desk Calculator Language

11.J RATFOR-A Preprocessor for a Rational Fortran

11.4 Manual' Paces to Be Studied

bas(l) BASIC interpreter.
bc(I) interactive language, acts as front end for dc(I)
dc(I) desk calculator.
fc(I) Fortran compiler/interpreter.
rc(I) RATFOR preprocessor.

The PwBIUN1x• document entitled:

PwBIUNIX Beginner's Course
is not yet available.

• UNIX is a Trademark/Service Mark of the Beil System.

B.2

A Tutorial Introduction to the UNIX Text Editor

B. W. Kernighan

Bell Laboratories, Murray Hill, N. J.

Introduction
Ed is a .. text editor", that is, an interactive

program for creating and modifying "text", using
directions provided by a user at a terminal. The
text is often a document like this one, or a pro
gram or perhaps data for a program

This introduction is meant to simplify
learning ed. The recommended way to learn ed
is to read this document, simultaneously using ed
to follow the examples, then to read the descrip·
tion in section I of the UNIX manual, all the
while experimenting with ed. (Solicitation of ad·
vice from experienced users is also useful)

Do the exercises! They cover material not
completely discussed in the actual texl An ap·
pendix summarizes the commands.

Dlsclaimer

This is an introduction and a tutorial. For
this reason, no attempt is made to cover more
than a part of the facilities that ed offers
(although this fraction includes the most useful
and frequently used parts). Also, there is not
enough space to explain basic UNIX procedures.
We will assume that you know how to log on to
UNIX, and that you have at least a vague under·
standing of what a file is.

You must also know what character to type
as the end-of -line on your particular terminal.
This is a "newline" on Model 37 Teletypes, and
"return" on most others. Throughout, we will
refer to this character, whatever it is, as "new
line".

Gettinc Started
We'll assume that you have logged in to

UNIX and it has just said "%". The easiest way
to get ed is to type

ed (followed by a newline)

You are now ready to go - ed is waiting for you
to tell it what to do.

Cread111 Text - the Append command "a"
As our first problem, suppose we want to

create some text starting from scratch. Perhaps
we are typing the very first draft of a paper;
clearly it will have to start somewhere, and un
dergo modifications later. This section will show
how to get some text in, just to get started.
Later we'll talk about how to change it.

When ed is first started, it is rather like
working with a blank piece of paper - there is
no text or information present This must be
supplied by the person using ed; it is usually
done by typing in the text, or by reading it into
ed from a file. We will start by typing in some
text, and return shortly to how to read files.

First a bit of terminology. In ed jargon, the·
text being worked on is said to be "kept in a
buffer." Think of the buffer as a work space, if
you like. or simply as the information that you
are going to be editing. In etrect the buffer is
like the piece of paper, on which we will write
things, then change some of them, and finally
tile the whole thing away for another day.

The user tells ed what to do to his text by
typing instructions called "commands." Most
commands consist of a single letter, which must
be typed in lower case. Each command is typed
on a separate line. (Sometimes the command is
preceded by information about what line or lines
of text are to be affected - we will disc~ these
shortly.) Ed makes no response to most com·
mands - there is no prompting or typing of mes
sages like "ready". (This silence is preferred by
experienced users, but sometimes a hangup for
beginners.)

The first command is append, written as the
letter

a
all by itself. It means "append (or add) text
lines t~ the buffer, as I type them in." Append
ing is rather like writing fresh material on a
piece of paper.

B.3

So to enter lines of text into the butf'er. we
just type an "a" followed by a newline. followed
by the lines of text we want. like this:

a
Now is the time
for all good men
to come to the aid of their party.

The only way to stop appending is to type a
line that contains only a period. The "." is used
to tell ed that we have finished appending.
(Even experienced users forget that terminating
"." sometimes. If ed seems to be ignoring you,
type an extra line with just •• :• on it. You may
then ftnd you've added some garbage lines to
your text, which you'll have to take out later.)

After the append command has been done,
the buft'er will concain the ihree lines

Now is the time
for all good men
to come to the aid of their party.

The "a" and ".'' aren't there. because they are
not text.

To add more text to what we already have,
just issue another "a" com~ and continue
typing.

Error Messaces - "?"
If at any time you make· an error in the

commands you type to ed. it will teU you by typ
ing

?"

This is about as cryptic as it can be, but with
practice, you can usually figure out how you
goofed.

Wrttinc text out as a &le - the Write COlllllllDd ,.._ ..
It's likely that we'll want to save our text

for later use. To write out the contents of the
butrer onto a file, we use the write command

w

followed by the filename we want to write on.
This will copy the butler's contents onto the
specified tile (destroying any previous infonna·
tion on the tile). To save the text on a file
named "junk", for example. type

wjunk

Leave a space between ''w" and the file name.
Ed will respond by printing the number of char·
acters it wrote out. In our case, ed would
respond with

-2-

68
(Remember that blanks and the newline charac·
ter at the end of each line are included in the
character count.) Writing a file just makes a copy
or the text - the buft"er's contents are not dis·
turbed. so we can ao on adding lines to iL This
is an important point. Ed at all times works on a
copy of a ftle, not the tile itself. No change in
the contents of a tile takes place until you give a
"w'• command. (Writing out the text onto a file
from time to time as it is being created is a good
idea, since if the system crashes or if you make
some horrible mistake, you will lose all the text
in the buft'er but any text that was written onto a
file is relatively safe.)

Leoi111 e4 - the Qatt command "q,.
To terminate a session with ed. save the

text you're working on by writing it onto a tile
using the ''w" command, and tben type the
command

q

which stands for quit. The system will respond
with "%". At th.is point your buft'er vanishes,
with ail its text. which is wby you want to write
it out before quitting.

herdlet:
Enter ed and create some text using

a
... text ...

Write it out using "w". Then leave ed with the
"q" command. and print the tile, to see that
everything worked. (To print a ftle, say

pr filename

or

cat filename

in response to"%". Try both.)

R.U111 text from a file - the Edit command
A common way to get text into the buffer

is to read it from a file in the file system. This is
what you do to edit text that you saved with the
"w" command in a previous session. The edJt
command "e" .fetches the entire contents of a
tile into the buffer. So if we had saved the three
lines "Now is the time", etc., with a "w" com·
mand in an earlier session, the ed command

ejunk

woukl fetch the entire contents of the tile
·~unk" into the bulfer, and respond

68
which is the number of characters in "junk". If
qnything was already in the buffer, it is deleted first.

If we use the "e" command to read a file
into the buffer, then we need not use a file name
after a subsequent "w" command; ed remembers
the last file name used in an "e" command, and
.. w'' will write on this fiJe. Thus a common way
to operate is

ed
e file
[editing session]
w
q

You can find out at any time what file
name ed is remembering by typing the file com·
mand "r'. In our case, if we typed

f

ed would reply

junk

Readi111 text from a file - the Read command
"r"

Sometimes we want to read a file into the
butfer without destroying anything that is al·
ready there. This is done by the read command
"r". The command

rjunk

will read the file "junk" into the butfer; it adds it
to the end of whatever is aiready in the buffer.
So if we do a read after an edit:

ejunk
r junk

the butfer will contain two copies of the text (six
lines).

Now is the time
for ail good men
to come to the aid of their party.
Now is the time
for ail good men
to come to the aid of their party.

Like the "w" and "e" commands, "r" prints the
number of characters read in, after the reading
operation is complete.

Generally speaking, "r" is n:iuch less used
than "e".

-3-

Exercise 2:

Experiment with the "e" command - try
reading and printing various files. You may get
an error "?", typically because you spelled the
file name wrong. Try alternately reading and ap
pending to see that they work similarly. Verify
that

ed filename

is exactly equivalent to

ed
e filename

What does

r filename

do?

Printing the contents of the buffer - the Print
command "p"

To print or list the contents of the buffer
(or parts of it) on the terminal, we use the print
command

p

The way this is done is as follows. We specify
the lines where we want printing to begin and
where we want it to end, separated by a comma,
and followed by the letter "p". Thus to print the
first two lines of the buffer, for example, (that is,
lines I through 2) we say

l,2p (starting line-I, ending line=-2 p)

Ed will respond with

Now is the time
for all good men

Suppose we want to print all the lines in
the buffer. We could use "1,3p" as above if we
knew there were exactly 3 lines in the buffer.
But in general, we don't know how many there
are, so what do we use for the ending line
number? Ed provides a shorthand symbol for
"line number of last lirie in buffer" - the dollar
sign "$". Use it this way:

l,Sp

This will print all the lines in the buffer Oine l
to last line.) If you want to stop the printing be·
fore it is finished, push the DEL or Delete key;
ed will type

?

and wait for the next command.

To print the la.st line of the butfer, we
could use

$,Sp

but ed lets us abbreviate this to

Sp

We can print any single line by typing the line
number follow~ by a "p". Thus

lp

produces the response

Now is the time

which is the first line of the butfer.

In fact, ed lets us abbreviate even further:
we can print any single line by typing)Ust the
line number - no need to type the letter 0 p".
So if we say

$

ed will print the la.st line of the buffer for us.
We can also use "$" in combinations like

S-1,Sp

which prints the last two lines of the buifer.
This helps when we want to see how far we got
in typing.

Exercise 3:
As before. create some text using the ap-

pend command and experiment with the "p"
command. You will find. for example. that you
can't print line 0 or a line beyond the end of the
buft'er, and that attempts to print a buft'er in re·
verse order by saying

3,lp

don't work.

The current line- .. Dot" or
Suppose our buft'er still contains the six

lines as above, that we have just typed

l,3p

and ed has printed the three lines for us. Try
typing just

' p (no line numbers).

This will print

to come to the aid of their party.

which is the third line of the buffer. In fact it is
the last (most recent) line that we have done
anything with. {We just printed it!) We can re
peat this "p" command without line numbers,
and it will continue to print line 3.

The reason is that ed maintains a record of
the last line that we did anything to (in this case,
line 3, which we just printed) so that it can be
used instead of an explicit line number. This
most recent line is ref erred to by the shorthand
symbol

(pronounced "dot").

-4-

Dot is a line number in the same way that "$"
is; it means exactly "the current line", or loose·
ly, "the line we most recently did something to."
We can use it in several ways - one possibility
is to say

.,Sp .
This will print all the lines from (including) the
current line to the end of the butfer. In our case
these are lines 3 through 6.

Some commands change the value of dot,
while others do nol Th~ print command sets
dot to the number of the last line printed; by
our last command, we would have "." • "$.. •
6.

Dot is most useful when used in combina
tions like this one:

.+l (or equivalentfy, .+lp)

This means "print the next line" and gives us a
handy way to step slowly through a bulfer. We
can also say

.-1 (or .-lp)

which means "print the line before the current
line." This enables us to go backwards if we
wish. Another useful one is something like

.-3,.-lp

which prints the previous three lines.

Don't forget that all of these chanae the
value of dot. You can find out what dot is at
any time by typing .-
Ed will respond by printing the value of dot.

Let's summarize some things about the "p"
command and dot. Essentially "p" can be pre·
ceded by 0, 1. or 2 line numbers. If there is no
line number given, it prints the "current line",
the line that dot refers to. If there is one line
number given (with or without the letter "p"), it
prints that line (and dot is set there); and if
there are two line numbers, it prints all the lines
in that range (and sets dot to the last line print·
ed.) If two line numbers are speeified the first
can't be bigger than the second (see Exercise 2.)

Typing a single newline will cause printing
of the next line - it's equivalent to ".+lp". Try
it. Try typing - it's equivalent to ".-lp".

Deletinc lines: the .. d .. command

Suppose we want to get rid of the three ex
tra lines in the buffer. This is done by the delete
command

d

Except that .. d .. deletes lines instead of printing
them. its action is similar to that of .. p... The
lines to be deleted are· specified for .. d .. exactly
as they are for "p": ·

starting line. ending line d

Thus the command

4,Sd

deletes lines 4 through the end. There are now
three lines left. as we can check by using

l,Sp

And notice that '"$'• now is line 3! Dot is set to
the next line after the last line deleted, unless
the last line deleted is the last line in the buffer.
In that case. dot is set to "S ...

Exercise 4:
Experiment with U·a111 , ·•e"', "'•r ... , "•w'·. ,.p,.,

and "d" until you are sure that you know what
they do. and until you understand how dot, "$.. ,
and line numbers are used.

If you are adventurous. try using line
numbers with .. a ... '"r". and .. w .. as well. You
will find that .. a .. will append lines after the line
number that you specify (rather than after dot):
that "r" reads a file in after the line number you
specify (not necessarily at the end of the buffer);
and that '"w'' will write out exactly the lines you
specify, not necessarily the whole buffer. These
variations are sometimes handy. For instance
you can insert a tile at the beginning of a buffer
by saying

Or filename

and you can enter lines at the beginning of the
buif'er by saying

Oa
... text . ..

Notice that ••. w" is wry different from

w

-S-

Modifyinc text: the Substitute command "s ..

We are now ready to try one of the most
important of all commands - the substitute
command

s
This is the command that is used to change indi
vidual words or letters within a line or group of
lines. It is what we use, for example. for correct
ing spelling mtStakes and typing errors.

Suppose that by a typing error. line l says

Now is th time

- the "e" has been left olf "the". We can use
"s" to fix this up as follows:

ls/th/the/

This says: "in line I, substitute for the charac·
ters 'th· the characters 'the'." To verify that it
works (ed will not print the resuit automatically)
we say

p

and get

Now is the time

which is what we wanted. Notice that dot must
have been set to the line where the substitution
took place, since the "p" command printed that
line. Dot is always set this way with the .. s ..
command.

The genera.I way to use the substitute com
mand is

starting-line, ending-I ine sl change this/ to this/

Whatever string of characters is between the
first pair of slashes is replaced by whatever is
between the SC1:ond pair, in all the lines between
starting line and ending line. Only the first oc·
currence on each line is changed. however. If
you want to change every occurrence. see Exer
cise S. The rules for line numbers are the same
as those for ••p", except that dot is set to the last
line changed. (But there is a trap for the
unwary: if no substitution took place. dot is not
changed. This causes an error "?" as a warn
ing.)

Thus we can say

l,Ss/spelinglspellingl

and correct the first spelling mistake on each line
in the text. (This is useful for people who are
consistent misspellers!)

If no line numbers are given, the .. s .. com
mand assumes we mean "make the substitution
on line dot". so it changes things only on the
current line. This leads to the very common se
quence

sJsomething/something etse/p

which mues some correction on the current
line. and then prints it. to make sure· it worked
out right. If it didn't. we can try apin. (Notice
that we put a print command on the same line as
the substitute. With few exceptions, "p" can
follow any command; no other muiti~onunand
lines are legal.) ,

It's aJso legal to say

s/ ... II

which means "change the first string of charac·
ters to ffOlhmg", i.e., remove them. This is useful
for deleting extra words in a line or removing
extra letters from words. For instance, if we had

Nowxx is the time

we can say

s/xx/lp

to get

Now is the time

Notice that "Ir' here means "no characters",
not a blank. There is a dift'etence! (See below
for another meaning of "Ir.)

Exercise 5:
Experiment with the substitute command.

See what happens if you substitute for some
word on a line with several oc;currences of that
word. For example. do this:

a
the other side of the coin

s/the/011 the/p

You will get

on the other side of the coin

A substitute command changes only the first OC·

currence of the IL-st string. You can change ail
occurrences by adding a "g" (for "global"} to
the "s" command. like this:

sl ... I ... /gp

Try other characters instead of slashes to delimit
the two sets of characters in the "s" command -
anything should work except blanks or tabs.

(If you get funny results using any of the
characters

$ • \
read the section on "Special Characters .. .)

-6-

Context sea.rchin1 - "I . . . /"
With the substitute command mastered, we

can move on to another highly important idea of
ed - context searching.

Suppose we have our original three line
text in the butfer:

Now is the time
for all good men
to come to the aid of their party.

Suppose we want to find the line that contains
"their" so we can change it to "the ... Now with
only three lines in the butfer, it's pretty easy to
keel) track of what line the word .. their" is on.
But if the butfer contained several hundred tines,
and we'd been making changes, deleting and
rearranging tines, and so on. we-would no longer
really know what this line number would be.
Context searching is simply a method of specify·
in1 the desired line. regardless of what its
number is. by specifying some context on it.

The way we say "search for a line that
contains this particular string of characters" is to
type

/string of choractl!1'$ we want to find/

For example, the ed line

/their/

is a context sa.rch which is sufficient to find the
desired line - it will locate the next occurrence
of the characters between slashes ("their"). It
aiso sets dot to that line and prin.ts the line for
verifu:ation:

to come to the aid of their pany.

"Next ~um:nce" means that ed starts looking
for the string at line ••. +l,.. searches to the end
of the butfer, then continues at line I and
searches to line dot. (That is. the search "wraps
around .. from "$" to 1.) It scans all the lines in
the butter until it either finds the desired line or
gees back to dot again. If the given string of
characte:s can't be found in any line. ed types
the error message

?

Otherwise it prints the line it found.

We can do both the search for the desired
line and a substitution all at onc:e, like this:

/their ls/their /the/p

which wiU yie!d

to come to the aid of the party.

There were three parts to that last command:
context search for the desired line, make the
substitution, print the line.

The expression ••ttheirr' is a context
search expression. In their simplest form. all
context search expressions an: like this - a
string of characters surrounded by slashes. Con
text searches are interchangeable with line
numbers, so they can be used by themselves to
ftnd and print a desired line, or as line numbers
for some other command. like "s". We used
them both ways in the examples above.

Suppo.Se the buft'er contains the three fami-
liar lines ·

Now is the time
for all good men
to come to the aid of their party.

Then the ed line numbers

!Now/+l
/good/
/party/-1

are au context search expressions. and they all
refer to the same line (line 2). To make a
change in line 2, we could say

!Now/+ls/good/bad/

or

/goodls/goodlbad/

or

/party/-ls/goodlbad/

The choice is dictated only by convenience. We
could print all three lines by, for instance

/Now/Jparty/p

or

/Now/,/Now/+2p

or by any number of similar combinations. The
first one of these might be better if we don't
know how many lines are involved. (Of course,
if there were only three lines in the buft'er, we'd
use

1,Sp

but not if there were several hundred.)

The basic rufe is: a context search expres
sion is the same as a line number, so it can be
used wherever a line number is needed.

Exercise 6:

Experiment with context searching. Try a
body of text with several occurrences of the
same string of characters, and scan through it
using the same context search.

Try using context searches as line numbers
for the substitute, print and delete commands.
(They can also be used with "r", "w", and "a".)

-7-

Try context searching using "?text?" in
stead of "/textr'. This scans lines in the buft'er
in reverse order rather than normal. This is
sometimes useful if you go too far while looking
for some string of characters - it's an easy way
to back up.

(If you get funny results with any of the
characters

s • \
read the sectjon on ••special Characters".)

Ed provides a shorthand for repeating a
context search for the same string. For example,
theed line number

/string/

will find the next occurrence of "string... It of
ten happens that this is not the desired line. so
the search must be repeated. This can be done
by typing merely

II

This shorthand stands for "the most recently
used context search expression.'• It can also be
used as the first string of the substitute com·
mand. as in

/stringl/s/ /string2/

which will find the next occurrence of "stringl"
and replace it by "string2". This can save a lot
of typing. Similarly

??
means "scan backwards for the same expres
sion."

Chanle and Insert - .. c" and .. i ..
This section discusses the change command

c

which is used to change or replace a group of
one or more lines, and the insen command

which is used for inserting a group of one or
more lines.

''Change .. , written as

c
is used to replace a number of lines with
different lines, which are typed in at the termi·
nal For example, to change lines ". + l" through
"$" to something else, type

.+1,Sc
• . . type the lines of text you want here ...

The lines you type between the "c" command
and the "." will take the place of the original

lines between start line and end line. This is
most useful in replacing a line or several lines
which have errors in them.

If only one line is specified in the "c" com
mand •. then just that line is replaced. (You can
type in as many replacement lines as you like.)
Notice the use of ••." to end the input - this
works just like the ••." in the append command
and must appear by itself on a new line. If no
line number is given. line dot is replaced. The
value of dot is set to the last line you typed in.

"Insert" is similar to append - for instance

/stringli
. . . type the lines to be inserted here ...

will insert the given text be/ore the next line that
contains "string". The text between "i" and ":·
is inserted before the specified line. If no line
number is specified dot is used. Dot is set to the
last line inserted.

Exen:ise 7:
"Change" is rather like a combination of

delete followed by insert. Experiment to verify
that

start, endd
i
... text.' ..

is almost the same as

stan, end·c
.. . text ...

These are not precisely the same if line "$" gets
deleted. Check this out. What is dot?

Experiment with "a" and "i", to see that
they are similar, but not the same. You will ob
serve that

line-number a
... text ...

appends after the given line, while

line-mJJnber i
... text ...

inserts before it. Observe that if no line number
is given, "i" inserts before line dot, while "a"
appends after line dot

-8-

Mo•lna text around: the .. m" command

The move command .. m" is used for cut·
ting and pasting - it lets you move a group of
lines from one place to another in the buffer.
Suppose we want to put the first three lines of
the buffer at the end instead. We could do it by
saying:

1.3w temp
Sr temp
l,3d

(Do you see why?) but we can do it a lot easier
with the "m" command:

l,3mS

The general case is

start /iM. end line m after thi3 line

Notice that there is a third line to be specified -
the place where the moved stutf gets put. Of
course the lines to be moved can be specified by
context searches; if we had

Fust paragraph

end of first paragraph.
Second paragraph

end of second paragraph.

we could reverse the two paragraphs like this:

/Second/ ,/second/m/First/-1

Notice the "-1 •• - the moved text goes after the
line mentioned. Dot gets set to the last line
moved .

The alobal commands "1" and Uyn

The global command "g" is used to execute
one or more ed commands on all those lines in
the buf er that match some specified string. For
example

g/peling/p

prints all lines that contain .. peling". More use·
fully,

g/peling/s//pelling/gp

makes the substitution everywhere on the line,
then prints each corrected line. Compare this to

l ,Ss/peiing/ pelling/gp

which only prints the last line substituted.
Another subtle difference is that the "g" com
mand does not give a "?" if "peling" is not
found where the "s" command will.

There may be several commands (includ·
ing "a", "c" "i" "r", ''w", but not "g"); in that
case, every line except the last must end with a
backslash "\":

g/xxx/ .-ls/abc/def I\
.+2s/ghi/jkll\
.-2 .. p

makes changes in the lines before and after each
line that contains .. xxx", then prints all three
lines.

The .. v .. command is the same as .. g", ex
cept that the commands are executed on every
line that does not match the string.following .. v":

vl/d

deletes every line that' does not contain a blank.

Special Characters
You may have noticed that things just

don't work right when you used some characters
like .. : $.. , and others in context searches
and the substitute command. The reason is
rather complex. although the cure is simple. Ba
sicaJly. ed treats these characters as special. with
special meanings. For instance. in a context
search or the first sll'ing of rhe substitute command
only,

/x.y/

means .. a line with an x, any character, and a y,"
not just .. , line with an x. a period, and a y." A
complete list of the special characters that can
cause trouble is the following:

s [• \
Warning: The backslash character \ is special to
ed. For safety's sake. avoid it where possible. If
you have to use one of the special charaeters in
a substitute command, you can tum otr its magic
meaning temporarily by preceding it with the
backslash. Thus

sl\ \ \. \ • Jbackslash dot star/

will change .. ,,••• into "backslash dot star".

Here is a hurried synopsis of the other spe
ciaJ characters. First. the circumflex •• • "
signifies the beginning of a line. Thus

rstring/

finds "string" only if it is at the beginning of a
line: it will find

string

but not

the string._

The dollar-sign "$" is just the opposite of the
circumflex; it means the end of a line:

/string$/

will only find an occurrence of "string" that is at
the end i{f some line. This implies, of course.

-9-

that

rstringS/

will find only a line that contains just "string",
and

r.SI
finds a line containing exactly one character.

The character ",", as we mentioned above,
matches anything;

lx.yl
matches any of

x+y
x-y
'X y
x.y

This is useful in conjunction with which is
a repetition character; "a•" is a shorthand for
"any number of a's.'' so ". •" matches any
num,ber of anythings. This is used like this:

s/. •/stuff/

which changes an entire line. or

s/.•JJ
which deletes all characters in the line up to and
including the last comma. (Since " finds the
longest possible match, this goes up to the last
comma.)

"{" is used with "]" to form "character
classes"; for example,

/{1234567890)/

matches any single digit - any one of the char
acters inside the braces will cause a match.

Finally, the "&" is another shorthand char·
acter • it is used only on the right-hand part of a
substitute command where it means "whatever
was matched on the left-hand side". It is used
to save typing. Suppose the current line con
tained

Now is the time

and we wanted to put parentheses around it We
could just retype the line, but this is tedious. Or
we could say

sr/(/
s/$/)/

using our knowledge of and "$". But the
easiest way uses the "&.":

s1.•/(&)/

This says "match the whole line, and replace it
by itself surrounded by parens." The "&" can
be used several times in a line; consider using

sJ.•/&? &!!/

to produce

Now is the time? Now is the time!!

We don't have to match the whole line, of
course: if the bulf'er contains

the end of the world

we could type

/worldls// &. is at hand/ ' ·

to produce

the end of the world is at hand

Observe this expression carefully, for it illus·
trates how to take advantage of ed to save typing.
The string "/world/" found the desired line; uie
shorthand "Ir' found tbe same word in the line;
and the "&."saved us from typing it again.

The "&." is a special character only within
the replacement text of a substitute command,
and has no special meaning elsewhere. We can
tum olf' the special meaning of "&." by preceding
it with a "\":

s/ampersandl\&1

will convert the word "ampersand" into the
literal symbol "&:" in the current line.

Summary of Commands and Line Numbers
The general form of ed commands is the

command name, perhaps preceded by one or
two line numbers, and, in the case of e, rand w,
followed by a file name. Only one command is
allowed per line, but a p command may foilow
any other command (except for e, r, wand q).

a (append) Add lines to the buft'er (at line dot,
unless a dift'erent line is specified). Appending
continues until "." is typed on a new line. Dot
is set to the last line appended.

c (change) Change the specified lines to the new
text which follows. T)'le new lines are terminat·
ed by a".". If no lines are specified, replace line
dot Dot is set to last line changed.

d (delete) Delete the lines specified. "If none are
specified, delete line dot. Dot is set to the first
undeleted line, unless "$" is deleted, in which
case dot is set to "$".

e (edit) Edit new file. Any previous contents of
the buffer are thrown away, so issue a w before
hand if you want to save them.

f (file) Print remembered filename. If a name
follows /the remembered name will be set to it.

g (global) g/-lcommands will execute the com·

-10-

mands on those lines that contain "··-'', which
can be any context search expression.

I (Jn.wt) Insert lines before specified line (or dot)
until a "." is typed on a new line. Dot is set to
tut line inserted.

m (mowt) Move lines specified to after the line
named after m. Dot is set to the last line moved.

P {print) Print specified lines. If none specified,
print line dot. A single line number is
equivalent to "line-number p". A single newline
prints ".+l", the next line.

q (quit) Exit from ed. Wipes out all text in
buffer!!

r (read) Read a file into buJf'er (at end unless
specified elsewhere.) Dot set to last line read

s (subltitllte) #ltriltgibtrllfg2/ will substitute the
characters of 'string2' for 'string!' in specified
lines. If no line is specified, make substitution in
line dot. Dot is set to last line in which a substi
tution took place, which means that if no substi·
tution took place, dot is not changed. s changes
onJy the lint occurrence of strin&l on a line; to
change all of them, type a "g" after the final
slash.

v (exclude) vl-lcommtmd:r executes "commands"
on these lines that do not contain " ••• ".

w (writ•) Write out buifer onto a file. Dot is ttot
changed.

.• (dot vaJw) Print value of dot. (''•" by itself
prints the value of "$".)

! (tempot'Ql'Y escape)
Execute this line as a UNIX command.

1--1 Context search. Search for next line which
contains this string of characters. Print it. Dot
is set to line where string found. Search starts at
".+l", wraps around from "$" to 1, and contin·
ues to dot, if necessary.

?-? Context search in reverse direction. Start
search at ".-1", scan to l, wrap around to"$".

Advanced Editing on UNIX

Brian W. Kernighan

BeU Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This paper is meant to help secretaries, typists and programmers to make
effective use of the UNIX facilities for preparing and editing text. It provides
explanations and examples of

• special characters, line addressing and global commands in the editor ed;

• commands for "cut and paste" operations on files and parts of files,
including the mv, cp, cat and rm commands, and the r, w, m and t com
mands of the editor.

• editing scripts and editor-based programs like grep and sed.

Although the treatment is aimed at non-programmers, new UNIX users
with any background should find helpful hints on how to get their jobs done
more easily.

B.4

Advanced Editing on UNIX

Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

1. INTRODUCTION

Although UNIX provides remarkably
effective tools for text editing, that by itself is no
guarantee that everyone will automatically make
the most effective use of them. In particular.
people who are not computer specialists - typ
ists, secretaries, casual users - often use the
system less effectively than they might.

This document is intended as a sequel to A
Tutorial Introduction to rhe UNIX Text Editor [l),
providing explanations and examples of how to
edit with less effort. (You should also be fami
liar with the material in UNIX For Beginners [2.J.)
Further information on all commands discussed
here can be found in The UNIX Programmer's
Manual [3].

Examples are based on observations of
users and the difficulties they encounter. Topics
covered include special characters in searches
and substitute commands, line addressing, the
global commands, and line moving and copying.
There are also brief discussions of effective use
of related tools, like those for file manipulation,
and those based on ed, like grep and sed.

A word of caution. There is only one way
to learn to use something, and that is to use it.
Reading a description is no substitute for trying
something. A paper like this one should give
you ideas about what to try. but until you actu
ally try something, you will not learn it.

2. SPECIAL CHARACTERS

The editor ed is the primary interface to
the system for many people, so it is worthwhile
to know how to get the most out of ed for the
least effort.

The next few sections will discuss
shortcuts and labor-saving devices. Not all of
these will be instantly useful to any one person,
of course, but a few will be, and the others
should give you ideas to store away for future
use. And as always, until you try these things,
they will remain theoretical knowledge, not
something you have confidence in.

The List command 'l'

ed provides two commands for printing the
contents of the lines you 're editing. Most people
are familiar with p, in combinations like

l,$p

to print all the lines you 're editing, or

s/abc/def/p

to change 'abc' to 'def' on the current line. Less
familiar is the list command l (the letter '/'),
which gives slightly more information than p. In
particular, I makes visible characters that are
normally invisible, such as tabs and backspaces.
If you list a line that contains some of these, 1
will print each tab as ~ and each backspace as
~. This makes it much easier to correct the sort
of typing mistake that inserts extra spaces adja
cent to tabs, or inserts a backspace followed by a
space.

The 1 command also 'folds' long lines for
printing - any line that exceeds 72 characters is
printed on multiple lines; each printed line
except the last is terminated by a backslash \. so
you can tell it was folded. This is useful for
printing long lines on short terminals.

Occasionally the 1 command will print in a
line a string of numbers preceded by a backslash,
such as \07 or \16. These combinations are used
to make visible characters that normally don't
print, like form feed or vertical tab or bell. Each
such combination is a single character. When
you see such characters, be wary - they may
have surprising meanings when printed on some
terminals. Often their presence means that your
finger slipped while you were typing; you almost
never want them.

The Substitute Command 's'

Most of the next few sections will be taken
up with a discussion of the substitute command
s. Since this is the command for changing the
contents of individual lines, it probably has the
most complexity of any ed command, and the
most potential for effective use.

As the simplest place to begin. recall the
meaning of a trailing 1 after a substitute com·
mand. With

s/this/that/

and

s/this/that/g

the first one replaces the first 'this' on the line
with 'that'. If there is more than one 'this' on
the line. the second form with the trailing a
changes all of them.

Either form of the s command can be fol·
lowed by p or I to 'print' or 'list' {as described in
the previous.section) the contents of the line:

s/this/that/p
s/this/that/I
s/ this/ that/ gp
s/this/that/gi

are all legal. and mean slightly dift"erent things.
Make sure you know what the dift'erences are.

Of course. any s command can be pre·
ceded by one or two 'line numbers' to specify
that the substitution is to take place on a group
of lines. Thus

1,Ss/ mispell/ misspell/

changes the first occurrence of 'mispell' to
'misspell' on every line of the file. But

l,Ss/mispell/misspell/g

changes every occurrence in every line (and this
is more likely to be what you wanted in this par
ticular case).

You should also notice that if you add a p
or I to the end of any of these substitute com
mands, only the last line that got changed will be
printed, not all the lines. We will talk later about
how to print all the lines that were modified.

The Undo Command 'u'

Occasionally you will make a substitution
in a line, only to realize too late that it was a
ghastly mistake. The 'undo' command u lets
you 'undo' the last substitution: the last line that
was substituted can be restored to its previous
state by typing the command

u

The Metacharacter •. •

As you have undoubtedly noticed when
you use ed, certain characters have unexpected
meanings when they occur in the left side of a
substitute command, or in a search for a particu-

• 2 -

tar line. In the next several sections. we will talk
about these special characters. which are often
called. •metacharacters •.

The first one is the period '. •. On the left
side of a substitute command. or in a search with
'I .. .I'. •. • stands for any single character. Thus
the search

/x.y/

.finds any line where 'x' and 'y' occur separated
by a single character, as in

x+y
x-y
XaY
x.y

and so on. (We will use o to stand for a space
whenever we need to make it clear.)·

Since '. • matches a single character, that
gives you a way to deal with funny characters
printed by I. Suppose you have a line that, when
printed with the I command, appears as

.... tb\07is

and you want to get rid of the \07 (which
represents the bell character, by the way).

The most obvious solution is to try

sl\0111

but this will fail. (Try it.) The brute force solu
tion, which most people would now take. is to
re-type the entire line. This is guaranteed, and is
actually quite a reasonable tactic if the line in
que,tion isn't too big, but for a very long line,
re-typing is a bore. This is where the metachar·
acter '.' comes in handy. Since '\07' really
represents a single character, if we say

s/th.is/this/

the job is done. The '.' matches the mysterious
character between the 'b' and the 'i', whatever it
is.

Bear in mind that since '.' matches any
single character, the command

s/ .1.1

converts the first character on a line into a ','.
which very often is not what you intended.

As is true of many characters in ed, the '.'
has several meanings. depending on its context.
This line shows all three:

.s/././

The first '.' is a line number, the number of the
line we are editing. which is called 'line dot'.
(We will discuss line dot more in Section J.) The

second '.' is a metacharacter that matches any
single character on that line. The third •.' is the
onl:11 one that really is an honest literal period.
On the right side of a substitution, '.' is not spe
cial. If you apply this command to the line

Now is the time.

the result will be

.ow is the time.

which is probably not what you intended.

The Backslash '\'

Since a period means 'any character', the
question naturally arises of what to do when you
really want a period. For example, how do you
convert the line

Now is the time.

into

Now is the time?

The backslash '\' does the job. A backslash
turns oft' any special meaning that the next char
acter might have; in particular, '\.' converts the
•.' from a 'match anything' into a period, so you
can use it to replace the period in

Now is the time.

like this:

sl\.l?I

The pair of characters '\.' is considered by ed to
be a single real period.

The backslash can also be used when
searching for lines that contain a special charac
ter. Suppose you are looking for a line that con
tains

• PP

The search

/.PP/

isn't adequate, for it will find a line like

THE APPLICATION OF ...

because the '. • matches the letter 'A'. But if you
say

/\.PP/

you wilJ find only lines that contain '.PP'.

The backslash can also be used to tum off
special meanings for characters other than '. '.
For example. consider finding a line that con
tains a backslash. The search

• 3 •

1\1

won't work, because the '\' isn't a literal '\', but
instead means that the second 'I' no longer del·
imits the search. But by preceding a backslash
with another one. you can search for a literal
backslash. Thus

1\\1

does work. Similarly, you can search for a for
ward slash '/' with

l\11

The backslash turns off' the meaning of the
immediately following '/' so that it doesn't ter
minate the/ .. ./ construction prematurely.

As an exercise, before reading further,
find two substitute commands each of which will
convert the line

\x\.\y

into the line

\x\y

Here are several solutions; verify that each
works as advertised.

sl\\\.11
s/x •• /x/
s/ •• y/y/

A couple of miscellaneous notes about
backslashes and special characters. First. you
can use any character to delimit the pieces of an
s command: there is nothing sacred about
slashes. (But you must use slashes for context
searching.) For instance, in a line that contains a
lot of slashes already, like

//exec //sys.fort.go II etc ...

you could use a colon as the delimiter - to
delete all the slashes. type

s:/::g

Second, if # and @ are your character
erase and line kill characters, you .have to type
\#and\@; this is true whether you're talking to
ed or any other program.

When you are adding text with a or i or c,
backslash is not special, and you should only put
in one backslash for each one you really want.

The Dollar Sign '$'

The next metacharacter, the 'S', stands for
'the end of the line'. As its most obvious use.
suppose you have the line

Now is the

and.you wish to add the word 'time' to the end.
Use the S like this:

s/Slotime/

to get

Now is the time

Notice that a space is needed before 'time' in the
substitute command, or you will get

Now is thetime

As another example, replace the second
comma in this line with .a period without altering
the first.

Now is the time, for all good men,

The command needed is

sl,$1.I

The S sign here provides context to make specific
which comma we mean. Without it, of course,
the s command would operate on the first
comma to produce

into

Now is the time. for all good men,

As another example, to convert

Now is the time.

Now is the time?

as we did earlier, we can use

s/.$1?1

Like •. •, the ·s· has multiple meanings
depending on context. In the line

Ss/S/S/

the first 'S' refers to the last line of the file, the
second refers to the end of that line, and the
third is a literal dollar sign, to be added to that
line.

The Circumiex •••
The circumflex (or hat or caret) ••• stands

for the beginning of the line. For example, sup
pose you are looking for a line that begins with
'the'. If you simply say

/the/

you will in all likelihood find several lines that
contain 'the' in the middle before arriving at the
one you want But with

• 4 •

rthe/

you narrow the context, and thus arrive at the
desired one more easily.

The other use of ••• is of course to enable
you to insert something at tbe beginning of a
line:

sr/o/

places a space at the beginning of the current
line.

Metacbaracters can be combined. To
search for a Une that contains only the characters

.PP

you can use the command

/"\.PPS/

The Star'•'
Suppose you have a line that looks like

this:

text x y text

where text stands for lots of text. and there are
some indeterminate number of spaces between
the x and the y. Suppose the job is to replace all
the spaces between x and 1 by a single space.
The line is too long to retype, and there are too
many spaces to count. What now?

This is where the metacharacter '•' comes
in handy. A character followed by a star stands
for as many consecutive occurrences of that
character as possible. To refer to all the spaces
at once. say

s/xo •y/xoy/

The construction 'o•' means 'as many spaces as
possible'. Thus 'xo•Y' means 'an x, as many
spaces as possible, then a y'.

The star can be used with any character,
not just space. If the original example was
instead

text x--------y text

then all ' - ' signs can be replaced by a single
space with the command

s/x-•y/xoy/

Finally, suppose that the line was

text x •••••••••••••••••• y text

Can you see what trap lies in wait for the
unwary? IC you blindly type

s/x.•y/xcy/

what will happen? The answer, naturaJly, is that
it depends. If there are no other x's or y's on
the line, then everything works, but it's blind
luck, not good management. Remember that •.'
matches any single character? Then '.•' matches
as many single characters as passible, and unless
you're careful, it can eat up a lot more of the
line than you expected. If the line was, for
example, like this: .

text x text x •••••••••••••••• y text y text

then saying

s/x.•ylxcy/

will take everything from the first 'x' to the last
'y'. which, in this example, is undoubtedly more
than you wanted.

The solution, of course, is to tum oft' the
special meaning of '.' with '\. ':

s/x\ • .y/xoy/

Now everything works, for '\.•' means 'as many
perrods as possible'.

There are times when the pattern •. •' is
exactly what you want. For example, to change

Now is the time for all good men

into

Now is the time.

use • .•' to eat up everything after the 'for':

s/ for.•/./

There are a couple of additional pitfalls
associated with '•' that you should be aware of.
Most notable is the fact that 'as many as possi
ble' means zero or more. The fact that zero is a
legitimate possibility is sometimes rather surpris
ing. For example, if our line contained

text xy text x

and we said

s/xo •y/xcy/

y text

the first 'xy' matches this pattern, for it consists
of an 'x', zero spaces, and a 'y'. The result is
that the substitute acts on the first 'xy', and does
not touch the later one that actually contains
some intervening spaces.

The way around this, if it matters, is to
specify a pattern like

/xoc•y/

which says 'an x, a space, then as many more

- s -

spaces as possible, then a y'.

The other startling behavior of '•' is again
related to the fact that zero is a legitimate
number of occurrences of something followed by
a star. The command

s/x•/y/g

when applied to the line

abcdef

produces

yaybycydyeyfy

which is almost certainly not what was intended.
The reason for this behavior is that zero is a
legal number of matches, and there are no x's at
the beginning of the line (so that gets converted
into a 'y'), nor between the 'a' and the 'b' (so
that gets converted into a 'y'), nor ... and so on.
Make sure you really want zero matches~ if not,
in this case write

s/xx•/y/g

'xx•' is one or more x's.

The Brackets 'I]'
Suppose that you want to delete any

numbers that appear at the beginning of all lines
of a file. You might first think of trying a series
of commands like

l,$sFl•//
l,$sF2•//
t,SsrJ-11

and so on, but this is clearly going to take for
ever if the numbers are at all long. Unless you
want to repeat the commands over and over until
finally all numbers are gone, you must get all the
digits on one pass. This is the purpose of the
brackets [and] .

The construction

[12345678901

matches any single digit - the whole thing is
called a 'character class'. With a character class,
the job is easy. The pattern '[01234567891•'
matches zero or more digits (an entire number),
so

i .SsrU2J4S61s90J.11

deletes all digits from the beginning of all lines.

Any characters can appear within a charac
ter class, and just to confuse the issue there are
essentially no special characters inside the bracl<
ets; even the backslash doesn't have a special
meaning. To search for special characters. for

example. you can say

1(. \s·n1
Within (.. .}, the '[' is not special. To get a '}'
into a character class, make it the first character.

As a final frill on character classes, you can
specify a class that means 'none of the following
characters'. This is done by beginning the class
with a•·•: ·

ri2J4s61s901

stands for 'any character except a digit'. Thus
you might find the first line that doesn't begin
with a tab or space by a search like

r r (space) (tab)]/

Within a character class, the circumflex has
a special meaning only if it occurs at the begin
ning. Just to convince yourself, verify that

rr·11
finds a line that doesn't begin with a circumflex.

The Ampersand'&'

The ampersand '&' is used primarily to
save typing. Suppose you have the line

Now is the time

and you want to make it

Now is the best time

Of course you can always say

s/the/the best/

but it seems silly to have to repeat the 'the'.
The '&' is used to eliminate the repetition. On
the nght side of a substitute, the ampersand
means 'whatever was just matched', so you can
say

s/the/& best/

and the '&' will stand for 'the'. Of course this
isn't much of a saving if the thing matched is
just 'the'. but if it is something truly long or
awful, or if it is something like '.•' which
matches a lot of text, you can save some tedious
typing. There is also much less chance of mak·
ing a typing error in the replacement text. For
example, to parenthesize a line, regardless of its
length,

sl .•/(&)/

The ampersand can occur more than once
on the right side:

s/the/& best and & worst/

- 6 -

makes

Now is the best and the worst time

and

s/.•/&? &!!/

converts the original line into

Now is the time? Now is the time!!

To get a literal ampersand. naturally the
backslash is used to turn otr the special meaning:

s/ampersand/\&/

converts the word into the symbol. Notice that
'&' is not special on the left side of a substitute,
only on the righ1 side.

Subsdtuttnc Newlines

ed provides a facility for splitting a single
line into two or more shorter lines by 'substitut
ing in a newline'. As the simplest example, sup
pose a line has gotten unmanageably long
because of editing {or merely because it was
unwisely typed). If it looks like

text xy text

you can break it between the 'x' and the 'y' like
this:

s/xy/x\
y/

This is actually a singJe command, although it is
typed on two lines. Bearing in mind that '\'
turns off special meanings, it seems relatively
intuitive that a '\' at the end of a line would
make the newline there no longer special.

You can in fact make a single line into
several lines with this same mechanism. As a
large example, consider underlining the word
'very' in a long line by splitting 'very' onto a
separate line, and preceding it by the roW or nroft'
formatting command '.ul'.

text a very big text

The command

s/overyo/\
.ul\
very\
I

converts the line into four shorter lines, preced·
ing the word 'very' by the line '.ul', and elim·
inating the spaces around the 'very', all at the
same time.

When a newline is substituted in, dot is
left pointing at the last line created.

· Regrettably there is no way to ·go in the
opposite direction: ed will not convert. two lines
into one.

Reamanaing a Line w!th \ (••• \)

(This section should be skipped on first
reading.) RecaU that '&:' is a shorthand that
stands for whatever, was matched by the left side
of an s command. In much the same way you
can capture separate pieces of what was matched;
the only difference is that you have to specify on
the left side just what pieces you're interested in.

Suppose, for instance, that you have a file
of lines that consist of names in the form

Smith, A. a.
Jones, C.

and so on, and you want the initials to precede
the name, as in

A. B. Smith
C. Jones

It is possible to do this with a series of editing
commands, but it is tedious and error-prone. (It
is instructive to figure out how it is done,
though.)

The alternative is to 'tag' the pieces of the
pattern (in this case, the last name, and the ini
tials), and then rearrange the pieces. On the left
side of a substitution, if part of the pattern is
enclosed between \ (and \), whatever matched
that part is remembered, and available for use on
the right side. On the right side, the symbol '\ 1'
refers to whatever matched the first \(... \) pair,
'\2' to the second\(. .. \), and so on.

The command

l,Ss/\([4,}•\),o •\(.•\)/\2o \1/

although hard to read, does the job. The first
\(. .. \) matches the last name, which is any string
up to the comma; this is referred to on the right
side with '\ 1 '. The second \ (... \) is whatever
follows the comma and any spaces, and is
referred to as '\2'.

Of course, with any editing sequence this
complicated, it's foolhardy to simply run it and
hope. The gJobal commands g and Y discussed
in section 4 provide a way for you to print
exactly those lines which were affected by the
substitute command, and thus verify that it did
what you wanted in all cases.

• 7 -

3. LINE ADDRESSING IN THE EDITOR

The next general area we will discuss is
that of line addressing in ed, that is, how you
specify what lines are to be affected by editing
commands. We have already used constructions
like

l,Ss/x/y/

to specify a change on all lines. And most users
are long since familiar with using a single new·
line (or return) to print the next line, and with

/thing/

to find a line that contains 'thing'. Less familiar,
surprisingly enough, is the use of

?thing?

to scan backwards for the previous occurrence of
'thing'. This is especially handy wllen you real
ize that the thing you want to operate on is back
up the page from where you are currently edit
ing.

The slasll and question mark are the only
characters you can use to delimit a context
search, though you can use essentially any char
acter in a substitute command.

Address Arithmetic

The next step is to combine the line
numbers like '.', '$', '/ .. ./'and '? ... ?' with '+'
and·-·. Thus

$-1

is a command to print the next to last line of the
current file (that is, one line before line '$').
For example, to recall how far you got in a previ
ous editing session,

S-5,Sp

prints the last six lines. (Be sure you understand
why it's six, not five.) If there aren't six, of
course, you 'II get an error message.

As another example,

.-3,.+3p

prints from three lines before wllere you are now
(at line dot) to three lines after, thus giving you
a bit of context. By the way, the • +' can be
omitted:

.-3,.Jp

is absolutely identical in meaning.

Another area in which you can save typing
effort in specifying lines is to use ' - • and • + ·, as
line numbers by themselves.

by itself is a command to move back up one line
in the file. In fact, you can string several minus
signs together to move back up that many lines:

moves up three lines. as does ' - 3•. Thus

-3,+3p

is also identical to the examples above.

Since ' - ' is shorter than '. - I', construe·
tions like

- , .s/bad/ good/

are useful. This changes 'bad' to 'good' on the
previous line and on the current line.

'+' and ' - ' can be used in combination
with searches using '/: . ./' and '? ... ?', and with
'$'. The search

/thing/--

finds the line containing 'thing', and positions
you two lines before it.

Repeated Searches

Suppose you ask for the search

/horrible thing/

and when the line is printed you discover that it
isn't the horrible thing that you wanted, so it is
necessary to repeat the search again. You don't
have to re-type the search, for the construction

II

is a shorthand for 'the previous thing that was
searched for', whatever it was. This can be
repeated as many times as necessary. You can
also go backwards:

??

searches for the same thing, but in the reverse
direction.

Not only can you repeat the search, but
you can use •I I' as the left side of a substitute
command, to mean 'the most recent pattern'.

/horrible thing/
.... ed prints line with 'horrible thing' ...

s//good/p

To go backwards and change a tine, say

??s/ /good/

Of course, you can still use the '&' on the right
hand side of a substitute to stand for whatever
got matched:

- 8 -

//s//&o&/p

finds the next occurrence of whatever you
searched for last, replaces it by two copies of
itself, then prints the line just to verify that it
worked.

Default Line Numbers and the Value of Dot

One of the most effective ways to speed up
your editing is always to know what lines will ,be
affected by a command if you don't specify the
lines it is to act on, and on what line you will be
positioned (i.e., the value of dot) when a com
mand finishes. If you can edit without specifying ,
unnecessary line numbers, you can save a tot of
typing.

As the most obvious example, if you issue
a search command like

/thing/

you are left pointing at the next line that con·
tains 'thing'. Then no address is required with
commands like s to make a substitution on that
line, or p to print it, or I to list it, or d to delete
it, or a to append text after it, or c to change it,
or I to insert text before it. ·

What happens if there was no 'thing'?
Then you are left right where you were - dot is
unchanged. This is also true if you were sitting
on the only 'thing' when you issued the com
mand. The same rules hold for searches that use
'? ... ?'; the only difference is the direction in
which you search.

The delete command d leaves dot pointing
at the line that followed the last deleted line.
When line '$' gets deleted, however, dot points
at the new line '$'.

The line-changing commands a, c and i by
default au affect the current line - if you give
no line number with them, a appends text after
the current line, c changes the current line, and i
inserts text before the current line.

a, c, and i behave identically in one
respect - when you stop appending, changing or
inserting, dot points at the last line entered.
This is exactly what you want for typing and edit
ing on the fly. For example, you can say

a
... text ...
... botch ...

s/botch/ correct/
a
... more text ...

(minor error)

(fix botched line)

without specifying any line number for the sub
stitute command or for the second append com
mand. Or you can say

a
... text ...
... horrible botch ... (major error)

c (replace entire line)
... fixed up line .···

You should experiment to determine what
happens if you add no lines with a, c or l. ·

The r command will read a file into the
text being edited, either at the end if you give no
address, or after the specified line if you do. In
either case. dot points at the last line read in.
Remember that you can even say Or to read a
file in at the beginning of the text. (You can
also say Oa or 11 to start adding text at the begin
ning.)

The w command writes out the entire file.
If you precede the command by one line
number, that line is written, while if you precede
it by two line numbers, that range of lines is
written. The w command does not change dot:
the current line remains the same, regardless of
what lines are written. This is true even if you
say something like

l\.AB/,r\.AE/w abstract

which involves a context search.

Since the w command is so easy to use,
you should save what you are editing regularly as
you go along just in case the system crashes, or
in case you do something foolish, like clobbering
what you' re editing.

The least intuitive behavior, in a sense, is
that of the s command. The rule is simple -
you are left sitting on the last line that matched
the pattern. If there were no matches, then dot
is unchanged.

To illustrate, suppose that there are three
lines in the buffer, and you are sitting on the
middle one:

xl
x2
xl

Then the command

-,+s/x/y/p

prints the third line, which is the last one
changed. But if the three lines had been

- 9 -

xl
y2
yl

and the same command had been issued while
dot pointed at the second line, then the result
would be to change and print only the first line,
and that is where dot would be set.

Semicolon ';'

Searches with'/ . ../' and'? ... ?' start at the
current line and move forward or backward
respectively until they either find the pattern or
get back to the current line. Sometimes this is
not what is wanted. Suppose, for example, that
the buffer contains lines like this:

ab

be

Starting at line l, one would expect that the
command

/a/,/b/p

prints all the lines from the 'ab' to the 'be'
inclusive. Actually this is not what happens.
Both searches (for 'a' and for 'b') start from the
same point, and thus they both find the line that
contains 'ab'. The result is to print a single line.
Worse, if there had been a line with a 'b' in it
before the 'ab' line, then the print command
would be in error, since the second line number
would be less than the first, and it is illegal to try
to print lines in reverse order.

This is because the comma separator for
line numbers doesn't set dot as each address is
processed; each search starts from the same
place. In ed, the semicolon ';' can be used just
like comma, with the single difference that use
of a semicolon forces dot to be set at that point
as the line numbers are being evaluated. In
effect, the semicolon 'moves' dot. Thus in our
example above, the command

/a/;/b/p

prints the range of lines from 'ab' to 'be'.
because after the ·a' is found, dot is set to that
line, and then 'b' is searched for. starting beyond
that line.

This property is most often useful in a
very simple situation. Suppose you want to find
the ·S«ond occurrence of 'thing'. You could say

/thing/
II

but this prints the first occurrence as well as the
second, and is a nuisance when you know very
well that it is only the second one you're
interested in. The solution is to say

/thing/;//

This says to find the first occurrence of 'thing',
set dot to that line, then find the second and
print only that.

Closely related is searching for the second
previous occurrence of something, as in

?something?;??

Printing the third or fourth or ... in either direc·
tion is left as an exercise.

Finally, bear in mind that if you want to
find the first occurrence of something in a file,
starting at an arbitrary place within the file, it is
not sufficient to say

l;/thing/

because this fails if 'thing' occurs on line 1. But
it is possible to say

0;/thing/

(one of the few places where 0 is a legal line
number), for this starts the search at line 1.

Interrupting the Editor

As a final note on what dot gets set to, you
should be aware that if you hit the interrupt or
delete or rubout or break key while ed is doing a
command, things are put back together again and
your state is restored as much as possible to what
it was before the command began. Naturally,
some changes are irrevocable - if you are read·
ing or writing a file or making substitutions or
deleting lines, these will be stopped in some
clean but unpredictable state in the middle
(which is why it is not usually wise to stop
them). Dot may or may not be changed.

Printing is more clear cut. Dot is not
changed until the printing is done. Thus if you
print until you see an interesting line, then hit
delete, you are 1101 sitting on that line or even
near it. Dot is left where it was when the p com
mand was started.

- 10.

4. GLOBAL COMMANDS
The global commands 1 and v are used to

perform one or more editing commands on all
lines that either contain (g) or don't contain (v)
a specified pattern.

As the simplest example, the command

g/UNIX/p

prints all lines that contain the word UNIX. The
pattern that goes between the slashes can be any
thing that could be used in a line search or in a
substitute command; exactly the same rules and
limitations apply.

As another example, then,

g/"\./p

prints all the formatting commands in a file
(lines that begin with '. ').

The v command is identical to g, except
that it operates on those line that do ffOt contain
an occurrence of the pattern. (There is no
mnemonic significance to the letter 'v'.) So

vr\.Jp

prints aJI the lines that don't begin with '.' - the
actual text lines.

The command that follows 1 or v can be
anything:

g1·\./d

deletes all lines that begin with '.', and

g/"S/d

deletes all empty lines.

Probably the most useful command that
can follow a global is the substitute command,
for this can be used to make a change and print
each affected line for verification. For example,
we could change the word UNIX to 'Unix'
everywhere, and verify that it really worked, with

g/UNIX/s/ /Unix/gp

Notice that we used 'I/' in the substitute com
mand to mean 'the previous pattern', in this
case, UNIX. The p command is done on every
line that matches the pattern, not just those on
which a substitution took place.

The global command operates by making
two passes over the file. On the first pass, all
lines that match the pattern are marked. On the
second pass, each marked line in turn is exam
ined, dot is set to that line, and the command
executed. This means that it is possible for the
command that follows a g or v to use addresses.
set dot, and so on quite freely.

gr\.PP/+

prints the line that follows each '.PP' command
(the signal for a new paragraph in some format
ting packages). Remember that '+' means 'one
line past dot'. And

g/topic/ ?\.SH? 1

searches for each line that contains 'topic', scans
backwards until it finds a line that begins '.SH'
(a section heading) and prints the line that fol
lows that, thus showing the section headings
under which 'topic' is mentioned. Finally,

gr\.EQ/ + ,/"\.EN/-p

prints all the lines that lie between '.EQ' and
'.EN' formatting commands.

The 1 and v commands can also be pre
ceded by line numbers, in which case the lines
searched are only those· in the range specified.

Multi-line Global Commands

It is possible to do more than one com
mand under the control of a global command,
although the syntax for expressing the operation
is not especially natural or pleasant. As an
example, suppose. the task is to change 'x' to 'y'
and 'a' to 'b' on all lines that contain 'thing'.
Then

g/thing/s/x/y/\
s/a/b/

is sufficient. The '\' signals the g command that
the set of commands continues on the next line;
it terminates on the first line that does not end
with '\'. (As a minor blemish, you can't use a
substitute command to insert a newline within a
g command.)

You should watch out for this problem:
the command

g/x/s//y/\
s/a/b/

does not work as you expect. The remembered
pattern is the last pattern that was actually exe
cuted, so sometimes it will be 'x' (as expected),
and sometimes it will be 'a' (not expected). You
must spell it out, like this:

g/x/s/x/y/\
s/a/b/

It is also possible to execute a, c and i
commands under a global command; as with
other multi-line constructions, an that is needed
is to add a '\' at the end of each line except the
last. Thus to add a '.nr and '.sp' command

• 11 -

before each '.EQ' line, type

gr\.EQ/i\
.nt\
.sp

There is no need for a final line containing a '.'
to terminate the i command, unless there are
further commands being done under the global.
On the other hand, it does no harm to put it in
either.

5. CUT AND PASTE WITH UNIX COM
MANDS

One editing area in which non
programmers seem not very confident is in what
might be called 'cut and paste' operations -
changing the name of a file, making a copy of a
file somewhere else, moving a few lines from
one place to another in a file, inserting one file in
the middle of another, splitting a file into pieces.
and splicing two or more files together.

Yet most of these operations are actually
quite easy, if you keep your wits about you and
go cautiously. The next several sections talk
about cut and paste. We will begin with the
UNIX commands for moving entire files around,
then discuss ed commands for operating on
pieces of files.

Changing the Name of a File

You have a file named 'memo' and you
want it to be called 'paper' instead. How is it
done?

The UNIX program that renames files is
called mv (for 'move'); it 'moves' the file from
one name to another, like this:

mv memo paper

That's all there is to it: mv from the old name to
the new name.

mv oldname newname

Warning: if there is already a file around with the
new name, its present contents will be silently
clobbered by the information from the other file.
The one exception is that you can't move a file
to itself -

mv x x

is illegal.

Making a Copy of a File

Sometimes what you want is a copy of a
file - an entirely fresh version. This might be
because you want to work on a file, and yet save
a copy in case something gets fouled up, or just

because you' re paranoid.

In any case. the way to do it is with the cp
command. (cp stands for 'copy'; UNIX is big on
short command names, which are appreciated by
heavy users, but sometimes a strain for novices.)
Suppose you have a file called 'good' and you
want to save a copy before you make some
dramatic editing changes. Choose a name
'savegood' might be acceptable - then type

cp good savegood

This copies 'good' onto 'savegood'. and you now
have two identical copies of the file 'good'. (If
'savegood' previously contained something, it
gets overwritten.)

Now if you decide at some time that you
want to get back to the originaJ state of 'good',
you can say

mv savegood good

(if you're not interested in 'savegood' anymore),
or

cp savegood good

if you still want to retain a safe copy.

In summary, mv just renames a file~ cp
makes a duplicate copy. Both of them clobber
the 'target' file if it already exists, so you had
better be sure that's what .you want to do before
you do it.

Removing a File

If you decide you are really done with a
file forever, you can remove it with the rm com
mand:

rm savegood

throws away (irrevocably) the file called
'savegood'.

Putting Two or More Files Together

The next step is the familiar one of collect
ing two or more files into one big one. This will
be needed. for example, when the author of a
paper decides that several sections need to be
combined into one. There are several ways to do
it, of which the cleanest, once you get used to it,
is a program called cat. (Not all UNIX programs
have two-letter names.) cat is short for 'con
catenate', which is exactly what we want to do.

Suppose the job is to combine the files
'file I' and 'file 2' in to a single file called 'bigfile '.
If you say

cat file

• 12 -

the contents of 'file' will get printed on your ter
minal. If you say

cat file l file2

the contents of 'filel' and then the contents of
'file2' wiU both be printed on your terminal, in
that order. So cat combines the files, all right,
but it's not much help to print them on the ter
minal - we want them in 'bigfile'.

Fortunately, there is a way. You can tell
UNIX that instead of printing on your terminal,
you want the same information put in a file. The
way to do it is to add to the command line the
character > and the name of the file where you
want the output to go. Then you can say

cat file l file2 > bigfile

and the job is done. (As with cp and mv, you're
putting something into 'bigfile', and anything
that was already there is destroyed.)

This ability to 'capture' the output of a
program is one of the most useful aspects of
UNIX. Fortunately it's not limited to the cat
program - you can use it with any program that
prints on your terminal. We'll see some more
uses for it in a moment.

Naturaily, you can combine several files,
not just two:

cat file l file2 file3 ... > bigfile

collects a whole bunch.

and

Question: is there any ditf erence between

cp good savegood

cat good >savegood

Answer: for most purposes, no. You might rea
sonably ask why there are two programs in that
case, since cat is obviously all you need. The
answer is that cp will do some other things as
well, which you can investigate for yourself by
reading the manual. For now we'll stick to sim·
pie usages.

Adding Something to the End of a File

Sometimes you want to add one file to the
end of another. We have enough building blocks
now that you can do it; in fact before reading
further it would be valuable if you figured out
how. To be specific. how would you use cp, mv
and/or cat to add the file 'good l' to the end of
the file 'good' ?

You could try

cat good goodl >temp
mv temp good

which is probably most direct. You should also
understand why

cat good goodl >good

doesn't work. (Don't practice with a good
'good'!)

The easy ~ay is to use a variant of > ,
called > >. In fact, > > is identical to > except
that instead of clobbering the old file, it simply
tacks stuff on at the end. Thus you could say

cat good l > >good

and 'good I' is added to the end of 'good'. (And
if 'good' didn't exist, this makes a copy of
'goodl' called 'good'.)

6. CUT AND PASTE WITH THE EDITOR

Now we move on to manipulating pieces
of files - individual lines or groups of lines.
This is another area where new users seem
unsure of themselves.

Filenames

The first step is to ensure that you know
the ed commands for reading and writing files.
or course you can't go very far without knowing
r and w. Equally useful, but less well known, is
the 'edit' command e. Within ed, the command

e newfile

says 'I want to edit a new file called newfile,
without leaving the editor.' The e command dis
cards whatever you're currently working on and
starts over on newfile. It's exactly the same as if
you had quit with the q command, then re
entered ed with a new file name, except that if
you have a pattern remembered, then a com
mand like I I will still work.

If you enter ed with the command

ed file

ed remembers the name of the file, and any sub
sequent e, r or w commands that don't contain a
filename will refer to this remembered file. Thus

ed filel
... (editing) ...

w (writes back in file l)
e file2 (edit new file, without leaving editor)
... (editing on file2) ...

w (writes back on file2)

(and so on) does a series of edits on various files
without ever leaving ed and without typing the

• 13 •

name of any file more than once.

You can find out the remembered file
name at any time with the f command; just type
r without a file name. You can also change the
name of the remembered file name with f; a use
ful sequence is

ed precious
f junk
... (editing) ...

which gets a copy of a precious file. then uses r
to guarantee that a careless w command won't
clobber the original.

Inserting One File into Another

Suppose you have a file called 'memo',
and you want the file called 'table' to be inserted
just after the reference to Table l. That is, in
'memo' somewhere is a line that says

Table l shows that ...

and the data contained in 'table' has to go there,
probably so it will be formatted properly by nroff
or troff. Now what?

This one is easy. Edit 'memo', find 'Table
l ', and add the file 'table' right there:

ed memo
/Table l/
Table I shnws that ... {response from ed/
.r table

The critical line is the last one. As we said ear
lier, the r command reads a file; here you asked
for it to be read in right after line dot. An r
command without any address adds lines at the
end, so it is the same as Sr.

Writing out Part of a File

The other side of the coin is wntmg out
part of the document you're editing. For exam
ple, maybe you want to split out into a separate
file that table from the previous example, so it
can be formatted and tested separately. Suppose
that in the file being edited we have

.TS
... [lots of stuff]

.TE

which is the way a table is set up for the tbl pro
gram. To isolate the table in a separate file
called 'table', first find the start of the table (the
'.TS' line), then write out the interesting part:

/"\.TS/
• TS {ed prints the line it found}
.,/"\, TE/w table

and the job is done. If you are confident, you
can do it all at once with

r\. TS/~/'\. TE/w table

The point is that the w command can write
out a group of lines, instead of the whole file. In
fact, you can write out a single line if you like~

just give one line number in~tead of two. For
example, if you have just typed a horribly com
plicated line and you know that it (or something
like it} is going to be needed later, then save it
- don't re-type it. In the editor, say

a
.. .lots of stuif .. .
... horrible line .. .

.w temp
a
••• more stuif •••

.r temp
a
••• more stutf •••

This last example is worth studying. to be sure
you appreciate what's going on.

Moving Lines Around

Suppose you want to move a paragraph
from its present position in a paper to the end.
How would you do it? As a concrete example.
suppose each paragraph in the paper begins with
the formatting command '.PP'. Think about it
and write down the details before reading on.

The brute force way (not necessarily bad)
is to write the paragraph onto a temporary file,
delete it from its current position, then read in
the temporary file at the end. Assuming that
you are sitting on the '.PP' command that begins
the paragraph, this is the sequence of commands:

•• r\.PP/-w temp
.,1/-d
Sr temp

That is, from where you are now ('. ') until one
line before the next '.PP' (' r\.PP/ - ') write
onto 'temp'. Then delete the same lines.
Finally, read 'temp' at the end.

As we said, that's the brute force way.
The easier way (often) is to use the move com
mand m that ed provides - it lets you do the
whole set of operations at one crack, without any
temporary file.

• 14.

The m command is like many other ed
commands in that it takes up to two line
numbers in front that tell what lines are to be
affected. It is also followed by a line number that
tells where the lines are to go. Thus

line I , line2 m lineJ

says to move all the lines between 'line 1' and
'line2' after 'lineJ'. Naturally, any of 'line 1'
etc., can be patterns between slashes, S signs, or
other ways to specify lines.

Suppose again that you're sitting at the
first line of the paragraph. Then you can say

.,/'"\.PP/-mS

That's aJl.

As another example of a frequent opera
tion, you can reverse the order of two adjacent
lines by moving the first one to after the second .
Suppose that you are positioned at the first.
Then

m+

does it. It says to move line dot to after one line
after line dot.

As you can see, the m command is more
suQ:inct and direct than writing, deleting and re·
reading. When is brute force better anyway?
This is a matter of personal taste - do what you
have most confidence in. The main difficulty
with the m command is that if you use patterns
to specify both the lines you are moving and the
target, you have to take care that you specify
them properly, or you may well not move the
lines you thought you did. The result of a
botched m command can often be a mess.
Doing the job a step at a time makes it easier for
you to verify at each step that you accomplished
what you wanted to. It's also a good idea to
issue a " command before doing anything com
plicated; then if you goof, it's easy to back up to
where you were .

Marks

ed provides a facility for marking a line
with a particular name so you can later reference
it by name regardless of its actual line number.
This can be handy for moving lines, and for
keeping track of them as they move. The mark
command is k; the command

kx

marks the current line with the name 'x'. If a
line number precedes the k, that line is marked.
(The mark name must be a single lower case
letter.) Now you can refer to the marked line

with the address

'x

Marks are most useful for moving things
around. Find the first line of the block to be
moved, and mark it with a. Then find the last
line and mark it with 'b. Now position yourself
at the place where the stuif is to go and say

'a,'bm. ·

Bear in mind that only one line can have a
particular mark name associated with it at any
given time.

Copyin1 Lines

We mentioned earlier the idea of saving a
line that was hard to type or used often, so as to
cut down on typing time. Of course this could
be more than one line; then the saving is
presumably even greater.

ed provides another command, called t
(for •transfer') for making a copy of a group of
one or more lines af any poinL This is often
easier that writing and reading.

The t command is identical to the m com
mand, except that instead of moving lines it sim
ply duplicates them at the place you named.
Thus

l,StS

duplicates the entire contents that you are edit
ing. A more common use for t is for creating a
series of lines that dilfer only slightly. For
example, you can say

a

t.
s/x/y/
t.
s/y/z/

and so on.

x ...•..... Clong line)

(make a copy)
(change it a bit)
(make third copy)
(change it a bit)

The Temporary Escape'!'

Sometimes it is convenient to be able to
temporarily escape from the editor to do some
other UNIX command, perhaps one of the file
copy or move commands discussed in section 5,
without leaving the editor. The 'escape' com
mand ! provides a way to do this.

If you say

!any UNIX command

your current editing state is su~pended, and the

- IS -

UNIX command you asked for is executed.
When the command finishes, ed will signal you
by printing another !; at that point you can
resume editing.

You can really do any UNIX command,
including another ed. (This is quite common, in
fact.) In this case, you can even do another !.

7. SUPPORTING TOOLS

There are several tools and techniques that
go along with the editor, all of which are rela
tively easy once you know bow ed works.
because they are all based on the editor. In this
section we will give some fairly cursory examples
of these tools, more to indicate their existence
than to provide a complete tutorial. More infor·
mation on each can be found in (3).

Grep

Sometimes you want to find all
occurrences of some word or pattern in a set of
files, to edit them or perhaps just to verify their
presence or absence. It may be possible to edit
each tile separately and look for the pattern of
interest, but if there are many files this can get
very tedious, and if the files are big (more than
three or four thousand lines) it is Impossible
because of limits in ed.

The program grep was invented to get
around these limitations. The patterns that we
have described in the paper are often called 'reg
ular expressions'. and 'grep' stands for

g/re/p

That describes exactly what grep does - it prints
every line in a set of files that contains a particu
lar pattern. Thus

grep 'thing' file 1 file2 file3 ...

finds 'thing' wherever it occurs in any of the files
'file l ', 'file2', etc. grep also indicates the file in
which the line was found, so you can later edit it
if you like.

The pattern represented by 'thing' can be
any pattern you can use in the editor, since 1rep
and ed use exactly the same mechanism for pat·
tern searching. It is wisest always to enclose the
pattern in the single quotes ' .. .' if it contains any
non-alphabetic characters, since many such char
acters also mean something special to the UNIX
command interpreter (the 'shell'). If you don't
quote them, the command interpreter will try to
interpret them before grep gets a chance.

There is also a way to find lines that don't
contain a pattern:

grep - v 'thing' file 1 file2 · ...

finds all lines that don 'l contains 'thing'. The
-v must occur in the position shown. Given
arep and g.rep -v. it is possible to do things like
selecting all lines that contain some combination
of patterns. For example, to get all lines that
contain 'x' but not 'y':

grep x file... I grep - v y

(The notation I is a 'pipe', which causes the out
put of the first command to be used as input to
the second command; see {2).)

Editing Scripts

If a fairly complicated set of editing opera
tions is to be done on a whole set of files. the
easiest thing to do is to make up a 'script', i.e., a
file that contains the operations you want to per
form, then apply this script to each file in turn.

For example, suppose you want to change
every UNIX to Unix and every GCOS to Gcos in
a large number of files. Then put into the file
'script' the lines

g/UNIX/s/ /Unix/g
g/GCOS/s/ /Gcos/g
w
q

Now you can say

ed file l <script
ed file2 <script

This causes ed to take its commands from the
prepared script. Notice that the whole job has to
be planned in advance.

And of course by using the UNIX com
mand interpreter, you can cycle through a set of
files automatically, with varying degrees of ease.

Sed

sed ('stream editor') is a version of the
editor with restricted capabilities but which is
capable of processing unlimited amounts of
input. Basically sed copies its input to its output,
applying one or more editing commands to each
line of input.

As an example, suppose that we want to
do the UNIX to Unix part of the example given
above, but without rewriting the files. Then the
command

sed 's/UNIX/Unix/g' filel file2

applies the command 's/UNIX/Unix/g' to all
lines from 'file l ', 'file2', etc., and copies all lines

- 16.

to the output. The advantage of using sed in
such a case is that it can be used with input too
large for ed to handle. and that all the output
can be collected in one place, either in a file or
perhaps piped into another program.

If the editing transformation is so compli·
cated that more than one editing command is
needed, commands can be supplied from a file,
or on the command line, with a slightly more
complex syntax. To take commands from a file,
for example,

sed - f cmdfile input - files ...

sed has further capabilities, including con
ditional testing and branching, which we cannot
go into here.

Acknowled1ement

I am grateful to Ted Dolotta for his careful
reading and valuable suggestions.

References

(l} Brian W. Kernighan, A Tutorial Introduction
to rhe UNIX Text Editor, Bell Laboratories
internal memorandum.

[21 Brian W. Kernighan, UNIX For Beginners.
Bell Laboratories internal memorandum.

[3] Ken L. Thompson and Dennis M. Ritchie,
The UNIX Programmer's Manual. Bell
Laboratories, 1975.

@

PwB/UNIX

Shell Tutorial

J. R. Mashey

September 1977

Bell Telephone Laboratories, Incorporated

PwB/UNIX Shell Tutorial

CONTENTS

1. INTRODUCTION • • • • • • • • • • • •

2. OVERVIEW OF THE UNIX ENVIRONMENT
2.1 File System 2
2.2 Processes 2

3. SHELL BASICS . ~
3.1 Commands 3
3.2 Redirection of Standard Input and Output 4
3 .3 Command Lines 4
3.4 Generation of Argument Lists 6
3.5 Quoting Mechanisms 6
3.6 Examples 6
3.7 How the Shell Finds Corr,mands 7
3.8 Changing the State of the Shell and the .profile File 7

4. USING THE SHELL AS A COMMAND: SHELL PROCEDURES • • • • • • • • •
4.1 Invoking the Shell 8
4.2 Passing Arguments to the Shell 8

- 4.3 Shell Variables 9
4.4 Initialization of Sp and Sz by the .path File 10
4.5 Control Structures 11
4.6 Onintr: Interrupt Handling 14
4.7 Special 1/0 Redirections 14
4.8 Quoting Revisited 15
4.9 Creation and Organizatic;>n of Shell Procedures 15

5. MISCELLANEOUS SUPPORTING COMMANDS • • • • • • • • • • • • • • •
5.1 Echo: Simple Output 16
5.2 Pump: Shell Data Transfer 16
5.3 Expr: Expression Evaluation 17
5.4 Logname, Logdir, Logtty: Login Data 17

6. EXAMPLES OF SHELL PROCEDURES . . • • • • •

7. EFFECTIVE AND EFFICIENT SHELL PROGRAMMING
7.1 Overall Approach 23
7.2 Approximate Measures of Resource Consumption 23
7 .3 Efficient Organization 24

ACKNOWLEDGMENTS

REFERENCES • . • . •

1

1

3

8

16

18

23

25
25

PWB/UNIX Shell Tutorial

J. R. Mashey

Bell Laboratories
Murray Hill, New Jersey 07974

The command language for PWB/UN1x• is a high-level programming language that is an extended ver
sion of the UNIX Shell. By utilizing the Shell as a programming language, one can eliminate much of
the programming drudgery that often accompanies a large project. Many manual procedures can be
quiclcly, cheaply, and conveniently automated. Because it is so easy to create and use Shell procedures,
individual users and entire projects can customize the general PWB/UNIX environment into one tailored
to their own respective requirements, organizational structure, and terminology.

This paper is actually a combination of several tutorials, as explained in (I} .1 Some sections provide a
basic tutorial for relatively new users. Other sections are intended for more experienced users and
introduce them to Shell programming. Finally, some hints on programming techniques and efficiency
are otrered for those who make especially heavy use of Shell programming.

The accuracy of this tutorial is guaranteed only for the Shell of PWB/UNIX-Edition 1.0. Other versions
of UNIX have other Shells. Although many of the basic concepts are similar, there exist many
differences in features, especially those used to support Shell programming.

t. INTRODUCTION

In any programming project, some etf ort is used to build the end product. The remainder is consumed
in building the supporting tools and procedures used to manage and maintain the end product. The
second effort can far exceed the first, especially in larger projects. A good command language can be
an invaluable tool for such projects. If it is a flexible programming language, it can be used to solve
many internal support problems, without requiring compilable programs to be written, debugged, and
maintained; its most important advantage is the ability to get the job done now. For a perspective on
the motivations for using a command language in this way, see [l,2,6].

When users log into a PWB/UNIX system, they communicate with an instance of the Shell that reads
commands typed at the terminal and arranges for their execution. Thus, the Shell's most important
function is to provide a good interface for human beings. In addition, a sequence of commands may be
preserved for later use by saving them in a file, called a Shell procedure, a command file, or a runcom.
according to local preferences.

Some users need little knowledge of the Shell to do their work; others choose to make heavy use of its
programming features. This tutorial may be read in several different ways, depending on the reader's
interests. A brief discussion of the PWB/UNl.X environment is found in (2}. The discussion in {3} cov
ers aspects of the Shell that are important for everyone, while all of {4} and most of (S) are mainly of
interest to those who write Shell procedures. A group of annotated Shell procedures is given in {6}.
Finally, a brief discussion of efficiency is offered in {7}. This is found in its proper place (the end), and
is intended for those who write especially time-consuming Shell procedures.

Complete beginners should not be reading this tutorial, but should work their way through other avail
able tutorials first. See [7] for an appropriate plan of study. All the commands mentioned below are
described in Section I of the PWBIUNIX User's Manual [3], while system calls are described in Section II
and subroutines in Section III thereof.

1. OVERVIEW OF THE UNIX ENVIRONMENT

Full understanding of some later discussions depends on familiarity with PWB/UNIX; [9) is most useful
for that, and it would be helpful to read at least one of [4,S,10). For completeness, a short overview of
the most relevant concepts is given below.

• UNIX is a Trademark/Service Mark of the Bell System.

I. The notation (nl refers to Section n of this tutorial.

- I -

- 2 -

2.1 File System

The PWBIUNIX file system's overall structure is that of a rooted tree composed of directories and other
files. A file name is a sequence of characters. A pathname is a sequence of directory names followed by
a file name, each separated from the previous one by a slash {/). If a pathname begins with a"/", the
search for the file begins at the root of the entire tree; otherwise, it begins at the user's current directory
(also known as the working directory). (The first kind of name is often called a full pathname because it
is invariant with regard to the user's current directory.) The user may change the current directory at
any time by using tbe cd or chdir command. In most cases, a file name and its corresponding pathname
may be used interchangeably. Some sample names are:

I

/bin

/al/tf/jtb/bin

bin/umail

memox

2.2 Processes

name of the current directory.

name of the parent directory of the current directory.

root directory of the entire file structure.

directory containing most of the frequently-used public commands.

a full pathname typical of multi-person programming projects. This one happens to
be a private directory of commands belonging to person "jtb" in project "tf'\ "al"
is the name of a file system.

a name depending on the current directory: it names file "umail" in subdirectory
"bin" of the current directory. If the current directory is "/", it names
"/bin/uniail". If the current directory is "/al/tf/jtb", it names
"I al/tf/jtb/bin/umail".

name of a file in the current directory.

,.,. Beginners should skip this section on first reading.

An image is a computer execution environment, including memory image, register values, current
directory, status of open files, information recorded at login time, and various other items. A process is
the execution of an image; most PWB/UNIX commands execute as separate processes. One process may
spawn another using the fork system call, which duplicates the image of the original (parent) process.
The new (child) process continues to execute the same program as the parent. The two images are
identical, except that the program can determine whether it is executing as parent or child. The pro
gram may continue execution of the image or may abandon it by issuing an exec system call, thus ini
tiating execution of another program. In any case, each process is free to proceed in parallel with the
other, although the parent quite commonly issues a wait system call to suspend execution until a child
exits.

FORK WAIT

PROCESS 1
PROGRAM A.

J~-------------------PARENTI (ASLEEPI •
PROCESS 2

PROGRAM A EXEC PROGRAM B j
CHILD B I

EXI T

Figure 1

Figure 1 illustrates these ideas. Program A is executing (as process 1) and wishes to run program B. It
"forks'' and spawns a child (process 2) that continues to execute program A. The child abandons A by
executing B. while the parent goes to sleep until the child exits.

-" -

A child inherits its parent's open files. This mechanism permits processes to share a common input
stream in various ways. In particular, an open file possesses a pointer that indicates a position in the file
and is modified by various operations. Read and write system calls copy a requested number of bytes
from or to a file, beginning at the position given by the current value of the pointer. As a side effect,
the pointer is incremented by the number of bytes transferred, yielding the effect of sequential 110.
Seek can be used to obtain random-access 110; it sets the pointer to an absolute position within the file,
or to a position offset either from the end of the file or from the current pointer position.

When a process terminates, it can set an eight-bit return code (or exit code) that is available to its
parent. This code is usually used to indicate success or failure.

Signals indicate the occurrence of events that may have some impact on a process. A signal may be
sent to a process by another process. from the keyboard, or by PWB/UNIX itself. For most types of sig
nals, a process can arrange to be terminated on receipt of a signal, to ignore it completely, or to
"catch" it and take appropriate action {4.6}. For example, an interrupt signal may be sent by depressing
an appropriate key ("del'', "break", or "rubout"). The action taken depends on the requirements of
the specific program being executed:

• The Shell invokes most commands in such a way that they immediately die when an interrupt is
received. For example, pr normally dies, allowing the user to terminate unwanted output.

• The Shell itself ignores interrupts when reading from the terminal, because it should continue exe
cution even when the user terminates a command like pr.

• The editor ed chooses to "catch" interrupts so that it can halt its current action (especially printing)
without terminating completely.

Limiting interprocess communication to a small number of well-defined methods is a great aid to uni
formity, understandability, and reliability of programs. It encourages the "packaging" of each function
into a small program that is easily connected to other programs, but depends very little on the internal
workings of other programs.

3. SHELL BASICS

The Shell (i.e., the sh command) implements the command language visible to most PWB/UNIX users.
It reads input from a terminal or a file and arranges for the execution of the requested commands. It is
a small program (about forty pages of C code); many of its functions are actually provided by indepen
dent programs that work with it. It is not part of the operating system, but is an ordinary user program.
The discussion below is adapted from [10, 11].

3.1 Commands

A command is a sequence of non-blank arguments separated by ·blanks or tabs. The first argument
(numbered zero) specifies the name of the command to be executed; any remaining arguments are
passed as character-strings to the command executed. A command may be as simple as:

who

which prints the login names of logged-in users. The following line requests the pr command to print
files a, b, and c:

pr a b c

If the first argument names a file that is executable2 and is actually a load module, the Shell (as parent)
spawns a new (child) process that immediately executes that program. If the file is marked executable,
but is neither a load module nor a directory, it is assumed to be a Shell procedure, i.e., a file of ordinary
text containing Shell command lines and possibly lines to be read by other programs. In this case, the
Shell spawns a new instance of itself to read the file and execute the commands included in it. The fol
lowing command requests that the on-line PWBIUNIX User's Manual [3] pages for the who and pr com
mands be printed on the terminal (the man command is actually implemented as a Shell procedure):

man who pr

2. As evidenced by an appropriate set of permission bits associated with that file.

-4-

From the user's viewpoint, executable programs and Shell procedures are invoked in exactly the same
way. The Shell determines which implementation has been used, rather than requiring the user to do
so. This preserves the uniformity of invocation and the ease of changing the implementation choice for
a given command. The actions of the Sheil in executing any of these commands are illustrated in Fig
ure 1 {2.2}.-

3.2 Redirection of Standard Input and Output

When a command begins execution, it usually expects that three files are already open, a "standard
input", a .. standard output", and a "diagnostic outp~t". When the user's original Shell is started, all
three have already been OP,ened to the user's terminal. A child process normally inherits these files
from its parent. The Shell' permits them to be redirected elsewhere before control is passed to an
invoked command.

An argument to the Shell of the form "<file" or ">file" opens the specified file as standard input or
output, respectively. An argument of the form ">>file" opens the standard output to the end of the
file, thus providing a way to append data to it. In either output case, the Shell creates the file if it did
not already exist. The following appends to file "log" the list of users who are logged in:

who >>log

In general, most commands neither know nor care whether their input (output) is coming from (going
to) a terminal or file. Thus, commands can be used conveniently in many different contexts. A few
commands vary their actions depending on the nature of their input or output, either for efficiency's
sake, or to avoid usele~ actions (such as attempting random-.access 1/0 on a terminal).

Redirection of the diagnostic output is discussed in {4.7.3}.

3.3 Command Lines

A sequence of commands separated by "I" (or '""") make up a pipeline. Each command is run as a
separate process connected to its neighbor(s) by pipes, i.e., the output of each command (except the last
one) becomes the input of the next command in line. A filter is· a command that ·reads its input,
transforms it in some way, then writes it as output. A pipeline normally consists of a series of filters.
Although the processes in a pipeline are permitted to execute in parallel, they are synchronized to the
extent that each program needs to read the output of its predecessor. Many commands operate on indi·
vidual lines of text, reading a line, processing it, writing it, and looping back for more input. Some
must read larger amounts of data before producing output; sort is an example of the extreme case that
requires all input to be read before any output is produced.

The following is an example of a typical pipeline: nroff is a text formatter whose output may contain
reverse line motions; col converts these motions to a form that can be printed on a terminal lacking
reverse motion capability; reform is used here to speed printing by converting the (tab·less) output of
col to an equivalent one containing horizontal tab characters. The flag "-mm" indicates one of the
more-commonly used formatting options, and ••text" is the name of the file to be formatted:

nroff -mm text I col I reform

Figure 2 shows the sequence of actions that set up this pipeline. Not shown are actions by the Shell
that create pipes and manipulate open files, causing the commands to be tied together correctly.

A command line consists of zero or more pipelines separated by semicolons or ampersands. If the last
command in a pipeline is terminated by a semicolon (;) or a new-line character, the Shell waits for the
command to finish before continuing to read command lines. It does not wait if the pipeline is ter
minated by an ampersand (&); both sequential and asynchronous execution are thus allowed An asyn
chronous pipeline continues execution until it terminates voluntarily, or until its processes are killed.
The first example below executes who, waits for it to terminate, and then executes date: the second
invokes both commands in order, but does not wait for either one to finish. Figure 3 shows the actions
of the Shell involved in executing these examples:

who >log; date
who >log& date&

SH FORK FORK FORK WAIT WAIT WAIT

J ~-------..1 ~ ----- ~1------~,. ~, ,,
1 (ASLEEP) • (ASLEEP) : IASLEEPI

4
EXEC

. . . .
REFORM i . .

REFORM . 1 . . . ex .
exec . COL j .
COL : I

IT

3

.
EXIT . .

exec NROFF j
NROFF I

2

EXIT

Figure 2

SH FORK

exec WHO exec DATE
2,3

WHO DATE

EXIT EXIT

SH FORK FORK (FREE TO 00 OTHER COMMANOSI .,,. .,,.

3
EXEC DATE

J
DATE I

EXIT

WHO
J EXEC

WHO I 2

EXIT

Figure 3

More typical uses of"&" include off-line printing, background compilation, and generation of jobs to
be sent to other computers. For example:

nohup cc prog.c&
You continue working while the C compiler runs in background.

A command terminated by "&" is immune to interrupts, but it is wise to make it immune to hang-ups
as well. The nohup command is used for this purpose. Without nohup, if you hang up while cc (the c
compiler) is still executing, cc will be killed and your output will disappear.

,.. The "&" operator should be used with restraint, especially on heavily-loaded systems. Other users will
not consider you a good citizen if you start up a large number of simultaneous, asynchronous processes
without a compelling reason for doing so.

A simple command in a pipeline may be replaced by a command line enclosed in parentheses"()"; in
this case, another instance of the Shell is spawned to execute the commands so enclosed. This action is

- 6 -

helpful in combining the output of several sequentially executed commands into a stream to be pro
cessed by a pipeline. The following line prints two separate documents in a way similar to that shown
in a previous example:

(nroff -mm textl; nroff -mm text2) I col I reform . .
3.4 Generation of Arpment Lists

Many command arguments are names of files. When certain characters are found in an argument, they
cause replacement of that argument by a sorted list of zero or more file names obtained by pattern·
matching on the contents o(a directory. Most characters match themselves. The"?'" matches any one
character: the "•" matches any string of any characters (other than "/''), including the null string.
Enclosing a set of characters within square brackets "[••• 1" causes the construct to match any one
character in that set.3 Inside square brackets, a pair of characters separated by "-" includes in the set
all characters lexically within the inclusive range of that pair.

For example, "•" matches all files in the current directory, "• tmp •" matches all names containing
"tmp", "[a-t1 •" matches all files whose names begin with "a" throu&h "f", "•.c" matches all files
ending in ".c", and "/al/tf/bin/?" matches all single-character names found in "/al/tf/bin". This

' capability saves much typing, and more importantly, makes it possible to organize information as large
collections of small files that are named in disciplined ways.

Pattern-matching has several restrictions. If the first character of a file name is ". ", it can be matched
only by an argument that begins with ".". Pattern-matching is currently restricted to the last com
ponent in a pathname-the string "/al/tf/ •" is legal, but the string "/al/ •/bin" is not:. Pattem
matching does not apply to the name of the invoked command (i.e., argument number 0).

3.5 Quoting Mechanisms

If a character has a special meaning to the Shell, that meaning may be removed by preceding the char·
acter with a back-slash (\); the "\" acts as an escape and disappears. A "\" followed by a new-line
character is treated as a blank, permitting continuation of commands on additional input lines. A
sequence of characters enclosed in single quotes (' ... ·) is taken literally-"what you see is what you
get''. The beginner should use single quotes in most instances. Double quotes(" ... ") are required in
a few cases. primarily inside Shell procedures. Double quotes hide the significance of most special
characters, but allow substitution of Shell arguments and variables; see {4.8} for further details.

3.6 Examples

The following examples illustrate the variety of effects that can be obtained by combining a few com
mands in the ways described above. It may be helpful to try these examples at a terminal:

• who
Print (on the terminal) the list of logged-in users.

• who >>log
Append the list of logged-in users to the end of file "log".

• who I we -I
Print the number of logged-in users. (The argument to we is "minus ell".)

• who I pr
Print a paginated list of logged-in users.

• who I sort
Print an alphabetized list of logged-in users.

• who I grep pw
Print the list of logged-in users whose login names contain "pw".

• who I grep pw I sort I pr
Print an alphabetized, paginated list of logged-in users whose names contain "pw".

3. Be warned . that square brackets are also used below in an entirely different sense: in descriptions of commands, they indicate
that the enclosed argument is optional.

- I -

• (date; who I wc -1) >>log
Append (to "log") the current date followed by the count of logged-in users.

• who I sed 's/ .•/ /' I sort I uniq -d
Print o~y the login names of all users who are Jogged in more than once.

The who command does not by itself provide optiOns to yield all these results-they are obtained by
combining it with other commands. The kinds of operations illustrated above may be used in other cir
cumstances; who just serves as the data source in these examples. As an exercise, replace "who I" by
"</etc/passwd" in the above examples to see how a file can be used as a data source in the same way.

3. 7 How the Shell Finds Commands

The Shell nonnally searches for commands in a way that permits them to be found in three distinct
locations in the file structure. The Shell first attempts to use the command name as given; if this fails,
it prepends the string "/bin/" to the name, and, finally, "/usr/bin/". The effect is to search, in order,
the current directory, "/bin", and "/usr/bin". For example, the pr and man commands are actually
located in files "/bin/pr" and "/usr/bin/man", respectively. A more complex pathname may be
given, either to locate a file relative to the user's current directory, or to access a command via an abso
lute pathname. If a command name as given contains a "/" (e.g., "/bin/sort" or " . ./cmd"), the
prepending is not performed. Instead, a single attempt is made to execute the unmodified command
name.

This mechanism gives the user a convenient way to execute public commands and commands in or
"near" the current directory, as well as the ability to execute any accessible command regardless of its
location in the file structure. Because the current directory is usually searched first, anyone can possess
a private version of a public command without interfering with other users. Similarly, the creation of a
new public command will not affect a user who already has a private command with the same name.
This mechanism may be overridden {4.4}.

3.8 Changing the State of the Shell and the .profile File

The state of a given instance of the Shell may be altered in various ways. The following commands are
used more often at the terminal than in Shell procedures.

The cd command (or its synonym chdir) changes the current directory of the Shell to the one specified.
This can (and should) be used to change to a convenient place in the directory structure; cd is often
combined with "()" to cause a sub-Shell to change to a different directory and execute some com
mands, without affecting the original Shell. The first sequence below extracts the component files of
the archive file "/al/tf/ q.a" and places them in whatever directory is the current one; the second
places them in directory "I a 1/ tf":

ar x /al/tf/q.a
(cd /al/tf; ar x q.a)

The opt command sets various flags in the Shell. For example, "opt -p prompt-str" changes the
Shell's interactive prompt sequence from "% " to prompt-str.4 Typing "opt -v" causes the Shell to
enter verbose mode, in which it prints each command line before executing it (4.1}. Try this at the ter
minal to see how the Shell scans arguments. The output can be turned off by typing "opt +v".

The login command causes the Shell to execute the login program directly, permitting a new login
without re-dialing. A related command is su, which permits you to act with someone else's access per
missions without making you login again.

Wait causes the Shell to suspend execution until all of its child processes have terminated. It is used to
assure termination of asynchronous processes.

When you login or use su, the Shell is invoked to read your commands, but if your current directory
contains a file named ".profile", the Shell reads it before reading commands from your terminal~
".profile" often contains commands that set tab stops and terminal delays, read mail, etc. See
".profile" in (6}.

4. The default prompt string "% .. is inconvenient for certain display (CRT) terminals.

• 8 •

4. USING THE SHELL AS A COMMAND: SHELL PROCEDURES

4.1 lnYokin1 the Shell

The Shell is an ordinary command and may be invoked in the same way as other commands:

sh file [args] A new instance of the Shell is explicitly invoked to read.file. Arguments, if any,
can be manipulated as described in {4.2}.

sh -v file [args 1 This is equivalent to putting "opt -v" at the beginning of file. Each command
line in file is printed before it is executed, thus tracing the progress of execution.
This is an important debugging aid.

file [args] If file is marked executable, and is neither a directory nor a toad module, the
effect is that of "sh file [args]", except that file may be found by the search
procedure described in {3.7}.

4.2 Passing Arguments to the Shell

When a command line is scanned, any character sequence of the form Sn is replaced by the nth argu
ment to the Shell, counting the name of the file being read as $0. This notation permits direct ref er
ence to the file name and up to 9 arguments. Additional arguments can be processed using the shift
command. It shifts arguments to the left; i.e., the value of $1 is thrown away, $2 replaces SI, $3
replaces $2, etc.; the rightmost argument becomes null. For example, consider the (executable) file
"ripple" below. Echo writes its arguments to the standard output; if, exit. and goto are discussed later,
but perform fairly obvious functions.5 The form "$1" is used rather than '$1' because it is the value of
the first argument that is desired, rather than the literal two-character string "$1 ":

: loop
if ·st" • "" exit
echo Sl $2 SJ $4 SS $6 $7 $8 $9
shift
goto loop

If the file were invoked by "ripple a b c", it would print:

a b c
b c
c

The "shift n" form of shift has no effect on the arguments to the left of the nth argument; the nth
argument is discarded, and the higher-numbered ones shifted. Thus, "shift" is equivalent to "shift 1"
(as is "shift 0").

The notation$• causes substitution of all current arguments except SO. Thus, the echo line in the "rip
ple" example above could be written in a better way as:

echo $•

These two echo commands are not equivalent: the first prints at most nine arguments; the second prints
all its arguments. The S• notation is more concise and is less error-prone. One obvious application is
in passing an arbitrary number of arguments to the nroff text formatter:

nroff -h -rTl -T450 -mm $•

It is important to understand the sequence of actions used by the Shell in substituting arguments.
First, the Shell reads one line of input, malting all substitutions in a single pass; no rescanning is per
formed. Second, the Shell parses the resulting line. Third, the Shell executes all of the commands in
that line. Thus, it is impossible for a command in a tine to affect the argument values substituted into
that same line. For example, the following sequence prints the same value twice, because the shift has
no effect on the line in which it appears:

echo $1; shift; echo $1

S. Much better ways of coding this procedure are shown later. Lines that begin with ":"are labels and/or comments {4.S.l).

- 'J -

On the other hand, the next sequence prints the first argument, foil owed by the second:

echo SI
shift
echo $1

4.3 Sbell Variables

The Shell provides 26 string variables, Sa through Sz. Those in the range Sa through Sm are initialized
to null strings at the beginning of execution and are never modified except by explicit user request.
Some variables in the range Sn through Sz have specific initial values and may possibly be changed
implicitly by the Shell during execution. A variable is assigned a value as fallows:

- letter [argl [arg2 1 1
If argl is given, its value is assigned to the variable corresponding to letter. If two arguments are given,
and if argl is a null string, the value of arg2 is assigned to the variable, permitting a convenient default
mechanism. If neither argl nor arg2 are given, a single line is read from the standard input, and the
resulting string (with th~ new-line character, if any, removed) is assigned to the variable.

The following are examples of simple assignments. You may omit quotes around the arguments if you
are sure that they contain no special characters:

- a "SI"
- b , •••••'
- c /usr/news/ .mail

The procedure below illustrates the use of a default argument. If an argument is given, mail is read
from it. Otherwise, mail is read from "/usr/news/.mail":

- a "$1" /usr/news/.mail
mail -f Sa

The H-" command is often used to capture the output of a program. For example, date writes the
current time and date to its standard output. The following tine saves this value in Sd:

datel-d

This works just as well in longer pipelines. The following saves in Sa the number of logged-in users:

who I we -I I - a

Another use is in the writing of interactive Shell procedures. The following example is part of a pro
cedure to ask the user what kind of terminal is being used, so that tabs and delays can be set and other
useful actions taken. The "</dev/tty" indicates a redirection of the standard input to the user termi
nal; it is not seen as an argument to "-", but rather causes the variable to be set to the next line typed
by the user:

echo ·terminal?'
- a </dev/tty

Several variables are currently assigned special meanings:

Sn records the number of arguments passed to the Shell, not counting the name of the Shell pro
cedure itself. Thus, "sh file argl arg2 arg3" sets Sn to 3. Its primary use is in checking for the
required number of arguments:

if Sn -It 2 then
echo 'two or more args required'; exit

endif

Shift never changes the value of Sn.

Sp permits alteration of the ordered list of directory pathnames used when searching for commands.
It contains a sequence of directory names (separated by colons) that are to be used as search
prefixes, ordered from left to right. The current directory is indicated by a null string.

. 10.

By default, Sp is initialized to a value producing the effect described in {3.7}: ":/bin:/usr/bin". A
user could possess a personal directory of commands (say, /al/tf/jtb/bin) and cause it to be
searched before the other three directories by using:

•_ p /al/tf/jtb/bin::/bin:/usr/bin

Sr gives the value of the return code of the command most recently executed by the Shell. It is a
string of digits; most commands return "0" to indicate successful completion. For example, the
... _ .. command returns "O" if two arguments are given and the first is not null, or if a line is
actually read from the input. When the Shell terminates, it returns the current value of Sr as its
own return code.

Ss is initialized to the name of the user's login directory, i.e., the directory that becomes the current
directory upon completion of a login (e.g., "/al/tf/jtb"). Using this variable helps one to keep
full pathnames out of Shell procedures. This is of great benefit when pathnames are changed,
either to balance disk loads or to reflect administrative changes.

St is initialized to the user's terminal identification, a single letter· or digit. The terminal can be
manipulated using the file name "/dev/tty$t" or just "/dev/tty" alone. The latter is a generic
name for the user's terminal.

Sw is initialized. to the first component of Ss, i.e., it is the name of the file system (such as "/al") in
which the login directory is located. Like Ss, it is used to avoid pathname dependencies, but is
more useful than Ss for projects involving many users.

Sz is initialized to "/bin/sh". The command named by Sz is the one that actually reads the Shell
procedures invoked implicitly. The user can alter the choice of the Shell by overriding this value
{4.4l. This facility is very useful when there are several different Shells in a system. This may
occur because different groups of users want different Shells, or when a new Shell is being tested.

In addition to the above variables, the following read-only variable is provided:

$$ contains a 5-d.igit number that is the unique process number of the current Shell. Its most com
mon use is in generating unique names for temporary files. Unlike many other systems,
PWBIUNIX provides no separate mechanism for the automatic creation and deletion of temporary
files: a file exists until it is explicitly removed. Temporary files are generally undesirable objects:
the PWB/UNIX pipe mechanism is far superior for many applications. However, the need for
uniquely-named temporary files does occur, especially for multi-user database applications. The
following example of$$ usage also illustrates the helpful practice of creating temporary files in a
directory used only for that purpose:

Is >$s/tmp/$$
. . . commands (some ql which use $s/tmpl$$)
: ·clean up at end'
rm $s/tmp/$$

4.4 Initialization of Sp and Sz by the .path File

The user may request automatic initialization of each Shell's Sp (and Sz) by creating a file named
".path" in the login directory. The first (or only) line should be of the form shown for $p {4.31. If
present, the second line should be the full pathname of a Shell. Every instance of the Shell looks for
that ".path" file and initializes its own $p (and Sz) from it, if ".path" exists. Otherwise,
.. :/bin:/usr/bin" and "/bin/sh" are the values used, respectively. Thus, the ".path" information is
available to all of the user's Shells, but changing $p or $z in one Shell does not affect these variables in
other Shells. In addition, ".path" is used in a consistent way by commands that must search for other
commands, such as nohup, nice. and ttme.6 This facility is heavily used in large projects, because it
simplifies the sharing of procedures, and can be quickly altered to adapt to changes in organizational
requirements.

6. If you plan to write such a command. investigate the pexec subroutine, which combines the search and execution code.

- 11 -

4.5 Control Structures

The Shell provides several commands that implement a variety of control structures. These commands
are presented here in order of increasing complexity. See {6} for examples of these commands in the
context of .complete Shell procedures.

,.. Several of the control commands must not be "hidden" on command lines (e.g., behind semi-colons "; "):

else end endif endsw if switch while

Other control commands may be "hidden ":

break breaksw continue exit goto next

4.5.1 Labels and Goto .. The command ":" is recognized by the Shell, but is then treated as a null
operation. One use of ":" is to define a label to act as a target for goto. Another use is to begin a
comment line. However, it is a good idea to place comments in quotes {3.5} if they contain any charac
ters that have a special meaning to the Shell, because the line is actually parsed, not just ignored. Using
"goto label" causes the following actions:

• A seek is performed to move the read pointer to the beginning of the command file.
• The file is scanned from the beginning, searching for ": label", either alone on a line, or followed

by a blank or tab.
• The read pointer is made to point at the line after the labeled line.

Thus, the only effect of goto is the adjustment of the Shell's file read pointer to cause the Shell to
resume interpreting commands starting at the line following the labeled line. Invoking goto with an
undefined label causes termination of the procedure { 4.5 .5}.

,.. A void the "goto" -.fiuure versions of the Shell are not expected to allow it.

4.5.2 ff: Simple Conditional.

if conditional-expression command [args 1
Whenever the conditional-expression is found to be true, if executes the command (via the exec system
call). passing the arguments to it. Whenever the conditional-expression is false, if merely exits.

The following primaries can be used to construct the conditional-expression:

-r file true if the named file exists and is readable by the user.

-w file

-s file

-d file

-f file

sl - s2

sl !- s2

nl -eq n2

{ command }

true if the named file exists and is writable by the user.

true if the named file exists and has a size greater than zero.

true if the named file is a directory.

true if the named file is an ordinary file.

true if strings sl and s2 are identical.

true if strings sl and s2 are not identical.

true if the integers nl and n2 are algebraically equal. Other algebraic comparisons are
indicated by "-ne", "-gt", "-ge", "-It", and "-le".

the command is executed; a return code of 0 (yes, zero!) is considered true, any other
value is considered false. Most commands return 0 to indicate successful completion.

These primaries may be combined with the following operators:

-a

-0

(expr)

unary negation operator.

binary logical and operator.

binary logical or operator; it has lower precedence than "-a".

parentheses for grouping. They must be escaped to remove their significance to the
Shell. In the absence of parentheses, evaluation proceeds from left to right.

- 12 -

All of the operators, flags, and values are separate arguments to if. and must -be separated by blanks.
You must be careful to make sure that an argument actually appears and can be parsed correctly:

if "$1" - "" echo missing argument
if 0$1 .• 0 echo missing argument
if 0"$1" - 0 echo missing argument

The first example guards against the possibility that $1 is omitted, null, or has embedded blanks; the
second guards against the possibility that $1 has a value that causes parsing problems (such as "-r"),
or that it is' omitted or null; ~he third guards against all these problems. The following is dangerous:

if $1 • "" echo missing argument

because it would cause a syntax error in any of the above cases. Substitution of variables and argu
ments occurs effectively before parsing; thus, for example, if Sl were null, then after substitution the
line would read:

if • "" echo missing argument

In this case, $1 without quotes yields no argument at all (on the other hand, "$1" would have yielded
an argument whose value is the null string). It is generaUy desirable to quote arguments (with double
quotes-see 3.S}), especially when they might possibly contain blanks or other characters that have a
special meaning to the Shell: Examples of the use of if can be found in {6).

4.5.J (l-then-else-endif: Structured Conditional. A more general (and much more readable) form of
fl can be used:

if conditional-expression then
.•• commands

else
••• commands

end if

The else and the commands fotlowing it may be omitted. It is legal to nest if commands, but there
must be an endffto match every then.

When if is called with a command, using the form of {4.S.2). it acts as described there, deciding
whether or not to execute the supplied command. When called with then instead of another command,
if simply exits on a true, allowing the Shell to read and interpret the immediately following lines. On a

Ji:zlse, ff reads the file until it finds the next unmatched else or endff, thus skipping it and any other inter
vening lines. Else reads to the next unmatched endif. Endif is a null command.

These commands work together in a way that produces the appearance of a familiar control structure,
although they do little but adjust the Shell's read pointer. Be warned that this implementation tech
nique does not do a good job of diagnosing extra, missing. or hidden if. else. or endifcommands {4.5}; if
you suspect that there are such extra or missing commands, "opt -v" often helps (3.8,4.1}.

4.5.4 Switch-breaksw-endsw: Multi-way Branch. The switch command manipulates the input file in a
way quite similar to tf. It is modeled on the "switch" statement of the C language [8). and like it, pro
vides an efficient multi-way branch:

switch value
la bell

commands
label2

commands

default
commands

endsw

- 13 -

Switch reads the input until it finds:

• a statement label that matches value. The label may contain special characters as described in (3.4};
the method of matching is identical. A few of the many possible labels that could be used to match
the vah~e "thing.c" are:

thing.c •.c t• • ???????

• default used as a statement label (optional).
• the iaext unmatched endsw command.

Again, from the Shell's viewpoint, the only effect of switch is to adjust the read pointer so that the Shell
effectively skips over part of the procedure, and then continues executing commands following the
chosen label or endsw. For examples, see ".profile" and "fsplit" in {6}.

Value is obtained from an argument or from a variable; if the label default is present, it must be the last
label in the list; it indicates a default action to be taken if value matches none of the preceding labels.
The switch construct may be nested; labels enclosed by interior switch-endsw pairs are ignored during the
execution of switch. Breaksw reads the input until the next unmatched endsw and is used to end the
sequence of commands associated with a label. Endsw is a null command like endif.

4.5.5 End-of-file and Exit. When the Shell reaches the end-of-file, it terminates execution, returning
to its parent the return code found in Sr. The exit command simply seeks to the end-of-file and
returns, setting the return code to the value of its argument, if any. Thus, a procedure can be ter
minated "normally" by using exit 0.

4.5.6 While-break-continue-end: Looping. A while-end pair delimits a loop. Break can be used to
terminate execution of such a loop. Continue requests the execution of the next iteration of the loop:

while conditional-expression
.•. commands

end

While evaluates the conditional-expression, which is similar to that of if {4.5.2}. If the conditional
expression is true, while does nothing, permitting the following lines to be read and interpreted. If the
conditional-expression is false, the input file is searched for a matching end, and command interpreta
tion resumes with the next line. While-end groupings may be nested to a depth of three.

While treats a single, non-null argument as true and a single null argument or lack of arguments as false.
This is convenient for the simple case that handles one argument per iteration:

while "$1"

end

Do something with $1.
shift

Break terminates execution of the smallest enclosing while-end group, causing execution to resume after
the nearest following unmatched end. Exit from n levels is obtained by writing n break commands on
the same line:

break; break; .•.

Continue causes execution to resume at the preceding while. i.e., the one that begins the smallest loop
containing the continue.

4.5. 7 Conditional Operators 11 and &&. These operators enforce left-to-right execution of commands.
In the line "cmdl 11 cmd2", cmdl is executed and its return code examined. Only if it failed (exit
code non-zero) is cmd2 executed. It is thus a more terse notation for:

cmdl
if Sr -ne 0 then

cmd2
end if

- 14 -

The "&&" operator yields the inverse test: in "cmdl && cmd2", the second command is executed
only if the first succeeds (exit code zero). In the sequence below, each command is executed in order,
until one fails:

cmdl && cmd2 && cmd3 && • • • && cmdn

See ••fsplit" and "writemail" in {6} for examples.

4.5.8 Next: Transfer to Another File. The command "next name" causes the Shell to abandon the
current input and begin reading file name. Next with no arguments causes the Shell to read from the
terminal. By creating a file that initializes Shell variables, then typing "next file" at the terminal, any
one can have a simple shorthand for setting a number of Shell variables with little typing. See "nx" in
{6}. .

4.6 Onintr: Interrupt Handltn1

As noted in {2.2), a program may choose to "catch" an interrupt from the terminal, ignore it com
pletely, or be terminated by it. Shell procedures can use onintr to obtain the same eff'ects:

onintr [label]

Onintr takes several forms: "onintr label" yields the effect of "goto label" on reeeipt of an interrupt;
.. onintr" alone causes normal action to be restored, so that the process terminates on the next inter
rupt; "onintr -" causes interrupts to be ignored completely, not only by the Shell, but also by any
commands invoked by it.

The most frequent use of onintr is to make sure that temporary files are removed at the end of a pro
cedure. The example at the end of {4.3} typically would be written as:

onintr clean
Is >Ssltmp/$$

••• commands
: clean
rm Ss/tmp/$$

When "onintr label" is used, interrupts are effective at the time when the label is reached; it is often
desirable to insert another onintr following the label. Even so, there may be a short 04window" when
the user can accidentally kill the procedure by causing repeated interrupts in quick succession.

4. 7 Special I/O Redirections

As noted in (3.2}, when the Shell is invoked it expects to inherit from its parent an open standard input
(file descriptor 0), standard output (file descriptor 1), and diagnostic output (file descriptor 2). Each of
these is initially connected to the terminal. -

4.7.1 Standard /npuL When the Shell is invoked to read a command file, it saves the old standard
input (in an invisible place), then opens the command file as the new standard input. The fact that
commands inherit the new standard input is convenient for commands that read in-line data (editor
scripts, etc.) not read by the Shell. However, this mechanism prevents a Shell procedure from acting as
a filter or from reading the old standard input in the way that most C programs do. The Shell solves
this problem by permitting the notation "<--" to allow a command to take its input from the old
standard input, which the Shell has previously saved. 7

Note that "</dev/tty" and "<--" usually have equivalent etfects in a procedure invoked directly
from the terminal. The effects ditfer in a procedure invoked from within another procedure, unJess the
first procedure takes care to invoke the second with "<--". In any case, "<--" is to be preferred
because it can be used to read from a file or a pipe and is thus more general. See ufsplit" and "lower"
in {6}.

7. The notation .. __ .. arises from the concept of "standard input once removed .. , because many PW8/UNIX commands accept
"-" in place of a tile name to indicate that the cumnt standard input should be react This choice makes it impossible to
redirect input from a file named "--". Fortunately, file names almost never begin with "-", because many commands
e"pect " - " to signal a flag of some sort.

. 15.

4.7.2 Standard Output. The use of ">/dev/tty" redirects output to the terminal, even if used in the
middle of a pipeline. Shell procedures that act as filters sometimes need to do this. The redirection
">/dev/null" causes the standard output of a command to be thrown into a bottomless pit (presum
ably to feed the wumpus-see wump(VI)). This is used when you want to execute a command for its
side-effects, but do not want to be bothered by its output.

4. 7.J Diagnostic Output. Most commands direct diagnostics to file descriptor 2 to make sure that they
do not get lost down pipelines. Some situations require that this output go to some place other than
the terminal. For example, a long-running procedure may be started, and then the terminal is hung up.
In this case, it is helpful to save diagnostics in a file. A deficiency of the current Shell is the lack of
syntax for redirecting the diagnostic output. The separate command fd2 performs the required services:

fd2 [+ 1 [-file 1. (--file] command arguments .••

The "+" flag causes diagnostic output to be merged into the standard output. The second option
writes that output to file: the third appends it to file. If the file name is omitted in the second or third
cases, "msg.out" is used. If no flag is given, "-msg.out" is assumed.

4.8 Quoting Revisited

The main problem with quoting conventions is the need to treat "$" and "\" in ways flexible enough
for convenient use with arguments and variables, but simple enough to be understandable, easy to
implement, and unobtrusive in simple cases. In this respect, the current version of the Shell is far
from elegant, but is reasonable in practice. The rules are:

• Inside single quotes, every character stands for itself without exception. A single quote is not. itself,
allowed within single quotes.

• Inside double quotes, "\$"and ••\•n stand for the characters "$" and "'"', respectively, but with all
special meaning removed. All other characters, other than a pair of characters the first of which is
an unescaped ••s", behave exactly as they do within single quotes, including a "\" not followed by a
"$" or a '""'.

• Inside double quotes and outside either kind of quotes, any two-<:haracter sequence whose first charac
ter is an unescaped "$" is replaced by the value of the corresponding Shell argument or variable;
any variable that has no value (such as "$: ") is replaced by a null string.

• Outside either kind of quotes, any two-character sequence whose first character is a "\,. is replaced
by the second character of that sequence, but with any special meaning removed.

4.9 Creation and Orpnization of Shell Procedures

A Shell procedure can be created in two simple steps. The first is that of building an ordinary text file.
The second is that of changing the mode of the file to make it executable. thus permitting it to be
invoked by "name args'', rather than ••sh name args". The second step may be omitted for a pro
cedure to be used once or twice and then discarded, but is recommended for longer-lived ones.

Here is the entire input needed to set up a simple procedure (the executable part of ••draft" in {6}):

ed
a
nroff -rCJ -T450-12 -mm $•

w draft
q
chmod 755 draft

It may then be invoked as "draft filel file2". If the Shell procedure "draft" were thus created in a
directory whose name appears in the user's ".path" file, the user could change working directories and
still invoke the "draft" command.

Shell procedures may be created dynamically. A procedure may generate a file of commands, invoke
another instance of the Shell to execute that file, then remove it. An alternate approach is that of using
next to make the current Shell execute the new file, allowing use of existing Shell variables and avoid·
ing the spawning of an additional process for another Shell. In some cases,_ the need for a temporary
file may be eliminated by using the Shell in a pipeline.

- 16 -

Many users prefer to write Shell procedures instead of C programs. First, it is easy to create and main
tain a Shell procedure because it is only an ordinary file of text. Second, it has no corresponding object
program that must be generated and maintained. Third, it is easy to create a procedure "on the fly",
use it a few times, then remove it. Finally, because Shell procedures are usually short in length, writ·
ten in a high-level programming language, and kept only in their source-language form, they are gen
erally easy to find, understand, and modify.

By convention, directories of commands and/ or Shell procedures are usually named "bin". Most
groups of users sharing common interests have one or more "bin" directories set up to hold common
procedures. Some users have ".path" files that list several such directories. Although you can have a
number of such directories, it is unwise to go overboard-it may become difficult to keep track of your
environment, and efficiency may suffer {7.3}.

S. MISCELLANEOUS SUPPORTING COMMANDS

Shell procedures can make use of almost any command. The commands described in this section are
either used especially frequently in Shell procedures, or are explicitly designed for such use.

S.l Echo: Simple Output

The echo command, invoked as "echo [args]", copies its arguments to the standard output, each fol
lowed by a single space, except the last argument, which is followed by a new-line; often, it is used to
prompt the user for input, to issue diagnostics in Shell procedures, or to add a few lines to an output
stream in the middle of a pipeline. Another use is to verify the argument list generation process (as in
{3.4}) before issuing a command that does something drastic. The command "Is" is often replaced by
"echo *" because the latter is faster and prints fewer lines of output.

Echo recognizes several escape sequences. A "\n" yields a new-line character. Echo normally appends
a new-line character to its last argument; a "\c" is used to suppress that new-line character. The follow
ing prompts the user for input and allows input to be typed on the same line as the prompt:

echo 'enter name: \c'
• a </dev/tty

Echo also recognizes an octal escape sequence for any character, whether printable or not.

S.2 Pump: Shell Data Transfer

Pump is a filter that copies its standard input to its standard output with possible substitution of Sheil
arguments and variabJes:

pump [-{ subchar 1 1 [+] [eof str]

Pump reads input until an end-of-file, or until it finds eofstr alone on a line. The default eofstr is "!".
Normally, Shell arguments and variables are substituted in the data stream. The flag "-" suppresses
aH substitution, while the form "-subchar" causes subchar to be used as the indicator character for
substitution of Shell variables and arguments, instead of "$". Escaping is handled as in strings
enclosed by double quotes-the indicator character may be hidden by preceding it with "\". The "+"
flag causes ail leading tab characters in the input to pump to be eliminated; this permits that input to be
indented for readability. A common use of pump is to get Shell variables into editor scripts-see
"edfind" in {6}, for example. Because editor scripts may use "$" for other purposes, readability may
be improved by using a subchar such as"%":

• l / .

'in file $1, change every instance of $2 to $3'
'then delete all lines consisting only of $4'

if -r "$1" then

else

endif

pump -0/o + I ed $1
.g/%2/s//%3/g
g/"%4$/d
w

echo "$1: cannot open"

Pump is often- used to copy a few lines to another file:

pump > > logfile
here is $1
and here is $2 on a separate line

S.J Expr: Expression Evaluation

Expr supports arithmetic and logical operations on integers, and PUI·like "substr", "length'', and
"index" operators for string manipulation. It evaluates a single expression and writes the result to the
standard output, typically piped into "-" to be assigned to a variable. Typical examples are:

'increment Sa'
expr $a + 1 I - a

'put 3rd through last characters of $1 into Sb'
'expr substr abcde 3 1000 returns cde (1000 is just a big number)'

expr substr "$1" 3 1000 I =- b

'obtain length of $ r
expr length "$1" I - c

The most common uses of expr are in counting for loops and in using "substr" to pick apart strings.

5.4 Legname, Logdir, Logtty: Login Data

When a user logs in, he or she supplies a login name and a password. The login program searches the
password file for that login name and obtains the name of the program to be executed by the user (nor·
malty the Shell), the directory to be made the current directory, and also a userid, a value ranging from
0 to 255. Most UNIX protection and identification mechanisms utilize the last item. Limiting the
number of distinct users to 256 is no problem for most UNIX systems, but the original PWBIUNlX instal·
lation currently supports more than 1,000 users. However, it is not necessary to provide a distinct
userid for every user. Project-oriented groups of users often choose to share one or two userids, in
order to ease the problems caused by personnel absences, and also to ease the manipulation of shared
files. 8 Although the members of such groups do not generally worry about being protected from each
other, they need to be identified as distinct individuals by some programs, i.e., those that tag inter-user
messages with user names or log the name of the user making a change to a source program.
PwBtUNlX records the login name instead of discarding it after login. The /ogname command writes this
name to the standard output, allowing it to be captured in a Shell variable. It can then be used to per·
mit only selected users to execute a procedure, or can be included in logging infonnation:

logname I == u
(echo "Su updated files on \c"; date) > >projectlog

The logdir and logtty commands are used in the same way as logname; they produce the same values as
the initial values of $s and St, respectively { 4.3}.

8. Although some groups started by using one userid per person, it was discovered that these users often shared a single
password. Thus, the possession of separate userids was considered more of a hindrance than a help.

• 18.

6. EXAMPLES OF SHELL PROCEDURES

.,. Some examples in this section may be quite difficult for beginners. For ease of reference. the examples
are a"anged alphabetically by· name .

. profile:

while 1

end

'.profile (automatically invoked on login) asks for terminal type,'
'reads a line from terminal, loops until a known type'
'{or empty line) is entered, sets terminal options appropriately,'
'asks for new directory name and changes· to it, if one is given;
'and then, if file nx exists, transfers to it'

echo 'terminal:\c'
- a </dev/tty
switch "Sa K

: 450

gsi
300

hp

ti

'DASI450'

stty cr2; tabs +t450; break
'GSI/DASI300'

stty cr2; tabs; break
'HP264X"

stty crO nlO; tabs +thp; break
'TI 700'

stty -tabs nll er 1; break
default

if O"Sa" - 0 break
echo "Sa? try 450,gsi,hp,ti"

endsw

echo "cd \c"
- b </dev/tty
if "Sb" !- "" then

cd Sb
endif
if -r nx then

next nx
endif

Note: Break is used instead of breaksw in the above example to terminate the while loop, not just the
switch construct.

copypairs:

'copypai rs file 1 file 2
'copy file 1 to file2, tile3 to file4,

while "$2"

end

cp $1 $2
shift; shift

if 0"$1" !== 0 echo 'odd number of arguments'

Note: Remember that .. shift; shift" is not the same as "shift 2". See next example for use of "shift
2".

copJto:

distinctl:

• l~.

• copyto dir file .• :
·copy argument files to dir, making sure that at least'
'two arguments exist, that dir is a directory, and that'
'each additional argument is a readable file'

if Sn -lt 2 then
echo 'usage: copyto directory file .. .'; exit

endif
if ! -d $1 then

echo "Sl is not a directory"; exit
endif
while "$2"

end

if ! -r $2 then

else

endif
shift 2

echo "$2 not readable"

cp $2 $1

·distinct l'
·reads standard input, reports list of identifiers that'

: 'differ only in case, giving lower case form of each'
tr -cs '(A-ZJ[a-z][0-91' 'l\012-1' <-- I sort -u I tr '(A-ZJ' 'Ia-zJ' I sort I uniq -d

Note: This procedure is an example of the kind of process that is created by the "left-to-right" con
struction of a long pipeline. It may not be immediately obvious how this works. The IT
translates all characters except letters and digits into new-line characters, and then "squeezes
out" repeated new-line characters. This leaves each identifier (in this case, any contiguous
sequence of letters and digits) on a separate line. Sort sorts the lines and emits only one tine
from any sequence of one or more repeated lines. The next tr converts everything to lower
case, so that identifiers differing only in case become identical. The output is sorted again to
bring such duplicates together. The uniq -d prints once only those lines that occur more than
once, yielding the desired list.

The process of building such a pipeline uses the fact that pipes and files can usually be inter
changed~ the two lines below are equivalent, assuming that sufficient disk space is available:

cmdl I cmd2 I cmd3
cmdl >tmpl; <tmpl cmd2 >tmp2; <tmp2 cmd3; rm tmp(l-3]

Starting with a file of test data and working from left to right, each command is run taking its
input from the previous file and putting its output in the next file. The final output file is then
examined to make sure that it contains the expected result. The goal is to create a series of
transformations that will convert the input to the desired output. As an exercise, try to mimic
"distinct!" with such a step-by-step process, using a file of test data containing:

ABC:DEF/DEF
ABCl ABC
Abe abc

Although pipelines can give a concise notation for complex processes, exercise some restraint
lest you succumb to the "one-line syndrome" sometimes found among users of especially con
cise languages. This syndrome often yields incomprehensible code.

distinctl:

- 20-

• distinct2'
·reads standard input, reports sorted list of identifiers that differ'
'in case only, listing all such distinct identifiers'

onintr cleanup
tr -cs '[A-Z]{a-z)[0-91' '[\012•1' <-- I sort -u I tee tlSS I tr '(A-Z]' '(a-zJ' >t2SS
pr -s -t -11 -m tlSS t2SS I sort +l >t3SS

·third argument to pr in above line is "minus ell one"'
sort t3$$ > t4$$
uniq -u -1 t3SS f . sort I comm -23 t4$$ - I sort + 1
: cleanup
rm t?SS

Note: This procedure is similar to the previous one, but provides more explicit information. As an
exercise, work through this procedure in the way described above. The commands used here
{plus grep and sed) form the basis for many "data stream" operations.

draft:

·draft file .• :
'prints the draft (-rC3) of a document on a DASI450 terminal in 12-pitch'
'using PWB/MM'

nroff -rC3 -T450-12 -mm $•

Note: Users often write this kind of procedure for convenience in dealing with commands that require
the use of many distinct tlags that cannot be given default values that are reasonable for all (or
even most) users.

edfind:

• edfind file arg'
'find the last occurrence in file of a line that matches arg, •
'then print 3 lines {the one before, the line itself, and the one after)'

pump I ed - $1
?$2?;-,+p
!

