

©1988 AT&T
All Rights Reserved
Printed in USA

NOTICE

The information in this document is subject to change without notice. AT&T
assumes no responsibility for any errors that may appear in this document.

DEC is a registered trademark of Digital Equipment Corporation.
IBM and SNA are registered trademarks of International Business
Machines Corporation.
Tektronix is a registered trademark of Tektronix, Inc.
Teletype and UNIX are registered trademarks of AT&T.

1

2

3

Table of Contents

Preface
About This Guide
Operating Requirements
Related Documentation
Other AT&T 3270 Emulator+ Documentation

HLLAPI and API
Introduction
The High Level Language Application Program

Interface (HLLAPI)
The HLLAPI Tutorial
The Application Program Interface (API)

HLLAPI Overview
AT&T 3270 Emulator+ HLLAPI Concepts
AT&T 3270 Emulator+ HLLAPI Functions
Using the AT&T 3270 Emulator+ HLLAPI
The Environment

HLLAPI Tutorial
Introduction
Using the AT&T 3270 Emulator+ HLLAPI Tutorial

vii

x
xiii
xiv

1-1

1-3

1-7
1-8

2-1

2-3

2-8

2-12

3-1

3-2

TABLE OF CONTENTS

Table of Contents

4

A

B

c

D

E

Application Program Interface
Introduction
The API Tutorial
Application Development

Manual Pages
Introduction

AT&T 3270 Emulator+ HLLAPI
Examples

Example 1
Example 2

AT&T 3270 Emulator+ HLLAPI
Functions

AT&T 3270 Emulator+ HLLAPI Functions

The xhllapi.h File
The xhllapi.h File

File Transfer Messages
File Transfer Messages

API Program Check Error Codes
API Program Check Error Codes

Ii HLLAPI PROGRAMMER'S GUIDE

4-1

4-4

4-8

A-1

A-3

8-1

C-1

D-1

E-1

-------------------- Table of Contents

F

G

H

I

J

x

API Communication Check Error Codes
API Communication Check Error Codes

API User ISystem Error Codes
API User/System Error Codes

API LUV _ TRC Status Displays
API LUV _TRC Mode Status Line Displays

API External Symbols
API External Symbols

Glossary
Glossary

Index
Index

F-1

G-1

H-1

1-1

J-1

X-1

TABLE OF CONTENTS iii

List of Figures

Figure 2-1: HLLAPI Return Codes 2-11

Figure 2-2: Sample LUTABLE 2-14

LIST OF FIGURES v

About This Guide

The AT&T 3270 Emulator+ provides interactive data communication
between ASCII terminals at an AT&T 3B Computer and remote mainframe
systems (IBM or other). It provides the following functional features:

• IBM 3270 emulation

• Support for both the Binary Synchronous Communications (BSC) and
the Systems Network Architecture (SNA) Synchronous Data Link
Control (SDLC) protocols

.. The ability to run the AT&T SNA/RJE Emulator+ simultaneously
over the same SDLC link to the remote host computer

II The 3270 High Level Language Application Program Interface
(HLLAPI)

II The 3270 Application Program Interface (API)

E'I The AT&T 3270 Emulator+ ESCORT Interface

This guide provides the information that you will need to use the AT&T
3270 Emulator+ High Level Language Application Program Interface
(HLLAPI) or the AT&T 3270 Emulator+ Application Program Interface
(API).

Who Should Read This Guide
This guide is intended for AT&T 3B Computer users and programmers

who want to write C language application programs that use the functions
of the AT&T 3270 Emulator+ HLLAPI and of the AT&T 3270 Emulator+
API.

The AT&T 3270 Emulator+ HLLAPI is a library of C language functions
that can be called from a C language application program to communicate a
series of 3270 tasks to a remote host computer (IBM or other). The AT&T
3270 Emulator+ API is a low-level version of the AT&T 3270 Emulator+
HLLAPI that provides two modes of accessing a remote host: 3270 data
stream mode and "raw" data stream mode.

PREFACE vii

About This Guide

In 3270 data stream mode, an application program using either HLLAPI
or API functions to communicate with the remote system is functionally
equivalent to the interactive user interface to the host through a 3278/9 ter­
minal. The raw mode, only available in the API, provides a raw data
transfer interface that is independent of any terminal functionality (Le., no
3270 data stream encoding/decoding is done).

In general, the AT&T 3270 Emulator+ API is more difficult to learn and
use than the AT&T 3270 Emulator+ HLLAPI. Therefore, the use of HLLAPI
rather than API functions is recommended, except in those application pro­
grams that must access the remote host computer in raw data stream mode.

Organization of This Guide
The HLLAPI Programmer's Guide is organized as follows:

• The Preface discusses prerequisites for the understanding and use of
the AT&T 3270 Emulator+ application programming facilities.

• Chapter 1, HLLAPI and API, presents an overview of the AT&T 3270
Emulator+ application programming facilities, HLLAPI and API.

• Chapter 2, HLLAPI Overview, introduces AT&T HLLAPI concepts, and
discusses several important things that you should know before get­
ting started.

• Chapter 3, HLLAPI Tutorial, explains the on-line tutorial program for
the AT&T 3270 Emulator+ HLLAPI.

• Chapter 4, Application Program Interface, discusses application program
development using the AT&T 3270 Emulator+ API.

• Manual Pages contains the manual pages for the HLLAPI and API
function calls.

• Appendix A, AT&T 3270 Emulator+ HLLAPI Examples, provides exam­
ples of how you would code a C language application program using
AT&T HLLAPI function calls.

• Appendix B, AT&T 3270 Emulator+ HLLAPI Functions, lists the sup­
ported and unsupported IBM HLLAPI functions and the AT&T 3270
Emulator+ HLLAPI extensions.

viii HLLAPI PROGRAMMER'S GUIDE

About This Guide

• Appendix C, The xhllapi.h File, shows the xhllapi.h header file that
you must include in your application program.

• Appendix D, File Transfer Messages, explains the messages that you
may see when transferring files between an AT&T 3B Computer and
a remote host computer.

• Appendix E, API Program Check Error Codes, lists the error messages
that you may get when an API system call fails because of errors in
the data received from the remote host computer.

• Appendix F, API Communication Check Error Codes, lists the error mes­
sages that you may get when an API system call fails because of con­
ditions detected at the local communications interface.

• Appendix G, API User/System Error Codes, lists the error messages that
you may get when an API system call fails because of user applica­
tion or system errors.

• Appendix H, API LUV _ TRC Status Displays, explains the API trace
display that appears in the status line.

II Appendix I, API External Symbols, lists the global symbols used by the
API library.

• The Glossary defines important terms that are used in this guide.

• The Index lists the key subjects treated in this guide and gives page
references for them.

PREFACE ix

Operating Requirements

AT&T 38 Computer
The AT&T 3270 Emulator+ HLLAPI and API are intended for use on an

AT&T 3B Computer.

• The 3B2 Computer must be equipped with a minimum of two mega­
bytes of memory and an Intelligent Serial Controller (ISC) board.
The ISC board should be installed following the procedures in the
AT&T 3B2 Computer Intelligent Serial Controller Manual. (A separate ISC
board is required for each active communication line to a host.) Each
board supports a single line of either BSC or SNA/SDLC protocol. A
user can install multiple ISC boards in the computer with any desired
mix of boards supporting BSC or SNA.

• The 3B5 and 3B15 Computers must be equipped with an
Input/Output Accelerator (lOA) processor and a Synchronous Data
Link (SDLI).

• The 3B4000 Computer requires an ACP with an associated ISC card.

The AT&T 3270 Emulator+ supports up to 9600 baud for BSC and up to
19.2 kilobaud for SNA/SDLC operation.

The 3B Computer connects to the host using the switched telephone
network or a non-switched (leased or private) line and a synchronous
modem. The modem must supply clock to the ISC board. The host con­
nects to the communication line through a communications controller, data
adapter unit, or transmission control unit that is attached to the line using a
modem that is compatible with the modem used by the 3B Computer.

Terminal Requirements
The AT&T 3270 Emulator+ provides screen and keyboard customization

functions to allow work with any ASCII terminal supported by the AT&T
3B Computer. In addition, pre-customized files are provided for the follow­
ing terminals:

x HLLAPI PROGRAMMER'S GUIDE

Operating Requirements

• AT&T 4410, 4418, 4425, 605, 610, 615, 620, and 630

• Teletype 5410, 5418, and 5425

• Hewlett-Packard 2621

• Lear-Siegler ADM-3a

• Televideo 910, 924

• DEC VT-100

• Tektronix 4105A

Printer Requirements
The printer emulation procedures require the following operating

features:

• A RETURN is required to advance the print head to column 1 of the
next line.

• A Line Feed (LF) is required to advance the print head position to
the current column of the next line. On some printers you may use
"stty" on the target device to execute a line feed.

• Backspace capability.

• Formfeed capability.

Software Requirements
The AT&T 3270 Emulator+ operates under UNIX System V Releases 2.0

and later. Inter-Process Communication (IPC) software and the Terminal
Information Utilities package must also be part of the software on your 3B
Computer.

PREFACE xi

Operating Requirements

You must write your HLLAPI application program in the C program­
ming language. This guide assumes that you are familiar with the UNIX
System and the C programming language, although relevant information is
included where needed. If you need additional information, consult the
following documents for the UNIX System V release running on your sys­
tem:

• AT&T UNIX System V User's Guide

• AT&T UNIX System V User's Reference Manual

• AT&T UNIX System V Programmer's Guide

• AT&T UNIX System V Programmer's Reference Manual

xII HLLAPI PROGRAMMER'S GUIDE

Related Documentation

This guide assumes that you have a working knowledge of the IBM
3270 Personal Computer and the BSC and SNA/SDLC protocols. If you
need additional information regarding these topics, you may refer to the
following documents:

• IBM 3270 Personal Computer Control Program User's Guide and Reference

• IBM 3270 Personal Computer Control Program Programming Guide

• IBM 3270 Information Display System

• 3274 Control Unit Description and Programmer's Guide

• IBM Systems Network Architecture:' Concepts and Products

• IBM Systems Network Archtecture Technical Overview

• IBM Synchronous Data Link Control (SDLC) Concepts

• IBM General Information: Binary Synchronous Communications

PREFACE xIII

Other AT&T 3270 Emulator+ Documentation

For more information regarding the AT&T 3270 Emulator+ product,
please refer to the following documents:

• AT&T 3270 Emulator+ Product Overview

• AT&T 3270 Emulator+ User's Guide

• AT&T 3270 Emulator+ System Administrator's Guide

• AT&T 3270 Emulator+ 382 Release Notes

• AT&T 3270 Emulator+ 385/15/4000 Release Notes

xiv HLLAPI PROGRAMMER'S GUIDE

1 HLLAPI and API

Introduction 1-1

The High Level Language Application
Program Interface (HLLAPI) 1-3
AT&T 3270 Emulator+ HLLAPI Sample Scenarios 1-3

• Analyzing, Extracting, and Using Remote Host
Computer Messages 1-3

• Sending Keystrokes to a Remote Host Computer 1-4
• Distributed Processing: Intercepting

Communications between the Host and the
Terminal User 1-5

• Distributed Processing: Extracting Data from
Host Sessions 1-5

• Distributed Processing: Transferring Files to
and from a Remote Host Computer 1-6

• Automating Keystrokes 1-6
• Filtering Keystrokes 1-6

The HLLAPI Tutorial 1-7

The Application Program Interface (API) 1-8

TABLE OF CONTENTS

Introduction

The AT&T 3270 Emulator+ includes two interfaces that allow the user's
C language application programs to communicate a series of 3270 tasks to a
remote host computer. These interfaces are the High Level Language
Application Program Interface (HLLAPI), and the Application Program
Interface (API). Both interfaces are libraries of C language functions that
you can call from a C language application program to do a variety of func­
tions. The AT&T 3270 Emulator+ HLLAPI is a high-level extension of the
AT&T 3270 Emulator+ API that is easier to learn and use.

Although the AT&T 3270 Emulator+ HLLAPI is an extension of the
AT&T 3270 Emulator+ API, their use is mutually exclusive. You can­
not make function calls to both interfaces from the same application
program.

Both inexperienced and experienced users can increase their produc­
tivity by using either interface in their application programs. Both inter­
faces can:

.. save users from writing complicated application programs to produce
complex screens and commands

.. automate logon sequences

• simplify complex 3270 tasks, such as copying and file transfers

• simplify existing remote host computer applications

• monitor 3270 tasks, such as console operation, response time control,
and availability, without human intervention

• create remote host and workstation processing applications that
divide the functions of an application between the host and the
AT&T 3B Computer

The AT&T 3270 Emulator+ HLLAPI provides the following additional
advantages:

• Because it is an extension to the AT&T Emulator+ API, HLLAPI
allows less experienced programmers to gain access to advanced
AT&T 3270 Emulator+ API functions.

HLLAPI and API 1-1

Introduction

• Application programs that use AT&T 3270 Emulator+ HLLAPI func­
tions are often shorter and easier to read and debug than those using
API functions.

• The nature of the AT&T Emulator+ HLLAPI and the C programming
language make structured programming techniques easy to im ple­
ment.

• Application programs that use AT&T 3270 Emulator+ HLLAPI func­
tions are comparatively easy to maintain.

1-2 HLLAPI PROGRAMMER'S GUIDE

The High Level Language Application Program
Interface (HLLAPI)

The AT&T 3270 Emulator+ HLLAPI is largely compatible with the IBM
3270 Personal Computer HLLAPI and provides extensions not available in
the IBM product. The supported and unsupported IBM HLLAPI functions
and the AT&T 3270 Emulator+ HLLAPI extensions are listed in Appendix B,
HLLAPI Functions.

A C language application program that uses the AT&T 3270 Emulator+
HLLAPI is capable of performing 3270 tasks without human intervention.
The next section illustrates some situations in which your application pro­
gram can use HLLAPI functions.

AT&T 3270 Emulator+ HLLAPI Sample Scenarios
The scenarios presented in this section illustrate HLLAPI functions that

your application program can perform in these areas:

• analyzing, extracting, and using remote host computer messages

• sending keystrokes to a remote host computer from an AT&T 3B
Computer

• distributed processing: intercepting communications between the
remote host computer and the terminal user

• distributed processing: extracting data from host sessions

• distributed processing: transferring files to and from a remote host
computer

• automating keystrokes

• filtering keystrokes

Analyzing, Extracting, and Using Remote Host Computer Messages
A terminal operator trying to start a transaction with a remote host com­

puter normally follows these steps:

1. start the transaction

HLLAPI and API 1-3

The High Level Language Application Program Interface (HLLAPI)

2. wait for a response from the host

3. analyze the response to find out if it is the expected one

4. extract and use the data from the response

You can emulate these steps by using a series of AT&T Emulator+ HLLAPI
functions. After determining the correct starting point for the host transac­
tion, your application program can call the h_search (Search Presentation
Space) HLLAPI function to determine which keyword messages or prompt­
ing messages are on the display screen.

Then your application program can use the h_sendkey (Send Key)
HLLAPI function to key data into the remote host session and enter a host
transaction. Your application program can also use the h_copypss (Copy
Presentation Space to String) HLLAPI function (or any of several other
Copy functions) to copy the desired data from the remote host into a
specified data area.

Some host systems do not stay locked in XCLOCK or XSYSTEM mode
until they respond; instead, they quickly unlock the keyboard and allow
the operator to stack other requests. In these situations, the terminal opera­
tor depends on some other visual prompt to know that the data has
returned. h_search (Search Presentation Space) allows your application pro­
gram to search the presentation space while waiting. If no host event
occurs after a reasonable timeout period, then your HLLAPI program can
call a customized error message function.

Your application program must be revised for even minor changes in the
display messages. Subtle changes in display message syntax can make
your program call a customized error message function erroneously.

Sending Keystrokes to a Remote Host Computer
If you want to write application programs that send keystrokes to a

remote host computer, you should be aware of several things. Some appli­
cation environments may only require that the terminal operator key in a
string followed by the ENTER key to issue a command. Other applications
may involve more complex 3270 formatted screens in which the terminal
operator can enter data into anyone of several fields. You must understand
the fields that the display needs to have filled in.

1-4 HLLAPI PROGRAMMER'S GUIDE

The High Level Language Application Program Interface (HLLAPI)

You must be aware of the field lengths and contents when you are
sending keystrokes to a field using h_sendkey (Send Key). If you fill in the
field completely and the next attribute byte is an "autoskip," the cursor will
be moved to the next field. If you then enter a tab, you will skip to yet
another field.

On the other hand, if your keystrokes do not fill the field completely,
there may be data left from prior input. (You can clear this data using the
Erase End of Field (EOF) key.)

Distributed Processing: Intercepting Communications between the
Host and the Terminal User

There are a number of applications that provide a single end user inter­
face, but perform their processing at two or more different locations. A
HLLAPI application program can interact with host applications by inter­
cepting the communications between the remote host computer and the ter­
minal user. This can be done by having the application program ask to be
notified each time the host presentation space is updated or every time the
terminal user enters an AID key.

Your application program can then use the HLLAPI Copy functions to
update fields or presentation spaces, or send keystrokes to the host using
the h_sendkey (Send Key) function.

Distributed Processing: Extracting Data from Host Sessions
Your application can take the following steps to extract host data for

local use:

1. Your program must call the h_connect (Connect Presentation Space)
HLLAPI function to connect to the host presentation space contain­
ing the data that will be copied.

2. Your program can call the h_copy (Copy Presentation Space to
String) HLLAPI function to obtain the desired data from the host
presentation space.

3. Your program can then call the h_connect (Connect Presentation
Space) HLLAPI function to connect to a different presentation space
where the data will be entered.

4. Next, your program can use the h_sendkey (Send Key) HLLAPI
function to route the data to that presentation space.

HLLAPI and API 1-5

The High Level Language Application Program Interface (HLLAPI)

5. Finally, your program can use the h_sendkey Send Key) HLLAPI
function to send the keystrokes that will start the application.

You can also send data from your local application to the remote host com­
puter.

Distributed Processing: Transferring Files to and from a Remote
Host Computer

Your application program can use the h_send (Send File) and h_recv
(Receive File) HLLAPI functions to transfer data and files to and from the
remote host computer. h_send and h_recv are more efficient than the Copy
functions when your are copying many screens of data.

Automating Keystrokes
Your application program may provide all of the keystrokes for another

application or may mingle keystrokes to the target destination with those
from the keyboard. In order to do this, your application must occasionally
lock out other sources of keystroke input that may be destined for a target
application or presentation space. This can be done by calling the h._resv
(Reserve) HLLAPI function. Your program can later unlock the target
application or presentation space by calling the h_rel (Release) function.

Filtering Keystrokes
Your application program can act as a filter by intercepting a keystroke

coming from HLLAPI (either from the keyboard or a source application) tar­
geted for another destination. Once intercepted, the keystroke may then be:

• ignored (Le., deleted)

• redirected to another application

• validated

• converted from upper case to lower case, or from ASCII to EBCDIC

1-6 HLLAPI PROGRAMMER'S GUIDE

The HLLAPI Tutorial

The AT&T 3270 Emulator+ HLLAPI Tutorial is a menu-based full-screen
interactive learning tool that allows you to invoke individual HLLAPI func­
tions and see the results of executing these functions and the parameters
returned by them without writing complex programs. You can also use the
AT &T 3270 Emulator+ HLLAPI Tutorial as an informal testing tool.

The AT&T 3270 Emulator+ HLLAPI Tutorial organizes the HLLAPI
functions into the following seven menus:

• Local Environment Functions Menu - includes the HLLAPI func­
tions that perform basic operational tasks.

• Communications Functions Menu - includes the HLLAPI functions
that support transactions with the remote host computer.

• Keyboard Functions Menu - includes the HLLAPI functions associ­
ated with handling terminal keystrokes between your application
program and the remote host computer.

• File Transfer Functions Menu - includes the HLLAPI functions that
allow an application program to transfer files between an AT&T 3B
Computer and a remote host computer.

• Memory Management Menu - includes the HLLAPI functions that
allow you to preallocate, free and query the blocks of storage used by
the application program.

II Presentation Space Management Menu - includes the HLLAPI func­
tions that support your application program by helping you manage
the regions in storage where different screens are stored, copy data to
and from these regions, and control how your screens will appear.

• Environment Functions Menu - includes the HLLAPI functions that
provide access to the UNIX System.

The AT&T 3270 Emulator+ HLLAPI Tutorial allows access to the UNIX Sys­
tem shell from any of its menus.

HLLAPI and API 1-7

The Application . Program Interface (API)

The AT&T 3270 Emulator+ Application Program Interface (API) is a
low-level version of the AT&T 3270 Emulator+ HLLAPI. Itis also a library
of C language functions that you can call from a C language application
program to emulate the actions of a 3270 terminal operator. Just like the
AT&T 3270 Emulator+ HLLAPI, the API allows your application program to
communicate with remote host computers from an AT&T 3B Computer.
However, the API provides two modes of accessing a remote host: 3270 data
stream mode and "raw" data stream mode. In 3270 data stream mode, the
application program, using either HLLAPI or API functions to communicate
with the remote system, is functionally equivalent to the interactive user
interface to the host through a 3278/9 terminal. The raw mode, only avail­
able in the API, provides a raw data transfer interface that is independent of
any terminal functionality (Le., no 3270 data stream encoding/decoding is
done).

In general, the AT&T 3270 Emulator+ API is more difficult to learn and
use than the AT&T 3270 Emulator+ HLLAPI. Therefore, the use of HLLAPI
rather than API functions is recommended, except in those application pro­
grams that must access the remote host computer in raw data stream mode.

1-8

A Tutorial is also provided with the AT&T 3270 Emulator+ API. (See
"The API Tutorial" in chapter 4.)

HLLAPI PROGRAMMER'S GUIDE

2 HLLAPI Overview

AT&T 3270 Emulator+ HLLAPI
Concepts
Host Session
Presentation Space
WS Ctrl
Operator Information Area (OIA)
Attention Identifier Keys
Combination Keys

AT&T 3270 Emulator+ HLLAPI
Functions
Local Environment Functions
Communications Functions
Keyboard Functions
File Transfer Functions
Storage Manager Function
Presentation Space Functions
Environment Functions

Using the AT&T 3270 Emulator+
HLLAPI
Calling Parameters
Returned Parameters
Linking Your Application Program

2-1
2-1
2-1
2-1
2-2
2-2
2-2

2-3

2-3

2-4

2-5
2-5
2-5
2-6

2-7

2-8

2-8

2-9

2-11

TABLE OF CONTENTS

HLLAPI Overview

The Environment
Environment Variables
The LUTABLE" File

Ii HLLAPI PROGRAMMER'S GUIDE

2-12

2-12

2-13

AT&T 3270 Emulator+ HLLAPI Concepts

This section presents basic concepts that you will have to understand to
use the AT&T 3270 Emulator+ HLLAPI.

Host Session
The communications between your application program and the IBM

host computer are called host sessions. A host session is the logical connection
between a presentation space and an application program running on a
remote host computer.

Presentation Space
A presentation space is a region in computer storage that can be displayed

on your terminal screen.

The IBM 3270 Personal Computer can display several windows on the
screen. The AT&T 3270 Emulator+ HLLAPI allows you to view one
window at a time, and this window occupies the size of the entire
screen.

The current connected presentation space is the active session to which you are
connected.

WS Ctrl
ws Ctrl (Work Station Control) is treated as a session type by HLLAPI,

even though it is really a "pseudo-session." As a pseudo-session, WS Ctrl can
call functions against other sessions, such as copy blocks of text from one
session to another. But there is no presentation space associated with the WS
Ctrl session.

HLLAPI OVERVIEW 2-1

AT&T 3270 Emulator+ HLLAPI Concepts

Operator Information Area (OIA)
The Operator Information Area (OIA) is the bottommost line of the screen

that displays information about the status of your workstation and the
remote host computer.

Attention Identifier Keys
The Attention Identifier (AID) keys are non-ASCII control keys: PF, PA, or

Enter.

Combination Keys
Combination keys must be used with another key or keys to produce a

desired function. Examples are the Control and Shift keys.

2-2 HLLAPI PROGRAMMER'S GUIDE

AT&T 3270 Emulator+ HLLAPI Functions

The AT&T 3270 Emulator+ HLLAPI functions are classified into seven
groups, according to the services that they provide to an application pro­
gram. There are:

• Local Environment Functions

• Communications Functions

• Keyboard Functions

• File Transfer Functions

• Storage Manager .Function

• Presentation Space Functions

• Environment Functions

Each HLLAPI function is associated with a Symbolic Name, and a Func­
tion Number. The Symbolic Name of a function is the name that you use to
refer to that function in a C application program. The Function Number of
a function is the number used by the IBM 3270 Personal Computer HLLAPI to
refer to that function.

The following sections describe the HLLAPI function groups. Each
description includes the HLLAPI functions that are part of that group, along
with their Function Numbers and Symbolic Names. This information is
useful if you are familiar with the IBM product and want to write C
language application programs using the AT&T 3270 Emulator+ HLLAPI.

Local Environment Functions
The AT&T HLLAPI Local Environment Functions perform basic opera­

tional tasks that support the interface between your HLLAPI application
program and its copy of the HLLAPI library. These functions are summar­
ized below.

HLLAPI OVERVIEW 2-3

AT&T 3270 Emulator+ HLLAPI Functions

Function Name Function Number Symbol~c Name

Connect Presentation Space
Disconnect Presentation Space
Set Session Parameters
Query Session
Reserve
Release
Work Station Control
Query System
Reset System
Query Session Status
Connect and Interact with
Presentation Space

Communications Functions

1 H_CONNECT
2 H_DISC
9 H_SETPARMS
10 H_QSESS
11 H_RESV
12 H_REL
16 H_WSCTRL
20 H_QSYS
21 H_RESET
22 H_QSTATUS
113 H_CONNINT

The AT&T HLLAPI Communications Functions represent the fundamen­
tal set of functions that support transactions with the remote host computer.
These functions are:

Function Name

Send Key
Wait
Pause
Start Host Notification
Query Host Update
Stop Host Notification

2-4· HLLAPI PROGRAMMER'S GUIDE

Function Number Symbolic Name

3 H_SENDKEY
4 H_WAIT
18 H_PAUSE
23 H_STRTHOST
24 H_QHOST
25 H_STOPHOST

AT&T 3270 Emulator+ HLLAPI Functions

Keyboard Functions
The AT&T HLLAPI Keyboard Functions are the set of function calls

associated with handling terminal keystrokes between your application pro­
gram and the host computer. These functions are:

Function Name

Start Keystroke Intercept
Get Key
Post Intercept Status
Stop Keystroke Intercept

File Transfer Functions

Function Number Symbolic Name

50 H_STARTKEY
51 H GETKEY
52 H POSTINT
53 H_STOPKEY

The AT&T HLLAPI File Transfer Functions allow an HLLAPI applica­
tion program to transfer files between an AT&T 3B Computer and an IBM
host. The two File Transfer Functions are:

Function Name

Send File
Receive File

Storage Manager Function

Function Number Symbolic Name

90 H SEND
91 H RECV

The Storage Manager Function preallocates blocks of storage for use by
certain HLLAPI functions.

You can make the following subfunction calls to the Storage Manager
Function:

• Get Storage

HLLAPI OVERVIEW 2-5

AT&T 3270 Emulator+ HLLAPI Functions

&I Free Storage

• Query Free Storage

• Free All Storage

Function Name Function Number Symbolic Name

Storage Manager 17 H STMAN

Presentation Space Functions
The AT&T HLLAPI Presentation Space Functions provide support for

your application program by helping you manage presentation spaces, copy
data to and from various regions of storage, and control how your screen
will appear.

The Presentation Space Functions are summarized below.

2-6 HLLAPI PROGRAMMER'S GUIDE

Function Name

Copy Presentation Space
Search Presentation Space
Query Cursor Location
Copy Presentation Space to String
Copy OIA
Query Field Attribute
Copy String to Presentation Space
Search· Field
Find Field Position
Find Field Length
Copy String to Field
Copy Field to String
Convert Position or RowCol
Change Cursor Position in
Presentation Space

Write a Character in Presentation
Space

Environment Functions

AT&T 3270 Emulator+ HLLAPI Functions

Function Number Symbolic Name

5 H_COPY
6 H_SEARCH
7 H_QCUR
8 H_COPYPSS
13 H_CPOIA
14 H_QATTR
15 H_CPSTR
30 H_SRCHFLD
31 H_FNDPOS
32 H_FNDLEN
33 H_CPSTRF
34 H_CPFIELD
99 H_CONV
111 H_CHCUR

112 H WRCHAR

The AT&T HLLAPI Environment Functions provide direct access to the
. UNIX System. Your application program can execute UNIX System com­
mands or programs and place the resulting data in the program segment
following the function call or pipe it to other processes. The two Environ­
ment Functions are·shown below.

Function Name

Invoke UNIX System Com­
mand or Program

UNIX Redirect

Function Number Symbolic Name

93 H REDIR

HLLAPI OVERVIEW 2-7

Using the AT&T 3270 Emulator+ HLLAPI

You can use an AT&T 3270 Emulator+ HLLAPI function by coding the
hllapi function in your application program with a set of data arguments
referred to as calling parameters. After executing the function call, the hllapi
function returns certain parameters that your application program might use
in an error routine.

Both the calling parameters and the returned parameters vary depend­
ing on the HLLAPI function that you are trying to call. An overview of
these parameters follows.

Calling Parameters
The AT&T 3270 Emulator+ HLLAPI functions are called by invoking

hllapi in your application program, as follows:

#inc1ude <xhllapi.h>

in t hllapi(func,data,length,position)
int *func;
char *data;
int *length;
int *position;

The data arguments passed to the hllapi function are:

*func

*data

*length

*position

is a pointer to the desired function code, preferably
in the form of a symbolic name for the desired func­
tion. This parameter is always required.

This argument is used in different ways by different
functions; in some functions it is a pointer to a char­
acter array, while in others it is a pointer to a struc­
ture.

This argument usually points to the length of what­
ever the data parameter points to.

is a pointer to a value associated with the emulated
3278/3279 Display Station screen position. This
value can be:

2-8 HLLAPI PROGRAMMER'S GUIDE

Using the AT&T 3270 Emulator+ HLLAPI

D 1 through 1920 for Model 2's, or

D 1 through 3564 for Model 5' s

You must provide all parameters when making a func­
tion call. You can use a filler variable for those function
calls that do not require all parameters.

The xhllapi.h file that you must include in your applica­
tion program with #inc1ude defines the symbolic names for
the AT&T HLLAPI functions and return codes, and the
structure identifiers used by several HLLAPI functions. This
file is listed in Appendix C, The xhllapi.h File. The xhllapi.h
file does not define storage; you are responsible for allocat­
ing the storage buffers required by your application pro­
gram.

Returned Parameters
The AT&T 3270 Emulator+ HLLAPI function calls return a return code

from Figure 2-1. For example, if you made the following call in your appli­
cation program

y = hllapi(func,data,length,position)

the variable y would be assigned one of the return code values shown in
Figure 2-1. These values inform your application program of the success,
failure or status of the function call. This information might be used by an
error handling routine in your application program.

In addition, the AT&T 3270 Emulator+ HLLAPI function calls return
requested information at the locations pointed to by the calling parameters,
as shown below; not all four parameters will be changed on return for each
function call.

This parameter is not changed.

This parameter returns different information,
depending on the function; in some functions, it
points to a string of characters, in others to a struc­
ture.

HLLAPI OVERVIEW 2-9

Using the AT&T 3270 Emulator+ HLLAPI

*length

*position

usually points to the length of whatever the data
parameter points to, although a position can be
returned in this field.

The function return code described above is also
placed at the location pointed to by this parameter.

The manual pages for the HLLAPI function calls describe the return
codes that apply to each individual function call, although the general
meanings are consistent with the standard return codes shown below. This
consistency allows you to use a common error-handling routine in your
HLLAPI application program.

Return Symbolic
Code Name

0 HE_SUCCESS
1 HE.JNVAL

2 HE_PARM

3 HE_WSCTRL
4 HE BUSY

5 HE_INHBT

6 HE_LENGTH

7 HE_POS

8 HE_PROC

9 HE_SYSERR
10 HE_FUNCT

2-10 HLLAPI PROGRAMMER'S GUIDE

Description

good return
you specified an invalid presentation
space
a parameter error was encountered, or
an invalid function was specified
(refer to the individual function for
details)

WS Ctrl action has occurred
the target presentation was busy
the execution of this function was
inhibited for some reason different
than the one stated in return code 4
a data error was caused by an invalid
length parameter specification

you specified an invalid presentation
space position .

a functional procedure error was
encountered
a system error was encountered

function unavailable

Using the AT&T 3270 Emulator+ HLLAPI

Return Symbolic
Code Name Description

11 HE_RSC the resource that you requested is una-
vailable

21 HE_OIA updated OIA
22 HE_PRES updated presentation space
23 HE_BOTH both of the above have been updated
24 HE_NOFIELD no such field
25 HE_NOKEYS requested keys are not available
26 HE_UPDATE a host presentation space or OIA has

been updated
301 HE_FNUM invalid function number
302 HE_NOENT file not found
305 HE_ACCESS access denied
308 HE_MEM insufficient memory
310 HE_ENV invalid environment
311 HE_FORM invalid format

8000 HE_DATA only data portion has been updated
9998 HE_PSID invalid presentation space
9999 HE_NOTPR parameter was not 'p' or 'r'

Figure 2-1: HLLAPI Return Codes

Linking Your Application Program
Once you have written your application program, you must link it with

the AT&T HLLAPI library. You can do this at compile time by using the
command line:

CC -0 user_applicationyrogram.c -1h11api -lapi -lcurses -lgemusr

HLLAPI OVERVIEW 2-11

The Environment

Environment Variables
The AT&T 3270 Emulator+ HLLAPI uses the environment variables that

are set and exported by the snaenvset or bscenvset shell scripts. In addi­
tion, the AT&T HLLAPI uses the following UNIX System environment vari­
ables and files:

KY3278

LUPORT

LUTABLE

P3274

RTMSG

SC3278

STSIZE

TE3279.MSG

TM3279

name of the keyboard customization file (object file)

contains the logical channel to be used for a particu­
lar session. If this environment variable is NULL,
the LUPORT uses the next available logical channel.

file name for LUTABLE

named pipe to the controller process (e.g., sna or
tm3274)

path name for the location of the run-time message
file

name of the screen customization file (object file)

maximum storage size that you can allocate, using
the Storage Manager Function. A practical max­
imum value is 64K, or the amount left over in the
address space by the hllapi process, including your
application program (your application program is
linked with the hllapi library)

name of the 3279 terminal message file

terminal model, either 2 or 5

Refer to the AT&T 3270 Emulator+ System Administrator's Guide for more
information on both the snaenvset and bscenvset scripts and the environ­
ment variables listed above.