Note: This illustrates the typical practice of using pump to substitute Shell variables into ed scripts.

edlast:

• edlast file'
'prints the last line of file, then deletes that line'

ed - $1
Sp
Sd
w
q
echo done

Note: This procedure illustrates the effects of a command that reads input from a file shared with the
Shell.

fsplit:

• 21 •

'fsplit filel file2'
'read standard input and split it into three parts:'
'append any line containing at least one letter to filel, any line'
·containing digits but no letters to file2, and throw the rest away'

- i O; - j 0
while 1

end

• a <-·- II break
expr Si + 1 I - i
switch "Sa"

•{A-Za...:z]•
echo "Sa" > > S 1; breaksw

•(0-9]•
echo "Sa" > >$2; breaksw

: default
expr $j + 1 I • j

endsw

echo "Si lines read, $j thrown away"

Note: Each iteration of the loop reads a line from the input and analyzes it. The break terminates the
loop only when "-"encounters an end-of-file.

,.. Don't use the Shell to read a line at a time unless you must-it can be grotesquely slow {7 .2.1}.

loop:

'loop arg •• :
·one or more command lines'
'endloop'
·execute the group of command lines once for each argument,'
'substituting each argument as $1 in the command lines'

onintr cleanup
echo 'while "$1"' >tmp$$
pump - + endloop < - - > > tmpSS
echo ·shift \n end' > > tmpSS
next tmpSS; rm tmpSS
: cleanup
rm tmp$$

Note: Such a procedure is typically used from a terminal to repeat some commands for a list of argu
ments. It creates a temporary file that sandwiches user input between a while and shift-end. It
then transfers to that file. For example, all files in the current directory could be copied to
"place" by:

lower:

loop•
cp SI place
echo $1 copied
endloop

'lower'
'reads standard input, converts it to lower case, writes to standard output'
'can thus be used in a pipeline if desired'

tr '(A-ZJ' '[a-z]' <--
Note: This is the most common type of use for "< --".

m.kfiJes:.

null:

nx:

phone:

'm.kfiles prefix [number}'
'makes number (default - 5) files, named prefix!, prefix2, •• :

- a "$2" 5
- i 1
while Si -le Sa

end

cp /dev/null $1Si
expr Si + 1 I - i

'null file .• :
·create each of the named files as an empty file'

while "$1"

end

cp /dev/null Sl
shift

'next rue'
·asks for module name, initializes variables to useful values,'
'prints variables. Note that variables are set within the invoking Shell,'
'so nx can be invoked only from terminal or from .profile'

- a I sys/ source/ s I
• b /usr/man/manl
echo "m: \c"
- m </dev/tty
- g "get -e s.$m; ed Sm"
- d "delta s.Sm"
pump
a: Sa b: Sb
d: Sd g: Sg m: Sm

next

'phone initials'
'prints the phone number(s) of person with given initials'

echo 'inits ext home'
grep ""Sl"
abc 1234
def 2234
ghi 3342
xyz 4567

999-2345
583-2245
988-1010
555-1234

wrltemail:

'writemail message user'
'if that user is logged in, write message on terminal;'
'otherwise, mail it to that user'

echo "$1" I (write "$2" 11 mail "S2")

Note: Replacing "echo" above by "pump • <--" writes or mails the standard input, in the same
way as the mail command.

• 23 -

7. EFFECTIVE AND EFFICIENT SHELL PROGRAMMING

7.1 Onrall Approach

This section outlines strategies for writing "efficient" Shell procedures, i.e., ones that do not waste
resources tmreasonably in accomplishing their purposes. In the author's opinion, the primary reason
for choosing the Shell procedure as the implementation method is to achieve a desired result at a
minimum human cost. Emphasis should always be placed on simplicity, clarity, and readability, but
efficiency can also be gained through awareness of a few design strategies. In many cases, an effective
redesign of an existing procedure improves its efficiency by reducing its size, and often increases its
comprehensibility. In any case, one should not worry abOut optimizing procedures unless they are
intolerably slow or are known to consume a lot of resources.

The same kind of iteration cycle should be applied to Shell procedures as to other programs: write code,
measure it, and optimize only the few important parts. The user should become familiar with the time
command, which can be used to measure both entire procedures and parts thereof. Its use is strongly
recommended~ human intuition is notoriously unreliable when used to estimate timings of programs,
even when the style of programming is a f arniliar one. Each timing test should be run several times,
because the results are easily disturbed by, for instance, variations in system load.

7 .2 Approximate Measures of Resource Consumption

7.2.1 Number of Processes Generated When large numbers of short commands are executed, the
actual execution time of the commands may well be dominated by the overhead of spawning processes.
The CPU overhead per process lies in the range of 0.07 to 0.1 seconds, depending on the specific
hardware configuration. The procedures that incur significant amounts of such overhead are those that
perform much looping, and those that generate command sequences to be interpreted by another Shell.

If you are worried about efficiency, it is important to know which commands are currently built into the
Shell, and which are not. Here is the alphabetical list of those that are built-in:

-break
brea.ksw
cd

chdir endsw newgrp
continue· exit next
else goto onintr
end if opt
endif login pump

shift
switch
test
wait
while

Pump actually executes as a child process. i.e., the Shell does a fork. but no exec;"()" executes in the
same way. Any command not in the above list requires both fork and exec.

The user should always have at least a vague idea of the number of processes generated. In the bulk of
observed procedures, the number of processes spawned (not necessarily simultaneously) can be
described by: ·

processes - k • n + c

where k and c are constants, and n is the number of procedure arguments, the number of lines in some
input file, the number of entries in some directory, or some other obvious quantity. Efficiency
improvements are most commonly gained by reducing the value of k, sometimes to zero. Any pro
cedures whose complexity measures include rr2 terms or higher powers of n are likely to be intolerably
expensive.

As an example, here is an analysis of procedure "fsplit" of (6). For each iteration of the loop, there is
one expr plus either an echo or another expr. One additional echo is executed at the end. If n is the
number of lines of input, the number of processes is 2•n + 1. On the other hand, the number of
processes in the following (equivalent) procedure is 12, regardless of the number of lines of input:

fsplit2:

- 24 -

onintr cleanup
• b '[ABCDEFOHIJKLMNOPQRSTUVWXYZabcdefghijldmnopqrstuvwxyz]'
cat. <-- > tmp$S
grep "Sb" tmp$$ > tmpSS 1
grep -v "Sb" tmpSS I grep "[01234567891" >tmp$$2
cat tmp$$1 > >$1 ; cat tmp$$2 > >$2
wc -l <tmp$$ I • i
WC -I <tmp$Sl ,I - j
WC -l <tmp$$2 t • k
expr Si - Sj - Sk I - a
echo "Si read. Sa thrown away"

cleanup
rm tmp$$•

This version is often ten times faster than "fsplit", and it is even better for larger input files.

Some types of procedures should not be written using the Shell. For example, if one or more processes
are generated for each character in some file, it is a good indication that the procedure should be rewrit
ten inc.

,.. Shell procedures should not be used to scan "' build files a character at a time.

7.2.2 Number of Bytes of Data Accessed. It is worthwhile considering any action that reduces the
number of bytes read or written. This may be important for those procedures whose time is spent pass
ing data around among a few processes, rather than creating large numbers of short processes. Some
filters shrink their output, others usually increase it. It always pays to put the "shrinkers,. first when
the order is irrelevant. Which of the fallowing is likely to be faster?

sort file I grep pattern
grep pattern file I sort

7.2.J Directory Searches. Directory searching can consume a great deal of time, especially in those
applications that utilize deep directory structures and long pathnames. Judicious use of cd can help
shorten long pathnames and thus reduce the number of directory searches needed. As an exercise, try
the following commands (on a fairly quiet system).9

time sh -c 'ts. -I /usr/bin/• >ldev/null'
time sh -c 'cd /usr/bin; Is -l • >ldev/null'

7 .3 Eftlcient Organization

7.3. J Directory Search Order and the .path File. The ".path" file is a popular and convenient mechan
ism for organizing and sharing procedures. However, it must be used in a· sensible fashion, or the
result may be a great increase in system overhead that occurs in a subtle, but avoidable way.

The process of finding a command involves reading every directory included in every pathname that
precedes the needed pathname in the current Sp variable. As an example, consider the etfect of invok
ing nroff (/usr/bin/nroff) when Sp is .. :/bin:/usr/bin". The sequence of directories read is: , "/",
.. /bin", .. , .. , ••tusr", and .. /usr/bin", i.e., a total of six directories. A long ".path" can increase this
number significantly.

The vast majority of command executions are of commands found in "/bin" and, to a lesser extent, in
"/usr/bin". Careless ".path" setup may lead to a great deal of unnecessary searching. The following
four examples are ordered from worst to best (at least with regard to efficiency):

9. You may have to do some reading in the PwB111N1x User's Manual (3) to understand exactJy what is going on in these
examples.

:/al/tf/jtb/bin:/al/tf/bin:/bin:/usr/bin
:/bin:/ al/tf/jtb/bin:/ al/tf/bin:/ usr/bin
:/bin:/ usr /bin:/ a l/tf I jtb/bin:/ al/tf /bin
/bin::/usr/bin:/al/tf/jtb/bin:/al/tf/bin

- 25 -

The first one above should be avoided. The others are acceptable-choice among them is dictated by
the rate of change in the set of commands kept in "/bin" and "/usr/bin".

A procedure that is expensive because it invokes many short-lived commands may often be speeded up
by changing $p to resemble the last of the above four examples.

7.3.2 Good Ways to Set up Directories. It is wise to avoid directories that are larger than necessary.
You should be aware of several "magic sizes". A directory that contains entries for up to 30 files {plus
the required "." and " •• ") fits in a single disk block and can be searched very efficiently. One that has
up to 254 entries is still a "small" file; anything larger is usually a disaster when used as a working
directory. It is especially impartant to keep login directories small. preferably one block at most.

ACKNOWLEDGMENTS

The Shell was originally written by K. Thompson; its basic structure has remained unchanged since
then. although many features {and some warts!) have been added. The PWB/UNlX extensions were
added by R. C. Haight, A. L. Glasser, and the author. Some constructs have been derived from similar
ones in the recent Shell written by S. R. Bourne. A number of colleagues provided helpful comments
during the writing of this tutorial; T. A. Dolotta, in addition, provided a great deal of editorial assis
tance. Finally, many thanks must go to the PWB/UNIX user community, and especially M. H. Bianchi
and J. T. Burgess, who provided many suggestions and examples.

llE1EllENCES

[l) Bianchi, M. H., and Wood, J. L. A User's Viewpoint on the Programmer's Workbench. Proc.
Second lnL Conj. on Software Engineering. pp. 193-99, Oct. 13-15, 1976.

[21 Dolotta. T. A., and Mashey, J. R. An Introduction to the Programmer's Workbench. Proc.
Second lnL Conj. on Software Engineering, pp. 164-68, Oct. 13·15, 1976.

{3) Dolotta, T. A., Haight, R. C., and Piskorik, E. M., eds. PWBIUNIX User's Manual-Edition 1.0.
Bell Laboratories, May 1977.

(4) Kernighan, B. W., and Plauger, P. J. Software Tools. Proc. First National Conference on Software
Engineering, pp. 8-13, Sept. 11-12, 1975.

[SJ Kernighan, B. W .• and Plauger, P. J. Software Tools. Reading, MA: Addison-Wesley, 1976.

(6) Mashey, J. R. Using a Command Language as a High-Level Programming Language. Proc.
Second Int. Conj. on Software Engineering, pp. 169-76, Oct. 13-15. 1976.

[7] Mashey, J. R. PwBIUNlX Documentation Roadmap. Bell Laboratories, 1977.

[8) Ritchie, D. M. C Reference Manual. Bell Laboratories, 1977.

[9} Ritchie, D. M., and Thompson. K. The UNIX Time-Sharing System. Comm. ACM 17(7):365-
75, July 1974.

[ioJ Thompson, K. The UNIX Command Language. In Structured Programming-/nfotech State of the
Art Report, pp. 375-84. Infotech International Limited, Nicholson House, Maidenhead,
Berkshire, England, 1976.

[11) Thompson, K., and Ritchie, D. M. UNIX Programmer's Manual-Sixth Edition. Bell Laboratories,
May 1975.

UNIX For Beginners

Brian W. Kemighan

Bell Laboratories,
Murr.ay Hill. New Jersey 07974

ABSTRACT

This paper is meant to help new users get started on UNIX. It covers:

• basics needed for day·to-<iay use of Lhe system - typing commands. correct·
ing typing mistakes, logging in and out, mail. inter-eonsole communication. the
file system, printing files. redirecting 110. pipes, and the shell.

• document preparation - a brief tutorial an the ROFF formatter for beginners,
hints on preparing documents, and capsule descriptions of some supporting
software.

• UNIX programming - using the editor. programming the shell, programming
in C. other languages.

There is aiso an annotated UNIX bibliography.

D.U

UNIX for Beginners

Brian W. Kernighan

Bell Laboratories~ Murray Hill. N. J.

In many ways. UNIX is the state of the art
in computer operating systems. From the
user's point of view. it is easy to learn and use.
and presents few of the usual impediments to
getting the job done.

It is hard, however, for the beginner to
know where to start. and how to make the best
use of the facilities available. The pullJOH of
this introduction is to point out high spocs for
new users. so they can get used to the main
ideas of UNIX and start makiag good use of it
quickly.

This paper is not an attem'Pt to re-write
the UNIX Program,,,.,'$ Manual: often the discus
sion of something is simply .. read section x in
the manual" (This implies that you will need a
copy· of the UNIX Programm~'s MllmlaJ.) Rather
it sugests in what order to read the manual,
and it collects toplher things that are stated
only indirectly in the manual

There are ftve sections:

l. Getting Started: How to log in to a UNIX,
how to type. what to do about mistakes in
typing, how to log out. Some of this is
dependent on which UNIX you log into
(phone numbers. for examcsle) and what
terminal you use. so this section must
necessarily be sup1)1emented by local in
formation.

2. Day-to-day Use: Things you need every
day to use UNIX eft'ectively: generally use
fuJ commands; the ftle system.

3. Document Preparation: Preparing
manuscripts is one of the most common
uses for UNIX. This section contains ad·
vM:e. but not extensive instructions on
any of the formatting programs.

4. Writing Programs: UNIX is an excellent
vehicle for develocsing programs. This
section talks about some of the tools. but
again is not a tutoriai in any of the pro
gramming languages that UNIX provides.

s. A UNIX Reading List.. An annotated bi
bliogra'PhY of documents worth reading by
new users.

I. Gm'ING STARTED

Loatna In
Most of the details about logging in are in

the manual section called .. How to Get Staned"
(pases i11-11 in the 5th Edition). Here are a cou
ple of extra warnings.

You must have a UNIX login name. which
you can get from whoever administers your
system. You also need to know the phone
number. UNIX is capable of dealing with a
variety of terminals: Terminet 300's; Execu
port. TI and similar portables; video terminals;
GSl's; and even the venerable Teletype in ics
various forms. But note: UNIX will not handle
IBM 2741 terminals and their derivatives (e.g..
some Anderson-Jac:obsons. Novar). Further
more. UNIX is strongly oriented towards devices
with lower CD#. If your terminal produces only
upper case (e.g.. mod«H 33 Teletype). life will be
so difficult that you should look for another ter
minal.

Be sure to set the switches appropriately
on your device: speed (if it's variable) 10 30
characters per second. lower case. full duplex.
even parity. and any others that local wisdom
advises. Establish a conn~tion using whatever
magic is needed for your terminal UNIX should
type "login:" at you. If it types garbage. you
may be at the wrong speed; push the 'break' or
'interrupt' key once. If that fails to produce a
login message, consult a guru.

When you get a ••togin:" message. type
your login name in lower case. FoJlow it by a
RETURN if the terminal has one. If a password
iS required,) wU Will be asked for it, and (if pOS•
sible) printing will be turned olf while you type
it. again followed by a RETURN. (On M37 Tele
types always use NEWLINE or LINEF££D in place
of RETURN).

The culmination of your login elfortS is a
percent sign "%". The percent sign means that
UNIX is ready to accept commands from the
terminal. (You may also get a message of the
day just before the percent sign or a
notification that you have mail.)

Typln1 Commands
Once you've seen the percent sign, you

can type commands, which are requests that
UNIX do something. Try typing

date

followed by RETURN. You should get back some·
thing like

Sun Sep 22 l 0:52:29 EDT 1974

Don't forget the RETURN arter the command, or
nothing will happen. tr you think you're being
ignored, type a RETURN; something should hap·
pen. We won't show the carriage returns. but
they have to be there.

Another command you might try is who.
which tells you everyone who is currently logged
in:

who

gives something like

pjp
bwk
mel

ttyf
ttyg
ttyh

Sep 22 09:40
Sep 22 09:48
Sep 22 09:58

The time is when the user logged in.
If you make a mistake typing the command

name. UNIX will tell you. For example, if you
type

whom

you will be told

whom: not found

Strange Terminal Behavior
Sometimes you can get into a state where

your terminaJ acts strangely. For example, each
letter may be typed twice, or the RETURN may
not cause a line feed. You can often fix this by
logging out and logging back in. Or you can read
the description of the command stty in section I
of the manual. This will also tell you how to get
intelligent treatment of tab characters (which are
much used in UNIX) if your terminal doesn't
have tabs. If it does have computer-settable
tabs, the command tabs will set the stops
correctly for you.

Mistakes In Typina
If you make a typing mistake, and see it

before the carriage return has been typed, there
are two ways to rC1:over. The sharp-eharac:ter
"#" erases the last character typed; in fact suc
cessive uses of "#" erase characters back to the
beginning of the line (but not beyond). So if

-2-

you type badly, you can correct as you go:

dd#attetlltlle

is the same as "date".
The at·sign "r., " erases all of the charac·

ters typed so far on the current input line, so if
the line is irretrienbly fouled up, type an "<11"
and stan over (on the same line!).

What if you niust enter a sharp or at·sign
as part of the text? If you precede either "#" or
"<11" by a backslash "\", it loses its erase mean·
ing. This implies that to erase a backslash, you
have 10 type two sharps or two at·signs. The
backslash is used extensively in UNIX to indicate
that the following character is in some way spe·
cial.

Readahead

UNIX has full readahead, which means that
you can type as fast as you want. whenever you
want, even when some command is typing at
you. If you type during output. your input char·
acters will appear intermixed with the output
characters, but they will be stored away by UNIX
and interpreted in the correct order. So you can
type two commands one after another without
waiting for the first to finish or even begin.

Stoppina a Pl'Olram
You can stop most programs by typing the

character "DEL" (perhaps called "delete" or
"rubout" on your terminal). There are excep
tions, like the text editor, where D£L stops what·
ever the program is doing but leaves you in that
program. You can also just hang up the phone.
The "interrupt" or "break" key found on most
terminals has no effect.

Loaina Out
The easiest way to log out is to hang up the

phone. You can also type

login name-of-new-user

and let someone else use the terminaJ you were
on. It is not sufficient just to tum otT the tcrmi·
nal. UNIX has no time-out mechanism, so you'll
be there forever unless you hang up.

Mall
When you log in, you may sometimes get

the message

You have mail.

UNIX provides a postal system so you can send
and receive letters from other users of the sys·
tem. To read your mail, issue the command

mail

Your mail will be printed, and then you will be
asked

Save?

If you do want to save the mail, type y, for
"yes"; any other response means "no".

How do you send mail to someone else?
Suppose it is to go to "joe" (assuming "joe" is
someone's login name). The easiest way is this:

mail joe
now rype in rhe rext of rhe Jetter
on as many lines as you like ...
after the last line of the letrer
type the character "control-d':
that is, hold down "cantrol" and type
a letter "d':

And that's it. The "control-d" sequence, usually
called .. EQT', is used throughout UNIX to mark
the end of input from a terminal, so you might
as well get used to it.

There are other ways to send mail - you
can send a previously prepared letter, and you
can mail to a number. of people all at once. For
more details see mall (J).

The notation mail (I) means the command
mail in section (I) of the UNIX Programmer's
Manual.

Writint to other men
At some point in your UNIX career, out of

the blue will come a message like

Message from joe ..•

accompanied by a startling beep. It means that
Joe wants to talk to you. but unless you take ex
plicit action you won't be able to talk back. To
respond, type the command

write joe

-3-

This establishes a two-way communication path.
Now whatever Joe types on his terminal will ap·
pear on yours and vice versa. The path is slow.
rather like talking to the moon. (If you are in
the middle of something. you have to get 10 a •
state where you can type a command. Normally,
whatever program you are running has to ter
minate or be terminated. If you're editing. you
can escape temporarily from the editor - read
the manual)

A protocol is needed to keep what you type
from getting· garbled up with what Joe types.
Typically it's like this:

Joe types "write smith" and waits.

Smith types "write joe" and waics.
Joe now types his message (as many lines
as he likes). When he's ready for a reply,
he signals it by typing (o), which stands
for "over".
Now Smith types a reply, also terminated
by (o).
This cycle repeats until someone gets
tired; he then signals his intent to quit
with (o+o), for "over and out".
To terminate the conversacion, each side
must type a ''control-<!" character alone
on a line. ("Delete" also works.) When
the other person types his "control-<!",
you will get the message "EOT' on your
terminal.

ff you write to someone who isn't logged·
in, or who doesn't want to be disturbed, you 'II
be told. If the target is logged in but doesn't
answer after a decent interval. simply type
"control-d".

On-line Manual

The UNIX Programmer's Manual is typically
kept on-line. If you get stuck on something. and
can't find an expert to assist you. you can print
on your terminal some manual section that
might help. It's also useful for getting the most
up-to-date information on a command. To print
a manual section, type "man section-name".
Thus to read up on the who command, type

man who

If the section in question isn't in part I of the
manual. you have to give the section number as
well, as in

man 6 chess

Of course you're out of luck if you can't
remember the section name.

11. DAY-TO-DAY USE

Creatin1 Files - The Editor

If we have to type a paper or a letter or a
program. how do we get the information stored
in the machine? Most of these tasks are done
with the UNIX .. text editor" ed. Since ed is
thoroughly documented in ed (I) and explained
in A Tutorial Introduction 10 1he UNIX Text Editor.
we won't spend any time here describing how to
use it. All we want it for right now is to make
some files. (A file is just a collection of informa
tion stored in the machine, a simplistic but ade
quate definition.>

To create a file with some text in it. do the
following:

ed (invokes the text editor)
a (command to .. ed .. , to add text)
now type in
Mlhatnet text you want .••

(signais the end of adding text)

At this point we could do various editing opera
tions on the text we typed in, such as correcting
spelling mistakes, rearranging paragraphs and the
like. Finally, we write the information we have
typed into a file with the editor command .. w";

w junk

ed will respond with the number of characters it
wrote into the file caJJed "junk".

Suppose we now add a few more lines with
"a", terminate them with ".", and write the
whole thing out as "temp", 1JSing

w temp

We sho1.1ld now have two files, a smaller one
called "junk" and a bigger one (bigger by the
extra lines) called "temp". Type a "q" to quit
the editor.

What flies are out there?

The Is (for "list") command lists the
names (not contents) of any of the files that
UNIX knows about. If we type

Is

the response will be

junk
temp

which are indeed our two files. They are sorted
into alphabetical order automatically, but other
variations are possible. For example, if we add
the optional argument "·t",

Is -1

lists them in the order in which they were last
changed, most recent first. The "·I" option gives
a "long" listing:

Is -1

will produce something like

-rw-rw-rw- I bwk 41 Sep 22 12:56 junk
-rw-rw-rw- I bwk 78 Sep 22 12:57 temp

The date and time are of the last change to the
tile. Tho 4 I and 78 are the number of characters
(you got the same thing from ed). "bwk" is the
owner of the tile - the person who created it.

-4-

The 0 -rw-rw·rw·" tells who has perm1ss1on to
read and write the file. in this case everyone.

Options can be combined: 0 ls ·It" would
give the same thing, but sorted intO time order.
You can atso name the files you're interested in.
and Is will list the information about them only.
More details can be found in Is (I).

It is generally true of UNIX programs that
0 flag" arguments like "·t" precede filename ar
guments.

Printinc Files

Now that you've got a file of text. how do
you print 'it so people can look at it? There are a
host of programs that do that, probably more
than are needed.

One simple thing is to use the editor, since
printing is often done just before making
changes anyway. You can say

edjunk
l,Sp

ed will reply with the count of the characters in
"junk" and then print au the lines in the file.
After you leam how to use the editor, you can
be selective about the partS you print.

There are times when it's not feasible to
use the editor for printing. For example. there is
a limit on how big a file ed can handle (about
65,000 characters or 4000 lines). Secondly, it
will only print one file at a time, and sometimes
you want to print several, one after another. So
here are a couple of alternatives.

First is cat, the simplest of alt the printing
programs. eat simply copies all the files in a list
onto the terminal. So you can say

cat junk

or, to print two files,

cat junk temp

The two files are simply concatenated (hence the
name "cat") onto the terminal.

pr produces formatted printouts of files.
As with cat, pr prints all the files in a list. The
difference is that it produces headings with date,
time, page number and file name at the top of
each page, and extra lines to skip over the fold
in the paper. Thus,

pr junk temp

will list "junk" neatly, then skip to the top of a
new page and list "temp" neatly.

pr will also produce multi~olumn output:

pr -3 junk

prints .. junk" in J~olumn format. You can use
any reasonable number in place of .. 3 .. and pr
will do its best.

It should be noted that pr is not a format
tin1 program in the sense of shuffling lines
around and justifying margins. The true for
matters are ro«, nroff. and troff', which we will
get to in the section on document preparation.

There are also programs that print files on
a high-speed printer. Look in your manual
under ottr and lpr. Which to use depends on the
hardware configuration of your machine.

Shuffling Files Aboui

Now that you have some files in the file
system and some experience in printing them,
you can try bigger things. For example. you can
move a file from one place to another (which
amounts to giving a file a new name), like this:

mv junk precious

This means that what used to be "junk·· is now
"precious". If you do an Is command now, you
will get

precious
temp

Beware that· if you move a file to another one
that. already exists. the already existing contents
are lost forever.

Ir you want to make a copy of a file (that is.
to have two versions of something), you can U!ie

the q, command:

cp precious temp I

makes a duplicate copy of ... precious" in
"tempi".

Finally, when you get tired of creating and
moving files, there is a command to remove files
from the file system. called rm.

rm temp temp I

will remove all of the files named. You will get a
warning message if one of the named files w.asn't
there.

Fiiename, What's In a

So far we have used filenames without ever
saying what's a legal name, so it's time for a cou
ple of rules. First, filenames are limited to 14
characters. which is enough to be descriptive.
Second, although you can use almost any charac-

-5-

ter in a filename, common sense says you should
stick to ones that are visible, and that you should
probably avoid characters that might be used
with other meanings. We already saw, for exam
ple, that 1n the Is command, "Is ·t" meant 10 list
in time order. So if you had a file whose name
was "·t", you would have a tough time listing it
by name. There are a number of other charac·
ters which have special meaning either to UNIX

as a whole or to numerous commands. To avoid
pitfalls, you would probably do well to use only
letters. numbers and the period. (Don't use the
period as the first character of a filename, for
reasons too complicated to go into.)

On to some more positive suggestions.
Suppose you're typing a large document like a
book. Logically this divides into many small
pieces, like chapters and perhaps sections. Phy
sically it must be divided too, for ed will not
handle big files. Thus you should type the docu
ment as a number of files. You might have a
separate file for each chapter. called

chap I
chap2
etc ...

Or, if each chapter were broken into several files,
you might have

chap I.I
chaph2
chapl.3

chap2.l
chap2.2

You can now tell at a glance where a particular
file fits into the whole.

There are advantages to a systematic nam·
ing convention which are not obvious to the no·
vice UNIX user. What if you wanted to print the
whole book? You could say

pr chap I.I chap l.2 chap 1.3 ··--

but you would get tired pretty fast, and would
probably even make mistakes. Fortunately,
there is a shortcut. You can say

pr chap•

The •••" means ''anything at all". so this
translates into ''print all files whose names begin
with 'chap' ", listed in alphabetical order. This
shorthand notation is not a property of the pr
command, by the way. It is system-wide, a ser
vice of the program that interprecs commands
(the "shell" sh {I)). Using that fact, you can see

how to list lhe files of the book:

Is chap•

produces

chapl.l
chapl.2
chapl.3

The is not limited to the last position in a
ftlename - ii can be anywhere. Thus

rm •junk•

removes all tiles that contain "junk" as any pan
or their name. As a special case. ••••• by itself
matches every filename, so

pr•

prints all the files (alphabetical order). and

rm•

removes all files. (You had better be sure that's
what you wanted to say!)

The is not the only pauem·matchina
feature available. Suppose you want to print
only chapters 1 through 4 and 9 or the book.
Then you can say

pr chap fl 2349)•

The "(•..]" means to match any or the characters
inside the brackets. You can also do this with

· pr chap[l-49)•

"(a·z).. matches any character in the range a
through z. There is also a "?" character, which
matches any single character, so

pr?

will print all ftles which have sinsJe-character
names.

or these niceties, is probably the most
useful, and you should get used to it The others
are frills, but worth knowing.

ff you should ever have to turn olT the spc·
cial meaning of "?", etc., enclose the entire
argument in quotes (single or double). as in

What's In a Filename, Continued

When you first made that file called
"junk", how did UNIX know that there wun't
another "junk" somewhere else, especially since
the person in the next office is also reading this
tutorial? The reason is that generally each user
of UNIX has his own .. directory .. , which contains

-6-

only the tiles that belong to him. When you
create a new file, unless you take s~ial .ction,
the new ftle is made in your own directory, and
is unrelated to any other Ille or the same name
1hat miaht exis& in someone dse's directory.

The set of all ftles that UNIX knows about
are oraanized into a (usuaUy bi&) ~with your
ftles located several branches up into the tree. ll
is posaibJe for you to "walk" around this tree.
and to find any file in the system. by startins at
the root or the tree and walkina aJona the riaht
sot or branches.

To begin. type

Is I

"f' is the name or the root of the tree (a con·
vention used by UNIX). You will aet a resc>0nse
something like this:

bin
dev
etc
lib
Imp
usr

This is a collection of the basic directories or
files that UNIX knows about. On most systems.
"usr" is a directory 1hat contains ail the normaj

users or the system. like you. Now try

Is /usr

This should list a long series or names. amona
which is your own loain name. Finally, try

Is /usr/your-name

You should get what you get from a pwn

Is

Now try

cat /usr/your-name/junk

(if .. junk" is still around). The name

/usrlyour-name/junk

is called the .. pathname" of the file that you nor·
malty think of as "junk". "Pathname" has an
obvious meaning: it represents the full name or
the path you have to follow through the tree of
directories to get to a panic:ular file. It is a
universal rule in UNIX that anywhere you can
use an ordinary filename, you c:an use a path•
name.

Hen: is a picture which may make this
clearer:

bin
/I\

(root)

II\
m Ii\ ,~., m·

rm re\ ma\
I junk

junk temp

Notice that Mary's "junk .. is unrelated to
Eve's. '

This isn't too exciting ir all the files of in
terest are in your own din:ctory, but if you work
with someone else or on several projects con
currently, it becomes handy indeed. For exam·
pie, your friends can print your book by saying

pr /usr/your-name/chap•

Similarly, you can find out what files your neigh·
bor has by saying

Is /usr/neighbor-name

or make your own copy of one of his files by

cp /usr/your-neighbor/his-file yourftle

(If your neighbor doesn't want you poking
around in his files, or vice versa. privacy can be
arranged. Each file and directory can have
read-write-<:xecute permissions for the owner. a
grou1J, and everyone else. to control access. See
ls m and chmod (1) for details. As a matter of
observed fact, most users most of the time find
openness of more benefit than privacy.)

As a final experiment with pathnames, try

Is /bin /usr/bin

Do some of the names look familiar? When you
run a program, by typing its name after a '"¥0",
the system simply looks for a file of that name.
It looks first in your directory (where it typicaUy
doesn't find it). then in "/bin" and finally in
.. /usr/bin". There is nothing magic about com
mands like cat or Is. except that they have be:n
collected into two places to be easy to find and
administer.

What if you work regularly with someone
else on common information in his directory?
You could just log in as your friend each time
you want to, but you can also say "t want to
work on his files instead of my own". This is
done by changing the directory that you are
currently in:

chdir /usr/your-friend

-7-

Now when you use a filename in something like
cat or pr. it refers to the file in "your-friend's'"
directory. Changing directories doesn't affect
any permissions associated with a file - if you
coulcin't access a file from your own directory,
changing to another directory won't alter that
fact.

If you forget what directory you're in, type

pwd

(''print working directory") _to find out.

It is often convenient to arrange one's files
so that all the files related to one thing are in a
directory separate from other projects. For ex·
ample, when you write your book, you might
want to keep all the text in a directory called
book. So make one with

mkdir book

then go to it with

chdir book

then start typing chapters. The book is now
found in (presumably)

/usr/your-name/book

To delete a directory, see rmdir (I).

You can go up one level in the tree of files
by saying

chdir ..

.. ~" is the name of th.e parent of whatever direc
tory you are currently in. For completeness, ".''
is an alternate name for the directory you are in.

Using Files instead of the Terminal

Most of the commands we have seen so far
produce output on the terminal; some, like the
editor. also take their input from the terminal. It
is universal in UNIX that the terminal can be re·
placed by a file for either or both of input and
output. As one example, you could say

Is

to get a list c~ files. But you can also say

Is > lilelist

to get a lis1 of your files in the file "file!ist",
("filelist" will be crea1ed if it doesn't already ex
ist, or overwritten if it does.> The symbol''>" is
used throughout UNIX to mean "put the output
on the following file, rather than on the termi·
nal". Nothing is produced on the terminal. As
another example. you could concatenate several
files into one by capturing the output of cat in a
file:

cat n f'2 fl >temp

Similarly. the symbol "< .. means 10 take
the input for a proaram from the ro11owia1 ftle.
instead or from the terminal. Thus, you ~Id
make up a script of commonly used editin1 com·
mands and pu& them into a ftle c:aHed "script".
Then you c:an run the script ~ a ftle by safinl

ed ftle <script

Pipes

One of the novel contributions of UNIX is
the idea or a pi/M. A pipe is simply a way to
connect the output of one program to the input
of another program, so the two nan as a se·
quence of processes - a pipe.!ine.

For example,

pr r I h

will print the files "r', "1" and ''h ''. beginning
each on a new page. Suppose you want them
run together instead. You coukJ say

cat r g h >temp
pr temp
rm temp

but this is more work than necessary. Clearly
what we want is to take the output or cat and
connect it to the input of pr. So let' us use a
piJ3e:

catfchlpr

The vertical bar means to take the output from
c:at, which would normally have gone to the ter·
minaJ, and put it into pr, which formats it neatly.

Any program that reads from the terminal
can read from a pipe instead; any program that
writes on the terminal c:an drive a pipe. You can
have as many elements in a pipeline as you
wish. ·

Many UNIX programs are written so that
they will take their input from one or more files
if ftle arguments are given; if no arguments are
given they will read from the terminal. and thus
can be used in pipelines.

The Shell

We have already mentioned once or twice
the mysterious "shell.'' which is in fact sh (I).
The shell is the program that interprecs what you
type as commands and argumencs. It also looks
after translating , etc .. into lists of filenames.

The shell has other capabilities too. For
example, you c:an start two programs with one
command line by separating the commands with

-·-
a semicolon: the shell recognizes the semicolon
and breaks the line into two commands. Thus

dice; who

does both commands before relumin1 wilh a .. .,. .. ,
You c:an aJso have more than one Prosram

running slmultllMOlllJy i(you wish. For example.
if you are doing somethina lime.consuming. like
the editor script of an earlier section. and you
don't want to wail around for the results before
startina somcthina else. you c:an say

ed file <script &

The ampersand at the end of a command line
says .. start this command running. then _take
funher commands from the terminai immediate
ly ." Thus the script will begin. but you can do
something else at the same time. Of course. to
keep the output from interfering with what
you•re doinc on the terminal. it would be better
to have said

ed ftle <script >lines &

which would save the output lines in a file called
.. lines".

When you initiate a command with "& .. ,
UNIX replies with a number called the process
number. which identifies the command in cue
you later want to stop it. If you do. you can say

kill p~number

You might aJso read ps (1).

You can say

(command-1; c:ommand-2; c:ommand-3) &
I

to start these commands in the baclcaround. or
you can start a backaround pipeline with

command-1 I command-2 &

Just as you can tell the editor or some
similar pfOIRlll to take its inl)Ul from a ftle in·
stead of from the terminai. you c:an tell the shell
to read a file to get commands. (Why no1? The
shell after all is just a program, albeit a clever
one.) For instance., suppose you want to set tabs
on your terminal. and find out the date and
who's on the system every time you log in.
Then you can put the three necessary c:om·
mands (tabs: date; who) into a ftle, let's call it
"xxx", and then run it with either

sh xxx

or

sh <xxx

This says to run the shell with the file "xxx" as
inpuL The effect is as if you had typed the con·
1ents of •·xxx" on the terminal. (If this is to be
a regular thing. you can eliminate the need to
type "sh .. ; see chmod m and sh (I).)

The shell has quite a few other capabilities
as well. some of which we'll get to in the section
on programming.

Ill. DOCUMENT.PREPARATION

UNIX is extensively used for document
preparation. There are three major formatti~
programs, that is, programs which produce a text
with justified right margins. automatic page
numbering and tiding, automatic hyphenation.
and the like. The simplest of these formatters is
roff, which in fact is simple enough that if you
type almost any text into a file and "roft'" it, you
will get plausibly formatted output. You can do
better with a little knowledge, but basically it's
easy to learn and use. We'll get back to roff
shonly.

nroff is similar to rotf but does much less
for you automatically. It will do a great deal
more, once you know how to use iL

Both roff and nroff are designed to produce
output on terminals, line-printers, and the like.
The third formatter, troff (pronounced "tee·
rotl"'), instead drives a Graphic Systems photo
typesetter, which produces very high quality out·
put on photographic paper. This paper was
printed on the phototypesetter by troff.

Because nroff and troff are relatively hard
to learn to use effectively, several .. packages" of
canned formatting requests are available which
let you do things like paragraphs, running titles,
multi-column output, and so on, with little etfort.
Regrettably, details vary from system to system.

ROFF
The basic idea of roff (and of nroff and

troff, for that matter) is that the text to be for
matted contains within it "formatting com
mands" that indicate in detail how the formatted
text is to look. For example, there might be
commands that specify how Ions lines are •.
whether to use single or double spacing, and
what running titles to use on each page. In gen·
eral, you don't have to spell out all of the possi·
ble formatting details. Most of them have "de·
fault values", which you will get if you say noth
ing at all. For example, unless you take special
precautions, you'll get single-spaced output,
65-character lines, justified right margins, and 58

-9-

text lines per page when you rolf a Ille. This is
the reason that roft' is so simple - most of the
decisions have already been made for you.

Some things do have to be done. however.
If you want a document broken into paragraphs.
you have to tell raft' where to add the extra
blank lines. This is done with the ".sp" com·
mand:

this is the end of one paragraph .
.sp
This begins the next para1raph ·-

In roff (and in nroff and tnff>, formatting com
mands consist of a period followed· by two
letters, and they must ap1'UJ' at the beginning of
a line, all by themselves. The •• .sp" command
tells roff to finish printing any of the previous
line that might be still UnJ>rinted. then print a
blank line before continuing. You can have
more space if you wish: ".sp 2" asks for 2
spaces, and so on.

If you simply want to ensure that subse·
quent text appears on a fresh output line. you
can use the command ''.br" ffor .. break") in·
stead of ".sp".

Most of the other commonly-used roif
commands are equally simple. For example you
can center one or more lines with the ".c:e" com·
mand.

.c:e
Title of Paper
.sp 2

causes the title to be centered, then followed by
two blank lines. As with ".sp .. , ".ce" can be fol·
lowed by a number; in thal case. that many in·
pur lines are centered.

".ul" underlines lines, and can also be fol-
lowed by a number:

.ce 2

.ul 2
An Earth-shaking Pai>er
.sp
John 0 Scientist

will center and underline the two text lines. No·
tice that the ".sp" between them is not part of
the line count.

You can get multiple-line spacing instead
of the default single-spacing with the ".Is" com·
mand:

.Is 2

causes double spacing.

If you're typina thinas like tables. you will
not want the automatic filling-up and
justitication .or output lines that is done by de·
fault. You can tum this off with the command
".nr· (no·fill), and then back on again with ".ft"
(fill). Thus

this section is filled by default.
.nr
here lines will appear just
as you typed them -
no extra spaces. no moving of words.
.ft
Now go back to Alling up output lines.

You can change the line-length with ".11".
and the left margin (tlte indent) by ".in ... These
are often used together· to make oft"set blocks of
text:

.)1 -10

.in +10
this text will be moved I 0
spaces to the right and the
lines will also be shortened 10
characters from the right The
"+" and "-'' mean to change
the previous value by that
much. Now revert: ·
.II +IO
.in -10

Notice that ".II + 10" adds ten characters to the
line length, while ".II 10" makes the line ten
characters long.

The ".ti" command indents (in either
direction) just like ".in", except for only one
line. Thus to make a new paragraph with a
10.Character indent, you would say

.sp

.ti +10
New paragraph ...

You can put running titles on both top and
bottom of each page, like this:

.he "left top"center top"right top"

- 10 -

You can skip to the 1op of a new pap at any
lime with the ".bp" command~ if ".bp" is fol·
lowed by a number, that will be the new paae
number.

The roregoina is probably enough about
raff for you to go oft' and format most everyday
documents. Read raff (I) for more details.

Hints for Prepartnc Documents
Most documenis go throuah several ver·

sions (always more than you expected) before
they are finally finished. Accordingly, you
should do whatever possible to make the job of
chansina them easy.

First, when you do the purely mechanical
operations of tyiiing. type so subsequent editing
will be easy. Start each sentence on a new line.
Make lines short, and break lines at natural
places., such · as afler commas and semicolons,
rat.ter than randomly. Since most people change
documents by rewriting phrases and adding.
deleting and rearranging sentences, these precau·
tions simplify any editing you have to do later.

The second aspect of making change easy
is not to commit yourself to formatting details
too early. For example, if you decide that each
paragraph is to have a space and an indent of 10
charac:ters, you might type, before each,

.sp

.ti +10

But what happens when later you decide that it
would have been better to have no space and an
indent of only S characters? It's tedious indeed
to so back and patch this up.

Fortunately, all of the formatters let you
delay decisions until the actual moment of run·
ning. The secret is to detlne a new operation
(called a macro), for each formattina operation
you want to do, like making a new paragraph.
You can say, in all three formatters,

.de PP

.sp

.fo "left bouom"center bouom"right bottom"
.ti +10

The header or footer is divided into three parts,
which are marked oft' by any character you like.
(We used a double quote.) If there's nothing
between the markers, that part of the tide will
be blank. If you use a percent sign anywhere in
".he" or ".fo", the current page number will be
insened. So to get centered page numbers with
dashes around them, at the top, use

. he""- o/o -""

This defines ".PP" as a new rotr (or nroff or troff)
operation, whose meaning is exactly

.sp

.ti +10

(The " .. " marks the end of the definition.)
Whenever ".PP" is encountered in the tut, it is
as if you had typed the two lines of the
definition in place of it .

-

-

The beauty of 1his scheme is thaa now, if
you chanae your mind about whal a paragraph
shouJd look like, you can change the formatted
output ·merely by changing the definition of
••_pp .. and re-running the formatter.

As a rule of thumb. ror all but the most
trivial jobs, you should type a document in terms
of a set of macros like ''.PP". and then define
them lq)p(Opriatefy. As long as you have entered
the text in some systemalic way, it can always be
cleaned up and re-formatted by a judicious com
bination of editing and macro definitions. The
packages of formauing commands that we men·
tioned earlier are simply collections of macros
designed for particular formatting tasks.

One of the. main dilferences between roft'
and the other formatters is that macros in roft'
can only be lines of text and formatting com·
mands. In nroff and troff, macros may have at•
guments, so they can have ditferent etfects
~nding on how they are called (in exactly the
same way that the •• .sp" command has an argu·
ment, the number of spaces you wand.

Miscellany

In addition to the basic formatters. UNIX
provides a host of supponing programs. eqn and
neqn let you inteirate mathematics into the text
of a document. in a languaae that closely resem·
bles the way you would speak it aloud. 5'"'11 and
tno detect possible spelling mistakes in a docu
ment. arep looks for lines containing a panicular
text pattern (rather like the editor's context
search does. but on a whole series of files). For
example.

grep •ingS'" chap•

will find all lines ending in the letters ••tng" in
the series of files ••chap'"'. Ut is almost always a
good practice to put quotes around the pattern
you're searching for, in ~ it contains charac
ters that have a special meaning for the shell.)

w.: counts the words and (optionaJJy) lines
in a set of files. a translates characters into oth
er characters; for example it will convert upper
to lower case and vice versa. This translates
upper into lower:

tr •(A-zJ• •(a-zl•

dlft' prints a list of the differences between
two files, so you can compare two versions of
something automatically (which certainly beats
proofreading by hand). sort sons tiles in a
variety o(ways; cref makes cross-references; ptx
makes a permuted index (keyword·in<antext
listing).

- II -

Most of these programs are either indepen·
dently documented (like eqn and neqn), or are
sufficiently simple that the description in the
llNIX l'rogromme-'s Manual is adequate explana
tion.

IV. PROGRAMMING
UNIX is a marvelously pleasant and produc

tive system for writing programs: productivity
seems to be an order of magnitude higher than
on other interactive systems.

There will be no auempt made to teach
any of the programming languages available on
UNIX, but a few words of advice are in order.
First, UNIX is wriuen in C. as is most of the ap
plications code. If you are undertaking anything
substantial, C is the only reasonable choice.
More on that in a momenL But remember that
there are quite a few programs already written.
some of which have substantial power.

The editor can be made to do thinp that
would normally require special programs on oth·
er systems. For example. to list the first and last
lines of each of a set of files, say a book, you
could laboriously type

ed
e chapl.1
Ip
Sp
e chapl.2
Ip
Sp
etc.

But instead you can do the job once and for all.
Type

Is chap• >temp

to get the list of filenames into a file. Then edit
this file to make the necessary series of editing
a>mmands (using the global command$ of ed),
and write it into .. script". Now the command

ed <script

. will produce tht. same output as the laborious
hand typing.

The pipe mechanism lets you fabricate
quite complicated operations out of spare pans
already builL For example, the first draft of the
51Jell program was (roughly)

cal""
I tr -

Ison
I uniq
!comm

(collect the Illes)
(put each word on a new line.

delete punctuation, ecc.)
Unto dictionary order)
(strip ou& duplicates)
Oist words found in text but

nae in d~tionatY >

Pncnmmlq the Shell
An option often overlooked by newcomers

is that the shefl is itself a programmina lansuaae.
and since UNIX already has a hosl or buildina·
block prosrams. you can sometimes avoid writ·
ing a special purpose program merely by piecing
together some of the buildin1 blocks with shell
com~d files.

As an unlikely example. suP1)0Se you want
to count the number or users on the machine
every hour. You could type

date
who I we -1

every hour, and write down the numbers, but
that is rather primitive. The next step is prob
ably to say

(date; who I we -0 >>users

which uses "> >" to Q/lf#lld to the end of the
tile "users". {We haven't mentioned">>" be
fore - it's another service or the shell.) Now all
you have to do is to put a loop around this, and
en5ure that it's done every hour. Thus. place
the following commands into a ftle, say "count'':

: loop
(date; who I wc -1) >>users
sleep 3600
goto loop

The command: is followed by a space and a la
bel, which you can then coto. Notice that it's
quite legal to branch backwards. Now if you is·
sue the command

sh count .t

the users will be counted every hour, and you
can go on wirh other things. (You will have to
use kill to stop counting.)

If you would like "every hour" to be a
parameter, you can arrange for that too:

: loop
(date; who I we - I) >>users
sleep St
goto loop

"$1" means the ftrst argument when this pro
cedure is invoked. If you say

-12 -

sh count 60

it will count every minute. A shell proaram can
have up to nine arauments, "St" throuah '"$9".

The other upect or prosramming is condi·
tional testing. The If command can test condi·
tions and execute commands acconlinaJy. As a
simple example. suppase you want to ldd to
your login sequence somethina to print your
mail if you have some. Thus. knowin1 that mail
is stored in a ftle called 'mailbox', you could say

if -r mailbox mail

This says ·~if the ftle 'mailbox' is readable. exe
cute the smil command."

As another example. you could anange
that the .. count" procedure count every hour by
default. but allow an optional arpment to speci-
fy a different time. Simply replace the "st•
SI" line by

ifSlx • x sleep 3600
if Slx !• x sleep Sl

The construction

if Slx • x

tests whether "St... the . ftrst araument. WU
pcesent or absenL

Men complica&ed conditions can be tested:
you can ftnd out the status of an executed com
mand. and you can combine conditions with
'and', 'or', 'not' and parentheses - see lf(I).
You should aJso read shift (I) which describes
how to manipulate arguments to shell command
ftles.

Pntlnmmial in C
As we said. C is the language of choice:

everythina in UMtx is tuned to it. It is also a
remarkably easy language to use once you get
started. Sections II and III of the manual
describe the system interfaces. that is, how you
do l/O and similar functions.

You can write quite signdicant C prosrams
with the level or IIO and system interface
described in Programminf In C: A Tutorial, if you
use existina prosrams and pjpes to help. For ex·
ample, rather than teaming how to open and
clcse files you can (at least temporarily) write a
program that reads from its standard input, and
use cat to concatentate several files into it. This
may not be adequate for the long run, but for
the early stages it's just righL

There are a number of supponina pro
grams thac go with C. The C debuger, cd.b. is
marginally useful for diaina through the dead

bodieo of C programs. db, the assembly
language debugger. is actually more useful most
of tl~e time, but you have to know more about
the machine and system to use it well The most
eft'ective debugging tool is still careful thought.
coupled with judiciously placed print statements.

You can instrument C programs and thus
find out where they spend their time and what
pans are wonh optimising. Compile the routines
with the "i> .. option; after the test run use pnf
to print an execution profile. The command
time will give you the gross run·time statistics of
a program, but it's not super accurate or repro
ducible.

C programs that don't depend too much on
special features of UNIX can be moved to the
Honeywell 6070 and IBM 370 systems with mod·
est elfon. Read 77re ccas C Library by M. E.
Lesk and 8. A. Barres for details.

Miscellany

If you haw to use Fortran, you might con·
sider rador. which gives. you the decent control
structures and free.form input that characterize
C. yet lets you write code that is still portable to
other environments. Bear in mind that UNIX
Fortran tends to produce large and relatively
slow-running programs. Furthermore. support·
ing software like db. prof, etc: .• are au virtually
useless with Fortran programs.

If you want to use assembly language (aU
heavens forfend!), try the implementation
language LIL. which gives you many of the ad·
vantages of a high-level language, like decent
control llow structures, but still lets you get close
to the machine if you really want to.

If your application requires you to translate
a language into a set of actions or another
language, you are in effect building a compiler.
though probably a small one. In that case, you
should be using the yacc c:ompiler-(;ompiler,
which helps you develop a compiler quickly.

V. UNIX READING UST

Genmzl:

UNIX Programmer's Manual (Ken Thompson,
Dennis Ritchie. and a cast of thousands). Lists
commands, system routines and interfaces. tile
formats, and some of the maintenance pro
cedures. You can't live without this, although
you will probably only read section I.

The UNIX Time-sharing System (Ken Thompson,
Dennis Ritchie). CACM, July 1974. An over
view of the system, for people interested in
operating systems. Worth reading by anyone

-13-

who programs. Contains a remarkable number
of one-sentence observations on how to do
things right.

Doaunert Pre,Jaration:

A Tutorial Introduction to the UNIX Text Editor.
(Brian Kernighan). Bell Laboratories internal
memorandum. Weak on the more esoteric: uses
of the editor, but still probably the easiest way to
learn ed.

Typing Documents on UNIX. (Mike Lesk). Beu
Laboratories internal memorandum. A macro
package to isolate the novice from the vagaries
of the fonnatting programs. If this specific: pack·
age isn't available on your system, something
similar probably is. This one works with both
nroff and troff.

PrrJrramming:

Programming in C: A Tutorial (Brian Ker·
nighan). Bell Laboratories internal memoran·
dum. The easiest way to start teaming C, but it's
no help at all with the interface to the system
beyond the simplest 10. Should be read in con
junction with

C Referen<:e Manual (Dennis Ritchie). Bell La·
boratories internal memorandum. An excellent
reference. but a bit heavy going for the be·
ginner, especially one who has never used a
language like C.

Others:

0. M. Ritchie. UNIX Assembler Reference ·
Manual.
B. W. Kernighan and L L Cherry, A System ior
Typesetting Mathematics. Computing Science
Tech. Rep. 17.
M. E. Lesk and B. A. Barres. The GCOS C Li·
brary. Bell Laboratories internal memorandum.
K. Thompson and 0. M. Ritchie, Setting Up
UNIX.
M. 0. Mc:Jlroy, UNIX Summary.

0. M. Ritchie. The UNIX 1/0 System.
A. 0. Hall, The M6 Macro Processor. Computing
Scien« Tech. Rep. 2.

J. F. Ossanna. NROFF User's Manual - Second
Edition. Bell Laboratories intemal memorandum.
D. M. Ritchie and K. Thompson, Regenerating
System Software.
a W. Kernighan, Ratfor-A Rational Fortran,
Bell Laboratories internal memorandum.
M. D. Mcilroy, Synthetic English Speech by
Rule. Computing Science Tech. Rep. 14.
M. 0. Mcilroy, A Manual for the TMG
Compiler-writing Language. Bell Laboratories

internal memorandum.
J. F. Ossanna. TROFF Usen' Manual. Bell La·
bora&ories internal memorandum.
B. W. Kernighan. TROFF Made Trivial. Bell La·
boratories intemal memorandum.
R. H. Morris and L. L. Cherry, Computer Delee·
tion or Typographical. Errors. Computina Science
Tech. Rep. 18.
S. C. Johnson. YACC (Yet Another Compiler·
Compiler), Bell Laboratories internal momoran·
dum.
P. J. P!auger, Prosrammina in LJL: A Tutorial,
Bell Laboratories inte~at memorandum.

Index

& (asynchronous process) 8
; (multiple processes) 8
• (pattern match) S
[] (pattern match) 6
? (pauem match) 6
< > (redirect 1/0) 1
> > (fiJe append) 12
backslash (\) 2
cat (concatenate ftles) · 4
cdb CC debuger) 12
chdir (change directory) 1
chmod (change protection) 7
command arguments 4
command files 8
cp (copy files) S
cref (cross reference) 11
date 2
db (assembly debugger) 13
delete (DEL) 2
dift' (file comparison) 11
directories 7
document formauing 9
ed (editor) 3
editor programming 11
EOT (end of file) l
eqn (mathematics) 11
erase character (#) 2
Ille system structure 6
filenames S
file protection 7
goto 12
grep (pattern matching) 11
if (condition test) 12
index 14
kill a program 8
kill a character (4N) 2

-14-

Iii (hiah.itvel assembler) 13
locin I
Joaout 2
Is (list ftle names) 4
macro for formatting I 0
mail 2
multi-columns printina (pr) S
mv (move ftles) S
nrol 9
on·fine manual 3 °"' (oftline· print> S
pathname 6
pattern match in filenames 5
pipes< I> a
pr (print files) 4
prof (run-time monitor) 13
protection 1
ptx (permuted index) 11
pwd (worlcingdirectory) 7
quotes 6
ralf'or (decent Fortran) 13
readahead 2
readin& list 13
redirect 110 (< >) 1
RETURN key 1
rm (remove tiles) 5
rmdir (remove directory) 1
roft' (text formatting} 9
root (of ftle system) 6
shell (command interpteter) 8
shell arauments ($) 12
shell programmina 12
shif't {shell argumenu) 12
sleep 12
sort 11
spell (find spelling mistakes)
stopping a program 2
suy <set tenninaJ options) 2
tabs (set tab StOPs) 2
terminal types 1
time (time procrams) 13
tr (translate characters) 11
troft' (typesetting) 9
typo (find spelling mislatces) 11
we (word count) 11
who (who is looged in) 2
write (to a user) 3 ·
yacc (compiler-compiler) 13

UNIX Programming

Brian W. Kemighan

Dennis M. Ritchie

Bell Laboratories,
Murray Hill, New Jersey 07974

ABSTRACT

This paper is an introduction to programming on UNIX. The emphasis is
on how to write programs that interface to the operating system. The topics
discussed include

• handling command arguments

• rudimenwy l/Q; the standard input and output

• the portable C 110 library; file system access
• standard UNIX file 1/0

• low-level I/O
• executing commands from programs

e. signals - interrupts, etc.

B.7

1. Introduction

UNIX Programming

Brian W. Kernighan

Dennis M. Ritchie

Bell Laboratories,
Murray Hill, New Jersey 0797 4

This paper describes how to write UNIX programs that interface with the operating system
in a non-trivial way. This includes programs that use files by name, that do large amounts of
input or output, that invoke other commands as they run, or that attempt to catch interrupts
and other signals during execution.

The document collects material which is scattered throughout several sections of n1e UNIX
Programmer's Manual (I]. There is no attempt to be complete; only generally useful material is
dealt with. It is assumed that you will be programming in C, so you will have to be able to
read the language roughly up to the level of Programming in C - A Tutorial [2]. You should

_also be familiar with UNIX itself to the level of UNIX for Beginners [3].

2 .. Program Arguments

When a C program is run as a command, the arguments on the command line are made
available to the main program as an argument count argc and an array of character strings
argv containing the arguments. By convention, argv{O] is the command name itself, so argc is
always greater than 0.

Here is a program that simply echoes its arguments back to the terminal. (This is much
like the command echo.)

main(argc, argv)
int argc;
char •argv{];
{

int I;
for(i• 1; i < argc; i++)

prlntf("%s ", argv{i]);
putchar('\n');

main is called with two arguments, the argument count and the array of arguments. argv is a
pointer to an array, whose individual elements are pointers to arrays of characters; each is ter
minated by '\O', so they can be treated as strings. argv(OJ is the name of the command itself,
so we start by printing argv{1) and loop until we've printed them all. Each argv{i] is a charac
ter array, so we use a '°los' in the prlntf.

A common convention in UNIX programs is that an argument which begins with ·-· indi
cates a flag or option of some sort. For example, suppose we want a program to be callable as

-2-

prog - abc arg 1 arg2 •••

where the ·-· argument is optional; if it is present, it must be first and may be followed by any
combination of the options 'a', 'b', and 'c'.

main(argc, argv)
int argc;
char •argv[];
{

aflag - bflag - cflag - O:
while(argc > 1 && argv(1)[0} ==== '-') {

for(i-1; (c-argv[1](i]) !- '\O': i++)
if(c==='a')

aflag++:
else if(c=='b')

bflag++;
else if(c==' c')

else

--argc;
++argv;

cflag++:

prtnt1("o/oc?\n", c);

The statements

--argc;
++argv;

drop the first argument from the list and adjust the count, so after interpreting the flag argu
ment, the rest of the program is independent of whether or not it existed. This works because
argv is a pointer which can be incremented. Notice also that, for greatest generality, the while
and for loops in combination aHow the user to write the options either as

program -a -b -c

or as

program -abc

This degree of generality is unfortunately not very common; most commands require one form
or the other.

Tbe argument count and the arguments are parameters to main. If you want to keep the
arguments around so other routines can gel at them, you will probably want to copy them to
external variables.

3. Rudimentary Input and Output

The next several sections will discuss various aspects of input/output, including how to
create, open, and close files from programs. There are several ways to do most of these opera
tions; these sections are organized so easy things are described first.

,-

-3-

3. 1. The ''Standard Input" and ''Standard Output"

The simplest input mechanism is to read the "standard input," which is generally the
user's terminal. The function getchar() returns the next input character each time it is called.
Of course, a file may be substituted for the terminal by using the '<'convention: if prog uses
getchar, then the command line

prog <file

causes prog tQ read file instead of the terminal. prog itself knows nothing about where its in
put is coming from. This is also true if the input comes from another program via the UNIX
pipe mechanism:

otherprog I prog

will provide the input for prog from the output of otherprog.

getchar returns the value zero (often written as the null-character '\0') when it en
counters the end of file (or an error) on whatever you are reading. Bear in mind that '\O' may
be a legitimate value in some contexts. If it is, you can't use getchar; read ahead to the discus
sion of gate.

In a similar manner, putchar(c) puts the character c on the "standard output,·· which is
also by default the terminal. The output can be captured on a file by using '> ': if prog uses
putchar,

prog > outflle

will write the output onto outfile instead of the terminal. And a pipe can be used:

prog I otherprog

puts the output of prog into the input of otherprog.

The function printf, which formats output in various ways, uses putchar to finally print
the output, so output produced by printf also finds its way to the standard output.

A surprising number of programs read only one input and write one output; for such pro
grams I/O with getchar, putchar, and printf may be entirely adequate, and it is almost always
enough to get started. This is particularly true, given the UNIX pipe facility for connecting the
output of one program to the input of the next. For example, here is a complete program that
acts as a "filter" to strip out all ascii control characters from its input (except for newline and
tab).

main() {
int c;
while(c-getchar())

if((c> -· ' && c<0177) 11 c--'\f 11 c=='\n')
putchar(c);

exit(O);

If il is necessary to treat multiple files, you can use cat to collect the files for you:

cat file 1 file2 ••• I ccstrip >output

and thus avoid learning how to access files from a program. By the way, the call to exit at the
end is not necessary to make the program work properly, but it assures that any caller of the
program will see a normal termination status (conventionally 0) from the program when it
completes. Section 7.3 discusses status returns in more detail.

-4-

3.2. File Descriptors

Before we go much further into our description of 110, we have to talk about file descrip·
tors. Any program which does any input or output does so by reading or writing files. This is
true even though the file in question may actually be a device like the user's terminal. Associ·
ated w:ith each file being used for input or output is a small non-negative integer called a "file
descriptor;" whenever 110 is to be done on the file, the file descriptor is used to identify the
file, instead of the name. (This is roughly analogous to the use of READ(5,_) and WRITE(6..,_) in
Fortran.> , ,

In the most general case, to do 110 on a file you have to

Open the file for reading and/or writing - UNIX connects the name of the file with a file
descriptor which it generates and returns to you. An alternative form of open will
create the file if it doesn't exist.

Read or write on the file.

Close the file, which breaks the connection between name and descriptor.

And finaUy, you may want to

Buffer input and output if necessary for efficiency.

In the simplest cases, like getchar and putchar, all opening and closing is done for you;
you only have to worry about reading and writing the right things. In more complicated situa·
tions, you have to do more work, but you gain flexibility.

getchar and putchar depend on the fact that when the command interpreter (the shell)
runs a program, it opens three files, with file descriptors 0, i, and 2. All of these are normally
connected to the terminal, so if you read 0 and write l or 2, 110 is done on the terminal. If
you use '<' or '> ', the sheil changes the default assignment for file 0 or 1 from your terminal
to the named file, and opens it for you. This way your program need not know where its input
comes from nor where its output goes, so long as it uses files 0 and 1. Naturally, getchar reads
0 and putchar writes I. When the program terminates, the files are closed automaticaUy ..
(We'll get back to file 2 in Section 3.4.)

3.3. Buffering the Standard Input and Output

If you are producing large amounts of output, you may find that programs which use
putchar are slow, because each call to it actually requires a system call. You can speed up such
a program markedly by buffering the output. (Generally UNIX buffers input automatically,
which is almost always what is wanted. See Section 6 for how to turn off buffering.)

Buffering requires a little witchcraft. First we need a buffer area This can be provided
by referring to an external variable fout which is used by putchar for output. fout is actually a
structure defined as part of putchar, but its internal structure needn't concern us now. Second,
we have to connect the standard outpu(to tout. Lastly, when ail processing is done, any out
put remaining in the output buffer has to be flushed out; this is not done automatically. Put
ting all this together gives

main() {
extern int fout;

fout - dup(1); I• buffer standard output •I
{ processing ••• 1
flush(); /• force out last buffer •I
exit(O);

-

-S-

This should probably be treated as black magic for now. Briefly, putchar buffers only if
the file has a descriptor greater than 2. The call to dup creates a new file descriptor that refers
to the same file as the original 1, but is guaranteed lo be buffered. flush forces out everything
that has collected in the buffer.

As an aside, there is an external variable fin used by getchar much as putchar uses fout.

3.4. Diagnostic Output - The Error File

If we are going to run our control~haracter stripping program, it might be nice to know
whether it actUatly removed any characters. But at the same time we can't just print a mes
sage, because that will be sent to the same place as the data itself. That is, if we say

ccstrip < infile >outflle

we don't want outfile to contain a line saying .. there were 3 bad characters."

Here is how lo gel this kind of diagnostic information separated from the standard output
and placed on the terminal regardless. Just as the file descriptors 0 and 1 are predefined, so is
file descriptor 2. Unless you go out of your way to change it, output written on file 2 will find
its way to your terminal. Thus in simple cases, you can simply set tout to 2 to direct output to
the terminal. ·

main() {
extern int tout: ...
flush();/• clear out standard output •/
fout - 2;
printf("%ct bad characters\n", badchar);
exit(O);

This can get clumsy if the diagnostic output is to show up during the running of the program
instead of all at the end, because you have to flush output for one file before switching to
another, each time you switch.

4. The Portable C Library

The portable C library [31 was written by Mike Lesk to provide a set of high-level 1/0
routines that could be implemented on any machine with a C compiler, and thus permit some
degree of program transferability. C programs which use this library for I/O can be moved,
with essentially no change, between UNIX, GCOS, and IBM·TSO. At the same time, many of the
details of buffering, file access, etc., are hidden from the user. The routines are somewhat
bigger and slower than the analogous routines that are a standard part of UNIX, but they do
handle a number of things automatically which other packages do not.

If you use programs from the portable C library, you have to ask specifically that it be
searched when you compile or link-edit your program by writing '-Ip" at the end of the argu
ments to the cc command:

cc prog .c - Ip

-6-

4.1. File Opening and Closing

Before a file can be read or written, it has to be opened with the routine copen. copen
has two arguments, the file name. and the type of access wanted (read, write, or append).
Thus:

fd - copen("/usr/bwk/foo", 'r');

opens /usr/bwk/foo for readJng. The value returned by copen is the file descriptor assigned
by UNIX, to be used later for 'reading the file. If this number is -1, an error has occurred, so
some defensive action has to take place. The usual code is

if((fd-copen(name,mode)) -- -1)
error("Can't open file". name);

where error is some message printer.

mode is one of 'r', 'w', or 'a'. The arguments 'w' and 'a' mean writing and appending. If
the file is to be opened for writing, and if it doesn't already exist, it will be created for you. If
the argument is 'w' and if the file already. exists, it will be truncated to zero length. If the ar
gument is 'a', you wiJl write at the end of the file in either case. (And of course if any of this
fails, you will get a -1 error return.)

When you finish processing a file, you should close it explicitly with

cclose(fd);

where fd is the file descriptor handed you by copen. cclose will flush out any buffer contents
remaining before closing the file; there is no flush command in the portable C library. Finally,
when your program is done, you should call cexit which will close any open files and flush out
their buffers; like exit, it then terminates the program and delivers its argument as termination
status. By the way, there is a limit of 15 simultaneously open files, so if your program deals
with many files it will have to call cclose explicitly.

Let us illustrate these routines with a program modeled after grep. grep, the general
purpose pattern finder, has several arguments, some of which are file names. If there are no
file names, it reads the standard inpuL And it writes on the standard output. That is,

grep pattern [optional list of input files]

will print all input lines that contain .. pattern". Thus we write

main(argc, argv)
int argc;
char •argv{];
(

char line{ 1000], •pattern;
inti, fd;
if(argc < 2) {

}

printf(2, "Usage: grep pattern [flle ••• l\n");
cexit(1);

pattern - argv[1];
i - 2:
do {

if(argc ==== 2)
fd - O;I• use standard input •/

else if((fd-copen(argv{i], 'r')) === - 1){
printf(2, "can't open o/os\n", argv{i));
cexit(1); -

-7-

whtle(gets(line, fd))
if(match(line, pattern))

puts(line);
if(fd 1- 0)

cctose(fd);
} while(++I < argc);
cexit(o };

First the arguments are validated. Then the files are gone through in order; each is
opened (if possible), and scanned in the while loop.

gets and puts are routines in the portable C library that read and write a line al a time.
match is an unspecified routine (you write it!) that tells whether the line contains the pattern.

Notice that we have written a call to printf with a first argument of 2. If the first argu
ment of printf is a small positive integer, this is assumed to be a file descriptor, and the output
is sent there. (Caveat: this is true in the portable library only, unfortunately.) Thus any error
messages go to the user's terminal.

There are a couple of other things to note in passing. First, the basic design of the pro
gram is that it allows input to be either from a set of files or from the standard input, and it
writes on the standard output. This way the program can be used stand-alone or as pan of a
pipeline. IL is imponant to design and implement programs this way whenever possible.
Second, the program signals errors in two ways. The diagnostic output goes out onto the error
file so it finds its way to your terminal instead of disappearing down a pipeline or into a file.
AJso the program returns a value when it calls [c]exit, so the success or failure of the com
mand can be tested from within another program that uses this one as a sub-process.

4.2. Character 110
The portable library provides two routines for 1/0 of individual. characters. cgetc and

cputc are quite analogous to getchar and putchar, except that they require an additional argu
ment to specify a file descriJ?tOr. Thus

cgetc(O); cputc(c, 1);

reads the standard input and writes the standard output, while

cgetc(fd); cputc(c, fd);

reads and writes fd. For convenience, getchar and putchar are also provided; they just call
cgetc or cputc with the appropriate file descriptor argument. As an exercise you might write
your own versions of gets and puts using cgetc and cputc.

4.3. Miscellaneous

The portable C library contains several other goodies, the most useful of which is prob
ably the function scanf, which provides input format conversion similar to printf on output; it
will convert strings to integers, floating point numbers, and so on. There is also a way to use
printf to do in-core format conversion:

printf(- 1, s, format, •••);

will put its output in string s instead of a file. The ungetc function can be used tp push char
acters back onto the input stream for re-reading. And the ceof function can be used to test
explicitly for end-of-file, so data which contains null characters can be handled with cgetc.

-8-

5. Standard UNIX 1/0

This section describes the 1/0 routines provided as part of "standard'' UNIX. They do
somewhat less for you than the portable library, but are more efficient, and perhaps more·wide·
ly available. The essential difference is that the user has to supply the buffer for each file ex·
plicitly, and provide his own flushing of output before closing a file. These routines are
described in sections II and III of the UNIX Programmer's Manual [11.

Let us illustrate by writing a simplified version of cmp, a program that compares two files
byte by byte.

main(argc, argv)
int argc;
char •argv{];
{

int c 1, c2. byte;
int buf1{259]. buf2{259];
if(argc 1- 3)

. error("Usage: cmp file 1 file2");
if(fopen(argv{1}. buf1) < O)

error("can't open %s". argv[1 J);
if(fopen(argv(2). buf2) < O)

error("can't open o/es", argv{2));
for(byte-a ; ; byte++) {

c 1 - getc(buf 1);
c2 - getc(buf2);
if(e 1 < o 11 c2 < o)

break;
if(C1 I- C2)

pr!ntf("%6u %3o %3o\n". byte, c 1, c2); . }

if(c1 - c2)
exit(O);

if(C1 < 0)
printf("eof 1\n");

else
pr!ntf("eof 2\n");

exit(1);

error(s1, s2)
char •s1;
int s2;
{

printf(s 1, s2);
printf("\n");
exit(2);

Files are opened with fopen, whose two arguments are the filename and a buffer, which is al
ways declared int{259]. The buffer is actually used as a structure by the 1/0 routines (for ex
ample, the file descriptor goes into buf{O]), but we need not be concerned with that here; it is
sufficient to note that the buffer is the connection between all the routines concerned with a
file. As with copen, fopen returns a -1 if the access failed for any reason. error is a simple
routine to print out a message and exit with the appropriate status return.

-9-

getc reads the 1,. put using the buffer argument to tell it what file to read. On end of file,
getc returns the value -1, not zero, so iL can be used t i read data containing explicit zero
characters, where getchar and cgetc are not suitable.

The situation for output is slightly more complicated. First, the output file may not exist.
The routine fcreat allows far this:

fcreat(name, buf)

creates the file if it doesn't exist; if it does exist, it is truncated to zero length. To write on the
file.

putc(ch, buf)

puts the character ch onto the file. When writing is done, call

fflush(buf)

to force out any left.over output, then call

close(buf{O])

to close the file. Termination of the program, by calling exit or otherwise, closes all open files,
but i1 does 1101 flush the output buffers.

As an aside, the way to delete a file is simply to call

unlink(filename);

This returns -1 if the unlinking failed. Renaming a file ;ises both link and unlink:

if (link(oldname, newname) > - 0)
unlink(oldname);

renames the file from "oldname" to .. newname," taking care not to delete the file if the link
failed, as it would, for example, if "newname" already existed.

6. Low-Level 1/0

The lowest level of I/O in UNIX provides no buffering or any other services; it is in fact a
direct entry into the operating system. You are entirely on your own, but on the other hand,
you have the most control over what happens. And since the calls and usage are quite simple,
this isn't as bad as it sounds.

6.1. 1/0 Proper

For the low·level I/O routines, files are identified directly by their file descriptors. Here is
a simple version of cp, a program which copies one file to another.

main(argc, argv)
int argc;
char •argv[];
{

int f1, f2, n:
char buf{512];
if(argc 1- 3)

error("Usage: cp from to");
if((f1 -open(argv(1], 0) < 0)

error("can't open %s\ argv(1]);
if((f2-creat(argv{2]. 0666)) < O)

error("can't open %s", argv{2] };
while((n=read(f1, buf, 512)) > O)

write(f2, buf, n);

- 10 -

exit(0):

open is rather like fopen except that instead of a buffer, its second argument tells what sort of
access is required. 0 implies reading, 1 implies writing, and 2 is both read and write. A -I is
returned if any error takes place, for example if the file doesn't exist.

creat is similar" Lo fcreat, except that the second argument is the protection mode in
which the output file is to be created ... 0666" is read and write permission for everyone. creat
opens the file for writing only.

110 is done by read and write. In both cases, the first argument is the file descriptor re
turned by a previous open or creat. The second argument is the place where the data is to
come from or go to. The third argument is the number of bytes to be transferred. On reading,
the actual number of bytes returned may be less than this value. Zero bytes implies end of
file, a -1 implies an error of some sort. For writing, the returned value is the number of bytes
actually written; it is generally an error if this isn't equal to the number supposed to be writ
ten.

The routine close may be used to close files after you are done with them. Termination
of the program via exit or return from the main program closes all files, but since only 15 files
can be open at once, close has to be used when many files are read or written.

It is instructive to see how read and write can be used to construct special versions of
things like getchar, putchar, etc. For example, if you don't want buffered input, you have to
write your own getchar:

getchar() {
int c, n;
c - O;
n - read(0, &c, 1);
return(n>O ? c : 0);

At this point you might wonder why unbuffered input should be useful. In practice, it usually
doesn 'L matter, but consider the following sequence of commands:

ed stuff
1,$ SI •I lg
w stuff
Q
opr stuff

which uses the editor to replace all sequences of multiple blanks in "stuff" by a single blank,
then prints "stuff" off-line. Now imagine this pair of commands in a shell command file, and
finally consider what would happen if the editor read its standard input with buffering. Since
the command file contains commands to both the editor and the shell, the editor, if it read
with a large enough buffer. would consume not only not only its own commands but also the
following opr command which is intended for the shell. One can imagine complicated schemes
for pushing back unwanted input, but the simplest approach for the editor, and analogous pro
grams, is to read a single character at a time so they can't disturb input not intended for them.
Oncidentally. the portable library's ungetc function doesn't solve this problem, since it just
pushes input back into an internal buffer which vanishes along with its caller on termination.)

Similarly you can use the fact that printf calls putchar explicitly to make your own error
printing routines. If you provide a putchar like this

-

putchar(c) {
write(2, & c, 1);
retum(c);

- 11 -

then caUs to printf will write on the terminal. unbuffered.

As another example. this code duplicates the putchar and flush routines described above
except that it always buffers:

char . buf(S12];
int · fdes 1;
Int nleft 512;
char •nextfree &buf(O];

putchar(c)
{

flush()
{

•nextfree++ - c:
if (-:--nleft <- O)

flush();

write(fdes, buf, nextfree - buf);
nleft - 512;
nextfree - buf;

6.2. Random Access

The seek routine provides a way to move around in a file without actually reading or
writing.

seek(fd, offset, ptr);

forces the current position in the file whose descriptor is fd to move to position offset, which is
taken with respect to the location in the file specified by ptr. ptr can be 0, 1, or 2 to specify an
offset measured from the beginning. from the current position, or from the end of the file
respectively. For example. to append to a newly-opened file,

seek(fd. o, 2);

and to get back to the beginning ("rewind"),

seek(fd, 0, O);

With seek, it is possible .to treat ,files more or less like large arrays, al the price of slower
access. Here is a routine to read an arbitrary record from an arbilrary place in a file.

get(fd, pos, buf, n)
int fd, pos, n;
char •buf;
{

seek(fd, pos. O); I• get to pos •/
n - read(fd, buf, n);
return(n);

- 12 -

Since in1egers have only 16 bits, the offset specified is limited to 65,536; for this reason, ptr
values of 3, 4, 5 cause seek to multiply the given offset by 512 (the number of bytes in one
physical block) and then interpret ptr as if it were 0, 1, or 2 respectively. Thus to get to an ar
bilrary place in a large file you need two seeks, first one which selects the block, then one
which has ptr equal to 1 and moves to the desired byte within the block.

6.3. Error Processing

The routines discussed in this section. and in fact all the routines which are direct entries
into the system can incur errors. Usually they indicate an error by returning a value of -1.
Sometimes it is nice to know what sort of error occurred; for this purpose all these routines,
when appropriate, leave an error number in the external cell ermo. The meanings of the vari·
ous error numbers are listed in the introduction to Section II of the UNIX Programmer's Manual,
so your program can, for example, determine if an attempt to open a file failed because it did
not exist or because the user lacked permission to read it. Perhaps more commonly, you may
want to print out the reason for failure. The routine perror will print a message associated
with the value of ermo; more generally, sys_ermo is an array of character strings which can
be indexed by ermo and printed by your program.

7. Executing Commands From Programs

ll is often easier to use a program written by someone else instead of inventing one's
own. This section describes how to call a command from within a running program.

7. 1. With the Portable C Library

The portable C library routine system takes one argument. a command string exactly as
you would have typed it at the terminal (except for the new-line at the end) and executes it.
This is probably the easiest way to execute a command from within a running program. For
instance, to time-stamp the output of a program.

main()
{

system("date");
I• rest of processing •I

rr the command string has Lo be built from pieces, the core-to-core formatting capabilities of
printf may be useful (in the portable library only).

7.2. With Standard UNIX

If you're not using the portable C library, or if you need finer control over what happens,
you will have 10 construct calls to other programs using the more primitive routines that the
portable library's system routine is based on. For no good reason, the standard library doesn't
have an equivalent of system.

First, you can execute another program without returning. by using the routine execl,
(described under exec in Section II of the manual). To print the date as the last action of a
running program, you can say

exec I("/bin/date", "date", o);
The first argument to execl is the file name of the command; you have to know where it's
found. The second argument is conventionally the program name (that is, the last companent
of the tile name), but this is seldom used except as a place-holder. If the command takes argu
ments, they are strung out after this, and the whole list is followed by a 0 to terminate .it.

-

-

-

-

- 13 -

The execl call . verlays your program with date. runs it, then exits. More realistically,
your program might fall into two or more phases that communicate only through temporary
files, like the assembler. Here it is natural to make the second pass simply an execl call from
the first.

The one exception to the statement that your program never gets control back occurs
when there is an error, for example if the file can't be found or is not executable. If you don't
know where date is located, say

execJ("/bin/date", "date", O);
execl(, "/usr/bin/date", "date", O);
printf("Someone stole 'date'\n", O);

Another version of exec. execv, is useful when you don't know in advance how many ar
guments there are going to be. The call is

execv(filename, argp);

where argp is a list of pointers to the arguments; the last pointer must be followed by a 0 so
execv can tell when~ the list ends. As with execl. filename is the file in which the program is
found, and argp{O] is the name of the program.

Neither of t11ese routines provides the niceties of normal command execution. There is
no automatic search of multiple directories- you have to know precisely where the command
is located. Nor do you get the expansion of metacharacters like'<','>','*','?', and·[]' in
the argument list. If you want these, use execl to invoke the shell sh, which then does all the
work. Construct a string that contains the complete command you would have typed at the
terminal, then say

execl("/bin/sh", "sh", "-c", commandline, O);

The shell is always going to be at a fixed place, /bin/sh. Its argument "-c" says to treat the
next argument as a whole command line, so it does just what you want. The only problem is
in constructing the right information in commandli11e.

7.3. Regaining Control

So far what we've talked abouL isn't really all that useful by itself. Now we show how to
regain control after running a program with execl or execv. Since these routines simply over
lay the new program on the old one, to save the old one requires that it first be split into two
copies~ one of these can be overlaid, while the other waits for the new, overlaying program to
finish. The splitting is done by the routine called forl<:

pid ... fork();

splits the program into two copies, both of which continue to run. The only difference
between the two is the value of pid. In one of these processes (the "child"), pid is zero: in
the Olher (the "parent"), pid is non-zero; iL is the process name of Lhe child. Thus the basic
way to call, and return from, another program is

if ((forl<() == o)
execl("/bin/sh", "sh", "-c", command, O);

And in fact, except for liandling errors, this is sufficient The fork makes two copies of your
program. In the child, the value returned by forl< is zero, so it calls exec! which does the
command and then dies. In the parent, fork returns non-zero so it skips the exec!.

More often, the parent wants to wait for the child to terminate. so output doesn't get
scrambled. This can be done with

if (fork() =-= o)
exec!(•••);

wait(&status);

- 14 -

This still doesn't handle any abnormal conditions, such as a failure of the execl or fork, or the
possibility that there might be more than one child running simultaneously. (The wait returns
the pid of the terminated child, if you want to check it against the value returned by fork.) Fi·
1rnlly. this fragment doesn\deal with any funny behavior on the part of the child (which is re·
ported in status>. Still, these three lines are the heart of the portable library's system routine.

The status return word set by wait encodes in its low-order byte the system's idea of the
child's termination status; it is 0 for OK and non-zero to indicate various kinds of problems
like those mentioned in section 8. The high-order byte is taken from the argument of the call
to [clexit which caused a normal termination of the child process. At the moment, the stan
dard command interpreter (the shell) isn't fussy about termination status, but it is good coding
practice for all programs to return meaningful status; someday, they may be called by another
program which cares whether they worked right.

When your program is called by the shell, the three file descriptors O. l, and 2 are set up
pointing al the right files, and all other possible file descriptors are available for use. When
you call another program, correct etiquette suggests making sure the same conditions hold.
Neither of the exec calls affects open tiles in any way. Remember too, that both fork and
exec create processes whose address space is distinct from that of their caller. Some buffer·
flushing may be needed before using these calls. Conversely, if a caller buffers an input
stream, the callee will lose the read-ahead information. (Essentially the same syndrome was
discussed in §6. U ·.
8. Signals - Interrupts and all that

This section is concerned with how you can make your program deal gracefully with sig
nals from the outside world Oike interrupts), and with program faulls. Since there's nOlhing
very useful that can be done from within C about program faults, which arise mainly from ille·
gal, memory references or from execution of peculiar instructions, ·we 'II discuss only the
outside-world signals: interrupt, which is sent when the DEL character is typed~ quit, generated
by the FS character: and hangup, caused by hanging up the phone. When one of these events
occurs, 1 he signal is sent to all processes which were started from the corresponding typewriter;
unless other arrangements have been made, the signal terminates the process. In the quit case,
a core image tile is written, usually for debugging purposes.

The routine which alters the defaull action is signal, described in section II of [1]. It has
two arguments: the first names the signal, the second specifies how to treat it. If the second
argument is l. the signal is ignored; if it is 0, the default action is restored. Thus

#define SIGINT 2

signal(SIGINT, 1);

ignores interrupts, while

signal(SIGINT, 0);

restores the default action of process termination. Such coding is seldom needed (though see
below) because there is a command which runs another program with these three signals ig
nored:

nohup program &

runs program (with arguments if you like) in such a way that you can hang up on it without
fear. Usually you would follow the command with an "&"; otherwise your terminal will be

- 15 -

firmly tied up. If tilt.: ..:ommand is going to run for a long time. you might also use nice:

nice nohup program &

Nice lowers the priority of program so it won't hog the machine. Incidentally, starting a com·
mand with the .. &" automatically causes interrupts and quits lo be ignored, so you can com·
pule in the background, and edit and debug in the foreground without danger. However.
hangups will still terminate"&" programs.

Finally, the second argument 10 signal may be the name of a function (which, inciden·
tally, has to be declared explicitly if the compiler hasn't seen it already). In this case, the
named routine ,Will be called when the signal occurs. Most commonly this facility is used to al
low the program 10 clean up unfinished business before terminating, for example 10 delete a
temporary file:

main()
{

extern int onintr():

if ((signal(SIGINT, 1) & 1) =- O)
signal(SIGINT, onintr);

I• Process ••• •I

onintr()
{

unlink(temptile):
exit(100);

Why the 1es1 and the double call Lo signal? It's quite simple: suppose this .. interactive"
program were run non-interactively, say under"&" with input from a file. If it began by an·
nouncing that all. interrupts were to be sent to the onintr roUline, that would in fact occur,
even if the user meant to interrupt only some foreground process he happened Lo be running.
The code as written depends on the fact that signal returns the previous value of its argument;
the if clause asks whether interrupt was previously being ignored (value is odd, e.g. 1) and only
if not does it request the call to onintr. In other words, if interrupts were being ignored wl1en
the program was called, tl1ey should still be ignored.

A more sophisticated program may wish to intercept an interrupt and interpret it as a re
quest to stop what it is doing and return to its own command-processing loop. Think of the
editor: interrupting a long printout should not cause it to terminate and lose the work aiready
done. The outline of the code for this case is probably best written like this:

main() {
extern int onintrup();

setexit():
if ((signal(SIGINT, 1) & 1) =- 0)

signal(SIGINT, onintrup);
for (; ;) {
I• main processing loop •/
l

onintrup()
I

printf("\nlnterrupt\n");
reset();

- 16 - .

When an interrupt occurs,a call is forced to the onintrup routine, which can print a message
(and perhaps set flags, etc.). reset is a non-local goto to the location after the last call to
setexit, so control (and the stack level) will pop back to the place in lhe main routine where
lhe signal is set up and the main loop entered. Notice, by the way, that signal gets called
again after an interrupt occurs. This is necessary; most signals are automatically reset to their
default action when they occur.

Some programs whil.:h want to detect signals simply can'L be stopped at an arbitrary point,
for example in the middle of updating a linked list. If the routine called on occurrence of a
signal sets a tlag and then returns instead of calling exit or reset, execution will continue at
the exact point it was interrupted. The interrupt flag can then be tested at some convenient
point in the main loop.

There is one difficulty associated with this approach. Suppose the program is reading the
typewriter when the interrupt is sent. The specified routine is duly called: it sets its flag and
returns. If it were really true, as we said above, that "execution resumes at the exact point it
was interrupted:' the program would continue reading the typewriter until the user typed
another line. This behavior might well be confusing, since the user might not know that the
program is reading; he presumably would prefer to have the signal take effect instantly. The
method chosen to resolve this difficulty is to terminate the typewriler read when execution
resumes after the signal, returning an error code which indicates what happened.

Thus programs which catch and resume execution after signals should be prepared for
'errors' which are caused by interrupted system calls. (The ones to watch out for are reads
from a typewriter. wait, and sleep.) A program whose onintrup program just sets intflag, resets
the inlerrupt signal, and returns. should usually include code like the following when it reads
tl1e standard input:

if (getchar() == '\O')
if (intflag)

I• interrupt processing •/
else

I• end-of-file or error processing •I

A final subtlety to keep in mind becomes important when signal-catching is combined
with execu1ion of other programs. Suppose your program catches interrupts, and also includes
a method (like "!" in the editor) whereby other programs can be executed. Your code should
look something like this:

signal(SIGINT, 1); I• ignore interrupts •I
if (fork() == O)

exec!(•••);
wait(•••):
signal(SIGINT, onintrup); I• restore interrupts •I

Why is this? Again, it's not obvious but not really difficult. Suppose the program you call
catches its own interrupts. If you interrupt the subprogram, it will get the signal and return to
its main loop; and probably read your typewriter. But so also will the calling program pop out
of its wait for the subprogram. and also read your typewriter. Having two processes reading

-17 -

your typewriter is very unfortunate, since the system figuratively flips a coin to decide who
should get each line of input A simple way out is to have the parent program ignore inter
rupts until the child is done;

References
[1] K. Thompson and D. M. Ritchie, UNIX Programmer's Manual, Sixth Edition. Bell Labora

tories, 1975.
(2) B. W. Kernighan, Programming in C - A Tutorial. In The Programming language C. Bell

Laboratories Computer Science Technical Report 31 (1975).

(3) B. W. Kernighan, UNIX For Beginners. Bell Laboratories internal memorandum.

[4] M. E. Lesk, The Portable C Library. In The Programming Language C. Bell Laboratories
Computer Science Technical Report 31 (1975).

1. Introduction

C Reference Man ua.

Dennis M. Ritchie

Bell Laboratories
Murray Hill, New Jersey 07974

May l, 1977

B.8

C is a computer language which offers a rich selection of operators and data types and the abil
ity to impose useful structure on both control flow and data. All the basic operations and data
objects are close to those actually implemented by most real computers, so that a very efficient
implementation is possible, but the design is not tied to any particular machine and with a little
care it is possible to write easily portable programs.

This manual describes the current version of the C language as it exists on the PDP-11,
the Honeywell 6000, the IBM System/370, and the Interdata 8/32. Where differences exist, it
concentrates on the POP-11, but tries to point out implementation-dependent details. With few
exceptions, these dependencies follow directly from the underlying properties of the hardware;
the various compilers are generally quite compatible.

2. Lexical conventions.

Blanks, tabs, newlines, and comments as described below are ignored except as they serve to
separate tokens. Some space is required to separate otherwise adjacent identifiers, keywords,
and constants.

If the input stream has been parsed into. tokens up to a given character, the next token is
taken to include the longest string of characters which could possibly constitute a token.

2.1 Comments

The characters/• introduce a comment, which terminates with the characters•/. Comments do
not nest.

2.2 Identifiers (Names)

An identifier is a sequence of letters and digits; the first character must be alphabetic. The
underscore '-' counts as alphabetic. Upper and lower case letters are considered different. On
the PDP-11, no more than the first eight characters are significant, and only the first seven for
external identifiers.

2.3 Keywords

The following identifiers are reserved for use as keywords, and may not be used otherwise:

Warning: The data type name short is not recognized by the version
of the C compiler that is distributed as part of PwBIUNIX Edition 1.0.

-2-

int extern else
char register for
float typedef do
double static while
struct goto switch
union return case
long slzeof default
short break entry
unsigned continue
auto If

The entry keyword is not currently implemented by any compiler but is reserved for future
use. Some implementations also reserve the word fortran.

2.4 Constants

There are several kinds of constants, as follows:

2.4.1 Integer constants

An integer constant consisting of a sequence of digits is taken to be octal if it begins with O
(digit zero), decimal otherwise. The digits 8 and 9 have octal value 10 and 11 respectively. A
sequence of digits preceded by Ox or OX (digit zero) is taken to be a hexadecimal integer. The
hexadecimal digits include a or A through f or F with values 10 through 15. A decimal con
stant whose value exceeds the largest signed machine integer (32767 on the PDP-11) is taken to
be long; an octal or hex constant which exceeds the largest unsigned machine integer (0177777
or Ox.FFFF on the PDP-11) is likewise taken to be long.

2.4.2 Expllcit long constants

A decimal, octal, or hexadecimal integer constant immediately followed by I (letter ell) or L is a
long constant, which, on the PDP·ll, has 32 significant bits. As discussed below, on other
machines integer and long values may be considered identical.

2.4.3 Character constants
•

A character constant is a sequence of characters enclosed in single quotes • ''. Within a charac-
ter constant a single quote must be preceded by a backslash'\'. Certain non-graphic characters,
and '\' itself, may be escaped according to the following table:

BS \b
NL (LF) \n
CR. \r
HT \t
FF \f
ddd \ddd
\ \\

The escape '\ddd' consists of the backslash followed by l, 2, or 3 octal digits which are taken to
specify the value of the desired character. A special case of this construction is '\O' (not fol
lowed by a digit) which indicates the character NUL. If the character following a backslash is not
one of those specified, the backslash vanishes.

The value of a single-character constant is the numerical value of the character in the
machine's character set (Asen for the PDP-11). On the POP-11 at most two characters are per
mitted in a character constant and the second character of a pair is stored in the high-order byte
of the integer value. Character constants with more than one character are inherently
machine-dependent and should be avoided.

- 3 •

2.4.4 Floating constants

A floating constant consists of an integer part, a decimal point, a fraction part, an e or E, and
an optionally signed integer exponent. The integer anr fraction parts both consist of a
sequence of digits. Either the integer part or the fraction part ~not both) may be missing;
either the decimal point or the e and the exponent (not both) may be missing. Every floating
constant is taken to be double-precision.

2.5 Strings
A string is a sequence of characters surrounded by double quotes •" '. A string has type •array
of characters' and storage class 'static' (see below) and is initialized with the given characters.
The compiler places a null byte '\0' at the end of each string so that programs which scan the
string can find its end. In a string, the character '" ' must be preceded by a '\' ; in addition. the
same escapes as described for character constants may be used. Finally, a •\' and an immedi
ately following new-line are ignored.

All strings, even when written identically, are distinct.

3. Syntax notation

In the syntax notation used in this manual, syntactic categories are indicated by italic type, and
literal words and characters in sans-serif type. Alternatives are listed on separate lines. An
optional terminal or non-terminal symbol is indicated by the subscript 'opt,' so that

[expressionopt }

would indicate an optional expression in braces. The ~omplete syntax is given in §16, in the
notation of YACC.

4. What's in a Name?

C bases the interpretation of an identifier upon two attributes of the identifier: its storage class
and its type. The storage class determines the location and lifetime of the storage associated
with an identifier; the type determines the meaning of the values found in the identifier's
storage.

There are four declarable storage classes: automatic, static, external, and register.
Automatic variables are local to each invocation .of a block, and are discarded upon exit from
the block; static variables are local to a block, but retain their values upon reentry to a block
even after control has left the block~ external variables exist and retain their values throughout
the execution of the entire program, and may be used for communication between functions,
even separately compiled functions. Register variables are (if possible) stored in the fast regis
ters of the machine; like automatic variables they are local to each block and disappear on exit
from the block.

C supports several fundamental types of objects:
Objects declared as characters (char) are large enough to store any member of the

implementation's character set, and if a genuine character is stored in a character variable, its
value is equivalent to the integer code for that character. Other quantities may be stored into
character variables, but the implementation is machine-dependent. On the PDP-11, characters
are stored as signed 8-bit integers, and the character set is ASCil.

Up to three sizes of integer, declared short int, int, and long int are available. Longer
integers provide no less storage than shorter ones, but the implementation may make either
short integers, or long integers, or both equivalent to plain integers. 'Ptain' integers have the
natural size suggested by the host machine architecture; the other sizes are provided to meet
special needs. On the PDP·ll, short and plain integers are both represented in 16-bit 2's com
plement notation. Long integer$ are l2-bit 2's complement.

Unsigned integers, declared unsigned, obey the laws of arithmetic modulo 2n where n is
the number of bits in the representation. (16 on the POP-11; long and short unsigned quantities

are not supported.}

Single precision floating point (float) quantities, on the PDP-11, have magnitude in the
range approximately to=38 or O; their precision is 24 bits or about seven decimal digits.

Double-precision floating-point (double) quantities on the PDP-11 have the same range as
floats and a precision of 56 bits or about 17 decimal digits. Some implementations may make
float and double synonymous.

Because objects of these types can usefully be interpreted as numbers, they will be
ref erred to as arithmetic types. Types char and int of all sizes will collectively be called integral
types. Float and double will collectively be called floating types.

Besides the fundamental arithmetic types there is a conceptually infinite class of derived
types constructed from the fundamental types in the following ways:

arrays of objects of most types;

functions which return objects of a given type;

pomters to objects of a given type;

structures containing a sequence of objects of various types;

unions capable of containing any one of several objects of various types.

In general these methods of constructing objects can be applied recursively.

5. Objects and !values

An object is a manipulatable region of storage; an /value is an expression ref erring to an object.
An obvious example of an !value expression is an identifier. There are operators which yield
!values: for example, if E is an expression of pointer type, then •E is an lvalue expression refer
ring to the object to which E points. The name 'lvalue' comes from the assignment expression
'El - E2' in which the left operand El must be an lvalue expression. The discussion of each
operator below indicates whether it expects lvalue operands and whether it yields an lvalue.

6. Conversions
A number of operators may, depending on their operands. cause co.wersion of the value of an
operand from one type to another. This section explains the result to be expected from such
conversions. §6.6 summarizes the conversions demanded by most ordinary operators; it will be
supplemented as required by the discussion of each operator.

6.1 Characters and integers
A character or a short integer may be used wherever an integer may be used. In all cases the
value is converted to an integer. Conversion of a short integer always involves sign extension;
short integers are signed quantities. Whether or not sign-extension occurs for characters is
machine dependent, but it is guaranteed that a member of the standard character set is non·
negative. On the PDP-11, character variables range in value from -128 to 127; a character con
stant specified using an octal ~scape also suffers sign extension and may appear negative, for
example ' • \214' '.

When a longer integer is converted to a shorter or to a char, it is truncated on the left.

6.2 Float and double

All floating arithmetic in C is carried out in double-precision; whenever a float appears in an
expression it is lengthened to double by zero-padding its fraction. When a double must be
converted to float, for example by an assignment, the double is rounded before truncation to
float length.

- 5 -

6.3 Floating and integral

Conversions of floating values to integral type tend to be rather machine-dependent. On the
PDP-11, truncation is towards 0. The result is undefined if : he value will not fit in the space
provided.

Conversions of integral values to floating type are well behaved. Some loss of precision
occurs if the destination lacks sufficient bits;

6.4 Pointers and integers

An integer or long integer may be added to or subtracted from a pointer; in such a case the first
is converted as specified in the discussion of the addition operator.

Two pointers to objects of the same type may be subtracted; in this case the result is con
verted to an integer as specified in the discussion of the subtraction operator.

6.5 Unsigned

Whenever an unsigned integer and a plain integer are combined, the plain integer is converted
to unsigned and the result is unsigned. The value (on the PDP-11) is the least unsigned integer
congruent to the signed integer (modulo 216). Because of the 2's complement notation, this
conversion is conceptual and there is no actual change in the bit pattern.

When an unsigned integer is converted to long, the value of the result is the same numer
ically as that of the unsigned integer. Thus the conversion amounts to padding with zeros on
the left.

6.6 Arithmetic conversions

A great many operators cause conversions and yield result types in a similar way. This pattern
will be called the 'usual arithmetic conversions.'

First, any operands of type char or short are converted to int, and any of type float are
converted to double.

Then, if either operand is double, the other is converted to double and that is the type of
the result.
Otherwise, if either operand is long, the other is converted to long and that is the type of
the resulL
Otherwise, if either operand is unsigned, the other is converted to unsigned and that is
the type of the result.

Otherwise, both operands must be int, and that is the type of the result.

7. Expressions

The precedence of expression operators is the same as the order of the major subsections of
this section (highest precedence first). Thus the expressions ref erred to as the operands of +
(§7.4) are those expressions de.fined in §§7.1-7.3. Within each subsection, the operators have
the same precedence. Left- or right-associativity is specified in each subsection for the opera
tors discussed therein. The precedence and associativity of all the expression operators is sum
marized in the collected grammar.

Otherwise the order of evaluation of expressions is undefined. In particular the compiler
considers itself free to compute subexpressions in the order it bdieves most efficient, even if
the subexpressions involve side effects. Expressions involving a commutative and associative
operator may be rearranged arbitrarily, even in the presence of parentheses; to force a particular
order of evaluation an explicit temporary must be used.

• 6 -

7.1 Primary expressions

Primary expressions involving . , - >, subscripting, and function calls group left to right.

primary-expression:
ident(fier
constant
string
(expression)
primary-expression [expression]
primary-expression (expression-list•)
primary-lva/ue . identifier
primary-ei/iression - > identifier

expression-list:
expression
expression-list , expression

An identifier is a primary expression, provided it has been suitably dedared as discussed below.
Its type is specified by its declaration. However, if the type of the identifier is 'array of ... ',
then the value of the identifier-expression is a pointer to the first object in the array, and the
type of the expression is 'pointer to .. .'. Moreover, an array identifier is not an lvalue expres
sion. Likewise, an identifier which is declared 'function returning ... ', when used except in the
function-name position of a call, is converted to 'pointer to function returning ... '.

A decimal, octal, character, or floating constant is a primary expression. Its type may be
int, long, or double depending on its form.

A string is a primary expression. Its type is originally 'array of char'; but following the
same rule given above for identifiers, this is modified to 'pointer to char' and the result is a
pointer to the first character in the string. (There is an exception in certain initializers; see
§8.6.)

A parenthesized expression is a primary expression whose type and value are identical to
those of the unadorned expression. The presence of parentheses does not atf ect whether the
expression is an !value. "

A primary expression followed by an expression in square brackets is a primary expres
sion. The intuitive meaning is that of a subscript. Usually, the primary expression has type
'pointer to ... ', the subscript expression is int, and the type of the result is ' ... '. The expres
sion 'El{E2]' is identical (by definition) to '•((El)+(E2))'. All the clues needed to
understand this notation are contained in this section together with the discussions in §§ 7 .1,
7 .2, and 7.4 on identifiers, •, and + respectively; § 14.3 below summarizes the implications.

A function call is a primary expression followed by parentheses containing a possibly
empty, comma-separated list of expressions which constitute the actual arguments to the f unc
tion. The primary expression must be of type 'function returning ... ', and the result of the
function call is of type ' ... '. As indicated below, a hitherto unseen identifier followed immedi
ately by a left parenthesis is contextually declared to represent a function returning an integer;
thus in the most common case, integer-valued functions need not be declared.

Any actual arguments of type float are converted to double before the call; any of type
char or short are converted to int.

In preparing for the call to a function, a copy is made of each actual parameter; thus, all
argument-passing in C is strictly by value. A function may change the values of its formal
parameters, but these changes cannot affect the values of the actual parameter:s. On the other
hand, it is possible to pass a pointer on the understanding that the function· may change the
value of the object to which the pointer points. The order of evaluation of arguments is
undefined by the language; take note that the various compilers dilf er.

Recursive calls to any function are permitted.

- 7 -

A primary expression followed by a dot followed by an identifier is an expression. The
first expression must be an !value naming a structure or union, and the identifier must name a
member of the structure or union. The result is an I value ref erring to the named member of
the structure or union. .

A primary expression followed by an arrow (built from a '-' and a '> ') followed by an
identifier is an expression. The first expression must be a pointer to a structure or a union and
the identifier must name a member of that structure or union. The result is an !value referring
to the named member of the structure or union to which the pointer expression points.

Thus the expressio5L 'El-> MOS' is the same~ '(•El).MOS'. Structures and unions are
discussed in §8.5. The rules given here for the use of structures and unions are not enforced
strictly, in order-to allow an escape from the typing mechanism. See §14.1.

7.2 Unary operators i

Expressions with unary operators group right-to-left.

unary-expression:
• expression
& /value
- expression
I expression
- expression
++/value
- /value
/value++
/value--
(type-name) expression
sizeof expression
sizeof (rype-name)

The unary • operator means indi-rection: the expression must be a pointer, and the result is an
lvalue ref erring to the object to which the expression points. If the type of the expression is
'pointer to ... ', the type of the result is ' ... '.

The result of the unary & operator is a pointer to the object ref erred to by the I value. If
the type of the !value is ' ... ', the type of the result is 'pointer to ... '.

The result of the unary - operator is the negative of its operand. The usual arithmetic
conversions are performed. The negative of an unsigned quantity is computed by subtracting
its value from 2 n, where n is 16 on the PDP-11.

The result of the logical negation operator ! is 1 if the value of its operand is 0, 0 if the
value of its operand is non-zero. The type of the result is int. It is applicable to any arithmetic
type or to pointers.

The - operator yields the one's complement of its operand. The usual arithmetic conver·
sions are performed. The type of the operand must be integral.

The object ref erred to by the !value operand of prefix '+ +' is incremented. The value is
the new value of the operand, but is not an !value. The expression '++a' is equivalent to
'(a+- l)'. See the discussions of addition (§7.4) and assignment operators (§7.14) for infor
mation on conversions.

The !value operand of prefix '--' is decremented analogously to the + + operator.

When postfix '+ +' is applied to an !value the result is the value of the object referred to
by the !value. After the result is noted, the object is incremented in the same manner as for
the prefix + + operator'. The type of the result is the same as the type of the !value expres
sion.

When postfix '-' is appli~d to an I value the result is the value of the object ref erred to
by the !value. After the result is noted, the object is decremented in the manner as for the

- 8 -

prefix -- operator. The type of the result is the same as the type of the !value expression.

An expression preceded by the parenthesized name of a data type causes conversion of
the value of the expression to the named type. The construction of type names is described in
§8.7.

The sizeof operator yields the size, in bytes, of its operand (A byte is undefined by the
language except in terms of the value of sizeof. However in all existing implementations a
byte is the space required to hold a char.) When applied to an array, the result is the total
number of bytes in the array. The size is determined from the declarations of the objects in the
expression. This expression is semantically an integer constant and may be used anywhere a
constant is required. Its mafor use is in communication with routines like storage allocators and
I/O systems.

The sizeof operator may also be applied to a parenthesized type name. In that case it
yields the size, in bytes, of an object of the indicated type.

The construction 'sizeof(type)' is taken to be a unit, so the expression 'sizeof(type)-2' is
the same as '(sizeof(type))-2'.

7.3 Multiplicative operators

The multiplicative operators •, I, and % group left-to-right. The usual arithmetic conversions
are performed.

multiplicative-expression:
expression * expression
expression I expression
expression % expression

The binary • operator indicates multiplication. The • operator is associative and expressions
with several multiplications at the same level may be rearranged.

The binary I operator indicates division. When positive integers are divided truncation is
toward 0, but the form of truncation is machine-dependent if either operand is negative. In all
cases it is true that (a/b)•b + a%b .. a. On the PDP-11, the remainder has the same sign as
the dividend.

The binary % operator yields the remainder from the division of the first expression by
the second. The usual arithmetic conversions are performed. On the PDP-11, the remainder
has the same sign as the dividend. The operands must not be floating.

7.4 Additive operators

The additive operators + and - group left-to-right The usual arithmetic conversions are per
formed. There are some additional type possibilities for each operator.

additive-expression:
expression + expression
expression - expression

The result of the '+' operator is the sum of the operands. A pointe~ to an object in an array
and a value of any integral type may be added. The latter is in all cases converted to an address
offset by multiplying it by the length of the object to which the pointer points. The result is a
pointer of the same type as the original pointer, and which points to another object in the same
array, appropriately offset from the original object. Thus if P is a pointer to an object in an
array, the expression 'P+ l' is a pointer to the next object in the array.

No further type combinations are allowed.

The + operator is associative and expressions with several additions at the same level
may be rearranged.

The result of the '-' operator is the difference of the operands. The usual arithmetic
conversions are performed. Additionally, a value of any integral type may be subtracted from a

- 9 -

pointer, and then the same conversions as for addition apply.

If two pointers to objects of the same type are subtracted, the result is converted (by divi
sion by the length of the object) to an int representing the number of objects separating the
pointed-to objects. This conversion will in general give unexpected results unless the pointers
point to objects in the same array, since pointers, even to objects of the same type, do not
necessarily differ by a multiple of the object-length.

7.5 Shift operators

The shift operators < < and > > group left-to-right. Both perform the usual arithmetic
conversions on their operands, each of which must be integral. Then the right operand is con
verted to int; the type of the result is that of the left operand. The result is undefined if the
right operand is negative or larger than the number of bits in the object.

shift-expression:
expression < < expression
expression > > expression

The value of 'El< <E2' is El (interpreted as a bit pattern) left-shifted E2 bits; vacated bits are
0-filled. The value of 'El>> E2' is El right-shifted E2 bit positions. The shift is guaranteed
to be logical (0-fill) if El is unsigned; otherwise it may be (and is, on the PDP-11) arithmetic
(fill by a copy of the sign bit).

7.6 Relational operators

The relational operators group left-to-right, but this fact is not very useful; 'a<b<c' does not
mean what it seems to.

relational-expression:
expression < expression
expression > expression
expression < == expression
expression > ,.. expression

The operators < (less than), > (greater than), < =- (less than or equal to) and > - {greater
than or equal to) all yield 0 if the specified relation is false and 1 if it is true. The type of the
result is int. The usual arithmetic conversions are performed. Two pointers may be compared,
and the result depends on the relative locations in the address space of the pointed-to objects.
Pointer comparison is portable only when the pointers point to objects in the same array.

7.7 Equality operators

equality-expression:
expression = == expression
expression ! = expression

The =- = (equal to) and the ! = (not equal to) operators are exactly analogous to the relational
operators except for their tower precedence. (Thus 'a<b -- c<d' is 1 whenever a<b and
c<d have the same truth-value).

A pointer may be compared to an integer, but the result is machine dependent unless the
integer is the constant 0. A pointer to which 0 has been assigned is guaranteed not to point to
any object, and will appear to be equal to O; in conventional usage, such a pointer is considered
to be null.

7.8 Bitwise and operator

and-expression:
expression & expression

- 10 -

The & operator is associative and expressions involving & may be rearranged. The usual arith
metic conversions are performed; the result is the bit-wise 'and' function of the operands. The
operator applies only to integral operands.

7.9 Bitwise exclusive or operator

exclusive-or-expression:
expression "' expression

The " operator is associative and expressions involving " may be rearranged. The usual arith·
metic conversions are performed; the result is is the bit·wise 'exclusive or' function of the
operands. The operator applies only to integral operands.

7.10 Bitwise inclusive or operator

inclusive-or-expression:
expression I expression

The I operator is associative and expressions with I may be rearranged. The usual arithmetic
conversions are performed; the result is the bit-wise 'inclusive or' function of its operands.
The operator applies only to integral operands.

7.11 Logical andoperator

lagical-and-expression:
expression && expression

The && operator groups left-to-right. It returns 1 if both its operands are non-zero, 0 other
wise. Unlike &, && guarantees left-to-right evaluation; moreover the second operand is not
evaluated if the first operand is 0.

The operands need not have the same type, but each must have one of the fundamental
types or be a pointer. The result is always Int.

7.1 2 Logical or operator

logical-or-expression:
expression II expression

The II operator groups lefMo-right. It returns 1 if either of its operands is non-zero, and 0 oth
erwise. Unlike I, II guarantees left-to-right evaluation; moreover, the second operand is not
evaluated if the value of the first operand is non-zero.

The operands need not have the same type, but each must have one of the fundamental
types or be a pointer. The result is always int.

7.13 Conditional operator

conditional.expression:
expression ? expression : expression

Conditional expressions group right-to-left. The first expression is evaluated and if it is non
zero, the result is the value of the second expression, otherwise that of third expression. If
possible, the usual arithmetic conversions are performed to bring the second and third expres
sions to a common type; otherwise, if both are pointers of the same type, the result has the
common type; otherwise, one must be a pointer and the other the constant 0, and the result
has the type of the pointer. Only one of the second and third expressions is evaluated.

- 11 -

7.14 Assignment operators

There are· a number of assignment operators, all of which group right-to-left. All require an
!value as their left operand, and the type of an assignment e oression is that of its left operand.
The value is the value stored in the left operand after the assignment has taken place. The two
parts of a compound assignment operator are separate tokens.

assignment-expression:
/value - expression
/value + - expression
/value - • expression
/value • - expression
lvalue I - expression
/Value o/o - expression
/value > > - expression
/value < < - expression
/value & - expression
/value " - expression
/value I - expression

Notice that the representation of the compound assignment operators has changed; formerly the
·-· came first and the other operator came second (without any space). The compiler contin
ues to accept the previous notation.

In the simple assignment with ' - ', the value of the expression replaces that of the object
referred to by the lvalue. If both operands have arithmetic type, the right operand is converted
to the type of the left preparatory to the assignment.

The behavior of an expression of the form 'El op - E2' may be inf erred by taking it as
equivalent to 'El - El op (E2) '; however, El is evaluated only once. In + - and --. the
left operand may be a pointer, in which case the (integral) right operand is converted as
explained in §7.4; all right operands and all non-pointer left operands must have arithmetic
type.

The compiler currently allows a pointer to be assigned to an integer, an integer to a
pointer, and a pointer to a pointer of another type. The assignment is a pure copy operation,
with no conversion. This usage is nonportable, and may produce pointers which cause address
ing exceptions when used. However, it is guaranteed that assignment of the constant 0 to a
pointer will produce a null pointer distinguishable from a pointer to any object.

7.15 Comma operator

comma~ression:

expression , expression
A pair of expressions separated by a comma is evaluated left-to-right and the value of the left
expression is discarded. The type and value of the result are the type and value of the right
operand. This operator groups left-to-right. In contexts where comma is given a special mean
ing, for example in a list of actual arguments to functions (§7 .1) and lists of initializers (§8.6),
the comma operator as described in this section can only appear in parentheses; for example,
'f(a, (t - 3, t+2), c)' has three arguments, the second of which has the value 5.

8. Declarations

Declarations are used within function definitions to specify the interpretation which C gives to
each identifier, they do not necessarily reserve storage associated with the identifier. Declara·
lions have the form

declaration:
decl-spec(fiers declarator-list°"'

• 12.

The declarators in the declarator-list contain the identifiers being declared. The decl-specifiers
consist of a sequence of type and storage class specifiers.

decl-specifiers:
type-specifier decl-specifiers°"'
sc-specifier decl-speci/iers°"

The list must be self-consistent in a way described below.

8.1 Storage class specifiers

The sc-specifiers are:

sc-specifier:
auto
static
extern
register
typedef

The typedef specifier does not reserve storage and is called a 'storage class specifier' only for
syntactic convenience;_ it is discussed in §8.8.

The meanings of the various storage classes were discussed in §4.

The auto, static, and register declarations also serve as definitions in that they cause an
appropriate amount of storage to be reserved. In the extern case there must be an external
definition (§10) for the given identifiers somewhere outside the function in which they are
declared.

A register declaration is best thought of as an auto declaration, together with a hint to
the compiler that the variables declared will be heavily used. Only the first few (three; for the
PDP-11) such declarations are effective. Moreover. only variables of certain types will be stored
in registers; on the PDP-11, they are int, char, or pointer. One restriction applies to register
variables: the address-of operator & cannot be applied to them. Smaller, faster programs can be
expected if register declarations are used appropriately, but future developments may render
them unnecessary.

At most one sc-specifier may be given in a declaration. If the sc-specifier is missing from
a declaration, it is taken to be auto inside a function, extern outside. Exception: functions are
always extern.

8.2 Type specifiers

The type-specifiers are

type-specifier:
char
short
int
long
unsigned
float
double
struct-or-union-specifier
typedef-name

The words long, short, and unsigned may be thought of as adjectives; the following combina
tions are acceptable (in any order).

short int
long int
unsigned int
long float

- 13 -

The meaning of the last is the same as double. Otherwise, at most one type-specifier may be
given in a declaration. If the type-specifier is missing from a declaration, it is taken to be int.

Specifiers for structures and unions are discussed 1n §8.5; declarations with typedef names
are discussed in §8.8.

8.3 Declarators

The declarator-list appearing in a declaration is a comma-separated sequence of declarators,
each of which may ·have an .initializer.

declarator-list:
init-dec/arator
init-declarator , declarator-list

init-deciarator:
declarator initializer.,,

Initializers are discussed in §8.6. The specifiers in the declaration indicate the type and storage
class of the objects to which the declarators refer. Declarators have the syntax:

declarator:
identifier
(declarator)
• declarator
declarator ()
declarator [con3tant-expression°"' 1

The grouping is the same as in expressions.

8.4 Meaning of declarators

Each declarator is taken to be an assenion that when a construction of the same form as the
declarator appears in an expression, it yields an object of the indicated type and storage class.
Each declarator contains exactly one identifier; it is this identifier that is declared.

If an unadorned identifier appears as a declarator, then it has the type indicated by the
specifier heading the declaration.

A declarator in parentheses is identical to the unadorned declarator, but the binding of
complex declarators may be altered by parentheses. See the examples below.

If a declarator has the form

•D
for D a declarator, then the contained identifier has the type 'pointer to ... ', where ' ... ' is the
type which the identifier would have had if the declarator had been simply D.

If a declarator has the form

D ()

then the contained identifier has the type 'function returning ... ', where ' ... ' is the type which
the identifier would have had if the declarator had been simply D.

or

A declarator may have the form

O{constant-expression]

• 14.

0{]

Such declarators make the contained identifier have type 'array.' If the unadorned declarator D
would specify a non-array of type' ... ', then the declarator 'D[i]' yields a I-dimensional array
with rank i of objects of type ' .•• '. If the unadorned declarator D would specify an n·
dimensional array with rank i1xi2x ···xi,,, then the declarator D[i,,+11 yields an (n+D·
dimensional array with rank ;1x;2x · · · x;,,x;,,+I·

In the first case the constant expression is an expression whose value is determinable at
compile time, and whose type is int (Constant expressions are defined precisely in §15.) The
constant expression of an may declarator may be missing only for the first dimension. This
notation is useful when the array is external and the actual declaration, which allocates storage,
is given elsewhere. The constant-expression may also be omitted when the declarator is fol
lowed by initialization. In this case the size is calculated from the number of initial elements
supplied.

An array may be constructed from one of the basic types, from a pointer, from a structure
or union, or from another array (to generate a multi-dimensional array).

Not all the possibilities allowed by the syntax above are actually permitted. The restric
tions are as follows: functions may not return arrays, structures or functions, although they may
return pointers to such things; there are no arrays of functions, although there may be arrays of
pointers to functions. Likewise a structure may not contain a function, but it may contain a
pointer to a function.

As an example, the declaration

int I, •ip, f (), •fip(), (•pfl) () ;

declares an integer i, a pointer ip to an integer, a function /returning an integer, a function ftp
returning a pointer to an integer, and a pointer pfi to a function which returns an integer. It is
especially useful to compare the last two. The binding of '•ftp()' is '•(tip())', so that the
declaration suggests, and the same construction in an expression requires, the calling of a func·
tion ftp, and then using indirection through the (pointer) result to yield an integer. In the
declarator ' (•pfi} () ', the extra parentheses are necessary, as they are also in an expression, to
indicate that indirection through a pointer to a function yields a function, which is then called.

As another example,

float fa[17], •afp[17];

declares an array of float numbers and an array of pointers to float numbers. Finally,

static int x3d{3)[5][7];

declares a static three-dimensional array of integers, with rank 3xSx7. In complete detail, x3d
is an array of three items: each item is an array of five arrays; each of the latter arrays is an
array of seven integers. Any of the expressions 'x3d', 'x3d(i] ', 'x3d(i](j] ', 'x3d{i](j)[k]'
may reasonably appear in an expression. The first three have type 'array', the last bas type int.

8.5 Structure and union declarations
A structure is an object consisting of a sequence of named members. Each member may have
any type. A union is an object which may, at a given time, contain any one of several
members. Structure and union specifiers have the same form.

structure-or-union-specifier:
struct-or-union (struct-decl-list }
struct-or-union identifier (struct-decl-list }
struct-or-union identifier

srruct-or-union:
struct
union

• 15 -

The struct-decl-list is a sequence of declarations for the memuers of the structure or union:
srruct-decl-list:

struct-declaration
srruct-declaration struct-decl-list

srruct-declaration:
type-specifier srruct-declarator-lisr

szruct-de~/arator-list:
srruct-declarator
struct-deciarator , struct-declarator-list

In the usual case, a struct-declarator is just a declarator for a member of a structure or union.
A structure member may also consist of a specified number of bits. Such a member is also
called a field,· its length is set off from the field name by a colon.

struct-deciarator:
declarator
declarator : constant-expression
: constant-expression

Within a structure, the objects declared have addresses which increase as their declarations are
read left-to-right. Each non-field member of a structure begins on an addressing boundary
appropriate to its type. On the PDP-11 the only requirement is that non-characters begin on a
word boundary; therefore, there may be 1-byte, unnamed holes in a structure. Field members
are packed into machine integers; they do not straddle words. A field which does not fit into
the space remaining in a word is put into the next word. No field may be wider than a word.
On the PDP-11, fields are assigned right-to-left.

A struct-declarator with no declarator, only a colon and a width, indicates an unnamed
field useful for padding to conform to externally-imposed layouts. As a special case, an
unnamed field with a width of 0 specifies alignment of the next field at a word boundary. The
'next field' presumably is a field, not an ordinary structure member, because in the latter case
the alignment would have been automatic.

The language does not restrict the types of things that are declared as fields, but imple
mentations are not required to support any but integer fields. Moreover, even int fields may be
considered to be unsigned. On the PDP-11, fields are not signed and have only integer values.

A union may be thought of as a structure all of whose members begin at offset 0 and
whose size is sufficient to contain any of its members. At most one of the members can be
stored in a union at any time.

A structure or union specifier of the second form, that is, one of

struct identifier { struct-dec/-list]
union identifier { struct-decl-list }

declares the identifier to be the structure tag (or union tag) of the structure specified by the list.
A subsequent declaration may then use the third form of specifier, one of

struct identifier
union identifier

Structure tags allow definition of self-referential structures; they also permit the long part of the
declaration to be given once and used several times. It is however absurd to declare a structure
or union which contains an instance of itself, as distinct from a pointer to an instance of itself.

The names of members and tags may be the same as ordinary variables. However, names
of tags and members must be mutually distinct.

- 16 -

Two structures may share a common initial sequence of members; that is, the same
member may appear in two different structures if it has the same type in both and if all previ
ous members are the same in both. (Actually, the compiler checks only that a name in two
diff crent structures has the same type and offset in both, but if preceding members differ the
construction is nonportable.)

A simple example of a structure declaration is

struct tnode, {

l;

char tword[20];
int count;
struct tnode •left;
struct tnode •right;

which contains an array of 20 characters, an integer, and two pointers to similar structures.
Once this declaration has been given, the following declaration makes sense:

struct tnode s, •sp;

which declares s to be a structure of the given sort and sp to be a pointer to a structure of the
given sort. With these declarations, the expression

sp->count

refers to the count field of the structure to which sp points;

s.left

refers to the left subtree pointer of the structure s. Finally,

s.right->tword[O]

refers to the first character of the tword member of the right subtree of s.

8.6 Initialization
A declarator may specify an initial value for the identifier being declared. The initializer is pre
ceded by ' ,... ', and consists of an expression or a list of values nested in braces.

initializer:
- expression
- { initializer-list }
- (initializer-list, }

initializer-list:
expression
initializer-list, initializer-list
{ initializer-list }

The ' - ' is a new addition to the syntax, intended to alleviate potential ambiguities. The
current compiler allows it to be omitted when the rest of the initializer is a very simple expres
sion Gust a name, string, or constant) or when the rest of the initializer is enclosed in braces.

All the expressions in an initializer for a static or external variable must be constant
expressions, which are described in §15, or expressions which reduce to the address of a previ
ously declared variable, possibly offset by a constant expression. Automatic or register vari
ables may be initialized by arbitrary expressions involving previously declared variables.

When an initializer applies to a scalar (a pointer or an object of arithmetic type), it con
sists of a single expression, perhaps in braces. The initial value of the object is taken from the
expression; the same conversions as for assignment are perf orrned.

When the declared variable is an aggregate (a structure or array) then the initializer con
sists of a brace-enclosed, comma-separated list of initializers for the members of the aggregate,

- 17 -

written in increasing subscript or member order. If the aggregate contains subaggregates, this
rule applies recursively to the members of the aggregate. If there are fewer initializers in the
list than there are members of the aggregate, then the aggregate is padded with O's. It is not
permitted to initialize unions or automatic aggregates. Cum.i.ltly, the PDP-11 compiler also for
bids initializing fields in structures.

Braces may be elided as follows. If the initializer begins with a left brace, then the
succeding comma-separated list of initializers. initialize the members of the aggregate; it is
erroneous for there to be more initializers than members. If, however, the initializer does not
begin with a left brace, then only enough elements from the list are taken to account for the
members of the aggregate; any remaining members are left to initialize the next member of the
aggregate of which the current aggregate is a part.

A final abbreviation allows a char array to be initialized by a string. In this case succes
sive members of the string initialize the members of the array.

For example,

Int x[1 - { 1, 3, 5 };

declares and initializes x as a I-dimensional array which has three members, since no size was
specified and there are three initializers.

float y(4J[3) =- {
{ 1, 3, 5 },
{ 2, 4, 6 },
{ 3, 5, 7 }.

};

is a completely-bracketed initialization: l, 3, and 5 initialize the first row of the array y{O],
namely y{O)[O], y[O]{l], and y{0][2]. Likewise the next two lines initialize y[l] and y{21. The
initializer ends early and therefore y [3] is initialized with 0. Precisely the same effect could
have been achieved by

float y[4][31 - {
1 ' 3, 5, 2, 4, 6, 3, 5, 7.

};

The initializer for y begins with a left brace, but that for y [OJ does not, therefore 3 elements
from the list are used. Likewise the next three are taken successively for y [1] and y [2]. Also,

float y(4][3] - {
{ 1 }, { 2 }, { 3 }, { 4 }

};

initializes the first column of y (regarded as a two-dimensional array) and leaves the rest 0.

Fmally,

char msg{] - "Syntax error on line %s\n";

shows a character array whose members are initialized with a string.

8. 7 . Type names

In two contexts (to specify type conversions explicitly, and as an argument of sizeof} it is
desired to supply the name of a data type. This is accomplished using a 'type name,' which in
essence is a declaration for an object of that type which omits the name of the object.

type-name:
type-specifier abstract-declarator

abstract-declarator:
empty
(abstract-declarator)
• abstract-declarator
abstract-declarator ()

• 18.

abstract-declarator [constant-expression.,,,]
To avoid ambiguity, in the construction

(abstract-declarator)

the abstract-declarator is required to be nonempty. Under this restriction, it is possible to iden
tify uniquely the location in the abstract-declarator where the identifier would appear if the con
struction were a declarator in a declaration. The named type is then the same as the type of the
hypothetical identifier. For example,

int
int•
int •£3)
int (•)[3)

name respectively the types 'integer,' 'pointer to integer,' 'array of 3 pointers to integers,' and
'pointer to an array of 3 integers.' As another example,

inti;

sin((double) i);

calls the sin routine (which accepts a double argument) with an argument appropriately con
verted.

8.8 Typedef

Declarations whose 'storage class' is typedef do not define storage, but instead define
identifiers which can be used later as if they were type keywords naming fundamental or
derived types. Within the scope of a declaration involving typedef, each of the identifiers
appearing as part of any declarators therein become syntactically equivalent to type keywords
naming the type associated with the identifiers in the way described in §8.4.

typedef-name:
identifier

For example, after

typedef int MILES, •KLICKSP;
typedef struct (double re, im;} complex;

the constructions

MILES distance;
extern KLICKSP metricp;
complex z, •zp;

are all legal declarations; the type of distance is 'inf, that of metricp is 'pointer to int.' and that
of z is the specified structure. Zp is a pointer to such a structure.

Typedef does not introduce brand new types, only synonyms for types which could be
specified in another way. Thus in the example above distance is considered to have exactly the
same type as any other int variable.

--

-

-

-
- 19 -

9. Statements

Except as indicated, statements are executed in sequence.

9.1 Expression statement

Most statements are expression statements, which have the form
expression;

Usually expression statements are assignments or function calls.

9.2 Compound statement, or block

So that several statements can be used where one is expected, the compound statement (also,
and equivalently, called 'block') is provided:

compound-statement:
{ declaration-list011t statement-list0,,, } •

dec/ara tion-list:
declaration
declaration declaration-list

statement-list:
statement
statement statement-list

If any of the identifiers in the declaration-list were previously declared, the outer declaration is
pushed down for the duration of the block, at which time it resumes its force.

An.y initializations of auto or register variables are performed each time the block is
entered at the top. It is currently possible (but a bad practice) to transfer into a block; in that
case the initializations are not performed. Initializations of static variables are performed only
once when the program begins execution. Inside a block, external declarations do not reserve
storage so initialization is not permitted.

9.3 Conditional statement

The two forms of the conditional statement are
if (expression) statement
if (expression) statement else statement

In both cases the expression is evaluated and if it is non-zero, the first substatement is exe
cuted. In the second case the second substatement is executed if the expression is 0. As usual
the 'else' ambiguity is resolved by connecting an else with the last encountered elseless if.

9.4 While statement

The while statement has the form
while (expression) statement

The substatement is executed repeatedly so long as the value of the expression remains non
zero. The test takes place before each execution of the statement.

9.5 Do statement

The do statement has the form
do statement while (expression) ;

The substatement is executed repeatedly until the value of the expression becomes zero. The
test takes place after each execution of the statement.

• 20-

9.6 For statement

The for statement has the form

for (expression-I""; expression-2., ; expression-3°") statement
This statement is equivalent to

expression-I,·
while (expression-2) {

statement
expression-3;

Thus the first expression specifies initialization for the loop; the second specifies a test, made
before each iteration, such that the loop is exited when the expression becomes O; the third
expression typically specifies an incrementation which is performed after each iteration.

Any or all of the expressions may be dropped. A missing expression-2 makes the implied
while clause equivalent to 'while(1)'; other missing expressions are simply dropped from the
expansion above.

9. 7 Switch statement

The switch statement causes control to be transferred to one of several statements depending
on the value of an expression. It has the form

switch (expression) statement
The usual arithmetic conversion is performed on the expression, but the result must be int
The statement is typically compound. Any statement within the statement may be labelled with
one or more case prefixes as follows:

case constant-expression :
where the constant expression must be int. No two· of the case constants in the same switch
may have the same value. Constant expressions are precisely defined in §IS.

There may also be at most one statement prefix of the form

default:

When the switch statement is executed, its expression is evaluated and compared with each
case constant. If one of the case constants is equal to the value of the expression, control is
passed to the statement following the matched case prefix. If no case constant matches the
expression, and if there is a default prefix, control passes to the prefixed statement. If no case
matches and if there is no default then none of the statements in the switch is executed.

Case and default prefixes in themselves do not alter the now of control, which continues
unimpeded across such prefixes. To exit from a switch, see break, §9.8.

Usually the statement that is the subject of a switch is compound. Declarations may
appear at the head of this statement, initializations of automatic or register variables are
ineffective.

9.8 Break statement

The statement

break;

causes termination of the smallest enclosing while, do, for, or switch statement; control passes
to the statement following the terminated statement.

9.9 Continue statement

The statement

continue;

- 21 -

causes control to pass to the loop-continuation portion of the smallest enclosing while, do, or
for statement; that is to the end of the loop. More precisely, in each of the statements

wnile (... } { do [for (... } [

contin:; contin:; contin:;
} } while (...); }

a continue is _equivalent to 'goto contin'. (Following the 'contin:' is a null statement, §9.13.)

9.10 Return statement

A function returns to its caller by means of the return statement, which has one of the forms

return ;
. return expression ;

In the first case the returned value is undefined. In the second case, the value of the expres
sion is returned to the caller of the function. If required, the expression is converted, as if by
assignment, to the type of the function in which it appears. Flowing off the end of a function is
equivalent to a retu.rn with no returned value.

9.11 Goto statement

Control may be transferred unconditionally by means of the statement

goto identifier ;

The identifier must be a label (§9.12) located in the current function. Previous versions of C
had an incompletely implemented notion of label variable, which has been withdrawn.

9. 1 2 Labelled statement

Any statement may be preceded by label prefixes of the form

identifier :

which serve to declare the identifier as a label. The only use of a label is as a target of a goto.
The scope of a label is the current function, excluding any sub-blocks in which the same
identifier has been redeclared. See § 11.

9.1 3 Null statement

The null statement has the form

A null statement is useful to carry a label just before the '}' of a compound statement or to
supply a nun body to a looping statement such as while.

10. External definitions

A C program consists of a sequence of external definitions. An external definition declares an
identifier to have storage class extern (by default) or perhaps static, and a specified type. The
type-specifier (§8.2) may also be empty, in which case the type is taken to be int. The scope of
external definitions persists to the end of the file in which they are declared just as the effect of
declarations persists to the end of a block. The syntax of external definitions is the same as
that of all declarations, except that only at this level may the code for functions be given.

10.1- External function definitions

Function definitions have the form
junction-definition:

- 22.

dec/-specifiersO(lljunction-declarator function-body

The only sc-specifiers allowed among the decl-specifiers are extern or static; See §11.2 for the
distinction between them. A function declarator is similar to a declarator for a 'function return
ing ... ' except that it lists the formal parameters of the function being defined.

junction-declarator:
declarator (parameter-list.,,)

parameter-list:
identifier
identifier , parameter-list

The function-body has the form

function-body:
declaration-list compound-statement

The identifiers in the parameter list, and only those identifiers, may be declared in the declara
tion list. Any identifiers whose type is not given are taken to be int. The only storage class
which may be specified is register; if it is specified, the corresponding actual parameter will be
copied, if possible, into a register at the outset of the function.

A simple example of a complete function definition is

int max (a, b, c)
int a, b, c;
{

int m;
m - (a>b)?a:b;
return (m > c? m: c);

Here 'int' is the type-specifier; 'max{a, b, c)' is the function-declarator; 'int a, b, c;' is the
declaration-list for the formal parameters; ' (... } ' is the block giving the code for the state·
ment. The parentheses in the return are not required.

C converts all float actual parameters to double, so formal parameters declared float have
their declaration adjusted to read double. Also, since a reference to an array in any context (in
particular as an actual parameter) is taken to mean a pointer to the first element of the array,
declarations of formal parameters declared 'array of .. .' are adjusted to read 'pointer to .. .'.
Finally, because neither structures nor functions can be passed to a function, it is useless to
declare a formal parameter to be a structure or function (pointers to structures or functions are
of course permitted).

A free return statement is supplied at the end of each function definition, so running off
the end causes control, but no value, to be returned to the caller.

10.2 External data definitions

An external data definition has the form
data-definition:

declaration

The storage class of such data may be extern (which is the default) or static, but not auto or
register.

-

-

,,. .. ·

- 23 -

11. Scope rules

A C program need not all be compiled at the same time: the source text of the program may be
kept in several files, and precompiled routines may be load J trnm libraries. Communication
among the functions of a program may be carried out both through explicit calls and through
manipulation of external data.

Therefore, there are two kinds of scope to consider: first, what may be called the lexical
scope of an identifier, which is essentially the region of a program during which it may be used
without drawing 'undefined identifier' diagnostics; and second, the scope associated with exter
nal identifiers, which is characterized by the rule that references to the same external identifier
are references.to the same object.

11 .1 Lexical scope

The lexical scope of identifiers declared in external definitions persists from the definition
through the end of the file in which they appear. The lexical scope of identifiers which are for
mal parameters persists through the function with which they are associated. The lexical scope
of identifiers declared at the head of blocks persists until the end of the block. The lexical
scope of labels is the whole of the function in which they appear.

Because all references to the same external identifier refer to the same object (see § 11.2)
the compiler checks all declarations of the same external identifier for compatibility~ in effect
their scope is increased to the whole file in which they appear.

In all cases, however, if an identifier is explicitly declared at the head of a block, including
the block constituting a function, any declaration of that identifier outside the block is
suspended until the end of the block.

Remember also (§8.5) that identifiers associated with ordinary variables on the one hand
and those associated with structure and union members and tags on the other form two disjoint
classes which do not conflict. Typedef names are in the same class as ordinary identifiers.
They may be redeclared in inner blocks, but an explicit type must be given in the inner declara
tion:

typedef float distance;

auto int distance;

The int must be present in the second declaration. or it would be taken to be a declaration with
no declarators and type distance.•

11 .2 Scope of externals

If a function declares an identifier to be extern, then somewhere among the files or libraries
constituting the complete program there must be an external definition for the identifier. All
functions in a given program which refer to the same external identifier refer to the same
object, so care must be taken that the type and extent specified in the definition are compatible
with those specified by each function which references the data.

In PDP-11 C. compatible external definitions of the same identifier may be present in
several of the separately-compiled pieces of a complete program, or even twice within the same
program file, with the limitation that the identifier may be initialized in at most one of the
definitions. In other operating systems, however, the compiler must know in just which file the
storage for the identifier is allocated, and in which file the identifier is merely being ref erred to.
The appearance of the extern keyword in an external definition indicates that storage for the
identifiers being declared will be allocated in another file. Thus in a multi-file program, an

•11 is agreed that the ice is thin here.

• 24 -

extemaJ data definition without the extern specifier must appear in exactly one of the files.
Any other files which wish to give an extemaJ definition for the identifier must include the
extern in the definition. The identifier can be initiaJized only in the declaration where storage
is allocated.

Identifiers declared static at the top level in extemaJ definitions are not visible in other
files.

1 2. Compiler control lines

The C compiler contains a preprocessor capable of macro substitution, conditionaJ compilation,
and inclusion of named files'. Lines beginning with '#' communicate with this preprocessor.
These lines have syntax independent of the rest of the language; they may appear anywhere and
have effect which lasts (independent of scope) until the end of the source program file.

12.1 Token replacement

A compiler-control line of the form
define identifier token-string

(note: no trailing semicolon) causes the preprocessor to replace subsequent instances of the
identifier with the given string of tokens. A line of the form

define identifier< identifier, ..• , identifier) token-string

where there is no space between the first identifier and the '(', is a macro definition with argu
ments. Subsequent instances of the first identifier followed by a '(', a sequence of tokens del
imited by commas, and a ')' are replaced by the token string in the definition. Each occurrence
of an identifier mentioned in the formal parameter list of the definition is replaced by the
corresponding token string from the call. The actuaJ arguments in the caJl are token strings
separated by commas; however commas in quoted strings or protected by parentheses do not
separate arguments. The number of formaJ and actual parameters must be the same. Text
inside a string or a character constant is not subject to replacement.

In both forms the replacement string is rescanned for more defined identifiers. In both
forms a long definition may be continued on another line by writing '\' at the end of the line to
be continued.

This facility is most valuable for definition of 'manifest constants', as in

define TABSIZE 100

int table{TABSIZE];

A control line of the form

undet identifier

causes the identifier's preprocessor definition to be forgotten.

1 2.2 File inclusion

A compiler control line of the form
include "filename"

causes the replacement of that line by the entire contents of the file filename.

The named file is searched for first in the directory of the original source file, and then in
a sequence of standard places. Alternatively, a control line of the form

include <filename>

searches only the standard places, and not the directory of the source file.

Includes may be nested.

-
.-

1 2.3 Conditional compilation

A compiler control line of the form

if constant-expression

- 25 -

checks whether the constant expression (see §15) evaluates to non-zero. A control line of the
form

ifdef identifier

checks whether the identifier is currently defined in the preprocessor; that is, whether it has
been the subject of a #define control line. A control line of the form

ifndef identifier

checks whether the identifier is currently undefined in the preprocessor.

All three forms are followed by an arbitrary number of lines, possibly containing a control
line

#else
and then by a control line

endif

If the checked condition is true then any lines between #else and #endif are ignored. If the
checked condition is false then any lines between the test and an #else or, lacking an #else,
the #endif, are ignored.

These constructions may be nested.

12.4 Line control

For the benefit of other preprocessors which generate C programs, a line of the form

line constant identifier

causes the compiler to believe, for purposes of error diagnostics, that the next line number is
given by the constant and the current input file is named by the identifier. If the identifier is
absent the remembered file name does not change.

1 3. Implicit declarations

It is not always necessary to specify both the storage class and the type of identifiers in a
declaration. Sometimes the storage class is supplied by the context: in external definitions, and
in declarations of formal parameters and structure members. In a declaration inside a function,
if a storage class but no type is given, the identifier is assumed to be int; if a type but no
storage class is indicated, the identifier is assumed to be auto. An exception to the latter rule is
made for functions, since auto functions are meaningless (C being incapable of compiling code
into the stack). If the type of an identifier is 'function returning ... ', it is implicitly declared to
be extern.

In an expression, an identifier followed by (and not currently declared is contextually
declared to be 'function returning int'.

1 4. Types revisited

This section summarizes the operations which can be performed on objects of certain types.

1 4.1 Structures and unions

There are only two things that can be done with a structure or union: name one of its members
(by means of the . operator); or take its address (by unary &). Other operations, such as
assigning from or to it or passing it as a parameter, draw an error message. In the future, it is
expected that these operations, but not necessarily others, will be allowed.

§7.1 says that in a direct or indirect structure reference (with. or->) the name on the

• 26.

right must be a member of the structure named or pointed to by the expression on the left. To
allow an escape from the typing rules, this restriction is not firmly enforced by the compiler. In
fact, any lvalue is allowed before '. ', and that lvalue is then assumed to have the form of the
structure of which the name on the right is a member. Also, the expression before a •->' is
required only to be a pointer or an integer. If a pointer, it is assumed to point to a structure of
which the name on the right is a member. If an integer, it is taken to be the absolute address,
in machine storage units, of the appropriate structure.

Such constructions are non-portable.

14.2 Functions

There are only two things that can be done with a function: call it, or take its address. If the
name of a function appears in an expression not in the function-name position of a call, a
pointer to the function is generated. Thus, to pass one function to another:,, one might say

Int f();

g(f);

Then the definition of g might read

g (funcp)
int (•funcp) ();
{

(•tuner:» () ;

Notice that /was declared dplicitJy in the calling routine since its first appearance was not fol
lowed by(.

14.3 Arrays, pointers, and subscripting

Every time an identifier of array type appears in an expression, it is converted into a pointer to
the first member of the array. Because of this conversion, arrays are not lvalues. By definition,
the subscript operator [] is interpreted in such a way that 'El [Ell' is identical to
'•((El)+ (E2))'. Because of the conversion rules which apply to +,if El is an array and E2
an integer, then El (E2] refers to the E2-th member of El. Therefore, despite its asymmetric
appearance, subscripting is a commutative operation.

A consistent rule is followed in the case of multi-dimensional arrays. If E is an n·
dimensional array of rank ixjx · · · xk, then E appearing in an expression is converted to a
pointer to an (n-0-dimensional array with rank jx · · · xk. If the• operator, either explicitly
or implicitly as a result of subscripting, is applied to this pointer, the result is the pointed-to
(n-0-dimensional array, which itself is immediately converted into a pointer.

For example, consider

int x(3J[5];

Here xis a 3xS array of integers. When x appears in an expression, it is converted to a pointer
to (the first of three) 5-membered arrays of integers. In the expression 'x [i] ', which is
equivalent to '•(x+i)', xis first converted to a pointer as described; then i is converted to the
type of x, which involves multiplying i by the length the object to which the pointer points,
namely 5 integer objects. The results are added and indirection applied to yield an array (of 5
integers) which in tum is converted to a pointer to the first of the integers. If there is another
subscript the same argument applies again; this time the result is an integer.

It follows from all this that arrays in C are stored row-wise (last subscript varies fastest)
and that the first subscript in the declaration helps determine the amount of storage consumed

-

- 27 -

by an array but plays no other part in subscript calculations.

1 5. Constant expressions

In several places C requires expressions which evaluate to a constant: after case, as array
bounds, and in initializers. In the first two cases, the expression can involve only integer con
stants. character constants, and sizeof expressions, possibly connected by the binary operators

+ - • I % & I << >> -- !- < > <- > ...
or by the unary operators

or by the ternary operator
? :

Parentheses can be used for grouping, but not for function calls.

A bit more latitude is permitted for initializers; besides constant expressions as discussed
above, one can also apply the unary & operator to external or static objects, and to external or
static arrays subscripted with a constant expression. The unary & can also be applied implicitly
by appearance of unsubscripted arrays and functions. The basic rule is that initializers must
evaluate either to a constant or to the address of a previously declared external or static object
plus or minus a constant.

• 28 -

16. Grammar revisited.

This section repeats the grammar of C in notation somewhat different than given before.
The description below is adapted directly from a YACC grammar actually used by several com·
pilers~ thus it may (aside from possible editing errors) be regarded as authentic. The notation
is pure YACC with the exception that the 'I' separating alternatives for a production is omitted,
since alternatives are always on separate lines; the ';' separating productions is omitted since a
blank line is left between productions.

The lines with '%term', name the terminal symbols, which are either commented upon or
should be self ·evident. The, lines with '%left,' '%right,• and '%binary' indicate whether the
listed terminals are left-associative, right-associative, or non-associative, and describe a pre
cedence structure. The precedence (binding strength) increases as one reads down the page.
When the construction '%prec x appears the precedence of the rule is that of the terminal x;
otherwise the precedence of the rule is that of its leftmost terminal.

%term NAME
%term STRING
%term ICON
%term FCON
%term PLUS
%term MINUS
%term MUL
%term AND
%term QUEST
%term COLON
%term ANDAND
%term OROR
o/oterm ASOP /• old-style - + etc. •/
o/oterm RELOP /• < - > - < > •I
%term EQUOP
%term DIVOP
%term OR
%term EXOR
%term SHIFTOP
%term INCOP
%term UNOP
%term STROP

I•-·!••/
I• I% •I
I• I•/
I• A•/
I•<< >>•I
I•++ -- •I

%term TYPE
%term CLASS
%term STRUCT
%term RETURN
o/oterm GOTO
%term IF
%term ELSE
%term SWITCH
%term BREAK
%term CONTINUE
%term WHILE
%term DO
o/oterm FOR
%term DEFAULT
%term CASE
%term SIZEOF

I• int, char, long, float, double, unsigned, short •/
I• extem, register, auto, static, typedef•/
I• struct or union •/

-

%term LP /• (•/
%term RP I•) •I
%term LC I• { •/
%term RC I• } •/
%term LB I• [•/
%term RB I•] •/
%term CM I• ' •I
%term SM I• ; •I
%term ASSIGN I• - •I

%left CM
%right ASOP ASSIGN
%right QUEST COLON
o/oieft OROR
%left AND AND
%left OROP
%left AND
%binary EQUOP
%binary RELOP
%left SHIFrOP
%left PLUS MINUS
%left MUL DIVOP
%right UNOP
%right IN COP SIZE OF
%left LB LP STROP

program: ext_def_list

ext_ def _list: ext_ def _list external_ def
I• empty•/

extemal_def: optattrib SM
optattrib init_dcl_list SM

• 29.

optattrib fdeclarator function_body

function_body: dcl_list compoundstmt

dcl_list: dcl_list declaration
I• empty•/

declaration: specifiers declarator_list SM
specifiers SM

optattrib: specifiers
I• empty•/

specifiers: CLASS type
type CLASS
CLASS
type

type:

struct _ dcl:

t}'l'e _ dcl_list:

TYPE
TYPE TYPE
struct_dcl

STRUCT NAME LC type dcJ list RC
STRUCT LC type_dcl_list RC
STRUCT NAME

type declaration
type_ dcl_list type_ declaration

type_ declaration: type declarator _list SM
struct_dcl SM
t}'l'e SM

declarator _list: declarator
declarator _list CM declarator

declarator. f declarator
nfdeciarator
nfdeclarator COLON con e %prec CM
COLON con e %prec CM

nf declarator: MUL nf declarator
nfdeciarator LP RP
nfdeclarator LB RB
nfdeclarator LB con_e RB
NAME
LP nf declarator RP

fdeclarator: MUL fdeclarator
fdeclarator LP RP
fdeclarator LB RB
fdeclarator LB con_e RB
LP fdeclarator RP
NAME LP name_list RP
NAME LP RP

name_list: NAME
name_list CM NAME

init_dcl_list: init_deciarator O/oprec CM
init_dcl_list CM init_declarator

ini t _declarator: nf declarator
nf declarator ASSIGN initializer
nfdeclarator initializer
f declarator

init_list: initializer O/oprec CM
init_list CM initializer

initializer: e O/oprec CM
LC init_list RC

LC init_list CM RC

compoundstmt: LC dcl_list stmt_list RC

stmt_list:

statement:

stmt_list statement
I• empty•/

eSM
compoundstmt
IF LP e RP statement ·

.- 31 •

· IF LP e RP statement ELSE statement
WHILE LP e RP statement
DO statement WHILE LP e RP SM
FOR LP opt_e SM opt_e SM opt_e RP statement
SWITCH LP e RP statement
BREAK SM
CONTINUE SM
RETURN SM
RETURNeSM
GOTO NAME SM
SM
label statement

label: NAME COLON
CASE con_e COLON
DEFAULT COLON

con_e: e o/oprec CM

opt_e: e
I• empty•/

elist: e o/oprec CM
eiist CM e

e: e MUL e
eCMe
e DIVOP e
e PLUS e
e MINUS e
e SHIFTOP e
e RELOP e
e EQUOP e
e AND e
e OROP e
e ANDAND e
e OROR e
e MUL ASSIGN e
e DIVOP ASSIGN e
e PLUS ASSIGN e
e MINUS ASSIGN e
e SHIFTOP ASSIGN e
e AND ASSIGN e
e OROP ASSIGN e

e QUEST e COLON e
e ASOP e
e ASSIGN e
term

term: term INCOP
MUL term
AND tenn
MINUS term
UNOP term
INCOP term
SIZEOF term

• 32.

LP type_name RP term %prec STROP
SIZEOF LP type_name RP %prec SIZEOF
term LB e RB
term LP RP
term LP elist RP
term STROP NAME
NAME
ICON
FCON
STRING
LPe RP

type_name: type abst_decl

abst_decl: /• empty •/
LPRP

•LP abst_decl RP LP RP
MUL abst_decl
abst_ decl LB RB
abst_decl LB con_e RB
LP abst_decl RP

Programming in C - A Tutorial

Brian W. Kernighan

Bell laborotones. Mu"ay Hill. N. J.

1. Introduction

C is a computer language available on the GCOS and UNIX operaling systems at Murray
Hill and (in preliminary form) on 05/360 al Holmdel. C lelS you write your programs clearly
and simply - it has decent control Row facilities so your code can be read straight down the
page, wilhout labels or GOTO's; it lets you write code that is compact without being too cryp
tic; it encourages modularity and good program organization; and it provides good data·
structuring facilities.

This memorandum is a tutorial to make learning C as painless as possible. The first part
concentrates on the central features of C~ the second part discusses those parlS of the language
which are useful (usually for getting more efficient and smaller code) but which are not neces
sary far the new user. This is nnt a reference manual. Details and special cases will be skipped
ruthlessly. and no attempt will be made to cover every language feature. The order of presen
tation is hopeful!> pedagogical instead of logical. Users who would like the full story should
consult the C Re/r?rence Ma11ual by 0. M. Ritchie {l}, which should be read for details anyway.
Runtime support as described in {21 and [3); you will have to read one of these to learn how to
compile and run a C program.

We will assume that you are familiar with the mysteries of creating files. text editing. and
the fll(e in the operating system you run on, and that you have programmed in some language
before.

2. A Simple C Program

main() {
printf("hello, world");

A C program consists of one or more /imetions. which are similar to the functions and
subroutines of a Fortran pr.ogram or the procedures of PL/I, and perhaps some external data
definitions. main is such a function. and 1n fact all C programs must have a main. Execution
of the program begins at the first statement of main. main will usually invoke other functions
to perform its job. some coming from the same program. and others from libraries.

One method of communicating data between functions is by arguments. The parentheses
following the function name surround the. argument list; here main is a function of no argu
ments. indicated by (l. The {) enclose the statements of the function. Individual statements
end with a semicolon but are otherwise free-format.

1

C Tutorial -2-

printf is a library function which will formal and print output on the terminaJ (unless
some other destination is specified). Jn this case it prints

hello, world

A function is invoked by naming it. followed by a list of arguments in parentheses. There is
no CALL staleme.nt as in Fortran or PUI.

3. A Wortclng C Program:· Variables: Types and Type Declarations

Here's a bigger program that adds three integers and prints their sum.

main() {
Int a. b, c, sum:
a - 1; b - 2: c - 3;
sum-a+b+c:
printf(" sum is 'od", sum);

Arithmetic and the assignment statements are much the same as in Fortran (except for
the semicolons) or Pl/I. The format of C programs is quite free. We can put several state
ments on a line if we want, or we can split a statement among several lines if it seems desir
able. The split may be between any of the operators or variables, but not in the middle of a
name or operator. As a matter of style. spaces. tabs. and newlines should be used f reety to
enhance readability.

Chas four fundamental types of variables:

int integer (PDP·l I: 16 bits: H6070: 36 bits; IBM360: 32 bits)
char one byte character (PDP· I I, IBM360: 8 bits; H6070: 9 bits)
float single-precision noating point
double double-precision Roating point

There are also arrays and s1rur1ures of these basic types, pointers to them and functions that re
turn them, aJl·of which we will meet shortly.

All variables in a C program must be declared, although this can sometimes be done inl·
plicitly by context. Declarations must precede executable statements. The declaration

int a. b, c, sum:

declares a. b, c, and sum to be integers.

· Variable names have one to eight characters, chosen from A·Z, a-z. 0-9, and_, and start
with a non-digit. Stylistically. it's much better to use only a single case and give functions and
external variables names that are unique in the first six characters. (Function and externaj
variable names are used by various assemblers, some of which are limited in the size and case
of identifiers they can handle.> Furthermore, keywords and library functions may only be
recognized in one case.

4. Constants

We have already seen decimal integer constants in the previous example - 1. 2. and 3.
Since C is often used for system programming and bit-manipulation, octal numbers are an. im
portant part of the language. In C, any number that begins with 0 (zero!) is an octat integer
(and hence can't have any S's or 9's in it). Thus 0777 is an ~tal constant, with decimal vaJtU:
SI l.

A "character" is one byte (an inherently machine-dependent concept). Most often this
is expressed as a character constant. which is one character enclosed in single quotes. However,
it may be any quantity that fits in a byte, as in ftags below:

-·

C Tutorial

char quest, newline, flags;
quest - '?':
newline - '\n';
flags - 077;

-3-

The sequence '\n' is C notation for "newline character", which, when printed, skips the
terminal to the beginning of the next line. Notice that '\n' represents only a single character.
There are several other "escapes" like '\n' for representing hard-to-get or invisible characters,
such as '\t' for tab. '\b' for backspace, '\0' for end of file, and '\\' for the backslash itself.

float and double constants are discussed in section 26.

5. Simple 1/0 - getchar, putchar, printf

main() I
char c:
c - getchar();
putchar(c);

getchar and putchar are the basic 110 library functions in C. getchar fetches one char
acter from the standard input (usually the terminal) each time it is called. and returns that
character as the value of the function. When it reaches the end of whatever file it is reading,
thereafter it returns the character represented by '\0' (ascii NUL. which has value zero). We
will see how to use this very shortly.

putchar puts one character out on the standard output (usually the terminal) each time it
is called. So the program above reads one character and writes ii back out. By itself, lhis isn'1
very interesring. bu1 observe that if we put a loop around 1his, and add a test for end of file, we
have a complete program for copying one file to another.

printf is a more complicated function for producing formaued output. We will 1alk abou1
only the simplest use of it. Basically. printf uses its first arsument as formatting informalion,
and any successive arguments as variables to be output. Thus

printf ("hell~>. world\n");

is the simplest use - the string "hello. world\n" is printed out. No formatting information, no
variables. so the 'itring is dumped out verbatim. The newline is necessary to put this out on a
line by itself. (The construction

"hello, world\n"

is really an array of chars. More about this shortly.)

More complicated. if sum is 6.

printf ("sum is %d\n", sum):

prints

sum is 6

Within the first argument of printf, 1he character<; "%d" sisnify that the next argument in the
argument list is to be prin1ed as a ba<;e 10 number.

Other useful formalling commands are "%c" 10 print out a single character, "%s" to print
out an entire siring, and ··%0" 10 print a number as octal instead of decimal (no leading zero).
For example.

n - 511;
printf ("What is the value of o/od in octal?". n);

C Tutorial -4-

prtntf (" %st llfod decimal Is o/o0 octal\n", "Right", n, n);

prints

What is the value of 511 In octal? Right! 511 decimal is m octal

Notice that there is no newline al the end of the first output line. Successive calls to prtntf
(and/or putchar, for that matter) simply put oul characters. No newlines are printed unless
you ask for them. Similarly, on input. characters are read one at a time as you ask for them.
Each line is generally terminated by a newline (\n), but there is otherwise no concept of
record.

6. If; relational operators; compound statements

The basic conditional-testing statement in C is the If statement:

c - getchar();
If(c • - '?')

printf("why did you type a QUestlon mark?\n");

The simplest form of If is

If (expression) statement

The condition to be tested is any expression enclosed in parentheses. It is followed by a
statement. The expression is evaluated, and if its value is non-zero. the statement is executed.
There's an optional else clause, to be described soon.

set:
The character sequence '==' is one of the relational operators in C; here is the complete

• - equal to (.EQ. to F~rtraners)
I• not equal to
> greater than
< less than
> - greater than or equal to
< - less than or equal to

The value of "expression relation expression" is t if the relation is true. and 0 if false.
Don't forget that the equality test is '=•'; a single ·-· causes an assignment, not a test, and in
variably leads to disaster.

Tests can be combined with the operators '&&'<ANDI. 'I I' <OR>. and 1' (NOT>: For example,
we can test whether a character is blank or tab or newline with

If(c- -· ' II c- -'\t' II c- -·\n') ...
C guarantees that '&&' and 'I I' are evaluated left to right - we shaJI soon see cases where this
mauers.

One of the nice things about Ci~ that the statement part of an If can be made arbitrarily
complicated by endosing a set of statements in {). As a simple example. suppose we want to
ensure that a is bigger than b, as part of a sort routine. The interchange of a and b takes three
statements in C, grouped together by 11:

if (a < b) {

t - a;
a - b;
b - t;

C Tutorial -s-

As a general rule in C. anywhere you can use a simple statement, you can use any com
pound statement, which is just a number of simple or compound ones enclosed in (). There is
no semicolon after the I of a compound statemen!, but there is a semicolon after the last non
compound statement inside the {).

The ability LO replace single statements by complex ones at will is one feature that makes
C much more pleasant to use than Fortran. Logic (like the exchange in the previous example)
which would require several GOTO's and labels in Fonran can and should be done in C
without any, using compound statements.

7. While Statement; Assignment within an Expression; Null Statement

The basic looping mechanism in C is the while statement. Here's a program that copies
itS input to its output a character at a time. Remember that '\0' marks the end of file.

main() {
char c;
while((c-getchar()) !- '\O')

putchar(c);

The while statement is a loop, whose general form is

while (expression) statement

Its meaning is

(a) evaluate the expression
(b) If its vatue is true (I.e., not zero)

do the statement, and go back to (a)

Because the expression is tested before the statement is executed, the statement part can be
executed zero times, which is often desirable. As in the If statement, the expression and the
statement can both be arbitrarily complicated, although we haven't seen that yet. Our example
gets the character, assigns it to c, and then tests if it's a •\O''. If it is not a '\O', the statement
part of the while is executed, printing the character. The while then repeats. When the input
character is finally a '\0', the while terminates, and so does main.

Notice that we used an assignment statement

c - getchar()

within an expression. This is a handy notational shortcut which often produces clearer code.
(In fact it is often the only way to write the code cleanly. As an exercise, re-write the file~opy
without using an assignment inside an expression.> fl works because an assignment statement
has a value. just as- any oihet. expression does. Its value is the value of the right hand side.
This also implies that we can use multiple assignments like

x - y - z - O;
Evaluation goes from right 10 left.

By the way, the extra parentheses in the assignment statement within the conditional
were really necessary: if we had said

c - getchar() ! - '\CJ

c would be set to 0 or I depending on whether the character fetched was an end of file or not
This is because in the absence of parentheses the assignment operator '•' is evaluated after
the relational operator '!•'. When in doubt, or even if not, parenthesize.

C TutoriaJ -6-

Since putchar(c) .returns c as its function value. we could also copy the input to the out·
put by nesting the calls to getchar and putchar:

main(){
while(putchar(getchar()) 1- '\a > ;

What statement is being repeated? None. or technically, the null statement. because aH the
work is really done wilhifl the test part of the while. This version is stiahtly dil"erent from the
previous one, because the final '\0' is copied to the output before we decide to stop.

a. Arithmetic

The arithmetic operators are the usual ·+·, ·-·. ·•·. and '/' (truncating integer division if
the operands are both int), and the remainder or mod operator''/,':

x - a'ob:
set'i Jo to the remainder after a is divided by b (i.e.. a mod b). The results are machine depen·
dent unless a and bare both positive.

In arithmetic, char variables can usually be trealed like Int variables. Arithmetic on char·
acters is quite legal. and often makes sense:

c - c +'A' - 'a';

converts a single lower case ascii character ~tored in c to upper case, making use of the fact
that corresponding asc11 letters are a fixed diswnce apart The rule governing this irithmetic is
that all chars are converted 10 int before the arithmetic is done. Beware that conversion may
involve sign-exiension - if the le~lmost bit of a c.:haractcr is t, the resulting inteaer might be
negative. <This doesn't happen with genuine characters on any current machine.>

So to convert a file rnto tower case:
main() (

char c;
while((c-getchar()) 1- '\<:I)

if('A'< -c && c< -'Z")
putchar(c+'a' -'A');

else
putchar(c);

Characters have different sizes on different machines. Funher. this code won't work on an
IBM machine. because the letters in 1he ebcdic: alphabet are not contiauous.

9. Else Clause; Conditional Expressions

We just used an else after an if. The must general form of if is

if (expression) statement 1 else staltiment2

the else part is optional. bUl often useful. The canonical example sets x to the minimum of a
and b:

if (a < b)

x - a;
else

x - b;

Observe that there's a semicolon after x-a.

C Tutorial -7-

C provides an alternate form of conditional which is often more concise. It is caUed lhe
"conditional expression" because il is a conditional which actually has a value and can be used
anywhere an expression can. The value of

a<b? a: b;

is a if a is less than b; it is b otherwise. In general. the form

expr1 ? expr2: expr3

means "evaluate expr1. If it is not zero, the value of the whole thing is expr2; otherwise the
value is expr3.". -

To set x to ihe minimum of a and b, then:

x - (a<b ? a : b);

The parentheses aren't necessary because '?:' is evaluated before '•', but safety first.

G.:>iug a step further. we could write the loop in the lower·case program as

while(<c-getchar(}) !- '\O')
putchar(('A'< -c && c< -·z•) ? c-'A' +'a' : c);

· Ifs and else's can be used to construct logic that branches one of several ways and then
rejoins. a common programming structure, in this way:

If(..•)
{ ... I

else iff ...)
{. ..)

else iff .. .)
{ ...)

else
(...)

The conditions are lested in order, and exactly one block is executed - either the first one
whose if is satisfied. or the one for the last else. When this block is finished, the next state·
ment executed is the one after the last else. If no action is to be taken for the "default" case,
omit the last else.

For example, to count letters, digits and others in a file, we could write

main() I
int let, dig, other, c;
let - dig - other - O;
while((c-getchar(}) 1- '\O')

if(('A'<-c && c<-'Z') II ('a'<-c && c<-'z')) ++let
else if('O'<•c && c<-'9') ++dig;
else + +other:

printff"o/od letters. o/od digits, °lad others\n•. let. dig, other):

The ·++' opera1or means "incremenl by I"; we will get to it in the next section.

10. Increment and Decrement Operators

In addition to the usual '-', C also has two other interesting unary O!)erators. ·++' (incre·
ment) and·--· (decrement). Suppose we want to count the lines in a file.

main() I
int c,n:
n - O;

C Tutorial -8-

while((c-getchar()) 1- '\a)
if(c - - '\n')

++n;
printf("'od lines\n". n);

++n is equivalent to n-n,+ 1 but clearer, particularly when n is a complicated expression. •++'
and ·--·can be applied only to int's and char's (and Pointers which we haven't got to yet).

The unusual feature of '++' and ·--· is thal they can be used either before or after a
variable. The value of ++k is the value of k after it has been incremented. The value of k++
is k be.fore ii is incremented. Suppose k is 5. Then

x - ++k;
increments k to 6 and then sets x to the resulting value, i.e .• to 6. But

x - k++;

first sets x to to 5. and 1hef1 increments k to 6. The incrementing effect of ++k and k++ is the
same, but their values are respectively 5 and 6. We shall soon see examples where both of
these uses are important.

11. Arrays
In C. as in Fortran or PUJ, ii is possible to make arrays whose elements are.basic types.

Thus we can make an array of Ii) integers with the declaration

int x(10J;

The square brackets mean subsC'nptmg; parentheses are used only for function references. Ar·
ray indexes· begin at :ero. so the elements of x are ·

x{O). x{ 11. xf 2!. ...• x{9]

If an array has n elements. the largest subscript is n-1.
Multiple-dimension arrays are provided. though nol much used above two dimensions.

The declaration and use look like

int name{ 10) [20);
n - name{i + jJ [1 I + name{k] [2);

Subscripts can be arbitrary integer expressions. Multi-<limension arrays are stored by row (op·
posi1e to Fortran}, so the rightmost subscript varies fastest; name has 10 rows and 20 columns.

Here is a program which reads a line, stores it in a buJrer, and prints its length (excluding
the newline al the end).

main() {
int n, c;
char line(100];
n - O:
while((c-getchar()) !=- '\n') {

if(n < 100)
· line{n] - c:

n++;

printff"length - %d\n". n):

C TutoriaJ -9-

As a more complicated problem, suppose we want to print the count for each line in the
input, still storing the first l 00 characters of each line. Try it as an exercise before looking at
the solution:

main() (
int n, c; char line(100):
n - O;
while(Cc-getchar()) 1- '\(!)

if(c - - '\n') (
prtntff•%d\n•, n);

I
efse {

n - O:

if(n < 100) line{n) - c;
n++:

I
•
'

12. Character Arrays: Strings ____ _

Text is usually kept as an array of characters, as we did with iine(l in the-example above.
By convention in C, the last character in a character array should be a '\O' because most pro
grams that manipulate character arrays expect it. For example. printf uses the '\0' to detect the
end of a character array when printing it out with a ''los'.

We can copy a character array s into another t like this:

i - O;
while((t(i]- s{I)) 1- '\(J) • i++; -- - \.- ·-·

Most of the ume we have to put in our own '\O' at the end of a string; if we want to
print the line with printf, it's necessary. This code prints the character count before the _line:

main() {
int n;
char line(100};
n - O; .
while((line{n++J-getchar<)) 1- '\n' >:
line{n} - '\O';
printff•°J'od:\t%s", n, line):

Here we increment n in the subscript itself. but only after the previous value has been used.
The character is read, placed in line{n], and only then n is incremented.

There is one place and one place only where C puts in the '\0' at the end of a character
array for you:and that is 1n the construction

•stuff between double QUotes·

The compiler puts a '\0' at the end automatically. Text enclosed in double.quotes is called a
s1ri11R: its properties are precisely those of an (initiaJized) array of characters.

C TutoriaJ - 10-

13. For Statement

The for statement is a somewhat generalized whtle lhat lets us put the initialization and
increment parts of a loop into a single statement along wilh the test. The general form of the
for is

for(initialization: exi>ression; increment)
statement

The meaning is exactly

initialization;
while(expression) (

statement
increment:

Thus. the following code does the same array copy as the example in the previous section:

for(i•O; (t(IJ-s(i)) !- '\O'; I++);

This slightly more ornate example adds up the elements of an array:

sum• O;
for(i-O: i<n: i++)

sum • sum + array(iJ:

In the for statement. the initialization can be left out if you want, but the semicolon has
to be there. The increment is also optional. It is ltOI followed by a semicolon. The second
clause. the test. works the same way as in the while: if the expression is true (not zero) do
another loop. otherwise get on with the next statement. As with the while, the for loop may
be done zero times. If the expression is teft out, it is taken to be always true, so

for(;;) ...

and

while(1) ...

are both infinite loops.

You might ask why we use a for since it's so much like a white. (You might also ask
why we use a while because .. .) The for is usually preferable because it keeps lhe code where
it's used and sometimes eliminates the need for compound statements. as in this code that
zeros a two-dimensional array:

for(i-O: i<n; i+ +)
for(i-O: j<m; j+ +)

array{i){j} - O:

14. Functions; Comments

Suppose we want. as part of a larger program, to count the occurrences of the ascii char
acters in some input text. Let us also map illegal characters (those with value> 127 or <0)
into one pile. Since this is presumably an isolated part of the program, good prac:tice dictates
making it a separate function. Here is one way:

C Tutorial - 11 -

main() (
int hist{ 129): r 128 legal chars + 1 Illegal group •I

count(hist, 128);
printf(...);

r count the letters Into hist •I
r comments look like this; use them • /

r anywhere blanks, tabs or newlines could appear •I

count(buf, size)
int size, bu~]; {

int i, c;
for(i-O; i< -size; I++·)

buf(I) - O;
whila((c-getcnar()) !- '\O') {

if(c > size II c < o)
c • size:

buf(cJ++;

return;

r set buf to zero • /
r read tll eot • /

r fix ill&Qal input • ,

We have already seen many examples of calling a function, so let us concentrate on how to
define one. Since count has two arguments, we need to declare them. as shown, giving their
types, and in the case of but, the fact that it is an array. The declarations of arguments go
between the argument list and the opening 'f'. There is no need to specify the size of the array
buf, for it is defined outside of count.

The return statement simply says to go back to the caJling routine. In fact, we could have
omitted it, since a return is implied at the end of a function.

What if we wanted count to return a value, say the number of characters read? The re·
tum statement allows for this too:

int i, c, nchar;
nchar - O;.

while((c-getcnar()) !- '\O') (
if(c > size II c < o)

c - size:
buf(c)++;
nchar++;

l
retum(nchar);

Any expression can appear within the parentheses. Here is a function to compute the
minimum of two integers:

min(a, b)
int a, b; (

retum(a < b ? a : b);

To copy a character array, we could write the function

C Tutorial - 12 -

strcopy(s 1, s2) r cgples s 1 to s2 • /
char s 1{ J. s2(J; {

Int i;
tori i - O; (12(1) • s1(1D I• '\O': I++);

As is often the case. all the work is done by the assignment statement embedded in the test
part of the for. Again. the ·declarations of the arguments s 1 and s2 omit the sizes. because
they don't matter to strcopy. Un the section on pointers. we will see a more efficient way to
do a string copy.)

There is a subtlety in function usage which can trap the unsuspecting Fortran program
mer. Simple variables (not arrays) are passed in C by "call by value", which means that the
called function is given a copy of its arguments, and doesn't know their addresses. This makes
it impossible to change the value of one of the actuaJ input arguments.

There are two ways out of this dilemma. One is to make special arrangements to pass to
the for:.;t1on the address of a variable instead of its value. The other is to make the variable a
global or external variable. which is known to each function by its name. We will discuss both
possibilities in the next few sections.

15. Local and External Variables

If we say

f(){
Int x:

}
g() (

int x;

each x is local to its own routine - the x in f is unrelated to the x in g. (Local variables are
also called "automatic".) Furthermore each local variable in a routine appears only when the
function is called. and disappears when the function is exiled. Local variables have no memory
from one call to the next and must be explicitly initialized upon each entry. (There is a static
storage class for making local variables with memory; we won't discuss it.>

As opposed to local variables. extemal variables are denned external to all functions. and
are (potentially) available to all functions. External storage always remains in existence. To
make variables external we have to define them external to all functions. and. wherever we
want to use them, make a declaration.

main() I
extern int nchar, hist{]:

count();

....;

-·

.-·

-

C Tutorial

count() I
· extern int nchar, hist[];

int i, c;

- 13 -

int
int

hist(129];
nchar;

r space for histogram •I
r character count ·I

Roughly speaking. any function that wishes to access an external variable must contain an
extern declaration for it., .The declaration is the same as others, except for the added keyword
extern. Furthermore, there must somewhere be a definition of the external variables external
to aJI functions.

External variables can be initialized; they are set to zero if not explicitly initialized. In its
simplest form, initialization is done by putting the value (which must be a constant) after the
definition:

int nchar O;
char flag •r;

etc.

This is discussed further in a later section.

This ends our discussion of what might be called the central core of C. You now have
enough to write quite substantial C programs, and it would probably be a good idea if you
paused long enough to do so. The rest of this tutorial will describe some more ornate construc
tions, useful but not essential.

16. Pointers

A pointer in C is the address of something. It is a rare case indeed when we care what the
specific address itself is, but pointers are a quite common way to get at the contents of some
thing. The unary operator'&' is used to produce the address of an object, if it has one. Thus

int a, b;
b - &a;

puts the address of a into b. We can't do much with it except print it or pass it to some other
routine, because we haven't given b the right kind of declaration. But if we declare that b is
indeed a pointer to an integer, we're in good shape:

int a, *b, c;
b - &a;
c - *b;

b contains the address of a and 'c - •b' means to use the value in b as an address, i.e., as a
pointer. The effect is that we get back the contents of a. albeit rather indirectly. (lt~s always
the case that '•&X' is the same as x if x has an address.)

The most frequent use of pointers in C is for walking efficiently along arrays. In fact, in
the implementation of an array, the array name represents the address of the zeroth element of
the array, so you can't use it on the left side of an expression. (You can't change the address
of something by assigning to it.) If we say

char •y;
char x{100);

y is of type pointer to character (although it doesn't yet point anywhere). We can make y point
to an element of x by either of

C Tutorial

point to an element of x by either of

y • &x(O);
y - x:

-14-

Since x is the address of x(O) this is legal and consistent.

Now '•y' gives x(O). More importantly.

•(y+ 1) gives x(1)
•(y+I) gives x(I)

and the sequence

y • &x(O):
y++:

leaves y pointing at x(1).

Let's ':SG pointers in a function length that computes how long a character array is.
Remember that by convention all character arrays are terminated with a •\o•. (And if they
aren't, this program will blow up inevitably.) The old way:

length(s)
chars(J; (

int n;
for(n-o: s(nJ 1- '\a; >

n++;
retum(n);

Rewriting with pointers gives

length(s)
char •s: {

Int n;
for(n-o: •s 1- '\a: s++)

n++;
retum(n);

You can now see why we have to say what kind of thing a poin&s to - if we're to increment it
with s++ we have to increment it by the right amounL

The pointer version is more efficient {this is almost always true) but even more compact
is

for(n•O: •a++ 1- '\a; n++ >:
The '•s' returns a character: the '++' incremen&s the pointer so we'll get the next character
next time around. As you can see. as we make things more efficien~ we also make them less
clear. But '•s++· is an idiom so common that you have to know iL

Going a step further, here's our function strcopy that copies a character array a to anoth·
er t.

strcopy(s, t)
char •s, •t: (

while(•t++ - •s+ +);

We have omitted the test against •\o•, because '\0' is identically zero: you will often see the
code this way. (You must have a space after the '•': see section 25.)

C TutoriaJ - 15 -

For arguments lo a function, and there only, the decJarations

Char sl);
char •s;

are equivalent - a pointer to a type, or an array of unspecified size of that type, are the same
thing.

If this all seems mysterious, copy these forms until they become second nature. You
don't often need anything more complicated.

17. Function Arg~ts

Look back at the function sti'copy in the previous section. We passed it two string
names as arguments. then proceeded to clobber both of them by incrementation. So how
come we don't lo-;c the original strings in the function that called strcopy?

As we said before. C is a "call by value" language: when you make a function call like
f(x), the \Oiue of x is passed. not its address. So there's no way to' alter x from inside f. If x is
an array (char x{10)) this isn't a problem. because x 1s an address anyway, and you're not trying
lo change it, just what it addresses. This is why strcopy works as it does. And it's convenient
not to have to worry about making temporary copies of the input arguments.

But what 1f x 1s a scalar and you do want to change it? In that case, you have to pass the
address of x 10 f. and then use it as a pointer. Thus for example, to interchange two integers.
we must write

flip(x, y)
int •x, •y: (

int temp;
temp - •x;
•x - •y:
•y - temp;

and to call flip, we have to pass the addresses of the variables:

ftip (&a, &b):

18. Multiple Levels of Pointers: Program Arguments

When a C program 1s called. the arguments on the command line are made available to
the main program as an argument count argc and an array of character strings argv containing
the arguments. Manipulating these arguments is one of the most common uses of multiple
levels of pointer5 ("pointer 10 pointer to ... "). By convention. argc is greater than zero: the
first argument (in argv{O]) i!l the command name itself.

Here 1s a program that simply echoes its arguments.

main(argc. argv)
int argc:
char ••argv: {

int i;
for(i-1; i < argc: i+ +)

printf("%s ", argv(i]):
putchar('\n');

Step by step: main is called with two arguments, the argument count and the array of argu
ments. argv is a pointer to an array, whose individual elements are poinlers to arrays of char-

C Tutorial - 16 -

ac1ers. The zeroth argument is the name of the command itself. so we start to print with the
first argument. until we've printed them all. Each argv(i) is a character array, so we use a '%s'
in the printf.

You will sometimes see the declaration of argv written as

char •argv[J:
which is equivalent. But we, can't use char argy(I), because both dimensions are variable and
there wouJd be no way to figure out how big the array is.

Here's a bigger example using argc and argv. A common convention in C programs is
that if the first argument is ·-·. it indicates a nag of some sort. For example, suppose we want
a program to be callable as

prog - abc ar~ 1 arg2 ...

where the ·-· argument is optional; if it is present, it may be followed by any combination of
a, b, and c.

main(argc, argv)
int argc:
char .. argv: I

aftag - bftag - cftag - o:
if(argc > 1 && argv{1J[OJ - - '-') {

for(i• 1: <c-argv(1][l]) !• '\(J; i+ +)
if(c••'a' >

aflag++;
else if(c- -'b')

bftag++;
else if(c- -'c')

else

--argc;
++argv;

cflag++;

printf("%c?\n•, c);

There are several things worth noticing about this code. First, there is a real need for the
left·to·right evaluation that && provides; we don't want to look at argv{1) unless we know it's
there. Second. the statements

--argc:
++argv;

let us march along the argument list by one position, so we can skip over the nag argument as
1f 11 haJ never existed - the rest of the program is independent of whether or not there was a
nag argument This only works because argv is a pointer which can be incremented.

19. The Switch Statement; Break; Continue

The switch statement can be used to replace the multi-way test we used in the last exam·
pie. When the tests are like this:

if(c - - 'a') ...
else if(c - - 'b') .. .
else if(c -- 'c') .. .
else ...

--

C Tutorial - 17 -

testing a value against a series of ronstants, the switch statement is often clearer and usually
gives better code. Use it like this:

swftch(c) (

case 'a':
aflag++;
break:

case 'b':
bflag++:
br.eak;

case 'c':
cftag++:
break;

default:
printtt•%c?\n•, c):
break:

The case statements label the various actions we want; default gets done if none of the other
cases are satisfied. CA default is optional; if it isn't there. and none of the cases match. you
just fall out the bottom.>

The break statement in this example 1s new. It is there because the cases are just labels.
and after you do one of them, you fa/I throuRh to the next unless you take some explicit action
to escape. This is a mixed blessing. On the positive side, you can have multiple cases on a
single statement; we might want to allow both upper and lower case letters in our flag field, so
we could say

case 'a': case 'A':

case 'b': case '8':
etc.

But what if we just want to get out after doing,case ·a· ? We could get out of a case of the
switch with a label and a goto, but this is really ugly. The break statement lets us exit
without either goto or label. ·

switch(c) I

case 'a':
aftag++;
break;

case 'b':
bflag+ +;
break;

1• the break statements get us here directly • /

The break statement also works in tor and while statements
from the loop.

ii causes an immediate exit

The continue statement works 011fv inside for's and white's; rt causes the next iteration of
the loop to be slarted. This means it goes to the increment part of the for and the test part of
the while. We could have used a continue in our example to get on with the next iteration of
the for, but it seems clearer to use break instead.

C Tutorial - 18 -

20. Structures
The main use of structures is lo lump together collections of disparate variable types, so

they can conveniently be treated as a unit For example. if we were writing a compiler or as·
sembler, we might need for each identifier informalion like its name (a character array), its
source line number (an integer), some type information (a character, perhaps). and probably a
usage count (another integer).

char Id(10);
int line;.
char type:
int usage;

We can make a structure out of this quite easily. We first tell C what the structure will
look like. that is, wha! kinds of things it contains: after that we can actually reserve storage: for
it, either in the same statement or .separately. The simplest thing is lo define it and allocate
storage all at once:

struct (
char

) sym;

int
char
int

id(10):
line:
type;
usage;

This defines sym to be a structure with the specified shape; id, line, type and usage are
members of the structure. The way we refer lo any pnnicutar member of the structure is

as in

structure-name . member

sym.type - 077;
if(sym.usage - - O) ..•
while(sym.id{j + +]) ...

etc.

Although the names of !ltructure members never stand alone, they still have to be unique -
there can't be another id or usage in some other structure.

So far we haven't gained much. The advantages of structures start to come when we
have arrays of structures. or when we want to pa-;s com&>licated data layouts between functions.
Suppose we wanted to make a symbol table for up to 100 identifiers. We could extend our
definitions like

char
int
char
int

id(100)[10):
line(100];
type(100);
usage{100];

but a structure lets us rearrange this spread-out information so all the data about a single iJen·
lifer is collected into one lump:

struct {
char
int
char
int

} sym{100);

id(10):
line;
type;
usage:

-

C Tutorial - 19 -

This makes sym an array of structures: each array element has the specified shape. Now we
can refer to members as

sym(i).usage+ +; r increment usage of I-th identifier •1
for(j-O; sym(iJ.id{j+ +l 1- '\O':) ...

etc.

Thus to print a list of all identifiers 1hat haven't been used, together with their line number.

for(i-O: i<nsym; i+ +)
if(sym(i}.usage - - O)

printf(.°lod\t%s\n•. sym(i].line, sym(i).id);

Suppose we now want to write a function lookup(name) which will tell us if name already
exists in sym, by giving its index. or that it doesn't, by returning a -1. We can't pass a struc
ture 10 a function directly - we have to either define it externally, or pass a pointer to it. Let's
try the first way first.

int nsym O; r current length of symbol table •I

struct {
Char id(10);
int
char
int

line;
type;
usage;

l sym(100); r symbol table •I

main() {

if((index - lookup(newname)) > - 0)

else

lookup(s)
char •s: {

int i;

sym{indexJ.usage+ +; r ajready there ... •1

install(newname. newline, newtype);

extern struct {
char id(10);
int line;
char type;
int usage;

) sym(J:
for(i-O; i<nsym; i++)

if(compar(s, sym(i).id) > O)
return(i):

return(- 1);

compar(s1,s2) r return 1 if s1--s2. O otherwise •1
char •s 1, ·s2: I

while(•s 1 + + - - ·s2)
if(•s2+ + - - '\CJ)

retum(1);

C Tutorial - 20 -

retum(O~:

The declaration of the strU1.:ture in lookup isn't needed if the externaJ definition precedes its
use rn the same 'ource file. as we shall see'in a moment.

Now what if we want to use pointers'>

struct symtag I
char ·i~ 10);
int line;.
char type;
int usage;

I sym(100). •psym:

psym - &sym[O); 1• or psym - sym; • /

Tlw; makc'i psym a po1111cr to our kind of structure (the symbol table), then initializes it to
po1111 :o the first \!lcment of sym.

No1i1.:c that ~e adde<.J something after the word struct: a .. tag" called symtag. This puts
a name on our structure <.Jefinition so we i:an refer to it later without repeating the definition.
It's not neces'iary but useful. In fact we could have said

struct symtag {
... structure definition

I:
which wouldn't h;nc <l~"l!.rnct.I any .,toragc at all. and then said

struct symtag sym(100);
struct symtag •psym;

which would define the arra~ anti the pointer. This could be condensed further, to

struct symtag sym{ 100). •psym:

The way we actuall)' refer to an member of a structure by a pointer is like this:

ptr - > structure-member

The wmbol ·->'mean' we're pointing al a member of a structure;·->' is only used in that
context. ptr is a po1111er to the (base of) a structure that contains the structure member. The
expression ptr- >structure-member refers 10 1he indicated member of the pointed-lo struc·
ture. Thus we ha"c constructions hke:

psym- > type • 1;
psym- >id(O) - ·a·;

and so on.

For more· complicaled pointer expressions. it's wise 10 use parentheses to make it clear
who goes wi1h what. For example.

struct I int x. •y; I •p;
p- > x + + increments x
+ +p- > x so does this!
(++pl-> x increments p before getting x
•p- > y + + uses y as a pointer, then increments it
•(p- >y)+ + so does this
•(p++)->y uses y as a pointer, then increments p

The way to remember these is that - > .. (dot), ()and []bind very tightly. An expression in- -

- C Tutorial - 21 -

votving one of these is treated as a unit p- > x, ali), y.x and f(b) are names exactly as abc is.

If p is a pointer to a structure. any arithmetic on p takes into account the aculal size of
the structure. For instance. p++ increments p by the correct amount to get the next element
of the array of structures. But don't assume that the size of a structure is the sum of the sizes
of its members - because of alignments of different sized objects. there may be .. holes" in a
structure.

Enough theory. Here is the lookup example. this time with pointers.

struct symtag I
char · id{ 101;
int line:
char type;
int usage:

I sym{100J;

r!".ain< > I
struct symtag •tookup();
struct symtag •psym;

if((psym • lookup(newname)))
psym ->usage++;

else

r non-zero painter • /
r means atready there • /

install(newname. newline. newtype);

struct symtag •1ookup(s)
char •s; {

struct symtag •p;
for(p • sym: p < &sym(nsym]; p + +)

if(compar(s, p- >Id) > 0)
retum(p);

retum(O);

The function compar doesn't change: 'p- >id' refers to a string.

Jn main we test the pointer returned by lookup against zero. relying on the fact that a
pointer is by definition never zero when it really points at something. The other pointer mani
pulations are trivial.

The only complexity is the set of lines like

struct symtag •tookup();

This brings us to an area that we will treat only hurriedly - the question of function types. So
far. all of our functions have returned integers (or characters. which are much .the same).
What do we do when the function returns something else. like a pointer to a structure? The
rule is 1ha1 any function that doesn ·1 return an int has to say explicitly what it does return.
The 1ype information goes before lhe function name (which can make the name hard Lo see).
Examples:

char ffa)
int a: {

C Tutorial - 22 -

int •g() { ... }

struct symtag •tookup(s) char •s; { ... I
The function f returns a character, g returns a pointer to an integer. and lookup returns a
pointer to a structure that looks like symtag. And if we're goina to use one of these functions,
we have to make a declaration where we use it, as we did in main above.

Notice the parallelism between the declarations

struct SY,111tag •tookup();
struct symtag •psym;

In effect, this says that lookup() and psym are both used the same way - as a pointer to a
strcture - even though one 1s a variable and the other is a function.

21. Initialization of Variables

An e·.:i::mal variable may be initialized al compile time by foilowing its name with an ini·
tializ1ng value when it is denned. The initializing value has to be something whose value is
known at compile time. like a constant.

int x O; 1• "O" could be any constant • /
int a 'a':
char flag 01n:
int •p. &y(1]; 1• p now points to y{1] •1

An external array can be initialized by following its name with a list of initializations enclosed
in braces:

. int x(4) (O. 1,2,31:
int y(] (0.1,2,31;
char •msg "syntax error\n";
char •keyword{] {

};

"Ir.
"else".
"for",
"while",
"break".
"continue~.

0

r makes x(IJ • i •1
1• makes y big enough for 4 values •;
r· braces unnecessary here • /

This last one is very useful - 11 makes keyword an array of pointers to character strings, with
a zero at the end so we can identify the last element easily. A simple lookup routine could
scan this un11l it either finds a match or encounter; a zero keyword pointer:

lookup(str) r search for str in keyword(] •;
char •str: I

int i,j,r;
for(i-O; keyword(i) !- O: i + +) {

I

for(j-0; (r-keyword{i]{j]) - - str{j} && r !- '\O'; j+ +);
if(r - - str{j])

retum(i):

retum(-1);

C Tutorial - 23 -

Sorry - neither local variables nor structures can be initialized.

22. Scope Rules: Who Knows About What

A complete C program need not be compiled all at once: the source text of the program
may be kept in several files, and previously compiled routines may be loaded from libraries.
How do we arrange that data gets passed from one routine to another? We have already seen
how to use function arguments and values, so let us talk about external data. Warning: the
words declaration and definition are used precisely in this secuon; don't treat them as the same
thing.

A major shortcut exists for making ext.em declarations. If the definition of a variable ap
pears befort' its use in some function, no extem declaration is needed within the function.
Thus. if a file contains

t 1< > I ... I
int foo;

f2() I .. . foo - 1 : ... }

f3() I ... if (foo) ... I
no declaration of foo is needed in either f2 or or f3. because the external definition of foo ap
pears before them. But if f1 wants to use foo, it has to contain the declaration

t 1<) I
extem int foo;

This is true also of any function that exists on another file - if it wants foo it has to use
an extern declaration for it. (If somewhere there is an extem declaration for something, there
must also eventually be an external definition of it, or you'll get an "undefined symbol" me.'i
sage.)

There are some hidden pitfalls in external declarations and definitions if you use multiple
source files. To avoid them, first, define and initialize each externaJ variable only once in the
entire set of files:

int too O:
You can get away with multiple external definitions on UNIX. but. not on GCOS. so don't ask for
trouble. Multiple initializations are illegal everywhere. Second, at the beginning of any file
that contains functions needing a variable whose definition is in some other file, put in an ex
tem declaration. outside of any function:

extern int too:

'1< > r ... i
etc.

The #include compiler control line. to be discussed shortly, lets you make a single copy
of the external declarations for a program and then stick them into each of the source files
making up the program.

23. #deflne, #include

C provides a very limited macro facility. You can say

#define name something

and thereafter anywhere "name" appears as a token. "something·· will be substituted. This is

C Tutorial -24-

particularly useful in parametering the sizes of arrays:

#define ARRA YSIZE 100
Int arrfARRA YSIZEJ:

whtle(i + + < ARRAYSIZE) ...

f now we can alter the entire ·program by changing or.ly the define) or in setting up mysterious
constants:

#define
#define
#define

SET 01
INTERRUPT 02
ENABLED 04

1• interrupt bit • /

if(x & (SET I INTERRUPT I ENABLED)) ...

Now we have meaningful words instead of mysterious constants. (The mysterious operators
·&' (ANDI and 'I' (OR> will be covered jn the next section.) It's an excetlent practice to write
programs without any literal constants except in #define statements.

There are several warnings about #define. First, there's no semicolon at the end of a
#define; all the text from the name to the end of the line (except for comments) is taken to
be the .. something". When it's put into the text, blanks are placed around it. Good style typi
cally makes the nanie in the #define upper case - this makes parameters more visible.
Definitions aft'ect things only after they occur. and only within the file in which they occur.
Defines can't be nested. Last. if there is a #define in a file, then the first character of the file
must be a'#'. to signal the preprocessor that definitions exist.

The other control word known to C is #include. To include one file in your source at
compilation time, say

•include "filename"

This is useful for putting a lot of heavily used data definitions and #define statements at the
beginning of a file to be compiled. As with #define, the first line of a file containing a #In
clude has to begin with a '#'. And #Include can't be nested - an included file can't contain
another #include.

24. Bit Operators

C has several operators for logical bit-operations. For example,

x - x & 0177;

forms lhe bit-wise AND of x and 0177. effectively retaining only the last seven bils of x. Other
operators are

inclusive OR
(circumflex) exclusive OR
(tilde) I's complement
logical NOT

< < left shift (as in x< <2)
> > right shift (arithmetic on PDP·l l; logical on H6070, IBM360)

C Tutorial - 25 -

25. Assignment Operators

An unusual feature of C is that the normal binary opc.1ators like '+', ·-·. etc. can be
combined with the assignment operator ·-· to form new mignment operators. For example,

x -- 10:
uses the assignment operator'=-' to decrement x by to. and

x -& 0177

forms the >.ND of x and Ot 77. This convention is a useful notational shortcut. particularty if x
is a complicated expression. The classic example is summing an array:

for(sum-i-0; i<n: i+ +)
sum - + array(I];

But the spaces around the operator are critical! For instance.

x - -10;

sets x to -1 O. while

x -- 10:
subtracts 10 from x. When no space is present.

x- -10;

also decreases x by I 0. Tnis is quite contrary to the experience of most programmers. In par
ticular, watch out for things like

c-·s++:
y-&x{O):

both of which are almost certainly not what you wanted. Newer versions of various compilers
are courteous enough to warn you about the ambiguity.

Because all other operators in an expression are evaluated before the assignment operator,
the order of evaluation should be watched carefully:

x-x<<ylz:
means "shift x left y places. then OR with z. and store in x." But

x-<<ylz:
means "shift x left by yjz places ... which is rather different.

26. Floating Point

We've skipped over floating point so far. and the treatment here will be hasty. C has sin
gle and double precision numbers (where the precision depends on the machine at hand>. For
example.

double sum:
float avg, y[10);
sum - 0.0:
for(i-O: i<n: i+ +)

sum - + y[i);
avg - sum/n;

forms the sum and average of the array y.

All noating arithmetic is done in double precision. Mixed mode arithmetic is legal; if an
arithmetic operator in an expression has both operands int or char, the arithmetic done is in
teger, but if one operand is int or char and the other is float or double, both operands are con-

C Tutorial - 26 -

verted 10 double.

(x+l}/j

Thus if i and j are int and xis float,

converts I and j to float
x + i/j does i/j Integer, then converts

Type conversion may be made by assignment; for instance.

int m, n;
float x, y;

m - x:
Y - n:

converts x to integer (truncating toward zero). and n to floating paint.

Floating constants are just like those in Fortran or PL/I, except that the exponent letter is
'e' instead of ·e·. Thu ..

pi - 3. 14159;
large - 1.23456789e 10;

printf will format floating paht numbers: "°low.df' in the format string wilJ print the
corresponding variable 1n a field w digits wide. with d decimal places. An e instead of an f will
produce exponential notation.

27. Horrors! goto's and labels

C has a goto statement and labels. so you can branch about the way you used to. But
most of the time goto's aren't needed. <How many have we used up to this point?) The code
can almost always be more clearly expres~ed by for/while, if/else, and compound statements.

One use of goto's with some legitimacy is in a program which contains a long loop,
where a while(1) would be too extended. Then you might write

maintoop:

goto mainloop:

Another use is 10 implement a break out of more than one level of for or while. goto's can
only branch 10 labels within 1he same function.

28. Acknowledgements

I am indebted to a veritable host of readers who made valuable criticisms on several
drafts of this tutorial. They ranged in experience from complete beginners through several im
plementors of C compilers 10 1he C language designer himself. Needlc?SS to say, this is a wide
enough spectrum of opinion that no one is satisfied (including me); comments and suggestions
are still welcome, so that some future version might be improved.

-

-

-

C Tutorial -27-

References
C is an extension of 8, which was designed by n M. Ritchie and K. L Thompson (4).

The C language design and UNIX implementation are the work of 0. M. RilChie. The ocos ver
sion was begun by A. Snyder and 8. A. Barres. and completed by S. C. Johnson and M. E.
Lesk. The IBM version is primaril)· due to T. G. Peterson. with the assisaance of M. E. Lesk.
[I] D. M. RilChie. C Refrrence Manual. Bell Labs, Jan. 1974.
(21 M. E. Lesk & B. A. Barres. 711, GCClS C Li/Harv. Bell Labs. Jan. 1974.
(31 D. M. Ritch'ie & K. Thompson. UNIX l'rogammeTs Ma1rual. Sttr Edition. Bell Labs. 1974.
(41 S. C. Johnson cl 8. W. Kernighan. The ProRtammiflK Language B. Computer Science

Technical Report 8. Bell Labs. 1972.

A New Input-Output Package

D. M. Ritchie

Bell Laboratories
Murray Hill, New Jersey 07974

B.10

A new package of IO routines is available. It was designed with the following goals in
mind ..

1. It should be similar in spirit to the earlier Portable Library, and, to the extent possible, be
compatible with it. At the same time a few dubious design choices in the Portable Library
will be corrected.

2. It must be as efficient as possible, both in time and in space, so that there will be no hesi
tation in using it no matter how critical the application.

3. It must be simple to use, and also free of the magic numbers and mysterious calls the use
of which mars the understandability and portability of many programs using older pack
ages.

4. The interface provided should be applicable on all machines, whether or not the programs
which implement it are directly portable to other systems, or to machines other than the
PDPll running a version of Unix.

It is intended that this package replace the Portable Library. Although it is not directly
compatible, as discussed below, it is sufficiently similar that modifying programs to use it
should be a simple exercise.

The most crucial difference between this package and the Portable Library is that the
current off'ering names streams in terms of pointers rather than by the integers known as •fite
descriptors.' Thus, for example, the routine which opens a named file returns a pointer to a cer
tain structure rather than a number, the routine which reads an open file takes as an argument
the pointer returned from the open call.

General Usage

Each program using the library must have the line

#include <stdio.h>

which defines certain macros and variables. The library containing the routines is
'/usr/lib/libS.a.' so the command to compile is

-·---""'.,

cc ... -IS

All names in the include-file intended only for internal use begin with an underscore '_' to
reduce the possibility of collision with a user name. The names intended to be visible outside
the package are

stdin The name of the standard input file

stdout The name of the standard output file

std err

EOF
The name of the standard error file

is actually -1, and is the value returned by the read routines on end-of-file or error.

NULL is a notation for the null pointer, returned by pointer-valued functions to indicate an
error

FILE expands to 'struct _iob' and is a useful shorthand when declaring pointers to
streams.

BUFSIZ is a number (viz. 512) of the size suitable for an IO buffer supplied by the user. See
setbuf. below.

getc, getchar, putc, putchar, f eof, ferror, fileno
are defined as ,macros. Their actions are described below; they are mentioned here
to point out that it is not possible to redeclare them and that they are not actually
functions; thus, for example, they may not have breakpoints set on them.

The routines iri this package, like the Portable Library, offer the convenience of automatic
buffer allocation and output flushing where appropriate. Absent, however, is the facility of
changing the default input and output streams by assigning to 'cin' and 'cout.' The names
'stdio,' stdout,' and 'stderr' are in effect constants and may not be assigned to.

Calls

The routines in the library are in nearly one-to-one correspondence with those in the
Portable Library. In several cases the name has been changed. This is an attempt to reduce
confusion.

FILE *fopen(filename, type) char '*filename, •type

Fopen opens the file and, if needed, allocates a buff er for it. Filename is a character string speci
fying the name. Type is a character string (not a single character). It may be '"r",' '"w",' or
'"a"' to indicate intent to read, write, or append. The value returned is a file pointer. If it is
NULL the attempt to open failed.

FILE *freopen(filename, type, ioptr) char '*filename, •type; FILE •1optr

The stream named by ioptr is closed, if necessary, and then reopened as if by /open. If the
attempt to open fails, NULL is returned, otherwise ioptr, which will now ref er to the new file.
Often the reopened stream is stdin or stdout.

int getdioptr) FlLE •ioptr

returns the next character from the stream named by ioptr, which is a pointer to a file such as
returned by /open, or the name stdin. The integer EOF is returned on end-of-file or when an
error occurs. The null character '\O' is a legal character.

int fgerdioptr) FlLE "ioptr

acts like getc but is a genuine function, not a macro.

putdc, ioptr) FILE "ioptr

Putc writes the character con the output stream named by ioptr, which is a value returned from
/open or perhaps stdout or stderr. The character is returned as value, but EOF is returned on
error.

fputc(c, ioptr) FILE *ioptr

Fputc acts like putc but is a genuine function, not a macro.

fc/ose(ioptr) FILE "ioptr

The file corresponding to ioptr is closed after any buffers are emptied. A buffer allocated by the
IO system is freed. Fclose is automatic on normal termination of the program.

ffiush(ioptr) FlLE "ioptr

Any buffered information on the {output) stream named by ioptr is written out. Output files
are normally buffered if and only if they are not directed to the terminal, but stderr is
unbuffered unless setbufis used.

- 3 -

exit(errcode)

Exit terminates the process and returns its argument as status to the parent. This is a special
version of the routine which calls fflush for each output file. To terminate without flushing, use
_exit.

feof(ioptr) FILE •ioptr

returns non-zero when end-of-file has occurred on the specified input stream.

ferrodioptr) FILE •1optr

returns non-zero when an error has occurred while reading or writing the named stream. The
error indication lasts until the file has been closed.

getchar(J
is identical to getdstdin).

putchar(c)

is identical to putc(c, stdout).

char .,ets(s) char •s

reads characters up to a new-line from the standard input. The new-line character is replaced
by a null character. It is the user's responsibility to make sure that the character array sis large
enough. Gets returns its argument, or NULL if end-of-file or error occurred. Note that this
routine is not compatible with /gets; it is included for downward compatibility.

char -,rgets(s, n, ioptr) char •s; FILE •;optr

reads up to n characters from the stream ioptr into the character pointer s. The read terminates
with a new-line character. The new-line character is placed in the buffer followed by a null
character. The first argument, or NULL if error or end-of-file occurred, is returned.

puts(s) char •s
writes the null-terminated string (character array) s on the standard output. A new-line is
appended. No value is returned. Note that this routine is not compatible with /puts; it is
included for downward compatibility.

-,rputs(s, ioptr) char •s; FILE •;optr

writes the null-terminated string (character array) s on the stream ioptr. No new-line is
appended. No value is returned.

ungetc(c, ioptr) FILE •;optr

The argument character c is pushed back on the input stream named by ioptr. Only one charac
ter may be pushed back.

print/(format, a 1, .. .) char -.tormat

fprintf(ioptr, format, a 1. . . .) FILE •ioptr; char '*format

sprintf(s, format, al • .. .)char •s, -.tormat

Print/ writes on the standard output. Fprintf writes on the named output stream. Sprint/ puts
characters in the character array (string) named by s. The specifications are as described in sec
tion print/ (III) of the Unix Programmer's Manual. There is a new conversion: %m.n g converts
a double argument in the style of e or /as most appropriate.

scanf(format, a J, .. .) char -.tormat

jscanf(ioptr, format, a J, .. .) FILE *ioptr; char 'iormat

sscanj(s. format, al, .. .) char •s. '*format

Scan/ reads from the standard input. Fscanf reads from the named input stream. Sscanf reads
from the character string supplied as s. The specifications are identical to those of the Portable
Library. Scan/ reads characters, interprets them according to a format, and stores the results in
its arguments. It expects as arguments a control string format, described below, and a set of

- 4 -

arguments, each of which must be a pointer, indicating where the converted input should be
stored.

The control string usually contains conversion specifications, which are used to direct
interpretation of input sequences. The control string may contain:

1. Blanks, tabs or newlines, which are ignored.

2. Ordinary characters (not %) which are expected to match the next non-space character of
the input stream (where space characters are defined as blank, tab or newline).

3. Conversion specifications, consisting of the character %, an optional assignment suppress
ing character , an optional numerical maximum field width, and a conversion character.

A conversion specification is used to direct the conversion of the next input field; the
result is placed in the variable pointed to by the correspo~ding argument, unless assignment
suppression was indicated by the character. An input field is defined as a string of non-space
characters; it extends either to the next space character or until the field width, if spedfied, is
exhausted.

The conversion character indicates the interpretation of the input field; the corresponding
pointer argument must usually be of a restricted type. The following conversion characters are
legal:

%

d

indicates that a single % character is expected in the input stream at this point; no assign
ment is done.

indicates that a decimal integer is expected in the input stream; the corresponding argu
ment should be an integer pointer.

o indicates that an octal integer is expected in the input stream; the corresponding argument
should be a integer pointer.

ic indicates that a hexadecimal integer is expected in the input stream; the corresponding
argument should be an integer pointer.

s • indicates that a character string is expected; the corresponding argument should be a char
acter pointer pointing to an array of characters large enough to accept the string and a ter
minating '\O', which will be added. The input field is. terminated by a space character or a
newline.

c indicates that a character is expected; the corresponding argument should be a character
pointer; the next input character is placed at the indicated spot. The normal skip over
space characters is suppressed in this case; to read the next non-space character, try % 1 s.
If a field width is given, the corresponding argument should refer to a character array, and
the indicated number of characters is read.

e (or/) indicates that a floating point number is expected in the input stream; the next field
is converted accordingly and stored through the corresponding argument, which should be
a pointer to a float. The input format for floating point numbers is an optionally signed
string of digits possibly containing a decimal point, followed by an optional exponent field
beginning with an E or e followed by an optionally signed integer.

indicates a string not to be delimited by space characters. The left bracket is followed by a
set of characters and a right bracket; the characters between the brackets define a set of
characters making up the string. If the first character is not circumflex (A), the input field
is all characters until the first character not in the set between the brackets; if the first
character after the left bracket is A, the input field is all characters until the first character
which is in the remaining set of characters between the brackets. The corresponding argu
ment must point to a character array.

The conversion characters d, o and x may be capitalized or preceded by I to indicate that a
pointer to long rather than inc is expected. Similarly, the conversion characters e or f may be
capitalized or preceded by I to indicate that a pointer to double rather than float is in the argu
ment list. The character h will function similarly in the future to indicate short data items.

For example, the call

int i; float x; char narne(SO);
scanf("%d%f%s", &i, &x, name);

with the input line

25 S4.32E-1 thompson

-s -

will assign to i the value 25, x the value S.432, and name will contain "thompson\O". Or,

int i; float x; char narne(SO];
scanf(•%2d%t1'A>d%(1234567890]W, &i, &x, name);

with input

56789 0123 56a72

will assign 56 to i, 789.0 to x, skip "0123", and place the string .. 56\0" in name. The next call
to getchar will return 'a'.

Scan/ returns as its value the number of successfully matched and assigned input items.
This can be used to decide how many input items were found. On end of file, EOF is returned;
note that this is different from 0, which means that the next input character does not match
what was called for in the control string.

fread(ptr, sizeo/('*ptr), nitems, ioptr) FILE •;optr

reads nitems of data beginning at ptr from file ioptr. It behaves identically to the Portable
Library's cread. No advance notification that binary IO is being done is required; when, for
portability reasons, it becomes required, it will be done by adding an additional character to the
mode-string on the fopen call.

fwrite(ptr, sizeo/('*ptr), nitems, ioptr) FILE "'ioptr

Like /read, but in the other direction.

rewind(ioptr) FILE •;optr

rewinds the stream named by ioptr. It is not very useful except on input, since a rewound out
put file is still open only for output.

system (string) char •string

The string is executed by the shell as if typed at the terminal.

getw(ioptr) FILE •;optr

returns the next word from the input stream named by ioptr. EOF is returned on end-of-file or
error, but since this a perfectly good integer feofand ferror should be used.

putw(w, ioptr) FILE •;optr

writes the integer w on the named output stream.

setbu/(ioptr, buj) FILE '*ioptr; char •bu/

Setbufmay be used after a stream has been opened but before IO has started. If bu/is NULL,
the stream will be unbuffered. Otherwise the buff er supplied will be used. It is a character
array of sufficient size:

char buf{BUFSIZ];

fileno(ioptr) FILE •;optr

returns the integer file descriptor associated with the file.

jseek(ioptr, offset, ptrname) FILE "ioptr; long offset

The location of the next byte in the stream named by ioptr is adjusted. Offset is a long integer.
If ptrname is 0, the offset is measured from the beginning of the file~ if ptrname is 1, the offset

- 6 -

is measured from the current read or write pointer; if ptrname is 2, the offset is measured from
the end of the file. The routine accounts properly for any buffering. (When this routine is
used on non-Unix systems, the offset must be a value returned from fie/I and the ptrname must
be 0).

long flell(ioptr) FILE "'ioptr

The byte offset, measured from the beginning of the file, associated with the named stream is
returned. Any buffering is properly accounted for. (On non-Unix systems the value of this call
is useful only for handing' .to jseek, so as to position the file to the same place it was when fie/I
was called.)

getpw(uid, buj) char "'bu/

The password file is searched for the given integer user ID. If an appropriate line is found, it is
copied into the character array bu/, and 0 is returned. If no line is found corresponding to the
user ID then 1 is returned.

char •callodnum, size)

aJlocates space for num items each of size size. The space is guaranteed to be set to 0 and the
pointer is sufficiently well aligned to be usable for any purpose. NULL is returned if no space
is available.

cfree(ptr) char "'ptr

Space is returned to the pool used by calloc. Disorder can be expected if the pointer was not
obtained from calloc.

The following are macros defined by stdio.h.

isalpha(c)

returns non-zero if the argument is alphabetic.

isupper(c)

returns non-zero if the argument is upper-case alphabetic.

islower(c)

returns non-zero if the argument is lower-case alphabetic.

isdigit(c)

returns non-zero if the argument is a digit.

isspace(c)

returns non-zero if the argument is a spacing character: tab, new-line, carriage return, vertical
tab, form feed, space.

toupper(c)

returns the upper-case character corresponding to the lower-case letter c.

tofower(c)

returns the lower-case character corresponding to the upper-case letter c.

-

A General-Purpose Subroutine Library for PWB/UNIX

Alan L. Glasser

Bell Laboratories
Piscataway, New Jersey 08854

ABSTRACT

A new general-purpose subroutine library has been written for PWB/UNIX. It complements
the functions provided by D. M. Ritchie's A New Input-Output Package. This library has
been used in the implementation of Release 4 of the Programmer's Workbench Source Code
Control System (sccs1PWB), and many small UNIX C programs. It is efficient in time and
space, as well as being easy to use. This document is a user's guide to this library.

1. "lndude" FILES

The directory "/usr/include" contains public include files. Users of the subroutine library should be
familiar with the contents o~ these files. The following are available:

archive.h Det1nes the "magic" number of an archive file and declares a structure for the header
of an archive file.

ctype.h

dir.h

ermos.h

fatal.h

macros.h

misc.h

stat.h

stdio.h

time.h

system.h

Defines macros for testing whether a character is alphabetic, upper-case, lower-case, a
digit, a "space," and for converting upper-case characters to lower-case and vice
versa.

Declares a structure for a directory entry.

Defines system call error numbers (see INTRO(II)). These were copied from the
UNIX system source.

Defines certain macros, constants, and variables used by the general-purpose error
and signal handling subroutines (see below).·

Defines some general-purpose macros.

Declares some unnamed structures for accessing pieces of a variable (e.g., the low
byte of an integer). These were copied from the UNIX system source.

Declares an inode structure to be used with stat(II) and fttat(II}, and defines con
stants for the various mode bits of an inode.

Used by A New Input-Output Package.

Declares a structure to be used with localtime(Il.I).

Defines certain system constants; in particular, signal numbers. These were copied
from the UNIX system source.

2. SUBROUTINES

There are four sets of subroutines available. _ Three of these sets are kept in one library
("/usr/lib/libpw.a", accessible as -/pw), and the fourth set is kept in a second library
("/usr/lib/libwrt.a", accessible as -lwrt) for reasons that will be explained below; -lwrt should nor
mally be last on the cc argument list.

The first library (-lpw) contains the string, error, and sys sets. The second library (-lwrt) contains
only the write set (see below).

The string set can be used in conjunction with any other subroutines. The string set is independent of
the other sets and of other subroutine libraries; no subroutine in the string set calls any subroutine not
in the string set.

B.1:

• 2.

The e"or set provides general-purpose error and signal handling routines.

The sys set provides interfaces to most of the commonly used system calls. These interfaces win call
.1ara/O (see the e"or set) if an error condition is detected in the interface.

The write set contains an interface to the write(II} system cail; this interface handles errors and calls
/ata/O, if necessary. If the write set is used. then ail calls to the subroutine write(} will be directed to
this write routine (remember, it will call fatalO if an error is detected). It is for this reason that the
write set is in a separate library; if all routines were in the same library, then users would be unwittingly
using the write(Il) routine of tb~ write set.

The subroutines presented here do not call narg.s(ill), as the narg.s(ill) subroutine does not work if a
program is loaded with separate data and instruction spaces.

2.1 String Set

char '*alfoca(nbytesJ
Allocates nbytes bytes of automatic memory. Automatic memory is freed upcn return from the calling
function (space is allocated from the stack}. There is no way to explicitly free a piece of memory gotten
from allocaO. AllocaO returns the address of the ailocated area; a memory fault is generated when
there isn't enough memory. ·

N. B.: Use of aJ/ocaO as an argument to another subroutine will not work correctly because argu·
ments are pushed onto the stack and allocaO takes memory from the stack. It is necessary to first
set a tempcrary variable equal to the value returned by allocaO, and then pass that variable to the
other subroutine.

any(c, str)
If character c is equal to any character in the string str, returns 1; else returns 0.

anvstdstr J, str 2)
if any character of string strl is equal to any character in string str2, returns the offset (in strl) of the
first such match; else returns -1.

balbrk(str. o~n. clos. end)
Finds the offset, in string str, of the first of the characters in the string end occurring outside of a bal
anced string. A balanced string contains matched occurrences of any character in the string open and the
correspcnding character in the string clos. Balanced strings may be nested. In addition to the characters
in end, the null character is implicitly an end character. Unmatched members of open or close result in
an error return (a value of -1 is returned}.

Example I:

s - "a[bc-2]=-3";
0 - "({[";

c - "} }]";
e =- "•";

balbrk(s, o, c. e) returns 7.

Example 2:

s - "a[bc-2-3";

with o, c, and e as in Example 1, balbrk(s, o, c, e) returns -1.

char •cat(dest, source1, source1, source1 , • ."., sourct;,. 0)
Concatenates strings. First, string source1 is copied to string desL Then subsequent soUl'Cetc strings are
concatenated (by copying) onto the end of desL The space for dest must be allocated by the caller (i.e.,
dest is taken to be the address of an area of memory large enough to hold the result). The address of
the result (i.e., dest) is returned.

- 3 -

dname(pathname)
Returns a pointer to the name of the directory that contains the file pointed to by pathname. DnameO
is the complement of snameO (see below). If pathname is a simple name (e.g., "file"), a pointer to
''." is returned. If pathname is "/unix'', a pointer to "/"is returned. If pathname is "/bin/who", a
pointer to "/bin" is returned, etc. The string pointed to by pathname is modified by dnameO; pathname
is returned.

equal(srrl, str2)
If string str 1 is equal to string str 2, returns 1; else returns 0.

imatch(preflx, str)
Initial match. If string pre/IX is a prefix of string str, returns 1; else returns 0.

index(strl, str2)
If string str2 is a substring of string strl, returns the offset of the first occurrence of str2 in strl, else
returns -1.

move(a, b. n)
Copies the first n characters from string a to string b.

patoi(str)
Convens an ASCII string to a integer. The string str i~ taken to be a string of decimal digits; the
numeric value represented by str is returned. Converts positive numbers only. Returns -1 if a non
numeric character is encountered.

long patol(str)
Converts an ASCII string to a long integer. The string str is taken to be a string of decimal digits; the
numeric value represented by str is returned. Converts positive numbers only. Returns -1 if a non
numeric character is encountered.

char •repeatfresult, str, repfac)
The string str is first copied to the string result. Then str is copied repfac-1 times onto the end of
result. As with catO (see above), allocation of space for result is the caller's responsibility. Result is
returned.

char •satoi(str, ip)
SatoiO is similar to patoi (see above), except that the integer value is stored through the integer pointer
ip, and a pointer to the first non-numeric character encounterl'i is returned.

size{str)
Returns the number of bytes of memory used by string str, including the null byte, so that
size(str) is equal to lengrh(str) + 1.

char •sname(str)
SnameO returns a pointer to the "simple" name of path name str; i.e., a pointer to the first character
after the last "/" in str. If str does not contain a "/", a pointer to the original string is returned.

char •strend(str)
StrendO returns a pointer to the end (null byte) of the string str.

substr(str, result, origin, fen)
Copies at most !en characters from the string str starting at srrf origin] to the string pointed to by result.
Sufficient space must exist for that string; result is returned. There is no checking for the reasonableness
of the arguments. The copying of str to result stops if either the specified number (i.e., /en, which is
taken as an unsigned integer) characters have been copied, or if the end of str (i.e., a null byte) is
found. A large value of !en (e.g., -1) will usually cause all of str to be copied.

char •rrnsladstr, old, new, result)
Copies string str to string result replacing any character found in string old with the corresponding char·
acter from string new; result is returned.

- 4 -

verffY(str 1, str])
If string strl contains any characters not in string str2, returns the otfset of the first such character in
srrl: else returns -1.

char •zero(ptr, cnt)
Sets to zero the area of memory cnt bytes long, starting at address ptr; ptr is returned.

char •zeropad(str)
Replace initial blanks with "O" characters in string str,· str is returned.

2.2 Error Set

The error set of subroutines consists of a general-purpose error handling routine called fa'ltl/0, and
general-purpose signal-setting and signal-catching routines called setsig() and setsigl (), respectively.
There are also two additional routines called clean..up() and u.serexitO, which may be called by /a'llll0 or
setsigl 0. Default versions of these two additional routines are supplied in the library. Users may
define their own clean..upO and userexitO routines.

The public include file "fatal.h" contains definitions needed to use /a'ltli0. It contains the following:

extern
extern
extern
extern
extern

int
char
int
int
int

Fflap;
*Ffile;
Fvalue;
(*Ffunc)();
Fjmp[3];

define FI'LMSG 0100000
define FI'LCLN 040000
define FTLFUNC 020000
define FI'LACT 077
define FTLJMP 02
define FTLEXIT 01
define FTLRET 0

define FSA VE(val) SA VE(Fflags,old..Fflap); Fflap - val;
define FRSTR() RSTR(Fflap,old..Fflags);

fatal(msg)
A general-purpose error handler. Typically, low-level subroutines that detect error conditions (an open
or create routine, for example) return as a value a call of fata/O with an appropriate message string.
For example:

return(fatal("can't do it"));

Higher-level routines control the execution of ja'ltl/0 via the global Word Fj1ags. The macros FSA YEO
and FRSTR () in .. fatal.h" can be used by higher-level subroutines to save and restore the Fflags word.

The argument to fatal() is a pointer to a message string. The action of fata/O is driven completely ,
from the Fflags global integer, which is interpreted as explained below.

The FTLMSG bit controls the writing of the message on file descriptor 2. The message is preceded by
the string "ERROR: ", unless the global character pointer Fjile is non-zero, in which case the message
is preceded by a string equivalent to:

s - sprintf(space, "ERROR [%s}: ", Ffile);

A new-line character is written after the user-supplied message.

If the FTLCLN bit is on, clean..up() is called with an argument of 0 (see below).

If the FI'LFUNC bit is on, the function pointed to by the global function pointer Ffanc is called with
the user-supplied message pointer as an argument. This feature can be used to log these messages.

The FTLACT bits determine how fatal(} should return. If the FTUMP bit is one, longjmp(Fjmp) (see
se(/mp(III)) is called. If the FTLEXIT bit is one the value of u.serexit(J) is passed as an argument to

-

-·

-s -

exi1(Il) (see below). If none of the Fl'LACT bits is on (the default value for FJTags is O), the globaJ
word Fvalue (initialized to -1) is returned.

If all fatal() globals have their default values, fatal() simply returns -1.

setsigO
General-purpose signal-setting routine. All signals not already ignored or caught are made to be caught
by the signal catching routine setsigl 0.

setsigJ()
General-purpose signal catcher and tennination routine. If a signal other than hangup, interrupt, or
quit is caught, a "user-oriented" help(I) message is printed on file descriptor 2. If hangup, interrupt,
or quit is caught, subsequent occurrences of that signal will be ignored. Tennination is similar to the
FTLCLN and Fl'LEXIT options of fatal(). in that clean..up(sig) (where sig is the signal number) and
exit(userexit(J)) are called.

If the file "dump.core" exists in the current directory, the IOT signal is set to 0 and abort(III) is called
to produce a core dump (after calling clea1W1pO, but before calling userexitO).

clean..upO .
A default clean..up() routine is provided to resolve external references. It simply returns. User
supplied clean..up() routines are often used for removing temporary files, etc.

userexit(code)
A default userexitO routine is provided to resolve external references. It returns the value of code.
User-supplied userexitO routines are often used for logging usage statistics.

l.J Sys Set

The sys set of subroutines provides interfaces to system calls that process error conditions and call
fataiO. In addition, a few functions which are not available elsewhere are provided.

curdir(po.rh)
Places the complete pathname of the current directory in string po.th. Returns 0 on success, non-zero
on failure. On successf uJ return, the current directory is the same as it was on entry; on failure return,
the current directory is not known.

fdfopen(/d. mode)
This subroutine provides a file-descriptor interface to the routines in A New Input-Output Package. and
is required when one wants to use the routines in A New Input-Output Package with pipes. The first
argument is a file descriptor (from open(Il), creat(Il), or pipe(Il)), the second is the read/write mode
(Oil, respectively). A.file pointer (see A New Input-Output Package) is returned on success, and NULL
on failure (typically, because there are no file structures available).

giveup(dump)
This routine does the following:

Change directory to"/" if argument is 0.
Set IOT signal to system default (0).
Call abort(III) .

Thus, if giveupO is called with a 0 argument~ and the file "/core" is not writable (or if the file ''/core"
doesn't exist, and the directory"/" is not writable), no core dump will be produced.

lockit(/ockfile. count, pid)
A process semaphore implemented with files; typically, used to establish exclusive use of a resource
(usually a file). The file's name is lockjile. LockitO tries count times to create lockfile mode 444. It
sleeps IO seconds between tries. If lockjile is created, the number pid (typically, the process ID of the
current process} is written (in binary; i.e., as two bytes) into lockjile, and. 0 is returned. If lock.file exists
and hasn't been modified within the last 60 seconds, and if it either is empty or if its first two bytes,
interpreted as a binary number, are not the process ID of any existing process, lockjile is removed and
fockitO tries again to make lockjile. After count tries, or if the reason for the creation of lockfile failing
is something other than EACCES (see INTRO(II)), lockitO returns -1. See also unlockitO. below.

- 6 -

renamefoldname. newname)
Renames oldname to be newname; it can be thought of as:

mv oldname newname

It caJJs xlinkO and xunlinkO (see below).

un/ockit{/oclefile, pidJ
UnlockuO is meant to be used to remove a lockflle created by lockitO. It verifies that the pid specified is
contained in the first two bytes of the named loclefile, and then removes it. If the pi<b match, and the
ftle is successfully remov~ unlockitO returns O; otherwise, -1 is returned.

userdir(uidJ
Returns user's login directory name. The argument must be an integer user ID. There is an assump
tion that the directory field is the tlfth field of a password ftle entry (i.e., there is no "group id" in the
password file). Returns a pointer to the login directory on success, 0 on failure. It remembers its argu
ment and the returned login directory name for subsequent calls to speed itself up. Users of PWB/UNIX
systems should use logdirO (see /ogiefo(Il)).

username(uid)
Returns user's login name. The argument must be an integer user ID. Returns a pointer to the login
name on success, a pointer to the string representation of the user ID on failure. There is an assump
tion that the login name field is the first field of a password file entry. It remembers its argument and
the returned login name for subsequent calls to speed itself up. Users of PWBIUNIX systems should use
lognameO (see loginfo(II)). •

xa/Joc(size). ~ee(ptr), ~eeaJIO
XallocO and ~eeO are used in the same way as a//oc(lll) and .free(III). The function ~110 frees
all memory allocated by xanocO (it calls brk(II)). XallocO returns the address of the allocated area on
success, and the value of fata/O on failure. Xfree() and xfreea/10 don't return anything. XallocO uses
a "first fit" strategy (unlike a//oc(II)). XfreeO always coalesces contiguous free bloclcs. XallocO always
allocates 2-byte words. XallocO actually allocates one more word than the amount requested. The
extra word (the first word of the allocated block) contains the size (in bytes) of the entire block. This
size is used by xfreeO to identify contiguous blocks, and is used by xallocO to implement the first fit
strategy. Bad things will happen if that first (size) word is overwritten. Worse things happen if x;free{)
is called with a garbage argument.

xcread name, mode)
XcreatO is used in the same way as crea1(1I). XcreatO requires write pennission in the pertinent direc·
tory in all cases, and the created file is guaranteed to have the specified mode and be owned by the
effective user (xcreatO do~ this by first unlinking the ftle to be created); xcreatO returns a file descrip
tor on success, and the value of fatal() on failure.

xji::reat{file, mode)
XjcreatO is a macro that combines xcreatO and fdfopenO: its definition is:

f dfopen (xcreat (file, mode), 1)

xfopen(jile, mode)
XfopenO is a macro that combines xopen() (see below) andfdfopenO: its definition is:

f dfopen (xopen (file, mode), mode)

xlink(/1. fl)
XlinkO is used in the same way as link(II). It is an interface to link(II) that handles all error condi
tions. It returns 0 on success, and the value of fatal() on failure.

xmsg(file, funcname)
Xmsg() is used by the other x-routines to generate an error message based on errno (see INTRO(U)).
It calls fata/O with the appropriate error message. The second argument is a pointer to the calling
function's name (a string). There are predefined messages for the most common errors. Other errors
cause a message of the form: ·

-

- 7 -

str - sprintf(space, "error - %d, function - '%s"', errno, funcname)

to be passed to fata!O.

xopen(name, mode)
XopenO is used in the same way as open.(II). It is an interface to open(Il) that handles all error condi
tions. It returns a file descriptor on success, and the value of fatal() on failure.

xpipe(t)
XpipeO is used in the same way as pipe(II). It is an interface to pipe(Il) that handles all error condi
tions. It returns 0 on success, and the value of faraJ() on failure.

x:unlink(j)
XunlinkO is used in the same way as unlink(II). It is an interface to unlink(Il) that handles all error
conditions. It returns 0 on success, and the value of fataiO on failure.

2.4 Write Set

write(ftldes, buffer, nbytesJ
Write{) is used in the same way as write(II). It is an interface to syswriteO (see below) that handles all
error conditions. It returns the number of bytes written on success, and the value of fatal() on failure.

syswrite(ftldes, buffer, nbytesJ
SyswriteO is identical to write(II), except that the name write has been changed to syswrite.

-
Guide to IBM Remote Job Entry for PWB/UNIX Users

A. L. Sabsevitz
Bell Laboratories

Piscataway, New Jersey 08854

1. PREFACE

A set of background processes supports remote job entry (RJE) from a PWB/UNIX* computer to IBM Sys
tem/360 and /370 host computers. "Hasp" is the common name used for the collection of programs
and for the file organization that provides this facility; it allows PWB/UNIX to communicate with IBM's
Job Entry Subsystem by mimicking an IBM 2770 remote station. The PWBIUNIX User's Manual page
hasp(VIII) summarizes their design and operating procedures. That manual also contains a terse
description of the send(I) command, which is the user's primary interface to RJE. 1 These are the
definitive sources for information about RJE. Although the word "Hasp" may be used in this guide, it
represents all IBM RJE subsystems of the PWB/UNIX system.

This guide is a tutorial overview of RJE. 2 It is addressed to the user who needs to know how to use the
system, but does not need to know details of its implementation. The two following sections constitute
an introduction to RJE. •
2. PRELIMINARIES

To become a PWB/UNIX user, you must receive a login name that identifies you to the PWB/UNIX system.
You should also get a copy of the PWBIUNIX User's Manual. This is a fairly complete description of the·
system and includes a section entitled "How to Get Started," which introduces you to PWB/UNIX; you
should read that section before proceeding with this guide.

In order to begin using RJE, you need only become familiar with a subset of basic commands. You
must understand the directory structure of the file system, and you should know something about the
attributes of files: see chdir(I), chmod(I), chown (I), cp(l), ln(l), fs(l), mkdir(I), mv(l), rm(l). You
must know how to enter, edit, and examine text files: see car(I), ed(I), pr(I}. You should know how
to communicate with other users and with the system: see mail(I), mesg(I), who(I), write(I). And,
finally, you might have to know how to describe your terminal to the system: see ascii(V), stty(l),
tabs(l}.

3. BASIC RJE

Let's suppose that you have used the editor, ed(I), to create a file "jobfile" that contains your control
statements (JCL) and input data. This file should look exactly like a card deck, except that alphabetic
characters, for convenience, may be in either upper or lower case. Here is an example:

% cat jobfile
//gener job (9999,r740),pgmmame,class-x usr-(mylogin,myplace)
I I step exec pgm-iebgener
I I sysprint dd sysout-a
I I sysin dd dummy
//sysut2 dd sysout-a
//sysutl dd •

first card of data

last card of data
I•

• UNIX is a Trademark of Bell Laboratories.

I. In this paper. RJE refers to the PWB/UNIX facilities provided by hasp(Vlll), and not to the Remote Job Entry feature of
IBM's HASP or JES2 subsystems.

2. The original versions of thts manual and of RJE itself were written by T. G. Lyons.

• 1 •

JS.

- 2 -

To submit this job for execution, you must invoke the send(I) command:

% send jobfile

The system will reply:

10 cards.
Queued as /usr/hasp/xmit311.

Note that send tells you how many cards it submitted and reports the position that your job has been
assigned in the queue of all jobs· waiting to be transmitted to the host system. Until the transmission of
the job actually begins, you can prevent the job from being transmitted by doing a "chmod O" on the
queued file to make it unreadable. For our example, you could say: "chmod 0 /usr/hasp/xmit311 ".

When your job is accepted by the host system, a job number will be assigned to it, and an acknowledge
ment message will be generated. This indicates that your job has been scheduled on the host system.
Later, after the job has executed, its output will be returned to the PWB/UNIX system. You wilt be
notified automatically of both of these events: if you are logged in when RJE detects these events, and if
you are permitting messages to be sent to your terminal (see mesg(l}), the following two messages will
be sent to you (still using the example above) when the job is scheduled and when the output is
returned, respectively:

Two bells
$12.18.42 JOB 384 ON RM4.RD1 -- GENER

Bell

Two bells
12:21:54 /al/user/rje/pmtO 384.gener ready

Bell

PGMRNAME

The job-acknowledgement message is passed on directly from the host system, as indicated by the fact
that it appears in upper case. The output-ready message is generated by RJE and appears in lower case.
Two bells, with an interval of one second between them, precede each message. They should be inter
preted as a warning to stop typing on your terminal, so that the imminent message is not interspersed
with your typing.

If you are not logged in when one of these events occurs, or if you do not allow messages to be sent to
your terminal, then the notification will be posted to you via the mail(l) command. You can prevent
messages directly by executing the mesg(I) command, or indirectly by executing another command,
such as pr(I), which prohibits messages for as long as it is active. You may inspect (by invoking the
mail command) your .mail file at any time for messages that have been diverted. For this example, this
might look as follows:

% mail

From rje Mon Aug 1 12:20:36 1977
$12.18.42 JOB 384 ON RM4.RD1 -- GENER PGMRNAME

From rje Mon Aug 1 12:21:55 1977
12:21 :54 /al/user/rje/pmtO 384.gener ready

Save?

Note that there may exist a discrepancy between the host and PWB/UNIX clocks.

The job-acknowledgement message performs two functions. First, it confirms the fact that your job has
been scheduled for eventual execution. Second, it assigns a number to the job in such a way that the
number and the name together will uniquely identify the job for some period of time. .

The output-ready message provides the name of a PWBIUNIX file into which output has been written and
identifies the job to which the output belongs (see /s(I)):

% Is -1 prntO
-r--r-xr-- l rje 1184 Aug l 12:21 pmtO

-

.-

- 3 -

Note that rje retains ownership of the output and aUows you only read access to it. It is intended that
you will inspect the file, perhaps extract some information from it and then promptly delete it (see
rm(I)):

% rm -f pmtO

The retention of machine-generated files, such as RJE output, is discouraged. It is your responsibility to
remove files from your RJE directory. Files of RJE output may not exceed 256K bytes. In addition,
only files of 64K bytes are guaranteed to be accepted in their entirety. Limits of 64K, 128K, or 192K
may be automatically enforced if file space gets scarce. Output beyond the current limit will be dis
carded, with no provision for retrieving it. The user should also be aware of the fact that RJE attempts
to keep roughly 1000 "blocks" free on any file system it uses. Warning messages or suspension of cer
tain functions will occur as this limit is approached.

The most elementary way to examine your output is to cat it to your terminal. The Appendix shows
the result of listing the output of our sample job in this way. Printouts are stored with standard tabs to
conserve space, so you must ensure that the tabs are set on your terminal at every eighth column
across the entire line; tabs(I) will do that for you.3 Because PWB/UNIX has no high-volume printing
capability, you should route to the host's printer any large listings of which you desire a hard copy.

The structure of an output listing will generally conform to the foJlowing sequence:

HASP log
jct information
data sets
HASP end

"Burst" pages are discarded. Single, double, and triple spacing is reflected in the output file, but other
forms controls, such as the skip to the· top of a new page, are suppressed. Page boundaries are indi
cated by the presence of a space character at the end of the last line of each page.

The big file scanner f?fs(I) or the context editor ed(I) provide a more flexible method than cal(l) for
examining printed output; qfs can handle files of any size and is more efficient than ed for scanning
files.

RJE is also capable of receiving punched output as formatted files (see ebcdic(V)); this format allows an
exact representation of an arbitrary card deck to be stored on the PWB/UNIX machine. However, there
are few commands that can be used to manipulate EBCDIC files. You will probably want to route your
punched output to one of the host's output devices.

4. SEND COMMAND

The send(I) command is capable of more general processing than has been indicated in the previous
section. In the first place, it will concatenate a sequence of files to create a single job stream. This
allows files of JCL and files of data to be maintained separately on the PWB/UNIX machine. In addition,
it recognizes any line of an input file that begins with the character •• - " as being a control line that can
call for the inclusion, inside the current file, of some other file. This allows you to "send" a top-level
skeleton that .. pulls" in subordinate files as needed. Some of these may be "virtual" files that actually
consist of the output of PWB/UNIX commands or Shell procedures. Furthermore, the send command is
able to collect input directly from a terminal, and can be instructed to prompt for required information.

Each source of input can contain a format specification that determines such things as how to expand
tabs and how long can an input line be. The manual page for jspec(V) explains how to define such for
mats. When properly instructed, send will also replace arbitrarily defined "keywords" by other text
strings or by EBCDIC character codes. (These two substitution facilities are useful in other applications
besides RJE; for that reason, send may be invoked under the name garh to produce standard output
without submitting an RJE job.)

3. If your terminal doesn't have tabs, you should use the stty(() command to cause PWB/UNIX to automatically convert tabs to
spaces on output to the terminal.

• 4.

Two aspects of send with which everyone should be acquainted are the ability to specify to which com·
puter a job is to be submitted, and the ability to verify a job prior to submission. To run our sample
job on a host machine known to RJE as "A", we would issue the command:

% send A jobfile

When no host is explicitly cited, send makes a reasonable choice.

To verify the text of a coUected job stream, without actually submitting it, set the "-lq,. flap:

% send -lq jobftle

The complete list of arguments and flags that control the execution of send can be found in send(I).

S. JOB STREAM

It is assumed that the job stream submitted as the result of a single execution of send consists of a sin
gle job, i.e., the file that is queued for transmission should contain one JOB card near the beginning and
no others. A priority control card may legitimately precede the JOB card. The JOB card must conform to
the local installation's standard. At BISP, it has the following structure:

11 name job (acct[, •••]) ,pgmmame[,keywds-?] {usr-••• }

6. USER SPECIFICATION

The "usr-.•. " field is required if any print or punch output is to be delivered to the PWBIUNIX user.

usr-{login,place{, [level} [,retry]))

where logm is the PWBIUNIX login name of the user, level is the desired level of notification (see end of
this section for an explanation), retry is a one-character code specifying the number of attempts to
retransmit an entire job if the transmission to the host computer is interrupted by an unrecoverable
error (default is three attempts; the digits "l" through ''9" specify that number of retries; "O", "y",
or "Y" invoke the default; any other entry in this field limits the number of attempts to one, i.e .• no
retry), and place is as follows:

A. If place is the name of a directory (writable by others}, then the output file is placed there as a
unique prnt or pnch file (up to 500 of each allowed). The mode of the file will be 454.

8. If place is the name of an existing. writable {by others), non-executable (by others) file, then the
output file replaces it. The mode of the file will be 454.

C. If place is the name of a non-existent file in a writable (by others) directory, then the output file is
placed there. The mode of the file will be 454.

0. If place is the name of an executable (by others) file, then the RJE output is set up as standard
input to place, and place is executed. Five string arguments are passed to place. For example, if
place is a shell procedure, the following arguments are passed as Sl •.. $5:

1. Flag indicating whether file space is scarce in the tile system where place resides. O indicates
that space is not scarce, while 1 indicates that it is.

2. Job name.
3. Programmer's name.
4. Job number.
5. Login name from the "usr-.•. " specification.

A ":" is passed if a value is not present.

E. In all other cases, the output will be thrown away.

The place value must not be a full pathname, unless it refers to an executable file (see D above). For
cases A, B, and C above (and case D, if a full pathname is not supplied), the name of the user's login
directory will be used to form a full pathname.

• 5 •

The "usr-.•. " field may occur anywhere within the first 100 card images sent and within the first 200
output images received by the PWB/UNIX system. The only restrictions are:

• Column one must contain a .. /" or a "•".

• "usr-.•• " must begin after column 4 and must be preceded by a space.

Therefore, the "usr-... " field may be placed on the JOB card, a comment card, passed as data, etc.

For redirection of output by the host, a "usr-.•. " card, if not already present, must be supplied by the
user. This can be done by placing a job step that creates this card before your output steps.

Messages generated .by RJE or passed on from the host are assigned a level of importance ranging from
1 to 9. The levels curr~ntly in use are:

3 transmittal assurance
5 job acknowledgement
6 output ready message
7 transmit format error

The optional "level" field of the "usr-..• " specification must be a one- or two-digit code. A message
from the host with importance "x" (where x comes from t.he above list) is compared with each of the
two decimal digits "mw". If x~w and if the user is logged in and is accepting messages, the message
will be written to his or her terminal. Otherwise, if x~m, the message will be mailed to the user. In
all other cases, the message will be discarded. The default "level field" is "54". You should specify
level "l" if you want to receive complete notification, and level "59" to divert the last three messages
in the above list to your ma~Ibox.

7. CONTROL CARDS

A number of control cards are recognized by the host's HASP subsystem. Two are of particular interest
to RJE users, because they control the disposition of output. These are the ROUTE and OUTPUT cards,
and their use is illustrated below. If used, both should be inserted into a job stream immediately after
the JOB card. .

The ROUTE card can be used to direct the entire printed or punched output of a job to a specified desti-
nation. Two cards are required to direct both outputs: ·

/•route punch local
/•route print rmt55

The ROUTE card has a fixed format. "Print" or 44 punch" must begin in column 10, and the destination
field in column 16.

The proper use of the OUTPUT card is a bit more complicated. It allows you to associate parameters
with all SYSOUT data sets whose forms numbers match the one specified on the OUTPUT card. The
forms number is fictitious and may consist of up to four characters. A copy count and destination are
among the parameters that may be associated with SYSOUT data sets in this way:

I /name job ...
I 00output py d-rmt56
/•output abed d=local,n=2
I I step exec ...
I I prt 1 dd sysout=a
//prt2 dd sysout=(a,,abcd)
I /prt3 dd sysout=(a,,py)
//pnch dd sysout==(b,,abcd)

In the above example, one copy of prtl would be directed to the default destination and one copy of
prt3 to rmt56. Two copies each would be made of prt2 and pnch. and they would remain at the local
site.

- 6 •

8. MONITORING RJE

RJE is designed to be an autonomous facility that does not require manual supervision. RIE is initiated
by the PWB/UNIX operator after system "reboots" and continues in execution indefinitely. Experience
has proved it to be reasonably robust, although it is vulnerable to system crashes and reconfigurations.

Users have a right to assume that. if the PWB/UNIX system is up for production use, RJE should also be
up. This implies more than an ability to execute the send(I) command. which should be available at all
times. It means that queued jobs should be submitted to the host for execution and their output
returned to the PWBIUNIX system. If a user cannot obtain any throughput from RJE, the user should so
advise the PWBIUNIX operators.

The r:iestar(l) command, invoked without the "-" argument, will report the status of all RJE links for
which a given PWB/UNIX system is configured. It may sometimes also print a message of the day from
RJE.

% rjestat

15:12:24 RJE to B is operating normally.

15:12:25 A is not responding to RJE.
(8 files queued since 14:34:26)

A parenthetical statement, such as the last line above, will summarize any backlog of queued files wait
ing to be transmitted to the host machine. A backlog that persists for 20 minutes or more often is an
indication that there exists a problem with the corresponding RJE link.

A host machine may be reported to be not responding to RJE because it is down, or because of its
operator's failure to initialize the associated line, or because of a communications hardware failure.

-

- 7 -

Appendix-Sample Output Listing

% cat rje/pmtO
14.40.JI JOB 384 SHASP373 GENER STARTED • 1NIT 26 • CLASS X • SYS RRMA
14.40.32 JOB 384 SHASP395 GENER ENDED

...... JES2 JOB STATISTICS

1 AUG 77 JOB EXECUTION DATE

54 CARDS READ

76 SYSOUT PRINT RECORDS

0 SYSOUT PUNCH RECORDS

0.01 MINUTES EXECUTION TIME
I //GENER JOB (9999,R740l,PGMRNAME.CLASS-X JOB 384

••• USR•(MYLOGIN,MYPLACE)
2 //IEBGENER EXEC PGM-IEBGENER
3 //SYSPRJNT DD DUMMY
4 //SYSIN DD DUMMY
5 //SYSUT2 DD SYSOUT-A
6 //SYSUTl DD •

II
IEF2361 ALLOC. FOR GENER IEBGENER
IEF2371 DMY ALLOCATED TO SYSPRINT
IEF2371 DMY ALLOCATED TO SYSIN
IEF2371 JES ALLOCATED TO SYSUT2
IEF2371 JES ALLOCATED TO SYSUTl
IEF142I GENER IEBGENER ·STEP WAS EXECUTED· COND CODE 0000
IEF2851 JES2.JOB0384.SOOI02 SYSOUT
IEF2851 JES2.JOB0384.SIOIOI SYSJN
IEF3731 STEP /IEBGENER/ START 77242.1440
IEF3741 STEP /IEBGENER/ STOP 77242.1440 CPU OMIN 00.13SEC SRB OMIN 00.0lSEC VIRT 36K SYS 188K

••••••• SERVICE UNITS-0000174 SERVICE RATE-0000268 SERVICE UNITS/SECOND
••••••• PERFORMANCE GROUP-005
·--··· EXCP COUNT BY UNIT ADDRESS
1EF3751 JOB /GENER I START 77242.1440
IEF3761 JOB /GENER I STOP 77242.1440 CPU OMIN 00.lJSEC SRB OMIN 00.0ISEC

••••••• SERVICE UNITS-0000174 SERVICE RATE-0000268 SERVICE UNITS/SECOND
APPROXIMATE PROCESSING TIME- .01 MINUTES

••••••• EXCPS--000000000
PROJECTED CHARGES• .01

first line of data

last line qf data

-OS/VS2 REL 3.7 JES2• END JOBNAME-OENER
.QS/VS2 REL 3.7 JES2• END JOBNAME-GENER
•OS/VS2 REL J. 7 JES2• END JOBNAME-GENER
% rm -f rje/prntO

BIN-R740
BIN-R740
BIN•R740

JOB #-384 PGMRNAME
JOB #•384 PGMRNAME
JOB #•384 PGMRNAME

I. PREFACE 11.l •

Guide to IBM Remote Job Entry for PWB/UNIX Users

ADDENDUM #1

UNIVAC RJE

_. A set of PWB/UNIX t background processes supports remote job entry (RJE) from a PWBIUNIX computer
to UNIVAC I JOO-series host computers. "Uvac" is the common name used for the collection of pro
grams and for the file organization that provides this facility.

--

II. BASIC RJE 13.l

Alphabetic characters, for convenience, may be in either upper or lower case. The master space "@"
may be represented as "' ". Here is an example:

% cal jobfile
'run echo,acct-no,project-id
'ed,i .elt

first card of data

last card of data
'fin

The system will reply:

8 cards.
Queued as /usr/uvac/xmit3 l l.

The job acknowledgement messages are:

Two bells
$12.18.42 001.ECHO STARTED

Bell

Two bells

usr- (mylogin,myplace)

ACCT-NO

12:21:54 /al/user/rje/prntO .echo ready
Bell

To route your printout to the host's printer, insert the following control card into the run stream fol
lowing the RUN card:

'sym print$., pr

"Burst" pages are 1101 discarded and the reception of punched output is not supported.

Ill. JOB STREAM 15.l

The RUN card must conform to the local installation's standard. In general. it has the following format:

@run name,acct-no,project-id [. usr- .••]

IV. USER SPECIFICATION 16.l

The "usr::a ... " field may occur anywhere within the first 100 card images sent and within the first 200
output images received by the PWB/UNIX system. The only restrictions are:

• Column I must contain a "@"or a"'".

• "usr= ... " must begin after column 4 and must be preceded by a space.

- Therefore, the "usr= ... " field may be placed on the RUN card, a message card, passed as data, etc.

• 'lumb!!r' !!ndos.:u in .:urly bra1.-.::. •ire ...:ction numbers of Gwdc> 10 IBM Re11101e Job £mn· .Jiir Pu Hit.;'" Uwr.~ by .-\, L.
Sdb~,-it.z. S.:pt.:mb.:r 1977,

t u ... 1:1. I~ d Trademark of ~II L1bora1oncs.

Edition 1.2 - 1 - Fehrn~rv I Q7~

Guide to IBM Remote Job Entry for PwB/UNIX Users

V. CONTROL CARDS (7.)

This section of the guide is not applicable to UNIV AC RJE.

VI. MONITORING RJE (I.I

The interactive status terminal capability of the rjestat(I) command is not implemented.

-

-

@

SCCS/PWB

User's Manual

L. E. Bonanni
A. L. Glasser

November 1977

Bell Telephone Laboratories, Incorporated

B.13

I. INTRODUCTION . • .

2. secs FOR BEGINNERS
2.1 Terminology 2

Sc:CS/PWB
User's Manual

CONTENTS

2.2 Creating an SCCS File-The "admin" Command
2.3 Retrieving a File-The. "get" Command 2
2.4 Recording Changes-The "delta" Command 3
2.5 More about the "get" Command 4
2.6 The "help" command 5

3. HOW DELTAS ARE NUMBERED •

4. SCCS COMMAND CONVENTIONS

5. SCCS COMMANDS • . • • • •
S.1 get 8
5.2 delta 14
5.3 admin 16
5.4 prt 17
5.5 help 18
5.6 rmdel 18
5. 7 chghist 18
5.8 what 19
5.9 sccsdiff 19
S.10 comb 19

2

• !

6. secs FILES • .
6.1 Protection 20
6.2 Format 21
6.3 Auditing 21

REFERENCES .

l

2

5

6

7

20

22

SCCS/PWB User's Manual
L. E. Bonanni

Bell Laboratories
Piscataway, New Jersey 08854

A. L. Glasser

Bell Laboratories
Holmdel, New Jersey 07733

ABSTRACT

The Source Code Control System (secs) is a system for controlling changes to files of text
(typically, the source code and documentation of software systems). It provides facilities for
storing. updating. and retrieving any version of a file of text, for controlling updating
privileges to that file, for identifying the version of a retrieved file, and for recording who
made each change, when and where it was made, and why. Secs is a collection of programs
that run under the PWBIUNlX* time-sharing system.

This document, together with the PWBIUNIX User's Manual [4], is a complete user's guide to
Version 4 of secs, and supersedes all previous versions of the SCCS/PWB manual~ it covers
the following topics:

• How to get started with secs.
• The version numbering scheme.
• Basic information needed for day-to-day use of sccs commands, including a discussion of

the more useful arguments.
• Protection and auditing of sccs files, including the differences between the use of secs

by individual users on one hand, and groups of users on the other.