2-12 HLLAPI PROGRAMMER'S GUIDE

The Environment

The LUT ABLE File
The LUTABLE file describes the logical units (LU's) that will be

assigned to the controller type. hllapi will first look in your home directory
to see if there is an LUTABLE file. If not, the file defined by the LUTABLE
environment variable (above) will be used. You or the System Administra­
tor for your installation can restrict access to the LUT ABLE file in your
home directory (see chmod(l) in the UNIX System V User's Reference Manual
and' chmod(2) in the UNIX System V Programmer's Reference Manual). This
feature provides additional security, since it in turn restricts hllapi use.

Your application program can interact with up to 4 presentation spaces,
although at any given time it can only be connected to one. Therefore, the
LUTABLE contains a maximum of 4 entries, with a maximum of 6 fields in
each entry. Each entry in the LUTABLE file contains the following fields,
separated by blanks:

• The presentation space short name. You can use any capital letter
from A through Z in the presentation space short name, but no
numbers.

• The presentation space long name. You can use any combination of
8 characters, excluding white space characters (space and tab).

• LU number(s) or number range: the AT&T 3270 Emulator+ allows
up to 32 LU's to be connected at any given time, numbered from 0
through 31. LU numbers are decimal digits separated by commas; LU
number ranges are separated by dashes.

• The name of the controller pipe.

• The terminal model number, either 2 or 5.

• An extended-attribute-bytes indicator, either a 'y' or a blank.

The LU number is equivalent to the host LU address minus 2, as
defined in the LU-Macro Locator Field.

HLLAPIOVERVIEW 2-13

The Environment

Figure 2-2 shows a sample LUTABLE file. This file contains three
entries that define three presentation spaces associated with the user appli­
cation program. The first entry contains the presentation space short name
"T," the presentation space long name "one," and the LU numbers 0 through
2. The name of the controller pipe, and the terminal model are not
specified; therefore, the default values will be used. The default values are
those that were assigned to the environment variables.

The second entry contains the presentation space short name "U," the
presentation space long name "two," and the LU numbers 5 through 17.
The two fields that follow contain a dash (-); this means that default values
will be used for the name of the controller pipe and the terminal model.
The last field contains a 'y,' which indicates that extended attributes will be
used.

The last entry in Figure 2-2 is similar to the second entry, except that
the terminal model is specified, the extended attributes field is left blank,
and three non-consecutive LU numbers are specified.

Tone 0-2
U two 5-17 - - Y
V three 20,24,26 - 5

Figure 2-2: Sample LUTABLE

2-14 HLLAPI PROGRAMMER'S GUIDE

3 HLLAPI Tutorial

Introduction

Using the AT&T 3270 Emulator+
HLLAPI Tutorial

• Editing Mode
Environment Variables

3-1

3-2

3-9
3-11

TABLE OF CONTENTS

Introduction

The AT&T 3270 Emulator+ HLLAPI Tutorial is a useful interactive
learning tool that allows you to invoke individual HLLAPI functions, and
see the results of executing these functions and the parameters returned by
them without writing complex programs. You can also use the AT&T 3270
Emulator+ HLLAPI Tutorial as an informal testing tool.

The AT&T 3270 Emulator+ HLLAPI Tutorial runs through two separate
programs: hllapiprim, and hllapisec. hllapiprim is the primary program
that prompts you for the funCtion name and the parameters required by the
function that you want to execute. These parameters are passed to the
secondary program, hllapisec, after have you entered the information
requested by hllapiprim. hllapisec then shows the effect of executing the
function call and the parameters returned by the function. The following
section describes the actions that you should take to use the AT&T 3270
Emulator+ HLLAPI Tutorial.

HLLAPI TUTORIAL 3-1

Using the AT&T 3270 Emulator+ HLLAPI
Tutorial

You can run the hllapiprim and hllapisec programs on the same termi­
nal or on different terminals. When using one terminal, invoke the hllap­
isec program first as a background task, with the standard output and the
standard error directed to files to avoid cluttering the screens.

Your application program cannot establish a physical connect with the
presentation space if hllapisec is running in the background

For example, typing in the command

hllapisec 1 > secout 2 > &1 &

redirects the standard output and the standard error to the file sec out; you
may use another file name if you like. Next, enter

hllapiprim

If you are using two terminals, the order in which you invoke the two
AT&T 3270 Emulator+ HLLAPI Tutorial programs does not matter; on one
terminal, enter

hllapiprim

on the other

hllapisec

See "The Environment" section in chapter 2 for information regarding
environment variables that must be set before running the hllapiprim and
hllapisec programs.

The hllapiprim program is a menu-based full-screen interactive pro­
gram that organizes the functions supported by the AT&T 3270 Emulator+
HLLAPI into seven menus:

• Local Environment Functions Menu

• Communications Functions Menu

3-2 HLLAPI PROGRAMMER'S GUIDE

Using the AT&T 3270 Emulator+ HLLAPI Tutorial

• Keyboard Functions Menu

• File Transfer Functions Menu

• Memory Management Menu

• Presentation Space Management Menu

• Environment Functions Menu

Once you invoke the hllapiprim program, the main menu will appear on
the screen listing these menus, as follows:

HLLAPI Tutorial Main Menu

1 - Weal EnvircIrnrent Functions MfmU
c - Camnmications E\mcti.ons Menu

k - Keyboard Functions Menu
f - File Transfer E\mcti.ons Menu
m - Menmy Management Menu
p - Presentation Space Management Menu
e - EnvircIrnrent E\mcti.ons Menu

q - Quit the HLLAPI Tutorial

Select a choice:

The top portion of each menu screen lists the functions in the menu,
and the bottom portion shows the menu-switching commands and other
available response choices.

The region between the top and bottom portions of each screen is the
user interaction area; you will be prompted to enter choices, and the results
will be displayed in this area. You can respond to the "Select a choice:"
prompt on each screen with a function number or with any of the valid
commands listed at the bottom of the menu. Furthermore, if you respond to
the "Select a choice:" prompt with a !, you will escape to the UNIX System
shell program defined by the SHELL variable. If you respond with an x,

HLLAPI TUTORIAL 3-3

Using the AT&T 3270 Emulator+ HLLAPI Tutorial

the latest parameters returned by a function are placed in a text file in hexa­
decimal format. The editor program defined by the EDITOR environment
variable will then be invoked, and the text file will be displayed. Typing in
an x at the "Select a choice:" prompt lets you see the non-displayable char­
acters and save the results in files for later use.

For example, after you have run the AT&T 3270 Emulator+ HLLAPI
function number 5 (Copy Presentation Space), the x command might pro­
duce the following display:

E'Ul-C1'IOO' 5
DATA

0000 74686973 20697320 74686520 72657375
0010 6c74206f 6620636f 70792070 72657365
0020 6e746174 696f6e20 66756e63 74696f6e
0030 2063616c 6c

REIO:DE

0000 34

this.is.the.resu
It.of.copy.prese
ntatian. functian
ca11

The seven AT&T 3270 Emulator+ HLLAPI Tutorial menus that may be
called from the HLLAPI Tutorial Main Menu are shown below.

3-4 HLLAPI PROGRAMMER'S GUIDE

Using the AT&T 3270 Emulator+ HLLAPI Tutorial

Local Envi.rorlrrent FUnctions Menu

1 - Connect PS
2 - Discarmect PS

16 - Vbrk station Control
20 - Query System

9 - Set Session Param
10 - Query Sessions

21 - Reset System

22 - Query Session status
11 - Reserve 113 - Carmect and Interact with PS
12 - Release

Select a cix)ice:

1 - IDe Env Menu f - File Trans Menu e - Env Menu x - hex ret:uzn
c - Camuni Menu m - MeIIory Manag Menu M - Main Menu 1 - shell
k - Keyboard Menu p - PS Manag Menu q - quit

Ccmmmications FUnctions Menu

3 - Serd Key

4 - wait

18 - Pause

Select a cix)ice:

23 - Start Host Notification
24 - Query Host Upjate

25 - Stop Host N::ltification

1 - IDe Env Menu f - File Trans Menu e - Env Menu x - hex ret:uzn
c - Camuni Menu m - MeIIory Manag Menu M - Main Menu 1 - shell

k - Keyboard Menu P - PS Manag Menu q - quit

HLLAPI TUTORIAL 3-5

Using the AT&T 3270 Emulator+ HLLAPI Tutorial

Keyboard Functicms Menu

50 - start Keyboard Intercept
51 - Get Key

52 - Post Intercept status

53 - stop Keystroke Intercept

Select a clx:>ice:

1 - IDe Env Menu f - File Trans Menu e - Env Menu
c - Camuni Menu m - Mem:>l:y Manag Menu M - Main Menu
k - Keyboard Menu P - PS Manag Menu q - quit

File Transfer Functicms Menu

90 - Send File
91 - Receive File

Select a clx:>ice:

1 - IDe Env Menu f - File Trans Menu e - Env Menu
c - Camuni Menu m - Mem::>%Y Manag Menu M - Main Menu
k - Keyboard Menu P - PS Manag Menu q - quit

3-6 HLLAPI PROGRAMMER'S GUIDE

x - hex retunl
1 - shell

x - hex retunl
I - shell

Using the AT&T 3270 Emulator+ HLLAPI Tutorial

Mem::lIy Mmagarent Menu

17 - Storage Manager

Select a choice:

1 - IDe Env Menu. f - File Trans Menu e - Env Menu x - hex return
c - Camuni Menu. m - MeIIory Manag Menu. M - Main Menu. I - shell
k - Keyboard Menu P - PS Mmag Menu q - quit

Presentation Space Managenent Menu.

5 - Copy Presentation Space
6 - Search Presentation Space
7 - Query Cursor IDeation
8 - Copy PS to StrinJ

13 - Copy OIA
14 - Query Field Attribute
15 - Copy StrlnJ to PS
30 - Search Field

Select a choice:

31 - Find Field Position
32 - Find Field Length
33 - Copy String to Field
34 - Copy Field to String
99 - Convert Position or RowCol

111 - Change Current PS Position
112 - write a Character in PS

1 - IDe Env Menu. f - File Trans Menu e - Env Menu x - hex return
c - Camuni Menu. m - MeIIory Manag Menu. M - Main Menu. I - shell
k - Keyboard Menu P - PS Mmag Menu q - quit

HLLAPI TUTORIAL 3-7

Using the AT&T 3270 Emulator+ HLLAPI Tutorial

Eriv:iranment F\mctions Menu

92 - Invoke UNIX Process
93 - UNIX Redirect

Select a clnice:

1 - IDe Env Menu f - File Trans Menu e - Env Menu x - hex return
c - Camuni Menu m - Mem:>ry Manag Menu M - Main Menu I - shell
k - Keyboard Menu P - PS Manag Menu q - quit

To avoid switching back and forth between menus, you can execute any
valid AT&T 3270 Emulator+ HLLAPI function from all menus, including
the Main Menu; this is useful for experienced HLLAPI users, or when you
must execute a sequence of HLLAPI calls.

Once you choose a function by entering a function number in response
to the "Select a choice:" prompt, you will be asked to enter the calling
parameters required by that function. For example,

Data<-

prompts you to enter the data string parameter,

Length<-

prompts you to enter the length parameter, and

Retcode<-

prompts you for the return code parameter.

Since not every function requires all parameters, you will only be asked
to provide the parameters required by the function you have chosen. How­
ever, if the length parameter can be derived from the data string parameter,
the AT&T 3270 Emulator+ HLLAPI Tutorial will automatically compute the
length parameter and display it on the screen. You then have the option of
changing the length parameter or pressing the return key to enter it. The
parameters returned by the function will be displayed on the screen with

3·8 HLLAPI PROGRAMMER'S GUIDE

Using the AT&T 3270 Emulator+ HLLAPI Tutorial

their labels once the function has executed.

The AT&T 3270 Emulator+ HLLAPI Tutorial will add a + character at
the end of the returning parameters, if their content exceed the width of
the physical screen; non-displayable characters will appear as spaces. Use
the x command to view the entire contents of the returning parameters, .
and non-displayable characters.

Editing Mode
Whenever you are prompted for entries on any of the AT&T 3270 Emu­

lator+ HLLAPI Tutorial menus, your terminal is placed in the tutorial edit­
ing mode, In this mode all characters typed, except the backspace, tilde,
escape, and return characters, are immediately saved in an hllapiprim inter­
nal buffer. The normal UNIX System erase and kill characters (# and @)
are not interpreted as such, and do not have to be preceded by a ''\''. The
non-displayable characters (such as control characters) appear as spaces on
the screen.

A backspace character moves the cursor backwards one position and
erases the current character and all characters to its right. The return char­
acter ends the editing mode; the content of the buffer is taken as input to
the current prompt, and the next prompt, if required, is displayed. In edit­
ing mode, you can not move the cursor beyond the rightmost position on
the screen; a bell will sound if you try to.

When you enter the escape character from any position, the editor.
specified by the EDITOR variable will be invoked with the current buffer
content. Use the escape character to enter characters beyond the rightmost
screen position and to respond to menu prompts with the full-screen editor
you prefer. This character is also useful if you must enter data for functions
that require hundreds of characters or data that contains large numbers of
non-displayable characters.

When you leave the editor, the file content, which you must write out if
you made changes, will be transferred to the hllapiprim internal buffer and
the original screen will be redisplayed with the new buffer contents. When
the buffer content is read by the editor, newline characters will be
appended to break it into lines for readability and to circumvent possible
line-length limitations; when files are copied back to the buffer, these new­
line characters will be removed. If you have to enter a newline character
into the buffer from the file, place it on a line by itself.

HLLAPI TUTORIAL 3-9

Using the AT&T 3270 Emulator+ HLLAPI Tutorial

If the escape character is preceded by a tilde character, the buffer con­
tent will be converted into hexadecimal format before the editor is invoked.
The hexadecimal format file content is similar to the result of executing the
"x" command: each line shows the address, hexadecimal displays of 16 char­
acters followed by their corresponding character displays.

Once inside the editor, the hexadecimal display portion can be edited
using hex representations of characters. Note that when editing the hexa­
decimal file, the file format must be preserved in order for the file to be
converted properly back to the internal buffer; i.e., hex codes must be in
groups of 4 characters separated by space characters and each line should
have six characters before the first hexadecimal code, although the address
portion is never used when file content is transferred to the internal buffer.
This tilde-escape editing makes it possible for a user to enter any character
as part of a function parameter input, including the four editing control
characters and non-ASCII characters with embedded null characters. For
example, using the tilde-escape editing, the storage address returned by the
HLLAPI function number 17 (H_STMAN - Storage Manager) can be entered
as part of the data parameters for function number 23 (H_STRTHOST - Start
Host Notification).

You can interrupt the editing mode with the interrupt signal or with
the quit signal. The interrupt signal ends the current editing mode and
moves the cursor to the "Select a choice:" prompt; all input parameters that
you entered will be discarded, and the chosen function will not be exe­
cuted. The quit signal ends the AT&T 3270 Emulator+ HLLAPI Tutorial
program.

3-10 HLLAPI PROGRAMMER'S GUIDE

Using the AT&T 3270 Emulator+ HLLAPI Tutorial

Environment Variables
The hllapiprim and hllapisec programs communicate through two

named pipes that they create if needed. The location of these two named
pipes is, by default, the $HOME UNIX System directory; if the HOME
variable is not defined or has no value, the current working directory will
be used. The default file names for the two named pipes are .hlltutp.l and
.hlltutp.2; however, you can set the environment variables HLLTUTDIR
and HLLTUTP to override the default pipe names and locations. The AT&T
3270 Emulator+ HLLAPI Tutorial will add the suffixes .1 and .2 to the
names defined by HLLTUTP; therefore, you must restrict HLLTUTP names
to a length of 12 characters.

The AT&T 3270 Emulator+ HLLAPI Tutorial uses two additional
environment variables; EDITOR, and SHELL. EDITOR determines the
text editor program that the AT&T 3270 Emulator+ HLLAPI Tutorial will
use (e.g., ed or vi); the default is ed. SHELL determines the shell program
that will be used when you escape to the UNIX System while running the
AT&T 3270 Emulator+ HLLAPI Tutorial; the default is sh.

You should also initialize other environment variables and/or files, as
required by the AT&T 3270 Emulator+. (See the AT&T 3270 Emulator+ Sys­
tem Administrator's Guide for further information on this subject.)

HLLAPI TUTORIAL 3-11

4 Application Program Interface

Introduction
BSC Operation
SNA Operation
Configuration Files
Include Files

The API Tutorial
Running the API Tutorial Package

• Running with Two Terminals
• Running with One Terminal

Application Development
API Execution
Application Program Development

• Application Program Format
• Linking with the API Library
• The Application Program Environment

• Signals
• 3270 Data Stream Mode
• Raw Mode
• Multi-Session
• Host Interaction

4-1

4-2

4-2

4-3
4-3

4-4

4-4
4-5

4-7

4-8
4-8
4-8
4-8

4-10

4-11

4-11

4-11

4-12

4-12

4-13

TABLE OF CONTENTS

Introduction

The API provides two modes of accessing a remote host: in 3270 data
stream mode or in "raw" data stream mode. In 3270 data stream mode, the
application program interface to the remote system is functionally
equivalent to the interactive user interface to the host through a 3278/9 ter­
minal. The raw mode provides a block data transfer interface, independent
of any terminal functionality.

The following calls constitute the API interface:

xlu2clos(3X) power off the logical unit

xlu2ctl(3X) logical unit control functions

xlu2func(3X) perform special functions on logical unit

xlu2gets(3X) get a string from the LUD _3270 logical unit's screen buffer

xlu2info(3X) obtain 3278/9 status line and cursor position information

xlu2init(3X) initialize terminal function library

xlu2intr(3X) interrupt an API call

xlu2open(3X) power on the logical unit

xlu2puts(3X) put a string to the LUD _3270 logical unit's screen buffer

xlu2read(3X) read the next raw segment on the LUD_RAW/LUD_TRAW
logical unit

xlu2seek(3X) position the cursor to a field in screen buffer for LUD _3270
logical unit

xlu2writ(3X) write a raw segment on the LUD~W/LUD_TRAW logical
unit

where:

logical unit

LUD 3270

is an SNA or a BSC terminal port. Logical unit is used
generically, and it applies to both SNA and B5C.

specifies that the application program is using a terminal
interface to the remote system

APPLICATION PROGRAM INTERFACE 4-1

Introduction

LUD RAW specifies that the application program is using a block
data interface to the remote system; API does not exam­
ine or alter the data except for BSC control codes, which
are stripped before the data are passed to an application.
In the case of SNA, API presents the RU to the applica­
tion

LUD TRAW specifies that the application program is using a tran­
sparent block data interface to the remote system; API
does not examine or alter the data except for BSC control
codes, which are stripped before the data are passed to
an application

BSC Operation
When operating in BSC mode, 3274 controller functions are performed

by the BSC controller process, TM3274, and the communication board b3274
program.

TM3274 performs the device interface functions of a 3274 cluster con­
troller, including establishing internal communication with each device
emulation process as it powers up, and validating and/or assigning device
addresses to devices as they power up. TM3274 interfaces with b3274, via
the driver, to transfer data between the emulated device and communica­
tions line, and it also handles the transfer of screen contents during copy
commands.

b3274 performs the protocol level functions of an IBM 3274-51C cluster
controller operating in BSC mode, including data stream validation, termi­
nal status maintenance, and reporting. It handles polling and device selec­
tion, and it also controls BSC timing functions, including timing of line
activities and sync insertion.

SNA Operation
When operating in SNA mode, 3274 controller functions are performed

by the SNA process, SNA, and the communication board sdk program.

4-2 HLLAPI PROGRAMMER'S GUIDE

Introduction

SNA emulates the SNA functions of an IBM 3274-51C cluster controller.
It provides support for all protocols associated with the Path Control,
Transmission Control (or Connection Point Manager), Session Control, Data
Flow Control, and Presentation Services layers of SNA.

sdlc emulates the link-level SDLC protocols as implemented on the clus­
ter controller.

Configuration Files
An API application uses the following configuration files:

• screen control customization object file

• keyboard mapping customization object file

• message object file.

In addition, the controller configuration object file (BSC or SNA) must
be set up.

Include Files
Application programs are required to include the header file xlu2io.h,

which contains all required definitions and includes all other required files.
Other files of interest to developers are:

xapi.h

ctrl.c

includes most definitions

controls the components of the API function library (see
"Linking with the API Library," below) to be linked.

APPLICATION PROGRAM INTERFACE 4-3

The API Tutorial

The API Tutorial is intended to assist API programmers in gaining fami­
liarity with API function calls. The tutorial allows you to enter API calls
from a terminal and observe the results. The package operates interactively;
a menu allows you to choose the call you want, and submenus allow you to
specify options to the call.

The following files are contained in the tutorial package:

primary shell script

secondary shell script

mast

slv

README contains instructions

show_it

This section describes how to use the API Tutorial; installation of the
package is not a prerequisite for developing or running API application pro­
grams. Refer to the appropriate AT&T 3270 Emulator+ Release Notes for ins­
tallation instructions.

Running the API Tutorial Package
You can run the tutorial using one or two terminals. If one terminal is

used, only part of the results of each API call can be displayed interactively
following the execution of the call. The remainder of the output can be
sent to a file you designate and can be examined after the tutorial program
is terminated.

If two terminals are available, the primary script is run on one terminal
and the secondary script on the other. If only one terminal is available, the
secondary script should be run in the background with output directed to a
file.

Before you run these programs you must have the 3274 controller pro­
cess (SN A or BSe) running, and you should also have read the AT&T 3270
Emulator+ Application Programmer's Guide and have it available for reference.
You must also create two named pipes in the directory that contains the
tutorial. To create the pipes, you do the following:

4-4 HLLAPI PROGRAMMER'S GUIDE

The API Tutorial

Step 1. Log in as root.

Step 2. Enter the following sequence of commands:

cd the_directory _where ...Jfou _have _stored _the _Tutorial

mknod pip 1 p

mknod pip2 p

Running with Two Terminals
If the package is to be run from two terminals, you must perform the

following steps. (The two terminals are referred to as liT 1 II and "T2. ")

Step 1. Log in on T1 and T2.

Step 2. On both T1 and T2, type

cd the_directory_where_theseJiles_are_stored

Step 3. On T1, type

• /secandaJ:y abc.

where:

a is the screen file name
b is the keyboard file name
c is the name of the controller pipe

For example:

a could be 4410 (from SC.4410)
b could be std (from KY.std)
c could be I tmp I p327 4.4

and you would enter:

./secondazy 4410 std /bnp/p3274.4

APPLICATION PROGRAM INTERFACE 4-5

The API Tutorial

Step 4.

Step 5.

Step 6.

On T2, type

• /pr:imal:y

This causes the following primary menu to be displayed:

API SYSTEM CALL EXERCISER

o. Exit fran program

1. xlu20pen 2. xlu2clos
3. xlu2ct1 4. xlu2gets
5. xlu2puts 6. xlu2seek
7. xlu2info 8. xlu2init
9. xlu2flIDC 10. Xlu2write
11. xlu2read

Enter Option :

If you select any option from 1 through 11 a series of menu sub­
screens will be displayed, each requesting you to enter a parame­
ter associated with the call. After you have entered the last
parameter, the output of the call (i.e. the return value of the call
and the return value of certain parameters associated with the
call) is displayed, generally followed by the primary menu.

You may now request execution of API calls. Your first two calls
must be xlu2init followed by xlu2open.

The purpose of Tl is to display additional output from each API
call as it is executed. To cause the API to display the output, you
must use LUV _TRC or LUV _DSP as the luvmod parameter in the
xlu20pen call. Once the xlu20pen call has been made, the screen
on Tl will display the results of subsequent API calls.

You can also display this output by using the same values for the
luvmod parameter in an xlu2ctl call.

4-6 HLLAPI PROGRAMMER'S GUIDE

Step 7.

Step 8.

The API Tutorial

You can now continue with other API calls, eventually closing
each session you open with an xlu2clos call.

The tutorial continues to run even after all open sessions have
been closed with calls to xlu2clos. It may be terminated by
selecting option "0" in the primary menu. If you terminate the
tutorial, any sessions still open from T2 will be closed.

Running with One Terminal
If the package is to be run from one terminal, both the primary and

secondary scripts must be run from this terminal, and any output from an
API call must be directed to a file. The following steps are required:

Step 1. Type

./secandary abc > logfile &

where a, b, and c are the same as in Step 3 above, and logfile is
the file in which you want the output to be placed.

Step 2. Type

Step 3.

Step 4.

./primary

to display the series of menus described in Step 4 above. Your
first two calls must be xlu2init followed by xlu2open. You must
use LUV _NTD for the luvmod parameter in the xlu20pen call.

You can now continue with other API calls as in Steps 7 and 8
above.

At the completion of the tutorial, you can enter

cat logfile

to obtain the output of the API calls you made.

APPLICATION PROGRAM INTERFACE 4-7

Application Development

The API user does not interface with any of the protocol levels of SNA
or BSC. The application program interface can be an emulated formatted
screen, an unformatted screen, or a data block (raw mode). The general pro­
cedure for developing an API application is to write an application program
using API function calls and then to link the compiled program with the
API library.

API Execution
The associated SNA or BSC controller process must be running before

you execute an API application. The application may be executed as a back­
ground or a foreground process. If you do not choose to view the screen,
the terminal emulation application program may be initiated from the com­
mand line in the background, without monopolizing a terminal to execute
the functions. However, if you prefer to view the application's interaction
with the host as it occurs, the program requires a physical terminal and
should be run in the foreground (see xlu2ctl(3X».

Application Program Development
API programs are written in the C programming language. The follow­

ing sections describe the development process in detail.

Application Program Format
An API user program takes the following general form:

#include <X1u2io. h>
extern int errapi;
main (argc, argv)

int argc;
char *argv[];
{

unsigned char luchan 1 ;

1* API header file *1
1* API error codes *1
1* user entJ:y point *1

if «xlu2init(....) == -1) 1* initialize emllator *1
• • . ; 1* error *1

4-8 HLLAPI PROGRAMMER'S GUIDE

if «xlu2open(&luchan 1 ,

Application Development

continued

) == -1) 1* power on the logical unit arxl

aCXIUire logical unit charmel number *1

For 3270 data stream mode:

if «xlu2ct1(&luchan1, UJEVENl', KY'_NM$...) == -1) 1* await next nessage *1
; 1* error *1

if «xlu2seek(&luchan1,
; 1* error *1

if «xlu2gets (&luchan 1 ,

; 1* error *1

user processing

if «xlu2seek(&luchan1,

; 1* error *1
if «xlu2puts(&luchan1,

; 1* error *1

) == -1) 1* position cursor to field for reading *1

) == -1) 1* get a string fran screen buffer *1

) == -1) I*position cursor to field for writing*1

) == -1) 1* plt a string to screen b.tffer *1

if «xlu2ct1(&luchan1, UJEVENl', KY'_ENl'ER •••) == -1) 1* transmit screen *1
; 1* error *1

or, for raw mode:

if «xlu2ct1(&luchan1, UJEVENl', KY'_Nl-1$ •••) == -1) 1* await next nessage *1
; 1* error *1

if «xlu2read(&luchan1, .••) == -1) 1* read a data segment *1
; 1* error *1

user processing

if «xlu2writ(&luchan1,

; 1* error *1
) == -1) h write a data segment to host *1

APPLICATION PROGRAM INTERFACE 4-9

Application Development

continued

if «xlu2clos(&luchan1) == -1); 1* power off logical charmel */

return

Linking with the API Library
When you link the API library with an application program, the result­

ing interface to the SNA or BSe controller is equivalent to the 3278/9 termi­
nal emulation process. A user application consists of a process containing .
the user application program and the API function library.

You must compile the program with the specified API function library
directory pathname. To save runtime memory, you may elect to exclude
subsets of the API function library when linking the application object
file(s). Library usage is determined by the emulation modes (and the associ­
ated functionality) required in the application program. The library subsets
are:

• without 3270 data stream processing (RAW)

• without 3279 screen output generation (VNON)

• with all functionality included

ctrl.c controls the selection of the API function library components in
generating one of the above subsets. The user specifies the functionality to
be excluded by using -D in the command line followed by the name of the
excluded subset. The following command compiles and links a sample user
API program without 3270 data stream processing (RAW) and without 3279
screen output generation (VNON). api and gemusr contain API library run­
time functions.

CC -0 semple sanple.c -DRAW -DVN:N /usr/lib/ctr1.c
-lapi -lcurses -lgeImlSr

4-10 HLLAPI PROGRAMMER'S GUIDE

Application Development

The Application Program Environment
API controls the emulated terminal based on the physical attributes of

standard input. Terminal emulator functions write the screen buffer to stan­
dard output. Therefore, when screen update is enabled, standard input and
standard output may be redirected, but standard input must be a terminal
device.

Signals
An API application program can receive any signal except SIGPWR,

which is reserved. When a signal is caught during execution of an API
application, the signal catching routine cannot call any other API functions
(except xlu2intr) since the signal may have occurred during execution of an
API function and API does not allow concurrent calls from the same pro­
cess.

Signals do not automatically cause API function calls to be interrupted.
xlu2intr is provided to allow a signal catching routine to interrupt execu­
tion of certain other (mainline) API functions.

If screen update is enabled and an incoming signal interrupts an API
function call, and if the signal catching routine terminates the process, the
physical terminal (not the emulated terminal) may be left in raw mode. If
an API application signal catching routine terminates a process, it is recom­
mended that the physical terminal be removed from raw mode (see
ICANON in termio(7».

3270 Data Stream Mode
The following must be considered when using the 3270 data stream

mode for screen updating:

• Data are exchanged between the host and the logical unit through
the screen buffer.

• The logical unit's screen buffer may be examined or altered, one field
at a time, using xlu2gets or xlu2puts, respectively.

• In this mode, the logical unit has the functionality of a terminal emu­
lation session.

APPLICATION PROGRAM INTERFACE 4-11

Application Development

Raw Mode
The following must be considered when using raw mode:

• Data are exchanged between the host and the logical unit in raw data
block units.

• When data are received from the host for a raw mode logical unit,
the data are acknowledged without any data stream analysis.

• Raw data blocks are retrieved with xlu2read and transmitted with
xlu2writ API function calls.

• The application program must control the sequencing of the raw data
blocks to form chains of blocks and/ or commands.

• Outbound raw data from the host are received and queued by API
internally; the queued data are provided to the user a segment at a
time with each xlu2read call.

• The application program must issue an xlu2read call periodically in
order not to overflow the internal queue of raw data from the host.
E_DOVFLO is returned in errapi if overflow occurs on the logical
unit while executing an API function call on a channel on which
overflow has occurred. Otherwise, E_DOVFLO is indicated in the
err _cond field of XL U2IBUF (see xlu2info) for the logical unit on
which data were lost.

Multi-Session
An API application can establish up to four sessions with one or more

hosts. This is done by making up to four xlu20pen calls and using the
returned value of lu_chan (the parameter that specifies the logical unit) in
subsequent API function calls.

In general, the value of lu_chan returned by an API call will be the same
as the called value. However, under certain circumstances, the called and
returned value may differ. All API calls, except xlu2init and xlu2open,
must be issued with an active lu_chan (i.e., one obtained from an xlu20pen
call). The call may return with an lu_chan different from the one used to
issue the call under the following conditions:

• Only xlu2read and xlu2dl with LUEVENT or LUEVIMED commands
can return successfully with a different lu_chan.

4-12 HLLAPI PROGRAMMER'S GUIDE

Application Development

o The xlu2read call returns with the lu_chan which has the oldest
queued data.

o An xlu2ctl call, with an LUEVIMED command which takes an
argument of KY _NMSG will, if any data are present, return with
the lu _chan which corresponds to a session that has the oldest
queued data.

o An xlu2ctl call, with an LUEVENT command which takes argu­
ments of KY_PEND or KY_WAIT, returns with the lu_chan that
first fulfills the request.

o An xlu2ctl call, with an LUEVENT command which takes argu­
ments of KY_ENTER, KY_CLEAR, KY_SYS_REQ, KY_PAn or
KY_PFn performs the requested function on the lu_chan input to
the call but returns to the application program with the lu _chan
that first achieves keyboard unlock.

• All other API calls will only return a different lu_chan on failure, and
the failure must be an E_TTY or E_CTRLIO error on the other chan­
nel.

o Before API will return a failure on a different lu _chan, it will first
validate all the parameters in the original call and, if the call
required interaction with the controller process, wait for the con­
troller process to acknowledge receipt of the call information

o An E_TTY or E_CTRLIO error on another channel does not neces­
sarily indicate failure of the call on the input channel.

Host Interaction
The user application program uses API function calls to perform screen

updates or host interactions. The API function terminates with a return
statement. Communication with the controller and/ or the host (by use of
xlu2open, xlu2ctl with an LUEVENT command, xlu2writ, xlu2read, or
xlu2clos functions) is conducted in a half-duplex manner, i.e., the API func­
tion that initiates the communication does not return control to the user
application program until the controller/host completes processing. In the
case of xlu20pen and xlu2ctl with an LUEVENT command, "keyboard
unlock" must also occur.

APPLICATION PROGRAM INTERFACE 4-13

Application Development

Keyboard unlock signifies that communication with the host is no
longer in progress. This is indicated by the disappearance of the WAIT
message displayed by the terminal emulation process, in the Operator Infor­
mation Area, during communication. It does not reflect the keyboard's
lock/unlock state due to an inhibit condition such as:

• an invalid operation (e.g., illegal function)

• field overflow

• bad key translation

• wrong screen location access

• non-numeric data entered into a numeric field

• keyboard disabled by the host

All the inhibit conditions listed above are cleared and true keyboard
unlock is achieved before returning control to the user.

It is not ensured that the requested API function has executed success­
fully if it results in an inhibit condition or a 480 program check error (see
Appendix E). For all conditions except the last (keyboard disabled), the API
call will fail with an error indicating the cause of the inhibit. If the key­
board is disabled by the host, the call will not fail for this condition. In this
case, the user must determine the occurrence of the inhibit by examining
:inhb_lck and opia in the XLU2IBUF structure for the session (see xlu2info).

For example, if the host disables the keyboard while an xlu2ctl call to
send the ENTER key is being processed, the user program may have to reis­
sue the same xlu2ctl call. Error messages for each API function call are
listed on the manual page for that call and summarized in the Appendices.