Neither the implementation of secs nor the installation procedure for secs are described
here.

1. INTRODUCTION

' The Source Code Control System (secs) is a collection of PWB/UNlX [l] commands that help individu
als or projects control and account for changes to files of text (typically, the source code and documen
tation of software systems). It is convenient to conceive of secs as a custodian of files~ it allows
retrieval of particular versions of the files, administers changes to them, controls updating privileges to
them, and records who made each change, when and where it was made, and why. This is important in
environments in which programs and documentation undergo frequent changes (because of mainte
nance and/ or enhancement work), inasmuch as it is sometimes desirable to regenerate the version of a
program or document as it was before changes were applied to it. Obviously, this could be done by
keeping copies (on paper or other media), but this quickly becomes unmanageable and wasteful as the
number of programs and documents increases. Secs provides an attractive solution because it stores on
disk the original tile and, whenever changes are made to it, stores only the changes; each set of changes
is called a "delta."

This document, together with the PWBIUNIX User's Manual [4), is a complete user's guide to Version 4
of secs. This manual contains the following sections:

• Secs }or Beginners: How to make an SCCS file, how to update it, and how to retrieve a version
thereof.

• How Deltas Are Numbered: How versions of secs files are numbered and named.
• Secs Command Conventions: Conventions and rules generally applicable to all secs commands.
• Secs Commands: Explanation of all secs commands, with discussions of the more useful arguments.

• UNIX is a Trademark of Bell Laboratories.

- 2 -

• Secs Files: Protection, format, and auditing of sccs files, including a discussion of the dift'erences
between using secs as an individual and using it as a member of a group or project. The role of a
.. project sccs administrator" is introduced.

2. secs FOR BEGINNERS

It is assumed that the reader knows how to log onto a PWB/UNIX system, create files, and use the text
editor [2,3). A number of terminal-ses.5ion fragments are presented below. All of them should be
.tried: the best way to learn sccs is to use it.

To supplement the material in this manual, the detailed sccs command descriptions (appearing in
alphabetical order in Section I of [4]) should be consulted. Section S below contains a list of all the
sccs commands. For the time being, however, only basic concepts will be discussed.

2.1 Terminology

Each secs file is comPoSed of one or more sets of changes applied to the null (empty) version of the
file, with each set of changes usually depending on all previous sets. Each set of changes is called a
''delta'' and is assigned a name, called the Secs /Dentification string (s10), composed of at most four
components, only the first two of which will concern us for no~ these are the "release" and "level"
numbers, separated by a period. Hence, the first delta is called "I.I", the second "I.2", the third
"1.3", etc. The release number can also be changed (usually, this indicates a major change to the file)
as discussed below.

Each delta of an secs file defines a particular version of the file. For example, delta 1.5 defines version
l.S of the secs file, obtained by applying to the null (empty) version of the tile the changes that consti
tute deltas 1.1, 1.2, etc .• up to and including delta 1.5 itself, in that order.

2.2 Creating an SCCS File-The "admin,, Command

Consider, for example, a file called "tang" that contains a list of programmina languages:

c
pl/i
fortran
cobol
algol

We wish to give custody of this file to secs. The following admin command (which is used to adminis
ter secs files) creates an secs file and initializes delta 1.1 from the file "tang":

admin -ilang s.lang

All secs files must have names that begin with "s.", hence, "s.lang". The -i keyletter, together with
its value "tang", indicates that admin is to create a new secs file and initialize it with the contents of the
file "lang". This initial version is a set of changes applied to the null secs file; it is delta I.I.

The admm command replies:

No id keywords (cm7)

This is a warning message (which may also be issued by other sccs commands) that is to be ignored for
the purposes of this section. Its significance is described in Section 5.1 below.

The file "tang" should be removed (because it can be easily reconstructed by using the get command,
below):

rm Jang

2.3 Retrieving a File-The "get" Command

The command:

get s.lang

causes the creation (retrieval) of the latest version of file "s.lang", and prints the foUowing messages:

-

- 3 -

1.1
5 lines
No id keywords (cm7)

This means that get retrieved version 1.1 of the file, which is made t:p of 5 lines of text. The retrieved
text is placed in a file whose name is formed by deleting the "s." prefix from the name of the secs file;
hence, the file "lang" is created.

The above get command simply creates the file "lang" read-only, and keeps no information whatsoever
regarding its creation. On the other hand, in order to be able to subsequently apply changes to an secs
file with the delta command (see below), the get command must be informed of your intention to do
so. This is done as follows:

get -e s.lang

The -e keyletter causes get to create a file "lang" for both reading and writing (so that it may be
edited) and places certain information about the secs file in another new file, called the J>-.fi/e, that will
be read by the delta command. The get command prints the same messages as before, except that the
warning message is not issued.

The file "tang" may now be changed, for example, by:

ed lang
27
Sa
snobol
ratfor

w
41
q

2.4 Recording Changes-The "delta" Command

In order to record within the secs file the changes that have been applied to "tang", execute:

delta s.lang

Delta prompts with:

comments?

the response to which should be a description of why the changes were made; for example:

comments? added more languages

Delta then reads the p-file, and determines what changes were made to the file '"tang". It does this by
doing its own get to retrieve the original version, and by applying djff(I) 1 to the original version and the
edited version.

When this process is complete, at which point the changes to "tang" have been stored in "s.lang",
delta outputs:

No id keywords (crn7)
1.2
2 inserted
0 deleted
5 unchanged

The number "1.2" is the name of the delta just created, and the next three lines of output ref er to the
number of lines in the file "s.lang".

I. All references of the form 11af11('(N) refer to item 11ame in section N of the PWB/UNIX Users Manual (41.

2.S More about the .. get" Command

As we have seen:

get s.lang

- 4 -

retrieves the latest version (now 1.2) of the file "s.lang". This is done by starting with the original
version of the file and successively applying deltas (the changes) in order, until all have been applied.

For our example, the following commands are all equivalent:

get s.lang

get -rl s.lang

get -rl.2 s.lang

The numbefs following the -r keyletter are SIDS (see Section 2.1 above). Note that omitting the level
number of the SID (as in the second example above) is equivalent to specifying the highest level number
that exists within the specified release. Thus, the second command requests the retrieval of the latest
version in release l, namely 1.2. The third command specifically requests the retrieval of a particular
version. in this case, also 1.2.

Whenever a truly major change is made to a file, the significance of that change is usually indicated by
changing the release number (first component of the SID) of the delta being made. Since normal,
automatic, numbering of deltas proceeds by incrementing the level number (second component of the
sm). we must indicate to secs that we wish to change the release number. This is done with the get
command:

get -e -r2 s.lang

Because release 2 does not exist, get retrieves the latest version before release 2~ it also interprets this as
a request to change the release number of the delta we wish to create to 2, thereby causing it to be
named 2.1, rather than 1.3. This information is conveyed to delta via the p-.file. Get then outputs:

1.2
7 lines

indicating the retrieval of version 1.2. If the file is now edited, for example, by:

ed lang
41
/cobol/d
w
35
q

and delta executed:

delta s.lang
comments? deleted cobol from list of languages

we will see, by delra 's output, that version 2.1 is indeed created:

No id keywords (cm7)
2.1
0 inserted
l deleted
6 unchanged

Deltas may now be created in release 2 (deltas 2.2, 2.3, etc.), or another new release may be created in
a similar manner. This process may be continued as desired.

2.6 The .. help" command

If the command:

get abc

is executed, the following message will be output:

ERROR [abc]: not an SCCS file (col)

The string .. col" is a code for the diagnostic message, and may be used to obtain a fuller explanation
of that message by use of the help command:

help col

This produces the folh:>wing output:

col:
"not an SCCS file"
A file that you think is an SCCS file
does not begin with the characters "s.".

Thus. help is a useful command to use whenever there is any doubt about the meaning of an secs mes
sage. Fuller explanations of almost all secs messages may be found in this manner.

3. HOW DELTAS ARE NUMBERED

It is convenient to conceive of the deltas applied to an secs file as the nodes of a tree, in which the root
is the initial version of the file. The root delta (node) is normally named "l.l" and successor deltas
(nodes) are named "1.2", "1.3", etc. The components of the names of the deltas are called the
"release" and the "level" numbers, respectively. Thus, normal naming of successor deltas proceeds
by incrementing the level number, which is performed automaticaJly by secs whenever a delta is made.
In addition, the user may wish to change the release number when making a delta, to indicate that a
major change is being made. When this is done, the release number also applies to all successor deltas,
unless specifically changed again. Thus, the evolution of a particular file may be represented as in
Figure 1.

1.1 1.2 1.3 1.4 2.1 2.2

Retasa 1 Refase2

Figure 1. Evolution of an Secs File

Such a structure may be termed the "trunk" of the secs tree. It represents the normal sequential
development of an secs file, in which changes that are part of any given delta are dependent upon all
the preceding deltas.

However, there are situations in which it is necessary to cause a branching in the tree, in that changes
applied as part of a given delta are not dependent upon aJI previous deltas. As an example, consider a
prog;im which is in production use at version 1.3, and for which development work on release 2 is
already in progress. Thus, release 2 may already have some deltas, precisely as shown in Figure 1.
Assume that a production user reports a problem in version 1.3, and that the nature of the problem is
such that it cannot wait to be repaired in release 2. The changes necessary to repair the trouble will be
applied as a delta to version 1.3 (the version in production use). This creates a new version that will
then be released to the user, but will not affect the changes being applied for release 2 (i.e., deltas 1.4,
2.1, 2.2, etc.).

The new delta is a node on a "branch" of the tree, and its name consists of four components, namely,
the release and level numbers, as with trunk deltas, plus the "branch" and "sequence" numbers, as
follows:

release.level.branch.sequence

The branch number is assigned to each branch that is a descendant of a particular trunk delta. with the
first such branch being l, the next one 2, and so on. The sequence number is assigned, in order, to
each delta on a parricular branch. Thus, 1.3.1.2 identifies the second delta of the first branch that
derives from delta 1.3. This is shown in Figure 2.

Figure 2. Tree Structure with Branch Deltas

The concept of branching may be extended to any delta in the tree; the naming of the resulting deltas
proceeds in the manner just' illustrated.

Two observations are of importance with regard to naming deltas. First, the names of trunk deltas con
tain exactly two components, and the names of branch deltas contain exactly four components.
Second, the first two components of the name of branch deltas are always those of the ancestral trunk
delta, and the branch component is assigned in the order of creation of the branch, independently of its
location relative to the trunk delta. Thus, a branch delta may always be identified as such from its
name. Although the ancestral trunk delta may be identified from the branch delta's name, it is not pos
sible to determine the entire path leading from the trunk delta to the branch delta. For example, if
delta 1.3 has one branch emanating from it, all deltas on that branch will be named 1.3.1. n. If a delta
on this branch then has another branch emanating from it, all deltas on the new branch will be named
1.3.2.n (see Figure 3). The only information that may be derived from the name of delta 1.3.2.2 is
that it is the chronologically second delta on the chronologically second branch whose trunk ancestor is
delta 1.3. In particular, it is not possible to determine from the name of delta 1.3.2.2 all of the deltas
between it and its trunk ancestor (1.3).

Figure 3. Extending the Branching Concept

It is obvious that the concept of branch deltas allows the generation of arbitrarily complex tree struc
tures. Although this capability has been provided for certain specialized uses, it is strongly recom
mended that the sccs tree be kept as simple as possible, because comprehension of its structure
becomes extremely difficult as the tree becomes more complex.

4. SCCS COMMAND CONVENTIONS

This section discusses the conventions and rules that apply to sccs commands. These rules and con·
ventions are generally applicable to all secs commands, except as indicated below. Secs commands
accept two types of arguments: keyletter arguments and file arguments.

. 7 .

Keyletter arguments (hereafter called simply "keyletters") begin with a minus sign (-), followed by a
lower-case alphabetic character, and, in some cases, followed by a value. These keyletters control the
execution of the command to which they are supplied.

File arguments (which may be names of files and/or directories) specify the file(s) that the given secs
command is to process; naming a directory is equivalent to naming all the secs files within the direc
tory. Non-secs files and unreadable2 files in the named directories are silently ignored.

In general, file arguments may not begin with a minus sign. However, if the name"-" (a lone minus
sign) is specified as an argument to a command, the command reads the standard input for lines and
takes each line as the name of an secs file to be processed. The standard input is read until end-of-file.
This feature is often used in pipelines [4] with, for example, the find(I) or ls(I) commands. Again,
names of non-secs files and of unreadable files are silently ignored.

All keyletters specified for a given command apply to all file arguments of that command. All
keyletters are processed before any file arguments, with the result that the placement of keyletters is
arbitrary (i.e., keyletters may be interspersed with file arguments). File arguments, however, are pro·
cessed left to right.

Somewhat different argument conventions apply to the help, what, and sccsdiff commands (see Sections
5.5, 5.8, and 5.9).

Certain actions of various secs commands are controlled by flags appearing in secs files. Some of these
flags are discussed below. For a complete description of all such flags, see admi11(1).

The distinction between the real user and the effective user of a PWB/UNIX system is of concern in dis·
cussing various actions of secs commands. For the present, it is assumed that both the real user and
the effective user are one and the same {i.e., the user who is logged into a PWB/UNIX system); this sub
ject is further discussed in Section 6.1.

All SCCS commands that modify an secs file do so by writing a temporary copy, called. the x-fiie, which .
ensures that the secs file will not be damaged should processing terminate abnormally. The name of
the x~/ile is formed by replacing the "s." of the secs file name with "x.". When processing is com
plete, the old secs file is removed and the x-file is renamed to be the secs file. The x-file is created in
the directory containing the secs file, is given the same mode (see chmod(I)) as the sccs file, and is
owned by the effective user.

To prevent simultaneous updates to an secs file, commands that modify secs files create a lock.file,
called the z-.file, whose name is formed by replacing the "s." of the secs file name with "z. ". The :-·
file contains the process number [1] of the command that creates it, and its existence is an indication to
other commands that that secs file is being updated. Thus, other commands that modify sccs files will
not process an secs file if the corresponding z-file exists. The z..jile is created with mode 444 (read
only) in the directory containing the secs file, and is owned by the effective user. This file exists only
for the duration of the execution of the command that creates it. In general, users can ignore x..files
and z-files; they may be useful in the event of system crashes or similar situations.

Secs commands produce diagnostics (on the diagnostic output (5}) of the form:

ERROR [name-of-file-being-processed): message text (code)

The code in parentheses may be used as an argument to the help command (see Section 5.5) to obtain a
further explanation of the diagnostic message.

Detection of a fatal error during the processing of a file causes the secs command to terminate process
ing of that file and to proceed with the next file, in order, if more than one file has been named.

S. SCCS COMMANDS

This section describes the major features of all the secs commands. Detailed descriptions of the com
mands and of all their arguments are given in [4], and should be consulted for further information.
The discussion below covers only the more common arguments of the various secs commands.

2. Because of permission modes (see •·hmod(I}).

- 8 -

Because the commands get and delta are the most frequently used, they are presented first. The other
commands follow in approximate order of importance.

The following is a summary of all the secs commands and of their major functions:

get Retrieves versions of secs files.

delta Applies changes (deltas) to the text of secs files, i.e., creates new versions.

admin Creates secs files and applies changes to parameters of secs files.

prt Formats and prints portions of secs files.

help Gives explanations of diagnostic messages.

rmdel Removes a delta from an secs file~ allows the removal of deltas that were created by mis
take.

chghist Changes the commentary associated with a delta.

what Searches any PWB/UNIX file(s) for all occurrences of a special pattern and prints out what
follows it~ is useful in finding identifying information inserted by the get command.

sccsdiff Shows the differences between any two versions of an secs file.

comb Combines two or more consecutive deltas of an secs file into a single delta~ often
reduces the size of the secs file.

5.1 get

The get command creates a text file that contains a particular version of an secs file. The particular
version is retrieved by beginning with the initial version, and then applying deltas, in order, until the
desired version is obtained. The created file is called the g-file; its name is formed by removing the
"s." from the secs file name. The g-file is created in the current directory (1) and is owned by the real
user. The mode assigned to the g-file depends on how the get comn:iand is invoked, as discussed below.

The most common invocation of get is:

get s.abc

which normally retrieves the latest version on the trunk of the secs file tree, and produces (for exam
ple) on the standard output [51:

1.3
67 lines
No id keywords (cm7)

which indicates that:

l. Version 1.3 of file "s.abc" was retrieved (1.3 is the latest trunk delta).
2. This version has 67 lines of text.
3. No ID keywords were substituted in the file (see Section 5.1.1 for a discussion of ID keywords}.

The generated g-file (file "abc") is given mode 444 (read-only), since this particular way of invoking
get is intended to produce g-files only for inspection, compilation, etc., and not for editing (i.e., nor for
making deltas).

In the case of several file arguments (or directory.name arguments), similar information is given for
each file processed, but the secs file name precedes it. For example:

get s.abc s.def

produces:

s.abc:
1.3
67 lines
No id keywords (cm 7)

s.def:
1.7
85 lines
No id keywords (cm7)

5./.1 ID Keywords

- 9 -

In generating a g~fi/e to be used for compilation, it is useful and informative to record the date and time
of creation, the version retrieved, the module's name, etc., within the g-file, so as to have this informa
tion appear in a load module when one is eventually created. Secs provides a convenient mechanism
for doing this automatically. lde111i/icarion (JD) keywords appearing anywhere in the generated file are
replaced by appropriate values according to the definitions of these ID keywords. The format of an ID
keyword is an upper-case letter enclosed by percent signs (%). For example:

%1%

is defined as the ID keyword that is replaced by the SID of the retrieved version of a file. Similarly,
llftH'lt is defined as the 10 keyword for the current date (in the form .. mm/ddlyy"), and llftMo/t is
defined as the name of the g-.file. Thus, executing get on an secs file that contains the PUI declaration:

DCL ID CHAR(lOO) VAR INIT('%M% %1% %H%');

gives (for example} the following:

DCL ID CHAR(100) VAR INIT('MODNAME 2.3 07/07/77');

When no ID keywords are substituted by get, the following message is issued:

No id keywords (cm7)

This message is normally treated as a warning by get, although the presence of the i flag in the secs file
causes it to be treated as an error (see Section S.2 for further information).

For a complete list of the approximately twenty ID keywords provided, see ger(I).

5.1.2 Retrieval ql Different Versions

Various keyletters are provided to aUow the retrieval of other than the default version of an secs file.
Normally, the default version is the most recent delta of the highest-numbered release on the trunk of
the secs file tree. However, if the secs file being processed has a d (default SID) flag. the SID specified
as the value of this flag is used as a default. The default SID is interpreted in exactly the same way as
the value supplied with the -r keyletter of get.

The -r keyletter is used to specify an SID to be retrieved, in which case the d (default SID) flag (if any)
is ignored. For example:

get -rl.3 s.abc

retrieves version 1.3 of file .. s.abc", and produces (for example) on the standard output:

1.3
64 lines

A branch delta may be retrieved similarly:

get -rl.S.2.3 s.abc

which produces (for example) on the standard output:

1.5.2.3
234 lines

When a two- or four-component SID is specified as a value for the -r keyletter (as above) and the

- 10 -

particular version does not exist in the secs file, an error message results. Omission of the level
number. as in:

get -r3 s.abc

causes retrieval of the trunk delta with the highest level number within the given release, if the given
release exists. Thus, the above command might output:

3.7
213 lines

If the given release does not exist, get retrieves the trunk delta with the highest level number within the
highest-numbered existing release that is lower than the given release. For example, assuming release
9 does not exist in file .. s.abc", and that release 7 is actually the highest-numbered release below 9,
execution of:

get -r9 s.abc

might produce:

7.6
420 lines

which indicates that trunk delta 7.6 is the latest version of file .. s.abc" below release 9. Similarly,
omission of the sequence number, as in:

get -r4.3.2 s.abc

results in the retrieval of the branch delta with the highest sequence number on the given branch, if it
exists. (If the given branch does not exist, an error message results.) This might result in the foil ow
ing output:

4.3.2.8
89 lines

The -t keyletter is used to retrieve the latest ("top") version in a particular release (i.e., when no -r
keyletter is supplied, or when its value is simply a release number). The latest version is defined as
that delta which was produced most recently, independent of its location on the sccs file tree. Thus, if
the most recent delta in release 3 is 3.5,

get -r3 -t s.abc

might produce:

3.5
59 lines

However, if branch delta 3.2.1.5 were the latest delta (created after delta 3.5}, the same command
might produce:

3.2. 1.5
46 lines

5.1.J Retrieval w11h Intent to Make a Delta

Specification of the -e keyletter to the get command is an indication of the intent to make a delta, and,
as such, its use is restricted. The presence of this keyletter causes get to:

1. Check the user list (which is the list of login names of users allowed to make deltas (see Section
6.2)) to determine if the login name of the user executing get is on that list. Note that a null
(empty) user list behaves as if it contained all possible login names.

2. Check that the release (R) of the version being retrieved satisfies the relation:

floor ~ R ~ ceiling

to determine if the release being accessed is a protected release. The fioor and ceilin~ are specified
as ./fags in the secs file.

-

- 11 -

A failure of either condition causes the processing of that sccs file to terminate.

If the above checks succeed, the -e keyletter causes the creation of a g-file in the current directory
with mode 644 (readable by everyone, writable only by the owner) owned by the real user. If a writable
g-file already exists, get terminates with an error. This is to prevent inadvertent destruction of a g-file
that already exists and is being edited for the purpose of making a delta.

Any ID keywords appearing in the g-file are not substituted by get when the -e keyletter is specified,
because the generated g-file is to be subsequently used to create another delta. and replacement of 10
keywords would cause them to be permanently changed within the secs file. In view of this, get does
not nee~ to check for the presence of 10 keywords within the g-fi/e, so that the message:

No id keywords (cin7)

is never output when get is invoked with the -e keyletter.

In addition, the -e keyletter causes the creation (or updating) of a p-file, which is used to pass infor
mation to the delta command (see Section 5.1.4).

The following is an example of the use of the -e keyletter:

get -e s.abc

which produces (for example) on the standard output:

1.3
67 lines

If the -rand/or -t keyletters are used together with the -e keyletter, the version retrieved for edit
ing is as specified by the -rand/or -t keyletters.

The keyletters -i and -x may be used to specify a list (see get(I) for the syntax of such a list) of del
tas to be included and excluded, respectively, by get. Including a delta means forcing the changes that
constitute the particular delta to be included in the retrieved version. This is useful if one wants to
apply the same changes to more than one version of the secs file. Excluding a delta means forcing it to
be not applied. This may be used to undo, in the version of the secs file to be created, the effects of a
previous delta. Whenever deltas are included or excluded, get checks for possible interference between
such deltas and those deltas that are normally used in retrieving the particular version of the secs file.
(Two deltas can interfere, for example. when each one changes the same line of the retrieved g-:/ile.)
Any interference is indicated by a warning that shows the range of lines within the retrieved g-jife in
which the problem may exist. The user is expected to examine the g-file to determine whether a prob
lem actually exists, and to take whatever corrective measures (if any) are deemed necessary (e.g .• edit
the file).

_. The -i and-x: keyletters should be used with extreme care.

The -k keyletter is provided to facilitate regeneration of a g-file that may have been accidentally
removed or ruined subsequent to the execution of get with the -e keyletter, or to simply generate a g
./ile in which the replacement of ID keywords has been suppressed. Thus, a g-file generated by the -k
keyletter is identical to one produced by get executed with the -e keyletter. However, no processing
related to the p-file takes place.

5.1. 4 The p-file and Concurr£1nt Deltas

The ability to retrieve different versions of an secs file allows a number of deltas to be "in progress" at
any given time. This means that a number of get commands with the -e keyletter may be executed on
the same file, provided that no two executions retrieve the same version nor lead to the subsequent
creation of the same version by delta.

The p-file (which is created by the get command invoked with the -e keyletter) is named by replacing
the "s." in the secs file name with "p.". It is created in the directory containing the secs file, is given
mode 644 (readable by everyone, writable only by the owner), and is owned by the effective user. The
p-file contains the following information for each delta that is still "in progress":3

3. Other information may be present, but is not of concern here. See ge1(1) for further discussion.

• The SID of the retrieved version.
• The SID that will be given to the new delta when it is created.
• The login name of the real user executing get.

The first execution of "get -e" causes the creation of the p-file for the corresponding secs file. Subse
quent executions only update the p-.file by inserting a line containing the above information. Beforr.
inserting this line, however, get checks that:

• No entry already in the p-file specifies as already retrieved the SID of the version to be retrieved.
• That the new ("to-be-cre,ated") SID is not already specified as such in the p-.file.

ff both checks succeed, the user is informed that other deltas are in progress, and processing continues.
If either check fails, an error message results. It is important to note that the various executions of get
should be carried out from different directories. Otherwise, only the first execution will succeed, since
subsequent executions would attempt to over-write a writable g-jile, which is an secs error condition. In
practice, such multiple executions are performed by different users, 4 so that this problem does not
arise, since each user normally has a different working directory (SJ.

Table I shows, for the most useful cases, what version of an secs file is retrieved by get, as weH as the
SID of the version to be eventually created by delta, as a function of the SID specified to get.

5.1.5 Keyletters That Affect Output

Specification of the -P keyletter causes get to write the retrieved text to the standard output, rather
than to a g-file. In addition, all output normally directed to the standard output (such as the SID of the
version retrieved and the number of lines retrieved) is directed instead to the diagnostic output. This
may be used. for example, to create g-files with arbitrary names:

get -p s.abc > arbitrary-filename

The -P keyletter is particularly useful when used with the .. !,, or "$'. argunients of the PWB/UNIX
send(I) command. For example:

send MOD• s.abc REL- J compile

if file "compile" contains:

I lplicomp job job-card-information
I lstepl exec plickc
I lpli.sysin dd •
-s

-!get -p -rREL MOD
I•
II

will send the highest level of release 3 of file "s.abc". Note that the line " - -s", which causes send(I)
to make ID keyword substitutions before detecting and interpreting control lines, is necessary if send(I)
is to substitute "s.abc" for MOD and "3" for REL in the line "·!get -p -rREL MOD".

The -s key!etter suppresses all output that is normally directed to the standard output. Thus, the SID
of the retrieved version. the number of lines retrieved, etc., are not output. This does not, however,
affect messages to the diagnostic output. This keyletter is used to prevent non-diagnostic messages
from appearing on the user's terminal, and is often used in conjunction with the -p keyletter to
"pipe" the output of get. as in:

get -p -s s.abc I nroff

The -g keyletter is supplied to suppress the actual retrieval of the text of a version of the secs file.
This may be useful in a number of ways. For example, to verify the existence of a particular SID in an
secs file, one may execute:

get -g -r4.3 s.abc

4. See Secuon 6.1 for a discussion of how different users are permitted to use SCCS commands on the same files.

- 13 -

TABLE 1. Determination of New SID

Case SID -b Keyletter Other SID SID of Delta
Specified* Usedt Conditions Retrieved to~ Created

1. none; no R defaults to mR :nR.mL mR.(mL+ 15
2. none* yes R defaults to mR mR.mL mR.mL.(mB+ 0.1
3. R no R >mR mR.mL R.1§
4. R no R• mR mR.mL mR.(mL+ 1)

s. R yes R > mR mR.mL mR.mL.(mB+ 1).1
6. R yes R• mR mR.mL mR.mL.(mB+ 1).1

7. R R < mRand hR.mL** hR.mL.(mB+ 1).1 R does not exist
Trunk successor

8. R in release > R R.mL R.mL.(mB+ 1).1
and R exists

9. R.L no No trunk successor R.L R.(L+ 1)

10. R.L yes No trunk successor R.L R.L.(mB+ 1).1

11. R.L
Trunk successor R.L R.L.(mB+ 1).1
in release ~ R

12. R.L.B no No branch- successor R.L.B.mS R.L.BJms+ 1)

13. R.L.B yes No branch successor R.L.B.mS R.L.(mB+ 1).1
14. R.L.B.S no No branch successor R.L.B.S R.L.B. (S + lJ
15. R.L.B.S yes No branch successor R.L.8.S R.L.(mB+ 1).1
16. R.L.B.S Branch successor R.L.B.S R.L.{mB+ 1).1

• ·•R", '"L", ''8", and "S" are the "release", "level". "branch", and "sequence" components of the SID. respectively;
"m"' means ·•maximum... Thus. for example, '"R.mL" means "the maximum level number within release R";
"R.L.(mB+ l}.I'" means "the first sequence number on the new branch (i.e .• maximum branch number plus I) of level L
within release R". Note that if the SID specified is of the form "R.L'". "R.L.B", or "R.L.B.s'". each of the specified
components must exist.

t The -b keyletter is effective only if the b flag (see admm(I)) is present in the file. In this table, an entry of " - " means
"irrelevant"'.

i This case applies if the cl (default SID> flag is not present in the file. If the d flag is present in the file. then the SID
obtained from the d flag is interpreted as if it had been specified on the command line. Thus, one of the other cases in this
table applies.

~ This c-c1se is used to force the creation of the first delta in a new release.

•• '"hR" is the highest e:c1simg release thal is lower than the specified, nonexisrem, release R.

This outputs the given SID if it exists in the secs file, or it generates an error message, if it does not.
Another use of the -g keyletter is in regenerating a p-.file that may have been accidentally destroyed:

get -e -g s.abc

The -1 keyletter causes the creation of an !-file, which is named by replacing the "s." of the secs file
name with "I.". This file is created in the current directory, with mode 444 (read~only), and is owned
by the real user. It contains a table (whose format is described in ger{I)) showing which deltas were
used in constructing a particular version of the secs file. For example:

get -r2.3 -1 s.abc

generates an I-file showing which deltas were applied to retrieve version 2.3 of the SCCS file. Specifying
a value of "p" with the -l keyletter, as in:

get -Ip -r2.3 s.abc

causes the generated output to be written to the standard output rather than to the I-file. Note that the
-g keyletter may be used with the -1 keyletter to suppress the actual retrieval of the text.

- 14- -

The -m keyletter is of use in identifying, line by line, the changes applied to an secs file.
Specification of this keyletter causes each line of the generated g-file to be preceded by the SID of the
delta that caused that line to be inserted. The SID is separated from the text of the line by a tab charac
ter.

The -n keyletter causes each line of the generated g-.file to be preceded by the value of the %M% m
keyword (see Section 5.1.1) and a tab character. The -n keyletter is most often used in a pipeline with
grep(I). For example, to find, in the latest version of each sccs file in a directory, ail lines that match a
given pattern, the following may be executed:

get -p -n -s directory, I grep pattern

If both the -m and -n keyletters are specified, each line of the generated g-.file is preceded by the
value of the %M% ID keyword and a tab (this is the effect of the -n keyletter), followed by the line in
the format produced by the -m keyletter. Because use of the -m keyletter and/or the -n keyletter
causes the contents of the g-.file to be modified, such a g-.file must not be used for creating a delta.
Therefore, neither the -m key!etter nor the -n keyletter may be specified together with the -e
keyletter.

See get(l) for a full description of additional get keyletters.

5.2 delta

The delta command is used to incorporate the changes made to a g-file into the corresponding secs file,
i.e., to create a delta, and, therefore, a new version of the file.

Invocation of the delta command requires the existence of a p-.file (see Sections 5.1.3 and 5.1.4). Delta
examines the ~file to verify the presence of an entry containing the user's login name. If none is
found, an error message results. Delta also performs the same permission checks that get performs
when invoked with the -e keyletter. If all checks are successful, delta determines what has been
changed in the g~file, by comparing it (via di.ff(!)) with its own, temporary copy of the g-file as it was
before editing. This temporary copy of the g-file is called the d-.file (its name is formed by replacing the -
"s." of the secs file name with "d. ") and is obtained by performing an internal get at the SID specified
in the p~file entry.

The required p~/ile entry is the one containing the login name of the user executing delta, because the
user who retrieved the g~/ile must be the one who will create the delta. However, if the login name of
the user appears in more than one entry (i.e., the same user executed get with the -e keyletter more
than once on the same secs file), the -r keyletter must be used with delta to specify the SID that is to
be used by the internal get to obtain the d-jile. The SID specified must, of course, appear in one of the
entries in the p-file; this entry is the one used to obtain the SID of the delta to be created.

In practice, the most common invocation of delta is:

delta s.abc

which prompts on the standard output (but only if it is a terminal):

comments?

to which the user replies with a description of why the delta is being made, terminating the reply with a
newline character. The user's response may be up to 512 characters long, with newlines not intended to
terminate the response escaped by "\".

If the secs file has a v flag, delta first prompts with:

MRs?

on the standard output. (Again, this prompt is printed only if the standard output is a terminal.) The
standard input is then read for MR5 numbers, separated by blanks and/or tabs, terminated in the same
manner as the response to the prompt "comments?".

5. In a tightly controlled environment. it is expected that deltas are created only as a result of some trouble report, change
request. trouble ticket. etc. (collectively called here Modification Requests. or MRs) and that it is desirable or necessary to
record such MR number{s) w11hin each delta.

-

--

- 15 -

The -Y and/or -m keyletters are used to supply the commentary (comments and MR numbers,
respectively) on the command line, rather than through the standard input. For example:

delta -y"descriptive comment" -m"mmuml mmum2" s.abc

In this case, the corresponding prompts are not printed, and the standard input is not read. The -m
keyletter is allowed only if the secs file has a v flag. These keyletters are useful when delta is executed
from within a Shell procedure (see sh(I)).

The commentary (comments and/or MR numbers), whether solicit~ by delta or supplied via
keyletters. is recorded as part of the entry for the delta being created, and applies to ail secs files pro
cessed by the same invocation of delta. This implies that if delta is invoked with more than one file
argument, and the first file named has a v flag, all files named must have this flag. Similarly, if the first
file named does not have this flag, then none of the files named may have it. Any file that does not
conform to these rules is not processed.

When processing is complete, delta outputs (on the standard output) the SID of the created delta
{obtained from the p-.file entry) and the counts of lines inserted, deleted, and left unchanged by the
delta. Thus, a typical output might be:

1.4
14 inserted
7 deleted
345 unchanged

It is possible that the counts of lines reported as inserted, deleted, or unchanged by delta do not agree
with the user's perception of the changes applied to the g-.file. The reason for this is that there usually
are a number of ways to describe a set of such changes, especially if lines are moved around in the g
}ile. and delta is likely to find a description that differs from the user's perception. However, the total
number of lines of the {lew delta (the number inserted plus the number left unchanged) should agree
with the number of lines in the edited g-.file.

If, in the process of making a delta, delta finds no ID keywords in the edited g-.file, the message:

No id keywords (cm7)

is issued after the prompts for commentary, but before any other output. This indicates that any ID
keywords that may have existed in the secs file have been replaced by their values, or deleted during
the editing process. This could be caused by creating a delta from a g-.file that was created by a get
without the -e keyletter (recall that ID keywords are replaced by get in that case), or by accidentally
deleting or changing the 10 keywords during the editing of the g-.file. Another possibility is that the file
may never have had any ID keywords. In any case, it is left up to the user to determine what remedial
action is necessary, but the delta is made, unless there is an i flag in the secs file, indicating that this
should be treated as a fatal error. In this last case, the delta is not created.

After processing of an secs file is complete, the corresponding p-file entry is removed from the p-.file.6

If there is only one entry in the p~file, then the fJ-:file itself is removed.

In addition, delta removes the edited g-.file, unless the -n keyletter is specified. Thus:

delta -n s.abc

will keep the g-file upon completion of processing.

The -s ("silent") keyletter suppresses all output that is normally directed to the standard output,
other than the prompts "comments?" and "MRs?". Thus, use of the -s keyletter together with the
-y keyletter (and possibly, the -m keyletter) causes delta neither to read the standard input nor to
write the standard output.

6. All updates to the p-/lle arc made to a 1emporary copy, the q-:ftle. whose use is similar 10 the use of the x·/i/e, which is
described in Section 4 above.

- 16 -

The differences between the g-file and the d~!ile (see above), which constitute the del~a. may be printed
on the standard output by using the -P keyletter. The format of this output is similar to that produced
by diff(I).

5.3 admin

The admin command is used to adminster secs files, that is, to create new secs files and to change
parameters of existing ones. When an secs file is created, its parameters are initialized by use of
keyletters or are assigned default values if no keyletters are supplied. The same keyletters are used to
change the parameters of existing files.

Two keyletters are supplied for use in conjunction with detecting and correcting .. corrupted" secs files,
and are discussed in Section 6.3 below.

Newly-created secs files are given mode 444 (read-only) and are owned by the effective user.

Only a user with write permission in the directory containing the secs file may use the admin command
upon that file.

5.3. I Creatron of Secs Files

An secs file may be created by executing the command:

admin -ifirst s.abc

in which the value (.. first") of the -i keyletter specifies the name of a file from which the text of the
1mtial delta of the secs file .. s.abc" is to be taken. Omission of the value of the -i keytetter indicates
that admin is to read the standard input for the text of the initial delta. Thus, the command:

admin -i s.abc < first

is equivalent to the previous example. If the text of the initial delta does not contain ID keywords, the
message:

No id keywords (cm 7)

is issued by admin as a warning. However, if the same invocation of the command also sets the i flag
(not to be confused with the -i keyletter), the message is treated as an error and the secs file is not
created. Only 011esccs file may be created at a time using the -i keyletter.

When an secs file is created, the release number assigned to its first delta is normally .. l ", and its level
number is always .. I". Thus, the first delta of an secs file is normally .. 1.1 ". The -r keyletter is
used to specify the release number to be assigned to the first delta. Thus:

admin -ifirst -r3 s.abc

indicates that the first delta should be named "3.1" rather than "1.1 ". Because this keyletter is only
meaningful in creating the first delta, its use is only permitted with the -i keyletter.

5.3.2 lmttalization and Modi/lcat10n of Secs File Parameters

The portion of the secs file reserved for descriptive text (see Section 6.2) may be initialized or changed
through the use of the -t keyletter. The descriptive text is intended as a summary of the contents and
purpose of the secs file, although its contents may be arbitrary, and it may be arbitrarily long.

When an secs file is being created and the -t keyletter is supplied, it must be followed by the name of
a file from which the descriptive text is to be taken. For example, the command:

admin -ifirst -tdesc s.abc

specifies that the descriptive text is to be taken from file .. desc".

When processing an existing secs file, the -t keyletter specifies that the descriptive text (if any)
currently in the file is to be replaced with the text in the named file. Thus:

admin -tdesc s.abc

-

--

• 17 •

specifies that the descriptive text of the secs file is to be replaced by the contents of .. desc"; omission
of the file name after the -t keyletter as in:

admin -t s.abc

causes the removal of the descriptive text from the secs file.

The .flags (see Section 6.2) of an sccs file may be initialized. changed. or deleted through the use of the
-f and -d keyletters, respectively. The flags of an secs file are used to direct certain actions of the
various commands. See admm(I) for a description of all the flags. For example, the v flag specifies
that delta is to prompt for Mod1fication Request (MR) numbers. and the d (default SID) flag specifies
the default version of the sccs file to be retrieved by the get command. The -f keyletter is used to set
a flag and, possibly, to set its value. For example:

admin -itirst -fv -fmmodname s.abc

sets the v flag and the m (module name) flag. The value ••modname" specified for the m flag is the
value that the get command will use to replace the %Mo/o ID keyword. (In the absence of the m flag,
the name of the g-.file is used as the replacement for the %Mo/o 10 keyword.) Note that several -f
keyletters may be supplied on a single invocation of admin, and that -f keyletters may be supplied
whether the command is creating a new sccs file or processing an existing one.

The -d keyletter is used to delete a flag from an secs file, and may only be specified when processing
an existing file. As an example. the command:

admin -dm s.abc

removes the m flag from the secs file. Several -d keyletters may be supplied on a single invocation of
admm. and may be intermixed with -f keyletters.

Secs files contain a list (user list) of login names of users who are allowed to create deltas (see Sections
5.1.3 and 6.2). This list is empty by default, which implies that anyone may create deltas. To add login
names to the list, the -a keyletter is used. For example:

admin -axyz -awql s.abc

adds the login names .. xyz" and "wql" to the list. The -a keyletter may be used whether admin is
creating a new secs file or processing an existing one, and may appear several times. The -e keyletter
is used in an analogous manner if one wishes to remove (<'erase") login names from the list.

5.4 prt

Prt is used to format and print on the standard output all or parts of an secs file (see Section 6.2), pre
ceded by the file's name. The portions of the file to be printed are selected by specifying certain
keyletters, which, together with the output formats they generate. are fully described in prt(I). This
section only describes briefly the -d, -u, -f, and -t keyletters, which are sufficient to print all of the
more interesting portions of an sccs file.

The -d keyletter is used to print the delta table of an secs file. The delta table is that portion of the
file that contains information relevant to the creation of each delta of the file, namely the SID of the
delta. the date and time of creation, the login name of the creator, and the numbers of lines inserted,
deleted, and unchanged by the delta. The commentary that is entered when a delta is created is also
part of the delta table. Thus, executing the command:

prt -d s.abc

provides a history of the evolution of the secs file. In the absence of any keyletters. the -d keyletter
is assumed.

The -u keyletter is used to print the user list. The -f keyletter causes the printing of all the flags of
the secs file. The -t keyletter is used to print the descriptive text of the secs file (see Section 6.2); this
could be used, for example, to generate a complete set of file summaries, by executing:

prt -t SCCS

in which .. secs" is the name of a directory containing the secs files.

- 18 -

Although prt makes the examination of secs files convenient, other PWB/UNIX commands (e.g., ed(l),
Krep(l)) can be used to create customized print commands in the form of Shell procedures.

5.5 help

The help command prints explanations of sccs commands and of messages that these commands may
print. Arguments to help, zero or more of which may be supplied, are simply the names of secs com
mands or the code numbers that appear in parentheses after secs messages. If no argument is given,
help prompts for one. Help has no concept of keyletter arguments or file arguments. Explanatory infor·
mation related to an argument, if it exists, is printed on the standard output. If no information is
found, an error message is printed. Note that each argument is processed independently, and an error
resulting from one argument will not terminate the processin_g of the other arguments.

Explanatory information related to a command is a synopsis of the command. For example:

help ge5 rmdel

produces:

ge5:
"nonexistent sid"
The specified sid does not exist in the
given file.
Check for typos.

rmdel:
rmdel -rSID name ...

5.6 rmdel

The rmdel command is provided to allow removal of a delta from an secs file, though its use should be
reserved for those cases in which incorrect, global changes were made a part of the delta to be
removed.

The delta to be removed must be a "leaf' delta. That is, it must be the latest (most recently created)
delta on its branch or on the trunk of the secs file tree. In Figure 3, only deltas 1.3. 1.2, 1.3.2.2, and
2.2 can be removed~ once they are removed, then deltas 1.3.2.1 and 2.1 can be removed, and so on.

To be allowed to remove a delta, the effective user must have write permission in the directory contain
ing the secs file. In addition, the real user must either be the one who created the delta !;>eing
removed, or be the owner of the secs file and its directory.

The -r keyletter, which is mandatory, is used to specify the complete SID of the delta to be removed
(i.e., it must have two components for a trunk delta, and four components for a branch delta). Thus:

rmdel -r2.3 s.abc

specifies the removal of (trunk) delta "2.3" of the secs file. Before removal of the delta, rmdel checks
that the release number (R) of the given SID satisfies the relation:

floor ~ R ~ ceiling

In addition, the login name of the user must appear in the file's user list, or the user list must be empty.
If these conditions are not satisfied, processing is terminated, and the delta is not removed. After the
specified delta has been removed, its type indicator in the delta table of the secs file (see Section 6.2) is
changed from "D" (for "delta") to "R" (for "removed").

5.7 chghist

The chgh1st command is used to change a delta's commentary that was supplied when that delta was
created. Its invocation is analogous to that of the rmdel command, except that the delta to be processed
is not required to be a leaf delta. For example:

chghist -r3.4 s.abc

specifies that the commentary of delta "3.4" of the secs file is to be changed.

-

- 19 -

The new commentary is solicited by chghist in the manner of the delta command. The old commentary
associated with the specified delta is kept, but it is preceded by a comment line indicating that it has
been changed (i.e., superseded), and the new commentary is entered ahead of this comment line. The
"inserted" comment line records the login name of the user executing chghist and the time of its exe
cution.

5.8 what

The what command is used to qnd identifying information within any PWB/UNIX file whose name is
given as an argument to what. Directory names and a name of " - " (a lone minus sign) are not
treated specially, as they are by other secs commands, and no keyletters are accepted by the command.

What searches the giv~n file(s) for aJI occurrences of the string "@(#) '', which is the replacement for
the o/aZ% ID keyword (see ger(I)), and prints (on the standard output) what follows that string until the
first double quote ("), greater than (>), newline, or (non-printing) NUL character. Thus, for exam
ple, if the secs file "s.prog.c" (which is a C program), contains the following line (the %M% and %1%
ID keywords were defined in Section 5.1.1):.

char id(] "%Z%%M%:%l%"; ·

and then the command:

get -r3.4 s.prog.c

is executed, and finally the resulting g-.file is compiled to produce "prog.o" and "a.out", then the com
mand:

what prog.c prog.o a.out

produces:

prog.c:
prog.c:3.4

prog.o:
prog.c:3.4

a.out:
prog.c:3.4

The string searched for by what need not be inserted via an ID keyword of get; it may be inserted in any
convenient manner.

5.9 sccsdiff'

The sccsdiff command determines (and prints on the standard output) the differences between two
specified versions of one or more secs files. The versions to be compared are specified by using the -r
keyleuer, whose format is the same as for the get command. The two versions must be specified as the
first two arguments to this command in the order in which they were created, i.e., the older version is
specified first. Any following key letters are interpreted as arguments to the pr(!) command (which
actually prints the differences) and must appear before any file names. Secs files to be processed are
named last. Directory names and a name of " - " (a lone minus sign) are not acceptable to sccsdiff

, The differences are printed in the form generated by diff(I). The following is an example of the invo
cation of sccsdiffi

sccsdiff -rJ.4 -r5.6 s.abc

5.10 comb

Comb generates a_ Shell procedure (see sh(I)) which attempts to reconstruct the named secs files so that
the reconstructed files are smaller than the originals. The generated Sheil procedure is written on the
standard output.

Named secs files are reconstructed by discarding unwanted deltas and combining specified other deltas.
The intended use is for those secs files that contain deltas that are so old that they are no longer use
ful. It is not recommended that comb be used as a matter of routine; its use should be restricted to a
very small number of times in the life of an secs file.

- 20 -

In the absence of any keyletters, comb preserves only leaf deltas and the minimum number of ancestor
deltas necessary to preserve the .. shape,, of the secs file tree. The effect of this is to eliminate "mid
dle" deltas on the trunk and on all branches of the tree. Thus, in Figure 3, deltas 1.2, 1.3.2.1, 1.4,
and 2.1 would be eliminated. Some of the keyletters are summarized as follows:

The -P keyletter specifies the oldest delta that is to be preserved in the reconstruction. All older del
tus are discarded.

The -c keyletter specifies a list (see get(l) for the syntax of such a list) of deltas to be preserved. All
other deltas are discarded.

The -s keyletter causes the' generation of a Shell procedure, which, when run, produces. only a report
summarizing the percentage space (if any) to be saved by reconstructing each named secs file. It is
recommended that comb be run with this keyletter (in addition to any others desired) before any actual
reconstructions.

It should be noted that the Shell procedure generated by comb is nor guaranteed to save any space. In
fact, it is possible for the reconstructed file to be larger than the original. Note, too, that the shape of
the secs file tree may be altered by the reconstruction process.

6. secs FILES

This section discusses several topics that must be considered before extensive use is made of secs.
These topics deal with the protection mechanisms relied upon by secs, the format of secs files, and the
recommended procedures for auditing secs files.

6.1 Protection

Secs relies on the capabilities of the PWB/UNIX operating system for most of the protection mechanisms
required to prevent. unauthorized changes to secs files (i.e., changes made by non-secs commands).
The only protection features provided directly by secs are the release floor and ceiling flags, and the user
list (see Section 5.1.3).

New sccs files created by the admin command are given mode 444 (read only). It is recommended that
this mode not be changed, as it prevents any direct modification of the files by non-secs commands. It
is further recommended that the directories containing secs files be given mode 755, which allows only
the owner of the directory to modify its contents.

Secs files should be kept in directories that contain only secs files and any temporary files created by
secs commands. This simplifies protection and auditing of secs files (see Section 6.3). The contents
of directories should correspond to convenient logical groupings, e.g., sub-systems of a large project.

Secs files must have only one link (name). The reason for this is that those commands that modify
secs files do so by creating a temporary copy of the file (called the x-file, see Section 4) and, upon com
pletion of processing, remove the old file and rename the x-file. If the old file has more than one link,
removing it and renaming the x-:/ile would break the link. Rather than process such files, secs com
mands produce an error message. AH secs files must have names that begin with .. s.,,.

When only one user (or a group of users who share the same PWB/UNIX user identification number
user 10-see passwd(l)) uses secs, the real and effective user ms are the same, and that user ID owns
the directories containing secs files. In addition, when several users share the same user 10 {even
though they may have different login names), all such users have identical file permissions. Therefore,
secs may be used directly by any one of these users, without any preliminary preparation.

However, there are situations (for example, in large software development projects) in which it is not
practical to give the same user 10 to aJI users of secs. In these cases, one user (equivalently, one user
10) must be chosen as the "owner" of the secs files and be the one who will '"administer" them (e.g .•
by using the admin command). This user is termed the sccs administrator for that project. Because
other users of sccs do not have the same privileges and permissions as the secs administrator, they are
not able to execute directly those commands that require write permi5sion in the directory containing
the secs files. Therefore, a project-dependent program is required to provide an interface to the get,
d~lta, and, if desired, rmdel and chghist commands.

·-

-

-

-

- 21 -

The interface program must be owned by the secs administrator, and must have the
set user ID on execution bit on (see chmod(I)), so that the etf ective user ID is the user ID of the adminis
trator. This program's function is to invoke the desired secs command and to cause it to inherit the
privileges of the interface program for the duration of that command's execution. In this manner, the
owner of an secs file can modify it at will. Other users whose login names are in the user list for that
file (but who are not its owners) are given the necessary permissions only for the duration of the execu
tion of the interface program, and are thus able to modify the secs files only through the use of delta
and, possibly, rmdel and chghist. The project-dependent interface program, as its name implies, must be
custom-built for each project.

6.2 Format

Secs files are composed of lines of ASCII text7 arranged in six parts, as follows:

Checksum A line containing the "logical" sum of all the characters of the file (not including
this checksum itself).

Delta Table

User Names

Flags

Information about each delta, such as its type, its SID, date and time of creation,
and commentary.

List of login names of users who are allowed to modify the file by adding or
removing deltas.

Indicators that control certain actions of various secs commands.

Descriptive Text Arbitrary text provided by the user, usually a summary of the contents and pur
pose of the file.

Body Actual text that is being administered by secs, intermixed with internal secs con
trol lines.

Detailed information about the contents of the various sections of the file may be found in scc~le(V);
the checksum is the only portion of the file which is of interest below.

It is important. to note that because secs files are ASCII files, they may be processed by various
PWB/UNIX commands, such as ed(I), grep(I), and car(I). This is very convenient in those instances in
which an secs file must be modified manually (e.g., when the time and date of a delta was recorded
incorrectly because the system clock was set incorrectly), or when it is desired to simply "look" at the
file.

,... Extreme care should be exercised when modiJYing secs files with non~sccs commands.

6.3 Auditing

On rare occasions, perhaps due to an operating system or hardware malfunction, an secs file, or por
tions of it (i.e., one or more "blocks") can be destroyed. Secs commands (like most PWB/UNIX com
mands) issue an error message when a file does not exist. In addition, secs commands use the check
sum stored in the secs file to determine whether a file has been corrupted since it was last accessed (pos
sibly by having lost one or more blocks, or by having been modified with, for example, ed(I)). No
secs command will process a corrupted secs file except the admin command with the -h or -z
keyletters, as described below.

It is recommended that secs files be audited (checked) for possible corruptions on a regular basis. The
simplest and fastest way to perform an audit is to execute the admin command with the -h keyletter
on all sccs files:

admin -h s.filel s.file2 ...
or

admin -h directoryl directory2

7. Versions of SCCS up to and including Version 3 used non-ASCII files. Therefore, files created by earlier versions of SCCS
are incompatible with Version 4 of SCCS.

- 22 -

If the new checksum of any file is not equal to the checksum in the first line of that file, the message:

corrupted file (co6)

is produced for that file. This process continues until all the files have been examined. When examin
ing directories (as in the second example above), the process just described will not detect missing files.
A simple way to detect whether any files are missing from a directory is to periodically execute the /s(I)
command on that directory, and compare the outputs of the most current and the previous executions.
Any file whose name appears in the previous output but not in the current one has been removed by
some means.

Whenever a file has been corrupted, the manner in which the file is restored depends upon the extent
of the corruption. If damage is extensive, the best solution is to contact the local PWBIUNIX operations
group to request a restoral of the file from a backup copy. In the case of minor damage, repair through
use of the editor ed(I) may be possible. In the latter case, after such repair, the following command
must be executed:

admin -z s • .file

The purpose of this is to recompute the checksum to bring it into agreement with the actual contents of
the file. After this command is executed on a file, any corruption which may have existed in that file
will no longer be detectable.

REFERENCES

(1) Ritchie, 0. M., and Thompson, K. The UNIX Time-Sharing System. Comm. ACM 17(7):365-
75. July 1974.

[21 Kernighan. B. W. UNIX for Beginners. Bell Laboratories, 1973.

(3) Kernighan, B. W. A Tutorial Introduction to the UNIX Text Editor. Bell Laboratories, 1973.

[4] Oolotta, T. A., Haight, R. C., and Piskorik, E. M., eds. PWBIUNIX User's Manual-Edition 1.0.
Bell Laboratories, May 1977.

[5] Kernighan, B. W., and Ritchie, D. M. UNIX Programming. Bell Laboratories, 1973.

-

,-

Introduction

NROFF/TROFF User's Manual

Joseph F. Ossanna

Bell Laboratories
Murray Hill. New Jersey 07974

'.

NROFF and TROFF are text processors under the PDP-11 UNIX Time-Sharing Systeml that format text
for typewriter-like terminals and for a Graphic Systems phototypesetter, respectively. They accept lines
of text interspersed with lines of format control information and format the text into a printable,
paginated document having a user-designed style. NROFF and TROFF offer unusual freedom in docu
ment styling. including: arbitrary style headers and footers; arbitrary style footnotes; multiple automatic
sequence numbering for paragraphs, sections, etc; multiple column output; dynamic font and point-size
control; arbitrary horizontal and vertical local motions at any point; and a family of automatic overstrik
ing. bracket construction, and tine drawing functions.

NROFF and TROFF are highly compatible with each other and it is almost always possible to prepare
input acceptable to both. Conditional input is provided that enables the user to embed input expressly
destined for either program. NROFF can prepare output directly for a variety of terminal types and is
capable of utilizing the full resolution of each terminal.

Usqe

The general form of invoking NROFF (or TROFF) at UNIX command level is

nroff' options files (or troff options files)

where options represents any of a number of option arguments and files represents the list of files con
taining the document to be formatted. An argument consisting of a single minus (-) is taken to be a
file name corresponding to the standard input. If no file names are given input is taken from the stan
dard input. The options. which ma:y appear in any order so long as they appear before the files, are:

Option

-olist

-nN
-sN

effect

Print only pages whose page numbers appear in list, which consists of comma·
separated numbers and number ranges. A number range has the form N-M and
means pages N through M; a initial -N means from the beginning to page N,· and
a final N- means from N to the end.

Number first generated page N.

Stop every N pages. NROFF will halt prior to every N pages (default N-1) to
allow paper loading or changing, and will resume upon receipt of a newline.
TROFF will stop the phototypesetter every N pages, produce a trailer to allow
changing cassettes, and will resume after the phototypesetter ST ART button is
pressed.

-mname Prepends the macro file /usr/lib/tmac.name to the input files.

-raN

-I

-q

Register a (one-character) is set to N.

Read standard input after the input files are exhausted.

Invoke the simultaneous input-output mode of the rd request.

- l -

T.1

NROFF/TROFF User's Manual
October 11, 1976

NROFF Only

-T name Specifies the name of the output terminal type. Currently defined names are 37
for the (default) Model J7 teletype, tn300 for the GE TermiNet JOO (or any ter
minal without half-line capabilities), JOOS for the DASI-JOOS, 300 for the DASI·
JOO, and 450 for the DASl-450 (Diablo Hyterm).

-e Produce equally-spaced words in adjusted lines, using full terminal resolution.

f:ROFF. Only

-t Direct output to the standard output instead of the phototypesetter.

-f Refrain from feeding out paper and stopping phototypesetter at the end of the run.

-w Wait until phototypesetter is available, if currently busy.

-b TROFF will report whether the phototypesetter is busy or available. No text pro-
cessing is done.

-a Send a printable (ASCil) approximation of the results to the standard output.

- pN Print all characters in point size N while retaining all prescribed spacings and
motions, to reduce phototypesetter elasped time.

-g Prepare output for the Murray Hill Computation Center phototypesetter and direct
it to the standard output.

Each option is invoked as a separate argument~ for example,

nroff -04,8-10 -TJOOS -mabc filel file]

requests formatting of pages 4, 8, 9, and 10 of a document contained in the files named filel and file],
specifies the output terminal as a DASI-JOOS, and invokes the macro package abc.

Various pre- and post-processors are available for use with NROFF and TROFF. These include the
equation preprocessors NEQN and EQN2 (for NROFF and TROFF respectively), and the table
construction preprocessor TBLJ. A reverse-line postprocessor COL 4 is available for multiple.column
NROFF output on terminals without reverse-line ability; COL expects the Model J7 Teletype escape
sequences that NROFF produces by default. TK4 is a 37 Teletype simulator postprocessor for printing
NROFF output on a Tektronix 4014. TCAT4 is phototypesetter-simulator postprocessor for TROFF that
produces an approximation of phototypesett~r output on a Tektronix 4014. For example, in

tbl files I eqn I troff - t options I teat

the first I indicates the piping of TBL 's output to EQN's input; the second the piping of EQN's output to
TROFF's input; and the third indicates the piping of TROFF's output to TCAT. GCAT4 can be used to
send TROFF (-g) output to the Murray Hill Computation Center.

The remainder of this manual consists of: a Summary and Index; a Reference Manual keyed to the
index; and a set of Tutorial Examples. Another tutorial is [5].

Joseph F. Ossanna

References

Ill K. Thompson, 0. M. Ritchie, UNIX Programmer's Manual, Sixth Edition (May 1975).

[2) B. W. Kernighan, L. l. Cherry, Typesetting Mathematics - User's Guide (Second Edition), Bell Laboratories
internal memorandum.

[3) M. E. Lesk, Tb/ - A Program ro Format Tables. Bell Laboratories internal memorandum.

(4) Internal on-line documentation, on UNIX.

[5) B. W. Kernighan, A TROFF Turor1al, Bell Laboratories internal memorandum.

- 2 -

-

NROPPITllOFF User's Manual
October 11, 197 6

SUMMARY AND INDEX

Ra/flat Initial U' No
Form Yalue• Argument NoteS# Explanation

1. General Explanation

2. Font and Character Size Control

.ps :N lOpoint previous

.ss_ N 12/36em ignored

.csFNM off

.bd F N oft' ..

.bd SF N oft'

.ft F Roman

.fp N F R,l,B,S

3. Pace Control

.pl ±N 11 in

.bp ±N N-1

previous
ignored

11 in

.pn :N N-1 ignored

E
E

'p
p
p
E

.po ±N O; 26/27 in previous v
• ne N N-1 V D,v
.mk R none internal D
• rt :N none internal D,v

4. Text Flllin1, Adjusting, and Centering

.br B
• ft fill B.E
• nf fill B,E
• ad c adj,~th adjust E
.na adjust E
• ce N off N-1 B,E

S. Vertical Spacing

.vs N l/6in;l2pts previous

.ls N N-1
• sp N
.sv N
• os
.ns
.rs

space

previous
N-lY
N-lY

6. Line Length and Indenting

E,p
E
B,v

D
D

Point size; also \s±N.t
Space-character size set to N/36em.t
Constant character space (width) mode (font F). t
Embolden font F by N-1 units. t
Embolden Special Font when current font is F.t
Change to font F- x. xx. or 1-4. Also \fx. \f(xx:, \fN.
Font named F mounted on physical position 1 ~ N~4.

Page length.
Eject current page; next page number N.
Next page number N.
Page off set. ·
Need N vertical space (V - vertical spacing) .
Mark current vertical place in register R.
Return (upward only) to marked vertical place •

Break .
Fill output lines .
No filling or adjusting of output lines .
Adjust output lines with mode c.
No output tine adjusting .
Center following N input text lines.

Vertical base line spacing (V).
Output N-1 Vs after each text output line.
Space vertical distance N in either direction .
Save verticaJ distance N.
Output saved vertical distance .
Tum no-space mode on.
Restore spacing; tum no-space mode oft'.

.ll :N 6.5 in previous E.m Line length .

. in ±N N-0 previous B,E,m Indent.

.ti %.N ignored B,E,m Temporary indent.

7. Macros, Strings, Diversion, and Position Traps

.de xx yy .yy-.. Define or redefine macro xx: end at call of yy .

. am xx yy .yy-.. Append to a macro .
• ds xx string - ignored Define a string xx containing string .
. as xx string - ignored Append string to string .xx.

*Values separated by•;• are for NROFF and TROFF respect1veiy.

#Notes are explained at the end of this Summary and Index
tNo effect in NROFF.
•The use of • • • as control character (instead of •. •) suppresses the break function.

- 1 -

NROFF/TROFF User's Manual
October 11, 1976

I/No Request
Form

Initial
Value Argument Notes Explanation

.rm xx

.rn xx yy

.dl xx

.da xx
• wb N xx
. ch xx N
.dt N xx
.it N xx
• em xx none

8. Number Retisters

.nr R ±NM

. af R c arabic

. rr R

ignored
ignored
end
end

off
off
none

9. Tabs, Leaders, and Fields

. ta Nt ... 0.8; 0.5in none

. tc c none none

. le c none

.fc a b off off

D
D
v
v
D,v
E

Remove request, macro, or string.
Rename request, macro, or string xx to yy.
Divert output to macro xx
Divert and append to xx
Set location trap; negative is w.r.t. page bottom .
Change trap location .
Set a diversion trap.
Set an input-line count trap.
End macro is xx .

u Define and set number register R; auto-increment by M.
Assign format to register R (c-1, i, I, a, A) .
Remove register R .

E.m Tab settings; left type, unless 1-R(right), Cfoentered) .
E Tab repetition character .
E Leader repetition character .

Set field delimiter a and pad character b.

10. Input and Output Conventions and Character Translations

.ec c \ \ Set escape character .
• eo on Turn off escape character mechanism .
.lg N -; on on Ligature mode on if N>O .
. ul N off N-1 E Underline (italicize in TROFF) N input lines .
. cu N off .N-1 E Continuous underline in NROFF; like ul in TROFF .
. uf F Italic Italic Underline font set to F (to be switched to by ul) .
. cc c E Set control character to c .
. cl c E Set nobreak control character to c .
. tr abed.... none 0 Translate a to b, etc. on output.

11. Local Horizontal and Vertical Motions, and the Width Function

12. Overstrike, Bracket, Line-drawing, and Zero-width Functions

13. Hyphenation .

. nh hyphenate

. by N hyphenate

. he c \%

. hw word} ...

14. Three Part Titles .

. ti 'left' center' right'

hyphenate
\%
ignored

• pc c % off

E
E
E

. It ± N 6.5 in previous E,m
15. Output Line Numbering .

. nm ±NM SI off E

. nn N N-1 E

16. Conditional Acceptance of Input

.it c anything

No hyphenation .
Hyphenate; N =- mode .
Hyphenation indicator character c .
Exception words.

Three part title .
Page number character .
Length of title.

Number mode on or off, set parameters .
Do not number next N lines.

If condition c true, accept anything as input.
for multi-line use \{anything\}.

NROFF/TR.OFF User's Manual
October 11, 1976

I/No R~t
Form

Initial
Yalue Arp1Mnt Note& .Exp/!Jnation

.JI !c anything

.JI N anything u
• If !N anything u

If condition c false, accept anything.
If expression N > 0, accept anything •
If expression N ~ 0, accept anything.

.JI ·Siring)· string]' anything If string} identical to stringl, accept anything •
• If r string)' string]' anything
• le c anything a
• el anything

If string} not identical to string], accept anything.
If ponion of if-else; all above forms (like lf) .
Else ponion of if-else .

17. Environment Swttchiq.

• ev N N--0 previous

18. Insertions from the Standard Input

• rd prompt • prompt-BEL·
• ex

19. Input/Output File Switchi111

• so .filename
. nx .filename
• pi program

end-of -file •

Environment switched (push down) .

Read insenion .
Exit from NROFF/TROFF .

Switch source file (push down) .
Next file .
Pipe output to program (NROFF only) .

20. Miscellaneous

.me cN off
newline
.yy-••

E,m Set margin character c and separation N.
.tm string
••• yy

Print stringon terminal (UNIX standard message output).
Ignore till call of yy .

.pm I all Print macro names and sizes;
if r present, print only total of sizes.

. n B Flush output buffer .

21. Output and Error Messaces

Notes-

8 Request normally causes a break.
D Mode or relevant parameters associated with current diversion level.
E Relevant parameters are a pan of the current environment.
0 Must stay in etrect until logical output.
P Mode must be still or again in effect at the time of physical output.

v,p.m,u Default scale indicator, if not specified, scale indicators are ignored.

AlphnedaJ Request and Secden NIUllW Cross lleference

ad 4 cc 10 els 7 fc 9 ie 16 u 6 nh 13 pi 19 m 7 la 9 vs s
af 8 ce 4 dt 7 Ii 4 if 16 Is s nm IS pl 3 rr , 8 tc 9 wh 7
am 7 ch 7 ec 10 n 20 ig 20 It 14 nn lS pm20 rs s Ii 6
u 7 cs 2 el 16 fp 2 in 6 mc20 nr 8 pn 3 rt 3 tf 14
bd 2 cu 10 em 7 ft 2 it 7 mk 3 ns s Po 3 so 19 tm 20
bp 3 da 7 eo 10 he 13 le 9 na 4 nx 19 ps 2 SP s tr 10
br 4 de 7 CY 17 hw 13 lg 10 ne 3 OS s rd 18 SS 2 uf 10
c2 10 di 7 ex 18 hy 13 Ii 10 nf 4 pc 14 rm 7 SY s ul 10

• s •

NROFPITROFF User's Manual
October 11, 1976

Escape Sequences for Characters, Indicators, and Functions

Section
Reference

10.1
10.1
2.1
2.1
2.1
7

11.l
11.l
11.l
11.1
4.1

10.6
10.7
7.3

13
2.1
7.1
9.1

12.3
4.2

11.1
2.2

11.1
11.3
12.4
12.4
8

12. l
4.1

11.1
2.3
9.1

11.1
11.l
11.2
5.2

12.2
16
16
10.7

Escape
Sequence

\\
\e
\'
\'
\-
\.
\(space)
\0
\I
\A
\&
\!
\•
\SN
\o/t
\Ca
\•x. \•(xx
\a
\b' abc ... •
\c
\d
\fx. \f(xx., \f N
\h'N'
\kx
\1 'Ne'
\L' Ne'
\nx,\n(.a
\o'abc ... ·
\p
\r
\sN, \s±N
\t
\u
\v'N'
\w' string'
\x'N'
\zc
\{
\}
\(newline)
\X

Meaning

\ (to prevent or delay the interpretation of\)
Printable version of the current escape character.
' (acute accent); equivalent to \ (aa
' (giave accent); equivalent to \(aa
- Minus sign in the current font
Period (dot) (see de)
U npaddable space-size space character
Digit width space
l/6em narrow space character (zero width in NROFF)
1/12 em half-narrow space character (zero width in NROFF)
Non-printing, zero width character
Transparent line indicator
Beginning of comment
Interpolate argument 1 < N<9
Default optional hyphenation character
Character named xx
Interpolate string x or xx
Non-interpreted leader character
Bracket building function
Interrupt text processing
Forward (down) 1/2 em vertical motion (1/2 line in NROFF)
Change to font named x or xx. or position N
Local horizontal motion; move right N (negative left)
Mark horizontal input place in register x
Horizontal line drawing function (optionally with c)
Vertical line drawing function (optionally with c)
Interpolate number register x or xx
Overstrike characters a, b, c, ...
Break and spread output line
Reverse 1 em vertical motion (reverse line in NROFF)
Point-size change function
Non-interpreted horizontal tab
Reverse (up) 1/2 em vertical motion (1/2 line in NROFF)
Local vertical motion; move down N (negative up)
Interpolate width of string
Extra line-space function (negative before. positive after)
Print c with zero width (without spacing)
Begin conditional input
End conditional input
Concealed (ignored) newline
X, any character nor listed above

The escape sequences\\,\.,\", \S, \•.\a, \n, \t, and \(newline) are interpreted in copy mode (§7.2).

-

NROFFITROFF User's Manual
October 11, 1976

Predefined General Number Registers

Section
Reference

3
11.2
7.4
7.4

11.3
lS

4.1
11.2
11.2

Regi&ter
Name
~
ct
di
dn
dw
dy
bp
ln
mo
nl
sb
st
yr

Description

Current page number.
Character type (set by width function).
Width (maximum) of last completed diversion.
Height (vertical size) of last completed diversion.
Current day of the week 0-7}.
Current day of the month (I.JI).
Current horizontal place on i11put line.
Output line number.
Current month (1-12).
Vertical position of last printed text base-line.
Depth of string below base line (generated by width function).
Height of string above base line (generated by wtdtlr function>.
Last two digits of current year.

Predefined Read-Only Number Reaister.;

S«tion Register
Reference Name

7.3 .s
. A

11.l .H
. T

11.l .v
S.2 . a

. c
7.4 • d
2.2 .f
4 • h
6 .l
6 .I
4 .n
3 .o
3 . p
2.3 . s
1.5 . l
4.1 • u
5.1 • v

11.2 . w
. x
• y

7.4 . z

Description

Number of arguments available at the current macro level.
Set to I in TROff, if -a option used: always l in NROFF .
Available horizontal resolution in basic units .
Set to I in NROff, if -T option used: always 0 in TROFF.
Available vertical resolution in basic units.
Post-line extra line-space most recently utilized using \x' N' .
Number of lines read from current input file .
Current vertical place in current diversion: equal to nl. if no diversion .
Current font as physical quadrant (1-4).
Text base-line high-water mark on current page or diversion .
Current indent.
Current line length.
Length of text portion on previous output line.
Current page off set.
Current page length .
Current point size .
Distance to the next trap .
Equal to I in fill mode and 0 in nofill mode .
Current vertical line spacing .
Width of previous character .
Reserved version-dependent register .
Reserved version-dependent register .
Name of current diversion .

- 7 -

NROPFITROFF User's ManuaJ
October 11, 1976

1. General Explanation

REFERENCE MANUAL

1.1. Form of input. Input consists of text lines, which are destined to be printed, interspersed with control
lines, which set parameters or otherwise control subsequent processing. Control lines begin with a con
trol character-normally • (period) or • (acute accent)-followed by a one or two character name that
specifies a basic request or the substitution of a user-defined macro in place of the control line. The
control character • suppresses the break function-the forced output of a partially filled line-caused by
certain requests. The control character may be separated from the request/macro name by white space
(spaces and/or tabs) for esthetic reasons. Names must be followed by either space or newline. Control
lines with unrecognized names are ignored.

Various special functions may be introduced anywhere in the input by means of an escape character,
normally \. For example, the function \nR causes the interpolation of the contents of the number regis
ter R in place of the function~ here R is either a single character name as in \nx. or left-parenthesis
introduced, two-character name as in \n(xx.

1.2. Formatter and device resolution. TROFF internally uses 432 units/inch, corresponding to the Graphic
Systems phototypesetter which has a horizontal resolution of 1/432 inch and a vertical resolution of
1/144 inch. NROFF internally uses 240 units/inch, corresponding to the least common multiple of the
horizontal and vertical resolutions of various typewriter-like output devices. TROFF rounds
horizontal/vertical numerical parameter input to the actual horizontal/vertical resolution of the Graphic
Systems typesetter. NROFF similarly rounds numerical input to the actual resolution of the output dev
ice indicated by the -T option (default Model 37 Teletype).

1.3. Numerical parameter input. Both NROFF and TROFF accept numerical input with the appended scale
indicators shown in the following table, where S is the current type size in points, Vis the current verti
cal line spacing in basic units, and C is a nominal character width in basic units.

Scale Number of basic units
Indicator Meaning TROFF NROFF

i Inch 432 240
c Centimeter 432x50/127 240x50/127
p Pica - 1/6 inch 72 240/6
m Em - Spoints 6xS c
n En - Em/2 3xS. C, same as Em
p Point - 1/72 inch 6 24-0/72
u Basic unit 1 1
y Vertical line space v v

none Default, see belo~

In NROFF, both the em and the en are taken to be equal to the C, which is output-device dependent;
common values are 1/10 and 1/12 inch. Actual character widths in NROFF need not be au the same
and constructed characters such as - > (-) are often extra wide. The default scaling is ems for the
horizontally-oriented requests and functions U, in, ti, ta, It, po, me. \h, and \I~ Vs for the verticaily
oriented requests and functions pl, wh, ch, dt, sp, sv, ne, rt, \ v, \x, and \L; p for the vs request; and
u for the requests nr, if, and ie. All other requests ignore any scale indicators. When a number regis
ter containing an already appropriately scaled number is interpolated to provide numerical input, the
unit scale indicator u may need to be appended to prevent an additional inappropriate default scaling.

)

• 8 •

NROFFl1'1lOFF User's Manual
October 11, 1976

The number, N, may be specified in decimal-fraction form but the parameter finally stored is rounded
to an integer number of basic units. ·

The absolute position indicator I may be prepended to a number N to 1enerate the distance to the vertical
or horizontal place N. For vertically-oriented requests and functions, IN becomes the distance in basic
units from the current vertical place on the page or in a diversion (§7.4) to the the vertical place N. For
all other requests and functions. IN becomes the distance from the current horizontal place on the input
line to the horizontal place N. For example,

.sp 13.lc

will space in the nquire(i direction to 3.2 centimeters from the top of the page.

J .4. Numerical expressions. Wherever numerical input is expected an expres,,ion involving parentheses.
the arithmetic operators +, -, /, •, ~ (mod), and the logical operators <. >, <-. >-. - (or --),
.t (and), : (or) may be used. Except where controlled by parentheses. evaluation of expres,,ions is
left-to-right~ there is no operator precedence. In the case of certain requests, an initial + or - is
stripped and interpreted as an increment or decrement indicator respectively. In the presence of default
scaling, the desired scale indicator must be attached to every number in an expression for which the
desired and default scaling differ. For example. if the number register x contains 2 and the current
point size is 10, then

.JI (4.25l+\nxP+3)/2u

will set the line length to 1/2 the sum of 4.25 inches+ 2 picas+ 30 points.

1.5.Notation. Numerical parameters are indicated in this manual in two ways. :t:.N means that the
argument may take the forms N, +N, or -N and that the corresponding effect is to set the affected
parameter to N, to inerement it by N, or to decrement it by N respectively. Plain N means that an ini
tial algebraic sign is not an increment indicator, but merely the sign of N. Generally, unreasonable
numerical input is either ignored or truncated to a reasonable value. For example. most requests
expect to set parameters to non-negative values; exceptions are sp, wh. ch, nr, and if. The requests
ps, ft, po, vs. ls, II, in, and It restore the previous parameter value in the absence of an argument.

Single character arguments are indicated by single lower case letters and one/two character arguments
are indicated by a pair of lower case letters. Character string arguments are indicated by multi-character
mnemonics.

2. Font and Character Size Control

2.J. Character set. The TROFF character set consists of the Graphics Systems Commercial II character
set plus a Special Mathematical Font character set-each having 102 characters. These character sets
are shown in the attached Table I. All ASCU characters are included, with some on the Special Font.
With three exceptions, the ASCII characters are input as themselves, and non-ASCII characters are input
in the form \(.a where xx is a two-character name given in the attached Table II. The three ASCII
exceptions are mapped as fallows:

ASCII Input Printed by TROFF
Character Name Character Name .

acute accent • close quote . grave accent ' open quote
- minus - hyphen

The characters •• '. and - may be input by\', \', and\- respectively or by their names (Table U).
The ASCII characters @, #, •, •. ', <, >, \, (, }, -, '", and exist only on the SpeciaJ Font and are
printed as a 1-em space if that Font is not mounted. -

NROFF understands the entire TROFF character set, but can in general print only ASCII characters,
additional characters as may be available on the output device. such characters as may be able to be
constructed by overstriking or other combination, and those that can reasonably be mapped into other
printable characters. The exact behavior is determined by a driving table prepared for each device. The

. 9.

NROFF/TROFF User's Manual
October 11, 1976

characters ·, ·, and _ print as themselves.

2.2. Fonts. The default mounted fonts are Times Roman (R), Times Italic (I), Times Bold (B), and
the Special Mathematical Font (S) on physical typesetter positions 1, 2, 3, and 4 respectively. These
fonts are used in this document. The current font, initially Roman, may be changed (among t'ie
mounted fonts) by use of the ft request, or by imbedding at any desired point either \fx, \f(.:cx. or \fN
where x and xx are the name of a mounted font and N is a numerical font position. It is not necessary
to change to the Special font; characters on that font are automatically handled. A request for a named
but not·mounted font is ignored. TROFF can be informed that any particular font is mounted by use of
the fp request. The list of known fonts is installation dependent. In the subsequent discussion of
font.related requests, F repre8ents either a one/two.character font name or the numerical font position,
1-4. The current font is available (as numerical position) in the read-only number register .f.

NROFF understands font control and normally underlines Italic characters (see § l 0.5).

2.J. Character size. Character point sizes available on the Graphic Systems typesetter are 6, 7, 8, 9, 10,
11, 12. 14, 16, 18, 20, 22, 24, 28, and 36. This is a range of 1/12 inch to 1/2 inch. The ps request is
used to change or restore the point size. Alternatively the point size may be changed between any two
characters by imbedding a \sN at the desired point to set the size to N, or a \s ± N (1 ~ N~ 9) to
increment/decrement the size by N, \sO restores the previous size. Requested point size values that are
between two valid sizes yield the larger of the two. The current size is available in the .s register.
NROFF ignores type size control.

R~uut Initial U No
Form Value Af'lllment

.ps ±N lOpoint previous

.ssN 12/36em ignored

.cs FN M oft'

.bd F N oft'

Notes• Explanation

E Point size set to ±N. Alternatively imbed \sN or \s±N.

E

p

p

Any positive size value may be requested; if invalid, the
next larger valid size will result, with a maximum of 36.
A paired sequence + N, -N will work because the previ·
ous requested value is also remembered. Ignored in
NROFF.

Space-<:haracter size is ~et to N/36 ems. This size is the
minimum word spacing in adjusted text. Ignored in
NROFF.

Constant character space (width) mode is set on for font
F (if mounted)~ the width of every character will be
taken to be N/36 ems. If Mis absent, the em is that of
the character's point size; if M is given, the em is M
points. All a.ft'ected characters are centered in this space,
including those with an actual width larger than this
space. Special Font characters occurring while the
current font is F are aJso so treated. If N is absent, the
mode is turned off. The mode must be still or again in
effect when the characters are physically printed. Ignored
in NROFF.

The characters in font F will be anificially emboldened by
printing each one twice, separated by N-1 basic units. A
reasonable value for N is 3 when the character size is in
the vicinity of 10 points. If N is missing the embolden
mode is turned off. The column heads above were
printed with .bd I 3. The mode must be still or again in
eft'ect when the characters are physically printed. Ignored
in NROFF.

•Notes are explained at the end of the Summary and Index above .

. 10.

-

NROFF/TROFF User's Manual
October 11, 1976

.bd SF N off

.ft F Roman previous

.fp NF R,1,B,S ignored

3. Pace control

p

E

The characters in the Special Font will be emboldened
whenever the current font is F. This manual was printed
with .bd SB 3. The modt. mi.st be still or again in effect
when the characters are physically printed.

Font changed to F. Alternatively, imbed \fF The font
name P is reserved to mean the previous font.

Font position. This is a statement that a font named Fis
mounted on position N 0-4). It is a fatal error if Fis
not known. The phototypesetter has four fonts physically
mounted. Each font consists of a film strip which can be
mounted on a numbered quadrant of a wheel. The
default mounting sequence assumed by TROFF is R, I, B,
and S on positions l, 2, 3 and 4.

Top and bottom margins are not automatically provided~ it is conventional to define two macros and to
set traps for them at vertical positions 0 (top) and -N (N from the bottom). See §7 and Tutorial
Examples §T2. A pseudo-page transition onto the first page occurs either when the first break oa=urs or
when the first non-diverted text processing occurs. Arrangements for a trap to occur at the top of the
first page must be completed before this transition. In the following, references to the current diversion
(§7.4) mean that the mechanism being described works during both ordinary and diverted output (the
former considered as the top diversion level). ·

The useable page width on the Graphic Systems phototypesetter is about 7.54 inches, beginning about
1/27 inch from the left edge of the 8 inch wide, continuous roll paper. The physical limitations on
NROFF output are output-device dependent.

Request Initial If No
Form Yalw Argument Notes

.pl ±N 11 in 11 in 'f

• bp ±N N-1 a•" ' .
.po ±N N-1 ignored

.po ±N o~ 26/27 int previous v

.ne N N-1 v D,v

Explanation

Page length set to ± N. The internal limitation is about
75 inches in TROFF and about 136 inches in NROFF.
The current page length is available in the .p register .

Begin page. The current page is ejected and a new page
is begun. If ± N is given, the new page number will be
± N. Also see request ns.

Page number. The next page (when it oa:urs) will have
the page number ± N. A pn must occur before the ini
tial pseudo-page transition to effect the page number of
the first page. The current page number is in the 'It
register.

Page off set. The current left margm is set to ± N. The
TROFF initial value provides about I inch of paper mar
gin including the physical typesetter margin of 1/27 inch.
·In TROFF the maximum (line-length)+ (page-offset) is
about 7.54 inches. See §6. The current page offset is
available in the .o register.

Need N vertical space. If the distance, D, to the next
trap position (see §7.5) is less than N, a forward vertical
space of size D occurs, which will spring the trap. If
there are no remaining traps on the page, D is the

"The use of• • • as control character (instead of •. ") suppresses the break function.

tValues separated by •;• are for NROFF and TROFF respectively.

- 11 •

NROFF/TROFF User's Manual
October 11, 1976

.mk R none internal

.rt ±N none internal

D

D,v

4. Text Flllinc, Adjustin1, and Centering

distance to the bottom of the page. If D < V, another
line could still be output and spring the trap. In a diver
sion, D is the distance to the diversion trap, if any, or is
very large.

Mark the current vertical place in an internal registe.
(both associated with the current diversion level), or ir.
register R, if given. See rt request.

Return upward only to a marked vertical place in the
current diversion. If ±N (w.r.t. current place) is given,
the place is ±N from the top of the page or diversion or,
if N is absent, to a place marked by a previous mk. Note
that the sp request (§5.3) may be used in all cases
instead of rt by spacing to the absolute place stored in a
explicit register; e. g. using the sequence .mk R ...
. sp l\nRu.

4.1. Filling and adjusting. Normally, words are collected from input text lines and assembled into a out·
put text line until some word doesn't fit. An attempt is then made the hyphenate the word in effort to
assemble a part of it into the output line. The spaces between the words on the output line are then
increased to spread out the line to the current line length minus any current indent A word is any string
of characters delimited by the space character or the beginning/end of the input line. Any adjacent pair
of words that must be kept together (neither split across output lines nor spread apart in the adjustment
process) can be tied together by separating them with the unpaddable space character "\ • (backslash
space). The adjusted word spacings are uniform in TROFF and the minimum interword spacing can be
controlled with the ss request (§2). In NROFF, they are normally nonuniform because of quantization
to character-size spaces; however, the command line option - e causes uniform spacing with full output
device resolution. Filling, adjustment, and hyphenation (§13) can all be prevented or controlled. The
text length on the last line output is available in the .n register, and text base-line position on the page
for this line is in the nl register. The text base-line high-water mark (lowest place) on the current page
is in the . h register.

An input text line ending with . , ? , or ! is taken to be the end of a sentence, and an additional space
character is automatically provided during filling. Multiple inter-word space characters found in the
input are retained, except for trailing spaces; initial spaces also cause a break.

When filling is in effect, a \p may be imbedded or attached to a word to cause a break at the end of the
word and have the resulting output line spread out to fill the current line length.

A text input line that happens to begin with a control character can be made to not look like a control
line by pref acing it with the non-printing, zero-width filler character \&. Still another way is to specify
output translation of some convenient character into the control character using tr (§10.5).

4.2. lnterrupted text. The copying of a input line in nofill (non-fill) mode can be interrupted by terminat
ing the partial line with a \c. The next encountered input text line will be considered to be a continua·
tion of the same line of input text. Similarly, a word within filled text may be interrupted by terminat
ing the word (and line) with \c; the next encountered text will be taken as a continuation of the inter
rupted word. If the intervening control lines cause a break, any partial line will be forced out along
with any partial word.

Request Initial
Form Value

.br

I/No
Argument Notes

B

Explanation

Break. The filling of the line currently being collected is
stopped and the line is output without adjustment. Text
lines beginning with space characters and empty text
lines (blank lines) also cause a break.

- 12 -

NROFF/TROFF User's Manual
October 11, 1976

.fl fill on

.nf fill on

.ad c adj,both adjust

.na adjust

.ceN off

S. Vertical Spacing

B,E

B,E

E

E

B.E

Fill subsequent output lines. The register .u is I in fill
mode and 0 in nofill mode.

Nofilt. Subsequent outi-ut lines are neither filled nor
adjusted. Input text lines are copied directly to output
lines without regard for the current line length.

Line adjustment is begun. If fill mode is not on, adjust
ment will be def erred until fill mode is back on. If the
type indicator c is present, the adjustment type is
changed as shown in the following table.

Indicator Adjust Type
I adjust left margin only
r adjust right margin only
c center

born adjust both margins
absent unchanged

Noadjust. Adjustment is turned off; the right margin will
be ragged. The adjustment type for ad is not changed.
Output line filling still occurs if fill mode is on.

Center the next N input text lines within the current
(line-length minus indent). If N-0, any residual count
is cleared. A break occurs after each of the N input
lines. If the input line is too long, it will be left adjusted.

5.1. Base-line spacing. The vertical spacing (VJ between the base-lines of successive output lines can be
set using the vs· request with a resolution of l/144 inch -1/2 point in TROFF. and to the output device
resolution in NROFF. V must be large enough to accommodate the character sizes on the affected out
put lines. For the common type sizes (9-12 points). usual typesetting practice is to set V to 2 points
greater than the point size; TROFF default is 10-point type on a 12-point spacing (as in this document).
The current Vis available in the .v register. Multiple-V line separation (e.g. double spacing) may be
requested with Is.

5.2. Extra line-space. If a word contains a vertically tall construct requiring the output line containing it
to have extra vertical space before and/or after it, the extra-line-space function \x· N • can be imbedded
in or attached to that word. In this and other functions having a pair of delimiters around their parame
ter (here'), the delimiter choice is arbitrary, except that it can't look like the continuation of a number
expression for N. If N is negative, the output line containing the word will be preceded by N extra
vertical space; if N is positive, the output line containing the word will be followed by N extra vertical
space. If successive requests for extra space apply to the same line, the maximum values are used.
The most _recently utilized post-line extra line-space is available in the .a register.

5.3. Blocks of vertical space. A block of vertical space is ordinarily requested using sp, which honors the
no-space mode and which does not space past a trap. A contiguous block of vertical space may be
reserved using sv.

Request Initial I/No
Argument Form Value

.vsN l/6in; l 2pts previous

.lsN N-1 previous

Notes Explanation

E,p

E

Set vertical base-line spacing size V. Transient extra
vertical space available with \x' N · (see above).

Line spacing set to ± N. N-1 Vs (blank lines) are
appended to each output text line. Appended blank lines
are omitted, if the text or previous appended blank line

• 13 -

NROFF/TROFF User's Manual
October 11, 1976

.sp N N-lV

.sv N N-1 Y'.

.OS

.ns space

.rs space

Blank text line.

6. Line Length and Indenting

B,v

v

D

D

B

reached a trap position.

Space vertically in either direction. If N is negative, the
motion is backward (upward) and is limited to the dis
tance to the top of the page. Forward (downward)
motion is truncated to the distance to the nearest trap. If
the no-space mode is on, no spacing occurs (see ns, and
rs below).

Save a contiguous vertical block of size N. If the dis
tance to the next trap is greater than N, N vertical space
is output. No-space mode has no effect. If this distance
is less than N, no vertical space is immediately output,
but N is remembered ior later output (see os). Subse
quent sv requests will overwrite any still remembered N.

Output saved vertical space. No-space mode has no
effect. Used to finally output a block of vertical space
requested by an earlier sv request.

No-space mode turned on. When on, the no-space mode
inhibits sp requests and bp requests without a next page
number. The no-space mode is turned off when a line of
output occurs, or with rs.

Restore spacing. The no-space mode is turned off.

Causes a break and output of a blank line exactly tik~

sp 1.

The maximum line length for fill mode· may be set with II. The indent may be set with in~ an indent
applicable to only the next output line may be set with ti. The line length includes indent space but not
page offset space. The line-length minus the indent is the basis for centering with ce. The effect of 11.
In, or ti is delayed, if a partially collected line exists, until after that line is output. In fill mode the
length of text on an output line is less than or equal to the line length minus the indent. The current
line length and indent are available in registers .I and .i respectively. The length of three-part tl(/es pro·
duced by ti (see §14) is independently set by It.

Request Initial If No
Form Value Argument

.n ± N 6.5 in previous

.in ±N N-0 previous

. ti ±N ignored

Notes

E,m

Explanation

Line length is set to ± N. In TROFF the maximum
(line-length)+ (page-offset) is about 7.54 inches.

B,E,m Indent is set to ± N. The indent is prepended to each
output line .

B,E,m Temporary indent. The next output text line will be
indented a distance ± N with respect to the current
indent. The resulting total indent may not be negative.
The current indent is not changed.

7. Macros, Strings, Diversion, and Position Traps

7.1. Macros and smngs. A macro is a named set of arbitrary lines that may be invoked by name or with
a trap. A string is a named string of characters, not including a newline character, that may be interpo
lated by name at any point. Request, macro, and string names share the same name list. Macro and
string names may be one or two characters long and may usurp previously defined request, macro, or
string names. Any of these entities may be renamed with rn or removed with rm. Macros are created
by de and di, and appended to by am and da~ di and da cause normal output to be stored in a macro.
Strings are created by ds and appended to by as. A macro is invoked in the same way as a request: a

- 14 •
·~
·, . '

NROFF/TROFF User's Manual
October 11, 1976

control line beginning .xx will interpolate the contents of macro xx. The remainder of the line may
contain up to nine arguments. The strings x and xx are interpolated at any desired point with \•x and
\•(xx respectively. String references and macro invocations may be nested.

7.l. Copy mode input interpretation. During the definition and extension of strings and macros (not by
diversion) the input is read in copy mode. The input is copied without interpretation except that:

• The contents of number registers indicated by \n are interpolated.
• Strings indicated by \• are interpolated.
• Arguments indicated by \$ are interpolated.
• Concealed newlines indicated by \(newline) are eliminated.
• Comments indlcated by \ • are eliminated.
• \t and \a are interpreted as ASCII horizontal tab and SOH respectively (§9).
• \ \ is interpreted as \.
• \. is interpreted as ". ".

These interpretations can be suppressed by prepending a \. For example, since \ \ maps into a \, \ \n
will copy as \n which will be interpreted as a number register indicator when the macro or string is
reread.

7.3. Arguments. When a macro is invoked by name, the remainder of the line is taken to contain up to
. nine arguments. The argument separator is the space character, and arguments may be surrounded by

double-quotes to permit imbedded space characters. Pairs of double-quotes may be imbedded in
double-quoted arguments to represent a single double-quote. If the desired arguments won't fit on a
line, a concealed newline may be used to continue on the next line.

When a macro is invoked the input level is pushed down and any arguments available at the previous
level become unavailable until the macro is completely read and the previous level is restored. A
macro's own arguments can be interpolated at any point within the macro with \SN, which interpolates
the Nth argument (l ~N~9). If an invoked argument doesn't exist, a null string results. For exam
ple, the macro xx may be defined by

.de xx \"begin definition
Today is \ \$1 the \\$2.

\•end definition

and caHed by

.xx Monday 14th

to produce the text

Today is Monday the 14th.

Note that the \$ was concealed in the definition with a prepended \. The number of currently available
arguments is in the .S register.

No arguments are available at the top (non-macro) level in this implementation. Because string
referencing is implemented as a input-level push down, no arguments are available from wtthin a string.
No arguments are available within a trap-invoked macro.

Arguments are copied in copy mode onto a stack where they are available for reference. The mechan
ism does not allow an argument to contain a direct reference to a long string (interpolated at copy time)
and it is advisable to conceal string references (with an extra \) to delay interpolation until argument
reference time.

7.4. Diversions. Processed output may be diverted into a macro for purposes such as footnote processing
(see Tutorial §TS) or determining the horizontal and vertical size of some text for conditional changing
of pages or columns. A single diversion trap may be set at a specified vertical position. The number
registers dn and di respectively contain the vertical and horizontal size of the most recently ended
diversion. Processed text that is diverted into a macro retains the vertical size of each of its lines when
reread in nofill mode regardless of the current V. Constant-spaced (cs) or emboldened (bd) text that is
diverted can be reread correctly only if these modes are again or still in effect at reread time. One way

NROFF/TROFF User's Manual
October 11, 1976

to do this is to imbed in the diversion the appropriate cs or bd requests with the transparent mechanism
described in §10.6.

Diversions may be nested and certain parameters and registers are associated with the current diversion
level (the top non-diversion level may be thought of as the 0th diversion level). These are the diver
sion trap and wociated macro, no-space mode, the internally-saved marked place (see mk and rt), the
current vertical place (.d register), the current high-water text base-line (.h register), and the current
diversion name (.z register).

7.5. Traps. Three types of trap mechanisms are available-page traps, a diversion trap, and an input
line-count trap. Macro-invocation traps may be planted using what any page position including the top.
This trap position may be changed using ch. Trap positions at or below the bottom of the page have no
effect unless or until moved to within the page or rendered effective by an increase in page length.
Two traps may be planted at the same position only by first planting them at different positions and
then moving one of the traps~ the first planted trap will conceal the second unless and until the first one
is moved (see Tutorial Examples §TS). If the first one is moved back, it again conceals the second
trap. The macro associated with a page trap is automatically invoked when a line of text is output
whose vertical size reaches or sweeps past the trap position. Reaching the bottom of a page springs the
top-of-page trap, if any, provided there is a next page. The distance to the next trap position is avail
able in the .t register; if there are no traps between the current position and the bottom of the page .• the
distance returned is the distance to the page bottom.

A macro-invocation trap effective in the current diversion may be planted using dt. The .t register
works in a diversion; if there is no subsequent trap a large distance is returned. For a description of
input-lin~ount traps, see it below.

Request Initial If No
Form Yalue Argument Notes Explanation

.de :a yy .yy-.. Define or redefine the macro .xx. The contents of the
macro begin on the next input line. Input lines are
copied in copy mode until the definition is terminated by a
line beginning with .yy, whereupon the macro yy is
called. In the absence of yy, the definition is terminated
by a line beginning with " .• ". A macro may contain de
requests provided the terminating macros differ or the
contained definition terminator is concealed. " .. • can be
concealed as \ \.. which will copy as \.. and be reread as

. am xx yy

.ds xx string -

.as :a string -

.rm xx

.rn xxyy

.di :a

. yy-..

ignored

ignored

ignored

ignored

end D

Append to macro (append version of de) .

Define a string .xx containing string. Any initial double
quote in string is stripped off to permit initial blanks.

Append string to string xx (append version of ds).

Remove request, macro, or string. The name xx is
removed from the name list and any related storage
space is freed. Subsequent references will have no eif ect.

Rename request, macro, or string xx to yy. If yy exists, it
is first removed.

Divert output to macro xx. Normal text processing
occurs during diversion except that page offsetting is not
done. The diversion ends when the request di or da is
encountered without an argument; extraneous requests
of this type should not appear when nested diversions are
being used .

• 16 -

-

NROFF/TROFF User's Manual
October 11. 1976

.da xx

.wh N xx

• ch xx N

.dt N xx

.it N xx

.em xx none

8. Number Registers

end

off

off

none

D

v

v

D.v

E

Divert, appending to .xx (append version of di).

Install a trap to invoke .X:X' at page position N; a negative N
will be interpreted with respect to the page bottom. Any
macro previously planted 1t :V is replaced by xx. A zero
N refers to the rop of a page. In the absence of .a., the
first found trap at N, if any, is removed .

Change the trap position for macro xx to be N. In the
absence of N, the trap, if any. is removed.

Install a diversion trap at position N in the current diver
sion to invoke macro xx. Another dt will redefine the
diversion trap. If no arguments are given, the diversion
trap is removed.

Set an input-line-count trap to invoke the macro xx after
N lines of 1ex1 input have been read (control or request
lines don't count). The text may be in-line text or text
interpolated by inline or trap-invoked macros.

The macro xx will be invoked when all input has ended.
The effect is the same as if the contents of xx had been
at the end of the last file processed.

A variety of parameters are available tn the user as predefined, named number registers (see Summary
and Index, page 7). ln addition, the user may define his own named registers. Register names are one
or two characters long and do 1101 conflict with request, macro, or string names. Except for certain
predefined read-only registers, a number register can be read, written, automatically incremented or
decremented, and interpolated into the input in a variety of formats. One common use of user-defined
registers is to automatically number sections, paragraphs. lines, etc. A number register may be used
any time numerical input is expected or desired and may be used in numerical expressions (§ 1.4).

Number registers are created and modified using nr, which specifies the name, numerical value, and
the auto-increment size. Registers are also modified. if accessed with an auto-incrementing sequence.
If the registers x and xx both contain N and have the auto-increment size M, the following access
sequences have the effect shown:

Effect on Value
Sequence Register Interpolated

\nx none N
\n(xx none N
\n+x x incremented by M N+M
\n-x x decremented by M N-M
\n+ (xx .a incremented by M N+M
\n-(xx xx decremented by M N-M

When interpolated, a number register is converted to decimal (default). decimal with leading zeros,
lower-case Roman, upper-case Roman, lower-case sequential alphabetic. or upper-case sequential alpha
betic according to the format specified by af.

Request Initial If No
Form Value Argument Notes Explanation

.nr R ±NM u The number register R is assigned the value ± N with
respect to the previous value, if any. The increment for
auto-incrementing is set to M.

- 17 •

NROFF/TROFF User's Manual
October 11, 197 6

.af R c arabic

.rrR ignored

9. Tabs, Leaders, and Fields

Assign format c to register R. The available formats are:

Numbering
Format Sequence

1 0, 1,2,3,4,5, ...
001 000,001,002,003,004,005, ...

i O,i,ii,iii,iv, v, ...
I 0,1,II,III,IV, V , ...
a 0,a,b,c, ... ,z,aa,ab, ... ,zz,aaa, ...
A 0,A,B,C, ... ,Z,AA,AB, ... ,ZZ,AAA, ...

An arabic format having N digits specifies a field width of
N digits (example 2 above). The read·only registers and
the widrh function (§ 11.2) are always arabic.

Remove register R. If many registers are being created
dynamically, it may· become necessary to remove no
longer used registers to recapture internal storage space
for newer registers.

9.1. Tabs and leaders. The ASCH horizontal tab character and the ASCII SOH (hereafter known as the
leader character) can both be used to generate either horizontal motion or a string of repeated charac·
ters. The length of the generated entity is governed by internal tab stops specifiable with ta. The
default difference is that tabs generate motion and leaders generate a string of periods~ tc and le offer
the choice of repeated character or motion. There are three types of internal tab stops- left adjusting.
right adjusting, and centering. In the following table: Dis the distance from the current position on the
input line (where a tab or leader was found) to the next tab stop~ next·string consists of the input charac
ters following the tab (or leader) up to the next tab (or leader) or end of line; and Wis the width of
next-string.

Tab Length of motion or Location of
type repeated characters next-string

Left D Following D
Right D-W Right adjusted within D

Centered D-W/2 Centered on right end of D

The length of generated motion is allowed to be negative, but that of a repeated character string cannot
be. Repeated character strings contain an integer number of characters, and any residual distance is
prepended as motion. Tabs or leaders found after the last tab stop are ignored, but may be used as
next-string terminators.

Tabs and leaders are not interpreted in copy mode. \t and \a always generate a non·interpreted tab and
leader respectively, and are equivalent to actual tabs and leaders in copy mode. .
9.2. Fields. A field is contained between a pair of field delimiter characters, and consists of sub-strings
separated by padding indicator characters. The field length is the distance on the input line from the
position where the field begins to the next tab stop. The difference between the total length of all the
sub-strings and the field length is incorporated as horizontal padding space that is divided among the
indicated padding places. The incorporated padding is allowed to be negative. For example, if the field
delimiter is # and the padding indicator is ·, #·x:otright# specifies a right·adjusted string with the
string :ca centered in the remaining space.

• 18 -

NROFF/TROFF User's Manual
October 11, 1976

Request
Form

.ta N ...

.tc c

.le c

.fc ab

Initial
Value

0.8; O.Sin

none

off

I/No
Argument Notes Explanation

none E,m Set tab stops and types. r-R. right adjusting; r-C,
centering; t absent, lei. adjusting. TROFF tab stops are
preset every 0.5in.; NROFF every 0.8in. The stop values
are separated by spaces, and a value preceded by + is
treated as an increment to the previous stop value.

none E

none E

off

The tab repetition character becomes c, or is removed
specifying motion.

The leader repetition character becomes c, or is removed
specifying motion.

The field delimiter is set to a; the padding indicator is set
to the space character or to b, if given. In the absence of
arguments the field mechanism is turned off.

10. Input and Output Conventions and Character Translations

10.J. Input character translations. Ways of inputting the graphic character set were discussed in §2.1.
The ASCII control characters horizontal tab (§9.1), SOH (§9.1), and backspace (§10.3) are discussed
elsewhere. The newline delimits input lines. In addition, STX, ETX, ENQ, ACK, and BEL are accepted,
and may be used as delimiters or translated into a graphic with tr (§10.5). Al/others are ignored.

The escape character \ introduces escape sequences-causes the following character to mean another
character, or to indicate some function. A complete list of such sequences is given in the Summary
and Index on page 6. \should not be confused with the ASCII control character ESC of the same name.
The escape character \ can be input with the sequence \ \. The escape character can be changed with
ec, and all that has been said about the default\ becomes true for the new escape character. \e can be
used to print whatever the current escape character is. If necessary or convenient, the escape mechan
ism may be turned off with eo, and restored with ec.

Request Initial If No
Form Value Argument Notes Explanation

. ec c \ \ Set escape character to \, or to c, if given .

.eo on Turn escape mechanism off.

10.2. Ligatures. Five ligatures are available in the current TROFF character set - ft, ft, ff, fti, and fB.
They may be input (even in NROFF) by \(fl, \(fl, \{ff, \(Fl, and \(Fl respectively. The ligature mode
is normally on in TROFF, and automatically invokes ligatures during input.

Request Initial If No
Form Value Argument Notes Explanation

.lg N off~ on on Ligature mode is turned on if N is absent or non-zero,
and turned off if N-0. If N-2, only the two-character
ligatures are automatically invoked. Ligature mode is
inhibited for request, macro, string, register. or file
names, and in copy mode. No effect in NROFF.

10.3. Backspacing, underlining, overstriking, etc. Unless in copy mode, the ASCU backspace character is
replaced by a backward horizontal motion having the width of the space character. Underlining as a
form of line-drawing is discussed in § 12.4. A generalized overstriking function is described in § 12.1.

NROFF automatically underlines characters in the underline font, specifiable with uf, normally that on
font position 2 (normally Times Italic, see §2.2). In addition to ft and \fF, the underline font may be
selected by ul and cu. Underlining is restricted to an output-device-dependent subset of reasonable
characters.

- 19 •

NROFF/TROFF User's Manual
October 11, 1976

Request
Form

.ul N

.cu N

.uf F

Initial
Value

off

off

Italic

I/No
Argument

N-1

N-1

Italic

Notes Explanation

E Underline in NROFF (italicize in TROFF) the next N
input text lines. Actually, switch to underline font, saving
the current font for later restoration~ other font changes
within the span of a ul will take effect, but the restora
tion will undo the last change. Output generated by ti
(§14) is affected by the font change, but does not decre
ment N. If N> 1, there is ·the risk that a trap interpo
lated macro may provide text lines within the span;
environment switching can prevent this.

E A variant of ul that causes every character to be under·
lined in NROFF. Identical to ul in TROFF.

Underline font set to F. In NROFF, F may not be on
position l (initially Times Roman).

10.4. Control characters. Both the control character . and the no-break control character • may be
changed, if desired. Such a change must be compatible with the design of any macros used in the span
of the change, and particularly of any trap.invoked macros.

Request Initial If No
Form Value Argument Notes Explanation

.cc c E The basic control character is set to c, or reset to ".".

.cl c E The nobreak control character is set to c, or reset to ""'.

10.5. Output translation. One character can be made a stand·in for another character using tr. All text
processing (e. g. character comparisons) takes place with the input {stand-in) character which appears to
have the width of the final character. The graphic translation occurs at the moment of output (includ
ing diversion).

Request
Form

.tr abed .•..

Initial
Value

none

I/Na
Argument Notes Explanation

0 Translate a into b, c into d, etc. If an odd number of
characters is given, the last one will be mapped into the
space character. To be consistent, a particular translation
must stay in effect from input to output time.

10.6. Transparent throughput. An input line beginning with a \! is read in copy mode and transparently
output (without the initial \?)~ the text processor is otherwise unaware of the line's presence. This
mechanism may be used to pass control information to a post-processor or to imbed control lines in a
macro created by a diversion.

10. 7. Comments and concealed newlines. An uncomfortably long input line that must stay one line (e. g.
a string definition, or nofiUed text) can be split into many physical lines by ending all but the last one
with the escape\. The sequence \(newline) is always ignored-except in a comment. Comments may
be imbedded at the end of any line by prefacing them with \ •. The newline at the end of a comment
cannot be concealed. A line beginning with \ • will appear as a blank line and behave like .sp 1; a com
ment can be on a line by itself by beginning the line with .\ •.

11. L-Ocal Horizontal and Vertical Motions, and the Width Function

JJ.1. Local Motions. The functions \v' N' and \h' N' can be used for local vertical and horizontal motion
respectively. The distance N may be negative; the posirive directions are rightward and downward A
local motion is one contained within a line. To avoid unexpected vertical dislocations, it is necessary
that the net verticaflocal motion within a word in filled text and otherwise within a line balance to zero.
The above and certain other escape sequences providing local motion are summarized in the following
table.

- ")() -

NROFF/TROFF User's Manual
October 11, 1976

Vertical Effect in
Local Motion TROFF NROFF

\v·N· Move distance N

\u 112 em up 1h line up
\d 1h em down V2 line down
\r I em up I line up

Horizontal Effect in
Local Motion TROFF NROFF

\h.N' Mc ;e distance N
\(space) Unpaddable space-size space
\0 Digit-size space

\I 1/6 em space ignored , .. 1/12 em space ignored

As an example, E2 could be generated by the sequence E\s-2\v'-0.4m'2\v'0.4m'\s+2~ it should be
noted in this example that the 0.4 em vertical motions are at the smaller size.

11.2. Width Function. The width function \w' string' generates the numerical width of string (in basic
units). Size and font changes may be safely imbedded in string, and will not affect the current environ
ment. For example, .ti -\w'l. 'u could be used to temporarily indent leftward a distance equal to the
size of the string "1. ".

The width function also sets three number registers. The registers st and sb are set respectively to the
highest and lowest extent of string relative to the baseline: then, for example, the total height of the
string is \n(stu-\n(sbu. In TROFF the number register ct is set to a value between 0 and 3: 0 means
that all of the characters in string were short lower case characters without descenders Oike e); l means
that at least one character has a descender Oike y): 2 means that at least one character is tall (like H);
and 3 '!leans that both tall characters and characters with descenders are present.

11.J. Mark horizontal place. The escape sequence \kx will cause the current horizontal position in the
input line to be stored in register x. As an example, the construction \kxword\h'l\nxu+2u'word will
embolden word by backing up to almost its beginning· and overprinting it, resulting in word.

12. Overstrike, Bracket, Line-drawing, and Zero-width Functions

12. J. Overstriking. Automatically centered overstriking of up to nine characters is provided by the over
strike function \o' string'. The characters in string overprinted with centers aligned; the total width is
that of the widest character. string should not contain local vertical motion. As examples, \o' e\" pro.
duces e, and \o'\(mo\{sl' produces ~-

12.2. Zero-width characters. The function \zc will output c without spacing over it, and can be used to
produce left-aligned overstruck combinations. As examples, \z\ (ci\ (pl will produce e, and
\ (br\z\ (rn\ (ul\ (br will produce the smallest possible constructed box Q.
12.J. large Brackets. The Special Mathematical Font contains a number of bracket construction pieces
(f t l J { ~ 1 l J fl) that can be combined into various bracket styles. The function \b' string' may be used
to pile up vertically the characters in string (the first character on top and the last at the bottom); the
characters are vertically separated by l em and the total pile is centered 1/2 em above the current base-

line (112 line in NROFF). For example, \b'\(lc\(lf'E\l\b'\(rc\(rf'\x' -O.Sm'\x'0.5m' produces [EJ.

12.4. line drawing. The function \l'Nc' will draw a string of repeated e's towards the right for.a dis
tance N. (\1 is \(lower case L). If c looks like a continuation of an expression for N, it may insulated
from N with a\&. If c is not specified, the _ (baseline rule) is used (underline character in NROFF). If
N is negative, a backward horizontal motion of size N is made before drawing the string. Any space
resulting from NI (size of c) having a remainder is put at the beginning (left end) of the string. In the
case of characters that are designed to be connected such as baseline-rule _, underrule _, and root
en - . the remainder space is covered by over-lapping. If N is less than the width of c, a single c is cen
tered on a distance N. As an example, a macro to underscore a string can be written

.de us
\\Sl\ l 'IO\(ul'

NROFF/TROFF User's Manual
October t 1, 1976

or one to draw a box around a string

.de bx
\(br\I\ \Sl\I\ <br\ 1 ·10\(rn\ t 'lo\<ur

such that

.ul •underlined wonts•

and

.bx •words in a box•

yield underlined words and !words in a box~
The function \L' Ne' will draw a vertical line consisting of the (optional) character c stacked vertically
apart 1 em (1 line in NROFF), with the first two characters overlapped, if necessary, to form a continu
ous line. The default character is the box rule I (\ (br) ~ the other suitable character is the bold verrical I
(\ (bv). The line is begun without any initial motion relative to the current base line. A positive N
specifies a line drawn downward and a negative N specifies a line drawn upward. After the line is drawn
no compensating motions are made; the instantaneous baseline is at the end of the line.

The horizontal and vertical line drawing functions may be used in combination to produce large boxes.
The zero-width box-rule and the 1h-em wide underrule were designed to form corners when using 1-em
vertical spacings. For example the macro

.de eb

.sp -1 \•compensate for next automatic base-line spacing

.nf \•avoid possibly overflowing word buffer
\h'-.Sn'\L'I\ \nau-1\l'\\n(.lu+ln\(uJ'\L' -1\\nau+t'\l'IOu-.Sn\(uJ' \•draw box
.n

will draw a box around some text whose beginning vertical place was saved in number register a (e. g.
using_ .mk a) as done for this oaragra_Q_h.

13. Hyphenation.

The automatic hyphenation may be switched off and on. When switched on with by, several variants
may be set. A hyphenation indicator character may be imbedded in a word to specify desired hyphena·
tion points, or may be prepended to suppress hyphenation. In addition, the user may specify a small
exception word list.

Only words that consist of a central alphabetic string surrounded by (usually null) non-alphabetic
strings are considered candidates for automatic hyphenation. Words that were input containing hyphens
(minus), em-dashes (\(em), or hyphenation indicator characters-such as mother-in-law-are always
subject to splitting after those characters, whether or not automatic hyphenation is on or off.

Request Initial If No
Form Value Argument Notes Explanation

.nh hyphenate

. hyN on,N-1 on.N=-1

.he c \% \%

.hw word} ... ignored

E
E

E

Automatic hyphenation is turned off .

Automatic hyphenation is turned on for N"';if. l, or off for
N=-0. If N-2, last lines (ones that will cause a trap)
are not hyphenated. For N .. 4 and 8, the last and first
two characters respectively of a word are not split off.
These values are additive~ i. e. N- 14 will invoke all
three restrictions.

Hyphenation indicator character is set to c or to the
default \%. The indicator does not appear in the output.

Specify hyphenation points in words with imbedded
minus signs. Versions of a word with terminal s are

- 22 -

_,

NROFF/TROFF User's Manual
October 11, 1976

14. Three Part Titles.

implied; i. e. dig-it implies dig-its. This list is exam
ined initially and after each suffix stripping; The space
available is small-about 128 characters.

The titling function tl provides for automatic placement of three fields at the left, center, and right of a
line with a title-length specifiable with It. ti may be used anywhere. and is independent of the normal
text collecting process. A common use is in header and footer macros.

Request Initial I/ No
Form Value Argument Notes Explanation

.ti 'left' center' right'

.pc c off

.It ±N 6.Sin previous

lS. Output Line Numbering.

The strings left, center, and right are respectively left.
adjusted, centered, and right-adjusted in the current
title-length. Any of the strings may be empty, and over
lapping is permitted. If the page-number character (ini
tially %) is found within any of the fields it is replaced by
the current page number having the format assigned to
register 'la. Any character may be used as the string del
imiter.

The page number character is set to c, or removed. The
page-number register remains 'la.

E,m Length of title set to ± N. The line-length and the title
length are independent. Indents do not apply to titles;
page-offsets do.

Automatic sequence numbering of output lines may be requested with nm. When in effect, a
three-digit, arabic number plus a digit-space is prepended to output text lines. The text lines are

3 thus offset by four digit-spaces. and otherwise retain their line length; a reduction in line length
may be desired to keep the right margin aligned with an earlier margin. Blank lines, other vertical
spaces. and lines generated by ti are not numbered. Numbering can be temporarily suspended with

6 nn. or with an .nm foil owed by a later .nm +O. In addition, a line number indent /, and the
number-text separation Smay be specified in digit-spaces. Further, it can be specified that only
those line numbers that are multiples of some number Mare to be printed (the others will appear

9 as blank number fields).

Request Initial I/ No
Form Value .Argument Notes

.nm ± N MS I off E

. nn N E

Explanation

Line number mode. If ± N is given, line numbering is
turned on. and the next output line numbered is num
bered ±N. Default values are M-1. S-1, and 1-0.
Parameters corresponding to missing arguments are
unaffected; a non-numeric argument is considered miss
ing. In the absence of all arguments, numbering is
turned off; the next line number is preserved for possible
further use in number register In .

The next N text output lines are not numbered.

As an example, the paragraph portions of this section are numbered with M-3: .nm 1 3 was
placed at the beginning; .nm was placed at the end of the first paragraph; and .nm +o was placed

12 in front of this paragraph; and .nm finally placed at the end. Line lengths were also changed (by
\w'OOOO'u) to keep the right side aligned. Another example is .nm +s 5 x 3 which turns on
numbering with the line number of the next line to be S greater than the last numbered line, with

15 M-5, with spacing S untouched, and with the indent I set to 3 .

• 23 -

NROFF/TROFF User's Manual
October 11, 1976

16. Conditional Acceptance of Input

In the following, c is a one-character, built-in condition name, ! signifies nor, N is a numerical expres
sion, string/ and string] are strings delimited by any non-blank, non-numeric character not in the
strings, and anything represents what is conditionally accepted.

Request Initial If No
Form Value Argument Notes Explanation

.If c anything If condition c true, accept anything as input; in multi-line
case use \(anything\}.

• if !c anything

.if N anything

• if !N anything

.if . string r string]' anything

.if!· string}' string]' anything

• ie c anything

• el anything

u

u

u

The built-in condition names are:

Condition
Name

0

e
t
D

If condition c false, accept anything .

If expression N > 0, accept anything.

If expression N ~ 0, accept anything .

If string 1 identical to string], accept anything .

If stringl not identical to string], accept anything.

If portion of if-else~ all above forms (like if) .

Else portion of if-else .

True If
Current page number is odd
Current page number is even
Formatter is TROFF
Formatter is NROFF

If the condition c is rrue, or if the number N is greater than zero, or if the strings compare identically
(including motions and character size and font), anything is accepted as input. If a ! precedes the condi
tion, number, or string comparison, the sense of the acceptance is reversed.

Any spaces between the condition and the beginning of anything are skipped over. The anything can be
either a single input line (text, macro, or whatever) or a number of input lines. In the multi-tine case,
the first line must begin with a left delimiter\{ and the last line must end with a right delimiter\}.

The request le (if-else) is identical to if except that the acceptance state is remembered. A subsequent
and matching el {else) request then uses the reverse sense of that state. ie • el pairs may be nested.

Some examples are:

.if e .ti' Even Page 'It'''

which outputs a title if the page number is even; and

.ie \n'lt>l \{\
'sp O.Sl
.ti •Page 'It' ..
'sp lt.lt \}
.el .sp ll.Si

which treats page 1 differently from other pages.

17. Environment Switching.

A number of the parameters that control the text processing are gathered together into an environment,
which can be switched by the user. The environment parameters are those associated with requests
noting E in their Notes column; in addition, partially collected lines and words are in the environment.
Everything else is global; examples are page-oriented parameters, diversion-oriented parameters,

- 24 -

-

NROFF/TROFF User's Manual
October 11, 1976

number registers, and
parameter values.

Request Initial
Form Value

.ev N N--0

macro and string definitions. All environments are initialized with default

I/No
Argument Notes Explanation

previous Environment switched to environment O~N~2. Switch·
ing is done in push-down fashion so that restoring a pre
vious environment must be done with .ev rather than
specific reference.

18. Insertions from the Standard Input

The input can be terTti>orarily switched to the system standard input with rd, which will switch back
when two newlines in a row are found (the extra blank line is not used). This mechanism is intended
for insertions in form-letter-like documentation. On UNIX, the standard input can be the user's key
board, a pipe, or a file.

Request Initial
Form Yalue

.rd prompt •

.ex

I/No
Argument Notes Explanation

prompr=-BEL- Read insertion from the standard input until two new-
lines in a row are found. If the standard input is the
user's keyboard, prompt (or a BEL) is written onto the
user's terminal. rd behaves like a macro, and arguments
may be placed after prompt.

Exit from NROFF/TROFF. Text processing is terminated
exactly as if all input had ended.

If insertions are to be taken from the terminal keyboard while output is being printed on the terminal,
the command line option -q will tum off the echoing of keyboard input and prompt only with BEL.
The regular input and insertion input cannot simultaneously come from the standard input.

As an example, multiple copies of a form letter may be prepared by entering the insertions for all the
copies in one file to be used as the standard input, and causing the file containing the letter to reinvoke
itself using nx (§19); the process would ultimately be ended by an ex in the insertion file.

19. Input/Output File Switching

Request Initial If No.
Form Yalue Argument Notes Explanation

.so filename

.nx .filename

.pi program

20. Miscellaneous

Request
Form

.mccN

Initial
Value

Switch source file. The top input (file reading) level is
switched to filename. The effect of an so encountered in
a macro is not felt until the input level returns to the file
level. When the new file ends, input is again taken from
the original file. so's may be nested.

end-of-file - Next file is filename. The current file is considered
ended, and the input is immediately switched to filename.

If No
Argument

off

Pipe output to program (NROFF only).. This request
must occur before any printing occurs. No arguments are
transmitted to program.

Notes Explanation

E,m Specifies that a margin character c appear a distance N to
the right of the right margin after each non-empty text
line (except those produced by tO. If the output line is
too-long (as can happen in nofill mode) the character will

- 25 -

NROFF/TROFF User's Manual
October 11, 1976

.tm string newline

-iaYY .yy-.•

.pm I all

.fl

21. Output and Error Messages.

B

be appended to the line. If N is not given, the previous
N is used; the initial N is 0.2 inches in NROFF and I em
in TROFF. The margin character used with this para·
graph was a 12-point box-rule.

After skipping initial blanks, string <rest of the line) is
read in copy mode and written on the user's terminal.

Ignore input lines. ig behaves exactly like de (§7) except
that the input is discarded. The input is read in copy
mode, and any auto-incremented registers will be
affected.

Print macros. The names and sizes of all of the defined
macros and strings are printed on the user's terminal: if /
is given, only the total of the sizes is printed. The sizes
is given in blocks of 128 characters.

Flush output buffer. Used in interactive debugging to
force output.

The output from tm, pm, and the prompt from rd, as well as various error messages are written onto
UNIX's standard message output. The latter is different from the standard output, where NROFF format
ted output goes. By default, both are written onto the user's terminal, but they can be independently
redirected.

Various error conditions may occur during the operation of NROFF and TROFr. Certain less serious
errors having only local impact do not cause processing to terminate. Two examples are word overflow,
caused by a word that is too large to fit into the word buffer (in fill mode), and line overflow, caused by
an output line that grew too large to fit in the line buff er; in both cases, a message is printed, the
off ending excess is discarded, and the affected word or line is marked al the point of truncation with a •
in NROFF and a ,. in TROFF. The philosophy is to continue processing, if possible, on the grounds
that output useful for debugging may be produced. If a serious error occurs, processing terminates, and
an appropriate message is printed. Examples are the inability to create, read, or write files, and the
exceeding of certain internal limits that make future output unlikely to be useful.

• 26.

-

NROFF/TROFF User's Manual
October 1 t, 1976

TUTORIAL EXAMPLFS

TI. Introduction

Although NROFF and TROFF have by design a
syntax reminiscent of earlier text processors•
with the intent of easing their use, it is almost
always necessary'tO prepare at least a small set of
macro definitions to describe most documents.
Such common formatting needs as page margins
and footnotes are deliberately not built into
NROFF and TROFF. Instead, the macro and
string definition, number register, diversion,
environment switching, page-position trap, and
conditional input mechanisms provide the basis
for user-defined implementations.

The examples to be discussed are intended to be
useful and somewhat realistic, but won't neces
sarily cover all relevant contingencies. Explicit
numerical parameters are used in the examples to
make them easier to read and to illustrate typical
values. In many cases, number registers would
really be used to reduce the number of places
where numerical information is kept, and to con
centrate conditional parameter initialization like
that which depends on whether TROFF or NROFF
is being used.

Tl. Pace Margins

As discussed in §3, header and footer macros are
usually defined to describe the top and bottom
page margin areas respectively. A trap is planted
at page position 0 for the header, and at -N (N
from the page bottom) for the footer. The sim
plest such definitions might be

.de hd \ •c1eftne header
'sp li

\•end definition
.de fo \ •deftne footer
'bp

.wb 0 hd

.wb -11 fo

\•end definition

which provide blank l inch top and bottom mar
gins. The header will occur on the first page,
only if the definition and trap exist prior to the

•For example: P. A. Crisman, Ed., The Compatible Tinw
Shartng System, MIT Press, 1965, Section AH9.01 {Descrip
tion of RUNOFF program on MIT's CI'SS system).

initial pseudo-page transition (§3). In fill mode,
the output line that springs the footer trap was
typically forced out because some part or whole
word didn't fit on it If anything in the footer
and header that fallows causes a break, that word
or part word will be forced out. In this and other
examples, requests like bp and sp that normally
cause breaks are invoked using the no-break con
trol character • to avoid this. When the
header/footer design contains material requiring
independent text processing, the environment
may be switched, avoiding most interaction with
the running text.