All xlu2ctl calls (except xlu2ctl with an LUEVIMED command) that per­
form functions resulting in interaction with the host or the controller wait
for "keyboard unlock" before returning to the application program.

The xlu2ctl call with an LUEVENT command, which takes arguments of
KY_NMSG, KY_PEND or KY_WAIT, wajts for its respective conditions to be
satisfied before returning. Therefore, the application program must be sen­
sitive to the state the lu _chan session is in before and after one of the above
xlu2ctl requests is executed. xlu2writ does not wait for keyboard unlock,
but it does wait for the controller to acknowledge the transmitted data.

4-14 HLLAPI PROGRAMMER'S GUIDE

Manual Pages

Introduction

MANUAL PAGES I

Introduction

All function calls are based on this common format:

• The NAME part provides the name of the function call.

• The SYNOPSIS part summarizes the use of the function call. The
following conventions apply:

D Boldface strings are literals and are to be typed just as they
appear

D Italic strings usually represent substitutable argument prototypes
and program names found elsewhere in the manual

D Square brackets [] around an argument prototype indicate that the
argument is optional. When an argument prototype is given as
'name' or 'file,' it always refers to a file name.

D Ellipses •.• are used to show that the previous argument prototype
may be repeated

D A final convention is used by the commands themselves. An
argument beginning with a minus -, plus +, or equal sign == is
often taken to be some sort of flag argument, even if it appears in
a position where a file name could appear. Therefore, it is
unwise to have files whose names begin with -, +, or ==.

• The DESCRIPTION part explains the function call at hand, and the
calling parameters.

• The SEE ALSO part gives you pointers to related information.

• The NOTES section points out important technical information
and/ or areas where you should exercise caution.

• The RETURN CODES section explains the returning parameters.

The HLLAPI and API function calls are organized alphabetically. All
HLLAPI function calls begin with H_ prefix, while all API function calls
begin with XLU2.

1 MANUAL PAGES

(AT&T 3270 Emulator+ HLLAPI)

NAME
h_chcur - change cursor position in presentation space

SYNOPSIS
#include <xhllapi.h>

int hllapi(func, data, length, position)
int ·func;
char ·data;
int ·length;
int ·position;

DESCRIPTION
h_chcur allows the application program to change the cursor position in the
current connected presentation space.

Calling arguments:
• func points to the symbolic H_CHCUR

• position points to the destination cursor position in the current con­
nected presentation space

• data and length are not applicable to h_chcur

SEE ALSO
h_qsys(3X).

RETURN VALUES

6/88

h_chcur returns one argument: a return code, defined in the <xhllapi.h>
header file. The return code is placed at the location pointed to by the position
calling argument, and is also returned as the function value for the h_chcur
call.

The return code for h_chcur will have one of these values:

HE_SUCCESS: h3hcur was successful

HE_INVAL:

HE_POS:

HE_SYSERR:

an invalid presentation space was specified

the specified presentation space position was invalid

a system error was encountered; call the h_qsys function
to find out the reason for failure

1

H_CONNECT(3X) (AT&T 3270 Emulator+ HLLAPI) H_ CONNECT(3X)

NAME
h_connect - connect presentation space

SYNOPSIS
#include <xhllapi.h>

int hllapi(func, data, length, position)
int *func;
char *data;
int *length;
int *position;

DESCRIPTION
h30nnect establishes a connection between your HLLAPI application program
and a specified presentation space. Your application program can only con­
nect to one presentation space at a time, even though there are four sessions
available to you.

If you issue two h_connect function calls in a row, an automatic disconnect
takes place before the second call is issued, and the first call is nullified even
if the second one fails.

You do not have to call h 30nnect before using these functions:

• h _setparms - set session parameters

• h_qsess - query session

h_wsctrl- WS Ctrl

• h_stman - storage manager

h_qsys - query system

h Jeset - reset system

h_qstatus - query session status

h_qhost - query host update

• h_startkey - start keystroke intercept

h ...,getkey - get key

• h-postint - post intercept status

h_stopkey - stop keystroke intercept

h_send - send file

.• hJecv - receive file

h_invoke - invoke UNIX system command or program

• hJedir - escape to the UNIX system

h_conv - convert position or RowCol

Calling arguments:

6/88

• func points to the symbolic H_CONNECT.

• data points to the short name of the target presentation space. The presen­
tation space short name is a capital letter from A through Z, and it is the

1

(AT&T 3270 Emulator+ HLLAPI) H_CONNECT(3X)

first field for the entry in the LUTABLE environment file that corresponds
to the target presentation space.

• length and position are not applicable to h_connect.

SEE ALSO

NOTES

h_setparms(3X), h_qsys(3X).

The parameters CONPHYS, CONLOG, DISPLAY and NODISPLA Y under
h _setparms affect connect.

If you specified the CONPHYS option with h _setparms, h _connect establishes a
physical connection with the requested presentation space and transfers con­
trol to the user at the terminal. If you specified the CONLOG option,
h _connect establishes a logical connection and the HLLAPI application pro­
gram will retain control.

DISPLAY allows the terminal user to view the results of your HLLAPI appli­
cation program during an h _connect function call (if you specified the CON­
LOG option, above), while NODISPLAY does not.

RETURN VALUES

2

h_conneci returns one argument: a return code, defined in the <xhllapi.h>
header file. The return code is placed at the location pointed to by the position
calling argument, and is also returned as the function value for the h_connect
call.

The return code for h_connect will have one of these values:

HE_INVAL:

HE_BUSY:

HE_INHBT:

HE_SYSERR:

h connect was successful, and the selected presentation
space is unlocked and ready for input

an invalid presentation space was specified

h _connect was successful, but the presentation space is
busy

h connect was successful, but the presentation space is
locked, i.e.l'input is inhibited

a system error was encountered; call the h_qsys function
to find out the reason for failure

This resource is unavailable, and the requested presenta­
tion space is in use by another session; try again later

6/88

H_ CONNINT(3X) (AT&T 3270 Emulator+ HLLAPI) H _ CONNINT(3X)

NAME
h_connint - connect and interact with presentation space

SYNOPSIS
#include <xhllapi.h>

int hllapi(func, data, length, position)
int "'func;
char "'data;
int "'length;
int "'position;

DESCRIPTION
h_connint connects your HLLAPI application program to the specified presen­
tation space in the same way that the h _connect would, and in addition, it
transfers control to the user without application program involvement. The
user can enter manual transactions interactively with the host session (e.g., a
logon sequence), until an escape sequence is entered at the keyboard (ESC FD,
unless customized in a different way). At this point, h_connint returns control
to the application program, and the instruction following the h_connint call
will be executed.

Calling arguments:
II func points to the symbolic H_CONNINT

II data points to the target presentation space short name. The presen­
tation space short name is a capital letter from A through Z, and it is
the first field for the entry in the LUTABLE environment file that
corresponds to the target presentation space.

• length and position are not applicable to h30nnint

SEE ALSO

NOTES

h _ qsys(3X).

h_connint is an AT&T 3270 Emulator+ HLLAPI extension; it is not part of the
IBM 3270 Personal Computer HLLAPI specification.

RETURN VALUES

6/88

h_connint returns one argument: a return code, defined in the <xhllapi.h>
header file. The return code is placed at the location pointed to by the position
calling argument, and is also returned as the function value for the h_connint
call.

The return code for h _connint will have one of these values:

HE_SUCCESS: h_connint was successful

HE_INVAL:

HE_SYSERR:

an invalid presentation space was specified

a system error was encountered; call the h_qsys function to
find out the reason for failure

1

H_CONV(3X) (AT&T 3270 Emulator+ HLLAPI) H_CONV(3X)

NAME
h_conv - convert position or row/column

SYNOPSIS
#inc1ude <xhllapi.h>

int hllapi(func, data, length, position)
int "'func;
char "'data;
int "'length;
int "'position;

DESCRIPTION
The h_conv function converts a presentation space positional value into the
display row / column coordinates, or the display row / column coordinates into
the presentation space positional value, without changing the cursor position.
h_conv takes into account the model number for the emulated host display
type, and the corresponding presentation space size, when it makes the
conversion.

Calling arguments:
• func points to the symbolic H_CONV.

• data points to the presentation space short name and "P" for convert
position, or to the presentation space short name and "R" for convert
row / column. The presentation space short name is a capital letter

. from A through Z, and it is the first field for the entry in the LUT-
ABLE environment file that corresponds to the target presentation
space.

• length points to the row in the presentation space.

• position points to the column in the presentation space.

SEE ALSO
h _ qsys(3X).

RETURN VALUES

6/88

h _conv returns two arguments:

• the first argument is the row number, or "0" for incorrect input. This
value is placed at the location pointed to by the length calling parameter.

• the second argument is a return code, defined in the <xhllapi.h> header
file. The return code is placed at the location pointed to by the position
calling argument, and is also returned as the function value for the
h _conv call. If you have established a common error handling routine,
be sure to take into account that the return code for h _conv is really a
status code.

The return code for h _conv will have one of these values:

HE_SUCCESS:

> HE_SUCCESS:

incorrect input was provided

PS position or column

1

HE_NOTPR:

2

(AT&T 3270 Emulator+ HLLAPI)

an invalid presentation space ID was specified, or­
the presentation space was never connected

the second character in the data string is not "P" or
"R"

6/88

H_COPY(3X) (AT&T 3270 Emulator+ HLLAPI)

NAME
h_copy - copy presentation space

SYNOPSIS
#include <xhllapi.h>

int hllapi(func, data, length, position)
int "'func;
char "'data;
int "'length;
int "'position;

DESCRIPTION
The h_copy function copies the contents of the current connected presentation
space into a data area, specified in your HLLAPI application program.

The h_copy function translates the characters in a host presentation space into
ASCII, and translates the attribute bytes and other characters not represented
in ASCII into blanks. You can specify to print the original character values by
using the ATTRB option under h_setparms (ATTRB - pass back all codes that do
not have an ASCII equivalent, except EABs, as their original values;
NOATTRB - change all unknown values to blanks).

Extended attribute bytes are not copied unless you have specified EAB with
h _setparms (EAB: pass the presentation space data with extended attribute
bytes; NOEAB: pass only data).

Calling arguments:
• tunc points to the symbolic H _COpy

• data points to the target area, which should be the size of the presen­
tation space that you want to copy

• length and position are not applicable to h _copy

SEE ALSO

NOTES

h_copypss(3X), h_qsys(3X), h_setparms(3X).

The target area for the copy must be twice the size of the presentation space if
extended attribute bytes will be copied.

If you want to copy a portion of a presentation space only, use h_copypss.

RETURN VALUES

6/88

h _copy returns two arguments:

• the first argument is the target area that contains the copied presentation
space. This area is placed at the location pointed to by the data calling
parameter.

• the second argument is a return code, defined in the <xhllapi.h> header
file. The return code is placed at the location pOinted to by the position
calling argument, and is also returned as the function value for the
h_copy call.

The return code for h _copy will have one of these values:

1

(AT&T 3270 Emulator+ HLLAPI)

HE_SUCCESS: the presentation space contents were copied to the loca­
tion specified by your application program; the target
presentation space was active, and the keyboard was
unlocked

HE _INV AL: the presentation space was not connected, and the copy
results are undefined

HE_BUSY: the presentation space contents were copied, and the
connected presentation space was waiting for host
response

HE _INHBT: the presentation space was copied, and the keyboard was
locked

HE_SYSERR: a system error was encountered; use h_qsys to find out
the reason for failure

2 6/88

(AT&T 3270 Emulator+ HLLAPI)

NAME
h_copypss - copy presentation space to string

SYNOPSIS
#include <xhllapi.h>

int hllapi(func, data, length, position)
int "'func;
char "'data;
int "'length;
int "'position;

DESCRIPTION
hJopypss copies all or part of the current connected presentation space into a
data area, previously defined in your HLLAPI application program.

The offset of the string into the presentation space is based on defining the
upper left corner (row 1, column 1) as location 1, and the bottom right corner
as the maximum screen size for the presentation space. The sum total of the
offset plus the string length, cannot exceed the maximum screen size for the
presentation space.

h_copypss translates the character(s) in a host presentation space into ASCII,
and the attribute bytes and other characters not represented in ASCII into
blanks. If you do not want the attribute bytes translated to blanks, you could
request that the original values be copied using the ATTRB option under
h _setparms.

Extended attribute bytes are not copied unless you specified EAB under
h _setparms.

Calling arguments:
• Junc points to the symbolic H_COPYPSS

• data points to the target data string

• length points to the length of data

• position points to the beginning offset of data

SEE ALSO

NOTES

h_qsys(3X), h_setparms(3X).

The sum value of the position offset + length cannot exceed the maximum
size of the presentation space.

RETURN VALUES

6/88

h_copypss returns one argument: a return code, defined in the <xhllapi.h>
header file. The return code is placed at the location pointed to by the position
calling argument, and is also returned as the function value for the h_copypss
call.

The return code for h_copypss will have one of these values:

HE_SUCCESS: the presentation space contents were copied to the appli­
cation program, the target presentation space was active,
and the keyboard was unlocked

1

HE_PARM:

HE_BUSY:

HE_INHBT:

HE_POS:

HE_SYSERR:

2

(AT&T 3270 Emulator+ HLLAPI)

your HLLAPI program was not connected to a presenta­
tion space, and the copy results are undefined

an error was made in specifying the string length

the presentation space contents were copied, and the
connected presentation space was waiting for host
response

the presentation space was copied, and the keyboard was
locked

the specified presentation space position is invalid

a system error was encountered; call the h_qsys function
to find out the reason for failure

6/88

H _ CPFIELD(3X) (AT&T 3270 Emulator+ HLLAPI) H_CPFIELD(3X)

NAME
h_cpfield - copy field to string

SYNOPSIS
#include <xhllapi.h>

int hllapi(func, data, length, position)
int "'func;
char "'data;
int "'length;
int "'position;

DESCRIPTION
The h_cpfield function transfers characters from a field within the current con­
nected presentation space into a string. You can use hJndpos to find the posi­
tion of the source field, and h Jndlen to find its length.

You can use h_cpfield with both protected or unprotected fields in a field­
formatted presentation space, i.e., a host presentation space.

The h_cpfield function ends when one of the following conditions are met:

when it reaches the end of the source field

• when it exceeds the length of the target string

• when it reaches the end of the presentation space

Calling arguments:
• func points to the symbolic H _ CPFIELD

• data points to the target data string

• length points to the length of the value pointed to by data

• position points to the position of the source field in the presentation
space that will be copied

SEE ALSO

NOTES

hjndlen(3X), h_fndpos(3X), h_qsys(3X).

No forward wrapping will occur, but there will be backwards wrapping if the
given position is located before the start of a field in the presentation space.

RETURN VALUES

6/88

h_cpfield returns one argument: a return code, defined in the <xhllapi.h>
header file. The return code is placed at the location pointed to by the position
calling argument, and is also returned as the function value for the h_cpfield
call.

The return code for h_cpfield will have one of these values:

HE_SUCCESS: h_cpfield was successful

an invalid presentation space was specified; i.e., it was
not connected, not configured, or it was labeled with an
invalid name

1

H _ CPFIELD(3X) (AT&T 3270 Emulator+ HLLAPI)

HE_P ARM: a parameter error was encountered

HE_LENGTH: the data to be copied and the target string were not the
same size. The data may not have been truncated
because the string length may have been larger than the
field copied

HE_POS: the specified presentation space position is invalid

HE_SYSERR: a system error was encountered; call the h_qsys function
to find out the reason for failure

2 6/88

(AT&T 3270 Emulator+ HLLAPI)

NAME
h_cpoia - copy OIA

'SYNOPSIS
#include <xhllapi.h>

int hllapi(func, data, length, position)
int "'func;
struct cpoia "data;
int "length;
int "position;

DESCRIPTION
h_cpoia returns the operator information area (OIA) data from the current con­
nected presentation. The OIA data provides information about the status of
your work station and the IBM host computer.

Calling arguments:

6/88

• Junc points to the symbolic H_CPOIA

• data points to a structure of type cpoia, where the information
returned by h _cpoia will be placed. cpoia is defined in the
<xhllapi.h> header file as follows:

typedef unsigned char uchar;

/ '" Copy OIA data string '" /

typedef struct (
char cp _format;
char cp _image[80];

/ '" OIA Indicator Group '" /

/ '" OIA Format byte '" /
/ '" OIA Image Group '" /

/'" Group 1: On-line and screen ownership'" /

define SETUP
#define TEST
#define SSCPOWN
#define LUOWN
#define UN OWN
#define READY

uchar group _1;

Ox80
Ox40
Ox20
Ox10
Ox08
Ox04

/ '" Setup mode '" /
/'" Test mode "'/
/ '" SSCP-LU session owns screen'" /
/ '" LU-LU session owns screen'" /
/ '" Online and not owned '" /
/'" Subsystem ready'" /

/'" Group 2: Character selection'" /

#define EXTEND Ox80; / '" Extended Select '" /
#define APL Ox40;
#define KANA Ox20;
#define ALPHA Ox10;
#define TEXT Ox08;

uchar group~;

1

H_CPOIA(3X)

2

(AT&T 3270 Emulator+ HLLAPI) H_CPOIA(3X)

'''' Group 3: Shift state ""

#define NUMERIC Ox80;
#define SHIFT Ox40;

uchar group _3;

'''' Group 4: PSS group 1 ""

'''' Numeric Shift ""
'''' Upper Shift ""

'''' Group 5: Highlight group 1 ""
'''' Group 6: Color group 1 ""

#define SELECT Ox80;
#define INHERIT Ox40;

uchar group _4;
uchar group _5;
uchar group_6;

'''' Group 7: Insert ""

#define INSERT Ox80;
uchar group_7;

'''' Group 8: Input inhibited ""

'''' Group 8: Byte 1 ""

#define CHECK Ox80;
#define KEY Ox40;
#define MACHINE Ox20;
#define COMM OxlO;
#define PROGRAM Ox08;
#define RETRY Ox04;
#define NWORKING Ox02;
#define VBUSY OxOl;

'''' Group 8: Byte 2 ""

#define BUSY
#define WAIT
#define SYMBOL
#define FUNCTION
#define TOOMUCH
#define NENOUGH
#define WRONG
#define NUMBER

Ox80;
Ox40;
Ox20;
OxlO;
Ox08;
Ox04;
Ox02;
OxOl;

'''' Group 8: Byte 3 ""

#define UNAUTH Ox40;

'''' Operator Selectable ""
'''' Field Inherit ""

'''' Insert mode ""

'''' Non-resettable machine check ""
'''' Reserved for security key""
'''' Machine Check ""
'''' Communications Check ""
'''' Program check ""

'''' Device not working ""
'''' Device very busy ""

'''' Terminal busy""
'''' Terminal wait ""
'''' Minus symbol ""
'''' Minus function ""
'''' Too much entered ""
'''' Not enough entered ""
'''' Wrong number ""
'''' Numeric field ""

'''' Operator unauthorized ""

6/88

6,88

(AT&T 3270 Emulator+ HLLAPI)

#define UNAUTHM Ox20; '''' Operator unauthorized ""
'''' minus function ""

#define IDEAD Oxl0; '''' Invalid dead key combination ""
#define WPLACE Ox08; '''' Wrong placed ""

'''' Group 8: Byte 4 ""

#define PENDING
#define PARTITION
#define SYSTEM
#define MISMATCH
#define NCONFIG

Ox80; '''' Message pending ""
Ox40; '''' Partition wait ""
Ox20; '''' System wait ""
Oxl0; '''' Hardware mismatch ""
Ox08; '''' Logical unit not configured ""
'''' at control unit ""

'''' Group 8: Byte 5 ""

#define AUTO KEY
#define INPUT

OX80i '''' Autokey inhibit '" ,
OX40i '''' Application program has ""
'''' operator input inhibited ""

uchar group _8[5];

'''' Group 9: PSS Group 2 ""
'''' Group 10: Highlight Group 2 ""
'''' Group 11: Color Group 2 '" /

#define SELECT Ox80; '''' Selected '" /
#define DISABLE Ox40; '''' Display disabled (Group 9 only) '"

uchar group _9;
uchar group _10;
uchar group _11;

'''' Group 12: Commu~ications error reminder ""

#define ERROR Ox80;
#define MONITOR

uchar group _12;

'''' Group 13: Printer status ""

#define CUSTOM Ox80;
#define MALFUNC Ox40;
#define PRINTING Ox20;
#define ASSIGN Oxl0;
#define WHAT Ox08;
#define PRINTER Ox04;

uchar group_13;

'''' Communications error ""
Ox40;'''' Response time monitor ""

'''' Printer code not customized ""
'''' Printer malfunction ""
'''' Printer printing .. ,
'''' Assign printer '" /
'''' What printer '" /
'''' Printer assignment ""

3

H_CPOIA(3X)

SEE ALSO

(AT&T 3270 Emulator+ HLLAPI)

/* Group 14 & 15: Reserved * /

uchar
uchar

group_14;
group_IS;

/ * Group 16: Autokey play / record status * /

#define PLAY Ox80;
#define RECORD Ox40;

uchar group_16;

/* Group 17: Autokey abort/pause state * /

H_CPOIA(3X)

#define OVERFLOW Ox80;
#define PAUSE Ox40;

uchar group_17;

/ * Recording overflow * /

/ * Group 18: Enlarge state * /

#define ENLARGE Ox80;
uchar group _18;

} cpoia;

/ * Window is enlarged * /

• length points to the length of the location pointed to by data

• position is not applicable to h_cpoia

h _ qsys(3X).

RETURN VALUES

4

h _cpoia returns two arguments:

• the first argument is the information described by the structure of
type cpoia, placed at the location pointed to by the data calling
parameter. The members' of the cpoia structure describe the follow­
ing:

cp_format:

cp Jmage[80]:

alA format byte for the 3270 PC

alA image in host code points, with no extended
attribute types.

• the second argument is a return code, defined in the <xhllapi.h>
header file. The return code is placed at the location pointed to by
the position calling argument, and is also returned as the function
value for the h_cpoia call.

The return code for h_cpoia will have one of these values:

HE_SUCCESS: the target presentation space is unlocked, and the
alA data was successfully returned

6/88

(AT&T 3270 Emulator+ HLLAPI)

HE_INVAL: the target presentation space is not connected

HE_PARM: an error was made when specifying the string
length, and the alA data was not returned

HE_BUSY: the target presentation space is busy, but the alA
data was returned

HE_INHBT: the target presentation space is locked, but the alA
data was returned

HE_SYSERR: a system error was encountered; use h_qsys to find
out the reason for failure

6/88 5

(AT&T 3270 Emulator+ HLLAPI) H _ CPSTR(3X)

NAME
h_cpstr - copy string to presentation space

SYNOPSIS
#include <xhllapi.h>

int hllapi(func, data, length, position)
int "'func;
char "'data;
int "'length;
int "'position;

DESCRIPTION
h_cpstr copies an ASCII data string directly into the current connected presen­
tation space, at the location specified by the position calling parameter. The
function continues until the data reaches the named calling string length, or
until the data reaches a non-autos kip attribute byte (an unprotected, non­
numeric field that does not force the cursor into the next alphanumeric
unprotected field). The physical location of the cursor will remain unchanged
once the copy is complete.

The string length is assigned by either:

an explicit length value (if you selected the default value STRLEN
using h_setparms), or

an ending string delimiter EOT=n (if you selected STREOT using
h _setparms).

The input string should contain the appropriate extended attribute bytes fol­
lowing each ASCII character if extended attribute bytes were specified using
the EAB parameter under h _setparms.

Calling arguments:
• tunc points to the symbolic H _ CPSTR

• data points to the ASCII string to be copied into the presentation
space

• length points to the length of the location pointed to by data

• position points to the position in the presentation space where the
copy will begin, between 1 and the maximum screen size for the
presentation space

SEE ALSO

NOTES

6/88

h_qcur(3X), h_qsys(3X), h_setparms(3X).

If you want to place ,the string data at a specific cursor location, use h_qcur
first to obtain the presentation space position of the cursor, and then place
this value in the presentation space position calling parameter.

The string to be copied can be no larger than 1920 characters (3840 if you are
copying extended attribute bytes also) for Model 2, and 3564 characters (7128
if you are copying extended attribute bytes) for Model 5.

1

(AT&T 3270 Emulator+ HLLAPI)

RETURN VALUES
h_cpstr returns one argument: a return code, defined in the <xhllapi.h>
header file. The return 1:ode is placed at the location pointed to by the position
calling argument, and is also returned as the function value for the h_cpstr
call.

The return code for h_cpstr will have one of these values:

HE_SUCCESS: h_cpstr was successful

HE_INHBT: the target presentation space is protected or inhibited, or
illegal data was sent to target presentation space (such as
a field attribute byte)

HE_LENGTH: the copy was completed, but the data was truncated

HE_POS: the specified presentation space position is invalid

HE_SYSERR: a system error was encountered; call the h_qsys function
to find out the reason for failure

2 6/88

(AT&T 3270 Emulator+ HLLAPI)

NAME
h_cpstrf - copy string to field

SYNOPSIS
#include <xhllapi.h>

int hllapi(func, data, length, position)
int "func;
char "data;
int "length;
int "position;

DESCRIPTION
The h_cpstrf functions transfers a string of characters into a target field in the
current connected presentation space. This function can be used with both
protected or unprotected fields in a field-formatted presentation space, i.e., a
host presentation space.

The calling data string parameter specifies the string that will be transferred;
there is no wrapping during the process, and it ends when one of these four
conditions is encountered:

an EOT is reached, if EOT mode was selected using h _setparms

• the length of the string is reached

an end of field is encountered

the end of the presentation space is reached

Calling arguments:
• func points to the symbolic H _ CPSTRF

• data points to the string containing the data to be transferred to a tar­
get field within the last connected presentation space

• length points to the length of the location pointed to by data.

• position points to the position of the target copy field

SEE ALSO

NOTES

h_chcur(3X), h_qsys(3X), h_sendkey(3X), h_setparms(3X).

The combined h _chcur and h _sendkey function calls will return control to your
HLLAPI application program sooner than if you use h_cpstrf; use this combi­
nation if response time is an important factor.

RETURN VALUES

6/88

h_cpstrf returns one argument: a return code, defined in the <xhllapi.h>
header file. The return code is placed at the location pointed to by the position
calling argument, and is also returned as the function value for the h_cpstrf
call.

The return code for h3pstrf will have one of these values:

HE_SUCCESS: h_cpstrf was successful

1

H _ CPSTRF(3X) (AT&T 3270 Emulator+ HLLAPI) H_CPSTRF(3X)

HE_INHBT: the target field was protected or inhibited, or illegal data
was sent to the target field (such as a field attribute
style)

HE_LENGTH: copy was completed, but data was truncated

HE_POS: the specified presentation space position is invalid

HE_SYSERR: a system error was encountered; call the h_qsys function
to find out the reason for failure

2 6/88

"_DISC(3X) (AT&T 3270 Emulator+ "LLAPI) "_DISC(3X)

NAME
h_disc - disconnect presentation space

SYNOPSIS
#include <xhllapi.h>

int hllapi(func, data, length, position)
int ·func;
char ·data;
int ·length;
int ·position;

DESCRIPTION
h_disc drops the connection between your HLLAPI application program and
the current connected presentation space.

Calling arguments:
• func points to the symbolic H_DISC

• data, length, and position are not applicable to h_disc

SEE ALSO
h_qsys(3X).

RETURN VALUES
h_disc returns one argument: a return code, defined in the <xhllapi.h> header
file. The return code is placed at the location pointed to by the position calling
argument, and is also returned as the function value for the h_disc call.

The return code for h_disc will have one of these values:

HE_SUCCESS: h_disc was successful

HE_INV AL: you are not currently connected to any presentation
space

HE_SYSERR: a system error was encountered; call h_qsess to find out
the reason for failure

6/88 1

H_FNDLEN(3X) (AT&T 3270 Emulator+ HLLAPI) H_FNDLEN(3X)

NAME
h_fndlen - find field length

SYNOPSIS
#include <xhllapi.h>

int hllapi(func, data, length, position)
int "func;
char "data;
int "length;
int "position;

DESCRIPTION
The hJndlen functions returns the length of a target field in the current con­
nected presentation space. This function can be used to find both protected
or unprotected fields in a field-formatted presentation space, i.e., a host
presentation space.

Calling arguments:
• June points to the symbolic H_FNDLEN

• data points to a two-character calling data string containing:

two blanks, "T " or "t ":

"P" or "p ":

"N" or"n ":

"NP" or "np":

"NU" or "nu":

"PP" or "pp":

this field

the previous protected or unprotected field

the next protected or unprotected field

the next protected field

the next unprotected field

the previous protected field

"Pun or "pu": the previous unprotected field

• length is not applicable to hJndlen (2 is implied)

• position points to the position within the presentation space where
the h Jndlen function will start

SEE ALSO

NOTES

h _ qsys(3X).

hJndlen returns the number of characters contained in the returned data
string, including all characters from the beginning of the target field up to
either the character preceding the next attribute byte, or the end of the
presentation space.

RETURN VALUES

6/88

hJndlen returns two arguments:

• the first argument is the length of the requested field, not including the
attribute byte. This value is placed at the location pointed to by the
length calling parameter.

1

(AT&T 3270 Emulator+ HLLAPI)

• the second argument is a return code, defined in the <xhllapi.h> header
file. The return code is placed at the location pointed to by the position
calling argument, and is also returned as the function value for the
h Jndlen call.

The return code for h Jndlen will have one of these values:

HE_SUCCESS: hJndlen was successful

HE JNV AL: your programmed operator was not connected to the
desired presentation space

HE_PARM: a parameter error was encountered

HEyOS: the specified presentation space position is invalid

HE_SYSERR: a system error was encountered; call the h_qsys function
to find out the reason for failure

HE_NOFIELD: no such field was found

2 6/88

(AT&T 3270 Emulator+ HLLAPI)

NAME
h_fndpos - find field position

SYNOPSIS
#include <;<hllapi.h>

int hllapi(func, data, length, position)
int "'funci
char "'data;
int "'length;
int "'position;

DESCRIPTION
hJndpos returns the beginning position of a target field in the current con­
nected presentation space. This function can be used to find both protected
or unprotected fields in a field-formatted host presentation space.

Calling arguments:
• tunc points to the symbolic H_FNDPOS

• data points to a two-character. data string containing:

two blanks, "T ", or "t ":

"P II or "p ":

liN" or lin ":

"np""NP" or:

"nu""NU" or :

"pp""PP II or :

this field

the previous protected or unprotected field

the next protected or unprotected field

the next protected field

the next unprotected field

the previous protected field

"pU""PU" or : the previous unprotected field

• length is not applicable to hJndpos (2 is implied)

• position points to the position within the field, relative to the origin
of the presentation space, at which hJndpos will start

SEE ALSO
h_qsys(3X).

RETURN VALUES

6/88

hJndpos returns two arguments:

• the first argument is the the position of the requested field, relative
to the origin of the presentation space; the origin of the presentation
space is defined to be the first position after the attribute byte. This
value is placed in the location pointed to by the length calling param­
eter. This value is placed at the location pointed to by the length cal­
ling parameter.

• the second argument is a return code, defined in the <xhllapi.h>
header file. The return code is placed at the location pointed to by
the position calling argument, and is also returned as the function
value for the h Jndpos call.

1

H_FNDPOS(3X) (AT&T 3270 Emulator+ HLLAPI) H_FNDPOS(3X)

The return code for hJndpos will have one of these values:

HE_SUCCESS: hJndpos was successful

HE _INV AL: your programmed operator was not connected to a
valid presentation space

HE_PARM: a parameter error was encountered

HE_POS: the specified presentation space position is invalid

HE_SYSERR: a system error was encountered; call the h_qsys
function to find out the reason for failure

2 6/88

H_GETKEY(3X) (AT&T 3270 Emulator+ HLLAPI) H_GETKEY(3X)

NAME
h ~etkey - get key

SYNOPSIS
#include <xhllapi.h>

int hllapi(func, data, length, position)
int "'func;
struct get_key "'data;
int "'length;
int "'position;

DESCRIPTION
. Your HLLAPI application program can retrieve keystrokes from sessions
specified by the h_startkey function call and process them by using h~etkey.
Keystrokes entered by the terminal user arrive asynchronously, and are
queued in the keystroke buffer that you provided in your application program
with h_startkey.

You can use h_sendkey to the original keystrokes, and any others that your
application program needs to pass to the target presentation space.

The CapsLock key has the same effect as the host shift lock key; i.e., pressing
CapsLock will produce the upper case of all keys, not just of the alphabetic
keys.

After the terminal user returns control to your HLLAPI application program,
repeated calls to the h~etkey function will empty out the buffer of previously
stored keystrokes.

Calling arguments:

6/88

• tunc points to the symbolic H_GETKEY

• data points to a structure of type get_key, defined in the <xhllapi.h>
header file as shown below:

typedef struct {
char gk_psid; 1* Presentation Space ID *1
char gk_option; 1* Option code character *1
char gk_buffer[4];

} get_key;

The members of this structure must all be specified in the calling
function. They describe the following:

gk-psid: presentation space short name

gk_option: option code character position

gk_buffer[4~ 4 byte address of the buffer space that will be used
internally, allocated with h_stman's "Get Storage"
option.

• length and position are not applicable to h ~etkey

1

H_GETKEY(3X) (AT&T 3270 Emulator+ HLLAPI)

SEE ALSO
h _ qsys(3X), h _sendkey(3X), h _setparms(3X), h _startkey(3X).

RETURN VALUES
h ..$etkey returns two arguments:

• the first argument is the structure of type get_key mentioned previ­
ously, describing the following information:

gk-psid: presentation space short name

gk_option: an option code: "A" for ASCII returned (the sym­
bolic name is GK_ASCII); "M" for keystroke
mnemonic (the symbolic name is GK_MNEM); or S
for special shift "(Alt/Ctrl) returned with other data
(the symbolic name is GK_SHIFT)

gk_buffeI{4]: the 4 bytes of buffer space that will be used inter­
nally for enqueuing and dequeuing keystrokes;
bytes 3 and 4 contain ASCII plus X'OO', or @ or
ESC = n character plus keystroke mnemonic; bytes
5 and 6 may be similar to bytes 3 and 4, or may be
set to 0

This information is placed at the location pointed to by the data calling
argument .

• the second argument is a return code, defined in the <xhllapi.h>
header file. The return code is placed at the location pointed to by
the position calling argument, and is also returned as the function
value for the h..$etkey call.

The return code for h..$etkey will have one of these values:

HE_SUCCESS: h..$etkey was successful

HE_INVAL: an invalid presentation space was specified

HE_INHBT: you specified the "AID only" option under the
h_startkey function call, and non-AID keys are inhi­
bited by this session type when HLLAPI tries to
write invalid keys to the presentation spa.ce

HE_PROC: no prior h_startkey was called for this presentation
space

HE_SYSERR: a system error was encountered, call the h_qsys
function to find out the reason for failure

HE_NOKEYS: the keystrokes requested are not available on the
input queue

2 6/88

(AT&T 3270 Emulator+ HLLAPI)

NAME
h_invoke - invoke UNIX System

SYNOPSIS
#include <xhllapi.h>

int hllapi(func, data, length, position)
int "'func;
char "'data;
int "'length;
int "'position;

DESCRIPTION
The hjnvoke function call allows your appl~cation program (parent applica­
tion) to invoke a UNIX System program or command(s). The calling data
string parameter contains the entire UNIX System command line. Once the
process is complete, control is returned to your application program and the
resulting data, if any, is placed into the application program portion following
the h jnvoke function call.

Calling arguments:
• tunc points to the symbolic H_INVOKE

• data points to the string containing the command line for the UNIX
command(s) or program

• length points to the length of the location pointed to by data

• position is not applicable to hjnvoke

SEE ALSO
h _ qsys(3X).

RETURN VALUES

6/88

hjnvoke returns one argument: a return code, defined in the <xhllapi.h>
header file. The return code is placed at the location pointed to by the position
calling argument, and is also returned as the function value for the h jnvoke
call.

The return code for hjnvoke will have one of these values:

HE_FNUM:

HE_NOENT:

HE_ACCESS:

HE_MEM:

HE_ENV:

HE_FORM:

an invalid function number was specified

file not found

access denied

insufficient memory

invalid environment

invalid format

1

(AT&T 3270 Emulator+ HLLAPI)

NAME
h -pause - pause

SYNOPSIS
#include <xhllapi.h>

int hllapi(func, data, length, position)
int "'func;
char "'data;
int "'length;
int "'position;

DESCRIPTION
hyause waits for a specified amount of time, and should be used in place of
"timing loops" to wait for an event to occur. A host event may end a hyause,
if a prior call was made to h_strthost.

h yause should not be used for:

tasks with long durations

timing out tasks until system response time is better (4:00am, for
example), and then begin an event

• applications that require a high-resolution timer; use an alternate tim-
ing method, since the interval created by h yause is approximate

When your application program calls hyause, the length of the pause is
affected by the FPAUSE and IPAUSE parameters in h_setparms. You must use
h_qhost to obtain information on the type of update (presentation space and/or
OIA) and the host, once a host event satisfies a pause, before the next hyause.
If your application program uses the IP AUSE option, the pending event will
continue to satisfy a hyause until h_qhost returns.

Calling arguments:

SEE ALSO

• func points to the symbolic H_PAUSE

• length points to the pause duration in half-second increments; a prac­
tical maximum value is 7200

• data and position are not applicable to h yause

h_qhost(3X), h_qsys(3X), h_setparms(3X).

RETURN VALUES
hyause returns one argument: a return code, defined in the <xhllapi.h>
header file. The return code is placed at the location pointed to by the position
calling argument, and is also returned as the function value for the h yause
call.

The return code for hyause will have one of these values:

HE_SUCCESS: the pause duration has expired

HE_SYSERR: a system error was encountered; use h_qsys to find out
the reason for failure

6/88 1

(AT&T 3270 Emulator+ HLLAPI)

HE_UPDATE: a host session presentation space or OIA has been
updated; use h_qhost for more information

2 6/88

H _ POSTINT(3X) (AT&T 3270 Emulator+ HLLAPI) H_POSTINT(3X)

NAME
h yostint - post intercept status

SYNOPSIS
#include <xhUapi.h>

int hllapi(func, data, length, position)
int "func;
struct postJntercept "data;
int "length;
int "position;

DESCRIPTION
h yostint informs the 3270 PC Control Program that a keystroke obtained
using h -Eetkey was accepted.

Your HLLAPI application program does not run at the same time that the ter­
minal user enters keystrokes, and therefore, this function cannot reject any of
the keystrokes before they go to the host. However, you can issue the
hyostint function call, and the return code will be set to HE_SUCCESS if no
error conditions are present.

Calling arguments:
• junc points to the symbolic H_POSTINT.

• data points to a structure of type postJntercept, defined in the
<xhllapi.h> header file as follows:

typede£ struct {
char pi_psid; 1* Presentation Space ID *1
char pi_option; 1* Option code *1

post_intercept;

The members of post_intercept describe the following information:

piysid: short name of the presentation space

pi_option: "A" for accepted keystroke (the symbolic name is
PI_ACCEPT), or a "R" for rejected keystroke (the
symbolic name is PI_REJECT)

• length and position are not applicable to hyostint

SEE ALSO
h-8etkey(3X), h_qsys(3X).

RETURN VALUES

6/88

hyostint returns one argument: a return code, defined in the <xhllapi.h>
header file. The return code is placed at the location pointed to by the position
calling argument, and is also returned as the function value for the h yostint
call.

The return code for h yostint will have one of these values:

HE_SUCCESS: hyostint was successful

1

(AT&T 3270 Emulator+ HLLAPI)

HE _INV AL: an invalid presentation space was specified, one that was
not connected, configured, or that was labeled with an
invalid name

HE_PARM: an invalid session option was specified

HE_PROC: no prior h_startkey was called for this presentation space
ID

HE_SYSERR: a system error was encountered; use h_qsys to find out
the reason for failure

2 6/88

(AT&T 3270 Emulator+ HLLAPI)

NAME
h_qattr - query field attribute

SYNOPSIS
#include <xhllapi.h>

int hllapi(func, data, length, position)
int ·func;
char ·data;
int ·length;
int ·position;

DESCRIPTION
h_qattr returns the attribute byte of the field containing the presentation space
position in the current connected presentation space, ignoring extended attri­
bute bytes (EABs).

Calling arguments:
• Junc points to the symbolic H_QATTR

• data and length are not applicable to h_qattr

• position points to the position in the current connected presentation
space (1 through 1920)

SEE ALSO
h_qsys(3X).

NOTES
Attribute byte values must be greater than X'CO'.

RETURN VALUES
h_qattr returns two arguments:

• the first argument is the attribute value of the field containing the
presentation space position in the current connected presentation
space, or 0 if the screen is unformatted. This argument is placed at
the location pointed to by the length calling parameter.

• the second argument is a returned code, defined in the <xhllapi.h>
header file. The return code is placed at the location pointed to by
the position calling argument, and is also returned as the function
value for the h_qattr call.

The return code for h_qattr will have one of these values:

HE_SUCCESS: h_qattr was successful

HE _ INV AL: your programmed operator was not connected to ·a
host

HE_paS: the specified presentation space position is invalid

HE_SYSERR: a system error was encountered; call the h_qsys
function to find out the reason for failure

6/88 1

H_QCUR(3X) (AT&T 3270 Emulator+ HLLAPI)

NAME
h_qcur - query cursor location

SYNOPSIS
#inc1ude <xhllapi.h>

int hllapi(func, data, length, position)
int "'func;
char "'data;
int "'length;
int "'position;

DESCRIPTION
The h_qcur function shows the position of the cursor in the current connected
presentation space. The position of the cursor will be returned as follows:

• if you specified OLD RET with h _setparms, the cursor position will be
placed at the location pointed to by the position calling argument

• if you specified NEWRET with h_setparms, the cursor position will be
placed at the location pointed to by the length calling argument

You must be connected to the desired presentation space before you can call
h_qcur.

Calling arguments:
• June points to the symbolic H_QCUR

• data, length, and position are not applicable to h_qcur. However, you
must pass pointers to these locations as arguments to h_qcur.

SEE ALSO
h _ qsys(3X), h _setparms(3X).

RETURN VALUES

6/88

h_qcur returns two arguments:

• the first argument is the cursor position. If you specified OLD RET
with h_setparms, this argument is placed at the location pointed to by
the position calling argument. If you specified NEWRET with
h _setparms, the cursor position is placed at the location pointed to by
the length calling argument.

• the second argument is a return code, defined in the <xhllapi.h>
header file. If you specified OLDRET with h_setparms, the return code
is returned as the function value for the h_qcur call. If you specified
NEWRET with h _setparms, the return code is placed at the location
pointed to by the position calling argument, and is also returned as
the function value for the h_qcur call.

The return code for h_qcur will have one of these values:

HE_SUCCESS: h_qcur was successful

HE_INVAL:

HE_SYSERR:

the desired presentation space was not connected

a system error was encountered; use h_qsys to find
out the reason for failure

1

(AT&T 3270 Emulator+ HLLAPI) H_QHOST(3X)

NAME
h _ qhost - query host update

SYNOPSIS
#inc1ude <xhllapi.h>

int hllapi(func, data, length, position)
int ·func;
char ·data;
int ·length;
int ·position;

DESCRIPTION
h_qhost lets the programmed operator determine if the host has updated the
presentation space and/ or the OIA, with real data sent from the host, since
the last time this request was made. The target presentation space must be
specified in the data string, but you don't need to be connected to a given
host presentation space to check for updates. Your application program must
call h_strthost before using h_qhost.

Calling arguments:

SEE ALSO

• june points to the symbolic H_QHOST.

• data points to the target presentation space short name. The presen­
tation space short name is a capital letter from A through Z, and it is
the first field for the entry in the LUTABLE environment file that
corresponds to the target presentation space.

• length and position are not applicable to h_qhost

h _ qsys(3X), h _strthost(3X).

RETURN VALUES
h_qhost returns one argument: a return code, defined in the <xhllapi.h>
header file. The return code is placed at the location pointed to by the position
calling argument, and is also returned as the function value for the h_qhost
call.

The return code for h_qhost will have one of these values:

HE_SUCCESS: no updates have been made since the last call

HE_INVAL: an invalid presentation space was specified, one that was
labeled with an invalid name

HE_PROC: no prior h_strthost function was called for this presenta­
tion space ID

HE_SYSERR: a system error was encountered; use h._qsys to find out
the reason for failure

HE_OIA: the OIA was updated

HE_PRES: the presentation space was updated

HE_BOTH: both OIA and presentation space were updated

6/88 1

H_QSESS(3X) (AT&T 3270 Emulator+ HLLAPI) H_QSESS(3X)

NAME
h _ qsess - query sessions

SYNOPSIS
#include <xhllapi.h>

int hllapi(func, data, length, position)
int "'tunc;
struct 'Lsessions_data "'data;
int "'length;
int "'position;

DESCRIPTION
h_qsess returns the session short name, long name, type, and the presentation
space size for as many presentation spaces as the size of the data calling argu­
ment can accommodate. This size is specified by the length calling argument.

Calling arguments:
• tunc points to the symbolic H _ QSESS.

• data points to a structure of type q_sessioD_data. This structure is
defined in the <xhllapi.h header file as follows:

1* Query Sessions data string *1

typede£ struct {
char qe_psid;

char qe_stype;
short qe_size;

} q_sessions_data;

1* Short name *1
1* of session *1
1* Long name *1
1* of session *1
1* Session Type *1
1* PS Size *1

• length points to the length of the location pointed to by data.

• position is not applicable to h_qsess.

SEE ALSO
h_qsys(3X).

RETURN VALUES

6/88

h_qsess returns two arguments:

• the first argument points to a data string structure of type
'Lsession_data that contains the session short name, long name, type
(host) and the presentation space size. This information is placed at
the location pointed to by the data calling parameter.

• the second argument is a return code, defined in the <xhllapi.h>
header file. The return code is placed at the location pointed to by
the position calling argument, and is also returned as the function
value for the h_qsess call.

1

(AT&T 3270 Emulator+ HLLAPI)

The return code for h_qsess will have o~e of these values:

HE_SUCCESS: h_qsess was successful

HE_PARM: an improper string size was specified; the string is
too small, and the ability to verify the string size is
language dependent (as with other functions)

HE_SYSERR: a system error was encountered

2 6/88

H_QSTATUS(3X) (AT&T 3270 Emulator+ HLLAPI) H _QST ATUS(3X)

NAME
h_qstatus - query session status

SYNOPSIS
#include <xhllapi.h>

int hllapi(func, data, length, position)
int "'func;
struct q_status_data "'data;
int "'length;
int "'position;

DESCRIPTION
h_qstatus provides your application program with session-specific information.
The you need to specify the session short name in the calling data parameter,
and the requested session information will be returned in the structure
pointed to by data.

The session information provided is the session long name, the session type
('H', for HOST only), the session characteristics, whether the session has base
attributes or extended attributes, whether the session supports programmed
symbols, and if your application program is a well-bahaved one (through PIF
status information).

Calling arguments:

6/88

• tunc points to the symbolic H_QSTATUS.

• data points to a structure of type ,!-status_data, defined in the
<xhllapi.h> header file as follows:

1* Query Session Status data string *1

typedef struct {
char qt_psid;
char qt_lname[LONG_NAME];
char qt_stype;
char qt_schars;

1*
1*
1*
1*
1*

Short name *1
Long name *1
Session type *1
Session *1

Characteristics
short qt_rows; 1* Rows in presen- *1

short qt_cols;
char qt_pifstat[2];
char qt_resetved;

} q_status_data;

1*
1*
1*
1*

tation space *1
Columns in PS *1
PIF Status *1
Reserved *1

The members of the ,!-status_data structure describe the following
information:

qt-psid:

qt_Iname:

qt_stype:

presentation space short name

presentation space long name

session typ'e ('H' only)

1

*1

H_QSTATUS(3X) (AT&T 3270 Emulator+ HLLAPI) H_QSTATUS(3X)

sessions characteristics byte:

SC EAB: the session has extended attributes
SC=PSS: the session supports programmed symbols

qt_rows:

qt_cols:

qt...,pifstat:

qt_reserved:

rows in the presentation space

columns in the presentation space

PIF status

reserved

You must specifiy the qt..,psid and qt_Iname members of this structure.
The remaining members are returned by the h_qstatus function call.

• length points to the length of the location pointed to by data.

• position is not applicable to h _ qstatus.

SEE ALSO
h_qsys(3X).

RETURN VALUES
h _ qstatus returns two arguments:

• the first argument points to the structure of type ,,-status_data men­
tioned above, and is placed at the location pointed to by the data cal­
ling parameter.

a the second argument is a return code, defined in the <xhllapi.h>
header file. The return code is placed at the location pointed to by
the position calling argument, and is also returned as the function
value for the h_qstatus call.

The return code for h_qstatus will have one of these values:

HE_SUCCESS: h_qstatus was successful

HE _INV AL: the requested session was invalid

HE_SYSERR: a system error was encountered; call the h_qsys
function to find out the reason for failure

2 6/88

(AT&T 3270 Emulator+ HLLAPI)

NAME
h_qsys - query system

SYNOPSIS
#include <xhllapi.h>

int hllapi(fune, data, length, position)
int "'fune;
struct q_system_data "'data;
int "'length;
int "'position;

DESCRIPTION
Your HLLAPI application program can use h_qsys to determine the level of
3270 PC Control Program support, and other system related values. h_qsys
returns a string with the appropriate system data; the AT&T Tier 4 Support
group can use this information to help you determine the problem, after you
received an HE_SYSERR return code (a system error was encountered).

You should include a return code check in your HLLAPI application program,
as a prerequisite for continuing the program. If the return code is
HE_SYSERR (system error), your application program should call a subroutine
that calls h_qsys, and extracts extended error code information to help the
AT&T Tier 4 Support group determine the cause of the system error.

Calling arguments:
• tunc points to the symbolic H_QSYS.

a data points to a structure of type q_system_data, defined in the
<xhllapi.h> header file as follows:

1* Query System data string *1

typedef struct {
char sy_vernum; 1* HLLAPI Version Number
char sy_levnum[2]; 1* HLLAPI Level Number *1

*1

char sy_date[6]; 1* HLLAPI Date (MMDDYY) *1
char sy_limver; 1* LIM Version *1
char sy_limlev[2]; 1* LIM Level *1
char sy_hwbase; 1* Hardware Base *1
char sy_cptype; 1* Control Program Type *1
char sy_cplevel; 1* Control Program Level *1
char sy _resv1; 1* Reserved *1
char sy_resv2[2]; 1* Reserved *1
char sy_psid; 1* Session Short Name *1
char sy_exterr1[4]; 1* Extended Error Code 1 *1
char sy_exterr2[4]; 1* Extended Error Code 2 *1
char sy_resv[8]; 1* Reserved *1

q_system_data;

The members of CLsystem+data describe the following information:

6/88 1

H_QSYS(3X) (AT&T 3270 Emulator+ HLLAPI) H_QSYS(3X)

sy_vernum:

sy Jevnum[2]:

sy _dat e(6]:

syJimver:

sy _limlev[2]:

sy_hwbase:

sy_cptype:

sy _cplevel:

sYJesvl:

sy Jesv2(2]:

sy-psid:

sy _exterr1(4]:

sYJesv[8]:

AT&T 3270 Emulator+ HLLAPI version number

AT&T 3270 Emulator+ HLLAPI level number

AT&T 3270 Emulator+ HLLAPI date (month, date,
and year for service 'purposes only)

LIM version number

LIM level number

hardware base

3270 PC Control Program type

3270 PC Control Program level

reserved

reserved

presentation space short name

Extended Error Code 1; this is a printable ASCII
string representing a hex word giving the HLLAPI
component 10 and system error number for that
function

Extended Error Code 2; this is a printable ASCII
string representing a fault symptom code for the
last internal system error

reserved

You do not need to provide any of the above information for data.

• length and position are not applicable to h _ qsys.

RETURN VALUES
h_sys returns two arguments:

• the first argument points to the structure of type q_system_data
described above, and is placed at the location pointed by the data cal­
ling parameter.

• the second argument is a return code, defined in the <xhllapi.h>
header file. The return code is placed at the location pointed to by
the position calling argument, and is also returned as the function
value for the h_qsysfl call.

The return code for h_qsys will have one of these vatues:

HE_SUCCESS: h_qsys was successful; data string was returned

HE_PARM: improper string size (string too small), and the
ability to verify the string size is language depen­
dent

HE_SYSERR: a system error was encountered

2 6/88

H_RECV(3X) (AT&T 3270 Emulator+ HLLAPI) H_RECV(3X)

NAME
hJecv - receive file

SYNOPSIS
#inc1ude <xhllapi.h>

int hllapi(func, data, length, position)
int "'func;
char "'data;
int "'length;
int "'position;

DESCRIPTION
hJeev requests that a file be sent from a host session to the AT&T 3B com­
puter where HLLAPI is running.

To receive a file from a host session, you must be logged on to TSO or CMS,
and have received the ready message on your screen. For TSO, the ready mes­
sage is "READY", and for CMS it is "R;".

The TIMEOUT parameter under h_setparms is used by this function.

Calling arguments for TSO:

6/88

• June points to the symbolic H _ RECV

• data points to the file transfer command string. This command string
has the following format:

file_mime h:data_set_name(member_name)/password ASCII CRLF
APPEND

file_name is the name of the file containing the received data.

h is the short name of the host presentation space that the
transfer will take place on. It need not be present if only one
host session. is defined in the LUTABLE. If it is present, it
must be followed by a colon (:).

data_set_name is the name of the host data set that the file you
want to transfer is on. If it is a fully qualified name, enclose
it in single quotes.

member_name is the member of a Partitioned Data Set (PDS)
you wish to receive. If the member name is present, it must
be enclosed in parenthesis and data_set_name must be the
name of the PDS. If the member J1ame is also part of a fully
qualified data_setJ1ame both names must be enclosed in single
quotes (' ').

password is the password required to access the host data set.
If present, it must be preceded by a slash (/).

ASCII CRLF indicate to the host ASCII/EBCDIC translation

1

H_RECV(3X) (AT&T 3270 Emulator+ HLLAi'J)

will take place during the transfer and also that logical
records are separated by the two characters CR and LF. Since
UNIX stores files with records that end in NL, CRLF will be
automatically translated to NL. These parameters should be
present if you are receiving text files from the host; they
should appear separated by a blank, and in the order shown.
Binary files should not be transferred using this parameter.

APPEND is an optional parameter that specifies that received
data is to be added to the end of the local file. If the parame­
ter is not present, a new file will be created or an existing file
of the same name will be overwritten.

• length points to the length of the location pointed to by data

• position is not applicable to h Jecv

Calling arguments for CMS:
The calling arguments for CMS are the same as for TSD, except for the com­
mand string pointed to by the data argument. This command string has the
following format:

file_name h:fn ft fm (ASCII CRLF APPEND)

file_name is the name of the file containing the received data.

h is the short name of the host presentation space that the transfer will
take place on. It need not be present if only one host session is defined
in the LUTABLE. If it is present, it must be followed by a colon (:).

fn ft fm is the file name, file type, and file mode of the receive file on
CMS. The file name is required, while the file type and file mode are
optional.

ASCII CRLF indicate to the host ASCII EBCDIC translation will take
place during the transfer and also that logical records are separated by
the tv/O characters CR and LF. Since UNIX stores files with records that
end in NL, CRLF will be automatically translated to NL. This parameter
should be present if you are receiving text files from the host; binary
files should not be transferred using this parameter.

APPEND is an optional parameter that specifies that received data is to
be added to the end of the local file. If the parameter is not present, a
new file will be created or an existing file of the same name will be
overwritten.

SEE ALSO
h_ qsys(3X), h _setparms(3X).

RETURN VALUES

2

hJecv returns one argument: a return code, defined in the <xhllapi.h>
header file. The return code is placed at the location pointed to by the position

6/88

H_RECV(3X) (AT&T 3270 Emulator+ HLLAPI)

calling argu~ent, and is also returned as the function value for the hJecv call.

The return code for hJecv will have one of these values:

parameter error - you have specified a data string length
that is too long, and the file transfer was unsuccessful

HE_XCOMPL: file transfer complete

HE_XCOMPLSEG:
file transfer complete with records segmented

HE_SYSERR: a system error was encountered; call the h_qsys function
to find out the reason for failure

HE _FNUM: invalid function number

HE_NOENT: file not found

HE_ACCESS: access denied

HE_MEM: insufficient memory

HE_ENV: invalid environment

HE_FORM: invalid format

6/88 3

(AT&T 3270 Emulator+ HLLAPI)

NAME
h_redir - UNIX System redirect

SYNOPSIS
#include <xhllapi.h>

int hllapi(func, data, length, position)
int "'func;
char "'data;
int "'length;
int "'position;

DESCRIPTION
hJedir allows the parent application program to do anything that you could
do from the shell prompt '$'. Once this process is complete, control is
returned to the parent application.

Calling arguments:
• tunc points to the symbolic H_REDIR

• data points to the string containing the UNIX System command line

• length points to the length of the data string parameter

• position is not applicable to h Jedir

SEE ALSO
h_qsys(3X).

RETURN VALUES

6/88

hJedir returns one argument: a return code, defined in the <xhllapi.h>
header file. The return code is placed at the location pointed to by the position
calling argument, and is also returned as the function value for the hJedir
call.

The return code for hJedir will have .one of these values:

HE_FNUM:

HE_NOENT:

HE_ACCESS:

HE_MEM:

HE_ENV:

HE_FORM:

an invalid function number was specified

file not found

access denied

insufficient memory

invalid environment

invalid format

1

(AT&T 3270 Emulator+ HLLAPI) H_REL(3X)

NAME
h_rel - release

SYNOPSIS
#include <xhllapi.h>

int hllapi(func, data, length, position)
int "'func;
char "'data;
int "'length;
int "'position;

DESCRIPTION
hJel unlocks a presentation space that was reserved using hJesv; the target
presentation space is the current connected presentation space.

Calling arguments:
• Junc points to the symbolic H _ REL

• data, length, and position are not applicable to hJel

SEE ALSO

NOTES

h_~esv(3X), h_qsys(3X).

A presentation space can be controlled, in a mutually exclusive way, by
either the terminal user or the HLLAPI application program. Therefore, h Jel
has no real functionality in the AT&T 3270 Emulator+ HLLAPI implementa­
tion, and it has been included for compatibility with the IBM 3270 HLLAPI
product.

RETURN VALUES
hJel returns one argument: a return code, defined in the <xhllapi.h> header
file. The return code is placed at the location pointed to by the position calling
argument, and is also returned as the function value for the hJel call.

The return code for hJel will have one of these values:

HE_SUCCESS: hJel was successful

HE_INVAL: you HLLAPI application program is not connected to a
valid presentation space

HE_SYSERR: a system error was encountered; call the h_qsys function
to find out the reason for failure

6/88 1

(AT&T 3270 Emulator+ HLLAPI) H_RESET(3X)

NAME
h Jeset - reset system

SYNOPSIS
#include <xhllapi.h>

int hllapi(func, data, length, position)
int "func;
char "data;
int "length;
int "position;

DESCRIPTION
hJeset reinitializes the HLLAPI library, and resets the session parameter
options to their defaults. This function releases any reserved sessions, and
disconnects all connected presentation spaces.

You can use h Jeset during initialization, or at the end of the program to reset
the system to a known initial condition.

Calling arguments:
• func points to the symbolic H_RESET

• data, length, and position are not applicable to h Jeset

SEE ALSO

NOTES

h _ qsys(3X), h _setparms(3X), h _stman(3X).

hJeset does not free up blocks of storage that were allocated with h_stman;
use the "Free All Storage" option under h_stman for this purpose.

RETURN VALUES
hllapi returns one argument: a return code, defined in the <xhllapi.h> header
file. The return code is placed at the location pointed to by the position calling
argument, and is also returned as the function value for the hJeset call.

The return code for h Jeset will have one of these values:

HE_SUCCESS: hJeset was successful

HE_SYSERR: a system error was encountered; call the h_qsys function
to find out the reason for failure

6/88 1

H_RESV(3X) (AT&T 3270 Emulator+ HLLAPI) H_RESV(3X)

NAME
h_resv - reserve

SYNOPSIS
#include <xhllapi.h>

int hllapi(func, data, length, position)
int "'func;
char "'data;
int "'length;
int "'position;

DESCRIPTION
hJesv locks the current connected presentation space to prevent input from
the terminal operator. You may need to prevent the user from gaining access
to the host session where your HLLAPI application program is sending tran­
sactions, until the application program is done.

Calling arguments:
• tunc points to the symbolic H_RESV

• data, length, and position are not applicable to h Jesv

SEE ALSO
. h _ qsys(3X).

NOTES
A presentation space can be controlled, in a mutually exclusive way, by
either the terminal user or the HLLAPI application program. Therefore,
hJesv has no real functionality in the AT&T 3270 Emulator+ HLLAPI imple­
mentation, and it has been included for compatibility with the IBM 3270
HLLAPI product.

RETURN VALUES
hJesv returns one argument: a return code, defined in the <xhllapi.h>
header file. The return code is placed at the location pointed to by the position
calling argument, and is also returned as the function value for the hJesv call.

The return code for hJesv will have one of these values:

HE _INV AL: your HLLAPI program is not connected to a valid
presentation space

HE_INHBT: hJesv failed because the presentation space was inhi­
bited

HE_SYSERR: a system error was encountered; h_qsys to find out the
reason for failure

6/88 1

(AT&T 3270 Emulator+ HLLAPI)

NAME
h _search - search presentation space

SYNOPSIS
#include <xhllapi.h>

int hllapi(func, data, length, position)
int "'func;
char "'data;
int "'length;
int "'position;

DESCRIPTION

6/88

The h _search function allows your HLLAPI program to search for a particular
string within the current connected presentation space. h._search normally
checks the entire presentation space.

h _search scans the presentation space for the specified string, and if you
specified OLDRET:

• the return code is set to the beginning location of the string in the
presentation space, if the string is found. This location is based on
the layout where the upper left corner is location 1 (row I, column
I), and the lower right corner is:

o 1920 for Model 2s

o 3564 for Model 5s

• if the string is not found, the return code is set to O.

If you specified NEWRET with h_setparms:

• the returning length is set to the beginning location of the string
in the presentation space, if the string is found. This location fol­
lows the same layout as described above for OLDRET

• the returning lenght is set to 0 is the string is not found

You can use the h_search function to determine when a specific 3270 presenta­
tion space is available. h_search allows you to check for specific prompt mes­
sages before continuing, if your programmed operator is expecting a specific
prompt or message before sending data. Your program can then call the
hyause or h_qhost function calls and continue to call h_search until it receives a
non-zero return code.

The parameters under h _setparms that relate directly to search functions are
listed below; an asterisk (*) means that this is the default option:

SRCHALL *: the search function will scan the entire presentation
space.

SRCHFROM: the search function will start from the specified begin­
ning position.

SRCHFRWD *: the search function will take place in an ascending
direction.

1

(AT&T 3270 Emulator+ HLLAPI)

SRCHBKWD: the search function will take place in a descending
direction. If the first character of the requested string
starts within the specified search bounds, the search will
be satisfied.

If you are looking for a string that may occur multiple times within the
presentation space, you can use h_setparms to specify SRCHFROM. Once you
specify a search starting position, the function looks for the named string
from that position through the end of the presentation space.

Calling arguments:
• Junc points to the symbolic H_SEARCH

• data points to the string to be searched

• length points to the length of data

• position points to the address where the search will begin (not used
with the SRCHALL option under h_setparms)

SEE ALSO

NOTES

h_qsys(3X), h_setparms(3X).

You can also use h_setparms to specify SRCHBKWD. In this mode, the search
function locates the last time the string occurs.

RETURN VALUES

2

h _search returns two arguments:

• the first argument is the starting position of the searched string, and it is
placed at the position pointed to by the length calling parameter. If you
specified NEWRET with h_setparms, then the value for this argument will
be:

length == 0:

length> 0:

the string was not found

the string was found at the presentation space position,
shown in length

• the second argument is a return code, defined in the <xhllapi.h> header
file. The return code is placed at the location pointed to by the position
calling argument, and is also returned as the function value for the
h _search call.

If you specified OLDRET with h_setparms, then the return code will be
will be

== 0: meaning that the string was not found

> 0: meaning that the string was found at the presenta­
tion space position shown in position

If you specified NEWRET with h_setparms, and length > 0, then the return
code will be:

HE_SUCCESS: h_search was successful

6/88

H_SEARCH(3X)

6/88

(AT&T 3270 Emulator+ HLLAPI) H_SEARCH(3X)

HE_PARM:

HE_POS:

HE_SYSERR:

the specified presentation space was not connected

an error was made in specifying parameters

the specified presentation space position is invalid

a system error was encountered; call the h_qsys
function to find out the reason for failure

HE_NOFIELD: the search string was not found

3

H_SEND(3X) (AT&T 3270 Emulator+ HLLAPI)

NAME
h_send - send file

SYNOPSIS
#include <xhllapi.h>

int hllapi(func, data, length, position)
int ""func;
char ""data;
int ""length;
int ""position;

..

DESCRIPTION
h_send is used to send a file from the AT&T 3B computer, where HLLAPI is
running, to a TSO or eMS host session.

To send a file to the host session, you must be logged on to TSO or eMS, and
have received the ready message on your screen. For TSO, the ready message
is "READY", and for eMS it is "R;".

The TIMEOUT parameter under h_setparms is used by this function.

Calling arguments for TSO:

6/88

• June points to the symbolic H_SEND

• data points to the command line for the file that you want to send to
the host This command line must contain the following information:

file_name h:data _set _ name(member_name) / password ASCII CRLF
APPEND LRECL(n) BLKSIZE(n) RECFM(x) SPACE(nl,n2) units

file_name is the name of the file that contains the data to be
transmitted. .

h is the short name of the host presentation space that the transfer
will take place on. It need not be present if only one host session
is defined in the LUTABLE. If it is present, it must be followed by
a colon.

data_set_name is the host data set you wish the transferred file to
reside. If it is a fully qualified name, enclose it in single quotes.

member _name is the member of a Partitioned Data Set (PDS) you
wish to send to. If member _name is present, it must be enclosed in
parenthesis and data_set_name must be the name of the PDS. If the
member_name is also part of a fully qualified data_set_name, both
names must be enclosed in single quotes.

password is the password required to access the host data set. If
present, it must be preceded by a slash (/).

ASCII CRLF indicate to the host ASCII/EBCDIC translation will
take place during the transfer and also that logical records are

1

2

(AT&T 3270 Emulator+ HLLAPI) H_SEND(3X)

separated by the two characters CR and LF. Since UNIX stores files
with records that end in NL, NL will be automatically translated to
CRLF. These parameters should be present if you are receiving text
files from the host; they should appear separated by a blank, and
in the order shown. Binary files should not be transferred using
this parameter.

APPEND is an optional parameter that specifies that transmitted
data is to be added to the end of the host file. If the parameter is
not present, a new file will be created or an existing file of the
same name will be overwritten.

LRECL(n) if present indicates the record length of the TSO file. n
may be from 1 to 132, with a default of 80 if this parameter is not
present. This parameter may not be included if the member param­
eter is specified.

BLKSIZE(n) is an optional parameter indicating the block size of
the new TSO data set. If the member parameter is present this
parameter may not be used. The default for this parameter is the
same as the logical record length (LRECL).

RECFM(x) is optional indicating the record format of the new TSO
data set. x may be v, f or u for variable, fixed or undefined. If the
CRLF parameter was. specified and this parameter was not, the data
set will be created for variable length records otherwise the records
are assumed to be fixed length. This parameter should not be
included if the member parameter was specified. .

SPACE(nl,n2) units is an optional parameter indicating the amount
of space to be allocated for the new data set. nl indicates the size
of the initial allocation and n2 the amount of all subsequent addi­
tions to the data set. units may be anyone of BLOCKS, TRACKS or
CYLINDERS. If this parameter is omitted, a new data set will only
be allocated one block. If the member parameter was used, this
parameter should not be present.

• length points to the length of the string pointed to by data

• position is not applicable to h _send

Calling arguments for CMS:
The calling arguments for CMS are the same as for TSO, except for the com­
mand string pointed to by the data argument. This command string has the
following format:

file_name h:fn ft fm (ASCII CRLF APPEND LRECL(n) RECFM(x)

file_name is the name of the file that contains the data to be transmitted.

h is the short name of the host presentation space that the transfer will

6/88

"_SEND(3X)

SEE ALSO

(AT&T 3270 Emulator+ HLLAPI) "_SEND(3X)·

take place on. It need not be present if only one host session is defined
in the LUTABLE. If it is present, it must be followed by a colon (:).

fn ft fm is the file name, file type, and file mode of the target file on
CMS. The file name and file type is required. The file mode is optional
and will default to your A disk.