A more realistic example would be

.de bd \•header

.lf t .tl '\(m .. \(rn' \•troff cut mark

.if \\n~>l \{\
• sp I0.51-1 \ •u base at O.Si
.d ··- % -·· \•centered page number
.ps \•restore size
.ft \•restore font
• vs \} \•restore vs
• sp lt.Oi \•space to 1.01
.ns \•t11m oa no-spse mode

.de fo \•tooter

.ps 10 \•set footer/header size

.ft R \•set font
• vs 12p \•set base-line spacing
.if \\n%.ml \{\
'sp l\\n(.pu-O.Si-1 \•tt base O.Si up
.ti··- et. -·· \} \•first page number
'bp

.wb 0 hd

.wb -u fo

which setS the size. font, and base-line spacing
for the header/footer material, and ultimately
restores them. The material in this case is a page

. number at the bottom of the first page and at the
top of the remaining pages. If TROFF is used, a
cut mark is dfawn in the form of root-en's at each
margin. The sp's refer to absolute positions to
avoid dependence on the base-line spacing.
Another reason for this in the footer is that the
footer is invoked by printing a line whose vertical
spacing swept past the trap position by possibly as

- 27 -

NROFF/TROFF User's Manual
October 11, 1976

much as the base-line spacing. The no-space
mode is turned on at the end of hd to render
ineffective accidental occurrences of spat the top
of the running text.

The above method of restoring size. font, etc.
presupposes that such requests (that set previous
value) are not used in the running text. A better
scheme is save and restore both the current and
previous values as shown for size. in the follow
ing:

• de fo
.nr st \\n<.s \•current size
.ps
.nr sl \\n<.s \•previous size
. - \•rest of footer

.de hd

. -

.ps \\n(sl

.ps \\n(sl

\"header stuff ·
\•restore previous size
\•restore eunent size

Page numbers may be printed in the bottom mar
gin by a separate macro triggered during the
footer's page ejection:

.de bn \•bottom number

.ti··-~ -·· \•centered paae number ..
• wh -0.5i-h bn \•t1base0.51 up

Tl. Parqraphs and Headln1s

The housekeeping associated with startina a new
paragraph should be collected in a paragraph
macro that, for example, does the desired
preparagraph spacing, forces the correct font,
size, base-line spacing, and indent, checks that
enough space remains for more than one line, and
requests a temporary indent.

. de Pl \•para1rapb

.br \•break

.ft R \•force font,

.ps 10 \ •stze,

. vs 12p \ •spacint.

. in 0 \•and indent

.sp 0.4 \ •prespace

.ne 1 +\\n(.Vu \•want more than 1 line

.ti O.lt \•temp indent

The first break in Pl will force out any previous
partial lines, and must occur before the vs. The
forcing of font, etc. is partly a defense against
prior error and partly to permit things like sec
tion heading macros to set parameters only once .

Tho prespacing parameter is suitable for TROFF;
a larger space, at least as bia as the output device
vertical resolution, would be more suitable in
NROFF. The choice of remaining space to test
for in the ne is the smallest amount greater than
one line (the • V is the available vertical resolu
tion).

A macro to automaticaJly number section head·
inp might look like:

.de sc \ •sect1on
• - \ •ron:e font, etc •
.sp 0.4 \ •prespace
.ne 2.4+\\n<.Vu \•want 2.4+ lines
.ft
\\n+S.

.nr S 01 \•tnit S

The usage is .sc, followed by the section headinc
text. followed by ·Pl· The ne test value includes
one line of heading. 0.4 line in the followin1 Pl.
and one line of the paragraph text. A word con·
sistin1 of the next section number and a period is
produced to begin the heading line. The format
of the number may be set by al (§8).

Another common farm is the labeled, indented
paraaraph, where the label protrudes left into the
indent space .

.de Ip \ •tabeled parqrapb
·Pl
.in 0.51 \ •puaaraph Indent
.ta 0.21 0.51 \ •tabeJ, parqrapb
.ti 0
\t\\$1\t\c \•ftow Into parqrapb

The intended usage is • .lp label"; label will begin
at 0.2 inch, and cannot exceed a length or·
0.3 inch without intruding into the paragraph .
The label could be right adjusted against 0.4 inch
by setting the tabs instead with .ta 0.41R O.St.
The last line of Ip ends with \c so that it will
become a part of the first line of the text that fol
lows .

T4. Multiple Column Output

The production of multiple column pages
requires the footer macro to decide whether it
was invoked by other than the last column. so
that it will begin a new column rather than pro
duce the bottom margin. The header can initial
ize a column register that the footer will incre
ment and test. The following is arranged for two
columns, but is easily modified for more.

• 28.

-

NROF~/TROFF User's Manual
October 11, 1976

.de hd

.....

.nr cl O 1

.mk

\•header

\ •tnit column count
\•mark top of text

. de fo \•tooter

.le \\n+(cl<2 \(\

.po +3.4i \•next column; 3.1 +0.3

.rt \•back to mark

.ns \} \•no-space mode

.el\(\ ,

.po \\nMu · \•restore left margin

. -
'bp \}

.11 3.11 \•column width

.nr M \\n<.o \•save left margin

TypicaJly a portion . of the top of the first page
contains full width text; the request for the nar
rower line length, as well as another .mk would
be made where the two column output was to
begin.

TS. Footnote Processing

The footnote mechanism to be described is used
by imbedding the footnotes in the input text at
the point of reference, demarcated by an initial
.fn and a terminal .ef:

.fn
Footnote text and control Jines. ..
.ef

In the following, footnotes are processed in a
separate environment and diverted for later
printing in the space immediately prior to the
bottom margin. There is provision for the case
where the last collected footnote doesn't com
pletely fit in the available space.

.de hd \•header

. --

.nr x 0 1

.or y 0-\\nb

.ch fo - \ \nbu

.if \\n(dn .fz

.de fo

.nr dn 0

.if \\nx \{\

\ •init footnote count
\•current footer place
\•reset footer trap
\ •teftover footnote

\•footer
\•zero last diversion size

.ev 1 \•expand footnotes in evt
• nf \•retain vertical size
.FN \ •tootnotes
.rm FN \•delete It
.if "\ \n(.z•ty• .di \•end overiiow diversion
.nr x 0 \•disable fx

.ev \) \•pop environment

. --
'bp

.de fx \•process footnote overiiow

.if \\nx .di fy \•divert overftow

.de fn \•start footnote

.da FN \•divert (append) footnote

.ev 1 \•in environment 1

.if \\n+x•l .fs \ •tt first, include separator

.ft \·rm mode

.de ef \•end footnote

.br \•finish output

.nr z \\n<.v \•save spacing

.ev \•popev

.di \•end diversion

.nr y -\\n(dn \•new footer position,

.if \\nx•l .nr y -(\\o(.v-\\nz) \
\•uncertainty correction

.ch fo \\nyu \ •y is negative

.if (\\n(nl+lv)>(\\n<.p+\\ny) \

.ch fo \\n(nlu+tv \•tt didn't tit

.de fs
\l'li'
.br

\•separator
\ •t inch rule

.de fz \•get leftover footnote

.fn

.nl \•retain vertic•l size

.fy \•where fx put it

.et

.nr b l.Oi \•bottom margin size
• wh 0 hd \•header trap
. wh 121 fo \•tooter trap, temp position
.wh -\\nbu fx \ ·rx at footer position
.ch fo -\\nbu \•conceal fx with fo

The header hd initializes a footnote count regis
ter x, and sets both the current footer trap posi
tion register y and the footer trap itself to a nom
inal position specified in register b. In addition,
if the register dn indicates a leftover footnote, fz
is invoked to reprocess it. The footnote start
macro f n begins a diversion (append) in environ
ment 1, and increments the count x; if the count
is one, the footnote separator fs is interpolated .
The separator is kept in a separate macro to per·
mit user redefinition. The footnote end macro ef
restores the previous environment and ends the
diversion after saving the spacing size in register
z. y is then decremented by the size of the

NROFF/TROFF User's Manual
October 11, 197 6

footnote, available in dn; then on the first foot·
note, y is further decremented by the difference
in vertical base-line spacings of the two environ
ments, to prevent the late triggering the footer

. trap from causing the last line of the combined
footnotes to overflow. The footer trap is then set
to the lower (on the page) of y or the current
page position (nl) plus one line, to allow for
printing the reference line. If indicated by x. the
footer fo rereads the footnotes from FN in noftll
mode in environment l, and deletes FN. If the
footnotes were too large to fit, the macro b: will
be trap-invoked to redivert the overflow into fy,
and the register dn will later indicate to the
header whether fy is empty. Both fo and fx are
planted in the nominal footer trap position in an
order that causes fx to be concealed unless the fo
trap is moved. The footer then terminates the
overflow diversion, if necessary, and zeros x to
disable fx, because the uncertainty correction
together with a not-too-late triggering of the
footer can result in the footnote rereading finish
ing before reaching the fx trap.

A good exercise for the student is to combine
the multiple-column and footnote mechanisms.

T6. The Last Pqe

After the last input file has ended, NROFF and
TROFF invoke the end macro (§7), if any, and
when it finishes, eject the remainder of the page.
During the eject, any. traps encountered are pro
cessed normally. At the end of this last page,
processing terminates unless a partial line, word,
or partial word remains. If it is desired that
another page be started, the end~macro

.de ~n
\c
'bp

.em en

\•end-macro

will deposit a null partial word, and effect
another last page.

. 30.

NROFF/TROFF User's Manual
October 11, 1976

Table I

Font Style Examples

The following fonts are printed in 12-point, with a vertical spacing of 14-point, and with non
alphanumeric characters separated by 1/• em space. The Special Mathematical Font was specially
prepared for Bell Laboratories by Graphic Systems, Inc. of Hudson, New Hampshire. The Times
Roman, Italic, and Bold are among the many standard font available from that company.

Times Roman

abcdef ghijklmnopqrstuvwxyz
ABCDEFGHUKLMNOPQRSTUVWXYZ
1234567890
! $%& () \ '. + - . , I:; - ? []I
• 0 - • _ l/4 !fl J/4 ft fl ff ffi tl1 O t I¢~ C

Times Italic

abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXrz
1234567890
I $ % & (J " * + - ., I: ,· =- ? l JI
• 0 - • - ~ 17 1Afifljf ffi.f!l O t It~ C

Times Bold

abcdefgbijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
1234567890
! So/o& 0 '' • + - . , I:;=? 111
• • - - _ 1/4 1/1 3/.di ft tf fft fti 0 t ' e ~ c

Special Mathematical Font

"'\"_'-/<>{}#@+--·
a~y8E,~9,KA~V~O~pu~Tv¢x~w
f ~0AEilI.Y<P'l'!l
.J- ~ ~ = - =:;:: - - r 1 x + ± u n c ~ c :J 00 a
§ \J J a: 0 E ;1F @I Of\lH Hu fl I

• 31 •

NROFF/TROFF User's Manual
October 11, 197 6

Table II"

Input N amina Conventions for ·, ',and -
and for Non-ASCII Special Characters

Non-ASCII chancten IDG minfl$ on the standard fonts.

Input Character Input Charactllr
Char Name Name Char Name Name

close quote fi \(fi ft
open quote tl \(tl fl

\(em 3/4 Em dash tr \(tr tr
hyphen or fti \(Fi ffi

\{hy hyphen m \(Ft m
\- current font minus 0 \(de degree

• \(bu bullet t \(dg dagger
0 \(sq square \(fm foot mark

\(ru rule ~ \(ct ceo.t sign
lf4 \{14 1/4 • \(rg registered
111 \(12 1/2 0 \(co copyright
J,4 \(34 3/4

Non-ASCIJ characters and·, ·, _, +, -, -, and• on the special font.

The ASCII characters @, #, ", ', ', <, >, \, {, } , -, ", and exist only on the special font and are
printed as a 1-em space if that font is not mounted. The following characters exist only on the special
font except for the upper case Greek letter names followed by t which are mapped into upper case
English letters in whatever font is mounted on font position one (default Times Roman). The special
math plus. minus, and equals are provided to insulate the appearance of equations from the choice of
standard fonts.

Input Character Input Character
Char Name Name Char Name Name

+ \(pl math plus I(\(*k kappa
\(mi math minus ~ \(*l lambda - \(eq math equals µ. \(*m mu

• \(.. math star v \(*n nu
§ \(sc section f \(•c xi

\(aa acute accent 0 \(*o omicron
\(ga grave accent "II' \(•p pi
\(ul underrule p \(•r rho

7 \(sl slash (matching backslash) u \(*s sigma
a \(•a alpha ' \(ts terminal sigma
{3 \(*b beta 1' \(*t tau
"I \(*g gamma v \(*u upsilon
8 \(*d delta q, \(*f phi
E \(*e epsilon x \(•x chi

' \(*z zeta
"'

\(*q psi
11 \{*y eta (U \(*w omega
9 \(*h theta A \{*A Atphat

" \(*i iota B \(*B Betat

NROFF/TROFF User's Manual
October 11, 1976 .. :..

/l'lpflt Character 11'/IUt Clraracta
Char Naww NatM Char NalfW Name
r \C•o Gamma I \(br box vertical rule
~ \(•o Delta * \(dd double dagger
E \(•E Epsilont ,.. \(rh right hand
z \C•z Zetat ... \(lh left band
H \(•y Etat 0 \(bs Bell System logo
9 \(•ff Theta I \(or or
I \(•1 Iotat 0 \(cl circle
K \(•K Kappat

,, \(lt left top of big curly bracket
A \(•t Lambda l \(lb left bottom
M \(•M Mut l \(rt right top
N \(•N Nut J \(rb right bot - \C•c Xi i \(lk left center of big curly bracket ... -0 \(•o Omicront J \(rk right center of big curly bracket
a \(•p Pi I \(bv bold vertical
p \(•R Rhot l \(lf left floor (left bottom of big
I \(•s Sigma square bracket)
T \("T Taut J \(rf right floor (right bottom)
y \C•u Upsilon f \(le left ceiling (left top)
<I» \(•p Phi 1 \(re right ceiling (right top)
x \C•x Chit
'I' \(•Q Psi
0 \(•w Omega

-!. \(sr square root
\(m root en extender

~ \(>- >-
~ \(<- <-
= \ (- - identically equal
== \(-- approx -

\(ap approximates
;d \(!- not equal

\(-> right arrow - \ (< - left arrow
f \(ua up arrow
1 \(da down arrow
x \(mu multiply
+ \(di divide
± \ (+- plus-minus
u \(cu cup (union)
n \(ca cap (intersection)
c \(sb subset of
:::> \(sp superset of
~ \(ib improper subset
~ \(ip improper superset
00 \(if infinity
a \(pd partial derivative
\l \(gr gradient
... \(no not
J \(is integral sign
CIC \(pt proportional to

" \(es empty set
e \(mo member of

• 33.

Options

-h

-z

Old Requests

.ad c

.so name

New Request

.ab text

Addendum to the
NROFF/TROFF User's Manual

May 1977

(NROFF only) Use output tabs during horizontal spacing to speed up output as well as
to reduce output byte count. Device tab settings are assumed to be every 8 nominal
character widths. The default settings of input (logical) tabs is also initialized to every
8 nominal character widths.

Efficiently suppresses formatted output. Only message output will occur (from tm re
quests and diagnostics).

The adjustment type indicator c may now also be a number obtained from the ".j" re
gister (see below).

The contents of file name will be interpolated at the point the so request is encoun
tered. Previously, the interpolation was done upon return to the file-reading input lev
el.

Prints text on the message output and terminates without further processing. If text is
missin~ "User Abort." is printed. Does not cause a break. The output buffer is
flushed.

New Predefined Number Registers

.k

.j

.P

.L

c.

Read-only. Contains the horizontal size of the text portion (without indent) of the
current partially-collected output line, if any, in the current environment.

Read-only. Indicates the current adjustment mode and type. Can be saved and later
given to the ad request to restore a previous mode.

Read-only. Contains the value I if the current page is being printed, and is zero other
wise, i.e., if the current page did not appear in the -o option list.

Read-only. Contains the current line-spacing parameter (the value of the most recent
ls request) .

Provides general register access to the input line-number in the current input file. Con·
tains the same value as the read-only ".c" register .

• 34.

@

PwBlMM

Prograinnier's \Vorkbench

l\1e1D.oranduin lVlacros

D. W. Smith
J. R. Mashey

October 1977

Bell Telephone Laboratories. Incorporated

TJ

PwB/MM
Propammer's Workbench Memorandum Macros

CONTENTS

1. INTRODUCTION • . • • • •
1.1 Purpose 1
1.2 Conventions 1
1.3 Overall Structure of a Document 2
1.4 Definitions 2
l.S Prerequisites and Further Reading 3

2. INVOKING THE MACROS • •
2.1 The mm Command 3
2.2 The ·mm Flag 3
2.J Typical Command Lines 4
2.4 Parameters that Can Be Set from the Command Line S
2.5 Omission of ·mm 6

3. FORMAITING CONCEPTS • • • • • • • • • • . . • • •
3.1 Basic: Terms 6
3.2 Arguments and Double Quotes 7
3.3 Unpaddable Spaces 1
3.4 Hyphenation 7
3.5 Tabs 8
3.6 Special Use of the BEL Charaeter 8
3.7 ButletS 8
3.8 Dashes. Minus Signs. and Hyphens 8
3.9 Use of Formatter Requests 9

4. PARAGRAPHS AND HEADINGS
4.1 Paragraphs 9
4.2 Numbered Headings 9
4.3 Unnumbered Headings 12
4.4 Headings and the Table of Contents 12
4.5 First·L.evej Headings and the Page Numbering Style 12
4.6 User Exit Macros • 13
4.7 Hints for Large Documents 14

5. LISTS • . . • • • . •
5 .1 Basic: AP1'roach 14
5.2 San11'1e Nested Lists 14
5 .3 Basic: List Mac:ros 15
5.4 List-Begin Macro and Customized Lists • 18

6. MEMORANDUM AND RELEASED PAPER STYLES . • . . • • . . • . . . •
6.1 Title 20
6.2 Author(s) 20
6.3 TM Number(s) 20
6.4 Abstrac:t 21
6.5 Other Keywords 21
6.6 Memorandum Types 21
6. 7 Date and Formal Changes 22
6.8 Released-Paper Style 22
6.9 Order of lnvoc:ation of .. Beginning"' Macros 22
6.10 Example 23
6.11 Mac:ros for the End of a Memorandum 23
6.12 Forcing a One-Page Letter 24

,

3

6

i

9

14

-
19

1. OISPL.i\ YS .
7 .1 Static Displays 25
7.2 Floating Displays 25
7.3 Tables 26
7.4 Equauons 26
7 .S Figure. Table. and Equation Captions 26
7.6 Blocks of Filled Text 27

8. FOOTNOTES . . • . . • • • • •
8.1 . .<\utomatic Numbering of Footnotes 27
8.2 Delimiting Footnote Text 27
8.3 Format of Footnote Text• 28
8.4 Spacing bet~een Footnote Entries 29

9. PAGE HEADERS AND FOOTERS
9. I Default Headers and Footers 29
9.2 Page Header 29
9.3 Even-Page Header 29
9.4 Odd-Page Header 30
9.5 Page Footer 30
9.6 Even-Page Footer 30
9.7 Odd-Page Footer 30
9.8 Footer on the First Page 30

.

9. 9 Default Header and Footer with "S~tion·Page ·• Numbering 30
9.10 Use of Strings and Registers in Header and Footer Macros • 30
9 .11 Header and Footer Example • 31
9 .12 Generalized Top-of-Page Processing • 31
9.13 Generalized Bottom-of-Page Processing 31

10. TABLE OF CONTENTS AND COVER SHEET ...•.
I 0.1 Table of Contents 32
10.2 Cover Sheet 33

11. MISCELLANEOUS FEATURES
11.1 Bold. Italic. and Roman 33
11.2 Justification of Right Margin 33
11.3 SCCS Release Identification 34
11.4 Two-Column Output 34
11.S Column Headings for Two-Column Output • 34
11.6 Vertical Spacing 34
11. 7 Skipping Pages 35
11.8 Selling Point Size and Vertical Spacing 35

12. ERRORS AND DEBUGGING . . ••
12.l Error Terminations 35
12.2 Disappearance of Output 36

13. EXTENDING AND MODIFYING THE MACROS•
1 J. l Naming Conventions 36
13.2 Sample Extensions 37

25

27

29

31

33

35

36

14. CONCLUSION • . 38
References 39
Appendix A: DEFlNITIONS OF LJST MACROS• 41
Appendix B: USER-DEFINED LJST STRUCTURES • 42
Appendix. C: SAMPLE FOOTNOTES 44
Appendix D: SAMPLE LEITER 46
Appendix E: ERROR MESSAGES 50
Appendix F: SUMMARY OF MACROS. STRINGS. AND NUMBER REGISTERS 52

• II •

PWB/MM-Programmer' s Workbench Memorandum Macros

D. W. Smith

1. INTRODUCTION

1.1 Purpose

Bell Laboratories
Piscataway, New Jersey 08854

J. R. Mashey

Bell Laboratories
Mumy Hill. New Jersey 07974

This memorandum is the user's guide and reference manual for ?WB/MM (or just -mm), a general
purpose package of text formatting macros for use with the UNIX* text formatters nrqff [91 and troff [91.
The purpose of PWB/MM is to provide to the users of PWB/UNIX a unified. consistent. and flexible tool
for producing many common types of documents. Although PWB/UNIX provides other macro packages
for various spec1ali:ed formats. PWB/MM has become the standard. general-purpose macro package for
most documents.

PwBIMM can be used to produce:

• Letters.
• Reports.
• Technical Memoranda.
• Released Papers.
• Manuals.
• Books.
• etc.

The uses of ?WB/MM range from singJe-page letters to documents of several hundred pages in length.
such as user guides. design proposals. etc.

1.2 Conventions

Each section of this memorandum explains a singJe facility of PWB/MM. In general. the earlier a section
occurs. the more necessary it is for most users. Some of the later sections can be completely ignored if
PWB/~M defaults are acceptable. Likewise. each section progresses from normal-case to special-case
facilities. We recommend reading a section in detail only until there is enough information to obtairr
the desired format~ then skimming the rest of it, because some details may be of use to just a few peo
ple.

Numbers enclosed in curly brackets (I l) refer to section numbers within this document. For exam-
ple. this is { 1.2 I. -

Sections that require knowledge of the formatters (1.4l have a bullet (•) at the end of the section
heading.

In the synopses of macro calls. square brackets ((1) surrounding an argument indicate that it is
optional. Ellipses (.•.) show that the preceding argument may appear more than once.

A reference of the form name(N) points to page name in section N of the PWB!l'\f.'(USi!rs
Manual [l].

The examples of output in this manual are as produced by troff; nroff output would. of course. look
somewhat different (Appendix D shows borh the nroff and rrqff output for a simple letter). In those

• UNIX 1s a Trademark of Bell L.iborator1es.

• 2 ~

cases in which the behavior of the two formatters is truly different. the nroff action is described first.
with the rrojfaction following in parentheses. For example:

The title is underlined (bold).

means that the title is underlined in 11roff and bold in troff.

1.3 °"enll Structure of a Document

The input for a document that is to be formatted with PWBIMM possesses four major segments. any of
which may be omitted~ if present, they must occur in the following order:

• ParamE'tE'r-serring-This segment sets the general style and appearance of a document. The user can
control page width. margin justification. numbering styles for headings and lists, page headers and
footers 191. and many other properties of the document. Also, the user can add macros or redefine
existing ones. This segment can be omitted entirely if one is satisfied with default values: it pro
duces no actual output. but only performs the setup for the res.t of the document.

• Beg111m11g-This segment includes those items that occur only once, at the beginning of a document.
e.g.. title. author's name. date.

• Body-This segment is the actuaJ text of the .document. It may be as small as a sing.le paragraph. or
as large as hundreds of pages. It may have a hierarchy of hE'adings up to seven leveis deep {4l.
Headings are automatically numbered (if desired) and can be saved to generate the table of ~on
tents. Six additional leveis of subordination are provided by a set of lisr macros for automatic
numbering. alphabetic sequencing. and "marking" of liSt items ISi. The body may also contain
various types of displays, tables. figures. and f oocnotes [7, 8 I.

• E11di11g-This segment contains those items that occur once only. at the end of a document.
Included here are signature(s) and lists of notations (e.g., "copy to" lists) {6.12). Certain macros
may be invoked here to print information that is wholly or partially derived from the rest of the
document. such as the table of contents or the cover sheet for a document {IOI.

The existence and size of these four segments varies widely among different document types.
Although a specific item (such as date, title. author name(s). etc.) may be printed in several different
ways depending on the document type. there is a uniform way of typing it in.

1 .4 Definitions

The term)ormatrtr refers to either of the text-formatting programs nroff and troff.

RtquE>srs are built-in commands recognized by the formatters. Although one seldom needs to use
these requests directly {3.91. this document contains references to some of them. Full details are given
in (9). For example, the request:

.sp

inserts a blank line in the output.

Macros are named collections of requests. Each macro is an abbrevfation f.or a collection of requests
that would otherwise require repetition. PwBJMM supplies many macros, and the user can define addi
tional ones. Macros and requests share the same set of names and are used in the same way.

Strings provide character variables. each of which names a string of characters. Strings are often
used in page headers. page footers. and lists. They share the pool of names used by requests and mac
ros. A string can be given a value via the .ds (define string) request, and its value can be obtained by
referencing its name. preceded by "\•" (for I-character names) or"\•('' (for 2-character names). For
instance. the string DTin PWB/MM normally contains the current date. so that the (nput line:

Today is \•(OT.

may result in the following output:

Today is October 31. 1977.

. The current date can be replaced. e.g.:

.ds OT 01/01176

- 3 -

or by invoking a macro designed for that purpose (6.7.1}.

Number registers fill the role of integer variables. They are used for flags, for arithmetic, and for
automatic numbering. A register can be given a value using a .nr request, and be referenced by
preceding its name by .. \n" (for !-character names) or .. \n(" (for 2-character names). For example,
the fallowing sets the value of. the register d to 1 more than that of the register dti:

.nr d 1+ \n(dd

See {13.1} regarding nar;ning conventions for requests, macros, strings, and number registers.

1.5 Prerequisites and Further R.eadin1·

1.5.J Prerequis11es. We assume familiarity with UNIX at the level given in [31 and [4). Some familiarity
with the request summary in [9) is helpful.

J.5.2 Further Reading. [91 provides detailed descriptions of formatter capabilities, while (5) provides a
general overview. See [61 (and possibly (7]) for instructions on formatting mathematical expressions.
See rbl(I) and [11) for instructions on fonnatting tabular data.

Examples of formatted documents and of their respective input, as well as a quick reference to the
material in this manual are given in [8].

l. INVOKJNG THE MACROS

This section tells how to access PWBIMM, shows ?WWUNIX command lines appropriate for various out·
put devices, and describes command-line flags for PWB/MM. Note that file names, program names, and
typical command sequences apply only to PWBIUNIX~ dift'erent names and command lines may have to
be used on other systems.

l.l The mm Command

The mm(I) command can be used to print documents using nroff and PWBIMM~ this command invokes
nrojfwith the -mm flag 12.2}. It has options to specify preprocessing by tbl(I) and/or by neqn(l), and
for postprocessing by various output filters. Any arguments or flags that are not recognized by mm(I},
e.g. -rC3, are passed to nroff or to PWBIMM, as appropriate. The options, which can occur in any order
but musr appear before the file names, are:

-e neqn(I) is to be invoked.
-t tb/(I) is to be invoked.
-c co/(l} is to be invoked.
-12 need 12-pitch mode. Be sure that the pitch switch on the terminal is set to 12.
-300 output is to a DASl300 terminal. This is the default terminal type.
-hp output is to a HP264x.
-450 output is to a DASI450.
-tn output is to a GE TermiNet 300.
-tnJOO output is to a GE TermiNet 300.
·ti output is to a Texas Instrument 700 series terminal.
-37 output is to a TELETYPE• Model 37.

2.l The -mm Flag

The PWBIMM package can also be invoked by including the -mm flag as an argument to the formatter.
It causes the tile /usr/lib/tmac.m to be read and processed before any other files. This action defines
the PWBIMM macros, sets default values for various parameters, and initializes the formatter to be ready
to process the files of input text.

1.J Typical Command Lines

The prototype command lines are as fallows {with the various options explained in {2.41 and in [9)).

• Text without tables or equations:

mm (options] filename •••
or nrotf {options] ·mm filename •••
or trotf [options) -mm filename •••

• Text with tables:

mm ·t [options) filename .••
or tbl filename • • • I nrotf [options) ·mm •
or tbl filename • . • I troff' [options] ·mm •

• Text with equations:

mm -e [options) filename •••
or neqn filename ••. I nroff' [options] -mm •
or eqn filename ••• I trotf [options) ·mm •

• Text with both tables and equations:

mm ·t -e {options} filename .••
or tbl filename .•• I neqn I nroff" [options] ·mm •
or tbi filename •.. I eqn I troff [options) -mm •

When formatting a document with nroff. the output should normally be processed for a spetific type of
terminal. because the output may require some features that are specific to a given terminal, e.g..
reverse paper motion or half-line paper motion in both directions. Some commonly-used terminal
types and the command lines appropriate for them are given below. See (2.41 as well as gs1'U, hp(l),
~·o/(1). and rermmals(VlJ) for funher information.

• DAS1300 (QS1300/0TC300) in 10-pitch. 6 lines/inch mode and a line length of 65 characters:

mm filename ...
or nroff • T300 ·h -mm filename •.•

• DASl300 CGSI300/DTC300l in 12-pitch. 6 lines/inch mode and a line length of 80-rather than
65 -characters:

mm -12 filename .••
or nroff' • noo..12 -rW80 -r03 ·h ·mm filename ••.

or. equivalently (and more succinctly):

nroff' • T300· 12 ·rTl ·h -mm filename ...

• 0ASl450 in 10-pitch. 6 lines/inch mode:

mm -450 filename .••
or nroff' ·T450 ·h ·mm filename .••

• DAS1450 in 12-pitch. 6 lines/inch mode:

mm -450 -12 filename .•.
or nroff' ·T450-12 -rW80 ·r03 -h ·mm filename ••.
or nroff ·T4SO·ll ·rTl ·b -mm filename ..•

• Hewtett-Packard HP264x CRT family:

mm ·hp filename •••
or aroft' ·h -mm filename • • • I hp

• Any terminal incapable of reverse paper motion (GE TermiNet, Texas Instruments 700 series. etc.):

mm ·tn filename •••
or nroff' ·mm filename • • • I col

-s -

• Versatec: printer (see vp(I) for additional details):

vp (vp-optionsJ "mm -rT2 -c filename ..• "
or vp (vp-options] "nroff' -rT2 -mm filename . • • I col"

Of course. rb/(l) and eqn<I>!lreqn(I), if needed. must be invoked as shown in the command line proto
types at the beginning of this section.

If two-<:olumn processing (11.4} is used with nrQ/f. the -c option must be specified to mmW. or the
nroff output postprocessed by co/(l). In the latter case. the -T37 terminal type must be specified to
nroff, the -h option must 1101 be specified. and the output of col(I) must be processed by the appropriate
terminal filter (e.g.. gs1(1))~ mm(J) with the -c option handles aH this automatically.

2.4 Puameters that Can Be Set Crom the Command Line

Number registers are commonly used within PWB/MM to hold parameter values that control various
aspects of output style. Many of these can be changed within the text files via .nr requestS. In addi·
tion. some of these registers can be set from the command line itself. a useful feature for those param
eters that should 11or be permanently embedded within the input text itself. If used. these registers
(with the possible exception of the register P-see below) musr be set on the command line (or before
the PWBIMM macro definitions are processed) and their meanings are:

-rAl has the effect of invoking. the .AF macro without an argument 16. 7.21.

-rB11 defines the macros for the cover sheet and the table of ~ontents. If " is I. table-of-contents pro-
cessing is enabled. If 11 is 2. then cover-sheet processing will occur. If /1 is 3. both will occur.
That is. 8 having a value greater than 0 de/i11es the .TC I 10.1 I and/or .CS I I0.21 macros. Note
that to have any effect. these macros must also be 111vok1?d.

-rCu 11 sets the type of copy (e.g .• DRAFT) to be printed at the bottom of each page. See {9.S}.
n • 1 for OFFICIAL FtLE COPY.
n • 2 for DATE FtLE COPY.
n • 3 for DRAFT.

-rDl sets debug mode. This flag requests the formatter to attempt to continue processing even if
?WBl!IAM detects errors that would otherwise cause termination. It aiso includes some debugging
information in the default page header {9.2. l l.31.

-rLk sets the length of the physical page to k lines. 1 The default vaJue is 66 lines per page. This
parameter is used for obtaining 8 lines-per-inch output on 12-picch terminals. or when directing
output to a Versatec printer.

-r:-.t11 specifies the page numbering style. When /1 is 0 (default). all pages get the (prevailing) header
(9.2!. When /1 is I. the page header replaces the footer on page I only. When /1 is 2. the page
header is omitted from page 1. When /1 is 3. "section-page" numbering (4.51 occurs.

,, Page I Pag£'s ! if.
0 header header
I header repfaces footer header
2 no header header
3 "section-page" as /oot£'r

The contents of che prevailing header and footer do nor depend on of the value of the number
register N: N only controls whether and where the header (and. for N- 3. the footerl is prmt~tl.
as well as the page numbering style. In particular. if the header and footer are null 19.2. 9.5L
the value of N is irrelevant.

-rOk offsets output k spaces to the right. 1 It is helpful for adjusting output positioning on some termi
nals. NOTE: The register name is the capital letter .. 0 ... 1101 the digit zero (0).

-rP11 specifies that the pages of the document are to be numbered starting with 11. This register may
also be set via a .nr request in. the input text.

!. For nrotf. t. is an 1111S(·a/ed number represenung lines or charar."ter pos111ons; for rrvt1. k must be '14:uk·d.

. 6.

-rS11 sets the point size and vertical spacing for the document. The default n is 10. i.e .• 10-point type
on 12-point leading (vertical spacing). giving 6 lines per inch ll 1.81. This parameter applies to
rroffonly.

-rT /1 provides register settings for certain devices. If 11 is 1. then the line length and page offset are
set for output directed to a DASIJOO or DAS14SO in 12-pitch. 6 lines/inch mode. i.e .• they are
set to 80 and 3. respectively. Setting /1 to 2 changes the page length to 84 lines per page and
inhibits underlining~ it is meant for output sent to the Versatec printer. The default value for 11

is 0. This parameter applies to 11rojf only.

-rUl controls underlining. of section headings. This flag causes only letters and digits to be under
lined. Otherwise. all characters (including spaces) are underlined {4.2.2.4.21. This parameter
applies to 111'0.ff only.

-rWk page width (i.e .• line length and title length) is set to k. 2 This can be used to change the page
width from the default value of 65 characters (6.5 inches).

2.5 Omission of -mm

If a large number of arguments is required on the command line. it may be convenient to set up the
first (or only) input file of a document as follows:

zero or more initializations of registers listed in 12.41
.so /usr/lib/tmac.m
remainder of text

In this case. one must 1101 use the -mm flag (nor the mm(l) command)~ the .so request has the
equivalent effect. but the registers in {2.41 must be initialized be.tort the .so request. because their
values are meaningful only if set before the macro definitions are processed. When using this method.
it 1s best to .. lock .. into the input file only those parameters that are seldom changed. For example:

.nr W 80

.Ar 0 10

.nr N 3

.nr B 1

.so /usr/li.b/tmac.m

.H l "INTRODUCTION"

specifies. for 11TQff, a line length of 80. a page offset of 1 O. '"section-page .. numbering. and table of con
tents processing.

3. FORMATTING CONCEPTS

3.1 Basic Terms

The normal action of the formatters is to .fill output lines from one or more input lines. The output
lines may be jus11/ied so that both the left and right margins are aligned. As the lines are being tilled.
words are hyphenated {3.4l as necessary. It is possible to tum any of these modes on and off (see .SA
{ l l.21. Hy {3.41. and the formatter .nf and .ti requests [9)). Turning off fill mode also turns off
justification and hyphenation.

Certain formatting commands (requests and macros) cause the filling of the current output line to
cease. the line (of whatever length) to be printed. and the subsequent te.xt to begin a new output line.
This printing of a partially tilled output line is known as a break. A few formatter requests and most of
the PWB/MM macros cause a break.

While formatter requests can be used with PWB/MM. one must fully understand the consequences
and side·eff ects that each such request might have. Actually. there is little need to use formatter
requests: the macros described here should be used in most cases because:

2. For 111•ofl. k 1s "" 111D<.·ak•1/ number represc:nting. hna or i:hara1:1.:r pos111ons: for rron: I. mus1 bo: 54·ak•cl.

. 7 .

- it is much easier to control (and change at any later point in time) the overall style of the document.

- complicated facilities (such as footnotes or tables of contents) can be obtained with ease.

- the user is insulated from the peculiarities of the formatter language.

A good rule is to use formatter requests only when absolutely necessary 13.9}.

In order to make it easy to revise the input text at a later time. input lines should be kept short and
should be broken at the end of clauses: each new full senre11ce must begin on a new line.

3.l A11umenrs and Double Quotes

For any macro call. a 11ull argument is an argument whose width is zero. Such an argument often has a
special meaning: the preferred form for a null argument is'"'. Note that ommmg an argument is nor the
same as supplying a 11ull argumem (for example. see the .MT macro in {6.6}). Furthermore. omitted
arguments can occur only at the end of an argument list, while null arguments can occur anywhere.

Any macro argument containing ordinary (paddable) spaces musr be enclosed in double quotes ("1. 3

Otherwise. it will be treated as several separate arguments.

Double quotes (") are 1101 permitted as part of the value of a macro argument or of a string that is to
be used as a macro argument. If you must. use two grave accents (..) and/ or two acute accents (.. >

instead. This restriction is necessary because many macro arguments are processed (interpreted) ci vari
able number of times: for example. headings are first printed in the text and may be (re)printed in the
table of contents.

3.3 l.Jnpaddable Sp~
-

When output lines are jus11fied to give an even right margin. existing spaces in a line may have addi-
tional spaces appended to them. This may harm the desired alignment of text. To avoid this problem.
it is necessary to be able to specify a space that cannot be expanded during justification. i.e., an u11padd·
able space. There are several ways to accomplish this.

First. one may type a backslash followed by a space ("\ ..) . This pair of characters directly gen
erates an u11paddabw space. Second. one may sacrifice some seldom-used character to be translated into
a space upon output. Because this translation occurs after justification. the chosen character may be
used anywhere an unpaddable space is desired. The tilde (-} is often used for this purpose. To use it
in this way. insert the following at the beginning of the document:

.tr -

If a tilde must actually appear in the output. it can be temporarily .. recovered" by inserting:

.tr --

before the place where it is needed. Its previous usage is restored by repeating the ".tr -··. bul only
after a break or after the line containing the tilde has been forced out. Note that the use of the tilde 1n
this fashion is not recommended for documents in which the tilde is used within equations.

3.4 Hyphenation

The formatters (and, therefore. PWBtMM) will automatically hyphenate words. if need be. However.
the user may specify the hyphenation points for a specific occurrence of any word by the use of a spe
cial character known as a hyphenation indicator. or may specify hyphenation points for a small list of
words (about 128 characters).

If the hyphe11a11011 indicator (initially, the two-character sequence "\'Yo") appears at the beginning or
end of a word. the word is nor hyphenated. Alternatively. it can be used to indicate legal hyphenallon
point(s) inside a word. In any case. all occurrences of the hyphenation indicator disappear on outpul.

The user may specify a different hyphenation indicator:

.HC [hyphenation-indicator)

3. ~double quote!") 1s d s11'1(i«' char;u;ter that must not be confused with two ~postrophe) or .. 11:u1e ai:cent) 1 .. 1. or "'1th:\•••
grave dccents (.. l.

• 8 •

The circumflex (·) is often used for this purpose~ this is done by inserting the following at the
beginning of a document:

.HC •

Note that any word containing hyphens or dashes-also known as em dashes-will be hyphenated
immediately after a hyphen or dash if it is necessary to hyphenate the word. even if the formatter hyphe·
na11011 fanc11011 is turned off.

Hyphenation can be turned otr in the body of the text by specifying:

.nr Hy 0

once at the beginning of the document. For hyphenation control within footnote text and across pages.
see {8.JI.

The user may supply, via the .hw request. a small list of words with the proper hyphenation points
indicated. For exampte. to indicate the proper hyphenation of the word "printout ... one may specify:

.hw print-out

3.S Tabs

The macros .MT {6.61 •. TC (10.l}. and .CS {I0.21 use the formatter .ta request to set tab stops. and
then restore the ~fault values"' of tab settings. Thus. setting tabs to other than the default vaJues is the
user's responsibility. -

Note that a tab character is always interpreted with respect to its position on the input !me. rather
than its position on the output line. ln general. tab characters should appear only on lines processed in
"no-fill'' mode {3.ll.

Also note that tbl<U {7.31 changes tab stops. but does 1101 restore the default tab settings.

3.6 Special Use of the BEL Chancter

The non-printing character BEL. is used as a delimiter in many macros where it is necessary to compute
the width of an argument or to delimit arbitrary text. e.g., in headers and footers {9J. headings f 41. and
list marks {51. Users who include BEL. characters in their input text (especially in arguments to mac:·
ros) will receive mangled output.

3.7 Bullets

A bullet (• l is often obtained on a typewriter terminal by using an "o" overstruck by a '"+ ·•. For
compatibility with rrqlf. a buHet string is provided by pWBJMM. Rather than overstriking. use the
sequence:

\•(BU

wherever a bullet is desired. Note that the bullet list (.BL) macros {5.3.J.21 use this string to automati·
cally generate the bullets for the list items.

3.8 Dashes. Minus Sips. and Hyphens

Troff has distinct graphics for a dash. a minus sign. and a hyphen. while 11rojf does not. Those who
intend to use 11ro.ff oniy may use the minus sign ('".") for aJI three.

Those who wish mainly to use troff should follow the escape conventions of [9).

Those who want to use both formatters must take care during text preparation. Unfortunately.
these characters cannot be represented in a way that is both compatible and convenient. We sugge~t
the following approach:

Dash Type •• •• •• for each text dash. These can be left alone for nroff. and later globally
translated for rrojfto '"\(em". namely an em dash (-). Note that the dash list (.OL> mac
ros {5.J.3.31 automatically generate the em dashes for the list items.

4. E~·ery eighl chlltll1.-ters in 11ro(f: every 11! inch in 1rolf.

. 9 .

Hyphen Type ••• •• and use as is for both formatters. Nroff will print it as is. and rroff will print a true
hyphen.

Minus Type .. , ... for a true minus sign. regardless of formatter. Nroffwill effectively ignore the
"\ •·. while rrojf will print a true minus sign.

3.9 Use of Formatter Requests

Most formatter requests [9} should 1101 be used with PWB/MM because PW8/MM provides the correspond
ing formatting functions in a much more user-oriented and surprise-free fashion than do the basic for
matter requests {3.1 l. However. some formatter requests art useful with PWBt\11M, namely:

.af .br .ce .de .ds .fl .hw .Is .nf .nr

.nx .rm .rr .rs .so .sp .ta .ti .ti .tr

The .fp .. lg. and .ss requests are also sometimes useful for troff. Use of other requests without fully
understanding their implications very often leads to disaster.

4. PARAGRAPHS AND HEADINGS

This section describes simple paragraphs and section headings. Additional paragraph and list styles are
covered in 151.
4.J Paragraphs

.P [type]
one or more lines of text.

This macro is used to begin two kinds of paragraphs. In a le.ti~jusr1tied paragraph. the first line begins at
the left margin. while in an 111dented paragraph. it is indented five spaces (see below).

A document possesses a default paragraph sryle obtained by specifying ".P .. before each paragraph
that does not follow a heading \4.21. The default style is controlled by the register Pr. The initial value
of Pt is 2. which provides indented paragraphs except after headings. lists. and displays. in which case
they are left-justified. All paragraphs can be forced to be left-justified by inserting the following at the
beginning of the document:

.nr Pt 0

All paragraphs can be forced to be indented by inserting: ·

.nr Pt l

at the beginning of the document.

The amount a paragraph is indented is contained in the register Pi. whose default value is 5. To
i ndem paragraphs by. say. 10 spaces. insert:

.nr Pi 10

at the beginning of the documenc. Of course. both the Pi and Pr register values must be greater than
zero for any paragraphs to be indented.

_. Values rlta1 speq/j• 111demano11 must be unscaled and are treated as "~·haracrer pos111011s. ·· 1.e .. as u
number ol ens. In troff. an en 15 the 11umber of polms (! po1111 - 1171 or an mchJ equal 10 hall !ht•
currem po111r s1:e. In nroff. an en 1s equal 10 the width al a character.

Regardless of the value of Pr. an mdivtdual paragraph can be forced to be left-justified or indented.
··.p O" always forces left justification~ ".P l" always causes indentation by the amount specified by the
register P1.

If .P occurs inside a list. the indent (if any) of the paragraph is added to the current list indent l5l.

4.2 Numbered Headings

. H level [heading-text]
zero or more lines of text

- 10 -

The .H macro provides seven levels of numbered headings, as illustrated by this document. Level l
is the most major or highest: level 7 the lowest .

.,,. There is no nttd for a .P macro a.fin- a .H (or .HU {4:J)J. because rhe .H macro also performs rhe
fa1icr1on Qf the .P macro. /tr fact. {/'a .P follows a .H. the user loses much of rhe .flexibility fJl'OVided by
1/w .H mecha11ism {4.2.2.2).

4.1. J Normal Appearance. The normal appearance of headings is as shown in this document. The
effect of .H varies according to the level argument. First-level headings are preceded by two blank lines
(one vertical space): all others are preceded by one blank line (Vi a vertical space) .

• H 1 heading-text gives an underlined (bold) heading .followed by a single blank line (\11 a vertical
space). The following text begins on a new line and is indented according to the
current paragraph type. FuJI capita! letters should normally be used to make the
heading stand out .

• H 2 heading-text yields an underlined (bold) heading followed by a single blank line W: a vertical
space). The foil owing text begins on a new line and is indented according to the
current paragraph type. Normally. initiaJ capitals are used .

. H n heading-text for 3 ~ 11 ~ 7. produces an underlined {italic) heading followed by two spaces.
The following text appears on the same line. i.e .• these are ru11·111 headings.

Appropriate numbering and spacing (horizontal and vertical) occur even if the heading text is omitted
from a .H macro call.

Here are the first few .H calls of 141:
.H I "PARAGRAPHS AND HEADINGS"
.H 2. "Paragraphs"
.H 2 "Numbered Headings"
.H 3 "NormaJ Appearance."
.H 3 "Altering Appearance of Headings."
.H 4 "Pre-Spacing and Page Ejection."
.H 4 "Spacing After Headings."
.H 4 "Centered Headings."
.H 4 "Bold. I talk. and Underlined Headings ...
. H 5 "Control by Level."

4.2.2 Alrermg Appeara11ct of Headings. Users satisfied with the default appearance of headings may skip
to 14.31. One can modify the appearance of headings quite easily by setting certain registers and strings
at the beginning of the document. This permits quick alteration of a document's style. because this
style-control information is concentrated in a few lines. rather than being distributed throughout the
document.

4.2.2. I Pre-Spac:mg a11d PaRt' Eiectton. A first-level heading normally has two blank lines (one vertical
space) preceding it, and all others have one blank line (If.? a vertical space). If a multi-line heading
were to be split across pages. it is automatically moved to the top of the next page. Every first-level
heading may be forced to the top of a new page by inserting:

.nr Ej l

at the beginning of the document. Long documents may be made more manageable if each section
starts on a new page. Setting ~i to a higher value causes the same effect for headings up to that level.
i.e., a page eject occurs if the heading level is less than or equaJ to ~;.

4.2.2.2 Spacmg Alier Htadings. Three registers control the appearance of text immediately following a
.H call. They are Hb (heading break level), Hs (heading space level). and Hi (post-heading indent>.

If the heading level is less than or equal to Hb. a break {3.1 l occurs after the heading. If che head
ing level is less than or equal to Hs. a blank line (1/2 a vertical space) is inserted after the heading.
Defaults for Hb and Hs are 2. If a heading level is greater than Hb and also greater than Hs. then the

• 11 •

heading (if any) is run into the following text. These registers permit headings to be separated from
the text in a consistent way throughout a document. while allowing easy alteration of white space and
heading emphasis.

For any stand-alone heading. i.e.. a heading not run into the following text, the alignment of the
next line of output is controlled by the register Hi. If Hi is 0, text is left-justified. If H1 is I (the
default value). the text is indented according to the paragraph type as specified by the register Pr 14. l J.
Finally. if Hi is 2. text is indented to line up with the first word of the heading itself. so that the head·
ing number stands out more clearly. Note that this feature is defeated if a .P macro follows the .H or
.HU macro (4.2).

For example. to cause a blank line (lh a vertical space) to appear after the first three heading levels.
to have no run-in headings. and to force the text following all headings to be left-justified (regardless of
the value of Pr). the following should appear at the top of the document:

.nr Hs 3

.nr Hb 7

.nr Hi 0

4.2.2.J Centered Headings. The register He can be used to obtain centered headings. A heading is cen
tered 1f its level is less than or equal to He. and if it is also stand-alone 14.2.2.21. He is 0 initially {no
centered headings).

4.2.2.4 Bold, Italic. and Underlined Headings.

4.2.2.4. J Comrol by Level. Any heading that is underlined by nroffis made bold or italic by troff. The
string HF (heading font) contains seven codes that specify the fonts for heading levels l • 7. The legal
codes. their interpretations. and the defaults for HF are:

Formatter HF Code Default
1 2 3 HF

nrotr no underline underline underline 3 3 2 2 2 2 2
trotr roman italic bold 3322222

Thus. all levels are underlined in nroff; in troff, levels 1 and 2 are bold. levels 3 through 7 are italic.
The user may reset HF as desired. Any value omitted from the right end of the list is taken to be I .
For example. the following would result in five underlined (bold) levels and two non-underlined
(roman) levels:

.els HF 3 3 3 3 3

4.2.2.4.2 Nroff Underlining Sryfe. Nroff can underline in two ways. The normaJ style Lui request) is to
underline only letters and digits. The continuous style (.cu request) underlines ail characters. including
spaces. By default, PWBIMM attempts to use the continuous style on any heading that is to be under·
lined. is 1101 run-in, and is short enough to fit on a single line. If a heading is to be underlined. but is
either run-in or is too long. it is underlined the normal way (i.e •• only letters and digits are undertinedl.

All underlining of headings can be forced to the normal way by using the -rUl flag when invoking
11roff 12.41.
4.2.2.5 Markmg Sryles-Numerals and Concatenation .

. HM [argl] ••• [arg7]

The registers named HJ through H7 are used as counters for the seven levels of headings. Their
values are normally printed using Arabic numerals. The .HM macro (heading mark style) allows this
choice to be overridden. thus providing "outline" and other document styles. This macro can have up
to seven arguments~ each argument is a string indicating the type of marking to be used. Legal values
and their meanings are shown below~ omitted values are interpreted as 1. while illegal values have no
effect.

Value Interpretation
l Arabic (default for aH levels)

0001 Arabic with enough leading zeroes to get
the specified number of digits

A Upper-case alphabetic
a Lower-case alphabetic
I Upper.ase Roman

Lower-~e Roman

By default. the complete l'ieading mark for a given level is built by concatenating the mark for that level
to the right of all marks for all levels of higher value. To inhibit the concatenation of heading level
marks. i.e .• to obtain just the current level mark followed by a period, set the register Hi (heading-mark
type) to l.

For example. a commonly-used "outline" style is obtained by:

.HM I A I a i

.nr Ht l

4.J Unnumbered Headings

. HU heading-text

.HU is a special case of .H: it is handled in the same way as .H. except that no heading mark is printed.
In order to preserve the hierarchical structure of headings when .H and .HU calls are intermixed. each
.HU heading is considered to exist at the level given by register Hu. whose initial value is 2. Thus. in
the normal case. the only difference between:

.HU heading-text

and

.H 2 heading-text

is the printing of the heading mark for the latter. Both have the effect of incrementing the numbering
counter for level 2. and resetting to zero the counters for levels 3 through 7. Typically, the value of
Hu should be set to make unnumbered headings (if any) be the lowest-level headings in a document.

.HU can be especially helpful in setting up Appendices and other sections that may not fit well into
the numbering scheme of the main body of a document {13.2.ll.

4.4 Headings and the Tabie of Contents

The text of headings and their corresponding page numbers can be automatically collected for a table of
contents. This is accomplished by doing the following three things:

• specifying in the register Cl what level headings are to be saved:
• invoking the . TC macro { 10.1 l at the end of the document~
• and specifying -rBn {2.41 on the command line.

Any heading whose level is less than or equal to the value of the register Cl (contents level) is saverl
and later displayerl in the table of contents. The default value for Cl is 2. i.e .• the first two leve!s of
headings are saved.

Due to the way the headings are saved. it is possible to exceed the formatter's storage capacity. par
ticularly when saving many levels of many headings, while also processing displays {7l and footnotes
{81. If this happens, the "Out of temp file space" diagnostic !Appendix El will be issued; the only
remedy is to save fewer levels and/ or to have fewer words in the heading text.

4.S First-Level Hndings and the Page Numbering Style

By default. pages are numbered sequentially at the top of the page. For large documents. it may be
desirable to use page numbering of the form "section-page." where section is the number of the
current first-level heading. This page numbering style can be achieverl by specifying the flag -rN3 on
the command line l9.9l. As a side effect. this also has the effect of setting Ej to 1. i.e .• each section

- 13 -

begins on a new page. In this style. the page number is printed ac the borrom of the page. so that the
correct section number is printed.

4.6 User Exit Macros •

,.. Thrs secnon 1s intended on{~· for users who are accustomed to wrirmgformauer macros .

. HX dlevel rlevel heading-text

.HZ dlevel rleve! heading-text

The .HX and .HZ macros are the means by which the user obtains a final level of control over the
previously-described heading mechanism. PwBIMM does not define .HX and .HZ: they are intended to
be defined by the user. The .H macro invokes .HX shortly before the actual heading text is printed: it
calls .HZ as its last action. All the default actions occur if these macros are not defined. If the .HX or
.HZ (or both) are defined by the user. the user-supplied definition is interpreted at the appropriate
point. These macros can therefore influence the handling of all headings. because the .HU macro is
actually a special case of the .H macro.

If the user originally invoked the .H macro. then the derived level (dlevel) and the real level (rle\•ef)
are both equal to the level given in the .H invocation. If the user originally invoked the .HU macro
14.3 l. dlevel is equal to the contents of register Hu. and rlevel is 0. In both cases, heading-1ex: is the text
of the original invocation.

By the time .H calls .HX. it has already incremented the heading counter of the specified level
14.2.2.5 I. produced blank line(s) (vertical space) to precede the heading l4.2.2. l I. and accumulated the
"heading mark ... i.e .• the string of digits. letters, and periods needed for a numbered heading. When
.HX is called. all user-accessible registers and strings can be referenced. as well as the following:

string !O If rlevel is non·zero. this string contains the "heading mark." Two unpaddable spaces
(to separate the mark from the heading) have been appended to this string. If rlevel is
O. this string is null.

register :O This register indicates the type of spacing that is to follow the heading 14.2.2.21. A
value of 0 means that the heading is run·in. A value of 1 means a break (but no blank
line) is to follow the heading. A value of 2 means that a blank line (Vi a verttcal
space) is to follow the heading.

string l2 If register :0 is 0, this string contains two unpaddable spaces that will be used to
separate the (run-in) heading from the following rexr. If register ;0 is non-zero. this
string is null.

register ;J This register contains an adjustment factor for a .ne request issued before the heading
is actually printed. On entry to .HX. it has the value 3 if dlevel equals l. and I other·
wise. The .ne request is for the following number of lines: the contents of the register
;0 taken as blank lines (halves of vertical space) plus the contents of register :J as
blank lines (halves of vertical space) plus the number of lines of the heading.

The user may alter the values of I 0, 12. and ;J within .HX as desired. The following are examples of
actions that might be performed by defining .HX to include the lines shown:

Change first-level heading mark from format 11. to n.O:
.if \\SI- I .ds IO \\n(Hl.0\o\c:i (a stands for a space)

Separate run·in heading from the text with a period and two unpaddable spaces:
.if \\n(;O- 0 .ds 12 .\o\o

Assure that at least 15 lines are left on the page before printing a first-level heading:
.if \\Sl- 1 .nr ;3 15-\\n(;O

Add J additional blank lines before each first-level heading:
.if\ \Sl- l .sp 3

If temporary string or macro names are used within .HX, care must be taken in the choice of their
names (13. ll.

- 14 -

.HZ is called at the end of .H to permit user-controlled actions after the heading is produced. For
example. in a large document. sections may correspond to chapters of a book. and the user may want to
reset counters for footnotes. figures. tables. etc. Another use might be to change a page header or
footer. For example:

.de HZ

.if \\Sl• l \{.nr :p 0 \" footnotes
nr Fg 0 \" figures
nr Tb 0 \" tables
nr & 0 \" equations
PF Section \\$3""\l

4. 7 Hints for Laqe Documents

A large document is often organized for convenience into one file per section. If the files are num
bered. it is wise to use enough digits in the names of these files for the maximum number of sections.
i.e .. use suffix numbers 01 through 20 rather than 1 through 9 and 10 through 20.

Users often want to format individual sections of long documents. To do this with the correct sec
tion numbers. it is necessary to set register HJ to 1 less than the number of the section just before the
corresponding ·• .H 1 •• call. For example. at the beginning of section 5. insert:

.nr Hl 4

..,,. This is a dangerous practtce: it defeats the auromanc (re) numbering qf sections when sections are added
or deleted. Remove such lines as soon as possible.

S. LISTS

This section describes many different kinds of lists: automatically-numbered and alphabetized lists. bul
let lists. dash liStS. lists with arbitrary marks. and lists starting with arbitrary strings. e.g .• with terms or
phrases to be defined.

S.1 Basic Approach

In order to avoid repetitive typing of arguments to describe the appearance of items in a list. PWBIMM
provides a convenient way to specify lists. All lists are composed of the following parts:

• A lisr-initiali:ation macro that controls the appearance of the list: line spacing. indentation. marking
with special symbols. and numbering or alphabetizing.

• One or more LISI Item (.LU macros. each followed by the actual text of the corresponding list item.

• The List End (.LE) macro that terminates the list and restores the previous indentation.

Lists may be nested up to six levels. The list-initialization macro saves the previous list status (inden
tation. marking style, etc.)~ the .LE macro restores it.

With this approach. the format of a list is specified only once at the beginning of that list. In addi
tion. by building on the existing structure. users may create their own customized sets of list macros
with relatively little effort IS.4. Appendix A. Appendix Bl.
S.2 Sample Nested Lists

The input for several listS and the corresponding output are shown below. The .AL and .DL macro
calls (5.3.3} contained therein are examples of the list-iniriali::ario11 macros. This example will he1p us co
explain the material in the foilowing sections. Input text:

.AL A

.LI
This is an alphabetized item.

- 15 -

This text shows the alignment of the second line of the item.
The quick brown fox jumped over the lazy dog's back .
• AL
.LI
This is a numbered item.
This text shows the alignment of the second line of the item.
The quick brown fox jumped over -the lazy dog's back .
. OL
.LI
This is a dash item.
This text shows the alignment of the second line of the item.
The quick brown fox jumped over the lazy dog's back .
. LI+ l
This is a dash item with a "plus" as prefix.
This text shows the alignment of the second line of the item.
The quick brown fox jumped over the lazy dog's back .
. LE
.LI
This is numbered item 2 .
. LE
.LI
This is another alphabetized item. B.
This text shows the alignment of the second lin.e of the item.
The quick brown fox jumped over the lazy dog's back .
. LE
.P
This paragraph appears at the left margin.

Output:

A. This is an alphabetized item. This text shows the alignment of the second line of the item. The
quick brown fox jumped over the lazy dog's back.

1. This is a numbered item. This text shows the alignment of the second tine of the item. The
quick brown fox jumped over the lazy dog's back.

- This is a dash item. This text shows the alignment of the second line of the item. The
quick brown fox jumped over the lazy dog· s back.

+ - This is a dash item with a "plus" as prefix. This text shows the alignment of the second
line of the item. The quick brown fox jumped over the lazy dog's back.

2. This is numbered item 2.

B. This is another alphabetized item, B. This text shows the alignment of the second line of the item.
The quick brown fox jumped over the lazy dog's back.

This paragraph appears at the left margin.

5.3 Basic List Macros

Because all listS share the same overall structure except for the list-initialization macro. we first discuss
the macros common to all lists. Each list-initialization macro is covered in (5.J.3}.

5.J.J list Item .

. LI {mark] [l]
one or more lines of text that make up the list item.

- 16 -

The .LI macro is used with all lists. It normally causes the output of a single blank line (~ a verti·
cal space) before its item. although this may be suppressed. If no arguments are given. it labels its
item with the current mark. which is specified by the most recent list-initialization macro. If a single
argument is given to .LI. that argument is output instead of the current mark. If two arguments are
given. the first argument becomes a p~fix to the current mark. thus allowing the user to emphasize one
or more items in a list. One unpaddable space is inserted between the prefix and the mark. For exam
ple:

.BL 6

.LI ..
This is a simple bullet item .
. LI+
This replaces the buUet with a "plus:·
.Ll + xxx
But this uses ·_'plus" as prefix to the buJlet .
. LE

yields:

• This is a simple bullet item.

+ This replaces the bullet with a .. plus.··

+ • But this uses .. plus .. as prefix to the bullet .

.,. The mark must 1101 contam ordmary (paddable) spaces. because alignment qf items will be losr if rhe nght
margin is justified {3.31. ·

If the current mark (in the currtnt list) is a nuU string. and the first argument of .Ll is omitted or null.
the resultin1 effect is that of a hangmg indent. i.e .• the first line of the following text is "outdented. ••
Starting at the same place where the mark would have started (S.3.3.61.

5.1.1 List End •

. LE ll I
List End restores the state of the list back to that existing just before the most recent list-initialization
macro call. If the optional argument is given, the .LE outputs a blank line (~ a vertical space). This
option should generally be used only when the .LE is followed by running text. but not when followed
by a macro that produces blank lines of its own, such as .P •• H. or .Ll .

. H and .HU automatically clear all list information. so 1Jne may legally omit the .LE(s) that would
normally occur just before either of these macros. Such a practice is not recommended. however.
because errors will occur if the list text is separated from the heading at some later time (e.g.. by inser·
tion of text).

5.3.3 List Initialization Macros. The following are the various list-initialization macros. They are actu·
ally implemented as calls to the more basic .LB macro (S.41.

5.3.3. J AuromatTcally-Numberrd or Alphabetized Lists.

.AL [type] [text-indent] [1]

The .AL macro is used to begin sequentially-numbered or alphabetized lists. If there are no arguments.
the list is numbered. and text is indented L1 (initially 5) 5 spaces from the indent in force when the .AL
is called, thus leaving room for two digits. a period. and two spaces before the text.

The rype argument may be given to obtain a different type of sequencing. and itS value should indi
cate the first element in the sequence desired, i.e .• it must be I. A. a. I. or i {4.2.2.Sl.6 If rype is omit·
ted or null. then ••t" is assumed. If text-indent is non-null, it is used as the number of spaces from the
current indent to the text, i.e .• it is used instead of Li for this list only. If text-indent is null. then the
value of L1 will be used.

S. Values that specly indentation must be u11s1:altd and are treated as "character positions.·· i.e •• as lhe number of 1·11~.

6. Note that the ··0001 •• format 1s ''°' permitted.

• 17.

If the third argument is given. a blank line (V? a vertical space) will not separate the items in the list.
A blank line CV? a vertical space) will occur before the first item. however.

5.3.J.] Bullet list .

• BL [text-indent] [l]

.BL begins a bullet list. in which each item is marked by a bullet (•) followed by one space. If rexr
indent is non-null. it overrides the default indentation-the amount of paragraph indentation as given in
the register Pi I 4.1) . 7

If a S«ond argument is specified. no blank lines will separate the items in the list.

5.J.).J Dash List .

• OL [text-indent) [lJ
.OL is identical to .BL. except that a dash is used instead of a bullet.

5.J.). 4 Marked List .

. ML mark [text-indent] [l]

.ML is much like .BL and .DL. but expects the user to specify an arbitrary mark. which may consist of
more than a single character. Text is indented text-indent spaces if the second argument is not null:
otherwise. the text is indented one more space than the width of mark. If the· third argument is
specified. no blank lines will separate the items in the list .

.,,. The mark must nor contain ordinary (paddable) spaces, because alignment of items will be lost if the r1ghr
margrn is jusr;fied (3.3 I.

5.J.3.5 Reference L1s1 .

. RL [text-indent] [11
A .RL call begins an automatically-numbered list in which the numbers are enclosed by square· brackets
([]). Text-mdent may be supplied. as for .AL. If omitted or nun. it is assumed to be 6. a convenient
value for lists numbered up to 99. If the second argument is specified. no blank lines will separate the
items in the list. The list of references I 14} was produced using the .RL macro.

5.1.J.6 Variable-Item List .

. VL text-indent [mark-indent) [1 J

When a list begins with a . VL. there is effectively no current mark: it 1s expected that each .LI will pro
vide itS own mark. This form is typically used to display definitions of terms or phrases. Mark-mdenr
gives the number of spaces from the current indent to the beginning of the mark.. and it defaults to 0 if
omitted or nuil. Text-indent gives the distance from the current indent to the beginning of the text. If
the third argument is specified. no blank lines will separate the items in the list. Here is an example of
.VL usage:

7. So that. in the default case. the text of bullet and dash lists lines up with the first line of indented paragraph~.

.tr •

.Vl 20 2

.LI mark·1

• 18 -

Here is a description of mark I;
"mark 1" of the .LI line contains a tilde translated to an unpaddable space in order
to avoid extra spaces between
"mark" and 'T' {3.31 .
. LI second-mark
This is the second mark. also using a tilde translated to an unpaddable space .
• LI third-mark-longer-than-indent:
This item shows the effect of a long mark; one space separates the mark
from the text .
• LI -
This item effectively has no mark because the
tilde following the .LI is translated into a space .
• LE

yields:

mark 1

second mark

Here is a description of mark l; ••mark 1" of the .LI line contains a tilde
translated to an unpaddable space in order to avoid extra spaces between ''mark''
and "l" !3.31. '

This is the second mark. also using a tilde translated to an unpaddable space.

third mark longer than indent: This item shows the effect of a long mark; one space separates the
mark from the text.

This item effectively has no mark because the tilde following the .LI is translated
into a space.

The tilde argument on the last .LI above is required; otherwise a hanging indem would have been pro
duced. A hanging indem is produced by using . VL and calling .LI with no arguments or with a null first
argument. For example:

.VL 10

.LI
Here is some text to show a hanging indent.
The first line of text is at the left margin.
The second is indented 10 spaces .
. LE

yields:

Here is some text to show a hanging indent. The first line of text is at the left margin. The second is
indented 10 spaces.

,,,. The mark must trot contai11 ordinary (paddable) spaces. because alignmem of items will be lost tf rhe rtghr
margin is jusrt}ied 13 .3 l.

5.4 List-Begin Macro and Customized Lists •

.LB text-indent mark-indent pad type {markl [LI-space] [LB-space]

The list-initialization macros described above suffice for almost all cases. However. if necessary, one
may obtain more control over the layout of lists by using the basic list-begin macro .LB, which is also
used by ail the other list-initialization macros (Appendix Al. Its arguments are as follows:

Texr-indem gives the number of spaces that the text is to be indented from the current indent. Nor
mally, this value is taken from the register Li for automatic lists and from the register Pi for bullet and
dash lists.

The combination of mark-mdenr and pad determines the placement of the mark. The mark is placed
within an area (called mark area) that starts mark-indem spaces to the right of the current indenL and

• 19.

ends where the text begins (i.e., ends text-indent spaces to the ri;ht of the current indent) .a Within the
mark area. the mark is le.ft-justified if pad is 0. If pad is greater than 0, say n, then n blanks are
appended to the mark~ the mark-indenr value is ignored. The resulting string immediately precedes the
text. That is, the mark is effectively r1gh1-jusrified pad spaces immediately to the left of the text.

Type and mark interact to control the type of marking used. If r;pe is 0, simple marking is per
formed using the mark character(s) found in the mark argument. If type is greater than 0, automatic
numbering or alphabetizing is done, and mark is then interpreted as the first item in the sequence to be
used for numbering or alphabetizing, i.e., it is chosen from the set (I, A, a, I. i) as in (5.3.3.Il. That
is:

Type
0
0

>0
>0

Mark
omitted
Sl7ing
omitted
one of:

1, A. a, I. i

Result
hanging indent
st7ing is the mark
arabic numbering
automatic numbering or

alphabetic sequencing

Each non.zero value of type from l to 6 selects a different way of displaying the items. The following
table shows the output appearance for each value of rype:

Type Appearance

1 x.
2 x)
3 (x)
4 [x]
5 <x>
6 {xi

where x is the generated number or letter.

,... The mark must 11ot conram ordinary (paddable) spaces. because alignment qf items will be lost fl the r1gh1
marg1111s)usrified {3.31.

Li-space gives the number of blank lines (halves of a venical space) that should be output by each .LI
macro in the list. If omitted. LI-space defaults to 1; the value 0 can be used to obtain compact lists. If
LI.space is greater than 0, the .Ll macro issues a .ne request for two lines just before printing the mark.

LB·spact, the number of blank lines (If? a venical space) to be output by .LB itself. defaults to 0 if
omitted.

There are three reasonable combinations of Lf ·spact and LB·spact. The normal case is to set LJ.
spact to 1 and LB·space to 0, yielding one blank line ~fort each item in the list; such a list is usually
terminated with a ••.LE 1" to end the list with a blank line. In the second case. for a more compact
list. set LI-space to 0 and LB·spact to l, and. again. use ".LE l" at the end of the list. The result is a
list with one blank line before and after it. If you set both LJ.space and LB·space to 0, and use ··.LE ..
to end the list, a list without any blank lines will result.

Appendix A shows the definitions of the list·initialization macros {5.3.JI in terms of the .LB macro.
Appendix B illustrates how the user can build upon those macros to obtain other kinds of lists.

6. MEMORANDUM AND REL.EASED PAPER STYLES

One use of PWB/MM is for the preparation of memoranda and released papers, which have special
requirements for the first page and for the cover sheet. The information needed for the memorandum
or released paper (title. author. date. case numbers. etc.) is entered in the same way for both styles: an
argument to one macro indicates which style is being used. The following sections describe the macros
used to provide this data. The required order is shown in {6.91.

8. The marA-111dem argumeni rs typically 0.

• 20.

If neither the memorandum nor released-paper style is desired. the macros described below should
be omitted from the input text. If these macros are omitted. the first page will simply have the page
header (91 followed by the body of the document.

6.1 Title

.TL [charging-ase] [filing-ase)
one or more lines of title text

The argumencs to the .TL macro are the charging case number(s) and filing case number(s).9 The title
of the memorandum or paper follows the . TL macro and is processed in fill mode IJ.11. Multiple
charging case numbers ar~ entered as .. sub-arguments" by separating each from the previous with a
comma and a space. and enclosing the emire argument within double quotes. Multiple filing case
numbers are entered similarly. For example:

.TL "12345. 67890" 987654321
On the construction of a table
of all even prime numbers

The .br request may be used to break the title into several lines.

On output. the title appears after the word "subject" in the memorandum style. In the reieased
paper style. the title is centered and underlined (bold).

6.2 A11thor(s)

.AU name [initials} [loc] [dept} [ext] [room] [arg} [arg] [arg]

The .AU macro receives as argumentS information that describes an author. If any argument contains
blanks. it must be enctosed within double quotes. The first six arguments must appear in the order
given (a separate .AU macro is required for each author). For example:

.AU "1. 1. Jones'* 111 PY 9876 5432 lZ-234

In the "from" portion in the memorandum style. the author's name is followed by location and depart
ment number on one line and by room number and extension number on the next. The ··x·· for the
extension is added automatically. The printing of the location. department number. extension number.
and room number may be suppressed on the first page of a memorandum by setting the register Au to
0; the default value for Au is l. Arguments 7 through 9. if present. will follow this "normal" author
information. each on a separate line. Certain organizations have their own numbering schemes for
memoranda. engineer·s notes. etc. These numbers are printed after the author's name. This can be
done by providing more than six arguments to the .AU macro. e.g.:

.AU MS. P. Lename" SPL IH 9988 7766 5H-444 3322.1 lAB

The name. initials. location. and department are also used in the Signature Block {6.11.11. The author
information in the ••from" portion. as well as the names and initials in the Signature Block will appear
in the same order as the .AU macros.

The names of the authors in the released-paper style are centered below the title. After the name of
the last author. "Bell Laboratories .. and the location are centered. For the case of authors from
different locations, see 16.81.
6.J T~ :"fumber(s)

.TM [number] ...

lf the memorandum is a Technical Memorandum, the TM numbers are supplied via the .TM macro.
Up to nine numbers may be specified. Example:

.TM 7654321 77777777

This macro call is ignored in the released-paper and external-letter styles (6.6}.

9. The ··~harg1n1 1.'a:ie·· is the l.'3Se number to wt11ch ume wu charged for che dc-.elopment of che proic:ct descnb«i 1n the
memorandum. The .. filing ~·· is a number under which the memorandum is to be filed.

6.4 Abstract

.AS [arg] [indent]
text of the abstract
.AE

• 21 •

In both the memorandum and released-paper styles, the text of the abstract follows the author informa
tion and is preceded by the centered and underlined (italic) word ··ABSTRACT ...

The .AS (abstract start) and .AE (abstract end) macros bracket the (optional) abstract. The first
argument to .AS controls the printing of the abstract. If it is 0 or null, the abstract is printed on the
first page of the document, immediately following the author information, and is also saved for the
cover sheet. If the first .argument is l, the abstract is saved and printed only on the cover sheet. The
margins of the abstract are indented on the left and right by five spaces. The amount of indentation
can be changed by specifying the desired indentation as the second argument. 10

Note that headings 14.2, 4.3 J, displays 171, and footnotes 18 l are nor (as yet) permitted within an
abstract.

6.5 Other Keywords

.OK [keyword! ...

Topical keywords should be spedfied on a Technical Memorandum cover sheet. Up to nine such key
words or keyword phrases may be specified as arguments to the .OK macro~ if any keyword contains
spaces. it must be enclosed within double quotes.

6.6 Memorandum Types

.MT (type] [1]

The .MT macro controls the format of the top part of the first page of a memorandum or of a released
paper. as well as the format of the cover sheets. Legal codes for type and the corresponding values are:

Code
. .MT ""
.MT 0
.MT
.MT I
.MT 2
.MT 3
.MT 4
.MT 5
. MT "string"

Value

no memorandum type is printed
no memorandum type is printed
MEMORANDUM FOR FILE
MEMORANDUM FOR FILE
PROGRAMMER'S NOTES
ENGINEER'S NOTES
Released-Paper style
External-Letter style
srring

If rype indicates a memorandum style. then value will be printed after the last line of author information
or after the last line of the abstract, if one appears on the first page. If rype is longer than one charac
ter, then it, itself, will be printed. For example:

.MT "Technical Note #5"

A simple letter is produced by calling .MT with a null (but nor omitted!) or zero argument.

The second argument to .MT is used only if the first argument is 4 (i.e., for the released-paper
style) as explained in (6.8).

In the external-letter style I.MT 5), only the date is printed in the upper right corner of the first
page. It is expected that preprinted stationery will be used. providing the author's company logotype
and address.

10. V.;lues lha1)pecify 1nden1auon must be u1m·aled dnd are trealed .is "character posuions. ·· 1.e .• .i.s the: number at' ens.

- 22 -

6. 7 Date and Format Changes

6. 7. I Changing rhe Dare. By default, the current date appears in the "date" part of a memorandum.
This can be overridden by using:

. ND new-date

The .ND macro alters the value of the string DT. which is initially set to the current date.

6. 7.2 Alternate First-Page Format. One can specify that the words "subject.·· ''date," and "from" (in
the memorandum style) .9e omitted and that an alternate company name be used:

.AF [company-name]

If an argument is given. it replaces "Bell Laboratories". without affecting the other headings. If the
argument is 11ull. "Beil Laboratories" is suppressed: in this case. extra blank lines are inserted to allow
room for stamping the document with a Bell System logo or a Bell Laboratories stamp. .AF with no
argument suppresses "Bell Laboratories" and the "Subject/Date/From" headings. thus allowing output
on preprinted stationery.

The only .AF option appropriate for rroff is to specify an argument to replace "Bell Laboratories ..
with another name.

6.8 Released-Paper Style

The released-paper style is obtained by specifying:

.MT 4 [I 1
This results in a centered. underlined (bold) title followed by centered names of authors. The location
of the last author is used as the location following "Bell Laboratories'" (unless .AF 16. 7.2} specifies a
different company). If the optional second argument to .MT is given. then the name of each author is
followed by the respective company name and location. The abstract. if present, follows the author
information.

Information necessary for the memorandum style but not for the released-paper style is ignored.

If the released-paper style is utilized, most BTL location codes11 are defined as strings that are the
addresses of the corresponding BTL locations. These codes are needed only until the .MT macro is
invoked. Thus. /bllowmg the .MT macro. the user may re-use these string names. In addition. the
macros described in {6.11 J and their associated lines of input are ignored when the released-paper style
is specified.

Authors from non-BTL locations may include their affiliations in the released-paper style by specify-
ing the appropriate .AF be.fore each .AU. For example:

.TL
A Learned Treatise
.AF "Getem Inc.·
.AU "F. Swatter~
.AF "Bell Laboratories"
.AU "Sam P. Lename" "" CB
.MT 4 1

6.9 Order of Invocation of "Beginning" Macros

The macros described in (6.1-6. 7}. {f presenr. must be given in the following order.

11. The complele list is: AK. CP. CH. CB. DR. HO. IN. IH. MV. MH. PY. RR. RD. W\', and WH.

. ND new-date

.Tt [charging-case) [filing-case]
one or more lines of text
.AF {company-name]

• 23 •

.AU name [initials) [lac] [dept) [ext] [room] [argl [arg] {arg]

. TM [number} ...
• AS [arg] [indent)
one or more lines of text
.AE
.OK [keyword) .•.
. MT [type) [l]

The only rtqutrtd macros.for a memorandum or a released paper are .TL •. AU, and .MT~ all the others
<and their associated input lines) may be omitted if the features they provide are not needed. Once
.MT has been invoked, none of the above macros can be re-invoked because they are removed from
the table of defined macros to save space.

6.10 Example

The input text for this manual begins .as follows:

.Tt
P\s-JWBIMM\sO\(emProgrammer's Workbench Memorandum Macros
.AU "D. W. Smith" DWS PY ..•
. AU "J. R. Mashey" JRM MH ..•
. MT 4 1

6.11 Macros for the End of a Memorandum

At the end of a memorandum (but not of a released paper). the signatures of the authors and a list of
nocations12 can be requested. The following macros and their input are ignored if the released-paper
style is selected.

6. I I. I S1g11arurt Blo<:k •

. SG [argj [1]

.SG prints the author name(s) after the last line of text, aligned with the '"Date/From" block. Three
blank lines are left above each name for the actual signature. If no argument is given. the line of refer
ence data13 will not appear following the last line.

A non-null first argument is treated as the typist's initials, and is appended to the reference data.
Supply a null argument to print reference data with neither the typist's initials nor the preceding
hyphen.

If there are several authors and if the second argument is given. then the reference data is placed on
the same line as the name of the first author. rather than on the line that has the name of the last
author.

The reference data contains only the location and department number of the first author. Thus. if
there are authors from different departments and/or from different locations. the reference data should
be supplied manually after the invocation (without arguments) of the .SG macro. For example:

.SG

.rs

.sp ·Iv
PY /MH-9876/ 5432-JJJ/SPL-cen

12. See 121. pp. 1.12-16
13. The following informauon 1s known as reference data: loca11on .:ode. department number. author) 1nmals • .md 1yp1st')

tnlllah. 411 separated by hyphens. See [21. page 1.11

6.11.2 "Copy ro ··and Other Notations .

. NS [argJ
zero or more lines of the notation
.NE

After the signature and reference data. many types of notations may follow, such as a list of attach
ments or "copy to" lists. The various notations are obtained through the .NS macro, which provides
for the proper spacing and for breaking the notations across pages, if necessary.

The codes for arg and .the corresponding notations are:

Code
.NS""
.NS 0
.NS
.NS l
.NS 2
.NS 3
• NS 4
. NS 5
.NS 6
. NS 7
.NS 8
.NS 9
.NS "Strillg''

Notations
Copy to
Copy to
Copy to
Copy (with att.) to
Copy (without att.) to
Att .
Atts.
Enc .
En cs .
Under Separate Cover
Letter to
Memorandum to
Copy (smng) to

If arg consists of more than one character. it is placed !Yithin parentheses between the words "Copy'"
and ''to." For example:

.NS "with att. I only"

will generate "Copy (with att. 1 only) to" as the notation. More than one notation may be specified
before the .NE occurs, because a .NS macro terminates the preceding notation. if any. For example:

.NS 4
Attachment 1-List of register names
Attachment 2-List of string and macro names
.NS 1
J. J. Jones
.NS 2
S. P. Lename
G. H. Hurtz
.NE

would be formatted as:

Atts.
Attachment I-List of register names
Attachment 2-List of string and macro names

Copy (with att.) to
J. J. Jones

Copy (without att.) to
S. P. Lename
G. H. Hurtt

6.12 Forcing a One--Page Letter

At times. one would like just a bit more space on the page, forcing the signature or items within nota
tions onto the bottom of the page, so that the letter or memo is just one page in length. This can be
accomplished by increasing the page length through the -rLn option. e.g. -rL90. This has the etf ect of

- 25 -

-(\~ .
making the formatter believe that the page is 90 lines long and therefore giving it more room than
usual to place the signature or the notations. This will only work for a smgie-page letter or memo.

7. DISPLAYS

Displays are blocks of text that are to be kept together-not split across pages. PwBIMM provides two
styles of displays: 14 a static (.OS) style and afloattng (.OF) style. In the sraric style, the display appears
in the same relative position in the output text as it does in ·the input text~ this may result in extra
white space at the bottom of the page if the display is too big to fit there. In the floating style, the
display .. floats'' through the input text to the top of the next page if there is not enough room for it on
the current page: thus the input text that follows a floating display may precede it in the output text. A
queue of floating displays_ }s maintained so that their relative order is not disturbed.

By default. a display is processed in no-till mode and is not indented from the existing margin. The
user can s~if y indentation or centering. as well as fill-mode processing.

Displays and footnotes {SI may newr be nested. in any combination whatsoever. Although lists 151
and paragraphs 14.I} are permitted. no headings (.Hor .HU) can occur within displays or footnotes.

7.1 Stade Displays

.OS [format] (fill]
one or more lines of text
.DE

A static display is started by the .OS macro and terminated by the .OE macro. With no arguments .
• DS will accept the lines of text exactly as they are typed (no-fill mode) and will nor indent them from
the prevailing indentation. The format argument to .DS is an integer with the following meanings:

Code Meaning
no indent

0 no indent
1 indent· by standard amount
2 center each line

The fill argument is also an integer and can have the following meanings:

Omitted arguments are taken to be zero.

Code
0
1

Meaning
no-till mode
no-fill mode
till mode

The standard amount of indentation is taken from the register Si, which is initially 5. Thus. by
default. the text of an indented display aligns with the first line of indented paragraphs, whose indent is
contained in the Pi register 14. l}. Even though their initial values are the same. these two registers are
independent of one another.

By default. a blank line (Vi a vertical space) is placed before and after static and floating displays.
These blank lines before and after static displays can be inhibited by setting the register Ds to 0.

7 .l Floating Displays

.OF [fonnatl [fill]
one or more lines of text
.DE

A floating display is started by the .OF macro and terminated by the .DE macro. The arguments have
the same meanings as for .OS { 7.1 l, except that, for floating displays, indent, no indent. and centering
are always calculated with respect to the initial left margin. because the prevailing indent may change

14. Displays are processed in an environment that is different from that of the body of the te:ii:t I see the .ev request 1n 1911.

- 26.

between the time when the formatter first reads the floating display and the time that the display is
printed. One blank line (V2 a vertical space) always occurs both before and after a floating display.

7.3 Tables

.DS

.TS
one or more lines of text to be processed by tb/(1)
.TE
.DE

The .TS (table start) and .TE (table end) macros make possible the use of the rb/(I) processor [11].
They are used only to delimit the text to be examined by tbl(I). Thus. the display function and the
tbl(l) delimiting function are independent of one another. in order to permit one to keep together
blocks that contain any mixture of tables, equations, filled and unfilled text. and caption lines.

If a particular document does not need this flexibility, it is possible to define .TS and .TE so that
they act like .DS and .DE. respectively, and are also recognized by rb/(l):

.de TS

.Os •\\S l" "\ \$2"

.de TE

.DE

If floating tables are desired. substitute .OF for .OS in the above.

7 .4 Equations

.OS

.EQ
equation(s)

·.EN
.DE

The equation setters eq11(1) and 11eq11(I) {6.7] expect to use the .EQ (equation start) and .EN (equation
end) macros as delimiters in the same way that tbl(l) uses . TS and . TE~ .EQ and .EN must occur either
inside .DS-.DE pairs or else be defined by the user as shown above for the .TS and .TE macros .

.,,,. There is an excepr1011 to rh1s rule: if .EQ and .EN are u~d only ro specj/jl the delim11ers ,/or 111-line equa
tions or to speqfY eqn/neqn "d~tines." .DS and .DE must not be used; orherw1~ extra blank lines will
appear m the output.

1.S Figure. Table. and Equation Captions

.FG [title} [override) [flag]

. TB [title} [override) [flag}

.EC [title) [override] [flag]

The .FG (Figure Title). .TB (Table Title) .. EC (Equation Caption) macros are normally used inside
.DS-.DE pairs to automatically number and title figures, tables. and equations. They use registers Fg.
Tb. and Ee. respectively. 15 As an example, the call:

.FG "This is an illustration"

yields:

Figure 1. This is an illustration

.TB replaces "Figure" by ''TABLE"; .EC replaces "Figure" by "Equation". Output is centered if it
can fit. on a singie line~ otherwise, ail lines but the first are indented to line up with the first character of
the title. The format of the numbers may be changed using the .af request of the formatter.

15. The user may wish to reset these registers after each first·levet headmg 14.61.

• 27.

The ovemde string is used to modify the normal numbering. If flag is omitted or O. o~mde is used
as a prefix to the number~ if flag_ is I. override is used as a suffix: and if flag is 2. ovemde replaces the
number. For example, to produce figures numbered within sections. supply \n(Hl for overrrde on each
.FG call. and reset Fg at the beginning of each section, as shown in {4.6}.

As a matter of style, table headings are usually placed ahead of the text of the tables, while figure
and equation captions usually occur after the corresponding figures and equations.

1.6 Blocks of Filled Text

One can obtain blocks of tilled text through the use of .OS or .OF. However, to have the block of
filled text cenremi within the current line length, the tbl(I) program may be used:

.OS 0 I

.TS
center;
!w40.
Tl

Tl
.TE
.OE

The ··.OS 0 I'' begins a non-indented. filled display. The rb/(I) parameters set up a centered table
with a column width of 40 ens. The .. Tl .•• Tl" sequence allows filled text to be input as data within a
table.

8. FOOTNOTES

There are two macros that deiimit the text of footnotes, 16 a string used to automatically number the
footnotes. and a macro that specifies the style of the footnote text.

8.1 Automatic Numbering of Footnotes

Footnotes may be automaticaJly numbered by typing the three characters ''\ •F' immediately after the
text to be footnoted, without any intervening spaces. This will place the next sequential footnote
number (in a smaller point size) a half-line above the text to be foocnoted.

8.2 Delimiting Footnote Text

There are two macros that delimit the text of each footnote:

.FS [label}
one or more lines of footnote text
.FE

The .FS (footnote start) marks the beginning of the text of the footnote. and the .FE marks its end.
The label on the .FS, if present, will be used to mark the footnote text. Otherwise. the number
retrieved from the string F will be used. Noce that automatically-numbered and user-labeled footnotes
may be intermixed. If a footnote is labeled (.FS label>. the text to be footnoted musr be followed by
label. rather than by "\·F·'. The text between .FS and .FE is processed in fill mode. Another .FS. a
.OS. or a .OF are nor permitted between the .FS and .FE macros. Examples:

16. Footnotes are processed in an environment that is different from that of the body of lhe lext (see the .ev request in (911.

- 28 -

1. Automatically-numbered footnote:

This is the line containing the word\•F
.FS
This is the text of the footnote .
. FE
to be footnoted.

2. Labelled footnote:

This is a labeled•
.FS •
The footnote is labeled with an asterisk .
. FE
footnote.

The text of the footnote {enclosed within the .FS-.FE pair) should 1mmedia1e(v follow the word to be
footnoted in the input text. so that "\•f"" or label occurs at the end of a line of input and the next line
is the .FS macro call. It is also good practice to append a unpaddable space 13.31 to '"\•F .. or label
when they follow an end-of-sentence punctuation mark (i.e .• period. question mark. exclamation
point>. ·

Appendix C illustrates the various available footnote styles as well as numbered and labeled foot
notes.

8.J Format of footnote Text•

.FD [argl [l]

Within the footnote text. the user can control the formatting style by specifying text hyphenation. right
margin justification. and text indentation. as well as left- or right-justification of the label when text
indenting is used. The .FD macro is invoked to select the appropriate style. The first argument is a
number from the left column of the fallowing table. The formatting style for each number is given by
the remaining four columns. For further explanation of the first two of these columns. see the
definitions of the .ad •• hy .. na. and .nh requests in {91.

0 .nh .ad text indent labei left justified
1 .hy .ad " "
2 .nh .na .. "
3 .hy .na " "
4 .nh .ad no text indent "
5 .hy .ad .. "
6 .nh .na .. "
7 .hy .na " "
8 .nh .ad text indent label right justified
9 .hy .ad It "

10 .nh .na " "
11 .hy .na " "

If the first argument to .FD is out of range, the effect is as if .FD 0 were specified. If the first argu·
ment is omitted or null. the effect is equivalent to .FD 10 in nroff and to .FD 0 in rro./f: these are aJso
the respective initial defaults.

If a second argument is specified, then whenever a first-level heading is encountered. automatically
numbered footnotes begin again with 1. This is most useful with the .. section·page" page numbering
scheme. As an example, the input line:

.FD"" l

maintains the default formatting style and causes footnotes to be numbered afresh after each first·level
heading.

- 29 -

For long footnotes that continue onto the following page, it is possible that, if hyphenation is per
mitted, the last line of the footnote on the current page will be hyphenated. Except for this case (over
which the user has control by specifying an even argument to .FD), hyphenation across pages is inhi
bited by PWB/MM.

Footnotes are separated from the body of the text by a short rule. Footnotes that continue to the
next page are separated from the body of the text by a full-width rule. In troff, footnotes a.re set in type
that is two points smaller than the point size used in the body of the text.

8.4 Spacin1 between Footnoce Entries

Normally, one blank line (a three-point vertical space) separates the footnotes when more than one
occurs on a page. To change this spacing. set the register Fs to the desired value. For example:

.m Fs 2

will cause two blank lines (a six-point vertical space) to occur between footnotes.

9. PAGE HEADERS AND FOOTERS

Text that occurs at the top of each page is known as the page header. Text printed at the bottom of
each page is called the page /oater. There can be up to three lines of text associated with the header.
every page, even page only, and odd page only. Thus the page header may have up to two lines of text:
the line that occurs at the top of every page and the line for the even- or odd-numbered page. The
same is true for the page footer.

This section first describes the default appearance of page headers and page footers, and then the
ways of changing them. We use the term header (not qualified by even or odd) to mean the line of the
page header that occurs on every page, and similarly for the term footer.

9.1 Default Headers and Footers

By default, each page has a centered page number as the header {9.2). There is no default footer and
no even/odd default headers or footers. except as specified in {9.91.

In a memorandum or a reieased paper, the page header on the first page is automatically suppressed
provided a break does nor occur before .MT is called. The macros and text of {6.9} and of {9} as wen as
.nr and .ds requests do not cause a break and are permitted before the .MT macro call.

9 .2 Page Header

.PH [arg]

For this and for the .EH •. OH, .PF, .EF, .OF macros, the argument is of the form:

•'left-part· center-part· right-part ...

If it is inconvenient to use the apostrophe (') as the delimiter (i.e., because it occurs within one of the
partS), it may be replaced umformly by any other character. On output, the pans are left-justified, cen
tered, and right-justified, respectively. See {9.11} for examples.

The .PH macro specifies the header that is to appear at the top of every page. The initial value (as
stated in (9.1}) is the default centered page number enclosed by hyphens. See the top of this page for
an example of this default header.

If debug mode is set using the flag -rDl on the command line {2.4}. additional information, printed
at the top left of each page, is included in the default header. This consists of the SCCS [1 OJ Release
and Level of PWB/MM (thus identifying the current version { 11.3}), followed by the currest line number
within the current input file.

9.3 Even-Page Header

.EH [arg]

The .EH macro supplies a line to be printed at the top of each even-numbered page, immediately fol
lowing the header. The initial value is a blank line.

9.4 Odd-Pace Header

.OH (arg]

• 30.

This macro is the same as .EH. except that it applies to odd-numbered pages.

9.5 Pqe Footer

.PF [arg]

The .PF macro specifies the line that is to appear at the bottom of each page. Its initial value is a blank
line. If the -rC11 flag is _spec°ified on the command line {2.41. the type of copy follows the footer on a
separate line. In panicufar. if -rC3 (DRAFT) is specified. then. in addition. the footer is initialized to
contain the date 16. 7 .11. instead of being a blank line.

9.6 Even-Pace Footer

.EF [arg]

The .EF macro supplies a line to be printed at the bottom of each even-numbered page. immediately
prec:eding the footer. The initial value is a blank line.

9. 7 Odd-Pap Footer

.OF [arg]

This macro is the same as .EF. except that it applies to odd-numbered pages.

9.8 Footer on the Fint Pace

By default. the footer is a blank line. If. in the input text. one specifies .PF and/or .OF before the end
of the first page of the document. then these lines will appear at the bottom of the first page.

The header (whatever its contents) replaces the footer o,, t~ first pagt 011(v if the -rNl flag is
.specified on the command line {2.4}.

9 .9 Default Header and Footer with "'Section· Pace·· N umberinc

Pages can be numbered sequentially within sections 14.51. To obtain this numbering style. specify -r!"i3
on the command line. In this case. the default .tooter is a centered .. section-page·· number. e.g. 3-5.
and the default page header is blank.

9.10 Use of Strings and Reiisters in Header and Footer Macros •
'

String and register names may be placed in the arguments to the header and footer macros. If the
value of the string or register is to be computed when the respec11ve header or.fbo1er is pr1111ed. the invoca·
tion must be escaped by four (4) backslashes. This is because the string or register invocation will be
processed three times:

• as the argument to the header or footer macro;
• in a formatting request within the header or footer macro;
• in a .ti request during header or footer processing.

For example. the page number register P must be escaped with four backslashes in order to specify J

header in which the page number is to be printed at the right margin. e.g.:

.PH Page \\\\nP'"

creates a right·justified header containing the word "Page" followed by the page number. Similarly. to
specify a footer with the "section-page'" style. one specifies (see 14.2.2.Sl for meaning of H /):

.PF \\\\n(Hl·\\\\nP

As another example. suppose that the user arranges for the string al to contain the current secuon
heading which is to be printed at the bottom of each page. The .PF macro call would then be:

.PF '"'\\\\•(a]

If only one or two backslashes were used. the footer would print a constant value for of, namely. its
value when the .PF appeared in the input text.

• 31 •

9.ll Header and Footer Example•

The following sequence specifies blank lines for the header and footer lines, page numbers on the out
side edge of each page (i.e .• top left margin of even pages and top right margin of odd pages), and
··Revision 3" on the top inside margin of each page:

.PH ""

.PF""

.EH "'\\\\nP"Revision 3'"

.OH "'Revision 3 "\ \ \\nP'"

9.ll Generalized Top.ef·Pace Processing•

_. This s«T1011 is 1111e11de'd only for users accustomed 10 writing formatter macros.

During header processing. PWBIMM invokes two user-definable macros. One, the .TP macro. is invoked
in the environment (see .ev request in [9]) of the header. the other, .PX, is a user-exit macro that is
inv-oked lwithout arguments) when the normal environment has been restored, and with "no-space"
mode already in effect.

The effective initial definition of .TP (after the first page of a document) is:

.de TP

.sp

.ti \\•(lt

.if e ·ti \\•<le

.if o 'ti \\•(lo

.sp

The string Jr contains the header. the string le contains the even-page header, and the string lo contains
the odd-page header. as defined by the .PH •. EH. and .OH macros, respectively. To obtain more spe
cialized page titles. the user may redefine the . TP macro to cause any desired header processing I 11.5 I.
Note that formatting done within the .TP macro is processed in an environment different from that of
the body.

For example. to obtain a page header that includes three centered lines of data. say. a document's
number. issue date. and revision date. one could define .TP as follows:

.de TP

.sp

.ce 3
777-888-999
lss. 2. AUG 1977
Rev. 7. SEP 1977
.sp

The .PX macro may be used to provide text chat is to appear at the top of each page after the normal
header and that may have tab stops to align it with columns of text in the body of the document.

9. J 3 Generalized Bottom-of-Page Processing

The facilny to permit user-defined processing for the bottom of each page is nor currently available.

JO. TABLE o·r CONTENTS AND COVER SHEET

The Lable of contenLs and the cover sheet for a document are produced by invoking the .TC and .CS
macros. respectively. The appropriate -rBn option (2.4) must also be specified on the command lin~.
These macros should normally appear only once at Lhe end of the document. after the Signature Bloi:k
\6.11.1 l and Notations (6.1 l.2l macros. They may occur in either order.

. 32.

The table of contents is produced at the end of the document because the entire document must be
processed before the table of contents can be generated. Similarly, the cover sheet is often not needed,
and is therefore produced at the end.

10.1 Table of Contents

.TC [sfevelJ [spacing] [tleveJ] [tab) [headl] (head2] [head3] [head4] [head5]

The .TC macro generates a table of contents containing the headings that were saved for the table of
contents as determined by the value of the Cl register {4.4l. Note that -rBl or -rB3 12.41 must also be
specified to the formatter on the command line. The arguments to . TC control the spacing before each
entry, the placement of the associated page number. and additional text on the first page of the table of
contents before the word ''CONTENTS."

Spacing before each entry is controlled by the first two arguments~ headings whose level is less than
or equal to sieve/ wiH have spacing blank lines (halves of a vertical space) before them. Both sieve/ and
spacing default to 1. This means that first-level headings are preceded by one blank line CV2 a vertical
space). Note that sieve/ does not control what levels of heading have been saved~ the saving of headings
is the function of the Cl register {4.41.

The third and fourth arguments control the placement of the page number for each heading. The
page numbers can be justified at the right margin with either blanks or dots (.. leaders") separating the
heading text from the page number, or the page numbers can follow the heading text. For headings
whose !eve! is less than or equal to tlevel (default 2), the page numbers are justified at the right margin.
In this case. the value of tab determines the character used to separate the heading text from the page
number. If tab is 0 (the default value), dots (i.e., leaders) are used~ if tab is greater than 0, spaces are
used. For headings whose level is greater. than tlevel, the page numbers are separated from the heading
text by two spaces (i.e .• they are .. ragged right").

All additional arguments (e.g .• headl, head2, etc.), if any, are horizontally centered on the page. and
precede the actual table of contents itself.

If the .TC macro is invoked with at most four arguments. then the user-exit macro .TX is invoked
(without argumentS) before the word .. CONTENTS" is printed. By defining .TX and invoking .TC
with at most four arguments. the user can specify what needs to be done at the top of the {first) page
of the table of contents. For example, the following input:

.de TX

.ce 2
Special Application
Message Transmission
.sp 2
.in + IOn
Approved: \J' Ji'
.in
.sp

.TC

yields:

Special Application
Message Transmission

Approved:~~~~~~~~~~~~~------~

CONTENTS

• 33.

10.l Co•er Sheet

.CS [pages] [other] [total] {figs] {tbls] [refs]

The .CS macro generates a cover sheet in either the TM or released-pape·r style.17 All of the other
information for the cover sheet is obtained from the data given before·the .MT macro call {6.9}. If the
released-paper style is used, aJl arguments to .CS are ignored. If a memorandum style is used, the .CS
macro generates the .. Cover Sheet for Technical Memorandum." The arguments provide the data that
appears in the lower left comer of the TM cover sheet [2]: the number of pages of text, the number of
other pages, the total number of pages, the number of figures, the number of tabJes, and the number
of references.

11. MISCELLANEOUS FEATURES

11.l Bol~ Italic., and Roman

.B [bold-arg] [previous-f ont-argJ

.I [itaJic-argJ [previous-font-arg]

.R
When called without arguments, .B (or .I) changes the font to bold (or italic) in troff, and initiates
underlining in nroff,18 This condition continues until the occurrence of·a .R, when the regular roman
font is restored. Thus,

.I
here is some text .
• R

yields:

here is some text.

If .B or .I is called with one argument, that argument is printed in the appropriate font (underlined in
nroff). Then the previous font is restored (underlining is turned off in nroff). If two arguments are
given to a .B or .I. the second argument is then concatenated to the first with no intervening space, but
is printed in the previous font (not underlined in nroff). For example:

.I italic
text
.I right -justified

produces:

imlic text right-justified

One can use both bold and italic fonts if one intends to use troff, but the nroff version of the output
does not distinguish between bold and italic. It is probably a good idea to use .I only, unless bold is
truly required. Note that font changes in headings are handled separately {4.2.2.4. l}.

Anyone using a terminal that cannot. underline might wish to insert:

.rm ul

.nn cu

at the beginning of the document to eliminate all underlining.

11 . .2 Justifiadon of Right Margin

.SA [arg]

The .SA macro is used to set right-margin justification for the main body of text. Two justification flags
are used: current and default. .SA 0 sets both flags to no justification, i.e., it acts like the .na request .
• SA 1 is the inverse: it sets both flags to cause justification, just like the .ad request. However, calling

17. But only if -rB2 or -rBJ has been specified on the command line.
18. For ease of explanauon. 1n this secuon { 11.l} D'Offbehavior is described first, the convention of { 1.ll not withstanding.

- 34 -

.SA without an argument causes the current flag to be copied from the default flag. thus performing
either a .na or .ad. depending on what the default is. Initially, both flags are set for no justification in
nroff and for justification in troff.

In general, the request .na can be used to ensure that justification is turned otf. but .SA should be
used to restore justification. rather than the .ad request. In this way, justification or lack thereof for the
remainder of the text is specified by inserting .SA 0 or .SA I once at the beginning of the document.

11.J SCCS Release Identification

The string RE contains tbe SCCS {IO] Release and Level of the current version of PWBIMM. For exam
ple, typing;

This is version \•SRE of the macros.

produces:

This is version 12.2 of the macros.

This information is useful in analyzing suspected bugs in PWB/MM. The easiest way to have this
number appear in your output is to specify -rDl {2.41 on the command line, which causes the string RE
to be output as part of the page header (9.2).

11.4 Two-Column Output

PwBIMM can print two columns on a page:

.2C
text and formatting requests (except another .2C)
.IC

The .2C macro begins two-eolumn processing which continues until a . IC macro is encountered. In
two-<olumn processing. each physical page is thought of as containing two columnar "pages" of equal
(but smaller) "page" width. Page headers and footers are 1101 affected by two--<olumn processing. The
.IC macro does not .. balance" two-eolumn output

11.5 Column Headings for Two-Column Output•

,,,. This section is intended only for users accustomed 10 writing formatter macros.

In two-<olumn output. it is sometimes necessary to have headers over each column, as weil as headers
over the entire page 191. This is accomplished by redefining the .TP macro (9.121 to provide header
lines both for the entire page and for each of the columns. For example:

.de TP

.sp 2

.tJ 'Page \\nP'OVERALL"

.ti "TITLE"

.sp

.nf

.ta 16C 31R 34 SOC 65R
left-center-right-left-center-right
-first column---second column
.ti
.sp 2

(where - stands for the tab character)

The above example will produce two lines of page header text plus two lines of headers over each
column. The tab stops are for a 65-en overall line length.

11 .6 Vertical Spacing

.SP [lines}

There exist several ways of obtaining vertical spacing. all with different effects.

The .sp request spaces the number of lines specified. unless "no space" (.ns) mode is on. in which
case the request is ignored. This mode is typically set at the end of a page header in order to eliminate
spacing by a .sp or .bp request that just happens to occur at the top of a page. This mode can be turned
o./fvia the .rs ('"restore spacing") request.

The .SP macro is used to avoid the accumulation of vertical space by successive macro calls.
Several .SP calls in a row produce not the sum of their arguments. but their maximum~ i.e., the follow·
ing produces only 3 blank lines:

.SP 2

.SP 3

.SP

Many ?WB/MM macros utilize .SP for spacing. For example. ".LE 1" IS.3.2l immediately followed by
".P .. 14. l l produces only a single blank line (lh a vertical space) between the end of the list and the
following paragraph. An omitted argument defaults to one blank line (one vertical space). Unscaled
fractional amounts are permitted~ like .sp •. SP is also inhibited by the .ns request.

11. 7 Skipping Pages

.SK [pages}

The .SK macro skips pages. but retains the usual header and footer processing. If pages is omitted.
null. or 0, .SK skips to the top of the next page unless it is currently at the top of a page, in which case
it does nothing. .SK n skips n pages. That is •. SK always positions the text that follows it at the top of
a page. while .SK 1 always leaves one page that is blank except for the header and footer.

11.8 Setting Point Size and Vertical Spacin1

In rrqff, the, default point size (obtained from the register S (2.41) is 10. w1th a vertical spacing of 12
points (i.e .. 6 lines per inch). The prevailing point size and vertical spacing may be changed by invok·
ing the .S macro:

.S [arg]

If arg is null. the previous point size is restored. If arg is negative, the point size is decremented by the
specified amount. If arg is signed positive, the point size is incremented by the specified amount. and if
arg is unsigned, it is used as the new point size; if arg is greater than 99, the default point size (10} is
restored. Vertical spacing is always two points greater than the point size. 19

12. ERRORS AND DEBUGGING

12.1 Error Terminations

When a macro discovers an error, the following actions occur:

• A break occurs.

• To avoid confusion regarding the location of the error. the formatter output buffer (which may con
tain some text) is printed.

• A short message is printed giving the name of the macro that found the error, the type of error, and
the approximate line number (in the current input file) of the last processed input line. (All the
error messages are explained in Appendix E.)

• Processing terminates. unless the register D 12.41 has a positive value. In the latter case. processing
continues even though the output is guaranteed to be deranged from that point on .

.,,. The error message 1s prrnred by writing 11 directly 10 the user's terminal. If an ourpw .filter. such as
gsi (I), 450(1). or hp(l) is being used ro post·process nroff ourpur, rhe message may be garbled by berng
mterm1xed w/lh rexr held in rhat filter's output buffer.

19. Footnotes l8l are printed 1n a size two po1n1s smaller than the point size of the 'oooy. with an additional "'ertical spacing of
three points between footnotes.

• 36 -

rr If either tbl(l) or eqn(l)/neqn(I), or both are being used. and if the -olist option of the formatter causes
the last page of the document not to be printed. a harmless "broken pipe" message results.

JZ.Z Disappearance of Output

This usually occurs because of an unclosed diversion (e.g., missing .FE or .DE). Fonunately, the mac
ros that use diversions are careful about it, and they check to make sure that illegal nestings do not
occur. If any message is issued about a missing .OE or .FE, the appropriate action is to search back·
wards from the termination point looking for the corresponding .OS, .DF, or .FS.

The following command:

grep -n •·\.{EDFTl [EFNQSJ" tiles •••

prints all the. .OS •. DF, .OE, .FS •• FE •• TS, .~ .EQ, and .EN macros found in files •••• each preceded
by its tile name and the line number in that file. This listing can be used to check for illegal nesting
and/ or omission of these macros.

13. EXTENDING AND MODIFYING THE MACROS •

13.1 Naminc ConHntioas

In this section. the following conventions are used to describe legal names:

n: digit
a: lower-case letter
A: upper-case letter
x: any letter or digit (any alphanumeric character)
s: special character (any non-alphanumeric character)

All other characters are literals (i.e., stand for themselves).

Note that request. macro. and string names are kept by the formatters in a single internal table, so
that there must be no duplication among such names. Number register names are kept in a separate
table.

JJ.1.1 Names Used by Formatters.

requests:

registers:

aa (most common)
an (only one, currently: .c2)

aa (normal)
.x (normal)
.s (only one, currently: .S)
% (page number)

IJ.J.] Names Used by PWBIMM.

macros:

Strings:

registers:

AA (most common, accessible to user)
A (less common, accessible to user)
) x (internal, constant)
>x (internal, dynamic)

AA (most common, accessible to user)
A (less common, accessible to user)
]x (internal, usually allocated to specific functions throughout)
Ix (internal. more dynamic usage)

Aa (most common. accessible to users)
An (common, accessible to user)
A (accessible, set on command line)
:x (mostly internal, rarely accessible, usuaUy dedicated)
;x (internal, dynamic, temporaries)

• 37.

JJ.J.J Names Used by EQNINEQN and TBL. The equation preprocessors. eqn(I) and neqn{l), use
registers and string names of the form nn. The table preprocessor, tbl(I). uses names of the form:

a- a+ al nn #a ## #· "a T& TW

JJ.1.4 User-Definable Names. After the above, what is left for user extensions? To avoid problems.
we suggest using names that consist either of a single lower-case letter. or of a lower-case letter fol
lowed by anything other than a lower-case letter. The following is a sample naming convention:

macros:

strings:

registers

aA
Aa

a
a) {or a]'; or al, etc.)

a
aA

13.l Sample Extensions

I J.2.1 Appe1fdix Headings. The following gives a way of generating and numbering appendices:

.nr Hu 1

.nr a 0

.de aH

.nr a + 1

.nr P 0

.PH •'··Appendix \ \na • \\\ \ \ \ \\nP'*

.SK

.HU "\\SI"

After the above initialization and definition. each call of the form ".aH "title"., begins a new page
(with the page header changed •o ··Appendix a • n") and generates an unnumbered heading of mle.
which, if desired, can be saved for the table of contents. Those who wish Appendix titles to be cen
tered must. in addition, set the register He to 1 (4.2.2.JI.

13.2.l Ha11g1ng Indent with Tabs. The following example illustrates the use of the hanging-indent
feature of variable-item lists (S.3.3.6). First, a user-defined macro is built to accept four arguments that
make up the mark. Each argument is to be separated from the previous one by a tab character. tab set
tings are defined later. Since the first argument may begin with a period or apostrophe. the "\&" is
used so that the formatter will not interpret such a line as a formatter request or macro.2° The "\t" is
translated by the formatter into a tab character. The .. \c" is used to concatenate the line of texr that
follows the macro to the line of text built by the macro. The macro definition and an example of its
use are as follows:

20. The two-character sequence ··\&."" 1s understood by the formatters 10 be .i. ··zero-width"" space. i.e •• it causes no ourpul
characters to appear.

• de aX
.LI
\&\ \Sl\t\ \S2\t\ \$3\t\ \$4\t\c

.ta 9n 18n 27n 36n

.VL 36

.aX .nh oft' \ • no
No hyphenation.
Automatic hyphenation is turned oft'.
Words containing hyphens

• 38 •

(e.g.. mother-in-law) may still be split across lines .
. aX .by on \· no
Hyphenate.
Automatic hyphenation is turned on.
.aX .hc\o c none none no
Hyphenation indicator character is set to "c" or removed.
During text processing the indicator is suppressed
and will not appear in the output.
Prepending the indicator to a word has the effect
of preventing hyphenation of that word.
.LE

(CJ stands for a space)

The resulting output is:

.nh off

• hy on

. he c none

14. CONCLUSION

no

no

none no

No hyphenation. Automatic hyphenation is turned off. Words
containing hyphens (e.g .. mother-in-law) may still be split
across lines.

Hyphenate. Automatic hyphenation is turned on .

Hyphenation indicator character is set to "c" or removed .
During text processing the indicator is suppressed and will not
appear in the output. Prepending the indicator to a word has
the effect of preventing hyphenation of that word.

The following are the qualities that we have tried to emphasize in PWB/MM. in approximate order of
importance:

• Robustness in the face of error-A user need not be an nrofflrroff expert to use these macros. When
the input is incorrect, either the macros attempt to make a reasonable interpretation of the error. or
a message describing the error is produced. We have tried to minimize the possibility that a user
would get cryptic system messages or strange output as a result of simple errors.

• Ea~ of use for simple documents-It is not necessary to write complex sequences of commands to
produce simple documents. Reasonable default values are provided, where at all possible.

• Parameterizauon-There are many different preferences in the area of document styling. Many
parameters are provided so that users can adapt the output to their respective needs over a wide
range of styles.

• Extension by moderately experr users-We have made a strong effort to use mnemonic naming con
ventions and consistent techniques in the construction of the macros. Naming conventions are
given so that a user can add new macros or redefine existing ones, if necessary.

• Dev;ce independence-The most common use of PWB/MM is to print documents on hard-copy type
writer terminals, using the nroff formatter. Tne macr;:>s can be used conveniently with both. l 0- and

- 39 -

12-pitch terminals. In addition, output can be scanned with an appropriate CRT terminal. The mac
ros have been constructed to allow compatibility with era.ff, so that output can be produced both on
typewriter-like terminals and on a phototypesetter.

• Minim1:ation of input-The design of the macros attempts to minimize repetitive typing. For exam
ple, if a user wants to have a blank line after all first- or second-level headings, he or she need only
set a specific parameter once at the beginning of a document, rather than add a blank line after each
such heading.

• Decoupling of input format from output sry/e-There is but one way to prepare the input text, although
the user may obtain a number of output styles by setting a few global flags. For example, the .H
macro is used for all numbered headings, yet the actual output style of these headings may be made
to vary from documen~ to document or, for that matter, within a single document.

Future releases of PWBIMM will provide additional features that are found to be useful. The authors
welcome comments, suggestions, and criticisms of the macros and of this manual.

Acknowledgements. We are indebted to T. A. Dolotta for his continuing guidance during the develop
ment of PWB/MM. We also thank our many users who have provided much valuable feedback, both
about the macros and about this manual. Many of the features of PWB/MM are patterned after similar
features in a number of earlier macro packages, and, in particular, after one implemented by M. E.
Lesk. Finally. because PWBIMM often approaches the limits of what is possible with the text formatters,
during the implementation of PWBIMM we have generated atypical requirements and encountered
unusual problems~ we thank J. F. Ossanna for his willingness to add new features to the formatters and
to invent ways of having the formatters perform unusual but desired actions.

References

[1] Dolotta, T. A., Haight, R. C., and Piskorik, E. M., eds. PWBIUNIX User's Manual-Edition 1.0.
Bell Laboratories, May 1977.

(21 Bell Laboratories, Methods and Systems Department. Office Guide. Unpublished Memoran
dum, Bell Laboratories, April 1972 (as revised).

(3] Kernighan, B. W. UNIX for Beginners. Bell Laboratories, October 1974.

(4) Kernighan. B. W. A Tutorial Introduction to the UNIX Text Editor. Beil Laboratories, October
1974.

[5] Kernighan, B. W. A TROFF Tutorial. Bell Laboratories, August 1976.

[6] Kernighan, B. W., and Cherry, L. L. Typesetting Mathematics-User's Guide (Second Edition).
Bell Laboratories, June 1976.

(7) Scrocca, C. New Graphic Symbols for EQN and NEQN. Bell Laboratories, September 1976.

[8] Smith, D. W., and Piskorik, E. M. Typing Documents with PwBIMM. Bell Laboratories,
October 1977.

(9] Ossanna, J. F. NROFF/TROFF User's Manual. Bell Laboratories, October 1976.

[10} Bonanni, L. E., and Glasser, A. L. Sccs/PWB User's Manual. Bell Laboratories, November
1977.

[11] Lesk, M. Tbt-A Program to Format Tables. Bell Laboratories, September 1977.

• 41 •
- (" !'- .

Appendix A: DEFINITIONS OF LIST MACROS •

,,,. This appendix is intended only for users accustomed to writing formatter macros.

Here are the definitions of the list-initialization macros (5.3.3}:21

.de AL

.if!@\\Sl@@ .if!@\\Sl@l@ .if!@\\Sl@a@ .if!@\\Sl@A@ .if!@\\Sl@l@ .if!@\\Sl@i@ .)O"AL:badarg:\\Sl

.if \\n(.S<3 \l.ie \w@\\S2@-0 .)L \\n(Lin 0 \\n(Lin-\w@\0\0.@u 1 "\\$1"

.el .LB 0\\$2 0 2 1 "\ \$1" \}

.if \\n(.$>2 \{.ie \w@\\$2@- 0 .)L \\n(Lin 0 \\n(Lin-\w@\0\0.@u I "\\Sl" 0 1

.el .LB O\\S2 0 2 1 "\\St" 0 1 \}

.de BL

.nr ;O \ \n(Pi

.if \\n(.S>O .if \w@\\Sl@>O.nr ;0 0\\Sl

.if \\n(.S<2 .LB \\n(;O 0 1 0 \\•(BU

.if \\n(.S> 1 .LB \\n(;O 0 1 0 \\•(BU 0 1

.rr ;O

.de OL

.nr ;0 \ \n(p;

.if \\n(.$>0 .if \w@\\$1@>0 .nr ;O 0\\$1

.if \\n(.S<2 .LB \\n(;O 0 1 0 \(em

.if \\n(.S>l .LB \\n(;O 0 l 0 \(em 0 1

.rr ;O

.de ML

.if !\\n(.$.)0 "ML:missing arg"

.nr ;0 \w@\\$1@u/3u/\\n(.su+ lu\" get size in n's

.if !\\n(.$-1 .LB \\n(;O 0 1 0 "\\$1"

.if \\n(.S-1 .if !\\n<.S-2 .LB 0\\$2 0 1 0 "\\$1"

.if \\n(.S-2 .if !\w@\\$2@ .LB \\n(;O 0 1 0 "\\$1" 0 1

.if \\n(.S-2 .if \w@\\S2@ .LB 0\\$2 0 1 0 "\\$1" 0 1

.de RL

.nr ;O 6

.if \\n(.S>-0 .if \w@\\Sl@>O.nr ;0 0\\$1

.if \\n(.S<2 .LB \\n(;O 0 2 4

.if \\n(.S>l .LB \\n(;O 0 2 4 1 0 1

.rr ;0

.de VL

.if !\\n(.S .)0 "VL:missing arg"

.if !\\n(.S-2 .LB 0\\Sl 0\\$2 0 0

.if \ \n(.$-2 .LB 0\ \SI 0\ \$2 0 0 \& 0 1

Any of these can be redefined to produce different behavior. e.g .. to provide two spaces between the
bullet of a bullet item and its text, redefine .BL as follows before invoking it: 22

.de BL

.LB 3 0 2 0 \\•(BU

21. On this page,<!- represents the BEL character, .JD is1an internal ?WB/MM macro that prints error messages. and .JL 1s
similar to .LB, except that ll ex~ts 11s arguments to be scaled.

22. With this redefinmon •. BL cannot have any arguments.

• 42.

Appendix B: USEll-DEFINED UST STRUCTURES•

,,,. This apprtndiX is intended only for users accustomed to wraing formatter macros.

lf a large document requires complex list structures. it is useful to be able to define the appearance for
each list level only once, instead of having to define it at the beginning of each list. This permits con
sistency of style in a large document. For· example. a generalized list-initialization macro might be
defined in such a way that what it does depends on the list-nesting level list nesting in effect at the time
the macro is caUed. Suppose that levels I through S of lists are to have the f oUowing appearance:

A.

[l}

•
a)

+
The following code defines a macro (.aL) that always begins a new list and determines the type of list
accordin1 to the current list level. To understand it, you should know that the number register :g is
used by the PWB/MM list macros to determine the current list level~ it is 0 if there is no currently active
list. Each call to a list-initialization macro increments :g. and each .LE call decrements it.

.de aL
'\" register g is used as a local temporary to save :g before it is changed below
.nr g \\n(:g
.if \\n1• 0 .AL A \" give me an A •
.if \\ng-1 .LB \\n(Li 0 l 4 \" give me a [1]
.if \\ng• 2 .BL \" give me a bullet
.if \\ng- 3 .LB \\n(u 0 2 2 a \" give me an a)
.if \\ng•4 .ML+\" give me a+

This macro can be used (in conjunction with .LI and .LE) instead of .AL •. RL, .BL •• LB. and .ML.
For example. the followin1 input:

.al

.Ll
first line .
• aL
.Ll
second line .
. LE
.Ll
third line .
• LE

will yield:

A. first line.

[1} second line.

B. third line.

There is another approach to lists that is similar to the .H mechanism. The list-initialization, as well as
the .LI and the .LE macros are all included in a single macro. That macro (called .bL below) requires
an ar1ument to teJI it what level of item is required~ it adjusts the list level by either beginning a new
list or setting the list level back to a previous value, and then issues a .LI macro call to produce the
item:

• 43 • . ~ .
. de bL
.ie \\n(.S .nr g \ \Sl \" if there is an argument. that is the level
.el .nr g \\n(:g \" if no argument, use current level
.if \\ng·\\n(:g> l .)0 "••ILLEGAL SKIPPING OF LEVEL" \" increasing level by more than 1
.if \\ng>\\n(:g \I.al \\ng·l \" if g > :g. begin new list

nr g \ \n(:g\} \" and reset g to current level (.aL changes g)
.if \\n(:1>\\ng .LC \\ng \" if :g > g, prune back to correct level
'\" if :g - g. stay within current list
.Ll \" in aU cases. get out an item

For .bL to work. the previous definition of the .aL macro must be changed to obtain the value of g
from its argument. rather than from :g. Invoking .bL without arguments causes it to stay at the current
list level. The PWBIMM .LC macro (List Oear) removes list descriptions until the level is less than or
equal to that of its argument. For example, the .H macro includes the call ".LC O". If text is to be
resumed at the end of a list. insert the caU ··.Le O" to clear out the lists completely. The example
below illustrates the relatively small amount of input needed by this approach. The input text:

The quick brown fox jumped over the lazy dog's back .
. bl 1
first line .
. bl 2
second line .
. bL 1
third line .
. bl
founh line .
. LC 0
fifth line.

yields:

The quick brown fox jumped over the lazy dog's back.

A. first line.

[l 1 second line.

B. third line.

C. founh line.
fifth line.

Appendix C: SA:~PLE FOOTNOTES

The following example illustrates several foornore styles and both labeled and automatically-numbered foot
notes. The actual input for the immediately following text and for the footnotes at the bottom of this page is
shown on the following page:

With the footnote style set to the nroff default, we process a footnote1 followed by another
one.••••• Using the .FD macro. we changed the footnote style to hyphenate, right margin justification,
indent. and left justify the label. Here is a footnote. 2 and another. t The footnote style is now set,
again via the .FD macro; to no hyphenation. no right margin justification, no indentation, and with the
label left-justified. Here comes the finaJ one. 3

I. This is the first footnote text exam!)le <.FD 10>. This is the default style for 11roff. The right margin is 1101 justified.
Hyphenaiion is 1101 permined. The text is indented. and the automaucally generated label is rtghf-JUSt1fied in the text·indent
S!)8CC.

••••• This is the second footnote text exam!)ie <.FD lOl. This is also the default 11rojfstyle but with a long fooinote label
provided by the user.

2. This is the third footnote example (.FD !). The right margin is justified. the footnote text is 1nden!ed. !he label 1s /e/i
justified in the text·indent S!)8ce. Although not necessarily illustrated by this example. hyphenation 1s permitted. The quick
brown fox jumped over the lazy dog·s back.

t This is the fourth footnote example <.FD I). The style is the same as the third footnote.

3. This is the fifth f00tnote example (.FD 6l. The right margin is 110t justified. hyphenation is 1101 permitted. the footnote text 1s
1101 indented. and the label is placed at the beginning of the first line. The quick brown fox jumped over the lazy dog's back.
~ow is the time for all good men to come to the aid of their country.

. FD 10
With the footnote style set to the
.I nroff
default, we process a footnote\•F
.FS
This is the first footnote text example (.FD 10).
This is the default style for
.I nroff.
The right margin is
.J not
justified.
Hyphenation is
.I not
permitted.

• 45 •

The text is indented, and the automatically generated label is
.I right -justified
in the text-indent space .
. FE
followed by another one.•••••\Cl (Cl stands for a space)
.FS •••••
This is the second footnote text example <.FD 10).
This is also the default
.1 nroff
style but with a long footnote label provided by the user .
. FE
.FD I
Using the .FD macro, we changed the footnote style to hyphenate. right margin justification,
indent. and left justify the label.
Here is a footnote,\•F
.FS
This is the third footnote example (.FD 1).