ASCII CRLF indicate to the host ASCII/EBCDIC translation will take
place during the transfer and also that logical records are separated by
the two characters CR and LF. Since UNIX stores files with records that
end in NL, NL will be automatically translated to CRLF. These parame­
ters should be present if you are receiving text files from the host; they
should appear separated by a blank, and in the order shown. Binary
files should not be transferred using this parameter.

APPEND is an optional parameter that specifies that transmitted data is
to be added to the end of the host file. If the parameter is not present, a
new file will be created or an existing file of the same name will be
overwritten.

LRECL(n) if present indicates the record length of the CMS file. n may
be from 1 to 132, with a default of 80 if this parameter is not present.

RECFM(x) is optional indicating the record format of the new CMS data
set. x may be v or f for variable, fixed. If the CRLF parameter was
specified and this parameter was not the data set will be created for vari­
able length records otherwise the records are assumed to be fixed length.

h_qsys(3X), h_setparms(3X).

RETURN VALUES
h_send returns one argument: a return code, defined in the <xhllapi.h>
header file. The return code is placed at the location pointed to by the position
calling argument, and is also returned as the function value for the h _send
call.

The return code for h_send will have one of these values:

HE_PARM: parameter error - you have specified a data string
length that is too long, and the file transfer was
unsuccessful

HE_XCOMPL: file transfer complete

HE_XCOMPLSEG: file transfer complete with records segmented

HE_SYSERR: a system error was encountered; call the h_qsys
function to find out the reason for failure

HE_FNUM: invalid function number

HE_NOENT: file not found

6/88 3

H_SEND(3X)

HE_ACCESS:

HE_MEM:

HE_ENV:

HE_FORM:

4

(AT&T 3270 Emulator+ HLLAPI)

access denied

insufficient memory

invalid environment

invalid format

6/88

(AT&T 3270 Emulator+ HLLAPI)

NAME
h _sendkey - send key

SYNOPSIS
#include <xhllapi.h>

int hllapi(func, data, length, position)
int ·func;
char ·data;
int ·length;
int ·position;

DESCRIPTION

6/88

h_sendkey sends a string of keystrokes to the current connected presentation
space. You must use h_connect in your application program before sending
keystrokes.

You define the keystrokes that will be sent in the calling data parameter, and
they will appear to the target session as though they were entered by the ter­
minal operator. You cannot send keystrokes to a session whose keyboard is
locked (e.g., when input is inhibited), and your application program must deal
accordingly with those fields that are protected for input, or that are numeric
only.

You can send all attention identifier (AID) keys such as Enter, PAl, etc, but
keystroke input will no longer be accepted after the first AID character is
received. The remainder of the input data string will be ignored.

To send special keystrokes, use the ESC character that you specified with
h _setparms function call (@ is the default), followed by the keystroke
mnemonic, in the calling data string:

Name Keystroke Name Keystroke

ALT_CR @A@n PFI @l
ATTN @A@Q PF2 @2
Backtab @B PF3 @3
Clear @C PF4 @4
Delete @D PF5 @5
Down arrow @D PF6 @6
DUP @S@x PF7 @7
Enter @E PF8 @8
Erase EOF @F PF9 @9
Erase Input @A@F PF10 @a
FM @S@y PFll @b
Home @O PF12 @c
Insert @I PF13 @d
LDUB @A@L PF14 @e
Left arrow @L PF15 @f

1

H_SENDKEY(3X) (AT&T 3270 Emulator+ HLLAPI) H _ SENDKEY(3X)

New Line @N PFl6 @g
Print @A@P PFl7 @h
RDUB @A@R PFl8 @i
Right arrow @R PFl9 @j
Tab @T PF20 @k
Test @A@C PF2l @l
Up arrow @U PF22 @m
Reset @R PF23 @n
PAl @x PF24 @o
PA2 @y PA3 @z

For information regarding the use of the keys listed above, see the AT&T 3270
Emulator+ User's Guide.

Calling arguments:
• Junc points to the symbolic H_SENDKEY

• data points to the string of keystrokes that you want to send

• length points to the length of the string pointed to by data

• position is not applicable to h _sendkey
SEE ALSO

NOTES

h_connect(3X), h_qsys(3X), h_setparms(3X).

A receiving session left in shift lock (CapsLock) state will cause numeric data
to be sent as alphabetic data.

RETURN VALUES
h_sendkey returns one argument: a return code, defined in the <xhUapi.h>
header file. The return code is placed at the location pOinted to by the position
calling argument, and is also returned as the function value for the h_sendkey
call.

The return code for h_sendkey will have one of these values:

HE_SUCCESS: the keystrokes were sent, and status is normal.

HE_INVAL: your HLLAPI program is not connected to a valid ses­
sion

HE_PARM: an incorrect parameter was passed to HLLAPI

HE_BUSY: the 3270 host session was busy; all the keystrokes could
not be sent

HE_INHBT: input to the target session was inhibited or rejected; of
the keystrokes could not be sent

HE_SYSERR: a system error was encountered; call h_qsys to find out
the reason for failure

2 6/88

H_SETPARMS(3X) (AT&T 3270 Emulator+ HLLAPI) H_SETPARMS(3X)

NAME
h_setparms - set session parameters

SYNOPSIS
#include <xhllapi.h>

int hllapi(func, data, length, position)
int ·func;
char ·data;
int ·length;
int ·position;

DESCRIPTION

6/88

h _setparms lets you change certain default session options in the HLLAPI
library. These options are described next in terms of the functions that they
affect, and are presented in mutually exclusive groups; an asterisk (*) follow­
ing the name of a parameter within each group specifies that this is the
default option.

The following parameters affect h_search, h_qcur, and h_qsess:

Parameter Description

NEWRET * HLLAPI release 3.0 is in use; this release uses the
standard return codes

OLDRET HLLAPI release 1.0 or 2.0 is in use; these versions
do not use the standard return codes, but allow the
return code to include the result code

1

H_SETPARMS(3X) (AT&T 3270 Emulator+ HLLAPI) H_SETPARMS(3X)

These parameters affect all Copy functions:

Parameter

ATTRB

NOATTRB II-

EAB

NOEAB II-

STRLEN II-

STREOT

EOT-n

2

Description

pass back all codes that do not have an ASCII
equivalent (except EABs) as their original values

convert all unknown values to blanks

pass the presentation space data with extended
attribute bytes; you will get two characters for
every one that appears on the screen (remember
that you must allocate a buffer twice the size of the
presentation space, e.g., 2x1920 for a Model 2
screen)

pass data only (no EABs)

an explicit length will be p~ssed for all strings

string lengths are not explicitly coded; they end
with an EOT (End Of Text) character

allows you to specify the EOT to show the end of a
string in STREOT mode. Binary zero is the default.
You may use any character except a blank after the
equals sign.

6/88

H_SETPARMS(3X) (AT&T 3270 Emulator+ HLLAPI) H_SETPARMS(3X)

6/88

The following parameters affect h _connect:

Parameter

CONPHYS

CONLOG ..

DISPLAY

NODISPLAY"

Description

do a physical connection; i.e., during an h_connect
function call, jump to the requested presentation
space, and transfers control to the user at the termi­
nal to enter data using the keyboard

do a logical connect with the requested presenta­
tion space, and do not transfer control or allow the
user at the terminal to be aware of this connection
unless the DISPLAY option (below) has been
specified

allow the user to view the results of your HLLAPI
application program during an h_connect function
call (if you specified the CONLOG option, above)

do not allow the user at the terminal to view the
results of your HLLAPI application program execu­
tion during a hJonnect function call (if you
specified the CONLOG option, above)

These parameters affect h _sendkey:

Parameter Description

ESC=n specify the escape character for keystroke mnemon-
ics (@ is the default); any character is valid except
a blank

AUTORESET .. the application will attempt to reset all inhibited
conditions by prefixing all strings of keys sent
using h _sendkey with a keyboard reset key sequence

NORESET do not AUTORESET

3

"_SETPARMS(3X) (AT&T 3270 Emulator+ "LLAPI) "_SETPARMS(3X)

4

These parameters that affect all Search functions:

Parameter

SRCHALL It

SRCHFROM

SRCHFRWD It

SRCHBKWD

Description

the search will scan the entire presentation space

the search will start from a specified beginning
position

the search will be performed in an ascending direc­
tion, and a search will be satisfied if the first char­
acter of the requested string starts within the
bounds specified for the search

the search will be performed in a descending direc­
tion, and a search will be satisfied if the first char­
acter of the requested string starts within the
bounds specified for the search

The parameters related to using TRACE to debug your HLLAPI application
program are:

Parameter Description

TRON turns TRACE on

TROFF It turns TRACE off; the trace function may conflict
with messages on the screen from languages or
applications that manage their own displays

6/88

"_SETPARMS(3X) (AT&T 3270 Emulator+ "LLAPI) "_SETPARMS(3X)

The following parameters affect the h_wait and h.$etkey:

Parameter Description

TWAIT It h_wait will return control to your application pro-
gram after a pending event completes, if there is
one; otherwise, h_wait will wait approximately one
minute before timing out on XC LOCK or XSYSTEM
and returning control to your application program

LWAIT h_wait will wait indefinitely or until XCLOCK or
XSYSTEM clears, i.e., after an event occurs; this
option is not recommended since control does not
return to your application program if there is no
event pending

NWAIT h_wait checks the status of an event, and returns
control immediately to your application program
(no wait)

The parameters that affect the h yause function call are:

Parameter Description

FPAUSE It full duration pause

IPAUSE interruptible pause; h _strthost and a host event will
satisfy a h yause

6/88 5

H _SETPARMS(3X) (AT&T 3270 Emulator+ HLLAPI) H_SETPARMS(3X)

6

The following parameters affect the h _send and h Jecv:

Parameter

QUIET

NOQUIET'"

TIMEOUT=n

Description

keeps SEND and RECEIVE and any other messages
sent to the screen from being displayed and
HLLAPI will keep track of the message number
and discard the message; the UNIX System pro­
vides the capability to redirect I/O, and therefore,
the use of this parameter may have no effect

restores message display; the use of this parameter
may have no effect since the UNIX System provides
the capability to redirect I/O

where "n" is a value from the table below.
TIMEOUT messages will be displayed every 30
seconds until the operator presses CTRL+BREAK
(these messages would not be visible in the QUIET
mode); TIMEOUT=O is the standard for operator
usage of SEND and RECEIVE, and TIMEOUT=n
causes a one-character specifier from Figure 4-1 to
tell the HLLAPI library how many 30 second cycles
(how many messages with INDFTOIO) it should
accept before issuing a CTRL+BREAK

Character Specifiers Used with the Timeout Option:

Character

1
2
3
4
5
6
7

Value
(in 30 sec

cycles)
0.5
1.0
1.5
2.0
2.5
3.0
3.5

Character

8
9
J
K
L
M
N

Value
(in 30 sec

cycles)
4.0
4.5
5.0
5.5
6.0
6.5
7.0

6/88

H_SETPARMS(3X) (AT&T 3270 Emulator+ HLLAPI) H_SETPARMS(3X)

The parameters that affect the handling of IBM Personal Computer HLLAPI
unsupported functions are listed below. These functions are:

• Define Presentation Space

• Switch Presentation Space

• Display Cursor

• Display Presentation Space

• Delete Presentation Space

• Get 3270 Aid Key

Parameter Description

UNSUP_OK returns a return code of "0" (operation successful)
unconditionally without taking any further actions

UNSUP_NG returns a return code of "10" (function not sup-
ported) unconditionally without doing anything

UNSUP_VAR II- returns either a return code of "0" or "10" depend-
ing on the function

Calling arguments:
• tunc points to the symbolic H_SETPARMS

• data points to a character string that contains the session parameters previ­
ously described, separated by commas or blanks

• length points to the length of the data string (no EOT)

• position is not applicable

SEE ALSO
h_qsys(3X).

NOTES
The parameter EOT--n also affects h_send, hJecv, h_invoke, and hJedir.

ESC=n also affects h.$etkey.

RETURN VALUES

6/88

h_setparms returns one argument: a return code, defined in the <xhllapi.h>
header file. The return code is placed at the location pointed to by the position
calling argument, and is also returned as the function value for the h_setparms
call.

7

H _SETPARMS(3X) (AT&T 3270 Emulator+ HLLAPI) H_SETPARMS(3X)

The return code for h_setparms will have one of these values:

HE_SUCCESS: the session parameters have been set

HE _ P ARM: the length of the parameter list is invalid

HE_SYSERR: a system error was encountered; call the h_qsys function
to find out the reason for failure

8 6/88

H_SRCHFLD(3X) (AT&T 3270 Emulator+ HLLAPI) H _SRCHFLD(3X)

NAME
h _srchfld - search field

SYNOPSIS
#include <xhllapi.h>

int hllapi(func, data, length, position)
int "'func;
char "'data;
int "'length;
int "'position;

DESCRIPTION
h_srchfld searches the last connected presentation space for the occurrence of
the string specified in the data calling parameter. This function returns the
decimal position of the string, numbered from the beginning of the presenta­
tion space, if the target string is found (position 1 is the "row 1, column 1"
position). h_srchfld can be used to search for either protected or unprotected
fields, but only in a field-formatted host presentation space.

The search will not wrap from the bottom of the screen to the top; you can
use h_setparms to determine whether your searches will search forward or
backward.

Calling arguments:
• June points to the symbolic H_SRCHFLD

• data points to the target search string

• length points to the length of the location pOinted to by data if
STRLEN (under h_setparms is on), or to a blank if STREOT is on

• position points to the position within the presentation, space where
the search will begin

SEE ALSO

NOTES

h _ qsys(3X), h _setparms(3X).

If you pass a position that does not coincide with the beginning of a field, the
search will start at the beginning of the field that contains the presentation
space position passed.

RETURN VALUES

6/88

h_srchfld returns two arguments:

• the first argument is placed at the location pointed to by the length
calling parameter, and has one of two values:

== 0: means that the string was not found

> 0: means that the string was found at the presentation
space position shown

• The second argument is a return code, defined in the <xhllapi.h>
header file. The return code is placed at the location pointed to by
the position calling argument, and is also returned as the function
value for the h_srchfld call.

1

H_SRCHFLD(3X) • (AT&T 3270 Emulator+ HLLAPI)

The return code for h_srchfld will have one of these values:

2

HE_SUCCESS: h_srchfld was successful

HE_INVAL: your programmed operator was not connected to a
valid presentation space

HE_POS: the specified presentation space position is invalid

HE_SYSERR: a system error was encountered; call the h_qsys
function to find out the reason for failure

HE_NOFIELD: the search string was not found, or the screen was
unformatted

6/88

H_STARTKEY(3X) (AT&T 3270 Emulator+ HLLAPI) H_ST ARTKEY(3X)

NAME
h _startkey - start keystroke intercept

SYNOPSIS
#include <xhllapi.h>

int hllapi(func, data, length, position)
int "'func;
struct start_keystroke "'data;
int "'length;
int "'position;

DESCRIPTION
h_startkey allows your application program to record keystrokes sent to a ses­
sion by a terminal operator. The recorded keystrokes may be:

received through the h ..$etkey function call and sent to the same or
another session with h_sendkey

used to trigger some other process

After you issue a h_startkey function call, you must give explicit control of the
session to the terminal user. You can accomplish this by issuing an h_connect
function call, and specifying the CONPHYS option with h _setparms.

The buffer area that length points to must be large enough to hold all keys­
trokes entered by the terminal user, until control is returned to your HLLAPI
application program. If the terminal user enters more keystrokes than this
buffer will hold, the most recent ones will be truncated.

The h_stman option "Get Storage" returns a 4-byte address in the calling data
string parameter that can be concatenated with the first data string bytes for
h..$etkey.

Calling arguments:

6/88

• tunc points to the symbolic H_STARTKEY.

• data points to a structure of type start_keystroke, defined in the
<xhllapi.h> header file as follows:

typedef struct {
char sk_psid; 1* Presentation Space ID *1
char sk_option; 1* Option Code *1
char *sk_buffer;

} start_keystroke;

The members of the start_keystroke structure describe the following:

sk""psid: presentation space short name

sk_option: an option code character: SK_AID, for AID keys­
trokes only, or SK_ALL for all keystrokes

address of a buffer space that will be used inter­
nally for enqueuing and dequeuing of host events;
allocated with h _stman.

1

H_STARTKEY(3X) (AT&T 3270 Emulator+ HLLAt'I) H_STARTKEY(3X)

• length points to the length of the location pOinted to by data.

• position is not applicable to h_startkey.

SEE ALSO
h_connect(3X), h...,getkey(3X), hJ>ostint(3X), h_qsys(3X), h_sendkey(3X),
h _setparms(3X), h _stman(3X).

RETURN VALUES

2

h_startkey returns one argument: a return code, defined in the <xhllapi.h>
header file. The return code is placed at the location pointed to by the position
calling argument, and is also returned as the function value for the h_startkey
call.

The return code for h_startkey will have one of these values:

HE_SUCCESS: h_startkey was successful

HE_PARM:

HE_BUSY:

an invalid option was specified

the execution of the function was inhibited because the
target presentation space was busy

a system error was encountered; call the h_qsys function
to find out the reason for failure

6/88

"_STMAN(3X) (AT&T 3270 Emulator+ "LLAPI) "_STMAN(3X)

NAME
h _stman - storage manager

SYNOPSIS
#include <xhllapi.h>

int hllapi(func, data, id, subfunc)
int "'func;
char "'data;
int "'id;
int "'subfunc;

DESCRIPTION
h _stman preallocates blocks of storage for use by certain HLLAPI functions.
The h_stman subfunctions are:

• Get Storage Get Storage allocates a portion of the storage block
for use by a particular HLLAPI function. The size
of the allocated storage block will be equal to the
requested size, plus 5 bytes; you can allocate a
maximum of 128 blocks of storage.

• Free Storage Free Storage frees a block of storage that was previ­
ously allocated with Get Storage.

• Query Free Storage Query Free Storage searches for, and returns, the
size of the largest available free storage block.
The size of this block must be larger than 5 bytes
to be used with Get Storage.

• Free All Storage Free All Storage frees all allocated storage blocks,
and regroups them into a single storage pool.

Calling arguments:
• June points to the symbolic H_STMAN

• data is not applicable, although it is preallocated to 4 bytes

• id points to the size of the requested storage area; the maximum
storage area is determined by the STSIZE environment variable,
defined in the LIM .profit'!

• subfunc points to an h_stman subfunction:

01 Get Storage

02 Free Storage

03 Query Free Storage

04 Free All Storage

SEE ALSO

NOTES

6/88

h _ qsys(3X).

A given storage block will remain the size of the original allocation; later
requests for storage will waste the excess storage in the previously allocated
block. For example, if a block of 100 bytes was allocated and freed, and later

1

(AT&T 3270 Emulator+ HLLAPI)

you requested to reallocate the block with 80 bytes, the excess 20 bytes are
wasted.

RETURN VALUES
Get Storage

2

h _stman returns three arguments for Get Storage:

• the first argument is the storage address, expressed as two binary
words (4 bytes) in offset segment order. This address is placed at
the location pointed to by the data calling parameter.

• the second argument is the storage blo·ck id (0 - 127), and it is
placed at the location pointed to by the id calling parameter.

• the third argument is a return code, defined in the <xhllapi.h>
header file. The return code is placed at the location pointed to by
the position calling argument, and is also returned as the function
value for the h _stman call.

The return code will have one of these values:

HE_SUCCESS: the requested storage was allocated

HE_INVAL: you requested more storage than is available

HE_SYSERR: a system error was encountered; call the h_qsys
function to find out the reason for failure

Free Storage
h _stman returns one argument for Free Storage: a return code, placed at the
same locations as the return code for Get Storage. The possible return codes
are:

HE_SUCCESS: storage block has been freed

HE_PARM: the storage block ID was invalid

HE_SYSERR: a system error was encountered; call the h_qsys function
to find out the reason for failure

Query Free Storage
h _stman returns two arguments for Query Free Storage:

• the first argument is the size of the largest available block of storage,
and it is placed at the location pointed to by the length calling parameter.

• the second argument is a return code, placed at the same locations as the
return codes for the previously described subfunctions. The possible
return codes are:

HE_SUCCESS: Query Free Storage was successful

HE_SYSERR: a system error was encountered; call the h_qsys function
to find out the reason for failure

Free All Storage
h _stman returns two arguments for Free All Storage:

• the first argument is the size of the largest available block of storage,
and it is placed at the location pointed to by the length calling parameter.

6/88

(AT&T 3270 Emulator+ HLLAPI)

• the second argument is a return code, placed at the same location as the
return codes for the previously described subfunctions. The possible
return codes for Free All Storage are:

HE_SUCCESS: Free All Storage was successful

HE_SYSERR: a system error was encountered; use h._qsys to find out
the reason for failure

6/88 3

H_STOPHOST(3X) (AT&T 3270 Emulator+ HLLAPI) H_STOPHOST(3X)

NAME
h _stophost - stop host notification

SYNOPSIS
#include <xhllapi.h>

int hllapi(func, data, length, position)
int "'func;
char "'data;
int "'length;
int "'position;

DESCRIPTION
h_stophost disables the ability of h_qhost to determine if the specified host OIA
and/or the presentation space have been updated. h_stophost also stops host
events from the specified host from affecting hyause.

Calling arguments:
• func points to the symbolic H_STOPHOST

• data points to the presentation space short name

• length and position are not applicable

SEE ALSO
hyause(3X), h_qhost(3X), h_qsys(3X), h_setparms(3X).

RETURN VALUES
h_stophost returns one argument: a return code, defined in the <xhllapi.h>
header file. The return code is placed at the location pointed to by the position
calling argument, and is also returned as the function value for the h_stophost
call.

The return code for h _stophost will have one of these values:

HE_SUCCESS: h_stophost was successful

HE _INV AL: an invalid presentation space was specified, one labeled
with an invalid name

HE_PROC: no previous h_stophost was issued

HE_SYSERR: a system error was encountered; use h._qsys to find out
the reason for failure

6/88 1

(AT&T 3270 Emulator+ HLLAPI)

NAME
h_stopkey - stop keystroke intercept

SYNOPSIS
#inc1ude <xhllapi.h>

int hllapi(func, data, length, position)
int "'func;
char "'data;
int "'length;
int "'position;

DESCRIPTION
h_stopkey ends your application program's ability to intercept keystrokes with
h_startkey.

Calling arguments:
• Junc points to the symbolic H_STOPKEY

• data points to the short name of the target presentation space

• length and position are not applicable to h _stopkey

SEE ALSO
h_qsys(3X).

RETURN VALUES

6/88

h_stopkey returns one argument: a return code, defined in the <xhllapi.h>
header file. The return code is placed at the location pointed to by the position
calling argument, and is also returned as the function value for the h_stopkey
call.

The return code for h_stopkey will have one of these values: The possible
return codes are:

HE_SUCCESS: h_stopkey was successful

HE_INVAL:

HE_PROC:

HE_SYSERR:

an invalid presentation space was specified

no prior h_stopkey was called for this presentation space

a system error was encountered; use h._qsys to find out
the reason for failure

1

H_STRTHOST(3X) (AT&T 3270 Emulator+ HLLAPI) H_STRTHOST(3X)

NAME
h _strthost - start host notification

SYNOPSIS
#include <xhllapi.h>

int hllapi(func, data, length, position)
int "'func;
struct host_notify "'data;
int "'length;
int "position;

DESCRIPTION
h_strthost determines if the specified presentation space and/or the specified
OIA have been updated, and enables the specified presentation space ID to
end a pause started with hyause. After using h_strthost, your application pro­
gram can use h_qhost to determine the specific host event that has occurred.

If you allocate buffer storage within your HLLAPI application program
without using h_stman, you must use h_stophost or h_reset functions before you
exit HLLAPI. This will avoid storage overlap failure of later programs.

The "Get Storage" option in h_stman returns a 4-byte address in the data string
parameter that can be concatenated with the first data string bytes for this
function.

Calling arguments:

6/88

• June points to the symbolic H_STRTHOST.

• data points to a structure of type host_notify, defined in the
<xhllapi.h header as follows:

typedef struct {
char hn_psid; 1* Presentation Space ID *1
char hn_type; 1* Update type *1
char *hn_buffer;

} host_notify;

You must provide values for all members of the structure of type
host_notify, which describe the following:

hn ...,psid: a specific presentation space short name (PSID).

hn_type: one of these possibilities:
the symbolic HN_PRES, asking for notification of
presentation space update only
the symbolic HN_OIA, asking for notification 'of
OIA Update only
the symbolic HN _BOTH, asking for notification of
both presentation space and OIA updates, or

the address of the buffer space that will be used
internally for enqueuing and de queuing host
events (specified with h_stman function call, using
the "Get Storage" subfunction).

1

H_STRTHOST(3X) (AT&T 3270 Emulator+ HLLAPI) H_STRTHOST(3X)

• length points to the length of the host event buffer; this buffer
should be long enough to store the desired keystrokes.

• position is not applicable to h_strthost.

SEE ALSO
hyause(3X), h_qhost(3X),
h _stophost(3X).

RETURN VALUES
h_strthost returns one argument: a return code, defined in the <xhllapi.h>
header file. The return code is placed at the location pointed to by the position
calling argument, and is also returned as the function value for the h_strthost
call.

The return code for h_strthost will have one of these values:

HE_SUCCESS: h_strthost was successful

HE_INVAL: an invalid presentation space was specified

HE_PARM: an error was made when specifying parameters

HE_SYSERR: a system error was encountered; use h_qsys to find out
the reason for failure

2 6/88

H_WAIT(3X) (AT&T 3270 Emulator+ HLLAPI)

NAME
h _wait - wait

SYNOPSIS
#inc1ude <xhllapi.h>

int hllapi(func, data, length, position)
int "'func;
char "'data;
int "'length;
int "'position;

DESCRIPTION
h_wait checks the status of the current connected presentation space. If the
3270 session is waiting on a host response, suggested by XCLOCK or XSYS­
TEM, h_wait will cause your application program to wait approximately one
minute to see if the condition clears (if the default option TWAIT is set using
h_setparms).

h_wait gives host requests, like those made by h_sendkey, time to complete
before continuing. This is analagous to an operator waiting for the keyboard
to unlock before entering data.

Calling arguments:
• tunc points to the symbolic H _WAIT

• data, length, and position are not applicable to h_wait

SEE ALSO

NOTES

h_qsys(3X), h_setparms(3X).

h_wait uses the WAIT parameters in the h_setparms function call (TWAIT,
LWAIT and NWAIT).

RETURN VALUES

6/88

h_wait returns one argument: a return code, defined in the <xhllapi.h>
header file. The return code is placed at the location pointed to by the position
calling argument, and is also returned as the function value for the h_wait call.

The return code for h_wait will have one of these values:

HE_SUCCESS: the keyboard is unlocked and ready for input

HE_WSCTRL:

HE_BUSY:

HE_INHBT:

HE_SYSERR:

your application program is not connected to a valid ses­
sion

your application program is connected to WS Ctrl

timeout while still in XCLOCK or XSYSTEM

the keyboard is locked

a system error was encountered; call the h_qsys function
to find out the reason for failure

1

(AT&T 3270 Emulator+ HLLAPI)

NAME
h_wrchar - copy characters to presentation space

SYNOPSIS
#include <xhllapi.h>

int hllapi(func, data, length, position)
int *func;
char *data;
int *length;
int *position;

DESCRIPTION
h_wrchar copies one or more binary characters directly into the current con­
nected presentation space, starting at the location specified by the PS position
calling parameter This function is intended for binary image copying into the
presentation space The copy continues until the field length count is reached;
no ASCII to EBCDIC conversion will take place.

h_wrchar operates in STRLEN mode, even if you did not select STRLEN mode
with h_setparms. This is because h_wrchar copies binary characters and there­
fore, no EDT escape character can be specified The input data must contain
the appropriate extended attribute byte following each regular byte if
extended attribute bytes were specified using the EAB parameter under
h _setparms.

Calling arguments:
• tunc points to the symbolic H _ WRCHAR

• data points to the binary bytes to be copied into the presentation
space

• length points to the length of the location pointed to by data, and
must be greater than 0

• position points to the position within the presentation space where
the copy will begin. This value must be between:

o 1 and 1920 for Model 2s (3840 if you are copying extended attri­
bute bytes)

o 1 and 3564 for Model 5s (7128 if you are copying extended attri­
bute bytes)

SEE ALSO

NOTES

h _ qsys(3X), h _setparms(3X).

Use the h_wrchar carefully, since it can copy any bit combinations, and no
checking is done by the HLLAPI library. You are responsible for making sure
that the byte(s) are correct for your purposes; use other functions if valida­
tion is desired

RETURN VALUES

6/88

h_wrchar returns one argument: a return code, defined in the <xhllapi.h>
header file. The return code is placed at the location pointed to by the position

1

H_WRCHAR(3X) (AT&T 3270 Emulator+ HLLAPI) H_WRCHAR(3X)

calling argument, and is also returned as the function value for the h_wrchar
call.

The return code for h_wrchar will have one of these values:

HE_SUCCESS: h_wrchar was successful

HE_INVAL: the HLLAPI program was not connected to a valid
presentation space

HE_INHBT: the target presentation space is protected or inhibited, or
illegal data was sent

HE_LENGTH: the copy was completed, but the source data was trun­
cated

HE_POS: the specified presentation space position is invalid

HE_SYSERR: a system error was encountered; call the h_qsys function
to find out the reason for failure

2 6/88

(AT&T 3270 Emulator+ HLLAPI)

NAME
h_wsctrl - work station control

SYNOPSIS
#include <xhllapi.h>

int hllapi(func, data, length, position)
int "'func;
struct h wsctrl struct "'data;
int "'length; -
int "'position;

DESCRIPTION
h_wsctrl provides the programmed operator with block copy and some win­
dow management capabilities. HLLAPI treats h_wsctrl as a session type, even
though it is really a "pseudo-session." As a pseudo-session, h_wsctrl can call
functions against other sessions (e.g., copy blocks of text from other sessions),
even though it has no presentation space associated with it.

A "window" is a view of a host session, which in turn is an external manifes­
tation of a presentation space; recall that a presentation space is a region in
storage, and therefore, it is not visible to users. In the AT&T 3270 Emulator+
HLLAPI implementation, a window occupies the entire screen display, and
you can view only one window at any given time. You must select fore­
ground and background colors outside HLLAPI, according to your terminal;
you cannot alter these features with h_wsctrl.

A "screen profile" defines the way that presentation spaces will be viewed on
the screen, and the value of the screen profile will always be "0".

h_wsctrl does not allow the use of blanks for a presentation space 10, as other
functions do. Therefore, where a presentation space ID is required, you must
provide the short name character for that presentation space.

Calling arguments:
• Junc points to the symbolic H _ WSCTRL

• data points to a structure of type h_wsctrl_struct that defines the
desired h_wsctrl request. For all h_wsctrl_struct structures (see the
"Structures for h_wsctrl" sub-section, below), you need to provide the
"command code" structure member, and some of the other members
depending on the desired request. The remaining members of the
structure will be returned by h_wsctrl.

• length points to the length of the data string, using the size of opera­
tor on the structure in the data string

• position is not applicable to h_wsctrl

Structures for h wsctrl

6/88

You control requests to h_wsctrl by specifying a pointer to a structure for each
desired request; these structures have been declared in the <xhllapi.h>
header file. You can only send one request to h_wsctrl at a time.

The AT&T 3270 Emulator+ HLLAPI implementation supports the following
h _ wsctrl requests:

1

2

(AT&T 3270 Emulator+ HLLAPI)

Command h_wsctrl
Code Function Name

CA Change Active Window

CB Copy Block

RD Redraw

QA Query Active Window

QC Query Background Color

QE Query Enlarge State

QW Query Window

QN Query Window Names

The h_wsctrl requests listed below are not supported by the AT&T 3270 Emula­
tor+ HLLAPI implementation:

Command
Code

AW

CE

CC

CW

CS

DW

h_wsctrl
Function Name

Add Window

Change Enlarged State

Change Screen Background Color

Change Window

Clear Screen

Delete Window

If you make any of these requests when you invoke h_wsctrl, the return code
will be set to "HE_SUCCESS" or "HE_FUNCT," depending on the option that
you selected with h_setparms (see the "RETURN VALUES" section, below).
T~us, if you specified

UNSUP _OK: the return code will be set to "HE_SUCCESS"

UNSUP _ NG: the return code will be set to "HE YUNCT"

UNSUP _VAR: the return code will be set to "HE_SUCCESS"

6/88

6/88

(AT&T 3270 Emulator+ HLLAPI)

The portion of the <xhllapi.h> file that declares structures for these command
codes, is:

#define
#define

CMDSIZ
NAMES

2
20

struct ca_data_type
{

char ws_cmd[CMDSIZ];
char ws_equ;
char ca_scrn;
char ca_psid;

}; 1* data from CHANGE ACTIVE *1

struct cb_data_type
{

char ws_cmd[CMDSIZ];
char ws_equ;
char cb_psid;
short cb _srcbeg;
short cb_srcend;
char cb_tpsid;
short cb _tbeg;

} ; 1* data from COpy

struct rd_data_type
{

BLOCK

char ws_cmd[CMDSIZ];
char ws_equ;
char rd_scrn;

*1

}; 1* data from REDRAW SCREEN *1

struct qa_data_type
{

char
char

ws_cmd[CMDSIZ];

char qa_scrn;
char qa_psid;

}; 1* data from QUERY ACTIVE *1

struct qc_data_type
{

}

char
char

ws_cmd[CMDSIZ];

char qc_scrn;
char qC_fill;
char qc_color;
1* data from QUERY COLOR *1

3

H_WSCTRL(3X) (AT&T 3270 Emulator+ HLLAPI) H_WSCTRL(3X)

4

struct qe_data_type
{

char ws_cmd[CMDSIZ];
char ws_equ;
char qe_fill[2];
char qe_enlarge;

}; /* data from QUERY ENLARGE */

struct qw_data_type
{

char ws_cmd[CMDSIZ];
char ws_equ;
char qw_scrn;
char qw_psid;
short qw_rows; /* number of rows in window
short qw_cols; /* number of cols. in window
short qw_rpos; /* row position, upper left
short qw_cpos; /* col position, upper left
short qw_wcolor;/* window color code */
short qW_bcolor;/* border color code */
short qw_flags;/* control flags */

*/
*/

corner
corner

short qw_psrow;/* row on PS of upper left corner
short qw_pscol;/* col on

} ; /* data from QUERY WINDOW

struct qn_data_type
{

char
char

ws_cmd[CMDSIZ];

char qn_scrn;
char qn_UNUSED;
char qn_names[NAMES];

PS
*/

}; /* data from QUERY NAMES */

of upper left corner

/* constants for Query Window function in WSCTRL */
#define FOREGROUND WHITE
#define BACKGROUND BLACK
#define WCOLOR (FOREGROUND «3 BACKGROUND)

#define
#define
#define
#define
#define

RESERVED
HIDDEN
BASECOLOR
WINDCOLOR
FLAGS

00000
1
1
1
(HIDDEN « 7 I

RESERVED « 2
WINDCOLOR)

BASECOLOR « 1

*1
*1

*/
*/

6/88

(AT&T 3270 Emulator+ HLLAPI)

1* Color codes *1
#defineBLACK
#defineBLUE
#defineRED
#definePINK
#defineGREEN
#defineTURQUOISE
#defineYELLOW
#defineWHITE

1* Rowand Column identifiers *1

o
1
2
3
4
5
6
7

#defineROW_ZERO 0
#defineCOL_ZERO 0

1* Screen Profile Identifiers *1
#define SCREEN_ZERO '0'

1* Enlarge State Identifiers *1
#defineENLARGED 1
#defineNOT_ENLARGED 0

The supported AT&T 3270 Emulator+ HLLAPI h_wsctrl calling and returning
data strings are explained next.

Change Active Window, CA
Changes the active screen profile and presentation space, displays the presen­
tation space specified in caysid (below), and routes keyboard inputs as keys­
trokes to this presentation space.

The structure for this request in the <xhllapi.h> file is ca_data_typei the
members of this structure describe the following:

ws_cmd(CMDSIZ]: command code, CA for Change Active Window

ws_equ: an equal sign, (=)

ca_scrn:

ca-psid:

the screen profile, whose value must be "0"

the presentation space that HLLAPI is starting

You must supply all members of the ca_data_type structure, when making this
request.

Copy Block, CB

6/88

Copies the contents of a block defined by a set of coordinates in the source
presentation space, to a block defined by a set of coordinates in a target
presentation space - the extended attribute bytes are also copied.

The structure for this request is ch_data_typei the members for this structure
describe the following:

ws_cmd(CMDSIZ]: the command code, CB for Copy Block

an equal sign, (=)

5

6

(AT&T 3270 Emulator+ HLLAPI)

cb...,psid:

cb_srcbeg:

cb_srcend:

cb_tpsid:

cb_tbeg:

short name for the source presentation space

the starting copy offset in the source presentatiol)
space; position 1 - row 1, column 1

the ending copy offset; position 1 == row 1, column
1

short name for the target presentation space

the starting copy offset in the target presentation
space; again, position 1 = row 1, column 1

You must supply all members of the cb_data_type structure, when making
this request.

Redraw Screens, RD
This request redraws the specified screen profile. The AT&T 3270 Emulator+
HLLAPI implementation only supports enlarged states, and therefore, the full
presentation space of the active window will be redrawn.

The structure for this request is rd_data_type, and its members describe the
following:

ws_cmdlCMDSIZ]: command code, RD for Redraw Screens

ws_equ:

rd_scrn:

an equal sign, (=)

active screen profile redrawn; must be "0"

You must supply all members of the rd_data_type structure, when making
this request.

Query Active Window, QA
Returns the short name of the active window in the screen profile.

The structure for this request is qa_data_type, and its members describe the
following:

ws_cmdlCMDSIZ]: command code, QA for Query Active Window

ws_equ:

qa_scrn:

qa...,psid:

an equal sign

active screen profile; must be "0"

presentation space short name

When making this request, you must supply the ws_cmdlCMDSIZt ws_equ,
and qa_scrn members of the qa_data_type structure. qa...,psid will be returned
by h_wsctrl upon execution of the Query Active Window request.

Query Background Color, QC
Returns the background color of the screen profile. Use Query Window (QW)
for the background color of a specific window.

The structure for this request is qc_data_type; the members of this structure
describe the following:

ws_cmdlCMDSIZ]: command code, QC for Query Background Color

6/88

ws_equ:

qc_scrn:

qc_fil1:

qc_code:

(AT&T 3270 Emulator+ HLLAPJ)

an equal sign

the screen profile; must be "0"

unused filler

one of the following color codes:
0: Black
1: Blue
2: Red
3: Pink
4: Green
5: Turquoise
6: Yellow
7: White

When making this request, you must supply the ws_cmd(CMDSIZ), ws_equ,
qc_scrn and qc_fill members of the qc_data_type structure. qc_code will be
returned by h_wsctrl upon execution of the Query Background Color request.

Query Enlarge State, QE
Retuns a flag containing the state of the "enlarge" toggle key.

The structure for this request is qe_data_type, and its members describe the
following:

ws_cmd(CMDSIZ]: command code, QE for Query Enlarge State

ws_equ:

qe _ fi11[2]:

an equal sign

unused filler

binary enlarge state code,
0: not enlarged
1: enlarged

When making this request, you must supply the ws_cmd(CMDSIZ), ws_equ,
and qe_fill members of the qe_data_type structure. qe_code will be returned
by h_wsctrl upon execution of the Query Enlarge State request.

Query Window, QW

6/88

Returns the following information about a window on the screen profile:

• how many rows and columns are in the window

• row and column position of the upper left corner of the window
on the screen

• window and border colors

ill setting of control flags

• row and column position of the upper left corner of the window
on the presentation space

The structure for this request is qw_data_type; the members of this structure
describe the following:

7

8

(AT&T 3270 Emulator+ HLLAPI)

ws _ cmd(CMDSIZ]:

ws_equ:

qw_scrn:

qW-'psid:

qw_rows:

qw_cols:

qw_rpos:

qw_wcolor:

qw_bcolor:

qw_flags:

qW-'psrow:

qW-'pscol:

the command code, QW for Query Window

an equal sign

screen profile where the queried window is
located, and is always "0"

presentation space short name for the queried win­
dow

rows in the queried window

columns in the queried window

screen row position of the upper left window
corner, and is always "0"

screen column position of the upper left window
corner, and is always "0"

window color code

border color code

control flags,

row on the presentation space of the upper left
corner of the window; the value is always "0"

column of the presentation space of the upper left
corner of the window; the value if always "0"

When making this request, you must supply the ws_cmd(CMDSIZ1 ws_equ,
qw_scrn and qW-'psid members of the qw_data_type structure. The remain­
ing members will be returned by h _ wsctrl upon execution of the Query Win­
dow request.

Query Window Names, QN
Returns the name of the presentation space displayed in a screen profile.

The structure for this request is qn_data_type, and its members describe the
following:

ws_cmd(CMDSIZ]: command code, QN for Query Window Names

ws_equ:

qn_scrn:

an equal sign

screen profile of the queried window names, and
must be "0"

presentation space short name for the queried win­
dow names

qn_names[NAMES]: array of window short names

When making this request, you must supply the ws_cmd(CMDSIZ1 ws_equ,
and qn_scrn members of the qn_data_type structure. The remaining members
will be returned by h_wsctrl upon execution of the Query Window Names
request.

6/88

(AT&T 3270 Emulator+ HLLAPI)

SEE ALSO

NOTES

h_qsys(3X), h_setparms(3X).

The Query Background Color (QC) request will always return a "0" in the "C"
field for black background color of the base screen; you cannot change the
color of the screen, and it is not necessarily "black." "Black" is an arbitrary
choice, and it has no relation to the real color of the screen. This request does
no useful work in the AT&T 3B environment, and has been included for com­
patibility with the IBM 3270 Personal Computer HLLAPI specifications.

The Query Enlarge State (QE) request always returns a "1" in the qe_code
member field, for "enlarged state"; it can never return a "0" since the "unen­
larged state" is not supported.

The Redraw Screens (RD) has no effect in the AT&T 3270 Emulator+ HLLAPI
environment; it is present for compatibility with the IBM HLLAPI
specifications.

RETURN VALUES
h_wsctrl returns one argument: a return code, defined in the <xhllapi.h>
header file. The return code is placed at the location pointed to by the position
calling argument, and is also returned as the function value for the h_wsctrl
call.

The return code for h_wsctrl will have one of these values:

HE_SUCCESS: the h_wsctrl operation was successful

HE_INVAL: an invalid screen ID was specified, i.e., a screen other
than "0" was specified

HE_PARM: an error was made in specifying the string length or
parameters

HE _ WSCTRL: h _ wsctrl is owned by another session

HE _INHBT: the target area for a copy block operation is inhibited or
protected

HE_LENGTH: h_wsctrl is an invalid specification

HE_SYSERR: a system error was encountered; call h_.qsess to find out
the reason for failure

HE_FUNCT: this function is not available for the AT&T 3270 Emula­
tor+ HLLAPI Release 3.0

6/88 9

XLU2CLOS(3X) (AT&T 3270 Emulator+ API) XLU2CLOS(3X)

NAME
xlu2clos - power off the logical unit

SYNOPSIS
#include <xlu2io.h>

int xlu2clos(lu chan)
unsigned char -"'Iu_chan;

DESCRIPTION
xlu2clos performs a power-off sequence of the logical unit designated by
"lu _chan, the value returned by an xlu2open(3X) call. Unread data are dis­
carded.

xlu2clos will fail if any of the following are true, with errapi set as shown:

[E_ARG1] Invalid "lu_chan parameter.

[E_CNTX]

[E_INIT]

[E_BUSY]

[E_CTRLIO]

[E_TTY]

[400+]

"lu_chan does not exist.

API initialization not performed [xlu2init(3X) not called].

Busy logical unit.

Communication with controller is terminated abnormally; ses­
sion powered off (see below).

Error in controlling terminal device (see below).

Program check (see Appendix B).

[500+] Communication check (see Appendix C).

If the call fails with an E_CTRLIO or E_TTY error, the error may have
occurred on another session. In this case, the returned value of "lu_chan may
be set to that session and will be different than the input value. This does not
indicate that the call has failed for the input session. The results of this call
can be determined by use of an xlu2info(2) call for the input "lu_chan.

DIAGNOSTICS

6/88

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1
is returned and errapi is set to indicate the error.

1

XLU2CTL(3X) (AT&T 3270 Emulator+ API) XLU2CTL(3X)

NAME
xlu2ctl - logical unit control functions

SYNOPSIS
#include <xlu2io.h>

int xlu2dI(1u_chan, request, arg, retcod, secs)
unsigned char "'Iu_chan;
long request, arg, "'retcod;
long secs;

DESCRIPTION

6/88

xlu2ctl performs a specified control function on a logical unit. On input,
"'lu_.chan designates an active session-logical unit (LU), returned by an
xlu2open(3X) call. The returned value of "'lu_chan may be different than the
input value (see LUEVENT, below). request and arg define the control func­
tion to be performed on the LU.

"'retcod is a returned value. For an LUEVENT KY CTRL control function (see
LUEVENT, below), "'retcod is set to the application request key entered by the
user. For all other values of request on LUD _3270 sessions (see LUDMOD,
below), "'retcod is set to the session status. Bitwise ANDing "'reteod with the
following macros, defined in xapi.h, returns true if the corresponding activity
has been detected on the lu_chan LUD_3270 session:

LUR_NOTH (Iu_chan)
LUR_PRES (Iu_chan)
LUR_STAT (Iu_chan)
LUR_PRNT (Iu_chan)
LUR_BELL (Iu_chan)

no activity on session
presentation space update
status update
host print request
host ring bell request

secs is the maximum number of seconds xlu2ctl will wait for the requested
function to complete. If the call does not complete before sees number of
seconds have elapsed, the call will fail with errapi set to E _INTR, and with
"'retcod and "'lu_chan updated. If the call completes before secs seconds have
elapsed, xlu2ctl will return normally with the appropriate return code. A secs
value of 0 indicates no timing should be performed.

The control functions for the values of request are as follows:

LUAMOD
For an LU in LUD 3270 mode (see LUDMOD, below) and for a for­
matted display, sets-the screen buffer in the access mode, specified by
arg:

o access all fields (default)

1 access protected fields only

2 access unprotected fields only

For LUD RAW or LUD TRAW mode (see LUDMOD, below) or an
unformatted screen (an- unformatted LU-LU session screen or an
SSCP-LU session), this request is ignored.

1

XLU2CTL(3X) (AT&T 3270 Emulator+ API) XLU2CTL(3X)

2

LUDTIM
Sets the number of seconds, specified by arg, that each API call
display is maintained on the screen during LUV _TRC mode (see
LUVMOD, below). The default value is zero. If arg specifies a nega­
tive value, it is treated as zero.

LUDMOD
Changes the data transfer mode for the LU, as set by xlu2open(3X), to
the mode specified by arg:

LUD_RAW Data is transferred between the host and the user
application in raw form, unaltered and unprocessed,
using any (or no specific) type of data stream.

LUD_TRAW

LUD_3270

Data is transferred between the host and the user
application in transparent raw form, unaltered and
unprocessed, using any (or no specific) type of data
stream.

Data is transferred between the host and the user
application through the 3278/9 screen buffer with
data stream processing including validation and
translation. .

If the LU is busy [Intervention Required (IVR) mode; see, e.g.,
KY_BUSY under LUEVENT], the data transfer mode is not altered and
an E_BUSY error is returned. If the LU is in the process of sending
data to or receiving data from the controller (i.e., the LU's keyboard
is locked), the data transfer mode is not altered and an OPI_FUNCT
error is returned.

If a session's data transfer mode is changed so that a different type of
data stream will be used between the emulator and host, the user
application program should send notification of the change to the
host. In this case, the host application should be in receive state.

LUVMOD
Sets the screen buffer visibility mode for the LU, as specified by arg:

LUV _NON Screen update is disabled.

LUEVENT

Screen update is enabled.

Screen update is enabled and a visual trace of API
calls is provided in the Operator Information Area, to
aid in debugging (see Appendix D).

See LUDTIM, above.

Screen update goes to stdout, but stdin does not have
to be a terminal device.

Causes the event specified in arg to be reported to the physical unit.
For this value of request, xlu2ctl will block until the controller ack­
nowledges and completes the processing of the event. The LU's
screen buffer may also be transmitted. Control is returned to the

6/88

XLU2CTL(3X)

6/88

(AT&T 3270 Emulator+ API) XLU2CTL(3X)

application program as described below.

For an LU in LUD _3270 mode (see LUDMOD, above), the valid values
for arg are:

KY_ATTN 3278/9 ATTN Key (SNA only)

KY _BAKTAB move cursor left to the beginning of the previous
field

KY_BUSY

KY_CLEAR

KY_CTRL

enter IVR mode

CLEAR key

passes control of the terminal emulation process
interface from application program to interactive
user, until the user ends control with an [ESC]
FD.

KY_DOWN_A move cursor down one line

KY_E_INPUT

KY_ENTER

KY_HOME

KY_LEFT_A

KY_NMSG

KY_SYS_REQ

KY_TAB

3278/9 Erase to End of Field key

3278/9 Erase Input key

ENTER key

move cursor to home position

move cursor left one position

await next message from the controller/host (no
need for keyboard to unlock)

3278/9 PROGRAM ACCESS keys 1, 2, 3

awaits the next host event. This request is par­
ticularly useful when the session resulting from
an xlu20pen call is INACTIVE and screen update
is not forthcoming.

3278/9 PROGRAM FUNCTION keys 1,2,3, ... 24

3278/9 RESET key

move cursor right one position

3278/9 SYS_REQ key (SNA only)

move cursor right to the beginning of the next
field

3278/9 TEST_REQ key (BSC only)

resume communication with host after KY_BUSY
request

KY_UP _A move cursor up one line

KY_WAIT awaits the next host screen update

For an LU in LUD_RAW or LUD_TRAW mode (see LUDMOD, above),
only the following values of arg are valid:

3

XLU2CTL(3X)

4

(AT&T 3270 Emulator+ API) XLU2CTL(3X)

KY_UNBUSY

3278/9 ATTN key (SNA only)

entering IVR mode

await next message from the controller/host (no
need for keyboard to unlock)

awaits the next host event. This request is par­
ticularly useful when the session resulting from
an xlu20pen call is INACTIVE and screen update
is not forthcoming.

3278/9 SYS_REQ key (SNA only)

3278/9 TEST_REQ key (BSC only)

resume communication with host after KY _BUSY
request

For all modes, if the LU is in the process of sending data to or receiv­
ing data from the controller (i.e., the LU's keyboard is locked), the
event (excluding KY_WAIT, KY_PEND and KY_CTRL) is rejected with
an OPI_FUNCTerror.

The calling program is blocked until one of the following conditions
occurs:

For a cursor movement request, following cursor movement.

• For a request on any LU that results in communication with the
host or the controller, until keyboard unlock.

For KY_WAIT on any LU, until the host responds with a screen
update and keyboard unlock. KY_WAIT blocks until the host
updates any LU's screen buffer and the keyboard is unlocked ..

For KY_PEND on any SNA LU, when a host or controller event
is received, resulting in valid session ownership, with keyboard
unlock.

On an LU which is connected to an SNA controller, KY_PEND
blocks until the host or the controller places an LU in a valid ses­
sion with the keyboard unlocked. On a LU which is connected
to a BSC controller, KY _PEND blocks the application program
until the keyboard is unlocked.

For KY_PEND and KY_NMSG, when a segment arrives on a
LUD_RAW or LUD_TRAW channel

For KY _ CTRL, when the interactive user strikes KY _ CTRL,
KY PREYS, KY NEXTS, KY IDE NT, KY SHELL, or KY UI
through KY_UIO-:- - - -

In this case, the application request key entered by the user is
returned in "'retcod.

For LUEVENT, the returned value of "'lu_chan may be different then
the input value, corresponding to another session on which a previ­
ously initiated event has completed.

6/88

XLU2CTL(3X) (AT&T 3270 Emulator+ API) XLU2CTL(3X)

LUEVIMED

6/88

Causes the event specified in arg to be reported to the physical unit.
For this value of request, xlu2ctl will block until the controller ack­
nowledges the event, but does not wait for the completion of the
event. The LU's screen buffer may also be transmitted. Control is
returned to the application program as described below.

For an LU in LUD _3270 mode (see LUDMOD, above), the valid values
for arg are:

KY_ATTN 3278/9 ATTN key (SNA only)

KY_BAKTAB

KY_BUSY

KY_CLEAR

move cursor left to previous field

entering IVR mode

CLEAR key

KY_DOWN_A move cursor down one line

KY_ENTER

KY_E_EOF

KY_E_INPUT

KY_HOME

KY_LEFT_A

KY_NMSG

KY_PAn

KY_PFn

KY_RESET

KY_RIGHT_A

KY_SYS_REQ

KY_TAB

KY_TST_REQ

KY_UNBUSY

ENTER key

3278/9 Erase to End of Field key

3278/9 Erase Input Key

move cursor to home position

move cursor left one position

await next message from the controller/host (no
need for keyboard to unlock)

3278/9 PROGRAM ACCESS keys 1, 2, 3

3278/9 PROGRAM FUNCTION keys 1,2, ... 24

3278/9 RESET key

move cursor right one position

3278/9 SYS_REQ key (SNA only)

move cursor right to next field

3278/9 TEST_REQ key (BSe only)

resume communication with host after KY_BUSY

KY_UP _A move cursor up one line

If the LU is in the process of sending data to ,or receiving data from
the controller (i.e., the LU's keyboard is locked), the event is rejected
with an OPI_FUNCT error.

For KY_NMSG, the returned value of "'lu_chan may be different than
the input value, corresponding to another session on which a mes­
sage has been received from the controller/host. If there is no mes­
sage for any session, the call will return with "'lu_chan set to sess_max
[see xlu2in/o(3X)].

For an LU in LUD RAW or LUD TRAW mode (see LUDMOD, above),
only the following-values of arg are valid:

5

XLU2CTL(3X) (AT&T 3270 Emulator+ API) XLU2CTL(3X)

6

KY_ATTN 3278/9 ATTN key (SNA only)

KY _BUSY entering IVR mode

KY_NMSG await next message from the controller/host (no
need for keyboard to unlock)

KY_SYS_REQ 3278/9 SYS_REQ key (SNA only)

KY_TST_REQ 3278/9 TEST_REQ (BSC only)

KY_UNBUSY resume communication with host after KY_BUSY

For LUEVIMED, the calling program is blocked until one of the fol­
lowing occurs:

• The cursor is repositioned on the LUD_3270 LU.

All relevant data for the LU are transferred to the controller.

Note: Although LUEVENT and LUEVIMED appear to operate in a simi­
lar manner, they return to the caller under different conditions.
LUEVIMED merely waits for the controller to acknowledge the event,
without waiting for completion of processing. LUEVENT waits for the
controller to acknowledge and also complete processing of an event.

xlu2ctl will fail if any of the following are true, with errapi set as shown:

[E_ARGl] Invalid "luJhan parameter.

[E_ARG2]

[E_ARG3]

[E_ARG4]

[E_INIT]

[E_CNTX]

[E_BUSY]

[E_XLIB]

[OPI_WHAT]

[OPI_FUNCT]

[E_DMODE]

[E_BNDREJ]

[E_DOVFLO]

[E_DCOD]

[E_INTR]

Invalid value of request.

Invalid argo

retcod is the null pointer.

API initialization not performed [xlu2init(3X) not called].

"lu_chan does not exist.

Busy logical unit.

Necessary library function(s) excluded at link time.

Invalid operation.

Invalid operation.

LU is in LUD RAW or LUD TRAW mode, or could not enter
requested data-transfer mode~

Host mismatch on buffer size; bind rejected.

Raw outbound data has overflowed internal queue.

LUD_TRAW is unavailable on ASCII line.

secs is non-zero and the function did not complete in secs
seconds or this call was blocking and an xlu2intr(3X) was
issued (see below).

Communication with controller is terminated abnormally; ses­
sion powered off (see below).

6/88

XLU2CTL(3X) (AT&T 3270 Emulator+ API) XLU2CTL(3X)

NOTES

[400+]

Error in controlling terminal device (in LUV _DSP mode; in
LUV TRC mode; in LUV NON /LUV NTD mode on
LUEVENT with KY_CTRL or on LUDTIM).-See below.

Program check (see Appendix B).

[500+] Communication check (see Appendix C).

If the call fails with an E_CTRLIO or E_TTY error, the error may have
occurred on another session. In this case, the returned value of ·lu_chan may
be set to that session and will be different than the input value. Also, if the
call fails with E INTR, this does not indicate that the call has failed. The con­
trol function may succeed at a later time. The results of the call can be deter­
mined by use of an xlu2info(2) call for the input "lu_chan.

Before selecting LUD_RAW and LUD_TRAW (under LUDMOD), you must
turn the display off with LUV _NON (under J.UVMOD). Otherwise, you will
obtain an ERRAPI return value of E_DMODE.

DIAGNOSTICS

6/88

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1
is returned and errapi is set to indicate the error.

7

XLU2FUNC(3X) (AT&T 3270 Emulator+ API) XLU2FUNC(3X)

NAME
xlu2func - perform special functions on the logical unit

SYNOPSIS
#inc1ude <xlu2io.h>

int xlu2func(1u chan, func, name, secs)
unsigned char ·Iu_chan;
long func;
unsigned char "'name;
long secs;

DESCRIPTION

6/88

xlu2func performs various special functions on the logical unit specified by
"'lu_chan, the value returned by an xlu2open(3X) call. The functions are
specified by the value of func:

LUPRND print capability disabled

LUPRNF

LUPRNC

LURSET

print to a file

print request command

clear inhibit condition

name is the function object, according to func:

LUPRND name may be NULL

LUPRNF file path name

LUPRNC command string

LURSET RESET-INHIBIT-condition mode

For print functions (LUPRND, LUPRNF and LUPRNC), xlu2func fails with
errapi set to E_DMODE if the "'lu_chan session is not in LUD _3270 mode.

LURSET controls the resetting or clearing of inhibit conditions before return­
ing from subsequent API system calls. For LURSET, name may be:

LUI_RSYS Reset SYSTEM inhibit conditions (default)

SYSTEM inhibit conditions not automatically reset

secs is the maximum number of seconds xlu2func will wait for the requested
function to complete. If the call does not complete before secs number of
seconds have elapsed, the call will fail with errapi set to E_INTR. If the call
completes before secs seconds have elapsed, xlu2func will return successfully.
A secs value of 0 indicates no timing should be performed.

xlu2func will fail if any of the following are true, with errapi set as shown:

[E_ARG1] Invalid lu_chan parameter.

[E_ARG2]

[E_PATH]

[E_ICOND]

Invalid func parameter.

Invalid name parameter for func LUPRNC or LUPRNF.

Invalid name parameter for func LURSET.

1

XLU2FUNC(3X) (AT&T 3270 Emulator+ API) XLU2FUNC(3X)

[E_INIT] API initialization not performed [xlu2init(3X) not called].

[E_CNTX] "lu_chan does not exist.

[E_DMODE] tunc is LUPRND, LUPRNF or LUPRNC and lu_chan is in
LUD_RAWor LUD_TRAW mode.

[E_DOVFLO] Raw outbound data has overflowed internal queue.

[E_INTR] secs is non-zero and the function did not complete in secs
seconds or this call was blocking and an xlu2intr(3X) was
issued (see below).

[E_CTRLIO] Communication with controller terminated abnormally; ses­
sion powered off (see below).

[E_TTY] Error in controlling terminal device (LUV _DSP and LUV _TRC
modes only, see xlu2open). Also see below.

If the call fails with an E_CTRLIO or E_TTY error, the error may have
occurred on another session. In this case, the returned value of "lu_chan may
be set to that session and will be different than the input value. Also, if the
call fails with E INTR, this does not indicate that the call has failed. The
function may succeed at a later time. The results of the call can be deter­
mined by use of an xlu2into(2) call for the input "lu_chan.

DIAGNOSTICS

2

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1
is returned and errapi is set to indicate the error.

6/88

XLU2GETS(3X) (AT&T 3270 Emulator+ API) XLU2GETS(3X)

NAME
xlu2gets - get a string from the LUD _3270 logical unit's screen buffer

SYNOPSIS
#include <xlu2io.h>

int xlu2getsUu_chan, s, n)
unsigned char "'Iu_chan,
unsigned char "'s;
long "'n;

DESCRIPTION

6/88

xlu2gets retrieves the data from the screen buffer field of the LUD _3270 mode
logical unit specified by "'lu_chan, the value returned by an xlu2open(3X) call.
The field is determined by the buffer location to which the cursor is currently
pointing. The contents of the field are converted to a null terminated ASCII
string and placed into the user buffer pointed to by s.

On call, *n specifies the maximum number of characters the user buffer can
hold excluding the terminating null. On return, *n is set to the number of
characters actually placed into the user buffer. For a formatted display, a pro­
tected or unprotected field can be retrieved and the maximum returned value
of *n is the number of characters permitted in the field. For an unformatted
display, this is the requested length. If the cursor is positioned to an attribute
byte in a formatted display, the call will fail with errapi set to E_ACCS.

For a formatted screen buffer, the cursor is repositioned to the beginning of
the next protected or unprotected field, depending on the value of the access
mode [LUAMOD, see xlu2ctl(3X)] for this LU (consecutive attributes are
skipped). For an unformatted screen buffer, the cursor is repositioned to the
first location following the end of the transferred string.

If a screen wrap occurs during string transfer, the field transfer is continued
until the field or the requested number of characters is exhausted. The cursor
is not positioned to the next field and an E_OFFB warning code is returned in
errapi.

Data character translation of the data stream is performed according to the
character echo string definitions specified in the customization file, scjfil, in
the xlu2init(3X) call. Null characters in the screen buffer field are not
translated. They are transferred as nulls to the user buffer, so that the return
string may contain embedded nulls.

xlu2gets will fail if any of the following are true, with errapi set as shown:

[E_ARGl] Invalid lU3han parameter.

[E_ARG2] s is the null pointer.

[E_ARG3]

[E_INIT]

[E_CNTX]

[E_DMODE]

n is the null pointer or the value of *n is less than 1.

API initialization not performed [xiu2init(3X) not called].

*lu Jhan does not exist.

*lu_chan is in LUD_RAW or LUD_TRAW mode.

1

XLU2GETS(3X) (AT&T 3270 Emulator+ API) XLU2GETS(3X)

[E_BUSY] Busy logical unit.

[OPI_WHAT] Invalid operation.

[OPI_FUNCT] Invalid operation.

[E_ACCS] Cursor positioned to an attribute byte

[E_CTRLIO] Communication with controller is terminated abnormally; ses­
sion powered off. See below.

[E_TTY] Error in controlling terminal device (LUV _DSP and LUV _TRC
modes only, see xlu2open). See below.

[400+] Program check (see Appendix B).

[500+] Communication check (see Appendix C).

If the call fails with an E_CTRLIO or E_TTY error, the error may have
occurred on another session. In this case, the returned value of "'lu_chan may
be set to that session and will be different than the input value. This does not
indicate that the call has failed for the input session. The results of this call
can be determined by use of an xlu2info(2) call for the input "'lu3han.

DIAGNOSTICS

2

Upon successful completion, a value of 0 is returned. Otherwise, a negative
value is returned. A return value of -1 indicates a failure and errapi is set to
indicate the error. A return value of -2 indicates a warning condition and
errapi is set as follows:

E_OFFB Cursor is off the screen buffer boundary.

6/88

XLU2INFO(3X) (AT&T 3270 Emulator+ API) XLU2INFO(3X)

NAME
xlu2info - obtain 3278/9 status line and cursor position information

SYNOPSIS
include <xlu2io.h>

int xlu2info(ibuf)
XLU2IBUF "'ibuf;

DESCRIPTION

6/88

xlu2info returns information regarding the session-logical units that have been
established by this process, including the contents of the 3278/9 status line
and cursor position.

The information is returned in an XLU2IBUF structure pointed to by ibuf,
defined in xapi.h, which contains the following elements:

unsigned char lu chan
unsigned char nodel;

struct
{

unsigned char lu opr1;
unsigned char lu:act;

lang luaIOOd;
lang lUVl'lDd;

lang ludtim;
lang ludm:x:1;

lang lusnod;
lang lusdfl;
unsigned char luirst;

unsigned char lubusy;
unsigned char *pres spc;
unsigned char *ext:n:buf;
slx:>rt *attr l::ma.;
int attr tmS;
short c_line;
slx:>rt c _001;
slx:>rt c JX>S;
slx:>rt c _beg;
slx:>rt c _ erx1;
unsigned char c att;
unsigned char c:fnn;

lang err oorxi;
unsigned-char keyb_lck;
unsigned char wait_lck;
unsigned char inhb_lck;
short err_400;

1* the bit in posi tians "3210" iIxlicates
activity on the oorrespandj.ng lu_ chan
session-logical unit *1
1* index to ch dat structure *1
1* 3278/9 model number: 2,5 *1

1* ch_dat structure *1

1* lu carmection is open indicator *1
1* session activity; this can be exanri.ned
in the same marmer as the retcod argument of the
xlu2ct1 function. rorE: Only LUD_3270 session
(see ludm:xl) activity is updated *1
1* access all/only protected/only unprot flds *1
1* screen visibility mxle onIoff with opia in
TElAPI mxle *1

1* API f1.mction display time on opia in sec *1
1* data transfer mxle:

LUD_RAW, LUD_'mAW or LUD_3270 *1
1* requested security mxle: DFIHI_SEOJR *1
1* default security mode: HIINM_SEXlJR *1
1* Inhibit oandition reset

(for values, see xapi.h) *1
1* =1, if lu is in IVR mxle; othel:wise, =0 *1
1* presentation space address *1
1* extended attribute blffer address *1
1* att::ribl.te bit map address *1
1* att::ribl.te bit map size (slx:>rt units) *1
1* current line number *1
1* current 001Ul1U1 number *1
1* current cursor position *1
1* beginning of current field *1
1* erx1 of current field *1
1* current field att::ribl.te *1
1* current screen Mfer:

unfcnnatted (0) Ifcnnatted (1) *1
1* API-detected error *1
1* keyboard state: WAIT or INHIBIT *1
1* keyboard state: WAIT (1)/clear (0) *1
1* keyboard state: nmmrr (2)/clear (0) *1
1* 400 series error nv:!ssages *1

1

XLU2INFO(3X) (AT&T 3270 Emulator+ API) XLU2INFO(3X)

short err 500;
short apia;

unsigned char bsaood;
unsigned char line chr;
short nax siz; -
unsigned Char sna._ own;

1* 500 series error message *1
1* tennina.l status (for values,
see inhibit condition section in xapLh) *1
1* 1=bsc, O=sna. *1
1* data code: ASCII or EOCDIC *1
1* nax:i.num xlu2writ segnent size *1
1* if sna., owner (for values,
see session ownership section in xapi.h) *1

unsigned char luJlZ""t; 1* lu port number *1
unsigned char Pl_nam[PATHSIZ]; 1* cantroller path name *1
unsigned char pm_f1 [PATHSIZ] ; 1* printer path name *1
lang pm_m:i; 1* printer assignrrent roode. O=nane, 1 =file ,

2=ccmnand *1
} ch_dat[sess_nax];

lu_chan, the index to ch_dat, is the value returned by xlu2open. sess_max is the
maximum number of logical units (currently 4) that can be open at one time
by one process, defined in xapi.h.

The cause of an error return from an API system call is indicated in errapi. If
the error is detected during function call parameter validation, only errapi is
set. If the returned error is due to a logical unit INHIBIT condition, errapi and
the opia field are set. If the error is due to a 400 or 500 series error, errapi and
the err _400 or the err _500 field are set. Finally, if the error is due to any of the
other error conditions listed for the call, errapi and the err _cond field are set.

DIAGNOSTICS
Upon completion, a value of 0 is returned. There are no defined error returns.

2 6/88

XLU2INIT(3X) (AT&T 3270 Emulator+ API) XLU2INIT(3X)

NAME
xlu2init - initialize terminal function library

SYNOPSIS
#include <xlu2io.h>

int xlu2init (sc_ifil, ky _ifil, rt_mfil, t_modl, ds_vers)
unsigned char IfoSC _ifil, Ifoky _ifil, Ifort _ mfil, t _modi, ds _ versi

DESCRIPTION
xlu2init performs local API initialization functions for the calling process
including reading the runtime files and assigning the terminal model number.
sc jfil is the pathname of the screen control customization object file, output of
the scinit utility, described in the AT&T 3270 Emulator+ System Administrator's
Guide. kyjfil is the pathname of the keyboard mapping customization object
file, output of the kyinit utility, described in the Administrator's Guide. rt_mfil is
the path name of the runtime message object file, described in the
Administrator's Guide. t_modl is the 3278/9 terminal model number (2 or 5).

ds_vers determines whether extended field attributes will be processed. If
ds_vers is set to LUD_EXT, extended field attributes will be displayed if screen
visibility is enabled [see LUVMOD in xlu2ctl(3X)]. If ds_vers is not set to
LUD_EXT (i.e., set to LUD_RAW, LUD_TRAW or LUD_3270), extended field
attributes orders and commands will be ignored.

xlu2init is performed only once in an API program, and must precede any
other API call.

xlu2init will fail if any of the following are true, with errapi set as shown:

[E_ARG1] scjfil is the null pointer.