The right margin is justified. the footnote text is indented. the label is
.I left -justified
in the text-indent space.
Although not necessarily illustrated by this example, hyphenation is permitted.
The quick brown fox jumped over the lazy dog's back .
. FE
and another.\(dg\c
.FS \ (dg
This is the fourth footnote example (.FD I).
The style is the same as the third footnote .
• FE
.FD 6
The footnote style is now set, again via the .FD macro, to no hyphenation, no right margin justificauon.
no indentation. and with the label left-justified.
Here comes the final one.\•F\o
.FS
This is the fifth footnote example (.FD 6).
The right margin is
.I not
justified. hyphenation is
.I not
permitted, the footnote text is
.I not
indented. and the label is placed at the beginning of the first line.
The quick brown fox jumped over the lazy dog's back.
Now is the time for all good men to come to the aid of their country .
. FE

• 46.

Appendix D: SA.~PLE LETTER

,... The nroff and troff outputs corresponding to the input text below are shown on the following pages .

• ND "November l, 1977"
.TL 334455
Out-of-Hours Course Description
.AU "D. W. Stevenson" DWS PY 9876 5432 lX-123
.MT 0
.OS
J. ~· Jones:
.DE
.P
Ptease use the following description for the Out-of-Hours course
"Document Preparation on the PWB/UNIX•
.FS •
UNIX is a Trademark of Bell Laboratories .
. FE
time-sharing system~:
.P
The course is intended for clerks, typists. and others
who intend to use the PWB/UNIX system
for preparing documentation.
The course will cover such topics as:
.VL 18
.LI Environment:
utilizing a time-sharing computer system;
accessing the system;
using appropriate output terminals .
• LI Files:
how text is stored on the system;
directories;
manipulating files .
. LI "Text editing:"
how to enter text so that subsequent revisions are easier to make;
how to use the editing system to
add, deiete, and move lines of text;
how to make corrections .
. LI "Text processing:"
basic concepts;
use of general-purpose formatting packages .
. LI "Other facilities:"
additional capabilities useful to the typist such as the
.I "typo, spell, di.ff,"
and
.I grep
commands and a desk-calculator package .
. LE
.SG jrm
.NS
S. P. Lename
H. O. Del
M. Hill
.NE

• 41 •

· subject: Out-of-Hours Course Description
Case: 334455

J. M. Jones:'.

Bell Laboratories

date: November 1, 1977

from: D. W. Stevenson
PY 9876
1X-123 x5432

Please use the following description for the Out-of-Hours course
"Document Preparation on the PWB/UN!X• time-sharing system":

The course is intended for clerks, typists, and others who
intend to use the PWB/UNIX system for preparing documentation.
The course will cover such topics as:

Environment: utilizing a time-sharing computer system;
accessing the system; using appropriate output
terminals.

Files: how text is stored on the system; directories;
manipulating files.

Text editing: how to enter text so that subsequent revisions
are easier to make; how to use the editing sys
tem to add, delete, and move lines of text; how
to make corrections.

Text processing: basic ~oncepts; use of general-purpose format
ting packages.

Other facilities: additional capabilities useful to the typist
such as the ~' spell, .d.i..tt, and ~ com
mands and a desk-calculator package.

PY-9876-DWS-Jrm

Copy to
S. P. Lename
H. 0-. Del
M. Hill

* UNIX is a Trademark of Bell Laboratories.

O. W. Stevenson

@
Bell Laboratories

subject: Out-of·Hours Course Description
Case: 334455

date: November 1. 1977

J.M. Jones:

from: D. W. Stevenson
PY 9876
1X·ll3 x5432

Please use the following description for the Out-of-Hours course "Document Preparation on the
PWB/UNIX• time-sharing system":

The course is intended for clerks. typists, and others who intend to use the PWB/UNtX system for
preparing documentation. The course will cover such topics as:

Environment:

Files:

Text editing:

Text processing:

Other facilities:

PY -9876-DWS-jrm

Copy to
S. P. Lename
H. 0. Del
M. Hill

utilizing a time-sharing computer system; accessing the system~ using appropriate
output terminals.

how text is stored on the system: directories: manipulating files.

how to enter text so that subsequent revisions are easier to make: how to use the
editing system to add, delete, and move lines of text: how to make corrections.

basic concepts: use of general-purpose formatting packages.

additionaJ capabilities useful to the typist such as the rypo, sjNI/. dijf. and grep com
mands and a desk-calculator package.

D. W. Stevenson

• UNIX is a Trademark of Bell Laboratories.

• so -

Appendix E: ERROR MESSAGES

I. PWB/MM Error Messqes

Each PWBIMM error message consists of a standard part followed by a variable part. The standard part is
of the form:

ERROR:input line n:

The variable part consists of a descriptive message, usually beginning with a macro name. The variable
parts are listed below in alphabetical order by macro name, each with a more complete explanation:ZJ

Check TL, AU, AS, AE.,~ sequence The proper sequence of macros for the beginning of a
memorandum is shown in 16.9}. Something has disturbed this
order.

AL:bad arg:value The argument to the .AL macro is not one of 1, A. a, I. or i.
The incorrect argument is shown as value.

CS:cover sheet too long The text of the cover sheet is too long to fit on one page. The
abstract should be reduced or the indent of the abstract should
be decreased 16.41.

DS:too many displays More than 26 floating displays are active at once. i.e.. have
been accumulated but not yet output.

DS:missing FE A display starts inside a footnote. The likely cause is the
omission (or misspelling) of a .FE to end a previous footnote.

DS:missing DE .OS or .OF occurs within a display, i.e., a .DE has been omit
ted or mistyped.

DE:no OS or OF active .DE has been encountered but there has not been a previous
.OS or .OF to match it.

FE:no FS .FE has been encountered with no previous .FS to match it. · .
FS:illegal inside TL or AS .FS-.FE pair cannot be used inside the memorandum title or

abstract.

FS:missing FE A previous .FS was not matched by a closing .FE. i.e .• an
attempt is being made to begin a footnote inside another one.

FS:missing DE A footnote starts inside a display, i.e .• a .DS or .DF occurs
without a matching .DE.

H:bad arg:value The first argument to .H must be a single digit from 1 to 7.
but valu~ has been supplied instead.

H:missing FE A heading macro (.Hor .HU) occurs inside a footnote.

H:missing DE A heading macro (.H or .HU) occurs inside a display.

H:missing arg .H needs at least l argument.

HU:missing arg .HU needs !_argument.

LB:missing arg(s) .LB requires at least 4 arguments.

LB:too many nested listS Another list was started when there were already 6 active lists.

LE:mismatched .LE has occurred without a previous .LB or other list
initialization macro {S.3.31. Although this is not a fatal error.
the message is issued because there almost certainly exists
some problem in the preceding text.

2J. This liSl is set up by ··.LB 37 O 2 0 .. [5.41.

- 51 -

Ll:no lists active .LI oo:urs without a preceding list-initialization macro. The
latter has probably been omitted, or has been separated from
the .LI by an intervening .Hor .HU.

ML:missing arg .ML requires at least 1 argument.

ND:rnissing arg .ND requires 1 argument.

SA:bad arg:vaJue The argument to .SA (if any) must be either 0 or 1. The
incorrect argument is shown as value.

SG:missing DE .SG occurs inside a display.

SG:missing FE .SG occurs inside a footnote.

SG:no authors .SG occurs without any previous .AU macro(s).

VL:missing arg .VL requires at least 1 argument.

II. Formatter Error Messages

Most messages issued by the formatter are self-explanatory. Those error messages over which the user
has (some) control are listed below. Any other error messages should be reported to the local system
support group.

'"Cannot open filename" is issued if one of the files in the list of files to be processed cannot be
opened. If the filename is of the form /usr/lib/tmac.name, then the option -mname specifies an
incorrect name. If the filename is of the form /usr/lib/term/ name. then the nroff option -T name
is incorrect. If the filename is of the form /usr/lib/font/ XX", then the font specified in a formatter
.fp request is incorrect.

"Exception word list full" indicates that too many words have been specified in the hyphenation excep
tion list (via .hw requests).

"Line overflow" means that the output line being generated was too long for the formatter's line
buffer. The excess was discarded. See the "Word overflow" message beiow.

"Out of temp file space" means that additional temporary space for macro definitions. diversions, etc.
cannot be allocated. This message often occurs because of unclosed diversions (missing .FE or
.DE), unclosed macro definitions (e.g., missing " . .''), or a huge table of contents .

.. Too many page numbers" is issued when the list of pages specified to the formatter -o option is too
long.

"Too many string/macro names" is issued when the pool of string and macro names is full. Unneeded
strings and macros can be deleted using the .rm request.

"Too many number registers" means that the pool of number register names is full. Unneeded regis
ters can be deleted by using the .rr request.

"Word overflow" means that a word being generated exceeded the formatter's word buffer. The
excess characters were discarded. A likely cause for this and for the ''Line overflow" message
above are very long lines or words generated through the misuse of \c or of the .cu request, or
very long equations produced by eqn{l)/ neqn(I).

•

- 52 -

Appendix F: SUMMARY OF MACROS. STRINGS. AND NUMBER REGISTERS

I. Macros

The following is an alphabetical list of macro names used by PWBIMM. The first line of ~h item gives
the name of the macro, a brief description, and a reference to the section in which the macro is
described. The second line gives a prototype call of the macro.

Macros marked with an asterisk are not. in general, invoked directly by the user. Rather, they are
"user exits" called from inside header, footer. or other macros.

IC One-column processing 111.4}
.IC .

2C Two-column processing { 11.41
.2c

AE Abstract end !6.4}
.AE

AF Alternate format of "Subject/Date/From" block {6.7.21
.AF [company-name)

AL Automatically-incremented list start IS.3.3. l}
.AL [typel [text-indent] [l]

AS Abstract start (6.4}
.AS [arg] {indent)

AU Author information {6.2)
.AU name [initials] [locJ [dept] [ext] [room} [arg] [arg} {argl

B Bold (underline in nroff) 11 1. l }
.B [bold-argj [previous-font-arg}

BL BUJlet list start {5.3 .. 121
.BL [text-indent) {I}

CS Cover sheet !10.21
.CS [pages} [otherl [tota!} {figs] {tblsl [refs]

DE Display end {7.1}
.DE

DF Display floating start (7.2)
.DF [f ormatl [fill)

DL Dash list start !5.3.3.3}
.DL {text-indent] [l]

DS Display static start {7.1 l
.DS (format] (fill]

EC Equation caption (7.S}
.EC [titlel [override) [flag]

EF Even-page footer (9.6}
.EF [argJ

EH Even-page header {9.3)
.EH [arg]

EN End equation display {7.4)
.EN

EQ Equation display start {7.4)
.EQ

FD Footnote default format {8.3 I
.FD [arg] (1)

FE Footnote end 18.2}
.FE

FG Figure title {7.S)
.FG [title) [override] (flag]

FS Footnote start {8.2)
.FS [label]

H Heading-numbered (4.2}
.H level [heading-text]

HC Hyphenation character 13 .4}
.HC [hyphenation-indicator]

• 53.

HM Heading mark style (Arabic or Roman numerals. or letters) 14.2.2.S}
.HM [argl] .•• [arg7]

HU Heading-unnumbered {4.3}
.HU heading-text

HX • Heading user exit X (before printing heading) {4.6}
.HX dtevel rlevel heading-text

HZ• Heading user exit Z (after printing heading) {4.6)
.HZ dlevel rlevel heading-text

Italic (underline in nroff) { 11. Il
.I [itaiic-arg] [previous-font-arg] ·

LB List begin {5.41
.LB text-indent mark-indent pad type [mark] [LJ-space] [LB-space)

LC List-status clear {Appendix Bl
.LC [list-level)

LE List end {S.3.21
.LE [1]

LI List item IS.3.1}
.LI [mark] [l]

ML Marked list start {5.3.3.4)
.ML mark [text-indent] [1]

MT Memorandum type {6.61
.MT [type] (ll

ND New date {6.7.l}
.ND new-date

NE Notation end I 6.11.2}
.NE

NS Notation start {6.11.21
.NS [arg]

OF Odd-page footer {9.7}
.OF (arg}

OH Odd-page header {9.4}
.OH [arg]

OK Other keywords for TM cover sheet {6.SI
.OK [keyword] ..•

P Paragraph (4.1)
.P [typel

PF Page footer 19.5)
.PF {arg]

PH Page header 19.2)
.PH [ara.)

PX • Page-header user exit {9.121
.PX

R Return to regular (roman) font (end underlining in nroff) {11.1}
.R

Rl Reference list start !S.3.3.5}
.RL [text-indent] [1}

S Set troff point size and vertical spacing I 11.8 l
.s [argj

SA Set adjustment (right-margin justification) default { 11.21
.SA (argj

SG Signature line {6.11.1)
.SG [argj (1)

SK Skip pages { 11. 7 I
.SK [pages)

SP Space-vertically 111.6}
.SP [lines)

TB Table title {7.5)
.TB [title) {override! [flag]

TC Table of contents 110.1}
.TC {steveil [spacing] [tlevel] [tabl [headl] [head2J [headJ) [head4) [headS]

TE Table end {7.J}
.TE

TL Title of memorandum {6.1}
• TL [charging-case) [filing-case]

TM Technical Memorandum number(s) (6.3}
• TM [number) ..•

TP • Top-of-page macro {9.12)
.TP

TS Table start (7 .JI
.TS

TX• Table-of-contents user exit !IO.I)
.TX

VL Variable-item list start {S.3.3.6}
.VL text-indent [mark-indent] [1]

11. Strints

The following is an alphabetical list of string names used by PWBIMM. gjving for each a brief descrip·
· tion. section reference. and initial (default) value(s). See {1.4} for notes on setting and referencing

strings.

BU BuUet {3.7}
nroff:e
rroff: •

F Footnote numberer {8.1}
nroff: \u\ \n+ { :p\d
troff: \ v' -.4m'\s-3\ \n+ (:p\sO\ v' .4m'

· ac •

OT Date (current date, unless overridden) {6.7.1}
Month day, year (e.g., October 31, 1977)

HF Heading font list, up to seven codes for heading levels 1 through 7 {4.2.2.4.1)
3 3 2 2 2 2 2 (all underlined in nroff. and B B I I I I I in rroff)

RE SCCS Release ahd Level of PWB/MM { 11.3 J
Release.Level (e.g .• 12.2)

Note that if the released-paper style is used, then. in addition to the above strings, certain BTL location
codes are defined as strings; these location strings are needed only until the .MT macro is called {6.8}.

III. Number Registers

This section provides an alphabetical list of register names. giving for each a brief description, section
reference, initial (default) value, and the legal range of values (where [m:n) means values from m to n
inclusive).

Any register having a single-character name can be set from the command line. An asterisk
attached to a register name indicates that that register can be set only from the command line or before
the PWB/MM macro definitions are read by the formatter {2.4. 2.S}. See (1.4} for notes on setting and
referencing registers.

A • Has the effect of invoking the .AF macro without· an argument {2.4}
0, (0: I}

Au Inhibits printing of author's location. department, room. and extension in the .. from" portion
of a memorandum 16.2}
1. [0:11

B • Defines table-of-contents and/or cover·sheet macros {2.41
o. {0:3)

C • Copy type (Original, DRAFT. etc.) {2.4}
0 (Original). [0:3]

Cl Contents level (i.e •• level of headings saved for table of contentS) {4.4}
2. (0: 71

D • Debug flag {2.41
0, (0:11

Os Static display pre· and post-space (7.1)
1. (0: 11

' Ee Equation counter. used by .EC macro (7.S}
0, (0: ?l. incremented by 1 for each .EC call.

Ej Page-ejection flag for headings (4.2.2.1 l
0 (no eject). [0:7}

Fg Figure counter, used by .FG macro (7.5}
0, [O:?], incremented by 1 for each .FG call.

Fs Footnote space (i.e., spacing between footnotes) (8.4}
1. {0:?]

Hl-H7 Heading counters for levels 1·7 {4.2.2.5}
O, {O:?J, incremented by .H of correspanding level or .HU if at level gjven by register Hu.
H2-H7 are reset to 0 by any heading at a lower-numbered level.

Hb Heading break level (after .H and .HU) {4.2.2.2}
2. [0:7]

He Heading centering level for.Hand .HU {4.2.2.Jl
0 (no centered headings), [0:7]

Hi Heading temporary indent (after.Hand .HU) {4.2.2.2}
1 (indent as par71J1'8Ph), (0:21 -

Hs Heading space level (after.Hand .HU) (4.2.2.21
2 (space only after .H 1 and .H 2), {0:7]

Ht Heading type (for .H: single or concatenated numbers) (4.2.2 . .S}
0 (concatenated numbers: 1.1.1. etc.), [0:1]

Hu Heading level for unnumbered heading (.HU) {4.JI
2 (.HU at the same level as .H 2), {0:7]

Hy Hyphenation control for body of document (3.41
1 (automatic hyphenation on), [0: 1]

L • Length of page {2.4}
66. [20:?) (lli. [2i:?J in rrojf)24

Li List indent 15.J.J.1 I
s. [0:?)

N • Numbering style {2.4}
o. [0:3)

0 • Offset of page f 2.4)
O. [0:?1 (0.Si. [Oi:?] in rrojf)24

P Page number, managed by PWB/MM {2.4)
0, [O:?J

Pi Paragraph indent {4. l I
5. [0:?)

Pt Paragraph type {4.1 l
2 (paragraphs indented except after headings, lists, and displays). [0:2)

S • Troff default point size {2.4}
10. [6:361

Si Standard indent for displays (7.1}
s. [0:?}

T • Type of nroff output device {2.41
0, [0:21

Tb Table counter 17.51
0. [O:?J, incremented by 1 for each .TB call.

U • Underlining style (nroff'] for .H and .HU {2.4}
0 (continuous underline when possible), {O: 1]

W • Width of page (line and title length) {2.41
65. [10:1365] (6.Si, [2i:7.54i] in trojf)24

24 For 11rotf; these values are unsca/"1 numbers representing lines or character posiuons; for ll'OJ/. these values must be uYJIM.

T.3L
@
Typing Documents with PwBIMM

D. W. Smith and.E. M. Piskorik

Bell Laboratories
Piscataway. New Jersey 08854

This guide shows several examples of documents
prepared with PW'BIMM, a set of general-purpose for
matting macros used with the PWBIUNIX• text for
matters nroff and troff (as well as with the eqn/neqn
and tbl programs) to produce memoranda. letters.
books. manuals. etc. Ref erenc:es to manuaLs for
these programs are given on p. 16.

In the examples. input is shown in this
Helvetica sans serif tent

The resulting output is shown (boxed) in this
Times Roman font.

Substitutable arguments are shown in this
Times Roman 114/ic fonL

Square brackets ({ ... /) indicate that the
enclosed substitutable argument is optional

All output shown in the examples was done by rrojf;
nroff output would look somewhat dift'erenLt

Contents
Paragraphs and Headings• 2
Paragraph and Heading Parameters 2
Lists and List Types 4
Nested Lists . S
Italic. Bold. and Underlining S
Displays • 6
Footnotes . 6
Simple Letter-Example 7
Technical Memorandum-Example 9
Memorandum-Style Macros 11
Two-Column Output 13
Equations . 14
Tables 1 S
How to Get Output 16
References 16

• UNIX IS a Trademark or Bell l.aboratories.
1' For example. what we call a ··blank line .. is a blank line

in nroff. but 1s 11~ of a .,.ertical space in rrojf. wnile head·
ings that are underlined in 11roffare either bold or 11alte
1n rroff,

October 19 77

2
Paragraphs and Headings

.,. The output for the foflowmg is shown on p. J .
. H 1 "PA~AGRAPHS ANO HEAOINGS·
This section describes the types of para;raof1a
and the kinds of !'leadings that are availal:1le.
.H 2 Para;raol'ls
Para;rapns are specified by the .P mac:o.
Usually, they are indented exceot
after headings, lists. and displays.
The numbe1 r~ster pt Is UNd
to d'lan;e the para;rac:in style.
.H 2 Headin;s.
.H 3 "Numbered Headings.·
There are seven levels of numbered headings.
l.evef 1 is the ITIOllt major or hlQnect:
leV4M 7, tl'le lowest.
.P
Headings are soectfied wittl the .H macro. wno.e
first argument is the le• °' heeding { 1 tl'lrouQh n .
.P
The aooearance of heedin;s veries acccrdlng to
the 111'194.
On outout. le.,.C 1-headin;s are preceded by two
blank lines; all others are preceded by one blank line.
Lavel 1 and level 2 headings produce stand ... lone
headings, underlined in
.J nroff
and bold in
J troff.
Levels 3 through 1 ant ruiMn and underlined (er Italic:).
.H 3 "Unnumbered' Headings.•
The macro .HU ia a special cue
of .J;. in that no heedini; number is printed.
Ead'I .HU ,,eadin; has the level given by
the r9gtster Hu. ~oa• initiaJ vetue ill 2.
UsuaJly, the value ot that reQister ia
aet to make unnumbered headings (if any) occur
at the lowest headin; levei in a dOc:ument.

Paragraph and Heading Parameters
There are many parameters that can change the out·
put appearance of headings and paragraphs. Given
beJow are some of these parameters. their default
values, and their meanings (level 1 is the most ma1or
or highnl. while level 7 is the /owsr): ·

.nr Pl 5 paragraph-indent in charac:ters (or ens).

.tu Pt O never indent paragraphs .

.nr Pt 1 aJways indent paragraphs .

.nr Pt 2 indent paragraphs except after
headings, lists, and displays (default) .

. ds HF 3 3 2 2 2 2 2
font specification for each
of the 7 heading levels:

1 indicates roman,
2 indicates italic:,
3 indicates bold.

3

·I·

1. PARAGRAPHS AND HEADINOS
This secuon describes the types o(l'llfllJ"IPhs and
the kinds of headings that are avtilabie.

1.J Parqrapbs
Para1raphs are specified by the :P macro. Usu
aJly. they are indented except after headings.
lists. and displays. The number register Pt is
used 10 chanae the paragraph style.

1.l Headiop

1.21 Num~ Headmg1 There are seven levels
of numbered headings. Level I is the most
major or h1&hesc level 7, the lowest.

Headings are spec:i.fied with the .H macro,
whose first argument is the Jovel of heading (1
through 7).

The appearance of headings varies aa:ording
to the level. On output, level l headings are pre
ceded by two blank lin~ all others are preceded
by one blank line. Level l and level 2 headings
produce stand-alone headings, underlined in nroff
and bold in rroff. Levels 3 tbrougb 7 are run.fn
and underlined (or ilalic}.

1.1.1 Unnumbt!rtd Hnd1ngs. The macro .HU is a
.special case of .H. in that no heading number is
printed. Each .Ht! he\lding has the levd 11ven b)·
the register Hu. whose initial value is 2. Usually,
the ~-alue of that register is set to make unnum
bered headings (if any) occ:Ur at the lowest had·
ing level in a documcnL

.HM 1 1 1 1 1 1 1
.. marking" sryle for each heading level;
the above yields an all-numeric
marking Style. Available St)'ies are:
l, 0001, A. a, I, and i.

.nr Hb 2 lowest heading level that is stand-alone
(i. e., nor run-in with the following text).

.nr He 0 lowest heading level that is centered.

.nr Hs 2 lowest heading level after which
there is a blank line.

.nr Ht 0 heading marks will be concatenated.

.nr Hu 2 unnumbered headings (.HU> are
equivalen1 to numbered headings at this
level for spacing, font, and counting.

.nr Cl 2 lowest heading level to be saved for
the table of contents.

.nr Ej 0 lowest heading level that forces the
St.art of a new page.

~/aulr Headmg Sryle
to get: type:

o. HEADING .H 1 •HEADING"

Text .•• Text ...

1LD HOlllliac .H 2 •Heading•
Text ... Text ...

1i.n..11 Heading. TextH 3 •Heading.•
Text ...

Lists and List Types
All lists have a list begirr maao, one or more list
i•m.s-e.ach consisting of a .LI macro followed by
tile list item te7-and the list end macro .LE. That is,
lists are typed like this:

list begin mocro
.LI
list illtm 1l!XI • • •
.u
list illtm ro:r • • •

where the list begin macro is one of the following:
.Al. {type) /indent) automatic list

.BL fmdent]

.OL {mdent}

.ML mark {indent)

.RL {indent]

.VL indent

(lJl1W is l, A, a, I, or i;
if omitted, defauits to l)
bullet list
dash list
marked list
(mark is tile desired mark)
reference list
variable list

inderr1 is the number of characters of indentation
(from the current indent) at which the list is to
start; if it is optional and omitted, the default inden
tlltion for the given list Style is used; mark will
appear to the left of the indentation.

rr TM output for tM following is shown on p. 5.
.AL,
.ll
Pencllpusher, '~ and Hardwi~. X.
A New Kind of Set Screw.
.I ·Proc. IEEE"
.e 1s
(19761, 23541.
.u
Nails. H~ and Irons, Ft
Fasteners for Printed Circuit Boerm.
.l "Proc. ASMc
.e i23
(1914), 23-24.
.L.E

s
J. Pencilpusher. L. and Hardwired. X. A New -

Kind of Set Screw. Proc. IEEE 75 (1976).
235-41.

2. Nails. H- and Irons. R. Futeners for
Pnnted Circuit , Boards. Proc. ASME 123
{1974). 23-24. .

Nested Lists
Thia is ordinary text to snow
the margins ot the page.
.AL 1
.u
First-level item .
. AL a
.u
Second-level item.
.LI
Another second-I~ item, but
somewl'lat longer .
. 1.E
.u
Retum to previous list (and to previous value
ot indentation) at this !)Clint.
. LI
Another line.
.1.E
.P
Now we're out o1 the liats and at tl'I• margin ttlat
existed at the befajnning ot this example.

This is ordinary text to show the marsins of the
page.

1. First-level item.

a. Second-level item.

b. Another second-level item. but sorne
wtw longer.

2. Retum to previous list (and to previous
value of indentation) at this point.

J. Another line.

Now we"re out of the lists and at the margin that
existed at the beginning of this example.

Italic, Bold, and Underlining
In the examples on pp. 4 and 7, the macros .I. .B,
and .R are used to change to, respeaively, the italic.
bold, and roman fonts in troff, In nroff. both .I and
. B cause underlining until the oa:urrence of .R.
which turns it off. A single argument given to either
.I or .B results in that argument being underlined by
nroff, or printed in the corresponding font by troff.

6
Displays

Displays are blocks of text that are to be kept
together-not split across pages. A static display
(.OS> appears· in the same relative posilion in the
output text as it does in the input text: this may
result in extra white space at the bottom of a page if
a static display is too big to fit there. A tloaung
display (.DF), on the other hand. will "float'"
through the input text to the top of the next page if
there is not enough room for it on the current page;
thus. the text that follows a tloating display in the
input may prtt~ it in the output. Displays can be
positioned at the left margin, indented. or centered.

.DS {format/ {fill/ .OF [/ormarl {fill/
rm ... 1m . . ·.
.DE .DE

where format and Jill have the following meanings:

format fiJJ

Code Meamng I Code Meanmg .. no indent .. no fill
0 no indent 0 no fill
1 indent 1 fill
2 center

Highland Av.nue. Mountain Station,
Soutl'I Qr9nge, MaQlewood. Mfflbum. Short Hills;
.DS 1
and now
for something
comQlete4y dlffeNnt
.OE
Summit. Qlatham. Madison.
Convent Station, Momstown. Mew P'roYldence.
Murray Hiii, Bertceley Hlli;ttts.

I

Highland Avenue. Mountain Station. South
Orangc. Maplewood. Millburn. Short Hills;

and now
for something
coml)letely different

Summit. Chatham. Madison. Convent Stauon.
Morristown. New Providenc:. Murray Hill.
Berkeley Heights.

Footnotes
Two styles of footnote marking are shown on p. 7 .
In the first, the asterisk is the mark placed on the
footnote and the following .FS macro call. while in

the second. a number is au1omat1col~r generated to

mark the footnote. The macros .FS and .FE ar<!
used to delimit the footnote text that is to appear at
the bottom of the page.

7
Among "'9 most imPQrtant occuoants
ol the workbench are the long.nosed otiers.
Without this basic tool.•
.FS •
1ia tnt attown by Ti9tr & t.eooan:1 t191s>.
.FE
few aeaembties could be completed.
They may lack the oooular\•F
.FS
Ac=rcling to Panther & Uon (1977) .
. FE
aopeal of the atedQehemmer ...

Among the most 1mPortan1 occupants of the
workbench ·are the loft&·nosed pliers. Without
this basic tool." few assemblies could be com·
pleted. The)' ma)· lack the popular1 appeal of the
sledgehammer •.•

• As ftm shown by Tiacr &r. J.eooara <19751.
I. Aa:ord1n110 Panther&: Lion I 19171.

Simple Letter-Example
r Tlrr ourpur fOI' tM .following is shown on p. 8.

• nr Pt O
.NO "May 1, 197r
.TL
PW81MM Class
.AU "J. J. Jones" JJ.J PY 9999 5001 1Q.100
.MT ••
.DS
To All Students:
.DE
.P
There will be a ctass on the document preoaration
fecilities of PWB/MM on November 15· 18.
This class lasts for 4 nalf-day (moming) sessions,
Mch consisting of a lecture
and oractice exercises on the system •
. P
The meeting rooms for the ctan are:
.OS 1
.. ta 1 Sn (n represents character posiuonsl
Monday-40·502 <-indicates a tab)
Tuesday-40-502
WedMSday-29·639
Thursday-2C-041 .
.DE
.P
Ptease read the following before attending class:
.DL
.LI
.I "UNIX for Beginners:
Sections I and II .
.u
.I
A Tutorial Introduction to tl'le UNIX Text Editor .
. R
.l.E

(mpur aample contmued on t/ul nf!XI page}

8

lell Labon&ories

subject: PWB/MM Class date: May 1, 1977

from: J. J. Jones

To All Students: •

PY 9999
lQ-100 xSOOl

There will be a class on lhe document preparalion
facilities of l'WB/MM on November 15·18. Thr~
class laslS for 4 half-da}· (momingl sessions. eac:h
consisting of a lec:ture and pracuc:e exercises on
the system.
The meetin& rooms for the ctass are:

Monda,· 40·502
Tuescla)· 40-502
Wednesday 28-639
Thursaay 2C-641.

Pleaw read the following before auending class:
- UNIX for ~111t1m. Sections I and II.
- A T1110nal lmrod11t·1w11 10 thr UNIX Ttxr Ed11or.
These can be obtaJned from the Computing
Information Librar)· .

PY ·9999-JJJ·11e
Copy to
G. H. Huru
S. P. LeNamc

J. J. Jones

(input example contmuedfrom the P""'o"s pa1fe)
.P
These can be obtained from tne ComQuting
ll'lformation Ubrary .
• SGae
.NS
G. H. Hurtz
s. P. L.eName
.NE

9
Technical Memorandum-Example

.,,,. The outpUt for the following is shown on pp. 10-12 •
. nr Pt 1
.NO •June 29, 191r
.TL 12345 666666
On Constructing a Taate ot All
Even Prime Numt:)ec'S

.AU "S. P. l..eName· SPI. PY 9999 4000 1Z·123

.AU "G. H. Hurtz" GHH PY i999 -4001 12-121

.TM 76543210

.AS

.P
This is an abstract for a technical IMmOral'ldum.
The abstract -Mii ·~ on the CG¥er
sheet and on the first paQe
.I unless
the macro .AS has an argument of 1, In which case
the abstract -MU be printed only on the cover sheet.
The TM number acpears on the cover atMet
and on tJ'le first paoe.
-Ottler Keywords .. aQPUr only on UM cover sneet.
.P
The abstract may ecnaiat of one or more para;raQhs;
It must flt on the COV4lt sheet.
.>.£ .
.OK "Prime Numbers" E'Mft
.MT
.H 1 "INTROCUCTORY MATERtAL"
The first line o1 the body of the memorandum
immediately follows the IMCtO call for
the heedino (.H).
Alternately, lower-18"1ef heading macros may fcCIOw it.
u well as macros for llsta, para;racna. and .a on.
A brief exampie of a list folows:
.AL A
.u
This is the first item in an alcnabetical
list in the body of this memoranoum.
.u
This is the second !tern In the list.
.AL 1
.u
This is the first item in a (numCeredJ sub-list.
. u
This is the second Item in that suo-list.
.L..E
. 1..E
.P
This is the second paragracl'I under the first heading.
In addition to alcnabetized and numbered lists, there
are bullet fists, dash lists. variable lists. etc.
.H 2 "First Second-Lave! Heading•
This is the fil'$t paragraQl'I under a
second-level heading.
Notice how that heading is numbered and
where the heading and text are ?rinted.
.H 1 ·seCOND FIRST-LEVEL HEADING"
This is the first paragraph under the
second first-level heading of the memorandum.

(input example continued on rhe no:r page)

•

10

@
lell l.aboruori•

ma,ea: 0a CoastnactiDI I dale: Jue 29, 1'i7
Table o< All !....n
Prime Phamo.rs f.-: S. P lAName
Cue: 1234S PY 9999
F'tle: """" lZ· 123 a..000

G.H.H11ru
PY 9999
1Z·121 &..001

TM: 7U43210

Tills is 111 &Ollncl for 1 llldtn1cal
memonndlUn. The allstncl will ~ on
lbe coYe1 m- mc:I on Ole fim PICC 111*:rs
die l'llll:l'O AS hu 111 lrllmlel'll ol I • in
wlticll cue me abstnl:t will be pnnlad only
on lbe cover sheet. Tbc TM numeer ~
on the cover stieet and on the lint ~
'"Oilier ~ .. qipar only on die cower

The abslnl:r may consist at acte or man i-ncra• ii must 1!z QG d\c ~ JiloeL

MEMOIUNDUM FOR nu

1. IMTl.ODUC'TOU' MATDIAI.

Tbc am liae at the body cl me tncTTIOl'alldum
immedi1lCly follows Ille mco ca.II for llle hcad1ni LHl.
Alwnateiy. laws·leYd hadinc nw:rcs may folloW

(ilfput ~mple conr;rrued from w prt!Vious page)
.HU REFERENCCS
.RL
.u
Pendlpusher. I.. and Hardwired, X.
A New Kind of Set Screw .
.I 1'roc. IEEE"
.s 75
(1976), 235-41 .
.u
Nalls, H .. and Irons. Ft
Fastenen for Printed Circuit Boards.
.I "Pree. ASMc
.s 123
(197 41, 23-24.
.1..E
.SG rtg
.NS 3
.NS 2
G. a Brown
C. P. Jones
J. J. Smtth
.NE
.cs 2 1 3 0 0 2

11
·2·

ii, u weU IS llllCfOS for lms.,-. llld so on. A
bncf eumpte of a hSl follows: ·

A. This is tbe finl i&em in an lipAaOettelt list in Ule
body al tbis memorandum.

a. This is tbe second itcm in tbe list.
I. Tilts is lhe ftm item in• (numbered> su~isL
l. This IS tbe second item in !bat suO.liSL

nus is tbe second Jlllll1ltlft under tbe finl beldina.
In lddiuon to alpl\abeuucl and numbered llSU, IMrc are
bullet lists. dlSft lisu. Vll'laole lim. etc.

u Finl Secoad-1.ewi Heediaa
This is tbe ftrst puqraph under a second4evel head·

'"" Notice how tllat badin1 is numi:lenld and wf\ere
Ule belclina and text arc pnnlld.

1 SICOND PtlST·UVIU. HIADING
ThtS is tbe ftn1 parqrapti llllder tbe second ftrst-lewl

beadina of the memorandum.
UJIUD4C!.S
f IJ Pencilpusber. I .. and Hardwired. X. A New Kind of

Sc& Screw. Pr«. IEEE?S (1976). 23$-41.
121 Nails. H .. and Irons. R. Futenen for Pmued Cil'l:Ult

Bouds. Proc. ASME 123 <1974>. 23-24.

S.P.LaNeme

PY ·9999-SPL/GHH·rfa G. IL ffltftZ
AlL

CoiiY (widlout au.) to
o. B. Brown
C P. Jones
J. J. Smnh

Memorandum-Style Macros
Macros for a memorandum-style document must be
invoked in the order shown on pp. 9-10. Once the
"memorandum type.. (.MT) macro has been
invoked, none of the macros that precede it can be
used. The .MT macro controls the format of the
••subject, date. from" portion of the first page of the
memorandum. Ditf erent ariuments to the .MT
macro will produce different kinds of memoranda:

Code
.MT··
.MTO
.MT
.MT 1
.MT2
.MTJ
.MT4
.MTS

Meamng
no memorandum type is printed
no memorandum type is printed
MEMORANDUM FOR FILE
MEMORANDUM FOR FILE
PROGRAMMER'S NOTES
ENGINEER'S NOTES
Released-Paper style
External Letter

•
12

Cover Sheet for TM

Tldc: 0a Coal&nacda1 a Table ot Dlwt Jue 29, 191'1
All Ewa Prime Numa.ts

TM: 7UC3210
OllMr K~ Prime Mambas

Eveo
A.Ulllor(ll l.omuan !sL Olirpls C:.: 12)4$
S. P. l.eNuae PY 1Z·12l 4000 Fi1tnt C:.: 666666
G. H. Huna PY 1Z·lll 4'001

This is lft •blulct ror • -=tmic:al
lftllftOAndum. The abslm will appear on
the cover sllect and on Ule finl pqe "'*ss
Ule llllCrO .AS bas an tr'IUJ'lllftl of l. 1n
whicb CIA lbe abslncl will be printed only
on tbe CO¥Cr sbeet. The TM number IP!'llr!
Oft lbe cowr sbeel Uld on tile tint pqe.
"Odw KcyworCls •• l1l!*f only on tbe cover

The abs&nlct may consist of one or more
Pll'll'IPfts; it 1ftUSI It on Ule cover sfteet.

Plies Text 2 Olber: l To&al:l

No. Fiaures: o No. Tables: o No. Refs.: 2

Z..0000.X SE! R!VUSE SJDE FOR DIST'ltlBUTION UST

The input and the resulting output for a simple
letter are shown on pp. 7-8. Note that the .TM.
.AS/ .AE. and .OK macros are not used there, and
that the .MT macro has a null ariumcnt (••). Docu·
ments of the type shown on pages 2-3 (essentially
plain text) are produced by omitting. as weil, the
other .. memorandum-style" macros: .ND, .TL •. AU.
and .MT at the beginning of the document. and .SG,
.NS/ .NE. and .CS at the end.
Like the .MT macro, the notation macro (.NS) may
also take different arguments to produce a variety of
notations following the signature line:

13

Codi M.anmg
. NS•• Copy to
.NS O Copy to
.NS Copy to
.NS 1 Copy (with an.) to
.NS 2 eopy (without an.) to
.NS 3 AU.
.NS4 Ans.
.NS S E.nc.
. NS6 E.ncs •
.NS 1 Under Sepe.race Cover
.NS 8 Letter to
.NS9 Memorandum to

If the .CS macro is induded in the input tile (see last
line of p. 10) and if the -rS2 option is induded on
the command line (seep. 16), a cover sheet is sen·
ented (see p. 12). C'The 6 argumenu to .CS are the
data for the bottom of the TM cover sheet: .. Pages
Text," .. Other;• eic.) Similarly, the .TC macro.
together with the -r91 or -f'S3 option (see p. 16)
generates a table of conten~ .CS and .TC can occur
only at the end of a documenL

Two-Column Output
.OS 2
Tbe Oedaratlon ol ~
.OE
.2C
.P
When in th• Coutu of human 9"1\ta, It becolMs
necessary for one peopte to diuoiw the pcllticm
bands wnicft ha'llt connected them with another. Ind
to asaume amon; the pcwwa of the eerth, the
seoarate and eQUal station to wt\ictt me I.Awa ol
Nature and of Nature's God entitle them, a dec8ftt
resQeCt to the QPinions ol mankind requires that they
shouJd dedare the causes wtlictt imQel U'lem to me
sec:ietation •
. P
We hOld ttt ... truths to be self~ that Ill men
are created 9qe1al, •••

When in the Course of
human evencs. it becomes
necessary for one peG9ie
to dissolve the political
bands which have con•
nectecl them with an0ther.
and to assume amon1 the
powers of the earth. the
separale and equal siauon
to which the Laws of
Nature and of Nature's

God entitle tbem, I
decent !'e5i*l to the opin
ions of mankind requires
that they sbouid dedate
the causes which impel
them 10 the separation.

We hold these U'\llhs
to be self-evident. thal ail
men arc creaLed equal •.•.

•

14'
Equations

A stand-alone equation is built within a display.

.DS 2

.EQ
x SUQ 2 ov• a SUQ 2 ·-· aqrt (oz auo 2 + QZ + r I
.EN
.oe

.DS 1

.£Q
bold V ber sub nu· -ien [~le (a above b above
c I rtQM] + left [matrix I cot I A(11 I above .
aoowe . I col I . aboYe . above . 1 cot I . ae>ove .
above AC33l I I riQht I times left I !'ile I alpna
abcMt beta above gamma I ~ l
.EN
.DE

V. -f;J+[A (.·11) I [arl
.. A (~3) x ~

In-tine equations may appear in running text if a
chanaer has been defined lo mark the left and right
ends of the equation. Normally, S is used as that
characler and is so defined by typing the following
three lines at the becinnina of the document:
.IQ
delim $$
.EN
Tbe QUantiHes Sa dot$, Si> dotdOtS, Sxi tflde times
y NCS are the values that snaw ...

I The quantities 4. ii. l xy ue the values that show .•.

This facility can be llSed for preparing text that con
tains subsaipts and supersaipu:

Tbe Quantity S a sub i suo 3 S is ...

I The quantity a} is ...

For more examples. seep. 15 and Reference 4.

ts
Tables

The meaninp of the key-len.ers descnbing the align
ment of each enuy are:

c center n numerical
r right-adjust a alphabetic subcolumn
I left-adjust s spanned

Global table options are ~•er. expand. box. al/box.
doublebox. and 111/J (x).

.OS

.TS
aUbOx;
Ci s s
cc c
n n n.
AT&T Common Stock
Year-Price-Oividend
, 973-46-55-2.87
4-40-53-3.24
5-45-52-3.40
6-51 ·59-.95•
.TE
• (first c:auartet only)
.DE

.CQ
delim $$
. EN
.OS
. TS
bOx;
cf2 cf2
II.
Name-Definition

.ap

<- indicaies • tab)

Sine-Ssin (x) • 1 °"' 2i (e sup jx • e suo -jx)$
Zeta-Szata (s) - \
sum from k• 1 to inf k suo -s -(Re·s > 1)$
.TE
.OE

Na""

Sine

iJ(lin111on

sin(x)•~(~a-e•.ir)
• 21

((s)• !, k-s (Re s > 1)

For more examples, see Reference 3.

16
How to Get Output

Documents with text only:
nroff: mm {optionsl files

or nroff {opttonsl -mm files
1l'Off: trotr {op110nsl -mm files

Text and equations:
nroff: mm -e {optiOllS/ files

or neqn files I nroff {optionsl •mm -
1l'Off: eqn files I troJf [opt1011S/ -mm -

Text and tables:
nroff'.· mm -t {op110nsl .files

or tbl files I DJ'Oft" -mm f opt1aruJ -
roff: tbl files I troff' -mm {op110rrs/ -

Text. tables. and equations:
nrojf: mm ·l -e fop110nsl files

or tbl files I neqn I nrotf f oprions/ -mm -
ll'Off: tbl files I eqn J troff fopuons/ -mm •

The rouowing options may be specified on the above
PWBIUNIX shell command lines:

-ok.m-n print only page k, and pages m through n.
-r81 include macros for the table of contents.
-rB2 indude macros for the cover sheeL
-r83 indude macros for both .
-rC1 OFFJCJAL FILE COPY in footer.
-rC2 DATE FILE COPY in footer .
-rC3 DRAFT in footer .
-rl.n set page length to n lines.•
-rN1 page header at bonom or first page only.
-rN2 no page number on first page.
·rN3 stttion-pagt numbering.
-rOn set pa~ offset to n characters.•
-rWn set line width to n characiers. •

Terminal type and/or pitch are usually indicated by
the -hp, ·ti, ·450, ·300S, and/or ·12 options of the
mm(J) command. if it is used (see Reference 6)~
otherwise. they are specified by one of lhe nro.lf
• T narrw options.

References
1. PwBIMM-Progrommer's Workbench Memorandum

Macros by D. W. Smith and J. R. Mashey .
2. A Tutorial lntrOducuon to tht UNIX Text Ed11or by

B. W. Kernighan.
3. Tbl-A Program 10 Format Tables by M. E. Lesk.
4. Typesetting Morhemarics-USl!r's Guitk (Second

Li11i0n) by B. W. Kernighan and L. L. Cherry.
S. NROFF!TRO" User's Manual by J. F. Ossanna.
6. l'wBIUNIX User's Monual-Ed11ion 1.0 by T. A.

Oolotta, R. C. Haight, and E. M. Piskorik.. eds.

• For lfl'Off. " must be an unsralftf number rei:iresenung
lines or character positions. For tr0ff. n muS1 be scalt!d.

The Pvw'BluNDC• document entitled:

PWBIMM Tutorial
is not yet available.

• UNIX is a Trademark/Service Marie of the Bell System.

T.4

Thi - A Program to Format Tables

M. £. Lesk

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Tb/ is a document formatting preprocessor for troff or nroff which makes
even fairly complex tables easy to specify and enter. It is available on the PDP-
11 UN1x• system and on Honeywell 6000 GCOS. Tables are made up of columns
which may be independently centered, right-adjusted, left-adjusted, or aligned
by decimal points. Headings may be placed over single columns or groups of
columns. A table entry may contain equations, or may consist of several rows
of text. Horizontal or vertical lines may be drawn as desired in the table, and
any table or element may be enclosed in a box. For example:

1970 Federal Budget Transfers
(in billions o(dollars)

State
Taxes Money

Net coUected spent
New York 22.91 21.35 -1.56
New Jersey 8.33 6.96 -1.37
COnnecticut 4.12 3.10 -1.02
Maine 0.74 0.67 -0.07
California 22.29 22.42 +0.13
New Mexico 0.70 1.49 +0.79
Georgia 3.30 4.28 +0.98
Mississippi 1.15 2.32 +1.17
Texas 9.33 11.13 +I.80

September 4, 1977

• UNIX is a Trademark/Service Mark o(the Bell System

T.S

Introduction.

Tbl - A Program to Format Tables

M. E. Lesk

Bell Laboratories
Murray Hill. New Jersey 07974

Tb/ turns a simple description of a table into a troff or nroff (1] program Oist of com
mands) that prints the table. Tb/ may be used on the PDP· 11 UNIX !21 system and on the
Honeywell 6000 ocos system. It attempts to isolate a portion of a job that it can successfully
handle and leave the remainder for other programs. Thus tbl may be used with the equation
formatting program eqn [31 or various layout macro packages [4,5,61, but does not duplicate
their functions.

This memorandum is divided into two parts. First we give the rules for preparing tbl
input; then some examples are shown. The description of rules is precise but technical, and the
beginning user may prefer to read the examples first, as they show some common table
arrangements. A section explaining how to invoke tbl precedes the examples. To avoid repeti
tion, henceforth read troff as "trojfor nroff."

The input to tbl is text for a document, with tables preceded by a ... TS" (table start)
command and followed by a ".TE'' (table end) command. Tbl processes the tables, generating
troff formatting commands, and leaves the remainder of the text unchanged. The ... TS" and
4•. TE" lines are copied, too, so that troff page layout macros (such as the memo formatting
macros {4}) can use these lines to delimit and place tables as they see fit. In particular, any
arguments on the " . TS" or ••.TE" lines are .copied but otherwise ignored, and may be used by
~ocument layout macro commands.

The format of the input is as follows:

text
.TS
table
.TE
text
.TS
table
.TE
text

where the format of each table is as follows:

.TS
options;
format.
data
.TE

Each table is independent, and must contain formatting information followed by the data to be
entered in the table. The formatting information, which describes the individual columns and
rows of the table, may be preceded by a few options that affect the entire table. A detailed
descr;ption of tables is given in the next section.

- 2 -

Input commands.
As indicated above. a cable contains. first. global options. then a format section describing

the layout of the table entries. and then the data to be printed. The format and data are always
required. but not the options. The various parts of t .. "' table are entered as follows:

1) OPTIONS. There may be a single line of options affecting the whole table. If present, this
line must follow the . TS line immediately and must contain a list of option names
separated by spaces, tabs. or commas, and must be terminated by a semicolon. The
allowable options are~.

center - center the table (default is left-adjust);

expand - make the table as wide as the current line length;

box - enclose the table in a box;

allbox - enclose each item in the table in a box;

doublebox: - enclose the table in two boices;
tab (x) - use x instead of tab to separate data items.

The tbl program tries to keep boxed tables on one page by issuing appropriate .. need"
(. ne) commands. These requests are calculated from the number of lines in the tables,
and if there are spacing commands embedded in the input, these requests may be inaccu
rate; use normal troff procedures, such as keep-release macros, in that case. The user who
must have a multi-page boxed table should use macros designed for this purpose, as
explained below under 'Usage.'

2) FORMAT. The format section of the table specifies the layout of the columns. Each line
in this section corresponds to one line of the table (except that the last line corresponds to
all following lines up to the next . T &. if any - see below), and each line contains a key.
letter for each column of the table. It is good practice to separate the key letters for each
column by spaces or tabs. Each key-letter is one of the following:

L or l to indicate a left-adjusted column entry;

R or r to indicate a right-adjusted column entry;

C or c to indicate a centered column entry;

N or n to indicate a numerical column entry, to be aligned with other numerical
entries so that the units digits of numbers line up;

A or a to indicate an alphabetic subcolumn; all corresponding entries are aligned on
the left, and positioned so that che widest is centered within the column (see
example on page 12);

S or s to indicate a spanned ·heading, i.e. to indicate that the entry from the previous
column continues across this column (not allowed for the first column, obvi
ously); or

" to indicate a vertically spanned heading, i.e. to indicate that the entry from che
previous row continues down chrough this row. (Not allowed for the first row
of the table, obviously).

When numerical alignment is specified, a location for the decimal point is sought. The
rightmost dot (.) adjacent to a digit is used as a decimal point; if there is no dot adjoining
a digit, the rightmost digit is used as a units digit; if no alignment is indicated, the item is
centered in the column. However, the special non-printing character string \& may be
used to override unconditionally dots and digits, or to align alphabetic data; this string
lines up where a dot normally would, and then disappears from the final output. In the
example below, the items shown at the left will be aligned (in a numerical column) as
shown on the right: .

• 3 •

13
4.2
26.4.12
abc
abc\&
43\&3.22
749.12

13
4.2

26.4.12
abc

abc
4_33.22

749.12

Note: If numerical data are used in the same column with wider L or r type table entries,
the widest number is centered relative to the wider Lor r items (Lis used instead of I for
readability;, they have the same meaning as key-letters). Alignment within the numerical
items is preserved. This is similar to the behavior of a type data, as explained above.
However, alphabetic subcolumns (requested by the a key-letter) are always slightly
indented relative to L items; if necessary, the column width is increased to force this.
This is not true for n type entries.

Warning: the n and a items should not be used in the same column.

For readability, the key-letters describing each column should be separated by spaces.
The end of the format section is indicated by a period. The layout of the key-letters in
the format section resembles the layout of the actual data in the table. Thus a simple for
mat might appear as:

c s s
I n n •

which specifies a table of three columns. The first line of the table contains a heading cen·
tered across all three columns~ each remaining line contains a left-adjusted item in the
first column followed by two columns of numerical data. A sample table in this format
might be:

Overall title
Item-a 34.22 9.1
ltem-b 12.65 .02
Items: c,d,e 23 5.8
Total 69.87 14.92

There are some additional features of the key-letter system:

Horizontal lines - A key-letter may be replaced by '_' (underscore) to indicate a hor
izontal line in place of the corresponding column entry, or by ' - ' to indicate a dou
ble horizontal line. If any data entry is provided for this column, it is ignored and a
warning message is printed.

Vertical lines - A vertical bar may be placed between column key-letters. This will
cause a vertical line between the corresponding columns of the table. A vertical bar
to the left of the first key-letter or to the right of the last one produces a line at the
edge of the table. If two vertical bars appear between key-letters, a double vertical
line is drawn.

Space between columns - A number may follow the key-letter. This indicates the
amount of separation between this column and the next column. The number nor
mally specifies the separation in ens (one en is about the width of the letter 'n').* If
the "expand" option is used, then these numbers are multiplied by a constant such
that the table is as wide as the current line length. The default column separation
number is 3. If the separation is changed the worst case (largest space requested)
governs.

• More precisely, an en is a number of points (1 point - 1/72 inch) equal to half the current type size.

Vertical spanning - Normally, vertically spanned items extending over several rows of
the table are centered in their vertical rang.:. If a key-letter is followed by t. or T,
any corresponding vertically spanned item will begin at the top line of its range.

Font changes - A key-letter may be follow,. -4 by a string containing a font name or
number preceded by the letter f or F. This indicates that the corresponding column
should be in a different font from the default font (usually Roman). All font names
are one or two letters; a one-letter font name should be separated from whatever
follows by a space or tab. The single letters B, b, I, and i are shorter synonyms for
fB and fl. Font change commands given with the table entries override these
specifications.

Point size changes - A key-letter may be followed by the letter p or P and a number to
indicate the point size of the corresponding table entries. The number may be a
signed digit, in which case it is taken as an increment or decrement from the current
point size. If both a point size and a column separation value are given, one or
more blanks must separate them.

Column width indication - A key-letter may be followed by the letter w or W and a width
value in parentheses. This width is used as a minimum column width. If the largest
eJement in the column is not as wide as the width value given after the w, the larg
est element is assumed to be that wide. If the largest element in the column is
wider than the specified value, its width is used. The width is also used as a default
line length for included text blocks. Normal troff units can be used to scale the
width value; if none are used., the default is ens. If the width specification is a unit
less integer the parentheses may be omitted. If the width value is changed in a
column, the last one given controls.

Equal width columns - A key-letter may be followed by the letter e or E to indicate
equal width columns. All columns whose key-letters are followed by e or E are
made the same width. This permits the user to get a group of regularly spaced
columns.

Note: The order of the above features is immaterial; they need not be separated by
spaces, except as indicated above to avoid ambiguities involving point size and font
changes. Thus a numerical column entry in italic font and 12 point type with a
minimum width of 2.5 inches and separated by 6 ens from the next column could be
specified as

np12w(2.5i)fl 6

Alternative notation - Instead of listing the format of successive lines of a table on con
secutive lines of the format section, successive line formats may be given on the
same line, separated by commas, so that the format for the example above might
have been written:

cs s, I n n .

Default - Column descriptors missing •from the end of a format line are assumed to be
L. The longest line in the format section, however, defines the number of columns
in the table; extra columns in the data are ignored silently.

3) DATA. The data for the table are typed after the format. Normally, each table line is
typed as one line of data. Very long input lines can be broken: any line whose last charac·
ter is \ is combined with the following line (and the \ vanishes). The data for different
columns (the table entries) are separated by tabs, or by whatever character has been
specified in the option tabs option. There are a few special cases:

Troff commands within tables - An input line beginning with a '.' followed by anything
but a number is assumed to be a command to troff and 1s passed through unchanged,
retaining its position in the table. So, for example, space within a table may be pro
duced by ".sp" commands in the data.

-s -

Full width horizontal lines - An input line containing only the character (underscore) or
- (equal sign) is taken to be a single or double line, . respectively' extending the full
width of the table.

Single column horizontal lines - An input table entry cc ntaining only the character or =
is taken to be a single or double line extending the full width of the co/um-,,. To
obtain these characters explicitly in a column. either precede them by \& or follow
them by a space before the usual tab or newline.

Venically spanned items - An input table entry containing only the character string \"'
indicates that the table entry immediately above spans downward over this row. It is
equivalent to a table format key-letter of •A•.

Text blocks - In order to include a block of text as a table entry, precede it by T{ and
follow it by T}. Thus the sequence

••• T{
block of
text
T) •••

is the way to enter, as a single entry in the table, something that cannot con
veniently be typed as a simple string between tabs. Note that the TJ end delimiter
must begin a line; additional columns of data may follow after a tab on the same
line. See the example on page 10 for an illustration of included text blocks in a
table. If more than twenty or thirty text blocks are used in a table, various limits in
the troffprogram are likely to be exceeded, producing diagnostics such as •too many
string/macro names' or 'too many number registers.'

Text blocks are pulled out from the table, processed separately by troff. and replaced
in the table as a solid block. If no line length is specified in the block of text itself,
or in the table format, the default is to use LxC/(N+l) where Lis the current line
length, C is the number of table columns spanned by the text, and N is the total
number of columns in the table. The other parameters (point size, font, etc.> used
in setting the block of text are those in effect at the beginning of the table (including
the effect of the ".TS" macro) and any table format specifications of size and font,
using the p and f modifiers to the column key-letters. Commands within the text
block itself are also recognized, of course. However, troff commands within the
table data but not within the text block do not affect that block.

Waminp: - Although any number of lines may be present in a table, only the first 200
lines are used in calculating the widths of the various columns. A multi-page table,
of course, may be arranged as several single-page tables if this proves to be a prob
lem. Other difficulties with formatting may arise because, in the calculation of
column widths all table entries are assumed to be in the font and size being used
when the ".TS" command was encountered, except for font and size changes indi
cated (a) in the table format section and (b) within the table data (as in the entry
\s+3\fldata\fP\s0). Therefore, although arbitrary troffrequests may be sprinkled in
a table, care must be taken to avoid confusing the width calculations; use requests
such as • .ps' with care.

4) AoomoNAL COMMAND LINES. If the format of a table must be changed after many simi
lar lines, as with sub-headings or summarizations. the ". T&" (table continue) command
can be used to change column parameters. The outline of such a table input is:

.TS
options;
format.
data

.T&
format.
data
.T&
format.
data
.TE

- 6 -

as in the examples on pages 9 and 12. Using this procedure, each table line can be close
to its corresponding format line.

Warning: it is not possible to change the number of columns, the space between columns,
the global options such as box, or the selection of columns to be made equal width.

Usage.

On UNIX, tbl can be run on a simple table with the command

tbl input-file I troff

but for more complicated use, where there are several input files, and they contain equations
and ms memorandum layout commands as well as tables, the normal command would be

tbl file-I file-2 .•. I eqn I troff -ms

and, of course, the usual options may be used on the troff and eqn commands. The usage for
nroff is similar to that for troff, but only TELETYPE~ Model 37 and Oiablo-mechanism (DASI or
GSI) terminals can print boxed tables.

Note that when eqn and tbl are used together on the same file tbl should be used first. If
there are no equations within tables, either order works, but it is usually faster to run tbl first,
since eqn normally produces a larger expansion of the input than rbl. However, if there are
equations within tables (using the delim mechanism in eqn), tbl must be first or the output will
be scrambled. Users must also beware of using equations in n-style columns; this is nearly
always wrong, since tbl attempts to split numerical format items into two parts and this is not
possible with equations.

Tb/ limits tables to twenty columns: however, use of more than 16 numerical columns
may fail because of limits in troff, producing the 'too many number registers' message. Troff
number registers used by tbl must be avoided by the user within tables: these include two-digit
names from 31 to 99, and names of the forms #x, x+, xi, Ax., and x-, where xis any lower
case letter. The names ##, #-, and #A are also used in certain circumstances. To conserve
number register names, the n and a formats share a register; hence the restriction above that
they may not be used in the same column.

For aid in writing layout macros, tbl defines a number register TW which is the table
width: it is defined by the time that the ".TE" macro is invoked and may be used in the
expansion of that macro. More importantly, to assist in laying out multi-page boxed tables the
macro T # is defined to produce the bottom lines and side lines of a bOxed table, and then
invoked at its end. By use of this macro in the page footer a multi-page table can be boxed. In
particular, the ms macros can be used to print a multi-page boxed table with a repeated heading
by giving the argument H to the ".TS" macro. If the table start macro is written

.TS H
a line of the form

.TH
must be given in the table after any table heading (or at the start if none). Material up to the

• 7 .

".TH" is placed at the top of each page of table; the remaining lines in the table are placed on
several pages as required. Note that this is not a feature of tbl, but of the ms layout macros.

Examples.

Here are some examples illustrating features of tbl. The symbol G'> in the input
represents a tab character.

Input:

.TS
box;
CCC
I 11.

·.

Language G'> Authors <fl Runs on

Fortran G'> Many G'> Almost anything
PL/ 1 <fl IBM d:> 360/ 370
CG'> BTL d:> 11/45,H6000,370
BLISS G'>Camegie-Mellon d:> PDP-10, 11
IDS <fl Honeywell G'> H6000
Pascal <flStanf ord G'> 310
.TE

Input:

.TS
all box;
css
CCC
n n n.
AT&T Common Stock
Year G'> Price (f> Dividend
1971(1')41-54(1')$2.60
2d:>41-54(1')2. 70
3 (1')46-55 (f> 2. 87
4 (1')40-53 (f)3. 24
5 (f)45-52 (f> 3. 40
6(1')51-59©. 95•
.TE
• (first quarter only)

Output:

Language Authors Runs on

Fortran Many Almost anything
PL/1 IBM 360/370
c BTL ll/45,H6000,370
BLISS Carnegie· Mellon PDP-10,11
IDS Honeywell H6000
Pascal Stanford 370

Output:

AT&T Common Stock
Year Price Dividend
1971 41-54 $2.60

2 41-54 2.70
3 46-55 2.87
4 40-53 3.24
s 45-52 3.40
6 51-59 .95•

• (first quarter only)

- 8 -

Output: Input:

.TS
box;
css
clclc
1I1 In.

Major New York Bridges

Major New York Bridges -
Bridge© Designer© Length

Brooklyn© J. A. Roebiing © 1595
Manhattan© G. Lindenthal © 14 70
Williamsburg© L. L. Buck© 1600

Queensborough ©Palmer & © 1182
© Hornbostel

© ©1380
Triborough©O. H. Ammann©_
© ©383

Bronx Whitestone©O. H. Ammann(t)2300
Throgs Neck©O. H. Amrnann©l800

George Washington ©O. H. Ammann© 3500
.TE

Bridge

Broo"-'Y"
Manhattan
Williamsburg
Queens borough

Tri borough

Bronx Whitestone
Throgs Neck
George Washington

Input: Output:

.TS Stack
cc 46
np·2 In I. 2 23
©Stack

3 15
©
I ©46 4 6.5

© s 2.1
2©23
©
3©15
©
4©6.5
©
5©2.1
©
.TE

Designer
J. A. Roebling
G. Lindenthal
L. L. Buck
Palmer &

Hornbostel

0. H. Ammann

0. H. Ammann
0. H. Ammann
0. H. Ammann

Length
1595
1470
1600
1182

1380

383
2300
1800
3500

Input:

• TS
box;
LLL
LL
L LrLB
LL_
LL L.
january (l)f ebruary ©march
april ©may ' .
june ©july ©Months
august (l) september
october (l) november © december
.TE

Input:

.TS
box;
cfB s s s.
Composition of Foods

.T&
c I cs s
c I cs s
c I c I c I c.
Food <t> Percent by Weight
\.(?)_
\ • © Protein © Fat ©Carbo
\A (j) \A (?)\A (j) hydrate

.T&
1 In In In.
Apples©. 4©.5©1.3. 0
Halibut© 18. 4 (l) S. 2 © •••
Lima beans©7.5 ©.8©22.0
Milk ©3.3 ©4.0© 5.0
Mushrooms©3 .5 © .4©6.0
Rye bread©9.0© .6©52. 7
.TE

• 9 •

Output:

january
april
june
august
october

Output:

february march

may [
july Months
september .__ __ _

november december

Composition of Foods
Percent by Weight

Food
Protein Fat Carbo·

hydrate
Apples .4 .5 13.0
Halibut 18.4 5.2 ...
Lima beans 7.5 . 8 22.0
Milk 3.3 4.0 5.0
Mushrooms 3.5 .4 6.0
Rye bread 9.0 .6 52.7

- 10 -

Output: lnput:

.TS New York Area Rocks
all box;
ctl s s
c cw(li) cw(li)
lp9 lp9 lp9.
New York Area Rocks
Era© Formation© Age ~years)
Precambrian© Reading Prong© > 1 billion
Paleozoic© Manhattan Prong© 400 million
Mesozoic© T {
.na
Newark Basin, incl.
Stockton, Lockatong, and Brunswick
formations; also Watchungs
and Palisades.
Tl © 200 million
Cenozoic© Coastal Plain© T {
On Long Island 30,000 years;
Cretaceous sediments redeposited
by recent glaciation •
• ad
T}
.TE

Input:

.EQ
delim $$
.EN

.TS
doublebox;
cc
I I.
Name© Definition
.sp
.vs +2p

Era
t-p . re\:ambnan

Paleozoic
Mesozoic

Cenozoic

Output:

Name

Gamma

Si.ne

Error

Bessel

Zeta

Formation
Reading Prong
Manhattan Prong
Newark Basin,
incl. Stockton,
Lockatong, and
Brunswick for-
mations; also
Watchungs and
Palisades.
Coastal Plain

Definition

Gamma©SGAMMA (z) - int sub 0 sup inf t sup {z-1} e sup -t dt$
Sine©$sin (x) - 1 over 2i (e sup ix - e sup -ix)$
Error©$ roman erf (z) - 2 over sqrt pi int sub 0 sup z e sup {-t sup 2} dt$
Bessel©$ J sub 0 (z) - l over pi int sub 0 sup pi cos (z sin theta) d theta $
Zeta©-$ zeta (s) - sum from k-1 to inf k sup -s --c Re·s > 1)$
.vs -2p
.TE

Age (years)
> l billion
400 million
200 million

On Long Island
30,000 years;
Cretaceous sedi-
ments redepo-
sited by recent
glaciation.

.. 11 ..

Input: Outpat:

.TS Readabillty of Text
box. tab(:);
cbssss
cp-2 s s s s
cllclclclc
cllclclclc

Line Width and teading for 11>-Point Type

r2 IJ n2 I n2 I n2 In.
Readability of Text
Line Width and Leading for 10-Point Type -Line: Set: 1-Point: 2·Point: 4-Point
Width : Solid : Leading : Leading : Leading

9 Pica: \-9.3: \-6.0: \-S.3: \-7 .1
14 Pica: \-4.S: \-0.6: \-0.3: \-I. 7
19 Pica:\-5.0:\-S.l: 0.0:\-2.0
31 Pica: \-3. 7: \-3.8: \-2.4: \-3.6
43 Pica: \-9. l: \-9.0: \-S.9: \-8.8
.TE

Line
Width
9 Pica

14 Pica
19 Pica
31 Pica
43 Pica

Set
Solid
-9.3
-4.S
-s.o
-3.7
-9.1

1-Point 2-Point 4-Point
Leading Leading Leading

-6.0 -S.3 -7.1
-0.6 -0.3 -1.7
-5.1 0.0 -2.0
-3.8 -2.4 -3.6
-9.0 -S.9 -8.8

Input:

.TS
cs
cip-2 s
In
an.
Some London Transport Statistics
(Year 1964) '
Railway route miles© 244
Tube©66
Sub-surf ace© 22
Surf ace© 156
.sp .S
.T&
I r
a r.
Passenger traffic\- railway
Journeys© 674 million
Average length© 4. SS miles
Passenger miles©3,066 million
.T&
I r
a r.
Passenger traffic\· road
Joumeys©2,2S2 million
A verag~ length <fl 2. 26 miles
Passenger miles© 5,094 million
.T&
In
an.
.sp .5
Vehicles© 12,521
Railway motor cars© 2, 905
Railway trailer cars© 1,269
Total railway ©4, 174
Omnibuses© 8,34 7
.T&
I n
an •
. sp .S
Statf©73,739
Administrative, etc. G'> 5 ,S82
Civil engineering© 5, 134
Electrical eng. © 1, 714
Mech. eng. \· railway©4,310
Mech. eng. \- road©9,152
Railway operations© 8, 930
Road operations©35,946
Other G'> 2, 971
.TE

- 12 •

Output:

Some London Transport Statistics
(Year 1964)

Rail'·'l!Y route miles 244
Tube 66
Sub-surface 22
Surface 156

Passenger traffic - railway
Journeys
Average length
Passenger miles

Passenger traffic - road
Journeys
Average length
Passenger miles

Vehicles
Railway motor cars
Railway trailer cars
Total railway
Omnibuses

Staff
Administrative, etc.
Civil .engineering
Electrical eng.
Mech. eng. - railway
Mech. eng. - road
Railway operations
Road operations
Other

674 million
4.55 miles

3,066 million

2,252 million
2.26 miles

5,094 million

12,521
2,905
1,269
4,174
8,347

73,739
5,582
5,134
1,714
4,310
9,152
8,930

35,946
2,971

•

Input:

.ps 8

.vs lOp

.TS
center box~
css
ci s s
CCC
IS l n.
New Jersey Representatives
(Democrats)
.sp .5
Name© Office address© Phone
.sp .5

- 13 -

James J. Florio© 23 S. White Horse Pike, Somerdale 0808 3 © 609-627 -8222
William J. HughesG:>2920 Atlantic Ave., Atlantic City 08401 ©609-345-4844
James J. Howard©801 Bangs Ave., Asbury Park 07712©201-774-1600
Frank Thompson, Jr. ©10 Rutgers Pt., Trenton 08618©609-599-1619
Andrew Maguire© 115 W. Passaic St., Rochelle Park 07 662 © 201-843-0240
Robert~. Roe©U.S.P.O., 194 Ward St., Paterson 07510©201-523-5152
Henry Hetstoski©666 Paterson Ave., East Rutherford 07073©201-939-9090
Peter W. Rodino, Jr. t.i)Suite 1435A, 970 Broad St., Newark 07102©201-645-3213
Joseph G. Minish©308 Main St., Orange 07050©201-645-6363
Helen S. Meyner©32 Bridge St., Lambertville 08530©609-397-1830
Dominick V. Daniels© 895 Bergen Ave., Jersey City 07306©201-659-7700
Edward J. Patten©Natl. Bank Bldg., Perth Amboy 08861 ©201-826-4610
.sp .5 ·
.T&
ci s s
lB l n. ·
(Republicans)
.sp .Sv
Millicent FenwickG:l41 N. Bridge St., Somerville 08876©201-722-8200
Edwin B. ForsytheG:>301 Mill St., Moorestown 08057©609-235-6622
Matthew J. RinaldoG:>l961 Morris Ave., Union 07083©201-687-4235
.TE
.ps 10
• VS 12p

Output:

Name

Jame.!! J. Florio
Wiiiiam J. Huches
James J. Howard
Frank Thompson. Jr.
Andrew Mqui~
Rollert A. Roe
Henry Helstosld
Peter W. Rodino, Jr.
Joseph G. Minisb
Helen S. Meyuer
Deminick V. Daniels
Edwvd J. Patten

Mllllcent Feuwtek
Edwin B. Forsythe
Matthew J. Rinalde

• 14.

New Jersey Representatives
(Democrats)

Otftce a•'1ress

2J S. White Horse Piki:, Somerdale 08013
2920 l\tlantic l\vc .• Atlantic: C:ity 08401
801 Banp Ave .• Asbury Park 07712
10 Rutgers Pt., Trenton 08618
l 15 W. Passaic St •• Rochelle Park 07662
U.S.P.O .• 194 Ward.St., Paterson 07510
666 Paterson Ave .• East Rutherford 07073
Suite 1435A, 970 Broad SL, Newark 07102
308 Main St., Orange 07050
32 Bridge St., Lambertville 08530
895 Bergen Ave., Jersey City 07306
Natl. Bank Bldg., Perth Amboy 08861

(Republicans)

41 N. Bridge SL, Somerville 08876
301 Mill St., Moorestown 08057
1961 Morris Ave .. Union 07083

Phone

609-627-8222
609-345-4844
201-774-1600
609-599-1619
201-843-0240
20l·S2J.SlS2
201-939-9090
20t-64S.3213
201-645-6363
609-397-1830
201-6s9-noo
201-826-4610

201-722-8200
609-235-6622
201-687-4235

This is a paragraph of normal text placed here only to indicate where the left and right margins
are. In this way the reader can judge the appearance of centered tables or expanded tables, and
observe how such tables are formatted.

Input:

.TS
expand;
csss
cc cc
11 n n.
Bell Labs Locations
Name (j') Address (i') Area Code (j') Phone
Holmdel (i') Holmdel, N. J. 07733 (i') 201 (i') 949-3000
Murray Hill(i')Murray Hill, N. J. 07974'1l201 (i')582-6377
Whippany(i')Whippany, N. J. 07981 (i')201 '1l386-3000
Indian Hill (i') Naperville, Illinois 60540 (j') 312 ~ 690-2000
.TE

Output:

Name
Holmdel
Murray Hill
Whippany
Indian Hill

Bell Labs Locations
Address

Holmdel, N. J. 07733
Murray Hill, N. J. 07974
Whippany, N. J. 07981
Naperville, Illinois 60540

Area Code
201
201
201
312

Phone
949-3000
582-6377
386-3000
690-2000

Input:

.TS
box;
cb s s s
c I c I c s
ltiw(li) I ttw(2i) I lp8 I lw(l.6i)p8.
Some Interesting P1aces

Name(f) Description (f) Prac:tical Information

Tl
American Museum of Natural Hisiory
Tl(f)T{

. 15.

The collections fill ·11. 5 acres (Michelin) or 2S acres (MT A)
or exhibition halls on four floors. There is a fuU-sized replica
of a blue whale and the world's largest stat sapphire (stolen in 1964).
Tl© Hours© 10.5, ex. Sun 11-5, Wed. to 9
\ ·©\·~ Loc:ation(f)Tf
Central Park West&: 19th St.
Tl
\" (f) \ • (f) Admission© Donation: St. 00 asked
\"©\'©Subway(f)AA to Slst St.
\"©\ ·©Telephone(f)212-873-422S

Bronx Zoo(f)T(
About a mile long and • 6 mile wide, this is the largest zoo in America.
A lion eats 18 pounds
of meat a day while a sea lion eats 1 S pounds of fish.
Tl(f)Hours©TI
10-4:30 winter, to 5:00 summer
Tl
\ '©\·©Location© Tl
lSSth St. &: Southern Blvd., the Bronx.
Tl
\'©\'©Admission(f)St.00. but Tu.We.Th free
\"©\.©Subway©2. S to East Tremont Ave.
\ ·©\ ·©Telepbone(f) 212-933-1759

Brooklyn Museum(f)T{
Five floors or galleries contain American and ancient art.
There are American period rooms and architectural ornaments saved
from wreckers, such as a classical figure from Pennsylwnia Station.
Tl© Hours© Wed-Sat, 10.5, Sun 12-5
\ ·© \°<D Location© Tl
Eastern Parkway &. Washington Ave •• Brooklyn.
Tl
\.©\ '© Admission(f) Free
\"©\'©Subway©2,3 to Eastern Parkway.
\ "©\ "©Telephone(i)212-638-SOOO

rt
New-York Historical Society
T)(f)T(
All the original paintings for Audubon's
. I
Birds or America
.R
are here, as are exhibits of American decorative artS, New York history,
Hudson River school paintings, carriages, and glass paperweights.
Tl© HoursCDT(
Tues-Fri & Sun, 1-5; Sat 10.5
Tl
\·©\·©Location\!) Tl
Central Park West & 17th St.
Tl
\"©\"©Admission© Free
\"©\.©Subway© AA to 81st St.
\ "©\ "©Telephone(f) 212-873-3400
.TE

- 16 -

Output:

Some Interesting Places
Name Description Practical Information

American Muse- The collections fill 11.5 acr1::s Hours 10-5, ex. Sun 11·5, Wed. to 9
um of Natural (Michelin) or 25 acres (MT A) Location Central Park West & 79th St.

History of exhibition halls on four Admi.ssio.n Donation: $1.00 asked
floors: There is a full-sized re· Subway AA to 8lst St.
plica of a blue whale and the Telephone 212-873-4225
world's largest star sapphire
(stolen in 1964).

Bronx Zoo About a mile long and .6 mite Hours 10-4:30 winter, to 5:00 summer

wide, this is the largest zoo in Location 185th St. & Sou1hern Blvd, the

America. A lion eats 18 Bronx.

pounds of meat a day while a Admission $1.00. but Tu, We, Th free

sea lion eats 15 pounds of fish. Subway 2. 5 to East Tremont Ave.
Telephone 212-933-1759

Brooklyn Museum Five floors of gaUeries contain Hours Wed·Sat. 10-5. Sun 12-5
American and ancient art. Location Eastern Parkway & Washington

There are American period Ave., Brooklyn.

rooms and architectural orna- Admission Free

men ts saved from wreckers. Subway 2,3 to Eastern Parkway.

such as a classical figure from Telephone 212-638-5000

Pennsylvania Station.
New-York His- All the original paintings for Hours Tues-Fri & Sun. 1-5; Sat 10-5

torical Society Audubon's Birds of America are Location Central Park West &. nth St

here. as are exhibits of Ameri· Admission Free
can decorative arts, New York Subway AA lo 8lst St.
history, Hudson River school Telephone 212-873-3400
paintings, carriages. and glass
paperweights.

Acknowledgments.

Many thanks are due to J. C. Blinn, who has done a large amount of testing and assisted
with the design of the program. He has also written many of the more intelligible sentences in
this document and helped edit all of it. All phototypesetting programs on UNIX are dependent
on the work of J. F. Ossanna, whose assistance with this program in particular has been most
helpful. This program is patterned on a table formatter originally written by J. F. Gimpel. The
assistance of T. A. Dolotta, B. W. Kernighan, and J. N. Sturman is gratefully acknowledged.

References.

[l] J. F. Ossanna, NROFF/TROFF User's Manual, Computing Science Technical Report No. 55,
Bell Laboratories. 197 6.

[2] K. Thompson and D. M. Ritchie, "The UNIX Time-Sharing System," Comm. ACM. 17,
pp. 365-75 (1974).

[3} B. W. Kernighan and L. L. Cherry, "A System for Typesetting Mathematics," Comm.
ACM. 18, pp. 151-57 (1975).

{4) M. E. Lesk, Typing Documents on UNIX, Bell Laboratories internal memorandum.

[5] M. E. Lesk and B. W. Kernighan. Computer Typesetting of Technical Journals on UNIX,
Computing Science Technical Report No. 44, Bell Laboratories, July 1976.

• 17 •

[6) J. R. Mashey and D. W. Smith. PWBIMM - Programmer's Workbench Memorandum Mac
ros, Bell Laboratories memorandum.

List of Tbl Command Characters and Words

Command Meaning Section
a A Alphabetic subcolumn 2
allbox Draw box around all items 1

'. b B Boldface item 2
box Draw box around table 1
cC Centered column 2
center Center table in page 1
doublebox Doubled box around table 1
eE Equal width columns 2
expand Make table full line width 1
f F Font change 2
i I Italic item 2
IL Left adjusted column 2
nN Numerical column 2
nnn Column separation 2
pP Point size change 2
rR Right adjusted column 2
sS Spanned item 2
tT Vertical spanning at top 2
tab (x) Change data separator character 1
T{ T) Text block 3
'If w Minimum width value 2
• ..a Included troffcommand 3
I VerticaJ line 2
11 Double verticaJ line 2
A Vertical span 2
\" Vertical span 3 - Double horizontal line 2,3

Horizontal line 2.3

A TROFF Tutorial

Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

trotJ is a text-formatting program for driving the Graphic Systems photo·
typesetter on the UNIX and GCOS operating systems. This device is capable of
producing high quality text~ this paper is an example of troff output.

The phototypesetter itself normally runs with four fonts, containing
roman, itaJic and bold letters (as on this page), a full greek alphabet, and a sub·
stantial number of special characters and mathematical symbols. Characters can
be printed in a range of sizes. and placed anywhere on the page.

trotf aHows the user fuU control over fonts. sizes, and character positions.
as well as the usual features of a formatte~. - right-margin justification.
automatic hyphenation, page titling and numbering, and so on. It also provides
macros, arithmetic variables and operations, and conditional testing. for compli·
cated formatting tasks.

This document is an introduction to the most basic use of troff. It
presents just enough information to enable the user to do simple formatting
tasks like making viewgraphs, and to make incremental changes to existing
packages of trotf commands. It assumes that the reader is familiar with a for·
matter like rotf on UNIX or GCOS. In most respects, the UNIX formatter nrotf
is identical to trotJ. so this document also serves as a tutorial on nroff.

1

I

A TROFF Tutorial

Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

l. latroduc:doa

tro« (1) is a text-formatting program. writ
ten by J. F. Ossanna. for producing high-quality
printed output from the phototypesetter on the
UNIX and OCOS operating systems. This docu
ment is an example of troff output.

The single most important rule of using
ttoft" is not to use it directly. but through some
intermediary. In many ways, troff resembles an
assembly language - a remarkably powerful and
Oexible one - but nonetheless such that many
operations must be specified at a level of detail
and in a form that is too hard for most people to
use effectively.

For two special applications, there are pro
grams that provide an interface to troff' for the
majority of users. ettn (2) provides an easy to
learn language for typesetting mathemati~ the
eqa user need know no troff whatsoever to
typeset mathematics. tbl (3) provides the same
convenience for producing tables of arbitrary
complexity.

For producing straight text (which may
well contain mathematics or tables). there are a
number of 'macro packages' that define format
ting rules and operations for specific styles of
documents. and reduce the amount of direct
contact with tro«. In particular, the ·-ms• (4}
and PWB/MM (5) packages for Bell Labs inter
nal memoranda and external papers provide most
of the facilities needed for a wide range of docu
ment preparation. (This memo was prepared
with ·-ms'.) There are also packages for view
graphs. for simulating the older roft' formatters
on UNIX and GCOS, and for other special applica
tions. Typically you will find these packages
easier to use than troff once you get beyond the
most trivial operations; you should always con
sider them first.

Jn the few cases where existing packages
don't do the whole job. the solution is not to
write an entirely new set of troff' instructions
from scratch, but to make smaJI changes to adapt
packages that already exist.

Jn ac~rdance with this philosophy of let
ting someone else do the work. the part of troff
described here is only a small part of the whole.
although it tries to concentrate on the more use
ful parts. In any case, there is no 'attempt to be
complete. Rather. the emphasis is on showing
how to do simple things. and how to make incre
mental changes to what already exists. The con
tents of the remaining sections are:

2. Point sizes and line spacing
3. Fonts and special characters
4. Indents and line length
S. Tabs
6. Local motions: Drawing lines and characters
7. Strings
8. Introduction to macros
9. Titles, pages and numbering

10. Number registers and arithmetic
l l. Macros with arguments
12. Conditionals
13. Environments
14, Diversions

Appendix: Typesetter character set

The troff described here is the C-language ver
sion running on UNIX at Murray Hill. as docu
mented in (1).

To use troft' you have to prepare not only
the actual text you want printed. but some infor
mation that tells how you want it printed.
(Readers who use rotf will find the approach
familiar.) For troff the text and the formatting
information are often intertwined quite inti
mately. Most commands to troff' are placed on a
line separate from the text itself. beginning with
a period (one command per line). For example,

Some text.
.ps 14
Some more text.

will change the 'point size', that is. the size of
the letters being printed, to 'l4 point' <one point
is 1172 inch) like this:

some text. Some more text.

Occasionally. though, something special
occurs in the middle of a line - to produce

Area - 1f'r2

you have to type

Area - \(•p\flr\fR\~s8\u2\d\sO

(which we will explain shortly). The backslash
character \ is used to introduce troff' commands
and special characters within a line of text.

2. Point Sizes; Line Spacing

As mentioned above, the command .ps
sets the point size. One point is 1172 inch, so
6-point characters are at most I /12 inch high,
and 36-point characters are Vi inch. There are 15
point sizes, listed below.

6 P01nr Puck my bo• w11h ll•e <IO&en liquor JUP.
7 point: Pack my box wtlh live dozen liquor iugs.
8 point: Pack my box with Ave dozen liquor jugs.
9 point: Pack my box with five dozen liquor jugs.
IO point: Pack my box with five dozen liquor
11 point: Pack my box with five dozen

- 2 .

12 point: Pack my box with five dozen
14 point: Pack my box with five

16 point 18 point 20 point

22 24 28 36
If the number after .pa is not one of these

legal sizes, it is rounded up to the next valid
value. with a maximum of 36. If no number fol·
lows .ps, troff reverts to the previous size. what·
ever it was. troff begins with point size 10,
which is usually fine. This document is in 9
point.

The point size can also be changed in the
middle of a line or even a word with the in-line
command \s. To produce

UNIX runs on a PDP-11/45

type

\s8UNIX\sl0 runs on a \s8PDP-\sl01 l/45

As above. \s should be followed by a legal point
size, except that \sO causes the size to revert to
its previous value. Notice that \s101 I can be
understood correctly as 'size 10. followed by an
11 ', if the size is legal, but not otherwise. Be
cautious with similar constructions.

Relative size changes are also legal and
useful:

\s-2UNIX\s+2

tempori>rily decreases the size. whatever it is, by
two points, then restores it. Relative size
changes have the advantage that the size
difference is independent of the starting size of
the document. The amount of the relative
change is restricted to a single digit.

The other paramP.ter that determines what
the type looks like is the spacing between lines,
which is set independently of the point size.
Vertical spacing is measured from the bottom of
one line to the bottom of the next. The com
mand to control vertical spacing is . vs. For run·
ning text, it is usually best to set the vertical
spacing about 20% bigger than the character size.
For example, so far iri this document, we have
used "9 on 11 ", that is.

.ps 9

.vs 1 lp

If we changed to

.ps 9

.vs 9p

the running text would look like this. After a
few lines, you will agree it looks a little cramped.
The right vertical spacing is partly a matter of
taste, depending on how much text you want to
squeeze into a given space, and partly a matter
of traditional printing style. By default, troff
uses 10 on 12.

Point size and vertical spacing
make a substantial difference in the
amount of text per square inch.
This is 12 on 14.

Point uze •nd vertical ''""""' mw • suo.i•n11al <lifrerence 1n
Ille •mou111 of tell per SQUllte 1ndl. For ex1m111e. I 0 on 12 uS!IS •Gout
twice •S much - as 7 on 8. Thi!I ,. I> on 7, whtdl ,. """'" Slftlollet. II
Plldls • lot mo<e words per fine. bul you «•n IO lll•nd l!'Ylnt '" read it.

When used without arguments, .ps and .vs
revert to the previous size and vertical spacing
respectively.

The command .sp is used to get extra vert·
ical space. Unadorned, it gives you one extra
blank line (one .vs, whatever that has been set
to). Typically, that's more or less than you
want, so .sp can be followed by information
about how much space you want -

.sp 2i

means 'two inches of vertical space'.

.sp 2p

means 'two points of vertical space'; and

.Sp 2

means 'two vertical spaces' - two of whatever
. vs is set to (this can also be made explicit with
.sp 2v); troff also understands decimal fractions
in most places, so

.sp l.Si

is a space of l .S inches. These same scale fac
tors can be used after . vs to define line spacing,
and in fact after most commands that deal with
physical dimensions.

It should be noted that all size numbers
are converted internally to 'machine units',
which are 1/432 inch (1/6 point). For most pur
poses, this is enough resolution that you don't
have to worry about the accuracy of the
representation. The situation is not quite so
good vertically, where resolution is 1/144 inch
(1/2 point).

3. Fonts and Special Characters

troff and the typesetter allow four different
fonts at any one time. Normally three fonts
(Times roman, italic and bold) and one collec
tion of special characters are permanently
mounted.

abcdefghijklmnopqrstuvwxyz 0123456 789
ABCDEFGHIJKLMNOPQRSTUVWXYZ
ahcdefgitijklmnopqrsruvwxyz 0121456 789
ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijkJmnopqrstuvwxyz 0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ

The greek, mathematical symbols and miscellany
of the special font are listed in Appendix A.

troff prints in roman unless told otherwise.
To switch into bold, use the .ft command

.ft B

and for italics,

.ft I

To return to roman, use .ft R; to return to the
previous font, whatever it was, use either .ft P or
just .ft. The 'underline' command

.ul

causes the next input line to print in italics. .ul
can be followed by a count to indicate that more
than one line is to be italicized.

Fonts can also be changed within a line or
word with the in-line command \f:

bol~face text

is produced by

• 3 -

\fBbold\11face\fR text

If you want to do this so the previous font,
whatever it was, is left undisturbed, insert extra
\fP commands, like this:

\fBbold\fP\flface\fP\fR text\fP

Because only the immediately previous font is
remembered, you have to restore the previous
font after each change or you can lose it. The
same is true of .ps and .vs when used without an
argument.

There are other fonts available besides the
standard set, although you can still use only four
at any given time. The command .fp tells troff
what fonts are physically mounted on the
typesetter:

.fp 3 H

says that the Helvetica font is mounted on posi
tion 3. (For a complete list of fonts and what
they look like, see the troff manual.) Appropriate
.fp commands should appear at the beginning of
your document if you do not use the standard
fonts.

ft is possible to make a document rela
tively independent of the actual fonts used to
print it by using font numbers instead of names;
for example, \f3 and .ft 3 mean 'whatever font is
mounted at position 3 '. ·and thus work for any
setting. Normal settings are roman font on I,
italic on 2, bold on 3, and special on 4.

There is also a way to get 'synthetic' bold
fonts by overstriking letters with a slight offset.
Look at the .bd command in {I).

Special characters have four-character
names beginning with \(, and they may be
inserted anywhere. For example •

1/4 + 'h - 3A

is produced by

\(14 + \(12 - \(34

In particular, greek letters are all of the form
\(•-. where - is an upper or lower case roman
letter reminiscent of the greek. Thus to get

t(aX/3) - "°
in bare troff we have to type

\(•S(\(•a\(mu\(•b) \(->\(if

That line is unscrambled as follows:

\(•S t
((

\(•a a
\(mu x
\(•b ~
))

\(->
\(if 00

A complete list of these special names occurs in
Appendix A.

In eqn [21 the same effect can be achieved
with the input

SIGMA (alpha times beta) - > inf

which is less concise, but clearer to the unini·
tiated.

Notice that each four.character name is a
single character as far as trotl is concerned - the
'translate' command

.tr \(mi\(em

is perfectly clear. meaning

. tr --

that is, to translate - into -.

Some chara1<ters are automatically
translated into others: grave ' and acute '
accents (apostrophes) become open and close
single quotes • ': the combination of" ... " is gen·
erally preferable to the double quotes • .. .". Simi·
larly a typed minus sign becomes a hyphen •. To
print an explicit - sign, use \·. To get a
backslash printer.I. use \e.

4. Indents and Line Lengths

troff starts with a line length of 6.5 inches.
too wide for 81h x 11 paper. To reset the line
length, use the .11 command, as in

.ll 6i

As with .sp, the actual length can be specified in
several ways~ inches are probably the most intui·
tive.

The maximum line length provided by the
typesetter is 7 .5 inches, by the way. To use the
full width, you will have to reset the default phy
sical left margin ("page offset"). which is nor
mally slightly less than one inch from the left
edge of the paper. This is done by the .po com
mand.

.po 0

sets the offset as far to the left as it will go.

• 4 •

The indent command .in causes the left
margin to be indented by some specified amount
from the page offset. lf we use .in to move the
left margin in, and .11 to move the right margin
to the left, we can make offset blocks of text:

.in O.Ji

.II -0.Ji
text to be set into a block
.II +O.Ji
.in -0.Ji

will create a block that looks like this:

Pater noster qui est in caelis
sanctificetur nomen tuum: adveniat
regnum tuum: fiat voluntas tua, sicut
in caelo, et in terra. ... Amen.

Notice the use of ·+' and ·-· to specify the
amount of change. These change the previous
setting by the specified amount, rather than just
overriding it. The distinction is quite important:
.II + 1 i makes lines one inch longer; .U 1i makes
them one inch long.

With .in, .11 and .po, the previous value is
used if no argument is specified .

To indent a single line, use the 'temporary
indent' command .ti. For example. all paragraphs
in this memo effectively begin with the com·
mand

.li J

Three of what? The default unit for .ti, as for
most horizontally oriented commands (.II. .in.
.po). is ems; an em is roughly the width of the
letter ·m· in the current point size. (Precisely, a
em in size p is p points.) Although inches are
usually clearer than ems to people who don't set
type for a living, ems have a place: they are a
measure of size that is propor:ional to the
current point size. If you want to make text that
keeps its proportions regardless of point size. you
should use ems for all dimensions. Ems can be
specified as scale factors directly, as in .ti 2.5m.

Lines can also be indented negativefy if the
indent is already positive:

.li -0.Ji

causes the next line to be moved back three
tenths of an inch. Thus to make a decorative
initial capital. we indent the whole paragraph,
then· move the letter 'P' back with a .ti com
mand:

-

Pater noster qui est in caelis
sanctificetur nomen tuum: ad·
venial regnum tuum: fiat volun

tas tua, sicut in caelo, et in terra. . ..
Amen.

Of course, there is also some trickery lo make
the • P' bigger (just a '\s36P\s0'), and to move it
down from its normal position (see the section
on local motions).

5. Tabs

Tabs (the ASCII 'horizontal tab' character)
can be used to produce output in columns. or to
set the horizontal position of output. Typically
tabs are used only in unfilled text. Tab stops are
set by default every half inch from the current
indent. but can be changed by the .ta command.
To set stops every inch, for example,

.ta Ii 2i 3i 4i Si 6i

Unfortunately the stops are left-justified
only (as on a typewriter), so lining up columns
of right-justified numbers can be painful. If you
have many numbers, or if you need more com·
plicated table layout, don't use troff directly; use
the tbl program described in {3).

For a handful of numeric columns. you
can do it this way: Precede every number by
enough blanks to make it line up when typed.

.nf

.ta Ii 2i Ji
I tab 2 tab 3

40 tab 50 tab 60
700 tab 800 tab 900
.fi

Then change each leading blank into the string
\0. This is a character that does not print, but
that has the same width as a digit. When
printed, this will produce

I
40

700

2
50

800

3
60

900

It is also possible to fill up tabbed-over
space with some character other than blanks by
setting the 'tab replacement character' with the
.tc command:

. ta I .Si 2.Si

.tc \(ru (\(ru is•_•)
Name tab Age tab

produces

Name -------- Age -----

• 5 -

To reset the 1 1 b replacement character to a
blank, use .tc with no argument. (Lines can also
be drawn with the \I command, described in Sec
tion 6.)

troff also provides a very general mechan
ism called 'fields' for setting up complicated
columns. (This is used by tbO. We will not go
into it in this paper.

6. Local Motions: Drawing lines and charac-
ters

Remember •Area - 1Tr2• and the big · P'
in the Paternoster. How are they done? troff
provides a host of commands for placing charac
ters of any size al any place. You can use them
lo draw special characters or to tune your output
for a particular appearance. Most of these com
mands are straightforward, but messy to read
and tough 10 type correctly.

If you won 'l use eqn. subscripts and super
scripts are most easily done with the half-line
local motions \u and \d. To go back up the page
half a point-size, insert a \u at the desired place:
to go down, insert a \d. (\u and \d should always
be used in pairs, as explained below.) Thus

Area - \(•pr\u2\d

produces

Area - 11'r2

To make the ·2· smaller, bracket it with
\s-2 ... \sO. Since \u and \d refer lo the current
point size, be sure to put them either both inside
or both outside the size changes, or you will get
an unbalanced vertical motion.

Sometimes the space given by \u and \d
isn't the right amount The \v command can be
used to request an arbitrary amount of vertical
motion. The in-line command

\ v· (amount)'

causes motion up or down the page by the
amount specified in ·(amount)'. For example, to
move the 'P' down, we used

.in +0.6i (move paragraph in)

.II -0.Ji (shorten lines)

.li -0.Ji (move P back)
\ v'2'\sJ6P\s0\ v· - 2' ater noster qui est
in caelis ...

A minus sign causes upward motion, while no
sign or a plus sign means down the page. Thus
\v'-2' causes an upward vertical motion of two
line spaces.

There are many other ways to specify the
amount of motion -

\v'O.li'
\v'Jp'
\v'-O.sm·

and so on are all legal. Notice that the scale
specifier i or p or m goes inside 'the quotes. Any
character can be used in place of the quotes~ this
is also true of all other tnft' commands described
in this section.

Since troft' does not take within-the-line
vertical motions into account when figuring out
where it is on the page. output lines can have
unexpected positions if the left and right ends
aren't at the same vertical position. Thus \v,
like \u and \d, should always balance upward
vertical motion in a line with the same amount
in 1he downward direction.

Arbitrary horizontal motions are also avail·
.1hle I_ \h is quite analogous to \v, except that
1 he ~efault scale factor is ems instead of line
.,11accs. As an example,

·\h'-0.li'

causes a backwards motion of a h:nlh of an inch.
As a practical matter, consider printing 1he
mathematical symbol • > > '. The c.lefaull spaciny
is too wide, so eqn replaces this hy

>\h'-0.Jm'>

10 produce >>.

Frequently \h is used with the 'width func·
tion' \w to generate motions equal 10 the width
of some character string. The construction

\w'thing·

is a number equal to the width of 'thing' in
machine units (1/432 inch). All troft' computa
tions are ultimately done in these units. To
move horizontally the width of an 'x', we can
say

\h'\w'x'u'

As we mentioned above, the default scale factor
for all horizontal dimensions is m, ems, so here
we must have the u for machine units, or the
motion produced will be far too large. troft' is
quite happy with the nested quotes, by the way,
so long as you don't leave any out.

As a live example of this kind of construc
tion. all of the command names in the text, like
.sp, were done by overstriking with a slight
offset. The commands for .sp are

.sp\h' -\w'.sp'u\h'l u'.sp

• 6 -

That is, put out '.sp', move left by the width of
'.!!p', move right 1 unit, and print '.sp' again.
(f' .. course there is a way to avoid typing that
much input for each command name. which we
will discuss in Section 11.)

There are also several special-purpose trotr
commands for local motion. We have already
seen \0, which is an unpaddable white space of
thi= same width as a digit. 'Unpaddable' means
that it will never be widened or split across a line
by line justification and filling. There is also
\(blank), which is an unpaddable· character the
width of a space. \I. which is half that width, \ .. ,
which is one quarter of the width of a space, and
\&. which has zero width. (This last one is use·
ful. for example, in entering a text· line which
would otherwise begin with a '. ·.)

The command \o. used like

\o'set of characters'

causeis {up to 9) characters to be overstruck, cen
tered on the widest. This is nice for accents, as
in

syst\o"e\ (ga"me t\o"e\ (aa"l\o"e\(aa"phonique

which makes

systeme telephonique

The accents are \(ga and \(aa, or \' and \';
remember that each is just one character to trolf.

You can make your own overstrikes with
another special convention, \z, the zero-motion
command. \zx suppresses the normal horizontal
motion after printing the single character x, so
another character can be laid on top of it.
Although sizes can be changed within \o, it
centers the characters on the widest, and there
can be no horizontal or vertical motions, so \z
may be the only way to get what you want:

is produced by

.sp 2
\s8\z\(sq\sl4\z\(sq\s22\z\(sq\sJ6\(sq

The .sp is needed to leave room for the result.

As another example, an extra-heavy semi
colon that looks like

; instead of ; or ;

can be constructed with a big comma and a big
period above it:

-

\s+6\z.\v'-0.2Sm'.\v'0.2Sm\s0

'0.2Sm' is an empirical constant.

A more ornate overstrike is given by the
bracketing function \b. which piles up characters
vertically, centered on the current baseline.
Thus we can get big brackets, constructing them
with piled-up smaller pieces:

by typing in only this:

.sp

- 7 -

\b'\Ot\Ok\(lb' \b'\Oc\(lf x \b\(rc\(rf \b'\(rt\(rk\(rb'

troff also provides a convenient facility for
drawing horizontal and vertical lines of arbitrary
length with arbitrary characters. \l'li' draws a
line one inch long. like this: ------
The length can be followed by the character to
use if the _ isn't appropriate; \l'0.5i.' draws a
half-inch line of dots:•..... The construc
tion \L is entirely analogous. except that it draws
a vertical line instead of horizontal.

7. Strinp

Obviously if a paper contains a large
number of occurrences of an acute accent over a
letter 'e', typing \o•e\ .. for each e would be a
great nuisance.

Fortunately, troff provides a way in which
you can store an arbitrary collection of text in a
'string'. and thereafter use the string name as a
shorthand for its contents. Strings are one of
several troff mechanisms whose judicious use
lets you type a document with less effort and
organize it so that extensive format changes can
be made with few editing changes.

A reference to a string is replaced by what
ever text the string was defined as. Strings are
defined with the command .ds. The line

.ds e \o"e\'"

defines the string e to have the value \o"e\'•

String names may be either one or two
characters long. and are referred to by \•x for
one character names or \•(xy for two character
names. Thus to get telephone, given the
definition of the string e as above, we can say
t\ •el\ •ephone.

If a string must begin with blanks, define1it
as

. ds xx• text

The double quote signals the beginning of the
definition. There is no trailing quote; the end of
the line terminate:s the string.

A string may actually be several lines long;
if troff encounters a \ at the end of any line, it is
thrown away and the next line added to the
current one. So you can make a long string sim
ply by ending each line but the last with a
backslash:

.ds xx this\
is a very\
long string

Strings may be defined in terms of other
strings, or even in terms of themselves; we will
discuss some of these possibilities later.

8. Introduction to Macros

Before we can go much further in troff', we
need to learn a bit about the macro facility. In
its simplest form. a macro is just a shorthand
notation quite similar to a string. Suppose we
want every paragraph to start in exactly the same
way - with a space and a temporary indent of
two ems:

.Sp

.ti +2m

Then to save typing, we would like to collapse
these into one shorthand line, a troff' 'command'
like

.PP

that would be treated by troff' exactly as

.Sp

.ti +2m

.PP is called a macro. The way we tell troff what

.PP means is to define it with the .de command:

.de PP

.sp

.ti +2m

The first line names the macro (we used '.PP'
for 'paragraph', and upper case so it wouldn't
conflict with any name that troff might already
know about>. The last line .. marks the end of
the definition. In between is the text, which is
simply inserted whenever troff sees the 'com
mand' or macro call

.PP

A macro can contain any mixture of text and
formatting commands .

The definition of .PP has to precede its
first use; undefined macros are simply ignored.
Names are restricted to one or two characters.

Using macros for commonly oa:urring
sequences of commands is critically important.
Not only does it save typina. but it makes later
changes muc:h easier. Sup~ we decide that
the paragraph indent is too small. the vertical
space is much too big, and roman font should be
forced. Instead of changing the whole docu
ment, we need only change the definition of .PP
to something like

.de PP
·.sp 2p
.ti +Jm
.ft R

\ • paragraph macro

and the change takes effect everywhere we used
.PP.

\ • is a troff command that causes the rest
of the line to be ignored. We use it here to add
comments to the macro definition (a wise idea
once definitions get complicated).

As another example of macros, consider
these two which start and end a block of otfset.
unfilled text. like most of the examples in this
paper:

.de BS

.Sp

.nf

.in +O.Ji

.de BE

.Sp

.ft

.in -0.Ji

\ • start indented block

\ • end indented block

Now we can surround text like

Copy to
John Doe
Richard Roberts
Stanley Smith

, by the commands .BS and .BE, and it will come
out as it did above. Notice that we indented by
.in +0.3i instead of .in O.Ji. This way we can
nest our uses of .BS and BE to get blocks within
blocks.

If later on we decide that the indent should
be O.Si. then it is only necessary to change the
definitions of .BS and .BE. not the whole paper.

- 8 -

9. Titles. Pa1es and Numberin1

This is an area where things get tougher,
IY .•use nothing is done for you automatically.
Of necessity, some of this section is a cookbook,
to be copied literally until you get some experi
ence.

Suppose you want a title at the top of e•ch
page, saying just

left top center top right top

In roff, one can say

.he 'left top'center top'right top'

.fo 'left bottom'center bottom'right bottom·

to get headers and footers automatically on every
page. Alas, this doesn't work in troff. a serious
hardship for the novice. Instead you have to do
a lot of specification.

You have to say what the actual title is
(easy); when to print it (easy enough); and what
to do at and around the title line (harder). Tak
ing these in reverse order, first we define a
macro .NP (for 'new page') to process titles and
the like at the end of one page and the beginning
of the next:

.de NP
'bp
'sp O.Si
.ti 'left top'center top'right top'
'sp 0.3i

To make sure we're at the top of a page, we
issue a 'begin page' command 'bp. which causes
a skip to top.of-page (we'll explain the' shortly).
Then we space down half an inch, print the title
(the use of .ti should be self explanatory; later
we will discuss parameterizing the titles), space
another 0.3 inches, and we're done.

To ask for .NP at the bottom of each page.
we have to say something like 'when the text is
within an inch of the bottom of the page, start
the processing for a new page.' This is done with
a 'when' command .wb:

.wh -Ii NP

(No '.' is used before NP; this is simply the
name of a macro, not a macro call.) The minus
sign means 'measure up from the bottom of the
page'. so '-1 i' means 'one inch from the bot
tom'.

The .wb command appears in the input
outside the definition of .NP; typically the input
would be

.de NP

.wb -li NP

Now what happens? As text is actually
being output, troff, keeps track of its vertical
position on the page, and after a line is printed
within one inch from the bottom, the .NP macro
is activated. On the jargon, the .wh command
sets a trap at the specified place, which is
'sprung' when that point·is passed.) .NP causes a
skip to the top of the next page (that's what the
'bp was for), then prints the title with the
appropriate margins.

Why 'bp and 'sp instead of .bp and .sp?
The answer is that .sp and .bp, like several other
commands. cause a bnak to take place. That is,
au the input text collected but not yet printed is
flushed out as soon as possible, and the next
input line is guaranteed to start a new line of
output If we had used .sp or .hp in the .NP
macro, this would cause a break in the middle of
the current output line when a new page is
started. The effect would be to print the left
over part of that line at the top of the page, fol·
lowed by the next input line on a new output
line. This is not what we want. Using ' instead
of . for a command tells troff that no break is to
take place - the output line currently being
ftlled should not be forced out before the space
or new page.

The list of commands that cause a break is
short and natural:

.bp .br .ce . .ti .nf .sp .in .ti

All others cause no break, regardless of whether
you use a . or a '. If you really need a break, add
a .br command at the appropriate place.

One other thing to beware of - if you're
changing fonts or point sizes a lot, you may find
that if you cross a page boundary in an unex
pected font or size. your titles come out in that
size and font instead of what you intended.
Furthermore, the length of a title is independent
of the current line length, so titles will come out
at the default length of 6.5 inches unless you
change it, which is done with lhe .It command.

There are several ways to fix the problems
of point sizes and fonts in titles. For the sim
plest applications, we can change .NP to set the
proper size and font for lhe title, then restore
the previous values. like this:

- 9 -

.de NP
'bp
'sp O.Si
.ft R \ • set tille font to roman
.ps 10 \"and size to 10 point
.It 6i \ • and length to 6 inches
.ti 'left'center'right'
.ps \" revert to previous size
.ft P \ • and to previous font
'sp O.Ji

This version of .NP does not work if the
fields in the .tl command contain size or font
changes. To cope with that requires troff's
'environment' mechanism, which we will discuss
in Section 13.

To get a footer at the bottom of a page,
you can modify .NP so it does some processing
before the 'bp command. or split the job into a
footer macro invoked at the bottom margin and
a headt=r macro invoked at the top of the page.
These variations are left as exercises.

Output page numbers are computed
automatically as each page is produced (starting
at I}, but no numbers are printed unless you ask
for them explicitly. To get page numbers
printed, include the character % in the .ti line at
the position where you want the number to
appear. For example

.ti •• - % -··

centers the page number inside hyphens, as on
this page. You can set the page number at any
time with either .bp n. which immediately starts
a new page numbered n, or with .pn n, which
sets the page number for the next page but
doesn't cause a skip to the new page. Again,
.bp +n sets lhe page number to n more than its
current value; .bp means .bp + 1.

10. Number Registers and Arithmetic

troff has a facility for doing arithmetic, and
for defining and using variables with numeric
valu~s. called number registers. Number regis
ters, like strings and macros, can be useful in
setting up a document so it is easy to change
later. And of course they serve for any sort of
arithmetic computation.

Like strings, number registers have one or
two character names. They are set by the .nr
command. and are referenced anywhere by \nx
(one character name) or \n(xy (two character
name).

There are quite a few pre-defined number
registers maintained by troW, among them 'Wt for
the current page number; Di for the current vert
ical position on the page; dy, mo and yr for the
current day, month and year; and .s and .r for
the current site and font. (The font is a number
from I to 4.) Any of these can ,be used in com
putations like any other register; but some, like
. s and .r, cannot be changed with .nr.

As an example of the use of number reais·
ters, in the -1111 macro package (4), most
significant parameters are defined in terms of the
values of a handful of number registers. These
include the point size for text, the vertical spac·
ing, and the line and title lengths. To set the
point size and vertical spacing for the following
paragraphs. for example, a u~r may say

.nr PS 9

.nr VS 11

The paragraph macro .PP is defined (roughly) as
follows:

.de PP

.ps \\n(PS

.vs \\n(VSp

.ft R

.sp O.Sv

.ti +lm

\ • reset size
\•spacing
\•font
\•half a line

This sets the font to Roman and the point size
and line spacing to whatever values are stored in
the number registers PS and VS.

Why are there two backslashes? This is
the eternal problem of how to quote a quote.
When troff originally reads the macro definition,
it peels off one baclcsiash to see what's coming
next. To ensure that another is left in the
definition when the macro is used. we have to
put in two backslashes in the definition. If only
one backslash is used, point size and vertical
spacing will be frozen at the time the macro is
defined, not when it is used.

Protecting by an extra layer of backslashes
is only needed for \n, \•, \S (which we haven't
come to yet), and\ itself. Things like \s. \f, \h,
\v, and so on do not need an extra backslash,
since they are converted by trol' to an internal
code immediately upon being seen.

Arithmetic expressions can appear any
where that a number is expected. As a trivial
example,

.nr PS \\n(PS-2

decrements PS by 2. Expressions can use the

• 10.

arithmetic operators +, - , •. I, % (mod), the
rel,.tional operators >. > - , <, < •, •, and
!- (not equal), and parentheses.

Although the arithmetic we have done so
far has been straightforward, more complicated
things are somewhat tricky. First, number regis
ters hold only integers. trol' arithmetic uses
truncating integer division, just like Fortran .
Second, in the absence of parentheses, evalua
tion is done left-to-right without any operator
precedence (including relational operators).
Thus

7•-4+3/13

becomes • - l '. Number registers can occur any
where in an expression, and so can scale indica
tors like p, i, m, and so on (but no spaces).
Although integer division causes truncation, each
number and its scale indicator is converted to
machine· units (1/432 inch) before any arithmetic
is done, so li/2u evaluates to O.Si correctly.

The scale indicator u often has to a9pear
when you wouldn't expect it - in particular,
when arithmetic is being done in a context that
implies horizontal or vertical dimensions. For
example.

.ll 7/2i

would seem obvious enough - J 'h inches.
Sorry. Remember that the default units for hor·
izontaJ parameters like .II are ems. That's really
'7 ems I 2 inches', and when translated into
machine units, it becomes zero. How about

.II 7i/2

Sorry, still no good - the '2' is '2 ems', so
'7i/2' is small, although not zero. You must use

.II 7i/2u

So again, a safe rule is to attach a scale indicator
to every number, even constants.

For arithmetic done within a .nr command,
there is no implication of horizontal or vertical
dimension, so the default units are 'units', and
7i/2 and 7i/2u mean the same thing. Thus

.nr II 7i/2

.U \\n(llu

does just what you want, so long as you don't
forget the u on the .11 command.

11. Macros "itb arcuments
The next step is to define macros that can

change from one use to the next according to
parameters supplied as arguments. To make this
work, we need two things: first, when we define

the macro, we have to indicate that some parts
of it will be provided as arguments when the
macro is called. Then when the macro is called
we have to provide actual arguments to be
plugged into the definition.

Let us illustrate by defining a macro .SM
that will print its arsument two points smaller
than the surrounding ·text. That is, the macro
call

.SM TROFF

will produce TROFF.

The definition of .SM is

.de SM
\s-2\\Sl\s+2

Within a macro definition, the symbol \\Sn
refers to the nth argument that the macro was
called with. Thus \\Sl is the string to be placed
in a smaller point size when .SM is caUed.

As a slightly more complicated version, the
following definition of .SM permits optional
second and third arguments that will be printed
in the normal size:

.de SM
\\S3\s-2\\Sl\s+2\\$2

Arguments not provided when the macro is
called are treated as empty. so

.SM TROFF),

produces TROFF), while

.SM TROFF). (

produces (TROFF). It is convenient to reverse
the order of arguments because trailing punctua
tion is much more common than leading.

By the way, the number of arguments that
a macro was called with is available in number
register .S.

The following macro .BO is the one used
to make the 'bold roman' we have been using
for troff command names in text. It combines
horizontal motions, width computations, and
argument rearrangement.

. de BO
\&\ \$3\fl\ \$1 \h' -\w'\ \$1'u+1 u'\ \$1\fP\ \$2

The \h and \w commands need no extra
backslash, as we discussed above. The \& is
there in case the argument begins with a period.

- 11 -

Two back .. iashes are needed with the \\Sn
commands, though, to protect one of them when
the macro is being defined. Perhaps a second
example will make this clearer. Consider a
macro called .SH whi.::h produces section head
ings rather like those in this paper, with the sec
tions numbered automatically, and the title in
bold in a smaller size. The use is

.SH "Section title ... •

(If the argument to a macro is to contain blanks.
then it must be surrounded by double quotes,
unlike a string, where only one leading quote is
permitted.)

Here is the definition of the .SH macro:

.nr SH 0

.de SH

.sp 0.3i

\" initialize section number

.ft B

.nr SH \\n(SH+ i

.ps \\n(PS-1
\\n(SH. \\SI
.ps \\n(PS
.Sp 0.3i
.ft R

\ • increment number
\ • decrease PS
\ • number. title
\ • restore PS

The section number is kept in number register
SH, which is incremented each time just before it
is used. (A number register may have the same
name as a macro without conflict but a string
may not.)

We used \\n(SH instead of \n(SH and
\\n(PS instead of \n(PS. If we had used \n(SH,
we would get the value of the register at the time
the macro was defined. not at the time it was
used. If that's what you want, fine, but not here.
Similarly, by using \\n(PS, we get the point size
at the time the macro is called.

As an example that does not involve
numbers, recall our .NP macro which had a

. ti 'left' center' right'

We could make these into parameters by using
instead

.U '\\•(LT'\\•(CT'\\•(RT'

so the title comes from three strings called LT .
CT and RT. If these are empty, then the tltle
will be a blank line. Normally CT would be set
with something like

.els CT - % -

to give just the page number between hyphens
(as on the top of this page), but a user could

supply private definitions for any of the strings.

12. Conditionals

Suppose we want the .SH macro to leave
two extra inches of space just before section 1,
but nowhere else. The cleanest way to do that is
to test inside the .SH macro whether the section
number is 1, and add some space if it is. The .if
command provides the conditional test that we
can add just before the heading line is output:

.if \\n (SH -1 .sp 2i \ • first section only

The condition after the .if can be any
arithmetic or logical expression. If the condition
is logically true. or arithmetically greater than
zero, the rest of the line is treated as if it were
text here a command. lf the condition is
false, or zero or negative, the rest of the line is
skippetl. i

It is possible to do more than one coml
mand if a condition is true. Suppose several
operations are to be done before section I. One
possibility is to define a macro .St and invoke it
if we are about to do section I (as determined by
an .if).

.de St
--- processing for section 1 ---

.de SH

.if\ \n(SH •I .SI

An alternate way is to use the extended
form nf the .if, like this:

if\ \n(SH-1 \(--- processing
for section l ----\}

The braces \(and \) must occur in the positions
shown or you will get unexpected extra lines in
your output. troff also provides an 'if-else' con
struction. which we will not go into here.

A condition can be negated by preceding it
· with !; we get the same effect as above (but less

clearly) by using

.if !\\n(SH > l .SI

There are a handful of other conditions
that can be tested with .if. For example, is the
current page even or odd?

.if e .ti .. even page title··

.if o .ti "odd page title ..

gives facing pages different titles when used

• 12.

inside an appropriate new page macro.

Two other conditions are t and n. which
tell you whether the formatter is trotl or nroft'.

. if t troff stuff .. .

.if n nroff stutT .. .

Finally, string comparisons may be made
in an .if:

.if 'string! 'string2' stuff

does 'stuff' if string/ is the same as strtng2. The
character separating the strings can be anything
reasonable that is not contained in either string.
The strings themselves can reference strings with
\•. arguments with \$, and so on.

13. Environments

As we mentioned, there is a potential
problem when going across a page boundary:
parameters like size and font for a page title may
well be different from those in effect in the text
when the page boundary occurs. troff provides a
very general way to deal with this and similar
situations. There are three 'environments', each
of which has independently settable versions of
many of the parameters associated with process
ing. including size. font. line and title lengths,
fill/noftll mode. tab stops, and even partially col
lected lines. Thus the titling problem may be
readily solved by processing the main text in one
environment and titles in a separate one with its
own suitable parameters.

The command .ev n shifts to environment
n; n must be 0, I or 2. The command .ev with
no argument returns to the previous environ
ment. Environment names are maintained in a
stack. so calls for different environments may be
nested and unwound consistently.

Suppose we say that the main text is pro
cessed in environment 0, which is where trolf
begins by default. Then we can modify the new
page macro .NP to process titles in environment
l like this: •

.de NP

.ev l

.It 6i

.ft R

.ps 10

\ • shift to new environment
\" set parameters here

... any other processing ...

.ev \ • return to previous environment

It is also possible to initialize the parameters for
an environment outside the .NP macro, but the
version shown keeps all the processing in one
place and is thus easier to understand and

change.

14. Diversions

There are numerous occasions in page lay
out when it is necessary to store some text for a
period of time wtthout actually printing it. Foot
notes are the most ob~ious exampfe: the text of
the footnote usually appears in the input well
before the place on the page where it is to be
printed is reached. In fact. the place where it is
output normally depends on how big it is, which
implies that there must be a way to process the
footnote at least enough lo decide its size
without printing it.

troff provides a mechanism called a diver·
sion for doing this processing. Any part of the
output may be diverted into a macro instead of
being printed, and then at some convenient time
the macro may be put back into the input.

The command .di xy begins a diversion -
all subsequent output is collected into the macro
xy until the command .di with no arguments is
encountered. This terminates the diversion.
The processed text is available at any time
thereafter, simply by giving the command

.xy

The vertical size of the last linished diversion is
contained in the built-in number register dn.

As a simple example, suppose we want to
implement a 'keep-release' operation, so that
text between the commands .KS and .KB will not
be split across a page boundary (as for a figure or
table). Clearly, when a .KS is encountered, we
have to begin diverting the output so we can find
out how big it is. Then when a .KE is seen, we
decide whether the diverted text will fit on the
current page, and print it either there if it fits, or
at the top of the next page if it doesn't. So:

.de KS \ • start keep

. br \ • start fresh line

. o.v l \ • collect in new environment

. fi \ • make it filled text

.di XX \" collect in XX

.de KE \ • end keep

. br \"get last partial line

.di \ • end diversion

.if\\n(dn>•\\n(.t .bp \" bp if doesn't fit

.nf \ • bring it back in no-fill

.XX \" text

.ev \" return to normal environment

Recall that number register nl is the current

• 13 •

position on the output page. Since output was
being diverted, this remains at its value when the
diversion started. dn is the amount of text in
the diversion; .t (another built-in register) is the
distance to the next trap, which we assume is at
the bottom margin of the page. If the diversion
is large enough to go past the trap, the .if is
satisfied, and a .bp is issued. In either case, the
diverted output is then brought back with .XX. It
is essential 10 bring it back in no-fill mode so
troff will do no further processing on it.

This is not the most general keep-release,
nor is it robust in the face of all conte1vable
inputs, but it would require more space than we
have here to write it in full generality. This sec
tion is not intended to teach everything about
diversions, but to sketch out enough that you
c-c1n read existing macro packages with some
comprehension.

Acknowledgements

I am deeply indebted to J. F. Ossanna. the
author of troff. for his repeated patient explana
tions of line points, and for his continuing wil
lingness to adapt troff to make other uses easier.
I am also grateful to Jim Blinn, Ted Dolotta,
Doug Mcilroy, Mike Lesk and Joel Sturman for
helpful comments on this paper.

References

{l) J. F. Ossanna, NROFF/TROFF User's
Manual, Bell Laboratories internal
memorandum.

(2) B. W. Kernighan. A System /or Typesewng
Mathematics - User ·s Guide (Second Edi·
1ton). Bell Laboratories internal memoran·
dum.

[31 M. E. Lesk, TBL - A Program 10 Format
Tables. Bell Laboratories internal memoran
dum .

(41 M. E. Lesk, Typing Documents on UNIX .
Bell Laboratories internal memorandum .

[SJ J. R. Mashey and 0. W. Smith, PWBIMM
- Programmer's Workbench Memorandum
Macros, Bell Laboratories internal
memorandum .

• 14.

Appendix A: Pbototnesetter Character Set

These characters exist in roman. italic. and bold. To g~t the one on the left. type the four-character
name on the right

ff \(ft' ft \(ft a \(0 Iii \(Fi ft1 \(Fl
:.. \(ru - \(em •t. \(14 'h \(12 Jtt \(34

• \(co • \(de,' t \(dg. I \(fm t \(ct

• \(rg • \(bu CJ \(sq . \(hy
Un bold. \(sq is •.)

The following are special-font characters:

+ \(pl \(mi x \(mu + \(di - \(eq = \(-- ;ll \(>- ' \(<-
;It \(!• ± \(+. .. \(no I \(sl

\(ap =- \(-- Cll: \(pt v \(gr
\(·> \(<. T \(ua 1 \(da

I \(is a \(pd Oii \(if .J \(sr
c \(sb ::::> \(sp u ·\(cu n \(ca
~ \(ib :2 \(ip E \(mo fJ \(es

\(aa \(ga 0 \(cj @ \(bs
§ \(sc * \(dd ~ \Oh .,,. \(rh
I \(It ' \(rt r \(le 1 \(re
t \(lb J \(rb l \(If J \(rf

t \(lk • \(rk I \(bv ' \(ts

I \(br I \(or \(ul - \(m
• \(••

These four characters also have two-character names. The • is the apostrOphe on terminals; the • is the
other quote mark.

\' \' \- '-
These characters exist only on the speciai font. but they do not have four-character names:

< > \ # @

For greek, precede the roman letter by\(• to get the corresponding greek; for example.\(.. is a.

abgdezyhiklmncoprstufxqw
a~y5cC~94#A~v~o•pu~v~x~~

ABGDEZYHIKLMNCOPRSTUFXQW
ABrdEZH91KAMN:onPtTY~X~n

Typesetting Mathematics - User's Guide

Brian W. Kernighan

Bell Laboratories,
Murray Hill, New Jersey 07974

Lorinda L. Cherry

Bell Laboratories,
Murray Hill, New Jersey 07974

ABSTRACT

(Second Edition)

This is the user's guide for a system for typesetting mathematics, using the photo·
typesetters on the UNIX and acos operating systems.

Mathematical expressions are described in a language designed to be easy to use by people
who know neither mathematics nor typesetting. Enough of the language to set in-line expres·
sions like lim (tan x)51n ix - l or display equations like

x--rr/2

G I l [sk zk I s i•t k G (z) - e1n ': - exp !. -- - TI e k

k~l k k~I

[Si2z2 I[S2z2 Sfz4 I - l+S1z+"2!+ · · · l+-2-+ 22.2! + · · · · · ·

can be learned in an hour or so.

The language interfaces directly with the phototypesetting language, TROFF, so mathemati
cal expressions can be embedded in the running text of a manuscript, and the entire document

· produced in one process. This user's guide is an example of its output.

The same language may be used with the UNIX formatter NROFF to set mathematical
expressions on DASI and GSI terminals and Model 37 teletypes.

T.

Typesetting Mathematics - User's Guide (Second Edition)

Brian W. Kernighan

Bell Laboratories,
Murray H!ll, New Jersey 07974

Lormda l. Cherry

Bell Laboratories,
Murray Hill, New Jersey 07974

1. Introduction

EON is a program for typesetting
mathematics on the Graphics Systems pho
totypesetters on UNIX and acos. The EQN

language was designed to be easy to use by
people who know neither mathematics nor
typesetting. Thus EQN knows relatively little·
about mathematics. In particular.
mathematical symbols like +. . x,
parentheses, and so on have no special
meanings. EON is quite happy to set garbage
(but it will look good).

EON works as a preprocessor for the
typesetter formatter, TROFF(l]. so the nor
mal mode of operation is to prepare a docu
ment with both mathematics and ordinary
text interspersed, and let EON set the
mathematics while TROFF does the body of
the text.

On UNIX, EON will also produce
mathematics on DASt and GSI terminals and
on Model 37 teletypes. The input is identi
cal, but you have to use the programs NEON

and NROFF instead of EON and TROFF. Of
course. some things won't look as good
because terminals don't provide the variety
of characters. sizes and fonts that a
typesetter does. but the output is usually
adequate for proofreading.

To use EQN on UNIX,

eqn files I troff

Geo~ use is discussed in section 26.

2. Displayed Equations

To tell EQN where a mathematical
expression begins and ends, we mark it with
lines beginning EO and .EN. Thus if you
type the lines

.EQ
x-y+z
.EN

your output will look like

x-y+z

The EQ and .EN are copied through
untouched; they are not otherwise processed
by EQN. This means that you have to take
care of things like centering. numbering,
and so on yourself. The most common way
is to use the TROFF and NROFF macro pack·
age package '-ms' developed by M. E.
Lesk[3), which allows you to center, indent,
left-justify and number equations.

With the '-ms' package, equations are
centered by default. To left-justify an equa
tion, use .EQ L instead of EQ. To indent it,
use EQ t. Any of these can be followed by
an arbitrary 'equation number' which will be
placed at the right margin. For example,
the input

.EQ I (3. la)
x - f(y/2) + y/2
.EN

produces the output

x-.f (y 12>+.v /2 O.la>

There is alsc a shorthand notation so
in-line expressions like rr,2 can be entered
without .EQ and EN. We will talk about it in
section 19.

3. Input spaces

Spaces and newlines within an expres·
sion are thrown away by EQN. (Normal text
is left absolutely alone.) Thus between .EQ
and .EN,

and

and

x-y+z

x - y + z

x - y
+z

and so on all produce the same output

x-y+z

You should use spaces and newlines freely
to make your input equations readable and
easy to edit. In particular, very long lines
are a bad idea, since they are often bard to
fix if you make a mistake.

4. Output spaces

To force extra spaces into the output,
use a tilde ·~ ·" for each space you want:

x·-·y·+·z

gives

You can also use a circumflex , which
gives a space haJf the width of a tilde. It is
mainly useful for fine-tuning. Tabs may
also be used to position pieces of an expres·
sion. but the tab stops must be set by TROFF
commands.

5. Symbols. Special Names. Greek

EQN knows some mathematical sym
bols. some mathematical names, and the

' Greek alphabet. For example,

x-2 pi int sin (omega t)dt

produces

x-21T J sin(wt)dt

Here the spaces in the input are necnsary
to tell EQN that int. p1, sin and omega are
separate entities that should get special
treatment. The sin. digit 2. and parentheses

• 2 •

are set in roman type instead of italic~ pi and
r"lega are made Greek~ and int becomes the
integral sign.

When in doubt, leave spaces around
separate parts of the input. A very common
error is to type f(pi) without leaving spaces
on both sides of the pi. As a result, EQN
does not recognize pi as a special word, and
it appears as .f (pi) instead off (.,,).

A complete list of EQN names appears
in st;ction 23. Knowledgeable users can also
use TROFF four-character names for any
thing EQN doesn't know about, like \(bs for
the Bell System sign @.

6. Spaces, Again

The only way EQN can deduce that
some sequence of letters might be special is
if that sequence is separated from the letters
on either side of it. This can be done by
surrounding a special word by ordinary
spaces <or tabs or newlines). as we did in
the previous section.

You can a!so make special words stand
out by surrounding them with tildes or
circumflex es:

x·--rpnnr·s;n·(·omegaY)-dt

is much the same as the last example,
ex~ept that the tildes not only separate the
magic words like sm. omega. and so on. but
aiso add extra spaces. one space per tilde:

x • 2 .,, J sin (w t) dt

Special words can also be separated by
braces { l and double quotes * .•. ", which
have special meanings that we wilt see soon.

7. Subscripts and Superscripts

Subscripts and superscripts are
obtained with the words sub and sup.

x sup 2 + y sub k

gives

x2+y~

EQN takes care of all the size changes and
vertical motions needed to make the output
look right. The words sub and sup must be
surrounded by spaces~ x sub2 will give you
xsub2 instead of x 2• Furthermore, don't

forget to leave a space (or a tilde, etc.> to
mark the end of a subscript or superscript.
A common error is to say something like

y - (x sup 2) + 1

which causes

y-(x2l+I

instead of the intended

y-(x2)+1

Subscripted subscripts and super
scripted superscripts also work:

x sub i sub 1

is

A subscript and superscript on the same
thing are printed one above the other if the
subscript comes first:

x sub i sup 2

is

x2 ,

Other than this special case. sub and
sup group to the right, so x sup y sub z

..,.: ~· means x , not x- :·

8. Braces for Grouping

Normally, the end of a subscript or
superscript is marked simply by a blank (or
tab or tilde. etc.) Whal if the subscript or
superscript is something that has to be typed
with blanks in it? In that case, you can use
the braces { and l to mark the beginning and
end of the subscript or superscript:

e sup {i omega ti

is

e'""'

Rule: Braces can always be used to for:ce
EQN to treat something as a unit, or just to
make your intent perfectly clear. Thus:

x sub {i sub l} sup 2

is

with braces, but

x2
'1

• 3 -

is

x sub i sub I sup 2

Xz
'1

which is rather different.

Braces can occur within braces if
necessary:

e sup {i pi sup {rho +I} I
is

e'w;••I

The general rule is that anywhere you could
use some single thing like x. you can use an
arbitrarily complicated thing if you enclose it
in braces. EON will look after all the details
of positioning it and making it the r-ight size.

In all cases. make sure you have the
right number of braces. Leaving one out or
adding an extra will cause EON to complain
bitterly.

Occasionally you will have to print
braces. To do this, enclose them in double
quotes, like "!". Quoting is discussed in
more detail in section 14.

9. Fractions

To make a fraction, use the word over:

a+b over 2c ... I

gives

a+b =l
2c

The line is made the right length and posi
tioned automatically. Braces can be used to
make clear what goes over what:

{alpha + beta I over {sin (x) l
is

a+@
sin (x)

What happens when there is both an over
and a sup in the same expression? In such
an apparently ambiguous case, EQN does the
sup before the over. so

-b sup 2 over pi

-b2
is instead of -b" The rules which

1T

decide which operation is done first in cases
like this are summarized in section 23.
When in doubt, however, use braces to
make clear what goes with what.

10. Square Roots

To draw a square root, use sqrt:

sqrt a+b + l over sqrt {ax sup 2 +bx+cl

is

.Ja+b + 1
'1ax2+bx+c

Warning - square roots of tall quantities
look lousy, because a root-sign big enough
to cover the quantity is too dark and heavy:

sqrt la sup 2 over b sub 2)

is

'1!
Big square roots are generaJly better written
as something to the power V2:

(a 2/b2)'h

which is

(a sup 2 /b sub 2) sup half

11. Summation, Integral, Etc.

Summations, integrals, and similar
constructions are easy:

sum from i-0 to Ii=- inf) x sup i

produces
,
!x'

Notice that we used braces to indicate where
the upper part 1-c:o begins and ends. No
braces were necessary for the lower part
, ... o. because it contained no blanks. The
braces will never hurt, and if the from and to
parts . contain any blanks, you must use
braces around them.

The jrom and to parts are both
optional, but if both are used, they have to
occur in that order.

- 4 -

Other useful characters can replace the
sum in our example:

int prod union inter

become, respectively.

I n u n
Since the thing before the from can be any
thing, even something in braces, from-to can
often be used in unexpected ways:

lim from {n ->inf! x sub n.-o
is

limx,,-0

12. Size and Font Changes

By default, equations are set in I 0-
point type (the same size as this guide).
with standard mathematical conventions to
determine what characters are in roman and
what in italic. Although EQN makes a vali
ant attempt to use estheticaUy pleasing sizes
and fonts, it is not perfect. To change sizes
and fonts, use size n and roman, italic. bold
and fat. Like sub and sup. size and font
changes affect only the thing that follows
them, and revert to the normal situation at
the end of it. Thus

is

and

gives

bold x y

xy

size 14 bold x - y +
size 14 {alpha + beta!

X-y+a+{3
As always, you can use braces if you want to
affect something more complicated than a
single letter. For example, you can change
the size of an entire equation by

size 12 I ... I

Legal sizes which may follow size are
6, 7, 8, 9, 10, 11, 12. 14. 16, 18, 20, 22, 24.
28, 36. You can also change the size by a
given amount: for example, you can say
size + 1 to make tqe: size two points bigger.

or size -J to make it three points smaller.
This has the advantage that you don't have
to know what the current size is.

If you are using fonts other than
roman, italic and bold, you can say font X
where X is a one character TROFF name or
number for the font. Since EQN is tuned for
roman, italic and bold, other fonts may not
give quite as good an appearance.

The fat operation takes the current
font and widens it by overstriking: fat grad is
V and fat {x sub ii is X;.'

If an entire document is to be in a
non-standard size or font, it is a severe nui
sance to have to write out a size and font
change for each equation. Accordingly, you
can set a "global" size or font which
thereafter affects all equations. At the
beginning of any equation, you might say,
for instance,

.EQ
gsize 16
gfont R

.EN

to set the size to 16 and the font to roman
thereafter. In place of R, you can use any
of the TROFF font names. The size after
gs1ze can be a relative change with + or -.

Generally, gs1ze and gjont will appear at
the beginning of a document but they can
also appear thoughout a document: the glo
bal font and size can be changed as often as
needed. For example, in a footnote* you
will typically want the size of equations to
match the size of the footnote text, which is
two points smaller than the main text.
Don· t forget to reset the global size at the
end of the footnote.

;Like 1h1s one. in wh11:h we have J few random
expressions like x, and 1T2. The sizes for these
were ~et by the .:ommand ~s1:e - !.

. s •

13. Diacritical Marks

To get funny marks on top of letters,
there are Se\ :!ral words:

x dot x
x dotdot x
x hat x
x tilde i
x vec x
x dyad x
x bar x
x under !

The diacritical mark is placed at the right
height. The bar and under are made the
right length for the entire construct, as in
~ other marks are centered.

14. Quoted Text

Any input entirely within quotes
(" ... ") is not subject to any of the font
changes and spacing adjustments normally
done by the equation setter. This provides a
way to do your own spacing and adjusting if
needed:

italic "sin(x)" + sin (x)

is

sm(x)+sin(x)

Quotes are also used to get braces and
other EQN keywords printed:

"I size alpha l"
is

I size alpha l
and

roman "I size alpha l"
is

{ size alpha l
The construction "" is often used as a

place-holder when grammatically EQN needs
something, but you don't actually want any
thing in your output. For example, to make
2He, you can't just type sup 2 roman He
because a sup has to be a superscript on

something. Thus you must say

•• sup 2 roman He

To get a literal quote use .. , •••. TROFF

characters like \ (bs can appear unquoted.
but more complicated things like horizontal
and vertical motions with \h and \ v should
always be quoted. (If you 'v~ never heard of
\h and \ 11, ignore this section.)

IS. Lining Up Equations

Sometimes ifs necessary to line up a
series of equations at some horizontal posi
tion. often at an equals sign. This is done
with two operations called mark and lineup.

The word mark may appear once at
any place in an equation. It remembers the
horizontal position where it appeared. Sue·
cessive equations can contain one
occurrence of the word lineup. The place
where lineup appears is made to line up with
the place marked by the previous mark if at
ail possible. Thus. for example. you can say

.EQ I
x+y mark"'!' z
.EN
.EQ I
x lineup - I
.EN

to produce

x+y•:

x-1

For reasons too compticated to talk about,
when you use EQN and '-ms', use either
.EQ 1 or .EQ L. mark and lineup don't work
with centered equations. Also bear in mind
that mark doesn't look ahead:

x mark -1

x+y lineup -z
isn't going to work. because there isn't
room for the x + y part after the mark
remembers where the x is.

- 6 -

16 Bia Brackets, Etc.

To get big brackets [J, braces I).
parentheses {) • and bars 11 around things,
use the left and nght commands:

left { a over b + 1 right I
-- • left (cover d right)
+ left (e right]

is

The resulting brackets are made big enough
to cover whatever they enclose. Other char
acters can be used besides these. but the are
not likely to look very good. One exception
is the }f 001' and ceiling characters:

left tloor x over y right floor
< - left ceiling a over b right ceiling

produces

Several warnings about brackets are in
order. First. braces are typically bigger than
brackets and parentheses. because they are
made up of three. five, seven. etc.. pieces.
while brackets . can be made up of two,
three. etc. Second, big left and right
parentheses often look poor, because the
character set is poorly designed.

The r1gh1 part may be omitted: a "left
something" need not have a corresponding
"right something". If the r1gh1 part is omit
ted, put braces around the thing you want
the left bracket to encompass. Otherwise,
the resulting brackets may be too large.

If you want to omit the left part, things
<

are more complicated, because technically
you can't have a nght without a correspond
ing le.ti. Instead you have to say

left "" right)

for example. The lelt "" means a "left noth
ing". This satisfies the rules without hurt
ing your output.

·,

17. Piles

There is a general facility for making
vertical piles of things; it comes in several
flavors. For example:

A -- • left [
pile { a above b above c l
·- pile I x above y above z }

right J

will make

A - [~ ~l
The elements of the pile (there can be as
many as you want) are centered one above
another, at the right height for most pur
poses. The keyword above is used to
separate the pieces; braces are used around
the entire list. The elements of a pile can
be as complicated as needed, even contain
ing more piles.

Three other forms of pile exist: !pile
makes a pile with the elements left-justified;
rp1/e makes a right-justified pile; and cp1le
makes a centered pile, just like pile. The
vertical spacing between the pieces is some
what larger for /., r- and cpiles than it is for
ordinary piles.

roman sign (x)·-
left (

lpile { 1 above 0 above -1 l
·-!pile
lirx>O above irx-o above irx<Ol

makes

sign (."t") -1~
-1

if x>O
if x-0
if x<O

Notice the left brace without a matching
right one.

18. Matrices

It is also possible to make matrices.
For example, to make a neat array like

x, x2

y, y2

you have to type

• 7 •

matrix I

}

ecol I x sub i above y sub i I
ecol l x sup 2 above y sup 2 l

This produces a matrix with two centered
columns. The elements of the columns are
then listed just as for a pile, each element
separated by the word above. You can also
use /col or rcol to left or right adjust
columns. Each column can be separately
adjusted, and there can be as many columns
as you like.

The reason for using a matrix instead
of two adjacent piles, by the way, is that if
the elements of the piles don't all have the
same height, they won't line up properly. A
matrix forces them to line up, because it
looks at the entire structure before deciding
what spacing to use.

A word of warning about matrices -
each column must have the same number of
elements in 1t. The world will end if you get
this wrong.

19. Shorthand for In-line Equations

In a mathematical document, it is
necessary to follow mathematical conven·
tions not just in display equations, but also
in the body of the text, for example by mak
ing variable names like x italic. Although
this could be done by surrounding the
appropriate parts with EQ and EN, the con·
tinual repetition of .EQ and EN is a nuisance.
Furthermore, with ·-ms', EQ and .EN imply
a displayed equation.

EQN provides a shorthand for short in
line expressions. You can define two char
acters to mark the left and right ends of an
in-line equation. and then type expressions
right in the middle of text lines. To set
both the left and right characters to dollar
signs. for example, add to the beginning of
your document the three lines

.EQ
delim SS
.EN

Having done this, you can then say things
like

Let $alpha sub iS be the primary
variable. and let SbetaS be zero.
Then we can show that Sx sub l S is
S>-OS.

This works as you might expect - spaces.
newlines. and so on are significant in the
text, but not in the equation pan itself.
Multiple equations can occur in a single
input line.

Enough room is left before and after a
line that contains in-line expressions that

If

something like !,x, does not interfere with
•-I

the lines surrounding it.

To turn off the delimiters,

.EQ
deiim off
.EN

Warning: don't use braces. tildes,
circumflexes, or double quotes as delimiters
- chaos will result.

20. Definitions

EQN provides a facility so you can give
a frequently-used string of characters a
name, and thereafter just type the name
instead of the whole string. For example. if
the sequence

x sub i sub 1 + y sub i sub I

appears repeatedly throughout a paper, you
can save re-typing it each time by defining it
like this:

define xy 'x sub i sub l + y sub i sub l'

This makes xy a shorthand for whatever
characters occur between the single quotes
in the definition. You can use any character
instead of quote to mark the ends of the
definition, so long as it doesn't appear inside
the definition.

Now you can use xy like this:

. EQ
f(x) - xy ...
.EN

and so on. Each occurrence of xy will
expand into what it was defined as. Be care
ful to leave spaces or their equivalent

-8-

around the name when you actually use it,
so t:QN will be able to identify it as special.

There are several things to watch out
for. First. although definitions can use pre
vious definitions, as in

.EQ
define xi ' x sub i '
define :icil ' xi sub I '
.EN

don 't define somethmg in terms of itse!r A
favorite error is to say

define X ' roman X '

This is a guarant~ed disaster, since X is now
defined in terms o_f itself. If you say

define X ' roman ·x· '
however, the quotes protect the second X,
and everything works fine.

EQN keywords can be redefined. You
can make I mean over by saying

define I ' over '

or redefine over as I with

define over ' ., '

If you need ddf erent things to print on
a terminal and on the typesetter, it is some
times worth defining a symbol diff erentJy in
NEQN and EQN. This can be done with
ndefine and tdefine. A definition made with
ndefine only takes cff ect if you are running
NEQN; if you use rde.ftne. the definition only
applies for EQN. Names defined with plain
define apply to both EQN and NEQN.

21. Local Motions
Although EQN tries to get most things

at the right place on the paper, it isn't per
fect. and occasionally you will need to tune
the output to make it just right. Small extra
horizontal spaces can be obtained with tilde
and circumflex. You can also say back n and
fwd n to move small amounts horizontally .
n is how far to· move in l/lOO's of an em
(an em is about the width of the letter •m'.)
Thus back 50 moves back about half the
width of an m. Similarly you , can move
things up or down with up n and down n. As
with sub or sup. the local motions affect the

next thing in the input, and this can be
something arbitrarily complicated if it is
enclosed in braces.

As an example of local motions, con
sider tucking the limits in under an integral
sign. Normally if you say

int sub 0 sup 1

it looks like

I~
which is awful. The intuitively appealing

int from 0 to 1

is

f
0

which is not normally used. But if you say

int sub back 40 down SO 0 sup up 30 1

you get

Io'
(These values are determined experimen
tally.) Of course this is a nuisance to type,
so you would first make definitions like this:

tdefine lower ' sub back 40 down SO '
tdefine upper ' sup up 30 '

and then say

int lower 0 upper 1

22. A Large Example

Here is the complete source for the
three display equations in the abstract of this
guide.

.EQ I
uld"mark -· e sup l In· G(zl I
·-·exp left (
sum from k > -1 (S sub k z sup kl over k right)
·- • prod from k> -1 e sup IS sub k z sup k /kl
EN
EQI

hneup - left (I + S sub I z +
I S ~ub I sup 2 z sup 2 l over 2! + ... right)
left (I + I S sub 2 z sup 2 I over 2
+ I S sub 2 sup 2 z sup 4 l over I 2 sup 2 cdot 2! I
+ ... right) ...
.EN
.EQ I
lineup - sum from m > •O left (

- 9 -

:.um from
pile I k .'iub I .k :.ub 2 ... k .,ub m > -o
above
k sub I +2k ,ut· 2 • +mk :.ub m -ml
I S sub I sup ! I. 'u n 11 l over 11 SU!l k sub I k >Ub I ! I ·
I S sub 2 sup lk 'uh 2l i over (2 sup k sub 2 k sub 2 1 I •

IS sub m sup lk ~ub nil I over {m sup k sub m k sub m ' I
right l z sup m
.EN

23. Keywords, Precedences, Etc.

If you don't use braces, EQN will do
operations in the order shown in this list.

dyad vec under barn/de hat dot dotdot
fwd back. down up
.fat roman l(O/ic bold size
sub sup sqrt over
from to

These operations group to the left:

over sqrt left right

All others group to the right.

Digits, parentheses, brackets, punctua
tion marks. and these mathematical words
are converted to Roman font when encoun
tered:

sin cos tan sinh cosh tanh arc
max min Jim log In exp
Re Im and if for det

These character sequences are recognized
and translated as shown.

>
<=---
+
->
<-
< <
>>
inf
partial
half
prime
approx
nothing
cdot
times
de!

;C

±

<<
>>

a
'h

grad 'V

, ... , , ... '
sum I:
int I
prod n
union u.
inter n·

To obtain Greek letters, simply spell
them out in whatever case you want:

DELTA A iota ' GAMMA r kappa I(

LAMBDA A lambda A.
OMEGA n mu µ.
PHI cl> nu ,,
Pl n omega (d

PSI "' omicron. 0

SIGMA t phi " THETA e pi 1f

UPSILON Y psi • XI -= rho p
alpha a sigma <T

beta /3 tau T'

chi x theta 9
delta 8 upsilon 11

epsilon • xi e
eta 1J zeta ' gamma y

These are all the words known to EQN
(except for characters with names), together
with the section where they are discussed.

above 17, 18 I pile 17
back 21 mark 15
bar 13 matrix 18
bold 12 ndefine 20
ecol 18 over 9
col 18 pile 17
cpile 17 rcol 18
define 20 right 16
delim 19 roman 12
dot 13 rpile 17
dotdot 13 size 12
down 21 sqrt IO
dyad 13 sub 7
fat 12 sup 7
font 12 tdefine 20
from 11 tilde 13

-10-

lwd 21 to 11
gfont 12 under 13
gsize 12 up 21
hat 13 vec 13
italic 12 t 4, 6
lcol 18 { l 8
left 16 • • 8, 14
lineup 15

24. Troubleshooting

If you make a mistake in an equation,
like leaving out a brace (very common) or
having one too many (very common) or
having a sup with nothing before it (com·
mon), EQN will tell you with the message

syntax error between lines x and y, file z

where x and y are approximately the lines
between which the trouble occurred, and z is
the name of the file in question. The line
numbers are approximate - look nearby as
well. There are also self-explanatory mes
saces that arise if you leave out a quote or
try to run EQN on a non-existent tile.

If you want to check a document
before actually printing it (on UNIX only),

eqn files >ldev/null

will throw away the output but print the
messages.

If you use something like dollar signs
as delimiters. it is easy to leave one out.
This causes very strange troubles. The pro
gram checkeq (on GCOS, use .kheckeq
instead) checks for misplaced or missing
dollar signs and similar troubles.

In-line equations can only be so big
because of an internal buffer in TROFF. If
you get a message "word overflow", you
have exceeded this limit. If you print the
equation as a displayed equation this mes·
sage wiU usually go away. The message
"line overflow" indicates you have
exceeded an even bigger buffer. The only
cure for this is to break the equation into
two separate ones.

On a related topic, EQN does not break
equations by itself - you must split long
equations up across multiple lines by your·
self, marking each by a separate .EQ .•• .EN

sequence. EQN does warn about equations
that are too long to fit on one Une.

25. Use on UNIX

To print a document that contains
mathematics on the UNIX typesetter,

eqn files I troff

If there are any TROFF options, they go after
the TROFF part of the command. For exam
ple,

eqn files I troff -ms

To run the same document on the GCOS
typesetter, use

- 11 •

26. Use on GCOS

This space intentionally left blank

eqn files I troff -g (other options) I gcat 27. Ackno"ledgments

A compatible version of EQN can be
used on devices like teletypes and DASI and
GSI terminals which have half-line forward
and reverse capabilities. To print equations
on a Model 37 teletype, for example, use

neqn files I nroff

The language for equations recognized by
NEQN is identical to that of EQN, although of
course the output is more restricted.

To use a GSI or DASI terminal as the
output device,

neqn files I nroff -T x

where x is the terminal type you are using,
such as JOO or JOOS.

EQN and NEQN can be used with the
TBL program{2] for setting tables that con
tain mathematics. Use TBL before [NIEQN,
like this:

tbl files I eqn I troff
tbl files I neqn I nroff

We are deeply indebted to J. F.
Ossanna, the author of TROFF. for his wil·
lingness to extend TROFF to make our task
easier, and for his continuous assistance
during the development and evolution of
EQN. We are also grateful to A. V. Aho for
advice on language design, to S. C. Johnson
for assistance with the YACC compiler·
compiler, and to all the EQN users who have
made helpful suggestions and criticisms.

References

[I) J. F. Ossanna, "TROFF User's
Manual", Bell Laboratories internal
memorandum.

{2) M. E. Lesk, "Typing Documents on
UNIX", Bell Laboratories internal
memorandum.

[3} M. E. Lesk, "TBL- A Program for
Setting Tables", Bell Laboratories
internal memorandum.

New Graphic Symbols for EQN and NEQN

Carmela Scrocca

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT
There is now available on tJNIX and GCOS a set of special characters fre

quently used in technical typing. In the past, authors have sometimes written
out these symbols in English~ others just assumed their secretary or typist had
these symbols ready and waiting. These characters, however. are not part of
the standard terminal or typesetter character sets. but are built-up of those
already available. They can presently be produced for phototypesetter output
by using EQN/TROFF~ NEQN/NROFF can be used for computer terminal out·
put.

This document displays these characters. shows how to use them, and
discusses what is involved in making a special character.

T.8

Introduction

New Graphic Symbols for EQN and NEQN

Carmela Scrocca

Bell Laboratories
Murray Hill. New Jersey 0797 4

There is now available on UNIX and GCOS a set of special characters frequently used in
technical typing. These characters supplement the ones that come with the typesetter and ter
minal which both have their own set of standard characters. These special characters are
accessed through the math typesetting programs NEQN and EQN. 1 Processed through the
NROFF and TROFF2 formatting programs, the characters can be out?Ut on either a computer
terminal or a phototypesetter. Using various NROFF/TROFF conventions, two or more of
these existing characters can be built-up and pieced together to draw a new character.

Sections 1 and 2 of this document give a list of these characters and tell how to access and
use them. In Sections 3 and 4, the reader will see what is involved in making a special charac
ter for both phototypeSetter and computer terminal outpuL

1. The Characters
Table 1 gives a list of the characters, their meanings, and the names by which EQN recog

nizes them.

The user should be aware that these special characters are not built into the NEQNIEQN
program, but are stored in directoey /usr/pub~ the filename is eqnchar. In order to use any of
these symbols this file will have to be referenced. This can be done by using file eqnchar as the
first filename in your output command, such as

neqn /usr/pub/eqnchar filenames I nroff.

for computer terminal output. For phototypeSetter output use EQNITROFF instead of
NEQN/NROFF. On GCOS, the characters are in file ./eqnchar.

Some users will find a constant need for only a few of the special characters. It may be
convenient for these users to take their few selected characters, and write them into a file in
their own directory. Other users may only need a few characters for use in one particular docu
ment. They could edit /usrlpub/eqnchar, copy the desired character definitions into a separate
fil~ and read that file into the beginning of their document file.

Appendices la and 1 b provide additional characters with their corresponding EQN names.
The characters list in Appendix la are from the phototypesetter character set and have been
assigned EQN names. /usr/pub/eqnchar must be referenced in the outl)ut command to use
characters in this set. Appendix 1 b contains a list of characters already built into EQN and can
be used directly with the program.

• 2.

character name character EQN name

sum of two elements " e ciplus

product of two elements ® citimes

is congruent to .. -wig

approximately equal to - -dot

equals by definition a -del

large star • biptar

centered star * star

or v orsign

and {\ andsign

for all "' opp A

there exists 3 opp£

is included in c: incl

not a member of ' nomem
0 -

angstrom A anptrom

less than or approximately equal to ~ <wig

greater than or approximately equal to ~ >wig

not less than < I<

not greater than ::> I>
left angle bracket (tangle

right angle bracket) rangle

hbar 1f hbar

parallel II II
perpendicular .I. ppd

angle L ang

right angle L rang

implies and is implied by - <->

implies and is implied by ... <->

vertical ellipsis
.

3dot . .
therefore

. thf . .

Table l. The Special Characters

l. Usage
The reader should be familiar with EQN as these characters work with the program and

are used in the same manner as any other mathematical symbol. An EQN name must be
separated from surrounding input (with spaces) in order to be recognized as a special character.
For example, just as you would say

to get

• 3 •

1f' - !x'
you could say

x sub 3 --wig- pi star y sub 1 pd

to give you

X3;;; 1T*Yi.

of which -wig,, star and ppd are a few of the new special characters. These symbols will work
in both displayed· and in-line equations. :there are no bold or italic versions of the symbols.

3. Creating Special Characters for EQN
The symbols discussed here were created by taking pre-existing characters and piecing

them together with the input and output conventions. and escape sequences made available
through NROFF and TROFF. Most commonly used here were the local horizontal and vertical
motions, overstrike and zero width functions, and the point-size change function. These are
used primarily for phototypesetter output; making characters for computer terminal output will
be discussed in Section 4. The definitions of all the special characters are listed in Appendix 2.

Local horizontal and vertical motions are used to move a character up, down, or to the
left or right depending on where you want to position your character. These motions are gen
erated by the escape sequences \u, \~ \r, \v and \h. The motions are expressed in terms of
ems; an em is approximately the width of the letter 'm'. By using ems, the amount of motion
will always be in proportion to character size. The \u and \d sequences give vertical motions of
V1 em up and down, respectively; \r gives an upward motion of l em. The \v (vertical motion)
and \h (horizontal motion) escape sequences allow you to move any fraction of an em. The
distance must be enclosed in ' marks and the direction of movement can be indicated by mak
ing it either positive or negative. For example, if you wanted a downward vertical motion of
3/10 of an em. you would say \v'.3m', and an upward vertical motion of 6/10 of an em would
be \v'-.6m'. The same basic rules apply to horizontal motions where positive moves to the
right, and negative to the left. The "is much greater than" symbol >> shows a simple hor·
izontal motion:

>\h'-.3m'>

(>> is not a special character, but built into EQN~ see Appendix lb.)
The overstrike function \o simply overprints characters on top of another, centered on the

widest character. This function was used to create the "sum of two elements" symbol e by
saying

\o'\ (pl\ (ci'

where \(pl and \(ci are the escapes for+ and O. The string of characters to be overstruck must
be enclosed in ' marks. When using the overstrike function be sure. not to use any motions or
it will not work.

Similar to the overstrike function is the bracket building function \b. Instead of centering
one character on the other, the bracket building function piles the characters vertically. The
"angle brackets" were built-up using the \b function:

\s-3\b'\ (sl\e'\sO

\s-3\b'\e\ (sl'\sO

I
\

)

.4.

(\e and \(sJ are the escapes for\ and/.) The first character in the string is positioned at the top
of the pile, and on down with the last character at the bottom. \s is the escape sequence for a
size change; we'll get to this in a while.

The zero width function \z enables you u.l print a character without moving after it is
printed. \z often makes it easier to position your next character rather than figuring out where
the first one moved you to. This function is used with \zn where n is the character to be
printed. \z can only be applied to one character at a time so the sequence would have to be
repeated. An example' of this can be the definition of the ''vertical ellipsis" ; where \z forces
the dots to remain in place; otherwise. horizontal motions would be needed to realign the dots.

\ v'-.8m'\z. \ v' .Sm'\z. \ v' .Sm'.\ v' -.2m'

The zero width function can also be used to darken a character: \z.xx will print an x. stay in
place, and print it again.

The point-size change function is used frequently to make one character fit in proportion
to another. The escape sequence for this function is \s. The change in size would be indicated
by however many point sizes you want to change. \s-2 will cause a reductfon of 2 point sizes
while \s + 2 will enlarge by 2 point sizes. For example. in making the .. equals by definition"
symbol ~ the .l was made slightly smaller to fie comfortably over the - . This- was done by

\v'.3m'\z-\v'-.6m'\h'.3m'\s-l\(*0\s+ l\v'.Jm'

hence reducing the Ii (\{*0 is the escape for this) by 1 point size before printing it, and then
returning back to the previous size. \sO can also be used to bring you back to the previous size.

Anocher handy tool is the font change function \f. Since EQN automatically sets itS char·
acters in italics, it will be necessary to specify any other font. Ta change fonts, use \fx where x
is the desired font (R for roman. B for boJd, I for italic, etc.}. \fP will reven back to the previ·

0

ous font. A prime example of this would be the .. angstrom" symbol A;

\fR\zA\v'-.3m'\h'.2m'\(de\v'.3m'\fP\h'.2m'

where the capital "A" is always printed in the Roman font

A few words of caution. If in building your character you have used vertical motions or
poinMize or font changes, you must remember to undo them, or whatever follows will be off
the main line or in the wrong size or font. It may also be necessary at times to use a horizontal
motion to ensure enough space before and after your character. Also, you should test your
character before putting it co actual use. Try it out with changes in original font or point size
and see how it reactS to the change; don't be surprised if your character falls apart.

When you are satisfied with your character and it is ready to use, introduce it into your
file with the define facility provided by EQN. For example, you would define the .. not greater
than" symbol (:>) as

de.fine I> % "\o'>\(or"' %

Now by using I> in an equation, you will get :>.
In the previous example, the %'s and "'s are two different kinds of delimiters. The out·

side pair are essential to mark the beginning and end of the definition. (%' s were used,
although any character will do as long as it is not used in the definition.) Also, any definition
containing TROFF commands should be enclosed in " marks, so EQN will treat the TROFF
commands as a unit.

-s.

4. Creating Special Characters for NEQN

To get a special character to print out on a computer terminal is not quite as involved as
on the phototypesetter. You are restricted to working with only the characters available on the
print wheel and movement is limited. Vertical motion can be obtained by \u and \d but this
will only give you a motion of V2 line space per escape sequence. Spacing and backspacing is
about all the horizontal motion you'll get. You can, however, use NEQN to define a character
as was done with the "less than or approximately equal to" symbol ~ :

ndefine <wig % < from - %

All TR.OFF conventions work in NROFF, but because of the lack of characters, they may
produce strange effects when using NEQN/NROFF. Therefore, it may be necessary to
separately define characters for phototypesetter and computer terminal output. tdefine applies to
definitions for EQN; ndefine works with NEQN. define uses the same definition for both.

Built-up characters for terminal output are usually just good enough· for identific:ition 's
sake; generally, they look lousy. However, given the time and additional effort, these charac
ters can be refined so that their output on the terminal is quite satisfactory.

Acknowledgements

I would like to thanic J. F. Ossanna.. M. E. Lesk and other members of Center 127 for all
their help~ and special thanks to B. W. Kernighan for his teaching, guidance and patience
throughout. I am especially grateful to S. P. Morgan for his encouragement and shared
enthusiasm; without his aid and the concurrence of Dept. 7133K supervision, none of this
would have been possible.

References

1. .. A System for Typesetting Mathematics.'' B. W. Kernighan and L. L. Cherry, Computing
Science Technical Report #17.

2. NROFF/TROFF User's Manual, J. F. Ossanna, BTL internal memorandum.

6

Appendix la

Additional Symbols from Phototypesetter Character Set

.character EQN name

1,4 quarter
l,4 3quarter
0 degree ,

Cl square
0 circle

• blot

• bullet

= -wig
wig

a: prop
0 empty
E member
u cup

• n cap
• c subset
• :;) supset
• ~ !subset
• ~ !supset

• NEQN/NROFF does not produce these symbols.

7

Appendix lb

Additional Symbols Provided by EQN

character EQN name

• lfl half
== approx
~ >-
~ <-

>> >>
<< <<

->
<-

- --;z: !-
± +-
QCI inf
a partial

prime
cdot

x times
'7 grad

,
!. sum

f int

I1 prod

u union
• n inter

• NEQN/NROf'F does not produce these symbols.

Nme: - reprtts.ntS a backspace in ndefitt«i charat:l«'J •

. EQ
tdefine ciplus % '\o'\(pl\(ci'• %
ndefine ciplus % 0-+ %
tdefine citimes % '\o'\(mu\(ci'• %
ndeline citimes % 0-:it %

8

Appendix 2

tdefine •wig % '\(eq\h'-\w'\(eq'u-\w\s-2\(ap'u/2u'\v'-.4m'\s-2\z\(ap\(ap\s+2\v'.4m'\h'\w'\(eq'u-\w'\s-2\(ap'u/2u'" %
ndefine •wig % ---%
tdefine bigstar % "\o'\(pl\(mu'•'%
ndetine bigstar % x-1-- %
tdefine -dot % "\z\(eq\v'-.6m'\h'.2m'\s+2.\s-2\v'.6m'\h'.lm'• %
ndefine •dot % • dot %
tdefine orsign % is-2\v'-.1Sm'\z\e\e\h'-.0Sm'\z\(sl\(sl\v'.15m'\s+r %
ndefine orsign % \e/ %
tdeline anclsign % "\s-2\v'-.l5m'\z\(sJ\(sl\h'-.0Sm'\z\e\e\v'.1Sm'\s+Z- %
ndefine andsign % /\e %
tdefine •del % "\v'.Jm'\z-\v·-.6m'\h'.Jm'\s-l\("0\s+ l\v'.Jm·· %

ndefine •det % - to DELTA %
tdefine oppA % "\s-2\ v -.lS'!''\z\e\e\h'-.OSm'\z\tsl\(sl\v'-.lSm\h'-. 7Sm'\z-\z-\h'.2m\z-\z-\v'.Jm'\h'Am'\s+ 2" %
ndetine oppA % v-- %
tdefine opp£ %"\s-3\v'.2m'\z\(em\v'-.5m'\z\(em\v'-.Sm'\z\(em\v'.5Sm'\h'.9m'\z\<bnz\(br\v'.25m'\s+J" %
ndefine oppE % E-1 %
tdefine incl % "\s-1\z\lor\h'-.lm'\v' -.4Sm'\z\(em\v'.7m'\z\(em\v'.2m'\(em\v'-.45m'\s+ I"%
ndefine incl 'lb c-_ %
tdefine nomem % "\o'\(mo\(si'" %
ndefine nomem % c---1 %

tdefine angstrom % "\l'R\zA\v'-.Jm\h'.2m'\(de\v'.Jm'\fP\h'.2m'• %
ndefine angstrom % A to o %
tdefine star %{ roman "\v'.5m'\s+J"\s-3\v'-.5m'•I%
ndefine star % • %
tdefine II % \(or\(or %
tdefine <wig % "\z<\v'.4m'\fap\v'-.4m'• %
ndefine <wig %(<from -)%
tdefine >wig % "\z>\v'.4m'\(ap\v'-.4m'• %
ndefine >wig %{ > from -)%
t<.leline !angle % "\s-3\b'\(sl\e'\sO• %

n<.leline langle % <'Iii
tdefine rangle % "\s-J\b'\e\(sl'\sO• %
ndefine rangle %>%
tdefine ltbar % "\zh\v'-.6m'\h'.0Sm'\(ru\v'.6m'" %
ndefine hbar % h-\u-\d %
ndefine ppd % - -l %
tdefine ppd % "\o'\(ru\s-2\{or\s+2·· %
tdefine <-> % "\o'\(<-\(->"' %
ndefine <-> % "<->" %
tdefine <-> % "\s-2\z<\v'.0Sm'\h'.2m'\z-\h'.S5m'-\h'-.6m'\v'-.0Sm'>\s+r %
ndefine <-> % "<->"%
tdetine I< %io'<\(or"'%
ndefine I< % <-! %
tdefine I> % "\o'>\(or'• %
ndefine I> % I-> %
tdefine ang % \v'-.1Sm'\z\s-2\(sl\s+2\v'.1Sm'\(ru• %
ndefine ang % I-_ %

tdefine rang % "\z\(or\h'.15m'\(ru" %
ndefine rang % L %
tdetine 3dot % "\v'-.8m'\z.\v'.5m'\z.\v'.5m'.\v'-.2m'" %
ndefine 3dot % .-\u.-\u.\d\d %
tdetine thf % ".\v'-.Sm'.\v'.Sm': %
ndefine thf % .• -\u. \d %
.EN

The PwBIUNIX• document entitled:

PWBIUNIX View Graph and Slide Macros
is not yet available.

• UNIX is a Trademark/Service Mark of the Bell System.

T.9

BC - An Arbitnry Precision Desk-Calculator l am~ua2e

Ro/Jert Moms

Bell Laboratories,
Murray Hill, New Jersey 07974

ABSTRACT

BC is a language and a compiler for doing arbitrary precision arithmetic
on the PDP· 11 under the UNIX time-sharing system. The output of the com
piler is interpreted and executed by a collection of routines which can input,
output. and do arithmetic on indefinitely large integers and on scaled fixed·
point numbers.

These routines are themselves based on a dynamic storage allocator.
Overflow does not occur until aJI available core storage is exhausted.

The language has a complete control structure as well as immediate-mode
operation. Functions can be defined and saved for later execution.

Two five hundred-digit numbers can be multiplied to give a thousand di
git result in about ten seconds.

A smaU collection of library functions is also available, including sin. cos,
arctan, le& exponential, and Bessel functions of integer order.

Some of the uses of this compiler are

to do computation with large integers.

to do computation accurate to many decimal places,

conversion of numbers from one base to another base.

A.

BC - An Arbitrary Precision Desk-Calculator Language

Introduction

Lorinda Che"Y

Robert Moms

Bell Laboratories,
Murray Hill, New Jersey 0797 4

BC is a language and a compiler for doing arbitrary precision arithmetic on the UNIX
time-sharing system [lJ. The compiler was written to make conveniently available a collection
of routines (called IX [6)) whicf:I are capable of doing arithmetic on integers of arbitrary size.
The compiler is by no means intended to provide a complete programming language. It is a
minima! language f aciJity.

There is a scaJing provision that permits the use of decimal point notation. Provision is
made for input and output in bases other than decimal. Numbers can be converted from de·
'1mal to octal by simply setting the output base to equal 8.

The actual limit on the number of digits that can be handled depends on the amount of
storage available on the machine. Manipulation of numbers with many hundreds of digits is
pcmible even on the smallest versions of UNIX.

The syntax of BC has been deliberately selected to agree substantially with the C
language [~J]. Those who are familiar with C will find few surprises in this language.

Simple Computations with lnt-ers
The simplest kind of statement is an arithmetic expression on a line by itself. For in·

stance, if you type in the line:

142857 + 285714

the program responds immediately with the line

428571
The operators -, •, I, %, and • can also be used; they indicate subtraction, multiplication, divi
sion. remaindering. and exponentiation, respectively. Division of integers produces an integer
result truncated toward zero. Division by zero produces an error comment.

Any term in an expression may be prefixed by a minus sign to indicate that it is to be
negated (the •unary' minus sign). The expression

7+-3

is interpreted to mean that -3 is to be added to 7.

More complex expressions with several operators and with parentheses are interpreted
just as in Fortran. with • having the greatest binding power, then • and o/a and /, and finally +
and -. Contents of parentheses are evaJuated before material outside the parentheses. Ex·
ponentiations are performed from right to left and the other operators from left to right. The
two expressions

a·b·c and a·cb·c)

are equivalent. as are the two expressions

a•b•c and (a•b)•c

BC shares with Fortran and C the undesirable convention that

aJb•c is equivalent to (a/b)•c

Internal storage registers to hold numbers have single lower-case letter names. The value
of an expression can be assigned to a register in the usual way. The statement

x•x+3

has the effect of increasing by three the value of the contents of the register named x. When.
as in this case, the outermost operator is an •, the assisnment is performed but the result is
not printed. Only 26 of these named storage registers are available.

There is a built-in square root function whose result is truncated to an integer (but see
scaling below). The lines

x • sqrt091)
x

produce the printed result

13

Bases
There are special internal quantities. called 'ibase' and 'obase'. The contents of 'ibase',

initiaJly set to 10, determines the base used for interpreting numbers read in. For example. the
lines

ibase • 8
11

will produce the output line

9

and you are all set up to do octal to decimal conversions. Beware, however of trying to change
the input base back to decimal by typing

ibase • 10

Because the number 10 is interpreted as octal. this statement will have no effect For those
who deal in hexadecimal notation, the characters A-F are permitted in numbers (no matter
what base is in effect) and are interpreted as digits having values 10-ts respectiveJy. The
statement

ibase •A

will change you back to decimal input base no matter what the current input base is. Neptive
and large positive input bases are permitted but useless. No mechanism has been provided for
the input of arbitrary numbers in bases less than 1 and greater than 16.

The contents of 'obase', initially set to 10, are used as the base for output numbers. The
lines

obase - 16
1000

will produce the output line

3E8

-3-

which is to be interpreted as a 3-digit hexadecimal number. Very large output bases are per
mitted. and they are sometimes useful. For example. large numbers can be output in groups of
five digits by setting 'obase' to 100000. Strange (i.e. 1. 0, or negative) output bases are handled
appropriately. ·

Very large numbers are split across lines with 70 characters per line. Lines which are
continued end with \. Decimal output conversion is practically instantaneous, but output of
very large numbers (i.e .• more than 100 digits) with other bases is rather slow. Non-decimal
output conversion of a one hundred digit number takes about three seconds.

It is best to remember that 'ibase' and 'obase' have no effect whatever on the course of
internal computation or on the evaluation of expressions. but only affect input and output
conversion, respectively.

Scalin1

A third special internal quantity called 'scale' is used to determine the scale of calculated
quantities. Numbers may have up to 99 decimal digits after the dt:Gimal point. This fractional
part is retained in further computations. We refer to the number of digits after the decimal
point of a number as its scale.

When two scaled numbers are combined by means of one of the arithmetic operations.
the result has a scale determined by the following rules. For addition and subtraction. the
scale of the result is the larger of the scales of the two operands. In this case. there is never
any truncation of the result. For multiplications, the scale of the result is never less than the
maximum of the two scales of the operands, never more than the sum· of the scales of the
operands and, subject to those two restrictions. the scale of the result is set equal to the con
tents of the internal quantity 'scale'. The scale of a quotient is the contents of the internal
quantity 'scale'. The scale of a remainder is the sum of the scales of the quotient and the divi
sor. The result of an exponentiation is scaled as if the implied multiplications were performed.
An exponent must be an integer. The scale of a square root is set to the maximum of the scale
of the argument and the contents of 'scale'.

All of the internal operations are actually carried out in terms of integers. with digits be
ing discarded when necessary. In every case where digits are discarded, truncation and not
rounding is performed.

The contents of 'scale' must be no greater than 99 and no less than 0. It is initially set to
0. In case you need more than 99 fraction digits, you may arrange your own scaling.

The internal quantities 'scale', 'ibase', and 'obase' can t.. used in expressions just like
other variables. The line

scale - scale + l

increases the value of 'scale' by one, and the line

scale

causes the current value of 'scale' to be printed.

The value of 'scale' retains its meaning as a number of decimal digits to be retained in
internal computation even when 'ibase' or 'obase' are not equal to 10. The internal computa·
tions (which are still conducted in decimal, regardless of the bases) are performed to the
specified number of decimal digits, never hexadecimal or octal or any other kind of digits.

-4-

Funetlons
The name of a function is a sin1fe lower-case letter. Function names are permitted to

collide with simple variable names. Twenty-six diff'erent cierined functions are permitted in ad·
dition to the twenty·six variable names. The line

define a<x> I .
begins the definition of a function. with one araument. This line must be followed by one or
more statements, which make up the body of the function. ending with a right brace I. Return
of control from a function occurs when a return statement is executed or when the end of the
function is reached. The return statement can take either of the two forms

return
return(x)

In the first case. the value of the function is 0, and in the second. the value of the expression
in. parentheses.

Variables used in the function can be declared as automatic by a statement of the form

auto x,y,z

There can be only one 'auto' statement in a function and it must be the first statement in the
definition. These automatic variables are allocated space and initialized to zero on entry to the
function and thrown away on return. The values of any variables with the same names outside
the function are not disturbed. Functions may be called recursively and the automatic vari·
ables at each level of call are protected. The parameters named in a function definition are
treated in the same way as the automatic variables of that function with the singJe exception
that they are given a value on entry to the function. An example or a function definition is

define a(x,y)(
auto z
z • x•y
return(z)

The vaJue of this function, when called, will be the product of i~ two arguments.
A function is caUed by the appearance of its name followed by a suing of arguments en

closed in parentheses and separated by commas. The result is unpredictable if the wrong
number of arguments is used.

Functions with no arguments are defined and caJled usina parentheses with nothin1
between them: bO.

If the function a above has been defined, then the line

a(7,3.14)

would cause the result 21.98 to be printed and the line

x • a(a(3,4),5)

would cause the value of x to become 60.

-s-

SubKripted Variables

A single lower-case letter variable name followed by an expression in brackets is called a
subscripterJ variable Can array element). The variable name is called the array name and the
expression in brackets is called the subscript. Only one-dimensional arrays are permitted. The
names of arrays are permitted to collide with the names of simple variables and function
names. Any fractional part of a subscript is discarded before use. Subscripts must be greater
than or equal to zero and less than or equal to 2047.

Subscripted variables may be freely used in expressions, in function calls. and in return
statements.

An amy name may be used as an argument to a function. or may be declared as au-
tomatic in a function definition by the use of empty brackets:

f(a{])
define f(a{ D
auto a{]

When an array name is so used. the whole contents of the array are copied for the use of the
function. and thrown away on exit from the function. Array names which refer to whole ar
rays cannot be used in any other contexts.

Control Statements

The 'if, the 'while', and the 'for' statements may be used to aJter the flow within pro
grams or to cause iteration. The range of each of them is a statement or a compound state·
ment consisting of a collection of statements enclosed in braces. They are written in the fol·
lowing way ·

or

if(relation) statement
while(relation) statement
for(expressionl; relation; expression2) statement

i f(relation) ~statements l
whiiefrelation} !statements)
for(expression l; relation; expression2) lstatementsl

A relation in one of the control statements is an expression of the form

x>y

where two expressions are related by one of the six relational oper.ttors <. >. < =. > -. •==.
or !-. The relation ==stands for 'equal to' and !•stands for 'not equal to'. The meaning of
the remaining relational operators is clear. :

BEWARE .of using - instead of - in a relational. Unfot .unately, both of them are le·
gal, so you will not get a diagnostic message. but - really will not do a comparison.

The 'if statement causes execution of its range if and only if the relation is true. Then
control passes to the next statement in sequence.

The 'while' statement causes execution of its range repeatedly as long as the relation is
true. The relation is tested before each execution of its range and if the relation is false, con·
trot passes to the next statement beyond the range of the while.

The 'for' statement begins by executing 'expression I'. Then the relation is tested and, if
true., the statements in the range of the 'for' are executed. Then 'expression2' is executed.
The relation is tested. and so on. The typical use of the 'for' statement is for a controlled itera·
tion, as in the statement

for(i•l: i<•lO: i•i+l) I

which will print the inteaers rrom I to 10. Here are some examples of the use of the control
statements.

define f(n) I
auto i, x
x•I ,
for(i•l: i<•n: i•i+I) x•x•i
return(x)
I

The line

f(a)

will print a factorial if a is a positive integer. Here is the definition of a function which will
compute values of the binomial coefficient (m and n are assumed to be positive integers).

define b(n,m) {
auto x. j
x•l
for(j• l; j < •m: j-j+ 1) x•x•(n-j+l)/j
retum(x)
I

The following function computes values of the exponential function by summing the appropri·
ate series without regard for possible truncation errors:

scale • 20
define e(x) (

Some Details

auto a. b, c:, d, n
a• 1
b - 1
c - 1
d•O
n • 1
while(l••l){

a• a•x
b • b•n
c•c+a/b
n•n+l
ifCc•-d) return (c:)
d•c

There are some language features that every user should know about even if he will not
use them.

Normally statements are typed one to a line. It is also permissible to type several state·
ments on a line separated by semicolons.

If an assignment statement is parenthesized, it then has a value and it can be used any·
where that an expression can. For example, the line

-7-

(x•y+l7)

not only makes the indicated assignment, but also prints the resulting value.

Here is an example of a use of the value of an assignment statement even when it is not
parenthesized.

x • a{i-1+11

causes a value to be assigned '10 x and also increments i before it is used as a subscript

The following constructs work in BC in exactly the same manner as they do in the C
language. Consult the appendix or the C manuals [2.J) for their exact workings.

x•y-z is the same as
x •+y.
x --y

x -· y x _, y

x -41. y
x _ .. y

x++
x
++x
-x

x•(y-z)
x • x+y
x • x-y
x • x•y
x • x/y
x •xo/oy
x • J(y
(x•x+l)-l
(x•x-D+l
x • x+l
x • x-1

Even if you don't intend to use the constructs, if you type one inadvertently, something
correct but unexpected may happen.

WARNING! In some of these constructions, spaces are significant. There is a real
difference between x--y and x• -y. The first replaces x by x-y and the second by -y.

Three Important Things

1. To exit a BC program. type 'quit'.

2. There is a comment convention identical to that of C and of PL/I. Comments begin
with ·1•• and end with ••r.

J. There is a library of math functions which may be obtained by typing at command lev-
el .

be-I

This command will load a set of library functions which, at the time of writing. consists of sine
(named 's'), cosine ('c'), arctangent ('a'), natural logarithm ('!'), exponential ('e') and Bessel
functions of integer order ('j(n,x)'). Doubtless more functions will be added in time. The li
brary sets the scale to 20. You can reset it to something else if you like. The design of these
mathematical library routines is discussed elsewhere (4).

If you type

be file_

BC will read and execute the named file or files before accepting commands from the key
board. In this way, you may load your favorite programs and function definitions.

-8-

Acknowledcemeat
The compiler is written in YACC [SJ: its oriainal version wu written by S. C. Johnson.

Refereaees
{1] K. Thompson and D. M. Ritchie, UNIX Progranuna's Manual, Finh Edition (1974)
[2} O. M. Ritchie, C Rdemrce M,anual.
{3] 8. W. Kernighan, i+oframmini In C-A TulOrlal.

[41 Robert Morris, A LibTary of Ref~ Standard Mathffftatical Subroutlna. Internal
memorandum, Bell Laboratories, 1975.

(5) S. C. Johnson, YACC. Yet AnotheT Compiler-Compiler.
(6) R. Moms and L L Cherry, DC - An lnteractlw Dale Calculator.

\

-9-

Appendix

t. Notation

In the following pages syntactic categories are in italics; literals are in bold: material in
brackets { 1 is optional.

2. Token."'

Tokens consist of keywords. identifiers. constants, operators, and separators. Token
separators may be blan~. tabs or comments. Newline characters or semicolons separate state
ments.

2.1. Comments

Comments are introduced by the characters 1• and terminated by •1.

2.2. Identifiers

There are three kinds of identifiers - ordinary identifiers, array identifiers and function
identifiers. All three types consist of single lower~ase letters. Array identifiers are followed by
square brackets. possibly enclosing an expression describing a subscript Arrays are singly
dimensioned and may contain up to 2048 elements. Indexing begins at zero so an array may
be indexed from 0 to 2047. Subscripts are truncated to integers. Function identifiers a.re fol
lowed by parentheses. possibly enclosing arguments. The three types of identifiers do not
conflict; a program can have a variable named x. an array named x and a function named x. all
of which are separate and distinct.

2.3. Keywords

The following are reserved keywords:
ibase if
obase break
scale define
sqrt auto
lenllth return
while quit
for

2.4. Constants
Constants consist of arbitrarily long numbers with an optional decimal point The hexa

decimal digits A-Fare also recognized as digits with values 10-15. respectively.

3. Expressions
The value of an expression is printed unless the main o~fator is an assignment. Pre

cedence is the same as the order of presentation here. with highest appearing first. Left or
right associativity, where applicable, is discussed with each operator.

- 10-

3.1. Primitive txpressions

3.1.1. Nan1ed expressions
Named expressions are places where values are stored. Simply stated, named expressions

are lepl on the left side of an assignment. The vaJue of a named expression. is the value
stored in the place named. ·

3.1.1.1. iden tf /fen
Simple identifiers are named expressions. They have an initial value of zero.

J.l.1.2. a"ay-namel expn's.sionl
Array elements are named expressions. They have an initial value of zero.

3.1.1.J. sale, ibase and oba.R

The internal registers scale, ibue and obase are all named expressions. scale is the
number of digits after the decimal point to be retained in arithmetic operations. scale has an
initial value of zero. ibase and obase are the input and output number radix respectively. Both
ibase and obase have initial values of 10.

3.1.2. Function calls

3.1.2.l. function-name([expression l. expression ... 1])
A function call consists of a function name followed by parentheses containing a

comma-separated list of expressions, which are the function arguments. A whole array passed
as an argument is specified by the array name followed by empty square brackets. All function
arguments are passed by value. As a result, changes made to the formal parameters have no
effect on the actual arguments. If the function terminates by executing a return statement. the
value of the function is the value of the expression in the parentheses of the return statement
or is zero if no expression is provided or if there is no return statement.

3.1.2.2. sqrt (expression)
The resutt is the square root of the expression. The result is truncated in the least

significant decimal place. The scale of the result is the scale of the expression or the value of
scale. whichever is larger.

3.1.2.J. lenath (expres.sion)

The result is the total number of significant decimal digits in the expression. The scale of
the result is zero.

3.1.2.4. scale (expres.sion)

The result is the scale of the expression. The scale of the result i.s zero.

3.1.J. Constants

Constants are primitive expressions.

- l l -

3.1.4. Parentheses

An expression surrounded by parentheses is a primitive exp. ession. The parentheses are
used to alter the normal precedence.

3.l. Unary operators

The unary operators bind right to left.

.J.l.l. - expression
The result is the negative of the expression.

3.l.2. ++named-expression
The named expression is incremented by one. The result is the value of the named ex·

pression after incrementing.

3.2.J. - named-expression
The named expression is decremented by one. The result is the value of the named ex

pression after decrementing.

3.2.4. named-expression++
The named expression is incremented by one. The result is the value of the named ex

pression before incrementing.

3.l.5. named-expression-
The named expression is decremented by one. The result is the value of the named ex·

pression before decrementing.

3.J. Exponentiation o,erator

The exponentiation operator binds right to left

3.J.1. expression • expression
The result is the first expression raised to the power of the second expression. The

second expression must be an integer. If a is the scale of the left expression and bis the abso
lute value of the right expression. then the scale of the result is:

min (ax b. max (scale. a))

3.4. Multiplicath'e operators

The operators •• /, % bind left to right

3.4.1. expression• expression
The result is the product of the two expressions. If a and b are the scales of the two ex

pressions, then the scale of the result is:
min (a+b, max.(scale. a. b))

-12-

3.4.2. txprnJlon I exprtssion

The result is the quotient of the two expressions. Th. 3Cale of the result is the value of
scale.

3.4.J. expression '/. expression
The o/o operator produces the remainder of the division of the two expressions. More pre·

c:iseJy, a%b is a-alb-b. ·

The scale of the result is the ·sum of the scaJe of the divisor and the value of stale

3.S. Additive operators

The additive operators bind .left to right.

3.S. J. expression+ expression
The resuJt is the sum of the two expressions. The scaie of the result is the maximuri of

the scaies of the expressions.

3.S.2. expression - expression
The result is the dift'erenc:e of the two expressions. _The scaie of the result is the max

imum of the scaies of the expressions.

3.6. asslanment operators

The assignment operators bind right to left.

3.6.1. named-exprt!!lon •expression
This expression results in assigning the vaiue of the expression on the right to the named

expression on the left.

3.6.2. named-expression-+ expression

3.6.3. named-expression - expression

3.6.4. named-expression •• expre.ssion

3.6.5. named-exprtsslon •/ expression

3.6.6. named-expression ••/, expression

3.6.7. named-expression·· expression
The result of the above expressions is equivalent to .. named expression • named expres·

sion OP expression .. , where OP is the operator after the •sign. ·

4. Relations

Unlike ail other operators, the relational operators are only valid as the objet:t of an If.
while, or inside a for statement.

- 13 -

4.1. txptUSion < exprnsion

4.l. txptnSiOlf > txpl'IUiOtf

4.3. txpt'ISSion < • exprnsion

4.S. expression - exp~ion

4.6. exprnsion !• expnuion

S. Storaae classes
There are only two storage classes in BC, global and automatic (local). Only identifiers

that are to be local to a function need be declared with the auto command. The arguments to
a function are local to the function. All other identifiers are assumed to be global and available
to all functions. AU identifiers, aiobal and local, have initial values of zero. Identifiers declared
u auto are allocated on entry to the function and released on returning from the function.
They therefore do not retain values between function calls. auto arrays are specified by the ar
ray name followed by empty square brackets.

Automatic variables in BC do not work in exactly the same way as in either C or PLJI.
On entry to a function, the old values of the names that appear as parameters and as automatic
variables are pushed onto a stack. Until return is made from the function, reference to these
names refers only to the new values.

6. Statements
Statements must be separated by semicolon or newline. Except where altered by control

statements. execution is sequential.

6.1. EXlJres.sion statements

When a statement is an expression, unless the main operator is an assignment, the value
of the expression is printed. followed by a newline character.

6.l. Compound statements

Statements may be grouped together and used when one statement is expected by sur
rounding them with { I.

6.3. Quoted strina statements

•any string"

This statement prints the string inside the quotes.

6.4. If statements

if(relation)statement

The substatement is executed if the relation is true.

6.!. While statements

whl le (rtlatlon) Jtattment

The statement is executed while the relation is true The tell occurs before each execu·
tion of the statement.

6.6. For statements

for (exprtJ1/on; rtlarlom exprtl1itJ!I) Jtatt1Mflt

The for statement is the same as
./int-expression
whlle(re/ation) I

statement
last-expression

All three expressions must be present.

6. 7. Break statements

break

break causes termination of a for or while statement.

6.8. Auto statements

auto identifier{ ,identifier]

The auto statement causes the values of the identifiers to be pushed down. The
identifiers can be ordinary identifiers or array identifiers. Array identifiers are specified by fol·
lowing the array name by empty square brackets. The auto statement must be the first state·
ment in a function definition.

6.9. Define statements

deftne({parameter [, parameter . ..]]) I
statements I
The define statement defines a function. The parameters may be ordinary identifiers or

array names. Array names must be followed by empty square brackets.

6.10. Return statements

return

return(expression)

The return statement causes termination of a function. popping of its auto variables, and
specifies the result of the function. The first form is equivalent to return(O). The result of the
function is the result of the expression in parentheses.

6.11. Quit

The quit statement stops execution of a BC program and returns control to UNIX when
it is first encountered. Because it is not treated as an executable statement. it cannot be used
in a function definition or in an If. for. or while statement.

DC - An Interactive Desk Calculator

'•

Robert Moms

Lorinda Che"y

Bell Laboratories.
Murray Hill. New Jersey 07974

DC is an arbitrary precision arithmetic package implemented on the UNIX time-sharing
system in the form of an interactive desk calculator. It works like a stacking calculator using
reverse Polish notation. Ordinarily DC operates on decimal integers. but one may specify an

· input base. output base, and a number of fractional digits to be maintained.

A language called BC {1] has been developed which accepts programs written in the fami·
liar style of higher-level programming languages and compiles output which is interpreted by
DC. Some of the commands described below were designed for the compiler interface and are
not easy for a human user to manipulate.

Numbers that are typed into DC are put on a push-down stack. DC commands work by
taking the top number or two olf the stack, performing the desired operation, and pushing the
result on the stack. Ir an argument is given. input is taken from that file until its end, then
from the standard inpuL -

•
SYNOPTIC DESCRIPTION

Here we describe the DC commands that are intended for use by people. The additional
commands that are intended to be invoked by compiled output are described in the detailed
description.

Any number of commands are permitted on a line. Blan.ks and new-line characters are
ignored except within numbers and in places where a register name is expected.

The following constructions are recognized:

number

The value of the number is pushed onto the main stack. A number is an unbroken
string of the digits 0-9 and the capital letters A-F which are treated as digitS with values
10-15 respectively. The number may be preceded by an underscore to input a negative
number. Numbers may contain decimal points.

The top two values on the stack are added (+), subtracted (-), multiplied (•), divided
(/), remaindered ('/.), or exponentiated ("). The two entril'!s are popped otf the stack; the
result is pushed on the stack in their place. The result of a division is ar. integer truncat
ed toward zero. See the detailed description below for the treatment of numbers with de·
cimal points. An exponent must not have any digits after the decimal point.

A.2

Ix

-2-

The top of the main stack is popped and stored into a repter named x. where x may be
any character. If the s is capitalized. xis treated as a stack and the vaJue is pushed onto
it. Any character. even blank or new·line. is a v&:.~ reaister name.

The value in repter x is pushed on.to the stack. The register x is not altered. If the I is
capitalized. reaister x is treated as a s1aCk and its top value is popped onto the main stack.

All registers start with empty value which is treated as a zero by the command I and is treated
as an error by the command L

d

The top value on the stack is duplicated.

p

The top value on the stack is printed. The top val~ remains unchanged.

r
_ AU values on the stack and in registers are printed.

x

I ... I

q

treats the top element of the stack as a character string. removes it from the stack. and
executes it as a string of DC commands.

puts the bracketed character strinc onto the top of the s1aek.

exits the program. If executing a string, the recursion level is popped by two. If q is cap· ·
itaJized. the top value on the stack is popped and the string execution level is popped by
that vaJue.

<x >x •x !<x !>x !•x

v

The top two elements of the stack are popped and compared. Register xis executed if
they obey the stated relation. Exclamation point is nqation.

replaces the top element on the stack by its square root. The square root of an integer is
truncated to an integer. For the treatment of numbers with decimal points, see the de·
tailed description below.

0

k

z

?

-3-

interprets the rest of the line as a UNIX command. Control returns to DC when the
UNIX command terminates.

All values on the stack are popped: the stack becomes empty.

The top value On the Stack is popped and used as the number radix for funher inpul ff i
is capitalized. the value of the input base is pushed onto the stack. No mechanism has
been provided for the input of arbitrary numbers in bases less than l or greater than 16.

The top vaJue on the stack is popped and used as the number radix for further output. If
o is capitalized. the value of the output base is pushed onto the stack.

The top of the stack is popped, and that value is used as a scale factor that influences the
number of decimal places that are maintained during multiplication. division, and ex
ponentiation. The scale factor must be greater than _or equal to zero and less than 100. If
k is capitalized., the value of the scale factor is pushed onto the stack.

The value of the stack level is pushed onto the stack.

A line of input is taken from the input source (usually the console) and executed.

OET AILED DESCRIPTION

Internal Representation of Numbers

Numbers are stored internally using a dynamic storage allocator. Numbers are kept in
the form of a string of digits to the base 100 stored one digit per byte (centennial digits). The
string is stored with the low-<Jrder digit al the beginning of the string. For example. the
representation of 157 is 57,1. After any arithmetic operation on a number, care is taken that
all digits are in the range 0-99 and that the number has no leading zeros. The number zero is
represented by the empty string.

Negative numbers are represented in the lOO's complement notation, which is analogous
to two's complement notation for binary numbers. The high t :der digit of a negative number
is always -1 and all other digits are in the range 0-99. The digit preceding the high order -1
digit is never a 99. The representation of -157 is 43,98,-1. We shall call this the canonical
form of a number. The advantage of this kind of represeqtation of negative numbers is ease of
addition. When addition is perf armed digit by digit, the result is formally correct. The result
need only be. modified, if necessary, to put it into canonical form.

Because the largest valid digit is 99 and the byte can hold numbers twice that large, addi·
tion can be carried out and the handling of carries done later when that is convenient., as it
sometimes is.

An additional byte is stored with each number beyond the high order digit to indicate the
number of assumed decimal digits after the decimal point The representation of .001 is 1,J

-4-

where the scale has been italicized to emphasize the fact that it is not the high order digit. The
value of this extra byte is called the scale factor of the number.

The Allocator

DC uses a dynamic ·String storage allocator for all of its internal storage. All reading and
writing of numbers internally is done through the allocator. Associated with each string in the
allocator is a four·word ·header containing pointers to the beginning of the string. the end of
the string. the next place to write, and the next place to read. Communication between the al·
locator and DC is done- via pointers to these headers.

The allocator initially has one large string on a list of free strings. All headers except the
one pointing to this string are on a list of free headers. Requests for strings are made by size.
The size of the string actuaUy supplied is the next higher power of 2. When a request for a
string is made. the allocator first checks the free list to see if there is a string of the desired
size. If none is found. the allocator finds the next larger free string and splits it repeatedly un·
til it has a string of the right size. Left·over strings are put on the free list. If there are no
larger strings. the allocator tries to coalesce smaller free strings into larger ones. Since all
strings are the result of splittina large strings, each string has a neighbor that is next to it in
core and, ir free, can be combined with it to make a string twice as long. This is an implemen·
talion of the 'buddy system' of allocation described in {2].

Failina to find a string of the proper length after coalescing. the allocator asks the system
for more space. The amount of space on the system is the only limilation. on the size and
number of strings in DC. If at any time in the process of trying to allocate a string. the ailoca·
tor runs out of headers. it also asks the system for more space.

There are routines in the allocator for reading. writing, copying, rewinding. forward
spacing. and backspacing strings. All string manipulation is done using these· routines.

The reading and writing routines increment the read pointer or write pointer so that the
characters of a string are read or written in succession by a series of read or write calls. The
write pointer is intef'l)reted as the end of the information-containing portion of a string and a
call to read beyond that point returns an end·of·string indication. An attempt to write beyond
the end of a string causes the allocator to allocate a larger space and then copy the old string
into the larger block.

Internal Arithmetic:

All arithmetic operations are done on integers. The operands (or operand) needed for
the operation are popped from the main stack and their scale factors stripped off. Zeros are ad·
ded or digits removed as necessary to get a properly scaled result from the internal arithmetic
routine. For example, if the scale of the operands is different and decimal alignment is re·
quired, as it is for addition, zeros are appended to the operand with the smaller scale. After
performing the required arithmetic operation, the proper scale factor is appended to the end of
the number before it is pushed on the stack.

A register called scale plays a part in the results of most arithmetic operations. scale is
the bound on the number of decimal places retained 4n arithmetic computations. scale may be
set to the number on the top 'Jf the stack truncated to an integer with the k command. K may
be used to push the value of scale on the stack. scale must be greater than or equal to 0 and
less than 100. The descriptions of the individual arithmetic operations will include the exact
effect of scale on the computations.

-5-

Addition and Subtnctlon

The sc:ales of the two numbers are compared and trailing zeros are supplied to the
number with the lower sc:ale to give both numbers the same scale. The number with the
smaller scale is multiplied by IO if the difference of the scales is odd. The scale of the result is
then set to the larger of the scales of the two operands.

Subtraction is performed by negating the number to be subtracted and proceeding as in
addition.

Finally, the addition is performed digit by digit from the low order end of the number.
The carries are propagated in the usual way. The resulting number is brought into canonical
form, which may require stripping of leading zeros. or for negative numbers replacing the
high-order configuration 99, - I by the digit -1. In any case, digits which are not in the range
0-Q9 must be brought into that range. propagating any carries or borrows that resulL

Multiplication

The scales are removed from the two operands and saved. The operands are botli made
positive. Then multiplication is performed in a digit by digit manner· that exactly mimics the
hand method of multiplying. The first number is multiplied by each digjL of the second
number. beginning with its low order digit. The intermediate products are accumulated into a
patti<ll sum which becomes the final product. The product is put into the canonical form and
its sign is computed from the signs of the original operands.

The scale of the result is set equal to the sum of the scales of the two operands. ff that
scale is larger than the internal register sole and also larger than both of the scales of the two
operands. then the scale of the result is set equal to the largest of these three last quantities.

Division

The scales are removed from the two operands. Zeros are appended or digits removed
from the dividend to make the scale of the result of the integer division equal to the internal
quantity scaie. The signs are removed and saved.

Division is performed much as it would be done by hand. The di.fferent=e of the lengths
of the two numbers is computed. If the divisor is longer than the dividend. zero is returned.
Otherwise the top digit of the divisor is divided into the top two digits of the dividend. The
result is used as the first <high-order) digit of the quotient. It may turn out be one unit too
low, but if it is. the next trial quotient will be larger than 99 and this will be adjusted at the
end of the process. The trial digit is multiplied by the divisor and the result subtracted from
the dividend and the process is repeated to get additional quotient digits until the remaining
dividend is smaller than the divisor. At the end. the digits of the quotient are put into the
canonical form. with propagation of carry as needed. The sign is set from the sign of the
operands.

Remainder

The division routine is called and division is performed exactly as described. The quanti
ty returned is the remains of the dividend at the end of the divide process. Since division
truncates toward zero, remainders have the same sign as the dividend. The scale of the
remainder is set to the maximum of the scale of the dividend and the scale of the quotient plus
the sc:ale of the di visor.

-6-

Square Root
The scale is stripped rrom the operand. Zeros are added if necessary to make the integer

result have a scale that is the larger of the internal G""'ntity scale and the scale of the operand.

The method used to compute sqn(y) is Newton's method with successive approximations
by the rule

x,.+ 1 -0(x11 +...l..) ,
. x,.

The initial guess is found' by taking the integer square root of the top two digits.

Exponentiation

Only exponents with zero scale ractor are handled. If the exponent is zero, then the
result is 1. If the exponent is negative. then it is made positive and the base is divided into
one. The scale or the base is removed.

The integer exponent is viewed as a binary number. The base is repeatedly squared and
the result is obtained as a product of those powers of the base that correspond to the positions
of the one·bits in the binary representation of the exponenL Enough digits of the result re·
moved to make the scale of the result the same as if the indicated multiplication had been per·
formed.

Input Conversion and Base

Numbers are converted to the internal representation as they are read in. The scale
stored with a number is simply the number of fractional digits input. Negative numbers are
indicated by preceding the number with a _. The hexad~imaJ digits A-F correspond to the
numbers 10-15 regardless of input base. The I command can be used to change the base of
the input numbers. This command pops the stack, truncates the resulting number to an in·
teger, and uses it as the input base for all funher inpuL The input base is initialized to 10 but
may, for example be changed to 8 or 16 to do octal or hexadecimal to decimal conversions.
The command 1 will push the value of the input base on the stack.

Output Commands

The command p causes the top of the stack to be printed. It does not remove the top of
the stack. All of the stack and internal registers can be output by typing the command r. The
o command can be used to change the output base. This command uses the top of the stack,
truncated to an integer as the base for all further output. The output base in initialized to 10.
lt will work correctly for any base. The command 0 pushes the value of the output base on
the stack.

Output Format and Base

The input and output bases only affect the interpretation of numbers on input and out·
put; they have no effect on arithmetic computations. Large numbers are output with 70 char·
acters per line; a \ indicates a continued line. All choices of input and output bases work
correctly, although not all are useful. A particularly useful output base is 100000, which has
the effect of grouping digits in fives. Bases of 8 and 16 can be used for decimaJ·octal or
decimal· hexadecimal conversions.

-7-

Internal Recisters

Numbers or strings may be stored in internal registers or loaded on the stack from regis
ters with the commands s and l. The command s.x pops the top of the stack and stores the
resuJt in register x. x can be any character. Ix puts the contents of register x on the top of the
stack. The I command has no effect on the contents of register x. The s command. however,
is destructive.

Stack Commands

The command c cJears the stack. The command d pushes a duplicate of the number on
the top of the stack on the stack. The command z pushes the stack size on the stack. The
command X replaces the number on the top of the stack with its scale factor. The command Z
replaces the top of the stack with its length.

Subroutine Definitions and Calls

Enclosing a string in II pushes the ascii string on the stack. The q command quits or in
executing a string, pops the recursion levels by two.

Internal Recisters - PTOCnmminc DC

The load and store commands together with fl to store strings, x to execute and the test
ing corr.mands '<', '>', '-', '!<', '!>','!•'can be used to program DC. The x command as
sumes the top of the stack is an string of DC commands and executes it The testing com
mands compare the top two elements on the stack and if the relation holds. execute the regis
ter that follows the relation. For example, to print the numbers 0-9,

[lipl+ si lilO>a]sa
Osi lax

Push-Down Registers and Arrays

These commands were designed for used by a compiler. not by people. They involve
push-down registers and arrays. In addition to the stack that commands work on, DC can be

. thought of as having individual stacks for each register. These registers are operated on by the
commands S and L. Sx pushes the top vaJue of the main stack onto the stack for the register
x. Lx pops the stack for register x and puts the result on the main stack. The commands s and
l also work on registers but not as push-down stacks. I doesn't effect the top of the register
stack. ands destroys what was there before.

The commands to work on arrays are : and ;. :.x pops the stack and uses this vaJue as an
index into the array x. The next element on the stack is stored at this index in x. An index
must be greater than or equal to 0 and less than 2048. :.x is the command to load the main
stack from the array x. The vaJus on the top of the stack is the index into the array x of the
value to be loaded.

MisceHaneous Commands

The command ! interprets the rest of the line as a UNIX command and passes it to
UNIX to execute. One other compiler command is Q. This command uses the top of the
stack as the number of levels of recursion to skip.

- 8 --

DESIGN CHO!CES .
The real reason for the use of a dynamic storage allocator was that a general purpose pro

gram could be (and in fact has been} used for a var; .. Ly of other tasks. The allocator has some
value for input and for compiling (i.e. the bracket [.•.] commands) where it cannot be known
in advance how long a string will be. The result was that at a modest cost in execution time.
all considerations of string allocation and sizes of strings were removed from the remainder of
the program and debugging was made easier. The allocation method used wastes approximate·
ly 25% of available space ..

The choice of 100 as a base for internal arithmetic seemingly has no compelling advan·
tage. Yet the base cannot exceed 127 because of hardware limitations and at the cost of 5% in
space. debugging was made a great deal easier and decimal output was made much faster.

The reason for a stack-type arithmetic design was to permit all OC commands from addi·
tion to subroutine execution to be implemented in essentially the same way. The result was a
considerable degree of logical separation of the final program into modules with very little com·
munication between modules.

The rationale for the lack of interaction between the scale and the bases was to provide
an understandable means of proceeding after a change of base or scale when numbers had al·
ready been entered. An earlier implementation which had global' notions of scale and base did
not work out well. If the value of scale were to be interpreted in the current input or output
base. then a change of base or scale in the midst of a computation would cause great confusion
in the interpretation of the results. The current scheme has the advantage that the value of
the input and output bases are only used for input and output, respectively, and they are ig·
nored in ail other operations. The value of scale is not used for any essential purpose by any
part of the program and it is used only to prevent the number of decimal places resulting from
the arithmetic operations from growing beyond all bounds.

The design rationale for the choices for the scales of the results of arithmetic were that in
no case should any significant digits be thrown away if, on appearances, the user actually want·
ed them. Thus, if the user wants to add the numbers 1.5 and 3.517, it seemed reasonable to
give him the result 5.017 without requiring him to unnecessarily specify his rather obvious re·
quirements for precision.

On the the other hand, multiplication and exponentiation produce results with many
more digits than their operands and it seemed reasonable to give as a minimum the number of
decimal places in the operands but not to give more than that number of digits unless the user
asked for them by specifying a value for scale. Square root can be handled in just the same
way as multiplication. The operation of division gives arbitrarily many decimal places and
there is simply no way to guess how many places the user wants. In this case only, the user
must specify a scale to get any decimal places at aJl.

The scale of remainder was chosen to make it possible to recreate the dividend from the
quotient and remainder. This is easy to implement; no digits lre thrown away.

References
[1] L. L Cherry, R. Morris, BC -An Arbitrary Prer:ision Desk-Calculator Language,
[2] K. C. Knowlton, A Fa.st Storage AJ/ocaror, Comm. ACM 8, pp. 623-625 {Oct. 1965)

YACC - Yet Another Compiler-Compiler

Stephen C. Johnson

Bell Laboratories,
Murray Hill, New Jersey 07974

ABSTRACT

Computer program input generally has some structure; in fact, every
computer program which does input can be thought of as defining an "input
language" which it accepts. The input languages may be as complex as a pro
gramming language, or as simple as a sequence of numbers. Unfortunately,
standard input facilities are restricted, difficult to use and change. and do not
completely check their inputs for validity.

Yacc provides a general tool for controlling the input to a computer pro
gram. The Yacc user describes the structures of his input, together with code
which is to be invoked when each such structure is recognized. Yacc turns
such a specification into a subroutine which may be invoked to handle the in
put process; frequently, it is convenient and appropriate to have most of the
!low of control in the user's application handled by this subroutine.

The input subroutine produced by Yacc calls a user supplied routine to
return the next basic input item. Thus, the user can specify his input in terms
of individual input characters, or, if he wishes, in terms of higher level con
structs such as names and numbers. The user supplied routine may also han
dle idiomatic features such as comment and continuation conventions, which
typically defy easy specification.

Yacc is written in C(7], and runs under UNIX. The subroutine which is
output may be in C or in Ratfor{4J, at the user's choice; Ratfor permits transla
tion of the output subroutine into portable Fortran[5]. The class of
specifications accepted is a very general one, called LALR(l) grammars with
disambiguating rules. The theory behind Yacc has been described else
where{ 1,2,31.

Yacc was originally designed to help produce the "front end" of com
pilers; in addition to this use, it has been successfully used in many application
programs, including a phototypesetter language, a document retrieval system, a
Fortran debugging system, and the Ratfor compiler.

YACC - Yet Another Compiler-Compiler

Stephen C. Johnson

Bell Laboratories,
Murray Hill. New Jersey 07974

Section 0: Introduction

Yacc provides a general tool for imposing structure on the input to a computer program.
The Yacc user prepares a specification of the input process; this includes rules which describe
the input structure, code which is to be invoked when these structures are recognized, and a
low-level routin·e Lo do the basic input. Yacc then produces a subroutine to do the input pro
cedure; this subroutine, called a parser, calls the user-supplied low-level input routine (called
the lexical analyzer) to pick up the basic items (called tokens) from the input stream. These to
kens are organized according to the input structure rules, called grammar rules: when one of
these rules has been recognized, then the user code supplied for this rule, called an action, is
invoked; actions have the ability to return values and make use of the values of other actions.

The heart of the input specification is a collection of grammar rules. Each rule describes
an allowable structure and gives it a name. For example. one grammar rule might be

date : month_name day ·: year ;

Here. date, month_name, day, and year represent structures of interest in the input process;
presumably. month_name. day, and year are defined elsewhere. The comma is quoted by
single quotes; this implies that the comma is to appear literally in the input. The colon and
semicolon merely serve as punctuation in the rule, and have no significance in controlling the
input. Thus, with proper definitions, the input

July 4, 1776

might be matched by the above rule.

As we mentioned above, an important part of the input process is carried out by the lexi
cal analyzer. This user routine reads the true input stream, recognizing those structures which
are more conveniently or more efficiently recognized directly, and communicates these recog
nized tokens to the parser. For historical reasons, the name of a structure recognized by the
lexical analyzer is called a terminal symbol name, while the name of a structure recognized by
the parser is called a nonrermmal symbol name. To avoid the obvious confusion of terminology,
we shall usually refer to terminal symbol names as token names.

There is considerable leeway in deciding whether to recognize structures by the lexical
analyzer or by a grammar rule. Thus. in the above example it would be possible to have other
rules of the form

rnonth_name T 'a' 'n'
month_name 'F 'e' 'b'

month_name : ·o· 'e' ·~· ;

Here. the lexical analyzer would only need to recognize individual letters. and month_name
would be a nonterminal symbol. Rules of this sort tend to be a bit wasteful of time and space,
and may even restrict the power of the input process (although they are easy to write). For a

-2-

more efficient input proc.:css, the lexical analyzer itself 'Tlight recognize the month names. and
return an indication that a month_name was seen; in this case. month_name would be a token.

Literal characters. such as ",", must also be pa'>setl through the lexical analy1cr. and arc
c.:onsideretl tokens.

As an example of the nexibilily of the grammar rule approach, we might add to the above
specifications the rule

date : month '/' d.aY ' (year

and thus optionally allow the form

7/411776

as a synonym for

July 4, 1776

In most cases. this new rule could be "slipped in" to a working system with minimal effort.
and a very small chance of disrupting existing input.

Frequently, the input being read does not conform to the specifications due to errors in
rhc input. The parsers produced by Yacc have the very desirable property that they will uctcct
these input errors at the earli~st place at which this can be done with a lefl·to-right 'ican, thus,
not only is the chance of reading and computing with bad input data substantially reduced, but
the bad data can usually be quickly found. Error handling facilities, entered as part of the in·
put specifications. frequently permit the reentry of bad data, or the continuation of the input
process after skipping over the bad data.

In some cases. Yacc fails to produce a parser when given a set of specifications. For ex·
ample. the specifications may be self contradictory, or they may require a more powerful recog·
nition mechanism than that available to Yacc. The former cases probably represent true
design errors; the latter cases can often be corrected by making the lexical analyzer more
powerful, or by rewriting some of the grammar rules. The class of specifications which Yacc
can handle compares very favorably with other systems of this type; moreover, the construe·
tions which are difficult for Yacc to handle are also frequently difficult for human beings to
handle. Some users have reported that the discipline of formulating valid Yacc specifications
for their input revealed errors of conception or design early in the program development.

The next severdl sections describe the basic process of preparing a Yacc specification;
Section I describes the preparation of grammar rules, Section 2 the preparation of the user sup·
plied actions associated with these rules, and Section 3 the preparation cf lexical analyzers. In
Section 4, we discuss the diagnostics produced when Yacc is unable to produce a parser from
the given specifications. This section also describes a simple, frequently useful mechanism for
handling operator precedences. Section 5 discusses error detection and recovery. Sections 6C
and 6R discuss the operating environment and special features of the subroutines which Yacc
produces in C and Ratfor, respectively. Section 7 gives some hints which may lead to better
designed. more efficient, and clearer specifications. Finally, Section 8 has a brief summary.
Appendix A has a brief example, and Appendix B tells how to run Yacc on the UNIX operat
ing system. Appendix C has a brief description of mechanisms and syntax which are no longer
actively supported. but which are provided for historical continuity with older versions of Yacc.

-3-

Section 1: Basic Specifications

As we noted above. names refer to either tokens or nonterminal symbols. Yacc requires
those names which will be used as token names to be declared as such. In addition, for rea
sons which will be discussed in Section. 3, it is usually desirable to include the lexical analyzer
as part of the specification file; it may be useful to include other programs as well. Thus. every
specification file consists of three sections: the declarations, (grammar) rules. and programs. The
sections are separated by double percent .. %%" marks. (The per-cent .. %" is generally used in
Yacc specifications as an escape character.}

In other words1 a full s~cilication file looks like

declarations
%%
rules
%%
programs

The declaration section may be empty. Moreover, if the programs section is omitted, the
second %% mark may be omitted also; thus, the smallest legal Yacc specification is

%%
rules

Blanks. tabs, and newlines are ignored except that they may not appear in names or
multi-character reserved symbols. Comments may appear wherever a name or operator is le
gal; they are enclosed in r ... •I. as in C and PL/I.

The rules section is made up of one or more grammar rules. A grammar rule has the
form:

A : BODY :

A represents a nonterminal name, and BODY represents a sequence of zero or more names
and literals. Notice that the colon and the semicolon are Yacc punctuation.

Names may be of arbitrary length, and may be made up of letters, dot ".". underscore
.. _ ... and non-initial digits. Notice that Yacc considers that upper and lower case letters are dis
tinct. The names used in the body of a grammar rule may represent tokens or nonterminal
symbols.

A literal consists of a character enclosed in single quotes "'". As in C, the backslash "\"
is an escape character within literals, and all the C escapes are recognized. Thus

'\n' represents newline
'\r' represents return
'\" represents single quote
'\\' represents backslash"\"
'\t' represents tab
'\b' represents backspace
'\xxx' represents "xxx" in octal

For a number of technical reasons, the nul character ('\0' or 000) should never be used in
grammar rules.

If there are several grammar rules with the same left hand side, the vertical bar "I" can
be used to avoid rewriting the left hand side. In addition, the semicolon at the end of a rule
can be dropped before a vertical bar. Thus the grammar rules

A: BCD
A: E F ;
A:O ;

can be given to Yacc ru;

A: BC DI
E Fl
0;

-4-

It is not necessary that all grammar rules with the same left side appear together in the gram
mar rules section. although it makes the input much more readable, and easy to change.

If a nonterminal symbol matches the empty string, this can be indicated in the obvious
way:

empty : ;

As we mentioned above, names which represent tokens must be declared as such. The
simplest way of doing this is to write

%token name 1 name2 ...

in the declarations section. (See Sections 3 and 4 for much more discussion). Every name not
defined in the declarations section is assumed to represent a nonterminal symbol. If. by the
end of the rules section, some nonterminal symbol has not appeared on the left of any rule.
then an error message is produced and Yacc halts.

The left hand side of the first grammar rule in the grammar rules section has special im
portance; it is taken to be the controlling nonterminal symbol for the entire input process; in
technical language it is called the start symbol. In effect, the parser is designed to recognize the
start symbol; thus. this symbol generally represents the largest. most general structure
described by the grammar rules.

The end of the input is signaled by a special token, called the endmarlcer. If the tokens
up to, but not including, the endmarker form a structure which matches the start symbol, the
parser subroutine returns to its caller when the endmarker is seen; we say that it acc·epts the
input. If the endmarker is seen in any other context. it is an error.

It is the job of the user supplied lexical analyzer to return the endmarker when appropri
ate; see section 3, below. Frequently, the endmarker token represents some reasonably obvi
ous 1/0 status. such as "end-of-file" or .. end-of-record".

Section 2: Actions

To each grammar rule, the user may associate an action to be performed each time the
rule is recognized in the input process. This action may return a value, and may obtain the
values returned by previous actions in the grammar rule. In addition, the lexical analyzer can
return values for tokens, if desired.

When invoking Yacc, the user specifies a programming language: currently, Ratfor and C
are supported. An action is an arbitrary statement in this language, and as such can do input
and output, call subprograms, and alter external vectors and variables (recall that a ''statement"
in both C and Ratfor can be compound and do many distinct tasks). An action is specified by
an equal sign .. _ .. at the end of a grammar rule, followed by one or more statements. enclosed
in curly braces"(" and "}". For example,

A:'(' BT= { hello~ I, "abc"); l
and

XXX: YYY ZZZ =
I

print f(" a message \n");
tlag = 25;

-5-

are grammar rules with actions in C. A grammar rule with an actio.n need not end with a sem
icolon; in fact.. it is an error to have a semicolon before the equal sign.

To facilitate· easy communication between the actions and the parser. the action state
ments are altered ·slightly. The symbol .. dollar sign" "$" is used as a signal to Yacc in this
context.

To return a value, the action normally sets the pseudo-variable "$$" to some integer
value. For example, an action which does nothing but return the value I is

={SS=l;}

To obtain the values returned by previous actions and the lexical analyzer, the action
may use the (integer) pseudo-variables $1, $2, ... , which refer to the values returned by the
components of the right side of a rule, reading from left to right. Thus, if the rule is

A: BCD;

for example, then $2 has the-value returned by C, and $3 the value returned by D.

As a more concrete example, we might have the rule

expression: · (' expression T ;

We wish the value returned by this rule to be the value of the expression in parentheses.
Then we write

expression: '(' expression T = I SS = $2 ; l

As a default, the value of a rule is the value of the first element in it ($1). This is true
even if there is no explicit action given for the rule. Thus, grammar rules ofthe form

A:B;

frequently need not have an explict action.

Notice that, although the values of actions are integers, these integers may in fact contain
pointers (in C) or indices into an array (in Ratfor); in this way, actions can return and refer
ence more complex data structures.

Sometimes, we wish to get control before a rule is fully parsed, as well as at the end of
the rule. There is no explicit mechanism in Yacc to allow this: the same effect can be ob
tained, however, by introducing a new symbol which matches the empty string, and inserting
an action for this symbol. For example, we might have a rule describing an "if' statement:

statement: IF'(' expr T THEN statement

Suppose that we wish to get control after seeing the right parenthesis in order to output some
'ode. We might accomplish this by the rules:

statement: IF T expr ·r actn THEN statement
= (call action l }

actn: r matches the empty string •t
= I call action2 J

-6-

Thus. the new nonterminal wmbol actn matches no input. but serves only to call action2
after the right parenthesis is seen.

Frequently, it is more natural in such cm.;es to'. • .::ak the rule into parts where the action
is needed. Thus. the ahovc example might also have been written

statement: if part THEN statement
- { caU action.I }

ifpart: IF '(' expr ')'
= I call action2 l

In many applications. output is not done directly by the actions: rather. a data structure.
such as a parse tree. is constructed in memory, and transformations are applied to it before out
put is generated. Parse trees are particularly easy to construct, given routines which build and
maintain the tree structure desired. For example, suppose we have a C function "node", writ
ten so that the call

node(L. n I, n2)

creates a node with label L. and descendants n 1 and n2, and returns a pointer to the newly
created node. Then we can cause a parse tree to be built by supplying actions such as:

expr: expr '+' expr
= {$$==node(·+·, $1, $3); l

in our specification.

The user may define other variables to be used by the actions. Declarations and
definitions can appear in two places in the Yacc specification: in the declarations section, and
al the head of the rules sections, before the first grammar rule. In each case, the declarations
and definitions are enclosed in the marks "%{" and "%}". Declarations and definitions placed
in the declarations section have global scope, and are thus known to the action statements and
the lexical analyzer. Declarations and ~efinitions placed at the head of the rules section have
scope local to the action statements. Thus, in the above example. we might have included

%1 int variable 0; %1
in the declarations section, or, perhaps,

%(static int variable; %}

al the head of the rules section. If we were writing Ratfor actions. we might want to include
some COMMON statements at the beginning of the rules section, to allow for easy communi
cation between the actions and other routines. For both C and Ratfor, Yacc has used only
external names beginning in "yy"; the user should avoid such names.

Section 3: Lexical Analysis

The user must supply a lexical analyzer which reads the input stream and communicates
tokens (with values. if desired) to the parser. The lexical analyzer is an integer valued function
called yylex. in both C and Ratfor. The function returns an integer which represents the type
of the token. The value to be associated in the parser with that token is assigned to the integer
variable yylval. Thus. a lexical analyzer written in C should begin

yylex () I
extern int yylval;

while a lexical analyzer written in Ratfor should begin

integer function yylexlyylval>
intcttcr yylval

-7-

Clearly, the parser and the lexical analyzer must agree on the type numbers in order for
communication between them to take place. These numbers may be chosen by Yacc. or
chosen by the user. In either case, the "define" mechanisms of C and Ratfor are used to allow
the lexicaJ analyzer to return these numbers symbolically. For example, suppose that the to
ken name DIGIT has been defined in. the declarations section of the specification. The
relevant portion or the lexical analyzer (in C) might look like:

yylex() I
extern int yylval;
int c;

c == getchar() ;

if(c >= ·o· && c <= ·9· > I
yylval = c-·o·:
return(DIGIT);

The relevant portion of the Ratfor lexical analyzer might look like:

integer function yylex (yylval)
integer yylval, digits{lO), c

data digits(l) I "O" I;
data digits(2) I "I"/;

data digits{lO) I "9" /;

set c to the next input character

do i = 1, 10 I
if(c .EQ. digits(i)) I

yylval = i-1
yylex ==DIGIT
return

In both cases, the intent is to return a token type of DIGIT. and a value equal to the nu
merical value of the digit. Provided that the lexical analyzer code is placed in the programs
section of the specification. the identifier DIG IT will be redefined to be equal to the type
number associated with the token name DIGIT.

This mechanism leads to clear and easily modified lexical analyzers; the only pitfall is
that it makes it important to avoid using any names in the grammar which are reserved or
significant in the chosen language; thus, in both C and Ratfor, the use of token names of "if'
or "yylex" will almost certainly cause severe difficulties when the lexical analyzer is compiled.
The token name "error" is reserved for error handling, and should not be used naively (see
Section 5).

-8-

As mentioned above. the type numbers may b" .:hosen hy Y<1ct: or by the user. In the
d'-·fault situation, the numbers arc chosen hy Yat:i.:. The default type number for a literal t:har·
al·tcr 1s the numerical value of the 1.:harnt:ter. 1.:onsidered as a I byte integer. Other tokl:n
n<1mcs arc assigned type numbers starting at 257. ! ;s a difficult, machine dependent operation
to <.letcrmine the numerical value of an input character in Ratfor (or Fortran). Thus, the Rat·
for user of Yacc will probably wish to set his own ·type numbers. or not use any literals in his
specification.

To assign a type nurnber to a token (including literals), the first appearance of the token
name or literal in the declarations section can be immediately followed by a nonnegative integer.
This integer is taken to be the type number of the name or literal. Names and literals not
defined by this mechanism retain their default definition. It is important that all type numbers
be distinct.

There is one exception to this situation. For sticky historical reasons, the endmarker
must have type number 0. Note that this is not unattractive in C, since the nul character is re
turned upon end of file; in Ratfor. it makes no sense. This type number cannot be redefined
hy 1he user; thus. all lexical analyzers should be prepared to return 0 as a type number upon
reaching the end of their input.

~tion 4: Ambiguity, Conflicts. and Precedence

A set of grammar rules is ambiguous if there is some input string which can be structured
in two or more ditferent ways. For example, the grammar rule

expr: expr'-'expr;

is a natural way of expressing the fact that one way of forming an arithmetic expression is 10
put two other expressions together with a minus sign between them. Unfortunately, this
grammar rule does not completely specify the way that all complex inputs should be structured.
For example, if we have input of the form

expr - expr - expr

1he rule would permit us to treat this input either as

(expr - expr) - expr

or as

expr - (expr - expr)

(We speak of the first as left association of operators. and the second as right assooa11011).

Yacc detects such ambiguities when it is attempting to build the parser. It is instructive
to con,sider the problem that confronts the parser when it is given an input such as

expr - expr - expr

When the parser has read the second expr, the input which it has seen:

expr - expr

matches the right side of the grammar rule above. One valid thing for the parser to do is to
reduce the input it has seen by applying this rule; after applying the rule, it would have re
duced the input it had already seen to expr (the left side of the rule). It could then read the
final part of the input:

- expr

and again reduce by the rule. We see that the effect of this is to take the left associative in
terpretation.

Alternatively, when the parser has seen

expr - expr

-9-

it could defer the immediate application of the rule. and continue reading (the technical term
is .sl1{1ii11~) the input until it had seen

expr - expr - expr

It could then apply the grammar rule to the rightmost three symbols. reducing them to expr
and leaving

expr - expr

Now it can reduce by the rule again; the effect is to take the right associative interpretation.
Thus. having read

expr - expr

the parser can do two legal things, a shift or a reduction. and has no way of deciding between
them. We refer to this as a shift/reduce conflict. It may also happen that the parser has a choice
of two legal reductions; this is called a reduce/reduce conflict.

When there are shift/reduce or reduce/reduce conflicts, Yacc still produces a parser. It
does this by selecting one of the valid steps wherever it has a choice. A rule which describes
which choice to make in a given situation is called a disambiguating rule.

Yacc has two disambiguating rules which are invoked by default, in the absence of any
user directives to the contrary:

I. In a shift/reduce conflict, the default is to do the shift.

2. In a reduce/reduce conflict, the default is to reduce by the earlier grammar rule (in the
input sequence).

Rule l implies that reductions are deferred whenever there is a choice, in favor of shifts.
Rule 2 gives the user rather crude control over the behavior of the parser in this situation, but
the proper use of reduce/reduce conflicts is still a black art, and is properly considered an ad
vanced topic.

Conflicts may arise because of mistakes in input or logic, or because the grammar rules.
while consistent, require a more complex parser than Yacc can construct. In these cases, the
application of disambiguating rules is inappropriate, and leads to a parser which is in error. For
this reason, Yacc always reports the number of shift/reduce and reduce/reduce conflicts which
were resolved by Rule 1 and Rule 2.

In general, whenever it is possible to apply disambiguating rules to produce a correct
parser. it is also possible to rewrite the grammar rules so that the same inputs are read, but
there are no conflicts. For this reason, most previous systems like Yacc have considered
conflicts to be fatal errors. Our experience has suggested that this rewriting is somewhat unna
tural to do, and produces slower parsers; thus. Yacc will produce parsers even in the presence
of conflicts.

As an example of the power of disambiguating rules, consider a fragment from a pro
gramming language involving an "if-then-else" construction:

stat: IF'(' cond T stat I
IF • (' cond T stat ELSE stat ;

Here, we cqnsider IF and ELSE to be tokens, cond to be a nonterminal symbol describing 1.:on
ditional (logical) expressions, and stat to be a nonterminal symbol describing statements. In
the following, we shall refer to these two rules as the simple-if rule and the !!·else rule, respec
tively.

- 10 -

These tw11 rules form an ambiguous construction. since input of the form

IF (C'l > IF< C2) SI ELSE 52

can be structured a~cording lo these rules in two ways:

or

IF (Cl >I
If (C2) SI

}
ELSE S2

IF (Cl > {
IF (C2) Sl
ELSE S2

The second interpretation is the one given in most programming languages wh1(;h have th1!>
construct. Each ELSE is associated with the last preceding "un-ELSE'd" IF. In lhis examplt.!.
consider the situation where the parser has seen

IF (Ct) IF (C2) S 1

and is looking al the ELSE. It can immediately reduce by the simple-if rule to get

IF (Cl) stat

and then read the remaining input,

ELSE 52

and reduce

IF (Cl) stat ELSE 52

by the if-else rule. This leads to the first of the above groupings of the input.
On the other hand, we may shift the ELSE and read 52, and then reduce the right hand

portion of

IF (Cl) IF (C2) SI ELSE S2

by the if-else rule to get

IF (Ct) stat

which can be reduced by the simple-if rule. This leads to the second of the above groupings
of the input, which is usually desired.

Once again the parser can do two valid things - we have a shift/reduce contlict. The ap
plication of disambiguating rule l tells the parser to shift in this case, which leads to thi:
desired grouping.

Notice that this shift/reduce conflict arises only when there is a particular current input
symbol, ELSE, and particular inputs already seen, such as

IF (Cl.) IF (C2) Sl

In general, there may be many conflicts, and each one will be associated with an input symbol
and a set of previously read inputs. The previously read inputs are characterized by the state of
the parser, which is assigned a nonnegative integer. The number of states in the parser is typi
cally two to five times the number of grammar rules.

- 11 -

When Yacc is invoked with the verbose (-v) option (see Appendix 8), it produces a file
of user output which includes a description of the states in the parser. For example, the output
corresponding to the above example might be:

23: shift/reduce Contlict (Shift 45, Reduce 18) on ELSE

Slate 23

stal : IF (cond) stat
stal : IF (cond) stat-ELSE stat

. -
ELSE shift 45

reduce 18

The first line describes the conflict, giving the state and the input symbol. The state title fol
lows, and a brief description of the grammar rules which are active in this state. The underline
"_" describes the portions of the grammar rules which have been seen. Thus in the example,
in state 23 we have seen input which corresponds to

IF (cond) stat

and the two grammar rules shown are active at this time. The actions possible are, if the input
symbol is ELSE. we may shift into state 45. In this state. we should find as part of the descrip
tion a line of the form

stal : IF (cond) stat ELSE_stat

because in this state we will have read and shifted the ELSE. Back in stale 23, the alternative
action, described by ••.", is to be done if the input symbol is not mentioned explicitly in the
above actions; thus, in this case, if the input symbol is not ELSE, we should reduce by gram
mar rule 18, which is presumably

stat : IF • (' cond T stat

Notice that the numbers following "shift" commands refer to other states, while the numbers
following "reduce" commands refer to grammar rule numbers. In most states, there will be
only one reduce action possible in the state, and this will always be the default command. The
user who encounters unexpected shift/reduce conflicts will probably want to look at the ver
bose output to decide whether the default actions are appropriate. In really tough cases. the
user might need to know more about the behavior and construction of the parser than can be
covered here: in this case, a reference such as [l] might be consulted; the services of a local
guru might also be appropriate.

There is one common situation where the rules given above for resolving conflicts are
not sufficient; this is in the area of arithmetic expressions. Most of the commonly used con
structions for arithmetic expressions can be naturally described by the notion of precedence lev
els for operators, together with information about left or right associativity. It turns out that
ambiguous grammars with appropriate disambiguating rules can be used to create parsers which
are faster and easier to write than parsers constructed from unambiguous grammars. The basic
notion is to write grammar rules of the form

expr : expr OP expr

and

expr: UNARY expr

for all binary and unary operators desired. This creates a very ambiguous grammar, with many

- 12 -

parsing COlll' h. i\~ Jjs;1mht!!Uali11g rules. lhf" user Sjl\:i.:ilh.:s the pn.:1.:cdc111;c, or h1mli11g
strength, of all the op~rators, anu the associativity of the binary operators. This information •~
sufficient to allow Yacc to resolve the parsing conflicts in accordance with these rules, and con
struct a parser which realizes the desired prece<' '"Ices and associativities.

The prc1.:cdcnccs and associativities are atta~hed to tokens in the declarations section.
This is done by a series of lines beginning with a Yacc keyword: %left, %right, or %non~sm:,
followed by a list of tokens. All of the tokens on the same= line ar~ assumed to have the ::i..ime
precedence level anq associativity; the line!> are listed in order of increasing precedence or
binding strength. Thos.

%left • +' '-·
%left ·•• ·r

describes the precedence and associativity of the four arithmetic operators. Plus and minus Jrc
left associative, and have lower precedence than star and slash, which are also left assoc1at1v~.
The keyword %right is used to describe right associative operators, and the keyword %nonassoc
is used to describe operators, like the operator .LT. in Fortran. which may not associate with
themselves; thus.

A .LT. B .LT. C

is illegal in Fortran, and such an operator would be dt:scribed with the keyword (•1,,oona.s::ioc in
Yacc. As an example of the behavior of these declarations. the description

%right·=·
%left • +' · -·
%left'•' ·r
%%

expr:
ex pr'~: expr I
ex pr · +· ex pr I
expr • -· expr I
expr ·•• expr I
expr • r ex pr I
NAME;

might be used to structure the input

a = b = c*d - e - f*g

as follows:

a== (b =· (((c•d)-e) - (C-g)))

When this mechanism is used, unary operators must, in general, be given a precedence. An
interesting situation arises when we have a unary operator and a binary operator which have
the same symbolic representation, but different precedences. An example is unary and binary
• -·; frequently, unary minus is given the same strength as multiplication, or even higher, while
binary minus has a lower strength than multiplication. We can indicate this situation by use of
another keyword, %prec, to change the precedence level associated with a particular grammar
rule. o/oprec appears immediately after the body of the grammar rule. before the action or clos
ing semicolon. and is followed by a token name or literal; it causes the precedence of the
grammar rule to become that of the token name or literal. Thus. to make unary minus have
the same precedence as multiplication. we might write:

%.left·+··-·
%teft ·•• ·r
%%

expr:
expr · +· ex pr I
expr · -· expr I
expr ••• expr I
expr • r. ex pr I
· -· expr %prec '*' I
NAME;

- 13 -

Notice that the precedences which are described by %left, %right, and %nonassoc are in
dependent of the declarations of token names by %token. A symbol can be declared by %to·
ken, and, later in the declarations section, be given a precedence and associativity by one of
the above methods. [t is true, however, that names which are given a precedence or associa
tivity are also deciared to be token names, and so in general do not need to be declared by
%token. although it does not hurt to do so.

As we mentioned above, the precedences and associativities are used by Yacc to resolve
parsing conflicts; they give rise to disambiguating rules. Formally, the rules work as follows:

1. The precedences and associativities are recorded for those tokens and literals which have
them.

2. A precedence and associativity is associated with each grammar rule; it is the precedence
and associativity of the last token or literal in the body of the rule. If the %prec con
struction is used. it overrides this default. Notice thal some grammar rules may have no
precedence and associativity associated with them.

3. When there is a reduce/reduce conflict. or there is a shift/reduce conflict and either the
input symbol or the grammar rule, or both, has no precedence and associativity associated
with it, then the two disambiguating rules given al the beginning of the section are used,
and the conflicts are reported.

4. If there is a shift/reduce conflict. and both the grammar rule and the input character have
precedence and associativity associated with them, then the conflict is resolved in favor of
the action (shift or reduce) associated with the higher precedence. If the precedences are
the same, then the associativity is used; left associative implies reduce, right associative
implies shift, and nonassociating implies error.

There are a number of points worth making about this use of disambiguation. There is
no reporting of conflicts which are resolved by this mechanism, and these conflicts are not
counted in the number of shift/reduce and reduce/reduce conflicts found in the grammar.
This means that occasionally mistakes in the specification of precedences disguise errors in the
input grammar: it is a good idea to be sparing with precedences, and use them in an essentially
"cookbook" fashion, until some experience has been gained. Frequently. not enough operators
or precedences have been specified; this leads to a number of messages about shift/reduce or
reduce/reduce conflicts. The cure is usually to specify more precedences. or use the %prec
mechanism. or both. It is generally good to examine the verbose output file to ensure that the
conflicts which are being reported can be validly resolved by precedence.

- 14 -

s~rtion S: Error H.indling

Error handling is an extremely difficult area, and many of the problems .trl.! scm.11111~·
ones. When an error is found. for example. it may be ncccssary tu rl.!daim parsc trec 'tor.1g.1.:.
delete or alter symbol table entries, and. typ1\:ally. sl.!l ~wit\:hcs lo avoid pulling out ;iny rurthcr
output.

It is generally not acceptable to stop all processing when an er;or i.s found; we w1~h to
continue scanning the input to find any further syntax errors. This lead.:s to the problem of
getting the parser "restarte~" after an error. The general ~lass ,,f algonthms to do this invoivt:.)
reading ahead and discarding a number of tokens from the input :>tring, and attempting lo ad·
just the parser so that input can continue.

To allow the user some control over this process, Yacc provides a simple. bu~ rl!asunaJI~
general, feature. The token name "error" is reserved for error handling. Thi~ nam..: -:J.n be
used in grammar rules; in effect, it suggests places where errors are expcctcd . ..Lnd rcc0,·.,;:ry
might take place. The parser anempts to find the last time in the input when the spt:ciJI token
"error" is permitted. The parser then behaves as though it saw lhe token name "error" .l!> .in
input token, and attempts to parse according to the rule encountered. The tokt:n at which the
error was detected remains the next input token after this error token is processt:d. If no spe·
cial error rules have been specified, the processing ~tfectively halts when an error i~ detected.

In order to prevent a cascade of error messages, the parser assumes that. after dete1.:ting
an error. it remains in error state until three tokens have been successfully read and shifted. If
an error is detected when the parser is already in error state, no error message is given, and the
input token is quietly deleted.

As a common example, the user might include a rule of the form

statement : error :

in his specification. This would, in effect, mean that on a syntax error the parser would at
tempt to skip over the statement in which the error was seen. (Notice, however, that it may
be difficult or impossible to tell the end of a statement, depending on the other grammar
rules). More precisely. the parser will scan ahead, looking for three tokens that might legally
follow a statement, and start processing at the first of these: if the beginnings of statements are
not sufficiently distinctive, it may make a false start in the middle of a statement, and cnu up
reporting a second error where there is in fact no error.

The user may supply actions after these special grammar rules, just as after the other
grammar rules. These actions might attempt to reinitialize tables, reclaim symbol table ~p •. 11 ... c,
etc.

The above form of grammar rule is very general, but somewhat difficult to control.
Somewhat easier to deal with are rules of the form

statement : error';' :

Here. when there is an error, the parser will again attempt to skip over the statement. but 1n
this case will do so by skipping to the next "; ". All tokens after the error and before the next
";"give syntax errors, and are discarded. When the";" is seen, this rule will bi.! redui.:i::d. J.nd
any "cleanup" action associated with it will be performed.

Still another form of error rule arises in interactive applications. where Wt;! may wi~h to
prompt the user who has incorrectly input a line, and allow him to reenter the line. In C we
might write:

- 15 -

inputline: error '\n' prompt inputline
- { $$ - $4; }:

prompt: 1• matches no input"/
- I printf("Reenter last line: ") : } :

There is one difficulty with this approach; the parser must correctly process three input tokens
before it is prepared to admit that it has correctly resynchronized after the error. Thus, if the
reentered line contains errors in the first two tokens, the parser will simply delete the offending
tokens, and give no message; this is clearly unacceptable. For this reason, there is a mechan
ism in both C and Ratfor which can be used to force the parser to believe that resynchroniza
tion has taken place. One need only include a statement of the form

yyerrok ;

in his action after such a grammar rule, and the desired effect will take place; this name will be
expanded, using the "#define" mechanism of C or the "define" mechanism of Ratfor, into an
appropriate code sequence. For example, in the situation discussed above where we want to
prompt the user to produce input, we probably want to consider that the original error has
been recovered when we have thrown away the previous line, including the newline. In this
case, we can reset the error state before putting out the prompt message. The grammar rule
for the nonterminal symbol prompt becomes:

prompt: /* matches no input "/
== I

yyerrok;
printf("Reenter last line: ");

I ;

There is another special feature which the user may wish to use in error recovery. As
mentioned above, the token seen immediately after the "error" symbol is the input token at
which the error was discovered. Sometimes, this is seen to be inappropriate; for example, an
error recovery action might take upon itself the job of finding the correct place to resume in
put In this case, the user wishes a way of clearing the previous input token held in the parser.
One need only include a statement of the form

yyclearin :

in his action; again, this expands, in both C and Ratfor, to the appropriate code sequence. For
example, suppose the action after error were to call some sophisticated resynchronization
routine, supplied by the user, which attempted to advance the input to the beginning of the
next valid statement. After this routine was called, the next token returned by yylex would
presumably be the first token in a legal statement; we wish to throw away the old, illegal to
ken, and reset the error state. We might do this by the sequence:

statement : error
-I

l ;

resynch();
yyerrok ;
yyclearin ;

These mechanisms are admittedly crude, but do allow for a simple, fairly elfective
recovery of the parser from many errors, and have the virtue that the user can get "handles"
by which he can deal with the error actions required by the lexical and output portions of the
system.

- 16 -

St.•ction 6C: The(' Lani:u:l2e Yacc Environment
The default mode of operation in Yacc is to write actions and the lexical analyzer in C.

This has a number of advantages; primarily, it is easier to write cha.!'acter handling routines.
such a.'i the lexical analyzer. in a language which s_ ... ports character-by-character 1/0, and has
shifting and masking operators.

When the user inputs a specification to Yacc, the output is a file of C programs. called
"y.tab.c". These are then compiled, and loaded with a library: the library has default versions
of a number of useful r01.1tines. This section discusses these routines, and how the user can
write his own routines if desired. The name of the Yacc library is system dependent; see Ap·
pendix B.

The subroutine produced by Yacc is called "yyparse"; it is an integer valued function.
When it is called. it in turn repeatedly calls "yylex", the lexical analyzer supplied by the user
(sec Section 3), to obtain input tokens. Eventually, either an error is detected, in which case
(if no error recovery is possible) yyparse returns the value l, or the lexical analyzer returns the
endmarker token (type number 0), and the parser accepts. In this case, yyparse returns the
value 0.

Three of the routines on the Yacc library are concerned with the "external" environment
of yyparse. There is a default "main" program, a default "initialization" routine, and a default
"accept" routine. respectively. They are so simple that they will be given here in their entire
ty:

main(argc, argv)
int argc;
char •argv[1
{

yyinil (argc, argv) ;
if(yyparse())

return;
yyaccpt();

yyinit() { }

yyaccpl () { l
By supplying his own versions of yyinit and/or yyaccpt, the user can get control either before
the parser is called (to set options, open input files, etc.) or after the accept action has been
done (to close files, call the next pass of the compiler, etc.). Note that yyinit is called with the
two .. command line" arguments which have been passed into the main program. If neither of
these routines is redefined, the default situation simply looks like a call to the parser. fallowed
by the termination of the program. Of course, in many cases the user will wish to supply his
own main program; for example. this is necessary if the parser is to be called more than on1.:~.

The other major routine on the library is called "yyerror"; its main purpose is to write
out a message when a syntax error is detected. It has a number of hooks and handles which
attempt to make this error message general and easy to understand. This routine is somewhat
more complex. but still approachable:

- 17 -

extern int yylinc; /"input line number•;

yyerror(s}
char •s;
{

extern int yychar;
extern char •yysterm(];

printW\no/os". s);
if(yyline)

printf(", line %d,", yyline);
printf(" on input:");
if(yychar > = 0400)

printf("%s\n", yysterm(yychar-04001);
else switch (yychar) {
case '\t': printf("\\t\n"); return;
case '\n': printf("\\n\n"); return;
case '\O': printf("Send\n"); return;
default: printf("%c\n" . yychar); return;
l

The argument to yyerror is a string containing an error message; most usually, it is "syntax er
ror". yyerror also uses the external variables yyline, yychar, and yysterrn. yyline is a line
number which, if set by the user to a nonzero number, will be printed out as part of the error
message. yychar is a variable which contains the type number of the current token. yysterm
has the names, supplied by the user, for all the tokens which have names. Thus, the routine
spends most of its time trying to print out a reasonable name for the input token. The biggest .
problem with the routine as given is that, on Unix. the error message does not go out on the
error file (file 2). This is hard to arrange in such a way that it works with both the portable l/O
library and the system 1/0 library; if a way can be worked out, the routine will be changed to
do this. Beware: This routine will not work if any token names have been given redefined type
numbers. In this case, the user must supply his own yyerror routine. Hopefully, this
"feature" will disappear soon.

Finally, there is another feature which the C user of Yacc might wish to use. The integer
variable yydebug is normally set to 0. If it is set to 1, the parser will output a verbose descrip
tion of its actions, including a discussion of which input symbols have been read, and what the
parser actions are. Depending on the operating environment, it may be possible to set this
variable by using a debugging system.

Section 6R: The Ratfor Language Yacc Environment

For reasons of portability or compatibility with existing software, it may be desired to use
Yacc to generate parsers in Ratfor, or, by extension, in portable Fortran. The user is likely to
work considerably harder doing this than he might if he were to use C.

When the user inputs a specification to Yacc, and specifies the Ratfor option (see Appen
dix B), the output is a file of Ratfor programs called "y.tab.r". These programs are then com
piled, and provide the desired subroutine.

The subroutine produced by Yacc which does the input process is an integer function
called "yypars". When it is called, it in turn repeatedly calls "yylex", the lexical analyzer sup
plied by the user (see Section 3). Eventually, either an error is detected, in which case (if no
error recovery is possible) yypars returns the value 1, or the lexical analyzer returns the end
marker (type number 0), and the parser accepts. In this case, yypars returns 0.

- 18 -

Unlike thi: t pro~ram situation (sc:c Section 6(') there is no library of R;1tfor rou1i111.:'
whid1 must be uscu in the lo.adin~ pn~i:ss. As u side c:lfcct of this. 1/u• 11.'lc·r "'"·'' .~111111/y 11 11111111

pr111:m111 which rall.t Y'1"''-"· A sui;tl(cstc.>t.I Riltfor main progr:1m is

integer yypars
n = yyparsW)
if< n .EQ. o > I

here if the program accepted
} else I

here if there were unrecoverable errors

end

Notice that there is no easy way for the user to get control when an error is detected, since the
FortraR language provides only a very crude character string capability.

There is another feature ,which the Ratfor user might wish t.o use. The argument to
yypars is normally 0. If it is set to 1, the parser will output a verbose description of its .ictions,
including a discussion of which input symbols have been read. and what the pars~r actions ..:.re.
During the input process, the value of this debug flag is kept in a common vanable yydebu.
which is available to the actions and may be set and reset at will.

Statement labels l through 1000 are reserved for the parser. and may not appear in ac
tions; note that, because Ratfor has a more modern control structure than Fortran, it is rarely
necessary to use statement labels at aU; the most frequent use of labels in Ratfor is in format·
ted 110.

Because Fortran has no standard character set and not even a standard character width, it
is difficult to produce a lexical analyzer in portable Fortran The usual solution is to provide a
routine which does a table search to get the internal type number for each input character,
with the understanding that such a routine can be recoded to run far faster for any particular
machine.

Finally, we must warn the user that the Ratfor feature of Yacc has been operational for a
much shorter time than the other portions of the system. If past experience is any guide. the
Ratfor support will develop and become more powerful and better human engineered in
response to user complaints and requirements. Thus, the potential Ratfor user might do well
10 contact the author to discuss his own particular needs.

Section 7 .. Hints for Preparing Specifications

This section contains miscellaneous hints on preparing efficient. easy to change, and clear
specifications. The individual subsections are, more or less, independent; the reader seeing
Yacc for the first time may well find that this entire section could be omitted.

Input Style
It is difficult to input rules with substantial actions and still have a readable specific.ition

file. The following style hints owe much to Brian Kernighan, and are officially endorsed by the
author.
a. Use all capital letters for token names, all lower case letters for nonterminal names. This

rule comes under the heading of "knowing who to blame when things go wrong."
b. Put grammar rules and actions on separate lines. This allows either to be changed

without an automatic need to change the other.

- 19 -

c. Put all rules with the same left hand side together. Put the left hand side in only once.
and let all following rules begin with a vertical bar.

d. Indent rule bodies by one tab stop, and action bodies by two tab stops.

The example in Appendix A is written following this style. as are the examples in the
text of this paper (where space permits). The user must make up his own mind about these
stylistic questions; the central problem, however, is to make the rules visible through the
morass of action code.

Common Actions

When several grammar rules have the same action, the user might well wish to provide
only one code sequence. A simple, general mechanism is, of course, to use subroutine calls. It
is also possible to put a label on the first statement of an action, and let other actions be simply
a goto to this label. Thus. if the user had a routine which built trees, he might wish to have
only one call to it, as follows:

expr:
expr • +' expr = .
I binary:

SS= btree($1, $2, $3);
11
expr • -· expr =
I

goto binary;
ll
expr '•' expr ==
I

goto binary;
I :

Left Recursion

The algorithm used by the Yacc parser encourages so called "left recursive" grammar
rules: rules of the form

name : name rest_of_rule ;

These rules frequently arise when writing specifications of sequences and lists:

list :

and

item I
list ': item ;

sequence:
item I
sequence item ;

Notice that. in each of these cases, the first rule will be reduced for the first item only, and the
second rule will be reduced for the second and all succeeding items.

If the user were to write these rules right recursively, such as

sequence:
item I
item sequence ;

- 20-

the parser would be a bit bigger, and the items would be seen, and reduced, from right to left.
More seriously, an internal stack in the parser would ve in danger of overflowing if a very long
sequence were read. Thus, the user should use left recursion wherever reasonable.

The user should also 1.:onsi<ler whether a sequ"ncc with zero elements has any meaning,
and if so, wnsider writing the sequence specification with an empty rule:

sequence:
Ir empty '"/
sequence item ;

Once again, the first rule would always be reduced exactly once, befor~ the first item was read.
and then the second rule would be reduced once for each item read. Experience suggests that
permitting empty sequences leads to increased generality, which frequently is not evident at
the time the rule is first written. There are cases, however, when the Yacc algorithm can fail
when such a change is made. In effect. conflicts might arise when Yacc is asked to decide
which empty sequence it has seen, when it hasn't seen enough to know! Nevertheless. this
principle is still worth following wherever possible.

Lexical Tie-ins

Frequently, there are lexical decisions which depend on the presence of various construc
tions in the specification. For example, the lexical analyzer might want to delete blanks nor
mally, but not within quoted strings. Or names might be entered into a symbol table in de
clarations, but not in expressions.

One way of handling these situations is to create a global flag which is examined by the
lexical analyzer, and set by actions. For example, consider a situation where we have a pro
gram which consists of 0 or more declarations, followed by 0 or more statements. We declare a
flag called "dflag", which is 1 during declarations, and 0 during statements. We may do this as
foll.ows:

%(
int dflag : ·

%)
%%
program :

decls stats ;

decls :
=I* empty */
I

dflag = 1;
l I
decls declaration ;

stats :
= I* empty '"/
I

dflag = O;
l I
stats statement ;

. . . other rules ...

The flag dflag is now set to zero when reading statements, and l when reading declarallon-.. ex·
cepr for rhe first token in the first statement. This token must be seen by the parser before it can

- 21 -

tell that the declarJtion section has ended and the statements have begun. Frequently, howev
er, this single token exception does not affect the lexical scan required.

Clearly, this kind of .. backdoor" approach can be elaborated on to a noxious degree.
Nevertheless. it represents a way of doing some things that are difficult, if not impossible, to do
otherwise.

Bundling
Bundling is a, technique for collecting together various character strings so that they can

be output at some later time. It is derived from a feature of the same name in the
compiler/compiler TMG [6].

Bundling has two components - a nice user interface, and a clever implementation trick.
They will be discussed in that order.