[E_ARG2] ky_ifil is the null pointer.

[E_ARG4]

[E_SCTL]

[E_KCTL]

[E_RTMG]

[E_MODL]

Invalid parameter.

Error in opening/reading scjfil

Error in opening/reading kyjfil

rt_mfil is invalid.

Physical terminal (as described by scjfil) can not support
model number.

[E_INIT]

[E_XLIB]

DIAGNOSTICS

xlu2init previously called for this API process.

Necessary library function(s) excluded at link time.

6/88

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1
is returned and errapi is set to indicate the error.

1

XLU2INTR(3X) (AT&T 3270 Emulator+ API) XLU2INTR(3X)

NAME
xlu2intr - interrupt API call

SYNOPSIS
#include <xlu2io.h>

int xlu2intrO ;

DESCRIPTION
This call is intended to be used from an API application signal catching rou­
tine. xlu2intr will cause to abort certain API function calls previously issued
by this process which are currently in progress and are also currently blocked
from completing. The calls capable of blocking are xlu2ctl(3X), xlu2func(3X),
xlu2open(3X) and xlu2writ(3X). When the signal catcher completes and the
interrupted process resumes, any of these calls in the described state will
immediately terminate processing and return a failure with errapi set to
E_INTR.

When a signal is caught during execution of an API application, the signal
catching routine can not call any other API functions since the signal may
have occurred during execution of an API function and API does not allow
concurrent calls from the same process.

Signals do not automatically cause API function calls to be interrupted.
xlu2intr allows the catching routine to notify the mainline process of the
occurrence of the signal, such as a timer, by a procedure such as setting a flag.
When the mainline application recognizes the flag, it can handle the event
which has been signaled and make other API calls as required.

xlu2intr will fail if the following is true with errapi set as shown:

[E _IN IT] API initialization not performed

DIAGNOSTICS
Upon successful completion, one of the following values is returned:

o No API call in progress

1 API function in progress

2 Terminal Emulation in progress

Otherwise, a value of -1 is returned and errapi is set to indicate the error.

6/88 1

I

I

I

XLU20PEN(3X) (AT&T 3270 Emulator+ API) XLU20PEN(3X)

NAME
xlu20pen - power on the logical unit

SYNOPSIS
#inc1ude <xlu2io.h>

int xlu20pen (lu_chan, pu_name, lu...,port, ludmod, luvmod, lusmod, sees)
unsigned char "lu_chan, "pu_name, .. lu...,Port;
long ludmod, luvmod, "lusmod, secs;

DESCRIPTION

6/88

xlu20pen requests the services of a port within the specified BSe or SNA 3274
controller and performs a power-on sequence of a logical unit with respect to
the host. pu_name points to a character string containing the name of the 3274
controller process communication path.

On call, luyort points to a character string containing the 3274 controller port
number. luyort may also point to a string containing multiple port numbers
separated by a comma or hyphen, representing several (comma) or a range of
acceptable ports. A nullluyort pointer indicates that the user will accept any
available 3270 controller port. The controller port number will be returned in
the 1 u_prt field of the XLU2IBUF structure for this session [see
xlu2info(3X)]. Values contained in *luyort can be the following, according to
the type of controller specified in *pu_name.

Standard 3270 SNA 0 - 31
3270 BSC 0 - 31

Enhanced 3270 SNA 1 - 254

These values also depend on the total number of logical units for which the
controller is configured, as described in the AT&T 3270 Emulator+ System
Administrator's Guide.

ludmod indicates the mode of data transfer between the host and the API user
application program:

LUD _RAW Data is transferred between the host and the user applica-
tion in raw form, unaltered and unprocessed, using any
(or no specific) type of data stream.

Data is transferred between the host and the user applica­
tion in transparent raw form, unaltered and unprocessed,
using any (or no specific) type of data stream.

LUD _3270 Data is transferred between the host and the user applica­
tion through the 3278/9 screen buffer with data stream
processing including validation and translation.

LUD_TRAW is ignored if *pu_name is not a BSC controller. If the controller is
BSC and LUD _TRAW is selecteds, but the character set has been configured as
ASCII (see "BSC Configuration" in the Administrator's ~uide), xlu20pen will fail
with errapi set to E_XPRNT.

luvmod indicates the screen visibility mode for the logical unit:

1

XLU20PEN(3X) (AT&T 3270 Emulator+ API) XLU20PEN(3X)

2

LUV_NON

LUV_DSP

LUV_TRC

Screen update is disabled.

Screen update is enabled.

Screen update is enabled and a visual trace of API calls is
provided in the Operator Information Area, to aid in
debugging (see Appendix D). Also see LUDTIM in
xlu2etl(3X).

Screen update goes to stdout, but stdin does not have to
be a terminal device.

lusmod is valid only if *pu_name is a SNA controller and will be ignored for
BSe. On call, *lusmod indicates how the security mode for the logical unit
should be set:

DF_SECUR

HI_SECUR

Default to what is specified in the cluster controller cus­
tomization file (see below and "SNA Configuration" in the
Administrator's Guide).

The security mode of the logical unit is set to high secu­
rity.

On successful return, *lusmod specifies the default controller configuration set­
ting (see the Administrator's Guide):

NM_SECUR An xlu2clos(3X) call may not deactivate the session owner­
ship established by the host.

HI_SECUR An xlu2clos call is ensured to deactivate the session own­
ership established by the host.

The calling program is blocked until power-on is completed or sees seconds
have elapsed. Power-on completion occurs when the logical unit has valid
session ownership (SNA only), with keyboard unlock, the power-on is
rejected, or E_CTRLIO error is detected on this or any other session.

sees is the maximum number of seconds xlu20pen will wait for this function to
complete. If the call does not complete before sees number of seconds have
elapsed, the call will fail with errapi set to E_INTR. If the call completes
before sees seconds have elapsed, xlu20pen will return successfully. A sees
value of 0 indicates no timing should be performed.

xlu20pen will fail if any of the following are true, with errapi set as shown:

[E_PATH] pu_name is the null pointer.

[E_ARG3]

[E_ARG4]

[E_ARG5]

[E_SECUR]

[E_INIT]

[E_SESLIM]

[E_XLIB]

Invalid luyort parameter.

Invalid ludmod parameter.

Invalid luvmod parameter.

Invalid Ius mod parameter.

API initialization not performed [xlu2init(3X) not called].

Number of sessions exceeds limit.

Necessary library function(s) excluded at link time.

6/88

XLU20PEN(3X) (AT&T 3270 Emulator+ API) XLU20PEN(3X)

[E_RSRC]

[E_BNDREJ]

[E_TRMBSY]

[E_HOSTID]

[E_CNTID]

[E_LINID]

[E_ILSIZE]

[E_XPRNT]

[E_INTR]

[E_CTRLIO]

[400+]

[500+]

Controller has insufficient resources, i.e., there are no ports
left.

Host mismatch, bind rejected.

SNA/BSC terminal is busy.

Illegal SNA/BSC host identification.

Illegal controller identification.

Illegal line identification.

Bind and device size mismatch; bind rejected.

Request for transparent line characteristic (LUD_TRAW)
rejected.

secs is non-zero and the function did not complete in secs
seconds or this call was blocking and an xlu2intr(3X) was
issued.

Error in opening/reading/writing on communication path to
controller.

Error in controlling terminal device (LUV _DSP and LUV _TRC
modes only).

Program check (see Appendix B).

Communication Check (see Appendix C).

If the call fails with an E_CTRLIO or E_TTY error, the error may have
occurred on another session and does not indicate that the call has failed.
Also, if the call fails with E INTR, this does not indicate that the call has
failed. The open may succeed at a later time. The results of the call can be
determined by use of an xlu2info(2) call for the input "lu_chan.

DIAGNOSTICS

6/88

Upon successful completion, xlu20pen returns 0 with "lu_chan set to an integer
in the range 0 to 3 [see sess_max in xlu2info(3X)]. This value represents a logi­
cal unit channel for this process which will be referenced in all subsequent
API calls for this logical unit.

Otherwise, a value of -1 is returned and errapi is set to indicate the error. For
all errors other than E_INTR, 400+ and 500+, the logical unit is considered
closed. In order to power on the logical unit, the xlu20pen call must be
repeated. .

3

XLU2PUTS(3X) (AT&T 3270 Emulator+ API) XLU2PUTS(3X)

NAME
xlu2puts - put a string to the LUD _3270 logical unit's screen buffer

SYNOPSIS
#include <xlu2io.h>

int xlu2putsUu_chan, s, n)
unsigned char "'Iu_chan, "'s;
long "'n;

DESCRIPTION

6/88

xlu2puts writes a string to the screen buffer at the current cursor position of
the LUD_3270 mode logical unit specified by !tlu_chan, the value returned by
an xlu2open(3X) call.

The null terminated string is retrieved from the user buffer pointed to by s. If
the screen field is smaller than the length of the string (excluding the ter­
minating null), the string is truncated when placed into the screen buffer. In
this case, errapi is set to OPI_TOOM, but xlu2puts does not fail. In all cases,
xlu2puts returns in !tn, the number of characters actually written to the screen
buffer.

For a formatted screen buffer, the cursor is repositioned to the beginning of
the next protected or unprotected field, depending on the value of the access
mode [LUAMOD, see xlu2ctl(3X)] for this LU (consecutive attributes are
skipped). For an unformatted screen buffer, the cursor is repositioned to the
first location following the end of the transferred string.

If a screen wrap occurs during string transfer, the string transfer is continued
until the field or the string is exhausted. The cursor is not positioned to the
next field and an E _ OFFB warning code is returned in errapi.

If an error (e.g. OPI_NUM) occurs during string transfer, the transfer is
aborted (part of the string is transferred until the error is encountered) and
the cursor is not positioned to the next field.

Character translation on the input string is performed according to the key­
board mapping specified by the customization file, kyjfil, in the xlu2init(3X)
call. Only data or numeric characters are allowed in the string.

xlu2puts will fail if any of the following are true, with errapi set as shown:

[E_ARGl] Invalid !tlu_chan parameter.

[E_ARG2] 5 is the null pointer.

[E_ARG3]

[E_INIT]

[E_CNTX]

[E_DMODE]

[E_BUSY]

[E_ACCS]

n is the null pointer.

API initialization not performed [xlu2init(3X) not called].

!tlu_chan does not exist.

"'lu_chan is in LUD_RAW or LUD_TRAW mode.

Busy logical unit.

Access mode violation.

1

XLU2PUTS(3X) (AT&T 3270 Emulator+ API) XLU2PUTS(3X)

[OPCNUM]

[OPCELSE]

[OPI_TOOM]

[OPI_BAD]

[OPCWHAT]

[OPI_FUNCT]

[E_CTRLIO]

[400+]

Non-numeric data entered in numeric field.

Improperly positioned cursor.

Field overflow (however, xlu2puts does not return -1; returns
the size of the string transferred in n).

Bad key translation.

Invalid operation.

Invalid operation.

Communication with controller is terminated abnormally; ses­
sion powered off. See below.

Error in controlling terminal device (LUV _DSP and LUV _TRC
modes only, see xlu2open). See below.

Program check (see Appendix B). .

[500+] Communication check (see Appendix C).

If the call fails with an E_CTRLIO or E_TTY error, the error may have
occurred on another session. In this case, the returned value of *lu_chan may
be set to that session and will be different than the input value. This does not
indicate that the call has failed for the input session. The results of this call
can be determined by use of an xlu2info(2) call for the input *lu _chan.

DIAGNOSTICS

2

Upon successful completion, a value of 0 is returned. Otherwise, a negative
value is returned. A return value of -1 indicates a failure and errapi is set to
indicate the error. A return value of -2 indicates a warning condition and
errapi is set as follows:

E_OFFB Cursor is off the screen buffer boundary.

6/88

XLU2READ(3X) (AT&T 3270 Emulator+ API) XLU2READ(3X)

NAME
xlu2read - read the next raw segment on the LUD_RAW /LUD_TRAW logical
unit

SYNOPSIS
#include <xIu2io.h>

int xIu2readUu_chan, segmt)
unsigned char "'Iu_chan;
RA WSEG "'segmt;

DESCRIPTION

6/88

xlu2read performs a data block read operation on the LUD _RAW /LUD _TRAW
logical unit channel which has the oldest queued data. The returned value of
"'lu_chan is set to the logical unit, which will be one of the values returned by
an xlu2open(3X) call.

The elements of the RA WSEG structure, defined in xapi.h, are described in
xlu2writ(3X) . xlu2read uses segmt->s and segmt->n as inputs and uses
all elements, including segmt->s and segmt->n, as outputs.

xlu2read executes a non-pended read, returning to the caller even if nothing is
read. Two types of messages are read: data segment and control. A control
message is notification of status update, a bind or a host transmission comple­
tion. xlu2read returns in s e gm t - > t yp:

LUR_NUL if nothing is read

LUR_END

LUR_BND

LUR_STS

LUR_DAT

if chain complete/cancel is detected

if a bind is detected (SNA only)

if status is updated

if data is read

If segmt->typ is set to LUR_DAT, a data segment message has been read
and is contained in the buffer pointed to by segmt->s. The seq, blk and
cmd fields of RAWSEG are significant only in this case.

xlu2read reads a data block of up to segmt->n bytes into "'segmt->s. If
the input value of segmt->n is less than read_max (defined in xapi.h), data
will be silently discarded. If the logical unit channel on which the data is
read is connected to a BSC controller, the data returned in segmt->s is the
data received follo}Ving STX. On return, s e gm t - > n is set to the actual
number of bytes read.

A data block returned by xlu2read can have a maximum length of read_max
bytes. If the host application sends data in block sizes greater than read_max,
xlu2read will set the value of s e gm t - > s eq to indicate the segmentation per­
formed by the communication protocol. s e gm t - > seq indicates the relative
position of the read data segment in a sequence of received data segments
forming a data block. The segmentation is performed by the controller on a
block of data which it receives from the host. xlu2read returns in s e gm t­
>seq:

1

XLU2READ(3X) (AT&T 3270 Emulator+ API) XLU2READ(3X)

2

LU_FIS

LU_MIS

LU_LIS

LU_OIS

first in segment

middle in segment

last in segment

only in segment

If blocking is performed by the host, xlu2read returns in segmt->blk an
indication of the relative position of the read data block in a sequence of
received data blocks forming a command. In this case, s e gm t - > b 1 k can
have the values:

LU_DSB

LU_DSC

LU_DSE

LU_DSO

first data block

middle data block

last data block

only data block

In the case of a BSC controller where command chaining is performed by the
host, xlu2read returns in s egmt - > cmd an indication of the relative position
of the read data block in a sequence of received commands forming a chain.
In this case, segmt->cmd can have the values:

new chain

same chain

xlu2read will fail if any of the following are true, 'with errapi set as sr.oY';n:

[E_ARGl]

[E_ARG2]

[E_INIT]

[E_CNTX]

[E_DMODE]

[E_BUSY]

[E_DOVFLO]

[E_CTRLlO]

[E_TTY]

[400+]

Invalid *lu_chan parameter.

segmt is the null pointer.

API initialization not performed [xlu2init(3X) not called].

*lu _chan does not exist.

*lu_chan is in LUD_3270 mode.

Busy logical unit.

Raw outbound data has overflowed internal queue.

Communication with controller is terminated abnormally; ses­
sion powered off. See below.

Error in controlling terminal device (LUV _DSP or LUV _TRC
modes only, see xlu2open). See below.

Program check (see Appendix B).

[500+] Communication check (see Appendix C).

If the call fails with an E_CTRLIO or E_TTY error, the error may have
occurred on another session. In this case, the returned value of *lu_chan may
be set to that session and will be different than the input value. This does not
indicate that the call has failed for the input session. The results of this call
can be determined by use of an xlu2info(2) call for the input *lu_chan.

6/88

XLU2READ(3X) (AT&T 3270 Emulator+ API) XLU2READ(3X)

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1
is returned and errapi is set to indicate the error.

6/88 3

XLU2SEEK(3X) (AT&T 3270 Emulator+ API) XLU2SEEK(3X)

NAME
xlu2seek - position the cursor to a field in screen buffer for LUD_3270 logical
unit

SYNOPSIS
#include <xlu2io.h>

int xlu2seek(lu_chan, foffset, ptrname)
unsigned char ·lu_chan;
long foffset, ptrname;

DESCRIPTION

6/88

xlu2seek positions the cursor to the beginning of a field, in the screen buffer of
the LUD _3270 logical unit (LU) specified by *lu_chan, the value returned by an
xlu2open(3X) call.

Depending on the value of the access mode [LUAMOD, see xiu2ctl(3X)] for
this LU, xlu2seek may reference protected fields, unprotected fields, or both.
For an unformatted screen buffer, the entire space is considered one field and
the foffset parameter unit is a screen buffer location. For a formatted screen
buffer, the foffset parameter unit is a screen buffer field. Buffer formatting is
indicated by the value of cJrm in the XLU2IBUF structure for this LU,
retrieved by an xlu2info(3X) call.

A positive foffset indicates forward movement. A negative value indicates
backward movement. foffset reflects the field offset from ptrname. The values
for ptrname are:

o position from the start of screen buffer

1 position from the current position in screen buffer

2 position from the end of screen buffer

xlu2seek does not allow the cursor to wrap freely from the end of the screen
buffer (the lower right-hand corner) to the beginning (the upper left-hand
corner). The movement of the cursor through the screen buffer is effected by
the value of foffset as follows:

•

•

If foffset is zero, the cursor is positioned at the beginning of the current
field, which is the first non-attribute character following the first attribute
character at, or preceding, the current cursor position. If a screen back
wrap occurs while searching for the preceding attribute, no error is gen­
erated, providing an attribute character is contained at the end of the
screen buffer. Otherwise, an error condition exists. For an error, the
current cursor position is invalid and must be reset to the location the
user prefers.

If foffset is greater than zero, the cursor skips over the number of non­
consecutive attributes, not counting the starting location. A set of con­
secutive attributes is the equivalent of one attribute preceded and fol­
lowed by non-attribute characters. A screen wrap results in an error con­
dition. The current cursor position is invalid and must be reset to the
location the user prefers.

1

XLU2SEEK(3X) (AT&T 3270 Emulator+ API) XLU2SEEK(3X)

• If foffset is less than zero, the cursor skips over the number of non­
consecutive attributes. If the starting location is an attribute character, it
is counted as one skip. A set of consecutive attributes is the equivalent of
one attribute preceded and followed by non-attribute characters. If a
screen back wrap occurs when foffset is less than zero, no error is gen­
erated, as long as an attribute character, which exhausts foffset, is found at
the end of the screen buffer. Otherwise, an error condition exists. For an
error, the current cursor position is invalid and must be reset to the loca­
tion the user prefers.

xlu2seek will fail if any of the following are true, with errapi set as shown:

[E_ARGl] Invalid *lu_chan parameter.

[E_ARG3]

[E_INIT]

[E_CNTX]

[E_DMODE]

[E_BUSY]

[E_OFFB]

[OPI_WHAT]

[OPI_FUNCT]

[400+]

Invalid ptrname.

API initialization not performed [xlu2init(3X) not called].

*lu _chan does not exist.

*lu_chan is in LUD_RAW or LUD_TRAW mode.

Busy logical unit.

Cursor is beyond the screen buffer boundary.

Invalid operation.

Invalid operation.

Cummunication with controller is terminated abnormally; ses­
sion powered off (see below).

Error in controlling terminal device (LUV _DSP and LUV _TRC
modes only, see xlu2open). See below.

Program Check (see Appendix B).

[500+] Communication Check (see Appendix C).

If the call fails with an E_CTRLIO or E_TTY error, the error may have
occurred on another session. In this case, the returned value of *lu_chan may
be set to that session and will be different than the input value. This does not
indicate that the call has failed for the input session. The results of this call
can be determined by use of an xlu2info(2) call for the input *lu _chan.

DIAGNOSTICS

2

Upon successful completion, a value of 0 is returned. Otherwise, -1 is
returned and errapi is set to indicate the error.

6/88

XLU2WRIT(3X) (AT&T 3270 Emulator+ API) XLU2WRIT(3X)

NAME
xlu2writ - write a raw segment on the LUD_RAW/LUD_TRAW logical unit

SYNOPSIS
#inc1ude <xlu2io.h>

int xlu2writUu_chan, segmt, secs)
unsigned char "lu_chan;
RAWSEG "segmt;
unsigned secs;

DESCRIPTION

6/88

xlu2writ performs a data block write operation on the LUD_RAW/LUD_TRAW
mode logical unit (LU) channel specified by "lu_chan, the value returned by an
xlu2open(3X) call.

The RA WSEG structure, defined in xapi.h, contains the following members:

unsigned char *s;l* segment data *1
long n; 1* segment data size *1
unsigned char cod;l* segment data: EBCDIC/ASCII *1
long seq; 1* segment sequence in block *1
long blk; 1* block sequence in command *1
long cmd; 1* command sequence in chain *1
long typ; 1* segment type *1

On call, segmt->cod must be set to either the value ASCII or EBCDIC
(defined in xapi.h) to indicate the character set of the data in the buffer.
EBCDIC data cannot be sent on an ASCII line.

xlu2writ writes segmt->n data bytes from the buffer pointed to by
segmt->s. For SNA sessions, the maximum value of segmt->n is
writ_max (defined in xapi.h) bytes. For BSC sessions, the maximum value of
segmt->n is writ_bsc (defined in xapi.h) bytes. These values reflect the max­
imum block size that the physical line can handle. writ_max and writ_bsc are C
language macros and are therefore compile-time values. At run-time on an
SNA session, the maximum data segment size is controlled by the host when
binding session ownership. max_ siz in the XLU2IBUF structure [see
xlu2info(3x)] indicates this value.

If the application program needs to send a block of data greater than the max­
imum block size, the user must segment the data and indicate the sequence of
segments to xlu2writ. This is done by setting the value of the segmt->blk
parameter as follows:

LU_DSB data stream begins (first segment in sequence)

LU_DSC

LU_DSE

LU_DSO

data stream continues (middle segment in sequence)

data stream ends (last segment in sequence)

data stream only (only segment in sequence)

If segmt->blk indicates this is the first or only data block in the sequence,
the controller is asked for permission to transmit. If permission is denied, the
call will fail with errapi set to OPI_FUNCT or 480. If permission is granted or
not needed (i.e., segmt->blk indicates middle or last), the data in the

1

XLU2WRIT(3X) (AT&T 3270 Emulator+ API) XLU2WRIT(3X)

2

buffer, at segmt->s, is written to the controller.

s e gm t - > b 1 k must have continuity over consecutive xlu2writ calls, so that
the following sequence of xlu2writ calls will result in an error return from the
final call:

An xlu2writ, with segmt->blk first/middle is successful and is fol­
lowed by xlu2writ, with segmt- >blk first/only.

An xlu2writ, with segmt->blk last/only, is successful and is followed
by xlu2writ, segmt->blk last/middle.

If the host is sending data to the LU when xlu2writ is attempted, the call will
fail with errapi set to E_DREJ.

On success, xlu2writ returns the size of the data buffer actually written in
segmt->n.

The calling program is blocked until the data block is written to, and accepted
by, the controller or until secs seconds have elapsed. secs is the maximum
number of seconds xlu2writ will wait for the write to complete. If the call
does not complete before secs number of seconds have elapsed, the call will
fail with errapi set to E_INTR. If the call completes before secs seconds have'
elapsed, xlu2writ will return normally with the appropriate return code. A
secs value of 0 indicates no timing should be performed.

xlu2writ will fail if any of the following are true, with errapi set as shown:

[E_ARGl] Invalid *lu_chan parameter.

[E_ARG2] segmt is the null pointer.

[E_INIT] API initialization not performed [xlu2init(3X) not called].

[E_CNTX]

[E_DMODE]

[E_BUSY]

[OPI_FUNCT]

[E_DSEQ]

[E_DSIZ]

[E_DCOD]

[E_DREJ]

[E_DOVFLO]

[E_INTR]

[E_TTY]

*lu_chan does not exist.

*lu_chan is in LUD _3270 mode.

Busy logical unit.

Invalid operation.

Sequencing error: invalid segmt->blk.

Data segment too long.

EBCDIC data cannot be sent on ASCII line.

User may not send data at this time.

Raw outbound data has overflowed internal queue.

secs is non-zero and the function did not complete in secs
seconds or this call was blocking and an xlu2intr(3X) was
issued (see below).

Communication with controller is terminated abnormally; ses­
sion powered off (see below).

Error in controlling terminal device (LUV _TRC only, see
xlu2open). See below.

6/88

XLU2WRIT(3X) (AT&T 3270 Emulator+ API) XLU2WRIT(3X)

[400+] Program check (see Appendix B).

[500+] Communication check (see Appendix C).

If the call fails with an E_CTRLIO or E_TTY error, the error may have
occurred on another session. In this case, the returned value of "'lu_chan may
be set to that session and will be different than the input value. This does not
indicate that the call has failed for the input session. The results of this call
can be determined by use of an xlu2info(2) call for the input "'lu_chan.

DIAGNOSTICS

6/88

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1
is returned and errapi is set to indicate the error.

3

A AT&T 3270 Emulator+ HLLAPI Exam­
ples·

Example 1 A-1

Example 2 A-3

AT&T 3270 EMULATOR+ HLLAPI EXAMPLES

Example 1

This example illustrates a C language application program that records
keystrokes sent to a session by a terminal operator using the h_startkey
HLLAPI function call.

The h_startkey function call requires that you give explicit control of
the session to the terminal user. You can do this by specifying the CON­
PHYS option with the h _setparms function call, and by calling the
h _connect function call after issuing the h _startkey call.

#include <stdio.h>
#include "xh1lapi.h"

#define LEN 1024

mam(axgc, argv)

mt axgc;
char *argV"[];
{

mt func, ret, leng;
char data[256];
get_key key;
char *ma1loc () ;

cl:im(H_SETPAmf:;, "conphys");

func = H_STAR'll<EY;
stroke. skJlSid = ' t' ;
stroke. sk_optian = SK_ALL;

stroke.skJ:uffer = malloc(LEN);
leng = LEN;

hllapi(&func, &stroke, &leng, &ret);

key.gkJlSid = 't';

while (cl:im(H_GEIKEY, &key) 1= HE_IDKEYS) {
prlntf("%0 %sO, key.gk_optian, key.gk_buffer);

cl:im(func, data)

AT&T 3270 EMULATOR+ HLLAPI EXAMPLES A-1.

Example 1

int func;
char -*data;
{

mt ret, leng;

leIX] = strlen(data);

hllapi(&func, data, &leIX], &ret);

retw:n(ret) ;

A-2 HLLAPI PROGRAMMER'S GUIDE

continued

Example 2

This example illustrates a C language application program that allows a
user to do file transfers from the command line. The executable should be
built with the name receive, and an In(l) command should be used to give
the executable another name called send. The program interrogates which
way it was invoked to determine the direction of the file transfer. The rest
of the parameters are the same as for the H_SEND and H_RECEIVE com­
mands.

Since the parameters are given on the command line, certain characters
will need to be escaped from the shell, like the colon after the presen­
tation space short name. This can be accomplished by enclosing the
particular command line parameter in double quotes. For example:
send xhllapi.c "t:xfer.text(hllapi)" ASCII CRLF

The program first goes to terminal emulation mode allowing the user to
log on. When the host session is at the environment ready message, the
user may exit the session (with <ESC> f d) and the file transfer will start.
The ready message for TSO is "READY" and for CMS is "R;". Afterwards,
the program places the user back in terminal emulation mode to log out of
the host session. When the user exits the host session again, the program
terminates.

AT&T 3270 EMULATOR+ HLLAPI EXAMPLES A-3

Example 2

#include <stdio.h>
#include "xh1lapLh"

main(argc, argv)
int argc;
char *argv[];
{

int func, ret, leng;
char data[256];
int i;

cl:im(H_~, argv[2]);

data[O] = 0;

for (i = 1; i< argc, i++)
strcat(data, argv[i]);
strcat(data, II ");

}

cl:im(*argv[O] == 'r' ? H_REX:.V H_Smo, data);
cl:im(H_~, argv[2]);

cl:im(func, data)
int ftmc;
char ~ta;
{

int ret, leng;

leng = strlen(data);
hllapi(&func, data, &leng, &ret);

return(ret) ;

A-4 HLLAPI PROGRAMMER'S GUIDE

B AT&T 3270 Emulator+ HLLAPI Func­
tions

AT&T 3270 Emulator+ HLLAPI
Functions 8-1

AT&T 3270 EMULATOR+ HLLAPI FUNCTIONS i

AT&T 3270 Emulator+ HLLAPI Functions

The following is a list of the AT&T 3270 Emulator+ HLLAPI supported
functions:

IBM 3270 PC AT&T 3270
HLLAPI Emulator+
Function Symbolic
Number Name Name

1 Connect Presentation Space H_CONNECT
2 Disconnect Presenation Space H_DISC
3 Send Key H_SENDKEY
4 Wait H WAIT
5 Copy Presentation Space H_COPY
6 Search Presentation Space H_SEARCH
7 Query Cursor Location H_QCUR
8 Copy Presentation Space to String H_COPYPSS
9 Set Session Parametersi H_SETPARMS

10 Query Session H_QSESS
11 Reserve H_RESV
12 Release H REL
13 Copy Operator Information Area H_CPOIA
14 Query Field Attribute H_QATTR
15 Copy String to Presentation Space H_CPSTR
16 Work Station Control H_WSCRTL
17 Storage Manager H_STMAN
18 Pause H_PAUSE
20 Query System H_QSYS
21 Reset System H_RESET
22 Query Session Status H_QSTATUS
23 Start Host Notification H_STRTHOST
24 Query Host Update H_QHOST
25 Stop Host Notification H_STOPHOST
30 Search Field H_SRCHFLD
31 Find Field Position H_FNDPOS
32 Find Field Length H_FNDLEN
33 Copy String to Field H_CPSTRF

AT&T 3270 EMULATOR+ HLLAPI FUNCTIONS 8-1

AT&T 3270 Emulator+ HLLAPI Functions

IBM 3270 PC
HLLAPI
Function
Number Name

34 Copy Field to String
50 Start Keystroke Intercept
51 Get Key
52 Post Intercept Status
53 Stop Keystroke Intercept
90 Send File
91 Receive File
92 Invoke DOS Program
93 DOS Redirect
99 Convert Position or Row Col

AT&T 3270
Emulator+
Symbolic
Name

H_CPFIELD
H STARTKEY
H GETKEY
H_POSTINT
H STOPKEY
H_SEND
H_RECV
H INVOKE
H_REDIR
H CONV

These functions are AT&T HLLAPI extensions, and are not available in
the IBM HLLAPI:

Function
Number Name

111 Change Current Presentation Space Position
112 Write a Character in Presentation Space
113 Connect and Interact with Presentation Space

8-2 HLLAPI PROGRAMMER'S GUIDE

AT&T 3270
Emulator+
Symbolic
Name

H_CHCUR
H_WRCHAR
H_CONNINT

AT&T 3270 Emulator+ HLLAPI Functions

The following IBM HLLAPI functions are not supported in the AT&T
3270 Emulator+ HLLAPI implementation:

IBM 3270 PC
HLLAPI
Function
Number

35
36
37
38
39
54

Name

Define Presentation Space
Switch Presentation Space
Display Cursor
Display Presentation Space
Delete Presentation Space
Get 3270 AID Key

AT&T 3270 EMULATOR+ HLLAPI FUNCTIONS 8-3

C The xhllapi.h File

The xhllapi.h File C-1

THE xhllapi.h FILE i

The xhllapi.h File

1* HLLAPI Functions *1

#define H_<X>NNECI' 1
#define H_DISC 2
#define H_SENDKEY 3
#define H_WAIT 4
#define H_COPY 5
#define H_SEARCH 6
#define H_QCUR 7
#define H_COPYPSS 8
#define H_SErPARMS 9
#define H_QSESS 10
#define H_RESV 11
#define H_REL 12
#define H_CPOIA 13
#define H_QATrR 14
#define H_CPSTR 15
#define H_W5CrRL 16
#define H_S'lMAN 17
#define H_PAUSE 18
#define H_QSYS 20
#define H_RESE'l' 21
#define H_QSTATUS 22
#define H_STRmOST 23
#define H_QHOST 24
#define H_SIOPHOST 25
#define H_SRClIE'LD 30
#define H_ENDPOS 31
#define H_ENDLEN 32
#define H_CPSTRF 33
#define H_CPFIEID 34
#define H_DEFPS 35
#define H_SWI'ICHPS 36
#define H_DISPCUR 37
#define H_DISPPS 38
#define H_DELPS 39
#define H_STARTKEY 50

1* Carmect Presentation Space *1
1* Discarmect Presenation Space *1
1* Send Key *1
1* Wait *1
1* Copy Presentation Space *1
1* Search PS *1
1* Query Cursor IDeation *1
1* Copy Presentation Space to string *1
1* Set Session Paraneters *1
1* Query Session *1
1* Reserve *1
1* Release *1
1* Copy Operator Infonnation Area *1
1* Query Field Attribute *1
1* Copy String to PS *1
1* Work Station Cantrol *1
1* Storage Manager *1
1* Pause *1
1* Query Systan *1
1* Reset Systan *1
1* Query Session Status *1
1* Start Host Notification *1
1* Query Host update *1
1* Stop Host Notification *1
1* Search Field *1
1* Find Field Position *1
1* Find Field Length *1
1* Copy String to Field *1
1* Copy Field to String *1
1* Define Presentation Space *1
1* SWicth Presentation Space *1
1* Display Cursor *1
1* Display Presentation Space *1
1* Delete Presentation Space *1
1* Start Keystroke Intercept *1

THE xhllapi.h FILE C-1

The xhllapi.h File

#define H_GRrKEY' 51 /* Get Key */
#define H_rosTINT 52 /* Post Intercept Status */
#define H_S'IUPKEY 53 /* stop Keystroke Intercept */
#define H_GEl'AID 54 / * Get 3270 AID Key */
#define H_SEND 90 /* Send File */
#defineH_REX::V 91 /* Receive File */
#define H_INVOKE 92 /* Invoke IX)S Program */
#define H_REDIR 93 /* IX)S Redirect */
#define H_ OONV 99 /* Convert Position or RoW' Col */
#define H_ 0iCUR 111 /* Change cursor Position in PS */
#define H_WRCHAR 112 /* Write a character in PS */
#define H_<X>NNINT 113 /* Connect Interactive */

/* Array Sizes */

#define raG_NAME 8

/ * Return Codes */

#define HE_SUCCESS 0 /* Good Return */
#define HE_INVAL 1 /* Invalid PS */
#define HE_PARM 2 /* Parameter error or Invalid Function */
#define HE_WSCI'RL 3 /* ws Ctrl action has occurred */
#define HE_BUSY 4 /* Target PS busy */
#define HE_INHBT 5 /* Function Inhibited */
#define HE_LmGTH 6 / * Data Error */
#define HE_POS 7 /* Invalid PS Position */
#define HE_PROC 8 /* Function Procedure Error */
#define HE_SYSERR 9 /* System Error */
#define HE_FUOC'l' 10 /* Function Unavailable */
#define HE_RSRC 11 /* Resource Unavailable */
#define HE_OIA 21 /* Updated OIA */
#define HE_PRES 22 /* Updated presentation space */
#define HE_IDIH 23 /* Both of the abJve have been updated */
#define HE_DATA 8000 /* Only data portion has been updated */
#define HE_NJFIELD 24 /* No such field */
#define HE_OOKEYS 25 /* Requested keys are not available */
#define HE_UPDATE 26 /* A host presenation space or OIA has */

/* been updated */
#define HE_FNUM 301 /* Invalid function number */
#define HE_OOENl' 302 /* File not found */

C-2 HLLAPI PROGRAMMER'S GUIDE

The xhllapi.h File

#define HE_ACCESS
#define HE_MEM
#define HE_ENV
#define HE_EURM
#define HE_PSID
#define HE_mrPR

305 1* Access denied *1
308 / * Insufficient mena:y *1
310 1* Invalid environment *1
311 1* Invalid format *1
9998 1* Invalid presentation space *1
9999 1* Paraneter not 'p' or 'r' *1

#define HB_3270XT
#define HB_3270~
#define HB_~

#define CP_3270PC

#define CL_ONE
#define CL_'lID

typedef struct {

'x'
'A'
'u'

'c'

'1'
'2'

char sy _ vernum;
char sy_levnum[2];
char sy_date[6];
char sy _l:imver;
char sy _limlev[2] ;
char sy _hwbase;
char sy _ cptype;
char sy _cplevel;
char sy _resv1 ;
char sy_resv2[2];
char sy J>Sid;
char sy_exterr1[4];
char sy _ exterr2 [4] ;
char sy_resv[8];

} CLsystem_data;

1* 3270 PC or 3270 PC XT *1
1* 3270 PC AT *1
1* unable to Determine *1

1* 3270 PC Control Program *1

1* CP Level 1.22 *1
1* CP Level 2.10 *1

1* HLLAPI Version Number *1
1* HLLAPI Level Number *1
1* HLLAPI Date (lwfwIDDYY) *1
1* LIM Version *1
1* LIM Level *1
1* Hardware Base *(
1* Control Program Type *1
1* Control Program Level *1
1* Reserved *1
1* Reserved */
1* Session Short Name *1
1* Extended Error Code 1 *1
1* Extended Error Code 2 *1
1* Reserved *1

THE xhllapi.h FILE C-3

The xhllapi.h File

#define ST_HOST

#define ST_tUI'E

#define ST_PC

#define ST_OFT
#define ST _OJ!'

'H'
'N'
'p'
'0'
'C'

1* Host Session *1
1* Notepad Session *1
1* PC and Alternate Sessions *1
1* OFT M:rle *1
1* Cut M:rle *1

1* Query Sessions data string *1

typedef stru.ct {
char qeJ)Sid;
char qe_lname[UN;_NAME1;
char qe_stype;
short qe_size;

} ~sessions_data;

1* Presentation Space Id's *1

1* Short name of session *1
1* Lang name of session *1
1* Session TYPe *1
1* PS Size *1

#definePS_aJRR
#define PS_ CURR2
#define PS_PCRIlN
#define PS_wscmL

, ,
axo

1* Currently carmected PS *1
1* Sane*1

'*'
'#'

1* PC session AP running in *1
1* WS Control session *1

1* Session Characteristics *1

#define SC_EAB OxSO
#define SC_PSS Ox40

1* EKterXled attr:ibute bytes *1
1* Programable syml:x>ls supported *,

1* Query Session Status data string *1

typedef stru.ct {
char qtJ)Sid;
char qt_lname[UN;_NAME1;
char qt_stype;
char qt_schars;
short qt _rows;
short qt _eels;

C-4 HLLAPI PROGRAMMER'S GUIDE

1* Short name *1
1* Lang name *1
1* Session type *1
1* Session Characteristics *1
1* Rows in presentation space *1
1* Columns in PS *1

char qt-.J)ifstat[2];
char qt_reserved;

} CLstatus_data;

typedef unsigned char uchar;

1* Copy OIA data string *1

typedef struct {
char cp_format;
char cp_:image[80];

1* PIF Status *1
1* Reserved *1

The xhllapi.h File

1* OIA Fonnat byte *1
1* OIA Inage Group *1

1* OIA Indicator Group *1

1* Group 1: On-line and screen ownership *1

#defineSE'1UP OxBO 1* Setup mode *1
#define TEST Ox40 1* Test mode *1
#define Sscro-JN Ox20 1* SSCP-LU session owns screen *1
#define LOCMN Ox10 1* LU-LU session owns screen *1
#define UN:MN 0x08 1* Online and not owned *1
#define READY Ox04 1* SUbsystem ready *1

uchar group_ 1 ;

1* Group 2: Character selection *1

#define EXTEND
#define APL
#define KANA
#define ALPHA
#define TEXT

uchar

OxBO;
Ox40;
0x20;
Ox10;
Ox08;

group_2;

1* Group 3: Shift state *1

#define NUMERIC OxBO;
#define SHIFT Ox40;

uchar group_ 3 ;

1* NUmeric Shift *1
1* Upper Shift *1

THE xhllapi.h FILE C-5

The xhllapi.h File

1* Group 4: PSS group 1 *1
1* Group 5: Highlight group 1 *1
1* Group 6: Color group 1 *1

#define SELECr OXSO;
#define INHERIT Ox40;

uchar group_ 4;
uchar group_5;
uchar group_ 6;

1* Group 7: Insert *1

1* Operator Selectable *1
1* Field Inherit *1

#define INSERTOxSO; 1* Insert m:xie *1
uchar group_7;

1* Group 8: Input :inh:ibi ted *1

#defineClIECK
#define KEY
#define MACHINE
#define CXJ.M
#define PR(X;RAM

#define RElRY
#define~

#define VBUSY

#define BUSY

#define WAIT

#define SYMB:>L
#define E'UtCI'ION
#define 'DXMUCH
#define NEtU.GI
#define WRCN3
#define NUMBER

OXSO;
Ox40;
Ox20;
Ox10;
Ox08;
Ox04;
Ox02;
Ox01;

OXSO;
Ox40;
0x20;
Ox10;
Ox08;
Ox04;
OX02;
Ox01;

1* Non-resettable nachine check *1
1* Reserved for security key *1
1* Machine Check *1
1* Camnmicatians Check *1
1* Program check *1

1* Device not working *1
1* Device very busy *1

1* Terminal busy *1
1* Terminal wait *1
1* Minus symbol *1
1* Minus function *1
1* Too much entered *1
1* Not en:rogh entered *1
1* Wrong number '*1
1* NUmeric field *1

C-6 HLLAPI PROGRAMMER'S GUIDE

#define UNAUrH
#define UNAIJ'IHM
#define mEAD
#define WPLACE

#definePENDnG
#define PARTITICN
#define SYSTEM
#define MIStWIOI
#define NCX:tm'IG

#define AUroKEY

#define INPUT

Ox40;
0x20;
Ox10;
OXOS;

OxBO;
Ox40;
Ox20;
Ox10;
OXOS;

OxBO;
Ox40;

The xhllapi.h File

1* Operator unauthorized *1
1* Operator unauthorized minus functicm *1
1* Invalid dead key canb:inaticm *1
1* Wrong placed *1

1* Message pending *1
1* Partiticm wait *1
1* System wait *1
1* Hardware mismatch *1
1* LU not oonfigured at control unit *1

1* Autokey inhibit *1
1* Applicaticm program has operator *1

1* input inhibited *1

1* Group 9: PSS Group 2 *1
1* Group 10: Highlight Group 2 *1
1* Group 11: Color Group 2 *1

#defineSELECT OxBO; 1* Selected *1
#define DISABLE Ox40; 1* Display disabled (Group 9 only) *1

uchar group_9;
uchar group_10;
uchar group_ 11 ;

1* Group 12: Ccmmmicaticms error rem:iIder *1

#define ERROR OxBO; 1* Camnmicaticms error *1
#define M:N.r'lOR Ox40; 1* Response time m:mitor *1

uchar group_12;

THE xhllapi.h FILE C-7

The xhllapi.h File

1* Group 13: P.dnter status *1

#define CUSKM oxeo;
#define MALFmC Ox40;
#define PRIN'I'lN:; 0x20;
#define ASSIGN Ox10;
#define WHAT Ox08;
#define PR1NrER Ox04;

uchar group_ 13;

1* Printer code not custanized *1
1* Printer malfuncticm *1
1* Printer printing *1
1* Assign printer *1
1* What printer *1
1* Printer assignnent *1

1* Group 14 &. 15: Reserved *1

uchar group_ 14;
uchar group_ 15;

1* Group 16: Autokey play/record status *1

#define PrAY oxeo;
#define REOJRD Ox40;

uchar group_ 16;

1* Group 17: Autokey ahortIpause state *1

#defineO\1ERFLCM' OxSO; 1* Reoording overflow *1
#define PAUSE Ox40;

uchar group_ 17;

1* Group 18: Enlarge state *1

#define ENLARGE oxeo; 1* Window is enIcu:ged *1
uchar group_ 18;

} cpoia;

#define HN_PRES
#define HN_OIA
#define HN_IDIH
#define HN_DATA

'P'
'0'
'B'
'D'

1* Notify if updated presentaticm space *1
1* Notify if updated operator info area *1
1* Both of the above *1
1* Notify cmIy if data and not attriliutes *1
1* have been updated *1

C-8 HLLAPI PROGRAMMER'S GUIDE

typedef st:ru.ct {
char lmJ)Sid;
char lm_ type;
char *lm_buffer;

} host_notify;

The xhllapi.h File

1* Presentation Space m *1
1* update type *1

1***1
I*These structures ItUJSt be used by program seOO:ing st:r:ings to WS_cmL. *1
1***1
#define CMDSIZ 2
#define NAMES 20
struct ca_data_ type
{

char ws _ atd[CMDSIZ] ;
char ws_equ;
char ca_scrn;
char caJ)Sid;

}; 1* data fran C!lIAN3E ACrIVE *1

struct cb_data_ type
{

char ws _ atd[Q.IDSIZ] ;

char ws_ equ;
char cbJ)Sid;
short cb_srcbeg;
short cb_srcend;
char cb_ tpsid;
short cb_ tbeg';

}; 1* data fran ropy BUXl< *1

char ws _ atd[Q.IDSIZ] ;

char ws_ equ;
char rd_scrn;

} 1* data fran REDRAW SCREEN *1

THE xhllapi.h FILE e-g
\

The xhllapi.h File

char ws _ atd[OIDSIZ] ;
char ws_ equ;
char qa_scrn;
char qaJ)Sid;

}; /* data fran QUERY ACrIVE */

char ws _ atd[OIDSIZ] ;
char ws_ equ;
char qc_scrn;
char qC_fill;
char qc_ code;

}; /* data fran QUERY corm */

char ws_ atd[OIDSIZ] ;
char ws_ equ;
char qe_fill[2];
short qe_ code;

}; / * data fran QUERY ENLARGE */

struct qw_data_ type
{

c.."I1ar ws_ atd[OIDSIZ] ;
char ws_equ;
char qw_scrn;
char qwJ)Sid;
short qw_rows; /* nmnber of rows in window */
short qw_cols; /* mnnber of cols. in window */
short qw_rpos; /* reM position, upper left corner */
short qw_cpos; /* col position, upper left corner */
short qw_wcolor; /* window color code */
short qw_bcolor; /* border color code */
short qw_flags; /* centrol flags */
short qwJ)SreM; /* reM on PS of upper left corner */
short qwJ)Scol; /* col on PS of upper left corner */

} /* data fran QUERY WINIX:M */

C-10 HLLAPI PROGRAMMER'S GUIDE

struct qn_data_ type
{

char ws_ atrl[a.IDSIZ] ;
char ws_equ;
char qn_scrn;
char qn.J)Sid;
char qn_names [NAMES] ;

}; 1* data fran QUERY NAMES *1

#define SK_AID
#define SK_ALL

typedef struct {

'D'
'L'

char sk.J)Sid;
char sk_option;
char *sk_buffer;

} start_keystroke;

#define GK_ASCII
#define GK_MNEM
#define GK_SHIFT

typedef struct {

'A'
'M'
's'

char gk.J)Sid;
char gk_option;
char gk_buffer[4];

} get_key;

#define PI_ACCEPl' ' A'
#define PI_~ 'R'

typedef struct {
char pi.J)Sid;
char pi_option;

} post_intercept;

The xhllapi.h File

1* Aid keystrokes *1
1* All Keystrokes *1

1* Presentation Space ID *1
1* Option Code *1

1* ASCII characeter returned *1
1* Mnem:mic *1
1* Special shift *1

1* Presentation Space ID *1
1* Option ccxle character *1

1* Presentation Space ID *1
1* Option ccxle *1

THE xhllapi.h FILE C-11

D File Transfer Messages

File Transfer Messages 0-1

FILE TRANSFER MESSAGES

\

File Transfer Messages

This appendix lists the file transfer messages in numerical order and
describes them. The message number and text appear in bold type, fol­
lowed by an explanation and user response.

INDFTOOl File transfer command being processed

INDFT002

INDFT003

INDFT004

INDFT005

This message appears when the file transfer command is
entered and the system begins processing.

User response: none; wait for message INDFT002 to
appear.

Number of bytes of file transferred so far: = = < xxxxxxx

This message lets you know how many bytes of the file have
been transferred to or from the host. The number is
updated as the file is transferred.

User response: none; wait for message INDFT003 to
appear.

File transfer complete

The file transfer was successful.

User response: none.

File transfer complete with records segmented

The file transfer was complete, but recQrds greater than the
set logical record length of the file appended will divide
and become multiple records.

User response: none.

Filespec incorrect: file transfer canceled

you entered some part of the filespec incorrectly, e.g., the
path or filename.

User response: compare the filespec in the file transfer

FILE TRANSFER MESSAGES 0-1

File Transfer Messages

INDFT006

INDFTOIO

command, which will still be visible in the session, with the
filespec requirements for your system. If it is correct, it is
possible that the file does not exist.

Command incomplete: File transfer canceled

The user did not enter any parameters after Send or Receive.

User response: check the Send and Receive command
requirements and retry.

Host has not responded with timeout period: Refer to
reference manual for more information

The host has not responded to the file transfer within
several seconds.

User response: if the host session screen shows HOLDING,
you can start file transfer by switching to the host session
and pressing P A2 (in TSO). If X SYSTEM or X appears in
the host session screen operator information,wait for it to
clear. These specify that the system is working slowly. If
you want to stop file transfer after several time-out messages
appear, switch to the host session, press Reset to clear the
operator information area, and press PF2 to stop the file
transfer, or CLEAR to continue This state can be caused by
line problems. If IND$FILE is not installed at the host, jump
to the application program session and press Crtl+Break to
stop the file transfer.

D-2 HLLAPI PROGRAMMER'S GUIDE

E API Program Check Error Codes

API Program Check Error Codes E-1

API PROGRAM CHECK ERROR CODES I

API Program Check Error Codes

This appendix lists the values of errapi that can be returned when API
system calls fail because of errors in the data received from the host.

Value

401
402
403
404
405

406
411
413
420

421

422
423
430
431
432
433
434
443
445

450
451
452
453
454
455
456
457
462
470

Explanation

unknown data stream command
invalid buffer address in data stream
data follows I-byte commands in data stream
data stream ends in order-pending state
invalid source device on copy command, or source device
buffer locked on copy command, or source and
destination device incompatibility on copy command
ESC character missing in second position of command sequence
Request/Response Unit (RU) too long (LU.Tl)
function not supported
exception response request received when definite
response only specified by BIND
definite-response request received when exception
response only specified by BIND
NO response not allowed
format indicator not allowed
sequence number error
chaining error
bracket error
data traffic inactive
direction error
read command must have Change Direction but not End Bracket
Activate Logical Unit (ACTLU) request is for neither
cold activation nor Error Recovery Procedure (ERP)
BIND profile error
BIND primary protocol error
BIND secondary protocol error
BIND common protocol error
BIND screen size error
BIND LU profile error
BIND LUI error
BIND cryptography specified
data stream error detected by LU.Tl
unknown data byte X'OO' - X'3F' or X'FF'

API PROGRAM CHECK ERROR CODES E-1

API Program Check Error Codes

Value

480

481
482
483

490
498
499

Explanation

user request lost due to host SELECT (BSC) or arrival
of message from controller
user request lost due to host SELECT with bad command (BSC only)
host SELECT received with response to user request (BSC only)
host SELECT with bad command received with response to user request
(BSC only)
buffer not available for write command
negative response received
exception request received

For additional information, see the IBM publication IBM 3270 Information
Display System, 3274 Control Unit Description and Programmer's Guide, GA23-
0061.

E-2 HLLAPI PROGRAMMER'S GUIDE

F API Communication Check Error
Codes

API Communication Check Error Codes F-1

API COMMUNICATION CHECK ERROR CODES i

API Communication Check Error Codes

This appendix lists the values of errapi that can be returned when API sys­
tem calls fail because of conditions detected at the local communications
interface.

Value

501
502
504
505
510
518

519
520
521
525
528

529
530
531
532
534
593
594
595

Explanation

Data Set Ready (DSR) lost
Clear To send (CTS) lost
Normal Disconnect Mode (NDM)
NDM
Physical Unit (PU) is not active (this is SNA condition)
segmentation error (internal Deactivate Physical Unit
(DACTPU» (this is an SNA condition)
received frame too long
timeout (no frames)
timeout (no flags)
20 Exchange Identification (XID) commands received in a row
Frame Reject Response (FRMR) senti Frame Reject Mode
(FRM) entered (internal DACTPU)
modem acting up (internal DACTPU)
clocking or CTS lost (internal DACTPU)
received STX ENQ (BSC only)
idle timeout
protocol timeout
received EOT instead of ACK (BSC only)
received RVI to ETB block (BSC only)
lost CD while receiving (BSC only)

For additional information, see the IBM publication IBM 3270 Information
Display System, 3274 Control Unit Description and Programmer's Guide, GA23-
0061.

API COMMUNICATION CHECK ERROR CODES F-1

G API User/System Error Codes

API User/System Error Codes G-1

API USER/SYSTEM ERROR CODES I

API User/System Error Codes

This lists the values of errapi that can be returned when an API system
call fails because of user application or system errors.

Error Message

1 OPI_NUM
2 OPI_SYS
3 OPI_WHAT
4 OPIYUNCT
5 OPI_ELSE
6 OPI_TOOM
7 OPI_BAD
201 E_ARGI

205 E_ARG5
206 E_OFFB
207 E_KCTL
208 E_SCTL
209 E_RSRC
210 E_BNDREJ
211 E_TRMBSY
212 E_HOSTID
213 E_CTRLIO
214 E_TTY
215 POW_OFF

Explanation/Possible Cause

Non-numeric data entered in numeric field
The keybord has been disabled by the host
Invalid operation
Invalid operation
Improperly positioned cursor
A field overflow has occurred
Bad key translation
scJfil is the null pointer
invalid lu_chan parameter
ky _ifil is the null pointer
invalid func parameter
invalid request
s is the null pointer
segmt is the null pointer
invalid IUJ>ort parameter
invalid arg
invalid ptrname
n is the null pointer
the value at n is less than 1
invalid ludmod parameter
invalid parameter
retcod is NULL (LUEVENT with KY_CTRL
only)
invalid luvmod parameter
cursor is off the screen buffer boundary
error in keyboard control file
error in screen control file
controller has insufficient resources
host mismatch, bind rejected
SNA/BSC terminal is busy
illegal SNA/BSC host identification
communication controller problem
terminal device control problem
te3278 emulator terminated

API USER/SYSTEM ERROR CODES G-1

API User ISystem Error Codes

Error Message Explanation/Possible Cause

216 E_ACCS access mode violation
217 E_CNTX "'Iu_chan does not exist

218 E_BUSY BUSY state mismatch on API call
219 E_INIT API initialization not performed
220 E_SESLIM number of sessions exceeds limit
221 E_DMODE Iu is in LUD_3270 mode

Iu is in LUD_RAW mode
Iu is in LUD_RAW mode or could not enter
requested data transfer mode

222 E_DSIZ data segment too long
223 E_DSEQ sequencing error - invalid segmt-> blk

224 E_DREJ controller does not acknowledge data
225 E_ILSIZE size mismatch between bind and device (bind

command is legal)
226 E_MODL physical terminal (as described by sc_ifil)

cannot support model number
227 E_LINID illegal line identification
228 E_CNTID illegal controller identification
229 E_DOVFLO raw data buffer overflow
230 E_PATH pu_name is the null pointer

invalid name parameter
231 E_RTMG error in opening runtime message file
232 E_XLIB excluded library function
234 E_NASCII Iu on ASCII line but ses is non-ASCII
235 E_DCOD LUD_TRAW is unavailable on ASCII line
236 E_XPRNT request for transparency rejected
237 E_INTR primitive aborted by interrupt
238 E_ICOND invalid inhibit condition (LURSET)
239 E_SECUR invalid security mode request

G-2 HLLAPI PROGRAMMER'S GUIDE

H API LUV _ TRC Status Displays

API LUV TRC Mode Status Line
Displays- H-1

API LUV _ TRC STATUS DISPLAYS I

API LUV _ TRC Mode Status Line Displays

An API trace display is output in the status line. Each trace line is of
the general form:

xlu2 ••• nl miscyarams Iu: n2 err: n3

where:

xlu2. •• is the name of the API function

nl is the. one digit numerical field containing the called value of
lu_chan (except for xlu2open, see below).

misc yarams are miscellaneous parameters displayed for this call, as
described below

n2 is the one digit numerical field containing the returned value
of lu_chan

n3 is the three digit numerical field containing the value of the
error code

Trace output, particularly the misc yarams fields, for each API call trace
are described here. The manual pages should be referenced for each
description.

xlu20pen pu _name np ludmod luvmod Iu: n2 err: n3

where:

pu_name controller process (in place of nl; only the returned value of
lu_chan, n3, is used)

np is the three digit field containing the value of luyort

ludmod is the one digit field value of ludmod (see xapi.h)

luvmod is the one digit field value of luvmod (see xapi.h)

xlu2cIos Iu: n2 err: n3

has no misc yarams field entries

API LUV_TRC STATUS DISPLAYS H-1

API LUV _ TRC Mode Status Line Displays

xlu2func nl LU •••• lu: n2 err: n3

where:

LU.... is the func followed by name: LUPRND, LUPRNF followed by
the file name, LUPRNC followed by the command string, or
LURSET followed by the Reset-Inhibit-condition mode

xlu2ct1 n 1 LU •••• na pcs: np col: nc lin: nl lu: n2 err: n3

where:

LU.... is the request: LUDTIM, LUEVENT, LUEVIMED, LUDMOD,
LUVMOD or LUAMOD

na is the three digit field value of arg (see xapi.h)

np is the four digit field value of the current cursor position rela­
tive to the start of the buffer

nc is the three digit field value of the current cursor column

nl is the two digit field value of the current cursor line

xlu2seek nl foffset: nf pb:name: nn pcs: np col: nc lin: nl lu: n2 err: n3

where:

nf is the four digit field value of foffset

nn is the one digit field value of ptrname:

and all other fields are as in xlu2ct1.

xlu2gets nl req: nr ret: ssss nt pcs: np col: nc lin: nl lu: n2 err: n3

where:

nr is the four digit field value of the buffer length

H-2 HLLAPI PROGRAMMER'S GUIDE

API LUV _ TRC Mode Status Line Displays

ssss is the initial five characters of the returned string

nt is the four digit field value of the returned string length

and all other fields are as in xlu2ctl.

xlu2puts nl string ret: nt p:>s: np 001: ne l:in: nZ lu: n2 err: n3

where:

string is the initial four characters of the returned string

nt is the four digit field value of the transferred string length

and all other fields are as in xlu2ctl.

xlu2writ nl nr seq: ns ret: nt l:in: nd lu: n2 err: n3

where:

nr is the four digit field value of the data buffer length (segmt->n)

ns is the four digit field hex value of the data block sequence
(segmt->blk)

nt is the four digit field value of the written data length (segmt­
>n)

xlu2read nl req: nr ret: nt siz: nz seq: ns lu: n2 err: n3

where:

nr is the four digit field value of the requested buffer length
(segmt->n)

nt is the one digit field value of segmt->typ

nz is the four digit field value of the size of the returned data
(segmt->n)

ns is the four digit field hex value of the relative position of the
data block (segmt->blk)

API LUV _TRC STATUS DISPLAYS H-3

I API External Symbols

API External Symbols 1-1

API EXTERNAL SYMBOLS I

API External Symbols

This appendix lists the global symbols used by the API library. Applica-
tion programs may not define these symbols externally.

ACtvbf ACtvqe AEvtad AEvtst API acs API_cls
API_ctl API_dbg API....,get API_iupd API_opn API""pos
API....put API_ret API_sek APaddr APcall APtest
APutae BAktab BEg find BUfdbg BUffup CAllzz
CFld_atr CUr_it CUr_rt CVta2e DIs cae DIscqe
DSa2c DSc2a DScvtc DSe2a DSeau DSersg
DSeua DSfa DSfu DSisbt DSldb DSovra
DSpcrt DSptab DSptat DSrdmi DSrdzz DSread
DSrta DSsba DSscsr DSscsw DStuf3 DSvscs
DSwini DSwrit ENdfind EToa FIxaev FLdl_ok
FOratt FWdtab GLquid HExdump HILITE INit_exit
IPC IPCbfi IPCinz IPCpdf IPCqdf IPCqui
IPCtcb IPCtdf IPCtki IPCtrace IPCxeq ITOA
KIktsk KYmap KYtask KYtcb LClpid MOveae
OUtmap PAnic PLuscur POolO POolOb POolOx
PRnit PUtbuf PUtins QEvtad QEvtst QPopqe
QUeuO REverse SCadv SCbakt SCcrsl SCdata.
SCdown SCdsOl SCds02 SCds03 SCds04 SCe2al
SCeeof SCeras SChome SCkey SClear SCleft
SCopyi SCopyo SCrigt SCsna SCtab SCtask
SCupro SCuprt SCvprt SEndae SHo_stat SIgcat
SIgign ST_fld SUstsk TAskst TH2buf THAPI
THanal THaw THcola THctrl THcura THdlch
THdraw THecho THence THeras THerms THexec
THflsh THgopp THgoto THgoxy THgtfg THgtnm
THgtnt THgtst THinch THinit THink THipti
THkeyb THlick THluiz THong THopia THough
THouts THpipO THpipr THpipw THpipz THpnrd
THprin THputs THrall THrill THshlx THsigO
THsigl THsig9 THstrm THtask THud THug
THumb THus THusag THutrm THwack THxptx
THzigz THztrm UFxaev UPdate_crt actvbf actvqe

API EXTERNAL SYMBOLS 1-1

API External Symbols

aecb aevtad aevtst apaddr apcall api_cls
api_ctl api_dat api_dbg api_fun api...,get api_iupd
api_opn api-put api_red api_ret api_sek api_wrt
apiintr aptest aputae baktab begfind bfaval
bItp buffup callzz dId atr chk-prm clear_map
ctl-prim cur_It cur_rt cvta2e dbgfle det_att
det_clr det_err det_fea dis cae discqe dsa2c
dsaIts dsc2a dscvtc dse2a dseau dseclr
dsehit dsersg dseua dsfa dsfu dsisbt
dsldb dsmf dsovra dspcrt dsptab dsptat
dsrdmi dsrdzz dsread dsrta dssa dssba
dsscsr dsscsw dssfe dstuf3 dsvscs dswini
dswrit endfind errapi errjoin etoa find attr
fixaev fldl ok fldnam foratt fwd_att fwdtab
gldat glquid hexdump hexrel inibit init_exit
ipc ipcbfi ipcinz ipcpdf ipcqdf ipcqui
ipctcb ipctdf ipctki ipctrace ipcxeq is_att
kiktsk kymap kytask kytcb lclpid lu2close
Iu2ctl lu2gets lu2info lu20pen lu2puts lu2seek
Iu exst mov chrs mov_numb moveae old_func outmap
panic pluscur poolO poolOb poolOx pr-primd
prmnam prn_arg prnit putbuf putins qevtad
qevtst qpopqe quOqcb queuO rawlib rcv_msg
replay re~cmpl rset_map $cadat scadv scafin
scafun scaget scapi scapos scaput scared
scarep scasek scasnd scawrt scbakt scbonz
sccold sccrsl scdata scdims scdisp scdown
scdsOl scds02 scds03 scds04 sce2al sceeof
sceras scexec schome sclear scleft scmgst
scnxte scopyi scopyo scrigt scsini scsna
scsswp sctab sctask scupro scupxx scvg
scvprt scvx sendae set_cses set_map sho stat
showbf sigala sigcat sigign st fld sttic if
sustsk t taskst th2buf th5rng thVMIN
thapi tharaw tharst thasav thasgn thaw
thcola thcolr thctrl thcura thdlch thdpsl
thdraw thecch thecho theclr thence theras
therms thexec thexta thflsh thgopp thgoto
thgoxy thgtfg thgtnm thgtnt thgtst thinch
thinit think thintr thipti thisgi thkeyb

1-2 HLLAPI PROGRAMMER'S GUIDE

API External Symbols

thlick thlnkO thlnkr thlnkw thlnkz thofhl
thong thopia though thouts thpipO thpipk
thpipr thpipw thpipz thprin thputs thrall
thrill thsc1d thshlx thsigO thsigl thstrm
thtask thud thug thutrm thwack thxptx
thztrm tinfo tsep ufxaev unodef update_crt
usr_Ol usr_02 usr_03 usr_04 usr_OS usr_06
usr 07 usr_OS usr 09 usr_lO vnonlib wPrt
ww xlat xlu2c1os xlu2ctl xlu2func xlu2gets
xlu2info xlu2init xlu2intr xlu20pen xlu2puts xlu2read
xlu2seek xlu2writ

API EXTERNAL SYMBOLS 1-3

J Glossary

Glossary J-1

GLOSSARY I

Glossary

attention identifier (AID) key
A non-ASCII control key (for example, clear, PF, PA,
or Enter).

American National Standard Code for Information Interchange (ASCII)
One of the two standard codes used for exchanging
information among data processing systems and
associated equipment.

attribute byte

autoskip

In 3270 applications this is the byte used for data
security to indicate whether a certain field can be, or
has been, updated.

The cursor will automatically skip to the next unpro­
tected field when it encounters a field that is both
protected and numeric.

combination keys Keys that must be used in conjunction with another
key(s) to produce a specific function. These keys
include Control and Shift.

copy The function that allows you to mark source lines in
one location and move them to a target location.

current connected presentation space

extended error code

logging on

The active session to which you are connected.

A data string generated by an internal system error
that is used by the AT&T Tier 4 Support Group for
diagnosis.

The procedure by which you provide user
identification, and generally a password, before
establishing communications with an AT&T 3B com­
puter or a remote host computer.

GLOSSARY J-1

Glossary

menu A list of available options from which you select the
one that you want.

operator information area (OIA)
The bottommost line of your screen, where you
receive information about the status of your work
station and the remote host computer.

presentation space (PS)

PSID

session

short name

A region in computer storage that can be displayed
on your terminal screen.

Presentation Space Identifier; short name of the
presentation space.

A connection between your work station and a
remote host computer.

The one letter name (A through Z) of a presentation
space.

source presentation space
The presentation space from which information is
transported using a copy function.

target presentation space
The presentation space in which the information is
placed.

terminal operator A human user of a HLLAPI application program.

unprotected field A field that is available for the operator to use to
enter or modify data.

J-2 HLLAPI PROGRAMMER'S GUIDE

X Index

Index X-1

INDEX I

Index

3270 data stream mode 1: 8; 4: 1, 9, 11

A
API 1: 1, 8; 4: 1-4, 6-8, 10-14

AT&T 3270 Emulator+ HLLAPI Tutorial 1:

7; 3: 1-2, 4, 9, 11

attribute bytes 2: 13

c
C language functions 1: 1, 8

calling parameters 2: 8-9; 3: 8

Combination keys 2: 2

Communications Functions 1: 7; 2: 4; 3: 2-3

D
data arguments 2: 8

distributed processing 1: 3

E
Environment Functions 1: 7; 2: 7; 3: 3, 8

environment variables 2: 12; 3: 11

F
File Transfer Functions 1: 7; 2: 5; 3: 3, 6

function call 1: 1; 2: 5, 7-10; 3: 1

function number 3: 3

functions 1: 1, 5-7; 2: 3-5, 8-9; 3: 1, 3, 9; 4:

1-2, 8, 11, 13-14

H
hexadecimal format 3: 4, 10

HLLAPI 1: 1-8; 2: 1, 3-12; 3: 1-4, 8-11

host session 1: 3-4; 2: 1

K
keystrokes 1: 3-7

L
link 2: 11-12; 4: 3, 8, 10

Local Environment Functions 1: 7; 2: 3; 3:

2-3,5

logical unit 4: 1, 9, 11-12

LU 2: 13-14;

o
Operator Information Area 2: 2; 4: 14

p
Presentation Space 1: 4-5, 7; 2: 1, 3-4, 6; 3:

3,7

presentation space 1: 4-6; 2: 1, 11, 13-14; 3:

2

R
raw data stream mode 1: 8

return code 2: 9-11; 3: 8

INDEX X-1

Index

s
sessions 4: 7

Signals 4: 11

SNA 4: 1-4, 8, 10

Storage Manager function 2: 5

T
tutorial editing mode 3: 9

u
UNIX System 1: 7; 2: 7, 12-13; 3: 3, 9, 11

w
WS Ctrl 2: 1, 10

X-2 HLLAPI PROGRAMMER'S GUIDE