The user interface consists of two routines, "bundle" and "bprint".

bundle(al, a2, ... , an)

accepts a variable number of arguments which are either character strings or bundles. and re
turns a bundle, whose value will be the concatenation of the values of al •.. ., an.

bprint(b)

accepts a bundle as argument and outputs its value.

For example, suppose that we wish to read arithmetic expressions, and output function
calls to routines called "add", "sub", "mul", "div", and "assign". Thus, we wish to translate

a - b - c•d

into

assign (a.,sub(b,mul (c,d)))

A Yacc specification file which does this is given in Appendix D; this includes an imple
mentation of the bundle and bprint routines. A rule and action of the form

ex pr:
expr • +· expr =
{

$$=bundle("add(", $1, ",", $3, ")");

causes the returned value of expr to be come a bundle, whose value is the character string con
taining the desired function call. Each NAME token has a value which is a pointer to the ac
tual name which has been read. Finally, when the entire input line has been read and the
value has been bundled, the value is written out and the bundles and names are cleared, in
preparation for the next input line.

Bundles are implemented as arrays of pointers, terminated by a zero pointer. Each
pointer either points to a bundle or to a character string. There is an array, called bundle space.
which contains all the bundles.

The implementation trick is to check the values of the pointers in bundles - if the
pointer points into bundle space, it is assumed to point to a bundle; otherwise it is assumed to
point to a character string.

The treatment of functions with a variable number of arguments,. like bundle, is likely lo
differ from one implementation of C to another.

- 22 -

In general. vnt: may wish to have a simple s· 1>rage allocator whkh allO\:ates anc.J frees
bundles. in order tu handle situations where it is not appropriate 10 completely dear all of bun·
dh: spa(C al one time.

Rt.'Sl"r•t'ti Words
Some programming languages permit the user to use words like "ir', which are normally

reserved. as label or variable names, provided that such use does not conflict with the legal use
of these names in the programming language. This is extremely hard to do in the framework
of Yacc. since it is difficult to pass the required information to .'·e lexical analyzer which tells it
.. this instance of if is a k~yword, and that instance is a variable". The user can make a stab .it

it. using the mechanism described in the last subsection, but it is difficult.

A number of ways of making this easier are under advisement, and one will prob.ihly he
supported eventually. Until this day comes, I suggest that the keywords be reservt·d: that is. be
forbidden for use as variable names. There are powerful stylistic reasons for preferrini; this.
anyway (he said weakly ...).

Non-inteaer Values

. Frequently, the user wishes to have values which are bigger than integers; again. this is
an area where Yacc does not make the job as easy as it might. and some additional support is
likely. Nevertheless, at the cost of writing a storage manager. the user can return pointers or
indices to blocks of storage big enough to contain the full values desired.

Previous Work

There have been many previous applications of Yacc. The user who is contemplating a
big application might well find that others have developed relevant techniques, or even por
tions of grammars. Yacc specifications appear to be easier to change than the equivalent com-
11utcr programs. so that the "prior art" is more relevant here.as well.

Sl'ction 8: User Experience, Summary. and Acknowl~!lements

Yacc ha.~ been used in the construction of a C compiler for the Honeywell 6000, a system
for typesetting mathematical equations, a low level implementation language for the PDP 11,
APL and Basic compilers to run under the UNIX system, and a number of other applications.

To summarize, Yacc can be used to construct parsers; these parsers can interact in a fair
ly flexible way with the lexical analysis and output phases of a larger system. The system also
provides an indication of ambiguities in the specification, and allows disambiguating rules to be
supplied to resolve these ambiguities.

Because the output of Yacc is largely tables, the system is relatively language indepen
dent. In the presence of reasonable applications, Yacc could be modified or adapted to produce
subroutines for other machines and languages. In addition, we continue to seek better algo
rithms to improve the lexical analysis and code generation phases of compilers produced using
Yacc.

This document would be incomplete if I did not give credit to a most stimulating 1.:oflcc
tion of users. who have goaded me beyond my inclination, and frequ~ntly b1.:yond my ahil1Ly,
in their endless search for "one more feature". Their irritating unwillingness Lo learn how to
do things my way has usually led to my doing things their way; most of the time, they h<iv~
been right. B. W. Kernighan, P. J. Plauger. S. I. Feldman, C. Imagna, M. E. Lesk, and A.
Snyder will recognize some of their ideas in the current version of Yacc. Al Aho also deserves
recognition for bringing the mountain to Mohammed, and other favors.

. - 23 -

References

Aho, A.V. and Johnson, S.C., "LR Parsing", Computing Surveys, Volo. No 2. June 1974.
pp. 99-124.

2 Aho, A.V., Johnson, S.C., and Ullman, J.D., "Deterministic Parsing of Ambiguous Gram·
mars", Proceedings of the A.C.M. Symposium on Principles of Programming Languages,
October 1973, pp. 1-21; to appear in CACM.

3 Aho, A.V. and Ullman, J.D., Theory of Parsing, Translation, and Compiling. Volume I
(1972) and Volume 2 (1973), Prentice-Hall, Englewood Cliffs, N.J.

4 Kernighan, B. W .• Ratfor, a Rational Fortran
5 Ryder. B. B., "The PFORT Verifier," Software-Practice and Experience. Vol 4 (1974), pp

359-377.

6 Mcilroy, M. 0., A Manual for the TMG Compiler-writing Language

7 Ritchie, 0. M .• C Reference Manual

- 24 -

Appendix A: A Simple Example

This example gives the complete Yacc specification for a small desk calculalor; the desk
calculalor has 26 registers, labeled a through z. and accepts arithmetic expressions made up of
the operators +. -. •, /, % (mod operator), & (ouwise and), I (bitwise or). and assignment. If
an expression is an assignment at the top level, the value is not printed; otherwise it is. As in
C. an integer which begins with 0 (zero) is assumed to be octal; otherwise, it is assumed to be
decimal.

As an example o,f a Yacc specification, the desk calculator does a reasonable job of show
ing the way that precedences and ambiguities are used, as well as showing how simple error
recovery operates. The major oversimplifications are that the lexical analysis phase is much
simpler 1han for most applications, and the output is produced immediately, line by line. Note
the way that decimal and octal integers are read in by the grammar rules; frequently, this job is
better done by the lexical analyzer.

%token DIGIT LETTER
%left 1' .
%left'&'
%left · +' '-'
%left ••• • r '%'
%left UMINUS
%1

int base;
int regs[26];

%}

r these are token names • /
/* declarations of operator precedences • /

1• supplies precedence for unary m~us • /
1• declarations used by the actions • /

%% I* beginning of rules section •;

list : /* list is the start symbol •1
I r empty •;
list stat '\n' I
list error '\n' =
I

yyerrok ;
) ;

Stal :
expr =
{

printf("%d\n", $1) ;

11
LETTER '=' ex pr =
I

regs[$!] = $3 ;
} ;

expr:
'(' expr T =
I

$$ = $2 ;
l I

expr '+' expr -
I

SS - St + S3;
JI
expr '-: expr -
I

SS• Sl - SJ ;
ll
expr '•' expr - ,
{

SS - Sl • $3;
ll
expr • r expr =
{

SS= SI I $3;
ll
expr 'o/o' expr -
{

SS - Sl % $3;
JI
expr • &' expr
{

SS - St & S3:
II
expr 1' expr
{

SS= Sl I $3:
)I
• -· expr %prec UMIN US
{

ss--s2;
ll
LETTER
{

SS - regs{Sl] ;
l I
number:

number:
DIGIT=-
{

)I

SS .. SI :
base= 10;
if($1 -- 0)

base=8;

number DIG IT = ·
I

SS - base • S 1 + $2 ;
I ;

o/oo/o t• stan of programs • /

-25 -

- 26 -

yytex() /• lexical analysis routine • /
I

r returns LETTER for a lower case letter, yylval = 0 through 25 •1
r return DIGIT for a digit. yylval ""'0 thr!"· c:h 9 •1
1• all other characters are returned immediately •;

int c ;

while{ (c=getchar()) == ~ ·)
' if(c > = ·a' && c < = · z') {

}

yylval ... c - 'a' ;
return(LETTER) ;

if(c > = 'O' && c < = '9') {
yylvaJ = c - 'O' ;
return(DIGIT) ;

}
return(c) ;

- 27 -

Appendix 8: Use oC Yacc on Unix

Suppose that the Yacc specification is on a file called yfile. If the actions are in C. Yacc is
invoked by

yacc yfile

The output appears on file y.tab.c To compile the parser and load it with the Yacc library, use
the command

CC y.tab.C' -:-ly

If Yacc is invoked with the option -v:

yacc -v yfile

a verbose description of the parser is produced on file y.output. The C user should consult sec
tion 6C for more information about the run time environment.

If the actions are in Ratfor, the user should invoke Yacc with the option -r:

yacc -r yftle

The Ratfor output appears on file y.tab.r It may be compiled by

re -2 y.tab.r

Note that when Yacc is used to produce Ratfor programs. there is no need to load these pro
grams with any library.

If the -v action is also invoked:

yacc -rv yfile

a verbose description of the parser is produced on file y.output. The Ratfor user should consult
section 6R for more information about the run time environment.

Appendix C: Old Features Supported but not Encouraged

This appendix mentions synonyms and features which are supPorted for historical con
tinuity. but, for various reasons, are not encouraged.

1. Literals may be delimited by double quotes as well as single quotes

2. Literals may be more than one character long. If all the characters are alphabetic,
numeric, or _. the type number of the literal is defined. just as if the literal did not have
the quotes around it. Othe~ise, it is difficult to find the value for such literals.

The use of multi-character literals is likely to mislead those unfamiliar with Yacc, since it
suggests that Yacc is doing a job which must be actually done by the lexical analyzer.

3. Most places where % is legal, backslash "\" may be used. In particular.\\ is the same as
%%, \left the same as %left, etc.

4. There are a number of other synonyms:

o/o < is the same as o/oleft
% > is the same as %right
%binary and %2 are the same as o/ononassoc
o/oO and %term are the same as %token
%= is the same as o/oprec

S. The curly braces .. (" and .. }" around an action are optional if the action consists of a sin·
gle C statement. (They are always required in Ratfor).

- 28-

Appendix D: An Example of BundlilllC
The following program is an example of the technique of bundling; this example is dis

cussed in Section 7.

/* warnings:

I. This works on Unix; the handling of functions with a variable number, of arguments is
different on dilfer~nt systems.

2. A number of checks for array bounds have been left out to avoid obscuring the basic
ideas, but should be there in a practical program.

*/

%token NAME

%right·,.·
%left · +· · -·
%left .••• r

%%

lines:
=I* empty */
{

bclear() ;
11
lines expr '\n' =
I .

l I

bprint($2) ;
printf("\n") ;
bclear() ;

lines error '\n' ==
I

} :

expr:

bclear() ;
yyerrok;

ex pr • +· expr ==
{

SS= bundle("add(", $1, ",", $3, ")");
ll
expr • -· expr =
I

$$=bundle("sub(", Sl, ",", $3, "}");
l I
expr '*' expr =
I

$$=bundle("mul(", $1, ",", $3, ")");
11

- 29 -

1;"pr . r exl'•
I

SS= bundle("div(". Sl, ":, S3, ")");
11
T expr T =
(

SS= $2;
l I
NAME·,.· expr •

SS= bund1~("assign(•, Sl, ",", $3, ")");

l I
NAME:

#define nsize 200
char names[nsize], •nptr { names } ;

#define bsize 500
int hspace{bsizel. •bptr { bspace) ;

yylex()

I
int c;

c = getchar();
while(c • ·)

c = getchar();
if(c>=·a· && c<='z') (

yylval = nptr;

}

for(: c>=='a· && c<='z'; c-getchar())
•nptr++ = c;

ungetc(c);
•nptr++ = '\0';
return (NAME) ;

return(c);

bclear()
{

nptr = names;
bptr - bspace;

bundle(al,a2,a3,a4,a5)
{

int i, j, •p, •obp;

p - &al;
i = nargs();

obp • bptr;

for(j-0; j<i; ++j)
•bptr++ • •p++;

•bptr++ • 0;
return (obp) ;

bprint(p)
int •p;
(

. -30-

if(p>=bspace && p< &bspace(bsize]) ;•bundle*/
while(•p != 0)

bprint(*p++);
else printf(••/as", p);

1 Introduction.

Lex • A Lexical Analyzer Generator

M. E. Lesk and E. Schmidt
Bell Laboratortes

Murray Hill, New Jersey 07974

Lex helps write programs whose control Oow is directed by instances of regular expressions in the in
put stream. It is well suited for editor-script type transformations and for segmenting input in prepara
tion for a parsing routine.

Lex source is a table of regular expressions and corresponding program fragments. The table is
translated to a pr().gram which reads an input stream, copying it to an output stream and partitioning the
input into strings which match the given expressions. As each such string is recognized the correspond
ing program fragment is executed. The recognition of the expressions is performed by a deterministic
finite automaton generated by Lex. The program fragments written by the user are executed in the ord
er in which the corresponding regular expressions occur in the input stream.

The lexical analysis programs written with Lex accept ambiguous specifications and choose the longest
match possible at each input point. If necessary. substantial lookahead is performed on the input, but
the input stream will be backed up to the end of the current partition, so that the user has general free·
dom to manipulate it.

Lex can be used to generate analyzers in either C or Ratfor, a language which can be translated au
tomatically to portable Fortran. It is available on the PDP-11 UNIX. Honeywell GCOS. and IBM OS
systems. Lex is designed to simplify interfacing with Yacc, for those with access to this compiler
compiler system.

Table of Contents

1. Introduction. I
2. Lex Source. 3
3. Lex Regular Expressions. 3
4. Lex Actions. 5
5. Ambiguous Source Rules. 7
6. Lex Source Definitions. 8
7. Usage. 8
8. Lex and Yacc. 9
9. Examples. 10

10. Left Context Sensitivity. 11
11. Character Set. 12
12. Summary of Source Format. 12
13. Caveats and Bugs. 13
14. Acknowledgments. 13
15. References. 13

A.4

Lex is a program generator designed for lexical process
ing of character input streams. It accepts a high-level,
problem oriented specification for character string match
ing, and produces a program in a general purpose
language which recognizes regular expressions. The regu
lar expressions are specified by the user in the source
specifications given to Lex. The Lex written code recog
nizes these expressions in an input stream and partitions
the input stream into strings matching the expressions.
At the boundaries between strings program sections pro
vided by the user are executed. The Lex source file asso-

ciates the regular expressions and the program fragments.
As each expression appears in the input to the program
written by Lex, the corresponding fragment is executed.

The user supplies the additional code beyond expres·
sion matching needed to complete his tasks, possibly in
cluding code written by other generators. The program
that recognizes the expressions is generated in the general
purpose programming language employed for the user's
program fragments. Thus, a high level expression
language is provided to write the string expressions to be
matched while the user's freedom to write actions is
unimpaired. This avoids forcing the user who wishes to
use a string manipulation language for input analysis to

Source - I Lex -yylex

Input - I yylex I - 01.nput

An ov.:rvicw o(Lex

Fiaure I

write processing programs in the Same and often inap..
propriate string handling language.

Lex is not a complete language, but rather a generator
representing a new language feature which can be added
to different programming languages, cailed "host
languages." Just as general purpose languages can pro
duce code to run on different computer hardware, Lex
can write. code in different host languages. The host
language is used for the output code generated by Lex
and also for the program fragments added by the user.
Compatible run-time libraries for the different host
languages are also provided. This makes Lex adaptable to
different environments and different users. Each applica
tion may be directed to the combination of hardware and
host language appropriate to the task, the user's back·
ground, and the properties of local implementations. At
present there are only two host languages, C{l) and For
tran (in the form of the Ratfor language{2J). Lex itself
exists on UNIX, GCOS, and OS/370; but the code gen
erated by Lex may be taken anywhere the appropriate
compilers exist

Lex turns the user's expressions and actions (called
sourc~ in this memo) into the host general-purpose
language; the generated program is named yylc. The
yylex program will recognize expressions in a stream
(called input in this memo) and perform the specified ac·
tions for each expression as it is detected. See Figure 1.

For a trivial example, consider a program to delete
from the input all blanks or tabs at the ends of lines.

%%
l\t)+S

is all that is required. The program contains a %% delim
iter to mark the beginning of the rules, and one rule.

lexical
rules

I
Lex
1

LEX-2

This rule contains a regular expression which matches
one or more instances of the characters blank or tab
l written \t for visibility, in accordance with the C
language convention) just prior to the end of a line. The
brackets indicate the character class made of blank and -
\ab; the + indicates "one or more ... "; and the S indi
cates .. end of line," as in QED. No actiQn is specified, so
the program generated by Lex (yylex) will ignore these
characters. Everything else will be copied. To change any
remaining string of blanks or tabs to a single blank, add
another rule:

%%
[\t)+S
{ \t)+ printf(" ");

The finite automaton generated for this source will scan
for both rules at once, observing at the termination of the
string of blanks or tabs whether or not there is a newline
character, and executing the desired .rule action. The first
rule matches all strings of blanks or tabs at the end of
lines, and the second rule all remaining strings of blanks
or tabs.

Lex can be used alone for simple transformations, or
f9r analysis and statistics gathering on a lexical level. Lex
can also be used with a parser generator to perform the
lexical analysis phase; it is particularly easy to interface
Lex and Yacc [31. Lex programs recognize only regular
expressions; Yacc writes parsers that accept a large class
of context free grammars, but require a lower level
analyzer to recognize input tokens. Thus, a combination
of Lex and Yacc is often appropriate. When used as a
preprocessor for a later parser generator, Lex is used to
partition the input stream, and the parser generator as
signs structure to the resulting pieces. The flow of con
trol in such a case (which might be the first half of a
compiler, for example) is shown in Figure 2. Additional
programs, written by other generators or by hand, can be
added easily to programs written by Lex. Yacc users will
realize that the name yylex is what Yacc expects its lexical
analyzer to be namP.d, so that the use of this name by
Lex simplifies interfacing.

Lex generates a deterministic finite automaton from the
regular expressions in the source [4). The automaton is
interpreted, rather than compiled, in order to save space.
The result is still a fast analyzer. fn particular, the time

grammar
rules

l
Yacc:

Input - I yylex I - I yyparse - Parsed input

Lex with Yacc

Figure 2

taken by a Lex program to recognize and partition an in
put stream is proportional to the length of the input. The
number of Lex rules or the complexity of the rules is not
important in determining speed, unless rules which in·
elude forward context require a significant amount of re
scanning. What does increase with the number and com·
plexity of rules is the size of the finite automaton, and
therefore the size of the program generated by Lex.

In the program written by Lex, the user's fragments
(representing the actions to be performed as each regular
expression is found} are gathered as cases of a switch On
C) or branches of a computed GOTO (in Ratfor). The
automaton interpreter directs the control flow. Opportun
ity is provided for the user to insert either declarations or
additional statements in the routine containing the ac·
tions, or to add subroutines outside this action routine.

Lex is not limited to source which can be interpreted
on the basis of one character lookahead. For example, if
there are two rules, one looking for ab and another for
abcdefg, and the input stream is abcdt/1t, Lex will recog
nize ab and leave the input pointer just before ed. . .
Such backup is more costly than the processing of simpler
languages.

2 Lex Source.

The general format of Lex source- is:

(definitions I
%%
{rules I
%%
(user subroutines)

where the definitions and the user subroutines are often
omitted. The second 9696 is optional, but the first is re·
quired to mark the beginning of the rules. The absolute
minimum Lex program is thus

%%

(no definitions. no rules) which translates into a program
which copies the input to the output unchanged.

In the outline of Lex programs shown above. the rules
represent the user's control decisions~ they are a table, in
which the left column contains regular expressions (see
section 3) and the right column contains actions, program
fragments to be executed when the expressions are recog·
nized. Thus an individual rule might appear

integer printf("found keyword INT");

lo look for the string integer in the input stream and print
the message "found keyword INT" whenever it appears.
In this example the host procedural language is C and the
C library function print/ is used to print the string. The
end of the expression is indicated by the first blank or tab
character. If the action is merely a single C expression, it
can just be given on the right side of the line; if it is com
pound, or takes more than a line, it should be enclosed in

LEX-3

braces. As a slightly more useful example, suppose it is
desired to change a number of words from British to
American spelling. Lex rules such as

colour
mechanise
petrol

printf("color");
printf("mechanize");
printf("gas");

would be a start. These rules are not quite enough, since
the word petroleum would become gaseum; a way of deal·
ing with this will be described later.

3 Lex Regular Expressions.

The definitions of regular expressions are very similar
to those in QED (5). A regular expression specifies a set
of strings to be matched. It contains text characters
(which match the corresponding characters in the strings
being compared) and operator characters (which specify
repetitions, choices, and other features). The letters of
the al~habet and the digilS are always text characters; thus
the regular expression

integer

matches the string integer wherever it appears and the ex·
pression

a570

looks for the string a57D.
Operators. The operator characters are

"\[J"?.•+IOS/{1% < >

and if they are to be used as text characters, an escape
should be used. The quotation mark operator (") indi·
cates that whatever is contained between a pair of quotes
is to be taken as text characters. Thus

xyz•+ +·

matches the string X}'%+ + when it appears. Note that a
part of a string may be quoted. It is harmless but un·
necessary to quote an ordinary text character; the expres·
sion

"xyz++·

is the same as the one above. Thus by quoting every
non-alphanumeric character being used as a text charac·
ter, the user can avoid remembering the list above of
current operator characters, and is safe should further ex
tensions lo Lex lengthen the list.

An operator character may also be turned into a text
character by preceding it with \ as in

xyz\+\+

which is another, less readable, equivalent of the above

expressions. Another use of the quoting mechanism is to
get a blank into an expression; normally. as explained
above, blanks or tabs end a rule. Any blank character not
contained within {) (see below) must be quoted. The
usual C escapes with \ are recognized: \n is newline, \t is
tab, \r is return, and \b is backspace. To enter \ itself,
use\\. Since newline is illegal in an expression, \n must
be used; it is not required to escape tab and backspace.
Every character but blank, tab, newline and the list above
is always a text character.

, Character classes. Classes of characters can · be
specified using the operator pair. {]. The construction
{ab] matches a single character, which may be a, b, or c.
Within square brackets. most operator meanings are ig
nored. Only three characters are special: these are \
and •. The - character indicates ranges. For example,

{a-z0-9<> J

indicates the character class containing all the lower case
letters, the digits, the angle brackets, and underline.
Ranges may be given in either order. Using - between
any pair of characters which are not both upper case
letters, both lower case letters, or both digits is imple
mentatiof! dependent and will get a warning message.
(E.g., [0-zl in ASCII is many more character~ than it is in
EBCDIC). If it is desired to include the character - in a
character class. it should be first or last; thus

(-+0-91

matches all the digits and the two signs.
In character classes, the • operator must appear as the

first character after the left bracket; it indicates that the
resulting string is to be complemented with respect to the
computer character set. Thus

l"abcl

matches all characters except a, b, or c, including all spe·
cial or control characters; or

[·a-zA·ZI

is any character which is not a letter. The \ character pro
vides the usual escapes within character class brackets.

Arbitrary character. To match almost any character,
the operator character

is the class of all characters except newline. Escaping into
octal is possible although non-portable:

[\40-\1761

matches all printable characters in the ASCII character
set. from octal 40 (blank) to octal 176 (tilde).

Optional expressions. The operator ? indicates an op
tional element of an expression. Thus

l.EX-4

ab?c

1.1atches either ac or abc.
Repeated expressions. Repetitions of classes are indicat·

ed by the operators • and +.

is any number of consecutive a characters, including zero;
while

a+

is one or more ins!ances of a. For example,

[a-z) +

is all strings of lower case letters. And

[A-Za-zl [A-Za-z0-9) •

indicates all alphanumeric strings with a leading alphabetic
character. This is a typical expression for recognizing
identifiers in computer languages.

Alternation and Grouping. The operator I indicat~s
alternation:

(abjcd)

matches either ab or ed. Note that parentheses are used
for grouping, although they are not necessary on the out
side level;

ablcd

would have sufficed. Parentheses can be used for more
complex expressions:

(abjcd +)? (ef) •

matches such strings as abefef, efefef, cdef, or cddd; but
not abc, abed, or abcdef

Context sensitivity. Lex will recognize a small amount
of surrounding context. The two simplest operators for
this are • and .t If the first character of an expression is
·, the expression will only be matched at the beginning of
a line (after a newline character, or at the beginning of
the input stream). This can never conflict with the other
meaning of ·, complementation of character classes, since
that only applies within the (] operators. If the very last
character is $, the expression will only be matched at the
end of a line (when immediately followed by newline).
The latter operator is a special case of the I operator char
acter, which indicates trailing context. The expression

ab/cd

matches the string ab, but only if followed by ed. Thus

ab$

is the same as

ab/\n

Left context is handled in Lex by start conditiolf3 as ex
plained in section 10. If a rule is only to be executed
when the Lex automaton interpreter is in start condition
x, the rule should be prefixed by

<x:;>

using the angle bracket operator characters. If we con
sidered .. being at the beginning of a line" to be start con
dition ONE, then the • operator would be equivalent to

<ONE>

Start conditions are explained more fully later.
Repetitions and Definitions. The operators {) specify ei·

ther repetitions (if they enclose numbers) or definition
expansion (if they enclose a name). For example

{digit)

looks for a predefined string named digit and inserts it at
that point in the expression. The definitions are given in
the first part of the Lex input, before the rules. In con
trast,

a{l.SI

looks for I to S occurrences of a.
Finally, initial 96 is special. being the separator for Lex

source segments.

4 Lex Actions.

When an expression written as above is matched, Lex
executes the corresponding action. This section describes
some features of Lex which aid in writing actions. Note
that there is a default action, which consists of copying
the input to the output. This is performed on all strings
not otherwise matched. Thus the Lex user who wishes to
absorb the entire input, without producing any output,
must provide rules to match everything. When Lex is be
ing used with Yacc, this is the normal situation. One may
consider that actions are what is done instead of copying
the input to the output; thus, in general, a rule which
merely copies can be omitted. Also, a character combina·
tion which is omitted from the rules and which appears as
input is likely to be printed on the output, thus calling at
tention to the gap in the rules.

One of the simplest things that can be done is to ignore
the input. Specifying a C null statement, : as an action
causes this result. A frequent rule is

[\t\nl

LEX-5

which causes the three spacing characters (blank, tab, and
newline) to be ignored.

Another easy way to avoid writing actions is the action
character ~ which indicates that the action for this rule is
the action fo• the next rule. The previous example could
also have been written

"\t"
"\n"

with the same result, although in different style. The
quotes around \n and \t are not required.

In more complex actions, the user will often want to
know the actual text that matched some expression like
[a-z}+. Lex leaves this text in an external character ar
ray named yytext. Thus, to print the name found, a rule
like

(a-z) + printf("%s", yytext)-;

will print the string in yytext. The C function print/ ac
cepts a format argument and data to be printed; in this
case, the format is "print string" (% indicating data
conversion. and s indicating string type), and the data are
the characters in yytext. So this just places the matched
string on the output. This action is so common that it
may be written as ECHO:

[a-z) + ECHO;

is the same as the above. Since the default action is just
to print the characters found, one might ask why give a
rule. like this one, which merely specifies the default ac
tion? Such rules are often required to avoid matching
some other rule which is not desired. For example, if
there is a rule which matches read it will normally match
the instances of read contained in bread or readjusr. 10

avoid this, a rule of the form [a-z} + is needed. This is
explained further below.

Sometimes it is more convenient to know the end of
what has been found; hence Lex also provides a count
yyleng of the nu.mber of characters matched. To count
both the number of words and the number of characters
in words in the input, the user might write

(a-zA·Z] + {words++; chars + - yyleng; I

which accumulates in chars the number of characters in

the words recognized. The last character in the string
matched can be accessed by

yytext(yyleng-1 I

in C or

yytext (yyleng)

in Ratfor.

Occasionally, a Lex action may decide that a rule has
not recognized the correct sp<m of characters. Two rou·
tines are provided to aid with this situation. First.
yymoreO can be called to indicate that the next input ex·
pression recognized is to be tacked on to the end of this
input. Normally, the next input string would overwrite
the current entry in yytext. Second, yyless (n) may be
called to indicate that not all the characters matched by
the currently successful expression are wanted right now.
The argument n indicates the number of characters in
yytext to be retained. Further ctiaracters previously
matched are returned to the input. This provides the
same sort of lookahead offered by the I operator. but in a
different form.

Example: Consider a language which defines a string as
a set of characters between quotation ("~ marks, and pro
vides that to include a " in a string it must be preceded by
a \. The regular expression which matches that is some
what confusing, so that it might be preferable to write

\'T"I• I
if (yytext (yyleng-1 I - - '\ \')

yymoreO;
else

... normal user process~ng

which will, when faced with a string such as • abc\ • der
first match the five characters "abc\; then the call to
yymoreO will cause the next part of the string, "def, to be
tacked on the end. Note that the final quote terminating
the string should be picked up in the code labeled "nor·
ma! processing".

The function yylessO might be used to reprocess text in
various circumstances. Consider the C problem of distin·
guishing the ambiguity of "•-a". Suppose it is desired
to treat this as ",. - a" but print a message. A rule
might he

=-[a·ZA·Zl
printfC"Operator (=-) amb1guous\n");
yylcss(yyleng-1);
... action for - - ...
I

which prints a message, returns the letter after the opera
tor to the input stream, and treats the operator as"--".
Alternatively it might be desired to treat this as -a".
To do this, just return the minus sign as well as the letter
to the input:

--[a-zA-Zl
printf("Operator (•-) ambiguous\n");
yyless(yyteng-2);
... action for ""' ...
I

will perform the other interpretation. Note that the ex·
pressions for the two cases might more easily be written

LEX-6

--/(A·Za·zl

111 the first case and

-/-[A-Za-z)

in the second; no backup would be required in the rule
action. ll is not necessary to recognize the whole
identifier to observe the ambiguity. The possibility of
"--3". however, makes

--1[4 \t\nl

a still better rule.
In addition to these routines. Lex also permits access to

the I/O routines it uses. They are:

1) input{) which returns the next input character;

2) output(c) which writes the character c on the out
put; and.

3) unput{c) pushes the character c back onto the in-
put stream to be read later by Input().

By default these routines are provided as macro
definitions, but the user can override them and supply
private versions. There is another important routine in
Ratfor, named lexshf, which is described below under
"Character Set". These routines define the relationship
between external files and internal characters, and must
all be retained or modified consistently. They may be
redefined. to cause input or output 10 be transmitted to or
from strange places. including other programs or internal
memory; but the character set used must be consistent in
all routines; a value of zero returned by input must mean
end of file; ·and the relationship between unput and input
must be retained or the Lex lookahead will not work.
Lex does not look ahead at all if it does not have to, but
every rule ending in + • ? or $ or containing I implies
lookahead. Lookahead is also necessary to match an ex
pression that is a prefix of another expression. See below
for a discussion of the character set used by Lex. The
standard Lex library imposes a 100 character limiL on
backup.

Another Lex library routine that the u~er will some
times want to redefine is yywrap() which 1s called when
ever Lex reaches an end-of·file. If yywrap returns a I.
Lex continues with the normal wrapup on end of input.
Sometimes, however, it is convenient to arrange for more
input to arrive from a new source. In this case, the user
should provide a yywrap which arranges for new input
and returns 0. This instructs Lex to continue processing.
The default yywrap always returns L

This routine is also a convenient place to print tables.
summaries, etc. at the end of a program. Note that it is
not possible to write a normal rule which recognizes end·
of-file; the only access to this condition is through
yywrap. In fact, unless a private version of input() is sup
plied a file containing nulls cannot be handled, since a
value of 0 returned by input is taken to be end·of·file.

In Ratfor all of the standard 110 library routines, input,

output, unput, yywrap, and lex:shf. are defined as integer
functions. This requires input and yywrap to be called
with arguments. One dummy argument is supplied and
ignored.

S Ambiguous Source Rules.

Lex can handle ambiguous specifications. When more
than one expression can match the current input, Lex
chooses as follows:

1) The longest match is preferred.

2) Among rules which matched the same number of
characters, the rule given first is preferred.

Thus, suppose the rules

integer
[a-zl+

keyword action ... ;
identifier action ... ;

to be given in that order. If the input is integers, it is tak
en as an identifier, because [a-z]+ matches 8 characters
while integer matches only 7. If the input is integer, both
rules match 7 characters, and the keyword rule is selected
because it was given first. Anything shorter (e.g. int) will
not match the expression integer and so the identifier in
terpretation is used.

The principle of preferring the longest match makes
rules containing expressions like . • dangerous. For exam
ple,

.. ·
might seem a good way of recognizing a string in single
quotes. But it is an invitation for the program to read far
ahead, looking for a distant single quote. Presented with
the input

'first' quoted string here, 'second' here

the above expression will match

'first' quoted string here, 'second'

which is probably not what was wanted. A better rule is
of the form

'["'\nl•'

which, on the above input, will stop after 'fir:st'. The
consequences of errors like this are mitigated by the fact
that the . operator will not match newline. Thus expres
sions like .• stop on the current line. Don't try to defeat
this with expressions like [.\n]+ or equivalents; the Lex
generated program will try to read the entire input file,
causing internal buJfcr overflows.

Note that Lex is normally partitioning the input stream,
not searching for all possible matches of each expression.
This means that each character is accounted for once and
only once. For example, suppose it is desired to count
occurrences of both she and he in an input text. Some
Lex rules to do this might be

LEX-7

she s+ +;
he h+ +;
\n I

where the last two rules ignore everything besides he .ind
she. Remember that . does not include newline. Since
she includes he, Lex will normally not recognize the in
stances of he included in she, since once it has 1-'assed a
she those characters are gone.

Sometimes the user would like to override this choice.
The action REJECT means "go do the next alternative."
It causes whatever rule was second choice after the
current rule to be executed. The position of the input
pointer is adjusted accordingly. Suppose the user really
wants to count the included instances of he-.

she Is++; REJECT; I
he !h+ +; REJECT;)
\n I

these rules are one way of changing the previous example
to do just that. After counting each expression, it is re·
jected; whenever appropriate, the other expression will
then be counted. In this example, of course, the user
could note that she includes he but not vice versa, and
omit the REJECT action on he; in other cases, however,
it would not be possible a priori to tell which input char
acters were in both classes.

Consider the two rules

a[bc]+
a!cdl+

I ... ; R EJECf:I
I ... ; REJECT:!

If the input is ab, only the first rule matches, and on ad
only the second matches. The input string accb matches
the first rule for four characters and then the second rule
for three characters. !n contrast. the input aced agrees
with the second rule for four characters and then the first
rule for three.

In general, REJECT is useful whenever the purpose of
Lex is not to partition the input stream but to detect all
examples of some items in the input, and the instances of
these items may overlap or include each other. Suppose a
digram table of the input is desired; normally the digrams
overlap, that is the word the is considered to contain both
th and he. Assuming a two-dimensional array named di
gram to be incremented, the appropriate source is

%%
[a-z) [a-zl {digram [yytext(OJJ[yytextl 1 l l + +. REJECT. I

\n

where the REJECT is necessary to pick up a letter pair
beginning at every character, rather than at every other
character.

6 Lex Source Definitions.

Remember the format of the Lex source:

(definitions I
%%
{rules}
%%
{user routines}

So far only the rules have been described. The user
needs additional options, though, to' 'define variables for
use in his program and for use by Lex. These can go ei
ther in the definitions section or in the rules section.

Remember that Lex is turning the rules into a program.
Any source not intercepted by Lex is copied into the gen
erated program. There are three classes of such things.

l) Any fine which is not part of a Lex rule or action
which begins with a blank or tab is copied into the
Lt.:x generated program. Such source input prior
to the first %% delimiter will be external to any
funi:tion in the code; if it appears immediately
after the first %%, it appears in an appropriate
plai:e for declarations in t'he function written by
Lex which contains the actions. This material
must look like program fragments, and should
precede the first !..ex rule.

As a side effect of the above, lines which begin
with a blank or tab. and which contain a com
ment. are passed through to the generated pro
gram. This can be used to include comments in
either the Lex source or the generated code. The
comments should follow the host language con
vention.

2) Anything in duded between lines containing only
%{ and %} is copied out as above. The delimiters
are discarded. This format permits entering text
like preprocessor ~tatements that must begin in
column I, or copying lines !hut do not look like
programs.

JJ Anything after the third %% delimiter, regardless
of formats, etc., is copied out after the Lex out·
pur.

Defini11ons intended for Lex are given before the first
%% delimiter. Any line in this section not contained
bet ween % ! and % I. and begining in column I. is as
sumed to define Lex substitution strings. The format of
such lines is

name translation

and it causes the string given as a translation to be associ
ated with the name. The name and translation must be
separated by at least one blank or tab, and the name must
begin with a letter. The translation can then be called out
by the (namel syntax in a rule. Using {D} for the digits
and (El for an exponent field, for example, might abbre·
viate rules to recognize numbers:

LEX-8

D
E
%%
{DI+
{D}+"."{DH{E})?
{D}•"."(Dl+<!E})?
{D}+{EI

[0-9)
[TEdeH- + 1? {DI+

printf("integer"):
I
I

Note the first two rules for real numbers; both require a
decimal point and contain an optional exponent field. but
the first requires at least one digit before the decimal
point and the second requires at least one digit after the
decimal point. To correctly handle the problem posed by
a Fortran expression such as 35.EQ.I. which does not
contain a real number, a context-sensitive rule such as

[0-9) + /"."EQ printf("integer"):

could be used in addition to the normal rule for integers.
The definitions section may also contain other co.m

mands, including the selection of a host language, a char·
acter set table, a list of start conditions, or adjustments to
the default size of arrays within Lex itself for larger
source programs. These possibilities are discussed below
under "Summary of Source Format," section 12.

7 Usage.

There are two steps in compiling a Lex source program.
First, the Lex source must be turned into a generated
program in the host general purpose language. Then this
program must be compiled and loaded, usually with a li
brary of Lex subroutines. The generated program is on a
file named lex.yy.c for a C host language source and
lex.yy.r for a Ratfor host environment. There are two
1/0 libraries, one for C defined in terms of the C stan
dard library [6]. and the other defined in terms of Ratfor.
To indicate that a Lex source file is intended to be used
with the Ratfor host language, make the first line of the
file %R.

The C programs generated by Lex are slightly different
on OS/370, because the OS compiler is less powerful than
the UNIX or GCOS compilers, and does less at compile
time. C programs generated on GCOS and UNIX are the
same. The C host language is default, but may be expli
citly requested by making the first line of the source file
%C.

The Ratfor generated by Lex is the same on all sys·
terns, but can not be compiled directly on TSO. See
below for instructions. The Ratfor I/O library, however,
varies slightly because the different Fomans disagree on
the method of indicating end-of-input and the name of
the library routine for logical AND. The Ratfor 1/0 li
brary, dependent on Fortran character I/O, is quite slow.
In particular it reads all input lines as 80A I format; this
will truncate any longer line. discarding your data, and
pads any shorter line with blanks. The library version of
input removes the padding (including any trailing blanks
from the original input) before processing. Each source

file using a Ratfor host should begin with the "%R" com
mand.

UNIX. The libraries are accessed by the loader flags
-lie for C and -/Ir for Ratfor; the C name may be abbrevi·
ated to -II. So an appropriate set of commands is

C Host Ratfor Host

lex source lex source
cc lex.yy.c -11 -IS re -2 lex.yy.r -Ur

The resulting program is plac,ed on the usual file a.out for
later execution. To use Lex with Yacc see below.
Although the default Lex 1/0 routines use the C standard
library, the Lex automata themselves do not do so; if
private versions of input, output and unput are given, the
library can be avoided. Note the "·2" option in the Rat
for compile command; this requests the larger version of
the compiler, a useful precaution.

GCOS. The Lex commands on GCOS are stored in the
"." library. The appropriate command sequences are:

C Host Ratfor Host

./lex source ./Jex source

./cc lex.yy.c-./lexclib h- ./re a - lex.yy .r ./lexrlib h -

The resulting program is placed on the usual file .program
for later execution (as indicated by the "h-" option); it
may be copied to a permanent file if desi.red. Note the
"a-" option in the Ratfor compile command; this indi
cates that the Fortran compiler is to run in ASCII mode.

TSO. Lex is just barely available on TSO. Restrictions
imposed by the compilers which must be used with its
output make it rather inconvenient. To use the C ver
sion, type

exec 'dot.lex.clistOex)' 'sourcename'
exec 'dot.lex.clist(cload)' 'libraryname membemame'

The first command analyzes the source file and writes a C
program on file lex.yy.rext. The second command runs
this file through the C compiler and links it with the Lex
C library (stored on 'hr289.lcl.load') placing the object
program in your file libraryname.LOAD(membername) as
a completely linked load module. The compiling com
mand uses a special version of the C compiler command
on TSO which provides an unusually large intermediate
assembler file to compensate for the unusual bulk of C
compiled Lex programs on the OS system. Even so, al
most any Lex source program is too big to compile, and
must be split.

The same Lex command will compile Ratfor Lex pro
grams, leaving a file lex.yy.rat instead of /ex.yy.text in
your directory. The Ratfor program must be edited. how
ever, to compensate for peculiarities of IBM Ratfor. A
command sequence to do this. and then compile and
load, is available. The full commands are:

exec 'dot.lex.clistOex)' 'sourcename'

LEX-9

exec 'dot.lex.clist(rload)' 'libraryname membi::rname'

with the same overall effect as the C language commands.
However, the Ratfor commands will run in a 150K byte
partition, while the C commands require 250K bytes 10

operate.
The steps involved in processing the generated Ratfor

program are:

a. Edit the Ratfor program.

1. Remove all tabs.

2. Change all lower case letters to upper case letters.

3. Convert the file to an 80-column card image file.

b. Process the Ratfor through the Ratfor preproces·
sor to get Fortran cod~.

c. Compile the Fortran.

d. Load with the libraries 'hr289.lrl.load' and
'sysl.fortlib'.

The final load module will only read input in 80-character
fixed length records. Warning: Work is in progress on
the IBM C compiler, and Lex and its availability on the
IBM 370 are subject to change without notice.

8 Lex and Yacc •

If you want to use Lex with Yacc, note that what Lex
writes is a program named yylexO. the name required by
Yacc for its analyzer. Normally, the default main pro
gram on the Lex library calls this routine, but if Yacc is
loaded, and its main program is used, Yacc will call
yylexO. In this case each Lex rule should end with

return (token):

where the appropriate token value is returned. An easy
way to get access to Yacc's names for tokens is to compile
the Lex output file as part of the Yacc output file by plac·
ing the line

include "lex.yy.c"

in the last section of Yacc input. Supposing the grammar
to be named "good" and the lexical rules to be named
"better" the UNIX command sequence can just be:

yacc good
lex better
cc y .tab.c -ly -11 -IS

The Yacc library (-ly) should be loaded before the Lex Ii·
brary, to obtain a main program which invokes the Y<1cc
parser. The generations of Lex and Yacc programs can be
done in either order.

9 Examples.

As a trivial problem, consider copying an input file
while adding 3 to every positive number divisible by 7.
Here is a suitable Lex source program

LEX-10

%%
int k~

[0-9)+ {
scanf(-1. yytext, "%d", &k);
iC (k%7 - - ())

printf("%d", k+J);
else

printf("%d",k);

to do just that. The· rule [0-9) + recognizes strings of di
gits; scan/ converts the digits to. binary and stores the
result in k. The operator % (remainder) is used to check
whether k is divisible by 7; if it is, it is incremented by 3
as it is written out. It may be objected that this program
will alter such input items as 49. 61 or X7. Furthermore,
it increments the absolute value of all negative numbers
divisible by 7. To avoid this, just add a few more rules
after the active one, as here:

-H0-91 +

-? [0-9.J +

int k;
[
scanf(-1, yytext, "o/od", &k);
printf("%d", k%7 -- 0? k+J: k);
I
ECHO;

[A-Za-zl [A-Za-z0-91 + ECHO:

Numerical strings containing a"." or preceded by a letter
will be picked up by one of the last two rules, and not
changed. The if-else has been replaced by a C conditional
expression to save space; the form a ?b:c means "if a
then IJ else c".

For an example of statistics gathering, here is a pro
gram which histograms the lengths of words, where a
word is defined as a string of letters.

%'Yn
[a-zl +

\n
OAJOfo

yywrapO
I
int i;

int lengs[I OOl;

lengs [yyll!ngl + +;
I

printf("Length No. words\n"}:
for(i-0: i<!OO: i++l

if Uengs(il > 0)
printf{"%5d% l Od\n" ,i,lengs(i]);

return (1):

l

This program accumulates the histogram, while producing
no output. At the end of the input it prints the table.
The final statement return(]); indicates that Lex is to per
form wrapup. If yywrap returns zero (false) it implies
that further input is available and the program is to con
tinue reading and processing. To provide a yywrap that

never returns true causes an infinite loop.
As a larger example, here are some parts of a program

written by N. L. Schryer to convert double precision For
tran lo single pn.:cision Fortran. Because Fortran does
not distinguish upper and lower case letters. this routine
begins by defining a set of classes including both (1ses of
each letter:

a (aA]
b [bBI
c (cC]

z (zZ]

An additional class recognizes white space:

w [\t]•

The first rule changes "double precision" to "real'', or
"DOUBLE PRECISION" to "REAL".

{dl{ol{u l(bl{l l{e){Wl!pl lrHellcHil Isl {ii {ol{n l (
printf(yytext(OJ ... -'d'? "real": "REAL"):
l

Care is taken throughout this program to preserve the
case (upper or lower) of the original program. The condi·
tional operator is used to select the proper form of the
keyword. The next rule copies continuation card indica
tions to avoid confusing them with constants:

"[" OI ECHO:

In the regular expression, the quotes surround the blanks.
It is interpreted as "beginning of line. then five blanks,
then anything but blank or zero." Note the two different
meanings of •. There follow some rules to change double
precision constants to ordinary floating constants.

[0-91 +{Wl{dl!Wll +-l?(Wl[0-91 + I
I0-91 + {Wl"."{Wl!dllWl (+ .J ?{Wl[0-91 + I
"."{W)[0-91 + (WlldllWH +-]?(WI [0-91 + I

I• convert constants •/
for(p-yytext; •p !- 0: p+ +)

(
if (•p ·- 'd' I •p -- 'D')

ECHO;
l

After the floating point constant is recognized. it is
scanned by the for loop to find the letter d or D. The
program than adds 'e'- 'd', which converts it to the next
letter of the alphabet. The modified constant, now
single-precision, is written out again. There follow a
series of names which must be respelled to remove their
initial d. By using the array yytext the same action
suffices for all the names (only a sample of a rather long
list is given here).

ldllsllillnl
(di {cl fol Isl
(dl{slfqllrlltl
fdllal(tlfaHnl

(dllflllllollalltl printf("%s",yytext+ l);

Another list of names must have initial d changed to ini·
tial a:

(d}fl)lolfgl
(dl{l){o}lg)lO
{dl{m}(i}(n}l
{dlfm)(alf xll

I
1,
I
I
yytext[O] - + 'a' • 'd';
ECHO;
l

And one routine must have initial d changed to initial r.

{dlt {m}{alfc){hl {yytext[OI - + 'r' • 'd';

To avoid such names as dsinx being detected as instances
of dsin, some final rules pick up longer words as
identifiers and copy some surviving characters:

[A-Za-z] [A-Za-z0-9) •
[0-9] +
\n

I
I
I
ECHO;

Note that this program is not complete; it does not deal
with the spacing problems in Fortran or with the use of
keywords as identifiers.

10 Left Context Sensitivity.

Sometimes it is desirable to have several sets of lexical
rules to be applied at different times in the input. For ex
ample, a compiler preprocessor might distinguish prepro
cessor statements and analyze them differently from ordi·
nary statements. This requires sensitivity to prior con
text, and there are several ways of handling such prob·
lems. The • operator, for example, is a prior context
operator, recognizing immediately preceding left context
just as S recognizes immediately following right context.
Adjacent left context could be extended, to produce a fa
cility similar to that for adjacent right context, but it is
unlikely to be as useful, since often the relevant left con·
text appeared some time earlier, such as at the beginning
of a line.

This section describes three means of dealing with
different environments: a simple use of flags, when only a
few rules change from one environment to another, the
use of start conditions on rules, and the possibility of
making multiple lexical analyzers all run together. In
each case, there are rules which recognize the need to
change the environment in which the following input text

LEX-11

is analyzed, and set some parameter to reflect the change.
This may be a flag explicitly tested by the user's action
code; such a flag is the simplest way of dealing with the
problem, since Lex is not involved at all. It may be more
convenient, however, to have Lex remember the flags as
initial conditions on the rules. Any rule may be associat
ed with a start condition, It will only be recognized when
Lex is in that start condition. The current start condition
may be changed at any time. Finally. if the sets of rules
for the different environments are very dissimilar, clarity
may be bi=st achieved by writing several distinct lexical
analyzers, and switching from one to another as desired.

Consider the following problem: copy the input to the
output, changing the word magic to first on every line
which began with the letter a, changing magic to second
on every line which began with the letter b, and chang;!1~
magic to third on every line which began with the letter c.
All other words and all other lines are left unchanged.

These rules are so simple that the easiest wJ.y to .J.1 this
job is with a flag:

int flag;
%%
·a (flag= 'a'; ECHO;I
.b {flag ~ 'b'; ECHO;)
·c {flag 'c'; ECHO;}
\n (flag = 0; ECHO:]
magic I

switch (flag)
I
case 'a': printf("first"); break;
case 'b': printf{"second"); break:
case 'c': printf("third"): break;
default: ECHO; break;
l
I

should be adequate.
To handle the same problem with start conditions. each

start condition must be introduced to Lex in the
definitions section with a line reading

%Start name! name2 ...

where the conditions may be named in any order. The
word Start may be abbreviated to s or S. The ..:onditions
may be referenced at the head of a rule with the < >
brackets:

<name l >expression

is a rule which is only recognized when Lex is in the start
condition namel. To enter a start condition, execute the
action statement

BEGIN name!;

which changes the start condition to namel. To resume
the normal state,

LEX-12

BEGIN O;

resets the initial condition of the Lex automaton inter
preter. A rule may be active in several start conditions:

<name l ,name2,name3 >

is a legal prefix. Any rule not beginning with the < >
prefix operator is always active.

The same example as before can be written:

%ST ART AA BB CC
%%
'a
'b
'c
\n
<AA>magic
<BB>magic
<CC>magic

{ECHO; BEGIN AA;}
{ECHO; BEGIN BB;)
(ECHO: BEGIN CC;}
{ECHO; BEGIN 0;}
printf("first");
printf("second");
printf("third");

where the logic is exactly the same as in the previous
method of handling the problem, but Lex does the work
rather than the user's code.

J I Character Set.

The programs generated by Lex handle character I/O
only through the routines input, output, and unput. Thus
the character representation provided in these routines is
accepted by Lex and employed to return values in yytext.
For internal use a character is represented as a small in
teger which, if the standard library is used, has a value
equal to the integer value of the bit pattern representing
the character on the host compu1er. In C, the 1/0 rou
tines are assumed to deal directly in this representation.
In Ratfor. it is anticipated that many users will prefer
left-adjusted rather than right-adjusted characters; thus
the routine lexshf is called to change the representation
delivered hy input into a right-adjusted integer. If the
user \."hanges the 1/0 library, the routtne lexshf should
also be \:hanged to a compatible version. The Ratfor li
brary 1/0 system is arranged to represent the letter a as
in the Fortran value 1 Ha while in C the letter a is
represented as the character constant 'a'. If this interpre
tation is changed. by providing I/O routines which
translate the characters, Lex must be told about it, by giv
ing a translation table. This table must be in the
definitions section, and must be bracketed by lines con
taining only "%T". The table contains lines of the form

{integer) (character string)

which indicate the value associated with each character.
Thus the next example maps the lower and upper case
letters together into the integers I through 26. newline
into 27, + and - into 28 and 29, and the digits into 30
through 39. Note the escape for newline. If a table is
supplied, every character that is to appear either in the

%T
I Aa
2 Bb

26 Zz
27 \n
28 +
29
30 0
31 I

39 9
%T

Sample character table.

rules or in any valid input must be included in the table.
No character may be assigned the number 0. and no char
acter may be assigned a bigger number than the size of
the hardware character set.

It is not likely that C users will wish to use the charac
ter table feature; but for Fortran portability it may be
essential.

Although the contents of the Lex Ratfor library rou
tines for input and output run almost unmodified on
UNIX, GCOS. and OS/370, they are not really machine
independent, and would not work with CDC or Bur·
roughs Fortran compilers. The user is of course welcome
to replace input, output, unput and lexshf but to replace
them by completely portable Fortran routines is likely to
cause a substantial decrease in the speed of Lex Ratfor
programs. A simple way to produce portable routines
would be to leave input and output as routines that read
with 80A 1 format, but replace lexshf by a table lookup
routine.

12 Summary of Source Format.

The general form of a Lex source tile is:

I definitions l
%%
!rules}
%%
(user subroutines)

The definitions section contains a combinauon of

1) Definitions, in the form "name space transla
tion".

2) Included code. in the form "'space code".

3) Included code, in the form

%{
code
%}

LEX-13

4) Start conditions. given in the form

%S namel name2 ...

5) Character set tables, in the form

%T
number space character-string

%T

6) A language specifier, ·which must also precede any
rules or included code. in the form .. %C' for C
or "%R" for Ratfor.

7) Changes to internal array sizes. in the form

%x nnn

where nnn is a decimal integer representing an ar·
ray size and x selects the parameter as follows:

Letter
p
n
e
a
k
0

Parameter
positions
states
tree nodes
transitions
packed character classes
output array size

Lines in the rules section have the form "expression ac·
tion" where the action may be continued on succeeding
lines by using braces to delimit it.

Regular expressions in Lex use the following operators:

x
·x•
\x
[xy)'
[x-z]
r·x1

x
<y>x
xS
x?
x•
x+

"' (x)
x/y
{xx}
x(m,n}

the character •x•
an ·x•, even if x is an operator.
an "x", even if x is an operator.
the character x or y.
the characters x, y or z.
any character but x.
any character but newline.
an x at the beginning of a line.
an x when Lex is in start condition y.
an x at the end of a line.
an optional x.
0,1,2, ... instances of x.
1,2,3, ... instances of x.
an x or a y.
an x.
an x but only if followed by y.
the translation of xx from the definitions section.
m through n occurrences of x

13 Caveats and Bugs.

There are pathological expressions which produce ex
ponential growth of the tables when converted to deter·
ministic machines; fortunately, they are rare.

REJEeT does not rescan the input; in:,tead it
remembers the results of the previous scan. This means
that if a rule with trailing context is found, and REJECT
executed, the user must not have used unpu1 to change
the characters forthcoming from the input stream. This is
the only restriction on the user's ability to manipulate the
not-yet-processed input.

TSO Lex is an older version. Among the non
supported features are REJECT. start conditions, or vari·
able length trailing context, And any significant Lex
source is too big for the IBM C compiler when translated.

14 Acknowledgments.

As should be obvious from the above, the outsid~ of
Lex is patterned on Yacc and the inside on Abo's string
matching routines. Therefore. both S. C. Johnson and A.
V. Aho are really originators of much of Lex, as well .lS

debuggers of it. Many thanks are due to both.
The code of the current version of Lex was designed.

written, and debugged by Eric Schmidt.

JS References.

1. D. M. Ritchie, B. W. Kernighan, and M. E. Lesk,
'The C Programming Language, Computing Sci
ence Technical Report No. 31 (1975). Bell La·
boratories, Murray Hill, NJ 07974.

2.

3.

4.

5.

6.

8. W. Kernighan. Rat/or: A Preprocessor for a
Rational Fortran. LO appear in Software Practice
and Expeflence. 1975.

S. C. Johnson. Yacc: Yet Another Compiler Cum·
p1ler, Compuung Science Technical Report No.
32, 1975, Bell Laboratories, Murray Htll. ~J

07974.

A. V. Aho and M. J. Corasick, Efficient S1rtng
Matching: An Aid to Bibliographic Search, Comm.
ACM 18, 333-340 (1975).

B. W. Kernighan, 0. M. Ritchie and K. L.
Thompson, QED Text Editor, Computing Science
Technical Report No. 5, 1972, Bell L1boratones.
Murray Hill. NJ 07974.

0. M. Ritchie, private communication. See also
M. E. Lesk, 'The Portable C Library, contained in
reference [!), above.

RATFOR - A Preprocessor for a Rational Fortran

' Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Although Fortran is not a pleasant language to use. it does have the advantages of universality and
(usually) relative efficiency. The Ratfor language attempts to conceal the main deficiencies of Fortran
while retaining its desirable qualities, by providing decent control flow statements:

• statement grouping

• if-else and switch for decision-making

• while, for. do, and repest-uatil for looping

• bruk and next for controlling loop exits

and some ··syntactic sugar .. :

• free form input (multiple statements/line, automatic continuation)

• unobtrusive comment convention

• translation of >, > - • etc .• into .QT .•. GE •• etc.

• recurn(expression) statement for functions

• deftne statement for symbolic parameters

• include statement for including source files

Ratfor is implemented as a preprocessor which translates this language into Fortran.

Once the control flow and cosmetic deficiencies of Fortran are hidden. the resulting language is
remarkably pleasant to use. Ratfor programs are markedly easier to write, and to read. and thus easier to
debug, mllintain and modify than their Fortran equivalents.

It is readily possible to write Ratfor programs which are portable to other env ironments. Ratfor is
written in itself in this way, so it is also portable; versions of Ratfor are now running on at least a dozen
different types of computers at over one hundred locations.

This paper discusses design criteria for a Fortran preprocessor. the Rlltfor language and its imple·
mentation. and user experience.

January l, 1977

A.!

RATFOR - A Preprocessor for a Rational Fortran

Brian W. Kernighan

Bell Laboratories
Murray Hill. New Jersey 07974

l. INTRODUCTION

Most programmers will agree that Fortran
is an unpleasant language to program in, yet
there are many occasions when they are forced
to use it. For example. Fortran is often the only
language thoroughly supported on the local com
puter. Indeed, it is the closest thing to a univer
sal programming language currenlly available:
with care it is possible to write large, truly port·
able Fortran programs[l]. Finally, Fortran is
often the most "efficient" language available,
particularly for programs requiring much compu
tation.

But Fortran is unpleasant. Perhaps the
worst deficiency is in the control flow statements
- conditional branches and loops - which
express the logic or the program. The condi·
tional statements in Fortran are primitive. The
Arithmetic IF forces the user into at least two
statement numbers and two (implied) GOTO's~ it
leads to unintelligible code, and is eschewed by
good programmers. The Logical IF is better, in
that the test part can be stated clearly. but hope·
lessly restrictive because the statement that fol·
lows the IF can only be one Fortran statement
(with some /imher restrictions!). And of course
there can be no El.SE part to a Fortran IF: there is
no way to specify an alternative action if the IF is
not satisfied.

The Fortran oo restricts the user to going
forward in an arithmetic progression. It is fine
for "I to N in steps of I (or 2 or .. .) ", but there
is no direct way to go backwards, or even (in
ANSI Foman{2)) to go from I to N-1. And of
course the oo is useless if one's problem doesn't
map into an arithmetic progression.

The result of these failings is that Fortran
programs must be written with numerous labels
and branches. The resulting code is particularly
difficult to read and understand. and thus hard to
debug and modify.

When one is faced with an unpleasant
language. a useful technique is 10 define a new
language that overcomes the deficiencies. and to
translate it into the unpleasant one with a
preprocessor. This is the approach taken with

Ratfor. (The preprocessor idea is of course not
new, and preprocessors for Fortran are especially
popular today. A recent listing [J) of preproces·
sors shows more than SO. of which at least half a
dozen are widely available.)

2. LANGUAGE DESCRIPTION

Desicn

Ratfor attempts to retain the merits of
Fortran (universality, portability, efficiency)
while hiding the worst Fortran inadequacies.
The language is Fortran except for two aspects.
First, since control flow is central to any pro
gram. regardless of the specific application. the
primary taslt or Ratfor is to conceal this part of
Fortran from the user, by providing decent con·
trol flow structures. These structures are
sufficient and comfortable for structured pro
gramming in the narrow sense of programming
without GOTO's. Second. since the preprocessor
must examine an entire program to translate the
control structure, it is possible at the same time
to clean up many or the "cosmetic" deficiencies
or Fortran, and thus provide a language which is
easier and more pleasant to read and write.

Beyond these two aspects - control flow
and cosmetics - Ratfor does nothing about the
host of other weaknesses of Fortran. Although
it would be straightforward to extend it to pro
vide character strings, for example. they are not
needed by everyone. and of course the prepro·
cessor would be harder to implement.
Throughout. the design principle which has
determined what should be in Ratfor and what
should nol has been Ra1/or doesn't know any For
tran. Any language feature which would require
that Ratfor really understand Fortran has been
omined. We will return to this point in the sec
tion on implementation.

Even within the confines of con1rol fiow
and cosmetics, we have attempted to be selective
in what features to provide. The intent has been
to provide a small set of che most useful con·
structs. rather than to throw in everything that
has ever been thought useful by someone.

The rest of this section contains an infor·
mal description of the Ratfor language. The con
trol llow aspects will be quite ramiliar to readers
used to languages like Algol. PL/I, Pascal, etc.,
and the cosmetic changes are equally straightfor
ward. We shall concentrate on showing what the
lanauage looks like.

Statement Greapin1
Fortran provides no way io group state•

menlS together, short of making them into a
subroutine. The standard construction '"if a con
dition is true. do this group of things," for
example.

ir (x > 100)

• 2.

I call error("x > l 00"); err • 1 ~ return I
cannot be written directly in Fortran. Instead a
programmer is forced to translate this relatively
clear thought into murky Fortran. by statin1 the
negative condition and branching around the
group of statements:

10

if (x .le. 100) goto 10
caJI error<Shx > l 00)
err• I
return

When the program doesn't work, or when it
must be modified. this must be translated back
into a clearer form before one can be sure what
it does.

Ratfor eliminates this error-prone and
confusing back•otnd-forth translation: the first
form 1s the way the computation is wriuen in
Ratfor. A group of statements can be treated as
a unu by enclosing them in the braces I and I.
This is true throughout the language: wherever a
single Ratfor statement can be used. there can be
several enclosed in braces. (Braces seem clearer
and less obirusive than begin and end or do and
end. and of course do and end already have For
tran meanings.)

Cosmetics contribute to the readability of
code. and thus to its understandability. The
character •• >" is clearer than ··or:·, so Ratfor
1ransla1es it appropriately, along with several
other similar shorthands. Although many For
tran compilers permit character strings in quotes
(like "x > 100"). quotes are not allowed in ANSI

Fortran, so Ratfor converts it into the right
number of H's: computers count better than
people do.

Ratfor is a free·form language: statements
may appear anywhere on a line. and several may
appear on one line if they are separated by semi·

colons. The example above could also be written
as

11 \x > 100) I
call error("x > 100")
err-· 1
return

In this case. no semicolon is needed at the end
of each line because Ratfor assumes there is one
statement per line unless told otherwise.

Of course, if the statement that follows the
if is a single statement (Ratfor or otherwise>. no
braces are needed:

if (y < - 0.0 & z < - 0.0)
write(6, 20) y, z

No continuation need be indicated because the
statement is clearly not finished on the first line.
ln generaJ Ratfor continues lines when it seems
obvious that they are no& yet done. (The con
tinuation convention is discussed in detail later.)

Although a free-form language permits
wide latitude in formauing styles, it is wise to
pick one that is readable. then stick to it. In par
ticular. proper indentation is vital, to make the
logical structure of the program obvious to the
reader.

The .. else•• Clause

Ratfor provides an else statement to han·
die the construction "if a condition is true, do
this thing, otherwise do that thing.··

if (a < • b)
I sw • 0: write(6. ll a. b I

else
I sw - I: write(6, I) b. a I

This writes out the smaller of a and h. then the
larger. and sets sw approl)riateiy.

The Fortran equivalent of this code is cir·
cuitous indeed:

if (a .at. b) goto I 0
SW• 0
write(6. l) a. b
goto 20

10 SW - I
write(6. I) b. a

20

This is a mechanical translation; shorter forms
exist, as they do for many similar situations. But
all translations suffer from the same problem:
since they are translations. they are less clear and
understandable than code that is not a transla-

tion. To understand the Fortran version. one
must scan the entire program to make sure that
no other statement branches to statements 10 or
20 before one knows that indeed this is an If·
else construction. With the Ratfor version. there
is no question about how one gets to the partS of
the statement. The If.else is a single unit. which
can be read. understood. and ignored if not
relevant. The program says what it means.

As before. if the statement following an If
or an else is a single statement, no braces are
needed:

if (a <- b)

SW• 0
else

SW - I

The syntax of the if smement is

if (/ego/ Fonran cond111on)
Rat/or stattmttrt

else
Ratfor statement

where the else part is optional. The /ego/ Fortran
co11dtt1on is anything that c:an legally go into a
Fortran Logical IF. Ratfor does not check this
clause. since it does not know enough Fortran to
know what is permitted. The Ratfor statement is
any Ratfor or Fortran statement. or any collec·
tion of them in braces.

Nested irs

Since the statement that follows an If or an
else can be any Ratfor statement. this leads
immediately to the possibility of another if or
else. As a useful example. consider this problem:
the variable r is to be set to -1 if x is less than
zero. to + l if x is greater than 100. and to 0
otherwise. Then in Ratfor, we write

if (x < Ol
f - -1

else if (x > 100)
f - +l

else
f - 0

Here the statement after the first else is another
if.else. Logically it is just a single sta1ement.
although it is rather complicated.

This code says what it means. Any ver·
sion written in straight Fortran will n~essarily be
indirect because Fortran does not let you say
what you mean. And as always. c:lever shortcuts
may turn out to be too clever to understand a
year from now.

• 3 •

Following an else with an if is one way to
write a multi-way cranch in Ratfor. In general
the structure

if(...)

else if (. . .)

else if (...)

else

provides a way to specify the choice of exactly
one of several alternatives. (Ratfor also provides
a switch statement which does the same job in
certain special cases; in more general situations.
we have to make do with spare parts.> The tests
are laid out in sequence. and each one is fol·
lowed by the code associated with it. Read down
the list of decisions until one is found that is
satisfied. The code associated with this condition
is executed, and then the entire structure is
finished. The trailing else part handles the
.. default" case. where none of the other condi·
tions .apply. If there is no default action. this
final else part is omitted:

if (x < 0)

x-o
else if (x > I 00)

x - 100

if-else ambi1uity

There is one thing to notice about compli·
cated structures involving nested lf's and else's.
Consider

if (x > 0)
if (y > 0)

write(6, I) x, y
else

write(6. 2) y

There are two lf's and only one else. Which if
does the else go with?

This is a genuine ambiguity in Ratfor. as it
is in many other programming languages. The
ambiguity is resolved in Ratfor (as elsewhere) by
saying that in such cases the else goes with the
closest previous un-elseed If. Thus in this case,
the else goes with the inner if. as we have indi·
cated by the indentation.

It is a wise practice to resolve such cases
by explicit braces. just to make your intent c:lear.
In the case above, we would write

if <x > o> I
if (y > 0)

write(6, I) x. y
else

write(6. 2) y

which does not change the meaning. but leaves
no doubt in the reader's mind. If we want the
other association. we must write ·

if <x > o> I
if (y > 0)

write(6. I) x. y

else
write(6, 2) y

The "switch" Statement

The switch statement provides a clean way
to express multi-way branches which branch on
the value of some integer-valued expression.
The syntax is

switch (express1011) I

case expr/ :
statements

case expr 1. exprJ :
s1a1ements

default:
sta1emems

Each case is followed by a list of comma·
separated integer expressions. The expression
inside switch is compared against the case
expressions exprl. expr2. and so on in turn until
one matches. at which time the statements fol·
lowing 1hat case arc executed. If no cases match
e.\pression. and there is a default section. the
statements with it are done: if there is no
default, nothing is done. In all situations. as
soon as some block of statements is executed.
the entire switch is exited immediately.
(Readers familiar with C[4) should beware that
this behavior is not the same as the C switch.)

The "do" Statement

The do statement in Ratfor is quite similar
to the oo statement in Fortran. except that it
uses no statement number. The statement
number. after all, serves only to mark the end of
the oo. and this can be done just as easily with
braces. Thus

. 4 .

do i - I, n I

is the same as

x(i) - 0.0
y(i) - 0.0
z(i) - 0.0

do 10 i - I, n
x(i) - 0.0
y(i) - 0.0
z(i) • 0.0

10 continue

The syntax is:

do legal-Fortran-DO-text
Rat/or statemem

The part that follows the keyword do has to be
something that can legally go into a Fortran oo
statement. Thus if a local version of Fortran
allows oo limits to be expressions (which is not
currently permitted in ANSl Fortran). they can be
used in a Ratfor do.

The Ra(Jor statement part will often be
enclosed in braces. but as with the if, a single
statement need not have braces around it. This
code sets an array to zero:

do i • 1, n
x(i) - 0.0

Slightly more complicated.

doi•l.n
doj-1.n

m{i. j) - 0

sets the entire array m to zero. and

doi•l.n
do j - I. n

if (j < j)
m(i, j) - -I

else if (i - - j)
m(i, j) - 0

else
m(i. j) - +I

sets the upper triangle of m to - I, the diagonal
to zero, and the lower triangle to + I. (The
operator - - is "equals", that is, ".EQ.".) In
each case. the statement that follows the do is
logically a single statement. even though compli·
cated, and thus needs no braces.

"break .. and "next"

Ratfor provides a statement for leaving a
loop early, and one for beginning the neict itera·
tion. break causes an immediate exit from the

do; in etf ect it is a branch to the statement aft,,
the do. next is a branch to the bottom of the
loop, so it causes the next iteration to be done.
For example. this code skips over negative
values in an array:

do i - I, n I
if (x(i) < 0.0)

next
f1'0Ce!S pos111" ele~nt

break and next also work in the other Ratfor
looping constructions that we will talk about in
the next few sections.

break and next can be followed by an
integer to indicate breaking or iteming that level
of enclosing loop: thus

break 2

exits from two levels of enclosing loops. and
break 1 is equivalent to break. next 2 iterates
the second e.11closing loop. <Realistically, multi·
level brnk's and next's are not likely to be
much used because they lead to code that is hard
to understand and somewhat risky to change.)

The .. while .. Statement

One of the problems with the Fortran oo
statement is that it generally insists upcn being
done once, regardless of its limits. If a loop
begins

DO I - 2. l

this will typically be done once with I set to 2.
even though common sense would suggest that
perhaps it shouldn't be. Of course a Ratfor do
can easily be preceded by a test

if (j <- k)

do i - i. k I

but this has to be a conscious act, and is often
overlooked by programmers.

A more serious problem with the oo state·
ment is that it encourages that a program be
written in terms of an arithmetic progression
with small pcsitive steps. even though that may
not be the best way to write it. If code has to be
contorted to fit the requirements imposed by the
Fortran oo. it is that much harder to write and
understand.

To overcome these difficulties. Ratfor pro·
vides a while statement, which is simply a loop:
.. while some condition is true, repeat this 1roup

• s •

of statemen&S... It has no preconceptions about
why one is looping. For example, this routine to
compute sin(x) by the Maclaurin series combines
two termination criteria.

real function sin(x, e)
#returns sin(x) to accuracy e. by
sin(x) • x - x••J/3! + x .. S/S! - ...

sin - x
term - x

i-3
while (abs(term) >e & i < 100) I

term - -term • x .. 2 I tloat(i•(i-1))
sin - sin + term
i-i+2

re tum
end

Notice that if the routine is entered with
term already smaller than e, the loop will be
done :ero limes. that is, no attempt will be made
to compute x .. J and thus a potential underflow
is avoided. Since the test is made at the top of a
while loop instead of the bottom. a special case
disappears - the code works at one of its boun·
daries. (The test I< 100 is the other boundary -
making sure the routine stops after some max·
imum number of iterations.)

As an aside. a sharp character "#" in a
line marks the beginning of a comment; the rest
of the line is comment. Comments and code can
co-exist on the same line - one can make mar
ginal remarks. which is not possible with
Fortran's "C in column i ·· convention. Bllfnk
lines are also permitted anywhere (they are not
in Fortran): they should be used to emphasize
the natural divisions of a program.

The syntax of the while statement is

while (legal Fortran condition)
Ratfor s1a1emen1

As with the If, legal Fortran co11di11on is some·
thing that can go into a Fortran Logical IF. and
Ra(/or statement is a single statement, which may
be multiple statements in braces.

The while encourages a style of coding not
normally practiced by Fortran programmers. For
example. suppose nextch is a function which
returns the next input character both as a func
tion value and in its argument. Then a loop to
find the first non-blank character is just

while (nextch(ich) - • iblank)

A semicolon by itself is a null statement, which
is necessary here to mark the end or the while;
if it were not present, the while would control
the next statement. When the loop is broken,
lch contains the first non-blank. or course the
same code can be written in Fortran as

100 if (nextch(ich) .eq. iblank) goto 100

but many Fortran programmen (and a few com
pilers) believe this line is illegal. The language at
one's disposal strongly influences how one thinks
about a problem.

The "for" Statement

The for statement is another Ratfor loop,
which attempts to carry the separation of loop.
body from reason-for-looping a step further than
the while. A for statement allows explicit initiali·
zation and increment steps as part of the state·
ment. For example. a DO loop is just

for (i - l; i < - n; i - i + I) ...

This is equivalent to

i - I
while (i < • n) I

The initialization and increment of I have been
moved into the for statement, making it easier to
see at a glance what controls the loop.

The for and while versions have the
advantage that they will be done zero times if n
is less than I; this is not true of the do.

The loop of the sine routine in the previ
ous section can be re-written with a for as

for (i-3: abs(term) > e & i < 100; i•i+2) I
term • -term • x .. 2 I float(i•(i-1))
sin - sin + term

The syntax of the for statement is

for (mu : condition : tncrement)
Raf/or statement

mit is any single Fortran statement. which gets
done once before the loop begins. mcremerrt is
any single Fortran statement. which gets done at
the end of each pass through the loop. before
the test. condition is again anything that is legal
in a logical IF. Any of imt, condition. and incre·
ment may be omitted. although the semicolons

• 6.

must always be present. A non-existent cond111on
is treated as always true. so for(:;) is an
indef. .;1e repeat. (But see the repeat-until in
the next section.)

The for statement is particularly useful for
backward loops, chaining along lists. loops that
might be done zero times. and similar things
which are hard to express with a DO statement,
and obscure to write out with 1F's and GOTO's.
For example, here is a backwards DO loop to find
the last non·blank character on a card:

for (i • 80; i > O: i - i - l)
if (card(i) !- blank)

break

("!•" is the same as ··.NE:"). The code scans
the columns from 80 through to I. If a non
blank is found, the loop is immediately broken.
(break and next work in for's and while's just as
in do's). If i reaches zero. the card 1s all blank.

This code is rather nasty to write with a
regular Fortran DO. since the loop must go for·
ward, ana we must explicitly set up proper condi·
tions when we fall out of the loop. (Forgetting
this is a common error.) Thus:

DO 10 J • I, 80
t - 81 - J
IF (CARO(l) .NE. BLANK> GO TO 11

10 CONTINUE
1-0

11

The version that uses the ror handles the termi
nation condition properly for free: i 1s zero when
we fall out or the for loop.

The increment in a for need not be an
arithmetic progression: the following program
walks along a list (stored in an integer array ptr)
until a zero pointer is found, adding up elements
from a parallel array of values:

sum• 0.0
for (i - first; i > o~ i - ptr(i))

sum - sum + value(i)

Notice that the code works correctly if the list is
empty. Again. placing the tesl at the top of a
loop instead of the bottom eliminates a potential
boundary error.

The "repeat-until,. statement

In spite of the dire warnings. there are
times when one really needs a loop that tests at
the bottom after one pass through. This service
is provided by the repeat-until:

repeat
Ratfor s1atenren1

until (legal Fortran condition)

The Ra(/Or statement part is done once, then the
condition is evaluated. If it is true, the loop is
exited; if ii is false. another pass is made.

The until part is optional, so a bare repeat
is the cleanest way to specify an infinite loop. Of
course such a loop mu.st ultimately be broken by
some transfer of control such as stop. return, or
break. or an implicit stop such as running out of
input with a READ statement.

As a matter of observed fact(S). the
repeat-until statement is much less used than the
other looping constructions: in particular. it is
typically outnumbered ten to one by for and
while. Be cautious about using it, for loops that
test only at the bottom often don't handle null
cases well.

More on break aacl next

break exits immediately from. clo, while.
for. and repeat-until. next goes to the test part
of clo. while and repeat-until, and to the incre·
ment step of a for.

.. return" Statement

The standard Fortran mechanism for
returning a value from a function uses the name
of the function as a variable which can be
assigned to; the last value stored in it is the
function value upon return. For example, here.
is a routine equal which returns l if two arrays
are identic-.tl, and zero if they differ. The array
ends are marked by the special value - l.

equal _ compare strl to str2:
return I if equal, 0 if not

says

integer function equaHstr I. str2)
integer strl (100). str2000>
integer i

for (i - 1: strl(i) -- str2(i): i • i + 1)

if (strl(i) -- -l) I

equal • 0
return
end

equal - I
return

In many languages (e.g .. PL/I) one instead

return (e:rpress1011)

to return a value from a function. Since this is

• 7.

often clearer. Ratfor provides such a return
statement - in a function F. return(expression)
is equivalent to

I F - expression: return I
For example. here is equal again:

#equal - compare strl to str2;
return I if equal, 0 if not

integer function equaHstrl, str2)
integer strl (l 00). str2 (I 00)
integer i

for (i • I: strl(i) -- str2(i): i - i + I)
if (strl(i) -- -1)

retum(O)
end

return(I)

If there is no parenthesized expression after
return. a normal RETURN is made. (Another
version of equal is presented shortly.)

Cosmetics

As we said above, the visual appearance of
a language has a substantial effect on how easy it
is to read and understand programs. Accord·
ingly, Ratfor provides a number of cosmetic
facilities which may be used to make programs
more readable.

Free-form Input
Statements can be placed anywhere on a

line: long statements are continued automati·
cally, as are long conditions in lf. while. for, and
until. Blank lines are ignored. Multiple state
ments may appear on one line. if they are
separated by semicolons. No semicolon is
needed at the end of a line. if Ratfor can make
some reasonable guess about whether the state·
ment ends there. Lines ending with any of the
characters

- +
are assumed to be continued on the next line.
Underscores are discarded wherever they occur:
all others remain as part of the statement.

Any statement that begins with an all
numeric field is assumed to be a Fortran label.
and placed in columns 1-5 upon output. Thus

write(6. 100): 100 formad"hello")

is converted into

write(6, 100)
100 format(5hhello)

Translation Senices
Text enclosed in matching single or double

quotes is converted to nH ••• but is otherwise
unaltered (except for formatting - it may get
split across card boundaries during the reformat·
ting process). Within quoted· strings, the
backslash '\ • serves as an escape character. the
nex1 character is taken literally. This provides a
way to get quotes (and of course the backslash
iiself) into quoted strings:

"\ \ , ..
is a string containing a backslash and an apos·
trophe. (This is not the standard convention of
doubled quotes, but it is easier to use and more
general.>

Any line that begins with the character '%'
is left absolutely unaltered except for stripping
off' the '% • and moving the line one position to
the left. This is useful for inserting control
cards, and other things 1har should not be
transmogrified (like an existing Fortran pro·
gram). Use ·'lb· only for ordinary statements,
not for the condition parts of if. while, etc:., or
the output ma)' come out in an unexpected place.

The following character translaiions are
made. except within single or double quotes or
on a line beginning wilh a '% •.

-- . eq.
,_

.ne .
> .gt. >• .ge .
< . It. <- .le.
& .and. .or.

. not. .. .not .

In addi1ion. the following transla1ions are pro·
vided for input devices with restricted character
sets.

[
S(

.. deftne" Statement

1
$)

Any string of alphanumeric characters can
be defined as a name: thereafter. whenever that
name occurs in the inpu1 {delimited by non·
alphanumerics) it is replaced by the rest of the
definition line. (Commenis and trailing white
spaces are stripped off'). A defined name can be
arbitrarily long, and must begin with a letter.

define is typically used to create symbolic
parameters:

- 8 •

define ROWS 100
define COLS SO

dimension a(ROWS), b(ROWS, COLS)

i((i > ROWS I j > COLS) ..•

Alternately. definitions may be written as

define(ROWS, 100)

In this case, the defining text is everything after
the comma up to the balancing right parenthesis:
this allows muhi·line definitions.

It is generally a wise practice to use sym·
bolic parameters for most constants, to help
make clear the function of what would otherwise
be mysterious numbers. As an example. here is
the routine equal again. this time with symbolic
constants.

define
define
define
define

YES
NO
EOS
ARB

l
0
-I
100

#equal_ compare strl to sn2:
re1um YES if equal, NO if not

integer function equal(strl, str2)
integer strl (ARB>. str2(ARB>
integer i

for (i • I; strl (i) • - str2(i): i • i + l)

if <snl (i) • • EOS>
return(YES)

return(NO>
end

''Include .. Statement

The statement

include file

inserts the file found on input stream file into the
Ratfor input in place of the include statement.
The standard usage is to place COMMON blocks
on a file. and indude that file whenever a copy is
needed:

subroutine x
include commonblocks

end

suroutine y
include commonblocks

end

This ensures that all copies of the COMMON

blocks are identical

Pltfalls, Botches, Blemishes and other Fallln1s

Ratfor catches certain syntax errors, such
as missing braces. etse clauses without an If. and
most errors involving missing parentheses in
statements. Beyond that. since Ratfor knows no
Fortran. any errors you make will be reported by
the Fortran compiler. so you will from time to
time have to relate a For1ran diaanostic back to
the Ratfor source.

Keywords are reserved - using If. else.
etc .• as variable names wi111ypically wreak havoc.
Don't leave spaces in keywords. Don't use the
Arithmetic IF.

The Fortran nH convention is not recog·
nized anywhere by Ratfor~ use quotes instead.

3. IMPLEMENTATION

Ratfor was originally written in C{41 on the
UNIX operating system{SI. The language is
specified by a context free grammar and the
compiler constructed using the YACC compiler·
compilerl6).

The Ratfor grammar is simple and straight·
forward. being essentially

prog : stat
I prog stat

stat : if (...) stat
I if (. . .) stat else stat
I while (...) stat
I for <. •. ; .•• ; •. .> stat
I do .•• stat
I repeat stat
I repeat stat until (...)
I switch <...> I case ... : prog ...

default: prog I
I return
I break
I next
I digits stat
11 prog I
I anything unrecognizable

The observation that Ratfor knows no Fonran
•follows directly from the rule that says a state·
ment is "anything unrecognizable". In fact most
of Fortran falls into this category, since any
statement that does not begin with one of the
keywords is by definition "unrecognizable.··

Code generation is also simple. If the first
thing on a source line is not a keyword Oike If,
else. etc.> the entire statement is simply copied
to the output with appropriate character transla·
lion and formauing. (Leading digits are treated
as a label.) Keywords cause only slightly more
complicated actions. For example. when If is

• 9.

recognized. two consecutive la bets L and L + l
are generated and the value of L is stacked. The
condition is then isolated, and the code

if <.not. (condition)) goto L

is output. The statement part of the lf is then
translated. When the end of the statement is
encountered (which may be some distance away
and include nested if's. of course). the code

L continue

is generated, unless there is an else clause. in
which case the code is

goto L+l
L continue

In this latter case. the code

L + I continue

is produced after the statement part of the else.
Code generation for the various loops is equally
simple.

One might argue that more care should be
taken in code generation. For example. if there
is no trailing else,

if (i > 0) x - a

should be left alone. not converted into

if <.not. (i .gt. 0)) goto 100

x - a
100 continue

But what are optimizing compilers for. if not to
improve code? It is a rare program indeed where
this kind of "inefficiency" will make even a
measurable difference. In the few cases where it
is important, the offending lines can be protected
by •qt,'.

The use of a compiler-compiler is
definitely the preferred method of software
development. The language is well-defined, with
few syntactic: irregularities. Implementation is
quite simple; the original construction took
under a week. The language is sufficiently sim·
pie. however. that an ad h0<· recognizer can be
readily constructed to do the same job if no
compiler-compiler is available.

The C version of Ratfor is used on UNIX

and on the Honeywell <.iCOS systems. C com·
pilers are not as widely available as Fortran.
however, so there is also a Ratfor written in
itself and originally bootstrapped with the C ver·
sion. The Ratfor version was written so as to
translate into the portable subset of Fortran
described in {l), so it is portable, having been
run essentially without change on at least twelve

distinct machines. (The main restrictions of the
ponabie subset are: only one character per
machine word; subscripts in the form ce 11:: c:
avoiding expressions in places like DO loops; con·
sistency in subroutine argument usage. and in
COMMON declarations. Ratfor itself will not gra
tuitously generate non·standard Fortran.)

The Ratfor version is about lSOO lines of
Ratfor (compared to about 1000 lines of C); this
compiles into 2500 lines of Fortran. This expan·
sion ratio is somewhat higher than average. since
the compiled code contains unnecessary
occurrences of COMMON declarations. The exe·
cution time of the Ratfor version is dominated
by two routtnes that read and write cards.
Clearly these routines could be replaced by
machine coded local versions; unless this is
done. the efficiency of other parts of the transla·
uon process is largety irrelevant.

4. EXPERIENCE

Good Thin1s

"It's so much better than Fortran·· is the
most common response of users when asked
how well Ratfor meets their needs. Although
cynics might consider this to be vacuous. it does
seem to be true that decent control flow and
cosmetics converts Fortran from a bad language
into quite a reasonable one. assuming that For·
tran data structures are adequate for the task at
hand.

Although there are no quantitative results.
users feel that coding in Ratfor is at least twice
as fast as in Fortran. More important. debugging
and subsequent revision are much faster than in
Fortran. Partly this is simply because the code
can be rtad. The looping statements which test
at the top instead of the bouom seem to elim·
inate or at least reduce the occurrence or a wide
class of boundary errors. And of course it is
easy to do structured programming in Ratfor;
this self-discipline also contributes markedly to
reliability. ·

One interesting and encouraging fact is
that programs written in Ratfor tend to be as

• 10.

readable as programs written in more modern
langu1tges like Pascal. Once one is freed from
the ~11ackles of Fortran's clerical detail and rigid
input format. it is easy to write code that is read·
able. even esthetically pleasing. For example,
here is a Ratfor implementation of the linear
table search discussed by Knuth (7):

A(m+l) • x
for (i • 1; A(i) !- x; i - i + I)

if <i > m> I

else

m • i
B(i) - l

B(i) • B(i) + l

A large corpus (5400 lines) or Ratfor, ·including
a subset of the Ratfor preprocessor itself, can be
found in [8).

Bad Tbinp

The biggest single problem is that many
Fortran syntax errors are not detecte1! by Ratfor
but by the local Fortran compiler. The compiler
then prints a message in terms of the generated
Fortran, and in a few cases this may be difficult
to relate back to the offending Ratfor line. espe
cially if the implementi:tion conceals the gen
erated Fortran. This problem could be dealt with
by tagging each generated line with some indica
tion of the source line that created it. but this is
inherently implementation~ependent, so no
action has yet been taken. Error message
interpretation is actually not so arduous as might
be thought. Since Ratfor generates no variables.
only a simple pattern of tF's and GOTO's. data
related errors like missing OtMENStON statements
are easy to find in the Fortran. Furthermore.
there has been a steady improvement in Ratfor's
ability to catch trivial syntactic errors like unbal·
anc:ed parentheses and quotes.

There are a number of implementation
weaknesses that are a nuisance. especially to new
users. For example. keywords are reserved.
This rarely makes any difference. except for
those hardy souls who want 10 use an Arithmetic
IF. A few standard Fortran constructions are not
accepted by Ratfor, and this is perceived as a
problem by users with a large corpus of existing
Fortran programs. Protecting every line with a
•%' is not really a complete solution. although it
serves as a stop-gap. The best long-term solu·
tion is provided by the program Struct [9). which
converts arbitrary Fortran programs into Ratfor.

Users who export programs often complain

that the generated Fortran is "unreadable"
because it is not tastefully formatted and con
tains extraneous CONTINUE statements. To some
extent this can be ameliorated (Ratfor now has
an option to copy Ratfor comments into the gen· -
crated Fortran). but it has always seemed that
effort is better spent on the input language than
on the output esthetics.

One final problem is partly attributable to
success - since Ratfor is relatively easy to
modify, there are now several dialects of Ratfor.
Fortunately. so far most of the differences are in
character set. or in invisible aspects like code
generation.

S. CONCLUSIONS

Ratfor demonstrates that with modest
effort it is possible to convert Fortran from a bad
language into quite a good one. A preprocessor
is clearly a useful way to extend or ameliorate
the facilities of a base language.

When designing a language. it is important
to concentrate on the essential requirement of
providing the user with the best language possi·
ble for a given effort. One must avoid throwing
in "features" - things which the user may trivi
ally construct within the existing framework.

One must also avoid getting sidetracked on
irrelevanc1e!;. For instance it seems pointless for
Ratfor 10 prepare a neatly formaued listing of
either its input or its output. The user is
presumably capable of the self-discipline required
to prepare neat input that reflects his thoughts.
It is much more important that the language pro
vide free-form input so he can format it neatly.
No one should read the ou1pu1 anyway except in
the most dire circumstances.

Acknowledgements

C. A. R. Hoare once said that .. One thing
(the language designer! should not do is to
include untried ideas of his own ... Ratfor follows
this precept very closely - everything in it has
been stolen from someone else. Most of the
control flow structures are taken directly from
the language Cl41 developed by Dennis Ritchie:
the comment and continuation conventions are
adapted from Altran(IOI.

I am grateful to Stuart Feldman. whose
patient simulation of an innocent user during the
early days of Ratfor led to several design
improvements and the eradication of bugs. He
also translated the C parse-tables and YA.CC

parser into Fortran for the first Ratfor version of
Ratfor.

• 11 •

References

[l) 8. G. Ryder. "The PFORT Verifier."

(2)

So./iware-Pract1ce & Experience, October
1974.

American National Standard
American National Standards
New York. 1966.

Fortran.
Institute,

[3) For-word: Forrran Development Newsletter.
August 1975.

(4) 0. M. Ritchie. B. W. Kernighan and M. E.
Lesk, "The C Programming Language ...
Bell Laboratories Computing Science
Technical Report #31, 1975.

[SI D. M. Ritchie and K. L. Thompson. "The
UNIX Time-sharing System." CACM. July
1974.

(61 S. C. Johnson. "YACC - Yet Another
Compiler-Compiler.·· Bell Laboratories
Computing Science Technical Report #32,
1974.

[7] 0. E. Knuth. ..Structured Programming
with goto Statements ... Computing Surveys.
December 1974.

(81 B. W. Kernighan and P. J. Plauger. So/iware
Tools. Addison-Wesley, 1976.

[91 B. S. Baker, ··Struct - A Program which
Structures Fortran... Bell Laboratories
internal memorandum. December 1975.

[IOI A. 0. Hall. "'Th<:: Altran System for
Rational Function Manipulation - A Sur
vey." CACM, August 1971.

- 12 •

Appendix: Usage on UNIX and GCOS.

Beware - local customs vary. Check with a native before going into the jungle.

UNIX

The program ratfor is the basic translator; it takes either a list of file names or the standard input
and writes Fortran on the standard output. Options include -tix. which uses x as a continuation charac·
1er in column 6 (UNIX uses & in column !), and -c. which causes Ratfor comments to be copied into
1he generated Fortran.

The program re provides arr interface to the ratfor command which is much the same as cc. Thus

re (options) files

compiles the files specified by ftles. Files with names ending in .r are Ratfor source; other files are
assumed to be for the loader. The flags -C and -6x described above are recognized, as are

-c compile only; don't load
-f save intermediate Fortran .f files
-r Ratfor only; implies -c and -r
-2 use big Fortran compiler (for large programs)
-U flag undeclared variables (not universally available)

Other flags are passed on to the loader.

GCOS

The progrc1m ./ratfor is the bare translator. and is identical to the UNIX version, except that the
continuation convention is & in column 6. Thus

./ratfor files >output

translates the Ratfor source on ftles and collei:tS the generated Fortran on file ·output' for subsequent
processing .

./re provides much the same services as re (within the !imitations of (iC"OS). regrettably with a
somewhat different syntax. Options recognized by ./re include

name
h-/name
r-/name

c
f•name
g-name

Ratfor source or library. depending on type
make TSS H• tile (runnable version); run as /name
update and use random library
compile as ascii (default is bed)
copy comments into Fortran
Fortran source file
gmap source file

Other options are as specilied for the ./cc command described in [41.

TSO, TSS, and other systems

Ratfor exists on various other systems; check with the aulhor for specifics.

The M4 Macro Processor

Brian W. Kernighan

Dennis M. Ritchie

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

M4 is a macro processor available on UNIX and GCOS. Its primary use
has been as a front end for Ratfor for those cases where parameterless macros
are not adequately powerful. It has also been used for languages as disparate as
C and Cobol. M4 is particularly suited for functional languages like Fortran,
PL/I and C since macros are specified in a functional notation.

M4 provides features seldom found even in much larger macro proces
sors, including

• arguments

• condition testing

• arithmetic capabilities

• string and substring functions

• file manipulation

This paper is a user's manual for M4.

April 1, 1977

A.

The M4 Macro Proce~sor

Brian W. Kernighan

Dennis M. Ritchie

Bell Laboratories
Murray Hill, New Jersey 07974

Introduction

A macro processor is a useful way to
enhance a programming language, to make
it more palatable or more readable, or to
tailor it to a particular application. The
#define statement in C and the analogous
define in Ratfor are examples of the basic
facility provided by any macro processor -
replacement of text by other text.

The M4 macro processor is an exten
sion of a macro processor called M3 which
was written by D. M. Ritchie for the AP-3
minicomputer; M3 was in tum based on a
macro processor implemented for [11.
Readers unfamiliar with the basic ideas of
macro processing may wish to read some of
the discussion there.

M4 is a suitable front end for Ratfor
and C, and has also been used successfully
with Cobol. Besides the straightforward
replacement of one string of text by
another, it provides macros with arguments,
conditional macro expansion, arithmetic, file
manipulation, and some specialized string
processing functions.

The basic operation of M4 is to copy
its input to its output. As the input is read,
however, each alphanumeric "token" (that
is, string of letters and digits) is checked. If
it is the name of a macro, then the name of
the macro is replaced by its defining text,
and the resulting string is pushed back onto
the input to be rescanned. Macros may be
called with arguments, in which case the
arguments are collected and substituted into
the right places in the defining text before it
is rescanned.

M4 provides a collection of about
twenty built-in macros which perform vari
ous useful operations~ in addition, the user
can define new macros. Built-ins and user
defined macros work exactly the same way,

except that some of the built-in macros have
side effects on the state of the process.

Usage

On UNIX, use

m4 (ftlesl

Each argument file is processed in order; if
there are no arguments, or if an argument is
' - ', the standard input is read at that point.
The processed text is written on the stan
dard output, which may be captured for sub
sequent processing with

m4 lfilesl >outputfile

On GCOS, usage is identical, but the pro
gram is called ./m4.

Defining Macros

The primary built-in function of M4 is
define, which is used to define new macros.
The input

deftne(name, stuff)

causes the string name to be defined as
stuff. All subsequent occurrences of name
will be replaced by stuff. name must be
alphanumeric and must begin with a letter
(the underscore _ counts as a letter). stuff
is any text that contains balanced
parentheses; it may stretch over multiple
lines.

Thus, as a typical example,

define(N, 100)

if (i > N)

defines N to be 100, and uses this "sym
bolic constant" in a later if statement.

The left parenthesis must immediately
foil ow the word define, to signal that define
has arguments. If a macro or built-in name

is not followed immediately by '(', it is
assumed to have no arguments. This is the
situation for N above~ it is actually a macro
with no arguments, and thus when it is used
there need be no (. . .) following it.

You should also notice that a macro
name is only recognized as such if it appears
surrounded by non-alphanumerics. For
example, in

deftne(N, 100)

if (NNN > 100)

the variable NNN is absolutely unrelated to
the defined macro N, even though it con·
tains a lot of N's.

Things may be defined in terms of
other things. For example,

deftne(N, 100)
deftne(M, N)

defines both M and N to be 100.

What happens if N is redefined? Or,
to say it another way, is M defined as N or
as 100? In M4, the latter is true - M is
100, so even if N subsequently changes, M
does not.

This behavior arises because M4
expands macro names into their defining
text as soon as it possibly can. Here, that
means that when the string N is seen as the
arguments of define are being collected, it is
immediately replaced by 100; it's just as if
you had said

deftne(M, 100)

in the first place.

If this isn't what you really want, there
are two ways out of it. The first, which is
specific to this situation, is to interchange
the order of the definitions:

deftne(M, N)
deftne(N, 100)

Now M is defined to be the string N, so
when you ask for M later, you '11 always get
the value of N at that time (because the M
will be replaced by N which will be replaced
by 100).

• 2 •

Quoting

The more general solution is to delay
the expansion of the arguments of define by
quoting them. Any text surrounded by the
si1161~ quotes • and • is not expanded
immediately, but has the quotes stripped off.
If you say

deftne(N, 100)
deflne(M, 'N')

the quotes around the N are stripped off as
the argument is being collected, but they
have serv.ed their purpose, and M is defined
as the string N, not I 00. The general rule 1s
that M4 aJways strips off one level of single
quotes whenever it evaluates something. •
This is true even outside of macros. If you
want the word define to appear in the out
put, you have to quote it in the input, as in

'define· • 1;

As another instance of the same thing.
which is a bit ~ore surprising, consider
redefining N:

define{N, 100)

define(N, 200)

Perhaps regrettably, the N in the second
definition is evaluated as soon as it's seen~
that is, it is replaced by 100, so it's as if you
had written

deftneOOO, 2ao>
This statement is ignored by M4, since you
can only define things that look like names,
but it obviously doesn't have the effect you
wanted. To really redefine N, you must
delay the evaluation by quoting:

define(N, 100)

deftneCN', 200)

In M4, it is often wise to quote the first
argument of a macro.

If ' and ' are not convenient for some
reason, the quote characters can be changed
with the built-in changequote:

changequote((,))

makes the new quote characters the left and
right brackets. You can restore the original
characters with just

chan1equote

There are two additional built-ins
related to define. undeftne removes the
definition of some macro or built-in:

undeftne('N')

removes the definition of N. (Why are the
quotes absolutely necessary?) Built-ins can
be removed with undefine. as in

undeftneCdeflne')

but once you remove one. you can never
get it back.

The built-in ifdef provides a way to
determine if a macro is currently de.fined.
In particular, M4 has pre-defined the names
unix and gcos on the corresponding sys
tems, so you can tell which one you're
using:

ifdef('unix', 'deftne(wordsize,16)')
ifdef('gcos', 'define(wordsize,36) •)

makes a definition appropriate for the partic
ular machine. Don't forget the quotes!

· ifdef actually permits three arguments;
if the name is undefined, the value of ifdef
is then the third argument. as in

ifdef('unix', on UNIX, not on UNIX)

Arguments

So far we have aiscussed the simplest
form of macro processing - replacing one
string by another (fixed) string. User
de.fined macros may also have arguments. so
different invocations can have different
results. Within the replacement text for a
macro (the second argument of its define)
any occurrence of $n will be replaced by the
nth argument when the macro is actually
used. Thus, the macro bump, defined as

deftne(bump, $1 = $1 + 1)

generates code to increment its argument by
1:

bump(x)

is

x = x + 1

A macro can have as many arguments
as you want, but only the first nine are
accessible, through $1 to $9. (The macro

- 3 -

name itself is SO, although that is less com
monly used.) Arguments that are not sup
plied are replaced by null strings, so we can
define a macro cat which simply concaten
ates its arguments, like this:

define(cat, $1$2$3$4$5$6$7$8$9)

Thus

cat(x, y, z)

is equivalent to

xyz

$4 through $9 are null, since no correspond
ing arguments were provided.

Leading unquoted blanks, tabs, or
newlines that occur during argument collec·
tion are discarded. All other white space is
retained. Thus

define(~ b c)

defines a to be b c.

Arguments are separated by commas,
but parentheses are counted properly, so a
comma "protected" by parentheses does not
terminate an argument. That is, in

deftne(a, (b,c))

there are only two arguments; the second is
literally (b,c). And of course a bare comma
or parenthesis can be inserted by quoting it.

Arithmetic Built-ins

M4 provides two built-in functions for
doing arithmetic on integers (only). The
simplest is incr, which increments its
numeric argument by l. Thus to handle the
common programming situation where you
want a variable to be defined as "one more
than N", write

define(N, 100)
deftne(N 1, 'lncr(N) ')

Then Nl is defined as one more than the
current value of N.

The more general mechanism for
arithmetic is a built-in called enl. which is
capable of arbitrary arithmetic on integers.
It provides the operators (in decreasing
order of precedence)

unary+ and -
•• or (exponentiation)
• I % (modulus)
+ --- ,_
& or&&
I or II

< <= > >
(not)
(logical and)
(logical or)

Parentheses may be used to group opera
tions where needed. AU the .operands of an
expression given to eval must ultimately be
numeric. The numeric value of a true rela
tion (like l >0) is 1, and false is 0. The
precision in eval is 32 bits on UNIX and 36
bits on GCOS.

As a simple example. suppose we want
M to be 2 .. N+l. Then

deftne(N, 3)
define(M, 'eval <2••N + 1) ')

As a matter of principle, it is advisable to
quote the defining text for a macro unless it
is very simple indeed (say just a number); it
usually gives the result you want, and is a
good habit to get into.

File Manipulation

You can include a new file in the input
at any time by the built-in function include:

include(ftlename)

inserts the contents of filename in place of
the include command. The contents of the
file is often a set of definitions. The value
of Include (that is, its replacement text) is
the contents of the file; this can be captured
in definitions, etc.

It is a fatal error if the file named in
include cannot be accessed. To get some
control over this situation, the alternate
form sinclude can be used; sinclude
("silent include") says nothing and contin
ues if it can't access the file.

It is also possible to divert the output
of M4 to temporary files during processing,
and output the collected material upon com·
mand. M4 maintains nine of these diver
sions, numbered l through 9. If you say

divert(n)

all subsequent output is put onto the end of
a temporary file referred to as n. Diverting
t_o this file is stopped by another divert com-

. 4.

mand; in particular, divert or divert(O)
resun.~s the normal output process.

Diverted text is normally output all at
one,.. at the end of processing. with the
diversions output in numeric order. It is
possible, however, to bring back diversions
at any time, that is, to append them to the
current diversion.

undivert

brings back all diversions in numeric order,
and undtvert with arguments brings back
the selected diversions in the order given.
The act of undiverting discards the diverted
stuff, as does diverting into a diversion
whose number is not between 0 and 9
inclusive.

The value of undivert is not the
diverted stuff. Furthermore, the diverted
material is not rescanned for macros.

The built-in divnum returns the
number of the currently active diversion.
This is zero during normal processing.

System Command

You can run any program in the local
operating system with the syscmd built-in.
For example,

syscmd (date)

on UNIX runs the date command. Normally
syscmd would be used to create a file for a
subsequent include.

To facilitate making unique file names,
the built-in maketemp is provided, with
specifications identical to the system func
tion mktemp: a string of XXXXX in the
argument is replaced by the process id of the
current process.

Conditionals

There is a built-in called ifelse which
enables you to perform arbitrary conditional
testing. In the simplest form,

ifelse(a, b, c, d)

compares the two strings a and b. If these
are identical, ifelse returns the string c; oth
erwise it returns d. Thus we might define a
macro called compare which compares two
strings and returns "yes" or "no" if they
are the same or different.

deftne(compare, 'lfelse(Sl, $2, yes, no)')

Note the quotes, which prevent too-early
evaluation of if else.

If the fourth argument is missing, it is
treated as empty.

ifelse can actually have any number of
arguments, and thus provides a limited form
of multi-way decision capability. In the
input

lfelse(a, b, c, 'd, e, f. g)

if the string a matches the string b, the
result is c. Otherwise, if d is the same as e,
the result is f. Otherwise the result is g. If
the final argument is omitted, the result is
null, so

ifelse(a, b, c)

is c if a matches b, and null otherwise.

String Manipulation

The built-in ten returns the length of
the string that makes up its argument. Thus

len(abcdef)

is 6, and len((a,b)) is S.

The built-in substr can be used to pro
duce substrings of strings. substr(s, i, n)
returns the substring of s that starts at the
ith position (origin zero), and is n charac
ters long. If n is omitted, the rest of the
string is returned, so

substrfnow is the time', 1)

is

ow is the time

If i or n are out of range, various sensible
things happen.

index(sl, sl) returns the index (posi·
tion) in sl where the string s2 occurs, or
-1 if it doesn't occur. As with substr, the
origin for strings is 0.

The built-in trans lit performs charac
ter transliteration.

translit (s, f, t)

modifies s by replacing any character found
in f by the corresponding character of t.
That is,

. s •

translit(s, aeiou, 12345)

replaces the vowels by the corresponding
digits. If t is shorter than f, characters
which don't have an entry in t are deleted;
as a limiting case, if t is not present at all,
characters from f are deleted from s. So

transJit(s, aeiou)

deletes vowels from s.

There is also a built-in called dnl
which deletes all characters that follow it up
to and including the next newline; it is use
ful mainly for throwing away empty lines
that otherwise tend to clutter up M4 output.
For example, if you say

deftne(N, 100)
deftne(M, 200)
deftne(L, 300)

the newline at the end of each line is not
part of the definition, so it is copied into the
output, where it may not be wanted. If you
add dnl to each of these lines, the newlines
will disappear.

Another way to achieve this, due to J.
E. Weythman, is

divert(-1)
define(•••)

divert

Printing

The built-in errprint writes its argu
ments out on the standard error file. Thus
you can say

errprint('fatal error')

dumpdef is a debugging aid which
dumps the current definitions of defined
terms. If there are no arguments. you get
everything; otherwise you get the ones you
name as arguments. Don't forget to quote
the names!

Summary of Built-ins

Each entry is preceded by the pugc
number where it is described.

3 changequote(L, R)
1 define(name, replacement)
4 divert(number)
4 divnum
5 dnl
5 dumpdef('namc', 'name', .. .>
S errprint(s, s, .. .)
4 evaHnumeric expression)

• 6 •

3 ifdeffname', this if true, this if false)
5 ifelse(a, b, c, d) ·.
4 include(file)
3 incr(number)
S index(sl, s2)
5 ten (string)
4 maketemp(. .. XXXXX .. .)
4 sinclude(file)
5 substr(string, position, number)
4 syscmd(s)
5 translit(str, from, to)
3 undefineCname')
4 undivert(number.number, .. .)

Acknowledgements

We are indebted to Rick Becker, John
Chambers, Doug Mcllroy, and Jim Weyth·
man, whose pioneering use of M4 has led to
several valuable improvements. We are also
deeply grateful to Weythman for several
substantial contributions to the code.

References

[l} B. W. Kernighan and P. J. Plauger,
Software Tools. Addison-Wesley, Inc.,
1976.

Make - A Program for Maintaining Computer Programs

Introduction

S. I. Feldman

Bell Laboratories
Murray Hill, New Jersey 07974

It is common practice to divide large programs into smaller, more manageable pieces.
The pieces may require quite different treatments: some may need to be run through a macro
processor, some may need to be processed by a sophisticated program generator {e.g., Yacc(l]
or Lex{2]). The outputs of these generators may then have to be compiled with special options
and with certain definitions and declarations. The code resulting from these transformations
may then need to be loaded together with certain libraries under the control of special options.
Related maintenance activities involve running complicated test scripts and installing validated
modules. Unfortunately, it is very easy for a programmer to forget which files depend on
which others, which files have been modified recently, and the exact sequence of operations
needed to make or exercise a new version of the program. After a long editing session, one
may easily lose track of which files have been changed and which object modules are still valid,
since a change to a declaration can obsolete a dozen other files. Forgetting to compile a routine
that has been changed or that uses changed declarations will result in a program that will not
work, and a bug that can be very hard to track down. On the other hand, recompiling every
thing in sight just to be safe is very wasteful.

The program described in this report mechanizes many of the activities of program
development and maintenance. If the information on inter-file dependences and command
sequences is stored in a file, the simple command

make

is frequently sufficient to update the interesting files, regardless of the number that have been
edited since the last "make". In most cases, the description file is easy to write and changes
infrequently. It is usually easier to type the make command than to issue even one of the
needed operations, so the typical cycle of program development operations becomes

think - edit - make - test ...

Make is most useful for medium-sized programming projects; it does not solve the prob
lems of maintaining multiple source versions or of describing huge programs. Make was
designed for use on Unix, but a version runs on GCOS.

Basic Features
' The basic operation of make is to update a target file by ensuring that all of the files on

which it depends exist and are up to date, then creating the target if it has not been modified
since its dependents were. Make does a depth-first search of the graph of dependences. The
operation of the command depends on the ability to find the date and time that a file was last
modified.

To illustrate, let us consider a simple example: A program named prog is made by compil
ing and loading three C-language files x.c, y.c, and z.c with the IS library. By convention, the
output of the C compilations will be found in files named x.o. y.o. and z.o. Assume that the
files x.c and y.c share some declarations in a file named defs, but that z.c does not. That is, x.c
and y.c have the line

n..

- 2 -

#include "defs"

The following text describes the relationships and operations:

prog : x.o y .o z.o
cc x.o y.o z.o -IS -o prog

x.o y.o : def s

If this information were stored in a file named makefile, the command

make

would perform the operations needed to recreate prog after any changes had been made to any
of the four source files x.c, y.c, z.c. or deft.

Make operates using three sources of information: a user-supplied description file (as
above), file names and "last-modified" times from the file system, and built-in rules to bridge
some of the gaps. In our example, the first line says that prog depends on three ".o" files.
Once these object files are current, the second line describes how to load them to create prog.
The third line says that x.o and y.o depend on the file deft. From the file system, make discov
ers that there are three ".c" files corresponding to the needed ". o" files, and uses built-in
information on how to generate an object from a source file (i.e., issue a "cc -c" command).

The following long-winded description file is equivalent to the one above, but takes no
advantage of make 's innate knowledge:

prog: x.o y.o z.o
cc x.o y.o z.o -IS -o prog

x.o: x.c defs
cc -c x.c

y.o: y.c defs
cc -c y.c

z.o: z.c
cc -c z.c

If none of the source or object files had changed since the last time prog was made, all of
the files would be current, and the command

make

would just announce this fact and stop. If, however, the deft file had been edited, x.c and y.c
(but not z.d would be recompiled, and then prog would be created from the new ".o" files. If
only the file y.c had changed, only it would be recompiled, but it would still be necessary to
reload prog.

lf no target name is given on the make command line, the first target mentioned in the
description is created; otherwise the specified targets are made. The command

make x.o

would recompile x.o if x.c or deft had changed.

If the file exists after the commands are executed, its time of last modification is used in
further decisions; otherwise the current time is used. It is often quite useful to include rules
with mnemonic names and commands that do not actually produce a file with that name.
These entries can take advantage of make 's ability to generate files and substitute macros.
Thus, an entry "save" might be included to copy a certain set of files, or an entry "cleanup"
might be used to throw away unneeded intermediate files. In other cases one may maintain a
zero-length file purely to keep track of the time at which certain actions were performed. This
technique is useful for maintaining remote archives and listings.

Make has a simple macro mechanism for substituting in dependency lines and command .

• 3 •

strings. Macros are defined by command arguments or description file lines with embedded
equaJ signs. A macro is invoked by preceding the name by a dollar sign; macro names longer
than one character must be parenthesized. The name of the macro is either the single character
after the dollar sign or a name inside parentheses. The following are valid macro invocations:

$(CFLAGS)
$2
$(xy)
sz
$(Z)

The last two invocations are identical. $$ is a dollar sign. All of these macros are assigned
values during input, as shown below. Four special macros change values during the execution
of the command: $•, $@, $?, and $ <. They will be discussed later. The following fragment
shows the use:

OBJECTS - x.o y .o z.o
LIBES - -IS
prog: $(OBJECTS)

The command

make

cc $(OBJECTS) S(LIBES) -o prog

loads the three object files with the IS library. The command

make "LIBES- -11 -Ip"

loads them with both the Lex (" - II") and the portable (" - Ip") libraries, since macro
definitions on the command line override definitions in the description. {It is necessary to
quote arguments with embedded blanks in Unix commands.)

The following sections detail the form of description files and the command line, and dis
cuss options and built-in rules in more detail.

Description Files and Substitutions

A description file contains three types of information: macro definitions, dependency
information, and executable commands. There is also a comment convention: all characters
after a sharp (#) are ignored, as in the sharp itself. Blank lines and tines beginning with a
sharp are totally ignored. If a non-comment tine is too tong, it can be continued using a
backslash. If the last character of a line is a backslash, the backslash, newline, and following
blanks and tabs are replaced by a single blank.

A macro definition is a line containing an equal sign not preceded by a colon or a tab.
The nam~ (string of letters and digits) to the left of the equal sign (trailing blanks and tabs are
stripped) is assigned the string of characters following the equal sign (leading blanks and tabs
are stripped.) The fallowing are valid macro definitions:

2 - x:yz
abc - -II -ty -Ip
LIBES ""'

The last definition assigns LIBES the null string. A macro that is never explicitly defined has
the null string as value. Macro definitions may also appear on the make command line (see
below).

Other tines give information about target files. The general form of an entry is:

• 4 •

targetl [target2 ...] :[:] [dependent! .. .} [;commands) [# .. .]
[(tab) commands} {# ...]

Items inside brackets may be omitted. Targets and r' "'t>endents are strings of letters, digits,
periods, and stashes. {Shell metacharacters "•" and "?" are expanded.) A command is any
string of characters not including a sharp (except in quotes) or newline. Commands may
appear either after a semicolon on a dependency line or on lines beginning with a tab immedi·
ately following a dependency line.

A dependency line may have either a single or a double colon. A target name may appear
on more than one dependency ·line, but all of those lines must be of the same (single or double
colon) type.

I. For the usual single-colon case, at most one of these dependency lines may have a com
mand sequence associated with it. If the target is out of date with any of the dependents
on any of the lines, and a command sequence is specified (even a null one following a
semicolon or tab), it is executed; otherwise a default creation rule may be invoked.

2. In the double-colon case, a command sequence may be associated with each dependency
line; if the target is out of date with any of the files on a particular line, the associated
commands arc executed. A built-in rule may also be executi:d. This detailed form is of
parti<.:ular value in updating archive-type files.

If a target must be created, the sequence of commands is executed. Normally, each com·
mand line is printed and then passed to a separate invocation of the Shell after substituting for
macros. (The printing is suppressed in silent mode or if the command line begins with an @
sign). Make normally stops if any command signaJs an error by returning a non-zero error
code. (Errors are ignored if the "-i" flags has been specified on the make command line, if
the fake target name ".IGNORE" appears in the description file, or if the command string in
the description file begins with a hyphen. Some Unix commands return m~aningless status).
Because each command line is passed to a separate invocation of the Shell, care must be taken
with certain commands (e.g., chdir and Shell control commands) that have meaning only within
a single Shell process; the results are forgotten before the next line is executed.

Before issuing any command, certain macros are set. $@ is set to the name of the file to
be "made". S? is set to the string of names that were found to be younger than the target. If
the command was generated by an implicit rule (see below), S< is the name of the related file
that caused the action, and S• is the prefix shared by the current and the dependent file names.

If a file must be made but there are no explicit commands or relevant built-in rules, the
commands associated with the name ".DEFAULT" are used. If there is no such name, make
prints a message and stops.

Command Usage

The make command takes four kinds of arguments: macro definitions, flags, description
file names, and target file names.

make [flags] [macro definitions] [targets 1
The following summary of the operation of the command explains how these arguments are
interpreted.

First, all macro definition arguments (arguments with embedded equal signs) are analyzed
and the assignments made. Command-line macros override corresponding definitions found in
the description files.

Next, the flag arguments are examined. The permissible flags are

. s -

- i Ignore error codes returned by invoked commands. This mode is entered if the fake tar
get name ".IGNORE" appears in the description file.

-s Silent mode. Do not print command lines before executing. This mode is also entered if
the fake target name ".SILENT" appears in the description file.

- r Do not use the built-in rules.

- n No execute mode. Print commands, but do not execute them. Even lines beginning with
an "@" sign are printed.

-t Touch the target files (causing them to be up to date) rather than issue the usual com
mands.

-q Question. The make command returns a zero or non-zero status code depending on
whether the target file is or is not up to date.

-p Print out the complete set of macro definitions and target descriptions

-d Debug mode. Print out detailed information on files and times examined.

-f Description file name. The next argument is assumed to be the name of a description
file. A file name of " - " denotes the standard input. If there are no " - f" arguments,
the file named makefile or Makefile in the current directory is read. The contents of the
description files override the built-in rules if they are present).

Finally, the remaining arguments are assumed to be the names of targets to be made; they
are done in left to right order. If there are no such arguments, the first name in the description
files that does not begin with a period is "made".

Implicit Rules
The make program uses a table of interesting suffixes and a set of transformation rules to

supply default dependency information and implied commands. (The Appendix describes these
tables and means of overriding them.) The default suffix list is:

.o

.c

.e

.r

.f

.s

.y

.yr

.ye

.I

Object file
C source file
Efl source file
Ratfor source file
Fortran source file
Assembler source file
Y acc-C source grammar
Yacc-Ratfor source grammar
Yacc-Efl source grammar
Lex source grammar

The following diagram summarizes the default transformation paths. If there are two paLhs
connecting a pair of suffixes, the longer one is used only if the intermediate file exists or is
named in the description.

.o

.c .r .e

~ I I
.y .I .yr .ye

If the file x.o were needed and there were an x.c in the description or directory, it would
be compiled. If there were also an x.f. that grammar would be run through Lex before

. 6 .

compiling the result. However, if there were no x.c but there were an x.l. make would discard
the intermediate C-language file and use the direct link in the graph above.

It is possible to change the names of some of the compilers used in the default, or the flag
arguments with which they are invoked by knowing •he macro names used. The compiler
names are the macros AS, CC, RC, EC, YACC, Y ACCR, Y ACCE, and LEX. The command

make CC- newcc

will cause the "newcc" command to be used instead of the usual C compiler. The macros
CFLAGS, RFLAGS, EFLAGS, YFLAGS, and LFLAGS may be set to cause these commands
to be issued with optional flags., .Thus, '

make "CFLAGS- -0"

causes the optimizing C compiler to be used.

Example

As an example of the use of make, we will present the description file used to maintain
the make command itself. The code. for make is spread over a number of C source files and a
Yacc grammar. The description file contains:

Description file for the Make command

P ... und -3 I opr - r2 # send to GCOS to be printed
FILES =- Makefile version.c defs main.c doname.c misc.c files.c dosys.cgram.y lex.c gco~.c
OBJECTS - version.a main.o doname.o misc.o files.o dosys.o gram.o
LIBES= -IS
LINT - lint - p
CFLAGS - -0
make: $(OBJECTS)

cc $(CFLAGS) $(OBJECTS) $(LIBES) -o make
size make

$(OBJECTS): defs
gram.o: lex.c

cleanup:
-rm • .o gram.c
-<lu

install:
@size make /usr/bin/make
cp make /usr/bin/make ; rm make

print: $(FILES) # print recently changed files
pr$? I $P

test:

touch print

make -dp I grep -v TIME > lzap
/usr/bin/make -dp I grep - v TIME > 2zap
di ff l zap 2zap
rm lzap 2zap

lint : dosys.c doname.c files.c main.c misc.c version.c gram.c

arch:

$(LINT) dosys.c doname.c files.c main.c misc.c version.c grarn.c
rm gram.c

ar uv /sys/source/s2/make.a $(FILES)

.~fake usually prints out each command before issuing it. The following output results from

typing the simple command

make

- 7 -

in a directory containing only the source and description file:

cc -c version.c
cc -c main.c
cc -c doname.c
cc -c misc.c
cc -c files.c
cc -c dosys.c
yacc gram.y
mv y.tab.c gram.c
cc -c gram.c
cc version.o main.a doname.o misc.o files.o dosys.o gram.o -IS -o make
13188+3348+3044 - 19580b =- 046174b

Although none of the source files or grammars were mentioned by name in the description file,
make found them using its suffix rules and issued the needed commands. The string of digits
results from the "size make" command; the printing of the command line itself was suppressed
by an @ sign. The @ sign on the size command in the description file suppressed the printing
of the command, so only the sizes are written.

The last few entries in the description file are useful maintenance sequences. The "print"
entry prints only the files that have been changed since the last "make print" command. A
zero-length file print is maintained to keep track of the time of the printing; the $? macro in the
command line then picks up only the names of the files changed since print was touched. The
printed output can be sent to a different printer or to a file by changing the definition of the P
macro:

make print "P - opr -sp"
or

make print "P= cat >zap"

Suggestions and Warnings

The most common difficulties arise from make 's specific meaning of dependency. If file
x.c has a "#include "defs" " line, then the object file x.o depends on defs; the source file x.c
does not. (If defs is changed, it is not necessary to do anything to the file x.c, while it is neces
sary to recreate x.o.)

To discover what make would do, the " - n" option is very useful. The command

make -n

orders make to print out the commands it would issue without actually taking the time to exe
cute them. If a change to a file is absolutely certain to be benign (e.g., adding a new definition
to an include file), the " - t" (touch) option can save a lot of time: instead of issuing a large
number of superfluous recompilations, make updates the modification times on the affected file.
Thus, the command

make -ts

("touch silently") causes the relevant files to appear up to date. Obvious care is nc1.:L'ssary,
since this mode of operation subverts the intention of make and destroys all memory of the
previous relationships.

The debugging flag (" -d") causes make to print out a very detailed description of what it
is doing, including the file times. The output is verbose, and recommended only as a last
resort.

- 8 -

Acknowledgments

I would like to thank S. C. Johnson for suggesting Lhis approach to program maintenance
control. I would like to thank S. C. Johnson and H. Gajewska for being the prime guinea pigs
during development of make.

References

I. S. J. Johnson, "Yacc - Yet Another Compiler-Compiler", Computing Science Technical
Report #12. July 1975.

2. M. E. Lesk, .. Lex - A Lexical Analyzer Generator", Computing Science Technical Report
#39, October 1975.

. 9 .

Appendix. Suffixes and Transformation Rules

The make program itself does not know what file name suffixes are interesting or how to
transform a file with one suffix into a file with another suffix. This information i'I stored in an
internal table that has the form of a description file. If the " - r" flag is used, this table is not
used.

The list of suffixes is actually the dependency list for the name ".SUFFIXES"; make
looks for a file with any of the suffixes on the list. If such a file exists, and if there is a
transformation rule for that combination, make acts as described earlier. The transformation
rule names ar,e the concatenation of the two suffixes. The name of the rule to transform a ''.r''
file to a ".o" file is thus ".r.o". If the rule is present and no explicit command sequence has
been given in the user's description files, the command sequence for the rule ".r.o" is used. If
a command is generated by using one of these suffixing rules, the macro S• is given the value
of the stem (everything but the suffix) of the name of the file to be made, and the macro $ < is
the name of the dependent that caused the action.

The order of the suffix list is significant, since it is scanned from left to right, and the fir'it
name that is formed that has both a file and a rule associated with it is used. If new names are
to be appended, the user can just add an entry for ".SUFFIXES" in his own description file.
the dependents will be added to the usual list. A ".SUFFIXES" line without any dependents
deletes the current list. (It is necessary to clear the current list if the order of names is to be
changed).

The following is an excerpt from the default rules file:

.SUFFIXES : .o .c .e .r .f .y .yr .ye .l .s
YACC-yacc
YACCR=-yacc -r
YACCE-yacc -e
YFLAGS-

'LEX =-lex
LFLAGS-
CC-cc
AS•as -
CFLAGS==
RC=-ec
RFLAGS-
EC-ec
EFLAGS=-
FFLAGS=
.c.o:

$(CC) $(CFLAGS) -c $ <
.e.o .r.o .f.o :

.s.o :

.y.o:
•

.y.c:

$(EC) $(RFLAGS) S(EFLAGS) $(FFLAGS) -c $<

$(AS) -o $@ $<

$(YACC) $(YFLAGS) $<
$(CC) $(CFLAGS) -c y.tab.c
rm y.tab.c
mv y.tab.o $@

$(YACC) $(YFLAGS) $ <
mv y.tab.c $@

